Meils l/M Ware”

INCORPORATED

High C ™

Language Reference Manual

Version 1.2

by MetaWare™ Incorporated

High C ™

Language Reference Manual

Version 1.2

© 1984-85, MetaWare™ Incorporated, Santa Cruz, CA
All rights reserved

NOTICES

The software described in this manual is licensed, not sold. Use of the soft-
ware constitutes agreement by the user with the terms and conditions of the
End-User -License Agreement packaged with the software. Read the Agreement
carefully. Use in violation of the Agreement or without paying the license
fee is unlawful.

Every effort has been made to make this manual as accurate as possible. How-
ever, MetaWare Incorporated shall have no liability or responsibility to any
person or entity with respect to any liability, loss, or damage caused or
‘alleged to be caused directly or indirectly by this manual, including but not
limited to any interruption of service, loss of business or anticipated
profits, and all direct, indirect, and consequential damages resulting from
the use of this manual and the software that it describes.

Metaware Incorporated reserves the right to change the specifications and
characteristics of the software described in this manual, from time to time,
without notice to users. Users of this manual should read the file named
“README” contained on the distribution media for current information as to
changes in files and characteristics, and bugs discovered in the software.
Like all computer software this program is susceptible to unknown and un-
discovered bugs. These will be corrected as soon as reasonably possible but
cannot be anticipated or eliminated entirely. Use of the software is subject
to the warranty provisions contained in the License Agreement.

A. M. D. G.
Trademark Acknowledgments
The termés? ~ 1is a trademark of
High C, aware MetaWare Incorporated
MS-DOS Microsoft Corporation (registered tm.)
Professional Pascal MetaWare Incorporated
UNIX AT&T Bell Laboratories

v.10.15.85 © 1983-85 Metaware Incorporated

Feedback, Please

(Upon first reading.)

We would greatly appreciate your ideas regarding im-
‘provement of the language, its compiler, and its documen-
tation. Please take time to mark up the manual on your first
reading and make corresponding notes on this page (front and
back) and on additional sheets as necessary. Then mail the
results to:

MetaWare™ Incorporated
412 Liberty Street
Santa Cruz, CA 95060

MetaWare may use or distribute any information you supply
in any way it believes appropriate without incurring any obli-
gation whatever. You may, of course, continue to use that
information. If you wish a reply, please provide your name and
address. Thank you in advance, The Authors.

Page Comment

v.09.15.85 © 1983-85 Metaware Incorporated

Feedback, Please

Page Comment

v.09.15.85 . © 1983-85 MetaWare Incorporated

Temporarily, this manual has
been printed via dot matrix
rather than typeset.

The manual is expected to be
typeset soon, after some feed-
back comes in from early custo-
mers.

Since such things often get
delayed, please be sure to send in
your feedback as soon as possible
— if your suggestions do not get
in the first typeset version, they
may have an effect on the next.

Thank you for your patience,
understanding, and suggestions.

The folks at MetaWare.

Contents page(s)
for High C ™ Language Reference Manual . tota/ 234 pp.

Cover, Title. Contents. Feedback..................... 9 pp.
SECtions T-8...........uuueueununnnenueuiieriinreannnn. 155 pp.
1 Introductioncccovviiiiiiiiiiiiiiiiiiiiin., 6 pp.
1.1 Scope and AUdienceccoceiveviiiiineniieninienenn 1-1
1.2 Need for Formality.......coooviiiiiiiiiiiiiiiinnnnn 1-1
1.3 Which C? .o 1-2
1.4 EXCIUSIONS .vviviiiiniiinnieiieeniiieniiainnnnecssaeanas 1-3
1.5 Format .oiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie i 1-4
1.6 Key Words and Phrases...........ccceeveviieninnnnnnes 1-5
1.7 Referencesc.coeeveiievrvrennnnnnnnn. feveeeennretennn 1-6
2 [\ 1] €1 4 [1] I PP 9 pp.
2.1 Lexicon versus Phrase-Structure 2-1
2.2 Grammar Notationcceiveinna.n. reerenns 2-4
2.3 Lexical Ambiguityociciiiiiii, 2-5
2.4 Program Text Conventionsccceeeneen. 2-6
2.5 Constraints and Semantics reeeena 2-6
2.6 Section Referencesc.ccoevviiniiiennninnnnnen. 2-6
2.7 Compositionof aC Programccceveeennn... 2-1
2.8 When is a Program a Program: the Preprocessor.. 2-8
3 00, 1411 1 & PRI 28 pp.
3.1 Name SPaces......cccviiiiiiiiiiieiiiiieiieeeeaneenns 3-1
3.2 Blocks, Origins, Defining-Points, and Scopes 3-2
3.3 Declaration Property Setscccoevvveiineinenn.. 3-4
3.4 Values, Types, and Objects...........cociveeinennnnne. 3-5
3.5 Denoting New TYPesSc.vvvviiiiieeirieeiinerennneenns 3-8
3.6 Same TYPeS ..ccoviieiiriiriiiiiiiii e 3-12
3.7 Equivalent TYpesccceviviiieiiiiiieniineennnnens 3-13
3.8 Lifetimes ...ccoieiveiiiiiiiiiiiiiiiiii i 3-15
3.9 Storage Classes....c.coevvvneeinneenneennneinnneannens 3-15
3.10 Declarations and Definitionses 3-16
3.11 Independent Translation; Duplicate Declarations.. 3-17

v.11.01.85 © 1984-85 Metavare Incorporated

Contents page(s)

3.12
3.13

—t ek ek ek ek e (DD NN DWN —

A R R e s
Db WN-—-O

Lo pDOoONOURWN -

-0

Compatible Types.......ccceiviiiiiniiiiniiiinnnnnnn. 3-22
Assignment Compatibility;

Arithmetic Conversions..........ccooeviiiiiinnnnns 3-23
Integral Widening Conversions 3-2%
Combination of Operand Types 3-26
Expression Evaluation, Side Effects, '

and Sequence Pointsccieiiiiiiiiiieiiiian. 3-26
LexiConccoviiiiiiiiiiiiiiiciiiiciaaiennnnn. 15 pp.
Character Setcooiiiiiiiiiiiiiiiiiii i, 4-1
Line Splicingccoovvviiniiiiiinininns e, 4-1
Preprocessor and Lexiconccccevveviinennnnes 4-2
Included and Excluded Textcoceevvinnnnen. 4-3
WOrdS .eoiiiiiiiiiiiiiiieiiieeiiiraeeereeisansnaaananes 4-4
Identifierscooonviiiiiiiiiiiiiiiiirrr e 4-4
(V0 0] o1 4-5
Strings and Characterscccoceeeiviiinennnnns 4-8
Operators .i..c.ooveeiiiiiiiiiiiiieiiiiireee e 4-11
Punctuatorsc.cooiiiiiiiiiiiiiiiiiiiiiiiias 4-11
Delimitersand Eol.........cccceviiiiniiiinnnnn.n. 4-12
(90a101110 111} I PP 4-13
Excluded Textcovvniiiiiiiiiiiiiiiiieiiieeens 4-14
Control Lines: Preprocessor Commands 4-14
Reserved Wardsccocviiieiiiiiiiiniinnnnn.. 4-15
Preprocessorcccoiiiiiiiiiiiiiiiiiaa.. 16 pp.
INtroductioncccvvviiiiiiiiiiiiiiiiir e 5-1
Control Linescovvieneiiiiiiiieiiiieiiiienaanaes 5-3
“Comment” Control Line Lexicon................... 5-3
Macro Definition Lexiconccevvviiieiiinnnnns 5-4
Other Control Line Lexiconccevvveivinnennns 5-3
Control Line Phrase Structureoooveines 5-6
File Inclusion Neereetereterenataretteerantannas 5-7
g T 0 5-8
Predefined Macroscccooveeeiiiniinineiiennes 5-13
Conditional Inclusion ..., 5-13
Preprocessor Wordscccccvveeviinineeinnnnnes 5-16

v.11.01.85 1984-85 MetaWare Incorporated

Contents age(s

6 Declarations......ccoeevviviiieneniieieenniennenns 39 pp.
6.1 External Declarationsccceeeiiiiiiiiiiiiinninnns 6-1
6.2 Specified Declarationsccceviiiniiiiiniiinnnnns 6-2
6.3 Types and Specifierscovvviviiiiiiiiineiinnnnn, b-3
6.4 Structured Typesccovviiiiiiiiiiiinniinenines 6-10
6.9 Declaratorscccvveeeiiiiiiiiiiiiiiiiiiiiiiiinn b-16
6.6 Function Definitionscccoiiiiiiiiiiinininnn. 6-27
6.7 Non-Function Definitionsc.cccvvviiinnnn.e. 6-30
7 Statements ...t 12 pp.
7.1 Compound Statement ..., 7-1
7.2 Expressions as Statementsccoiiiiiininn 7-3
7.3 switch, case, and defaultccoveieneennn. 71-3
2 T & PP 7-6
R T 1 5 T P 7-7
7.6 do-whileccoiiiiiiiiiiiiiiiieiiiiiiviieeeiaeas 1-7
Y R) PP 7-8
7.8 gotos and Labelscccevvviviiiiiiiiinnan, veereees 7-8
7.9 bredkccoovvvevviiiiiiieeieeennnns eerreaeeeeaeees 7-10
7.10 continuecoceviiiiiiiiiiiiiiiii i, 7-10
[R I (147 ¢ | PR 7-11
7.12 The Null Statementccoiiiiiiiiiiiiinnnn... 7-12
8 EXPressionscveieiiiiiieiiiiieiieiiiiiieeeanas 30 pp.
Bl Generalcooeiiiiiiii e 8-1
8.2 Comma Operator: 4 eereetieerereeiiananaaas 8-4
8.3 Assignments: B iiiereiierreseieieiaees 8-5
8.4 Conditional Expressions: ? :ccooiiiinen. 8-6
8.5 Sequential Disjunction: || ..covvviriiiiiineiinnns 8-7
8.6 Sequential Conjunction: &&ccooiviiiinnns 8-7
8.7 Bit-wise Inclusive-Or: | ..cviiviiiiiiiiinninnnn, 8-8
8.8 Bit-wise Exclusive-Or: °ccviiniennnn creeans 8-8
8.9 Bit-wise And: & e, 8-9
8.10 Equality Comparisons: ==and != 8-9
8.11 Ordering Comparisons: < > <= >= 8-10

v.11.01.85 1984-85 HetaWare Incorporated

Contents page(s)

8.12 Shift Operators: and > 8-10
8.13 Additive Operators: +and - ...l 8-11
B8.14 Multiplicative Operators: * / % B8-12
8.15 Type Casts e, 8-13
8.16 Pointer Dereference: L AP 8-14
8.17 Pointer Reference: B e 8-15
8.18 Unary Sign Operators: —and + ...l 8-17
8.19 Bit-wise Complement: =ciiiiinnn.. 8-17
8.20 Boolean Negation: b 8-17
8.21 Shift Operators: «and » 8-18

8.22 Prefix Increment and Decrement: ++ and -~ 8-19
8.23 Postfix Increment and Decrement: ++ and -- 8-19

8.24 Function Call: () e, 8-20
8.25 Array Indexing: I 8-23
8.26 Pointer Dereference and Member Selection: ->.. 8-24
8.27 Member Selection: . i 8-24
8.28 Overriding Operator Precedence () coeennnnee. 8-25
B.29 CIDENTIFIERDS...uuveeerrrereeeereneecennnsssacasenannns 8-26
8.30 Constants.....ccoovneviiiiiiiiiiiceeeieaa 8-27
8.31 Cast Types and Abstract Declarators 8-28
B.32 NamMeS .ooiiiiiiiiiiiiiiiiieiiiiiiiereeeiaeeeeaaanns 8-29
8.33 Constant EXpressionscceevieiviiieennes 8-29
APPONGICESuueaeeeneaeeneneenennnnenannennnnan.. 91 pp.
A Language Extensions...........ccceeviiieennnnn. 16 pp.
AT Introduction......cieiiiiiiiii e A-1
A2 X3J11 Extensions to Cccoevviiiiiiiiiiiiinnnan. A-1
A.3 High C Extensions Documented in the Manual Body A-4
A.4 Named Parameter Association........................ A-6
A.5 Nested Functions and Full-Function Variables...... A-8
A.6 Communication with Other Languages A-12
LN |11 gl 1] [PP A-12
A.8 Brief Tutorial on Prototypes................oeeeee. A-15

v.11.01.85 1984-85 MetaWare Incorporated

Contents page(s)

B Collected Grammar Rules...................... 8 pp.
B.1 Phrase-Structure Grammarcceeveviiiiinnnnnnns B-1
Declarationscvvvvevrrenierieeressriersesiocernanes B-1
Types and Specifiersccevvvieiiniiniiininan, B-2
(BT E 1 1(0] & T N B-3
Definitions covviereiiiriieniiiieeteeneeeereenneeecennns B-4
) € 1 11 2111 N B-4
EXPressIONS ..cceiviieretiieeesirnatinressnnarrssesonnses B-4
B.2 Preprocessor Phrase-Structure Grammar B-6
B.3 Lexical Grammarvvveiiiiiiiiiieennreeneennnnnnns B-7
C High C Phrase-Structure Chart 15 pp.
Declarationsccooeviieenniinennnns eerereneecnnanns C-2
Types and Specifierscccoeeviveiviiiniiinnnnnn. C-3
Declaratorsviveiiiiiiiiiiiiiiiieiiiieeirenana. C-6
(813 T4 T8 4T 1 N C-8
Statements.....ccvvvvviiiiiiiiiiiiiiienennne, eveeenas C-9
EXPresSioNnSeuuenieeeenereeriereienisscannnnns C-11

D High C Preprocessor Phrase-Structure Chart 2 PR

High C Lexical Chart..........ccccceeeeee..... 10 pp”

Word Sequencesoeeeeiiiiiiniiaiiiieneinnn. C-1

Words, Identifiers..........cocoeviiiiiiiininnninna.n. C-2
NUMDBBIS .. creecie e eeees C-3
Strings, Characterscccoeeeviiiiiiiinniiinnnnenns C-6
Operatorsccoeviiieiiiiiiiicinnnerencenneeneaain. =7
Delimiters, Commentscccovvviinviiinnnnns C-8
Preprocessor LexXiCon....c..vvvveviiiiiveneineeninnens C-9

Index, Feedback, Acknowledgments, End 19 pp.

v.11.01.85 1984-85 MetaWare Incorporated

Introduction page 1-1

1
Introduction

1.1 Scope, Audience, Purpose

This is a language reference manual for C. It does not
attempt to teach C programming to those unfamiliar with the
language. For an informal introduction to C, consult Kerni-
ghan and Ritchie [K&R].

The writing of this manual was prompted by the lack of any
precise descrlptlon of C. A common way to answer a question
about C is to “see what the compiler does”. This is anathema
to writing programs, portable or not. Clearly C has suffered
from being partly defined, then implemented. The original
definition ?K&H] is quite incomplete.

Our goal here is to provide a single document that answers
all machine-independent questions about C. To that end we use
formal notation, such as context-free grammars, where
possible to avoid ambiguities. Thus, the reader of this manual
must have a tolerance for formality, but hopefully will be
rewarded by always getting answers.

1.2 Need for Formality

To illustrate a question poorly addressed in the literature,
consider this C program fragment:

struct s *p; /* Declaration A. »/
int f() { '

struct s {int x. y:}; /* Declaration B. "/

p->x=1; /* Reference R. 74
int g() {

f—>x =1; /* Reference S. »/

v.11.01.85 © 1984-85 Hetaware Incorporated

Introduction page 1-2

Is this a legal C program? The issue at hand is whether
declaration B “completes” declaration A by supplying the
fields x and y. The original definition of C [K&R] does not say
how A and B relate, if at all. Another recent book on C [H&S|
says that “a structure type reference [may] precede the cor-
responding type definition (provided the reference occurs in a
context where the size of the structure is not required)”. Is
definition A above a type reference preceding the correspond-
ing type definition B?

For at least one compiler [4.2BSD] the answer is yes, so
that within function f reference R is permitted. However,
after the closing brace of f, the completion B is somehow lost
so that reference S is illegal. Yet declaration A can no longer
be completed: supplying another completion draws an error
diagnostic.

No published C reference known to us properly addresses
this issue. The answer we provide is that a structure declara-
tion can complete a previous one only if both are “declared at
the same level”, a notion that we make precise.

1.3 Which C?

When we claim to give a language definition for C, a
question arises: “Which C?”. The original definition of C
[K&R] did not give C a complete definition. Compilers for C
differ where K&R is silent or obscure.

In some sense we are defining what C “should be” or
“should have been defined as”. In doing so we are not defining
an entirely new language, including in it all of our favorite
constructs. Instead. we observed what existing C compilers
for C do with C's ill-defined spots, and produced a definition
that attempts to be faithful to the most rational decisions
made in those compilers.

Furthermore we took into consideration the C language
draft standard produced by the ANSI C standardization com-
mittee X3J11 (and have participated in the development of

v.11.01.85 © 1984-B5 MetaWare Incorporated

Introduction | page 1-3

that document). The X3J11 standard is another C definition,
although less formal than ours, that tries to clarify the
obscure and define the ill-defined, in addition to extending C
where the K&R language is perceived as being weak.

Therefore this document should on the whole be compatible
with most C compilers, especially with those written with
attention paid to X3J11's work. We also point out where our
definition differs from that typically implemented by popular
compilers, or where it differs from the X3J11 work.

A few of the language features we describe exist in no other
C compiler or definition or in the X3J11 work. These features
are particular to MetaWare's own High C language. Most are
simple changes, and are included in the main body of the
language definition; those that are not simple are relegated to
Appendix Language Extensions. All extensions, however. in-
cluding those originating in X3J11, are listed in that appendix
and the reader is invited to consult it for a summary.

1.4 Exclusions

For the purposes of this manual, the C library is not
considered part of the C language and is not treated here. The
ANSI standardization of C includes a library standard along
with a language standard, but also recognizes so-called
“freestanding environments* that do not include any library.

v.11.01.85 © 1984-85 MetaWare Incorporated

Introduction page 1-4

1.9 Format
[Syntax, Constraints, Semantics, Discussion, Machine Dependencies]

In this manual each C construct is presented in several
sections:)

Syntax gives a regular-right-part context-free grammar
that describes the syntactic structure or “form®”
of the construct. Section Aotationexplains gram-
mars and how syntax is divided into two levels:
lexicon and phrase structure.

Constraints lists rules that each instance of “the construct
must obey statically if it is to be well-formed.
Such rules are in addition to the requirements im-
posed by the grammar, and generally are rules that
cannot be described by a context-free grammar.

Sernantics states the meaning of a well-formed construct;
e.g. what happens at run-time: what value or
effect it has. ’

Discussion describes differences, extensions, and restrictions
of this definition as compared to other C language
definitions [K&R] [X3J11], or as compared to a
popular implementation [4.2BSD). Ramifications
of the language definition that might otherwise go
unnoticed are noted here. Occasionally we include
examples and/or a brief summary description of
the construct, especially when such is useful to
illuminate why the construct was put in the lan-
guage the way it was.

Machine Dependencies
describes aspects of the construct that are parti-
cular to certain machines.

Any of these sections may be omitted, as appropriate. For
example, if section “Machine Dependencies”is omitted, one
may infer that there are no known or relevant machine depen-
dencies for the particular construct. Occasionally, sections
that would otherwise be omitted are included for emphasis.

. v.11.01.85 1984-85 MetaWare Incorporated

Introduction page 1-5

Material that should be included in O/scussionmay instead
be included in the other categories, when moving it to
Discussion would place the material too far out of context.
Such material is flagged by the brackets Mote and £nd of
MNote We emphasize that such material is commentary only
and not necessary to the language definition.

Examples are generally started by the text Example
When it may be unclear where the end of the example is, the
text £nd of Exampleis used.

Some authors prefer to use the phrases “Context-free
Syntax” and “Context-Sensitive Syntax” instead of “Syntax”
and “Constraints”. Still others prefer “Static Semantics” to
“Constraints” and “Dynamic Semantics” to “Semantics”.
Rather than take sides we have used different terms.

1.6 Key Words and Phrases
[sample; word or phrase]
Following most subsection headers is a line such as the
latter containing key words and phrases related to that
subsection. They give a quick idea of what the section is about.

The Index lists each word or phrase alphabetically by word or
each word in a phrase. ' ‘

v.11.01.85 © 1984-85 MetaWare Incorporated

Introduction page 1-6

1.7 References

[K&R]
[H&S]

[X3J11]

Kernighan, Brian W. and Dennis M. Ritchie: The C
Programming Language. Prentice-Hall, Inc.
Englewood Cliffs, NJ 07632, 1978.

Harbison, Samuel P. and Guy L. Steele, Jr.: C: A
Reference Manual. Prentice-Hall, Inc., Englewood
Clitfs, NJ 07632, 1984.

American National Standards Institute X3J11 com-
mittee on the standardization of the C program-
ming language. X3 Secretariat, CBEMA, 311 First
Street NW, Suite 500, Washington, DC 20001. The
draft document from which we cite differences is
dated April 30, 1985, document 85-045, and is
available from CBEMA at the above address.

[4.2BSD] The portable C compiler as it exists on Berkeley's

4.2 distribution of the UNIX operating system on
Digital Equipment Corporation's VAX computers.

In the sequel. the following abbreviations hold: KR for [K&R].
X3J11 for [X3J11], and 4.2BSD for [4.2BSD).

v.11.01.85

© 1984-85 HetaWare Incorporated

Notation page 2-1

2
Notation

2.1 Lexicon versus Phrase-Structure

[lexical versus phrase-structure syntax; words, texts; constraints:
context-free grammar; regular expre531ons]

Syntaxcan be usefully broken into two parts: lexicon and
phrase-structure.

Lexical syntaxrefers to the valid sequencing of characters
in a program to form words, and the naming of those words.

Phrase-structure syntaxrefers to the valid sequencing of
the words to form phrases.

For example, consider the C program

main() {int i = 1;}

On the lexical level, the program appears as the character
sequence :

.m., lal’ 'il' lno o(o |) {o' li.' lnl' .t.,

] l' lit' [] u' l:l’] l' o1| o l o}n .

The lexical syntax, as will be seen, permits such a character

sequence and specifies the corresponding word names and their
associated sequences of characters, or fexts indicated next:

Word name 7éxt
CIDENTIFIER> ‘m',*a','1’,'n"
((none)
) (none) -
{ (none)
int (none)
CIDENTIFIER> ‘i’

= (none)
{INTEGER> ‘1

; (none)
} (none)

v.11.01.85 © 1984-85 HetaWare Incorporated

Notation page 2-2

At the phrase-structure level, the sequence of words above,
namely. ‘

<IDENTIFIER> () { int <IDENTIFIER> = CINTEGER)> : }

is a valid C program. Hence the original character sequence
forms a valid C program, at least on the lexical and phrase-
structure levels. Note that some of the words illustrated
above have no text. This is by design and not by any restric-
tions inherent in the formalisms used here.

Phrase-structure description is concerned only with the
names of words, never with texts (with one exception in
Section Freprocessor). For example, C's phrase structure
specifies that an <IDENTIFIER> be the name of a function, not,
say, an <INTEGER>; but which <IDENTIFIER> in particular is not
a phrase-structure concern.

On the other hand, the constraints of C — the context-
sensitive syntax —are concerned with the texts of (IDENTI-
FIER>s. For example, a usage of an <IDENTIFIER> with text T
must generally follow a declaration of an <IDENTIFIER) with
text T. '

C's lexicon and phrase structure are each formally defined
here by a context-free grammar.

Grammar illustrations. lllustrations from each kind of
grammar are appropriate before proceeding further.

Consider a fragment from the lexical grammar:
Identifier-> Letter (Letter|Digit)® =>°'<IDENTIFIER>®;
Letter -> 'A*..'2' | ‘a'..'2' | '_' .
Digit -> ‘0°..°'9' ;
The “=>*<IDENTIFIER>'” specifies that a word is to be named
CIDENTIFIERY. The text for that word is a letter followed by

zero or more letters and digits, where a “letter” includes the
underscore (*_*) character.

v.11.01.85 © 1984-85 MetaWare Incorporated

Notation page 2-3

According to the lexical grammar, words can generally
appear in any order, as indicated by the following lexical
grammar fragment near the top of the grammar:

Words -> Wordw;
Word -> String | Char | Number | Identifier
| Delimiter | Punctuator | Operator | Comment;

As an illustration from the phrase-structure grammar,
consider the rule

Statement
-> 'for® (' First:EL?
*;' Next: EL?
', Last: EL?
-*)' Body: Statement

It describes the C for statement, consisting of:
the words for and (.

(optionally) any sequence of words generated by the
nonterminal EL, the word ; ,

(optionally) any sequence of words generated by the
nonterminal EL, the word ; , ‘

(optionally) any sequence of words generated by the
nonterminal EL, the word) ,

and finally any sequence of words generated by the
nonterminal Statement.

v.11.01.85 © 1984-85 MetaWare Incorporated

Notation page 2-4

2.2 Grammar Notation

context free grammar; regular expressions: 1list, “=, s~ 7%,
. "..": adjectives: <DELETE>, <AS_IS>; reserved word]

The context-free grammars used here contain regula
expressions, which are expressions composed with postfix
(%, +, ?) and infix (1ist, |, ..) operators having the following
meanings:

Expression means

X» zero or more Xs.

X+ one or more Xs. _
X? zero or one X, i.e. X is optional.’
Xy either X or v.

X 1list Y one or more Xs, separated by single occur-
rences of ¥; equivalent to X (Y X)* and
(X Y¥)* X, giving X, XY X, XY X Y X, etc.
X..Y the sequence of characters from X to Y, in-
clusive (meaningful only in lexical grammars).

= |, 7, and.. were used in the grammar examples above.

All terminal symbols, e.g. *for' and *'_*, are single-quoted
in grammars to avoid ambiguity. Nontermma Is are not quoted,
e.g. Statement and Letter.

Parentheses of the forms (..) and <..> in grammars override
precedence. In a lexical grammar the operator => specifies
the name of a word; the name is the string following the =>.

So-called ag/ectives in grammars describe phrases of the
grammar. The practice is borrowed from the Ada reference
manual, where adjectives are typeset in italics. For example,
Static Expression in Ada is really the nonterminal Expression,
but with the “reminder” that the Expression must be
“static”.

Adjectives are purely commentary in grammars, but ofteq
an adjective is mirrored in a constraint. Here we employ nor-
mally-typeset (non-italicized) identifiers followed by a “:” to
denote adjectives. Adjectives appeared in the phrase- structure
example above; v/z.First, Next, Last, and Body.

v.11.01.85 © 1984-85 MetaWare Incorporated

Notation page 2-5

Grammars may contain comments, which begin with “#”
and continue to the end of the line.

Special words. The words <DELETE>, <AS_IS>, and <IDENTI-
FIER> have special meanings in lexical grammears, as follows:

A word named <DELETE> is not to be considered in phrase-
structure or any other analysis. <DELETE> is used so that
comments and so-called “whitespace” need not clutter the
phrase-structure grammar. Effectively, lexical analysis
deletes such words.

A word named <AS_IS> with text T is to be instead consi-
dered the word named T, with no text. For example, the word
<AS_IS> with text (is instead the word (. This device is
employed in naming operator and punctuation symbols.

Finally, any word named <IDENTIFIER> with text T is to be
instead considered a word named T if T appears in the phrase-
structure grammar. For example, the <IDENTIFIER> word with
text 'f* ‘o' 'r' is to be considered instead the word *for*,
which appears in the phrase-structure grammar. These
reserved <IDENTIFIER)s, called reserved words are thus
distinguished from ordinary <IDENTIFIER)s.

Additional notation. We defer explaining some rarely-
used grammar constructs to the sections where they are used.

2.3 Lexical Ambiguity

The lexical grammar is ambiguous, for economy of expres-
sion. For example, the characters *A*, 'B’, *1' can be inter-
preted as the word <IDENTIFIER> with text 'A*, *B*, *1' or the
two CIDENTIFIER>s ‘A’ and 'B* and the <INTEGER> *1'. In all
cases ambiguity is resolved in favor of the longest possible
word.

v.11.01.85 1084-85 MetaWare Incorporated

Notation page 2-6
2.4 Program Text Conventions

C program fragments in running text are double-quoted,
and reserved words are boldfaced. For example: “int x,y;”
In addition, C text is always reproduced in fixed-width font -
rather than varying-width font. Examples apart from running
text are not quoted.

2.5 Constraints and Semantics

The specification of constraints and semantics is keyed to
the nonterminals and adjectives in the grammar. Consider the
phrase-structure grammar fragment:

External_declaration
_=> Unspecified_declaration:
(Funotion_definition
| Non_function_definitions

= Specified_déclaration # with specifiers.
-> # Allowed by KR.

Specifications may be keyed to any of the nonterminals Speci-
fied declaration, Function_definition, Non_function_defi-
nitions, or the adjective Unspecified_declaration, which
“modifies” the alternation (J). As mentioned before, Adjec-
tives do not figure in the formal grammatical definition of
the context- free syntax.

2.6 Section References

References throughout the text from one section to other
sections are made by section and subsection title only. except
when subsection references are made within a section, where
the subsection number is most often used. A °'/* separates a
section title from a subsection title, when the latter ir
included. For example, Section Concepts/Lifetimesrefers to
Section Concepts, Subsection L/fetimes. The location of each
section and subsection can be found in the Table of Contents.

_ v.11.01.85 ©) 1984-85 MetaWare Incorporated

Notation page 2-7

2.7 Composition of a C Program

[source files; compilation unit; linking: program execution;
1ndependent translation; preprocessor]

A complete C program P consists of a collection of
declarations such that there exists exactly one definition of a
function whose name is “main”. P's execution begins with this
function.

P need not be translated all at once. Typically, components
of P are kept in separate sowrce fi/es that are independently
translated. We assume the notion of “source file” is atomic
and therefore provide no definition for it here.

A compilation unrt is a single source file F unless F
contains preprocessor directives that specify the inclusion of
other source files as part of the unit. We leave unspecified
exactly how compilation units are determined, for that is, in
general, a host-environment-dependent concept not of concern
here.

The focus here is only on the semantics of compilation
-units and the semantics of the combined translated results of
separately compiled units. We shall not discuss the process of

/inkingwhich is typically used to prepare the translated results
for “execution”, nor the execution process. The translated
linked result is a C program that may be ewecuted i.e. its
meaning made manifest.

The reason that separate translation must be addressed is
that the semantics of a C program when independently trans-
lated are not identical to those when the components are
“glued” together in a single source file and translated all at
once. For example, in each of two separate compilation units,
the declaration “static int x;” may appear; however, two
such declarations cannot appear in a single unit.

v.11.01.85 © 1984-85 HetaWare Incorporated

Notation page 2-8

2.8 When is a Program a Program: the Preprocessor
[conditional compilation; file inclusion. macro replacement]

A “normal” description of a programming language |
defines lexical syntax, phrase-structure syntax, constraints,
and semantics. Text P is a legal program in L (and therefore
has meaningful semantics) when: (a) P is lexically valid; (b)
the word sequence defined by the lexical syntax forms proper
phrases; and (c) the constraints are satisfied. Thus, a
program’s validity can be determined without reference to any
“processors” that do syntax checking or constraint analysis,
such as “scanners”, “parsers”, and “constrainers”.

For C the description cannot be so simple. Part of the
definition of C includes a so-called preorocessorthat modifies
the word sequence defined by the lexical syntax before that
word sequence is subjected to phrase-structure analysis. The
preprocessor is complex and interacts with the lexical analysis-
in such a way that the only reasonable way to understand
whether a program is valid is to simulate the machinations of

the processor, at least through phrase-structure analysis.

Therefore, for the purposes of this document, text P is a
legal C program if: (a) P is lexically valid; (b) the words as
transformedby the preprocessor form proper phrases; and (c)
the constraints are satisfied.

The C preprocessor effects: (a) conditional compilation
including and excluding program texts from compilation based
on the evaluation of Boolean expressions; (b) #//e inclusion,
logically substituting for file inclusion directives the contents
of source files referred to in the directives; and (c) macro
replacement the transformation of some sequences of words
into other sequences of words.

The preprocessor is explained in more detail in Section
Freprocessor.

The term “preprocessor” is due to its often being a pro-
gram separate from the C compiler per se, transforming the
source file before the C compiler analyzes it. However, the

v.11.01.85 © 1984-85 MetaWare Incorporated

Notation page 2-9

definition of the preprocessor component of the language does
not preclude its incorporation into the lexical analysis phase of
a C compiler, and we know of at least one compiler that does
<0, namely the MetaWare High C ™ Compiler.

v.11.01.85 © 1984-85 MetaWare Incorporated

Concepts page 3-1

3
Concepts

The concepts described in this section are needed for the
later description of C relative to its syntax.

Defined concepts are illustrated by example C programs,
even though the syntax of C programs has not been discussed
yet. Readers familiar with C will find the examples helpful;
those not familiar can make good use of the examples upon
second reading, after studying the syntax of C.

3.1 Name Spaces

[declaration property set; ordinary, tag, label, and struct and union
nane spaces] ,
- Every declaration in C associates a name with a dec/ar-
ation property setwithin a specific dec/aration name space.

A name space can be viewed as a mapping taking a name
into its declaration property set. There are three distinguish-
ed name spaces in C: the ordinaryname space, the Zagname
space. and the /abe/name space. There is also a name space for
each distinct struct and union type, which contains the type's
member names.

The explanation of each declaration gives the name space of
the name declared. The three spaces permit the same name to
be associated with up to three different property sets. The
syntactic context of a name always determines which name
space holds the association. For example, a label name either
precedes a “:* at the beginning of a statement, or follows the
reserved word goto; it appears nowhere else.

The elements of declaration property sets are described
later in this section.

v.11.01.85 © 1984-85 HetaWare Incorporated

Concepts page 3-2

Examnples:

int x; /* x: ordinary name space. ’ */

struct s { /* s: tag name space. »/
int x; /* x: name space of the struct type s. */
Yy /% y: ordinary name space. "/

L: goto L. /* L: label name space. */

3.2 Blocks, Origins, Defining Points, and Scopes
[duplicate declaration]

The discussion in this subsection does sot apply to the
member names of struct and union types; the issues of
blocks, origins, defining points, and scopes are irrelevant to
such names.

'Every declaration is contained in one or more b/ocks which
are regions of program text. The specific locations of such
regions are not described here; the description of a construct
having an associated block contains the description of that
block.

Generally, a block Inner can be a part of another block
Outer, in which case Outer is said to conta/ninner. The block
Inner is then called an /zner block of Outer, while Outer is
called a swrounding block of Inner. In general a program
consists of a hierarchy of nested blocks. :

The innermost block in which a declaration occurs is calied
the or/ginof that declaration.

The defining pointof a name is the occurrence of the name
in its declaration.

Every declaration D has a scgpe. The scope of D is that
program text in which the declared name N is associated with
the property set of D. The scope of D is generally the program
text extending from the defining point of N to the end of D's
origin, but there are exceptions. The first is when the declared
name is re-declared in a contained block and in the same name
space:

v.11.01.85 © 1984-85 HetaWare Incorporated

Concepts page 3-3

Suppose that block Outer contains block Inner, and that
Outer is the origin of a declaration D of name N within
name space S. If Inner is the origin of another declaration
D' of N within S, then the program text from the defining
point of N in D' to the end of Inner is excluded from the
scope of 0.

Other exceptions to this rule are documented with the
exceptional constructs.

If the scope of two distinct declarations D and D' of a name
N in the same name space overlap, this is known as a dyp/icate
dec/aration of N. Such duplicate declarations are prohibited.
This means, for example, that D and D' may not appear in the
same block; e.g. “int a, a; ” is not allowed.

However, two declarations of the same name in different
name spaces is permitted: “struct s {int y;} #p; ints;”,
for example — the first s is in the tag name space and the
second is in the ordinary name space. :

Under certain circumstances, apparent duplicate declara-
tions are permitted. In addition, certain combinations of non-
duplicate declarations are prohibited. These situations are
described in Subsection /ndependent Trans/ationbelow.

Examples:

() int x; /* x: ordinary name space. R 74
() struoct x { /% x: different name space than in (a); */
. /™ hence not a duplicate declaration. */

© int x; /% x: issues of scope, block, etc. ¥/
/* do not apply to this name. W/

(d) struct x {.} y:/* x: conflicts with (b): duplicate dcln. */
(®) } x; /% x: conflicts with (a): duplicate dcln. */
(H x: goto x; /* x: different name space than in (a) */

/* or (b); hence not a duplicate dcln. */

v.11.01.85 © 1984-85 MetaWare Incorporated

Concepts page 3-4

3.3 Declaration Property Sets

[mode, type, storage class; modes var, value, fcn, def; modes
struct-tag, union-tag, enun-tag; modes nenber field 1V8 ue, rvalue]
A declaration property set contains the information abou:
a name gleaned from its declaration. This set prescribes how
the name may be used subsequently in its declaration's scope.
This set is not something a C program manipulates. but rather
is needed by the reader of a program to understand it in detail.
The set may be used by a C language processor to check con-
straints and perform translation.

The property set consists of up to three “attributes”: a
mode a type and a starage c/ass. Generally the mode and type
attributes are typeset in lowercase boldface. Also, an expres-
sion has mode and type (but no storage class), even though it
does not interact with the name spaces. Names in the label
name space do not have a mode (it is unnecessary), but names
in the other name spaces have all three attributes.

The mode is one of var, value, fcn, struct-tag, union-tag
enum-tag, member, field, and typedef. Modes are used tc
capture the ways in which names can and cannot be used. For
example, the mode field is used to prevent taking the address
of a structure bit-field. The mode of a name or expression E
may be interpreted as follows:

Mode means
/n the ordinary narme space:

- var E may be used on the left side of an assignment.
value E is legal only on the right side of an assignment.
fen E denotes the entry point of a function.
typedef E is a typedef.

/n the tag name space:

struct-tag E is a struct tag.
union-tag E is a union tag.

enum- tag E is an enumeration tag.

In the narne space for a struct/union type:
member E is a non-field member of a structure or union.
field E is a field of a structure or union.

v.11.01.85 (©) 1984-85 MetaWare Incorporated

Concepts page 3-5

These explanations are deliberately incomplete here; the
full meaning of the modes is meant to be obtained from read-
ing the sections that attribute modes to expressions and names
'\nd the sections that requnre certain modes. KR uses the
.lerms “lvalue” and “rvalue” as modes; in our notation, rvalue
is value and Ivalue is the the union of the modes var and field.

Types and storage classes are discussed in the remainder of
this chapter.

If a declaration associates a name N with a property set
containing mode M, type T, and storage class C and within
name space S, we also say that the declaration “declares N to
be of mode M, of type T, of storage class C, and within S”. We
may omit anyof M, T,C, or S, as approprlate

Examples:
int x f(); /% x: mode var; f: mode fcn. */
typedef
struot s { /* s: mode struct-tag. ~ »/
int x; /* x: mode member. */
int 2:3; /* z: mode field. "/
Yy /* y: mode typedef. - »/
enum e {a, b} /* a,b: mode value: e: mode enun-tag. */
union u {int x;}; /" x: mode member; u: mode union-tag. */
L: goto L; /* L: no mode necessary. */

3.4 Values, Types, and Objects

[variahle; typs. demotation; size of ebject; integral, fleating, arithmetic types;

Signed-Int, Unsigned-Int; Sigaed-Shert-Int, Unsigned-Shert-Iat; <CNAR>; Sigmed-Char,

Unsigned-Char; Signed-Leng-Int, Unsigned-Long-Int; Float, Devble, Long-Bouble; Void]

Values are entities upon which operations may be per-
formed.

Typesclassify values according to the operations that may
be performed upon them: a type is a set of values.

