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Temporarily, this manual has 
been printed via dot matrix 
rather than typeset. 

The manual is expected to be 
typeset soon, after some feed­
back comes in from early custo­
mers. 

Since such things often get 
delayed, please be sure to send in 
your feedback as soon as possible 
- if your suggestions do not get 
in the first typeset version, they 
may have an effect on the next. 

Thank you for your patience, 
understanding" and suggestions. 

The folks at MetaWare. 
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1 
Introduction 

1.1 Scope, Audience, Purpose 

This is a language reference manual for C. It does not 
attempt to teach C programming to those unfamiliar with the 
language. For an informal introduction to C, consult Kerni-
ghan and Ritchie [K&R]. ' 

The writing of this manual was prompted by the lack of any 
precise description of C. A common way to answer a question 
about C is to "see what the compiler does". This is anathema 
to writing programs, portable or not. Clearly C has suffered 
from being partly defined, then Implemented. The original 
definition lK&R] is quite incomplete. 

Our goal here is to provide a single document that answers 
all machine- independent questions about C. To that end we use 
formal notation, such as context-free .grammars, where 
possible to avoid ambiguities. Thus, the reader of this manual 
must have a tolerance for formality, but hopefully wi II be 
rewarded by always getting answers. 

1.2 Need for Formality 

To i lIustra"te a question poorly addressed in the literature, 
consider this C program fragment: 

struct s *P; 
int f() { 

struct s {int x, y; }; 
p-)x • 1; 
} 

int g() { 
p-)x = 1; 
} 

v.11.01.85 

/* Declaration A. 

/* Declaration B. '* Reference R. 

/* Reference S. 

*/ 

*/ 

*' 
*/ 
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Is this a leg~1 C program? The issue at hand is whether 
declaration B "completesN declaration A by supplying the 
fields x and y. The original definition of C [K&R] does not say' 
how A and B relate, if at all. Another recent book on C [H&Sr 
says that "a structure type reference [may] precede the cor­
responding type definition (provided the reference occurs in a 
context where the size of the structure is not required)N. Is 
definition A above a type reference preceding the correspond­
ing type definition B? 

For at least one compi ler [4.28S0] the answer is yes, so 
that within function f reference R is permitted. However, 
after the closing brace of 1, the completion B is somehow lost 
so that reference S is illegal. Yet declaration A can no longer 
be completed: supplying another completion draws an error 
diagnostic. 

No published C reference known to us properly addresses 
this issue. The answer we provide is that a structure declara­
tion can complete a previous one only if both are "declared at 
the same leyelN, a notion that we make precise. 

1.3 Which C? 

When we claim to give a language definition for C, a 
guestion arises: HWhich C?N. The original definition of C 
[K&R] did not give C a complete definition. Compi lers for C 
differ where K&A is silent or obscure. 

In some sense we are defining what C "should be~' or 
"should have been defined as". In doing so we are not defining 
an entirely new language, including in it all of our favorite 
constructs. Instead, we observed what existing C compilers 
for C do with CiS ill-defined spots, and produced a definition 
that attempts to be faithful to the most rational decisions 
made in those compilers. 

Furthermore we took into consideration the C language 
draft standard produced by the ANSI C standardization com­
mittee X3Jl1 (and have participated in the development of 

v. 11.01. 85 @ 1984-85 HetaWare Incorporated 
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that document). The X3Jll standard is another C definition, 
although less. formal than ours, that tries to clarify the 
obscure and define the i II-defined, in addition to extending C 
where the K&R language is perceived as being weak. 

Therefore this document should on the whole be compatible 
with most C compi lers, especially with those written with 
attention paid to X3Jl1's work. We also point out where our 
definition differs from that typically implemented by popular 
campi lers, or where it differs from the X3Jll work. 

A few of the language features we describe exist in no other 
C campi ler or definition or in the X3Jll work. These features 
are particular to MetaWare's own High C language. Most are 
simple changes, and are included in the main body of the 
language definition; those that are not simple are relegated to 
Appendix Language Extensions. All extensions, however .. in­
cluding those originating in X3Jl1, are listed in that appendix 
and the reader is invited to consult it for a summary. 

1.4 Exclusions 
For the purposes of this manual, the C I ibrary is not 

considered part of the C language and is not treated here. The 
ANSI standardization of C includes a I ibrary standard along 
with a language standard, but also recognizes so-called 
"freestanding environments" that do not include any library. 

Y.11.01.85 @) 1984-85 "etaWare Incorporated 
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[Syntax. Constraints, Seftantics, Discussion, nachine Dependencies] 

In this manual each C construct is presented in several 
sections: 

Syntax gives a regular-right-part context-free grammar 
that describes the syntactic structure or "form" 
of the construct. Section Notatlonexplains gram­
mars and how syntax is divided into two levels: 
lexicon and phrase structure. 

Constraints I ists rules that each instance of 'the construct 
must obey statically if it is to be well- formed. 
Such rules are in addition to the requirements im­
posed by the grammar" and generally are rules that 
cannot be described by a context-free grammar. 

Semillltics states the meaning of a well-formed construct; 
e.g. what happens at run-time: what value or 
effect it has. 

Discussion describes differences" extensions" and restrictions 
of this definition as compared to other C language 
definitions [K&R] [X3Jl1]" or as compared to a 
popular implementation [4.28S0]. Ramifications 
of the I'anguage definition that might otherwise go 
unnoticed are noted here. Occasionally we include 
examples and/or a brief summary description of 
the construct, especially when such is useful to 
illuminate why the construct was put in the lan­
guage the way it was. 

Machine Dependencies 
descr i bes aspects of the construct that are part i -
cular to certain machines. 

Any of these sections may be omitted, as appropriate. Fo~ 
example, if section "Machine OependenciesNis omitted, ont. 
may infer that there are no known or relevant machine depen­
dencies for the particular construct. Occasionally, sections 
that would otherwise be omitted are included for emphasis. 

v. 11.01. 85 lID 1984-85 netaWare Incorporated 
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Material that should be included in Discussionmay instead 
be included in the other categories, when moving it to 
OisclJSSion would place the material too far out of context. 
Such material is flagged by the brackets Note and End of 
Note. We emphasize that such material is commentary only 
and not necessary to the language definition. 

Examples are generally started by the text Example. 
When it may be unclear where the end of the example is, the 
text End of Example is used. 

Some authors prefer to use the phrases "Context-free 
Syntax" and "Context-Sensitive Syntax" instead of "SyntaxN 

and "ConstraintsN
• Sti II others prefer "Static Semantics N to 

"Constraints" and " Dynam ic Semantics" to "Semantics". 
Rather than take sides we have used different terms. 

1.6 Key Words and Phrases 
[saRPle; word or phrase] 

Following most subsection headers is a line such as the 
latter containing key words and phrases related to that 
subsection. They give a quick idea of what the section is about. 
The Index I ists each word or phrase alphabetically by word or 
each word in a phrase. . . 

v. 11. 01. 85 lID 1984-85 HetaYare Incorporated 
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1.7 References. 

[K&R] Kernighan, Brian W. and Dennis M. Ritchie: The C 
Programming Language. Prentice-Hall, Inc. 
Englewood CI iffs, NJ 07632, 1978. 

[H&S] Harbison, Samuel P. and Guy L. Steele, Jr.: C: A 
Reference Manual. Prentice-Hal', Inc., Englewood 
CI iffs, NJ 07632, 1984. 

[X3Jl1] American National Standards Institute X3Jl1 com­
mittee on the standardization of the C program­
ming language. X3 Secretariat, CBEMA, 311 First 
Street NW, Suite 500, Washington, DC 20001. The 
draft document from which we cite differences is 
dated April 3D, 1985, document 85-045, and is 
available from CBEMA at the above address. 

[4.2BSD] The portable C campi ler as it exists on Berkeley's 
4.2 distr.ibution of the UNIX operating system on 
Digital Equipment Corporation's VAX computers. 

In the sequel. the following abbreviations hold: KA for [K&R], 
X3Jll for [X3Jl1], and 4.28S0 for [4.28SD]. 
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2 
Notation 

2.1 Lexicon versus Phrase-Structure 

page 2-1 

[lexical versus phrase-structure syntax; words, texts; constraints; 
context-free graftftar; regular expressions] 

Sp1taxcan be usefully broken into two parts: lexicon and 
phrase-structure" 

Lexical syntaxrefers to the val id sequencing of characters 
in a program to form words, and the naming of those words. 

Phrase-structure s..,mtaxrefers to the valid sequencing of 
the words to form phrases. 

For example, consider the C program 
main() {int i • 1;} 

On the lexical level, the program appears as the character 
sequence 

'm' '.' '1"' 'n' '(' ')' " '{' '1·' 'n' 't' , u, , , , , , , , , , 

, , '1"' , , ':' , , '1' '"' '}' , , , , , ", " 

The lexical syntax, as will be seen, permits such a cha~acter 
sequence and specifies the corresponding word names and their 
associated sequences of characters, or texts, indicated next: 

Word name Text 
(IDENTIFIER) 'm', 'a', Iii, 'n' 
( (none) 
) (none) , 
{ (none) 
int (none) 
<IDENTIFIER) 'i' 
= (none) 
(INTEGER) '1' 
I (none) 
} (none) 

Y. 11.01. as ~ 1984-85 ttetavare Incorporated 
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At the phrase-structure level, the sequence of words above, 
namely, . 

<IDENTIFIER) ( ) { int <IDENTIFIER) = (INTEGER) ; } 

is a valid C program. Hence the original character sequence 
forms a val id C program, at least on the lexical and phrase­
structure levels. Note that some of the words illustrated 
above have no text. This is by design and not by any restric­
tions inherent in the formal isms used here. 

Phrase-structure description is concerned only with the 
names of words, never with texts (with one exception in 
Section Preprocessm). For example, CiS phrase structure 
specifies that an (IDENTIFIER) be the name of a function, not, 
say, an (INlEGER); but which (IDENTIFIER> in particular is not 
a phrase-structure concern. 

On the other hand, the constraints of C - the context­
sensitive syntax -. are concerned with the texts of <IDENTI­
FIER)s. For example, a usage of an (IDENTIFIER) with text T 
must generally follow a declaration of an (IDENTIFIER) witt~ 
text T. . 

CiS lexicon and phrase structure are each formally defined 
here by a context-free grammar. 

Grammar illustrations. Illustrations from each kind of 
grammar are appropriate before proceeding further. 

Consider a fragment from the lexical grammar: 
Identifier-) Letter (LetterIDigit)~ =)'(IDENTIFIER)'; 

Letter -> I A' •. I Z I I ' 8 ' •. I z' I '_' ; 
Digit -> I 0 I •• I 9 I ; 

The "=)' (IDENTIFIER) I II specifies that a word is to be named 
<IDENTIFIER>. The text for that word is a letter followed by 
zero or more letters and digits, where a "letterN includes thp 
underscore <,_,) character. 
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According to the lexical grammar, words can generally 
appear in any order, as indicated by the following lexical 
grammar fragment near the top of the grammar: 

Words - > Word*; 
Word -> String I Char I Number I Identifier 

I Delimiter I Punctuator I Operator I Comment; 

As an illustration from the phrase-structure grammar, 
cons i der the ru I e 

Statement 
-) 'for' 1(1 First:EL? 

I; 1 Next: EL? 
1;1 Last: EL? 

.1)1 Body: Statement 

It describes the C for statement, consisting of: 

the words for and ( , 

(optionally) any sequence of words genera~ed by the 
nonterm ina I EL, the word; , 

(optionally) any sequence of words generated by the 
nonterminal EL, the word; , 

(optionally) any sequence of words generated by the 
nonterminal EL, the word) , 

and finally any sequence of words generated by the 
nonterminal Stetement. 
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2.2 Grammar Notation 
Icontext-free grMRar; regular expressions: list, ..... , .. + .. , "1", 
I", .... It; adjectives; <DELETE>, <AS_IS>; reserved word] 

The context-free grammars used here contain regula) 
expressions, which are expressions composed with postfix 
(*, +, 1) and infix (list, I, .. ) operators having the following 
meanings: 

EX{J(ession ..;..;in~e,;;..;;'t1.;;..;;'IJS~ ____________ _ 

X* zero or more xs. 
X+ ' one or more xs. 
X1 zero or one x, i.e. X is optionaL· 
X I V either X or V. 
X list Y one or more xs, separated by single occur­

rences of V; equivalent to X (V X)* and 
(X Y)* X, giving X, X V X, X V X V X, etc. 

X •• V the sequence of characters from X to V, in­
clus~ve (meaningful only in lexical grammars). 

*, I, 1, and .. were used in the grammar examples above. 
All terminal symbols, e.g. • for' and • _., are single-quoted 

in grammars to avoid ambiguity. Nonterminals are not quoted, 
e.g. Statement and Letter. 

Parentheses of the forms ( ... ) and < ... > in grammars override 
precedence. In a lexical grammar the operator .=) specifies 
the name of a word; the name is the string following the =). 

So-called adjectives in grammars describe phrases of the 
grammar. The practice is borrowed from the Ada reference 
manual, where adjectives are typeset in ital ics. For example, 
Statli:_Expression in Ada is really the nonterminal Expression, 
but with the "reminder'" that the Expression must be 
"static'" . 

Adjectives are purely commentary in grammars, but ofte~ 
an adjective is mirrored in a constraint. Here we employ nor­
mally-typeset (non- ital icized) identifiers followed by a ":" to 
denote adjectives. Adjectives appeared in the phrase-structure 
examp I e above; viz. First, Next, Last, and Body. 
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Grammars may contain comments, which begin with "11" 
and cant i nue to the end of the line. 

Special words. The words (DELETE), (AS_IS>, and (IDENTI­
FIER) have special meanings in lexical grammars, as follows: 

A word named <DELETE> is not to be considered in phrase­
structure or any other analysis. <DELETE) is used so that 
comments and so-called "whitespace" need not clutter the 
phrase-structure grammar. Effectively, lexical analysis 
deletes such words. 

A word named <AS_IS> with text T is to be instead consi­
dered the word named T, with no text. For example, the word 
<AS_IS> with text ( is instead the word (. This device is 
employed in naming operator and punctuatiQn symbols. 

Finally, any word named <IDENTIFIER> with text T is to be 
instead considered a word named T if T appears in the phrase­
structure grammar. For example, the <IDENTIFIER> word with 
text • f' , 0' , r ' is to be cons i dered instead the word 'for', 
which appears in the phrase-structure grammar. These 
reserved (IDENTIFIER)s, called reserved wordt are thus 
distinguished from ordinary <IDENTIFIER)s. 

Additional notation. We defer explaining some rarely­
used grammar constructs to the sections where they are used. 

2.3 Lexical I\mbiguity 

The lexical grammar is ambiguous, for economy of expres­
sion. For example, the characters 'A', '8', '1' can be inter-
preted as the word (IDENTIFIER) with text' A·', 'B', '" or the 
two <IDENTIFIER>s 'A' and 'B' and the <INTEGER> '1'. In all 
cases ambiguity is resolved in favor of the longest possible 
word. 
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2.4 Program Text Conventions 

C program fragments in running text are double-quoted, 
and reserved words are boldfaced. For example: "int ~ y; II 
In addition, C text is always reproduced in fixed-width font­
rather than varying-width font. Examples apart from running 
text are not quoted. 

2.5 Constraints and Semantics 

The specification of constraints and semantics is keyed to 
the nonterminals and adjectives in the grammar. Consider the 
phrase-structure grammar fragment: 

External declaration 
. -) Unspecified_declaration: 

( Funotion_definition 
I Non_function_definitions 
) ~ 

-) Specified_declaration , With specifiers. 
-) ';' , Allowed by KR. 

Specifications may be keyed to any of the nonterminals Speci­
~ed_declaration, Function_definition, Non_function_defi­
nitions, or the adjective Unspecified_declaration, which 
"modifiesH the alternation (I). As mentioned before, Adjec­
tives do not figure in the formal grammatical definition of 
the context -free syntax. 

2.6 Section References 
References throughout the text from one section to other 

sections are made by section and subsection title only, except 
when subsection references are made within a section, where 
the subsection number is most often used. A '/' separates a 
section title from a subsection title, when the latter if 
included. For example, Section Concepts/Lifetimesrefers t~ 
Section Concepts, Subsection Lifetimes. The location of each 
section and subsection can be found in the Table of Contents. 
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2.7 Composition of a C Program 
[source flIes; cORpllation unit; linking; prograft execution; 
Independent translation; preprocessor] 

A complete C program P consists of a collection of 
declarations such that there exists exactly one definition of a 
function whose name is "main". piS execution begins with this 
function. 

P need not be translated all at once. Typically, components 
of P are kept in separate source files that are independently 
translated. We assume the notion of "source file~~ is atomic 
and therefore provide no definition for it here. 

A compilation unit is a single source fi Ie F unless F 
contains preprocessor directives that specify the inclusion of 
other source files as part of the unit. We' leave unspecified 
exactly how compilation units are determined, for that is, in 
general, a host-environment-dependent concept not of concern 
here. 

The focus here is only on the semantics of compilation 
-units and the semantics of the combined translated results of 
,separately compi led units. We shall not discuss the process of 
linkingwhich is typically used to prepare the translated results 
for "execution", nor the execution process. The translated 
linked result is a C program that may be executed i.~. its 
meaning made manifest. 

The reason that separate translation must be addressed is 
that the semantics of a C program when independently trans­
lated are not identical to those when the components are 
"gluedH together in a single source fi Ie and translated all at 
once. For example, in each of two separate compi lation units, 
the declaration "statio int x;" may appear; however, two 
such declarations cannot appear in a single unit. 
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2.B When is a Program a Program: the Preprocessor 
[conditional cORpilation; file inclusion; Ratro replaceftent] 

A "normal" description of a programming language l 
defines lexical syntax, phrase-structure syntax, constraints, 
and semantics. Text P is a legal program in L (and therefore 
has meaningful semantics) when: (a) P is lexically val id; (b) 
the word sequence defined by the lexical syntax forms proper 
phrases; and (c) the constraints are satisfied. Thus, a 
program's validity can be determined without reference to any 
"processorsH that do syntax checking or constraint analysis, 
such as "scanners H, "parsers H, and "constr a i ners H • 

For C the description cannot be so simple. Part of the 
definition of C includes a so-called preprocessorthat modifies 
th.e word sequence defined by the lexical syntax before that 
word sequence is subjected to phrase-structure analysis. The 
preprocessor is complex and interacts with the lexical analysis 
in such a way that the only reasonable way to understand 
whether a program is val id is to simulate the machinations of 
the processor, at least through phrase-structure analysis. 

Therefore, for the purposes of this document, text P is a 
legal C program if: (a) P is lexically val id; (b) the words as 
transformedby the preprocessor form proper phrases; and (c) 
the constraints are satisfied. 

The C preprocessor effects: (a) conditional'compilation, 
including and excluding program texts from campi lation based 
on the evaluation of Boolean expressions; (b) file inclusion, 
logically substituting for fi Ie inclusion directives the contents 
of source fi les referred to in the directives; and (c) macro 
replacement the transformation of some sequences of words 
into other sequences of words. 

The preprocessor is explained in more detai I in Section 
Preprocessor. 

The term "preprocessor" is due to its often being a pro­
gram separate from the C compi ler per se, transform ing the 
source file before the C compiler analyzes it. However, the 
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definition of the preprocessor component of the language does 
not preclude its incorporation into the lexical analysis phase of 
a C compiler, and we know of at least one compiler that does 
~q, namely the MetaWare High C - Compiler. 
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3 
Concepts 

page 3-1 

The concepts described in this section are needed for the 
later description of C relative to its syntax. 

Defined concepts are illustrated by example C programs, 
even though the syntax of C programs has not been discussed 
yet. Readers fami I iar with C wi II find the examples helpful; 
those not fam i I iar can make good use of the examples upon 
second reading .. after studying the syntax of C. 

3. 1 Name Spaces 
[declaration property set; ordinary. tag. label. and struct and union 
na..e spaces 1 . 

, Every declaration in C associates a name with a dec/t1r-
ationpropertysetwithin a specific dec/ararionnamespace. 

A name space can be viewed as a mapping taking a name 
into Its declaration property set. There are three distinguish­
ed name spaces in C: the ordinaryname space .. the tagnarhe 
space.- and the /abe/name space. There is also a name space for 
each distinct struct and union type, which contains the type's 
member names. 

The explanation of each declaration gives the name space of 
the name declared. The three spaces permit the same name to 
be associated with up to three different property sets. The 
syntactic context of a name always determines which name 
space holds the association. For example, a label name either 
precedes a ": N at the beg i nn i ng of a statement, or fo II ows the 
reserved word goto; it appears nowhere else. 

The elements of declaration property sets are described 
later in this section. 
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Examples: 
int x; 
struct s { 

int x; 
} y; 

L: goto L; 

page 3-2 

1* x: ordinary na .. e space. 
/* 5: tag nllle space. 
/* X: na .. e space of the struct type s. 
/* y: ordinary nafte space. 
/* L: label nMe space. 

*1 
*/ 
*/ 
*/ 
*/ 

3.2 Blocks, Origins, Defining Points, and Scopes 
[quplicate declaration] 

The discussion in this subsection does not apply to the 
member names of struct and union types; the issues of 
blocks, origins, defining points, and scopes are irrelevant to 
such names . 

. Every declaration is contained in one or more blocks, which 
are regions of program text. The specific locations of such 
regions are not described here; the description of a construct 
having an associated block contains the description of that 
block. 

Generally, a block Inner can be a part of another block 
Outer, in which case Outer Is said to cont81i1lnner~ The block 
Inner is then called an inner block of Outer, while Outer is 
called a surrounding block of Inner. In general a program 
consists of a hierarchy of nested blocks. 

The innermost block in which a declaration occurs is called 
the originof that declaration. 

The defining pointof a name is the occurrence of the name 
in its declaration. 

Every declaration 0 has a scope. The scope of 0 is that 
program text in which the declared name N is associated with 
the property set of D. The scope of 0 is generally the program 
text extending from the defining point of N to the end of D's 
origin, but there are exceptions. The first is when the declared 
name is re-declared in a contained block and in the same name 
space: 
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Suppose that block Outer conta i ns block Inner, and that 
Outer is the origin of a declaration 0 of name N within 
name space S. If Inner is the origin of another declaration 
0' of N within S, then the program text from the defining 
point of N in 0 1 to the end of Inner is excluded from the 
scope of O. 

Other exceptions to this rule are documented with the 
exceptional constructs. 

If the scope of two distinct declarations 0 and 0 1 of a name 
N in the same name space overlap, this is known as a duplicate 
declaration olN. Such dupl icate declarations are prohibited. 
This means, for example, that 0 and 0' may not appear in the 
same block; e.g. "int 8, 8; " is not allowed. 

However, two declarations of the same 'name in different 
name spaces is permitted: "struct s {int y;} *P; int s;~· , 
for example - the first s is in the tag name space and the 
second is in the ordinary name space. 

Under certain circumstances, apparent duplicate declara­
tions are permitted. In addition, certain cor:nbinations of non­
duplicate declarations are prohibited. These situations are 
described in Subsection Independent Translationbelow. 

Examples: 
(e) int x; 1* x: ordinary naRe space. */ 
0) struot x { 1* x: different n8fte space than in (8); */ 

1* hence not a duplicate declaration. */ 
(c) int x; /* x: issues of scope, block, etc. */ 

1* do not apply to this naRe. */ 
(d) struct x {_.} y; 1* X: conflicts with (b): duplicate deln. */ 
(e) } X; 1* x: conflicts with (a): duplicate dcln. */ 
(f) X: goto x; 1* X: different MIte space than in (a) */ 

1* or (b); hence not a duplicate dcln. * / 
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3.3 Declaration Property Sets 
[Rode. type. storage class; Rodes var. value. fen. typedef; Rodes 
struct-tag. union-tag, enufI-tag; ROdes fteRber, field; lvalue, rvalue] 

A declaration property set contains the information abou J
• 

a name gleaned from its declaration. This set prescribes how 
the name may be used subsequently in its declaration's scope. 
This set is not something a C program manipulates ... but rather 
is needed by the, reader of a program to understand it in detai I. 
The set may be used by a C language processor to check con­
straints and perform translation. 

The property set consists of up to three ·"attributes": a 
mode, a type, and a storage class. Generally the mode and type 
attributes are typeset in lowercase boldface. Also ... an expres­
sion has mode and type (but no storage class), even though it 
does not interact with the name spaces. Names in the label 
name space do not have a mode (it is unnecessary), but names 
in the other name $paces have all three attributes. 

The mode is one of var ... value ... fen ... struet-tag ... union-tag' 
enum-tag, member ... field ... and typedef. Modes are used tc 
capture the ways in which names can and cannot be used. For 
example, the mode field is used to prevent taking the address 
of a structure bit-field. The mode of a name or expression E 
may be interpreted as follows: 

Mode means 
In tile ordinary niJl71e space: 
var E may be used on the left side of an assignment. 
value E is legal only on the right side of an assignment. 
fen E denotes the entry point of a function. 
typedef E is a typedef. 

In the tag nt1l71e space: 
struct- tag E is a struct tag. 
union-tag E is a union tag. 
enum- tag E is an enumeration tag. 

In the name space for a struct/union type: 
member E is a non-field member of a structure or union. 
field E is a field of a structure or union. 
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These explanations are del iberately incomplete here; the 
full meaning of the modes is meant to be obtained from read­
ing the sections that attribute modes to expressions and names 
,nd the sections that require certain modes. KR uses the 
.,'erms "Ivalue" and "rvalue" as modes; in our notation, rvalue 
is value and Ivalue is the the union of the modes var and field. 

Types and storage classes are discussed in the remainder of 
this chapter. 

If a declaration associates a name N with a property set 
containing mode M, type T, and storage class C and within 
name space S, we also say that the declaration Hdeclares N to 
be of mode M, of type T, of storage class C, and within S". We 
may om i t any of M, T, C, or S, as appropr iate. 

Examples: 
int x, f(); 1* x: ROde VII; f: ROde fen. *1 
typedef 

struot s { 1* s: ROde struct-t-sa. */ 
lnt x; 1* X: ROde ReMer. */ 
int z: 3; 1* Z: ROde field. *1 
} y; 1* y: ROde typedef. *1 

enUl e {a, b}; 1* a,b: ROde vilue; e: ROde enull-tag. */ 
union u {int x;}; 1* x: ROde ReRber; U: ROde union-tag. */ 
L: goto L; 1* L: no ..ode necessary. *1 

3.4 Values, Types, and Objects 
['UiDI.; t"., ..... tati"'; size If njtct; i.tetra!. fllltili. uithtl.tic types; 
Siened-Int. Ulsitntd-Int; Sigat4-s.trt-Int. ltsitnt4-s.trt-Ilt; <0111>; Si .... -Char. 
IInsilned-aau; Signed-L.,.-Int. Insl",n-Loq-Int; n.at, ..... 1., L .... -lo1*lt; hid] 

Values are entities upon which operations may be per­
formed. 

TJ11esclassify values according to the operations that may 
be performed upon them: a type is a set of values. 

Objects can "contain .... values, usually of a single type; at 
different times during the execution of a program an object 
may hold different values. 
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Declarations in C almost always declare objects. Some 
objects may have other objects as components. As in other 
languages .. when we speak of a variable we mean a declared 
name denoting an object, since the variable's contents ca 
vary. In contrast, a declared name denoting a function does not 
denote an object and is not spoken of as a variable. 

Since a type is a set of abstract values, we can never write 
down a type in this document .. but merely use a word or words 
to denotea type. For example, we use "Signed-Int" to denote 
the type consisting of a subset of all the signed integers. (The 
particular subset is implementation-defined.) " 

Values and objects of a given type T are represented in a 
fixed number of storage units; this number is the sizeof T. 

, The storage unit must be able to contain any value of type 
Signed-Char or Unsigned-Char and is usually the eight-bit 
byte. It must be possible to express the address of each storage 
unit in the target architecture; these addresses are the values 
of pointer types (described below). 

Basic types. There is a set of basic types in C, and methods 
for denoting new types in terms of basic types. The Table 
below I ists the names for the b3Sic types. The two distinct 
subsets, integra/and floating, comprise the arithmetic types: 

Inteqral types: 
Signed-Int 
Signed-Short-Int 
Signed- Long-Int 
Signed-Char 

Table Arithmetic types. 
Floating types: Other: 

Unsigned-Int Float Void 
Unsigned-Short-Int Double 
Unsigned- Long-Int Long-Double 
Uns igned-Char 

Shorthand. Without some shorthand, the phrase "denoted 
by .... wi II appear all too often in this document. For example, 
consider the precise but cumbersome phraseology: "If T1 is 
the type denoted by Unsigned-Int and T2 the type denoted b~­
Signed-Int, then T3 is the type denoted by Unsigned-Int". 

Hereafter we drop the "denoted by.... when the intent is 
clear, and use the denotations as if they were the actual types. 
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After all, the denotations are just the namesfor the types, and 
in common Engl ish usage we do not introduce "the man denot­
ed by Fred" - rather, we introduce Fred. 

Nevertheless, the distinction between types and their spe­
·cification in a C program must be kept clear. In a C program 
one writes "intU to denote the type Signed-Int. However, 
what one writes is' notthe type, but merely denotes it. 

The difference shows up better in the C phrase "int short 
unsignedu

: this phrase and in fact any permutation of those 
three words (and possibly intermixed with a Storage_class) 
denotes the type Unsigned-Short-Int. 

Types, denotations. Because C syntax permits more than 
ofle way of denoting some types, we have chosen our own type 
denotations; we use exactly one denotation for each type. How 
to denote types in C is not detailed until the next section. 
Here we discuss briefly the repertoire of basic types. 

There are no values of type Void. Void is used primarily as 
>e return type of a funct i on return i ng noth i ng. 

The type Signed-Int corresponds to 'a Signed integer. 
Typically, its size is "natural" to the machine's arithmetic 
abi I ities. 

Signed-Short-Int and Signed-Long-Int are two other signed 
integer types. The set of values of a Signed-Short-Int is a 
subset of that of a Signed-Int, which is a subset of that of a 
Signed- Long-Int. These variations on Signed-Ints are provided 
to obtain more efficient or larger integer calculations where 
necessary. Even if an implementation defines Short-Int or 
Long~ Int to have the same set of values as Signed-Int, all three 
are nevertheless distinct types. 

Each of the three Signed-Int types has a corresponding 
J,lnsigned type whose size is the same as the corresponding 
;gned type. The set of non-negative values of a signed type is 

a subset of that of its corresponding unsigned type. 
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The values of a Signed-Char are a subset of the values of a 
Signed-Int. The values of an Unsigned-Char are a subset of the 
values of an Unsigned-Int. However .. the values of a Signed­
Char need not be a subset of the values of a Signed-Short-Int; 
I ikewise with the corresponding unsigned types. Essentially .. 
the Char and Short-Int types are two not necessarily related 
integer types shorter than Signed-Int. 

The rules for assignment compatibi I ity presented later in 
this Section require two distinct integral types to have the 
same set of values if the two types are of the same size and of 
the same "signedness"'. 

An object declared of type Signed-Char can hold any <CHAR). 
<CHAR)s specified without the '\ddd ' or '\xddd' form are 
gu~ranteed to be non-negative; otherwise .. the sign of a <CHAR) 
is implementation-defined. Unsigned-Char can hold any non­
negative <CHAR). 

Float., Double .. and Long-Double are floating( -point) types. 
Any Float value is representable in Double. Any Double value 
is representable in Long-Double. Even if an implementation 
defines Float and Double to have the same set of values, they 
are nevertheless distinct types; the same holds for Double and 
Long-Double. 

The set of integral values is not necessari Iy contained in the 
set of floating values, and vice-versa. . 

3.5 Denoting New Types 
(canstructld ty,.s; array ... aapoa.nt typ.; iDcoapl.ta ty,.s; peiatar type; structur. 
ad uni. twes; ..... er·list; scalar lid IHr'g'ta t".s; functiODali ty types; 
pretotJPIIH .·prlut,,. MctiHlli tits; par_tar types; ty,. UUtill] 

There are methods for denoting new .. non-basic types based 
on existing types; we call these the constructed types. The C 
syntax for denoting these types is given in a later section; here 
we specify our own notation to denote such types. 

If I is an integral value and T any type, [I]:T is an array type 
with component typeT .. and [7]:T is a incomplete array type 
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with component type T. An incomplete array type is one for 
which the size of the array is unknown. 

If T is a type, NT is a pointer O11ewith base typeT. 
If M is a Member_list (see Section Oeclarations/Tagged 

Types for its syntactic definition), Struct{M} is a structure 
Q17ewith member-listM, and Union{M} is a union Qpewith 
member-listM. The C language also provides for incomplete 
Struct and Union types, where the Member_list is not given. 
Such types are denoted by Struct{?} and UniooI?}, respectively. 

The types [1]:T (for any T), Struct{1}, and Union{1} are 
collectively referred to as the incomplete types. Incomplete 
types have fewer uses than complete types. Primari Iy .. objects 
of incomplete types may not be declared,. and the sizes of 
incomplete types are specifically undefined. 

Arithmetic types and pointer types are collectively called 
scalar types, and array, struct, and union types aggregate 
types. . 

