
Computing
Surface

CS-2Documentation Set

Volume 1

83-MS047 mej<o

Acceptance

Copyright

Use

Copying

Assignment

Rights

Warranty

Notification of Changes

meJ<o

Tenns and Conditions

All Meilm software and associated manuals ("the Software") is provided by the Meiko
Group of Companies ("Meiko") either directly or via a Meiko distributor and is
licensed by Meiko only upon the following tenns and conditions which the Licensee
will be deemed to have accepted by using the Software. Such tenns apply in place of
any inconsistent provisions contained in Meiko's standard Tenns and Conditions of
Sale and shall prevail over any other terms and conditions whatsoever.

All copyright and other intellectual propeny rights in the software are and shall remain
the property of Meiko or its Licensor absolutely and no title to the same shall pass to
Licensee.

Commencing upon first use of the Software and continuing until any breach of these
tenns, Meiko hereby grants a non-exclusive licence for Licensee to use the Software.

Copying the Software is not permitted except to the extent necessary to provide
Licensee with back-up. Any copy made by Licensee must include all copyright, trade
mark and proprietary information notices appearing on the copy provided by Meiko or
its distributor.

Licensee shall not transfer or assign all or any part of the licence granted herein nor
shall Licensee grant any sub-licence thereunder without prior written consent of
Meiko.

Meiko warrants that it has the right to grant the licence contained under "Use" above.

Meiko warrants that its software products, when properly installed on a hardware
product, will not fail to execute their programming instructions due to defects in
materials and workmanship. If Meiko receives notice of such defects within ninety
(90) days from the date of purchase, Meiko will replace the software. Meiko does not
warrant that the operation of the software shall be uninterrupted or error free.

Unless expressly stated in writing, Meiko gives no other warranty or guar­
antee on products. All warranties, express or implied, whether statutory
or otherwise [except the warranty hereinbefore referred to], including
warranties of merchantability or fitness for a particular purpose, are here­
by excluded and under no circumstances will Meiko be liable for any con­
sequential or contingent loss or damage other than aforesaid except
liability arising from the due course of law.

Meiko's policy is one of continuous product development. This manual and associated
products may change without notice. The infonnation supplied in this manual is
believed to be true but no liability is assumed for its use or for the infringements of the
rights of others resulting from its use. No licence or other rights are granted in respect
of any rights owned by any of the organisations mentioned herein.

3

Nuclear and Avionic
Applications

Termination

Important Notice

4

&

Meiko's products are not to be used in the planning, construction. maintenance.
operation or use of any nuclear facility nor for the flight. navigation or communication
of aircraft or ground support equipment. Meiko shall not be liable, in whole or in part.
for any claims or damages arising from such use.

Upon termination of this licence for whatever reason. Licensee shall immediately
return the Software and all copies in his or her possession to Meiko or its distributor.

FEDERAL COMMUNICATIONS COMMISSION (FCC) NOTICE

Meiko hardware products ("the Hardware") generate, use and can radiate
radio frequency energy and, if not installed and used in accordance with
the product manuals, may cause interference to radio communications.
The Hardware has been tested and found to comply with the limits for a
Class A computing device pursuant to Subpart J of Part 15 of FCC Rules
which are designed to provide reasonable protection against such interfer­
ence when operated in a commercial environment. Operation of the Hard­
ware in a residential area is likely to cause interference in which case the
user at his or her own expense will be required to take whatever measures
may be required to correct the interference.

X0084-00LI06.01 meI<o

Contents

1. Documentation Guide

2. Communications Processor Overview

3. Communications Network Overview

4. Vector Processing Element Overview

5. Getting Started- Users Guide

6. CS-2 System Administration Guide

7. Pandora Users Guide

8. Elan Widget Library

mei<a

Contents

ii meJ<o

Computing
Surface

Documentation Guide

SlOO2-00CIOl.lO mei<o

The information supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of any
rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent of Meiko World
Incorporated.

Copyright © 1993 Meiko World Incorporated.

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSToois are trademarks of Meiko Limited. Sun, Sun and a numeric suffix,
Solaris, SunOS, AnswerBook, NFS, XView, and Open Windows are trademarks of Sun Microsystems, Inc. All
SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. Unix, Unix System V,
and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X Windows System is a
trademark of the Massachusetts Institute of Technology. AVS is a trademark of Advanced Visual Systems Inc.
Verilog is a registered trademark of Cadence Design Systems, Inc. All other trademarks are acknowledged.

Issue Status:

Meiko's address in the US is:

Meiko
130 Baker Avenue
Concord MA01742

5083710088
Fax: SOB 371 7516

Draft
Preliminary
Release
Obsolete

Circulation Control: External

Meiko's address in the UK is:

Meiko Limited
650 Aztec West
Bristol
BS124SD

Tel: 01454616171
Fax: 01454618188

Documentation Guide

The following documentation is supplied by Meiko for users of the Meiko
CS-2 system. This list includes documentation that is published by Meiko and
documentation that is supplied by third parties for their own products.

The following summaries are arranged so that the highest level descriptions
occur at the head of the list, and the lowest level at the bottom. The intended
audience for each document is shown in the margin and is either Manager, Ap­
plication Programmer, System Programmer, or Programmer (either systems or
applications).

This documentation is supplied on paper, as postscript source in the directory
/opt/MEIKOcs2/docs, and in a Meiko AnswerBook. Meiko's own docu­
mentation is released in all three fonnats, whereas third party documentation is
generally not compatible with the AnswerBook and its distribution may also be
restricted by licence.

Many of the commands, library functions, and file formats described in the fol­
lowing manuals are also described by manual pages that are distributed in the
/ opt /MEIKOcs2 /man directory; you should ensure that this directory is re­
ferred to by your MANPATH environment variable, and that the Meiko direc­
tory is listed first. Use the Solaris man command to view these manual pages.

1

Managers I Programmers

Managers I Programmers

Managers I Programmers

Managers I Systems

Managers I Programmers

Managers I Programmers

Managers I Systems

2

Overview Documentation

Communications Processor Overview
Overview of the Elan communications processor, listing design objectives
and implementation decisions.

Vector Processing Element Overview
Overview of the Meiko vector processing boards describing the hardware
architecture, the Fujitsu fJ. VP and SPARC processors, and compiler technol­
ogy.

Communications Network Overview
Overview of the CS-2 data network. Compares the CS-2 network with other
network types (logarithmic, ring etc.), and describes the benefits of Meiko's
implementation.

Software Documentation

CS-2 System Administration Guide
Describes the main software components in the CS-2 and their installation
and configuration.

Getting Started - Users Guide
A user's introductory guide to the CS-2. Describes the main features of the
CS-2, the programming libraries and utilities, and shows how they are used.

Pandora Users' Guide
Pandora is the user interface to the CS-2 resource management system. It al­
lows users to query resource availability. Pandora allows the System Ad­
ministrator to partition resources, to restrict user access to them, and also
provides a diagnostic capability.

Group Routing
Describes the group routing faCility. The kernel network routing tables have
been extended to include user groups that are permitted to use each route.
This documentation describes the implementation and usage of this facility.

S lOO2-OOClO1.10 meI<o

Programmers

Applications

Applications

Applications

Programmers

Applications

Programmers

meI<D Documentation Guide

Elan Widget Library
Library documentation describing low level functions that are used to im­
plement higher level message passing systems, such as PVM and Meiko's
CSN.

CSN Communications Library for C
Library documentation describing the implementation of Meiko's CSN com­
munications library in the CS-2 environment. This documentation describes
the C interface to this library.

CSN Communications Library for Fortran
Library documentation describing the implementation of Meiko's CSN com­
munications library in the CS-2 environment. This documentation describes
the Fortran interface to this library.

Tagged Message Passing and Global Reduction
Library documentation describing the configuration and use of the CS-2 for
execution of parallel applications that have been imported from machines
with a hypercube topology. This library also defines global reduction opera­
tions.

Resource Management User Interface Library
Describes the programmers interface to the resource management system al­
lowing user programs to query the machine configuration and to start paral­
lel applications.

PVM Users Guide and Reference Manual
PVM (parallel Virtual Machine) is a software package that allows a hetero­
geneous network of parallel and serial computers to appear as a single con­
current computational resource. This documentation describes the CS-2
implementation of PVM.

The Elan Library
Describes the lowest level library interface to the Elan Communications
Processor. This library offers direct access to the Elan's DMA and event
functionality.

3

Managers

Managers

Applications

Applications

Managers / Programmers

Applications

4

Hardware Documentation

Processor Module Users Guide
Describes the CS-2 Processor Module and the boards that can be fitted into
it. Lists handling requirements, power specifications, and field selViceable
components.

Switch Module Users Guide
Describes the CS-2 Switch Module and the boards that can be fitted into it.
Lists handling requirements, power specifications, and field selViceable
components.

Third Party Parallel Programming Tools

The following documentation describes software ports or Meiko implementa­
tions of programming systems developed or conceived by third parties. Refer­
ences to the originators are included in the documentation that accompanies
each product.

ScaLAPACK - Optional
Defines routines for LV factorization, QR factorization, Cholesky factoriza­
tion, Hessenberg reduction, tridiagonal reduction, and Bidiagonal reduction.
Documentation is provided for these routines and the BLAS and BLACS li­
braries that fonn their foundation. Accompanied by Meiko release notes.

Basic Linear Algebra Subprograms - Optional
Two documents are provided describing the BLAS 2 and BLAS 3 libraries
(both prepared at the Argonne National Laboratory). This documentation is
supplemented by release notes and usage infonnation that has been prepared
by Meiko.

Solaris Documentation
The Solaris operating system is fully documented on the SunSoft Answer­
Book CD-ROM.

TotalView - Optional
Third party debugging software distributed under licence and with extensive
docwilentation. Published by BBN.

S lOO2-OOClO1.10 meko

Applications Adaptor - Optional
Adaptor (automatic data parallelism translator) is a tool for transfonning
data parallel programs written in Fortran with array extensions, parallel
loops, and layout directives into parallel programs with explicit message
passing. Distributed with User's Guide and Language Reference Manual
(published by GMD).

Applications Paragraph - Optional
A graphical display system for visualising the perfonnance of parallel pro­
grams. The documentation is published by the University of Illinois and the
Oak Ridge National Laboratory.

Programmers Portland Group Compilers - Optional
The Portland compilers generate code for the CS-2 vector and scalar proces­
sors, and are extensively documented by the Portland Group's own docu­
mentation set.

meI<D Documentation Guide 5

6 S lOO2-OOC 101. 10 meko

Computing
Surface

Communications Processor Overview

S lOO2-10M 100.04 mei<o

The information supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of any
rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent ofMeiko World
Incorporated.

Copyright © 1993 Meiko World Incorporated.

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSToois are trademarks of Meiko Limited. Sun, Sun and a numeric suffix,
Solaris, SunOS, AnswerBook, NFS, XView, and OpenWindows are trademarks of Sun Microsystems, Inc. All
SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. Unix, Unix System V,
and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X Windows System is a
trademark of the Massachusetts Institute of Technology. AVS is a trademark of Advanced Visual Systems Inc.
Verilog is a registered trademark of Cadence Design Systems, Inc. All other trademarks are acknowledged.

Issue Status:

Meiko's address in the US is:

Meiko
130 Baker Avenue
Concord MA01742

5083710088
Fax: 508 371 7516

Draft

Preliminary

Release

Obsolete

Circulation Control: External

Meiko's full address in the UK is:

Meiko Limited
650 Aztec West
Bristol
BS124SD

Tel: 01454616171
Fax: 01454618188

Contents

1. Overview 1

2. Inter-processor Communications 3

Latency and Bandwidth. 4
Network Security. 4

Virtual Addressing . 5

3. Elan Functionality 7

Checking... 7
Translation . 8
Copying. 9
Device Control. 10

Thread Processor. 10
Thread code . 11

Events. 11
Other Forms of Remote Access 12

4. Using the Communications Processor. 13

DMA Transfers. 13

5. Conclusions 15

ii

mei<D

Overview 1

Effective cooperation between processing elements is a crucial factor in deter­
mining the overall perfonnance of an MPP system. Maintaining effective inter­
processor communication as a system scales in size is a vital aspect of preserv­
ing balance.

In designing the CS-2 architecture Meiko has concentrated on minimising the
impact of sharing work between processors. The effect of this is to increase the
number of processors that can be used effectively to solve a problem, improv­
ing the performance of existing parallel programs and making parallel process­
ing efficient for a wider range of applications.

Every processing element in a CS-2 system has its own, dedicated interface to
the communications network: a Meiko designed communications processor.
The communications processor has a SPARC shared memory interface and two
data links. Data links are connected by Meiko designed 8x8 cross-point
switches. Data links are byte wide in each direction and operate at 70 MHz,
providing 50 Mbytes/s of user bandwidth in each direction.

The communications processor supports remote read, write and synchronisa­
tion operations specified by virtual processor number and virtual address -
both are checked in hardware. Latency hiding is supported by non-blocking in­
structions, instruction sequences and completion tests.

1

2

This document provides an overview of the design of the communications
processor and its usage. For more information about the architecture of the
data network see the Communications Network Overview.

Figure 1-1 The Elan Communications Processor

System Clock Domain

Reply Thread

Input 0 Input 1

DMA

Internal
Memory

Command

Output

S lOO2-10MlOO.04 meJ<a

I nter-processorC ommunications

In a distributed memory system work is shared between processors by ex­
changing data over a communications network. The efficiency of data ex­
change controls the effectiveness of work sharing and hence the number of
processors that can be used on a given problem.

2

Rather than design a new processor with built in communications capability
Meiko chose to separate the issues in the design of the CS-2. Processing ele­
ments consist of a high performance RISC CPU (with optional vector process­
ing capabilities) and a dedicated communications processor.

The interface between the communications processor and the rest of the
processing element is central to the efficiency of the CS-2 network. It provides
the following essential features:

• Low communication start-up latency.

• High bandwidth inter-processor communication.

• Security against corruption.

• Operation in a network -wide virtual addressing, virtual process
environment.

3

2

Latency and Bandwidth

Network Security

4

Efficient inter-processor communication requires both low latency and high
bandwidth. While solutions to the bandwidth problem can be addressed by
ever improving hardware technology, these improvements only exacerbate un­
derlying latency problems.

To show that this is the case consider a system with a communications start-up
latency of 10 Jls. To transfer a 100 byte message via a 1 Mbyte/s network we
will get an achieved bandwidth of 0.9 Mbytes/s (90% efficiency). For the same
transfer over a 50Mbytes/s network, the achieved bandwidth is just
8.3Mbytes/s (16% efficiency). Clearly the improvements in bandwidth for this
example system have been severely limited by the start-up latency and the size
of the data transfer.

By using a dedicated communications processor Meiko have reduced start-up
latency by implementing in hardware the communications code that would nor­
mally execute on the main processor.

The data links joining communications processors and network switches are
byte wide in each direction. Links are clocked at 70MHz. Their bandwidth af­
ter protocol is 50MBytes/s in each direction. The CS-2 data network is a fat
tree with constant bandwidth between stages. It is capable of supporting full
bandwidth transfers between all pairs of processors (see the Communication
Network Overview for more details).

Moving communications code from the main processor to a communications
engine does not in itself reduce latency. Performance improvements come from
running the right code in the right places. In particular there are significant
benefits to be had from moving the lightweight interrupt intensive operations
associated with inter-process communication off a conventional microproces­
sor and onto a communications processor designed specifically for this pur­
pose.

The CS-2 communications network is shared by both user and system level
communications so it is vital that a security mechanism is used to prevent un­
related communications from interacting. To relieve the burden of checking
from the main processor and to reduce start up latency, the main processor is-

SlOO2-10MlOO.04 mei<a

Virtual Addressing

2

sues unchecked communication instructions to the communications processor,
the communications processor then implements the security strategy in hard­
ware. This mechanism is preferable to the more conventional use of kernel
mapped devices, which use checked system calls to access the device, often
with a significant perfonnance impact (a checked system call in a 40MHz
SPARC takes approximately 50 J!s). The CS-2 network protects processes from
communications errors that occur within other unrelated processes, but does
not protect a process from errors within itself. This is the same model as that
employed for memory protection by the UNIX operating system - processes
are protected from each other, but not from themselves.

The communications processor uses separate page tables from the main proces­
sor. This means that a user process need not make its entire address space vis­
ible when it communicates, only the portion that contains the data need be
mapped for communication. Secondly, separate page tables may be used to re­
duce the amount of cache flushing in non cache-coherent systems; in a write
through cache only those pages that are mapped with write permission need be
flushed.

The two sets of page tables are kept in step by a modified page out daemon and
new page in code in the operating system. The modified page out daemon
modifies both sets of tables, whereas the new page in code handles the asyn­
chronous page faults from the communications processor.

ITIf!i<o Inter-processor Communications

2

6 S lOO2-10Ml()O.04 m8<D

Checking

meJ<o

Elan Functionaiity 3

The functionality of the communications processor was decided by drawing on
experience from Meiko's CSTools/CSN communication software, used to cre­
ate a programming environment over Transputer networks, and other message
passing systems such as the Chorus Nucleus. This analysis showed that the
start-up process consists of four components:

• Checking.

• Translation.

• Copying.

• Device control.

Each of which is important if start-up latency is to be minimised.

The CS-2 supports virtual memory addressing on each processing element, al­
lowing it to implement a fully distributed store for operating system use, and
permit it to implement the applications binary interface (ABI) for the base mi­
croprocessors. The communications processor therefore has two types of pa­
rameters to check: memory addresses and process addresses.

7

3

Translation

8

The communications processor receives unchecked virtual memory addresses
from the main processor so it must incorporate a memory management unit
(MMU). The MMU used within the Elan supports multiple simultaneous con­
texts allowing I/O to continue for suspended processes.

The checking of process addresses is analogous to the checking of memory ad­
dresses. It is implemented by a simple table look-up and exception mechanism.
The communications processor is designed to handle the common case where a
user is trying to communicate with other processes for which it has pennission;
an exception is generated whenever there is no pennission. As checking is per­
formed independently on each of the communications processors, failed
processing elements can be removed from service by removing them from each
communications processor's list of valid destinations.

Process and memory translation within the communications processor is imple­
mented through the same mechanism as the checking, that is, by table look­
ups. Memory address translation yields the same results as the main proces­
sor's translation mechanism. Dynamic process translation yields two compo­
nents: a destination processor and a destination context. There are no physical
processor or memory addresses in user space

S lOO2-10MlOO.04 meJ<a

Copying

meko Elan Functionality

Figure 3-1 Elan Process Translation

Context Table Virtual Process Table

r--i

Context
Number

,

-
r-i

Virtual Process
Number

3

Routing Table

~

Virtual process IDs are translated through a per context virtual to physical
processor translation which points at the route bytes needed to direct a mes­
sage to this processor.

The communications processor supports a number of features to remove the re­
quirement for copying of data. By using network wide virtual addressing there
is no need to copy data into physically mapped output buffers, a common tech­
nique in distributed systems to overcome the problems of virtual address trans­
lation and page locking during communication. Furthennore, because the main
processor and the communications processor share a common memory bus (a
SPARC MBus) and the same cache coherency protocols, the problems associ­
ated with cache coherency are also avoided.

Clearly the avoidance of unnecessary copying contributes greatly to reduced
start-up latency and efficient use of memory bandwidth. For messages that are
copied once on sending, this adds (messagesize x 2) / (memorybandwidth) to the
start-up latency, and consumes three times as much store bandwidth.

9

3

Device Control

Thread Processor

10

The final requirement of message start-up code is in device control. This is set­
ting up the communications parameters in store, signalling to the communica­
tion device, and responding to interrupts returned by the communications
processor.

Control of the communications processor is via a command port which is nor­
mally mapped into the user address space. The command port consists of a
range of memory addresses. The communications processor command is deter­
mined by extracting 5 bi ts from the address that is used. The data that is used
by the communications processor command corresponds to the 32 bits of data
that are written to that memory address. Commands sent to the command port
are written in a single read-modify-write cycle and are acknowledged with the
value that is read back (which will be non-negative if the command is accept­
ed). The kernel can prevent the user issuing certain commands by mapping
limited portions of the command port address space in to the user address
space.

Exceptions generated by the communications processor may be handled by the
communications processor's own thread processor, without direct intervention
by the main processor.

One of the objectives of the Elan communications processor is to reduce the
number of interrupts and system calls that must be executed to perform mes­
sage passing. As we have seen the combination of the user mapped command
port and the Elan communication processor's security mechanisms allows user
level code to initiate remote memory accesses without making a system call. In
many cases, however, message protocols require higher level functions than
simply the transfer of data. Other common requirements are for synchronisa­
tion between processes executing on separate processors, and allocation of glo­
bal resources. To support these requirements the Elan communications
processor includes a RISC processor which can execute user level code inde­
pendently of the main node processor, and also create additional network trans­
actions.

SlOO2-10MlOO.04 meJ<a

3

The hardware and microcode of the thread processor support an extremely
lightweight scheduling mechanism. This allows lightweight processes (threads)
running on the thread processor to be suspended and then rapidly rescheduled
by the hardware when the relevant event has occurred.

The user level code in the main node processor can directly request the execu­
tion of a thread process through access to the appropriate command port. The
thread code has no more privileges than the user code which initiated it. The
Elan communications processor uses its page tables for the relevant user con­
text whenever it makes a store access from the thread.

Thread code

Events

meko Elan Functionality

Thread code can be written in ANSI C. An inlined library provides access to
the Elan communication processor I/O instructions without the overhead even
of a subroutine call.

Events provide a general mechanism by which synchronisation may be
achieved between lightweight threads running either in the same, or different,
Elan communication processors. In addition an event can be used to cause an
interrupt to the main node processor. An event is represented by a double word
in store.

A thread can perform the following operations on either local or remote events:

Wait

Set

Clear

Test

If the event has already been set, then execution continues and the
event is unset. Otherwise the thread is suspended on the event until
the event is set, when it will be rescheduled.

The event is set. If there was an action already present on the event
then it is performed.

If the event was set it is cleared.

Poll the status of an event without modifying or suspending on it.

11

3

12

There are various possible actions which can occur when an event is triggered,
these depend on what has been suspended in the event structure:

A local thread The thread is placed back on the thread run queue, so
will resume execution.

A remote thread The remote thread is rescheduled on its own processor.

A local interrupt The main processor is interrupted.

Events also support queues of outstanding requests. When a queued event is
set, the first action on the queue is executed, and the queue updated to point to
the next action.

Other Forms of Remote Access

In addition to events, the Elan also supports other forms of remote store access.
In particular thread code can generate network transactions to perform:

Atomic Swap The word at the given remote address is returned,
and overwritten with the word sent in the message.

Atomic Add The word sent in the message is atomically added to
the data at the remote address. The original remote
data may optionally be returned.

Atomic test The word at the remote address is compared with a
and store test value sent in the message. If equal then a new

value sent in the message is written to the remote
store, otherwise the remote store is unchanged. The
original remote value may optionally be returned.

Remote compares The word at the remote address is compared with the
given data using one of the operations ==, =, >= or
<. The result of the comparison is returned as an
acknowledge or negative acknowledge.

The broadcast capabilities of the Elite switch can be used to combine the re­
sults of a broadcast remote compare operation into a single result.

S 1 002-1 OM 100.04 1T1fi<a

DMA Transfers

meJ<D

Using the Communications Processor 4

In this section we show in outline how the communications processor is used
to communicate with other processes via the data network. The example shows
how to initiate a DMA transfer to remote store.

In the previous sections we have seen that a key factor in the design of the
communications processor is that it offers low communication start-up laten­
cies, and that communication start-up requires minimal intervention by the
main processor. For a typical DMA transfer of data to a remote processor, the
actions required by the main processor are as follows:

• User program creates a DMA structure in store identifying the
characteristics of the transfer (source and destination addresses, amount of
data, etc). This could be done in advance if the same access is to be made
repeatedl y.

• User program issues DMA command with RmW to command port. The
address of the DMA structure is written to the appropriate address in the
command port.

• User program checks command accepted; a value of greater than or equal to
o in the command port indicates that the command was accepted.

13

4

14

The main processor is now free to continue with its work: leaving the commu­
nications processor to transfer the data, and to ensure its integrity. The actions
now required by the communications processor are:

• Command processor reads the 32 bit data from the command port and uses
this to locate the DMA descriptor. The descriptor is read into the
communications processors DMA queue.

• DMA processor reads the queue item in.

• DMA processor performs destination process translation.

• DMA processor reads route information.

• DMA processor reads source data in and starts to send. The route
information is prepended to the data, and is stripped off as it passes through
the switch network.

If the main processor wanted confirmation that a DMA had completed it would
include a pointer to an event in the DMA description. Polling this event (when
there is no more useful work to do) would confirm completion of the transfer.

SlOO2-10MlOO.04 meJ<o

meJ<o

Conclusions 5

Efficient inter-processor communications requires the right balance of latency
and bandwidth. CS-2 uses Meiko's own communication hardware, developed
from many years experience in the massively parallel processing field, to cre­
ate a network with both high bandwidth and low start-up latency.

The Elan communications processor is key to minimising the network latency.
It serves not just as a communications co-processor, but aims to minimise the
amount of message start up code, and therefore minimise start-up latency. For
simple communications the overhead on the main processor can be reduced to
a single read modify write. More complex protocols require small fragments of
code to be run on the communications processor. The requirement for copying
of messages is removed by the ability of the communications processor to op­
erate in virtual store. Protection is implemented by hardware table look ups of
translation tables which impose low overhead on valid operations, and generate
exceptions in the much less frequent error cases.

15

5

16 SlOO2-10MlOO.04 mei<a

Computing
Surface

Communications Network Overview

•
S 1002-10M 105.05 meJ(O

The information supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of any
rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent ofMeiko World
Incorporated.

Copyright © 1993 Meiko World Incorporated.

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSToois are trademarks of Meiko Limited. Sun, Sun and a numeric suffix,
Solaris, SunOS, AnswerBook, NFS, XView, and Open Windows are trademarks of Sun Microsystems, Inc. All
SPARC trademarks are trademarks or registered trademarks ofSPARC International, Inc. Unix, Unix System V,
and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X Windows System is a
trademark of the Massachusetts Institute of Technology. AVS is a trademark of Advanced Visual Systems Inc.
Verilog is a registered trademark of Cadence Design Systems, Inc. All other trademarks are acknowledged.

Issue Status:

Meiko's address in the US is:

Meiko
130 Baker Avenue
Concord MA01742

5083710088
Fax: 508 371 7516

Draft

Preliminary

Release

Obsolete

Circulation Control: External

Meiko's full address in the UK is:

Meiko Limited
650 Aztec West
Bristol
BS124SD

Tel: 01454616171
Fax: 01454 618188

Contents

1. General Description 1

Network Characteristics. 1
Full Connectivity . 2
Low Latency. 2
High Bandwidth. 3
Fault Tolerance. 3
Deadlock Freedom . 3
Scalability. 4

Logarithmic Networks. 5

2. The CS-2 Communications Network 9

Comparison With Fat-Tree Networks. 11
Characterising a CS-2 Network. 12

3. Network Implementation 15

The Link Protocols . 15
The Meiko Elite Network Switch. 16
Routing Algorithms. 17

4. Conclusions 19

ii

GeneralDescription 1

Effective cooperation between processing elements (PEs) is a crucial factor in
determining the overall sustained performance of a Massively Parallel Process­
ing (MPP) system.

In designing the CS-2 architecture, Meiko has concentrated on minimizing the
impact of sharing work between processors. The effect of this is to increase the
number of processors that can be effectively used to solve a problem, improv­
ing the performance of existing parallel programs, and making parallel
processing effective for a significantly wider range of applications.

Every processing element in a CS-2 system has its own, dedicated interface to
the communications network: a Meiko designed communications processor.
The communications processor has a SPARC shared memory interface and two
data links, these links connect the communications processors to Meiko de­
signed cross-point switches.

This document provides an overview of the design of the communications net­
work. For more information about the architecture of the communications
processor see the Communications Processor Overview.

Network Characteristics

mekD

The design of the CS-2 data network builds on Meiko's considerable expertise
in the field of MPP systems. From the outset the communications network was
designed with several key characteristics in mind:

1

2

• Full connectivity.

• Low latency.

• High Bandwidth.

• Fault tolerance.

• Deadlock freedom.

• Scalability.

Full Connectivity

Every processing element (PE) has the ability to access memory on any other
PEe Messages pass from the source to destination PEs via a dynamically
switched network of active switch components. The network is fully connect­
ed, allowing a machine with n PEs to sustain n simultaneous transfers between
arbitrarily selected pairs of PEs at full bandwidth.

The communication network does not use the PEs as part of the network, only
as gateways on to it. This ensures that node resources (such as CPU and mem­
ory bandwidth) are not affected by unrelated network traffic.

Low Latency

Inter-process communications latency has two components, start-up latency
(which is covered in the Communications Processor Overview) and network la­
tency. The CS-2 communication network is designed to minimize and hide net­
work latency. Wormhole routing is used to reduce the latency through each
switch stage, and the overall network topology is designed to minimize the
number of stages through which a message passes. The low level communica­
tion protocols allow overlapped message acknowledgments, and the message
packet size is dynamically adjusted so that it is always sufficient for full over­
lapping to occur.

CS-2 communications start-up latency are less than 10 J.lS, network latencies
are less than 20011s per switch.

S lOO2-10MIOS.OS meJ<a

1

High Bandwidth

The communication bandwidth in an MPP system should be chosen to give an
appropriate compute communications ratio for current PE technology. The net­
work design should ensure that additional bandwidth can be added to maintain
the compute/communication ratio as the performance of the PEs improves with
time. Although the actual required compute/communications ratio is applica­
tion specific, the higher the network bandwidth the more generally applicable
the MPP system will be.

CS-2 data links are byte wide in each direction and operate at 70 MHz. Usable
bandwidth (after protocol overheads) is 50 Mbytes/s/link in each direction. Bi­
sectional bandwidth of the CS-2 network increases linearly with the number of
PEs. A 1024 PE machine has a bisectional bandwidth of over 50 Gbytes/s.

Fault Tolerance

The network for a very large MPP system will of necessity consist of a very
large number of components. Moreover for large systems a significant number
of cables and connectors will be required. Under these circumstances reliabili­
ty becomes a major issue. Tolerance to occasional failures by the provision of
multiple routes through the network is desirable for small systems, and essen­
tial for very large systems.

CS-2 systems have two fully independent network layers and each PE is con­
nected to both layers. In addition each layer provides multiple routes between
each arbitrarily selected pair of PEs. The hardware link protocol uses Cyclic
Redundancy Checks CCRCs) to detect errors on each link; failed transmissions
are not committed to memory, but cause the data to be resent. All network er­
rors are flagged to the System Administrator; permanently defective links can
be removed from service.

Deadlock Freedom

meko General Description

Routing through multistage networks is essentially a dynamic resource alloca­
tion problem and, because multiple PEs are attempting to acquire sets of route
hops simultaneously, there is the potential for deadlock. The most common
deadlock avoidance strategy is always to allocate resources in a fixed order.
With .wormhole routing, since the resources are allocated as the message
wormholes through a network, this affects routing strategy for a given topolo-

3

1

Scalability

4

gy. For example in a hypercube or a grid, deadlock free routing is possible by
ensuring that a PE routes by resolving the address one dimension at a time in
ascending order. Note: that this actually removes the fault tolerance of the net­
work; between PEs that differ by more than one dimension there are many pos­
sible routes, but only one can be used without risk of deadlock.

The requirement for scalability within a network is one of the most difficult to
achieve in actual systems. The three factors that need to be considered are,
growth in network latency with scaling, growth in network cost, and growth in
bisectional bandwidth.

The scalability properties of various network topologies are:

Type Number of Number of Latency Bisectional
Switches Links Bandwidth

Ring N N N-l 2

d dimensional grid N dN d4./N tl/N
Arity d Omega net NlogJl (dNlogJl) 12 logJl N

Arity d benes net 2NlogJl dNlogJl 2log}1 N

Crosspoint N2 N2 1 N

Where N is the number of processors in the machine, Number of Links is the
total number of connections between switches, Latency is the worst case
number of switches which must be passed through, and Bisectional Bandwidth
is the worst case bandwidth between two halves of the machine.

For scalability it is essential that the bisectional bandwidth of the machine in­
creases linearly with the number of processors. This is necessary because many
important problems cannot be parallelised without requiring long distance
communication (for example, FFf, and matrix transposition).

The cost (both in switches and wires) of a full crosspoint switch increases as
the square of the number of processors. Adoption of this network therefore
leads to a machine in which switch and wire costs rapidly dominate when sig­
nificant numbers of processors are used. For the logarithmic networks the
switch and wire costs increase only logarithmically faster than the number of

SlOO2-10MI05.05 meJ<D

Logarithmic Networks

meko General Description

1

processors. It is therefore possible to build machines which contain significant­
ly more processors before the switch costs dominate and the machine ceases to
be cost effective.

The crosspoint has the advantages of contention freedom and constant network
latency for all routes. However, although the worst case latency in a logarith­
mic network increases slowly with the number of processors, they can be ar­
ranged so as to ensure that this increase only occurs when long distance
communication is required-performance is not dependent upon exploiting lo­
cality of reference, but doing so is beneficial.

The arity of the logarithmic network is the size of the crosspoint switch from
which the network is built. So if the crosspoint is built from 2x2 switches it
will have arity of 2. The choice of switch arity is highly influenced by the
available packaging technology, since given a limited number of pins to con­
nect into a switch there is a reciprocal relationship between the arity of the
switch and the number of wires in each link. As the bandwidth of a link is di­
rectly related to the number of wires over which it is carried, this translates
into a choice between a high arity switch which can switch many low band­
width links, or a low arity switch for few high bandwidth links.

In order to analyze the CS-2 network it is useful to understand the characteris­
tics of the Benes and Omega networks.

The main attraction of the Benes network is that it can be proved to have
equivalent functionality to a full crosspoint (see Hockney and Jesshopel for a
review)-any permutation of inputs can be connected to any permutation of
outputs without contention. There are also multiple routes between any input­
output pair. Calculating the routing to ensure that the routes are allocated with­
out congestion for any given permutation is, however, a non-trivial problem.

1. R.W.Hockney & C.R.Jesshope. Parallel Computers 2. Pub. Adam Hilger.

5

1

This problem has been solved for a number of interesting special cases com­
munication patterns: rings, grids, hypercubes etc. There has also been exten­
sive simulation of these networks under a wide variety of loadings.

Figure 1·1 16 Processor Benes Network

6 Sl002-10MI05.05 meJ<a

1

In an Omega network there is only one possible route for each input-output
pair. Not all possible permutations are possible without blocking, although
common geometric patterns such as shifts and FFf butterflies can be shown to
be contention free.

Figure 1-2 16 Processor Omega Network

meko General Description 7

1

8 SlOO2-10MI05.05 m8<D

mei<D

The CS-2 Communications Network 2

CS-2 uses a logarithmic network constructed from 8 way crosspoint switches
(see Chapter 3 for details of their implementation) and bidirectional links.

For the pUIposes of this analysis it can be considered to be a Benes network
folded about its centre line, with each switch chip rolling up the functionality
of eight of the unidirectional two way switches.

Bandwidth is constant at ~ach stage of the network, and there are as many links
out (for expansion) as there are processors. Larger networks are constructed by
taking four networks and connecting them with a higher stage of switches. A
16 processor network is illustrated in Figure 2-1.

9

2

10

Figure 2-1 One layer of a 2-stage CS -2 network. 16 plOcessors are con­
nected to stage 1, 16 links connect stage 1 to stage 2, and 16
links are available for expansion.

Processors 0 - 15

The scaling characteristics of the CS-2 network are shown in the table below;
note that the latency is measured in switch stages for a route which has to go
to the highest stage in the network.

Processors Stages Total Switches Latency

4 1 1 1

16 2 8 3

64 3 48 5

256 4 256 7

1024 5 1280 9

4096 6 6168 11

One aspect of implementing the network using bidirectional switches is that
routes which are relatively local do not need to go to the high stages of the
switch hierarchy. So, for example, a communication to a PE which is in the
same cluster of 16 processors only needs to pass through 3 switches irrespec­
tive of the total network size.

S lOO2-10MIOS.OS ms<o

2

To broadcast to a range of outputs it is necessary to ascend the switch hierar­
chy to a point from which all the target PEs can be reached. From this point
the broadcast then fans out to the target range of processors.

Comparison With Fat-Tree Networks

The multi-stage network used in the CS-2 machine can also be considered as a
"fat tree". In Figure 2-1 we see that for each of the higher layer switches has
identical connections to the lower stages. If this is simply redrawn as shown in
Figure 2-2 we get the "" fat tree" structure.

In fat trees packets do not always have to go to the top of the tree; packets are
routed back down at the first node possible. This means that for problems
which have locality of reference in communications, bandwidth at higher lev­
els of the tree can be reduced. Exploiting the benefits of locality by reducing
upper level network bandwidth has the effect of making process placement
more significant. Although the CS-2 network permits this local packet routing,
the bandwidth is not reduced in the higher level. This preserves the properties
of Benes and Omega networks.

meko The CS-2 Communications Network 11

2

Figure 2-2 One layer of a 16 processor CS-2 network drawn as a fat
tree.

Further properties of "'fat trees" are described by Leiserson1

Characterising a CS-2 Network

12

Logarithmic, or multi-stage, switch networks are described in a variety of ways
by different people. The scheme used by Meiko is outlined below.

For a machine with N processors the size of its network is defined by one pa­
rameter: size. The position of a processing element is defined by two parame­
ters: level and network identifier. The position of a switch in the network is
defined by four parameters: layer, level, network identifier, and plane.

Every processor in a (complete) network is connected via a data link to a
switch in the lowest stage, these switches are then connected to higher stages,
etc and N links emerge from the top of the network. These links can be used to
connect to further stages, or if we forgo the ability to expand they can be used
to double the size of the network without introducing an extra stage (see Figure
2-3).

1. C.E.:leiserson. Fat-Trees: Universal Networks for hardware-Efficient Supercomputing. IEEE
Transactions on Computers, Volume C-34 number 10 (Oct. 1985). pp 892-901.

S lOO2-10MI05.05 meJ<D

2

Figure 2-3 Doubling the size of a CS-2 network.

We use a binary fonn for network size, equal to the number of bits in the net­
work identifier of the lowest processor in the network. This is used because the
top stage of the network can use either 4 or 8 links.

A network has [size/2] stages, indexed by the parameter level. The top stage is
O. The deepest processors in the network have level=size. A network supports
between 2 (size - 2) + 1 and T ize processors. Note: it is not necessary for the
switch network to be complete. Figure 2-4 illustrates a network of size 6.

Figure 2-4 One layer of 64 processor (size 6) CS-2 network.

meko The CS-2 Communications Network 13

2

14

There are a variety of ways of drawing these networks (see the CS-2 Product
Description for two other examples). To draw (or manufacture!) them without
crossing data links you need one more dimension than there are stages in the
network.

A CS-2 machine has 2 completely independent identical switch networks.
These networks are indexed by the parameter layer. Processors are connected
to both layers, switches are in one layer or the other.

The position of each processing element is uniquely determined by its network
identifier and level, which describe the route to it from all points at the top of
the network (level=O). Routes down are written <0-7>.<0-3>.<0-3> ... working
down from the top of the network. Each digit represents the output link used
on a network switch. For example, in Figure 2-4 processor 0 has route 0.0.0,
and processor 17 has route 1.0.1. Note that the route is the same for all starting
points at the top of the network. Network identifiers of communications proc­
essors (leaves of the network) are sometimes called Elan Identifiers.

Each stage of the switch network has 2(size-2) switches, and 2level distinct
routes from the top of the network. The network identifier of a switch indexes
the distinct routes within each level. Within each stage there are 2(size-level-2)

switches with the same route from the top of the network.

S I002-IOMIOS.OS meJ<a

The Link Protocols

meJ<a

Network Implementation 3

The CS-2 communications network is constructed from a VLSI packet switch
ASIC - the Elite Network Switch. Interfacing between the network and the
processors is perfonned by a second device, the Elan Communications Proces­
sor. Switches are connected to each other and to communications processors by
byte wide bidirectional links.

The choice of a byte wide link protocol is dictated by a number of factors. The
link must be wide enough to meet the bandwidth requirements of the proces­
sor, but must not be so large that the number of I/O pins on the devices be­
comes prohibitively large. The implementation that Meiko selected uses 20
wires for each bidirectional link, lOin each direction. When clocked at
70MHz this yields a bandwidth of 50Mbytes/s (after allowing for protocol
overheads) in each direction. This level of performance and the underlying
protocol fonnat is appropriate for optic fibre communication over long distanc­
es (the link can be converted to a 630MHz data stream).

The use of bidirectional links pennits flow control and acknowledge tokens to
be multiplexed onto the return link. The low level flow control allows buffer­
ing of the data at the line level so that communications clock frequencies in ex­
cess of the round trip delay can be used. The interface is asynchronous and is
tolerant to a 200ppm frequency difference between the ends. This means that
each end can have its own clock, substantially simplifying construction of
large systems.

15

3

The Meiko Elite Network Switch

16

The Elite switch is capable of switching eight independent links, each byte
wide. The switch is a full crosspoint, allowing any permutation of inputs and
outputs to be achieved without contention. For each data route through the
switch a separate return route exists, ensuring that acknowledgements are nev­
er congested by data on the network.

The switch component contains a broadcast function that allows incoming data
to be broadcast to any contiguous range of output links. The switch contains
logic to recombine the acknowledge or not-acknowledge tokens from each of
the broadcast destinations. To allow broadcasts to ranges of outputs over mul­
tiple switches the switch topology must be hierarchical.

Figure 3-1 Meiko Elite network switch.

I::: 9"_D __ ·~1
PAl:k_.~

The data passing through a switch is CRC checked at each switch. If a failure
is detected the message is aborted, an error count is incremented, and the pack­
et is negatively acknowledged. This ensures that incorrect data is removed
from the network as soon as possible.

Routing within the switch is byte steered. On entry into a switch the first byte
of any packet is interpreted as the destination output or range of outputs. This
byte is stripped off within the switch so that the next byte is used for routing in

S lOO2-10MIOS.OS mEi<a

Routing Algorithms

meko Network Implementation

3

the following switch. The latency through each switch device is 7 clock cycles
for outgoing data, and 5 cycles for returning acknowledge tokens. The switch
contains no routing tables of any sort. The translation between destination
processor and route information is performed entirely on the communications
processor, where it can be more easily modified or updated.

Although the switch component is an 8x8 crosspoint, the use of bidirectional
links means that for the purposes of constructing logarithmic networks the ef­
fective radix is 4.

Each switch has a performance monitoring and diagnostic interface connected
to the CS-2 control network. This allows collection of statistics on error rates
and network loading.

Although the CS-2 data network can have the congestion properties of a full
crosspoint, achieving this requires allocation of routes in a non-contending
fashion. In the CS-2 network the route is predetermined by the communica­
tions processor. By storing the route information in the Elan it becomes easier
to change the routing algorithm, due to machine reconfiguration or link failure
for example.

The translation from a processor address to network route is handled in the
communications processor by a look-up, the table is stored in the memory of
the PE and indexed by destination processor. Each table entry contains four al­
ternative routes to the destination processor, one of which is selected. The
specification of alternative routes allows the even distribution of traffic
throughout the network, although all four routes may be identical when this is
undesirable. Each PE maintains its own look-up table which may be different
to the others, thus enabling any function of source/destination addressing to be
used from.

One simple routing function is to direct all data for the same destination proc­
essor through a single switch node at the top of the hierarchy. This allows the
network to perform two functions: data distribution, and distributed arbitration
for use where many senders wish to communicate with the same processor si­
multaneously. By adopting this strategy we ensure that if blocking does occur,
it doe.s so as soon as possible, and consumes little of the network resource. Us­
ing this simple algorithm has the effect of reducing the network to an Omega

17

3

18

network - essentially the second, return part, of the network is guaranteed
non blocking, and perfonns a simple data ordering operation. By virtue of its
similarity to an Omega network, this network will be non-blocking for arbi­
trary shifts and FFf style pennutations.

Figure 3-2 Shift by 5 on a 16 processor CS-2 network.

The programmable nature of the CS-2 communication network allows users
(who are so inclined) to design their own routing algorithms. This pennits op­
timisation of routing for specific traffic patterns or study of the effect of rout­
ing strategy on network perfonnance.

S I002-10MI05.05 meJ<a

meJ<.o

Conclusions 4

The CS-2 network provides a flexible solution to the problem of connecting
together large numbers of processing elements. The network can provide
equivalent performance to a full crosspoint, but can be simplified where this
level of interconnect is not required. The combination of Meiko Elan and Elite
network technology allows considerable flexibility in the choice of routing al­
gorithm.

The communications co-processor uses a lookup table to map abstract proces­
sor addresses to switch network routes. By maintaining the lookup tables with­
in the PE memory they are easier to modify to reflect changing workload or
network failures. By maintaining separate lookup tables on each communica­
tions processor, any function of address mapping may be implemented. The
Elan communications processor acts as a gateway into the CS-2 switch net­
work.

The Elite network switch is a full 8x8 crosspoint switch. It is the fundamental
building block of the CS-2 communications network. The route through the
switch is determined by the header byte of each incoming message. Headers
are added by the communications processor and removed by the switch as the
message passes through it. In addition to a direct mapping from input link to
output link, the switch supports broadcast and combining operations by map­
ping a single input to a contiguous range of outputs.

19

4

20 SI002-10MIOS.OS meJ<a

Computing
Surface

Vector Processing Element Overview

SlOO2-10MI01.0S mei<o

The infonnation supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of any
rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent ofMeiko World
Incorporated.

Copyright © 1993 Meiko World Incorporated.

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSTools are trademarks of Meiko Limited. Sun, Sun and a numeric suffix,
Solaris, SunOS, AnswerBook, NFS, XView, and OpenWindows are trademarks of Sun Microsystems, Inc. All
SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. Unix, Unix System V,
and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X Windows System is a
trademark of the Massachusetts Institute of Technology. AVS is a trademark of Advanced Visual Systems Inc.
Verilog is a registered trademark of Cadence Design Systems, Inc. All other trademarks are acknowledged.

Meiko's address in the US is:

Meiko
130 Baker Avenue
Concord MA01742

5083710088
Fax: 508 371 7516

Issue Status: Draft

Preliminary

Release

Obsolete

Circulation Control: External

Meiko's full address in the UK is:

Meiko Limited
650 Aztec West
Bristol
BS124SD

Tel: 01454616171
Fax: 01454 618188

Contents

1. General Description 1

MK403 Overview. 1

m VP Vector Processor . 2
Superscalar SPARC Processor. 4

Memory System . 5

2. Compilers 7

Overview. 7
Languages. 7

FORfRAN and C . 8
High Performance Fortran (HPF) 8

3. Conclusions . 13

ii

MK403 Overview

meJ<o

GeneralDescription 1

This document describes the architecture of the CS-2 vector element
(MK403). It briefly describes the internal architecture of the Fujitsu IJ.VP and
the compilation strategy used to exploit the combined resources of the SPARC
and multiple Il VP processors.

For more details of the workings of the IJ.VP see the IJ.VP Programmers Refer­
ence Manual.

The CS-2 vector element incorporates a 40MHz Superscalar SPARC, a Meiko
Elan Communications Processor and 2 Fujitsu IJ. VP vector processors. All
processors have access to the memory system via 3 memory ports, two of
which are used by the vector processors and the third by the SPARC and Elan
(which share an MBus).

1

1

2

Figure 1-1 CS-2 Vector Processing Element.

The memory system is implemented as 16 independent banks, with a (current)
total capacity of 128 Mbytes. Memory bandwidth for each of the 3 ports is 1.2
Gbytes/s, with a total bandwidth of 3.2 Gbytes/s.

External I/O support is provided through 3 SBus interface slots - primarily
used for disk controllers, but capable of supporting network interfaces and
graphics cards.

J..l VP Vector Processor

The J.1. VP operates with a 50 MHz (2011s) clock. It has a vector register archi­
tecture with 8 Kbytes of vector registers, configurable as between 8 and 64 vec­
tors each of 16-128 64-bit registers (see below). In addition there are 32 scalar
registers and a set of vector mask registers whose format tracks that of the vec­
tor registers.

Sl002-10MI01.05 meJ<a

1

Figure 1-2 JlVP Vector Processor.

Configuration of the VP vector and mask registers:

Precision Length Number of
registers

Single 32 64

Single 64 32
Single 128 16
Single 256 8
Double 16 64

Double 32 32
Double 64 16
Double 128 8

meI<o General Description

1

4

The Jl VP has separate pipes for floating point multiply, floating point add,
floating point divide, and integer operations. The floating multiply and add
pipes can each deliver one double precision (64 bit) or two single precision
(32bit) IEEE format result(s) on every clock, giving a maximum theoretical
performance of l00MFLOPS/s double precision and 200MFLOPS/s single
precision; the divide pipe can simultaneously deliver an extra 6MFLOPS/s in
either single or double precision. Both the add and multiply pipes have the low
latency (pipe depth) of two cycles (4011s), with one extra cycle being required
to read and one to write the vector register file.

The vector register elements are scoreboarded, so that chaining between input
and output operands occurs wherever possible without requiring explicit com­
piler or programmer intervention.

The Jl VP has a single load/store pipe which is used for accessing the memory
system. This is a 64 bit interface which can generate four addresses on consec­
utive clock cycles before stalling for the returned data. Once the data is present
a 64 bit word can be transferred on each clock cycle, giving a maximum band­
width of 400Mbytes/s.

The instruction set includes masked vector operations, compressions (sum,
maxval, maxindex, minval, minindex), vector compress under mask and expand
under mask operations, as well as logical operations on integers and mask reg­
isters and conditional branches. Vector loads and stores can be performed with
strides and under mask, as well as with an index vector (,'indirect"). For fur­
ther information about the J,L VP instruction set the J,LVP Programmers Refer­
ence Manual.

SuperscalarSPARC Processor

The MK403 uses SPARe MBus processor modules. It is generally populated
with a 36 or 40MHz Viking SPARe, but other standard modules can be used.

The Superscalar SPARe has two independent integer ALUs which can execute
separate arithmetic operations or can be cascaded so that the processor can ex­
ecute two dependent instructions in the same cycle. It has instruction issue log­
ic which can issue up to three instructions on the same cycle. Load and stores
operations of all data types to the on chip 16 Kbytes data cache occur in a sin-

S I002-10MI01.05 mEi<o

1

gle cycle. The floating point unit can execute multiply and add instructions si­
multaneously, though only one floating point instruction can be issued per
cycle.

Memory System

mei<D General Description

The Superscalar SPARe processors and Elan communication processor are
connected to a standard 40MHz MBus. The vector processors and MBus are
connected to a 16 bank memory system, each bank providing 64 bits of user
data (78 bits including error checking and correction, implemented using 20 by
4 bit DRAMs with two bits unused). Error detection and correction is imple­
mented on each half word (32 bits), allowing write access to 32 bit (ANSI-IEEE
754--1985 single) values to be performed at full speed, without requiring a
read modify write cycle.

Each bank of memory maintains a currently open DRAM page within which
accesses may be performed at full speed. This corresponds to a size within the
bank of 8Kbytes, giving 128 Kbytes total for the 16 banks. When an access is
required outside the currently open page a penalty of 6 cycles is incurred to
close the previous page, and open the new one.

Refresh cycles are performed on all banks within a few clock cycles of each
other, thus allowing the cost of re-opening the banks to be pipelined (since the
VP can issue four addresses before stalling for the data from the first), and re­
ducing the overhead of refresh to a few percent of memory bandwidth.

The memory system is clocked at the same speed as the Jl VP processors
(50 MHz) , and accesses from the 40MHz MBus are transferred into the higher
speed clock domain. When accessing within an open page each memory bank
can accept a new address every two cycles (4011s), and replies with the data
four cycles (8011s) later, giving a bandwidth of 8 bytes every two cycles
(4011s), that is 200Mbytes/s. Since there are 16 banks, the total memory sys­
tem bandwidth is thus 3.2Gbytes/s.

Each JlVP can issue a memory request every cycle (2011s), and can issue 4 ad­
dresses before it requires data to be returned. In the absence of bank contention
(which will be discussed below), after a start up latency of four cycles, these
requests can be satisfied as fast as they are issued, giving each J.l VP a steady
state bandwidth of 8 bytes every 2011s, that is 400Mbytes/s.

1

6

Since each bank can accept a new address every two cycles (4011s), but the
Jl VP can generate an address every cycle (2011s) there is the possibility of bank
contention if the Jl VP generated repeated accesses to the same bank. With a
simple linear mapping of addresses to banks, this would occur for all strides
which are multiples of 16 (for 64 bit double precision accesses). Such an access
pattern would then see only one half of the normal bandwidth, that is
200 Mbytes/s. All other strides achieve full bandwidth.

To ameliorate this problem as well as allowing the straightforward linear map­
ping of addresses to banks, Meiko also provide the option (through the choice
of the physical addresses which are used to map the memory into user space)
of scrambling the allocation of addresses to memory banks. The mapping func­
tion has been chosen to guarantee that accesses on "important" strides (1, 2, 4,
8, 16, 32) achieve full perfonnance. Access on other strides may see reduced
performance, but there are no strides within the open pages which see the path­
ological reduction to one half of the available bandwidth.

SI002-10MIOl.05 meJ<o

Overview

Languages

meJ<o

Compilers 2

The Fortran and C compilers for the vector processing element generate code
for all three processors: using the scalar processor to execute scalar code, and
the two f.1 VPs to execute vector loops. They incorporate a wide range of stand­
ard optimisations:

constant folding, constant propagation, common subexpression removal, au­
tomatic function inlining, instruction scheduling, loop invariant removal,
induction variable detection, software loop pipelining, loop splitting, loop
interchange, loop vectorisation, vectorisation of intrinsic functions, vec­
tor idiom recognition, dead code removal,

as well as proprietary optimisations for the CS-2.

Fortran, C, High Perfonnance Fortran (HPF) and Fortran-90 are supported.

