
!VIK401 - Dino 
General SPARe Node 

Specification 

December 16, 1992 



MK401- Dino General SPARe Node 



OVERVIEW 

The MK401 (Dino) is the first board in the new machine architecture. As such it 
incorporates several new devices and concepts. A complete mechanical redesign has 
resulted in a card size of 14 inches by 15 inches. The ElanlElite communications 
network is supported, and a new supervisory structure based around the CAN 
(Control Area Network) serial bus protocol is implemented. All input/output 
connectors are brought to the front panel of the cards, removing the need for 10 
'dongles'. Built-in SCSI drives are also supported with backplane SCSI wiring. 

The board is MBus based with a single MBus (single node). On this MBus are 
placed two full size MBus processor card sites. This allows two SPARC CPUs to 
be supported, either as one dual processor card or two single processor cards. Also 
on the MBus is the Elan communication processor which has two Elan links to the 
backplane. An MBus to SBus converter chip drives an SBus which has three single 
sized SBus master card sites in addition to two SBus DMA controllers supporting an 
Ethernet port and two SCSI ports. The SBus cards and one of the MBus cards have 
front panel access space. A memory controller supports up to 128MBytes of error 
checked DRAM using 4Mbit DRAM technology. Support for 16Mbit DRAMs is 
included and allows a total of 512MBytes of DRAM on the node. An additional 
controller supports an 8bit peripheral bus, the lOBus, with a variety of devices 
attached. These include a Boot ROM, real time clock, two serial ports, keyboard and 
mouse ports, an interface to the CAN bus and miscellaneous node control functions. 

DINOSPEC3.0 1 



IMPLEMENTATION· 

This section gives some details about each of the major structural blocks of the Dino. 
Subsequent sections will give full details, register descriptions, address maps etc. 

2.1 MBus and Processor Slots 
The MBus is fully level two compliant and runs at 40MHz. Support in the form of 
bus request and grant lines and interrupt signals is provided for two processors. These 
can either be on the same processor card or one on each card. 

Each device attached to the MBus has a unique MBusID. This is used to decode 
addresses at which the devices may be accessed. MBus processor slot 0 is given 
MBusIDs 8 and 9, and slot 1 is given IDs 10 and 11. Note that most SPARe 
processor cards do not actually use these MBusID signals but instead rely on software 
programmed registers. To allow each processor to establish a unique identity there is 
a register which each can read to determine which MBus request and grant line it is 
attached to. This register is described fully later. 

DINOSPEC3.0 2 



2.2 SBus 

2 Implementation 

A table of MBusID assignments follows. 

BusID Device 
0 lOBus Controller 
1 Unused 
2 Unused 
3 Unused 
4 MBus to SBus chip 
5 Unused 
6 Elan Communications Processor 
7 Unused 
8 MBus Processor Slot Jl 
9 MBus Processor Slot Jl 

10 MBus Processor Slot J2 
11 MBus Processor Slot J2 
12 Unused 
13 Unused 
14 Unused 
15 Unused 

The MBus is connected to the SBus through an LSI Logic M2S chip (L64852C). 
This chip supports MBus master accesses to the SBus and also SBus accesses to the 
MBus. In the case of MBus master initiated transactions virtual address translation is 
assumed to have been performed by the master's own MMU. SBus masters however 
have virtual to physical address translation carried out by the M2S chip itself. To 
achieve this the M2S chip maintains a set of translation tables in MBus memory and 
16 TLB entries on chip. 

The M2S chip supports five external SBus DVMA devices (potential SBus masters). 
Two of these are LSI SBusDMA chips supporting the Ethernet and SCSI ports 
(devices 1 and 5). The other three are standard single size SBus slots into which 
masters or slaves can be placed (devices 2, 3 and 4). SBus arbitration is carried out 
by the M2S chip and the SBus runs at a clock speed of 20M Hz. Complete details of 
the M2S chip's operation can be found in the LSI Logic L64852C, MBus to SBus 
controller technical manual. Details of the address mapping of the M2S chip are 
given in a later section. The M2S chip has an MBusID of 4. 

The SBusDMA devices on the SBus are LSI Logic SBDMA2 chips (L64853A). 
One of these (device 1) services an AMD AM7990 Ethernet controller and an NCR 
N53C90A SCSI-2 controller. The Ethernet device has a standard interface to an 
external transceiver connected with a standard Ethernet drop cable. This allows 

DINOSPEC3.0 3 



MK401- Dino. 

2.3 DRAM 

connection to either thick or thin wire Ethernet. The SCSI-2 controller supports an 
8bit, single ended SCSI bus with connections at the backplane and a standard high­
density SCSI socket on the front panel. This latter allows connection to external SCSI 
devices such as CD-Rom drives and scanners. The second SBus DMA device (SBus 
device 5) has the similar SCSI-2 circuitry but without an Ethernet connection. 

Termination for the SCSI bus must be provided for correct operation. On board 
termination can be enabled by a front panel recessed switch. If the SCSI bus is not 
used this termination must be used. If there are devices plugged into the bus then, 
for correct SCSI operation, the bus must be terminated at both ends. If devices are 
plugged into only either the backplane or the front panel then the on board termination 
must be used. If there are devices plugged into both front and backpanels then the on 
board termination must be disabled. 

The memory controller used on the Dino is the same as that in the Sun 
SPARCstationl0. This is the LSI chip, L64860, which uses a 128 bit wide data bus 
for fast memory accesses. The device supports single bit error correction, two bit 
error detection and multiple bits within a nybble detection. The device drives an 
array of 16, 36bit wide, SIMMs identical to the ones used in the TwinEngine on the 
existing MK083 product. The array is constructed as 4 groups of 4 SIMMs. Within 
each group the SIMMs must be identical, but there is no requirement for the groups 
to be the same. SIMMs can be either 4Mbit DRAM or 16Mbit DRAM technology, 
either single or double sided. This means that the minimum memory is 16MBytes and 
this can be upgraded in 16MByte chunks to 128MBytes and then 64MByte chunks 
to 512MBytes. Section X gives more details about the various memory options 
available. 

Writes to memory ofless than 64bits width are automatically turned into read-modify­
write cycles to the array. All MBus transaction sizes and Level-l and Level-2 
transaction types are supported. 

Memory accesses are error-checked with all single-bit errors being corrected. Errors 
of two or more bits are uncorrectable and will cause a synchronous MBus error 
acknowledgement to the MBus cycle. Single bit errors can be corrected and will 
return a normal MBus acknowledge. Their occurrence can be signalled with a level 
15 interrupt to the processors. This allows error logging and scrubbing operations 
to be carried out. Error fault information is available for all single and multi-bit 
errors in registers within the memory controller. Kernel software can advise the board 
controller of the occurrence of uncorrectable memory errors by sending a message 
over the CAN bus. This can be used to log error information and cause a visible status 
change on the front panel LEDs. 

