
C o m p u t i n g
S u r f a c e

Vector Processing Element
(MK403) Users Guide

S1002–10M139.01

The information supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of any
rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent of Meiko World Incor-
porated.

© copyright 1995 Meiko World Incorporated.

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSTools are trademarks of Meiko Limited. Sun, Sun and a numeric suffix,
Solaris, SunOS, AnswerBook, NFS, XView, and OpenWindows are trademarks of Sun Microsystems, Inc. All
SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. Unix, Unix System V,
and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X Windows System is a trade-
mark of the Massachusetts Institute of Technology. AVS is a trademark of Advanced Visual Systems Inc. Verilog
is a registered trademark of Cadence Design Systems, Inc. All other trademarks are acknowledged.

Circulation Control:
����������	�

�

Meiko’s address in the US is:

Meiko
130 Baker Avenue
Concord MA01742

508 371 0088
Fax: 508 371 7516

Meiko’s address in the UK is:

Meiko Limited
650 Aztec West
Bristol
BS12 4SD

Tel: 01454 616171
Fax: 01454 618188

Issue Status: Draft
Preliminary
Release x
Obsolete

�

1. Overview .1

2. MK403 Board Description 3

MBus. .5
ROSS Pinnacle Module . 6
Texas Instruments Viking Module 7

Vector Processing Elements . 8
Memory Management. 9
Cache Coherency . 9
Fujitsu MB92831 Micro Vector Processor 11

SBus Interfaces. .12
Memory Configuration .12
IO Bus. .13
Board Control Processor. 14

3. Using the MK403. .15

Installation .15
Removing the Module’s Front Panel 15
Installing the Processor Board 16

Field Serviceable Components . 16

���

Processor Modules. 18
Installing SBus Modules. 19
Boot ROM and H8 ROM 20
Realtime Clock and Battery backed RAM 20
Fuses. .20

External Connections .20
Front Panel Connections. 21
RS232 Connections . 21
External Indicators. 22

A. Addr ess Maps. .23

MBus Address Maps. .23
MBus Address Map Summary 24
DRAM and SBus Slots. 26
µVP Cache Directory Mappings. 27
µVP Status and MMU Mappings 28
BootRom, Serial Ports, Miscellaneous. 29
Control Area Network Interface. 30
Interrupt Request Control and Status Registers . . 31
STDIO IO Bus Control Registers. 33
MBus to SBus, Elan, and MBus Slot Slaves. 33
Vector Processors. 35

uVP Address Map. .36

B. NVRAM V ariables .39

C. Forth Monitor Commands 45

CAN Commands. .45
Testing the CAN Device. 46
CAN Addresses . 49
Querying CAN Objects . 50
Remote Console Connections. 51

�����������
��� �����

Elan Commands .52

���

1

Overview 1

The MK403 Vector Processing Element offers high performance vector comput-
ing power and flexible I/O options.

The board design encompasses at the lowest level the principle design objectives
for the CS-2, offering a scalable modular construction with easy upgrade options,
a reliance on state of the art commodity components, leading edge proprietary
network components, and support for system wide fault tolerance.

In outline the Vector Processing Element offers:

• Superscalar SPARC MBus module for scalar computing power and operating
system services.

• Meiko Elan Communications Processor offering a high bandwidth, low
latency interface to the CS-2 data network.

• Two Fujitsu Vector Processing Units (VPUs) on a plug-in module.

• Up to 128Mbytes of memory with 3 independent ports allowing simultaneous
access by the SPARC MBus and the 2 Vector units.

• Three full size SBus slots for SCSI, Ethernet, or other third party options.

• Keyboard, mouse, and dual serial ports.

• Interface to the machine-wide control area network (CAN) offering remote
diagnostic control and error logging facilities.

2 S1002–10M139.01

1

Figure 1-1 MK403 Board Overview

SBus

SPARC

SBus SBus

Control

Network

Memory

Vector

Vector

3

MK403 Board Description 2

Access by the 3 processors to the memory system is via three independent mem-
ory ports. One port of the memory system is connected to an industry standard
MBus interface giving access to the SPARC processor, the Elan Communications
Processors, the MBus to SBus interface and its 3 SBus slots, and various other
minor I/O devices on an I/O bus; in essence a SPARC workstation. Each of the
remaining memory ports are used by the Fujitsu micro vector processors.

The 2 vector processing units on the MK403 are mounted on a single plug-in
board which offers memory management and cache coherency with the SPARC
caches. Cache coherency between the SPARC and vector processors has been
achieved by defining a cache directory close to each vector processor; this cache
directory attempts to replicate the contents of the SPARC cache tags/state, and is
therefore potentially updated on every MBus cycle. Memory accesses by the vec-
tor processors that conflict with the SPARC cache cause the vector processor to
stall until the appropriate MBus cycles have been generated.

Running throughout the whole CS-2 system is a control network (CAN) used to
distribute status and configuration information, to provide remote control and di-
agnostics of all processors, and to create remote console connections to the proc-
essors. The MK403 has two interfaces to this network; one connected to the I/O
bus (and thus providing a direct interface to the SPARC processors) and one via
a dedicated micro-controller which provides board control.

4 S1002–10M139.01

2

The major components and their placement on the MK403 motherboard are
shown in Figure 2-1.

Figure 2-1 Board Schematic Showing Major Components (MK403)

Elan
Communications
Processor MBus Slots (2)

SBus Slots (3)VPU Slots (2)

H8 ROM
ROM

MBus to IO Bus

H8 Processor

Realtime Clock
& Battery Backed

MBus to SBus

Fuse

Memory

CAN
Controller

MBus, SBus, and Vector Processor plug-in modules not shown.
Components are also fitted on the reverse of this board.

Memory
Error Detection/
Correction

RAM

MK403 Board Description 5

2

Figure 2-2 Board Schematic Showing Major Components (MK534)

MBus

Two full size MBus sites are provided. One of these is used by the plug-in vector
processors, the other by a uni-processor SPARC MBus module.

The MBus is fully level 2 compliant and runs at 40MHz. The SPARC processor
shares the MBus with the Elan Communications Processor, the MBus-to-SBus
interface, the I/O bus controller, and vector processors (but note that the vector
board uses the MBus interface solely for memory management and cache coher-
ency with the SPARC, and that direct memory accesses are made via memory
ports that are independent of the MBus). The allocation of MBus id’s is:

• MBus id 0 is the I/O bus controller.

• MBus id 4 is the MBus to SBus controller.

• MBus id 6 is the Elan Communications Processor.

• MBus id’s 8 and 9 are MBus slot 0.

• MBus id’s 10 and 11 are MBus slot 1.

Vector

Connections to
motherboard

Processors (2)

6 S1002–10M139.01

2

MBus slot 0 is always used by the plug-in vector board. MBus slot 1 is always
used by a uni-processor SPARC module, currently either a TI Viking (with or
without second level cache) or a ROSS Pinnacle.

ROSS Pinnacle Module

The MK403 may be fitted with a uni-processor Pinnacle module which includes
second level cache.

The Pinnacle MBus module is built upon a tightly coupled set of three ROSS de-
vices: the RT620 HyperSPARC CPU, the RT625 cache controller, memory man-
agement, and tagging unit (CMTU), and the RT627 cache data units (CDUs).

Features of the RT620 CPU are:

• SPARC version 8 conformance.

• 90MHz clock rate.

• 4 execution units offering parallel execution of major instruction types:
Load/Store, Branch/Call, integer and floating point units.

• Dual instruction fetch per clock cycle.

• 8Kbyte 2-way set-associative on-chip instruction cache.