2

8

FORTRAN and C

The FORTRAN language conforms to ANSI X3.9-1978, with the addition of
many extensions including CRAY Pointers, ALLOCATABLE arrays and
COMMON blocks, VMS structures, END DO statements, and NAMELIST
I/O. The compiler also recognises the CRAY vectorisation directives (for ex­
ample, CDIR$IVDEP).

The C compiler accepts the ANSI C language, and incorporates the same vec­
toriser and code generator as the FORTRAN compiler.

High Performance Fortran (HPF)

The High Performance Fortran Forum (HPFF) is a group of industrial and aca­
demic organisations which is open to all. The objective of the group is to
standardise annotations and extensions to ISO 1539: 1991 (Fortran-90) to allow
a Fortran program to be efficiently executed under a data parallel execution
model. HPFF have published the final draft specification for public comment.
A HPF compiler for the CS-2 is currently under development.

Fortran-90 Binding

The HPFF has chosen Fortran-90 as the language for extension. The new dy­
namic storage allocation and array calculation features make it a natural base
for HPF. The HPF language features fall into 3 categories with respect to For­
tran-90:

• New directives.

• New language syntax.

• Language restrictions.

The new directives are structured comments which suggest implementation
strategies or assert facts about a program to the compiler. They may affect the
efficiency of the computation performed, but do not change the value comput­
ed by the program. The fonn of the HPF directives has been chosen so that a
future Fortran standard may chose to include these features as full statements
in the language.

SlOO2-10MI01.05 m8<O

meI<o Compilers

2

A few new language features, namely the FORALL statement and certain in­
trinsics, are also defined. They were made first-class language constructs rather
than comments because they can affect the interpretation of a program, for ex­
ample by returning a value used in an expression. These are proposed as direct
extensions to the Fortran-90 syntax and interpretation.

Full support of Fortran sequence and storage association is not compatible with
the data distribution features of HPF. Some restrictions on use of sequence and
storage association are defined. These restrictions may in tum require insertion
of directives into standard Fortran programs in order to preserve correct se­
mantics.

New Features in High Performance Fortran

High Performance Fortran extends Fortran in several areas. These areas in­
clude: data distribution features, parallel statements, extended intrinsic func­
tions, foreign procedures and changes in sequence and storage association.

Code Generation

The compilers for the vector processing elements produce code that executes
on the SPARe, and, dynamically if appropriate, on the two attached vector
processors. Scalar code executes on the Superscalar SPARe processor, vector
code is compiled to execute on either the SPARe processor or the J.l VPs, or
both.

Where the vector length is not known at compile time, the compiler generates
both vector code (for the J.lVPs) and scalar code: the choice of which code to
execute being made at run time based on the actual vector length.

The vectoriser exploits the multiple J.l VPs in two different ways. Where there
is a loop around a vector loop, as shown below, the compiler will generate
code which executes alternative iterations of the outer loop on each of the
J.lVPs; each instance of the inner loop (and its strip-mine loop) will execute en­
tirely on a single J..tVP:

DO I = 1,N
DO J = 1,M

X(J,I) = A*X(J,I) + Y(J)
-END DO

END DO

2

10

The generated code is analogous to the following (pseudo) source code:

In parallel on Jl VP 1:

DO I = 1,N,2
DO J = I,M

X(J,l) = A*X(J,I) + Y(J)

END DO
END DO

and on Jl VP 2:

DO I'=2,N,2
DO J' = I,M

X(J',I') = A*X(J',I') + Y(J')
END DO

END DO

Where there is no outer level independent loop which can be exploited, then
the compiler will split the individual strips of the inner loop across the two
JlVPs. Consider the following example:

I DO J - 1,M
X(J) = A*X(J) + Y

END DO

The generated code is analogous to the following (pseudo) source code:

In parallel on Jl VP 1:

lBASE = 1
ILEN = MIN(M-IBASE, stripLength)

C Strip mine loop
DO WHILE (ILEN .GT. 0)

C Vector operation
DO J = IBASE,IBASE+ILEN

X(J) = A*X(J) + Y
END DO

C 2 here is number of uVPs involved
IBASE = lBASE + 2 * stripLength
ILEN = MIN(M-lBASE, stripLength)

END DO

SIOO2-10MIOl.05 meJ<a

meJ<o Compilers

2

and on J.1.VP 2:

IBASE' = stripLength
ILEN' = MIN (M-IBASE' , stripLength)

C Strip mine loop
DO WHILE (ILEN' .GT. 0)

C Vector operation
DO J' = IBASE,IBASE+ILEN'

X(J') = A*X(J') + Y

END DO
C 2 here is number of uVPs involved

IBASE' = IBASE' + 2 * stripLength
ILEN' = MIN (M'-IBASE' , stripLength)

END DO

All of this code executes on the J.lVP.

The code generator schedules vector instructions to ensure that chaining of
vector operations happens as often as possible (by ensuring that there are no
scalar operations scheduled between dependent vector operations).

If the operation is a vector sum, then each J.1.VP will produce the sum of the el­
ements it processes, and the final accumulation of the two partial sums will be
performed by the scalar processor.

11

2

12 S l002-10MI01.05 meJ<a

meJ<o

Conclusions 3

Each CS-2 vector processing element consists of a Superscalar SPARC, a
Meiko Elan communications processor, and 2 Fujitsu Jl VP vector processors
sharing a three ported memory system. Cycle time is 20ns, performance peaks
at 200MFLOPS/s per processing element in 64 bit arithmetic, or
400MFLOPS/s in 32bit.

To achieve high performance on real world problems you need the correct bal­
ance of CPU and memory system performance. The CS-2 vector memory sys­
tem is organised as 16 independent banks, enabling it to sustain 1.2 Gbytes/s on
direct, strided, or indirect addressing. Memory capacity is currently 32 or
128Mbytes per processing element.

The CS-2 development environment for the vector processing elements in­
cludes compilers for FORTRAN-77, ANSI C, Fortran-90, and High Perform­
ance Fortran. The compilation system produces compiled code that executes on
either the SPARC processor or, dynamically where appropriate, on the two at­
tached vector processors.

13

3

14 S lOO2-10MI01.05 meJ<a

Computing
Surface

Getting Started - Users' Guide

•
SlOO2-10Ml17.02 meJ(O

The information supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of any
rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent of Meiko World Incor­
porated.

© copyright 1994 Meiko World Incorporated.

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSTools are trademarks of Meiko Limited. Sun, Sun and a numeric suffix,
Solaris, SunOS, AnswerBook, NFS, XView, and OpenWindows are trademarks of Sun Microsystems, Inc. All
SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. Unix, Unix System V,
and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X Windows System is a trade­
mark of the Massachusetts Institute of Technology. AVS is a trademark of Advanced Visual Systems Inc. Verilog
is a registered trademark of Cadence Design Systems, Inc. All other trademarks are acknowledged.

Issue Status:

Meiko's address in the US is:

Meiko
130 Baker Avenue
Concord MA01742

5083710088
Fax: 508 371 7516

Draft

Preliminary

Release

Obsolete

Circulation Control: External

Meiko's address in the UK is:

Meiko Limited
650 Aztec West
Bristol
BS124SD

Tel: 01454616171
Fax: 01454 618188

Library reference.

Do not copy this.

integer name

• Typographic Conventions I

The following typographic conventions are used in this document and all other
Meiko documentation:

Italicised text is used for references to other documents, or emphasised expres­
sions that may be expanded later in the text. Also used in exam pIe command lines
in place of site specific options.

See the document Tagged Message Passing and Global Reduction.

Password: password

Emboldened text is used to emphasise expressions of particular importance.

It is important that you do not try this yourself.

Courier is used for variable names, command names, filenames, and other text
that might be entered into the computer system, or for the computer's response
to a user's request. See also the use of bold courier below.

The function csn_init () must be called before others in the library.

· l

cat file

ii

Bold courier is used when illustrating a dialogue between the computer and a
user. Text entered by the user is shown in this font, text displayed by the machine
is shown in courier.

user@cs2-1: ls /opt/MEXKOcs2
bin! docs! example! include! lib! man!

Warning - Used to draw the reader's attention to an important note.

Sl002-10M117.02 meJ<a

Contents

1. General Introduction 1

2. Using a CS-2 for the First Time 3

UNIX on a CS-2 System. 3
Logging In. 4
The Command Shell . 5
Checking your Environment. 7
Starting a Windowing Systems. 9
Getting Help . 9

Manual Pages. 9
AnswerBook. 10

Exploring the Meiko Directory Hierarchy. 12
Running A Parallel Program. 12

3. Resource Management . 15

Resource Partitioning. 15
Parallel Programs . 17
Resource Allocation . 18
User Interface to the Resource Management System. . . . 19

4. Resource Management Commands 21

pron - Run a Parallel Program . 22
Identifying the Resource. 22
Environment Information. 24

Standard UO . 25
Program Termination . 27
Common Problems. 28

allocate - Allocate Resources . 31
Allocating Resources to a Shell Script. 31
Allocating Resources to a Command Shell. 32
Debugging Parallel Applications. 33
Confirming Resource Allocation to a Shell. 33

rinfo - Resource Information . 35
Querying the Resource Usage of Other Users. . . 36
Listing Active Jobs. 36
Querying Resource Usage by a Job 37
Querying the Configuration 38
Load Balancing. 39
Hostname to Processor Id Conversion 39

reduce - Global Reduction for Shell Scripts. 40
gkill- Send a Signal. 41
gps - Global Process Status .. 42
copyback - Collect Distributed Files 44
copyout - Distribute Files over a Partition. 44
pdebug - Inspect State of Parallel Program or Core Files 45

5. Parallel Programming 47

Parallel Programming Models. 47
Message Passing Libraries. 48
Data Parallelism . 49
Distributed Processing . 49

Message Passing Libraries . 49

ii

CSN 50
PARMACS.............................. 53

PVM................................... 58
MPSC.................................. 64
Elan Widget Library. 67
Elan Library. 71

A. Glossary 77

Contents iii

iv

meJ<D

General Introduction 1

This document is a users' guide to the CS-2. It describes how to login to the CS-
2, how to familiarise yourself with the operating system, and how to create par­
allel programs. This document also provides a user view of the resource manage­
ment system - the software that controls user access to the processing resources.

The following chapters are included:

Chapter 2, Using a CS-2 for the First Time

Describes logging in to the CS-2, basic Unix commands, on-line documenta­
tion systems (manual pages and the AnswerBook system), and how to run par­
allel programs.

Chapter 3, Resource Management

Provides an overview of the Resource Management System and describes the
user interface to it.

Chapter 4, Resource Management Commands

Describes resource management commands, with examples of typical usage.

Chapter 5, Parallel Programming

Describes the message passing libraries, and some simple parallel programs.

Chapter 6, The Meiko Parallel Filesystem

Describes the user interface to the Meiko parallel filesystem.

1

1

Chapter A, Glossary

A glossary of terms used throughout this document.

2 Sl002-10M117.02 meJ<a

Using a CS-2 for the First Time 2

UNIX on a CS-2 System

meJ<D

CS-2 runs the Solaris operating system, the same Unix operating system as a Sun
Microsystems SPARC workstation or server. In fact it is designed to be binary
compatible with such machines, any program that runs on your SPARC worksta­
tion will run on a CS-2. As well as having the same operating system, CS-2 has
the same command shells, editors, compilers, linker, and libraries and it runs the
same applications packages. If a Solaris application doesn't run immediately it is
likely to be a licensing issue.

If you are not familiar with Solaris, or have never used a Unix system before then
refer to the SunOS Users Guide (version 5.0 or later). The SoIaris Roadmap to
Documentation outlines the full documentation set 1. The standard textbook on
Unix is The UNIX Programming Environment; Kernighan/Pike, it provides a
general introduction to the standard Unix utilities and commands shells. For in­
formation on the windowing system you should refer to the Open Windows U s­
ers's Guide (version 3.0.1 or later) or the help systems (see below).

CS-2 differs from a conventional SPARC system in two important areas: CS-2
runs parallel applications as well as sequential, and processes running on a CS-2
system are controlled by its Resource Management System (see page 15 for in­
troductory details).

1. The Solaris documentation is viewable on-line with the AnswerBook documentation system.

3

2

Logging In

4

In the following sections we describe how you login in to your CS-2, how to set­
up your login environment, and some common Unix and CS-2 commands.

CS-2 systems are generally connected to a local area network, and used from
workstations or network connected terminals. To login from a workstation you
should use rlogin or telnet, typing:

I workstation: te~net cs2

This document uses cs2 as the name of the CS-2 system and workstation as
the name of your local workstation. Your system is likely to have different
names, if you don't know them then ask your System Administrator.

If you are using the CS-2 system from a directly connected terminal hit return
and the machine should respond immediately. Network connected terminals have
a variety of connection commands (we have to type open cs2 on ours). Again
your System Administrator or Network Manager will know all about this.

Once a connection to the machine is established you will get a login prompt (a
banner giving the machine name may also appear); you should respond with your
account name. The system will then display a password prompt, enter your
password, it will not appear on the screen.

UNIX(r) System V Release 4.0 (cs2)

login: user
Password: password

Sl002-10Ml17.02 mei<a

The Command Shell

2

The system will verify your password, and if it is correct you will be logged in.
The message of the day file will be output, initialisation files run and a prompt
will appear.

Last login: Fri Jul 9 20:29:38 from workstation
SunOS 5.3 MElKO Fes 08 June 94
user@cs2:

A word of warning at this point. Unix security is based on keeping passwords se­
cret. If other people know your password then they can interfere with your work.
The operating system provides a controlled means of sharing work and data, keep
your password secret. You can change your password with the passwd com­
mand; the documentation for this command also gives useful guidelines for
choosing a secure password.

You can now use the machine; to run a program simply type its name at the com­
mand prompt. To find out the name of your home directory type pwd and to list
your files type 1 s :

user@cs2: pwd
/home/cs2/user
user@cs2: 1s
binI example/ include/ lib/

Whenever you login to a Unix system a command shell is started for you. The
command shell is the interpreter that parses commands and executes them. A
number of different types of shell are available, the most common being either
the C shell and the Bourne shell. The principal difference between the shells is
command syntax.

The type of command shell that you use is specified by your System Administra­
tor. It is important that you understand which shell you are using because some
commands described in this manual are shell-specific.

meI<o Using a CS-2 for the First Time 5

2

6

Use the following command to check the shell type:

I user@cs2: echo $SHELL
/bin/csh

csh is the C-shell, sh is the Bourne shell (there are others).

You can find out more information about your shell by referring to the Solaris
documentation, or by using the on-line manual pages (see below). Most shells of­
fer command aliasing (allowing you to define a simple alternative name for a
command line), variables, job control (executing several jobs concurrently as
background processes), and flow control (if then else type constructs). If
you don't like your default shell you can ask your System Administrator to
change it, or you can simply start a new shell from your command line.

Shell Scripts

All command shells read a shell script when they are started: the C-shell reads a
file called. cshrc, and the Bourne shell reads. profile (both from your
home directory). In addition when you first login the system reads the .login
file, and when you logout it reads the. logout file (if these exist). These files
are shell scripts: they contains shell commands that are executed as if you had
entered then at the command line. Default start-up shell scripts will have been
defined by your System Administrator; they will define common command ali­
ases and environment variables for use at your site.

Sl002-10M117.02 meJ<a

2

You can create shell scripts yourself to describe commonly used command se­
quences. In most cases you add the commands into a file and pass the filename
argument to the shell program 1. The following simple shell script is created with
cat and executed by the Bourne shell.

user@cs2: cat> cleanup
~ *.0 *.s
~ * .ps * .dvi
Ad
user@cs2: sh -c cleanup

Shell scripts that make full use of the shell's command syntax can perform quite
complex tasks. Most of Meiko 's software installation procedures are implement­
ed with shell scripts.

Checking your Environment

All commands that you execute are passed a list of environment variables that
describe the command's environment. A number of these variables will have
been defined by your System Administrator in your shell's start-up files. In par­
ticular the PATH variable, which is used by your shell and other programs to lo­
cate executable programs, must include the Meiko bin directory, and the
MANPATH variable, which is used by the mane!) command to locate on-line
manual pages, must include the Meiko man directory. If you are using a work­
station with a graphics display you must also set the DISPLAY environment var­
iable to identify the display's name to graphics applications.

To check the current setting of these variable use the echo command:

1. Each shell offers different mechanisms for reading commands from shell scripts; consult the
documentation for your shell.

meko Using a CS-2 for the First Time 7

2

8

user@cs2: echo $PATB
. :/opt/MEIKOcs2/bin:/usr/bin:/bin
user@cs2: echo $MANPATB
/opt/MEIKOcs2/rnan:/usr/rnan
user@cs2: echo $DISPLAY
workstation:O

The way in which you set (or change) an environment variable depends on the
shell you are using. The following examples are for the C-shell and Bourne shell
respectively. Note that the PATH and MANPATH variables take a list of directo­
ries; the following examples prefix the Meiko directories onto the existing (pos­
sibly empty) definition of the variable:

user@cs2: setenv DISPLAY workstation:O
user@cs2: setenv PATB /opt/MEIKOcs2/bin:$PATB
user@cs2: setenv MANPATB /opt/MEIKOcs2/man:$MANPATB

user@cs2: DISPLAY=workstation:O
user@cs2: export DISPLAY
user@cs2:
user@cs2: PATB=/opt/MEIKOcs2/bin:$PATB
user@cs2: export PATH
user@cs2:
user@cs2: ~ATH=/opt/MEIKOcs2/man:$MANPATH
user@cs2: export MANPATH

You can add the appropriate commands into your shell's start-up shell script so
that they are executed automatically whenever you login.

Sl002-10M117.02 mei<a

2

Starting a Windowing Systems

Getting Help

If you are using a workstation with a graphics display you will want to start a
windowing system. This will allow you to start several command shells, each in
a separate window, and will allow you to run graphics applications such as the
AnswerBook (the Solaris documentation system) - described later.

To start the Open Windows system use the openwin command:

I user@cs2: openwin

The appearance of your windows can be tailored by a number of configuration
files in your home directory which your System Administrator may have defined
for you (their filenames will begin with either. x or . openwin). Consult the
Open Windows documentation for more information about these files.

Meiko's documentation (and where possible that for third party products) is dis­
tributed in four formats:

• Printed documentation - at least one copy will be supplied with all systems.

• PostScript - all Meiko's documentation will be supplied in this fonnat; third
party documentation is also included when product licences permit.

• Manual pages - included as part of each software release.

• AnswerBook - a hypertext system containing all of Meiko 's documentation.

Manual Pages

Manual pages provide concise summaries of commands and files. They are use­
ful if you already know something about the command/file that you are querying,
but rather less useful if you don't.

You can use the man command to provide information about itself by typing:

user@cs2: man man

meko Using a CS-2 for the First Time 9

2

10

The following example will tell you about the C-shell:

I user@cs2: man csh

At the end of each page of infonnation man pauses; press the space bar to read
the next page, or q to quit (i.e. man uses the more command to display the in­
fonnation).

AnswerBook

The AnswerBook system is more friendly but you will need to be running Open­
Windows Version 3.0.1 (or later) before you can use it. To start the AnswerBook
on the console type:

I user@cs2: answerbook

Some time later (it takes a while to start) a window will appear; this is the An­
swerBook navigator (see Figure 2-1).

To view a document use your mouse to select entries in the Contents window; a
double click on a document chapter or hypertext button will pop-up a Viewer
window displaying the requested part of the manual. You can use the search but­
ton near the top of the Navigator to perfonn a keyword search over all the in­
stalled AnswerBooks; a double click on an entry in the Documents Found list
will take you to the most appropriate section in that manual.

Sl002-10Ml17.02 meJ<a

2

Figure 2-1 The AnswerBook Navigator

r@) A nswerBoo k Nav igator v3.3

~ (Modify Library ...) (New Bookmark ...)

I Contents I Search I Bookmarks

Location:

"Library

~--~~
Co nte nts 0 f Li brary:

Meiko AnswerBook
Solaris 2.2 on Sun Hardware AnswerBook
So laris 2.3 Refere nce Man ual A nswerBoo k
Solaris 2.3 System Administrator AnswerBook
So laris 2.3 User A nswerBoo k
SunPro AnswerBook

~--~~

t.. Library: /.ab_library .J

meko Using a CS-2 for the First Time 11

2

Exploring the Meiko Directory Hierarchy

The structure of the CS-2 software system follows that used in a standard Solaris
installation, with Meiko specific code under / opt/MElKOes2. The following
directories will be present:

/opt/MElKOes2/bin

/opt/MElKOes2/does

/opt/MElKOes2/example

/opt/MElKOes2/inelude

/opt/MElKOes2/1ib

/opt/MElKOes2/man

Executables.

PostScript documentation source.

Example programs.

Header files.

Libraries.

Manual pages.

You should be able to access all these directories, read the man pages, run the
example programs and print out the documentation.

Running A Parallel Program

12

Having logged in for the first time we suggest that you run a simple parallel pro­
gram. To do this you need to use prun:

user@es2: prun uname -a
SunOS es2-0 5.3 MElKO FCS dinol spare
SunOS es2-1 5.3 MElKO FCS dinol spare
SunOS es2-2 5.3 MElKO FCS dinol spare
SunOS es2-3 5.3 MElKO FCS dinol spare

This is an example of a very simple parallel application, in which a number of
copies of a sequential program are executed on your CS-2. There is no inter-proc­
ess communication.

Sl002-10M117.02 meJ<o

2

An example of a communicating parallel application is dping, one of the com-
piled demonstration programs. It executes on two processors and shows you how
fast you can move data between processors as a function of the size of the data
transfer. A synopsis for dping is available by invoking the command with the -
h option:

user@cs2: prun -n2 dpinq 0 8k
O(4} : fn ping, reps 10000, dIna normal

o pinged 1 : o bytes 0.000009Sec O.OOOMb/s
0 pinged 1 : 1 bytes O.OOOOllSec 0.090Mb/s
0 pinged 1 : 2 bytes O.OOOOllSec 0.181Mb/s
0 pinged 1 : 4 bytes O.OOOOllSec 0.364Mb/s
0 pinged 1 : 8 bytes O.OOOOllSec 0.725Mb/s
0 pinged 1 : 16 bytes O.OOOOllSec 1.452Mb/s
0 pinged 1 : 32 bytes O.OOOOllSec 2.899Mb/s
0 pinged 1 : 64 bytes O.OOOOllSec 5.777Mb/s
0 pinged 1 : 128 bytes 0.000012Sec 10.642Mb/s
0 pinged 1 : 256 bytes 0.000015Sec 17.134Mb/s
0 pinged 1 : 512 bytes 0.000022Sec 23.703Mb/s
0 pinged 1 : 1024 bytes 0.000032Sec 31.612Mb/s
0 pinged 1 : 2048 bytes 0.000056Sec 36.897Mb/s
0 pinged 1 : 4096 bytes 0.000100Sec 40.842Mb/s
0 pinged 1 : 8192 bytes 0.000199Sec 41.223Mb/s

In both the above examples prun executes the example program on a partition;
a group of processors and their I/O devices. The following chapter provides an
introduction to the CS-2 resource management system; subsequent chapters de­
scribe the command interface the resource management system, including a more
detailed description of prun, and lists the source code for some simple parallel
programs.

rneko Using a CS-2 for the First Time 13

2

14 Sl002-10M117.02 mS<D

Resource Partitioning

meJ<a

Resource Management 3

The role of the resource management system is to allow a System Administrator
to optimise the use of the resources in a CS-2 system. It does this by controlling
user requests to login and to run parallel applications, by controlling access, ac­
counting usage, and by visualising system performance.

A CS-2 system consists of one or more partitions. A partition is simply a collec­
tion of resources (processors and their I/O devices) dedicated to a specific task
or tasks. Partitions are created because the System Administrator wants to allo­
cate specific resources to different tasks or because it is appropriate to run differ­
ent scheduling policies on different parts of the machine. Consider the following
types of resource usage:

• Development of new parallel programs.

• Production execution of parallel programs.

• Running conventional Unix processes.

• A distributed system service used by conventional Unix processes such as a
parallel database server.

• Device management.

15

3

16

A given machine may have to support one or more of these processing loads. By
allocating each to a parti tion and allocating appropriate resources to that partition
the System Administrators control the resources used for each type of task.

Figure 3-1 illustrates a partitioning scheme for a large CS-2 system designed to
support several hundred users in a production environment, it serves to illustrate
a number of further examples of partitions.

Figure 3-1 Partitioning a large CS-2 system

Network
Gateway

System
Admin.

Fileserver

Batch
Management

HIPPI

Interactive

Sequential
Batch

Parallel

Users login to the system and are connected to processors in the interactive par­
tition. The connections are managed by processors in the network gateway parti­
tion, which are dedicated hosts of the network adaptors and login load balancers;
these processors do not run user processes.

The login load balancer, logbal, is executed on a processor in the network
gateway partition whenever a user logs in. logballiaises with the resource
manager to identify the least heavily loaded processor within the interactive par­
tition, using criteria specified by the System Administrator. The user's shell is

Sl002-10M117.02 meJ<a

Parallel Programs

mekD Resource Management

3

then executed on the nominated processor with I/O transferred from user to login
shell via logbal. The actions of logbal are largely transparent to users; you
may notice that login shells are hosted by a different processor each time you
login.

Afileserver partition defines the processors that are dedicated to high perform­
ance disks. Additional processors are dedicated to managing HiPPI connections
and are only used by user processes that access these devices.

Users run applications interactively or by submitting them to the batch system.
Specific resources can be dedicated to running particular batch queues. The bulk
of the system runs user applications in the Sequential Batch and Parallel parti­
tions, the balance between them depending upon whether the system is used in
capacity mode (large numbers of small jobs) or capability mode (smaller num­
bers of large jobs).

In a large configuration the resource management and accounting systems con­
sumes resource; they can run on one or more dedicated processors.

CS-2 supports multi-segment parallel programs in which each segment consists
of some number of copies of a single executable. The simplest example is a Unix
process, which contains one segment and one process. A parallel application has
2 segments, the first a controlling process in the interactive Unix or batch man­
agement partition and the second multiple copies of the same executable running
in a parallel processing partition (see Figure 3-2).

The controlling process is the application's interface to the resource management
system and is also the process that handles the screen and keyboard I/O require­
ments from the other processes. The controlling process can be a part of the par­
allel application, communicating and cooperating with the other processes to
complete the task (Le. a 'hosted' application), or simply the means of starting it
(e.g. prun).

17

3

Resource Allocation

18

Figure 3-2 A 2 segment parallel program

Virtual process Number

"Node"

o 234 5 6

Segment 0 Segment 1

Every process in a parallel program has a unique process id; this is translated to
a physical processor id by the inter-processor communication hardware.The or­
dering of segments and hence the numbering of processes depends upon the pro­
gramming model; some number the controlling (or host) process 0 and the
processes of the parallel program 1,2, n, others number the parallel program
0,1,2, ... n-1 and the host n.

Multi-segment programs are created by linking the application's controlling
process with the resource management user interface library. The prun utility
(described later) is a general purpose parallel program loader that is built upon
this library; it creates a two segment application in which prun itself runs in one
segment and multiple copies of a user specified program run in a second.

The application interface to the resource management system is described in the
manual Resource Management User Interface Library.

The execution of a parallel application requires that processing resources (proc­
essors and their associated I/O devices) are allocated and that the application's
processes are then spawned onto this resource. Allocation means that the re­
source is exclusively granted to the application, and spawning means that the ap­
plication's processes are loaded onto the resource and are executed.

S 1002-1 OMII7 .02 meJ<o

3

In many cases both stages are handled within the application's controlling proc­
ess. The controlling process competes with other applications for the resource,
blocks until it is available, and then holds the granted resources until completion
(which may be forced by the System Administator or by system time-limits).
While the application holds the resource other applications, including those be­
longing to the same user, are blocked until the resource is freed. When you exe­
cuted prun in the previous chapter, prun liaised with the resource management
system for X processors on partition Y, and these were then held until your pro­
gram had completed.

In some cases it is desirable that a user may be granted exclusive use of a re­
source. It may be important that a sequence of the user's applications are run con­
currently and without interruption by other users, or it may be desirable to run
several concurrent applications on the same resource (e.g. debugging and appli­
cation processes running side by side). In this case resource may be allocated to
a command shell using allocate(1), allowing the resources to be held indefi­
nitely and made available to all applications that are executed by the shell. When
executed in this environment a controlling process (such as prun) will spawn its
processes onto the shell's resource; prun will not allocate resource itself, and
the resource will remain allocated when prun completes. Only when the shell
terminates will its associated resource be freed.

User Interface to the Resource Management System

meI<o Resource Management

The interface to the resource management system is via the user interface library.
Meiko have developed a number of utilities from this library that allow you to
query resource usage and execute parallel programs. prun(l) and allo­
cate(1) are both built upon this library.

The following chapter describes the resource management commands in detail.
For more information about the user interface library see the Resource Manage­
ment User Interface Library.

19

3

20 Sl002-10M117.02 meJ<a

meJ<o

Resource Management Commands 4

The following command interfaces to the resource management system are pro­
vided:

prun

allocate

rinfo

reduce

gkill

gps

copyback

copyout

pdebug

Run a parallel program.

Allocate resources for a sequence of parallel jobs.

Get information on free resources and running jobs.

Reduction operator for shell script programs.

Send a signal to a process anywhere in the machine.

Global process status.

Collect distributed files.

Distribute files over a partition.

Inspect state of parallel program or core files.

21

4

prun - Run a Parallel Program

22

prun executes a parallel program, or multiple copies of a sequential program,
on the CS-2. It spawns multiple copies of a specified executable image onto re­
source that is allocated by the resource management system.

Identifying the Resource

You identify the processors that will host your application by identifying a parti­
tion and the number of processors required. If prun is executed within a shell
that has resources allocated to it then prun will not attempt to allocate resource
itself.

Identifying the Partition

The -p option is used to specify the partition that your program will execute in.
If you do not use the -p option a default partition is used (this is specified by your
System Administrator), or the partition identified by the RMS_PARTITION en­
vironment variable.

user@cs2: prun -p parallel myproq
Hello from myprog
Hello from myprog

Number of Processes

Use the -n option to control the number of instances of the program. If you do
not specify the -n option then your program will be executed on as many proc­
essors as are available in the partition, or the number of processors specified by
the RMS_NPROCS environment variable. The following example executes 4
processes:

S 1002-1 OM117 .02 ms<o

user@cs2: prun -n4 myproq
Hello from myprog
Hello from myprog
Hello from myprog
Hello from myprog

Pre-allocated Resources

4

You can use the allocate command to allocate resources to a command shell.
In this case all instances of prun executed by the shell will use the shell's re­
source; they will not allocate resource themselves.

Warning - Refer to the description of the allocate command on page 31.

The following example allocates 4 processors from the parallel partition to
a command shell, and then executes uname twice on those resources - in both
cases prun uses the same resources:

user@cs2: all.ocate -pparall.el -n4
user@cs2: prun uname -n
cs2-240
cs2-241
cs2-242
cs2-243
user@cs2: prun uname -n
cs2-240
cs2-241
cs2-242
cs2-243
user@cs2: exit

meJ<o Resource Management Commands 23

4

24

Environment Variables

The following environment variables may be used to identify resource require­
ments to prun; these will be used in the absence of conflicting command line
options:

Variable

RMS BASEPROC

RMS NPROCS

RMS TIMELIMIT

RMS VERBOSE

RMS PARTITION

RMS IMMEDIATE

Environment Information

Meaning

First processor to use in the partition. Numbering
starts at 0 with the first processor in the partition.

The number of processors to use. By default this
is the largest allocatable number of processors.

Execution timelimit (seconds); the segment will
be signalled after the minimum of this time and
any system imposed time limit has elapsed.

Execute in verbose mode (display diagnostic
messages).

The name of the partition to use.

Exit if resources not immediately available. By
default prun is blocked until resources are
available.

prun (and any other program using rms_forkexecvpO) passes all existing
environment variables through to the processes that it executes. In addition it
adds the RMS_RESOURCEID, RMS_PROCID and RMS_NPROCS environment
variables to identify the allocated resource, each process's host, and the total
number of processes to the spawned application:

user@cs2: prun -ppl-4 sh -c 'echo $RMS_PROCID'
3
2
o
1

Sl002-10M117.02 meJ<D

4

The infonnation functions provided by Meiko's message passing libraries also
allow processes to query their environment. See for example the c s _get­
infoO function in the CSN library.

Standard lID

Each process in your application has 3 standard I/O streams: stdin, stdout,
and stderr (units 5, 6, and 0 in Fortran). No other file descriptors that may be
open at the time the parallel application is started will be open in the parallel chil­
dren. The use of the streams by parallel programs is different to that of sequential
programs (Le. standard Unix applications that execute independently of all other
processes).

The remote processes will be started with the standard output and standard error
routed to the same place as the host (Le. prun) process. Normal writes to these
file descriptors will have the expected effect, as will the is at t y(3c) function.
Other ioctls functions will almost certainly fail.

Parallel Applications

In a parallel program the use of the 3 I/O streams is as follows:

stdin Available to all processes in a parallel program.

stdout Line buffered output from all processes.

stderr Unbuffered output from all processes.

Any process in a parallel program can read from stdin, but when using multi­
ple readers it will be necessary to synchronise them with calls to ew _gsync01,
or some other synchronisation function, between each read of the standard input.

1. A function in the Elan Widget library.

meI<o Resource Management Commands 25

4

26

In a parallel program many processes may simultaneously print (on stdout)
but their output will be interwoven on a line-by-line basis with undefined order­
ing (which may be different each time you run the program). The -t option to
prun tags each line of output with the process id of the outputting process:

user@cs2: prun -t pwd
2 /home/user
o /home/user
3 /home/user
1 /home/user

Multiple Sequential Applications

For sequential processes that are executed by prun or other host programs the
use of the 3 I/O streams is as follows:

stdin Available only to the controlling process (note however that
prun doesn't use stdin).

stdout Line buffered output from all processes.

stderr Unbuffered output from all processes.

The standard input is not available to sequential processes that are executed with
prun (repeatable behaviour cannot be guaranteed when unsynchronised proc­
esses read at the same time). As an alternative the processes can read from a file;
in the following example several instances of cat each read from the same input
file:

I user@cs2: prun -pp1-4 sh -c 'cat < myfi1e'

Each process can also read its own file:

user@cs2: prun -ppl-4 sh -c 'cat < tmp.$RMS_PROCID'

Sl002-10M117.02 meJ<a

4

Similarly each process can direct its output to a unique file:

user@cs2: prun sh -c 'uname -n > host.$RMS_PROCID'

Program Termination

A parallel program exits when all of its processes have exited. The exit status is
the global OR of the status from all of its processes. A non-zero exit status will
be accompanied by a message if verbose reporting is enabled.

user@cs2: prun -v -ppl-4 csn
csn: process 0 (processor 240) exited with status 1

If a process is killed then the resource management system runs a cleanup script
called rmscleanup that attempts to print the reason why the program was
killed. Having done this the program is killed, and the program's exit status in­
dicates which signal was used.

user@cs2: prun -ppl-4 csn
AC
csn: process 4 killed by signal 2 on cs2-240 (240)
csn: process 3 killed by signal 2 on cs2-241 (241)
csn: process 2 killed by signal 2 on cs2-242 (242)
csn: process 1 killed by signal 2 on cs2-243 (243)

If the program was compiled with debugging enabled (-g compiler option) then
the cleanup script should indicate the line of code being executed at the time the
signal was delivered. This may be enough to determine the reason for failure; if
it isn't you should run the program under the TotalView debugger (see the To­
talView documentation for more information about this), or use pdebug as de­
scribed on page 45.

The program will be killed as soon as one of the rmscleanup scripts has com­
pleted. If several processes are killed simultaneously you may get partial output
from some instances of rmscleanup.

mei<D Resource Management Commands 27

4

28

Note that the user's path is used to locate rmscleanup, allowing a site or user
specific script to be substituted where appropriate. The standard release version
is in /opt/MEIKOcs2/bin. For example if you need output from multiple
processes that are killed together then you could write your own clean-up script:

4#=

/opt/MEIKOcs2/bin/rmscleanup
sleep 30

Core Files

The delivery of some signals (SIGSEGV, for example) will cause a program to
exit and to dump a core file. Core files are generally large, and the I/O implica­
tions of all the processes in a parallel application core dumping simultaneously
can be severe. Core files are only created if they can be written to temporary stor­
age local to each processor.

Note that core files are removed as resources are freed. If you want to preserve
them then you must allocate resource to your shell using allocate before us­
ing prun to execute your application. Under these circumstances prun will not
allocates resources of its own, and will not free them when it terminates.

Common Problems

This section identifies some common problems and error messages that may be
encountered when running your application.

If you get messages other than those described below, or no explanatory message,
then please contact Meiko to determine the cause of the problem. You can contact
us at the addresses shown inside the front cover of this manual, or by sending
email tosupport@meiko.com.

Program hangs
The controlling process of your application (e.g. prun) may block if the re­
quested resources are currently unavailable (resource requests made by al­
locate or a hosted program will behave in the same way). You will not be
told that it is blocking unless you enable verbose reporting, either by setting
pron's -v option or by setting the environment variable RMS _VERBOSE, in

Sl002-10Ml17.02 meJ<D

4

which case there will be a delay between the "requesting resources" and "re­
sources allocated" messages. If you don't want to wait then use control-C to
interrupt. You can use prun's - i option to instruct it not to block.

prun: Permission denied
Trying to access a partition that you are not permitted to use. The permis­
sions/names files do not identify you as a valid user of the partition that
you requested.

prun: Error: exit while controlling process blocked in barrier
The controlling process is waiting for the processes to join it in the start-up
barrier but one or more of the processes have exited. Maybe a process tenni­
nated before calling its initialisation function.

prog: no such file or directory
The specified program could not be located using your search path. Add the
program's directory to your PATH environment variable.

prun: Error: can't determine machine name
You are not running prun on a CS-2 processing element.

prun: Error: Partition manager for partition is down
The specified partition is unavailable; specify an alternative partition or ask
the System Administrator to restart the partition.

prun: Error: no such partition as name
The specified partition does not exist; perhaps you typed the name incorrectly.

Id.so.l: program: fatal: librms.so.2: can't open file: errno=2
Killed

This error should not occur for prun, but may occur with other programs that
are linked with librms (resource management user interface library). The
dynamic linker couldn't locate a library file. Include the directory / opt / -
MEIKOcs2/1ib in yourLD_LIBRARY_PATH environment variable, or
specify a dynamic library search path with the linker's -R option.

EW _EXCEPTION @ 2147483647: 6 (Initialisation error)
Can't find own elan capability
Killed

You tried to execute a parallel program without using prun.

mei<D Resource Management Commands 29

4

30

rmsloader: Error: process id failed on node: No such file or directory
rmsloader: Advice: check that directory is mounted

Check that the specified directory is mounted on all processors that will host
your application. Ask your System Administrator to mount the directory on
this processor, and to check the other processors that you propose to use.

Sl002-10M117.02 meJ<a

4

allocate - Allocate Resources

The partition manager allocates processing resources to user sessions as and
when they are requested and become available. The allocate command is
used when you wish to run a sequence of commands on the same processors, or
when you wish to run several tasks concurrently on the same resource.

The usage of allocate is as follows:

allocate [-n procs] [-p partition] [program [args ...]]

You can use allocate to reserve resources for the execution of a specified shell
script, in which case the resources are allocate to a sub-shell and freed when ex­
ecution of the script completes, or you can reserve resources indefinitely to an
interactive command shell, in which case parallel applications executed by the
shell will all run (poSSibly concurrently) on the shell's resource.

Allocating Resources to a Shell Script

The following example allocates the resources to the shell that will execute the
script; calls to prun within this script will execute parallel programs on the al­
located resource. prun only allocates resources itself if they have not been pre­
allocated by allocate:

user@cs2: allocate -n8 -p parallel script

#!/bin/csh
prun preprocess
prun iterate

prun iterate
prun postprocess

mei<D Resource Management Commands 31

4

32

Allocating Resources to a Command Shell

If you run allocate without program arguments then it spawns an interactive
sub-shell with the resources allocated to it. The resources are freed when the sub­
shell exits. In the following example both of the prun commands execute con­
currently on the parallel partition:

user@cs2: allocate -p parallel
user@cs2: prun myproq ,
user@cs2: prun test

user@cs2: exit

In the next example the two prun commands are executed sequentially, one after
the other, both on the same processors in the parallel partition:

user@cs2: allocate -p parallel
user@cs2: prun uname -n
cs2-241
cs2-242
cs2-243
cs2-244
user@cs2: prun uname -n
cs2-241
cs2-242
cs2-243
cs2-244
user@cs2: exit

If we were to run the above example without allocating resources to the shell we
could not guarantee that the second use of prun would start immediately the first
completes, and we could not guarantee that both would use the same processors
in the partition.

Warning - You have exclusive use of the resource until the shell terminates;
the accounting system will be billing you whether you use it or not.

Sl002-10M117.02 mei<a

4

Debugging Parallel Applications

Core files generated by failed parallel applications are deleted from your filesys­
tern when the program's resource is freed. The core files for programs that are
executed using the shell's resources will therefore be retained until the shell itself
is terminated.

The resources allocated to a command shell may also be shared concurrently by
several parallel applications. This means that debuggers (or more generally any
parallel program) may be run alongside the processes of a parallel application.
See the documentation for the TotalView debugger, or refer to the discussion of
pdebug.

Confirming Resource Allocation to a Shell

When allocating resource to an interactive command shell you can check that the
resource has been successfully allocated by using rinfo.

user@cs2: rinfo
PARTITION NPROe PROeS STATUS TIME

root 148 128-285 down
p2-4 4 244-247 up 3:18:58:43
pl-4 4 240-243 up 1:15:25:52

p3-16 16 224-239 up 2:23:59:32
login 8 248-255 up 1:02:18
pO-96 96 128-223 up 2:21:02:33

spares 4 256-259 up 9:38:37

RESOURCE NPROe STATUS USER GPID TIME LIMIT
pl-4.572 4 in-use user 252.1037 0:07 59:53

The above example shows that 4 processors on the partition p 1-4 have been al­
located to use r for 7 seconds, and that they will remain allocated for, at most,
another 59 minutes 53 seconds.

mekD Resource Management Commands 33

4

34

Alternatively, by adding the following commands to your. cshrc file (C-shell
users) your shell prompt will change whenever you have allocated resources:

if ($?RMS_RESOURCEID) then
set prompt="${RMS_RESOURCEID}: "

else
set prompt="$user@'uname -n': "

endif

user@cs2: a110cate -ppara11e1
parallel.4: exit
user@cs2:

Users of the Bourne shell may add the following to their. prof ile file to
achieve the same effect:

if [$RMS_RESOURCEID] then
PS1="$RMS_RESOURCEID "

else
PS1="$ "

fi

Sl002-10M117.02 meJ<a

4

rinfo - Resource Illformation

r i n f 0 displays information about resource usage and availability. Its default
output is in three parts showing the configuration, resource availability, and cur­
rent jobs (note that the latter sections are only displayed if resources/jobs are ac­
tive).

• The configuration section shows the partitions, their availability, and their up­
time.

• The resource section identifies processing resource that is available to you or
currently in use by you; for resources that are in-use the time field specifies
how long the resource has been held, and the limit field identifies the
maximum remaining time that it can be held (the total of the TIME and LIMIT
fields is set by the time 1 imi t attribute in the de f au 1 t s (4) file).

• The jobs section identifies the resource, command name, and global process
id of your applications' controlling processes.

user@cs2: rinfo
PARTITION NPROC PROCS STATUS TIME

root 148 128-285 down
p2-4 4 244-247 up 3:18:58:43
pl-4 4 240-243 up 1:15:25:52

p3-16 16 224-239 up 2:23:59:32
login 8 248-255 up 1:02:18
pO-96 96 128-223 up 2:21:02:33

spares 4 256-259 up 9:38:37

RESOURCE NPROC STATUS USER GPID TIME LIMIT
p2-4.648 4 free 0:56
pl-4.572 4 in-use user 252.1037 0:07 59:53
login.89 8 free 7:40
spares.1 4 free 9:38:38

USER NPROC STATUS PARTITION GPID TIME COMMAND
user 4 running pl-4 252.1037 0:08 dping

mei<D Resource Management Commands 35

4

36

Querying the Resource Usage of Other Users

The -a flag allows you to see all resources and jobs (your own and those of other
users):

user@cs2: rinfo -a
PARTITION NPROC PROCS STATUS TIME

root 148 128-285 down
p2-4 4 244-247 up 3:18:58:59
pl-4 4 240-243 up 1:15:26:08

p3-16 16 224-239 up 2:23:59:48
login 8 248-255 up 1:02:34
pO-96 96 128-223 up 2:21:02:49

spares 4 256-259 up 9:38:53

RESOURCE NPROC STATUS USER GPID TIME LIMIT
p2-4.648 4 free 1:12
pl-4.572 4 in-use user 252.1037 0:23 59:37

p3-16.106 16 in-use george 253.4410 2:26 7:44:14
login.89 8 free 7:55

pO-96 96 free 10:14
spares. 1 4 free 9:38:54

USER NPROC STATUS PARTITION GPID TIME COMMAND
user 4 running pl-4 252.1037 0:24 dping

georgev 16 running p3-16 253.4410 2:26 ring6

Listing Active lobs

r i n f 0 's output can be restricted to a list of current jobs by using the - j option.
You could combine this with the -a option to get a list of all jobs (both your own
and those of others). In the following example 252.1037 is the global id of the"
application; it indicates that the application's controlling process has a process id
of 1037 on processor 252.

user@cs2: rinfo -j
duncan 252.1037

Sl002-10M117.02 meJ<a

4

Querying Resource Usage by a Job

To get summary infonnation about a particular job specify its gpid to rinfo.
The following example shows that the application used 0.4 seconds of user time,
1.5 seconds of system time, an elapsed time of 26 seconds, with an efficiency of
7.3%.

user@cs2: rinfo 252.1037
sleep: 0.4u 1.5s 0:26 7.3%

To get more detailed information about a process specify the -1 option.

user@cs2: rinfo -1 108.477
Job: 108.477 Owner: duncan Command: sleep
Partition: parallel Procs: 6
Started: Fri Aug 5 13:55 BST 1994 Timelimit: none
Resource Usage
User time
System time
Idle time
Allocated time
Elapsed time
Efficiency
Page faults
Physical memory
Virtual memory
Memory limit
Input/Output

Per Proc
0.1
0.3

25.7
26.0
26.0
1.2

o
775
419

o
8

Total
0.4
1.5

154.1
156.0
156.0

1.2
o

4654
2514

o
52

(sees)
(sees)
(sees)
(sees)
(sees)
(%)
(#)
(KBytes)
(KBytes)
(MBytes)
(KBytes)

Note that some of the above statistics are only available if the resource manage­
ment accounting system is enabled.

rneI<o Resource Management Commands 37

4

38

Querying the Configuration

You can get infonnation about the configuration using either the -c or -p op­
tions: -c lists the configuration name and the number of partitions, whereas-p
identifies the partitions (regardless of their availability) and the number of proc­
essors in each:

user@cs2: rinfo -0

daytime 7

user@cs2: rinfo -p
root 148
p2-4 4
pl-4 4

p3-16 16
login 8
pO-96 96

spares 4

The -1 option can be used to get more detailed information:

user@cs2: rinfo -p~
PARTITION NPROe PROeS STATUS TIME

root 148 128-285 down
p2-4 4 244-247 up 3:18:59:59
pl-4 4 240-243 up 1:15:27:08

p3-16 16 224-239 up 3:00:00:48
login 8 248-255 up 1:03:34
pO-96 96 128-223 up 2:21:03:49

spares 4 256-259 up 9:39:53

Sl002-10Ml17.02 meJ«)

4

Load Balancing

The -H option allows you to identify the least heavily loaded processor in a par­
tition.

I
user@cs2: rinfo -8 p2-4

. cs2-247

Hostname to Processor Id Conversion

The -t option converts a hostname to a processor Id (and vice versa):

user@cs2: rinfo -t c82-247
247
user@cs2: rinfo -t 247
cs2-247

meI<o Resource Management Commands

convert hostname to id

convert id to hostname

39

4

reduce - Global Reduction/or Shell Scripts

40

reduce is for use in parallel shell scripts. You might use a shell script to perform
a sequence of commands on a number of processors. Calls to reduce within the
shell script can be used to sychronise the scripts, or to reduce, over all the proc­
essors, the success of one of the commands.

The following C-shell script can be used to mount a filesystem on a number of
processors in a partition. The return status of each process's mount command is
reduced over all processes and the logical OR returned to each process. Ifmount
command failed on any processor then those that succeeded will unmount the
filesystem before exiting (to ensure that the partition is left in a consistent state).
The reduce command also acts as a barrier, ensuring that all processes wait un­
til all have reached the barrier point.

i!/bin/csh

i gmount: a prun shell script that
i mounts a filesystem across a partition
i

set mnttarg = $argv[$iargv]

mount $argv[*]

set lstatus $status
set gstatus 'reduce -f or $lstatus'

if ($lstatus != 0) then
echo "Failed mount on 'uname -n'"

endif

if ($gstatus == 0) then
if ('pinfo -i' == 0) then

echo "Mounted OK"
endif

else
umount $mnttarg

endif

exit $gstatus

Sl002-10M1l7.02 meJ<a

gkill- Send a Signal

4

You would execute the above script using prune The following example tries to
mount / opt on all processors in the partition. Note that this example must be
executed by the superuser.

I user@cs2: prun -p2-4 gmount nova:/opt /opt

The - f option is used to specify a reduction function, which may be one of:

sum The sum of the arguments over all processes.

or The logical OR of the arguments over all processes.

and The logical AND of the arguments over all processes.

The -t option may be used to specify a timeout (specified in seconds).

gkill is a machine wide version of the Unix kill(1) command. The following
example sends signal 9 (5 IGKILL) to two processes: process 163 on processor
0, and process 165 on processor 4.

I user@cs2: gkill -9 0.163 4.165

gkill supports the same signals as kill(1). See the signal(5) manual page
for a complete list.

meko Resource Management Commands 41

4

gps - Global Process Status

42

gps is a machine wide version of the Unix ps(l). It produces a process list for
each processor (or a subset of processors) in a partition.

Options to gps are the same as ps(1) with the following exceptions:

-p partition

-n nproc

-b baseproc

Identifies a partition. If no partition is specified gps
will use the system default, or the partition identified by
the environment variable RMS_PARTITION.

The num ber of processors to query. By default all
processors in the partition are queried, or the number
identified by RMS_NPROCS.

Identifies the base processor in the partition. Default is
0, the first processor in the partition.

gp s obtains the process status from each processor by using the resource man­
agement system to spawn an instance of p s onto each processor. It filters out of
the process lists the p s command and the loader process that spawned it onto
each processor.

If the resource is already in-use by someone else then gps will block until it be­
comes available. If the resource is in-use by you then gps will block unless the
resource has been allocated to your command shell (with allocate), in which
case gps will run concurrently with any other job that has been started from your
shell.

In the following example all the processors in the p2 - 4 partition are allocated to
an interactive shell. Both prun and gps are executed concurrently on the allo­
cated resource.

Warning - Refer to the description of the allocate command on page 31.

Sl002-10M117.02 meJ<a

user@cs2: allocate -pp2-4
user@cs2: prun myproq ,
user@cs2: qps

PIn TTY
256 ?

PIn TTY
256 ?

PIn TTY
254 ?

PIn TTY
255 ?

user@cs2: exit

meko Resource Management Commands

processor cs2-240 (240) ------------­
TIME COMD
0:03 myprog

processor cs2-241 (241) ------------­
TIME COMD
0:03 myprog

processor cs2-242 (242) ------------­
TIME COMD
0:03 myprog

processor cs2-243 (243) ------------­
TIME COMD
0:03 myprog

4

43

4

copyback - Collect Distributed Files

copyback copies one or more files from the local filesystems of the processors
in a specified partition. You might use it, for example, to retrieve result files or
core files from the temporary filesystem (/tmp) of a partition that has just run
your application.

The files are collected from their common path on each file system and are stored
in the specified destination directory. Each file is given a filename extension that
identifies the process Id of the process that wrote it.

The following example collects core files from each process and stores them in
the directory coref iles:

user@cs2: copyback -p pl-4 /tmp/core .
user@cs2: 18 core*
core.O core.l core.2 core.3

If no partition is specified then the environment variable RMS_PARTITION is
used. No partition need be specified if resource is already allocated.

copyout - Distribute Files over a Partition

44

copyout copies one or more files into the local filesystems of the processors in
a specified partition. You might use it, for example, to copy a data file into the
local temporary filesystems (/tmp) of a partition that will run your application.

The following example copies the file data from the current working directory
into the /tmp filesystem of all processors in the parallel partition:

I llser@cs2: copyout -p parallel ./data /tmp

If no partition is specified the environment variable RMS_PARTITION is used.
No partition need be specified in resource is already allocated.

Note that copyout is much faster than the equivalent use of prun and cp for
large numbers of processors because it uses the Elan's broadcast hardware.

Sl002-10Ml17.02 meJ<a

4

pdebug - Inspect State of Parallel Program or Core Files

pdebug produces a backtrace of a program, either by attaching adb(1) to the
process (if it is still running) or by extracting the information from a core file.
Additionally pdebug will report on source line-numbers and source files if it
was able to locate the debugging information in the program file (the program
must have been compiled with the debugging option enabled).

The usage of pdebug is:

I pdebug [program] [object]

Where programis the name of your program file, and object is the pathname
of the object file (if it isn't in the same directory as the executable).

To attach to an active job, or to query a process's core file, the job must be exe­
cuted using resources that have been allocated to a command shell (see the de­
scription of the allocate command). By allocating resources to a command
shell you can run pdebug concurrently with your application, and you will also
prevent the resource management system from deleting the core files produced
when your program terminates (these files are removed when the program's re­
source is freed, which in this case will happen when the shell itself terminates).

