MRX/OS COBOL Level 1

Reference Manual
2202.002

YEHOWE

wolsAs Jeindwion

s]onpoud

November 1972 Edition

Requestg for copies of Memorex publications shouid be made
to your Memorex representative or to the Memorex branch
of fice serving your locality.

A reader’'s comment form is provided at the back of this
publication. if the form has been removed, comments may be
addressed to the Memorex Corporation, Publications Dept.,
8941 — 10th Ave. No. (Golden Valley) Minneapolis,
Minnesota 55427.

© 1972, MEMOREX CORPORATION

PREFACE

This document describes the Memorex implementation of American National Standard
(ANS) COBOL, and all Memorex extensions to that standard.

In this document the term MRX COBOL means the Memorex implementation of ANS
COBOL and all extensions to it. There are two types of extensions. ‘

1. Those that represent featnures not specified by ANS COBOL
/

2. Those that represent an easing of the strict ANS COBOL rules and
allow for greater programming convenience

All such extensions are printed on a shaded background for the convenience of users who
wish strict conformance with the standard. Use of features that are extensions to the
standard may result in incompatibilities between the implementation represented by this
document and other implementations.

A knowledge of basic data processing techniques is necessary for the understanding of this
document. In addition, the following manuals (referred to in this publication) provide
information necessary for effective usage of MRX COBOL.

° Program Library Services Referance manual

° Control Program and Data Management Services, Basic and Extended
Reference manuals

.-i

ACKNOWLEDGMENT

The following extract from USA Standard COBOL, X3.23-1968, is presented for the
information and guidance of the user.

“Any organization interested in using the COBOL specifications as the basis
for an instruction manual or for any other purpose is free to do so. However,
all such organizations are requested to reproduce this section as part ‘of the
introduction to the document. Those using a short passage, as in a book
review, are requested to mention ‘COBOL’ in acknowledgment of the source,
but need not guote this entire section.

“COBOL is an industry language and is not the property of any company or
group of companies, or of any organization or group of organizations.

“No warranty, expressed or implied, is made by any contributor or by the
COBOL Committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

“Procedures have been established for the maintenance of COBOL. Inquiries
concerning the procedures for proposing changes should be directed to the
Executive Committee of the Conference on Data Systems Languages.

“The authors and copyright holders of the copyrighted material used herein:

FLOW-MATIC (Trademark of Sperry Rand Corporation),
Programrning for the UN!VAC® | and lI, Data Automation
Systems Copyrighted 1958, 1959, by Sperry Rand
Corporation; |IBM Commercial Translator, Form No.
F28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in
the COBOL specifications. Such authorization extends to the reproduction
and use of COBOL specifications in programming manuals or similar
publications.”

FEATURES OF MRX COBOL

fn 1969, a group of computer professionals, representing the U.S. Government,
manufacturers, universities, and users, formed the Conference On DAta SYstems Languages
(CODASYL). At the first meeting, the conference agreed upon the development of a
common language for the programming of commercial problems. The proposed language
would be capable of continuous change and development, it would be problem-oriented and
machine-independent, and it would use a syntax closely resembling English, avoiding the use
of special symbols as much as possible. The COmmon Business Oriented Language (COBOL)
which resulted met most of these requirements.

As its name implies, COBOL. is especially efficient in the processing of business problems.
Such problems involve relatively little algebraic or logical processing; instead, they usually
manipulate large files of similar records in a relatively simple way. This means that COBOL
emphasizes the description and handling of data items and input/output (1/0) records.

In the years since 1959, COBOL has undergone considerable refinement and
standardization. Now, an extensive subset for a standard COBOL has been approved by
ANS! (American National Standards Institute), an industry-wide association of computer
manufacturers and users; this standard is called American National Standard {ANS) COBOL.

This document describes the MRX/40 and 50 OS COBOL (hereafter called MRX COBOL),
which complies with the specifications of ANS COBOL and includes a number of Memorex
extensions to it as well. The compiler supports the following standard levels of the
processing modules defined in STANDARD COBOL.

® Low nucleus — defines the permissible character set and the basic
elements of the language contained in each of the four COBOL
divisions: ldentification Division, Environment Division, Data
Division, and Procedure Division.

° Medium table handling — allows the definition of tables and
references to them through subscripts and indexes.

) Low sequential access — allows the records of a file to be read or
written in a serial manner.

® Low random access — allows the records of a file to be read or
written in a manner specified by the programmer.

® High segmentation — allows large programs to be split into segments
that can be assigned to permanent or overlayable areas within a user’s
partition.

® Null sort — specifies that the COBOL. Sort feature is not included in
MRX COBOL.

[Null report writer — specifies that the COBOL Report Writer feature

is not included in MRX COBOL.

Bulletin: 2202.002-0001
Date: 3/19/73
° Low library — supports the retrieval of prewritten source program
entries from a user library for inclusion in a COBOL program. The
copy feature is not implemented as an integral part of the COBOL
compiler; this feature is available to the user as a feature of the
Operating System Librarian UPDATE utility.

e MRX COBOL Extensions

1. Double or single quotes
2. Linkage Section
3. Comment lines (* or / in column 7)
4, FILLER at the group level
COMP-3
5. USAGE lPACKED
BINARY
6. INDEX-BLOCK SIZE clause
7. Index File organization
| - 8. TO is optional on EQUAL TO relational operator

® Standard COBOL features not in MRX COBOL — Switches in
Special-Names Section

° MRX COBOL features from higher levels of standard COBOL

1. Nucleus
a. Single digit level number
b. Level numbers from 1 to 49
ACCEPT ... FROM
d. DISPLAY ... UPON

e. Compare operands which are unequal in length
(nonnumeric compare)

f. Plural form of figurative constants
g. Data-name may begin with numeric digit
| h. Symbolic Relational Operators
2. Sequential and Random Access
a. RESERVE ALTERNATE AREAS
b. Data-name in VALUE clause of File Description (FD)
entry

vi

c. NO REWIND in OPEN

d. READ ... INTO

e. WRITE ... FROM

f. NO REWIND/LOCK in CLOSE

g. Data-name in AFTER ADVANCING clause

Table Handling

a. OCCURS ... DEPENDING ON

vii

TABLE OF CONTENTS

Section

1

INTRODUCTION

Input to COBOL Compiler
Source Program
Compiler Options

Output from COBOL Compiler
Object Program
Listings

COBOL Program Flow

FORMAT NOTATION
STRUCTURE OF COBOL

Organization of the COBOL Program
Structure of the COBOL Program
COBOL Character Set
Computer Characters
Alphanumeric Characters
Alphabetic Characters
Numeric Characters
Word Characters
Punctuation Characters
Special Characters
Editing Characters
Arithmetic Expression Characters
Relation Condition Characters
Character Strings
Word
Reserved Word
Key Word
Optional Word
Connective
Name
Data-Name
Identifier
Procedure-Name
File-Name
Mnemonic-Name
Index-Name
System-Name
Program-Name

ix

3-1

3-1
3-1
3-2
3-3

3-3
3-3
3-3
3-3
3-4
3-4

3-56
356

35
35
3-5
3-6
3-6
3-6

3-6
3-6

3-7
3-7

Section

TABLE OF CONTENTS (Continued)

Constants
Literals
Numeric Literals
Nonnumeric Literals
Figurative Constants
Picture Character String
NOTE Character String
Special Registers

USE OF COBOL CODING FORM

Sequence Numbers
Continuation of Lines
Continuation of Nonnumeric Literals
Continuation of Words and Numeric Literals
Area A and Area B
Division Header
Section Header
Paragraph-Names and Paragraphs
Level Indicators and Level Numbers
Blank Lines
Comment L.ines

IDENTIFICATION DIVISION

Organization of the ldentification Division
Program-ID Paragraph

ENVIRONMENT DIVISION

Organization of the Environment Division
Configuration Section
Source-Computer Paragraph
Object-Computer Paragraph
Special-Names Paragraph
Maximum Configuration Section
Input-Qutput Section
File-Control Paragraph
SELECT Clause
ASSIGN Clause
RESERVE Clause
FILE-LIMIT Clause
ACCESS MODE Clause
PROCESSING MODE Clause
ACTUAL KEY Clause

Page

37
37
37
38
3-8
3-9
39
39

4-1

41
4-1
41
4-1
4-1
4-3
4-3
4-3
4-3
4-3
4-4

5-1

5-1
5-1

6-1

6-1
6-1
6-2
6-2
6-3
6-4
6-4
6-4
6-5
6-5
6-6
6-7
6-8

6-8

TABLE OF CONTENTS (Continued)

Section Page
Relative Files 6-8
Indexed Files ' 6-10
FORWARD KEY Clause 6-13
INDEX-BLOCK Clause 6-13
FILE-CONTROL Clause Restrictions 6-14
Maximum FILE-CONTROL Paragraph 6-15
I-O Control Paragraph 6-15
RERUN Clause 6-15
SAME AREA Clause 6-16
Maximum 1-O-CONTROL Paragraph 6-16
Maximum Input-Output Section 6-17
Maximum Environment Division 6-18
7 DATA DIVISION 7-1
Organization of the Data Division 71
Data Division Entries 7-2
Concept of Levels 7-2
Level Numbers _ 7-3
Level Indicator 7-3
File Section 7-3
File Description Entry 7-3
Record Description Entry 7-4
Working-Storage Section 7-4
Data Item Description Entries 7-4
Record Description Entries 7-4
Linkage Section 7-4
File Description Entry — Details of Clauses 7-5
File Description 75
Block Contains Clause 75
Record Contains Clause 7-6
Data Records Clause 7-6
Label Records Clause 7-7
Value of Clause 7-7
Maximum File Description Entry 7-8
Data Description 7-8
Data Description Entries 7-8
Data Item Description Entries 79
Record Description Entries 79
Data Description Entry Clauses 79
Level Number 79
Data-Name or Filler Clause 7-10
Redefines Clause , 7-10
Blank When Zero Clause 7-16
Justified Clause 7-16

Xi

TABLE OF CONTENTS (Continued)

Section

Occurs Clause
Picture Clause
Symbols Used in the Picture Clause
Repetition of Symbols
Character String and Item Size
Five Categories of Data
Alphabetic Items
Alphanumeric Items
Numeric Items
External Decimal
Binary
Internal Decimal
Alphanumeric Edited lItems
Numeric Edited 1tems
Three Classes of Data
Editing Rules
Simple Insertion Editing
Special Insertion Editing
Fixed Insertion Editing
Floating Insertion Editing
Zero Suppression and Replacement Editing
Picture Clause Restrictions
Synchronized Clause
Slack Bytes
Intra-Record Slack Bytes
Inter-Record Slack Bytes
Synchronized Clause Restrictions
Usage Clause
Value Clause
Maximum Record or Data Item Description Entry

8 PROCEDURE DIVISION

Organization of the Procedure Division
Statements
Compiler Directing Statements
Conditional Statements
Imperative Statements
Sentences
Conditions
Test Conditions
Class Condition
Relation Condition
Comparison of Numeric Operands
Comparison of Nonnumeric Operands

Xii

Page

717
717
717
7-19
7-20
7-20
7-21
7-21
7-21
7-21
7-23
7-23
7-23
7-24
7-24
7-25
7-25
7-26
7-26
7-27
7-28
7-29
7-31
7-31
7-32
7-34
7-34
7-34
7-36
7-38

8-1

8-2
8-2
8-2

8-4
8-4
8-4
8-5
8-6
8-6

TABLE OF CONTENTS (Continued)

Section , Page
Comparisons Involving Index-Names and/or Index Data Items 8-7
Permissible Comparisons of Subject and Object Operands 8-7

Conditional Statements 88
If Statement 89
Imperative Statements 8-10
Arithmetic Statements 8-10
Giving Option _ 8-11
Rounded Option 8-11
Size Error Option 8-11
Overlapping Operands 8-11
Add Statement 8-11
Subtract Statement 8-12
Multiply Statement 8-14
Divide Statement 8-16
Procedure Branching Statements 8-18
Go To Statement 8-18
Alter Statement 8-20
Perform Statement 8-21
Stop Statement 8-28
Exit Statement . 8-28
Data Manipulation Statements 8-29
Move Statement 8-29
Examine Statement 8-33
Input-Output Statements 8-34
Open Statement 8-35
Seek Statement 8-36
Start Statement 8-36
Read Statement : . 8-37
Write Statement 8-39
Rewrite Statement 8-41
Delete Statement 8-42
Accept Statement 8-43
Display Statement 8-44
Close Statement 8-45
Subprogram Linkage Statements 8-48
Call Statement 8-48
Program Termination Considerations 8-51
Exit Program Statement 8-52
Stop Run Statement 8-52
Compiler-Directing Statements 8-52
Enter Statement 8-52
Note Statement 8-63

xiii

TABLE OF CONTENTS (Continued)

Section
9 SPECIAL FEATURES

Table Handling

Table Definition

References to Table-ltems
Subscripting
Indexing
Restrictions on Indexing and Subscripting
Examples of Subscripting and Indexing

Data Division Considerations for Table Handling
Occurs Clause
Usage Clause

Procedure Division Considerations for Table Handling

Relation Condition
Set Statement
Segmentation
Organization
Fixed Portion
Independent Segments
Segment Classification
Segmentation Control
Structure of Program Segments
Segment-Limit
Restrictions on Program Flow
Alter Statement
Perform Statement
Source Program Library Facility

APPENDIX A — GLOSSARY OF COBOL TERMS

APPENDIX B — EBCDIC COLLATING SEQUENCE
APPENDIX C — MRX COBOL RESERVED WORDS
APPENDIX D — ANS STANDARD CONTROL CHARACTERS
APPENDIX E — RECORDING MODES

APPENDIX F — FILE PROCESSING SUMMARY

APPENDIX G — INDEX — BLOCK SIZE FOR INDEXED FILES

APPENDIX H — COBOL ERROR MESSAGES

Xiv

Page
91

9-1 .
9-1
0-3
9-3
9-5
9-6
9-6
9-7
9-8
9-10
9-11
9-11
9-12
9-13
913
9-13
8-13
9-14
9-14
9-14
9-15
9-15
9-15
9-15
9-16

A-1

C-1
D-1
E-1
F-1
G-1

H-1

LIST OF FIGURES

Figure , , . Page
1-1 COBOL Compiler Program Flow 1-6
6-1 Random Access of a Relative File 69
6-2 Sequential Access of an Indexed File 6-11
6-3 Random Access of an Indexed File 6-12
6-4 FILE-CONTROL Clause, Restrictions 6-14
7-1 Data Items Redefined Within an Area 7-12
7-2 Data Items Rearranged Within an Area 7-13
7-3 Internal Representation of Numeric Items 7-22
7-4 Class and Category of Elementary and Group Data Items. 7-24
75 Examples of Simple Insertion Editing : 7-25
7-6 Examples of Special Insertion Editing 7-26
7-7 Editing Sign Control Symbols and Results 7-27
7-8 Examples of Fixed Insertion Editing 7-27
79 Examples of Floating Insertion Editing 7-28
7-10 Zero Suppression and Replacement Editing 7-29
7-11 Insertion of Slack Bytes Between Occurrences 7-33
8-1 Allowable Forms of the Class Test 85
8-2 Relational Operators and Their Meanings 85
8-3 Examples of Comparisons of Numeric Operands 8-6
84 Examples of Comparisons of Nonnumeric Operands 8-7
8-5 ADD Statement Examples 813
8-6 SUBTRACT Statement Examples 8-15
8-7 MULTIPLY Statement Examples 8-17
8-8 DIVIDE Statement Examples 8-19
89 MOVE Statement Examples 8-32
8-10 Examples of Data Examination 8-34
8-11 CLOSE Option and File Type Comparison 8-47
812 Effect of Program Termination Statements Within Main Programs

and Subprograms 8-61
9-1 Example of Table Indexing 9-7
9-2 Index-Names and Index Data Items — Permissible Comparisons 9-11

Xv

LIST OF TABLES

Table ' Page
8-1 Permissible Comparisons of Subject and Object Operands 8-8
8-2 Permissible Moves 8-31.

XvVi

1. INTRODUCTION

COBOL is a programming language which is essentially machine independent. A program
written in COBOL (source program) follows a set of formatting rules. This source program is
input to the COBOL compiler where it is translated into a series of machine instructions
which can be executed by the computer. The COBOL compiler is itself a program within the
operating system. The output resulting from the compllers translation is a relocatable
object program.

INPUT TO COBOL COMPILER
input to the COBOL compiler consists of the COBOL source program and the compiler

options. The compiler options direct the compiler as to the type of output desired as well as
certain input options.

SOURCE PROGRAM

The COBOL source program may be presented to the COBOL compiler by one of three
means:

1. Directly from the card reader
2. .~ From a spooled file on disc
3. From a user’s source image library on disc (partitioned data set)

The user supplies the source program either directly with the compilation request in the
form of cards, or indicates the source image library from which the source is to be read.
When the source program is supplied by the card reader, the user has the option (using
MRX/OS Control Language Services), prior to compilation, of spooling the source cards to
disc. When a source image library is specified as the means of supplying the source program,
the user must have previously placed the source program in the library.

COMPILER OPTIONS

These options will direct the compiler in its execution and specify the content and format
of its output.

The options are supplied to the compiler via a //PAR control language statement, which is

read by the compiler from the SYSIN file. The //PAR card keywords, as they relate to
COBOL, and the resultant actions are listed in the following table.

1-1

Bulletin: 2202.002-0001
Date: 3/19/73

//PAR STATEMENT Keywords

Keyword Parameters
OBJECT= YES
NO
IMEM= input-name
OMEM= output-
name
RMARG= nnn
SPACE= nn
MAXSIZ= nnnnn
LIST= YES
NO
| ERROR= YES
NO

Default

YES

none

PROGRAM-
1D if
OBJECT=
YES

SYSGEN
value

01

SYSGEN
value

YES

YES

1-2

Explanation

OBJECT=YES or omission of
keyword specifies output of
relocatable object module.
OBJECT=NO suppresses output.

An alphanumeric string of 1-8
characters specifying the cataloged
name of the COBOL source program
to be compiled. If this keyword is
not specified, the source program is
presumed to be on the card reader
or input spool file.

An alphanumeric string of 1-8
characters specifying the name
under which the relocatable
object program will be cataloged
in the library.

1f OMEM is not specified and
OBJECT=NQO, a relocatable object
module will not be produced. If
OMEM is not specified and OBJECT=
YES, the PROGRAM—ID is used for
the catalog name of the relocatable
object module.

A 2 to 3 digit number specifying the
right margin column, 41-120, at which
the compiler will stop processing the
source input records.

A 1 or 2 digit number specifying single
or double spacing on the source listing.

nn 1 or 01 single space

2 or 02 double space

A 1 to 5 digit number specifying the
approximate maximum number of
cards in the source program.

LIST=NO suppresses source program
listing. LIST=YES or omission of
keyword supplies source program
listing.

ERROR=YES or omission of keyword
supplies error message listing of warning
errors. ERROR=NO suppresses listing.
Fatal errors are listed regardless of
option.

Keyword

XREF=

DMAP=

PMAP=

SUBCK=

DATACK=

QUOTE=

OUTPUT FROM COBOL COMPILER

Parameters

YES
NO

YES
NO

YES
NO

YES
NO

YES
NO

QUOTE
APOST

Default

NO

NO

NO

NO

NO

APOST

Bulletin: 2202.002-0001
Date: 3/19/73

~

Explanation

XREF=YES specifies printing -

a cross-reference list. XREF=NO

or omission of keyword suppresses - ..
listing.

DMAP=YES specifies printing Data
Map. DMAP=NO or omission of
keyword suppresses map.

PMAP=YES specifies printing pro-
cedure map. PMAP=NO or omission
of keyword suppresses map.

SUBCK=YES specifies generation of
object code to confirm that the resolved
subscript value does not exceed the
number of entries in the associated
tables. SUBCK=NO or omission of
keyword suppresses generation of
object code.

DATACK=YES specifies generation
of object code to check that only
numeric digits are contained in
external decimal and packed decimal
fields used in the [F and arithmetic
verbs.

This parameter specifies whether the
double quotation mark, QUOTE, or
the apostrophe, APOST, is to be used
as the quote character during com-
pilation.

The compiler output consists of the relocatable object program and its listings. The object
program output is optional; it may be suppressed by a keyword parameter (compiler option)
on the //PAR card. A summary listing will always be produced. Other categories of listings
may be selected or suppressed from the output by keyword parameters on the //PAR card.

OBJECT PROGRAM

The object program output will be sent to a user library with the member name (by which
the program is cataloged on the library), supplied by the user in the compilation options.

1-3

LISTINGS

With the exception of a program summary listing which is always produced, the entries in
the listing are optional as selected by keyword parameters on the //PAR card. The format
and content of each is as follows:

° Summary — consists of general compiler statistics and a memory map
layout.

The general compiler statistics are: date of compilation, number of
fatal errors, and options used in compilation. These are
self-explanatory.

The memory map layout provides the user with a convenient index
of his memory dump. Its contents and format are as follows:

ENTRY POINT LIST : NAME
MEMORY LAYOQUT : NAME Relative address
EXTERNALS LIST : NAME

° Source listing — consists of source image and generated line numbers.

An S in print position 1 denotes a sequence error in columns 1-6 of
the source card.

° Data map — consists of definition name, line number and relative
address, in the order of appearance in the source program.

° Cross reference list — consists of file name, index name, data name,
and procedure name lists. Each list is in ascending alphabetical order
with its reference line numbers in ascending numerical order. In
addition, the relative address of each name (excluding procedure
names) is given.

[Procedure map — consists of the entire instruction set generated by
each source line. The line number is printed once at the beginning of
each set.

® Error listing — consists of the following information:

1. l.ine number where the error occurred
2. F, U, or W indicating fatal, ANS, or warning errors

respectively

1-4

3. Error identification number

4, Clause — clause first code
5. Short but comprehensive explanaﬁon of the error code
6. A total count of each type of error (F, U and W)

COBOL PROGRAM FLOW

Figure 1-1 summarizes the flow of a COBOL program from the time the compiler receives it
to the time it is sent out in some form. '

1-6

COBOL
Source
Program

One of
three
input types

Source
Program

COBOL

Spooled

Source
Program

-

User’
Library

Source
Program

Compiler
Options

Compiler

User
Library

Object
Program

7'y
|

SYSIN
Options

Note: Optional items denoted by dotted lines.

Figure 1-1. COBOL Compiler Program Flow

rError List
Pr;-ea:l:rmap- —_l |
Cross le;or:ﬂ“— L | |
Moawer VI H
=== =1L
}.J

i Summary Page ‘

!
___.Il\/}I

1-6

2. FORMAT NOTATION

Throughout this publication, the format of COBOL statements is presented in a uniform
system of notation. The following system of notation is used to describe the format of
COBOL statements.

e Upper case characters that are underlined are reserved key words and
are required.

] Upper case characters that are not underlined are reserved optional
words. They may be used for the sake of readability.

e Lower case characters represent information supplied by the
programmer.
® Square brackets [] indicate that the contents enclosed are optional

_and may be included in the source program as necessary.

[Braces { } indicates that a selection of one of the options contained
within must be made.

e Ellipsis . . . indicates that the preceding unit may occur once or any
number of times in succession.

° Plus sign (+) and minus sign (-) when appearing in formats, although
not underlined, are required when such formats are used.

° Punctuation and special characters (with the exception of the
previously mentioned) are required where shown.

° A period or comma, when used, must not be preceded by a space but
must be followed by a space.

° A left parenthesis must not be followed immediately by a space; a
right parenthesis must not be preceded immediately by a space.

® At least one space must appear between two successive words or
literals. Two or more successive spaces are treated as a single space,
except within nonnumeric literals.

® An arithmetic operator must always be preceded by a space and
followed by a space.

® Extensions to ANS COBOL and all references to such extensions
have a shaded background.

3. STRUCTURE OF COBOL

COBOL is a structured language. The programmer must write his individual problem
program within a framework of words that have a particular meaning to the COBOL
compiler. The result is the performance of a standard action on specific units of data.

ORGANIZATION OF THE COBOL PROGRAM

A COBOL source program consists of four major divisions. Each 'is identified by a division
header in the proper order and sequence as shown in the following paragraphs:

1. IDENTIFICATION DIVISION -~ names the program

2. ENVIRONMENT DIVISION -- specifies equipment configuration
and 1/0 media.

3. DATA DIVISION — defines the characteristics of data to be
processed by the object program.

4, PROCEDURE DIVISION — describes the procedure used in
manipulating the data.

NOTE

In all formats within this publication, the required clauses and optional
clauses (when written) must appear in the sequence given in the format,
unless the associated rules explicitly state otherwise.

STRUCTURE OF THE COBOL PROGRAM
The structure of a basic COBOL program would appear as follows:

IDENTIFICATION DIVISION.
PROGRAM:ID.program-name.
[AUTHOR.[comment-entry] . . .]
[INSTAL LATION.[comment-entry]. . .]
[DATE WRITTEN.[comment-entry]. . .]
[SECURITY.[comment-entry]...]
[REMARKS.[comment-entry] . . .]

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.entry
OBJECT-COMPUTER.entry
[SPECIAL-NAMES.entry]
[INPUT-OUTPUT SECTION.
FILE-CONTROL. {entry} ...
{I-O-CONTROL.entry]]

Bulletin: 2202.002-0001
Date: 3/19/73

DATA DIVISION.

[FILE SECTION.

file description entry

record description entry} .. } ol
[WORKING-STORAGE SECTION,
[data item description entry]. ..
[record description entry].

COBOL CHARACTER SET

The basic indivisible unit of the COBOL Language is the character. The complete character
set for MRX COBOL. consists of the following 47 characters.

Character Meaning
0-9 Digit
A-Z Letter
Space
+ Plus sign

- Minus sign (or hyphen)

¥ : Asterisk
/ Stroke (virgule, slash)
$ Currency sign
' Comma
Period

Apostrophe (quotation mark)

(

) Right parenthesis
> Greater than

< Less than

= Equals

Left parenthesis

Characters are further classified in an array of subsets. A character may be defined as being
part of one or more of the following listed subsets.

32

COMPUTER CHARACTERS

A computer character is a character that belongs to the Extended Binary Coded Decimail
Interchange Code (EBCDIC) set.

ALPHANUMERIC CHARACTERS

An alphanumeric character is any character in the computer’s character set.

ALPHABETIC CHARACTERS
An alphabetic character is a character that belongs to the following set of letters: A, B, C, D,
E,F,G H,ILJKLMNOPQR,STUV,W,X,Y, Z, and the space.
NUMERIC CHARACTERS
A numeric character is a character that belongs to the following set of digits: 0, 1, 2, 3, 4, 5,
6,7,8, and 9.
WORD CHARACTERS
The characters used in words in a COBOL source program are as follows:
° 0 through 9
° A through Z

° - {hyphen)

PUNCTUATION CHARACTERS
A punctuation character is a character belongingv to the following set.
Character Meaning

Space
' Comma

Period

Quotation mark
(Left parenthesis
) Right parenthesis

33

Bulletin: 2202.002-0001
Date: 3/19/73

SPECIAL CHARACTERS

A special character is a character that belongs to the following set.

Character Meaning

+ Plus sign

. Minus sign

* Asterisk

/ ~ Stroke (virgule, slash)

$ Currency sign

, Comma (decimal point)

Period (decimal point)

Quotation mark

(

Left parenthesis

——

Right parenthesis

Less than

v A

Greater than

Equals

EDITING CHARACTERS

An editing character is a single character or a fixed two-character combination belonging to
the following set.

Character Me_a w
B Space
0 Zero
Plus
Minus
CR Credit
DB Debit
Z Zero suppression

Check protection
$ Currency sign
) Comma (decimal point)

Period (decimal paint)

34

Bulletin: 2202.002-0001
Date: 3/19/73

ARITHMETIC EXPRESSION CHARACTERS

MRX COBOL does not implement the use of a minus sign (-) preceding a variable or left
parenthesis within an arithmetic expression. Arithmetic expressions are limited to those
expressions used to specify relative indexing. The characters used are as follows:

Character Meaning
+ Addition
- Subtraction

RELATION CONDITION CHARACTERS

Relational operators can be used in place of the relational characters.
Examples: GREATER, LESS, EQUAL TO

CHARACTER STRINGS

A character string is a set of contiguous characters which form a word, a name, a constant, a
PICTURE in the Data Division, or a NOTE in the Procedure Division.

It is delimited by a space, a period, a comma, or a right parenthesis.

WORD

A sequence of not moré than 30 characters chosen from the word character set. A word
may not begin or end with a hyphen.

RESERVED WORD

A word that has a preassigned meaning to the COBOL compiler. It may not appear as a user
defined word unless it is a nonnumeric literal enclosed by quotation marks.

KEY WORD

A word that is required when it appears in a COBOL entry.

OPTIONAL WORD

An optional word that may appear at the user’s discretion for the sake of readability.
Misspelling of an optional word or its replacement by another word is not allowed.

35

CONNECTIVE

A comma used to link two or more subscripts or index expressions in a subscript data name
reference. This is the only connective included in MRX COBOL.

NAME

There are seven types of names used in a MRX COBOL program: data-names,
procedure-names, - file-names, - mnemonic-names, - index-names, - system-names and
program-names.

DATA-NAME

A word that contains at least one alphabetic character (not necessarily the first). 1t names an
entry in the Data Division. All data names must be unique as qualification is not included in
MRX COBOL. ‘

IDENTIFIER

An identifier is a data-name, followed, as required, by the syntactically correct combination
of subscripts or indexes necessary to make unique reference to a data item.
PROCEDURE-NAME

May be a paragraph name or a section name used to refer to that paragraph or section in the
source program. It may be composed of solely numeric characters. If so, data names are
equivalent only if they are composed of the same number of digits and have the same value.
No name can be both a data-name and a procedure-name.

FILE-NAME

A file-name is a word with at least one alphabetic character that names a file described in
the Data Division. It is formed according to the rules for formation of a data-name.
MNEMONIC-NAME

A mnemonic-name is a word, supplied by the programmer, that is associated in the
Environment Division with a specific implementor-name. An implementor-name is a

reserved word that refers to a particular feature available on a Memorex computer system.
Mnemonic-names are formed according to the rules for formation of a data-name..

INDEX-NAME

An index-name is a word with at least one alphabetic character that names an index
associated with a specific table. It is formed according to the rules for formation of a
data-name.

SYSTEM-NAME

A system-name is a word that specifies the external name of a file, a device class, and an
organization method. The external name consists of from one to eight alphanumeric
characters. The first character must be alphabetic.

PROGRAM-NAME

A program-name is a word that identifies a COBOL source program. The program-name
consists of alphanumeric characters, the first of which must be alphabetic.

CONSTANTS

A constant is a unit of data whose value is not subject to change. The two types of constants
are:

] Literals
[Figurative constants
LITERALS

A literal is a string of characters whose value is implied by the ordered set of characters of
which the literal is composed. Every literal belongs to one of two types: numeric or
nonnumeric.

Numeric Literals

A numeric literal is defined as a string of characters chosen from the digits O through 9, the
plus sign, the minus sign, and the decimal point.

The rules for formation of a numeric literal are as follows:
° It must contain from 1 to 18 digits.

° It must not contain more than one sign character. If a sign is used, it
must appear as the leftmost character of the literal. If the literal is
unsigned, the literal is positive.

° It must not contain more than one decimal point. The decimal point
is treated as an assumed decimal point and may appear anywhere
within the literal except as the rightmost character. |f the literal
contains no decimal point, it is an integer.

The value of a numeric literal is the algebraic quantity represented by the characters in the
numeric literal.

If a literal conforms to the rules for formation of a numeric literal but is enclosed by
quotation marks, it is a nonnumeric literal, and it is treated as such by the compiler.

Nonnumeric Literals

A nonnumeric literal is a string of 1 to 120 alphanumeric characters bounded by guotation
marks. Any character in the alphanumeric character set may be included in the literal with
the exception of the quotation mark, which has the special purpose of enclosing the
character string.

The value of a nonnumeric literal is the string of characters itself, excluding the quotation

marks. Any spaces enclosed in the quotation marks are part of the nonnumeric literal and,
therefore, are part of the value.

FIGURATIVE CONSTANTS

A figurative constant is a reserved word that represents a numeric value, a character, or a
string of characters. Such words must not be enclosed in quotation marks when used as
figurative constants.

A figurative constant can be used wherever a literal appears in a format. However, when the
literal is restricted to numeric characters only, all figurative constants except zero are illegal.

38

Figurative Constant

The figurative constants and their meanings are as follows:

Meaning

ZERO Represents the value 0, or one or more occurrences
ZEROS of the character 0, depending on context.
ZERQES
SPACE Represents one or more blanks or spaces.
SPACES
‘HIGH-VALUE Represents one or more occurrences of the character
HIGH-VALUES that has the highest value in the computer’s collating
sequence. The character for HIGH-VALUE is the
hexadecimal FF.
LOW-VALUE Represents one or more occurrences of the character
LOW-VALUES that has the lcwest value in the computer’s collating
sequence. The character for LOW-VALUE is the hexa-
decimal 00.
QUOTE Represents one or more occurrences of the quotation
QUOTES mark character. The word QUOTE cannot be used in

place of a quotation mark to enclose a nonnumeric

literal.
PICTURE CHARACTER STRING
A PICTURE character string consists of certain bombmatlons of characters in the COBOL
character set used as symbols. The allowable combinations are explained under the
PICTURE Clause in Section 7.
NOTE CHARACTER STRING
A NOTE character string may consist of any combination of the chafacters from the
computer’s character set. NOTE is described under NOTE Statement in Section 8.
SPECIAL REGISTERS

The compiler generates storage areas that are primarily used to store information produced
with the use of special COBOL features; these storage areas are called special registers.

The word TALLY is the name of a special register whose implicit description is that of an
integer of five digits without an operational sign and whose implicit USAGE is
COMPUTATIONAL.

The primary use of the TALLY register is to hold information produced by the EXAMINE
statement. References to TALLY may appear wherever an elementary data item of integral
value may appear (refer to the EXAMINE Statement in Section 8).

3-10

4. USE OF COBOL CODING FORM

The reference format provides a standard method for writing COBOL source programs. The
format is described in terms of character positions in a line on an I/O medium. Punched
cards are the initial input medium to the COBOL compiler. The compiler accepts source
programs written in reference format (Figure 4-1) and produces an output listing of the
source program in the same reference format. '

SEQUENCE NUMBERS

A sequence number, consisting of six digits in the sequence area, is used to numerically
identify each card image to be compiled by the COBOL compiler. The use of sequence
numbers is optional, but if present they must be in ascending order. A card out of sequence
will be flagged with an S preceding the sequence number in the source listing output. A card
with a blank sequence number is not checked for sequence purposes.

CONTINUATION OF LINES

Any sentence or entry that requires more than one line is continued by starting subsequent
lines in Area B (which starts in column 12). These subsequent lines are called continuation
lines. The line being continued is called the continued line. If the sentence or entry occupies
more than two lines, all lines other than the first and last are both continuation and
continued lines.

CONTINUATION OF NONNUMERIC LITERALS

When a nonnumeric literal is continued from one line to another, a hyphen is placed in
column 7 of the continuation line, and a quotation mark preceding the continuation of the
literal may be placed anywhere in Area B. All spaces at the end of the continued line and
any spaces following the initial quotation mark of the continuation line and preceding the
final quotation mark are considered part of the literal. '

CONTINUATION OF WORDS AND NUMERIC LITERALS

A word or numeric literal cannot be broken in such a way that part of it appears on a
continuation line.

AREA A AND AREA B

Area A (columns 8 through 11) is reserved for the beginning of division headers,
section-names, paragraph-names, level indicators, and certain level numbers. Area B occupies
columns 12 through the right margin (RMARG) and is used for statements and sentences of
the main COBOL program.

MEMOREX COBOL Coding Form

Punching Instructions

k4

o] | | -] | |
!

e |11

SEQUENCE =
S A B COBOL STATEMENT IDENTIFICATION

{PAGE) [(SERIALHO
12 3|4 5 61708 9 101112 13 14 15 16 17 18 13 20 21 22.23 24 25 26 2728 29 30 31 32 33 34 35 36 37 38,39 40 41 42 4344 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72|73 74 75 76.77,78 19 80
. e n L 'S L L Iy P PR L] PR — P i n A 1 I i L L 1 L 1 L A F—] 1 I P N W1 - 1 L i IR WO T S I " I SIS 1 P | P 1 1
. P SRR TR TUUE YRR YOVRTTRUNE SO SR SHRE SO WU SN ISP S WA TR TR SR S W PSS PR

. . - . R . : e . NI . a

12 34 5 6]7]8. 9 1011]1213 14 15 16 17 18 19 20 21 22 23 24 2526 2728 29 30 31 32 33 34 35 36 37 38 39 40 41 62 43 34 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 63 69 7071 72|73 74 75 76 77 78 79 80

4-2

DIVISION HEADER

The division header must be the first line in a division. The division header starts in Area A
with the division-name, followed by a space, the word DIVISION i

No other text may appear on the same line as the division header.

SECTION HEADER

The name of a section starts in Area A of any line following the division header. The
section-name is followed by a space, the word SECTION, and a period. If program
segmentation is desired, a space and a priority number may follow the word SECTION. No
other text may appear on the same line as the section-header.

PARAGRAPH-NAMES AND PARAGRAPHS

The name of a paragraph starts in Area A of any line following the division header. It is
followed by a period and a space.

A paragraph consists of one or more sentences. The first sentence in a paragraph begins
anywhere in Area B of either the same line as paragraph-name or the line immediately
following. Each successive line in the paragraph starts anywhere in Area B.

LEVEL INDICATORS AND LEVEL NUMBERS

In those Data Division entries that begin with a file description level indicator (FD), the
level indicator begins in Area A followed in Area B by its associated file-name and
appropriate descriptive information. ’

In those data description entries that begin with a level number 1 or 77, the level number
begins in Area A followed in Area B by its associated data-name and appropriate descriptive
information. :

In those data description entries that begin with level numbers 2 through 49, the level
number may begin anywhere in Area A or Area B, followed in Area B by its associated
data-name and descriptive information.

BLANK LINES

A blank line is one that contains nothing but spaces from column 7 through the right margin
(RMARG) inclusively. A blank line may appear anywhere in the source program, except
immediately preceding a continuation line.

COMMENT LINES

44

5. IDENTIFICATION DIVISION

The ldentification Division is the first division and must be included in every COBOL source
program. The ldentification Division assigns a name to the source program, the resultant
output listing, and possibly the object program. In addition, the user may include the date
the program is written, the author of the program, and other such information as desired,
described in the following paragraphs.

ORGANIZATION OF THE IDENTIFICATION DIVISION

The Identification Division must begin with the reserved words IDENTIFICATION
DIVISION followed by a period and a space. Each comment-entry may be any combination
of the characters from the EBCDIC set, organized to conform to sentence and paragraph
structure.

Fixed paragraph-names identify the type of information contained in the paragraph. The
name of the program must be given in the first paragraph, which is the PROGRAM-ID
paragraph. The other paragraphs are optional; they may be included in this division at the
user’s discretion, in order of presentation shown by the following format:

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.
[AUTHOR. [comment-entry] ...]
[INSTALLATION. [comment-entry] ...]
[DATE-WRITTEN. [comment-entry] ...]
[SECURITY. [comment-entry] ...]
[REMARKS. [comment-entry] ...]

PROGRAM-ID PARAGRAPH

The following text defines the PROGRAM-ID paragraph. While the other paragraphs are not
defined, each general format is formed in the same manner.

The PROGRAM-ID paragraph gives the name by which a program is identified. Its format is:
PROGRAM-ID. program-name.

The program-name must begin with an alphabetic character followed by up to 29

alphanumeric or hyphen (-) characters. Only the first six characters of program-name are

used as the identifying name of the program. The use of a hyphen within these six character

positions is illegal.

The PROGRAM-ID paragraph must contain the name of the program and must be present in

every program. The program-name identifies the source program, all listings pertaining to a
particular program, and possibly the object program.

5-1

Following is an example of a PROGRAM-ID paragraph:

SEQUENCE

A] COBOL STATEMENT
(PAGE) |(SERIAL)

12 304 56

~ | CONT.

g 9 10 11]1213 14 15 16 17 1% 19 20 21 22 23 24 25 26 27 26 23 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 60

"PROGIRAM-LD. TESTDATA.,

[E S S

L
R T S ORI U PR S " N
L. . . PUREES SN PRI SV NPT SRR T S S 1 2 L X

}, S R T e e e PRSPt 1 1 i

Note that only the first six characters, TESTDA, are used to identify the program.

52

6. ENVIRONMENT DIVISION

The Environment Division specifies a standard method of expressing those aspects of a data
processing problem that are dependent upon the physical characteristics of a specific
computer. This division allows specification of the configuration of the compiling computer
and the object computer. In addition, information relating to input-output control, special
hardware characteristics, and control techniques can be given.

The Environment Division must be included in every COBOL source program as the second
division.
ORGANIZATION OF THE ENVIRONMENT DIVISION

The Environment Division must begin with the reserved words ENVIRONMENT DIVISION
followed by a period and a space.

Two sections make up the Environment Division: the Configuration Section and the
Input-Output Section. The following is a general outline of the sections and paragraphs in
the Environment Division. The order of presentation in the source program is also defined.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION,

SOURCE-COMPUTER. source-computer-entry

OBJECT-COMPUTER. object-computer-entry

[SPECIAL-NAMES. special-names-entry]

[INPUT-OUTPUT SECTION.

FILE-CONTROL. file-control-entry . ..

[I-O-CONTROL. input-output-control-entry. ..]].