Examples: 
extern int a[] [3]; /* a: type [?]: [3]: Signe(Cint. */ 
double *pd; /* pd: type -Double. */ 
double *apd[3]; /* apd: type [3]:-Oouble. */ 
double (*pad)[3]; /* pad: type -[3]:Oouble. *1 
struot {int x;} *aps[3]; 

/* aps: type [3]: -Struct{int x;}. *1 

Functional ity types. There are four kinds of functionality 
types: those types describing functions. The four kinds fall into 
two classes: the protoQpefunctionalities and the non-proto-
O1Jefunctional ities: 

(a b) (1) -) T for T a type; 
() (Tt ..... Tn) -) T \ 
(c) (Tl ..... Tn)p -)T I forT .. Tl ..... Tn types .. n10. 
(d) (T l ..... T n, ... )P -) T / 

The first two kinds represent notions in KR C, and are the 
non-prototype functional ities. In class (a) the function returns 
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values of type T, but the number and types of its parameters 
are unknown. In class (b) the parameter number and types are 
known: T 1., ••• T n (i f n = 0, there are no parameters). (b) can 
arise only from a function definition, never from a declaratio( 
alone, since any attempt to specify parameter types in a 
declaration alone requires the use of prototype functional ities. 
See Subsection 3.10 for the distinction between definitions and 
declarations. 

The last two kinds are the prototype functional ities. In 
class (c) the parameter number and types are known. In class 
(d) the trai ling " ... " indicates that more arguments may be 
passed than there are parameters declared. 

Prototypes are a recent (ANSI) addition to C. They allow 
more secure Pascal-style argument type checking at function 
calls. The constraints and semantics of calls to functions of 
prototype functionality are quite different from those without 
such; see Section ~ Expressions/Function Call. A declared 
function f has a prototype functionality when the nontermina' 
Abstract.J)8rameters is used to specify fls parameters; it ha~ 
non-prototype functional ity otherwise (see Section Declara-
tions/Function Oefinitiotj. 

EXlimpJes: 

int fl (); 1* f1: type (?) -) Signed_into *1 
int f2(void); 1* f2: type Op -) Signedjnt.· *1 
double f3(unsigned ohar C, float f); 

1* f3: type (unsigned_char. float)p -) Double. * I 
double f4(unsigned char c, float f){ 

... 1* f4: salle as type of f3. it I 
} 

double f5(~ f) unsigned char c; float f;{ 
... /* f5: type (Unsigned_char. Float) -) Double. */ 
} 1* /lot safte type as that of f3: not a prototype. * I 

int *(*f6(double»[3]; 
1* f6: type (DOUble)p -) -[3]: -Signedjnt. *1 

Note that compatibility with old C demands rather 
awkward notation to declare an external function taking no 
parameters: "(void)", as in f2 above. This is because 
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"().' alone declares a function whose parameter types are 
unspecified. Declarations I ike that of f 1 should be avoided. 

Why new type notation. We introduced this new notation 
have an accurate way of referring to types. The syntax used 

-,n C to specify types is not conducive to easy comprehension of 
the specified type, nor is it appropriate to the specification of 
language rules for types. This new notation borrows symbols 
from C to facilitate readability. 

This new notation also has an advantage over C's notation 
for denot i ng types in that it requ i res no precedence or 
associativity rules to understand, nor therefore parentheses to 
override precedence and associativity, and it is unambiguous (a 
grammar for 'it, which is impl icit in the above rules, is in fact 
LR(O». See the examples above, some of which contrast CiS 
awkward need of parentheses with the clean parenthesis-free 
type notation. 

Type Hexpressions·· constructed with this notation can be 
"'Qad strictly from left-to-right. For example, in the C 
Jclaration Hint *f(); ", f has type ()-)ttSigned-lnt; in the C 

declaration Hint (*f)(); H, f has type tt( )-)Slgned-lnt. 

The rigor of the notation can yet be improved, since the 
definition of Struct and Union types relies on the syntactic 
notion Member_list with no further interpretation of the 
phrases of those categories. But the notation can be made 
completely formal only at considerable expense. 

The tradeoff 'wi II be evident later when sl ightly more com­
plex rules are necessary for defining type sameness and equiva­
lence. We appeal to the reader's intuition that, for example, 
the text of the Member_list is insufficient to 'determine the 
full type; two Member_lists can be textually identical yet in 
different blocks so type references within the I ists may be 
different. ' 
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3.6 Same Types 
[constructed types; instance of construction] 

Each instance in C of a constructed type denotes a type 
distinct from any other constructed type. Thus, although two 
type constructions in C may appear identical, they denote 
different types. It is as if each type had ,as a component its 
"instance of construction". Two types are the same type if 
they have the same instance of construction. 

For convenience, our formal notation for types does not 
incorporate instance of construction, because o~ce the notion 
of "same type" is formal ized, the instance of construction 
concept will be used infrequently. However, a C language 
translator must encode the instance of construction in its 
int,ernal representation of types. 

Examples: 
struct s {int x, y;} xl; 
struct {int y,z;} x2; 
struct s x3; /* A use, not a definition. */ 
char *x4, *><5; 
int x6[10], x1[10]; 
void V() { 

struct s {int )(, y;} xl; 
} 

There are three distinct declarations of Struct types; as 
specified in Section Dec/arations/Tagged TYPes, the third 
I ine references the type denoted by the constructor on the 
first line, so that x3 and x 1 are of the same type. Even 
though the first and last declarations appear textually 
identical, they denote distinct types because they have 
different instances of construction. x4 and x5 are also of 
distinct types: two distinct "Signed-Char types. Similarly, 
x6 and x7 are of two distinct [1 O]:Signed-lnt types. 

v. 11.01. 85 @) 1984-85 t1etaWare Incorporated 



Concepts page 3-13 

3.7 Equivalent Types 
[sa"e variable; Safte types; siftilar types; independent translation] 

The requirement of identical instance of construction in 
\~he concept of same type leaves a major problem unsolved: 
how to specify type security across independent translation. 
For example, rules explained later state that it is possible to 
declare a variable X in source file Fl and a variable X in file F2 
and have them denote the same object, thus: 

File Fl: File F2: 
int *X; int *X; 

The two Xs are of distinct -Signed_lnt types, since the 
instances of construction of the types are different. How can 
the "same object" have two distinct types? 

The solution we propose is to require only that distinct 
declarations of the "same variable" be associated with 
"equivalent" types rather than the "same type". Two type 
denotations T and T' denote equiva/enttypes if: 

1. T and T' are of the form Struct{M}, and the corresponding 
types of each member in M are equivalent; or 

2. T and T' are of the form Union{M}, and the corresponding 
types of each member In M are equivalent; or 

3. T and T' are "similar" types. 

Two types T and T' are simi/erif types Sand SI are similar and 

1. T and T' are the same type; or 

2. T is of the form -S and T' of the form -SI; or 

3. ,T is of the form [V]:S and T' of the form [V]:SI; or 

4. T is of the form [?]:S and T' of the form [?]:S'; or 

5. One is of the form (7) - > S and the other (T 1, ... T n) - > S'; or 
6. T = I -) Sand TI = II -) SI, and I and II are of the same 

form, i.e. one of the parameter forms of the four'function­
al ity forms used in Subsection 3.5 above .. and the corres­
ponding parameter types are similar. 
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The reason for the "simi larN subcategory of type equivalence 
is that similarity can be applied within a single C compilation 
unit .. whereas the additional notion of type equivalence is used 
only for independent campi lation. 

EXilmples: 
typedef chaT T; 
struct s {T x" y;} xl; 
void V() { 

.typedef int T; 

. struct s {T x" y;} x2; 
struct s2 {T x" y;} x3; 
} 

char *><4, -x5; 
int ><6[10], x7[ 10]; 

. int f1 (); 
int f3(int x" 'int y); 
int f3(x" y) int x" y; {_} 
int f4(int a, ~int b) {_} 

x1 and x2 are not of equivalent types: the two Struct{l -
x,y;} types are not equivalent - in one case T refers to the 
type Char and in the other the non-equivalent Signed-Int. 

x2 and x3 are of equivalent types since the tags sand s2 do 
not figure in the type denoted by the declarations. 

x4 and x5 are of distinct but equivalent (and similar) 
-Signed-Char types. 

x6 and x7 are of distinct but equivalent (and simi lar) 
[1 D]:Signed-lnt types. 

fl and f2 are not of equivalent types, but fl and f3 are, and 
f2 and f4 are. 

The KR definition of C does not recognize the problem of 
type security across independent translation. X3Jll is still 
del iberating it at the time of this writing. All C translator ... 
known to this author do not type-check across independently 
translated files, with attendant risk to the programmer if he 
provides inconsistent declarations. 
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3.8 Lifetimes 
[global and local lifeti"es; Co"pound_state"ent; storage classes] 

Objects manipulated in a C program have two different 
linds of "Iifetimes": global and local. 

An object of global lifetime exists and retains its value 
throughout the execut i on of the ent i re program. 

An object of local lifetime Is created upon each entry into 
the Compound_statement in which the object is declared and is 
discarded when the Compound_statement is exited. By 
"created#" we mean only that the storage for the variable is 
allocated, but not that the variable is provided with any initial 
value(s). Storage is allocated even if the Compound_statement 
is entered ~~abnormallyN, through a jump transfer of control 
(e.g. goto). . 

The lifetime of an object is determined by its storage 
class, as discussed in the next subsection. 

Examples: 
int x; 
void f() { 

int x; 
{ 
int y; 

L: ~ = 3; 

goto L; } . 

3.9 Storage Classes 

1* x: global lifeti..e. 
1* f: global lifeti"e. 
1* x: local lifetiPie. 

1* y: local lifetiRe. '* Storage for y is always allocated 
1* whenever we arrive at L. 
1* even through fteans of this goto. 

(autORatic. static. and typedef storage classes; static-private, 
static-export. and static-l"port] 

*1 
*/ 
*/ 

*1 
-/ 
*/ -, 

There are three storage classes: automatic, static, and 
·typedef. The static storage class is further subdivided into 
.static-private, static-export and static-import which are 
mutually exclusive and jointly exhaustive of static. 
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An object with the static storage class has global lifetime; 
an object with the automatic storage class has local lifetime. 

There are no objects of the typedef storage class, anf­
therefore no I ifetime issues. This class exists only for defini 
tional convenience. 

Examples: 
int x; 
extern int Z; 
static void f(){ 

'int X; 
} 

typedef int T; 

/* x: static-export =) global lifetifte. */ 
/* Z: static-i .. port =) global lifeti .. e. */ 
/* f: static-private -=) global lifetifte. * / 
/* x: autOftatic =) loc~l lifetifte. */ 

/* T: typedef =) lifetiM irrelevant. */ 

3.10 Declarations and Definitions 
[type; storage class; storage allocation] 

A declaration in C announces the properties of an identifier 
N, e.g. its type and storage class. Additionally, a declaratio" 
may be a definitionof N; not all declarations are definitions. 

Intuitively, definitions cause storage to be "allocated" for 
variables and the code body of functions to be specified. 
Exactly those declarations having storage class static-export, 
static-private, or automatic are definitions. 

Examples: 

int x; 
extern int z; 
static void f(){ 

int x; 
} 

typedef int T; 

v. 11. 01. 85 

/- x: static-export =) definition. - / 
/* Z: static-iftl)ort =) not defini tioo. - / 
/* f: static-private =) definition. */ 
/* x: autoftatic =) defini tioo. * / 

/* T: typedef =) not a definition, */ 
/* but irrelevant for typedefs since * / 
/* no storage is allocated for T. */ 
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3.11 Independent Translation; Dupl icate Declarations 
[s~arina declarations; separaU ClIIPUation lftiU; static-i.,ort, statiC-I.,ort, 
an. static-private; storage-class; inforftati,n sililar; iRforlation increasing] 

Generally, separate compi lation units of a C program 
'share" declarations of data and functions - if there were no 

sharing, there would be no purpose for combining all the units 
into the single program. Sharing is achieved when two distinct 
declarations denote the same entity, as described in this 
subsection. 

First, there are restrictions placed upon distinct declara­
tions of the same name N appearing in distinct compilation 
units. Under the restrictions, the distinct declarations denote 
the same object or function and therefore achieve sharing 
among units. 

Second, certain apparent dupl icate declarations are per­
mitted in a single compilation unit. "extern int a[]; ... int 
a[10]; II exemplifies a common case, where the former de­
claration is typically contained in an included source fi Ie. We 
'Jay "apparent" because the special rules described below 
specify that an apparent dupl icate does not itself declare, but 
instead modifies, the previous declaration, so there is yet a 
single declaration. Therefore we can always speak of a single 
compi lation unit having a single declaration for a name N in 
the outermost block. 

The description of the dupl icate declaration rules is involv­
ed. The reader may find it profitable to go through the rest of 
this manual in'the frame of mind that a C program is a single 
compi lation unit, then return here for multiple-unit issues. 

Denotation of the same entity among separate compi 1-
ation units. Consider all declarations in a C program of a 
given name N wi thin the ordinary name space such that the 
storage class of each such, declaration Di is static- import or 
~tatic-export. ·AII the Di denote the same entity if the 
.following two conditions hold: 
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(a) the types specified in the Di are equivalent, except that 
here type [?]:T is considered equivalent to [V]:T for any 
V, in any non-function declaration, and 

(b) exactly one of the Di declares N of storage class static 
export. 

Note that this permits one or more static-private declara­
tions of N in a program. Such declarations do not interact 
with other declarations of N of static storage class. 

EXamples." 

Compilation Unit 1: 
extern int N[]; /* Static-import. */ 
extern int N[]; /* Static-import. */ 
int N[2]; /* Static-export. */ 

Compilation Unit 2: 
extern int N[]; /* Static-import. */ 

Compilation Unit 3: 
static char N; /* Static-private. */ 
void F() { 

extern int N[]; /* Static-import. */ 
extern int N[]; /* Static-import. */ 
} 

Among these three units there are only two distinct enti­
ties named N; one is declared of type Char in Unit 3 and the 
other is declared six times in the three campi lation units. 
The following additlonaldeclarations are notal lowed: 

Compilation Unit 4: 
void G() { 

extern float N; /*Static-import,but wrong type. */ 
} 

Compilation Unit 5: 

int N; /* Duplicate static-export. */ 
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extern int N[3]; 
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/* [3]:Signed_Int not equi- */ 
/* valent to [2]: Signed_Int. */ 

The single static-export declaration 0 may be viewed as 
-(he "seat" of the declared entity. The static- import declar­
ations may be viewed as merely referencing D. (In fact, import 
and export declarations are commonly implemented this way.) 

There may be at most one initialization specified for a set 
of multiple declarations. This restriction Is imposed in Sec­
t i on Dec/arations/Non-Function Definitions on in i t i a I izat ions 
where only static-export declarations are allowed to have ini­
tia� izations, and the rules here permit only one static-export 
declaration. ' 

Note that the rules require a definition of storage class 
static-export for an identifier. Alternatively, some C lan­
guage processors weaken rule (b) above to read 

(b') at most one of the Di declares N of storage class 
static-export. 

These processors create the definition implicitly when the 
translated results for the independently translated compi 1-
ation units are combined to form an executable program. 

Rule (b) as it stands necessitates an aspect of program un­
reliability, in that at least two textually different declara­
tions for the same name are required, one by the "provider" of 
the name (the, definition declaration), and the other by any 
"user'" of the name: 

Provider: 
int '*X; 

User: 
extern int *)(; 

Changing XiS type requires modifying two distinct declara­
tions; if one modification is forgotten, the program is no long­
lr correct. On the other hand, with rule (bl

), the distinction 
oJetween user and provider is only in the mind of the program­
mer .. and both may include the identical declaration of X, so 
any change requires only the change of a single declaration: 
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Shared declaration, 
Provider: User: in file NX. deFN: 

#include H)(. def" #include H)(. defH int *)(; 

Dupl icate declarations in a single compi lation unit. An 
apparent dupl icate declaration 0 of a name N is allowed in the 
presence of a previous declaration 0' of N in the same scope, 
provided certain conditions are satisfied. Furthermore 0 may 
"update U the declaration of 0, i.e. revise its type or storage 
class so that from the defining point of N in 0' through the the 
remainder of the scope of 0, N Is associated with a modified 
property set. " 

Example: 
extern int *(*b[ ])[ ]; 
extern int *(*b[ ])[5]; 

int *(*b[3])[ ]; 

The first line declares b of type []:M[]:MSigned-lnt (an array 
of pointers to arrays of pointers to Signed-Ints). ThF' 
second supplies the size of the second [J, giving []:M[5J~ 
MSigned'-lnt as the "updatedU type of b. After the third 
declaration, b is of type [3]:M[5J:MSigned-lnt, and its stor­
age class is "changed U to static-export. 

Here are the rules concerning would-be dupl icate declar­
ations. Assume declaration 0 declares N of mode M, type T, 
and storage class C, and apparent dupl icate declaration 0' 
declares N of mode M', type T', and storage class C'. 0' is not 
a dupl icate declaration of N if and only if either: 

(a) M and M' are var, C and C' individually are static­
import or static-export, and either T and T' are similar 
or T' is "information sim i lar#' to T (defined below); or 

(b) M and M' are fen and T and T' are sim i lar. We further 
require that two distinct declarations of the samr 
function must have identical parameter names, if given~, 

In case (a).. if T' is "information increasing" - where 
information similarity holds yet T' has "more informationU 
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than T, r t is "updated" to reflect the increased information. 
The increased information comes in the form of array bounds 
whose size are unspecified in T, i.e. the updating consists of 
changing an incomplete []: ... type to a completed [V]: ... type, 
Ihere V is the new information. Furthermore, if C was 

static- import and C' static-export, C is changed to static­
export, so that the net effect is that C is exported. Note that 
neither C nor C' can be static-private; e.g. "extern int a; 
static int a; " is illegal. 

In case (b), if 0 1 is not part of a function definition, it is 
essentially ignored. If 0' is part of a function definition, it 
"replaces" the declaration 0 of N for the remainder of N's 
scope. See the examples at the end of this subsection. 

Type T' is defined to be information similar to type T in 
the same way they are defined to be similar, except that in 
cases 2, 3, and 4, S' is information sim i lar to S rather than 
just simi lar, and we need the addition of the following case 4': 

4'. T is of the form [1]:S and T' of the form [V]:SI; 'in this case 
T' is said to have more informiltionthan T, viz. the array 
bound. 

Example: Revisiting the example given above: 

extern int *(*b[ ])[ ]; 
extern int *(*b[ ])[5]; 

int *(*b[3])[ ]; 
the type of the second declaration is information- increas­
ing with res'pect to the type T of b determined in the first 
declaration, so that T is updated to reflect the [5] bound. 
The type of the third is I ikewise increasing with respect to 
(the updated) T, so that T is updated again to reflect the [3] 
bound. Also, the storage class of b is altered to static­
export. 
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EXamples: (dupl icate function declarations) 
int f(); 1* No pan, infor .. ation. 
int f(int); 1* Illegal: not siftilar to first. 
int f(float r) { 1* Illegal: not si .. ilar to first. 

... 
} 

int g(int i); 
int g(float); 
int g(int j); 
int g(int i) { 

... 
} 

int h(); 
int h(r) float r; 

... 
} 

1* Par .. type and nMe given. 
1* Illegal: float != into 
1* Illegal: j != i. 
1* Definition replaces first dcln of g. 

1* No par .. infor .. ation. 
{ 
1* Definition replaces first cicln of h. 

3.12 Compatibl~ Types 
[siftilar types] 

*1 
* '­I 

'I 
~ 

*1 
*1 
*1 
*1 

*1 

*1 

Where two different types participate in an expression, 
they must sometimes be "compatibleN. See, for example, the 
?: and -= operators in Section Expressionsand the definition of 
assignment compatibility below. Compatibility is like "simi­
larityN except in .allowing one exception: pointers to non­
functions can be mixed with pointers to Void. 

Two types are compatible if they are simi lar, or one is 
"Void and the other of the form "S, where S is not a func­
tional ity type. 

Examples: 
int *x, *Y; 1* Types of x and yare cO"f)8tible. since si .. ilar. *1 
void *2; 1* Types of x and z and of y and z are cOftpatible. *1 
int **ppi; 
void **ppv; 1* Types of ppi and PPy are not coftPatible. *' 
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3.13 Assignment Compatibility;Arithmetic Conversions 

The notion of assignment compatibility is used to explain 
the constraints and semantics of the C assignment operators 
"'nd function-call operator. In the context of those operators, 
arithmetic conversions can take place when certain types are 
not the same. 

Intuitively, type A is assignment-compatible with type L if 
"VL = VR" is a val id assignment expression, where VL is an 
object of type Land VR is a value of type A. Below are the 
rules for assignment-compatibility. 

The semantics of assignment permit potential conversion 
of VR to VR' in preparation for storing into Vl. In all cases 
except where A and L are integral types, the semantics of 
assignment are undefined when VR' is a value not representable 
in type L. The semantics of converting VR to VR' are included 
in the rules below. 

Constraints and Semantics 
Type A is aSSignment-compatible with type L if one of 

these three rules apply: . 

1. A and L are the same type T, and T is not an in,complete 
type. Semantics: VR' = VR. 

2. Rand L are compatible pointer types. Semantics: VR' = VR. 
3. Rand L are distinct arithmetic types. Semi1l1tics: 

a. Both Rand L are integral types. 

Let WR be the width of Rand Wl be the width of L. Let 
SR be the sign (either "signed" or "unsigned") of A and 
SL the sign of L. Consider the cases: 

Wl > WR: the conversion truncates bits. 

Wl < WR: the convers i on preserves va I ue. 

Wl = WR: (two sub-cases) 

Sl = SR: the conversion preserves value. 

Sl ! = SR : the conversion is bit-preserving: the bit 
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pattern of VR is stored into VL. Value is 
preserved if and only if VR is a value in R. 

b. R is a floating type and L an integral type. 

If VR is non-negative, VR' is the largest integer not 
greater than Vn; if VR is negative, whether VR' is the 
largest integer not greater than VR or the smallest 
integer n,ot less than VR is implementation-defined. 

c. A is an integral type and L a floating type. 

VR' is the floating value in L nearest VR. If there is no 
unique nearest value, the result is implementation­
defined. If VR is outside the range of values of L, the 
result is undefined . 

. d. A is Float and L Double. 

VR' = VR. 

e. A is Double and L Float. 

VR' is VR rounded to the nearest value in A. If there is n 
unique nearest value, the result is implementation­
defined. If VR is outside of the range of values repre­
sentable in L, the result is undefined. 

Examples: As~ume that long ints are wider than ints and 
that double has more range and precision than float. 

int *pl, *p2; 
struct {int x;} stl; 
struct {int x;} st2, st3; 
int i; long int 1; float f; double d; unsigned u; 
pl I: p2; /* legal. */ 
st 1 = st2; /* Illegal. */ 
st2 - st3; /* legal. */ 
i = 1; /* Conversion truncates. * / 
1 = i; /* Conversion preserves value. */ 
u = i; /* Conversion preserves bits; ftay preserve value. .' 
f = i; /* Value nearest i in Float is stored in f. * I 
d = f; /* Exact value stored. * / 
f I: d; /* Value nearest d in Float is stored if it exists. * / 
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3.14 Integral Widening Conversions 
(Ilithlltic con.lrsilns; unsignldnlss·prlslrvinl vlrsus valal·prlserving] 

Many contexts require type Signed-Int or Unsigned-Int and 
Hwiden~~ any shorter integer types to one of these types. The 
widening is defined as follows: 

Widen(T) = 
if T is Signed-Char or Signed-Short-Int 
then Signed-Int 
else if T is Unsigned-Char or Unsigned-Shart-Int 

then if the size of T is the same as that of 
Unsigned-Int on the target architecture 

then Unsigned-Int 
else Signed-Int 

else undefined. 

4.28S0 provides slightly different widening: unsigned types 
always widen to Unsigned-Int. This rulel often called "unsign­
'dness-preserving~' as opposed to the Hvalue-preserving" Widen 

defined above, produces quite a few surprises, as illustrated by 
the following C text: 

void f() { 
unsigned char c = getehar(); 
if (c - '0' < 0 II c - '0' > 9) 

printf("Non-digit.\n"); 
} 

In 4.28S0 He - '0'" is never negativel since it is an unsign­
ed type (see the next Subsection for combination of operands in 
'_I), so the first test always fai Is. In KA, there, is no Unsigned­
Char' ar Unsigned-Short-Int type so Widen agrees with KR. 
X3J11 also uses the widening rules of Widen. 
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3.15 Combination of Operand Types 
[arithReticconversions] 

Binary operators may operate on values of different types 
When this happens, generally both values are converted to a 
common type, which is the result type of the operation. The 
function Common(Tl,T2) specifies the common type T of two 
operand types T 1 and T 2 that are both arithmetic types. It is 
defined as follows: 

1. An implementation may employ either rule (a) or (b): 
a. If either T 1 or T 2 is Long-Double, T i$ Long-Double; 

otherwise, if either T 1 or T 2 is Double, T is Double; 
otherwise, if either is Float, T is Float. 

b. If ei ther T 1 or T 2 is Long-Double, T is Long-Double; 
otherwise, if either Tl or T2 is Float or Double, T is 
Double. 

2. Or, if one is Unsigned-Long-Int, T is Unsigned-Long-Int; 
or, if one is Signed- Long-Int, T is Signed- Long-Int; 
or, if one is Unsigned-Int, T is Unsigned-Int; 
or, if one is Signed-Int, T is Signed-Int; 
otherwise, T is Common(Widen(Tl), Widen(T2» 

(widenings guarantee that one of the above cases appl ies). 

3.16 Expression Evaluation: Side Effects, Sequence Points 
[CaRRa operator] 

The semantics of an expression is two-fold, involving the 
production of a value, called the eViJluiJtionof the expression, 
and potential "side effects". 

A side effectis an aspect of an expression's semantics that 
need not occur during the evaluation. However, If an expression 
is evaluated, any associated side effects must have taken place 
by certain points called sequence points. Thus, side effect~ 
may occur any time from the inception of the evaluation ot 
the expression up to the next sequence point. The term and 
concept of a "sequence point" are borrowed from X3J11. 
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The end of execution of any statement or declaration is a 
sequence point. This means that by the end of the execution of 
the statement or declaration ... all pending side effects must 
have occurred. 

Sometimes the end of the evaluation of an expression is a 
sequence point. This means that by the end of the evaluation of 
the expression, all pending side effects must have occurred. 

In Section ExpressioflSwe specifically note which expres­
sions have side effects, and in any section where an expression 
is used we specifically note if its evaluation is a sequence 
point. In most cases the evaluation of an expression contained 
within a statement is a sequence point. 

Example: There are two side effects oin the expression 
"1 ++ + j++H: the first increments the variable i, and the 
second the variable j. However, the side effects need not 
occur during the evaluation of the expression or during the 
evaluation of the subexpressions 1++ and j++. But after the 
execution of the statement "k = i++ + j++; ", the side 
effects must have occurred, so a use in a subsequent state­
ment of 1 or of j must access the incremOented value. 

In "k • i++ + j++; H, there is no question what k will be 
aSSigned, assuming the values of i and j are known. 

Example: But consider the more interesting case: 

int 8, b, c, k, i • 0; 
k = (a = i++) + (b = i++) + (c = i++); 

An implementation is free to evaluate the three assign­
ment expressions in any order (see Section Expressio~; 
assume for the moment it is left-to-right. VVhat one 
might expect is that a is assigned 0, b 1, and c 2. But since 
the increment~tion side effects can be delayed to the end of 
the expressions, all of a, b, and c can be assigned D. Thus k 
can take on any of the values 0, 1, 2, or 3, depending upon 
when side effects occur. 
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Example: Introducing sequence points with a comma 
operator can eliminate uncertainty. Consider: 

int 8 .. b .. c .. k, i II: 0; 
k = (a· = (i++, i-1»+(b = (i++, i-1»+(c = (i++ .. i-1»; 

Here .. independent of the evaluation order of the assign­
ment subexpressions .. the values assigned will be 0, 1, and 2, 
so k will obtain the value 3. But it is still not known which 
of a .. b .. and c ·obtain the value 0, 1, and 2, since the order of 
evaluation of the operands of + is unspecified. 
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4: 
Lexicon 

4.1 Character Set -----------------------------. 
[target and host character set; string ter"inator] 

Two sets of characters are implementation-defined: that 
interpreted by the target machine (the target set), and the 
hostset in which C program text is written. The distinction 
matters for the string and character words that are written 
with the host set and translated into the target set. 

A character whose representation has ·all bits zero must 
exist in the target character set, representing the character 
used to terminate strings. 

The host character set must contain the following charac­
ters: the space character; characters representing audible 
alert, backspace, horizontal tab, new I ine, vertical tab, form 
feed, and carriage return; the 52 uppercase and lowercase 
characters of the Engl ish alphabet; the 10 decimal digits; and 
the following 29 graphic characters: 

! "',&' ()*+, -. /:; <=>?[\]"'_{I}'" 

4.2 Line Sp.licing ------------------------------. 
[end-of-line; "\"] 

C program text may be divided into a sequence of lines. 
Each line is terminated by what is designated in the grammar 
below as an "Eol", for end-of-line. The host environment may 
terminate lines with a special character, by keeping track of 
the record length of each I ine, or by some other technique. 

No matter how this is done, each I ine that ends with the 
character "\" is considered to be "spliced .... with the next line, 
as if the I ine terminator were not present. This permits any C 
word to be longer than a single I ine. For example: 
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This 
char *s = "a long\ 
string"; 
short_id = a_longer _id\ 
entif\ 
ier; 
/* This is a \ 
conment. */ 
)( = \ 
3; 

page 4-2 

is equivalent to 
char *s = "a longstring"; 

/* This is a cooment. */ 

)( = 3; 

Line splicing is not formally treated in the lexical grammar, 
even though it is possible, because it would incr'ease the gram­
mar's complexity out of proportion to its importance. 

DisclJSSion 
, Line spl icing is not a part of KR or 4.2BSO. There, \ is used 

only for continuing long strings to the next line. 

X3J11 decided to general ize the construct so that it could 
always be used to overcome I ine length I imitations on some 
operating systems. 

Although it wi II rarely be used by programmers for any­
thing other than continuing strings, it may simplify program­
generat i ng programs. 

4.3 Preprocessor and Lexicon ---------------------
[line boundaries] 

Part of the definition of C includes a so-called preprocess­
orthat was introduced in Section Notationas effecting condi­
tiona� campi lation, fi Ie inclusion, and macro substitution. 

The conditional compilation aspect of the preprocessor 
necessitates two distinct lexical descriptions of C source text: 
that text excluded from compi lation, and that text included in

l 

compilation. These two descriptions are contained in the single 
lexical grammar presented here. 
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The preprocessor is the only part of C where I ine boun­
daries playa significant role. Commands to the preprocessor 
are terminated by line boundaries, and conditionally compi led 
text consists only of complete I ines, not partial lines. 

The preprocessor lexical conventions do not fit well with 
the rest of the C language, so a substantial part of the lexical 
grammar is devoted to the preprocessor. Much of this part, 
and the semantics of the preprocessor - i.e. the rules and 
effects of conditional compilation, fi Ie inclusion, and macro 
substitution - are described in Section Preprocessor. 

4.4 Included and Excluded Text -------------------­

Syntax 
soanner C_lexioon: 
C lexicon -) Text; 
-Text -) (Words Line end)* (Control line Text)? 

-) \Scanning Skipped_lines Control_line" Text; 

An overall C program, on the lexical or word level, is one 
of two forms of Text: Text that is included in compi lation 
(the first alternative), or Text that is excluded from 
compi lation. 

Included Text consists of a sequence of I ines each of which 
contains Words. This sequence of I ines is terminated by either 
the end of the program or a Control_line (preprocessor direc­
tive) followed by more Text. 

Excluded Text consists of a sequence of Skipped_lines. 
That is followed by a Control_line, then more" Text. Control_ 
line is needed after Skipped_lines so that it wi II be included 
rather than skipped. 

VVhether to include or exclude text is determined by the 
~1reprocessor and is described in the grammar by "\Scanning". 
'#'\Scanning" in the second rule for Text means to use that rule 
if notscanning, i.e. if skipping. 
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The complexity of the grammar at this level is due entirely 
to the line or i entat i on of the preprocessor. 

4.5 lords --------------------________________ a 

Syntax 
Words -) Word-; 
Word -) String I Char I Number I Identifier 

I Del1mdter I Punctuator I Operator I Comment; 

ThelJlords of C are Strings, Chars, Numbers, Identifiers, etc. 

4.6 Identifiers -------------------------------. 
Syntax 

Identifier-) Id text =)'(IDENTIFIER)'; 
Id_text -) letter (letter I Digit)-; 
letter -)' A' . ". • Z' I · 8' .. • z· I · _. ; 

The nonterminal Id_text is used also in describing Control_" 
lines and hence cannot be back-substituted. 

Constraints 

Each character in an Identifier stands for itself, and 
distinction is made between upper and lower case. Thus the 
Identifiers "abcN and "ABCN are regarded as different: two 
Identifiers are the same only if they consist of exactly the 
same sequence of characters. There is no constraint on the 
I ength of an Identifier. 

Semantics 

The text of an Identifier has no semantics at all. Identi­
fiers serve only to relate declarations of things with their 
subsequent uses; an executing C program deals only with the 
declared things and has no need for Identifier texts. 
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DisclISsion 

KR specifies that only the first eight characters of each 
Identifier are significant. In addition, linkers on some ma­
chines accept names of limited length. 4.2BSD permits names 
'of unl imited length. X3Jll requires an implementation to 
treat as significant the first 31 characters of each name not 
having static-export or static- import storage class. 