In the following example a sub-shell is allocated the resources in the p 1-4 par­
tition. A parallel program is executed (in the background) on this resource, and
pdebug is run concurrently with that program. After you have finished with the
resource remember to free it by tenninating the sub-shell.

Warning - Refer to the description of the allocate command on page 31.

meI<o Resource Management Commands 45

4

46

user@cs2: allocate -ppl-4
user@cs2: prun can'
user@cs2: pdebug can
-------------------- processor cs2-240 (240) -----------------­
elan_usecspin() + 10
elan_waitevent(OxO,Ox3fdcO,Oxffffffff,OxO,OxO,Ox8) + 78
ew_tportRxWait(Ox3fdcO,OxO,OxO,OxO,Oxl,OxeOOOc040) + 6c
yp_lookup(Oxeffffa88,Ox3fdcO,Oxeffffa98,Oxeffff8b8,Ox8,Ox108)
+94
_csn_lookupname(Oxeffffa98,Oxeffffa88,Ox1,Ox1,Ox3fca8,Ox5) + c
main(Ox1,Oxeffffb24,Oxeffffb2c,Ox37000,OxO,OxO) + 14c

Line 45 in /home/user/csn/csn.c

-------------------- processor cs2-241 (241) -----------------­
main(Ox1,Oxeffffb24,Oxeffffb2c,Ox37000,OxO,OxO) + 98

Line 31 in /home/user/csn/csn.c

-------------------- processor cs2-242 (242) -----------------­
elan_usecspin() + c
elan_waitevent(OxO,Ox3fca8,Oxffffffff,OxO,OxO,Ox8) + 78
_csn_test(OxO,Ox4,Ox3fccO,OxO,Ox40578,OxO) + 3b4
main(Ox2,Ox2,Ox2,Ox2,OxO,Ox5) + Icc

Line 61 in /home/user/csn/csn.c

-------------------- processor cs2-243 (243) -----------------­
elan_usecspin() + 10
elan_wait event (OxO, Ox3fca8, OXffffffff,OxO,OxO,Ox8) + 78
_csn_test(OxO,Ox4,Ox3fccO,OxO,Ox40578,OxO) + 3b4
main(Ox3,Ox2,Ox2,Ox5,Ox1,Ox5) + lcc

Line 61 in /home/user/csn/csn.c

user@cs2: exit
user@cs2:

The above backtrace shows that:

• Process 0 reached line 45 and is executing csn_lookupnameO.

• Process 1 reached line 31 and is executing mainO. Further analysis of the
program code showed this to be the cause of the failure.

• Processes 2 and 3 both reached line 61 and are executing csn_testO.

Sl002-10M117.02 ms<a

Parallel Programming 5

Parallel Programming Models

Message Passing

Data Parallelism

mei<D

There is no single paradigm for programming parallel systems, different ap­
proaches suit different types of applications. The most widely used approaches
are Message Passing, Data Parallelism and Distributed Processing.

The message passing model was developed for MIMD (Multiple Instruction
Multiple Data) machines in which each processor executes its own program. An
application is divided into processes which are distributed over the processors.
This division can ei ther be by function, different types of process handle different
types of task, or by data where different processes are responsible for managing
different data items. Each process operates on its own data, and accesses that of
others by passing messages. The message passing model is most powerful when
an application needs to be performing many different operations at the same
time, but can also be used effectively for large numbers of identical processes.

In the data parallel model all of the processors simultaneously perform the same
operations on different data. Data parallelism was developed on SIMD (Single
Instruction Multiple Data) machines, where the hardware constrains you to this
approach. Data parallelism is particularly appropriate in scientific and engineer·
ing applications where large arrays of data can be spread across the processors.

4'

5

Distributed Processing Distributed processing, parallel processing using operating system communica­
tions mechanisms is becoming more and more widespread. A distributed appli­
cation runs as two or more processes on a network of workstations and servers.
In the Unix world such processes communicate by message passing using stand­
ard protocols.

Choosing which approach to follow depends on the application and is best done
by analogy, for example My problem is the similar to problem A which works well
as a data parallel program or My problem has the same structure as problem B
which runs efficiently using message passing. Understanding the implementation
techniques used for a variety of efficient parallel algorithms assists this process
greatly.

CS-2 systems support a wide range of programming models, which can be used
on an application by application basis when writing applications from scratch or
importing them from other systems. Meiko employs applications consultants,
skilled in parallel programming. Please consult us for detailed advice on which
approach will best fit a particular problem.

Message Passing Libraries

48

CS-2 supports a range of message passing interfaces, allowing applications writ­
ten on first generation Computing Surface systems or other manufacturers paral­
lel machines and workstation networks to be easily ported and run. The interfaces
supported are:

• The Meiko CSN library; used widely on first generation Computing Surfaces.

• PARMACS; available on a variety of systems and widely used in Europe.

• PVM (Parallel Virtual Machine); common on workstation networks.

• The Meiko MPSC library; offers source code compatibility with the Intel
IPSC and Paragon systems.

All of the above message passing systems are built upon the Elan Widget library,
which is in turn built upon the Elan library. The use of a common interface means
that programs built on the higher level message passing can use functions in the
lower level libraries for performance critical sections of the code. You can also
create mixed paradigm applications, allowing for example, a library to be written
using on~ interface and the program calling it another.

Sl002-10M117.02 meJ<a

5

Choosing which interface to use will depend upon a variety of factors including
the history of the code, performance characteristics and portability criteria.

Data Parallelism

CS-2 can run data parallel programs written in FORTRAN-90 or subset HPF
(High Performance FORTRAN). For more details of this approach see the Port­
land Group HPF User's Guide or the Adaptor User and Reference Manuals.

Distributed Processing

Unix applications conforming to POSIX system call and Berkely socket inter­
process communication standards can be compiled and run on a CS-2 system.
See SunOS Network Interfaces Programmers Guide (version 5.0 or later) for de­
tails.

Message Passing Libraries

mei<D Parallel Programming

All message passing systems are built upon the Elan Widget library. The message
passing functions in these libraries use the Elan Widget library's tagged message
ports, or TPORTS. TPORTS offer either blocking or non-blocking, buffered or
unbuffered, tagged communications between processes. The utilisation of these
options is message library specific; some offer all TPORT functionality, whereas
others typically employ a subset.

The following sections briefly describe the key features of the most common
message passing systems that are available on the CS-2. Each section includes an
example program and a reference to more detailed documentation.

49

5

CSN

50

The CSN library is widely used on Meiko's first generation Computing Surface;
use this library to port applications from this machine to the CS-2.

Key features of the CSN are:

• Point-to-point communications.

• Message selection at receiver.

• Supports both blocking and non-blocking communications, both unbuffered.

• Rostless applications; require prun to execute.

• C and FORTRAN support.

The CSN offers point to point communications via transports, a process's gate­
way onto the Computing Surface Network. Message selection at the recipient is
by sending transport only (and by inference the sending process). Processes may
be assigned multiple transports, and may dedicate each to messages of a specific
type or to communications among a specified group of processes; a receiving
process may in this case infer not only the sending process but also a message
type.

Both blocking and non-blocking communications are supported for both the
sender and receiver. Blocking functions delay the process until the communica­
tion completes (and the data has been received into the recipients data buffer).
Note that a blocking communication is an implicit barrier; both sender and re­
ceiver must call their communication functions, and neither may proceed until
the transfer has completed.

Non-blocking functions initiate a transfer but do not wait for it to complete be­
fore returning control to the caller. In this case the data is transferred between the
processes at some arbitrary time. Neither the sender's or receiver'S data buffers
may be modified or freed until test functions confirm that the communication is
complete.

More information about the CSN is available from the CSN Communications Li­
brary for Fortran (Meiko document number SlOO2-10MI07) or the CSN Com­
munications Library for C (document Sl002-10MI06).

Sl002-10M117.02 meJ<a

meko Parallel Programming

5

Example

The following (simple) example program illustrates summing numbers using the
CSN message passing interface - it illustrates use of the message passing rou­
tines.

In the first half of the program each process discovers which processor it is run­
ning on using cs_getinfo (), opens a CSN transport and registers its
name. It then looks up the name registered by the next processor. c s n _
lookupname () returns the CSN address next; knowing this address enables
you to send a- message to the transport opened on that processor. In this program
messages are sent from node n to node n + 1 as if the processors were connected
in a ring.

iinclude <stdio.h>
iinclude <csn/csn.h>

main ()
{

int rx, tx, sum, i, node, nnodes, localid;
Transport t;
netid_t next;
char name [16] ;

/* find out home many processors there are */
cs_getinfo(&nnodes, &node, &localid);

/* open transport */
csn_open(CSN_NULL_IO, &t);

/* register transport then lookup that of peer */
sprint! (name, "TPT_%d", node);
csn_registername(t, name);
sprintf(name, "TPT_%d", (node + 1) % nnodes);
csn lookupname(&next, name, 1);

Having looked up the necessary address the program initialises the variable rx
with its node number and sets sum to zero. A non-blocking receive is started to
gather data, and a non-blocking send to send it on round the ring. Non-blocking

5]

5

52

message passing is not required in this example, but has been used to illustrate
typical usage and to avoid writing code in which half of the processors perfonn
a blocking send and the other half a blocking receive.

rx = node;
sum = 0;

for (i = 0; i < nnodes - 1; i++)
tx = rx;

/* initiate receive */
csn_rxnb (t, (char *) &rx, sizeof (rx»;
/* initiate transmit */
csn_txnb (t, 0, next, (char *)&tx, sizeof(tx»;

sum += tx;

/* block for completion */
csn_test (t, CSN_RXREADY, -1, NULL, NULL, NULL);
/* (not interested in envelope info) */

csn test (t, CSN_TXREADY, -1, NULL, NULL, NULL);

sum += rx;
if (node == 0)

printf (USum = %d\nH, sum);

c S n _ t est () is used to test for the completion of each transfer. These opera­
tions are repeated until each processor has received all the data and the resulting
sum is printed out.

To compile this CSN application for the CS-2 you will need the following flags:

user@cs2: cc -c -I/opt/MEIKOcs2/include csn.c
user@cs2: ce -0 esn esn.o -L/opt/MEIKOes2/lib
-lesn -lew -lelan

Sl002-10M117.02 meJ<a

PARMACS

meI<o Parallel Programming

5

To run the program use prun:

user@cs2: prun -ppara~~e~ csn
Sum = 6

PARMACS is a portable message passing system for use by FORTRAN pro­
grammers. Key features of PARMACS are:

• Point-to-point communications with support for a broadcast tree.

• Message selection by sender and user specified message tag.

• Supports both buffered and unbuffered blocking communications.

• Supports hosted applications; programs initiated by a PARMACS host.

• FORTRAN interface.

PARMACS defines both synchronous and asynchronous communications. In the
Meiko implementation these map onto unbuffered or buffered blocking commu­
nications (respectively) as provided by the Widget library TPORTs.

The synchronous communications functions will block execution of the caller
until the message has been transferred directly from the sender to the recipients
data vector. The synchronous communications are an implicit barrier, requiring
both sender and receiver to call their communications functions before either
may proceed.

The asynchronous use the data buffers that are provided by the Widget library
TPORTs. The send function transfer's the message from the user's address space
into a system buffer and returns control to the caller when this transfer completes,
which in most cases will be instantaneously (note also that the sender's data vec­
tor may be modified or freed as soon as the send function completes). The receive
function tran~fers the message from the system buffer to the user's data vector
and returns control to the caller as soon as the transfer completes.

53

5

54

PARMACS supports only the hosted programming model. Functions are provid­
ed that describe to the host program the placement of processes in the machine.
This model was developed primarily for systems with limited interconnect in
which process placement was critical to program performance. On the CS-2 this
functionality is less significant.

More information about PARMACS is available from the PARMACS 5.1 Release
Notes (Meiko document number SlOO2-10Ml18) and from the ANL/GMD
PARMACS User's Guide and Reference Manual.

Example

The following trivial example is part of the standard PARMACS release and is
included in source form in /opt/MEIKOcs2/parrnacs/example/par­
rnacs/ integral. It defines 3 processes to evaluate:

o
J sinxdx

1

The host program divides the interval into 3 and uses a synchronous communi­
cation to distribute these among the processes. The partial results are additively
passed along the 3 node process to the host which displays the result. Note that
the node processes are interconnected as a TORUS, however on the CS-2 this
corresponds to a simple linear distribution over the available resource (since all
processes are fully connected the distribution is unimportant on the CS-2).

The host process is defined as:

c
c Compute the integral over f(x)=sin(x), lower bound x=O,
c upper bound x=l. The host loads a ring of processes,
c sends each process some information, collects the results,
c and prints them.
c

integer eight, sixtee
c

c nproc = number of processes in ring
c

parameter (eight=8, sixtee=16, nproc=3)
'integer procid(O:nproc+l), neigh(2)

S 1002-1 OMI17 .02 mei<D

meko Parallel Programming

5

c

real*8 result, bnds(2)
integer*4 typarr(l), lenarr(1)

c declare environment for macros
c

ENVHOST
c
c initialize host environment
c

INITHOST
c

c map the nproc processes onto a ring structure
c

TORUS (nproc, 1, 1, 'node', 'tempfile')
c

c load the node processes
c

REMOTE_CREATE('tempfile',procid(1»
c

c host process is first and last process in ring
c

c

procid(O)
procid(nproc+1)
do 10 i=l,nproc

HOSTID
HOSTID

c for each process in ring: send process id's of neighbours
c

c

neigh(l) = procid(i-1)
neigh (2) procid(i+l)

typarr(l) = INTEGER_TYPE
lenarr(l) = 2
MSG_FORMAT (1,typarr, lenarr)
SENDR(procid(i),neigh,eight,10)

c for each process in ring: send bounds for integral section
c

10

bnds(l) = (i-1)*(1.dO/nproc)
bnds(2) = i * (l.dO/nproc)
typarr(1) = DOUBLE TYPE
lenarr(1) = 2
MSG_FORMAT(l,typarr,lenarr)
SENDR(procid(i),bnds,sixtee,lO)

continue

55

5

56

c

c receive the total integral from last node in the ring, and
c print it to standard output
c

RECV(result,eight,il,is,it,MATCH_ID(procid(nproc»)
print *, 'integral =', result

c
c kill the node processes and clean up host environment
c

ENDHOST
end

The node processes are defined as:

c

c Compute the integral over f(x)=sin(x), lower bound x=O,
c upper bound x=l. The node receives two messages from the
c host: information on neighbours and bounds of section.
c It computes its part and combines it with those
c of the other" processes. Since the host process is the last
c in the ring, the global integral is received there.
c

c

integer eight, sixtee
parameter (eight=8, sixtee=16)
integer neigh(2)
real*8 result, mypart, bnds(2)
integer*4 typarr(l), lenarr(l)

c declarations for macros
c

ENVNODE
c

c initialize node environment
c

INITNODE
c
c receive information on neighbours and bounds from host.
c Use synchronous communication to ensure the right order
c of messages (which use the same tag).
c

RECVR(neigh,eight,il,is,it,MATCH_ID(HOSTID»
RECVR(bnds,sixtee,il,is,it,MATCH_ID_AND_TYPE(HOSTID,lO»

c
c compute the integral section
c

S 1002-1 OMI17 .02 mei<D

mei<o Parallel Programming

call comput(bnds, mypart)
c
c sum up the partial results along the ring
c

if (neigh (1) .ne.HOSTID) then
RECV(result,eight,il,is,it,MATCH_TYPE(20»
result = result + mypart

else
result = mypart

endif
typarr(l) = DOUBLE_TYPE
lenarr(l) = 1
MSG_FORMAT (1, typarr,lenarr)
SEND(neigh(2),result,eight,20)

ENDNODE
end

5

You can use the supplied make file to pre-process and compile both the host and
node processes:

I user@cs2: make

Alternatively you can pre-process and compile manually by direct use of par­
rnacs and your FORTRAN compiler, as shown below. Note that the PARMACS
library is sourced from the PARMACS directory tree, whereas the remaining li­
braries are sourced from the standard Meiko library directory (both paths must
be specified after the - L option to the FORTRAN compiler driver). Host pro­
grams must be linked with the resource management library (-lrrns) which is a
shared dynamic library; this means that the library search path must be specified
to the runtime linker via the -R option.

user@cs2: parmaca -platform maiko -arch ca2-2.1a
< hoat.u > hoat.f

user@cs2: f77 -0 hoat -I/opt/MEIKOca2/include \
-L/opt/MEIKOc82/lib \
-L/opt/MEIKOca2/parmaca/lib/maiko/c82-2.38 \
-R/opt/MEIKOca2/lib:/opt/SUNWapro/lib hoat.f \
-lparmaca -l~a -lew -lelan

5'i

5

PVM

58

You pre-process and compile the node program with the following commands.
Note that node programs need not be linked with the resource management li­
brary.

user@cs2: parmaC8 -platfo~ maiko -arch c82-2.18 \
< node.u > node.f

user@cs2: f77 -0 node -I/opt/MEIKOc82/include \
-L/opt/MEIKOc82/lib \
-L/opt/MEIKOc82/parmac8/lib/meiko/c82-2.38 \
node.f comput.f -lparmac8 -lew -lelan

You execute your application by executing the host program. You specify the re­
source required by the node processes by setting resource management environ­
ment variables. In the following example three processors are allocated from the
parallel partition. Note that the number of processors allocated must be the same
as the number of processes spawned by the host's REMOTE_CREATE macro.

user@cs2: setenv RMS PARTITION para11e1
user@cs2: setenv RMS NPROCS 3
user@cs2: host

integral 0.45969769626009

PVM (parallel Virtual Machine) is widely used to run parallel applications on
workstation networks. Key features of PVM are:

• Point-to-point communications with multicast facility.

• Buffer management with typed data packaging functions.

• Message selection at receiver by sender and user specified message tag.

• Non-blocking send; both blocking and non-blocking receive.

• Both hosted and hostless models supported.

• C and FORTRAN interfaces.

SI002-10MI17.02 meJ<a

meI<o Parallel Programming

5

PVM supports both point-to-point and multicast communications between mes­
sage buffers. The creation of the buffers, nomination of one buffer as the active
buffer, and the packaging of typed data into the buffers is handled by PVM buffer
management functionality.

A non-blocking send function is provided; this uses the buffered blocking func­
tionality of the Widget library TPORTs. The sending function initiates a message
transfer, and blocks the calling process until the data has been copied into a sys­
tem buffer. The function returns to the caller when the copying is complete, thus
signalling that the process's own buffer may be modified or freed.

Both blocking and non-blocking receive functions are provided. The non-block­
ing variant tests the system buffer for a message and returns immediately, where­
as the blocking function will delay the calling process until a suitable message
becomes available.

PVM supports both hosted and hostless applications. The hostless application re­
quires a loader program, such as prun, to allocate resource and to load the PVM
processes onto that resource. The hosted application requires that one of the
PVM processes (the host) allocates resource and spawns the remaining process­
es. The host process may also use PVMs communication functions to cooperate
with the node processes in the solution of the task.

More infonnation about PVM is available from the document PVM User's Guide
and Reference Manual, Meiko document number SlOO2-10M133. The standard
PVM release is described by the PVM 3 User's Guide and Reference Manual,
prepared by the Oak Ridge National Laboratory (reference ORNLrrM-12187).

Example

The following simple FORTRAN program is an illustration of a master/slave or
hosted PVM application. CS2-PVM can also run spmd or hostless PVM pro­
grams; consult the PVM documentation for a definition of hosted/hostless pro­
gramming models.

59

5

60

The example consists of two programs: a master and a slave. Both master and
slave start by calling pvrnfrnytid () , which sets up the CS-2 environment and
initialises the TPORTS. The master then calls pvrnfspawn () to fork a specified
number of slaves onto resource that is allocated by the Resource Manager. The
ids of the spawned slaves are returned in the t ids array.

program pvrnHost
include "/opt/MEIKOcs2/include/PVM/fpvm3.h"

c ---
c Example fortran program illustrating the use of PVM 3.0

c ---
integer i, info, nproc, who
integer my tid, tids(0:32)
double precision result (32) , data (100)

c Enroll this program in PVM
call pvmfmytid(my tid)

c Initiate nproc instances of slave1 program
print *,'How many slave programs (1-32)?'
read *, nproc

c Start up the tasks
call pvmfspawn("pvmSlave",PVMARCH,"CS2",nproc,tids,info}

Having spawned the slaves, the master initialises the array data with 10 inte­
gers by first initialising a PVM send buffer with pvrnf ini t send () . It then
packs three integers types: nproc (number of slaves), tids (the task array) and
n (the size of data array), into the send buffer. It also packs the data array and
then broadcasts the send buffer to the slaves with pvrnfrncast () . The master
then waits to receive the results back from each of the slaves.

Sl002-10M1l7.02 meJ<a

meko Parallel Programming

c Initialise data array
do 20 i-l,10

data (i) = 1
20 continue

c broadcast data to all node programs
call pvrnfinitsend(PVMDEFAULT, info
call pvrnfpack (INTEGER4, nproc, 1, 1, info)

call pvrnfpack(INTEGER4, tids, nproc, 1, info
call pvrnfpack (INTEGER4, 10, 1, 1, info)

call pvrnfpack (REALS, data, 10, 1, info
call pvrnfmcast(nproc, tids, 1, info)

c wait for results from nodes
do 30 i=l,nproc

call pvmfrecv(-1, 2, info
call pvmfunpack(INTEGER4, who, 1, 1, info)
call pvmfunpack(REALS, result(who+l), 1, 1, info
print *, "1 got",result(who+1), " from", who

30 continue

call pvrnfexit(info)
stop
end

5

The slaves' determine their task ids with pvmfmytid 0 and the task id of their
master with pvmfparent () . The slaves then receive the tagged message from
the receive buffer with pvmfrecv () and unpack nproc, tids, n and the
data array from the receive buffer.

This is followed by a call to the processing routine work () . The result of the
calculation is then sent back to the master with pvmfinitsend () (initialise
buffer), pvmfpack () (pack data into buffer) and pvmf send () (send buffer).
The master as and slaves then call pvmf exi t () to tenninate the program.

61

5

62

program pvmSlave
include "/opt/MEIKOcs2/include/PVM/fpvm3.h"

c --
c Example fortran program illustrating use of PVM 3.0
c --

integer info, my tid, mtid, me, tids(0:32)
double precision result, data (100) , work

c Enroll this program in PVM
call pvmfmytid(my tid

c Get the master's task id
call pvmfparent(mtid

c Receive data from host
call pvmfrecv(mtid, 1, info)
call pvmfunpack(INTEGER4, nproc, 1, 1, info)
call pvmfunpack(INTEGER4, tids, nproc, 1, info
call pvmfunpack(INTEGER4, n, 1, 1, info)
call pvmfunpack(REAL 8 , data, n, 1, info

c Determine which slave I am (0 -- nproc-1)
do 5 i=O, nproc

if(tids(i) .eq. my tid) me = i
5 continue

c Do calculations with data
result = work (me, n, data, tids, nproc)

c Send result to host
call pvmfinitsend(PVMDEFAULT, info)

call pvmfpack (INTEGER4, me, 1, 1, info
call pvmfpack(REAL 8 , result, 1, 1, info
call pvmfsend(mtid, 2, info)

call pvmfexit(info)
stop
end

SI002-10M117.02 meJ<a

Our work routine is very simple:

double precision function work(me,n,data,tids,nproc)
double precision data(*), sum
integer i, n, me
integer tids(O:*)

sum'" 1.0
do 10 i-1,n

sum = sum + me '* data(i)
10 continue

work = sum
return
end

The PVM programs are compiled for the CS-2 as follows:

user@cs2: £77 -0 pv.mBost -R/opt/MEIKOcs2/1ib:/opt/SONWspro/1ib
-I/opt/MEIKOcs2/inc1ude -L/opt/MEIKOcs2/1ib pvmBost.£ -1fpvm3 -1pvm3
-1r.ms -1ew -1e1an -1socket -1ns1

user@cs2: £77 -0 pv.mS1ave -R/opt/MEIKOcs2/1ib:/opt/SONWspro/1ib
-I/opt/MEIKOcs2/inc1ude -L/opt/MEIKOcs2/1ib pvmSlave.f -1fpvm3 -1pvm3
-1r.ms -1ew -1e1an -1socket -1ns1

5

You run the program by executing the host process, using Resource Management
environment variables to identify the resource. If you use the RMS_NPROCS
variable to specify a number of processors then this must be the same as the
number of slave processes spawned by the host.

mei<o Parallel Programming

user@cs2: setenv RMS_PARTITION para11el
user@cs2: pvmBost
How many slave programs (1-32)? 4

I got 1.0000000000000 from 0
I got 11.000000000000 from 1

• I got 21.000000000000 from 2
I got 31.000000000000 from 3

63

5

MPSC

64

This library allows applications to be ported from the Intel IPSe and Paragon
systems. It includes both message passing functionality and a suite of global re­
duction functions.

Key features of this library are:

• Point-to-point communications with multicast facility.

• Message selection at receiver by sender and user specified tag.

• Blocking and non-blocking communications.

• Both hosted and hostless models supported.

• Information functions to determine message size, sender, and tag.

• e and FORTRAN interface.

• Global reduction functions.

Both blocking and non-blocking send functions are provided; the blocking vari­
ant returns control to the caller when the data has been copied into a system buff­
er or user buffer (thus indicating that the sender's buffer can be freed or
modified). The non-blocking variant returns immediately and requires test func­
tions to confirm when the sender's buffer may be modified.

Both blocking an non-blocking receive functions are provided. Test functions are
provided to test the availability of a suitable message, and information functions
can be used to extract envelope information (sender, tag, and message size).

This library supports both hosted and hostless applications. The hostless applica­
tion is executed with prun; the hosted application requires that one process (the
host) allocates resource and spawns the remaining processes. The host process
may also use MPSe communication functions to cooperate with the node proc­
esses in the solution of the task.

The global operation functions take a vector of data from each process in the ap­
plication and return to each a result vector. The global operation functions oper­
ate more efficiently than the equivalent series of communication and calculation

Sl002-10Ml17.02 meJ<.o

5

functions. The global operations are an implicit barrier; all the processes must
call the same global operation function with the same arguments, and none may
begin its calculations until all are ready.

More information about this library is available from the document Tagged Mes­
sage Passing and Global Reduction, Meiko document number SlOO2-10MI08.

Example

The following example program illustrates a hostless application that sums node
numbers by message passing and using a global reduction; non-blocking mes­
sage passing has been used to illustrate more functionality.

Initialisation is simpler in the MPSC library than some other libraries because the
MPSC library only supports one communication end-point per processor.

iinclude <stdio.h>
iinclude <mpsc/mpsc.h>

main ()
{

int i, rx, tx, rxDesc, txDesc, sum, node, nnodes;

node = mynode ();
nnodes = numnodes ();

Messages are sent in a ring and the result printed out on processor O. MPSC is a
tagged message passing system, each message is given a tag (0 in our example)
when sent. The receiving process selects to receive the first message with a
matching tag.

rx = node;
sum = 0;

for (i = 0; i < nnodes - 1; i++)
{

tx = rx;

/* initiate receive */

rxDesc = irecv (0, &rx, sizeof (rx»;

meI<o Parallel Programming 65

5

/* initiate transmit */
txDesc = isend (O,&tx,sizeof(tx), (node+1)%nnodes,0);

sum += tx;

/* block for completion */
msgwait (rxDesc);
msgwait (txDesc);

sum += rx;

if (node == 0)
printf ("Sum = %d\nH, sum);

The computation is then repeated using a global reduction. The processes barrier
synchronise before exiting.

sum = node;
gisum (&sum, 1, NULL);

if (node == 0)
printf ("Sum (via global reduction)

gsync () ;
exit(O);

%d\n", sum);

To compile an MPSC application for the CS-2 you will need the following flags:

user@cs2: cc -c -I/opt/MEIKOcs2/inc~ude mpsc.c
user@cs2: cc -0 mpsc mpsc.o -L/opt/MEIKOcs2/1ib
-~sc -~ew -~e~an

To run the program use prun:

user@cs2: prun -ppara~~e~ mpsc
Sum = 6
Sum (via global reduction) = 6

66 SI002-10M117.02 meJ<a

5

Elan Widget Library

meI<D Parallel Programming

The Elan Widget Library is a high performance message passing library that was
developed specifically for the CS-2. It provides a number of low level communi­
cation constructs that can be used by developers of higher level message passing
libraries (CSN, MPSC, PVM, PARMACS etc. are all built upon the Elan Widget
library) or for application developers wishing to optimise communications per­
formance.

The relationship between the Widget library and Meiko's higher level libraries
means that Widget library functions may be embedded within most CS-2 appli­
cations.

Key features of the Elan Widget library are:

• Global memory management.

• Process grouping.

• Access to Elan DMA engine offering high performance network transfers.

• Support for parallel file I/O.

• Channel and broadcast channels.

• Tagged message ports (TPORTs).

• Exception handling.

• Global synchronisation.

• Group reduction and exchange.

• C interface.

The Widget library memory management functions allow regions of memory to
be allocated at the same virtual address on a number of processes. This is an im­
portant feature of the Elan Widget library (and is used in the implementation of
many Widget library communication functions). It allows processes to transfer
data directly into the address space of remote processes without prior handshak­
ing of buffer addresses.

67

5

68

A process group defines a number of processes that wish to cooperate in barriers,
reductions, and communications. Processes may belong to more than one group,
and group definitions may overlap.

Direct access to the Elan DMA engine is provided, allowing either local or re­
mote store-to-store accesses. In many cases data transfer between processes will
use one of the higher level message passing facilities: channels or tagged mes­
sage ports (TPORTs). Channels provide a full duplex, non-blocking, unbuffered
communication between a process pair; only one transmit and one receive may
be active on a channel at anyone time. Broadcast channels are also supported al­
lowing a process to broadcast to a contiguous range of processes using the Elan's
broadcast functionality. Tagged message ports provide a more general communi­
cation mechanism, offering communication between arbitrary processes using
either blocking or non-blocking, buffered or unbuffered, communications, with
message selection at the receiver by either user specified message tag or sender
id.

Global reduction functions allow data that is distributed among the processes in
a group to be combined according to some user supplied function. Global ex­
change functions provide a mechanism for distributing data among a process
group. Both facilities offer significantly higher performance than the equivalent
sequence of communications and calculations, especially when the size of trans­
fer is small (and start-up latencies are more significant).

For more information about this library see the Elan Widget Library, Meiko doc­
ument number SlOO2-10MI04.

Example

The following example is a Widget library implementation of the CSN example
described earlier. The processes communicate in a ring, each performing a simple
addition (essentially a global reduction operation)

The application begins by initailising the base programming environment with a
call to ew_baselnitO. This initialises both the ew_state and ew_base
structures: the ew_state structure identifies each process's virtual process id
and the number of processes in the application; the ew _base structure identifies
the alloc region (global memory) and TPORT (tagged message port) parameters
used in this example.

Sl002-10Ml17.02 mei<a

iinelude <sys/types.h>
iinelude <ew/ew.h>
iinelude <stdio.h>

main ()
{

int nproes, me, left, right:
EW_ALLOC* alloe:
EW_TPORT* tport;
ELAN_EVENT *RxEvent, *TxEvent;
int rx, tx, sum, i;

/* Intialise base environment */
ew_baselnit () :

me = ew_state.vPi /* My process id */
nproes = ew_state.nvp-l;
alloc = eW_base.alloc;

/* Number procs (discount loader program) */

left = (me+nprocs-l) % nprocs:
right = (me+l) % nprocs;

/* proc id of left neighbour */

/* proc id of right neighbour */

/* allocate space for TPORT descriptor */

if(! (tport (EW_TPORT*) ew_allocate(alloc, EW_ALIGN,
ew_tportSize(ew_base.tport_nattn»»

fprintf(stderr, "Failed to allocate\n"):
exit(l):

5

Each process allocates its TPORT structure as a global object by using ew _ al­
locateO. Because global objects exist at the same virtual address in all our
processes a sending process can target a recipient TPORT without explicit hand­
shaking of addresses.

meko Parallel Programming 69

5

70

Note that the TPORT is initialised with the default number of attention slots (cur­
rently 4, as defined by ew _ baselni to). The attention slots detennines the
maximum number outstanding communications that may be present on a TPORT
at any time. All of Meiko 's current message passing libraries are initialised with
this default.

Having initialised the TPORTs the processes barrier synchronise with a call to
ew _ f g s yn cO. The sychronisation point ensures that no process is able to target
a TPORT before its initialisation is complete. The synchronisation uses one of
the groups defined during the base initialisation; the segGroup is a group of all
process in the segment (i.e. all processes excluding the loader program).

/* initialise TPORT */
ew_tportlnit(tport, ew_base.tport_nattn, me, ew_base.tport_smallmsg,

ew_base.waitType, ew_base.dmaType);

/* Wait until every process has initialised its TPORT */
ew_fgsync(ew_base.segGroup);

printf("Sum = %d\n", sum);

Each process receives a non-blocking, unbuffered communication from one
neighbour, and initiates a non-blocking unbuffered send to its other neighbour
(conceptually the processes are connected in a ring). After nproc communica­
tions each process has calculated the sum of the virtual process id's; process 0
displays the result.

rx - me;
sum = 0;

for (i=O; i < nprocs -1; i++) {

tx = rx;

/* initiate receive - unbuffered */
RxEvent = ew_tportRxStart(tport, 0, left, -1, 0, -1,

(caddr_t) &rx, sizeof (rx)) ;

/* initate transmit - unbuffered */

Sl002-10Ml17.02 meJ<a

5

TxEvent - ew_tportTxStart(tport, EW_TPORT_TXSYNC, right, tport,
0, (caddr_t) &tx, sizeof (tx)) ;

sum +- tx;

/* block for completion - not interested in envelope information */
ew_tportRxWait(RxEvent, NULL, NULL, NULL);
ew_tportTxWait(TxEvent);

sum += rx;

if (me == 0)
printf(ItSum %d\n lt

, sum);

To compile a Widget library application you will need the following flags:

user@cs2: cc -0 tport -I/Opt/MEIKOcs2/inc1ude \
-L/opt/MEIKOcs2/1ib tport.c -1ew -1e1an

To run the program use prun:

user@cs2: prun -n4 -ppara11e1 widget
Sum = 6

Elan Library

The Elan library provides direct access to the Elan communication processor.
The functions in this library provide application programmers with high per­
formance DMA and event handling functionality.

The Elan Widget library (and therefore all of Meiko's current message passing
libraries) are built upon the Elan library. You may therefore embed Elan library
functions within most CS-2 applications.

meI<o Parallel Programming 71

5

72

Key features of the Elan library are:

• Local or remote DMA.

• Broadcast DMA over contiguous processes.

• Event test and set functionality.

• C interface.

The Elan's DMA engine allows local, remote, and broadcast transfers. Comple­
tion of the DMA can be flagged at either (or both) the sender and recipient with
Elan events.

The event functionality allows a process to test the state of an event, to set an
event in its own address space, and to queue a DMA transfer on an event. Note
that the DMA engine can be used to set remote events; a DMA transfer (possibly
transferring 0 bytes) may be used to set events at both the sender an receiver.

For more information about this library see The Elan Library, Meiko document
number SIOO2-IOMI31.

Example

The following example is taken from the Elan library documentation. It shows
how to embed Elan library DMA and event functionality within a CSN applica­
tion.

In this example the process initialisation is undertaken by functions in the CSN
library, which indirectly call both the Elan Widget library and Elan library ini­
tialisation functions. Data buffers are created using rnallocO and a DMA de­
scriptor is created by rnernalignO (note that the Elan DMA descriptor must be
aligned on an EW _ALIGN boundary).

The DMA will transfer data from process 0 into a data buffer somewhere in the
address space of process I. To signify completion of the transfer an Elan event
will be set at both the source and destination process. The event structure and
data buffer can exist anywhere in the target process's address space, so blocking
CSN communication functions are used to notify these to the DMA sender. Note
that you could use the Widget library ew_allocateO function to define both
as global- objects, and thus eliminate the CSN handshaking.

S 1002-1 OM117 .02 meJ<a

tinclude <stdio.h>
tinclude <sys/types.h>
tinclude <elan/elan.h>
tinclude <ew/ew.h>
tinclude <csn/csn.h>
tinclude <csn/names.h>

tdefine DMASIZE 1024

static unsigned char pattern [] = {OxOO, OxOO, OxOO, Ox55, Ox55, Ox55,

main ()
{

Transport t;
netid_t next;
char* name;
int me, nproc, ii
ELAN_DMA *dmaDesc;
ELAN_EVENT * event;
unsigned char* bufferi

Oxaa, Oxaa, Oxaa, Oxff, Oxff, Oxff};

/* Package pointers to remote data objects in one structure so we *1
/* can transfer both in one CSN message passing operation. *1
struct {

unsigned char* bufferpi
ELAN_EVENT* eventpi

rxbuffersi

/************* CSN library initialisation functions ****************1

cs_getinfo(&nproc, &me, &i)i 1* i variable not used *1

if (nproc ! = 2)
fprintf(stderr, "error: need 2 processors\n");
exit(1)i

5

mei<o Parallel Programming 73

5

74

/* Build structures in processes heap space */
/* DMA descriptor MUST BE 32 bit aligned. */
drnaDesc - (ELAN_DMA*) memalign(EW_ALIGN, sizeof(ELAN_DMA»;
buffer = (unsigned char*) malloc(DMASIZE);
event = (ELAN_EVENT*) malloc(sizeof(ELAN_EVENT»;

if (csn_open (CSN_NULL_ID, &t) != CSN_OK)
fprintf (stderr, "Cannot open transport \n") ;
exit(-l);

if (me == 0)

/* Process 0 is DMA sender; receiver of addresses from CSN transport */

/* Register my transport */
if (csn_registername(t, "toProcO") != CSN_OK)

fprintf(stderr, "Cannot register transport name\n");
exit(-l);

/* Get pointer to remote event and data buffer for process 1 */
if (csn_rx (t, 0, (char*) &rxbuffers, sizeof (rxbuffers» <0) {

fprintf (stderr, "Error on receive of remote addresses\n");
exit(-l);

else

/* Process 1 is DMA receiver; sender of addresses via CSN transport */

/* Lookup sender's transport */
if (csn_lookupname(&next, "toProcO", 1) != CSN_OK)

fprintf(stderr, "Cannot lookup transport name\n");
exit(-l);

/* Send address of my event and data buffers */
rxbuffers.bufferp = buffer;
rxbuffers.eventp = event;
csn_tx (t, 0, next, (char*) &rxbuffers, sizeof (rxbuffers»;

SI002-10M117.02 mei<.o

1********** Elan library DMA/Event functionality *********1

if(!elan_checkVersion(ELAN_VERSION»
fprintf (stderr, "error: libelan version error\n");
exit (1);

5

Process 0 defines the DMA transfer by initialising a DMA descriptor. This iden­
tifies the size of transfer, source and destination buffers, and events that are set
on completion at both the sender and receiver. The transfer is initiated by a call
to elan_dmaO, and is tested for completion in both processes by a call to
elan_waiteventO.

ELAN_CLEAREVENT(event)j

if (me == 0)

1* Processor 0 is the DMA sender *1

1* Initialise sender with data pattern *1
for(i=O; i<DMASIZEj i++)

buffer[i] = pattern[i % sizeof(pattern)];

1* Build the DMA descriptor *1
dmaDesc->dma_type = DMA_TYPE(TR_TYPE BYTE, DMA_NORMAL, 8);
dmaDesc->dma_size = DMASIZE;
dmaDesc->dma_source = buffer;
dmaDesc->dma_dest = rxbuffers.bufferp;
dmaDesc->dma_destEvent = rxbuffers.eventpi
dmaDesc->dma_destProc = 1;
dmaDesc->dma_sourceEvent = event;

1* Address received from proc 1 *1
1* Address received from proc 1 *1

1* Initiate DMAj the event signifies completion. *1
printf ("Process %d now transfering %d bytes by DMA\n", me, DMASIZE);
elan_dma(ew_ctx, dmaDesc);
elan_waitevent(ew_ctx, event, ELAN_POLL_EVENT);

else {

1* Process 1 is the DMA recipient *1

1* Wait for DMA to trigger dest. event *1
elan_waitevent(ew_ctx, event, ELAN_POLL_EVENT);

mei<o Parallel Programming 75

5

76

/* Check received data pattern */
for(i=O; i<DMASIZE; i++)

if (buffer[i] != pattern [i%sizeof (pattern)])
fprintf (stderr, "Received data differs\n");
exit(l);

printf ("Data received and verified by process %d\n", me);

To compile this application you must link with the CSN library, the Elan Widget
library, and the Elan library, as shown below:

user@cs2: ee -0 esnDMA -I/opt/MEIKOes2/inelude \
-L/opt/MEIKOes2/1ib esnDMA.e -lesn -lew -lelan

You run the program on two processors with prun:

user@cs2: prun -n2 -pparallel esnDMA
Process 0 now transfering 1024 bytes by DMA
Data received and verified by process 1

SI002-10M117.02 ms<a

meJ<D

Glossary A

Configuration
The set of partitions that make up a CS-2 system.

Node
See Processing Element.

Pandora
The graphical user interface (GUI) to the resource management system. Pan­
dora uses the facilities of a colour X workstation to display the status of a CS-
2 system, to query its usage, and to manipulate its partitions. The user inter­
face is via the familiar X-windows point-and-click system.

PFS
The Meiko parallel filesystem. Allows files to be striped over a number of
Unix filesystems. Allows very large files to be created (as large as the total ca­
pacity of all the participating Unix filesystems) and provides higher perform­
ance data access for parallel programs, which need not compete for access to
a single disk device when accessing data.

Partition
A set of processing elements dedicated to performing certain classes of work.
Most systems have at lease 2 partitions, one for interactive tasks and one for
parallel applications. Additional partitions can be added to support system ad­
min tasks, device management and batch processing. Partitions are set up by
the system manager.

77

A

78

Processing Element
A CS-2 system made up of multiple processing elements (or PEs). Each is a
SPARC processor, a memory system and an interface to the CS-2 inter-proc­
essor communication system. Some processing elements have additional vec­
tor some control an I/O system.

Vector Processing Unit
CS-2 uses a Fujitsu vector processing unit to provide high floating point per­
formance on certain classes of application. Each vector PEs has a pair of these
processors sharing memory with the SPARC. The compiler assigns vectorisa­
ble blocks of code to these processors and scalar code to the SPARC.

Hosted vs. Hostless
Some message passing libraries support both hosted and hostless models, oth­
ers are limited to just one.
Hostless applications consist of two processes; a host and a number of identi­
cal slave processes. The application is initiated by executing the host process
which then spawns the slave processes into a partition. All processes, includ­
ing the host itself, use message passing functions to cooperate and complete
the task. Both PVM and the MPSC library may support this model.
Hostless applications have a number of identical slave processes that are
spawned onto a partition prun. The PVM, MPSC, and CSN libraries support
this model.
In either model the host/loader program uses functions in the resource man­
agement user interface library to liaise with the Resource Manager for the
slave's processing resource. The host/loader executes in one segment (typical­
ly in your login partition) and the slaves execute in a second segment within
some other partition.

Elan Id
The decimal representation of a node's unique route from the top of the net­
work. For example, the node uniquely identified by the route <5>.<1> will
have Elan Id 21 (hint: convert the route to binary 101.01 and convert this to
decimal). See the Network Overview (document S1002-10M105) for a de­
scription of network routes.

SI002-10M117.02 meJ«)

Computing
Surface

CS-2 System Administration Guide

SlOO2-10M126.01 mei<o

The infonnation supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of any
rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent of Meiko World Incor­
porated.

© copyright 1994 Meiko World Incorporated.

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSToois are trademarks of Meiko Limited. Sun, Sun and a numeric suffix,
Solaris, SunOS, AnswerBook, NFS, XView, and OpenWindows are trademarks of Sun Microsystems, Inc. All
SPARC trademarks are trademarks or registered trademarks of SPARe International, Inc. Unix, Unix System V,
and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X Windows System is a trade­
mark of the Massachusetts Institute of Technology. AVS is a trademark of Advanced Visual Systems Inc. Veri log
is a registered trademark of Cadence Design Systems, Inc. All other trademarks are acknowledged.

Issue Status:

Meiko's address in the US is:

Meiko
130 Baker Avenue
Concord MA01742

5083710088
Fax: 508 371 7516

Draft

Preliminary

Release

Obsolete

Circulation Control: External.

Meiko's address in the UK is:

Meiko Limited
650 Aztec West
Bristol
BS124SD

01454616171
Fax: 01454 618188

Library reference.

Do not copy this.

integer name

• Typographic Conventions I

The following typographic conventions are used in this document and all other
Meiko documentation:

Italicised text is used for references to other documents, or emphasised expres­
sions that may be expanded later in the text. Also used in example command lines
in place of site specific options.

See the document Getting Started - Users Guide.

Password: password

Emboldened text is used to emphasise expressions of particular importance.

It is important that you do not try this yourself.

Courier is used for variable names, command names, filenames, and other text
that might be entered into the computer system, or for the computer's response
to a user's request. See also the use of bold courier below.

The function rms _de s cr ibe () provides a description of a configuration.

· l

cat file

ii

Bold courier is used when illustrating a dialogue between the computer and a
user. Text entered by the user is shown in this font, text displayed by the machine
is shown in courier.

user@CS2-1 ls /opt/MEIKOcs2
bini docs/ example/ include/ lib/ man/

Warning - Used to draw the reader's attention to an important note.

SlOO2-10M126.01 meJ<D

Contents

1. System Overview 1

Introduction. 1
Resource Management System. 2
Parallel Filesystem . 2
Device Drivers . 3
Diagnostic Network. 3

2. Resource Management 5

Commands and Daemons . 5
The Machine Manager . 5
The Partition Manager . 8

Configuration Editor - rcontrol 9
Executing Parallel Programs - pron 13
Resource Information - rinfo 17
Signalling Processes - gkill 19
Hardware Information - minfo. 20
Shell Program Information - pinfo. 21

Shell Script Global Reduction - reduce 22
Access Control . 23

Permissions File. 24

ii

N ames File. 24
Example Files. 25

Login Load Balancing. 25
Description. 25
Disabling User Logins . 27
Implementation. 27
System Administration. 30
Testing the Login Load Balancer. 32

Machine Description File. 33
Version Control 33
Machine Attributes. 33
Module Attribute . 34
Example Machine Description File 36

Defaults File . 36

Example Defaults File. 39
Procedural Interface to the Resource Management System 39

Querying the Configuration and Executing Programs 39
Editing the Configuration. 44

Hostname, Elan ID, Ethernet Address Translation 46

3. Administering the CS-2 Filesystem 49

Overview. 49
The Unix Filesystem (UFS) 49
The Network Filesystem (NFS) 50
The Parallel Filesystem (PFS) 50

How to Find out the Type of a Filesystem. 51
Setting Up a Unix Filesystem . 52
Globally Mounting a Unix Filesystem 53
The Parallel Filesystem. 55

Performance Factors. 55

Support Files. 56
Data Filenames. 57

Creating a Parallel File System. 57

Mounting the PFS. 59
Testing the Parallel Filesystern. 60

Creating and Accessing Files . 61
Changing/Examining the Mapping of PFS Files with ioct1(2) 61

Associated Data Structures. 62
Example. 64

4. CS-2 Node Naming . 67

Machine N arne . 67
Hostnarnes. 67

/etc/hosts File. 67
Network Id . 68

Hostnarne, Elan ID, Ethernet Address Translation 71

A. Creating a Parallel Filesystem 73

Contents iii

iv

Introduction

meJ<D

System Overview 1

The CS-2 system is a tightly coupled network of SPARC processors running the
Solaris operating system. Processors are interconnected by a Meiko designed
switch network optimised for high performance inter-processor communica­
tions, rather than a conventional LAN.

Many of the administration tasks that must be performed on a CS-2 system are
the same as for a SPARC workstation network. However the Solaris operating
system has been extended by Meiko in several key areas:

• Resource management.

• Parallel filesystem implemented as a Solaris VFS.

• Intetprocessor communications device drivers.

• Support for diagnostic network.

This document describes the additional steps necessary to setup the software and
the tools for administration of tasks across large numbers of processors. Related
documents are the Getting Started- Users Guide and the Pandora Users Guide.

1

Resource Management System

Parallel Filesystem

2

The role of the resource management system is to provide a System Administra­
tor with the ability to optimise the use of the resources in a particular CS-2 sys­
tem. It does this by controlling user requests to login and to run parallel
applications, by controlling access, accounting usage, and by collecting perform­
ance data.

CS-2 systems are managed as a small number of partitions each containing many,
identical, processors. The system management tools are designed to perfonn
identical operations on all processors in a partition, rather than treat each indi­
vidually. Partitions are created to dedicate resources (processors and their I/O de­
vices) to specific tasks.

Example partitions might include a login partition for interactive development, a
device management partition servicing disk arrays, and a parallel partition for
dedicated running of completed applications.

Access to partitions can be restricted to groups of users, and scheduling schemes
can be imposed to further control their use. The collection of partitions within the
system is called a configuration. The System Administrator will typically define
configurations relating to the varying workloads that will be imposed on the ma­
chine (configurations for day and night-time use are common requirements).
Chapter 2 describes the configuration utilities and resource management system
daemons.

The Meiko parallel filesystem allows files to be striped over many data storage
devices. Files that are written to a parallel filesystem are written in stripes of a
specified size which are distributed over the underlying filesystems (supported
base filesystem types are Solaris UFS and NFS).

Striped filesystems offer two significant advantages. Partitions and hence file siz­
es can be large; each underlying filesystem will hold just a small part of the whole
file, and the number of underlying filesystems is unrestricted. Distributed files
also offer higher file access bandwidths for parallel applications; processes need
not compete for access to a single 10 device when accessing their data.

S 1 002-1 OM 126.0 1 mS<D

Device Drivers

Diagnostic Network

meko System Overview

1

The stripe size and number of underlying filesystems can be dictated by the ap­
plications that will use the parallel filesystem. Chapter 3 describes how to setup
a parallel filesystem.

The Elan communication processor provides the interface between each SPARC
processor and the data network that joins them together. Solaris device drivers
for the communications processor include the following - these drivers are in­
stalled as part of the system setup:

elan Elan device driver.

elanip IP driver for internal data network.

Tenninal connections between processors, as used by the login load balancer
when connecting a login gateway processor to a user login partition, are routed
via a kernel device driver, shtcirc.

The Control Area Network (CAN) diagnostic network runs throughout the ma­
chine with interfaces to all processing elements. It monitors the health of mod­
ules, processors, and peripherals, reporting errors to the resource management
system. Tools are provided that allow the System Administrator to use the control
network to query the status of the CS-2 hardware, and to initiate module reset or
shutdown under software control. Access to the control network is via the can
device driver, and is nonnally restricted to root. The utility cancon allows priv­
ileged users to connect consoles to processors over the control network.

3

1

4 S lOO2-10M126.01 meJ<D

Resource Management 2

Commands and Daemons

The resource management system includes three daemons: the machine manager
mrnanager, the partition manager pmanager, and the accounting daemon ac­
ctd. In addition there are utilities to control the configuration, to run parallel
programs, and to support administration tasks: rcontrol edits configurations,
prun executes parallel programs, r inf 0 provides utilisation information,
minfo provides hardware information, gkill sends a signal to processes, and
reduce and pinfo support parallel shell programming.

The Machine Manager

The machine manager mmanager manages the machine description database
and monitors the health of the system. It services requests for information about
the hardware and its status. The machine manager is normally started on the op­
erating system server as the system boots (see / etc/ rc2 . d/ S 92mmanager).
It can be run interactively as root, to do this type:

I root@cs2-0: mmanager -irl

The option - r takes a reporting level mask; level 1 enables initialisation debug
messages, level 2 enables reporting of each request as it is processed by the serv­
er. Th~ - i option indicates interactive operation. The - f option forces the re­
placement of an existing mmanager.

5

6

2

As the machine manager starts it displays the machine configuration and system
defaults:

Parsing machine description file /opt/MEIKOcs2/etc/cs2-/machine.des
Network has 3 level(s)
Space for up to 32 modules 128 boards 128 processors 160 switches
Machine has 1 bay
Initialising CS-2 Machine Manager on cs2-
System defaults: ROM(95) H8-ROM(93090611) Broadcast (on) CAN (on)
Partition (parallel) Load statistic(load)
Accounting (off) Halt on error(off)

ROM revisions and other diagnostic and configuration information for modules,
boards, and processors are displayed during the machine manager's start-up, as
shown below. Note the warning messages ("can't probe module") which
indicate that modules 2 and 3 have been powered down:

mmanager: module controller board (m=7,controller) H8 ROM revision 93102018
mmanager: 1x16 switch board (m=7,b=0) H8 ROM revision 93102018
mmanager: module controller board (m=O,controller) H8 ROM revision 93102018
mmanager: Vector boar.d (m=O,b-O) H8 ROM revision 93102912
mmanager: Vector board (m=O,b=l) H8 ROM revision 93102912
mmanager: Vector board (m=0,b=2) H8 ROM revision 93102912
mmanager: Vector board (m=0,b=3) H8 ROM revision 93102912
mmanager: processor cs2-0 (m=O,b=O,p=O) ROM revision 118
mmanager: processor cs2-1 (m=O,b=l,p=O) ROM revision 118
mmanager: processor cs2-2 (m=0,b=2,p=0) ROM revision 118
mmanager: processor cs2-3 (m=0,b=3,p=0) ROM revision 118
mmanager: module controller board (m=l,controller) H8 ROM revision 93102018
mmanager: Vector board (m=l,b=O) H8 ROM revision 93102912
mmanager: Vector board (m=l,b=l) H8 ROM revision 93102912
mmanager: Vector board (m=1,b=2) H8 ROM revision 93102912

mmanager: Warning: can't probe module 2
mmanager: Warning: can't probe module 3

mmanager: module controller board (m=4,controller) H8 ROM revision 93102018
mmanager: Dino board (m=4,b=0) H8 ROM revision 93102912
mmanager: Dino board (m=4,b=3) H8 ROM revision 93102912
mmanager: processor cs2-16 (m=4,b=0,p=0) ROM revision 115

S lOO2-10M126.01 meJ«)

meI<o Resource Management

2

The initial status report identifies the processors, their types, and their status:

0: CAN 000000 Vector Viking+Cache 64MB status: ROM running
1 : CAN 000004 Vector Viking+Cache 64MB status: ROM running
2: CAN 000008 Vector Viking+Cache 64MB status: ROM running
3: CAN OOOOOc Vector Viking+Cache 64MB status: ROM running
4 : CAN 000100 Vector Viking+Cache 64MB status: ROM running
5: CAN 000104 Vector Viking+Cache 64MB status: ROM running
6: CAN 000108 Vector Viking+Cache 64MB status: ROM running
7: CAN 00010c Vector Viking+Cache 64MB status: ROM running
8: CAN 000200 Vector Viking+VPU 128MB status: Unix level 3
9: CAN 000204 Vector Viking+VPU 128MB status: Unix level 3

10: CAN 000208 Vector Viking+VPU 128MB status: Unix level 3
11: CAN 00020c Vector Viking+VPU 128MB status: Unix level 3
12: CAN 000300 Vector Viking+VPU 128MB status: Unix level 3
13: CAN 000304 Vector Viking+VPU 128MB status: Unix level 3
14: CAN 000308 Vector Viking+VPU 128MB status: Unix level 3
16: CAN 000400 Dino Viking+Cache 64MB status: Unix level 3
19: CAN 00040c Dino Viking+Cache 64MB status: Unix level 3

Diagnostics

Diagnostic messages from the machine manager are written to the file /var /
adm/mmanager. log; if the machine manager is run interactively the messag­
es are directed to the standard output device. The machine manager's -1 option
allows you to alter the file used for diagnostic messages.