DINOSPEC3.0 4 



2.4 10 Bus 

2 Implementation 

The lOBus is a general purpose 8-bit slave onI y bus designed to allow easy connection 
of minor peripherals to the MBus. It is provided in this implementation by the LSI 
chip, L64851. There are several devices connected to this bus :-

• An EPROM or Flash-EPROM of up to 512KBytes. This holds the 
bootstrap programs, ie. OpenBoot and Meiko Diagnostics. 

• A real-time clock module with 8KBytes of battery backed SRAM. This 
holds configuration information and node fault logs. It is software 
compatible with the module used on SPARCstations. 

• Two dual U ART devices for connection to Keyboard, Mouse and 
two general purpose serial ports. These are the same as used on 
SPARCstations. 

• Board and node control registers as follows 

• Interrupt request control for each processor. 

• Free running timers for interrupt levels 10 and 14 to the 
processors. 

• CAN interface chip to the control serial bus. 

• MBus grant read back register. 

• Node "Reset Me" request register. 

• LED bargraph register. 

• Asynchronous error interrupt status latches. 

• Physical board ID register. 

A brief description of each device follows. For details of address map allocation 
section 3. 

DINOSPEC3.0 5 



MK401- Dino. 

2.4.1 BootRom 

The code in this ROM is read by both processors on startup. This code must perform 
all the hardware initialisation, initial page table construction and booting of vmunix 
from the desired device. Note that since both processors start up together and access 
the same code a check will need to be made of the MBus grant line register. Once 
each processor is identified, processor 0 can continue with the hardware setup while 
processor 1 idles. When processor 0 finishes it can wake processor 1 by issuing it ~ 
software interrupt. 

Board jumpers JPl and JP2 allow the use of Flash-EPROM in the BootRom socket. 
This feature is recommended only for Meiko internal software development. For this 
reason the jumpers are Zerohm links soldered to pads on the underside of the board to 
dissuade user alteration. Details of the Flash-EPROM programming mechanism can 
be found in the AMD data sheet for part Am28F020. This is included in AMD's data 
book "CMOS Memory Products" of 1991. Location of the BootRom in the MBus 
physical memory map is given in section 3. 

2.4.2 Real Time Clock 

The Real Time Clock used on the Dino is the Mostek/SGS-Thompson part MK48T08. 
This is an 8KByte version of the earlier MK48T02 used on Sun SPARCstations. The 
extra RAM is useful for logging of system failure data such as Uncorrectable multi­
bit errors. Detailed information about each fatal crash· can be stored along with a 
date-stamp. In addition a log of time powered up could be kept along with an audit 
trail of board manufacture tests and modifications. 

The Clock module updates several of the RAM registers once every second. The 
module contains features for calibration to offset crystal frequency drift with time. 
year, month, date, day, hour, minute and second information is available. 

Details of the locations of the various registers are included in section 3. For details 
on programming the clock see the SGS-Thompson data sheet on the MK48T08. 

2.4.3 Serial Ports 

There are two Dual UARTs of type Z85C30 by AMD on the lOBus. One chip receives 
data from the keyboard and mouse connector on the front panel, the other handles to 
two RS232 serial ports also on the front panel. In the absence of a keyboard and 
frame buffer the bootstrap code has an option to direct console 10 to serial port A. 

These serial ports are clocked at 4.9152MHz and are thus theoretically capable of 
up to 76.8Kbaud. In practice 38.4Kbaud is achievable. Note that both serial port 
A and serial port B use the same 25-way 'D' connector. Thus port A supports full 

DINOSPEC3.0 6 



2 Implementation 

synchronous and asynchronous operation and has a full set of modem control lines, 
whereas port B has a more limited set and only supports asynchronous operation. 

Full details of the locations of the registers on the serial port controllers are included 
in section 3. For details on programming the Z85C30 see the AMD publication 
"Z85C30 Serial Communications Controller. Technical Manual." 

2.4.4 Interrupt Controller 

The MK401 has many sources of interrupts to the SPARCs. These are assigned 
to various priority levels and given to the Interrupt Controller. There is a separate 
controller for each processor, to enable interrupt handling to be effectively shared 
between the processors. Each controller is implemented in a large PAL, full details 
of which are given in section 5. The controller has the following major features 

• 

• 

• 

• 

2.4.5 

Masks for all hardware generated interrupts. 

Software interrupts on six levels using a multi -processor compatible 
set/clear register structure. This allows one processor to interrupt the 
other by writing once to a single memory location, without having to do 
a read-modify-write cycle which is subject to being broken by the other 
processor. Supported levels are 1,4, 6, 12, 13 and 15. 

Latches triggered by the outputs of the free running timers. These capture 
the timer passing zero event and cause an interrupt to the processor. When 
the interrupt handler accepts the interrupt and clears the request it resets 
this latch. 

Priority encoder to generate the 4bit encoded interrupt level that is passed 
to the SPARC processor module. 

Periodic Interrupt Timers 

Periodic interrupts are used for maintaining the Unix clock and kernel profiling. Each 
processor has a separate timer chip (an AM82C54) which has three free running 
timers integrated. Timer 0 is used for the lower priority clock ticks. This timer 
counts from a set value down to zero, decrementing once every 3.2us and generating 
a level 10 interrupt on reaching zero. Timer 1 is used for higher priority interrupts 
for kernel profiling. This timer decrements once every 0.8us and generates a level 14 
interrupt on reaching zero. 

Note that the Timer 0 for processor 0 generates the level 10 interrupts for 
processor 1 as well. This removes the need to initialise Timer 0 in the other timer 
chip. 

DINOSPEC3.0 7 



MK401 - Dino. 

Full details of the registers in the timer chips are given in the AMD data sheet for the 
Am82C54. Memory locations on the Dino are given in section 3. 

2.4.6 CAN Interface 

The SPARC processors have direct access to the control serial bus with their own 
CAN bus interface chip. This is intended to be used only by the node that is acting 
as machine controller. All Dino nodes will have the capability of becoming machine 
controller. The CAN chip has the capacity of generating a large number of level 2 
interrupts and thus should be disabled on all nodes other than the designated machine 
controller to avoid impacting CPU performance. 

The CAN controller is a Philips PCA82C200 device and full details of the chip are 
given in the Philips data sheet accompanying it. Placement of its registers within the 
MBus physical memory map is given in section 3. 

2.4.7 Miscellaneous Registers 

This section describes the various registers used to control the node's operation. 
Address map positions are summarised in section 3. 

2.4.7.1 MBus Grant Readback 

This is a single eight bit read only register, visible by both SPARC processors. There 
are two bit fields as follows :-

[3:0] Bits [3 :0] are used to carry the active low MBus grant signals for this 
MBus transaction. An MBus master device can thus read this register to 
determine its unique ID. The bit that is clear when read is given by the 
following list :-

o MBus Processor 0 
1 MBus Processor 1 
2 Elan Communications Processor 
3 SBus Master accessing MBus. 

[7:4] These four bits are unused and will return undefined values if read. 

2.4.7.2 Node reset request 

This is a single eight bit write-only register accessible by both processors. Bits [7: 1] 
are reserved and should be written as ones. Bit zero, when written as zero, causes 
aNode reset to be generated. During the reset process this register is restored to its 
inactive state. 