Ofyects can “contain” values, usually of a single type; at
different times during the execution of a program an object
may hold different values.

v.11.01.85 © 1984-85 HetaWare Incorporated

Concepts page 3-6

Declarations in C almost always declare objects. Some
objects may have other objects as components. As in other
languages, when we speak of a var/ab/e we mean a declared
name denoting an object, since the variable's contents ca
vary. In contrast, a declared name denoting a function does not
denote an object and is not spoken of as a variable.

Since a type is a set of abstract values, we can never write
down a type in this document, but merely use a word or words
to denotea type. For example, we use “Signed-Int” to denote
the type consisting of a subset of all the signed integers. (The
particular subset is implementation-defined.) .

Values and objects of a given type T are represented in a
fixed number of storage units; this number is the sizeof T.

. The storage unit must be able to contain any value of type
Signed-Char or Unsigned-Char and is usually the eight-bit
byte. It must be possible to express the address of each storage
unit in the target architecture; these addresses are the values
of pointer types (described below).

Basic types. There is a set of basic types in C, and methods
for denoting new types in terms of basic types. The Table
below lists the names for the basic tpes. The two distinct
subsets, /mtegra/and floating comprise the ar/thmetic lypes:

Table Arithmetic types.
Integral types: Floating types: Other:
Signed- Int Unsigned- Int Float Void
Signed-Short-int Unsigned-Short-Int Double
Signed-Long-Int Unsigned-Long-Int Long-Double
Signed-Char Unsigned-Char

Shorthand. Without some shorthand, the phrase “denoted
by” will appear all too often in this document. For example,
consider the precise but cumbersome phraseology: “If T1 is
the type denoted by Unsigned-Int and T2 the type denoted b+
Signed-Int, then T3 is the type denoted by Unsigned-int”.

Hereafter we drop the “denoted by” when the intent is
clear, and use the denotations as if they were the actual types.

v.11.01.85 (© 1984-85 HetaWare Incorporated

Concepts _ page 3-7

After all, the denotations are just the namesfor the types, and
in common English usage we do not introduce “the man denot-
ed by Fred” —rather, we introduce Fred.

Nevertheless, the distinction between types and their spe-
Cification |n a C program must be kept clear. In a C program
one writes “int” to denote the type Signed-Int. However,
what one writes /s notthe type, but merely denotes it.

The difference shows up better in the C phrase “int short
unsigned”: this phrase and in fact any permutation of those
three words (and possibly intermixed with a Storage_class)
denotes the type Unsigned-Short- Int.

Types. denotations. Because C syntax permits more than
one way of denoting some types, we have chosen our own type
denotations; we use exactly one denotation for each type. How
to denote types in C is not detailed until the next section.
Here we discuss briefly the repertoire of basic types.

There are no values of type Void. Void is used primarily as
e return type of a function returning nothing.

The type Signed-Int corresponds to a signed integer.
Typically, its size is “natural” to the machine's arithmetic
abilities.

Signed-Short-Int and Signed-Long-int are two other signed
integer types. The set of values of a Signed-Short-Int is a
subset of that of a Signed-Int, which is a subset of that of a
Signed-Long-Int. These variations on Signed-Ints are provided
to obtain more efficient or larger integer calculations where
necessary. Even if an implementation defines Short-Int or
Long-Int to have the same set of values as Signed- Int, all three
are nevertheless distinct types.

Each of the three Signed-lnt types has a corresponding

unsigned type whose size is the same as the correspondmg

,gned type. The set of non-negative values of a signed type is
d subset of that of its corresponding unmgned type.

v.11.01.85 © 1984-85 MetaWare Incorporated

Concepts page 3-8

The values of a Signed-Char are a subset of the values of a
Signed-Int. The values of an Unsigned-Char are a subset of the
values of an Unsigned-Int. However, the values of a Signed-
Char need not be a subset of the values of a Signed-Short-Int;
likewise with the corresponding unsigned types. Essentially,
the Char and Short-Int types are two not necessarily related
integer types shorter than Signed- Int.

The rules for assignment compatibility presented later in
this Section require two distinct integral types to have the
same set of values if the two types are of the same size and of
the same “signedness®. g

An object declared of type Signed-Char can hold any <CHAR>.
<CHAR>s specified without the ‘\ddd' or '\xddd‘ form are
guaranteed to be non-negative; otherwise, the sign of a <CHAR>
is implementation-defined. Unsigned-Char can hold any non-
negative <CHAR>.

Float, Double, and Long-Double are floating(-point) types.
Any Float value is representable in Double. Any Double value
is representable in Long-Double. Even if an implementation
defines Float and Double to have the same set of values, they
are nevertheless distinct types; the same holds for Double and
Long-Double. :

The set of integral values is not necessarily contained in the
set of floating values, and vice-versa. '

3.5 Denoting New Types

[constructed types; array and componsnt type; inconplets types; peintsr type; structurs
and unien types; wesder-list; scalar and sggregate types; functionality types.
pretotype and nen-protatype functisnalities; parsnster types; type notation]
There are methods for denoting new, non-basic types based
on existing types; we call these the constructed types. The C
syntax for denoting these types is given in a later section; here
we specify our own notation to denote such types.

If | is an integral value and T any type, [1):T is an array type
with component type T, and [?]:T is a /ncomplete array type

v.11.01.85 © 1984-85 MetaWare Incorporated

Concepts page 3-9

with component typeT. An incomplete array type is one for
which the size of the array is unknown.

If T is a type, *T is a pointer typewith base typeT.

If M is a Member_list (see Section Declarations/Tagged
Types for its syntactic definition), Struct{M} is a structure
type with member-/istM, and Union{M} is a wnion typewith
member-/istM. The C language also provides for /ncompl/ete
Struct and Union types, where the Member_list is not given.
Such types are denoted by Struct{?} and Union{?}, respectively.

The types [?]:T (for any T), Struct{?}, and Union{?} are
collectively referred to as the /ncomp/ete types. Incomplete
types have fewer uses than complete types. Primarily, objects
of incomplete types may not be declared, and the sizes of
incomplete types are specifically undefined.

Arithmetic types and pointer types are collectively called
scalar types, and array, struct, and union types aggregate
types.

Examples:

extern int a[][3]; /* a: type [7): [3j:simed_int. */
double *pd; /% pd: type "Double. */
double *apd[3]; /% apd: type [3]:*Double. "/
double (*pad)[3]: /* pad: type *[3):Double. 4

struct {int x;} *aps[3];
/* aps: type [3]):*Struct{int x;}. »*/

Functionality types. There are four kinds of functionality
types: those types describing functions. The four kinds fall into
two classes: the profotype functionalities and the non-proto-
typetunctionalities: :

ﬁa; é?) ->T for T a type;
b) (T1....Tn) =>T N\
() (Th....Tokp ->T | for T, T1....Tn types. n 2 D.

d (T...Tap =T /

The first two kinds represent notions in KR C, and are the
non-prototype functionalities. In class (a) the function returns

v.11.01.85 © 1984-85 MetaWare Incorporated

Concepts page 3-10

values of type T, but the number and types of its parameters
are unknown. In class (b) the parameter number and types are
known: Ti....Tn (if n = 0. there are no parameters). (b) can
arise only from a function definition, never from a declaratiol
alone, since any attempt to specify parameter types in a
declaration alone requires the use of prototype functionalities.
See Subsection 3.10 for the distinction between definitions and
declarations.

The last two kinds are the prototype functionalities. In
class (c) the parameter number and types are known. In class
(d) the trailing “...” indicates that more arguments may be
passed than there are parameters declared.

Prototypes are a recent (ANSI) addition to C. They allow
more secure Pascal-style argument type checking at function
calls. The constraints and semantics of calls to functions of
prototype functionality are quite different from those without
such; see Section. Expressions/Function Call. A declared
function f has a prototype functionality when the nontermina’
Abstract_parameters is used to specify f's parameters; it ha
non-prototype functionality otherwise (see Section Jec/ara-
tions/Function Definition.

Examples:
int f1(); ’ /* £1: type (?) -> Signed_int. "/
int f2(void): /* £2: type ()p -> Signed_int.- »/

double f3(unsigned char c, float f);
/" £3: type (Unsigned_char,Float)p -> Double. »/

double f4(unsigned char c, float f){
/* £4: same as type of f3. »*/

}
double f5(c, f) unsigned char c: float f.{
/% £5: type (Unsigned_char, Float) -> Double. u/
} /* Mot same type as that of f3: not a prototype. */
int =(#f6(double))[3];
/* £6: type (Double)p -> *[3):*Signed_int. ot

Note that compatibility with old C demands rather
awkward notation to declare an external function taking no
parameters: “(void)”, as in f2 above. This is because

. v.11.01.85 © 1984-85 etaWare Incorporated

Concepts page 3-11

“()” alone declares a function whose parameter types are
unspecified. Declarations like that of {1 should be avoided.

Why new type notation. We introduced this new notation

have an accurate way of referring to types. The syntax used
in C to specify types is not conducive to easy comprehension of
the specified type, nor is it appropriate to the specification of
language rules for types. This new notation borrows symbols
from C to facilitate readability.

This new notation also has an advantage over C's notation
for denoting types in that it requires no precedence or
assaciativity rules to understand, nor therefore parentheses to
override precedence and associativity, and it is unambiguous (a
grammar for it, which is implicit in the above rules, is in fact
LR(D)). See the examples above, some of which contrast C's
awkward need of parentheses with the clean parenthesis-free
type notation.

Type “expressions” constructed with this notation can be
v"zad strictly from left-to-right. For example, in the C
<claration “int #f();”, f has type ()—->*Signed-Int; inthe C

declaration “int (*f)(): “. f has type *()->Signed-Int.

The rigor of the notation can yet be improved, since the
definition of Struct and Union types relies on the syntactic
notion Member_list with no further interpretation of the
phrases of those categories. But the notation can be made
completely formal only at considerable expense.

The tradeoff will be evident later when slightly more com-
plex rules are necessary for defining type sameness and equiva-
lence. We appeal to the reader’s intuition that, for example,
the text of the Member_list is insufficient to determine the
full type; two Member_lists can be textually identical yet in
different blocks so type references within the lists may be
different. '

v.11.01.85 1984-85 MetaWare Incorporated

Concepts page 3-12

3.6 Same Types
{constructed types; instance of construction]

Each instance in C of a constructed type denotes a type
distinct from any other constructed type. Thus, although two
type constructions in C may appear identical. they denote
different types. It is as if each type had.as a component its
“instance of construction”. Two types are the same Hpe if
they have the same instance of construction.

For convenience, our formal notation for types does not
incorporate instance of construction, because once the notion
of “same type” is formalized, the instance of construction
concept will be used infrequently. However, a C language
translator must encode the instance of construction in its
internal representation of types.

Examnples:

struct s {int x y;} x1;
struct {int y,z;} x2;
struct s x3; /* A use, not a definition. */
char *x4, *x5;
int xb6[10], x7[10];
void V() {

:};truct s {int x y;} x1.
There are three distinct declarations of Struct types; as
specified in Section Jec/arations/Tagged Types the third
line references the type denoted by the constructor on the
first line, so that x3 and x1 are of the same type. Even
though the first and last declarations appear textually
identical, they denote distinct types because they have
different instances of construction. x4 and x5 are also of
distinct types: two distinct *Signed-Char types. Similarly,
x6 and x7 are of two distinct [10]:Signed-Int types.

v.11.01.85 : © 1984-85 HetaWare Incorporated

Concepts page 3-13

3.7 Equivalent Types
[same variable; same types; similar types; independent translation]

The requirement of identical instance of construction in
the concept of same type leaves a major problem unsolved:
how to specify type security across independent translation.
For example, rules explained later state that it is possible to
declare a variable X insource file F1 and a variable X in file F2
and have them denote the same object, thus:

File F1: File F2:
int *X; int *X;

The two Xs are of distinct *Signed_Int types, since the

instances of construction of the types are different. How can
the “same object” have two distinct types?

The solution we propose is to require only that distinct
declarations of the “same variable” be associated with
“equivalent” types rather than the “same type”. Two type
denotations T and T' denote egurval/enttypes if:

1. T and T' are of the form Struct{M}, and the corresponding
types of each member in M are equivalent; or

2. T and T* are of the form Union{M]}, and the correspondlng
types of each member in M are equivalent; or

3. Tand T" are “similar” types.

Two types T and T® are s/m//arif types S and S* are similar and
T and T* are the same type: or

T is of the form *S and T' of the form =S'; or

T is of the form [V]:S and T* of the form [V]:S"; or

T is of the form [?]:S and T* of the form [?]:S"; or

One is of the form (?) => S and the other (T4....Ta) => S'; or

T=1->SandT'=1'->S", and | and I' are of the same
form, i.e. one of the parameter forms of the four function-
ality forms used in Subsection 3.5 above, and the corres-
ponding parameter types are similar.

oo s n-~

v.11.01.85 © 1984-85 MetaWare Incorporated

Concepts page 3-14

The reason for the “similar” subcategory of type equivalence
is that similarity can be applied within a single C compilation
unit, whereas the additional notion of type equivalence is used
only for independent compilation.

Examples:

typedef char T.
struct s {T x y;} x1;
void V() {
typedef int T;
struct s {T x y:;} x2;
;truct s2 {T x y:} x3;
char *x4, *x5;
int x6[10], x7[10];
-int f1();
int f3(int x ‘int y);
int f3(x y) int xy; {.}
int f4(int a ‘int b) {..}

x1 and x2 are notof equivalent types: the two Struct{T -
x.y:} types are not equivalent — in one case T refers to the
type Char and in the other the non-equivalent Signed- Int.

x2 and x3 are of equivalent types since the tags s and s2 do
not figure in the type denoted by the declarations.

x4 and x5 are of distinct but equivalent (and similar)
“Signed-Char types.

xb and x7 are of distinct but equivalent (and similar)
[10]:Signed- Int types.

11 and {2 are not of equivalent types, but {1 and {3 are, and
f2 and {4 are.

The KR definition of C does not recognize the problem of
type security across independent translation. X3J11 is stilz
deliberating it at the time of this writing. All C translatori.
known to this author do not type-check across independently
translated files, with attendant risk to the programmer if he
provides inconsistent declarations.

v.11.01.85 © 1984-85 MetaWare Incorporated

Concepts page 3-15

3.8 Lifetimes
[global and local lifetimes; Compound_statement; storage classes]

Objects manipulated in a C program have two different
inds of “lifetimes”: global and local.

An object of g/obal/ /ifetime exists and retains its value
throughout the execution of the entire program.

An object of /ocal /ifetimels created upon each entry into
the Compound_statement in which the object is declared and is
discarded when the Compound_statement is exited. By
“created” we mean only that the storage for the variable is
allocated, but not that the variable is provided with any initial
value(s). Storage is allocated even if the Compound_statement
is entered “abnormally”, through a jump transfer of control
(e.g. goto). '

The lifetime of an object is determined by its storage
class, as discussed in the next subsection.

Examples:
int x; /* x: global lifetime. »/
void f() { /* £: global lifetime. ° »/
int x; /% x: local lifetime. »/

{

int y; /* y: local lifetine. »/
L: K = 3; /* Storage for y is always allocated - %/
/* uhensver we arrive at L, »/
goto L, /* even through means of this goto. »/

3.9 Storage Classes

[automatic, static, and typedef storage classes; static-private,
static-export, and static-import]

There are three storage classes: awfomatic, static. and
(pwedef. The static storage class is further subdivided into
static-private. static-export. and stati/c-import which are
mutually exclusive and jointly exhaustive of static.

v.11.01.85 © 1984-85 MetaWare Incorporated

Concepts page 3-16

An object with the static storage class has global lifetime;
an object with the automatic storage class has local lifetime.

There are no objects of the typedef storage class, anf*
therefore no lifetime issues. This class exists only for defini
tional convenience.

Examples:

int x; o /* x: static-export => global lifetime. */

extern int z; /* z: static-import =) global lifetime. */

static void f(){ /= f: static-private => global lifetine. */
int x; /% x: automatic => local lifetime. */
} :

typedef int T: /* T: typedef =) lifetime irrelevant. */

3.10 Declarations and Definitions
[type; storage class; storage allocation]

A declaration in C announces the properties of an identifier
N, e.g. its type and storage class. Additionally, a declaratior
may be a defin/tionof N; not all declarations are definitions.

Intuitively, definitions cause storage to be “allocated” for
variables and the code body of functions to be specified.
Exactly those declarations having storage class static-export,
static-private, or automatic are definitions.

Examples:
int x; /% x: static-export => definition. */
extern int z; /% z: static-import => not definition. %/
static void f(){ /* f: static-private => definition. »*/
int x; /* x: automatic =) definition. */
}
typedef int T; /* 1. typedef =) not a definition, */
/™~ but irrelevant for typedefs since */
/* no storage is allocated for T. */

v.11.01.85 © 1984-85 HetaWare Incorporated

Concepts page 3-17

3.11 Independent Translation; Duplicate Declarations

(sharing declarations; separats compilation wnits; static-import, static-export,
and static-private; storage-cless; informatien sinilar; information increasing]
Generally, separate compilation units of a C program
'share” declarations of data and functions — if there were no
sharing, there would be no purpose for combining all the units
into the single program. Sharing is achieved when two distinct
declarations denote the same entity, as described in this
subsection.

First, there are restrictions placed upon distinct declara-
tions of the same name N appearing in distinct compilation
units. Under the restrictions, the distinct declarations denote
the same object or function and therefore achieve sharing
among units.

Second, certain apparent duplicate declarations are per-
mitted in a single compilation unit. “extern int a[]; .. int
a[10]. ” exemplifies a common case, where the former de-
claration is typically contained in an included source file. We
jay “apparent” because the special rules described below
specify that an apparent duplicate does not itself declare, but
instead /modifies, the previous declaration, so there is yet a
single declaration. Therefore we can always speak of a single
compilation unit having a single declaration for a name N in
the outermost block.

The description of the duplicate declaration rules is involv-
ed. The reader may find it profitable to go through the rest of
this manual in the frame of mind that a C program is a single
compilation unit, then return here for multiple-unit issues.

Denotation of the same entity among separate compil-
ation units. Consider all declarations in a C program of a
given name N within the ordinary name space such that the
storage class of each such declaration Dj is static-import or
static-export. ‘All the Dj denote the same entity if the
following two conditions hold:

v.11.01.85 © 1984-85 MetaWare Incorporated

Concepts page 3-18

(a) the types specified in the Dj are equivalent, except that
here type [?]:T is considered equivalent to [V]:T for any
V. in any non-function declaration, and

(b) exabtly one of the Dj declares N of storage class static
export.

Note that this permits one or more static-private declara-
tions of N in a program. Such declarations do not interact
with other declarations of N of static storage class.

Examples:

Compilation Unit 1:

extern int N[]: /* Static-import. “/
extern int N[]; /» Static-import. »/
int N[2]: /% Static-export. */
Compilation Unit 2:

extern int N[]. /# Static-import. »/
Cornprfation Unit 3:

static char N; /* Static-private. */
void F() {

; /* Static-import. */

extern int N[]
(1 /* Static-import. */

extern int N

}

Among these three units there are only two distinct enti-
ties named N: one is declared of type Char in Unit 3 and the
other is declared six times in the three compilation units.
The following add/t/ona/declarations are notallowed:

Comnpilation Unit 4:

void G() {
extern float N; /*Static-import, but wrong type. */
}

Compilation Unit 5:

int N; /* Duplicate static-export. */

v.11.01.85 © 1984-85 HetaWare Incorporated

Concepts page 3-19

Compriation Unit 6:

extern int N[3]; /* [3]):Signed_Int not equi- */
/* valent to [2):Signed_Int. */

The single static-export declaration D may be viewed as
the “seat” of the declared entity. The static-import declar-
ations may be viewed as merely referencing D. (In fact, import
and export declarations are commonly implemented this way.)

There may be at most one initialization specified for a set
of multiple declarations. This restriction Is imposed in Sec-
tion Dec/arations/Non-Function Definitions on initializations
where only static-export declarations are allowed to have ini-
tializations, and the rules here permit only one static-export
declaration. -

Note that the rules reguire a definition of storage class
static-export for an identifier. Alternatively, some C lan-
guage processors weaken rule (b) above to read

(b*) at most one of the Dj declares N of storage class
static-export.

These processors create the definition implicitly when the
translated results for the independently translated compil-
ation units are combined to form an executable program.

Rule (b) as it stands necessitates an aspect of program un-
reliability, in that at least two textually different declara-
tions for the same name are required, one by the “provider” of
the name (the. definition declaration), and the other by any
“user” of the name: :

Provider: Lser:
int *X; extern int *X;

Changing X's type requires modifying two distinct declara-
tions; if one modification is forgotten, the program is no long-
3r correct. On the other hand, with rule (b°), the distinction
setween user and provider is only in the mind of the program-
mer, and both may include the identical declaration of X, so
any change requires only the change of a single declaration:

v.11.01.85 © 1984-85 MetaWare Incorporated

Concepts page 3-20

Shared declaration,
FProvider: Lser: Intile "X def”:

#include “X. def" #include “X.def" int *X;

Duplicate declarations in a single compilation unit. An
apparent duplicate declaration D of a name N is allowed in the
presence of a previous declaration D' of N in the same scope,
provided certain conditions are satisfied. Furthermore D may
“update” the declaration of D, i.e. revise its type or storage
class so that from the defining point of N in D' through the the
remainder of the scope of D, N is associated with a modified
property set. ‘

Example:

extern int *(*b[1)[1.
- extern int *(*b[1)[S].
int *(»b[3D[]
The first line declares b of type [):*[]:*Signed- Int (an array
of pointers to arrays of pointers to Signed-ints). Thr
second supplies the size of the second [i giving [J:*[5}:
»Signed-Int as the “updated” type of b. After the third
declaration, b is of type [3]:*[5{:*Signed-lnt, and its stor-
age class is “changed” to static-export.

Here are the rules concerning would-be duplicate declar-
ations. Assume declaration D declares N of mode M, type T,
and storage class C, and apparent duplicate declaration D’
declares N of mode M', type T', and storage class C'. D' is not
a duplicate declaration of N if and only if either:

(a) M and M' are var, C and C' individually are static-
import or static-export, and either T and T* are similar
or T' is "information similar” to T (defined below): or

(b) M and M" are fecn and T and T* are similar. We further
require that two distinct declarations of the sam
function must have identical parameter names, if given.

In case (a). if T* is “information increasing” — where
information similarity holds yet T' has “more information®

.
’

v.11.01.85 (© 1984-85 HetaWare Incorporated

Concepts page 3-21

than T, T' is “updated” to reflect the increased information.
The increased information comes in the form of array bounds
whose size are unspecified in T, i.e. the updating consists of
changing an incomplete [J:... type to a completed [V].... type,
vhere V is the new information. Furthermore, if C was
static-import and C' static-export, C is changed to static-
export, so that the net effect is that C is exported. Note that
neither C nor C' can be static-private; e.g. “extern int a;
static int a; ” isillegal.

In case (b), if D' is not part of a function definition, it is
essentially ignored. If D' is part of a function definition, it
“replaces” the declaration D of N for the remainder of N's
scope. See the examples at the end of this subsection.

Type T' is defined to be /nformation similar to type T in
the same way they are defined to be similar, except that in
cases 2, 3, and 4, S' is information similar to S rather than
just similar, and we need the addition of the following case 4':

4'. T is of the form [?]:S and T* of the form [V]:S'; ‘in this case
T' is said to have more /informationthan T, viz. the array
bound.

Example: Revisiting the example given above:

extern int *(*b[[I
extern int *(*b[1)[S]:
int #(=b[3DI[1.

the type of the second declaration is information-increas-
ing with respect to the type T of b determined in the first
declaration, so that T is updated to reflect the [5] bound.
The type of the third is likewise mcreasmg with respect to
(the updated) T, so that T is updated again to reflect the (3]
bound. Also, the storage class of b is altered to static-
export.

v.11.01.85 © 1984-85 Metaware Incorporated

Co‘ncepts . page 3-22
Exampl/es: (duplicate function declarations)

int fO; /* No parm information. »/

int f(int); /* Illegal: not similar to first. LA

int f(float r) { /* Illegal: not similar to first. «
}

int g(int i); /* Parm type and name given. 7

int g(float); /* Illegal: float != int. */

int g(int j); /% Illegal: j != i. */

int g(int i) { /* Definition replaces first dcln of g. */

int h(); /* No parm information. »/
int h(r) float r; {
} /* Definition replaces first dcln of h. %/

3.12 Compatible Types
[similar types]

Where two different types participate in an expression,
they must sometimes be “compatible”. See, for example, the
?: and == operators in Section Express/onsand the definition of
assignment compatibility below. Compatibility is like “simi-
larity” except in .allowing one exception: pointers to non-
functions can be mixed with pointers to Void.

Two types are compatrb/e if they are similar, or one is
*Void and the other of the form *S, where S is not a func-
tionality type.

Examples:

int *x *y; /% Types of x and y are compatible, since similar. */
‘void *z; /* Types of x and z and of y and 2 are compatible. */
int **ppi;

void **ppv. /* Types of ppi and ppv are not compatible. *’

~ v.11.01.85 © 1984-85 Metaware Incorporated

Concepts page 3-23
3.13 Assignment Compatibility;Arithmetic Conversions

The notion of assignment compatibility is used to explain
the constraints and semantics of the C assignment operators
‘nd function-call operator. In the context of those operators,
arithmetic conversions can take place when certain types are
not the same.

Intuitively, type R is assignment-compatible with type L if
VL = VR” is a valid assignment expression, where Vi is an
object of type L and VR is a value of type R. Below are the
rules for assignment-compatibility.

The semantics of assignment permit potential conversion
of Ve to VR’ in preparation for storing into VL. In all cases
except where R and L are integral types, the semantics of
assignment are undefined when Vg' is a value not representable
in type L. The semantics of converting Vg to VR* are included
in the rules below.

Constraints and Sermantics

Type R is assignment-compatible with type L if one of
these three rules apply:

1. R and L are the same type T, and T is not an incomplete
type. Semantics: V' = Vi.

2. Rand L are compatible pointer types. Semantics: Vg' = Vg
3. RandL aredistinct arithmetic types. Semantics:
a. BothRand L are integral types.

Let Wp be the width of R and W be the widthof L. Let
Sk be the sign (either “signed” or “unsigned”) of R and
SL the sign of L. Consider the cases:

Wi > Wr: the conversion truncates bits.
Wi < Wi : the conversion preserves value.
WL=Ws: (two sub-cases)
SL=Sp: the conversion preserves value.
St !'=Sg: the conversion is bit-preserving: the bit

v.11.01.85 © 1984-85 MetaWare Incorporated

Concepts - page 3-24

b.

pattern of VR is stored into Vi. Value is
preserved if and only if Vg is a value in RB.

R is a floating type and L an integral type.

If VR is non-negative, Vg' is the largest integer not
greater than Vg if VR is negative, whether Vg' is the
largest integer not greater than Vg or the smallest
integer not less than Vg is implementation-defined.

R is an integral type and L a floating type.

~VR' is the floating value in L nearest Vg. If there is no

unique nearest value, the result is implementation-
defined. If Vg is outside the range of values of L. the
result is undefined.

R is Float and L Double.
VR' = VR.
R is Double and L Float.

VR' is Vg rounded to the nearest value in R. If there isn
unique nearest value, the result is implementation-
defined. If Vg is outside of the range of values repre-
sentable in L, the result is undefined.

Examples: Assume that long ints are wider than ints and

tha

t double has more range and precision than float.

int *p1, #*p2;

struct {int x;} sti;

struct {int x;} st2, st3;

int i; long int 1; float f; double d; unsigned u;

p1
st1
st2

oo

1
1
u
f
d
f

v.11.01.

= p2; /* Legal. "/
= st2; /* Illegal. */
= st3; /% lLegal. */
1; /* Conversion truncates. */
i; /% Conversion preserves value. »*/
i; /* Conversion preserves bits; may preserve value. *
i; /* Value nearest i in Float is stored in f. */
f. /* Exact value stored. */
d; /* Value nearest d in Float is stored if it exists.®/
s (© 1984-85 MetaWare Incorporated

Concepts page 3-25

3.14 Integral Widening Conversions
[arithnetic conversions; unsignedness-preserving versus valus-preserving]

Many contexts require type Signed-Int or Unsigned-int and
“widen” any shorter integer types to one of these types. The
widening is defined as follows:

Widen(T) =
if T is Signed-Char or Signed-Short-int
then Signed-int
else if T is Unsigned-Char or Unsigned-Short-Int
then if the size of T is the same as that of
Unsigned-Int on the target architecture
then Unsigned-Int
else Signed-int
else undefined.

4.28SD provides slightly different widening: unsigned types
always widen to Unsigned-Int. This rule, often called “unsign-
dness-preserving” as opposed to the “value-preserving” Widen
defined above, produces quite a few surprises, as illustrated by
the following C text:

void f() {
unsigned char c = getchar();
if (c-'0' <0 |lec-"'0">09)
printf(“Non-digit. \n");

In 4.2BSD “c - *0'” is never negative, since it is an unsign-
ed type (see the next Subsection for combination of operands in
'~*), so the first test always fails. In KR, there is no Unsigned-
Char or Unsigned-Short-int type so Widen agrees with KR.
X3J11 also uses the widening rules of Widen.

v.11.01.85 © 1984-85 MetaWare Incorporated

Concepts page 3-26

3.15 Combination of Operand Types
[arithmetic conversions]

Binary operators may operate on values of different types
When this happens, generally both values are converted to a
common type, which is the result type of the operation. The
function Common(T4,T2) specifies the common type T of two
operand types T1 and T2 that are both arithmetic types. It is
defined as follows:

1. An implementation may employ either rule (a) or (b):

a. If either Ty or Tz is Long-Double, T is Long-Double;
otherwise, if either T1 or T2 is Double, T is Double;
otherwise, if either is Float, T is Float.

b. If either Ty or T2 is Long-Double, T is Long-Double;
otherwise, if either Ty or T2 is Float or Double, T is
Double.

2. Or, if one is Unsigned-Long-int, T is Unsigned-Long-Int;
: or, if one is Signed-Long-int, T is Signed-Long-int;
or, if one is Unsigned- Int, T is Unsigned-Int;
or, if one is Signed-Int, T is Signed-int;
otherwise, T is Common(Widen(T 1), Widen(T2))
(widenings guarantee that one of the above cases applies).

3.16 Expression Evaluation: Side Effects, Sequence Points
[comna operator]

The semantics of an expression is two-fold, involving the
production of a value, called the eva/uationof the expression,
and potential “side effects”.

A si/de effectis an aspect of an expression’s semantics that
need not occur during the evaluation. However, |f an expression
is evaluated, any associated side effects must have taken place
by certain points called seguence paints. Thus, side effects
may occur any time from the inception of the evaluation ot
the expression up to the next sequence point. The term and
concept of a “sequence point” are borrowed from X3J11.

v.11.01.85 (©) 1984-85 HetaWare Incorporated

Concepts page 3-27

The end of execution of any statement or declaration is a
sequence point. This means that by the end of the execution of
the statement or declaration, all pending side effects must
have occurred.

Sometimes the end of the evaluation of an expression is a
sequence point. This means that by the end of the evaluation of
the expression, all pending side effects must have occurred.

In Section Expressions we specifically note which expres-
sions have side effects, and in any section where an expression
is used we specifically note if its evaluation is a sequence
point. In most cases the evaluation of an expression contained
within a statement is a sequence point.

Example: There are two side effects .in the expression
“i++ + j++”: the first increments the variable i, and the
second the variable j. However, the side effects need not
occur during the evaluation of the expression or during the
evaluation of the subexpressions 1++ and j++. But after the
execution of the statement “k = i++ + j++;”, the side
effects must have occurred, so a use in a subsequent state-
ment of i or of j must access the incremented value.

In “k = i++ + j++;*, there is no question what k will be
assigned, assuming the values of i and j are known.

Exarmple: But consider the more interesting case:

int a,b,c, k, i = 0;
k = (a = i++) + (b = i++) + (c = i++):

An implementation is free to evaluate the three assign-
ment expressions in any order (see Section Expressions:
assume for the moment it is left-to-right. What one
might expect is that a is assigned 0, b 1, and ¢ 2. But since
the incrementation side effects can be delayed to the end of
the expressions, all of a, b, and c can be assigned 0. Thus k
can take on any of the values 0, 1, 2, or 3, depending upon
when side effects occur.

v.11.01.85 ©) 1984-85 HetaWare Incorporated

Concepts page 3-28

Examp/e: Introducing sequence points with a comma
operator can eliminate uncertainty. Consider:

int a,b,c. k. i = O;

k = (a = (i++,1i-1))+(b = (i++ i-1))+(c = (i++ i-1)).
Here, independent of the evaluation order of the assign-
ment subexpressions, the values assigned will be 0, 1, and 2,
so k will obtain the value 3. But it is still not known w#rc/
of a, b, and c obtain the value 0, 1, and 2, since the order of
evaluation of the operands of + is unspecified.

v.11.01.85 (© 1984-85 HetaWare Incorporated

Lexicon page 4-1

4
Lexicon

4.1 Character Set ---------------c----——--—ooo- .
[target and host character set; string terminator]

Two sets of characters are implementation-defined: that
interpreted by the target machine (the tergetset), and the
hostset in which C program text is written. The distinction
matters for the string and character words that are written
with the host set and translated into the target set.

A character whose representation has-all bits zero must
exist in the target character set, representing the character
used to terminate strings.

The host character set must contain the following charac-
ters: the space character: characters representing audible
alert, backspace, horizontal tab, new line, vertical tab, form
feed, and carriage return; the 52 uppercase and lowercase
characters of the English alphabet; the 10 decimal digits; and
the following 29 graphic characters:

P %8 ()*+, -, /::<=>72[\)1"_{1}"

4.2 Line Splicing ----------------ocomm e -
[end-of-1ine; "\"] .

C program text may be divided into a sequence of lines.

Each line is terminated by what is designated in the grammar

below as an “Eol”, for end-of-line. The host environment may

terminate lines with a special character, by keeping track of
the record length of each line, or by some other technique.

No matter how this is done, each line that ends with the
character “\” is considered to be “spliced” with the next line,
as if the line terminator were not present. This permits any C
word to be longer than a single line. For example:

v.11.01.65 © 1984-85 MetaWare Incorporated

Lexicon page 4-2

This /s equivalent to
char *s = "a long\ char *s = “a longstring”;
string®;

short_id = a_longer_id\ short_id = a_longer_identifier;
entif\

ier;

/* This is a \ /* This is a comment. */
comment. */

X=\ ' X=3;

3.

Line splicing is not formally treated in the lexical grammar,
even though it is possible, because it would increase the gram-
mar’s complexity out of proportion to its importance.

Discussion

" Line splicing is not a part of KR or 4.2BSD. There, \ is used
only for continuing long strings to the next line.

X3J11 decided to generalize the construct so that it could
always be used to overcome line length limitations on some
operating systems.

Although it will rarely be used by programmers for any-
thing other than continuing strings, it may simplify program-
generating programs.

4.3 Preprocessor and Lexicon -------------=====—- .
[line boundaries]

Part of the definition of C includes a so-called preprocess-
orthat was introduced in Section Motationas effecting condi-
tional compilation, file inclusion, and macro substitution.

The conditional compilation aspect of the preprocessor
necessitates two distinct lexical descriptions of C source text:
that text excluded from compilation, and that text included in
compilation. These two descriptions are contained in the single
lexical grammar presented here.

'v.11.01.85 {© 1984-85 HetaWare Incorporated

Lexicon page 4-3

The preprocessor is the only part of C where line boun-
daries play a significant role. Commands to the preprocessor
are terminated by line boundaries, and conditionally compiled
text consists only of complete lines, not partial lines.

The preprocessor lexical conventions do not fit well with
the rest of the C language, so a substantial part of the lexical
grammar is devoted to the preprocessor. Much of this part,
and the semantics of the preprocessor — i.e. the rules and
effects of conditional compilation, file inclusion, and macro
substitution — are described in Section Freprocessor.

4.4 Included and Excluded Text ---~-=---=-==-=---—--- -
Smtax

scanner C_lexicon:

C_lexicon -> Text;
Text -> (Words Line_end)* (Control_line Text)?
-> \Scanning Skipped_lines Control_line Text;

An overall C program, on the lexical or word level, is one
of two forms of Text: Text that is included in compilation
(the first alternative), or Text that is excluded from
compilation.

Included Text consists of a sequence of lines each of which
contains Words. This sequence of lines is terminated by either
the end of the program or a Control_line (preprocessor direc-
tive) followed by more Text.

Excluded Text consists of a sequence of Skipped_lines.
That is followed by a Control_line, then more Text. Control_
line is needed after Skipped_lines so that it will be included
rather than skipped.

Whether to include or exclude text is determined by the
Jreprocessor and is described in the grammar by “\Scanning”.
“\Scanning” in the second rule for Text means to use that rule
if notscanning, i.e. if skipping. '

v.11.01.85 © 1984-B5 MetaWare Incorporated

Lexicon page 4-4

The complexity of the grammar at this level is due entirely
to the line orientation of the preprocessor.

4.5 Words —-----—-—————c e -
Syntax

Words -> Word=;
Word -> String | Char | Number | Identifier
| Delimiter | Punctuator | Operator | Comment;

The Words of C are Strings, Chars, Numbers, Identifiers, etc.

4.6 Identifiers --------------—cmmmmmmmme *
Smitax
Identifier-> Id_text =>"'<IDENTIFIER>';
Id_text -> Letter (Letter | Digit)=:
Letter -> °*A*..'Z° | ‘a'..'2' | '_* .

The nonterminal Id_text is used also in describing Control_
lines and hence cannot be back-substituted.

Constraints

Each character in an Identifier stands for itself, and
distinction is made between upper and lower case. Thus the
Identifiers “abc” and “ABC* are regarded as different: two
Identifiers are the same only if they consist of exactly the
same sequence of characters. There is no constraint on the
length of an Identifier.

Semantrcs

The text of an Identifier has no semantics at all. Identi-
fiers serve only to relate declarations of things with their
subsequent uses; an executing C program deals only with the
declared things and has no need for Identifier texts.

v.11.01.85 (© 1984-85 HetaWare Incorporated

Lexicon page 4-5
LDiscussion

KR specifies that only the first eight characters of each
Identifier are significant. In addition, linkers on some ma-
chines accept names of limited length. 4.2BSD permits names
of unlimited length. X3J11 requires an implementation to
treat as significant the first 31 characters of each name not
having static-export or static-import storage class.

4.7 Numbers ------------cmm oo .

£<INTEGER> <OCTAL>, <HEX>, ¢FLOATY; Signed-Int, Unsigned-Int,
igned-Long-Int, Uns1gned Long-lnt]

Symtax
Number -> Integer | Octal | Float | Hex ;

Integer -> '1°..°'9" ('_'? Digits)? Integral_suffix?
=>* CINTEGER>*;

Octal -> '0"' (*_'? 0igits)? Integral_suffix?
2>*(0CTAL>*;
Hex => 0" ("X' | 'x") Higits Integral_suffix?
=)' CHEXD> ',
Float -> Mantissa Exponent? Float_suffix?=)>'<FLOAT>"

-> Digits Exponent Float_suffix?=>'<FLOAT>';

Mantissa-> '.*' Digits | Digits \Dot_dot ‘'.‘' Digits?;
scanner Dot_dot: Dot_dot -> *'.' *.'; end Dot_dot
Exponent-> (*E'|'e') (*+'|'-')? Digits;

Integral_suffix

=>"u" '1'?] 1 tut?) otUt oLt)L 'U?
Float_suffix

_) ILI l 010 ' IFI l lfl'

Higits -> Higit+ 1list *'_*; # _ 1s non-standard.
Higit -> '0'..°'9' | 'A"..'F' | ‘a'..'f' ;

Digits -> Diglt+ list ‘_'; # _ is non-standard.
Digit -> '0'..'9' ;

Oigits -> Oigit+ list *'_°; # _ is non-standard.