Data Files

The machine manager reads the system configuration from the machine. des
file in the directory / opt/MEIKOcs2 / etc/machine-name - this file identi­
fies the hardware resources and their placement within your machine. The system
defaults are read from the defaults file (also in /opt/MEIKOcs2/etc/
machine-name).

The fonnat of the machine description file is described in Machine Description
File on page 33, and the defaults file is described in Defaults File on page 36.

7

8

2

The Partition Manager

The partition manager pmanage r runs on every processor in the system. It serv­
ices system resource allocation requests, controls access, runs parallel programs,
and services requests for information about machine load and the state of queued
and running jobs.

Partition managers are started and stopped from pandora or rcontrol, either
for the whole configuration or one partition at a time. The partition manager re­
quires support from the in e t d, and hence requires an entry in the / etc /
services file:

pmanager 800/tcp # CS-2 Partition Manager

Note the use of a secure socket, the pmanager can only be started by a root
process. An entry in the / et c / inetd. conf file is also required:

pmanager stream tcp nowait root /opt/MEIKOcs2/bin/pmanager pmanager

The partition manager can be run interactively; this is useful while setting a sys­
tem up for the first time:

root@cs2-0 : prun -p partition startJ>manaqer -i.rll

The option - r takes a reporting level mask; level 1 enables initialisation debug
messages, level 2 enables reporting of each request as it is processed by the serv­
er, level 8 enables reporting of job status. The - f option forces the removal of
an existing pmanager.

Diagnostics

Diagnostic messages from the partition manager are written to the file /var /
adm/pmanager .log on the first processor in the partition; ifit is run interac­
tively the messages are directed to the standard output device. The -1 option al­
lows yo~ to alter the file used to log diagnostic messages.

SlOO2-10M126.01 me/<D

2

Data Files

Access to a partition is controlled by the partition manager using data from the
permissions and names files.

Note that the access control system is enabled by default. Users other than root
will not be able to use the system until you create entries for them in the per­
missions file, or disable it by setting access-control=O in the de­
faults file.

The permissions and the names files are described in Access Control on
page 23. The defaul ts file is described in Defaults File on page 36.

Configuration Editor - rcontrol

rneI<o Resource Management

The utility rcontrol allows the System Administrator to set up configurations,
create and delete partitions, and assign processors to partitions. Configurations
may also be defined and edited with Pandora, the resource management GUI. See
the Pandora Users' Guide for more information about this tool.

Configuration definitions are held in the filesystem under /opt/MEIKOcs2/
etc. This directory and those beneath it must be generally readable, but owned
and only writeable by root. This is usually achieved by a share entry in the
file / etc/ dfs/dfstab.

rcontrol can be run interactively or as a sequence of commands, its usage is
as follows:

Usage: rcontrol [-e] [-v] [command args ...]
Try 'rcontrol help' for more info

To run rcontrol interactively type rcontrol; it will return with a prompt.
You can now run the configuration manipulation commands; help is a good
place to start - it will show you the commands available:

9

2

10

root@cs2-0: roontrol
rcontrol: help

Usage: help [all I command]

Commands

[all I command] help
add -c name I -p name I -r <range>
get -c name I -p name
remove -c [name] I -p [name] I -r <range>

[-c name] save
start
stop
set
show
exit

[-k] [-i] [-r level] [-p name] name
[-k] [-p name]
[-d level] [-v]
[-c [name]] [-p [name]]

To get more information about a particular command type help followed by the
command - help all will tell you about all of them. Common command op­
tions include -c for configurations, -p for partitions, and -r for processor rang­
es.

Creating a Configuration

To create a new configuration use rcontrol's add command. All configurations
initially contain just one partition called root. The root partition contains all
processors in the system; access to it is restricted to super-users.

The following example uses the a dd command to created a new configuration
called day. The show command is used to display its initial partitions:

rcontrol: add -0 day
rcontrol: show -0

Configuration day:
Part~tion: root processors 0-64 68 72

SlOO2-10M126.01 meJ<a

meko Resource Management

2

To add partitions to the configuration you use the add command with its -p op­
tion. To add processors to a partition use add with the - r flag and a processor
range. Processors are always added to the working partition:

rcontrol: add -p login
rcontrol: add -r 64-72
rcontrol: show -p
Partition: login processors
rcontrol: add -p parallel
rcontrol: add -r 0-63
rcontrol: show
Partition: parallel
Partition: login
Partition: root

processors
processors
processors

Saving a Configuration to Disk

64 68 72

0-63
64 68 72
0-64 68 72

Once a configuration is complete use save to write it to disk. Configurations are
stored in the directory I opt/MEIKOcs21 etclmachine-namelconfig-name.
The config-name in the following example is day.

rcontrol: save
Confirm save of configuration <day> (yin): y

Restoring a Configuration/rom Disk

To restore an existing configuration use get with the -c flag; to select a partition
from a configuration use get with the -p flag. You can use the add command
to add additional processors to the partitions, or the remove command to re­
move processors.

rcontrol: get -0 day
rcontrol: get -p login
rcontrol: show
Configuration day:
Partition: parallel
Partition: login
Partition: root

processors
processors
processors

0-63
64 68 72
0-63 68 72

11

2

12

Starting and Stopping Partitions

The start and stop commands instruct the resource management system to
start and stop individual partitions or the whole configuration.

To start the login partition type:

I rcontrol: start -p 10gin

To stop the login partition type:

I rcontrol: stop -p 10gin

The - k option allows you to determine whether jobs running on a partition are
killed or given time to exit. Note that killed jobs are sent a SIGTERM and given
time to exit gracefully before being terminated forcefully.

When a configuration is not specified the working configuration is used, if it is
not defined then the acti ve configuration is assumed. Hence to start the ac­
ti ve configuration type:

I rcontrol: start

To shut down the active configuration, type:

I rcontrol: stop

The start command's - i option starts a partition interactively, logging output
to the screen. Note that this operation does not tenninate until the partition is
closed. Without this option the partition manager will log to a file. The -r option
allows you to set the partition manager's reporting level.

You can replace the current active configuration with an alternative configuration
by using the st art command. When you switch to a new configuration the
start €ommand usually waits for processes running in the old configuration to
complete before the new configuration is used. By specifying the - k option the

SlOO2-10M126.01 meJ<D

2

existing processes are killed. In the following example the configuration day
will become the active partition. Switching configuration causes a symbolic link
to be created in the / opt/MEIKOcs2/ etc/machine-name directory between
acti ve and the configuration definition. Changes to the configuration cause the
partition managers to restart automatically.

rcontrol: start -k day
Confirm switch to configuration day (y/n): y
Confirm kill of existing processes (y/n): y

A minimal set of partitions is started; only those changed in moving from one
configuration to another.

Quitting rcontrol

To leave rcontrol type exi t; end-of-file (AD) has the same effect.

I rcontrol: exit
root@cs2-0

Executing Parallel Programs -prun

meI<o Resource Management

prun executes a parallel SPMD program on the CS-2. It negotiates with a parti­
tion manager for a set of processors and then starts an executable image on each
of the processors, passing the remainder of the command line to all of them as
their argument list.

user@cs2-0: prun myproq
Hello from myprog
Hello from myprog

prun is generally used to run parallel application programs but can also be used
by System Administrators and Operators to execute administrative commands on
a group of processors.

13

2

14

Partitions

The -p option is used to specify the partition that your program will execute in.
If you do not use the -p option a default partition is used; this is specified in the
defaults file (see Defaults File on page 36,).

user@cs2-0: prun -8 -p para11e1 uname -n
cs2-0
cs2-1

Note the use of the -s option as uname is a regular SPARe binary and not a par­
allel program (see below).

Number of Processors

Use the -n option to control the number of instances of the program. The follow­
ing example executes 4 processes, each on a separate processor in the default par­
tition:

user@cs2-0: prun -n4 myprog
Hello from myprog
Hello from myprog
Hello from myprog
Hello from myprog

Standard I/O under prun

Programs linked with parallel libraries direct all their standard I/O to the system
call server in the controlling process (prun in this case). Sequential programs
will not nonnally have been linked in this way and should be run with the - s
flag.

In the following example the Unix command uname is executed on 3 processors
in the default partition. Output is displayed processor by processor.

S lOO2-10MI26.01 mei<D

mei<D Resource Management

user@cs2-0: prun -sn3 uname -n
cs2-0
cs2-1
cs2-2

2

If the -v flag is used then the output will be interleaved with processor identifi­
cation banners:

user@cs2-0: prun -vs uname -n
processor 0

cs2-0
processor 1

cs2-1

The - s flag causes output from each process to be written to temporary files in
the current directory; these files are copied to the user's tenninal and deleted as
prun exits, they can be preserved by setting the -1 flag.

user@cs2-0: prun -Is pwd
/home/phobos/user/cs2parts/rmanager
/home/phobos/user/cs2parts/rmanager
user@cs2-0: Is stdout.* stderr.*
stdout.33S.0
stdout.33S.1

Warning - Note that the - s option requires you to have write permission to
the current directory.

Common Problems

prun returns a non-zero exit status and/or prints error messages on stderr. Pos­
sible tauses of error include:

15

2

16

• Requesting more processors than are available.
The partition isn't large enough to run your program:

prun: Error: rms_forkexecvp failed:
Insufficient resources to satisfy request.

Note that rms_forkexecvp () is the library routine that starts parallel pro­
grams.

• Your home directory is not mounted on all processors.

prun: Error: forkexec failed: System error.
Consult System Manager: No such file or directory

• You do not have write permission in the current directory.

prun: Error: forkexec failed:
No write permission to working directory

• You are not on a CS-2 processing element.
prun returns the following error if executed on a processing element that is
not connected to the CS-2 network:

EW_EXCEPTION @ ----: 6 (Initialisation error)
Failed elan_init() 11: No more processes

Killed

• If the partition is down then prun will fail for users other than root with:

prun: User access to coroms hardware disabled.

or:

SIOO2-10MI26.01 mei<a

2

prun: Error: Partition manager for parallel is down.

If prun is called by root then it will spawn processes using r s h if the partition
is down. The - r option enforces this behaviour.

Resource Information - rinfo

mei<o Resource Management

r in f 0 displays infonnation about resource availability and usage.

Querying your Own lobs

The - j option causes r i n f 0 to display infonnation about your own jobs:

user@cs2-0: prun -n2 myproq &
user@cs2-0: rinfo -j
user 0.694 running myprog

0.694 is the global id of the parallel process; it indicates that the prun command
is process 694 on processor O.

More information about your own jobs is available by specifying both the - j and
the -1 (long) options. The following example shows that the program is running
on 2 processors in the parallel partition and that it has been running for 2
minutes 39 seconds.

user@cs2-0: prun -n2 myproq &
user@cs2-0: rinfo -jl
USER NPROC STATUS RESOURCE GPID TIME COMMAND
user 2 running parallel 0.694 00:02:39 myprog

17

2

18

Querying Everyone 's Jobs

Use the - j a option to get infonnation about all processes running on the system:

user@cs2-0: rinfo -jal
USER NPROC STATUS RESOURCE GPID TIME COMMAND
user 2 running parallel 0.50 01:58:39 myprog
jim 2 running parallel 0.60 00:58:23 xmltl

Querying Resource Availability

Two options allow you to query the resources that are available. The -c option
describes the current configuration, and the -p option describes the partitions
available listing the partition names and the number of processors in each.

The following example command queries the configuration and partitions that
are available to all users: it shows that the active configuration (day) consists of
three partitions, root, login and parallel:

user@cs2-0: rinfo -cpal
CONFIG NPART
day 3

PARTITION NPROC STATUS NJOB NTARG
root 67 down
login 3 up
parallel 64 up 1 3

In addition the - H option may be used to identify the least loaded processor in a
partition. In the following example processor 5 is the least loaded in the par­
allel partition:

user@cs2-0: rinfo -8 parallel
cs2-5

S lOO2-10M126.01 meJ<D

H ostname to Elan (Processor) Id Translation

Use the -t to map from a given hostname to Elan Id, or vice versa:

user@cs2-0: rinfo -tl 3
PROC HOSTNAME

3 cs2-3
user@cs2-0: rinfo -tl 082-4
PROC HOSTNAME

4 cs2-4

2

Signalling Processes - gkill

meko Resource Management

gkill sends a signal to a process or process group in a similar manner to the
Unix kill command. The following example sends signal 9 (S IGKILL) to two
processes that are identi fied by their process id's. These processes must be run­
ning on the same processor as the g kill command itself:

I user@cs2-0: qki11 -9 16301 16302

gkill can also be used to send a signal to a parallel application. In this case the
global pid is specified (this can be obtained from rinfo, for example):

user@cs2-0: rinfo -jl
USER NPROC STATUS RESOURCE GPID TIME COMMAND
user 2 running parallel 0.694 00:02:39 myprog
user@cs2-0: gkill -KILL 0.694

19

2

20

The list of supported signals can be obtained by using gki11 's -1 option:

user@cs2-0: gki11 -1
HUP INT QUIT ILL TRAP ABRT EMT FPE KILL BUS SEGV
SYS PIPE ALRM TERM USRl USR2 CHLD LOST WINCH URG 10
STOP TSTP CaNT TTIN TTOU VTALRM PROF XCPU XFSZ
WAITING LWP

A list of signals is also presented in the signa1(5) manual page:

I user@cs2-0: man -s 5 signa1

Hardware Information - minfo

minfo will list machine information for the processor modules in your system.
For each of the processor boards it displays the board type, serial number, board
revision, Boot ROM and H8 ROM revisions, Ethernet address, total memory, and
processor type.

SI002-10MI26.01 meJ<D

2

minfo interrogates the CAN bus and must therefore be executed by root. It also
requires that the machine manager is running.

root@cs2-0: minfo · ·
Minfo attached to cluster: 0 module: 0 node: 0

**
Cluster: 0, Module: 0, Board: 0
Board Type: Dino (MK401)
Serial Number: 03797486
Board revision: D (4 in ROM)
Hardware mod status: 0 - invalid value
OBP Revision: 123
H8 Rom Revision: 13:00 6/12/93
EtherNet Address: 8b:80:65
Memory : 64 Megabytes
Processor type: 4 = Viking E-cache
· ·

You can also use minfo 's -c option to check the machine configuration, ensur­
ing that the processors and switches are correctly configured for the network.

Shell Program Information -pinfo

meI<o Resource Management

pinfo provides information to parallel shell scripts. Compiled programs can
use the facilities of their preferred parallel programming library to learn about
the environment that they are being executed in. When a parallel program is im­
plemented as a shell script pinfo allows each instance of the shell script to de­
termine the id of it's hosting processor, and the total number of processes in the
application. pinfo recognises the following command line options:

-e Display physical processor id (Elan Id)

- i Display logical processor number within application.

-1 Display physical id of the first processor in this application.

-n . Display the number of processors used by this application.

21

2

22

Shell Script Global Reduction - reduce

reduce is for use by parallel shell scripts. reduce synchronises with all other
processes in the application and then performs a reduction function on its argu­
ments. The results are printed to stdout. For example:

I result = 'reduce -f or $status'

The above line in a parallel program C-shell script will cause all the processes to
synchronise, each will be returned the global OR of the local status variables.

Functions that are supported by the reduce command are:

s urn The sum of the arguments over all processes.

or The logical OR of the arguments over all processes.

and The logical AND of the arguments over all processes.

The following shell script mounts a filesystem on all processors in a partition.
Each instance of the script mounts the specified filesystem and then performs a
global OR of the return status. If anyone process failed to mount the filesystem
then it is unmounted from all those that succeeded to ensure that the partition is
left in a consistent state.

The shell script can be executed on all processes in the parallel partition by
using the following prun command line:

user@cs2-Q prun -p parallel q.mount \d£ -
de~os:/export/home/deimos /export/home/deimos

SlOO2-10M126.01 mS<D

Access Control

mei<o Resource Management

t!/bin/csh

t gmount: a prun shell script that
t mounts a filesystem across a partition
t

t Get command line arguments for the mount command.
set mnttarg $argv[$#argv]

t Mount the filesystem.
mount $argv [*]

Check the mount status across all processes;
t global OR of each mount exit status.
set lstatus $status
set gstatus = 'reduce -t 30 -f or $lstatus'

t Write error message identifying processes that failed.
if ($lstatus != 0) then
echo "Failed mount on 'uname -n'"

endif

t If any process failed unmount from those that succeeded.
if ($gstatus == 0) then
if ('pinfo -i' == 0) then
echo "Mounted OK"
endif

else
umount $mnttarg

endif

exit $gstatus

2

User access to each partition is controlled with the permissions and names
files. The pe rmi s s ion s file specifies users or lists of users that can access a
partition; the names file assigns a name to a list of users.

The permissions file contains configuration specific partition names and is
stored alongside the configuration's definition in /opt/MEIKOcs2/etc/ma­
chine-name/con fig-name. The names file is stored in /opt/MEIKOcs2/etc.

Access control is enabled by setting the variable access-control within the
defctul ts file. The defaults file is described in Defaults File on page 36.

23

2

24

Permissions File

Names File

The permissions file contains one entry for each partition. It can include def­
initions for partitions that are not in the current active configuration, but these
will be ignored. Each entry consists of a partition name, a list of permitted users,
and a list of processors that can source requests to the partition. The format of
each entry is:

I partition: access-list [<proc-range>]

The access-list is specified as a comma separated list of names. Names may be
user names or access lists defined in the names file (described below).

The optional proc-range is a comma separated list of processor identifiers. A
contiguous range of processor identifiers may be specified by separating the low­
er and upper identi fiers with a hyphen '-'. For example, < 0 - 2 , 8 -1 0 > repre­
sents processors 0, 1,2,8, 9, and 10. The brackets are mandatory.

Lines beginning with a # are treated as comments and ignored. Entries may be
continued over more than one line by preceding the ends of all but the last line
with a backslash 'V.

Access lists (as referred to by the permissions file above) are defined in the
name s file. Definitions are hierarchical allowing lists to be defined in tenns of
other lists. Each entry in the name s file consists of the list name and a space sep­
arated list of users or other lists that are members of the list. Recursive definitions
are not allowed.

I list-name : [list] [user-list]

Lines beginning with a # are treated as comments and ignored. Entries may be
continued over more than one line by preceding the ends of all but the last line
with a back slash '\'.

SlOO2-10M126.01 meJ<a

2

Example Files

Login Load Balancing

Description

mei<o Resource Management

The following example permissions file specifies that software and en­
gineering members can use the parallel partition, but only software
members can use the test partition. Permitted users of the parallel partition
can spawn applications from processors 64, 68, or 72, whereas processors 64 and
68 can be used to spawn jobs in the t est partition.

parallel: software engineering <64,68,72>
test: software <64,68>

The following example names file identifies the users in each of the two groups
referred to by the permissions file above:

software: duncan eric tony documentation
documentation: andy
engineering: gerry mike

Note that the software group includes all members of the documentation
group.

The login load balancer uses the CS-2 Resource Management system to distrib­
ute user login shells across the processors that are dedicated to interactive devel­
opment. The balancer uses users' identifiers and the current machine loading to
determine the most appropriate processor for each login request.

The login load balancer requires two types of partition to be defined in the CS-2
machine (although small configurations may prefer to combine these).

The network gateway partition consists of device management processors
(SPARC/IO boards with Ethernet, FDDI, or HiPPI interfaces); these are visible
extefI!ally and run the Unix login processes. The interactive partitions contain

25

2

26

processors that are dedicated to executing users' command shells. Multiple inter­
active partitions may be created, allowing specified groups of users to be sepa­
rated and allocated dedicated resources.

Figure 2-1 Login Load Balancing

Interactive Partition 1 Interactive Partition 2

Login Login Login

The login load balancer executes on the gateway processors in response to login
requests from users - the password file for these users is modified to execute
logbal in place of a command shell. The login load balancer passes the user's
id to the partition manager, which allocates a processor for the user's shell (based
upon system load and the default statistic). A login shell is then executed on this
processor, with all terminalI/O being routed, via the kernels, between the shell
and the network connection on the gateway processor.

Warning - It is not normally possible to issue login requests to any proces­
sors other than the gateway processors (although the System Administrator
and others may be given this capability).

S lOO2-10MI26.01 meJ<a

2

The statistic that is used to detennine processor loading is specified in the de­
faul ts file in the directory / opt /MEIKOcs2 / etc/machine-name, and can
be either user CPU load, system CPU load, idle CPU time, disk activity, page
swaps, or CPU load average.

All the user's commands, including sub-shells, are executed on the target (load
balanced) processor. Explicit attempts to login to any other processor (using
commands such as login or rsh) must be targeted at a gateway processor;
these login requests will also be load balanced.

Disabling User Logins

The presence of the / etc/nologin file causes the login loadbalancer to deny
login requests made by users and to permit only root to login. When user logins
are denied the contents of the file are written to the user's terminal.

This feature overrides the contents of the password file - even though a valid
login entry exists for a user the login will be denied if / etc/nologin exists.
This facility may therefore be used for temporary access restriction, in which
case the nologin file should contain an explanatory message for users.

Implementation

mei<o Resource Management

A conventional Unix login uses a pseudo terminal link to connect the login dae­
mon process with the user's login shell, as shown in Figure 2-2.

27

2

28

Figure 2-2 Conventional Unix Login

UNIX Node

User Processes

Pseudo terminal

Kernel

Login!
Ethernet

When using the login load balancer a TCP/IP link is created to connect the in­
coming login request stream and a pseudo tenninal on the load balanced node.
Two processes act as endpoints for this connection - logbalclient and
logbalserver (see Figure 2-3).

S lOO2-10M126.01 1T1Ei<a

meI<o Resource Management

2

Figure 2-3 Meiko's logbalserver and logbalclient
Network Gatewa Node Interactive Node

U..,Pr __

Kernel Kernel

Network

Login!
Ethernet

Having established a connection between the two processors, the two endpoint
processes are short-circuited by a device driver, / dev / shtcirc. This device
allows two kernel streams to be directly connected together without the need for
a separate data-forwarding process (Figure 2-4).

29

2

30

Figure 2-4 Short Circuiting
Network Gatewa Node

User Processes

8nort::1r'C.Jrt

LCIOPI>8<'<

Kernel

Login!
Ethernet

Network

Interactive Node

User Processes

Kernel

The connection between the original login daemon process and the short­
circuited link is set up as a loopback link, simply forwarding data in and out of
the short-circuit and acting as a kernel gateway for the login connection. The
pt s f i 1 t streams module is pushed onto this loopback, to allow the login dae­
mon to perform its internal communications with the remote pseudo terminal
link.

Warning - The short-circuit device must be installed in /kernel/ drv /
shtcirc, and the ptsfilt streams module must be installed in /ker­
nel/strmod/ptsfilt.

System Administration

Before installing the login load balancer there are several resource manage­
ment issues that must be addressed. A suitable configuration must be defined to
include a network gateway partition called login, and one or more interactive
partitions. The System Administrator must decide how many gateway proces­
sors should be added into the login partition, and the identities of the users
that are permitted to access them. The Administrator must put similar thought
to the interactive partitions, where the login shells are to be executed, only

S lOO2-10MI26.01 meJ<a

meI<o Resource Management

2

here the number of partitions needs to be evaluated as well as the distribution
of resources and users within them. These issues are discussed fully elsewhere
in this document.

Having defined the partitioning and user access rights within the CS-2, the
System Administrator can install the login load balancer. This is a three stage
process, as shown below1.

1. Modify the password file entry for each user that is to be load balanced.

The password file is modified so that the load balancer (logbal) is executed in
the login partition whenever the user logs on. The password file entry for the
user mike would therefore look something like:

mike:x:l00:l0:Mike Smith:/home/mike:/opt/MEIKOcs2/bin/logbal

Warning - The password file entry for the System Administrator should
not be modified and should refer to a command shell. This will allow ac­
cess to the gateway processors.

Warning - If you define new login accounts at this stage remember to in­
clude corresponding entries in the shadow file (/ete/shadow) as described
in the operating system documentation.

2. Specify each user's preferred shell.

To identify the preferred shell for each (load balanced) user the file / opt /
MEIKOcs2/1ib/logbalshells lists each user and the patbname for their
command shell. The entry for the user mike might look like:

mike /usr/bin/csh

1. Netgroups could be used in place of the password file modifications described. but note that
netgroups may not be supported in future releases of the operating system.

31

2

3. Install the remote process execution daemon.

The login load balancer uses Meiko's logbalserver remote process execution
daemon to start-up the remote shell. This daemon should be executed on each
of the processors in the network gateway partition and the interactive parti­
tions, and can be started automatically by adding the following entry to each
processor's / etc/ inetd. conf file - this happens as part of the resource
manager package installation.

logbal stream tcp nowait root /opt/MEIKOcs2/bin/logbalserver logbal.server

32

The privileged TCPIIP service named logbal must be made available, either
in all the local /etc/ services files or, more conveniently, in the NIS/NIS+
services map:

logbal 900/tcp • Meiko login load balancer support

Testing the Login Load Balancer

1. Following the installation of the logbalserver the System Administrator
should be able to use the command line interface (logbalclient) to exe­
cute processes on remote processors.

2. You can use pandora to visualise the placement of user shells to confirm
that the login load balancer is functioning correctly.

3. Poor response at the users' terminals implies that the gateway processors
may be heavily loaded by login connections - use pandora to visualise the
loading of the processors. Improved response can be obtained by increasing
the number of gateway processors and distributing the login requests among
them. Similarly the loading of processors in the interactive domain can be
visualised and can be reduced by increasing processor numbers and the dis­
tribution of users among them.

S lOO2-10M126.01 mei<a

2

Machine Description File

The machine description file machine. des in the directory / opt /
MEIKOcs2/etc/machine-name lists the resources in the CS-2 system and
their physical location. The file is read by the machine manager.

A machine description is hierarchical. Object descriptions begin at a high level
and break down into lower level components. At the highest level the machine is
viewed as a single entity; attributes that apply to the machine as a whole are spec­
ified here. At the next level there are the three module types - either processor,
switch, or peripheral. At the lowest level there are the modules' contents.

The machine description file consists of three basic components: version control,
machine attributes, and module attributes. Each component consists of a key­
word and attribute/value pairs. The machine manager is insensitive to the case of
text, and ignores white space. Attribute/value pairs may be entered separately,
one per line, or specified as a comma separated list. Text on a line after a # is
ignored.

Example machine description files are stored in the directory / opt /
MEIKOcs2 / etc/machine_name; these files are called templaten. des and
describe machines of various sizes.

Version Control

All machine description files that conform to this documentation should begin
with FileVersion: 1.3. All text before this attribute is ignored.

Machine Attributes

meko Resource Management

The list of machine attributes are preceded by the MACHINE keyword. The fol­
lowing attribute/values pairs must be specified:

bays: number
The number of bays in the system. There must be at least one bay; each bay
supports up to 8 modules. The number of bays must be defined first as it is
used to size data structures.

levels: number
The number of levels in the switch network.

33

2

34

Module Attribute

A module definition must be created for each module in the system. The format
of each entry is:

Module type.
Module attributes
Board attributes

Module Type

The module type may be either Processor_Module, Switch_Module, or
Peripheral_Module.

Module Attributes

The following module attributes may be specified:

ModuleAddress: nwnber
The module address is set by the Installation Engineer using a switch on the
rear of the module; each module must have a unique number. The module ad­
dress is specified as a hexadecimal number preceded by Ox.

Level: nwnber
The level in the CS-2 network at which the module is installed. Level 0 is the
top level. This attribute is applicable to processor and switch modules only.

Netld: nwnber
This attribute must be specified after the Level attribute described above, it
is only applicable to processor or switch modules. It identifies the module's
position in the data network.

SmallSwi tchCards: mask
SwitchBufferCards: mruk

Defines switch cards (MK511) and switch buffer cards (MK512) installed in
a module. This attribute is only applicable to processor modules, and must be
specified after the Level and Net Id attributes described above. Bits set in
the mask correspond to the positions of cards in the module.

SlOO2-10M126.01 mEi<o

meko Resource Management

2

Plane: number
This attribute identifies the switch plane that this module contains, it is only
applicable to switch modules, and must be specified after the Leve 1 attribute
described above. A default of 0 is assumed if this attribute is not specified.

Layer: number
This attribute defines the network layer that this module's switches belong to,
it is applicable to switch modules only. Valid settings for this attribute are 0 or
1.

Board Attributes

Board attributes are preceded by the Board keyword. A module can have up to
4 boards. The following board attributes may be specified:

Boardld: number
The position within the module of the board. The right most board (when
viewed from the front of the module) is number 0, the left most board is
number 3.

BoardType: string
The type of the board. The following board types are supported:

Board Type

mk401

mk403

mk405

mk523

mk522

Description

SPARC/IO board.

Vector processing element.

4 processor SPARC/Compute board.

Switch card.

Switch card.

Name: string {string, string, string}
Defines the hostname for this processor. Multiple names are required for
multiprocessor boards. Note that these names must correspond to hostname
and Internet address definitions in the fete/hosts file.

35

2

Boot: string
This attribute specifies how processors are to boot. The string may be either
disk, meaning boot from a local disk, or the name of a boot selVer. This at­
tribute must follow the Name definition and only applies to processor boards.

Example Machine Description File

Defaults File

36

The following example machine description file describes a single module ma­
chine that contains four MK401 boards:

* Example machine description file for 1 module

FileVersion: 1.3

MACHINE
bays: 1
levels: 1

PROCESSOR MODULE
ModuleAddress: Ox1
Level: 1, Netld: 0,

BOARD Boardld: 0,
BOARD Boardld: 1,
BOARD Boardld: 2,
BOARD Boardld: 3,

SmallSwitchCards:
BoardType: MK401,
BoardType: MK401,
BoardType: MK401,
BoardType: MK401,

Ox01
Name: cs2-0, Boot: disk
Name: cs2-1, Boot: cs2-0
Name: cs2-2, Boot: cs2-0
Name: cs2-3, Boot: cs2-0

The defaul ts file contains site specific system defaults. The file may (but need
not) be present in the /opt/MEIKOcs2/etc/machine-name directory. The
de f au 1 t s file is read by most resource management daemons and utilities.

The def a ul t S file consists of a list of attribute/value pairs. Within the file a #
marks the start of a comment, and white space is ignored. Numeric values may
be specified in decimal or in hexadecimal (by preceding the number by 0 x).

The following attributes may be specified. Where boolean values are requires, 0,
off and no are equivalent, as are 1, on, and yes.

SlOO2-10M126.01 meJ<.o

mei<o Resource Management

2

access-control boolean partition ...
Enables access control as defined by the permissions file. When no parti­
tion is specified the access control applies to the whole configuration (all par­
titions). Access control can be restricted to a subset of the configuration by
listing partitions names explicitly.

By default access control is enable for all partitions; if you wish to enable ac­
cess control for just a few partitions you must remember to explicitly disable
the remainder- the easiest way to do this is to specify access-control
off first.

accounting = boolean
Either 0 (false) or 1 (true), enables generation of session accounting data. De­
fault is O.

h8-rom-revision = number
The minimum ROM revision for the control network. If any board has a lower
ROM revision then the system will not start.

halt-on-error = boolean
Either 0 (false) or 1 (true), instructs the machine manager to halt (or not) if the
definition found in the machine description file does not match the machine.
Set to 1 while setting up a machine, otherwise O.

hardware-broadcast = boolean
Either 0 (false) or 1 (true) specifying the availability of a hardware broadcast
capability. The default is 1.

information-hiding = boolean
Either 0 (false) or 1 (true). If set to true users may only have visibility of those
resources they have pennission to see.

log-perm-errors = boolean
Either 0 (false) or 1 (true), enable logging of attempted access violations. De­
fault is 1.

log-stats = boolean
Either 0 (false) or 1 (true), enable generation of usage logs. Default is O.

37

2

38

lbal-statistic = S"~g

The statistic that is to be used by the login load balancer to detennine the least
active node for a user login. The following strings are pennitted; only one may
be specified:

Attribute Description

user-cpu

sys-cpu

idle-cpu

disk-io

paging

load

CPU activity for user applications.

CPU activity for the system.

Idle CPU time.

Disk 10 activity.

Page swaps.

CPU load.

partition = string
The name of the default partition for programs to execute in. The default is
login

rom-revision = number
The minimum Open Boot ROM revision that must be present on all boards in
the system. If any board has a lower ROM revision then the system will not
start.

timelimit seconds partition ...
Specifies the maximum time, in seconds, that partitions can be held by an ap­
plication, after which the application is sent a SIGTERM. The application is
allowed a short period to react to the signal, specified by gr ace-per iod,
after which a SIGKILL signal is sent.

grace-period seconds partition ...
Used with the time 1 imi t attribute described above.

Sl002-10M126.01 111fi<a

2

Example Defaults File

An example defaults file is listed below:

CS-2 Resource Management System
sample system defaults file

access-control off
access-control on parallel batch
timelimit 3000 parallel
grace-period 60 parallel
rom-revision = 120
h8-rom-revision = Ox93091017
lbal-statistic = user-cpu
partition = parallel

Procedural Interface to the Resource Management System

The System Administrators interface to the resource management system is via
the library librms. a. This library is available to both users' and the System
Administrator, but note that only the Administrator can use the functions that
change a configuration; users are restricted to the query functions.

Querying the Configuration and Executing Programs

rneI<o Resource Management

The following functions allows users to query the system configuration and to
execute programs. The functions described in this section do not require root ac­
cess privileges.

Querying Resource Availability

The resource management system supports a query interface that allows applica­
tions to explore the resources available to them. This interface covers both the
hardware and the active configuration. Users make enquiries using the function
rms_describe ():

void *rms_describe(RMS_OBJECT TYPE type, int objectld);

39

2

40

where type is the type of object to be described and id is its identifier. Sup­
ported object types are defined by RMS _OBJECT_TYPES in the header file
<rmanager luif. h> and include:

typedef enum {
RMS MACHINE 0,/* the whole machine */
RMS MODULE 1,/* modules */
RMS BOARD 2,/* boards */
RMS SWITCH 3,/* switches */
RMS PROC 4,/* processing elements */
RMS DEVICE 5,/* peripherals */
RMS CONFIGURATION 6,/* working set of partitions */
RMS PARTITION 7,/* individual partition */
RMS TARGET 8,/* application target */
RMS JOB 9,/* parallel program */

RMS OBJECT TYPES;

To describe a CS-2 system in full call rms_describe () with object type
RMS_MACHINE, it will return a pointer to a machine description structure:

typedef struct {
int nLevels;
int nModules;

/* number of network levels */
/* number of modules (all types) */

int nBoards; /* number of boards */
int baseProc; /* first processor */
int topProc; /* last processor */
int nProcs; /* number of processors */
int nSwitches; /* number of switches */
int nDevices; /* number of peripherals */
int nBays; /* number of bays */

int layers; /* bit mask of network layers */
int serialNumber; /* machine serial number */
char name[NAME_SIZE]; /* machine name */
map_t map; /* processor map */

map_t proc_map; /* processors configured in/out */
map_t sw_map; /* switches configured in/out */
map_t board_map; /* boards configured in/out */
map_t module_map; /* modules configured in/out */

machine_t;

machine t *machine (machine t *)rms describe(RMS MACHINE, 0)

SIOO2-10MI26.01 meJ<D

meI<o Resource Management

2

There is only one machine so ob j e c tid is ignored. A machine consists of mod­
ules, boards, processors, and switches. Each has an id numbered from O. The
machine description gives the total number of objects of each type.

Applications that access the hardware directly (the test code for example) need
machine description information and start their enquiries with a request to de­
scribe the machine. Applications that are designed to operate on the active con­
figuration (such as a site specific job scheduler) should start with descriptions of
the configuration and its partitions.

typedef struct {
char name[NAME_SIZE];
int nPartitions;

config t;

typedef struct
int id;
charname[NAME_SIZE];
int baseProci
int topProci
int nProcsi
int baseTargeti
int nTargetsi
int baseJobi
int nJobsi
time_t timestampi
int activei
map_t mapi

partition ti

/* configuration name
1* number of partitions

/*logical id of partition*/
I*partition name*1
/*first processor*/
I*last processor*/
I*number of processors*/
/*first target in partition*1
/*number of targets*/
/*first job*/
/*number of active jobs*1
/*last time info changed*/
I*running or not*/
I*processor map*1

*/
*/

41

2

42

The following code fragment illustrates how to query infonnation about a partic­
ular partition:

partition_t *p;
config_t *config;
int id;

config = config = (config_t *)rms_describe(RMS_CONFIG, 0);
for (id=O; id < config->nPartitions; id++) {

p = (partition_t *)rms_describe(RMS_PARTITION, id);
if (p && strcmp(p->name,"interesting") == 0) {

Having discovered that the interesting partition is active you could then
check how many processors it contains and start a job on them. However, this
partition may be in use, further enquiries will tell you who by, how many proc­
essors they are using and for how long.

Resource Requests

Details of the resources required by a parallel program are specified by resource
requests, defined by the structure resourceRequest defined in the header file
<rmanager luif. h>. A resourceRequest structure is passed to the func­
tion rms_forkexecvp () to start a parallel program.

typedef struct
int baseProc; /* processor base (relative to partition)*/
int nProcs; /* number of processors */
int memory; /* MBytes of memory */
int timelimit; /* run-time in seconds */
int verbose; /* enable verbose reporting */
int debug; /* run process under debugger */
int stdiolog; /* log stdio to file */
int solarisBinary; /* mUltiple copies of a solaris binary */
int createCore; /* allow core file creation */
int tid; /* target identifier */
char partition[NAME_SIZE]; /* partition to use */

} resourceRequest;

S lOO2-10M126.01 meJ<a

meko Resource Management

2

Resource requests can also be set as environment variables. The set of supported
environment variables is as follows:

RMS_PARTITION

RMS_NPROCS

RMS_BASEPROC

RMS_CORESIZE

RMS_ VERBOSE

The partition to use.

The number of processors required.

Id of the first processor to use; usually the first process
in a parallel application is loaded onto processor 0 in the
partition or the first available processor if other
applications are running.

The minimum memory requirements for each
processor, suffixed by K or M (for Kilobytes or
Megabytes respectively).

Preserve stdio/stderr from each process. The default is
false.

Enable core dumping. The default is no core files.

Set level of status reporting.

Default values of these resource requests are specified in the de fa u 1 t s file.
You can detennine the default setting of these variables by using the rms _ de­
faul tResourceRequest () function:

resourceRequest* rms_defaultResourceRequest();

Load Balancing

The function rms _lbal () is passed a partition name and a pointer to an
Ibal_ t structure. On return the structure identifies the processor that is least
loaded in that partition.

int rms_lbal(char* partition, Ibal t* Iballnfo);

43

2

44

The lbal_ t data structure is defined in the header file <rmanager /uif . h>
as:

typedef struct{
char h_name[NAME_SIZE);
long addr;

/* Hostname */
/* Internet Address */

} lbal t;

The statistic that is used to measure processor loading is specified in the de­
faults file.

Warning - rms _lba 1 () is only applicable to processors in an interactive
partition.

Editing the Configuration

The procedural interface to the resource management system allows site specific
applications to modify the configuration of the system. Such applications must
be run as root. The configuration editing interface consists of a set of functions
that manipulate rmsobj_t structures (defined in the C header file <rmanag­
er/uif .h»:

typedef struct
RMS_OBJECT_TYPES type;
union {

machine t
module t
board t
switch t
proc_t
device t
config_t
partition_t
target_t
job_t

objs;
rmsobj t;

machine;
module;
board;
sw;
proc;
device;
config;
partition;
target;
job;

/* object type */

S lOO2-10M126.01 mei<a

2

Objects are created with rms_create () and combined with rms_add ()

rmsobj_t rms_create(RMS_OBJECT_TYPES type);

int rms_add(rmsobj_t *parent, rmsobj_t *child);

They are saved to disk with rms_put () and restored with rms_get () .When
selecting an object with rms _get () it is necessary to specify the parent, the ob­
ject type, and the name

int rms_put(rmsobj_t *object});

rmsobj_t rms_get(rmsobj_t *parent, RMS_OBJECT_TYPES type, char *name};

To delete an object use rms_free (). The object's parent must also be speci­
fied. If the delete flag is non-zero the object will be deleted permanently - by
removing its filesystem state.

int rms_free(rmsobj_t *parent, rmsobj_t *object,int delete);

The routines rms_putAttr () and rms_getAttr () get and set object at­
tributes.

int rms_putAttr(rmsobj_t *0, RMS_ATTR_TYPES attr, void *value};

void *rms_getAttr(rmsobj_t *0, RMS_ATTR_TYPES attr)

mei<D Resource Management

Currently supported attributes are:

typedef enum {
RMS_NAME, 1* object name *1
RMS_DESCRIPTION, 1* object description *1

RMS ATTR TYPES;

RMS _NAME is used to put or get the object's name. An rms _get () used in con·
junction with RMS _DESCRIPTION returns a pointer to the object description,
this has the same effect as using rms_describe ().

4~

2

46

The function rms _ commi t () instructs the resource management system to
start or stop a partition or configuration specified by ob j e ct. The flag doKi 11,
if set true instructs the partition managers to kill existing processes, first with
SIGTERM and then, 10 seconds later, with SIGKILL. The flag stop instructs
rms _ commi t () to stop a running configuration/partition. The final argument
args specifies the partition manager arguments (interactive!background, report­
ing level, etc.).

int rms_commit(rmsobj_t *object, int stop, int doKill, pmargs_t args);

All configuration editing routines return object pointers or 0 on success, NULL
pointers or -Ion error depending upon their type.

Warning - Not all operations work on all types of objects.

These routines are used within rcontrol and pandora. They can be used by
local tools designed to visualise or edit the configuration of a machine.

Hostname, Elan ID, Ethernet Address Translation

Two functions are provided for hostname to Elan ID translation.

int rms_elantohost(char* hostname, int elan};

int rms_hosttoelan(char* hostname};

Return values are 0 or an ElanID on success, or -Ion failure.

In addition two functions are provided for translation from Elan ID to standard
48bit Ethernet address (of which only the last two fields are used):

int rms_ntoelan(struct ether addr* e);

struct ether_addr* rms_elanton(int elan);

The ether_addr structure is defined in <netinet/ if_ether. h>.

SlOO2-10M126.01 meJ<a

meko Resource Management

2

See also the description of hostnames and Elan Id's in CS-2 Node Naming on
page 67.

47

2

48 SlOO2-10M126.01 mei<a

Overview

Administering the CS-2 Filesystem 3

This chapter describes administration of the CS-2 filesystem. It covers both the
Solaris Unix filesystem (UFS) and the Meiko parallel filesystem (PFS). It is de­
signed to be read alongside the SunOS 5.1 Routine System Administration Guide
- this describes the principles of filesystem usage and administration, including
the Solaris Virtual File System (VFS) which provides a single set of administra­
tive commands for use with filesystems of all types.

A CS-2 system can have three types of filesystem:

Local

Global

Parallel

For local temporary I/O.

For generally accessible files.

For high capacity and bandwidth.

The Unix Filesystem (UFS)

The Unix filesystem (UFS) is used on all disk devices in the CS-2 system. Disks
must be partitioned into slices, labelled, and filesystems built on the slices as de­
scribed in the SunOS 5.1 Routine System Administration Guide. Meiko is devel­
oping tools to simplify this process; they will be provided in future software
releases.

49

3

50

The Network Filesystem (NFS)

NFS is used to make filesystems globally visible throughout a CS-2 system. An
optimised version ofNFS uses the CS-2 data network to move data between NFS
clients and servers.

In addition NFS is used to mount external filesystems. This is not generally rec­
ommended for large systems as it can impose significant external network load­
ing with a consequent reduction of performance of the parallel machine.

The Parallel Filesystem (PFS)

The Meiko parallel filesystem is striped over many data storage devices. It pro­
vides a mechanism for creating very large filesystems (greater than any individ­
ual UFS filesystem could support) and for providing high bandwidth concurrent
accesses to data that is held within the filesystem.

The data storage devices used by the PFS are Solaris filesystems, such as the
UFS, which will typically be distributed within the CS-2 using the NFS.

Filesystem Administrative Commands

Most filesystem administrative commands have a generic and a filesystem spe­
cific component. The following commands may be used with the PFS (using the
-Fpfs option where appropriate):

df Report number of free blocks in filesystem.

mkfs Makes a new filesystem.

mount Mount a filesystem.

mountall Mounts all filesystems specified in a filesystem table.

umount Unmount a filesystem.

umountall Unmounts all filesystems specified in a filesystem table.

The other filesystem administrative commands provided by the operating system
do not have a direct application to the PFS, although they will be used to admin­
ister the ~lesystems that the PFS is built upon.

SlOO2-10M126.01 meJ<a

3

Manual Pages

Both the specific and generic filesystem commands have manual pages; the spe­
cific filesystem manual page is a continuation of the generic one. To look at a spe­
cific manual page append an underscore and the filesystem type (u f s or p f s in
this case) to the generic command name. For example, type man mount and
man mount_pfs.

How to Find out the Type of a Filesystem

The fstatvfs(2) and statvfs(2) system calls return a generic superblock
describing a filesystem, including it's size, free space, and filesystem type. For a
PFS the type string will be "pfs", for an NFS mounted filesystem it will be "nfs" ,
and for a local Unix filesystem it will be "ufs".

You should add the following test into any program that perfonns PFS specific
operations; fd is a file descriptor for an opened file:

static int checkPfsFile (int fd) {
struct statvfs buf;

if (fstatvfs (fd, &buf) < 0)
return (-1);

if (!strcmp (buf.f_basetype, "pfs"»
return (0);

return (-1); /* not a PFS file */

To identify a mounted filesystem's type from your command shell you should ex·
amine the / etc/mnttab file as shown below. This file is updated by the oper·
ating system whenever a filesystem is mounted or unmounted.

root@cs2-0: grep /mnt /etc/mnttab
/PFs_adrnin/map /mnt pfs rw,suid 749463391

meI<D Administering the CS-2 Filesystem 5

3

fmnt is the mount point in your filesystem.

The Solaris documentation describes other ways that you can identify a filesys­
tern's type (using the mount (1m) command for example). These will show the
underlying data filesystem but will not identify the PFS filesystem itself.

Setting Up a Unix Filesystem

52

The Unix filesystem is used to support local disk I/O. Disks must be formatted
(this is usually done by the manufacturer), partitioned into slices, labelled, and
filesystems must then be created on the slices.

The following example shows the steps necessary to set up a disk for local swap
and temporary I/O. It is typical of the setup for a disk that is attached to a vector
processing element.

1. Partition the disk creating one large slice - usually slice 7. Label the disk.
The SunOS 5.1 Adding and Maintaining Devices and Drivers manual includes
a description of this process using the format command and its parti­
tion and label options.

2. Reboot the processor using the reconfigure option.
Use the boot command with its -r option. This will install the appropriate
device drivers.

I ok boot -r

3. Build a filesystem.
Use the newf s command, taking great care to specify the correct device as
an argument. For example:

* newfs /dev/rdsk/cOtOdOs7

SlOO2-10M126.01 meJ<a

3

4. Mount the filesystem.
First create a mount point, add an entry to the / et c / v f stab file, and then
mount the disk.

mkdir /scratch
mount /dev/dsk/cOtOdOs7 /scratch

The entry in the / etc I v f stab file would look like:

/dev/dsk/cOtOdOs7 /dev/rdsk/cOtOdOs7 /scratch ufs 1 yes -

Globally Mounting a Unix Filesystem

CS-2 uses NFS to make filesystems globally accessible. It is necessary to share
the filesystem, create mount points for the filesystem, and create a vfstab entry.

In the following example the processor cs2-0 shares the / global filesystem
with all processors in the parallel partition.

1. Share the filesystem.
Create an entry in the let c I df stab file on c s 2 - 0 to specify that the
/ global filesystem is available for remote mounting:

I share -Fnfs -orw /global

Execute the shareall command so your edits take effect immediately.

I jI shareal.l

2. Create the mount points.
You need to create mount points on all the processors in the partition. You can
do this with prun, using it to execute the rnkdir command.

t prun -p para~~e~ -8 mkdir /q~oba~

meI<o Administering the CS-2 Filesystem 53

3

3. Mount the filesystems.
You can mount the filesystem on all processors in the partition with the prun
command, using it to execute the mount command.

prun -p parallel -s /usr/sbin/mount -Fnfs -oelan cs2-0:/qlobal /qlobal

54

4. Edit the vfstab files.
Edit the vfstab files to ensure that the filesystem is mounted automatically
whenever a node is (re)booted.

During the setup of your CS-2 a vf stab. dir directory is created in / ex­
po rt on your main server and is mounted on / etc / v f stab. di r by all the
processors in your system. Within this directory are a number of vf stab
files; the names' of these files defines the processors that they apply to:

vfstab.clients

vfstab. hostname

vfstab.global

vfstab.site

Filesystems to be mounted by all client processors.

Filesystems to be mounted by hostname.

Filesystems to be mounted by all processors.

Filesystems mounted by all processor from
workstations and other processors on your local
site network.

The vfstab files in / etc / v f stab. di r are read as each processor enters run
level 3. The script /etc/rc3. d/S74nfs. cs2 is defined to read only
those vfstab files that are appropriate to its host processor.

When defining a new filesystem for global mounting on all processors in your
machine add the following entry into the vfstab. global file. If the file­
system is used by a limited group of processors create a vf stab. hostname
file for each processor, and add the following line into each file:

I cs2-0:/g1obal - /global nfs - yes -

Note that each processor retains its own / et c / vf stab which will define the
10callHesystems that are to be mounted by the processor (Le. those on local
disks).

SlOO2-10M126.01 meJ<a

3

s. Check the global mount.
You can use prun to check that the filesystem is mounted on each processor
in the partition.

prun -p para11e1 -sv df /q1oba1

The Parallel Filesystem

The PFS is in two parts: a map filesystem and a data filesystem.

The map filesystem contains a map from PFS filenames to data filenames on the
underlying data filesystems, and it also includes mount points for the data file­
systems. References to the map filesystem are made to the mount(lm) command
whenever a PFS is mounted.

The data filesystem is distributed. It consists of a number of networked Unix file­
systems, the number and types of these filesystems are specified by the System
Administrator when the PFS filesystem is created. Files that are written to the
PFS are striped over these data disks using a stride and an offset. The stride is
specified by the System Administrator at the time the PFS is created and must be
an integer multiple of the logical block size of the underlying data filesystems,
which for a UFS filesystem is 8 Kbytes. The offset determines which of the un­
derlying filesystems will store the first stripe; this is automatically randomised
on a per-file basis over those filesystems that are local to the PFS (or all under­
lying filesystems if none of them are local).

The default mapping of PFS files onto the underlying data filesystems has been
chosen to balance space utilisation over all the data filesystems and to minimise
network activity for small files. This strategy is set at filesystem creation time,
but can be changed by PFS extensions to ioctl(2).

Performance Factors

The physical location of the underlying filesystems is unimportant to the PFS­
they may all be attached to one CS-2 processor, distributed among a number of
CS-2 processors, or they may be attached to networked workstations. You may
use disks that are dedicated to the PFS, or use partitions on your system disks.

mekD Administering the CS-2 Filesystem 55

3

Your choice will however impact upon the performance of your PFS. Dedicated
disks, each attached direct to a CS-2 node via a dedicated bus, will offer the high­
est performance.

Before you create a parallel filesystem you will need to consider:

• The number of participating data filesystems.

• The stride size used to distribute the data over the available data filesystems.

Factors that will influence your decisions are:

• The number of filesystems that you can allocate to the PFS, and their
placement relative to the processes that must access them.

• The size of the files that you expect to create.

• The file access required by parallel processes; the stride size for the filesystem
should be chosen so that the processes in a parallel application rarely have to
compete for access to the same file slices.

Support Files

A number of files are created by mkfs (1m) when the PFS filesystem is created.
The following files are created in the map filesystem:

· P f sid Identifies this directory in relation to others participating in the
PFS.

· pf sdf 1 t Default mapping for new files.

· pf smap/ Map file directory. Contains the names of files and directories
that are created under the PFS. The inode numbers for these
files are used to create the corresponding data files on the data
filesystems.

· pfsdatan A number of files with numeric suffixes, one for each of the
data filesystems. These files are symbolic links to the mount
points for each of the data filesystems. The mount points will
be within the /pfs_admin directory (created my mkfs and
described below).