DINOSPEC3.0 8 



2 Implementation 

2.4.7.3 LED Bargraph 

This is a single sixteen bit read/write register also accessible as two eight bit registers, 
visible to both processors. Bits [15:0] drive the sixteen module front panel LEDs 
to generate a performance/load Bargraph display. A zero should be written at a bit 
location to illuminate the corresponding LED. This register is set to all ones during a 
node reset operation. 

2.4.7.4 Asynchronous error status latch 

This is a four bit read only latch, which is cleared when written to. The bits are set 
when an asynchronous MBus or SBus fault or Memory error occurs and will cause a 
maskable level 15 interrupt to the SPARCs. The bits are defined as follows ;-

o Uncorrectable multi-bit memory error or, when enabled, correctable singel 
bit errors also. 

1 MBus to SBus asynchronous transaction fault 

2 Asynchronous Fault flagged by a slave MBus device in an MBus slot. 

3 Backplane power failure signal asserted. 

[7:4] These bits are unused and will have undefined values when read. 

2.4.7.5 Physical board location 

This is a 16 bit read only register visible by both processors used to find the physical 
location of the Dino card in the entire system. A twelve bit Slot ID is uniquely defined 
for every card slot in the machine and is read at this location, at the upper 12 bits of the 
half word. The least significant nybble contains the node number on the card, which 
in the case of the single node Dino is always zero. 

DINOSPEC3.0 9 



MBUS PHYSICAL ADDRESS MAP 

DINOSPEC3.0 

This section gives the mapping of memory and peripherals into the MBus physical 
address space. All addresses are in hexadecimal, all locations are word wide unless 
otherwise stated in the notes. The following notes are associated with some of the 
items in the tables :-

1 

2 

3 

4 

5 

6 

7 

Memory banks are spaced 64MBytes apart. If less than 64MBytes of 
memory is present in each bank, it will appear echoed throughout the 
64MByte. 

These locations are byte wide and are mapped into all 4 bytes of a word. 
Care should be taken to generate correct byte-wide accesses to the least 
significant byte of the word in order to maintain future compatibility. 

These locations are byte-wide memory, mapped into contiguous byte 
locations. Word or halfword accesses will be automatically mapped into 
several successive byte-wide accesses. 

These locations are byte sized registers which are only mapped into the 
most significant byte of a halfword. To ensure compatability with other 
boards only byte accesses at the correct address should be used. 

These locations are byte sized registers which are only mapped into the 
least significant byte of the word. To conserve MBus bandwidth and 
ensure compatability with other boards only byte wide accesses at the 
correct address should be used. 

These locations are halfword sized registers which are only mapped into 
the least significant halfword of the word. To conserve MBus bandwidth 
and ensure compatability with other boards only halfword wide accesses 
at the correct address should be used. 

These locations form a doubleword register. 

10 



3 MBus Physical Address Map 

DRAM and SBus Slots 
MBus Address Usage Rd/Wr Note 
000000000 64MB Memory in bank 0 RW 1 
004000000 64MB Memory in bank 1 RW 1 
P08000000 64MB Memory in bank 2 RW 1 
POcOOOOOO 64MB Memory in bank 3 RW 1 
PIOOOOOOO 64MB Memory in bank 4 RW 1 
P14000000 64MB Memory in bank 5 RW 1 
P18000000 64MB Memory in bank 6 RW 1 
PlcOOOOOO 64MB Memory in bank 7 RW 1 
P20000000 to dffffffff Unused (MBus Timeout) 
~OOOOOOOO to eOfffffff SBus Slot 1 (J11) RW 
~ 10000000 to e lfffffff SBus Slot 2 (J12) RW 
~20000000 to e2fffffff SBus Slot 3 (J13) RW 

SBus DMA chip B and SCSI 
M.Hus Address Usage Rd/Wr Note 
~30000000 SBus DMA_B ID register (= Oxfe810102) R 
~30000004 to e303fffff Unused (Echoes of above) 
~30400000 SBus DMA_B ControVStatus Register RW 
~30400004 SBus DMA_B (Next)AddressCounter RW 
~30400008 SBus DMA_B (Next)ByteCount RW 
~3040000c Reserved for testing M2S 
~3040001O to e307fffff Unused (Echoes of above) 
~30800000 SCSCB Transfer Count Low RW 1 
~30800004 SCSCB Transfer Count High RW 2 
~30800008 SCSCB Fifo Data RW 2 
~3080000c SCSCB Command RW 2 
~30800010 SCSCB Status R 2 
~30800010 SCSI_B Destination Bus ID W 2 
~30800014 SCSCB Interrupt R 2 
~30800014 SCSCB SelectlReselect Timeout W 2 
~30800018 SCSCB Sequence Step R 2 
~30800018 SCSCB Synchronous Period W 2 
~3080001c SCSCB FIFO Flags R 2 
~3080001c SCSCB Synchronous Offset W 2 
~30800020 SCSCB Configuration 1 RW 2 
~30800024 SCSCB Clock Conversion Factor W 2 
~30800028 SCSCB Test mode W 2 
~3080002c SCSCB Configuration 2 RW 2 
~30800030 to e3080003c SCSCB Reserved 
~30800040 to e30bfffff Unused (Echoes of above) 
~30cOOOOO to e3fffffff Reserved (Read Undefined) 

DINOSPEC3.0 11 



MK401 - Dino. 

DINOSPEC3.0 

SBus DMA chip A, Ethernet and SCSI 
MBus Address Usage 
e40000000 SBus DMA_A ID register (= Oxfe810102) 
e40000004 to e403fffff Unused (Echoes of above) 
~40400000 SBus DMA_A Control/Status Register 
e40400004 SBus DMA_A (Next)AddressCounter 
e40400008 SBus DMA_A (Next)ByteCount 
e4040000c Reserved for testing 
e404000 10 to e407fffff Unused (Echoes of above) 
e40800000 SCSI_A Transfer Count Low 
e40800004 SCSI_A Transfer Count High 
e40800008 SCSCA Fifo Data 
~4080000c SCSCA Command 
~4080001O SCSCA Status 
~40800010 SCSCA Destination Bus ID 
~40800014 SCSI_A Interrupt 
~40800014 SCSI_A SelectIReselect Timeout 
~40800018 SCSI_A Sequence Step 
~40800018 SCSI_A Synchronous Period 
~4080001c SCSCA FIFO Flags 
~4080001c SCSCA Synchronous Offset 
~40800020 SCSI_A Configuration 1 
~40800024 SCSI_A Clock Conversion Factor 
~40800028 SCSI_A Test mode 
~4080002c SCSI_A Configuration 2 
~40800030 to e4080003c SCSI_A Reserved 
~40800040toe40bfffff Unused (Echoes of above) 
~40cOOOOO LANCE Register Data Port 
~40cOOO02 LANCE Register Address Port 
~40c00004 to e5fffffff Unused (Echoes of above) 
~60000000 to e600000ff Unused (Invalid TLB Entry) (MBus Error?) 
~60000100 to e600001fO M2S TLB Slices 0 through 15. (on 16-byte 

boundaries) 
e60000200 to e6fffffff Unused (Invalid) (MEus Error?) 
e70000000 to effffffff Unused (SBus Reserved) (MBus Error?) 