Oigit -> *0'..'7* ;

v.11.01.85 © 1984-85 HetaWare Incorporated

Lexicon page 4-6

The notation “\Dot_dot” indicates that Digits followed by
*.' is a Mantissa only when what follows the Digits is nota
Dot_dot, which is a scanner for *.* *.'. This disambiguates
the construction “case 1..2:” permitted in a switch
statement.

Four forms are described: Integer, Octal, Float, and Hex.

As mentioned in Section Abtation the longest possible
interpretation prevails: therefore “12* denotes the Number 12
instead of the Numbers “1* and “2*.

Constraints

The type of an <INTEGER> is Signed-Int unless its value is
not a Signed-Int value, in which case it is Signed-Long-Int. but
with the following exceptions: if the Integral_suffix 'u' or
‘U* is employed, its type is the unsigned variety of the type
just determined; and if *1' or 'L* is employed, the type is the
long variety of the type just determined. Thus “123ul” is of
type Unsigned-Long- Int.

If a <HEX> or <OCTAL> constant has a Signed-Int value, its
type is Signed-int; otherwise, if it has an Unsigned-Int value,
its type is Unsigned-Int; otherwise, if it has a Signed-Long-
Int value, its type is Signed-Long-Int; otherwise its type is
Unsigned-Long-Int. Exception: the use of the Integral_suffix
modifies the type just determined in the same way as for
<INTEGER>, explained in the prior paragraph.

The “value” of a constant is defined in Sermanticsbelow.

The type of a <FLOAT> is Double, unless it is suffixed by *1°
or ‘L', in which case it is Long-Double, or by 'f' or 'F°’, in
which case it is Float.

Example: Oxffff on a machine with two-byte Unsigned-
Ints and four-byte Unsigned-Long-ints is the Unsigned-Int
value 65_535; 0x10000 is the Signed-Long-Int value 65_536;
Ox7fff_ffff is the Signed-Long-Int value 2_147_483_647 and
0x8000_0000 is the Unsigned-Long-Int value 2_147_483_6486.

v.11.01.85 (© 1984-85 HetaHare Incorporated

Lexicon page 4-7

Semantrcs
Underscores have no significance in Numbers.

Integers are interpreted in base 10.
Octal numbers are interpreted in base 8.

Floats are interpreted in the standard fashion. The letter
‘e’ or 'E’, if present, means “times ten-to-the-power-of”
the (optionally signed) base- 10 integer after the 'e* or "E'.

The characters following the 'x' or 'X' in Hex are inter-
preted as being in base 16. The letters *A* through °'F* (or 'a°
through *f*) denote the values 101p through 151p.

Discussion

Underscores in Numbers are an extension (from Ada) over all
C definitions and implementations known to us. They are
allowed so that long numbers can be broken up for ease of
reading. They may be used as a replacement for comma to
separate thousands: 3_434_112, for example. Following Ada,
High C disallows such forms as 1 to denote the integer
1: each underscore must appear between two digits.

In KR and 4.2BSD, the digits 8 and 9 are permitted in an
octal constant and have values 10g and 11g, respectively. Both
X3J11 and High C disallow such.

The Integral_suffix and Float_suffix appear only in
X3J11 and here. *f' or 'F* can be used to prevent arithmetic
operations from being performed in Double precision in the
presence of a constant; see Section Express/ons. But note that
it cannot be used to pass a Float constant as a Float parameter
instead of a Double in the absence of a function prototype,
since in “g(1.0f);”, if there is no prototype for g, 1.0 is
passed as Double. See later discussions on parameter passing
and function definition.

At one time the “.. " word was allowed by X3J11 for spe-
cifying ranges in a case sta‘tement. It was discarded because
the committee felt that the task of preventing “1..2” from

v.11.01.85 (© 1984-85 MetaWare Incorporated

Lexicon page 4-8

being recognized as two Floats (expressed by the \Dot_dot in
the grammar) was distasteful. There is no inherent ambiguity
in the language definition. since on the phrase-structure level
it is not possible for two Floats to be adjacent. Therefore
“1..2" must a/waysbe “1”,“..”, and “2” in a legal program.

Machine dependencies

The range and precision of real numbers are machine
dependent. :

4.8 Strings and Characters ------------ - -

£_<STRING>, <CHAR>. octal, hexadecimal in strings and characters;
igned-Int; “\"; ASCII; arrays]

Smtax
String -> '**' DQchar* *'** =>'<¢STRING>';
Char -> ''**. SQchar *'**' =>'<CHAR>"*;

DQchar -> Any-‘\'-'"" | *'\' Special ;
SQchar -> Any-*\'-***' | *\' Special ;
SpeCial ?>' lau ll lbl || 0.‘:. I nno l .r' l It. l 'V.
.\O tM [N NN
-> Oigit (Oigit 0igit?)? # Octal.
-> 'x' Higit (Higit Higit?)7. # Hexadecimall.

We describe two words here: the character Char and string
String. In both, each character in the target character set is
represented by a character in the host character set or by an
octal or hexadecimal escape sequence.

Any character the user can type at the terminal may appear
within a String or as a Char.

Constraints

Each <CHAR> has type Signed- Int. Each <STRING> has type *T,
where T is the type of ¢ in “char c. ”, except when appearing
as an Initializer of an array or as an argument to sizeof, when
it has type [V]:T, where V is the number of characters in the
string; see Sections Expressions/sizeorand Dec/arations/Non-
Function Definitions.

v.11.01.85 © 1984-85 HetaWare Incorporated

Lexicon page 4-9
Semantrcs

Char. The enclosing apostrophes for a Char have no meaning
themselves, but merely delimit the enclosed character. The
value of a character is the numerical value of the quoted
character in the target machine’s character set.

Note that backslash (\) is not permitted as a single enclos-
ed character. When \ appears after the first apostrophe, the \
itself and the character following it together have one of the
meanings indicated in the table below. (The ASCII value
column is applicable only when the target character set is
ASCII, and is provided here for convenience.)

Pair Meaning ASC// value (in decimal)
\a audible alert 7
\b backspace 8
\f form feed 12
\n new line 10
\r carriage return 13
\t horizontal tab 9
\v vertical tab 11
\\ \

\l []

\ll "

\d binary value corresponding to octal digit d.

\dd binary value corresponding to octal digits dd.

\ddd binary value corresponding to octal digits ddd.
Constraint:|n these last three cases the binary value
must fall into the range allowed for characters on
the target machine. Each “d” must be an 0igit as
defined in the grammar.

\xd binary value corresponding to hexadecimal digit d.

\xdd binary value corresponding to hexadecimal digits dd.

\xddd binary value corresponding to hexadecimal digits ddd.
Constraint:In these last three cases the binary value
must fall into the range allowed for characters on
the target machine. Each “d” must be a Higit as
defined in the grammar.

v.11.01.85 © 1984-85 HetaWare Incorporated

Lexicon page 4-10

In the forms \ddd and \xddd, once again the “longest text”
rule of Section Matation applies. For example, *\78* is an
illegal Char: it would be two characters, \7 and 8.

String. The enclosing quotes for Strings have no meaning
themselves, but are merely delimiters of the string text. Each
enclosed character denotes its corresponding character in the
target character set, with the exception of \ and *. When \
appears, it and the character following it together have the
meaning as indicated in the above table for Char.

The value of a String S depends upon its type T. see Con-
straintsabove. If T is a pointer type, the value is a pointer to
an array A of characters such that A[i] is the i¥ enclosed
character, for 0 £ i <L, and A[L] is the value of the character
*\000'. Here L is the number of characters in S. If T is an
array type, the value of S is A.

Discussion

The Char 'X' does notfhave the same value as the String
*X". Confusing these is a common mistake in C and can cause
disastrous results. For example, if function G expects a
character string, the invocation “G('x"). ” may cause G to run
through arbitrary amounts of memory looking for the
terminating *\000°. :

\a, \v, and hexadecimal escape sequences are inventions of
X3J11 not in KR.

KR and 4.2BSD permit the “default” case of \C, where C is
not in the table above; in this case \C means the same as C.

Examples:

Characters: Strings.

IAO OIA"

"\ “He said, \"She's dead.\""

"\t' “THIS IS A STRING."

' “Praise God from whom all blessings flow."

v.11.01.85 ©) 1984-85 HetaWare Incorporated

Lexicon page 4-11

4.9 Operators -------==-=--------emeooomo—- -
Syntax
Operator -> Ass1gn0p | OtherOp;
Utherop _> (e l c&a van ' o'o OI- l |>0 ot
' o<| I ‘et I u|o L I o(. 1t
| o>o I L I+O l e _0 s_ I 0 c>u
| rre = | . | '?2* =>'<¢AS_IS)';

Operators that can be followed by ‘=' in assignments.
AssignOp->(* "' | *>' > | ¢ ¢!
|o+o | [Py] l l&l ' lxl
lo_o I o/u | clo
) '='? =>'<AS_IS>*;
Semantics
Operator meanings are described in Section Express/ons.
Discussion

KR and 4.2BSD permit the anachronism “x =+ 1* instead of
the recommended “x += 1*. The former can be misinterpreted
as assigning the value +1 to x rather than incrementing x.
X3J11 forbids the anachronism, as do we.

4.10 Punctuators ----------——————-——————————- -
Syntax
Punctuator-> ‘(' | ')*
S S
{1} =>*<AS_IS>';
Semantics

Punctuators (or “punctuation marks”) have no semantics in
and of themselves. They separate other words in C, and their
placement is constrained by the phrase-structure syntax.

v.11.01.85 © 1984-85 HetaWare Incorporated

Lexicon page 4-12
Discussion

The punctuator ... was added by X3J11 to allow specifical-
ly designating a function as callable with a varying number of

arguments. .. is a High C extension to support ranges in the
switch construct. Neither punctuator is in KR or 4.2BSD.

4.11 Delimiters and Eol ---------=--mm—mmeme———— .
[white space]
Syntax

Delimiter -> (Space: ' '+ | HorizTab:'ht'

| FormFeed: 'ff* | Vert:Tab:‘vt'

)+ =>'<DELETE>*;
Line_end -> Eol =>'<DELETE>";

Note that Delimiters are not involved in the phrase-struc-
ture definition of C programs, since Delimiters are words
named <DELETE>.

Due to the line orientation of the preprocessor, Eol is not a
Delimiter as might be expected.

Semantics

Delimiters, commonly called “white space”, are entirely
insignificant. Their only purpose is to separate words. Eol
separates sequences of included or exciuded Text and
terminates Control_lines (see below).

LCiscussion

The addition of the FormFeed character is an extension over
KA. In addition. KR dictates that Eol is the new-line charac-
ter. This is not necessary on systems that support a different
convention for line termination.

v.11.01.85 © 1984-85 HetaWare Incorporated

Lexicon page 4-13

4.12 Comments =------------=------——----—----- .
Syntax
Comment => */* '#' Rest =>'<DELETE>*;

Rest -> Most* *#'+ (*/' | (Most-'/') Rest) ;
Most =) Any-'#' | Eol;

Semantics
Comments have no effect on the program's meaning.
Discussion

The grammar for Comment is a precise description of
comments that begin with the two adjacent characters “/=”
and end with the two adjacent characters “«/”. “Adjacent”
implies that an Eol cannot appear between the two characters,
even if the Eol is not really a character but a file-system
end-of-record, for example.

Comments do not nest. Commenting out code containing
Comments can be achieved by using the C preprocessor (see
Section Preprocessor), as follows:

#Hf 0

... commented out code ...

#endif

A good way to write large block comments with standard
Comments is exemplified below:

/“
This is a
block comment
whose left edge is
lined with *s
to make it stand out.
/

X XX zxx

x

v.11.01.85 © 1984-85 MetaWare Incorporated

Lexicon page 4-14
4.13 Excluded Text ----------------ccoemeueo -
Syntax '

Skipped_lines -> (\Sharp Skipped_line)*;
scanner Sharp: Sharp -> '#'; end Sharp
Skipped_line -> Skip_suffix? Line_end;

Skip_suffix -> (Not_special | Slash

| Comment | DString)*;
Not_special ~ -> (Any - */'-'"*)+ =) '<DELETE>';
Slash - '/ => '(DELETE>’;
DString -> String_text =) '<DELETE>';

This is the description of lines that are excluded from
compilation. Control_lines are the only lines that are not
skipped, and even then only Control_lines not within Comments.
The notation “\Sharp” means that each Skipped_line must not
begin with a Sharp ('#'), thereby ensuring that Control_lines
are not skipped.

Skipped lines conform to a small amount of lexical syntax:
Comments and Strings must be well-formed. Comment syntax is
included is to permit Control_lines to be part of Comments, i.e.
to allow Control_lines within excluded Text to be “comment-
ed out”. String syntax is included so that “/#” in a string is
not misinterpreted as the beginning of a Comment.

4.14 Control Lines: Preprocessor Commands ----- -

Due to the complexity of the preprocessor syntax, both its
syntax and semantics are deferred to the next section,
Preprocessor. Thus the lexical grammar in this section is, as
it stands, incomplete.

v.11.01.85 (© 1984-85 HetaWare Incorporated

Lexicon page 4-15
4.15 Reserved Words ----------=-=----=-=------ .
Syntax

end C_lexicon
reserve ‘'<IDENTIFIER>'

The following are words appearing in the phrase-structure
grammar (discussed in the next section). As discussed in
Section AMotationeach word below is therefore not an <IDEN-
TIFIER> word, but instead a reserved word. The implication is
that the C programmer may not use these words as user-
coined <IDENTIFIERDs:

int char float double long short unsigned signed
struct union typedef auto static extern register
goto return break continue if else for do while
switch case default entry sizeof void enum pragma

Discussion

Some implementations also reserve the words asm and
fortran. signed is not reserved in 4.2BSD or KR, but is in
X3J11. pragma is reserved only in High C.

v.11.01.85 © 1984-85 MetaWare Incorporated

Preprocessor page 5-1

5
Preprocessor

5.1 Introduction ---------=-------------------- -

[conditional compilation; file inclusion; macro replacement; lexicon;
phrase-structure; preprocessor comnands; lexical analysis; feedback]
As mentioned in the previous section, the C preprocessor
does three things: conditional compilation, file inclusion, and
macro replacement. In this section we define what these
terms mean.

The preprocessor may be thought of as a level of des-
cription and program source transformation that lies roughly
between the lexicon and the phrase structure of C. However,
this is not a precise division since the preprocessor commands
themselves are embedded in C program source text, must
therefore be lexically described, and hence impact the lexicon
of C. Furthermore, due to the semantics of file inclusion,
lexical analysis and preprocessing cannot be separated. This is
described in greater detail in file inclusion, below.

Another way of looking at the preprocessor is as a filter
that takes the word sequence WS generated by lexical analysis
and produces a new sequence of words subject to C phrase-
structure analysis. Some of the words in WS are interpreted
as preprocessor commands, and are processed and discarded by
the preprocessor; others are replaced by other words; the rest
of the words are left alone. In a program with no preprocessor
commands, the preprocessor does nothing to WS, and all of WS
is subject to the C language phrase-structure analysis.

However, again due to the requirement that lexical analysis
and preprocessing must occur at the same time, the filtering
cannot be separated into a distinct pass but must occur during
lexical analysis. (When the preprocessor is implemented as a
separate pass, it is at the expense of redundantly doing most
lexical analysis in both the preprocessor and compiler per se)

v.11.01.85 © 1984-85 HetaWare Incorporated

Preprocessor ' page 5-2

The preprocessor “filter” is broken up into two pieces: the
macro replacement (MR) phase, and the command inter-
pretation (CI) phase. MR occurs immediately after lexical
analysis. Cl occurs after MR, which means that some of the
preprocessor commands may have been subjected to macro
replacement. £Example:

#define RELEASE 2

#if RELEASE > 1

... some text T

#endif
When CI processes the “#if” command, the text “RELEASE”
has already been replaced with “2*, so that Cl includes text T
(because 2 > 1).

However, some preprocessor commands must avoid macro
replacement. For example, “#ifdef RELEASE", which asks if
RELEASE is defined, will not work if RELEASE is replaced with
“2”, since Cl will instead process “#ifdef 2”. Therefore ClI
must occasionally instruct MR to avoid replacement.

Finally, due to the semantics of file inclusion, Cl occa-
sionally directs the lexical analysis phase to include text from
a file. Pictorially, the relationship between MR, ClI, and other
phases of a C language transiator is as follows:

Source Text

¢

[Lexical Analysis

'

Macro Replacement | #include

$

| Preprocessor Command Interpretation |——

'

Phrase-Structure Analysis |

The arrows leading back from Cl to MR and Lexical Analysis
indicate the occasional “feedback” from Cl| to the other two

v.11.01.85 © 1984-85 MetaWare Incorporated

Preprocessor page 5-3

phases. This feedback is the single reason that preprocessing
and lexical analysis cannot be separated into separate passes.

In this section we first present the portion of the C lexical
rammar that describes the preprocessor commands and that
was deferred from Section Lexsecon. This completes the lexical
description of C.

Then, the phrase structure of the preprocessor is presented
— how the preprocessor interprets the words determined by
lexical analysis, including the ferreting out of preprocessor
commands. The semantics of the preprocessor commands are
described relative to the preprocessor phrase structure.

5.2 Control Lines ---=-=======m-mmmommmmemmme oo .

Syntax
Control_line -> Sharp Delimiter? Control; '
Sharp = '# => ' <DELETE>';

Observe that the Sharp of a Control_line lies in column
one of an input line due to the placement of Control_line in
the productions for Text (see the previous section), where it
appears either: (a) at the beginning of the source input; (b)
after aLine_end; or (c) after Skipped_lines, which always end
in aLine_end.

5.3 “"Comment” Control Line Lexicon ----~--------- .
Syntax
Control -> Line_end;

If nothing appears after the # and optional trailing
Delimiter on a control line, the text is all deleted and the line
is effectively a comment.

v.11.01.85 © 1984-85 HetaWare Incorporated

Preprocessor page 5-4

5.4 Macro Definition Lexicon ---------—cceme- .
Syntax
Control -> /Define_word Define Delimiter Macro
Words Done Line_end
scanner Define_word:
Define_word -> ‘'d' 'e' 'f' 'i' 'n' ‘e‘;
end Define_word

Define -> Define_word =>'<CONTROL>";
Macro -> Id_text \LP =) '<NO_PARMS>*
-> Id_text /LP =>"'<WITH_PARMS>';

scanner LP: LP -> '(* ; end LP

Macro definition requires special lexical processing that
complicates the grammar — yet another place where C pre-
processor syntax is not well-designed.

The placement of a left parenthesis as the next character
following a macro name (Id_text) has different semantics
from a left parenthesis separated from the macro name by one
or more characters. The difference is conveyed by the distinct
wcrd names (<NO_PARMSY versus <WITH_PARMS)) for the Id_text,
and is further explained below in Section 5.8.

The /Define_word resolves an ambiguity among Control_
lines, since macro definition is lexically a subset of other
control lines. If define appears immediately after the Sharp
and optional Delimiter, this rule for Control takes precedence
over all other alternatives for Control.

~ v.11.01.85 ©) 1984-85 HetaWare Incorporated

Preprocessor page 5-5

5.5 Other Control Line Lexicon ----------------- .
{else in 1lexical grammars]
Syntax

Control -> (Include_text else Other control)
Words Done Line_end;

Done - =)>'<C-EO0L>* :
Other_control -> Id_text =)>"<CONTROL>";

scanner Include_text:
Include_text -> Include_word Delimiter? Funny_string:
Include_word -> 'i' 'n' ‘c' ‘1" ‘u' 'd' ‘e’

=>"<CONTROL>*;
Funny_string -> L_angle File_name R_angle;
L_angle -> '} ~ =>"<DELETE>':
R_angle -> 9! , =)>'<DELETE>";
File_name => (Any="\'-""'-'>* | '\' Special)*

=>"'<{{STRING>>*;
end Include_text

The grammar-reserved word else serves to resolve an
ambiguity, since Include_text and Other_control can generate
some identical character sequences. else used here forces the
Include_text interpretation to prevail where a conflict exists.
This rule for Control may not be used when the macro defini-
tion rule can be used; i.e. the macro rule takes precedence.

All preprocessor commands end at line boundaries. The
word <C-EOL> marks those boundaries and allows the prepro-
cessor semantic phase to distinguish preprocessor commands
from other C text. Note that Done precedes Line_end every-
where it appears and therefore always marks a line boundary.

Include_text describes one of the sloppiest parts of the C
preprocessor syntax: the form “#include <{string>” of file
inclusion. Here a string is delimited by < and > rather than the
standard double-quotes (*) provided elsewhere in the C lexicon.
The cost is a duplication of some of the string definition
syntax. A better language design would have been to use a word

v.11.01.85 © 1984-85 HetaWare Incorporated

Preprocessor page 5-6

other than “#include”: “#L_include "string"” for “library
include”, for example.

5.6 Control Line Phrase Structuré --------------- .

Now we present the phrase structure of the preprocessor.
The grammar describes completely the sequence of words de-
termined by lexical analysis, but recall that the preprocess-
ing is interleaved with the lexical analysis, so that the gram-
mar cannot be understood to be a description of an already-
generated sequence of words: the semantics of. preprocessing
changes that sequence of words.

Note that the preprocessor “comment” discussed in
Section 5.3 above need not and is not addressed in the phrase
structure.

Some new notation: ‘wordname'!‘text' in the grammar
below indicates the word whose name is ‘wordname* and whose
text is ‘text’. The preprocessor phrase-structure grammar is
the only grammar that depends upon the text of some words.

Syntax ‘
Text -> (Control_text | Word)*:

From the preprocessor's point of view, Text has little
structure: it is just a sequence of Words, occasionally inter-
rupted by preprocessor commands and the text enclosed by
such commands (Control_text).

v.11.01.85 © 1984-B5 MetaWare Incorporated

Preprocessor page 5-7

9.7 File Inclusion ------=-==--------c--omoommo oo -
{include]

Syntax

Jontrol_text

-> *<{CONTROL>'!'include' °‘<<STRING>>' '<C-EOL>'
-> "CCONTROL>'!*include’ '<(STRING>' '<C-EOL>'
-> '<CONTROL>'!'c_include' ‘<STRING>' '<C-EOL>‘;

Semantics

A file inclusion preprocessor command substitutes an
entire source file F for the command. The substitution must
occur immediately after processing the command and during
lexical analysis, so that the the contents of F may also be sub-
jected to lexical analysis. Thus the concept of preprocessor as
filter concept is accurate only if the preprocessing is thought
of as proceeding concurrently with the lexical analyzer.

Due to the semantics of file inclusion this concurrency can
be avoided only if the preprocessor is run as a separate pass
freced/hglexical analysis, in which case the preprocessor must

ave its own lexical analyzer within it — but this just shows
again that lexical analysis and preprocessing must happen at
the same time.

A substituted source file is considered to be terminated by
a Line_end even if it is not. This prevents a word starting at
the tail end of a substituted source file from being “continu-
ed” in the file containing the #include command.

The first two #include commands differ only in how the
preprocessor locates the file; this is implementation-defined.
The last command (“conditional” include) differs from the
second only in that file inclusion does not occur if the file has
already been included.

In all three forms the name of the file searched for is the
text of the <KSTRING>> or <STRING> word.

Discussion _
The conditional include concept appears only in High C.

v.11.01.85 © 1984-85 MetaWare Incorporated

Preprocessor page 5-8
5.8 Macros -—-—-—---—————— == -

[macro parameters and arguments; macro body. replacement text: macro
replacenent; #define and #undef. parameterless and parameterized
nacros; benign redefinition]
C includes the notion of a /macrofacility. A macro is an
identifier M associated with some macro body and possibly
some /m3cro paramelters.

An occurrence of M causes it and possibly other words
following it to be replaced by a different sequence of words
called the rep/acement textwhich is derived from the macro
body and possibly some supplied macro arguments. This is
called macro replacernent: it is more precisely defined later.

Macro replacement is performed on the word sequence
produced by lexical analysis before the preprocessor analyzes
that sequence for preprocessor commands, i.e. before any
analysis based on the preprocessor phrase-structure grammar
(PPSG) is performed. The nonterminal Words in the PPSG
represents Words upon which all applicable macro replacement
has been performed, with exceptions as noted. The semantics’
of macro replacement is defined formally below.

Syntax
Control_text
-> *<{CONTROL>*!'define’
(Mname: '<NO_PARMS>' Body: Words

| Mname: '<WITH_PARMS)>*
(Parm: '<IDENTIFIER>' 1list ', ')? ')’ Body: Words

)
<C-EOL>
-> *<CONTROL>*!'undef' Mname: '<IDENTIFIER>* *<C-EOL>'

’

Constraints

In the #define command, if the Mname is already defined as
a macro M, its definition must be the same as M, where same
means the parameter <IDENTIFIER>s and the Body must be
identical. (This is known as “benign redefinition”.)

v.11.01.85 © 1984-85 HetaWare Incorporated

Preprocessor page 5-9

No two Parm: <IDENTIFIER>s in the <WITH_PARMS> form of
the #define may be the same, i.e. have the same text. Stated
another way, macro parameter names must be distinct from
each other.

Semantics

Both forms of the #define preprocessor command define
an identifier to be a macro with body Body: Words. No macro
replacement is performed on the Body of a #define command.

In the first form of #define, that with the <NO_PARMS>
macro name, the macro is called a parameter/essmacro, and
subsequent instances of the macro are replaced by the
Body: Words. Note that ¢IDENTIFIER> is a word with text; the
text is the macro’s name.

In the second form of define, that with the <WITH_PARMS>
macro name, the macro has a list of zero or more parameter
<IDENTIFIERDs, and is called a parameterizedmacro.

For macro replacement to occur for a parameterized
macro M, the occurrence of M must be followed by a left
parenthesis, a number of arguments that match the number of
parameters, and a concluding right parenthesis. The structure
of the arguments is defined later. Supplying the wrong number
of arguments is an error.

The replacement text that replaces M and its parenthesized
argument list is the macro body with any occurrence of a
parameter <IDENTIFIER)> in the body replaced by the corres-
ponding actual argument from the argument list.

In all cases, after macro replacement has occurred, the re-
placement text is reprocessed for any other possible replace-
ment, with the exception that macro replacement does not
occur on 3 macro named M contained directly or indirectly in
text resulting from a replacement of M. The exception pre-
'vents an endless loop in macro expansion. Furthermore, macro
'replacement occurs on arguments to a macro M before M
itself is subjected to replacement.

v.11.01.85 © 1984-85 MetaWare Incorporated

Preprocessor page 5-10

We more formally specify macro replacement below by
defining fr(WS), the result of macro replacement on word
sequence WS with respect to set F of macro names whose
definitions must temporarily be “forgotten” so that endless
loops can be avoided. One might read fr as “forget F while
substituting in WS”. f((WS) is the result of macro replace-
ment on the word sequence WS resulting from lexical analysis.
In the definition || denotes concatenation of word sequences,
and W is a single word.

Fe(WS) =

it WS is the empty sequence,
then WS;

else if WS is of the form W || WS', and W is not a
macro name or W is an element of F,
then W|| fr(WS");

eise if WS is of the form W || WS' and W is a
macro without S:arameters,

then fru (wy(Rep(W)) || Fr(WS"):

else if WS is of the form W || *(* || Arguments || *)*
|| WS', and W is a parameterized macro
with n formal parameters, and there are n
Arguments (defined below) Ay, Ag, ..., A,
then fry w)(Rep(W.A1.A2'.... An ")) || FF(WS?),
where Ai‘ = fr(Ai); '
else WS is of the form W || WS’ where W is a
parameterized macro lacking the appopri-

ate number of parameters, and the result is
Wl fr(WS").

Rep(W.A1.A;z... An) is the replacement text for macro W withn
arguments AirA2....An derived from W's macro body B by
replacing each occurrence of the ith parameter <IDENTIFIER>
in B with Aj.

The Arguments to a parameterized macro are described by
the following subgrammar:

v.11.01.85 © 1984-85 MetaWare Incorporated

Preprocessor page 5-11
Arguments -> ‘(' W* list ',' ')';
W => Word - "(' - ', ~ Iy
_) o(n (w ' l'l)“ l)l;
After a #undef command, the named macro Mname iS no

longer a macro (its definition is “forgotten”). |f Mname is not
a macro, the #undef command has no effect.

Discussion

Essentially an argument to a parameterized macro may not
contain “, ” except within properly balanced parentheses. But
note that an argument can be an empty sequence of words, so
that in

#define call(f, arg) f(arg)
call(, 3)
“call(, 3)” is replaced by “(3)”.

In addition, since an occurrence of a parameterized macro
is not replaced unless the appropriate number of arguments is
present, one can ensure that a library function being invoked is
not a macro by parenthesizing the function:

#include "stdio. h"

/* If getc is a macro, it is replaced here: */
c = getc(F);

/* But here the macro is not replaced; */

/* instead, function getc is called: */

c = (getc)(F).

Benign redefinition has been adopted by X3J11 as a way to
permit the inclusion of a commonly used macro name, such as
“NULL” (typically defined as “(void *)0”), in each library
header file that requires it.

Bug. Our definition of macro replacement avoids some of
the absurdities and possible abuses of common C macro pre-
processors. In at least two C compilers we know of, a macro
invocation can be constructed from text some of which was
obtained from a macro replacement and the rest elsewhere.

v.11.01.85 © 1984-85 HetaWare Incorporated

Preprocessor page 5-12

For example, the following is acceptable to these two compil-
ers, producing “int i = (3)*(3);” from the expansion:

#define start sgr(
#define sqr(x) ((x)*(x))

mt i = start 3);

Our definition does not permit a macro body to contain
unmatched parentheses, if these parentheses follow a macro
name whose replacement is intended. The formal derivation is:

fo (int i = start 3);", '
“int i = * || fistarty(Rep(“start™)) || £(("3). ")
“int i =" || f(starey(“sqr (*) |l “3);*

“int i=$qr(3);"

The result draws a syntax error from a language processor
unless Sqr is a defined function.

But it is still .possible to construct a macro invocation
from pieces when the pieces are joined within the replacement
text of a single macro:

#define x g(h
#define h(f) f(3))
#define g(i) i+1

h(x);

Fo("h(x): ")
= fiyRep(h.F(“x"))) fo(: ")
= fn)(Rep(h.f(x)(Rep(“x”)))) "
= fny(Rep(h. fxy(“g(h™))) “r
= fmy(Rep(h,“g(h*))) “
= Fm(fm(“g(h(3))”) "
= Fy(fn. gy (Repla. fmy“h(3)”M || .
= Fmyfm.g(Rep(a,"h(3)"))) o
= f{h}(f{n,g}(“h(3)"’1 n)) n’_ ”»
= Fn("h(3)+1”) “
= “n(3)+1” | e
= "h(3)*1;“

v.11.01.85 (© 1984-85 MetaWare Incorporated

Preprocessor page 5-13

Here an invocation of h was constructed from the argu-
ment x, expanded to g(h, and the matching parentheses in the
body of h. The best one can say about this usage is that it is
good for boundary examples in documents such as this one.

The C compilers mentioned previously generate “3(3))+1”
from “h(x)*, mainly because the way they avoid an endless
loop is by placing an upper limit on a macro expansion buffer,
rather than actually detecting the loop.

5.9 Predefined Macros -----------=---=---------- .
[_LINE_. _FILE_]

_ _LINE__ and _ _FILE__ are predefined parameterless
macros. The first expands to a decimal digit string whose
value is the line number of the source file containing the
occurrence of _ _LINE__. The second expands to a quoted
string literal, the name of the file containing the occurrence
of _ _FILE_ _. These macros are most useful for debugging:

printf("Now at line %d in file %s\n",
__LINE_ _ _ _FILE_):

5.10 Conditional Inclusion -------------ccccc-- .

[#if, #ifdef, ¥ifndef, ¥elif, #else, #endif. defined; constant
expression; macro replacenent: enabling condition; Signed-Long-Int]

Syntax

Control_text -

=> ('<CONTROL>'!‘'if" E '<C-EOL>' If:Words
| *<CONTROL>'!‘*ifdef’' '<IDENTIFIER)>' '<C-EOL>' Words
; *¢CONTROL>' !*ifndef' °‘'<{IDENTIFIER>' °'<C-EOL>' Words

("<CONTROL>'!‘*elif* E '<C-EOL>' Elif:Words)*
(*<CONTROL>'!‘else" ‘¢C-EOL>* Else: Words)?
'{CONTROL>' ! 'endif" *<C-EOL>"

.

E -> ... see the next paragraph.

v.11.01.85 (© 1984-85 NetaWare Incorporated

Preprocessor page 5-14

The E nonterminal generates the same language as E2 in the
C phrase-structure grammar (see Section Expressions), except
that the only allowable occurrences of <IDENTIFIER)s in E are
as follows:

(i) '<IDENTIFIER>'!'defined’ Mname: ‘<IDENTIFIER)>' .
(ii) '<IDENTIFIER>®!‘defined* (' I‘1name ‘<CIDENTIFIER>® *)°
(iii) Mname: (IDENTIF IER>!

Constraints

E must generate a constant expression (see Section
Expressions/Constant Expressions of an integral type with no
occurrences of the sizeof operator, enumeration constants,
or type casts.

Semantics

Macro replacement does not occur for the single word
appearing after *<IDENTIFIER>'!‘defined’, in case (i) or (ii),
or for the single word appearing after the *(* in case (ii). In
addition. no replacement occurs for the <IDENTIFIER> follow-
ing #ifdef or #ifndef.

Conditional inclusion. #if-#ifdef-#ifndef, #elif, and
#else provide a conditional text inclusion facility based upon
the value of an expression E or the existence of a macro defini-
tion. Only one of the sequences of Words in a #if>ox-#endif
command is included; all others are excluded. '

The included sequence is the first sequence of Words such
that the enabl/ing condit/ion of the preprocessor command
containing the Words is True. The enabling condition for the
#if and #elif commands is that E evaluates to a non-zero
integer value. The enabling condition for the #ifdef command
is that the <IDENTIFIER> is defined as a macro; for the #if-
ndef it is the reverse. The enabling condition for the #else
command is True, i.e. if no other enabling condition holds, the
Words associated with the #else command are included.

Macro replacement does not occur on excluded text.

v.11.01.85 © 1984-85 HetaWare Incorporated

Preprocessor page 5-15

Evaluation of E. Each conditional inclusion expressionE is
evaluated using the host environment's Signed-Long-Int arith-
metic, as if all operands had type Signed-Long-Int rather than
the type normally dictated by the Constraints of C express-
ions; see Section Expressi/ons.

In all cases (i)-(iii) for <IDENTIFIERYs, the expression evalu-
ates to zero or one according to whether Mname is currently
#define-d or not. Note that in the third case of a single
CIDENTIFIER>, the value one is rarely obtained, since the only
way the <IDENTIFIER> could be a macro name is if the macro
were recursively defined so that replacement stopped. leaving
the macro name. £xamp/es:

#define x x

#if x /* Same as “if 1”. w/
... this text is included ...

#endif

#undef x
#if x /* Same as “if 0”. %/
... this text is excluded ...

#endif '

Obsolescence. #ifdef and #ifndef provide nothing that
#if-#elif-#else-#endif do not already provide, and the for-
mer’s use is discouraged in favor of the latter's. #ifdef and
#ifndef can be avoided as follows:

This can be replaced wrth
#ifdef x #if defined(x)
#endif , #er.ld.i-f

#ifndef x #if tdefined(x)
fendif fendif

Some compilers permit arbitrary text on a line following
#endif and #else. This supports a common UNIX practice ex-
emplified by “#ifdef X .. #endif X”. X3J11 recently decided

v.11.01.85 © 1984-85 MetaWare Incorporated

Preprocessor page 5-16

to permit the text after #endif and #else to be |mplemen-
tation-defined.

5.11 Preprocessor Words --------------—-—-—-—-—- .
Syntax

Words -> Word*;

Word -> Any - '<CONTROL>® - *<C-EOL>'
Any word produced by lexical analysis
other than the two explicitly excepted.

Semmantics

Macro replacement occurs on all Words, with the excep-
tions as noted above: for the word following ‘' <IDENTIFIER>"!
‘defined’ and the word following *<IDENTIFIER>'!'defined’
(in the case of the conditional inclusion expression E, for
excluded Words, and for Words that are a macro Body.

v.11.01.85 ©) 1984-85 HetaWare Incorporated

Declarations page 6-1

6
Declarations

6.1 External Declarations ----------==-=---=----- -

ified_declaration; Function_definition; N_f‘ttlﬂ_ﬁﬂllﬂm:
fied_declaration; pragmas from Ada; toggies; block; #pragma]

Smtax

parser C_phrase_structure:
C_phrase_structure
-> External_declaration®

FHHRRE AR AR AR ARRRAR AR AR R A RR R R R AR R RN AR AR AR AR R AR AR AR NR R
Declarations. _
SRR RRRRRNRSRARRARARRRBRRRRRRARRRRARRRRRRR AR RN R ARR
External_declaration
-> Unspecified_declaration:

(Function_definition

| Non_function_definitions °:°*

) .
-> Specified_declaration # With specifiers.
~> Pragma_call
=> # Syntactic oddity of KR.
i’ragna_call

-> ‘pragma‘’ Name ('(* (E list *,')? *)')? *.°*

AC prograrh consists of a sequence of declarations and
pragmas. Some declarations are also definitions.

Constraints

There is a block E that is the text of the entire program.
Any block introduced by any definition — an Unspecified_
definition or a Specified_declaration— is apart of E.

Specifiers are assumed in an Unspecified_declaration
according to rules set forth in the next Subsection.

v.11.01.85 1964-85 HetaWare Incorporated

Declarations page 6-2

Semantics None.
Discussion

Pragmas are found in no other definition of C. The syntax
is taken from Ada. The intent is to allow the programmer to
give directives to a C language processor. For example, all
MetaWare C compilers support pragmas named Set, Reset,
and Pop. which take a single identifier as the name of a fogg/e
stack and either push True (set), push False (Reset), or pop the
stack. The value on the top of the toggle stack affects
language translation in some way, depending upon the nature of
the toggle.

Beyond this we say no more about pragmas, leaving their
further definition to another document more specific to
MetaWare High C and High C implementations. A related
notion is the newly-introduced “#pragma® preprocessor
command found in the X3J11 document; we have not included
#pragma as part of our definition.

Pragmas are also permitted in statements; see Section
Statements.

6.2 Specified Declarations -------------=-------- .

ESoeclflers fncuu.hfilmu _Nen_function_definitions. SndfioUoclmuu
xternal_declaration; autosatic storage class]

Smitax

Specified_declaration

-> Specifiers ‘.

-> Specifiers Function_definition

-> Specifiers Non_function_definitions *.°*

‘Constraints

The Specifiers of a Specified_declaration that is syntac-
tically immediately derived from an External_declaration
may not denote the storage class automatic: see 6.3 below for
how Specifiers denote a storage class.

v.11.01.85 1984-85 NetaWare Incorporated

Declarations page 6-3

Semantics None.
Discussion

Declarations are broken up into (1) the definition of func-
tions (Function_definition) and (2) declarations that are not
function definitions (Non_function_definitions), but that may
be function declarations or definitions of names of non-func-
tion types.

Only one function can be declared in a Function_defini-
tion, but many non-functions may be declared in Non_func-
tion_definitions.

The alternative “Specifiers *;'” is permitted to allow
the declaration of a type T without also declaring a name for
type T. For example, “struct s {int x:}; typedef int t;”
declares a tag s referring to the Struct{...} type and a typedef
name t standing for the Signed-Int type.