4.7 NtJlllbers - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • 
[<INTEGER), <OCTAL>, <HEX>, <FlOAT>; Signed-Int, Unsigned-Int. 
~igned-long-Int, Unsigned-long-Int] 

Syntax 

Number -) Integer I Octal I Float I Hex; 
Integer -) ',' .. 'g' ('_'? Digits)? Integral_suffix? 

.)' <INTEGER)'; 
Octal -) '0' ('_'? Digits)? Integral_suffix? 

-)' (OCTAL)' ; 
Hex -) '0' ('X' I 'x') Higits Integral_suffix? 

.)' <HEX)' ; 
Float -) Mantissa Exponent? Float_suffix?=)'(FLDAT)' 

-) Digits Exponent Floet_suffix?=)'<FLOAT)'; 
Mantissa-) 10 I Digits I Digits \Dot_dot I.' Digits?;' 
scanner Dot dot: Dot dot -) '0' '. '; end Dot dot 
Exponent - ) ~ E I I I e I ) "(. + I I I - I )? Digits; -
Integral_suffix 

-) "u' 'I'? I 'I' 'u'? I 'U' 'L'? I 'L' 'U'?; 
Float suffix . 

- -) 'L' I 'I' I 'F' I If'; 

Higits -) Higit+ list I I • #1 is non-standard. - , Higit -) '0' .. 'g' I 'A' .. 'F' 'a' .. 'f' . , 
Digits -) Digit+ list I I • #I is non-standard. - , Digit -) '0.' .. 'g' . , 
Oigits -) Oigit+ list • I • # is non-standard . - , 
~igit -) '0' .. '1' . , 
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The notation "\Dot_dot" indicates that Digits followed by 
• .' is a Mantissa only when what follows the Digits is not a 
Dot_dot, which is a scanner for '.' •.•. This disambiguates 
the construction "case 1 .. 2:" permitted in a s.itch 
statement. 

Four forms are described: Integer, Octal, Float, and Hex. 

As mentioned in Section Notation, the longest possible 
interpretation prevai Is: therefore" 12" denotes the Number 12 
instead of the Numbers" 1" and "2". 

Constraints 
The type of an <INTEGER> is Signed-Int unless its value is 

not a Signed-Int value, in which case it is Signed- Long-Int, but 
with the following exceptions: if the Integral_suffix • u' or 
'U' is employed, its type is the unsigned variety of the type 
just determined; and if '1 1 or 'L I is employed, the type is the 
long variety of the. type just determined. Thus "123ul" is of 
type Unsigned-Long-Int. 

If a <HEX> or <OCTAL) constant has a Signed-Int value, its 
type is Signed-Int; otherwise, if it has an Unsigned-Int value, 
its type is Unsigned-Int; otherwise, if it has a Signed-Long­
Int value, its type is Signed-Long-Int; otherwise its type is 
Unsigned- Long-Int~ Exception: the use of the Integral_suffix 
modifies the type just determined in the same. way as for 
<INTEGER>, explained in the prior paragraph. 

The "value" of a constant is defined in Sem/illticsbelow. 

The type of a (FLOAT> is Double, unless it is suffixed by '1 1 

or IL I, in which case it is Long-Double, or by If I or 'F', in 
which case it is Float. 

Example: Oxffff on a machine with two-byte Unsigned­
Ints and four-byte Unsigned-Long-Ints is the Unsigned-Int 
value 65_535; Oxl0000 is the Signed-Long-Int value 65_536; 
Ox7fff_ffff is the Signed-Long-Int value 2_147_483_647 and 
oxaooo_OOOO is the Unsigned- Long-Int value 2_147_483_648. 
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Semantics 
Underscores have no significance in Numbers. 

Integers are interpreted in base 10. 

Octal numbers are interpreted in base 8. 
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Floats are interpreted in the standard fashion. The letter 
'e' or 'E', if present, means "times ten-to-the-power-of" 
the (optionally signed) base-10 integer after the 'e' or 'E'. 

The characters following the 'x' or 'X' in Hex are inter­
preted as being in base 16. The letters' A' through 'F' (or' a' 
through' f') denote the values 1010 through 1510. 

Discussion . 
Underscores in NlJ11bers are an extension (from Ada) over al I 

C definitions and Implementations known to us. They are 
a II owed so that long numbers can be broken up for ease of 
reading. They may be used as a replacement for comma to 
separate thousands: 3_434_112, for example. Following Ada, 
High C disallows such forms as 1 to denote the integer 
1: each underscore must appear between two digits. 

In KA and 4.2BSD, the digits 8 and 9 are permitted in an 
octal constant and have values 108 and 118, respectively. Both 
X3Jl1 and High C disallow such. 

The Integral_suffix and Float_suffix appear only in 
X3Jll and her~. 'f' or 'F' can be used to prevent arithmetic 
operations from being performed in Double precision in the 
presence of a constant; see Section Expressions. But note that 
it cannot be used to pass a Float constant as a Float parameter 
instead of a Double in the absence of a function prototype, 
since in "g(1. Of); ", if there is no prototype for g, 1. a is 
passed as Double. See later discussions on parameter passing 
and function definition. 

At one time the" .. " word was allowed by X3Jl 1 for spe­
cifying ranges in a case statement. It was discarded because 
the committee felt that tHe task of preventing "1 .. 2"" from 
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being recognized as two Floats (expressed by the \Oot_dot in 
the grammar) was distasteful. There is no inherent ambiguity 
in the language definition, since on the phrase-structure level 
it is not possible for two Floats to be adjacent. Therefore 
"1 .. 2" must a/wa~be "1", " .. ", and "2" in a legal program. 

Machine dependencies 

The range and precision of real numbers are machine 
dependent. 

4.8 Strings and Characters ----------------------. 
[<STRING), <CHAR>; octal, hexadeciRal in strings and characters; 
Signed-Int; "'"; ASCII; arrays] 

Syntax 
String -) 'M' DQchar* 'M' =)'(STRING)'; 
Char -) ". '0 SQchar "" =)' (CHAR)'; 

DQchar -) Any-'\'-·H' I '\' Special; 
SQchar -) Any-·\·_···· I '\' Special; 
Special ~) 'a' I 'b' I 'f' I In' I 'rl 't' I 'v' 

I '\' I'M' I II II 

-) Oigit (Oigit Oigit?)? , Octal. 
-) 'x' Higit (Higit Higit?)?; # Hexadecimal. 

We describe two words here: the character Char and string 
String. In both, each character in the target character set is 
represented by a character in the host character set or by an 
octal or hexadecimal escape sequence. 

Any character the user can type at the terminal may appear 
within a String or as a Char. 

Constraints 

Each (CHAR) has type Signed-Int. Each (STRING) has type *T, 
where T is the type of c in "char c;", except when appearing

l 

as an Initializer of an array or as an argument to sizeof, when 
it has type [V]:T, where V is the number of characters in the 
string; see Sections Expressions/sizeof'and Dec/arations/Non­
Function Definitions. 

V. 11. 01. 85 (E) 1984-85 HetaWare Incorporated 



Lexicon page 4-9 

Semantics 

Char. The enclosing apostrophes for a Char have no meaning 
themselves, but merely delimit the enclosed character. The 
value of a character is the numerical value of the quoted 
character in the target machine's character set. 

Note that backslash (\) is not permitted as a single enclos­
ed character. When \ appears after the first apostrophe, the \ 
i tse I f and the character fo II ow i ng it together have one of the 
meanings indicated in the table below. (The ASCII value 
column is applicable only when the target character set is 
ASCII, and is provided here for convenience.) 

Pair Meaning ASCII value (in decimaO 
\a audible alert 1 
\b backspace 8 
\f form feed 12 
\n new line 10 
\r carriage return 13 
\ t horizontal tab 9 
\v vertical tab 11 
\\ \ 
\' 

, 
\" II 

\d binary value corresponding to octal digit d. 
\dd binary value corresponding to octal digits dd. 
\ddd binary value corresponding to octal digits ddd. 

Co~fraint'ln these last three cases the binary value 
must fall Into the range allowed for characters on 
the target machine. Each I'd" must be an Digit as 
defined in the grammar. 

\xd binary value corresponding to hexadecimal digit d. 
\xdd binary value corresponding to hexadecimal digits dd. 
\xddd binary value corresponding to hexadecimal digits ddd. 

v.11.01.85 

Constraint" In these last three cases the binary value 
must fall into the range allowed for characters on 
the target machine. Each II dU must be a Higit as 
defined in the grammar. 
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I n the forms \ddd and \xddd, once aga i n the "1 ongest text U 

rule of Section Notation applies. For example,' '\78' is an 
illegal Char: it would be two characters, \7 and 8. 

String. The enclosing quotes for Strings have no meaning 
themselves, but are merely delimiters of the string text. Each 
enclosed character denotes its corresponding character in the 
target character set, with the except i on of \ and •. When \ 
appears, it and the character following it together have the 
meaning as indicated in the above table for Char. 

The value of a String S depends upon its type T; see Con­
straintsabove. If T is a painter type, the value is a pointer to 
an array A of characters such that A[i] is the i th enclosed 
character, for 0 i i < L, and A[L] is the value of the character 
I \000 I. Here L is the number of characters in S. If T is an 
array type, the value of S is A. 

Discussion 
The Char • X' does not have the same value as the String 

"X". Confusing these is a common mistake in C and can cause 
disastrous results. For example, if function G expects a 
character string, the invocation HG( ·x·); N may cause G to run 
through arbitrary amounts of memory looking for the 
term i nat i ng 1\000' . 

\a, \v, and hexadecimal escape sequences are "inventions of 
X3Jll not in KA. 

KA and 4.2BSD permit the "default" case of \C, where C is 
not in the table above; in this case \C means the same as C. 

Examples: 

Characters: 

'A • 
1\" 
I't l 
I • I , 

v. 11. 01. B5 

Strings: 

"A" 
"He sai~ '''She's dead.\ .... 
"THIS IS A STRING. II 

"Praise God from whom all blessings flow." 
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4.9 Operators --------------------------------. 
Syntax 
Operator -> AssignOp I OtherOp; 

OtherOp -> , ... , I ' & ' , & I I I I ' 
I '<' I '.' ':.' I'!' 
I '>' I '+1 '+' I '-I 
I '!' I ':a' I'.' 

I I ' 
I=:' 

I- I 

I> • 1=' 
1<' I. I 

I- I , >' 
111 =>'<AS_IS)'; 

# Operators that can be followed by '=' in assignments. 
AssignOp->('~' I '>' '>' 1 '<' '<' 

1'+' I '*' 1 '&' I '" 
1'-' I '" I'll 
) 1='1 =>1 <AS_IS)'; 

Semantics 
Operator meanings are described in Section Expressions. 

DisclISSion 
KR and 4.2BSD permit the anachronism "x =+ 1 N instead of 

the recommended"x += 1N. The former can be miSinterpreted 
as assigning the value +1 to x rather than incrementing x. 
X3J11 forbids the anachronism, as do we. ' 

4.10 Punctuators -----------------------------. 

Syntax 
Punctuator-> 1(' I)' 

I .~ [I I '] I 
I '{' I I}I 

Semantics 

, . , , 
I , , 
' .. 

, . . . 
, I I , • I 

Punctuators (or "punctuation marks") have no semantics in 
and of themselves. They separate other words in C, and their 
placement is con,strained by the phrase-structure syntax. 
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Discussion 
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The punctuator ... was added by X3J11 to allow specifical­
ly designating a function as callable with a varying number of 
arguments. .. is a High C extension to support ranges in the 
s.itch construct. Neither punctuator is in KR or 4.2BSD. 

4.11 Delilliters and Eol ------------------------ • 
. [white space] 

Syntax 

Delimiter -> (Space: "+ 
I Fornf'eed: Iff' 
)+ 

Line_end -> Eol 

HorizTab: 'ht' 
Vert: Tab: 'vt' 

-=>' <DELETE>'; 
=>' <DELETE>' ; 

Note that Delimiters are not involved in the phrase-struc­
ture definition of C programs, since Delimiters are words 
named <DELETE>. 

Due to the line orientation of the preprocessor, Eol is not a 
Delimiter as might be expected. 

Semantics 
Delimiters, commonly called "white space", are entirely 

insignificant. Their only purpose is to separate ·words. Eol 
separates sequences of included or excluded Text and 
terminates Control_lines (see beloW). 

DisclJSSion 
The addition of the Forrn=eed character is an extension over 

KA. In addition .. KA dictates that Eol is the new-I ine charac­
ter. This is not necessary on systems that support a different 
convention for I ine termination. 
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4.12 COfll11ents ------- ----------- ------------ - • 

Syntax 
Comment -) '" '*' Rest =)'<OELETE)'; 

Rest -) Most* '*1+ ('" (Most-"') Rest) ; 
Host -) Any-I*I I Eol; 

Semantics 
Comments have no effect on the program IS meaning. 

Discussion 
The grammar for Cornnent is a precise description of 

comments that begin with the two adjacent characters" ,*" 
and end wit~ the two adjacent characters "*,". "Adjacent" 
impl ies that an Eol cannot appear between the two characters, 
even if the Eol is not really a character 'but a fi Ie-system 
end-of-record, for example. 

Cornnents do not nest. Commenting out code containing 
Cornnents can be achieved by using the C preprocessor (see 
Section Preprocesson, as follows: 

##if 0 
... commented out code ... 
#endif 

A good way to write large block comments with standard 
Comments is exempl ified below: 

1* 
* This is a 
* block comment 
* whose left edge is 
* lined with *5 
* to make it stand out. 

*' 
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4.13 Excluded Text --------------------------- • 

Syntax 
Skipped_lines 
scanner Sharp: 
Skipped_line 
Skip_suffix 

-) (\Sharp Skipped_line)*; 
Sharp -) IHI; end Sharp 
-) Skip_suffix? Line_end; 
-) ( Not_special I Slash 

I Comment I DString )*; 
Not_special '-) (Any - 1,,-,",)+ =) '(DELETE>'; 
Slash -) '" -) • (DELETE)' ; 
DString -) String_text =) '(DELETE)'; 

This is the description of I ines that are "excluded from 
compilation. Control_lines are the only lines that are not 
skipped, and even then only Control_lines not within Conments. 
The notation "\Sharp" means that each Skipped_line must not 
beg i n with a Sharp (".), thereby ensur i ng that Control_lines 
are not skipped. 

Skipped I ines conform to a small amount of lexical syntax: 
Conments and Strings must be well-formed. Cooment syntax is 
included is to permit Control_lines to be part of Conments, i.e. 
to allow Control_lines within excluded Text to be "comment­
ed out··. String syntax is included so that" ,*" in a string is 
not misinterpreted as the beginning of a Conment. 

4.14 Control Lines: Preprocessor Commands ----- . 
Due to the complexity of the preprocessor syntax, both its 

syntax and semantics are deferred to the next section, 
Preprocessor. Thus the lexical grammar in this section is, as 
it stands, incomplete. 
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4.15 Reserved Words ------------------------- • 

Syntax 

end C lexicon 
reserve '(IDENTIfIER)' 

The following are words appearing in the phrase-structure 
grammar (discussed In the next section). As discussed in 
Section Notation each word below is therefore not an <IDEN­
TIFIER> word, but instead a reserved word. The impl ication is 
that the C programmer may not use these words as user­
coined <IDENTIFIER>s: 

lnt char float double long short unsigned signed 
struot union typedef auto static extern register 
goto return break continue if else for do while 
switch case default entry sizeof void enum pragma 

Discussion 
Some implementations also reserve the words asm and 

fortran. signed is not reserved in 4.2BSD or KA, but is in 
'X3J11. pragma is reserved only in High C. 
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5.1 Introduction ------------------------------. 
[conditional cOftpilation; file inclusion; "acro replacelltent; lexicon; 
phrase-structure; preprocessor co""ands; lexical analysis; feedback] 

As mentioned in the previous section, the C preprocessor 
does three things: conditional compi lation, fi Ie inclusion, and 
macro replacement. In this section we define what these 
terms mean. 

The preprocessor may be thought of as a level of des­
cription and program source transformatio"n that I ies roughly 
between the lexicon and the phrase structure of C. However, 
this is not a precise division since the preprocessor commands 
themselves are embedded in C program source. text, must 
therefore be lexically described, and hence impact the lexicon 
of C. Furthermore, due to the semantics of fi Ie inclusion, 
lexical analysis and preprocessing cannot be separated. This is 
described in greater detai I in fi Ie inclusion, below. 

Another way of looking at the preprocessor is as a fi Iter 
that takes the word sequence WS generated by lexical analysis 
and produces a new sequence of words subject to C phrase­
structure analysis. Some of the words in WS are interpreted 
as preprocessor commands, and are processed and discarded by 
the preprocessor; others are repl aced by other words; the rest 
of the words are left alone. In a program with no preprocessor 
commands, the preprocessor does nothing to WS, and all of WS 
is subject to the C language phrase-structure analysis. 

However, again due to the requirement that lexical analysis 
and preprocessing must occur at the same time, the filtering 
cannot be separated into a distinct pass but must occur during 
lexical analysis. (When the preprocessor is implemented as a 
separate pass, it is at the expense .of redundantly doing most 
lexical analysis in both the preprocessor and campi ler per se.) 
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The preprocessor "fi Iter" is broken up into two pieces: the 
macro replacement (MA) phase, and the command inter­
pretation (CI) phase. MA occurs immediately after lexical 
analysis. CI occurs after MA, which means that some of the 
preprocessor commands may have been subjected to macro 
replacement. ~J(a~j7le: 

'define RELEASE 2 
lif RELEASE > 1 
... some text T 
lendif 

When CI processes the "Iif·· command, the 'text "RELEASE·· 
has already been replaced with "2N, so that CI includes text T 
(because 2 > 1). 

However, some preprocessor commands must avoid macro 
replacement. For example, "'ifdef RELEASE N

, which asks if 
RELEASE is defined, will not work if RELEASE is replaced with 
"2", since CI wi II' instead process "'ifdef 2". Therefore CI 
must occasionally instruct MR to avoid replacement. 

Finally,' due to the semantics of fi Ie inclusion, CI occa­
sionally directs the lexical analysis phase to include text from 
a fi Ie. Pictorially, the relationship between MR, el, and other 
phases of a C lang~age translator is as follows: 

Source Text 

Lexical Analysis 

Macro Replacement te-----. 'include 

Preprocessor Command Interpretation 

Phrase- Structure Analysis 

The arrows leading back from CI to MR and Lexical Analysis 
indicate the occasional "feedback" from CI to the other two 
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phases. This feedback is the single reason that preprocessing 
and lexical analysis cannot be separated into separate passes. 

In this section we first present the portion of the C lexical 
Jammar that describes the preprocessor commands and that 
was deferred from Section Lexicon. This completes the lexical 
description of C. 

Then, the phrase structure of the preprocessor is presented 
-- how the preprocessor interprets the words determined by 
lexical analysis, including the ferreting out of preprocessor 
commands. The semantics of the preprocessor commands are 
described relative to the preprocessor phrase structure. 

5.2 Control Lines ----------------~------------. 

Syntax 
Control_line -) Sharp Delimiter? Control; 
Sharp -) '" .>~<DElETE>·; 

Observe that the Sharp of a Control_line lies in column 
one of an input line due to the placement .of Control_line in 
the productions for Text (see the previous section), where it 
appears either:' (a) at the beginning of the source input; (b) 
after a Line_end; or (c) after Skipped_lines, which always end 
in a line_end. 

5.3 "Comment" Control Line Lexicon -------------. 

Syntax 
Control -) line_end; 

If nothing appears after the , and optional trai ling 
Delimiter on a control I ine, the text is all deleted and the line 
is effectively a comment. 
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5.4 Macro Definition Lexicon --------------------. 

Syntax 

Control -) IDefine word Define Delimiter Nacro 
Words Done Line end 

scanner Define word: -
Define-word - ) 'd' , e ' , f ' , i' , n' , e ' ; 

end Define-word 
Define -) Oefine~word 
Macro -) Id text \LP 

-> Id-text ILP 
scanner LP:- LP -)' ('; end LP 

=)' <CONTROL)'; 
.>' <NO PARMS> , 
=)'<WITH PARMS>'· - , 

Macro definition requires special lexical processing that 
campi icates the grammar - yet another place where C pre­
processor syntax is not well-designed. 

The placement of a left parenthesis as the next character 
following a macro name (Id_text) has different semantics 
from a left parenthesis separated from the macro name by one 
or more characters. The difference is conveyed by the distinct 
wC:'"d names «NO_PARHS) versus < IJJITH_PARHS > ) for the Id_text, 
and is further explained below in Section 5.8. 

The IDefine_word resolves an ambiguity among Control_ 
lines, since macro definition is lexically a subset of other 
control I ines. If define appears immediately after the Sharp 
and optional Delimiter, this rule for Control takes precedence 
over all other alternatives for Control. 
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5.5 Other Control Line Lexicon -----------------. 
[else in lexical gra~~ars] 

Syntax 
Control -) (Include_text else Other_control) 

Words Done Line_end; 
Done -) 
Other_control -> Id_text 
soanner Include text: 

=>' (C-EOL> , ; 
=>' (CONTROl)'; 

Include_text ~> Include_word Delimiter? Funny_string; 
Include word - ) 'i' , n' , c' , I' , u' , d' , e' 

- =>' (CONTROl)'; 
Funny_string -> L_ltngle File_name R_ltngle; 
L_anale -> '<' =>' (DELETE)' ; 
R_8ngle -) ')' =)' (DELETE) '; 
File_name -) (Any-'\'-'II'_')' 1'\' Special)* 

=)' «STRING»'; 
end Include_text 

The grammar-reserved word else serves to resolve an 
ambiguity, since Include_text and Other_control can generate 
some identical character sequences. else used here forces the 
Include_text interpretation to prevai I where a confl ict exists. 
This rule for Control may not be used when the macro defini­
tion rule can be used; i.e. the macro rule takes precedence. 

All preprocessor commands end at I ine boundaries. The 
word <C-EOL) .marks those boundaries and allows the prepro­
cessor semantic phase to distinguish preprocessor commands 
from other C text. Note that Done precedes Line_end every­
where it appears and therefore always marks a I ine boundary. 

Include_text describes one of the sloppiest parts of the C 
preprocessor syntax: the form "'include (string)U of fi Ie 
inclusion. Here a string is del imited by < and) rather than the 
standard double-quotes (") provided elsewhere in the C lexicon. 
The cost is a dupl ication of some of the string' definition 
syntax. A better language design would have been to use a word 
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other than "'include": "1L_include "string"~1 for "library 
include~l, for example. 

5.6 Control Line Phrase Structure ---------------. 

Now we present the· phrase structure of the preprocessor. 
The grammar describes completely the sequence of words de­
termined by lexical analysis, but recall that the preprocess­
ing is interleaved with the lexical analysis, so that the gram­
mar cannot be understood to be a description of an already­
generated sequence of words: the semantics of preprocessing 
changes that sequence of words. 

Note that the preprocessor "comment" discussed in 
Section 5.3 above need not and is not addressed in the phrase 
structure. 

Some new notation: 'wordname'! 'text' in the grammar 
below indicates the word whose name is 'wordname' and whose 
text is • text '. The preprocessor phrase-structure grammar is 
the only grat:nmar that depends upon the text of some words. 
Syntax 
Text -) (Control_text I Word)*; 

From the preprocessor's point of view, Text has little 
structure: it is just a sequence of Words, occasionally inter­
rupted by preprocessor commands and the text enclosed by 
such commands (Control_text). 
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5.1 Fi Ie Inclusion ---------------------------- --. 
[include] 

Syntax 
~ontrol text 
-) '<CONTROL)'!'include' '«STRING»' '<C-EOL)' 
-) '<CONTROL)' !'include' '<STRING)' '<C-EOL)' 
-) '<CONTROL)'!'c_include' '<STRING)' '<C-EOL)'; 

Semantics 
A fi Ie inclusion preprocessor command substitutes an 

entire source fi Ie F for the command. The substitution must 
occur immediately after processing the command and during 
lexical analysis, so that the the contents of F may also be sub­
jected to lexical analysis. Thus the concept of preprocessor as 
fi Iter concept is accurate only if the preprocessing is thought 
of as proceeding concurrently with the lexical analyzer. 

Due to the semantics of fi Ie inclusion this concurrency can 
be avoided only if the preprocessor is run as a separate pass 
'precedIng lexical analysis, in which case the preprocessor must 
have its own lexical analyzer within it - but this just shows 
again that lexical analysis and preprocessing must happen at 
the same time. 

A substituted source file is considered to be terminated by 
a Line_end even if it is not. This prevents a word starting at 
the tail end of a substituted source file from being "continu­
ed" in the fi Ie containing the 'include command. 

The first two .inolude commands differ only in how the 
preprocessor locates the fi Ie; this is implementation-defined. 
The last command ("conditional" include) differs from the 
second only in that fi Ie inclusion does not occur if the fi Ie has 
already been included. 

In all three forms the name of the fi Ie searched for is the 
text of the «STRING» or <STRING) word. 

DisclJSSion 

The conditional include concept appears only in High C. 
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5.8 Macros ----------------------------------. 
[ftacro parafteters and arguftents; ftacro body; replaceftent text; ftacro 
replaceftent; .define and tundef; para..eterless and parafteterized 
ftacros; benlgn redefinition] 

C includes the notion of a macro facility. A macro is an 
identifier M associated with some macro bo~and possibly 
some macro parameters. 

An occurrence of M causes it and possibly other words 
fo II ow i ng it to be rep I aced by a different sequence of words 
called the replacement textwhich is derived from the macro 
body and possibly some supplied macro arguments. This is 
called macroreplacement· it is more precisely defined later. 

Macro replacement is performed on the word sequence 
produced by lexical analysis before the preprocessor analyzes 
that sequence for preprocessor commands, i.e. before any 
analysis based on the preprocessor phrase-structure grammar 
(PPSG) is performed. The nonterminal .ords in the PPSG 
represents Words upon which all applicable macro replacement 
has been performed, with exceptions as noted. The semantics' 
of macro replacement is defined formally below. 

Syntax 

Control text 
-) '<CONTROL)'!ldefine' 

( Mname: '(NO_PARMS)' Body:Words 
I Nname: 1 (WITH_PARMS) , 

'(' Parm: '<IDENTIFIER)' list ',1)1 I)' Body:Words 
) 

'(C-EOL) , 
-) '(CONTROL)'!'undef' Nname: '(IDENTIFIER)' '(C-EOL)' 
, 

Constraints 
In the 'define command, if the Hname is already defined as 

a macro M, its definition must be the same as M, where same 
means the parameter (IDENTIFIER)s and the Body must be 
identical. (This is known as "benign redefinition".) 
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No two Parm: <IDENTIFIER>s in the <WITH_PARHS> form of 
the 'define may be the same, i.e. have the same text. Stated 
another way, macro parameter names must be distinct from 
each other. 
Semantics 

Both forms of the 'define preprocessor command define 
an identifier to be a macro with body Body: Words. No macro 
replacement is performed on the Body of a 'define command. 

In the first form of 'define, that with the <NO_PARMS> 
macro name, the macro is called a parameterlessmacro, and 
subsequent instances of the macro are replaced by the 
Body: Words. Note that (IDENTIFIER) is a word with text; the 
text is the macro's name. 

In the second form of define, that with the (IJJITH_PARHS> 
macro name, the macro has a I ist of zero or more parameter 
<IDENTIFIER)s, and is called a parameferizedrnacro. 

For macro replacement to occur for a parameterized 
macro M, the occurrence of M must be followed by a left 
parenthesis, a number of arguments that match the number of 
parameters, and a concluding right parenthesis. The structure 
of the arguments is defined later. Supplying the wrong number 
of arguments is an error. 

The replacement text that replaces M and its parenthesized 
argument I ist is the macro body with any occurrence of a 
parameter <IDENTIFIER) in the body replaced by the corres­
ponding actual argument from the argument list. 

In all cases, after macro replacement has occurred, the re­
placement text is reprocessed for any other possible replace­
ment, with the exception that macro replacement does not 
occur on a macro named M contained directly or indirectly in 
text resulting from a replacement of M. The exception pre­
'vents an endless loop in macro expansion. Furthermore, macro 
) , 

'rep I acement occurs on arguments to a macro M before M 
itself is subjected to replacement. 
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We more formally specify macro replacement below by 
defining fF(WS), the result of macro replacement on word 
sequence WS with respect to set F of macro names whose 
definitions must temporari Iy be "forgotten" so that endless 
loops can be avoided. One might read ff as "forget F while 
substituting in WS". f {}(WS) is the result of macro replace­
ment on the word sequence WS resulting from lexical analysis. 
In the definition II denotes concatenation of word sequences, 
and W is a single word. 

fF(WS) = 

if WS is the empty sequence, 
then WS; 

else if WS is of the form W II WS', and W is not a 
macro name or W is an element of F, 

then W II f F(WS'); 
else if WS is of the form W II WSI and W is a 

macro without parameters, 
then ff u {w}(Rep(W) II ff(WS'); 

else if WS is of the form W II 1(1 II Arguments II 1)1 
II WSI, and W is a parameterized macro 
with n formal parameters, and there are n 
Arguments (defined below) Al, A2, ... , Am, 

then fF U {w}(Rep(W ,A11,A2 I I" I., fJv. I) II f F(WS'), 
where Ai' = f F(Ai); . 

else WS is of the form W II WS' where W is a 
parameterized macro lacking the appopri­
ate number of parameters, and the result is 

W II fF(WS'). 
Rep(W,Al,A2, .. ./l..n) is the replacement text for macro W with n 
arguments A1.,A2, .. .An, der ived from W'S macro body B by 
replacing each occurrence of the i th parameter <IDENTIFIER> 
in B with Ai. 

The Arguments to a parameterized macro are described by 
the following subgrammar: 
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After a lundef command, the named macro Hname is no 
longer a macro (its definition is "forgotten"). If Hname is not 
a macro, the lundef command has no effect. 

Discussion 
Essentially an argument to a parameterized macro may not 

contain H, " except within properly balanced parentheses. But 
note that an argument can be an empty sequence of words, so 
that in 

Idefine.oall(f,arg) f(arg) 

oall(,3) 

"ea11(, 3)" is replaced by "(3)". 

In addition, since an occurrence of a parameterized macro 
is not replaced unless the appropriate number of arguments is 
present, one can ensure that a I ibrary function being invoked is 
not a macro by parenthesizing the function~ 

'include "stdio.h" 

1* Ifgetc is a macro, it is replaced here: *1 
c = getc(F); 

1* But here the macro is not replaced; *1 
/* instead, function gete is called: WI 

c = (getc)"(F); 

Benign redefinition has been adopted by X3J11 as a way to 
permit the inclusion of a commonly used macro name, such as 
"NUlL I. (typically defined as "(void *)ON), in each library 
header fi Ie that requires it. 

Bug. Our definition of macro replacement avoids some of 
Ithe absurdities and possible abuses of common C macro pre­
·processors. In at least two C compi lers we know of, a macro 
invocation can be constructed from text some of which was 
obtained from a macro replacement and the rest elsewhere. 
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For example, the following is acceptable to these two campi 1-
ers, producing "int i :IE (3)*(3);" from the expans,ion: 

'define start sqr( 
'define sqr(x) «x)*(x» 

int i = start 3 ); 

Our definition does not permit a macro body to contain 
unmatched parentheses, if these parentheses follow a macro 
name whose replacement is intended. The formal derivation is: 

f{} (ltint i = start 3); H,) . 
= "int i =" II f{start}(Aep("start"» II f{}("3);") 
:& "int i·" II f{start}("sqr (,,) II "3);" 
= Hint i = ~sqr(3); " 
The result draws a syntax error from a language processor 
unless Sqr is a defined function. 

But it is still .possible to construct a macro invocation 
from pieces when the pieces are joined within the replacement 
text of a single macro: 

.define· x g(h 
'define h(f) f(3» 
'define g(i) i+1 
hex); 

f {}("h(x); ") 
= f {h}(Aep(h,f {}("x"») II f {}("; ") 
• f {h}(Rep(h,f {x}(Aep("x"»» II "; II 
= f {h}(Aep(h,f {x}(" g(h"») II "; II 
= f {h}(Aep(h," g(h"») II ";" 
= f {h}(f {h}(" g(h(3» "» II "; II 
= f{h}(f{h,Q}(Rep(g,f{h}("h(3)1'») II "; II 
= f {h}(f {h,Q}(Rep(g, "h(3) I'») II ";" 
= f{h}(f{h,Q}("h(3)+1"» II ";" 
= f{h}("h(3)+1") II ";" 
= " h (3) + 1 II II ";" 
= "h(3)+1; " 
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Here an invocation of h was constructed from the argu­
ment x, expanded to g(h, and the matching parentheses in the 
body of h. The best one can say about this usage is that it is 
good for boundary examples in documents such as this one. 

The C campi lers mentioned previously generate "3(3) )+1" 
from "h(x) u, mainly because the way they avoid an endless 
loop is by placing an upper limit on a macro expansion buffer, 
rather than actually detecting the loop. 

