MRX/0S Control Program
and Data Management Services

Extended Reference Manual
2200.002

pEICIONISI

wajsAg Jandwo)

sjonpo.d

December 1972 Edition

Requests for copies of Memorex publications should be made
to your Memorex representative or to the Memorex branch
office serving your locality.

A reader's comment form is provided at the back of this
publication. If the form has been removed, comments may be
addressed to the Memorex Corporation, Publications Dept.,
8941 - 10th Ave. No. (Golden Valley) Minneapolis,
Minnesota 55427.

© 1972, MEMOREX CORPORATION

PREFACE

The MRX/OS Control Program and Data Management
Services are discussed in two separate documents,
each designed for a specific type of input/output
(1/0) level user. The Basic Reference manual contains
information at the logical 1/0 level of processing,
where the blocking and deblocking of data is done for
the user. This document, the Extended Reference
manual, is designed for the block and physical 1/0
level user. Block 1/0 level processing recognizes no
logical records; therefore, all data is read or written as
a data block. The physical 1/0 level of processing
allows the user to do his own processing of data.

Chapter 7 of this document contains all the macros
required for block and physical 1/0 level processing.
Appendix B contains the expansions of these macros
with the standard system suffixes listed.

Related information may be found in the following
documents.

o MRX/0OS Control Language Services,
Extended Reference

o MRX/OS Control Program and Data
Management Services, Basic Reference

o MRX/OS Assembler Reference

TABLE OF CONTENTS

Section

INTRODUCTION

Environment

Description

Input/Output Levels
General
Logical Input/Output
Block Input/Output
Physical 1nput/Output
Implementation Method

DATA STRUCTURES

Files and Records
Labels
Tape Labels
Disc Label
Disc Storage Catalogs
Tables
File Description Table
Buffer Description Table

BLOCK INPUT/OUTPUT

Introduction
Genera!l Rules
Block Input/Output Coding
Block Reading
Block Writing
Block Positioning
Device Control Commands
Space Management and File Control
Processing Considerations
Priority
End Conditions
Processing Multi-Volume Files
Sense Information
Request Termination
Error Processing

PHYSICAL INPUT/OUTPUT

Introduction

Physical Input/Output Coding
Defining and Opening Devices
Performing the Physical 1/0 Operation

Page

1-1

21
2-1
2-1
2-2
23
212
2-12
2-12

31

3-1
31
3-2
3-2
3-2
33
33
33
3-3
3-3
3-3
3-4
34
34

4-1

4-1
4-1
4-1
4-1

TABLE OF CONTENTS (Continued)

Section

4 (cont) Basic Method
Sharing a PCB
Sharing an EXCP
Overlapped Operation
Physical 1/0 Restrictions
Error Processing
Example of Physical 1/0 Program

5 CONTROL PROGRAM SERVICES

Introduction

Service Request Control

Inter Step and Control Language Communication
Finding Partition Size

Reading Data from //PAR Cards

Writing to the SYSOUT File

6 INTERACTION OF DATA MANAGEMENT AND THE CONTROL LANGUAGE
7 MACROS

Data Management
Block /0 Level Declarative Macro
DEFLB - Define File Label
Block 1/0 Level and Physical 1/0 Level Executive Requests
Space Management Macros
ALLOC - Allocate Space
EXPND — Add Mass Storage Space
PURGE - Release Disc File Space
File Control
OPEN — Open File for Data Transmission
CLOSE — Close File for Data Transmission
CLOVE - Close Volume
1/0 Service Macro
LABRTN — Return File Label Information
Block Input/Output Macros
Read
Write
Magnetic Tape and Disc
Line Printer
Card Punch
POSITN — Change Current Block Number
CNTRL — Hardware Control Operation
STATUS -- Report of Status
TYPE — Device and File Type
RESET — Reset Exception Conditions
Physical Input/Output Macros
EXCP — Input/Output Action

vi

Page

4-1
4-1
4.3
4-3
4-3
4-3
4.3

5-1

5-1
5-1
5-1
5-2
5-2

7-1
7-2
7-2
7-2
7-2

7-56

7-6
7-6
7-7
7-8
7-9
7-9
7-10
7-10
7-11
7-12
712
7-12
7-12
7-13
7-15
7-15
7-21
7-22
7-22

Section

7 (cont)

TABLE OF CONTENTS (Continued)

Command

COMMAND Macro for Basic Data Channel (Unit Record Devices and
Magnetic Tape)

COMMAND Macro for DCABLE Operation

COMMAND Macro for a DCSEEK Operation

COMMAND Macro for a DCSRCH Opération

COMMAND Macro for a DCREAD Operation

COMMAND Macro for a DCWRIT or DCFWRIT Operation
COMMAND Macro for a RESTORE Operation

COMMAND Macro for a DCJUMP Operation

Control Program Macros

WAIT — Wait for Service Request Completion
Delay — Suspend Program Execution
INFORM — Service Request Completed
POST — Create Compressed Communication Byte
RPOST — Expand from Communication Byte
SETCOM - Transfer to Job Control Table
GETCOM — Transfer from Job Control Table Communication Area
ACCEPT — Read //PAR Card
DISPLAY — Write Message on SYSOUT
MEML.IM — ldentify Partition Limit
SETIF — Post Code for Control Language Test
HALT — Terminate Program
EHALT -- Terminate Program
ABEND — Terminate Program Abnormally
TIME — Retrieve Time of Day
SDATE -- Retrieve System Data
JDATE -- Retrieve Job Date

Console Communication Macros
CONSOLE — Transmit Message to Console and Optionally Receive Reply 7-38

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

MESSAGE — Set Up Message Format
Generation of an Output Message
Generation of a Reply Buffer
PACK CATALOG AND CENTRAL CATALOG FORMATS
SERVICE REQUEST MECHANISM AND MACRO EXPANSIONS

ERROR RECOVERY

GAP SPECIFICATIONS

DISC TRACK FORMAT

INDEX — BLOCK SIZE FOR INDEXED FILES

vii

Page
7-23

7:24
7-24
7-24
7-27
7-28
7-29

.7-30

7-30

7-30
7-31
7-31
7-32
7-32
7-33
7-33
7-34
7-35
7-35
7-36
7-36
7-37
7-37
7-37
7-37
7-37
7-37

7-38
7-38
7-38
A-1
B-1
C-1
D-1
E-1

F-1

LIST OF FIGURES

Figure

2-2
23
31
32
41
4-2
4-3
4.4

Standard Tape Volume Label

Standard Tape File Label

Disc Label

Block 1/O Program to Read Cards and Print
Block 1/0 Program to Read Cards into Disc File
Basic Method for Physical 1/0

Sharing a PCB

Sharing an EXCP

Physical 1/O Program to Read Cards and Print
Card Image/Storage Ralationship

LIST OF TABLES

Table

21
2:2
2:3
2.4
25
2-6
2-7
28
2:9
2-10
2-11
31
61
71
72
7-3
74
75

Name Element Format

Attribute Element Format

Space Element and Space Element Continuation Format
Volume Element and Volume Element Continuation Format
File Description Table Format

Disc Device Format

Magnetic Tape Device Format

Unit Record Device Format

Buffer Description Table Format for Sequential Files

Buffer Description Table Format for Relative Files

Buffer Description Table Format for Indexed Files

Assumed Block Numbers

Summary of Data Management and Control Language Interaction
Returned Information Format

Status Word for Basic Data Channel Operations

Status Word For Disc Channel Operations

Bit Significance

Peripheral Device Basic Hardware Operation Codes

viii

Page

22
22
23
35
3-6
4-2

4-2
4-4
7-11

Page

2-4
2-6

2-10
2-13
2-16
2-18
2-19
2-20
2-24
2-29
3-2

6-2

7-16
7-19
7-20
7-22
7-25

ENVIRONMENT

The logical, block and physical input-output facilities
and control program services described in this manual
are all available on the MRX/0OS nominal system.* All
except for those flagged are also available on the
MRX/0OS minimal system.t Since MRX/OS is a
disc-resident system, a minimum of one disc drive is
required for the system disc pack.

DESCRIPTION

The services described in this manual are those
provided by the central part of the operating
systemTT. Access to these services, which are mainly
concerned with input/output processing, is through
system macro instructions.

*The nominal system has a minimum main storage size of
24K bytes, including a system region of 10K bytes.

tThe minimal system has a minimum main storage size of
16K bytes, including a system region of 8K bytes.

t1 Other operating system services, such as job control, link
editing and library utilities, are described in separate
manuals.

1. INTRODUCTION

INPUT/OUTPUT LEVELS

GENERAL

An Assembly Language programmer may code his
input/output implementation at three different
levels: the logical, block, and physical levels. The
logical level is processed by the Data Management
system while the block and physical levels are
processed directly by the system's basic input/output
routines {upon which Data Management depends).

The logical level, the highest level, is the easiest to
use. The block level provides greater flexibility but is
still dependent on the standard system data file
structures. The physical level is the most involved,
regarding coding, but provides the greatest flexibility,
including independence from the system’s file
structures.

LOGICAL INPUT/OUTPUT

Logical input/output coding {described in the Control
Program and Data Management Services, Basic
Reference and in Section 2 of this book) is normally
employed in situations where no special handling of a
condition such as end-of-file is required and the
amount of available storage space is not especially
restricted (though careful coding will still enable the
programmer to economize on storage space). The
chief advantage of logical input/output is the
simplicity of coding for most common input/output
applications.

1-1

BLOCK INPUT/OUTPUT

Block input/output coding (described in Section 3)
enables the programmer to create an object program
smaller than would resuit from logical input/output,
since the large general-purpose GET/PUT subroutines
are not included. When the user's input/output
application is limited to a certain particular type of
operation, block input/output produces a smaller,
more efficient program but involves more work in
writing the code. Block input/output is also necessary
in the case where some special handling of abnormal
conditions is required.

PHYSICAL INPUT/OUTPUT

Physical input/output coding (described in Section 4)
1s used where the user desires to create and process
his own special external data structures for some
special application, or where some special
input/output device such as a plotter is being used.
(The standard system files may also be processed by
physical input/output if desired, though this would
rarely be done in practice.)

IMPLEMENTATION METHOD

Ultimately, whether logical, block, or physical 1/0 is
being used, all input/output implementation is
performed by the system’s input/output drivers. The
basic mode of communication with the drivers is
always the same; it involves supplying them with a
“command program'’, which is a contiguous group of
command control blocks, each one calling for the
execution of a specific 1/0 operation.

The physical input/output user must create these
command programs himself with physical
nput/output macros, and issue do input/output
macros which instruct the system to execute them.
The block input/output user, on the other hand,
simply codes the appropriate block input/output
macro; in this case the system builds the command
program and executes it. At the logical input/output
level (data management) the system performs certain
pre- or post-processing of data connected with the
logical data file structure before or after it passes
control to the block input/output level for
implementation of the actual data transfer.

1-2

The structure of records, labels, and files is discussed
in connection with their use. The Control Program
and Data Management Services, Basic Reference
discusses the general data structures. This manual
gives the specific description of labels and tables.

FILES AND RECORDS

Data Management supports records that have the
common stored data format, which include logical
record headers and may include space headers in each
block of data. |f the block 1/O user elects to use the
common stored data format, he must specify CSD =
YES on the Control language //DEFINE card to
allocate a block size sufficient for the required
headers. The control information (record headers and
space headers) is managed by Data Management for
logical 1/0 users. However, block 1/0O level or physical
1/0 level users must generate or process the control
information if the common stored data format is
used. The common stored data format is used only
for data located in mass storage; thus data stored on
unit record devices does not have this format; and
this format is not applied to such data by the block
1/0 level READ function (Section 7, Macros).

Records may be variable length or fixed length
limited only by file organization and devices; that is,
only fixed-length records can be used for unit record
devices.

Three file organizations, which produce a variety of
applications, are available for the user: sequential,
relative, and indexed. At the logical 1/O level, two
access methods are provided — sequential and
random. At the block /O level, each access is by
specified block (random) or by implied next block
(sequential, by adding one to the access count).
Sequential access is provided for all three file
organizations; however, random access is limited to
relative or indexed files.

2. DATA STRUCTURES

A more detailed discussion of file and record
structures is in the Control Program and Data
Management Services, Basic Reference.

LABELS

Two types of identification are associated with a disc
pack or tape reel: external (such as a sticker) and
internal (labels). This section is concerned with the
internal identification, namely the labels.

The internal identification serves two purposes.

1. Labels protect files from careless mistakes
resulting from the user’s disregard for external
labeling.

2. Labels specify the location of data on files and
store variable file information.

Tapes are identified by both volume and file labels;
the disc files have volume labels and central and/or
pack catalogs.

TAPE LABELS

The MRX 40 and 50 Systems have two types of tape
labels: volume labels and file labels.

The volume label is found at the beginning of a tape
reel and the file label at the beginning of a file. Tape
marks separate files and their associated labels on a
tape reel.

The volume label (Figure 2-1) is identified by the
characters, VOL, found in the first three positions.
The volume label number is always 1 for
compatibility with 1BM. The volume serial number
occupies positions 4 through 9 and identifies the
volume; and a unique owner name and address code
identifies the installation.

2-1

BYTE D

: voL
3
4
VOLUME IDENTIFIER
9
18

11 STATE OF VOLUME
12 POINTER TO VTOC (VOLUME
TABLE OF CONTENTS) ONLY ON

21 CONVERTED IBM PACKS
22 DEVICE TYPE
23
gg PACK CATALOG ADDRESS
26
\ OWNER {
(1-56 BYTES EBCDIC)
79

Figure 2-1. Standard Tape Volume Label

The standard tape file label (Figure 2-2) provides
information concerning the user’s file such as creation
and expiration dates, file label number, file name, and
sequence number.

The label identification field identifies the type of
standard label with a three letter abbreviation. Three
types supported by the system are header labels
(HDR), end-of-file labels (EOF), and end-of-volume
labels (EQV). The file serial number found in
positions 22-27 is identical to the volume serial
number in the volume label. The volume sequence
number identifies the order of the volume of data
records in a multi-volume logical file. The block
count provides the number of physical records
written in a file at creation.

DISC LABEL

Disc files must be labeled with volume and actual file
identification (Figure 2-3). The disc pack volume
label is written by the Pack Initialize Utility Routine
(MRX/OS Utility Programs Reference). The volume
label identifies the volume; gives the state of the
volume — unrestricted (0), restricted (1), or locked
(2), — device type, owner; and gives the starting track
address of the pack catalog for this volume. The
actual file identification is found in the disc catalogs.

2-2

BYTE

T PWN -

21
26
27

30

nig

40
4

- B8R -

59

79

v

LABEL IDENTIFICATION

FILE LABEL NUMBER

FILE NAME

FILE SERIAL NUMBER

VOLUME SEQUENCE NUMBER

CREATION DATE

EXPIRATION DATE

BLOCK COUNT

Figure 2-2. Standard Tape File Labsl

—

HDR
EOF
EOV

BYTE
voL

VOLUME LABEL NUMBER «—EQUALS 1

T RWN—mO

VOLUME SERIAL NUMBER

OWNER NAME
AND
ADDRESS CODE

"

Figure 2-3. Disc Label

DISC STORAGE CATAL OGS

The space management routines, in performing their
functions, maintain the central catalog and pack
catalogs on disc. The pack catalog, existing on each
volume, contains an entry for each file occupying
space on the volume. The entry identifies the file and
describes the space occupied by the file.

The pack catalog entry is generally divided into the
following three elements, each having the form of a
common stored data format.

® Name element, to identify the file

® Attribute element, to detail various
characteristics of the file

® Space element, to define the space occupied
by the file

The central catalog, existing once for a system,
contains an entry for each file cataloged in the
system. The entry identifies the file and describes the
volumes occupied by the file. The central catalog also
consists of three elements:

o Name element, to identify the file

o Attribute element, to detail characteristics
of the file

o Volume element, to define the volumes
occupied by the file

Allowance is made in the catalog structure for
overflow from a pack catalog space element or central
catalog volume element. These elements are known as
element continuations: space element continuation
and volume element continuation.

Tables 2-1 through 2-4 explain format of the four
basic elements and the two element continuations. At
the beginning of each table is an illustration of the
specific element format. Appendix A contains
detailed discussion of the pack catalog and central
catalog formats.

23

10

12

36

40

42

46

48

Table 2-1. Name Element Format

Standard Control Bytes

Next Name Element

Previous Name Element

Name Length J

File Name and Qualifier

Number of Pointers
Pointer Identification
Pointer
Pointer Identification]
Pointer
Pointer Identification J
Pointer

Bytes Bit Description
0 0,1 Data type (binary)
01 User data
10 System data
11 Both user and system data
2-5 Reserved, always 00002
6,7 Count of length bytes, always 102
1 Relative record number within block, with value 0 to m-1 for m records
23 Length bytes, giving length of the record (in bytes) with the measurement being exclusive of the control bytes
4-6 Thread to the next name slement {in collating sequence). This thread is expressed in a BBR format, where BB
is the relative block number (value 1 to n for n blocks) and R is the relative record number (value O to m-1 for
the next name element’s position within block BB. BBR=0 for the thread in the last name element of the chain.
79 Thread to the previous name element within the catalog file. BBR=0 for the first name element of the chain.
10 Name length, giving the count of bytes in the File Name and Qualifier field. The total count must

be even and not exceed 26.

Table 2-1. Name Element Format (Continued)

Bytes Bit Description

11-36 File Name and Qualifier, containing a file name consisting of a maximum of 17 EBCDIC characters (alphabestic,
numeric, and dash), a period separator, and a qualifier consisting of a maximum of eight alphanumeric charac-
ters. For name elements related to a system catalog file, the EBCDIC requirement is lifted.

37 Number of element pointers which follow within the name element.

38,42, Pointer identification, expressed in hexadecimal within one byte and identifying the pointer, where * denotes

46 pertinent name elements within an entry in the pack catalog, and ** denotes pertinent name elements within
an entry in the central catalog. Other pointers are pertinent in both the pack and central catalogs.

Q0 Null pointer

10 Pointer to attribute element

20* Pointer to space element

30** Pointer to volume element

40** Pointer (from the indexed file's name element) to the name element of the information file

q1*+ Pointer (from the information file's name element) to the name element of the indexed file

- 50 Pointer (from the lower paired file's name element) to the name element of the upper file

51 Pointer (from the upper paired file's name element) to the name element of the lower file

60* System pointer {from the pack catalog name element describing the pack catalog) to the
chain of available entry blocks within the pack catalog

61* System pointer (from the pack catalog name element describing the pack catalog) to the
chain of available continuation blocks within the pack catalog

70** System pointer (from the central catalog name element describing the central catalog) to
the chain of available entry blocks within the central catalog)

T1** System pointer (from the central catalog name element describing the central catalog) to
the chain of available continuation blocks within the central catalog

80** System pointer (from the name element of a SYSIN or subordinate scratch or temporary
file) to the name element of the next chronologically sequenced scratch or temporary file.
Scratch or temporary files are cataloged like any other file, in that they are entered by
collating sequence into the main chain of existing files. In addition, the scratch or temporary
file is linked in a secondary chain to the pertinent SYSIN entry through use of the forward
system pointer (identification of 80) and backward pointer (identification of 81).

81** System pointer (from the name element of a scratch or temporary file) to the name element
of previous scratch or temporary file or to the SYSIN entry at the front of the secondary
chain

3941, Pointers (in BBR format) to the pertinent elements previously described.
43-45, '
47-49

Table 2-2. Attribute Element [Format

0
9 Standard Control Bytes
4| PF Pl | Wv FT FO CcD cc Spread
6 Block Size
8 Record Length
10 Relative Key Position
12 Key Size
14 Highest Block Written
16
18 Reserved
20
22
Modification Security Code
24
26
Offset
28
Byte Bit Description
0-3 Control bytes (defined in Table 2-1)
4 0 Paired file flag. If PF=1, file is paired
1 Paired index (P1)
0 Upper file
1 Lower file
2 Write verify (WV)
0 No write verify
1 Write verify
3.4 File type (FT)
1l
! 00 Permanent
’ o1 Scratch
' 10 Temporary
11 Work
5-7 File organization (FO)

000 General
001 Indexed

26

Table 2-2. Attribute Element Format (continued)

Byte Bit Description
010 Relative
100 Sequential
111 Information (for indexed file)
5 1 Central catalog (CF)
0 File is uncataloged
1 File is cataloged
2 Comrnon stored data format (CD)
0 Not common stored data format
1 Common stored data format
3 Control character (CC)
0 ANS1 contro! characters
1 Native device control characters
4-7 Spread factor for indexed files (SPREAD)
6,7 Block size (in bytes) of data block
8,9 Record length (in bytes) of a record within a data block
10,11 Relative key position; pointer to the primary key in the data portion of a record. Position O refers to the first
byte following the control bytes.
12 Key size {in bytes) of the primary key
13-15 Highest block written, relative block number for the last block written in the file
16-21 Reserved
22-25 Modification security code
26-29 Offset; lower limit of relative record number at the time a relative file is created or, for a sequential file, the

relative block number for the first block of the highest volume written. In the information file's attribute
element for an indexed file, the first two bytes have the count of directory blocks that have been allocated.

The other two bytes have the count of index biocks.

2-7

Table 2-3. Space Element and Space Element Continuation Format

° Standard Control Bytes
2
4 Continuation of Space Element
6
8
10
12
14
16
18 Segment Count
20 Segment Sequence Number
22 Track Address
24 Track Count

*One per segment

Space Element

0

9 Standard Control Bytes

4 Continuation of Space Element
6

8 Previous Space Element

10 LV[CE| CcB

12 Segment Sequence Number
14 Track Address
16 Track Count

1One per segment

Space Element Continuation

Table 2-3. Space Element and Space Element Continuation Format (Continued)

Byte Bit Description
0-3 Control bytes (defined in Table 2-1)
4-6 Continuation of space element, a thread (in BBR format) which points to the next space element continuation
for a file
7-9* Previous space element is a thread (in BBR format) which points to the previous space element.
10 0 If LV=1, this is the last volume for a file
1 If CE=1, a space element continuation exists
2 If CB=1, each segment lower boundary is on a cylinder boundary
11-17; Not used
1m>
18,19 Segment count, a count of space elements used by the file on this volume
20,21; Segment sequence number, giving relative segment number for each segment (shows relation to segments
12,13* existing on same or separate volumes)
22,23; Track address relative to beginning of segment. (All physical disc addresses are expressed in terms of track
14,15* number rather than cylinder and track within a cylinder.)
24,25; Track count of tracks in segment
16,17*

*Byte position(s) unique to space element continuation table.

Table 2-4. Volume Element and Volume Element Continuation Format

Z Standard Control Bytes

4 Continuation of Volume Eiement

6 MD | CE

8 Segment Count

10 Volume Count

12

14 Voiume Serial Number

16

18 File Name Entry in Pack Catalog

20 Device Type
22 Reserved

*One per volume

Volume Element

(2) Standard Control Bytes

4 Continuation of Volume Element

6 l MD l CE

8

10 Volume Serial Number

12

14 File Name Entry in Pack Catalog

16 Device Type
18 Reserved

TOne per volume

2-10

Volume Element Continuation

Table 2-4. Volume Element and Volume Element Continuation Format (Continued)

Byte Bit Description

0-3 Control bytes (defined in Table 2-1)

4-6 Continuation of volume element, a thread (in BBR format) which points to the next volume element continuation
for a file

7 4] Modified volume descriptions. If MD=1, central catalog is created and modified volume descriptions are
included.

1 If CE=1, volume element continuation exists

89 Segment count

10,11 Volume count

12-17; Volume serial number

8-13*

18-20; File entry in pack catalog, a pointer to the file's entry in the specified volume’s pack catalog (BBR format)

14-16*)

21,17* Device type (0016 for MEMOREX 3664 Drive)

22,18* 0 If HW=1, highest volume written

23;19* Reserved

*Byte position(s) unique to volume element continuation table.

2-1

TABLES

Tables are primarily for storage information that is
easily referenced. The Data Management system has
two primary tables for information reference:

e File Description Table (FDT) created by
OPEN

e Buffer Description Table (BDT) created by
DEFSF, DEFRF, or DEFIF

FILE DESCRIPTION TABLE

A File Description Table (FDT) is built dynamically
during a job’s execution time in the user area of
memory. An OPEN request causes an FDT to be
built, and a CLOSE request releases the FDT space.
The FDT is 60 bytes in length. The portion of the
FDT common to all files is 40 bytes in length, and
the remainder of the FDT which is device dependent
is 20 bytes in length.

The FDT is linked with block 1/0 requests through an
8-byte identification field; the identification field in
the FDT and the block /O request must match. The
FDT contains a unit table ordinal through which 1/O
control routines find the unit table and execute the
1/0 request. Parameters in the FDT protect users
from overlapping each other’s area on a shared device.
Table 2-5 gives the locations of the different
information fields of the FDT. Tables 2-6 through 2-8
give the device-dependent fields of the FDT.
Manipulation of FDT’s in the user partition is
discussed in Control Language Services, Extended
Reference.

2-12

BUFFER DESCRIPTION TABLE

A Buffer Description Table (BDT) is created by the
file definition macros (DEFSF, DEFRF, and DEFIF).
This main-memory table is used by the GET/PUT
logic to manage buffers and control logical records.
The BDT is responsible for recording location of 1/0
buffer(s) and record areas.

A BDT is created for each file organization:
sequential, relative, indexed. The three BDT format
tables follow with the appropriate field descriptions
(Tables 2-9 through 2-11).

Table 2-5. File Description Table Format

-10 Reserved
-8 LOA
6] OB .
4 Label Ordinal
2 PFL
0 NFL

NC Device Type

Identification

Cc Us B ub L SF Last Block 1/O Function

Current Block Number

16

18 Return Code
20 Tag for CW
22 Block Size

24 Current CW Pointer

26 Status

28 RC

30 Device Dependent Fields*

L e T e e gt
WW\

*Refer to appropriate device table (Tables 2-6 through 2-8).

Byte Bit Description
-10,-9 Reserved
8,7 Length {in bytes) of FDT (LOA)
-6 0] Ordinal bit (OB)

‘ 0 Label ordinal points to central catalog

1 Label ordinal points to Control Language job file

-5,-4,-3 . Label ordinal indicates the position of the label in the central catalog or the Control Language job file.
2,1 Previous FDT address (PFL)

2-13

Table 2-5. File Description Table Format (Continued)

Byte Bit Description
0,1 Next FDT address (NFL)
2 1 User bit (UB) reserved for emulator set to zero when FDT is built
2 Freeze flag (FRE)
0 File is not frozen
1 File is reserved for a recycle of outstanding queue entry block (QEB)
7 Native character set flag (NC). If NC=1, first data byte is the command code.
3 0-7 Device type
4-11 File identification
12 1 Common stored data format bit (C)
0 Not common stored data format
1 Common stored data format
2,3 Usage flag (US)
00 Input
01 Update
10 Qutput
4 Bypass flag (B)

0 No bypass
1 Bypass, READ goes to EOF and WRITE is a NOP

5 Update flag (UD)
0 No update
1 Update

6 Lockout flag (L)
0 No lockout

1 Close with lock

7 Sequential file (SF)
4] Not sequential

1 Sequential

13 0-7 Last function processed in block 1/0

14-17 Block number after last function processed. If zero, current block number is unknown.

18 2 End condition bit (END) indicates the sensing of an end condition: EOF, EOA, or printer carriage channels
9or12.

19 Return code

Table 2-5. File Description Table Format (Continued)

Byte Bit Description
20 0 Error recovery processing flag (ERP)
0 Call error recovery when errors encountered
1 Do not call error recovery for errors
3 FDT restore (FR)
4] FDT not restored
1 FDT restored
4 Hold up flag (H)
0 File not in recovery
1 File in error recovery and following requests are held up until recovery complete
5 Block 1/0 internal flag (BB); set by block 1/O to indicate that a RESET macro has passed through the file.
Bit is reset by driver.
21 Tag for command word (CW) address pointer
22,23 Byte size {or maximum size) of each record
24,25 A pointer to the current or last CW executed by this file
26,27 Status of last 1/O operation
28,29 Residual count (RC): the difference between bytes requested and bytes received

The device dependent portion of the FDT begins at byte 30.

2-16

Table 2-6. Disc Device Format

30| Res. PF PA WF DF Reserved Number of Residual Blocks
32
Highest Block Written
34
36
Relative Block Number
38
40 Blks/Track] Gap
42 Next Segment Link
44 UORD Reserved
46 Number of Contiguous Tracks
48 Beginning Track Number
*Extent
Byte Bit Description
30 0 Reserved
1 Paired file flag (PF)
0 Not paired
1 Paired file
2 Paired file indicator (PA)
0 Upper portion of track used for this file
1 Lower portion of track used for this file
3 Write check flag (WF)
0 No write check
1 Write check of all writes
4 Disc driver flag (DF)
5-7 Reserved
31 Residual block number, the number of blocks remaining to be up for a multiblock read request which crosses
tracks
32-35 Highest block number written for volume now mounted
36-39 Relative block number (calculated from beginning of file) of first block on presently mounted volume
40 0-5 Number of records on a disc track (BLK/TRACK)
40,41 6-7, Gap in bytes between records for pack rotational speed variation
0-7
42-43 Next segment link (extent address)

2-16

Table 2-6. Disc Device Format (Continued)

Byte Bit Description

44 Unit table ordinal (UORD) which indicates the unit table to which this segment is related
45 Reserved

'46,47 Number of contiguous tracks

48,49 Beginning track number for this extent (0-3999)

217

Table 2-7. Magnetic Tape Device Format

Sense

Relative Block Number

44

UORD ALT ORD

46

48

Volume Number

Byte Bit Description
30-35 Sense bytes of the unit at the time of the last error
36-39 Relative block number (calculated from beginning of file) of first block on presently mounted volume
44 Current unit table ordinal (UORD)
45 Unit ordinal of alternate tape (ALT ORD)
46 Volume number
47 0 Label processing flag (LP)
0 No label processing.complete
1 Label processing complete
1 Tape mark flag (TM); a tape mark precedes the first data record on the tape
7 Offset (O), an alternate unit

2-18

30

Table 2-8. Unit Record Device Format

Sense

Byte Bit Description
30 Sense byte of the unit at the time of last error
31 Unit table orclinal (UORD)

2-19

2-20

Table 2-9. Buffer Description Table Format for Sequential Files

0 GET/PUT Address
2| N8B FTYP S LABL AM RT Blocking Factor
4 Block Size
6 Record Size
8 S TAG GP MOD STAG RA
10 Record Area Address
12

22

File Identification

S TAG SA

Save Area Address

24

Error Offset

S TAG RAP

28 Record Address Pointer
30

Relative Record Number
32
34

Current Block Number
36
38 Logical Record Number
40PU|AB|P|UR L|I|VISK|IG|B Use
42

Work Area
44
46
Move Routine

54

Table 2-9. Buffer Description Table Format for Sequential Files (Continued)

56
45 =
1 Block 1/O Packet
66
68
ﬁ: Buffer 1 1/O Packet TL
88
90
A :L
™~ Buffer 2 1/O Packet [
S TAG EA
114 Error Address
*Qptional
If buffer 2 is absent, bytes 90 through 93 end the BDT as follows:
STAG EA
92 | Error Address
Byte Bit Description
0,1 External address of the GET/PUT module processing this file
2 0 Number of buffers (NB)
0 One buffer
1 Two buffers
1,2 File type (FTYP)
00 Sequential
01 Relative
10 fndexed
3 Shared buffer flag {S). If S=1, 1/O buffers are shared with other files.
45 Label processing (LABL)
00 No labels

2-21

Table 2-9. Buffer Description Table Format for Sequential Files (Continued)

Byte Bit Description
01 Nonstandard labels
10 Standard labels
6 Access method (AM)
0 Sequential
1 Random
7 Record type (RT)
0 Fixed length
1 Variable length
3 Blocking factor, number of records per block (0-255)
4.5 Block size {in bytes) of the 1/O buffer(s), size must include record headers
6,7 Record size (in bytes) of maximum record excluding header
8 Segment tag for GET/PUT module (S TAG GP MOD)
9 Segment tag for record area address (S TAG RA)
10,11 Record area address, first byte of record area
12-19 File identifier for data file (8 bytes EBCDIC)
21 Segment tag for save area address (S TAG SA)
22,23 Save area address, calling program’s linkage and register save area
24,25 Error offset, offset (in bytes) to error address from beginning of BDT
27 Segment tag for record address pointer (S TAG RAP)
28,29 Record address pointer, first byte address of active record in active |/O data buffer
30-33 Relative record number, record number relative to first record in the file
34-37 Current block number, physical block number present in active buffer
38-39 Logical record number, number of active record in active buffer
40 (1] 1f PU=1, the record address pointer has been updated following a PUT or reset to the first record in the active
buffer.
1 Active buffer (AB)
0 First buffer
1 Second buffer
2 PUT flag (P). If P=1, record has been written in the active data buffer.
3 Unit record flag (UR). If UR=1, device is not disc or tape.