CONFIGURATION SECTION

The Configuration Section begins with the reserved words CONFIGURATION SECTION
followed by a period and a space.

This section describes the characteristics of the source computer and the object computer,

and is divided into three paragraphs: the SOURCE-COMPUTER paragraph, the
OBJECT-COMPUTER paragraph, and the SPECIAL-NAMES paragraph.

6-1

SOURCE-COMPUTER PARAGRAPH

The SOURCE-COMPUTER paragraph identifies the computer on which the source program
is to be compiled. Its format is:

SOURCE-COMPUTER. computer-name.

Computer-name must conform to the rules for formation of a data-name.

The SOURCE-COMPUTER paragraph serves for documentation purposes only. An example
of a SOURCE-COMPUTER paragraph is as follows:

SEQUENCE
A 8 COBOL STATEMENT

(PAGE) |ISERIAL)
12 304 6 6

~ | CONT.

8 9 1011121314 15 16 1/ 18 19 20 2122 23 24 25 26 27 23 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50,

SOURICE-~CONPUTER.. NRX"‘M .

.................. PR OO O PSRN T

[P S SO Y SRR RS B
PRSI SR U ERPUR T OR S IR EEE S o

d

P ST O T S A R e Lo 4o

OBJECT-COMPUTER PARAGRAPH

The OBJECT-COMPUTER paragraph identifies the computer on which the program is o be
executed. Its format is:

OBJECT-COMPUTER. computer-name

WORDS
MEMORY SIZE integer CHARACTERS

MODULES

{SEGMENT-LIMIT IS priority-number] .

Computer-name must conform to the rules for formation of a data-name.

If the configuration implied by computer-name comprises more or less equipment than is
actually needed by the object program, the descriptive clauses following computer-name
permit the specification of the required configuration.

With the exception of the SEGMENT-LIMIT clause (described in Section 9), the
OBJECT-COMPUTER paragraph serves for documentation purposes only. An example of an
OBJECT-COMPUTER paragraph is as follows:

SEQUENCE
A [:] COBOL STATEMENT

,.
4
PAGE) [(SERIALIS
7

1.2 314 56 8 9 10 11}1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

4__omc*1'-conm:r£&L HRCHL .

PP I

JRRPUREAS S SIS UET USRS IS B RS

41 o P P P .

L= T U E SR R S Y S i

6-2

Bulletin: 2202.002-0001
Date: 3/19/73

SPECIAL-NAMES PARAGRAPH

The SPECIAL-NAMES paragraph provides a means of relating implementor-names to
user-specified mnemonic-names. Its format is:
SPECIAL-NAMES [implementor-name IS mnemonic-name] . ..
[CURRENCY SIGN IS literal]
[{DECIMAL-POINT IS COMMA]) .

The SPECIAL-NAMES paragraph is required if mnembnic-names, the DECIMAL-POINT
clause, or the CURRENCY SIGN clause are used. Otherwise, the paragraph is optional. If
the paragraph is specified, it must appear in the order shown.
Implementor-name may be chosen from the following list:

° SYSIN

° SYSOUT

® CONSOLE
The literal which appears in the CURRENCY SIGN IS literal clause is used in the PICTURE
clause to represent the currency symbol. The literal is limited to a single character, but must
not be one of the following:

°. Digits O through 9

o Alphabetic characters A, B, C, D, P, R, S, V, X, Z, or the space

® Special characters * +-,. () <>

If this clause is not present, only the $ can be used as the currency symbol in the PICTURE
clause.

The DECIMAL POINT IS COMMA clause means that the function of comma and period are
exchanged in the PICTURE clause character string and in numeric literals.

An example of a SPECIAL-NAMES paragraph is as follows:

SEQUENCE |

wace) [iseriaL)
12 34 5 6

=
g A B8 COBOL STATEMENT
o
7

89 10 11[1213 14 16 16 17.18 19 20_21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
-0 N N e

SPE ‘:MAQ .

» YSIN IS READER e

... |ICURRENCY. .SI6GN IS8 *Y* o
.. |DECIMAL POINT 1S COMMA.

i A F AR S R T ST G ST S R W S S |

6-3

MAXIMUM CONFIGURATION SECTION

If the user chooses to specify all options are available in the Configuration'Section, the
general format would appear as follows:

CONFIGURATION SECTION.

SOURCE-COMPUTER. computer-name.

OBJECT-COMPUTER. computer-name.

WORDS
MEMORY SIZE integer CHARACTERS
MODULES

[SEGMENT-LIMIT IS priority-number] .

[SPECIAL-NAMES. [implementor-name IS mnemonic name]. .
[CURRENCY SIGN IS literal]
[DECIMAL PCINT IS COMMA] .]

INPUT-OUTPUT SECTION

The Input-Output Section begins with the reserved words INPUT-OUTPUT SECTION
followed by a period and a space. '

The Input-Output Section deals with the information needed to control transmission and
handling of data between external media and the object program. This section is divided
into two paragraphs: the FILE-CONTROL. paragraph and the |-O-CONTROL paragraph.

FILE-CONTROL PARAGRAPH

The FILE-CONTROL paragraph names each file, identifies the file medium, and allows
particular hardware assignments. The general format is as follows:
FILE-CONTROL.

SELECT Clause

ASSIGN Clause

[RESERVE Clause]

[FILE-LIMIT Clause]

[ACCESS MODE Clausel

[PROCESSING MODE Clause]
[ACTUAL KEY Clause)

The FILE-CONTROL paragraph begins with the reserved word FILE-CONTROL followed
by a period and a space. The clauses must appear, in the order shown.
SELECT Clause
The SELECT clause is used to name each file in a program. The format is as follows:

SELECT file-name
Each file-name described in the Data Division must be named once and only once in the
FIL E-CONTROL paragraph following the key word SELECT. Each selected file must have a
file description entry in the Data Division.
ASSIGN Clause
The ASSIGN clause is used to assign a file to an external medium. The format is as follows:

ASSIGN TO [integer] system-name-1 [system-name-2]. ..

REEL
[FOR MULTIPLE l UNIT l]

Integer indicates the number of input-output units of a given number to be assigned to the
file-name. The compiler, however, determines the number of units to be assigned, so the
integer option has the function of a comment.
System-name specifies the external name of a file, a device class, and an organization
method. Only system-name-1 is processed. All other system-names, if present, are treated as
comments. :
System-name has the following structure:

name[-organization] [-class]
Name consists of from one to eight alphanumeric characters, the first of which must be
alphabetic, and represents the external name of the file. It is the name specified as the file
identifier on the //DEFINE statement (described in the MRX/OS Control Language

Services, Extended Reference manual).

Organization is a one-character field that specifies the file organization. The file organization
codes are as follows:

® S — sequential files

° R — relative files

6-5

If organization is not specified, a sequential organization is assumed.

Class is a one-character field that represents the device class. The class codes are:

° D — disc devices
° T — tape devices
° U — unit record devices

If class is not specified, a disc device is assumed.

The FOR MULTIPLE REEL/UNIT clause is applicable whenever the number of tape units
or mass storage devices assigned might be less than the number of reels or units in the file.
The system, however, will automatically handle volume switching for sequentially accessed
files, giving this clause the function of a comment if specified. All volumes must be mounted
for randomly accessed files.

An example of an ASSIGN clause is as follows:

SEQUENCE
A B COBOL STATEMENT

-
Z
{PAGE) {(SERIAL) 8
7

1.2 314 5 6 8 9 1011]12 13 14 15 16 17 18 19 20 2122232425262728?93031 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 48 50

SELEGT Fl Lﬁ*MJ&ﬂﬁﬂ I 0. SYSLL‘LLL_M_.

T W S I PR S

U S S S SO P S R T . S S S SO SO T SR ST S S S

RESERVE Clause

The RESERVE clause allows the user to modify the number of input-output areas allocated
by the compiler. The format is as follows:

RESERVE mt‘g"rl ALTERNATE 1AREA]

AREAS

A minimum of one buffer is required for a file. The ALTERNATE AREAS option reserves
an addition area for the file in addition to the original area. Integer must be unsigned and
have a value of 1. Therefore, if this clause is specified, one additional buffer may be
assigned.

If NO is specified, no additional buffer areas are reserved aside from the minimum of one.
Similarly, if the clause is omitted, no additional buffer areas are reserved aside from the
minimum of one.

The RESERVE clause may be specified only for a sequential or relative file that is accessed
in sequential mode.

6-6

An example of a RESERVE clause is as follows:

SEQUENCE
A B COBOL STATEMENT

(PAGE) }(SERIAL)
12 3]4 5 6

8 9 10 11} 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50,

RESERVE 1. ALTERNATE AREA

T S SO S S S S SO S G U SR ST ST SUNS SHNT WY MDA GO VOO SO S SRS ST ST S Y

PR PP PR S WSV SO WY S VA ST S N SR ST S T §

PO S S U U SR S N SR SRR NI SN SPS SN SR RSP S S ST PO S RTINSO VY SHN WA TS W S T ¥

FILE-LIMIT Clause

The FILE-LIMIT clause specifies the address range of a mass storage file. The format is as
follows:

{FILE-LlMIT IS

integer-1 THRU integer-2
FILE-LIMITS ARE

Integer-1 represents the logical beginning of the mass storage file. Integer-2 represents the
logical end of the mass storage file. Neither integer-1 nor integer-2 may exceed the value of
232-1. Integer-2 may not be less than integer-1. The value of integer-1 must be greater than
zero.

For a relative file processed in random access mode, the FILE-LIMIT clause specifies that
logical records are obtained or placed randomly in the mass storage file within the limits
specified. The contents of the ACTUAL KEY data items that are not within these limits
cause the execution of the INVALID KEY clause on READ, WRITE, and SEEK statements.

For a relative file processed sequentially integer-1 specifies the first record to be read or
written. Sequential processing of records continues through integer-2. If the file limit clause
is omitted processing begins at the first record and continues in sequence till EOG in the
case of read, or end of reserved area in the case of write.

he clause is treated as a comment.

If specified for a sequential o

When a file is initially created a permanent bias is set by Data Management. The bias set is
the value of integer minus 1. In subsequent references to the file, an actual key set by the
programmer specifies the desired record. The bias will be subtracted from this actual key
(by the operating system) giving the relative record position on the file, and the operating
system will position to that record.

The limits specified by the value of integer-2, less the value of integer minus 1 must be
within the limits of the allocated space. At later accesses to the file, it is not required that
the file-limits be equivalent to the file-limits specified at creation time. It is required,
however, that the lower limit specified is not less than the permanent bias of the file.

6-7

ACCESS MODE Clause

The ACCESS MODE clause defines the manner in which records of a file are to be accessed.
The format is as follows:

SEQUENTIAL
RANDOM

ACCESS MODE 1S

If this clause is not specified, sequential access is assumed.

If ACCESS IS SEQUENTIAL, records are placed or obtained sequentially. That is, the next
logical record is made available from the file when the READ statement is executed, or the
next logical record is placed into the file when a WRITE statement is executed. ACCESS IS
SEQUENTIAL may be applied to files assigned to tape, unit-record, or mass storage devices.

For ACCESS IS RANDOM, storage and retrieval are based on an actual key associated with
each record (refer to ACTUAL KEY Clause in following text). When the RANDOM option

is specified, the file must be assigned to a mass storage device. ACCESS IS RANDOM may
be specified when file organization is relative or indexed.

PROCESSING MODE Clause

This clause is used to indicate that the logical processing is sequential. The entry is optional;
it serves the function of documentation only. The format is as follows:

PROCESSING MODE IS SEQUENTIAL

ACTUAL KEY Clause

An ACTUAL KEY clause specifies a key that is used by the system to locate a logical record
in a relative or:indexed file.. The format is as follows:

ACTUAL KEY 1S data-name

Relative Files
The ACTUAL KEY clause is required for a relative file only when it is accessed randomly.

Data-name must be an unsigned integer numeric item defined in the File, Working-Storage,
or Linkage:section. Therefore, data-name must be an elementary item. The numeric value of
data-name must not exceed 231-1, or left truncation will occur on the significant digits.

The contents of data-name is used to locate a specific relative position within the file when a
SEEK statement is executed, or if no SEEK statement is executed, when a READ or a
WRITE statement is executed. The relative position located corresponds directly to the
numeric value contained in data-name less the value of the file-bias recorded at generation
time.

6-8

If the value contained in data-name is not within the limit specified by the FILE-LIMITS
clause, the imperative statement following INVALID KEY will be executed. (INVALID
KEY is described in Procedure Section.)

Example:

At file creation time, the lower file limit is set to 1; the upper limit is set to 300. These
limits allow the user to specify up to 300 records.

The lower file limit minus 1 becomes the permanent file bias and is used in conjunction with

the actual key to locate a particular record within a file.

Figure 6-1 shows how the actual key is used to locate a record during a read operation.

Step 1.

Step 2.

Step 3.

Steps to Locate a Record

The user sets the actual key.
ACTUAL KEY IS DN2
where DN2 = 200

Operating system computes the relative record position of the
record to be read. .

ACTUAL KEY 200
-Filebias (1 -1 = 0) 0
Relative record 200
position

Operating system retrieves relative record 200.

Figure 6-1. Random Access of a Relative File

69

Relative Record Position

J)
«

D)
u

200

—

)Y

Bulletin: 2202.002-0001
Date: 3/19/73

6-10

Steps to Update a Record

b —— — ————]

Record 4

Step 1. User sets actual key.
ACTUAL KEY IS AKEY
where AKEY = AAAM

Step 2. User issues a read command.,

Step 3. The operating system retrieves

the record which in this case
is Record 3.

Step 4. User modifies the record

and issues a REWRITE
command.

Step 5. The operating system updates

the record.

Data File

Record 1

Record 2

» Record 3 <4

Record 4

Figure 6-2. Sequential Access of an Indexed File

6-11

Step 1.

Step 2.

Step 3.

Steps to Locate a Record

User sots actual key.

ACTUAL KEY IS AABB

Operating system locates key
value in index file.

Operating system retrieves
record 100 by picking up
the pointer to the data
file located in the index
file.

Key

Index File

Pointer to
data file

Figure 6-3. Random Access of an Indexed File

6-12

e —— ————]

Record 100

Data File

Record 1

Record 2

Record 100

FILE-CONTROL Clause Restrictions

Some of the clauses of the FILE-CONTROL paragraph are restricted in their use, and cause
program errors if used incorrectly. Figure 6-4 shows these clauses and restrictions in the
form of a matrix. Note, for example, that the FILE-LIMITS clause is illegal when specified
for a unit record device.

Key Attributes
Hardware Access
Device Organization Mode

SELECT Clauses Disc | Tape | UR | Seq | Rel | Ind | Seq | Ran
MULTIPLE REEL 1 (o} 1 - - - - -
MULTIPLE UNIT o I 1 - - - - -
RESERVE 0 o (o] o (o] | (¢] 1
FILE-LIMITS o 1 ! i o | (o] (o]
ACCESS IS SEQUENTIAL* o o (o] o (¢] o - -
ACCESS IS RANDOM o ! 1 | (o] 0 - -
PROCESSING 1S SEQUENTIAL** o o (o] (o} 0 o (o] o)
ACTUAL KEY (¢] | ! I (o] (o] 0 R
FORWARD KEY 0 | i 4 1 I (o) (o] 1
INDEX-BLOCK SIZE o | I | I R (o] 0o

Organization KEY
Sequential* (o) (o] (o) I = lllegal
Relative o o R = Required
Indexed - 0 [} 1 O = Optional

— = Not applicable

*Default is sequential
**Treated as comments

Figure 6-4. FILE-CONTROL Clause, Restrictions

6-14

Maximum FILE-CONTROL Paragraph

If the user chooses to specify all options avallable, the resultant structure of the
FILE-CONTROL paragraph would appear as follows:

FILE-CONTROL.
SELECT file-name
ASSIGN TO [integer] system-name-1 [system-name-2}. .

REEL
[FOR MULTIPLE ‘ UNIT]

: integer AREA |
RESERVE NO } ALTERNATE ‘AREAS
FILE-LIMIT IS

integer-1 THRU integer-2

FILE-LIMITS ARE
SEQUENTIAL
[ACCESS MODE IS {R ANDOM ,]

[PROCESSING MODE IS SEQUENTIAL]
[ACTUAL KEY IS data-name]

[FORWARD KEY IS data-name]
[INDEX-BLOCK SIZE IS integer-1 CHARACTERS] .

-0 CONTROL PARAGRAPH

The I-O-CONTROL paragraph begins with the reserved word 1-O-CONTROL followed by a
period and a space.

The 1-O CONTROL paragraph specifies the points at which rerun is to be established and
the memory area which is to be shared by different files.

The I-O-CONTROL paragraph is optional. If used, the clauses must be in the specified order
as follows:

1-O-CONTROL .
[[RERUN Clause]. ..
[SAME AREA Clause]....]

RERUN Clause

The presence of a RERUN clause specifies that checkpoint records are to be taken. A
checkpoint record is a recording of the status of a problem program and main storage
resources at desired intervals. The contents of core storage are recorded on an external
storage device at the time of the checkpomt and can be read back into core storage to
restart the program.from that point. The format is:

RERUN ON system-name
EVERY integer RECORDS OF file-name

The RERUN clause specifies that checkpoint records are to be written on the unit specified
by system-name for every integer records of file-name that are processed. The value of
integer must not exceed 65,535.

6-15

Bulletin: 2202.002-0001
Date: 3/19/73

The system-name entry in this clause is used to specify the external medium of the file
where the checkpoint records will be written. The structure of the system-name entry is
identical to the structure of the name entry that appears in the ASSIGN clause. The
system-name entry cannot duplicate any name entry previously used in an ASSIGN clause.

The name specified in the system-name entry for the checkpoint file must be the reserved
identifier SYSCHK. The file organization used with this clause must be sequential and the
class must not be unit-record.

It is possible to include several RERUN clauses within a single program. When multiple
RERUN clauses are used, all checkpoint records are written on the SYSCHK file.

The integer entry is used to specify the number of READ, WRITE, DELETE, and
REWRITE statements that occur in a single file. When the count of the READ, WRITE,
DELETE, and REWRITE statements for a particular file equals the number specified in the
integer entry for this clause, a checkpoint record is written.

When the checkpoints are written on disc, only the checkpoint immediately preceding the
checkpoint being taken is saved. For example, checkpoint 1 is written on disc and saved,
checkpoint 2 is then written on disc and saved. When checkpoint 3 is then written,
checkpoint 1 is deleted and only checkpoint 2 remains on the disc.

When the checkpoints are written on tape, all checkpoints are saved.

After a checkpoint has been written, a message is printed on the operator console specifying
the jobname and checkpoint number just completed. Refer to the MRX/OS Control
Program and Data Management Basic Reference manual for further details.

Restart Considerations
The following conditions regarding restart procedures should be considered.
° The positioning of card input, card output, and pfinter files can be
handled by the Checkpoint/Restart program if the spooling
capabilities of MRX/OS are utilized.

° Tape files can be restarted, and they will be positioned.

° Mass storage files where the file organization is defined as
SEQUENTIAL can be restarted, and they will be positioned.

o Mass storage files where the file organization is defined as
RELATIVE can be restarted, but they are not positioned.

6-16

Bulletin: 2202.002-0001
Date: 3/19/73

Restrictions and Limitations

The following conditions regarding the restrictions and limitations of the checkpoint/restart
feature should be considered.

e - On a deferred restart, no positioning is performed on the //PAR
statement.
) Mass storage files where the file organization is defined as

RELATIVE and the access mode is defined as RANDOM can be
restarted, but any update records that have been made to the file
must be handled by the user. They will not be handled by the
Checkpoint/Restart program.

[Mass storage files where the file organization is defined as INDEX
that are being created or updated cannot be restarted.

SAME AREA Clause

The SAME AREA clause specifies that two or more files are to use the same memory area
during processing. Its format is as follows:

SAME AREA FOR file-name-1 file-name-2. . .

The area being shared includes all storage areas (including alternate areas) assigned to the
files specified; therefore, it is not valid to have more than one of the files open at the same
time.

More than one SAME AREA clause may be included in a program; however, a file-name
must not appear in more than one SAME AREA clause, or more than once in a given SAME
AREA clause. '

Maximum 1-O-CONTROL Paragraph

If the user wishes to specify all options available, the resultant structure of the
I1-O-CONTROL paragraph would appear as follows:

I-0-CONTROL.
[RERUN ON system-name
EVERY integer RECORDS OF file-name]. . .
[SAME AREA FOR file-name-1 file-name-2]. . .

6-16a

MAXIMUM INPUT-OUTPUT SECTION

If the user specified all the options available in the FILE-CONTROL and | O-CONTROL
paragraphs, an Input-Output Section is created that appears as follows: '

[INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT file-name
ASSIGN TO [integer] system-name-1 [system-name-2]

[FOR MULTIPLE ‘UNIT]

integer AREA }]
T
RESERVE lNO l ALTERNATE ‘AREAS

 FILE-LIMIT IS

| FILE-LIMITS ARE integer-1 THRU |nteger-2] |

SEQUENTIAL]
RANDOM }
[PROCESSING MODE 1S SEQUENTIAL]

[ACTUAL KEY 1S data-name]

[FORWARD KEY IS data-name]

[INDEX-BLOCK SIZE IS integer-1 CHARACTERS]]

ACCESS MODE IS l

[1-O-CONTROL.
[RERUN ON system-name v
EVERY integer RECORDS OF file-name]. ; ;
[SAME AREA FOR file-name-1 file-name-2]...] .]

6-17

Bulletin: 2202.002-0001
Date: 3/19/73

MAXIMUM ENVIRONMENT DIVISION

If the user wishes to specify all options available the resultant structure of the Environment
Division would appear as follows:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SOURCE-COMPUTER. computer-name
OBJECT-COMPUTER. computer-name

MODULES
{SEGMENT-LIMIT IS priority-number.]

[SPECIAL-NAMES. [implementor-name IS mnemanic name]. . .
[CURRENCY SIGN |S literal]
[DECIMAL-POINT IS COMMA] .]
INPUT-OUTPUT SECTION.
[FILE-CONTROL.
SELECT file-name
ASSIGN TO [integer] system-name-1 [system-narne-2]. ..

REEL
FOR MULTIPLE lUNlT ’]

WORDS
MEMORY SIZE integer | CHARACTERS

integer AREA]
_RESERVE NO } ALTERNATE IAREAS
CFILE-LIMIT IS

|FILELIMITS ARE integer-1 THRU integer-2

SEQUENTIAL]
| ACCESS MODE _s‘ RANDOM
" [PROCESSING MODE 1S SEQUENTIAL]
_[ACTUAL KEY IS data-name]

[RERUN ON system-name
EVERY integer RECORDS OF file-name]. ..
[SAME AREA FOR file-name-1 file-name-2]...].

6-18

7. DATA DIVISION

The Data Division describes the data that the object program will accept as input,
manipulate or create. Data falls into two categories:

® Data contained in files. This type of data enters or leaves the internal
memory of the computer from a specified area or areas.

® Data developed interhally. This type of data is placed into
intermediate or working storage.

The Data Division must be included in every COBOL source program as the third division.

ORGANIZATION OF THE DATA DIVISION

Three sections make up the Data Division: the File Section, the Working-Storage Section,
and the Each of these sections in the Data Division is optional.

The File Section defines the format of data files stored on an external device. Each file is
defined by a file description (FD) followed by a record description or a series of record
descriptions.

The Working-Storage Section describes records, data items and constants which are not part
of external files. This data is developed and processed internally. The Working-Storage
Section may specify both logical records and noncontiguous items.

The fixed names of these sections and the order of presentation are shown by the following
format: ‘

DATA DIVISION.
[FIL E SECTION.
file description entry
record description entry § . . . } L2
[(WORKING-STORAGE SECTION.
[data item description entry] . . .

[r

7-1

DATA DIVISION ENTRIES

Each Data Division entry begins with a level indicator or a level number, followed by a
space, the name of a data item, and a sequence of independent clauses describing the data
item. The last clause is always terminated by a period followed by a space.

There are two types of Data Division entries: those which begin with a level indicator and
those which begin with a level number.

CONCEPT OF LEVELS

A level concept is inherent in the structure of a logical record. This concept arises from the
need to specify subdivision of a record for the purpose of data reference. Once a subdivision
has been specified, it may be further subdivided to permit more detailed data referral.

The most basic subdivision of a record (that which is not further subdivided) is called an
elementary item, consequently, a record is said to consist of a sequence of elementary items,
or the record itself may be an elementary item.

In order to refer to a set of elementary items, the elementary items are combined into
groups. Each group consists of a named sequence of one or more elementary items. Groups,
in turn, may be combined into two or more groups. Thus, an elementary item may belong
to more than one group.

In the following example, the group items MARRIED and SINGL E are themselves part of a
larger group named RETIRED-EMPLOYEES:

SEQUENCE

A 8 €OBOL STATEMENT

CONT.

(PAGE) [iSERIAL)
12 3]4 5 6]7]8 9 1011[12.13 14 15 16 17 18 19 20 21 22 23 24 25 26 2726, 29 30, 31, 32 33,34 35 36,37, 36 39, 40,41 42 4344 45 46 47 48 49 50,

TIRED-EMPLOYEES.. .
RRLED —
JURE. .
TURE 9.0 .

7-2

LEVEL NUMBERS
A system of level numbers shows the organization of elementary and group items.

Since records are the most inclusive data items, levels for record numbers start at 1 or 01.
Less inclusive data items are assigned higher (not necessarily successive) level numbers not
greater in value than 49. Separate entries are written in the source program for each level
number used.

A group includes all group and elementary items following it until a level number
numerically less than or equal to the level number of that group is encountered. The level
number of an item (either an elementary item or a group item) immediately following the
last elementary item of a group must be numerically equal to a previously stated group level
number. »

No true concept of levels exists for entries that specify noncontiguous Working-Storage
items, which are not subdivisions of other items, and are not themselves subdivided, have
been assigned the special level number 77. Level numbers 01 and 77 must begin in Area A,
followed in Area B by associated data names and appropriate descriptive information.

Successive data description entries may have the same format as the first such entry and
may be indented according to level number. Indentation is useful for documentation
purposes and does not affect the action of the compiler.

LEVEL INDICATOR

The file description level indicator (FD) is used to specify the beginning of a file description
entry in the File Section.

FILE SECTION

The File Section contains a description of all externally stored data (FD) used in the
program.

The File Section must begin with the header FILE SECTION followed by a period. The File
Section contains file description entries, each followed by its associated record description
entry (or entries). The format is as follows. '

FILE SECTION.

file description entry
record description entry} .. }

FILE DESCRIPTION ENTRY
In a COBOL program, the File Description entry represents the highest level of organization

in the File Section. The File Description entry provides information about the physical
structure and identification of a file, and gives the record-name(s) associated with that file.

7-3

RECORD DESCRIPTION ENTRY

The Record Description entry consists of a set of data description entries which describe the
particular record(s) contained within a particular file.

WORKING-STORAGE SECTION

The Working-Storage Section may contain descriptions of records which are not part of
external data files but are developed and processed internally.

The Working-Storage Section must begin with the section header WORKING-STORAGE
SECTION followed by a period. The Working-Storage Section contains data description
entries for noncontiguous items and record description entries, in that order. The format is
as follows.

WORKING-STORAGE SECTION.
[data item description entry] . ..
[record description entry]. ..

DATA ITEM DESCRIPTION ENTRIES

Noncontiguous items in Working-Storage that bear no hierarchical relationship to one
another need not be grouped into records, provided they do not need to be further
subdivided. Instead, they are classified and defined as noncontiguous elementary items.
Each of these items is defined in a separate clause that begins with the special level number
7. ‘

RECORD DESCRIPTION ENTRIES

Data elements in Working-Storage that bear a definite hierarchical relationship to one
another must be grouped into records structured by level number.

7-4

FILE DESCRIPTION ENTRY — DETAILS OF CL AUSES

The file description may consist of level indicator (FD), followed by file-name, followed by
a series of independent clauses. The entry itself is terminated by a period.

FILE DESCRIPTION

The file description furnishes information concerning the physical structure, identification,
and record names pertaining to a given file. Its general format is as follows:

_E_Q file-name
[BLOCK CONTAINS Clause]
[RECORD CONTAINS Clause]
[DATA RECORDS Clause)
LABEL RECORDS Clause
{VALUE OF Clause] .

The level indicator, FD, identifies the beginning of a file description and must precede the
file-name.

The clauses which follow the name of the file are optional in many cases, and their order of
appearance is immaterial.

BLOCK CONTAINS CLAUSE

The BLOCK CONTAINS clause specifies the size of a physical record. Its format is as
follows: -

P CHARACTERS
BLOCK CONTAINS integer RECORDS
This clause is required excent when a physical record (BLOCK) contains one and only one
complete logical record. If the clause is omitted it is assumed that records are blocked one
record per block.

When the RECORDS option is used, the compiler assumes that the block size provides for
integer records of maximum size plus additional space for any required control bytes.
Integer must be a positive integer not greater than 255.

When the CHARACTERS option is used, the physical record size is specified in standard
data format, that is, in terms of the number of bytes occupied internally. This is not
necessarily the same as the number of characters used to represent the item within the
physical record. The number of bytes occupied internally by a data item is included as part
of the discussion of the USAGE clause in this section.

When the CHARACTERS option is used, integer represents the exact size of the physical
record and must include slack bytes contained in the physical record. Each logical record

7-5

contains a 4-byte control header which is transparent to the user, but must be taken into
account when the CHARACTERS option is used. The integer specified must include the
4-byte control header. Integer must be a positive integer not larger than 2141,

MRX COBOL does not allow logical records that extend across physical records.

RECORD CONTAINS CLAUSE

The RECORD CONTAINS clause specifies the size of data records. Its format is as follows:
RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS

integer-1 and integer-2 must be positive integers not larger than 2141, Integer-2 must be
greater than integer-1.

Since the size of each data record is completely defined within the record description entry
(which follows), this clause is never required. When present, however, the following rules
apply:

° Integer-2 may not be used by itself unless all of the data records in
the file have the same size. In this case, integer-2 represents the exact
number of characters in the data record. If integer-1 and integer-2 are
both shown, they refer to the minimum number of characters in the
smallest size data record and the maximum number of characters in
the largest size data record, respectively.

° The size is specified in terms of the number of characters in standard
data format (refer to BLOCK CONTAINS clause). The size of a
record is determined by the sum of the number of characters in all
fixed length elementary items plus the sum of the maximum number
of characters in all variable length items subordinate to the record.

° The 4-byte record header should not be included as part of the
record size.

Whether this clause is specified or omitted, the record lengths are determined from the
record descriptions. When a data item description entry within a record containing an
OCCURS clause with the DEPENDING ON option, the compiler uses the maximum value of
the variable to calculate the record length.

DATA RECORDS CLAUSE

The DATA RECORDS clause identifies the data records in a file by name. This clause serves
only as documentation. Its format is as follows:

RECORD IS

DATA \ RECORDS ARE

data-name-1 [data-name-2]. ..

Both data-name-1 and data-name-2 are the names of data records and must have 01 level
numbers.

7-6

The presence of more than one data-name indicates that the file contains more than one
data record format. The multiple record descriptions for a given file will occupy the same
storage area. The order in which they are listed is not significant.

LABEL RECORDS CLAUSE

The LABEL RECORDS clause specifies whether labels are present. Its format is as follows:

LABEL

RECORDS ARE

RECORD IS OMITTED
STANDARD

The LABEL RECORDS clause is required in every FD.

The OMITTED option specifies that either explicit labels do not exist for the file or the
existing labels are nonstandard and the user wants to process them as data records. The
OMITTED option should be specified for files assigned to unit record devices. It may be
specified for files assigned to magnetic tape units.

The STANDARD option specifies that labels exist for the file, and that these labels conform
to system specification. The STANDARD option should be specified for files assigned to
disc units. It may be specified for files assigned to magnetic tape units.

VALUE OF CLAUSE

The VALUE OF clause particularizes the description of an item in the label records
associated with a file. Its format is as follows:

data-name-1 ‘
literal-1
data-name-2 | 7|
literal-2] I

VALUE OF implementor-name-1 IS ‘

[implementor-name-2 IS {

A figurative constant may be substituted for any literal in the format. Implementor-names
are standard label-field names. The following implementor-names are used to define field
values in standard labels:

ID — a 17-byte alphanumeric, left justified, identification code

RETENTION-PERIOD — a 4-digit numeric, right-justified code indicating
the length of time a file is to be kept

MODIFICATION-CODE — a 4-character alphanumeric, right-justified code
used for access information. '

This serves as documentation only since labels are specified by the //DEFINE statement in
Control Language.

MAXIMUM FILE DESCRIPTION ENTRY

A file description entry including all options available would appear as follows:

FD file-name
. CHARACTERS
BLOCK CONTAINS integer { RECORDS ‘]

[RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS]
RECORD IS

[DATA l RECORDS ARE

RECORD IS OMITTED

RECORDS ARE| |STANDARD

VALUE OF implementor-name-1 IS d.ata name-1]

—_— literal-1

data-name-2]

literal-2 o

} data-name-1 [data-name-2]. . .]

LABEL l

[implementor-name-2 IS ‘

Clauses within the file description entry may appear in any order.

DATA DESCRIPTION

In COBOL, the terms used in connection with data description are as follows:

° Data description entry
[] Data item description entry
o Record description entry

DATA DESCRIPTION ENTRIES

A data description entry specifies the characteristics of a particular item of data. The general

format is:
level-number data-name}

FILLER

[REDEFINES Clause]

[BLANK WHEN ZEROQ Clause]

[JUSTIFIED Clause]

[OCCURS Clause]

[PICTURE Clause]

[SYNCHRCNIZED Clause]

[USAGE Clause]

[VALUE Clause] .

The maximum length for a data description entry is 16,383 bytes. A data description entry
is used for record description entries in the File, Working-Stora Sections and
for data item description entries, in the Working-Storage an : Sections. When used,
the following rules apply:

7-8

® Level-number may be any number from 1-49 or 77.

o The clauses may be written in any order with two exceptions: the
data-name or FILLER clause must immediately follow the
level-number; the REDEFINES clause, when used, must immediately
follow the data-name clause.

® The PICTURE clause must be specified for every elementary item,
with the exception of index data items.

] Each entry must be terminated by a period.

] Successive data description entries may have the same format as the
first or may be indented according to level number. 01 and 77 must
start in Area A followed in Area B by record name or item name and
appropriate descriptive information.

DATA ITEM DESCRIPTION ENTRIES

A data item description entry is a data description entry that defines a noncontiguous data
item. It consists of a level number (77), a data-name, plus any associated ipti
entries. Data item description entries are valid in the Working-Storage, and |

RECORD DESCRIPTION ENTRIES

A record description entry consists of a set of data description entries which describe the
characteristics of a particular record. Each data description entry consists of a level-number
followed by a data-name if required, followed by a series of independent clauses as required.
A record description entry has a hierarchical structure and, therefore, the clauses used with
an entry may vary considerably, depending upon whether or not it is followed by
subordinate entries. The structures of a record description is defined in Concepts of Levels
in the beginning of this section. The elements allowed in a record description are shown in
the data description entry general format.

DATA DESCRIPTION ENTRY CLAUSES

The data description entry consists of a level number, followed by a data-name, followed by
a series of independent clauses. The clauses may be written in any order, with two
exceptions: data-name or FILLER must immediately follow level-number; the REDEFINES
clause, when used, must immediately follow the data-name. The entry must be terminated
by a period.

LEVEL NUMBER

The level number shows the hierarchy of data within a Iogiba! record. In addition it is used
to identify entries for noncontiguous working-storage items. A level number is required as
the first element in each data description entry.

79

Data description entries subordinate to an FD entry may have level numbers with the values
01-49. A single digit level number is written either as a space followed by a digit or as a zero
followed by a digit.

The level number 01 identifies the first entry in each record description. Multiple level 01
entries subordinate to a FD level indicator in the File Section represent implicit
redefinitions of the same area.

A special level number has been assigned to certain entries where there is no real concept of
level: level number 77 is assigned to identify noncontiguous data items in Working-Storage
and items.

DATA-NAME OR FILLER CL AUSE

A data-name specifies the name of the data being described. The word FILLER specifies an
elementary or it _item of the logical record that cannot be referred to directly. The
general format o clause is as follows:

data-name
level-number

FILLER

In the File, Working-Storage, o Sections a data-name or the key word FILLER
must be the first word following the level number in each data description entry. The key
word FILLER may be used to name an elementary o tem in a record. Under no
circumstances can a FILLER item be referred to directly. '

Data-names must be unique; a name cannot be both a data-name and a procedure-name.

REDEFINES CLAUSE
The REDEFINES clause allows the same computer storage area to contain different data
items. The format is as follows:

levél-number data-name-1 REDEFINES data-name-2

When used, the REDEFINES clause must immediately follow data-name-1. The level
numbers of data-name-1 and data-name-2 must be identical.

This clause must not be used in level 01 entries in the File Section. Implicit redefinition is
provided when more than one level 01 entry follows a file description entry.

Redefinition starts at data-name-2 and ends when a level number numerically less than or

equal to that of data-name-2 is encountered. Between the data descriptions of data-name-2
and data-name-1, there may be no entries having level numbers numerically lower. Example:

7-10

SEQUENCE »
§ A 8 COBOL STATEMENT
(PAGE) |{SERIAL)
1.2 314 5 6]7]8 9 10 111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
A-L_ PICTURE _ X. . .
] . A-2 PICTURE . XXX. .. e

A-3 . PICTURE .. 99.

P2 B m&mxmm&agxww T

................. g [V UNSUS N SN Y S S SN W S S ST SR S S T

.............................

In this case, B is data-name-1, and A is data-name-2. When B redefines A, the redefinition
includes all of the items subordinate to A (A- 1, A-2, and A-3).

Multiple redefinitions of the same storage area are permitted, but each of these definitions
must use the data-name of the entry that originally defined the area. Between redefmed
entries there can be no intervening entries that define new storage areas.

For example, in the following program segment, B, C, and D redefine A.

SEQUENCE |
A [COBOL STATEMENT

(PAGE) [(SERIAL))
12 354 5 6[7]8 9 1011

121516, 15,16 17,18, 19,20, 21,2223, 24,25 26 27,28 20 30,31, 32,33 34 35 36 37 38 39 40 41 42 4344 45 46 47 48 49 60

3 A-L . PICTURE ¥X.
g ity PRCHRE JTi)
o _mimsc A. - A
' ~C~2 . PICTURE fnq..j L
D _REDEFINES A PICTURE X(#%). .. .

......................................

................

.........

7-11

Data items within an area can be redefined without their lengths being changed, as shown by
the statements and resulting storage layout in Figure 7-1.

SEQUENCE
A 8 COBOL STATEMENT

CONT.

{PAGE) |ISERIAL)
12 314 5 6j7]8 9, 10 13} 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

U

_SALARY _PICTURE XXX.
. g3 . SO-SEC-NO. _PICTURE X(9). . . e
. "MONTH PICTURE XX.
“MAN-NO. PICTURE X(9)...

"YEAR PICTURE XX. ..

B S SRV SR T B S O T S S s T S S EE S B 'y

........ SN PR

SALARY SO-SEC-NO MONTH
P — A —— e e —— e e\~
| | | T T 1] | T | | |
MAME-2 | | | | | | | | | | ! | | |
| | | | | 1 | |l | | | | 1
WAGE MAN-NO YEAR
P oo I P — e N
|
NAME-1 |

Figure 7-1. Data items Redefinad Within an Area

7-12

Data items can also be rearranged within an area, as shown by the statements and resulting
storage layout in Figure 7-2.

SEQUENCE

=
2l A B COBOL STATEMENT

{PAGE) (SERIAL)8
7

T8 NAME - 2.
. 03 . SALARY . "PICTURE XXX,

R R 03 . S0-SEC- ,,NQML_HJPl&LIJJRLQXL.‘D,L.. e
- B3 _MONTH .. . PICTURE XX. .. R
..]#2 NAME-1. REDEFINES NAME-2.. .. e
A - . _._,,MAM?.NO,,,. . _L,_J’JLCTM&EL_JX 6) ..

3 WAGE. PICTURE .999V499 .
g3 . YEAR PJ. CTMRE, XX
SALARY SO-SEC-NO MONTH
——
NAME-2 i
MAN-NO WAGE YEAR
I N e e i AT e e et
r T]
NAME-1 i } I

Figure 7-2, Data Items Rearranged Within an Area

When an area is redefined, all descriptions of the area remain in effect. Thus, if B and C are
two separate items that share the same storage area due to redefinition, the procedure
statements MOVE X TO B or MOVE Y TO C could be executed at any point in the
program. In the first case, B would assume the value of X and take the form specified by the
description of B. In the second case, the same physical area would receive Y according to
the description of C. It should be noted, however, that if both of the foregoing statements
are executed successively in the order specified, the value Y will overlay the value X.
However, redefinition in itself does not cause any data to be erased and does not supersede a
previous description.

The usage of data items within an area can be redefined. Altering the usage of an area
through redefinition does not cause any change in existing data. Consider the example:

SEQUENCE
A B COBOL STATEMENT

(PAGE) |(SERIAL)

~ 1 CONT.

12 314 56 g2 9101 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
B PICTURE 99 USAGE DISPLAY
VALUE I5 8. o .

g2 | REDEFINES B . PICTURE S9999 USAGE

T ICOMPUTATIONAL.. | . o ‘
... PICTURE S9199_ 145 AGE.
COMPUTATLONAL..

