
·:.L,OmQUlzng ~urlace L

ELAN
Communications
Processor

Reference
Manual

mei<o

Computing Surface 2

The infOlDlation supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of
any rights owned by any of the organisations mentioned heIein. .

This document may not be copied, in whole or in part, without the prior written consent of Meiko

Copyright © 1993 Meiko

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSTools are trademarks of Meiko Limited. Sun, Sun and a numeric
suffix, Solaris, SunOS, AnswerBook, NFS, XView, and OpenWmdows are trademarks of Sun Microsystems,
Inc. All SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. Unix, Unix
System V, and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X WIndows System
is a trademark of the Massachusetts Institute of Technology. AVS is a trademark of Advanced Visual Systems
Inc. All other trademarks are acknowledged.

Meiko's full address in the US is:

Meiko Scientific
Reservoir Place
1601 Trapelo Road
Waltham MA 02154

Tel: 617 890 7676
Fax: 617 890 5042

Issue status: Draft
Preliminary
Release
Obsolete

Circulation control:

Meiko's full address in the UK is:

Meiko Limited
650 Aztec West
Bristol
BS124SD

Tel: 0454 616171
Fax: 0454 618188

CONTENTS

1 OVERVIEW. 1
1.1 Introduction. . . . 1
1.2 Major Objectives . • . • . • . • 1
1.3 Processing Units . • • . ~ • . . 2

1.3.1 Input Processor 2
1.3.2 Thread Processor 3
1.3.3 DMA Processor. 3
1.3.4 Reply Processor • . . 3
1.3.5 Command Processor 3

1.4 Elan Implementation. • • 3
1.5 Using This Reference Manual • . . • . . • 4

1.5.1 Contents...· • • . . 4
1.5.2 Audience......................... 4

2 VIRTUAL OPERATION . 5
2.1 The Vutual Process Model • 5

2.1.1 lightweight Processes 6
2.1.2 Programming Model - Events . • . . 6
2.1.2.1 Queued Events • . . • • • . 6
2.1.3 Protection......... • . 7

2.2 Network ProtoCQI 7
2.3 Virtual Process Table 7
2.4 Route Table . • 8

2.4.1 Routing Strategy • . . 8
2.4.2 Broadcast Communications . . 8
2.4.3 Route Table Modification 8

3 INPUT PROCESSOR . 9
3.1 Network Packet Protocol . 9

3.1.1 Transaction Format • • 9
3.1.2 Packet Acknowledge and Negative Acknowledge 10

3.2 Networlc Conditionals 11
3.3 Context Filter 11
3.4
3.5

Broadcast
Exceptions.

11
12

4 THREAD PROCESSOR 13
4.1 Registers. 13

4.1.1 r registers . 13
4.2 Networlc Insuuctions. • . . • . . 14

i

CONTENTS

4.2.1 OPEN, SENDTRANS, and CLOSE ••••••••••••••• 14
4.2.2 llUle Out . 14

4.3 Locallnstructions IS
4.4 Scheduling. • . • IS

5 DMA PROCESSOR .. 16
5.1
5.2
5.3
5.4
5.5
5.6

DMA Descriptor
Typing of DMAs
DMA Failures
Exceptions.
Normal and Secure Transfers
DMA Timeslice Period.

16
16
17
17
17
18

6 REPLY PROCESSOR. .. 19

7

8

ii

6.1 Reply Descriptor. 19
6.2 Exceptions . • 20

COMMAND PROCESSOR 21
7.1
7.2
7.3
7.4

7.5
7.6

Command Processor Specification
Command Source .

21
21

Registers 21
Command Port 22
7.4.1 Command Port Address Map • 23
mteITtlpt Source 24
Exceptions . 24

EVENTS, EXCEPTIONS, AND INTERRUPTS. . .. 25
8.1 Virtual Events . . • • • . . 25

8.1.1 Event Locations · · · 26
8.1.2 Queued Event Locations . . · · . . . · · · 27
8.1.2.1 Queued Event Location Entry · · · . . · .27
8.1.3 Operations on an Event Location . · • 28
8.1.3.1 Local Wait. · · · · · . . . · · 28
8.1.3.2 Set Operations · · · · 28
8.1.3.3 Remote Wait · · . · · · · 29
8.1.3.4 Local Clear · · · · 29
8.1.3.5 Local and Remote Test . · · · · · 29
8.1.4 Atomic Access Considerations . · .29
8.1.5 Protection . · · . · · · 29

8.2 Exceptions . 30

CONTENTS

8.2.1 Exception Sources. 30
8.2.2 Exceptions During Output 32
8.2.3 Exceptions During Input 32
8.2.4 Exceptions on Command Processor. . . . 34
8.2.5 Exception on Reply Processor 34

8.3 Interrupts. 34
8.3.1 Communications Processor Handled Interrupts 35

APPENDICES

A

B

c

MMU AND VIRTUAL PROCESS TABLE
STRUCTURES 36

36
36
37
37
38
38

A.l
A.2
A.3
A.4
A.S
A.6

Root Context Table . . .
VIrtual Process Table
Route Table . . .
MMU Page Tables ..
ContextO Processes . .
Translations without MMU

INPUT PROCESSOR .. 39
B.l
B.2
B.3
B.4
B.5

Format of Input .Transaction. . .
Network Transactions
Transaction Type Code Summary
Input Reply Buffer •.
Input Context FIltering

39
39
42
43
44

THREAD PROCESSOR STRUCTURES AND
INSTRUCTIONS 45
C.l Run Queue Entry . • • 45
C.2 Software.. . . • . 45

C.2.1 Thread Processor User Stack Frame 45
C.3 Instruction Set . 46

C.3.1 Local Instructions 46
C.3.2 Network Insuuctions. 47
C.3.3 Instruction Definitions . 47

C.4 Opcodes. 54
C.4.1 Format 1 Opcodes. 54
C.4.2 Format 2 Opcodes (op = (0) . • . . . 54
C.4.3 Format 3 Opcodes (op = 11) .. 55

iii

CONTENTS

C.4.4 CPopl Opcodes (op = 10, op3 = 110110) . . . • • • • • . • • • 5S

D PROGRAMMER'S INFORMATION - DMA
PROCESSOR . 56
D.1 DMA Descriptor • • . • • . . . 56
D.2 DMA Queue . • 57

D.2.1 DMA Descriptor . 57
D.2.2 DMA Descriptor ELAN 1.2. • 57

D.3 DMA Status Information . 58
D.4 DMA Processor Opcodes • . • • 58

, E COMMAND PROCESSOR INSTRUCTIONS 59
E.1 Commmds. • • • • 59

E.1.1 Queue Commands. • . . 59
E.l.2 Read Comms Processor Registers Commmds•..... 60
E.1.3 Event Commands • • 60

F TIMER, ALARM AND HUSH PERIPHERALS . .. 61
F.1 Oock . 61
F.2 AlaIDl. 61
F.3 Hush Register . 62

G EXCEPTIONS, TRAPS, AND INTERRUPTS 63
G.1 Processor Exceptions 63
G.2 Interrupts. • 64

H MMU USER GUIDE .. 66
H.1 MMU Fault Status Register Bits . . • • . . • 66
H.2 Access permissions . • . . . 67
H.3 :Flushing. • 68

I ELAN CONTROL WORD 69
L1 Introduction. 69

J COMMUNICATIONS PROCESSOR MEMORY MAP 72
J.1 Slave Device Locations•..... 72

1.1.0.1 Configuration and ID registers • . 72
1.1.0.2 Interrupt ID registers 73

J.2 Main Store Used by Comms Processor • 74

iv

CONTENTS

K

L

M

N

1.2.1 Queues and Exception Areas . . • • . • • 74
1.2.1.1 Queues Structures • 7S
1.2.2 Translation Tables. • • . • 7S
1.2.3 Internal Interrupt Event Vector . • . 7S

J.3 Memory Map of Slave Word Devices. • . . • • . . . 76
J.4 Memory Map of Slave Double Word Device 76

MEIKO BYTE-WIDE LINK LINE-PROTOCOL . .. 77
K.l
K.2
K.3
K.4
K.S
K.6
K.7

Link Connection . . .
Link Values Encoding •.
Flow Control
Links and Reset
Oock Skew Tolerance . .
Oock Phase Locking and Control
Automatic Link Output Tri-state . . .

77
77
79
80
81
81
82

STATUS REGISTERS 83
L.l Micro-Process Suspend Addresses 86

ELAN EXTERNAL REGISTERS 91
M.l External Register Definitions . 91

M.1.1 Global External Registers addresses (OXOO - Oxlt). 91
M.2 Locally Mapped Registers 93

M.2.1 Command Processor Extemally Mapped Registers (0x20 - Ox3t) . . . 93
M.2.2 IprocO Extemally Mapped Registers (Ox40 - 0xSt) . 94
M.2.3 Iprocl Extemally Mapped Registers (Ox60 - Ox7t) . 9S
M.2.4 Rproc Extemally Mapped Registers (Ox80 - Ox9t). . . 96
M.2.S Dproc Extemally Mapped Registers (OxcO - Oxdt). • . • ·98
M.2.6 Tproc Extemally Mapped Registers (OxaO - Oxbt) 99

ELAN INTERNAL REGISTERS 102
N.I Internal Register Definitions. • • . . • . . • 102

v

..I..

OVERVIEW

1.1 Introduction
The Meiko ELAN communications processor is the interface between processing
nodes and the Meiko packet switched network. This network is constructed from
switch components that are capable of switching eight bidirectional 55MBytes/s
communications channels. Basic packets are between 40 and 320 bytes long, and are
routed according to headers that are attached by the communications processor. The
switching network supports hardware ACK/NACK for each packet, and implements
a lower level protocol for flow control at the byte level. The network allows anywhere
to anywhere connectivity, as well as broadcast across selected processor ranges.

1.2 Major Objectives
The major objectives for the communications processor are:

• To process in-coming packets from the network as quickly as possible.

• To ensure reliable message delivery.

• To minimise the number of interrupts to the main processor.

• To reduce latency during communication start-up.

• To remove the need for multiple lightweight processes on the main processor.

• To utilise main store bandwidth efficiently,

• To maintain security between unrelated operations.

• To filter out erroneous transmissions before they are transferred onto the network.

meI<o SlOO2-10MI02.04 1

Computing Surface 2

1.3 Processing Units
The ELAN consists of six individual processing units. In the initial implementation
these are all implemented on the same microcoded engine, but future implementations
might use different strategies.

The six units are:

• Input processors - two of these handle incoming packets from the network.

• Thread processor - executes short code fragments to handle checking and
outputting of protocols.

• DMA pro~essor - executes store-to-store DMAs, and store-to-remote DMAs.

• Reply processor - returns results of remote reads.

• Command processor - executes commands initiated from the main processor.

Three of the six processing units are capable of outputting packets into the network;
these are the thread, output, and reply processors. The reply and dma processors
construct packets that are appropriate to their function; that is, dma packets consist
of block read or write transactions, and reply packets consist of word write and event
transactions. The thread processor constructs packets using its instruction and data
stream, and is the only output processor that can construct arbitrary packets.

All three processors must share a single resource, called the outputter, for transmitting
their packets onto the network.

All of these processors are capable of virtual operation and can execute in any of 64K
contexts. All processors can be considered as executing from queues, and in some
cases can cause work to be added to other queues; an input processor, for example,
may cause a reply to be added to the reply processors queue.

1.3.1 Input Processor
The input processor is defined by the network protocols, as described in B. The
characteristic of the packet protocol is that each packet contains all the state
information that is needed to process them. Communications are essentially by
remote write operations, unlike transputer communications where there is assumed
to be a cooperating process at the receiving end. The input processor is therefore
stateless, and takes its context from the incoming packet stream.

meJ<o SlOO2-10MI02.04

1 Overview

1.3.2 Thread Processor
The thread processor is a small RISe processor with lightweight scheduling
capabilities similar to the transputer. A number of special instructions give access
to the output port and onto the netwotk. Although the output processor is capable of
running complied C programs (at a performance of about 3 to 4 MIPS), it should not
be used to offioad computation from the main processor; its primary aim is to handle
the protocols of the input and output messages, thus ensuring that the main processor
is only interrupted when it is really necessary.

1.3.3 DMA Processor
The DMA processor performs DMAs either locally (store .. to-store), or across the
netwotk. This processor converts the data into packet format, and ensures that
processes are woken-up when the DMA is complete.

1.3.4 Reply Processor.
One very important function is the remote reading or read-modify-writing of memory
for program and lock control. These are one or two word transactions which require
an inputing process to generate an output packet. To help achieve some decoupling
between the inputter and outputer for these operations a queue of replies is used. The
reply processor wolks on this queue and generates correct output packets.

1.3.5 Command Processor
The command processor executes commands that are issued by the main processor.
The interface between the command processor and the main processor has been
designed so that communications can be initiated by a simple series of writes from
the main processor.

1.4 Elan Implementation
The initial implementation of ELAN is a single CMOS sea of gates ASIC with:

• Single microcoded engine.

• 72 words x 64 bits dual ported memory, 640Mbyte/s bandwidth.

• Communications MMU.

• Two Meiko byte wide channels permitting redundant netwotks.

• Full level 2 Mbus interface.

meI<o SlOO2-10MI02.04 3

Computing Surface 2

• Approximately 45K gates, excluding ROM and RAM.

• 208 pin PGA packages.

1.5 Using This Reference Manual
This section· provides information to help you use this manual. It includes an
overview of the manual, a definition of the intended audience, a description of the
fonts used and what they mean.

1.5.1 Contents
The chapter after this describes the virtual process model used in the ELAN
architecture. The following five chapters describe each of the five types of processor
on the ELAN processor itself. The final chapter explains the event mechanism and
exceptions. The appendices describe in detail the registers and memory maps used
by the ELAN processor.

1.5.2 Audience
This document is intended to be read by people requiring a detailed insight into the
operation and capabilities of the ELAN communications processor. In addition the
appendices are sufficiently detailed to enable ELAN device drivers to be written.

meJ<o SlOO2-10MI02.04 4

VIRTUAL OPERATION

The ELAN contains its own memory management unit (MMU). Any process or work
item has a hardware context associated with it, and this is used by the MMU to
interpret virtual addresses.

Within the ELAN network, each process has a virtual process number. This allows
other processes to reference it by virtual process number. Communication consists of
sending transactions to a virtual process, the destination process number is translated
by a local process mapping table that is specific to each process. This table is called
the virtual process table.

The translation of virtual to physical addresses via context dependent tables provides
security and portability. Portability is facilitated because the mapping may be
changed at any time. Security is provided, because a process can only communicate
with those processes that are explicitly mapped in the table.

Generally thC MMU and mapping functions will be under the control of the main
processor. This means that only areas of store which have been specifically authorised
for communications can be altered. Under kemel control, messages and remote writes
can be enabled direct into a user spaces without further main CPU intelVention.

2.1 The Virtual Process Model
The ELAN virtual process model has been developed to provide usable lightweight
process communication within the familiar UNIX style programming model. The
model that is used by ELAN incorporates the protection and security of UNIX, with
much reduced process switch times.

meI<o SlOO2-10Ml02.04 5

Computing Surface 2

2.1.1 Lightweight Processes
The lightweight processes are provided by hardware assisted scheduling. Many
threads of execution may reside within a virtual process. Within a process, threads are
not protected from one another, although processes are protected from one another, so
that one cannot damage the execution (memory map) of any other. This is analogous
to UNIX, where processes are protected from each other, although the reliability of
anyone process is entirely dependent on the programmer that created it.

Processes communicate by reading and writing between each other's memory spaces
using network: transactions or DMAs. Higher level signalling and locking are
provided by a the virtual event mechanism.

2.1.2 Programming Model- Events
The Elan model is principally based upon the communicating process model of

..... parallelism. Several paradigms exist here, the most notable being Co~~~g
Sequential Processes (CSP) or, in its more developed form, OCCAM. The CSP
concept of synchronisation turns out to be too restrictive for many applications; the
ELAN model therefore uses a much looser but more powerful mechanism known as
events.

An event is a memory location with specific contents defining the state of the event.
Events act like user defined intelTUPts. Processes can non-busily wait on an event,
poll events or cause events.

2.1.2.1 Queued Events
Queued events are allowed where several processes may wait on an event queue. As
events occur a waiting process will be woken off the top of the queue. This facilitates
the writing of secure and efficient resource sharing code.

When queued events are used, only the access to the dual-word event location is
treated as an event access; queue handling must be done with local permissions. In
this way protected event vectors can provide a signal mechanism across the network,
with similar security to a standard trap interface.

meI<o SlOO2-10MI02.04 6

2 Virtual Operation

2.1.3 Protection
The virtual processes are protected from each other by hardware contexts in a MMU.
Threads within processes do not require such protection; a thread within its process
bas the same security as the process itself. A virtual process will normally be acting
on behalf of a larger more weighty applications process. This may have a number of
co-operating virtual processes providing it with different services or functions. The
applications process will not share the same hardware context as a virtual process but
instead will have areas of overlapping memory spaces pertinent to the co-operation
at hand.

One major problem with a networked system is security; security can usually
be provided but at substantial overhead in communication startup. The ELAN
communications processor overcomes this by incorporating a paged MMU for all
memory accesses. This MMU is appropriate for implementing standard UNIX
kemels and bas additional access types to provide protection to remote and event
accesses. This allows different permissions to be set up for areas of memory· accessed
by other processes.

Programmers information for the MMU is given in Appendix H.

2.2 Network Protocol
The network protocol is accessed from a virtual process by sending packets to other
processes. These are groups of transactions which alter the memory and scheduling
state of the destination process. A packet is sent by executing an OPEN instruction
and by specifying the recipient's virtual process number. A number of transactions
are then sent by use of the SEND_TRANS instruction, and the packet is tenninated
by use of the CLOSE instruction.

2.3 Virtual Process Table
To allow control over the virtual processes with which a process can communicate,
a table (called the Virtual Process table) is used. These tables reside in physically
mapped store and aren't accessible directly by a virtual process. Each virtual process
bas a different table. The address of the virtual table base is held in a context control
block which is loaded as required for each change of context. In addition to the
'permission' aspect of the table a translation is made of virtual process number to
physical processor number and hardware context.

The structures that are used to define the virtual process table are defined in Appendix
A.

meI<o SlOO2-10MI02.04 7

Computing Surface 2

2.4 Route Table
After converting a virtual process identifier to a physical processor number, a
transmission route for the communication is obtained from the route table. The base
of the route table is defined by a register within the communications processor.

2.4.1 Routing Strategy
The routing strategy can be altered through the contents of the routing table. This
table contains four routes for each destination processor one of which is selected
randomly for each packet. Each route is defined by a 16 byte entry, any of which may
be the same .. The random selection of one-from-four routes is intended to provide
some degree of protection from congestion within the network. Random selection
has better worst case performance than other more active forms of communications
load balancing while being simple to implement

2.4.2 Broadcast Communications .
The ELAN allows broadcast communications to a contiguous array of ELITE links.
To allow one or more of the destination processes to be omitted from this contiguous
array, the MMU is programmed to ignore the incoming messages.

2.4.3 Route Table Modification
To stop processors using a route the destination processor has to be removed from
the virtual process tables. If a route has to be removed quickly it can be done so by
giving NULL entries by zeroing the first of each route in the route table. An attempt
to use a NULL route causes the outputting processor to trap.

The table can be placed at the same physical location within node's store to enable
easy modification of all tables in the network, via a broadcast command.

meI<rJ SlOO2-10MI02.04 8

INPUT PROCESSOR

The input processor receives packets from the network. Its objective is to remove
them and process them as quicldy as possible to avoid network congestion.

3.1 Network Packet Protocol
The network byte order is big endian, although communication processors accessing
the network may have little endian memory systems provided that they put data onto
the network in the network byte order.

A packet is composed of route information, a start-of-packet (SOP) delimiter, a
number of transactions, and an end-of-packet (BOP) delimiter. Route data is added
to the head of the packet by the sender, and is stripped off as it is used in the network.
An inputter removes any extra route information that has not been been stripped by
the network up to the SOP.

packet = route bytes, SOP, transaction, <transactions,> EOP.

3.1.1 Transaction F ornuzt
Each transaction within the packet consists of one or more 64-bit words, followed by a
16-bit cyclic .redundancy check (CRC). The first double word contains a transaction
type, a context, and an address. Transactions can always be handled immediately
they are received, and contain all the information that is necessary to execute them.
In particular, a transaction can always be handled without doing any further network
operations; this avoids cyclic dependencies.

The transaction executed are by the ELAN input registers are detailed in Appendix
B "Input processor" .

meI<D SlOO2-10MI02.04 9

Computing Surface 2

3.1.2 Packet Acknowledge and Negative Acknowledge

Where a packet consists of a number of transactions, the transactions are executed in
the order they arrive. Each packet will be either acknowledged (ACK) or negative
acknowledged (NACK). The point at which the ACK is sent in a packet is determined
by the AckNow bit (Appendix B). If a transaction has its AckNow bit set, and has a
valid CRe, then an ACK will be sent

If the receiver returns an ACK then all transactions up to and including the transaction
that generated the ACK will have been received and processed. If the sender receives
a NACK, this means the receiving input was unable to send an ACK. The reasons for
the input being unable to send an ACK could be one of the following.

a) an input was busy
b) a CRe error was detected
c) a network conditional failed

. Where an input processing device has multiple channels, Elan 1.0 has two, then

. transactions after an ACK on one channel will be processed before any further
. transactions on the other channel. This ensures that the order in which ACKs are
sent conesponds to the order in which transactions are processed. Devices outputing
onto the network should not send another packet until they have received an ACK
or NACK for the current one so as to ensure that packets arrive in the correct order,
irrespective of the route they take. A packet must contain at least one transaction
where the ackNow bit is set. NACK may be sent at any time on a multiple transaction
packet unless an ACK has been sent NACK means that at least one transaction of
the multiple transactions in a packet has not occurred. When a circumstance arises
where the inputter would have sent a NACK if an ACK had not already been sent,
(in particular a CRe error in a transaction after ackNow), that transaction, and all the
remaining transactions in the packet, have to be trapped to an error buffer.

Asserting AckNow on the first of a group of transactions allows an overlapping of
acknowledges so as to preserve network bandwidth where network latency is of the
order of a transaction time.

Input SOP Tl T2 T3
Output ACK

T4 EOP SOP Tl
ACK

meI<o SlOO2-l0Ml02.04 10

3 Input Processor

3.2 Network Conditionals
Network conditionals provide a way of testing the value of an object across a network.
If the condition is false a NACK is sent and the rest of the packet is discarded. If
the condition is true the next transaction will be executed. This permits conditional
writing of blocks of data, where a flag value can be tested, and a number of speculative
writes in a packet will be performed only if the flag is set. Multiple conditional
transactions are permitted in one packet, the effect being of a sequentially evaluated
AND of the conditions. Only one ACK or NACK per packet may be sent.

Note that as NACK is also used to signal that a packet has been rejected for some
reason, (bad CRC etc), receiving a NACK from a network conditional. does not mean
that the logical complement is true. ACK means that the conditional was performed
and was true,' NACK means the converse (not performed OR not true).