2-22

Table 2-9. Buffer Description Table Format for Sequential Files (Continued)

Byte Bit Description
5 Limits flag (L}, 1f L=1, timits are defined for relative files
6 1/0 register flag (1)
0 Record area
1 1/O register
7 Verify flag (V). 1f V=1, write verify is performed.
41 0 Skip flag (SK). 1f SK=1, error option is to skip error.
1. Ignore flag (IG). |f 1IG=1, ighore option was selection.
2 Binary bit (B). If B=1, binary cards are to be read.
6,7 1/0 usage (USE)
00 Input
01 Update
10 Output
42-45 Work area
46-55 Move routine. Data movement routine consisting of a MOVL instruction followed by a BR instruction.
56-67 Block 1/0 packet used to issue service requests such as CLOVE, POSITION, and RESET.
68-69 Buffer 1/Q packet for 1/O between the data file and the first 1/O buffer.
90-111* Buffer 2 1/0 packet for /O between the data file and the second 1/0 buffer. (Optional)
113*,91% Segment tag for error address (S TAG EA)
114-115*; Error address, adclress of error return
92-93t

*Byte positions unique to BDT for sequential files when buffer 2 is present.
tByte positions unique to BDT for sequential file when buffer 2 is absent.

2-23

Table 2-10. Buffer Description Table Format for Relative Files

GET/PUT Address

NB FTYP S LABL l AM RT Blocking Factor
4 Block Size
6 Record Size
8 S TAG GP MOD I STAG RA
10 Record Area Address
12

File Identification

LAY

({9

S TAG SA
22 Save Area Address
24 »_Erro Offset
26 S TAG RAP
28 Record Address Pointer
30
Relative Record Number
32
34
Current Block Number
36
38 Logical Record Number
40 PUIAB{PIUR L|I]V|SK 1G B
42
Work Area

44
46

= Move Routine -
54
56

5; Block 1/0 Packet A
66
68

o Buffer 1 1/O Packet 7
88

2-24

[£8

Table 2-10. Buffer Description Table Format for Relative Files (Continued)

90
-~ EB
T Buffer 2 1/0O Packet *
110
S TAG AK
114 Key Address Pointer
116
Limit X
118
120|
LimitY *
122
124
Offset
126 |
128 S TAG EA
*
130 Error Address
*Optional
if buffer 2 is absent, bytes 90 throug]h 109 end the BDT as follows:
STAG AK
92 Key Address Pointer
94
Limit X
96
98
Limit Y *
100
102
Offset
104
106 S TAG EA
108 Error Address
*Optional

2-25

Table 2-10. Buffer Description Table Format for Relative Files (Continued)

Byte Bit Description
0,1 External address of the GET/PUT module processing this file
2 0 Number of buffers (NB)
4] One buffer
1 Two buffers
1,2 File Type (FTYP)
00 Sequential
01 Relative
10 Indexed
3 Shared buffer flag (S). If S=1, 1/0 buffers are shared with other files.
45 Label processing (LABL)
00 No labels
01 Nonstandard labels
10 Standard labels
6 Access Method (AM)
0 Sequential
1 Random
7 Record type {RT)
0 Fixed length
1 Variable length
3 Blocking factor, number of records per block (0-255)
4,5 Block size (in bytes) of the 1/O buffers, size must include record headers
6,7 Record size (in bytes) of maximum record excluding header
8 Segment tag for GET/PUT module (S TAG GP MOD)
9 Segment tag for record area address (S TAG RA)
10,11 Record area address, first byte of record area
12-19 File identifier for data file (8 bytes EBCDIC)
21 Segment tag for save area address (S TAG SA)
22,23 Save area address, calling programs linkage and register save area
24,25 Error offset, offset (in bytes) to error address from beginning of BDT
27 Segment tag for record address pointer (S TAG RAP)
28,29 Record address pointer, first byte address of active record in active 1/O data buffer
30-33 Relative record number, record number relative to the first record in the file

2-26

Table 2-10. Buffer Description Table Format for Relative Files (Continued)

Byte Bit Description
34-37 Current block number, physical block number present in active buffer
38-39 Logical record number, number of active record in active buffer
40 0 If PU=1, the record address pointer has been updated following a PUT or reset to the first record in the active
buffer.
1 Active buffer (AB)
0 First buffer
1 Second buffer
2 PUT flag (P). If P=1, record has been written in the active data buffer.
3 Unit record flag (UR). If UR=1, device is not disc or tape.
) Limits flag (L). If L=1, limits are defined for relative files.
6 1/0O register flag (1)
0 Record area
1 1/0O register
7 Verify flag (V). If V=1, write verify is performed.
a1 0 Skip flag (SK). If SK=1, error option is to skip error.
1 Ignore flag (IG). If IG=1, ignore option was selected.
2 Binary bit (B). If B=1, binary cards are to be read.
6,7 1/O Usage (USE)
00 input
01 Update
10 Output
42-45 Work Area
46-55 Move routine. Data movement routine consisting of a MOVL instruction followed by a BR instruction.
56-67 Block 1/O packet used to issue service requests such as CLOVE, POSITION, and ADD KEY/DELETE KEYS.
68-89 Buffer 1 1/0 packet for 1/0O between the data file and the first 1/O buffer.
20-111* Buffer 2 1/0 packet for 1/O between the data file and the second 1/0 buffer.
113*,91+t Segment tag for key address pointer (S TAG AK)
114,115%; Key address pointer, First byte address of key address field for relative file.
92,93t

2-27

Table 2-10. Buffer Description Table Format for Relative Files (Continued)

Byte Bit Description
116-119*; Limit X, lower limit for processing. Optional.

94-97t

120-123%; Limit Y, upper limit for processing. Optional.

98-101t

124-127*; Offset, lower limits defined when file was first created. Optional.
102-105t1

129*;107% Segment tag for Error Address (S TAG EA)

130,131*%; Error address. Address of error return.

108,1091

*Byte positions unique to BDT for relative files when buffer 2 is present.
TByte positions unique to BDT for relative files when buffer 2 is absent.

2-28

Table 2-11. Buffer Description Table Format for Indexed Files

0 GET/PUT Address
2] NB FTYP S LABL AM RT Blocking Factor
4 Block Size
6 Record Size
8 S TAG GP MOD S TAG RA
10 Record Area Address
12

File ldentification

e

18
20 Kq S TAG SA
22 Save Area Address
24 Error Offset
26 Ky S TAG RAP
28 Relative Address Pointer
30

Relative Record Number
32
34

Current Block Number 1
36
38 Logical Record Number
40 PUIABIP!EOFI ISIIF] llv W
42

Work Area
44
46, ,
?f Move Routine ﬂ
54
56
A4 Block /0 Packet o

66
68

b))

RS Y

Buffer 1 1/0 Packet

88|

b) NN

189

Table 2-11. Buffer Description Table Format for Indexed Files (Continued)

)1
g

110

index Buffer 1/0 Packet

Ji

(LY

112 K3

S TAG AK

14|

KEYADR1 Address Pointer

118 Cq

Ca

118

Index Buffer Block

120

122

Current Index Block -

124 Key Size

S TAG IKP

126

Index Block Key Address Pointer

128

Directory to the Directory Block Addrass

130

Number of Directory Blocks

132
134

Physical Block Number

136

b)1
143

144

146 F

148

Compare Routine

J2
W

S TAG FK

KEYADR?2 Address Pointer

150

Jh
W

170

Buffer 2 1/0 Packet

)
«

172
174
176
178

180
182

Current Block Number 2

S TAG HLDB

Directory to the Directory Block Pointer

S TAG EA

Error Address

*Optional

If buffer 2 is absent, bytes 150 through 157 end the BDT as shown:

2-30

Table 2-11. Buffer Description Table Format for Indexed Files (Continued)

STAG HLDB

152 Directory to the Directory Block Pointer

S TAG EA

156 Error Address

*Optional

Byte Bit Description

01 External address of the GET/PUT module processing this file

2 0 Number of buffers (NB)
0 One buffer

1 Two buffers

1,2 File type (FTYP)

00 Sequential
01 Relative
10 Indexed

3 Shared buffer flag (S). If S=1, 1/O buffers are shared with other files.

45 Label processing (LLABL)

00 No labels

01 Nonstandard labels
10 Standlard labels

6 Access method (AM)
0 Sequential

1 Random

7 Record type (RT)
0 Fixed length
1 Variable length

3 Blocking factor, number of records per block (0-255)

45 Block size (in bytes) of the 1/O buffer(s), size must include record headers

6,7 Record size (in bytes) of maximum record excluding header

8 Segment tag for GET/PUT module (S TAG GP MOD)

9 Segment tag for record area address (S TAG RA)

10,11 Record area address, first byte of record area

12-19 File identifier for data file and information file (8 bytes, EBCDIC)

231

Table 2-11. Buffer Description Table Format for indexed File (Continued)

Byte Bit Descr:ption
20 Spread factor (K1), indicating how many passes made on each track
21 Segment tag for save area address (S TAG SA)
22,23 Save area address, calling program’s linkage and register save area
24,25 Error offset, offset (in bytes) to error address from beginning of BDT
26 Number of blocks per track minus one (K2)
27 Segment tag for record address pointer (S TAG RAP)
28,29 Record address pointer, first byte address of active record in active 1/O data buffer
30-33 Relative record number, record number relative to the first record in the file
34-37 Current block number 1, physical block number present in data buffer 1
40 0 If PU=1, the index biock key address pointer was updated by a DELR, PUT, or PUTU instruction in sequential
access mode.
1 Active buffer (AB)
0 First buffer
1 Second buffer
2 PUT flag (P). If P=1, record has been written in the active data buffer
3 End-of-file flag (EOF). If EOF=1, the end-of-file has been reached.
4 Index sharing flag (1S). If 1S=1, index buffer is shared with data buffer.
5 Index file flag (IF). If IF=1, index block was just read or written.
6 1/0 register ftag (1)
0 Record area
1 1/Q register
7 Verify flag (V). If V=1, write verify is performed.
41 1 Ignore flag (IG). If 1IG=1, ignore option was selected.
3 Previous GET flag (PG). If PG=1, last operation was a GET.
4 Index write flag (IW}. If IW=1, KEY is added or deleted in current index block.
6,7 1/O usage (USE)
00 Input
01 Update
10 Output
42-45 Work Area
46-55 Move routine. Data movement routine consisting of a MOV L followed by a BR instruction.

2-32

Table 2-11. Buffer Description Table Format for Indexed Files (Continued)

Byte Bit Descript'ion
56-67 Biock 1/0O packet, used to issue service requests such as CLOVE, POSITION, and ADD KEY/DELETE KEYS.
68-89 Buffer 1 1/O packet for 1/O between the data file and the first 1/O buffer.
90-111 Index buffer 1/0 packet. 1/O parameter packet for I/0 between the information file and the index buffer.
112 Number of blocks per pass minus one (K3).
113 Segment tag for key address 1 pointer (S TAG AK)
114,115 Key address 1 (KEYADR1) pointer, first byte address of k;a—ddress 1 field
116 Current pass boundary counter (Cq)
17 Current track boundary counter (Co)
118,119 Index buffer size, in bytes
120-123 Current index block number; physical block number present in index buffer.
124 Key size, size {in bytes) of primary key field
125 Segment tag for index block key address pointer {S TAG IKP)
126,127 Index block key address pointer, first byte address of active key in index buffer
128,129 Block address of directory to the directory block
130,131 Number of directory blocks written
132-135 Physical block number of data block to be read or written
136-145 Compare routine, data comparison consisting of a CMPX instruction followed by a BR instruction.
146 0 KEYADR2 flag {F)
0 KEYADR2 not present
1 KEYADR2 present
1 Directory to the directory block flag (D)
0 Directory to the directory block in mass storage
1 Directory to the directory block in main storage
147* Segment tag for key address 2 (KEYADR2) pointer (S TAG FK)
148,149* Key address 2 (KEYADR2) pointer
150-171* Buffer 2 1/0 packet, parameter packet for 1/O between data file and second 1/O buffer
172-175* Current block number 2, physic.al block number present in data buffer 2
177*161t Segment tag for directory to the directory biock pointer (S TAG HLDB)
178,179%; Directory to the directory block pointer, first byte address of main storage directory to the directory block
152,163t

2-33

Table 2-11. Buffer Description Table Format for Indexed Files (Continued)

Byte Bit Description
181*;165% Segment tag for Error Address (S TAG EA)

182,183*; Error address, address of error return

156,157t

*Byte positions unique to BDT for indexed files when buffer 2 is present.
1tByte positions unique to BDT for indexed files when buffer 2 is absent.

2-34

3. BLOCK INPUT/OUTPUT

INTRODUCTION

The block level of input/output processing may be
applied either to files which were previously
processed at the logical level™ or to files intended for
use at the block level only. But whatever the
organization of the file being processed, the data is
referenced by key block number or as next data
block for the unit record devices.

The basic unit of data transfer at the block (and
physical) level is the block. Thus the
block-input/output user may only read or write a
whole block of data at a time (not individual records
within a block).

If the user is operating on files created specifically for
block input/output use, he is free to establish within
the blocks any arrangement or grouping of logical
records he wishes, and the blocking and deblocking of
these records must of course be performed by the
user himself. However, it should be noted that if he
wishes to operate on previously-created files which
were used for logical input/output, he must be aware
of the pre-established logical structure of the data
within the blocks.

*Sequential and relative files may easily be processed by
block input/output but it is not practical to apply block
input/output to indexed files.

GENERAL RULES

Tape and disc files for block input/output processing
are created in the same way as those created for
logical input/output (that is, through Control
Language //DEF statements external to the program
or ALLOC macros internally). These are standard
system file structures and the following rules of file
logic must be observed when processing them:

e A file must be opened before it may be
processed

o All blocks within a given disc file must be of
the same length

o Blocks must be at least two bytes long for
disc requests (printer and card punch
requests are two bytes long).

e Block numbers may go from 1 to 232.1 (disc
block is 224-1)

o All buffers must begin on word boundaries
for disc

e Read buffers will terminate on word
boundaries for disc

In addition, the following restrictions should be
noted:

e Processing across volume boundaries on
sequential files is not allowed without calling

CLOVE

e Multi-block reading will only be
implemented for files with blocks of an even
byte length

e Key fields are not supported for disc storage
and will be ignored if present

31

BLOCK INPUT/OUTPUT CODING

A set of system macro instructions is provided for
block input/output coding. The basic macros are
READ, WRITE, POSITN and CNTRL. With these
instructions blocks of data may be read and written,
files may be positioned to particular blocks in
preparation for processing, and certain hardware
commands not involving data transfer may be
performed. Other facilities that might be required are
provided by the STATUS macro, which allows file
status checking; the TYPE macro, which returns
device type; and the RESET macro, which enables
error conditions to be cleared (to allow for
continuation after an error).

A particular block of data within a file is referred to
by number. All files are ordered sequentially, with
the first block of the file being block number 1. As an
aid to processing files in a sequential manner, explicit
block numbers are not necessary. Any data request
with an implied block number causes the block
number to be updated. The block referred to by a
request is determined relative to an internal block
number maintained by the 1/0 control routines.

BLOCK READING

The READ macro reads a block of data from a
specified file and stores it at a specified buffer
address. The number of the block to be read is
obtained either directly from the READ call (if
specified) or by adding 1 to the current block count
saved by the system. After the READ is executed the
updated block number will replace the old block
number in the file’s block counter so that a
subsequent READ will automatically read the next
block.

If a POSITN macro (to the same file) is executed
immediately preceding a READ, the current block
number will be used without change. When a file is
opened for input (reading) its block counter is
initially set at 1.

BLOCK WRITING

The WRITE macro transfers a block of data from a
specified buffer address to a specified file. The
number of the block into which the data is to be
written is obtained either directly from the WRITE
call (if specified) or by adding 1 to the current block

Table 3-1. Assumed Block Numbers

Operational Sequence Effect
READ Disc: Each Read causes a one-count increase in the block number
before the operation.
READ
A_II_: Records are read sequentially.
READ
WRITE Disc: Each Write causes a one-count increase in the block number
after the operation.
WRITE
All: Records are written sequentially.
WRITE
POSITN POSITN The block referred to by Positn is used for the-Read or Write request.
or
READ WRITE
READ Disc: The block written replaces the block just read.
WRITE Reader/Punch: The block is written into the card just read (file open for update);
and the block is written into the next card (file open for output).
Mag Tape: The block is written after the block just read.
WRITE Disc: The block number is increased after the WRITE operation and
not prior to the Read operation. This avoids skipping the next
READ sequential block.
Reader/Punch: Card n is written. Card n+1 is then read.
Mag Tape: Invalid sequence.

3-2

count saved by the system. After the WRITE is
executed the updated block number will replace the
old block number in the file's block counter so that a
subsequent WRITE will automatically write into the
next block.

If a POSITN macro (to the same file) is executed
immediately preceding the WRITE the current block
number will be used without change.

If a READ macro immediately precedes a WRITE,
the current block number will be increased by 1 in
the normal way for a magnetic tape file but will not
be altered in the case of a disc file.

When a file is opened for output (writing), what
happens to the block counter depends on the type of
file. For scratch, temporary and work files, opening
the file sets the block counter to 1. For permanent
files, however, the block counter will not be altered
and will retain the value left in it on the previous use.
This enables data already contained on the file to be
saved between different job runs by adding new data
only to the end of the file (unless otherwise
specified).

Table 3-1 gives the assumed block numbers for the
READ, WRITE, and POSITN macros.

BLOCK POSITIONING

The current block number of a file may be preset by
a POSITN macro for subsequent reading or writing.
This macro sets the current block counter of a
specified file to a specified value.

DEVICE CONTROL COMMANDS

input/output device control commands, not involving
a data transfer, may be implemented by the CNTRL
macro. This macro transmits a specified command to
the device containing a specified file. Typical
commands transmitted by this rmacro are Skip to Top
of Form for line printer, Rewind Tape for tape drive.

SPACE MANAGEMENT AND FILE CONTROL

Space management and file control for block
input/output are handled by Data Management
functions described in Section 2. For space
management ALLOC, EXPAND and PURGE are
used. For file control OPEN, CL.OSE and CLOVE are
used.

PROCESSING CONSIDERATIONS

REQUEST OVERLAP

Multiple requests to the same file or the same device
can be issued. However, to avoid ambiguous results,
separate request blocks and data buffers must be
used. Requests will be honored in the order of receipt
within a file. Issuing multiple requests, with the aid of
the RETURN=YES operand in the requesting macros,
improves throughput by enabling the system to
overlap input/output set-up time with data
transmission.

PRIORITY

Input/output requests are processed by the system
according to the priority of the program which issues
them. This priority is specified in the Control
Language //JOB card and is set at the time the job is
initiated.

END CONDITIONS

End conditions are special boundary conditions
resulting in return indications to the user but not
considered as errors.

e End of File (EOF)

EOF is a logical boundary defined for input
files. Each device™ capable of reading has a
defined end of file condition. EOF provides
a condition in the data stream which is
uniguely detectable by the system. After
EOF has been detected on disc, magnetic
tape, or the card reader, a RESET macro
must be issued before processing may
continue.

On the card readert, a data record beginning
with the characters /* is defined to be an
end-of-file condition. When EOF is detected,
the entire record will be transferred to the
user’s buffer.

On magnetic tape the EOF condition is set
whenever a tapemark is detected.

* An exception to this is the card reader where the /* card is

used to indicate the EOR condition in the EBCDIC mode.
In the EBCDIC=NO mode, there is no EOF condition
detectable by an 1/O driver because all data images are
considered to be legal data.

TThe operator-selected EOF option on IBM card readers is
not supported.

33

With disc, the EOF condition is set when a
block with a data-length specification of
zero has been read. Note that an embedded
EOF will not be detected, however, during a
multi-block read.

o End of Allocation (EOA)

EOA is a physical boundary applying only to
disc output files. An EOA indication is
returned any time a block is written into the
last allocated space for the file.

e End of Tape (EOT)

EOT is a physical boundary applying only to
magnetic tape output files. It signifies that
the end-of-tape reflective marker has been
sensed.

PROCESSING MULTI-VOLUME FILES

When processing sequential files occupying more than
one physical volume (disc and tape only), the block
input/output user must perform volume switching to
move from one volume to another.

At any given time, the File Description Table for a
sequential file* may only describe a single physical
volume, which limits the current range of processing
to the described volume. When, during processing, the
user encounters an EOV indication or wishes to
prematurely close the volume and switch to the next
volume he must issue a CLOVE (close volume) macro
to continue processing on the next consecutive
volume. CLOVE ensures that the next volume is
mounted, by issuing an operator message if necessary,
and then modifies the FDT to describe the next
volume.

If there are no more volumes to be processed, the
EOF/EOA bit (bit 2 of the return information) in the
CLOVE packet is set. The user is responsible for
testing this condition.

SENSE INFORMATION

The number of bytes of sense information varies with
the device. All the bytes for the device are maintained
in the File Description Table, and are updated
whenever an abnormal completion occurs for reasons

*An FDT for a relative file describes the whole file, therefore
eliminating the need for CLOVE in this case.

34

other than logical errors. A STATUS macro request
transfers this information from the File Description
Table to the user buffer (to the extent that user
buffer allows).

REQUEST TERMINATION

The user requesting a block 1/O operation has two
options while a request is processed:

e to wait for the request to be completed.

e to return to do parallel processing after the
request is recognized and before the request
is processed to completion.

If the user elects to wait for the request to be
completed before continuing with processing, his
program will be suspended by the operating system
until the request has been terminated.

If the user has returned to do parallel processing, the
COMPLETE indicator in the parameter string is set
when the request is returned from the 1/0 control
routines.

ERROR PROCESSING

At the block input/output level, the system
automatically provides attempted recovery from
hardware device errors. If peripheral device error
recovery is successful, control is returned to the user
with no error indication.

In the case of an error return (where peripheral device
error recovery has been unable to correct the error),
the program (and the rest of the job) normally is
aborted. However, if ERRCOMP=YES is coded in the
request macro, control is returned to the user
together with return information (Appendix C) thus
enabling him to process the error condition himself.
it should be noted that before issuing another request
to the same file following an error return, the user
may first have to reset the error condition with a
RESET macro (Appendix C).

Examples of block input/output are shown in Figures
3-1 and 3-2.

‘ START '

OPEN
FILES

READ
A

CARD

NO

A
e
CARD
IMAGE

A 4

END
LABEL OPER'N OPERANDS COMMENTS

OPEN
OPEN
START READ

TBIT
BOV
WRITE
B

END CLOSE
CLOSE
HALT

L I B R

CRDBUF WRS
CARDIN wDD
PRINT wDD

*

IBENT=CARDIN,IOTYP=B,USAGE=I
IDENT=PRINT,I0TYP=B,USAGE=0
IDENT=CARDIN,DATABUF=CRDIMG

2,START+

END
IDENT=PRINT,DATABUF=CRDBUF
START

IDENT=CARDIN,IOTYP=B
IDENT=PRINT,IOTYP=B

* % % % % DATAAREA * * * * *
80

C'CARDIN '

C’PRINT

*

OPEN CARD INPUT FILE
OPEN PRINTER OUTPUT FILE
READ A CARD

CHECK FOR END-OF-FILE IN REQ BLOCK

IF EOF, GO CLOSE FILES AND END PROGRAM
PRINT CONTENT OF A CARD

GO READ ANOTHER CARD

CLOSE CARD FILE

CLOSE PRINTER FILE

TERMINATE PROGRAM

* Ok X X K XK K K K X O X ¥ K K R W
CARD/PRINT BUFFER

CARD FILE IDENT

PRINTER FILE IDENT

Figure 3-1. Block 1/0 Program to Read Cards and Print

3-5

‘ START '

A

OPEN
FILES (DISC FILE
OPENED FOR OUTPUT)

RESET
DISC BUFFER
INDEX

A 4

READ
A CARD

A

MOVE CARD
IMAGE TO
DISC BUFFER
(INDEXED)

EOF

NO

YES

b 4

CLOSE DISC FILE
& REOPEN IT
FOR INPUT

I

A

READ A BLOCK
FROM DISC

YES

EOF

NO

CLOSE
FILES

RESET
DISC BUFFER
INDEX

INCREASE COUNT,
DISC BUFFER
INDEX

WRITE

BUFFER

TO DISC
(ONE BLOCK)

b
L

MOVE ONE
CARD IMAGE
FROM DISC BUFFER
TO PRINT LINE
(INDEXED)

A

PRINT
CARD IMAGE

y

INCREASE COUNT,
DISC BUFFER
INDEX

DISC
BUFFER
EMPTY

NO

Figure 3-2. Block I/O Program to Read Cards into Disc File

END

LABEL CPER'N OPERANDS .COMMENTS
OPEN IDENT=CFIL,I0TYP=B,USAGE=i OPEN CARD FILE
OPEN IDENT=DFIL,IOTYP=B,USAGE=0 OPEN DISC FILE FOR QUTPUT
OPEN IDENT=PFIL,I0TYP=B,USAGE=0 OPEN PRINTER FILE
START LODI 30 ZERO DISC BUFFER INDEX
CARDRD READ IDENT=CFIL ,BUFADR=CBUF READ A CARD
MOVX DBUF(80, 3),CBUF(80) MOVE CARD IMAGE TO DISC BUFFER
TBIT 2,CARDRD+4 CHECK FOR END-OF-FILE
BOV RESET IF EOF, GO READ DISC FILE
ADDD 3,80 INCREMENT BUFFER INDEX
CmPD 3,800 CHECK IF BUFFER FULL
BNE CARDRD IF NOT, GO READ ANOTHER CARD
DISCWR WRITE IDENT=DFIL,BUFADR=DBUF,RETURN=YES | WRITE 10-CARD BUFFER ON DISC FILE
B START GO READ ANOTHER 10 CARDS
RESET CLOSE IDENT=DFIL10TYP=B CLOSE DISC FILE
OPEN IDENT=DFIL,IOTYP=B,USAGE=I REOPEN DISC FILE FOR INPUT
DISCRD READ IDENT=DFIL,BUFADR=DBUF READ A BLOCK FROM DISC
TBIT 2,DISCRD+4 CHECK FOR END-OF-FILE
BOV END IF EOF, GO END PROGRAM
LODI 30 ZERO DISC BUFFER INDEX
MOVX PBUF(80),DBUF(80, 3) MOVE CARD IMAGE FROM DISC BUFFER TO PRINT
LINE
PRINT WRITE IDENT=PFIL,BUFADR=PBUF PRINT A CARD IMAGE
ADDD 3,80 INCREMENT DISC BUFFER INDEX
CMPD 3,800 CHECK IF BUFFER HAS BEEN EMPTIED
BNE PRINT IF NOT, GO PRINT ANOTHER CARD IMAGE
B DISCRD GO READ ANOTHER BLOCK FROM DISC FILE
END CLOSE IDENT=CFIL,I0TYP=B CLOSE CARD FILE
CLOSE IDENT=DFIL,I0TYP=B CLOSE DISC FILE
CLOSE IDENT=PFIL,IOTYP=8 CLOSE PRINTER FILE
HALT TERMINATE PROGRAM
*********i******DATAAREA********
CBUF WRS 30 CARD BUFFER
DBUF WRS 800 DISC BUFFER
PBUF WRS 80 PRINT LINE
CFIL WDD C'CFIL ‘ CARD FILE IDENT
PFIL WDD C'PFIL ‘ PRINTER FILE IDENT
DFIL wDD G'DFIL ! DISC FILE IDENT

Figure 3-2. Block 1/0O Program to Read Cards into Disc File (Continued)

3-7

4. PHYSICAL INPUT/OUTPUT

INTRODUCTION

The physical 1/0Q interface gives the user ability to
utilize the device drivers to perform
hardware-dependent 1/O operations.

Physical input/output is independent of the system'’s
file processing scheme. Whereas block input/output
deals with files, physical input/output deals directly
with hardware devices. Use of physical 1/0 assumes
the following:

o Devices to be used must be defined by
Control Language //DEF statements

e Devices must be opened for data
transmission (by the OPEN macro)

e Error recovery will automatically be
provided by the system (but may be
bypassed if desired)

PHYSICAL INPUT/OUTPUT CODING

DEFINING AND OPENING DEVICES

Each device to be used for a physical input/output
operation must first be assigned by the system. This is
done through a System Control Language //DEF
statement. An OPEN macro must: also be coded in the
user program to return the assigned unit ordinal used
in building the PCB (next paragraph).

PERFORMING THE PHYSICAL 1/0 OPERATION
To perform a physical 1/0 operation, three entities
must be created in the user’s program:

e acommand program

e a physical command block (PCB)

® a'“do 1/0" instruction (EXCP)
The command program does not consist of directly
executable codes but is a chain of command words’’
which will be operated on by the system’s 1/O
processing routines. The program should be located in

a data area of the program and may be built by means
of COMMAND macros.

Examples of command word functions are these:

e print a record on a line printer
® select a stacker on a card reader
e seek on a disc file

o read a card record from a card reader

For every physical input/output operation a Physical
Control Block (PCB) is required. The PCB should be
located in a data area. The Physical Control Block
may be build by a PCB macro.

To initiate the execution of physical 1/0 command
programs a single action macro, EXCP, is required; it
must be coded in line with the program’s executable
code. While the above general requirements are fixed,
there are several variations in the detailed
implementation, some of which allow more efficient
use of memory space than others. Efficient use of
device may be another consideration for not doing
this. First the basic method will be explained, and
then the more efficient methods will be described.

Basic Method

In the simplest situation, there is one PCB for each
command program and one EXCP for each PCB
(Figure 4-1). In this case, the address of the command
program may be assembled into the PCB by the
CPADR operand in the PCB macro, and the address
of the PCB may be assembled (by means of the PCB
operand) into the corresponding EXCP macro.

Sharing a PCB

When there are several command programs applying
to the same device, coding efficiency may be
improved by having these command programs all
share the same PCB (Figure 4-2). In this case the
address of the appropriate command program must
be dynamically supplied to the PCB before each
operation. This may be done by supplying the
appropriate command program address through the
related EXCP (by means of the CP operand) rather
than by presetting it into the PCB. Thus a group of
EXCP’s may all specify the same PCB but different
command programs. Input/output operations to
different devices may be overlapped by coding
RETURN=YES in the appropriate EXCP instruction.

4-1

4.2

cP

EXCP EXCP EXCP
PCB PCB PCB
L
ce cP ce
Figure 4-1. Basic Method for Physical 1/0
EXCP EXCP EXCP
Y ¥
PCB
cP cP cp
Figure 4-2. Sharing a PCB
EXCP
A
PCB PCB
cP cpP CcP

Figure 4-3. Sharing an EXCP

cP

Sharing an EXCP

Sometimes it is possible to employ a single EXCP to
operate through a PCB on several command programs
or even to operate on several PCB’s (Figure 4-3).
When this is to be done, the user may set up a table
of command program addresses (and PCB addresses,
if there are multiple PCB’s). The EXCP will then refer
to the address tables at execution time by indirect
addressing with the CPADR operand and PCBADR
operand.

OVERLAPPED OPERATION*

There is a PCB for each input/output device;
input/output operations to different devices may be
overlapped by coding RETURN=YES in the relevant
EXCP instruction(s). This causes control to be
retained by the requesting program (while the 1/0
operation itself is concurrently being processed by
the system), thus enabling initiation of another 1/0
operation before the first has been completed.

Beyond this, it is also possible to overlap requests to
the same device, but it should be remembered that a
separate PCB and data buffer will be required for
each such overlapped request. When multiple requests
are issued in this manner, throughput will be
improved since the system is able to overlap /O
set-up time with data transmissicn. (The system will
always service multiple requests to the same device in
order of receipt.) ‘

PHYSICAL REQUEST TERMINATION

When a physical 1/O request is completed, several
values are returned to the calling program in the

* The effectiveness of overlapped coding is dependent on
the number of Queue Entry Blocks available in the
system, a SYSGEN variable.

command block (PCB):

e address of the last command word executed
or attempted to be executed

e hardware status indication

o residual byte count of last data operation

PHYSICAL 1/O RESTRICTIONS
® Byte count must be less than 216-1 (65K)

e Multi-record read operations must not
attempt access to records across track
boundaries (disc).

e The user is responsible for validating a “‘read
count field"’ request (disc).

ERROR PROCESSING

System error recovery (Appendix C) is provided by
default just as it is at the block level. However, at the
physical level, system error recovery may be bypassed
by coding ERROPT=NO in the PCB macro. In any
case, an uncorrected error will always cause the
program to be aborted unless the operand
ERRCOMP=YES is coded in the EXCP macro making
the request. When ERRCOMP=YES is used, control is
returned to the user in the event of an error, together
with return information in the PCB so the user may
either ignore it or process the error himself.