56 SIOO2-10MI26.01 meJ<a

3

mkf s creates a directory at the root of the map filesystem. This directory, called
/ p f s a dmi n, contains mount points for all of the underlying filesystems that
are used by the PFS. These mount points are used by mkf s to initialise the data
filesystems with

pfsid identifier, all the filesystems are unmounted before mkfs completes.

The /pf s _ admin directory is also created by the mount(lm) command on
each processor that mounts the PFS - again this will contain the mount points
for the underlying data and map filesystems. This directory and the mount points
within it must not be deleted or altered until you have unmounted the PFS.

Data Filenames

Files and directories that are created under the PFS map onto filenames in the
map filesystem and to data files on all of the underlying data filesystems. The
names of the data files are derived from the inode number of the filename as it is
stored in the map filesystem.

The following table summarizes the mapping from map file inode number to data
filename. For a map file with inode number 26485 a data directory hierarchy of
/d02/d64/85 is created on each of the data filesystems, each instance of the
file 85 containing stripes from the users files.

Inode Number Data Filename
1 /01
99 /99
100 /dOl/OO
9999 /d99/99
26485 /d02/64/85

Creating a Parallel File System

Each of the storage devices that will be used by the PFS must be formatted and
initialised with a filesystem, for example the UFS. All the filesystems (both map
and data) must be available for remote mounting by the CS-2 processors that will
use the PFS.

meI<o Administering the CS-2 Filesystem 57

3

58

The following initialisation procedure may be used on any of the CS-2 proces­
sors that have access to your designated map and data filesystems. An example
of how to create a PFS on the local system disks of a small CS-2 system is in­
cluded in Appendix A.

1. Identify the data filesystems.
The data filesystems can be on disks that are mounted directly on your CS-2
processors, or they can be on remote devices that are available via an external
network.

Having identified the data filesystems you must create a file that includes the
network pathname of these filesystems; the file contains one line for each file
system, each line being a full network address (in the form host:pathname).
The name of this file is unimportant - later examples assume it is called
/tmp/fslist - see Step 3. The following example file identifies two file­
systems, one hosted by deimos and one by phobos.

deimos:/pfsdata
phobos:/pfsdata

When referencing remote filesystems it is important that the filesystem list re­
fers directly to the host of each filesystem and not to a local mount point on
your CS-2 processor. By using a local mount point all PFS accesses will be
routed through the local node - an unnecessary point of congestion.

You must ensure that all the data filesystems are owned by bin, in group bin
(See chown(1m) and chgrp(1m)). The pennissions must be set to give root
read, write, and execute permission (7 xx).

2. Identify the map filesystem.
The data filesystem can also be on a disk that is local to the CS-2 or on a re­
mote machine. Only a relatively small amount of space is required for the map
filesystem as it contains only filename maps and symbolic links.

In the following example, the map filesystem will be created in /pfsmap on
ganymede - see Step 3.

SlOO2-10M126.01 mei<D

3

You must ensure that the map filesystem is owned by bin and in group bin
(see chown(1m), and chgrp(1m». The permissions must be set to give root
read, write, and execute permission (7 xx).

3. Initialise the map filesystem.
You initialise the PFS with mkf s(1m).

The following example defines a PFS with 2 data filesystems (nf s=2), as
identified by the filesystem list in / tmp / f s 1 i st. Files will be distributed
among the data filesystems in 8 Kbyte portions; this stride must be an integer
multiple of the block size used on the underlying data filesystems. The map
filesystem in this example resides on ganymede, and the filesystem list is
/tmp/ fslist.

cs2-0# mkfs -Fpfs -onfs=2,fslist=/tmp/fslist,stride=8K,verbose,force \
qanymede:/p£smap

The mkf s command builds the map files. During the initialisation process the
data filesystems are temporarily mounted in /pf s _ admin in your root file­
system (mkf s creates the directory if it doesn't already exist).

Mounting the PFS

Having initialised the PFS it can now be mounted by any CS-2 processor that
wishes to use it.

You mount a parallel file system with the mount(1m) command, specifying the
map filesystem as the target for the mount. If the map filesystem is not local to
the processor you must use the network pathname for the map filesystem. For ex­
ample:

cs2-5# mount -Fpfs qanymede:/pfsmap /mnt

meI<o Administering the CS-2 Filesystem 59

3

60

Access to the parallel filesystem is restricted by the pennissions associated with
the PFS directory itself (/mnt in this example). You should therefore adjust ac­
cordingly the pennissions of the PFS filesystem on all the processors that mount
the PFS. For example:

I cs2-5# chmod 777 /mnt

Testing the Parallel Filesystem

You can test the parallel filesystem by using the mkf ile (1) command to create
some large files, as shown below. Note that you should test the PFS from a user
account and not as root.

user@cs2-5% cd /mnt
user@cs2-5% mkfi1e 10k biqfi1e
user@cs2-5% mkfi1e lOOk huqefi1e
user@cs2-5% 1s -1 /mnt
total 224
-rw------T 1 root other 10240 Sep
-rw------T 1 root other 102400 Sep
user@cs2-5% df /mnt
Filesystem kbytes used avail
/pfs_admin/map 1923524 118 1731066
user@cs2-5%

28 15:57 bigfile
28 15:57 hugefile

capacity Mounted
0% /mnt

Each of the data directories on the data filesystems will now contain files with
sizes that are approximately equal to the total file size divided by the number of
data filesystems. See Data Filenames on page 57 for the naming conventions that
are used in the data directories.

If you get an I/O error while writing files into the PFS you should check that your
PFS stride size is compatible with the block size of the underlying data filesys­
terns. The PFS stride size must be an integer multiple of the filesystem block size.

S lOO2-10M126.01 mei<a

3

Creating and Accessing Files

PFS files can be created and manipulated by the standard I/O functions, such as
open(2), and by any of the Unix I/O commands.

Parallel applications built upon the Elan Widget library may use the widget li­
brary's parallel file I/O functionality - see the description of EW _PFD(3x) in
the Widget library documentation. Note that all of Meiko 's current message pass­
ing libraries are built upon the Elan Widget library.

Where use of the Elan Widget library is not appropriate the processes in a parallel
application may use the openO and f seekO calls to similar effect. In this case
the distribution of data among the processes must correspond to the stride size
and number of filesystems in the PFS. To avoid competition for I/O devices each
process in the application should aim to write its data to a file stripe that is shared
by no others.

Changing/Examining the Mapping of PFS Files with ioctl(2)

By default PFS files are distributed over all the underlying data filesystems using
the stride size specified at filesystem creation time and a random offset that is
generated on a per-file basis.

The mapping of PFS files onto the underlying data filesystems can be examined
or changed with ioctl(2), which has been extended to include the following
PFS requests:

meI<D Administering the CS-2 Filesystem 61

3

62

Request

PFSIO GETMAP

PFSIO GETFSMAP

PFSIO SETMAP

PFSIO GETLOCAL

PFSIO GETFSLOCAL

Associated Data Structures

Meaning

Get a file's mapping. Requires a pointer to a
p f sma p _ t structure as the third argument to
ioctl(2).

Get the default file mapping. Requires a pointer
to a pf smap _ t structure as the third argument
to ioctl(2).

Set a new file mapping. Requires a pointer to a
p f sma p _ t structure as the third argument to
ioctl(2). If you change the mapping for an
existing file then the file will be truncated and its
contents deleted. You must therefore create a
new file with the required mapping and copy the
contents of the old file into the new.

Identifies the stripes of a PFS file that are local
to the node that called i 0 c t 1 (2). Requires a
pointer to a p f s s 1 ice s _ t structure as the
third argument to ioctl(2).

Identifies the stripes of a filesystem that are local
to the node that called ioctl(2). Requires a
pointer to a pf s slice s _ t structure as the
third argument to ioctl(2).

The pfsmap_t and pfsslices_t structures are defined in the header file
/usr / include/ sys/ fs/pfs_map. h, and are described below.

pfsmap_t

The pfsmap_t structure is used by ioctl(2) to return information about a
file's current mapping, or can be used specify a new mapping. The structure is
defined as:

SlOO2-10M126.01 mei<a

typedef struct pfsmap
{

pfsslice_t pfsmap_slice; /* where in the pfs */
u_long pfsmap_type; /* type of mapping */

3

union /* variant parameters */

pfsmap_ld t m ld;
pfsmap_u;

pfsmap_t;

The type of mapping is described by the pfsmap_t .pfsmap_type field; cur­
rently only PFSMAP_1D (one dimensional maps) are supported.

The pfsslice_t structure defines the offset and number of data filesystems
(by default count is the total number of data filesystems, and offset is a random
number in the range [O,(count-l)]):

typedef struct
{

u_long ps_base;
u_long ps_count;

} pfsslice_t;

/* slice of a pfs */

/* starting offset */
/* # of file systems */

The pf smap _ld _ t structure defines the stride (by default this is 1, i.e. every
data filesystem):

typedef struct
u_long stride;

} pfsmap_ld_t;

The pfsslices_t structure is used by ioctl(2) to return infonnation about
PFS slices.

meJ<o Administering the CS-2 Filesystem 63

3

Example

64

A slice is a file or part of a file that is distributed over a number of data filesys­
terns. The p f s s 1 i ce _ t structure describes a single slice in terms of its offset
and numberoffilesystems. The pfsslices_t structure is used by ioctl(2)
to return information about a number of slices in a single call.

typedef struct
{

int pss_size;
int pss_count;
pfsslice_t pss_slice[l];

} pfsslices_t;

/* size of pss_slice */
/* entries in pss_slice*/
/* slices */

typedef struct
{

/* slice of a pfs */

u_long ps_base;
u_long ps_count;

pfsslice_t;

/* starting offset */
/* # of file systems */

The following example uses ioctlO and the PFSIO_GETMAP request to ex­
amine the mapping used by a number of PFS files:

tinclude <stdio.h>
tinclude <fcntl.h>
tinclude <sys/types.h>
tinclude <sys/stat.h>
tinclude <sys/statvfs.h>
tinclude <sys/fs/pfs_map.h>

static int checkPfsFile (int fd)
{

struct statvfsbuf;

if (fstatvfs (fd, &buf) < 0)
return (-1);

if .(! strcmp (buf. f basetype, "pfs"»

S lOO2-10MI26.01 meJ<a

return (0);

return (-1);

main(int argc, char** argv)

/* Osage: showmap file ... */

int fd;
int file;
pfsmap_t map;

for (file = 1; file < argc; file++)
{

meI<o Administering the CS-2 Filesystern

if((fd = open(argv[file], O_RDONLY» <0)
{

fprintf(stderr, "Can't open %s\n", argv[file]);
exit(l);

if(checkPfsFile(fd»
{

fprintf(stderr, "%5 not a PFS file\n", argv[file]);
exit (1) i

if (ioctl (fd, PFSIO_GETMAP, &map) < 0)
{

fprintf(stderr, "ioctl failed to get file map\n")i
exit(l)i

printf("%s:" argv[file])i
printf("starts at filesystem %u, for %u filesystems: It,

map.pfsmap_slice.ps_base, map.pfsmap_slice.ps_count)i
printf("stride is %u\n", map.pfsmap_u.m_ld.stride)i

3

65

3

66

When used to display the default mapping used by a number of PFS files, you
will note that the offset used by each file is uniformly distributed over all the
available filesystems to ensure that disk utilisation is uniform:

user@cs2: showmaps * .C

csn.c: starts at 1, for 4 filesystems: stride 8192
csf.c: starts at 0, for 4 filesystems: stride 8192
ptrce.c: starts at 2, for 4 filesystems: stride 8192
ptrcf.c: starts at 3, for 4 filesystems: stride 8192
ring.c: starts at 0, for 4 filesystems: stride 8192
tcsn.c: starts at 1, for 4 filesystems: stride 8192
tmsg.c: starts at. 2, for 4 filesystems: stride 8192
yp.c: starts at 3, for 4 filesystems: stride 8192
ypthd.c: starts at 1, for 4 filesystems: stride 8192

S lOO2-10M126.01 mei<a

Machine Name

Hostnames

CS-2 Node Naming 4

The choice of the generic machine name is made by the System Administrator;
it can consist of any alphanumeric characters, but should be kept short. Choosing
a name that can be easily used to generate individual hostnames is advisable -
this means that the generic name should not end in a numeral.

The machine name is stored in the file / etc / rrns _rna chi ne.

All of the examples shown in our documentation use the machine name c s 2 -.

Each processing element within the CS-2 will have a hostname which (for sim­
plicity) should include both the machine name and a processor Id (cs2-4, for
example). In addition nodes that are network gateways - those having external
network interfaces - may also have other names associated with them.

/ etc/hosts File

The names and internet addresses of all CS-2 processing elements are recorded
in the / etc/hosts file; the following example shows the entries for an 8 ele­
ment CS-2 machine in which the machine name is c s 2 -. Processing element 0
is a n~twork gateway node and has aliases for use on the external network.

67

4

Network Id

68

192.131.108.190 c52-0 c52
192.131.108.191 c52-1
192.131.108.192 c52-2
192.131.108.193 c52-3
192.131.108.194 c52-4
192.131.108.195 c52-5
192.131.108.196 c52-6
192.131.108.197 c52-7

The IP subnetwork will normally have been allocated by Meiko from a batch des­
ignated for the data networks of CS-2 systems. You should advise Meiko if you
would prefer to obtain the numbers from your own internet provider.

Node numbers must be unique and lie in the range 1-254. Hostnames must cor­
respond with those in the machine description file.

The Elan Id of a processing element is a decimal representation of its network
address. The way in which network addresses are obtained is fully described in
the Communication Network Overview - in summary they are obtained by de­
fining the Elite link number that the data must pass out of as it works its way
down from the top of the switch network. For the first processing element in the
first module the route will be 0.0 ... 0; that is, the data exits from link 0 at each
network stage. The top switch (the switch at the uppermost switch level) will al­
ways have all eight of its links pointing down to lower levels, so routes will al­
ways take the form: <0-7>.<0-3> ... <0-3>.

Determining an Elan Id is straight forward if the routes are displayed in their bi­
nary form. The Elan Id is simply the decimal representation of the binary route:

Route Binary Representation Elan Id

0.0.0 0000000 0

0.1.0 000 01 00 4

0.2.0 000 1000 8

0.3.0 000 11 00 12 .

SlOO2-10M126.01 meJ<D

mei<o CS-2 Node Naming

4

Figure 4-1 shows a fully populated 2 level CS-2 network. For this network the
Elan Ids are allocated sequentially, the processor on the extreme left having Elan
Id 0, and the processor on the far right having Elan Id 31 (its route being 8.3).

Figure 4-1 A 2 level network

Allocation of Elan Id's becomes more complex when SPARC/Compute boards
and single SPARC boards are both installed in the CS-2 system. Modules popu­
lated with SPARC/Compute boards include one level of switching integral to the
module, whereas modules with single SPARC processor do not. Networks con­
Sisting of mixed module types have processors at more than switch level.

69

4

70

Figure 4-2 A 3 level network with processors at mixed levels

In this case all network routes are expressed by three components; processors on
level 2 have do not need the third component so it is always set to zero. This
means that the single SPARe boards at level 2 have Elan Id's that increment by 4.

Route Binary Representation Elan Id

Level 2 0.0.0 00000 00 0
Processors 0.1.0 00001 00 4

0.2.0 000 1000 8

0.3.0 0001100 12

Level 3 1.0.0 0010000 16
Processors 1.0.1 0010001 17

1.0.2 0010010 18

1.0.3 0010011 19

SlOO2-10M126.01 meJ<a

4

Hostname, Elan ID, Ethernet Address Translation

meko CS-2 Node Naming

Several functions are provided in the resource management system interface li­
brary, librms.a, for translation of processor hostname to/from Elan Id or Ethernet
address. These functions are described in Procedural Interface to the Resource
Management System on page 46.

The rinfo(l) command can also be used to provide a map from hostname to
Elan Id via it's -t option. See Hostname to Elan (Processor) Id Translation on
page 19.

71

4

72 S lOO2-10M126.01 meJ<o

Creating a Parallel Filesystem A

This appendix shows how to create a parallel filesystem that spans 2 CS-2 file­
systems. The example uses four CS-2 processors: cs2-1 and cs2-2 host the
two data filesystems, C s 2 - 0 hosts the map filesystem, and C s 2 - 5 will mount
the PFS.

1. Identify the data filesystems.
On both cs2-1 and cs2-2 create the directory /p£s_adrnin/data. En­
sure that the data directory is available for remote mounting by other proces­
sors by using the share(lm) command.

The following example shows the commands that are executed on c s 2 -1 (re­
peat these on cs2-2);

cs2-1% au
password: root-password
cs2-1# mkdir /pfs_admin
cs2-1# mkdir /pfs_admin/data
cs2-1# ahare -Fnfa -orw /pfa_admin/data
cs2-1# chown bin /pfa_admdn /pfa_admin/data
cs2-1# chqrp bin /pfs_admin /pfa_admin/data

73

A

74

In this example we have made the directory available for remote mounting by
typing the share command at the prompt. You may prefer to add this command
into / et c / df s / df stab so that the directory remains available if the ma­
chine is rebooted.

The name of the data directory is arbitrary, but the use of /pf s _ admin is sig­
nificant because this directory will be used by the mount(lm) command if we
later choose to mount the PFS on this processor. By placing the data directory
within /pf s _ admin all the PFS files are kept in one place.

The /pfs_admin/data directory could be a mount point for a dedicated
disk device, or simply a directory on your system disk.

2. Identify the map filesystem.
On cs2-0 create the directory /pfs_admin/map. Ensure that the data di­
rectory is available for remote mounting by other processors by using the
share(1m) command.

cs2-0% su
password: root-password
cs2-0# mkdir /pfs_admin
cs2-0# mkdir /pfs_admin/map
cs2-0# share -Fnfs /pfs_admin/map
cs2-0# chown bin /pfs_admin /pfs_admin/map
cs2-0# chqrp bin /pfs_admin /pfs_admin/map

Similar comments apply to the map directory as to the data directories. You
may prefer to place the share command in the / etc / df s / df stab file, and
the choice of name for the map directory is arbitrary (using / p f s a dmi n / -
map keeps your filesystem neat). In general you need not place the map file­
system on a dedicated disk as it is unlikely to become large.

SlOO2-10M126.01 meJ<a

A

3. Initialise the map filesystem.
You must first create a file that identifies the data filesystems that will be used
by your PFS. In this example the file is called ! tmp! f s 1 i s t:

cs2-0# cat > /tmp/fs1ist
cs2-1:/pfs_admin/data
cs2-2:/pfs_admin/data
Ad

You initialise the PFS with mkf s(lm):

cs2-0# mkfs -Fpfs -onfs=2,fs1ist=/tmp/fs1ist,stride=8K,verbose,force \
/pfs_admin/map

The mkfs command is executed on the host of the map file system (cs2-0).
Note that mkfs creates a subdirectory called !pfs_admin!mnt which is
used to temporarily mount the data filesystems while the PFS is being initial­
ised. If /pfs_admin did not already exist (because the map file system is
elsewhere) then it will be created.

Note that the stride (in this case 8k) must be an integer multiple of the block
size that is used by the underlying data filesystems.

4. Mounting the PFS.
You mount a parallel filesystem with the mount(lm) command, specifying
the map filesystem as the target for the mount. To mount the PFS on c s 2 - 5,
for example:

cs2-5# mkdir /pfs
cs2-5# mount -Fpfs -orw cs2-0:/pfs_admin/map /pfs

You may mount the PFS on as many CS-2 processors as are necessary, includ­
ing the hosts of the underlying data and map filesystems (if that is appropri­
ate).

meko Creating a Parallel Filesystem 7~

A

76

Access to the PFS filesystem is set using the permissions on the PFS directory
(in this case /pfs) using chmod(l), chown(1), and chgrp(l) as required.

5. Test the PFS.
Login to any of the processors that have mounted the PFS (but not as root).
Confirm that you can create a file (mkfile(1) can be used to create large
empty files) and that it is visible to all the other processors that have the PFS
mounted.

For example, with the PFS mounted on cs2-5, create a lOKbyte file:

user@cs2-5: mkfi1e 10k /pfs/testS

Assuming that the PFS is also mounted on c s 2 - 8, check that the file is visible
and that you can create a file from this processor too:

user@cs2-8: ls -1 /pfs
-rw-r--r-- 1 staff 10240 Jun 8 06:55 test
user@cs2-8: mkfi1e 10k /pfs/test8

SlOO2-10M126.01 meJ<a

Computing
Surface

Pandora User's Guide

SlOO2-10M12S.01 mei<o

The information supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of any
rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent of Meiko World Incor­
porated.

© copyright 1993 Meiko World Incorporated.

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSToois are trademarks of Meiko Limited. Sun, Sun and a numeric suffix,
Solaris, SunOS, AnswerBook, NFS, XView, and Open Windows are trademarks of Sun Microsystems, Inc. All
SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. Unix, Unix System V,
and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X Windows System is a trade­
mark of the Massachusetts Institute of Technology. AVS is a trademark of Advanced Visual Systems Inc. Verilog
is a registered trademark of Cadence Design Systems, Inc. All other trademarks are acknowledged.

Issue Status:

Meiko's address in the US is:

Meiko
130 Baker Avenue
Concord MA01742

5083710088
Fax: 508371 7516

Draft

Preliminary

Release

Obsolete

Circulation Control: External

Meiko's address in the UK is:

Meiko Limited
650 Aztec West
Bristol
BS124SD

Tel: 01454616171
Fax: 01454618188

Contents

1. U sing Pandora 1

Introduction to Pandora. 1
Starting Pandora . 1
Interaction with Views . 2

The Root Panel. 2
View Control Panel . 3
Function Menus . 4
Iconising a View. 4
Interface Conventions. 5

Object Selection and Manipulation. 5

Object Clicking . 6
Rubber Banding . 6
Dragging and Dropping ROIs. 7

Function Selection and Application 8
Function Selection Short-cuts. 9

Color Space Selection. 10
Information Window. 12
System Files. 13

Defaults Files . 14
Event Logs. 14
Geometry Files. 15

Route Tables. 15

2. Machine View . 17

Color Spaces. 18
Configuration . 19
Module Temp. 19
Fan RPM............................... 21
PSU Status. 23
G-CAN Router. 23
Default. 24

Keyboard Short-cuts. 24
Function Menu . 24

Configure . 25
Set. 25
Info. 27
Reset. 28
Refresh. 28
Finder. 28

Interaction with Other Views . 29

3. Network View .. 31

Color Spaces. 32
Configuration. 32

Node 1'ype . 32
Link State. 33

Switch Error. 34
Node Status . 34
Boot Group. 35
Default. 35

Keyboard Short-cuts. 36
Function Menu. 36

Configure. 37

ii

Open.. 37

Get. 38

Link State Color Space. 38
Switch Error Color Space. 38

Set. 40

Processor Attributes . 40
Switch Attributes. 41

Info. 43

Reset. 43

Processor Reset. 44
Switch Reset . 44

Refresh. 45

Finder. 45

Interaction with Other Views. 46

4. Configuration View. 47

Color Spaces. 48

Configuration . 48

Node type. 49

Node Status . 49

Pmanager Status. 50

Boot Group. 50

Default. 50

Keyboard Short-cuts. 51
Functions. 51

Configure . 52

Create. 52

Delete. 53

Get. 54

Put 54

Set. 54

Change Config.. 56

Command............................... 56

Contents iii

Console. 57
Info. 57

Reset. 57
Route Gen. 58

Finder. 58
Interaction with Other Views . 59

5. Performance View. 61

Color Spaces. 62
Keyboard Short-cuts. 62
Function Menu. 63

Delete. 63
Set. 63
Reset. 65

Interaction with Other Views . 65

6. Common Operations. 67

System Configuration . 67
Defining a New Configuration. 67
Changing a Configuration. 69

Stopping a Partition. 69
Starting a Partition 70

Network Tests. 70
Link Tests. 71
Switch Errors. 71
Locating Faulty Components 71

Processor Diagnostics. 72
Getting a Console Connection 72
Rebooting. 72

Perfonnance Visualisation . 73
Creating a New Display. 73
Changing an Existing Display. 74

iv

Using Pandora 1

Introduction to Pandora

Starting Pandora

meJ<a

Pandora is a window onto the Computing Surface and can be used by both Sys­
tem Administrator and the users of a CS-2 system. There is little difference in
these two classes of operation, the main exception being that only the System
Administrator will be able to make changes in the overall system configuration.
Both Administrator and user alike will be able to perform system query and mon­
itoring operations.

Pandora is used to map the CS-2 resources into configurations that best match the
requirements of different working groups using the machine. These configura­
tions can then be edited by the System Administrator to mirror changes in those
requirements as resource is added or removed, or as the use of the machine
switches from daytime interactive operation to night-time batch operation.

It is also used to run applications, recognise and report system errors, and per­
form diagnostic tests on most aspects of the machine.

Pandora has a number of command line options to modify its behaviour:

1

Interaction with Views

-g Use this option if you are using a grey scale display; Pandora requires a
colour display by default.

-s No shadows. Pandora usually draws shadows behind objects so that the
display is more visually appealing. You may prefer to disable the
shadows, particularly when visualising large systems.

-v Verbose mode. Pandora writes diagnostic information to its command
shell.

Pandora is normally executed as a background task from your command shell.
You must ensure that your DISPLAY environment variable identifies your work­
station's screen.

user@cs-2: /opt/MEIKOcs2/bin/pandora -v &

Pandora attached to Cluster: 0 module: 0 node: 12

Pandora responds by confirming connection to a CS-2 node and by displaying the
root panel on your display. In the above example, Pandora is executed on proc­
essor 12, which is in module 0 in Cluster 0 (a Cluster is a 3 bay/24 module unit).

Pandora consists of a number of views, each representing some aspect of the CS-
2 configuration or operation, and is manipulated by point-and-click operations
through an X-Windows interface. This section explains how views are initiated
and how objects within the views are manipulated.

The Root Panel

2

Views are selected from Pandora's a root panel, which will appear shortly after
starting pandora:

S I002-10MI25.01 mei<D

1

Figure 1-1 The Root Panel

The root panel includes buttons for each of the supported views, a Quit button,
and an Info button. A left mouse click on any of the view buttons will invoke that
view. A left mouse click on the Info button will display Pandora's release ver­
sion, and a brief revision history. The Quit All button is used to close all views
and to shut-down Pandora.

View Control Panel

meko Using Pandora

All of Pandora's views have a common interface; a control panel along the top
of the view and a pop-up function menu. The buttons in the control panel have
the following meanings:

Color Space

Root Menu

This is a pull-down menu that allows you to select a Color
Space for this view (more on this later) - the contents of
this menu change for each view.

To view the contents of this menu click and hold the right
mouse button over the menu and drag the mouse down
towards the foot of the screen. Release the mouse button
when the pointer is over the selected entry.

Each menu entry has a pull-out colour chart. To view this
chart move the mouse to the right of the menu entry and
then release the mouse button. This will cause the
selected Color Space to become active and the reference
chart to remain on screen.

This button is used to bring the Root Menu to the front of
the window stack, making it visible if it has become
hidden or closed into an icon. A click with the left mouse
button activates this button.

3

1

4

Abort

Quit View

Function Menus

This button is usually inoperative (and shaded-out) and
becomes available only for a limited number of functions
that have an abort facility.

This button closes-down the view. A click with the left
mouse button activates this button.

Each view has a pop-up function menu. To view this menu you must press and
hold the right mouse button down while your pointer is within the view's display
area. You select a function by moving the mouse over the desired entry and then
releasing the button.

Figure 1-2 The Function Menu for the Configuration View

lconising a View

Views can be closed to an iconic representation by a left-mouse click in the small
square button at the extreme top-left of the view's frame, and can be re-opened
by a double left-mouse click over the icon. Even when the views are iconified
they still maintain state although changes to that state are not redrawn until the
view is reopened.

Sloo2-10MI2S.0I mei<a

1

Interface Conventions

The appearance of windows, buttons, and menus will confonn to either the
OPEN LOOK or MOTIF conventions. The functions assigned to each of your
three mouse buttons will be subtly different for the two environments: for the
OPEN LOOK environment the left-mouse button is used when making selec­
tions, such as pressing a panel button, the middle mouse button adjusts or extends
a selection, and the right-mouse button is used for menu selection; in the MOTIF
environment the left mouse button is also used to select a menu from a view's
menu bar.

Figure 1-3 View Buttons

Also common to all views are the methods used for interaction and control, they
are:

• Object selection and manipulation.

• Function selection and application.

• Function selection short-cuts.

• Color Space selection.

• Infonnation viewer.

These are described in the following sections.

Object Selection and Manipulation

rnei<o Using Pandora

Once a view has been opened, objects can be created or manipulated within it.
Some views, for example the Configuration View, will already have objects
present when the view opens, others will need objects to be copied from other
views.

5

1

6

Objects can be selected or grouped together in Regions Of Interest (ROJ). A ROJ
is described by a box that is created by mouse operations. There are two methods
that can be used in ROJ creation, object-clicking and rubber-banding.

Object Clicking

A mouse click is a mouse button down followed immediately by a mouse button
up. During the interval between these events the mouse location must not change.
If a click occurs within the bounds of an object (processor, switch etc.) then an
ROJ is created and positioned around that object, and is signified by a change of
the object's color.

The left mouse button and the middle mouse button can be used for object click­
ing, each performing a different function. A left mouse click will reset any pre­
viously defined ROJs before creating one about the selected object. If no object
was selected, that is if the operation took place outside the bounds of any object,
the list of selected ROJs is effectively nulled. A middle mouse click will add or
delete the selected object in the current ROJ list. An ROJ will be deleted from the
current ROJ list if the middle mouse click occurred within a previously defined
ROI.

Rubber Banding

ROJ creation can also be performed by rubber-banding. Rubber-banding is per­
formed by dragging the mouse over a region with the left-mouse button de­
pressed. The initial left-mouse down initialises the ROJ and the following left­
mouse up completes the operation. As the mouse is dragged the extent of the ROJ
is outlined by a box. When the ROJ is complete, its screen extent will snap
around any objects that were enclosed completely by the ROI. Unlike the left-

SI002-10MI25.01 meJ<a

1

mouse click, which resets the ROI list, left-mouse rubber-banding always adds
to the currently selected ROI list. These ROIs can be deleted by a middle-mouse
click within the bounds of the ROI.

Figure 1-4 ROI Creation

Dragging and Dropping ROls

rnek.o Using Pandora

Once objects have been selected by the creation ofROIs they can be manipulated
by drag-and-drop operations. There are two types of drag-and-drop operation;
the drag-and-add operation and the drag-and-find operation.

The drag-and-add operation allows ROIs to be dragged from one view and added
into another. For example, when defining a new configuration you might drag the
selected processors from a Machine View into the Configuration View where a
new partition is being defined. The drag-and-add operation is defined by a left
mouse down within an object while holding down the SHIff key, followed by a
mouse drag into the target view. During a drag-and-add operation the mouse icon
changes to a tied sack.

The drag-and-find operation allows ROIs to be dragged from one view, and the
objects they represent to be highlighted within the existing display of another
view. For example, when tracing a faulty switch component you might drag the
select~d switch from the Network View into the Machine View so that's its phys­
ical placement in the machine can be identified. The drag-and-find operation is

7

1

defined by a middle mouse down within an object while holding down the SHIff
key, followed by a mouse drag into the target view. During a drag-and-find oper­
ation the mouse icon changes to a question mark.

During a drag-and-drop type operation (of either type) all the ROIs in the selec­
tion will be outlined to indicate their inclusion in the drag-and-drop operation.
The objects contained by the ROI list can be dragged for as long as the mouse
button is depressed. When the button is released the objects will be dropped into
the view. If the addition of the selected objects to the view is not understood, or
the objects are dropped outside a view, then they are discarded and the drag-and­
drop has no effect.

Function Selection and Application

8

All views have a common set of Function Menu items. Selectable items are
drawn in solid text, invalid functions are 'greyed out' and are not selectable. The
actual operations carried out as a result of function selection are in many cases
view specific and a detailed description of each can be found in a the following
chapters. The application of some view functions may take a number of seconds
if the function is complex and is applied to a ROI list that contains many objects;
for example querying the error state of all switches in a machine. During this time
the cursor will change to a stopwatch, the clock in the bottom comer of the view
will freeze, and the view will not allow editing of the selected ROI list. The cur-

Sl002-10M125.01 mei<D

1

sor will resume its pointer representation when the function has completed. The
interaction with other views is not affected during this period, unless of course,
further complex actions are attempted in those views as well.

Figure 1-5 Function Menu

The Function Menu is generated by a right-mouse down over the view's display
area. Menu items can be selected by dragging the mouse over the items with the
button depressed. To select an item (and therefore a function to apply) let the
mouse button up over the desired selection; the function will then be applied to
current ROI list.

Function Selection Short-cuts

meI<o Using Pandora

Many of the items selectable from the Function Menu have keyboard short-cuts.
A single keystroke will have the same effect as having opened the Function
Menu, selecting an item, and applying it to the current ROI list. Keyboard short­
cuts are view and Color Space specific, and are described in later chapters with
the description of each view.

9

1

Color Space Selection

Pandora consists of a collection of views, each representing the CS-2 in a differ­
ent way. A key feature of this tool is its ability to overlay more than one type of
infonnation in any of the views.

Color Spaces are used to add this extra dimension to the views. They are simply
a mapping of some system attribute to a color range that is used to paint objects
in the view. The ability to overlay Color Spaces provides a powerful query mech­
anism which can lead to interesting composite views that can be of great help
when configuring and monitoring a system.

For example, the Network View represents a logical machine consisting of proc­
essors, switches and their interdependency. Switch and link errors are indicated
here by the application of an appropriate Color Space. If, after running diagnostic
tests, switches or processors need to be isolated or replaced, dragging them into
the Machine View would quickly identify the board and module that contain the
problematic element.

Figure 1-6 Pandora Color Space

10 SI002-10MI25.01 mei<a

1

Color Space selection is controlled from a Color Space Menu, which is activated
by a pull-down menu in the view's control panel. This menu has pull-right items
indicated by the arrow to the right of the menu items. Items and their attached
Color Spaces are selected in the same manner as Function Menu items described
above, the pull-right items are activated by dragging the mouse over an item's
arrow before releasing the mouse button.

The pull-right item represents the entries of that particular Color Space and re­
mains in the view when selected. These act as a reference key while a Color
Space is in operation. The reference key need not be selected to change Color
Space, selection from the main Color Space Menu is enough if you do not require
the key.

Figure 1-7 Color Space Reference Keys

meko Using Pandora 11

1

Information Window

12

It is possible to have more than one reference key pinned to the workspace at any
one time. In this case there is no need to return to the main Color Space menu to
select one of these spaces; a left-mouse down over a pinned Color Space will se­
lect it as the active Color Space. The active Color Space is indicated in a frame
footer.

Figure 1-8 Frame Footer (Network View)

All views have an Info function available from their Function Menu. The Infor­
mation Window is a text window in which information about selected objects is
written; this window is used when a more detailed textual description is required
than can be represented by one of the Color Spaces. Pandora also uses the Infor­
mation Window to display some of its diagnostic messages.

SIOO2-10MI25.01 meJ<D

System Files

meI<o Using Pandora

1

The Infonnation Window is automatically created when infonnation is first writ­
ten to it. You can iconise the window by clicking on the button at the top left hand
comer of the window, and open an iconised window by a double left mouse click
on the icon. If infonnation is written to the Infonnation Window while it is icon­
ised then the icon flashes to draw your attention.

Figure 1-9 Link Errors displayed in the Information Window

'=:~~~==~
Li nk: 0 Route: 0 (0) CRC: 0 (0) Ti leout: 0 (0) Data: 0 (0) ·Phase: 1 (1)
link: 1 Route: 0 (0) CRC: 0 (0) Tileout: 0 (0) Data: 0 (0) ·Phase: 1 (1)
Link: 2 Route: 0 (0) CRC: 0 (0) Tileout: 0 (0) Data: 0 (0) ·Phase: 1 (0
Li nk: 3 Route: 0 (0) CRC: 0 (0) Ti leout: 0 (0) Data: 0 (0) ·Phase: 1 (0

Elite Errors for switch at 000090 chip: 0 (cO 1:2 n:29) since epoch (deltas in brackets):
SUllary Errors: Soft: 2 (2) Hard: 4 (4)
Link: 0 Route: 0 (0) CRC: 0 (0) Tileout: 0 (0) Data: 0 (0) ·Phase: 1 (0
Link: 1 Route: 0 (0) CRC: 0 (0) Tileout: 0 (0) Data: 0 (0) ·Phase: 1 (0
Li nk: 2 Route: 0 (0) ·CRC: 2 (2) Ti leout: 0 (0) Data: 0 (0) ·Phase: 1 (1)
Link: 3 Route: 0 (0) CRC: 0 (0) Tileout: 0 (0) Data: 0 (0) ·Phase: 1 (0

Elite Errors for switch at 000000 chip: 0 (c:O 1:3 n:29) since epoch (deltas in brackets):
SUlaary Errors: Soft: 0 (0) Hard: 25872 (25872)
Link: 0 Route: 0 (0) CRC: 0 (0) Tileout: 0 (0) Data: 0 (0) ·Phase: 1 (1)
link: 1 Route: 0 (0) CRe: 0 (0) Tileout: 0 (0) Data: 0 (0) ·Phase: 1 (1)
link: 2 Route: 0 (0) CRC: 0 (0) Tileout: 0 (0) Data: 0 (0) ·Phase: 1 (1)
Link: 3 Route: 0 (0) CRC: 0 (0) Tileout: 0 (0) Data: 0 (0) ·Phase: 1 (1) ·.i·.1.1.1.1.

Li nk: 7 Route: 0 (0) eRe: 0 (0) Ti leout: 0 (0) ·Data: 26138 (26138) Phase: 0 (0) · II
A number of files are either created by Pandora or used by the System Adminis­
trator/system software to pass infonnation into Pandora. These files are:

• Defaults file.

• Event Log cache files.

• Geometry files.

• Route tables.

13

1

14

Defaults Files

Event Logs

At start-up Pandora reads the contents of the defaul ts file in /opt/
MEIKOcs2 / etc/machine-name/pandora. This file identifies default proc­
essor attributes; these are used in the Network and Configuration views by the
Set function when no alternative values are explicitly stated within Pandora.

The de f au 1 t s file is created by Meiko and should not be changed.

A number of log files are used by the Resource Management System to store re­
source events. The infonnation in these files is used by Pandora to determine the
state of the machine and to update its display as the state changes. The following
files are used, all reside in /0 p t / ME I KO c s 2 / etc / machine-name:

• machine .log - machine events.

• module. log - module status.

• board. log - board status.

• switch .log - switch status.

• proc .log - processor status.

• device. log - device usage events.

• conf ig . log - configuration events.

• partition .log - partition manager events.

• resource .log - processors being used or freed by user applications.

• job .log - user applications starting and stopping.

Note that these are binary files; to determine their contents you must use the
eventbrowser(1) utility. Note also that these files are circular buffers of finite
size; they will not consume large amounts of disk space.

SI002-10MI25.0I meJ<a

1

Geometry Files

Pandora preserves the layout of the Configuration View between sessions by sav­
ing layout infonnation into a file. The layout of partitions within each configura­
tion definition is saved in a config. geom file alongside the configuration's
definition (in the directory / opt /MEIKOcs2 / etc/machine-name/ config­
name). Pandora uses a default layout if there is no conf ig . geom file.

Route Tables

meko Using Pandora

Route tables are generated by the Route Gen. function in the Configuration View.
A number of files are created, one for each processor in the partition, which de­
fine routes from the processor to all other processors in the partition.

The files are created in a routes subdirectory alongside the partition's defini­
tion (in / opt/MEIKOcs2 / etc/machine-name/ con fig-name/partition). The
name of each route file is the same as the Elan Id of the processor that it was gen­
erated for.

These routes may be installed in the processors' route tables by rmsroute(1m).

15

1

16 SIOO2-10M125.01 mei<D

meJ<a

Machine View 2

The Machine View is a representation of the machine as it would appear if you
were stood in front of it. This view is used for tracking objects selected in the
more abstract views back to the physical machine, enabling the identification of
pieces of hardware resulting from selection of objects such as processors and
switches.

The modules are grouped in bays of up to 8 modules. Within each module small
switch boards are shown in the top of the module, processor and large switch
boards in the middle, and the module controller at the bottom.

17

2

Figure 2-1 Machine View (Default Color Space)

Color Spaces

The Machine View supports the following Color Spaces:

• Configuration - identifies modules that are configured-out.

• Module temperature - the temperature at strategic points within the modules.

• Fan speeds - the speed of the cooling fans in the module.

• Power supply status.

• G-CAN routing infonnation.

• Default - shows processor, switch, and module control cards.

18 S I002-10M125.01 meJ<a

2

Configuration

The Configuration Color Space compliments anyone of the other Color Spaces.
It shows objects that have been configured-out in grey; configured-in objects are
coloured using the active Color Space.

Objects that are configured-out have been made unavailable. You can configure­
out objects by using the Configure function, described later (see page 25).

Module Temp.

meI<o Machine View

The Module Temperature Color Space shows the approximate temperature re­
corded by the 4 sensors that are fitted to each module. Overlaid onto the colour
display are the 4 temperatures readings (in Celsius).

Figure 2-2 Pandora's Temperature Display

19

2

20

The mapping from displayed temperatures to the sensor positions in the proces­
sor and switch modules is shown below:

Figure 2-3 Temperature Display for Processor/Switch Modules

Temperature above backplane switch cards
~ (top rear section of the module).

r---'-'~ This is an exhaust for warm air.
20'

22'

20'

______ Temperature above main processor/switch cards
..---- (top centre section of the module).

This is an exhaust for warm air.

_ Temperature below main processor/switch cards
(bottom centre section of the module).

'--_20_'----'~ This is an air intake.

Temperature at exhaust of PSU fan.

The mapping from displayed temperatures to sensors position in the disk mod­
ules is shown below:

Figure 2-4 Temperature Display for Disk Modules

Temperature above the RAID unit
~ (top rear section of the module).

r---'-'~ This is an exhaust for warm air.

20'

22'

20'

Temperature above the disk devices
~ (top centre section of the module).

This is an exhaust for warm air.

~ _ Temperature below the disk devices
(bottom centre section of the module).

20' This is an air intake.

'--_----J~ Temperature below the power supplies
(bottom centre section of the module).
This is an air intake.

S IOO2-IOMI2S.0I meJ<a

Fan RPM

mei<D Machine View

2

The Fan RPM Color Space shows the approximate speed (xlOOO RPM) of the
cooling fans in each module.

Figure 2-5 Pandora's Fan Speed Display

21

2

22

The mapping from displayed speeds to the fan positions in the processor and
switch modules is shown below:

Figure 2-6 Fan Speed for Processor/Switch Modules

,...------,

6.7

6.7 6.7
6.7 6.7
6.7 6.7
6.7 6.7

~
Speed of backplane fan
(top rear of module).

Speed of fans in the fan tray
~ (below main processor/switch cards).
~ The top row of represents fans at

the rear of the tray (when viewed from
the front of the module).

6.7 ~
"""-_----' _____ Speed of the Power Supply fan.

The mapping from displayed speeds to the fan positions in the disk modules is
shown below:

Figure 2-7 Fan Speed for Disk Modules

6.7 6.7
6.7 6.7
6.7 6.7
6.7 6.7
6.7 6.7
6.7 6.7

Speed of fans in the fan tray
(below disk devices).
The top row of represents fans at

~ the rear of the tray (when viewed from
~ the front of the module).

Sl002-10M125.01 meJ<a

PSU Status

2

The PSU Color Space displays the status of the power supplies as green (good)
or red (error). For processor and switch modules (which contain a single power
supply) the whole module is coloured according to the PSU status. For disk mod­
ules the display is divided into 3, with the top section representing the left power
supply (when viewed from the rear of the module).

G-CAN Router

meI<o Machine View

The G-CAN Router Color Space displays each module's configuration on the
Global CAN bus (G-CAN).

Running throughout your CS-2 system is a Control Area Network (CAN) that is
used to carry diagnostic and control information throughout the machine. It al­
lows Pandora to determine the status of the principle CS-2 components, to recon­
figure and reset those components, and to provide remote console connections to
the Unix processors.

The limitations of the CAN hardware mean that a single network cannot be used
to connect all the components of your system - instead a hierarchy of networks
is used. At the lowest level the CAN controls objects within a module; the
SPARC processors, the H8 processors, and the module controller all have inter­
faces to the CAN at this level. At the intermediate level there is the X-CAN,
which connects the modules in a Cluster (3 bay/24 module system); the transition
from module CAN to the X-CAN is handled by each module's controller. At the
highest level is the global CAN, or G-CAN, which carries the network between
Clusters. The interface between the X -CAN to the G-CAN is via one of more of
the modules within each Cluster.

The nomination of a module as a G-CAN router can be made either by one of the
Unix processors or the H8 processors. When using the G-CAN Router Color
Space, Pandora identifies the G-CAN routers as shown below:

NoG-CAN. No global CAN bus for this system.

Unix control, always routing. This module is a G-CAN router.

Unix control, never routing. This module is not a G-CAN router.

23

2

Default

Keyboard Short-cuts

Function Menu

24

H8 control, routing. The H8 controls G-CAN routing.

H8 control, potential router. This module is able to become a router.

H8 control, not routing. This module is not able to become a router.

The Default Color Space is selected when the Machine View is first displayed. It
uses a different colour for each of the 3 board types: processors, switches, and
module controllers. The Machine View shown in Figure 2-1 uses the Default
Color Space.

The following keyboard short-cuts operate in the Machine View; type the char­
acter with the mouse-pointer in the view's display area. All the short-cuts ex.ecute
functions from the Function Menu (described below).

Key Function Description

i Info List information about the selected objects.

s Set Set the various object attributes.

The function menu is viewed by pressing and holding the right mouse button
while the mouse is within the view's display area. The following functions are
supported in the Machine View:

• Configure - change configuration state.

• Set - set module attributes.

• Info - get information about objects.

• Reset - reset processors.

• Refresh - redraw the display.

• Finder - locate objects using specified search criteria.

SI002-10M125.01 meJ<D

Configure

Set

meko Machine View

2

This function is used to change the configuration state (availability) of processors
and switches. The ROI should include processor and/or switch boards; if the ROI
includes a module then the function is applied to all processors and switches in
that module.

Selecting this function causes a dialogue box to appear allowing the objects in
the ROI to be configured-out (or configured back in). An additional option allows
you to change the link state of the links that connect to the selected objects. Select
the required options and use Apply to make them take effect; use the Ignore but­
ton to dismiss the dialogue box without changing configuration state.

When configuring-out an object you should enable the link state change (unless
you intend to change the state manually from the Network View). Setting the link
state causes the link to be put into an Acking state (i.e. inoperative, but acknowl­
edging packets before consuming them) - this is usually the preferred state be­
cause it allows broadcasts to include the range of configured-out objects without
causing the broadcast to fail. When configuring-in objects you should enable the
link state change to restore the links to an operative state. In this case the link is
put into aN acking state for 20 seconds before being put under Auto (H8 control);
this ensures that the link is in a coherent state before being made available.

Note that confirmation of link state changes is written to Pandora's Information
Window, and can be visualised with the Link State Color Space in the Network
View.

See also the Set function in the Network View.

This function is used to set various module attributes. The ROI must include
modules.

The following options appear within a dialogue box. Select the required options
and use the Apply button to make them take effect. Use the Ignore button to dis­
miss the dialogue box without changing the module's attributes.

25

2

26

GCAN router control
Options are: Ignore, Auto (H8 control), No GCAN, Always route,
Never route. This attribute defines the module's connection to the G-CAN.
The normal setting is Auto; ignore means that the current setting is to re­
main unchanged.

Set GCAN router id
Options are no or yes. If specifying yes you must list the G-CAN id of the
network that this module connects to. Remember that several G-CAN net­
works can be present in a system. Numbering of the network begins at O.

Read module NVRAM
Options are no or yes. Selecting yes causes the module controller's NVRAM
values to be written to Pandora's Information Window. The contents of the
NVRAM are useful only to Meiko engineers for diagnostic purposes.

Flush to NVRAM
Options are: no or ye s. Use this option to write the switch state to the module
NVRAM.

Thermistor lower trigger
Enter a minimum pennitted operating temperature (in Celsius). A level 1 alert
is generated if any sensor records a temperature lower than this setting. Note
that alerts are recorded by Pandora but currently have no other effect.

Thermistor upper trigger
Enter a maximum permitted operating temperature (in Celsius). A level 2 alert
is generated if any sensor records a temperature that is higher than this. Note
that alerts are recorded by Pandora but currently have no other effect (al­
though safety devices within the module will shutdown the unit if the temper­
ature becomes unsafe).

Fan lower trigger
Enter a minimum number of fans; if the number of operational fans falls below
this limit then an alert is generated (but note that these alerts are not currently
used).

Sl002-10M125.01 meJ<a

Info

mei<rJ Machine View

2

This function displays information about boards and modules; the information is
written into Pandora's Information window. The ROI must include boards or
modules.

For boards the following information is displayed:

• The board's configuration status (configured-in/out).

• The board's CAN address.

• The board's logical id within the module (it's slot id).

• The board type (e.g. MK515, MK401 etc.).

• The ROM revision for the board's H8 controller.

• The board's module ide

• The number of processors on the board.

• The number of switches on the board.

When used to obtain information about a module the following infonnation pre­
cedes the descriptions of the module's boards:

• The module's configuration status (configured-in/out).

• The module's CAN address.

• The module's type (e.g. processor or switch).

• The switch level that this module connects to, and the module's network ide

• The Elan Id of the first processor in the module, and the number of processors.

• The thermistor and fan trigger levels.

• The module's power supply status.

27

2

Reset

Refresh

Finder

28

Used to reset a board's H8 processor, or to reset a module. The H8 processor is
principally used for controlling the board's interface to the CAN bus. Reset a
board/module H8 if the CAN interface does not work as expected.

If the ROI includes a module then a dialogue box allows you to reset the module
(temporary power-down), reset the module controller's H8 processor, or reset the
module controller's H8 NVRAM (used to hold state and diagnostic infonnation
for the module).

If the ROI includes a module controller then the dialogue box allows the control­
ler's H8 or H8 NVRAM to be reset.

If the ROJ includes a processor or switch board then the dialogue box allow's the
board's H8 processor to be reset.

Used to redraw the display.

Used to locate objects according to the specified search criteria. The objects that
match the search criteria are shown highlighted in the Machine View.

This function generates a dialogue box allowing you to search for Boards,
Switches, or Processors. Selecting one or more of these options produces addi­
tional prompts that allow you to specify the search criteria. You may supply in­
fonnation to as may of these prompts as are necessary. The criteria are applied
using a logical AND within each object type, and a logical OR between object
types. Where a numeric search criteria may be entered it is often possible to enter
either a numeric range (e.g. 1-4), or a comma separate list of ranges (e.g. 1-4,7,9-
10).

Criteria that may be applied to Boards are:

• Board type - matches board type.

• ROM revision - matches H8 ROM revision.

S I002-IOMI2S.0I meJ<a

2

• Number or procs - matches boards with the specified number of processors
(a number range such as 1-4 matches boards with 1, 2, 3, or 4 processors).

Criteria that may be applied to Switches are as follows. Note that processor
boards will be highlighted if the search criteria identifies switches that are fitted
to those boards.

• Switch level- matches switches at the specified level (0 is uppermost).

• Switch plane - matches switches at the specified plane (0 is uppermost).

• Switch layer - matches switches in the specified layer (either 0 or 1).

• Net Id. - a network id (or range of Ids).

Criteria that may be applied to Processors are:

• Memory MB - matches boards fitted with specified memory (a number range
such as 32-64 matches boards with between 32 and 64MBytes).

• Elan Id - a network Id (or range of Ids).

• ROM revision - matches boot ROM revision.

• Host name - locates the processor with the specified hostname.

• Boot device or host - used to identify a server processors (the other search
criteria identify one or more client processors).

Interaction with Other Views

meI<o Machine View

You can drag the following objects from the Machine View to other views:

• You can drag processor and switch boards into the Network View to determine
their placement in the CS-2 network, and to determine their operational status.
You can drag modules into the Network View to determine the placement or
status of all the switches and processors in the module.

• You can drag processor boards into the Configuration View to determine the
Elan Id of the processor's on that board, or to determine their operational
status. You can drag modules into the Configuration View to determine the
Elan Ids or status of all the processors in the module.

29

2

30

You can also drag objects from other views into the Machine View:

• You can drag processors and switches from the Network View to determine
their physical placement (useful when the Network View identifies network
faults).

• You can drag processors and partitions from the Configuration View to
determine the physical placement of the processors (useful when the
Configuration View identifies a faulty processor).

SI002-10MI25.01 meJ<D

Network View 3

The Network View represents the CS-2logically as a fat-tree diagram with
switches at the tree nodes and processors at the leaves. This view is capable of
showing every processor, switch, and link in a machine and is used primarily for
system maintenance and diagnostic purposes.

Figure 3-1 Network View (Default Color Space)

m~ 31

3

Color Spaces

The Network View supports the following Color Spaces:

• Configuration - identifies processors/switches that are configured out.

• Node type - identifies processor types.

• Link state - status of Elan/Elite network links.

• Switch error - error conditions on the Elite network switches.

• Node status - the boot status of the processors.

• Boot group - identifies servers and clients.

• Default - identifies switches and processors.

Configuration

Node Type

The Configuration Color Space compliments anyone of the other Color Spaces.
It shows objects that have been configured-out in grey; configured-in objects are
coloured using the active Color Space.

Objects that are configured-out have been made unavailable. You can configure­
out objects by using the Configure function, described later (see page 37).

The Node Type Color Space identifies the types of processor in your network.
This will currently be one of the following:

Viking Texas Instruments Viking Processor

Viking + Ecache TI Viking processor with external (2nd level) cache.

Pinnacle ROSS Pinnacle.

605 ROSS 605.

VPU Dual Fujitsu vector processors.

c VPU Cache coherent dual vector processors.

32 S lOO2-10M125.01 meJ<o

Link State

mei<o Network View

3

The Link State Color Space identifies the state of all the links in the network. The
link state display is updated by the Get function (described later on page 38) and
is limited to the links in the ROJ.