Memory Controller 
us Address Usage 

0000000 Memory Enable 
0000004 Memory Delay 
0000008 Fault Status 

Video Config 
Fault Address 0 
Fault Address 1 
ECC Diagnostics 
Unused (Read undefined) 
Unused (No response) (MEus Timeout) 

Rd/Wr Note 
R 

RW 
RW 
RW 

RW 2 
RW 2 
RW 2 
RW 2 

R 2 
W 2 
R 2 

W 2 
R 2 

W 2 
R 2 

W 2 
RW 2 

W 2 
W 2 

RW 2 

RW 2 
RW 2 

RW 

RdWr Note 
RW 
RW 

R(W) 
RW 

R 
R 

RW 

12 



3 MBus Physical Address Map 

BootRom, Serial Ports, Real Time Clock, Miscellaneous 
MBus Address Usage RdlWr Note 
ffOOOOOOO to ff007ffff BootRom (5l2KBJte). (Write able onl~ when Flash R(W) 3 

ROM installed an ~um!Jers JPl and J 2 are in the 
correct positions. ee lash ROM data sheet for 
details of command port structure.) 

fOOSOOOO to ffOOfffff Unused (BootRom Echo) 
fO lOOOOO to ffO 1 00007 Serial Port Controller 

ff0100000 Control Registers port B RW 4 
ffOlOOO02 Data Buffer port B RW 4 
f0100004 Control Registers port A RW 4 

ff0100006 Data Buffer port A RW 4 
ffO lOOOOS to ffO 1 fffff Unused (Serial Port Echoes) 
f0200000 to ff0200007 Keyboard and Mouse Port Controller 
f0200000 Control Registers mouse port RW 4 

ff0200002 Data Buffer mouse port RW 4 
f0200004 Control Registers keyboard port RW 4 

ff0200006 Data Buffer keyboard port) RW 4 
f020000S to ff02fffff Unused (Keyboard and Mouse Port Echoes) 
f0300000 to ff030lfff Real Time Clock module and SKByte SRAM RW 3 
f0302000 to ff03fffff Unused (RTC Echoes) 
f0400000 to ff06fffff Unused (MBus Error) 
f0700000 Node Reset Request W 5 
f0700004 to ff0700lff Unused (Echoes) 
f0700200 MBus Grant readback R 5 

ff0700204 to ff07003ff Unused (Echoes) 
ff0700400 Physical Slot Identifier R 6 
f0700404 to ff07005ff Unused (Echoes) 
f0700600 LED Bargraph RW 6 

ff0700604 to ff07007ff Unused (Echoes) 

DINOSPEC3.0 13 



MK401 - Dino. 

Control Area Network Interface 
Bus Address Usage RdWr Note 

CAN - Control Register RW 5 
CAN - Command Register W 5 
CAN - Status Register R 5 
CAN - Interrupt Register R 5 
CAN - Acceptance Code Register RW 5 
CAN - Acceptance Mask Register RW 5 
CAN - Bus Timing Register 0 RW 5 
CAN - Bus Timing Register 1 RW 5 
CAN - Output Control Register RW 5 

700824 CAN - Test Register 
f0700828 CAN - TXBuf Identifier RW 5 
f070082c CAN - TXBuf RTR Data Length code RW 5 
f0700830 CAN - TXBuf Data Byte 1 RW 5 
f0700834 CAN - TXBuf Data Byte 2 RW 5 
f0700838 CAN - TXBuf Data Byte 3 RW 5 

CAN - TXBuf Data Byte 4 RW 5 
CAN - TXBuf Data Byte 5 RW 5 
CAN - TXBuf Data Byte 6 RW 5 
CAN - TXBuf Data Byte 7 RW 5 
CAN - TXBuf Data Byte 8 RW 5 
CAN - RXBuf Identifier RW 5 
CAN - RXBuf RTR Data Length code RW 5 
CAN - RXBuf Data Byte 1 RW 5 
CAN - RXBuf Data Byte 2 RW 5 
CAN - RXBuf Data Byte 3 RW 5 
CAN - RXBuf Data Byte 4 RW 5 
CAN - RXBuf Data Byte 5 RW 5 
CAN - RXBuf Data Byte 6 RW 5 
CAN - RXBuf Data Byte 7 RW 5 
CAN - RXBuf Data Byte 8 RW 5 
CAN - Unimplemented 
CAN - Clock Divider Register RW 5 
Unused (Echoes of above) 

DINOSPEC3.0 14 



3 MBus Physical Address Map 

Interrupt Request Control and Status Registers 
MBus Address Usage RdlWr Note 
f0701000 IRQ pal 0 - Timer Latches RW 5 
~"f0701002 IRQ pal 0 - Mask Register Read / Clear RW 5 
f0701006 IRQ pal 0 - Mask Register Set RW 5 
~"f070100a IRQ pal 0 - Software Interrupt Reg Read / Clear RW 5 
f070100e IRQ pal 0 - Software Interrupt Reg Set W 5 
~"f070101O to ff07011ff Unused (Echoes) 
iff0701200 Timer 0 LevellO Processor 0 and 1 RW 5 
f0701204 Timer 0 Leve1l4 Processor 0 RW 5 
f0701208 Timer 0 Spare timer RW 5 
f070120c Timer 0 Control register RW 5 
~f070121O to ff07015ff Unused (Echoes) 
f0701600 AErr and Powerfail Latch RW 5 

iff0701604 to ff070lfff Unused (Echoes) 
f0702000 IRQ pal 1 - Timer Latches RW 5 

iff0702002 IRQ pal 1 - Mask Register Read / Clear RW 5 
f0702006 IRQ pal 1 - Mask Register Set RW 5 
f070200a IRQ pal 1 - Software Interrupt Reg Read / Clear RW 5 

iff070200e IRQ pal 1 - Software Interrupt Reg Set W 5 
~f070201O to ff0702lff Unused (Echoes) 
f0702200 Spare timer RW 5 

ff0702204 Timer 1 Leve1l4 Processor 1 RW 5 
f0702208 Timer 1 Spare timer RW 5 

ff070220c Timer 1 Control register RW 5 
iff0702210 to ff0702fff Unused (Echoes) 
f0703000 to ff0703fff Unused (Read Undefined) 

iff0704000 to ff03fffff Unused (Echoes of above) 
f0400000 to ff4ffffec Unused (MBus Timeout) 

DINOSPEC3.0 15 



MK401 - Dina. 