5.9 Predefined Macros -------------------------. 
[ __ LINE __ # __ FILE--l 

__ LINE_ '_ and __ FILE __ are predefined parameterless 
macros. The first expands to a decimal digit string whose 
value is the line number of the source fi Ie containing the 
occurrence of __ LINE __ . The second expands to a quoted 
string literal, the name of the file containing the occurrence 
of __ FILE __ " These macros are most useful for debugging: 

printf("Now at line 'd in file 's\n", 
__ LINE_ -' __ FILE __ ); 

5.10 Conditional Inclusion ----------------------. 
[.if, 'ifdef, 'ifndef, leIif, leIse, tendif; defined; constant 
expression; "acro replace"ent; enabling condition; Signed-Long-Int] 

Syntax 
Control text " 
-) ('<CONTROL)'!'if' E '(C-EOL)' If:Words 

. , 

I '(CONTROL)'!'ifdef' '(IDENTIFIER)' '(C-EOL)' Words 
I '(CONTROL)'! 'ifndef' '(IDENTIFIER)' ',(C-EOL), Words 
) 
('(CONTROL)'!'elif' E '(C-EOL)' Elif:Words)* 
('(CONTROL)'!'else' I (C-EOL) , Else:Words)? 
'(CONTROL)'!'endif' '(C-EOL)' 

E -) ... see the next paragraph. 
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The E nonterminal generates the same language as E2 in the 
C phrase-structure grammar (see Section Expressio~, except 
that the only allowabl~ occurrences of <IDENTIFIER)s in E are 
as followS: 

(i) '<IDENTIFIER>'!'defined' Mname: '<IDENTIFIER)' 
(ii) '<IDENTIFIER)'!'defined' '(' Mname: '<IDENTIFIER>' ')' 
(i i i) Mname: '<IDENTIFIER)' 

Constraints 

E must generate a constant expression (see Section 
Expressions/Constant Expressio~ of an integral type with no 
occurrences of the sizeof operator, enumeration constants, 
or type casts. 

Semantics 

Macro replacement does not occur for the sinQle word 
appearing after '<IDENTIFIER>'!'defined', in case (i) or (ii), 
or for the single word appearing after the '(' in case (i i). In 
addition, no replacement occurs for the <IDENTIFIER> follow­
ing 'ifdef or 'ifndef. 

Conditional inclusion. 'if -'ifdef -'ifndef, .elif, and 
'else provide a conditional text inclusion facility based upon 
the value of an expressiont or the existence of a macro defini­
tion. Only one of the sequences of Words in a'ifxxx-'endif 
command is included; all others are excluded. . 

The included sequence is the first sequence of Words such 
that the enabling condition of the preprocessor command 
containing the Words is True. The enabling condition for the 
.if and .elif commands is that E evaluates to a non-zero 
integer value. The enabl ing condition for the .ifdef command 
is that the <IDENTIFIER> is defined as a macro; for the 'if­
ndef it is the reverse. The enabling condition for the 'else 
command is True, i.e. if-no other enabl ing condition holds, the 
Words associated with the 'else command are included. 

Macro replacement does not occur on excluded text. 
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Evaluation of E. Each conditional inclusion expression E is 
evaluated using the host environment's Signed-Long-Int arith­
metic, as if all operands had type Signed-Long-Int rather than 
the type normally dictated by the Constraints of C express­
ions; see Sect i on Expressions. 

In all cases (i)-(iii) for (IDENTIFIER>s, the expression evalu­
ates to zero or one according to whether Hname is currently 
'define-d or not. Note that in the third case of a single 
<IDENTIFIER>, the value one is 'rarely obtained, since the only 
way the (IDENTIFIER> could be a macro name is if the macro 
were recursively defined so that replacement stopped, leaving 
the macro name. Examples: 

'define -x x 
'if x 1* Smne as "if 1". *1 

... this text is included ... 
'end if 
'undef x 
.if x 1* Same as "if 0". *1 

... this text is excluded ... 
• endif 

Obsolescence. 'ifdef and 'ifndef provide nothing that 
,if-'elif-'else-'endif do not already provide, and the for­
mer's use is discouraged in favor of the latter's. lifdef and 
'ifndef can be avoided as follows: 

This can be rep/aced with 
,ifdef x 

'endif 
,ifndef x 

'if defined(x) 

'end if 
'if !defined(x) 

'endif 'endif 
Some compilers permit arbitrary text on a line following 

"endif and 'else. This supports a common UNIX practice ex­
emplified by "'ifdef X •.. lendif Xu. X3Jl1 recently decided 

v. 11. 01. B5 ~ 19B4-B5 "etaWare Incorporated 



Preprocessor page 5-16 

to permit the text after 'endif and .else to be implemen­
tation-defined. 

5.11 Preprocessor Words ------------------------. 

Syntax 

\fJords -) \fJord*; 
\fJord -) Any - "(CONTROL)' - • (C-EOL) , 

# Any word produced by lexical analysis 
# other than the two explicitly excepted. 

Semantics 

Macro replacement occurs on all Words, with the excep­
tions as noted above: for the word following '(IDENTIFIER)'! 
'defined' and the word following '(IDENTIFIER)'! 'defined' 
• (. in the case of the conditional inclusion expression E, for 
exc I uded Words, and for Words that are a macro Body. 
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6.1 External Declarations -----------------------. 
[\mpecified declaration; flllCtion definition· ... Mcd __ *f1I1t1I1S; 
Specl fiecCdeClaration; pragus froR Ada; toggies; -block; tprlgllll 

syntax 
parser C-phrase_structure: 
C-phrase_structure 
-) External_declaration-
· , 

""""'''''''''''''''''''''''''''''''''''''''''''''''' • Declarations. • """""""","""""',,,,"',,,,,,,,,,"',,,,,,,, 
External declaration 
-) Unspecified_declaration: 

( function definition 
I Non_function_definitions ';' 
) 

-) Specified_declaration , lith specifiers. 
-) PralJlla_call 
-) ';' , Syntactic oddity of KR. 
· , 
Pra~_cal1 
-) 'pragma' Name (.(. (E list ., ')1 ')')1 ';' 
· , 

A C program consists of a sequence of declarations and 
pragmas. Some declarations are also definitions. 
Constraints 

There is a block E that is the text of the entire program. 
My block Introduced by any definition - an Unspeoified_ 
definition or a Specified_declaration - is a part of E. 

Specifiers are assumed In an Unspecified_declaration 
according to rules set forth in the next Subsection. 
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Pragmas are found in no other definition of C. The syntax 
is taken from Ada. The intent is to allow the programmer to 
give directives to a C language processor. For example, all 
MetaWare C compilers support pragmas named Set, Reset, 
and Pop, which ~ake a single identifier as the name of a toggle 
st8Cl(, and either push True (set), push False (Reset), or pop the 
stack. The value on the top of the toggle stack affects 
language translation In some way, depending upqn the nature of 
the toggle. . 

Beyond this we say no more about pragmas, leaving their 
further definition to another document more specific to 
MetaWare High C and High C implementations. A related 
notion is the newly- introduced "'praglla- preprocessor 
command found in the X3Jll document; we have not included 
'praglla as part of our definition. 

Pragmas are also permitted in statements; see Section 
Stt1tements .. 

6.2 Specified Declarations ----------------------. 
[Specifiers; FIICti • .Jefiliti.; kt.ctilUlfiaiti_; s,lCifilUlcluau.; 
External_declaration; lUtOMtie storlge ellSS] . 

Syntax 

Specified_declaration 
-) Specifiers 1;1 

-) Specifiers Function_definition 
-) Specifiers Non_function_definitions 1;1 

, 
Constrt1ints 

The Specifiers of a Specified_declaration that is syntac­
tically immediately derived from an External_declaration 
may not denote the storage class automatic; see 6.3 below for 
how Specifiers denote a storage class. 
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Declarations are broken up into (1) the definition of func­
tions (Function_definition) and (2) declarations that are not 
function definitions (Non_function_definitions), but that may 
be function declarations or definitions of names of non-func­
tion types. 

Clnly one function can be declared in a Function_defini­
tion, but many non-functions may be declared in Non_func­
tion_definitions. 

The alternative "Specifiers ';' N is permitted to allow 
the declarafion of a type T without also declaring a name for 
type T. For example, "struot s {int x;}; typedef int t; N 

declares a tag s referring to the Struct{ ... } type and a typadaf 
name t standing for the Signed-Int type. 

6.3 Types and Specifiers -----------------------. 
[St •• _dlUll 1dI .. 1ItIn .. nPdIr .. tJfIM ... static; MjectlHS 
"'It, _ ...... 1 .... II",; diu, lit .. fl.t, '-11, .. I.; dYPOEF __ ); 
s,edflm; ,,,,_.,.c1f1m; ...... _ItIu.tt; ... _fIIctl •• fintl_; 
FIICti._*filitl.; IIsfIdfi._lIIdlfiti.; s,edfl"_lIIclll'atI.; sutlc-i.rt 
stat1c-..rt .. Slltic-,n .. u; ..-.tIc .. tJIII*f; t". If au; lfit_tlC t".,1 

S}ntax 
Specifiers 
-) Type_or_st~rage_classes · . , 
Type_or_storage_classes 
-) Storage_class Type_or_storage_classes? 
-) Typedef_reference: I (TVPEDEF_NAHE) , Storage_class? 
-) Type ASCs 
-) Adjective ASCs (Type ASCs)? 
· , 
ASCs -) (Adjective I Storage_class)· 
, 
Storage_class 
-> I auto' II extern' I I register I I • typedef' I • static • 
· , 
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Adjective 
-) 'short'I'unsigned'I'long'I'signed' . , 
Type_specifiers 
-) Typedef_reference: '(TVPEDEF_NAHE)' 
-) Adjective- Type Adjective-
-) Adjective+ . , 
Type 
-) ('char'I'int'I'float'I'double'I'void') 
-) Tagged_type; 
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Specifiers are complicated by the syntacti'c rules for the 
interpretation of (IDENTIFIER>s as (TVPEDEF _NAHE>s. The com­
plexity bears some detailed explanation here. 

Specifiers are essentially a sequence of Storage_classes, 
Types, Adjeoti ves, and (TVPEDEF _NAHE>S, where 

(a) there may be at most one Storage_class, a constraint that 
would be clumsi Iy imposed by the grammar; 

(b) there may be at most one Type or (TVPEDEF _NAHE>: imposed 
by the 'grammar, and necessary to properly interpret 
(IDENTIFIER)s as (TVPEDEF _NAHE)s where appropriate -
this is the reason for the grammar's complexity; 

(c) a (TVPEDEF _NAHE) may not be combined with an Adjeotive; 

(d) only certain combinations of Adjectives are permitted, a 
constraint that would be clumsi Iy imposed grammatically. 
A (TYPEDEf _NAt£> Is an (IDENTIfIER> that Is declared of 

mode typedef in the ordinary name space. Effectively, any 
time such an (IDENTIFIER> word appears, it becomes a (TVPE­
DEF JW£> word. The grammar permits at most one occur­
rence of a (TVPEDEF _NAHE) in Specifiers or Type_specifiers, 
and does not allow it to be combined with a Type. Essentially, 
the (TVPEDEF _NAHE) specifies the type (see COl1$tr8Iiltsbelow), 
and therefore the combination with another Type, (TVPEDEf_ 
NAtE), or Adjective (type modifier) is meaningless. The ice is 
notthin here. 
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Examples: 

typedef int T; 
void F() { 

Tx; 
short T x; 
T T X; 
register T; 
int T; 
} 

page 6-5 

/* x is of type T :II Signed-Int. */ 
/* Illegal: adjective not allowed. */ 
1* Illegal: two (TVPEDEF _NAtE>s. */ 
1* Illegal: declared name missing. */ 
/* A valid re-declaration of T. */ 

The nonterminal Type_specifiers is the subset of Speci­
fiers that forbids Storage_classes, and is used elsewhere in 
the grammar. 

Constraints " 
" Specifiers and Type_specifiers denote "a type and a stor­

age class that become associated with the name declared with 
the Speoifiers. How to determine that type and storage class 
is discussed next. 

Specification of the storage class. In Specifiers there 
may be at most one Storage_class stated. If the Storage_ 
class is omitted, a storage class is Impl led based upon where 
the specified declaration appears, as follows: 

(a) In an Unspecified_declaration ... a Function_definition has 
storage class static-export; a Non_function_definition of 
mode fen has storage class static- import; any other 
Non_functio~_definition has storage class static-export. 

(b) In a Speoified_deolaration that is a part of an External_ 
declaration, the rules in (a) above apply. 

(c) In a Specified_declaration that is a part"of a Compound_ 
statement, a Funotion_definition has storage class auto­
matic; a Non_function_definition of mode fen has storage 
class static- import; any other Non_function_definition 
has storage class automatic. 
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Ext1l71ples: 

1ft Illustrations 01 case (aJ. *1 
x; 

y(); 

f(){ 

/* UflspecifiecCcleclaration: Non_fWlCtion_defini tion 
:I) static-export storage class. *1 

1* Uflspeci fiecCcleclaration: Non_fWlCtion_defini tion 
-) static-iRl)Ort (due to lOde fen). */ 

1ft tJnspecifiecCdeClaration: fWlCtiOfLdefinition 
a:) static-export storage class. */ 

1* IllustratiO/1$ 01 case (c): */ 
void g(){_} /* SpecifiecCdeclaration that is part of a 

int h(); 

int i; 

} 

~JtlteMnt .) 1Ut00tiC. But this 
particular case is ruled out elsetNre -­
nested fooctions are illegal. 

/* SpecifiecCdeclumon thIt is part of I 

COlPOtIlCCStlt.eMnt a) static-lRport. 
1* Specified_declumon thIt is put of I 

COIPOtllCCstateMnt :z) altoMtic. 

*/ 

*1 

*/ 

1* Illustratian of ct1Se (bJ. */ 
int z; 1* Speci fied_deeluation that is a Plrt of an 

External_declaration a) static-export. *1 
End of ExtJf1lples. 

If the Storage_class is stated: 

Stor8!111_class· 
extern 
static 
auto or register 
typedef 

denotes storage class 
static- import 
static-private 
automatic 
typedef 

Note. The static-export storage class can10tbe explicitly 
written .. but is the default when none is specified. 

The Storage_class auto is allowed only in a declaration 
within a function; register is allowed in the same cir­
cumstances and additionally as the storage class of function 
Parameters. 

Specification of the type. In Specifiers and Type_speci­
fiers, the grammar permits only zero or one Types or (TVPE-
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OfF _NAt1E>s. Any number of Adjectives is permitted by the 
grammar, but only certain combinations are legal. In any 
particular combination the Adjective(s) and/or Type may be 
presented in any textual order, but no Adjective may be 
repeated. No Adjeotive may appear with a (TVPEDEF _NAME) • 

. If a (TYPEDEF _NNE> Is used, It It guaranteed to be declar­
ed of mode typedef in the ordinary name space of a type T. 
The type denoted by the Typedef _reference is T and is the 
specified type. 

If a (TYPEDEF _NNE> is not used. The next table indicates 
the only allowable combinations of Adjectives with int and 
char, and the correspondingly denoted type. The first three 
rows may be optionally combined with the Type into 

Table Adjectives Combined with tnt and char. 
signed or nothing 

short Signed-Short-Int 
long Signed-Long-Int 
(nothing) Signed-Int 
char Signed-Chart 

unsigned 
Unsigned-Short-Int 
Unsigned-Lang-Int' 
Unsigned-Int 
Uns igned-Char 

I with 
lor without 
I the Type into 

I ____________ ~~~~------~ 
denoted type 

t Exception: whether char standing alone denotes 
Unsigned- or Signed-Char is implementation-defined. 

Therefore, if Specifiers contains neither a Type nor an 
Adjective, th~ H(nothing)-nothingH intersection in the table 
above appl ies and the denoted type is Signed-Int. 

The Types float, double, and void standing alone denote 
the types Float. Double, and Void. double may be combined 
with long to denote the type Long-Double. No other Adjeo­
tive may be combined with double, and float and void may 
not be combined.with Adjectives at all. 

For example, Hunsigned int shortH and Hint short 
unsigned H are both allowed and denote the type Unsigned­
Short-Int, but Hint short unsigned short N is not allowed, 
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since short occurs tw i ce. 
Tagged_types are covered in the next SUbsection. 

EXlHTlples: /* Store elMS: .!J1!!:.. */ 
x; /* Static-export Si~-Int tt / 
f(); /* Static-iRport (1) -) Signed-Int */ 
ohar y, z; /* Static-export Signed- or tmigned-Char */ 
static q, r; /* Static-private Signed-Int */ 
main() { Itt Static-export () -) Signed-Int ttl 

unsigned x., y; /* AutoMtic tmigned-Int */ 
auto short z,.; /* Autoutic Signed-Short-Int */ 
double extern long 1; 

} 
'* $tltic-i"l)Ort Long-"le *' 

Semantics 

The meaning of the type specifications and storage classes 
is discussed in the Section Concepts. 
OisCtl$SiOll 

• The reason that the type T denoted by char standing alone 
is implementation-defined as either Unsigned-Char or 
Signed-Char is due to potential inefficiences in a computer 
architecture. For example, on the IBM 370 loading an 
Unsigned-Char. is much more efficient than loading a 
Signed-Char, so T • Unsigned-Char is preferable. On an 
BOBB, widening an Unsigned-Char to a Signed-Int costs a 
two-byte instruction, whereas widening a Signed-Char to a 
Signed-Int costs only a single byte. 

• Although a Funotion_definition of storage class automatic 
is not ruled out by the constraints in this subsection, they 
are in Subsection 6.5. 

• Formally, the Storage_classes auto and register have the 
same semantics: specification of the automatic storage 
class. Generally the Storage_olass register is understood 
by a language processor to place the declared object's value 
in a register; however no sem8l/tic change to the program 
must occur through this placement. 
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Example: Some implementations, e.g. Microsoft C 3.00 
on the BOB6 under HS-DOS, do not truncate unsigned char­
acter values when the character is held in a register .. so 
that in "register char c = 255; if (++c == 256) f();" f 
may well be called on an B-bit-byte machine. The value of 
c after the increment should instead be zero. 

• The only combination of the Types and Adjeotives allowed 
here and in KR are "short intH, "long intH .. and "un­
signed int"'. It is not clear from KR whether the order 
matters. KR also permits "long float'" to stand for 
"double"'; High C, like X3Jll, does not. High C, like 
X3Jll, uses Hlong double'" to denote type Long-Double, a 
type not in KR. 

• 4.2BSO permits Adjectives to appear with (TYPEOEF_ 
NAt£>s. The result is somewhat as if <TVPEDEF _NNE>s were 
macros instead of names associated with a distinct type. 
EXlJlTlple: Htypedef int T; unsigned T x; T y; '" is per-
~itted. . 

This has the perhaps unusual effect that x and yare notof 
the same type; x is of type Unsigned-Int and y of type 
Signed-Int. The Adjective overrides the type associated 
with T, changing the type from Signed-int to Unsigned-Int. 

Note tile distillCtion: Hint'" standing alone denotes the 
Signed Integer type, not an H Incomplete'" Integer type; 
specific syntactic combinations to denote various integer 
types are listed above. Both KR and X3Jll concur with 
this manual In Insisting that a typedef name denote a 
single, unmodifiable type. 

• Many C Implementations are two-faced about the use of 
the Storage_class extern. For a function declaration that 
is not a definition, i.e. the body is not being supplied, 
extern always means the function Is declared elsewhere, 
but extern on a function definition denotes storage class 
static-export. 
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High C reserves extern for static-import only, and for­
mally forbids it on definitions. In a concession to existing 
(poor) practice, MetaWare High C campi lers warn when it 
appears on a function definition. Its presence is unneces­
sary since the absence of any Storage_olass for a function 
definition impl ies storage class static-export. 

6.4 Tagged Types ------------------------------. 
[sUIet, iii., _; llC11111.tI sUICtIrI .r 111. t".; tII-- s,ece; stndlr. 
II' iii • ..-rs; ~t fi.l'; ~t1. Utmls 1M t".; ~ .11 ..... 1] 

Syntax 
Tagged_type 
-) Complete_definition: 'struct' Tag? '{' Member_list '}' 
-) Complete_definition: 'union' Tag? '{' Member_list '}' 
-) Use_or_inoomplete_definition:('struct'I'union') Tag 
-) Complete_definition: 'enum' Tag? '{' Literal_list I}' 
-) Reference: 'enum' Tag 
, 
Literal_list 
-) (Name ('.' Constant:E)?) list ',' " '? 
· , 
Tag 
-) Tag:Name 
, 
Member_list 
-) '{' AIso_is_a_list:Members list ';' ';'? '}' 
· , 
Members 
-) Type_specifiers (Structure_member list I, I)? 
, 
Structure_member 
-) Deolarator 
-) field_member:Declarator? ':' Bits:Constant:E 
· , 
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Constraints 
Structures and Unions. If the Tag (Name) is given in a 

Complete_struct_deflnltlon: 
(a) if the Tag is declared of mode struct-tag and incomplete 

type Struct{?} in the tag name space, and the origin of the 
latter declaration is the same as that of the COft1)lete_ 
struct_definition, then the Hember_list specification 
completes the original definition of the Incomplete 
struct. From this point through the rest of the origin of 
the Tag's declaration, the Incomplete struot has type 
Struct{M}, where M is the Henmer_l1st. This does not 
create a. new type but merely completes an old one. The 
type denoted by the CClq)lete_struct_definition is this 
completed type. . 
Note that the requirements of Hsame origin" prohibit the 
example cited In Section Introduction, a particular sore 
spot for most compilers and C language definitions. 

(b) Otherwise, the occurrence of the Teg is its defining-point 
within the tag name space of mode stroot-tag; it has new 
type T :II Struct{?} from its defining-point to the closing} 
of the definition, and then has type Struct{M} where M is 
the Hember _list; the type denoted by the CQq)lete_struct_ 
definition is this new type. 
Furthermore, T may not be completed within the defini­
tion. This unusual two-stage type association prevents 
Illegal declarations such as Hstruct S{struct S x; }N, but 
permits such declarations as Hstruot S{struct S *X; }H: 
pointers to incomplete types are permitted. 
If no Tag is given in a Complete_struct_definition, the 

definition denotes a new type Struct{M}. 
Similar constraints apply for C~lete_union_deflnltlon: 

replace struct by union and Complete_struct_definition by 
Complete_union_definition in the preceding three paragraphs. 

Y.11.01.85 II 1984-85 ttetauare Incorporated 



Declarations 

Example: 
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struct s; /* A: Declaration of an inc~lete type. */ 
main(l { 

struct s *y; /* Reference to declaration A. */ 
struct s {int z;}; 1* B: Duplicate declar'n of s. */ 
} 

struct s {int z;}; /* C: completes deolaration A. */ 

Declaration B is not a completer of A since B and A have dif­
ferent origins. Therefore the occurrence of s in B is a defin­
ing-point, so that the scopes of A and B overlap, producing 
an Illegal duplicate declaration. On- the other hand, the 
origin of A and C is the same, so that C completes A. 

No member in a Menmer_list may be of a functionality type 
or of an incomplete type (this prohibits the declaration of x in 
"struot S{S x; } II .) 

In a Use_or_incomplete_definition; if the Tag following 
struot is declared" of mode struct-tag and incomplete type 
Struct{?} or the Tag following union is declared of mode 
union-tag ·and type Union{?}, the type denoted by the 
Incomplete_definition_or_use is this type. Otherwise, the 
occurrence of the Tag is its defining-point of mode struct-tag 
and new type Struct I?} {or of mode union-tag and new type 
Union {?}). . 

The type denoted by the Use_or_incomplete_definition Is 
this type. (This means that in Hstruot S {int X;}; void F() 
{union S; ... }N, the second occurrence of S is an incomplete 
definition, not a reference to the first s.) 

The dec I ar at i on of an object of type Struct{?} or Un i on{?} 
whose storage class Is not static-Import Is Illegal; the Struct 
or Union type must first be completed. 

The E appearing in a F1eld_rnerrmer must be a constant 
integral expression. If the value of E is zero, the Declarator 
may not be present. The Declarator must be of type Unsigned­
Int or Signed-Int. 
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Enumerations. Each of the Constants in a an EnulTLdefini­
tion's Literal_list must be a constant expression of an 
integral type. 

The type T denoted by an Entin_definition is one of Signed­
Char, Unsigned-Char, Signed-Short-Int, Unsigned-Shart-Int, 
Signed-Int, or Signed-Long-Int. 

An implementation may choose any of these types for T 
provided that: (a) the unsigned types can be used only if their 
size is less than that of Signed-Int, so T widens to Signed-Int in 
an expression; (b) T contains the set of values specified in the 
Literal_list, except that a value not contained in Signed­
Long-Int is converted as if by type casting to Signed-long-Int. 
See Sem8flticsbelow for the specification of the values. 

Generally an implementation chooses the type T having the 
smallest size satisfying the constraints, and chooses the 
signedness depending upon the efficiency of the architecture; 
see the OiSCtJ$$ion in Subsection Types and Spec~·f'iers above 
for architectural examples. 

If the Tag is provided, its occurrence is its defining-point 
wi thi n the Tag name space of mode enum ~ tag and the type T 
as specified in the previous paragraph. The occurrence of the 
Names in the Literal_list are their defining-points within the 
ordinary name space with mode value and type T. 

In an Entln_referenoe, the Tag must be declared in the tag 
name space of mode enum-tag and of some type T. The type 
denoted by the'Entln_reference is T. 

Semantics 

Structures and Unions. A value of type Struct{M} or 
Union{M} where M is a Nemer_list consists of a sequence of 
optionally named objects called members. The members and 
any names are defined by the Structure_member syntactic 
category. 

The members may be either Declarators or fie/tis, which 
are sequences of bits. The number of bits in a field is specified 
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by the constant expression E following the': '. A field F that 
immediately follows another field F' may be placed adjacent 
to F' in t~e same storage unit, if possible. 

We del iberately leave unspecified whether adjacent means 
that the least-significant bit of F is adjacent to the most­
significant bit of F', or the least-significant bit of F' is 
adjacent to the most-significant bit of F, but we require that 
adjacent always mean the same thing in a particular imple-
mentation. . 

Adjacency depends upon the the order of all~cation of fields 
within a storage unit (left-to-right or right-to-Ieft), which is 
implementation-defined. An implementation may refuse to 
allow a field to straddle an implementation-defined storage 
uni t boundary B. 

The width of a field may not exceed the size (in bits) of an 
object of type Unsigned-Int. 

A field of zero bits prevents any further fields from being 
packed into the unit of storage in which the previous field was' 
placed, and' may additionally cause the next field to be allo­
cated on the storage unit boundary B mentioned above. 

Art unnamed Field_l1IeINler (the Declarator is omitted) is 
used to conform to layouts imposed externally. 

Within an object of a Struct type, the non-field members 
and the storage in which fields reside have addresses that 
increase as their declarations are read from left to right. 
Each non-field member of a structure may be aligned as 
appropr i ate to its type; there may therefore be unnamed gaps 
within a structure. 

However, the address A of a structure must be the same as 
the address of its first member M, if M is not a field; other­
wise A must be the address of the storage unit In which M is 
stored. Thus, there is no Hgap" at the beginning of a structure. 

Within an object a of a union type, the non-field members 
and the words in which fields reside have the same address, 
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which is the same as the address of O. Thus, there is no Hgap" 
at the beginning of a Union. 

Enumerations. When used in an expression, the successive 
Names in a Literal list evaluate to 0, 1, 2, .. ., etc., except 
'that a Name with an associated Constant expression E Hresets N 

this sequence to the value of E. The values of enumeration 
I iterals need not be unique. 

For example, Hen .. {red, orange, blue = 0, green}; N is 
permitted: red and blue evaluate to zero and orange and green 
to one. In this example the type denoted is Signed-Char. 
DiSCfl$$ion 

4.2BSO and KR prohibit structures and unions from having 
members of a functional ity type. X3Jl1 is si lent on the 
subject. 

4.2BSD permits a structure or union type T in a nested 
block to complete a corresponding structure or uni«;)n type T' in 
an outer block, with confusing results. In the nested block T 
)nay be used appropriately; in the outer block, T' is incomplete 
and may not be completed. The compi ler gives confusing. 
messages when the use or completion of T' is attempted in the 
outer block. 

4.2BSO warns when enumeration values and values of other 
types are mixed in expressions. The proposed standard and this 
document say that enumeration values are not of a separate 
type, but are of ·one of the basic integral types. 

4.26S0 does nofpermlt redefinition of typedef names, 
such as Hint X; H, where x is a typedef name. This appears to 
be a bug, since an example specifically documented in the KR 
book as correct Is disallowed by 4.2BSO. 

The address operator & may not be appl ied to a field 
member, because most computer architectures do nat support 
Jddressing at the bit level. This restriction is imposed through 
field having the mode field; see the discussion of & in Section 
Expressions/Pointer Reference. 
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6.5 Declarators -------------------------------­
[hr_tlrl; ,..._tlr .. , ... twel: lIhulCt..Jlf_ten; .,UICt_.aulter: 
s,.cifitrs; till t". If I lIIc:lulter If .sUItt -auater; fllctillllitJ t".. ... 
,lite .. t.ctt.litin; ~l.te ,,,..; rllilllr ,.,_telS; "uter ... arr., 
lJIIIS; tJ.-..s u .... ten] 

Syntax 

Declarator 
-) '.' Deolarator 
-) Declarator' 
, 
Declarator' 
-) Deolarator' 1[' Array_speoifioation 1]1 
-) 1(' Declarator ')' 
-) Function_speoifioation: 

Declarator' 1(' Parameters I)' 
-) Deolared:Neme . , . 
Array_speoifioation 
-) Constant:E? . , 
Parameters 
-) Parameter_nemes_only: 

Parameter_name list .,. More-parms? 
-) Abstraot-parameters 
, 
Abstraot-parameters 
-) (SO list ',' More-parms?)? 
, 
SO -) Specifiers (Abstract_declarator I Declarator2)? 
, 
More-parms - ) ',' •...• ?; 
I 

Parameter_name -) '(IDENTIFIER)' 
I 

Abstract_declarator 
-) '.' Abstraot deolarator? 
-) Abstract:declarator l 

; 
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Abstract declarator' 
-) Abstract_declarator'? '[' Array_specification 'l' 
-) Abstract_declarator ' ? 1(1 Abstract-parameters ')' 
-) 1(1 Abstract_declarator ')' 
, 
• Declarator2(') is needed to avoid an ambiguity. 
Declarator2 
-) '*1 Declarator2 
-) Declarator2 1 

. , 
Declarator2 1 

-) Declarator2' '[' Array_specification ']' 
-) '(' Declarator2 ')' 
-) Function_specification: 

Declarator2' 1(' Parameters ')1 
-) Declared_name: '<IDENTIFIER)' 
; 

The nonterminals Declarator2 and Declarator2' are needed 
to avoid a syntactic ambiguity by forbidding the name of a 
function's parameter to be a name previously declared of mode 
typedef; see Type Names as Parameters in Oiscussionbelow. 
Constraints 

Every Declaretor declares a single Declared_neme N. The 
occurrence of N in the Declerator is its defining point of a 
particular mode M and of a particular type T in one of two 
name spaces. If the Declaretor is a Structure_member, the 
name space is that for the structure or union type having that 
Struoture_member. Otherwise, it is the ordinary name space. 

The occurrence of any Deolarator is associated with a 
storage class S that is specified in the Type_specifiers or 
Speoifiers preceding the Declarator, or is implied when there 
are no Type_specifiers or Specifiers; see Subsection TYpes 
and Specifiers above. 

Likewise, the occurrence of any Declarator Is associated 
,with a type T' that is specified in the aforementioned Type_ 
speoifiers or Speoifiers, or is implied when they are lacking. 
From this type r l and the structure of the Deolarator, the 
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final type T of the declared name can be determined. We also 
say that the Declarator is of that type. T is Type (T' ,D), 
where Type is defined recursively as follows: 

Table Oeolarator Type Determination. 

TYPt(T"D)· if 0 is of the form then 

-0' ~*T"O') 
0'· [ ] Typt([?]: T" 0') 
0' [E] ~[V]: T" 0') 

where E must be a Constant expression of an 
integral type whose value Is V 

(0') l}pt(T" 0') 
0' Parameters l}pt(F"O') 

where the determination of the functional­
ity type F is deferred to later discussion 
under the heading Function Parameters 

Name T 
Examples: 
int *(~)[31,,(*f(int»[]; 

XiS type is determined as follows: 

T»~Signed-lnt, -(*X) [3]) 
= TJ11t{"Signed-lnt (*X) [3]) 
= T»t{[3]:*Signed-lnt, (*X» 
= TJ11t{[3]:"Signed-lnt, *X) 
::I: 1)1!~*[3]:*Signed-lnt, x) 
- -L3]:-Signed-lnt 

i.e. x is a pointer to an array of pointers to Signed-Ints. f's 
type is determined as follows: 

T»l(Signed-lnt (*f(lnt»[]) 
- T)11t{[]:Signed-lnt (*f(int») 
= T)11~]:Signed-lnt *feint»~ 
= Twl("[]:Slgned-lnt feint»~ 
- T)11t{(Signed-lnt)p->"[]:Signed-Int f) 
= (Signed-Int)p->"[]:Signed-Int 
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i.e. f is a function (with prototype functionality) taking a 
Signed-Int; it returns a pointer to an array of Signed-Ints. 
Abstract_declarator provides a way of specifying a type 

without declaring a name of that type. Like Deolarator, 
Abstract_declarator appears in a context that associates a 
type T' with it; in the rule for AbstractJlarameters, the type 
comes from the preceding Speoifiers, and in the rule for 
Cast_type (see Section Expressions/Cast Types and Abstract 
Declar8to~, from a preceding Type_specifiers. 