EXAMPLE OF PHYSICAL 1/0 PROGRAM

Figure 4-4 shows a block diagram of a program to
read cards and print. A coding form illustrates the
code necessary for this physical 1/O program.

4-4

‘ START ’

OPEN
FILES

READ
A CARD

NO

YES

PRINT
EBCDIC
CONTENT
OF CARD

Figure 4-4. Physical 1/0 Program to Read Cards and Print

CLOSE
FILES

END

Sv

(PeNUI3U0Y) g pue spie) peey 03 weiboid O] 182isAUd “p-i eanbiy

MEMOREX

Assembler Coding Form

Punching Instructions

Date, Page_ _of
Gopie| | | | | | A
men []] Peogeam
NAME OPERATION OPERAND IDENTIFICATION
12 34567 891101 12131415.16171819202122232425252728293031 32 33 34 35 36 37 3839 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72|73 74 75 76 77 718 79 80
0LEN 0PEN . . IDENT=CARD4I.0TY P=Py BUFADR=UNIT1 . OPEN CARD FI.LE
QPEN IDENT= Ppyr.IOTYpsp.BUFADP-UMLLQ ... OPEN PRINT FILE
START EXCP PCB=L0CLy UNORD=UNITL. . . . e READ. A .CARD
CMPX cau;rav.-c’/ag '(3) , . LAST CARD? \
£Q .. . llctose T . D Y.£S, GO CLOSE FILES| .
ovx oﬁun’am pga;//,,m) MOYE CARD DATA TO PRINI LIME
XCR CA=L0Cs = '
START. . e . GO READ AMNMOTHER CARD
CLOSE CLOSE. . . DENT=CARDLIOIY =P CLOSE CARD FILILE .
CLOSE . DENT=PRNT+T.OTY P=P CLOS.E PRINT. FILLE
ALT . . . TERMINATLE
e kxx¥xkDATIA AREA || e
£AD C.OMMAND, 0pcop£ X'Oa’.DﬂTBUF—CBUF.DATS‘IZ'BO READ commmvp WORD
RINT OMMAND. | 0OP.CODE=X"'09 ", .DAT&UF‘PBUF.DHJSIZ- 232 PRINT COMMAND WORD
cB2 PLA EyryP.ap.cpAzm-ﬁaAD . . CARD-READ PCR
O Aol cA DEVTYP=(URs CLADR= PRINT. . LINE~PRINT PCB . .
loclt WD.D PCBZ ADDRESS OF. PCRIL
LOCS2 wDD PCAR e ADDRESS. OF PCABA
ARD WDD. . ¢/ CARD'. e . CARD FILE TDENT
PRMT. . WDD. C'PRNT'. . . . PRINT. FILE _IDENT
UNII? wDD. 0 . 0P£,v BUFFE/? £FOR CARD READLR
UNITQ. DD 0 OPEN BUEFER FOR LINE PRINIER
CRUE WRS 8.0CARD BUFFER
BUF. . . . RS 130 PRI/VT BUFFER . .
12 345€6 7_8 9 10 11 121314 15 16 17118 1920 21 222324252627282930 31 323334353537 3839 4041 42434445484748495051 52 5354 55585758596061 6263 646566 67 68697071 72 737475'7677 78 79 80

5. CONTROL PROGRAM SERVICES

INTRODUCTION

The executive services are those implemented directly
by the Control Program itself to assist the user in
various areas, such as input/output request control
and communication between job steps.

SERVICE REQUEST CONTROL

Control over the issuance of service requests by the
user program may be aided by the WAIT, INFORM
and DELAY* macros. In one way or another, all of
these macros can detect completion of the user’s
service requests.

WAIT simply suspends program execution until
completion of the specified request or requests.
WAIT is used to wait for any one or all of the
outstanding service requests.

DELAY enables the user to suspend execution for a
specific period of time with the option of breaking
the delay (resuming execution) on the completion of
any service request.

INFORM offers the capability of detecting the
completion of a service request in the interval
between the issuances of the INFORM and its actual
processing by the system. This capability, which is
not available with the WAIT macros, is implemented
with the aid of a user-supplied count of the number
of outstanding requests he has at the time of issuing
the INFORM. By comparing this count with its own
count of outstanding requests, the system can
determine whether any requests had been completed
in the time since INFORM was issued by the user. In
addition to this, INFORM always returns control
immediately to the user (it has an implied
RETURN=YES operand) so that he may continue
processing and subsequently check completion of the
INFORM by testing the complete bit in the request
block.

INTER STEP AND CONTROL LANGUAGE
COMMUNICATION

User programs running as separate job steps in a

multi-step job have two ways of transferring data to
one another: The POST/RPOST pair of macrost and
the SETCOM/GETCOM pair of macros.

In addition, any program may influence the
subsequent course of the job by means of the SETIF
macro which posts information to be tested by an
//IF statement between later job steps.

The POST/RPOST pair of macros post and read a
single byte of data in the Job Control Table, whereas
the SETCOM/GETCOM pair post and read a full eight
bytes.

FINDING PARTITION SIZE

When a program is being written which is expected to
run in partitions of various sizes, it would often be
advantageous to code the program in such a way as to
occupy as much of the partition as is currently
available.

To achieve this flexibility, a dynamic determination
of current partition size is necessary; this is provided
by the MEMLIM macro.

MEMLIM informs the program of the size of the user’
portion of the partition in which it is currently
running by returning the starting address of the last .
addressable 256-byte page, expressed as an absolute
address. In effect, MEMLIM returns the starting
address of the last usable page below the partition
space pool. For this reason, programs which make use
of MEMLIM should always specify a fixed-length
space pool through the appropriate Link Editor
directive, since otherwise the space pool will
automatically commence on the page boundary
following the space allocated to the program.

*DELAY is not available on the minimal system.

1POST/RPOST conform to the IBM UPSI bit scheme.

READING DATA FROM //PAR CARDS

Data may be read from //PAR cards supplied in the
job control deck by means of the ACCEPT macro.
This macro transfers the contents of a single /PAR
card into a specified buffer. On the first execution of
ACCEPT, the first //PAR card is read; successive
executions automatically read the rest of the //PAR
cards consecutively. After the last //PAR card has
been read the next execution of an ACCEPT transfers
program control to a specified ““end’’ address.

The user may also specify a particular //PAR card by
using the PARNUM keyword in the ACCEPT macro.

5-2

WRITING TO THE SYSOUT FILE

SYSOUT files are system output files, one of which is
created uniquely for each job*. Any user program
may write a oneline EBCDIC message on the
SYSOUT file for the job by means of the DISPL AY
macro. The location of the message buffer should be
specified on the related DISPLAY macro call.
DISPLAY expands to in-line processing code,
including an embedded block 1/0 WRITE to the
SYSOUT file.

*The Control Language Services Reference manuals contain
further explanations.

6. INTERACTION OF DATA MANAGEMENT
AND THE CONTROL LANGUAGE

Through the //DEFINE statement, a run-time
interaction between certain Data Management
services and Control Language services is provided.
This interaction gives the program independence from
reassembling to make changes that can then be made
at run-time through the control language statements.

Both the logical 1/O level (described in Control
Program and Data Management Services, Basic
Reference) and the block /O level require space
management. Users of the physical 1/0 level require
no space management. The Control Language and/or
the space management macros (ALLOC, EXPND, and
PURGE) can allocate, expand, or purge files.

If the Control Language is externally allocating a file,
the parameters are passed to the ALLOC packet by
the Step Initiator. A file is allocated by either the
ALLOC macro or by the //DEFINE statement, not
both. The ALL OC macro uses the FILENAME, MSC,
and VOLUME parameters specified in the /DEFINE
statement to override the parameter packet at
execution time. ‘ '

A space management routine is called in response to a
service request from either the Control Language
processor or the user program. The Control Language
request for Allocate or Expand may be generated at
step initiation time using parameters given in the
//DEFINE statement. The Control Language request
for Purge may be generated at step termination time,
using parameters given in the pertinent files disc
catalog entry. The user program request for Allocate,
Expand, or Purge is generated at assembly time, using
parameters given as keyword in a macro call. The user
request may optionally make reference to
FILENAME, MSC, and VOLUME information given
in a //DEFINE statement. |f so, at execution time,
the FILENAME and MSC parameters in the
//DEFINE statement override the equivalent
parameters contained in the user request.

Table 6-1 summarizes the use of different Control
Language parameters as used by the Step Initiator,
OPEN, CLOVE, ALLOC, EXPND, and PURGE.
Further explanations of the Control Language can be
found in Control Language Services, Extended
Reference.

6-1

Table 6-1. Summary of Data Management and Control Language Interaction

Control Language
Keyword Parameter

Control Language
Step Initiator

OPEN Macro

CLOVE Macro

ALLOC, EXPND,
PURGE Macros

IDENTIFIER

FILENAME

STATUS

MSC

DEVICE

VOLUME
(and IVOLUME
for OPEN)

SPREAD

CONTIGUOUS

LABEL

CSD

NUMBER

Not used

Used to search
central catalog to
determine volumes
of a cataloged file.

File usage checked

for partition conflicts.|

File type passed to
ALLOCATE packet*
if NUMBER is
specified.

Not used by Step
Initiator

Used to sliocate
peripheral re-
sources to files.

Used to mount
packs or tape reels
when possible and
verify the mount

by comparison of
volume with volume
identifier in the
volume label.

Passed 1o the
ALLOCATE packet*

Passed to the
ALLOCATE packet*

Not used by Step
Initiator

Used to compute
block size from
SIZE and BLOCK
for ALLLOCATE
when NUMBER is
specified.

Used to compute
number of blocks
from BLOCK and
NUMBER for
ALLOCATE
Also indicates
need of ALLOC.

Must match file
identifier in
OPEN macro.

Override DEFLB
information.

Not used by OPEN

Override DEFLB
information.

Not used by OPEN

When volumes have
been mounted by
Step Initiator, they
are verified by
comparison with
unit table volume
identifier entries.
When not mounted,
OPEN mounts the
volume(s) and
verifies against
volume label.

Not used by OPEN

Not used by OPEN

Indicates type of
label processing
for the job. Con-
trol Language
overrides program
specification.

Not used by OPEN

Not used by OPEN

Must match file
identifier in
CLOVE macro.

Override DEFLB
information,

Not used by CLOVE

Override DEFLB
information,

Not used by CLOVE

Used to mount and
verify successive
volumes of se-
quential files.

Not used by CLOVE

Not used by CLOVE

Indicates type of
label processing
for the job. Con-
trol Language
overrides program
specification.

Not used by CLOVE

Not used by CLOVE

Must match file identifier
in macro.

Override DEFLB informa-
tion.

Not used by ALLOC,
EXPND, or PURGE

Override DEFLB informa-
tion.

Not used by ALLOC,
EXPND, or PURGE

Volume identifiers specify
which packs are to be
used for allocation or
expansion. |f omitted,
shared resources are

used. PURGE uses
volume identifiers for
purging uncataloged files.

Not used by ALLOC,
EXPND, or PURGE

Not used by ALLOC,
EXPND, or PURGE

Not used by ALLOC,
EXPND, or PURGE.

Not used by ALLOC,
EXPND, or PURGE

Not used by ALLOC,
EXPND, or PURGE

*Parameters are passed to the ALLOCATE parameter packet by the Step Initiator; the Control Langu:ge is allocating

the file.

Table 6-1.

Summary of Data Management and Control Language interaction (Continued)

Control Language
Keyword Parameter

Control Language
Step Initiator

OPEN Macro

CLOVE Macro

ALLOC, EXPND,
PURGE Macros

SIZE

BLOCK

LOCATION

ORGANIZA-

TION

RETENTION

CATALOG

VERIFY

EXPAND

Used to compute
block size. Key
size portion is
passed to the
ALLOCATE
packet* for
indexed files.

Used to compute
block size for data
and index files.

Passed to the
ALLOCATE
packet* when
NUMBER is
specified.

Passed to the
ALLOCATE
packet*

Not used by Step
Initiator

Passed to the
ALLOCATE
packet*

Passed to the
ALLOCATE
packet*

Passed to the
EXPAND packet

Not used by OPEN

For tape files,
Control Language
supplies block size.
Default value is
251 bytes.

Not used by OPEN

Not used by OPEN

Used to generate
an expiration date
for tape files.

Not used by OPEN

If the file was
cataloged with
VERIFY=YES,
OPEN does not
interpret the param-
eter. If not, then
VERIFY=YES at
OPEN time will
temporarily over-
ride the catalog
attribute.

Not used by OPEN

Not used by CLOVE

Not used by CLOVE

Not used by CLOVE

Not used by CLOVE

Used to generate
an expiration date
for tape files.

Not used by CLOVE

Not used by CLOVE

Not used by CLOVE

Not used by ALLOC,
EXPND, or PURGE

Not used by ALLOC,
EXPND, or PURGE

Not used by ALLOC,
EXPND, or PURGE

Not used by ALLOC,

EXPND, or PURGE

Not used by ALLOC,
EXPND, or PURGE

Not used by ALLOC,
EXPND, or PURGE

Not used by ALLOC,
EXPND, or PURGE

Not used by ALLOC,
EXPND, or PURGE

*Parameters are passed to the ALLOCATE parameter packet by the Step Initiator; the Control Language is allocating the file.
**Parameter is passed to the EXPAND parameter packet by the Step Initiator; the Control Language is expanding the file.

6-3

This section gives the specifications for the block and
physical 1/0 level functions of Data Management,
Block 1/O action, Physical 1/0 action, and Control
Program Services. In general, all the macros have the
following format:

Name Operation Operand’

The name field is an optional field which contains a
1- to 8-character alphanumeric file address. The first
six characters must be unique to accommodate the
standard suffixes used by the system. These are
discussed in Appendix B of this manual. The names
ident, labadr, and tag are used as identifiers for the
software function specified in the operation field of
the macro prototype.

The operand field contains keyword parameters
which may be in any order separated by commas.
Optional parameters are denoted by brackets, [].
Parameters with a choice of specifications are
denoted by braces,{ } and the default value is
underlined.

Fields are free-form and are separated by blanks;

thus, no imbedded blanks are allowed within the

parameter string. If more than one card is necessary, a

semicolon must appear after the last parameter on
~ each card except the last.

Symbolic address (as used in macro prototypes) is the
1- to 8-character symbol used to identify a coding
statement. The IDENT parameter is the symbolic
address of the 8-byte field containing the file
identifier (left-justified, blank filled). If the pertinent
file is defined in the Control Language, the file
identifier referenced by IDENT must be identical to
the IDENT specified by the //DEFINE statement.
Unless otherwise stated numbers are assumed to be in
decimal with no leading zeros.

DATA MANAGEMENT

In this section only the block and physical 1/0 level
of Data Management macros are given. This level of
macros include these:

7. MACROS

Block 1/O Level Declarative Macro
DEFLB

Space Management Macros
ALLOC
EXPND
PURGE

File Control Macros
OPEN
CLOSE
CLOVE

1/0 Service Macro
LABRTN

Block 1/0 Macros
READ
WRITE
POSITN
CNTRL
STATUS
TYPE
RESET

Physical 1/0 Macros
EXCP
PCB

Control Program Macros
WAIT
DELAY
INFORM
POST-
RPOST
SETCOM
GETCOM
ACCEPT
DISPLAY
MEMLIM
SETIF
HALT
EHALT
ABEND
TIME
SDATE
JDATE

o Console Communication Macros

CONSOLE
MESSAGE

7-1

Appendix B details the service request mechanism
and details the expansion of these macros.

BLOCK 1/0 LEVEL DECLARATIVE MACRO

A block 1/O level declarative macro, DEFLB, defines
the file label for Data Management.

DEFLB — Define File Label

The DEFLB macro generates file label data into a
main-memory buffer for creating and checking disc
file names. The Control Language may also be used to
create and check file names. The block 1/O level space
management and file control macros use DEFLB. The
format is as follows:

Name Operation Operand
labadr DEFLB FILENAM=name

[MSC=code]

FILENAM=name

Specifies a 1- to 17-character alphanumeric file name.
The first character may be A-Z, 0-9, or $; A-Z, 0-9,
and dash are allowed as succeeding characters. Index
file names are created internally by adding an asterisk
at the end of the associated data file name.

MSC=code (Optional)
Designates a 4-byte EBCDIC modification security
code, which is used for work and permanent files. If
omitted, blanks are assumed.

BLOCK 1/O LEVEL AND PHYSICAL 1/O LEVEL
EXECUTIVE REQUESTS

The executive request macros generate requests for
space management, file control, file processing, and
file positioning at the block 1/0 level. These requests
specify a file identifier and a specific block of data
within the file. The file control and file processing
macros are also available at the physical 1/0 level,
specifying a unit identifier rather than a file
identifier.

Files which are open for block 1/O level file
processing requests are described by a File
Description Table (FDT) created by OPEN. FDT
contains a physical description of the file, a 1- to
8-character file identifier, and current processing
information about the file (for example, current
block number and status of last request). File
processing and positioning requests are made by file
identifiers and controlled by the FDT.

Units which are open for physical 1/0 level processing

are assigned by the Control Language. The identifier
field in OPEN is used to find the correct Control

7-2

Language entry which gives the unit assignment. The
//DEFINE statement indicates physical 1/0 by stating
PIO in the file name field. Physical 1/O requests are
made by a unit ordinal which has been returned to
the user after an OPEN.

Space Management Macros

The ALLOC, EXPND, and PURGE macros manage
space for all disc files. Usually these three functions
are generated through the Control Language and by a
space management utility program, which allows
changes without recompilation of the program;
however, a user program can directly manage file
space.

The allocation of paired files must be done through a
utility if not done directly from a user program. The
utility programs may also purge permanent and work
files if not done directly from the user program.

Space ranagement is required for usage of block 1/0
fevel and logical 1/0 level interfaces. Users of physical
1/0 level require no space management.

Space is allocated in increments of tracks. Paired file
allocation of two files provides minimum arm
movement for file processing. A contiguous or
non-contiguous segment of space is allocated to.both
files starting at the chosen segment. Alternate tracks
from this space are then assigned to each of the two
files. File space allocated will be contiguous unless
contiguous space is unavailable, in which case up to
12 segments will be allocated. Other allocation
options are as follows:

o Multipack files (up to seven packs)

e Suppression of automatic segmentation

e Cylinder number specification
Each disc pack contains a volume label which is
created at disc initialization time. A MRX/OS utility

prograrn may change the volume label and its
parameters.

In its device label each disc pack contains pack status
indication of one of the following conditions.

Pack Status Meaning

Nonirestricted Any allocation request may

obtain space from this pack.

Restricted Only allocation requests with
packs specified by the Con-
trol Language may obtain
space from this pack.

Locked No further allocation is

allowed on this pack.

Some disc drives are classified as shared resource
drives at initial program load time. The operator
mounts a set of packs on these drives, which will be
available for any allocation requests. The remaining
disc drives (non-shared-resource drives) are each
assigned by job control to a specific user partition for
the job step requesting the drives, and may be used
only by allocation requests associated with the job
step in the partition to which they were assigned.

ALLOC — Allocate Spaca

The ALLOC macro allocates space for user data files
and system data files, When volume identifiers have
not been specified through job control, space will be
allocated on nonrestricted packs mounted on shared
resource drives. When volume identifiers have been
specified through job control, the disc drives on
which they are mounted will have been assigned by
job control to the partition {(or system function) of
the program calling ALLOC. Duplicate file names are
not allowed on the disc catalogs. The format is as
foliows:

Name Operation Operand

[tag] ALLOC BLKSIZ=n
[CA'!I'ALOG {x=2 }]

[cow (YES]
[CSD_{YES]

[DATACYL-{ o ||

[ERRCOMP {YES }]

[FILEORG=code]
FILESIZ=n
[FILETYP=code]
[IDEMNT=symbolic address]

e (5]

INDSIZ=n*

KEYSIZ=n*

LABDEF 1=symbolic address
[LABDEF2=symbolic address]

[LIS'I {YES]

RECSIZ=n

[RETURN {YES}]

[SPREAD=n] *

[VEFIIFY {YES }]

*For indexed files only.

BLKSIZ=n

Designates the number of 8-bit bytes per block for
the file. The value n ranges from 18 bytes through
32K bytes for magnetic tape and 7294 bytes for disc.

Y—ES} (Optional)

CATALOG={ NG

CATALOG=NO specifies that the file should not be
centrally cataloged. If omitted or CATALOG=YES,
the file is cataloged. The parameter is ignored for
scratch and temporary files.

YES}

°°N={u9

(Optional)

CON=YES specifies that contiguous space is to be
obtained. Absence of this parameter or CON=NO
allows segmentation.

YES}

NO (Optional)

CSD= l

CSD=YES (default case) specifies that the file will be
created with the common stored data format.
CSD=NO specifies that a data format other than CSD
will be used.

YES
(Optional)

DATACY L=[NO
n

DATACYL=n designates a cylinder number boundary
for the beginning of the data file. The value n ranges
from 1 to 199. DATACYL=YES ensures the file
beginning on some cylinder boundary; whereas
DATACYL=NO does not. If the parameter is
omitted, the data file will not necessarily begin on a
cylinder boundary.

(Optional)

ER RCOMP={YES'

NO

ERRCOMP=YES specifies that the caller of the
request will examine return information on nonfatal
errors; therefore, nonfatal errors should not be
aborted by the system. Fatal errors such as illegal
instructions, irrecoverable memory parity errors,
privilege violations, and bound errors cause an
unconditional abort. If ERRCOMP=NO or is omitted,
no return information is examined.

FILEORG=code (Optional)

Determines the file organization. The possible codes
are as follows:

Code Organization

S Sequential
R Relative
| Indexed

If the code is omitted, sequential file organization is
used.

7-3

FILESIZ=n

Indicates an estimate of the number of blocks
expected in the data file.

FILETYP=code (Optional)

Designates the file type. The possible codes are as
follows:

Code Type
S Scratch
T Temporary
w Work
P Permanent

If the code is omitted, the temporary file type is
used.

IDENT=symbolic address (Optional)

Designates the 8-character file identifier. it should be
identical to the operand of the IDENTIFIER
keyword in a Control Language DEFINE statement
specifying the volume on which to allocate the file. If
IDENT does not match the IDENTIFIER
specification (or if omitted) and the file is to be
centrally cataloged, the file will be allocated on
shared resources. IDENT is required if the LABDEF1
parameter is not specified.

YES
INDCYL={NO
n

(Indexed files only)

INDCYL=n specifies a cylinder number boundary for
the beginning of the index file. The value n ranges
from 1 to 199. INDCYL=YES ensures the file will
begin on some cylinder boundary; whereas
INDCYL=NO does not. If the parameter is omitted,
the index file will not necessarily begin on a cylinder
boundary.

INDSIZ=n (Indexed files only)
Specifies the estimated byte size of the index blocks.
The value of n ranges from 18 bytes to 7294 bytes.

KEYSIZ=n (Indexed files only)
Gives an estimate of the byte length of the primary
key for indexed files. The value of n ranges from 2
bytes to 100 bytes.

LABDEF 1=symbolic address

Specifies the symbolic address of a file label area
which must correspond to the symbolic address
specified as the name field of the DEFLB macro.
LABDEF1 is required if the IDENT parameter is not
specified.

74

LABDEF2=symbolic address (Optional)
Specifies a second file label address for paired file
allocation requests. This option is available for
sequential and relative files only.

(Optional)

LIST=={YES}

NO

If LIST=YES, only the parameter packet is generated,
and the RETURN and ERRCOMP options are not
used. If LIST=NO, only the 2-byte standard executive
request instruction is generated. Loading of
general-purpose register 6 (R6) with the address of
the parameter packet and general-purpose register 7
(R7) with the save area address prior to issuing the
macro call is a user responsibility. If the LIST
parameter is omitted, both the execution request
instruction and the parameter packet are generated
following the macro call. Appendix B contains a
detailed discussion of the LIST parameter,

RECSIZ=n

Indicates the length of a logical record in bytes. The
value n ranges from 18 bytes through 32K bytes for
magnetic tape and 7294 bytes for disc. If omitted,
RECSIZ equals BLKSIZ.

(Optional)

RETURN=l YES‘

NO

RETURN=YES specifies that the processor issuing
the executive request should be given control
(reactivated) as soon as the request is queued to its
destination routine. If RETURN=NO or if the
parameter is omitted, the calling processor is
reactivated when the request processing is complete
or terminates abnormally if ERRCOMP=YES.

SPREAD=n {Indexed files only)
Specifies the number of physical blocks separating
two logically consecutive blocks in the indexed data
file. The number of blocks between logically
consecutive blocks is one less than the n value whose
range is 1 through 10. If this parameter is omitted,
the logically consecutive blocks are adjacent.

(Optional)

VERIFY={YES’

NO

VERIFY=YES specifies read after write verification
of all writes to this file. If omitted or if
VERIFY=NO, write verification will not be a
permanent file characteristic. The VERIFY=YES
option may be specified as a temporary override
through logical level file definition macros or through
Control Language DEFINE statements at file open
time.

EXPND — Add Mass Storage Space

The EXPND macro obtains additional mass storage
space for sequential files. The file may be open but
cannot have input or update usage at the time of the
EXPND request. The format is as follows:

Name Operation Operand
: _[YES
[tag) EXPND [caTALoG={{5
YES
[con {M)

[ERRCOMP=(I§S’]

[FILESIZ=n]
[IDENT=symbolic address]
LABDEF=symbolic address

_ [YES
[usr={N0 }H
[PAIRED=Q\:§S}]
[RETURN={§§S}]
CATAL0G=‘;_SSI (Optional)

CATALOG=NO specifies the file is not centrally
cataloged. If the parameter is omitted or
CATALOG=YES, the file is centrally cataloged. The
parameter is ignored for scratch or temporary files.

(Optional)

CON= [YES,

NO

CON=YES specifies addition of contiguous space. If
absent or CON=NO, segmentation is allowed within
the space added.

(Optional)

ERRCOMP=IYES,

NO

ERRCOMP=YES specifies that the caller of the
request will examine return information on nonfatal
errors; therefore, nonfatal errors should not be
aborted by the system. Fatal errors such as illegal
instructions, irrecoverable memory parity errors,
privilege .violations, and bounds errors cause an
unconditional abort. If ERRCOMP=NO or if omitted,
no return information is examined.

FILESIZ=n (Optional)

Indicates the number of blocks to add to the file.
IDENT=symbolic address (Optional)

Specifies Ehe 8-character file identifier. If the file is

open at the time of expansion, it must match the
name specified by the IDENT parameter of the OPEN
macro. |f the file is closed, it should match the
operand of the IDENTIFIER keyword in a Control
Language DEFINE statement specifying a volume
identifier for expansion. If IDENT does not match
the IDENTIFIER specification (or if omitted) and
the file is centrally cataloged, the expansion will be to
the shared device. IDENT is required if LABDEF is
not specified. IDENT may be omitted only for
cataloged files.

LABDEF=symbolic address

Specifies the symbolic address of a file label which
must be identical to the label address of the DEFLB
macro. This parameter is required if the IDENT
parameter is not specified.

YES} (Optional)

NO

If LIST=YES, only the parameter packet is generated,
and the RETURN and ERRCOMP options are not
used. If LIST=NO, only the 2-byte standard executive
request instruction is generated. Loading of R6 with
the address of the parameter packet and R7 with the
save area address prior to issuing the macro call is a
user responsibility. If the LIST parameter is omitted,
both the executive request instruction and the
parameter packet are generated following the macro
call. Appendix B contains a detailed discussion of the
LIST parameter.

L|ST=‘

(Optional)

PAI RED=' YES’

NO

PAIRED=YES indicates the file is paired. If
PAIRED=NO or if the parameter is omitted, there is
no pairing of files.

(Optional)

RETURN=‘YES]

NO

RETURN=YES specifies that the processor issuing
the executive request should be given control
(reactivated) as soon as the request is queued to its
destination routine. If RETURN=NO or if the
parameter is omitted, the calling processor is
reactivated when the request processing is complete
or terminates abnormally if ERRCOMP=YES.

PURGE — Release Disc File Space

The PURGE macro releases the space allocated to a
disc file. For paired file allocation, both files are
purged. The format is as follows:

75

Name Operation Operand

[tag) PURGE [cataLoG={XE2}]

[ERRCOMP—{YES}
[lDENT—symboInc address]
LABDEF=symbolic address

[LlST—[YES}]
[PAlRED-{YES}]

[RETURN= {YES}]

(Optional)

CATALOG={!§§}

NO

CATALOG=NO specifies that the file is not centrally
cataloged. If the parameter is omitted or
CATALOG=YES, the file is cataloged. The parameter
is ignored for scratch and temporary files.

{Optional)

ER RCOMP={YESI

NO

ERRCOMP=YES specifies that the caller of the
request will examine return information on nonfatal
errors; therefore, nonfatal errors should not be
aborted by the system. Fatal errors such as illegal
instructions, irrecoverable memory parity errors,
privilege violations, and bounds errors cause an
unconditional abort. If ERRCOMP=NO or if omitted,
no return information is examined.

IDENT=symbolic address (Optional)
Specifies the 8-character file identifier. It must match
the operand of the IDENTIFIER keyword in a
Control Language DEFINE statement specifying the
volumes of the file purge. IDENT may be omitted
only for cataloged files. If omitted, Data Management
finds the file in the central catalog and then locates
the volumes.

LABDEF=symbolic address

Specifies the address of a file label, which must
correspond to the label address of the DEFLB macro.
This parameter is required if the IDENT parameter is
not specified.

YES}

LIST={NO

(Optional)

if LIST=YES, only the parameter packet is generated,
and the RETURN and ERRCOMP options are not
used. If LIST=NO, only the 2-byte standard executive
request instruction is generated. Loading of R6 with
the address of the parameter packet and R7 with the

76

save area address prior to issuing the macro call is a
user rasponsibility. |f the LIST parameter is omitted,
both the executive request instruction and the
parameter packet are generated following the macro
call. Appendix B contains a detailed discussion of the
LIST parameter.

(Optionat)

PAIRED=‘YES}

NO

PAIRED=YES indicates the file is paired. If the
parameter is omitted or PAIRED=NO, the file is not
paired.

(Optional)

RETURN=‘ YES}

NO

RETURN=YES specifies that the processor issuing
the executive request should be given control
(reactivated) as soon as the request is queued to its
destination routine. If RETURN=NO or is omitted,
the calling processor is reactivated when the request
processing is complete or terminates abnormally if
ERRCOMP=YES.

FILE CONTROL

The file control macros — OPEN, CLOSE, and
CLOVE -~ direct data transmission. OPEN and
CLOSE control a file or unit at the block or physical
1/0 level. CLOVE performs volume switching at the
block 1/0 level.

OPEN — Open File for Data Transmission

The OPEN macro makes the file or unit assessible for
data transmission. The format is as follows:

Name Operation Operand
[tag] OPEN [BUFADR=symbolic address]
[controL-{A0E 1]

[ERRCOMP={$S}]
IDENT=symbolic address

forve-{5)]

[LABDEF=symbolic address]

[ust={X%)]

[RETURN={YES}]

[REWlND—{YES}]

(USAGE={gl]

BUFADR=symbolic address (Optional)

Specifies the address of a buffer for use in initiating a
file. BUFADR is required when USAGE=0 for block
1/0 level openings of a relative file. The user generates
the desired data as dummy data in this buffer prior to
the OPEN request. The initialization is performed
only once. BUFADR is required if I0TYP=P.

0 Unit ordinal Length

2 Unit Table Word 1

4 Unit Table Word 2

6

8 Volume Id

0

CONTROL=‘£"I:I—_I§,‘IVE} (Optional)

CONTROL=NATIVE indicates that the control
characters are native to that particular device. ANSI
control characters are used if it is omitted or
CONTROL=ANS.

ERRCOMP=I

YES}

NO (Optional) |

ERRCOMP=YES specifies that the caller of the
request will examine return information on nonfatal
errors; therefore, nonfatal errors should not be
aborted by the system. Fatal errors such as illegal
instructions, irrecoverable memory parity errors,
privilege violations, and bounds errors cause an
unconditional abort. If ERRQRCOMP=NO or is
omitted, no return information is examined.

IDENT=symbolic address

Specifies the 8-character file identifier. IDENT must
be identical to the operand of the IDENTIFIER
keyword in a Control Language DEFINE statement.

IOTYP=| P j (Optional)

B

Determines the type of 1/0. IOTYP=P for physical
open. I0OTYP=B (block open) creates the FDT for
block 1/0. The default value is B. If IOTYP=P, then
BUFADR must be specified. '

LABDEF=symbolic address

Specifies the address of a main-storage buffer that
contains a file label. The symbolic address should be

identical with the label address name specified in the
DEFL B macro. This parameter is ignored for files on
unit record or magnetic tape (tape labels are assigned
by the control language). For disc files, label
information may have been specified by Control
Language DEFINE statements which override
LABDEF information. For temporary or scratch files,
the file name is concatenated with the job name.