• Instruction pipelining including a cache stage to accommodate the latency for
second level cache accesses on data. Simultaneous accesses to on-chip and
second level cache for each instruction fetch.

• High bandwidth 64bit Intra Module Bus (IMB) provides the interface between
the CPU and the second level cache. Use of second level cache decouples the
processor clock rate from the lower MBus clock rate.

Key features of the RT625 (CMTU) and RT627 (CDU) devices are:

• Full level 2 cache-coherent MBus compatibility.

• Each CDU has integral 16Kbytes x 32bit SRAM. MBus modules use either 2
or 4 CDUs for 128Kbyte or 256Kbyte second level direct-mapped cache.

MK403 Board Description 7

2

• Physical cache tagging with virtual indexing allow the cache coherency logic
to determine snoop hits and misses without stalling the CPU’s access to the
cache.

• Both copy-back and write-through cache modes supported.

• 32 byte read buffer and 64 byte write buffer for buffering the 32 byte cache
lines in and out of the second level cache.

• SPARC reference MMU offering 64 entry, fully set-associative TLB with
4096 contexts.

Texas Instruments Viking Module

Two variants of the TI Viking MBus module are available. One contains a Viking
SPARC processor with direct connection to the MBus. The second includes a Vi-
king processor with additional Cache Controller and 1Mbyte of second level ex-
ternal cache (E-cache).

Key features of the TMS390Z50 SuperSPARC are:

• SPARC Version 8 conformance.

• 3 instructions per cycle, instruction pipelining, 150MIPs peak performance.

• SPARC Integer Unit.

• SPARC Reference MMU. Cached translation lookaside buffers (TLBs). 32bit
virtual addresses, tagged with a 16bit context (65,536 contexts), map to 36bit
physical addresses.

• Single and Double precision FPU. Tightly coupled to the integer execution
pipeline and allowing one floating-point operation and one memory reference
to be issued in each clock cycle. The FPU maintains a 4 entry FIFO queue for
FP operations.

• 20Kbyte instruction cache, 16Kbyte data cache. The instruction cache is 5-
way set associative, physically addressed, and non-writable. The data cache is
4-way associative and physically addressed. Both cache’s are coherent with
each other and with optional E-cache or MBus. Without E-cache the
instruction and data caches operate in write-through mode; otherwise they are
copy-back mode.

8 S1002–10M139.01

2

• Store buffer. A FIFO queue of 8 entries, each 64bits, decouples the instruction
execution pipelines from the E-cache or MBus.

• Multiprocessor cache coherent support; highly pipelined and non-multiplexed
VBus interface to optional external cache and the TMS390Z55 Cache
Controller, or direct connection to the MBus.

• Prefetch buffer.

• Support for system and software debugging including hardware breakpoint.

The external cache is managed by the TMS390Z55 Cache Controller. Key fea-
tures of this device are:

• Built in support for cache coherent multiprocessing; multiple Viking modules
can share a single MBus and remain fully cache coherent.

• High performance VBus interface with the SPARC processor; decouples the
SPARC processor from the MBus clock speed allowing higher processor
performance. Reduced MBus traffic reduces contention when multiple
processors share a single MBus.

• E-cache is direct mapped, copy-back, and unified: there is a single cache
location where a particular byte of the physical address space can reside in the
cache (direct mapping); writes by the main processor into the E-cache do not
propagate to main memory until the cache is flushed or replaced (copy-back);
both instructions and data are supplied to the processor from the same cache
(unified).

• 1Mbyte SRAM cache.

Vector Processing Elements

Two vector processors are mounted on a plug-in board that is fitted to MBus slot
0 and the two VPU slots. Included on the vector board is the memory manage-
ment and cache coherency logic and associated memory. The MBus interface is
used by the memory management and cache coherency to remain synchronised
with the SPARC processor, whereas direct memory accesses are via the dedicated
VPU slots.

MK403 Board Description 9

2

Memory Management

The vector processors operate with their address translation units disabled (Real
Mode) and instead use an external memory management unit which allows better
handling of address translation faults.

Each vector processor references a single-entry TLB and a 64K×16bit MMU
RAM (128Kbyte). The MMU RAM contains 16K entries for each of 4 contexts,
each entry consists of a 12 bit physical page number, 2 bit read/write flags, and
2 bit reference/modify flags. With a page size of 256Kbytes the 16K entries for
each context gives a virtual address space of 4Gbytes. A separate register stores
the current context and is used to provide the 2 high order bits into the MMU
RAM. The MMU RAM is accessible from the MBus and is kept in-step with the
SPARC’s page tables by modified page-in code running in the operating system
kernel. The single-entry TLB contains a single translation from logical page
number to a physical page number, and a two bit reference/modify field.

Memory references by the vector processor are first checked against the TLB. If
the logical page number matches, and the page has already been referenced (for
a vector process read) or modified (for a vector process write), then the physical
page provided by the TLB is used. If the TLB cannot provide the translation the
logical page number and the context register are used as an index into the MMU
RAM. If the corresponding entry in the MMU RAM has the sufficient access
privileges, and the reference/modify bits are set appropriately, then the physical
page is read from the MMU RAM and the TLB is updated with this entry. Trans-
lations that cannot be resolved by the MMU RAM (access permissions or miss-
ing pages) are notified to the SPARC by a level 5 interrupt, which may fault-in a
new page or kill the vector process.

Cache Coherency

The vector processing board includes cache coherency logic which allows the
vector processors (which have no cache capability themselves) to maintain con-
sistency with the SPARC caches.

Each of the vector processors has an associated cache directory which is used to
replicate the state of the SPARC’s caches. Entries within the cache directory
identify modified cache lines that are held by the SPARC; they are maintained by
snooping the activity on the SPARC’s MBus. Every memory address generated

10 S1002–10M139.01

2

by the vector processor is checked against the cache directory, and if there is a
conflict with the SPARC cache the appropriate MBus operations are generated
(one of Invalidate or Coherent-Read-with-Invalidate followed by a Writeback).

The vector processor may be used alongside either the ROSS Pinnacle or Texas
Instruments SPARC modules, and must therefore accommodate the different
caches used by these modules. The TI caches are indexed by physical address,
whereas the Pinnacle are indexed by virtual address. The TI E-cache and Pinna-
cle caches are direct mapped, whereas the TI integral cache is 4-way set associ-
ative. The configuration of the vector processors’ cache directories is selected by
hardware jumpers and is not field configurable.

When used with a TI Viking processor each cache directory is configured as
8Kbyte×10bits of cache tag information, 8Kbytes×8bits of shared and dirty in-
formation, and 8Kbytes×1bit of flags used to show that the access was initiated
by a set-associative cache. Each cache block consists of 4 lines, each line consists
of 32 bytes. Each line has its own shared and dirty bits, but the tag field is shared
by the whole block. There is (8K blocks)× (4lines/block)× (32bytes/line) =
1Mbyte of cache represented by this configuration.

When used with the Pinnacle each cache directory is configured as 4Kbytes×10-
bits of tag information, 4Kbytes×4bits of shared and dirty information, and
4Kbytes×1bit of flags used to show that the access was initiated by a set-associ-
ative cache. Each cache block consists of 2 lines, each line consists of 32bytes.
Each line has its own shared and dirty bits, but the tag field is shared by the whole
block. There is (4K blocks)× (2 lines/block)× (32bytes/line) = 256Kbytes of
cache represented by this configuration.

While the vector processors are idle all MBus operations are snooped into the
cache directories. While the vector processors are busy and accessing store all
MBus operations are queued in an inbound buffer; the queue can only be serviced
when the vector processors are idle, during compute time, or during recovery
time between a LDA/STA and the start of the next one. In order to guarantee co-
herency the vector processors will not start a new series of operations until the
queue has been emptied.