MBus to SBus Chip, Elan Communications Processor and MBus Slot Slaves 
MBus Address Usage RdlWr Note 
f4fffffO M2S Virtual Address Table Base Address RW 

ff4fffff4 M2S IO/MMU Control register RW 
f4fffff8 M2S Error/Status register R 
f4fffffc M2S - MBus ID Register R 

ff5000000 to ff6f7ffff Unused (MBus Timeout) 
rt'6f80000 to ff6ffdfff ELAN Command port area RW 
~6ffeOOO to ff6ffffbf ELAN Hush register area RW 
~f6ffffcO ELAN Clock Hi RW 
~f6ffffc4 ELAN Clock Hi R 
~f6ffffc8 ELAN Clock Lo RW 
flf6ffffcc ELAN Clock Lo R 
~f6ffffdO ELAN Alarm RW 
~f6ffffd4 ELAN Alarm R 
~f6ffffd8 ELAN Interrupt R 
~6ffffdc ELAN Interrupt R 
f6ffffeO ELAN Clock Hi R 7 
f6ffffe4 ELAN Clock Lo (For 64bit accesses) R 7 
f6ffffe8 ELAN Main Proc. Interrupt Mask RW 
f6ffffec ELAN Main Proc. Interrupt Mask R 
~f6fffffO ELAN Control register RW 
~f6fffff4 ELAN Control register R 
~f6fffff8 MBus Port ID register for ELAN Chip R 
~f6fffffc MBus Port ID register for ELAN Chip R 
ff7000000 to ff7ffffff Unused (MBus timeout) 
moooooo to ff9ffffff Used by MBus slave device in MBus Slot 0 
~faOOOOOO to ffbffffff Used by MBus slave device in MBus Slot 1 
~cOOOOOO to fffffffff Unused (MBus timeout) 

DINOSPEC3.0 16 



NODE CONTROL STRUCTURE 

This section gives more detail on the control circuitry used to monitor and supervise 
the operation of the node in a system. It details the function of the control 
microprocessor and how it interfaces with the SPARC. 

4.1 Control Microprocessor Overview 

DINOSPEC3.0 

The MK401 uses a Hitachi microcontroller to implement basic node control 
functions. The controller is a member of the H8/500 series of single chip micros, 
containing 2KBytes of RAM and 32KBytes of EPROM as well as a number of 
peripherals, 10 ports, timers etc. The device is a H8/534 which has a 16-bit RISC 
based CPU core. On-chip peripherals include 9 10 ports of which 3 are used by 
an external address and data bus for off-chip peripherals and memory. Other on­
chip devices include two serial ports, 3 16-bit timers and one 8 bit one, pulse-width 
modulated outputs, analogue-to-digital converters etc. Much of this remains unused 
on the MK401, however the chip and family has the potential to perform more 
complex tasks on future boards. 

The H8 controller is responsible for performing the following actions :-

• 

• 

• 

• 

• 

Monitoring of the CAN bus to detect messages addressed to this node and 
act on them. 

Monitoring of the CAN bus to detect status and watchdog messages from 
the local node and interpret them. 

Monitoring of the SPARC processor performance/load LED Bargraph 
signals to make this information available remotely over the CAN bus. 

Placing the node in reset when directed to by CAN bus messages. 

Reporting physical slot ID over the CAN bus to allow the physical location 
of a board to be located. Especially useful in very large systems. 

17 



MK401- Dino. 

• Recoding of the node status information to drive the two front-panel status 
LEDs. 

Most of the node to board control information flow goes over the CAN bus. Other 
signals are the SlotID, Bargraph lines and a node reset output from the H8. The H8 
also controls the front panel LEDs. 

4.2 H810 Port Assignments 

DINOSPEC3.0 

Each subsection in this section is devoted to a particular 10 port of the controller and 
gives a list of the signals connected to the port with some description of how they are 
used. 

4.2.1 Port 1 

o This output carries the lOMHz H8 clock 'Phi'. 
4:1 SlotID[11:8] inputs. 
5 notlRQO input from CAN interface chip. This can be used to trigger 

a preprogrammed transfer of data to or from the CAN chip. See the 
H8 manual section 5 "Interrupt Controller" and section 6 "Data Transfer 
Controller" for more information. 

7:6 Unused 10. 

Three registers are associated with Port 1 and should be programmed as follows. 

PIDDR Port 1 data direction register should have 8 'bOOOOOOO! programmed. This 
sets unused lOs to inputs. 

PIDR Carries the current input data. 

SYSCRI System Control register 1. Should be set to the value 8'bOOlOOOOO to 
enable the notIRQ line. 

4.2.2 Port 2 

This port is used to carry strobes and select lines to the off-chip peripherals. Its 
function is set automatically and no programming of the control registers P2DDR 
and P2DR is required. 

o 
1 
2 
3 
4 

This output carries the notAddressStrobe signal. 
This output carries the ReadnotWrite signal. 
This output carries the notDataStrobe signal. 
This output carries the notRead strobe. 
This output carries the notWrite strobe. 

18 



DINOSPEC3.0 

4 Node Control Structure 

4.2.3 Port 3 

This port carries the eight bits of the data bus to off-chip peripherals. Its function is 
set automatically and no programming of the control registers P3DDR and P3DR is 
required. 

4.2.4 Port 4 

This port carries the eight least significant bits of the address bus to off-chip 
peripherals. Its function is set automatically and no programming of the control 
registers P4DDR and P4DR is required. 

4.2.5 Port 5 

This port carries the eight most significant bits of the data bus to off-chip peripherals. 
Its function is set automatically if off-chip ROM is enabled (See description for 
JP3 and JP4 in section X ). If on-chip ROM is used then P5DDR must be set to 
8 'b 11111111. No programming of the data register P5DR is required. 

4.2.6 Port 6 

o Unused 10. 
1 This output, when low, causes the Dino node to be reset. 
2 This signal drives the yellow front panel LED. The LED is illuminated 

when the signal is low. 
3 This signal drives the green front panel LED. The LED is illuminated 

when the signal is low. 

Two registers are associated with Port 6 and should be programmed as follows. 

P6DDR Port 6 data direction register should have 8 'bOOOO 1110 programmed. This 
sets unused 10 to input. 

P6DR The output pins are set to the value in this register. 

4.2.7 Port 7 

This eight bit port is used to carry the low eight bits of the SlotID value, SlotID[7 :0]. 

Two registers are directly associated with Port 7 and should be programmed as 
follows. 

P7DDR Port 7 data direction register should have 8'bOOOOOOOO programmed. 

P7DR Carries the data input on the pins. 

19 



MK401- Dino. 

Other register bits have a bearing on Port 7s operation and should be programmed as 
follows. See the H8 manual section 10 "16-BitFree Running Timers" and section 11 
"8-Bit Timer" for more details on these registers. 

FRTl.TCR.OEA Output Enable A of the Timer Control Register of Free 
Running Timer channell. This bit must be clear to enable 
normal Port 7.7 operation. 

FRT3.TCR.OEB Output Enable B of the Timer Control Register of Free 
Running Timer channel 3. This bit must be clear to enable 
normal Port 7.6 operation. 

FRT2.TCR.OEB Output Enable B of the Timer Control Register of Free 
Running Timer channel 2. This bit must be clear to enable 
normal Port 7.5 operation. 