YES} (Optional)

LIST={NO

If LIST=YES, only the parameter packet is generated,
and the RETURN and ERRCOMP options are not
used. If LIST=NO, only the 2-byte standard executive
request instruction is generated. Loading of R6 with
the address of the parameter packet and R7 with the
save area address prior to issuing the macro call is a
user responsibility. If the LIST parameter is omitted,
both the executive request instruction and the
parameter packet are generated following the macro
call. Appendix B contains a detailed discussion of the
LIST parameter.

YES

NO (Optional)

RETURN=‘

RETURN=YES specifies that the processor issuing
the executive request should be given control
(reactivated) as soon as the request is queued to its
destination routine. If RETURN=NO or is omitted,
the calling processor is reactivated when the request
processing is complete or terminates abnormally if
ERRCOMP=YES.

YES} (Optional)

REWIND=[N(—)-

REWIND=NO indicates that no initial rewind of
magnetic tape files is to be performed. If
REWIND=YES or is omitted, initial rewind is
performed.

USAGE=qU
0]

(Optional)

Specifies input (l), update (U), or output (O)
processing. Update usage is allowed for sequential
files only if the record type is fixed length and the
file is assigned to mass storage. The default value is I.

CLOSE — Close File for Data Transmission

The CLOSE macro removes the availability of the file
for data transmission. The format is as follows:

7-7

Name Operation Operand
[tag] CLOSE [ERRCOMP={ YES}]

IDENT—symbohc address

forve-{]
[LlST={YES}]

[LOCK={YES}]
[RETURN=

[REW|N0={;—?}]

YES”

(Optional)

ERRCOMP={YES|

NO

ERRCOMP=YES specifies that the caller of the
request will examine return information on nonfatal
errors; therefore, nonfatal errors should not be
aborted by the system. Fatal errors such as illegal
instructions, irrecoverable memory parity errors,
privilege violations, and bounds errors cause an
unconditional abort. If ERRCOMP=NO or is omitted,
no return information is examined.

IDENT=symbolic address

Specifies the 8-character file identifier. It must be
identical to the one specified in the OPEN macro.

IOTYP=‘ ; } (Optional)

Indicates the type of 1/0. I0TYP=P for physical
close. IOTYP=B (block close) releases the FDT. The
default value is B.

(Optional)

_[YES
LIST—[NO]

If LIST=YES, only the parameter packet is generated,
and the RETURN and ERRCOMP options are not
used. If LIST=NO, only the 2-byte standard executive
request instruction is generated. Loading of R6 with
the address of the parameter packet and R7 with the
save area address prior to issuing the macro call is a
user responsibility. If the LIST parameter is omitted,
both the executive request instruction and the
parameter packet are generated following the macro
call. Appendix B contains a detailed discussion of the
LIST parameter.

(Optional)

LOCK={YES}

NO

Specifies the disposition of the file. When

7-8

LOCK=YES is used, the FDT is flagged and OPEN
may not be executed again during the same job; files
assigned to magnetic tape are unloaded. When this
parameter is not used or LOCK=NO, the file may be
reopened from within the same job; files assigned to
magnetic tape may be rewound.

RETURN=‘YES] (Optional)

NO

RETURN=YES specifies that the processor issuing
the executive request should be given control
{reactivated) as soon as the request is queued to its
destination routine. If RETURN=NO or is omitted,
the calling processor is reactivated when the request
processing is complete or terminates abnormally if
ERRCOMP=YES.

REWIND=

IYES (Optional)

REWIND=NO specifies that magnetic tape files are
not rewound after closing. If the parameter is omitted
or REWIND=YES, the tapes are rewound/unloaded.

CLOVE — Close Volume

The CLOVE macro performs volume switching at the
block 1/0 level. It is used for sequential multivolume
files assigned to tape or disc. A user program may
close a volume at any time and switch to the next
sequential volume. CLOVE must be used when a
switch to the next volume is indicated by either an
EOF record or an end of space indicator from block
1/0.

CLOVE performs header and trailer label processing
on tapes, alternate unit processing on tapes, and disc
pack mounting and dismounting (via operator
control). The format is as follows:

Name Operation Operand
[tag] CLOVE [errcomp={{5°} 1
IDENT—symboIlc address
[L|ST-{YES}]
[RETURN=- {YES}]
- _JYES .
ERRCOMP {N_O ' (Optional)

ERRCOMP=YES specifies that the caller of the
request will examine return information on nonfatal
errors; therefore, nonfatal errors should not be
aborted by the system. Fatal errors such as illegal
instructions, irrecoverable memory parity errors,
privilege violations, and bounds errors cause an
unconditional abort. If ERRCOMP=NO or is omitted,
no return information is examined.

IDENT=symbolic address

Specifies the 8-character file identifier.

(Optional)

YES}
NO

LIST={

If LIST=YES, only the parameter packet is generated,
and the RETURN and ERRCOMP options are not
used. If LIST=NO, only the 2-byte standard executive
request instruction is generated. Loading of R6 with
the address of the parameter packet and R7 with the
save area address prior to issuing the macro call is a
user responsibility. If the LIST parameter is omitted,
both the executive request instruction and the
parameter packet are generated following the macro
call. Appendix B contains a detailed discussion of the
LIST parameter.

(Optional)

RETURN={YES}

NO

RETURN=YES specifies that the processor issuing
the executive request should be given control
(reactivated) as soon as the request is queued to its
destination routine. If RETURN=NO or if the
parameter is omitted, the calling processor is
reactivated when the request processing is complete
or terminates abnormally if ERRCOMP=YES.

/0 SERVICE MACRO

Data Management also has available 1/0 service
macros which can report the status information of
various aspects of the file.

LABRTN — Return File Label Information

The LABRTN macro returns the disc catalog
elements for uncataloged and cataloged files. The file
may be open or closed. LABRTN searches the FDT
string in partition first; and if there is no FDT,
LABRTN then searches the table created by the
Control Language DEFINE statement. If the IDENT
is found, then the proper disc file information is
returned in the buffer specified by the user in
INFOADR. If a LABRTN macro is issued against a
nondisc device and the IDENT specification matches
a Control Language //DEFINE statement. for a
nondisc device, LABRTN returns an error code and
returns the device type in the first byte of the user
buffer. The format is as follows:

Name Operation Operand

NAME
[tag] LABRTN }]

[ELEMENT={ATTRIBUTE
ALL
_(YES
[ERRCOMP—‘-@ 1
IDENT=symbolic address
INFOADR=symbolic address

(YES
[ust={3}]
_(YES
[RETURN-‘M) I
NAME
ELEMENT={ ATTRIBUTE (Optional)
ALL

Specifies that the name element, attribute element, or
both elements will be returned in the buffer specified
by INFOADR. If the parameter is omitted, the
NAME element is returned. If ELEMENT=ALL is
specified, the name and attribute elements are
returned respectively. For an indexed file, the data
portion of the file is returned first and then the index
portion of the file.

YES]

NO {Optional)

ERRCOMP={

ERRCOMP=YES specifies that the caller of the
request will examine return information on nonfatal
errors; therefore, nonfatal errors should not be
aborted by the system. Fatal errors such as illegal
instructions, irrecoverable memory parity errors,
privilege violations, and bounds errors cause an
unconditional abort. If ERRCOMP=NO or if omitted,
no return information is examined.

IDENT=symbolic address

Specifies the 8-character file identifier which was
used to open the file.

INFOAD R=symbolic address

Specifies the address of a main-storage buffer where
the information is returned.

YES}

NO (Optional)

L|ST={

If LIST=YES, only the parameter packet is generated,
and the RETURN and ERRCOMP options are not
used. If LIST=NO, only the 2-byte standard executive
request instruction is generated. Loading of R6 with
the address of the parameter packet and R7 with the
save area address prior to issuing the macro call is a
user responsibility. If the LIST parameter is omitted,
both the executive request instruction and the
parameter packet are generated following the macro
call. Appendix B contains a detailed discussion of the
LIST parameter.

7-9

RETURN= {YES} Optional

RETURN=YES specifies that the processor issuing
the executive request should be given control
{reactivated) as soon as the request is queued to its
destination routine. If RETURN=NO or if the
parameter is omitted, the calling processor is
reactivated when the request processing is complete
or terminates abnormally if ERRCOMP=YES.

BLOCK INPUT/OUTPUT MACROS

READ

This macro transfers a block of data into the specified
buffer. If the location of the block is not explicitly
stated in the request, it will be generated by adding 1
to the block number last obtained (this applies to disc
and tape files only). If the preceding reference to this
file involved a WRITE or POSITN request, the
current block number is used without updating. When
the BLKNUM keyword is not used, the file is
addressed in a sequential manner.

Standard error recovery is provided, with
irrecoverable errors terminating the operation and
posting the return code in the request block.
Attempts to read outside of the portion of the file
which is currently accessible (current volume) will
result in an error.

Name Operation Operand

[tag] READ IDENT=symbolic address

DATBUF=symbolic address
[DATSIZ=symbolic address]

[LIST-[YES]]
[RETURN=(YES}]
[ERRCOMP—{YES}]

[EBCDIC“{YES}]

[OPER=8Sn]
[BLKNUM=symbolic address]

[MULTBLK—(YES}]
IDENT=symbolic address
Specifies the address of a storage location containing
the file identifier — the name by which the file is
known to the program (as opposed to the external

catalog name specified through Control Language).
The file identifier must be eight bytes in length.

DATBUF=symbolic address

The address of the data buffer. Requests to disc

7-10

storage must specify a buffer which begins and ends
on word boundaries even though the data count may
be odd.

DATSIZ=symbolic address Optional
An address pointer to the number of bytes in the
buffer. If this is omitted, the block size defined for
the file is used as the byte count. The buffer size may
be up to 65,635 bytes. Any DATSIZ value given
which is greater than the device record size will result
in a nonzero residual count returned at the end of the
operation.

Optional

LIST==[YES]

NO

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

Optional

RETURN='YES}

NO

To be used when the user program wishes to be given
control immediately on recognition of the request,
but before completion (RETURN=YES). When
RETURN=NO is coded, or the default is taken,
control will only be returned on completion of the
request.

Optional

ERRCOMP={YES]

NO

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ERRCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

The following parameters apply to the card reader
only.

EBCD!C—‘YES} Optional

This determines the type of conversion to be
performed on the data between card format and
memory format. If EBCDIC=YES, the translation is
made in accordance with the defined EBCDIC
formats. If EBCDIC=NO, the data on the card is
accepted in a binary format and is transferred to
storage without modification (card image storage
format, shown in Figure 7-1). If the parameter is
omitted the EBCDIC=Y-ES option is assumed.

Lofol T [T T | Jofo]

L[]

Figure 7-1. Card Image/Storage Relationship

OPER=SSn Optional

Selects a stacker for the card read, designated by n.
The value n is determined by the hardware device
being used. This parameter is ignored except for card
readers with multiple stackers. If it is omitted, the
normal stacker is used.

The following parameter applies to magnetic tape and
disc files only.

BLKNUM=address ~ Optional

The address of a four-byte hexadecimal field
containing the block number to be read. If it is
omitted, the current block number of the file is
updated by 1 before the READ, unless the last
operation was a WRITE™ or POSITN, in which case
the current block number is used. Block numbers up
to 232.1 are allowed, but attempts to read beyond
the limits of a file (as defined by allocation) are
returned with return information noted.

Block numbers up to 232.1 are allowed, but attempts
to read beyond the limits of a file (as defined by
allocation) are returned with return information
noted.

YES' (Optional)

MULTBLK= lL\I_O
If this operand is specified, as many disc records as
the program buffer will hold will be loaded. Any
remaining buffer space will be noted in the residual
count field.

*READ after WRITE on magnetic tape is illegal.

WRITE

This macro transfers a block of data from the
specified buffer to an /O device. The location on the
1/0 device where the data is to be placed may be
controlled by the BLKNUM keyword (disc), or the
current setting of the file block number will be used.
In either case, the file block number is updated after
the WRITE operation by adding 1 to the current
block number.

When writing to the line printer or card punch, the
first character of the user’s buffer is used for carriage
or stacker control, and is deleted from the data line.
This feature may be overridden by the OPER option.
The first character of the buffer is still deleted from
the line.

Errors detected by the 1/O routines initiate error
recovery procedures. If these fail to correct the error,
the return code is posted in the request block and the
operation is terminated.

Name Operation Operand

IDENT=symbolic address
DATBUF=symbolic address
[DATSIZ=symbolic address]

({128

| RETURN={

[tag] WRITE

o}

YES
[ERRCOMP={NO]

[EBCDIC={;—E)S}]

[BLKNUM=symbolic address]
SKnn
[OPER={SPnn]
SSn

7-11

IDENT=symbolic address

Specifies the address of a storage location containing
the file identifier — the name by which the file is
known to the program (as opposed to the external
catalog name specified through Control Language).
The file identifier must be eight bytes in length.

DATBUF=symbolic address

Specifies the address of the data buffer. Requests to
disc must specify a buffer which begins a word
boundary.

DATSIZ=symbolic address Optional

The address of the memory word which contains the
byte count of the buffer. If it is omitted, the block
size defined for the file is used as the byte count. The
buffer size may be up to 65,535 bytes.

LIST={YES|

NO Optional

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

Optional

_[YES
RETURN-{m }

To be used when the user program wishes to be given
control immediately on recognition of the request,
but befare completion (RETURN=YES). When
RETURN=NO is added, or the default is taken,
control will only be returned on completion of the
request.

Optional

ERRCOMP={YES}

NO

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ERRCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

Magnetic Tape and Disc

BLKNUM=symbolic address Optional
The address of a four-byte hexadecimal field
containing the block number to be read. This
parameter is valid only for direct-access storage

devices. If it is omitted, the current block number of
the file is updated by 1 after the WRITE operation.

7-12

Block numbers through 2321 are allowed, but
attempts to write beyond the limits of a file {as
defined by allocation) are returned with an error
indication.

Line Printer
OPER=SKnn Optional

Defines a carriage control tape channel to be used
when the data is written by a line printer. If the file is
not a printer file, the value of nn is converted to a
comparable ASA standard control character which
overlays the first character of the written block. If
the file is a printer file, this parameter overrides the
carriage operation specified by the first character of
the data record. Regardless of the method used, the
first character in the data buffer is deleted from the
print line.

OPER=SPnn Optional

Defines the number of print lines to be spaced after
printing. It is treated in a manner like that of the
OPER=SKnn parameter. From 1 to 15 lines may be
specified depending on hardware capabilities.

Card Punch
OPER=SSn Optional

Defines a stacker select operation to a card punch. If
this parameter is used, the first character in the data
buffer is written in the first position of the card. If
the parameter is not used, the first character in the
data buffer is treated as a stacker select code and is
deleted from the punch data. The absence of multiple
stackers on the card punch has no effect on this
procedure.

Optional

YES
NO

EBCDIC={—

This determines the type of conversion to be
performed on the data between card format and
memory format. With EBCDIC=YES, the translation
is made in accordance with the defined EBCDIC
formats. With EBCDIC=NO, the data on the card is
treated as being in a binary format (card image) and is
transferred from storage without modification
(Figure 7-1). If the parameter is omitted the
EBCDIC=YES option is assumed.

POSITN — Change Current Block Number

The POSITN request is used to change the current
block number for the file. The subsequent READ or
WRITE macro begins processing at the new block
number. POSITN is only allowed for files assigned to
disc storage or magnetic tape.

A POSITN on a magnetic tape file will always cause
the tape to be physically repositioned, whereas with
disc files a physical seek operation will not be
performed unless explicitly requested by SEEK=YES.

Name Operation Operand

[tag] POSITN IDENT=symbolic address

BOV
[BLKNUM={EOV]
symbolic:address

_[YES
[LisT= NO }]

[RETURN={;\:_SS}-]

YES
[ERRCOMP={M }]

[SEEK={.@S}]

IDENT=symbolic address

Specifies the address of a storage location containing
the file identifier — the name by which the file is
known to the program (as opposed to the external
catalog name specified through Control Language).
The file identifier must be eight bytes in length.

BOV
BLKNUM={EQV Optional
symbolic address

Specifies the block number at which the file is to be
positioned. BOV indicates beginning of volume, EOV
indicates end of volume®. If a symbolic address is
coded this is taken as the address of a four-byte field
containing the block number as an unsigned
hexadecimal number.

If this parameter is omitted, a position to BOV is
performed. Standard error recovery is provided, with
irrecoverable errors terminating the operation and
posting the exception indicator and return code in
the request block. A POSITN to block number 1 is a
request to position at the beginning of the file. A
POSITN to block number O will return an error. A
position to a block number above the highest block
currently mounted will also be returned with an

error; however, the file will be left positioned on the

last block of the volume or file.

YES} Optional

LIST='NO

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
*For magnetic tape EOV indicates a position forward to the
first tapemark., For disc, BOV and EOV result in
positioning, across physical pack boundaries if necessary, to
the lowest (BOV) or highest (EOV) block number which is
currently described in the File Description Table.

request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

Optional

YES} -
RETURN-‘M—? }

To be used when the user program wishes to be given
control immediately on recognition of the request,
but before completion (RETURN=YES). When
RETURN=NO is added, or the default is taken,
control will only be returned on completion of the
request.

ERRCOMP={ Optional

NO
To be used when the user devices to retain control in
the event of an error (ERRCOMP=YES). When
ERRCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

YES’

The following description applies only to disc storage.

Optional

SEEK=‘YES}

NO

This parameter causes the disc drive arm to be
physically positioned on the cylinder in which the
specified block number is to be found. If the
parameter is omitted, the seek operation will be
performed when the following READ or WRITE
macro is executed and the POSITN will merely
update the block number.

SEEK=YES should only be included when operating
on an unshared file; this is because the position of the
disc arm is not locked after a POSITN macro has been
executed, and with a shared file the arm could
therefore be repositioned by another user before data
transfer had begun. If the SEEK on POSITN
capability was not included in the operating system
(SYSGEN), this operand is ignored.

CNTRL — Hardware Control Operation

The CNTRL request is used to perform a specific
hardware control operation (this does not apply to
spooled files going to disc storage). The operations
allowed are dependent upon the device type.
Standard error recovery is provided, with
irrecoverable and logical errors terminating the
operation and posting the return code in the request
block. Control of the internal block number is
maintained where possible, but if an operation is
performed which does not maintain the block
number, any subsequent request which needs a block
number will be terminated with an error.

7-13

Name Operation Operand

[tag] CNTRL IDENT=symbolic address

[v1sT= ;gs}]

[aewnu={§§s}]

YES
[ERRCOMP={ NO }}

OPER=operation code

IDENT=symbolic address

Specifies the address of a storage location containing
the file identifier — the name by which the file is
known to the program (as opposed to the external
catalog name specified through Control Language).
The file identifier must be eight bytes in length.

Optional

_|YES
LIST—[NO }

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

Optional

RETURN=lYES]

NO

To be used when the user program wishes to be given
control immediately on recognition of the request,
but before completion (RETURN=YES). When
RETURN=NO is added, or the default is taken,
control will only be returned on completion of the
request.

YES

NO Optional

ERRCOMP= {

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ERRCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

OPER=operation code

e Reader/Punch
OPER=SSn

Select stacker on a card reader/punch.
The numeric value of n is the stacker
number. This command may only follow

e L.ine Printer

OPER=SPnn

Space the printer form nn lines
immediately. From 1 to 15 lines may be
specified, depending on the hardware
capability.

OPER=SKnn

Skip to carriage control tape channel nn
immediately. :

The permissible values of nn are 1
through 12, corresponding to channels 1
through 12 of the printer carriage
control.

o Magnetic Tape

OPER=REW

Rewind tape. The internal block number
will not be maintained.

OPER=RUN

Rewind and unload tape. The block
number will not be maintained.

OPER=ERG

Erase gap (write blank tape). The block
number will be maintained.

OPER=BSR

Backspace to interrecord gap. The block

" number will be maintained.

OPER-FSR

Forward space to interrecord gap. The
block number will be maintained.

OPER=FSF

Forward space to tapemark (EOF). The

block number will not be maintained.
OPER=BSF

Backspace to tapemark (EOF) or to Load
Point if no tapemark is present. The
block number will not be maintained.

OPER=EOF

Write End-of-File mark (tapemark). The
block number will be maintained.

@ Disc Files

OPER=EOF*

Write End-of-File mark (a record
containing a count field specifying a data
length of zero). When read, this record

7-14

a READ to a file opened for modify
usage.

*For c;i_sc—, CNTRL will always write an EOF mark regardless
of whether the OPER=EOF operand is included or not.

will cause the system to set the EOF flag
in the request block and in the File
Description Table. The block number will
be maintained.

STATUS — Report of Status
This request causes the system to pass information to

a specified data buffer regarding the status of the file
at the completion of the last operation to the file.

Name Operation Operand

[tag] STATUS IDENT=symbolic address
BUFADR=symbolic address
BUFSIZ=symbolic address

e

YES
[RETURN= NO }]

YES
[ERR‘COMP={NO }]

IDENT=symbolic address

Specifies the address of a storage location containing
the file identifier — the name by which the file is
known to the program (as opposed to the external
catalog name specified through Control Language).
The file identifier must be eight bytes in length.

BUFADR=symbolic address

Specifies the address of the data buffer.

BUFSIZ=symbolic address

Specifies the address of the memory word containing
the byte count of the buffer.

LIST={YES}

NO Optional

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

RETURN=lYES Optional

NO

To be used when the user program wishes to be given
control immediately on recognition of the request
but before completion (RETURN=YES). When
RETURN=NO is coded, or the default is taken,
control will only be returned on completion of the
request.

YES: Optional

ER RCOMP={M

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ERRCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

Between 20 and 24 bytes of file status information
are available from the system, depending on the type
of device (Table 7-1). The BUFSIZ specification
determines how much of this information is to be
returned, starting from the top of the table (this
could be less than the total amount available, if
specified).

Table 7-2 gives the information for the status word of
the Basic Data Channe! operation; Table 7-3 gives the
status word for Disc Channel operation.

TYPE — Device and File Type

This request causes the system to pass two bytes of
information to the data buffer regarding the type of
file and the type of device for which this file is
prepared.

Name Operation Operand
[tag] TYPE IDENT=symbolic address

BUFADR=symbolic address

[LIST={;G§S}]

[RETURN={;§S}]

[ERRCOMP={E,S}]

IDENT=symbolic address

Specifies the address of a storage location containing
the file identifier — the name by which the file is
known to the program (as opposed to the external
catalog name specified through Control Language).
The file identifier must be eight bytes in length.

BUFADR=symbolic address

Specifies the address of the data buffer.

7-15

Table 7-1. Returned Information Format

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

c uUs B ubD L SF Last BIO Function

Current Block Number

6 Error Field

10 Block Size

12 Pointer to Current Command Word
14 Status of Last 1/0 Operation
16 Residual Count

Disc:

PF PA | WC No. of Residual Blocks

Highest Block Written (per voiume)

Magnetic Tape:

20 Sense

Unit Record:

18 Sense Unit Ordinal

7-16

Table 7-1. Returned Information Format (Continued)

Byte Bit(s) Field Name . Definition

0 1 Common stored data format flag (C) 0 = not common stored data format
1 = common stored data format

.23 Usage Flag (US) 00 = input
01 = update
10 = output
4 Bypass Flag (B) 0 = no bypass

1 = bypass:

READ goes to EOF
WRITE is a NOP

5 Update Flag (US) 0 = not update mode
1 = update mode
6 Lockout Flag (L) 0 = no lockout
1 = file has been closed with lock
7 Sequential File Flag (SF) 0 = notsequential
1 = sequential
1 0-7 Last BIO Function Last function processed in BIO
2-5 0-7 Current Block Number (four bytes) Block number after last function processed. If zero, current
0-7 block number is unknown
0-7
0-7
6,7 0-7 Error Field When this field is non-zero, a RESET macro must be issued

before making another request to the file

8 0 System Error Processing (EP) 0 = Call Error Recovery when an error is encountered
1 = Bypass Error Recovery
1,2 Not Used
3 FDT Restore (FR) 0 = FDT not restored

1 = FDT restored

4 Hold Up Flag (H) Set when file is in error recovery to prevent further requests
from being serviced

5-7 Not Used
9 0-7 Not Used
10,11 0-7 Block Size Number of bytes in a physical record

7-17

Table 7-1. Returned Information Format (Continued)

Byte Bit{S) Fietd Name Definition
12,13 0-7 Current CW Pointer Address of the current or last command word executed on
this file
14,15 0-7 Status Status of last 1/O operation (see Tables 7-2 and 7-3)
16,17 0-7 Residual Count (RC) The difference between the number of bytes requested and
the number of bytes transferred
Disc
18 0 Not Used
1 Paired File Flag (PF) 0 = not paired
1 = paired
2 Paired File Indicator (PA) 0 = first track of paired tracks
I = second track of paired tracks
3 Write Check (WC) 0 = no write check
1 = write check on all writes
4 Disc Driver Flag Used internally by the driver only
5-7 Not Used
19 0-7 Residual Blocks Number of blocks remaining to be set up fof*a multiblock
read request which crosses tracks
20-23 0-7 Highest Block Written (HBW) Highest block number written for volume now mounted
0-7
0-7
0-7

Magnetic Tape

18-23 Sense Sense bytes of the device at time of last error
Unit Record

18 0-7 Sense Sense byte of the device at time of last error
19 0-7 Unit Ordinal (UORD) Unit table ordinal

7-18

Table 7-2. Status Word for Basic Data Channe! Operations

Byte Bit Set to 1 Meaning
0 0 Attention

1 Status Modifier

2 Control Unit End

3 Busy

4 Channel End

5 Device End

6 Unit Check

7 Unit Exception

1 0 Initial selection sequence error, caused by one of the following:

Unit not there
Parity error on bus out
Bad address
Unit off-line

1 Main storage buffer not exhausted

2 Wrong Address-In returned on initial selection or bad parity on ‘ADDRESS IN’

3 No Request In on SI0 Poll Sequence Request

4 Control check

5 Examine check (for data transfer only)

6 Invalid command or zero byte count

7 Unused

7-19

7-20

Table 7-3. Status Word for Disc Channel Operations

Byte Bit Set to 1 Meaning

0 0 IFA status not valid or command early
1 IFA missed window or command early
2 {FA window
3 IFA track boundary
4 IFA read/write termination
5 IFA burst check error
6 IFA lost data
7 {FA no-sync compare

1 0 IFA 3rd rev sync find
1 Disc (not on line) or (seek incomplete and not file unsafe)
2 Disc (file unsafe) or (seek incomplete and not file unsafe)
3 Disc read only
4 Disc pack change
5 Disc end of cylinder
6 Disc write current sense or search fail (may be EOF)
7 Disc busy
All bits set Invalid function code in command program

Optional

LIST={YES}

NO

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

_ Opti'onal

RETURN='YES}

NO

To be used when the user program wishes to be given
control immediately on recognition of the request
but before completion (RETURN=YES). When
RETURN=NO is coded, or the default is taken,
control will only be returned on completion of the
request.

Optional

ER RCOMP=‘YESI

NO

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ERRCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

The system responds to a TYPE request by placing
two bytes of file information in the buffer in the
following format:

01 2 3 465 6 7 8 15

c US | Bj UD| L{SF

Device Type

The first byte of this word is the same as the first
byte returned by the STATUS macro. The second
byte is a value representing the device type as defined
following:

OF-2F input/output devices
20-3F input only devices
40-5F output only devices
60-7F input/output devices
80-FF communications devices

A more specific description of the bit significance in
the device type code is illustrated in Table 7-4.

RESET — Reset Exception Conditions

The RESET request allows a user to reset exception
conditions in the file description table. The exception
conditions lock out new 1/0 operations which would
overlay the exception status indications. Examples of
exception conditions are EOF and irrecoverable
hardware conditions.

Name Operation Operand
{tag] RESET IDENT=symbolic address

[LIST={\N((E)S}]

[RETUHN={;§S}]

[ERRCOMP={ES}]

IDENT=symbolic address

Specifies the address of a storage location containing
the file identifier — the name by which the file is
known to the program (as opposed to the external
catalog name specified through Control Language).
The file identifier must be eight bytes in length.

Optional

LIST=‘YES’

NO

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter tabie are
generated.

Optional

RETU RN=l YES]

NO

To be used when the user program wishes to be given
control immediately on recognition of the request,
but before completion (RETURN=YES). When
RETURN=NO is coded, or the default is taken,
control will only be returned on completion of the
request,

YES

ERRCOMP={N_-O

Optional

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ERRCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

7-21

Table 7-4. Bit Significance

13

14 15 Bit assignment

b a Card Reader/Punches

b a Card Readers

b a Card Punches

b a Line Printers

b a Magnetic Tape Units

X X Disc Drives

x X Communications Devices

modifier bit

&
it

PHYSICAL INPUT/OUTPUT MACROS

EXCP — Iinput/Output Action

Name Operation Operand
_ | @register number
(tag] EXcp [PCB {svmbolic address }]

_ | @register number}
I:CP {symbolic address]

[UNORD=symbolic address |

[RETUHN={;;S}]

[ERRCOMP={J;_;S}]

This is the physical 1/0 action macro (the “do 1/O""
macro). Basically, it generates the service request
necessary to execute a command program in
conjunction with a Physical Control Block (PCB) and
for this purpose does not necessarily require any
operands. However, it should be noted that two
preconditions must be satisfied before the EXCP can
function properly:

e general register 6 must be loaded with a
pointer to the associated PCB

e the appropriate command program address
must be loaded into the PCB

If these two conditions are not already satisfied at the
time the macro is issued, the following optional
operands may be included in the macro for this
purpose.

7-22

1 means early termination (on channel

1 means hardware-buffered device

end rather than device end)

@register number

PCB= symbolic address

Optional

This operand specifies the address of the PCB. If the
parameter is omitted, the PCB location is assumed to
be R6. An alternate register or a symbolic address
may be designated to give the location of the PCB.
The use of this keyword causes the contents of R6 to
be destroyed.

_ | @register number

P=1{
P2 | symbolic address

Optional

This operand specifies the address of the appropriate
command program. If this operand is omitted, the
command program address is assumed to be in the
PCB. If the keyword is used, a register (other than
R6) or a symbolic address may specify the location of
the command program to be executed. If the
keyword is specified, the address of the command
program is moved to the CPADR area in the PCB.

UNORD=symbolic address Optional
The operand must point to a user location containing
the unit ordinal of the device on which the operation
is to be performed. This will normally be the same
address as the buffer specified in the physical OPEN
macro associated with the device, since OPEN returns
this value.

RETURN=‘E5§} Optional

To be used when the user program wishes to be
given control immediately on recognition of the
request, but before completion (RETURN=YES).
When RETURN=NO is coded, or the default is
taken, control will only be returned on completion
of the request.

Optional

ERRCOMP={YESI

NO

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ERRCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

PHYSICAL CONTROL BL.OCK

This is a data macro which generates the Physical
Command Block necessary for performing a physical
input/output operation.

Name Operation Operand

[tag] PCB [CPADR=symbolic address]

[ERR()PT={RI(—SS}]

TAPE
[DEVTYP= UREC

DISC
ASKATT }]
REMOVE

[FUNCTN={
YES

ER ROPT={ NO

Optional

Determines whether system error recovery is to be
employed in the event that an error occurs when the
command program is executed (by an EXCP macro).

MT
UR

DEVTYP= DISC Optional

COMM

Determines how much space is to be reserved in the
generated PCB to receive sense information.

o MT reserves three words

© UR reserves one word

o DISC and COMM reserve no space

o Omitting the DEVTYP operand causes
reservation of three words

In the event that an uncorrectable error occurs, sense
information will always be returned to the PCB and

the user may then use this information for his own
error processing provided that ERRCOMP=YES was
coded in the corresponding EXCP macro.

CPADR=symbolic address Optional

This parameter specifies the location of the command
program to be used with this PCB. The symbolic
address should be the label used on the command
program. |f this parameter is omitted, the PCB will be
assembled without a command program address; then
this address must therefore be supplied dynamically
at execution time by the corresponding EXCP macro.

Optional

ASKATT
FUNCTN—‘REMOVE}

This optional parameter is used for executing
functions which do not require a command program.
When this parameter is coded the CPADR parameter
is not required and will be ignored if present.
FUNCTN=ASKATT causes the program to wait for
an asynchronous attention from the device (such as
disc pack change, line printer ready, magnetic tape
loaded). |f no attention is received following a
FUNCTN=ASKATT request, the outstanding request
must be cleared before the end of the job by issuing a
FUNCTN=REMOVE request. FUNCTN=REMOVE
clears all ASKATT requests from the particular device
and returns them with an explanatory error code (see
Appendix C).