6.3 Types and Specifiers --------------- S .

[Stsrage_classes aste, exters, registsr, typedef, static; adjectives
shert, sasigeed, sim char, iat, fleat, deuble, veid; <TYPEDEF_NANE>;
flm T u:z'ﬂ Conpound_statenent; fea_| fonction hmitiu

fuctin definition; fiu declaration; Specified declaration; static-impert
static-expert, static-private; autematic, typedef: type of char; aritmetic tymf
Smtax
Specifiers

-> Type_or_storage_classes

Type_or_storage_classes

-> Storage_class Type_or_storage_classes?

-> Typedef_reference: '<TYPEDEF_NAME)' Storage_class?
-> Type ASCs

-> Adjective ASCs (Type ASCs)?

ASCs -) (Adjective | Storage_class)*
étorage_class

-> 'auto’|'extern’|'register’|’typedef’|’static’

.
’

v.11.01.85 © 1984-85 Hetadare Incorporated

Declarations page 6-4

Adjective
-> *short’|’unsigned’|‘long'|‘signed*

Type_specifiers

-> Typedef_reference: '<TYPEDEF_NAME)>"'
-> Adjective* Type Adjective»

-) Adjective+

Type
-> <‘char'|'int* I float' | ‘double’ | ‘void*>
-> Tagged_type;

Specifiers are complicated by the syntactic rules for the
interpretation of <IDENTIFIER>s as <TYPEDEF_NAHE>s. The com-
plexity bears some detailed explanation here.

Specifiers are essentially a sequence of Storage_classes,
Types, Adjeotives, and <TYPEDEF_NAME)s, where

(a) there may be at most one Storage_class, a constraint that
would be clumsily imposed by the grammar;

(b) there may be at most one Type or <TYPEDEF_NAME>: imposed
by the grammar, and necessary to properly interpret
CIDENTIFIER>s as <TYPEDEF_NAME)>s where appropriate —
this is the reason for the grammar"’s complexity:

(c) a <TYPEDEF_NAME> may not be combined with an Adjective;

(d) only certain combinations of Adjectives are permitted, a
constraint that would be clumsily imposed grammatically.

A <TYPEDEF_NAME> is an <IDENTIFIER> that is declared of
mode typedef in the ordinary name space. Effectively, any
time such an <IDENTIFIER> word appears, it becomes a <TYPE-
DEF_NAME> word. The grammar permits at most one occur-
rence of a <TYPEDEF_NAME) in Specifiers or Type_specifiers,
and does not allow it to be combined with a Type. Essentially,
the <TYPEDEF_NAME) specifies the type (see Constraintsbelow),
and therefore the combination with another Type, <TYPEDEF_
NAME>, or Adjective (type modifier) is meaningless. The ice is
notthin here.

v.11.01.85 1984-85 Metadare Incorporated -

Declarations page 6-5

Examples:
typedef int T;
void F() {
Tx /* x is of type T = Signed-Int. w/
short Tx; /% Illegal: adjective not allowed. */
TTx /% Illegal: two CTYPEDEF_NAME>s. %/
register T; /» Illegal: declared name missing. */
%nt 1. /* A valid re-declaration of T. "/

The nonterminal Type_specifiers is the subset of Speci-
fiers that forbids Storage_classes, and is used elsewhere in
the grammar.

Constraints

Specifiers and Type_specifiers denote a type and a stor-
age class that become associated with the name declared with
the Specifiers. How to determine that type and storage class
is discussed next.

Specification of the storage class. In Specifiers there
may be at most one Storage_class stated. |f the Storage_
class is omitted, a storage class is implied based upon where
the specified declaration appears, as follows:

(a) In an Unspecified_declaration, a Function_definition has
storage class static-export; aNon_function_definition of
mode fcn has storage class static-import: any other
Non_function_definition has storage class static-export.

(b) In a Specified_declaration that is a part of an External_
declaration, the rules in (a) above apply.

(c) In a Specified_declaration that is a part of a Compound_
statement, a Funotion_definition has storage class auto-
matic: aNon_function_definition of mode fcn has storage
class static-import; any other Non_function_definition
has storage class automatic.

v.11.01.85 1984-85 Hetallare Incorporated

Declarations page 6-6

Examples:

/* lllustrations of case (3) | */
x; /* Unspecified_declaration: Non_function_definition
=) static-export storage class. 74
y(). /* Unspecified_declaration: Non_function_definition
=) static-inport (due to mode fcn). "/

fO{ /* Unspecified_declaration: Function_definition
. =) static-export storage class. ®/
/* lllustrations of case (c): "/

void g(){..} /" Specified_declaration that is part of a
Compound_statement => automatic. But this
particular case is ruled out elsewhere --

nested functions are illegal. "/
int h(). /% Specified_declaration that is part of a
Conpound_statement => static-import. "/
int i; /% Specified_declaration that is part of a
Compound_statement => automatic. "/
}
/* [lustration of case (b) "/
int 2; /* Specified_declaration that is a part of an
: External_declaration =) static-export. "/
End of Examples.

If the Storage_class is stated:
Storage class - denotes storage class

extern static-import
static static-private
auto or ragister automatic
typedef typedef

MNote. The static-export storage class camotbe explicitly
written, but is the default when none is specified.

The Storage_class auto is allowed only in a declaration
within a function; register is allowed in the same cir-
cumstances and additionally as the storage class of function
Parameters.

Specification of the type. In Specifiers and Type_speci-
fiers, the grammar permits only zero or one Types or <TYPE-

v.11.01.85 1984-85 MetaWare Incorporated

Declarations page 6-7

DEF_NAME>s. Any number of Adjectives is permitted by the
grammar, but only certain combinations are legal. In any
particular combination the Adjective(s) and/or Type may be
presented in any textual order, but no Adjective may be
repeated. No Adjeotive may appear with a <TYPEDEF_NAME).

If a CTYPEDEF_NAME) is used, it it guaranteed to be declar-
ed of mode typedef in the ordinary name space of a type T.
The type denoted by the Typedef_reference is T and is the
specified type.

If a CTYPEDEF_NAME) is not used. The next table indicates
the only allowable combinations of Adjectives with int and
char, and the correspondingly denoted type. The first three
rows may be optionally combined with the Type int.

Table Adjectives Combined with int and char.

signed or nothing unsigned
short Signed-Short-Int Unsigned-Short-int |uith
long Signed-Long-Int Unsigned-Long-Int ~ |or without

(nothing) Signed-Int Unsigned-Int |the Type int.
char lSigned-Charf Unsigned-Char |
denoted type

t Exception: whether char standing alone denotes
Unsigned- or Signed-Char is implementation-defined.

Therefore, if Specifiers contains neither a Type nor an
Adjective, the “(nothing)-nothing” intersection in the table
above applies and the denoted type is Signed-Int.

The Types float, double, and void standing alone denote
the types Float. Double, and Void. double may be combined
with long to denote the type Long-Double. No other Adjec-
tive may be combined with double, and float and void may
not be combined.with Adjectives at all.

For example, “unsigned int short” and "int short
unsigned” are both allowed and denote the type Unsigned-
Short-int, but “int short unsigned short” is not allowed,

v.11.01.85 © 1084-85 Netadare Incorporated

Declarations page 6-8

since short occurs twice.

Tagged_types are covered in the next Subsection.

Examples: /% Storage class: Iye: "/
x; /% Static-export Signed-Int ' */
f(). /* Static-import (?) -> Signed-Int */
char y, z2; /* Static-export Signed- or Unsigned-Char */
staticqr; /* static-private Signed-Int »/
main() { : /* Static-export () -> Signed-Int »/

unsigned X, y; /* utomatic Unsigned-Int »/

auto short z, w; /* Automatic Signed-Short-Int »/

double extern long 1. g,

} /% Static-import Long-double »/
Semantics

The meaning of the type specifications and storage classes

is discussed in the Section Cancepts.
Discussion '

The reason that the type T denoted by char standing alone
is implementation-defined as either Unsigned-Char or
Signed-Char is due to potential inefficiences in a computer
architecture. For example, on the IBM 370 loading an
Unsigned-Char . is much more efficient than loading a
Signed-Char, so T = Unsigned-Char is preferable. On an
8088, widening an Unsigned-Char to a Signed-Int costs a
two-byte instruction, whereas widening a Signed-Char to a
Signed-Int costs only a single byte.

Although a Function_definition of storage class automatic
is not ruled out by the constraints in this subsection, they
are in Subsection 6.5.

Formally, the Storage_classes auto and register have the
same semantics: specification of the automatic storage
class. Generally the Storage_olass register is understood
by a language processor to place the declared object’s value
in a register; however no semantic change to the program
must occur through this placement.

v.11.01.85 1984-85 Netalare Incorporated

Declarations page 6-9

Example: Some implementations, e.g. Microsoft C 3.00
on the 8086 under MS-DOS, do not truncate unsigned char-
acter values when the character is held in a register. so
that in “register char c = 255; if (++c == 256) f();” f
may well be called on an 8-bit-byte machine. The value of
c after the increment should instead be zero.

» The only combination of the Types and Adjectives allowed
here and in KR are "short int”, “"long int”, and “un-
signed int”. [t is not clear from KR whether the order
matters. KR also permits “long float” to stand for
“double”; High C, like X3J11, does not. High C, like
X3J11, uses “1ong double” to denote type Long-Double, a
type not in KR.

* 42BSD permits Adjectives to appear with <TYPEDEF_
NAME)>s. The result is somewhat as if <TYPEDEF_NAME>s were
macros instead of names associated with a distinct type.
Example: “typedef int T; unsigned T x; T y;” is per-
mitted. ’

This has the perhaps unusual effect that x and y are notof
the same type; x is of type Unsigned-int and y of type
Signed-Int. The Adjective overrides the type associated
with T, changing the type from Signed-Int to Unsigned-Int.

Note the distinction: “int” standing alone denotes the
signed integer type, not an “incomplete” integer type:
specific syntactic combinations to denote various integer
types are listed above. Both KR and X3J11 concur with
this manua! in insisting that a typedef name denote a
sing/e unmodifiable type.

* Many C implementations are two-faced about the use of
the Storage_class extern. For a function declaration that
is not a definition, i.e. the body is not being supplied,
extern always means the function is declared elsewhere,
but extern on a function definition denotes storage class
static-export.

v.11.01.85 1984-85 MetaWare Incorporated

Declarations page 6-10

High C reserves extern for static-import only, and for-
mally forbids it on definitions. In a concession to existing
(poor) practice, MetaWare High C compilers warn when it
appears on a function definition. lts presence is unneces-
sary since the absence of any Storage_class for a function
definition implies storage class static-export.

6.4 Tagged Types -----=-=====—=—=ccccooommmm— .

[strect, saion, ensn; incomplete structurs or waisa type; tag aeme spacs; structure
or wnion nembers; it field; easmeration literals aad type; member aligament]

Syntax

Tagged_type

-> Complete_definition: ‘struct' Tag? '{' Hember_list '}’
-> Complete_definition: ‘union® Tag? '{‘' Member_list ‘}*
-> Use_or_incomplete_definition: (*struct’'|‘union*) Tag

-> Complete_definition: 'enum' Tag? '{' Literal_list '}*
-)> Reference: ‘enum' Tag

f.iteral_list
-> (Name ('=' Constant:E)?) list *',*' *,'?

'Tag
-> Tag: Name

flember_list ,
-> *{* Also_is_a_list:Members list *;* *;'? °‘}'

ﬁembers
-> Type_specifiers (Structure_member list ', °*)?

"Structure_menber
-> Declarator ’
-> Field_member:Declarator? ':* Bits:Constant:E

4

v.11.01.85 1984-85 Metadare Incorporated

Declarations page 6-11

Constraints

Structures and Unions. If the Tag (Name) is given in a
Complete_struct_definition:

(a) if the Tag is declared of mode struct-tag and incomplete
type Struct{?} in the tag name space, and the origin of the
latter declaration is the same as that of the Complete_
struct_definition, then the Member_list specification
completes the original definition of the incomplete
struct. From this point through the rest of the origin of
the Tag's declaration, the incomplete struot has type
Struct{M}. where M is the Hember_list. This does not
create a new type but merely completes an old one. The
type denoted by the Complete_struct_definition is this
completed type. ‘

Note that the requirements of “same origin® prohibit the
example cited in Section /nfroduction a particular sore
spot for most compilers and C language definitions.

(b) Otherwise, the occurrence of the Tag is its defining-point
within the tag name space of mode struct-tag: it has new
type T = Struct{?} from its defining-point to the closing }
of the definition, and then has type Struct{M} where M is
the Member_list; the type denoted by the Complete_struct_
definition is this new type.

Furthermore, T may not be completed within the defini-
tion. This unusual two-stage type association prevents
itlegal declarations such as “struct S{struct S x;}”, but
permits such declarations as “struct S{struct S *x;}”:
pointers to incomplete types are permitted.

If no Tag is given in a Complete_struct_definition, the
definition denotes a new type Struct{M}.

Similar constraints apply for Complete_union_definition:
replace struct by union and Complete_struct_definition by
Complete_union_definition in the preceding three paragraphs.

v.11.01.85 1984-85 HetaWare Incorporated

Declarations page 6-12

Example:

struct s; /% A: Declaration of an incomplete type. %/
main(). { ‘
struct s *y; /* Reference to declaration A. */
struot s {int z;}; /* B: Duplicate declar‘nof s. */

struct s {int z2;}; /% C: completes declaration A. */

Declaration B is not a completer of A since B and A have dif-
ferent origins. Therefore the occurrence of s inB is a defin-
ing-point, so that the scopes of A and B overlap, producing
an lllegal duplicate declaration. On: the other hand, the
origin of A and C is the same, so that C completes A.

No member in a Hember_list may be of a functionality type
or of an incomplete type (this prohibits the declaration of x in
“struct S{S x; }*.)

In a Use_or_incomplete_definition, if the Tag following
struot is declared of mode struct-tag and incomplete type
Struct{?} or the Tag following union is declared of mode
union-tag and type Union{?}, the type denoted by the
Incomplete_definition_or_use is this type. Otherwise, the
occurrence of the Tag is its defining-point of mode struct-tag
and new type Struct {?} (or of mode union-tag and new type
Union {?}). '

The type denoted by the Use_or_incomplete_definition is
this type. (This means that in “struot S {int X;}; void F()
{union S; ...}”, the second occurrence of S is an incomplete
definition, not a reference to the firstS.)

The declaration of an object of type Struct{?} or Union{?}
whose storage class Is not static-import Is illegal; the Struct
or Union type must first be completed.

The E appearing in a Field_member must be a constant
integral expression. If the value of E is zero, the Declarator
may not be present. The Declarator must be of type Unsigned-
Int or Signed-Int.

v.11.01.85 © 1984-85 Metalare Incorporated

Declarations page 6-13

Enumerations. Each of the Constants in a an Enum_defini-
tion's Literal_list must be a constant expression of an
integral type.

The type T denoted by an Enum_definition is one of Signed-
Char, Unsigned-Char, Signed-Short-int, Unsigned-Short-int,
Signed-int, or Signed-Long-Int.

An implementation may choose any of these types for T
provided that: (a) the unsigned types can be used only if their
size is less than that of Signed-Int, so T widens to Signed-Int in
an expression: (b) T contains the set of values specified in the
Literal_list, except that a value not contained in Signed-
Long-Int is converted as if by type casting to Signed-long-int.
See Sermanticsbelow for the specification of the values.

Generally an implementation chooses the type T having the
smallest size satisfying the constraints, and chooses the
signedness depending upon the efficiency of the architecture;
see the Discuss/ion in Subsection Zypes and Specifiers above
for architectural examples.

If the Tag is provided, its occurrence is its defining-point
within the Tag name space of mode enum-tag and the type T
as specified in the previous paragraph. The occurrence of the
Names in the Literal_list are their defining-points within the
ordinary name space with mode value and type T.

In an Enum_reference, the Tag must be declared in the tag
name space of mode enum-tag and of some type T. The type
denoted by the Enum_reference is T.

Semantics

Structures and Unions. A value of type Struct{M} or
Union{M} where M is a Hember_1ist consists of a sequence of
optionally named objects called members. The members and
any names are defined by the Structure_member syntactic
category.

The members may be either Declarators or #/e/ds. which
are sequences of bits. The number of bits in a field is specified

v.11.01.85 19684-85 MetaWare Incorporated

Declarations page 6-14

by the constant expression E following the *: *. A field F that
immediately follows another field F* may be placed adjacent
to F' in the same storage unit. if possible.

We deliberately leave unspecified whether adjacent means
that the least-significant bit of F is adjacent to the most-
significant bit of F', or the least-significant bit of F* is
adjacent to the most-significant bit of F, but we require that
adjacent always mean the same thing in a particular imple-
mentation.

Adjacency depends upon the the order of allocation of fields
within a storage unit (left-to-right or right-to-left), which is
implementation-defined. An implementation may refuse to
allow a field to straddle an implementation-defined storage
unit boundary B.

The width of a field may not exceed the size (in bits) of an
object of type Unsigned-int.

A field of zero bits prevents any further fields from being
packed into the unit of storage in which the previous field was
placed, and -may additionally cause the next field to be allo-
cated on the storage unit boundary B mentioned above.

An unnamed Field_member (the Declarator is omitted) is
used to conform to layouts imposed externally.

Within an abject of a Struct type, the non-field members
and the storage in which fields reside have addresses that
increase as their declarations are read from left to right.
Each non-field member of a structure may be aligned as
appropriate to its type; there may therefore be unnamed gaps
within a structure.

However, the address A of a structure must be the same as
the address of its first member M, if M is not a field; other-
wise A must be the address of the storage unit in which M is
stored. Thus, there is no “gap” at the beginning of a structure.

Within an object O of a union type. the non-field members
and the words in which fields reside have the same address,

v.11.01.65 1984-85 HetaWare Incorporated

Declarations ‘ page 6-15

which is the same as the address of O. Thus, there is no “gap”
at the beginning of a Union.

Enumerations. When used in an expression, the successive
Names in a Literal_list evaluate to 0, 1, 2, ... etc., except
‘that a Name with an associated Constant expression E “resets”
this sequence to the value of E. The values of enumeration
literals need not be unique.

For example, “enum {red, orange, blue = 0, green};” is
permitted: red and blue evaluate to zero and orange and green
to one. In this example the type denoted is Signed-Char.

Discussion
4.2BSD and KR prohibit structures and unions from having

members of a functionality type. X3J11 is silent on the
subject.

4.2BSD permits a structure or union type T in a nested
block to complete a corresponding structure or union type T’ in
an outer block, with confusing results. In the nested block T
‘may be used appropriately; in the outer block, T' is incomplete
and may not be completed. The compiler gives confusing
messages when the use or completion of T' is attempted in the
outer block.

4.2BSD warns when enumeration values and values of other
types are mixed in expressions. The proposed standard and this
document say that enumeration values are not of a separate
type, but are of one of the basic integral types.

4.2BSD does not permit redefinition of typedef names,
such as “int x; “, where x is a typedef name. This appears to
be a bug, since an example specifically documented in the KR
book as correct is disallowed by 4.2BSD.

The address operator & may not be applied to a field
member because most computer architectures do not support
addressing at the bit level. This restriction is imposed through
field having the mode field; see the discussion of & in Sectlon
Expressions/Pointer Reference.

v.11.01.85 © 1984-85 MetaWare Incorporated

Declarations page 6-16

6.5 Declarator§ -------—-=——————ccecmmemmmmmmeee e -

[Parameters; parametor names and types; Abstract_parameters; Mhstract declarater;
Specifiers; the type of a declarater or adstract declarater; fuactiomality types and
prototype functionalities; incowplete types; register parassters; peinter and arrey
types; type names as parametars)

Sntax

Declarator
~> 's#' Declarator
-> Declarator’

Declarator'’
-> Declarator' '[' Array_specification ']’
=> *(* Declarator ')’
-> Function_specification:
Declarator’ °*(' Parameters ‘)’
-> Declared: Name

;\rray_speoif ication
-> Constant:.E?

Parameters

-> Parameter_names_only:
Parameter_name 1list ‘', ' More_parms?

-> Abstract_parameters

Abstraot _parameters
-> (SD list °, ‘' More_parms?)?

4

SD -)> Specifiers (Abstract_declarator | Declarator2)?
aore_parms = L'

i;arameter_nme -> *<IDENTIFIER>'

;\bstract_declarator

-> '#' Abstract_declarator?
-> Abstract_declarator’

’

_ v.11.01.85 1984-85 Hetalare Incorporated

Declarations page 6-17

Abstract_declarator’ L

-> Abstract_declarator'? '[' Array_specification ']’
-> Abstract_declarator'? '(' Abstract_parameters ')’
-> *(* Abstract_declarator ')

Declarator2(') is needed to avoid an ambigmty.
Declarator2

=) '#' Declarator2

-> Declarator2’

Declarator?2’
-> Declarator2’ '[' Array_specification ']’
-> *(* Declarator2 ')’
-> Function_specification:

Declarator2' '(' Parameters ')’
-> Declared_name: ' {IDENTIFIER>'

The nonterminals Declarator2 and Declarator2’ are needed
to avoid a syntactic ambiguity by forbidding the name of a.
function's parameter to be a name previously declared of mode
typedef; see Type Names as Parameters in L/scuss/onbelow.

Constraints

Every Declarator declares a single Declared_name N. The
occurrence of N in the Declarator is its defining point of a
particular mode M and of a particular type T in one of two
name spaces. |f the Declarator is a Structure_member, the
name space is that for the structure or union type having that
Structure_member. Otherwise, it is the ordinary name space.

The occurrence of any Declarator is associated with a
storage class S that is specified in the Type_specifiers or
Specifiers preceding the Declarator, or is implied when there
are no Type_specifiers or Specifiers; see Subsection 7ypes
and Specifiersabove.

Likewise, the occurrence of any Declarator Is associated
with a type T' that is specified in the aforementioned Type_
specifiers or Specifiers, or is implied when they are lacking.
From this type T' and the structure of the Declarator, the

v.11.01.85 1984-85 Metadare Incorporated

Declarations page 6-18

final type T of the declared name can be determined. We also
say that the Declarator is of that type. T is 7ype (T'.D),
where 7ype is defined recursively as follows:

Table Deolarator Type Determination.
TywedT.D) = /if2 /s of the form then

D' Type(*1,D*)
D[] Typ«[?]):1,D*)
D' [E] Typ«[V]:T.D*)

where E must be a Constant expression of an
integral type whose value is V
(0*) Typ«T,D"*)
D* Parameters Type(F,D*)
where the determination of the functional-
ity type F is deferred to later discussion
under the heading Function Parameters
Name . T
Examples:
int *(»)[3), (*f(int))(1:
x's type is determined as follows:

TypeSigned- Int, #(*x)[3])

Type*Signed-Int, (*x)[3])

Typd[3):*Signed- Int, (*x))

Typd[3]:*Signed- Int, x)

Typd*[3]):*Signed-Int, x)

- '(Iﬁ:'Signed-lnt

i.e. x is a pointer to an array of pointers to Signed-Ints. f's
type is determined as follows:

TypeSigned- Int, (*f(int))[1)
Miﬂ:Signed- Int, (#f(int)))

Typd]:Signed- Int, #f (int))
Type*[1:Signed- Int. f(int))
Typd(Signed- Int)o—>*[]:Signed- Int,)
(Signed-Int)p—>*[]:Signed- int

v.11.01.85 © 1984-85 Metalare Incorporated

Declarations page 6-19

i.e. f is a function (with prototype functionality) taking a
Signed-Int; it returns a pointer to an array of Signed- Ints.

Abstract_declarator provides a way of specifying a type
without declaring a name of that type. Like Declarator,
Abstract_declarator appears in a context that associates a
type T* with it; in the rule for Abstract_parameters, the type
comes from the preceding Specifiers, and in the rule for
Cast_type (see Section Expressions/Cast Types and Abstract
Dec/larators), from a preceding Type_specifiers.

The type T denoted by an Abstract_declarator A is 7ype
(T°.A). defined recursively as follows:

Table Abstract_declarator Type Determination.
TypeT,A) = /f A is of the form then-

”» uT

'['?' 7 ~TA)
A (] Type([1:T,A")
(€] ’f“

A' [E] l'me([\n T.A*)

where E must be a Constant expression of an

integral type whose value is V
Abstract_parameters F->T

A' Abstract_parameters 7ypeF->T,A')
where the determination of the functional-
ity type F is deferred to later discussion
under the heading Function Parameters

(A*) TypdT,A*)

Mode of declared names. Each declared name has a mode,
determined as follows.

/f the Declarator is a Structure_member:

The maoade of
the name Is If

field the name is a (bit) field of the structure;
member otherwise.

v.11.01.85 1984-85 MetaWare Incorporated

Declarations page 6-20

/f the Declarator /snot a Structure_memver:

The mode of
the name is If

typedef the storage class is typedef;
fcn the storage class is not typedef

and T is a functionality type;
var otherwise.

Examples: |

static int e; /* Mode var. »/
extern int f(): /* Mode fen. n/
typedef int (*g)(). /* Mode typedef. */
struct {

int h; /% Hode member. */
int 1:5; /* Mode field. */
} 3 /* Mode var. “/
static int k() {} /* Mode fen. */
static int (#1)(). /% Mode var. "/

Incomplete types. A Declarator of an incomplete type
must have storage class static-import and mode var, unless it
is accompanied by an Initializer that completes the type;
see Subsection 6.7 below. For example, “extern struct s x:
extern int a[];” (where s is undeclared in the tag name
space) is permitted, but “struot s x; int a[]; ” isnot. In the
latter case the sizes of x and a are necessary for storage
allocation but cannot be determined.

MNote. Since each structure member is of mode member
or field, this rule effectively prohibits members having
incomplete types. Since parameters are of automatic
storage class. they too may not be of an incomplete type
(but see below, where the apparent incomplete type [?fT
for a parameter is actually *T, so that the parameter dec-
laration “char c[];” is legal). But pointers to incomplete
types are always permitted. The essential issue is that the
size of an object of an incomplete type is unknown.

v.11.01.85 1984-85 HetaWare Incorporated

Declarations page 6-21

Array types. The types [?):T and [V]:T where T is an
incomplete type are not permitted.

Void types. No Declarator may have type Void. However,
an Abstract_declarator may have type Void.

Functions. A Declarator of mode fcn that is not part of a
Function_definition may mothave storage class static-export
or static-private. For example, the declaration “static
g(): ” is not permitted.

A Declarator of mode fen may not have its type deter-
mined by a typedef of a functionality type. Although there is
no implementation difficulty in this case, the restriction helps
prevent confusing programs.

Examples:
typedef f(int x).
extern f ¢ /% Illegal. */
extern f h { /* Illegal. »/
X =1; /% Uere h legal, this would be a confus- */
} /* ing statement; where does x come fron? */
f *pf; /% But this is legal. 4
main() { '
§“pf)(3);

Function parameters. Parameters is syntactically of two
different forms: Parameter_names_only and Abstract_parame-
ters. In the latter case the types of the parameters can be
given through Specifiers, and some or all of the parameter
names may be given if the Declarator2 alternative for each
parameter is used: see the rule for Abstract_parameters.
Additionally the “()” case of parameter specification is
permitted through Abstract_parameters.

In the Parameter_names_only case, only the parameter
names are given, and the types of the parameters are left
unspecified until the completion of the Function_definition
containing the Parameters; see Function Definitionsbelow.

v.11.01.85 1984-85 Metalare Incorporated

Declarations page 6-22

Therefore there are three possibilities for a parameter:
the parameter name only; the parameter type only: and the
parameter name and type. No matter how the parameter
names are provided, they must be distinct from each other.

Now to the deferred discussion of how to determine F in
the Type Determination tables above. F is one of the four
functionality type classes discussed in Section Cancepis

If Parameters is simply “()* (via Abstract_ parameters), F
is (?)->T if D /s notpart of a function definition, and ()->T if
D sspart of a function definition.

If Parameters is a parenthesized list of parameter names
(via Parameter_names_only). F is (T1....Tn) => T, where the Ti
are the types of the parameters as declared in subsequent Pa-
rameter_types in the completion of the Funotion_definition.

If Parameters is a parenthesized list of one or more para-
meter types and optionally names (via Abstract_parameters), F
is (T1....Ta)p => T, where the Tj are the parameter types. If the
list includes ~...* at its tail, F is instead (T1,...Tn....)p =2 T.

Finally, if Parameters is “(void)*, F isQp -> T.

The types (T1....Ta)p => T and (T1....Tn....Jp => T are known
as grototype functionalities. The semantics of function call
for functions of prototype functionality is quite different
from those without such; see Section Expressions/Function
Call where the difference surfaces. Prototypes fill a badly
needed void in “old C”: a way to provide checkable type
information for imported functions.

The type P -> T where T is an array, functionality, or
incomplete type is not permitted.

If the Declarator is part of a Function_definition, Parame-
ters and the Parameter_types and the Compound_statement of
the Function_definition are together a block. If the Declar-
ator is not part of a Function_definition, Parameters is a
block. See Function Defin/tionsbelow.

v.11.01.85 © 1984-85 Hetadare Incorporated

Declarations page 6-23

The only storage class permitted in the Specifiers of
Abstract_parameters is register.

In Abstract_parameters, the types of the parameters are
always given by using Specifiers in conjunction with Abstract_
declarator or Declarator2. When Abstract_declarator is used,
only the parameter type Is specified; when Declarator2 is used,
the Declared_name of the declarator is the parameter name.

Example: “int h(float, int x):” gives a prototype
functionality for function f where only the second para-
meter is named. Abstract_declarator has been used for
“float”, and Declarator2 for "int x”. In this example,
naming only one parameter does not make sense, though it
is allowed. When both parameters are named, an extension
known as narmed parameter association (from Ada) is
possible; see Appendix Extensions

A parameter declared of type [?]):T or [V]:T is not of those
types, but is of type *T. A parameter of a functionality type is
not permitted.

(The Constraints and Semantics for function calls — in
particular, the type matching of actual to formal parameters
— are presented in Section Expressions/Function Call)

Sermmantics

Pointer types. An object of type *T is capable of holding
the address of any object of type T. All pointer types occupy
the same amount of storage.

Array types. An object O of type [V]:T is a sequence of V
objects of type T indexed from 0..V-1. The size of O is
V*(sizeof T). The address of O is the same as the address of
O[0]; in general, 80[I+1] = &0[I] + 1 = the address of O[I] plus
sizeof (T) storage units, i.e. array elements are contiguous.

An object of type [?]:T is a sequence of unknown length of
objects of type T. Its size is unknown, but the relationship
?sic\q_een its address and that of its elements is the same as for

v.11.01.85 1084-85 Metalare Incorporated

Declarations page 6-24

Functionality types. A name of type P => T refers to a

function returning type T.- See Function Definitionsbelow for
more information.

Discussion

An object of mode var can be assigned values. An object of
mode fcn is not a variable, but labels function code and thus
cannot be altered. See Section Expressions/Assignments
where only objects of mode var, field, or member can be
assigned.

4.2BSD is confused about “static int F1(); “. Calls toF1
become calls to an external function; it is as if the declar-
ation read “extern int F1();“. But the function may not
be defined in the source text containing the declaration;
hence it is as if “extern” were nofwritten. By contrast,
“extern int F2(); * declares an external function that can
be later defined; this is proper. As adeclaration local toa
function, 4.2BSD allows “static int f().” to mean
exactly “extern int f().;”~.

4.2BSD ‘also allows the declaration “extern int f() {}”
which essentially says that f is declared elsewhere ("ex-
tern”) but is actually declared right here (“{}*)! X3J11
requires another declaration of f() elsewhere without
“extern”.

Basically, C is somewhat confused with respéct to impor-
tation and exportation and the use of extern. High C
interprets extern strictly as “defined elsewhere®”.

KR prohibits the following types: P=>T, where T is a func-
tionality, array, structure, or union type; [?):T' or [V]:T",
where T' is a functionality type; or structures or unions
containing functions. Curiously, X3J11 does not impose
any of these restrictions, but does not ascribe semantics to
the cases where T is a functionality or array type, or where
T" is a functionality type.

Parameter scoping. KR does not address the issue of the

scope of parameters. X3J11 and this document agree in spe-

v.11.01.85 1984-85 HetaWare Incorporated

Declarations page 6-25

cifying that the parameters are contained in the same block
introduced by the Compound_statement of a Function_defini-
tion. By contrast, 4.2BSD allows re-declaration of a parame-
ter in the Compound_statement, a “feature” that can lead to
agonizing bugs, as in
int f(a,b)
int a; char *b;

{

int x; char *b;

x = atb; /* Was the parameter b meant here? */
return x;

Type names as parameters. Note that Abstract_para-
meters uses the nonterminal Declarator2, which replicates the
Declarator syntax except that the declared name can only be
an <IDENTIFIER), rather than a Name, which can be either an
<IDENTIFIER> or a <TYPEDEF_NAME>. Likewise, Parameter_name
can produce just <IDENTIFIER>. This means that a function
parameter cannot be an identifier previously declared of mode
typedef.

Examples:
typedef enum{False, True} Boolean;
void f1() {

;:har Boolean; /* is legal. */
void f2(Boolean); /% is legal. "/
void f3(Bulyean); /* is legal. »/
voi? ;4(int Boolean) /* is illegal. »/
void f5(Boolean)

{1n}t Boolean; /* is illegal. */f
void f6(Boolean i); /* is legal. 74

The main reason for the restriction is exemplified by the
declarations f2 and f3. f3 declares an external function 3
whose parameter is named Bulyean and is of type Signed-Int.
Without the restriction, f2 could be interpreted as either a

v.11.01.85 1984-85 NetalWare Incorporated

Declarations page 6-26

function taking a parameter named Boolean of type Signed-Int,
or a function taking an unnamed parameter of type Boolean.
The restriction resolves the ambiguity.

In declaration f5, even though it is clear that the para-
meter's name is Boolean, the information is available too late
(at the second occurrence of Boolean) for proper parsing. So,
even though this case is not ambiguous, the restriction eases
the translator's work.

Division of labor between Declarators and Specifiers.
Declarators are a way to declare a name, and optionally parti-
cipate in the construction of the type of the name. Here the C
language is confusing: the task of specifying the type of a
declared name is divided between Declarators and Specifiers.

Specifiers permit the reference to and the construction
of a structure, union, and enumeration type, or a reference to
any of the basic types or a previously defined typedef type.
Declarators permit the specification of array, function, and
pointer types.

The stated reason for placing some of the type specifi-
cation in Declarators is that it is possible thereby to make the
declaration of a type appear similar to the use in expressions
of objects of the type. Any type whose use and definition could
be made similar was placed in Declarators; all other types
were placed in Specifiers.

This in fact can make C declarations difficult to read, and
the type of an object difficult to discern. It can also cause
problems for novices: Many times this author has construed
“char* x y;” as the declaration of two variables of type
»Signed-Char. But since the * is part of the Declarator, not
the Specifier, y is of type Signed-Char. By contrast, in
“struot {.} x y:”, both x and y are of the same aggregate

type.

v.11.01.85 1984-85 HetaWare Incorporated

Declarations page 6-27

6.6 Function Definitions ----~-~-=-c-ve-co—ooa——- .

[parameter names and . Mhstract_parameters; Specifiers; fenctionality types and
p::‘myn factinmm register parameters; Function_definition; argwment
conversion at function entry]

Symtax

Funotion_definition
-> Function:Declarator Parameter_types Compound_statement

Parameter_types
-> (Specifiers (Parameter:Declarator list *, ')? ';')»

4

Constraints

The Declarator D in a Function_definition must be of a
functionality type P~>T. The Parameters in D, the Parameter_
types, and the Compound_statement, all constitute a block.

The only Storage_class allowed in the Specifiers preced-
ing a Parameter: Declarator is register.

Parameters is syntactically of two different forms: Para-
meter_names_only, and Abstract _parameters.

Using Abstract_parameters. The Declarator2 form (see
the rule for Abstract_parameters) must be used for each para-
meter so that the parameter name is supplied. Furthermore,
Parameter_types must be empty.

Using Parameter_names_only. |f there are one or more
Parameter: Declarators in Parameter_types, the Declared_name
N of each such Declarator must not be the same as that of any
other such Declarator, and each Declared_name N must be one
of the parameter names. In this case parameter N has the
type denoted by the Specifiers and Parameter:Declarator. If
no Parameter_type declaration is given for a parameter name
p. the Parameter_type declaration “int p; * is implied, i.e. the
parameter has type Signed-Int and storage class automatic.

v.11.01.85 1964-85 MetaWare Incorporated

Declarations page 6-28

Note. These rules permit other names not in the ordinary
name space to be declared in the Parameter:Declarators:
structure tags and member names.

Exarnple:

int f(a, b)
struct s {int 2z} a;

{.

Here s is declared as a tag and z a structure member, in
addition to the declaration of the parameter a. Since there
i$ no Parameter_type for b, “int b; “ is implied. It is also
possible to give just Specifiers alone with no Parameter:
Declarator; e.g. “struct s2 {int w;}; * is legal before the
opening { of the function.

The Storage_class extern may not be used with a Func-
tion_definition, since it is inconsistent: extern implies the
declaration is elsewhere, yet the function body is supplied as
the Compound_statement.

Semantics

A Function_definition provides the code body for an object
of a functionality type. If the storage class of the declared
name N is static-export, any other declaration of a name N
with mode fcn and storage class static-import in any other
source text refers to this code body; see Section Cancepts/
Independent Trans/ation.

If a function F does not have prototype functionality.
actual arguments corresponding to parameters of type Signed-
Char, Unsigned-Char, Signed-Short-Int, Unsigned-Short-int,
or Float are assumed to have been passed as their converted
counterparts according to the rules of a function call (see
Section Expressions/Function Cal), and are converted back to
the declared formal parameter type at the outset of the
execution of the function body.

More precisely, for a parameter of type Signed-Char or
Signed-Short-Int, it is assumed that the argument is passed as

v.11.01.85 1984-85 HetaWare Incorporated

Declarations page 6-29

Signed-Int, and so conversion from Signed-Int to the parame-
ter type occurs. For a parameter of type Unsigned-Char or
Unsigned-Short-Int, it is assumed that the argument is passed
as Unsigned-Int, and so conversion from Unsigned-Int to the
parameter type occurs. For a parameter of type Float, it is
assumed that the argument is passed as Double, and so conver-
sion from Double to Float occurs.

The Storage_class register supplied for a function
parameter is a request that the parameter be held in a register
during the execution of the function; it does snotaffect the
semantics of the program. A program with register declara-
tions must have the same meaning as when the Storage_class
register is arbitrarily omitted.

Discussion :

Prototype functionality is new, designed to allow some
type-checking across separate compilation units. |f a non-de-
fining declaration for function F precedes a function definition
for F, our rules for duplicate declarations (see Section Con-

cepts) require that both have identical prototype functionality
if either have a prototype functionality.

X3J11 instead adopts the notion that a prototype function-
ality for the first declaration and a non-prototype functional-
ity for the second are permissible, where the semantics of the
second are as if it was declared with a prototype functionality:

int f(float x):
int f(x) float x: {

}
void Use_f() { ,
; (3.0): /* Pass in Float, not Double. */

The X3J11 approach ruins the readability of the function
definition of f: now its semantics are different depending upon
whether a prototype definition for f precedes it. High C rules
require that the definition for f also use prototype function-

v.11.01.85 1984-85 NetaWare Incorporated

Declarations page 6-30

ality, retaining the property of “old C* that function defini-
tions are understandable out-of-context.