Lo : R T R S U T U AU SO SN T S S VI S N R R S S SRR R e PN}

S YU TR VU S S VAT SN VHT S SH S S G R S B e

Assuming that B is on a word boundary, the bit configuration of the value 8 is 1111 0000
1111 1000, because B is a DISPLAY item. Redefining B does not change its appearance in
storage. Therefore, a great difference resuits from the two statements ADD B TO A and
ADD C TO A. In the former case, the value 8 is added to A, because B is a display item. In
the latter case, the value -3,848 is added to A, because C is a binary item (USAGE IS
COMPUTATIONAL).

Moving a data item to a second data item that redefines the first one (for example, MOVE B
TO C when C redefines B), may produce results that are not those expected by the
programmer. The same is true of the reverse (MOVE B TO C when B redefines C).

A REDEFINES clause may be specified for an item within the scope of an area being

redefined, that is, an item subordinate to a redefined item. The following example would
thus be a valid use of the REDEFINES clause:

7-14

SEQUENCE [,
A 8 COBOL STATEMENT

(PAGE) |(SERIAL)
1.2 3145 6f7]8 9 1011[1213 14 15,16 17,18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 3839 40 41 42 43 44 45 46 47 48 49 50

. |REGUL AR-EMPLOYEE. . . ‘ ‘

. ILOCATION . PIC. AC&). . .~ ; .
3 _|STATUS PIC XC¥Y.
SEML-MONTHLY - PAY .gzc 1111v11& e
PIC qquqqq '

jﬁ

TEMPORARY - EMPLOYEE REDEFINES .
 REGULAR-EMPLOYEE. . T
_ﬁi_LQQAILQ&gxﬁJQBngALXJ

FLLLER .
HOURLY-PAY. . PIC ﬂ‘l.\!ﬂ?..

......................................

5??

Following is a list of restrictions on the use of REDEFINES:

o The entries giving the new description of the storage area must not
contain any VALUE clause.

e The data description entry for data-name-2 cannot contain a
REDEFINES or an OCCURS clause, nor can data-name-2 be
subordinate to an entry which contains a REDEFINES or an
OCCURS clause.

) An item subordinate to data-name-2 may contain an OCCURS clause
without the DEPENDING ON option. Data-name-1 or any items
subordinate to data-name-1 may contain an OCCURS clause without
the DEPENDING ON option. Neither data-name-2 nor data-name-1
nor any of their subordinate items may contain an OCCURS clause
with the DEPENDING ON option. When data-name-1 has a level
number other than 01, it must specify a storage area of the same size
as data-name-2. For data-name-1 containing an OCCURS clause, the
size of the storage area is computed by mu Itiplying the length of one
occurrence by the number of occurrences.

® When the SYNCHRONIZED clause is specified for an item that also
contains a REDEFINES clause, the data item that is redefined must
have the proper boundary alignment for the data item that
REDEFINES it. For example, if the programmer writes:

02 A PICTURE X(4).
02 B REDEFINES A PICTURE S9(8) COMP SYNC.

he must ensure that A begins on a full word boundary.
® When the SYNCHRONIZED clause is specified for a computational
item that is the first elementary item subordinate to an item that

contains a REDEFINES clause, the computational item must not
require the addition of slack bytes.

7-15

BLANK WHEN ZERO CLAUSE

The BLANK WHEN ZERO clause permits the blanking of an item when its value is zero.
The format is as follows:

BLANK WHEN ZERQ

When the BLANK WHEN ZERO clause is used, the item will contain nothing but spaces if
the value of the item is zero, except if CHECK PROTECT is specified, BLANK WHEN
ZERO is ignored.

The BLANK WHEN ZERO clause can be used only for an elementary item whose PICTURE
is specified as numeric or numeric edited and USAGE is DISPLAY. When the BLANK
WHEN ZERO clause is used for an item whose PICTURE is numeric, the category of the
item is considered to be numeric edited.

Use of the BLANK WHEN ZERO clause is illegal when specified for data items having any
of the following characteristics:

° PICTURE is alphanumeric, alphabetic, or alphanumeric edited

° USAGE is COMPUTATIONAL

° Subordinate to a value description entry containing a VALUE clause
° Group item

° Specified in an OCCURS clause with the DEPENDING ON option

JUSTIFIED CLAUSE

The JUSTIFIED clause is used to override normal positioning of data within a receiving
alphabetic or alphanumeric data item.

JUSTIFIED

{——”__JUST } RIGHT

The standard rule for positioning data within an alphabetic or alphanumeric elementary
item is as follows:

° The sending data is moved to the receiving character positions and
aligned at the leftmost character position in the data item with space
fill or truncation to the right.

When the receiving data item is described with the JUSTIFIED clause the positioning of
data is as follows:

o When the sending data item is larger than the receiving data item, the
leftmost characters are truncated.

° When the receiving data item is larger than the sending data item, the
data is aligned at the rightmost character position in the data item
with space fill to the left.

The JUSTIFIED clause can be specified only at the elementary item level. Use of the
JUSTIFIED clause is illegal when specified for data items having any of the following
characteristics:

® PICTURE is numeric, alphanumeric edited, or numeric edited

° USAGE IS COMPUTATIONAL

® Group item
® Subordinate to a data description entry containing a VALUE clause
OCCURS CLAUSE

The OCCU RS clause eliminates the need for separate entries for repeated data and supplies
information required for the application of subscripts or indexes. The OCCURS clause is
discussed in Section 9,

PICTURE CLAUSE

The PICTURE clause describes the general characteristics and edltlng requirements of an
elementary item. The format is as follows:

PICTURE
PIC

} IS character-string

A PICTURE clause can be used only at the elementary item level.

A character-string consists of certain allowable combinations of characters in the COBOL
character set used as symbols. The allowable combinations determine the category of the
elementary item. The maximum number of symbols allowed in the character-string is 30.
The PICTURE clause must be specified for every elementary item except an index data
item, for which this clause is prohibited from being used.

SYMBOLS USED IN THE PICTURE CL AUSE

The allowable symbols, used to describe an elementary item, and their functions are:

A — Each ‘A’ in the character-string represents a character position
which can contain only a letter of the alphabet or a space.

B — Each ‘B’ in the character-string represents a character position
into which the space character will be inserted. ’

S -- The letter ‘S’ is used in a character-string to indicate the presence
of an operational sign and must be written as the leftmost character
in the PICTURE. The 'S’ is not counted in determining the size of
the elementary item.

V — The ‘V’ is used in a character-string to indicate the location of
the assumed decimal point and may appear only once in a
character-string. The ‘V’ does not represent a character position and
therefore is not counted in the size of the elementary item. When the
assumed decimal point is to the right of the rightmost symbol in the
string, the 'V’ is redundant.

P — The ‘P’ indicates an assumed decimal scaling position and is used
to specify the location of an assumed decimal point when the point
is not within the number that appears in the data item. The scaling
position character ‘P’ is not counted in the size of the data item.
However, scaling position characters are counted in determining the
maximum number of digit positions (18) in numeric edited items, or
items which appear as operands in arithmetic statements. The scaling
position character ‘P’ can appear only to the left or right of other
characters as a continuous string of ‘P’s within a PICTURE
description; since the scaling position character ‘P’ implies an
assumed decimal point (to the left of ‘P's if ‘P’s are leftmost
PICTURE characters or to the right of ‘P's if ‘P’s are rightmost
PICTURE characters), the assumed decimal point symbol ‘V’ is
redundant as either the leftmost or rightmost character within such a
PICTURE description. The sign character S and the assumed decimal
point V are the only characters which may appear to the left of a
leftmost string of P’s. -

X — Each ‘X’ in the character-string is used to represent a character
position which contains any allowable character from the EBCDIC
character set.

Z — Each ‘Z’ in a character-string is used to replace leftmost leading
numeric character positions, that contain zero, with space characters.

Each ‘Z’ is counted in the size of the item.

9 — Each ‘9’ in the character-string represents a character position
which can contain only a numeric character (0-9).

7-18

° 0 — Each ‘0" (zero) in the character-string represents a character
position into which the numeral zero will be inserted. The ‘0’ is
counted in the size of the item.

® , — Each *, (comma) in the character-string represents a character
position into which the character *,’ will be inserted. This character
position is counted in the size of the item. The insertion character ‘'
must not be the last character in the PICTURE character-string.

® . — When the character *." (period) appears in the character-string it is
an editing symbol which represents the decimal point for alignment
purposes and in addition, represents a character position into which
the character *." will be inserted. The character “.’ is counted in the
size of the item. For a given program the functions of the period and
comma are exchanged if the clause DECIMAL-POINT IS COMMA is
stated in the SPECIAL-NAMES paragraph. In this exchange, the rules
for the period apply to the comma and the rules for the comma
apply to the period wherever they appear, in a PICTURE clause. The
insertion character ‘." must not be the last character in the PICTURE
character-string.

° +, -, CR, DB — These symbols are used as editing sign control
symbols. When used, they represent the character position into
which the editing sign control symbol will be placed. The symbols
are mutually exclusive in any one character-string and each character
used in the symbol is counted in determining the size of the
data-item.

° — Each “** (asterisk) in the character-string represents a leading
numeric character position into which an asterisk will be placed
when the contents of that position is zero. Each ‘*’ is counted in the
size of the item.

° $ — The ‘$’ (currency symbol) in the character-string represents a
character position into which a currency symbol is to be placed. The
currency symbol in a character-string is represented by either the
symbol specified by ‘$’ or by the single character specified in the

CURRENCY SIGN clause in the SPECIAL-NAMES paragraph. The
currency symbol is counted in the size of the item.

REPETITION OF SYMBOL S
An integer which is enclosed in parentheses following one of the symbols:

A, X9PZ*BO+-$%

7-19

indicates the number of consecutive occurrences of the symbol. For example, if the
programmer writes

A(40)
the (40) indicate forty consecutive appearances of the symbol A.
NOTE
The following symbols may appear only once in a given PICTURE clause:

SV .CRDB

CHARACTER STRING AND ITEM SIZE

in the processing of data through COBOL statements, the size of an elementary item is
determined through the number of character positions specified in its PICTURE character
string. In storage, however, the size is determined by the actual number of bytes the item
occupies, as determined by its PICTURE character string, and also by its USAGE (see
USAGE Clause near the end of this section).

Normally, when an arithmetic item is moved from a longer field into a shorter one, the
compiler will truncate the data (on the left) to the number of characters represented in the
PICTURE character string of the shorter item.

For example, if a sending field with PICTURE 599999, and containing the value +12345, is
moved to a receiving field with PICTURE S99, the data is truncated to +45.

FIVE CATEGORIES OF DATA

There are five categories of data that can be described with a PICTURE clause. They are:

7-20

° Alphabetic

(] Numeric

) Alphanumeric

® Alphanumeric edited
® Numeric edited

Alphabetic 1tems

An alphabetic item is one whose PICTURE character string contains only the symbol A. Its
contents, when represented in standard data format, must be any combination of the 26
letters of the Roman aiphabet and the space from the COBOL character set. Each alphabetic
character is stored in a separate byte.

Alphanumeric Items

An alphanumeric item is one whose PICTURE character string is restricted to combinations
of the symbols A, X, and 9. The item is treated as if the character string contained all X’s.
Its contents, when represented in standard data format, may be any of the allowable
characters from the EBCDIC set. ‘

A PICTURE character string which contains all A’s or all 9's does not define an
alphanumeric item.

Numeric Items

A numeric item is one whose PICTURE character string can only contain a valid
combination of the following characters:

9,V,P,S

The contents of a numeric item, when represented in standard data format, must be a
combination of the Arabic numerals 0-9 and must include an operational sign.

There are three types of numeric items: external decimal, binary, and internal decimal.

External Decimal

External Decimal corresponds to the form in which information is represented initially for
card input or finally for printed or punched output. Decimal numbers in the zoned decimal
format are external decimal items. Each digit of a number is represented by a single byte,
with the four low-order bits of each eight-bit byte containing the value of the digit. The four
high-order bits of each byte are zone bits; the zone bits of the least significant byte

7-21

represent the sign of the item. Examples of external decimal items and their internal
representation are shown in Figure 7-3. The maximum length of an external decimal item is
18 digits. USAGE IS DISPLAY is used in conjunction with external decimal items.

item Vaiue Description Internal Representation®
External Decimal -1234 DISPLAY
PICTURE 2999 l Z1 z2 I Z3 I F4
———
byte
+1234 DISPLAY
PICTURE S$9999 ‘ r4| Z2 l 23 l D1
—
byte
Note that, internally, the D4,
which represents the -4, is the
same bit configuration as the
EBCDIC character M.
Binary -1234 COMPUTATIONAL :
PICTURE $9999 | 111 I 1011 I 0010 I 1110 l
-.—\,—-"
S byte
Note that, internally, negative binary
numbers appear in two’s complement
form

*Codes used in this column are as follows.
Z = zone, equivalent to hexadecimal F, bit configuration 1111

Hexadecimal numbers and their equivalent meanings are:

F = nonprinting plus sign

D

C = internal equivalent of plus sign, bit configuration 1100
= internal equivalent of minus sign, bit configuration 1101

S = sign position of a numeric field; internally,
1 = in this position means the number is negative
0 = in this position means the number is positive

Figure 7-3. Internal Representation of Numeric Items

7-22

Binary

A binary item has a decimal equivalent that consists of numeric characters 0 through 9, plus
a sign. It occupies two bytes or four bytes, corresponding to specified decimal lengths in the
PICTURE, of 4 digits and 8 digits, respectively. The leftmost bit of the storage area is the
operational sign.

The PICTURE character string for a binary item may not contain the character P. The
character V is legal only if it is the rightmost character of the PICTURE string. Binary items
must be nonscaled integer numeric items and are always signed. Binary items with a
PICTURE specifying 1 through 4 digits will be treated as if the PICTURE had specified 4
digits. Binary items with a PICTURE specifying 5 through 8 digits will be treated as if the
PICTURE had specified 8 digits. A warning message will be given for binary item
descriptions, if the PICTURE does not specify 4 or 8 digits. USAGE IS COMPUTATIONAL
or USAGE IS must be specified for binary data items. An example of binary item
and its internal representation is shown in Figure 7-3.

Alphanumeric Edited Items

An alphanumeric edited item is one whose PICTURE character string is restricted to certain
combinations of the following symbols:

A X, 98B,0
To qualify as an alphanumeric edited item, one of the following conditions must be true:

® The character string must contain at least one B and at least one X.

) The character string must contain at least one O (zero) and at least
one X.

° The character string must contain at least one O (zero) and at least

one A. Its contents, when represented in standard data format, are
allowable characters chosen from the EBCDIC set.

USAGE IS DISPLAY is used in conjunction with alphanumeric edited items. The maximum
number of bytes allocated is 144.

7-23

Numeric Edited Items

A numeric edited item is one whose PICTURE character string is restricted to certain
combinations of the symbols:

BPVZO0O9,.*+-CRDBS$

The allowable combinations are determined from the order of precedence. of symbols and
editing rules. The maximum number of digit positions that may be represented in the
character string is 18. The contents of the character positions that represent a digit, in
standard data format, must be one of the numerals.

USAGE IS DISPLAY is used in conjunction with numeric edited items. The maximum
number of bytes allocated is 144.

THREE CLASSES OF DATA

The five categories of data items are grouped into three classes: alphabetic, numeric, and
alphanumeric. For alphabetic and numeric, the class and the category are synonymous. The
alphanumeric class includes the categories of alphanumeric (without editing), alphanumeric
edited, and numeric edited.

Every elementary item belongs to one of the three classes and to one of the five categories.
The class of a group item is treated at object time as alphanumeric regardless of the class of
the elementary items subordinate to that group item.

Figure 7-4 summarizes the relationships of the class and category for elementary and group
data items.

Level of item Class Category
Alphabatic Aliphabetic

Elementary Numeric Numeric
Alphanumeric Alphanumeric

Alphanumeric Edited
Mumeric Edited

Group Alphanumeric Alphabetic

Mumeric
Alphanumeric
Alphanumeric Edited
Numeric Edited

Figure 7-4. Class and Category of Elementary and Group Data Items

7-24

EDITING RULES

The general methods of performing editing in the PICTURE clause are by insertion, or by
suppression and replacement. There are four types of insertion editing available. They are:

® Simple insertion
® Special insertion
® Fixed insertion

® Floating insertion

There are two types of ;uppression and replacement editing:
) Zero suppression and replacement with spaces
® Zero suppression and replacement with asterisks
The type of editing which may be performed upon an item is dependent upon the category

to which the item beiongs. The following list specifies which type of editing may be
performed upon a given category:

Categor_y Type of Editing
Alphabetic None
Numeric None
Alphanumeric None

Alphanumeric Edited Simple Insertion , 0 and B

Numeric Edited All
Simple Insertion Editing
The *,” (comma), ‘B’ (space), and ‘0’ (zero) are used as the insertion characters. The insertion
characters are counted in the size of the item and represent the position in the item into

which the character will be inserted.

Figure 7-5 shows examples of simple insertion editing.

Source PICTURE Source Value Edit PICTURE Edited Resuit
9(5) 01234 99,999 01,234
X(9) CITYSTATE XXXXBXXXXX CITYASTATE
X{10) FMLASTNAME XBXBXXXXXXXX FAMALASTNAME
X(5) A3629 XBXXXX A 3629
9(5) 00000 99,999 00,000

Figure 7-5. Examples of Simple Insertion Editing

7-25

Special Insertion Editing

The *." (period) is used as the insertion character. In addition to being an insertion character
it also represents decimal point for alignment purposes. The insertion character used for the
actual decimal point is counted in the size of the item. The use of the assumed decimal
point, represented by the symbol "' and the actual decimal point, represented by the
insertion character, in the same PICTURE character-string is disallowed. The result of
special insertion editing is the appearance of the insertion character in the item, in the same
position as shown in the character-string.

Figure 7-6 shows examples of special insertion editing.

Source PICTURE Source Value Edit PICTURE Edited Result
Vv9(6) 000135 999999 .000135
9999V99 001 -3{'39 9999.99 0013.59
9999Vv99 000%8 99 9999 04.2800
9Vv9 % 999.99 002.80
9999V9 125% 99,999.99 01,256.30

Figure 7-6. Examples of Special Insertion Editing

Fixed Insertion Editing

The currency symbol and the editing sign control symbols, ‘+', *-', ‘CR’, ‘DB’, are the
insertion characters. Only one currency symbol and only one of the editing sign control
symbols can be used in a given PICTURE character-string. When the symbols ‘CR’ or ‘DB’
are used, they represent two character positions in determining the size of the item and they
must represent the rightmost character positions of the item. The symbol ‘+' or *-, when
used, may occupy the leftmost or the rightmost character position of the item. The
currency symbol must be the leftmost character position of the item except that it can be
preceded by either a ‘+' or a *-' symbol. Fixed insertion editing results in the insertion
character occupying the same character position in the edited item as it occupied in the
PICTURE character-string. Editing sign control symbols produce the following results, as
shown in Figure 7-7, depending upon the value of the data item.

Figure 7-8 shows examples of fixed insertion editing.

7-26

Editing Symbol in Result
PICTURE Character-String Positive or Zero Data ltem Negative
+ + -
Space -
CR 2 Spaces ’ CR
DB ' 2 Spaces ‘ DB

Figure 7-7. Editing Sign Control Symbols and Results

Source PICTURE Source Value Edit PICTURE Edited Result
99Vv99 | 0123 $99.99 $01.23
S29Vve9 0123 +99.99 01.23
$99v99 +0123 +99.99 +01.23
$99v99 0123 -99.99 -01.23
S99V99 +0123 -99.99 A01.23
$3999 - 3921 9999- 3921A
999Vva9 12345 $999.99CR $123.45AA
$999v99 -12345 $999.99CR $123.45CR
999Vv99 12345 $999.99DB $123.45AA
$999v99 -12345 $999.99DB $123.45DB

Figure 7-8. Examples of Fixed Insertion Editing

Floating Insertion Editing

The currency symbol and editing sign symbols ‘+' or "’ are the insertion characters and they
are mutually exclusive as floating insertion characters in a given PICTURE character-string.

Floating insertion editing is indicated in a PICTURE character-string by using a string of at
least two of the allowable insertion characters to represent the leftmost numeric character
positions into which the insertion characters can be floated. Any of the simple insertion
characters embedded in the string of floating insertion characters or to the immediate right
of this string are part of the floating string.

in a PICTURE character-string, there are only two ways of representing floating insertion
editing. One way is to represent any or all of the leading numeric character positions on the
left of the decimal point by the insertion character. The other way is to represent all of the
numeric character positions in the PICTURE character-string by the insertion character.

7-27

The result of floating insertion editing depends upon the representation in the PICTURE
character-string. |f the insertion characters are only to the left of the decimal point, the
result is a single insertion character that will be placed in the character position immediately
preceding the decimal point, or the first nonzero digit in the data represented by the
insertion symbol string, whichever is further to the left in the PICTURE character-string.

If all numeric character positions in the PICTURE character-string are represented by the
insertion character, the result depends upon the value of the data. If the value is zero the
entire data item will contain spaces. If the value is not zero, the result is the same as when
the insertion character is only to the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE character-string for the receiving
data item must be the number of characters in the sending data item, plus the number of
fixed insertion characters being edited into the receiving data item, plus one for the floating
character.

Figure 7-9 shows examples of floating insertion editing.

Source PICTURE Source Value Edit PICTURE Edited Resuit
99Vv99 12A'M $$$$.99 $12.34
9999 1234 $$$$.99 $234.00
Vo999 /3234 $$$$.99 $.12
S99V99 +1%§4 ---.99 12.34
S9V999 %34 --.99 -1.23
avog9 ‘%34 $$99.99 $01.23

Figure 7-9. Examples of Floating Insertion Editing

Zero Suppression and Replacement Editing

The suppression of leading zeros in numeric character positions is indicated by the use of
the alphabetic character ‘Z’ or the character ‘*’ (asterisk) as suppression symbols in a
PICTURE character-string. These symbols are mutually exclusive in a given PICTURE
character-string. Each suppression symbol is counted in determining the size of the item. If
‘7' is used, the replacement character will be the space and if the asterisk is used, the
replacement character will be **’.

Zero suppression and replacement is indicated in a PICTURE character-string by using a
string of one or more of the allowable symbols to represent leading numeric character
positions which are to be replaced when the associated character position in the data
contains a zero. Any of the simple insertion characters embedded in the string of symbols or
to the immediate right of this string are part of the string.

7-28

In a PICTURE character-string, there are only two ways of representing zero suppression.
One way is to represent any or all of the leading numeric character positions to the left of
the decimal point by suppression symbols. The other way is to represent all of the numeric
character positions in the PICTURE character-string by suppression symbols.

If the suppression symbols appear only to the left of the decimal point, any leading zero in
the data item which corresponds to a symbol in the string is replaced by the replacement
character. Suppression terminates at the first nonzero digit in the data item or at the
decimal point, whichever is encountered first.

If all numeric character positions in the PICTURE character-string are represented by
suppression symbols and the value of the data is not zero, the result is the same as if the
suppression characters were only to the left of the decimal point. |f the value is zero, the
entire data item will be spaces if the suppression symbol is ‘Z’. If the suppression symbol is
" and the data is zero, the entire data item will be ‘’ except for the actual decimal point
which will be printed.

When the asterisk is used as the zero suppression symbol and the clause BLANK WHEN
ZERO also appears in the same entry, the zero suppression editing overrides the function of
BLANK WHEN ZERO.

The symbols “+', “-, ***, “Z’, and the currency symbol, when used as floating replacement
characters, are mutually excluswe within a given character-string.

Figure 7-10 shows examples of zero suppression and replacement editing.

Source PICTURE Source Value Edit PICTURE Edited Result
9Vv99 1(}\34 ke¥% 00 **10.34
929Vve9 1%4 ZZZ2.99 ANA10.34
99Vv99 0(}90 Z222 .99 AAAA.OO
99v99 ogoo . 2z2z22.22 FaVaVaVaVaVaV¥aV
g9Vvag 0090 ERER B ARER AR
9899Vv999 103%67 222222 1034.56
99Vv9I9 1%4 Z999.99 A010.34
9ve9 ’ 099 ' $*,%** 99CR $*x*r® 00AA

Figure 7-10. Zero Suppression and Replacement Editing

PICTURE CLAUSE RESTRICTIONS

In general, usage of the PICTURE clause is restricted as follows:

7-29

° Itlegal when specified for a data item having USAGE IS INDEX
® Illegal when specified for a group item
° Required for elementary item whose USAGE is not INDEX

Use of any of the following clauses is illegal when specified for an item having an
alphanumeric PICTURE specification:

° BLANK WHEN ZERO

° USAGE IS COMPUTATIONAL, or INDEX

e VAILUE IS numeric literal

Use of any of the following clauses is illegal when specified for an elementary item having an
alphabetic PICTURE specification:

° BLANK WHEN ZERO
o USAGE IS COMPUTATIONAL or
° VALUE IS numeric literal

Use of any of the following clauses is illegal when specified for an elementary item having a
numeric PICTURE specification:

° JUSTIFIED
) VALUE IS nonnumeric literal

Use of any of the following clauses is illegal when specified for an elementary item having an
alphanumeric edited PICTURE specification:

° BLANK WHEN ZERO
[] JUSTIFIED

° USAGE IS COMPUTATIONAL o

o VALUE IS numeric literal

Use of any of the following clauses is illegal when specified for an elementary item having a
numeric edited PICTURE specification:

° JUSTIFIED

o USAGE IS COMPUTATIONAL o

® VAILUE IS numeric literal

7-30

SYNCHRONIZED CL AUSE

The SYNCHRONIZED clause specifies the alignment of an elementary item on a word
boundary in core storage. The effect of this is to ensure efficiency in the performance of
arithmetic operations on binary data. The format is as follows:

SYNCHRONIZED LEFT
SYNC RIGHT

If either the LEFT or RIGHT option is specified it is treated as a comment.

The SYNCHRONIZED clause may appear only at the elementary level. The length of the
item synchronized will not be affected by the use of this clause.

When the SYNCHRONIZED clause is specified for an item within the scope of an OCCURS
clause, each occurrence of the item is synchronized.

When the item is aligned, the character position between the last item assigned and the
current item is known as “‘slack byte". This unused character position is included in the size
of any group to which the elementary item preceding the synchronized elementary item
belongs.

When a COMPUTATIONAL item is SYNCHRONIZED, it is aligned on a word boundary.
When a DISPLAY or item is SYNCHRONIZED, the
SYNCHRONIZED clause is treated as a comment.

When the SYNCHRONIZED clause is specified for an item that also contains a REDEFINES
clause, the data item that is redefined must have the proper boundary alignment for the data
item that REDEFINES it. For example, if the programmer writes:

02 A PICTURE X(4).
02 B REDEFINES A PICTURE S9(8) COMP SYNC.

he must ensure that A begins on a word boundary.

When SYNCHRONIZED is not specified for binary items, no space is reserved for slack
bytes. However, when computation is done on these fields, the compiler generates the
necessary instructions to move the items to a work area which has the correct boundary
necessary for computation.

SLACK BYTES

There are two types of slack bytes: intra-record slack bytes and inter-record slack bytes. An
intra-record slack byte is an unused character position preceding a synchronized item in the
record, or an unused character position added between table entries containing
synchronized items. An inter-record slack byte is an unused character position added
between blocked logical records.

7-31

Intra-Record Slack Bytes

For an output file, or in the Working-Storage Section, the compiler inserts intrarecord slack
bytes to ensure that all SYNCHRONIZED items are on their proper boundaries. For an
input file, the compiler expects intra-record slack bytes to be present when necessary to
assure the proper alignment of a SYNCHRONIZED item.

Because it is important for the user to know the length of the records in a file, the algorithm
the compiler uses to determine whether a slack byte is required is as follows:

The total number of bytes occupied by all elementary data items preceding
the synchronized binary item are added together, including any slack bytes
previously added. If this sum is even, no slack byte is added. If the sum is an
odd number, one slack byte is added.

This intra-record slack byte is added to each record immediately following the elementary
item preceding the synchronized binary item. It is defined as if it were an item with a level
number equal to that of the elementary item that immediately precedes the
SYNCHRONIZED item, and is included in the size of the group which contains it.

For example:

01 FIELD-A.
02 FIELD-B PICTURE X95).
02 FIELD-C.

03 FIELD-D PICTURE XX.
{03 Slack-Byte PIC X. Inserted by compiler]
03 FIELD-E PICTURE S9(8) COMP SYNC.

01 FIELD-L.
02 FIELD-M PICTURE X(5).
02 FIELD-N PICTURE XX.
[02 Slack-Byte PIC X. Inserted by compiler]

02 FIELD-O.
03 FIELD-P PICTURE S9(8) COMP SYNC.

Slack bytes may also be added by the compiler when a group item is defined with an
OCCURS clause and contains within it a synchronized data item with USAGE defined as
COMPUTATIONAL.

To determine whether a slack byte is to be added, the compiler calculates the size of the
group, including all the necessary intra-record slack bytes. If this sum is an even number of
bytes, no slack byte is added. If the sum is an odd number of bytes, one slack byte will be
added at the end of each occurrence of the group containing the OCCURS clause.

For example, a record is defined as follows:

7-32

01 WORD-RECORD
02 WORK-CODE PICTURE X.
02 COMP-TABLE OCCURS 10 TIMES.
03 COMP-TYPE PICTURE XX.
[03 IR-Slack byte PIC X. Inserted by compiler]
03 COMP-HRS PICTURE S9(4) COMP SYNC.
03 COMP-NAME PICTURE X(6).

In order to align COMP-HRS upon its proper boundary, the compiler has added one slack
byte. However, without further adjustments, the second occurrence of COMP-TABLE
would now begin on a word boundary, making the insertion of a slack byte unnecessary.
This would create a table entry with a size different from that of the first entry, and create

addressing problems.

in order to make all table entries the same size, the compiler must add an inter-record slack
byte at the end of the group, as though the record had been written:

01 WORK-RECORD.

02 WORK-CODE PIC X.
02 COMP-TABLE OCCURS 10 TIMES

03 COMP-TYPE PIC XX.

{03 IR-Slack byte PIC X. Inserted by compiler]

03 COMP-HRS PIC S9(3) COMP SYNC.

03 COMP-NAME PIC X(6).

[03 IR-Slack byte PIC X. Inserted by compiler]

Using this description, the second (and each succeeding) occurrence of COMP-TABLE
begins on a byte boundary and has the same storage layout as the first. Figure 7-11 shows
the storage layout for the first and the second occurrences of COMP-TABLE.

’—-_— First Occurrence of COMP-TABLE 7| Second Occurrence of COMP-TABLE -———-I
1] ® * »
S EHE HERH :
a ‘a
el £ |¥| F COMP-NAME 3 E 3| 3 COMP-NAME ¥
(1]
« s |3 2 il 2 | @ 2 @
= o € o «c o e o «
]] |] | | | |
1 ! | | 1 1 L
w w w w w w w w w w w w w w

W = Word boundary

* = Slack byte inserted between occurrences

Figure 7-11. Insertion of Slack .Bytes Betwsen Occurrences

Each succeeding occurrence within the table will now begin at the same relative position to
word boundaries as the first.

7-33

Inter-Record Slack Bytes

If the file contains blocked logical records, the logical records must contain an even number
of bytes, including all intra-record slack bytes created. It is the user’s responsibility to insure
that the logical record length is equal to an even number of bytes. An inter-record slack byte
may be specified by writing a FILLER at the end of the record.

SYNCHRONIZED CLAUSE RESTRICTIONS

Use of the SYNCHRONIZED clause is illegal when specified for a data item having any of
the following characteristics:

° USAGE IS INDEX

e Group item

[Subordinate to a VALUE clause
USAGE CLAUSE

The USAGE clause specifies the format of a data item in the computer storage. The format
is as follows:

(INDEX
DISPLAY
cowmp

COM

ONA

[USAGE ISK .

The USAGE clause can be written at any level. If the USAGE clause is written at a group
level, it applies to each elementary item in the group. The USAGE clause of an elementary
item cannot contradict the USAGE clause of a group to which the item belongs. If the
USAGE clause is not specified for an elementary item, or for any group to which the item
belongs, it is assumed that the USAGE is DISPLAY.

This clause specifies the manner in which a data item is represented in the storage of a
computer. It does not affect the use of the data item, although the specifications for some
statements in the Procedure Division may restrict the usage of the operands referred to. The
USAGE clause may affect the radix or type of character representation of the item.

The DISPL AY option specifies that the item is stored in character form, one character per
byte. DISPLAY is used in conjunction with alphabetic, alphanumeric, external decimal,
alphanumeric edited, and numeric edited items. The allowable characters used to represent
these items can be found in the discussion of the PICTURE Clause.

7-34

The COMPUTATIONAL option specifies an integer binary data item occupying two or four
bytes, corresponding to specified digit lengths of 1-4, and 5-8, respectively. For example, an
item whose PICTURE is S9(5) and whose USAGE is COMPUTATIONAL has an internal
length of 4 bytes.

The PICTURE of a COMPUTATIONAL item may contain only 9's, the operational sign

character S, and the character V only if the V is the rightmost character of the picture
string.

NOTE
Regardless of the PICTURE specified for a COMPUTATIONAL item, this

compiler will treat the item as if the PICTURE were specified as S9(4) and
S9(8), respectively.

NAL-3 option specifie

er byte, with the low-order

tain only 9's and the operatic

A COMPUTATIONAL or € item represents a value to be used in
computations and must be numeric. If a group item is described as COMPUTATIONAL or
t is the elementary items in the group which have this USAGE. The
group item itself cannot be used in computations (see discussion of numeric data items in
the PICTURE Clause in this section).

USAGE IS INDEX is discussed in Table Handling at the beginning of Chapter 9.

Use of the USAGE IS COMPUTATIONAL or
illegal when specified for data items having any o

° BLANK WHEN ZERO
e JUSTIFIED

[PICTURE is alphabetic, alphanumeric, alphanumeric edited, or
numeric edited

® VALUE IS alphanumeric literal
e Subordinate to a VALUE clause

Use of the USAGE IS INDEX clause is illegal when specified for data items having any of
the following characteristics:

° BLANK WHEN ZERO

] JUSTIFIED

7-35

° PICTURE
® SYNCHRONIZED
° VALUE

® Subordinate to a VALUE Clause

VALUE CLAUSE

The VALUE clause defines the initial value of working-storage items. The format is as
follows:

VALUE IS literal

A figurative constant may be substituted wherever a literal is specified.

The VALUE clause must not be stated for any item whose size, explicit or implicit, is
variable.

Rules governing the use of the VALUE clause differ with the particular section of the Data
Division in which it is specified:

] In the File Section and the: the VALUE clause must
not be used.
° In the Working-Storage Section, the VALUE clause may be used to

specify the initial value of any data item. It causes the item to
assume the specified value at the start of execution of the obiject
program. Hf the VALUE clause is not used in an item’s description,
the initial VALUE is unpredictable.

The VALUE clause must not be specified in a data description entry that contains an
OCCURS clause or in an entry that is subordinate to an entry containing an OCCURS
clause.

Within a given record description, the VALUE clause must not be used in a data description

entry following a data description entry which contains an OCCURS clause with a
DEPENDING ON phrase.

The VALUE clause must not be specified in a data description entry which contains a
REDEFINES clause or in an entry which is subordinate to an entry containing a
REDEFINES clause.

7-36

If the VALUE clause is used in an entry at the group level, the literal must be a figurative
constant or a nonnumeric literal, and the group area is initialized without consideration for
the USAGE of the items contained within this group. The VALUE clause then cannot be
specified at subordinate levels within this group.

The VALUE clause cannot be specified for a group containing items with descriptions
including JUSTIFIED, SYNCHRONIZED, or USAGE (other than USAGE IS DISPLAY)

clauses.

The VALUE clause must not conflict with the other clauses in the data description of the
item or in the data description within the hierarchy of the item. If the category of an
elementary item is specified as numeric or alphabetic, it does not contradict the
alphanumeric category of group items. '

The following rules apply:

° If the item is numeric, the literal in the VALUE clause must be a
numeric literal. If the literal defines the value of a Working-Storage
item, the literal is aligned according to the rules for numeric moves,
except that the literal must not have a value that would require
truncation of nonzero digits.

e If the item is alphabetic or alphanumeric, the literal in the VALUE
clause must be a nonnumeric literal. The literal is aligned according
to the alignment rules (see JUST/FIED Clause in this section) except
that the number of characters in the literal must not exceed the size
of the item.

o The numeric literal in a VALUE clause of an item must have a value
that is within the range of values indicated by the PICTURE clause
for that item. For example, for PICTURE 99PPP, the literal must be
within the range 1000 through 99000 or zero. For PICTURE PPP99,
the literal must be within the range .00000 through .00099.

® If the item is numeric edited or alphanumeric edited, the literal in

the VALUE clause must be a nonnumeric literal already in edited

form. The editing characters in a PICTURE clause are ignored in

~ determining the initial appearance of the item described, but they are
included in determining the size of the item.

7-37

MAXIMUM RECORD OR DATA ITEM DESCRIPTION ENTRY

A record or data item description entry including all options available would appear as
follows (the OCCURS clause is discussed in Chapter 9):

data-name-1 }
EILLER
[REDEFINES data-name-2]
[BLANK WHEN ZERO]
JUSTIFIED
| \ausT ' RIGHT]
[OCCURS Clause]
—PICTURE} IS character string]
PIC
[[SYNCHRONIZED LEFT 77
SYNC l [RIGHT]_
(INDEX w T
DISPLAY
CcomP
COMPUTATIONAL
BINARY .
COMP-3 S
COMPUTATIONAL-3
i \ PACKED /
[VALUE IS literal]

level number ‘

USAGE IS ¢

7-38

8. PROCEDURE DIVISION

The Procedure Division must be included in every COBOL source program. It contains the
specific instructions for solving a data processing problem. These instructions are written in
procedures.

ORGANIZATION OF THE PROCEDURE DIVISION

The Procedure Division contains procedures. A procedure is composed of a paragraph, or a
group of successive paragraphs, or a section, or a group of successive sections within the
Procedure Division. If one paragraph is in a section, then all paragraphs must be in sections.
A procedure-name is a word used to refer to a paragraph or section in the source program in
which it occurs. It consists of a paragraph-name or a section-name.

The end of the Procedure Division and the physical end of the program is that physical
position in a COBOL source program after which no further procedures appear.

The Procedure Division must begin with the header PROCEDURE DIVISION foll d b

A section consists of a section header followed by one or more successive paragraphs. A
section ends immediately before the next section-name or at the end of the Procedure
Division.

A paragraph consists of a paragraph-name followed by one or more successive sentences. A
paragraph ends immediately before the next paragraph-name or section-name or at the end
of the Procedure Division.

A sentence consists of one or more statements and is terminated by a period followed by a
space.

A statement is a syntactically valid combination of words and symbols beginning with a
COBOL verb. .

The term ‘identifier’ is defined as the word or words necessary to make unique reference to
a data item.

The structure of the Procedure Division is as follows:

PROCEDURE DIVISION. |i
{section-name_ SECTION pr .
{paragraph-name. {sentence } e } .. , .

8-1

STATEMENTS

There are three types of statements in COBOL: compiler directing statements, conditional
statements, and imperative statements.

COMPILER DIRECTING STATEMENTS

A compiler directing statement directs the compiler to take a specific action. The statements
consist of a compiler directing verb and its operands. The compiler directing verbs are
ENTER and NOTE.

CONDITIONAL STATEMENTS

A conditional statement causes the program to select alternate paths of control depending
upon the truth value of a test.

COBOL statements used as conditional statements are:

IF

ADD

SUBTRACT (ON SIZE ERROR)
MULTIPLY

DIVIDE

GO (DEPENDING ON)

READ (AT END)

(INVALID KEY)

The options in parentheses cause otherwise imperative statements to be treated as
conditionals at execution time. A discussion of these options is included as part of the
description of the associated imperative statement.

IMPERATIVE STATEMENTS

An imperative statement indicates a specific action to be taken by the object program. An
imperative statement is any statement that is neither a conditional statement nor a
compiler-directing statement. An imperative statement may consist of a sequence of
imperative statements.

COBOL verbs used in imperative statements are grouped into the following categories and
subcategories:

82

Arithmetic

ADD
SUBTRACT
MULTIPLY
DIVIDE

Procedure Branching

GO TO
ALTER
PERFORM
EXIT
STOP

Data Manipulation

MOVE
EXAMINE

Input/Output

"ACCEPT
CLOSE
DISPLAY
OPEN
READ
WRITE
SEEK

Table Handling (discussed in Section 9)

SET

SENTENCES

A compiler directing sentence is a single compiler directing statement terminated by a
period, followed by a space.

An imperative sentence is an imperative statement or a series of imperative statements
terminated by a period, followed by a space.

83

A conditional sentence is a conditional statement optionally preceded by an imperative
statement terminated by a period, followed by a space.

CONDITIONS

A condition is one of the following:

™ Relation condition
° Class condition
e NOT condition

The construction (NOT condition) where condition is one of the conditions listed above, is
not permitted if the condition itself contains a NOT.
TEST CONDITIONS

A test condition is an expression that, taken as a whole, may be either true or false,
depending on the circumstances existing when the expression is evaluated.

There are two types of simple conditions which, when preceded by the word IF, constitute
one of the two types of tests: class test, and relation test.

The construction — NOT condition — may be used in any simple test condition to make the
relation specify the opposite of what it would express without the word NOT. For example,
NOT AGE GREATER THAN 21 is the opposite of AGE GREATER THAN 21.

Each of the previously mentioned tests, when used within the |F statement, constitutes a
conditional statement.

CLASS CONDITION

The class test determines whether data is alphabetic or numeric. The format for a class
condition is as follows.

identifier IS[NOT] {NUMERlC }

ALPHABETIC

The operand being tested must be implicitly or explicitly described as USAGE DISPLAY.