NOTE

Since the completion of a FUNCTN=ASKATT
request is dependent on outside action
(operator, hardware) care should be exercised
in its use (it is possible to give up control and
never regain it).

REMOVE and ASKATT functions cannot be chained.

COMMAND

This single macro will generate a command word (or
words)® for a physical input/output operation on
unit record, magnetic tape, disc or communications™*
devices. Since the macro takes a wide variety of
possible forms according to the type of device and
operation for which it is being used, separate
descriptions are given for each of the different classes
as reflected in the value of the OPCODE operand.

*The generated word is not directly executable code and
must therefore be coded in a data area of the user’s
program.

** Details in Teloecommunications Reference manual.

7-23

COMMAND Macro for Basic Data Channel
(Unit Record Devices and Magnetic Tape)

This macro generates a command word for physical
input/output operations on card reader, card punch,
line printer, magnetic tape, etc. (devices connected to
the basic data channel). The generated command
word specifies the hardware operation to be executed
and, for commands that require data transfer, it
designates the storage area associated with the
operation. In addition, various operation modifiers
may be supplied.

Name Operation Operanq

[tag] COMMAND OPCODE=X'nn"
[BUFADR=symbolic address]
{BUFSIZ=decimal number]

‘ [CHAIN- {YES]
[suzean {YES}]
[SKIP— {YES]

OPCODE=X"nn"

This parameter is a two-digit hexadecimal code
specifying the hardware operation to be performed
(see Table 7-5), or a command program jump
command (OPCODE=X'08’).

BUFADR=symbolic address Optional
Specifies the address of the data buffer.

BUFSIZ=decimal number Optional

Specifies the length of the data buffer in bytes. The
maximum allowable value is 65,635 bytes. BUFSIZ=0
is not valid at execution time.

YES]

CHAIN= {ﬂ_Q Optional

Indicates that another command word follows
contiguously. Omission of this operand indicates that
this is the last {(or only) command word in the
command program. CHAIN=NO represents the
command word being the last one in the command
program,

SIZERR=

l YES Optional

Any difference between the length of the data record
processed at the hardware-software interface and the
size of the data buffer is detected by the 1/O routines.
This “incorrect length indication” is normally treated
as an error condition and causes termination of a
command program at that point. The SIZERR=YES
operand (suppress length check) allows chaining to

7-24

proceed regardiess. SIZERR=NQO causes termination
of a command program at that point.

SKIP=

{YES Optional

SKIP=YES causes suppression of the transfer of data
into storage during this command word execution.
SK1P=NO causes the transfer of the data storage.

COMMAND
Macro for DCABLE Operation

Creates a command word for a physical disc
operation to return the disc drive cable address. When
an EXCP executes this command word it will read the
status of the physical device identified in the related
PCB and will place status indication in a two-byte
buffer specified by BUFADR.

Name Operation Operand
[tag] COMMAND OPCODE=DCABLE

BUFADR=symbolic address
[cHAIN= {YES}]

OPCODE=DCABLE
Operation code for returning disc drive cable address.
BUFADR=symbolic address

Specifies the two-byte buffer area where the disc
drive cable address will be returned.

YES

& Optional

CHAIN= {

indicates that another command word foliows
contiguously in storage and is to be executed
immediately after this one. CHAIN=NO represents
the command word being the last one in the
command program.

COMMAND Macro for a DCSEEK Operation

Creates a command word for a physical disc seek
operation. When executed by an EXCP, this
command word will cause a disc seek to the cylinder
and track specified in a buffer pointed to by
BUFADR.

Name Operation Operand
[tag] COMMAND OPCODE=DCSEEK
BUFADR=symbolic address
YES
[cHAIN= {

OPCODE=DCSEEK

Operation code for a disc seek.

Table 7-5. Peripheral Device Basic Hardware Operation Codes

Device Operation OPCODE
Card Reader (8010) Read (and Feed):
EBCDIC mode 02
Card Image mode 22
Test 1/0 00
No Operation 03
Sense 04
Line Printer (6120, 5060) Write (no line spacing) 01
Write and Space
Space 1 line 09*
Space 2 lines "
Space 3 lines 19
Space 4 lines 21
Space 14 lines 71
Space 15 lines 79
Space Immediate:
Space 1 line oB*
Space 2 lines 13
Space 3 lines 1B
Space 4 lines 23
Space 14 lines 73
Space 15 lines 78
Write and Skip:
Skip to Channel 1 (top of form) 89*
Skip to Channel 2 91
Skip to Channel 3 929
Skip to Channel 4 Al
Skip to Channel 11 D9
Skip to Channel 12 E1
Skip Immediate:
Skip to Channel 1 (top of form) 8B*
Skip to Channel 2 93
Skip to Channel 3 98
Skip to Channel 4 A3
Skip to Channel 11 DB
Skip to Channel 12 E3
Test 1/0 00
No Operation 03
Sense 04

*These numbers in the series are being incremented by eight.

7-25

Table 7-5. Peripheral Device Basic Hardwara Operation Codes (Continued)

Device Operation OPCODE
Card Reader/Punch (8025) Read Only: .
EBCDIC mode 0A
Card lmage mode 2A

Feed and Select Stacker:
without offset 23
with offset A3

Read, Feed and Select Stacker:

EBCDIC mode, without offset 02
EBCDIC mode, with offset 82
Card Image mode, without offset 22
Card Image mode, with offset A2

Punch, Feed and Select Stacker:

EBCDIC mode, without offset 01

EBCDIC mode, with offset 81

Card Image mode, without offset 21

Card {mage mode, with offset A1

Test 1/O ' 00

No Operation 03

Sense 04

Magnetic Tape (3237) Write Forward 01

Read Forward 02

Rewind ’ 07

Rewind and Unload OF
Backspace:

Block 27

File 2F

Forward Space:

Block 37
File 3F
Write Tapemark (End-of-File) 1F
Erase Gap 17

Force Error Mode:

Set E3

Clear D3

Test I/O 00
X5

No Operation X6
XD

XE

Sense 04

7-26

BUFADR=symbolic address

This specifies the address of a four-byte buffer which
is assumed to have been preset by the user with the
cylinder and track numbers to which the seek is to be
made. The buffer format should be:

0 7 0 7
FBA Cylinder number
FBA+2 Track number

YE
CHAIN= {&9‘3} Optional

Indicates that another command word follows
contiguously in storage and is to be executed
immediately after this one. This parameter must be
included to reserve the unit until the subsequent data
transfer is complete. CHAIN=NO represents the
command word being the last one in the command
program.

COMMAND Macro for a DCSRCH Operation

Creates a command word for a physical disc search
operation. When executed by an EXCP, this
command word causes a disc search to be performed.
The search command allows the user to locate, on the
current track, the data he wishes to process. This is
done by analyzing the physical track records for type
and content, searching for the record specified by
BUFADR. When the specified record is found, the
next contiguous command word in the command
program is executed”, If the search fails to find the
specified record on the track, the command program
is discontinued at this point and the abnormal
completion bit is set in the request block.

Name Operation Operand
[tag] COMMAND OPCODE=DCSRCH

BUFADR=symbolic address
BUFSIZ=decimal number

HA
[FiELD= { RzCNT}]
RNCNT

[CHAIN= | ;(E)S}]
OPCODE=DCSRCH -

Operation code for a disc search,

*This will normally be a DCREAD or DCWRIT to read or
write the actual data record associated with the search. The
search should always be made for a field (usually a count
field) preceding the record to be processed. Appendix E
contains further information on the organization and
structure of physical disc records.

BUFADR=symbolic address

Specifies the address of a buffer containing the data
to be used in comparing to the field being searched.
This buffer must begin on a word boundary:.

BUFSIZ=decimal number

Specifies the length of the field being searched for.

HA
FIELD={ RZCNT Optional
RNCNT

Specifies the type of field for which to search.
HA=home address, RZCNT=count field of record
zero and RNCNT=count field of record n. If this
parameter is omitted, HA is assumed. Following is a
table specifying the field to search in order to read or
write a desired field.

To Perform
this DCREAD This DCSRCH
or DCWRIT Operation is
Operation: First Required:
HA No search required
Data RNCNT
Key + Data RNCNT
Count R(N-1)CNT or HA
Count + Data R(N-1)CNT or HA
Count + Key + | R(N-1) CNT or HA
Data

Note that, when searching in preparation for a write
operation, any fields that may be situated between
the search field and the field to be written must be
skipped using a DCREAD without transfer.

Optional

CHAIN={ YES}

No

Indicates that another command word follows
contiguously in storage and is to be executed
immediately after this one (almost always the case
with the DCSRCH). CHAIN=NO represents the
command word being the last one in the command
program.

7-27

COMMAND Macro for a DCREAD Operation

Creates a command word or chained group of
command words for a physical disc read operation.
When executed by an EXCP instruction, this
command word (or group of command words) will
cause a field (or number of fields) to be copied from
disc into the specified buffer (or buffers). A
multi-record data field read may be specified by
including a BUFSIZ parameter which is a multiple of
the DATSIZ parameter. However, when this is done,
no other fields may be read by the same macro.

Name Operation Operand

[tag] COMMAND OPCODE=DCREAD
HABUF=symbolic address,
HASIZ=decimal number
DATBUF=symbolic address,
DATSIZ=decimal number
KEYBUF=symbolic address,
KEYSIZ=decimal number
CNTBUF=symbotic address,
CNTSIZ=decimal number
[BUFSI1Z=decimal number]

Lo 35}

[cHAIN= {;gs]

_ {RZCNT
[F'ELD' RNCNT}]
OPCODE=DCREAD
Operation code for a disc read.
HABUF=symbolic address Optional

HASIZ=decimal number

These two parameters are coded as a pair to indicate
that a home address field is to be read. HABUF
specifies the address of the buffer into which the
home address is to be placed and HASIZ specifies the
buffer length in bytes.

DATBUF=symbolic address Optional
DATSIZ=decimal number

These two parameters are coded as a pair to indicate
that a data field is to be read. DATBUF specifies the
address of the buffer and DATSIZ specifies the length
of the buffer, except in the case of multi-record reads
(see BUFSIZ).

KEYBUF=symbolic address Optional
KEYSIZ=decimal number

These two parameters are coded as a pair to indicate
that a data field is to be read. KEYBUF specifies the
address of the buffer, and KEYSIZ its length.

CNTBUF=symbolic address Optional
CNTSIZ=decimal number

7-28

These two parameters are coded as a pair to indicate
that a count field is to be read. CNTBUF specifies the
address of the buffer, and CNTSIZ its length in bytes.

BUFSIZ=decimal number Optional

This parameter is to be coded for multi-record reads
only. It indicates the overall length of the data buffer
(DATBUF); it should be a multiple of the value of
DATSIZ.

YES

ional
NO Optiona

SKiP= {

When this parameter is included no data will be
transferred to memory so that fields may be skipped
and/or the cyclic burst bytes” of a record may be
checked. The SKIP=NO option (default) reads data
into the buffer area.

Optional

FIELD= {RZCNT}

RNCNT

This option gives the record in the count field.
FIELD=RZCNT is record O in the count field;
FIELD=RNCNT is record n in the count field.

Optional

CHAIN=: {YES}

NO

Indicates that another command word follows
contiguously in storage and is to be executed
immediately after this one. CHAIN=NO (default)
represents the command word being the last one in
the command program.

The following table illustrates the valid combinations
of parameters which may be coded in a DCREAD
macro. (In all cases SKIP=YES may be included to
suppress data transfer.)

Multi-
Record
Operation Buffer (BUFSIZ)

Read Home HABUF No
Address
Read Data DATBUF Yes
Read Key KEYBUF+DATBUF | No
and Data
Read Count CNTBUF No
Read Count CNTBUF+DATBUF | No
and Data
Read Count, CNTBUF+KEYBUF | No
Key and Data +DATBUF

*Appendix E has further details.

COMMAND Macro for a DCWRIT or.

DCFWRIT Operation

Creates a command word or a chained group of
command words for a physical disc write operation.
When executed by an EXCP instruction, this
command word (or group of command words) will
cause data contained in the specified buffer (or
buffers) to be transferred to the specified field (or
fields) on disc.

Note that with physical write operations to disc it is
always necessary to specify the length of the variable
gap which is to be written preceding a count field, or
the fixed length gap preceding the home address field.

Name Operation g)erand
_ (DCWRIT
[tag] COMMAND OPCODE= { DOFWRIT

HABUF=symbolic address,
HASIZ=decimal number
DATBUF=symbolic address,
DATSI1Z=decimal number
KEYBUF=symbolic address,
KEYS1Z=decimal number
CNTBUF=symbolic address,
CNTSIZ=decimal number
[GAP=hexadecimal number]
YES\
[cHain={ NO H

[FIELD- {:ﬁgm—}]

Optional

OPCODE___[DCWRIT ’

DCFWRIT

Operation code for a disc write. OPCODE=DCWRIT
specifies a normal write operation.
OPCODE=DCFWRIT specifies a ‘‘format write’’: this
is the same as a normal write except that, on
completion, the rest of the track (up to the index
mark) is filled with 1’s (equivalent to a continuous

gap).

HABUF=symbolic address i Optional
HASIZ=decimal number

These two parameters are to be coded as a pair to
indicate that a home address field is to be written.
HABUF specifies the address of the buffer containing
the data to be written into the home address, and
HASIZ specifies the buffer length in bytes.

DATBUF=symbolic address Optional
DATSIZ=decimal number

These two parameters are to be coded as a pair to
indicate that an actual data record is to be written.
DATBUF specifies the address of the buffer
containing the data to be written, and DATSIZ
specifies its length in bytes.

KEYBUF=symbolic address Optional
KEYSIZ=decimal number

These two parameters are to be coded as a pair to
indicate that a keyfield is to be written. KEYBUF
specifies the address of the buffer containing the data
to be written, and KEYSIZ specifies its length in
bytes.

"CNTBUF=symbolic address Optional
CNTSIZ=decimal number

These two parameters are to be coded as a pair to
indicate that a count field is to be written. CNTBUF
specifies the-address of the buffer containing the data
to be written, and CNTSIZ specifies its length in
bytes. Note that whenever a count field is to be
written its associated variable gap length must be
calculated.

GAP=decimal number Optional

The value of this parameter represents the length in
bytes of an inter-field gap. The length of the gap will
be fixed except when a count field is being written,
in which case it must be calculated from the lengths
of the preceding key and data fields on the track (see
the following table). Appendix D gives the gap
specifications. -

The following table illustrates the decimal number
values given for the gaps preceding these values.

Value to be
Coded in
Operation Buffer GAP Operand
Write home HABUF 32
address
Write data DATBUF 0
Write key KEYBUF+DATBUF 0
and data }
Write Count CNTBUF
Write count CNTBUF+DATBUF f (K+D}x.043
and data
Write count, CNTBUF+KEYBUF)
key and data +DATBUF

K = length of preceding key field
D = length of preceding data field

7-29

Optional

CHAIN= ‘YES}

NO

Indicates that another command word follows
contiguously in storage and is to be executed
immediately after this one. CHAIN=NO represents
the command word being the last in the command
program.

RZCNT} Optional

HELD:‘RNCNT

This option gives the record in the count field.
FIELD=RZCNT is record O in the count field;
FIELD=RNCNT is record n in the count field.

COMMAND Macro for a RESTORE
Operation

Creates a physical command word which, when
executed by an EXCP, causes a disc restore operation.

Name Operation Operand

[tag] COMMAND OPCODE=RESTORE

OPCODE=RESTORE

Operation code for a disc restore.

COMMAND Macro for a DCJUMP Operation

Creates a physical command word which, when
executed by an EXCP, causes the EXCP to next
execute the command word located at the address
specified by CWADR. This may be used to link
command programs.

Name Operation Operand
[tag] COMMAND OPCODE=DCJUMP

CWADR=symbolic address

CWADR=symbolic address

Specifies the address of the command word which is
to be executed immediately following this one.

CONTROL PROGRAM MACROS

WAIT — Wait for Service Request Completion

This macro is used to wait for the completion of one
or more outstanding service requests. Execution of

the requesting program will be suspended until
completion of the specified request(s)*. Except for

7-30

the optional LIST and ERRCOMP, only one other
operand may be coded with this macro; depending
upon the particular parameter used, the macro will
wait for completion of:

e any one of the outstanding requests (MODE
= ANY)

o all of the outstanding requests (MODE
ALL)

e a specific outstanding request (REQADR
symbolic address)

i}

Note that when the REQCNT option is used the
WAIT macro is satisfied on any of the following
conditions:

e When the WAIT macro is issued and the
system detects that no requests are
outstanding.

e when the WAIT macro is issued and the
count of outstanding requests is not equal to
that specified by REQCNT

e otherwise, when the first of any outstanding
request operations is completed

Name Operation Operand
ANY}
[tag] WAIT [MopES, |]

[REQADR=symbolic address]
[REQCNT=symbolic address]

[LIST={;SS}]

[ERRCOMP={\|\SES}
_[ANY .
MODE—{ALL] Optional

This operand provides the option of waiting for the
completion of any one or all of the currently
outstanding requests.

REQADR=symbolic address Optional

This operand should be used when it is desired to
wait for the completion of a single specific request.
The symbolic address must be the address of the first
word in the request block (parameter list) of the
specific request to wait for (not service request
instruction itself).

REQCNT=symbolic address Optional

This operand specifies the location of a one-byte field

containing the hexadecimal count of the number of
requests known to be outstanding. Use of this
operand gives a wait for the completion of any service
request.

*If none of the specified requests is outstanding at the time

the WAIT is executed, control will be returned immediately
to the requesting.program.

Optional

LIST=‘ YES}

NO

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated in line.

Optional

ER RCOMP=‘YES'

NO

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ERRCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

DELAY — Suspend Program Executiont

This macro causes program execution to be
suspended for a specified period of time, with the
option of resuming on completion of any outstanding
service request. The period of suspension may be
specified either by the SECONDS operand or by the
CYCLES operand (one of which is always required).

Name Operation Operand

[tag} DELAY SECONDS=symbolic address

CYCLES=symbolic address

[BREAK= {;gs}]
[LisT= { ;gs}]

[ErRCOMP= { ;gs}]

SECONDS=symbolic address Optional

Specifies the location of a one-word field containing
the desired delay in seconds (hexadecimal).

CYCLES=symbolic address Optional

Specifies the location (hexadecimal) of a one-word
field containing the desired delay in cycles (one cycle
= 60.2 milliseconds).

no)

BREAK=YES indicates that program execution is to
be resumed immediately after any outstanding service
request is completed. When this operand is omitted or
BREAK=NO, the program will be resumed only when
the specified delay time has elapsed.

BREAK= Optional

TNot available on minimal system.

YES

NO Optional

LIST={

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

Optional

ER RCOMP={YESI

NO

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ERRCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

INFORM — Service Request Completed

The INFORM macro informs the requesting program
that one of the program’s outstanding service requests
has been completed. INFORM returns control
immediately to the user and subsequently indicates
that a service request has been completed by setting
the complete bit in the INFORM request block (bit O
of the third byte of the parameter list). The REQCNT
operand points to a location containing a one-word
count of the number of service requests which are not
known to have been completed. The purpose of the
count specification is to indicate whether any of the
requests whose completion status is unknown have
already been completed by the time the INFORM
macro is executed (this will include the possibility of
a request being completed in the interval between the
issuance and actual processing of the INFORM). Thus
the INFORM macro is satisfied by any one of the
following conditions:

o when no service requests are outstanding

o when the number of outstanding requests is
less than that specified by REQCNT

® when the first outstanding request is
completed

If when INFORM is issued, the number of
outstanding requests exceeds the REQCNT
specification, an error is assumed and the INFORM
request is completed as abnormal.

Name Qperation Operand

[tag] INFORM REQCNT=symbolic address
[LisT= ;cE)S }]
[ERRCOMP={E’S}]

7-31

REQCNT=symbolic address

Specifies the address of a one-byte location
containing the number of service requests that are not
known to have completed (outstanding).

YES

NO Optional

LIST= {

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

_JYES .
ERRCOMP—‘N_O] Optional
To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ERRCOMP=NO is coded, or the default is taken, the

program will be aborted if an error occurs.

POST — Create Compressed Communication Byte

This macro, in conjunction with RPOST, is used for
communication between user job steps. POST takes
the first eight bytes located at INFOADR and
interprets each byte to modify the corresponding bit
in a compressed communication byte located in the
Job Control Table®. At the start of a job the POST
communication byte is initialized to zero.

Name Operation Operand

[tag] POST INFOADR=symbolic address

[ust-{iot]

[RETURN={;_SS}]

[errcomp= ;;s H

INFOADR=symbolic address

Specifies the location of an eight-byte buffer
containing the information to be posted. The buffer
should contain only EBCDIC 0’s, 1's or X's. These
bytes will be interpreted as follows to modify the
corresponding eight bits in the communication byte:

EBCDIC 0 =resetbitto 0
EBCDIC 1 =setbitto 1
EBCDIC X = leave bit unchanged

*This scheme is compatible with IBM’s UPSI bit mechanism.

7-32

LIST=‘ Optional

YES
NO

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

YES} Optional

RETURN={NQ

To be used when the user program wishes to be given
control immediately on recognition of the request,
but before completion (RETURN=YES). When
RETURN=NO is coded, or the default is taken,
control will only be returned on completion of the
request.

Optional

ERRCOMP=[YES}

NO

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ERRCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

RPOST — Expand from Communication Byte

This macro is used to read information, located in an
interjob step communication area, which was posted
there either by a POST macro in a previous job step
or by the SWITCH=parameter in a //SET Control
Language statement®. Each bit in the one-byte
communication area is expanded to an EBCDIC
equivalent and placed in the buffer specified by
INFOADR.

Name Operation Operand

[tag] RPOST INFOADR=symbolic address

[usr-{(E)]

[RETURN={ES}]

L ERRCOMP={§§S }]

INFOADR=symbolic address

Specifies the location of an eight-byte buffer where
the interpreted information will be placed. Each bit
in the communication byte will be converted to an
EBCDIC byte as follows:

Binary 0 = EBCDIC O
Binary 1 = EBCDIC 1

YES

NO Optional

LIST={

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

Optional

RETURN={YES}

NO

To be used when the user program wishes to be given
control immediately on recognition of the request,
bubefore completion {(RETURN=YES). When
RETURN=NO is coded, or the default is taken,
control will only be returned on completion of the
request.

YES' Optional

ERRCOMP:IM’

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ERRCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

SETCOM — Transfer to Job Control Table

This macro, in conjunction with GETCOM, is used
for communication between user job steps. It
transfers, without modification, eight bytes of
information located in a user-specified buffer to an
eight-byte communication area in the Job Control
Table where it may be picked up by a GETCOM in a
subsequent job step. At the start of a job the
communication area is initialized to all blanks.

Name Operation Operand

[tag] SETCOM INFOADR=symbolic address

[Lst={{=°}]

[ReTurn-{1E°}]

[EF!RCOMP={ES}]

INFOADR=symbolic address

Specifies the location of an eight-byte buffer
containing the data to be transferred to the
communication area.

Optional

=[]

NO

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

Optional

RETURN=lYES,

NO

To be used when the user program wishes to be given
control immediately on recognition of the request
but before completion (RETURN=YES). When
RETURN=NO is coded, or the default is taken,
control will only be returned on completion of the
request.

Optional

ERRCOMP=‘YES}

NO

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ERRCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

GETCOM — Transfer from Job Control Table
Communication Area

This macro is used to obtain the information which
had been placed in an eight-byte communication area
by a SETCOM executed in a previous job step. The
content of the communication area, located in the
Job Control Table, is moved, without modification,
to an eight-byte buffer specified by INFOADR.

Name Operation Operand

[tag] GETCOM INFOADR=symbolic address

[ust=-{Xe°H]

[RETUHN={;(EJS H

[er RCOMP={ES]

INFOAD R=symbolic address
Specifies the location of an eight-byte user buffer

into which the contents of the communication area
will be moved.

7-33

Optional

LIST={YES}

NO

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

Optional

RETURN=[YES}

NO

To be used when the user program wishes to be given
control immediately on recognition of the request,
but before completion (RETURN=YES). When
RETURN=NO is coded, or the default is taken,
control will only be returned on completion of the
request.

Optional

ERRCOMP=lYES}

NO

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ERRCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

ACCEPT — Read //PAR Card

This macro is used to obtain data contained on //PAR
cards supplied in the Control Language deck.
ACCEPT transfers the EBCDIC content of a single
//PAR card to the buffer specified by DATBUF1.

The particular //PAR card read by the ACCEPT is
determined by a pointer located in the Job Control
Table. At the start of the job step, this pointer is
initialized to point to the first //PAR card so that the
first ACCEPT executed in the step will read the first
//PAR card supplied with this step. Each time an
ACCEPT is executed the //PAR card pointer is
updated to the next consecutive card so that on the
next execution the next //PAR card will be read.

If, when an ACCEPT is executed, there are no more
//PAR cards left to be read, control will be
transferred to the location specified by the ENDADR
operand.

The optional operand PARNUM allows the //PAR
pointer to be set to any desired //PAR card by
specifying a user location containing a count (since
the //PAR cards are considered to be numbered 1
through n by implication), Each time an ACCEPT
macro with a PARNUM specification is executed, the

7-34

content of the user counter specified by PARNUM
will be incremented by 1 so that this same ACCEPT
may be re-executed to read the next //PAR card.

The format of the data transferred to the buffer
consists of a four-byte Common Stored Data Format
(CSDF) control header preceding the data from the
//PAR card, unless the optional operand CSD=NO is
included. The content of the //PAR card is always
stripped of characters through the first blank (so as
not to include “*//PAR" itself) and is also stripped of
the sequence number field (columns 73 through 80)
unless the optional operand STRIP=NO is included.

Name Operation Operand

[tag] ACCEPT DATBUF 1=symbolic address
[CSD=NO]
[STRIP=NO]

[PARNUM=symbolic address]
ENDADR=symbolic address

[LIST={;SS }]

[reTURN= \N(gs }]

[ERRCOMP={ :KE)S}]

DATBUF 1=symbolic address

Specifies the location of the buffer into which the
data from the //PAR card will be transferred.

CSD=NO (Optional)

If this operand is used the parameter line will not be
preceded by the CSDF control header.
STRIP=NO (Optional)
If this operand is used the Sequence Number Field
(card columns 73 through 80) will not be stripped.

PARNUM=symbolic address (Optional)
Specifies the location of a one-word binary counter
whose value is to be used as a //PAR card pointer. A
value of 1 will cause the first //PAR card to be read,
and 2 the second, and so on. Each time the ACCEPT

is executed, the value of the counter will be increased
by 1.

ENDADR=symbolic address

This required operand specifies the program address
where control is to be transferred if all the //PAR
cards have been read (value of system’s //PAR
counter greater than number of //PAR cards
supplied) or if the PARNUM specified is greater than
the number of //PAR cards supplied.

Optional

LIST={YESI

NO

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

RETURN={YES}

NO Optional

To be used when the user program wishes to be given
control immediately on recognition of the request,
but before completion (RETURN=YES). When
RETURN=NO is coded, or the default is taken,
control will only be returned on completion of the
request.

ER RCOMP={ YES]

NO
To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ERRCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

Optional

DISPLAY — Write Message on SYSOUT

The DISPLAY macro is used for writing a one-line
message on the SYSOUT file. The address of the
message buffer, which must be aligned on a word
boundary, is specified by DATBUF. The format of
the buffer must be as follows:

0 Space for CSDF Control Header
(4 bytes)
2
4 ASA carriage control message byte 1
character
6 message byte 2 message byte 3
¥ it

message byte n-1 message byte n

The first four bytes of the buffer are reserved for a
Common Stored Data Format (CSDF) control header
to be generated by the system. The fifth byte,
preceding the message, is an ASA carriage control
character™ (not to be printed) and the message itself
is an EBCDIC character string up to 132 bytes in
length, starting in the sixth byte. If the message is
shorter than 132 bytes, a storage location containing
the length must be set up and the DATSIZ operand
must be included in the call.

*Details in Control Program and Data Management Services
~ Basic Reference.

Name Operation Operand
[tag] DISPLAY DATBUF=symbolic address
[DATSIZ=symbolic address]
_fves
[ERRCOMP {N.Q

DATBUF=symbolic address

Specifies the address of the first byte in the message
buffer. This will be the address of the space reserved
for the CSDF control header and the first byte of the
message itself (the ASA control character) should be
displaced 4 bytes from this address.

DATSIZ=symbolic address Optional

Specifies the address of a one-word location
containing the length of the message. If this operand
is omitted, the message length is assumed to be 132
bytes.

Optional

ERRCOMP={YES’

NO

If ERRCOMP=YES is specified, the program is not
aborted. When ERRCOMP=NO is coded, or the
default is taken, the program will be aborted if an
error occurs.

MEMLIM — ldentify Partition Limit

This macro returns the first byte address of the
highest addressable 256-byte page of storage available
to the problem program in the partition in which the
program is running. The returned address is expressed
as the absolute address of the first word of the last
addressable page. MEMLIM is intended for enabling
programs which are expected to run in partitions of
various different sizes to “‘spread themselves out” to
occupy as much space as is available (in the interest
of efficiency). In this situation, the partition space
pool should always be fixed by means of the
appropriate Linkage Editor directive.”

Name Operation Operand

[tag] MEMLIM INFOADR=symbolic address

(o))

[RETURN={§)S}]

[ERHCOMP={;;S}]

*Linkage Editor portion of Program Library Services
Reference.

7-35

INFOADR=symbolic address

Specifies the location of a two-byte areca where the
address of the highest addressable 256-byte page is to
be placed.

YES] Optional

LIST={ NO

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

Optional

YES
RETURN—{M l

To be used when the user program wishes to be given
control immediately on recognition of the request
but before completion (RETURN=YES). When
RETURN=NO is coded, or the default is taken,
control will only be returned on completion of the
request.

ERRCOMP=|YES|

NO Optional

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ERRCOMP=NO is coded, or the default is taken, the
program will be aborted if an irrecoverable error
occurs.

SETIF — Post Code for Control Language Test

This macro enables a program, running as one step of
a multi-step job, to post in the Job Control Table
(usually at step completion) a code which may be
tested by a Control Language //IF statement™ in
order to govern the subsequent course of the job. The
code to be posted is one byte in length (EBCDIC
character); its address is specified by INFOADR.

Name Operation Operand

[tag] SETIF

[LIST={:"§S}]

[RETURN={£)S}J

[ERR’COMP={;;S 1

7-36

INFOADR=symbolic address

INFOADR=symbolic address

Specifies the location of the one-byte (EBCDIC
character) of data to be posted in the IF code field of
the Job Control Table.

Optional

as{YE)

NO

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates parameter table
(list) only. When no LIST operand is specified, both
the service request and the parameter table are
generated.

Optional

RETURN={YESI

NO

To be used when the user program wishes to be given
contral immediately on recognition of the request
but before completion (RETURN=YES). When
RETURN=NO is coded, or the default is taken,
control will only be returned on completion of the
request.

Optional

ER RCOMP=‘YES}

NO

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ERRCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

HALT — Terminate Program

The HALT macro is used to perform normal
termination of a user’s program step. This macro will
not result in a memory dump unless DUMP=YES has
been coded in the //EXECUTE statement associated
with the program. The format for HALT is as
follows:

Nang Operation Operand

[tag] HALT

“See Control Language Services Reference.

EHALT — Terminate Program

The EHALT {error halt) macro is used to request
termination of a user’s job. This macro will not
automatically give a memory dump unless
DUMP=YES has been coded in the //EXECUTE
statement associated with the program. The format
for EHALT is as follows:

Name Operation Operanwd

[tag] EHALT

ABEND — Terminate Program Abnormally

The ABEND macro is used to request abnormal
termination of a job, and to pass a completion code
to Job Monitor for display. A dump will be given
unless DUMP=NO is specified on the //EXECUTE
statement. The completion code is a 16-bit binary
value. The format for ABEND is as follows:

Name Operation Operand

[tag] ABEND INFOADR=symbolic address

INFOADR=symbolic address

Specifies the first byte address of the area containing
the completion code.

TIME — Retrieve Time of Day

The TIME macro returns the current time of day in
the operand specified. The time of day is returned in
an unpacked decimal format: hhmmss, where hh is
the hour, mm is the minute, and ss is the second. The
format for TIME is as follows:

Name Operation Operand

[tag) TIME INFOADR=symbolic address

INFOADR=symbolic address

Specifies the first byte address of the area which
receives the time.

SDATE — Retrieve System Data

The SDATE (system date) macro returns the system
data in the operand specified. The date is returned in
one of two unpacked decimal formats: mmddyy or
yviii, where mm is the month, dd is the day, yy is the
year, and jjj is the Julian day. The format for SDATE
is as follows:

Name Operation Operand

tag SDATE INFOADR=symbolic address

MODE={%}

INFOADR=symbolic address

Specifies the first byte address of the area that
receives the data.