MK403 Board Description 11

2

Fujitsu MB92831 Micro Vector Processor

The MK403 uses 2 Fujitsu micro vector processors (µVPs) in a co-processor
shared memory configuration (the vector processors share the same memory as
the SPARC but access it via independent memory ports).

Key features of the FujitsuµVP are:

• Peak performance 100MFLOPS double precision, 200MFLOPS single
precision per processor. External memory bandwidth 400Mbytes/s.

• Rich command set offering 252 vector commands, 57 scalar commands, 9
general control commands. Includes: command load and branch commands;
vector load or store commands using stride values or indirect addressing
(“scatter-gather”); floating-point, integer, and logical vector and scalar
commands; maximum and minimum value search commands; a full range of
vector and scalar comparison commands.

• Pipelined memory access allows the vector processor to output memory
references before it needs them.

• Compliance with IEEE 754-1985 standard for binary floating-point
arithmetic. 32bit and 64bit floating point data types.

• Pipeline execution allows the vector processor to perform the same operation
repeatedly for all data items in a vector (or just once for a scalar). Parallel
pipelines execute more than one command at a time. Chaining allows the
operation in one pipeline to use the result of another.

• Six pipelines: Add (addition, subtraction, comparison, and data conversion),
Multiply, Divide, Graphic, Mask, Load-Store.

• Host processor register interface. Commands are written to the 256 command
buffer, and parameters to the scalar registers. Program execution is initiated
by the start register, and polled for completion via the vector busy register. An
abort register allows the host to halt the vector processor.

• 8Kbyte vector registers, 128byte scalar registers, and 64byte mask registers.
Vector registers are partitioned into 4 banks, each bank can be read or written
on each clock cycle. The banks may be accessed concurrently by 4 pipelines.

12 S1002–10M139.01

2

SBus Interfaces

The MBus to SBus interface supports up to 5 SBus devices, but on the MK403
only three are used and these map directly to the 3 SBus slots. SBus slot 0 is near-
est the MBus processor slots.

The SBus runs at a clock speed of 20MHz.

Memory Configuration

The Superscalar SPARC processors and Elan communication processor are
connected to a standard 40MHz MBus. The vector processors and MBus are
connected to a 16 bank memory system, each bank providing 64bits of user
data (78bits including error checking and correction, implemented using 20 by
4bit DRAMs with two bits unused). Error detection and correction is imple-
mented on each half word (32bits), allowing write access to 32bit (ANSI-IEEE
754–1985single) values to be performed at full speed, without requiring a
read modify write cycle.

Each bank of memory maintains a currently open DRAM page within which
accesses may be performed at full speed. This corresponds to a size within the
bank of 8Kbytes, giving 128Kbytes total for the 16 banks. When an access is
required outside the currently open page a penalty of 6 cycles is incurred to
close the previous page, and open the new one.

Refresh cycles are performed on all banks within a few clock cycles of each
other, thus allowing the cost of re-opening the banks to be pipelined (since the
VP can issue four addresses before stalling for the data from the first), and re-
ducing the overhead of refresh to a few percent of memory bandwidth.

The memory system is clocked at the same speed as theµVP processors
(50MHz), and accesses from the 40MHz MBus are transferred into the higher
speed clock domain. When accessing within an open page each memory bank
can accept a new address every two cycles (40ηs), and replies with the data
four cycles (80ηs) later, giving a bandwidth of 8bytes every two cycles
(40ηs), that is 200Mbytes/s. Since there are 16 banks, the total memory sys-
tem bandwidth is thus 3.2Gbytes/s.

MK403 Board Description 13

2

EachµVP can issue a memory request every cycle (20ηs), and can issue 4 ad-
dresses before it requires data to be returned. In the absence of bank contention
(which will be discussed below), after a start up latency of four cycles, these
requests can be satisfied as fast as they are issued, giving eachµVP a steady
state bandwidth of 8bytes every 20ηs, that is 400Mbytes/s.

Since each bank can accept a new address every two cycles (40ηs), but the
µVP can generate an address every cycle (20ηs) there is the possibility of bank
contention if theµVP generated repeated accesses to the same bank. With a
simple linear mapping of addresses to banks, this would occur for all strides
which are multiples of 16 (for 64bit double precision accesses). Such an access
pattern would then see only one half of the normal bandwidth, that is
200Mbytes/s. All other strides achieve full bandwidth.

To ameliorate this problem as well as allowing the straightforward linear map-
ping of addresses to banks, Meiko also provide the option (through the choice
of the physical addresses which are used to map the memory into user space)
of scrambling the allocation of addresses to memory banks. The mapping func-
tion has been chosen to guarantee that accesses on “important” strides (1, 2, 4,
8, 16, 32) achieve full performance. Access on other strides may see reduced
performance, but there are no strides within the open pages which see the path-
ological reduction to one half of the available bandwidth.

IO Bus

The IO bus is a slave-only bus used for the connection of minor peripherals to
the MBus. The following devices are connected to this bus:

• A 512Kbyte EPROM holding bootstrap and diagnostic programs. The
bootstrap code initialises the hardware devices, initial page table construction,
and the booting of the Unix kernel.

• A realtime clock module with battery backed SRAM. This holds configuration
information and node fault logs, including the log of uncorrectable memory
errors. The realtime clock provides year, month, day, hour, minute, and second
times.

• Dual DUART devices; one for connection of keyboard and mouse, the other
for two general purpose serial ports. In the absence of a keyboard the bootstrap
code in the EPROM will usually direct console I/O via serial port A. The serial

14 S1002–10M139.01

2

ports are clocked at 4.9152MHz, with a working capability of 38.4KBaud.
Both serial ports share the same 25-way front panel connection; port A has full
synchronous/asynchronous operation and a full complement of modem
control lines; port B has a limited set of control lines and is asynchronous only.

• Interrupt controller; this uses registers to mask out certain types of interrupt to
relieve the SPARC processor from unnecessary interrupt loading, and to share
the handling between the SPARC and the Elan. The programming of the
interrupt controllers is handled by the kernel device drivers.

• Periodic interrupt timer; used for maintaining the kernel clock and for kernel
profiling.

• A CAN device provides the SPARC with an interface to the machine-wide
control area network (CAN). The SPARC processor writes diagnostic
information to this bus, and can also act as an X-CAN or G-CAN router. CAN
routers transfer data between two levels of the CAN network; an X-CAN
router handles transfers between the modules in a Cluster, and a G-CAN router
handles transfers between Clusters. The configuration of a SPARC as a router
will cause it’s CAN device to generate numerous level 2 interrupts which will
impact on processor performance.

Board Control Processor

The MK403 board uses an Hitachi H8/534 micro-controller (commonly referred
to by Meiko as the H8) to perform basic node control functions. This controller
is a single-chip 16bit RISC microcomputer with integral 2KBytes RAM,
32Kbytes EPROM, 16bit RISC CPU, and a number of I/O ports and timers.

The H8 processor runs independently of the other processors on the board and is
used solely for control and diagnostic purposes. It has its own interface to the
CAN bus via the second of the board’s CAN interface devices. This processor re-
ceives diagnostic messages, via the CAN bus, from the local SPARC processor,
and interprets incoming control messages, such as board reset, console connec-
tions, and network configuration.

15

Using the MK403 3

This chapter describes the usage of the MK403 in terms of its installation, hard-
ware interfaces, and field serviceable components.

Installation

The MK403 is designed for use solely in a CS-2 Processor Module. The Proces-
sor Module supplies the board’s power, cooling, and connection to the CS-2 data
and control networks. The MK403 is fitted into one of the four vertical board
slots behind the Processor Module’s removable front panel.