The type T denoted by an Abstract_deolarator A is Type 
(T',A), defined recursively as follows: 

Table Abstraot_deolarator Type Determ ination. 

TypI.(T,A)· if A is of the form then· 

* *T 
*A' T~*T,A') 
[] rJ: T" 
A' [ ] TJf1t( [ ]: T, A') 
[E] [v]: T-
A' [E] TJ1N.([V]:T,A') 

where E must be a Constant expression of an 
integral type whose value is V 

Abstract-P8rameters F-)T 
A' Abstract-parameters TJ1N.(F-)T, A') 

where the determination of the functional­
Ity type F is deferred to later discussion 
under the heading Function Parameters 

(A') Typl(T, A') 

Mode of declared names. Each declared n~me has a mode, 
determined as follows. 

If ~ Decl"r"tor is 8 Structure_lIIt!IIIber: 

The mode of 
the name is if 

field the name is a (bit) field of the structure; 
member otherwise. 
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If the Dec18r8tor Isnot a Structure_metlllJer: 

The mode of 
the name IS if 
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typedef the storage class is typedef; 
fen the storage c I ass is not typedef 

and T is a functionality type; 
var otherwise. 

ExtllTlples: 

static int e; 1* Node var. *1 
extern int f(); 1* Node fen. ~I 
typedef int (*g)(); 1* Hade typedef. *1 
struct { 

int h; 1* Hade .-ber. *1 
int i: 5; 1* Hade field. *1 
} j; 1* Hade var. *1 

static int k() {} 1* Hade fon. */ 
static int (*l)(); 1* Node var. *1 

Incomplete types. A Declarator of an incomplete type 
must have storage class static-import and mode var, unless it 
is accompanied by an Initializer that completes the type; 
see Subsection 6.7 below. For example, "extern struct s x; 
extern int a[]; N (where s is undeclared in the tag name 
space) is perm i tted, but ,. struct s x; int a [ ]; N is not. I n the 
latter case the sizes of x and a are necessary for storage 
allocation but cannot be determined. 

Note. Since each structure member is of mode member 
or field, this rule effectively prohibits members having 
incomplete types. Since parameters are of automatic 
storage class, they too may not be of an incomplete t~pe 
(but see below, where the apparent incomplete type [?]:T 
for a parameter is actually itT, so that the parameter dec­
laration "char c[]; N is legal). But pointers to incomplete 
types are always permitted. The essential issue is that the: 
size of an object of an incomplete type is unknown. 
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Array types. The types [?]:T and [V]:T where T is an 
incomplete type are not perm itted. 

Void types. No Declarator may have type Void. However, 
an Abstraot_deolarator may have type Void. 

Functions. A Declarator of mode fen that is not part of a 
Function_definition may rothave storage class static-export 
or static-private. For example, the declaration "static 
g(); N Is not permitted. 

A Deolarator of mode fen may not have its type deter­
mined by a typedef of a functionality type. Although there is 
no implementation difficulty in this case, the restriction helps 
prevent confusing programs. 

EX8I11ples: 
typedef feint x); 
extern f g; /* Illegal. * / 
extern f h { /* Illegal. * / 

x :II 1; /* Uere h legal, this would be I confus- */ 
} /* ina statMent; where does x CORe frOR? */ 

f *pf; /* But this is legal. */ 
maine) { 

(*pf)(3); 
} 

Function parameters. Parameters is syntactically of two 
different forms: Parameter_names_only and Abstract.J)arame­
terse In the latter case the types of the parameters can be 
given through Specifiers, and some or all of the parameter 
names may be given if the Deolarator2 alternative for each 
parameter is used; see the rule for Abstract.J)arameters. 
Additionally the H ()" case of parameter specification is 
permitted through Abstract.J)arameters. 

In the Parameter_names_only case, only the parameter 
names are given, and the types of the parameters are left 
unspecified until the completion of the Function_definition 
containing the Parameters; see FunctionOefinitionsbelow. 
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Therefore there are three possibi I ities for a parameter: 
the parameter name only; the parameter type only; and the 
parameter name and type. No matter how the parameter 
names are" provided, they must be distinct from each other. 

Now to the deferred discussion of how to determine F in 
the Type Determination tables above. F is one of the four 
functionality type classes discussed in Section Concepts. 

If Parameters is simply "()" (via Abstract_ parameters), F 
is (1)->T if D iSlIOtpart of a function definition, and O->T if 
D Ispart of a function definition. 

If Parameters is a parenthesized list of parameter names 
(via Parameter_names_only), F is (Tl, ... Tn) -) T, where the Ti 
are the types of the parameters as declared in subsequent Pa­
rameter_types in the completion of the Funotion_definition. 

If Parameters is a parenthesized list of one or more para­
meter types and optionally names (via Abstraot.,.parameters), F 
i~ (T.l, ... T n)P :> T, Nwhe~e th~ T i a~e. the parameter tyPes. If the 
list Includes ... at Its tall, F IS IrlStead (T 1, ••. T n, ••• )p - > T. 

Finally, If Parameters is " (void)", F is ()p -) T. 
The types (T 1, .•. T n)P - > T and (T 1, ••• T n, ••• )p - > T are known 

as prototype functionalities. The semantics of function call 
for functions of prototype functionality is quite different 
from those without such; see Section Expressions/Function 
Call where the difference surfaces. Prototypes fi II a badly 
needed void in "old e": a way to provide checkable type 
information for imported functions. 

The type P -) T where T is an array, functionality, or 
incomplete type is not permitted. 

If the Declarator is part of a Function_definition, Parame­
ters and the Parameter_types and the Compound_statement of 
the Function_definition are together a block. If the Declar­
ator is not part of a Function_definition, Parameters is a 
block. See Function DefinitiolJ$below. 
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The only storage class permitted in the Specifiers of 
AbstractJ)8rameters is register. -

In Abstract-parameters, the types of the parameters are 
always given by using Specifiers in conjunction with Abstrect_ 
declarator or Declarator2. When Abstract_declarator is used, 
only the parameter type Is specified; when Declarator2 Is used, 
the Declared_name of the declarator is the parameter name. 

Example: "int h(float, int x); N gives a prototype 
functionality for function f where only the second para­
meter is named. Abstraot_deolarator has been used for 
"floatN

, and Declarator2 for "int xN
• In this example, 

naming only one parameter does not make sense, though it 
is allowed. When both parameters are named, an extension 
known as l18IT1ed parameter association (from Ada) Is 
possible; see Appendix Extmsiom. 

A parameter declared of type [1]:T or [V]:T Is not of those 
types, but is of type NT. A parameter of a functional ity type is 
not perm i tted. 

(The Constraints and Semantics for function· calls - in 
particular, the type matching of actual to formal parameters 
- are presented in Section Expressions/Function CDIL) 
Semantics 

Pointer types. M object of type NT is capable of holding 
the address of any object of type T. All po inter types occupy 
the same amollnt of storage. 

Array types. An object 0 of type [V]:T is a sequence of V 
objects of type T indexed from O .. V-l. The size of 0 is 
yN(sizeof T). The address of 0 is the same as the address of 
0[0]; in general, &0[1+1] = &0[1] + 1 :z the address of 0[1] plus 
sizeof(T) storage units, i.e. array elements are contiguous. 

An object of type [1]:T is a sequence of unknown length of 
objects of type T. Its size is unknown, but the relationship 
between its address and that of its elements is the same as for 
[Y]:T. 
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Functionality types. A name of type P -) T refers to a 
function returning type T." See Function DefinitiOll$below for 
more information. 
DisclJSSion 

• An object of mode var can be assigned values. An object of 
mode fen is not a variable, but labels function code and thus 
cannot be altered. See Section Expressions/Assignment'$, 
where only objects of mode var, field, or member can be 
assigned. 

• 4.2BSO is confused about "static int fl ().; N. Calls to Fl 
become calls to an external function; it is as if the declar­
ation read "extern int fl (); N. But the function may not 
be defined in the source text containing the declaration; 
hence it is as if HextarnN were notwritten. By contrast, 
Hextern int f2(); N declares an external function that can 
be later defined; this is proper. As a declaration local to a 
function, 4.2BSO allows Hstatic int f(); N to mean 
exactly Hextern int f(); N. 

4.2BSO "also allows the declaration Hextern int f() {}N 
which essentially says that f is declared elsewhere (Hex­
tern N

) but is actually declared right here (H {}N)! X3Jl1 
requires anot~er declaration of f() elsewhere without 
HexternN. 

Basically, C is somewhat confused with respect to impor­
tation and exportation and the use of extern. High C 
interprets extern strictly as Hdefined elsewhereN

• 

• KR prohibits the following types: P-)T, where T is a func­
tional ity, array, structure, or union type; [1]:T' or [V]:T', 
where T' is a functional ity type; or structures or unions 
containing functions. Curiously, X3Jll does not impose 
any of these restrictions, but does not ascribe semantics to 
the cases where T is a functionality or array type, or where' 
T' is a functional ity type. 
Parameter scoping. KR does not address the issue of the 

scope of parameters. X3Jll and this document agree in spe-
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cifying that the parameters are contained in the same block 
introduced by the Compound_statement of a Function_defini­
tion. By contrast, 4.2BSO allows re-declaration of a parame­
ter in the Compound_statement, a "feature" that can lead to 
agonizing bugs, as in 

int f(a, b) 
int a; char *b; 
{ 
int x; char *b; 
x = a+b; 1* .as the parameter b meant here? *1 
return x; 
} 

Type names as parameters. Note that Abstract.J)ara­
meters uses 'the nonterminal Dec1arator2, which replicates the 
Deolarator syntax except that the declared name can only be 
an (IDENTIFIER), rather than a Name, which can be either an 
(IDENTIFIER) or a (TYPEOEF _NAtE). Likewise, Parameter_name 
can produce just (IDENTIFIER). This means tha~ a function 
parameter cannot be an identifier previously declared of mode 
typedef. 

EXlJI1Iples: 
typedef enu.{False, True} Boolean; 
void fl() { 

char 8001ean; 
} 

void f2(Boolean); 
void f3(Bulyean); 
void f4(int Boolean) 

{ } 
void fS(80olean) 

int Boolean; 
{ } 

1* is legal. 

1* is legal. 
1* 1s legal. 
/* is illegal. 

1* 1s 111egal.' 

*/ 

*/ 
*/ 
*/ 

*/ 

void f6(Boo1ean i); /* is legal. *1 

The main reason for the restriction is exemplified by the 
declarations f2 and 13. 13 declares an external function 13 
whose parameter is named Bu1yean and is of type Signed-Int. 
Without the restriction, 12 could be interpreted as either a 
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function taking a parameter named Boolean of type Signed-Int, 
or a function taking an unnamed parameter of type Boolean. 
The restriction resolves the ambiguity. 

In declaration f5, even though it is clear that the para­
meter's name is Boolean, the information is avai lable too late 
(at the second occurrence of Boolean) for proper parsing. So, 
even though this case is not ambiguous, the restriction eases 
the translator's work. 

Division of labor between Deolarators and Speoifiers. 
Declarators are a way to declare a name, and optionally parti­
cipate in the construction of the type of the nanie. Here the C 
language is confusing: the task of specifying the type of a 
declared name is divided between Declarators and Specifiers. 

Specifiers permit the reference to and the construction 
of a structure, union, and enumeration type, or a reference to 
any of the basic types or a previously defined typedef type. 
Oecleretors permit the specification of array, function, and 
pointer types. 

The stated reason for placing some of the type specifi­
cation in Declarators is that it is possible thereby to make the 
declaration of a type appear similar to the use in expressions 
of objects of the type. Any type whose use and definition could 
be made similar was placed in Oeclarators; all other types 
were placed In Specifiers. . 

This in fact can make C declarations difficult to read, and 
the type of an object difficult to discern. It can also cause 
problems for novices: Many times this author has construed 
"char- x, y; N as the declaration of two variables of type 
"Signed-Char. But since the" is part of the Declarator, not 
the Specifier, y is of type Signed-Char. By contrast, in 
H struot {_} ~ y; N, both x and yare of the same aggregate 
type. 
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6.6 Function Definitions ------------------------. 
r,u-ter .-s .. \JfIS; IhUICt.Jll_ters; s,ed fiers; t.cti_li tJ ty,es .d 
"ltIt", t.cti .. litlts; rnistlr _.un; FllftCUlILftfillti.; u ...... t 
COftm'si. at fIIIcti. nUJ] 

Syntax 
Funotion definition 
-) FunctIon:Declarator Parameter_types Compound_statement . , 
Parameter_types 
-) (Speoifiers (Parameter:Deolarator list " I)? ';1 )* . , 

Constraints 
The Declarator 0 in a Function_definition must be of a 

functionality type P->T. The Parameters in 0, the Parameter_ 
types, and the Compound_statement, all constitute a block. 

The only Storage_class allowed in the Specifiers preced­
ing a Parameter: Declarator is register. 

Parameters is syntactically of two different forms: Para­
meter_nemes_only, and Abstract-parameter~. 

Using Abstract.J)ara.eters. The Declarator2 form (see 
the rule for Abstract-parameters) must be used for each para­
meter so that the parameter name is supplied. Furthermore, 
Parameter_types must be empty. 

Using Para.eter_na.es_only. If there are one or more 
Parameter: Declarators in Parameter_types, the Declared_name 
N of each such Declarator must not be the same as that of any 
other such Declarator, and each Declared_name N must be one 
of the parameter names. In this case parameter N has the 
type denoted by the Specifiers and Parameter: Declarator. If 
no Parameter_type declaration is given for a parameter name 
p, the Parameter_type declaration flint p; N is implied, i.e. the 
parameter has type Signed-Int and storage class automatic. 
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Note. These rules permit other names not in the ordinary 
name space to be declared in the Parameter: Deolarators: 
structure tags and member names. 

ExtJlTlple: 
int f(a, b) 

struct s {int z;} a; 
{ ... 

Here s is declared as a tag and z a structure member .. in 
addition to the declaration of the parameter a. Since there 
is no Parameter_type for bl «int b; II is implied. It is also 
possible to give just Specifiers alone with' no Parameter: 
Declarator; e.g. «struct s2 {tnt w;}; II is legal before the 
opening { of the function. 
The Storage_class extern may not be used with a func­

tion_definitionl since it is inconsistent: extern impl ies the 
declaration is elsewherel yet the function body is suppl ied as 
the Compound_statement. 
Semantics 

A Function_definition provides the code body for an object 
of a functionality type. If the storage class of the declared 
name N is statlc-exportl any other declaration of a name N 
with mode fen and storage class static- import in any other 
source text refers to this code body; see Section ConceptS/ 
Independent TriJllSlatiOll. 

If a function F does not have prototype functional ity., 
actual arguments corresponding to parameters of type Signed­
Char, Unsigned-Char, Signed-Short-Int, Unsigned-Short-Int, 
or Float are assumed to have been passed as their converted 
counterparts according to the rules of a function call (see 
Section Expressions/Function C/J/~, and are converted back to 
the declared formal parameter type at the outset of the 
execut i on of the funct i on body. 

More precisely, for a parameter of type Signed-Char or 
Signed-Shart-lnt, it is assumed that the argument is passed as 
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Signed-Int, and so conversion from Signed-Int to the parame­
ter type occurs. For a parameter of type Unsigned-Char or 
Unsigned-Short-Int, it is assumed that the argument is passed 
as Unsigned-Int, and so conversion from Unsigned-Int to the 
parameter type occurs. For a parameter of type Float, it is 
assumed that the argument is passed as Double, and so conver­
sion from Double to Float occurs. 

The Storage_class register supplied for a function 
parameter is a request that the parameter be held in a register 
during the execution of the function; it does not affect the 
semantics of the program. A program with register declara­
tions must have the same meaning as when the Stor8ge_o18ss 
register is arbitrari Iy omitted. 

OiSCtJ$$ion 

Prototype functionality Is new., designed to allow some 
type-checking across separate compilation units. If a non-de­
fining declaration for function F precedes a function definition 
for F., our rules for duplicate declarations (see Section Con­
cepb) require that both have identical prototype functionality 
if either have a prototype funct i ona Ii ty. 

X3J11 instead adopts the notion that a prototype function­
ality for the first declaration and a non-prototype functional­
ity for the second are permissible, where the semantics of the 
second are as if it was declared with a prototype functionality: 

int f(float x); 
int f(x) float x; { 

-
} 

void Use_f() { 
f(3.0); /* Pass in Float, not Double. */ 
} 

The X3Jll approach ruins the readability of the function 
definition of f: now its semantics are different depending upon 
whether a prototype definition for f precedes it. High C rules 
require that the definition for f also use prototype functlon-
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ality, retaining the property of "old eN that function defini­
tions are understandable out-of-context. 

6.7 Non-Function Definitions --------------------. 
[Non_flllCtion_definitions; Initializers and initialization) 

SyntllX 

Non function definitions 
-) (Declarator (':' Initializer)1) list I, I . , 
Initializer 
-) E 
-) '{' Initializer list " I " '1 '}' 
; 

Constraints i1IKI Sem8/1tics 

Due to the complexity of describing the initialization of 
objects, Constraints and Semantics are combined. 

Each Declarator in Non_funotion_definitions may option; 
ally be init.ial ized. The mode of the Declarator must be var; 
thus «extern F() :II: { ••• }N is not permitted, because F is of 
mode fcn; nor is «typedef T[3] • {1, 2, 3}; N, since T is of 
mode typedef. Only objects of storage class static-export, 
static-private, or· automatic may be initialized. If an object 
of storage class static is initial ized, the Initializers must be 
constant expressions. 

Assume the object 0 being initialized is of type T. When T 
is a scalar type, the Initializer consists of a single expression 
E, optionally enclosed in braces. When T is a Struct{ ... } or 
Union{ ... } type, the Initializer may be a single expression E, 
notenclosed within braces. The type of E must be assignment­
compatible with T. Semantics: 0 is initialized with the value 
of E converted to type T. 

The remaining discussion applies in all cases excluding those 
just detai led. 
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When 0 is an aggregate, the Initializer is a brace­
enclosed I ist of Initializers for the members of 0, written in 
increasing subscript or member order; there may be no more 
Initializers than aggregate members. If 0 contains subaggre­
gates, this rule appl ies recursively to the subaggregates. 

However, any of the non-outermost braces may be elided 
for aggregate initialization. In this case, the aggregate "con­
sumes" only as many members of the Initializer as necessary 
to initial ize the aggregate; the remaining members are left 
to continue initialization of the object of which the aggregate 
is a part. 

The initialization construct changes the type of the 0 if a 
is of an incomplete type [1]:T. If V is the number of elements 
of 0 that are initialized in the Initializer, the type of a is 
changed to [V]: T . 

When string constant E is used to initialize an object of an 
array type, the type of E is notconverted to -C (where C is 
the type denoted by char) as is customary; see Sect i ons Ex­
pressions/(IlENTIFIEN)sand Expressi~/Jer Selection .. 

An array of characters may· be initialized by a string. 
Successive characters of the string (including the terminating 
character if there is room or if no size is specified) initialize 
the members of the array. Likewise, a pointer to Signed-Char 
may be initialized to a string, since a string is always coerced 
into its address; see Section Expressions/Constant Expressions. 

When initia'lizing a object of a Union type, the first mem­
ber of the union is initial ized. 

These rules are more precisely described in the following 
algorithm that formally establishes the correspondence be­
tween the initialized object and the initializing expressions. 
The algorithm is recursive and is written in "pseudo-CN

; fur­
thermore, it does not contain Initializers so that it non­
circular Iy spe,ci fies the meaning of Initializers. 

The algorithm takes as input an object V, to be initialized 
and an Initializer I. The constraints that must be imposed 
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and the semantics of the initialization are marked in the algo­
rithm. It is started with the call Initialize(V, I, 1). 
int Initialize(V, L Start) 

object V; Initializer I; int Start; 
{ 
let I be of the form {El, ..• En} or just El, 

where the Ei are Expressions or Initializers; 
s.itch (the type T of V): 

case basic type: case *T': 
if EStart is of the form E or {E}, 

where E is an expression, . 
Constraint: The type of E must be 8ssignment­
compatible with the type of the object (per-
mits assigning an array of oharaoters into a *C 
object (where C is the type denoted by just 
HcharN), since arrays are always converted to 
pointer to the first element, or the address of 
an object into a pointer). 
Set1NN1tics: V is initialized with the value of E. 
return Start + 1; 

else 
Constraint: The initialization is erroneous: 

too many braces for a scalar type. 
case [L]: T': 

v.11.01.85 

if EStart. is a string S of length L + 1 or less 
(including the '\0' terminator) 

and T' is Signed-Char . 
{/* Note: V+l permits us to ignore the null *1 
/* byte in S. */ 

SIMI8I1tics: V[i] is initialized with Sri], 
for 0 1 i 1 Hin(l-length of S - 1); 

return Start + 1; 
} 

else { 
for (k-Start, i-O; k 1 Min(V-l, n).; i ++) 

if Ek is of the form { ... } 
then {Initialize(V[i], Ek, 1); k++} 
else k = Initialize(V[i], L k); 

return k; 
} 
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case [1]: T': 1* Initialization determines the size *1 
1* of the array. *1 

if Estart is 8 string S of length V 
and T' is the type denoted by H charN alone 

{ 
Constraints: the type of V becomes [V+1]: T'; 
SetMnti cs: V [i] is initialized ,i th S [i], 

for 0 1 i 1 V; 
return Start+1; 
} 

else { 
for (k=Start, i=O; k 1 n; i++) 

if Ek is of the form {M.} 
then {Initialize(V[i], Ek, 1); k++} 
else k = Initialize(V[i], I, k); 

Constraints: the type of V be~omes [i+1]: T'; 
return k; 
} 

case struot{Members}: 
let the rnenmers of the structure be nunbered 1 .. H 
and denoted V [1 JM.V [M]; . 
for (k-Start, i-1; k 1 MinOt n)-1; i++) 

if Ek is of the form {_} . 
then {Initialize(V[i], Etc, 1); k++} 
else k = Initialize(V[I], L k); 

return k; 
case union{Members}: 

let V [ 1] be the first menmer of the union; 
return Initialize (V [ 1 ], I, Start); 

1* case. Parameters-)T' : -- No oase here, 
-- since functions cannot be initialized. * 1 

} } 

When the algorithm ends, all of the Initializer express­
ions must have been "usedN

• The value of Initialize must 
therefore be one more than the length of the Initializer list. 

All uninitial ized objects of static storage class are initial­
ized to zero. Likewise, portions of static aggregate~ that are 
uninitialized by Initializers are initialized to zero. Uniniti­
al ized objects of storage class automatic, or uninitial ized por-
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tions of such objects in the case of aggregates, have undefined 
values. Initialization of automatic objects occurs when the 
declaration of the initial ized object is elaborated; see Section 
Sfafemenfs/tmpounti.st"tement for the definition of elabor­
ation and when it occurs. 

The evaluation of the expressions in an Initializer is per­
formed from left-to-right. However, the order of initial iza­
tion of the components of an aggregate is undefined. This 
means that constructs illustrated by Hstruct {int x, y;} z = 
{1, z. x}; II are not well-defined. 

DisclJSSion 

Both KR and X3Jll seem to allow initializing objects of 
storage class static- import. However, neither document 
ascribes any semantics to the initialization, especially in the 
situation where there are two distinct initializatlons for the 
same imported object. 4.2BSD uses ForTran-style named 
common as a means of sharing objects, so that it is up to the 
I inker to choose which initial ization specification among many 
preVails. 

X3Jl1 has adopted the position that when an automatic ag­
gregate is partially initialized by an Initializer, the remain­
der of the aggregate is initialized to zero. We consider this un­
fortunate and encouraging of poor programming style. In fact, 
we begrudgingly left in the initial ization of all otherwise­
uninitialized static objects to zero because of widespread 
existing practice. Depending upon this HfreeN initial ization 
we feel is, again, poor programming practice. 

Perhaps the reason the dependence is so widespread is that 
UNIX linkers zero- initial ized otherwise-uninitial ized memory 
automatically. Some operating systems do not do this and, 
rather than dedicate a lot of object module space to the zero­
ing of uninitialized space, we would prefer the language leave 
undefined the initial value of uninitial ~zed objects, and requlr~ 
the programmer to be disciplined enough to initialized all and 
only those objects needing it. In this way he can document what 
objects need no initialization; with standard C one cannot tell. 
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As an example of an initial ization, consider the Non_func· 
tion_definition 

struct {int x, y[2]; char c[2];} z[] = { 
1, {2}, M8", 

{1, 2, 3, • x' }, 
1 

} 

The initial ization specified is as follows: 
z[O]. x = 1; 
z [ 0 ] . y [ 0 ] = 2; 
z[O].o = -8M

; 

z[ 1]. x = 1; 
z [ 1 ]. Y [0] = 2; 
. z [ 1 ]. Y [ 1 ] = 3; 
z[1].0[0] = 'x'; 
z[2]. x = 7; 

z[ 1]. c[ 1] is left uninitial ized and therefore is set to zero. 
The same is true of z[2]. y and z[2]. c. The type of. the array z 
has been changed to [3]:Struct{ ... }. 

Initialize(z, L 1): . 
case []: r', where r' is the struct type. 

k = Initialize(z[O], I, 1): 

'1.11.01.85 

case struct {H.}: 
k = Initialize(z[O].x, 1,1): 

case basic type: z[o]. x • 1; 
return 2; 

Initialize(z[0].y,{2},1): 
. case [2]: int:. 

k • Initialize(z[O]. y[O], {2}, 1): 
case b8sic type: z[O]. y[O] = 2; 

return 2; 
return 2; 

k = Initialize(z[O]. c, L 3): 
case [2]: char: 

Since 13 is 8 string, 
z [0] . c [0] = '8', Z [0]. c [ 1] = • \0' ; 

return 4; 
return 4; 

~ 1984-85 ttetaUare Incorporated 



Declarations page 6-36 
/* At this point k • 4. */ 
Initialize(z[l], {1, 2, 3, 'x'},l): 

case struct {oo.}: 
k = Initialize(z[ 1]. x, {1, 2, 3, • x'}, 1): 

case basic type: z[ 1]. x = 1; 
return 2; 

k = Initialize(z[1]. y, {1, 2, 3, 'x'}, 2): 
case [2]: int: 

k lI: Initialize(z[1].y[O], {1, 2, 3, 'x'},2): 
case basic type: z[ 1]. y[O] • 2; 

return 3; 
k • Initialize(z[ 1]. y[ 1 ], {.1, 2, 3, • x'}, 3): 

case basic type: z[1]. y[l] = 3; 
return 4; 

return 4; 
k :I: Initialize(z[1]. c, {1, 2, 3, 'x'}, 4): 

case [2]: char: 
k :: Initialize(z[1]. c[O], {1, 2, 3, 'x'}, 4): 

case basic type: z[1]. 0[0] I: .·x·; 
return 5; 

return 5; 
return 5; 

/* k is no. 5. */ 
k = Initialize(z[2], L 5): 

oase struot{_}: 
k = Initialize(z[2]. x, L 5): 

oase basic type: z[2]. x • 7; 
return 6; 

return 6; 
the type of z is [3]: T'; 
return 6; 

Thus, the outermost call to Initialize returns six, one 
more than the number of elements in the Initializer, which 
is correct, and the type of z is [3]:Struct{ ... }. 

char s [] • {' a', • b', • \0 • } ; 

causes s's type to be [3]:Signed-Char and specifies its initial f~ 
zation it to the string "ab ll

• This is equivalent to: 
char s[] = lIab"; 
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Note that 
char *s = {'a', 'b', '\O'}; 

page 6-37 

is notpermitted, since s is not of an array type, but that 

char *s :I: "eb"; 

has the same effect. However, 
char s[2] = "ab"; 

sets s[O] = '8' and s[ 1] 2: 'b'; the' \0' byte in "ab" is ignored. 
4.2BSD and KR do not allow this case, an X3Jl1 extension. 

The elision of {_}s is most useful in fully initializing arrays 
of arrays: 

int Hatiix[3] [3] • { 1,2,3, 4,5,6, 7,8, 9}; 

However .. an upper triangular Hatrix can be specified by using 
{_}s to partially initialize the rows of the Matrix: 

tnt Matrix[3] [3] = { 1,2,3, {5,5}, {9}}; 

Th is produces the matr ix 

123 
560 
900 

since uninitialized storage is set to zero. 

The Initialization of structure objects with a structure­
valued expression is an X3Jl1 extension. 

Different "strategies. In existing compi lers there are two 
strategies for initialization in the presence of the el ision of 
braces - i.e. when the Initializer is not fully "braced". This 
technique, which we call top-down, differs from that of 
4.2BSO, which we call bottom-up. 

In the top-down approach, missing braces are interpreted 
as missing from" the most nested components of an object be­
ing initialized. Put another way, the structure of the braces in 
the Initializer matches the structure of the object being ini-
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tial ized from the top. If there are missing braces, only the top 
portion of the structure of the initial ized object is matched. 

In the .bottom-up approach, missing braces are interprete~ 
as missing from the least nested components of an object 
being initial ized. 

The following example illustrates the difference: 
struct { struct {int x;} 8, b; } z[] • { {1}, {2} }; 

The trees below depict the structures of the initial ized 
object (left): and the Initializer (right): . 

In the bottom-up approach, the Initializer's structure 
matches the bottom portion of the tree. The initial ization is 
z[O].a.x = 1 and z[O].b.·x = 1, so that z is an array of one 
element: 

In the top-down approach, the Initializer's structure 
matches the top portion of the tree, forcing a bifurcation of 
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the top node so that z has two elements. The initial ization is 
z[O).a.x. 1 andz[l].a.x. 2: 

High C supports the top-down approach because it seems 
the only approach a human can easily take. All compilers that 
we know of., except 4.2B50., use the top-doWn approach. The 
bottom-up approach may perhaps be an artifact of the compi 1-
ation strategy used In 4.2650. 
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7 
Statements 

page 7-1 

A statementspecifies an action to be performed. 

7.1 Compound Statellent -----------------------. 
[" .... ; lI_rlti. If ftclultilM; 11urll111111 lIIIclarltills _ SUUllnU) 

Syntax 

Compound_statement 
-) '{' (Specified_declarationIPragm8_callIStatement)* '}I 
. . . , 

Statement 
-) Compound_statement 

Constraints 

When a Compound_statement is not the body of a Function_ 
definition, the Compound_statement itself forms a block. 
Otherwise, a block is formed that includes the Parameters and 
Parameter_types of the Function_definition; see Section 
Oec/aratiOllS/FlHICtion Oefinitions. 

Semantics 

Except for .the goto, break, and continue Statements, the 
declarations and statements of a Compound_statement are 
executed in the same sequence as their textual presentation. 

The "execution" of a declaration is a term perhaps unfa­
miliar to the reader. In Ada it Is instead called elaboration, 
and we shall also use this term. The elaboration of a declara­
tion consists of the initial i:;zation of the object, if an initial iz­
,er is present and the object's storage class is automatic. 

As we have mentioned in Section Concepts/Lifetimes, 
storage for an automatic object is allocated at any entry to 
the Compound_statement containing the object's definition, so 
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that elaboration does not include storage allocation. 

Discussion 

page 7-2 

No other C language definition we know of permits thE, 
intermixing of declarations and statements. This flexibility 
allows the placement of declarations closer to the uses of the 
declared object. Example: 

getrand(int ,a[100]) { 
int i; 
for (i • 1; i < 100; a[i++] • rand(»; 
} 

main() { 
int i, j, a[ 100]; 
for (j = 1; j <= 10; j++) { 

getrand(a); 
int max = 0; /* Deolaration after statement. */ 
for (1 = 1; 1 < 100; i++) 

if (ali] > max) max = a[1]; 
} ~r1ntf(-M8Ximum of random Yalues='d\n-,max); 

Although one might argue that the intermixing buys little 
convenience, we approached it from the other point of view 
and saw no advantage gained by the restriction, so we did not 
impose it. Furthermore, the approach yields a simpler seman­
tics for the timing of the initialization of objects declared 
with initial izers, and when such initial ization is by-passed (via 
goto or other such jump). 

The semantics of local I ifetime (see Section Concepts/ 
Lifetim~ together with the scope rules allow automatic ob­
jects in parallel Compound_statements to overlap on a run-time 
stack for storage efficiency. 
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7.2 Expressions as Statements 

[side effects] 

Syntax 
Statement 
-) EL ';' 

Constraints 
None. 

Semantics 

page 7-3 

--------------------

The expression list EL is evaluated and the resulting value 
discarded. 

DisclISSion 
The primary purpose of an expression as a statement is to 

achieve a side effect, such as via a function call or an assign­
ment. 

7.3 switch, case, and default -------------------. 
r .... ,.iftt; casl r_s; ifti tiaU zatien; II_rati .. If *tlaratiDfts] 

Syntax 
Statement 
-) • switch' '(' EL ')' S,itch_body:Statement 
-) 'oase' Case label: (Constant:E (' .• ' Constant:E)?) 

. ':' Statement 
-) 'default' 1:' Statement 

Constraints 
The EL of the switch statement must have integral type. 