Network conditionals are of particular value when used with broadcast, to
. synchronise large'numbers-'of procesSOI'S.--For-example barrier synchronisation"can .

be achieved by doing a broadcast tr_EQ, to check that all processors in a group have
set a flag.

3.3 Context Filter
The inputter has a context filter register, which if it matches the input packet context
will NACK the packet automatically. This is intended to be used to filter out
communications to a particular hardware context. Its use is detailed in Appendix
B on the Input processor.

3.4 Broadcast
The network is capable of broadcasting to any contiguous range of processors.
Any packet may be broadcast. The ACK and NACK signals from the various
processors are recombined in the network. All components must respond. The packet
transmitter sees an ACK when all components have sent an ACK, or a NACK when
all components have responded and at least one has responded with a NACK.

Receiving a NACK does not mean a packet has not occurred on any of the inputters.
The only statement that can be made is that an ACK means that the transaction has
been successfully received on all components of the broadcast. When conditional
execution of transactions is employed it should be remembered that each inputter
sees its own ACK or NACK value, not the value returned to the outputter.

SlOO2-10MI02.04 11

Computing Surface 2

3.5 Exceptions
Exceptions that can be generated by an input processor are:

DATA_ACCES S_EXCEPT ION
EVENT_QUEUE_OVERFLOW
EVENT_INTERRUPT
QUEUE_OVERFLOW
UNIMPLEMENTED
MEM_ADDRESS_NOT_ALIGNED

Input specific exceptions:

If the inputtertries to send a NACK when it has already set an ACK was sent then an
IPROC_NACK_AFI'ER_ACK exception is taken.

meJ<o SlOO2-10MI02.04 12

· ..,

THREAD PROCESSOR

The thread processor executes virtual processes and threads, which can be generated
from compiled C source code. The thread processor has two basic types of
instruction: local instructions execute as normal instructions on a register based
machine; network instructions are used to create network transactions that normally
execute on a remote input processor.

Processes that execute within the thread processor are virtual processes, and these-are
described in detail in chapter 2

4.1 Registers
The thread processor has two types of registers associated with it; working registers
(r registers) and control/status registers. Working registers are used for normal
operations and control/status registers keep track of and control the state of the
processor.

4.1.1 r registers
All r registers are 32 bits wide. They are divided into a zero register and 8 in registers
and 8 out registers.

register number
r[24] to r[31]
r[16] to r[23]
r[8] to r[IS]
r[l] to r[7]
r[O]

me/<O SI002-10MI02.04

Name
Ins
Unimplemented
Outs
Unimplemented
Zero

13

Computing Surface 2

4.2 Network Instructions
Network instructions are used to generate packets containing transactions.

4.2.1 OPEN, SENDTRANS, and CLOSE

The remote instructions OPEN and CLOSE are used to delimit a netwotk packet;
OPEN defines the virtual processor to which the packet is destined, and CLOSE
sends the EndOfPacket signal after an acknowledge has been received. Between
these delimiters each remote instruction translates into a single netwotk transaction.
Local instructions may execute between OPEN and CLOSE, but remote instructions
executed outside of the delimiters will cause a trap.

The OPEN instruction does the translation of the destination virtual processor number
into a physical processor number and context It also fetches the route bytes for that
destination processor and assembles them into a StartOfPacket. This will begin

. to make its way to the destination processor. The OPEN instruction may fail-if·the
process carmot be translated, in which case it will trap.

Following an OPEN instruction, the SENDTRANS command is used to send
ttansactions.

The CLOSE instruction ensures that an acknowledge has occurred, and waits if it
has not. When an acknowledge has occurred an end of packet signal (EOP) is sent
The received acknowledge is examined, and a value of 0 is returned if a NACK was
received, and a value of 1 if it was acknowledged by an ACK.

4.2.2 Time Out
The period between an OPEN and a CLOSE has to be restricted by a timeout
mechanism. During the execution of an OPEN instruction a bit is set in the status
register, and a TIMEOUT trap is generated if this is not cleared within the time-out
period. The TIMEOUT trap is synchronous, and occurs during the execution of the
CLOSE instruction.

mekO SlOO2-10MI02.04 14

4 1bread Processor

4.3 Local Instructions
The local instructions are optimised for communications with additions for the local
event control, locked memory operations, scheduling, and DMAs. They execute on
a windowed register model.

The local instructions are executed on a windowed register model. Only registers
i7-iO, 07-00 and gO and the icc are implemented.

Upon de-scheduling a process, registers iO-i7, 00-05, 07, and Iptt are saved. The
integer condition codes are saved in the status register until another thread process
begins to execute. The context and SP are implied in a process. The stack frame
being stored relative to SP.

The SP can only point to 32 byte boundaries so that the SP can only be adjusted in 8
word increments. This enables the de-scheduling, SA VB and RESTORE operations
to be done with block read/writes.

4.4 Scheduling
The thread processor has a simple run queue scheduling model. Processes which are
run are placed at the back of the run queue. Processes are stored with the context in
which they are executing. Processes are taken off the run queue and run until they de­
schedule themselves or are forced to by a trap. Four instructions are used to control
scheduling. The run queue is held as memory based FIFO.

A process is specified by its Stack Pointer (SP or 06) and context. A de-scheduled
process has all its state stored in its stack frame. After quoting a processes wptt to
another process, the other process may try and run it while it is still executing. The
SP should therefore never be changed and the process should SUSPEND as soon as
possible to avoid confusion.

meI<o SlOO2-10MI02.04 15

DMA PROCESSOR

The DMA processor can be used for local (store-to-store) transfers, or for network
(store-to-remote-store) transfers. For network transfers, the DMA processor
constructs packets with arbitrary numbers of read/write block transactions. Unlike
conventional DMAs, the amount of data transferred by a transaction, and the number
of transactions within the packet, are variable and dependent on network loading. At
times of high load the packet size may be reduced (between 4 to 16 transactions),
and the transfer may even be suspended. The maximum amount of data transferred
within a single transaction is 32 bytes.

5.1 DMA Descriptor
To request a DMA the main processor constructs a DMA descriptor and writes the
address of this descriptor to the ELAN command port. The ELAN's command
processor extracts these descriptors from the port and adds them onto the DMA queue.

The DMA processor extracts descriptors from the queue when it is ready to process
them. The DMA processor constructs the necessary packets and encapsulates the
data within the transactions.

5.2 Typing of DMAs
The DMA engine can handle typed data. The default DMA type is byte. If the store
ordering of both sender and receiver is the same then typing does not matter. If the
store ordering is different then typed transfers ensure that the correct movement of
data occurs. Data must be aligned to the required type size. Local byte block moves
can be used to move data to any alignment.

meJ<o SI002-10MI02.04 16

S DMA Processor

5.3 DMA Failures .
Within a large network of ELAN processors the majority of traffic being transferred
will be in the form of DMAs. Errors will occur on the links connecting these
processors, and are detected by the network. Bit errors on data bytes will cause a
CRC failure and the packet will be NACKed.

To provide some insulation from these errors the DMA descriptor contains a fail
count. This is the number of non-corrupting failures that can be tolerated in a
particular DMA. If a failure occurs and the fail count is non zero the DMA will be
re-queued such that the failing part of the DMA is re-attempted, and the fail count is
decremented.

If the DMA failure count is zero when a failure occurs then the
DMA_FAILED_COUNT_ERRORexceptionoccurs.

5.4 Exceptions
Exceptions that can be generated by the DMA processor are:

DATA_ACCESS_EXCEPTION
UNIMPLEMENTED
OUTPUT_INVALID_PROCESS
OUTPUT_INVALID_ROUTE
OUTPUT ALREADY OPEN - -
EVENT INTERRUPT
QUEUE_OVERFLOW

DMA specific exceptions:

5.5 Normal and Secure Transfers
DMAs are defined with two modes of operation: normal and secure. In normal mode
the objective is to move data at as high a bandwidth as possible. In secure mode the
correct writing of data is assured.

normal and secure transfers are really only different for remote DMAs.

meJ<o SlOO2-10MI02.04 17

Computing Surface 2

Normal DMA opens a packet and outputs a DMA transaction with the SENDACK
bit set. It continues outputing DMA transactions without the SENDACK bit set until
either:

a) the ACK or NACK is received.

b) 16 transactions have been sent.

c) the DMA time slice period is exceeded.

When any of the above are satisfied, the DMA processor prepares the
END_OF_PACKET to be sent. If the DMA time slice period has been exceeded
or a NACK has been received the DMA descriptor is updated and placed on the back
of the queue. Otherwise the process is repeated.

Remote DMA opens a packet and outputs 16 transactions provided that DMA time
slice period isn't exceeded. -These are sent withoutSENDACK set, and an -additional
NULL transaction is sent at the end with SENDACK set. This ensures that errors
occuning at the input are obsetved by the DMA processor.

5.6 DMA Timeslice Period
The DMA timeslice period is SO micro seconds. This value was decided upon such
that if only the DMA process is running and the network isn't congested then the
overhead of time slicing would be less than 5%. For Elan 1.0 this is approximately
50 micro seconds or the time to send 2K bytes.

meI<o SI002-10MI02.04 18

REPLY PROCESSOR

It is a desirable requirement that input transactions are dealt with as quicldy possible.
To help achieve this some decoupling is required between the inputter and outputer
for transactions that require a reply, such as tr_readword. This decoupling is
achieved by using the reply processor.

The reply processor, like the DMA processor, removes work from a queue of tasks,
each task being defined by a descriptor. Because replies are queued until the outputter
is free to send, a reply generating input need only arbitrate for the memory system,
and not the outputter as well.

Replies are fonnulated at the input and put on a reply queue. The reply processor
is responsible for taking replies off the queue and turning them into packets and
inserting them onto the network. A reply takes the fonn of a number of read results,
up to three, and a tr_remotereply. Each read specifies a return write address,
andthetr_remotereply specifies the processor and context in which those writes
will occur and an event to be set.

6.1 Reply Descriptor
The reply queue has a fixed entry size of 8 words, or 32 bytes, and takes the fonn:

word no ~ontents Description

0 Process, Context Destination process
1 Address Event to set after writes
2 Data Data write for address 1
3 Address address 1 Word
4 Data Data write for address 2
5 Address address 2 Word
6 Data Data write for address 3
7 Address address 3 Word

me/<O SlOO2-10MI02.04 19

Computing Surface 2

The reply processor will produce a packet with t.b.ree tr_writewords and a
tr_setevent. If any of the write addresses are NULL then the reply processor
ends the packet and sends the tr_setevent. The address of the event may also be
NULL, and this will be interpreted by the inputter as a NULL operation.

The descriptor gives the context on which the reply is to be formulated, and the
process number to which it is to be output. The context and process number need to
be translated by the reply processor; note that this is done at the same time as the reply
is output. Placing the translated values of hardware context and processor number in
the queues would not allow a context to be disabled rapidly at the translation tables.
The context is held in the low half of the word, the destination processor number is
held in the upper half.

6.2 Exceptions
The reply processor may generate any of the following exceptions:

OOTPUT_INVALID_ROUTE
OUTPUT_INVALID_PROCESS
OUTPUT_TIMEOUT

Reply processor specific exceptions:

RPROC_NACKED

A RPROC NACKED trap is generated if a reply packet generates a Nack.

meko SlOO2-10MI02.04 20

I

COAlAlAND PROCESSOR

7.1 Command Processor Specification
The command processors purpose is to provide a checked calling interface between a
UNIX system and the ELAN processor. This allows ELAN processes to be initiated
using an area of paged memory as the protection mechanism. In this area different
pages initiate different commands, access to these pages can be controlled by the
kernal executing on the UNIX system.

The command processor serves an additional purpose in the initial implementation,
turning physical interrupts, into EVENT signals.

The command processor is activated by either a physical interrupt becoming ready
or a command port slot being set full. The first thing the command processor does is
detennine which type of event caused it to wake up.

7.2 Command Source
Do the command in the command port and when done place the parameters in the
data register and clear the full bit.

Commands available on the comms processor are detailed in appendix E "Command
Processor Instructions" .

7.3 Registers
The following internal and external registers are used to control the command
processor:

meko SlOO2-10MI02.04 21

Computing Surface 2

Command Context Table
For commands requiring a context, a field of2 bits in the command value are used to
determine which context from a vector of 16 bit contexts is to be used. The value is
looked up by the command processor. The encoding of the context selection in the
command value allows contexts to be guarded using page table entries.

The context translation vector consists of a single double length register, which is
sufficient to store 4 contexts. (More can be supported)

Interrupt Base Register
This points to the vector of event locations that are to be used for internal interrupts.
The events are double word locations so for example interrupt 5 has a vector entry of
this base register plus ten.

CommsProcIntMaskReg
This is an interrupt mask register, and is ANDed with the Interrupt register to
determine whether an interrupt is to be taken by the ELAN. This register·is· used
in conjunction with the main processor interrupt mask register in the slave memory
map to control the taking of interrupts.

7.4 Command Port
The command port is a m.emory mapped object in the Elan processors slave address
space through which the main processor can queue up commands with a single
read/write word swap operation.

A basic command register consists of a 32 bit data word, and a 32 bit command word.
The command register has the following assignments:

Bit 31 FullnotEmpty
Bit 30 Finished
Bit 29 Error
Bit 28 to 15 Read as Zero
Bit 14 to 9 Command type
Bit 8 to 0 Immediate

A command port may have multiple command-data register pairs.

Commands may be issued by writing to the register pair and ensuring that the full bit is
set. The command processor signals completion by clearing the full bit. Commands
may return values in the 32 bit data register. Scheduling a command using this
mechanism would require polling the command register to check that it is empty,
then writing to the command data pair, requiring multiple read and write operations.

meI<o SlOO2-10MI02.04 22

mei<a

7 Command Processor

In order to minimise the overhead of issuing a command, a second image of the
command register is provided. This memory image is guarded so that a single word
swap operation is sufficient to issue a command.

Within the command issue image, reading and writing have the following effect. Any
read will return the number of the next command slot that is free. If all the command
slots are full a negative number is returned. If a command slot is free then a word
write causes data to be written to the next free data slot, and the command to be set
to full with the lower 15 bits being taken from bits 17 to 3 of the address. A write
when there are no free slots still acknowledges to the memory interface, however no
state is modified.

Note that although this is a special use of read and write, data within the command
processor is still only changed on write memory cycles.

From the user's perspective to issue a command C with immediate address I and data
0, he perfonns a Rm W operation to a word vector indexed by C,I. This returns a
small positive integer (the data register which any read data will be returned in) if
successful, or a negative value if not. Note that for correct operation when using
Rm Ws the value of Full must be sampled at the start of the transaction so that the
same value is used for both the read and the write.

Using the command issue image it is possible for the user image to be consistent
over different implementations with different depths of command queue. So that
user code is truly command queue length independent, only one outstanding read
operation should ever be pennitted.

Commands are executed in a round robin order of command registers, ensuring that
commands are executed in the order they are submitted.

7.4.1 Command Port Address Map

The address map of a command port is chosen to map onto a 4k byte paged MMU. A
command port physical address is aligned to a 256KByte boundary. The 4KByte page
of this is used for direct access to the command port registers, which are allocated
in pairs, starting from the first port address. Each successive physical page after this
maps a different command. (Note that this means that command 0 is invalid as it
cannot be issued). In particular a command port that uses only one command can be
mapped in two pages, or the entire command set can be mapped in a single 256KByte
transaction. Note that mapping of individual pages penn its individual commands
to be mapped in and out of user space. More detail on the ELAN memory map is
provided in Appendix J "Communications Processor Memory Map".

S 1 002-1 OMI 02.04 23

Computing Surface 2

FFiF80000 data reg 0
command 0
data reg 1
command 1

Multiple images of command slots to page boundaries.

FFiF81000
FFiF8100C

FFiF83COO

command 1 zero immediate
command 1 immediate 3

command 3 immediate 3x300

i defined by MBus ID pins

Commands are defined in Appendix E, "Command Processor Instructions".

7.5 Interrupt Source
Upon an internal interrupt becoming ready, ie the Interrupt Register ANDed with
the CommsProcIntMaskReg being The action on an interrupt is to indirect into the
interrupt event vector and cause a set event on that location (These are always done
in contextO). The communications processor interrupt mask is then updated to mask
out the interrupt source and then the command processor deactivates.

7.6 Exceptions
Exceptions that can be generated by an command processor are:

DATA ACCESS EXCEPTION - -
EVENT INTERRUPT
QUEUE_OVERFLOW
MEM ADDRESS NOT ALIGNED - -

Unimplemented commands are not trapped since they can only be caused by wrongly
mapped MMU pages, and as such are the responsibility of the system code to prevent
them occurring.

mei<a SlOO2-10MI02.04 24

o

EVENTS, EXCEPTIONS, AND
INTERRUPTS

8.1 Virtual Events
The virtual event mechanism provides a generalised implementation of interrupt style
signalling across a distributed memory machine. The mechanism is asymmetric,
unlike the OCCAM channel, in that only one side commits. (The OCCAM channel
style synchronisation primitive can however be built from a pair of events.) An event
location is set by a thread that wishes to signal, and waited on either by suspending
or polling by the thread waiting for that signal. The event mechanism may be
protected so that it acts between processes as a distributed implementation of a trap
mechanism, (with the important difference that the process signalling the trap does
not automatically suspend itself).

The operation of remote events depends on which thread has the event in its address
space. Generally speaking the most efficient implementation will be one in which
the thread that is to wait has the event location in its memory space. In this case the
thread suspends itself locally and is woken up by a setevent network transaction.

It is also desirable to be able to wait on an event location in a remote process's memory
space. For reasons of security the actual waiting thread address cannot be exported
to another process. Instead the thread exports the address of an event location local
to its own memory, and then suspends itself on that local event.

A process from the main processor may also wait on an event location. In this case
the value written to the wait location is distinguished by the number in wordO. The
interrupt is not signaled immediately, but is put on the run queue and flagged when it
reaches the top of the queue.

S 1 002-1 OM 102.04 25

Computing Surface 2

8.1.1 Event Locations

The event location consists of two 32 bit words. This pair of words must be double
word aligned. The two words can have the following values:

WordO Word 1 LSBS meaning
(word!)

X 0 00 clear event location
X 1 01 ready event location
proc DWaddr 00 remote thread waiting (DWaddr = remote event address)
count queue 10 clear queued event location (queue may be full)
0 queue 11 ready queued event (queue is empty)
-1 laddr 00 main processor waiting for interrupt
-2 Waddr 00 local thread waiting
-3 Daddr 00 DMA desc waiting
-4 Dummy 00 Null event waiting
<-4 Eaddr 00 Local event waiting

Note that the two LSBs of the waiting address always have the following meaning:

Bit 0 The event is ready (1) or not (0).

Bit 1 A queue of waiting processes begins at the location pointed to by waiting
address. The number of entries on this queue is held in the proc number
location. If this is zero the fptr must be zeroed by the next process to wait
on the queue.

A waiting object is now indicated by bits [31 :2] of the second event word being non­
zero. The first word is not effected by set event, unless the event was a queue and
contained a waiting item.

typedef struct EVENT
{

union {
int32 count;
proc_t procid;

wordO;
union {

thread_t *threadi
queue_t *queue;
int32 value;

wordl;
} event_t;

mei<D SI002-10MI02.04 26

8 Events, Exceptions, and Interrupts

#define event_count wordO.count
#define event-procid wordO.procid
#define event_thread wordl.thread
#define event_queue wordl.queue
#define event_value wordl.value

#define READY (ev) (ev-> event_value & 1)
#define HASQ (ev) (ev-> event value & 2)

typedef struct eventQ
{

}

int32 e'Lsize;
int32 e'Lfront;
EVENT e'LQ[];

8.1.2 Queued Event Locations

So that multiple threads can wait for an event, event queues are provided. An event
queue address must be double word aligned. The structure of an event queue is,

II number of queue slots int size;
int fptr;
to front.

II index into queue pointing

struct qentry queue [size]; II an array of queue
entries.

The number of items in the queue is the value in wO of the event location. The value
of index is always reset to zero when the queue is empty.

8.1.2.1 Queued Event Location Entry
A queue entry consists of a double word. The double word can contain either a local
thread address, a local interrupt address, or a remote set address. A null entry on the
queue, of zero, zero, is also allowed. This allows items to be simply deleted from
queues, but note that it does not immediately free up queue space, also that it will
cause the queue to appear to have threads waiting on it, and a set event ignores a null
entry, ie it will try to move onto the next entry in the queue if one exists. In this case
if no entry exists the event location will be left set.

A queue entry consists of a double word and is similar to an event location in structure.
The two words can have the following values:

WordO Word I meaning

S 1002-1 OMI 02.04 27

Computing Surface 2

proc
-1
-2
-3
-4
<-4

DWaddr
Iaddr
Waddr
Daddr
X«>O)
Eaddr

remote thread waiting (DWaddr = remote event address)
main processor waiting for intenupt
local thread waiting
DMA desc waiting
Null event waiting
Local event waiting

8.1.3 Operations on an Event Location

The following operations can occur on an event location.

• Local wait.
• Local set
• Remote wait.
• Local clear
• Local/Remote Test.

8.1.3.1 Local Wait
A local wait is executed by the thread processor. This tests the value of the event
location for readiness. If ready the event is cleared and execution continues. If not
ready the thread address is either stored in the event, or if queued in the attached
queue location. If either a single event already has something waiting, or a queue
exists but is full, a queue overflow exception is generated.

8.1.3.2 Set Operations
Local set is executed by the thread processor. This tests to see whether the event has
anything waiting on it. If not the the ready bit is set. If something is waiting in the
event, then the event location is reset to zero and the event done.

The event may either be,

remote thread Remote set event is put on the reply queue.

local thread Thread is scheduled.

event interrupt An intenupt is generated.

Sets on a queued event location proceed in a similar manner except that the data is
found in the queue. Remote sets operate identically to local sets, except that access
pennissions are different ie RemoteEvent instead of LocalEvent.

meko S1002-10MI02.04 28

8 Events, Exceptions, and Interrupts

8.1.3.3 Remote Wait
Remote waits pass a double word value consisting of a process and an address in that
process that fully describes another event. The process value must be non NULL.
For a valid process value if the event is ready, it is cleared, and a remote set placed
on the reply queue. If the event is not ready the thread is put in the event location.

8.1.3.4 Local Clear
Qear event clears the ready flag. Any queue is left unaltered.

8.1.3.5 Local and Remote Test
The status of an event can be tested either locally or over the network. The status of
any event can be checked simply from the event double-word, as a non zero value in
wordO, means something is waiting, and a set ready bit means the queue is ready.

8.1.4 Atomic Access Considerations
Queue handling must be atomic. Communication processors ensure atomic access
by locking the memory bus for the whole of the access sequence. Programs running
on the main processor should lock out the communications processor from memory
access by using the memory access inhibit mechanism in the communications
processor.