Warning – You must disconnect the power from the Processor Module be-
fore removing or installing pr ocessor boards.

Warning – The board may be fitted with fragile or static sensitive devices.
You must handle with care and observe anti-static precautions.

Removing the Module’s Front Panel

The module’s front panel is held in position by four clips, one in each corner. To
remove the panel pull firmly away from the module.

The module’s LED display is fitted to the module by two 50-way connectors. To
remove the LED display pull firmly away from the module.

16 S1002–10M139.01

3

Use the reverse procedure to install the LEDs and front panel.

Installing the Processor Board

Insert the board so that it fits into the guide rails at the top and bottom of the mod-
ule’s board rack, ensuring that the component side is to the left (viewed facing
the module). Gently push the board squarely on its front panel. Before pushing
the board fully into position fold back the levers at each end of the front panel so
that they are at 90o to the board; now push the board (while holding the levers)
until the base of the two levers is touching the card cage. To lever the board into
its final position push both levers until they lie flat on the board’s front panel. Se-
cure the board by tightening the two captive screws.

Use the reverse procedure to remove the board.

Warning – You should take care not to damage the connectors at the rear of
the board and on the module’s backplane. Ensure that the board mates
squarely with the module’s backplane.

Warning – When removing or installing a board you should take care not to
damage the RFI (copper) seals along the edge of the board’s front panel.

Warning – To maintain pr oper circulation of cooling air and to conform to
RFI r egulations all board slots must be fitted with a processor board or
blanking plate.

Field Serviceable Components

The MK403 has the following field upgradeable components (see Figure 3-1):

• Superscalar SPARC processor module fitted to MBus slot.

• Three SBus slots.

• Two vector processor slots.

• Boot ROM.

Using the MK403 17

3

• H8 ROM.

• Realtime clock and non-volatile RAM module.

• Fuses.

Figure 3-1 MK403 Components

MBus Slots (2)

SBus Slots (3)VPU Slots (2)

H8 ROM
Boot

Realtime Clock
and Battery

Fuse

ROM

Backed RAM

18 S1002–10M139.01

3

Processor Modules

The 2 vector processor are mounted on a single plug-in board (MK534) which is
connected to MBus slot 0 and both of the VPU slots. The board is fixed in place
by 4 M3 screws.

A single uni-processor SPARC module is connected to MBus slot 1. The MK403
motherboard includes support for either Texas Instruments Viking or ROSS Pin-
nacle module (although Pinnacle modules are typically used). The type of
SPARC module is set when the MK403 board is manufactured and may not be
reconfigured on site.

Figure 3-2 Position of the Vector and SPARC Modules

SPARC
Module

Vector
Processors

Using the MK403 19

3

Installing SBus Modules

Three SBus slots are provided and these may be fitted with standard SBus mod-
ules; these are plugged into the SBus connectors and secured with two M3
screws. When using SBus cards that have external connections, for example a
graphics card, remove the appropriate panel from the front of the MK403 — the
panel is held in place by two small screws.

SBus devices are numbered from 0 to 2, device 0 being next to the processor slots
(see Figure 3-3).

Figure 3-3 Position of SBus Module 0

SBus SCSI Cards

When using SBus SCSI cards to connect to disk devices within the Processor
Module you must connect the front-panel output from the SBus card to the SCSI-
A connector on the MK403 motherboard using Meiko cable 60-CA0217-1T.

SBus
Module

20 S1002–10M139.01

3

You should note that the Processor Module’s disks may be interconnected in one
of three ways: each of the 4 disks connected to a separate processor board via
SCSI bus A, disks connected in pairs to SCSI bus A on board’s 0 and 1, or all
disks connected to SCSI bus A on board 0.

Boot ROM and H8 ROM

Both of these ROMs may be upgraded from time to time. They are held in sockets
and are readily replaced. Note the position on pin 1 before removing the old de-
vice (usually marked by a dot on the packaging).

Realtime Clock and Battery backed RAM

The real time clock and non-volatile RAM device is held in a DIL socket and is
easily replaced. Before removing the old device note the position of pin 1 (usu-
ally marked by a dot on the packaging). Note that the information within the
RAM can only be restored by Meiko’s engineers.

Warning – This device contains lithium batteries; never dispose of this de-
vice in a fire or attempt to dismantle.

Fuses

There is one fuse on the MK403 motherboard to protect the keyboard/mouse cir-
cuit. This is a 250mA quick blow fuse, Meiko part number 22-FU400-02E250.

External Connections

External connections are provided for a keyboard/mouse (8 pin circular socket),
serial interfaces (2 channels provided by one 25-way D-type connector), and two
independent SCSI buses (each via a 50-way miniature connector).

Using the MK403 21

3

Front Panel Connections

Removable panels provide access to connectors on the optional SBus boards.

Figure 3-4 MK403 Front Panel Connections

RS232 Connections

The two RS232 channels are output via a single 25-way connector. The connec-
tions are as shown in the following tables. Signal ground is pin 7, chassis ground
in pin 1.

Table 3-1 RS232 Channel A Pinout.

Signal Input/Output Pin number

TXD Out 2

RXD In 3

RTS Out 4

CTS In 5

CSR In 6

DCD In 8

DB In 15

Removable Front Panels

SCSI Bus A SCSI Bus B 2×RS232

Keyboard/Mouse

22 S1002–10M139.01

3

External Indicators

Two LEDs (one green, one amber) are included on the board’s front panel. The
green LED is the heart beat from the board’s (H8) CAN controller. The amber
light illuminates each time the CAN controller transmits on the CAN bus. Both
should flash steadily. These indicators are also displayed on the module’s LED
display.

The green LED flashes at a slow steady rate (once per second) when operating
normally. A quicker flash rate (2×normal) indicates that the board’s SPARC
processor is not responding; a very quick flash rate (3×normal) indicates that the
H8 processor on the module’s controller is not responding.

Each processor board within a processor module controls a 4×4 matrix of red
LEDs on the module’s front panel. The MK403 displays a random pattern on
these when running the Boot ROM. When Solaris has been booted a circulating
pattern is displayed. The pattern can be changed by user programs and various
system commands and daemons.

DD In 17

DA On 24

DTR On 20

Table 3-2 RS232 Channel B Pinout.

Signal Input/Output Pin number

TXD Out 14

RXD In 16

RTS Out 19

CTS In 13

DCDB In 12

Table 3-1 RS232 Channel A Pinout.

Signal Input/Output Pin number

23

Address Maps A

MBus Address Maps

This section gives the mapping of memory and peripherals into the MBus phys-
ical address space. All addresses are in hexadecimal, all locations are word wide
unless otherwise stated in the notes. The following notes are associated with
some of the items in the tables:

1. These locations are byte wide and are mapped into all 4 bytes of a word. Care
should be taken to generate correct bytewide accesses to the least significant
byte of the word in order to maintain future compatibility.

2. These locations are halfword wide and are mapped into both halfwords of the
word. Care should be taken to generate correct halfword accesses to the least
significant halfword of the word in order to maintain future compatibility.

3. These locations are bytewide memory, mapped into contiguous byte locations.
Word or halfword accesses will be automatically mapped into several succes-
sive bytewide accesses.

4. These locations are byte sized registers which are only mapped into the least
significant byte of the word. Accesses of larger than one byte will be mapped
into several IO Bus transactions, but only one (the least significant byte ac-
cess) will actually select the device. Halfword or word accesses will have no
ill effects but will waste MBus bandwidth and should be avoided.