Consider the set of Statements S that appear within the 
Switoh_body but do not appear within any nested Switch_body. 
Let SC denote the subset of S whose members are labeled with 
case and SO the subset I abe led with def aul t. 

In the E .. E form of a Case label, both Es must be of the 
same integral type and must be-constant expressions such that 
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the value of the first is no greater than that of the second; 
call the values bounded by the two values the range of the 
Case_label. Where this form of Case_label appears in SC ... the 
type of the two Es must be assignment-compatible with th 
type of EL. 

Where the Case_label of a Statement in SC is a single E ... E's 
type must be assignment-compatible with that of EL. Fur­
thermore E must be a constant expression. The range of this 
Case_label is the Single value denoted by E. 

There may not exist two Statements in SC having over­
lapping Case_label ranges. The size of SO musfbe zero or one ... 
i.e. there may be at most one default within a ,.itch. 

case or default Statements may appear only within s.itch 
Statements. 
Semantics 

When the s.itch Statement is executed, the value V of EL is 
computed, and the end of its evaluation is a sequence point. ( 
V is contained in the range of the Case_label of some State­
ment S in SC, control is transferred to S. If no Statement in SC 
has a Case_label whose range contains V, and SO contains a 
Statement 0, control is transferred to O. If no Case_label's 
range contains V and SO is empty, the s.itch Statement has no 
further effect. 

Note. When control is transferred to some Statement S ... no 
initial ization of any objects of storage class automatic 
declared in Switch_body is performed prior to the control 
transfer. This is because the declarations are not elabor­
ated, having been "skipped over N by the control transfer. 
The execution of a case or default Statement has the same 

semantics as executing the Statement labeled by these con­
structs. Thus a transfer to such a Statement from elsewhen 
within a s.itch Statement (via, e.g., a goto, or by Hflowing off 
the end" of one case onto the next) is meaningful. 
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OisclISSion 
The first example shows a "normal" use of the switch 

construct: 
switch (Char_class(c» { 

case Letter: /* Scan identifier. */ 
while «c = getc(» >= 'a' && c <= 'z'); 
break; 

case Number: /* Scan number. */ 
while «0 • getc(» >. '0' && 0 <. '9'); 
break; 

oase Space: /* Soan blanks. */ 
while «c = getc(» = ' I); 
break; 

default: 
printf("Illegal token. \n"); 

} 

This next example points out the ill-disciplined potential of 
the switch construct and alerts unsuspecting implementors to 
the construct's full "power": . 

switch (i) default: { 
case 0: 
if (1) case 1: printf("case O\n"); 
else 08se 2: printf("oase l\n"); 
/* This loop cannot be "optimized away" */ 
/* beoause it may be entered via switoh. */ 
while (0) { 

int j • 2*i; 
/* Initialization will never be performed. */ 
case 3: printf("Entered a while false loop; \ 

J is garbage:'d\n", J); 
} } 

case 55 .. 77: 
default: printf("Execution of case finished.\n"); 
The last statement is executed when the first switch 

·terminates; the Case labelS 55 .. 77 and default are irrelevant 
_,,~nd illegal) unless the example above appears in the context of 
another switch Statement. 
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7.4 if ---------------------------------------
[sequence point] 

Syntax 

Statement 
-) 'if' '(' El ')' Statement ('else' Statement)? 

The grammar as it stands is ambiguous. The ambiguity is 
resolved as follows: in an if Statement with an else phrase, 
the Statement following the (El) may not end in an if State­
ment that lacks an else. Said differently, the else is matched 
with nearest lexically preceding if without··an else in the 
same Compound_statement (but not in a nested Compound_state­
ment). Thus in 

if (1) .hile (1) if (1) {} else {} 

the else matches the second if. 

Constraints 
El must have scalar type. 

Seman./ics· 
EL is evaluated; the end of its evaluation is a sequence 

point. If it is non-zero, the first Statement is executed. If it 
is zero, the second Statement, if suppl ied, is executed. 

If control transfers to the first Statement or any Statement 
contained within it by any other means (such as with a goto or 
s.i tch), the second Statement, if supp I i ed, is not executed, and 
upon termination of the first Statement, control flows to the 
Statement after the if Statement. Likewise with control 
transfers to the second Statement: the first Statement is not 
executed. 
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1.5 .hl1e -------------------------------------
[sequence pOint] 

Syntax 
Statement 
-) 'while ' 1(1 EL 1)1 Statement 

Constraints 
EL must have scalar type. 

Semantics 
EL is evaluated; the end of its evaluation is a sequence 

point. If the value is non-zero, the contained Statement is exe­
cuted. If the contained Statement S does not transfer control 
outside of the while Statement, then upon S,'s termination the 
while Statement is executed again. 

7.6 do-.hile ----------------------------------
[sequence point] 

Syntax 
Statement 
-) Idol Statement 'while' '(' EL I)' I;' 

Constraints 
EL must have scalar type. 

Semantics 
The contained Statement is executed. If the oontained 

Statement S does not transfer control outside of the do State­
ment, then upon SiS termination EL Is evaluated; the end of its 
evaluation is a sequence point. If the value is non-zero, the do 
Statement is executed again,. 
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7.7 for ---------------------------------------
[sequence point; continue] 

Syntax 
Statement 
-) 'for' '(' First:EL? 

';' Next: EL? 
';' Last: EL? 
')' Body: Statement 

Constraina 

Next, if present, must have a scalar type. 

Semantics 

If Next Is omitted, one is implied. 

Except in the matter of the behavior of a contained 
continue Statement in the Body, this statement is exactly 
equivalent to 

First; .hile (Next) { Body; Last; } 

Thus, the First and Next evaluation ends are sequence points. 

Discussion 
The first expression is a convenient place to put any initial­

ization for the loop. The second specifies a test for continuing 
the loop and perhaps an incrementation. The third usually 
specifies an operation performed at the end of the loop, such as 
an increment of a variable. 

7.8 gotos and Labels ----------------------------
[111 tillizlti .. ; SCOIII .f 1 •• ls; .1_rlti.. If dIclUlti_] 

Syntax 
Statement 
-) 'gato' Target_label:Name ';' 
-) Labeled_statement: Label:Name I.' Statement 
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Constraints 
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The beginning of the Compound_statement of the function 
containing the Label: Name is the Name's defining point; the 
~abel is declared in the label name space. The scope of the 
label is the block associated with that function. Note that this 
is an exception to the normal. rule that scope extends from the 
defining point to the end of a Name's origin. There may not be 
two identical L8bel: Names in the same function - labels can 
not be re-declared in a nested Compound_st8tement. 

The Target_label of a goto Statement must be declared in 
the I abe I name space. 

Semantics . 
A goto Statement transfers control to the Statement pre­

fixed by the associated Target_label. 

The semantics of a L8beled_st8tement is the same as that 
of the contained Statement. 

Note. When a Compound_st8tement S is entered via a goto, 
no initial ization of objects of storag~ class automatic 
declared within S is performed. This is because such initia.l­
ization occurs only when the declarations are elaborated, 
and the goto HskipsH the elaboration. 

Discussion 
The scope of label names is different from that described 

in KR, for good. reasons. Consider the function 
int f() { 

L 1: ; 
{ goto L1; 1* T8rget is the last L1. */ 

{L 1: ; } 
L 1: ; 

} } 
KA seems to say that the scope of the innermost L 1 is the 

·entire function ("The scope of a label is the current function, 
excluding any sub-blocks in which the same identifier has been 
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redeclared. H [K&R, p.204]). High C forbids re-declaration of 
a label within a function. 

High C constraints agree with those of X3Jll and 4.2BSD. 
This makes most sense since it avoids the pitfalls of the abovel 

example where a reader could assume the goto's target is the 
first L 1 instead of the third L 1. If a lot of program text separ­
ated the goto and the third L 1, the target would be difficult to 
see. 

7.9 break ____________________________________ a 

[exiting a SIIitch, for, ..... ile, or do statellent] 

Syntax 
Statement 
-> • break • ';' 
Constraints 

The break Statement must be contained within a s.itch, 
for, .hile, or do Statement. 

SemBntics' 

The break Statement terminates the execution of the 
smallest enclosing s.itch, for, .hile, or do Statement. 

7.10 continue ------------------------------- a 

[continuing a for, Ihile, or do stateJlent] 

Syntax 
Statement 
-) • continue' ';' 

Constraints 
The continue Statement must be contained within a for, 

I 

.hile, or do Statement. 
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Semantics 
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The continue Statement jumps to the loop-continuation 
portion of the smallest enclosing for, while, or do Statement. 
More precisely, in each of the St8tements 

.hile ( ... ) {Body: Statement; Continue.;}; 
do {Body: Statement; Continue.;} while( ... ); 
for ( ... ) {Body: Statement; Continue.;} 

a continue contained within the Body Statement and not 
contained within any contained for, while, or do Statement is 
equivalent to a goto Continue. 

7.11 return --------------------------------- • 
[result of function call] 

Syntax 

Statement 
-) 'return' EL? ';' 

Constraints 
The return Statement must be contained within a function 

F. The type of EL must be assignment-compatible with F's 
return type. 

Semantics 
The return Statement causes termination of the currently 

executing function and returns control to its caller. If the EL 
is present, it is evaluated, converted to the return type of the 
function in which it appears, as if by assignment, and this value 
is returned to the caller. If the caller expects no value, the 
behavior is undefined. 

If EL is omitted, no value Is returned. If a value Is expected 
by the caller, the behavior is undefined. 

An implicit return (with no EL) is assumed at the end of 
every function. 
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Discussion 
In KR, all functions had return types, so values could always 

be returned. Returning without a value returned an undefined 
value. In our semantics, which agree with X3Jll, potentially 
worse behavior is permitted, such as abnormal program ter-
mination. . 

7.12 The Null Stataent --------------~-------- • 

Syntax 

Statement 
-) ';' 

Constraints 
None. 

Sem8lJtics 

None. This statement is most often used to carry a label. 
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B.l General------------------------------------
[precefenCl, Issictativ1ty 1n Ix,rlssions; Ivaluation Ir"r; ODftftutltivity. 
Issoctatt,ity; expression ftlrittng; sequence point; arithftttic conversions; COnvert; 
extended floating-point precision; -••• E. A. and I CO""utative and associative] 

Expressions are presented with full operator precedence 
and associativity rules contained unambiguously in the gram­
mar. Consequently there are many "chain" productions of the 
form "En -) En+1~~. Often, the grammar is listed in the form 

En - > En+1 - > Interesting_alternative' 
where En -) En+1 is the chain production, and Interesting_ 
alternative is actually the material to be discussed. It is 
always true that the constraints and semantics of. En+1 are the 
same as those of En. Therefore all references in the text refer 
to nonterminals or adjectives present in Interesting_alterna­
ti ve, and never refer to En+1. 

The order of evaluation of operands is not defined unless 
spec i fica Ily stated otherw ise - for the (), &&, II, 1: , and com­
ma operator. However, the evaluation of operands of an oper­
ator must not be "interleaved": one operand of an operator 
must be completely evaluated before the evaluation of another 
operand commences. This essentially forces a "top-down" 
bent to evaluation of an expression. 

The operators *, +, .&, A, and I are commutative and 
associative and a language processor is free to rewrite any 
expression involving these operators using the commutativity 
and asociativity rewrite rules, provided that the types of the 
operands or of the results are not changed in the process. 
However, once rewriting has been done, operand evaluation 
order must be as described in the previous paragraph, so that if 
"(el + e2) + e3" is rewritten as '!el + (e2 + e3)", the outer 
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addition requires that el be completely evaluated before (e2 + 
e3) is, or vice-versa. 

Formally, the rewriting rules and constraints on using 
them are as follows: 

• commutativity: el op e2 <=> e2 op el always. 
• associativity: for op in {*, +, &, A, I}, 

(el' op e2) op e3 <.> el op (e2 op e3) 
iff Type(el op e2) = Type(e2 op e3). (C) 

Since the first (el) and second (e3) operands of the first and 
second operator occurrences, respectively, are the same, the 
condition guarantees that second and first operands of the first 
and second operator occurrences, respectively, have the same 
type, so that the types of the operands and results of both 
operator occurrences are preserved by the transformation. 

That the single condition (C) guarantees operand-type 
sameness cannot be evident without knowing the conversion 
rules that are appl ied to the operands of the operators before, 
the operation commences. Consider the first operator. 

What is the type of its second operand on the left side of 
the <=>? Before the operation commences, both 
operands are converted to type Common(el,e2), which is 
therefore the actual type of Doth operands, and is the 
type Type(el op e2) of the result. . 
Now cons i der the second operand on the right side of the 
<=>. Its type is evidently just Type(e2 op e3). 
Therefore we arrive at the requirement that Type(el op 
e2) = Type(e2 op eJ), which is just (C). 
An analysis of the first operand of the second operator 

produces the identical requirement. 
This covers half the cases. We now consider the first' 

operand of the second operator, and the second operand of the 
first operator. 
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The first operand of the second operator, on the right of 
<=), is of type Type(e1 op (e2 op e3». But by (e), this is the 
same as Type(e1 op (el op e2». This now reduces to Type(el op 
e2), since eommon(el,Common(el,e2» = Common(el,e2); see 
~he definition of Common in Section Concepts. Now the type 
of the first operand of the second operator, on the left of the 
<=), is evidently already Type(e1 op e2). 

Therefore (C) guarantees that the type of the first operand 
of the second operator is the same on both sides of the <=). 
Sim i lar arguments show that the type of the second operand of 
the second operator Is the same on both sides of the <=). 
Hence (e) is the only requirement necessary. 

For example, as a consequence of (C), (i + j)+k can be 
rewritten as i +(j+k) if i,j, and k are all of type Unsigned-Int, 
but cannot if k is of type Double or Float. 

The only sure way of placing an order upon evaluation and 
any involved side-effects is to introduce a sequence ,point. 

Many operators make use of arithmetic conversions. The 
conversions are detailed in Section Concepts. Functions Com­
mon and VViden are used to describe types'to which operands 
are converted. In the sequel, when we specify that a value V is 
converted to type T by writing Convert{V,T), we mean V if V is 
of type T, and the' result of converting V to T by assignment­
compatibility rules if V is not of type T. 

When operands of an operator are converted to a floating­
point type T, 'and the result of the operation is type T, we 
permit an implementation to choose a different floating point 
type T' having no less precision and range than T that the 
operands and result may be represented in. As far as the 
constraints of the expression are concerned, the type of the 
result remains T, but the implementation may store that 
result in T', preserving more precision. The type TI need not 
'f-ven be available to the C programmer - e.g. it may even be 
bf greater range and precision than Long-Double. The imple­
mentation must provide for casting the (invisible) type T' to T 
when the context demands, as in an assignment. 
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This permission is important on architectures that have a 
natural most-extended precision and range floating point type 
in which all computation is normally done, such as for the Intel 
8087 chip, and has its main impact upon intermediate expresf 
ions. Example: \ 

double dl, d2, d3, d4, d5; 

d1 = (d3*d~)-(d2*d'); 
1* Here, long-Double .. ay be used for calculation, possibly *1 
1* obtaining ROre precision than norftal, or avoiding an error *1 
1* if d3-d4 or d2-d1 exceeds the range of Double. *1 
1* The long-Double result ftust be cast to Double before *1 
1* the assign..ent takes place. *1 

d5 = (d3*d4)-(d1+d2); 
1* Further .. ore.the co .... on subexpression d3-d4 .. ay be stored *1 
1* in a PlaxiPlally precise tePlporary for Plat for use here. *1 

All expressions have a type T. The result of an operation 
denoted by an expression is defined only if the computed value 
is of type T, with the exception just noted where an impl~' 
mentation may choose a "higher" floating-point type T'. I'n 
addition, if any operand of an operation is undefined, the value 
of the result is undefined. 

8.2 Comma Operator: , ------------------------
[sequence point; forcing evaluation order] 

Syntax 
EL -) E I,' EL2 

-) E; 

Constraints 

The type and mode of the expression list EL is the type and 
mode of EL2 (the subscript 2 is used here for convenience of 
reference and is not part of the formal grammar). 

Semantics 

E is evaluated, then EL2; the value of EL is the value of EL2. 
The end of the evaluation of E is a sequence point. 
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B.3 Assignments: = ---------------------------. 
[right part of assignftent; assignftent coftpatibility] 

Syntax 
E -) El; 
E1 -) E2 

-) Lvalue:Term ' Plain_assignment: 1=1 E1 
-) Lvalue:Term' (Assignment_operator E1); 

Assignment operator 
-) 11=1 I IA=I I 1&=1 1»=1 '«=' 
I 1+=1 I 1_=' I 1*=' '/=' 1'=1; 

Constraints 
The type T of an Assignment_expression is the type of its 

Lvalue. The mode of the Lval.ue must be var or field. 

Define the right part of the assignment operator as El if 
Plain_assignment is used, and "Term' op (E 1 )" if Assignment_ 
operator is used and is of the form op= (where op is I, A, &, 
»tc.). In the latter case "Term' op (E1) II must sat isfy the 
constraints for op - discussed below separately for each OPe 

The type of the right part must be assignment-compatible 
with T, or be a constant integral expression evaluating to 0 and 
T of a pointer type. The mode of the result is value. 

Semantics 
The value V·pf the right part and the variable L referred to 

by the Lvalue are determined, in an unspecified order. VI = 
Convert(V, T) replaces the value held by L. Where Assignment_ 
operator is used, the Lvalue must be evaluated only once. 

The value of the Assignment_expression is V'. 

If V is obtained from an object that overlaps in storage 
with L, the semantics of assignment is undefined. 
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Note that the requirement on the mode of the Lvalue 
prevents assignments into a name of mode typedef or fen. A 
structure member as the left side of an assignment i~ 
generally of mode var, not member (see Subsection Member 
Se/ectlonbelow), so that assignments into structure members 
are permitted. Objects of mode tag or label are never 
encountered since they exist only in name spaces from which 
express ions cannot come. 

8.4 Conditional Expressions: ?: ----------------. 

[sequence point] 

. Syntax 
E2 -) E3 

-) Conditional_expression: 
E3 .? ' EL '.:' E2 

Constraints 

The Conditional_expression's first operand E3 must be of a 
scalar type. The type T of the entire Conditional_expression 
is determined from the types TEL and TE2 of its second and 
third operands EL .and E2. TEL and T E2 must be either both 
arithmetic, in which case T is Common(T EL, T E2); or the two 
must be compatible types .. in which case T is either TEL or TE2 
(it does not matter which); or one must be of a pointer type P 
and the other a constant expression evaluating to zero, in 
which case T is P. The mode of the result is value. 
Semantics 

The first operand E3 is evaluated; the end of its evaluation 
is a sequence point. If it is non-zero, the value V of the second 
operand EL is determined; otherwise, the value V of the third

l 
operand E2 is determined. (Therefore, only one of El and E2 is, 
evaluated.) Convert(V,T) is the result. 
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8.5 Sequential Disjunction: II -------------------
[sequence point] 

Syntax 
E3 -) E4 -) E3 I "I E4; 

Constraints 
Each operand E3 and E4 of the II expression must have 

scalar type. The type of the II expression is Signed-Int. The 
mode of the result-is value. 

Semantics 

Expression E3 is evaluated; the end of its evaluation is a 
sequence point. If it is non-zero, the result i's one. If it is zero, 
expression E4 is evaluated. If It Is non-zero, the result is one; 
otherwise the result is zero. 

8.6 Sequential Conjunction: && 

[sequence point] 

. Syntax 
E4 -) ES -) E4 1&&1 E5; 

Constraints 

-------------------

Each operand E4 and ES of the && expression must have 
scalar type. The type of the && expression is Signed-Int. The 
mode of the result is value. 

Semantics 
Expression E4 is evaluated; the end of its evaluation is a 

sequence point. If it is zero, the result is zero; if non-zero, 
expression ES is evaluated: If it is zero, the result is zero; 
"otherwise the result is one. 
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8.7 Bit-wise Inclusive-or: I --------------------. 
Syntax 
ES - > E6 - > E5 'I' E6; 

Constraints 

Each operand ES and E6 must have integral type. The type 
T of the I expression is Common(type of ES, type of E6). The 
mode of the result is value. 

Semantics 

Both operands E5 and E6 are evaluated and converted to type 
T. The bit-wise inclusive-or of the two operands is the result. 

8.8 Bit-wise Exclusive-or: '" --------------------. 

Syntax 
E6 -) E7 -) E6 ,A, E1; 

Constraints 

Each operand E6 and E1 must have integral type. The type 
T of the" expression is Common(type of E6, type of E1). The 
mode of the result 'is value. 

Semantics 

Both operands E6 and E7 are evaluated and converted to type 
T. The bit-wise exclusive-or of the two operands is the result. 
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B.9 Bit-wise And: & ----------------------- --- _. 

Syntax 
E7 -) E8 -) E7 '&' E8; 

IConstraints 
Both operands E7 and E8 must have iontegral type. The type 

T of the & expression is Common(type of f6, type of fa). The 
mode of the result is value. 

Semantics 
Both operands E7 and E8 are evaluated and converted to type 

T. The bit-wise and of the two operands is the result. 

8
0

.10 Equality Comparisons: == and! = . ----------- • 
Syntax 
E8 -) E9 -) E8 '.s' E9 

-) E8 '1=' E9; 

Constraints 
Let T Band T 9 be the types of Ea and E9. Both T Band T 9 

must be arithmetic types, or be of compatible pointer types 
MT', or one must a constant integral expression evaluating to 
zero and the other a po inter type. The type T of the ent ire 
expression is Signed-Int. The mode of the result is value. 

Semantics 

Both operands Ea and E9 are evaluated. If T8 and T9 are both 
arithmetic types, then the values are converted to type 
Common(T 8,T 9). The (possibly converted) values are compared 
for equality (==) (inequality (!=». The result is one in the case 
the values are equal (unequal); otherwise, the result is zero. 
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B.ll Ordering Comparisons: < > <= >= -~------ • 
Syntax 
E9 -) El0 -) E9 '<' El0 

-) E9 '>1 El0 
-) E9 '<=' El0 
-> E9 I >= I E 10; 

Constraints 

The same as for the equal ity comparisons jus~ described. 

Semantics 

Both operands are evaluated. If the types of both are 
scalar, the values are converted to the Common type of the 
two types. The (possibly converted) values are compared ac­
cording to the specified relation: < for less-than, > for great­
er-than, <. for less-than-or-equal-to, and >. for greater­
than-or-equal-to. The result is one if the relation is true and 
zero if false. 

The comparison of two pOinters is done as if they were 
unsigned integers of the appropriate length. The result is 
guaranteed only for two pointers that point into the same 
aggregate; otherw·ise the result is implementation-defined. 

8.12 Shift Operators: «and» 

Syntax 
El0 -> Ell -> El0 '»'Ell 

-) E10 '«'Ell; 

Constraints 

---------------- . 

Both operands must be of integral type. The type T of the 
result is Widen(type of El0). The mode of the result is value. 
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Semantics 
The values VlO and Vl1 of E10 and E11 are determined. VlO is 

converted to T and Vll to Signed-Int. The value of flO « Ell 
is V10, interpreted as a bit pattern, left-shifted V11 bits, with 
this result interpreted as type T. The value of E10 » El1 is 
VlO, interpreted as a bit pattern, right-shifted Vll bits, with 
this result interpreted as type T. The right shift is guaranteed 
to be logical (zero-filled) if E10 has an unsigned type; other­
wise it may be arithmetic (fi lied with a copy of the leftmost 
bit). The result is implementation-defined if V11 is negative 
or greater than or equal to the size in bits of V10. 

8.13 Additive Operators: + and - --------------- • 
[pointer arith"etic; addition, subtraction] 

Syntax 
Ell -) E12 -) Ell '+' E12 

-) Ell I_' E12; 

Constraints 
Let T11 be the type of Ell and T12 the type of E12, and let R 

be the type of the result. One of the following conditions must 
obtain: 

(a) T11 and T12 are both arithmetic types, in which cas'e A is 
Common(T11,T12); 

(b) one is of the form *T and the other an integral type I, in 
which case R is *T (and if the operator is '_I, the first 
operand must be the one of the form *T); or 

(c) or T11 and T12 are the same pointer type '*T and the oper­
ator is I - I, in which case R is either Signed-Short-Int, 
Signed-Int, or Signed- Long-Int (which one in particular is 
implementation-defined). 

In cases (b) and (c), in *T, T must not be a functional ity 
type. The mode of the result is value. 
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Semantics 
Both operands are evaluated. 

In case" (a), the values are converted to A, and the result is 
the sum C'+') or difference (,-,) of the operands. 

In case (b), if the value V of type -T points to the i th 
element of an array of type [ ... ]:T, the result is a pointer to 
element i +(value "of type I) or i -(value of type I) of the array. 
This holds only for pointers within the bounds of the array, 
except that it is allowed to point to a hypothetical element 
following the array's last element. The use of the painter 
result as an operand of • is defined only for pointer values 
within the array bounds. 

In case (c), if the two values point to the i th and jth 
elements, respectively, of the same array, or possibly one past 
the end of the array, the result is 1-j; otherwise the result is 
undefined. i- j must be a value of type R. 

Discussion 
The sem"antics of pointer arithmetic when the result 

exceeds the array bounds by one is necessary so that common C 
idiom "A[V]" for A of type [V]:T is reasonable; this semantics 
was proposed by X3Jll. KA does not treat the matter. The 
4.2BSO implementation agrees with our semantics. 

8.14 Multipl icative Operators: .,' ----------- • 
[Rultiplication, division, Rodulo] 

Syntax 
E12 -) E13 -) E12 '*' E13 

-) E12 '" E13 
-) E12 '" E13; 

Constraints 
Let T 12 be the type of E12 and T 13 the type of E13. Both 

operands must be of arithmetic type; the type T of the result 
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is Common(T12,T13). For the operator %, each operand must be 
of integral type. The mode of the result is value. 

Semantics 
Both operands are evaluated and converted to type T. 

If the operator is *, the result is the product of the two 
values. 

If the operator is I, the result is the quotient. If the 
operands are both of integral type and the result of the division 
is not an integer, the result is as follows: if both operands are 
positive, the result is the largest integer less than the true 
quotient. If either operand is negative, the result is either the 
greatest integer contained in or the least integer containing 
the true result; which one in particular is implementation­
defined. 

The result of the operator , for values a and b is a -
(a/b)*b, where I is the division operator explained ~bove. 

d.15 Type Casts ----------------------------- • 
Syntax 
E13 -) Term; 
Term 
-) Term' 
-) '(I Cast_type I)' Term 
. 
I 

Constraints 
The Cast_type must be of a scalar type C or type Void, and 

the term must be of some scalar type T, unless casting to 
Void. The type of the result is C. The mode of the result is 
value. 

Semantics 
The value V of the Term is determined. 
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If T is a pointer type and C some integral type, the result is 
undefined if an object of type C cannot hold V. Otherwise the 
result is V. 

If T is some integral type and C a pointer type, the result is 
undefined if an object of type C cannot hold V. Otherwise the 
result is V. 

If T and C are both pointer types to functions, the result is V. 

If T and C are both pointer types to non-function objects, 
the result may not be defined if the alignment for C is more 
restrictive than that of T. Otherwise, the result is V. 

Otherwise, the result is Convert(V,T). 

Discussion 
The semantics of pointer conversion requires that pointers 

to non-function objects be the same size. 

Subset Term' 01 Term has been introduced to capture the 
. relative precedences of the cast syntax and of sizeof: sizeof 
binds more tightly than a cast. Therefore "sizeof(int)*x" is 
the same as "(sizeof(int) ) *x" . 

Casting to Void is most often used to discard the result of 
a function, when w~iting an expression that is a function call. . 

8.16 Pointer Dereference: * ------------------- • 
[pointer align"ent] 

Syntax 
Term' 
-) T1 
-) ('*') Pointer:Term 

Constraints 
The Pointer must be of a type of the form *T. The type 0) 

the result is T, except where T is of the form [JT', in which 
case the type of the result is *T'. The mode of the result is 
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var unless T is a functional ity type, in which case the mode is 
value. T must be neither an incomplete type nor Void. 

Semantics 
The value V of the Pointer is determined. The result is the 

object pointed to by V. If V is zero the operation is undefined. 

Through type casts it is possible to obtain a pointer value V 
that is inappropriately aligned for the pointed-to type T. V is 
therefore not a val id value of type wT and therefore the oper­
ation wV is undefined. 

DisclISsion 

4.2BSD ~llows .. n1, for n ~ 1, to denote "f for a value f of 
functional ity type. High C prohibits such, as do KA and X3J11. 

8.11 Pointer Reference: & -----------------"---. 

[conversion of arrays to pointers; address of an arr~y] 

Syntax 
Term' 
-) '&' Term 

Constraints 

The Term may be of any type T. The result is of type MT. 
The Term must be of mode var, and may not denote an object 
declared with Storage_class register. The mode of the result 
is value. " 

Note. If Term is of an array type, the normal conversion of 
its type to "T is not done; see Subsections (IOENTIFIER)s 

"and Member Se/ec tion be I ow. " 

Semantics 

The result is a pointer to the Term. 

v.11.01.B5 lID 1904-85 HetaWare Incorporated 



Expressions 

Discussion 

page 8-16 

Note that taking the address of a structure field is prevent­
ed because fields are of mode field. 

The constraints prohibit &F, where F is a function name, 
since by the function conversion rules (see Subsection (IOENTI­
FIER)s below), F is converted to the address of F of mode 
value. Most campi lers simply warn when &F is used; 4.2BSD 
permits &nV, for n ~ 1, to denote &V, but High C disallows such. 

X3J11 introduced the ability to take the address of an 
array expression, where in KA the automatic"conversion of 
array expressions to pointers to the first element made this 
impossible. The added abi I ity allows the construction of an 
pointer of type tt[]:T from an (array) expression of type []:T. 
Previously it was only possible to obtain type []:*T, and tt[]:T 
had to be obtained through casting. Examples: 

int arlO];· 1* Type []:Sigried-Int. *1 
void feint (ttarg)[]) t-} 

1* Para..eter is of type -[]:Signed-Int. *1 

f(a); Itt Illegal: argUftent is of type -Signed-Int. */ 
f«int(*)[])a);I* Old, tedious way of getting around proble ... *1 
f(&a); 1* New: obviates need for cast. *1 

typedef t[ 10];· 
t a; 1* Declare an array. . *1 
t ttb = &a; Itt Initialize b to the array's address. *1 
t *0 = (t *)a; 1* Equivalent, old Rethod. *1 
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8.18 Unary Sign Operators: - and + ------------- . 
[negation] 

Syntax 
Term' 
-) '-' Term 
-) '+' Term 

Constraints and Semantics 
Same as those of (O-Term) and (O+Term), respectively. 

DisclJssion 
Note that" +XU is not necessari Iy the same type as x; if x is 

of type Signed-Char, "+x" is of type Signed-Int. 

8.19 Bit-wise Complement: - ----------------- • 

syntax 
Term' 

. -) ..... Term 

Constraints 
The Term must be of an integral type T. The type of the 

result is Widen(T). The mode of the result is value. 

Semantics 
The Term is evaluated and converted to type Widen(T). The 

result is the bit-wise complement of the value. 

8.20 Boolean Negation: 

Syntax 
Term' 
-) '!' Term 

Constraints and Semantics 

--------------------- . 

Same as for the expression (0 == Term). 
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B.21 sizeof --------------------------------- • 
[conversion of arrays to pOinters; byte] 

Syntax 
Term' 
-) 'sizeof' (1(' Cast_type I)' I Term ' ) 

Constraints 

Term' may not be of mode field. Let T be the Cast_type, or 
the type of the Term'. T must be neither Void nor any function­
al ity type nor any incomplete type. The result is of an integral 
type; which one in particular is implementation-defined. The 
mode of the result is value. 

Note. If Term' is of an array type, the normal conversion 
of its type to *T is not done - see Subsections (IlENTI­
FIER)sand Member Se/ectionbelow. 

Semantics 

Where Term' is used, it is not evaluated. In any case th 
result is a non-negative integer that is the number of by-tes re­
quired to hold a value of type T. It is true that sizeof([V]:T) = 
V*sizeof(T) and that sizeof(Signed-Char) = sizeof(Unsign­
ed-Char) = 1. 

Discussion 

The reason that the automatic conversion of array types to 
pointers is avoided is so that it is possible to obtain the size of 
an array, rather than the size of a pointer to the array's ele-
ment type. Example: . 

char a[10]; 
int j = sizeof(a); /* j is initialized with 10. */ 
void f(char b[]) { 

int k = sizeof(b); 
/ * k is initialized with the size of a pointer to char, since * 
/* a's declaration is adjusted to read "char -a;". The sa .. e *, 
/* initial value would be supplied for j above if we did not */ 
/* defeat the nOIRal conversion of array types. */ 
} 

v. 11. 01. OS @ 1904-85 HetaWare Incorporated 



Expressions page 8-19 

8.22 Prefix Increment and Decrement: ++ and -- -- • 
[addition, sUbtraction] 

Syntax 
Term' 
-) T1 
-) '++' Lvalue:Term 
-) , __ , Lvalue:Term; 

Constraints 
The Lvalue must be of mode var or field and scalar type T. 

The result is of type T and mode value. 