6.7 Non-Function Definitions -------=-=-cccceau-- .
[Non_function_definitions; Initializers and initialization)
Syntax

Non_function_definitions
-> (Declarator (‘="' Initializer)?) list °'.°

In"iitializer
-> E
-> *{* Initializer list °*',*' *.'? '}’

Constraints and Semantics

Due to the complexity of describing the initialization of
objects. Constraints and Semantics are combined.

Each Declarator in Non_function_definitions may option:
ally be initialized. The mode of the Declarator must be var;
thus “extern F() = {...}" is not permitted, because F is of
mode fcn; nor is "typedef T[3] = {1,2,3}. ", since T is of
mode typedef. Only objects of storage class static-export,
static-private, or automatic may be initialized. If an object
of storage class static is initialized, the Initializers must be
constant expressions.

Assume the object O being initialized is of type T. When T
is a scalar type, the Initializer consists of asingle expression
E, optionally enclosed in braces. When T is a Struct{...} or
Union{...} type, the Initializer may be a single expression E,
notenclosed within braces. The type of E must be assignment-
compatible with T. Semantics: O is initialized with the value
of E converted to type T.

The remaining discussion applies in all cases excluding those
just detailed.

v.11.01.85 . 1984-85 Metalare Incorporated

Declarations page 6-31

When O is an aggregate, the Initializer is a brace-
enclosed list of Initializers for the members of O, written in
increasing subscript or member order; there may be no more
Initializers than aggregate members. If O contains subaggre-
gates, this rule applies recursively to the subaggregates.

However, any of the non-outermost braces may be elided
for aggregate initialization. In this case, the aggregate “con-
sumes” only as many members of the Initializer as necessary
to initialize the aggregate; the remaining members are left
to continue initialization of the object of which the aggregate
is a part.

The initialization construct changes the type of the O if O
is of an incomplete type [?):T. If V is the number of elements
of O that are initialized in the Initializer, the type of O is
changed to [V]:T.

When string constant E is used to initialize an object of an
array type, the type of E is notconverted to *C (where C is
the type denoted by char) as is customary; see Sections £x-
pressions/<IOENTIFIER>sand Expressions/IMember Selection.

An array of characters may be initialized by a string.
Successive characters of the string (including the terminating
character if there is room or if no size is specified) initialize
the members of the array. Likewise, a pointer to Signed-Char
may be initialized to a string, since a string is always coerced
into its address; see Section Expressions/Constant Expressions.

When initializing a object of a Union type, the first mem-
ber of the union is initialized.

These rules are more precisely described in the following
algorithm that formally establishes the correspondence be-
tween the initialized object and the initializing expressions.
The algorithm is recursive and is written in “pseudo-C*; fur-
thermore, it does not contain Initializers so that it non-
circularly specifies the meaning of Initializers.

The algorithm takes as input an object V to be initialized
and an Initializer I. The constraints that must be imposed

v.11.01.85 1084-85 Metalare Incorporated

Declarations page 6-32

and the semantics of the initialization are marked in the algo-
rithm. It is started with the call Initialize(V, I, 1).

int Initialize(V, I, Start)
object V; Initializer I. int Start;

{
let I be of the form {Ey, ... En} or just E;,
where the Ej are Expressions or Initializers;
switch (the type T of V):
case basic type: case *T':
if Estart is of the form E or {E}.
where E is an expression, ,
Constraint: The type of E must be assignment-
compatible with the type of the object (per-
mits assigning an array of characters into a *C
object (where C is the type denoted by just
“char”), since arrays are always converted to
pointer to the first element, or the address of
an object into a pointer).
Semantics: V is initialized with the value of E.
return Start+1;
else
Constraint: The initialization is erroneous:
too many braces for a scalar type.
case [L):T':
if Estart.is a string S of length L+1 or less
(including the *\0* terminator)
and T' is Signed-Char
{/* Note: V+1 permits us to ignore the null */
/* byte in S. »/
Semantics: V[1] is initialized with S[i].
for 0 £ i < Min(L, length of S - 1);
return Start+1;

else {
for (k=Start, i=0; k < Min(V-1,n) ; i++)
if Ex is of the form {..}
then {Initialize(V[i], Ex 1); k++}
else k = Initialize(V[i], L k):
return k;

}

v.11.01.85 © 1984-85 MetaWare Incorporated

Declarations page 6-33

case [?]: T':/* Initialization determines the size */
/* of the array. */
if Estart is a string S of length V
and{T' is the type denoted by “char” alone
Constraints: the type of V becomes [V+1]:T*;
Semantics: V[i] is initialized with S[i},

for0<i<V;
;eturn Start+1;
else {

for (k=Start, i=0; k< n; i++)

if Ex is of the form {..}

then {Initialize(V[i), Ex, 1); k++}

else k = Initialize(V[i], I k);
Constraints: the type of V becomes [i+1]:T';
return k;

case struct{Members}:
let the members of the structure be numbered 1..H
and denoted V [1].V[H];
for (k=Start, i=1; k < Min(M, n)-1; i++)
if Ex is of the form {.}
then {Initialize(V[i],Ex 1); k++}
else k = Initialize(V[I], I k);
return k;
case union{Members}:
let V[1] be the first member of the union;
return Initialize(V[1], I, Start);
/% case Parameters->T': -- No case here,
-- since functions cannot be initialized. */

}

When the algorithm ends, all of the Initializer express-
ions must have been “used”. The value of Initialize must
therefore be one more than the length of the Initializer list.

All uninitialized objects of static storage class are initial-
ized to zero. Likewise, portions of static aggregates that are
uninitialized by Initializers are initialized to zero. Uniniti-
alized objects of storage class automatic, or uninitialized por-

v.11.01.85 1984-85 Metadare Incorporated

Declarations page 6-34

tions of such objects in the case of aggregates, have undefined
values. Initialization of automatic objects occurs when the
declaration of the initialized object is elaborated: see Section
StatementsXompound statement for the definition of elabor-
ation and when it occurs.

The evaluation of the expressions in an Initializer is per-
formed from left-to-right. However, the order of initializa-
tion of the components of an aggregate is undefined. This
means that constructs illustrated by “struct {int x, y;} z =
{1. 2.x}:* are not well-defined.

Discussion

Both KR and X3J11 seem to allow initializing objects of
storage class static-import. However, neither document
ascribes any semantics to the initialization, especially in the
situation where there are two distinct initializations for the
same imported object. 4.2BSD uses ForTran-style named
common as a means of sharing objects, so that it is up to the
linker to choose which initialization specification among many
prevails.

X3J11 has adopted the position that when an automatic ag-
gregate is partially initialized by an Initializer, the remain-
der of the aggregate is initialized to zero. We consider this un-
fortunate and encouraging of poor programming style. In fact,
we begrudgingly left in the initialization of all otherwise-
uninitialized static objects to zero because of widespread
existing practice. Depending upon this “free” initialization
we feel is, again, poor programming practice.

Perhaps the reason the dependence is so widespread is that
UNIX linkers zero-initialized otherwise-uninitialized memory
automatically. Some operating systems do not do this and,
rather than dedicate a lot of object module space to the zero-
ing of uninitialized space, we would prefer the language leave
undefined the initial value of uninitialized objects, and require
the programmer to be disciplined enough to initialized all and
only those objects needing it. In this way he can document what
objects need no initialization; with standard C one cannot tell.

v.11.01.85 19084-85 MetaWare Incorporated

Declarations page 6-35

As an example of an initialization, consider the Non_func-
tion_definition

struct {int x, y[2]; char c[2).;} z[] = {
1, {2}, "a",
{ 10 2’ 3’ .x' }l
7
}

The initialization specified is as follows:

2[0].x
z[0]. y[0]
z[0].c
z2[1].x
2[1]).y[0]
z[1]).y[1)
- 2[1]).c[0]
z2[2].x

z[1]).c[1] is left uninitialized and therefore is set to zero.
The same is true of z[2].y and z[2].c. The type of the array z
has been changed to [3]:Struct{...}.

Initialize(z, I, 1): ,
case []: 7', where T' is the struct type.
k = Initialize(2[0], I, 1):
case struot{..}:
k = Initialize(z[0].x I, 1):
case basic type: z[0].x = 1;
return 2; :
Initialize(z[0].y, {2}, 1):
case [2]:int:.
k = Initialize(z[0]. y[0], {2}, 1):
case basic type: z[0].y[0] = 2;
return 2; ‘
return 2;
k = Initialize(z[0].c, I 3):
case [2]): char:
Since I3 is a string,
z[0].c[0] = *a*, 2[0]).e[1] = '\O*;
return 4;
return 4;

o @@ Ve N
8
Y

PN N

W ouwuw o

-~
Se x Ne
\-.

v.11.01.85 1984-85 HetaWare Incorporated

Declarations page 6-36

/* At this point k = 4. %/
Initialize(2[1],. {1, 2. 3. 'x'}. 1):
case struct{..}:
k = Initialize(2[1].x {1.2.3. 'x*}. 1):
case basic type: z[1].x=1;
return 2;
k = Initialize(z[1].y, {1.2. 3, 'x*}., 2):
case [2]:int:
~ k=Initialize(z[1].y[0],{1.2, 3, 'x'},2):
oase basioc type: z[1]).y[0] = 2;
return 3;
k = Initialize(2[1].y[1], {1.2. 3, 'x'}, 3):
case basic type: z[1].y[1] = 3;
return 4;
return 4;
k = Initialize(z[1].c,{1,2, 3, 'x'}. 4):
case [2]: char:
k = Initialize(z[1].¢[0], {1.2.3, 'x'}, 4):
case basic type: z[1].c[0] = 'x*;
return S;
return S;
- return S;
/* K is now 5. »/
k = Initialize(z2[2].1,5):
case struot{..}:
k = Initialize(z[2].x I 5):
case basic type: 2[2].x=7;
return 6;
return 6;
the type of z is [3]:T';
return 6;

Thus, the outermost call to Initialize returns six, one
more than the number of elements in the Initializer, which
is correct, and the type of z is [3]:Struct{...}.

char s[] = {*a’, 'b', '\0'}; _
causes s's type to be [3]:Signed-Char and specifies its initiali*
zation it to the string “ab“. This is equivalent to:

char s[] = “ab";

v.11.01.85 1984-85 HetaWare Incorporated

Declarations page 6-37

Note that
char *s = {'a‘’, ‘b, '\0'}.
is notpermitted, since s is not of an array type, but that
char *s = “ab";
has the same effect. However,
char s[2] = “ab";
sets s[0] = *a* and s[1] = 'b"; the *\0* byte in “ab" is ignored.
4.2BSD and KR do not allow this case, an X3J11 extension.

The elision of {..}s is most useful in fully initializing arrays
of arrays:

int Matrix[3][3] = { 1.2,3, 4,5,6, 1,8,9}:

However. an upper triangular Matrix can be specified by using
{..}s to partially initialize the rows of the Hatrix:

int Matrix[3](3] = { 123 {56} {9}k
This produces the matrix

12 3
5 6 0
g9 00

since uninitialized storage is set to zero.

The Initialization of structure objects with a structure-
valued expression is an X3J11 extension.

Different strategies. In existing compilers there are two
strategies for initialization in the presence of the elision of
braces — i.e. when the Initializer is not fully "braced”. This
technique, which we call fgp-down differs from that of
4.2BSD, which we call bottorn-un

In the top-down approach, missing braces are interpreted
as missing from' the most nested components of an object be-
ing initialized. Put another way, the structure of the braces in
the Initializer matches the structure of the object being ini-

v.11.01.85 1984-85 Metavare Incorporated

Declarations page 6-38

tialized from the top. If there are missing braces, only the top
portion of the structure of the initialized object is matched.

In the bottom-up approach, missing braces are interpreted
as missing from the least nested components of an object
being initialized.

The following example illustrates the difference:
struct { struct {int x;} a,b; } z[] = { {1}, {2} }.

The trees below depict the structures of the initialized
object (left): and the Initializer (right):

s

In the bottom'up approach, the Initializer's structure
matches the bottom portion of the tree. The initialization is
z[0].a.x = 1 and 2[0].b.x = 1, so that z is an array of one
element: '

(1)

In the top-down approach, the Initializer's structure
matches the top portion of the tree, forcing a bifurcation of

v.11.01.85 © 1984-85 MetaWare Incorporated

Declarations page 6-39

the top node so that z has two elements. The initialization is
z[0).a.x = 1andz2[1]).a.x = 2:

High C supports the top-down approach because it seems
the only approach a human can easily take. All compilers that
we know of, except 4.2BSD, use the top-down approach. The
bottom-up approach may perhaps be an artifact of the compil-
ation strategy used in 4.2BSD.

v.11.01.85 1984-85 MetaWare Incorporated

Statements page 7-1

7
Statements

A statementspecifies an action to be performed.

7.1 Compound Statement -----------===-===-==-- .
[oragun; elaberation of declarations; internixing declarations amd statements)

Symtax

Compound_statement
-> *{* (Specified_declaration|Pragma_call|Statement)* '}*

étatement
-> Compound_statement

Constraints

When a Compound_statement is not the body of a Function_
definition, the Compound_statement itself forms a block.
Otherwise, a block is formed that includes the Parameters and
Parameter_types of the Function_definition; see Section
Declarations/Function Definitions.

Semantics

Except for the goto, break, and continue Statements, the
declarations and statements of a Compound_statement are
executed in the same sequence as their textual presentation.

The “execution” of a declaration is a term perhaps unfa-
miliar to the reader. In Ada it is instead called e/aboration
and we shall also use this term. The elaboration of a declara-
tion consists of the initialization of the object, if an initializ-
er is present and the object's storage class is automatic.

As we have mentioned in Section Concepts/Lifetimes.
storage for an automatic object is allocated at any entry to
the Compound_statement containing the object's definition, so

v.11.01.85 © 1984-85 Metadare Incorporated

Statements page 7-2

that elaboration does not include storage allocation.
Discussion '

No other C language definition we know of permits the
intermixing of declarations and statements. This flexibility
allows the placement of declarations closer to the uses of the
declared object. Exampl/e:

getrand(int .a[100]) {
int i
;or (1 =1 1i<100; a[i++] = rand());

main() {

int i, j, af100]);

for (j =1, j <=10; j++) {
getrand(a).
int max = 0; /* Declaration after statement. */
for (i = 1; i < 100; i++)

if (a[i] > max) max = a[i];
) grintf("naxinun of random values=%¥d\n*, max);

Although one might argue that the intermixing buys little
convenience, we approached it from the other point of view
and saw no advantage gained by the restriction, so we did not
impose it. Furthermore, the approach yields a simpler seman-
tics for the timing of the initialization of objects declared
with initializers, and when such initialization is by-passed (via
goto or other such jump).

The semantics of local lifetime (see Section Concepts/
Lifetimes) together with the scope rules allow automatic ob-
jects in parallel Compound_statements to overlap on a run-time
stack for storage efficiency.

v.11.01.85 © 1984-85 HetaWare Incorporated

Statements page 7-3

7.2 Expressions as Statements ------------------- -
[side effects]
Syntax
Statement
->EL "¢
Constraints
None.
Semantics
The expression list EL is evaluated and the resulting value
discarded.
Discussion .
The primary purpose of an expression as a statement is to

achieve a side effect, such as via a function call or an assign-
ment.

7.3 switch, case, and default mommmssmmmm—ommooeo- .
[sequence point; case ranges; initialization; slsberation of declerations]

Syntax

Statement

-> ‘switch® *(' EL *)' Switch_body:Statement

-> ‘case’ Case_label: (Constant:E ('..*' Constant:E)?)
"' Statement

=> ‘default®’ ':' Statement

Constraints

The EL of the switch statement must have integral type.
Consider the set of Statements S that appear within the
Switch_body but do not appear within any nested Switch_body.
Let SC denote the subset of S whose members are labeled with
case and SD the subset labeled with default.

In the E..E form of a Case_label, both Es must be of the
same integral type and must be constant expressions such that

v.11.01.85 1984-85 MetaWare Incorporated

Statements page 7-4

the value of the first is no greater than that of the second;
call the values bounded by the two values the range of the
Case_label. Where this form of Case_label appears in SC. the
type of the two Es must be assignment-compatible with th
type of EL.

Where the Case_label of a Statement in SC is a singleE, E's
type must be assignment-compatible with that of EL. Fur-
thermore E must be a constant expression. The range of this
Case_label is the single value denoted by E.

There may not exist two Statements in SC having over-
lapping Case_label ranges. The size of SD must be zero or one,
i.e. there may be at most one default within a switch.

case or default Statements may appear only within switch
Statements.

Semantscs

When the switch Statement is executed, the value V of EL is
computed, and the end of its evaluation is a sequence point. I
V is contained in the range of the Case_label of some State-
ment S in SC, control is transferred to S. |f no Statement in SC
has a Case_label whose range contains V, and SD contains a
Statement D, control is transferred to D. If no Case_label's
range contains V and SD is empty, the switch Statement has no
further effect.

Note. When control is transferred to some Statement S, no
initialization of any objects of storage class automatic
declared in Switch_body is performed prior to the control
transfer. This is because the declarations are not elabor-
ated, having been “skipped over” by the control transfer.

The execution of a case or default Statement has the same
semantics as executing the Statement labeled by these con-
structs. Thus a transfer to such a Statement from elsewher
within a switch Statement (via, e.g., a goto, or by “flowing off
the end” of one case onto the next) is meaningful.

v.11.01.85 © 1984-85 MetaWare Incorporated

Statements page 7-5

LDiscussion
The first example shows a “normal® use of the switch
construct:

switch (Char_class(c)) {
case Letter: /% Scan identifier. %/

while ((c = getc()) >= 'a’ & ¢ <= 'z'):.
break;

case Number: /* Scan number. */
while ((c = getc()) >= '0' && ¢ <= *9');
break:

case Space: /* Scan blanks. */
while ((c = getc()) = * *):;
break;

default:

printf("Illegal token.\n");

This next example points out the ill-disciplined potential of
the switch construct and alerts unsuspecting implementors to
the construct’s full “power”:

switch (1) default: {

case 0: :

if (1) case 1: printf("case 0\n");

else ocase 2: printf("case 1\n"); :

/* This loop cannot be “optimized away" */

/* because it may be entered via switch. #/

while (0) {
int j = 2%i;
/* Initialization will never be performed. */
case 3: printf(“Entered a while false loop; \

J is garbage: ¥d\n*, j):

| 3
case 55..77:
default: printf(“Execution of case finished.\n");

The last statement is executed when the first switch

+ermma'(es, the Case_labels 55. . 77 and default are irrelevant

and illegal) unless the example above appears in the context of
another switch Statement.

v.11.01.85 1984-85 MetaWare Incorporated

Statements page 7-6

74 if --------emrrmmrr e -
[sequence point] :
Syntax

Statement
=> *if* *(* EL *)* Statement ('else’ Statement)?

The grammar as it stands is ambiguous. The ambiguity is
resolved as follows: in an if Statement with an else phrase,
the Statement following the (EL) may not end in an if State-
ment that lacks an else. Said differently, the else is matched
with nearest lexically preceding if without-an else in the
same Compound_statement (but not in a nested Compound_state-
ment). Thus in

if (1) while (1) if (1) {} else {}
the else matches the second if.
Consltraints

EL must have scalar type.
Semantics

EL is evaluated; the end of its evaluation is a sequence
point. If it is non-zero, the first Statement is executed. If it
is zero, the second Statement, if supplied, is executed.

If control transfers to the first Statement or any Statement
contained within it by any other means (such as with a gote or
switch), the second Statement, if supplied, is not executed, and
upon termination of the first Statement, control flows to the
Statement after the if Statement. Likewise with control
transfers to the second Statement: the first Statement is not
executed.

v.11.01.85 © 1984-85 HetaWare Incorporated

Statements page 7-7

7.5 while —~-———=~ e .
{sequence point]

Syntax

Statement
-> ‘while* *(' EL *)' Statement

Constraints
EL must have scalar type.

Semantics

EL is evaluated; the end of its evaluation is a sequence
point. If the value is non-zero, the contained Statement is exe-
cuted. If the contained Statement S does not transfer control
outside of the while Statement, then upon S's termination the
while Statement is executed again.

7.6 do-while ---------------c--cocn—- .
[sequence point]
Syntax
Statement
-> ‘do’ Statement ‘'while' °*(* EL °)' *;°
Constraints
EL must have scalar type.
Semantics

The contained Statement is executed. |f the contained
Statement S does not transfer control outside of the do State-
ment, then upon S’s termination EL is evaluated; the end of its
evaluation is a sequence point. If the value is non-zero, the do
Statement is executed again.

v.11.01.85 : 1984-85 NetaWare Incorporated

Statements page 7-8

1.7 for --=-===---mom e m— e .
[sequence point: continue] :

Syntax

Statement
-> ‘for' ‘(' First:EL?
; Next: EL?
‘;* Last: EL?
')' Body: Statement

Constraints

Next, if present, must have a scalar type.
Semanties

If Next is omitted, one is implied.

Except in the matter of the behavior of a contained
continue Statement in the Body, this statement is exactly
equivalent to

First; while (Next) { Body.; Last; }
Thus, the First and Next evaluation ends are sequence points.
Discussion

The first expression is a convenient place to put any initial-
ization for the loop. The second specifies a test for continuing
the loop and perhaps an incrementation. The third usually
specifies an operation performed at the end of the loop, such as
an increment of a variable.

1.8 gotos and Labels -----------------cocmmoooo .
[initialization; scope of lshels; elaboratisn of declarations]
Syntax

Statement
-> 'goto' Target_label:Name °‘;'
-> Labeled_statement: Label:Name °:° Statement

v.11.01.85 1984-85 MetaWare Incorporated

Statements page 7-9

Constraints

The beginning of the Compound_statement of the function
contammg the Label:Name is the Name's defining point; the
abel is declared in the label name space. The scope of the
iabel is the block associated with that function. Note that this
is an exception to the normal rule that scope extends from the
defining point to the end of a Name's origin. There may not be
two identical Label: Names in the same function — labels can
not be re-declared in a nested Compound_statement.

The Target_label of a goto Statement must be declared in
the label name space.

Semantics

A goto Statement transfers control to the Statement pre-
fixed by the associated Target_label.

The semantics of a Labeled_statement is the same as that
of the contained Statement.

Note. When a Compound_statement S is entered via a goto,
no initialization of objects of storage class automatic
declared within S is performed. This is because such initial-
ization occurs only when the declarations are elaborated,
and the goto “skips®* the elaboration.

Discussion

The scope of label names is different from that described
in KR, for good reasons. Consider the function

int fO) {
L1: ; ’
{ goto L1. /* Target is the last L1. */
{L1: ; }
L1: :
})

KR seems to §ay that the scope of the innermost L1 is the
entire function (“The scope of a label is the current function,
excluding any sub-blocks in which the same identifier has been

v.11.01.85 1984-85 MetaWare Incorporated

Statements page 7-10

redeclared.” [K&R, p.204]). High C forbids re-declaration of
a label within a function.

High C constraints agree with those of X3J11 and 4.2BSD.
This makes most sense since it avoids the pitfalls of the above
example where a reader could assume the goto's target is the
first L1 instead of the thirdL1. If a lot of program text separ-
ated the goto and the third L1, the target would be difficult to
see. :

7.9 break -—---—-=---~-c—m e -
[exiting a switch, for, while, or do statement] .

Synitax

Statement
-> 'break’ °‘:°’

Constraints

The break Statement must be contained within a switch,
for, while, or do Statement.

Semantics

The break Statement terminates the execution of the
smallest enclosing switch . for . while . or do Statement.

7.10 continue ----------------s---—e-—-——o——oo .
[continuing a for, while, or do statement]
Syntax

Statement
-> ‘continue’ °;°

Canstraints

The continue Statement must be contained within a for,
while, or do Statement.

v.11.01.85 1984-85 HetaWare Incorporated

Statements page 7-11

Semantics

The continue Statement jumps to the loop-continuation
portion of the smallest enclosing for, while, or do Statement.
More precisely, in each of the Statements

while (..) {Body:Statement; Continve.};

do {Body: Statement; Clontinue ;} while(..);
for (.) <{Body:Statement; Continue ;}

a continue contained within the Body Statement and not
contained within any contained for, while, or do Statement is
equivalent to a goto Continve

7.11 return ———------ccmmm - -
[result of function call] '

Syntax

Statement
=> 'return’ EL? *;°*

Cconstraints

The return Statement must be contained within a function
F. The type of EL must be assignment-compatible with F's
return type.

Semantics

The return Statement causes termination of the currently
executing function and returns control to its caller. If the EL
is present, it is evaluated, converted to the return type of the
function in which it appears, as if by assignment, and this value
is returned to the caller. If the caller expects no value, the
behavior is undefined.

If EL is omitted, no value is returned. If a value is expected
by the caller, the behavior is undefined.

An implicit return (with no EL) is assumed at the end of
every function.

v.11.01.85 1984-85 Metaare Incorporated

Statements page 7-12

Discussion

In KR, all functions had return types, so values could always
be returned. Returning without a value returned an undefined
value. In our semantics, which agree with X3J11, potentially
worse behavior is permitted, such as abnormal program ter-
mination. '

7.12 The Null Statement -----------cc-cceeuo- .
Syntax

Statement
_) u: []

Constraints
None.
Sermantics
None. This statement is most often used to carry a label.

v.11.01.85 © 1984-85 HetaWare Incorporated

Expressions page 8-1

8
Expressions

8.1 General ~---====-=—-mem—mm e .

[precedence, asseciativity in expressions; evaluation order; commutativity,
associativity; expression revriting; sequence point. arithmetic conversions; Convert;
extended floating-point precision; ®, +, €, ~, and | commutative and associative]
Expressions are presented with full operator precedence
and associativity rules contained unambiguously in the gram-
mar. Consequently there are many “chain” productions of the
form “Epn -> Ens1”. Often, the grammar is listed in the form

En -> Enet -> Interesting_alternative -

where En -> Epe1 is the chain production, and Interesting_
alternative is actually the material to be discussed. It is
always true that the constraints and semantics of Eps1 are the
same as those of En. Therefore all references in the text refer
to nonterminals or adjectives present in Interesting_alterna-
tive, and never refer to Ep+1. ‘

The order of evaluation of operands is not defined unless
specifically stated otherwise — for the (), &&, ||, ?:. and com-
ma operator. However, the evaluation of operands of an oper-
ator must not be “interleaved”: one operand of an operator
must be completely evaluated before the evaluation of another
operand commences. This essentially forces a “top-down”
bent to evaluation of an expression.

The operators *, +, & °, and | are commutative and
associative and a language processor is free to rewrite any
expression involving these operators using the commutativity
and asociativity rewrite rules, provided that the types of the
operands or of the results are not changed in the process.
However, once rewriting has been done, operand evaluation
order must be as described in the previous paragraph, so that if
“(e1 + e) + e3” is rewritten as “ey + (e2 + e3)”, the outer

v.11.01.85 © 1984-85 MetaWare Incorporated

Expressions page 8-2

addition reqwres that ey be completely evaluated before (e2 +
e3) is, or vice-versa.

Formally, the rewriting rules and constraints on using
them are as follows:

» commutativity: e1ope2<=> e op ey always.

* associativity: foropin{* + & * I}
(erop e2) op e3 <=> &1 op (e2 op e3)
itf Type(eiopez) = Type(ez op e3). (©

Since the first (es) and second (e3) operands of the first and
second operator occurrences, respectively, are the same, the
condition guarantees that second and first operands of the first
and second operator occurrences, respectively, have the same
type, so that the types of the operands and results of both
operator occurrences are preserved by the transformation.

That the single condition (C) guarantees operand- type
sameness cannot be evident without knowing the conversmn
rules that are applied to the operands of the operators before.

the operation commences. Consider the first operator.

What is the type of its second operand on the left side of
the <=>? Before the operation commences, both
operands are converted to type Common(es.ez), which is
therefore the actual type of 4ot/ operands, and is the
type Type(e1 op e2) of the result.

Now consider the second operand on the right side of the

¢=>. lts type is evidently just Type(ez op e3).

Therefore we arrive at the requirement that Type(e; op

e2) = Type(e2 op e3), which is just (C).

An analysis of the first operand of the second operator
produces the identical requirement.

This covers half the cases. We now consider the first
operand of the second operator, and the second operand of the
first operator.

v.11.01.85 © 1984-85 MetaWare Incorporated

Expressions page 8-3

The first operand of the second operator, on the right of
¢=>, is of type Type(er op (e2 op e3)). But by (C), this is the
same as Type(e1 op (e1 op e2)). This now reduces to Type(eq op
e2), since Common(e1,Common(es,e2)) = Common(es,ez); see
the definition of Common in Section Concepts. Now the type
of the first operand of the second operator, on the left of the
<=), is evidently already Type(ej op €2).

Therefore (C) guarantees that the type of the first operand
of the second operator is the same on both sides of the <=>.
Similar arguments show that the type of the second operand of
the second operator is the same on both sides of the <=>.
Hence (C) is the only requirement necessary.

For example, as a consequence of (C). (i+j)+k can be
rewritten as i+(j+k) if i,j, and k are all of type Unsigned-int,
but cannot if k is of type Double or Float.

The only sure way of placing an order upon evaluation and
any involved side-effects is to introduce a sequence point.

Many operators make use of arithmetic conversions. The
conversions are detailed in Section Concepts Functions Com-
mon and Widen are used to describe types to which operands
are converted. In the sequel, when we specify that a value V is
converted to type T by writing Convert(V,T), we meanV if V is
of type T. and the result of converting V to T by assignment-
compatibility rules if V is not of type T.

When operands of an operator are converted to a floating-
point type T, and the result of the operation is type T, we
permit an implementation to choose a different floating point
type T' having no less precision and range than T that the
operands and result may be represented in.” As far as the
constraints of the expression are concerned, the type of the
result remains T, but the implementation may store that
result in T', preserving more precision. The type T' need not
even be available to the C programmer — e.g. it may even be
of greater range and precision than Long-Double. The imple-
mentation must provide for casting the ?invisible) type T' to T
when the context demands, as in an assignment.

v.11.01.85 © 1984-85 HetaWare Incorporated

Expressions page 8-4

This permission is important on architectures that have a
natural most-extended precision and range floating point type
in which all computation is normally done, such as for the Intel
8087 chip, and has its main impact upon intermediate express
ions. Example:

double d1, d2, d3, d4, d5;
d1 = (d3#04)-(d2%d1);

/* Here, Long-Double may be used for calculation, possibly */
/* obtaining more precision than normsal, or avoiding an error */

/* if d3=d4 or d2»d1 exceeds the range of Double. */
/* The Long-Double result must be cast to Double before */
/* the assignment takes place. */

dS = (d3*d4)-(d1+d2);
/* Furthermore, ‘the common subexpression d3*d4 may be stored */
/* in a maxinally precise temporary format for use here. */

All expressions have a type T. The result of an operation
denoted by an expression is defined only if the computed value
is of type T, with the exception just noted where an imple
mentation may choose a “higher” floating-point type T'. In
addition, if any operand of an operation is undefined, the value
of the result is undefined.

8.2 Comma Operator: , --------——-----=---———- -
[sequence point; forcing evaluation order]

Syntax

EL ->E *, ' EL2
-> E

Constraints

The type and mode of the expression list EL is the type and
mode of ELy (the subscript 2 is used here for convenience of
reference and is not part of the formal grammar).

Semantics

E is evaluated, then ELp; the value of EL is the value of EL2.
The end of the evaluation of E is a sequence point.

v.11.01.85 © 1984-85 HetaWare Incorporated

Expressions page 8-5

8.3 Assignments: = ---------------------o---o- .

[right part of assignment; assignment compatibility]
Syntax

E ->EL
E1 ->E2
-> Lvalue: Term' Plain_assignment: ‘="' E1
- Lvalue: Term* (Assignment_operator E1);
Assignment_operator

_) o|=o I i"=l I 0&=l | o>>=a I l<<=l
I Lpresy I [} ' St | /= I ox___u;
Constraints

The type T of an Assignment_expression is the type of its
Lvalue. The mode of the Lvalue must be var or field.

Define the r/yht partof the assignment operator as E1 if
Plain a551gnment is used, and “Term' op (E1)” if As51gnment
operator is used and is of the form op= (where op is |, . &,
ptc.). In the latter case “Term' op (E1)” must satisfy the
constraints for op — discussed below separately for each op.

The type of the right part must be assignment-compatible
with T, or be a constant integral expression evaluating to 0 and
T of apointer type. The mode of the result is value.

Semantics

The value V.of the right part and the variable L referred to
by the Lvalue are determined, in an unspecified order. V' =
Convert(V.T) replaces the value held by L. Where Assignment_
operator is used, the Lvalue must be evaluated only once.

The value of the Assignment_expression is V'.

If V is obtained from an object that overlaps in storage
with L, the semantics of assignment is undefined.

v.11.01.85 © 1984-85 MetaWare Incorporated

Expressions ; page 8-6
Discussrion

Note that the requirement on the mode of the Lvalue
prevents assignments into a name of mode typedef or fcn. A
structure member as the left side of an assignment is
generally of mode var, not member (see Subsection Member
Selectionbelow), so that assignments into structure members
are permitted. Objects of mode tag or label are never
encountered since they exist only in name spaces from which
expressions cannot come.

8.4 Conditional Expressions: ? : S .
[sequence point]
- Syntax

E2 -> E3
-> Conditional_expression:
E3 '?* EL "' E2

Constraints

The Conditional_expression's first operand E3 must be of a
scalar type. The type T of the entire Conditional_expression
is determined from the types TeL and Tg2 of its second and
third operands EL and E2. TgL and Tg2 must be either both
arithmetic, in which case T is Common(TeLTe2); or the two
must be compatible types. in which case T is either TeL or Te2
(it does not matter which); or one must be of a pointer type P
and the other a constant expression evaluating to zero, in
which case T is P. The mode of the result is value.

Semantics

The first operand E3 is evaluated; the end of its evaluation
is a sequence point. |f it is non-zero, the value V of the second
operand EL is determined; otherwise. the value V of the third
operand E2 is determined. (Therefore, only one of E1 and E2 is.
evaluated.) Convert(V,T) is the result.

v.11.01.85 © 1984-85 HetaWare Incorporated

Expressions page 8-7

8.5 Sequential Disjunction: || ------------------ .
[sequence point]

Syntax

E3 ->E4 ->E3'||' E4;

Constraints

Each operand E3 and E4 of the || expression must have
scalar type. The type of the || expression is Signed-Int. The
mode of the result is value.

Semantics

Expression E3 is evaluated; the end of its evaluation is a
sequence point. |f it is non-zero, the result is one. If it is zero,
expression E4 is evaluated. If it is non-zero, the result is one;
otherwise the result is zero.

8.6 Sequential Conjunction: &% ------------------ .
{sequence point] :

nS)’f)l‘dX

E4 ->ES ->E4 ‘&' ES;

Constraints

Each operand E4 and E5 of the &8 expression must have
scalar type. The type of the && expression is Signed-Int. The
mode of the result is value.

Semantics

Expression E4 is evaluated; the end of its evaluation is a
sequence point. |f it is zero, the result is zero; if non-zero,
expression ES is evaluated. If it is zero, the result is zero;
otherwise the result is one.

v.11.01.85 © 1984-85 MetaWare Incorporated

Expressions page 8-8

8.7 Bit-wise Inclusive-or: | -—----=---ccmmmeo -
Syntax

ES ->E6 ->ES ‘'|' E6;

Constraints

Each operand ES and E6 must have integral type. The type
T of the | expression is Common(type of ES, type of E6). The
mode of the result is value.

Semantics

Both operands ES and E6 are evaluated and converted to type
T. The bit-wise inclusive-or of the two operands is the result.

8.8 Bit-wise Exclusive-or: ° ----------ccmcmeo-o- .
Syntax '

E6 ->E7T ->E6 '™ ET;

Constraints

Each operand E6 and E7 must have integral type. The type
T of the ~ expression is Common(type of E6, type of E7). The
mode of the result is value.

Semantics

Both operands E6 and E7 are evaluated and converted to type
T. The bit-wise exclusive-or of the two operands is the result.

v.11.01.85 (© 1984-85 MetaWare Incorporated

Expressions ‘ page 8-9

8.9 Bit-wise And: & ------------------ommoe—n- .
Syntax

E7 ->E8 ->E7 '&' EB;

‘constraints

Both operands E7 and E8 must have integral type. The type
T of the & expression is Common(type of E6, type of E8). The
mode of the result is value.

Semantics

Both operands E7 and E8 are evaluated and converted to type
T. The bit-wise and of the two operands is the result.

8.10 Equality Comparisons: == and != ----------- .
Syntax

E8 ->E9 ->E8 '=='EQ
-> E8 '!=' E9;

Constraints

Let Tg and Tg be the types of E8 and ES. Both Tg and Tg
must be arithmetic types, or be of compatible pointer types
T, or one must a constant integral expression evaluating to
zero and the other a pointer type. The type T of the entire
expression is Signed-int. The mode of the result is value.

Sermantics

Both operands £8 and E9 are evaluated. |f Tg and Tg are both
arithmetic types, then the values are converted to type
Common(Ts.Tg). The (possibly conver ted) values are compared
for equality (==) (inequality (!=)). The result is one in the case
the values are equal (unequal); otherwise, the result is zero.

v.11.01.85 © 1984-85 MetaWare Incorporated

Expressions page 8-10

8.11 Ordering Comparisons: < > (= »= -===---- .
Syntax
ES ->E10 ->E9 *<' E10
->E9 *>' E10
-> E9 '<=*' E10
-> E9 '>=' E10;
Constraints

The same as for the equality comparisons just described.
Sermantics .

Both operands are evaluated. If the types of both are
scalar, the values are converted to the Common type of the
two types. The (possibly converted) values are compared ac-
cording to the specified relation: < for less-than, > for great-
er-than, <= for less-than-or-equal-to, and >= for greater-
than-or-equal-to. The result is one if the relation is true and
zero if false. ‘

The comparison of two pointers is done as if they were
unsigned integers of the appropriate length. The result is
guaranteed only for two pointers that point into the same
aggregate; otherwise the result is implementation-defined.

8.12 Shift Operators: << and >> ---------------- -

Syntax

E10 -> E11 -> E10 *>>'EN
-> E10 *<K<C'Et;

Constraints

Both operands must be of integral type. The type T of the
result is Widen(type of E10). The mode of the result is value.

v.11.01.85 (© 1984-85 HetaWare Incorporated

Expressions page 8-11

Sernantics

The values V10 and V11 of E10 and E11 are determined. V10 is
converted to T and V11 to Signed-Int. The value of E10 << E11
is V10, interpreted as a bit pattern, left-shifted V11 bits, with
this result interpreted as type T. The value of E10 >> E11 is
V1o, interpreted as a bit pattern, right-shifted V11 bits, with
this result interpreted as type T. The right shift is guaranteed
to be logical (zero-filled) if E10 has an unsigned type: other-
wise it may be arithmetic (filled with a copy of the leftmost
bit). The result is implementation-defined if V11 is negative
or greater than or equal to the size in bits of Vio.

8.13 Additive Operators: +and - --------------- -
[pointer arithmetic: addition, subtraction]
Syntax
E11 -> E12 -> E11 '+' E12
-> E11 *-* E12;
Constraimts

Let T11 be the type of E11 and T12 the tybe of E12, and let R
be the type of the result. One of the following conditions must
obtain:

(a) T11 and T12 are both arithmetic types, in which case R is
Common(T11,T12);

(b) one is of the form T and the other an integral type I, in
which case R is T (and if the operator is '-*, the first
operand must be the one of the form »T); or

(c) or T11 and T12 are the same pointer type *T and the oper-
ator is *-*, in which case R is either Signed-Short-Iint,
Signed-Int, or Signed-Long-Int (which one in particular is
implementation-defined).

In cases (b) and (c), in #T, T must not be a functionality
type. The mode of the result is value.

v.11.01.85 © 1984-85 MetaWare Incorporated

Expressions page 8-12
Semantics
Both operands are evaluated.

in case (a), the values are converted to R, and the result is
the sum (*+') or difference (' -*) of the operands.