24 S1002–10M139.01

A

5. These locations are halfword sized registers which are only mapped into the
least significant halfword of the word. Accesses of larger than one byte will
be mapped into several byte transactions, but only two (the least and next-to-
least significant byte) will actually select the device. Word accesses will have
no ill effects but will waste MBus bandwidth and should be avoided.

6. These locations form a doubleword register.

MBus Address Map Summary

The following table summarises the MBus memory space usage by the board’s
principle components:

MBus Address Usage

000000000 to
007ffffff

128MB Memory (normal mapping, no coherency
betweenµVP and SPARC).

020000000 to
027ffffff

128MB Memory (scrambled mapping, no coherency
betweenµVP and SPARC).

200000000 to
207ffffff

128MB Memory (normal mapping, enforce coherency
betweenµVP and SPARC).

220000000 to
227ffffff

128MB Memory (scrambled mapping, enforce
coherency betweenµVP and SPARC).

100000000 to
10000ffff

µVP 0 (Supervisor Access).

100010000 to
10001ffff

µVP 0 (User Access).

120000000 to
12000ffff

µVP 1 (Supervisor Access).

120010000 to
12001ffff

µVP 1 (User Access).

160000000 to
16000ffff

µVP Broadcast (Supervisor).

160010000 to
16001ffff

µVP Broadcast (User).

1c0000000 MBus EDC Error Data.

Address Maps 25

A

1c0000008 MBus EDC Error Diagnosis.

1c0000010 MBus EDC Clear.

800000000 to
81fffffff

µVP cache directory.

900000000 to
9A0000018

µVP status, MMU etc.

e00000000 to
e0fffffff

SBus Slot 1.

e10000000 to
e1fffffff

SBus Slot 2.

e20000000 to
e2fffffff

SBus Slot 3.

e60000000 to
e600001ff

MBus-to-SBus TLB.

e70000000 to
effffffff

SBus Reserved.

ff0000000 to
ff00fffff

Boot ROM.

ff0100000 to
ff01fffff

Serial Port.

ff0200000 to
ff02fffff

Keyboard and Mouse Port.

ff0300000 to
ff03fffff

Real Time Clock and 8K SRAM.

ff0700000 to
ff07007ff

Node Reset, IRQ.Pal’s etc.

ff0700800 to
ff0700fff

CAN.

ff0701000 IRQ 0 and Timer 0.

ff0701600 Async. Error Pending 0.

ff0701800 EDC Error Mask 0.

MBus Address Usage

26 S1002–10M139.01

A

DRAM and SBus Slots

ff0701a00 SPARC Reset Flag.

ff0702000 IRQ 1 and Timer 1.

ff0702600 Async. Error Pending 1.

ff0702800 EDC Error Mask 1.

ff0703600 LED’s.

ff0704000 to
ff07042ff

µVP 0 Reset, Busy.

ff0705000 to
ff07052ff

µVP 1 Reset, Busy.

ff0800000 to
ff08fffff

STDIO Control Registers.

ff4fffff0 to
ff4ffffff

M2S Control Registers.

ff6f80000 to
ff6ffffff

ELAN.

ff8000000 to
ff9ffffff

MBus Slot 0.

ffa000000 to
ffbffffff

MBus Slot 1.

MBus Address Usage Rd/Wr Note

000000000 to
007ffffff

128MB Memory (Normal, no
coherency betweenµVP and SPARC).

RW

020000000 to
027ffffff

128MB Memory (Scrambled, enforce
coherency betweenµVP and SPARC).

RW

200000000 to
207ffffff

128MB Memory (Normal, enforce
coherency betweenµVP and SPARC).

RW

220000000 to
227ffffff

128MB Memory (Scrambled, no
coherency betweenµVP and SPARC)

RW

MBus Address Usage

Address Maps 27

A

µVP Cache Directory Mappings

The cache directories for both of the vector processor are mapped into the MBus
address space.

a. The cache directory MMU mappings should be such that Logical Address
equals Physical Address, or the cache directories should be accessed by bypassing
the SPARC MMU. This allows the addresses to behave the same, regardless of
whether we are configured as a Pinnacle or a Viking.

e00000000 to
e0fffffff

SBus Slot 1. RW

e10000000 to
e1fffffff

SBus Slot 2. RW

e20000000 to
e2fffffff

SBus Slot 3. RW

MBus Address Usage Rd/Wr Note

8uxxy0000 to
8uxxzffc0 a

µVP cache directory (write both, read
µVP0).

x = don’t care,u = (binary)00xx ,
y = (binary)xx00 , z= (binary)xx11 .

Bits 29,26:18 of address are used as
data inputs to the RAMs, not as RAM
index.

RW

8vxxy0000 to
8vxxzffc0

µVP1 cache directory (read only).

x = don’t care,u = (binary)00x1 ,
y = (binary)xx00 , z= (binary)xx11 .

R

MBus Address Usage Rd/Wr Note

28 S1002–10M139.01

A

µVP Status and MMU Mappings

a. The MMU RAM mappings should be such that Logical Address equals Physical
Address, or the MMU RAMS should be accessed by bypassing the SPARC MMU.
This allows the addresses to behave the same, regardless of whether we are con-
figured as a Pinnacle or a Viking.

MBus Address Usage Rd/Wr Note

900000000 to
90001fff8 a

µVP MMU (write both, readµVP 0) RW

910000000 to
91001fff8

µVP MMU (read-only ofµVP 1) R

920000000 MMU_ADDRESS0 R

920000000 LD_PF_INBOUND (note same
address as above!)

W

930000000 MMU_ADRESS1 R

930000000 LD_PF_OUTBOUND (note same
address as above!)

W

980000000 MMU_CONTROL W

980000008 MMU_MASK_FAULT W

980000010 MMU_CLEAR W

980000018 KILL_uVP W

980000028 CLEAR_INVALIDATE W

9A0000000 uVP Status R

9A0000010 SET_GATE_AND_SYNCH W

9A0000018 SET_GATE_AND_SEPARATE W

Address Maps 29

A

BootRom, Serial Ports, Miscellaneous

MBus Address Usage Rd/Wr Note

ff0000000 to
ff007ffff

BootRom (512KByte). R(W) 3

ff0040000 to
ff007ffff

Unused for 256KByte Flash ROM
(Boot ROM Echo)

ff0100000 to
ff010000f

Serial Port Controller

ff0100000 Control Registers port B RW 3

ff0100002 Data Buffer port B RW 3

ff0100004 Control Registers port A RW 3

ff0100006 Data Buffer port A RW 3

ff0100010 to
ff01fffff

Unused (Serial Port Echos)

ff0200000 to
ff020000f

Keyboard and Mouse Port Controller

ff0200000 Control Registers mouse port RW 3

ff0200002 Data Buffer mouse port RW 3

ff0200004 Control Registers keyboard port RW 3

ff0200006 Data Buffer keyboard port) RW 3

ff0200010 to
ff02fffff

Unused (Keyboard and Mouse Port
Echos)

ff0300000 to
ff0301fff

Real Time Clock module and 8KByte
SRAM

RW 3

ff0302000 to
ff03fffff

Unused (RTC Echos)

ff0400000 to
ff06fffff

Unused (MBus Error)

ff0700000 Node Reset Request RW 4

ff0700004 to
ff07001ff

Unused (Echos)

30 S1002–10M139.01

A

Control Area Network Interface

ff0700200 MBus Grant R 4

ff0700204 to
ff07003ff

Unused (Echos)

ff0700400 Physical Slot Identifier R 5

ff0700404 to
ff07005ff

Unused (Echos)

ff0703600 LED Bargraph RW 5

ff0703604 to
ff07007ff

Unused (Echos)