For the purposes of this view each link is divided into two equal lengths, each
half belonging to the object that it connects to. The link may therefore be drawn
in two colours to show the error status recorded by the component at each end.

The following link states are shown by this Color Space:

Active

Active with timeout

Nacking

Acking

Reset

Unknown

Link is running normally without timeout.

Link is running normally with a timeout specified.
The timeout applies to packets waiting at a switch
input for the output link to become available. This
timeout is an attribute of the switch.

Link is inoperative; packets will be N acked and
consumed as they reach the switch's output link.

Link is inoperative; packets will be Acked and
consumed as they reach the switch's output link.

Held in reset (maybe the attached processor has been
removed).

Indeterminate state.

H8 controlled links are shown by solid lines - this is the nonnal state. Explicit
controlled links are dashed - these are link's that have had their state changed
explicitly by the System Administrator. Link states may be explicitly changed by
either by using the Set function or as a side effect of configuring-out processors
or switches - see the description of the Set function on page 40, and the Con­
figure function on page 37.

Note that the Set function includes a Drawing Mode option specifying how this
view is updated. When querying the state of several (possibly overlapping) ROIs
you will need to adjust the drawing mode so that each query forces the results of
a previous query to be erased from the display, otherwise the display may become
difficult to interpret.

33

3

34

Switch Error

Node Status

The Switch Error Color Space identifies errors on the switches. The switch error
display is updated by the Get function (described later on page 38) and is limited
to the switches in the ROI.

For the purposes of this view each link is divided into two equal lengths, each
half belonging to the object that it connects to. The link may therefore be drawn
in two colours to show the error status reported by the components at each end.
In addition the color of the switch icon itself is changed, and included within the
icon there maybe an Sand/or H to indicate the error type (either Soft or Hard er­
rors).

Switch error states are:

No error

Soft error

Hard error

Unknown

The desirable operating state.

Route errors, CRC errors, or timeout errors on the link.

Phase errors (sender/receiver frequency drift or noise on
clock line), or data errors.

Indeterminate condition

Note that the Set function includes a Drawing Mode option specifying how this
view is updated. When querying the state of several (possibly overlapping) ROIs
you will need to adjust the drawing mode so that each query forces the results of
a previous query to be erased from the display, otherwise the display may become
difficult to interpret.

The Node Status Color Space identifies the boot status of the processors. The sta­
tus will be one of:

Configured Out Unavailable.

Powered down Powered down.

Inactive Indeterminate status.

Needs FSCK Needs a file system check with f sck(lm).

At 'ok1' I At boot ROM prompt.

S lOO2-10M125.01 meJ<D

Boot Group

Default

meko Network View

3

Self test Performing start-up self test.

ROM loading code Loading kernel code.

ROM running code Running kernel code.

CAN driver loaded CAN device driver installed.

Unix,RLS single user Unix single user mode.

Unix,RLI Root FS only Unix run levell, only root mounted.

Unix,RL2 Multi-user, no NFS Unix run level 2, local filesystems mount.

Unix,RL3 multi-user Unix run level 3, multi user with NFS.

Unix,RLO halting Unix run level 0, halting.

Unix,RL5 reboot -a Unix run level 5, interactive reboot.

Unix,RL6 reboot Unix run level 6, rebooting.

The Boot Group Color Space identifies each processor as either a boot-server or
a client. Clients have no attached system disk of their own and rely on a server
processor to host their root filesystem and to source the operating system code.

Note that MK405 (quatro) boards are always configured as clients because they
have no disk capability.

The Default Color Space is selected when the view is first displayed. It uses a dif­
ferent colour for the processors and switches. The Network View shown on page
31 uses the default Color Space.

35

3

Keyboard Short-cuts

Function Menu

36

The following keyboard short-cuts operate in the Network View; type the char­
acterwith the mouse-pointer in the view's display area. All the short-cuts execute
functions from the Function Menu (described below):

Key Function Description

g Get Update the display of Link Status or get a Switch Error
context. Requires the Link State or Switch Error Color
Spaces.

s Set Set link or processor attributes.

i Info Write information about processors and/or switches to
Pandora's Information Window.

The function menu is viewed by pressing and holding the right mouse button
while the mouse is within the view's display area. The following functions are
supported in this view:

• Configure - change object's configuration state.

• Open - change style of network display.

• Get - restore a switch context or force update of Link Status display.

• Put - save a switch context to a file.

• Set - set link or processor attributes.

• Info - write information about processors or switches to the info window.

• Reset - reset processors or switches.

• Refresh - redraw the display.

• Finder -locate objects using specified search criteria.

S lOO2-10M125.01 meJ<D

Configure

Open

meko Network View

3

This function is used to change the configuration state (availability) of processors
and switches. The ROI should include processors and/or switches.

Selecting this function causes a dialogue box to appear allowing the objects in
the ROI to be configured-out (or configured back in). An additional option allows
you to change the link state of the links that connect to the selected objects. Select
the required options and use Apply to make them take effect; use the Ignore but­
ton to dismiss the dialogue box without changing configuration state.

When configuring-out an object you should enable the link state change (unless
you intend to change the state manually with the Set function). Setting the link
state causes the link to be put into an Acking state (i.e. inoperative, but acknowl­
edging packets before consuming them) - this is usually the preferred state be­
cause it allows broadcasts to include the range of configured-out objects without
causing the broadcast to fail. When configuring-in objects you should enable the
link state change to restore the links to an operative state. In this case the link is
put into a Nacking state for 20 seconds before being put under Auto (H8 control);
this ensures that the link is in a coherent state before being made available.

Note that confirmation of link state changes is written to Pandora's Information
Window, and can be visualised with the Link State Color Space.

This function is used to iconify groups of switches in order to make the view less
congested. The ROI must include one or more switches.

Drawing the entire switch network of a large machine results in an image that is
complex. To simplify this view groups of switches can be closed, so that switches
at a common level and netId stack up, one behind the other, reducing the number
of lines required to represent links.

Link state and errors are represented in order of their importance, that is, a link
that shows a hard error will always overdraw one with a soft error, which in turn
will always overdraw a link with no errors. The resolution of which switch owns
the link in error can be achieved by opening that group of switches. Switch
groups that have been closed are drawn differently to those which are open in that
their representation changes from a single circle to concentric rings upon close.

37

3

Get

38

Figure 3-2 Opened Network Display (compare with Figure 3-1)

This function is only operative for the Link State or Switch Error Color Spaces.

Link State Color Space

When used with the Link State Color Space and an ROI that includes at least two
connected objects (either processors or switches), this function forces Pandora to
re-read the status of the connecting links and to redraw them according to the
Link State Color Space. Typing the letter 'g' in the display area will also execute
this function.

Switch Error Color Space

Warning - Note that the behaviour of this function when invoked via the
keyboard is different to its behaviour when invoked via the function menu.

SlOO2-10M125.01 mS<D

3

When used with the Switch Error Color Space, this function operates on Switch
Contexts. A switch context is an error report taken at a specific time during the
machine's operation.

Typing the letter' g' into the display area will cause the current switch context to
be fetched - the results are displayed within the Network View using the Switch
Error Color Space, and are also written to the Infonnation Window. The infonna­
tion that is displayed in the Network View indicates the errors that were reported
since the last query. The infonnation listed to the Infonnation Window is more
precise, and lists both absolute and relative error counts in addition to the error
types. The following error reports from an Elan processor and an Elite switch
were cut from the Infonnation Window:

Elan Errors for proc at 000341 elanId: Ox51 (c:O m:13 n:1) since epoch (deltas in
brackets) :
Input: 0 (0) *Output: 4 (1)
CRC before ACK: 0 (0) EOP before ACK: 0 (0)
CRC after ACK: 0 (0) EOP after ACK: 0 (0)
LinkO: 0 (0) Link1: 0 (0)

Elite Errors for switch at 00031D chip: 1 (c:O m:12 n:29) since epoch (deltas in
brackets) :
Summary Errors: Soft: 8 (8) Hard: 8 (8)
Link: 0 Route: 0 (0) *CRC: 1 (1) Timeout: 0 (0) Data: 0 (0) *Phase: 4 (4)
Link: 1 Route: 0 (0) *CRC: 4 (4) Timeout: 0 (0) Data: 0 (0) *Phase: 3 (3)
Link: 3 Route: 0 (0) CRC: 0 (0) Timeout: 0 (0) Data: 0 (0) *Phase: 1 (1)
Link: 4 Route: 0 (0) CRC: 0 (0) *Timeout: 3 (3) Data: 0 (0) Phase: 0 (0)

meko Network View

In some cases it is desirable for the switch error display to be relative to some
other time frame, and not the last time it was examined. For example, you may
wish to query the switch errors throughout the working day, or during the execu­
tion of a program, and on each occasion you wish the display to be relative to the
start of the day or program, and not relative to the last query.

In this case you need to save a switch context at the start of the event (pro­
gramme, day, or whatever) and to restore it just before each switch error query.
To save a switch context you must first fetch it (by selecting a ROI and typing
'g'), and then save it to a file with the Put function. To retrieve a switch context
you fetch it from the file with the Get function, and then update the display by
typing 'g'. Having restored the switch context you can get an error report that is
relative to it by typing 'g' for a second time.

39

3

Set

40

This function is used to set either link or processor attributes; the ROI must in­
clude either switches or processors (but not both).

Processor Attributes

If the ROI includes only processors then the following attributes can be specified.
In the absence of user specified values those specified in Pandora's defaults
file will apply; specifying ignore causes the current setting to remain un­
changed.

Auto boot
Options are: Ignore, False, or True. When set to true the processor will
automatically reboot when the processor is Pulse Reset (see the Reset func­
tion); if set to false the processor will remain at the Open Boot prompt await­
ing a manual reboot.

Boot device
Options are: Ignore, Elan, Disk, or Net. Specify the boot device for this
processor. Elan means boot from a boot server via the Elan network, disk
means boot from the local system disk, and net means boot from Ethernet.

Boot Args
Options are: Ignore, noargs, -s, kadb, kadb -s, kadb -r. Specifies
the default arguments used when rebooting.

Console Device
Options are: Ignore, keyboard/ screen, CAN, ttyA, ttyB. Used to
specify the connection used by this processor's console. keyboard/screen
means the graphics terminal and keyboard, CAN means the CAN bus, and
ttyAIB means the serial ports. You should select CAN if you intend to allow
Pandora to create a remote console connection to this processor.

Enable Console stealing
Options are: no or yes. Only one console connection may exist to anyone
processor. With console stealing disabled (set to no) requests for a console will
be refused if a console connection exists elsewhere. If console stealing is en­
abled .the existing connections will be terminated immediately to allow the
new connection to be created.

SI002-10MI25.01 meJ<D

meI<o Network View

3

Auto Configure Boot params
Options are: no or yes. If enabled (set to yes) allows the processor's Elan Id
and other per-processor values to be allocated automatically. See Network Op­
tions, below.

Elan Protocol Options - various
A number of Elan options can be specified; these are intended for Meiko en­
gineers only and should not be adjusted.

Network Options - various
A number of network options can be specified, including the processor's Elan
Id, it's position in the switch network, and the id of it's boot server. Typically
these are assigned automatically by specifying the Auto Configure Boot Par­
ams option, as described above.

Switch Attributes

If the ROJ includes switches the following attributes can be set:

Broadcast top
Options are: ignore, sane, 3, or 7. Identifies the highest link number on
the switch that points down in the network (towards the processors). Usually
links 0-3 point down, although switches at the top of the hierarchy may have
all 8 links going down. The sane option forces an auto-configuration.

Switch timeout
Options are: ignore, off, 22-29us, or other times. This specifies the
timeout for message packets that are queued at a switch input (these will be
waiting for an output link that is currently in use by some other message).

Set Iinkstate
Options are: ignore, Auto (H8 control), Active, Nacking, or Ack­
ing. The Auto option means that the state of links directly connected to an
Elan communications processor is determined by the processor's heartbeat
signal; the link state is active while the heartbeat is present, and N acking if the
heartbeat stops (for other links the Auto option is equivalent to Active).

The remaining options allow the System administrator to specify the link state
(but note that the switch itself will always override user specified states). Use
the Nacking option for links that are inoperative; packets leaving the switch

41

3

42

output will be Nacked and consumed. Use the Acking option for inoperative
links within a broadcast range; packets leaving the switch output will be acked
(allowing the broadcast to succeed) and consumed.

Set linkstate method
Options are: conunon link selection, or bi trnap selection. This at­
tribute specifies how links are identified to the Set Linkstate attribute (de­
scribed above). Common link selection means that the link is identified by
selecting the components at each end within the ROI. The bitmap selection
means that only a switch need be included in the ROI; the link is identified by
the Link selection attribute described below.

Link selection (if bitmap selection)
Options are: 0, 1, 2, 3, 4, 5, 6, or 7. Used with the Select Linkstate Method
described above. This attribute identifies a link.

Enable T/O errors on N&G
Options are: no or yes. When enabled this options causes timeout errors on
Nacking links to be recorded. Timeout errors occur on packets waiting at a
switch input that have been unable to connect with the required switch output
for more than the switch's timeout period. When the connection time's out the
packet is Nacked and Gobbled (consumed) - i.e. N & G.

Flush to NVRAM
Options are: no or yes. Use this option to write the switch state (such as
Broadcast Top) to the module NVRAM.

Perform boundary scan
Options are: no or yes. The ROI must include both ends of a link. This per­
fonns a simple connectivity test to validate the links. The output is written to
the Infonnation Window.

Perform loop-back scan
Options are: no or yes. This test requires a loop-back connector. This test is
for use by Meiko Engineers only.

Loop-back links to test
Options are: 0, 1,2, 3, 4, 5, 6, or 7. For use with the loop-back scan test (for
Meiko Engineers only).

S Ioo2-10MI2S.0I meJ<a

Info

Reset

mei<D Network View

3

Gather Outputter Blocked Counts
Options are: no or yes. This generates a count for each of the switches in the
ROI of the number of packets that could not be directly routed to a switch's
output link (possibly because it was temporarily in use by some other mes­
sage). The view is updated so that links with low blocked counts are drawn in
green, and links with high blocked counts are shown in red. Additional infor­
mation is also written to the Information Window. Useful for identifying
points of congestion in the network.

Perform switch performance metric
Options are: no or yes. Used to test the switch's performance against it's de­
sign specification. This test is for Meiko Engineer's only.

Switch LED on
Options are: ignore, packets, errors, congestion, congestion/
blocked. For use with switches that are fitted to large switch cards (MK.523,
MK.529 etc.). Determines the circumstances in which the status lights on the
board's front panel are illuminated. The light is toggled for each instance of
the specified event.

Drawing mode
Options are: Add selection to current view, or Clear view. Used
to specify the display method used for the results of network functions. When
the ROI applies to a subset of objects in the display area most network func­
tions will only change the coloring of the objects in the ROI. When several
function calls have been made, each to a different and possibly overlapping
ROI, it is possible that the display will become unclear. By setting this at­
tribute to Clear View the display is cleaned before the results of each function
is displayed.

This function lists information about the selected switches or processors in the
Information Window. The information displayed is the current settings of the
switch or processor attributes that are specified with the Set function (see above).

Used to reset switches or processors.

43

3

44

Processor Reset

If the ROI includes processors then a dialogue box asks for confinnation. A sec­
ond dialogue box appears offering the following reset options:

Send Break
Halt the specified processors immediately. For use only with diskless client
processors.

Hold in Reset
Hold the processors in a reset state.

Pulse Reset
Uses the processor's Auto Boot attribute (see the Set function) to determine
whether the processor is to be booted following the reset.

Halt Procs
Equivalent to an ini t 0 command. A graceful shutdown of the specified
processo rs.

Boot Procs
Used to boot the specified processors.

Switch Reset

If the ROI includes switches the following options are presented in a dialogue
box:

Switches
Options are: Ignore or Reset. Use this option to reset a switch when the
switch becomes inoperative and other linkstate changes fail to restore it to an
operative state.

H8s
Options are: Ignore or Reset. Reset the H8 that controls this switch.

H8NVRAM
Options are: Ignore or Reset. Reset the NVRAM in the module controller
clearing all state. This has the side effect of power cycling the module.

SlOO2-10M125.01 meJ<a

Refresh

Finder

meko Network View

3

Redraw the display.

Used to locate objects according to the specified search criteria. The objects that
match the search criteria are shown highlighted in the Machine View.

This function generates a dialogue box allowing you to search for Boards,
Switches, Processors, or a specified Network Route. Selecting one or more of
these options produces additional prompts that allow you to specify the search
criteria. You may supply infonnation to as may of these prompts as are necessary.
The criteria are applied using a logical AND within each object type, and a log­
ical OR between object types. Where a numeric search criteria may be entered it
is often possible to enter either a numeric range (e.g. 1-4), or a comma separate
list of ranges (e.g. 1-4,7,9-10).

Criteria that may be applied to Boards are as follows.

• Board type - matches board type. When the search targets a Quatro the result
will identify both the processors and the switches that are fitted to the board.

• ROM revision - matches H8 ROM revision.

• Number or procs - matches boards with the specified number of processors
(a number range such as 1-4 matches boards with 1, 2, 3, or 4 processors).

Criteria that may be applied to Switches are:

• Switch level- matches switches at the specified level (0 is uppennost).

• Switch plane - matches switches at the specified plane (0 is uppennost).

• Switch layer - matches switches in the specified layer (either 0 or 1).

• Net Id. - a network id (or range of Ids).

Criteria that may be applied to Processors are:

• Memory MB - matches boards fitted with specified memory (a number range
suc!t as 32-64 matches boards with between 32 and 64MBytes).

45

3

• Elan Id - a network Id (or range of Ids).

• ROM revision - matches boot ROM revision.

• Host name - locates the processor with the specified hostname.

• Boot device or host - used to identify a server processors (the other search
criteria identify one or more client processors).

The Routes option allows you to define a route through the network in tenns of
its start point (a processor Id) and a route through each network component.
When you apply this option all components along the route are highlighted. You
can use the Get function with the LinkState color space to determine the state of
the selected route.

• Start Elan Id - the network address of the processor at the start of the route.

• Route string - a comma separated list of Elan/Elite links. The first number
represents an Elan link and will be either 0 or 1 (Le. layer 0 or 1). The
remaining numbers will be Elite links in the range 0-7; these identify the link
by which the route leaves the switch. Conventionally links 0-3 connect to
lower network levels and 4-7 to upper levels. Top switches are configured
with all links connecting to lower levels.

Interaction with Other Views.

46

You can drag the following objects from the Network View to other views

• You can drag processors or switches into the Machine View to detennine their
physical placement. This is useful when a fault is identified and the
appropriate component must be removed and inspected.

• You can drag processors into the Configuration View to detennine which
partition they are in.

S IOO2-IOMI25.0I meJ<a

mei<a

Configuration View 4

The Configuration View, as its name suggests, is primarily used to configure the
machine into resource groups. These resource groups or partitions will become
the targets for users who wish to run applications on the machine and represent
a collection of processors. Partitions are used to control access to a machine that
has been configured into a shared resource. Different partitions are created over
a machine to allow the System Administrator to allocate specific resources to
groups of users or run different scheduling policies simultaneously. Partitions are
grouped into higher level objects called configurations. Any number of configu­
rations can be created and edited at once in this view but there is only one active
configuration. The active configuration is the resource split and scheduling pol­
icy currently in effect. Only the System Administrator has the pennission to
change the active configuration.

47

4

Color Spaces

Figure 4-1 Configuration View (Node Status Color Space)

The Configuration View supports the following Color Spaces. Note that the root
configuration is always displayed using the Node Status Color Space.

• Configuration - identifies processors that are configured-out.

• Node type - identifies processor types.

• Node status - the boot status of the processors.

• Pmanager status - the status of the Partition Managers.

• Boot group - identifies servers and clients.

• Default - included for compatibility with other views (not useful here).

Configuration

48

The Configuration Color Space compliments anyone of the other Color Spaces.
It shows objects that have been configured-out in grey; configured-in objects are
coloured using the active Color Space.

Objects that are configured-out have been made unavailable. You can configure­
out objects by using the Configure function, described later (see page 52).

Sl002-10M125.01 mei<a

Node type

Node Status

mei<D Configuration View

4

The Node Type Color Space identifies the types of processor in your network.
This will currently be one of the following:

Viking Texas Instruments Viking Processor

Viking + Ecache TI Viking processor with external (2nd level) cache.

Pinnacle ROSS Pinnacle.

605 ROSS 605.

VPU Dual Fujitsu vector processors.

cVPU Cache coherent dual vector processors.

The Node Status Color Space identifies the boot status of the processors. This is
the default Color Space for this view. The status will be one of:

Configured Out Unavailable.

Powered down Powered down.

Inactive Indetenninate status.

Needs FSCK Needs a filesystem check with fsck(1m).

At 'ok' At boot ROM prompt.

Self test Perfonning start-up self test.

ROM loading code Loading kernel code.

ROM running code Running kernel code.

CAN driver loaded CAN device driver installed.

Unix,RLS single user Unix single user mode.

Unix,RL 1 Root FS only Unix run levell, only root mounted.

Unix,RL2 Multi-user, no NFS Unix run level 2, local filesystems mount.

Unix,RL3 multi -user Unix run level 3, multi user with NFS.

49

4

50

Unix,RLO halting Unix run level 0, halting.

Unix,RL5 reboot -a Unix run level 5, interactive reboot.

Unix,RL6 reboot Unix run level 6, rebooting.

Pmanager Status

Boot Group

Default

The Pmanager Color Space identifies the status of the Partition Managers. The
status will be one of:

PManager Down

PManager Timeout

PManager Starting

PManager Running

Partition manager is no longer running.

Partition manager started but then failed
(maybe a partition manager already running).

Partition manager is starting-up.

Partition manager is running and ready.

The Boot Group Color Space identifies each processor as either a boot-server or
a client. Clients have no attached system disk of their own and rely on a server
processor to host their root filesystem and to source the operating system code.

Note that MK405 (quatro) boards are always configured as clients because they
have no disk capability.

The Default Color Space is common to all of Pandora's views; it uses a different
colour for the processors, switches, and module controllers. In the Configuration
View, which does not show switches or controllers, this Color Space has limited
value.

SIOO2-10MI25.0I meJ<o

Keyboard Short-cuts

Functions

meko Configuration View

4

The following keyboard short-cuts operate in the Configuration View; type the
character with the mouse-pointer in the view's display area. All the short-cuts ex­
ecute functions from the Function Menu (described below):

Key Function Description

g Get Get a configuration definition from a file and add the
configuration to the display.

s Set Set partition/configuration name or processor
attributes.

c Console Get console connections to the selected processors.

i Info List infonnation about the selected processors in the
Information Window.

The function menu is viewed by pressing and holding the right mouse button
while the mouse is within the view's display area. The following functions are
supported in this view:

• Configure - change object's configuration state.

• Create - create a new configuration or partition.

• Delete - delete processor, partition, or configuration.

• Get - fetch a configuration definition from disk.

• Put - save a configuration definition to disk.

• Set - set partition/configuration names or processor attributes.

• Change Config. - start or stop a configuration or partition.

• Command - execute a command on selected processors.

• Console - get console connections to selected processors.

• Info -list information about selected processors in the Information Window.

51

4

Configure

Create

52

• Reset - reset the selected processors.

• Route Gen. - generate route tables for all the processors in the partition.

• Finder -locate objects using specified search criteria.

This function is used to change the configuration state (availability) of processors
included in the ROI.

Selecting this function causes a dialogue box to appear allowing the processors
in the ROI to be configured-out (or configured back in). An additional option al­
lows you to change the link state of the links that connect to the processors. Se­
lect the required options and use Apply to make them take effect; use the Ignore
button to dismiss the dialogue box without changing configuration state.

When configuring-out an object you should enable the link state change (unless
you intend to change the state manually with the Set function). Setting the link
state causes the link to be put into an Acking state (i.e. inoperative, but acknowl­
edging packets before consuming them) - this is usually the preferred state be­
cause it allows broadcasts to include the range of configured-out processors
without causing the broadcast to fail. When configuring-in processors you should
enable the link state change to restore the links to an operative state. In this case
the link is put into a Nacking state for 20 seconds before being put under Auto
(H8 control); this ensures that the link is in a coherent state before being made
available.

Note that confinnation of link state changes is written to Pandora's Infonnation
Window, and can be visualised with the Link State Color Space in the Network
View.

This function is used to create configurations and partitions. Create is context
sensitive in that it will create an object whose type will depend upon the current
ROI. While editing configurations no external actions are taken so it is perfectly
safe to create, edit and delete configurations as much as you wish. To a configu­
ration definition to disk you use the Put (or Change Config.) function. To make a
configuration the new Active configuration you use the Change Config. function.

SIOO2-10M125.01 mEi<D

Delete

meI<o Configuration View

4

A configuration will be created if there is no ROI (Le. nothing currently selected
in the view). The configuration initially has no name (indicated by the '- ') and is
represented by a box. To assign a name to the configuration use the Set function.

A partition will be created if the ROI includes a configuration; this too will be
represented by an unnamed box that can be named with the Set function. You can
create as many partitions within a configuration as you require.

Processors are added into partition definitions by dragging them from the root
configuration (or any other configuration definition). As processors are added to
a partition's definition the size of the partition's bounding box is automatically
adjusted. Note that processors must be moved into the partition by a drag-and­
add operation as described on page 7 (Le. shift and left mouse button).

The boxes drawn around the configurations and partitions can be resized and
moved with the mouse. To resize a configuration you first select it and then click
and hold the left mouse button, while depressing the SHIFf key, on a comer of
the configuration's outer box; drag the mouse to the desired position and release
the mouse button. To move either a configuration or partition you first select it
and then click and hold the left mouse button, while depressing the SHIff key,
within the object's display area; drag the mouse to the desired position and re­
lease the mouse button. The positions of partitions are stored in the geometry
files (see page 15) and are reused the next time Pandora displays the configura­
tion. The positions of the configurations are not stored and will always be relative
to other configurations shown in the view.

Note that when the Configuration View is first displayed only the root and Active
configuration are displayed. To view other configuration definitions you must ex­
plicitly restore them from disk by using the Get function.

This function deletes the processors, partitions, or configurations in the current
ROI, and (in the case of processors and partitions) resizes the bounding boxes.

If the selection was the active configuration it is only removed from the view, it
is still the active configuration and is still in effect over the machine. Configura­
tions will still remain in the filestore after a delete.

Note Jhat you can't delete processors from the root partition.

53

4

Get

Put

Set

54

This function does not require a ROI.

This function will load a configuration previously saved by the Put function. Af­
ter this function is selected a scrolling file browser is created containing names
of configurations saved. A selection can be made from this list by a single left­
mouse-click over the name of the configuration you wish to load. The selected
configuration will be drawn into the view and becomes a selectable object capa­
ble of being edited.

Note that getting a configuration simply adds it onto the display; it does not mod­
ify the active configuration or your filesystem. To make the configuration the new
Active configuration use the Change Con fig. function

This function will save the selected configuration to the filestore. The ROI must
define a single configuration.

The configuration should be named using Set prior to this operation; the config­
uration is saved in / opt/MEIKOcs2 / etc/machine-name/ configuration­
name.

If configurations or partitions are selected in the ROI then this function allows
the setting of the object name and in the case of partitions the user groups that
are allowed to use the partition as a target for applications. User groups are lists
of conventional Unix groups. A user's group must match one of the partition ac­
cess groups before permission to use that resource will be granted. See the
group (4) and permissions (4) man pages for further information.

If processors are selected in the ROI then the following processor attributes can
be set:

Auto boot
Options are: Ignore, False, or True. When set to true the processor will
automatically reboot when the processor is Pulse Reset (see the Reset func­
tion); if set to false the processor will remain at the Open Boot prompt await­
ing a manual reboot.

S lOO2-10M125.01 meJ<D

mei<o Configuration View

4

Boot device
Options are: Ignore, Elan, Disk, or Net. Specify the boot device for this
processor. Elan means boot from a boot server via the Elan network, disk
means boot from the local system disk, and net means boot from Ethernet.

Boot Args
Options are: Ignore, noargs, -s, kadb, kadb -s, kadb -r. Specifies
the default arguments used when rebooting.

Console Device
Options are: Ignore, keyboard/ screen, CAN, ttyA, ttyB. Used to
specify the connection used by this processor's console. keyboard/screen
means the graphics tenninal and keyboard, CAN means the CAN bus, and tty­
AlB means the serial ports. You should select CAN if you intend to allow Pan­
dora to create a remote console connection to this processor.

Enable Console stealing
Options are: no or yes. Only one console connection may exist to anyone
processor. With console stealing disabled (set to no) requests for a console will
be refused if a console connection exists elsewhere. If console stealing is en­
abled the existing connections will be tenninated immediately to allow the
new connection to be created.

Auto Configure Boot params
Options are: no or yes. If enabled (set to yes) allows the processor's Elan Id
and other per-processor values to be allocated automatically. See Network Op­
tions, below.

Elan Protocol Options - various
A number of Elan options can be specified; these are intended for Meiko en­
gineers only and should not be adjusted. Default values are read from the de­
faults file.

Network Options - various
A number of network options can be specified, including the processor's Elan
Id, it's position in the switch network, and the id of it's boot server. Typically
these are assigned automatically by specifying the Auto Configure Boot Par­
ams option, as described above. Default values are read from the de f a ul t s
file.

55

4

56

Change Config.

Command

This function allows partitions in the Active configuration to be started or
stopped, and allows a new configuration to be made active. The ROJ must in­
clude either partitions or configurations.

This function uses rcontrol(1) to change the configuration. Output from
rcontrol(l) is written to text window - type the return key at the prompt to
dismiss the window.

The following options appear in a dialogue box when this function is selected:

Output
Options are Normal or Interactive. Selecting Interactive instructs Pandora to
request confirmation before changing the configuration.

Action
Options are Start or Stop. Speci fies whether the selected partition/configura­
tion is to be started or stopped.

Kill Jobs
Options are No or Yes. Specifies when the configuration change takes place.
By setting this option to yes, all current jobs are killed and the configuration
change happens immediately; otherwise existing jobs are allowed to complete
before the configuration is changed.

When using this function to change to a newly defined configuration, the new
configuration definition will automatically be saved to disk if it has not already
been saved (with the Put function).

This function allows a command or user application to be executed on all proc­
essors in the selected partition. The ROJ must identify a single partition in the
Active configuration.

This function generates a dialogue box with a partially completed prun(1) com­
mand line (prun -p partition_name -v). Append the name of your program
to this line and use the apply button to execute it. Program output is written to a
dedicated window.

SlOO2-10M125.01 meJ<o

Console

Info

Reset

meI<o Configuration View

4

See also the manual page for prun (1) .

This function will initiate a remote console connection to each of the processors
in the ROI.

Each console connection is staned in its own window. Typed characters are nor­
mally transmitted directly to the remote processor. A tilde (...,) character appear­
ing as the first character of a line is an escape signal which directs some special
action. Recognised escape sequences are:

-AD Drop the connection and exit.

As above.

- #" Send a BREAK to the remote processor.

- ? Print a summary of the tilde escapes.

See also the man page for cancon (1m) .

This function writes to the Information Window detailed information about each
of the processors in the ROI. The information includes:

• Hostname

• NVRAM settings (as specified by the Set function).

• Configuration and boot status.

• Hardware configuration (board type and position in the network).

Resets all of the processors identified by the ROJ. A dialogue box prompts for
confirmation. A second dialogue box appears offering the following reset op­
tions:

57

4

Route Gen.

Finder

58

Send Break
Halt the specified processors immediately. For use only with diskless client
processors.

Hold in Reset
Hold the processors in a reset state.

Pulse Reset
Uses the processor's Auto Boot attribute (see the Set function) to determine
whether the processor is to be booted following the reset.

Halt Procs
Equivalent to an ini t a command. A graceful shutdown of the specified
processors.

Boot Procs
Used to boot the specified processors.

This function generates a number of files listing the network routes between
processors in the partition. The ROI must identify a partition.

A route file is generated for each processor, each file identifying the network
routes to the other processors in the same partition. The routes may be generated
using either a random or a scatter algorithm and may be on either (or both) of the
two switch layers (both options are selectable from the dialogue box).

The route files are stored in a directory called routes alongside the definition
of the partition (Le. in / opt /MEIKOcs2 / etc/machine-name/ config­
name/partition-name). The filename for each route file is the same as the Elan
Id of the processor that it was generated for. Note that the format of the route files
is not documented and is subject to change.

Route files are loaded into each processor's route tables with rmsroute(lm).

U sed to locate objects according to the specified search criteria. The objects that
match the search criteria are shown highlighted in the Configuration View.

Sl002-10M125.01 mEi<a

4

This function generates a dialogue box allowing you to search for Boards or
Processors. Selecting one or more of these options produces additional prompts
that allow you to specify the search criteria. You may supply information to as
may of these prompts as are necessary. The criteria are applied using a logical
AND within each object type, and a logical OR between object types. Where a
numeric search criteria may be entered it is often possible to enter either a nu­
meric range (e.g. 1-4), or a comma separate list of ranges (e.g. 1-4,7,9-10).

Criteria that may be applied to Boards are:

• Board type - matches board type.

• ROM revision - matches H8 ROM revision.

• Number or procs - matches boards with the specified number of processors
(a number range such as 1-4 matches boards with 1, 2, 3, or 4 processors).

Criteria that may be applied to Processors are:

• Memory MB - matches boards fitted with specified memory (a number range
such as 32-64 matches boards with between 32 and 64MBytes).

• Elan Id - a network Id (or range of Ids).

• ROM revision - matches boot ROM revision.

• Host name -locates the processor with the specified hostname.

• Boot device or host - used to identify a server processors (the other search
criteria identify one or more client processors).

Interaction with Other Views

meI<o Configuration View

You can drag the following objects from the Configuration View to other views:

• You can drag processors into the Machine View to visualise their physical
position in the machine. This is useful if the Configuration View identifies a
processors that needs to be removed from the machine.

• You can drag processors into the Network View to determine their placement
in the network.

59

4

60

• You can drag partitions into the Performance View to visualise processor
performance.

You can drag the following objects into the Configuration View:

• You can drag processors from the Machine View into the Configuration View
to identify the partitions that use the selected processors.

• You can drag processors from the Network View.

SlOO2-10M125.01 meJ<a

meJ<a

Performance View 5

The Performance View is used to visualise the performance of the processors in
a partition. Statistics can be gathered and displayed as bar graphs for each node
in the partition, or a summarising graph can be displayed showing the average,
minimum, or maximum over all processors in the partition.

The Performance View shown in Figure 5-1 shows both bar graph and 'wiggle
trace' displays for the processors in the Parallel partition. The bar graph displays
on the left show the instantaneous User CPU, System CPU, Load, and Context
Switched for each of the four processors in the partition. The trace displays on
the right show Average User CPU, Average System CPU, Average Load, and Av­
erage Context Switches calculated over all processors in the partition.

61

5

Color Spaces

Keyboard Short-cuts

62

Figure 5-1 Performance View

The Perfonnance View has no Color Spaces.

The following keyboard short-cut operates in the Perfonnance View; type the
character with the mouse-pointer in the view's display area. The short-cut exe­
cutes a function from the Function Menu (described below).

Key Function Description

s Set Set the statistics to be gathered.

SlOO2-10M125.01 meJ<a

Function Menu

Delete

Set

meko Performance View

5

The function menu is viewed by pressing and holding the left mouse right mouse
button while the mouse is within the view's display area. The following functions
are supported in the Performance View:

• Delete - remove a graph from the display.

• Set - set statistics to be gathered.

• Reset - reset high water marks on bar graph displays.

This function is used to remove one or more graphs from the display. The ROI
should include one or more graphs. Include a partition in the ROI to delete the
displays for the whole partition.

This function is used to create additional statistics graphs for a partition, or to de­
tennine the statistics that are gathered by default when statistics gathering is
started for a new partition.

If the ROI is empty the Set function defines the default statistics that are gathered
when a partition is selected. The following options are displayed within a dia­
logue box. Select the Individual option to create a bar graph display for each
processor in the partition. Use the Average, Minimum or Maximum options to
create a trace display showing the average/minimum/maximum calculated over
all processors in the partition. You may select more that one statistic.

User CPU
This is the time spent executing user code.

System CPU
This is the time spent executing kernel code.

Total CPU
Time executing code (sum of User and System CPU statistics).

Page -Faults
Page fault count.

63

5

64

Load
The number of jobs in the run queue.

Free Real Memory
Free memory; this is the maximum amount of physical memory.

Free Memory
Free memory including swap space.

Context Switches
The number of context switches.

Disk Rls
Disk reads per second. When bar individual bar graphs are displayed the val­
ues shown in each graph are taken over all disks connected to each node.

Disk W/s
Disk writes per second. When bar individual bar graphs are displayed the val­
ues shown in each graph are taken over all disks connected to each node.

Disk RW/s
Disk read-write count per second. When bar individual bar graphs are dis­
played the values shown in each graph are taken over all disks connected to
each node.

Disk Read Kb/s
Disk read bandwidth (KBytes per second). When bar individual bar graphs are
displayed the values shown in each graph are taken over all disks connected
to each node.

Disk Write Kb/s
Disk write bandwidth (KBytes per second). When bar individual bar graphs
are displayed the values shown in each graph are taken over all disks connect­
ed to each node.

Disk RW/s
Disk I/O bandwidth (KBytes per second). When bar individual bar graphs are
displayed the values shown in each graph are taken over all disks connected
to each node.

S lOO2-10M125.01 meJ<a

Reset

5

Layout
Options are either columns or rows. Used when selecting individual graphs
(Le. one bar graph per node) to detennine the layout of the graphs on the
screen. Used with the Dimensions option.

Dimensions
When individual bar graph displays are created for each node in the partition
the graphs are arranged in a grid. Use this option and the Layout option to
specify with the width (columns) or height (rows) of the grid. These options
are useful when displaying individual bar graphs for all the processors in a
large partition, where large numbers of graphs will be displayed.

If the ROI includes a single partition you can add graphs to the display, or remove
graphs from it. A dialogue box appears which includes all the statistics listed
above. Select un-ticked boxes to add the statistic to the display; by selecting a
ticked box (thus clearing it) you will remove the display for that statistic.

This function is used to reset the high water marks on the bar graph displays. Use
the reset function to reset this line to zero.

Interaction with Other Views

You can drag partitions from the Configuration View into the Perfonnance View.

meI<o Performance View 65

5

66 SlOO2-10M125.01 mei<a

System Configuration

Common Operations 6

This chapter describes some common administration and testing functions; new
users of Pandora can use these procedures to become familiar with Pandora,
whereas existing users can use them as a quick reference.

Refer to the previous reference chapters for more information about the functions
used in these procedures.

System configuration functions are undertaken in the Configuration View.

Defining a New Configuration

meJ<a

This section describes in outline how to define a new configuration and how to
make it Active. You will typically use these steps when configuring your machine
for the first time, or when defining a new configuration to meet the changing
needs of your users.

1. Clear the current ROI.
A left click somewhere in the view (but not over a network object) will clear
an existing ROI and ensure that no objects are selected.

2. Create a new configuration.
Select the Create function; an empty box should appear representing the new
configuration.

67

6

68

3. Assign a configuration name.
The configuration is created without a name (just' - '). Assign a name by se­
lecting the new configuration in the ROI and by using the Set function.

The choice of name is yours. The configuration name will map to a filename
on your disk so your choice should conform to file naming conventions (al­
phanumeric characters only).

4. Create a new partition.
Select the configuration in the ROI and use the Create function; and empty box
should appear within the configuration.

S. Assign a partition name.
The partition is created without a name (just' - '). Assign a name by selecting
the new partition in the ROI and by using the Set function.

The choice of name is yours. The partition name will map to a filename on
your disk so your choice should conform to file naming conventions (alpha­
numeric characters only).

If you have used the groups(4) and permissions(4) files to define user
groups you can restrict access to the partition to one or more of these groups.
Enter the group names at the prompt, or leave the entry empty to allow unre­
stricted access.

6. Add the processors to the partition.
Drag the required processors from the root partition (or any other configura­
tion shown in the view).

Select the first processor with a single left click within the root partition. You
can add additional processors to the ROI by selecting them with a single mid­
dle click. A drag -and-add operation will copy the selected processors to the
new partition; hold down the shift key, select one of the processors in the ROI
by pressing and holding the left mouse button, and drag the processors into the
new partition. Release the mouse button to drop the processors into the new
partition.

You can add as many processors as you wish, using as many drag-and-add op­
erations as you wish. You can remove a processor from your new partition by
selecting it and using the Delete function.

SIOO2-10M125.01 meJ<D

6

7. Create and name the remaining partitions.
Repeat steps 4,5, and 6 to define the remaining partitions in the configuration.

S. Save the configuration to disk.
Select the configuration in the ROI and use the Put function.

A new directory hierarchy is created on your disk in / opt /MEIKOc­
s 2/ et c / machine-name.

9. Make the configuration Active.
Select the configuration in the ROI and use the Change Config. function.

A dialogue box will appear: select Normal and Start. The Kill Jobs option has
no effect unless an active configuration already exists, in which case you
should disable the Kill Jobs option if you want existing jobs in the configura­
tion to terminate normally before the configuration is changed.

Changing a Configuration

meko Common Operations

This section describes how to change the active configuration.

• How to stop a single partition.

• How to start a partition.

Stopping a Partition

This section describes how to stop a partition manager; this will prevent users
from running parallel applications on the partition. The status of each node re­
mains unchanged by this operation.

You will typically stop a partition before reconfiguring your system, or before
shutting down one of more of the processors in the partition.

1. Select the partition in a ROI.
Use a single left mouse click within the partition.

2. Change the configuration.
Select the Change Config. function.

69

6

Network Tests

70

A dialogue box appears. Select Nonnal and Stop. You should opt to Kill Jobs
if you wish the partition to stop immediately; otherwise existing jobs running
on the partition will be allowed to stop nonnally.

Starting a Partition

This section describes how to start a partition manager. You will typically start a
configuration after perfonning routine system administration on its nodes, or af­
ter the partition manager fails unexpectedly.

1. Select the partition in a ROI.
Use a single left mouse click within the partition.

2. Change the configuration.
Select the Change Config. function.

A dialogue box appears. Select Nonnal and Start. The setting of the Kill Jobs
option is unimportant if the partition manager had already stopped.

If you are using this procedure to restart a failed partition manager, the Pmanager
Status Color Space will give more infonnation about the new partition manager.
The Node Status Color Space will identify faulty processors which may be re­
sponsible for the failure of a partition manager.

You can use the Network View's Link State and Switch Error Color Spaces to
query the status of network components, as shown below. Note that in both cases
the test result is relative to the previous test (or system start-up if no previous
query).

To test the network components thoroughly you will typically query the initial
state of the network, exercise the network, and then query the network state for
a second time to identify recent errors. You can use any program you like to ex­
ercise the network; rtest(l) or the boundary scan enabled by the Set function
are suitable. You may also use the Set function to enable a count of timeout er­
rors.

S loo2-10M12S.01 meJ<a

Link Tests

6

1. Select the Link State Color Space.

2. Select the Links in a ROI.
Ensure that the components at both ends of the links are selected.

3. Update the Link State display for the selected links.
Use the Get function (either by selecting it from the function menu or by typ­
ing 'g' into the view).

Now exercise the network and repeat the above steps to reveal new errors.

Note that in Step 2. you can either select the link ends manually with the mouse,
or you can use the Finder's Route option to describe the route in terms of a proc­
essor and routes through the Elan and Elite switches.

Switch Errors

1. Select the Switch Error color Space.

2. Select the switches in a ROI.
You can select the processors if you wish to query the Elan communications
processors.

3. Update the Switch Error display for the selected components.
Use the Get function by typing 'g' into the view (do not select Get from the
Function Menu) to update the display and write a summary of the switch er­
rors to the Information Window.

Now exercise the network and repeat the above steps to reveal new errors.

Locating Faulty Components

meI<o Common Operations

Faulty network switches or communication processors can be located by drag­
ging the component from the Network View and into the Machine View. This
will identify the board and module that holds the faulty component. Use a drag­
and-find operation to move the component between the views (shift and middle
mouse button).

71

6

Processor Diagnostics

Before removing a faulty board from your system be sure to configure-out the
processors and switches that are fitted to it. This will prevent user applications
and system software accessing the components.

Warning - Only trained engineers may remove hardware components from
your system. If in doubt contact Meiko for advice.

Errors on the processor boards can often be overcome by either rebooting the
processor or by using the processor's ROM functions to perform simple system
tests.

Getting a Console Connection

Rebooting

72

You can get a connection to a processor's console by using the Console function
in the Configuration View:

1. Select the processor in a ROI.
You can select several processors if you wish.

2. Select the Console function.
Select the function from the Function Menu or by typing 'c' into the view.
Each console appears in a separate window.

Note that only one console connection may be created for each processor. You
must enable the processor's console stealing attribute if you want to take the con­
nection from another user - see the Set function.

Having obtained a console connection all the usual diagnostic and system admin­
istration functions are available - see the Solaris documentation set. You can
use the console connection to shutdown/reboot a processor, or to perform the di­
agnostic tests in the processors ROM.

Processors can be reset from within either the Network or Configuration Views:

S 1 002-10M125.0 1 me/<D

6

1. Select the processor in a ROI
You can select several processors if you wish.

2. Select the reset function.
Select the reset function from the Function Menu. A dialogue box asks for
confirmation.

3. Specify the type of reset operation.
A list of reset options is displayed. Use the Send Break option on diskless cli­
ents to cause an immediate shutdown. Use Pulse Reset to perform the equiv­
alent of a power-cycle. Use the Halt Procs option to shutdown processors
gracefully (equivalent to init 0). Use Boot Procs to boot processors that have
already been reset.

A number of processor attributes specified by the Set function affect processor
booting. The Auto Boot attribute specifies the behaviour of the processor follow­
ing a Pulse Reset operation. The Boot Args attribute specifies the arguments that
are passed to the Boot Procs operation.

Performance Visualisation

You use the Performance View to visualise the utilisation of partitions in on CS-
2.

Typically you will define the default statistics that will be gathered before you
copy a partition into the Performance View. You then copy partitions into the Per­
formance View by dragging them from the Configuration View. You can change
the displays of individual partitions where the default is inappropriate.

Creating a New Display

meI<JJ Common Operations

you use the Set function to define the default display that will be produced for
partitions that are dragged into the Performance View.

1. Select the Performance and Configuration Views from the Root Panel.
The Configuration View will identify all the partitions in your system. The
Performance View will initially be empty.

73

6

74

2. Identify the statistics you want to view.
With the mouse in the Perfonnance View select the Set function (either from
the function menu or by typing's'). Identify the statistics that you want to dis­
play.

For example, select Average from the User CPU option to get a histogram dis­
play showing the Average CPU utilisation for all processors in a partition. Se­
lect Individual from the Disk RW /s option to get individual bar graph displays
showing the disk bandwidth on each node.

Use the Layout and Dimensions options to define the layout of your bar graphs
displays (only necessary if you intend to visualise a large partition).

3. Select a partition.
Select a partition in the Configuration View. Use a drag-and-add operation
(shift left-mouse) to copy the partition into the Perfonnance View. The statis­
tics that you specified in Step 2. will be displayed. Repeat for any other parti­
tions that you want to visualise.

Changing an Existing Display

You use the Set function to change an existing display to include additional sta­
tistics or to remove them (note that you can also use the Delete function to re­
move statistics from the display).

1. Identify the Partition.
Include in the ROI the partitions' whose displays you want to change.

2. Specify the new statistics.
Use the Set function (either by typing's' or by using the mouse) to obtain the
dialogue box. Identify the statistics that you want to add to the display by se­
lecting them with the mouse. Remove statistics from the display by un-select­
ing them.

SIOO2-10MI2S.0I meJ<a

Surface

Elan WidgetLibrary

SlOO2-10MI04.04 mei<o

The infonnation supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of any
rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent ofMeiko World
Incorporated.

Copyright © 1993 Meiko World Incorporated.

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSTools are trademarks of Meiko Limited. Sun, Sun and a numeric suffix,
Solaris, SunOS, AnswerBook, NFS, XView, and OpenWindows are trademarks of Sun Microsystems, Inc. All
SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. Unix, Unix System V,
and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X Windows System is a
trademark of the Massachusetts Institute ofTecbnology. AVS is a trademark of Advanced Visual Systems Inc.
Verilog is a registered trademark of Cadence Design Systems, Inc. All other trademarks are acknowledged.

Issue Status:

Meiko's address in the US is:

Meiko
130 Baker Avenue
Concord MA01742

5083710088
Fax: 50s 371 7516

Draft

Preliminary

Release
Obsolete

Circulation Control: External

Meiko's address in the UK is:

Meiko Limited
650 Aztec West
Bristol
BS124SD

Tel: 01454616171
Fax: 01454 618188

Contents

1. Elan Widget Library

Compilation
libew

ew init

ew base

ew version

ew_exception

ew touchBuf

ew_usleep

ew utirneout

ew_dbg

ew eventStr

ew_rup2

ew_gray

ew_bitFlip

ewyutenv

ew _getenvCap

ew_createBcastVp

ew allocate

EW GROUP .••...••••••.•••••••••••••••••

ew_grouplnit

ew_groupMernber

ew_gsync . 39

ew beast. 40

ew reduce . 41

ew_gprintf . 43

EW GEX. • • • • • . • • • • • • • • . . • • . • • • • • • • • • • • • 44

ew_gexStart 45

EW DMAPOOL . 46

ew storeStart. 47

ew fetehStart. 49

EW PFD. 51

EW DST. 53

ewyfseek . 57

ewyfread . 58

ewyfwrite . 59

EW CHAN. • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • 60

ew ehanRxStart. 62

ew chanTxStart. 63

EW BCHAN • • . • • • • • • • . • . . • • • • • • • • • . • • • • • • 64

ew bchanStart. 65

EW TPORT . 66

ew_tportlnit 69

ew_tportTxStart . 70

ew_tportRxStart . 72

ew_rsysServerlnit . 75

ew ytrace . 77

2. Error Messages . .. 81

Message Fonnat . 81

Thread Process Exceptions. 83
Other Widget Exception Messages. 83
Internal Errors. 83

Error Messages. 83

ii

Elan Widget Library

This document includes manual pages for the Elan Widget Library. It also in­
cludes a detailed description of the error messages that are produced by this I
brary.

Compilation

mel<o

Applications that use the functions in this library must be linked with libew .
and libelan. a, both in the directory / opt /MEIKOcs2 / lib. In addition
Elan Widget programs reference header files from the directory / opt /
MEIKOcs2/ include. Both library and include file directories must be spe~
fied in the compiler command line, as shown below:

user@cs2-0: cc -c -I/opt/MEIKOcs2/include myprog.c
user@cs2-0: cc -0 myprog myprog.o -L/opt/MEIKOcs2/1ib -lew -lelan

1

Iibew

Synopsis

Process Model

2

elan widget library

*include <ew/ew.h>

libew provides a parallel programming environment for higher level library
implementors and applications programmers who wish to optimise performance.
The set of parallel programming constructs it provides does not hide, but aug­
ments the basic capabilities of the elan/elite communications network. This frees
the user from low level hardware considerations, without sacrificing perform­
ance to generality or ease of use.

A parallel application is a collection of one or more segments. Each segment con­
sists of a set of processes replicated over a set of network -contiguous processors,
one process per processor. All processes in a segment execute the same program.

Figure 1-1 Two Segment Parallel Application.

Virtual process Number

"Node"

o 1 234 5 6

Segment 0 Segment 1

All processes in all segments of a parallel application start up together. This as­
signs every process a unique virtual process number in a contiguous range start­
ing from 0, and makes every process's address space accessible to its peers
through the network. For more information see ew _ ini t () .

A set of processes with contiguous virtual process numbers and contained within
the same segment may be addressed by a single broadcast virtual process
number. See ew_createBcastVp (). Broadcast virtual process numbers al­
Iowan application to exploit hardware broadcast.

S 1002-1 OM 104.04 meJ<a

Global Memory

meI<o Elan Widget Library

System calls are handled locally by default. For example, every process of a I
allel application can access the file system independently with standard Unix
brary and system calls. A subset of system calls can be redirected to a nomina1
server to concentrate system calls relating to the standard input, output and en
on a single process. See ew_rsysServerlnit ().

The address spaces of the processes of a parallel application constitute a distl
uted global memory. Non-local memory, addressed by a combination of virtu
process number and virtual memory location, can be accessed explicitly by n
work DMA operations. libew provides a non-blocking interface to these op
ations. See ew_storeStart () and ew_fetchStart () . Network DM~
do not require the cooperation of the remote process and they transfer data wi
the lowest latency.

Figure 1-2 Non-local Memory Access.

Virtual
Address _________
Spaces

\ ~~intto Point
\MO~

Global
Object

1

4

Global objects are data structures which are distributed over a set of processes,
but located at the same virtual address within each process. Each component of
a global object is called a slice. If the processes owning a global object are con­
tiguous within a single slice, a single broadcast network DMA may be used to
replicate source data in one process to all slices of the global object.

Many libew constructs are themselves global objects. They can be created dy­
namically by their owning processes through synchronised use of the libew
global heap management procedures. See ew_allocate ().

Figure 1-3 Global Object File 1/0.

File System

, ,

ffiI<==," ' =!===~
II

A global object may be read from or written to the file system as a single entity.
See EW _PFD. Regular distributions of n-dimensional arrays as global objects
are supported. They are redistributed as they are read and written to convert from
the specific distribution required by the application, to a canonical representation
in the file system. This allows sequential applications as well as parallel applica­
tions with different process decompositions to share the same data.

SIOO2-10MI04.04 meJ<a

Message Passing

meI<D Elan Widget Library

Unlike network DMAs, message passing requires the cooperation of both sen
ing and receiving processes. libew supports several types of message passir
as appropriate to different programming models and functionality requiremen

Figure 1-4 Channel Communication.