8.1.5 Protection
Event locations have a special level of memory protection. Local threads have
complete read write access to events mapped into their memory space. Remote
threads however are only allowed to do set operations, and remote waits, and tests in
store areas with remote event only pennission. This ensures that thread creation is
not possible by outside threads, and that the only threads running in a context will be
those created locally. (Remote running of threads is of course possible in an area of
store with remote write and event pennission, by remote writing the thread address
to some location and immediately setting it). The queue areas should be in areas of
store with local R/W pennission only. The inputter needs to access these with the
required access types for queue handling operations.

meko Sl()02-10MI02.04 29

Computing Surface 2

8.2 Exceptions
Exceptions are indicated by a non zero value in the trap type field of the status
register of the processor with the exception. This generates a maskable interrupt.
The exception is not set until the processor has put itself into a known state in the
exception area, the processor then stops executing. The wakeup function in the status
register is set to WakeupNever.

The main processor handles exceptions through the command port. The exception
handler extracts the queue item which caused the exception from the internal registers
of the ELAN processor. The main processor may then restart the unit, by updating
the wakeup address then the wakeup function in the status register.

The process exception area the following layout for each processor.

STATUS Status register at point where exception was noted. The Memory error
bit may be set, in which case the MMU error locations are valid. These
are in the next two locations.

FSR MMU fault status register.

FADDR Fault address. If the exception was the result of an EVENT interrupt
to the main processor this is the address value from the EVENT.

CONTEXT Value of CurrContext at time the exception was detected This may not
be the value of the context for the process for which the error occurred
in the case of MBus errors. ie BUS ERROR, TIME OUT ERROR and
UNCORRECTABLE ERROR.

8.2.1 Exception Sources

NO TRAP

Reset state of trap type. No trap has occurred

DATA ACCESS EXCEPTION

Error detected by MMU. In this case FSR and FADDR are valid. Meanings of
FSR and FADDR are defined in appendix H "MMU User Guide".

MEM ADDRESS NOT ALIGNED - -
Virtual address was mis-aligned, (eg non zero bottom two bits for word access)

meko SlOO2-10MI02.04 30

•
8 Events, Exceptions, and Interrupts

OUTPUT INVALID PROCESS - -

(outputting processes only)
Attempt to output to a virtual process number not currently mapped in the
virtual process table for this context.

OUTPUT_TIMEOUT

(outputting processes only)
Output device timed out. The outputing process had opened the packet for
greater than 4 milli-seconds before checking the packet acknowledge.

(only on threads processor, or input processor)
Attempted to wait on a queued event with insufficient space left in the queue
structure.

Processor attempted to queue a descriptor on reply, thread or DMA queue
where there is insufficient space left in the queue structure. The descriptor
queue structures for these processors have 16 locations dedicated to contextO
processes.

Any unit which perfonns set events can cause overflows on either the' thread
queue or the reply queue; whether it is the thread queue or the reply queue
depends on whether the object in the event is local, or remote. All units apart
from the reply processor perfonn set events.

Various explicit thread operations can cause overflows. A DMA instruction can
cause a DMA queue overflow, and a RUN instruction can cause a thread queue
overflow.

The command processor has a command to enqueue an item onto any of the
three queues, each of which may overflow.

The input processor can cause DMA queue overflows through remote DMA
operations, and reply queue overflows by remote read operations.

S I 002-1 OMI 02.04 31

Computing Surface 2

UNIMPLEMENTED

Unimplemented is a valid trap for all the processors except the reply processor.
The command processor unimplemented is not currently checked, as this can
be guarded by the main processors MMU.

This is generated by any thread instruction on the output device which occurs
in the wrong order, (ie, SEND_TRANS, without OPEN, or multiple OPENs).

DPROC FAIL COUNT ERROR - - -
DMA processor decrements its fail count every time it receives a Nack. When
this value is zero an exception is generated.

RPROC NACKED

The reply processor has no fail count so generates an exception immediately if
it is N acked.

IPROC ERROR

Caused by CRCerror, BadEOP, BadLength. Cause of error detectable from
status register.

8.2.2 Exceptions During Output

An exception can occur on either the thread, reply, or DMA processor while it has the
output device open. The microcode which generates an exception will automatically
close down the devices and sends an EOP error down the line. The status register
indicates whether or not a processor had the output open at the time of an exception.

8.2.3 Exceptions During Input

If an input exception causes a trap on one of the two inputters it may be necessary for
the trap code to read the received transaction from the comms processor's internal
memory. Each input process has a cyclic input buffer of 16 words. The internal ram
locations 'TEMP _INPUTO' and 'TEMP _INPUT 1 ' contain the internal ram pointers
to the beginning of the transaction in this buffer dependent on the inputter number.
They are held in an internal format that is decoded by ANDing the read value with
Oxf and using this as an index into the respective input buffer.

meI<o SlOO2-10M102.04 32

•

•
8 Events, Exceptions, and Interrupts

ie If TEMP _INPUTl = Oxce, then the index is Oxe. The transaction code will be
found at address Oxde and the address at Oxdf. Data words for the transaction would
be found at OxdO, dependent on the size bits set in the transaction word.

The extemallocation 'NextTransFront' contains the pointer to the place where the
next transaction will be placed in the buffer. This may be used to delimit the
transaction but using the size from the transaction itself will probably be quickest
since this will require less slave reads.

More complex exceptions should be dealt with by turning on the context filter for
the exceptional context. The remaining transactions of the current packet should be
extracted in tum until the EndOtPacket. If the packet isn't going to be dealt with
correctly it should additionally be NACKed if possible. Subsequent transactions can
be extracted in a timely fashion by asserting the trap on transaction function.

The following microword restart addresses can be used:

NAckAndMoveToNextTransaction

Will NAck the packet and move to the next transaction. It increments the buffer
pointers and tells the input queue logic that the transaction has been consumed.
If the Ack has already been sent then a IPROC_NACK_AFfER_ACK
exception will occur.

MoveToNextTransaction

Will move to the next transaction in the buffer or wait for one to arrive. It
increments the buffer pointers and tells the input queue logic that the transaction
has been consumed.

HandleTransaction

mei<D SlOO2-l0Ml02.04

Restarts the inputter at the current transaction. If the transaction hasn't been
ACKed or NACKed the input can be restarted at the 'HandleTransaction'
microword. The reason for the exception will need to have been cleared.

33

Computing Surface 2

8.2.4 Exceptions on Command Processor

Exceptions on the command processor are implemented in a slightly different way
to the other processors because the command processor is used to access the internal
state of the ELAN processors. The state of the command processor is held within
the command ports. These are first extracted (and cleared) and exceptions are
disabled from the command processor using the CProcReset bit in the ELAN
command register. Nonnal command port read and write access to the internal
registers can be used to clear the command processes status register. The CProcReset
bit is then disabled. After the reason for the exception has been cleared (i.e
DATA_ACCESS_EXCEPfION on unmapped descriptor for command port "thread
processor place on queue" command) the commands can be placed back onto the
command port, and execution recommence. Note that an internal interrupt from the
command port can not be handled by the command processor.

8.2.5 Exception on Reply Processor

If an exception occurs on the reply processor the trap-handler may need to get the
descriptor to help diagnosis, or to restart the reply. The descriptor is held in the
internal registers REPLY _BUFFER_O to REPLY _BUFFER_7.

This buffer is always valid during execution of the reply processor. The state
indicating the buffer's validity is held in the external register ReplyBufferValid. This
needs to be cleared by the exception handler if the descriptor is to be removed.

The reply processors status register SuspendAddr has to be reset to the default reset
value, see Appendix L~

8.3 Interrupts
Source of interrupts are:

Exceptions Exceptions from each of the ELAN processors.

External External active low interrupt lines.

Alarm Wake up for alann.

Hush Hush Error.

Halted Procs halted status.

meko SlOO2-10MI02.04 34

•

8 Events, Exceptions, and Interrupts

The implementation of the device is an interrupt master or source. When used as an
Mbus slave device a single interrupt out signal is generated, and the internal interrupts
register can be read to determine the source of the interrupt. There is an 18 bit
processor interrupt source register. Also an 18 bit interrupts mask value. The single
interrupt out line is the OR of the 18 processor masked interrupts.

8.3.1 Communications Processor Handled Inte"upts

The comms processor uses the same interrupts but has its own separate mask register.
The comms processor handles interrupts by turning them into context 0 set events.
These are located as a vector in store starting at the Internal_Interrupt_Base location,
an internal register which must be set up before enabling any comms processor
interrupts. After the set event has been executed, the comms interrupt mask bit for
that interrupt is automatically cleared. The actual interrupt handling code, (which
would be waiting on the event location) is responsible for re-enabling the interrupt
when appropriate.

meJ<o SI002-10MI02.04 35

MMU AND VIRTUAL PROCESS TABLE
STRUCTURES

A.1 Root Context Table
The root context table points to the MMU entries for each context. The internal
register CONTEXT _PfR defines the base of the context control block tables (CCB).
Each of these four word CCBs defines the level 1 page table entry (PTE) for the MMU
and the virtual process table. The CCB entry is defined as,

struct
{

unsigned int context-page_table_entry;
unsigned int virtual-process_table_base;
unsigned int virtual-process_table_size;
unsigned int reserved_space;

} context_control_block;

The root context table has 65536 entries. Each entry need not be filled however since
the system code will onI y be able to generate and allow references to contexts. This
restriction of reference to contexts is achieved by translating user quoted process
numbers through a virtual process table (VPT).

A.2 Virtual Process Table
The virtual process table is a list of the processes with which a particular process can
communicate. This list is indexed by the virtual process number.

struct virtual-process_table_entry virtual-process_table[];

A list entry gives the physical processor number and context number of the destination
process, as a single word entry,

S 1 002-1 OM 102.04 36

Appendix A MMU and Virtual Process Table Structures

struct
{

unsigned context_number : 16;
unsigned processor_number : 16;

virtual-process_table_entry ;

The upper half of the word is the physical processor number and the lower half the
hardware context of the process on that physical process.

-1 is an invalid entry in the table. To reduce the store requirements of
the VPTs, the context control block has a maximum virtual process number
(virtual_process_table_size). Virtual process numbers are checked against this before
indexing in the table, processes of greater or equal number are treated as invalid
entries. Invalid entries will cause an exception to be generated.

The virtual process table begins at the physical address given by shifting left
virtual_process_table_base 4 bits, and zeroing the LSBs. The VPTs are therefore
32 byte aligned.

A.3 Route Table
The route for a physical process is found from the route table. The comms processor
internal register ROUTE_ TABLE_PTR defines the top 32 bits of the physical address
at which the route table begins. Each entry in the table contains four routes for each
physical process one of which is randomly selected. The four routes can be set to
be the same to give a single route. A route is represented by 16 bytes. The route
table can be placed at the same location in each comms processors store to enable the
easy removing of a particular physical processor by removing its route. Routes to a
particular processor can then invalidated by broadcasting a write of the NULL entry
to each of the four routes.

struct
{

char route[16];
} route_table_entry;

A.4 MMU Page Tables
The MMU page tables are referenced by context through the CCB, to the context
page table entry or level 1 entry.

meko Sl()()2-10M102.04 37

Computing Surface 2

A.S ContextO Processes
ContextO is a name that is given to high level processes that are used for booting, and
error processing; these processes are analogous to the supervisor processes used in
UNIX. ContextO processes are distinct hardware contexts that have unique privileges
by virtue of their context number.

Context 0 processes run at priority over other processes on all queues. However
lower priority queue items are not interrupted. Priority is established by front of
queue scheduling. This means that queue overflow checking always leaves room (16
queue entries) for some contextO processes.

Hardware contexts 0-31 are the contextO process context values. ContextO, hardware
context Oxl0, processes only can wait on the internal event vector.

A.6 Translations without MMU
Prior to the MMU being enabled on the ELAN, virtual addresses map onto physical
addresses without translation, the extra bits PA[35:32] coming from the lower four
bits of the context register.

When the MMU is enabled virtual addresses are translated through the page tables.

On reset the MMU is disabled.

meJ<D S 1 002-1 OM 1 02'()4. 38

.IJ

INPUT PROCESSOR

B.l Format of Input Transaction
Transactiontype
Context
Address
<Data[] >

CRC

16 bits
16 bits
32 bits
32 bytes of data for tr_blockwrite or some even number
of words of parameters for all other transactions.
16 bit CCITI standard CRC

The bit fields of the transaction type are define as follows:

<15> ackNow

<14:12> Size 0, 1, 2, 4, 8, 16, 32, or 64 double words. Bit 14 is forced to zero
currently so that only size 0, 1,2,4 are allowed.

<11> WriteBlock

<10:0> - WriteBlock
WriteBlock

B.2 Network Transactions
tr _ writeblock

op code
<10:9> Data type
<8:0> Part write size

pO-p7 32 bytes of data

Write a 32 byte block of data to the address specified in the transaction header. If
less than a block is to be written the part write size field of the transaction is set to
the number of bytes to write, and the start address comes from the lower five bits
of address. Data type is sent with the block so that if the byte order of the receivers
memory system differs from the network byte order (big endian) byte swapping can
be perfonned.

mei<D SI002-10MI02.04 39

Computing Surface 2

tr _ DMArequest
pO-p7 DMA descriptor

Put the DMA descriptor described in parameters pO-p7 onto the DMA queue. Bit 15
of of pO is set to 1 to indicate that the DMA was created remotely. The context from
the transaction is inserted into the context field of the DMA descriptor.

tr _ writeword
pO new value

Write one word into the address specified in the transaction.

tr _ readword
pI reply address

Read one word from the address specified in the transaction. Data value read is put
on the reply queue along with the reply address. A tr_remotereply is then required in
the same packet to specify the return process.

tr _remotereply
pO reply process

Specifies the reply process pO, for reply data fonn remote word reads. The
transaction address specifies an event address.

Example:

Received packet

tr readword (addI, , destaddI)
tr_readword (add2, , destadd2)
tr_remotereply(event, procB)

Reply packet sent to "procB"

tr writeword (destaddI, mem[addI])
tr writeword (destadd2, mem[add2])
tr setevent (event)

Note that the number of reads before a reply will be limited to the capacity of the
reply processor (to 3 in the current implementation).

mei<a S 1 002-1 OM 102.04 40

tr _ readwriteword
pO new value
pl reply address

AppendixB Input processor

Perform a locked read then write operation and return the read data to the reply
address. Destination processor must be specified by a tr_remotereply as for
tr_readword.

tr _atomicaddword
pO add value
pl reply address

Perform an atomic add of the add value to the specified address. If the reply
address is other than NULL, then the original value is returned as for tr_readword
or tr_readwriteword. If there is no need to return the value, the reply address is set to
NULL, and no tr_remotereply is necessary in the packet.

tr _ testandwriteword
pO write data
pl reply address
p2 test value

Perform an atomic compare of the test value with the data at the specified address. If
the two are equal, then the write data is written, if not equal then nothing is written.
The read value is always returned as for tr_readword or tr_readwriteword. If there is
no need to return the value, the reply address is set to NULL, and no tr_remotereply
is necessary in the packet.

tr _setevent
no parameters other than address

Cause an event on the virtual event location specified by the address. If the event is
already set no action occurs. If there is a thread waiting this is run.

tr _ clearevent
no parameters other than address

Oear event specified by the transaction address. There is no handshaking on this
operation. If the event is not ready, it has no effect.

meI<D SlOO2-10MI02.04 41

Computing Surface 2

tr _ waitevent
pO suspending process
pl suspending event

If the event is not ready, it writes the address of a remote set location into the suspend
location of the event specified by the transaction address. This may be either a queue
or a single location. If the event is ready, the reply processor performs a set to the
suspending event, and the event is cleared.

tr _eventready
tr _ noteventready
no parameters other than address

Poll an event location to see whether it is ready. The value of the condition is returned
via the ACK/NACKmechanism described previously. Both senses are provided since
NACK. may mean that the packet has been rejected rather than the condition is false.

tr_EQ
tr NEQ
tr:GTE
tr_LT
pO testvalue.

Perform specified comparison between the test value and the word location specified
by the address field of the transaction. Return value via the ACK/NACK mechanism.

B.3 Transaction Type Code Summary
Basic memory transactions size opcode conditional

tr_ writeblock 4 no

tr_ writeword 1 01000 no
tr_readword 1 01001 no

tr_remotereply 1 01010 no

tr_DMArequest 4 01011 no

Locked memory transactions

tr_readwriteword 1 01100 no
tr_atomicaddword 1 01101 no
tr_testandwriteword 2 01110 no

meI<o Sl002-l0M102.04 42

AppendixB Input processor

Event transactions

tr'_setevent 0 00000 no
tr'_clearevent 0 ()()()()1 no
tr_ waitevent 1 00010 no

tr_eventready 0 10000 yes
tr_noteventready 0 10001 yes

Conditional transactions

tr_EQ 1 11000 yes
tr_NEQ 1 11001 yes
tr_GTE 1 11010 yes
tr_LT 1 11011 yes

Unimplemented transactions

01111
00011
001 xx
1001x
1x1xx

Note: Set Event NULL is NULL transaction; the value of the transaction is all zeros.

B.4 Input Reply Buffer
On receiving a network read command the input checks that it has access to a reply
buffer. This is the place where it will store the reply data until it inputs the reply
command. If one is not available the input will attempt to send a NACK, (and trap if
an ACK has been sent). The input will read the READ data and place it in the buffer.
Also in the buffer it places the address, from the network instruction, where to store
the data. It then moves onto the next transaction.

On receipt of the first READ 'in a group the input will take ownership of a buffer
(On the initial ELAN there is one buffer shared by two inputters). It will retain this
ownership until the EOP is received or a NACK is forced.

meI<D Sl002-10M102.04 43

Computing Surface 2

B.S Input Context Filtering
The input context filter is an atdlitectural feature which enables a number of contexts
to be ignored by the inputer. Any such match on the input causes a NAck to be sent
immediately without touching the store system. Elan 1.0 implementation has only
one such context filter available as an extemal memory location. The filter is enabled
with the MMU and so should be set to a non-existent context when not required, for
example Oxffff.

The context filtering mechanism might be used by an operating system to reduce the
activity of a context on a node during resolution of an exception.

The context filter can be read and written as an external register, InputContextFuter.

meJ<o SlOO2-10MI02.04 44

THREAD PROCESSOR STRUCTURES
AND INSTRUCTIONS

C.I Run Queue Entry

C.2

The processors run queue is a front and back pointer queue. Each entry is 32 bytes.
The entry together with the de-scheduled register window stored in the stack frame
enables any of the processor state to be reloaded.

STRUCT run_queue_entry
{

unsigned int context, address;
unsigned int nPC_inc, cc;
unsigned int reservedO, reservedl;
unsigned int reserved2, reserved3;

}

On running a process off the queue the nPC_inc is added to the PC + 4 gained from
the memory image of the suspended process. The nPC_inc and cc are set to zero if
the process had suspended by waiting, or the suspend instruction. However on an
exception restart the queue entry can be altered to reflect any instruction having been
executed or about to be executed dependent on the wayan exception was handled.

Software
e.2.! Thread Processor User Stack Frame
Upon de-scheduling the processor state must be saved. This is stored relative to the
SP. The SP is quoted as being the Wptr.

SlOO2-10MI02.04 45

Computing Surface 2

FP, (old SP) ->

(Wptr) SP->

SP - 32 + 28
SP - 32 + 24
SP - 32 + 20
SP - 32 + 16
SP - 32 + 12
SP - 32 + 8
SP - 32 + 4
SP - 32

e.3 Instruction Set

Proqram Stack

Stack frame

i 7 (Return iptr)
i6 (FP)
i5
i4
i3
i2
i1
iO
blank

Iblank
I blank
I blank
I blank
I blank
I blank
I blank

IFP
liptr (06 or SP not saved)
105
104
103
102
101
100

e.3.1 Local Instructions

Previous frame

Current frame

The local instructions are optimised for communications with additions for the local
event control, locked memory operations, scheduling and DMAs.

General Instructions
LD ST

ADD (ADDee) SOB (SUBee)

AND (ANDee) ANON (ANDNee)
OR (ORee) ORN (ORNee)
XOR (XORee) XNOR (XNORee)
SL SR SRA
SETHI
SAVE RESTORE
Biee

SlOO2-10MI02.04

Appendix C Thread Processor Structures and Instructions

CALL JMPL

Scheduling Instructions
SUSPEND BREAK RUN

Local Event Control
WAITEVENT SETEVENT

Locked Memory Instructions
SWAP ATOMICADD TESTSTORE

On the Elan {evisions At B and C only the SWAP instruction is implemented.

DMAControl
DMA

C.3.2 Network Instructions
Packet generation instructions.

OPEN CLOSE SENDTRANS

C.3.3 Instruction Definitions
General Instructions
ADD
ADDee
SUB
SUBee

These instructions implement arithmetic operations. ADDee and SUBee
modify all the condition codes.

Traps:

AND
ANDee
ANDN
ANDNee
OR
ORee

meko SlOO2-10MI02.04

(None)

47

Computing Surface 2

ORN
ORNcc
XOR
XORcc
XNOR
XNORce

SLL
SRL
SRA

SAVE

These instructions implement bitwise logical operations. ANDcc, ANDNcc,
ORec, ORNcc, XORcc and XNORcc modify all the condition codes.

Traps:

(None)

. These instructions implement logical shift left SLL, logical shift right SRL
and arithmetic shift right SRA. The shift count is the five least significant bits
of r [rs2] if the i field is zero or simm13 if the i field is one.

These instructions do not modify the condition codes.

Traps:

(None)

The SAVE instruction saves the current window frame into the stack.
Otherwise the SAVE instruction acts like an ADD that always writes its result
to SP. The amount by which the SP is adjusted by should always be a multiple
of 32, since the window frames are stored on 32 byte boundaries.

The out registers of the current frame become the in registers of the new
frame.

Traps:

DATA_ACCESS_ERROR, MEM ADDRESS NOT ALIGNED

meJ<o SlOO2-10MI02.04 48

AppendixC Thread Processor Structures and Instructions

RESTORE

LD

ST

meI<o SlOO2-10MI02.04

The RESTORE instruction resorts to the previous window frame on the stack.

Otheiwise the RESTORE instruction acts like an ADD that always writes its
result to SP. The amount by which the SP is adjusted by should always be a
multiple of 32, since the window frames are stored on 32 byte boundaries.

The in registers of the current frame become the out registers of the new
frame.

Traps:

This instructions loads a word from memory into the r register defined by the
rd field. If the load traps the register is unchanged. The effective address for
the load is either" r [r 8 1] + r [r 82] n if the i field is zero or "r [r 8 1]
+ 8imm13 n if the i is one.

Traps:

This instructions stores a word from the r register defined by the rd field
memory into. If the load traps the register is unchanged. The effective
address for the load is either" r [r s 1] + r [r 8 2]" if the i field is zero
or"r [r81] + 8imm13" if the i is one.

Traps:

49

Computing Surface 2

Scheduling Instructions
SUSPEND

SUSPEND de-schedules the current process. The value of the iptr is placed
in 06, which normally contains the SP. The ins are written into the stack
frame and the augmented outs to the eight words below the stack frame

Traps:

BREAK

BREAK places the process (SP) on the back of the run queue, and SUPENDs
it. A break in execution is guaranteed, but note that contextO processes will
not BREAK.