MBus Address Usage Rd/Wr Note

ff0700800 CAN - Control Register RW 4

ff0700804 CAN - Command Register W 4

ff0700808 CAN - Status Register R 4

ff070080c CAN - Interrupt Register R 4

ff0700810 CAN - Acceptance Code Register RW 4

ff0700814 CAN - Acceptance Mask Register RW 4

ff0700818 CAN - Bus Timing Register 0 RW 4

ff070081c CAN - Bus Timing Register 1 RW 4

ff0700820 CAN - Output Control Register RW 4

ff0700824 CAN - Test Register

ff0700828 CAN - TXBuf Identifier RW 4

ff070082c CAN - TXBuf RTR Data Length code RW 4

ff0700830 CAN - TXBuf Data Byte 1 RW 4

ff0700834 CAN - TXBuf Data Byte 2 RW 4

ff0700838 CAN - TXBuf Data Byte 3 RW 4

ff070083c CAN - TXBuf Data Byte 4 RW 4

ff0700840 CAN - TXBuf Data Byte 5 RW 4

MBus Address Usage Rd/Wr Note

Address Maps 31

A

Interrupt Request Control and Status Registers

ff0700844 CAN - TXBuf Data Byte 6 RW 4

ff0700848 CAN - TXBuf Data Byte 7 RW 4

ff070084c CAN - TXBuf Data Byte 8 RW 4

ff0700850 CAN - RXBuf Identifier RW 4

ff0700854 CAN - RXBuf RTR Data Length code RW 4

ff0700858 CAN - RXBuf Data Byte 1 RW 4

ff070085c CAN - RXBuf Data Byte 2 RW 4

ff0700860 CAN - RXBuf Data Byte 3 RW 4

ff0700864 CAN - RXBuf Data Byte 4 RW 4

ff0700868 CAN - RXBuf Data Byte 5 RW 4

ff070086c CAN - RXBuf Data Byte 6 RW 4

ff0700870 CAN - RXBuf Data Byte 7 RW 4

ff0700874 CAN - RXBuf Data Byte 8 RW 4

ff0700878 CAN - Unimplemented

ff070087c CAN - Clock Divider Register RW 4

ff0700880 to
ff0700fff

Unused (Echos of above)

MBus Address Usage Rd/Wr Note

ff0701000 IRQ pal 0 - Mask Register Read /
Clear

RW 5

ff0701004 IRQ pal 0 - Mask Register Set RW 5

ff0701008 IRQ pal 0 - Software Interrupt Reg
Read / Clear

RW 5

ff070100c IRQ pal 0 - Software Interrupt Reg SetW 5

ff0701010 to
ff07011ff

Unused (Echos)

ff0701200 Timer 0 Level10 RW 4

MBus Address Usage Rd/Wr Note

32 S1002–10M139.01

A

ff0701204 Timer 0 Level14 RW 4

ff0701208 Timer 0 Spare RW 4

ff070120c Timer 0 Control register RW 4

ff0701210 to
ff07013ff

Unused (Echos)

ff0701400 CPU 0 Status and Watchdog Interrupt RW 4

ff0701404 to
ff07015ff

Unused (Echos)

ff0701600 CPU 0 Async Error Pending RW 4

ff0701800 CPU 0 EDC Mask RW 4

ff0701604 to
ff0701fff

Unused (Echos of above)

ff0702000 IRQ pal 1 - Mask Register Read /
Clear

RW 5

ff0702004 IRQ pal 1 - Mask Set RW 5

ff0702008 IRQ pal 1 - Software Interrupt Reg
Read / Clear

RW 5

ff070200c IRQ pal 1 - Software Interrupt Reg SetW 5

ff0702010 to
ff07021ff

Unused (Echos)

ff0702200 Timer 1 Level10 RW 4

ff0702204 Timer 1 Level14 RW 4

ff0702208 Timer 1 Spare RW 4

ff070220c Timer 1 Control register RW 4

ff0702210 to
ff07023ff

Unused (Echos)

ff0702400 CPU 1 Status and Watchdog Interrupt RW 4

ff0702404 to
ff07025ff

Unused (Echos)

ff0702600 CPU 1 Async Error Pending RW 4

MBus Address Usage Rd/Wr Note

Address Maps 33

A

STDIO IO Bus Control Registers

MBus to SBus, Elan, and MBus Slot Slaves

ff0702800 CPU 1 EDC Mask RW 4

ff0702604 to
ff0702fff

Unused (Echos of above)

ff0703000 to
ff0703fff

Unused (Read Undefined)

ff0704000 to
ff07fffff

Unused (Echos of above)

MBus Address Usage Rd/Wr Note

ff0800000 Software Interrupt/Enable RW

ff0800004 Active Interrupt Level RW

ff0800008 Limit Register 0 RW

ff080000c Limit Register 1 RW

ff0800010 IOBus Devices Available RW

ff0800018 Latency Delay Register RW

ff080001c MBusID Register R

ff0800020 Timer 0 R

ff0800024 Timer 1 R

MBus Address Usage Rd/Wr Note

ff4fffff0 M2S Virtual Address Table Base
Address

RW

ff4fffff4 M2S IO/MMU Control register RW

ff4fffff8 M2S Error/Status register R

ff4fffffc M2S - MBus ID Register R

ff5000000 to
ff6f7ffff

Unused (MBus Timeout)

MBus Address Usage Rd/Wr Note

34 S1002–10M139.01

A

ff6f80000 to
ff6ffdfff

ELAN Command port area RW

ff6ffe000 to
ff6ffffbf

ELAN Hush register area RW

ff6ffffc0 ELAN Clock Hi RW

ff6ffffc4 ELAN Clock Hi R

ff6ffffc8 ELAN Clock Lo RW

ff6ffffcc ELAN Clock Lo R

ff6ffffd0 ELAN Alarm RW

ff6ffffd4 ELAN Alarm R

ff6ffffd8 ELAN Interrupt R

ff6ffffdc ELAN Interrupt R

ff6ffffe0 ELAN Clock Hi R 6

ff6ffffe4 ELAN Clock Lo (For 64-bit accesses)R 6

ff6ffffe8 ELAN Main Proc. Interrupt Mask RW

ff6ffffec ELAN Main Proc. Interrupt Mask R

ff6fffff0 ELAN Control register RW

ff6fffff4 ELAN Control register R

ff6fffff8 MBus Port ID register for ELAN Chip R

ff6fffffc MBus Port ID register for ELAN Chip R

ff7000000 to
ff7ffffff

Unused (MBus timeout)

ff8000000 to
ff9ffffff

Used by MBus slave device in MBus
Slot 0

ffa000000 to
ffbffffff

Used by MBus slave device in MBus
Slot 1

ffc000000 to
fffffffff

Unused (MBus timeout)

MBus Address Usage Rd/Wr Note

Address Maps 35

A

Vector Processors

Each of the twoµVP’s is mapped into the MBus address space twice, once for
supervisor access and once for user access. There are also registers on the IO Bus
to control the hardware reset line of eachµVP, and to read the hardware busy sig-
nal. Only the least significant bit of these registers is used.