In case (b), if the value V of type *T points to the ith
element of an array of type [...]J:T, the result is a pointer to
element i+(value of type I) or i-(value of type I) of the array.
This holds only for pointers within the bounds of the array,
except that it is allowed to point to a hypothetical element
following the array's last element. The use of the pointer
result as an operand of # is defined only for pointer values
within the array bounds.

In case (c), if the two values point to the ith and jt
elements, respectively, of the same array, or possibly one past
the end of the array, the result is i-j; otherwise the result is
undefined. i-j must be a value of type R.

Jiscussion

The semantics of pointer arithmetic when the result
exceeds the array bounds by one is necessary so that common C
idiom “A[V]” for A of type [V]:T is reasonable; this semantics
was proposed by X3J11. KR does not treat the matter. The
4,2BSD implementation agrees with our semantics. '

8.14 Multiplicative Operators: *» / ¥ ----------- .
[multiplication, division, modulo]
Syntax

E12 -> E13 -> E12 '»' E13
-> E12 '/* E13
-> E12 '¥* E13;

Constraints

Let T2 be the type of E12 and T13 the type of E13. Both
operands must be of arithmetic type; the type T of the result

v.11.01.85 © 1984-85 HetaWare Incorporated

Expressions page 8-13

is Common(T12,T13). For the operator %, each operand must be
of integral type. The mode of the result is value.

Semantics
Both operands are evaluated and converted to type T.

If the operator is #, the result is the product of the two
values.

If the operator is 7/, the result is the quotient. If the
operands are both of integral type and the result of the division
is not an integer, the result is as follows: if both operands are
positive, the result is the largest integer less than the true
quotient. If either operand is negative, the result is either the
greatest integer contained in or the least integer containing
the true result; which one in particular is implementation-
defined.

The result of the operator ¥ for values a and b is a ~
(asb)*b, where / is the division operator explained above.

3.15 Type Casts -------------mmommooomomo oo .
Syntax

E13 -> Term;

Term

-> Term’

-> '(* Cast_type ')' Term

'C'onstra/ms

The Cast_type must be of a scalar type C or type Void, and
the term must be of some scalar type T, unless casting to
Void. The type of the result is C. The mode of the result is
value.

Semantics
The value V of the Term is determined.

v.11.01.85 © 1984-85 MetaWare Incorporated

Expressions page 8-14

If T is a pointer type and C some integral type, the result is
undefined if an object of type C cannot hoid V. Otherwise the
resultis V.

If T is some integral type and C a pointer type, the result is
undefined if an object of type C cannot hold V. Otherwise the
resultis V.

If T and C are both pointer types to functions, the result is V.

If T.-and C are both pointer types to non-function objects,
the result may not be defined if the alignment for C is more
restrictive than that of T. Otherwise, the result is V.

Otherwise, the result is Convert(V.T).
Discussion

The semantics of pointer conversion requires that pointers
to non-function objects be the same size.

- Subset Term* of Term has been introduced to capture the
relative precedences of the cast syntax and of sizeof: sizeof
binds more tightly than a cast. Therefore “sizeof (int)*x” is
the same as “(sizeof (int))=x".

Casting to Void is most often used to discard the result of
a function, when writing an expression that is a function call.

8.16 Pointer Dereference: * ---------------~--- -
[pointer alignment]
Syntax

Term'
-> T
- =) {'*')> Pointer:Term

Constraints

The Pointer must be of a type of the form *T. The type o
the result is T, except where T is of the form []:T', in which
case the type of the result is *T'. The mode of the result is

v.11.01.85 © 1984-85 HetaWare Incorporated

Expressions page 8-15

var unless T is a functionality type, in which case the mode is
value. T must be neither an incomplete type nor Void.

Semantrcs

The value V of the Pointer is determined. The result is the
object pointed to by V. If V is zero the operation is undefined.

Through type casts it is possible to obtain a pointer value V
that is inappropriately aligned for the pointed-to type T. Vis
therefore not a valid value of type *T and therefore the oper-
ation *V is undefined.

Discussion

4.2BSD allows ", for n 2 1, to denote *f for a value f of
functionality type. High C prohibits such, as do KR and X3J11.

8.17 Pointer Reference: & ---------------—- -—- .
[conversion of arrays to pointers; address of an array)

Syntax

- Term'
-> ‘&' Term

Constraints

The Term may be of any type T. The result is of type *T.
The Term must be of mode var, and may not denote an object
declared with Storage_class register. The mode of the result
is value. '

Mote. |f Term is of an array type, the normal conversion of
its type to *T is not done; see Subsections <JDENTIFIER)s
‘and Member Selectionbelow.

Semantics
The result is a pointer to the Term.

v.11.01.85 © 1984-85 HetaWare Incorporated

Expressions page 8-16
Discussron

Note that taking the address of a structure field is prevent-
ed because fields are of mode field.

The constraints prohibit &F, where F is a function name,
since by the function conversion rules (see Subsection <Z¥WTI-
FIER)s below), F is converted to the address of F of mode
value. Most compilers simply warn when &F is used; 4.2BSD
permits &, for n 2 1, to denote &V, but High C disallows such.

X3J11 introduced the ability to take the address of an
array expression, where in KR the automatic-conversion of
array expressions to pointers to the first element made this
impossible. The added ability allows the construction of an
pointer of type *[]:T from an (array) expression of type [l]
Previously it was only possible to obtain type [J:*T, and *]T
had to be obtained through casting. Examples:

int a[10]; - /% Type [J:Signed-Int. »/
void f(int (~arg)(]) {.}

/% Parameter is of type *[]:Signed-Int. *,
f(a); /" Illegal: argument is of type *Signed-Int. */
f ((1nt(*)[])a) /* 01d, tedious way of getting around problem. */
f(&a); /* New: obviates need for cast. "/
typedef t[10].
t a; /* Declare an array. ‘ */
t *b = &a; /" Initialize b to the array's address. */
t %c = (t *)a; /* Equivalent, old method. */

. v.11.01.85 © 1984-85 MetaWare Incorporated

Expressions page 8-17

8.18 Unary Sign Operators: - and + --------=---- .
[negation]

Syntax

Term'
-> '-* Term
=> '+' Term

Constraints and Semantics
Same as those of (0-Term) and (0+Term), respectively.
Discussion

Note that “+x” is not necessarily the same type as x; if x is
of type Signed-Char, “+x” is of type Signed-Int.

8.19 Bit-wise Complement: = -------c-e-eeemm- .

Syntax

Term;
=> "' Term

Constraints

The Term must be of an integral type T. The type of the
result is Widen(T). The mode of the result is value.

Semantics

The Term is evaluated and converted to type Widen(T). The
result is the bit-wise complement of the value.

8.20 Boolean Negation: ! ---------cocooo- .

Syntax

Term*
=> ' Term

Constraints and Semantics
Same as for the expression (0 == Term).

v.11.01.85 © 1984-85 HetaWare Incorporated

Expressions page 8-18

8-21 Sizeof ———————————————————————————————— -
[conversion of arrays to pointers; byte]

Syntax

Term'
-> 'sizeof*' ('(* Cast_type ')' | Term')

Constraints

Term* may not be of mode field. Let T be the Cast_type, or
the type of the Term'. T must be neither Void nor any function-
ality type nor any incomplete type. The result is of an integral
type: which one in particular is implementation-defined. The
mode of the result is value.

MNote. If Term' is of an array type, the normal conversion
of its type to *T is not done — see Subsections <JOEN7Z-
FIER)sand Member Selectionbelow.

Semantics

Where Term' is used, it is »nofevaluated. In any case th
result is a non-negative integer that is the number of bytes re-
quired to hold a value of type T. It is true that sizeof&V]:T) =
V*sizeof(T) and that sizeof(Signed-Char) = sizeof(Unsign-
ed-Char) = 1.

Discussion

The reason that the automatic conversion of array types to
pointers is avoided is so that it is possible to obtain the size of
an array, rather than the size of a pointer to the array's ele-
ment type. Example: '

char a[10];
int j = sizeof(a); /= j is initialized with 10. "/
void f(char b[]) {
int k = sizeof(b):
/* k is initialized with the size of a pointer to char, since *
/* 3's declaration is adjusted to read “char *a;". The same */,
/* initial value would be supplied for j above if we did not */
/* defeat the normal conversion of array types. */

}

v.11.01.85 © 1984-85 MetaWare Incorporated

Expressions page 8-19

8.22 Prefix Increment and Decrement: ++ and -- -- =
[addition, subtraction]

Syntax

Term®

-> T

=> *++' Lvalue: Term
-> '—==' Lvalue: Term;

Consitraints

The Lvalue must be of mode var or field and scalar type T.
The result is of type T and mode value.

Semantics .

. The Lvalue is evaluated. The value held by the object refer-

enced by the Lvalue is incremented (++) (decremented (--)),
i.e. one is added (subtracted), with the semantics of addition
(subtraction) described above. The result is the mcremented
(decremented) value.

8.23 Postfix Increment and Decrement: ++ and -- - =
[addition, subtraction; side-effect, sequence point]
Syntax

T1
=> Lvalue: T1 "++'
-> Lvalue: T1 '--*;

Constraints

The Lvalue must be of mode var or field and scalar type T.
The result is of type T and mode value. '

Semantics

The Lvalue is evaluated: The result is this value. The value
held by the object referenced by the Lvalue is incremented (++)
(decremented (--)), i.e. one is added (subtracted), with the
semantics for addition (subtraction) described above.

v.11.01.85 (© 1984-85 MetaWare Incorporated

Expressions page 8-20

The incrementing (decrementing) operation is a side-effect
- so it can be postponed until the next sequence point.:

8.24 Function Call: () ---------------ocommmo .

[functionality t and prototype functionalities; argument type
checking; variable number of arguments to a function; recursive
functions; Pascal function call semantics; sequence point)

Syntax

T1

-> T1 '(* Arguments *)*;
Arguments

-> (E 1list *, ")
Constraints

If T1 is a Name that is undeclared in the ordinary name
space, the occurrence of the Name becomes its defining point in
the ordinary name space as a function of type F = (?) —> Sign-
ed-Int with storage class static-import and mode fcn. [f so,
this replaces the normal constraints for the T1, which require
that the Name is declared. The scope for this Name extends from
its defining point to the end of the program, which differs
from normal block-structured scope ruies.

Otherwise, T1 must be of some functionali ty type F.
F is one of the following four forms; see Section Concepts:

(a) (M ->7T for T a type:
(b) (T],...Tn) -> T \
© MT...Ta)p —>T | for T, T1....Ta types, n 2 0.

d) ("...Tao.p =T/
In all of the cases, the type of the result (of the function
call operator) is T. |ts mode is value.

in cases (a) and (b) the Arguments may be of any type. Even
though the types of the function’s parameters are specified in
case (b), a language processor may at most warn if the type of
an argument does not match the type of a parameter.

v.11.01.85 © 1984-85 HetaWare Incorporated

Expressions page 8-21

In case (c), there must be n Arguments. The type of the ith
Argument must be assignment-compatible with Tj.

Case (d) is the same as case (c) except there may be more
than n Arguments. The additional Arguments may be of any type.

Semnantics

The T1 and the Arguments are evaluated in an unspecified
order. The end of the evaluation of the Arguments is a sequence
point. The end of the evaluation of the call is a sequence point.

For each of the Arguments A of type Ta and corresponding
parameter type T, A is converted as if by assignment to a
variable of type T. When T is unknown, which occurs in cases
(a) and (b),-and for the additional Arguments in case (d), T is
implied by Ta as follows. T is

* Signed-Int if Ty is Signed-Char or Signed Short-int;

* Unsigned-int if Ta is Unsigned-Char or Unsugned Short-Int;
* Double if Ta is Float; or

* Ta otherwise.

Note that since an expression of type [?]:T' or [V)T' is
converted to type *T°, Ta can never be of an array type [?]:T*
or [V]:T'. Likewise, Ta can never be a functionality type T,
since it is converted to *T'.

The function is called with its parameters taking on the
converted values of the Arguments. The call is by value: copies
of the values are passed. Thus, assignments into a function's
parameters within the function body do not affect the Argu-
ments passed.

Direct and indirect recursive calls to any function are per-
mitted.

Discussion

E instead of EL is used in the rule for Arguments to avoid an
ambiguity.

v.11.01.85 . © 1984-85 HetaMare Incorporated

Expressions page 8-22

Early C compilers never made any check for parameter
correspondence. Arguments of integral type were simply wid-
ened. and Floats were converted to Double. The specificatiop
of parameter types in a Function_definition Aad no effecto.
argument passing.

To preserve these semantics, a functionality type F affects
argument passing only when F is a prototype functionality.
When using a prototype, short integer and Float arguments can
- be passed more efficiently; the old semantics requires the pos-

sibly expensive conversion of Float to Double and the shorten-
ing of integers. ‘

Furthermore, an integer argument may be passed to a func-
tion receiving a Float parameter, and the argument is conveni-
ently converted to Float. Essentially, prototype functionali-
ties are C's concession to the safer procedure call semantics
of Pascal. £Example:

/nefficrent: int f(x c) float x; short s; {.}
(3.2, 3);

Efficient: int f (float x, short s) {..}
(3.2, 3);

In the first case, a Double and Signed-Int are passed and f's
prologue converts the Double back to a Float and the Signed-
Int back to Signed-Short-Int. In the second case, a Float and
Signed-Short-Int are passed and no conversion occurs in f's
prologue. .

X3J11 provides that the scope of an implicitly-defined
function F is the innermost block containing the call to F. We
have instead made its scope the entire program. This prohibits
an inconsistent declaration of F from appearing at the global
lever later, such as in

main () { /* Implicit declaration of f */
f(). /* as extern int f(); »/

}
long f() { ...}
/* Illegal: 1long != int. */

v.11.01.85 ©) 1984-85 HetaWare Incorporated

Expressions page 8-23

Note that the declaration “int f();” and “int f(...).”
are equivalent. The unfortunate duplication of syntax is due to
compatibility with “old C”.

8.25 Array Indexing: [] --------------=----omo .
[pointer arithmetic]
Syntax
T
->T1'[*EL ']
Constraints and Semantics
Same as for (* ((T1) + (EL))).
Discussion

[] is intended to be used to subscript an array. Because of
the semantics of + in the equivalent expression (* ((T1) +
(EL))). T1 can either denote an array or a pointer to an array;
if the former, it is immediately converted to a pointer to the
first element of the array. The +(EL) moves to the desired
element of the array, and the outer » extracts the value. The
reader may wish to verify that the mode of the result wil!
always be var.

Therefore, if P is a pointer to the first element of array A,
P[EL] and A[EL] denote the same object. Also, (EL)[A] and
A[EL] are the same.

A[L J, K] has unexpected semantics. [t is the value of A[K]
after I and J have been evaluated. Do not read A[I J,K] as
subscripting a three-dimensional array: there are only one-
dimensional arrays in C.

v.11.01.85 : © 1984-85 MetaWare Incorporated

Expressions page 8-24

8.26 Pointer Dereference and Member Selection: -> =
Syntax
T
-> T1 '->' Hember:Name
Constraints and Semantics
Same as for (;'(T1)).Name.
Liiscussion

This notation is provided as a shorthand for the cumber-
some notation (*p).f, where p is a pointer to a structure or
union value and f is the name of a member of the value. The
weak binding of the operator » makes necessary the () around
the #p, for *p. f means *(p. f).

8.27 Member Selection: . ----------emm- .
[sizeof, &; struct, union]
Syntax

T1
-> Primary _
-> T1 '.* HMember:Name;

Constraints

The type of T1 must be of the form Struct{M} or Union{M}.
In particular, no incomplete structure or union types are per-
mitted. The type must have a Member m named Name.

The type of the result is the type T of m, unless m is of an
array type [...J:T and the selection is not an argument to
sizeof or &, in which case the type of the result is *T.

If the latter case holds or T1 is of mode value, the result ic
of mode value. Otherwise, if the mode of m is field, the
resulting mode is field; otherwise the resulting mode is var.

v.11.01.85 © 1984-85 HetaWare Incorporated

Expressions page 8-25

See Subsections FPornter Rererence and sizeor for the
reasoning behind not converting type T to *T in the presence of
sizeof or &.

Sermantics

The Primary is evaluated. The result is the value of the
designated structure or union Member, except when T is an array
type, in which case the result is the address of the first
element of the array.

In general, a Member of a union may not be inspected unless
the value of the union was assigned using that same Member,
with the following exception: if a union contains several struc-
tures that share a common initial sequence, and if the value of
the union was assigned using one of those structures, it is
permitted to inspect the common initial part of any of them.
(This follows X3J11.) Example:

union { struct {int Type; }N;
struct {int Type; int IntNode; } NI;
struct {int Type; int FloatNode; } NF;

U

U.NF.Type = 1; U.NF.FloatNode = 3.14;

if (U.N.Type == 1) U.NF.FloatNode = -U.NF.FloatNode:

8.28 Overriding Operator Precedence: () ------- .
Syntax)
Primary -> *(* EL *)';
Constraints and Semantics
Same as for EL.
Discussion

Mere parenthesnzatlon does not change the constraints or
semantics of an expression. For example, lf EL is of mode M
and type T, so is the result.

v.11.01.85 © 1984-85 MetaWare Incorporated

Expressions page 8-26

8.29 <(IDENTIFIER)S --------—————c~cmmmcmmee e -
[sizeof, &; conversion of arrays to pointers; <IDENTIFIER>]

Syntax
Primary -> Name: '<{IDENTIFIER)>®;
Constraints

The Name must denote an object of some type T and mode M
in the ordinary name space. If T is of the form [...):T* and the
Name is not an argument to sizeof or &, the type of the result
is *T'; if it is of a functionality type T and mode fcn, the type
of the result is *T; the mode of the result is value. Other-
wise the type of the result is T and its mode is var.

See Subsections Fointer Reference and sizeof for the
reasoning behind not converting type T to T in the presence of
sizeof or &.

Semantics

The value of the Primary is generally the object denoted by
the Name. However, if T is an array type, the value is a pointer
to the first element of the array; if a functionality type, the
entry point of the function.

Discussion

Primary directly produces <IDENTIFIER> rather than the
nenterminal Name so that <TYPEDEF_NAME)>s are disallowed in
expressions. The mode of an <IDENTIFIER> can never be type-
def since any such an <IDENTIFIER) is instead in the lexical
class <TYPEDEF_NAME>; therefore the constraints need not pro-
hibit mode typedef.

~v.11.01.85 © 1984-85 MetaWare Incorporated

Expressions page 8-27

8.30 Constants —=------——-==cccmmmmmccemmaeam -

E(INIEGER), <FLOAT>, <CHAR>, <OCTAL>, <HEX>, <STRINGY>; string
erminator; arrays of characters]
Syntax

Primary

-> Constant;

Constant

-> *<INTEGER>' | *<FLOAT>"'|'<CHAR>" ': <OCTAL>' | '<HEX>*'
-> "{STRING>'+;

Constraints

The mode of each Constant is value. Other constraints
detailing each Constant's type can be found in Section Lex/con.

The constraints of two or more (STRING)>s appearing in
sequence are equivalent to a single <STRING> whose text is that
of the individual <STRING>s concatenated, but without a separ-
ating '\000"'.

Semantics

) The value of two or more <STRING>s appearing in sequence
is the same as that of a single <STRING> whose text is that of

the individual <STRING)>s concatenated, but without a separat-

ing '\000°. A single *\000"' is appended to the concatenation

and the result is the value of the <STRING>s, as if a single
(STRING>.

Strings do not share storage with each other, even when’
written identically.

Discussion

Strings are arrays of characters, and as arrays are usually
converted to a pointer to the literal. See Section Zexicon.

String concatenation is contained only in X3J11 and this
definition.

v.11.01.85 © 1984-85 HetaWare Incorporated

Expressions page 8-28

8.31 Cast Types and Abstract Declarators -------- B
[Abstract_declarator]

Syntax

Cast_type
-> Type_specifiers Abstract_declarator?

'C‘onstra/bts

The occurrence of a Cast_type is associated with a type T*
that is specified in the Type_specifiers preceding the optional
Abstract_declarator. The type T of the Cast_type is T' if the
Abstract_declarator is not written; otherwise, it is 7ype
(T*,A), where A is the Abstract _declarator and the definition
of 7ypemay be found in Section " Declarations/Declarators.

Semantics
None. This is purely a type-specifying construct.
Discussion

In C the type of an object is specified both in Type and
Declarator. For example, a pointer type is constructed in a
Declarator, not a Type. But since a Declarator always declares
a name, it is not possible to use it to describe a type without
declaring a name.

Hence the invention of the Abstract_declarator. It is like
a Declarator except the name is missing. The type of the
missing name is the type denoted by the Abstract_declarator.

The unfortunate near-duplication of syntax in Abstract_
declarator could have been avoided were all type information
provided in Type, rather than splitting it up into Type and
Declarator. Then ‘(' Type ')*' could have been used for a
Cast_type.

~ v.11.01.85 (© 1984-85 HetaWare Incorporated

Expressions page 8—29

8.32 Names ----------=-==----------—o-——-ooo- -
[<IDENTIFIER>, <TYPEDEF_NAHE>]

Syntax
Name -> '<IDENTIFIER>' | ‘'<TYPEDEF_NAME>';
The reason for ‘¢TYPEDEF_NAME)>' as an alternative for Name

is that an identifier already declared of mode typedef is lexi-
cally a '¢TYPEDEF_NAME>' instead of an '<IDENTIFIER>'. Thus,

consider:

typedef int T; /* Occurrence 1 of T. */
main() {
Tx /* Occurrence 2 of T. */
int T; /* Occurrence 3 of T. */

Occurrence 3 is a redeclaration of T as a variable of type
Signed-Int. Due to the outer typedef declaration, occurrence
J is a <TYPEDEF_NAME>. This essentially reflects a simple im-
plementation of a C processor front-end: the lexical processor
looks up each <IDENTIFIER> tosee if it is a <TYPEDEF_NAME>, and
if so, changes it to a <TYPEDEF_NAME>. The <TYPEDEF_NAME> lexi-
cal class is necessary for the proper parsing of declarations
using <TYPEDEF_NAME>s, exemplified by occurrence 2.

Constraints and Semantics

None. The constraints for a Name are given where Name is
used in the syntax.

8.33 Constant Expressions -----=---==ec—eeeooo—- -
[array size; bit-field length; enumeration literal; case constant; initialization]

In several places the C language requires an expression E
that evaluates to a constant. Repeated here for convenience,
they are: the size of an array or bit-field, the value of an
enumeration constant, a case constant, and the initialization

v.11.01.85 © 1984-85 MetaWare Incorporated

Expressions page 8-30

of an object of storage class static. All but the last case are
constrained to be of an integral type.

The following subset of well-formed expressions are con-
stant expressions when each E is a constant expression:

* E?E:E
* E op E. when op is one of the binary operators

* /% o+ - U»
< > <K= ¥z == =
& I & |l :

= op E, when op is one of the unary operators
+ - 7 1 sizeof

* (Cast_type) E

= (E)

= <CIDENTIFIER>, when declared as an enumeration literal
* any of <INTEGER> <CHAR> <OCTAL> <HEX> <FLOAT>

For constant expressions required to be of an integral type,
<FLOAT> is excluded, and Cast_type must denote an integral

type.
Constant Initializers can also employ

* the application of & to objects of storage class static
and to arrays of storage class static subscripted with a
constant expression

* anidentifier declared of mode fcn
= anidentifier declared of an array type

© v.11.01.85 © 1984-85 HetaWare Incorporated

Appendix Language Extensions page A-1

Appendix A
Language Extensions

A.1 Introduction

This section presents features in the High C language not
typically found in implementations of C. These extensions fall
into three categories:

= extensions that X3J11 has made to C,
» simple High C extensions, and
* radical High C extensions.

The first two classes of extensions are documented in the
main body of this reference work. The last is documented only
here — not, however, because the radical extensions are unim-
portant. Rather, they are too different to include in the main
Hody of the language definition. Hence they were relegated to
‘this appendix so that those readers not interested in them
would not to have to skip over them.

For completeness, the first two classes of extensions are
discussed briefly in Subsections A.2 and A.3. The third class is
treated at length in Subsections A.4 through A.7. Finally, the
last subsection is a brief tutorial on the X3J11 extension,
function prototypes.

A.2 X3J11 Extensions to C

["\" as line continuator; string concatenation; constant suffim: escape sequances;
signed; leng deuble; aggregate initialization; function prototypes]

* The use of '* as a line continuator character — Section
Lexicon.

To overcome source line limitations, any line ending in the
character *\' is treated as contiguous with the following
line. Therefore any C word may be broken across line boun-

v.11.01.85 ‘ © 1994-85 NetaWare Incorporated

Appendix Language Extensions page A-2

daries. This is most useful for multiple-line macro defini-
tions and long strings, although there is a better solution
for the latter — see the next item.

* String-constant concatenation — Section ZLex/con.

Juxtaposed string constants denote the concatenation of
the constants. Example:

char #*p = "Hi " “there, "
“folks. ":

is equivalent to
char *p = “Hi there, folks.";

This feature is useful for long string constants that span
more than a line of text, and for aligning portions of a
string to emphasize or illuminate correspondences.

* Vertical tab as a delimiter — Section Lex/con.

The ASCII vertical tab character is semantically equivalent
to a blank when not appearing within a string or character.

» Suffixes-u (U), 1 (L) in integer constants — Section Lex/con.

These suffixes, either alone or together, in either order and
independently in either upper or lower case, are permitted
in integer constants: decimal, octal, and hexadecimal. The
effect of “u” is to change the type T that the integer con-
stant would otherwise have to the unsigned variety of T.
The effect of “1” is to change T to the long variety of T.
Thus, for example, “123” has type Signed-Int, “123u”
Unsigned-Int, “1231” Signed-Long-Int, and “123ul” and
“1231u” Unsigned-Long-Int.

« Suffixes f (F), 1 (L) in float constants — Section Zex/con.

The suffix 1, in upper or lower case, is permitted in float-
ing-point constants. Its effect is to make the type of the
constant Long- Double instead of the default Double. Th{
suffix f, in upper or lower case, makes the constant's type
Float rather than Double. f and 1 may not appear together.

v.11.01.85 © 1984-85 HetaWare Incorporated

Appendix Language Extensions page A-3

* Escape sequences \a, \v, and \xddd in strings and characters
— Section Lex/con.

In addition to the escape sequences \n, \t, \b, \r, \f, \\, *,
*, and \ddd (octal digits) allowed by KR, the sequences \a,
\v, and \xddd are allowed, where \a denotes “audible alert”
or the ASCII BEL character, \v denotes the ASCI| vertical
tab character, and ddd is a sequence of one to three hexa-
decimal digits (with each letter in upper or lower case):
\xddd denotes a single byte whose value is dddis.

* The new reserved word signed — Sections Lex/con and
Declarations.

The type modifier signed may be used to indicate that the
modified type is to be signed. This is most useful in guaran-
teeing that a char type is signed, since an implementation
is free to decide whether the unadorned type denotation
char denotes Signed-Char or Unsigned-Char. For example,
“signed char c; ” declares ¢ of type Signed-Char, whereas
“char c;” may be signed or unsigned depending upon the
implementation.

* New type denotation long double — Section Dec/arations.

The type specifier long double denotes a new floating-
point type Long-Double having precision and range no less
than type Double. This may be employed to obtain a triple-
precision floating-point type.

* Initialization of automatic aggregates with static express-
ions — Section Dec/laration/Non-Function Definitions.

An aggregate object O with storage class automatic may be
initialized with the same initializing expressions permit-
ted for static aggregates and additionally, if O is a struc-
ture or union, with a single expression of O's type.

* Initialization of structures with structure-valued express-
ions — Section Dec/aration/Non-Function Definitions.

v.11.01.85 © 1984-85 HetaWare Incorporated

Appendix Language Extensions page A-4

A structure (struct/enum) may be initialized with a struc-
ture-valued expression, as in :

extern struct s{int x;} f().
main() {
;truct s S = f();

Function prototypes — Sections Dec/arations and Expres-
sions.

See Subsection A.8 for an introduction to this Pascal-like
concept in C.

A.3 High C Extensions Documented in the Manual Body

[underscores in numbers; intermixing statements and declarations:
case ranges; aggregate initialization; pragna]

Underscores in numbers — Section Zex/con

Numbers — both floating-point and integer constants —
may be written with the character *'_' among the digits.
Generally *_*' takes the place of the English comma in
numbers. Example:

1_000_000 /* One million. */

All characters -in identifiers are significant — Section
Lexicon.

The ability to intermix declarations and statements — Sec-
tion Staternents.

In a compound statement, i.e. the list of declarations and
statements enclosed within { and }, declarations and state-
ments may be interleaved, as opposed to declarations pre-
ceding statements. This allows one to place a declaration
near its first use, where its initial value may be available.
Example:

int A[10];
Compute_array(A):;
int M = Max(A, 10);

v.11.01.85 : (© 1984-85 HetaWare Incorporated

Appendix Language Extensions page A-5

With this relaxed order, it is now possible to “execute” —
formally, e/aborate a term borrowed from Ada — a
declaration more than once. Elaboration includes initial-
ization. Example:
Loop: ;
int K, Count = 1:
for (K = 1; K <= 10; K++) {
...Do_something();...

}
goto Loop;

Each time around the Loop, Count is initialized to one.
* Caseranges in the case Statement — Section Express/ons.

High C permits the extension “case E1..E2: ” where the
meaning is equivalent to “case E1: case E1+1: case E1+2:
. case E2: . Example:

switch (Ch) {

case 'A'..'Z': Scan_id(). break;
case '0'..'9': Scan_number(); break;
default: Scan_delimiter(); break;

} /* The latter break for safety: */
/* in case of reordering cases. */

* Initialization of automatic aggregates with arbitrary
expressions — Section Jec/arations.

High C permits automatic aggregates to be initialized with
arbitrary non-constant expressions, where X3J11 restricts
initialization lists to constant expressions.

* New reserved word pragma — Sections Lexicon Declara-
tions and Statements.

v.11.01.85 © 1984-85 MetaWare Incorporated

Appendix Language Extensions page A-b

A.4 Named Parameter Association
[function call; positional parameters]

Functions declared with parameter names can be called
with the named parameter association syntax of Ada. Such
calls refer to the parameter names rather than their positions,
so that the ordering of supplied parameters is irrelevant. The
syntax is like that of a normal function call except that each
actual parameter expression is preceded by the corresponding
formal parameter name followed by “=>". Exampl/e:

typedef enum{Red, Green, Blue} Color:
void P(int A, float B, Color C, Color D) { ... }
P(C => Red, D =) Blue, B => x*10.0, A => y):

One may also start the function call using positional
parameter notation and switch to named association as the
parameters are written down from left to right. Switching
back to positional- notation is not allowed, nor is any other
variation. Example:

void Plot(Xlo, Xhi, Ylo, Yhi, Xinc, Yinc)
float Xlo, Xhi, Ylo, Yhi, Xinc, Yinc; {

Plot (Alo, Ahi, Blo*2. 0, Bhi*2. 0, Yinc=Dy, Xinc=>f (x+2));
The formal definition of this construct follows.
Syntax .

To permit the => operator, add to the lexical grammar
(Section Lexicor), the rule

Other_op -> '=' '>' =>'<AS_IS>';

Add to the phrase-structure grammar (Section Express-
ions/Function Cal)), the rule

v.11.01.85 © 1984-85 MetaWare Incorporated

Appendix Language Extensions page A-7

Arguments
-> Named_parameter_association:
Unnamed_arguments: (E ', ')*
Named_arguments: (*CIDENTIFIER>® '=>"' E) list *.';

constraints

As in Section Expressions/Function Cal/l, let F be the type
of the function being called. F must be one of the two forms
(see Section Concepts):

) (T1..Tn) —>T \
() (M...Ta)p =>T / forT,Ti...Tntypes,n20.

Furthermore, in the declaration of the type F, all parameter
names must be provided.

These requirements exclude functions declared as in “int
f():” and “void h(int i, float):” from being called using
named parameter association.

The (IDENTIFIER)s in Named_arguments must collectively be
the names of distinct parameters whose values are not suppli-
7d positionally. Values for all parameters must be supplied
through either the Unnamed_arguments (positionally) or the
Named_arguments.

Given these constraints, it is possible to transform the
function call into a purely positional form. Further Con-
straints and Semantics are then as if the Arguments were thus
transformed.

Semantics

Since the Constraints detail how named parameter associ-
ation can be transformed into positional form, the Semantics
here are the same as the Semantics of the transformed call
discussed in Section £Expressions.

v.11.01.85 © 1984-B5 HetaWare Incorporated

Appendix Language Extensions page A-8

A.5 Nested Functions and Full-Function Variables

{Pascal function parent and environment; up-level addressmp static
ink; display; function address versus full-function value:

In High C, functions may be defined within functions. Such’
functions are called sested. This facility endows High C with
an expressive power that is found in Pascal.

In the body of a nested function N, any name in a containing
scope may be used. That is, the body of N may use names local
to other functions that contain N. This is called yp-/eve/
referencing and any such names are said to be yp-/eve/ refer-
enced from N. The single restriction is that register-class
variables may not be up-level referenced.

Up-level referencing may be achieved by making available
to N, at each call to it, a way to reference the collection of
locals of each of its enclosing functions. This reference meth-
od is called N's environment. The function P immediately
enclosing N is called N's garent: the next enclosing function G
its grangparent: and so on. The collection of locals of each,
function is called its stack frame.

(Technical note: N's environment may be implemented by
passing to N, at each call to it, a “hidden” parameter that is a
reference to P's stack frame. If this is done for all functions,
P will have in its stack frame a similar hidden parameter that
links it to G, and so on out to the global level where functions
need no such link. This is called the stat/c /ink method of
implementing up-level referencing, the method of choice for
best efficiency and optimization possibilities, as opposed to
the dlisp/aymethod, which is not described here.)

Therefore, a major difference between nested functions and
non-nested functions is that the address of a nested function N
does not entirely capture N's “value”: the environment is also
required. In contrast, the address of a non-nested or global
function G entirely captures its value, since G has no parent
and thus needs no environment. The C notion of “pointer to
function” is therefore sufficient to capture the value of G but
not that of N.

v.11.01.85 © 1984-85 Metaware Incorporated

Appendix Language Extensions page A-9

Hence High C disallows taking the address of a nested func-
tion, and, where C assumes & before any expression of type
function, High C does notassume the & if the expression is of a
nested-function type.

Full-function values. We refer to the combination of a
function address and its environment as a 7w//-function value
as opposed to just a “function address”.

All of the capabilities associated with global functions,
such as passing them as parameters and storing their value into
variables, is available for nested functions, although new
syntax is required.

A variable capable of holding a full-function value, and
therefore the value of a nested function, is declared as a
function declaration would be, except that “!” follows the
parenthesized formal parameter list. Examp/e:

int ffvQ!;

In contrast, a standard C variable capable of holding only a
function address is declared using the pointer syntax:

int (*fa)().

ffv may be called with the expression “ffv();”, but not
with “(#ffv)()”, since ffv is not (just) a pointer.

Any nested function may be assigned to ffv. A global
function G may be assigned to ffv by dereferencing /it since of
course G is transformed to &G by the compiler and must be
dereferenced to obtain the full-function value of G, not just its
address: “ffv = #G; ”. The environment stored in ffv in such an
assignment is meaningless, since G needs no environment.
Upon calling the value in ffv. the environment is passed to G.
but G (indeed every global function) safely ignores it.

Nested functions may.be passed as parameters: the full
value is passed. The full-function value of a global function
may be passed by dereferencing the global function: the passed
environment is meaningless. '

v.11.01.85 © 1984-85 MetaWare Incorporated

Appendix Language Extensions page A-10

An argument can be declared as being a full-function value
by using the new syntax:

int f(ffv) int ffv()!; { ... ffv(); ...}

Only the names of function constants may be dereferencea
" to produce full-function values. The dereference of a pointer
to a function is immediately converted back to an address by
standard C rules for function expression conversion. Thus:

extern int sub().

main () {
int (*fa)():
int Nested() {...} ~
main(*main); /* Passes the full value of main. ./

main(*sub); /* Passes the full value of sub. ./
main(*fa). /* Passes fa, since "fa =) b*fa = fa. */

main(Nested); /= Passes the full value of Nested. */

This extension .is compatible with ANSI standard C since
the dereference of an expression of type pointer-to-function i Is
permitted only in the context of an expression denoting &
function to be called, e.g. “(*fa)()" but “(«fa)(»fa)” is
illegal in ANSI C.

Example: As an example of the use of full-function values,
we present a call to a sort function that takes as parame-
ters two functions:

extern void Quick_sort(
int Lo, int Hi, int Compare(int a, int b).
;oid Swap(int a int b)
static Sort_private_table() {
Entry Entries[100].
int Compare(int a int b) {
;eturn Entries[a] < Entries[b];
void Swap(int a, int b) {
Entry Temp = Entries{a]:
Entries[a] = Entries[b]; Entries[b] = Temp;

}

v.11.01.85 ©) 1084-85 MetaWare Incorporated

Appendix Language Extensions page A-11
bhick_sort(t 100, Compare, Swap):

Here it is necessary for Compare and Swap to be local to
Sort_private_table since the table Entries is local to that
function. In standard C, Entries, Compare, and Swap would
have be moved outside of Sort_private_table. This works
fine in this simple case, but if Sort_private_table were
recursive, one would have to explicitly manage a stack of
Entries arrays to get the desired effect.

Although this example may seem contrived, a stripped-
down version of a practical Pascal program, transiated into
High C, is included in distributions of High C compilers.
The name of the file is “analyze.c” and it implements a
graph traversal algorithm. Any C programmer that thinks
standard-C function capabilities are adequate should read
this program and attempt to translate it to standard C.

Casting any full-function value of one type to any full-
function value of another type is permitted, in concert with
the ability to cast function addresses in standard C. The
sizeof a full-function type may be taken and is always greater
than the sizeof a function address, since the former includes
the environment.

The additional syntax required to permit the declaration of
full-function types follows, and is simply a repeat of the rules
for standard function syntax except that “!” is allowed:

Declarator’

-> Extended_function_specification_declarator:
Declarator' Parameters '!‘;

Abstract_declarator'’

-> Abstract_declarator'? Abstract_parameters '!’;

Declarator2'

-> Declarator2' Parameters '!‘;

v.11.01.85 (© 1984-85 MetaWare Incorporated

Appendix Language Extensions page A-12

A.6 Communication with Other Languages
{pragmas Calling convention, Data, Code]

A High C module can communicate with modules written
in other languages partially by virtue of the pragmas Calling_
convention, Data, and Code. Although the syntax of these prag-
mas is machine independent, their effects are sometimes ma-
chine dependent, and hence their documentation can be found in
the Programmer's Guide, Section Externals.

A.7 Intrinsics
[_abs. _nmin, _max; _find_char. _skip_char, _fill_char; _nove, _move_right. _conpare]

High C contains a set of so-called “intrinsic functions”
that supply: (a) the ability to take the absolute value, mini-
mum, and maximum of values of any arithmetic type, and (b)
the ability to move and compare bytes of memory using the
host machine's most efficient instructions. Intrinsic functions
need not be declared to be used. Below is a list of the intrinsic
functions followed by their descriptions in the same order as
the list.

_abs _Mmax _min
_find_char _skip_char
_move _move_right

_fill_char _compare

_abs(x)

x must be of an arithmetic type. The resuit is the absolute
value of x, of the same type as the type of x.