FRTl.TCR.OEB Output Enable B of the Timer Control Register of Free 
Running Timer channell. This bit must be clear to enable 
normal Port 7.4 operation. 

TMR.TCR.CCLRl:O These two bits of the Timer Control Register of the 8-bit 
Timer can be both set to one to enable resetting of the 
counter from an input on Port 7.3. This must be disabled 
(by clearing one or both of these bits) to allow normal 
operation of Port 7.3. 

FRT2.ICR The count in Free Running Timer 2 is captured to its Input 
Capture Register on edges of the signal on Port7.2. Since 
this signal has no special time relationship to the H8, the 
value in the ICR will be meaningless. 

FRTl.ICR The count in Free Running Timer 1 is captured to its Input 
Capture Register on edges of the signal on Port7.1. Since 
this signal has no special time relationship to the H8, the 
value in the ICR will be meaningless. 

TMR.TCR.CKS2:0 These three bits of the Timer Control Register of the 8-bit 
Timer can be set to select Port7.0 as the clock signal for 
the 8-bit Timer. Since the signal on Port7.0 has no timing 
significance to the H8, this should not be done. 

DINOSPEC3.0 20 



DINOSPEC3.0 

4 Node Control Structure 

4.2.8 Port 8 

This eight-bit port is used to monitor the low eight bits of the BarGraph value, 
notBAR[7:0]. 

Port 8 has no Data direction register (being input only) so the only register of interest 
is P8DR, which reflects the state of the input pins. 

4.2.9 Port 9 

This eight-bit port is used to monitor the high eight bits of the BarGraph value, 
notBAR[15:8]. 

Several registers have a bearing on the operation of Port 9. 

P9DDR Port 9 data direction register should have 8 'bOOOOOOOO 
programmed. 

P9DR Carries the data input on the pins. 

SCI1.SCR.CKE1:0 Serial Channell, Control Register, Clock Enable bits. These 
bits should be programmed to zero to allow Port 9 operation 
and disable serial clock output. 

SCI1.SCR.RE Serial Channell, Control Register, Receiver Enable bit. This 
should be cleared to enable normal port 9 operation. 

SCI1.SCR.TE Serial Channell, Control Register, Transmitter Enable bit. 
This should be cleared to enable normal port 9 operation. 

SYSCR2 The P9PWME and P9SCI2E bits of the System Control 
Register 2 (bits 1 and 0 respectively), must both be set to 
zero to disable Pulse Width Modulator and Serial Channel 
2 functions of Port 9 pins 2 to 4, and enable normal port 
operation. 

FRT3.TCR.OEA 

FRT2.TCR.OEA 

Output Enable A of the Timer Control Register of Free 
Running Timer channel 3. This bit must be clear to enable 
normal Port 9.1 operation. 

Output Enable A of the Timer Control Register of Free 
Running Timer channel 2. This bit must be clear to enable 
normal Port 9.0 operation. 

21 



MK401- Dino. 

4.2.10 CAN Port 

The CAN chip has a total of 32 byte wide registers which are mapped into the H8 
address space from Ox8000 to Ox801f. These registers are read only, write only 
or read/write as defined in the CAN chip data sheet. Full details of these registers 
are given in the data sheet. A summary of register names and addresses is given 
below. To enable correct operation of this port the on-chip programmable wait­
state generator should be set up to give two wait states on external accesses. This 
is achieved by setting <register> to <value>. 

Ox8000 
Ox8001 
Ox8002 
Ox8003 
Ox8004 
Ox8005 
Ox8006 
Ox8007 
Ox8008 
Ox8009 
Ox800a to Ox8013 
Ox8014 to Ox801d 
Ox801e 
Ox801f 

Control Register (RW) 
Command Register (W) 
Status Register (R) 
Interrupt Register (R) 
Acceptance Code Register (RW) 
Acceptance Mask Register (RW) 
Bus Timing Register 0 (RW) 
Bus Timing Register 1 (RW) 
Output Control Register (RW) 
Test Register (none) 
Transmit Buffer (RW) 
Receive Buffer (R) 
Unused (none) 
Clock Divider Register (RW) 

4.3 Can Bus Interface 

DINOSPEC3.0 

This section describes more fully the interface between the control microprocessor 
and the CAN bus. The CAN chip is a Philips PCA82C200, which contains all the 
buffering, parallel to serial conversion and back, packet framing and CRC error 
checking required to implement a multi-master two-wire serial bus. 

A packet is transmitted on the CAN bus by writing it to the transmit buffer and 
writing a transmission request to the command register. On an interrupt or by polling 
the receive buffer status bit in the status register, the microcontroller can detect 
when a new packet has been placed in the receive buffer. This can then be read 
into the microcontrollers memory and the release receive buffer command issued. 
Note that the CAN chip has two receive buffers so that a packed can be received 
while the previous one is being processed by the microcontroller. The definition of 
the message protocol and content is beyond the scope of this document. See the 
associated document "CAN Bus Protocol". 

22 



DINOSPEC3.0 

4 Node Control Structure 

The following sections give more detail on how the CAN chip should be initialised. 
Initialisation of the CAN chip should be pelformed by the H8 microcontroller every 
time it comes out of reset. Since the CAN chip and the H8 share a reset signal the 
CAN chip will be out of reset by the time the H8 comes to initialise it. The H8 and 
CAN chip are reset by a local power-on reset and when the backplane power-good 
signal is de-asserted. After a reset the CAN chip will have the 'Reset Request' bit in 
the control register set. This allows the other configuration bits to be safely adjusted. 
The register contents can be set as follows. 

4.3.1 Control Register 

Reset Request This should be held high while configuration of the 
chip is in progress. 

Receive Interrupt Enable Set high normally 

Transmit Interrupt Enable Set high normally 

Error Interrupt Enable Set high normally 

Overrun Interrupt Enable Set high normally 

Sync Edges Set low normally to force receiver re-synchronisation 
on recessive-to-dominant edges only. Thee edges 
are more stable in time than dominant-to-recessive 
edges which may vary depending on line load and 
reflections. A result of this is that the CAN chip can 
only compensate for a clock frequency variation of 
209 ppm between transmitter and receiver. 

Test Mode Set low. 

This register should be written with 8'bOOOOOOOl at the start of initialisation to force 
a reset request and disable interrupts. At the end of initialisation it should be rewritten 
with 8'bOOOlll10 to enable interrupts and release the reset request. 

4.3.2 Command Register 

The command bits in this register are all reset to their inactive states by the reset 
request bit being set in the Control Register. No initialisation of this register is thus 
required. 

23 



MK401- Dino. 