A numeric data item consists of the digits 0 through 9, with or without an operational sign.
An alphabetic data item consists of the space character and the characters A through Z.

The identifier being tested is determined to be alphabetic only if the contents consist of any
combination of the alphabetic characters A through Z and the space.

8-4

Bulletin: 2202.002-0001
Date: * 3/19/73

If the PICTURE in the record descriptioh of the identifier being tested does not contain an
operational sign, the identifier being tested is determined to be numeric only if the contents
are numeric and an operational sign is not present.

The NUMERIC test cannot be used with an identifier described as alphabetic.
The ALPHABETIC test cannot be used with an identifier described as numeric.

Figure 8-1 shows allowable forms of the class test.

identifier Type -) Allowable Class Test

Alphabetic ALPHABETIC NOT ALPHABETIC

Alphanumeric ALPHABETIC NOT ALPHABETIC
NUMERIC NOT NUMERIC

Numeric ~ NUMERIC NOT NUMERIC

Figure 8-1. Allowable Forms of the Class Test

REL ATION CONDITION

A relation condition causes a comparison of two operands, each of which may be an
identifier or a literal. Comparison of two numeric operands is permitted regardless of the
format as specified in individual USAGE clauses. However, for all other comparisons, the
operands must have the same usage.

The general format for a relation condition is as follows:

identifien’-2’

literal-2

identifier-1
literal-1

} relational-operator ‘

The first operand (identifier-1 or literal-1) is called the subject of the condition; the second
operand (identifier-2 or literal-2) is called the object of the condition. The subject and the
object may not both be literals. '

The relational 6berator specifies the type of comparison to be made in a relation condition.
The meaning of the relational operators is as shown in Figure 8-2. Notice that either the
symbol or the word is allowable for the conditions greater than, less than, and equal to.

Relational Operator) Meaning
IS [NOT) GREATER THAN Greater than or not greater than
1S {NOT] >
1S [NOT] LESS THAN } Less than or not less than’
IS INOTI < ’
IS [NOT] EQUAL TO?T . | Equah to or not equal to
iS [NOT] =

+TO is optional on EQUAL TO relational operator.
Figure 8-2. Relational Operators and Their Meanings

85

COMPARISON OF NUMERIC OPERANDS

For operands whose category is numeric, a comparison is made with respect to the algebraic
value of the operands. The length of the operands, in terms of number of digits, is not
significant. Zero is considered a unique value regardless of the sign.

Comparison of these operands is permitted regardless of the manner in which their USAGE
is described. Unsigned numeric operands are considered positive for purposes of comparison.

Figure 8-3 shows examples of the comparison of numeric operands.

Subject Object Result of Comparison
L2[3[e]6[o] | [2]3]s]o[2]0] 236.50 is greater than 23,5020
[2]e]2] 262 is greater than 62.36
[2[o]ofo]0] |2[o]o] o] 2| 2000.0 is less than 2000.2

EED [0[0]o[+] 2.0 is less than +0.0
[o]o]-] 0 equais 0
9]

[4] 5] 45 is less than 0239
[o]s]e]

036 equals 36

Figure 8-3. Examples of Comparisons of Numeric Operands

COMPARISON OF NONNUMERIC OPERANDS

For nonnumeric operands, or one numeric and one nonnumeric operand, a comparison is
made with respect to a specified collating sequence of characters. Refer to Appendix B for
the collating sequence.

The size of an operand is the total number of characters in the operand. Numeric and
nonnumeric operands may be compared only when their usage is the same, implicitly or
explicitly.

The operands may be equal in size_"f,_v 3G . For equal length operands, characters
in corresponding character positions of the two opérands are compared starting from the
high-order end through the low-order end. If all pairs of characters compare equally through
the last pair, the operands are considered equal when the low-order end is reached. The first
pair of unequal characters to be encountered is compared to determine their relative
position in the collating sequence. The operand that contains the character that is
positioned higher in the collating sequence is considered to be the greater operand.

8-6

Figure 8-4 shows examples of the comparison of nonnumeric operands.

Subject Object Result of Comparison

E[: [c]o]s]a]3] CD843 is equal to CD843

3 |4 | :] B340 is greater than 8340

E@E ‘ZIT__' 840 is less than 841

[s]clo[e] [TJu]v]w] BCDE is less than TUVW

IE:O E NOPQR is greater than BCD

[t [a[c[m]a[x]B]A] | [1]a[c[m[a]B]A] IAGMAKBA is greater than IAGMABA

[vTa] Km[a]a]a]k] L1]k mlalalalL] IUKMAAAK is less than IJKMAAAL

E E[E l : l G l DEF is less than DEFG

EEE E[E HE DEF is equal to DEFA

Figure 8-4. Examples of Comparisons of Nonnumeric Oparands

COMPARISONS INVOLVING INDEX-NAMES AND/OR INDEX DATA ITEMS

The comparison of two index-names is equivalent to the comparison of their corresponding
occurrence numbers.

In the comparison of an index data item with an index-name or with another index data
item, the actual values are compared without conversion.

The comparison of an index-name with a numeric item is permitted if the numeric item is an
integer. The numeric integer is treated as an occurrence number. No other comparisons
involving an index-name or index data item are allowed (see 7able Handling in Chapter 9).
PERMISSIBLE COMPARISONS OF SUBJECT AND OBJECT OPERANDS
Table 8-1 lists all permissible comparisons of subject and object operands.
Following is a partial list of abbreviations and their explanations as used in Table 8-1.

] NN, comparison is made as described for nonnumeric operands

° NU, comparison is made as described for numeric operands

87

° 10, comparison is made as described for two index-names
o IV, comparison is made as described for index data items

° A blank in any column signifies an illegal comparison.

Table 8-1. Permissible Comparisons of Subject and Object Operands

Object Operand
Fc* | zR

Subject Operand GR| AL | AN | ANE|NNL|NL |ED [BI |ID |IN |IDI
Group (GR) NN | NN | NN NN |[NN | NN | NN
Alphabetic (AL) NN | NN | NN NN I NN | NN NN
Alphanumeric (AN) V NN | NN| NN | NN [NN | NN [NN
Alphanumeric Edited (ANE) NN | NN | NN | NN [NN | NN | NN
Numeric Edited (NE) NN | NN | NN NN {NN [NN | NN
i Comar (5| | o | | w
;f;’:;ﬁi::‘:;:jm (ZR) NN | NN NN NN NU [NU [NU [0
External Decimal (ED) NN| NN| NN| NN |NN | NU |NU |[NU |NU |10**
Binary (Bl) NU [NU [|NU |NU |10**
Index-Name (IN)
Index Data ltem (IDI) v v

*Includes all figurative constants except zero.
**\/alid only if the numoric item is an integer.

CONDITIONAL STATEMENTS

Conditional statements evaluate conditions which cause the object programs to choose
between alternate paths of control. Only the IF statement is discussed in this section.
Discussion of the other conditional statements is included as part of the description of the
associated imperative statements.

88

IF STATEMENT

- The IF statement causes a condition to be evaluated. The subsequent action of the object
program depends on whether the value of the condition is true or false. The format of the
IF statement is: '

ELSE

NEXT SENTENCE

IF condition statement-1
- NEXT SENTENCE

{ statement-2

Statement-1 and statement-2 are imperative statements.

The phrase ELSE NEXT SENTENCE may be omitted if it immediately precedes the
terminal period of the sentence.

When an IF statement is executed, the following action is taken:
e The condition is evaluated to be true or false.
® If true, the statements immediately following the condition
(represented by statement-1) are executed: control then passes

implicitly to the next sentence.

° If false, either the statements following the ELSE are executed or, if
the ELSE clause is omitted, the next sentence is executed.

Example:

SEQUENCE
A B COBOL STATEMENT

{PAGE} [(SERIAL)
12 3[4 58

< | CONT.

8.9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 §0

IF _CODEl .IS EQUAL TO 5

ADD 1. TO CTR
.. MOYE CTR TO TEMP
ELSE . . ,
et ... SUBTRACT .|. FROM CTR
- , MOVE CTR TO PERM.
LVIDE BALANCE BY 2 GIVING NEW-BAL.

.......................................

In the program segment shown when CODE1 equals 5, the following steps are executed:
° Add 1 to CTR.
® Move CTR to TEMP.

° The next sentence, DIVIDE BALANCE BY 2 GIVING NEW-BAL, is
executed.

If CODE1 does not equal 5, the following steps are executed.
° Subtract 1 from CTR.
° Move CTR to PERM.

° The next sentence, DIVIDE BALANCE BY 2 GIVING NEW-BAL, is
executed

When an IF statement is executed and the NEXT SENTENCE option is present, control
passes explicitly to the next sentence depending on the truth value of the condition and the
placement of the NEXT SENTENCE clause in the statement.

IMPERATIVE STATEMENTS

An imperative statement unconditionally causes a specified function to occur at progran:
execution time. Imperative statements discussed in this section are:

° Arithmetic

o‘ Procedure Branching
° Data Manipulation

° Input/Output

ARITHMETIC STATEMENTS
Arithmetic statements are used in computations and specify four operations:

° ADD

° SUBTRACT

° MULTIPLY

. DIVIDE
Each type of arithmetic statement includes options common to all four operations. They
are: GIVING, ROUNDED, and SIZE ERROR. In addition, the data descriptions of the
operands need not be the same; any necessary conversion and decimal point alignment is

supplied throughout the calculation. The maximum size of each operand is 18 decimal
digits.

8-10

GIVING OPTION

If the GIVING option is specified, the value of the identifier that follows the word GIVING
is set equal to the calculated result of the arithmetic operation. This identifier, since it is not
involved in the computation, may be a numeric edited item.

ROUNDED OPTION

If, after decimal point alignment, the fractional result of an arithmetic operation is greater
than the number of places provided for the fraction by the resultant-identifier, truncation
occurs to the size of the resultant-identifier. When rounding is requested, the absolute value
of the resultant-identifier is increased by one (1) whenever the most significant digit of the
excess is greater than or equal to five (5).

When the low-order integer positions in a resultant-identifier are represented by the
character P in the picture for that resultant-identifier, rounding or truncation occurs relative
to the right-most integer position for which storage is allocated.

SIZE ERROR OPTION

If, after decimal point alignment, the value of a result exceeds the largest value that can be
contained in the associated resultant-identifier, a size error condition exists. Division by zero
always causes a size error condition. The size error condition applies only to the final results
of an arithmetic operation and does not apply to intermediate results, except in the
MULTIPLY and DIVIDE statements, in which case the size error condition applies to the
intermediate results as well. If the ROUNDED option is specified, rounding takes place
before checking for size error. When such a size error condition occurs, the subsequent
action depends on whether or not the SIZE ERROR option is specified.

If the SIZE ERROR option is not specified and a size error condition occurs, the value of
the resultant-identifier may be unpredictable.

If the SIZE ERROR option is specified and a size error condition occurs, then the value of
the resultant-identifier affected by the size error is not altered. After execution of this
operation, the imperative-statement in the SIZE ERROR option is executed.

OVERL APPING OPERANDS

When a sending and a receiving item in an arithmetic statement or MOVE statement share a
part of their storage areas, the result of the execution of such a statement is undefined.

ADD STATEMENT

The ADD statement causes two or more numeric operands to be summed and the result to
be stored. It has two formats which are:

811

Format 1:
identiﬁer-1} identifier-2]
literal-1 literal-2 o

ADD

TO identifier-m[ROQUNDED]
[ON SIZE ERRCR imperative-statement]

Format 2:

ADD

identifier-1} identiﬁer-2:| I:identifier-B-]
literal-1 literal-2 literal-3] "

GIVING identifier-m[ROUNDED] [ON SIZE
ERROR imperative-statement]

In formats 1 and 2 each identifier must refer to an elementary numeric item, except that the
identifier appearing to the right of the word GIVING may refer to a numeric edited data
item.

Each literal must be a numeric literal.

The maximum size of each operand is eighteen (18) decimal digits. The composite of
operands, which is that data item resulting from the superimposition of all operands,
excluding the data item that follows the word GIVING, aligned on their decimal points,
must not contain more than eighteen digits. There may not be more than 20 operands in a
single ADD statement including the identifier m.

If format 1 is used, the value of the operands preceding the word TO are added together,
then the sum is added to the current value in identifier-m, and the resulit is stored in the
resultant identifier-m.

If format 2 is used, the values of the operands preceding the word GIVING are added
together, then the sum is stored as the new value of resultant identifier-m.

The compiler incusres that enough places are carried so as not to lost significant digits
during execution.

Figure 8-5 shows examples of the ADD statement.

SUBTRACT STATEMENT

The SUBTRACT statement is used to subtract one, or the sum of two or more numeric data
items from an item, and sets the value of an item equal to the results. It has two formats
which are: '

Format 1:
literal-1 literal-2
SUBTRACT 'identifier—‘l}' [identifier-z] o
FROM identifier-m [ROUNDED]
[ON SIZE ERROR imperative-statement]

8-12

€18

sejdwex3 juetuoyn}s AQV "G-8 aanbiy

Conditions Bsfore Conditions After Result of
Statement Execution Execution Addition
ADD QUANT-1 TO QUANT-2 QUANT-1 = QUANT-1= * auanT2= [3[1]s
QUANT-2 =
ADD 4.3 TO QUANT-3 LITERAL 43= [4]3] LITERAL 43= [4] 3]+ QUANT-3= [1]9]3
QUANT-3=
ADD QUANT-1 QUANT-2 GIVING. QUANT-1 = (1] 3] 8] QUANT-1= [1] 3[8}* TOTAL = 11]8] 2] 6]
TOTAL QUANT-2 (2]4] 6] QUANT:2 = *
TOTAL = |4|5]8]8]
ADD QUANT-1 GUANT-2 GIVING auanT-i= [1]3[8} QuanTi= [1]3[8}* TotaL= [1]6] 3]
TOTAL ROUNDED QUANT-2 = 2[af6 QuanT2= | 2[4a)6]* '
TOTAL = la]s]8
ADD -47.1 to QUANT-3 LITERAL 47.1=[4]7]1]-] LITERAL 47.1=| a[7]1]-] = auanT-3= [o]o[9[a][1]5]
QuanT3= [o[1]4]1]2]s[+]
ADD QUANT-4 QUANT 5 GIVING QUANT-4 = QuanTa= [2[a]o]~ QUANT6 = .
QUANT-6 ROUNDED ON SIZE _ . .
e e e I I oA
auant6= [8[8]5] :

* = Unchanged

Format 2:

susTRACT | 'teral literal-2
— lidentifier-1 identifier-2

FROM { literal-m }

identifier-m
GIVING identifier-n [ROUNDED]

[ON SIZE ERROR imperative-statement]

Each identifier must refer to a numeric elementary item except in format 2, where the
identifier that appears to the right of the word GIVING may refer to a numeric edited data
item. Each literal must be a numeric literal.

The maximum size of each operand is eighteen (18) decimal digits. The composite of
operands, which is that data item resulting from the superimposition of all operands,
excluding the identifier that follows the word GIVING, aligned on their decimal points,
must not contain more than eighteen digits. There may not be more than 20 operands in a
single SUBTRACT statement including identifier-m.

In format 1, all literals or identifiers preceding the word FROM are added together and this
total is subtracted from identifier-m and the difference is stored as the new value of
identifier-m.

in format 2, all literals or identifiers preceding the word FROM are added together, the sum
is subtracted from literal-m or identifier-m and the result of the subtraction is stored as the
new value of identifier-n.

The compiler insures that enough places are carried so as not to lose significant digits during
execution.

Figure 8-6 shows examples of the SUBTRACT statement.

MULTIPLY STATEMENT

The MULTIPLY staternent causes a numeric data item to be multiplied and sets the value of
a data item equal to the result. It has two formats which are:

Format 1:

identifier-1
literal-1
[ON SIZE ERROR imperative-statement]

MULTIPLY [’ BY identifier-2 [ROUNDED]

Format.2:

MULTIPLY {ndenttﬂeM} BY {ldent|f|er-2}

literal 1 literal-2
GIVING identifier-3 [ROUNDED]
[ON SIZE ERROR imperative-statement]

8-14

G1-8

sejdwex3 juswelels LOVHLENS ‘9-8 64nbiy

Conditions Before Conditicns After Resuit of
Statement Execution Execution Subtraction
SUBTRACT QUANT-1 FROM QUANT-2 QUANT-1 = 2 QUANT-1 = ! 2! 5! 1 | 0 'i * QUANT2= [2;7:8(0

QUANT-2 =

SUBTRACT 267.4 FROM QUANT-2

Literal 267.4=| 2] 6]
QUANT-3=

Literal 267.4= [2] 6] 7]

g
*

GUANT-3 =

SUBTRACT 267.4 FROM QUANT-3
ROUNDED

Literal 267.4 =[2]

[~
g

Literal 267.4 = [2] 6] 7] 4 | *

QUANT-3=
(2]7]6]6]

QUANT-3=
SUBTRACT QUANT-1 FROM QUANT-1 = QUANT-1 = . RESULT =
QUANT-2 GIVING RESULT QUANT 2 = QUANT 2 = .
RESULT= [o[1]of0]
SUBTRACT -40 FROM QUANT-4 Literal 40= (4] 0] -] Literal -40 = * QUANTS= [272]5]-]
GIVING QUANT-5 ROUNDED QUANT4 = Ennu. QUANTS = EEBG. ®
auanTs= [3[8[1]+]

* = Unchanged

Each identifier must refer to a numeric elementary item, except in format 2, where the
identifier that appears to the right of the word GIVING may refer to a numeric edited data
item.

Each literal must be a numeric literal.

The maximum size of each operand is eighteen (18} decimal digits.

When format 1 is used, the value of identifier-1 or literal-1 is multiplied by the value of
identifier-2. The value of the multiplier {identifier-2) is replaced by this product.

When format 2 is used, the value of identifier-1 or literal-1 is multiplied by identifier-2 or
literal-2 and the result is stored in identifier-3.

Figure 8-7 shows examples of the MULTIPLY statement.

DIVIDE STATEMENT

The DIVIDE statement divides one numeric data item into another and sets the value of a
data item equal to the results. It has two formats which are:
Format 1:

identifier-1
literal-1

DIVIDE ‘ } INTO identifier-2 [ROUNDED]
[ON SIZE ERROR imperative-statement]

Format 2:

DIVIDE {'de““f'e" ’ {'NTO} ‘Identufler- '

literal-1 literal-2
GIVING identifier-3

[ROUNDED] [ON SIZE ERROR imperative-statement]
Each identifier must refer to a numeric elementary item, except, in format 2 where the
identifier that appears to the right of the word GIVING may refer to a numeric edited data
item.

Each literal must be a numeric literal.

The maximum size of each operand is eighteen {18) decimal digits. The maximum size of
the resulting quotient, after decimal point alignment is 18 decimal digits.

Division by zero always results in a size error condition.

When format 1 is used, the value of identifier-1 or literal-1 is divided into the value of
identifier-2. The value of the dividend (identifier-2) is replaced by the quotient.

8-16

Ll-8

sejdwiex3 juewte1es§ ANdILINW “£-8 04nBig

Statement

Conditions Before
Execution

Conditions After
Execution

Resuit of
Modification

MULTIPLY BASE BY PERCENT
GIVING DISCOUNT

BASE = 1] o] 2] 1]

PERCENT= (0|30

DISCOUNT =

BASE = .
PERCENT ={0] 3] 0] *

DISCOUNT =

MULTIPLY QUANT-1 BY 488
GIVING REBATE ROUNDED

QUANT-1 =
Literal 4.88 =
REBATE = i8i818i

QUANT-1=[4] 0] *
Literal 4.88 = M

REBATE =

MULTIPLY QUANT-2 BY 4.88
GIVING OVFLOW ON SIZE
ERROR GO TO ERR

QUANT2 =
Literal 488 =
OVFLOW=

QUANT-2 = .
Literal .88 = *

ovrLow= [2][e[o]-

Result exceeds size of OVFELOW.
Statement at ERR is executed.

MULTIPLY 20 BY QUANT-3

Literal 20 =
QuanT3= |ofo]3]2]

Literal 20 = au *

euanT3= [o] e[4]0

* = Unchanged

When format 2 is used, the value of identifier-1 or literal-1 is divided by or into identifier-2
or literal-2 and the result is stored in identifier-3.

Figure 8-8 shows examples of the DIVIDE statement.

PROCEDURE BRANCHING STATEMENTS

Statements, sentences, and paragraphs in the Procedure Division are ordinarily executed
sequentially. The procedure branching statements (GO TO, ALTER, PERFORM, STOP, and
EXIT) aliow alterations in this sequence.

GO TO STATEMENT

The GO TO statement causes control to be transferred from one part of the Procedure
Division to another. It has two formats which are:

GO TO procedure-name-1

GO TO procedure-name-1 [procedure-name-2] . ..
procedure-name-n DEPENDING ON identifier

Each procedure-name is the name of a paragraph or section in the Procedure Division of the
program.

Identifier is the name of a numeric elementary item described as an integer. When format 2
is used, there may not be more than 100 procedure-names specified.

Whenever a GO TO statement, represented for format 1, is executed, control is transferred
to procedure-name-1 or to another procedure-name if the GO TO statement has been altered
by an ALTER statement. (ALTER statement is described later in this section.)

When, in format 1, the GO TO statement is referred to by an ALTER statement, the
following rules apply:

° The GO TO statement must have a paragraph-name.

° The GO TO statement must be the only statement in the paragraph.
A GO TO statement represented by format 2 causes control to be transferred to one of the
specified procedures named procedure-name-1, procedure-name-2, etc., depending on the
values of identifier being 1, 2, ..., n. If the value of identifier is anything other than the
positive or unsigned integers 1, 2, ..., n, then the GO TO statement has no effect.

Example:

When the following GO TO statement is executed, control will be transferred to
STATE-TAX, FED-TAX, or SOC-SEC depending on the value of DED-TYPE.

8-18

618

sejdwex3 jJuewelels 3QIAIQ “g-g anbiy

Conditions Before Corditions After
Statement Execution Execution Result of Division

DIVIDE 3 INTO QUANT-1 Literal 3= [3] Literasl 3= [3] » FRACTION =
GIVING FRACTION QUANTA = QUANT1 = .

FRACTION =
DIVIDE QUANT-1 BY 2 GIVING QUANT-1 = Litersi 3= [3] * FRACTION =
FRACTION Literal 3= [3] QUANT-1 = .

FRACTION = [1]3] 3]
DIVIDE 3 INTO QUANT-1 Literal 3= [3] Literal 3= [3] * RESULT= [o[8] 3[3]
GIVING RESULT QUANT-1= [2]8] QUANT-1= [2]8]+

RESULT= [o0[o]o]2]
DIVIDE QUANT-1BY 3 QUANT-1= QUANT-1 = * RESULT= [0 o[3]
GIVING RESULT ROUNDED Lierat3= [3] Liormi3= [3] -

resuLt= []3]3]
DIVIDE 3 BY QUANT-1 Literal 3= [3] Literal 3= [3]* RESULT = .
S:;:g: 2 gs.::g' ;‘:: SizE QUANT-1 = m QUANT-1 = # Resuit remains unchanged.

) RESULT = Statement at ERR is executed.

= Unchanged

SEQUENCE
A B COBOL STATEMENT

(PAGE) |(SERIAL)
12 345 6

~i | CONT.

8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 A1 42 43 44 45 46 47 48 49 50,

60 TO STATE‘TAX_.EE.DLJZAX SOLBS.EL N
nEPEMDIﬂG ON DE.D:;L‘LRLL . e

The following program segment is equivalent to the above GO TO statement.

IF DED-TYPE IS EQUAL TO 1 GO TO STATE-TAX.
IF DED-TYPE IS EQUAL TO 2 GO TO FED-TAX.
iF DED-TYPE IS EQUAL TO 3 GO TO SOC-SPEC ELSE NEXT SENTENCE.

ALTER STATEMENT

The ALTER statement rnodifies a predetermined sequence of operations. The format is as
follows:

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2

Procedure-name-1 is the name of a paragraph that contains only one sentence consisting of a
GO TO statement without the DEPENDING ON option.

Procedure-name-2 is the name of a paragraph or section in the Procedure Division.

During execution of the object program, the ALTER statement modifies the GO TO
statement in the paragraph named procedure-name-1, replacing the object of the GO TO by
procedure-name-2.

Example:

CHANGE-GO.

GO TO BYPASS-REPORT.
PROCESS-TRANS.
BYPASS-REPORT.

ALTER CHANGE-GO TO REPORT.

REPORT.

8-20

When CHANGE-GO is executed the first time, control is passed to BYPASS-REPORT. In
BYPASS-REPORT, the ALTER statement when executed, modifies the GO TO statement
in CHANGE-GO. When CHANGE-GO is executed the second time, control is transferred to
REPORT. :

A GO TO statement in a section whose priority is greater than or equal to 50 must not be
referred to by an ALTER statement in a section with a different priority (see Segmentation
in Section 9). All other uses of the ALTER statement are valid and are performed even if
the GO TO to which the ALTER refers is in an overlayable fixed segment.

PERFORM STATEMENT
The PERFORM statement is used to depart from the normal sequence of execution, execute
one or more procedures a specified number of times and return control to the normal
sequence.
The PERFORM statement has two formats which are:

Format 1:

PERFORM procedure-name-1 [THRU procedure-name-2]

Format 2:

PERFORM procedure-name-1 {THRU procedure-name-2]

{ identifier-1

. ’ TIMES
integer-1 -

Each procedure-name is the name of a section or paragraph in the Procedure Division.

Identifier-1 represents a numeric elementary item with no positions to the right of the
assumed decimal point, described in the Data Division.

When the PERFORM statement is executed, control is transferred to the first statement of
the procedure named procedure-name-1. An automatic return to the statement following
the PERFORM statement is established as follows:

° If procedure-name-1 is a paragraph-name and procedure-name-2 is
not specified, then the return is after the last statement of
procedure-name-1.

(] If procedure-name-1 is a section-name and procedure-name-2 is not
specified, then the return is after the last statement of the last
paragraph in procedure-name-1.

® If procedure-name-2 is specified and it is a paragraph-name, then the
return is after the last statement of the paragraph.

) If procedure-name-2 is specified and it is a section-name, then the
return is after the last sentence of the last paragraph in this section.

8-21

There is no necessary relationship between procedure-name-1 and procedure-name-2 except
that a consecutive sequence of operations is to be executed beginning at the procedure
named procedure-name-1 and ending with the execution of the procedure named
procedure-name-2. |f there are two or more direct paths to the return point, then
procedure-name-2 may be the name of a paragraph consisting of the EXIT statement, to
which all these paths must lead. The execution of the EXIT statement in this case, returns
control to the statement following the PERFORM statement.

If control passes to these procedures by means other than a PERFORM statement, control
passes through the last statement of the procedure to the following statement as if no
PERFORM statement mentioned these procedures.

If a sequence of statements referred to by a PERFORM statement includes another
PERFORM statement, the sequence of procedures associated with the included PERFORM
must itself either be totally included in, or totally excluded from the logical sequence
referred to by the first PERFORM. Thus, an active PERFORM statement, whose execution
begins within the range of another active PERFORM statement, must not allow contro! to
pass through the exit of the original PERFORM. Two or more active PERFORM statements
may not have a common exit.

Format 1 is the basic PERFORM statement. A procedure referred to by this type of
PERFORM statement is executed once and then control passes to the statement following
the PERFORM statement..

Format 2 is the TIMES option. When the TIMES option is used the procedures are
performed the number of times specified by the initial value of identifier-1 or integer-1, for
that execution. When the PERFORM statement is executed, the value of integer-1 must be
positive.

If the initial value of identifier-1 is negative or zero, control passes immediately to the
statement following the PERFORM statement. Following the execution of the procedures
the specified number of times, control is transferred to the statement following the
PERFORM statement.

During execution of the PERFORM statement, reference to identifier-1 will not alter the
number of times the procedures are to be executed from that which was indicated by the

initial value of identifier-1.

If integer-1 or identifier-1 is greater than 4 digits, significance may be lost. The maximum
value is 216-1.

A PERFORM statement that appears in a section whose priority is less than the segrnent
limit, can have within its range only the following:

° Sections each of which has a priority number less than 50.

(] Sections wholly contained in a single segment whose priority number
is greater than 49. (See Segmentation in Section 9.)

8-22

A PERFORM statement that appears in a section whose priority number is equal to or
greater than the segment limit, can have within its range only the following:

° Sections each of which has the same priority number as that
containing the PERFORM statement.

o Sections with a priority number that is less than the segment limit.
(See Segmentation in Section 9.)

When a procedure-name in a segment with a priority number greater than 49 is referred to
by a PERFORM statement contained in a segment with a different priority number, the

segment referred to is made available in its initial state for each execution of the PERFORM
statement. (See Segmentation in Section 9.)

Following are examples of the PERFORM statement.

Example 1: Basic PERFORM Without Procedure-Name-2

SEQUENCE e
A B8 COBOL STATEMENT

(PAGE} {(SERIAL)
1.2 314 6 6§7]18 9 10 11]1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 3839 40 41 42 43 44 45 46 47 48 49 60

bt l L] Pt
MULTIPLY. AMOUNT BY. g,@ﬁ_mx,ms -

. . TOTAL-~AMOUNT. . . e
PERFORM CALCULATE. . . . oo

‘ 188 To TOTAL.. o0 e X
QQ_IEL*JMIT-PROC. e
CALCMLATE.. e
DD 1¢¥ TO TOTAL. . .. e

DVE TOTAL To. NEW-TOTAL..
SUBTRACT TOTAL FROM NEW-TOTAL. . ,

MOVE/-DATE. . o e o
... |LF DATE .I.S_EGUAL TO TODAY-DATE)
MONE TODAY-DATE TO ouTPuT bnra. .

.............. T

.............................

T S U S S U SO T W S S S SU W S S ST SOUUN SO SN IUULY ST SUUtr SO T U S S S W ¥

12 314 5 8]718 9 1011 1213 14 DS 16 1718 19 20 212223 2425 26 27 28 29 30 31 32 33 34 35 36 37 38 39 404] 42 434445 46 47 48 49 50

.......................

8-23

In example 1, the statement PERFORM CALCULATE executes the three stafements
contained in the paragraph CALCULATE. The instructions are executed in the following
sequence:

MULTIPLY AMOUNT BY 300 GIVING TOTAL-AMOUNT.
ADD 10 TO TOTAL

MOVE TOTAL TO NEW-TOTAL. PERFORM
SUBTRACT TOTAL FROM NEW-TOTAL. CALCULATE
ADD 100 TO TOTAL.

GO TO CONT-PROC.

Example 2: Basic PERFORM With Procedure-Name-2

SEQUENCE

A

{PAGE)

(SERIAL)

B COBOL STATEMENT

12 3

~ | CONT.

4.5 6]718 9 1011

1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50,

ABC..

Q!E,NEN:AQQT,MOJTQJALQI:ﬂQLM BN
ORM MOVEMENT THRUW commmmh
TE OUT-RECORD.

160 T0_ OUTPUT-ROUTINE..

TEST|

*EQUALLITY.
IF TCODE IS EGUAL TO .I. 60 TO ROUTINE-I..

TIF TCODE IS EQUAL TO. ;L 60. TO ROUTLNE-J..
1.F. TCODE .IS. EQUAL TO 3 GO0 TO .ROUTINE-3..

NT... MONE BALANCE TO._ I!EM' &ALAMQE.A,LM .

[moiv El

MOVE. TCODE TO. NEW-CODE.

RECORD.. MOVE 2 T0. NEW-LL=-CODE.. .

COMP

UTATION. ADD AMOUNT TO BALANCE..

SUBTRACT .35 FROM LOWER-LIMIT..,

OUTP

UT-ROUTINE. WRITE ME-MLRE.QQR& E&OM -
OLD-AREA.. .. . e

_.M,IMQHHILLLJ e ‘

45 6/7{8 9 101

8-24

In example 2 the statement PERFORM MOVEMENT THRU COMPUTATION executes six
statements in the three paragraphs entitled MOVEMENT, NEW-RECOR D, and
COMPUTATION. The instructions are executed in the following sequence:

MOVE NEW-ACCT-NO TO ACCT-NO.

MOVE BALANCE TO NEW-BALANCE.

MOVE TCODE TO NEW-CODE,

MOVE 2 TO NEW-LL-CODE.

MOVE DATE-1 TO NEW-DATE, PERFORM

ADD AMOUNT TO BALANCE. fgngENT
SUBTRACT 35 FROM LOWER-LIMIT. COMPUTATION.
WRITE OUT-RECORD.

GO TO OUTPUT-ROUTINE.

The procedures referred to by the PERFORM statement are executed once. Control then
passes to the statement following the PERFORM statement.

Example 3: Total Exclusion

In the following illustration of total exclusion, EXTRA-TOTAL is located completely
outside the performed sequence ABC THRU XYZ.

PERFORM-A. PERFORM ABC THRU XYZ.

ABC .

e e e e e e e s, Sequence performed by
PERFORM EXTRA-TOTAL PERFORM ABC THRU XYZ
XYZ .
EXTRA-TOTAL .
MORE-INPUT

8-25

Example 4: Total Inclusion

In the following illustration of total inclusion, COMPUTE-TAX is located completely inside
the performed sequence DED-1 THRU END-1.

PERFORM-B. PERFORM DED-1 THRU END-1.

DED-1. .

COMPUTE-TAX. .
MORE-CALCULATION. Sequence performed by
e PERFORM DED-1 THRU
PEF!FOHM COMPUTE-TAX END-1.
END- 1

SUBROUTINE-A.

Example 5: Overlapping Performed Sequences

PERFORM C PERFORM TEST 1 THRU ZER'O DIFFERENCE.
PERFORM D PERFORM MOVE BALANCE' 'IHRU BALANCE-TEST.

TEST- 1

e e e e e e e e e Sequence performed by
ADDITION. PERFORM TEST-1 THRU

e e ZERO-DIFFERENCE.
MOVE-BALANCE. .

ZERO-DIFFERENCE. .

e e e e e e e e Sequence performed by
OVER-DRAFT. PERFORM MOVE-BALANCE
e e e THRU BALANCE-TEST.
BALANCE-TEST.

8-26

Example 6: PERFORMS With a Common End Point

PEREORM-1. PERFORM TEST-CODE THRU EXIT-POINT.
SENTENCE-1.

TEST-CODE.
IF TCODE IS EQUAL TO 12 GO TO PATH-B.

IF TCODE IS EQUAL TO 15 GO TO PATH-C,
IF TCODE IS EQUAL TO 16 GO TO EXIT-POINT.

PATH-A.

GO TO EXIT-POINT.
PATH-B.

GO TO EXIT-POINT.
PATH-C.

EXIT-POINT. EXIT.

In example 6 the original PERFORM statement named PERFORM-1 executes the set of
procedures from TEST-CODE through EXIT-POINT. Within these procedures the testing of
TCODE results in the execution of one of four different paths: PATH-A, PATH-B, PATH-C,
and EXIT-POINT.

When TCODE equals 12, PATH-B is taken. At the end of PATH-B, a return is to be made to
the statement (SENTENCE-1) following the original PERFORM statement. This is
accomplished by the statement GO TO EXIT-POINT. EXIT-POINT is the paragraph-name
of the EXIT associated with the original PERFORM statements.

When TCODE equals 15, PATH-C is taken. At the end of PATH-C, a return is to be made to
the statement (SENTENCE-1) following the original PERFORM statement. Since the
paragraph following the end of PATH-C is the EXIT-POINT paragraph containing the EXIT
sentence, there is no need to use the sentence GO TO EXIT-POINT to return to the original
PERFORM statement.

When TCODE equals 16, an immediate return is to be made to the statement
(SENTENCE-1) following the original PERFORM statement. This is accomplished by the
statement GO TO EXIT-POINT. EXIT-POINT is the paragraph-name of the EXIT associated
with the original PERFORM statement.

When TCODE is not equal to 12, 15, or 16, then PATH-A is taken. At the end of PATH-A, a
return is to be made to the statement (SENTENCE-1) following the original PERFORM
statement. This is accomplished by the statement GO TO EXIT-POINT. EXIT-POINT is the
paragraph name of the EXIT associated with the original PERFORM statement.

8-27

Bulletin: 2202.002-0001
Date: 3/19/73

Example 7: PERFORM With TIMES Option
The procedure ADDITION-ROUTINE is executec three times.

PERFORM ADDITION-ROUTINE 3 TIMES.

ADDITION-ROUTINE .

TEST-ROUTINE .

STOP STATEMENT

The STOP statement causes a permanent or temporary suspension of the execution of the
object program. Its format is as follows:

sTOP ‘

literal
RUN

The literal may be numeric or nonnumeric or may be any figurative constant. Signed
numeric literals cause the development of a low-order sign overpunch.

If the RUN option is used, the execution of the object program is terminated, and control is
returned to the system.

If the literal option is used, the literal is communicated to the operator. The program may
be resumed only by operator intervention (key in a RETURN on the console). Continuation
of the object program then begins with the execution of the next statement in sequence.

If a STOP statement with the RUN option appears in an imperative sentence, it must appear

as the only or last statement in a sequence of imperative statements. All files should be
closed before a STOP RUN statement is issued.

EXIT STATEMENT

The EXIT statement provides a common end point for a series of procedures. The format is
as follows:

EXIT [PROGRAM].

8-28

The EXIT sentence must be preceded by a paragraph-name and must be the only sentence in
the paragraph.

It is sometimes necessary to transfer contro! to the end point of a series of procedures. This
is normally done by transferring control to the next paragraph or section, but in some cases
this method does not produce the required result. For instance, the point to which control
is to be transferred may be at the end of a range of procedures governed by a PERFORM.
The EXIT statement is provided to enable a procedure-name to be associated with such a
point. '

If control reaches an EXIT paragraph and no associated PERFORM statement is active,
control passes through the EXIT point to the first sentence of the next paragraph.

DATA MANIPULATION STATEMENTS

Movement and inspection of data are implicit in the functioning of the COBOL statements
MOVE and EXAMINE.

MOVE STATEMENT

The MOVE statement transfers data, in accordance with the rules of editing, to one or more
data areas. The format is as follows:

MOVE { identifier-1

) }m identifier-2[,identifier-3]. . .
literal

Identifier-1 and literal represent the sending area; identifier-2 and identifier-3 represent the
receiving areas.

The data designated by the literal or identifier-1 is moved first to identifier-2, then to
identifier-3. The notes referring to identifier-2 also apply to the other receiving areas. Any
subscripting or indexing associated with the receiving area is evaluated immediately before
the data is moved to the respective data item.

Any move in which the sending and receiving items are both elementary items is an
elementary move. Every elementary item belongs to one of the following categories:
numeric, alphabetic, alphanumeric, numeric edited, alphanumeric edited. These -categories
are described in the PICTURE clause. Numeric literals belong to the category numeric, and
nonnumeric literals belong to the category alphanumeric. The figurative constant ZERO
belongs to the category numeric. The figurative constant SPACE belongs to the category
alphabetic. All other figurative constants belong to the category alphanumeric.

8-29

The following rules apply to an elementary move between these categories:

° The figurative constant SPACE, a numeric edited, alphanumeric
edited, or alphabetic data item, must not be moved to a numeric or
numeric edited data item.

° A numeric literal, the figurative constant ZERO, a numeric data item
or a numeric edited data item must not be moved to an alphabetic
item.

® A numeric literal, or a numeric data item whose implicit decimal

point is not immediately to the right of the least significant digit,
must not be moved to an alphanumeric or alphanumeric edited data
item.

Any necessary conversion of data from one form of internal representation to another takes
place during the legal elementary moves, along with any editing specified for the receiving
data item. The following rules apply to legal elementary moves:

° When an alphanumeric edited, alphanumeric, or alphabetic item is a
receiving item, justification and any necessary space-filling takes
place as defined under the JUSTIFIED clause. If the size of the
sending item is greater than the size of the receiving item, the excess
characters are truncated after the receiving item is filled. If the
sending item has an operational sign, the absolute value is used.

° When a numeric or numeric edited item is a receiving item, alignment
by decimal point and any necessary zero-filling takes place, except
where zeros are replaced because of editing requirements. If the
receiving item has no operational sign, the absolute value of the
sending item is used. If the sending item has more digits to the left or
right of the decimal point than the receiving item can contain, the
excess digits are truncated. When a data item described as
alphanumeric is the sending item, it is moved as though it was
described as an unsigned numeric integer item. If the sending item
contains any nonnumeric characters, the results are undefined.

) When a receiving field is described as alphabetic and the sending data
item contains any nonalphabetic characters, the results are
undefined.

° When the sending and receiving operands of a MOVE statement share

a part of their storage (that is, when the operands overlap), the result
of the execution of such a statement is unpredictable.

An index data item cannot appear as an operand of a MOVE statement.

8-30

Any move that is not an elementary move is treated exactly as if it were an alphanumeric to
alphanumeric elementary move, except that there is no conversion of data from one form of
internal representation to another.

There are certain restrictions on elementary moves. These restrictions are listed in Table 8-2.

Figure 8-9 shows examples of the MOVE statement.

Table 8-2. Permissible Moves

Receiving Field

Source Field GR AL AN ED Bl NE ANE 1D
Group (GR) Y Y Y Y@ Y@ Y@ Y@ Y@
Alphabetic {AL) Y Y Y N N N Y N

Alphanumeric (AN) Y Y Y Y@ Y@ Y@ Y Y@

External Decimal (ED) Y@ N Y@ Y Y Y Y@ Y

Binary (BI) Y@ N Y Y Y Y Y@ Y
Numeric Edited (NE) Y N Y N N N Y N
Alphanumeric Edited (ANE) Y Y Y N N N Y N
ZERO (numeric or alpha- Y N Y Y@ Y@ Y@ Y Y@
numeric)

SPACE (AL) Y Y Y N N N Y N
HIGH-VALUE, LOW-VALUE, | Y N Y N N N Y N
QUOTE

Numeric Literal Y@ N Y@ Y Y Y Y@ Y

Nonnumeric Literal Y

Y — YES
N — NO

@Move without conversion (like AN to AN).