Virtual ~
Address ~
Spaces \

...---#---,.f'.-----.,

Channel

Channels provide the simplest and lowest latency message passing. See EW _
CHAN. A channel connects a pair of processes. The connection must be estab·
lished by both processes before it can be used. Communication is unbuffered.
Messages are transferred directly from the sending buffer to the receiving buff,
therefore when a transmit completes, it guarantees that a receive has been poste
Message passing is non-blocking and full duplex. Both processes at the ends I

a channel may have up to one transmit and one receive outstanding at any tim
Multiple channels may be connected between a pair of processes to allow mo
non-blocking operations and the passing of non-contiguous messages.

1

6

Figure 1-5 Broadcast Channel Communication.

Virtual ~ ... /
Address ~ / L....---r---:-i-~

Spaces \ "",/ ...

Broadcast
Channel

A broadcast channel is a global object. It is used to barrier synchronise and rep­
licate the slices of other global objects. See EW_ BeHAN. It has a non-blocking
interface which allows up to one outstanding broadcast at a time. Multiple broad­
cast channels may be used by a group of processes to allow more outstanding
broadcasts.

S 1002-1 OM 1 04.04 mEi<.o

meI<o Elan Widget Library

Figure 1-6 Tagged Communication.

Virtual ~
Address ~
Spaces \

-----'------\

Tagged messages are passed between tagged message passing ports, called
tports. See EW_TPORT. They support both buffered and unbuffered message
passing, with a non-blocking interface which allows arbitrary numbers of out
standing transmits and receives. Messages may be received selectively, both (
the sender and on the tag. Given equivalent selection criteria, messages passe
from the same source to the same destination remain ordered.

1

Groups

Tracing

8

A group is a global object. Groups are used to define arbitrary subsets of the proc­
esses of a parallel application including non-contiguous and irregular sets.
Groups number their members in a contiguous range starting from O. A user-sup­
plied group membership function maps group member number to virtual process
number. This implicitly determines the set of processes in the group.

Figure 1-7 Reduction with a group.

Virtual ~
Address ~

Spaces \'-------J...-""':;'-""':/ <11 I

Group

Groups support barriers, broadcasts, reduction and global exchange. See EW _

GROUP and EW _ GEX. Groups exploit hardware broadcast where appropriate.
There is no requirement that they operate only on global objects.

libew provides an interface for the generation of ParaGraph format trace
files. See ew _ptrace () . Each process being traced may independently enable,
disable or flush traces to their own output file. The trace files are merged with
sort -m before they are displayed.

S 1 002-10M 104.04 me/<D

Exception Handling

Base Environment

See Also

mei<o Elan Widget Library

libew treats errors which undermine its operating assumptions (e.g. that an
coming message should be received into a buffer of greater or equal size) as fa1
It attempts no error recovery, however it provides an exception handling inte
face which allows the user to intervene prior to process termination. See ew_
exception () .

libew provides a collection of parts for building higher level programming
models. The libew base environment contains a minimal set of facilities bll
from these parts which are required by the majority of these models. It simplif
common initialisation procedures and standardises resource usage so that difJ
ent models can work in the same application without interfering with each oth
This allows an application written in one programming model to exploit paral
libraries written with a different model. See ew base.

ew_init(), ew_base, ew_allocate(), EW_GROUP, EW_DMAPOOl
EW_CHAN, EW_BCHAN, EW_TPORT, ew_rsysServerlnit(), ew
ptrace(), ew_exception().

1

ew init

Synopsis

Description

Component

int version

int initialised

int attached

ew_ctx, ew_state, ew_init, ew_attach - elan widget library initialisation

#include <ew/ew.h>
void* ew_ctx;
EW_STATE ew_state;
void ew_init (void);
void ew_attach (void);

ew _ ini t () perfonns preliminary initialisation for libew procedures which
do not access the network. ew_attach () completes libew initialisation and
connects the calling process's address space to the network. This two-stage proc­
ess creates the opportunity to perform user initialisations local to a process, be­
fore its address space becomes accessible to its peers.

ew _ ctx is initialised by ew _ ini t () . It is the handle on the elan context that
the process will use in all its network operations. It should be passed when appli­
cations wish to call1ibelan procedures directly.

ew_ini t () generates an exception with code EW_EINIT if the application has
been linked with an incompatible version of libelan, if it can't open / dev /
zero or if it can't initialise the elan.

ew _state packages the remaininglibew invariants into a single structure. Its
components are listed below. Initially, all its components are zero. ew _ ini t ()
initialises ew_state. version, and sets ew_state. initialised. The
remaining components, are set by ew _at tach () and remain constant thereaf­
ter.

Description

libew version string.

ELAN CAPABILITY *segCaps

int seg

TRUE after ew _ ini t () has been called.

TRUE after ew_attach () has been called.

Capabilities of all segment of the application.

Segm'ent number of this process.

int nseg The total number of segments in the application.

int segbasevp Virtual process number of the first process in this segment.

10 SlOO2-10MI04.04 meJ<a

Component

int segnvp

u_int vp

int nvp

See Also

meI<o Elan Widget Library

Description

Total number of processes in this segment.

Virtual process number of this process.

Total number of processes in the application.

ew_attach () initialises the array of segment capabilities from the environ
ment and assigns the virtual process numbers from a contiguous range startin
with 0 for process 0 of segment O. Each segment of the parallel application, i:
eluding the process's own segment is represented by an environment string
which encodes the elan capability for the segment.

Environment Variable

LIBEW ECAP

LIBEW ECAPO

LIBEW ECAPl

LIBEW ECAPn-i

Description

Capability of this process's segment

Capability of first segment

Capability of second segment

Capability of last segment

It is an error for LIBEW _ ECAP not to match one of the other capabilities. Ho
ever single segment applications may specify only LIBEW _ ECAP. This is equi
alent to specifying LIBEW_ECAP and a matching LIBEW_ECAPO.

ew_attach () causes an exception with code EW_EINIT ifit fails to extra~
a consistent set of capabilities from the environment, or if it fails to attach to t1
network.

ew base.

1

ew base

Synopsis

Description

ew _base, ew _ baseInit - Iibelan base programming environment

#inelude <ew/ew.h>
EW_BASE ew_base;
void ew_baselnit (void);

The libew base environment provides a set of facilities which are commonly
required by the implementations of higher-level programming models. These in­
clude defaults for perfonnance related constants to be passed to other libew
constructs, a global allocator, useful groups and a remote system call server.

Note that none of the parameters in the base environment are referenced else­
where in libew. They are provided only so that other libraries, obeying a com­
mon set of conventions on how they use Iibew, can be linked into the same
application.

ew_base is a single structure containing the components listed below. It is ini­
tialised by ew_baselnit (). Initially all components are zero.

Component Description

int init TRUE after ew_baselnit () has been called.

int waitType Default parameter to elan_waitevent ().
This value should be passed on initialisation of
appropriate libew constructs.

int dmaType Default network DMA type parameter. This val­
ue should be passed on initialisation of appro­
priate libew constructs.

eaddr t alloe base Base of global dynamic memory.

int alloe size Size of global dynamic memory.

EW ALLoe * alloe Global dynamic memory allocator.

int group_bufsize Default group packet size.This value should be
passed to ew _grouplni t () .

int group_branch Default group spanning tree branching ratio.
This value is passed to ew_grouplnit () .

12 S I002-10MI04.04 meJ<a

meko Elan Widget Library

Component Description

int group _ hwbcast TRUE if groups composed of processes with
contiguous virtual process numbers should use
hardware broadcast by default. This value deter
mines whether a broadcast virtual process
number is passed to ew_grouplnit ().

EW GROUP * allGroup The group of all processes. This group is creat
ed by ew_baselnit () .

EW GROUP * segGroup The group of processes in this process's seg­
ment. This group is created by ew_
baselni t () . If the application only has a sin·
gle segment it is identical to allGroup.

int tport_nattn Default number of attention slots. This value
should be passed to ew_tportlnit ().

int tport_smallmsg Default small message size. This value should
be passed to ew_tportlnit ().

in t r s y s _ e nab 1 e TRUE if remote system call serving is enabled
and ew _ baselni t () has initialised this proc·
ess as a remote system call client.

u_int rsys_server The virtual process number of the remote sys­
tem call server (if enabled).

int rsys_bufsize The maximum packet size for remote system
calls (if enabled).

ew_baselnit () sets the constants in ew_base to values specified by the (
vironment variables listed below. All the environment variables, with the exc(
tion of those indicated, apply to the ew_base component of the same name.
no corresponding environment variable is set, a default is chosen. Integer con
stants may be specified in decimal or hex, by prepending "Ox".

ew_baselnit () performs the two stage ew_ini t () , ew_attach () ini
tialisation, creates the global heap and sets up the "all" and segment groups. I
calls ew_pflnit (), passing it the default waitType and dmaType.

1

14

If remote system calls are enabled, it spawns a system call server on the nomi­
nated process, starts system call redirection on all other processes and sets line
buffering on stdout and stderr.

ew_baselnit () causes an exception with code EW_EINIT ifit has not been
called before, but libew is already initialised (Le. ew_attach () has been
called), or if it fails to create the global heap or allocate its groups.

Environment Variable

LIBEW WAITTYPE

LIBEW DMATYPE

LIBEW DMACOUNT

LIBEW GROUP BUFSIZE

LIBEW GROUP BRANCH - -

LIBEW GROUP HWBCAST - -

LIBEW TPORT NATTN

LIBEW TPORT SMALLMSG - -
LIBEW ALLOe BASE - -
LIBEW ALLOe SIZE

LIBEW RSYS ENABLE

LIBEW RSYS BUFSIZE - -
LIBEW RSYS SERVER

Values

POLL
WAIT
integer

NORMAL

Default

ELAN POLL EVENT

TR TYPE BYTE
SECURE (Sets the drna_opCode com­
integer ponent of drnaType) .

integer 1

integer

integer

O,NO
1,YES

integer

integer

caddr t

integer

0, NO
1,YES

integer

integer

(Sets the drna_failCount
component of drna Type) .

8192

2

TRUE

4

4096

OxeOOOOOOO

Ox10000000

TRUE

8192

o in a single segment applica­
tion. ew_state. nvp-l in
a multi-segment program.

SIOO2-10MI04.04 meJ<a

ew version

Synopsis

Description

Example

mei<o Elan Widget Library

ew_version, ew_checkVersion -Iibew version checking

#include <ew/ew.h>
#define EW VERSION
char *ew_version (void);
int ew_checkVersion (char *version);

EW _ VERS ION is a macro which gives the version string of the particular in­
stance of 1 ibew against which an application was compiled.

ew_ version () returns the version string of the particular instance of libE
with which an application was linked.

ew_checkVersion () checks that the version of libew against which an j

plication was compiled is compatible with the version with which it was linke
It returns TRUE if version is compatible.

if (!ew_checkVersion (EW_VERSION»
{

fprintf (stderr, "libew version error\n");
fprintf (stderr, " Compiled with '%s'\n", EW_VERSION);
fprintf (stderr, " Linked with '%s'\n", ew version (»;
exit (1);

1

Synopsis

Description

16

ew _exception, ew _ setExceptionHandler, ew _ exceptionStr - exception
handling

*include <ew/ew.h>
typedef void (*EW_EXH) (int code, char *msg);
void ew_exception (int code, char *format, ...);
EW_EXH ew_setExceptionHandler (EW_EXH handler);
char *ew_exceptionStr (int code);

ew_exception () initiates a libew exception. code is a numeric exception
code. Any value may be passed, however values below 1000000 are reserved
to Meiko. format is a printf () style format string which is used to produce
a formatted message.

Warning - The maximum size of the message after formatting is 256 bytes
including the terminating NULL character.

ew _except ion () calls the currently installed exception handler with the ex­
ception code and the fonnatted message. On return from the handler, if the ex­
ceptioncode is EW_DEBUG, oriftheenvironmentvariable LIBEW_TRACE is set
according to the table below, it dumps internal debugging traces. All exception
codes other than EW_ DEBUG result in program termination with an optional core
dump, depending on the environment variable LIBEW_ CORE .

The default exception handler prints a message on stderr listing the process's
virtual process number, the exception code number, its symbolic representation
and the formatted message.

Virtual Process Number Exception Code Exception Name
~,~

EW_EXCEPTION @ 4: 3 (Alignment error)
ew tportlnit (eOOOOf82) -,

Formatted message

ew_setExceptionHandler () allows users to install their own exception
handlers. It sets the currently installed exception handler to handler, and re­
turns the previously installed handler. Users should save the old handler. so that

S 1002-1 OM 104.04 mei<a

meI<o Elan Widget Library

it may be called if the user's handler is passed an exception code that it does I
understand. This allows different libraries to share a common exception mec:
nism.

ew_exceptionStr () returns a pointer to a static string which is a textua]
representation of the exception code code passed to it. It returns "Unknowl
exception" if it is passed an exception code which did not originate from
libew. Current libew exception codes are listed below.

Name Value String representation

EW DEBUG 1 Debug

EW EINTERNAL 2 Internal error

EW EALIGN 3 Alignment error

EW EOVERRUN 4 Message overrun

EW ENOMEM 5 Memory exhausted

EW EINIT 6 Initialisation error

EW EMISMATCH 7 Tx and Rx size discrepancy

EW ERANGE 8 Value out of range

EW ENOTSTARTED 9 Communication not started

EW ETIMEOUTSET 10 Timeout already set

EW EIO 11 I/O error

EW ENOROUTES 12 No more route tables

EW EUSERBASE 1000000 Unknown exception

ew _except ion () may be attached to a signal handler by setting the envirc
ment variable LIBEW_DEBUGSIG. Receipt of the nominated signal then caus
an exception with code EW _DEBUG. The environment variables which affect (
ception handling, and their values are listed below. An exception with code E1
EINIT is generated if the values can't be parsed.

1

Environment Variable

LIBEW DEBUGSIG

LIBEW CORE

LIBEW TRACE

18

Values

integer

1,YES
O,NO

1,YES
O,NO

Description

Initialise handler to set a debugging
exception on receipt of a signal.
Default: disabled

Enable core dump on exception.
Default: disabled unless linking
with 1 ibew _ dbg . a

Enable trace dump on exception.
Default: disabled unless linking
with libew_dbg. a

SIOO2-10MI04.04 meJ<o

ew touchBuf

Synopsis

Description

meI<o Elan Widget Library

pre-fault memory

#include <ew/ew.h>
void ew touchBuf (caddr_t buf, int nob);

ew _ touchBuf () causes a read and a write access, by both the main process
and the elan, to every page of the buffer with base buf and size nob in byte~
This causes a page fault on any non-resident pages on either processor.

This procedure has not been optimised for speed. It has been designed to be
called infrequently, typically during start-up initialisations.

Warning - Pages which overlap less than 1 word ofbuf are not touched.

1

ew_usleep

Synopsis

Description

20

suspend execution for a period

#include <ew/ew.h>
void ew_usleep (u_int t);

The calling process is suspended for the period t micro-seconds. The actual pe­
riod of suspension may be less than that requested as ew _us leep () returns im­
mediately if a signal is delivered.

This procedure is implemented using select (). It does not interfere with 81-
GALRM handling.

S lOO2-10Ml04.04 meJ<a

ew utimeout

Synopsis

Description

meI<o Elan Widget Library

schedule a procedure for execution after an interval

#include <ew/ew.h>
void ew_utimeout (u_int timeout, void (*handler) (int)l

ew_utimeout () uses the interval timer to schedule SIGALRM, so that a pI
cedure may be executed after an interval specified in micro-seconds. A non-ze
timeout is specified to schedule the procedure, and a zero timeout is specified
restore the previous timer settings and signal handlers.

Only one procedure at a time may be scheduled with ew_utimeout (). At­
tempts to schedule more than one procedure at a time cause an exception witl
codeEw ETIMEOUTSE~

With anon-zero timeout, ew_ utimeout () samples the current interval ti
er settings. If the interval timer is set to expire before timeout, timeout i
reduced so that handler can be scheduled first. The current interval timer Sl

tings are then adjusted to account for timeout, and handler is installed a:
the SIGALRM handler. The interval timer is then re-enabled to schedule SIGA:
RM.

Passing a timeout of zero restores the old timer and signal settings. This me
be done at any time. Doing this before timeout has expired, pre-empts the c::

ecution of han dl e r . Note that any interv al timer or S I GALRM handler install~
before the call to ew_utimeout () will not be restored until ew_utime­
ou t () is called with a zero timeout.

Warning - Applications which make sophisticated use of the interval tim4
and SIGALRM may find usage clashes with ew_utimeout ().

1

ew_dbg

Synopsis

Description

22

print a debugging message

finclude <ew/ew.h>
void ew_dbg (char *format, ...);

Write a debugging message to the standard output stream stderr. format is
apr intf () style format string. After a successful ew _at tach () , ew_
dbg () prefixes the formatted message with the calling process's virtual process
number. If it is called before attaching to the network, ew _ dbg () prefixes _-
-_. "

SlOO2-10MI04.04 meJ<a

ew eventStr

Synopsis

Description

mei<o Elan Widget Library

return event state string

#include <ew/ew.h>
char *ew_eventStr (ELAN_EVENT *e);

Return a string containing a textual representation of the elan event e. The re
turned string is a pointer into a static buffer which will eventually be overwritt
on subsequent calls to ew_ eventStr () . Currently up to 64 calls may be rna
before this space is re-used.

Returned strings have the following fonnats.

String

QUEUE

READY

CLEAR

INT W 00000004

p W eOOOOf80

DMA W eOOO08efO

NUL W 00000000

LE W eOOOeebO

RE W eOOOeebO @ 3

Description

Event is a queued event.

Event is set.

Event is clear.

Interrupt waiting: Signal number, shifted left 2.

Thread waiting: Stack pointer.

Dma waiting: Dma descriptor address.

Null waiting.

Local event waiting: Event address.

Remote event waiting: Event, virtual process
number.

1

ew_rup2

Synopsis

Description

24

round up to a power of 2

finclude <ew/ew.h>
u_int ew_rup2 (u_int n);

Round up n to a power of 2.

S 1002-1 OM 104.04 meJ<a

ew_gray

Synopsis

Description

meko Elan Widget Library

ew _gray, ew _ginv - gray code conversions

#include <ew/ew.h>
u_int ew_gray (u_int n);
u_int ew_ginv (u_int n);

ew_gray () returns the gray code of argument n. It converts integers which (
fer by 1 to integers which differ by a power of 2. ew _ginv () is the inverse
function.

The tables below enumerate the function for small binary integers.

n ew gray(n) n ew_gray(n}

0 0 1000 1100

1 1 1001 1101

10 11 1010 1111

11 10 1011 1110

100 110 1100 1010

101 111 1101 1011

110 101 1110 1001

III 100

1

ew_bitFlip

Synopsis

Description

26

bitwise mirror

finclude <ew/ew.h>
u_int ew_bitFlip (u_int nVals, u_int n);

ew _ bi tF lip () performs a bitwise mirror on an integer. All bits in n from the
least significant, to highest bit set in nVals, inclusive, are mirrored.

ew_bitFlip () may be used to enumerate a range of integers with the most
significant bit varying most rapidly. The tables below show binary values for the
function and its argument for small integers.

n ew bitFlip(7,n)

000 000

001 100

010 010

011 110

100 001

101 101

110 011

SIOO2-10MI04.04 mei<a

eW.J)utenv

Synopsis

Description

meko Elan Widget Library

change or add to the environment

#include <ew/ew.h>
int ew-putenv (char *str);

ew -putenv () creates, or assigns to an existing environment variable. str
must be in the format "name=value". It is similar to putenv (), however
manages its own pool of environment strings. ew yutenv () may therefore .
called repeatedly with arbitrary strings without the possibility of losing memo
or of overwriting environment variables that were set previously.

ew yutenv () returns 0 on success and -1 if it fails to allocate sufficient me
ory on calling malloe () .

1

Synopsis

Description

See Also

28

ew _getenvCap, ew ~utenvCap - extract and set elan capabilities in the
environment

iinclude <ew/ew.h>
int ew_getenvCap (ELAN_CAPABILITY *cap, int index);
int ew-putenvCap (ELAN_CAPABILITY *cap, int index);

ew _getenvCap () searches the environment for a capability for segment
index of a parallel application. It returns 0 on success, having assigned the val­
ue of the capability to *cap. On failure, it returns-1.

ew _putenvCap () sets the environment variable capability string for segment
index to *cap. On success it returns O. It may fail ifmalloc () can't allocate
sufficient memory, in which case it returns -1.

Both procedures take a non-negative value of index to mean a specific segment
number. A negative value of index is used to retrieve or set the process's own
segment capability.

ew_init ().

SlOO2-10MI04.04 meJ<a

ew _ createBcastVp

Synopsis

Description

See Also

meI<o Elan Widget Library

ew_createBcastVp, ew_destroyBcastVp - broadcast virtual process
numbers

#include <ew/ew.h>
u_int ew_createBcastVp (u_int base, int count);
void ew_destroyBcastVp (u_int vp);

ew_createBcastVp () allows the user to create a virtual process number
name a contiguous range of processes. The nominated set includes count prl
esses, starting with the process with virtual process number base. This set m
not cross segment boundaries. The return value is the new virtual process
number.

Passing illegal values of ba s e or c oun t causes an EW _ ERANGE exception.
Failure to allocate internal memory structures to administer the broadcast virtl
process numbers causes an EW_ENOMEM exception. Failure to allocate additiOJ
elan route table entries causes an EW _ ENOROUTES exception.

ew_destroyBcastVp () makes broadcast virtual process number vp ava:
ble for re-assignment via ew _ createBcast vp () . Note that the value of,
is not checked in this procedure. Behaviour on passing values not previously
turned by ew_createBcastVp () is not defined.

ew_init (), EW_GROUP, EW_BCHAN, ew_storeStart () .

1

ew allocate

Synopsis

Description

30

ew _ crea teA llocator, ew _ spawnAllocator, ew _destroy Allocator, ew _allocate,
ew _free - global heap management

#include <ew/ew.h>
typedef void EW_ALLoe;
EW ALLOe *ew_createAllocator (caddr_t base, int size);
EW_ALLOe *ew_spawnAllocator (EW_ALLOe *a, int size);
void *ew_allocate (EW_ALLOe *a, int align, int size);
void ew_free (void *ptr);
void ew_destroyAllocator (EW_ALLOe *a);

The libew allocation procedures perfonn heap management over given virtual
address ranges. Processes that create heaps spanning identical virtual address
ranges and that synchronise their calls to these procedures are guaranteed to al­
locate objects at identical virtual addresses. This allows them to manage heaps
of global objects.

EW _ ALLoe is an opaque data-type. Objects of this type are returned as handles
on a particular heap by the heap creation procedures.

ew_createAllocator () creates a new heap spanning the range of virtual
addresses starting at base, rounded up to a page boundary, and ending at base
+ size rounded down to a page boundary, where size is in bytes.On success
ew_createAllocator () returns a non-NULL pointer. Otherwise it returns
NULL and sets errno to indicate the error.

Error Number

EINVAL

ENOMEM

Description

Less than one page in region after rounding.

Failed to malloc () data structures.

ew_spawnAllocator () creates a new heap by partitioning an existing one.
It reselVes a region of s i z e bytes rounded up to a whole number of pages in the
parent allocator a. On success, ew _ spawnAllocator () returns a non-NULL
pointer. Otherwise it returns NULL and sets errno according to the table above.

ew _allocate () allocates size bytes with alignment align from allocator
a. Alignments are restricted to powers of 2. A minimum alignment of 8 bytes is
silently enforced. ew_allocate () first attempts to allocate from a pool of

S lOO2-10Ml04.04 meJ<D

meI<o Elan Widget Library

mapped memory owned by the specified allocator. If this pool is too small, it
tempts to grow the pool by mapping some more memory from / dev / zero
within the virtual address range owned by the allocator.

On success, ew_allocate () returns a pointer to the base of the allocated
gion. Otherwise it returns a NULL pointer with errno set to indicate the type
error.

Error Number

EINVAL

ENOMEM

EAGAIN

Description

Alignment not a power of 2.

Heap exhausted.

An attempt to map additional memory in the range owned
by the allocator failed due to insufficient swap space.

ew_free () returns space previously allocated by ew_allocate () to th(
owning allocator. Behaviour is undefined if a pointer passed to ew _ free () ~
not allocated by ew_allocate (), if the administrative infonnation stored 1
low the allocated space has been corrupted, or if the heap from which it was;
located has been destroyed.

ew_destroyAllocatorO unmaps any memory which may have been
mapped on behalf of allocator a. If a has a parent, it resumes ownership of tl
allocator's virtual address range. Any objects previously allocated in a may r
longer be de-referenced.

1

EW GROUP

Synopsis

Description

32

process group

#inelude <ew/ew.h>

An EW _ GROUP defines a group of processes that wish to cooperate in barriers,
reductions and collective communications. It is a global object i.e it exists at the
same virtual address in all its members.

typedef struct ew_group
{

int g_self;
int g_size;
u int g_bcastVp;
u int (*g_lookupFn) (struct ew_group *g, int member);
long g_lookupParams[16];
/* Additional private contents */

EW GROUP;

Groups number their members contiguously from O. g_self gives the member
number and g_size gives the total number of processes in the group.

Groups consisting of a contiguous set of processes contained within a single seg­
ment, may exploit hardware broadcast and use the virtual process number g_
beastVp to address all processes in the group. If hardware broadcast is not pos­
sible or not desired, g_ beast Vp is ELAN_INVALID _ PROCES S and all group
operations are conducted only using point-to-point communications.

The set of processes which actually constitute the group is not explicitly repre­
sented. Group membership is determined by a lookup'function which maps
group member number to virtual process number. Applying it to all integers be­
tween 0 and g_size-l inclusive, enumerates the group's processes.

The group membership function is stored in g_lookupFn. Additional parame­
ters, as required by individual lookup function, may also be stored in the group.
This allows for arbitrary irregular or table driven membership functions.

Group operations such as reduction are performed on a spanning tree with a user
defined maximum branching ratio. It is balanced, rooted in group member 0 and
all sub-trees contain a contiguous range of group members. All group operations
are deterministic. Sub-trees are always processed strictly in order and reduction
results are distributed from the root so that every member receives identical re­
sults.

S 1002-1 OM 104.04 mei<a

See Also

mel<o Elan Widget Library

Performance related parameters are set when a group is initialised. These inch
the spanning tree branching ratio, the packet size used to pass data over it, wh(
er to block or to poll for completion, and how to DMA data through the netw(

A group may only be used once all its members have initialised it. This is me
conveniently done with a barrier on parent group. The first group ever to be (
ated has no parent group, however a special barrier, ew.-:.sgsync () is used
perform the start-up synchronisation.

ew_init(),ew_base,ew_createBcastVp(),ew_grouplnit()
ew_groupMember(), ew_gsync(), ew_bcast(), ew_reduce(]
ew_gprintf(), EW GEX.

1

ew _groupInit

Synopsis

Description

34

ew _groupSize, ew _groupInit, ew _groupFini - group administration

#include <ew/ew.h>
int ew_groupSize (int pktSize, int branch);
void ew_groupInit (EW_GROUP *g,int pktSize,int branch,

int waitType, int dmaType,
int self, int size, u_int bcastVp,
void (*initFn) (EW_GROUP *g,void*va),
...) ;

void ew_groupFini (EW_GROUP *g);

ew_groupSize () returns the number of bytes which should be allocated to
represent a group which uses packet size pktSize and a spanning tree with
branching factor branch.

ew_groupIni t () initialises the local slice of a group. All group members
must have initialised their slice before the group can be used. With the exception
of self, all group members must pass identical initialisation parameters. This
includes g, as group is a global object Behaviour is undefined if any of these rules
are broken.

The group g must be aligned on an EW _ALIGN boundary, otherwise an exception
with code EW _ EAL I GN is generated. It is initialised to use a packet size of pkt­
Size. branch sets the group's spanning tree branching factor. wait Type de­
tennines how group operations should block for completion. dma Type controls
how data is transferred between group members.

self is the calling process's own group member number and size is the total
number of group members. If self is not in the range 0 to size-I, an excep­
tion with code EW_ERANGE is generated.

If ELAN_INVALID _PROCESS is passed inbcastVp, all group operations will
be conducted only using point-to-point communications. Otherwise bcastVp is
assumed to be a broadcast virtual process number which addresses all the group
members, and no others. Behaviour is undefined if any of these rules are bro­
ken.

ini tFn is an initialisation procedure which is used to initialise the group's
member lookup function. Note that it is not the lookup function itself. It is only
ever called once, from ew_groupIni t () . It is passed a pointer to the group
and a va_list in stdarg fonnat, which points to the additional arguments

SlOO2-10MI04.04 me/<.o

mei<D Elan Widget Library

passed to ew_grouplni t (). It must initialise the group's ew_IookupFn
and it may store any additional arguments required by this function in g_
lookupParams.

The following example shows the lookup function lookupld () which defiI1
groups of regularly strided processes. ew_groupFn_slice (), its initialis,
tion function, is passed to ew _grouplni t () along with the virtual proces~
number of group member 0 and the process stride. It is used in the example t~

describe a 20 process decomposition ofa parent group all. Each process in t
application becomes a member of a column group, in which all members are c~
tiguous, and a row group, in which all members are strided by nrow. Each pr~
ess is therefore a member of three groups, all, myRow and myCol. Howevc
from the point of view of the whole application, there are twelve groups. Om
group which includes all processes, four row groups and seven column grou{

Figure 1-8 2D Process Decomposition.

all->g_ self

yRow

all

libew provides the following pre-defined group initialisation functions.

1

36

typedef struct
{

u int
int
GID;

baseVp;
stride;

static u int lookupld (EW_GROUP *g, int i)

GID *params = (GID *)g->g_lookupParams;

return (params->baseVp + i *params->stride);

void

int
int
int
int
int

GID *params = (GID *)g->g_lookupParams;

g->g_lookupFn = lookupSlice;
params->baseVp va_arg (ap, int);
params->stride = va_arg (ap, int);

nrow 4;
ncol 7;
me all->g_ self;
row me % nrow;
col me / nrow;

ew_grouplnit (myRow, pktSize, branch, waitType, dmaType,
col, ncol, ELAN_INVALID_PROCESS,
ew_groupFn_ld,
ew_groupMember (all, row), nrow);

ew_grouplnit (myCol, pktSize, branch, waitType, dmaType,
row, nrow, elan_createBcastVp (col * nrow, nrow) ,
ew_groupFn_ld,
ew_groupMember (all, col * nrow) , 1);

ew_gsync (all);

/* Group operations on myRow and myCol */

SlOO2-10MI04.04 meJ<a

See Also

meko Elan Widget Library

Function Descri ption

ew_groupFn_all () Every process in the application.
No additional arguments.

ew _groupFn _ seg () Every process in the caller's segment.
No additional arguments.

ew_groupFn_ld () An array of regularly strided processes.
Additional arguments: baseVp, stride
ba s e Vp is the virtual process number of group
member 0 and str ide is the offset between
group members.

ew _groupFn _table () Any irregular group of processes detennined by
table lookup. Additional arguments: tablep
tablep is a pointer to any array of virtual
process numbers indexed by group member
number.

ew _groupF ini () finalises a group. It is a barrier, therefore all group memb<
must call it before any member can complete. On return, the memory used by t
group may be freed or re-used.

EW_GROUP, ew_groupMember()

1

ew _groupMember

Synopsis

Description

See Also

38

return the virtual process number of a group member

#include <ew/ew.h>
u_int ew_groupMember (EW_GROUP *g, int i);

ew _groupMernber () returns the virtual process number of member i of group
g. It is implemented as a macro which invokes the group's member lookup func­
tion, passing it both of its arguments.

ew _groupMernber () performs no bounds checking on i, however this may be
done by the group's installed lookup function. The lookup functions provided by
libew do not perform bounds checking, however they do in the debugging ver­
sion of the library, 1 ibew _ dbg.

EW_GROUP, ew_grouplnit()

S 1 002-1 OM 1 04.04 mei<o

ew_gsync

Synopsis

Description

See Also

mei<o Elan Widget Library

ew _gsync, ew _fgsync, ew _sgsync - barrier synchronise a group

#include <ew/ew.h>
void ew_gsync (EW_GROUP *g);
void ew_fgsync (EW_GROUP *g);
void ew_sgsync (EW_GROUP *g);

All these procedures perfonn a barrier synchronisation, but by different metho(

ew_gsync () synchronises by reducing "ready" in the group's spanning tre(
Member 0, at the root of the tree, then signals "ready" back to the group. If tl
group has a broadcast virtual process number, hardware broadcast is used to s
nal the rest of the group, otherwise "ready" is propagated back down the tree.

ew_fgsync () requires hardware broadcast, so if the group does not have a
broadcast virtual process number, it just calls ew_gsync (). OthelWise it sy
chronises by reducing "ready" in the network. This is performed using a broa
cast network poll which is repeated until all group members have joined the
barrier. "Ready" is then broadcast to the group. This method is faster than ew
gsync () because the reduction is perfonned at switch latencies rather than
whole network latencies, however the polling may have an effect on commun
cations that any group members are performing prior to joining the barrier.

ew _ sgsync () is a special barrier designed for start-up synchronisation. It
blocks until all group members have attached to the network and initialised the
slice of the group. On all subsequent calls, it just calls ew_gsync (). Progra
mers using the recommended start-up initialisation ew _base Ini t () never
need to call this procedure.

ew_init (), ew_base, EW GROUP.

1

ew beast

Synopsis

Description

See Also

40

ew _beast, ew _ tbcast - broadcast over a group

*include <ew/ew.h>
void ew_bcast (EW_GROUP *g, int src,

caddr_t buf, int size, int global);
void ew_fbcast (EW_GROUP *g, int src,

caddr_t buf, int size, int global);

Both procedures spread size bytes in buf at group member sre over all mem­
bers of the group g. global should be TRUE if buf has the same value in all
group members (i.e buf is a global object). The procedures differ in the manner
in which the group members synchronise.

ew_beast () reduces "ready" in the group's spanning tree. When all group
members are prepared to receive the data, it distributes it using a network broad­
cast if the group has a broadcast virtual process number, and via the group's span­
ning tree, ifit does not. If global is TRUE and hardware broadcast is possible,
the data is transferred in a single network DMA directly to buf. Otherwise the
data transfer is packetised via the group's network buffers. In this case, if hard­
ware broadcast is possible, data is transferred directly from the sender to the rest
of the group, otherwise it is spread via the group's spanning tree.

ew_fbcast () requires hardware broadcast, so if the group does not have a
broadcast virtual process number, it just calls ew _beast () . Otherwise it reduc­
es "ready" in the network by a broadcast network poll (see ew_fgsync (»). It
then distributes the data using a broadcast network DMA. If global is TRUE
all the data is transferred in a single DMA, otherwise, the data transfer is pack­
etised via the group's packet buffers.

ew_init(), ew_base, EW_GROUP, ew_gsync()

S 1 002-1 OM 1()4.04 mei<D

ew reduce

Synopsis

Description

mei<o Elan Widget Library

user defined reduction over a group

#include <ew/ew.h>
void ew_reduce (EW_GROUP *g, void (*userFn) (),

caddr_t els, int elsz, int nel, int globaJ
void userFn (caddr_t accurn, caddr_t part, int *nelp)

ew _reduce () applies the user defined reduction function userFn () ove
members of group g, to an array of nel elements of a user-define datatype c
size e Is z referenced by e Is. The results are stored back to e I s in all grou
members. An exception with code EW _ ERANGE is generated if the element s
is greater than the group's packet size.

global may be set to TRUE if all group members have identical values of e
(Le. els is a global object) to eliminate unnecessary copying. If the array of
ements is larger than the group's packet size, the reduction is packetised ove
whole numbers of elements. If the element size is larger than the group's pacl
size, an exception is caused.

The reduction function userFn () is called with accum and part which r
erence the reduction results from two contiguous sets of contiguous group m(
bers. It must reduce *nelp elements of the user's datatype into accurn.

Warning - *nelp must not be updated by userFn (), otherwise behavi(J
is undefined.

For example if accurn is the reduction result from group members 7 to 13 ru
part is the reduction result from group members 14 to 20, then when
userFn () returns, accurn contains the reduction result of group members 1
20.

1

See Also

42

The following example shows the libew implementation of the familiar reduc­
tion function gds urn () .

static void dsum (double *accum, double *partial, int *nel)

int n = *nel;

while (n-- > 0)
*accum++ += *partial++;

void gdsum (double *x, int nelem, double *work)

ew_reduce (ew_base.segGroup, dsum,
(caddr_t) x, sizeof (double), nelem, O);

SlOO2-10MI04.04 meJ<a

ew_gprintf

Synopsis

Description

See Also

meko Elan Widget Library

ew _gprintf, ew _gvprintf - print formatted output in a group

#include <ew/ew.h>
void ew_gprintf (EW_GROUP *g, int meToo,

char *format, ...);
void ew_gvprintf (EW_GROUP *g, int meToo,

char *format, void *ap);

Both procedures synchronise the printing ofprintf () style fonnatted mess:
es by members of group g. They are both an implicit barrier, however group
members with no message to print may pass FALSE in meToo.

ew_gprintf () takes a fonnat string and any additional arguments. ew_
gvprintf () takes a fonnat string and a stdarg variable argument list.

Each group member formats the message into a local static buffer, and then sen
this message to group member 0, who prints iton stdout. Messages are print
in order of group member num ber.

Warning - The maximum size of the message after formatting is 1024 by.
including the terminating NULL character.

1

EW GEX

Synopsis

Description

See Also

44

EW _ GEX, ew _gexSize, ew _gexlnit - global exchange

#include <ew/ew.h>
typede£ void EW_GEX;
int ew_gexSize (EW_GROUP *group);
void ew_gexlnit (EW_GEX *gex, EW_GROUP *group,

iovec_t *txlov, iovec_t *rxlov,
int waitType, int dmaType);

An EW _ GEX provides an all-to-all, global exchange. It is a global object i.e. it is
at the same virtual address in all its participating processes. A non-blocking in­
terface is supported which allows a single outstanding exchange. It is initialised
with local source and destination buffers, and the group over which it will oper­
ate. The buffers may be irregularly placed and sized. The only constraints are that
there must be one source and one destination buffer for every group member, and
that the source buffer size of the sending process matches the destination buffer
size of the receiving process. This information is "compiled" into a DMA list
which is activated on subsequent calls to perfonn the exchange.

ew_gexSize () returns the size of a gex in bytes.

ew _gexlni t () is an implicit barrier. It initialises gex to operate over the
members of group group. gex must be aligned to an EW_ALIGN boundary oth­
erwise an exception is generated with code EW_EALIGN.

txlov and rxlov point to a pair of arrays of buffer descriptors, each having
one entry for every member of the group including the caller. txlov [i] gives
the location and size of the data to be sent to group member i. rxlov [i] gives
the location and size of the data to be received from group member i. An excep­
tion with code EW_EMISMATCH arises if group member i's txlov [j] . iov_
len is not equal to group member j's rxlov [i] . iov _len.

wait Type determines how to block for completion and dmaType determines
how to transfer data for all subsequent gex operations.

EW_GROUP, ew_gexStart(}

S 1002-1 OM 104.04 mei<o

ew _gexStart

Synopsis

Description

See Also

meI<D Elan Widget Library

ew_gexStart, ew_gexDone, ew_gexWait - perform a global exchange

#include <ew/ew.h>
void ew_gexStart (EW_GEX *gex);
int ew_gexDone (EW_GEX *gex);
void ew_gexWait (EW_GEX *gex);

ew _gexStart () initiates a non-blocking global exchange, previously initi
ised in gex. The next global exchange on ge x may be initiated only after calli
ew _gexWai t () .

Warning - No initial synchronisation is performed by ew _gexStart ()
The caller must ensure that all other group members are ready to partie
pate in the exchange before calling it.

ew _gexDone () returns TRUE if the global exchange outstanding on c has
completed and FALSE ifit has not. Behaviour is undefined if no exchange is 0

standing on gex.

ew_gexWai t () blocks until the global exchange outstanding on gex has co
pleted i.e. that all the caller's source buffers have been transmitted and all its d
tination buffers have been filled. On return, the caller may make a further call
ew_gexStart ().

EW GEX

1

EW DMAPOOL

Synopsis

Description

See Also

46

EW _ DMAPOOL, ew _ dmaPoolCreate, ew _ dmaPoolDestroy - network
DMA pool

#include <ew/ew/h>
typedef void EW_DMAPOOL;
EW DMAPOOL *ew dmaPoolCreate (int wait Type,

int dmaType);
void ew_dmaPoolDestroy (EW_DMAPOOL *dp);

An EW _DMAPOOL is an opaque data structure used to administer network DMA
descriptors. It is passed to libew procedures which initiate direct access to non­
local memory.

ew_drnaPoolCreate () creates a DMA,pool and returns its handle. It uses
malloe () to allocate the space and generates an exception with code EW_
ENOMEM if it fails. wait Type detennines how to block for completion and
drna Type detennines how to transfer data for all DMAs initiated from this pool.

ew_drnaPoolDestroy <) deallocates the DMA pool dp and all DMA descrip­
tors that it owns. Calling this procedure while dmas are active causes an excep­
tion with code EW EBUSY.

ew_storeStart(), ew_fetehStart().

SIOO2-10MI04.04 meJ<D

ew storeS tart

Synopsis

Description

meko Elan Widget Library

ew _ storeStart, ew _ storeDone, ew _store Wait - store to non-local memO!

#include <ew/ew.h>
ELAN EVENT *ew storeStart (EW_DMAPOOL *dp,

caddr_t buf, int nob,
u_int destProc, caddr_t destBu
ELAN_EVENT *destEvent);

int ew storeDone (ELAN_EVENT *e);
void ew_storeWait (ELAN_EVENT *e);

ew_storeStart () initiates a store to a remote memory location. It alloca
a DMA descriptor from pool dp to copy nob bytes of data at buf in local m(
ory, to destBuf in the address space of the process with virtual process num1
destProc. If destEvent is NULL it is ignored, otherwise it specifies anevi
to set at the destination on completion of the DMA. It returns an event pointer
the handle on the DMA it has initiated. This should be passed to the polling a
completion procedures. Note that completion means that the store at the desti
tion has been updated and that the destination event, if specified, has been se

destProc may be a broadcast virtual process number. If it is, destBuf is
written and destEvent, if it is not NULL, is set in all destination processes

Warning -If destProc is a broadcast virtual process number, destEve
may be set more than once in some destination processes.

ew _ storeStart () grows the pool of DMA descriptors with malloc ()
all descriptors in dp are currently in use. If this fails, it causes an exception w
code EW ENOMEM.

ew _ storeDone () is used to test for completion of a remote store. It neve)
blocks, but returns TRUE if the DMA with handle e has completed. Otherwise
returns FALSE.

ew _ storeWai t () blocks until the DMA with handle e has completed. It)
turns the descriptor back to its owning pool.

1

See Also

48

The following example shows ew_storeStart () being used to do an edge
exchange between an arbitrary number of neighbouring processes.

idefine NOB 1024
idefine NNBR 6
extern u_int nbrVp[NNBR];
char exportBufs[NNBR] [NOB];
char *importBufs[NNBR];
ELAN_EVENT *e[NNBR);
int i;
EW DMAPOOL *dp;

/* create dma pool */

/* my neighbours */

dp = ew dmaPoolCreate (ew_base.waitType, ew_base.dmaType);

/* allocate importBufs at globally consistent addresses */
for (i - 0; i < NNBR; i++)

importBufs[i) = ew_allocate (ew_base.alloc, EW_ALIGN, NOB);

ew_fgsync (ew_base.segGroup); /* wait for neighbours ready */

for (i = 0; i < NNBR; i++) /* ship the data */
e[i) = ew storeStart (dp, exportBufs[i), NOB,

nbrVp [i), importBufs[i), NULL};

for (i = 0; i < NNBR; i++)
ew storeWait (e[i])i

ew_fgsync (ew_base.segGroup);

/* block until shipped */

/* Exchange complete */

EW_DMAPOOL,ew_createBcastVp().

S 1 002-10M 104.04 meJ<o

ew fetchStart

Synopsis

Description

meJ<o Elan Widget Library

ew_fetchStart, ew_fetchDone, ew_fetchWait - fetch non-local memory

#include <ew/ew.h>
ELAN EVENT *ew_fetchStart (EW_DMAPOOL *dp,

caddr_t buf, int nob,
u_int srcProc, caddr_t, srcBuf)

int ew fetchDone (ELAN_EVENT *e);
void ew_fetchWait (ELAN_EVENT *e);

ew_fetchStart () initiates a fetch from a remote memory location. It all~
cates a DMA descriptor from pool dp to copy nob bytes of data at srcBuf
the address space of the process with virtual process number srcProc to bl
in local memory. It returns an event pointer as the handle on the DMA it has
itiated. This should be passed to the polling and completion procedures.

Warning - Behaviour is undefined if srcProc is a broadcast virtual proc«
number.

ew_fetchStart () grows the pool ofDMA descriptors with rnalloc () :
all descriptors in dp are currently in use. If this fails, it causes an exception wi
code EW ENOMEM.

ew_fetchDone () is used to test for completion of a remote fetch. It never
blocks, but returns TRUE if the DMA with handle e has completed. Otherwise
returns FALSE.

ew_fetchWait () blocks until the DMA with handle e has completed. It r
turns the descriptor back to its owning pool.

Note that remote fetch requires an additional network latency compared with
mote store.

1

See Also

50

The following example shows ew_fetchStart () being used to do an edge
exchange between an arbitrary number of neighbouring processes.

fdefine NOB 1024
fdefine NNBR 6
extern u_int nbrVp[NNBR];
char importBufs[NNBR] [NOB];
char *exportBufs[NNBR];
ELAN_EVENT *e[NNBR);
int i;
EW DMAPOOL *dp;

/* create dma pool */

/* my neighbours */

dp = ew dmaPoolCreate (ew_base.waitType, ew_base.dmaType);

/* allocate exportBufs at known addresses */
for (i = 0; i < NNBR; i++)

exportBufs[i] = ew_allocate (ew_base.alloc, EW_ALIGN, NOB);

ew_fgsync (ew_base.segGroup); /* wait for neighbours ready */

for (i = 0; i < NNBR; i++) /* grab the data */
e[i] = ew fetchStart (dp, importBufs[i], NOB,

nbrVp[i], exportBufs[i]);

for (i = 0; i < NNBR; i++)
ew fetchWait (e[i]);

ew_fgsync (ew_base.segGroup);

EW DMAPOOL.

/* block until grabbed */

/* Exchange complete */

S 1 002-1 OM 104.04 meJ<a

EW PFD

Synopsis

Description

mei<D Elan Widget Library

EW _ PFD, ew _ptlnit, ew yfopen, ew yfclose - parallel file 1/0

iinclude <ew/ew.h>
typedef void EW_PFD;
void ew-pflnit (int waitType, int dmaType);
EW_PFD *ew-pfopen (EW_GROUP *g, char *path, int flagE

/* int mode */ ...);
int ew-pfclose (EW_PFD *pfd);

An EW _PFD is an opaque data type used to represent a file that has been open
by a group of processes for reading or writing global objects. These processes (
operate to read and write the file in parallel, according to the file's filesystem
type, and convert from a canonical representation in the file system, to the dis1
bution required by the application.

Note that an EW _PFD is not a global object. It is only meaningful in the proce
that called ew-pfopen ().

ew-pflnit () initialises the dma pool which is used to redistribute global (
jects on their way to and from the file system. wai t Type controls how parall
file operations will block on remote fetch and store. and dma Type determine;
how they will transfer the data.

ew -pf openO opens file path for parallel file I/O in all members of group ~

Group member 0 sets the file's streaming factor, f, and broadcasts it to the oth
members. f determines the number of parallel streams in which the file is re~
and written. If the file does not reside on a PFS file system, f is set to 1, oth(
wise it is set to the minimum of the number of underlying data file systems al
the number of group members. The first f group members then open the file wj
the Unix open () system call, passing it path, flags and mode.

Warning - ew-pfopen () ,and all other operations on the parallel file d
scriptor returned by it perform a barrier on the members of group g. T~
group must remain in existence until after the file has been closed.

ew-pfopen () causes an exception with code EW_EINIT ifit is called befe
ew-pflni t (). If it fails to open the file successfully, it returns NULL, with
errno set to indicate the error. Otherwise it returns the parallel file descript(

1

See Also

52

ew _pf close () closes the file associated with parallel file descriptor pf d. It is
an implicit barrier on the group with which the file was opened.

EW_DST, ew_pfseek(), ew_pfread(), ew_pfwrite()

S 1002-1 OMI 04.04 mei<o

EW DST

Synopsis

Description

meI<o Elan Widget Library

EW _ DST, ew _ dstCreate, ew _ dstDestroy - describe a regular matrix
distribution

#inelude <ew/ew.h>
typedef struet ew_dst EW DST;
EW DST *ew_dstCreate (int n,

j

/* int nAtom, int nProe, int blk, */
...) ;

void ew_dstDestroy (EW_DST *d);

An EW _ DST describes a distribution of an n-dimensional matrix over a group
Each dimension of the matrix is divided into blocks which are cyclically assign
to one or more processors in the group. The distribution is regular both in grOl
member number and virtual address.

ew _ dstCreate () creates a distribution description. n specifies the number
dimensions in the matrix. For each dimension, nAt om is the number of elemer
in that dimension of the matrix, nProe is the number of processors in that di
mension of the process array, and blk is the number of contiguous atoms to;
sign to each processor.

Warning - Note that nAtom and blk must be specified in units of bytes f~
the most rapidly varying dimension (the last triplet of parameters).

ew_dstCreate () allocates an EW_DST with malloe (), computes the di
tribution information for all dimensions and returns a pointer to it. If the allO(

tion fails, it returns NULL.

ew_dstDestroy () frees the memory allocated for the descriptor d.

The descriptor returned by ew dstCreate () contains an array of entries f
each dimension of the distribution, plus an additional entry for summary info
mation. Each entry contains count and stride information for the process arra
the slices of the matrix and the matrix itself.

EW _ DST component

int d ndim

EW DSTDIM d_dim[J

Description

Number of dimensions in the matrix.

Dimension infonnation (d _ ndim+ 1 entries).

1

Example

54

EW _ DSTDIM component Description

long d blocksize

long d_gstride

long d nsatom

long d sstride

long d_nproc

long d_pstride

Num ber of atoms per block.

Num ber of atoms in this dimension of the
matrix.

The stride, in bytes, between atoms in this
dimension of the matrix.

Maximum number of atoms in any slice of this
dimension of the matrix. Note that some
processes have fewer atoms if the number of
atoms is not exactly divisible by the number of
processes in this dimension.

The stride in bytes between atoms, in all slices
of this dimension of the matrix.

Number of processes in this dimension of the
process array.

The stride between processes in this dimension
of the process array.

The method of representing the distribution can be more easily described with an
example. Consider a matrix of double precision floating point numbers, with di­
mensions [18][35], distributed over a process array with dimensions [2][3], with
blocking factors [4] [10].

double M[18] [35];
EW DST *d = ew_dstCreate(2,

sizeof (M)/sizeof(M[O]), 2, 4,
sizeof (M[O]), 3, sizeof (M[O] [0]) *10);

SlOO2-10MI04.04 mei<o

mei<o Elan Widget Library

j

This results in a [5][4] array of blocks assigned cyclically to the [2][3] proces
array. Note that the last block in each dimension contains an odd number of eJ
ments.

Figure 1-9 Matrix Distribution

Matrix

Process 0 Process 3 .. '1 m' ···Im·
'. "

. . . .

·.·iI···::. n····.
Process 1 Process 4

Process 2 Process 5

1

d dim blocksize ngatom gstride nsatom sstride nproc pstride

[0] 1 1 5040 1 1200 1 6

[1] 4 18 280 10 120 2 3

[2] 80 280 120 1 3 1

56 S l002-10MI04.04 meJ<a

ew_pfseek

Synopsis

Description

See Also

mei<o Elan Widget Library

j

parallel file seek.

#include <ew/ew.h>
long ew_pfseek (EW_PFD *pfd, long delta, int whence);

ew yf seek () seeks to the specified offset in the file with parallel file descr
torpfd. delta specifies an offset. If whence is SEEK_SET, the offset is aj
plied from the start of the file, if it is SEEK_END, the offset is applied from tl
end of the file and if it is SEEK_CUR, the offset is applied from the current fi:
position.

ew yf seek () is an implicit barrier on all processes in the group that open(
the file. All group members must supply identical parameters otherwise beha'
iour is undefined.

ew yf seek () returns the new file position on success. If it fails, it returns
and sets errno to indicate the error.

1

ew-pfread

Synopsis

Description

See Also

58

ew _pfread, ew yfbread - parallel file read

#include <ew/ew.h>
int ewyfread (EW_PFD *pfd, caddr_t obj, EW_DST *dst);
int ewyfbread (EW_PFD *pfd, caddr_t b, long nob);

ewyfread () reads the global object referenced by obj, with distribution
dst, from the file with parallel file descriptor pf d. This call is an implicit barrier
on all members of the group that opened the file. All group members must supply
consistent parallel file and distribution descriptors, and identical ob j pointers.

ew _pfbread () broadcasts nob bytes from the file with parallel file descriptor
pfd to all group members. This call is an implicit barrier. All members of the
group must supply a consistent parallel file descriptor and the same value of nob.
However b does not have to be at the same address in all group members.

On success, ew_pfread () and ew_pfbread () return the number of bytes
read. Note that for ew _pfread () , this is the number of bytes in the whole glo­
bal object, not just the number of bytes in the local slice.

On failure, ew _pfread () and ew _pfbread () return (-1) and set errno
to indicate the error.