=1c
MODE—!J }

Specifies the current date in the calendar (C) 6-byte
format mmddyy or the Julian (U) 5-byte format
vyiii. The default value is C.

JDATE — Retrieve Job Date

The JDATE (job date) macro returns the date
provided for by a //SET statement. The date returned
will be the system date unless the //SET statement
has specified a job date. The date is returned in one
of two unpacked decimal formats: mmddyy or yviil,
where mm is the month, dd is the day, yy is the year,
and jjj is the Julian day. The format for JDATE is as
follows:

Name Operation Qperand

tag JDATE INFOADR=symbolic address

MODE= {f—}

INFOADR=symbolic address

Specifies the first byte address of the area which
receives the date.

MODE= ‘2}
J
Specifies the current date in the calendar (C) 6-byte

format mmddyy or Julian (J) 5-bit format yyijjj. The
default value is C. .

CONSOLE COMMUNICATION MACROS
Two macros, CONSOLE (an active macro) and

MESSAGE (a data macro), are available for
communicating with the operator’s console.

7-37

CONSOLE — Transmit Message to Console and
Optionally Receive Reply

The: CONSOLE macro enables programs to transmit
messages to the operator's console and optionally
receive replies. The main-storage format of the
message to be sent to the console must include two
fields, a control block which is not typed and the text
field which contains the actual message. The buffer
set up to receive a reply from the console (if any)
must contain a control block followed by the actual
buffer for the reply text. The format of CONSOLE is
as follows:

Name Operation Operand

[tag] CONSOLE DATBUF1=symbolic
address

[DATBUF2=symbolic

address]

DATBUF 1=symbolic address

Specifies the address of the message control block
which is followed by the message test.

DATBUF2=symbolic address (Optional)
Specifies the address of the reply control block which
is followed by the reply buffer area.

MESSAGE — Set Up Message Format

The MESSAGE macro, to be used in conjunction
with the CONSOLE macro, simplifies the generation
of messages by creating the correct format required
by CONSOLE. A tag is required for all MESSAGE
macros so that the corresponding CONSOLE macro
may locate it. Two formats exist for the MESSAGE
macro, one for generating an output message and one
for generating a reply buffer.

Generation of an Output Message

The format for generating an output message is as
follows:

Name Operation Operand

tag MESSAGE [DATBUF1=symbolic address]
DATSIZ1=decimal number
DATATXT=character string

[MOD E={TID-}]

7-38

DATBUF 1=symbolic address (Optional}
Enables a name to be attached to the beginning of the
message text field.

DATSIZ1=decimal number

Specifies the decimal length (in bytes) of the message
text. If no length is specified, the text length will be
used. If there is no message, a length of zero is
assumed. The maximum value of DATSIZ1 is 100.

DATAT XT=character string

Specifies the actual message to be placed in the
message text field. It is created in EBCDIC and may
be up to 100 characters (bytes) long. The default is a
string of blanks, with length being determined by the
parameter DATSIZ1. The character string must be
coded in the form, C’'message text’.

MODE= {'—Dl (Optional)

Specifies whether the message is informative (1) or
directive (D). MODE=D indicates that the message
calls for some operator action. The default value of
MODE is I.

Generation of a Reply Buffer
The format for generating a reply buffer is as follows:

Name Operation Operand

tag MESSAGE [DATBUF2=symbolic address]
DATSIZ2=decimal number

DATBUF2=symbolic address (Optional)
Enables a name to be attached to the beginning of the
reply text field.

DATSI|Z2=decimal number

Specifies the decimal length in characters (bytes) of
the reply buffer to be generated. The reply field will
be assembled with blanks. The maximum value of
DATSIZ2 is 100.

A. PACK CATALOG AND CENTRAL
CATALOG FORMATS

The formats used by the pack catalog and central
catalog of the disc are discussed in the following
paragraphs.

PACK CATALOG

Figures A-1 through A-5 illustrate the use of the
name, attribute and space elements in generating the
pack catalog. The normal block of the pack catalog is
128 bytes, and the continuation element is 64 bytes
for normal files and 128 bytes for a continuation to
the description of pack space, which is catalog blocks.

At disc initialization time, the pack catalog is created
with block formatting as follows (assuming the pack
contains the central catalog):

Block 1 Entry that describes the pack
catalog itself

Block 2 Entry that describes the space
available on the pack

Block 3 Entry that describes the space
occupied by the central catalog

Block 4 First block of space available in
the pack catalog. Name element
fields are filled as follows:

Control bytes X'8200007C’
X'000500°
Previous name X‘000000’

Next name

Block 5-n ~ Remaining blocks of space are
constructed in the same format as
block 4 with proper linking
through the next name and
previous name fields.

During the process of allocating a data file, one of the
available blocks is removed from the string of
available pack catalog blocks and is linked into the
chain describing existing files. When space is needed
for a continuation element, another block is removed
from the available chain. Half of the block is used for
a continuation element and the other half is linked to
start the chain of available continuation space.

CENTRAL CATALOG

Figures A-6 through A-8 illustrate the use of the
name, attribute, and volume elements in constructing
entries for the central catalog. The normal block size
of the central catalog is 128 bytes, and the
continuation element is 64 bytes.

At disc initialization time, the first block is formatted
as shown in Figure A-7. Remaining blocks are
considered available and are linked as those in the
pack catalog.

A-1

3

127

CONTROL BYTES FOR NAME EL EMENT

FILE NAME: X'000148’

POINTERS TO ATTRIBUTE ELEMENT, SPACE
ELEMENT AND AVAILABLE PACK CATALOG
BLOCKS, AVAILABLE PACK CATALOG
CONTINUATION ELEMENTS

CONTROL BYTES FOR ATTRIBUTE ELEMENT

CONTROL BYTES FOR SPACE ELEMENT

7 SEGMENTS WITH
UNUSED BYTES
AT THE END

Figure A-1. Block 1 — Pack Catalog Entry in Pack Catalog

NAME
ELEMENT

ATTRIBUTE
ELEMENT

SPACE
ELEMENT

127

CONTROL BYTES FOR NAME ELEMENT

FILE NAME: X'00024B'

POINTERS TO SPACE ELEMENT

CONTROL BYTES FOR SPACE ELEMENT

14 SEGMENTS WITH
UNUSED BYTES
AT THE END

Figure A-2. Block 2 — Space Entry in Pack Catalog

NAME
ELEMENT

SPACE
ELEMENT

0
CONTROL BYTES FOR NAME ELEMENT
NAME
FILE NAME: X'00034B’ ELEMENT
POINTERS TO ATTRIBUTE ELEMENT
AND SPACE ELEMENT
25
26
CONTROL BYTES FOR ATTRIBUTE ELEMENT
ATTRIBUTE
ELEMENT
55
56
CONTROL BYTES FOR SPACE ELEMENT
8 SEGMENTS WITH
UNUSED BYTES SPACE
AT THE END ELEMENT
127

Figure A-3. Block 3 — Central Catalog Entry in Pack Catalog

A4

9

127

CONTROL BYTES FOR NAME ELEMENT
NAME
ELEMENT
POINTERS TO ATTRIBUTE ELEMENT,
SPACE ELEMENT, AND
ASSOCIATED NAME ELEMENT
CONTROL BYTES FOR ATTRIBUTE ELEMENT
ATTRIBUTE
ELEMENT
CONTROL BYTES FOR SPACE ELEMENT
4'SEGMENTS WITH SPACE
UNUSED BYTES ELEMENT
AT THE END

Figure A-4. Block 4-n — Normal File Entry in Pack Catalog

A6

63

CONTROL BYTES FOR SPACE CONTINUATION

Figure A-5. Pack Catalog Space Element Continuation

127

CONTROL BYTES FOR NAME ELEMENT

FILE NAME: X'00014B°

POINTERS TO ATTRIBUTE ELEMENT, VOLUME
ELEMENT, AVAILABLE CENTRAL CATALOG
BLOCKS, AND AVAILABLE CENTRAL CATALOG
CONTINUATION ELEMENTS

CONTROL BYTES FOR ATTRIBUTE ELEMENT

CONTROL BYTES FOR VOLUME ELEMENT

4 VOLUMES

Figure A-6. Block 1 — Central Catalog Entry in Central Catalog

NAME
ELEMENT

ATTRIBUTE
ELEMENT

VOLUME
ELEMENT

A7

49
50

19
80

127

A-8

CONTROL BYTES FOR NAME ELEMENT

POINTERS TO ATTRIBUTE ELEMENT,
VOLUME ELEMENT, AND
ASSOCIATED NAME ELEMENT

CONTROL BYTES FOR ATTRIBUTE ELEMENT

CONTROL BYTES FOR VOLUME ELEMENT

3 VOLUMES

Figure A-7. Block 2-n — Normal File Entry in Central Catalog

NAME
ELEMENT

ATTRIBUTE
ELEMENT

VOLUME
ELEMENT

63

CONTROL BYTES FOR VOLUME CONTINUATION

Figure A-8. Central Catalog Volume Element Continuation

B. SERVICE REQUEST MECHANISM
AND MACRO EXPANSIONS

INTRODUCTION

There are essentially two types of system macro
instructions: action macros and data macros. Action
macros, which expand into executable code, may be
further subdivided into user code macros and service
request macros. User code macros expand into code
which is primarily executed within the user’s program
(except for possible nested service request macros).
Service request macros, on the other hand, link to
" system routines for their implementation.

Examples:
GET, DISPLAY user code macros
READ, GETCOM service request macros
MESSAGE, COMMAND data macros

Most of the control program and block input/output
macros are service request macros whereas most of
the physical input/output macros are data macros.

The expansions of all service request macros contain a
service request machine instruction.

SERVICE REQUEST INSTRUCTION

The Service Request instruction (mnemonic SR) is
the only means by which a user program® may
communicate with the operating system. In practice,
however, there is no need for the user to code this
instruction directly, since it will automatically be

*This same method is also often employed by system
programs to communicate with each other.

generated in the expansion of a service request macro
instruction. Figure B-1 illustrates the control path
between a user program and operating system.

SERVICE REQUEST MACRO EXPANSION
CONVENTIONS
The expansions of all* service request macros will

normally begin with the following standard three
words (with no LIST operand used):

Byte Byte
o 70 7
0 Service Request Instruction
2 Function Code Length
4 Return Information

Any additional words in the expansion are uniguely
defined for each macro.

SERVICE REQUEST INSTRUCTION (BYTES O
AND 1)

This instruction establishes the link with the
operating system; it is defined as follows.

*Except for the physical input/output macro, EXCP.

USER
PROGRAM

SYSTEM

OPERATING
SYSTEM

CONTROL PROGRAM
: RETURN

SERVICE REQUEST

PARAMETERS

B-2

Figure B-1. Service Request Linkage to System

SERVICE
PROGRAM

Byte O Byte 1
e i— B R S N
0 701 2 3 4 7
Service Request I R Request
Function Code Class

Service Request Function Code: SR = X'13’
[H parameter list location indicator
0 immediately following this instruction

1 at location whose address is contained in
register 6

R: Return indicator
0 return control only after request is completed
1 return control immediately after request is
accepted
EP: User error processing indicator

0 user program to be aborted on occurrence of
an error

1 user to retain control after an error
Request Class: Major class of service request

0 = Debug Request (system only)

-
(]

Restricted Request (system only)
= Control Program Request

= Block Input/Output Request
Hlegal

= Supervisor Request

= Telecommunications Request

N OO W N
(]

= Physical Input/Output Request

FUNCTION CODE (BYTE 2)

Function or operation code for this request (see
individual expansions).

LENGTH (BYTE 3)

Number of words in this request block, excluding the
service request instruction (see individual
expansions).

RETURN INFORMATION (BYTES 4 AND 5)

This word is an area where the system will return
information developed during the execution of the
request. On initial receipt of the request the whole
word will be set to zero. The return information field
is defined as follows:

Byte 4 Byte 5
/w ,‘—W
01 2 3 7 0 7

C| E|END| Not Used Return Code

Complete Bit (C)
This bit will be set by the system to indicate that the
request has been completed (normally or otherwise).

Error Flag (E)

When this bit is set an abnormal completion is
indicated in which case the remainder of the word
will contain information connected with the error. If
the error flag is not set, no further information will
be contained in this word (except in the case of
END). This bit may be set on completion even if the
EP bit is not set in the SR.

End Flag (END)

When set, this bit indicates that one of a number of
possible end conditions has been detected. The
particular end condition is specified by the return
code in byte b, as follows:

00 = Disc EOA (end of allocation)
01 = Printer Channel 12

02 = Disc EOF (end of file)

03 = Card Reader EOF

04 = Printer Channel 9

066 = Printer Channels 9 and 12

Return Code

This eight-bit code contains specific information
about the error (return code, Table C-1, Appendix C).

OPTIONAL PARAMETERS

Three keyword parameters are usable by most block
1/0 level service request macros: RETURN,
ERRCOMP, and LIST. The LIST parameter gives the
option of separating the parameter packet and service
request instruction, or not doing so.

If LIST=YES, the RETURN and ERRCOMP
parameters cannot be used; if LIST=NO, the
RETURN and ERRCOMP parameters are the only
other parameters which can be used. However, if
LIST is omitted, these two parameters can be used
independently.

LIST

If LIST=YES, only the appropriate parameter packet
is generated. The LIST=YES option allows the
generation of the macro parameter packet only once
in the program.

If LIST=NO, only a 2-byte standard service request
instruction is generated. The user must load into
general-purpose register 6 (R6) the address of the
parameter packet to be referenced and into register 7
(R7) the address of the save area address prior to
issuing the LIST=NO option.

The 2-byte service request instruction has the
following format, where 05 defines the Data
Management expansions and 13 the function code.

13 05
Example:
NAME OPERATION OPERAND
7|134557!9IIIIII213M|5|E|7| wzo11221314251“71529:\111132ﬁ715u31nnaauutu
S fhoBR L LISAVIT RT L
P B XY S o Y 7
TrGe. . .| |oPEN. LIST=ANo, RETURN=YES
Tres. . | lopen L [euEanmebske; LT
PSP S 1D.ENTZFILED 1OTYPBS
IR | Li3TeYES vSAGE=T . |
savay. . fjweo . e o L L

With the LODD instruction, the user loads into R6
the address of a parameter packet which has been
specified elsewhere in the program (TAG 5), and the
save area address (SAVE/T/} into R7.

With the’ OPEN macro and a LIST=NO parameter
specified, only the 2-byte executive request code is
generated.

At TAG 5, the OPEN parameter list is generated.

If the LIST option is omitted, the service request
instruction is generated followed by the appropriate
parameter list. The user must load the address of the
save area into R7 prior to issuing the call.

13 05

OPEN
Parameter
Packet

NAME OPERATION OPERAND

1.2 34 5 6 7 B{8{10 111213 14 15 16 17| 18§19 20 21 22 23 24 25 26 27 20 29 30 31]1333‘353‘373;“!0"42‘!4
. plkoop, SAV AT R2 . v v i a
IDENT=FIL &2
BU.FADRs HSKP.:

............

e cH L S P T
SAVET, woD . 30 ... e e

The LIST default for the OPEN request results in the
generation of the service request instruction followed
by the OPEN parameter packet.

RETURN

The RETURN parameter enables the user to request
that control be returned to his program immediately
after the service request has been received and
recognized by the system (but before the function it
requests has been completed). By coding
RETURN=YES, the user may save time by
proceeding with his own processing while the system
is processing the service request. When
RETURN=YES is used, detection of request
completion becomes a user responsibility (he must
check the complete bit in the return information
word of the request parameter list). The RETURN
parameter is mostly applicable to input/output
service requests, which are relatively slow to
complete. The default specification, RETURN=NO
may be coded explicitly if desired. (Note that there
are certain service request macros on which the
RETURN parameter is not available.)

ERRCOMP

The ERRCOMP parameter allows the user to retain
control when an error occurs which the system was
unable to correct. By coding ERRCOMP=YES the
user has the option of attempting to correct any
errors or of simply ignoring® them and continuing.
The default condition ERRCOMP=NO, which may be
coded explicitly if desired, results in a program abort
in the event of an error (which the system was unable
to correct).

STANDARD SYSTEM SUFFIXES

If the programmer wishes to reference a particular
word of a parameter packet, he may do so by adding
the standard system suffix to his tag name (name
symbol). If the tag name is six characters or less, the
standard suffix is appended to the tag name. If the
tag name is seven or eight characters, this (these) last
character(s) is (are) truncated and the standard suffix
is appended. For this reason the first six characters
must be unique. The standard suffixes are listed
alongside the macro expansion with the suffix across
from the appropriate parameter packet word.

*Qccasionally, a condition may arise which is classified by
the system as an error but which does not affect the
outcome of the user program.

For an example: if the programmer wishes to
reference the word containing the file type of the
ALLOC macro, it is located in byte 6 which is
referenced by the F1 suffix. If his tag name is JOBG6b5,
the word may be referenced with JOB65F1.
However, if his tag name is MYJOBG658, the reference
is MYJOB6F1.

EXPANSION TABLES

The expansion of each macro is detailed in the
following pages; generally there is a map of the bytes
as stored, followed by detailed assignments of bytes
and bits.

The macros are listed in these groupings:

o Data Management

ALLOCATE
EXPAND
PURGE
OPEN
CLOSE
CLOVE
LABRTN

® Block I/0

STATUS/TYPE
CONTRL/POSITN
READ/WRITE
RESET

o Physical 1/0

EXCP
PCB
COMMAND (various applications)

e Control Program

WAIT
POST/RPOST
SETCOM/GETCOM
ACCEPT
DISPLAY
MEMLIM
INFORM
SETIF
DELAY
HALT
EHALT
ABEND
TIME

SDATE
JDATE

e Console Communications
CONSOLE

These expansion explanations show the parameter
tables or lists without the service request instruction
(for those macros including a service request). Byte
displacement shown at the side of the tables is
without the service request; considering the service
request, it is necessary to increase the displacement
count by 2.

Where applicable, bytes containing Segment Tags are
shown. This tag is mandatory in systems having more
than 64K bytes of storage, and may be implemented
in smaller systems. A programmer should be aware
that the showing of Segment Tags in these format
drawings does not necessarily imply that the tags will
be in the system he is using.

B-5

Table B-1. ALLOCATE Parameter Packet Format

Suffixtt

0 Request Code Length FL
2l ¢ Return Information Return Code CR
4] PF uc| cs CB| WV | CD FT F1
6 1 1 1 1 L1 L1 L2 L2 A 1A 1B IK DC IC F3
8 Data Block Count B8C
10
12 Data Block Size BS
14 Data Record Size RS
16§ S TAG LAB1
18 LAB1 ADR L1
S TAG LAB2
22 LAB2 ADR L2
S TAG IDENT
t 26 IDENT ADR 1A
28 Index Block Size 1B
30 Index Key Size IK
32 Data Cylinder Number DC
34 Index Cylinder Number IC
36 Spread Factor SF
Byte Bit Description
0 Request code, 1 designates ALLOCATE.
1 Length, number of words in the parameter packet (10 to-19 words)
2 0 Request complete indicator (C)
0 Service request in process
1 Request complete
1-7 Return information
3 Return code
4 0 Paired file (PF). PF=1 for paired file.

1 Bytes 6 and 7 reflect which optional parameters are present. If a parameter is not present, as evidenced by the presence of a
zero in that parameter bit, the corresponding 2-byte word in bytes 16 through 37 is omitted, and those parameters that follow
are telescoped upward by one word. Four-byte parameters such as IDENT ADR with its segment tag and reserved byte, is
represented by two bits in the pattern. Both bits (1A) must be set if IDENT ADR is present.

11 The 2-character suffix for unique file identifier.

B-6

Table B-1. ALLOCATE Parameter Packet Format (Continued)

Byte Bit Description

1 Uncataloged (UC). UC=1 for not recording file in the central catalog.
2 Contiguous space (CS). CS=1 for contiguous space on each volume.
3 Cylinder boundary (CB). CB=1 for space segments starting on cylinder boundary.
4 Write verify (WV). WV=1 for write verification of files..
5 Common stored data format (CD). CD=1 for common stored data format.
5 34 File type (FT)
00 Permanent
01 Scratch

10 Temporary

1 Work

5-7 File organization (FO)
000 General
001 Indexed
010 Relative

100 Sequential

6 4,5 LAB1 ADR specified (L1=1)t
6,7 LAB2 ADR specified (L2=1)t
7 0,1 IDENT ADR specified (|1A=1)t
2 Index block size specified (1B=1)
3 Index key size specified (1K=1)
4 Data cylinder number specified (DC=1)
5 Index cylinder number specified (1C=1)
6 Spread factor specified (SF=1)
8-11 Data block count, number of blocks for data file
12,13 Data block size, size (in bytes) of data block
14,15 Data record size, size (in bytes) of record
17* Segment tag for .AB1 ADR (S TAG LAB1)
18,19* LAB1 ADR, address of label information for the primary data file LABDEF1 , required if IDENT ADR is not
specified.

*Optional parameter.

1TTwo fields are shown on format expansion to accommodate paired files.

Table B-1. ALLOCATE Parameter Packet [Format (Continued)

Byte Bit Description

21* Segment tag for LAB2 ADR (S TAG LAB2)

22,23* LAB2 ADR, address of label information for a paired file LABDEF2.

26* Segment tag for IDENT ADR (S TAG IDENT)

26,27* IDENT ADR, address of file identifier as used by Control Language to identify volumes for use in allocation
28,29* Index block size, size {in bytes) of index file

30,31* Index key size, size (in bytes) of key

32,33* Data cylinder number, cylinder number at which allocation of the data file starts

34,36* Index cylinder number, cylinder number at which allocation of index file starts

36,37* Spread factor, physical record interlace to be used in an indexed data file

*QOptional parameter

B-8

Table B-2. EXPAND Parameter Packet Format Suffixtt
0 Request Code Length FL
2l cC Return Information ~ Return Code CR
4] PF uc 1 1 L1 L1] 1A 1A F1
6 Data Block Count BC
S TAG LAB1
12 LAB1 ADR L1
! : STAG IDENT
16 IDENT ADR 1A
Byte Bit Description
0 Request code, 2 designates EXPND
1 Length, number of words in parameter packet (7 to 9 words)
2 0 Request complete indicator (C)
0 Service request in process
1 Request complete
1-7 Return information
3 0-7 Return code
4 0 Paired file (PF), PF=1 for paired file
1 Uncataloged (UC), UC=1 for uncataloged file
2 Contiguous Space (CS), CS=1 if space on each volume is to remain contiguous.
5 2,3 LAB1 ADR specified (L1=1)1
45 IDENT ADR specified (IA=1)1
6-8 Data block count, number of data blocks to add to the file

t Byte 5 reflects which optional parameters are present. If a parameter is not present, the corresponding 4-byte field in bytes 10
through 17 is deleted from the parameter packet and the subsequent parameter words are moved upward. The 4-byte field is

represented by two bits in byte 5; both bits must be set (or cleared) to reflect the presence of the field.

tt The 2-character suffix for unique file identifier.

Table B-2. EXPAND Parameter Packet Format (Continued)

Byte Bit Description

11* Segment tag for LAB1 ADR (S TAG LAB1)

12,13* LAB1 ADR, address of label information for the file. This parameter is required if IDENT ADR is not specified.
15% Segment tag for IDENT ADR (S TAG IDENT)

16,17*

IDENT ADR, address of file identifier as used by Control Language. This parameter is required if the file is open
at the time of expansion.

*Qptional parameter

B-10

Table B-3. PURGE Parameter Packet Format Suffixtt

0 Request Code Length FL
Cc Return Information Return Code CR
4 | L1 L1 1A 1A ~' F1
6 S TAG LAB1
t 8 LAB1 ADR L1
10 S TAG IDENT
12 IDENT ADR 1A
Byte Bits Description
0 Request code, 3 designates PURGE
1 Length, number of words in parameter packet (5 to 7 words)
2 0 Request complete indicator (C)
0 Service request in process
1 Request complete
1-7 Return information
3 Return code
4 0 Paired file (PF), PF=1 for paired files
1 Uncataloged (UC}, UC=1 for uncataloged file
5 0,1 LAB1 ADR specified (L1=1)
23 IDENT ADR specified (1A=1)
7* Segment tag for LAB1 ADR (S TAG LAB1)
8,9* LAB1 ADR, address of label information for data file. This parameter is required if IDENT ADR is not specified.
11* Segment tag for IDENT ADR
12,13* IDENT ADR, address of file identifier as used by Control Language

t Byte 5 reflects which optional parameters are present. If a parameter is not present, the corresponding 4-byte field in bytes 6
through 13 is deleted from the parameter packet and the subsequent parameter words are moved upward. The 4-byte field is
represented by two bits in byte 5. Both bits must be set to reflect the presence of the field.

* Optional parameter.

11 The 2-character suffix for unigue file identifier.

B-11

B-12

Table B-4. OPEN Parameter Packet Format

0 Request Code Length

4 C Return Information Return Code
4 cc BA T V) R L S TAG IDENT
6; BDT or IDENT

S TAG LAB ADR

LAB ADR

S TAG BUF ADR

BUF ADR

Byte

Bit

Description

Request code, 4 designates OPEN

Length, number of words in parameter packet (4 to 8 words)

Request completion indicator (C)
0 Service request in process

1 Request complete

Return information

Return code

Control character (CC)
4] ANSI control characters

1 Device control characters

Buffer address {BA)
0 No buffer

1 Buffer present

2-3

Type of 1/O (T)

00 Logical
01 Block
10 Physical

Suffixtt

FL
CR

BT

LB

BF

T Byte 4 reflects which optional parameters are present. |f a parameter is not present, the corresponding 2-byte word in bytes 8

through 15 is deleted from the parameter packet and the subsequent parameter words are moved.

11 The 2-character suffix for unique file identifier.

Table B-4. OPEN Parameter Packet Format (Continued)

Byte Bit Description
45 Usage (U)
00 Input
01 Update
10 Output
6 Rewind (R)
0 No rewind
1 Rewind
7 Label (L)
0 No label
1 Label address
5 Segment tag for BDT or IDENT (S TAG IDENT)
6,7 BDT or IDENT, address of BDT or address of file identifier
9* Segment tag for LAB ADR (S TAG LAB ADR)
10,11* LAB ADR, label address
13* Segment tag for BUF ADR (S TAG BUF ADR)
14,15* BUF ADR, buffer address

*Optional parameter.

Table B-5. CLOSE Parameter Packet Format

Request Code Length
Return Information Return Code
S TAG IDENT
6 BDT or IDENT
Byte Bit Description
0 Request code, 5 designates CLOSE
1 Length, number of words in parameter packet (4 words)
2 0 Request complete indicator (C)
0 Service request in process
1 Request complete
1-7 Return information
3 Return code
4 2 Lock (L)
1] No lock
1 Lock
34 Type of 1/0 (T)
00 Logical I/0
01 Block 1/0
10 Physical 1/0
6 Rewind (R}
0 No rewind
1 Rewind
5 Segment tag for IDENT or BDT (S TAG IDENT)
6,7 BDT or IDENT, address of BDT or address of file identifier

Suffixt

FL
CR
BT

ID

1The 2-character suffix for unique file identifier.

B-14

Table B-6. CLOVE Parameter Packet Format

0 Request Code Length
2 Return Information Return Code

4 T S TAG IDENT
6| BDT or IDENT
Byte Bit Description
0 Request code, 6 designates CLOVE
1 Length, number of words in parameter packet (4 words)
2 0 Request complete indicator (C)
0 Service request in process
1 Request complete
1-7 Return information
3 Return code
4 34 Type of 1/0 (T)
00 Logical 1/O
01 Block 1/0
5 Segment tag for BDT or IDENT (S TAG IDENT)
6,7 BDT or IDENT, address of BDT or address of file identifier

1The 2-character suffix for unique file identifier.

Suffixt

FL

CR

B-15

Table B-7. LABRTN Parameter Packet Format

Request Code

Length

Return Information

Return Code

4 ELEM S TAG IDENT
6 IDENT ADR
8 S TAG BUFF
10 BUFF ADDRESS
Byte Bit Description
0 Request code, 7 designates LABRTN
1 Length, number of words in parameter packet (6 words)
2 0 Request completion indicator (C)
0 Service request in process
1 Request complete
1-7 Return information
3 Return code
4 5-7 Element field (ELEM)
000 Narne element returned
001 Attribute element returned
010 Both elements returned
5 Segment tag for IDENT (S TAG IDENT)
6,7 IDENT ADR, address of file identifier
) Segment tag for buffer address (S TAG BUFF)
10,11 Address of buffer containing status information

+The 2-character suffix for unique file identifier.

Suffixt

FL

CR

BT

Table B-8. STATUS and TYPE Macros Parameter Packet Format Suffix*
0| Request Code Length FL
2 Return Information CR
4 STAG
6 Pointer to File Identifier 1D
8 STAG

10 Buffer Address BA
12 S TAG
14 Pointer to Byte Counter BS
Byte Bit Description
(] 0-7 Request Code: STATUS=40, TYPE=41)
1 0-7 Length, number of words in parameter: 08
2,3 0-15 Return Information
4 0-7 Not used
5 0-7 Segment Tag
6,7 0-7 Pointer to file ID: Address of 8-byte file identifier
8 0-7 Not used
9 0-7 Segment Tag
10, 11 0-7 Buffer Address: first byte address of user-specified buffer area
12 0-7 Not used
13 0-7 Segment Tag
14,15 0-7 Pointer to Byte Count: address of 2-byte area containing byte count (length of buffer) '

*The 2-character suffix for the unique file identifier.

B-17

Table B-9. CNTRL/POSITN Macros Parameter Packet Format

Suffix*

0 Request Code Length FL
2 Return Information CR
4 Sub-Function Code STAG SF
6 Paointer to File 1D 1D
STAG
10 Pointer to Block Number BN
12 Residual Byte Count RC
Byte Bit Description
(1] 0-7 Request Code: CNTRL=03,POSITN=04
1 0-7 Length, number of words in the parameter packet, 07
3 0-7 Return Information
4 0-7 Sub-Function Code (the indicated bits are set for the function):
7 Select Stacker
6 Space L.ine Printer
5 Skip Line Printer Form
0-2 Rewind (000)
Rewind and Unioad (001)
Erase gap (010}
Backspace Record (100)
Forward space a record (110)
Forward space a file (111)
Backspace a file (101)
Write End-of-File mark (011)
0-3 The value of nn when SS, SK, or SP is used
7 Beginning of volume
6 End of Volume
0 SEEK on position
5 0-7 Segment Tag
6,7 0-7 Pointer to File ID: address of 8-byte file identifier in FDT
0-7
8 0-7 Not used
9 0-7 Segment Tag
10,11 0-7 Pointer to Block No.: address of 4-byte block number (applies to POSITN)
0-7
12,13 0-7 Residual Byte Count: difference between number of bytes requested and number of bytes received.
0-7

*The 2-character suffix for unique file identifier.

B-18

Table B-10. READ/WRITE Macros Parameter Packet Format Suffix*
0 Request Code Length FL
2 Return Information CR
Sub-Function Code S TAG SF
Pointer to File ID ID
8 STAG
10 Pointer to Block Number BN
12 Residual Byte Count RC
14 STAG
16 Buffer Address BA
18] S TAG
20 Pointer to Byte Count BS
Byte Bit Description
0 0-7 Function Code: READ=02, WRITE=01
1 07 Length, number of words in the parameter packet: 11
2,3 0-7 Return Information
0-7
4 0-7 Sub-Function Code (the indicated bits are set for the function):
7 Select Stacker
6 Space Line Printer
5 Skip Line Printer Form
4 EBCDIC=NO
0-3 The value of nn when SK or SP is used
0-2 The value of nn when SS is used
5 0-7 Segment Tag
6,7 0-7 Pointer to File ID: address of 8-byte file identifier
0-7 :
8 0-7 Not used
9 0-7 Segment Tag
10,11 0-7 Pointer to Block No.: address of 4-byte area containing block number
0-7
12,13 0-7 Residual Byte Count: difference between number of requested bytes and number of bytes transferred
0-7
14 0-7 Not used
15 0-7 Segment Tag

*The 2-character suffix for unique file identifier.

B-19

Table B-10. READ/WRITE Macros Parameter Packet Format (Continued)

Byte Bit Description

16,17 0-7 Buffer Address: first byte address of user specified buffer area
0-7

18 0-7 Not used

19 0-7 Segment Tag

20,21 0-7 Pointer to Byte Count: address of 2-byte area containing the byte count {length of buffer)
0-7

Table B-11. RESET Macro Parameter Packet Format

Request Code Length

Return Information

STAG

Pointer to File ID

Suffix*

FL

CR

Byte Bit Description

0 0-7 Function Code: RESET=31

1 07 Length, number of words in the parameter packet: 04
2,3 0-7 Return Information

4 0-7 Not used

5 0-7 Segment Tag

6,7 0-7 Pointer to File ID: address of 8-byte file identifier

*The 2-character suffix for unique file identifier.