@Only if the decimal point is at the right of the least significant digit.
@Numeric move.

The alphanumeric field is treated as an ED (integer) field.

@The literal must consist only of numeric characters and is treated as an ED integer field.

8-31

MOVE Statement Item Item PICTURE Value Before Execution vVaIue After Execution
MOVE ZEROS TO FIELD-A FIELD-A 9999 [o]1]2]3] [o]o] o] 0]
MOVE FIELD-1 TO FIELD-2 FIELD-1 XXX
FIELD2 XXXX [x| v] wik] [a]8cla)
MOVE FIELD-3 TO FIELD4 FIELD-3 XXX (Al 8] c]
FIELD-4 XX [x]v]
MOVE ‘123 TO FIELDS FIELDS XXXX a8 c[| 1]2] 3]a)
MOVE ACCOUNT-NO TO PR- ACCOUNT-NO XXXX [a]1] 2] 3] | A] | 3[s l
ACCT-NO.
PR-ACCT-NO XBXXX [a]a]c]p[€) [a]a] 1] 2] 3]
MOVE 125.7 TO DOLLARS DOLLARS 999999 [1]2]3]a]6]6e] [o]1]2]s]|7]0]
MOVE AMOUNT TO PR-AMOUNT AMOUNT 9999v99 [1]2]s]8]3]9] [1]2]s8]3]9]
PR-AMOUNT $9,999.99 [s]s[3[3]3].]3]3] [s]1].[2]s]s].] 3] 9]
MOVE AMT-1 TO PR-AMOUNT-1 AMT-1 999999 [0]o]0]0]0]3] [o] o] o] o] 0] 3]
PR-AMOUNT-1 5.58.99 [alalals]z2]s].[1] o] [ala]alalals]] o] 5]
MOVE FIELD-6 TO FIELD-7 FIELD-6 999
FIELD-7 XXXX [a]8] 2] 4] [1] 5] 7]A]

Figure 8-9. MOVE Statement Examples

8-32

EXAMINE STATEMENT

The EXAMINE statement replaces and/or counts the number of occurrences of a given
character in a data item. The format is as follows: :

EXAMINE identifier

UNTIL FIRST)
TALLYING { ALL literal-1
LEADING

[REPLACING BY literal-2] L

ALL
. LEADING . .
REPLACING _FImRST literal-3 BY literal-4

\ UNTIL FIRST)

(

The description of the identifier must be such that usage is displayed either explicitly or
implicitly.

Each literal must consist of a single character belonging to a class consistent with that of
identifier. If identifier is numeric, each literal must be an unsigned integer or the figurative
constant ZERO.

Examination proceeds as follows:

° For nonnumeric data items, examination starts at the left-most
characters and proceeds to the right. Each character in the data item
specified by the identifier is examined in turn.

° If a data item referred to by the EXAMINE statement is numeric, it
may consist of numeric characters and may possess an operational
sign. Examination starts at the left-most character (excluding the
sign) and proceeds to the right. Each character except the sign is
examined in turn. Regardless of where the sign is physically located,
it is completely ignored by the EXAMINE statement.

The TALLYING option creates an integral count which replaces the value of a special

software register called TALLY whose implicit description is that of an unsigned integer of
five digits. The count represents the number of:

° Occurrences of literal-1 when the ALL option is used.

° Occurrences of literal-1 prior to encountering a character other than
literal-1 when the LEADING option is used.

° Characters not equal to literal-1 encountered before the first
occurrence of literal-1 when the UNTIL FIRST option is used.

When either of the REPLACING options is used, the replacemént rules are as follows:

8-33

° When the ALL option is used, then literal-2 or literal-4 is substituted
for each occurrence of literal-1 or literal-3.

® When the LEADING option is used, the substitution of literal-2 or
literal-4 terminates as soon as a character other than literal-1 or
literal-3 or the right-hand boundary of the data item is encountered.

° When the UNTIL FIRST option is used, the substitution of literal-2
or literal-4 terminates as soon as literal-1 or literal-3 or the right-hand
boundary of the data item is encountered.

[When the first option is used, the first occurrence of literal-3 is
replaced by literal-4.

Specific EXAMINE statements showing the effect of each statement on the associated data
item and TALLY are shown in Figure 8-10.

Resulting
ITEM-1 Data Value of

EXAMINE Statement (Before) (After) TALLY
EXAMINE ITEM-1 TALLYING ALLO 101010 101010 3
EXAMINE ITEM-1 TALLYING ALL 1 101010 000000 3
REPLACING BY O
EXAMINE ITEM-1 REPLACING LEADING **7000 AA7000 NA
“* BY SPACE
EXAMINE ITEM-1 REPLACING FIRST **1.94 $*1.94 NA
angre BY "$"

Figure 8-10. Examples of Data Examination

INPUT-OUTPUT STATEMENTS

The flow of data through the computer is governed by the operating system. The COBOL
statements discussed in this section are used to initiate the flow of data to and from files
stored on external media, and to govern low-volume information that is to be obtained from
or sent to input/output devices such as a card reader or console typewriter.

The Operating System is a physical record processing system. That is, the unit of data made
available by a READ or passed along by a WRITE is a physical record. However, the COBOL
user need be concerned only with the use of individual logical records. The operating system
provides such operations as the movement of data into buffers and/or internal storage,
validity checking, error correction (where feasible), unblocking and blocking, and volume
switching procedures.

Discussions in this section use the terms volume and reel. The term volume applies to all

input/output devices. The term reel applies only to tape devices. Treatment of mass storage
devices in the sequential access mode is logically equivalent to the treatment of tape files.

8-34

input-output statements are: OPEN, SEEK READ, WRITE

ACCEPT, DISPLAY, CLOSE.

OPEN STATEMENT

The OPEN statement initiates processing of files. It performs checking and/or writing of
labels and other input-output operations.

The format is as follows:

INPUT file-name {WITH NO REWIND]
OPEN 1 OUTPUT file-name [WITH NO REWIND] ¢ ...
1-0 file-name

At least one of the options: INPUT, OUTPUT, or 1-O must be specified.
The 1-O option pertains only to mass storage files.
The file-name must be defined by a file description entry in the Data Division.

An OPEN statement must be specified for all files. The OPEN statement for a file must be
executed prior to the first READ, SEEK, WRITE,
statement for that file. A second OPEN statement for a file cannot be executed prior to the
execution of a CLOSE statement for that file. The OPEN statement does not obtain or
release the first data record. A READ or WRITE statement must be executed to accomplish
this.

The NO REWIND option does not apply to unit record or disc files.
For tape files, the following rules apply:

1. When the NO REWIND option is specified, execution of the OPEN
statement does not cause the file to be repositioned. The file must
have been previously positioned at its beginning.

2. Without the NO REWIND option specified, execution of the OPEN
statement causes the file to be positioned at its beginning.

The 1-O option permits the opening of a mass storage file for both input and output
operations. Since this option implies the existence of the file, it cannot be used if the mass
storage file is being initially created.

A file may be opened as INPUT, OUTPUT or 1-O in any order (with intervening CLOSE
statements without the UNIT or REEL option).

8-35

SEEK STATEMENT

The SEEK statement initiates the accessing of a mass storage data record for subsequent
reading or writing. The format is as follows: ‘

SEEK file-name RECORD

A SEEK statement pertains only to reiative files in the random access mode and may be
executed prior to the execution of a READ or WRITE statement.

The file-name must be defined by a file description entry in the Data Division.

The SEEK statement uses the contents of the data-name in the ACTUAL KEY clause for
the location of the record to be accessed. At the time of execution the contents of the
ACTUAL KEY data item for the particular mass storage file is checked for validity. If the
key is invalid, the next READ or WRITE statement on the associated file will give control to
the imperative-statement in the INVALID KEY option.

Two SEEK statements for the same relative file may logically follow each other. Any
validity check associated with the first SEEK statement is negated by the execution of the
second SEEK statement.

If the contents of the ACTUAL KEY are altered between the SEEK statement and the
subsequent READ or WRITE statement, any validity check associated with the SEEK
statement is negated, and the READ or WRITE statement is processed as if no SEEK
statement preceded it.

READ STATEMENT

For sequential file processing, the READ statement makes available the next logical record
from an input file and allows performance of a specified imperative statement when end of
file is detected.

For random file processing, the READ statement makes available a specific record from a
mass storage file and allows performance of a specified imperative statement if the contents
of the associated ACTUAL KEY data item are found to be invalid.

The format of the READ statement is as follows:

. . - AT END
READ file-name RECORD [INTO identifier] INVALID KEY’

imperative-statement

An OPEN statement must be executed for the file prior to the execution of the first READ
for that file.

When a READ statement is executed, the next logical record in the named file becomes
accessible in the input area defined by the associated record description entry.

The record remains in the input area until the next input/output statement for that file is
executed. No reference can be made by any statement in the Procedure Division to
information that is not actually present in the current record. Thus, it is not permissible to
refer to the nth occurrence of data that appears fewer than n times. If such a reference is
made, no assumption should be made about the results in the object program.

8-37

Bulletin: 2202.002-0001
Date: 3/19/73

When a file consists of more than one type of logical record, these records automatically
share the same storage area; this is equivalent to an implicit redefinition of the area. Only
the information that is present in the current record is accessible.

FILE-NAME must be defined by a file description entry in the Data Division.

INTO IDENTIFIER OPTION makes the READ statement equivalent to a READ statement
plus a MOVE statement. ldentifier must be the name of a Working Storage Section or
ntry, or an output record of a previously opened file. When this option is
used, the current record becomes available in the input area, as well as in the area specified
by the identifier. Data will be moved into identifier in accordance with the COBOL rules for
moving group items.

AT END OPTION must be specified for all files in the sequential access mode. If, during the
execution of a READ statement, the logical end of the file is reached, control is passed to
the imperative-statement specified in the AT END phrase. After execution of the
imperative-statement associated with the AT END phrase, a READ statement for that file
must not be given without prior execution of a CLOSE statement, followed by an OPEN
statement for that file.

If, during the processing of a multivolume file in the sequential access mode, end-of-volume
is recognized on a READ, the following operations are carried out:

° The standard ending volume label procedure.

° A volume switch.

° The standard beginning volume label procedure.

° The first data record of the new volume is made available.

INVALID KEY OPTION: If ACCESS IS RANDOM is specified for the file, the contents of
the ACTUAL KEY for the file must be set to the desired value before the execution of the
READ statement.

For a randomly accessed file, the READ statement implicitly performs the functions of the
SEEK statement, unless a SEEK statement for the file has been executed prior to the READ
statement.

The INVALID KEY option must be specified for files in the random access mode. The
imperative-statement following INVALID KEY is executed when the contents of the
ACTUAL KEY field are invalid.
The key is considered invalid under the following conditions:

1. For a relative file that is accessed randomly, when the value specified

by ACTUAL KEY is outside the limits specified in the FILE-LIMITS
clause.

8-38

Bulletin: 2202.002-0001
Date: 3/19/73

WRITE STATEMENT

The WRITE statement releases a logical record for an output file. It can also be used for
vertical positioning of a print file. For mass storage files, the WRITE statement also allows
the performance of a specified imperative statement if the file-limit is exceeded. For
randomly accessed files the WRITE statement also allows the performance of a specified
imperative statement if the contents of the associated ACTUAL KEY data item are found to
be invalid.

The WRITE statement has two formats which are:

Format 1: WRITE record-name [FROM identifier-1]

[l BEFORE identifier-1 LINES!

AFTER }]ADVANCING Iinteger LINES

Format 2: WRITE record-name [FROM identifier-1]
INVALID KEY imperative-statement

An OPEN statement for a file must be executed prior to executing the first WRITE
statement for that file.

For files in both the sequential and random access modes, the logical record released is no
longer available after the WRITE statement is executed.

RECORD NAME is the name of a logical record in the File Section of the Data Division.

When the FROM option is written, the WRITE statement is equivalent to the statement
MOVE identifier-1 to record-name followed by the statement WRITE record-name. Moving
takes place according to the COBOL rules for the MOVE statement. Identifier-1 should be
defined in the Working Storage Section, the ~or in another FD.

Format 1 is used only with standard sequential files.

If the sequential file is a printer or card punch the user must reserve the first character in
each logical record for the control character. It is the user’s responsibility, unless the
ADVANCING option is specified, to insure the correct control character is set in the first
character before the WRITE is issued. Refer to Appendix D for a list of ANS control
characters.

The ANS control character will be converted by the system into the correct device
dependent control function.

It is the user’s responsibility to see that the appropriate channels are punched on the
carriage control tape.

When the ADVANCING option is specified, the compiler will generate the appropriate
control character in the first character position of the record. This control character will be
one of the ANS Standard Control Characters. :

When identifier-2 is used in the ADVANCING option, it must be the name of an unsigned
numeric elementary item described as an integer. The maximum size of the item is two
digits thus allowing a value range from O to 99.

When identifier-2 is specified, the printer page is advanced the number of lines equal to the
value in the identifier.

When integer is used in the ADVANCING option, it must be an unsigned integer from O to
99. When integer is specified, the printer page is advanced the number of lines equal to the
value of the integer.

If the BEFORE ADVANCING option is used, the record is written before the printer page is
advanced according to the preceding rules.

If the AFTER ADVANCING option is used, the record is written after the printer page is
advanced according to the preceding rules.

NOTE

DISPLAY and WRITE AFTER ADVANCING statements cause the printer
to space before printing. However, a WRITE BEFORE ADVANCING
statement causes the printer to space after printing. Therefore, it is possible
that mixed DISPLAY, WRITE AFTER ADVANCING and WRITE BEFORE
ADVANCING within the same program may cause overprinting.

Format 2 is used for randomly or sequentially accessed mass storage files.

I1f ACCESS IS RANDOM is specified for the file, the contents of the ACTUAL KEY field
for the file must be set to the desired value before the execution of a WRITE statement.

The INVALID KEY phrase must be specified for a file that resides on a mass storage device.
Control is passed to the imperative-statement following INVALID KEY when the following
conditions exist:

1. For a mass storage file in the sequential access mode opened as
OUTPUT, when an attempt is made to write beyond the limit of the
file.

2. For a relative file opened as 1-O or QUTPUT, if access is random and

a record is being added to the file, when the record address specified
in the ACTUAL KEY field is outside the limits of the file, as
specified by the FILE-LIMITS clause.

8-40

For randomly accessed files, the WRITE statement performs the function of a SEEK
statement, unless a SEEK statement for this record is executed prior to the WRITE

statement.

After the recognition of an end-of-volume on a multivolume OUTPUT or 1-O file in the
sequential access mode, the WRITE statement performs the following operations:

1. The standard ending volume label procedure.
2. A volume switch.
3. The standard beginning volume label procedure.

8-41

8-42

ACCEPT STATEMENT

The ACCEPT statement causes low volume data to be transferred from an appropriate
hardware device. The format. is as follows:

ACCEPT identifier [FROM mnemonic-name]

Identifier may be either a fixed-length group item or an elementary alphabetic,
alphanumeric, or external decimal item. The data is read and the appropriate number of
characters is moved into the area reserved for identifier. No editing or error checking of the
incoming data is done.

Mnemonic-name may assume either the meaning SYSIN or CONSOLE. Mnemonic-name
must be specified in the SPECIAL NAMES paragraph of the Environment Division. If the
FROM option is not specified, CONSOLE is assumed.

For an ACCEPT with the FROM mnemonic-name for CONSOLE or if the FROM option is
not specified, the following actions are taken:

® A system generated message code is automatically displayed followed
by the literal “AWAITING REPLY".

@ Program execution is suspended. When a console input message,
preceded by the same message code as in point 1 above, is identified
by the control program, execution of the ACCEPT statement is
resumed and the message is moved to the specified identifier and left
justified, regardless of the PICTURE. If the field is not filled, the low
order positions may contain invalid data. Depressing RETURN from
the console will terminate the ACCEPT statement.

identifier must not exceed 100 character positions when accepting from the CONSOLE.

If mnemonic-name is associated with SYSIN, an input record size is the size of the //PAR
Control Language statement minus 14 bytes. The maximum //PAR statement is assumed
128 bytes. The following three examples of the //PAR statement reflect an 80-column card,
96-column card and 128 byte terminal entry. (The //PAR statement is defined in the
MRX/OS Control Language Reference manual.)

8-43

1—6 7———8 ——72 73 80
//PARA data - up to 66 bytes sequence no.

1 6 7 88 89 96
//PARA data - up to 82 bytes sequence no.

1—6 7——m8M8 ———120 121—128
//PARA data - up to 114 bytes sequence no.

The size of the input record is the data only. The first 6 bytes (//PARA) and last 8 bytes,
sequence number are dropped.

If the size of the accepting data item is less than the input data record, the input data record
will be truncated on the right. If the size of the accepting data item is greater than the input
data record size, as many input records as necessary are read until the storage area allocated
to the data item is filled. If the accepting data item is greater than one input data record,
but is not an exact multiple of the input data record size, the remainder of the last input
record is not accessible.

DISPLAY STATEMENT

The DISPLAY statement causes low volume data to be transferred to an appropriate
hardware device. The format is as follows:

DISPLAY !ntera!-? } !ltera!-?]
— \identifier-1 identifier-2

(UPON mnemonic-name]

Mnemonic-name must be specified in the SPECIAL NAMES paragraph of the Environment
Division. Menmonic-name may be associated only with the reserved words CONSOLE: and
SYSOUT. When the UPON option is omitted, CONSOLE is assumed.

Identifiers described as USAGE COMPUTATIONAL, and |
converted automatically to external format, as follows:

are

® and binary items are converted to external decim

° No other data items require conversion.

If a figurative constant is specified as one of the operands, only a single occurrence of the
figurative constant is displayed.

8-44

Bulletin: 2202.002-0001
Date: 3/19/73

When a DISPLAY statement contains more than one operand, the data contained in the first
~ operand is stored as the first set of characters, and so on, until the output record is filled.

This operation continues until all mformatlon is displayed. Data contalned m an operand
may extend into subsequent records. :

The DISPLAY and WRITE AFTER ADVANCING statements all cause the printer to space
before printing. However, a WRITE BEFORE ADVANCING statement causes the printer to
space after printing. Therefore, it is possible that mixed DISPLAY statements, WRITE
AFTER ADVANCING statements within the same program may cause overprinting.

A maximum logical record size is assumed for each device. For CONSOLE (the system

logical console device), the maximum is 100 characters. For SYSOUT (the system logical
output device), the maximum is 120 characters.

If the total character count of all operands is less than the maximum, the remaining
character positions are padded with blanks. If the count exceeds the maximum size,
operands are continued in the next record. As many records as necessary are written to

display all the operands specified. Those operands pending at the time of the break are split
between lines if necessary.

CLOSE STATEMENT

The CLOSE statement terminates the processing of reels, units, and files, with optional
rewind and/or lock where applicable.

. REELT [\i7y [NOREWIND |
CLOSE file-name [UNI'!I’] [W'TH{LOCK }]

The file must have been previously opened before a CLOSE statement can be executed.
The statement applies to the following categories of input and output files:

o Unit record volume. A file allocated on a medium for which
rewinding, units, and reels have no meaning.

o Sequential single-volumé tape. A sequential file that is contained
entirely on one reel.

) Sequential multivolume tape. A sequentlal file that may be contained
on more than one reel.

@ Sequential single-volume disc. A sequential file that is contamed
entirely on one unit.

. Sequential multivolume disc. A sequential file that may be contained
on more than one unit.

° Random. A random access file that is contamed on one or more mass
storage units.

8-45

The results of executing each close option for each type of file are summarized in Figure
" 8-11. Definitions of the symbols used in the figure are given below. Where the definition
depends on whether the file is an input or output file, alternative definitions are given.
Otherwise, a definition applies to input, output, and input-output files.
Following are the definitions of the symbols used in Figure 8-11:
° S — Standard close non-tape file
System closing procedures are performed.
° T — Standard close tape file
Files Opened as INPUT: If the file is positioned at its end and there
is an ending label record, the standard ending label record procedures

are performed. System closing procedures are then performed.

If the file is positioned at its end and there is no ending label record,
system clasing procedures are performed.

If the file is not positioned at its end, system closing procedures are
performed.

Files Opened at OUTPUT: If an ending label record has been
described for the file, it is constructed and written on the output
tape. System closing procedures are then performed.

o R — Rewind
The current volume is positioned at its beginning.

° A — Previous volumes unaffected
All volumes prior to the current volume have been processed
according to standard volume switch procedures except those
volumes controlled by a prior CLOSE REEL/UNIT statement.

° B — No rewind
The current volume is left in its current position.

° E — Standard file lock

The compiler ensures that this file cannot be opened again during
this execution of the object program.

° F — Stanclard close reel

Files Opened as INPUT: The following operations are performed:

8-46

a. A volume switch.
b. The standard beginning volume label procedure.

c. Makes the next data record on the new volume (reel)
available to be read.

Files Opened as OUTPUT: The following operations are performed:

a. The standard ending volume label procedure.

b. A volume switch.

c. The standard beginning volume label procedure.
® C — Standard close unit

Files Opened as INPUT or |-O: The volume is switched and the first
data record on the new volume is made available.

Files Opened as OUTPUT: A volume switch is performed.
° X — lllegal
This is an illegal combination of a close option and a file type.

(CLOSE REEL/UNIT WITH LOCK/NO REWIND has no meaning in this system and is
processed as a CLOSE REEL.)

File Sequential Sequential

Type Tape Sequential Disk Sequential
CLOSE Unit Single Tape, Single Disk,
Option Record Reel Multi-Reel Unit Multi-Unit Random
CLOSE S T.R T.R,A S . S,A S
CLOSE WITH X 7.8 T.B X X X
NO REWIND ‘
CLOSE WITH S,E T.R,E T.R,AE S,E S,AE S, E
LOCK :
CLOSE REEL X X F.R X X X
CLOSE UNIT X X X X [+ X
CLOSE UNIT X X X X C ’ X
WITH LOCK
CLOSE REEL X X F.R X X X
WITH NO
REWIND
CLOSE REEL X X F,R X X X
WITH LOCK

Figure 8-11. CLOSE Option and File Type Comparison

8-47

Subprogram linkage statements are special statements that permit communication between
object programs. These statements are CALL and EXIT PROGRAM.

CALL STATEMENT

The CALL statement permits communication between a COBOL object program and one or
more COBOL subprograms or other language subprograms. its format is:

CALL literal [USING identifier-1 [identifier-2]. . .]

Literal is a nonnumeric literal which names the program being called. The program in which
the CALL statement appears is the calling program. Literal must conform to the rules for
formation of a program-name. The first eight characters of literal are used to make the
correspondence between the called and calling program.

When the called program is to be entered at the beginning of the Procedure Division, literal
must specify the program-name in the PROGRAM:-ID paragraph of the called program. The
called program must have a USING clause as part of its Procedure Division header if there is
a USING clause in the CALL statement that invoked it.

The identifiers specified in the USING option of the CALL statement indicate those data
items available to a calling program that may be referred to in the called program.

When the called subprogram is a COBOL program, each of the operands in the USING
option of the calling program must be defined as a data item in the File Section,
Working-Storage Section, or Linkage Section.

Names in the two USING lists (that of the CALL in the main program and that of the
Procedure Division header in the subprogram) are paired in a one-for-one correspondence.

There is no necessary relationship between the actual names used for such paired names, but
the data descriptions must be equivalent. When a group data item is named in the USING
list of a Procedure Division header, names subordinate to it in the subprogram’s Linkage
Section may be employed in subsequent subprogram procedural statements.

The USING option should be included in the CALL statement only if there is a USING
option in the Procedure Division header of the called program. The number of operands in
the USING option of the CALL statement should be the same as the number of operands in
the USING option of the Procedure Division header. If the number of operands in the
USING option of the CALL statement is greater than the number in the USING option in
the called program, only those specified in the USING option of the called program may be
referred to by the called program.

The execution of a CALL statement causes control to pass to the called program. The first
time a called program is entered, its state is that of a fresh copy of the program. Each
subsequent time a called program is entered, the state is as it was upon the last exit from
that program. Thus, the reinitialization of the following items is the responsibility of the
programmer:

8-48

° GO TO statements which have been altered

® TALLY
® Data items
® PERFORM statements

If a branch is made out of the range of a PERFORM, after which an exit is made from the
program, the range of the PERFORM is still in effect upon a subsequent entry.

Called programs may contain CALL statements. However, a called program must not
contain a CALL statement that directly or indirectly calls the calling program. A called
program may be segmented.
The USING option makes the data items defined in a calling program available to a called
program. The number of operands in the USING option of a called program must be less
than or equal to the number of operands in the correspondlng CALL statement of the
invoking program or the results are unspecified.
The USING option appears in two formats which are:
Format 1 (Within a Calling Program):

CALL literal [USING identifier-1 [identifier-2] ... 1]
Format 2 (Within a Called Program):

PROCEDURE DIVISION [USING identifier-1 [identifier-2]...].

The USING option must be present in the Procedure Division header if the object program
is to function under the control of a CALL statement, and the CALL statement contains a
USING option.

Each of the operands in the USING option of the CALL statement must have been defined
as a data item in the File, Working-Storage or Linkage Section and must have a level-number
of 01 or 77.

Each of the operands in the USING option of the Procedure Division header must have been
defined as a data item in the Linkage Section of the program in which this header occurs,
and must have a level number of 01 or 77. The compiler aligns each level-01 item on a word
boundary; however, it is the programmer’s responsibility to ensure proper alignment of 77
levels.

When the USING option is present, the object program operates as though each identifier in
the Procedure Division had been replaced by the corresponding identifier from the USING
option in the CALL statement of the calling program. That is, corresponding identifiers
refer to a single set of data which is available to the calling program. The correspondence is
positional and not by name.

8-49

The following is an example of a calling program with the USING option:

SEQUENCE |y
Zla B COBOL STATEMENT
(PAGE) |(SERIALIS
172 3|4 5 6|7]8 9 10 11]1213 14 15 16 17 18 19 20, 21 22 23 24 25 26 27,28 29 30 31 32 33 34 35 36 37 3839 4041 42 43 44 45 46 47 48 49 50,

IDENTIFICATION DIVISION. - .
PR M-1D. CALLPROG.. .. . e

ATA| DINISTON. T

AT T OO S S U S S S SR WU TN N SRR U WY S S S SN WY W RS S SN

ALIllllIllltlllllllAAAIIIIIAIILL

RKLNQASTQBA&E#JLQILQﬁ
. SALARJ T PICTURE. . S4.5)NI9.. .. o
 |#3 RATE. PICTURE . S9V99.. e :
| ALHLQQB..S .. PICTURE . S99V19.. s

. " Y T SO S S S SN S S W S S S Vo |

PROClE DURE. nu,l;sm

Y

CALL “SUBPROG" MMBLJJ o

The following is an example of a called subprogram associated with the preceding calling
program:

SEQUENCE
A B COBOL STATEMENT

.

F
(PAGE) |isERIALI|S
12 3|4 5 6]7]8, 9 1011]1213 14 15 16 17 18 19 20 21 22 23 24 25 76 2728 29,30 31 32 33 34 35 36,37, 3839 40,41 42,43 44 45 46 47 48 49 50,

IDENTIFICATION DIV.ISION.. . . . -
: PROGRAN-ID . SUBPROG.. . oo

........

.......

ATA| DINISION. oo

[
AT ST SO SN SN VA A VU VAT N ST ST AT SN NS SIDUU SR SIN S W SUISY TS S R R R

1 LINKAGE. 's’a‘c"rioh;ﬁ,,' '

g1 |PAYREC. ,

g2 "PAN .l PILCTURE . S4.(5)N49.

. ﬂoum-mrgw PICTURE . S9VIT.. . . .

g CHOURS. " PICTURE . STIVL.

mo;qmu&e,';nu;t,;m.n“u;_m&mmgg@# ;M;;j
[T|END-PROGRAM.. . . D

8-50

Processing begins in CALLPROG, which is the calling program. When the statement: CALL
“SUBPROG" USING RECORD-1. is executed, control is transferred to the first statement
of the Procedure Division in SUBPROG, which is the called program. In the calling program,
the operand of the USING option is identified as RECORD-1.

When SUBPROG receives control, the values within RECORD-1 are made available to
SUBPROG; in SUBPROG, however, they are referred to as PAYREC. Note that the
PICTURE clauses for the subfields of PAYREC (described in the Linkage Section of
SUBPROG), are the same as those for RECORD-1.

When processing within SUBPROG reaches the EXIT PROGRAM statement, control is
returned to CALLPROG at the statement immediately following the original CALL
statement. Processing then continues in CALLPROG.

In any given execution of these two programs, if the values within RECORD-1 are changed
between the time of the first CALL and the second, the values passed at the time of the

second CALL statement will be the changed, not the original, values. If the programmer
wishes to use the original values, then he must ensure that they have been saved.

PROGRAM TERMINATION CONSIDERATIONS
The two ways to terminate a program in COBOL. source language are:
® EXIT PROGRAM

° STOP RUN

Figure 8-12 shows the effects of each program termination statement based on whether it is
issued within a main program or a subprogram.

Termination .

Statement Main Program Subprogram

EXIT Return to system and cause Return to invoking program

PROGRAM ond of job step.

STOP RUN Return to system and cause Return to system and cause
end of job step. end of job step.

Figure 8-12. Effect of Program Termination Statements Within
Main Programs and Subprograms

8-61

A main program is the highest level COBOL program invoked by another COBOL program.
(Programs written in the other languages that follow COBOL linkage conventions are
considered COBOL programs in this sense.)

If program segmentation is used, the programmer must divide the entire Procedure Division
into named sections. (See Segmentation in Section 9.)

Execution begins with the first statement of the Procedure Division. Statements are then
executed in the order in which they are presented for compilation, except where the rules in
this section indicate some other order.

EXIT PROGRAM STATEMENT

This form of the EXIT statement marks the logical end of a called program.

EXIT PROGRAM.

The EXIT statement must be preceded by a paragraph-name and be the only statement in
the paragraph.

If control reaches an EXIT PROGRAM statement while operating under the control of a
CALL statement, control returns to the pointin the calling program immediately following
the CALL statement.

If control reaches an EXIT PROGRAM statement and no CALL statement is active, control
returns to the system which initiates an end of job step (same as STOP RUN).

STOP RUN STATEMENT

The STOP RUN statement causes execution of the object program to be terminated and
control transferred to the system.

COMPILER-DIRECTING STATEMENTS

Compiler-directing statements are special statements that provide instructions for the
COBOL compiler. The compiler-directing statements are ENTER and NOTE.

ENTER STATEMENT

The ENTER statement provides a means of allowing the use of more than one language in
the same program. The format is as follows:

ENTER language-name {routine-name] .
The ENTER statement serves only as documentation, as this compiler does not allow

another source language in the program.

8-62

NOTE STATEMENT

The NOTE sentence allows the programmer to write commentary which is produced on the
listing but not compiled. The format is as follows:

NOTE character-string.

Any combination of the characters from the computer’s character set may be included in
the character-string.

If a NOTE sentence is the first sentence of a paragraph, the entire paragraph is considered to
be part of the character-string. Proper format rules for paragraph structure must be
observed.

If a NOTE sentence appears as other than the first sentence of a paragraph, the commentary
ends with the first instance of a period followed by a space.

8-563

9. SPECIAL FEATURES

MRX COBOL provides three special features which are table handling; segmentation and the
source program library facility. '

TABLE HANDLING

Tables of data are common components of business data processing problems. Although the
items that make up a table could be described as contiguous data items, there are two
reasons why this approach is not satisfactory. First, from a documentation standpoint, the
underlying homogeniety of the items would not be readily apparent; and second, the
problem of making available an individual element of such a table would be severe when
there is a decision as to which element is to be made available at object time.

Tables composed of contiguous data items are defined in COBOL by including the OCCURS
clause in their data description entries. This clause specifies that the tiem is to be repeated as
rmany times as stated. The item is considered to be a table-element and its name and
description apply to each repetition or occurrence. Since each occurrence of a table-element
does not have assigned to it a unique data-name, reference to a desired occurrence may be
made only by specifying the data-name of the table element together with the occurrence
number of the desired table element. The occurrence number is known as a subscript, and
this technique of specifying individual table elements is called subscripting.

In order to facilitate such operations as table searching and manipulating specific items, a
technique called Indexing is also available. Both subscripting and indexing are discussed
below.

The number of occurrences of a table-element may be specified to be fixed or variable. If
the occurrence number is given in the source program as fixed, the actual data that is
entered into the table at object time may still comprise a variable number of occurrences of
the table elements. Thus, not every table element need contain valid data.

TABLE DEFINITION

To define a one-dimensional table, the programmer uses an OCCURS clause as part of the
data description of the table-element, but the OCCURS clause must not appear in the
description of group items which contain the table-element. Example 1 shows a
one-dimensional table defined by the item TABLE-ELEMENT.

Example 1:

SEQUENCE
A B COBOL STATEMENT

(PAGE) |(SERIA L)
+ 2 3}4. 56

~i| CONT.

8 8 1011]1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

TABLE-l.
3 TABLE-ELEMENT .OCCURS 28 TIMES.. . .

I _DOG OCCURS. 5 TLMES.
__-._M,,A__‘,&AASAYM.¢,,ALM °. ., L . " n . L
CB5 FOX e s e

[Ty . .

in Example 2, TABLE-ELEMENT defines a one-dimensional table, but DOG does not since
there is an OCCURS clause in the description of the group item (TABLE-ELEMENT) which

contains DOG.

Example 2:

SEQUENCE :
A B COBOL STATEMENT

2
(PAGE) |(SERIALM 8
7

g 9 10 11] 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 3839 40 41 42 43 44 45 46 47 48 49 50

TABRLE-ELEMENT .OCCURS. 2§ TIMES. . X
_ Aqmgmog.... . . . e
B @3 FOX eoeero.. o .

In both examples, the complete set of occurrences of TABLE-ELEMENT has been assigned
the name TABLE-1. However, it is not necessary to give a group name to the table, unless it
is desired to refer to the complete table as a group item.

None of the three one-dimensional tables which appear in the following two examples have
a group name.

Example 3:

SEQUENCE -
g A B COBOL STATEMENT
{PAGE! [(SERIALNO
12 314 5 6]7]8 9 1011|1213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 4344 45 46 47 48 49 50

%

ABLE... , . , S
Z . BAKER e .
___CHARLIE OCCURS 2& TIMES ..o
._A_LO‘&WLQ.J [] 2 P PR

L SSRSSDURN SRR S SER S SR REpD—— PO

Ny

PRI DR UP R NSNS S R 4

9-2

Example 4:

SEQUENCE [
Zla B COBOL STATEMENT
(PAGE) |(SERIALI} S

12 34 5 6]7

8,9,101111213 14 15 16 17 18 19 20 21,2223 24 25 26 27 28 29 30 3) 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

@y |ABLE. . B

I MKELQQQ!AM TIMES
CHARLIE oeoiror o o o o oo

.'L.Jm& Qgcuks Iy TIMES eieimian e

L I U T S SV S N NN W SR W

Defining a one-dimensional table within each occurrence of an element of another
one-dimensional table gives rise to a two-dimensional table. To define a two-dimensional
table, then, an OCCURS clause must appear in the data description of the element of the
table, and in the description of only one group item which contains that element. Thus, in
Example 5, DOG is an element of a two-dimensional table; it occurs 5 times within each
element of the item BAKER which itself occurs 20 times. BAKER is an element of a
one-dimensional table.

Exarnple 5:

A B COBOL STATEMENT

SEQUENCE],.'
(PAGE) [{SERIAL)
1,2 314 5 6]718 9 1011)12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

@2 |BAKER OCCURS 2§ TIMES
3 CHARLIE

REFERENCES TO TABLE-ITEMS

Whenever the user refers to a table-element, or to an item within a table-element, the
reference must indicate which occurrence of the element is intended. For access to a
one-dimensional table the occurrence number of the desired element provides complete
information. For tables of more than one dimension, an occurrence number must be
supplied for each dimension of the table. In Example 5 then, a reference to the 4th BAKER
or the 4th CHARLIE would be complete, whereas a reference to the 4th DOG would not.
To refer to DOG, which is an element of a two-dimensional table, the user must refer to, for
example, the 4th DOG in the 6th BAKER.

SUBSCRIPTING

One method by which occurrence numbers may be specified is to append one or more
subscripts to the data-name. A subscript is an integer whose value specifies the occurrence
number of an element within the group item that has the next lower level-number. The
subscript can be represented either by a positive integer numeric literal, by a data-name
which is defined as a numeric elementary integer, or by the special register TALLY. In any

9-3

case, the subscript, enclosed in parentheses, is written immediately following the name of
the table element. A table element must include as many subscripts as there are dimensions
in the table whose element is being referred to. That is, there must be a subscript for each
OCCURS clause in the hierarchy containing the data-name, including the data-name itself.

Example 6:

SEQUENCE

; A B COBOL STATEMENRT
{PAGE} (SERIAL)S
12 314 5.8 718 9‘ 10 1) 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3233 34 35 36 37 3839 40‘41 42 434445.4647 48 49 50_
¥ B ER occuhsd 9.¢ TIMES. e
. 183 D06 occ.uas T T'Lﬂﬁ&,* e
EL EASY. e e .

T S 1 e fLox 'R N IS L TR R L 1
B85 ﬁgo%&% agcmxs. lﬁ TIMES oo .

PR S B IR WY WU W IR R T SRS WOUHF WA D WUy SO NUOT G SO S v |

A ﬂé; e AJIM P I W W W B P S S SO ST SR S |
N Coa P Y S SR S SU A

In example 6, references to BAKER and CHARLIE require only one subscript, references to
DOG, EASY, and FOX require two, and references to GEORGE, HARRY, and JIM require

three.

data-name (subscript[,Asubscript] [,Asubscript])

The subscript, or set of subscripts, that identifies the table element is enclosed in
parentheses immediately following the space that terminates data-name, which is the name
of the table element. When more than one subscript appears within a pair of parentheses,
the subscripts must be separated by commas. A space must follow each comma, but no
space may appear between the left parenthesis and the left-most subscript or between the
right-most subscript and the right parenthesis.

Restrictions on the use of a data-name as a subscript are:

1. Data-name must be a numeric elementary item that represents a
positive integer.

2. The name itself may not be subscripted.
3. Data-name cannot be an index data item (item with USAGE IS
INDEX).

9-4

When more than one subscript is required, they are written (separated by a comma and a
space) in order corresponding to the occurrence numbers in successively less inclusive
dimensions of the data organization. If a multi-dimensional table is thought of as a series of
nested tables and the most inclusive or outermost table in the nest is considered to be the
major table with the innermost or least inclusive table being the minor table, then the
subscripts are written from left to right in the order major, intermediate, and minor. Thus,
in Example 6, a reference to HARRY (18, 2, 7) means the HARRY in the 7th GEORGE, in
the 2nd DOG, in the 18th BAKER.

A reference to an item must not be subscripted if the item is not a table-element or an item
or condition-name within a table-element.

The lowest permissible subscript value is 1. The highest permissible subscript value in any
particular case is the maximum number of occurrences of the item as specified in the
OCCURS clause.

When a data-name is used as a subscript, it may be used to refer to items within many
different tables. These tables need not have elements of the same size. The data-name may
also appear as the only subscript with one item and as one of two or three subscripts with
another item. Also, it is permissible to mix literal and data-name subscripts, for example,
HARRY (12, NEWKEY, 2).

INDEXING

References can be made to individual elements within a table of elements by specifying
indexing for that reference.

An index is assigned to a given level of a table by using an INDEXED BY clause in the
definition of the table. A name given in the INDEXED BY clause is known as an index-name
and is used to refer to the assigned index. An index-name must be initialized by a SET
statement before it is used in a table reference. An index may be modified only by a SET
statement. Data items described by the USAGE IS INDEX clause permit storage of the
values of index-names as data without conversion. Such data items are called index data
items.

Direct indexing is specified by using an index-name in the form of a subscript. The format is
as follows:

data-name (index-name-1[,Aindex-name-2] [,Aindex-name-3])
Relative indexing is specified when the terminal space of the data-name is followed by a

parenthesized group of items: the index-name, followed by a space, one of the operators +
or -, another space, and an unsigned integral numeric literal. The format is as follows:

data-name (index-name-1[{ +} integer] [,Aindex-namel[‘i} integer]]

{.Aindex-name-3[{i } integer]])

RESTRICTIONS ON INDEXING AND SUBSCRIPTING

Tables may have one, two, or three dimensions. Therefore, references to an element in a
table may require up to three subscripts or indexes.

1. A data-name must not be subscripted or indexed when the data name
is itself being used as an index or subscript.

2. Subscripting and indexing must not be used together in a single
reference.

3. Wherever subscripting is not permitted, indexing is not permitted.

4, The commas shown in the formats for indexes and subscripts are
required.

5. The syntax rules for indexing are the same as those for subscripting.

EXAMPLES OF SUBSCRIPTING AND INDEXING

For a table with three levels of indexing, the following Data Division entries would result in
a storage layout as shown in Figure 9-1.

SEQUENCE
A B COBOL STATEMENT

=

z
(PAGE} |(SERIAL) 8
1.2 314 5 8]7]8 9 1011)1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50,

[IY-TABLE.
42 ﬁ&%i ~CODE. OCCURS. 3 TIMES INDEXED. .