Semantics . 
. The Lvalue is evaluated. The value held by the object refer­

enced by the Lvelue is incremented (++) (decremented (--», 
i.e. one is added (subtracted), with the semantics of addition 
(subtraction) described above. The result is the incremented 
(decremented) value. 

8.23 Postfix Increment and Decrement: ++ and -- - • 
[addition, subtraction; side-effect, sequence point] 

Syntax 
T1 
-) Lvalue:T1 
-) Lvalue:T1 

Constraints 

'++' 
'--' . , 

The Lvalue must be of .mode var or field and scalar type T. 
The result is of type T and mode value. 

Semantics 
The Lvalue is evaluated. The result is this value. The value 

held by the object referenced by the Lvalue is incremented (++) 
(decremented (--», i.e. one is added (subtracted), with the 
semantics for addition (subtraction) described above. 
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The incrementing (decrementing) operation is a side-effect 
so it can be postponed unt i I the next sequence po i nt. ' 

8.24 Function Call: () ----------------------- • 
[functionality type and prototype functionalities; arguRent type 
checking; variable nURber of argUf,ents to a function; recurSlve 
functions; Pascal function call se .. antics; sequence point] 

Syntax 
Tl 
-) Tl '(' Arguments I)'; 
Arguments 
-> (E list ',')?; 

Constraints 
If T1 is a Name that is undeclared in the ordinary name 

space, the occurrence of the Name becomes its defining point in 
the ordinary name space as a function of type F II: (?) -) Sign­
ed-Int with storage class static- import and mode fen. If SO'I 
this replaces the normal constraints for the Tl, which require 
that the Name is declared. The scope for this Name extends from 
its defining point to the end of the program, which differs 
from normal block-structured scope rules. 

Otherwise, T1 must be of some functional ity type F. 

F is one of the following four forms; see Sectio'n Concepts: 

(a) (?) -) T for T a type; 
(b) (Tl, ... Tn) -) T \ 
(c) (Tl, ... Tn)p -) T I for T, Tl, ... Tn types, n 2 O. 
(d) (T 1, ... T n, ... )p -) T / 
In all of the cases, the type of the result (of the function 

call operator) is T. Its mode is value. 
In cases (a) and (b) the Arguments may be of any type. Even 

though the types of the function's parameters are specified in 
case (b), a language processor may at most warn if the type of 
an argument does not match the type of a parameter. 
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In case (c), there must be n Arguments. The type of the i th 

Argument must be assignment-compatible with Ti. 

Case (d) is the same as case (c) except there may be more 
than n Arguments. The additional Arguments may be of any type. 

Semantics 
The T1 and the Arguments are evaluated in an unspecified 

order. The end of the evaluation of the Arguments is a sequence 
point. The end of the evaluation of the call is a sequence point. 

For each of the Arguments A of type TA and corresponding 
parameter type T, A is converted as if by assignment to a 
variable of type T. When T is unknown, which occurs in cases 
(a) and (b),' and for the additional Arguments in case (d), T is 
implied by TA as follows. T is 

• Signed-int If TA is Signed-Char or Signed-Short-Int; 

• Unsigned-Int if TA is Unsigned-Char or Unsigned-Short-Int; 

• Double if TA is Float; or 

• TA otherwise. 

Note that since an expression of type" [1]:T' or [V]:T' is 
converted to type *T', TA can never be of an array type [1]:T' 
or [V]:T'. Likewise, TA can never be a functional ity type T', 
since it is converted to *T'. 

The function is called with its parameters taking on the 
converted values of the Arguments. The call is by value: copies 
of the values "are passed. Thus, assignments into a function's 
parameters within the function body do not affect the Argu­
ments passed. 

'Direct and indirect recursive calls to any function are per­
mitted. 

Discussion 

E instead of EL is used in the rule for Arguments to avoid an 
ambiguity. 
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Early C compilers never made any check for parameter 
correspondence. Arguments of integral type were simply wid­
ened, and Floats were converted to Double. The specification 
of parameter types in a Function_definition had no effecfo. 
argument passing. 

To preserve these semantics, a functionality type F affects 
argument passing only when F is a prototype functionality. 
When using a prototype, short integer and Float arguments can 

. be passed more efficiently; the old semantics requires the pos­
sibly expensive conversion of Float to Double and the shorten­
ing of integers. 

Furthermore, an integer argument may be passed to a func­
tion receiving a Float parameter, and the argument is conveni­
ently converted to Float. Essentially, prototype functional i­
ties are CiS concession to the safer procedure call semantics 
of Pascal. EXilmple: 

Inefficient· int f (x, c) float x; short s; { ... } 
f(3. 2, 3); 

Efficient: int f (float x, short s) { ... } 
f(3. 2, 3); 

In the first case, a Double and Signed-Int are passed and fls 
prologue converts the Double back to a Float and the Signed­
Int back to Signed-Short-Int. In the second case, a Float and 
Signed-Short-Int are passed and no conversion occurs in fls 
prologue. 

X3J11 provides that the scope of an impl icitly-defined 
function F is the innermost block containing the call to F. We 
have instead made its scope the entire program. This prohibits 
an inconsistent declaration of F from appearing at the global 
lever later, such as in 

main () { /* Implicit declaration of f */ 
f(); /* as extern int f(); */ 
} 

long f() { ... } 
/* Illegal: long!= into */ 
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Note that the declaration flint f();" and "int f(. .. ); II 
are equivalent. The unfortunate dupl ication of syntax is due to 
compatibility with ~'old Cu. 

8.25 Array Indexing: [ ] 

[pointer arith"etic] 

Syntax 
T1 
-) T1 1[1 EL 1]1 

Constraints and Semantics 

---------------------- . 

Same as for (* «T1) + (El» ). 

Discussion 
[] is intended to be used to subscript an array. Because of 

the semantics of + in the equivalent expression (* «T1) + 
(El» ), T1 can either denote an array or a pointer to an array; 
if the former, it is immediately converted to a pointer to the 
first element of the array. The +(El) moves to the desired 
element of the array, and the outer tt extracts the value. The 
reader may wish to verify that the mode of the result wi I; 
always be yare 

Therefore, if P is a pointer to the first element of arr.ay A, 
prELl and A[El] denote the same object. Also, (El) [A] and 
A[El] are .the same. 

A[I, J, K] has unex'pected semantics. It is the value of A[K] 
after I and J have been evaluated. Do not read A[I, J, K] as 
subscripting a three-dimensional array: there are only one­
dimensional arrays in C. 
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8.26 Pointer Dereference and Member Selection: -) • 

Syntax 
T1 
-) T1 1_)1 Hember:Name 

Constraints and Semantics 

Same as for (*(T1».Name. 

Discussion 

This notation is provided as a shorthand for the cumber­
some notation (*p). f, where p is a pointer to a structure or 
union value and f is the name of a member of the value. The 
weak binding of the operator * makes necessary the () around 
the *p, for "p. f means *(p. f). 

8.27 Member Selection: . --------------------. 
[sizeof. ~; struct. union] 

Syntax 
T1 
-) Primary . 
-) T1 I.' Hember:Name; 

Constraints 

The type of T1 must be of the form Struct{M} or Union{M}. 
In particular, no incomplete structure or union types are per­
m itted. The type must have a Member m named Name. 

The type of the result is the type T of m, unless m is of an 
array type [ ... ]:T and the selection is not an argument to 
sizeof or &, in which case the type of the result is *T. 

If the latter case holds or T1 is of mode value, the result i~ 
of mode value. Otherwise, if the mode of m is field, the 
resulting mode is field; otherwise the resulting mode is var. 
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See Subsections Pointer Reference and sizeo" for the 
reasoning behind not converting type T to MT in the presence of 
sizeof or &. 

Semantics 

The Primary is evaluated. The result is the value of the 
designated structure or union Member, except when T is an array 
type, in which case the result is the address of the first 
element of the array. 

In general, a Member of a union may not be inspected unless 
the value of the union was assigned using that same Member, 
with the following exception: if a union contains several struc­
tures that share a common initial sequence, and if the value of 
the union was assigned using one of those structures, it is 
permitted to inspect the common initial part of any of them. 
(This follows X3J11.) Example: . 

union {struot {int Type; } N; 
struct {int Type; int IntNode; .} NI; 
struot {int Type; int FloatNode; } NF; 

} U; 

U. NF. Type = 1; U.NF.FloatNode = 3.14; 

if (U.N.Type == 1) U.NF.FloatNode = -U.NF.FloatNode; 

8.28 Overriding Operator Precedence:· () ------- • 

Syntax 
Primary -) '(' EL I)'; 

Constraints and Semantics 
Same as for EL. 

Discussion 

~ere parenthesization does not change the constraints or 
semantics of an expression. For example, if EL is of mode M 
and type T, so is the result. 
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8.29 <IDENTIFIER>s --------------------------- • 

[sizeof, &; conversion of arrays to pointers; <IDENTIFIER>] 

Syntax 
Primary -) Name: '<IDENTIFIER)'; 

Constraints 
The Name must denote an object of some type T and mode M 

in the ordinary name space. If T is of the form [ ... ]:T' and the 
Name is not an argument to sizeof or &, the type of the resul t 
is *T'; if it is of a functionality type T and mode fen, the type 
of the resul t is *T; the mode of the result is value. Other­
wise the type of the result is T and its mode is var. 

See Subsections Pointer Reference and sizeof' for the 
reasoning behind not converting type T to -T in the presence of 
sizeof or &. 

Semantics 
The value of the Primary is generally the object denoted by 

the N.ame. However, if T is an array type, the value is a pointer 
to the first element of the array; if a functional ity type, the 
entry point of the f.unction. 

DisclJSsion 
Primary directly produces <IDENTIFIER> rather than the 

nonterminal Name so that <TYPEDEF _NAME>s are disallowed in 
expressions. The mode of an (IDENTIFIER> can never be type­
def since any such an <IDENTIFIER> is instead in the lexical 
class <TVPEDEF _NANE>; therefore the constraints need not pro­
hibit mode typedef. 
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8.30 Constants - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • 
r<INTEGER>. <fLOAT>, <CHAR), <OCTAL>, <HEX>, <STRING>; string 
ter~inator; arrays of characters] 

Syntax 

Primary 
-) Constant; 
Constant 
-) '<INTEGER)'I'<FLOAT)'I'<CHAR)' I'<OCTAL)'I'<HEX)' 
_) '<STRING)'+; 1 

Constraints 
The mode of each Constant is value. Other constraints 

detai I ing ea~h Constant's type can be found in Section Lexicon. 
The constraints of two or more <STR+NG>S appearing in 

sequence are equivalent to a single (STRING) whose text is that 
of the individual (STRING)s concatenated, but without a separ­
ating '\000'. 

Semantics 
The value of two or more <STRING)s appearing in sequence 

is the same as that of a single (STRING) whose text is that of 
the individual (STRING)s concatenated, but without a separat­
ing '\000'. A single '\000' is appended to the concatenation 
and the result is the value of the <STRING)s, as if a single 
(STRING). 

Str i ngs do not share star age with each other, even when ' 
written identical rye 

Discussion 
Strings are arrays of characters, and as arrays are usually 

converted to a pointer to the I iteral. See Section Lexicon. 
String concatenation is contained only in X3J11 and this 

definition. 
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B.31 Cast Types and Abstract Oeclarators -------- • 
[Abstract_declarator] 

Syntax 
Cast_type 
-) Type_specifiers Abstract_declarator? 
, 
Constraints 

The occurrence of a Cast_type is associated with a type TI 
that is specified in the Type_specifiers preceding the optional 
Abstract_declarator. The type T of the Cast_type is T' if the 
Abstract_declarator is not written; otherwise, it is Type 
(T',A), where A is the Abstract_declarator and the definition 
of Typemay be found in Section Declarations/Declarators. 
Semantics 

None. This is purely a type-specifying construct. 

DisclJSsion 
In C the type of an object is specified both in Type and 

Declarator. For example, a pointer type is constructed in a 
Declarator, not a Type. But since a Declarator always declares 
a name, it is not possible to use it to describe a type without 
declaring a name. 

Hence the invention of the Abstract_declarator. It is I ike 
a Declarator except the name is missing. The type of the 
misSing name is the type denoted by the Abstract_declarator. 

The unfortunate near-duplication of syntax in Abstract_ 
declarator could have been avoided were all type information 
provided in Type, rather than spl itting it up into Type and 
Declarator. Then 1(1 Type 1)1 could have been used for a 
Cast_type. 
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8.32 Names --------------------------------- • 
[<IDENTIfIER>, <TVPEDEf_NAHE>] 

Syntax 

Name -> '<IDENTIFIER>' I '<TVPEDEF_NAME>'; 

The reason for '<TVPEDEF _NAME>' as an alternative for Name 
is that an identifier already declared of mode typedef is lexi­
cally a '<TVPEDEF _NAME>' instead of an '<IDENTIFIER>'. Thus, 
consider: 

typedef int T; /* Occurrence 1 of TI */ 
main() { 

T x; , /* Occurrence 2 of T. */ 
int T; /* Occurrence.3 of T. */ 
} 

Occurrence 3 is a redeclaration of T as a variable of type 
Signed-Int. Due to the outer typedef declaration, occurrence 
3 is a <TVPEDEF _NAME>. This essentially reflects a'simple im­
plementation of a C processor front-end: the lexical processor 
looks up each <IDENTIFIER> to see if it is a <TVPEDEF _NAME>, and 
if so, changes it to a <TVPEDEF _NAME>. The <TVPEDEF _NAME> lexi­
cal class is necessary for the proper parsing of declarations 
using <TVPEDEF _NAME>s, exempl ified by occurrence 2. 

Constraints and Semantics 

None. The constraints for a Name are given where Name is 
used in the syntax. 

8.33 Constant Expressions --------------------- • 
[arrlY size; bit-field length; .nUReration literal; CUI constant; initialization] 

In several places the C language requires an expression E 
that evaluates to a constant. Repeated here for convenience, 
they are: the size of an array or bit-field, the value of an 
enumeration constant, a case constant, and the initialization 
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of an object of storage class static. All but the last case are 
constrained to be of an integral type. 

The following subset of well-formed expressions are con­
stant expressions when each E is a constant expression: 

• E? E : E 

• E op E, when op is one of the binary operators 

* I ,+ « » 
< 
& 

) (= )= 

&& 

I-.-
II 

• op E, when op is one of the unary operators 

+ sizeof· 

• (Cast_type) E 

• (E) 

• <IDENTIFIER>, when declared as an enumeration literal 

• any of (INTEGER> (CHAR> (OCTAL) (HEX) (FLOAT) 

For constant expressions required to be of an integral type, 
(FLOAT) is excluded, and Cast_type must denote an integral 
type. 

Constant Initializers can also employ 

• the application of & to objects of storage class static 
and to arrays of storage class static subscripted with a 
constant expression 

• an identifier declared of mode fen 

• an identifier declared of an array type 
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Appendix A 
Language Extensions 

A.l Introduction 

Th is sect i on presents features in the High C I anguage not 
typically found in implementations of C. These extensions fall 
into three categories: 

• extensions that X3J11 has made to C, 

• simpl~ High C extensions, and 

• radical High C extensions. 

The first two classes of extensions are documented in the 
main body of this reference work. The last is documented only 
here - not, however, because the radical extensions are unim­
portant. Rather, they are too different to include 'in the main 
)ody of the language definition. Hence they were relegated to 
this appendix so that those readers not i.nterested in them 
would not to have to skip over them. 

For completeness, the first two classes of extensions are 
discussed briefly in Subsections A.2 and A.3. The third class is 
treated at length in Subsections A.4 through A.7. Finally, the 
last subsection is a brief tutorial on the .X3J11 extension, 
funct i on prototypes. 

A.2 X3Jll Extensions to C 
["", as lint continuator; string concatenation; constut suffixls; Iscape sequences; 
si •••• ; I •••••• ~I.; algregate initialization; function prototypes] 

• The use of • \. as a I ine continuator character - Section 
Lexicon. 
To over com e source line lim i tat ions, any Ii ne end i ng in the 
character • \. is treated as contiguous with the following 
I ine. Therefore any C word may be broken across line boun-
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daries. This is most useful for multiple-line macro defini­
tions and long strings, although there is a better solution 
for the latter - see the next item. 

• String-constant concatenation - Section Lexicon. 

Juxtaposed string constants denote the concatenation of 
the constants. Example: 

char *P z IIHi II "there, II 
"folks. II; 

is equivalent to 

char *P = IIHi there, folks. "; 

This feature is useful for long string constants that span 
more than a I ine of text, and for al igning portions of a 
string to emphasize or illuminate correspondences. 

• Vertical tab as a delimiter - Section Lexicon. 

The ASCII verti'cal tab character is semantically equivalent 
to a blank when not appearing within a string or character. 

• Suffixes·u (u), 1 (L) in integer constants - Section Lexicon. 

These suffixes, either alone or together, in either order and 
independently in either upper or lower case, are permitted 
in integer constants: decimal, octal, and hexadecimal. The 
effect of "u" is to change the type T that the integer con­
stant would otherwise have to the unsigned variety of T. 
The effect of "1" is to change T to the long variety of T. 
Thus, for example, "123" has type Signed-Int, "123u" 
Unsigned-Int, "1231" Signed-Long-Int, and " 123ul " and 
"1231u" Unsigned- Long-Int. 

• Suffixes f (F), 1 (L) in float constants - Section Lexicon. 

The suffix 1, in upper or lower case, is permitted in float­
ing-point constants. Its effect is to make the type of the 
constant Long-Double instead of the default Double. Th~, 
suffix f, in upper or lower case, makes the constant's type 
Float rather than Double. f and 1 may not appear together. 
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• Escape sequences \a, \v, and \xddd in strings and characters 
- Section Lexicon. 

I n add i t i on to the escape sequences \n, \ t, \b, \r, \ f, \ \, \', 
\N, and \ddd (octal digits) allowed by KR, the sequences \a, 
\v, and \xddd are allowed, where \a denotes "audible alert" 
or the ASC II BEL character, \ v denotes the ASC II vert i ca I 
tab character, and ddd is a sequence of one to three hexa­
decimal digits (with each letter in upper or lower case): 
\xddd denotes a single byte whose value is ddd16. 

• The new reserved word signed - Sections Lexicon and 
Declarations. 

The type .modifier signed may be used to indicate that the 
modified type is to be signed. This is most useful in guaran­
teeing that a char type is signed, since an implementation 
is free to decide whether the unadorned type denotation 
char denotes Signed-Char or Unsigned-Char. For example, 
"signed char c; " declares c of type Signed-Ch.ar, whereas 
"char c;" may be signed or unsigned depending upon the 
implementation. 

• New type denotation long double - Section Declarations. 

• 

• 

The type specifier long double denotes a new floating­
point type Long-Double having precision and range no less 
than type Double. This may be employed to obtain a triple­
precision floating-point type. 

Initial ization of automatic aggregates with static express­
ions - Section Declaratlon/Non-Functlon Dellnltlons. 

An aggregate object 0 with storage class automatic may be 
initialized with the same initializing expressions permit­
ted for static aggregates and additionally, if 0 is a struc­
ture or union, with a single expression of O's type. 

Initialization of structures with structure-valued express­
ions - Section Declaration/IVon-Function Definitions. 
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• 

A structure (struct/enum) may be initial ized with a struc­
ture-valued expression, as in 

extern struct s{int x;} f{); 
main() { 

struct s S = f{); 
} 

Function prototypes - Sections Declarationsand Expres­
sions. 

See Subsection A.a for an introduction to this Pascal-I ike 
concept in C. 

A.3 High C Extensions Documented in the Manual Body 
[underscores in nURbers; interRixing stateRents and declarations; 
case ranges; aggregate lnitialization; pr •• ] 

• Underscores in numbers - Sect i on L exicOll. 

Numbers - bot'h floating-point and integer constants -
may be written with the character I _' among the digits. 
Generally I_' takes the place of the English comma in 
numbers. ~;ran?J7le: 

'_000_000 /* One million. */ 

• All characters ·in identifiers are significant - Section 
LexIcon. 

• The ability to intermix declarations and statements - Sec­
tion Statements. 

In a compound statement, i.e. the I ist of declarations and 
statements enclosed within { and }, declarations and state­
ments may be interleaved, as opposed to declarations pre­
ceding statements. This allows one to place a declaration 
near its first use, where its initial value may be avai lable. 
Example: 

v. 11. 01. 85 

int A[10]; 
Compute_array (A); 
int H = Max{A,10); 
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With this relaxed order, it is now possible to "execute"­
forma Ily, elaborate a term borrowed from Ada - a 
declaration more than once. Elaboration includes initial­
ization. Example: 

Loop: ; 
int K, Count = 1; 
for (K = 1; K <= 10; K++) { 

... Oo_something(); ... 
} 

goto Loop; 

Each time around the Loop, Count is initial ized to one. 

• Case ranges in the case Statement - Sect i on Expressions. 
High C p'ermits the extension "case El .. E2:" where the 
meaning is equivalent to "case El: case El+1: case El+2: 
. .. case E2: ". Example: 

switch (Ch) { 
case 'A'" 'Z': Scan ide); break; 
case '0'.,· g': Scan-number ( ); break; 
default: Scan:delimiter(); break; 
} /* The latter break for safety: */ 

/* in case of reordering cases. */ 

• Initial ization of automatic aggregates with arbitrary 
expressions - Section Declarations. 

High C permits automatic aggregates to be initial ized with 
arbitrary non-constant expressions, where X3J11 restricts 
initial ization I ists to constant expressions. 

• New reserved word pragma - Sections Lexicon, Declara­
tions, and Statements. 
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A.4 Named Parameter Association 
[function call; positional paraReters] 

page A-6 

Functions declared with parameter names can be called 
with the named parameter association syntax of Ada. Such 
calls refer to the parameter names rather than their positions, 
so that the ordering of suppl ied parameters is irrelevant. The 
syntax is I ike that of a normal function call except that each 
actual parameter expression is preceded by the corresponding 
formal parameter name followed by "=)". EXiJmple: 

typedef enum{Red .. Gree~ Blue} Color; 
void P{int A, float B, Color C, Color D)'o { ••• } 

P(C =) Red, D m) Blue, B .) x*lO.O, A -) y); 

One may also start the function call using positional 
parameter notation and switch to named association as the 
parameters are written down from left to right. Switching 
back to positional· notation is not allowed, nor is any other 
variation. Example: 

void Plpt{Xlo,Xhi,Vlo,Vhi,Xinc,Vinc) 
float XIo, Xhi, VIa .. Vhi, Xinc, Vine; { 

} 

Plot(Alo,Ahi,Blo*2.0,Bhi*2.0 .. Vinc=>y .. Xinc=)f{x+z»; 

The formal definition of this construct follows. 
Syntax 

To permit the =) operator, add to the lexical grammar 
(Section Lexico~, the rule 
Other_op -) 1=1 1>1 =)'<AS_IS>'; 

Add to the phrase-structure grammar (Section Express­
ions/FunctionCa/~, the rule 
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-) Named-parameter_association: 

Unnamed_arguments: (E " ')* 
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Named_arguments: ('<IDENTIFIER)' '=)' E) list " '; 

Constraints 
As in Section Expressions/Function Call, let F be the type 

of the function being called. F must be one of the two forms 
(see Section Concept~: 

(b) (T1, ... Tn) -) T \ 
(c) (T1, ... Tn)p -)T / forT,T1, ... Tntypes,n2D. 

Furthermore, in the declaration of the type F, all parameter 
names must be provided. 

These requirements exclude functions declared as ini "int 
f();" and "void h(int i, float);" from being called using 
named parameter assoc i at ion. 

The (IDENTIFIER)s in Named_arguments must coll,ectively be 
the names of distinct parameters whose values are not suppl i­
)d positionally. Values for all parameters must be supplied 
through either the Unnamed_arguments (positionally) or the 
Named_arguments. 

Given these constraints, it is possible to transform the 
function call into a purely positional form. Further Con­
straints and Semantics are then as if the Arguments were ·thus 
transformed. 
Semantics 

Since the Constraints detail how named parameter associ­
ation can be transformed into positional form, the Semantics 
here are the same as the Semantics of the transformed call 
discussed in Section Expressions. 
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A.5 Nested Functions and Full-Function Variables 

{Pascal; function parent and environftent; up-level addressina: static 
ink; display; function address versus full-function value; II fll] 

In High C, functions may be defined within functions. Suchl 

functions are called nested. This faci I ity endows High C with 
an expressive power that is found in Pascal. 

In the body of a nested function N, any name in a containing 
scope may be used. That is, the body of N may use names local 
to' other functions that contain N. This is called up-level 
referencing and any such names are said to be up-level refer­
encedfrom N. The single restriction is that register-class 
variables may not be up-level referenced. 

Up-level referencing may be achieved by making avai lable 
to N, at each call to it, a way to reference the collection of 
locals of each of its enclosing functions. This reference meth­
od is called N's environment The function P immediately 
enclosing N is called N's parent· the next enclosing function G 
its grandparent· and so on. The collection of locals of each/ 
function is called its stack frame. 

(Technical note: N's environment may be implemented by 
passing to N, at each call to it, a "hidden" parameter that is a 
reference to piS stack frame. If this is done for all functions, 
P will have in its stack frame a similar hidden parameter that 
I inks it to G, and so on out to the global level where functions 
need no such I ink. This is called the static link method of 
implementing up-level referencing, the method of choice for 
best efficiency and optimization possibi Iities, as opposed to 
the d/splaymethod, which is not described here.) 

Therefore, ~ major difference between nested functions and 
non-nested functions is that the address of a nested function N 
does not entirely capture N's "value": the environment is also 
required. In contrast, the address of a non-nested or global 
function G entirely captures its value, since G has no parent, 
and thus needs no environment. The C notion of "pointer to 
function" is therefore sufficient to capture the value of G but 
not that of N. 
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Hence High C disallows taking the address of a nested func­
tion, and, where C assumes & before any expression of type 
function .. High C does notassume the & if the expression is of a 
nested-function type. 

Full-function values. We refer to the combination of a 
function address and its environment as a full-function value, 
as opposed to just a "function address". 

All of the capabi lities associated with global functions, 
such as passing them as parameters and storing their value into 
var iables, is avai lable for nested functions, although new 
syntax is required. 

A variable capable of holding a full-function value, and 
therefore the value of a nested function, is declared as a 
function declaration would be, except that "!" follows the 
parenthesized formal parameter I ist. Example: 

int ffv()!; 

In contrast, a standard C variable capable of holding only a 
funct i on address is dec I ared us i ng the po inter syntax: 

int (*fa) (); 

ffv may be called with the expression "ffv(); ", but not 
with "(*ffv)()", since ffv is not Uust) a pointer. 

Any nested function may be assigned to ffv. A global 
function G may be assigned to ffv by deref~rencing it since of 
course G is transformed to &G by the compi ler and must be 
dereferenced to obtain the full-function value of G, not just its 
address: "ffv = *6; ". The environment stored in ffv in such an 
assignment is meaningless, since G needs no environment. 
Upon call ing the value in ffv .. the environment is passed to G .. 
but G (indeed every global function) safely ignores it. 

Nested functions may.be passed as parameters: the full 
value is passed. The full-function value of a global function 
may be passed by dereferencing the global function: the passed 
environment is meaningless. 
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An argument can be declared as being a full-function value 
by us i ng the new syntax: 

int f(ffv) int ffv()!; { ... ffv(); ... } 

Only the names of function constants may be dereferencea 
to produce full-function values. The dereference of a pointer 
to a function is immediately converted back to an address by 
standard C rules for function expression conversion. Thus: 

extern int sub(); 
main () { 

int (*fa) (); 
int Nested() { ... } 
main(*main); '''' Passes the full value of .. ain. "" 
main(*sub); '''' Passes the full value of sub. "" 
main(*fa); '''' Passes fa, since "'fa => S"'fa = fa. "" 
main(Nested); '''' Passes the full value of Nested. "" 
} 

This extension .is compatible with ANSI standard C since 
the dereference of an expression of type pointer-to-function is. 
permitted only in the context of an expression denoting & 
function to be called, e.g. "(*fa)()"; but "(*fa)(*fa)" is 
illegal in ANSI C. 

Example: As an example of the use of full-function values, 
we present a call to a sort function that takes as parame­
ters two funct ions: 
extern void Quick_sort( 

int Lo, int Hi, int Compare(int a,int b), 
void Swap(int a int b) 
); 

static Sort_private_table() { 
Entry Entries[100]; 
int Compare(int a int b) { 

return Entries[a] < Entries[b]; 
} 

void Swap(int a,int b) { 
Entry Temp = Entries[a]; 
Entries[a] = Entries[b]; Entries[b] = Temp; 
} 
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Quick_sort(1,100,Compare,Swap); 
} 
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Here it is necessary for Compare and Swap to be local to 
Sortj>rivate_table since the table Entries is local to that 
function. In standard C, Entries, Compare, and Swap would 
have be moved outside of SortJlrivate_table. This works 
fine in this simple case, but if Sort_private_table were 
recursive, one would have to explicitly manage a stack of 
Entries arrays to get the desired effect. 

Although this example may seem contrived, a stripped­
down version of a practical Pascal program, translated into 
High C, is included in distributions of High C compilers. 
The name of the file is "analyze.c" and it implements a 
graph traversal algorithm. Any C programmer that thinks 
standard-C function capabi I ities are adequate should read 
this program and attempt to translate it to standard C. 

Casting any full-function value of one type to any full-
function value of another type is permitted, in concert with 
the abi lity to cast function addresses In ·standard C. The 
sizeof a full-function type may be taken and is always greater 
than the sizeof a function address, since the former includes 
the environment. 

The additional syntax required to permit the declaration of 
full-function types follows, and is simply a repeat of the rules 
for standard function syntax except that" ! " is allowed: 
Declarator' 
-) Extended_function_specification_declarator: 

Declarator' Parameters' "; 
Abstract_declarator' 
-) Abstract_declarator'? Abstract-parameters "'; 
Declarator2' 
-) Declarator2' Parameters '!'; 
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A.6 Communication with Other Languages 
[pragRas callinu-convention. Data. Code] 

A High C module can communicate with modules written 
in other languages partially by virtue of the pragmas Calling_ 
convention, Data, and Code. Although the syntax of these prag­
mas is machine independent, their effects are sometimes ma­
chine dependent, and hence their documentation can be found in 
the Programmer's Guide, Section Externals. 

A.7 Intrinsics 
Labs. _nino _"0; _find_chu. _skip_char. _fill_char; _ROV'. _nov._right. _conpu.] 

High C contains a set of so-called "intrinsic functions" 
that supply: (a) the ability to take the absolute value, mini­
mum, and maximum of values of any arithmetic type, and (b) 
the abi I ity to move and compare bytes of memory using the 
host machine's most efficient instructions. Intrinsic functions 
need not be declared to be used. Below is a I ist of the intrinsic 
functions followed by their descriptions in the same order as 
the list. . 

_find_char _skip_char 
move _move_right 

=fill_char _compare 

_abs(x) 

x must be of an arithmetic type. The result is the absolute 
value of x, of the same type as the type of x. 

max(el, e2, ... ) 
:=min(el, e2, ... ) 

e1,e2, ... must be of arithmetic types. The result is the 
maximum/minimum of e1,e2, .... 
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More precisely, _max(e1, e2) is of type T = Common(type 
of el, type of e2) and is the maximum value of e1 and e2, each 
casted to type T. _max(e1, e2, "¥ en), where n ~ 3, is (recursive­
ly) de1ined to be _max(_max(el, e2), e3, .. y en). The specification 
)s s i mil ar for _min. EXample: 

float f; unsigned long ul; int i; 
main () { 

min(f, uI, i); 1* Has type Float. *1 
=min(ul,i); 1* Has type Unsigned-Long-Int. *1 
_min(i,f); 1* Has type Float. *1 
} 

It is guaranteed that the operands of _max and _min are 
evaluated at .most once, unlike the standard macro definition 
of max (min), e.g. ··'define max(x, y) «x»(y)?(x): (y»'#, 
where one argument is evaluated once and the other twice. 

unsigned­
_find_char(any-pointer p, 

unsigned searoh_length, char searoh_ohar) 

Searches «char*)p)[O] through «char~)p)[search_length 
-1] for search_char using the most efficient host instruction 
to do so. It returns the index i (a number in the range O .. 
search_length-1) if it found the character, where p[i] = 
search_char; otherwise it returns search_length, indicating a 
fai led search. 

The standard function strlen can be implemented using 
_find_char: 

'define strlen(s) _find_char(s,65_535,O) 

assuming at most 65,535 characters in a string. This version 
of strlen generates in-I ine code. 
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_skip_char(any~ointer p, 
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unsigned search_length, char search_char) 

Does the same as _find_char I except that it searches fa: 
the first character notequal to search_char. 

void 
_fill_char(any-pointer p, unsigned len, char fill) 

Fi lis memory from «char*)p) [0] to «char*)p) [len-1] 
with the fill character. This can be used to .implement the 
standard I ibrary function mernset: . 

'define memset(p, fill, len) _fill_char(p,len,fill) 

void 
_move(any-pointer fro~ any-pointer to, unsigned len) 

~oves len bytes from the address «char*)from) to the 
adgress «char*)to). The move occurs from left-to-righ~ 
(lower-to-higher addresses). If from < to < from+len, use 
_move_right below. 