Traps:

RUN (rs2)

RUN takes the value in rs2 and assuming it to be a valid thread for the current
context places it on the rear of the run queue.

Traps:

. RUN_QUEUE_OVERFLOW,MEM_ADDRESS_NOT_ALIGNED,
DATA_ACCESS_ERROR

Local Event Control
Local events are executed by the output process. These instructions are atomic to
operations occurring at the input.

WAITEVENT (rs2)

Test the event location pointed to by rs2. If the event is set it is cleared and
the process continues. If the event is not set then the thread suspends itself
on the event. Multiple threads can be suspended on queueing events.

meJ<o SlOO2-10MI02.04 so

AppendixC Thread Processor Structures and Instructions

Traps:

. EVENT_QUEUE_OVERFLOW,MEM_ADDRESS_NOT_ALIGNED,
DAT~ACCESS_ERROR, DATA_ACCESS_EXCEPTION.

SETEVENT (rs2)

Set the event pointed to by rs2. If a local thread is waiting then the event is
cleared and the thread run. If the suspend location contains a remote event
location, then a remote set is queued on the reply processor.

Traps:

RUN QUEUE_OVERFLOW,MEM_ADDRESS_NOT_ALIGNED,
DATA_ACCESS_ERROR, DATA_ACCESS_EXCEPTION.

Locked Memory Instructions
NOT YET IMPLEMENTED

ATOMlCADD (rsl, rs2, rd)

ATOl\tfiC_ADD does an atomic read add write operation with the value at
address rsl and the value in rs2. The read value is placed in rd.

Traps:

MEM_ADDRESS_NOT_ALIGNED,DATA_ACCESS_ERROR,
DATA_ACCES S_EXCEPT ION.

TESTSTORE (rsl, rs2, rd)

meJ<o SlOO2-10MI02.04

TESTSTORE does an atomic read test write operation with the value at
address rsl, the test value in rs2 and the new value in rd. The value of the
read is placed in rd. If the test value is equivalent to the value of the read then
it is replaced by writing the new value else the location is unchanged.

Traps:

HEM ADDRESS_NOT_ALIGNED,
DATA_ACCESS_ERROR, DATA_ACCESS_EXCEPTION.

51

Computing Surface 2

Network IDstructions
All network transactions arc sent in the currently open packet. If a packet is not open
a packet sequence trap will occur.

OPEN (rs2)

Opens a packet to be transmitted to the virtual process number indicated by
rs2. A translation of the virtual process number to physical processor and
context is first executed. This is done by indexing into the virtual. process
table and returning the destination physical processor number and context.
The context is held in a temporary register during the outputing of the packet
and added to each transaction. The processor number is used to index into a
table of route data. These are fetched and placed at the outputer.

Traps:

PACKET_OPEN_FAILED,DATA_ACCESS_ERRO~

PACKET_SEQUENCE_ERRO~

Implementation Note: mute bytes maybe cached on a last used basis.

CLOSE (rd)

CLOSE is matched to open and delimits a remote packet. rd is set to 1
or 0 according to the value of the acknowledge returned by the packet.
CLOSE waits (without de-scheduling) for the receipt of the acknowledge and
authorises sending of the EndOfPacket signal. CLOSE returns with 1 in rd if
an ACK was received and 0 otherwise.

The value of a conditional transaction may be reflected in the value set by a
CLOSE.

Traps:

SENDTRANS (imm, rs2, rd)

Send transaction instruction, used to launch transactions into the network.

meko SlOO2-10MI02.04 52

AppendixC Thread Processor Structures and Instructions

Generate the transaction specified by imm to the context currently opened,
with the address in rd. Cause a trap if not currently open. If rs2 is not %80
the parameters for the transaction come from a block of memory pointed to
by rs2 else come from registers %00 to %01 as required. Only the number
specified in the SIZE field of the transaction get used, so if the SIZE is zero,
both %00 and %01 are ignored. For transactions which need more than
two word parameters ie those with a SIZE field larger than 0 or 1 (double
words), the block version must be used. In practice this is only required for
the tr_DMArequest and tr_testandwrite.

The imm field is a 16 bit field, bits [20:5] and as such is fixed at compile time.

Traps:

PACKET_SEQUENCE_ERRO~MEM_ADDRESS_NOT_ALIGNED,

DATA_ACCESS_ERRO~ DATA_ACCESS_EXCEPTION.

DMAControl
DMAs are performed by a separate engine with its own wolk queue. The DMA
instruction places DMA descriptolS on this queue. The DMA engine and the thread
processor are' of equal priority so that where both have wolk to do both make progress.
DMA processes are timesliced to prevent long DMAs from hogging resource.
The timeslice interval is chosen so that the overhead on memory bandwidth of
rescheduling the DMA descriptor is small compared to the amount of data transferred
in the timeslice period. Synchronisation with the completion of a DMA is achieved
by passing the descriptor of an event location to the DMA engine, then executing a
WAIT_EVENT. The DMA engine on completion will cause a SET_EVENT.

DMA (rs2)

meI<o SlOO2-10MI02.04

DMA places a store to store DMA descriptor on the DMA queue. The
descriptor is pointed to by rs2 and is 32 byte aligned.

Traps:

53

Computing Surface 2

C.4 Opcodes
C.4.1 Format 1 Opcodes

op

01 CALL

C.4.2 Format 2 Opcodes (op = 00)

op2

\begintable{}
ope ode & usage & op2

SENDTRANS & rs2 rd & 001
Biee & none & 010
SETHI & rd & 100
\endtable

\seetionthree{Format 30peodes (op = 10)}

\beginprogram{}
op3

000000 ADD
000001 AND
000010 OR
000011 XOR
000100 SUB
000101 ANDN
000110 ORN
000111 XNOR
010000 ADDee
010001 ANDee
010010 ORee
010011 XORee
010100 SUBee
010101 ANDNee
010110 ORNee
010111 XNORee
100101 SLL
100110 SRL
100111 SRA

SlOO2-10MI02.04 54

AppendixC Thread Processor Structures and Jnstruct10ns

110110 CPop1
111000 JMPL
111100 SAVE
111101 RESTORE

C.4.3 Fo171UJt 3 Opcodes (op = 11)
op3

000000 LD
000100 ST
001111 SWAP

C.4.4 CPopl Opcodes (op = 10, op3 = 110110)

opcode usage ope Hex Opcode

BREAK none OOOOOOOOO Ox81bOOOOO
SUSPEND none 000000001 Ox81b00020
CLOSE rd 000001000 Ox81bOOl00
RUN rs2 000010000 Ox81b00200
OPEN rs2 0000 1 000 1 Ox81b00220
SETEVENT rs2 000010010 Ox81b00240
WAITEVENT rs2 000010011 Ox81b00260
DMA rs2. 000010100 Ox81b00280
ATOMICADD rslrs2 rd 0000 11 000 Ox81bOO300 (Not implemented)
TESTSTORE rsl rs2 rd 000011001 Ox81bOO320 (Not implemented)

Bits [3:4] of ope define register usage

meI<o SI002-10MI02.04 55

PROGRAMMER'S INFORMATION
DMA PROCESSOR

D.1 DMA Descriptor

-

The DMA descriptor is a command to the DMA processor, it causes a DMA to be
executed, and after successful completion a number of event locations to be set. A
number of fields in the descriptor define control of the DMA, these are: .

DMASize
The number of bytes required to be written to destination.

SourceAddress
Vtrtual address indicating where in the local store the bytes are to be read from.

DestAddress
Virtual address indicating the start address of where the bytes are to be written. This
address is in the memory space of the destination virtual process.

DestProcess
To allow DMAs to act across the network: DMA nominates a virtual process number
of the destination process. This will be translated in the context of the descriptor. If
the destination process is negative the DMA happens locally and the the destination
event is set in the local memory space.

LocalEvent
After successful completion of the DMA this event location is set. Null is taken to
nominate no event location.

DestEvent
Nominates virtual address of second event to be set on destination process.

meko SlOO2-10MI02.04 56

AppendixD Programmer's Information - DMA Processor

Context
On the queue this indicates the context the DMA is to be run in locally. When a
descriptor is created the context is not included, but is added by the enqueueing
process. This is done by taking the current context, shifting up the type field which
must appear in the lower 16 bits, and ORing it in. The completed descriptor is then
added to the queue. The current context is taken from the CurrContext register for the
enqueueing process. This is a security feature disabling users from faking contexts
and is used by the other process queues. When on the queue the context of the queue
entry is in the lower 16 bits of the first descriptor word.

D.2 DMA Queue
The DMA queue is physically addressed, and all DMA block descriptors are aligned
to 32 byte boundaries. Descriptors on the queue conform to the format below.

D.2.1 DMA Descriptor

Type I Context
DMASize
SourceAddress
DestAddress
LocalEvent
DestProcess
DestEvent
SPARE

DMA Type
Type [1:0] Data type, Byte, Short, Word, Double Word (0,1,2,3)

Type [2] The set location given is on the destination process.

Type [8:3] DMA Opcode

Type [14:9] Fail count. How many packets can fail before DMA is trapped.

Type [15] Reserved

D.2.2 DMA Descriptor ELAN 1.2

DestProcess must be negative -5 to give previous local DMA behaviour. This frees
up process number 0 as a valid process number.

me1<o SI002-10MI02.04 57

Computing Surface 2

D.3 DMA StatuS Information
The state of the DMA processor visible to the main processor is,

Status Register
Current Descriptor
DMA_FPTR
DMA_COUNT

The status register, DMA_FPI'R ande DMA_COUNT give information about the
state of the DMA queue. The state of a descriptor being worked on is held in the
intemal register as detailed in Appendix N. This descriptor is only updated as the
DMA is definitely done. The descriptor read from the internal registers on a ttap may
detail some part of the DMA which has already been done.

D.4 DMA Processor Opcodes
operation opcode

All other opcodes trap "as unimplemented DMA instructions.

meko SlOO2-10MI02.04 58

COMMAND PROCESSOR
INSTRUCTIONS

E.I Commands
Each command can be executed with a different context selected from the command
context table.

E.I.I Queue Commands
Places item pointed to by address onto the queue. The address is assumed to be
virtual and is translated through the MMU using the indicated context. The address
is assumed to point to a 32byte aligned block. The first word is shifted up discarding
the top 16bits, the context, from the table is ORed in such that user code cannot insert
contexts.

Notes

The Remote/Local SOUICe bit for the DMA descriptor is not altered from the value in
the descriptor passed in.

The context is filled in from the vector of contexts.

cp_REPLY_CO 6'h04
cp_REPLY_Cl 6'hOS
cp_REPLY _C2 6'h06
cp_REPLY_C3 6'h07

cp_run_ CO 6 'h08
cp_run_Cl 6'h09
cp_run_C2 6'hOa
cp_run_ C3 6 'hOb

cp_DMA_CO 6'hOc
cp_DMA_Cl 6'hOd
cp_DMA_C2 6'hOe

meJ<o SlOO2-10MI02.04 59

Computing Surface 2

cp_DMA_C3 6'hOf

E.l.2 Read Comma Processor Registers Commands
Internal and extemal register reads and Rm W can be performed through the command
port. The address of the register is taken from the immediate field directly. In this
way all the comms processors registers can be accessed.

cp_Read_intemal 6'hlO
cp_Rm W _intemal 6'h14
cp_Read_extemal 6'h18
cp_RmW_extemal 6'hlc

E.l.3 Event Commands
Data register defines address of an event in current context

cp_SETEVENT_CO 6'h20
cp_SETEVENT_Cl 6'h21
cp_SETEVENT_C2 6'h22
cp_SETEVENT_C3 6'h23

cp_Q;EAREVENT_CO 6'h24
cp_CLEAREVENT_Cl 6'h24
cp_CLEAREVENT_C2 6'h24
cp_Q;EAREVENT_C3 6'h24

meI<o SlOO2-10MI02.04 60

, .1..'

TIMER, ALARM AND HUSH
PERIPHERALS

F.1 Clock

F.2 Alarm

The timer is a memory mapped peripheral which resides on the Elan processor device.
This peripheral can create interrupts which are directed through the interrupt logic.
Their are three parts to the timer a clock, an alarm and a hush location.

nS time counter incremented in 200nS counts
S time counter (Ox3b9acaOO comparator on nS counter)

The clock provides a readable nS counter. 'Ibis is implemented as two 32 bit registers
the first counting innano-seconds and the second incrementing in seconds. The nano­
seconds count is arranged to zero itself at 1,()()(),()()(),000nS and increment the Sec
counter. The timer is normally read as a double word value. It can however be
accessed as two word locations but aliasing will be observed.

The counter increments in 200nS counts, from a SMHz crystal. This is intended to
provide a granularity of less than 10 instruction cycles in the system where the clock
rate is 4OMHz.

A 32 bit register which is decremented by 200 at 200nS intervals. If the value is or
becomes negative (top bit set) an interrupt will be signalled.

meI<D SlOO2-10MI02.04 61

Computing Surface 2

F.3 Hush Register
The hush register is a memory mapped device, used to prevent the communications
processor accessing the MBus. It is used to allow a host processor to atomically
access data used by the COmmS processor.

The hush register when written to 1 'bI, prevents the comms processor accessing the
memory bus. If it is not written to 1 'hO within approximately O.SmS, or it is written
to 1 'bi again before being reset then a HushError interrupt will occur and the comms
processor is again allowed access to the memory bus. The hush bit however remains
set for the interrupt routine to clear. The state of the comms processor hush register
is readable by the main processor.

Bit 0 Hush bit
Bit 1 HushError interrupt bit

On a HushErrorthe hush bit is cleared and the HushErrorinterrupt bit set. The comms
processor can proceed but the intemJpt routine is required to clear the interrupt bit.
The intemJpt routine can be executed on the comms processor.

meI<o SIOO2-IOMI02.04 62

EXCEPTIONS, TRAPS, AND
INTERRUPTS

During operation of the Elan Communications processor various exceptions may
occur. These exceptions are divided into two classes: processor exceptions, and
interrupts.

G.l Processor Exceptions
Each of the six processors may meet an exception. This is indicated by a six bit code
in the bottom bits of the processor's status register. These bits are ORed together to
form an intelTUpt line in the intelTUpt register. In this wayan exception can cause an
intelTUpt on the the main processor or comms processor, and have a trap handler deal
with the exception.

Table of Exceptions by Processor on which they Occur
Cmd Input Reply Thread DMA Code

NO_TRAP X X X X X OxOO
DATA_ACCESS_EX~ON X X X X Ox04
OUTPUT_INVALID_PROCESS X X X OX08
OUTPUT_INVALID_ROUTE X X X Ox09
OUTPUT_TIMEOUT X X X OxOB
EVENT_QUEUE_OVERFLOW X X OXOC
EVENT_INTERRUPT X X X X Ox12
QUEUE_OVERFLOW X X X X OxOD
UNIMPLEMENTED X X X OxlO
PACKET_SEQUENCE_ERROR X Oxll
DPROC_FAIL_COUNT_ERROR X Ox14
IPROC_NACK_AFI'ER_ACK X ' Ox06
RPROC_NACKED X OxOC

meI<o SlOO2-l0Ml02.04 63

Computing Surface 2

NOTE

The MEM_ADDRESS_NOT_ALIGNED exception maps onto a
DATA_ACCESS_EXCEPTION with the fault type indicating an alignment error.

G.2 Interrupts
The communications processor generates a single external interrupt and an internal
interrupt. These are both maskable and have the same soun:e interrupt register, the
interrupt being the logical OR of the masked interrupt register. The interrupt register
is made up from the following bits.

Bit 0 RESERVED

Bit 1 command processor exception

Bit 2 inputO processor exception

Bit 3 inputl processor exception

Bit 4 reply processor exception

BitS thread processor exception

Bit 6 DMA processor exception

Bit 7 (Alarm register < 0) See Appendix F

BitS Hush TlDle Out See Appendix F

Bit' External Device Interrupt 1

Bit 10 External Device Interrupt 2

Bit 11 External Device Interrupt 3

Bit 12 External Device Interrupt 4

Bit 13 External Device Interrupt 5

Bit 14 External Device Interrupt 6

Bit 15 External Device Interrupt 7

meJ<o SlOO2-l0MI02.04 64

AppendixG Exceptions, Traps, and IntelTUPts

Bit 16 (TProc &RProc & DProc) all halted

Bit 17 Both inputtelS finished processing packets and halted

meI<o SlOO2-10MI02.04 65

'-'.1..

MMU USER GUIDE

The Elan MMU is based on a paged MMU. The protections required over the ELAN
network are diffenmt to those of a standalone memory system.

H.1 MMU Fault StatuS Register Bits
The following table defines the meaning of bits in the MMU FSR.

meI<o SI002-l0MI02.04

Bit no

31to29
28
27to22
21

20
19
18
17to13
12
11
10
9t08
7
6
5
4to2
1
o

Name

Not used
LastError
Not used
Swapped Since
Last Access
BlockAccess
WordAccess
InstructionAccess
Not used
Error3
Error2
Errorl
Level
Event access
Remote access
WriteNotRead
Fault type
FAV
Not used

meaning

read as zero
any type of MBus Bus error
read as zero
Set if memory error was detected
after a uCode swap.
32 byte block access
4 byte access
Read of instructions
read as zero
MBus Error type 3 Uncorrectable
MBus Error type 2 IlDleout
MBus Error type 1 Bus Error
MMU level value. Zero if bus error
Set if event access
Set if Read or write for an inputter
Set if a Write access
MMU fault type (FT code)
Fault address valid
Read as zero

66

AppendixH MMU User Guide

The following table defines the meaning of the MMU fault type bits in the MMU
FSR.

Fr code Fault types

o Not used
1 . Invalid address error
2 Protection error
3 Not used
4 Tnuudationerror
5 Access bus error
6 Not used
7 Address alignment Error

H.2 Access permissions
Access type is encoded as a three bit field:

Bit 0 means it is a write not a read.

Bit 1 means it is remote not local.

Bit 2 means it is occurring for event handling.

There are two levels of local access permission: readonly and readwriteevent.
There are five levels of remote access permission: noaccess, readonly, readonly­
orevent,readwrite, readwriteevent. Remote permission can never be bigherthan local
permission, so the combined codes are:

meJ<o SlOO2-10MI02.04 67

Computing Surface 2

Access 000
Type local

read

Permission

Null f
localRead
read
noremote
remoteread
remotewrite
remoteevent
remotea11

001 010 011 100 101 110 111
local remote remote local local remote remote
write read write evread evwrite evread evwrite

f
f
f

f1 f1 f f f1 f1
f f f f f f

f f f f f
f f f f

f f f
f f

f

Key: f ~ fault
f1 ~ Acknowledge but ignore (used for broadcasts)

Accesses marked as f1 causes the memory cycle to fail but return a seperate error
code. If an input process receives this error code it treats the operation as if it had
succeeded and will cause an ACK. to be sent. The access does not occur. This is
used to implement non-contiguous broadcast sets. This is required to enable the
recombining ACK/NACK.logic to worle successfully.

H.3 Flushing
The ELAN MMU is Bushed by writing 32 'hO to the FLUSH external register. Writing
values other than zero will cause destructive operations to the TLB but without
disabling the entries, these operations being reserved for testing the TLB.

More for this section Please

meJ<o Sl002-10M102.04 68

.I.

ELAN CONTROL WORD

1.1 Introduction
Several control configuration parameters are required to be set in the elan processor.
Some of theSe are relevant to the individual processes and appear in the respective
status registers. Other overall control parameters are set in the Control Word, this
document describes these parameters and their default behaviour.

The control word bits have the following meaning:

Bit [0] R/W MMUEnabled

Active High. Reset to zero.

Bit [1] R/W SER

Software External Reset. SER is connected to an output pin on the device an can be
used as a single output bit.

Bit [2] R/W SIRout

Causes internal reset of Elan processor. The control word is not reset except for this
bit.

Software Internal Reset

Bit [3] R/W CProcReset

Resets CProc. Used during CProc exception trap handler to clear pending exception.
Reset to zero

meI<o SlOO2-10MI02.04 69

Computing Surface 2

Bit [4] RO CProcError

CProc has trapped. This is cleared using CProcReset, to enable the processor to be
restarted the command port needs to be emptied by reading and saving the active
commands.

Bit [5] R/W HaltOthers

Setting this bit will halt the three queue processors, tproc, tproc and dproc. The balt
points for the three processors are the same, Wakeup Always AND the output's not
open OR Wakeup Runnable, if the processor gets de-scheduled and the above is true
the processor will NOT be rescheduled till HaltOthers is written low.

Reset value is zero.

Bit [6] R/W Haltlnputters

Setting this bit will halt both inputters The halt points for the both processors are
the same, process BOP. ie Only trap when not in middle of packet, if the processor
gets de-scheduled and the above is true the processor will NOT be rescheduled till
HaltInputters is written low.

Reset value is zero.

Bit [7] RO OthersHalted

When the HaltOthers bit is set this flag indicates whether the processes have halted.
Only when ALL three processes have halted in the state required by the halting
function will this bit be set.

Bit [8] RO InputsHalted

When the HaltInputters bit is set this flag indicates whether the processes have halted.
Only when BOTH input processes have halted in the state required by the halting
function will this bit be set.

Bit [10:9] R/W PerfCont

Performance Meter control, to enable in situ speed testing of the Elan processor
the device has a number of ring oscillators which can be multiplexed to drive the
Seconds counter instead of the FiveMegClock input. These oscillators are designed
to each exercise a different parts of the silicon processing of the Elan chip. The rate
of oscillation will vary from device to device, and for a particular device temperature
and supply voltage.

meJ<o SlOO2-10MI02.04 70

,.

Reset value is 00.

PerfCont Function

00 Normal Cock
01 NAND
10 NOR
11 INV and track

TIck Rate

1 Second
< 2.942 uS
< 2.982 uS
< 7.863 uS

Appendix I ELAN Control Word

The NAND and NOR functions are ring oscillators built from NAND into INV and
NOR into INV primitives respectively. The NAND function will test the strength of
the n-type transistors and the NOR function the p-type transistors.

The INV and track test is simply inverters driving near maximum ratio track load.
This test calibrates the drive to track load for the process.

The given tick rates are the maximum simulated. For devices within process
specification the tick rate will be less than the above.

Bit [11]
Bit [12]

RO
RO

LinkOlnReset
Link1InReset

These bits output the Reset state of the link. If a link is in reset for any reason, then
its LinkNInReset bit will be set.

Bit [13] R/Clearable LinkOError
Bit [14] R/Clearable Link1Error

These bits will become set if either a line data error or a line phase error is detected.
The error is cleared by writing a '1 ' to the same bit location.

Bit [15] R/W SyncCProc

If this bit is set then before each command is executed a check is made to ensure that
there are no outstanding MBus errors. This will guarantee that when wakeup never is
written to a status register the value returned by the ext reg read mod write includes
all possible traps. Trap code will not update the status register after the ext write.

Bit [31: 16] Reserved

Read as zero.

meI<o SI002-10MI02.04 71

d

COMMUNICATIONS PROCESSOR
MEMORY MAP

The communications processor memory map is divided into two parts, slave device
addresses and external data structures.