_max(el,e2,...)
_min(el,e2,...)

el,e2,... must be of arithmetic types. The result is the
maximum/minimum of el.e2,... .

v.11.01.85 © 1984-85 MetaWare Incorporated

Appendix Language Extensions page A-13

More precisely, _max(e1, e2) is of type T = Common(type
of e, type of e2) and is the maximum value of e1 and e2, each
casted to type T. _max(el, e2, .. en), where n 2 3, is (recursive-
ly) defined to be _max(_max(e1, e2). e3, .., en). The specification
)s similar for _min. Example:

float f; unsigned long ul; int i;

main () {
_min(f,ul,i); /* Has type Float. */
_min(ul, i); /* Has type Unsigned-Long-Int. */
Tmin(i,f); /* Has type Float. */

It is guaranteed that the operands of _max and _min are
evaluated at most once, unlike the standard macro definition
of max (min), e.g. “#define max(x.y) ((x)>(y)?(x):(y))".
where one argument is evaluated once and the other twice.

unsigned
_find_char(any_pointer p,
unsigned search_length, char search _char)

Searches ((char*)p)[0] through ((char*)p)[search_length
-1] for search_char using the most efficient host instruction
to do so. It returns the index i (a number in the range 0..
search_length-1) if it found the character, where p[i] =
search_char; otherwise it returns search_length, indicating a
failed search.

The standard function strlen can be implemented using
_find_char:

#define strlen(s) _find_char(s, 65_535, 0)

assuming at most 65,535 characters in a string. This version
of strlen generates in-line code.

v.11.01.85 © 1984-85 MetaWare Incorporated

Appendix Language Extensions page A-14

unsigned
_skip_char(any_pointer p.
unsigned search_length, char search_char)

Does the same as _find_char, except that it searches fo:
the first character notfequal to search_char.

void :
_fill_char(any_pointer p. unsigned len, char fill)
Fills memory from ((char*)p)[0] to ((char*)p)[len-1]

with the fill character. This can be used to implement the
standard library function memset:

#define memset(p, fill, len) _fill_char(p, len, fill)

void

_move(any_pointer from, any_pointer to, unsigned len)
Moves len bytes from the address ((char*)from) to the

address ((char*)to). The move occurs from left-to-right

(lower-to-higher addresses). If from < to < from+len, use

_move_right below.

This can be used to implement the standard library function
memcpy:

#define memcpy(dest, src, len) _move(src, dest, 1en)

void
_move_right
(any_pointer from. any_pointer to. unsigned len)
Does the same as _move except the move occurs from
right-to-left (higher-to-lower addresses). If to ¢ from <
to+len, use _move above.

v.11.01.85 (© 1984-85 MetaWare Incorporated

Appendix Language Extensions page A-15

int

_compare(any_pointer pl. any_pointer p2. unsigned len)
Compares the string ((char*)p1)[0].. ((char*) p1)[len-1]

‘yith the string ((char*)p2)[0].. ((char*)p2)[len-1]. It

~2turns O if they are identical, -1 if the first byte at which the

two disagree is less in the first string than the corresponding
byte in the other stream, and +1 otherwise.

A.8 Brief Tutorial on Prototypes
[argument widening and shortening; function call reliability]

X3J11 provides an alternate form for specifying the
parameter types in function declarations. When functions
declared in this form are called, the types of the arguments
must be assignment compatible with the types of the formal
parameters, and as in assignment, any necessary conversion to
the formal parameter type is applied.

In contrast, KR specifies that the types of the declared
“arameters (if available) are irrelevant at the function call,
and instead that default conversions are required: chars are
widened to ints and floats to doubles. But this can lead to
incorrect and unpredictable results when the type of the value
passed is not compatible with the declared type; e.g.:

float Min(f1, f2) float f1,f2; {
;eturn f1 < f27?f1.: f2;

int i; float f, fmin;

fmin = Min(d, f);

Here an int i is passed to Min instead of a double. In
addition if sizeof (int) != sizeof (double), the f2 parameter
to Min will not be passed in the correct location on the stack.

(Recall that doubles are always passed as parameters in KR,
-never floats.)

In “prototype” syntax the specification of a parameter
name and its type are not separated and appear more like a

v.11.01.85 © 1984-85 HetaWare Incorporated

Appendix Language Extensions page A-16

standard C declaration. The parameter declarations are sep-
arated by commas, just as in standard parameter lists:

float Min(float f1, float f2) {
;eturn f1<f27?f1: f2.

int i; float f. fmin;
fmin = Min(i, f);

With the prototype syntax. two things happen: First, float
values are passed, not doubles. This avoids the expensive
widening-at-call and shortening-at-function-entry cost of KR.
Second. the int i is converted to float before it is passed,
just as if i were being assigned to a float variable.

Notice the repetition of float in the parameter list: no
factoring of declarations is permitted, as in “float f1,f2;"”
due to syntactic constraints.

A prototype declaration may be used anywhere a standard
declaration is allowed. In addition the parameter names may
be omitted in declarations that are not definitions; e.g.:

float Min(float, float);
Prototype functionality is new, designed to allow some
type-checking across separate compilation units. For more

information, see Sections Expressions/Function Call Declar-
ations/Function Definitions, and Concepls.

v.11.01.85 © 1984-85 HetaWare Incorporated

High C Collected Grammar Rules page B-1

Appendix B
Collected Grammar Rules

The grammar rules used in the various sections are
collected here for easy reference.

Phrase-Structure Grammar

paxser C_phrase_structure, C_conditional_compilation_expression:

C_phrase_structure # The above is for the preprocessor.
-> External_declaration®

Declarations. ¥

External_declaration

=) Unspeclﬂed declaration .
uncnon definition I Non_function_definitions *;')

- 1fied declaration # Vith specifiers.

- Pr call
-) ! ?9'“ # Syntactic oddity of KR.

br
"’:m Name ('(' (E list '.')? ')')?

Speczfied declaration
-) Specifiers *;°
> Specifiers Function_definition
-) Specifiers Mon_function_definitions *;'

Speclfiers
-> Type_or_storage_classes

Type or_storage_classes

-> Storage_class Type_or storage clas

-; {ypedx&tefexence T<TYPEDEF_NAME>' Storaoe class?
=> iype

-> Adjective ASCs (Type ASCs)?

AS
-> (Mjective | Storage_class)*

" v.11.01.85 © 1984-85 Metalare Incorporated

High C Collected Grammar Rules page B-2
Storage_class)

-> ‘suto’ | ‘extern’ | ‘register’ | ‘'typedef’' | ‘static’

Adjective _ ‘

-> ‘short’ | ‘unsigned‘ | ‘long’ | ‘Signed’

Type_specifiers
-> Typedef_reference: ' CTYPEDEF_NAME>*
-> Ad)ective= Type Adjective-

~-> Ad)ectives
Type . .
- ‘char’ | ‘int’ | °*float’' | ‘double' | ‘void'
-> Tagged_type
Tagoea_type
=> Complete_definition: ‘struct® Tag? “‘{° Henber Jlist ')
-> Complete_definition: ‘umon' Tag? '{' member_list '}’
-> Complete_definition: ‘enm’ Tag? ‘{' Literal_list '}’
=) Use_or_incomplete_gefinition: f ‘struct’ Teg
)'tmon Tag
-> Reference: ‘enm’ Tag
Teg
- Tag: None

Literal_1ist
- (Nome (‘=' Constant:E)?) list *.* *.'?

fember r_list]

-> Also_1S_a_list: Members list ' *':°'?
Hembers o ,)

.7 Type_specifiers (Structure_member 1list ‘. ‘')?

Structure _menber
-> Declarator)
-> F1eld_menber:Declarator? ':' Bits:Constant:E

Declarators. i

Oeclarator
‘e* Declarstor
-> Declarator'

Declarator’ o
-> Declarator’ °[' Array_specificstion ')’
-> ‘(" Declarator ')’
-> Functaon_specification:
Declarator’ ‘(' Parameters °)°
-> Declared: Kane

v.11.01.85 1984-85 metaware Incorporated

High C Collected Grammar Rules page B-3

Array_specification
-> Constant: E?

Parameters o
-) Parameter_names_only: Parsmeter_name list ', ° Hore_parns?
-> Abstract_parameters

Abstract_parameters
-> (SD 11st ',' More_parms?)?

’

)]
-> Specitiers (Abstract_declarator | Declarator2)?

Hore_parns
S
Parameter

-> "<IDENTIFIER>®

i\bstnckgeclafator
- '» tract_declarator?
-> Abstract_declarator’

Abstract_declarator’ .
-> Abstract_declarator’'? '[' Array_specification ')’
->» Function_specification:

Abstract_declarator’? ‘(' Abstract_parameters ')’
-» *(' Abstract_declarator ')’

'% Declarator2(’) needed to avoid an ambiguity.
Declarator2

-> ‘="' Declarstor2

-> Declarator2'

Declarator2®
-> Declarator2® ‘[’ :{irayfspecificaﬁon ‘)

->Ff on_sgeci jcation:
Declarator2’ ‘(' Parameters ')’

~» *(* Declarator? &

-> Declared_name: ' CIDENTIFIER>'

Definitions. #

Non_function_definitions
-> (Declarator (‘=' Initializer)?) list °.°

lr;\iEializer
-> *{* Initializer 1ist '.®' '.'? '}

Function_definition
-> Fen:Declarator Parameter_types Compound_statement -

.

v.11.01.85 198485 HetaWare Incorporated

“

High C Collected Grammar Rules page B-4

Paraneter_types
-> (Specifiers (Parameter:Declarator list ', ')? ';*)*

o

L Statenents , _ ‘ ‘ ‘

Conpound_statenent
‘' (Specified_declaration | Pragma_call | Statement)* '}

Switch and its cases:
- suuch‘ *(* EL ')' Switch_body: Statement
->» ‘case’ Case_label: # Neu from X3J11:
Constant: E (* constant:E)?
Statement

-> ‘default’ " Statement . .
. # End of switch and its cases.
-> ‘if’ 2 EL *)' Statement ('else’ Statement)?
-=> 'while’ (' EL *)' Statement
-> 'do’ Statenent ‘while’ ‘(' EL ')‘ '
-> ‘for’ *(* FiIst:EL? ';* Next:EL? ';° Last:EL? °)'
Body: Statenent
-> ‘break’

-> ‘continue’ '
=) ‘return’ EL? '
->» 'goto’ Target_label Name *
-> Labelled_statement:
pt‘aelzm ':* Statement

¥ Expressions. . ‘ ¥

C_conditional_compilation_expression-> £2; # For the preprocessor.

OEL -> EL?; # Optional Expression List.
EL ->E ->E".'EL: # Equivalent to: E list ' '
E - E1; # Tuwo columns for coapacmss

E1 -> E2 -> Lvalue:Tera' Plain_assi t: 'z EY
-> Lvalue Tern' (Assmmw operator E1);

Wt"“ 2 'tr;“l »=' ' e
vaz | ez | veae | o | ke

E2 -> E3 -> Conditional_expression
E3 '? EL™:' E2;

£ ->E4 - B || E4;

E4 ->E5 -> E4 ‘66’ 5

€5 ->E ->E5 ‘[E6:

€6 ->E1 ->E6

E7 ->E8 ->E7 ‘6 E6;

8 ->E9 -> €8 '==" 9
> 8 '1=" E9;

v.11.01.85 1984-85 MetaWare Incorporated

High C Collected Grammar Rules page B-5

E9 ->E10 -> E9 '<¢' E10
->E9 > E10
-> B9 '¢<=' E10
-> E9 “>=" E10;
E10 -> E11 -> E10 '»'EN
-> E10 '¢¢’ 511-
€11 -> E12 -> E1t1 '+
-> E11 '~ 512;
E12 ->» E13 -> E12 '~ Ef3
-> £12 '/* E13
-> E12 '$’ E13;
£13 -> Tern

fern

-> Tern'

=) "(* Cast_type ')’ Term

Tern’

=) ‘e Pointer Tern

-> '6° Tern

=> '=' Tern

=) '+’ Term

=> '=' Tern

=> '1' Tern

=) '7' Tern

-> 'sizeof' ('(' Cast_type ')’ | Tern*)
=) ‘++' Lvalue:Tern

=> *~==" Lvalue: Tern

->MN

1A

=> Lvalue: T1 ‘++¢’

=> Lvalye:T1 *--*

=> Tt (" Arguments ')’

Arguments

=> (€ 1ist *,')?

T

-S> T1°[& ')

=> T1 '=>' Hember:Name
=> Prinary

=> T1 ', lHenber:Namne

- ' ey

=> Name: ' CIDENTIFIER>®
-> Constent

Cmstant
=> "CINTEGER>' | '<FLOAT>' | '<CHAR>' | '<OCTAL>' | *<HEX>';
=> "CSTRING>'+ Cast_type

;

v.11.01.85 © 1984-85 Metaliare Incorporated

High C Collected Grammar Rules page B-6

Nane
-> ‘<IDENTIFIER>' | ‘<TYPEDEF_NAME>'

.

end C_phrase_structure

Preprocessor
Phrase-Structure Grammar

parser C_preprocessor_text:

C_preprocessor_text
-> (Control_text | Word)*

Word -> Any - ‘<CONTROL>® - °‘<C-EOL>' # Any word from the lexical

; # analyzer except these two.
Words -> Word*
Control text ~

-> *<CONTROL>'!*include’ ‘<<STRING>>' '<C-EOL>'
=> 'CCONTROL>'!’include’ ‘<STRING>' ‘<C-EOL>’
-> "<CONTROL>'!'c_include’ ‘<STRING>® ‘<C-EOL>*
- 'WmTMLN'%m;MS
~ TO_name: >
Macro :'«lﬁjmr)
(("Parameter: ‘'<IDENTIFIER>' list ',*')? ')*
) :Words °<C-EOL>*
-> '<CONTROL>' ! "undef '. Macro_name: ' CIDENTIFIER>® *<C-EOL>*
-> ('<CONTROL>'!°if’ E '<C-EOL>' If:Words
‘CCONTROL>' ! *ifdef’ '<CIDENTIFIERY' '<C-EOL>‘ Mords
‘CCONTROL>'!'ifndef’ ‘<IDENTIFIER>' °<C-EOL>‘ Words

) .
2'<CONTROL)'!‘elif' E '<C-EOL>' Ehf:llordsg‘
*CCONTROL>'!'else’ *<C-EOL>' Else:bords)?
‘CCONTROL>' !'endif' ‘<C-EOL>'
3 -> C_conditional_compilation_expression; # See the High C PSG.

The E nonterninal (.generates the same language as E2 in the C phrase-
structure grammar (PSG: see Section Zypressionsand below), except that
it Primary is extended with the following two additional alternatives:

-> 'defined’ Macro_name: ' <IDENTIFIER>'
" -> ‘defined’ ‘(' Macro_name: '<IDENTIFIER>' ')’
end C_preprocessor_text

v.11.01.85 © 1984-85 HetaWare Incorporated

High C Collected Grammar Rules page B-7
scanner C_lexicon:
C_lexicon -> Text:
Text -> (Words Line end)* (Control_line Text)?
-> \Scanning Skipped_lines Control_line Text;
Words -> Word*;
Word > Stnng Identifier
| Delimiter | Punctuator Operator | Comment;
ldentifier-> 1d_text =>"CIDENTIFIER>;
Id_text -> Letter (Letter I Oigit)'
Letter -> ‘A, | :
Nunber -> Integer | Octal l Float l
Int - 1. ¢ '? D gits)? nteoral suffix? =)' CINTEGER> ' ;
Octa -0 (_'? Integral suffix? =)' OCTALY' ;
- ‘0 (X l %') igits ntegral suffix?. =)' CHEX>';
Float - Mantissa Exponent? Float_suffix? =)' CFLOAT>*
-> 0191ts t Float_ sufhx? =)' <FLOAT>';
Mantissa-> °. mgits 01 its \Dot Jot ' Dlgzts?
scanner Dot _dot: !
Exponent-> (TE'|'e’)'(A 1oy Diqi _
Integral_suffix -> ‘v’ ‘1'? | 'Y’ ‘v’ ? I ‘UL oL ‘Ut
Float_suffix =) 'L' ‘1’ 'F* °t;
Higits -> Hi t* list ‘' _'; . # _ is non-standard.
Higit ->° ?i ‘AT CF] ALt
g%gﬂ.s -; m;pvgnn L # _ is non-standard.
n -
Oigits -> 0191t0 list ‘L # _ is non-standard.
0igit ->
String - ' CAR =)' (STRINGY ' ;
mr -) [XN N [NN =>l(cm)l:
DQchar -> Any-‘\'-'"' '* Specnl
smhgr _) l'\t [N NN e smxa
SDQCIQ]. _; l . lb' :f:'l o ' c I ltl l uvt
-> 0191t (0ig1t 0igit?)? # Octal.
-» 'x’ Higlt (Higit Higit?)?: # Hexadecimal.
Operator -» Assi | Otherq;;
mm -> [X os. I .I- l)l I.l
l(. ‘wt ‘s’ 1!0 l:l l(l cgu
O)I l‘l n‘n 1 e e L l)l
ll' l-. I.l I?I. ->I(As-lS)l:
Operators jc_hot can be followed by '=' in assignments.
ASSIN_ . L l)l l)i l(l l(l
L Ll 05- l l‘l
e l/l [] I 3
'='7 ="CAS_IS':
v.11.01.85 1964-85 Netalare Incorporated

High C Collected Grammar Rules

e] |

Delimiter -> f Space: ' '+ | HorizTab: 'ht'
" Fornfeed: ' ff' Vert: Tab: ‘vt’
Comment -> '/' '"' Rest
Rest -> Most® ‘='+ ('/° | (Most-'/') Rest);
Host -> Any-'*' | Eol;

Preprocessor lexicon:

Line_end ~> kol
Cogaol_line -> Sharp Delimiter? Control? Line_end;
rp _) o '
Control /0ef1ne _word Define Delimiter Macro
&nclude _text else Other_control)
Done - Done:
Other_control -> Id_text
Hacro -> Id text \LP
-» ld toxt ILP
scenner LP: P -» ‘(°
scanner Define_word:
Define_word -> *a’ ‘e* ‘£ ‘i’ ‘'n’ ‘e’;
end Define_word
Define -> Define_word

scabner Include_text:
Include_text-> Include_uord Delunter? fuw_stnm.
Include_word-> *1' *n' ‘¢’ '1' ‘u’ ‘d
Funny stnng-) L anole Fxle nane R_angle

page B-8
=)' <AS_IS>';

=)' <DELETE>";
=)' <DELETE>' ;

= DELETE>";

=)' <DELETE>';

="<C-E0L>*
=)>"<CONTROL>" ;
=)' <NO_PARNS>*
=)' CWITH_PARNS)> ' ;

=>*<CONTROL>*;

=)>"<CONTROL> " ;
=>'<BELETE>';

angl 3) ="' DELETEY':
File_name -> (Aay-"\'-'"'-">' | '\' Special)* =3 '<<STRING>>';
end Include_text
Skipped_lines -> (\Sharp Skipped_line)=;
ss.c(:imr inaxp , s'gnarpf;i ? Li . end Snarp
pped_ljne - p_suffix? Line_end
Skip_suffix -> 2 No¥_special ; sIash’| Comment | DString)=:
Not_special -> (Any - */°*-'"' =>'DELETEY' ;
Slash -/ =)' <DELETE>';
DString -» String_text =>* DELETE>':
end C_lexicon

reserve ‘CIDENTIFIER)'
predefined Scanning
Eol

v.11.01.85

Would-be ids used as key words in the PSG.

External feedback from the preprocessor.
Predefined in grammar notation:

end-of-line.

1984-85 HetaWare Incorporated

High C = Phrase-Structure Chart page C-1

Appendix C
High C ™
Phrase-Structure Chart

The chart below was produced by the MetaWare Translator
Writing System (TWS) from the grammar that also produces
tables by which the High C compiler parses its programs. A
few of the diagrams in the chart have been touched up by hand
for increased efficiency of space usage. The interested reader
should see the MetaWare TWS User’s Manual.

To "read” the syntax diagrams of which the chart is
composed just follow the “railroad tracks® to find out what
words may be written in what order. Start at the upper left
corner and go only with the arrows. Eventually you will be able
to escape the tracks to the right, in which case a syntactically
correct phrase will have been formed.

To form an entire program, start with the first phrase
name diagrammed, namely High_C_phrase_structure. When
another such name is encountered you must follow the tracks
in its diagram and then return to the current tracks just after
the phrase name that caused your departure. When a basic
symbol is encountered, just write down the symbol.

The result of your tracks visitations and the writing down
of the basic symbols will be a grammatically correct High C
program. To find out how to form words correctly from indi-
vidual characters see the “lexical chart” in the next appendix.

Here symbols like <IoentiFier> refer to the symbols des-
cribed by the lexical chart; their names are usually seif-
explanatory, but when in doubt consult the following appendix.

The /tal/cizedwords in these charts are purely commen-
tary. Their removal would not change the language described
by the chart. For example, Constant E (E for Expression) is
equivalent to just E, but the intent is to inform the reader that
in the current context the Expression must be constant.

v.11.01.85 ‘ € 1984-65 MetaWare Incorporated

High C ™ Phrase-Structure Chart page C-2
High_C_phrase_structure =

- ;.—)
0

¢ External_declaration <=

External_declaration =

Unspeciried declaration:
G—-)a—) Function_definition ———*-

5 *—> Non_function_definitions ; —>*

4

s-—-) Specified_declaration ————————=

s-) Pragma_call ->

=» 8->

.-—9‘-

A 4

Praana_cal; = /* Direct the compiler. */

*-> pragma Name -)s Sl I
= (9 >->) -

6 Constant. f
®) e

§ b

L
.)

Specified_declaration =

5—) Specifiers ; >e)
s-) Specifiers Function_definition ———-)?

—) Specifiers Non_function_definitions ; —

v.11.01.85 1984-85 MetaWare Incorporated

High C ™ Phrase-Structure Chart

Specifiers =
Type_or_storage_classes =

page C-3

;-) Storage_class -->°- ——— ———— e ———— pLED
'} A
{ *-> Type_or_storage_classes ->*
A
V Iypedef_reference: |
I-) CTYPEDEF_NAME)> ->°= - -- ~e==)e
v A
| *-) Storage_class ------=----- e
v A
.- - >=-> Type ASCs --=>e
v A A
*-> Adjective ASCs -)>= ---- -=)e

ASCs =

[]). -)
4 v

® (- AdjeCtive (== .

A v

{- Storage_class <-

Storage_class =

*-> auto ----- pLED
Vv A
-)> extern --->
v A
-> register -)
v A
*~)> typedef --)°
v A

-> static ---)

v.11.01.85

Adjective =

-> ghort ---->->

v A
-> unsigned ->
v A
*-> long ----- >
v A

-> signed --->

1984-85 Metadlare Incorporated

High C ™ Phrase-Structure Chart page C-4
Type_specifiers =

*-> TIypedef_reference <TYPEDEF_NAME)> --------- >e->
Vv A
Bttt >*-> Type ->= de-=)e
A vV A
(~- Adjective ¢- *{- Adjective <-= |
v |
-)-
Type =

-)> char ---)s---)-)

Vv A A

=-) int ~---)e

v A |

*-> float -->= |

v s |

=-)> double -)>* |

v A |

-)> void ---)> |

v

-> Tagged_type ->

v.11.01.85 1984-85 Metallare Incorporated

High C ™ Phrase-Structure Chart page C-5
Tagged_type =
Complete definition:

-) Struct -)e-)s=—mmemcecaaax >-> { Member_list } --)>=->
a v A A
-> union --> =-)> 7ag Name -)>* lI
vV
-> enum de >-> { Literal_list } ->-
| v) A
= *-)> Jag Nome ->* l
| Use or_incomplete definition: =
vV
-> struct ->----> 7ag Name -- >
v A A
;-) union -->° |'
| Reference: :
v
*-> enum --------- > Tag Name >

Literal_list =

-> Name ->° D >=>
A vV A | A

| *-> = fonstant E ->* | |

I v I
24 IR Se— >, ->e
Member_list =

*-> Alsg_Is_a list Members >e >e->
A v A
=< ; < ==>; =)

v.11.01.85 1984-85 HetaWare Incorporated

High C ™ Phrase-Structure Chart page C-6
Members =

=-> Type_specifiers ->*

U}
I(e
v
B o e e e e e - - - -~ - - - - ——— - —)-...)
v A
*->s~> Declarator pAED L)
AV 4 |
| = do-> . Bits Constant E ->= |
| V Fleld member A ‘ |
| =-> Declarator --)>= ' |
| V
-(. (———
Declarator =
*-)> % Declarator =---->=->
v A

=-> Declarator' ------ >e

Declarator'® =

*-> Declarator' [Array_specification] ->=->

v [}

;-) (Declarator) >e
A

V Function_specification:

»-)> Declarator’ (Parameters) --)®------ pL

v A

*-) DJeclared Name >e

Array_specification =

=~ Lonstant E ->*

v.11.01.85 & 1084-85 MetaWare Incorporated

High C ™ Phrase-Structure Chart page C-7

Parameters =

Parameter_names_only:

s->=-> (IDENTIFIER)> -)>®=--)e-)e——- >==>
| A vV AV A
| o <) ') B L pL
v | v A
-> Abstract_parameters -> > ... ="

Abstract_parameters =

. >e=>
v A
®-> SD -)= >
A Vv A
o=, {=="=), -do-—meee >
v A
=) ... ->°
SD .
-> Specifiers ->° - =>e->
) A
-)> Abstract_declarator ->
v A
*-> Declarator2 --------- >

Abstract_declarator =

-..) » ..)I)._)
| v A
| *-) Abstract_declarator -)>*
Vv A
*-> Abstract_declarator’ --------- e

v.11.01.85 € 1984-85 Metallare Incorporated

High C ™ Phrase-Structure Chart page C-8
Abstract_declarator' =
*-> Abstract_declarator' ->=
I v
l al—- -
v v
'l'—->'-> [Array_specification] ->=->
| A
| V Function specification: |
| =-> (Abstract_parameters) ->°
v A
*-> (Abstract_declarator) ----- e
Declarator2 = # Next two needed to eliminate
an ambiguity.
-> # Declarator2 ----- >=)
v A

-> Declarator2® ------ >

Declarator2’ =

-> Declarator2' [Array_specification] ->->

.\
V Function_specification:
*-> Declarator2' (Parameters) ---------- >
'))
=-> (Declarator2 >e
'} - A
*~> Declared name <IDENTIFIER> ----------- "
Non_function_definitions =
*-> Declarator -)>=- ~=)s-)e-)
A v A |
| *-> = Initializer ->= |
| v
O . =mmm-- -

v.11.01.85 1084-85 Hetallare Incorporated

High C ™ Phrase-Structure Chart

Initializer =

> E >->
) A
s-> { ->=-> Initializer -)e------ o> } ~>e

A vV A

(e O -y, ->e

Function_definition =

page C-9

*-> Fen Declarator Parameter_types Compound_statement ->

Parameter_types =

[P, - ———duod
Vv A
=-)> Specifiers ->=< =>. -
A v) |
| *~> Parameter Declarator ->* |
|) ' Vv |
I (T4 , < - l
| ' Vv
-(-
Compound_statement =
o> { ->= >->1} -

v A

-)>-)> Specified_declaration -)>=-)>=

A v A |

| =-> Pragma_call ------——-—-——- > |

| v | A |

| =-> Statement -----------~- PLE

I< v

v.11.01.85 1984-85 HetaWare Incorporated

High C ™ Phrase-Structure Chart page C-10

Statement =
-> Compound_statement ---==-=---=-c--=cmoeuooo >=>
v A
*~>EL ; ---- -—- - - »e
v ' A
*-)> switch (EL) Switch body Statement ------ e
v A
-) case lonstant E ->-> .. Constant E -)°* |
| v v oo
| o(-=- .- |
| v |
| *-) : Statement --------- >
v A
*-)> default : Statement >e
v A
i-) if (EL) Statement ->= - ———=)e
: Vv A
| *-) aelse Statement -)>*
v A
*-> while (EL) Statement -- e B >e
v A
'|'-> do Statement while (EL) ; ~-==--ceeveeaae >
A
v First Next Last Boay |
»-> for (OEL ; OEL ; OEL) Statement ~------==)*
'} A
*-)> break : >e
v A
*-> continue ; ---—-—-m-mmmmmeecmc—c—cc———ee o >
v A
*-> return OEL ; - - -—=>s
v A
*-)> goto Jarget_label Name : --).
v A
*-> Labelled statement Label Name : Statement -);
v
®=) ; mmmmmmmmeme- - e ——m e ——————)e

v.11.01.85 1984-85 HetaMare Incorporated

High C ™ Phrase-Structure Chart page C-11

OEL = ‘ /* Optional Expression List. »/

-> E ->-)> /* Used only in Statements. */

v) :

B e e ot e)-

EL = /* Equivalently: */
/" */

-> E, EL ->- /* *=>E ->*=> */

v A /™ A v */

*-> E -—-—--- e /™ (-, (- "/

E = /% Operator precedence levels are */

/* indicated by the “subscripts” on E: %/
/= larger subscripts mean more binding. %/

AssIgnment_operator:

-> Lvalve Term' ->-> = -=>*-) E1 -)e-) /* E1 %/
v A A
| =) |= =->»
| v A |
| =) "= —=)s |
| v A |
| =) &= --)* |
v A |
8-> M= -)e |
| v A
=) {(= -)e
Vv A
| _ o ee> 4= —ode
| ' v)
0= == «=)e
Vv A |
o_) W --)-
Vv A
=) /= ==)»
Vv A
=) X= -=)e
V Conditionsl _expression: A

v.11.01.85 © 1984-85 HetaWare Incorporated

High C ™ Phrase-Structure Chart
*~>E3 ? -—->EL --—-> : E2

vV

*-> E3 || E4
v .

*-> E4 & & ES
v

*-> E5 | E6
vV

> E6 " E7
vV

*-> E7 & E8B
v

*-> EB == E9
vV

*-> EB != E9
v

*-> E9 < E10
v

*~> E9 > E10
vV

*-> EQ <= E10
')

«~> E9 >= E10
v

“-> E10 > EN1
')

*=> E10 << EN1
v

> E11 + E12
v

*-> E11 - E12
Vv

“-> E12 = E13
vV

=-> E12 / E13
U}

*-> E12 ¥ E13
'}

*-> Term
v.11.01.85

page C-12

-------- >e /% E2 %/

- > /* E3 %/

/% E4 %/
/% ES #/
/% E6 »/
/% E1 %/
/% EB %/

/% E9 %/

/% E10 %/

/% E11 »/

/% E12 %/

/* E13 %/

1084-85 Wetallare Incorporated

High C ™ Phrase-Structure Chart page C-13

Term =

*-> (Cast_type) Term ->=

Term* =

-> gizeof ->-> (Cast_type) ->*->

*-> + Term
U}
*-> - Term
vV
*-> * Term
v
*-> & Term
v
*-> | Term
v
*=> ~ Term
'}

*-> ++ [value Term

v

*-> -~ Lvalue Term

v.11.01.85

1084-85 Metalare Incorporated

High C = Phrase-Structure Chart

T =

=) Primary -------------- Yo
v A
- Lvalue T1 ++ ——————me= e
v A
.-> LVOIUE T1 ——————————).
v A
*-> T1 (Arguments) ----- e
v A
=> T1 [->=) EL->*->] ->=
v A
=> T1 => /ember Name ----)>
v A
-> T1 . /[fember Nome ---->
Primary =

-> (=d=) EL->*=)) =)
v 3
> (INTEGER) B L LT ye
-> CFLOAT)> —--) |

v A '
o~> {CHAR) -—--->°* I

v A |
-> <OCTAL) ---> |

vV A |
*~> CHEX> ——--- pL |

v |
*-)=-) (STRING) ->®—-—---- ye

l A Vv A

| o(-mmmmmmmeme . |

v |
=-> CIDENTIFIER) --------- 3o
v.11.01.85

page C-14

1984-85 HetaWare Incorporated

High C = Phrase-Structure Chart page C-15

Arguments =

[P - _->.->

v A
p=de=)> E =)e=mmmmmem- d>e

vV A v A
o(-2(~-, (-* |

v I
*~> CIDENTIFIERY => E =)=
A v
.(. < -

Cast_type =

*-> Type_specifiers ->°® : --);—)
‘ v

*-> Abstract_declarator ->°®

Name =
‘~> (IDENTIFIER) ye->
v A

~> Typedef_rererence {TYPEDEF_NAME) -)

end High_C_phrase_structure

v.11.01.85 © 1984-85 Metadare Incorporated

High C ™ Preprocessor Chart page D-1

Appendix D

High C ™ Preprocessor
Phrase-Structure Chart

The chart below was produced by the MetaWare Translator
Writing System (TWS) from the phrase-structure grammar of
Section Preprocessor; also found in Appendix Collected Gram-
mars. The large diagram was touched up by hand for increased
efficiency of space usage. For more information on how to
read this chart, consuit the introductory paragraphs in Appen-
dix High C Phrase-Structure Chart.

C_preprocessor_text =

s ke £

'—9;") Control_text <C-EOL> —)--)?

T *—> Word >?

vord = /" Aoy word from the lexical analyzer except two: */

-» Any except °'<CONTROL>' except °‘<C-EOL>' =>

Words =
@ e @)

) v
“& Vord ¢+

v.11.01.85 1984-85 MetoWare Incorporated

High C ™ Preprocessor Chart page D-2
Control_text =

;—) include <STRING) : yu->
. [
;—> include <<STRING>> >
[}
;-) ¢_include <STRING> >;
v A Nacro nawe: Boagy': |
a-) define ->=-> <NO_PARMS)> ->A--> Words >;
a([]
vV /oo _nave: 4
=) CHITH_PARMS) (->° =)) -)e
NV Parawmeter: A
*-> CIDENTIFIER> ->»
A v
! L1 L < .
;-) undef Mscro name <IDENTIFIER> >;
;-) if E <C-EOL> /F Mords);
;—> ifdef -->:-> <IDENTIFIER> <C-EOL> Words ->;
> ifndef ->» (- -----8
v . V77 A
;—) elif E <C-EOL> Words ->*
. >e-) endif -—---—-- pL

v Lse: A
o-) else <C-EOL> Words ->*

E = | /* See the High C PSG. */
=-) C_conditional_compilation_expression ->

/* The E nonterainal rates the same language as E2 in the C phrase- =/

/= structure gramnar (PSG: see Section Lwressians and below), except that®/
/* Primary is ext with the following two additional alternatives: */
»-) defined Mscro name <IDENTIFIER> ----- de->

vV A

*-> defined (Macro name <IDENTIFIER)>) -)¢

end C_preprocessor_text

v.11.01.85 1984-85 NetaWare Incorporated

High C Lexical Chart page E-1
Appendix E
High C = Lexical Chart

The chart below was produced by the MetaWare Translator
Writing System (TWS) from the grammar that also produces
tables by which High C compilers lexically analyze their input
programs. A few of the diagrams in the chart have been
touched up by hand for increased efficiency of space usage. For
more information on how to read such charts, consult the
introductory paragraphs of Appendix High C Phrase-Structure
Chart -

C_lexicon =

> Text =

Text =

=—> Words Eol -1 == Control_line Text -
4

—— Skippé’d_lines Control_line Text -----)I
Words =

~————-)€-)

9(--- Word &=

v.11.01.85 1984-85 HetaWare Incorporated

High C Lexical Chart

Word =

*~> String --------=--- >e
v A
*-> Char -------====--- >e
v A
*-> Number ---------=-- >
v A
*~> Identifier -------- e
v A
*-> Delimiter --------- >e
v A
*-> Comment ----------- e
v A
*-> Punctuator ------—-- e
v A
*-> Operator ---------- >

Identifier =

Id_text =
=5 A -)--)- pLES
v .. AV ‘A
o-> Z =) e-)e-> A -)e-)e
v A AV .. A
> a-) | ==>Z->
v .. & |V A
~>2z-> | °->a->
v A | VvV .. A
=) _=> | =)z -)
| v A
| LT _ =)e
| v s |
| ==>0-> |
| v .. & |
| *->9-> |
| vV
-(____________ []
 v.11.01.85

page E-2

1984-85 HetaWare Incorporated

High C Lexical Chart page E-3

Number =

»-> Integer ->*->
v A
-> Octal --->

v A
*-> Hex ----- >

v A

-> Float --->

Integer =
s-> Digit except 0 ->= ye-)e »->
Oit exces v . 8V ' A
; ------ >;-> Digits ->* =~) Integral_suffix -»>»
l-) - =)
Octal =
=> 0 ->=- -— —==)e-)e e L e >->
U} AV A
oo >*-> Oigits ->*= =-)> Integral_suffix ->-°
v A
.-) - -).
Hex =
-> 0 ->-> X ->*-)> Higits ->° e ———————— pLED]
v A vV A
=) X =)* *-> Integral_suffix ->*

v.11.01.85 @ 1984-85 HetaWare Incorporated

High C Lexical Chart page E-4
Integral_suffix =

*-> Uy ~)-—mnmn >e->
| v A
| ==>1 -)e
v A
->1 -)emmmmmm e
| v A
| *->u -
Vv A
> U =)o——mm- de
I v A
| a~>L -)=
Vv A
*-> L -)o-—mmm >
v A
> U ->=
Float =
Float_surrix: *-> F ->*->
A A
=) f =)
A A
Hantissa: a-> L =)=
A A
A >e-> .. Digits ->* =>1 -
Vv A v A A
-> Digits ->-> . >e Pl L]
v vV A
. >*-> Exponent ->*
Exponent =
e A >*-> Digits ->
vV a v A
> e > s-) 4 -)e
v .}
.-) - _)-

v.11.01.65 (© 1984-85 NetaWare Incorporated

High C Lexical Chart

Oigits =

-> Digit ->->
A l
-(.......... [

A v
-(.._.. _ (.-.......
Digits =

*-> Digit ->=-)
A -V
o(.......... [}

A v
-(--- _ (--..-
Higits =

-> Higit ->->
A vV
-(__________]

A Vv
.<_._.. <_-..-

v.11.01.85

page E-5

Oigit =
=-> 0 ->*->
=->7 ->*

o
de
Q
de
o+
L]

=) 0 ->*->
-y 7 3o

pn =
=do
Q
ude
'ad

[]

> 0 -$*->

1964-85 MetaWare Incorporated

High C Lexical Chart page E-b

String =

String_text =

o= " =)= -- —==)e=> " =)
v A
=->*-> Any except \ except " -)>°-)*
AV A |
| =->\ =>*-> Octal_hex ->*-->* |
I v A |
| *-> Any -=--=-- > |
I v
LY ¢ o e 0 e et e e e [

Octal_hex =

o---> Qigit ->* - -=do=)

| v A

| *-> Oigit ->e---------- >

I ' v A

| *-> 0Oigit ->°

v ' A

) X -)0--mmme > Higit ->*---------- >e

v A v A

-) x -> *-> Higit ->°

Char =

*-) * -)>"-> Any except \ except ' ->*-> ‘' -)
v A
=> \ =-)>-) Octal_hex ->=-->=

v A
*-> Any ------- pLJ

v.11.01.85 1984-85 MetaWare Incorporated

High C Lexical Chart page E-7

Operator = OtherQOp =
-> AssignOp ->-> o=y T ——mde-)
v A v A
-> OtherOp --> *->& & ->°
vV A
.-> | ' _>-
vV A
AssignOp = =) > = =)=
vV A
D R e ol LEE R >e-> =) { -=-)*
v A v A vV A
BEED DD IES LA AL I L *-> = = -)e
vV) vV A
=> { C =) => | u =)=
\} A vV . A
=) + ——=)e > { = =)=
v A vV A
-_) »-). -_)) -_..).
vV A v)
o> & ---)= =) + + -)=
Vv A Vv A
T e=> ¥ ——-)e =) = = =)=
) A Vv A
o=) = ===)e =) =) =)e
v A vV A
>/ —=-)® =) =) =)e
vV A v A
o=> | ===)e ==> | —==)=
vV A
o-) - -....-)-
v A
=) ., ===)"
Vv A
8-> P ===)=

v.11.01.85 1964-85 MetaWare Incorporated

High C Lexical Chart page E-8

Delimiter = Punctuator =
-)e->=-> Space: ->-)>*-)>*-) =) (==--- >=>
A | A v & | v A
I I - | | e->) -—--- >
| v I v 8
| =-> HorizTab:ht --->= | =) - >
| v s | v A
| *-> FormFeed: ff --->* | =-> -—=)e
| v s | v 4
| *-> Vert:Tab:vt --->= | o> [-~ >
| v v 4
- . -..)] de
v 4
LD ————=)e
v A
--> . e
v 4
Comment = ' °=> { -=—-- >
v 4
*-> / * Rest -> ->} - de
‘ v 4
=) == >
Rest =
e I a4 S
A V A v v . A
*{- Most <-= o(------ * +-)> Most except / Rest ->°
Most =

*-)> Any except * ->*-)
v

v.11.01.85 © 1984-85 HetaWare Incorporated

High C Lexical Chart

Preprocessor lexicon:
Control_line =

-> # ->-)> Delimiter ->*

page E-9

. v v
.(-([]
vV
. >*-> Eol ->
vV A
I-) def in e Delimiter Id text ->*-> Words ->*

A
| o(-

v : A
->include -)o---ommmmen >-> < File_name > -)=
| vV A .}
| *-> Delimiter -)>° =
v
*-> Id text -)0-—-cecmcccm e e
vV A
*~> Digit --->=
A vV
o(............ []
File_name =
» P —— - A-)o-)
v . [
;-);-) Any except \ except " except) ->'->]
A
| ==> \ ->*-> Octal_hex -)®--=-===-mnn- > |
| v |
| *-> Any —-~----- |
I v
-(______]
v.11.01.85 1084-85 MetaWare Incorporated

High C Lexical Chart page E-10
Skipped_lines =

[Py -)n..)
v ‘ A

B) e >*-> Eol ->*
AV A

| ®->"->*-> Any except /, * ->o-)e-)e

| & | A vV & |

I I L | |

| | v |

| | ==>/ -)e

I v A |

| | =-> Comment > |

I 1 v A

| | =->String_text ----------- e

|| v |

| =« . I

| v
o(- []

end C_lexicon

ov.11.01.89

1984-85 NetaWare Incorporated

Index: High C ™ Language Reference Manual page I-1
Index

Starting on the next page is a “permuted key word in
context” index for this document. In the center column is the
particular key word W being indexed, in the context of a phrase
or sentence containing W. The phrase appears to the left and
right of W.