SIOO2-10MI04.04 meJ<a

eWJ)fwrite

Synopsis

Description

See Also

rnei<o Elan Widget Library

ew _pfwrite, ew yfbwrite - parallel file write

#include <ew/ew.h>
int ew-pfwrite(EW_PFD *pfd, caddr_t obj, EW_DST *dst
int ew-pfbwrite (EW_PFD *pfd, caddr_t b, long nob);

ewyfwrite () writes the global object referenced by obj, with distributi
dst, to the file with parallel file descriptor pfd. This call is an implicit baITi
on all members of the group that opened the file. All group members must SUP]

consistent parallel file and distribution descriptors, and identical ob j pointe)

ew yfbread () writes nob bytes from buffer b in one group member, to t:
file with parallel file descriptor pf d. This call is an implicit barrier. All memb
of the group must supply a consistent parallel file descriptor and the same va]
of nob. b does not have to be at the same address in all group members, but
contents must be the same because the actual source of the data is not define~

On success, ew _pfwr i te () and ew _pfbwr i te () return the number of
bytes written. Note that for ew -pfwr i te () , this is the number of bytes in 1

whole global object, not just the number of bytes in the local slice.

Onfailure,ew_pfwrite{) and ew_pfbwrite () return (-1) and sets
errno to indicate the error.

1

EW CHAN

Synopsis

Description

60

EW _CHAN, ew _ chanSize, ew _ chanlnit - channel communication

#include <ew/ew.h>
typede£ void EW_CHAN;
int ew_chanSize (void);
void ew chanlnit (EW_CHAN *chan,

u_int peerProc, EW_CHAN *peerChan,
int waitType, int dmaType);

An EW _CHAN is a one-to-one message passing port. It provides unbuffered com­
munications i.e. a transmit does not complete until a corresponding receive has
been posted and the data has been transferred. Full-duplex, non-blocking com­
munication is supported. Up to one transmit and one receive may be posted on a
channel at any time.

ew_chanSize () returns the size of a channel in bytes.

ew_chanlnit () initialises channel chan and connects it to its peer
peerChan in the address space of the process with virtual process number
peerProc. chan must be aligned on an EW _ALIGN boundary, otherwise an
exception is generated with code EW_EALIGN. wait Type detennines how to
block for completion and dma Type determines how to transfer data for all mes­
sages passed on c.

Initialisation occurs locally and requires no communication, however both ends
of the channel must be initialised before any communication may be initiated,
otherwise behaviour is undefined. Typically this occurs by barrier synchronising
processes after channel initialisation but before the first communication.

A channel may be re-initialised to connect to a different peer, however behaviour
is undefined if any communications are outstanding at this time.

S 1 002-10M 104.04 mei<D

See Also

rneko Elan Widget Library

The following example shows channels being used to do an edge exchange b
tween an arbitrary number of neighbouring processes.

idefine NOB 1024
idefine NNBR 6
extern u_int nbrVp[NNBR];
extern u_int nbrNum[NNBR];
char exportBufs[NNBR] [NOB];
char importBufs[NNBR] [NOB];
int i;
EW_CHAN *chans[NNBR];

/* my neighbours */
/* neighbours' index for me *1

/* create chans at globally consistent addresses */
for (i = 0; i < NNBR; i++)

ehans[i] = (EW_CHAN *) ew allocate (ew_base.alloe, EW ALIGN,
ew chanSize ():

for (i = 0; i < NNBR; i++)
ew chanInit (chans[ij, nbrVp[i], chans[nbrNum[i]],

ew_base.waitType, ew_base.dmaType);

ew_fgsync (ew_base.segGroup); /* block until all initialised *

for (i = 0; i < NNBR; i++) /* start exchange */

ew chanTxStart (chan[i], exportBufs[i], NOB):
ew chanRxStart (chan[ij, importBufs[i], NOB);

for (i = 0: i < NNBR; i++)

ew chanTxWait (chan[i]);
ew chanRxWait (chan[i]);

/* block until exchange complete *

ew_chanRxStart(), ew_chanTxStart().

1

ew chanRxStart

Synopsis

Description

See Also

62

ew _ chanRxStart, ew _ chanRxDone, ew _ chanRxWait - channel receive

#include <ew/ew.h>
void ew_chanRxStart(EW_CHAN *c, caddr t buf, int nob);
int ew_chanRxDone (EW_CHAN *c);
void ew_chanRxWait (EW_CHAN *c);

ew _ chanRxStart () initiates a receive on channel c into buffer buf which is
of length nob bytes. The receive completes after a transmit on the channel's peer
has been initiated and the message has been copied into buf. The next receive
may be initiated only after a call to ew _ chanRxWai t () , otherwise behaviour
is undefined.

The number of bytes actually transferred is determined by the transmitter. If the
transmitter sends a message which is longer than nob bytes, memory beyond the
end of the receiver's buffer will be overwritten. This error is not detected in the
standard libew version. However an application linked with libew_dbg, de­
tects this error at the transmitter and causes an exception with code EW_
EOVERRUN.

ew_chanRxDone () returns TRUE if the receive outstanding on channel c has
completed and FALSE if it has not. Behaviour is undefined if no receive is out­
standing.

ew _ chanRxWai t () blocks until the receive outstanding on channel c has
completed. On return, the caller may initiate the next receive.

EW_CHAN, ew_chanTxStart().

S 1002-1 OM 1 04.04 meJ<a

ew chanTxStart

Synopsis

Description

See Also

mei<o Elan Widget Library

j

ew_chanTxStart, ew_chanTxDone, ew_chanTxWait - channel transmit

#include <ew/ew.h>
void ew_chanTxStart (EW_CHAN *c, caddr_t buf, int nob)
int ew_chanTxDone (EW_CHAN *c);
void ew_chanTxWait (EW_CHAN *c);

ew_chanTxStart () initiates a transmit on channel c from buffer buf of
nob bytes. The transmit completes after a receive on the channel's peer has bel
initiated and the message has been copied to the receiver's buffer. The next tral
mit may be intiated only after a call to ew _ chanTxWai t () , otherwise beha
iour is undefined.

If the transmitter sends a message which is longer than the receiver'S buffer,
memory beyond the end of the receiver's buffer will be overwritten. This error
not detected in the standard libew version. However an application linked wi
1 ibew _ dbg, detects this error at the transmitter and causes an exception wi
code EW EOVERRUN.

ew_chanTxDone () return TRUE if the transmit outstanding on channel c h
completed and FALSE if it has not. Behaviour is undefined if no transmit is 01

standing.

ew_chanTxWait () blocks until the transmit outstanding on channel c has
completed. On return, the caller may initiate the next transmit.

EW_CHAN, ew_chanRxStart().

1

EW BCHAN

Synopsis

Description

See Also

64

EW _ BCHAN, ew _ bchanSize, ew _ bchanlnit - broadcast channel
communication

#include <ew/ew.h>
typedef void EW_BCHAN;
int ew_bchanSize (void);
void ew_bchanInit (EW_BCHAN *chan, u_int bcastVp,

int waitType, int dmaType);

An EW_BCHAN provides a combined barrier and broadcast. A non-blocking in­
terface is supported which allows a single outstanding broadcast. It is a global
object i.e it exists at the same virtual address in all processes participating in it.

In any broadcast, one process flags itself as the sender, and all others must flag
themselves as receivers. The sender uses a broadcast network poll to determine
when all processes have become ready. It then initiates a broadcast DMA to dis­
tribute the data. This use of hardware broadcast requires a broadcast channel to
span a contiguous range of processes.

ew_bchanSize () returns the size of a broadcast channel in bytes.

ew _ bchanIni t () initialises the broadcast channel chan which spans the
processes addressed by broadcast virtual process numberbcastVp. chan must
be aligned on an EW _ AL I GN boundary, otherwise an exception is generated with
code EW _ EALIGN. wait Type determines how to block for completion and
dmaType determines how to transfer data on all broadcasts on chan. The
broadcast channel must be initialised in all its processes before it is used by any
one of them. This is most conveniently done with a barrier on a parent group.

Warning - The memory occupied by a broadcast channel may not be reused
until all participating process have synchronised using some other means.

ew_createBcastVp(), ew_bchanStart().

S I002-10MI04.04 meJ<o

ew bchanStart

Synopsis

Description

See Also

meJ<o Elan Widget Library

ew _ bchanStart, ew _ bchanDone, ew _ bchan Wait - broadcast channel
transmit

#include <ew/ew.h>
void ew bchanStart (EW_BCHAN *c, int tx,

caddr_t data, int nob);
int ew_bchanDone (EW_BCHAN *c);
void ew_bchanWait (EW_BCHAN *c);

j

ew_bchanStart () initiates a broadcast on broadcast channel c. tx is TRl
on the sending process. It must be FALSE on all others. data specifies a sourl
destination buffer of size nob bytes. It must be at the same virtual address in c

participating processes, including the sender. The next broadcast on c may be .
itiated only after calling ew _ bchanWai t () . Behaviour is undefined if any I

these rules is broken.

ew_bchanDone () returns TRUE if the broadcast outstanding on c has com
pleted and FALSE if it has not. Behaviour is undefined if no broadcast is out­
standing on c.

ew _ bchanWai t () blocks until the broadcast outstanding on c has complete
On return, the caller may make a further call to ew_bchanStart ().

EW BCHAN.

1

EW TPORT

Synopsis

Description

66

tagged message passing

#include <ew/ew.h>

An EW _ TPORT is a point-to-point message passing port which supports the fol­
lowing features.

• Tag and sender selection.

• Non-blocking transmit and receive.

• Messages from the same source to the same destination, arrive in the order
sent (given equal selection criteria).

• Buffered or unbuffered message passing determined by sender.

Every tport is initialised with a sender ide This is a single word value which is
passed in the envelope information of message. It is used to identify and select
the message sender. It must be unique within the community of tports with which
the sender communicates.

A message is queued for sending on a tport by passing a flag, a tag, the destina­
tion virtual process number and tport, and the message buffer. The tag and the
sending tport's sender id are inserted in the message's envelope information. The
flag determines whether the message may be buffered.

The return value is a handle on the transmit which is passed to test or block for
completion. The maximum number of outstanding transmits is limited only by
memory availability.

Transmission completes after the message has been copied. If transmission is un­
buffered, this must occur directly. i.e. after a matChing receive has been queued.
Otherwise the message may be buffered so that transmission can complete with­
out blocking for a matching receive. If a buffered transmit is posted before a
matching receive has been queued, a buffer is allocated at the receiving tpoit and
the message is copied to it. When a matching receive is subsequently posted, the
message is copied again and the buffer is freed. Failure to allocate a buffer causes
an exception.

S lOO2-10M 1 04.04 meJ<D

rneI<o Elan Widget Library

A receive is queued on a tport by passing tag and sender selection parameters
flag, and a buffer. The selection parameters consist of a value and mask pair. T
mask determines the significant bits in the value.(e.g. a: mask of zero means
"match all", all bits set means "exact match"). The flag determines whether jl
to probe for a selection match, or to actually consume the incoming message.

The return value is a handle on the receive which is passed to test or block fo
completion. The maximum number of outstanding receives is limited only b)
memory availability.

Performance related parameters are set when a tport is initialised. These inclu
the minimum buffer size, the number of attention slots, whether to poll or blo
for completion, and how to DMA data through the network.

The minimum buffer size sets the smallest size of buffer which will be allocat
for incoming buffered transmits which match no receive. Increasing this size
duces fragmentation, at the expense of wasted memory if it is larger than the n
jority of messages.

The number of attention slots determines the number of elan threads which cc
duct the non-blocking transmit and receive operations on behalf of the user. Ea
attention slot has one sending and one receiving thread. Increasing the number
attention slots increases the tport's memory requirements. However it reduce:
destination conflicts when several processes attempt to transmit to the same d
tination !pOrt and it increases transmit concurrency on a sending !pOrt when m
sages are queued to many different destinations. This parameter must be identic
in all tports within a communi ty.

1

See Also

68

The following example shows a tport being used to do an edge exchange between
an arbitrary number of neighbouring processes.

tdefine NOB 1024
idefine NNBR 6
extern u_int nbrVp[NNBR];
ELAN_EVENT *rxd[NNBR];
ELAN_EVENT *txd[NNBR];
char exportBufs[NNBR] [NOB];
char importBufs[NNBR] [NOB];
int i;
EW_TPORT *p;

/* allocate tport */

/* my neighbours */

p = (EW_TPORT *) ew_allocate (ew_base.alloc, EW_ALIGN,
ew_tportSize (ew_base.tport_nattn));

/* initialise tport */
ew_tportlnit (p, ew_base.tport_nattn, ew_state.vp,

ew_base.tport_smallmsg,
ew_base.waitType, ew_base.dmaType);

ew_fgsync (ew_base.segGroup);

for (i - 0; i < NNBR; i++)
{

/* block until all initialised */

/* start exchange */

rxd[i] ew_tportRxStart (p, 0, nbrVp[i], -1, 0, 0,
importBufs[i], NOB);

txd[i] = ew_tportTxStart (p, EW_TPORT_TXSYNC, nbrVp[iJ, p, 0,
exportBufs[i], NOB);

for (i = 0; i < NNBR; i++) /* block until exchange complete * /

ew_tportRxWait (rxd[i], NULL, NULL, NULL);
ew_tportTxWait (txd[i], NULL, NULL, NULL);

ew_init(),ew_base,ew_gsync(),ew_tportInit(),ew_tport­
TxStart(),ew_tportRxStart() .

S 1002-1 OMI 04.04 mei<o

ew _ tportInit

Synopsis

Description

See Also

mei<o Elan Widget Library

ew _ tportSize, ew _ tportInit - tagged message port initialisation

#include <ew/ew.h>
int ew_tportSize (int nAttn);
void ew_tportlnit (EW_TPORT *p,

int nAt tn, int id, int minBufSize.
int waitType, int dmaType);

ew_tportSize () returns the number of bytes which should be allocated 1
represent a tport with nAt t n attention slots.

ew _ tport Ini t () initialises p to be a tagged message passing port with se
er id ide p must be aligned on an EW_ALIGN boundary, otherwise an excepti
with code EW_EALIGN is generated. It is given nAttn attention slots, wher
each attention slot has a sending and a receiving elan thread. minBufSize Sl

the minimum size of buffer to allocate to an incoming messages with no mati
ing receive. wai t Type detennines how message passing on p should block j
completion and dma Type controls how data is transferred.

Warning - The sender id of any tport within any group transmitting to t
same destination tport must be unique. Also the value ofnAttn must be t
same in any pair of communicating tports.

The following sender ids are reserved.

Symbolic name

EW TPORT NULLID

EW TPORT ATTNID

Value

Ox80000000

OxcOOOOOOO

EW_TPORT, ew_tportTxStart(), ew_tportRxStart().

1

ew _ tportTxStart

Synopsis

Description

70

ew_tportTxStart, ew_tportTxDone, ew_tportTxWait - tagged message
transmit

iinelude <ew/ew.h>
ELAN EVENT *ew_tportTxStart (EW_TPORT *srep, int flag,

u_int dest, EW_TPORT *destp,
int tag, caddr_t base, int size);

int ew_tportTxDone (ELAN_EVENT *t);
void ew_tportTxWait (ELAN_EVENT *t);

ew _ tport TxStart () initiates a tagged message transmit from tport srcp to
tport destp in the address space of the process with virtual process number
dest. The message, of size bytes, is in the buffer located at base. It is tagged
with tag and srcp's sender ide Return is immediate. Meanwhile the transmit
proceeds according to f I a g as follows.

Flag

o

EW TPORT TXSYNC

Description

Buffered transmit. The message is buffered at the
destination if no matching receive has been post­
ed. Transmit completes when the message has
been copied and may be overwritten.

Unbuffered transmit. Transmit completes when
the message has been consumed by a matching re­
ceive at the destination.

Note that a buffered transmit consumes memory at the destination until a match­
ing receive is posted. It causes a buffer to be allocated from a pool which is
grown on demand by mapping more memory. An exception with code EW_
ENOMEM, is caused at the destination if this fails.

When a matching receive is found at the destination, the size of the receiver's
buffer is compared with the size of the message. It the receiver's buffer is too
small, an exception is generated with code EW _ EOVERRUN.

ew_tportTxStart () allocates a transmit descriptor from a pool of descrip­
tors associated with srcp. If all descriptors are in use, it grows the pool by call­
ing malloe (). Failure causes an exception with code EW_ENOMEM. It returns
the descriptor, cast to an event, as the handle on the transmit. This should be
passed to the polling and completion procedures.

SlOO2-10MI04.04 mei<a

See Also

mekD Elan Widget Library

ew_tportTxDoneO returns TRUE if the transmit with handle t has comp}(
ed. Otherwise it returns FALSE.

ew _ tport TxWai t () blocks until the transmit with handle t has completel
It returns the associated transmit descriptor back to its owning tport.

EW_TPORT, ew_tportlnit(), ew_tportRxStart().

1

ew _ tportRxStart

Synopsis

Description

72

ew _ tportRxPolI, ew _ tportRxStart, ew _ tportRxDone, ew _ tportRx Wait, ew_
tportBuiFree - tagged message receive

#include <ew/ew.h>

extern int ew_tportRxPoll (EW_TPORT *p,
int senderMask, int senderSel,
int tagMask, int tagSel,
int *sender, int *tag, int *size);

ELAN EVENT *ew_tportRxStart (EW_TPORT *p, int flag,
int senderMask, int senderSel,
int tagMask, int tagSel,
caddr_t base, int size);

int ew_tportRxDone (ELAN_EVENT *r);

caddr t ew_tportRxWait (ELAN_EVENT *r,
int *sender, int *tag, int *size);

void ew_tportBufFree (caddr_t buf);

Tagged message receive supports selection on sender and tag. Each selection pa­
rameter is specified by a mask and value pair. The mask determines the signifi­
cant bits of the value.

match = «msg->tag & tagMask) == (tagSel & tagMask» &&
(msg->sender & senderMask) == (senderSel & senderMask»;

A receive posted with a user buffer which is too small to contain the message it
matches, generates an exception with code EW _ EOVERRUN .

ew _ tportRxPoll () checks if a message matching the given selection param­
eters has arrived at tport p. If no matching message has arrived, it returns FALSE.
Otherwise it returns TRUE and the message's envelope information is returned in
*sender, *tag and *size. The caller may pass a NULL pointer for any com­
ponent of the envelope information that is not of interest.

SlOO2-10MI04.04 meJ<o

meI<o Elan Widget Library

ew_tportRxStart () initiates a receive of a message matching the given
lection parameters on tport p. It returns immediately. Meanwhile the receive p
ceeds according to f lag as follows.

Flag

o

EW TPORT RXBUF - -

EW TPORT RXPROBE

Description

Receive completes when a matching message has
been received into the buffer at base. size spec
Hied the length in bytes of the buffer.

Receive completes when a matching message has
been received into a tport buffer. This buffer will
be returned by ew _ tportRxWai t () . base and
s i z e are ignored.

Probe completes when a matching message could
be received without blocking. The matching meso
sage is not consumed, but remains awaiting a
"real" receive. If the message was transmitted
with EW_TPORT_TXSYNC, the transmit remains
uncompleted. base and size are ignored.

ew_ tportRxStart () allocates a receive descriptor from a pool of descril
tors associated with p. If all descriptors are in use, it grows the pool by caHin
malloe () . Failure causes an exception with code EW _ ENOMEM. It returns tl
descriptor, cast to an event, as the handle on the receive. This should be pass~
to the polling and completion procedures.

ew_tportRxDoneO returns TRUE if the receive with handle r has complete
Otherwise it returns FALSE.

ew_tportRxWait () blocks until the receive with handle t has completed.
frees the associated receive descriptor and returns envelope information in
*sender, *tag, and *size. The caller may pass a NULL pointer for any co
ponent of the envelope information that is not of interest.

If the receive was posted with EW_TPORT_RXBUF, ew_tportRxWait () 1

turns a pointer to a buffer in the tport's buffer pool, containing the message. n
buffer must be returned to the tport after its contents have been used.

1

See Also

74

ew _ tportBufFree () returns a buffer to its owning tport's buffer pool. buf
must have been previously returned by ew _ tportRxWai t () , on completion
of a receive posted with EW_TPORT_RXBUF.

EW_TPORT, ew_tportlnit(), ew_tportTxStart().

S 1002-1 OM 104.04 meJ<a

ew _rsysServerlnit

Synopsis

Description

mei<o Elan Widget Library

ew _rsysServerlnit, ew _rsysClientInit - remote system call

#include <ew/ew.h>

j

EW_TPORT *ew_rsysServerlnit (int bufSize, int nAttn,
int waitType, int dmaType)

void ew_rsysClientlnit (u_int server,
EW_TPORT *tport, int nAttn,
int waitType, int dmaType);

ew _ r s y s Server I ni t () spawns a light weight process to act as a remote s~
tern call server. This process receives system call requests by tagged message
passing, however it fetches and stores larger arguments and returns the systen
call result by network DMA to the requester. System calls are served strictly i
requesting sequence.

buf s i z e is the maximum buffer size that it may use to packetise large argu­
ments. nAt tn is the number of attention slots in the server's tport. wait Typ
controls how the server process blocks for completion and dma Type determin
how data will be transferred. It returns a pointer to the tport which should be
passed to ew _ r s y s C 1 i e n tIn it () .

ew_rsysServerlnit () generates an exception with code EW_ENOMEM if
fails to allocate space for its packet buffer, tport and light weight process stacl
It causes an exception with code EW _ E I NIT if it fails to spawn the server ligJ
weight process.

e w _ r s y sCI i e n tIn i t () starts system call redirection to the process with v
tual process number server. tport is the address of the tport that was creat(
on the server, and nAt tn must be the number of attention slots it has, otherwi!
behaviour is undefined. wait Type controls how to block for system call COl

pletion and dma Type determines how to send system call requests.

ew_rsysClientlnit () causes an exception with code EW_ENOMEM ifit
fails to allocate space for its tport.

1

See Also

76

ew_rsysClientlni t () initiates interception of the following system calls.

System Call

read ()

write ()

Description

Read is intercepted only on file descriptor 0, correspond­
ing to stdin.

Write is intercepted only on file descriptors 1 and 2, corre­
sponding to stdout and stderr.

Buffering on the standard input, output and error streams must be understood for
the desired effect to occur when the underlying read () and wr i te () system
calls are redirected. Also processes must synchronise on reading the standard in­
put if results are to be detenninistic.

ew_init(), ew_base, EW_DMAPOOL, ew_tportlnit().

S 1002-1 OMI 04.04 meJ<D

eWJltrace

Synopsis

Description

mei<o Elan Widget Library

ew _ptracelnit, ew _ptraceStart, ew JltraceStop, ew ytraceFlush, ew Jltra l

- generate ParaGraph trace files

#include <ew/ew.h>
void ew_ptracelnit (EW_GROUP *g, char *fname,

int ne, int pid);
extern void ew_ptraceFini (void);
void ew~traceStart (void);
void ew~traceStop (void);
void ew~traceFlush (void);
void ew~trace (EW_PTR'rtype,EW_PTE etype, int n, ... J

This set of procedures enables a set of processes to generate ParaGraph fonn
trace infonnation. The infonnation is recorded in a buffer of user detennined
size, which is periodically flushed to a trace file. Every process generates a se
arate trace file. The set of traces may be merged by the following sort com­
mand.

I user@cs2-0: sort -m +2n -0 fname fname.*

ew~tracelnit () initiates tracing for all members of group g. pid ident
fies the caller for tracing purposes. It is used to tag all trace records produced t
the calling process. It is also used by other processes when they produce a trae
record which identifies this process as the source or destination of a message.

ew~tracelnit () executes a barrier on g to synchronise process clocks at
ensure consistent time stamps. The group is not used after this initial synchrol
sation. Each group member creates a private trace file with a name constructe
from fname and pid.

sprintf (traceFname, "%s.%d", fname, pid);

ne sets the size of the event buffer. This buffer is automatically flushed to the fi
system when it is full.

ew_ptracelnit () generates an exception with EW_EINIT ifit is called t
fore libew has been initialised, it can't open the trace file, or ifit can't alloca
the trace buffer.

1

78

ewytraceStartO enables tracing and records a "start of tracing" event.

ew_ptraceFlush () flushes the event buffer to the file system. It records a
"start of flushing" event when it begins, and an "end of flushing" event on com­
pletion. It generates an exception with code EW _ E 10 if it fails to write to the
trace file.

ewytraceStop () disables tracing, records an "end of tracing" event and
calls ewytraceFlush (). Note that ew_ptraceStop () and ew_
ptraceStart () may be called repeatedly to record snapshots of a program's
behaviour

ew_ptraceFini () calls ew_ptraceStop () to disable tracing and flush
any buffered events. It then closes the trace file and frees the event buffer. Note
that ew _ptracelni t () calls ew _ptraceF ini () ifit is called while an ex­
isting trace file is open

ew_ptrace () does nothing when tracing is not enabled. Otherwise it records
an event by adding to the event buffer. If the buffer becomes full, it calls ew_
ptraceFlush (). rtype is the ParaGraph record type, etype is the Para­
Graph event type and n is the number of data items to follow. If n is zero, no fur­
ther parameters are parsed, otherwise the remaining parameters must be a
ParaGraph data type followed by n values of that type. An exception with code
EW _ ERANGE is generated if n is greater than 8, or if the data type is not recog­
nised.

SIOO2-10MI04.04 meJ<o

mei<D Elan Widget Library

The following examples illustrate the use of the tracing procedures in a highe:
level programming model.

int csend (int mtype, void *mbuf,

int

int len, int node, int pid)

int rc;

ew-ptrace (EW_PTR EVENTENTRY, EW_PTE_SEND, 4, EW_PTD_INT,
len, mtype, node, pid);

return (rc);

crecv (int mtype, void *mbuf, int len)

int rc;

ew-ptrace (EW_PTR EVENTENTRY, EW_PTE_RECVBLOCK, 3, EW_PTD_INT,
mtype, 0, 0);

ew-ptrace (EW_PTR_EVENTEXIT, EW_PTE_RECVBLOCK, 4, EW_PTD_INT,
mpsc_state.infocount, mpsc_state.infotype,
mpsc_state.infonode, O);

return (rc);

1

80 SIOO2-10MI04.04 meJ<a

Message Format

meJ<a

Error Messages

Errors within Widget library programs are reported by the Widget library excc
tion handler. This writes diagnostic messages to the standard error device and
kills the application.

The format of the diagnostic messages is as follows:

EW_EXCEPTION @ process: error code (error_text)
error message string

The error message strings are listed later in this chapter. The process is the vi
tual process num ber of the process that detected the error; if the exception OCCll

before the process has attached to the network then this is shown as - - - -. Tl
error code (and its textual equivalent the error text) are one of:

Error Code Error Text

0 OK

1 Debug

2 Internal error

3 Alignment error

4 Message overrun

2

82

Error Code Error Text

5 Memory exhausted

6 Initialisation error

7 Tx and Rx size discrepancy

8 Value out of range

9 Communication not start,ed

10 Timeout already set

11 I/O error

12 No more route tables

13 Widget busy

The precise meaning of each error is listed later, but in general the errors have
the following meanings:

Error Code Typical meaning

0 Program aborted without error.

1 Program aborted for debugging.

2 Implementation error; please report error to Meiko.

3 Structure not aligned on EW _ALIGN boundary.

4 Incoming message larger than receiving buffer.

S Insufficient memory available; call to malloc(3c) etc. failed.

6 Did you call the appropriate InitO function?

7 Size of send and receive buffers do not match.

8 Value outside permitted range.

9 Trying to test a communication that had not been started.

10 ew _timeoutO has been used twice concurrently.

11 Could not open or write to file.

12 Could not create broadcast routes; insufficient space.

13 Trying to remove data structure that is still in use.

S 1 002-1 OM 1 04.04 meJ<D

Thread Process Exceptions

Some Widget library functions spawn processes on the Elan Thread Processo
Exceptions in thread process code are similar to those described above:

EW T EXCEPTION @ process: error code (error_text)
error message string

Other Widget Exception Messages

Message passing libraries implemented above the Widget library (e.g. the CS]
PVM etc. libraries) may also report errors using the Widget library exception
handler. These error messages are described in the documentation for each li­
brary.

Internal Errors

Error Messages

mei<o Error Messages

Messages of type 2 (internal error) indicate errors in the implementation of th
library. Please report these errors to Meiko, giving as much infonnation about tl
circumstances that caused the error. This should include details of the hardwa
configuration that you were using, and (ideally) minimised code fragments th
will allow Meiko to reproduce the error.

In the following li~t italicised text represents context specific text or values.

'ew _version' incompatible with 'elan_versA' ('elan_versB' expected)
Error type is 6 (initialisation error).

Occurs in the Widget library function ew _ ini to; Elan library version in·
compatibility. An Elan library with version elan_versA was found when ela
versB was expected.

Attempt to map size bytes in allocator type type
Error type 2 (Internal error). Please report to Meiko.

2

84

Occurs in the Widget library function ew_allocateO; searching an internal
list of unmapped memory regions and found a reference to memory of type
ALLOCED or BSS (when MAPPED was expected).

Bad BCHAN struct spec
Error type 2 (Internal error). Please report to Meiko.

Occurs in the Widget library function ew_bchanlnitO; the EW_BCHAN
structure has not been correctly defined.

Bad CHAN struct spec
Error type 2 (Internal error). Please report to Meiko.

Occurs in the Widget library function ew_chanlnitO; the EW_CHAN
structure has not been correctly defined.

Bad DMA struct spec
Error type 2 (Internal Error). Please report to Meiko.

Occurs in the Widget library function ew _ drnaPoolCreate(); the EW_
DMAPOOL structure has not been correctly defined.

Bad free Rx state
Error type is 2 (Internal error). Please report to Meiko.

Occurs in the Widget library function ew_tportRxStartO; internal data
structures incorrectly initialised.

Bad G EX struct spec
Error type is 2 (Internal error). Please report to Meiko.

Occurs in Widget library function ew_gexlnitO; the EW _GEX structure
has not been correctly defined.

Bad group member selfin group size size
Error type is 8 (value out of range).

Occurs in the Widget library function ew_grouplnitO; the function was
called with the s elf argument set to less than 0 or greater than the number of
group members.

Bad GROUP struct spec
Error type is 2 (Internal error). Please report to Meiko.

S 1002-1 OM 1 04.04 meJ<a

rneko Error Messages

Occurs in the Widget library function ew_groupInitO; the EW_GROU
structure has been incorrectly defined.

Bad size size in ew_growBitmap
Error type is 2 (Internal error). Please report to Meiko.

Occurs in the Widget library function ew _growBi trnapO; this is an intern
function that is used by e w _ ere ate Be as t Vp () . The speci tied size was n
a multiple of 8 integers.

Bad tport ATTN struct spec
Error type is 2 (Internal error). Please report to Meiko.

Occurs in the Widget library function ew _ tportIni to; incorrectdetiniti(
of an internal data structure.

Bad tport BUF struct spec
Error type is 2 (Internal error). Please report to Meiko.

Occurs in the Widget library function ew _ t port I ni to; incorrect definiti(
of an internal data structure.

Bad tport HDR struct spec
Error type is 2 (Internal error). Please report to Meiko.

Occurs in the Widget library function ew _ tport Ini to; incorrectdetiniti<
of an internal data structure.

Bad tport RXD struct spec
Error type is 2 (Internal error). Please report to Meiko.

Occurs in the Widget library function ew _ tport Ini to; incorrectdefiniti(
of an internal data structure.

Bad tport SENDER struct spec
Error type is 2 (Internal error). Please report to Meiko.

Occurs in the Widget library function ew _ tport Ini to; incorrectdefiniti(
of an internal data structure.

B~d TPORT struct spec
Error type is 2 (Internal error). Please report to Meiko.

2

86

Occurs in the Widget library function ew_ tportlni to; incorrect definition
of an internal data structure.

Bad tport TXD struct spec
Error type is 2 (Internal error). Please report to Meiko.

Occurs in the Widget library function ew _ tport Ini to; incorrect definition
of an internal data structure.

Can't alloca te trace
Error type is 5 (memory exhausted).

Occurs in the Widget library internal function ew_ traceAllocO, which is
used by ew_tportlnitO, ew_tportTxStartO, ew_tportRx­
StartO, and ew_rsysServerlni to. A call to calloc(3c) failed due to
insufficient memory.

Can't allocate trace lock
Error type is 5 (memory exhausted).

Occurs in the Widget library internal function ew_ traceAllocO, which is
used by ew_tportInitO, ew_tportTxStartO, ew_tportRx­
StartO, and ew_rsysServerlni to. A call to calloc(3c) failed due to
insufficient memory.

Can't check stack message
Error type is 5 (memory exhausted).

Occurs in the Widget library functions ew_grouplnitO, ew_tportln­
itO, ew_bchanlnitO, eW_dmaPoolCreateO, and ew_touchBufO
(the message identifies which). A call to malloc(3c) failed to allocate an in­
ternal data structure.

Can't find own elan capability
Error type is 6 (initialisation error).

Occurs in the Widget library functi on e w _at t a c h 0; could not extract a ca­
pability from the environment. The capability should be passed to the appli­
cation by the resource management system.

This ~rror occurs if you run a parallel program without using the R.\1S; did
you try to execute a parallel application without using prun(1)?

S I002-10MI04.04 meJ<o

rneko Error Messages

Can't open Idev/zero: errno (message)
Error type is 6 (initialisation error).

Occurs in the Widget library function ew _ini to; cannot open / dev / zer
a call to open(2) failed and set errno as indicated in the exception messal

channel tx chan (tx size rx size)
Error type 4 (message overrun).

Occurs in the Widget library function ew_chanTxDoneO (with debug
checking enabled); the transmission has overwritten the recipients data buff
(the transmission was too large). chan is a pointer to the EW _CHAN structUl
IX size is the amount of data sent, and rx size is the amount expected (both
bytes).

dma descriptor: dma pool dmapool
Error type is 5 (memory exhausted).

Occurs in the Widget library functions ew_storeStartO and ew_
fetchStartO; could not allocate memory for additional DMA descripto
(a call to memalign(3c) failed). dmapool is a pointer to the EW _DMAPOC
structure.

DMA has 0 type
Error type is 2 (Internal error). Please report to Meiko.

Occurs in the Widget library function ew _ bcast(); DMA type has been s
toO.

ew_baselnitO called AFTERew_attachO
Error type 6 (initialisation error).

Occurs in Widget library function ew_baselnitO; the ew_state. at·
tached field is already initialised indicating that ew _at tachO has alreaj
been called.

ew_bchanDone (bchan)
Error type is 9 (communication not started).

Occurs in the Widget library function ew _ bchanDone() (with debuggin~
. enabled); ew _ bchanDoneO was called when there was no outstanding
broadcast on that channel. bchan is a pointer to the EW _BeHAN structur(

2

88

ew_bcbanInit (bchan)
Error type 3 (alignment error).

Occurred in the Widget library function ew bchanlni to; the EW_
BCHAN structure that was passed as an argument was not aligned on an EW _
ALIGN boundary. bchan is a pointer to the structure.

ew_bchanWait (bchan)
Error type is 9 (communication not started).

Occurs in the Widget library function ew _ bchanWai to (with debugging
enabled); ew_bchanWaitO was called when there was no outstanding
broadcast on that channel. bchan is a pointer to the EW _BCHAN structure.

ew_cbanInit (chan)
Error type 3 (alignment error).

Occurred in the Widget library function ew _ chanlni to; the EW _CHAN
structure that was passed as an argument was not aligned on an EW _ALIGN
boundary. chan is a pointer to the structure.

ew _check Version(self)
Error type is 2 (Internal error). Please report to Meiko.

Occurs in the Widget library function ew _ ini to; internal incompatibility of
library source files.

ew _ createBcast V pO: alloc failed after growing tables
Error type is 2 (Internal error). Please report to Meiko.

Occurs in the Widget library function ew createBcastVp(); an internal
data structure should be large enough to meet requirements but was found to
be insufficient.

ew_createBcastVp (base, count) base out of range
Error type is 8 (value out of range).

Occurs in the Widget library function ew_createBcastVpO; the specified
base does not identify a process in any of this application's segments.

ew _ createBcastVp (base, count) count out of range in seg segment base
segbase size segcount

Error type is 8 (value out of range).

SIOO2-10MI04.04 meJ<a

meI<D Error Messages

Occurs in the Widget library function ew createBcastVpO; the specifi
range of processes (base, count) did not fit within a segment. The error me
sage identifies the segment, the base process id within the segment (segbasl
and the number of processes in that segment (segcount).

ew_createBcastVp (base, count) invalid count
Error type is 8 (value out of range).

Occurs in the Widget library function ew_createBcastVpO; the count
gument was less than or equal to O.

ew _ dmaPoolDestroy (dmapool)
Error type 13 (widget busy),

Occurs in the Widget library function ew_drnaPoolDestroyO; attempt
destroy an EW _DMAPOOL while DMAs are still active. dmapool is a poin1
to the EW _DMAPOOL structure.

ew_gexInit(gex)
Error type is 3 (alignment error).

Occurs in the Widget library function ew_gexlnitO; the EW_GEX stru
ture that was passed as an argument is not aligned on an EW _ALIGN bOUl
ary. gex is a pointer to the EW _ GEX structure.

ew gexInitO element index, tx size = size, rx size = size
Error type is 7 (Tx and Rx size discrepancy).

Occurs in the Widget library function ew _gexlni to; a mismatch in size I
curred between send and receive buffers. This exception occurs if group me
ber i's txlov [j] . iov _len is not equal to member j's rxlov [i] • io
len.

ew _grouplnit (group)
Error type is 3 (alignment error),

Occurs in the Widget library function ew_grouplnitO; the EW_GROI
structure that was passed as an argument is not aligned on an EW _ALIGN
boundary. group is a pointer to the EW _GROUP structure.

elY _groupMember (group, member): group size size
Error type is 8 (value out of range).

2

90

Occurs in the Widget library functions lookupldO and lookupTableO,
which are installed as the group member lookup functions by specifying any
oneofew_groupFn_ldO,ew_groupFn_tableO,ew_groupFn_
segO, or ew_groupFn_a110 to the group initialisation function ew_
grouplni to.

This error message may be seen when ew _groupMernberO is called (be­
cause it is implemented as a call to these group lookup functions). It occurs
because the specified group member is less than 0 or greater than the number
of group members.

group is a pointer to the EW _GROUP structure, member is the group member,
and size is the group's size (number of members).

ew _pfopenO: parallel file interface not initialised
Error type is 6 (initialisation error).

Occurs in ewyfopenO; ew_pflnitO has not been previously used to in­
itialise the parallel file interface.

ew prefixO not yet implemented
Error type is 2 (Internal error).

Occurs in the Widget library function ew prefixO; this function is not im­
plement in your library.

ew _ptraceO too many data items count
Error type is 8 (value out of range).

Occurs in the Widget library function ew_ptraceO; number of data values
passed to ew _ptraceO exceeds 8.

ew _ptraceO bad data type type
ew _ptraceFlushO bad data type type

Error type 8 (value out of range).

Occurs in the Widget library functions ew_ptraceFlushO and ew_
ptraceO; the ParaGraph data type was not recognised; expecting one of
EW _PTO_CHAR, EW _PTO_STRING, EW _PTO_INT, EW _PTO_LONG,
EW _PTO_FLOAT, or EW _PTO_DOUBLE.

ew _ptraceFlush(jilename) failed to output trace data: message
Error type is 11 (I/O error).

SIOO2-10MI04.04 meJ<a

meko Error Messages

Occurs in the Widget library function ew_ptraceFlushO; could not wri
to tracefile, an internal call to fprintf(3S) failed. Check file pennission:
and ensure sufficient space on filesystem.

ew _ptracelnit(jilename, ne) called before ew _ attachO
Error type is 6 (initialisation error).

Occurs in the Widget library function ew_ptracelnitO; ew_ptra­
celnitO was called before ew_attachO.

filename and ne are the filename and number of events arguments that werl
passed to ew_ptracelnitO.

ew ptracelnit(jilename, ne) can't allocate trace buffer: message
Error type is 6 (initialisation error).

Occurs in the Widget library function ew_ptracelnitO; cannot allocat
memory for internal trace buffer; a call to rnalloc(3c) failed with ermo Sl

as described in the exception message.

filename and ne are the filename and number of events arguments that werl
passed to ew_ptracelnitO.

ew_ptracelnit(jilename, ne) can't open trace file: message
Error type is 6 (initialisation error).

Occurs in the Widget library function ew_ptracelnitO; the specified
trace file could not be opened. Check that you have write pennission to the fi
system. The open(2) system call failed with ermo set as described by mej
sage.

filename and ne are the filename and number of events arguments that werl
passed to ewytracelnitO.

ew _ptracelnit(jilename, ne) filename too long
Error type is 6 (initialisation error).

Occurs in the Widget library function ew _ptracelni to; the filename a
gument exceeded the internal length limit of (currently) 64 characters.

filename and ne are the filename and number of events arguments that wer,
. passed to ew_ptracelnitO.

2

92

ew _reduceO elsize size pktsize size
Error type is 8 (value out of range).

Occurs in the Widget library function ew reduceO; the specified element
size (elsize) is larger than the group's packet size (pktsize). (The group packet
size is defined with ew _grouplni to.)

ew _rsyslnitO: allocating client Tport (size)
Error type is 5 (memory exhausted).

Occurs in the Widget library functions ew_rsysClientlnitO and ew_
rsysServerlni to; a call to memalign(3c) failed while trying to allocate
memory of size = ew_tportSize(nAttn).

ew _rsyslnitO: allocating server buffer size
Error type is 5 (memory exhausted).

Occurs in the Widget library function ew rsysServerlnit(); a call to
ew_rsysServerlnitO with the specified buffer size argument failed be­
cause malloc(3c) was unable to allocate the buffer.

ew _rsyslnitO: allocating stack size
Error type is 5 (memory exhausted).

Occurs in the Widget library function ew_rsysServerlnit(); a call to
memalign(3c) failed to allocate stack for the lightweight server process.

ew_rsyslnitO: Can't create system call server
Error type is 6 (initialisation error).

Occurs in the Widget library function ew rsysServerlnitO; failed to
spawn the lightweight server process. Maybe the system limit for LWPs has
been exceeded for this user.

ew _t_touchBuf (bottom-top): continued after waitevent
Error type is 2 (internal error). Please report to Meiko.

Occurs in the Widget library internal function ew _ t _ touchbufO, which is
used by ew_ touchbufO.

bottom and top refer to first and last memory pages; the function tries to make
memory accesses in each page to generate page faults, and thus preload the
pages in advance of their use.

Sl002-10MI04.04 meJ<a

meI<o Error Messages

ew _ tportlnit (tport)
Error type is 3 (alignment error).

Occurs in the Widget library function ew tport Ini to; the EW _TPOR'
structure that was specified as an argument was not aligned on an EW _ALIC
boundary. tport is a pointer to the EW _ TPORT structure.

ew _ tportTxStart: t _done set
Error type is 2 (Internal error). Please report to Meiko.

Occurs in the Widget library function ew _ tport TxStartO; an internal
event was ready sooner than expected.

ew_utimeout (timeout, handler)
Error type is 10 (timeout already set).

Occurs in the Widget library function ew_utimeoutO; the function has
been called while a previous call is still pending. Only one procedure may'
scheduled at anyone time. timeout and handler are the arguments that weI
passed to the failed function call.

Failed to ~lIocate rsys save descriptors
Error type is 5 (memory exhausted).

Occurs in the Widget library internal function ew _ rsysSaveFdsO; a call
malloc(3c) failed.

Failed base createAllocator (base, size) errno: message
Error type 6 (initialisation error).

Occurs in Widget library function ew_baselnitO; a call to ew_cre­
ateAllocatorO failed; the ew_base. alloe field could not be initia
ised because a request for memory failed. Ermo was set by the allocating
functions as reported by this error message.

Failed base group allocation
Error type is 6 (initialisation error).

Occurs in Widget library function ew_baselnitO; a call to ew_aIIo­
cateO failed; could not allocate the EW _GROUP structure to initialise tl

. ew_base. allGroup field. Probable cause is insufficient memory.

2

94

Failed elan _ addvp (segment @ process for count) err no: message
Error type is 6 (initialisation error).

Occurs in the Widget library function ew_attachO; a call to elan_ad­
dvpO failed and set ermo to the specified value. elan_addvpO is used to
define the virtual process number for the members of all the segments in the
application.

segment is the segment id, process is the process within the segment that failed
to call elan_addvpO. count is the number of processes in the segment.

Failed elan _ attachO errno: message
Error type is 6 (initialisation error).

Occurs in the Widget library function ew_attachO; a call to elan_at­
tachO failed and ermo was set to the value reported by this exception.

elan_attachO may fail because the process has already called elan_at­
tachO, or because the capability has been corrupted (maybe the LIB_EW­
CAP environment variables have been corrupted).

Failed elan_initO errno: message
Error type is 6 (initialisation error).

Occurs in the Widget library function ew_initO; a call to elan_initO
failed. This may occur because your machine is equipped with the wrong re­
vision Elan device, there are too many processes currently using the Elan,
there is no virtual address space left to map-in the Elan device, or you are run­
ning the program on a processor with no attached Elan device.

When elan _ ini to failed it set ermo to the value reported in the exception
message.

Failed segment group allocation
Error type 6 (initialisation error).

Occurs in the Widget library function ew_baselnitO; a call to ew_allo­
cateO failed; could not allocate the EW _GROUP structure to initialise the
ew _base. segGroup field. Probable cause is insufficient memory.

Failed tQ allocate dma pool
Error type 5 (memory exhausted).

S 1 002-1 OM 104.04 meJ<a

mei<o Error Messages

Occurs in the Widget library function ew_dmaPoolCreateO; could not
locate memory for the EW_DMAPOOL structure (a call to memalign(3c
failed).

Failed to allocate grow route table process+count
Error type is 12 (no more route tables).

Occurs in the Widget library function ew_createBcastVpO; a call to
elan_addrtO failed possibly because there was insufficient space in the
Elan route tables to create a broadcast virtual process id for this group of pr<
esses.

process is the first process in the broadcast group, count is the number of pr<
esses.

Failed to create gex dmapool
Error type is 6 (initialisation error).

Occurs in the Widget library function ew _gexlni to; failed call to ew_
dmaPoolCreateO; could not create EW _DMAPOOL structure. Possibl~
memory shortage.

Failed to grow broadcast vp bitmap process+count
Error type is 5 (memory exhausted).

Occurs in the Widget library function ew_createBcastVpO; failed to
grow internal structures to accommodate processes number to (number+
count). count is the required number of routes (a multiple of 8).

Failed to parse env name=value
Error type is 6 (initialisation error).

Occurs in the Widget library function ew_parseEnvVarO; this is an int~
nal function that is used by ew_baselnitO, ew_initO, ew_attach(
and ew_rsysServerlnitO to parse environment variables. This may i
dicate that the wrong type of value was assigned to a variable (an integer
where a name was expected). name is the name of the variable, value is its C1

rent incorrect value.

Failed to set broadcast route base for count
'Error type is 2 (Internal error). Please report to Meiko.

2

96

Occurs in the Widget library function ew _ createBcastVpO; a call to the
Elan library function elan_set rtO unexpectedly failed.

Failed realloc(capVec = count) errno: message
Error type is 6 (initialisation error).

Occurs in the Widget library function ew_at tach(); a call to realloc(3c)
failed while trying to extend the internal buffers to store segment capabilities.
The count is the number of capabilities that we want to create space for (which
will be a multiple of 2 and may be more than the application really needs).

errno is the result of the failed reallocO, and the message is a textual ex­
planation of the error.

Non-uniform library utilisation: 'versionA' (member) 'versionB' (self)",
Error type is 6 (initialisation error).

Occurs in the Widget library function ew _ sgs yncO; group members were
compiled with different library versions; the process that detected the error
(self) was compiled with versionB, whereas group member member was com­
piled with versionA.

Self not in route capabilities
Error type is 6 (initialisation error).

Occurs in the Widget library function ew_attachO. ew_attachO extracts
the capability for each segment from environment variables. LIBEW _ECAP
is the capability for this segment, and LIBEW _ECAPn is the capability for
segment n. The exception is generated if there was no value of n for which
LIBEW _ECAP = LIBEW _ECAPn.

tagged message buffer: port tport index number size size total size
Error type is 5 (memory exhausted).

Occurs in the Widget library internal function ew_t_tportNewBufO,
which is used by ew _ tportRxStart(); failed to allocate memory for an in­
ternal data buffer (for a non-blocking communication).

tagged msg rx: port port
Error type is 5 (memory exhausted).

Sl002-10MI04.04 meJ<o

meJ<o Error Messages

Occurs in the Widget library internal function newRxDescO, which is Us(
by both ew_tportRxStartO and ew_rsysServerlnitO. A call to
merna 1 i gn(3c) failed. port is a pointer to a EW _ TPORT structure

tagged msg rx: tag rxtag (tag) sender rxsender (sender) size rxsize (size) po
tport

Error type is 4 (message overrun).

Occurs in the Widget library functions ew_tportRxStartO and ew_
tportRxWai to; receive buffer is too small to contain the message that i
matches.

The exception message displays the following "received (expected)" pairs

rxtag Tag on incoming message.

tag tagSel argument as specified to ew_tportRxStartO.

rxsender Sender's id.

sender senderSel argument to ew tportRxStartO.

rxsize Incoming message size.

size Size of receiver's buffer; this may be the system default size
if either EW _ TPORT _RXB UF or EW _ TPORT _RXPROBE
Hags were set.

tport Pointer to the receiving EW _ TPORT (argument to ew_
tportRxStartO).

tagged msg tx: port port
Error type is 5 (memory exhausted).

Occurs in the Widget library internal function newTxDescO, which is USI

by both ew_tportTxStartO and ew_rsysServerlnitO. A call to
memalign(3c) failed. port is a pointer to the EW _TPORT structure that w
passed to the failed function.

version string too long «version»
'Error type is 2 (Internal error). Please report to Meiko.

Occurs in the Widget library function ew sgsyncO; the version string n:
. turned by ew_versionO does not match the internal 64 byte limit. versi,
is the string that ew_ versionO returned.

2

98 SlOO2-10MI04.04 meJ<a

Index

B
Barriers. 39

Base Environment. 9. 12

Broadcast. 40.47

Broadcast Channel. 6
Initialisation. 64

Broadcast Virtual Process Number. 2.29.47.
64

c
Channel. 5

Initialisation. 60
Receive. 62
Transmit, 63

E
Environment Variables

Base Environment. 14
Debugging, 18
Elan Capabilities, II, 28

Error Messages. 81
ew _allocate. 30
ew_attach, 10

ew_base. 12
ew_baseInit, 12

ew _beast, 40

EW _BCHAN. 64
ew _behanDone. 65

ew _behanInit. 64

ew _behanSize. 64

ew _behanStart. 65
ew _behan Wait. 65

ew _bitFlip. 26
EW_CHAN,60
ew _chanInit, 60
ew _chanRxDone, 62
ew _chanRxStart, 62
ew_chanRxWait. 62
ew _chanSize, 60

ew _chanTxDone, 63
ew _chanTxStart, 63

ew_chanTxWait, 63

ew _check Version. 15
ew _createBcastVp, 29

ew_ctx, 10

ew_dbg, 22

ew_destroyAllocator, 30
ew_destroyBcastVp, 29
EW _DMAPOOL, 46

ew _dmaPoolCreate, 46
ew_dmaPooIDestroy, 46
EW_DST,53

ii

ew_dstCreate, 53
ew_dstDestroy, 53
ew_eventStr. 23

ew_exception, 16
ew _exeeptionStr, 16

ew _tbeast, 40

ew _fetehDone. 49
ew _fetehS tart. 49
ew_fetehWait, 49

ew _fgsyne. 39
ew_free, 30
ew _getenvCap, 28
EW_GEX,44

ew JexDone, 45
ew JexInit, 44
ew JexSize, 44
ew -8exStart, 45
ew Jex Wait. 45

eW-8inv, 25
eW-8printf. 43
eWJray, 25
EW _GROUP, 32

ew JIOupFini, 34

ew JroupInit, 34
eWJroupMember. 38
ew Jr0upSize, 34
ew Jsyne, 39
ew -8vprintf, 43
ew_init, 10
ew _pfbread, 58

ew _pfbwrite, 59
ew _pfclose, 51

EW_PFD,51
ew _pflnit, 51
ew _pfopen, 51

ew _pfread. 58
ew _pfseek, 57

ew _pfwrite. 59
ew _ptraee; 77

ew _ptraeeFlush. 77

ew _ptracelnit. 77
ew -ptraceStart. 77
ew _ptraceStop. 77

ew -putenv. 27
ew-putenvCap. 28
ew _reduce, 41

ew _rsysClientInit, 75
ew _rsysServerInit. 75

ew_rup2. 24
ew_setExceptionHandler, 16
ew _sgsync. 39
ew _spawnAUocator. 30
ew _state, 10

ew _storeDone, 47
ew_storeStart. 47
ew_storeWait, 47

ew_touehBuf. 19
EW _TPORT. 66

ew _tportBufFree, 72
ew _tportInit, 69
ew _tportRxDone. 72
ew _tportRxPoll. 72

ew_tportRxStart. 72

ew _tportRx Wait. 72
ew _tportSize. 69

ew _tportTxDone. 70
ew_tportTxStart. 70
ew _tportTx Wait, 70
ew _usleep. 20
ew_utimeout, 21

ew_version. 15

Exception Handling. 9. 16

F
File I/O. 4

G
Global Exchange. 45

Initialisation. 44

Global Heap. 4. 30

Index

Index

Global Memory, 3

Global object, 4

Groups, 8, 32

I

Barrier, 39
Broadcast, 40
Initialisation, 34
Membership Function, 32,38
Reduction, 41

Initialisation, 10, 12

L
libew, 2

M
Message Passing, 5

Channel, 5, 60
Tagged, 7, 66

N
Network DMA, 3, 46

Broadcast, 47
Fetch, 49
Initialisation, 46
Store, 47

p
ParaGraph, 8, 77

Parallel File 110, 4
Broadcast, 58
Close, 51
Distributions, 53
Open, 51
Read, 58
Seek, 57
Write, 59

Process Model, 2

s
Segment, 2

T
Tagged Message Passing, 66

Buffering, 66
Initialisation, 69
Receive, 72
Selection, 67
Transmit, 70

Timers, 20,21

Tport, 7

Tracing, 8, 77

v
Version Checking, 15

Virtual Process Number, 2