The slave locations appear in the Mbus mapping for the Elan device. These locations
control functionality and give access to the clock and alarm: registers.

The ex.ternal data structures are areas of store used by the Elan when running for
queue and trapping information.

J.1 Slave Device Locations
All slave device locations are fixed with respect to physical address OxFFiOOOOOO,
where i is the 4 bit MBus ID driven onto the Elan ID pins. The Elan does not respond
to all addresses in this range. Those which are unmapped will cause a MBus timeout
when accessed across the MBus.

J.I.O.I Configuration and ID registers
OxFFtFFFFFC
OxFFtFFFFFO

Mbus Device ID
Control register

Read Only
ReadlWrite

The Mbus Device ID defines the implementation and revision of the device. This 32
bit value has 4 fields defined by the MBus specification.

Bits Wide Name Arev B Rev CRev
16 Implementation 0 0 0
8 Device type 9 9 9
4 Revision 0 1 2
4 Vendor code Oxf Oxf Oxf

The MBus Device ID for the C revision Elan is therefore Ox0000092f.

SI002-10MI02.04 72

AppendixJ Communications Processor Memory Map

J.l.0.2 Interrupt ID registers
Main processor interrupt mask

Single word of store
OxFFiFFFFE8

Interrupt register
Single word of read only store
OxFFiFFFFD8

Comms processor store objects
Command port

256K area of store
Mappable to 4K boundaries providing 63 commands

one
in each page + page 0 (user read only) which

provides
info Single page non cacheable
OxFFiF80000

Clock Hi/Lo
Two words of store
OxFFiFFFFCO Seconds word access R/W
OxFFiFFFFC8 nS word access R/W
OxFFiFFFFEO {Seconds, nS} double word access,

READ ONLY

endian

meI<o SlOO2-10MI02.04

Note little endian addressing is same as big

Hush register
4K area of store (User read/write/remote)
Single page non cacheable
OxFFiFFEOOO (Read/write)

Alarm register
Single word decrementing counter
o xFFiFFFFD 0

73

Computing Surface 2

J.2 Main Store Used by Comms Processor
J.2.1 Queues and Exception Areas
The QUEUE_STORE_BASE register defines the area of store used by ELAN. This
register is is split into two fields, the upper 27 bits, QUEUE_STORE_BASE[31:S]
are masked and shifted up 4 bits to become the 36 bit physical address,
Q...STORE_BASE[3S;O]. The lower 5 bits QUEUE_STORE_BASE[4:0] are used
in to produce Q...SIZE defined as (1 «QUEUE_STORE_BASE[4:0]). Q...SIZE
denotes the size of the processor queues in units of the queue descriptor size ie 32
byte chunks.

Memory Usage Size(Bytes) Start Address

Q...SIZE*32 Q...STORE_BASE + 0 Reply Queue
Thread Queue
DMAQueue

Q...SIZE*32 Cl-STORE_BASE + (Cl-SIZE * 32)
Cl-SIZE*32 Cl-STORE_BASE + 2 * (Q...SIZE * 32)

Command Exception 16
Input 0 Exception 16
Input 1 Exception 16
Reply Exception 16
Thread Exception 16
DMA Exception 16

Example:

Cl-STORE_BASE - (16 * 1)
Cl-STORE_BASE - (16 * 2)
Cl-STORE_BASE - (16 * 3)
Cl-STORE_BASE - (16 * 4)
Cl-STORE_BASE - (16 * S)
Cl-STORE_BASE - (16 lie 6)

After reset the internal register QUEUE_STORE_BASE say is set to Ox04S. This
gives values to Q...STORE_BASE of Ox400 and <LSIZE of Ox20. Each queue then
has a size of 1K bytes and the first queue, that of the reply processor, appears at the
address Ox400. The exception area is just below this address. These values in the
above equations give the following addresses in the first 4K of store.

Memory Usage From To

DMA Exception OxOOOOOO3aO OxOOOOOO3af
Thread Exception OxOOOOOO3bO OxOOOOOO3bf
Reply Exception OxOOOOOO3cO OxOOOOOO3cf
Input 1 Exception OxOOOOOO3dO OxOOOOOO3df
Input 0 Exception OxOOOOOO3eO OxOOOOOO3ef
Command Exception OxOOOOOO3fO OxOOOOOO3ff
Reply Queue OxOOOOOO4OO OxOOOOOO7ff
Thread Queue OxOOOOOO800 OxOOOOOObff
DMA Queue OxOOOOOOcOO OxOOOOOOfff

meI<o S1002-10M102.04 74

Appendix] Communications Processor Memory Map

J.2.1.1 Queues Structures
A queue item has an entry size of 32 bytes aligned on 32 byte boundary.

The processor queues are accessed by common routines which check foroverfiow and
contextO overflow. The only exceptions which can be generated by these routines are

The three types of descriptor have the following format.

These should be removed from processor descriptions

J.2.2 Translation Tables

Comms Process ID tables.
Context Virtual Base and Size Tables

2 words per context (8 * 64k bytes => 512K)
Virtual Process Tables

(one per active context)
(Sparse and indirected)

MMU translation tables.
Root table (64K * 4) => 256K bytes

pointed to by context table ptr
Page Tables (Sparse and indirected)

Route tables. (One of) Variable (4M max)
Size defined by contents of Virtual process

tables.
Base defined by register

J.2.3 Internal Interrupt Event Vector
Size is 32 events which are all pairs of words. Base of vector is defined by internal
register INTERNAL_INTERRUPf_BASE. Each vector element corresponds to an
internal interrupt.

SlOO2-10MI02.04 7S

Computing Surface 2

J.3 Memory Map of Slave Word Devices
OxFFtFFFFfC Mbus Device m Read Only
OxFFlFFFFF8 Mbus Device m Read Only
OxFFlFFFFF4 Control register Read Only
OxFFlFFFFFO Control register Read/Write
OxFFtFFFFEC Main processor interrupt mask Read Only
OxFFtFFFFE8 Main processor interrupt mask Read/Write
0xFF1FFFFE4
OxFFtFFFFEO
OxFFtFFFFDC Interrupt register Read Only
0xFF1F'FFFD8 Interrupt register Read Only
OxFFlfFFFD4 Alarm register Read Only
OxFFlfFFFDO Alarm register Read/Write
OxFFiFFFFCC CockLo Read Only
OxFFtFFFFC8 Cock Lo ReadlWrite
OxFFtFFFFC4 Cock Hi Read Only
OxFFtFFFFCO Oock Hi Read/Write
OxFFtFFEOOO Hush register 4K area of store ReadlWrite
OxFFtF80000 Command port 2S6K area of store ReadlWrite

J.4 Memory Map of Slave Double Word Device
OxFFlFFFFF8 Mbus Device m (twice) Read Only
OxFFlFFFFFO Control register (twice) Read Only
OxFFtFFFFE8 Main interrupt mask (twice) Read Only
OxFFtFFFFEO Oock (Hi,Lo) Read Only
OxFFlFFFFD8 Interrupt register (twice) Read Only
OxFFlFFFFDO Alarm register (twice) Read Only
OxFFtFFFFC8 Oock (Lo,Lo) Read Only
OxFFtFFFFCO Oock (Hi,Hi) Read Only

meko SlOO2-10MI02.04 76

MEIKO BYTE-WIDE LINK
LINE-PROTOCOL

K.l Link Connection
The basic characteristics of Meiko links is that they are; byte wide; bidirectional;
point to point; and high bandwidth (>50 MBytes/s each direction). Each link consists
of 20 wires; 10 for the input port, and 10 for the output port. Each port has one clock
wire and nine data lines. On both positive and negative transitions of the CbanOkIn
wire the ChanIn wixes are sampled. The output port sets up a new data pattem on
ChanOut at the start of each communications clock period, and toggles ChanClkout
in the middle of each period.

output port

ChanClkOut
ChanOut[8]

ChanOut[O]

K.2 Link Values Encoding

input port

ChanClkIn
ChanIn [8]

ChanIn [0]

The line protocol has eight command values, as well 256 data values encoded. No
single bit error can change data into a command or visa-versa. No single bit error can
change one command into another.

The commands are as follows:

Command Code Usage

NULL {3'h7,3'hO,3'hO} Nothing to be sent.
GAP {3'h7,3'hl,3'hl} Used for bit stuffing to get

receiver in sync with sender.
SOP {3'h7,3'h2,3'h2} Start of packet.

SlOO2-10MI02.04 77

Computing Surface 2

EOP {3'h7,3'h3,3'h3} End of Packet.
TOKEN {3'h7,3'h4,3'h4} Receiver can accept 16 more

bytes of data.
PNACK {3'h7,3'hS,3'hS} Packet Not Acknowledge.
PACK {3'h7,3'h6,3'h6} Packet Acknowledge.
RESET {3'h7,3'h7,3'h7} Sender is in reset.

The order of priority of sending commands and data is shown below:

Highest priority Lowest priority

RESET PACK TOKEN EOP Data GAP NULL
PNACK SOP

The outputer attempts to output a GAP every 256 cycles. Ifhaving waited 128 cycles
a GAP has still not been sent because the line has been continuously busy, then a
GAP is sent in preference to data. When a GAP command is transmitted, it must be
followed by a NULL command. The NULL following a GAP is higher priority than
everything except the RESET command.

The data bytes are encoded in four ranges, as follows:

8'hOO - 8'h3f have the value {3'bOOO, Data[S:O]}
8'h40 - 8'h7f have the value {3'bOO1, Data[5:0]}
8'h80 - 8'hbf have the value {3'b01O, Data[5:0]}
8'heO - 8'hff have the value {3'b100, Data[S:O]}

At least two of the top bits would have to change before the data byte could possibly
be interpreted as a command byte. Errors which change the data values into other
data values must be detected by error checking the packet contents at the packets
destination.

Packets are made up of route bytes, a SOP, one or more transactions, and one or two
EOPs. One PACK or PNACK. is retumed for each packet sent. The line protocol does
not distinguish in any way between packets which have been PACK or PNACKed. If
a packet is terminated prematurely by a line data error, the packet is terminated with
an SOP EOP. This signals to the inputer that the packet was incomplete.

RESET, TOKEN, GAP and NULL are only used by point to point links and are
invisible to higher levels of protocol.

meI<D S1002-10M102.04 78

AppendixK Meiko Byte-Wide Link Line-Protocol

K.3 Flow Control
The input port has a FIFO. Data bytes and EOP commands can be stored in the FIFO
while a switch or inputeris unable to take the data. The protocol allows the FIFO to be
as deep as necessary to take up the delays in the line, but in the first implementations
of links it is intended that the FIFO be 48 bytes deep. The size of the byte count
register must be sufficient to cope with the largest FIFO it can be connected to, which
may be greater than its own FIFO size. In the initial implementation this will be 8
bits, allowing FIFOs up to 256 bytes to be connected.

Any time an input port has 16 or more bytes of space in its FIFO, it instructs its output
port to send a TOKEN command and decrements its space available count by 16. This
effectively transfers the ownership of 16 bytes of FIFO space from the inputer to the
outputter connected to it. Each byte consumed by the inputer frees up one byte of
space in the FIFO. Note that the effective size of the FIFO is reduced by between 0
and 15 bytes at any point in time because of the 16 byte granularity of the token.

When an inputer receives a TOKEN command it instructs its paired output port to
increment the count of the number of bytes it may send by 16. Bach time the output
port sends a byte it decrements this count by one. As long as the count is greater than
zero the output port is allowed to transmit data, or commands that consume FIFO
space, (BOP or SOP).

Data is transmitted as packets. All packets must end with an BOP command. All
packets must be either PACKed (packet Acknowledge), or PNACKed (packet NOT
Acknowledge). Acknowledgements are passed back along the route that the packet
took. If the outputting processor traps while it has its output open it will immediately
send an BOP. An BOP generated in this way is termed an unsolicited BOP. If an
Elite switch chip detects an error, then it will generate a BAD BOP command (this
is an SOP immediately followed by an EOP command). A BAD BOP can be
generated before a PACK/PNACK and hence be interpreted as an unsolicited BOP.
The system must ensure that any PACK or PNACK being returned for that packet
is not interpreted as being for a following packet. To ensure this, unsolicited BOP
commands are handshaken in the following way. The BOP command can be issued
before a PACK/PNACK has been received, but another packet cannot be transmitted
along the line before the PACK/PNACK is received. The line is kept open for a
packet until both the BOP is sent and the PACK/PNACK is received. If a receiver
port receives an BOP before the transmitter has sent a PACK/PNACK then a PNACK
is automatically sent by the transmitter. Any PACK or PNACK commands received
after an BOP has gone by, and before another packet has started, are deleted.

meJ<o SlOO2-10MI02.04 79

Computing Surface 2

K.4 Links and Reset
A link is held in reset when:

1 The Reset pin of the chip is high.

2 A ITag port holds the link in reset.

3 The input port is not receiving a clock from the line.

4 The input port is receiving RESET commands from the line.

5 The outputter has been disabled by a ITag port.

A link is put into reset for at least 256 clock cycles when :-

1 The value clocked in on ChanIn is neither a command nor Data.

2 The inputer has a phase error. (Due to excessive drift, jitter or double
clocking on the ChanInClk)

3 The link needs to be cleared because of a timeout.

4 A ITag port clears the link.

When a link is put into reset the link has a defined state. This is :-

1 No packets are being sent in either direction.

2 No PACK/PNACK is outstanding.

3 The flow control FIFO is empty, but the receiver owns all the space in
the FIFO. Le. TOKEN commands must be sent before any data can be
received.

4 The transmitters count of bytes it may send is set to zero.

5 Any packets being sent when the link was put into reset are completely
consumed, and if possible, NACKed.

6 Any packets being received when the link was put into reset are ended
with a BAD EOP (SOP, EOP);

meI<o SlOO2-10MI02.04 80

AppendixK Meiko Byte-Wide Link Line-Protocol

7 The link is forced to output the RESET command, except if the link is
reset by receiving a RESET command. If the link is receiving the RESET
command then the transmitter sends the NULL command.

If an outputeris in the midst of sending a packet when it is put into reset, the remainder
of the packet is consumed but not transmitted, and a PNACK returned to the sender.
The outputter will consume the rest of the packet up to the EOP, even if the link is
taken out of reset. New packets arriving at a link which is in reset are held until the
link is taken out of reset.

If an inputer is receiving a packet when it is reset, it forwards a SOP, followed by
an BOP. If this occurs while route information is being sent this forces the message
to terminate. If the error occurs during the data part of the packet the SOP is passed
in to the inputing communications processor, which detects it as an error which does
not require acknowledgement.

This mechanism insures that reset can be forced at any time on a port in a way which
can be detected and recovered from by all devices (either processors or switches)
using that port. The reset mechanism will always reset the link in both directions;
this is essential as no direction can be deduced from an erroneous command or data
item. Reset is however only sent in one direction across the link, form the end that
detected the error. Resets are propagated along the currently connected routes so that
an entire blocked packet is flushed out.

K.5 Clock Skew Tolerance
The output port generates both the data and the Oock. Any variation in voltage,
temperature, or process, should not cause the skew between the clock and data, as
seen by the receiver, to vary. The data is clocked on both positive and negative edges
of the clock. Therefore the maximum frequency of any pin is half the peak data rate.

K.6 Clock Phase Locking and Control
Both directions of a link must transmit at the same frequency. To avoid having to
distribute a global clock, marginal (<200ppm) frequency variations are permitted.
Receivers use the same frequency as their transmitters, and so have an unknown,
and slowly changing phase difference with respect to the data coming in on the line.
Inputters can correct for this by inserting or removing NULL commands. The points
at which corrections can be made are signalled by GAP commands. GAP commands
must be sent often enough to insure that the maximum frequency drift is always
compensated for before it can cause phase errors.

me/<O SlOO2-10MI02.04 81

Computing Surface 2

Each receiver has a phase detecting circuit and a short FIFO. Data is clocked into the
FIFO using the clock sent with the data. The data is clocked out of the FIFO using
the receivers local clock. The FIFO is three entries deep. The minimum possible
latency through the FIFO is zero cycles, and the maximum possible latency through
the FIFO is three cycles. The receiver monitoIS the latency through the FIFO, and
tries to maintain a 1 to 2 cycle latency. At regular intervals, the sender transmits
a GAP command. The GAP command is always followed by a NULL command.
When the receiver receives a GAP then, if the measured latency is greater than two,
because of clock drift or transmission delay drift, then in one cycle the receiver can
remove both the GAP and the NULL from the FIFO. This will reduce the latency
though the FIFO by one cycle. If, when the receiver receives a GAP, the measured
latency is less than one cycle, then the receiver does not take anything out of the FIFO
for one cycle. This will increase the latency by one cycle.

K. 7 Automatic Link Output Tri-state
The link has an automatic link output tri-state function. This is included to enable
hot insertion of circuit boanls within a switch network. When a link is operating
normally, it will be receiving an edge on the ChanClkIn pin every clock cycle. If the
link is disconnected then the ChanOkIn will stop oscillating. A very weak: pull down
resistor on the ChanClkIn pin will pull the input to ground. If the ChanOkIn pin is
read as zero without being read as a one for at least 256 Comms cycles, then all the
output pins of the link out will be tri-stated. The ChanClkOut pin has a weak: (but
not very weak) pull up resistor. So if a board is re-inserted, and the link connection
made again, when the power is restored the ChanOkIn pins of both ends of the link
will be read as a one (because the weak pull up resistor wins over the very weak: pull
down resistor). When the ChanClkIn pin has been read as a one for more than lOms
the link output pads will be taken out oftri-state. While a link is in tri-state, the link
is held in reset. Links will be automatically tri-state and untri-state regardless of the
state of Chip Reset. The only exception is if the link is being boundary scanned using
the TAP. In this case the link will be forced out of tri-state.

meko Sl002-10M102.04 82

STATUS REGISTERS

There is one status register for each of the six processes implemented on the
microengine. Each of these status registers is mapped as an external register. This
may be readlwritten via the command port at the external register addresses detailed
in Appendix M "Elan External Registers".

On exceptions the status register, at the point at which the error is taken, is written
to the exception·area for the respective process. The position the exception areas are
defined in Appendix J "Communication Processor Memory Map".

Bit 31 OutputOpen. (Read Only)

This bit means that the processor has the output channel open. This can only be
set for the reply, DMA, orthread process. On anenor, the microcode closes any
open output devices with an EOP error. If this bit is set in the Status Register
as written to the exception area it means that the processor had the output open
when the enor occurred.

Bit 30 Reserved

Bit 29 Reserved

Bit 28 TrapOnTransBit

This bit only has meaning for the input processors. When this is set each
transaction will cause a trap to the main processor, to allow single stepping
through a packet A trap will occur on each subsequent received transaction.

Bit 27 Runable. (Read Only)

meI<O SlOO2-10MI02.04

For queued devices such as the thread, reply and DMA processors, this means
that the device may have more work to do. Runnable for these devices means
that QueueReady is set, and at least one of the Run bits is set On seeing
Runnable the processor will attempt to run the top item of the queue. If the

83

Computing Surface 2

queue is empty or the top item is a non context 0 process and only context 0 are
nmnable then the QueueReady bit is cleared.

Runnable for the command processor means there is a command waiting in one
or other of the command registers or an internal interrupt is pending.

Runnable for the input processors means there is a transaction waiting to be
processed.

Bit 26,25 RunNonContextO, RunContextO

These two bits determine the run-ability of any request to the processors. Each
queue item or input transaction has a context associated with it, the action will
only be executed if the context type matches with one of these bits which is set.

For queued devices these are used to evaluate whether or not to run the top item
of the queue.

For the inputters these bits cause the automatic Nacking of the respective
transaction types.

If these bits have to be changed then the following procedure should be used :-

The status register should be written with the wakeup function set to never using
cp.-Rm W _external. The new value of RunNonContextO and RunContextO
is then inserted in the returned value and then written back again using
cp_Rm W _external with the original wakeup function. For this to work
correctly on iprocO and iprocl the SyncCProc bit should be asserted in the Elan
control register.

TheRunNonContextO and RunContextO bits have no meaning for the command
processor.

Bit 24 QueueReady

This bit is set any time a process is put on the queue. Any time the main
processor asserts one of the Run bits it should also reassert QueueReady, so that
the processor can check whether this has caused the queue to become Runnable.
Note that this bit DOES NOT MEAN THE QUEUE IS EMPrYIFULL. It is
simply an indication to the microengine to attempt to run the item at the top of
the queue.

meI<o SlOO2-10MI02.04 84

AppendixL Status Registers

Bit 23 Reject - inputters only (Read Only)

Reject is turned on automatically when a Nack is sent before an AckNow bit
has been detected in a packet. This causes all further transactions in a packet
to be thrown away.

Bit 22 AckSent - inputters only

An Ack has been sent for a packet. This is important for the input exception
handlers as it means that any transactions which occur after the Ack has been
sent must be handled by the exception handler, or if they are thrown away, a
higher level protocol must insure retransmission.
Read Only.

Bit 21 BadCRC - inputters only

Transaction with a BadCRC has been received. This causes an exception. If no
Ack has been sent Reject will be turned on. Exception handler must restart the
device by writing appropriate wakeup function and suspend address to device.
Read Only.

Bit 20 SOP error - inputters only

Packet was terminated by reset or another SOP (SOP EOP means end of packet
error).
Read Only.

Bit 19 ProcessinqPacket - inputters only

This bit will be set in the status register for all transactions other than EOP. ie
when TrapOnTrans is asserted it can be used to indicate that the EOP has been
received.
Read Only.

Bit [18:16] WakeupFn

meI<o SlOO2-10MI02.04

Valid functions are:

o WakeupNever
1 WakeupAlways
2 WakeupRunable

Sleep
Swapped out but going to run again
Waiting for queue item

85

Computing Surface 2

Following for outputing processors only:

3 WakeupOutputReady Waiting for output and at least two ttans space.
4 WakeupAckNAckOrTlDleout Waiting for Ack on output
5 WakeupTwoTransSpace Waiting for Space

Programming note. It is possible for a memory enor to cause a process to trap with
the wakeup function set to WakeupAckNAckOrTlDleoUt. If this is seen then the trap
code must write to that processes local external OearAckNAck location so that the
AckNAck buffer that was being used by processes for outputing a packet is freed up
again.

Bit [15:6] SuspendAddr

This is the suspend address of the micro-process which is controlling the
processor. Valid suspend addresses are defined in L.1. The field is 10 bits
wide of which Elan 1.0 only uses 9 bits.

Bit [5:0] TrapType

Meaning of TrapType is discussed in Appendix G on "Exceptions".

The reset state of the status registers is all zero except with the run contextO bits
enabled, and the inputters enabled.

L.I Micro-Process Suspend Addresses
The implementation of the six Elan processes is as six micro-processes timesharing
the same micro-processor. Each executes micro-code from a ROM, to achieve high­
density and functional integrity they share areas of this ROM.

It is necessary for trap handling code to sometimes alter the SuspendAddr, which
is the micro-code pointer to where execution will restart. Only certain micro-code
addresses are valid restart points, each having a different usage. These are listed in
the table below. This is achieved by changing the SuspendAddr field in the respective
status register.