BY¢%6EAE£4dqmggoggu&AJa;LLneaalnngxan_

e . ﬂaijﬁef IMEQAQQQMR§4&NILME§_LHLEK&L

n‘c TURE _9.C7) V9. _USAGE _DISPLAY. .. .

.......................................

.......

PARTY-TABLE contains three levels of indexing. Reference to elementary items within
PARTY-TABLE is made by use of a name that is subscripted or indexed. A typical
Procedure Division staternent might be:

MOVE M-F-INFO (PARTY, AGE, M-F) to M-F-RECORD.

9-6

8 bytes. ‘ No.
A

”~ .

M-F-INFO (1,1,1) 0

(AGE-CODE (1,1)
M-FAINFO (1,1,2) 8

M-FINFO (1,2,1) 16

PARTY-CODE (1) J AGE-CODE (1,2)
M-F-INFO (1,2,2) 24

M-F-INFO (1,3,1) 32

\ AGE-CODE (1, 3)
M-E-INFO (1,3,2) 40

M-F-INFO (2,1,1) a8
'{ AGECODE (2,1)

M-F-INFO (2,1,2) 56

PARTY-TABLE 4 PARTY-CODE (2) < AGE-CODE (2,2)
: ' M-F-INFO (2,2,2) 72

M-F-INFO (2,3,1) 80

\ AGE-CODE (2, 3)

M-F-INFO (2,3,2) 88

M-F-INFO (3,1,1) 26

(AGE-CODE (3,1)
: M-F-INFO(3,1,2) 104

M-F-INFO (3,2,1) | 112

PARTY-CODE (3) { AGE-CODE (3,2)
, M-F-INFO (3,2,2) 120

M-F-INFO (3,3,1) 128

\ AGE-CODE (3, 3)
M-FINFO (3,3,2) | 136

|

|
.

{ F 2, 64
|

|

|

|

ey ”
W ~w v

.Occurs 3 Times Occurs 3 Times Occurs 2 Times

Figure 9-1. Example of Table Indexing

DATA DIVISION CONSIDERATIONS FOR TABLE HANDLING

The OCCURS and USAGE clauses are included as part of the record description entries in a
program utilizing the table handling feature.

Bulletin: 2202.002-0001
Date: 3/19/73

OCCURS CLAUSE

The OCCURS clause eliminates the need for separate entries for repeated data and supplies
information required for the application of subscripts or indexes. The clause has two
formats which are:

Format 1: QOCCURS integer-2 TIMES
[INDEXED BY index-name-1 [index-name-2]...]

Format 2: QCCURS integer-1 TO integer-2 TIMES
[DEPENDING ON data-name-1]
[INDEXED BY index-name-1 [index-name-2]. . .]

The data description of data-name-1 must describe a positive integer.

In Format 1, integer-2 represents the exact number of occurrences. It must be greater than
zero.

In Format 2, the DEPENDING ON option is used. This indicates that the subject of this
entry has a variable number of occurrences. This does not mean that the length of the
subject is variable, but rather that the number of times the subject may be repeated is
variable, the number of times being controlled by the value of data-name-1 at object time.

In Format 2, integer-1 represents the minimum number of occurrences, and integer-2
represents the maximum number of occurrences. Integer-1 may be zero or any positive
integer. Integer-2 must be greater than zero, and also greater than integer-1. Integer-2 must
be less than 16,384. The value of data-name-1 must not exceed integer-2.

Data-name-1, the object of the DEPENDING ON option:

° Must be described as a positive integer
) Must not exceed integer-2 in value
° Must not be subscripted (that is, must not itself be the subject of, or

an entry within, a table)

° Must, if it appears in the same record as the table it controls, appear
before the variable portion of the record

The subject of an OCCURS clause is the data-name of the entry that contains this OCCURS
clause. The subject of an OCCURS clause must be subscripted or indexed whenever
refe_renced. When subscripted, the subject refers to one occurrence within the table.

The OCCURS clause may not be specified in a data description entry that has a level-01 or
level-77 number, or an entry that describes an item whose size is variable.

The DEPENDING option is only required when the end of the occurrences cannot
otherwise be determined. Unused character positions resulting from the DEPENDING ON

option will appear on the external media.

The total number of index-names for a program must not exceed 255.

An INDEXED BY phrase is required if the subject of this entry (or an item within it) is to
be referred to by indexing. The index-name identified in this clause is not defined elsewhere
since its allocation and format are dependent on the system. Not being data, it cannot be
associated with any data hierarchy.

There are two types of indexing: direct indexing and relative indexing.

Direct indexing: If a data-name is used in the procedure text with index-names, the
data-name itself must be the subject of an INDEXED BY option, or be subordinate to a
group(s) that is the subject of the INDEXED BY option.

The following example:

A (INDEX-1, INDEX-2, INDEX-3)

implies that A belongs to a structure with three levels of OCCURS options, each with an
INDEXED BY option.

Relative Indexing: The index-name is followed by a space, followed by one of the operators
+ or -, followed by another space, followed by an unsigned numeric literal. The numeric
literal is considered to be an occurrence number, and is converted to an index value before
being added to, or subtracted from, the corresponding index-name.
Given the following example:

A(Z+1,J+3,K+4)
where:

table element indexed by Z has an entry length of 100

table element indexed by J has an entry length of 10

table element indexed by K has an entry length of 2

the resulting address will be computed as follows:

(ADDRESSof A)+Z+100* 1+J+10*3+K+4* 2
I I il

Conversion of integers to
index values

99

An index-name must be initialized through a SET statement before it is used. Each
index-name is a word in length and contains a binary value that represents an actual
displacement from the beginning of the table that corresponds to an occurrence number in
the table. The value is calculated as the occurrence number minus one, multiplied by the
length of the entry that is indexed by this index-name.

For example, if the programmer writes:
A OCCURS 15 TIMES INDEXED BY Z PICTURE IS X(10)
on the fifth occurrence of A, the binary value contained in Z will be:
Z=(5-1)*10=40

Any entry which contains or has a subordinate entry which contains Format 2 cannot be
the object of the REDEFINES clause.

The VALUE clause must not be stated in a data description entry which contains an
OCCURS clause or in an entry which is subordinate to an entry containing an OCCURS
clause.

USAGE CLAUSE

The USAGE clause specifies the format of a data item in the computer storage. The format
is as follows:

[USAGE IS] INDEX

The USAGE clause can be written at any level. If the USAGE clause is written at a group
level, it applies to each elementary item in the group. The USAGE clause of an elementary
item cannot contradict the USAGE clause of a group to which the item belongs.

An elementary item described with the USAGE IS INDEX clause is called an index data
item and can be used to save index-name values for future reference. An index data item
must be assigned an index-name value (that is (occurrence number - 1) * entry length)
through the SET statement. Such a value corresponds to an occurrence number in a table.

If a group is described with the USAGE IS INDEX clause, the elementary items in the group
are all index data items. The group itself is not an index data item and cannot be used in
SET statements or in a relation condition.

An index data item can be referred to directly only in a SET statement or in a relation
condition. An index data item can be part of a group which is referred to in a MOVE or
input-output statement, in which case no conversion will take place.

The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE and BLANK WHEN ZERO clauses
cannot be used to describe group or elementary items described with the USAGE IS INDEX
clause.

PROCEDURE DIVIS!ION CONSIDERATIONS FOR TABLE HANDLING

The SET statement may be used to facilitate table handling. In addition, there are special
rules involving table handling elements when they are used in relation conditions. _

REL ATION CONDITION

The result of the comparison of two index-names and/or index data items is the same as if
the corresponding occurrence numbers are compared.

In the comparison of an index-name and a data item (other than an index data item) or
literal, the occurrence number that corresponds to the value of the index-name is compared
to the data item or literal.

In the comparison of an index data item and an index-name or another index data item, the
actual values are compared without conversion.

The result of the comparison of an index data item with any data item not specified above is
illegal and the result is unpredictable.

Figure 9-2 shows permissible comparisons for index-names and index data items.

Second
Operand
Data-Name Numeric
First Index (numeric Literal
Operand index-Name Data Item integer only) (integer onliy)
Index-Name Compare Compare Compare) Compare
: onccurrence without occurrence occurrence
number conversion number with number with
data-name literal
Index-Data ltem Compare Compare lllegal Illegal
without without
conversion conversion
Data-Name Compare Hiegal
(numeric occurrence
integer only) number with
data-name See Table 8-1 for
permissible comparisons
Numeric Compare Hlegal
Literal occurrence
(integer only) number with
literal

Figure 9-2. Index-Names and Index Data Items — Permissible Comparisons

9-11

SET STATEMENT

The SET statement establishes reference points for table-handling operations by setting
index-names associated with table elements. It has two formats which are: :

Eormat 1: E 'fndex.-r.xame-1 [!ndex.-r:name-Z] . }TO
— |identifier-1 [identifier-2] ...
index-name-3
identifier-3
literal-1
Format 2: SET index-name-4 [index-name-5]. ..

UP BY identifier-4
DOWN BY | |[literal-2

All references to index-name-1, identifier-1, and index-name-4 apply equally to
index-name-2, identifier-2, and index-name-5, respectively.

All identifiers must name either index data items, or elementary items described as an
integer, except that identifier-4 must not name an index data item. When a literal is used, it
must be a positive integer. Index-names are considered related to a given table and are
defined by being specified in the INDEXED BY clause.

There may not be more than 20 operands in a SET statement.

The maximum value of literal-1 or literal-2 is 216.1, Thus a literal with more than 4 digits
may lose significance. :

in Format 1, the following action occurs:

° Index-name-1 is set to a value that corresponds to the same
occurrence number to which either index-name-3, identifier-3, or
literal-1 corresponds. If identifier-3 is an index data item, or if
index-name-3 is related to the same table as index-name-1, no
conversicon takes place.

° If identifier-1 is an index data item, it may be set equal to either the
contents of index-name-3 or identifier-3 where identifier-3 is also an
index data item. Literal-1 cannot be used in this case.

° If identifier-1 is not an index data item, it may be set only to an
occurrence number that corresponds to the value of index-name-3.
Neither identifier-3 nor literal-1 can be used in this case.

] The process is repeated for subsequent index-names or identifiers, if
specified. Each time the value of index-name-3 or identifier-3 is used,
it is used as it was at the beginning of the execution of the statement.
Any subscripting or indexing associated with an identifier is
evaluated immediately before the value of the respective data item is
changed.

912

In Format 2, the contents of index-name-4 are incremented (UP BY) or decremented
(DOWN BY) by a value that corresponds to the number of occurrences represented by the
value of literal-2 or identifier-4. This process is repeated for subsequent index-names. Each
time the value of identifier-4 is used, it is used as it was at the beginning of the execution of
the statement. :

SEGMENTATION

COBOL segmentation is a facility that provides a means of specifying object program
overlay requirements to the compiler.

COBOL segmentation deals only with segmentation of procedures. As such, only the
Procedure Division and the Environment Division are considered in determining
segmentation requirements for an object program. ’

ORGANIZATION

Although it is not mandatory, the Procedure Division for a source program is usually written
as a consecutive group of sections, each of which is composed of a series of closely related
operations that are designed to collectively perform a particular function. However, when

segmentation is used, the entire Procedure Division must be in sections. In addition, each
section must be classified as belonging either to the fixed portion or to one of the
independent segments of the object program.

FIXED PORTION

The fixed portion is defined as that part of the object program which is logically treated as
if it were always in memory. This portion of the program is composed of two types of
segments: permanent segments and overlayable fixed segments.

A permanent segment is a segment in the fixed portion which cannot be overlayed by any
other part of the program. An overlayable fixed segment is a segment in the fixed portion
which, although logically treated as if it were always in memory, can be overlayed, if
necessary, by another segment to optimize memory utilization. However, such a segment, if
called for by the program, is always available in its last used state.

Also, depending on the availability of memory, the number of permanent segments in the
fixed portion can be varied using a special facility called SEGMENT-LIMIT.

INDEPENDENT SEGMENTS

An independent segment is defined as part of the object program which can overlay, and can
be overlayed by, either an overlayable fixed segment or another independent segment. An
independent segment is effectively in its initial state each time the segment is made available
to the program.

SEGMENT CLASSIFICATION

Sections which are to be segmented are classified, using a system of priority-numbers and
the following criteria:

° Logic Requirements — Sections which must be available for reference
at all times, or which are referred to very frequently, are normally
classified as belonging to one of the permanent segments; sections
which are used less frequently are normally classified as belonging
either to one of the overlayable fixed segments or to one of the
independent segments, depending on logic requirements.

° Frequency of Use — Generally, the more frequently a section is
referred to, the lower its priority-number; the less frequently it is
referred to, the higher its priority-number.

° Relationship to Other Sections — Sections which frequently

communicate with one another should be given the same
priority-numbers.

SEGMENTATION CONTROL

The logical sequence of the program is the same as the physical sequence except for specific
transfers of control. The compiler will provide transfers to maintain the logic flow of the
source program. The compiler will also insert instructions necessary to load and/or initialize
a segment when necessary. Control may be transferred within a source program to any
paragraph in a section; that is, it is not mandatory to transfer control to the beginning of a
section.

Sections of a given segment may be scattered throughout the source program.

STRUCTURE OF PROGRAM SEGMENTS

Program segments are made up of sections classified according to priority numbers.

PRIORITY NUMBERS

Section classification is accomplished by means of a system of priority-numbers. The
priority-number is included in the section header. The format is as follows:

section-name SECTION [priority-number] .

The priority-number must be an integer ranging in value from 0 through 99. If the
priority-number is omitted from the section header, the priority is assumed to be 0.

All sections which have the same priority-number constitute a program segment with that

priority. Segments with priority-number O through 49 belong to the fixed portion of the
object program. Segments with priority-number 50 through 99 are independent segments.

9-14

SEGMENT-LIMIT

Ideally, all program segments having priority-numbers ranging from O through 49 should be
specified as permanent segments. However, when insufficient memory is available to contain
all permanent segments plus the largest overlayable segment, it becomes necessary to
decrease the number of permanent segments. The SEGMENT-LIMIT feature provides the
user with a means by which he can reduce the number of permanent segments in his
program, while still retaining the logical properties of fixed portion segments
(priority-numbers O through 49).

The SEGMENT-LIMIT clause appears in the OBJECT-COMPUTER paragraph (Environment
Division) and has the following format:

[SEGMENT-LIMIT IS priority-number]

Priority-number must be an integer ranging in value from 1 through 49.

When the SEGMENT-LIMIT clause is specified, only those segments having
priority-numbers from O up to, but not including, the priority number designated as the
segment-limit, are considered as permanent segments of the object program. Those segments
having priority-numbers from the segment-limit through 49 are considered as overlayable
fixed segments.

When the SEGMENT-LIMIT clause is omitted, all segments having priority-numbers from 0O
through 49 are considered as permanent segments of the object program.

RESTRICTIONS ON PROGRAM FLOW

When segmentation is used, the following restrictions are placed on the ALTER and the
PERFORM statements.

ALTER STATEMENT

A GO TO statement in a section whose priority is equal to or higher than 50 must not be
referred to by an ALTER statement in a section with a different priority.

All other uses of the ALTER statement are valid and are performed even if the GO TO to
which the ALTER refers is in a segment of the program that has not yet been called for
execution.

PERFORM STATEMENT

A PERFORM statement that appears in a section whose priority-number is less than the
segment-limit, can have within its range only the following:

° Sections each of which has a priority-number less than 50.

9-15

e Sections wholly contained in a single segment whose priority-number
is greater than 49.

A PERFORM statement that appears in a section whose priority-number is equal to or
greater than the segment-limit, can have within its range only the following:

® Sections each of which has the same priority-number as that
containing the PERFORM statement.

® Sections with a priority-number that is less than the segment-limit.

When a procedure-name in a segment with a priority-number greater than 49 is referred to
by a PERFORM statement contained in a segment with a different priority-number, the
segment referred to is made available in its initial state for each execution of the PERFORM
statement.

SOURCE PROGRAM LIBRARY FACILITY

Prewritten source program entries can be included in a source program. Thus, an installation
can use standard file descriptions, record descriptions, or procedures, without recording
them. These entries and procedures are contained in user-created libraries; they are included
in a source program by means of a COPY statement.

The system UPDATE function must be used to perform the COPY functions. (Refer to

MRX/OS Program Library Services Reference manual for a description of the Librarian
UPDATE.)

9-16

A. GLOSSARY OF COBOL TERMS

The terms in this appendix are defined in accordance with their meaning as used in this
document describing COBOL. and may not have the same meaning for other languages.

Notes affixed to some of the definitions have the following meanings:

(1) The definition agrees with the IFIP-ICC Vocabulary of Information
Processing.*

(2) The definition is more restrictive than the corresponding definition
in the IFIP-ICC Vocabulary of Information Processing.

(3) The definition is more inclusive than the corresponding definition in
the IFIP-ICC Vocabulary of Information Processing.

(4) The definition disagrees with the IFIP-ICC Vocabulary of
Information Processing.

Access, Random — An access mode in which specific logical records are obtained from or
placed in a mass storage file in a non-sequential manner.
Access, Sequential — An access mode in which a logical record read from or written to a file
has an implicit logical predecessor and an implicit logical successor. The first access to a file
accesses a record that has no implicit logical predecessor; each successive access refers to the
implicit logical successor of the previously accessed logical record. The
predecessor/successor relationships of a record are established when the record is written to
afile.
Actual Decimal Point — (See Decimal Point, Actual)
Actual Key — (See Key, Actual)
Alphabetic Character — (See Character, Alphabetic)

Alphanumeric Character — (See Character, Alphanumeric)

Assumed Decimal Point — (See Decimal Point, Assumed)

*Intornational Federation for Information Processing — international Computation Center Vocabulary for information
Processing, 1st English Language Edition, 1966, North-Holland Publishing Company, Amsterdam.

A-1

Block (3) — A physical unit of data that is convenient to a particular computer for storage
on an input or output device. The term is synonymous with physical record. The block is
normally composed of one or more logical records. The size of a block has no direct
relationship to the size of the file within which the block is contained or to the size of the
logical record(s) that are contained within the block.

Character (1) — The basic indivisible unit of the language.
Character, Alphabetic (2) — A character that belongs to the following set of letters:

A,B,C,D,E FGHIJKLMNOPQRSTUVWXY,Z
and the space.

Character, Alphanumeric (1) — Any character in the computer’s character set.

Character, Editing — A single character or a fixed two-character combination belonging to
the following set:

Character Meaning
B Space
0 Zero
+ Plus
- Minus
CR Credit
DB Debit
z - Zero suppress
* Check protect
$ Currency sign
. Comma (decimal point)

Period (decimal point)
Character, Numeric (1) — A character that belongs to the following set of digits:
0,1,2,3,4,5,6,7,8,9

Character, Punctuation -— A character that belongs to the following set:

Character Meaning
, Comma
Period

Quotation mark
Left parenthesis
Right parenthesis
Space

Character, Special (1) — A character that belongs to the following set:

Character Meaning
+ Plus sign
- Minus sign
* Asterisk
/ Stroke (virgule, slash)
$ Currency sign

Comma (decimal point)
Period (decimal point)
Quotation mark
Left parenthesis
) Right parenthesis

-

Characters, Standard — A character-string that comprises a data item whose size is measured
in accordance with standard data format.

Character Set (1) — The complete COBOL character set consists of the characters listed
below:

Character Meaning
0.1,..9 Digit
AB,..Z Letter
Space (blank)
+ Plus sign
- Minus sign (hyphen)
* Asterisk
/ Stroke (virgule, slash)
$ Currency sign
, Comma (decimal point)

Period (decimal point)
Quotation mark
Left parenthesis
Right parenthesis

Character-String — Contiguous characters which form a literal, a word, a PICTURE in the
Data Division, or a NOTE in the Procedure Division. The rules governing the construction of
each of the above types of character-strings differ, and are explained in other chapters.

Class Condition — (See Condition, Class)

Clause — A clause is an ordered set of consecutive COBOL words whose purpose is to
specify an attribute of an entry. ‘

Clause, Data — A clause that appears in a data description entry in the Data Division and
provides information describing a particular attribute of a data item.

Clause, Environment — A clause that appears as part of an Environment Division entry.
Clause, File — A clause that appears as part of a file description (FD) in the Data Division.
COBOL Object Program — (See Object Program, COBOL) |

COBOL Source Program — (See Source Program, COBOL)

Collating Sequence — (See Sequence, Collating)

Comment — An annotation in the Identification Division or Procedure Division of a source
program.

Compile Time — (See Time, Compile)
Compiler Directing Statement — (See Statement, Compiler Directing)

Condition — A simple condition, or a syntactically correct combination of simple conditions
and logical operators, for which a truth value can be determined.

Condition, Class — The proposition, for which a truth value can be determined, that the
content of an item is wholly alphabetic or is wholly numeric.

Condition, Invalid Key — A condition in which, at object time, a specific value of the actual
key associated with a mass storage file is determined to lie outside the limits of the file being
accessed.

Condition, Relation — The proposition, for which a truth value can be determined, that the
value of a data item has a specific relationship to the value of another data item. (See
Operator Relational.)

Condition, Simple — Any single condition chosen from the set:

Relation condition
Class condition

Conditional Statement — (See Statement, Conditional)

Conditional Variable — (See Variable, Conditional)

CONFIGURATION SECTION — (See Section, Configuration)

Connective — A word or a punctuation character that is used to link two or more operands
written in a series. (The comma is the only connective allowed, and may only appear within

a subscript.) :

Constant, Figurative (1) — A reserved word that represents a numeric value, a character, or a
string of characters.

Constant, Literal — (See Literal)

A-4

Contiguous items — (See Items, Contiguous)

Counter (3) — A data item used for storing numbers or number representations in a manner
that permits these numbers to be increased or decreased by the value of another number, or
to be changed or reset to zero or to an arbitrary positive or negative value.

Data Clause — (See Clause, Data)
Data Description Entry — (See Entry, Data Description)

Data Item (1) — Any elementary item, a named group of elementary items within a record,
or a record.

Data Item, Index (4) — A data item in which the value associated with an index-name can be
stored as data without conversion.

Data-Name (1) — A word that contains at least one alphabetic character and that names an
entry in the Data Division. When used in the General Formats, ‘data-name’ represents a
word which can neither be subscripted nor indexed, unless specifically permitted by the
rules for that format.

Data-Name, indexed (1) — An identifier that is composed of a data-name, followed by one
or more index-names enclosed in parentheses.

Data-Name, Subscripted (1) — An identifier that is composed of a data-name followed by
one or more subscripts enclosed in parentheses.

Decimal Point, Actual (2) — The physical representation of the decimal point position in a
data item. Either of the decimal point characters, period (.) or comma (,) may be used for
this representation.

Decimal Point Assumed — A decimal point position which does not involve the existence of
an actual character in a data item. The assumed decimal point has logical meaning but no
physical representation.

Division — One or more sections or paragraphs that are formed and combined in accordance
with a specific set of rules. There are four (4) divisions in a COBOL program:

IDENT!IFICATION
ENVIRONMENT
DATA
PROCEDURE
Division Header — (See Header, Division)

Editing Character — (See Character, Editing) -

Element, Table — (See Item, Elementary)

A5

End of Procedure Division — The physical position in a COBOL source program after which
ro further procedures appear.

Entry (4) — Any descriptive set of consecutive clauses terminated by a period and written in
the Identification Division, Environment Division, or Data Division of a COBOL source
program.

Entry, Data Description — An entry in the Data Division that is composed of a level number
followed by a data-name (if required) and a set of data clauses (as required).

Entry, File Description — An entry in the File Section of the Data Division that is composed
of the level indicator FD, followed by a file-name, and then followed by a set of file clauses
as required.

Entry, Object of — A set of operands and reserved words, within a Data Division entry, that
immediately follows the subject of the entry.

Entry, Subject of — An operand or reserved word that appears immediately following the
level indicator or the level number in a Data Division entry.

Environment Clause — (See Clause, Environment)
Execution Time — (See Time, Object)

Figurative Constant — (See Constant, Figurative)

File — A collection of records.

File Clause — (See Clause, File)

File Description Entry — (See Entry, File Description)

File Limit — A set of logical boundary locations for a particular mass storage file that are
within the physical boundary locations of a mass storage medium.

File, Mass Storage (2) — A collection of records that is assigned to a mass storage medium.

File-Control — The name of an Environment Division paragraph in which the data files for a
given source program are declared.

File-Name — A word with at least one alphabetic character that names a file described in the
Data Division.

Format (1) — A specific arrangement of a set of data.

Format, Reference — A format provides a standard method for describing COBOL source
programs.

Format, Standard Data — The concept used in describing the characteristics of data in a
COBOL Data Division. The characteristics or properties of the data are expressed in a form
oriented to the appearance of the data on a printed page of infinite length and breadth,
rather than a form oriented to the manner in which the data is stored mternally in the
computer, or on a particular external medium.

Header, Division — COBOL words that indicate the beginning of a particular division. The
division headers are:

IDENTIFICATION DIVISION
ENVIRONMENT DIVISION
DATA DIVISION
PROCEDURE DIVISION

Header, Paragraph — A reserved word, immediately followed by a period, that precedes and
identifies all entries in the Identification and Environment Division. The paragraph headers
are:

In the Identification Division:

PROGRAM:-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
SECURITY.
REMARKS.

In the Environment Division:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
FILE-CONTROL.

i-O CONTROL.

Header, Section — A combination of words that precedes and identifies each section in the
Environment, Data and Procedure Divisions.

In the Environment and Data Divisions, the permissible section headers are composed of
reserved words.

In the Environment Division:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

In the Data Division:

FILE SECTION.
WORKING-STORAGE SECTION.

In the Procedure Division, the section header is composed of a section-name followed by the
reserved word SECTION, an optional priority number and a period.

High Order End — The leftmost character of a string of characters.

Identifier (3) — The data-name, followed, as required, by the syntactically correct
combination of subscripts and indexes necessary to make unique reference to a data item.

Imperative Statement — (See Statement, Imperative)

Implementor-Name — A reserved word that refers to a particular feature available on a
MEMOREX computer system.

Index (4) — A computer storage position or register, the contents of which represent the
identification of a particular element in a table.

Index-Name — A word with at least one alphabetic character that names an index associated
with a specific table.

Index Data Item — (See Data ltem, Index)

INPUT-OUTPUT SECTION — (See Section, Input-Output)

Integer — A numeric literal or a numeric data item that does not include any character
positions to the right of the assumed decimal point. Where the term ‘integer’ appears in
general formats, integer must be a numeric data item, and must be unsigned.

Invalid Key Condition — (See Condition, Invalid Key)

I-O CONTROL - The name of an Environment Division paragraph in which object program
requirements for rerun points, sharing of same areas by several data files, and multiple file

storage on a single input-output device are specified.

Items, Contiguous — Data items that are described by consecutive entries in the Data
Division, and that bear a definite hierarchic relationship to each other.

Item, Elementary — A data item that is described as not being further logically subdivided.
Item, Group — A named contiguous set of elementary or group items.

item, Noncontiguous — A data item, in the Working-Storage or
no hierarchic relationship to other items.

Item Nonnumeric — A data item whose description permits its contents to be composed of
any combination of characters taken from the computer’s character set. Certain categories
of nonnumeric items may be formed from more restricted character sets.

Item, Numeric — A data item whose description restricts its contents to a value represented
by characters chosen from the digits O through 9, with or without an operational sign.

A-8

Key (1) — One or more data items, the contents of which jointly serve to idéntify‘ the
location of a record or the ordering of data.

Key, Actual (2) — A key that directly expresses the physical location of a logical record on a
mass storage medium. : '

Key, Forward — A key used with an indexed file when it is éccessed sequentially.
Key Word — (See Word, Key)

Level indicator — Two alphabetic characters that identify a specific type of file or a position
in a hierarchy.

Level-Number — Two characters that in the case of the numbers 1 to 49, indicate the
hierarchical structure of a logical record, or, in the case of the number 77 identify special
properties of a data description entry.

Literal {1) — A string of characters whose value is implied by the ordered set of characters
comprising the string.

Literal, Nonnumeric {2) — A string of characters bounded by quotation marks. The string of
characters may include any character in the computer’s character set, with the exception of
the quotation mark.

Literal, Numeric (2) — A literal composed of one or more numeric characters not bounded
by quotation marks. !t may contain either a decimal point, that cannot be the rightmost
character, or an algebraic sign, that must be the leftmost character, or both.

Literal Constant — (Seé Literal)

Logical Record — (See Record, Logical)

Low Order End — The rightmost character of a string of characters.

Mass Storage — A storage medium on which data may be organized and maintained in both
a sequential and nonsequential manner.

Mass Storage File — (See File, Mass Storage)

Mass Storage File Segment — A part of a mass storage file whose beginning and end is
defined by the FILE-LIMITS clause in the Environment Division. '

Mnemonic-Name — A word, supplied by the programmer, that is associated in the
Environment Division with a specific implementor-name.

Noncontiguous Item — (See item, Noncontiguous)

Nonnumeric Item — (See Item, Nonnumeric)

A9

Nonnumeric Literal — (See Literal, Nonnumeric)
Numeric Character — {See Character, Numeric)
Numeric Item — (See Item, Numeric)

Numeric Literal — (See Literal, Numeric)

OBJECT-COMPUTER (2) — The name of an Environment Division paragraph which
describes the computer environment within which the object program is executed.

Object of Entry — (See Entry, Object of)

Object Program, COBOL (2) — The set of computer instructions that are an output of the
compilation of a COBOL source program.

Object Time — (See Time, Object)

Operand — Any lower case word (or words) that appear in a statement or entry format in
this publication.

Operation Sign — (See Sign, Operational)

Operator, Relational — A reserved word or a group of consecutive reserved words used in
the construction of a relation condition. The permissible operators and their meaning are:

Relational Operator Meaning

IS [NOT] GREATER Greater than or not
THAN greater than

IS [NOT] LESS THAN Less than or not less than
IS [NOT] EQUAL TO Equal to or not equal to

Optional Word — (See Word, Optional)

Paragraph — A paragraph-name (in the Procedure Division) followed by one or more
sentences, or a paragraph-header (in the ldentification or Environment Divisions) followed
by one or more entries.

Paragraph-Name — A word that begins and identifies a paragraph in the Procedure Division.
Paragraph Header — (See Header, Paragraph)

Physical Record — (See Block)

Priority-Number —- A number, ranging in value from O to 99, that classifies source program
sections in the Procedure Division in order to guide object program segmentation.

A-10

Procedure — A paragraph or group of logically successive paragraphs, or a section or group
of logically successive sections, within the Procedure Division. :

Procedure-Name — A word used to refer to a paragraph or section in the source program in
which it occurs. It consists of a paragraph-name or a section-name.

Program-Name — A word that identifies a COBOL source program.
Punctuation Character — (See Character, Punctuation)

Random Access - (See Access, Random)

Record — {See Record, Logical)

Record Description — The total set of data description entries associated with a particular
record.

Record, Logical (1) — The most inclusive data item.
Record, Physical — (See Block)

Record-Name (2) — A data-name that names a record.
Reference Format — {See Format, Reference)

Registers, Special — Compiler generated storage areas whose primary use is to store
information produced in conjunction with the use of specific COBOL features.

Relation — (See Operator, Relational)

Relation Character — (See Character, Relation)
Relation Condition — {See Condition, Relation)
Relational Operator — (See Operator, Relational)
Reserved Word — (See Word, Reserved)

Section — A set of one or more paragraphs or entries, the first of which is preceded by a
section header.

Section, Configuration — A section of the Environment Division that describes overall
specifications of source and object computers.

Section, File — The section of the Data Division that contains file description entries.

Section Header — (See Header, Section)

A-11

Section, Input-Cutput — The section of the Environment Division that names the files and
the external media required by an object program. It also provides information required for
transmission and handling of data during execution of the object program.

Saction, Linkage — The section of the Data Division that describes data made available from
another program. '

Saction, Working-Storage — The section of the Data Division that describes working storage
data items, composed either of noncontiguous items or of working storage records or of
both.

Saction-Name — A word that identifies a section written in the Procedure Division. (See
Word.)

Sentence — A sequence of one or more statements, the last of which is terminated by a
period followed by a space.

Sequence, Collating (1) — The MRX defined sequence in which the characters that are
acceptable to a computer are ordered for purposes of comparison.

Sequential Access — (See Access, Sequential)

Sign, Operational — An algebraic sign, associated with a numeric literal, to indicate whether
the item is positive or negative.

Simple Condition — (See Condition, Simple)

SOURCE COMPUTER — The name of an Environment Division paragraph which describes
the computer environment within which the source program is compiled.

Source Program, COBOL — A program coded in COBOL language that must be translated
into machine language before use.

Special Character — (See Character, Special)
Special Registers — (See Registers, Special)

SPECIAL-NAMES — The name of an Environment Division paragraph in which
implementor-names are related to user specified mnemonic-names.

Standard Characters — (See Characters, Standard)
Standard Data Format — (See Format, Standard Data)

Statement — A syntactically valid combination of words and symbols written in the
Procedure Division beginning with a verb. '

Statement, Compiler Directing — A statement, beginning with a compiler directing verb,
that causes the compiler to take a specific action during compilation.

A-12

Statement, Conditional — A conditional statement specifies that the truth value of a
condition is to be determined and that the subsequent action of the object program is
dependent on this truth value.

Statement, Imperative — A statement that begins with an imperative verb and specifies an
unconditional action to be taken. An imperative statement may consist of a sequence of
imperative statements. :
Subject of Entry — (See Entry, Subject of)

Subscript (1) — An integer whose value identifies a particular element in a table.

Subscripted Data-Name — (See Data-Name, Subscripted)

System Name — A word that specifies the external name of a file, a device, and an
organization method.

Table (1) — A set of logically consecutive items of data that are defined in the Data Division
by means of the OCCURS clause.

Table Element — (See Item, Elementary)

Time, Compile — The time at which a COBOL source program is translated, by a COBOL
compiler, to a COBOL object program.

Time, Execution — (See Time, Object)
Time, Object — The time at which an Object Program is executed.

Truth Value — The representation of the result of the evaluation of a condition in terms of
one of two values:

True
False‘

Unit — A single lower-case word or a group of lower-case words and one or more reserved
words enclosed in brackets or braces.

Variable — A data item whose value may be changed by execution of the object program.

Variable, Conditional — A data item consisting of one or more values which has a
condition-name assigned to it.

Verb — A word that expresses an action to be taken by a COBOL compiler or object
program.

Word (2) — A word is a sequence of not more than 30 characters. Each character is selected

from the set A through Z, 0 through 9, and - except that the ‘-’ may not appear as the first
or last character in a word. A word is delimited by separators.

A-13

Word, Key (2) — A reserved word whose presence is required when the format in which the
word appears is used in a source program.

Word, Optional {2) — A reserved word that is included in a specific format only to improve
the readability of the language and whose presence is optional to the user when the format
in which the word appears is used in a source program.

Word, Reserved (1) — One of a specified list of words which may be used in COBOL source
programs, but which must not appear in the programs as user-defined words.

WORKING-STORAGE SECTION — (See Section, Working-Storage)

A-14

B. EBCDIC COLLATING SEQUENCE

The EBCDIC collating sequence in ascending order is as follows.

Character Meaning

Space

Period or decimal point

< Less than symbol
(Left parenthesis
+ Plus symbol

$ Currency symbol
* Asterisk

) Right parenthesis
; Semicolon

- Hyphen or minus symbol

/ Stroke, virgule, or dash
' Comma
> Greater than symbol

= Equal sign

" Quotation mark
A through Z | Alphabet

0 through 9 Numerals

B-1

C. MRX COBOL RESERVED WORDS

ACCEPT
ACCESS
ACTUAL
ADD
ADDRESS
ADVANCING
AFTER

ALL
ALPHABETIC
ALTER
ALTERNATE
AND

ARE

AREA
AREAS
ASCENDING
ASSIGN

AT

AUTHOR

BEFORE
BEGINNING
BINARY
BLANK
BLOCK

BY

CALL

CF

CH

CHARACTERS

CLOCK-UNITS

CLOSE

coBOL

CODE

COLUMN

COMMA

comP

COMP-1

COmP-2

COMP-3

COMPUTATIONAL

COMPUTATIONAL-1

COMPUTATIONAL-2
- COMPUTATIONAL-3

COMPUTE
CONFIGURATION
CONSOLE
CONTAINS
CONTROL
CONTROLS

COPY

CORR
CORRESPONDING
CURRENCY

DATA
DATE-COMPILED
DATE-WRITTEN
DE
DECIMAL-POINT
DECLARATIVES
DELETE
DEPENDING
DESCENDING
DETAIL

DEVICE
DISPLAY
DIVIDE
DIVISION

DOWN

EDITION

ELSE

END
END-COMPILATION
END-PROGRAM
ENDING

ENTER
ENVIRONMENT
EQUAL

ERROR

EVERY
EXAMINE

EXIT

FD

FILE
FILE-CONTROL
FILE-LIMIT

FILE-LIMITS
FILLER
FINAL
FIRST
FOOTING
FOR
FORWARD
FROM

GENERATE
GIVING

GO
GREATER
GROUP

HEADING
HIGH-VALUE
HIGH-VALUES

I-O
I-O CONTROL
iD

IDENTIFICATION

iF

IN

INDEX
INDEX-BLOCK
INDEXED
INDICATE
INITIATE
INPUT
INPUT-OUTPUT
INSTALLATION
INTO

INVALID

IS

JUST
JUSTIFIED

KEY
KEYS

LABEL
LAST
LEADING
LEFT
LESS
LIMIT
LIMITS

C-2

LINE
LINE-COUNTER
LINES
LINKAGE
LOCK
LOW-VALUE
LOW-VALUES

MEMORY
MODE

MODIFICATION-CODE

MODULES
MOVE

MULTIPLE
MULTIPLY

NEGATIVE
NEXT

NO

NOT

NOTE
NUMBER
NUMERIC

OBJECT-COMPUTER

OCCURS
OF

OFF
OMITTED
ON

OPEN
OPTIONAL
OR
OUTPUT

PACKED
PAGE
PAGE-COUNTER
PERFORM

PF

PH

PIC

PICTURE

PLUS

POSITION
POSITIVE
PROCEDURE
PROCEED
PROCESSING

PROGRAM
PROGRAM-ID
PURGE

QUOTE
QUOTES

RANDOM
RD

READ
RECORD
RECORDS
REDEFINES
REEL
RELEASE
REMARKS
RENAMES
REPLACING
REPORT
REPORTING
REPORTS
RERUN
RESERVE
RESET

RETENTION-CYCLE
RETENTION-PERIOD

RETURN
REVERSED
REWIND
REWRITE
RF

RH

RIGHT
ROUNDED
RUN

SAME

SD

SEARCH
SECTION
SECURITY
SEEK
SEGMENT-LIMIT
SELECT
SENTENCE
SEQUENTIAL

C-3

SET
SIGN
SIZE
SORT

‘SOURCE
SOURCE-COMPUTER

SPACE

SPACES
SPECIAL-NAMES
STANDARD
START

STATUS

STOP
SUBTRACT

SUM

SYNC
SYNCHRONIZED
SYSIN

SYSOUT

TALLY
TALLYING
TAPE
TERMINATE
THAN
THROUGH
THRU
TIMES

TO

TYPE

UNIT
UNTIL
up
UPON
USAGE
USE
USING

VALUE
VAL UES
VARYING

WHEN
WITH

WORDS ZERO
WORKING-STORAGE ZEROES
WRITE ZEROS

D. ANS STANDARD CONTROL CHARACTERS

The control character is passed as the first character of the data record. This character
defines the operation on the carriage control tape channel of a printer or the stacker select
on a punch. Following is a list of characters and the corresponding operation:

Character Qperation
(blank) Space one line before printing
0 : Space two lines before printing

Il

Space three lines before printing
Suppress space before printing
Skip to channel 1 before printing
Skip to channel 2 before printing
Skip to channel 3 before printing
Skip to channel 4 before printing
Skip to channel 5 before printing
Skip to channel 6 before printing
Skip to channe!l 7 before printing
Skip to channel 8 before printing
Skip to channel 9 before printing
Skip to channel 10 before printing
Skip to channel 11 before printing
Skip to channel 12 before printing

Select stacker 1

S < 0O T > © 0N O O H W N = +

Select stacker 2

D-1

E. RECORDING MODES

The recording mode is determined by the combiler through a scan of each record
description and is not a specification by the user. A discussion of recording mode is
provided to give a clearer understanding of the file structure. The recording mode may be F
(fixed), V (variable), P (packed), or S (segmented).

RECORDING MODE F

All of the records in a file are the same length and each is wholly contained in one block.
Blocks may contain more than one record, and there is a fixed number of records per block.
RECORDING MODE Vv

The records are variable in length, and each record is wholly contained in one block. Blocks
may contain more than one record and the blocks are variable in length (variable length
records on tape).

RECORDING MODE P

The records are variable length and each record is wholly contained within a block. The
block which has a fixed length, contains a variable number of records. The records are
packed back to back from the beginning of the block (variable length records on disc).
RECORDING MODE S

The records are variable length and each record is wholly contained within the block. The
block which has a fixed length, is divided in equal size segments. Each segment is the size of
the largest record. The block contains one variable length record in each of its segments.

STANDARD SEQUENTIAL FILES

For standard sequential files, the compiler determines the recording mode for a given file to
be:

F If all the records are defined as being the same size.

Vv If the records are defined variable in size and the file is a tape file.

E-1

P If the records are defined as variable in size and the file a mass
storage file.