MBus Address Usage Rd/Wr Note

100000000 to
10000ffff

µVP 0 (Supervisor) RW

100010000 to
10001ffff

µVP 0 (User) RW

120000000 to
12000ffff

µVP 1 (Supervisor) RW

120010000 to
12001ffff

µVP 1 (User) RW

160000000 to
16000ffff

µVP Broadcast (Super) W

160010000 to
16001ffff

µVP Broadcast (User) W

9A0000010 SET_GATE_AND_SYNCH R

9A0000018 SET_GATE_AND_SEPARATE R

9A0000020 CLEAR_GATES

ff0704000 µVP 0 andµVP 1 Reset W 4

ff0704200 µVP 0 Busy R 4

ff0705000 Unused. W 4

ff0705200 µVP 1 Busy R 4

36 S1002–10M139.01

A

Within each of these images, the registers can be accessed by aligned 32-bit or
64-bit accesses.

uVP Address Map

Addr ess Offset Usage Rd/Wr Note

0000 to 03ff VCB Command Buffer RW

0800 to 087f VSR Scalar Registers RW

0a00 to 0bff VTR Translation Registers RW(s)

0e00 VACNT Address Control RW(s)

0e08 VMD Mode RW

0e10 VLEN Vector Length RW

0e14 VCLEN Command Length RW

0e18 VSTA Start RW

0e20 VCINF Comparison Info R

0e28 VSTS Status RW

0e30 VEXB Exception Buffer R

0e38 VEXA Exception Address R

0e44 VABT Abort W

0e4c VBSY Busy R

µVP Address Usage

00000000 to
07ffffff

128MB Memory (Normal)

20000000 to
27ffffff

128MB Memory (Scrambled)

40000000 to
47ffffff

128MB Memory (Uncorrected)

60000000 to
67ffffff

128MB Memory (Scrambled Checkbit)

Address Maps 37

A

80000000 µVP EDC Error Data

80000008 µVP EDC Error Diagnosis

80000010 µVP EDC Clear

µVP Address Usage

38 S1002–10M139.01

A

39

NVRAM Variables B

The battery-backed RAM in the realtime clock module is used to used to store
basic machine start-up and communication options.

These parameters may be queried using the Forth Monitor (i.e. at theok prompt):

For example:

Alternatively the System Administrator can use theeeprom (1m) command to
view and change the variables direct from a Unix command shell. For example:

Some of the parameters (those marked in the following list) may also be modified
using the Set function in Pandora’s Network and Configuration Views.

printenv Display current variable settings.

setenv variable value Assign (or reassign) a value to a variable.

set-default variable Restore the variables default value.

set-defaults Restore the default values to all variables.

ok setenv output-device can

root@cs2# eeprom output-device=can

40 S1002–10M139.01

B

Variable Default Description

sbus-probe-list 43012 Identifies the SBus slots to probe and the probe order.

keyboard-click? false If true, enable keyboard click.

keymap no default Name of custom keymap file.

output-device † screen Power-on output device. One ofscreen , can ,
ttya , or ttyb . Usecan to enable console
connections to be grabbed bycancon (1m) and
Pandora.

input-device † keyboard Power-on input device. One ofkeyboard , can ,
ttya , or ttyb . Usecan to enable console
connections to be grabbed bycancon (1m) and
Pandora.

cancon-host 4294967295 Used to record the host of thecancon (1m) remote
console connection through a reboot of this
processor. Do not change.

elanip-broadcast-high † 4096 Highest Elan Id in network.

elanip-broadcast-low † 0 Lowest Elan Id in network.

ep-btxpktlifetime † 1000 Elan packet characteristics.

ep-btxtimeout † 1000 Elan packet characteristics.

ep-txpktlifetime † 10000 Elan packet characteristics.

ep-txtimeout † 10000 Elan packet characteristics.

ep-bigmsgbcastboxes † 4 Elan packet characteristics.

ep-bigmsgboxes † 32 Elan packet characteristics.

ep-bigmsgsize † 20416 Elan packet characteristics.

ep-smallmsgbcastboxes † 4 Elan packet characteristics.

ep-smallmsgboxes † 32 Elan packet characteristics.

ep-smallmsgsize † 4032 Elan packet characteristics.

elan-boot-id † 0 Elan Id of node that this processor boots from.

NVRAM Variables 41

B

elan-node-id † 0 Elan Id of this processor.

elan-node-level † 1 The processor’s level in the CS-2 network.

elan-num-levels † 1 Number of levels in the CS-2 network.

elan-top-switch † 0 Specifies the level in the network that the processor
sees it’s topswitch. Usually this is level 0, the real top
of the network.

elan-switch-plane † 0 Switch plane that this processor receives it boot code
from when booting via the Elan network.

ttyb-rts-dtr-off false If true, Solaris does not assert RTS/DTR on ttyb.

ttyb-ignore-cd true If true, Solaris ignores carrier-detect on ttyb.

ttya-rts-dtr-off false If true, Solaris does not assert RTS/DTR on ttya.

ttya-ignore-cd true If true, Solaris ignores carrier-detect on ttya.

ttyb-mode 9600,8,n,1,- ttyb (baud rate, #bits, parity, #stop, handshake). Baud
rate is 110, 300, 1200, 2400, 4800, 9600, 19200, or
38400. #bits is 5, 6, 7, or 8. Parity isn (none),e
(even),o (odd),m (mark),s (space). Handshake is-
(none),h (hardware rts/cts),s (software).

ttya-mode 9600,8,n,1,- ttyb (baud rate, #bits, parity, #stop, handshake).
Baud rate is 110, 300, 1200, 2400, 4800, 9600,
19200, or 38400. #bits is 5, 6, 7, or 8. Parity isn
(none),e (even),o (odd),m (mark),s (space).
Handshake is- (none),h (hardware rts/cts),s
(software).

fcode-debug? false If true, include name fields for plug-in device Fcodes.

diag-file † kadb The file and arguments to load from the root
filesystem when thediag-switch? is true;
otherwise use theboot-file parameter.

diag-device † elan Device to boot from when thediag-switch? is
true; one ofdisk , net , or elan . Specifyelan to
boot over the CS-2 data network.

Variable Default Description

42 S1002–10M139.01

B

boot-file The file and arguments to load from the root
filesystem (e.g.kadb -v , or /kernel/unix -
vr). No file implies/kernel/unix .

boot-device † elan Device to boot from; one ofdisk , net , or elan .
Specifyelan to boot over the CS-2 data network.

auto-boot? † false Boot automatically after power-on. Default value is
true.

watchdog-reboot? false If true, reboot after watchdog reset.

local-mac-address? false If true, use the ethernet address taken from the
local-mac-address parameter; otherwise use
the IdPROM.

screen-#columns 80 Number of on-screen columns.

screen-#rows 34 Number of on-screen rows.

selftest-#megs 1 Megabytes of RAM to test on power-up or memory
test.

scsi-initiator-id 7 SCSI bus address of host adapter, range 0–7.

cpu-#mhz 40 CPU clock rate.

use-nvramrc? false If true, execute the code stored in the nvramrc
parameter when the boot ROM starts up.

nvramrc Forth code to execute when the boot ROM starts-up
(but only if use-nvramrc? is true).

sunmon-compat? false If true, come-up with old style prompt ‘>’.

security-mode none System security level for monitor commands; one of
none , command, or full . None allows all
commands to be executed. Command allows the
continue and boot (without parameters) commands to
be executed; others require a password. Full requires
a password before any commands may be executed.

security-password no default The password used with security-mode described
above.

Variable Default Description

NVRAM Variables 43

B

† These parameters may be changed using the Set function in Pandora’s Network and Configuration Views.