Addr NullMWord Ox001

meI<o SlOO2-10MI02.04

Suspend point for idle process. Setting a process to this value and runnable
will cause it to idle but at expense of lower priority processors which will not
be able to execute at all.

On an exception the SuspendAddr is set to this value by exception microcode.

AppendixL Status Registers

Ox010

Reset value for DMA Processor. Place to restart DMA after removing
descriptor. DMA processor will begin executing descriptors off the DMA
queue.

Addr_AfterSwapSPARCEntry Ox018

Tuneslice point while executing thread code. Thread processor timeslices
between each insttuction. pc, nPC, condition code bits and registers are all
valid.

Addr_DequeueThread Ox020

Reset value for Thread Processor. Place to restart thread after removing
or deleting executing descriptor because of exception. Processor will begin
executing descriptors off the thread run queue.

Addr_ExecuteCommand Ox028

Reset value for command processor. Only place to restart command processor ..

Addr_DequeueReply Ox030

Reset value for reply Processor. Place to restart reply processor after removing
or deleting executing descriptor because of exception. Processor will begin
executing descriptors off the reply queue. If the reply buffer is mmked as valid,
it will be used as the first reply descriptor.

Addr_NoThereIsnt Ox034

meI<o SlOO2-10MI02.04

Reply suspend value while waiting for output to become free or for enough
space to appear in output buffer during execution of a descriptor. All reply
descriptors are read into the reply buffer during their execution.

Ox036

The reply processor waits here when it has dequeued a descriptor into the reply
buffer and is waiting for the outputter to have enough space in its buffer, or
ownership of the buffer.

87

Computing Surface 2

Addr_DoDmaLoopRead Ox06c

The dma processor waits here, between transactions on a dma packet sent into
the network, for output buffer space to become available and to let higher
priority processes in.

Addr_WakeupForOpen Ox040

The thread processor waits here for space in th output buffer or ownership of
the buffer.

Addr_ReplyCheckAck OxOee

Reply processor suspend address while awaiting an acknowledge in response
to a packet. It is unlikely that this value will be seen, as the link logic will
always supply an acknowledgement (packet Ack, NAck or timeout). However
if this value is seen, and rproc has been stopped, then the trap code must write
to rprocs local extemal OearAckNAck to free off the Ack buffer.

Addr_CheckAckNAckTimeout Oxl06

DMA processor suspend address while awaiting an acknowledge in response
to a packet. It is unlikely that this value will be seen, as the link logic will
always supply an acknowledgement (packet Ack, NAck or timeout). However
if this value is seen, and dproc has been stopped, then the trap code must write
to dprocs local extemal OearAckNAck to free off the Ack buffer.

Addr SendDMATransactions OxlOe

The dma processor waits here for output buffer space and higher priority
processes before preparing the first transaction of a dma packet to be sent into
the network.

Addr_DoLoopRead Ox127

The dma processor waits here during memory memory DMAs to let higher
priority processes in.

Addr_WakeupForSendTrans Ox130

The threads processor waits here for enough output buffer space before
executing a Send trans instruction.

mekD SlOO2-10MI02.04 88

AppendixL Status Registers

Addr_DMASentOK3 OxlSb

The dma processor waits here for the outputer to become free between packets
of a multi packet network dma.

Addr_HandleTranscation Ox163

Normal wakeup address for inputters. Inputter will wake up a valid transaction
appears in the input buffer.

Addr_MoveToNextTransaction Ox167

Inputter will wake up and move to the next transaction in the input buffer.

Addr_WakeupForClose Ox176

Thread processor suspend address while awaiting an acknowledge in response:
to a packet. If this value is seen, and tproc has been stopped, then the ttapcode
must write to tprocs local extemal OearAckNAck to free off the Ack buffer.

Addr_DoSendDMAEOP OxlaS

The dma processor waits here for enough buffer space to send the eop of a dma
packet.

Addr_SendNullTransaction Oxlbb

DMA processor is waiting to send a null transaction at the end of packet with
AckNow bit set to ensure an acknowledge has been sent.

Addr_NAckAndMoveToNextTransaction Oxle3

meI<o SlOO2-10MI02.04

Inputter will wake up and attempt to send a packet NAck in response to the
current packet. If successful the pointers are correctly moved on in response
to the current transaction. If the packet has already been acknowledged a trap
will occur.

Oxlfl

The dIna processor waits here to let other processes in on a memory memory
dma before updating the descriptor.

89

Computing Surface 2

Addr_ResetMWord OxOOO

This microword is not a suspend address but is used in conjunction with the
NullMWord by the idle microengine process.

Addr_InputterEntry OxOOS

Reset value for inputters. Inputters power up in this state but with Runnable set
to Always. This location resets the input buffer pointers and sets the wakeup
function to Runnable, then suspends itself at Addr_HandleTranscation, ready
to receive input transactions.

meI<o SlOO2-10Ml02.04 90

lT .a.

ELAN EXTERNAL REGISTERS

The following is a list of the external register values. The extemal registers are
accessed by a 32 bit read and 32 bit write bus. Not all of the registers return 32 bit
values. Where this is the case the extra bits are returned as zero. As for the intemal
registers some of the registers can be accessed locally. The local access address being
formed with bits [7:5] coming from the processor identification number ProcessID.
The read and write addresses are both 8 bits wide, for external register reads however
bit [4] is ignored. Global accesses can be made to the external registers, these being
made at addresses OXOO - Ox!f.

The external registers may have different read and write behaviour.

M.l External Register Definitions
The following tables list the external register definitions. The tables consist of 2
columns: the first column defines the registers meaning when it is written to; the
second column defines its meaning when it is read. The two meanings may, or may
not, be the same

M.I.I Global External Registers addresses (OxOO - Oxl})
NoWrite OxOO

No write occurs if a write is
made to this address. Maps nowhere.

ResetOutput:

Reset the outputter logic.

InputContextFilter

Bits [15:0] read and write the
16 bit value of the input context
filter. If inputs with this value
of context are received they
will be NACKed automatically.

OxOl

Ox02

The NACKing will begin on the next

mekD SI002-10MI02.04

VAddrReq OxOO

Virtual address register.

CurrAT OxOl

Cment MBus access type

R/W location

91

Computing Surface 2

packet received.

ReplyBufferValid Ox03

Bit[31] indicates validity of reply buffer.

CurrContext Ox04

Bits[15:0] read "and write the
current value of the hatdware
context being used by the MMU.

LineAddr

Line address access to TLB

LineData

32 bit line data currently
pointed to by TLB.

Flush

Invokes Bush function on TLB

WriteBlockSize
WriteDataPtr
ExtMemDataReg
ReadDataPtr

PhysAddrLo
PhysAddrHi

OxOS

Ox06

Ox07

OxOS
Ox09
OxOa
OxOb

OxOc
OxOd

R/W location

R/W location

BootModeAndLineAddr OxOS

R/W location

TlbAccessFault Ox07

Reads TLB access fault type.

R/W location
R/W location
R/W location
R/W location

R/W location
R/W location

36 bit physical address register. Writing to the high part
causes the top 32 bits to get written and the lower four bits
to be zeroed. Writing the lower part merely writes the bits
[31:0] of the physical address register. Reading the high part
returns the bits [35:4] and the low part bits [31:0].

SetMagicBits

Sets written data bits in
magic field

ClearMagicBits

Clears written data bits in

OxOe

OxOf

LastAccess

Read last memory access
Bit allocadon is

OxOe

«MMUs FSR as for mem error) « 3)
I (uCode Proem initiating access)

MemException OxOf

Read type of memory exception

SI002-10MI02.04 92

M.l

magic field.

PhysWordWrite
PhysWordRead
PhysBlockWrite
PhysBlockRead
TLBWrite
TLBRead

Do physical memory operation.

OxlO
Oxll
Oxl2
Oxl3
Oxl4
OxlS

VAddrRegReadByte Oxl8
VAddrRegWriteByte Oxl9
VAddrRegReadWord Oxla
VAddrRegWriteWord Oxlb
VAddrRegReadBlock Oxlc
VAddrRegWriteBlock Oxld
VAddrRegEventWord Oxle
VAddrRegLocalWriteWord Oxlf

AppendixM

No read mapping
No read mapping
No read mapping
No read mapping
No read mapping
No read mapping

No read mapping
No read mapping
No read mapping
No read mapping
No read mapping
No read mapping
No read mapping

No rea<:i mapping

Elan External Registers

Set virtual address register with given access type

Locally Mapped Registers
M.2.1 Command Processor Externally Mapped Registers (Ox20

- Oxl/J
WakeupFunction Ox27

Bits[2:0] writes wakeup function

into status register of Cproc

CommandOata Ox28

32 bit register used by
command port to transfer data.

CommandFinished Ox29

Indicate to command port that
command processor has finished

the cmrent command

No Write mapping

Sl002-10M102.04

ProcessId Ox27

Read process ID of Command

processor ie OxOOOOOOOl

R/W locat ion

CommandPort Ox29

Command from command port

Bit [31] indicates that an

internal interrupt is pending

MaskedInterruptReg Ox2c

93

Computing Surface 2

CommsProclntMaskReg Ox2d

18 bit Internal intenupt mask register.

StatusReg Ox2f

32 bit Status register for
Cproc processor. Fields within

status register are defined
in Appendix L

Intenupt register bit wise ANDed
with internal intenupt mask

R/W location

R/W location

M.2.2 JprocO Externally Mapped Registers (0x40 - OxS/J
InputReplyBufferlnc Ox40 InputReplyBufferPtr Ox40

Writing will cause input reply
buffer to be incremented if it
is not owned by Iprocl.

InputReplyBufferReset Ox41

Resets input reply buffer pointer logic.

CondTransResult Ox42

Bits [7:0] read value of cUttent
input reply buffer pointer. Bit [31]

reads 0 if input reply buffer is in
use by Iproc1.

Send ACK or NACK depending on value of previous subtract.

Used to make network conditional fast.

SendNAck Ox43

Send a NACK to the processor from whom we are currently receiving.

CurrContextAndInputCode Ox44 InputFirstCase Ox44

32 bit write value which sets the Reads microcode case value for

SI002-10MI02.04 94

AppendixM Elan External Registers

current MMU context for IprocO and

transaction code being decoded.
transaction being decoded given

state of IprocO.

TransactionUsed Ox46 NextTransFront Ox46

The input transaction has been

processed

Bits [7:0] read value of pointer

to next transaction in IprocO
buffer.

WakeupFunction Ox47 Processld Ox47

Bits[2:0] writes wakeup function

into status register of IprocO
Read process m of IprocO

StatusReq Ox4f R/W location

32 bit Status register for 1pmc0

processor. Fields within status register

are defined in Appendix L

M.2.3 Jprocl Externally Mapped Registers (Ox60 • Ox7/)

InputReplyBufferlnc Ox60

Writing will cause input reply buffer

to be incremented if it is not owned

by IprocO.

InputReplyBufferReset Ox61

Resets input reply buffer pointer logic.

CondTransResult Ox62

Send ACK or NACK depending on value

of previous subtract. Used to

make network conditional fast.

Sl002-10M102.04

InputReplyBufferPtr Ox60

Bits [7:0] read value of cuxrent

input reply buffer pointer. Bit [31]

reads 0 if input reply buffer is in

use by IprocO.

95

Computing Surface 2

SendNAck Ox63

Send a NACK to the processor from
whom we are currently receiving.

CurrContextAndlnputCode Ox64

32 bit write value which sets the

current MMU context for IprocO and
transaction code being decoded.

TransactionUsed

The input transaction has been

processed

WakeupFunction

Bits[2:0] writes wakeup function
into status register of IprocO

StatusReg

Ox66

Ox67

Ox6f

32 bit Status register for Iproc1

processor. Fields within status register

are defined in Appendix L

InputFirstCase Ox64

Reads microcode case value for

transaction being decoded given
state of Jprocl.

NextTransFront Ox66

Bits [7:0] read value of pointer

te next transaction in Ipmcl
buffer.

Processld Ox67

Read process ID of Iprocl

R!W location

M.2.4 Rproc ExternaUy Mapped Registers (0%80 - Ox9fJ
SendRouteBytes Ox80

Makes output logic send route bytes.
This together with SendTransaction

and SendEOP delimit the sending of
transactions and the BOP.

SendTransaction Ox8l

OutWordBackAnd2TransSpace Ox80

Bits [7:0] pointer to output buffer
space. Bit[31] indicates whether

there is enough free space for
another two transactions.

OutByteBackAnd2TransSpace Ox8l

SlOO2-10MI02.04 96

Makes output logic send transaction.

SendEOP Ox82

Makes output logic send BOP.

No write mapping

ClearAckNack Ox84

Clears the Ack/Nack status. This

frees up the logic which buffers

the Ack/Nack and allows its use

by another output packeL This is

the final step in sending a packet

and acknowledges the reading of

the CheckAckNAck value.

ReserveTrans Ox8S

Reserve the space for a transaction

to be sent in the output buffer.

ReplyBufferPtr Ox88

Retums pointer into reply buffer.

Writing to this location

SlOO2-10MI02.04

AppendixM Elan Extemal Registers

Bits [7:0] pointer to output buffer

space. Bit[31] indicates whether

there is enough free space for
another two transactions.

No read mapping

CheckAckNAck

Read output packet status. Bit[31]

indicates whether the packet has

ended. The following read values

are possible,

Ox83

OXOOOOOOOO Ack/Nack not yet received

Ox80000001 Ack received

Ox80000004 Packet timed out

OX8000000S Nack received

No read mapping

No read mapping

R/W location

Computing Surface 2

writes the pointer. Only bits[3:1]
get written.

No write mapping

StatusReg OxSf

32 bit Status register for Rproc
processor. Fields within status

register are defined in Appendix L

ReplyBufferValidTrue Ox8b
Bit[31] indicates whether reply
buffer is valid.

R/W location

M.2.5 Dproc Externally Mapped Registers (OxcO - Oxdf)

SendRouteBytes
SendTransaction
SendEOP

OxeO
Oxel
Oxe2

ClearAekNAck Oxe4
ReserveTrans OxeS

OutWordBaekAnd2TransSpaee OxeO
OutByteBaekAnd2TransSpaee Oxcl

CheekAekNAek Oxe3

Output controls, as for reply processor

WakeupFunetion Oxe?

Bits[2:0] writes wakeup function

into status register of Dproc

DmaResetTimeSlice OxeS

Reset DMA timeslice indicator

StatusReg Oxef

32 bit Status register for Dproc

Proeessld

Read process 10 of DMA

processor OxOOOOOOO6

DmaDoTimeSliee

Indicates whether or not the
DMA timeslice period has been

exceeded.

R/W location

Oxc?

OxeS

SlOO2-10MI02.04 98

processor. Fields within status

register are defined in Appendix L

DmaWriteBlockSize Oxd8
SkipPos Oxd9
WriteDataPtrDma Oxda
ReadDataPtrDma Oxdb
SourceDestDiff2toO Oxdc
FlushPrevReg Oxdd
DmaDataType Oxde
TLBBlockReadDma Oxdf

These registers contml the DMA logic.

AppendixM Elan External Registers

M.2.6 Tproc Externally Mapped Registers (OxaO - Oxbf)

SendRouteBytes OxaO
SendTransaction Oxal
SendEOP Oxa2

ClearAckNAck Oxa4
ReserveTrans Oxa5

Output controls, as for reply processor

WakeupFunction Oxa7

Bits[2:0] writes wakeup function

into status regiSter of Tproc

SC Instruction Oxa8

32 bit instruction register. Used by

Tproc logic to decode instruction.

Oxa9

Bit[31] indicates validity of IN

registers. Bit(O] indicates whether

IN registers are dirty.

SlOO2-10MI02.04

OutWordBackAnd2TransSpace OxaO
OutByteBackAnd2TransSpace Oxal

CheckAckNAck

ProcessId

Read process ID of thread

processor OxOOOOOOOS

R/W location

R/W location

Oxa3

Oxa7

Computing Surface 2

SC cc Oxaa

Bits[3:0] write Tpmc condition
code bits.

Oxab

Controls execution of Tproc
ins1l'Ucaons on arithmetic
or logic unit.

No write mapping

No write mapping

SC_Dirtyln~IfDest Oxae

Indicates that IN register block
needs to be marked as dirty ie

need to be written back to store
if the current dest register is

an IN register.

StatusReg Oxaf

SlOO2-10MI02.04

Returns number of destination
register for current Tproc
ins1l'Uction in Bits[S:O]. Bit[31]
indicates annul status if ins1l'Uction
is aBicc.

SC_FirstCase
SC_BRANCH

Returns case value for Tproc
ins1l'Uction in bits [8:0]. Bit[31]
holds branch status if ins1l'Uction
is a Bic-c.

SC_Immediate

Oxab
Oxab

4'hc

4'hc

Oxad

Value of Immediate field for current
Tpmc ins1l'Uction.

No read mapping

R/W location

100

32 bit Status register for Tproc
processor. Fields within status
register are defined in Appendix L

VAddrReglnstBlock Oxbc

The 32 bit address is to be

treated as an instruction

address for reading.

meI<o SlOO2-10MI02.04

AppendixM Elan External Registers

No read mapping

101

ELAN INTERNAL REGISTERS

The following is a list of the intemal register contents. The ELAN has 72 internal
32-bit registers which can be accessed as either 32-bit values or 64-bit values.

Each processor has an area of the internal register map which it can access locally
without indexing. This is the area where most of the values used by a processor are
stored. The entire register file can alternatively be accessed by indexing. The local
accesses are made relative to the following local access constants.

Thread Locals Ox20
Reply_Locals Ox48
Command_Locals Ox20
DMA_Locals Oxl0
InputO_Locals Ox12
T __ 1 T "" ""', "" 1\v1A
.I. J:''''''-.1._ \,1 Q'''''~ VA ... ,.

In addition to the local accesses, each processor can make global accesses to the first
16 locations, OxOO-OxOf, without indexing.

N.1 Internal Register Definitions
ROUTE_TABLE_PTR Oxoo

Pointer to base of route table. Individual entries given by 64 byte offset. Each entry
containing four 16 route byte. Pointer is upper 32 bits of a 36 bit physical address.

CONTEXT_PTR OxOl

Pointer to base ofMMU context table. Entries in tum point to MMU entries for each
context. Pointer is upper 32 bits of a 36 bit physical address.

QUEUE_S T ORE_BASE
QUEUE_SIZE

meJ<o SlOO2-10MI02.04

Ox02 /I Upper
Ox02 /I Lower

102

AppendixN Elan Internal Registers

Bits [31 :5] form upper 27 bits of a 36 bit physical address, pointing to queue store
base. This is area where the three queues for reply, thread and DMA processors are
placed, together with the trap area.

Bits[4:0] form shent where (1 « shcnt) is the number of queue entries for each
processor.

For example, OX()()()()()40S indicates that queues begins at address OxOOOOOO4OO, and
that each contains (1 « S) ie. 32 entries.

OUTPUT CONTEXT Ox03

If a processor has the output in use this is the value of context added to each
transaction for the packet

REPLY FPTR
REPLY COUNT
RUN_FPTR
RUN_COUNT
DMA FPTR
DMA_COUNT

Ox04 /I Upper
Ox04 /I Lower
OXOS /I Upper
Ox05 /I Lower
Ox06 /I Upper
Ox06 /I Lower

These describe the state of the processor queues for each of the queued processors.

Bits[31: 16] form a 16 bit front of the queue index. Bits[15 :0] form a 16 bit value
giving the number of entries on the queue.

AandC SAVE
TEMP_A
TEMP C
BandD_SAVE
TEMP B
TEMP D

FREE 1
FREE 2
FREE_3
FREE 4

meJ<o S1002-10M102.04

Ox07

Ox08 /I Two words
Ox08 /I Usable between external
Ox09 /I memory accesses
OxOa /I Two words
OxOa /I Usable between external
OxOb /I memory accesses

OxOc
OxOd
OxOe
OxOf

103

Computing Surface 2

These values are used for temporary space by all processors while executing.

DMA_NoOfRdBytes
DMA_OUTPUT_CONTEXT
DMA_NoOfWrBytes

TEMP INPUTO

OxlO /I valid when sending Pack
OxlO /I valid when not sending a packet
Oxll/l valid when sending Pack

Ox12

Temporary register used by IprocO.

DMA _ TmpSource Ox13 /I valid when sending Pack

TEMP INPUTl Ox14

Temporary register used by Iprocl.

DMA_ROUT E_CAC HE 0 Oxl6
DMA_ROUTE_CACHEl Oxl7

16 byte route cache used by DMA between packets to reduce memory accesses.
When no DMA is running these registers are invalid. Used in addition with
DMA_ROUTE_CACHE2 and DMA_ROUTE_CACHE3.

DMA_DESC_TYPE_CONTEXT
DMA_DESC_SIZE
DMA DESC SOURCE - -DMA_DESC_DEST
DMA_DESC_EVENT
DMA_DESC_DESTPROC
DMA_DESC_6
DMA_ROUTE_CACHE2
DMA DESC 7 - -
DMA_ROUT E_CAC HE 3

Ox18
Oxl9
Oxla
Oxlb
OxIc
Oxld
Oxle /I Not used
Oxle /I DMA Tmp
Oxlf /I Not used
Oxlf /I DMA Tmp

During DMA execution the 8 word DMA descriptor is held in these registers. This
descriptor is not updated till the DMA has succeeded. The currently unused parts
of the DMA descriptor, words 6 and 7 are used during remote DMAs as route cache
words.

Ox20
Ox20 /I When thread Swapped out

meI<o SlOO2-10MI02.04 104

,

AppendixN Elan Internal Registers

When thread processor is timesliced contains value of PC. During thread processor
execution register is set to zero. When no thread is running this value is undefined.

B ADDR Ox21

PC Ox22
COMMAND_TEMP Ox22 II When thread Swapped out

During thread processor execution register contains current PC. When thread isn't
running it is used as a temporary value by the command processor.

nPC Ox23

During thread processor execution register contains current nPC. When thread isn't
running it is undefined.

COMMAND CONTEXT 0 1 - --COMMAND_CONTEXT_2_3
Ox2411 Cmd
Ox2511 Cmd

Vector of four 16 bit contexts used by command processor in generating event or
queue commands. Contexts are held little endian in the words ie command context
number 0 appears in COMMAND_CONTEXT_O_l bits [15:0] and command context
number 3 appears in COMMAND_CONTEXT_2_3 bits [31: 16].

CONTEXT . Ox26

Value of hardware context for current thread processor. When no thread processor is
running this value is undefined.

Points to base of internal interrupt event vector. Each entry containing two words
long. Pointer is upper 32 bits of a 36 bit physical address.

OUTS 0 Ox28
OUTS_l Ox29
OUTS 2 Ox2a
OUTS_3 Ox2b
OUTS 4 Ox2c
OUTS_S Ox2d
OUTS 6 Ox2e
OUTS 7 Ox2f

meJ<o SI002-10MI02.04 lOS

Computing Surface 2

OUT registers of thread processor.