DINOSPEC3.0 

4.3.3 Acceptance Code Register 

This register can only be set while the reset request bit is set in the Control Register. 
The contents of the register are used to select which of the data packets on the CAN 
bus are accepted and read into the receive buffer. The value that this register should 
be set to is related to the message Identifier (PacketID) that is allocated to Host­
to-MK401 packets in the "CAN Bus Protocol" document. The Acceptance Mask 
Register can be used to select which bits of the Code register are compared, according 
to the pseudo-code fragment below. Note that a one bit in the Mask register means 
that the corresponding bit in the Code register is not checked:-

if (((PacketID[10:3] XNOR AcceptCodeReg[7:0D OR AcceptMaskReg[7:0D == 
8'b 11111111) 
ReceivePacket; 

else 
IgnorePacket; 

4.3.4 Acceptance Mask Register 

See the above section for more details. This register can only be set while the reset 
request bit is set in the Control Register. 

4.3.5 Bus Timing Register 0 

This register can only be accessed while the reset request bit is set in the Control 
Register. This register defines the baud rate on the CAN bus and the maximum 
number of clock cycles that a bit width can be adjusted by during a single 
synchronisation. See the CAN chip data sheet for the derivation of the required 
contents of this register. The magic value to program this register to is 8 'bOOOOOOOO. 

4.3.6 Bus Timing Register 1 

This register can only be accessed while the reset request bit is set in the Control 
Register. This register defines the bit period, the position within the bit period that 
the line is sampled and the number of samples taken. See the CAN chip data sheet for 
the derivation of the required contents of this register. The magic value to program 
this register to is 8'b00010100 (Ox14). 

4.3.7 Output Control Register 

This register can only be accessed while the reset request bit is set in the Control 
Register. The register controls the output driver configuration. See the CAN chip 
data sheet for the derivation of the required contents of this register. The magic value 
to program this register to is 8'b10101010 (Oxaa). 

24 



4 Node Control Structure 

4.3.8 Clock Divider Register 

This register controls the frequency at the CAN chip ClkOut pin which is not used 
on the Dino. No initialisation of this register need be performed. 

4.4 Status Encoding and Watchdog Timers 

DINOSPEC3.0 

Node status information is acquired by the H8 by the CAN Bus. The CAN chip 
connected on the lOBus, under control of the processor node, is used to transmit 
periodic status messages to the H8 CAN chip. The adoption of this communication 
method required the architectural decision that a CAN chip would be present on every 
compute node. 

If the H8 receives no status information within a reasonable time of releasing node 
reset then it will assume the node is non-functional. Node status information is coded 
into a form suitable for presentation to the CAN Bus (if required) and also grossly 
coded into a set of status indications on the front panel LEDs. The exact protocol 
of the status message on the CAN bus is beyond the scope of this document, and 
reference should be made to the "CAN Bus Protocol" document. 

4.4.1 Watchdog Timers 

The 16-bit free running timers can be used to implement watchdog timers for each 
processor. These counters should be reset to some value which gives an acceptable 
delay every time a valid status message is received by the H8 from the compute node. 
If a timer should reach zero due to a processor crashing, the H8 should report this over 
the CAN bus. The H8 may then reset the board. Note that this will also stomp on the 
processes that were running on the other processor, so in some cases it may be better 
not to reset the node until the processor itself does it. This may not be possible if the 
other processor died while accessing some hardware. 

This section describes a watchdog timer per processor. It may be sufficient to 
implement a watchdog timer per node, in which case the node should be reset as 
soon as it's watchdog times out. 

Note that the H8 based watchdog timer operate in conjunction with an MBus 
watchdog timer. This latter will acknowledge an MBus transaction with a 
synchronous timeout acknowledge if the MBus busy line has been active for 200 
microseconds. The time delay on the H8 watchdog should be considerably longer 
than this to allow for cases where multiple accesses to non-responding MBus 
addresses may be performed, for example during memory sizing at boot time, or 
during diagnostic self tests. It may also be worthwhile disabling the H8 watchdogs 
if this situation is likely to arise. 

25 



MK401- Dino. 

The H8 has a builtin watchdog timer to monitor its own operation. It is unlikely that 
the program on the H8 will ever crash, but the timer can be used to catch this situation. 
In the event of an H8 watchdog reset it is unlikely that the program will need to reset 
the nodes. A message on the CAN bus to inform the host that the node has had an 
H8 watchdog reset may be appropriate. See the "CAN Bus Protocol" document for 
details of these messages. 

4.4.2 Front Panel LEDs 

Two front panel LEDs are driven by the H8, one yellow and one green. They are 
intended to show broadly the status of the node which is derived from status messages 
transmitted by the node. The LED encodings required are as shown below. 

Front Panel LED Encodings 
Green Yellow Meaning 
Off Off Unpowered 
Off Off Reset Asserted 
Off Flash Reset De-asserted but not Booting 
lash Off Executing Bootstrap or testing 
On Off Normal Operation 
On On Limp Along 
Off On Dead 

4.5 Performance Monitoring 
Node performance statistics are collated by processes running on the node SPARC 
processors. A summary Bargraph is presented to external LEDs using the LED 
Bargraph register. Exactly how these LEDs are used is defined by the collating 
software being used and command-line options passed to it. The 16 bit register 
is visible to the H8 which should respond to requests for Bargraph information by 
passing the 16-bit value unaltered in a return data packet to the CAN Bus host. 

4.6 Reset Action 
Command packets on the CAN Bus can request slot-id specific or global reset. This 
is accomplished by holding the notNodeReset line active for a suitable period (eg. 
lOOms). SlotID value can be read and compared to the received id to be reset. 

4.7 SlotID Report 

DINOSPEC3.0 

A 12-bit SlotID is uniquely generated for each card in the system and is visible to the 
H8. The H8 should respond to requests for Node SlotID information by passing the 
12-bit value unaltered in a return data packet to the CAN Bus host. 

26 



SPARC INTERRUPT CONTROL 

This section describes the various sources of interrupts to the SPARC processors and 
how they can be masked. It also describes the software generation of interrupts which 
can be used for inter-processor communications or low priority interrupt routine 
scheduling. 

5.1 Interrupt Sources and Levels 

DINOSPEC3.0 

This section describes the sources of interrupts on the Dino and what level they occur 
on. Levell is the lowest priority, level 15 the highest. 

Level 1 SBus Interrupt Signal 1. 

Level 2 SBus Interrupt Signal 2. 
CAN Bus Interlace chip on SPARC lOBus. 

Level 3 SBus Interrupt Signal 3. 
SCSI-2 Interrupt Controller A and B (via SBusDMA chips). 

Level 4 Software generated (see below). 

Level 5 SBus Interrupt Signal 4. 
Ethernet Controller Interrupt. 

Level 6 Software generated (see below). 

Level 7 SBus Interrupt Signal 5. 
Elan Interrupt Request 

Level 8 SBus Interrupt Signal 6. 
MBus Slave device in MBus Slot 0 or 1 (if fitted). 

Level 9 SBus Interrupt Signal 7. 

LevellO Low priority interval timer. 

27 



MK401- Dino. 

Levelll Unused 

Level12 SIA for Serial Ports A and B. 
SIA for Keyboard and Mouse Ports. 
Software generated (see below). 

Level13 Software generated (see below). 

Level14 High priority interval timer. 

Level15 Asynchronous Error Latched. 
Software generated (see below). 