RELATIVE FILES

For relative files, the compiler determines the recording mode for a given file to be:
F If all the records are defined as being the same size.
S If the records are defined as variable in size.

Files assigned to unit record devices, and files with indexed organization will be recorded in
F mode only.

E-2

F. FILE PROCESSING SUMMARY

in COBOL, all aspects of the total data processing problem that depend on the physical
characteristics of a specific computer are given in one portion of the source program known
as the Environment Division. Thus, a change in computers entails major changes in this
division only. The primary functions of the Environment Division are to describe the
computer system on which the object program is run and to establish the necessary links
between the other divisions of the source program and the characteristics of the computer.

The exact contents of the Environment Division depends on the method used to process
files in the COBOL program. Before the language elements used in the Environment Division
can be discussed meaningfully, some background in the file processing techniques available
to the COBOL user must be given. (A detailed discussion of file processing appears in the
MRX/0S Control Program and Data Management Services, Extended Reference manual.)

Each combination of data organization and access method specified in the COBOL language
is defined as a file-processing technique. The file-processing technique to be used for a
particular file is determined by the data organization of that file and whether the access
method is sequential or random. '

DATA ORGANIZATION

Thr
and

of data organization are available to the MRX COBOL user: sequential, relative,

The means of creating or retrieving logical records in a file depends on the type of
organization used. Each type of data organization is incompatible with the others.
Organization of an input file must be the same as the organization of the file when it was
created.

Files organized sequentially may contain variable length records.

Files with a relative organization may functionally contain variable length records; the
physical allocation however, is fixed length and based on the largest record specified.

SEQUENTIAL DATA ORGANIZATION

When sequential data organization is used, the logical records in a file are positioned in an
established sequence. The sequence is established as a result of writing the records to the

F-1

file. Sequential data organization must be used for tape and unit record files and may be
used for mass storage files. No key is associated with records in a sequentially organized file.

RELATIVE DATA ORGANIZATION

Relative data organization is characterized by the use of the relative addressing scheme.
When this scheme is used, the position of the logical records in a file is determined relative
to the first record of the file starting with the initial value of 1.

The relative record address is transformed into a direct block address and a relative position
within the block. An ACTUAL KEY containing the value of the record number requested is
used to identify randomly accessed records. Files with relative data organization must be
assigned to mass storage devices.

ACCESS METHODS

Two access methods are available to users of MRX. COBOL: sequential access and random
access.

Sequential access is the method of reading and writing records of a file in a serial manner;
the order of reference is implicitly determined by the position of a record in the file.

Random access is the method of reading and writing records in a programmer-specified

manner; the contro! of successive references to the file is expressed by specifically defined
keys supplied by the user.

ACCESSING A SEQUENTIAL FILE

A standard sequential file may be accessed only sequentially, that is, records are read or
written in order.

F-2

ACCESSING A RELATIVE FILE

A relative file may be accessed either sequentially or randomly. Records may be created,
retrieved, or added sequentially or randomly.

SEQUENTIAL ACCESS
The ACTUAL KEY clause is not required when a relative file is accessed sequentially.

When a relative file is created sequentially, the records are written in order, that is, the
creation process corresponds exactly to the creation of a sequential file.

When a relative file is being read sequentially, the records are made available in the physical
order of the record positions, position 1 through position of last record allocated. All
records, including records existing from a previously created file, as a result of a random
creation process, are made available.

There is no explicit way of updating a record in a relative file. When a relative file is accessed
sequentially, a READ followed by a WRITE is considered an update; the record-position
used for the WRITE is the same as the record-position used for the READ. Subsequent
WRITE statements will write records into consecutive record positions.

RANDOM ACCESS

When accessing a relative file randomly, the ACTUAL KEY clause is required. The system
uses the ACTUAL KEY to determine the relative position of the record to be accessed.

When a relative file is created randomly, records are written into positions specified by the
ACTUAL KEY.

To retrieve, or write a record randomly, the ACTUAL KEY must contain the position of the
record relative to the beginning of the file. The first position in the file has a value of one.

Since dummy records are not provided by the system, no distinction can be made between
the update and the write process. Only the write process exists. (Writing a record may be
considered an update if the record is written into a position containing a previously written
record, or a user-supplied durnmy record.)

F-4

Bulletin: 2202.002-0001
Date: 3/19/73

G. INDEX — BLOCK SIZE FOR INDEXED FILES

CALCULATING BY TABLE

The minimum and optimum index block size may be calculated by Tables G-1 through G-4.
Refer to the MRX/OS Control Program and Data Management Services, Extended
Reference manual for the layouts of the index portion of indexed files.

MINIMUM INDEX BLOCK

There is a minimum index block size for every indexed file depending on key size and file
size. The user may utilize any index block size larger than the minimum, if he has memory
space for a larger index block. The larger the index block the better retrieval becomes on
random processing. If the user goes below the minimum index block size there is the
possibility of not being able to create the file size as planned.

 OPTIMUM INDEX BLOCK

When planning the creation of indexed files, the user must decide whether he wants to
process the directory-directory, which resides on mass storage, in a main memory buffer.
This option speeds up random processing, but requires extra space for the buffer. If the
mode of processing is with a main-memory buffer there is well-defined optimum index
block size which minimizes memory space for the index buffer and directory-directory
buffer.

Once the user has determined his mode of processing, Table G-1 is used to determine
minimum-keys/block and Table G-2 is used to determine optimum keys/block. Note that in
using Table G-1 and Table G-2, the larger of the two values in the file size is the detérmining
factor. Also note that these tables were computed for consistency for maximum key size
and one million records as the upper limit. There will be some index block sizes generated
that exceed one track in number of bytes. This exceeds the system limit for block sizes. The
user will have to choose a smaller key size or smaller file size.

PROGRAMMING CONSIDERATIONS

The keys/block is entered in the Control Language //DEFINE statement along with key size.
The corresponding minimum or optimum index block size can be calculated from Table
G-3. The resulting index block size is then entered in the COBOL source program via the
INDEX-BLOCK Clause.

If the user has determined to calculate the optimum keys/block and optimum index block

size, Table G-4 is used to calculate the number of bytes for the main-memory buffer for the
directory-directory entries.

G-1

Bulletin: 2202.002-0001
Date: 3/19/73

The user must be careful not to exceed the file maximum at creation time when using the
optimum block size — when he utilizes the main-memory buffer to hold the
directory-directory entries for random processing, the buffer would not be able to hold all
the entries, thus writing over the user program. Thus, when choosing an index block size
other than the optimum and the main-memory buffer is used to process the
directory-directory entries, the buffer size should be the size of the index block, as the
system checks for overflow at creation time.

EXAMPLES
The following examples illustrate how to calculate the minimum index block size, the larger
than minimum index block size, and the optimum index block size.
MINIMUM INDEX BLOCK SIZE
The minimum index block size can be calculated with the following steps.
1. In Table F-1 locate the number of records in the file and the key
size. For example, if the number of records is 20,000 and the key

size is 10, the minimum keys per block is 24.

2. The keys/block is entered in the Control Language //DEFINE
statemenit along with the key size.

3. The corresponding minimum index block size is calculated from
Table F-3 using the minimum block size formula. For this example
with minimum keys/block of 24 and key size of 10; the minimum
index block size is 384 bytes.
4, The minimum index block size is then entered into the source
program,
LARGER THAN MINIMUM INDEX BLOCK SIZE
Similar to the minimum index block size, an index block that is larger than the minimum
may be calculated with the same steps. The difference is found in estimating the keys/block;
it must be greater than or equal to the minimum keys/block selected.
OPTIMUM INDEX BLOCK SIZE
The optimum index block size can be calculated with the following steps.
1. In Table F-2 locate the number of records in the file and the key

size. For example, if the number of records is 20,000 and the key
size is 10, the optimum keys per block is 30.

G-2

Bulletin: 2202.002-0001
Date: 3/19/73

2. The keys/block is entered in the Control Language //DEFINE
statement along with the key size.

3. The corresponding optimum index block size is calculated from
Table F-3 using the optimum biock size formula. For this example
with optimum keys/block of 30 and key size of 30, the optimum
index block size is 475 bytes.

4, The optimum index block size is then entered into the source
program.
b. For optimum keys/block and optimum index block size, Table F-4 is

used to calculate the main-storage buffer for the directory to the
directory entries. For this example, the number of bytes required for
the buffer for the directory to the directory is 250.

Table G-1. Minimum Keys/Block

Key Size in Bytes

1 16 21 26 36 51
Records in File to w0 to to to 10

2 3 4 5 6 7 8 9 10 15 20 25 35 50 100
0- 5,000 13 14 14 14 15 15 16 15 16 16 16 16 16 17 17
5,000 - 16,000 16 17 18 18 18 19 19 19 19 20 20 20 21 21 21
10,000 - 15,000 19 20 20 21 21 2 22 22 22 23 23 23 23 24 24
15,000 - 20,000 20 21 22 23 23 23 24 24 24 25 25 26 26 26 26
20,000 - 25,000 22 23 24 24 25 25 25 26 26 27 27 27 28 28 28
25,000 - 30,000 23 24 25 26 26 27 27 27 28 28 29 29 29 . 30 30
30,000 - 35,000 25 26 27 | 27 28 28 28 29 29 30 30 31 31 31 32
35,000 - 40,000 26 27 28 28 29 29 30 30 30 31 32 32 32 33 33
40,000 - 45,000 27 28 29 30 30 31 31 31 31 32 33 33 34 34 34
45,000 - 50,000 28 29 30 31 31 32 32 32 33 34 34 34 35 35 36
50,000 - 60,000 29 31 32 32 33 34 34 34 35 36 36 37 37 37 38
60,000 - 70,000 31 32 34 34 35 35 36 36 36 37 38 38 39 39 40
70,000 - 80,000 32 34 35 36 36 37 37 38 38 39 40 40 41 41 42
80,000 - 90,000 34 35 36 37 38 38 39 39 40 41 41 42 42 43 43
90,000 - 100,000 35 36 37 38 39 40 40 41 41 42 43 43 44 44 45
100,000 - 125,000 37 39 40 41 42 43 43 44 44 45 46 47 47 48 48
125,000 - 150,000 40 41 43 44 45 45 46 46 47 48 49 49 50 51 51
150,000 - 175,000 42 44 45 46 a7 48 48 49 49 50 51 52 53 63 54
175,000 - 200,000 44 46 47 48 49 50 50 51 51 53 54 654 55 56 56
200,000 - 250,000 47 49 51 52 53 54 54 55 55 57 58 58 59 60 61
250,000 - 300,000 60 62 54 655 66 57 68 58 59 61 61 62 63 64 64
300,000 - 350,000 52 65 57 68 69 60 61 62 62 64 65 65 66 67 68
350,0C0 - 400,000 55 57 59 61 62 63 63 64 65 67 68 68 69 70 71
400,000 - 450,000 57 60 62 63 64 65 66 67 67 69 70 n 72 73 74
450,000 - 500,000 659 62 64 65 67 68 68 69 70 72 73 74 74 75 76

600,000 - 600,000 63 66 68 69 n 72 73 73 74 76 77 78 79 80 8t
600,000 - 700,000 66 69 71 73 74 75 76 77 78 80 81 82 83 84 85
700,000 - 800,000 69 72 74 76 78 79 80 81 81 84 85 86 87 88 89
800,000 - 900,000 72 75 77 79 81 82 83 84 85 87 88 89 91 91 93
$00,000 - 1,000,000 74 78 80 82 84 86 86 87 88 90 92 93 94 95 96

G-2a

Bulletin: 2202.002-0001
Date: 3/19/73

Table G-2. Optimum. Keys/Block

Key Size in Bytes

Records in File " 16 2 % 3 5
to to to to to to

2 3 4 5 6 7 8 9 10 16 20 25 356 50 100

0- 5,000 16 17 18 18 18 19 19 --19 18 20 20 20 21 21 21
5,000 - 10,000 20 21 22 23 23 23 24 24 24 25 25 25 26 26 26
10,000 - 15,000 23 24 25 26 26 27 27 27 27 28 29 29 29 30 30
15,000 - 20,000 26 27 28 28 29 29 29 30 30 31 32 32 32 33 33
20,000 - 25,000 28 20 30 31 31 32 32 32 33 34 34 34 3B 35 3
25,000 - 30,000 20 31 32 32 33 34 34 34 35 36 36 37 37 37 38
30,000 - 35,000 | 3 32 33 34 35 35 36 36 .37 37 38 38 39 39 40
35,000 - 40,000 .32 34 3 36 36 37 37 38 3B 39 40 40 4 41 42
40,000 - 45,000 34 3 36 37 38 38 .39 3940 41 41 42 42 43 43
45,000 - 50,000 3 36 37 38 39 40 40 41 41 42 43 43 44 44 45
50,000 - 60,000- 3739 40° 41 42 42 43 43 43 45 45 46 46 47 48
60,000 - 70,000 39 41 42 43 44 44 45 45 46 47 48 48 49 49 50
70,000 - 80,000 40 42 44 45 46 46 47 47 48 49 S0 5O 51 52 62
80,000 - 90,000 42 44 45 47 47 48 49 49 50 51 52 62 53 654 54
90,000 - 100,000 ' 44 46 47 48 49 50 B50° ‘51 . 61 53 54 54 655 56 56
100,000 - 125,000 47 49 51 62 53 B4 B4 55 55 57 58 658 59 60 61
125,000 - 150,000 B0 52 654 65 56 57 68 58 69 61 61 62 63 64 64
160,000-176000 | 62 55 67 68 59 60 61 61 62 64 65 65 66 67 68
176,000 - 200,000 55 57 59 61 62 63 63 64 65 67 68 68 69 70 71
200,000 - 250,000 59 62 64 65 67 68 68 69 70 72 73 74 74 15 76
250,000 - 300,000 63 66 68 69 71 72 73 13 74 716 77 78 79 80 81
300,000 - 350,000 66 69 71 73 74 75 76 77 78 80 8 8 .8 8 8
350,000 - 400,000 69 72 74 76 78 79 80 8 8 8 8 8 87 8 89
400,000 - 450,000 72 7% .77 - 79 .81, .82 83 -84 -85 .87 .8 8 91 91 93
450,000 - 500,000 ;- 74 78. 8 82 84 85 86 ..87-::88:°90 92° 93. 94 95 96
500,000 - 600,000 79. 82 84 .87.-8% 90 . 91-7 92 93" 96 .97 . 98" 100 ‘101 102
600,000 - 700,000 83 8 90 92 94 95 96 97 98 101 102 103 105 106 107
700,000 - 800,000 87 91 94 96 98 99 100 102 102 105 107 108 110 111 112
800,000 - 900,000 90 94 97 100 102 103 105 106 106 ' 110 111 112 114 115 116
900,000 - 1,000,000 93 98 101 103 105 107 108 109 110 113 115 116 118 120 121

G-3,

Bulletin: 2202.002-0001
Date: 3/19/73

Table G-3. Optimum or Minimum Index Block Size

(10) (OKB) (KS+4) |

Optimum block size = 10 + { 9

OKB = QOptimum keys/block

KS = Key size

{10) (MKB) (KS+4) l

Minimum block size = 10 + ‘ P

MKB = Minimum keys/block
KS = Kaey size

NOTE: ' l = Round up if result not whole integer.

Table G-4. Bytss Required in Buffer for Directory-Directory Entries

Usage = [s(oas 10)] US

. . us 7.
Number keys/primary index block [KS+4] NKP

. us .
Number keys/directory block [KS+2]' NKD

Total number keys represented/

directory block = (NKP) (NKD) = NKRD
Numbar entries in - file size{ ﬁK'DD
Directory-directory block | NKRD :

Numbsr of bytes required for
buffer for directory-directory = 10 + (KS+2) (NKDD)
entries

NOTE:‘ }- Round up if result not whole integer.

= Round down if result not whole integer.

G-4

Bulletin: 2202,002-0001
Date: 3/19/73

CALCULATING BY FORMULA

If the user wishes to calculate keys/block based on a different file maximum than given in
Tables G-1 and G-2, the following algorithms, along with Table G-5, can be used to compute

minimum and optimum keys/block. The constants Ko and Km are taken from Table G-5
based on key size.

Optimum (0KB) ={& Ei }
Minimum (MKB) ={& ;fn }

FS = Maximum File Size

NOTE: { } = Round up if result not whole integer.

G-5

Table G-5. Constants for Alternste Algorithm

KS Ko Km KS Ko Km
2 1.2500 2.6000 52 5975 1.1950
3 1.0888 2.1776 53 5967 1.1934
4 9877 1.9753 54 .6969 1.1918 -
5 9184 1.8367 55 .5962 1.1904
6 .8681 1.7361 56 5946 1.1890
7 .8299 1.6598 57 5939 1.1878
8 .8000 1.6000 58 5932 1.1864
9 7759 1.5518 59 5926 1.1852

10 7562 1.6124 60 .5920 1.1840

11 .7396 1.4792 61 5914 1.1828

12 .7256 1.4512 62 .5908 1.1816

13 7136 1.4272 63 .5903 1.1806

14 .7031 1.4062 64 .5897 1.1794

15 .6940 1.3880 65 .5892 1.1784

16 6859 1.3718 66 .5887 1.1774

17 6787 1.3574 67 .5882 1.1764

18 8722 1.3444 68 .6878 1.1756

19 6664 1.3328 69 .6873 1.1746

20 6612 1.3224 70 .5868 1.1736

21 6564 1.3128 71 .5864 1.1728

22 6520 1.3040 72 .56860 1.1720

23 .6480 1.2960 73 .5856 1.1712

24 6443 1.2886 74 .5852 1.1704

25 6409 1.2818 75 .5848 1.1696

26 6378 1.2756 76 .5844 1.1688

27 6343 1.2696 77 .5840 1.1680

28 8321 1.2642 78 5837 1.1674

29 .6298 1.2692 79 .5833 1.1666

30 6272 1.2544 80 .6830 1.1660

31 6249 1.2498 81 .5827 1.1654

32 6228 1.2456 82 .6823 1.1646

33 6209 1.2418 83 .5820 1.1640

34 6190 1.2380 84 5817 1.1634

35 6172 1.2344 85 5814 1.1628

36 6156 1.2312 86 5811 1.1622

37 6140 1.2280 87 .5808 1.1616

38 6126 1.2250 88 .6805 1.1610

39 6111 1.2222 89 .5802 1.1604

40 6097 1.2194 20 5800 1.1600

41 6084 1.2168 91 5797 1.1594

42 6072 1.2144 92 .5794 1.1688

43 .6060 1.2120 93 5792 1.1584

44 .6049 1.2098 94 .5789 1.1678

45 .6038 1.2076 95 .5787 1.1574

46 6028 1.2056 95 .5785 1.1570

47 6018 1.2036 97 5782 1.1564

48 16009 1.2018 o8 5780 1.1560

49 .6000 1.2000 99 5778 1.1656

50 5991 1.1982 100 5776 1.1652

51 .5983 1.1966

H. COBOL ERROR MESSAGES

The COBOL compiler issues two types of error messages. They are source error diagnostic
messages that are printed at the end of the COBOL compilation listing and object time error
messages that are listed on the SYSOUT file.

COBOL SOURCE LISTING ERROR MESSAGES
The COBOL source error messages are printed at the end of the compilation section of the
COBOL listing. These messages are of two types: COBOL compiler errors, and errors made -

by the COBOL programmer. In the event that a COBOL compiler error occurs, contact a
systems engineer. '

COBOGL COMPILER ERRORS

Only three diagnostic messages are issued by the compiler to warn the user of errors within
the COBOL compiler. These messages are listed below.

ERROR CODE MESSAGE TEXT
CBOXO001 ERROR IN INPUT RECORD (CHECK PHASE AND
ERROR NBRS).
CB0X002 MESSAGE IS NOT AVAIL ABLE FOR THIS PASS
OR PHASE.
CB0X003 *** COMPILER ERROR: CODE=ppnn ***
where:
pp is a one 6r two digit pass number
nﬁ specifies the compiler error condition

within the pass

These codes do not appear in this manual. They are for MRX
internal use only.

H-1

Bulletin: 2202.002-0001
Date: 3/19/73

COBOL PROGRAMMING ERRORS

COBOL programming errors are printed at the end of the COBOL source listing. The
messages have the following format: '

LINE ERROR ERROR CLAUSE
NUMBER TYPE CODE NAME MESSAGE TEXT

global insert

predetermined insert ,text

nnnn t aappnnn aaaaaaaa. . .a text

where:

nnnn is a 4-digit decimal number specifying the
line in the source listing where the error
occurred. For //PAR statements, nnnn is
the number of the //PAR statement in the
SYSOUT file.

t is variously W, F, or U designating the type
of error as warning, fatal, or USASI.

aappnnn is a 7-character error code where aa is always
CB specifying the COBOL compiler as the
source of the error, pp is variously 01 through
09 specifying the pass within the compiler,
and nnn is a 3-digit decimal number specifying
the error within the pass.

aaa.. .a is a clause name of 1 to 14 alphanumeric
characters specifying the clause in error. Not
all messages are preceded by a clause entry.

global insert

text predetermined insert

' text is the text of the message. Some messages
have words or phrases inserted in them at
the time the error occurs. The inserted text
is preceded and followed by a single asterisk.
In messages having global variable inserts, a
series of blank spaces preceded and followed
by an asterisk is shown in the list of messages.
In messages having specific, predetermined
variables, the variables are listed one below
the other and are preceded and followed by
braces.

LINE

ERROR

NUMBER TYPE

nnnn
nnnn

nnnn

nnnn

nnnn

nnnn
nnnn
nnnn

nnnn

nnnn

nnnn

nnnn
nnnn
nnnn
'nnnn

nnnn

nnnn

F

ERROR
CODE
CB01001
CB01002

€B01003

CB01004

CBO1005

CB01006
CB01007
CB01008

CB01009

CBO1010

CB01011
CB01012

CB01013
CB0O1014
CB01015

CB01016
CB01017

CLAUSE
NAME

H-3

Bulletin: 2202.002-0001
Date: 3/19/73

MESSAGE TEXT

FORMAT ERROR -- CONT!NUATION
CANNOT START PRIOR TO B MARGIN.

CONTINUATION NOT VALID -- CON-
TINUATION IGNORED.

DELIMITER NOT FOLLOWED BY SPACE --
SPACE ASSUMED.

INCORRECT SUBSCRIPT.

Left parenthesis must be followed either by
a data-name or a numeric literal,

ILLEGAL ELEMENT.

An illegal element is any combination of
characters that is not legal in COBOL.

‘7 NOT IMPLEMENTED IN THIS LEVEL
OF COMPILER.

NON-COBOL CHARACTER NOT WITHIN
QUOTES - ELEMENT DROPPED.

OPENING QUOTES NOT PRECEDED BY A
SPACE - PREVIOUS ELEMENT DROPPED.

DELIMITER MISSING.

A delimiter, such as a comma, is missing in a
subscript. Or the delimiting apostrophe of an
alphanumeric literal is missing.

NONINTEGER NUMERIC LITERAL USED
AS INDEX.

A numeric literal used as a subscript must be
an unsigned integer.

END COMPILE CARD MISSING.

DUPLICATE LEFT PARENTHESIS --
SECOND ONE DROPPED.

BLANK CANNOT FOLLOW LEFT
PARENTHESIS.

ALPHA LITERAL EXCEEDS 120 -- EXCESS
IS TRUNCATED.

ALPHA LITERAL NOT TERMINATED
CORRECTLY.

ALPHA LITERAL WITH NO DATA.
NUMERIC LITERAL EXCEEDS 18 DIGITS.

Bulletin: 2202.002-0001

Date: 3/19/73

LINE

ERROR

NUMBER TYPE

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

F

ERROR
CODE
CB0O1018

CB01019
CB01020

CB01021

CB01022

CB01023

CB01024

CB01025

CB01026

CBO1027

CB01028
€B01029

CB01030

CB01031

CB01032

CB01033

CB0O1034

CB01035

CLAUSE
NAME

MESSAGE TEXT

PROGRAMMER-ASSIGNED WORD EXCEEDS
30 CHARACTERS.

* *|SILLEGAL IN THIS DIVISION,

* *|S RESERVED FOR A HIGHER LEVEL
COMPILER.

TERMINATING PERIOD MISSING ON LAST
CARD.

//PAR ERROR -- INVALID DELIMITER IN
COLUMN * *,
nnnn is the //PAR statement in the SYSOUT file.

//PAR ERROR -- UNDEFINED KEYWORD
IN COLUMN * *,
nnnn is the //PAR statement in the SYSOUT file.

//PAR ERROR -- R MARGIN MUST BE
BETWEEN 41-120, COLUMN * *,
nnnn is the //PAR statement in the SYSOUT file.

BLANK CANNOT PRECEDE A RIGHT
PARENTHESIS.

FORMAT ERROR -- EXPECT DATA IN
MARGIN B.

EXPECTING IDENTIFICATION DIVISION --
FOUND * *

EXPECTING KEYWORD -- FOUND * *.

IDENTIFICATION DIVISION MISSING OR
OUT OF SEQ.

DIVISION HEADER DUPLICATE OR OUT
OF SEQ.

‘ENVIRONMENT DIVISION." HEADER
MISSING OR OUT OF SEQ -- ASSUMED TO
EXIST HERE.

KEYWORD EXPECTED IN MARGIN A.

DIVISION HEADERS MUST END WITH
‘DIVISION.".

PARAGRAPH HEADER MUST BE IM- :
MEDIATELY TERMINATED BY A PERIOD.

PARAGRAPH HEADER DUPLICATE OR
OUT OF SEQ.

LINE

nnnn

ERROR ERROR
NUMBER TYPE

F

CODE

CB01036

Bulletin: 2202.002-0001
Date: 3/19/73

CLAUSE
NAME MESSAGE TEXT

INVALID PROGRAM-ID.

The PROGRAM-ID does not adhere to the
rules for PROGRAM-ID's.

H-4a

LINE

ERROR

NUMBER TYPE

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

- nnnn

nnnn

nnnn

nnn

nnnn

nnnn

F

ERROR
CODE

© CBO1040

CBO1041

CB01042
CB01043
CB01044
CB01045
CB01045

CB01046

CB01048

CB01049
CB01050
CB01051

CB01052
CB01053

CB01054
€B802001
CB02002

€B02004
CB02006

CB02007

CLAUSE
NAME

H-&

MESSAGE TEXT

OPENING QUOTE MISSING -- ASSUMED TO
EXIST.

‘PROCEDURE DIVISION.' HEADER
MISSING OR OUT OF SEQ -- ASSUMED
TO EXIST HERE.

ALL SECTION HEADERS MUST END WITH
‘SECTION.". '

PICTURE STRING MISSING.

‘DATA DIVISION.” HEADER MISSING OR
OUT OF SEQ -- ASSUMED TO EXIST HERE.

PICTURE STRING EXCEEDS 30
CHARACTERS.

PROGRAM-ID INVALID OR MISSING.

The PROGRAM-ID is either missing or has
previously been determined invalid by
message CB0O1036.

PUNCTUATION MARKS MUST NOT BE
PRECEDED BY A SPACE.

* *ISILLEGAL IN CONTEXT.
PERIOD MISSING.

//PAR ERROR -- INVALID NUMERIC,
COLUMN * *,

//PAR ERROR -- INVALID MEMBER
NAME, COLUMN * *,

//PAR ERROR - MISSING MEMBER
NAME, COLUMN * *,

INVALID NUMERIC LITERAL * *,
HEADERS MUST BEGIN IN AREA A.

FORMAT ERROR -- ILLEGAL ELEMENT
IN COLUMNS 8-11.

COMMA NOT ALLOWED AS PUNCTUATION
THIS LEVEL COBOL.

EXPECTING KEY ELEMENT -- FOUND
* *

NUGATORY OR MISPLACED TERMINAL
PERIOD.

LINE ERROR ERROR CLAUSE

NUMBER TYPE CODE NAME MESSAGE TEXT
nnnn U CB02008 ‘INPUT-OUTPUT SECTION.” HEADER
MISSING.
nnnn U CB02009 _ ‘FILE-CONTROL.’ HEADER MISSING.
nnnn V) CB02010 ‘INPUT-OUTPUT SECTION." AND ‘FILE-
CONTROL." HEADERS MISSING.
nnnn U CB02011 CLAUSE OUT OF ORDER.
nnnn F CB02012 HEADER DUPLICATE OR OUT OF ORDER.
nnnn F €B02013 SELECT CLAUSE MISSING.
nnnn U CB02014 FILE-CONTROL ENTRY MISSING.
nnnn F CB02015 ASSIGN CLAUSE MISSING, ILLEGAL, OR
OUT OF ORDER.
nnnn U CB02016 TERMINAL PERIOD MISSING.
nnnn U CB02017 , 'I-O-CONTROL." HEADER MISSING.
nnnn F CB02018 - ‘INPUT-OUTPUT SECTION.’ AND ‘FILE-
CONTROL." HEADERS AND SELECT
CLAUSE MISSING.
nnnn u CB02019 , ‘CONFIGURATION SECTION.’ HEADER
MISSING.
nnnn F CB02020 INVALID NUMERIC LITERAL -- CHECK
DECIMAL-POINT IS COMMA CLAUSE.
nnnn F CB02021 IMPLEMENTOR NAME OUT OF ORDER -
NOT PROCESSED.
nnnn F CB02022 CLAUSE OUT OF ORDER - CLAUSE
DROPPED.
nnnn U CB02023 ‘SPECIAL-NAMES." HEADER MISSING.
nnnn u CB02024 ‘CONFIGURATION SECTION.” HEADER
MISSING -- ATTEMPT PROCESSING
SELECT CLAUSE.
nnnn u CB02025 CONFIGURATION SECTION ENTRY
' MISSING.
nnnn F CB02026 DUPLICATE CLAUSE * *,
nnnn F CB02028 IMPLEMENTOR NAME ILLEGAL OR
: : MISSING.
nnnn F CB02030 ILLEGAL OR MISPLACED ELEMENT * *,

LINE

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nmnn

nnnn

nnnn

ERROR

" NUMBER TYPE

U

U

ERROR
CODE
CB02031
CB02032
CB02033

CB02034

CB02035
CB02036

CB02037
CB02038

CB02039
CB02040
CB802041

CB02042
CB02044

.CB02045

CB02046
CB02047
CB02048

CB02049

CLAUSE
NAME

H-7

Bulletin: 2202.002-0001
Date: 3/19/73

MESSAGE TEXT

‘SOURCE-COMPUTER." HEADER ILLEGAL
OR MISSING.

SOURCE-COMPUTER NAME ILLEGAL OR
MISSING,

‘OBJECT-COMPUTER." HEADER ILLEGAL
OR MISSING.

OBJECT-COMPUTER NAME ILLEGAL OR
MISSING.

INCOMPLETE CLAUSE * *,

NUMERIC LITERAL MUST BE AN UN-
SIGNED INTEGER.

DATA NAME CANNOT BE SUBSCRIPTED.

ILLEGAL LENGTH OF CURRENCY-SIGN
LITERAL.

ILLEGAL CHARACTER USED AS
CURRENCY-SIGN LITERAL.

MEMORY SIZE MUST BE UNSIGNED
LITERAL.

SEGMENT-LIMIT MUST BE AN UNSIGNED
INTEGER IN THE RANGE OF 1-49.

PREVIOUS CLAUSE INCOMPLETE.

‘CONFIGURATION SECTION.’ AND
‘INPUT-OUTPUT SECTION.” HEADERS
MISSING.

REQUIRED ELEMENT MISSING -- FOUND
* * .

TERMINAL PERIOD MISSING ON PARA-
GRAPH AND/OR SECTION NAME.

FIRST SECTION OF PROCEDURE
DIVISION MISSING -- IS REQUIRED.

LEVEL INDICATOR MUST START iN
COLUMNS 8-11.

TERMINAL PERIOD OF PRECEDING
STATEMENT MISSING.

This error applies to the Environment
Division.

|_LINE

ERROR

NUMBER TYPE

nnnn

nnnn

nnnn

nnnn

annn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

F

ERROR
CODE
CB02050
CB02051

CB02052

CB02053

CB02054

CB02055
CB02056

CB02059

CB02060

CB02061
CB02062
CB02063

CB02064

CB02066

CB02067
CB02068

CB02069
CB02070
CB02071

CB02072

CLAUSE
NAME

H-8

MESSAGE TEXT

ILLEGAL OR MISSING ELEMENT
PRECEDING * *. '

‘CONFIGURATION SECTION.” AND
‘SOURCE-COMPUTER.’ HEADERS MISSING.

‘CONFIGURATION SECTION.’, 'SOURCE-
COMPUTER.’ AND ‘OBJECT-COMPUTER.’
HEADERS MISSING.

‘OBJECT-COMPUTER.” AND ‘INPUT-
OUTPUT SECTION.” HEADERS MISSING.

‘OBJECT-COMPUTER.” AND *SPECIAL.-
NAMES.” HEADERS MISSING.

ILLEGAL ELEMENT IN STATEMENT * *,

FORMAT ERROR -- ILLEGAL ELEMENT IN
COLUMNS 8-11.

REDEFINES CLAUSE MUST BE FIRST IN
DATA DESCRIPTION.

ILLEGAL LEVEL NUMBER -- TREATED AS
LEVEL 50.

‘FILE SECTION." HEADER MISSING.
ILLEGAL CLAUSE * *,

SECTION HEADER MISSING -- WORKING-
STORAGE ASSUMED.

RECORD DESCRIPTION FOR LAST FD
ENTRY MISSING.

DATA ITEM DESCRIPTION ENTRY NOT
ALLOWED UNDER AN FD-ENTRY.

LAST FD ENTRY INCOMPLETE.

FD CLAUSE NOT ALLOWED IN RECORD
DESCRIPTION ENTRY.

FILE-NAME ILLEGAL OR MISSING.
FD LEVEL INDICATOR MISSING.

ILLEGAL LEVEL NUMBER IN RECORD
DESCRIPTION ENTRY.

LEVEL NUMBER MISSING -- RECORD
DESCRIPTION ENTRY NOT PROCESSED.

LINE

ERROR

NUMBER TYPE

nnnn

nnmm

nnnn
nnnn

nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn

nnon

nnnn

nnnn

nnnn
nnnn
nnnn
nnnn

nnnn

F

ERROR
CODE

CB02074

CB02075

CB02077
CB02078
CB02079

CB02080

CB02081

€B02082

CB02084

CB02085

CB02086

€B02087

CB02088
CB02089

CB02092
CB02093

CB02094

CB02095

CB02101

CB02102

CLAUSE
NAME

MESSAGE TEXT
FD ENTRY ILLEGAL OUTSIDE FILE
SECTION - FILE DESCRIPTION NOT
PROCESSED. '

FD CLAUSE MISPLACED -- SKIP TO NEXT
CONTROL.

LABEL CLAUSE OF FD ENTRY MISSING.
EXPECTED DATA-NAME -- FOUND * *,

‘FILE SECTION.” HEADER DUPLICATED -
HEADER IGNORED.

‘FILE SECTION." HEADER DUPLICATED -
WORKING-STORAGE ASSUMED.

FILE SECTION OUT OF ORDER -- MUST
BE FIRST SECTION OF DATA DIVISION.

FILE SECTION DUPLICATED -- SECTION

- IGNORED.

‘WORKING-STORAGE SECTION.” HEADER
DUPLICATED -- HEADER IGNORED.

WORKING-STORAGE SECTION MUST
PRECEDE LINKAGE SECTION.

WORKING-STORAGE SECTION
DUPLICATED -- SECTION IGNORED.

‘LINKAGE SECTION." HEADER
DUPLICATED -- HEADER IGNORED.

DUPLICATE IMPLEMENTOR NAME * *,

PICTURE STRING ERROR AT CHARACTER
POSITION * *,

THE PICTURE HAS NO DATA LENGTH.

DATA LENGTH OF A.NUMERIC CANNOT
EXCEED 18 DIGITS.

DATA LENGTH OF AN ALPHA CANNOT
EXCEED 16383 BYTES.

ELEMENT LENGTH OF EDITED DATA
CANNOT EXCEED 144 BYTES.

TERMINAL PERIOD AND PARAGRAPH
NAME MISSING.

NUMERIC PARAGRAPH NAME MUST BE
AN UNSIGNED INTEGER.

LINE ERROR ERROR CLAUSE
NUMBER TYPE CODE NAME MESSAGE TEXT

nnnn F £B02103 PRIORITY NUMBER MUST BE AN UN-
SIGNED INTEGER LESS THAN 100.

nnnn F €B02104 PARAGRAPH NAME MISSING.

EXIT statement is not followed by a
paragraph. EXIT must be only statement in

paragraph.

nnnn F CB02105 ILLEGAL ELEMENT IN SUBSCRIPT LIST --
FOUND * *,

nnnn F CB02107 INCOMPLETE SUBSCRIPT LIST -
FOUND * *,

nnnn F €B02108 NUMERIC LITERAL USED IN SUBSCRIPT
MUST BE AN UNSIGNED INTEGER.

nnnn F CB02109 TOO MANY SUBSCRIPT ELEMENTS.

nnnn F- CB02110 ILLEGAL ARITHMETIC OPERATOR IN
SUBSCRIPT * *,

nnnn F CB02111 RIGHT PAREN MISSING ON SUBSCRIPT.

nnnn F CB02112 IF STATEMENT MUST BE FOLLOWED BY
AN ELSE STATEMENT OR A TERMINAL
PERIOD.

nnnn F ¢B02113 ELSE STATEMENT DOES NOT HAVE A
CORRESPONDING IF.

nnnn F CB02114 ILLEGAL USE OF NESTED {F STATEMENT.

nnnn F CB02116 PRIORITY-NUMBER MUST NOT EXCEED
2 DIGITS.

nnnn w CB03001 * *IN DATA RECORDS CLAUSE NOT
DEFINED AT LEVEL 01.

nnnn F CB03002 FILE-NAME * * REFERENCED AS

: DATA-NAME.

nnnn F CB03003 INVALID SYSTEM-NAME * *,

nnnan U CB03004 FILE-NAME * * REFERENCED AS
PROCEDURE-NAME.

nnnn F CB03005 ' FILE-NAME * * REFERENCED AS
MNEMONIC-NAME.

nnnn F CB03006 NUMERIC LITERAL * *TOO SMALL.

nnnn F CB03007 NUMERIC LITERAL * * TOO LARGE.

nnnn F CB03008 LITERAL * * MUST BE AN UNSIGNED

» INTEGER.

H-10

LINE

ERROR

NUMBER TYPE

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

E
w

ERROR
CODE

CBC3009
CB03010
CB03011

€B03012

CB03013

CB0O3014
CB03015
CB03016

CB03017

CB03018

CB03019

CB03020

CB03021

CB03022

CB03023

CB03024

CB03025

CB03026

CB03027

CB03028

CLAUSE
NAME

H-11

MESSAGE TEXT
MISSING NUMERIC LITERAL.
DUPLICATE DATA-RECORD NAME * *,

INDEX-NAME CANNOT BE SUBSCRIPTED --
SUBSCRIPT DROPPED. -

DATA-NAME * * REFERENCED AS
FILE-NAME.

INDEXING CANNOT BE MIXED WITH
SUBSCRIPTING.

ILLEGAL RELATIVE SUBSCRIPT.
MORE THAN 255 INDEXES DEFINED.

DATA-NAME * * REFERENCED AS
PROCEDURE-NAME.

DATA-NAME * * REFERENCED AS
MNEMONIC-NAME.

INDEX-NAME * * REFERENCED AS
FILE-NAME.

INDEX-NAME * * REFERENCED AS
PROCEDURE-NAME.

INDEX-NAME * * REFERENCED AS
MNEMONIC-NAME.

MNEMONIC-NAME * * REFERENCED
AS FILE-NAME.

MNEMONIC-NAME * * REFERENCED
AS DATA-NAME.

MNEMONIC-NAME * * REFERENCED
AS PROCEDURE-NAME.

REFERENCE TO UNDEFINED FILE-
NAME * *,

REFERENCE TO UNDEFINED DATA-
NAME * *,

REFERENCE TO UNDEFINED
MNEMONIC-NAME * *,

MULTIPLE DEFINITION OF * *#
FIRST DEFINITION USED.

INDEX-NAME * * NOT A VALID
FIRST SUBSCRIPT.

LINE

ERROR

NUMBER TYPE

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

F

ERROR

CODE

CB03029

CB03030

CB03031

CB03032

CB03033

CB03034

CBO03035

CB04001

CB04002

CB04003

CB04004

CB04006

€B04008

CB04009

CB04010

CLAUSE

NAME

H-12

MESSAGE TEXT

INDEX NAME * * NOT A VALID
SECOND SUBSCRIPT.

INDEX-NAME * * NOT A VALID THIRD
SUBSCRIPT.

INDEX-NAME * * REFERENCED AS
DATA-NAME.

DATA-NAME * * ALSO REFERENCED
AS PROCEDURE.

INDEX-NAME * * ALSO DEFINED AS
PROCEDURE.

MNEMONIC-NAME * * ALSO DEFINED
AS PROCEDURE.

FILE-NAME * * ALSO DEFINED AS
PROCEDURE.

RELATIVE ORGANIZATION ILLEGAL
wiTh * | UNIT RECORD DEVICE,]*
MAGNETIC TAPE DEVICE.] *

INDEXED ORGANIZATION ILLEGAL
WITH * UNIT RECORD DEVICE. |
MAGNETIC TAPE DEVICE. |

*

MULTIPLE REEL INCONSISTENT
WITH * MASS STORAGE DEVICE. |,
UNIT RECORD DEVICE.)

MULTIPLE UNIT INCONSISTENT
WITH * MAGNETIC TAPE DEVICE. | ,
UNIT RECORD DEVICE. ’

ACCESS MODE RANDOM IS ILLEGAL
MAGNETIC TAPE DEVICE.