IB_BUFFER_O Ox30
IB _BUFFER _1 Ox31
IB_BUFFE R_2 Ox32
IB_BUFFER_3 Ox33
IB _BUFFER _ 4 Ox34
IB _BUFFER _5 OX3S
IB_BUFFER_6 Ox36
IB _BUFFER _ 7 Ox37

32 byte instruction buffer for thread processor.

INS_O Ox38
INS_1 Ox39
INS_2 Ox3a
INS_3 Ox3b
INS_4 Ox3c
INS_S Ox3d
INS_6 Ox3e
INS_7 Ox3f

IN registers of thread processor.

INPUT_REPLY_BUFFER_O Ox40
INPUT_REPLY_BUFFER_1 Ox41
INP UT_REP LY_BUFFER_2 Ox42
INPUT_REPLY_BUFFER_3 Ox43
INPUT_REPLY_BUFFER_4 Ox44
INPUT_REPLY_BUFFER_S OX4S
INPUT_REPLY_BUFFER_6 Ox46
INPUT_REPLY_BUFFER_7 Ox47

Space used by inputters to build up reply descriptor prior to placing it on the reply
queue.

REPLY_BOFFER_O Ox48
REPLY_BOFFER_1 Ox49
REP LY_BOFFER_2 Ox4a
REPLY_BUFFER_3 Ox4b
REPLY_BOFFER_4 Ox4c
REPLY_BOFFER_S Ox4d
REPLY_BOFFER_6 Ox4e
REPLY_BOFFER_7 Ox4f

me/<O SI002-10MI02.04 106

AppendixN Elan Internal Registers

Space for a .single reply descriptor. This is used to queue a reply if the reply
queue is empty, so reducing MBus memory accesses. An external register location
ReplyBufferValid indicates whether this buffer is in use. The buffer is also used
during execution of a reply descriptor and so if the reply processor traps the
ReplyBufferValid bit must be cleared explicitly by the trap handler.

INPUTO_BUFFER_O ~O

INPUTO_BUFFER_l ~l

INPUTO_BUFFER_2 ~2

INPUTO_BUFFER_3 ~3

INPUTO_BUFFER_4 ~4
INPUTO_BUFFER_5 ~5

INPUTO_BUFFER_6 006
INPUTO_BUFFER_7 ~7

INPUTO_BUFFER_8 ~8
INPUTO_BUFFER_9 ~9
INPUTO_BUFFER_10 ~a

INPUTO_BUFFER_ll ~
INPUTO_BUFFER_12 ~c

INPUTO_BUFFER_13 ~d
INPUTO_BUFFER_14 ~e

INPUTO_BUFFER_15 ~f

Input transaction buffer used for IprocO.

OUTPUT_BUFFER_O
OUTPUT_BUFFER_l
OUTPUT_BUFFER_2
OUTPUT_BUFFER_3
OUTPUT_BUFFER_4
OUTPUT_BUFFER_5
OUTPUT_BUFFER_6
OUTPUT_BUFFER_7
OUTPUT_BUFFER_8
OUTPUT_BUFFER_9
OUTPUT_BUFFER_l0
OUTPUT_BUFFER_ll
OUTPUT_BUFFER_12
OUTPUT_BUFFER_13
OUTPUT_BUFFER_14
OUTPUT_BUFFER_15
OUTPUT_BUFFER_16
OUTPUT_BUFFER_17
OUTPUT_BUFFER_18

meI<o SlOO2-10MI02.04

Ox60
Ox61
Ox62
Ox63
Ox64
Ox65
Ox66
Ox67
Ox68
Ox69
Ox6a
Ox6b
Ox6c
Ox6d
Ox6e
Ox6f
Ox70
Ox71
Ox72

107

Computing Surface 2

OUTPUT_BUFFER_19 Ox73
OOTPOT_BUFFER_20 Ox74
OOTPUT_BUFFER_21 Ox7S
OOTPUT_BUFFER_22 Ox76
OUTPUT_BUFFER_23 Ox77
OUTPUT_BUFFER_24 Ol78
OUTPUT_BUFFER_25 Ol79
OUTPUT_BUFFER_26 Ox7a
OUTPUT_BUFFER_27 Ox7b
OUTPUT_BUFFER_28 Ol7c
OUTPUT_BUFFER_29 Ox7d
OUTPUT_BUFFER_30 Ox7e
OUTPUT_BUFFER_31 Ox7f

Output buffers used by reply, thread and dma processors to formulate packets
including route byte headers. Additionally the DMA processor uses the output buffer
as a temporary storage during memory memory DMA.

INPUT1_BUFFER_O aroo
INPUT1_BUFFER_1 Oldl
INPUT1_BUFFER_2 ~
INPUT1_BUFFER_3 Old3
INPUT1 BUFFER 4 Oxd4 - -
INPUT1_BUFFER_5 OxdS
INPUT 1_ BUFFER.-6 Oxd6
INPUT1_BUFFER_7 Old7
INPUT1_BUFFER_8 Oxd8
INPUT1_BUFFER_9 Oxd9
INPUT1_BUFFER_10 Oxda
INPUT1 BUFFER 11 Oxdb - -
INPUT1_BUFFER_12 Oxdc
INPUT1 BUFFER 13 Oxdd - -
INPUT1 BUFFER 14 Oxde - -
INPUT1_BUFFER_15 Oxdf

Input transaction buffer used for Iprocl.

meJ<o SlOO2-l0MI02.04 108

J:1lan ~llre
Technology

Elite
Switch
Processor

Reference
Manual

mei<o

Elan Elite Technology

CONTENTS

1 OVERVIEW · · . · . · 1.1
1.1 Introduction. 0 0 0 • • • • • • • • • • • 0 • • • o. 1. 1
1.2 Major Objectives 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 1. 1
1.3 Elan Links 0 • 0 0 • 0 0 1.1

2 8X8 CROSS-BAR SWITCH 2.1
2.1 Route byte format 0 0 . . 0 0 . 0 . 0 0 0 2.1
2.2 Distributed round robin arbitration 0 . . . 0 0 2.2
2.3 Priority arbitration 0 0 . 0 0 0 . 0 . 0 0 0 0 2.3
2.4 Broadcast communication 0 0 . . 2.4

3 ERRORS, ERRORS HANDLING,
AND RESET PROPAGATION 3.1
3.1 Link line protocol errors . 0 0 0 • 0 • • 0 • • • 0 0 • • • 3. 1
3.2 Routing and packet protocol errors .. 0 • • • • • • • • • • • • 3.2
3.3 Ttmeout errors . 0 • • • • • • 0 0 0 0 • 0 0 0 • • 0 0 0 0 3.3
3.4 Reset Propagation 0 0 • 0 0 0 • 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 3 .4
3.5 Disabled Links 0 0 0 0 • 0 0 • 0 0 0 • • 0 0 0 0 0 0 0 0 0 0 0 •• 3. S

4 TEST ACCESS PORT. (TAP) 4.1

APPENDICES

A MEIKO BYTE-WIDE LINK LINE-PROTOCOL
A.1
A.l
A.3
A.4
A.S
A.6
A.7

Link Connection 0 0 0 • 0 0 0 0 0 • 0 0 0 0 0 • 0

Link Values Encoding 0 0 0 0 0 0 0 0 0 • 0 0 0 • 0 0 0 0

Flow Control 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0

Links md Reset 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0

Oock Skew Tolerance 0 0 0 0 0 0 • 0 • • • 0 0

Oock Phase Locking md Control 0 0 0 • • 0 0 0

Automatic Link Output Tri-state . . . 0 0 • • 0 0

B ELITE TEST ACCESS PORT

A.1
A.l
A.l
A.3
A.4
A.S
A.S
A.6

INSTRUCTIONS B.1

C ELITE TEST ACCESS PORT
REGISTERS C.l
C.1 External scan shift path. 0 • 0 • 0 • • 0 • 0 0 0 0 • • 0 0 0 0 • 0 0 C.l

i

CONTENTS

ii

C.2
C.3
C.4
C.s
C.6
C.7
C.8

Link Switch' State.. . . .
Link Reset Control. . .
Waiting timeout control.
Error value register. . • .
Error Flag Register • . .
Global control register. . .
Perf meter Count register and timeout register.

C.2
C.2
C.3
C.3
C.3
C.4
C.S

OVERVIEW

1.1 Introduction
The Meiko Elite Packet Switch Chip has eight bi-directional byte wide Elan links, and
an 8x8 cross-bar switch with broadcast capability. An Elite routes and checks Elan
packets from any input link to one or more output link. An Elite can be intergrated
and controlled via an IEEE Standani Test Access Port (TAP). Routing is controlled by
protocol sent with the packets. Elite switches within a network attempt to implement
a distributed fair round robin arbitration scheme across the whole network, giving
all sending processOIS equal priority to each receiving processor. Each link has a 48
byte flow control rIFo, allowing Elite switches to be connected by up to 25 meteIS
of cable without any loss of bandwidth.

1.2 Major Objectives
The major objectives for the switch processor are:

• To have high link bandwidth. (Total switch bandwidth = 600 Mbytes/sec)

• To pass packets across the switch from link to link with minimum latency.

• To return PACK/PNACKs across the switch from link to link with minimum
latency.

• To impliment broadcast communications.

• To impliment a switch network wide fair round robin arbitration scheme.

• To check the integrity of packets transmitted across the switch.

• To handle erroIS with minimum disruption to other packet traffic on the switch
network.

1.3 Elan Links
The links are described in detail appendix A.

meI<o DRAFf May 27, 1994 1.1

8X8 CROSS-BAR SWITCH

2.1 Route byte format
Packets entering a switch chip must start with a route byte. This is used to select an
output, or group of outputs, to transmit the packet to. The route byte is the first byte
of the packet as seen by the switch chip. The switch chip uses the route byte and then
removes the route byte from the packet. If the packet has to travel through a number
of switch chips, then the route bytes for each switch chip are placed in the order they
will be used as the packet moves from Elite switch to Elite switch. When the packet
arrives at the destination processor or processors, all the route byte(s) will have been
deleted from the front of the packet. The route byte has four fields as shown below:-

RouteByte[2:0]
RouteByt~[3]

RouteByte[6:4]
RouteByte[7]

Lower bound of output ports.
Priority bit. This must be set for
broadcast transmissions.
Upper bound of output ports.
Odd Parity bit.

For normal point to point connections across a switch, both the upper and lower bound
values must have the number of the output link. The priority bit is normally reset,
and the parity bit is set to odd parity for the route byte. The whole packet will be sent
to the addressed output link, and the PAck or PNAck, received at the output link, will
be returned back across the switch and sent to the link that received the packet.

e.g.

1 Link 3 receives a packet with a route byte of value Ox91.

2 Both the upper and lower bounds have the value 1.

meJ<o DRAFI' May 27, 1994

The packet will be routed to Linkl, and the ack received by Linkl will be sent back
out of Link3.

For a broadcast connection across the switch the lower bound has the number of the
lowest output link and the upper bound has the number of the highest output link.
The priority bit must be set, and the parity bit is set to odd parity for the route byte.

e.g.

1 Link 6 receives a packet with a route byte of value Ox49.

2 The upper bound has the value 4.

3 The priority bit is set.

4 The lower bound has the value 1.

The effect is :-

• The packet will be routed and copied to Links 1,2,3 and 4.

• When all the links 1 to 4 have received an ack (pAck or PNAck) then an ack will
be sent out oflink 6.

• If any of the links 1 to 4 receive a PNAck then a PNAck will be sent from link 6.

• Only if ~ the links 1 to 4 receive a PAck will a PAck be sent by Link 6.

2.2 Distributed round robin arbitration

2.2

The Elite switch chip implements a fair 'switch network wide' round robin arbitration
scheme. Withineach switch the switch output for a link, when a connection is made,
. round robin arbitrates onto a switch input The priority of arbitration is as follows:
After chip reset switch input 0 is the highest priority and switch input 7 is the lowest
priority. So if the first two packets arriving at the switch arrive at the same time
and require routing to the same switch output, then the switch input with the lowest
number is connected first. On the next arbitration, the switch input that was last
connected becomes the lowest priority, and the next switch input (last switch input
+ 1) becomes the highest priority. The priority increases as the switch input number
increases, wrapping from switch input 7 back to switch input O. A switch output
does not always re-arbitrate at the end of a packet All packets end with one End
of Packet (BOP), but only packets ending with two successive EOPs allow a switch
output to re-arbitrate. An Elan processor always ends a packet with two EOPs. As
the packet moves through the switch network, the second BOP may be deleted by an

2 8x8 cross-bar switch

Elite switch. This will happen if another switch input is waiting to be connected to the
switch output passing the packet. If only one EOP is seen on the end of a packet, then
the switch output will not re-arbitrate. In other words, two EOPs means the switch
output may re-arbitrate, one EOP means the switch output may not. The second EOP
will not be deleted if the arbitration wraps from switch input 7 to switch input O. e.g.
if switch inputs 1, 3, and 5 are all receiving back to back packets destined to the same
switch output and each ending with two EOPs, then the order the switch inputs are
selected is 1 - 3 - 5 - 1 - 3 - 5 - 1 - 3 - 5... Packets from switch inputs 1 and 3 will
have their second EOP deleted, but the packets received at switch input 5 keeps its
second EOP as the arbitration at the end of the packet from switch input 5 involves
an arbitration back to switch input 1 that wraps from switch input 7 to switch input
O. If a packet is received at a switch input with only one EOP, and the next packet
received at the same switch input is not to be routed to the same switch output, then the
switch output adds a second EOP to the first packet so that subsequent Elite switches
are not locked onto an idle switch input. However, the second EOP is not added if
another switch input is waiting to use the switch output following the rules above.
The disttibu~ round robin only functions correctly provided all the links involved
are trying to communicate to a single Elan processor.

2.3 Priority arbitration
An additional round robin arbitor has been included to enable arbitration between
incoming broadcast packets. If the priority bit (bit 3 in the route byte) is set then
that switch input has priority over normal connections. This mechanism has been
introduced to enable broadcast communications to operate correctly. If two broadcast
communications arrive simultaneously at two switch inputs and the set of switch
outputs that they are to connect to overlaps then it is probable that they will each
connect to some, but not all, of their switch outputs and each be left waiting for switch
outputs that the other has connected with. In this case the switch will deadlock. In
order to prevent this, a priority request round robin arbitor has been added. When the
priority bit in the route byte is set then before any requests to connect to any switch
outputs is made a priority round robin request is made. When the priority request is
acknowledged, all other switch inputs are inhibited from making their requests, and
the acknowledged switch input is guaranteed to connect to all the switch outputs
after any packets being passed those switch outputs has gone by. Re-arbitration
will occur even if the packets being passed only end with one EOP. The priority
bit must be set for broadcast communications but must never be set for point to point
communications.

meI<o DRAFf May 27, 1994

2.4 Broadcast communication
A switch netwotk made using Elite switch chips and connecting Elan communication
processors together can be viewed as a linear array of Elan processors numbered 0
to n connected by a tree of Elite switch chips. Broadcasts are made by sending a
packet to the top of the tree and then copying the packet to more than one switch
output as the packet moves back down the tree. In this way it arrives at many Elan
processors at the bottom of the tree. The broadcast set is contiguous in the range X
to Y where 0 <= X <= Y <= n. Bach Elite switch has a number of links going up in
the network the rest going down towards the Elan processors. The links going down
always start with link O. Broadcasts may only spread out going down the netwotk.
Bach Elite has a value called its BroadcastTop. This should be set to highest link
number going down. So, for example, if links 0 to 3 go down and links 4 to 7 go
up, then the BroadcastTop value should be set to 3. While an Elite is in reset the
notEnor pin is tri-state. When an Elite comes out of reset the value on the error pin
is sampled. If the value is high then BroadcastTop is set to 3. If the value is low then
BroadcastTop is set to 7. The error pin can be pulled by a resistor to the appropriate
level. Other values of BroadcastTop can be set by writting to the OlobalReg using
the ITag interface. The route bytes required to make a broadcast connection are as
follows :-

1 A set of normal point to point route bytes are required to send the packet
to the top of the switch netwotk tree.

2 A set of broadcast route bytes back down the tree describe the contiguous
set of Elan processors being communicated with.

Bach broadcast route byte has a 3 bit upper and a 3 bit lower bound number describing
on which links the packet is to leave the Elite. The First broadcast route byte describes
which links the packet should leave on the top most Elite switch chip within the
switch netwotk. As the network is a tree, and we require a contiguous range of Elan
processors to be communicated with, then the middle downward links of this Elite
should then pass the packet to every Elan processor on a downward path from these
links. For this reason the top Elite modifies all subsequent route bytes for this packet
(to be used by all the Elite chips below the top Elite switch chip) to say "output on all
downward links". The value chosen for this is "broadcast 7 to 0". Zero is always the
lowest downward link from any elite. Seven is the highest possible. When an upper
bound of seven is received by an Elite on a broadcast route, then if the BroadcastTop
value is not seven, then the higher bound is changed to the BroadcastTop value. The
least significant link being broadcast to on the top Elite switch chip only requires the
upper bound to be modified on all subsequent route bytes, and the most significant
link being broadcast to on the top Elite switch chip only requires the lower bound to
be modified on all subsequent route bytes. All other lower Elite switches apply the
same rules. Most will receive a route byte with an upper bound of7 and a lower bound

2 8x8 cross-bar switch

of O. These routes cannot be modified further. The Elite switches on the edges of the
downward formed broadcast pyramid will have to modify the route bytes leaving
them that are. no longer on the edge of the pyramid. So the broadcast route bytes sent
by the sending Elan processor consist of a list of upper and lower bounds, where the
upper bounds describes the most significant edge of the broadcast pyramid, and the
lower bounds describes the least significant edge of the broadcast pyramid. As route
bytes may be changed then the parity bit may also have to be changed if the new value
of route byte requires it. Note, the parity bit is not regenerated, it is only changed.
Hence if the route byte was corrupted, then the new value will still say that the route
is corrupted.

The sending Elan processor is only allowed to send it's EOP when it receives either
an PACK or a PNACK. A receiving Elan processor will only send a PACK when the
'Ack now' bit is set within a transaction. An Elite switch is only allowed to send
a PACK or a PNACK when it has received a PACK or PNACK on all of the links
it sent the packet out of. A PACK will only be sent back from an Elite switch if a
PACK was received on all of the links it sent the packet too. If any of the output
links received a PNACK then when all of the other links have received a PACK or
PNACK, a PNACK will be sent back to the sending Elan. The packet is held open
within an Elite switch until an EOP is received from the sending Elan processor. The
full sequence of events for a broadcast communication is as follows :-

1 A set of nonnal point to point route bytes are sent by the sending Elan
processor to take the packet to the top of the switch netwoIk tree.

2 A set of broadcast route bytes are sent by the sending Elan processor
to take and broadcast the packet back down the tree to all of the Elan
processors being communicated with.

3 A Start of packet (SOP) command is sent.

4 One or more transactions are sent. One of them must have the 'Ack now'
bit set.

5 When the transaction with the 'Ack now' bit set is received by the Elan
processors then they return either a PNACK or PACK.

6 When all the PNACKs and PACKs have been merged and returned back
across the switch netwoIk a single PNACK or PACK is received by the
sending Elan processor.

7 Two EOP commands are sent by the sending Elan processor.

meI<o DRAFT May 27, 1994 2.5

8

2.6

As the BOPs move across the Elite switches, the switch connections are
disconnected and made available for other communications.

ERRORS, ERRORS HANDLING,
AND RESET PROPAGATION

Errors can be observed through an ERROR pin. The precise nature of the error can
be found, and if necessary the error may be corrected, using the TAP. When the Elite
detects an error, it will close and remove any effected packets, and if possible, will
tell the sending and receiving Elan processors that an error has occurred.

Errors on the switch chips fall into three categories

1 Link line protocol errors.

2 R~uting and packet protocol errors.

3 l1ID.eout errors.

Each of the eight links has an error flag register. If an error is detected, then the
appropriate bit is set in the error flag register. All the error flag bits are ORed together
for all the links to form an Elite error value that is output on the _ERROR pin. Once
an error bit is set, it can only be reset via the Test Access Port. All error bits are reset
by Chip reset.

3.1 Link line protocol e"ors
There are two line protocol errors that can be detected :-

1 Received Phase Error.

2 Received Data Error.

A Received Phase Error occurs when the link receiver was unable to keep phase
aligned to incoming link data. This may occur because of :-

1 Excessive frequency drift between the transmitter and the receiver,

rneI<o DRAFt' May 27, 1994 3.1

2 Excessive line clock jitter, caused by gnd bounce etc.

3 Noise on the line causing multiple clocks to be received.

A Received Data Error occurs when the incoming data is not a valid command value
or a valid data value.

When a link line protocol error occurs, both the link transmitter and link receiver are
put into reset for at least 256 clock cycles, and any packets being transmitted by the
link are correctly terminated and if possible NACKed.

3.2 Routing and packet protocol e"ors
Elan packets consist of route bytes, a SOP, one or more transactions, then an BOP.

The route bytes each have a parity biL All the route bytes entering an Elite have
their parity checked. If any of the route bytes has a parity error then the route parity
error bit is set and the packet is terminated. When the packet is terminated a NAck is
returned to the sending Elan, the rest of the packet being thrown away, and a Bad BOP
(SOP BOP) is sent on to the receiving Elan. This mayor may not reach the receiving
Elan depending on which Elite switch and in which route byte the error occurred.

Bach transaction within a packet ends with a two byte CCITT CRC polynomial. This
is used to check the integrity of the transaction. As a packet moves through an Elite,
all the transactions are checked. The transaction CRC error bit will be set if either the
CRC value does not match the transaction, or the transaction ends prematurely with
either an EOP or a Bad EOP. The size of a transaction is defined in bits six to four of
the first byte of the transaction.

First Byte Trans size Total in bytes
[6:4] in words (Ine ere)

0 2 10
1 4 18
2 6 26
3 10 42
4 18 74
5 34 138
6 66 266
7 130 522

Using the TAP the setting of the CRC error bit may be disabled if the Elite is to be used
for switching non standard Elan packets. Current Elan processors will only generate
ttansactions of 10, 18,26 or 42 bytes in size. If an error is detected and enabled then
the rest of the packet sent to the Elite is consumed, a Bad BOP is sent on from the

3 Errors, Errors Handling,and Reset propagation

Elite, and if a PACK or PNACK has not already been returned a PNACK is returned
to the sending Elan processor. If the error is detected on the last transaction within
the packet and the BOP of the packet immediately follows the last transaction, then
it is possible for the packet to leave the Elite before a Bad BOP can be placed on the
end of the packet However the transaction CRC error bit for that link input will still
beset

3.3 Timeout e"ors
There are two sowces of timeout error for each link. They are :-

1 Packet open timeout.

2 Packet waiting timeout

An Elite switch input is considered open from the time that the first byte of a packet
moves across the switch to the time that switch is able to re-arbitrate to a new input
If this time exceeds 240 to 480ms for a 70MHz switch networlc then the switch will
disconnect and reset the link connected to the output of the switch. It will also set the
Input Open Tuneout error bit for the link connected to the input of the switch.