‡ The definition of these variables is unique to the MK403 Vector Processing Element (all others are the same for all CS-2 boards).

security-#badlogins no default System set variable showing the number of times a
bad password was specified.

oem-logo no default Byte array OEM logo (enabled byoem-logo?).
Create a Forth array containing the logo and then
copy into theoem-logo field.

oem-logo? false Enables OEM logo defined byoem-logo .

oem-banner no default Text displayed in the custom OEM banner alongside
the OEM logo. Enabled byoem-banner? .

oem-banner? false Enables OEM banner text specified inoem-
banner .

hardware-revision no default Hardware revision of this board (e.g. Rev D).

last-hardware-update no default Date of board’s manufacture or last upgrade (e.g.
25May94).

testarea ‡ Set bit 1 to split the memory system (i.e memory test
only sees half of what is available). Other bits
indicate VPU silicon revision, board revision etc. and
are not documented.

mfg-switch? false If true, perform repeated self tests.

diag-switch? false Run in diagnostic mode.

meiko-sbus-slot ‡ no default Identifies the SBus slot that will be used as the boot
device (fitted with either a SCSI or Ethernet board).
“net” is aliased to slot 2; net0, net1, net2 exist for
booting off an explicit slot.

meiko-sbus-use ‡ no default Used withmeiko-sbus-slot (above) to identify
the device type; one of 0 (none), 1 (Ethernet), 2
(SCSI), or 3(Ethernet and SCSI).

Variable Default Description

44 S1002–10M139.01

B

45

Forth Monitor Commands C

The following commands have been added to the Forth Monitor and are in addi-
tion to the commands that are normally present on a Solaris system. The addi-
tional commands relate to the Control Network (CAN) and Elan network.

CAN Commands

To test and use the CAN bus you need to understand CAN addresses.

Nodes are addressed by their physical position in terms of Cluster, Module, and
Node id’s (CMN). In CAN packets each of these id’s is represented by a 6bit
field; the hexadecimal representation of these three 6bit fields is a Node Id.

The module id is derived from the switch at the rear of the module. The number-
ing of the nodes within a module is shown in Figure C-1.

For example, the Node Id of processor with CMN 0:2:3 (processor 3, module 2,
cluster 0) is 00083. The node’s controlling H8 has the Node Id 00090. The node’s
module controller has the Node Id 0009d.

46 S1002–10M139.01

C

Figure C-1 CAN Addr esses within a Module

Testing the CAN Device

Commands are provided to test the SPARC’s CAN interface device, to test the
board and module controllers, and to monitor activity on the CAN bus.

0

1

2

3

10

4

5

6

7

11

8

9

a

b

12

c

d

e

f

13

1d

CAN addresses for processor
board 0 (up to 4 processors per board)

CAN address for board controller (H8)
for processor board 0.

CAN address for the module
controller (H8)

Forth Monitor Commands 47

C

Testing the CAN Interface Device

The test command tests the SPARC’s CAN device by writing various values
into its test register. The test is repeated using the test registers on the board con-
troller’s H8 and the module controller’s H8.

Testing the CAN Bus

You can test the CAN bus connection between nodes by using thertest com-
mand. In the following example data is transferred from the current node to node
4:

ok test /can
 Register test 0x00: OK
 Register test 0xff: OK
 Register test 0xaa: OK
 Register test 0x55: OK
 Checking on-board H8: OK.
 Checking module controller: OK.

ok 4 rtest
Performing remote write/read test on node 4
Remote node type is MK405
..
Time taken was 13630mSecs

48 S1002–10M139.01

C

Checking the Board and Module Controllers

You can check that both the board controller and module controller H8 proces-
sors are running by using theping-h8 andping-module commands. Note
that you need to change directory to/can before you use these commands.

Querying CAN Bus Usage

You can query the utilisation of the CAN bus by using theperf command. This
command shows the number of CAN packets received since the machine was
powered-up, and the number since the last query. You need to change to the
/can directory before using this command:

ok cd /can
ok ping-h8
On-Board H8 is MK401.
ok cd ..

ok cd /can
ok ping-module
Module controller is MK515.
ok cd ..

ok cd /can
ok perf
Total number of messages received since power-up: 259380
No. of messages received per second since the last check: 4
ok cd ..

Forth Monitor Commands 49

C

Monitoring CAN Bus Packets

You cansnoop the CAN bus (monitor that packets on the bus) using thesnoop
command. Note that you cannot use this facility if you are connected to the Forth
Monitor via a cancon connection. You need to change to thecan directory before
using this command.

CAN Addresses

To determine the CAN address of this node use.can-id . This displays the
node’s address in terms of its CMN, Node Id, and Slot Id. The Slot Id is for Meiko
engineering use1.

Similarly the CAN address of the board’s controlling H8 processor can be ob-
tained with the.h8-id command:

1. The slot id is the node’s physical position in the machine represented by a 5 bit cluster number,
a 5 bit module number, a 2 bit slot number, 2 unused (always 0 bits), and a 2 bit processor number;
the 2 bits that represent the slot number are transposed.

ok cd can
ok snoop
Can’t can-snoop if you are a cancon slave
ok cd ..

ok .can-id
SlotId: 0090, CAN Node-id: 00088 [00:02:08]

ok .h8-id
The on-board H8 is node 00092.

50 S1002–10M139.01

C

The CAN address of the H8 that controls the board’s module can be determined
by the.module-id command:

You can convert from CAN node id’s to Cluster, Module, Node addresses (and
vice versa) by using thecanid>cmn andcmn>canid commands respectively.
Note that you need to change directory tocan before you use these commands.

Querying CAN Objects

Can packets include a 10 bit address space which, although not sufficient to map
into the MBus/H8 physical address space, is adequate to map-in various status
and control devices. These are referred to as CAN objects. Reading or writing to
these objects allows you to query the status of a processor, board, or module, and
to issue control instructions. See the header file/opt/MEIKOcs2/inclu-
de/canio/canobj.h for a list of object addresses and their meanings.

Local CAN objects are those that relate directly to this node. Remote CAN ob-
jects maybe those of a board, module controller, or remote SPARC.

ok .module-id
The module controller is node 0009d.

ok cd can
ok 4 canid>cmn
0 0 4
ok cd ..

ok cd can
ok 0 2 8 cmn>canid
Node Id is 00088
ok cd ..

Forth Monitor Commands 51

C

You use therlo command to read a local object. You need to pass an object id
on the Forth stack; in the following example we request the board type and are
returned 191 (an MK401):

To read a remote object you need to push onto the Forth stack a CAN node id and
the object id. In the following example we request the board type of nodec1
(module 3, board 0, node 2), which is an MK405:

The following additional example fetches the board type of nodedd , which is
the controller for module 3, cluster 0:

Similar commands exist to write to CAN objects, but their direct use is not rec-
ommended (they can reconfigure and reset the machine).

Remote Console Connections

You can create a console connection to a remote node by usingcancon . You
need to pass on the Forth stack a CAN node id.

ok 0 rlo
Read: 191

ok c1 0 rro
Read: 195

ok dd 0 rro
Read: 203

52 S1002–10M139.01

C

You cannot create acancon connection from within an existing cancon connec-
tion. If you are remotely interacting with a node’s Forth monitor viacancon (or
Pandora) an attempt to create anothercancon connection will fail.

If your node is currently serving a remote console connection to someone else
you can force it to disconnect that connection by usingcancon-dis . In the fol-
lowing example the current connection to node 8 is dropped:

Elan Commands

The Elan device includes self test code that can be executed by thetest-all
command (which tests memory, SBus, CAN, Elan and all other devices with self
test code) or explicitly by thetest /elan command.

ok 4 cancon
Connected to node 00004

cs2-4 console login:

ok 8 cancon-dis
Disconnecting node 00008 [00:00:08] ...

ok test /elan
Initialising Elan/Selftest software ... OK
Checking threads processor ... OK

Testing from level 1 to level 1.
Generating a route to level 1 ... OK
Ping ... OK
Check-Ping ... OK
Spraying data to top switch ... OK
Testing spray buffer ... OK

Closing down Elan/Selftest software ... OK