Of these signals, Levels 2, 3, 5, 7, 8, 9 and 12 are presented to the Elan chip as signals 
on its notExtDeclnt pins 1 to 7 respectively. This allows the Elan chip to be used to 
handle some of the elementary device 10 using threads processes if required. This 
scheme would relieve some of the 10 processing load on the main processors, which 
would then either have the interrupt levels masked out or would execute no-operation 
interrupt routines. 

More details on the circumstances which would cause a device to generate an interrupt 
and on the actions which should be taken to service and clear the request can be found 
in the device data sheets and manuals. 

Response time from interrupt request to it being cleared is critical in a multiprocessor 
situation. For example if Processor 0 has been assigned to serial port interrupts 
(ie. the device driver for the serial ports has been installed on that processor) and 
Processor 1 has been assigned keyboard and mouse interrupts, then while Processor 
o is servicing the level 12 request Processor 1 will be repeatedly taking the interrupt 
trap, polling its installed devices (which doesn't include the requesting device) and 
returning. Thus if an interrupt occurs on a level which both processors have enabled 
then one processor will be effectively idle until the other has cleared the interrupt. 

5.2 Interrupt Masks and Software Interrupts 

DINOSPEC3.0 

The various interrupt sources described above pass through a complex logic circuit 
which masks out levels which have not been enabled, incorporates software generated 
interrupt requests, and prioritises the result for presentation to the SPARe Processor. 
To achieve this it contains several registers which are detailed below. There are two 
separate instances of this logic circuit, one for each processor, making it possible for 
each processor to separately enable the interrupts it wishes to receive and to request 
interrupts on itself and the other processor. 

28 



DINOSPEC3.0 

5 SPARC Interrupt Control 

5.2.1 Interrupt Mask Register 

This is a halfword wide read and specially writeable register, readable at halfword 
addresses given below. Halfword accesses are transparently broken into two lOBus 
transactions. Note that the Halfword is mapped into the least significant half of the 
word. Only Processor 0 should write to IRQ Pal 0 Mask Register, and similarly 
processor 1 to its pal. 

The bits in this register correspond directly to the hardware interrupt levels, ego bit 9 
corresponds to the mask for level 9. Setting a bit enables the associated interrupt. 
Note that bits 0, 4, 6, 11 and 13 have no mask bit since there are no associated 
hardware interrupt lines at these levels. Writing to these bits will have no effect and 
they will always read as zero. The register defaults at reset to containing all zeroes, 
ie. all interrupts disabled. 

There are two locations at which the register can be written, a set location and a clear 
location. A write to the set location will set each bit in the register which has the 
corresponding data bit set to one. Register bits with zero data bits will be unaffected. 
Similarly writing to the clear location will reset all the register bits for which the 
associated data bit is one. Again zero bits will not affect the register. This scheme 
removes the need for locked indivisible lOBus cycles to read and modify the register 
in a multiprocessor environment. 

The addresses of these registers are as follows :-

Oxff0701002 IRQ Pal 0 - Mask Register Read / Clear 

Oxff0701006 IRQ Pal 0 - Mask Register Set 

Oxff0702002 IRQ Pall - Mask Register Read / Clear 

Oxff0702006 IRQ Pal 1 - Mask Register Set 

5.2.2 Software Interrupt Register 

This is a halfword wide register of which only a few bits are used. Software interrupts 
can be generated at levels 1,4, 6, 12, 13 and 15. When the corresponding bit of the 
software interrupt register is set an interrupt will be generated at that level. Attempts 
to set or clear bits other than these will have no effect and they will always read as 
zero. 

This register is readable and specially writable; it can be read at MBus halfword 
location Oxff070 1 OOa for processor 0 and at halfword location Oxff070200a for 
processor 1. There are two locations at which the register can be written, a set location 

29 



~tfK40l - Dino. 

DINOSPEC3.0 

and a clear location. A write to the set location will set each bit in the register which 
has the corresponding data bit set to one. Register bits with zero data bits will be 
unaffected. Similarly writing to the clear location will reset all the register bits for 
which the associated data bit is one. Again zero bits will not affect the register. This 
scheme removes the need for locked indivisible lOBus cycles to read and modify the 
register in a multiprocessor environment. 

The addresses of these registers are as follows :-

Oxff070100a IRQ Pal 0 - Software Interrupt Register Read / Clear 

Oxff070100e IRQ Pal 0 - Software Interrupt Register Set 

Oxff070200a IRQ Pall - Software Interrupt Register Read / Clear 

Oxff070200e IRQ Pall - Software Interrupt Register Set 

Note that the halfword registers are mapped into the least significant half of the word. 

5.2.3 IRQ Pal Status Latches 

This is a halfword wide read register which operates a clearing scheme similar to the 
software interrupt register, ie. writing to this register will clear those bits which have 
a one in the data. Only the following bits are used :-

Bit 8 Latched counter timeout for low priority (Level 10) timer. 

Bit 15 Latched counter timeout for high priority (Level 14) timer. 

Note that all other bits are unused and will always read as zero. This register at MBus 
halfword location Oxff070l000 for processor 0 and halfword location Oxff0702000 
for processor 1. The same location is used for reads and clear-writes. Since only one 
byte is used of the register this can be accessed as a single byte transaction to the 
above addresses, using bits 7 and 0 of the byte. 

30 



5 SPARC Interrupt Control 

5.3 Interval Timers 

DINOSPEC3.0 

For full details of the timer chips see the AMD data sheet, "AM82C54 Programmable 
Interval Timer". A summary of the required programming steps is given here. 

The timers should be configured to operate in mode 2 (Programmable Rate 
Generator). In this mode of operation they will count down from the initial value, 
causing the interrupt when the count reaches 1 and reloading the counter when the 
count reaches zero. Thus if the counter latch value is N, an interrupt will occur every 
N ticks of that counter's clock signal. Note also that the timer interrupt latch in the 
IRQ pal cannot be cleared until the count has reached zero (ie. one timer's clock tick 
after the interrupt was generated). 

The two timers operate at different clock rates. The level 14 timer has a clock input 
of 1.25 MHz giving a time per tick of 0.8 microseconds. Thus for an interrupt every 
10 milliseconds the value 12500 should be loaded into the counter latches. The level 
10 timer has a clock input of 312.5KHz yielding a time per tick of 3.2 microseconds. 
Thus for an interrupt every 100 milliseconds the value 31250 should be loaded into 
the counter latches. The timers and timer latches are 16-bits wide so the maximum 
count value is 65535, or times of 52.428 milliseconds and 209.712 milliseconds 
respectively for the level 14 and level 10 timers. 

The third timer in the package is not connected to any hardware signals, but can be 
used for software interval timing. It is clocked at the same rate as the level 1 0 interrupt 
timer, ie. 3.2 microseconds per tick. 

Channel 0 of timer chip 0 is used to cause the level 10 interrupts on both processors, 
so Channel 0 of timer chip 1 is spare. 

31 



MK401- Dino. 

DINOSPEC3.0 32 