B-20

Table B-12. EXCP Macro Expansion

The expansion of the EXCP macro does not include a parameter table (LIST=NO is implied) but it may, depending

on the operands coded in the call, contain executable code for request setup purposes:

No operands: SR

PCB=@register number: MOVR Rn,6
SR

PCB=symbolic addresg: LOD symbolic address,6
SR

CP=@register number: STO 6(6),Rn
SR

CP=symbolic address: MOVM symbolic address, 6(6)
SR

UNORD=symbolic address: MOvVB symbolic address, 0(6)
SR

UNORD=@register number: STOB 0(6),Rn
SR

B-21

Table B-13. PCB Macro Parameter Packet Format

o* Unit Ordinal Length

2 Return Information

4 | ERP

6 Pointer to CP or FC

8 Pointer to Current CW
10 Status
12 Residual Byte Count
14 Sense

o e —— -

16 | Sense |
18 F-- - 0 0T ;we 1

*This macro does not use the standard service request prefix.

Byte Bit Description
0 0-7 Unit Ordinal: Device identifier
1 0-7 Length, number of words in this block excluding Device ldent field
2,3 0-7 Return Information (same as for service request macros)
0-7
4 0 Error Recovery Flag (ERP)
0 = Call system error recovery when an error occurs
1 = Bypass error recovery
1 Not used
2 Command Program Flag
0 = Next word is address of command program to be executed
1 = Next word is function code to be executed
3-7 Not used
5 0-7 Not used
6,7 0-7 Pointer to CP or FC
07 If CP=0, pointer to command program
If CP=1, pointer to function code
8,9 0-7 Pointer to Current CW: Address of command word being executed
0-7
10,11 0-7 Status indication
0-7

B-22

Table B-13. PCB Macro Parameter Packet Format (Continued)

Byte Bit Description
12,13 0-7 Residual Byte Count: difference between number of bytes requested and number of bytes transferred
0-7
14,15, Sense bytes: variable number of sense bytes depending on device
16,17, Disc = none
18,19
Unit Record = 2
Mag Tape =6
Table B-14. COMMAND Macro Parameter Packet Format (Basic Data Channel)
0%l ¢ sL | sk Command Code

STAG

Buffer Address

*This macro does not use the standard service request prefix.

Byte Bit Description
0 0 Chain Flag (C)
0 = No CW follows this one
1 = Another CW follows
1 Suppress Length Check (SL): if it is set, the CP will not be terminated when the transferred
byte count differs from the specified byte count. Not used when C = 0.
2 Skip (SK): If it is set, data will not be transferred to memory on a data input operation.
3-7 Not used
8-15 Commiand Code: The eight-bit hardware command code (OPCODE).
2,3 0-7 Byte Count: The length of the data buffer (BUFSIZ) in hexadecimal; length must be non-zero
4 0-7 Not used
5 0-7 Segment Tag
6,7 0-7 Buffer Address: the FBA address of the data buffer (BUFADR).

B-23

Table B-15. COMMAND Macro Parametor Packet Format (DCABLE)

2 1
0 2
S TAG
6 Buffer Address
*This macro does not use the standard service request prefix.
Byte Bit Description
0 (4] Chain Flag
0 = No CW follows this one
1= Another CW follows
1-7 Not used
1 0-7 Command Code: DCABLE=21
2,3 0-7 Byte Count: DCABLE=0002
4 0-7 Not used
5 0-7 Segment Tag
6,7 0-7 Buffer Address: address of buffer into which the disc drive cable address is to be transferred.

B-24

Table B-16. COMMAND Macro Parameter Packet Format (DCSEEK)

2
0
S TAG
6 Buffer Address
*This macro does not use the standard service request prefix.
Byte Bit Description
(4] 0 Chain Flag
0 = No CW follows this one
1 = Another CW follows
1-7 Not used
1 0-7 Command Code: DCSEEK=20
2,3 0-7 Byte Count: DCSEEK=0004
4 0-7 Not used
5 0-7 Segment Tag
6,7 0-7 Buffer Address: address of buffer containing cylinder and track numbers,

B-25

Table B-17. COMMAND Macro Parameter Packet Format (DCSRCH)

o* C BRS 0 8
2 Byte Count
4 S TAG
6 Buffer Address
*This macro does not use the standard service request prefix.
Byte Bit Description
0 0 Chain Flag
0 = No CW follows this one
1 = Another CW follows
1-3 Bit Ring Sync: least-significant three bits of Bit Ring Sync Code
101 = home address field
011 = RO count field
110 = RN count field
1 0-7 ;ommand Code: DCSRCH=08
2,3 0-7 Byte Count: Length of field for which search is being made
BC = 0005 for home address
BC = 0009 for count field
4 0-7 Not used
5 0-7 Segment Tag
6,7 Buffer Address: address of buffer containing field data for which search is being made

B-26

Table B-18. COMMAND Macro Parameter Packet Format (DCREAD)

(1) Read with Transfer

0*] C BRS 0 2
2 Single Record Byte Count
STAG
6 Buffer Address
8 |_ ______ o _OVfllﬂtGEOlm_t ___________ N

*This macro does not use the standard service request prefix.

Byte Bit Description
0 0 Chain Flag
0 = No CW follows this one
1 = Another CW follows
1-3 Bit Ring Sync: least-significant three bits of the Bit Ring Sync code:
001 = data field
010 = key field
011 = Rg count field
110 = R, count field
101 = home address field
100 = control storage data
4-6 Not used
7 Repeat Flag
0 = Execute read command once
1 = repeat read command until overall byte count is satisfied
1 0-7 Cornmand Code: READ WITH TRANSFER = 02
2,3 0-7 Single Record Byte Count: number of bytes to be transferred in each execution of the read
command. {f R=0 this will be the total number of bytes transferred.
4 0-7 Not used
5 0-7 Segment Tag
6,7 0-7 Buffer Address: address of the buffer into which the data is to be placed.
8,9 0-7 Overall Byte Count: total number of bytes to be transferred. Only present when R=1 for a

multi-record read.

(2) Read Without Transfer

0 C

BRS

Byte Count

Command Code = 04 (Bits 0-7 of byte 1)

B-27

Table B-19. COMMAND Macro Parameter Packet Format (DCWRIT and DCFWRIT)

o* C BRS Command Code
2 Byte Count

4 Gap Lengih STAG

6 Buffer Address

*This macro does not use the standard service request prefix.

Byte Bit Description
0 0 Chain Flag
0 = No CW follows this one
1 = Another CW follows
1-3 Bit Ring Sync: least-significant three bits of the Bit Ring Sync Code
001 = Data field
010 = Key field
011 = Rg count field
110 = R, count field
101 = Home address field
100 = Control Storage data
4-7 Not used
1 0-7 Command Code
01 = Write
10 = Format Write
2,3 0-7 Byte Count: number of bytes of data to be written (length of buffers),
4 0-7 Gap Length: one’s complement of the langth of the gap to be written preceding the field
itself,
5 0-7 Segment Tag
6,7 0-7 Buffer Address: address of the buffer containing the data to be written

B-28

Table B-20. COMMAND Macro Parameter Packet Format (RESTORE)

*This macro does not use the standard service request prefix.

Byte Bit Description
0 0 Chain Flag
0 = No CW follows this one
1 = Another CW follows
1-7 Not used
1 0-7 Command Code: RESTORE = 22
26 - Not used

Tabie B-21. COMMAND Macro Parameter Packet Format (DCJUMP)

Address of Next CW

*This macro does not use the standard service request prefix.

Byte Bit Description
0 0 Chain Flag
0 = No CW follows this one
1 = Another CW follows
1-7 Not used
1 0-7 Command Code: DCJUMP = 28
2-4 0-7 Not used
5 0-7 Segment Tag
6,7 0-7 Next CW Address: locations of the CW to be executed following this one

B-29

Table B-22. WAIT Macro Parameter Packet Format

Request Code Length

Return Information

L A STAG

Request Block Address (Optional)

Suffix*

FL
CR

BT

BF

Byte Bit Description
0 0-7 Request Code: WAIT=03
1 0-7 Length, number of words in the parameter packet: 3 or 4
2,3 0-7 Return Information
4 0-3 Not used
4 Count Flag: C=1 means wait for any request with count option
5 Not used
6 Wait - all flag (L)
L=1 means wait for all outstanding requests. When L=0 and A=0, wait is
2 Wait - any flag (A) for specific request.
A=1 means wait is for any outstanding request.
5 07 Segment Tag
6,7 0-7 Request Block Address: address of request block for wait-specific. Only present when

L=0 and A=0.

*The 2-character suffix for unique file identifier.

B-30

Table B-23. POST/RPOST Macros Parameter Packet Format

Suffix*

0 Request Code Length FL
Return Information CR

4 S TAG
6 Buffer Address IN

Byte Bit Description

0 0-7 Request Code: POST=43,RPOST=44

1 0-7 Length, number of words in the barameter packet: 04

2,3 0-7 Return Information

4 0-7 Not used

5 0-7 Segment Tag

6,7 v 0-7 Buffer Address: address of an 8-byte buffer. This will either contain the information to be

posted (POST) or will receive the interpreted information from the system (RPOST).
*The 2-character suffix for unique file identifier.
Table B-24. SETCOM/GETCOM Macros Parameter Packet Format Suffix*

0 Request Code Length FL
2 Return Information CR
4 STAG
6 Buffer Address IN

Byte Bit Description

0 0-7 Request Code: SETCOM=47 GETCOM=48

1 0-7 Length, number of words in the parameter packet: 04

2,3 0-7 Return Information

4 0-7 Not: used

5 0-7 Segment Tag

6,7 0-7 Buffer Address: address of an 8-byte buffer. This will either contain the information to be

transferred (SETCOM) or will receive information from the system (GETCOM).

*The 2-character suffix for unique file identifier.

B-31 .

Table B-25. ACCEPT Macro Parameter Packet Format

Request Code Length

Return Information

N S H STAG

Buffer Address

STAG
End Address
S TAG
- Number Address (Optional) o |

Suffix**

FL
CR

BT

BF

EN

Byte Bit Description
0 0-7 Request Code: 13
1 0-7 Length, number of words in the parameter packet: 6or8
2,3 07 Return Information
4 0-4 Not used
5 Number Flag
0'= number not specified (current value of //PAR card pointer will be used)
1 = //PAR card number is specified in word at displacement 16
6 Strip Flag
0 = do not strip sequence number field (card cols 73-80)
1 = strip sequence number field
7 Control Header Flag
0 = do not include CSDF control header
1 = include CSDF header
5 0-7 Segment Tag
6,7 0-7 Buffer Address: address of buffer into which data from //PAR card is to be transferred.
8 0-7 Not used
9 0-7 Segment Tag
10,11 0-7 End Address: address to which program control will be transferred when all //PAR cards
have been read.
14* 0-7 Not used (optional)
15* 0-7 Segment Tag (optional)
16*,17* 0-7 Number Address (optional): address of one-word location containing the //PAR card number

B-32

*Last four bytes will only be present when number flag (N} = 1.

**The 2-character suffix for unique file identifier.

Tabls B-26. MEMLIM Macro Parameter Packet Format

Suffix*

0 Request Code Length FL
2 Return Information CR
4 S TAG
6 Buffer Address IN

Byte Bit Description

0 0-7 Request Code: MEMLIM=46

1 0-7 Length, number of words in the parameter packet: 04

2,3 0-7 Return Information

4 0-7 Not used

5 0-7 Segment Tag

6,7 0-7 Buffer Address: Address of buffer into which last page address is to be placed.
*The 2-character suffix for unique file identifier.

Table B-27. INFORM Macro Parameter Packet Format Suffix*

0 Request Code Length FL
2 Return Information CR
4 S TAG
6 Count Address IN

not known to have completed at this time.

Byte Bit Description

0 0-7 Request Code: INFORM=05

1 0-7 Length, number of words in the parameter packet: 04

2,3 0-7 Return Information

4 0-7 Not used

5 07 Segment Tag

6,7 0-7 Count address: address of a one-word location containing a count of the number of requests

*The 2-character suffix for unique file identifier.

B-33

Table B-28. SETIF Macro Parameter Packet Format

Request Code Length

Return Information

1 S TAG

Buffer Address

Suffix*_

FL
CR

Byte Bit Description

1] 07 Request Code: SETIF=45

1 07 Length, number of words in the parameter packet: 04

2,3 0-7 Return Information

4 0-7 Not used

5 07 Segment Tag

6,7 0-7 Buffer Address: address of a ane-byte buffer containing the data to be transferred.

*The 2-character suffix for unique file identifier.

B-34

Table B-29. DELAY Macro Parameter Packet Format

Request Code Length

Return Information

B | T ; STAG

Delay Address

Suffix**

FL
CR

BT

Byte Bit Description
0 0-7 Request Code: DELAY=04
1 0-7 Ll.ength, number of words in the parameter packet: 04
2,3 0-7 Return Information
4 0-5 Not used
6 Break Flag (B)
0 = no delay break
1 = delay to be broken on any service request completion
7 Type Flag (T)
0 = delay in seconds
1 = delay in cycles*
5 0-7 Segment Tag
6,7 0-7 Delay Address: address of a one-word buffer containing the duration of the delay in seconds

or cycles* (see Type Flag).

*Cycle equals 50.2 milliseconds.

**The 2-character suffix for unique file identifier.

B-356

Table B-30. HALT Macro Parameter Packet Format Suffix*
V] Request Code Length FL
2 Return Information CR
Byte Bit Description
0 0-7 Request Code: HALT=64
1 0-7 Length, number of words in the parameter packet: 02
2,3 0-7 Return Information
*The 2-character suffix for unique file identifier.
Table B-31. EHALT Macro Parameter Packet Format Suffix*
0 Request Code Length FL
2 Return Information CR
Byte Bit Description
0 0-7 Request Code: EHALT=65
1 0-7 Length, number of words in the parameter packet: 02
2,3 0-7 Return Information

*The 2-character suffix for unique file identifier.

B-36

Table B-32. ABEND Macro Parameter Packet Format Suffix*
0 Request Code Length FL
2 Return Information CR
4 S TAG
6 . Buffer Address IN
Byte Bit Description
0 0-7 Request Code: ABEND=7%
.1 0-7 Length, number of words in the parameter packet: 04
2,3 0-7 Return Information
5 0-7 Segment Tag
6,7 0-7 Buffer Address: address of location containing the completion code.
*The 2-character suffix for unique file identifier.
Table B-33. TIME Macro Parameter Packet Format Suffix*
0 Request Code Length FL
2 Return Information CR
4 STAG
6 Buffer Address IN
Byte Bit Description
0 0-7 Request Code: TIME=73
1 0-7 Length, number of words in the parameter packet: 04
23 0-7 Return Information
5 0-7 Segment Tag
6,7 0-7 Buffer Address: address of location containing the time

*The 2-character suffix for unique file identifier.

B-37

Table B-34. SDATE Macro Parameter Packet Format

Suffix*

0 Request Code Length FL
2 Return Information CR
4 D STAG BT
6 Buffer Address IN

Byte Bit Description

] 0-7 Request Code: SDATE=74

1 0-7 Length, number of words in the parameter packet: 04

2,3 0-7 Return Information

4 7 Date Flag

0 = Calendar date
1 = Julian date

5 0-7 Segment Tag

6,7 0-7 Buffer Address: address of location containing the date

*The_ 2-character suffix for unique file identifier.

Table B-35. JDATE Macro Parameter Packet Format Suffix*

0 Request Code Length FL
2 Return Information CR
4 S TAG BT
6 Buffer Address IN
Byte Bit Description
0 0-7 Request Code: JDATE=66

1 0-7 Length, number of words in the parameter packei: 04

23 0-7 Return Information
4 7 Date Flag

0 = Calendar date
1 = Julian date
5 0-7 Segment Tag
6,7 0-7 Buffer address: address of location containing the date

*The 2-character suffix for unique file identifier.

B-38

Table B-36. CONSOLE Macro Parameter Packet Format

Suffix*

0 Request Code Length FL
2 Return Information CR
4 | STAG
6 Buffer Address BF
8 STAG

10 . Reply Address IN
Byte Bit Description
0 0-7 Request Code: CONSOLE=01
1 0-7 Length, number of words in the parameter packet: 04 (without reply} or 06 (with reply)
2,3 0-7 Return Information
5 0-7 Segment Tag
6,7 0-7 Buffer Address: address of location containing message
9 0-7 Segment Tag
10,11 0-7 Reply Address: address of location containing reply message.

*The 2-character suffix for unique file identifier.

B-39

INTRODUCTION

Of the various classes of possible errors associated
with a service request, the operating system’s error
recovery program is concerned - with only one
particular class: the input/output hardware
malfunctions. Attempted recovery from these
input/output hardware malfunctions will be
performed for all levels of input/output coding by
default; however, at the physical level it may be
bypassed if specified.

if an error proves to be irrecoverable, information
describing the error is returned to the user’s request
or command block (Table C-1) and then, normalily,
the job is aborted. However, if the operand,
ERRCOMP=YES had been coded in the original
request, control is returned so that the user may
either ignore the error or attempt to process it
himself.

In addition to its basic task of attempting to recover
from errors, the error recovery program is also
responsible for handling certain exceptional non-error
situations, such as EOF detection and indication.

TYPES OF ERROR

The following major categories of error are handled
by the error recovery program,

INTERVENTION REQUIRED

When operator intervention is required, a console
message is issued. Once the operator has serviced the
device, he responds to the message indicating either
to continue processing or to return control to the
user. The MRX/OS Messages manual contains the
operator console messages.

C. ERROR RECOVERY

ERRORS REQUIRING RETRIES

Input/output requests completed but including
specific types of errors are retried a given number of
times. |f the error persists, a message is typed on the
operator’s console. The operator response indicates
either to retry the request another specific number of
times or to return the error condition indication to
the user program. If one of the retries succeeds, a
normal completion indication is returned to the user
program as though no error had occurred.

CONDITIONS OF UNCERTAINTY

There are certain error conditions where the error
recovery program is unable to perform accurate error
recovery, or any error recovery at all; for example,
not being sure where magnetic tape is positioned.

Although the error recovery program checks all
defined hardware conditions, it is not inconceivable
that an undefined condition from a non-supported
hardware device might arise; in this case the error
recovery program is unable to process it.

With regard to the first example, it should be noted
that although the error recovery program checks all
defined hardware conditions, it is not inconceivable
that an undefined condition might arise; in this case
the error recovery program is unable to process it.

When error conditions of this kind occur, a message is
typed on the operator's console. If the message
requires a response and the operator chooses to
continue, the user may either gain or lose
information. If the message does not require a
response, the request is routed back to the user with a
return code.

IMMEDIATE IRRECOVERABLE CONDITIONS

An example of an error so classified is that of
inagnetic tape running off the end of the reel. In
situations such as this, a console message is typed and
the request is routed back to the user with a return
code.

CONDITIONS THAT DO NOT REQUIRE
RECOVERY

Certain conditions routed to the error recovery
program are considered to be normal completions and
do not require the issuance of any return codes or
error messages. Two examples are these:

e a parity error while spacing magnetic tape
(no recovery is needed because tape is
properly positioned)

e detection of an end-of-file condition

C-2

ERROR LOGGING

Error logging is an integral part of the operating
system. The error log file, which is built at system
generation time, consists of forty-byte records (Table
C-2).

Records of error conditions and retries are
maintained in the two error flag bytes and two error
counters, respectively (located in the extension area
of each unit table entry). The bits of the error flag
bytes represent the error conditions that can occur. If
multiple errors occur, bits are set as the error
conditions are detected.

The error counters are incremented by 1 whenever a
retry error condition occurs. Each error counter can
contain more than one error condition.

Table C-1. 1/0O Error Recovery Information

Hexadecimal PCB/Request| Message
Status FDT |Block Return| Code Console Must Error Log
Completion| Return | |nformation | Displayed Message No. of File be Record
Condition Code Information Field On Console Reply Retries* Reset Written
EOA on this disc request 0 0 A000 - - 0 N
Channel 12 on the printer carriage 0 (o] A001 - - 0 N N
control tape
This request was not processed be- - Oid C001 - — 0 Y N
cause an exception condition
occurred on a previous request and
the file has not been reset
Disc EOF 0 0002 A002 - - 0 Y N
Unit down 5002 0002 C002 002 - 0 Y N
Card reader EQF 0 0003 A003 - - 0 Y N
Invalid function code in command 5003 - C003 - - 0 - N
program
Channel 9 on the printer carriage 0 0 A004 - - 0 N N
control tape
A Remove request removed this 5004 - Cc004 - - 0 - N
request ,
Length error. A record was read 0 0 C005 - - 0 N N
which was longer than the buffer
space provided for it
Tape mark sensed on any Read 0 0006 A006 - - 0 Y N
operation not including Search
command
An ASKATT request is being re- 5006 - C006 - - 0 - N
jected because an ASKATT is
already pending against the device
Error status indication returned 5010 0010 co10 - — 0 — N
from an 1/O operation
Operation tirmed out 5011 0011 CO011 011 N/Y 1 Y Y
Unsolicited attention set 5012 0012 C012 012 - 1 Y N
Bad 1/0 status indication from Seek 5013 0013 C013 - - 0 Y N
or Restore
No error recovery for device 503F 003F CO3F - - 0 Y N
Invalid function code in BIO macro 5020 0 C020 - — 0 N N
Invalid block number 5021 (o] co021 — - 0 N N
Invalid byte count 5022 0 €022 - — 0 N N
Invalid CNTRL request 5023 0 €023 - - 0 N N
No FDT 5024 - C024 - - 0 N N
Usage error 5026 (4] C025 — - 0 N N
Operation to locked file 5026 0 C026 - - 0 N N
Invalid sequence of operations to 5027)] C027 - - 0 N N
a device
Subfunction field error 5028 C028 - - 0 N N
Invalid position {to magnetic tape 5029 0 C029 - b
file that is not maintaining block
numbers)
EOF on a read to a bypassed file (4] 0 AO02A - - 0 N
Invalid unit ordinal on privileged 5030 - C030 — - 0 -
PIO request

*Number of retries automatically performed by Error Recovery before completion is declared.

C-3

Table C-1. 1/O Error Recovery Information (Continued)

Hexadecimal PCB/Request| Message
Status FDT |Block Return| Code Console Must Error Log
Completion Return | | formation | Displayed | Message No. of File be Record
Condition Code Information Field On Console| Reply Retries Reset Written
DisC
Timeout 5041 0041 C041 041 - 10 Y Y
Command reject 5042 0042 C042 042 - 0 Y N
Disc write current 5043 0043 C043 043 - 0 Y Y
Seek incomplete 5044 0044 Cc044 044 — 10 Y Y
Not on line 5045 0045 C045 045 Y/N 1 Y N
File unsafe 5046 0046 C046 046 - 0 Y Y
Pack change 5047 0047 co47 047 - (4] Y N
Status not valid 5048 0048 €048 048 - 0 Y Y
Command early 5049 0049 C049 049 - 0 Y Y
Unsolicited Attention 504A 004A CO4A 04A - 1 Y N
Catastrophic error 5048 0048 co4B 04B Y/N 0 Y Y
Missed window 504C 004C Cco4C 04C - 10 Y Y
IFA window 504D 004D Cc04D 04D - 10 Y Y
Track boundary 504E 004E CO4E 04E — 10 Y N
Read Write terminate 504F 004F CO4F 04F - 10 Y Y
Burst check 5050 0050 C050 050 - 10 Y Y
Lost data 5051 0051 CO051 051 - 10 ‘ Y Y
No sync compare 5052 0052 C052 052 - 10 Y Y
Write operation issued to a drive 5053 0053 C053 053 Y/N 1 Y N
in read only mode
End of cylinder 5054 0054 C054 054 - 10 Y Y
Busy 5055 0055 C055 055 - 10 Y Y
Invalid seek address 5056 0056 C056 056 - 0 Y N
Search failed (arm mispositioned) 5058 0058 C058 058 - 5 Y Y
Search failed (no record found) 5059 0059 C059 059 - 5 Y N
PRINTER
Command reject 5064 0065 C064 - - 0 Y N
1/0O Channel error 5065 0065 C065 065 Y/N 1 Y Y
Data check 5066 0066 C066 - - 0 Y Y
Not ready 5067 0067 C067 067 Y/N 1 Y N
Bus out check 5069 0069 C069 069 Y/N 1 Y Y
Catastrophic error 506A 006A CO6A 06A Y/N 1 Y Y
Both channel 9 and 12 on the 0 0 AO6B - - 0 N N
printer carriage control tape

Table C-1. 1/0 Error Recovery Information (Continued)

Hexadecimal PCB/Request| Message
St Rlz?u-:n Block Return| Code :\:n:g::g': No. of Fl\i/::s;e Eg:;'ol;;g
Condition Corgr;lz:on Information Info'r:ri::ac';non 0?"5(;’;?‘:21 Reply Retries Reset Written

CARD READER
Catastrophic error 5070 0070 C070 070 Y/IN Y N
‘Command reject 5071 0071 C071 - - Y N
Not ready 6072 0072 C072 072 Y/N 1 Y N
Busy 5073 0073 C073 - - 10 Y Y
Feed check or jam 5074 0074 C074 074 Y/N 1 Y Y
Read check 5075 0075 C075 075 Y/N 1 Y Y
Data check (illegal EBCDIC char.) 6076 0076 C076 076 Y/N 1 Y N
Time out 5077 0077 Co77 - - 10 Y Y
Unsolicited attention 5078 0078 Cco78 078 - 1 Y N
Initial selection error 5079 0079 Co79 - - 10 Y Y
CARD READER PUNCH
Catastrophic error 5080 0080 €080 080 Y/N V] Y N
Command Reject 5081 0081 Co081 - - Y N
Not ready 5082 0082 €082 082 Y/N 1 Y N
Busy 5083 0083 Cc083 - - 10 Y Y
Feed check or jam 5084 0084 Cc084 084 Y/N 1 Y Y
Data check (illegal EBCDIC char.) 5085 0085 C085 085 Y/N 1 Y N
Read check 5086 0086 C086 086 Y/N 1 Y Y
Time out 5087 0087 C087 - - 10 Y Y
Unsolicited attention 5088 0088 ‘ €088 088 - 1 Y N
Initial selection error 5089 0089 C089 - - 10 Y Y
Punch check 508A 008A CO8A 08A Y/N 1 Y Y
MAGNETIC TAPE
Command reject (read reverse) 50A1 00A1 COA1 - - 0
Command reject (protected tape) 50A1 00A1 COA1 0A1 -) Y
Intervention required {without 50A2 00A2 COA2 0A2 Y/N 1 Y
equipment check)
Intervention required (with 50A3 00A3 COA3 0A3 - 0 Y Y
equipment check)
Bus out check {(on command) 50A4 00A4 COA4 0A4 Y/N 10 Y Y
Bus out check (on data) 50A5 00AS5 COAB 0A5 Y/N 10 Y Y
Equipment check (Read Write reg.) 50A6 00A6 COA6 0A6 Y/N 10 Y Y
Equipment check (Write register) 50A7 00A7 COA7 0A7 Y/N 1 Y Y
s.;]tt;ipment check (Read register) on 50A8 00AS8 COAS8 0AS8 Y/N 1 Y Y
Equipment check (Read register) 50A8 00A8 COA8 0A8 -] Y Y
on command
Sgt:ji;)tr:ent check (Delay register) B60A9 00A9 COA9 0A9 Y/N 1 Y Y

Table C-1. 1/O Error Racovery Information (Continued)

Hexadecimal PCB/Request| Message E L
Status FDT IBjock Return Code Console Must ;‘ror 39
Completion Returr‘\ Information | Displayed | Message No. of File be ecor
Condition Code _|[Information] Field On Console| Reply Retries Reset Written
Equipment check (Delay register) 50A9 00A9 COA9 0A9 - 0 Y Y
on command
Data check (Write) 50AA 00AA COAA OAA Y/N 10-5 Y Y
Data.check (Write File Mark) 50AB 00AB COAB 0AB Y/N 10 Y
Data check (muttiple track error 50AC 00AC COAC 0AC Y/N 10 Y Y
on read)
Data check (single track error on 50AD 00AD COAD OAD Y/N 10 Y Y
read) Includes preamble and post-
amble errors
Data check (phase track in error 0 0 0 - - 0 N Y
and VRC without Read Write
register error)
Data check (Erase) B0AE 00AE COAE OAE Y/N 1 Y Y
QOver run 50AF 00AF COAF OAF Y/N 10
Word count zero (Write Command 5080 00BO CcOoBO 0BO - 10 Y Y
Count # 0)
Not capable 50B1 00B1 coB1 0B1 Y/N 1 Y N
Backspace into BOT 0 00B2 A0B2 - - 0 Y N
Reverse Read command at BOT 50B4 00B4 CcoB4 - - 0 Y N
EOT during any write operation 0 00B5 AOB5 - - 0 Y N
Unsolicited attention 50B6 00B6 C0B6 0B6 Y/N 1 Y N
Time out 50B7 00B7 CcoB7 0B7 - 0 Y Y
Undefined 10C error 5088 00B8 coB8 0B8 N Y N
Internal recovery error No. 1* 50B9 0089 COoB9 0B9 N 10 Y Y
internal recovery error No. 2* 50BA O0BA COBA 0BA N 0 Y Y
Internal recovery error No. 3* 50BB Q0BB CcOoBB 0BB N 0 Y N
1SS channel error 50E1 00E1 COE1 OE1 Y/N 10 Y Y
Wrong address-in channel error 50E2 00E2 COE2 OE2 Y/N 10 Y Y
Control check channel error 50E3 00E3 COE3 OE3 Y/N 10 Y Y
Transmission check channel error 50E4 00E4 COE4 OE4 Y/N 10 Y Y
Zero byte count 50E5 00ES COE5 - - 0 Y N

*Catastrophic error.

C6

Table C-2. Error Log Record

0 1D DATE/TIME
2 DATE/TIME DATE/TIME
4 DATE/TIME DATE/TIME
6 DATE/TIME DATE/TIME
8 DATE/TIME DATE/TIME
10 DATE/TIME DATE/TIME
12 DATE/TIME PROCESSOR
14 DEVICE ADDR CMD IN ERROR
16 STATUS STATUS
18 ER FLAG BYTEO ER FLAGBYTE 1
20 ERROR COUNTER 1 ERROR COUNTER 2
22 ERROR COUNTER 30OR CYLINDER ERROR COUNTER 4 OR HEAD
24 VOL iD VOL ID
26 VoL ID VOL ID
28 VoL ID VOL ID
30 SENSE SENSE
32 SENSE SENSE
34 SENSE SENSE
36
38 RECORD SEQ. NUMBER RECORD SEQ. NUMBER
Bytes Mnemonics Description
0 ID Identification of the record. The value of this field is as follows:
Hex Value Explanation
01 from disc error recovery
02 from tape error recovery
03 from card reader error recovery
04 from card reader punch error recovery
05 from printer error recovery
06 from logical communications error recovery
07 from error correction code feature (optional)
1-12 DATE/TIME The date and time which are supplied by the Exec are in a binary format as follows:
Byte Explanation
1 unused
2 year
3 month
4 day
5 hour
6 minutes
7-10 seconds
1112 hardware clock

Cc-7

Bytes

13

14

15
16-17

18-19

Cc-8

Mnemonics

PROCESSOR

DEVICE ADDR

CMD IN ERROR
STATUS

ER FLAGBYTEO& 1

Table C-2. Error Log Record (Continued)

Description

Processor state which the device uses. The processor codes are as follows:

Hex Code

08
04
02
01

Processor

zero
one
two
three

The physical device address. The physical device address for disc is the cable address (not the

plug address).

The command code that the driver is attempting to execute when the error condition occurs.

The two bytes of hardware status indication.