If, when a packet arrives at a switch input, the switch is unable to connect to the
desired switch output because another switch input is connected to that switch output,
then that input is considered to be waiting. Each link input has a two bit Waiting
timeout control register. This register controls the behaviour of the switch input if the
input is waiting for longer than the waiting timeout value. The register is accessed
using the TAP and is defined below :-

1 Bit 0 Enable automatic Nack and gobble.

2 Bit 1 Enable setting of input open timeout error bit.

When bit 0 is set, then if the waiting timeout value is exceeded, the whole packet is
consumed and a NACK is returned to the sending Elan processor. Nothing is sent
on as the switch did not connect to any switch output When bit 1 is set, then if
the waiting timeout value is exceeded, the Input Open Timeout error bit for the link
connected to "the switch input is set If bit 1 is set on its own, then the only action is
to set the error bit i.e. the packet is not te1lD.inated, and if the switch output that the
input is waiting for becomes free, the packet is transmitted as nonnal. On chip reset
both bits are cleared.

The waiting timeout value is set by loading the appropriate three bit value into the
TAP global register. The waiting timeout values for an Elite with a 70MHz comms
clock is given below :-

DRAFfMay27,1994 3.3

Global req[2:0]
o
1
2
3
4
5
6
7

3.4 Reset Propagation

Timeout period
22-29us (Reset value)
44-58us
88-117uS
176-234uS
352-468uS
704-936uS
1408-1873us
2816-3745uS

If the output link on an Elan processor bas been. open for more than the timeout
duration, then the Elan must clear the packet being communicated. This may have
occurred for one of the following reasons :-

1 . One or more of the transactions in the packet where invalid.

2 No 'Ack now' bit had been set in any of the packets transactions.

3 The routes used to send the packet where not valid.

4 Part of the network to be used by the packet is broken.

5 The PACK or PNACK was lost by a bad transmission.

6 The inputer on the receiving Elan processor bas been disabled.

7 Erronious code on the sending Elan processor bas not 'Oosed' the packet.

8 Congestion of the switch network prevented the packet from reaching the
receiving Elan processor within the timeout period.

For any of the above reasons, and possibly other reasons, the packet must be capable
of being cleared. The whole packet could be stored in the flow control FtFos of each
of the links used by the packet. When the Elan outputertimes out, it puts its outputing
link into reset. This causes the RESET command to be sent down link. If an Elite
switch chip receives a RESET command, and is connected to one or more output
links, then the reset value is propagated across the switch and causes all of the output
links connected to the inputing link to put their transmitters into reset and transmit a
single RESET command. The output will clear its output byte count and then ignore
any TOKEN commands it receieves for the next 64 to 128 cycles. The output will
continue to supply GAP commands for line syncronization and also will continue to
return PACK and PNACK commands for any packets being sent down the link in the

3 Errors, Errors Handling,and Reset propagation

other direction. If an elite receives a single RESET command then it clears its input
fifo and will send on a reset to any outputs that the input is connected to. The input
will then wait 2S6 to S12 cycles before returning and TOKENS back to the outputer.
In this way the whole packet is cleared from the switch netwoIk. If the reset reaches
the receiving· Elan processor, then it is interpreted as a BAD EOP by the inputer of
the Elan processor.

The RESET command is only transmitted in one direction across a link. Any packets
being transmitted in the other direction are not affected. If a packet times out, the
whole of that packet is cleared from the switch network without affecting other
packets apart from blocking other packets trying to use a link in the same direction
as the timed out packet.

If a link is put into reset by either a hard data or phase error, or by the jtag or chip
reset pin, then both the sender and receiver are put into reset and a timeout is sent in
both directions.

3.5 Disabled Links
A link on an Elite switch chip can be disabled by sending a command on the TAP.
When a link is disabled, the link is put into reset and outputs a RESET command.
Any packet that arrives to be transmitted out of the link from the switch is consumed
and PACKed. For most errors it is normal to PNACK and consume a packet, but
the disabled link PACKs. This is necessary if portions of the switch network are to
be partitioned off and broadcast communications are still able to operate around the
partitioned area.

'me/<o DRAFT May 27, 1994 3.5

TEST ACCESS. PORT. (TAP)

The Elite switch chip is control by and conforms to the IEEE Standard Test Access
Port (IEEE Std 1149.1-1990). The TAP has the full five pin interface of:-

1 TCK
2 TMS
3 TDI
4 TDO
5 TRST*

Test Oock Input
Test Mode Select Input.
Test Data Input
Test Data Output
Test Reset Input

The instruction register is six bits wide. All the mandatory instructions BYPASS,
SAMPLE/PRELOAD, and EXTEST are included. The optional meODE instruction
is also included. Private instructions have been included that perform the following
functions :-

1 Global register access.

2 Timer register access.

3 In~viduallink error value register access.

4 Individual link error bits register access.

5 Individual link reset register access.

6 Individual link timeout control register access.

7 Equivalent instructions to SAMPLE/PRELOAD, and EXTEST for each
of the eight links.

8 Eight instructions to read link control state.

The full list of instructions is given in appendix B. The full list of register bit allocation
and meanings is given in appendix C.

meko DRAFf May 27, 1994 4.1

4.2

MEIKO BYTE-WIDE LINK
LINE-PROTOCOL

A.I Link Connection
The basic characteristics of Meiko links is that they are; byte wide; bidirectional;
point to point; and high bandwidth (>50 Mbyte/s each direction). Each link consists
of 20 wires; 10 for the input port, and 10 for the output port. Each port has one clock
wire and nine data lines. On both positive and negative transitions of the ChanOkln
wire the ChanIn wires are sampled. The output port sets up a new data pattem on
ChanOut at the start of each communications clock period, and toggles ChanClkout
in the middle of each period.

output port

ChanClkOut
ChanOut[8]

ChanOut[O]

A.2 Link Values Encoding

input port

ChanClkIn
ChanIn [8]

ChanIn [0]

The line protocol has eight command values, as well 256 data values encoded. No
single bit error can change data into a command or visa-versa. No single bit error can
change one command into another.

The commands are as follows:

Command Code Usage

NULL {3'h7,3'hO,3'hO} Nothing to be sent.
GAP {.3'h7,3'hl,3'hl} Used for bit stuffing to get

receiver in sync with sender.
SOP {3'h7,3'h2,3'h2} Start of packet.

DRAFfMay27,1994 A.l

A.2

EOP {3'h7,3'h3,3'h3} End of Packet.
TOREN {3'h7,3'h4,3'h4} Receiver can accept 16 more

bytes of data.
PNACK {3'h7,3'h5,3'h5} Packet Not Acknowledge.
PACK {3'h7,3'h6,3'h6} Packet Acknowledge.
RESET {3'h7,3'h7,3'h7} Sender is in reset.

The order of priority of sending commands and data is shown below:

Highest priority Lowest priority

RESET PACK TOKEN EOP Data GAP NULL
PNACK SOP

The outputer attempts to output a GAP every 256 cycles. Ifhaving waited 128 cycles
a GAP has still not been sent because the line has been continuously busy, then a
GAP is sent in pmference to data. When a GAP command is transmitted, it must be
followed by a NULL command. The NULL following a GAP is higher priority than
everything except the RESET command.

The data bytes are encoded in four ranges, as follows:

B'hOO - 8'h3f have the value {3'bOOO, Data[5:0]}
8'h40 - 8'h7f have the value {3'bOO1, Data[5:0]}
8'hBO - 8'hbf have the value {3'b010, Data[5:0]}
8'hcO - 8'hff have the value {3'b100, Data[5:0]}

At least two of the top bits would have to change before the data byte could possibly
be interpreted as a command byte. Errors which change the data values into other
data values must be detected by error checking the packet contents at the packets
destination.

Packets are made up of route bytes, a SOP, one or more transactions, and one or two
EOPs. One PACK or PNACK is returned for each packet sent The line protocol does
not distingui~h in any way between packets which have been PACK or PNACKed. If
a packet is terminated prematurely by a line data error, the packet is terminated with
an SOP EOP. 'Ibis signals to the inputer that the packet was incomplete.

RESET, TOKEN, GAP and NULL are only used by point to point links and are
invisible to higher levels of protocol.

Appendix A Meiko Byte-Wide Link Line-Protocol

A.3 Flow Control
The input port has a FIFo. Data bytes and EOP commands can be stored in the FIFo
while a switch or inputeris unable to take the data. The protocol allows the FIFo to be
as deep as necessary to take up the delays in the line, but in the first implementations
of links it is intended that the FIFo be 48 bytes deep. The size of the byte count
register must be sufficient to cope with the largest FiFo it can be connected to, which
may be greater than its own FIFo size. In the initial implementation this will be 8
bits, allowing FiFos up to 256 bytes to be connected.

Any time an input port has 16 or more bytes of space in its FIFo, it instructs its output
port to send a TOKEN command and decrements its space available count by 16.
This effectively transfers the ownership of 16 bytes of FIFo space from the inputer
to the outputer connected to it Each byte consumed by the inputer frees up one byte
of space in the FIFo. Note that the effective size of the FIFo is reduced by between 0
and 15 bytes at any point in time because of the 16 byte granularity of the token.

When an inputer receives a TOKEN command it instructs its paired output port to
increment the count of the number of bytes it may send by 16. Each time the output
port sends a byte it decrements this count by one. As long as the count is greater than
zero the output port is allowed to transmit data, or commands that consume FIFo
space, (BOP or SOP).

Data is transmitted as packets. All packets must end with an EOP command. All
packets must be either PACKed (packet Acknowledge), or PNACKed (packet NOT
Acknowledge). Acknowledgements are passed back along the route that the packet
took. If the outputing processor traps while it has its output open it will immediately
send an EOP. An EOP generated in this way is termed an unsolicited EOP. If an
Elite switch chip detects an error, then it will generate a BAD EOP command
(this is an SOP immidately followed by an EOP command). A BAD EOP can be
generated before a PACK/PNACK and hence be interprited as an unsolicited EOP.
The system must ensure that any PACK or PNACK being retumed for that packet
is not interpreted as being for a following packet To ensure this, unsolicited EOP
commands are handshaken in the following way. The EOP command can be issued
before a PACK/PNACK has been received, but another packet cannot be transmitted
along the line before the PACK/PNACK is received. The line is kept open for a
packet until both the EOP is sent and the PACK/PNACK is received. If a receiver
port receives an EOP before the transmitter has sent a PACK/PNACK then a PNACK
is automatically sent by the transmitter. Any PACK or PNACK commands received
after an EOP has gone by, and before another packet has started, are deleted.

meI<o DRAFT May 27, 1994

A.4 Links and Reset
A link is held in reset when:

1 The Reset pin of the chip is high.

2 A JTag port holds the link in reset.

3 The input port is not receiving a clock from the line.

4 The input port is receiving RESET commands from the line.

5 The outputer has been disabled by a JTag port.

A link is put into reset for at least 256 clock cycles when :-

1 The value clocked in on ChanIn is neither a command nor Data.

2 The inputer has a phase error. (Due to excessive drift, jitter or double
clocking on the ChanInOk)

3 The link needs to be cleared because of a timeout.

4 A JTag port clears the link.

When a link is put into reset the link has a defined state. This is :-

1

3

4

5

6

-No packets are being sent in either direction.

No PACKJPNACK is outstanding.

The flow control FIFo is empty, but the receiver owns all the space in
the FIFo. i.e. TOKEN commands must be sent before any data can be
received.

The transmitters count of bytes it may send is set to zero.

Any packets being sent when the link was put into reset are completely
consumed, and if possible, NACKed.

Any packets being received when the link was put into reset are ended
with a BAD EOP (SOP, EOP);

Appendix A Meiko Byte-Wide Link Line-Protocol

7 The link is forced to output the RESET command, except if the link is
reset by receiving a RESET command. If the link is receiving the RESET
command then the transmitter sends the NULL command.

If an outputeris in the midst of sending a packet when itis put into reset, the remainder
of the packet is consumed but not transmitted, and a PNACK retumed to the sender.
The outputer will consume the rest of the packet up to the BOP, even if the link is
taken out of reset. New packets arriving at a link which is in reset are held until the
link is taken out of reset.

If an inputer is receiving a packet when it is reset, it forwards a SOP, followed by
an EOP. If this occurs while route infonnation is being sent this forces the message
to terminate. If the error occurs during the data part of the packet the SOP is passed
in to the inputing communications processor, which detects it as an error which does
not require acknowledgement.

This mechanism insures that reset can be forced at any time on a port in a way which
can be detected and recovered from by all devices (either processors or switches)
using that port. The reset mechanism will always reset the link in both directions;
this is essential as no direction can be deduced from an erronious command or data
item. Reset is however only sent in one direction across the link, fonn the end that
detected the error. Resets are propogated along the currently connected routes so that
an entire blocked packet is flushed out.

A.S Clock Skew Tolerance
The output port generates both the data and the Cock. Any variation in voltage,
temperature, .or process, should not cause the skew between the clock and data, as
seen by the receiver, to vary. The data is clocked on both positive and negative edges
of the clock. Therefore the maximum frequency of any pin is half the peak data rate.

A.6 Clock Phase Locking and Control
Both directions of a link must transmit at the same frequency. To avoid having to
distribute a global clock, marginal (<200ppm) frequency variations are permitted.
Receivers use the same frequency as their transmitters, and so have an unknown,
and slowly changing phase difference with respect to the data coming in on the line.
Inputers can correct for this by inserting or removing NULL commands. The points
at which corrections can be made are signaled by GAP commands. GAP commands
must be sent often enough to insure that the maximum frequency drift is always
compensated for before it can cause phase errors.

meI<o DRAFT May 27, 1994

Each receiver has a phase detecting circuit and a short FIFo. Data is clocked into the
FIFo using the clock sent with the data. The data is clocked out of the FIFo using
the receivers local clock. The FIFo is tI1ree entries deep. The minimum possible
latency through the FIFo is zero cycles, and the maximum possible latency through
the FIFo is three cycles. The receiver monitors the latency through the FIFo, and tries
to maintain a 1 to 2 cycle latency. At regular intelVals, the sender transmits a GAP
command. The GAP command is always followed by a NULL command. When the
receiver receives a GAP then, if the measured latency is greater than two, because
of clock drift or transmission delay drift, then in one cycle the receiver can remove
both the GAP and the NULL from the FiFo. This will reduce the latency though the
FIFo by one cycle. If, when the receiver receives a GAP, the measured latency is less
than one cycle, then the receiver does not take anything out of the FIFo for one cycle.
This will increase the latency by one cycle.

A.7 Automatic Link Output Tn-state

A.6

The link has an automatic link output tri-state function. This is included to enable
hot insertion of circuit boards within a switch network. When a link is operating
nOIDlally, it will be receiving an edge on the ChanClkIn pin every clock cycle. If
the link is disconnected then the ChanClkIn will stop oscillating. A very weak pull
down resistor on the ChanClkIn pin will pull the input to gnd If the ChanClkIn pin
is read as zero without being read as a one for at least 256 Comms cycles, then all
the output pins of the link out will be tri-stated. The ChanOkOut pin has a weak (but
not very weak) pull up resistor. So if a board is re-inserted, and the link connection
made again, when the power is restored the ChanCIkIn pins of both ends of the link
will be read as a one (because the weak pull up resistor wins over the very weak pull
down resistor). When the ChanClkIn pin has been read as a one for more than lOms
the link output pads will be taken out of tri-state. While a link is in tri-state, the link
is held in reset. Links will be automatically tri-state and untri-state regardless of the
state of Chip Reset. The only exception is if the link is being boundary scanned using
the TAP. In this case the link will be forced out of tri-state.

ELITE TEST ACCESS PORT
INSTRUCTIONS

The Test Access Port instruction register is six bits long. During the Capture-IR state
the instruction register is loaded with the following.

{2'bOO, ChipReset, ErrorFlag, 2'b01}

The following is a list all the instructions with the hex code and number of data bits.

Hex No of
Code Data

bits
00 164
01 164 .
02 11
03 11
04 24
05 24
06 72
07 72
08 16
09 16
Oa 16
Ob 16
Oc not used
Od not used

Instruction
Name

Extra Function

ExTest Also resets all links
SamplePreload
ReadAndWrtGlobalControl
ReadGlobalControl
ReadAndWrtTimeoutReg
ReadTimeoutReg
ReadErrorValRegs
ReadErrorValRegs
ReadAndWrtResetControl
ReadResetControl
ReadAndWrtTimeoutControl
ReadTimeoutControl

Oe 40 ReadAndClearErrors Clear individual error
bits

Of

10
11
12
13

40

20
20
20
20

DRAFfMay27,1994

ReadErrors Read all switch error
bits

ExTestLinkO Also resets link 0
SamplePreloadLinkO
ExTestLink1 Also resets link 1
SamplePreloadLink1

B.l

14 20 ExTestLink2 Also resets link 2
15 20 SamplePreloadLink2
16 20 ExTestLink3 Also resets link 3
17 20 SamplePreloadLink3
18 20 ExTestLink4 Also resets link 4
19 20 SamplePreloadLink4
1a 20 ExTestLink5 Also resets link 5
1b 20 SamplePreloadLink5
1c 20 ExTestLink6 Also resets link 6
1d 20 SamplePreloadLink6
1e 20 ExTestLink7 Also resets link 7
1£ 20 SamplePreloadLink7
20 Bypass
21 15 ReadStateLinkO
22 Bypass
23 15 ReadStateLink1
24 Bypass
25 15 ReadStateLink2
26 Bypass
27 15 ReadStateLink3
28 Bypass
29 15 ReadStateLink4
2a Bypass
2b 15 ReadStateLink5
2c Bypass
2d 15 ReadStateLink6
2e Bypass
2£ 15 ReadStateLink7
30-3c Bypass
3d 6 IDCode
3e Bypass
3£ 1 Bypass

ELITE TEST ACCESS PORT
REGISTERS

The following is a list of Elite internal registers that can be accessed using the Test
Access Port. The registers are not all the same length.

e.l External scan shift path.
The following is used by the instructions SAMPLE/PRELOAD, and EXTEST.

Whole scan path is:-

{Link7Scan[19:0], Link6Scan[19:0], Link5Scan[19:0],
Link4Scan[19:0], Link3Scan[19:0], _ERROR, _RESET,
Link2Scan[19:0], LinklScan[19:0], COMMSCLK, _COMMSCLK,
LinkOScan[19:0]}

Each link scan bit order is:-

{Linkln8, Linkln7, Linkln6, Linkln5, Linkln4,
LinklnClk, Linkln3, Linkln2, Linklnl, LinklnO,
LinkOutO, LinkOutl, LinkOut2, LinkOut3, LinkOut4,
LinkOutClk, LinkOut5, LinkOut6, LinkOut7, LinkOut8}

DRAFr May 27, 1994

e.2 Link Switch State.
Eight instructions exist to access read only state within each link. One instruction per
link. Each register is 15 bits long. The bits are defined below :-

Bit (s)
6:0
7

8
9
10

11
12

13
14

RouteByte. Valid if waiting for connection.
Switch input is connected and transmitting
packet to one or more outputs.
Switch input is waiting to be connected.
Switch output is connected to a switch input.
Switch output FirstEop. Waiting for next byte
to decide if the output should rearbitrate to
a new switch input.
Receiver flow control fifo is not empty
No more fifo space for link transmitter to
send data to.
Link output pads tri-state for power up.
Link is in reset

C.3 Link Reset Control.
This is a 16 bit read/write register that is used to give individual link reset control.
Two bits per link. The coding is as follows :-

Value

o
1

2

3

Meaning

Normal operation
Reset Switch input.
i.e. Send reset on to all outputs connected
to input, NAck and gobble the rest of the
packet.
Disable switch output.
i.e. PAck and gobble all packets.
Hold link in reset

The bit ordering of the whole register is:-

{RC7[l:0], RC6[l:0], RC5[l:0], RC4[l:0],
RC3[l:0], RC2[l:0], RC1[l:0], RCO[l:0]}

Appendix C Elite Test Access PortRegisters

C.4 Waiting timeout control.
This register is used to give individual link control to the behaviour of a switch input
that has been waiting to connect to an output for more than the waiting timeout value
defined in the Global register. The waiting timeout is a 16 bit readlwrite register with
two bits per link. The meaning of each bit is given below :-

Bit 0
Bit 1

Enable automatic Nack and gobble.
Enable setting of input open timeout error bit.

The bit ordering of the whole register is :-

{TC7 [1: 0], TC6 [1: 0], TC5 [1: 0], TC4 [l : 0] ,
TC3 [l : 0], TC2 [l : 0], TCl [1 : 0], TCO [l : 0] }

The whole register is zeroed on chip reset.

c.s Error value register.
This is a 72 bit read only register. It is split into 8 lie 9 bit registers, one 9 bit register
per link. Each register holds the value of the last data error received by the link. The
bit ordering of the whole register is :-

{EV7[8:0], EV6[8:0], EV5[8:0], EV4[8:0],
EV3[8:0], EV2[8:0], EV1[8:0], EVO[8:0]}

C.6 Error Flag Register
This is a 40 bit read / bit clearable register. There are five bits per link. The error bits
can be read. They are set to 1 if the error occurs, and are cleared by writing a 1 to the
corresponding bit position from the TAP. Writing a 0 to a bit from the TAP causes the
value not to change. All error bits are cleared by chip reset. The order of the error
bits for each link is given below :-

Bit 0
Bit 1

Bit 2

Bit 3

Bit 4

mti<D DRAFr May 27, 1994

Route Parity Error. Set by route parity error.
~ransaction CRC error. Set by an invalid
transaction.
Received Phase Error. Set if input was unable
to keep phase aligned to incoming link data.
Received Data Error. Set if received data was
not a valid data byte or command.
Input Open Timeout. Set if packet was connected
to an output for too long, or if enabled the
packet was waiting to be connected for too

long.

Whole reg is:-

{Lnk7EF[4:0], Lnk6EF[4:0], Lnk5EF[4:0], Lnk4EF[4:0],
Lnk3EF[4:0], Lnk2EF[4:0], Lnk1EF[4:0], LnkOEF[4:0]}

C.7 Global control register.

C.4

This is an 11 bit readlwrite register. It is divided into 6 fields as follows:-

Bit(s)
2:0
o
1
2
3
4
5
6
7

4:3
0
1
2
3

5

6

9:7

Waiting Timeout Control value
22-29us (Reset value)
44-58us
88-117uS
176-234uS
352-468uS
704-936uS
1408-1873us
2816-3745uS

Perf meter control.
Perf meter is disabled,
Perf meter is testing nand gates,
Perf meter is testing nor gates,
Perf meter is testing inv gates and track

Mux perf meter output onto the error pin.

Disable transaction checking. When set,

load,

transaction eRC error bits will not be set.

BroadcastTop value.

10 ChipReset. Ored with the RESET pin to form
the chip reset value.

AppendixC Elite Test Access PortRegisters

c.s Perf meter Count register and timeout register.
This is a 24 bit readlwrite incrementing register. Under normal operation it is
incremented every 256 Comms cycles. It is used to provide timeout periods for both
open and waiting packets. It is also used to control the duration of U'i-state after a
link is reconnected. If the Perf meter control field of the global register is non-zero,
then it is incremented by the Perf meter output.

meI<o DRAFT May 27, 1994