WITH * 1 UNIT RECORD DEVICE.
SEQUENTIAL ORGANIZATION.

FILE-LIMITS CLAUSE IS INVALID
MAGNETIC TAPE DEVICE.
UNIT RECORD DEVICE.
INDEXED ORGANIZATION.
SEQUENTIAL ORGANIZATION.

WITH *

B

ACTUAL KEY CLAUSE IS REQUIRED WITH

RANDOM ACCESS.

ACTUAL KEY CLAUSE IS INVALID
MAGNETIC TAPE DEVICE.

WITH * {1 UNIT RECORD DEVICE.
SEQUENTIAL ORGANIZATION.

LINE

ERROR

NUMBER TYPE

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

w

ERROR
CODE

CB04011

CB04012

CB04013

CB04014

CB04015

CB04021

€B04021

CB04021

CB04021

CB04021

CLAUSE
NAME

RERUN

BLANK

JUSTIFIED

SYNCHRO-
NIZED

VALUE

REDEFINES

H-13

MESSAGE TEXT

FORWARD KEY CLAUSE IS INVALID
MAGNETIC TAPE DEVICE.

UNIT RECORD DEVICE.

WITH *§ SEQUENTIAL ORGANIZATION. ¢ *.
RELATIVE ORGANIZATION.
RANDOM ACCESS.

ALTERNATE AREAS ARE NOT AVAILABLE
WITH * INDEXED ORGANIZATION.| ,
RANDOM ACCESS. ’

RELATIVE ORGANIZATION

* 1 INDEXED ORGANIZATION * ILLEGAL
UNIT RECORD DEVICE

WHEN USED FOR THE RERUN FILE.

INDEX-BLOCK SIZE IS REQUIRED WITH
INDEXED ORGANIZATION.

INDEX-BLOCK SIZE IS ILLEGAL

UNIT RECORD DEVICE.
MAGNETIC TAPE DEVICE. *
RELATIVE ORGANIZATION.)
SEQUENTIAL ORGANIZATION.

WITH *

CLAUSE ILLEGAL WITH
(ALPHANUMERIC ITEM. \
ALPHABETIC ITEM.
ALPHANUMERIC EDITED ITEM.
COMP-3/PACKED USAGE. *,
COMP/BINARY USAGE.

INDEX USAGE.

OCCURS DEPENDING ON.
\GROUP ITEM.)

ALK
'y

CLAUSE ILLEGAL WITH
(NUMERIC ITEM. }
ALPHANUMERIC EDITED ITEM.
NUMERIC EDITED ITEM.
COMP-3/PACKED USAGE. L *,
COMP/BINARY USAGE.

INDEX USAGE.

OCCURS DEPENDING ON.
\GROUP ITEM.)

A

CLAUSE ILLEGAL WITH
" {INDEX USAGE. | «
GROUP ITEM. ’

CLAUSE ILLEGAL WITH
INDEX USAGE.

* {OCCURS. - *
REDEFINES.

CLAUSE ILLEGAL WITH OCCURS
DEPENDING ON.

LINE

ERROR

NUMBER TYPE

nnnn

nnnn

nnnn

nann

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

F
F

ERROR
CODE

CB04021
CB04021

(CB04022

CB04022

CB04023

CB04024

CB04025

CB04026

CB04027

CB04028

CB04029

CB04030

CLAUSE

NAME

OCCURS

PICTURE

BLANK

» JJUSTIFIED
SYNCHRO-

NIZED

VALUE

USAGE

USAGE

VALUE

VALUE

REDEFINES

H-14

MESSAGE TEXT
CLAUSE ILLEGAL WITH 01 OR 77 LEVEL.

CLAUSE ILLEGAL WITH
+ JINDEX USAGE.| ,
GROUP ITEM.)

*CLAUSE ILLEGAL WHEN SUBORDINATE
TO ITEM WITH VALUE.

CLAUSE ILLEGAL WHEN SUBORDINATE
REDEFINES.

TO ITEM WITH * § OCCURS. *
VALUE.

COMP OR COMP-3 IS ILLEGAL WITH
ALPHANUMERIC ITEM.

» JALPHABETIC ITEM. *
ALPHANUMERIC EDITED ITEM.
NUMERIC EDITED ITEM.

COMP, COMP-3, OR INDEX 1S ILLEGAL
WHEN SUBORDINATE TO ITEM WITH
VALUE CLAUSE.

NUMERIC LITERAL ILLEGAL WITH
ALPHANUMERIC ITEM.)
ALPHABETIC ITEM.

* 4 ALPHANUMERIC EDITED ITEM.
NUMERIC EDITED ITEM. |
GROUP ITEM.)

. ALPHANUMERIC LITERAL ILLEGAL
NUMERIC ITEM.
WITH * { COMP-3/PACKED USAGE. } *.
COMP/BINARY USAGE.

FIGURATIVE CONSTANT OF

‘ZERO’ IS ILLEGAL WITH
ALPHABETIC ITEM.

* {ALPHANUMERIC EDITED ITEM.}*.
NUMERIC EDITED ITEM.

OCCURS DEPENDING ON ILLEGAL
WHEN SUBORDINATE TO ITEM WITH
. |REDEFINES| .,

OCCURS l CLAUSE.

PICTURE REQUIRED FOR ELEMENTARY
ITEM.

CLAUSE INVALID FOR 01 RECORD
DESCRIPTION - REDEFINES CLAUSE
IGNORED.

LINE

ERROR

NUMBER TYPE

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nonn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

F

ERROR
CODE

CB04031

CB04032

CB04033

CB04034

CB04035

CB04038

CB04039

CB04040

CB04041

CB04042

CB04043

CB04044

CB04045

CB04046

CB04047

CLAUSE

NAME

OCCURS

OCCURS

USAGE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

H-15

MESSAGE TEXT

THIS ITEM WOULD REQUIRE OVER 3
LEVELS OF SUBSCRIPTING -- OCCURS
CLAUSE DROPPED. ‘

MORE THAN ONE DEPENDING ON IN
THE SAME RECORD IS NOT ALLOWED --
IGNORED.

ELEMENTARY ITEM USAGE IN-
CONSISTENT WITH USAGE OF
DOMINANT GROUP -- GROUP USAGE
ASSUMED.

CLAUSE CANNOT BE SPECIFIED IN A
RECORD WHEN DEPENDING ON OPTION
WAS SPECIFIED.

CLAUSE INVALID FOR ITEMS IN
FILE SECTION OR LINKAGE SECTION.

FILE LABEL ID EXCEEDS 17 CHARAC-
TERS -- FIRST 17 CHARACTERS USED.

MODIFICATION-CODE LITERAL EXCEEDS
4 CHARACTERS -- FIRST 4 CHARAC-
TERS USED.

NUMERIC LITERAL FOR
LABEL ID

* {RETENTION-PERIOD * MUST BE
MODIFICATION CODE

POSITIVE INTEGER -- VALUE DROPPED.

NUMERIC LITERAL FOR

« | RETENTION-PERIOD
MODIFICATION-CODE }* EXCEEDS

4 DIGITS - FIRST 4 DIGITS ARE USED.

FIGURATIVE CONSTANT SPECIFIED FOR
RETENTION-PERIOD IS ILLEGAL -- ONLY
ZERO ALLOWED.

ILLEGAL LEVEL NUMBER HIERARCHY
WITHIN RECORD DESCRIPTION.

LABEL VALUE SPECIFIED FOR FILE

WITH LABEL OMITTED.

FIRST LEVEL NUMBER OF RECORD
DESCRIPTION MUST BE 01.

FIRST LEVEL NUMBER FOLLOWING 77
MUST BE 01.

77 ILLEGAL IN FILE SECTION -
CHANGED TO 49.

LINE

ERROR

NUMBER TYPE

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

F

w

ERROR
CODE
CB04048

CB04049

CB04050

CB04051

CB04052

CB04053

CB04054

CB05001

CB05002

CB05003

CB05004

CB05005

CB05006

CB05007
CB05008

€B05009
CBO5010
CBO05011

CBO05012

CLAUSE
NAME

PICTURE

PICTURE

PICTURE

H-16

MESSAGE TEXT

77 MUST PRECEDE RECORD -- CHANGED
TO 49.

SIZE OF THIS BINARY ITEM IS CHANGED
TO* [g! * DIGITS.

SIZE OF THIS BINARY ITEM EXCEEDS
8 DIGITS - CHANGED TO 8.

BINARY ITEM IS NOT A SIGNED INTEGER.
LEFT
LITERAL VALUE * ‘RIGHT *

TRUNCATED TO PICTURE SIZE -
SIGNIFICANT DIGITS ARE LOST.

ITEM IS UNSIGNED -- SIGN OF VALUE
CLAUSE LITERAL IS DROPPED.

VARIABLE PORTION OF RECORD MUST
BE AT END OF RECORD.

DUPLICATE SYSTEM ID’S IN SELECT
SENTENCE -- SENTENCE IGNORED.

SYSTEM ID CANNOT BE SPECIFIED AS A
FILE AND AS A RERUN DEVICE -
IGNORED.

FILE SPECIFIED IN SAME AREA CLAUSE
MORE THAN ONCE -- LAST SPECIFICATION
USED.

NUMBER OF FILES EXCEEDS THE MAXI-
MUM OF 16.

NO FILE DESCRIPTION TO MATCH
SELECT ENTRY.

INVALID ACTUAL KEY - KEY DROPPED.
INVALID FORWARD KEY -- KEY DROPPED.

DATA-NAME CANNOT BE SUBSCRIPTED -
SUBSCRIPT DROPPED.

SUBSCRIPT ERROR -- SUBSCRIPT DROPPED.
ACTUAL KEY MISSING.

SUBSCRIPT CANNOT BE AN OCCURRING
I'TEM -- SUBSCRIPT DROPPED.

FORWARD KEY MUST BE PRESENT
WITH A START VERB.

LINE

ERROR

NUMBER TYPE

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

F

ERROR
CODE
CB05013
CB05014
CB05014
CB05014
CB05015
CB05016
CB05017
CB05017
CB05017
CB05018
CB05018
CB05018
CB05018

CBO5018

CB05018
CBO5019

CB05019

CB05019

CLAUSE

NAME

CLOSE

READ

START

SEEK

SEEK

DELETE

REWRITE

START

DELETE

OPEN

READ

SEEK

REWRITE

START

CLOSE

DELETE

OPEN

MESSAGE TEXT

DATA-NAME IS NOT A RECORD AREA --
DATA-NAME DROPPED.

UNIT INVALID FOR RANDOM ACCESS
MODE. '

AT END INVALID FOR RANbOM
ACCESS MODE.

CLAUSE INVALID FOR RANDOM
ACCESS MODE.

CLAUSE REQUIRES ACCESS MODE
RANDOM CLAUSE.

CLAUSE INVALID FOR INDEX
ORGANIZATION,

CLAUSE INVALID FOR RELATIVE
ORGANIZATION.

CLAUSE INVALID FOR RELATIVE
ORGANIZATION.

CLAUSE INVALID FOR RELATIVE
ORGANIZATION.

CLAUSE INVALID FOR SEQUENTIAL
ORGANIZATION.

I/0 INVALID FOR SEQUENTIAL
ORGANIZATION.

INVALID KEY INVALID FOR SEQUENTIAL
ORGANIZATION.

CLAUSE INVALID FOR SEQUENTIAL
ORGANIZATION.

CLAUSE INVALID FOR SEQUENTIAL
ORGANIZATION.

CLAUSE INVALID FOR SEQUENTIAL
ORGANIZATION.

UNIT
* Y NO REWIND ¢ * INVALID FOR UNIT
REEL
RECORD FILES.

CLAUSE INVALID FOR UNIT RECORD
FILES.

« {10
‘NO REWIND * INVALID FOR UNIT

RECORD FILES,

LINE

ERROR

NUMBER TYPE

nnnn
nnnn
nnnn
nnnn
nnnn

nnnn
nnnn
nnnn
nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

F

m mn -

ERROR
CODE
€B05019
CB05019
CB05019
CB05019

CB05019

€B05020
CB05020
CB05020
€B05020
€B05020

¢B05020

CB05020
€B05020

(€B05021
CB05021
€B05021

€B05022
CB05023

€B05024

CLAUSE

NAME

READ

SEEK

WRITE

REWRITE

START

CLOSE
DELETE
OPEN
READ
SEEK

WRITE

REWRITE
START

CLOSE

OPEN

WRITE

H-18

MESSAGE TEXT

INVALID KEY INVALID FOR UNIT
RECORD FILES.

CLAUSE INVALID FOR UNIT RECORD
FILES.

INVALID KEY INVALID FOR UNIT
RECORD FILES.

CLAUSE INVALID FOR UNIT RECORD
FILES.

CLAUSE INVALID FOR UNIT RECORD
FILES.

UNIT INVALID FOR TAPE FILES.
CLAUSE INVALID FOR TAPE FILES.
I/0 INVALID FOR TAPE FILES.
INVALID KEY INVALID FOR TAPE FILES.
CLAUSE INVALID FOR TAPE FILES.
BEFORE

AFTER
TAPE FILES.

INVALID KEY
* * INVALID FOR

CLAUSE INVALID FOR TAPE FILES.
CLAUSE INVALID FOR TAPE FILES.

REEL * INVALID FOR MASS

STORAGE FILES.

‘NO REWIND

NO REWIND INVALID FOR MASS
STORAGE FILES.

« | BEFORE
{AFTER * INVALID FOR MASS

STORAGE FILES.

FIRST ELEMENTARY ITEM OF A RE-
DEFINES MUST HAVE EVEN ADDRESS
WHEN SYNCHRONIZED.

REDEFINES LENGTH IS NOT EQUAL TO

THE REDEFINED LENGTH -- THE LARGER

IS USED.

INTRA-RECORD SLACK BYTE INSERTED
PRIOR TO THIS ITEM.

LINE

ERROR

NUMBER TYPE

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn
nnnn

nnnn

F

w

ERROR
CODE
CB05025
CB05026
CB05027

CB05028

CB05029

CB05030
CB05031
CB05032

CB05033

CB05034

- CB05035

CB05036
CB05037
CB05038

CB05039
CB05040

CB05041

CLAUSE
NAME

H-19

MESSAGE TEXT

RECORD SIZE EXCEEDS 16383 -- 16383
IS USED.

RECORD SIZE IS LESS THAN STATED
MINIMUM -- COMPUTED SIZE USED.

RECORD SIZE IS GREATER THAN STATED
MAXIMUM -- COMPUTED SIZE USED.

INVALID DATA-NAME SPECIFIED IN THE
USING STATEMENT.

FORWARD KEY AND ACTUAL KEY ARE
NOT EQUAL IN LENGTH -- ACTUAL KEY
LENGTH USED.

INDEXED FILES CANNOT HAVE
VARIABLE LENGTH RECORDS.

BLOCK SIZE MUST BE AN EVEN NUMBER
OF BYTES -- ONE BYTE ADDED.

ACCESS MODE MUST BE SEQUENTIAL --
STATEMENT DROPPED.

A VALUE CLAUSE CANNOT BE SUB-
ORDINATE TO ANOTHER VALUE
CLAUSE -- SECOND DROPPED.

REDEFINED ITEMS MUST HAVE EQUAL
LEVEL NUMBERS -- REDEFINES IGNORED.

REDEFINES AREA MUST IMMEDIATELY
FOLLOW THE REDEFINED AREA --
REDEFINES IGNORED.

THE REDEFINED ITEM CANNOT BE
SUBORDINATE TO OR HAVE AN
OCCURS CLAUSE.

THE REDEFINED ITEM CANNOT BE
SUBORDINATE TO OR HAVE A RE-
DEFINES CLAUSE.

REDEFINED ITEM CANNOT HAVE AN
OCCURS DEPENDING ON CLAUSE
SUBORDINATE TO IT -- IGNORED.

LEFT TRUNCATION WiLL OCCUR ON
AL!IT OR GROUP ITEM LITERAL.

RIGHT TRUNCATION WILL OCCUR ON
ALIT OR GROUP ITEM LITERAL.

ID LABEL DATA-NAME INVALID -
DROPPED.

Bulletin: 2202.002-0001
Date: 3/19/73

LINE ERROR ERROR CLAUSE
NUMBER TYPE CODE NAME MESSAGE TEXT

nnnn F CB05042 RETENTION PERIOD LABEL DATA-NAME
INVALID -- DROPPED.

nnnn F CB05043 MODIFICATION CODE DATA-NAME
INVALID -- DROPPED.

nnnn F CB05044 THE BLOCK SIZE IS NOT LARGE ENOUGH
TO FIT ONE RECORD.

nnnn F CB05045 BLOCKING FACTOR EXCEEDS 255
RECORDS.

nnnn w CB05046 INTER-RECORD SLACK BYTE INSERTED
PRIOR TO THIS RECORD.

nnnn w CB05047 INTRA-RECORD SLACK BYTE INSERTED
FOLLOWING TH{S GROUP.

nnnn F CB05048 INVALID DATA NAME SUBSCRIPT.
Subscript not defined as a numeric integer.

nnnn F CBO05049 THIS LEVEL MUST BE SUBORDINATE
TO THE ABOVE DEPENDING ON.

nnnn F CBOE&050 INVALID DEPENDING ON ID.

nnnn F CB0L051 INVALID KEY MISSING.

nnnn w CB05052 ACTUAL KEY CANNOT EXCEED 8
DIGITS -- POSSIBLE TRUNCATION.

nnnn F CB05053 WORKING-STORAGE EXCEEDS 65K8B.

nnnn F CB05054 RESIDENT LITERAL POOL EXCEEDS
65KB.

nnnn F CB05055 MORE THAN 255 77 AND 01 RECORD
LEVELS IN LINKAGE SECTION.

nnnn - F CB05056 RERUN SYSTEM ID REPLACED WITH
SYSCHK.

nnnn F CB05057 BLOCK SIZE EXCEEDS 7294 CHARACTERS.

nnnn F CB05058 BLOCK SIZE LESS THAN 18 CHARACTERS.

nnnn F CB05059 DATA-NAME MUST BE SUBSCRIPTED --
SUBSCRIPT DROPPED.

nnnn w CB06001 EXIT PROGRAM OR STOP RUN NOT
SPECIFIED. '

nnnn F CB06002 SUBSCRIPT NOT IN RANGE OF TABLE.

nnnn F CB06003 INDEX DATA ITEM OR INDEX NAME
REFERENCE ILLEGAL.

nnnn F CB06004 INDEX DATA ITEM ILLEGAL.

H-20

LINE

ERROR

NUMBER TYPE

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

E
U

Mm M M M

ERROR
CODE

CB06005
CB06006

CB06007

CB06008

CB06009

CB06010

CB06011

CB06012

CB06013

CB06014

CB06015

CB06016

CB06017

CB06018
€B06019
CB06020
CB06021

CB06022

CB06023

CB06024

CLAUSE
NAME

H-21

Bulletin: 2202.002-0001
Date: 3/19/73

MESSAGE TEXT
DATA-NAME CANNOT BE JUSTIFIED.

SYSOUT CANNOT BE USED IN ACCEPT
STATEMENT -- CONSOLE ASSUMED.

INTERMEDIATE RESULTS CANNOT
EXCEED 18 DIGITS.

RECEIVING FIELD MUST NOT BE A
LITERAL OR FIGURATIVE CONSTANT.

EXTERNAL NAME MUST NOT EXCEED
8 CHARACTERS - TRUNCATED TO 8.

SYSIN CANNOT BE USED IN DISPLAY
STATEMENT -- CONSOLE ASSUMED.

NUMERIC LITERAL MUST BE AN INTEGER
IN EXAMINE STATEMENT.

NUMERIC LITERAL MUST BE UNSIGNED
IN EXAMINE STATEMENT.

LITERAL MUST BE 1 CHARACTER IN
EXAMINE STATEMENT.

POSSIBLE TRUNCATION -- IDENTIFIER
MUST BE 3 CHARACTERS OR LESS.

ALPHABETIC TEST CANNOT BE USED
WITH NUMERIC ITEM.

LITERALS OR INDEX NAMES ILLEGAL
IN CLASS CONDITION,

NUMERIC LITERAL MUST BE UNSIGNED
IN SET STATEMENT.

DATA-NAME MUST BE DISPLAY.
DATA-NAME MUST BE NUMERIC.
DATA-NAME MUST BE INTEGER.

MAXIMUM NUMBER OF OPERANDS
EXCEEDED FOR STATEMENT.

NESTED CONDITIONALS NOT ALLOWED
IN THIS LEVEL COBOL.

CLASS OF LITERAL INCONSISTENT
WITH THAT OF IDENTIFIER.

ILLEGAL COMPARISON IN CONDITIONAL
STATEMENT. ‘

Refer to the description of permissible
comparisons in the MRX/OS COBOL
Reference manual.

LINE

ERROR

NUMBER TYPE

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

F
F

ERROR
CODE

CB06025
CB06026

CB06027

CB06028

CB06029

CB06030

CB06031

CB06032

CB06033

CB06034

CB06035

CB06036

CBO06037

CB06038

CB06039

€B06040

CB07001

€B07002
¢B07003

CLAUSE
NAME

H-22

MESSAGE TEXT
NUMERIC ITEM MUST BE INTEGER.

ILLEGAL RECEIVING DATA ITEMIN
MOVE STATEMENT.

Refer to the description of permissible moves
in the MRX/0S COBOL Reference manual.

RECEIVING DATA ITEM MUST BE
INTEGER.

POSSIBLE TRUNCATION OF NUMERIC
DATA ITEM OR NUMERIC LITERAL.

DATA-NAME CANNOT BE USED TO SET
INDEX WHEN UP OR DOWN SPECIFIED.

PROCEDURE NAME IS MULTIPLY
DEFINED.

NUMERIC LITERAL CANNOT BE ZERO
IN SET STATEMENT.

NOT RELATION AND NOT CONDITION
ILLEGAL IN CONDITIONAL STATEMENT.

NUMERIC TEST CANNOT BE USED WITH
AN ALPHABETIC ITEM.

ILLEGAL COMBINATION IN SET
STATEMENT. '

POSSIBLE TRUNCATION -- DATA LENGTH
MUST BE 2 DIGITS OR LESS.

EXIT STATEMENT MUST BE ONLY STATE-
MENT IN PARAGRAPH -- PERTAINS TO
PREVIOUS PARAGRAPH.

LITERAL POOL ALLOCATION EXCEEDS
65KB FOR THIS SEGMENT.

REFERENCE TO UNDEFINED PROCEDURE
NAME.

DATA-NAME MUST BE NUMERIC -- BLANK
WHEN ZERO ILLEGAL.

DISPLAY BUFFER ALLOCATION EXCEEDS
€65KB.

MESSAGE IS NOT AVAILABLE FOR THIS
PASS OR PHASE.

POSSIBLE TRUNCATION.
NUGATORY ROUNDING.

LINE

ERROR

NUMBER TYPE

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

w

ERROR
CODE

CB07004
CBO07005
CB07006
CB07007
CB07008

CB07009

CB07010

CB07011

CB07012
CB07013

CB07014

CB07015

CB09001

CLAUSE
NAME

H-23

MESSAGE TEXT
NUGATORY SIZE ERROR. '
((RESERVE FOR FUTURE MESSAGE)).
((RESERVE FOR FUTURE MESSAGE)).
((RESERVE FOR FUTURE MESSAGE)).

ALTERABLE PERFORM EXIT --GO TO
GENERATED.

An alterable paragraph (contains only a
GO TO statement) is the exit paragraph
of a PERFORM statement. This will
result in the generation of a GO TO
instead of a PERFORM.

ALTER REFERENCE TO A SECTION --
STATEMENT DROPPED.

REFERENCE TO AN UNALTERABLE
PARAGRAPH -- STATEMENT DROPPED.

ALTER STATEMENT USED ACROSS
INDEPENDENT SEGMENTS -- STATEMENT
DROPPED.

((RESERVE FOR FUTURE MESSAGE)).

MAXIMUM NUMBER OF EXTERNAL-
NAMES EXCEEDED -- TOO MANY
CALL STATEMENTS USED.

RESIDENT LITERAL POOL EXCEEDS
65KB.

ILLEGAL USE OF PERFORM STATEMENT
ACROSS SEGMENTS -- PERFORM STATE-
MENT DROPPED.

NUMBER OF REFERENCES EXCEEDS
21,588 -- REMAINING REFERENCES
IGNORED.

COBOL SYSOUT FIL E ERROR MESSAGES

There are four COBOL error messages that can appear on the SYSOUT file after the Control
Language Services statement in error. Each message is preceded by an 8-digit error code that
has the following format: ’

PP| SS|EEE| T

where:
PP is always CB, specifying the COBOL compiler as the source of the error.

SS is always 00 specifying the root of the COBOL compiler as the source of the
error.

EEE s a 3-digit error number specifying the error number within the root.

T is a 1-digit number specifying the type of error. COBOL compiler errors
listed in this file are all type B, which is fatal.

The message text follows the error code.

ERROR CODE MESSAGE TEXT

CB000018 COMPILER ABORT.
This message is printed in the SYSOUT file when
CBOX003 message is issued. As with the CB0X003
error, you should contact a systems engineer when
this error occurs.

CB000028 LIST FILE NOT DEFINED, ABORT.
The ID=LIST keyword parameter specification is
missing from the //DEF statement.

CB000038 INPUT BUFFER TOO LARGE, CANNOT COMPILE.
Not enough memory space was available for the
input buffer. Either increase the size of the partition
or decrease the block size of the input file.

CB000048 IMEM NOT DEFINED, ABORT.
The IMEM= keyword parameter specified on the
//PAR statement cannot be found in the input
library.

H-24

OBJECT-TIME ERROR MESSAGES

COBOL messages that appear in the SYSOUT file specify compiler errors that occur during
execution. When any of the first three errors listed below are encountered, the compiler will
print the message in the SYSOUT file and continue processing. When the last error is
encountered, the compiler will print the message in the SYSOUT file and terminate the
current program by returning control to the calling program. The calling program can be
either another COBOL program or the resident operating system.

ERROR CODE LINE NUMBER ERROR TYPE MESSAGE TEXT
CBOE0618 nnnnn Object Error DATA CHECK
CBOE0028 nnnnn Object Error SUBSCRIPT RANGE ERROR
CBOE0O038 nnnnn | Object Error PARAMETER LIST TOO
SHORT
CBOEO0048 nnnnn Object Error PROGRAM DROP-OFF

The COBOL conripiler supplies the line number (nnnnn) when it prints the message in the
SYSOUT file. The line number refers to the line in the source listing where the error
occurred.

H-25

INDEX

ACCEPT statement
Access methods
random access

and the ACCESS MODE

clause
and the ACTUAL KEY
clause

and the READ statement

of indexed files
of relative files
sequential access

and the ACCESS MODE

clause
and the ACTUAL KEY
clause

and the READ statement
and the START statement

of indexed files

of relative files

of sequential files
ACCESS MODE clause
ACTUAL KEY clause
ADD statement

Alignment, of elementary items

Alphabetic

characters, defined

items, in PICTURE clause
Alphanumeric

characters, defined

edited items, in PICTURE

clause

items, in PICTURE clause
ALTER statement

ALTERNATE AREAS option of

RESERVE clause
Area A, definition
Area B, definition

Arithmetic expression characters

Arithmetic statements
ADD
DIVIDE
GIVING option
MULTIPLY
overlapping operands
ROUNDED option
SIZE ERROR option
SUBTRACT

8-43

6-8

6-8,F-3,F-4
8-37
6-8,F-3
6-8,F-3

68

6-8,F-4
8-37
8-36
6-8,F-3
6-8,F-3
6-8,F-2
6-8

6-8
8-11
7-31

3-3
7-21

3-3

7-23
7-21
8-20

6-6
41
4-1
3-5

8-11
8-16
811
8-14
8-11
8-11
8-1
8-12

Bulletin: 2202.

Date: 3/19/73

ASSIGN clause
Asterisk

in PICTURE clause

used for comments
AUTHOR paragraph
Binary items, in PICTURE
clause
BINARY option of USAGE clause
Blank lines, description
BLANK WHEN ZERO clause
Blanks -
BLOCK CONTAINS clause
Block size, for indexed files

Cataloging
of object program
of source program
CALL statement
Character set
alphabetic characters
alphanumeric characters
arithmetic expression characters
computer characters
editing characters
list
numeric characters
punctuation characters
relation condition characters
special characters
word characters
Character strings
constant
definition
name
NOTE in Procedure Division
PICTURE in Data Division
word
Checkpoint records
CLOSE statement
Comment lines, description
Comparisons (see Relation
condition)
Compiler
input
options
output
Compiler directing sentences
Checkpoint/Restart program

Index-1

002-0001

6-6

7-19
4-4
5-1

7-23
7-34
4-3
7-16
3-3,3-4

3-5

3-7
3-5
3-6
39
39
36
6-15
8-45
4-4

00 = ed =
w&’d—l

6-16,6-16a

Compiler-directing statements

ENTER

NOTE :
COMPUTATIONAL option of
USAGE clause
COMPUTATIONAL-3 option of
USAGE clause
Computer characters
Conditional statements
Conditions

class condition

NOT condition

relation condition

test conditions
Configuration section
Connective, definition
Constants

Literals

Figurative constants
Continuation

of lines

of nonnumeric literals

of words and numeric literals
Control characters
CR symbol, in PICTURE clause
Cross reference list

description

suppression of
CURRENCY SIGN IS clause
Currency symbol, in PICTURE
clause

Data description
data description entries,
definition
data description entry clauses
data item description entries,
definition
record description entries,
definition
maximum record or data item
description entries

Data division

Data item
description
format

Data manipulation statements
EXAMINE
MOVE

Data map
description
suppression of

8-62
8-53

7-34
7-34
3-3
8-2

8-4
8-4

84
6-1
3-6

3-7
3-8

4-1
4-1
4-1
7-19
14
13
6-3

7-19

7-8
79

79

7-38
71

7-8
7-34

8-33
8-29

14
1-3

Data-name clause

Data-names, definition

Data organization

indexed files

access methods
and the ACTUAL KEY
clause
and the DELETE clause
and the FORWARD KEY

clause
and the INDEX-BLOCK
clause
and the START clause
and the REWRITE clause
definition

relative files
access methods
and the ACCESS MODE
clause
and the ACTUAL KEY
clause
and the FILE-LIMIT clause
and the SEEK clause
definition

sequential files
access methods
and the ACCESS MODE
clause
definition
DATA RECORDS clause
DATE-WRITTEN paragraph
DB symbol, in PICTURE clause
Decimal items, description
Decimal point
in character set
in PICTURE clause
DECIMAL POINT IS COMMA
clause
Definitions, in glossary
DELETE statement
DISPLAY ocption of USAGE
clause
DISPLAY statement
DIVIDE statement
Division header, definition

EBCDIC, table

Editing characters
in PICTURE clause
list

Editing, in PICTURE clause
fixed insertion

| Index-2

7-10
3-6

6-8,F-3

6-8
8-42

6-13

6-13
8-36
8-41
F-2

6-8
6-7
8-36
F-2

6-8,F-2

68
F-1

5-1

7-19
7-21

7-18

floating insertion 7-27
simple insertion 7-25
“special insertion 7-26
Zero suppression 7-28
replacement editing 7-28
Elementary item, description 7-24
ELSE statement (see IF statement)
ENTER statement 8-62
Environment division
description : 6-1
maximum use ' 6-18
Error messages H-1
EXAMINE statement 8-33 .
EXIT PROGRAM statement 8-52
EXIT statement 8-28
External decimal items, in
PICTURE clause T 7-21
Figurative constants 3-8
FILE-CONTROL paragraph
clause restrictions 6-14
description 6-4
maximum paragraph 6-15
File description entry
definition 7-3
description ’ 7-5
maximum use 7-8
FILE-LIMIT clause 67
File-names, definition 3-6

File organization (see Data
organization)

File processing summary F-1
File section, description 7-3
FILL.ER clause ' 7-10
Fixed insertion editing 7-26
Floating insertion editing 7-27
FOR MULTIPLE REEL/UNIT

option of ASSIGN clause 6-5
Format notation 2-1
FORWARD KEY clause 6-13
GIVING option 8-11
Glossary of COBOL terms A-1
GO TO statement 8-18
Group item, description 7-24

HIGH-VALUE figurative constants 3-9

Identification division, definition 5-1
ldentifier, definition : 3-6
IF statement 89

Bulletin: 2202.002-0001
Date: 3/19/73

Imperative statements
arithmetic
data manipulation
definition
input/output
procedure branching
subprogram linkage

INDEX-BLOCK clause

INDEX option of USAGE clause

8-10
8-29
8-10
8-34
8-18
8-48
6-13,G-1
7-34

Indexed files (see Data organization)

Indexing, in tables
Index-names, definition
Input-output section

description

maximum use
Input-output statements

ACCEPT

CLOSE

DELETE

DISPLAY

OPEN

READ

REWRITE

SEEK

START

WRITE
INSTALLATION paragraph
I-O CONTROL

description

maximum paragraph
Item size
Internal decimal items, in
PICTURE clause

JUSTIFIED clause
Keyword, definition

LABEL RECORDS clause
Labels
LABEL RECORDS clause
VALUE OF clause
Level .
concept of, in Data Division
indicators
numbers
in data description entries
Linkage section
Listings
error messages
source program listing

Index-3

9-6
3-7

6-4
6-17

8-43
8-45
8-42
8-44
8-35
8-37
8-41
8-36
8-36
8-39
5-1

6-15
6-16a |
7-20

- 7-23

7-16
35
7-7

7-7
7-7

7-2
73
73
79
7-4

H-1
1-4

suppressing source listing 1-2 GO TO 8-18
Literals PERFORM 8-21

Nonnumeric literals 3-8 STOP 8-28

Numeric literals 37 Procedure division 8-1

LOW-VALUE figurative constant 39 Procedure map

MEMORY SIZE clause 6-2 description 1-4

Messages, error H-1 suppression of 1-3

Mnemonic-names, definition 3-6 Procedure-names, definition 3-6

MOVE statement 8-29 PROCESSING MODE clause 6-8

MULTIPLY statement 814 Program flow, COBOL 15

PROGRAM-ID paragraph,

Names, definitions definition 5-1
data-names 36 Program-names, definition 37
file-names 36 Program termination 8-51
index-names 3.7 Punctuation characters 3-3
mnemonic-names 3-6 .
procedure-names 36 Quotation marks
program-names 3.7 defined in character set 3-3,34
system-names 3.7 enclosing non-numeric literals 3-8

NO REWIND option of OPEN QUOTE figurative constant 39

statement 8-35

NOTE statement 853 Random access (see Access methods)

Numeric READ statement 8-37
characters 3.3 Reading/writing files (see Input-
edited items, in PICTURE output statements)
clause 7-24 RECORD CONTAINS clause 76
items, in PICTURE clause Record description entries 7-4

binary 7-23 Recording modes E-1
external decimal 7-21 REDEFINES clause 7-10
internal decimal 7-23 Relation condition

characters 35

OBJECT-COMPUTER paragraph 6-2 comparison of nonnumeric

Object program, location 1-2,1-3 operands 8-6

OCCURS clause comparison of numeric operands 8-6
in the Data Division 7-17,7-38 comparisons of index names
used in table handling 9.8 and/or index data items 8-7

OPEN statement 8-35 permissible comparisons of

Optional word, definition 35 subject and object operands 8-7

Organization of source program 3-1 used in table-handling 91

Overlapping operands 8-11 Relative files (see Data

organization)

Packed decimal 7-34 REMARKS paragraph 51

PACKED option of USAGE clause 7-34 Replacement editing 7-28

Paragraphs, definition 4-3 RERUN clause 6-15

PARAMETER statement 1-1 RESERVE clause 6-6

PERFORM statement 8-21 Reserved words

PICTURE clause 7-17 definition 3-5

Priority numbers, in SECTION list C-1

statement 9-14 Rewind (see OPEN statement)

Procedure branching statements REWRITE statement 8-41
ALTER 8-20 ROUNDED option 8-11
EXIT 8-28 Right margin (RMARG)

specification 1-2

Index-4

SAME AREA clause
Section header, definition
SECURITY paragraph
SEEK statement
SEGMENT LIMIT clause
Segmentation
and the ALTER statement
and the PERFORM statement
fixed portion
independent segments
organization of Procedure
Division
segment classification
segmentation control
SEGMENT LIMIT clause
structure of program segments
priority numbers
restrictions on program flow
SELECT clause
Sentences, definition
Sequence numbers
Sequential access (see Access
methods)
Sequential files (see Data
organization)
SET statement
used in table handling
Simple insertion editing
SIZE ERROR option
Slack bytes
inter-record
intra-record
Slash (stroke), used for comments
SOURCE-COMPUTER paragraph
Source program
error messages
input to compiler
library faciiity
listing, description
location
Spaces, in character set
Spacing
on source listing
SPACE figurative constant
Special characters
Special features
segmentation
source program library
table handling
Special insertion editing
SPECIAL-NAMES paragraph
Special registers
START statement

6-16a
4-3
5-1
8-36
9-15

9-15
9-156
9-13
9-13

9-13
9-14
9-14
9-15
9-14
9-14
9-15
6-5

83

4-1

Bulletin: 2202.002-0001
Date: 3/19/73

Statements
compiler directing 8-2
conditional 8-2
imperative 8-2
"~ STOP statement 8-28
Structure of source program 31
Subprogram linkage statements
CALL 8-48
EXIT PROGRAM 8-52
Subscripting
in tables 9-3
subscript checking 1-3
SUBTRACT statement 8-12
Suppression and replacement
editing 7-28
Symbols
repetition of 7-19
used in PICTURE clause 717
SYNCHRONIZED clause 7-31
System-names, definition 3-7

Table handling
Data Division considerations

OCCURS clause 9-8
USAGE clause 9-10
defining a table 9-1
indexing 9-5
Procedure Division considerations
relation condition 9-11
SET statement 9-12
references to table items 9-3
subscripting 9-3
TALLY register 3-10,8-33
USAGE clause
description 7-34
used in table handling 9-10
USING clause
in a CALL statement 8-48
in the Procedure Division header 8-1,8-49
VALUE clause 7-36
VALUE OF clause 7-7
Word
connective 3-6
definition 33
keywords 3-5
optional words 35
reserved words
definition 356
list C-1

Index-5

Working-storage section 7-4
WRITE statement 8-39
~ Writing/reading files (see Input-

output statements)

ZERO figurative constant 39
Zero suppression and replacement
editing 7-28

Index-6

COMMENTS FORM

I ‘ - MRX/0S COBOL Reference Manual (2202.002) : I

Please send us your comments, to help us produce better publications. Use the space below to
qualify your responses to the following questions, if you wish, or to comment on other aspects of
the publication. Please use specific page and paragraph/line references where approprcate All
comments become the property of the Memorex Corporation.

Yes No
° Is the material:

Easy to understand?t e e (m] (A
Conveniently organized? a a
Complete? i i i e e e e e e e e e e (o]]
Well iliustrated? e e e e e e e e e e a 0
Accurate? e e e e e e e e e e e e e e e e] a
Suitable for its intended audience?. a a
Adequately indexed?t a o

® For what purpose did you use this publication? (reference, general interest, etc.)

® Please state your department’s function:

e Please check specific criticism(s), give page number(s), and explain below:

O Clarification on page(s)

Addition on page(s)

(m]
O Deletion on pagels)
a

Error on page(s)

First Class

Permit No. 14831
Minneapolis,
Minnesota 55427

No Postage Necessary if Mailed in the United States

=
nn
g Business Reply Mail
O

Postage Will Be Paid By

- .
E—J/Q) Memorex Corporation

Midwest Operations — Publications
| | . 8941 Tenth Avenue North
Minneapolis, Minnesota 55427

Thank you for your information.

Our goal is to provide better, more useful manuals, and your
comments will help us to do so.

.......... Memorex Publications

Publications Bulletin

2202.002-0001
3/19/73

Ralease 2 Update Package for:

MRX/0S COBDL Level 1
Reference Manual
2202.002

This bulletin advises of changes that have occurred to the COBOL Reference Manual
since the November 1972 edition was issued. New and replacement pages are pro-
vided where required.

Pages Action
Front Cover Replace
v and vi Replace
1-1 thru 1-4 Replace
3-1 thru 3-6 Replace
6-3 and 6-4 Replace
6-9 and 6-10 Replace
6-15 and 6-16 Replace
6-16a Add
6-17 and 6-18 Replace
8-5 and 8-6 Replace
8-27 and 8-28 Replace
8-37 thru 8-40 Replace
8-45 and 8-46 . Replace
9-7 and 9-8 Replace
G-1 thru G-6 Replace
H-1 thru H-4 Replace
H-4a Add
H-7 and H-8 Replace
H-19 thru H-22 Replace
index-1 thru Index-6 Replace

Technical changes to text, tables, and figures are marked with a vertical bar in the -
outer margin.

Pages containing non-technical changes (page layout, spelling corrections) are indicated
by a bar opposite the page number.

Please file this bulletin with the publication to retain a record of changes.

Sequence Number: M101

XekalOsIN

walsAg J9ndwo)

sjonpoid

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-16a
	6-17
	6-18
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	8-43
	8-44
	8-45
	8-46
	8-47
	8-48
	8-49
	8-50
	8-51
	8-52
	8-53
	8-54
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	G-02a
	G-03
	G-04
	G-05
	G-06
	H-01
	H-02
	H-03
	H-04
	H-04a
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	H-19
	H-20
	H-21
	H-22
	H-23
	H-24
	H-25
	H-26
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	Index-6
	replyA
	replyB
	updateMar73