Flag bits set by error recovery modules when the different error conditions occur. The two
flag bytes are described as follows:

Flag Byte O

Bit

NOOAWN=0

Flag Byte 1

Bit

AhWN=0O

Flag Byte O
Bit

NOO_dWN=0O

Magnetic Tape

Explanation

intervention required

bus out check

equipment check (register parity)
equipment check (internal counter)
data check

over run

word count zero
preambie/postamble error

Explanation

timeout error

ISS channel error

wrong address-in channel error
control check channel error
transrission check channel error
unused

Disc

Explanation

command early
timeout

disc arm mispositioning
unused

read/write terminate
catastrophic error

lost data

no sync compare

Table C-2. Error Log Record (Continued)

Bytes Mnemonics

Description

Flag Byte 1

v}
=3

Explanation

third revolution sync find
seek incomplete

file unsafe

missed window

burst check

end of cylinder

disc write current

busy

qa:m-bww—-ol

Card Reader and Reader Punch

Flag Byte O

@
=

Explanation

timeout

busy

ISS channel error
catastrophic error
punch check
command reject

read check

card feed check or jam

qamhwwaol

Flag Byte 1

Bit Explanation
0-7 unused

Printer

Flag Byte O

@
=3

Explanation

timeout

unused

bus out check

data check

invalid sense information

Noo=o
ES

Flag Byte 1

o]
=

Explanation

1SS error
unused
wrong address in initial selection or address/status parity
no request in S10 poll sequence request
control check
data transmission check
-7 unused

DD WN=0O

Note: The printer hardware status bytes that are written in the error log file represent

all of the conditions that occurred while printer error recovery was in progress
for a given error. Therefore, if a channel error occurs during recovery procedures,
it will appear in the two hardware status bytes.

Bytes

20

21

22

23

24-29

30-35

36-37

38-39

C-10

Mnemonics

ERROR COUNTER 1

ERROR COUNTER 2

ERROR COUNTER 3
or CYLINDER

ERROR COUNTER 4
or HEAD

VOLID

SENSE

Table C-2. Error Log Record (Continued)

Description

The following errors use Counter 1:
1. Card Reader and Card Reader Punch Error Recovery error conditions.
2. Disc Error Recovery error conditions except search failures.

3. Magnetic Tape Error Recovery for user request error condition.

The following errors use Counter 2:
1. Disc Error Recovery for a search failure.

2. Magnetic Tape Error Recovery for recording the number of erase operations
performed during the recovery of a write operation.

Error Counter 3 is incremented by the Magnetic Tape Error Recovery for positioning
errors. Or, the disc’s cylinder number is extracted from the seek argument of the first
command word in a command program. If the first command word is not a seek, the
cylinder number is not supplied.

Magnetic Tape Error Recovery uses Counter 4 as a record counter. Bits 0-3 are used
when positioning forward and bits 4-7 are used when positioning backward. The
disc’s head number is extracted from the seek argument of the first command word
in a command program. |f the first command word is not a seek, the head number is
not supplied.

Volume ID. This field applies only to disc.

From one to six sense bytes depending on the type of device. See the associated hardware
specification for the bit positions and their meanings.

Unused.

Record sequence number.

D. GAP SPECIFICATIONS

Table of Gap specifications to be used with the COMMAND/OPCODE=DCWRIT macro when working
with fixed record lengths {(and no key fields).

Record Size Number of
in Bytes Records in Track GAP (Inverted Hex)
3521 — 7294 1 None
2299 — 3520 2 67
1694 — 2298 3 9C
1333 — 1693 4 B6
1093 — 1332 5 C5
922 — 1092 6 DO
794 — 921 7 D7
695 — 793 8 DC
616 — 694 9 E1
561 — 615 10 E4
497 — 550 11 E7
451 — 496 12 E9
412 — 450 13 EB
378 — 411 14 ED
348 — 377 15 EE
322 — 347 16 FO
299 — 321 17 F1
277 — 298 18 F2
259 — 276 19 F3
242 — 2568 20 F3
227 — 241 21 F4
212 - 226 22 F5
200 - 211 23 F5
188 — 199 24 F6
177 — 187 25 F6
167 — 176 26 F7
158 — 166 27 F7
149 — 157 28 F8
140 — 148 29 F8
133 - 139 30 F9
126 — 132 31 F9
19— 125 32 F9
113— 118 33 F9
107 — 112 34 FA
101 — 106 35 FA
95 - 100 36 FA
81— 94 37-39 FB
62— 80 40-44 FC
46 — 61 45-49 FD
33—~ 45 50-64 FE
23— 32 55-59 FE
13— 22 60-64 FE
0- 12 65-73 FF

D-1

-3

Fls|i]e Fls|is Fls|1ls Fls|1le Fls|ie
FIC|C|H|H Fic|c|H|H[R|K|D|D F|S]1|B
B{B|c|c 8|B|c|c g|Blclcl IFICIC1"|M|B(X|P|P\s|s|clc 8|8lc|c g|B|c|c
N I \ RO DATA h N A A
HOME . DATA
aooRess | "HeLD | FIELD COUNT FIELD FIELD FIELD
71 v | 6+4 (BURST) ey VARIABLE =l 9+4 (BURST) o JHELD o 7291 60
BYTES BYTES (8+4) TO BYTES BYTES (MAX)
FULL TRACK BYTES
__—— GAPBITCONFIGURATION —~—_ _
e — ~\\\§
po— BIT RING
VARIABLE AREA VFO AREA 5 BYTES AM AREA SYNC AREA
2 BYTES
N N 1BYTE
ONES ONES SEE
ONES ONES ONES ZEROS ZEROS ONES 5 BITS MISSING 5 BITS MISSING TRACK
CLOCKPULSES | CLOCK PULSES FORMAT
TN
111111111111111111111111nnooNooounnnoon-uu111111111111111111\1/1f1\11
N
F = FLAGBYTE
CC = CYLINDER NUMBER IN BINARY
HH = HEAD NUMBER IN BINARY SYNC BYTE CONFIGURATIONS
R = TRACKRECORD NUMBER IN BINARY
K = KEY FIELD LENGTH IN BINARY
R R
DD = DATA FIELD LENGTH IN BINARY scﬁc Ostil:“l::NT g\?:gA Rng?ul::NT sﬁz; NG
FB = FIRST(CYCI.IC BURST) BYTE BYTE BYTE BYTE BYTE BYTE BYTE
SB = SECOND (CYCLIC BURST) BYTE
IC = INDICATOR BYTE
BC = BIT COUNT BYTE
G0 = 41BYTES+0.043X (K +Dp)* 1310 Mo %10 1419 1019 910
62 = 41BYTES
G4 = T3BYTES lbooo1101] Joooor1o011d Jooooro004f {ILUUU111_0| oooo1010] foooor1o01f
* BURST CHECK BYTES NOT INCLUDED

1VINHO4 MOV4l OSIa '3

F. INDEX—BLOCK SIZE FOR INDEXED FILES

There is a minimum index block size for every
indexed file depending on key size and file size. The
user may utilize any index block size larger than the
minimum, if he has memory space for a larger index
block. The larger the index block the better retrieval
becomes on random processing. If the user goes
below the minimum index block size there is the
possibility of not being able to create the file size as
planned.

When planning the creation of indexed files, the user
must decide whether he wants to process the
directory-directory, which resicles on mass storage, in
a main memory buffer. This option speeds up random
processing, but requires extra space for the buffer. If
the mode of processing is with a main-memory buffer
there is a well-defined optimum index block size
which .minimizes memory space for the index buffer
and directory-directory buffer.

Orice the user has determined his mode of processing,
Table F-1 is used to determine minimum-keys/block
and Table F-2 is used to determine optimum
keys/block. Note that in using Table F-1 and Table
F-2, the larger of the two values in the file size is the
determining factor. Also note that these tables were
computed for consistency for maximum key size and
one million records as the upper limit. There will be
some index block sizes generated that exceed one
track in number of bytes. This exceeds the system
limit for block sizes. The user will have to choose a
smaller key size or smaller file size.

The keys/block is entered in the Control Language
//DEFINE statement along with key size. The
corresponding minimum or optimum index block size
can be calculated from Table F-3. The resulting index
block size is then entered in the COBOL source
program via the INDEX-BLOCK Clause.

If the user has determined to calculate the optimum
keys/block and optimum index block size, Table F-4
is used to calculate the number of bytes for the
main-memory buffer for the directory-directory
entries.

The user must be careful not to exceed the file
maximum at creation time when using the optimum
block size — when he utilizes the main-memory
buffer to hold the directory-directory entries for
random processing, the buffer would not be able to
hold all the entries, thus writing over the user
program. Thus, when choosing an index block size
other than the optimum and the main-memory buffer
is used to process the directory-directory entries, the
buffer size should be the size of the index block, as
the system checks for overflow at creation time.

If the user wishes to calculate keys/block based on a
different file maximum than given in Tables F-1 and
F-2, the following algorithms, along with Table F-5,
can be used to compute minimum and optimum
keys/block. The constants Ko and Km are taken from
Table F-5 based on key size.

Optimum (OKB) =[% Ko

Minimum (MKB) =‘\3\ Km

FS = Maximum File Size

NOTE: { } = Round up if result not
whole integer.

F-1

Table F-1. Minimum Keys/Block

Key Size in Bytes

11 16 21 26 36 51

Blocks in File to to to to to to
2 3 4 5 6 7 8 9 10 15 20 25 35 50 100

0-5,000 13 14 14 14 15 15 15 15 15 16 16 16 16 17 17
5,000 - 10,000 16 17 18 18 18 19 19 19 19 20 20 20 21 21 21
10,000 - 15,000 19 20 20 21 21 21 22 22 22 23 23 23 23 24 24
15,000 - 20,000 20 21 22 23 23 23 24 24 24 25 25 26 26 26 26
20,000 - 25,000 22 23 24 24 25 25 25 26 26 27 27 27 28 28 28
26,000 - 30,000 23 24 25 26 26 27 27 27 28 28 29 29 29 30 30
30,000 - 35,000 25 26 27 27 28 28 28 29 29 30 30 3 31 31 32
35,000 - 40,000 26 27 28 28 29 29 30 30 30 3 32 32 32 33 33
40,000 - 45,000 27 28 29 30 30 31 3 31 31 32 33 33 34 34 34
45,000 - 50,000 28 29 30 3t 31 32 32 32 33 34 34 34 3 35 36
50,000 - 60,000 29 3 32 32 33 34 4 34 3 36 36 37 37 37 38
60,000 - 70,000 31 32 34 34 35 35 36 36 36 37 38 38 39 39 40
70,000 - 80,000 32 34 35 36 36 37 37 33 38 39 40 40 4 41 42
80,000 - 90,000 34 3% 36 37 383 38 39 39 40 M M 42 42 43 43
90,000 - 100,000 3% 36 37 38 39 40 40 41 41 42 43 43 44 44 45
100,000 - 125,000 37 39 40 M 42 43 43 44 44 45 46 47 47 48 48
125,000 - 150,000 40 44 43 44 45 45 46 46 47 48 49 49 50 51 51
150,000 - 175,000 42 44 45 46 47 48 48 49 49 50 51 52 53 53 54
175,000 - 200,000 44 46 47 48 49 50 50 51 51 53 54 54 55 56 - 56
200,000 - 250,000 47 49 51 52 53 54 54 55 65 67 58 58 659 60 61
260,000 - 300,000 50 52 54 56 56 57 58 58 59 61 61 62 63 64 64
300,000 - 350,000 52 55 57 58 59 60 61 62 62 64 65 65 66 67 68
350,000 - 400,000 55 57 59 61 62 63 63 64 65 67 68 68 69 70 71
400,000 - 450,000 57 60 62 63 64 65 66 67 67 69 70 N 72 73 74
450,000 - 500,000 59 62 64 65 67 68 68 69 70 72 73 74 74 7% 76
500,000 - 600,000 63 66 68 69 7 72 73 73 74 7% 77 78 79 80 81
600,000 - 700,000 66 69 7 73 74 7% 76 77 78 80 81 82 83 84 85
700,000 - 800,000 69 72 74 76 7 79 80 81 81 84 85 8 87 88 89
800,000 - 900,000 72 1% 77 79 81 82 83 8 8 87 88 89 91 91 93
900,000 - 1,000,000 74 78 80 82 84 8 86 87 88 90 92 93 94 95 96

F-2

Table F-2. Optimum Keys/Block

Key Size in Bytes
Do E e
2 3 4 5 6 7 8 9 10 15 20 25 35 50 100
0- 5,000 16 17 18 18 18 19 19 19 19 20 20 20 21 21 21
5,000 - 10,000 20 21 22 23 23 23 24 24 24 25 25 25 26 26 26
10,000 - 15,000 23 24 26 26 26 27 27 27 27 28 29 29 29 30 30
15,000 - 20,000 26 27 28 28 29 29 29 30 30 A 32 32 32 33 33
20,000 - 25,000 28 29 30 31 31 32 32 32 33 34 34 34 3 35 36
25,000 - 30,000 29 31 32 32 33 34 34 34 35 36 36 37 37 37 38
30,000 - 35,000 31 32 33 34 35 35 36 36 37 37 38 38 39 39 40
35,000 - 40,000 32 34 35 36 36 37 37 38 38 39 40 40 4 41 42
40,000 - 45,000 34 3 36 37 38 38 39 39 40 41 41 42 42 43 43
45,000 - 50,000 3 36 37 38 39 40 40 M4 41 42 43 43 44 44 45
50,000 - 60,000 37 39 40 M 42 42 43 43 43 45 45 46 46 47 48
60,000 - 70,000 39 44 42 43 44 44 45 45 46 47 48 48 49 49 50
70,000 - 80,000 40 42 44 45 46 46 47 47 48 49 50 50 51 52 52
80,000 - 90,000 42 44 45 47 47 48 49 49 50 51 52 52 53 54 54
90,000 - 100,000 4 46 47 48 49 50 50 51 51 53 54 54 56 56 56
100,000 - 125,000 47 49 51 52 53 54 54 55 55 57 58 58 59 60 61
125,000 - 150,000 50 B2 54 55 56 57 58 58 59 61 61 62 63 64 64
150,000 - 175,000 52 55 67 58 59 60 61 61 62 64 65 65 66 67 68
176,000 - 200,000 56 57 59 61 62 63 63 64 65 67 68 68 69 70 71
200,000 - 250,000 59 62 64 65 67 68 68 69 70 72 73 74 74 75 76
250,000 - 300,000 63 66 68 69 71 72 73 713 74 76 77 78 79 80 81
300,000 - 350,000 66 69 71 73 74 75 76 77 78 80 81 82 83 84 85
350,000 - 400,000 69 72 74 76 78 79 80 81 81 84 86 86 87 88 89
400,000 - 450,000 72 7% 77 79 81 82 83 84 8 87 88 89 I 91 93
450,000 - 500,000 74 78 80 82 84 85 8 87 88 90 92 93 94 95 96
500,000 - 600,000 79 82 84 87 88 90 9N 92 93 9% 97 98 100 101 102
600,000 - 700,000 83 87 90 92 94 95 96 97 98 101 102 103 105 106 107
700,000 - 800,000 87 N 94 96 98 99 100 102 102 105 107 108 110 111 112
800,000 - 900,000 90 94 97 100 102 103 105 106 106 110 111 112 114 116 116
900,000 - 1,000,000 93 98 101 103 105 107 108 109 110 113 115 116 118 120 121

F-3

Table F-3. Optimum or Minimum Index Block Size

(10) (OKB) (KS+4)

Optimum block size = 10 + 5

OKB = Optimum keys/block

KS = Key size

(10) (MKB) (KS+4)

Minimum block size = 10 + ‘ 9

MKB = Minimum keys/block
K8 = Key size

NOTE: l } = Round up if result not whole integer.

Table F-4. Bytes Required in Buffer for Directory-Directory Entries

Usage = -———Q(OE:%JO) = US

. . [us 7_
Number keys/primary index block _[KS+4] NKP

. _[_us
Number keys/directory btock —I:KS+2

]= NKD
Total number keys represented/
directory block = (NKP) (NKD) NKRD

Number entries in {file size

"I NKRD

Directory-directory block - =lNKDD

Number of bytes required for
buffer for directory-directory = 10+ (KS+2) (NKDD)
entries

NOTE: { }= Round up if result not whole integer.

Round down if result not whole integer.

Table F-5. Constants for Alternate Algorithm

KS Kq Km KS Ko Km
2 1.2500 2.5000 52 5975 1.1950
3 1.0888 2.1776 53 5967 1.1934
4 .0877 1.9753 54 .5959 1.1918
5 9184 1.8367 55 .5962 : 1.1904
6 .8681 1.7361 56 .5945 | 1.1890
7 8299 1.6598 57 5939 1.1878
8 .8000 1.6000 58 .5932 1.1864
9 .7759 1.5518 59 .5926 1.1852

10 .7562 1.5124 60 5920 1.1840
11 .7396 1.4792 61 5914 1.1828
12 .7256 1.4512 62 .5908 1.1818
13 .7136 1.4272 63 5903 1.1806
14 .7031 1.4062 64 5897 1.1794
15 .6940 1.3880 65 .5892 1.1784
16 .6859 1.3718 66 .5887 1.1774
17 6787 1.3574 67 .5882 1.1764
18 6722 1.3444 68 6878 1.1756
19 6664 1.3328 69 6873 1.1746
20 6612 1.3224 70 .5868 1.1736
21 .6564 1.3128 71 .5864 1.1728
22 .6520 1.3040 72 .5860 1.1720
23 .6480 1.2960 73 5856 1.1712
24 .6443 1.2886 74 5852 1.1704
25 6409 1.2818 75 .b848 1.1696
26 6378 1.2756 76 .5844 1.1688
27 .6348 1.2696 77 5840 1.1680
28 6321 1.2642 78 6837 1.1674
29 .6296 1.2692 79 .6833 1.1666
30 6272 1.2544 80 .56830 1.1660
31 6249 1.2498 81 .5827 1.1654
32 6228 1.2456 82 .5823 1.1646
33 .6209 1.2418 83 .5820 1.1640
34 6190 1.2380 84 .5817 1.1634
35 6172 1.2344 85 6814 1.1628
36 6156 1.2312 86 5811 1.1622
37 6140 1.2280 87 5808 ~ 1.1616
38 6125 1.2250 88 .56805 1.1610
39 6111 1.2222 89 .5802 1.1604
40 .6097 1.2194 90 .6800 1.1600
1 .6084 1.2168 o] 5797 1.1594
42 6072 1.2144 92 .-5794 1.1588
43 .6060 1.2120 93 5792 1.1584
44 .6049 1.2098 94 5789 1.1578
45 .6038 1.2076 95 .5787 1.1674
46 .6028 1.2056 96 .5785 1.1570
47 6018 1.2036 97 .5782 1.1564
48 .6009 1.2018 98 .56780 1.1660
49 6000 1.2000 99 .6778 1.1666
50 5991 1.1982 100 5776 1.1552
51 .5983 1.1966

F5

INDEX

ABEND macro
ACCEPT macro

Access
random
sequential
Action macros
Add mass storage space
ALLOC macro

Allocate space
Assumed block number
Attribute element

BDT
sequential files
relative files
indexed files
Bit significance
BLKNUM parameter
BLKSIZ parameter
Block 1/0
coding
declarative macro
device control commands
error processing
file control
general description
macros
CNTRL
POSITN
READ
RESET
STATUS
TYPE
WRITE
positioning
program
reading
request termination
rules
sense information
space management
writing
BREAK parameter
BUFADR parameter

WONNQNOON wo
WNW==014L =

o

2-12,20-34
2-20-23
2-24-28
2-29-34
7-22
7-11,12,13

~

e N e e Y
SOO-=ohw
oW 0w

D T)

o

WWWWENNNININN

¢
wbH

3-2
7-31
7-7,15,24,27

Buffer description table
general description
indexed files
relative files
sequential files

BUFSIZ parameter

Catalog elements
attribute
continuation
name

space
volume
CATALOG parameter
Central catalog
CHAIN parameter

Change current block number
Close file for data transmission
CLOSE macro

Close volume
CLOVE macro

CNTBUF parameter
CNTRL macro

CNTSIZ parameter
COMMAND macro
basic data channel
DCABLE
DCJUMP
DCREAD
DCSEEK
DCSRCH
DCWRIT
RESTORE
Command program
Common stored data format
CON parameter

Console communication macros

CONSOLE

MESSAGE
CONSOLE macro

Index-1

2-3,6
2-3;A-6,9
2-3,4;
A-45
2-3,8;A-3
2-3,10
7-3,6,6
2-3;A-1:4,7
7-24,27,
28,30
7-12
7-7
-3;7-1,7;
-14
8
1
1
2

o w

:3,6-1;
8:B-15
8,29
3-2,3:7-1,
13;B-18
7-28,29
7-24
7-24:B-23
7-24:B-24
7-30;B-29
7-28;B-27
4,;B-25
7:;B-26
9:B-28
0:B-29

N~NWN

7-2
7-2
7-2
7-3
4-1
2-1
7-3

CONTROL parameter
Control program macros

ABEND

ACCEPT

DELAY

DISPLAY

EHALT

GETCOM

HALT

INFORM

JDATE

MEMLIM

POST

RPOST

SDATE

SETCOM

SETIF

TIME

WAIT

Control program services
finding partition size
inter-step and control language

communication

reading data from //PAR cards
service request control
writing to SYSOUT

CP parameter

CPADR parameter

Create communication byte

CSD parameter

CWADR parameter

CYCLES parameter

Data macros

Data structures
DATACYL parameter
DATATXT parameter
DATBUF parameter

DATABUF1 parameter
DATABUF2 parameter
DATSIZ Parameter

DATSIZ1 parameter
DATSIZ2 parameter

Define file label

Defining and opening devices
DEFLB macro

DELAY macro

Device and file type
Device control commands
DEVTYP parameter

7-7
7-1,37,8-37
7-1,34,B-32
7-1,31;B-35
7-1,35
7-1,37,;B-36
7-1,33,B-31
7-1,36;B-36
7-1,31;8-33
7-1,37,B-38
7-1,35;B-33
7-1,32;B-31
7-1,32;B-31
7-1,37,B-38
7-1,33,B-31
7-1,36;B-34
7-1,37;B-37
7-1,30;8-30
5-1

5-1

5-1

5-2

51

5-2

7-22

7-23

7-32

7-3,34

7-30

7-31

B-1

2-1

7-3

7-38

7-10,12,28,
29,35
7-34,38
7-38
7-10,12,28,
29,35

7-38

7-38

Disc catalog
central

pack
Disc track format
DISPLAY macro

EBCDIC parameter
EHALT macro
ELEMENT parameter
End conditions

EOF

EOA

EOT
ENDADR parameter
ERRCOMP parameter

ERROPT parameter

Error log record

Error logging

Error processing

Error recovery
types of errors
intervention required
retries
information
uncertain conditions
irrecoverable conditions
error logging

EXCP instruction

EXCP macro

Expand from communication byte

EXPND macro

FDT

FIELD parameter
File control
general description
macros
CLOSE

CLOVE

OPEN
File description table

File label (tape)
File organization
FILENAM parameter

Index-2

2-2,3:A-1,
4,7
2-2,3;A1,2
E-1
5-2;7-1,35

7-10,12
7-1,37,B-36
79

3-3

34

34

7-34
3-4:7-3,

5 thru 10,12
thru 15,21,23,
30 thru 36;
B-4
4-3:7-23
C-7

C-2

34

2-12,13 thru
19:3-4;7-2
7-27,28,30

NN SNV N @

FILEORG parameter
Files

indexed

relative

sequential
FILESIZ parameter
FILETYP parameter
Fixed length records
FUNCTN parameter

GAP parameter

Gap specification
Generation of reply buffer
GETCOM macro

HABUF parameter

HALT macro

Hardware control operation
HASIZ parameter

IDENT parameter

Identify partition limit
INDCY L parameter
Index block size
Indexed files

INDSIZ parameter
INFOADR parameter

INFORM macro

Input/output action
input/output levels

logical

block

physical
Interaction of Data Management

and Control Language

1/0 service macro (LABRTN)
IOTYP parameter

JDATE macro

KEYBUF parameter
KEYSIZ parameter

LABDEF parameter
LABDEF1 parameter
LABDEF2 parameter
Labels

tape

disc
LABRTN macro

e
w

NN NN NN
N
(&)}

w

LN M—‘(‘»\J(‘O—‘-ﬂd
o -

© oo
- W
g ®
-—

w
»

w -
-—

7-28,29
7-1,36;B-36
7-13
7-28,29

7-3 thru 10,

12 thru 15,21

7-35

7-3,4

F-1

2-1

7-34
7-9,32,33,
36,37 !
5-1;7-1,31;
B-33

7-22

—) w—

-1
1,
-1,

NN

,9:B-16
8
3

N

6-
7.
7-
7-1,37;B-38

7-28,29
7-3,4,28,39

7-5,6,7
7-34
7-3,4

2-1,2
2-2,3
7-1,9;B-16

LIST parameter
LOCK parameter
Logical 1/0
Macro expansions
Macros
ABEND
ACCEPT
ALLOC
CLOSE
CLOVE
CNTRL
COMMAND
CONSOLE
DEFLB
DELAY
DISPLAY
EHALT
EXCP
EXPND
GETCOM

-HALT
INFORM
JDATE
LABRTN
MEMLIM

MESSAGE
OPEN

PCB
POSITN

POST
PURGE
READ

RESET

Index-3

7-3 thru 10,
12 thru 15,21,
30 thru 36;B-3
7-8

1-1

B-1,

[&)]

Nw
-
o
Hw

~

-

w_a—b(:on
TR

~
~.

D
~Wo
~Nmo -

[0)]

DY P woow
NO=2Umo
WaoL DX
TS (&)

o

Cc

,B-

DONNRNIP 2OV NOD N

NEANWNNG

Q= -
Wz
X
®
O oW

~a

[o¢]

~

Now
-
W

~eo -

WO NN @

("J—lﬂd
w

~

P ¢
e AR
2
N

o~

NMNoas
wpp Lo

T Low
N R UK
® N5
TN
N

G —

SEARN
wmomo —

3
w
N

<UL A
DTy

~

'
—
~

~

WN WU =W

N W=
-2
DT
W
2o

N w

Macros (continued)
RPOST

SDATE
SETCOM

SETIF
STATUS

TIME
TYPE

WAIT
WRITE
MEMLIM macro

MESSAGE macro

MODE parameter

MSC parameter

MULTBLK parameter
Multi-volume file processing

Name element
OPCODE parameter
OPEN macro

OPER parameter

Pack catalog
PAIRED parameter

Parameters
BLKNUM
BLKSIZ
BREAK
BUFADR
BUFSIZ

CATALOG
CHAIN

CNTBUF
CNTSIZ
CON
CONTROL
cpP

CPADR
CSD
CWADR
CYCLES

2-34,A-5

7-24,27
thru 30
3-3:6-1;
7-1,6:B-12
7-11,12,14

2-3;A-1,2
75,6

7-11,12,13
7-3

7-31
7-7,15,24,27
7-15,24,27,
28

7-35,6
7-24,27,28,
30

7-28,29
7-28,29
7-3,5

7-7

7-22

7-23

7-3,34
7-30

7-31

Parameters (continued)

DATATXT
DATACYL
DATBUF

DATBUF1
DATBUF2
DATSIZ

DATSIZ1
DATSIZ2
DEVTYP
EBCDIC
ELEMENT
ENDADR
ERRCOMP

ERROPT
FIELD
FILENAM
FILEORG
FILESIZ
FILETYP
FUNCTN
GAP
HABUF
HASIZ
IDENT

INDCYL
INDSIZ
INFOADR

I0TYP
KEYBUF
KEYSIZ
LABDEF

LABDEF1
LABDEF2
LIST

LOCK
MODE
MSC
MULTBLK
OPCODE

OPER
PAIRED

7-38

7-3
7-10,12.28,
29,35
7-34,38
7-38
7-10,12,28,
29,35

7-38

7-38

7-23
7-10,12

79

7-34
3-4;7-3,56
thru 10,

12 thru 15,
21,23,30
thru 36;B-4
4-3:7-23
7-27,28,30
7-2

7-3

7-3,4,5
7-3,4

7-23

7-29
7-28,29
7-28,29
7-3 thru 10,
12 thru 15,21
7-3,4

7-3,4
7-9,32,33,
36,37
7-7.8
7-28,29
7-3,4,28,39
7-5,6,7
7-3,4

7-3,4

7-3 thru 10,
12 thru 15,
21, 30 thru
36:B-3

7-8
7-30,37,38
7-2

7-11
7-24,27
thru 30
7-11,12,14
7-5,6

Parameters (continued)

PARNUM
PCB
RECSIZ
REQADR
REQCNT
RETURN

REWIND

SECONDS

SEEK

SIZERR

SKIP

SPREAD

STRIP

UNORD

USAGE

VERIFY
PARNUM parameter
PCB

general description

macro

parameter
Peripheral device hardware codes
Physical

command block

control block

request termination
Physical 1/0

coding

error processing

general description

macros

EXCP
PCB

operation

overlap

program

request termination

restrictions
POSITN macro

Post code for Control Language
POST macro

Priority

Processing considerations
end conditions
multi-volume files
priority
request overlap

'5.2:7-34

7-22

7-3,4

7-30

7-30,32
4-1:7-3 thru
10,12 thru 15,
21,23,32 thru
36:B-4

7-7,8

7-31

7-13

7-24

7-24,28

7-3,4

7-34

7-22

7-7

7-3,4
5-2;7-34

23,B-22

~

ledd
[6) V)

WRN =
I

N W=

7-36
5-1,7-1,32;
B-31

3-3

3-3
3-4
3-3
3-3

PURGE macro

Random access
READ macro

Reading data from //PAR cards

Read //PAR card
Records
fixed length
variable iength
RECSIZ parameter
Relative files
Release disc file space
Report of status
REQADR parameter
REQCNT parameter
Request
overlap
termination
Reset exception conditions
RESET macro

Retrieve

system date

time of day
Return file label information
RETURN parameter

Returned information format
REWIND parameter
RPOST macro

SDATE macro
SECONDS parameter
SEEK parameter
Sense information
Sequential

access

files
Service request mechanism

complete bit

CONTROL

end flag

error flag

function code

instruction

length

linkage

return code

return information

Index-b

NN NG SN

3-3,6-1;7-1,
2,5:B-11

AR I
@©w
.
o

—

S H

™
W
owm

7-30,32

33
34
7-21
32,3.4;
7-1,21

7-37

7-37

79

4-1:7-3 thru
10,12 thru 15,
21,23,32 thru
36;B-4

7-16

7-7,8
5-1,7-1,32;
B-31

7-1,37;8-38
7-31

7-13

3-4

N
— o

WWOWNW=WWWw=-=Ww

Set up message format
SETCOM macro

SETIF macro

Sharing

an EXCP

a PCB
SIZERR parameter
SKIP parameter
Space element

Space management
general description
macros

ALLOC

EXPND
PURGE

SPREAD parameter
Standard system suffixes
STATUS macro

Status word
data channel
disc channel
STRIP parameter
Suspend program execution

7-38
5-1;7-1,
33:8-31
5-1;7-1,36;
B-34

4-23
4-1,2
7-24
7-24,28
2-3,8;
A-3,A-6

3-3

7-1,2,3;
B-6
7-1,2,5;
B-9
7-1,2,6;
B-11

7-3,4

B-4
3-2;7-1,15;
B-17

7-19
7-20
7-34
7-31

Tables
FDT

BDT

Tape labels
volume
file
Terminate program
TIME macro
TYPE macro

UNORD parameter
USAGE parameter

Variable length records
VERIFY parameter
Volume element
Volume label

disc

tape

Wait for service request
completion

WAIT macro

WRITE macro

Write message on SYSOUT
Writing to SYSOUT file

Index-6

2-12,13 thru
19:3-4;7-2
2-12,20 thru
34

BN NN
_;'l\)dw—\d

R
NN
N

7-30
5-1,7-1,30;
B-30
3-2,3:7-1,
11;B-19
7-35

5-2

COMMENTS FORM
MR X/0S Contro! Program and Data Management Services
Extended Reference Manual (2200.002)
Please send us your comments, to help us produce better publications. Use the space below to
qualify your responses to the following questions, if you wish, or to comment on other aspects of

the publication. Please use specific page and paragraph/line references where appropriate. All
comments become the property of the Memorex Corporation.

Yes No
° Is the material:

Easy to understand? L 0o e e a (]
Conveniently organized? o o
Complete? . . . o v e e e e e e e e e e e e e e e e a a
Well illustrated? v o v i e O o
ACCUrate? . . . v v v vt v e e e e e e e e e e e e e a a
Suitable for its intended audience? I m] a
Adequately indexed? 0O a

[For what purpose did you use this publication? (reference, general interest, etc.)

. Please state your department’s function:

° Please check specific criticism(s), give page number(s), and explain below:

Clarification on page(s)

Addition on page(s)

Deletion on page(s)

0000

Error on page(s)

First Class

Permit No. 14831
Minneapolis,
Minnesota 55427

: Business Reply Mail
o

) No Postage Necessary if Mailed in the United States

Postage Will Be Paid By

2@/ Memorex Corporation

Midwest Operations — Publications
8941 Tenth Avenue North
Minneapolis, Minnesota 55427

Thank you for your information.

Our goal is to provide better, more useful manuals, and your
comments will help us to do so.

.......... Memorex Publications

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	6-01
	6-02
	6-03
	6-04
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	B-37
	B-38
	B-39
	B-40
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	D-01
	D-02
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	Index-6
	replyA
	replyB