Occasionally the text of the phrase preceding W does not
fit in the space to the left of W. In that case the index entry
looks like

is text that vas toes long to precede the UORD being indexed. This............ 1.4

where the first word “This* of the sentence did not fit on the
left. Similarly the text to the right of W can be crowded:

the right. This UORD is felloved by toe mach text em 1.4
where “the right” did not fit on the right.

If the texts both to the left and right do not fif, or the left
gright) text cannot be completely wrapped around to the right
left), the entry is continued on another line. For example:

but set toe much text on the left. This UORS is flloved by far tes mech text on...
B ¢ ¢ 1.4
After locating an entry, proceed directly to the referenced
section(s). If a reference is to Section X.Y, look on page X-Y
first and you will usually be within a page of the desired
referent.

v.11.01.85 1984-85 Hetadare Incorporated

Index: High C™ Language Reference Manual

- toxt te left

boeTsan Tegation:

tquality Comparisens: == amd
Rultiplicative Operaters: * /
Peiater Reference:

sizeef,

Dit-vise Md:

Sequential Cujuc}iu:

Overriding Operater Precadencs:

Fuaction Call:

_Peinter Bersference:

Multiplicative Operaters:

assaciative.

list,

Unary sign eperaters: - and

Rdditive Operaters:

Prefix Increment and Becremeat:

Pestfix Incronent and Becromeat:

sssaciative. *,

list, »,

Pointer Dereferance and Inur Sahctia:

1ist, », +, 2, l,
Weltiplicative mnun

war11
ift mrmrs
Ordering Onnrims <>
Rssigaments:
" Eeuality Comparisens:
Ocdering Comparisens: <
Orariu‘ Conpariseas: ¢ > ¢s=
Shift Operators: << and
Conditional Expressisas:
- 1st, =, o,
rray Indening:

Bit-vise Exclusive-or:

P >

e

llt-oiso Inclusin-or:

' ' .

litt , .0,

Sequential Disjunction:
Dit-vise Conplonent:

the type of a declarater or
Cast Types and

praguas from

v.11.01.85

page I-2
WORD text te right__.. Section
| U . Ni]
RS
T o1
L JR (R
8.17
2 0L.270.9
0.9
et iieeaeeaiiaaeas 0.6
5, °, and | conmutative and asseciative. . 7.12
2) (R
) I LU
LN 018
oA T (R
“ o 6 ,ond| commutative and12
L A eeeeanaeeenns 2.2
® e o ieteteeccccceccerececnacacanans .
L T T .13
L [43
L T T .23
8 ", | comutativennd 7?;
") ieetecccceccncacaacaaaraanan 1.8
.................................. 2.2
R TS 8.4
L I T LT (B!
L I .12
LI .1
LT R 8.3
seapd s, L., (B!]
b I Y L
b e [)]
3 S .1
2l ettt eieecenereieaacraaenaaan 0.4
2 P 2.2
i R 075
| L eeeenes 4248
\ as line continwater. : %
nud | commstative and asseciative. 7513
I!_, BN 2 {1 2 :;
“comutative and asseciative. 721;
| RO 5
.................................. .19
abs, mim, MK L LLL.iiiiiiiiii..... 67
shstract declarater. 8.5
Mhstract Beclaraters.................. .
Mbstract_declarater.
umuct _paransters.
mltiu subtractien. 8.138.22 l n
Mdditive Operatars: + amd -.13

1984-85 MetaWare Incorporated

Index: High C™ Language Reference Manual page I-3
oddress of smarrey. 8.7

function sddress versus full-function valuve. .AS

w-level mrmlu (R

ll 1.1

im short, masigned, leng, signed. 6.3

mmm initialization. 2R3

scalar and regate types. 35

wevber allgmwent.i..... 6.4

painter aligament. 0.1

storage allocatiem. 3.10

Lexfcal mmbfguity., 2.3

lexical omalysis., 415

Mt-vise Ml 6. ... 8.9

argement convarsion at function entry. 6.8

argement type checking. R

argenent videning end mrmiu n.e

wecTe paranetors and argwments. 5.0
varisble nunber of arguments to & fenction. 024
peinter arithmetic...................... 0.130.25

Arithwetic Comversions. ... 3.133.14 3.157.12

aritimetic types.3

integral, fleating, umntic 1 2 T 3.4
addrass af BR APPRY.ieieiiiaiiaeean. .17
tmy ond Conponent type. 3.5

Beclaration and arrey types. 8.5
T4 ¢ - 4.8

arrays of characters. eeeeaenae .38

conversion of arrays te peinters. 17021 0.8

1 1§ A 4.0

right part of assigmment. 8.3
fssigament Compatibility. 31130

Rssigmments: =, 0.3

. Ramed Parameter Msseciation. nd
® ¢ € ", ad | comtative and asseciative.12
comutativity, asseciativity. 112
precedence, umlmvity in expressioms. L1
DELETE>, RIS, ...orrriiiiiiireiiiennann 2.2
Sterage_classes uu nun register, typedef, static. §.3
satenatic stornge class. §.2

classes. autematic, static, and typedef sterage .. 3.9
-mmc, t L S, 6.3

bonign rodefinition. 5.0

Metleld., 8.4

Mt-fleld demgth. L3

Dit-wisemd: 8. 0.9

Bit-vise Complowent: ~. 2.18

Ht-vise Exclusive-sr: ©.o l.lll. (R

Dit-vise Inclusive-er: }. 0.7

Mok, 6.1

Scepes. Dlecks, Origins, Defining Peints, ond 3.2

Nigh C Extensions Bocumentsd in the Nanval Dedy. (X]
nacre 5.8

.80

line bewndari ;;

v.11.01.85

1984-85 MetaWare Incorporated

Index: High C™ Language Reference Manual page I-4
Orief Tutorial on Pretetypes. 8.8

: [1 7 Y L
X311 Extensioms t0 C., N2
Nigh C Extsasions Becunented in the Namwal Dedy. 1.3
Conpesitionof a CProgran. 2.1
result of function call. 1.1
function call., hd
fuaction call relisbility. (N]
Pascal function call semamtics. L.
Fenctiom Cald: ()., LU
praguas Calling_coavention, Bata, and Code. ns
caseconstant.93
CasO IOMges. 1340
soitch. case. dofamlt. 13

Clst lm ad Bhstract loclmtm)|
Type Casts..........coiiiiiiinnnnnnn.. 0.15
type of cbu 6.3
char, ist, fleat, desble, nil. §.3
M. ... iiiiiiieiiieieaeeeann KN |
SSTRINGD, <OUMR>.coviineninnnennnnn. 49
CINTEGER>, <FLOATY, <CHAR>, <OCTALY, <NEXD, <STRING>. 8.30
. Character Set.iiiiai... 49
targat and hest charsctsrset. 4.1
Strings and Characters.cc.e.... 4.9
octal, hexadecinal in strings end charecters.................... ... 49
arrays of characters................ccuceennnn 0.3
arguneat type checking. (B!
storage class...............iaiao... in

wade, type, storage cless.................ccciiiiiiinn.. 13
outonatic Storage ClOSS.o, .2
storage classes. 1818

satenatic, static, and ¢ fotorage ClASSES.eiiiiiannn. 3.9
pragaas Calling conveation, Bata, and Code.co...... ot
Conbination of Operand Types.15

CONNS OPOTALST. 118

Conna Operater:ccccn.n. 8.2
Coatrel Limes: Preprocessor Commands.-..... 4.4
preprecesser e cseevesenennns 4.15
Connant Coatral Line Laxicea . 5.3

Comments. 41

N Conunication vith ether l.u.u.n I X |

» o 8 ", od | commutative and asseciative. . Lo
- amutlvlty, asseciativity .. 7i1;

_Move, _meve_Tight, _cempare.
Ordering fupuism SR ..
teuality Comparisons: »= and Is. . .. 018
Assigament Compatibility. 31303
Conpatible Types. n
compilationwmit. 2.7

separats cempilation wmits. n
conditisnal compilatien. 2.6 4.1
Bit-vise Complement: 0.18
arrey aad conpenent tm 35
Conposition of a C Program. 2.1

Conpound Statement. 1.1

v.11.01.85

© 1984-85 HetaWare Incorporated

Index: High C™ Language Reference Manual

string
enebling

Sequential
case

instance of

\ &3 line

Conment
Other

Progran Text
arguneat

fritmetic
Integral Uidening
arithwetic

proguas Calling_convention,
duplicate

sharing

bwlicate

Extarsal

] Specified

. elsberation of
internixing statenents and

internixing
the type of & declarater or sbstract
the type of o

Cast Types and Mbstract
Prefix Increment and
Pestfix Incremeat ond
seitch, case, and

Olecks. Origins,
: Racre

v.11.01.85

page I-5

Compound_statement. 3863
concatenation. R.2
oomditlon.l 5.10
conditional compilation. 2.8 4.15
Conditional Expressions: 7 :. (X
Comditiona) Inclusion. 5.10
Conjunction: 6C....................... 8.6
COMStRt.t iiiiiinanann .3
constoat exprossion. 5.10
Constant Exprmim. feteetecennaeean 0.33
constoant suffines. A2
Comstamts.coccveeennnnnnn. 0.3
omstraints. 2.1
Constraints and Seweatics............... 2.5
constructed types. 3518
construction., 3.8
context-free grammar. 2122
contimuater., 1.2
coatinee.10 7.7
continuing a for, while, or de statexent. 7.18
Contral Line Lexfomm. 5.3
Contrel Line Lexicon. 5.5
Contrel Line Phrase Structsre. 5.6
Contrel Limes. 5.2
Contrsl Lines: Preprocesser Comends. 4. 14
Conventions. 2.4
conversion at fonctim entry. 6.s
conversion of arrays to peinters. 8.17 8.21 0.29
Convarsions. 31334
Comversiems. 1L
comversions. 51
Comvert., .12
Bata, and Onde. (N]
declaration. 3.2
declaration property set. 3.1
Seclaration Property Sets............... 33
declarations. kR ||
Seclarations._... et in
Declaratioms. 6.1
Declorations. 8.2
declarations. IARARNA |
declarations. (]
Seclerations and Definitions.10
declarations and statements. 1.1
declarater.ccoinnn.... 8.5
declarater or abstract declarater. 8.5
Beclaraters.c.niinnnn.. 8.5
Beclaraters.31
Decrement: oo od - L2
Decrement: *+ ond --. L9
defamlt., 1.3
Mofins and Sundef. 5.8
defined. 5.10
Defining Points, and Scopes. 3.2
Definition Lexicom. 5.4

© 1984-85 MetaWare Incorporated

Index: High C™ Language Reference Manual

Declarations and
Fuaction
Noa-Function

type

Pointer
Peinter
Sequential

. miltiplication,
__ continving a for, while, or
oxiting a suitch, for, ehile, or

Nigh C Extonsions
long

Fleat,

char, fat, fleat,

side
Expression Evaluation, Side
side-

#if, Sitdef, Sifadef,
it, Fitdef, Sifadef, M1if,

#if, sitdet, Sifadef, Melif, Melse,
arguneat conversion at function
stract, waion,

nodes struct-tag, smioa-tag,

function parent and
Geliniters and

Points. Expression

Included and
Bit-vise
progran
statenent.
regular

csnstant
Sequence Peints.

precedencs, asseciativity in
Constant

v.11.01.85

page I-6

Befimitions. KR []
Defimitions. (X}
Bofimitions. 6.7
BELETE>, <AS_IS. ... i, 2.2
Belimiters and Bol. 41
donotation. 4
Benoting Mev Types. kR
Dereference and Nenber Selection: ... 0.8
Bareferemce: *. 1
Bisjemction: Il........ 0.5
dspley. .. (R}
division, medulo.
dostatement. 7.10
dostatement. 1.8
do-while.l 1.6
Becomonted in the Nanwal Dody. [}
dowdle. ..., 8.2
Bovhle, Long-Bowble. 3.4
dosble, wold. 8.3
duplicats declaration. 3.2
lulicm Geclarations. n
ffocts. ..., 1.2
Efﬁcts and Sequence Peints. 318
sffect, sequence paint. 300
sleberation of declarations.7.12.3 7.8
Mlif, Melse, Mendif. 5.18
else in lexical grammars. 5.5
Sulse, Sendif. 5.18
enabling condition. 5.18
ond-of-lime. 4.2
Sondif. 5.18
MMy, ...ttt §.s
BN, canaann 6.4
[7 1)
oawneration literal.33
eswneratiss literals amd tm 6.4
onviromment. 8.5
1) o
Equality Comparisons: == and 12, ... _.._. it
Equivalont Types. 3.2
OSCEPE SOQUERCES.c.ccnnnn 8.2
evaluation order.12
Evaluation, Side Effects, and Sequencs .._3.18
Excloded Text. 4.1
Excleded Text. 44
Exclesive-or: ©.ci.io... 8.8
execution. 2.1
exiting a switch, fer, while, or de .._. 7.9
expressions: list, =, <, 2, |....... 2.12.2
oexpression. 5.10
Expression Evalvatien, Side Effacts, cnd R)
exprossion rewriting., 112
oNpresSions.c.cceccn.n- .12
Expressions. 8.33
Exprossions as Statsments. 1.2

(© 1984-85 HetaWare Incorporated

Index: High C™ Language Reference Manual

Conditional

WNigh C
Xt
Sterage_classes asts,

nedes war, valwe,

nodes menber,
113

source
Hind_char, _skip_char,

cher, fat,

<INTEGER>, <OCTAL>, <NEX,
<INTEGER>,

integral,

oxtended

continuing a

sxiting & seitch,
function address versus
Nested Functions and
varisble nuwber of arguments te o
valwe.

result of

Pascal

argument conversion at

function address versus full- fnction

Nested Foactions and Full-
prototype and non-pretatype
functionality types and pretetype
fenctionalities.

recursive
Nested

context-free

else in lexical

<INTEGER>, <OCTAL>,

<INTEGER>, <FLOAT>, <CHMR>, <OCTRL),
octal,

Ranual Bedy.
target and

v.11.01.85

page I-7

Exprossioms: 2 :........ ..o
extended flsating-peint precision. 7.
Extensions Decwnented in the Manual Body. . A3

Extensions t0 C. R.2
sntera, register, typedef, static..... 6.3
External Beclarations. 6.1
External_declaration. ._.............. 8.2
fou, typadef. 1.3
foedback. 415
5 0 [33
17 1) [7 8.4
file inclusion. 2.8 4.155.7
) 8 [S .1
I ¢) I T R7
“tind _char, _skip char, _fill char. (]
Float, Devble, Long-Bouble. 3.4
float, dovble, vold. $.)
FLOATY. .. nereeeicccciccecnnannan
<FLORT>, <CIAR>, <OCTAL>, <MEXD, <STRING>. 0.38
fmtln aritietic types. 34
floating-peint precisiom.12
for, vhile, ordo statement. L1
for, liil., or de statement. 7.9
full-function valwe. RS
Full-Function Variables. (R
fection,, .24
function adéress versus full-function..... RS
fmctimcall. IR}
feactioncall. (X
function call relisbility............... ae
fenction call semantics. LU
Feaction Call: (). 7]
Fuaction Definitioms. 6.8
fenctiomentry. LN]
fenction parent and enviremment. RS
fonction prototypes. 02
walw, ... A5
Feaction Varisbles. ns
fuactiomalitios. 35
fenctionalities. 5568 0.2
functionality typs and protetyps .. 6.5 8.8 0.24
fenctionality types. 35
fenctions. L4
Fenctions and Full-Function Varisdles. . (R
Fomction_definition. 51626368
global od local difetimes. KR
gotos and Labels. 1.8
[LT 2.12.2
Gramwar Notation. 2.2
QTOMMErS.cceciciannnan 5.5
MWD, <FLOAT>. oo, 4.7
<HEWD, STRIMG>.coveeennnn... (I |
hexsdecinal in strings sad Characters. .48
Migh C Extensions Docunented in the _..... A3
host character set. 4.1

© 1984-85 MetaWare Incorporated

Index: High C™ Language Reference Manual

fandif.
oif,
8, Sifdef,

file
Conditional
File
Bit-vise

infernation
Profix
Pestfix

frrey

Initializers and
aggroegate

char,
<HEY, <STRING>.

- ordinary, tag,

scope of

tes and

Connunication vith ether
bit-field

else in
syatax.

Preprocesser and
Comneat Coatrol Line
Nacre Definition
Other Control Line

glebal and local
\as

Connent Control
Other Coatrel

v.11.01.85

page 1-8
<IDENTIFIER>, <TYPEDEF BAME>. 8.32
SIDENTIFIER>S.evevenn..... 0.29
uutlmrx 4.8
................................ 1.4
Oif Sifdef, Sifadef, M1if, Mlse, ... 5.17
sifdef, Sifadef, Molif. Molse. Pendif. 5.10
#ifadef, fNlif, felse, Mendif...... 5.10
Included and Excluded Text. 4.4
inclusion. 2.84.15
Inclusion.eoiiiin..... 5.10
Inclusion.cooiia..... 5.7
Inclusive-or: |....................... l 1
incenplets structure or wnisa type. ..
inconplete types. KX l 5
increasing. 31
Increment and Becremeat: ¢+ and --.2
Increnent and Decrement: o oad —-. _.... .23
" independent tramslation. 2.73.113.7
Ingexing: (). 0.5
{nfornation incroasing. in
infornation similar. i
initialization. 17
initialization. 1370
initialization. 283
Initializers end initializatioa.......... 8.7
instance of comstruction. kN 3
fnt, fleat, double, veid._... .. 8.3
<INTEGER>, <FLORT>, <CuaR>, <OCTALY, LX
CINTEGER>, <OCTAL>, <NEX>, <FLOATY. 4.7
Integral lluuiu Conversions. l.u
integral, fleating, arithmstic types. 3.4
internixing declaratisns and stateseats. .. 7.1
internixing statements aad declarations. .. 0.J
Intrimsics. A7
label, and struct and uaion mane spaces. ..).1
1abels. ... iiieaee IA |
Labels.cciiiiiiiii i 1.8
umm. (N]
............................ .33
Lex al Mobiguity. 2.3
lexical amalysis. 4.15
lexical grommars. 5.5
lexical nm: phrase-structure.......... 2.1
lexfoom. ..ooei e 4.15
Loxicom.ooiiii e, 4.3
Loxiomm. ... 5.3
Lexiomm. ...coii i 5.4
Loxfcom. 5.5
Lexicon versus Phrase-Structure. 2.1
Lifetines.ccooeiiiiiaiinn.... 3 {
Mfetimes. 3
line beundardes. 4.3
line continuater. A2
Line Lexicon. 5.3
Line Lexicem. ..., 5.5

1984-85 MetaWare Incorporated

Index: High C ™ Language Reference Manual

page 1-9

Control Lime Phrase Structwre. 5.6

Line Splicing.o, 4.2

Contre)l Limes.ccciiiiiinn.. 5.2

Control Limes: Preprecesser Commands. L

static limk. il 0.5

liuiu1

rogular oxprassions: 1list, ®, ¢, 2, |, 2.12.2
eneveration literal. Ceeeeetereretisiiraeraenas 6.33
enwneration literals amd type. 6.4

glebal sad local lifetimes....................... 30
loagdewdle. R.2

adjectives short, wnsigeed, leng, sigeed. 6.3
Float, Bevble, Leng-Dewdle. 34

lvalve, rvalve.l 33

macre bedy. 5.0

Nacre Definition Lexicem. 5.4

"ecTe paraneters ond argwments. 5.0

wacre replacenent. 2.8 4.155.185.0

T {2 N 5.8

paramaterless and parameterized macres.iiiieiiian.. 5.8
Predefined MNacres.ccceien..... 5.9

High C Extensions Becumentsd in the Nemwal Dedy. LK)
abs, mim, _maw. ... L LLLLLilll.. 1.7

nenber al t .. 8.4

nedes wember, field. .33

Pointer Bersference and Newber Selectien: .28
Newher Salection .27

wenber-list. 35

structure or wnion wewbers. 0
s, mim, mex.............. R

node, tyn storege class. . .. 13

nodes wember, field. 33

wedes struct-tag, saien-tag, nn-ul .33

nodes var, vallus, fon, typedef. 3]

mltiplication, division, medwle.14
lm nn _right, _compare. . A7

meve, _mve_right, compare. A7
nltiolicutlu gisin modulo. . 14

Mltiplicative Opsraters: » / 8. Al

. tag name space...... 6.4

: lun Spaces. ... KR
ordinary, tag, lebel, and struct and wnien SPACcES., 31
um Paremeter Asseciation. nd

Rames.32

parsneter nanes and types. ... 5.8

type aanes as parsreters . 8.5

regation.18

Doelean HNegatiom:20

Varisbles. Nested Fluctilas od Full-Flnction A5

Benoting Nevw Types.35

m-mcun Pefinitions. 8.7

prototype and non-prototype functiemalities . 3.5
Non_function_definition. 0.3
Noa_function_gefinitions. 5.16.28.7

Motatiom., 2.2

Granmar

v.11.01.85

1994-85 MetaWare Incorporated

Index: High C™ Language Reference Manual

type
The
varisble

waderscarss in

size of

Valuss, Types, and
characters.

<INTEGED>,

CINTEGER>, <FLOAT>, <Chi>,
miudn of

(mnillu

Wltiplicative
Mditive

Ynary sign
Sift
svalvation

ARG SPECES.
Blacks,

Contrel Line
Lexicen versus

lexical versus

side- offect, sequance
sequence

-).

conversion of arrays to
Evaluation, Side Effects, and Seguance

v.11.01.85

page I-10
metation. 35
Null Statemeat.12
auuber of arguneats te a fuactisa.24
7T T & 4.7
:»m. l.i
Lt 3.
Mot ¥
sctal, hexadecinal in strings aed 4.8
<OCTAL>, <HEX>, <FLORD>. 4.1
<OCTAL>, <HEX>, «<STRIN®.39
Operond Types.15
operater. KR |)
Operater Precedence: (). (1}
Operater:ttt 8.2
lbmms 49
Operaters: * /8. eteeceeenaenn s. 14
Operaters: * and -,13
oparaters: - e *. [R]]
Operaters: <camd ».................. .12
MO8, iiieiiiiieaeaaaana 7.1
Ordering Compariseas: ¢ > <=d>= (R}
erdinary, ta label, ead struct and wnion . 3.1
Origins, Befining Peints, and Scepes. 3.2
Other Coatrel Line Lexican. 5.5
Overriding Operater Procedence: ()...... (]
Paremeter Asseciation. nd
paraneter nanes ond types. 83568
paraneter types.c...... 3.
parametorized mactss................... 5.0
paranstarless and parameterized sacres. ... 5.4
Parameters.cieiinnnaans 8.5
[TT7 717 + S0 8.5
PATOMOtOrS. 6.5
paremeters.coiiiiiiinennnns 5.8
[110717 £ S0t e
paraneters and argumemts._.......... 5.0
parent and enviremment. [R
part of assigament. 0.3
Pascal.t [R
Pascal fuaction call semamtics.U
Phrase Structure.ccnucenn 5.6
Phrase-Stracture., 2.1
PATASE-STTNCINTS.ooeneannnnnnnn 415
pl{m-smcuu synta. 221
uin....nnnsnvnzuusu
peinter alipmment.
pointer and array types. i 5
peinter arithmetic. 8.138.25
Pointer Bereference and Nenber Selectiom: . 8.2¢
Pointer Qereferemce: ™. 81l
Peinter Reference: €. l.l'l
pointer type.
peinters.7 8 29
Points. Expression KR}

(© 1984-85 HetaWare Incorporated

Index: High C™ Language Reference Manual

Blocks, Origins, Defining Peints, and Scepes. 3.2
positional paransters. Ad
=-. Pestfix Increment and Becrement: *+ and .. 8.23
PIagER.c.eueennn. 8.17.10.3
Code. pregmas Calling convention, Data, and AS
prageas from Me. 8.1
pracadence, asseciativity in expressiens. .7.12
Overriding Operater Precedemce: (). 8.2
oxtended fleating-peint precisiem.12
Predefined Macres. 5.8
Prefix Increment and Becrement: ++ amd --. 0.22
(10, 11> 231 | SO .1
Uhen is a Program a Progran: the Preprocesser. 2.0
Preprocesser and Lexicon. .. _.......... 43
Contral Lines: Preprocasser Commands. 4.4
preprocesser comiands. 4.15
Preprocesser Uords.__....... 5.1
Conpesition of a C Program.o 2.7
Uhen is & Pregram & mml the Preprecesser. 1.0
me axecution. 2.1
rogran Text Conventions. 2.4
Uhen is a Program & Progran: the Preprocesser. 1.0
declaration property set. KR
Mlo"c:lt{:itiu Property S::s‘ 33
es. protetype noR-protetype 15
functionslity types and pretotype functiomalities............ 568
functionality type and pratetype functiomalities.............. LU
function prototypes........................... 0.2
Oriof Tuterial on Protetypes........................... ne
Penctuaters. 418
Case ramges. P 1303
recursive feactions. L4
bonign redefimition. 5.9
Peinter Referemce: 6. 0.17
Referemces.ccvvvunnnnn.. 1.7
Section Referemces........................... 1.8
register parameters. 6568
Storage_classes auts. oxtern. register. typedef. :utic 8.3
, .. . Tegular expressiems: list, =, ¢, 2, ... 2.12.2
fonction call relisbility. ()
wacre replacement. 2.0 4.155.185.0
replacement text. 5.0
reserved word. 2.2
Reserved vords. 413
result of fenctin call. I8))
Lo metana. .ol [8)]
exprossion rewritimg.12
right part of assigment. 0.3
lvalee, valee. 33
T Seme Types. ..., 3813.7
sene mldlo. 7
scaler and aggregate types. 135
scopeof labels. 1.0
Plocks, Origins, Befinimg Points. and Scopes. . _............._.. 3.2
Saction References. l. 2.8

v.11.01.85

page I-11

1984-85 MetaWare Incorporated

Index: High C ™ Language Reference Manual

Pointer Berefsrence and Nenber
Nenber

Constraints and

Pascal fenction call
side-effect,

Expression Evaluation, Side Effscts, end
escape

declaration proparty
Character

target and hest charactar
Beclaratioa Preperty

sdjectives

argunent videning and

Exprassion Eulutiu,

sdjectives shert, u_sim‘, lm,

Unsigned-Long-Int.

Signed-Int, Unsigeed-Int,
iafernation

arrey

_find_cher,

wite

tag nane

Nane

tag. label. amd struct er union name

Types and
Line

Conpound
continuing a for, whils, or u
The Bl

v.11.01.85

page I-12
Selection: ->. 8.28
Selectien: 0.27
Semaatics. &
semaatics. LU
separate conpilation units._. 1.1
sequence point. 130120
sequance peint.
....... 7!274757677!14!4!5!5
Swma Pedmts. KR)
.......................... 8.2
Sumull Conjunction: €6. (N}
Sequential Bis (7 1 | P 0.8
L SR 31
7 4.1
L 2 4.1
Sets. ..., Lececosanaseans 3.3
sharing declarations. Lt
Shift Operaters: <«cand ». 812
shert, wasipeed, long, sigaed. 8.3
shortendng._............... (R
side-sffect, soquence point. 1300
sideoffects. 1.2
Side Effects, and Sequence Peints.18
sign oporators: -ad10
sigeed.l 8.3
signed. N2
Sigaed-Char, Unsigaed-Char. LX)
Signed-Int.l 4.
Signed-Int, Unsigaed-Int. 4
Sipned-Int. Imuu-lut Signed-Leng-Int, . 4.7
Signed-Long-Int. 510
Signed-Long-Int, Unsigned-Leng-Int. 3.4
Signed-Loag-Int, Insirnd-l.on-lnt eeee.. 47
Signed-Shert-Iat, Unsigned-Shert-Int. 3.4
simlar. ...l Ri
sinilor types. 31237
size. ...l e reieeeas X]
sizeof objoct. 34
shzeof. [3]
sizeef, €.270.29
skip_char, fill char. 87
source files.ee.... 2.7
B, . e 'R
PR, . i iiciaiiaeaaa 6.4
Spaces. .. e T g }
spaces. ordimary, R
Spacified Declarations. 8.2
Specified_declaration. 6.16.286.3
Specifiers. 6.26.3
Specifiers.l i.i
Specitiers.L.L.. 6.56.
Splicing. ...l 4.2
Statemeat. 7.1
statememt. 7.18
Statement. 12

1984-85 Metaware Incorporated

Index: High C ™ Language Reference Manual

exiting a suitch, fer, while, or de
intzruixing declarations and
Expressions as

internixing

ate, ‘non, register, typedef,

astenatic,

static-private,
static-impert,

static-inpert,
static-private, static-expert,
static-private.
static-private.
static-impert, static-expert,
static-inpert, static-expert,
static-impert.

nede, type,

satenatic

satenatic, static, typedef
typedef, static.

<FLOAT>, <OMD>, <OCTAL>, <NEX>,

sctal, hexadecinal in
ordinary, tag, labsl, and

nedes
Contrel Line Phrase

fncomplate
addition,
constant

sxiting &
lexical versus phrase-structure
spaces. ordinary,

string

Excluded

Included and Excluded
replacenent

Progran

vords.

v.11.01.85

page I-13

statenent.o, 7.9
statements.ttt 1.1
Statements. it 1.1
statewents and declarations. 1.3
static. Sterage classes 8.3
static k. RS
static, typedef storage classes. 19
static-expert, static-impert. 3.9
static-expert, static-private. L1
static-expert, static-private. 6.3
static-import.l 39
static-inport, static-expert, i
static-inpert, static-expert, 8.3
staticprivate. i
static-private. 8.3
static-private, static-expert, 3.9
storoge allocation. i
storage cless. KR |)
sterage Class.c..... 33
sterege class. 6.2
storage classes. 3018
storage classes. kR |
storage-class.oiia.... in
Sterage_classes aute, extera, register, . 6.3
string concatesation. n2
string termimater. 4103
<STRING. <INTEGED>, ()]
<SSIRIRGD, <OM>.ccn..... . 4.
Strings and Oharoctars. 4.8
strings and charecters. 41
struct and wnien nona spaces. 1
stroct, snden. ©L2?
strect, snion, onem. SO N |
struct-tag, weioa-tag, onus-tag. 3.3
Strectare. ... 5.8
strocture and waion types. 35
structure or enfom menbers. 6.4
structore or weion type. 8.4
subtraction. 8.138.228.23
suffixes., 02
svitch, case, defamlt. 1.3
:uitd, for, vhile, or de stateneat. 7.9
£3 117 S 2.1
£ L1 | S 2.1
togmame Space. 6.4
tag. label. and struct end wnion name 3.1
Tagged Types. 6.4
target and hest charecter set. 4.1
termimater. 4.10.8
{3 S 419
oMt e 4.4
2 S 5.9
Text Comventions. 2.4
L2 3 < S 2.1
toggles. 8.1

1984-85 Metadare Incorporated

Index: High C™ Language Reference Manual

independent
Brief

pointer

arrey e conpenent

. snuneration literals aad
inconplets structure or waiss

ity
arpument

declarater. the

nede,

nodes var, valee, fcm,

sutesatic,

satematic, static,

Storage_classes este, extera, register,

<IDENTIFIED>,

sinilar

Conpatible
Conbination of Operend
© aritheetic
iategral, fleatiag, aritametic
ceastructed

inconplete
functionality
paranster

Deneting Nev

structure and wnisn
scalar and aggregate

. Sane

constructed
Eivaleat

sinilar

arithmetic

Tagged

inconplete

peinter and array
paranster names and

Cast
functionality
Values,

Sdafine and

stract,

structure and

ordinary. tag. lebel. and struct and
incomplete structure or

v.11.01.85

page I-14
treaslation. 2.73.1113.7
Tutorial oa Prototypes. "
R (AN 3.10
L4 7L T ER
PR, o e 3.5
P oo 6.4
L7 TR §.d
tyn nu mmypc functionalities. : 2;

.......................... .1
tm chdri [N]
type demotation. 3.4
type nanes s parameters. 6.5
typemotation. 35
type of a declarater or abstract......... 6.5
typeef char. 5.3
type, storage class. 3.3
typedef. 33
typadef. %
tmuf sterage classes. 1.9

f, statle. 8.3
(?PEIF_mb. 6.3
CTYPEDEF_WMME>.22
L7, 1 AR 12
L ln
L5 2T 15
157 2 TN AN 34
L (T 1 S 3.4
L 2 38
L3 7 - TR 35
1 T S 35
147 L TN 15
LT 5
PPOS. . iiiiiiiiciiciieiaaas 35
L 3 3.5
L T .87
PO, ...t KN}
L T S 3.7
PES. ...t iiiiaeeaaaan 3.7
L 6.3
L 2 7S 8.4
L {7 T 6.5
L3 L 6.5
T AP 6568
Typas and Mbstract Beclarators. 8.3t
types and prototype fuactionalities. ... 6.56.6
Types and Speciflers. 6.3
Typas, and Ohjects. kN |
Type_specifiors.3
Unary siga operaters: - aad 0.18
Ouadef. 5.0
wndersceres in numbers. 0.3
walem. ..., 8.2
waion members. 6.4
wnion name spaces. 3.1
unfen type. 8.4

© 1984-85 HetaWare Incorporated

Index: HighC ™ Language Reference Manual

structure and

stract,

nedes stract-tag,
cenpilation

separate compilatien
sdjectives shart,
Signad-Char,

Signed-Int,

Unsigoed-Long-Int. Signed-Int,
Signed-Loag-Int,

Signed-Int, Unsigned-Int, Simd-turlnt,

“{m-mrt-lnt
-prasarving.

fusction address versus full-function
nedes var,
wasignedness-preserving versus

nodes

sane

function.

Nested Functiens and Full-Functien

char, iat, fleat, deuble,
Preprecesser.

continuing a for,
sxiting a switch, for,

argunent
Integral
reserved
Reserved

Preprocesser

v.11.01.85

page I-15
uniem types. 5
wnien, emem. 6.4
nlu-u. enua-tag. 13
. L, .7
L3 iy
sasigned. lonp, signed. 6.3
Unsigaad-Char. 4
lln:imd-lnt. 34
Unsigned-Int, Signed-long-Int, 47
Unsigned-Loag-Int. 34
Unsigned-Long-Int. 4.7
Unsigned-Short-Int. KN]
unsignedness-preserving versus I
Unspacified_declaration. 6.16.3
up-lovel addressing. 2.5
LY L A5
value, fon, typedef. 313
value-preserving. u
Values, Types, and Objects. KN |
var, valus, fou, typadef. 3.3
varimble. ... 4
variable.7
variable nunber of argunents toa....... 8.2
Variables. 8.5
Vodd. ... 34
wld. ... 6.3
Unen is a Program a Pregran: the 2.0
ohfle. ... 1.5
while, or de statewent.10
vhile ordestatenent. 1.3
vhite space. 4.1
videning and shortening. a8
Uidening Conversions.................. I
171 { U 2.2
[¢ 419
Bords.oi i i 4.5
Bords. 5.1
vords, texts. 2.1
X311 Extensieas to €. A2

(© 1984-85 HetaWare Incorporated

More Feedback, Please

(After some use.)

We would greatly appreciate your ideas regarding im-
provement of the language, its compiler, and its documen-
tation. Please take time to jot down your ideas on this page-
(front and back) and on additional sheets as necessary as you
use the software. Then, after you have some significant
experience with the software, please mail the results to:

MetaWare™ Incorporated
412 Liberty Street
Santa Cruz, CA 95060

MetaWare may use or distribute any information you supply
in any way it believes appropriate without incurring any obli-
gation whatever. You may, of course, continue to use that
information. If you wish a reply, please provide your name and
address. Thank you in advance, The Authors.

Page Comment

v.09.15.85 © 1983-85 Metaware Incorporated

More Feedback, Please

Page Comment_

v.09.15.85 © 1983-85 MetaWare Incorporated

Acknowledgments

The authors of these manuals and designers of the High C
language would like to thank the C standards committee,
whose drafts of the C standard helped illuminate many dark
areas of the language and assisted greatly in “chunking” the
language concepts.

Paul Redmond’s feedback was invaluable as he put dBase
Il through High C for Ashton-Tate. In the process he helped us
polish the compiler in many ways.

David Shields’ efforts in working with us were also very
beneficial. He put tens of thousands of lines of C source code
through High C, transliterated from the SETL versnon of the
Ada-Ed compiler at New York University.

Professor William McKeeman and his research group at
the Wang Institute of Graduate Studies supplied us with a
collection of “gray expressions” that helped us verify the
compiler.

The support of others who must needs remain nameless at
this time is also appreciated.

Most of all we acknowledge that we are not self-made, but
God-made. And we thank God for building into us the talents
that made it possible for us to create High C. Praise God, from
whom all blessings flow.

Ad majorem Dei gloriam (A.M.D.G.).

v.09.15.85 © 1983-85 MetaWware Incorporated

This ends the
High C ™

Language Reference Manual

© Copyright 1984-85 MetaWare™ Incorporated

v 10 15 RS © 1984-85 MetaWare Incorporated .