This can be used to implement the standard I ibrary function 
memcpy: 

'define memcpY(dest,src,len) _move(src,de~t,len) 

void 
_move_right 

(any-pointer fro~ any-pointer to, unsigned len) 

Does the same as _move except the move occurs from 
right-to-Ieft (higher-to-Iower addresses). If to < from < 
to+ len, use _move above. 
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int 
_compare(any_pointer p1, any_pointer p2, unsigned len) 

Compares the string «char*)pl)[O] .. «char") pl)[len-l] 
'~ith the string «char*)p2)[O) .. «char*)p2)[len-l]. It 
./eturns 0 if they are identical, -1 if the first byte at which the 
two disagree is less in the first string than the corresponding 
byte in the other stream, and +1 otherwise. 

A.B Brief Tutorial on Prototypes 
[arguftent widening and shortening: function call reliability] 

X3Jl1 provides an alternate form for specifying the 
parameter types in function declarations. When functions 
declared in this form are called, the types .of the arguments 
must be assignment compatible with the types of the formal 
parameters, and as in assignment, any necessary conversion to 
the formal parameter type is applied. 

In contrast, KR specifies that the types of the declared 
;arameters (if avai lable) are irrelevant at the function call, 
and instead that default conversions are required: chars are 
widened to ints and floats to doubles. But this can lead to 
incorrect and unpredictable results when the type of the value 
passed is not compatible with the declared type; e.g.: 

float Hin(fl,f2) float fl,f2; { 
return fl < f2 ? fl : f2; 
} . 

int i; float f,fmin; 
fmin = Min(i, f); 

Here an int i is passed to Hin instead of a double. In 
addition if sizeof(int) ! = sizeof(double), the f2 parameter 
to Min wi II not be passed in the correct location on the stack. 
(Recall that doubles are always passed as parameters in KR, 
-never floats.) . , 

In "prototype" syntax the specification of a parameter 
name and its type are not separated and appear more I ike a 
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standard C declaration. The parameter declarations are sep­
arated by commas, just as in standard parameter lists: 

floet.Hin(floet f1, flo8t f2) { 
return fl < f2 ? fl : f2; 
} 

int i; float f, fmin; 
fmin = Hin(i, f); 

With the prototype syntax, two things happen: First, float 
values are passed, not doubles. This avoids the expensive 
widening-at-call and shortening-at-function-entry cost of KR. 
Second, the int i is converted to float befor.e it is passed, 
just as if i were being assigned to a float variable. 

Notice the repetition of float in the parameter I ist: no 
factoring of declarations is permitted, as in "float fl, f2;·· 
due to syntactic constraints. 

A prototype dec laration may be used anywhere a standard 
declaration is allowed. In addition the parameter names may 
be omitted in declarations that are not definitions; e.g.: 

float Hin(float,float); 

Prototype functional ity is new, designed to allow some 
type-checking across separate compilation units. For more 
information, see Sections Expressions/Function Ca/I, Dec/ar­
ations/Function Definitions, and Concepts. 
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Appendix B 
Collected Grammar Rules 

The grammar rules used in the various sections are 
collected here for easy reference. 

Phrase-Struoture Grammar 
,.sel C..,Phrase_structure, C_condi tional_CORPilation_expression: 

C.,PIJrase structure , The aboVe is for the preprocessor. 
-) External_declaration-

................................................................... 
, Declarations. • 
................................................................... 
External_declaration 
-) lmpecified declaration: . 

( fooction Clefini tion I Non 'ooction definitions ';' ) 
-) Specified ileclaration - - 'With specifiers. 
-) Pr~ caIl 
-) '; 1 - , Syntactic oddity of kIt 

Pramu call 
-)-~prigRal NaRI ('(' (E list I, ')? ')')? 

Specified declaration 
-) SpecifIers ';' 
-) $pecifiers Fooction definition 
-) Specifiers Non_fooction_definitions '; 1 

................................................................... 
• Types and Specifiers. . • 
................. " ............................................... . 
Specifiers 
-) Type_or _storage_clane5 

type or_storage_classes 
-) stor~ class Type or stor~ classes? 
-) Typedef-reference:T<TVPEDEF NKHE)' Stor~ class? 

- -) Type ASfs - -
-) Adjective ASCs (Type ASCs)? 

ASCs 
-) (Adjective I Storage_class)-
, 
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Stor~_cllSs 0 

-) 'auto' I ' extern' I ' reglster '0 I ' typedef ' I ' static' 

Aojettlve 
-) 'shOrt' I 'unsigned' I 'long' I 'signed' 

T~_SPeci fiers 
-) TypeGef_reference: ~<T~EDEf_NAnE)' 
-) AdJec~ye· Type AdJectlve-
-) AdJecu ve+ 

Type 
-) 'Char' I "int' I 'float' I 'dOUble' I 'void' 
-) T agged_ type 

t aooe<'_ type 
-) CORPlete_definition: 
-) COftPlete_ctefinition: 
-) COftPlete definition: 
-) use_or jncORPlete_Gefini tion: 

'struct' Teg? '{' tteftber list '}' 'union' Tag? ' 'tteRber-list ' , 
'e"", ' Tag?" Li terai_list ' , 

( 'sttuct' Tag 

-) Reference: 

teg 
-) Tag:NMe 

! 'wUon' Tag 

'erg' lag 

Literal_list 
-) (MaRe (':' Constant:E)?) list ',' " '? 

tteRber list 
-) AlsO_is_a_list:~rs list ';' ';'? 

HeRbers 
-) Type_specifiers (Stiucture_lteftber list '.')? 

Structure_fteRber 
-) Declarator 
~) ~ield_ReAber:Declarator? ':' 8its:COOstant:E 

1IIII#####""HllII""lIl1tJII"'1IIIII#IIII#II# #ill 
II Dec lar ators 0 II 
••••• N •• ')"IHNIIHIIINJJ"HlU""IHIN~'''''tI''~1J1HI11II###II 

[)eellrator 
-) '.' Declarator 
-) Oeclarator' 

Declarator' 
-) Declarator' '[' Array_specification 'J' 
-) '(' Declarator ')' 
- > F unctlon SPtci fication: 

Declarator' '(' ParlReters ')' 
-) Declared:MaM 
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Array_specification 
-) constant:E? 

paratteters 
-) ParMeter_naRes only: ParMeter..nMe list',' ttore"par"s? 
-) Abstract.J)ara..eters 

Abstrac~raReters 
-) (SO lIst ',' ttore..J)8lRS?)? 

So 
-) specifiers (ADStrlC~deClarator I DeClarator2)? 

ItoreJ)arM 
-) ',' ' ... '1 

PlrlMterJ\IM 
-) '(IDENTIfIER)' . 
Abstract-deClarator 
-) '.' Al)strac'Ldeclarator1 
-) AbstrlC'Ldeclarator' 

Abstlac'-decllrltor' 
-) Abstract-decllrltOr'? ,[, Array $l*ificltion ']' 
-) fWlCtion_Sl)eCificltion: -

AbsUIC'Ldeclarator'1 '(' AbstrlCtJ)araReters ')' 
-) '( I AbstrlCt.Jlecllrator ')' 

I • 
; Declarator2(') needed to avoid an Mbiauity. 
Decllrator2 
-) '.' DecllrltOr2 
-) Decllrltor2' . 
Decllrator2' 
-) Declarator2' '[' Array..speci ficatlon ']' 
-) fOOC't1on_Sl)eCificatlon: 

Declarator2" '(' Para..eters ')' 
-) '(' Declarator2 ')" 
-) DecllredJ'IM:·~ <IDENTIfiER)' 
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.. , ......... "., .. ,', ......... ".,",.,.,",." ... ,',.,.".,.,',.,. 
• Definitions. , 
.............. , ........ , .... , ....... ,"', .. ,",.,."." .. ,',.,''''' 
Non fll'Ction_defini tions 
-) 1Declarltor ('.' Initillizer)?) list ',' 

Initializer 
-) E 
-) '{' Initializer list '.' '. '? '}' 

Fooction_defini tion 
-) Fcn:Decluator ParMlter_types CottpooocCstateMnt 
, 
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ParMeter types 
-) (Specifiers (Parlfteter:Declarator list " ")? ';')-
, 

page 8-4 

••• N.NN •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• StateRents. • 
...................................................... ~ .......... .. 
COIIIpOtIld statefteflt 
-) "{" TSpecifieCLdeclaration I PragRa_call I StateAent). "}" 

StateAent 
-) CO"lxu)(LstateMnt 
-) EL ';' 

, Switch Rt its cases: 
-) I $Wi tch' '( I E L ')' SWi tchj)Ody: Statettent 
-) 'case I ClseJabel:' New frOft X3Jll: 

constant:E (" .. ' constant:E)? 
'.' Statettent 

-) I defaul t ' '.' StateRent 
, End of $Vi tell and its cases. 

-> 'if' "(" EL ')' SUteMnt ('else' StateMnt)? 
. -) 'While' '(" EL ')' SUteMnt 
-) "do' Sta~t 'while' "(" EL ")' ';' 
-) 'for' '('.flrst:EL? ';' Next;fL? ';' Last:EL? ')' 

Body: StateMnt 
-) I break I ';'. 

-) 'continue' , ;' 
-) 'return" EL? ";' 
_) "goto' Target-label:NaM "; 1 

-) LabellecLstateMnt: 
libel: MaRe ':' stateMnt 

-) ';' 

.........................................................•••••••• N. 
• Expressions. . , 
................................................................... 
C_condi.tional_cORPilatiOILexpression-> E2; • For the preprocessor. 
OEL -) EL?; , Qptional Expression list. 
EL -) E -) E ',' EL; 'Equivalent to: E list '. '. 
E -) E1; , Two coillm for CORPactness. 
El -) E2 -) Lvalue:TerR' Plain ISsignRent: ':' E1 

-) Lvalue:TerR' (AssiGnRen,-operltor El); 
Assi~t QPerator 
-) '1=' 'I--rA

Z
' I ',:' 1'»:' '«:' I "+:" "-:" ".:" "/Z" "':"; 

E2 -) E3 -) Condl tlonalTexpress on: 
E3 '?' EL :' E2; 

-) E3 'II' E4; E3 -) E4 
E4 -) ES 
ES -> E6 
E6 -) E1 
E1 -) E8 
E8 -) E9 

y.".01.8S 

-) E4 '&&' ES; 
-) E5 'I' E6; 
-) E6 ' , E1; 
-) f1 "" Ell; -) E8 "::" E9 
-) E8 '!:' E9; 
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E9 -) El0 -) E9 '(' flO 

-) E9 I)' flO 
-) E9 '<=' El0 
-) £9 ')=' £10; 

El0 -) Ell -) El0 '»'Ell 
-) El0 '«'Ell; 

Ell -) E12 -) Ell '.' E12 
-) Ell '-' E12; 

E12 -) E13 -) E12 '.' E13 
-) E12 '1' E13 

E13 -) Tell. 
-) E12 ',. E13; 

ten 
-) Ter .. • 
-) '(' cas~type ')' Ter .. 

Ter" , 
-) '.' Pointer:Ter" -) .,. Tellt . 
-) '-' Ter .. 
-) '.' Ter .. 
-) '.' Tellt 
-) .,. Ter .. 
-) .-. Tellt 
-) 'Sileof' (.(' cast_type ')' ITer,,') 
-) •••• Lvalue:Tellt 
-) '--' Lvalue:Ter .. 
-) Tl 

11 
-) LVllue:T1 ' •• ' 
-) LVIlue:T1 '--' 
-) Tl '(' ArguRents ')' 

Argt,lMnts 
-) (E list " ')1 

tl 
-) Tl '[' EL ']' 
-) T1 '-)' HeRber:NaRe 
-) PriMry 
-) Tl '.' Heitber:NaRe 

PriMlY 
-) '(' El ')' 
-) NIRe: '(IDENTIFIER)' 
-) Const .. t 

Constant 
-) • <INTEGER)' I • <FLOAT)' '~)' I '<OCTAL)' I '<HEX)'; 
-) '(STRING)'. cast_type 
, 
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MMe 
-) '<IDENTIfIER)' I '(TVPEDEF-"A"E)' 

en.. C.J)hlase_structure 

page 8-6 

Preprocessor 
Phrase-Struoture Grammar 

,.rser C..,preprocessor_ text: 
C..,preprocessor_text 
-) (Control_text I Word)-

Word -) Any - '<CONTROL)' - '<C-EOL)' 'Any wold flOR the lexical 
• , analyzer except these wo. 
WOrdS -) WOrd-

control text . 
-) '(coiTROL)"'include' '<<STRING»' '<C-EOL)' 
-) '<CONTROl)','incIUde' '<STRING)' '<C-EOL), 
-) '<CONTROl)','c-1ncIUde' '<STRING>' '<C-fOL)' 
-) '<CONTROL>"" define' 

" ( ttacro.,.nMe: '<II1.....PARItS)' r tllCro..J'\8M: '<WlfH"'pARttS)' 
'(' ( PalaReter: '<IDENTIfIER)' list ',' )? ')' 

) BodY: Words '<C-EOL)' 
-) '(CONlROl>'!'undef'.nacro nafte: '(IDENTIFIER>' '<C-EOL)' 
-) f '<CONTROL)','if' f '<C-EOL), If:WOrds 

'<CONTROL>"'1fdef' '<IDENTIFIER>' '<C-EOL)' WOrds 
'<CONTROL>"'ifndef' '<IDENTIFIER)' '<C-EOL)' WOrds 

)('(CONTROL>"'elif' E '(C-EOL)' Elif:WOrds)-
('<CONTROL)"'else' '<C-EOL)' Else:UOrds)? 
'<CONTROL)','endif' '<C-EOL)' 

E -) C_conditional_coftpilation_expression; # See the High C PSG. 

II The E nonterftinal generates the safte language as E2 in the C phrase-
II structure graftftar (PSG: see Section ExpresSLOI1sand below). except that 
II Priftary is extended with the following two additional alternatives: 

n -> 'defined' Macro nafte: '<IDENTIFIER>' 
# -) 'defined' '(' nacro_nafte: '(IDENTIFIER>' ')' 

end C-preprocessor_text 
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Lexical Grammar 
SCMner C_lexicon: 

C-lexicon -) Text; 
Text -) (Words Line end)- (ControlJine Text)? 

-) \Scanning SkippecClines Control-line Text; 
Words -) Word-· 
Word -) Strina I Char I Nuflber I Identifier 

I DeliRiter I PUnctuator Operator I CORRent; 
Identifier-) Id_text 

Idr,text -) Letter (Letter I Digit'-; 
Le"der -)' A' .• 'Z' I 'a' .. ' z ' I { _' ; 

NuRber -) Integer I OCtal I float I Hex ; 
Integer -) '1' .. '9' (' '? 0 glts)? ntegral_suffix? 
OCtal -) 'Oi (' '? Ofgits)? Integral_suffiX? 
Hex -) '0' ri' I 'x') Higits Integra~_suffix? 
Float -) ~SSl Exponent? Float_suff~x? 

ltantissa=~ ~9l ~rgi t!~Its {~do~f~~ Dip ts?; 
scanner Dot dot: Dot dot -) '.' '. r; end Dot dot 
Exponent-) (,E"l"e') 1'+'I'-")? DIgits; -

IntegI'al suffix -) 'u' 'l'? I '1' 'u'? I 'U' 'L'? 1 
fl08~SU'flx -) 'L' 'I' 'f" 

Higi ts -) Hiqi t+ list ' '; 
Higlt -) '0 .. 'g' I 'Ar:. 'f" I 'a' .. 'f" ; 
Dt01. ts -) Di91 t+ list '_'; 
Diglt -) '0 .. '9' ; 
O~g~ts -) Oiqit+ list '_'; 
Oiglt -) '0 .. '1' ; 

String -). • , 0Qchar-' • • 
Char -) .," SQchar •••• 

DQchar -) AoY-.,._.H. I ',. Spec~.l ; 
SQchlr -) Any- •. \'_.... '\' Speclal . 
Special -) 'a' I' 'b'J 'f' I 'n' I 'r" I 't' I 'v' I '" .... . ... 

:~ ~9i~i~~ (~i~yt~r~rt?)?; 
othelOD -) , - , "" ' '1" I ' , ) , , • ' 

=)'<IDENTIfIER)'; 

=)' <INTEGER)' ; 
=)'<OCTAL)'; 
=)'<HEX)' ; 
.)·<FLOAT)· 
·)·<FLOAT)·; 

'L' 'U'?; 
'f' ; 
, _ is non-standard. 

, _ Is non-standard. 
, _ is non-standard. 

:)'(STAING)'; 
:)'<CHAR)'; 

, OCtal. 
, HexadeciRal. 

Operator -) ASSlr1 I OtherQp; 

I 'e' ':' ':' '" ':' '(' ':' 
')' '.' '.' '-' '-' '-' ')' 
'!' '.' '.' '1' ·)'<AS_IS)'; 

• O{)erators that can be followed by '.' in assignRents. 
ASSlanoP-)l'A' I ')' ')' I '<' '(' '+' '.' '&' .,. 

'-' '" 'I' 
':'? :)'<AS_IS)'; 
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Pooctuator-> I {I I '~I I I; I , I. I I.' 

I I I ',' 'I I"'" , ... 
'I " I. I 

Deliftiter -) (Space: "+ I HorizTab: 'ht' 
I forftfeed: Iff' Vert: Tab: 'yt' 
)+ 

CoftRent -) III '.' Rest 
Rest -) nost· '.'+ ('/' I (nost-'/') Rest); 

Host -) Any-'.' I Eol; 

, Preprocessor lexicon: 
Line_end -) Eol 

ContrOl_line -) Sharp DeliAi. ter? Control? line_end; 
Sharp -) '" 
COntrol -) f !Define_word Define DeliRi ter tlacro 

Done -) 

(InclUde_text else Other_control) 
WordS Done; 

Other_control -) Id_wt 
tllcro -) Id_text 'LP 

-) Id_uxt /LP 
selMer LP: LP -) '(' ; end LP 

scanner Define_word: 
Define word -) 'd' 'e' 'f' 'i' 'n' 'e'; 
end lJefi.neJlOrd 

Define -) DefineJlOrd 
selMer Include_text: 
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z:)'<DELETE)'; 
=)'<oELETE)'; 

-)'<DELETE>'; 

I:)'<DELETE)'; 

=)'<C-EOL)' ; 
=)' <CtIITROL) , ; 
z:)' <MO..JARltS)' 
-) , <UITH.JARtIS) , ; 

=) I <CONTROL)' ; 

InclUde_text-) IncludeJlOrd Deli"iter? fWVlYJtting; 
Include word-) 'i' 'n' 'c' 'I' 'u' 'd' 'e' =)'<CONTROL)'; 
Foony string-) L_qle File_nMe R_angle; 
L_anGfe -) '<I 
R ~e -) '>' 
file~ -) (Any-"'-'.'-')' I 1,1 Special}· 

->'<DELETE>' ; 
-)'<DELETE)'; 
=)' «STRING»' ; 

end InclUde_text 
SkippecClines -) (\Sharp SkippecCline)·; 

scanner Sharp: Sharp -) i.'; end Sharp 
Skipped Itne -) Skip suffix? Une end; 
SkiPJUfflX -) ( NolJDecial I SIash I COMent I OStling ).; 
Not_special -) (~- '/'-'.'). =)'<oELETE)'; 
SlaSh -) '/' =)'<DELETE)'; 
OStling -) StrinG-text -)'<oELETE)'; 

end C-lexicon 
reserve '<IDENTIFIER)' , Would-be ids used as key words in the PSG. 
predefined Scanning , External feedback frOll the preprocessor. 

, Eol , Predefined in gr .... r noutton: end-of -line. 
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Appendix C 
High C ,.. 
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Phrase-Structure Chart 
The chart below was produced by the MetaWare Translator 

Writing System (TWS) from the grammar that also produces 
tables by which the High C compiler parses its programs. A 
few of the diagrams in the chart have been touched up by hand 
for increased efficiency of space usage. The interested reader 
should see the MetaWare TWS User's Manual. 

To HreadN the syntax diagrams of which the chart is 
composed just follow the Hrailroad tracks" to find out what 
words may be written in what order. Start at the upper left 
corner and go only with the arrows. Eventually you will be able 
to escape the tracks to the right, in which case a syntactically 
correct phrase will have been formed. 

To form an entire program, start with the first phrase 
name diagrammed, namely High_C..phras~_structure. When 
another such name is encountered you must follow the tracks 
in its diagram and then return to the current tracks just after 
the phrase name that caused your departure. When a basic 
symbol is encountered, just write down the symbol. 

The result of your tracks visitations and the writing down 
of the basic symbols wi II be a grammatically correct High C 
program. To find out how to form words correctly from indi­
vidual characters see the Hlexical chartN in the next appendix. 

Here symbols I ike (IDENTIfiER> refer to the symbols des­
cribed by the lexical chart; their names are usually self­
explanatory, but when in doubt consult the following appendl~. 

The ifalicizedwords in these charts are purely commen­
tary. Their removal would not change the language described 
by the chart. For example, Const6nt E (E for Expression) is 
equivalent to just E, but the intent is to inform the reader that 
in the current context the ExpreSSion must be constant. 
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High_C-phrese_stfucture • 

- )--+ 
,. 6 

+- Externel_declefetion f-. 

External_declaration = 

UnspeciFietLdeclaration: 
~~6~ Function_definition ---... ).~ 

~ "4 NonJunction_definitions ; 4! 

~4 Specified_declaration ~! 
~ p 11 .~4. b -'7 regm8_ce .,. 

.~ ; )! 

/* Direct the compiler. */ 
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.~ praglla Name ~._I ------------t).~ ; -+ 
. 0 t 
~ ( -+1 ).~ ) ~ 

v Constant: t 
.-~) E -~) 

6 t ....... ( _ ~(--. 

Specified_decleretion • 

~-+ Specifiers ; -----------.-,).~ 

~~ Specifiers Function_definition ----to) t 
"-+ Specifiers Non_function_definitions ; -+2 
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Specifiers • 

page C-3 

Type_or_storage_classes = 
--) Storage_class --)-----------------------------)--) 
I V 6 
I --) Type_or_storage_classes -)-
I 6 
V TYPede(.reference: I 
--) (TVPEDEF NAME) -)-----------------------------)-
I - V A 
I --) Storage_class -----------)-
V A 
--------------------)--) Type ASCs ---------------)-
V 6 6 
--) Adjective ASCs -)-----------------------------)-

ASCs= 

-------------------)--) 
6 V 
~(- Adjective (------
6 V 
-(- Storage_class (--

--) auto -----)--) 
V 6 
--) extern --..:.)-
V 6 
--) register -)-
V 6 
--) typedef --)-
V A 
--) static ---)-

Y.11.01.85 

Adjective • 

--) short ----)--) 
V 6 
--) unsigned -)-
V 6 
--) long -----)-
V A 
--) signed ---)-

mJ 1084-85 ttetlUare Incorporated 
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Type_specifiers • 

page C-4 

--) Typede~rererence <TVPEDEF _NAt£) ---------)--) 
V A 
---------------)--) Type -)---------------)---)-
A V 6 V 6 
-(- Adjective (-- -(- Adjective (-- I 
V I 
----------------------------------------------)-

Type • 

--) char ---)----)--) 
V A A 
--) int ----)- I 
V 6 I 
--) float --)- I 
V 6 . I 
--) double -)- I 
V A I 
--) void -~-)- I 
V I 
--) Tagged_type -)-
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Tagged_type • 

COIIPl ete_ def'ini tion: 

page C-5 

--) struct -)--)--------------)--) { Member_list } --)--) 
I 6 V 6 A 
--) union --)- --) T6g Name -)- I 
V I 
--) enu. ------)--------------)--) { Literal_list } -)-
I V A A 
I --) T6g Neme -)- I 
I I 
I Use_or_incOIIPlete_def'inition: I 
V I 
--) struct .-)-----) T6g Name ------------------------)-
V 6 6 
--) union --)- I 
I I 
I ~~M~ I 
V I 
--) en.. ---------) T6g Name -----------------:.-------)-

--) Name -)------------------)--)-------)--) 
6 V 6 I 6 
I --) = Const6l1t E -)- I I 
I V I 
-(----------~---, (---------------), -)-

--) Also is 6 list Hembers -----)-------)--) 
6 - -- V 6 
-(-------------- ; (---------------) ; -)-
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Members • 

--) Type_specifiers -)-
V 

-(---------------------
V 

page C-6 

-----------------------------------------------)--) 
V 6 
--)--) Declarator --------------------------)--)-
6 V 6 I 
I -----------------)--): Bits Const4nt E -)- I 
I V Fiel tLtnenJlJer 6 I 
I --) Declarator --)- I 
I V 
-(----------------------, (---------------------

Declarator = 
--) * Declarator -----)--) 
V 6 
--) Declarator' ------)-

Declarator' • 

--) Declarator' [" Arrey_specification ] -)--) 
V 6 
--) ( Declarator ) ----------------------)-
I 6 
V Function_specif'ic4tion: I 
--) Declarator' ( Parameters ) --)-------)­
V A 
--) ~c18redName -----------------------)-

Array_specificetion • 

----------------)-
V 6 
--) Const4nt E -)-
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Perameters • 

P"rMJeter_nMJes_only: 
.-)--) (IDENTIFIER) -)---)--)-----------------)--) 
I 6 V 6 V 6 
I -(------, (-------- I --), -)---------)-
V I V 6 
--) Abstract-parameters -)- --) ... -)-

Abstrect-perameters • 

--------------------------)--) 
V 6 
--) SO -)-----------------)-
6 V 6 
-(-, (----), -)---------)-

V 6 
--) ... -)-

so 

-) Specifiers -)-------------------------)--) 
V 6 
--) Abstrect decleretor -)-
V - 6 
--) Decleretor2 ---------)-

Abstract_declarator = 

--) * -)-------------------------)--) 
I V 6 
I --) Abstract declarator -)-
V - 6 
--) Abstract_declarator' ---------)-
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Abstract_declarator' • 

--) Abstract declarator' -)_. 
I - V 
I -(----------------------
V V 
---)--) [ Array_specification ] -)--) 
I I 6 
I V Function_specif'ic"tion: I 
I --) ( Abstract-parameters ) -)-
V 6 
--) ( Abstract_declarator ) -----)-

page C-B 

Declarator2 • , Next two needed to eliminate 
, an 8f11biguity. 

--) • Declarator2 -----)--) 
V 6 
--) Declarator2' ------)-

Declarator2' • 

--) Declarator2 1 
[ Array_specification ] -)--) 

I 6 
V Function_specific8tion: I 
--) Declarator2' o( Parameters ) ----------)­
V 6 
--) ( Declarator2 ) ----------------------)­
V 6 
--) Oecl"retif1Mle (IDENTIFIER) -----------)-

--) Declarator -)-------------------)--)--) 
6 V 6 I 
I --) = Initializer -)- I 
I V 
-(-----------------, (------------------
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Initializer • 

--) E -----------------------------------)--) 
V 6 
--) { -)--) Initializer -)-------)--) } -)-

6 V 6 
-(------, (--------), -)-

Function_definition = 

page C-g 

--) ~anDeclarator Parameter_types Compound_statement -) 

---------------------------------------------------)--) 
V 6 
--) Specifiers -)-(---------------------------) ; -)-
6 V 6 I 
I --) P6rafJf?ter Declarator -)- I 
I 6 . V I 
I -(-----------, (----------- I 
I V 
-(---------------------------------------------------

Compound_statement a 

--) { -)---------------------------------)--) } -) 

Y.11.01.85 

V 6 
--)--) Specified_declaration -)--)-
6 V 6 I 
I --) Pragm8_call -----------)- I 
I V 6 I 
I' --) Statement ~------------)- I 
I V 
-(---------------------------------
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Statement • 

--) Compound_statement ------------------------)--) 
V 6 
--) EL ; --------------------------------------)-
V 6 
--) switch ( EL ) SlIitch_body Statement ------)-
V 6 
--) case ConstlKlt E -)--) .. ConstfJllt E -)- I 
I V V I 
I -(------------------- '. I 
I V I 
I --) : Statement ---------)-
V 6 
--) default: Statement -----------------------)­
V 6 
--) if ( EL ) Statement -)---------------------)-
I V 6 
I --) else Statement -)-
V 6 
--) while (' EL ) Statement --------------------)­
V 6 
--) do Statement _hile ( EL ) ; ---------------)-
I 6 
V First Next ltfSt Body I 
--) for ( (El ; tEL ; DEL ) Statement -------~-)­
V 6 
--) break; -----------------------------------)-
V 6 
--) continue; -------------------------------)-
V 6 
--) return DEL ; ---------------------------~--)-
V 6 
--) goto Target_label Name ; ------------------)­
V 6 
--) l8belled statement Label Name : Statement -)­
V - 6 
--) ; -----------------------------------------)-
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DEL -

--) E -)--) 
V 6 

I- Optional Expression List. 

1* Used only in Statements. 

*1 

*1 

.------)-
EL- I-

1* 
--) E , EL -)--) I-
V 6 1* 
--) E ------)- I-

Equivalently: 

--) E -)--) 
6 V 
-(- , (--

*1 
*1 
*1 
*1 
*1 

E - 1-' Operator precedence levels are *1 
1* indicated by the ·subscripts" on E: *1 
1* larger subscripts mean more binding. */ 

AssigMleflt_ oper~tor: 
-) LV6lue Term' -)--) = --)--) El -)--) 

V 6 6 
--) 1= --)-
V 6 __ ) A= __ )_ 
V 6 
--) &= --)-
V 6 
--) »= -)-
V 6 
--) «= -)-
V 6 
--) += --)-
V 6 
--) -= --)-
V 6 
--) *= --)-
V 6 
--) 1= --)-
V 6 --) ,= --)-

V Conditional_expression: 

1* El */ 
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--) E3 ? ----) EL ----) : E2 --------)- /* E2 */ 
I A 
I I 
V I 
--) E3 II E4 -)--------------------)- /* E3 */ 
V A 
--) E4 && E5 -)- /* E4 */ 
V A 
--) E5 E6 -)- /* E5 */ 
V 6 
--) E6 

,. 
E7 -)- /* E6 */ 

V A 
--) E7 & E8 -)- /* E7 */ 
V A 
--) E8 -- E9 -)- /* E8 */ 
V A 
--) E8 !- E9 -)-

V A 
--) E9 < El0 -)- /* E9 */ 
V 6 
--) E9 ) El0 -)-
V 6 
--) E9 <- 'El0 -)-
V 6 
--) E9 )- El0 -)-
V A 
--) El0 » Ell -)'- /* El0 */ 
V 6 
--) El0 « Ell -)-

V 6 
--) Ell + E12 -)- /* Ell */ 
V 6 
--) Ell - E12 -)-
V A 
--) E12 * E13 -)- /* E12 */ 
V 6 
--) E12 / E13 -)-
V A 
--) E12 , E13 -)-
V A 
--) Term -------)- /* E13 */ 
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Term • 

--) Term' --------------)--) 
V 6 
--) ( Cast_type ) Term -)-

Terml = 
--) sizeof -)--) ( Cast_type ) -)--) 
I V 6 
I --) Term' ---------)-
V 6 
--) T1 -------------------------)-
V 6 
--) + Term ---------------------)-
V 6 
--) - Term ---------------------)-
V 6 
--) * Term ---------------------)-
V 6 
--) & Term ---------------------)-
V 6 
--) ! Term ---------------------)-
V 6 
--) - Term ---------------------)-
V 6 
--) ++ L vlIlue Term -------------)­
V' 6 
--) -- L vlIlue Term -------------)-

page C-13 

Y.11.01.85 @) 19U-8S ttetlUare Incorporated 



High C - Phrase-Structure Chart 

Tl • 

--) Primary --------------)--) 
V 6 
- -) L v61ue T1 ++ ---------)-
V 6 
--) L vlJlue T1 -- ---------)-
V 6 
--) Tl ( Arguments ) -----)-
V 6 
--) Tl [ -)--) EL-)--) ] -)-
V 6 
--) Tl -) Hember Name ----)-
V 6 
--) Tl. lfeltlber Name ----)-

Primary = 
--) ( -)--) EL-)-~) ) -)--) 
V 6 
--) (INTEGER) --)--------)-
V . 6 6 
--) (FUMT) ---)- I 
V 6 I 
--) (~) ----)- I 
V 6 I 
--) (OCTAL) ---)- I 
V 6 I 
--) (HEX) -----)- I 
V I 
--)--) (STRING) -)-------)-
I 6 V 6 
I -(------------ I 
V I 
--) (IDENTIFIER) ---------)-

page C-14 
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ArglM1lents • 

---------------------)--) 
V 6 
~-)--) E -)----------)-
V 6 V 6 
-(--(-, (-- I 
V I 
--) (IDENTIfiER) .) E -)-
6 V 
-(---------, (--------

Cast_type :z 

page C-15 

--) Type_specifiers -)-------------------------)--) 
. V . A 

--) Abstract_declarator -)-

Name a 

'--) (IDENTIfIER) --------------------)--) 
V 6 
--) Typede,"-rererence (TYPEDEf -,MItE) -)-
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Appendix D 
High C ~ Preprocessor 
Phrase-Structure Chart 
The chart below was produced by the MetaWare Translator 

Writing System (TWS) from the phrase-structure grammar of 
Section Preprocessor, also found in Appendix Co//ectedGram­
mars. The large diagram was touched up by hand for increased 
efficiency of space usage. For more information on how to 
read this chart .. consult the introductory paragraphs in Appen­
dix Higll C Pllrase-Sfrucftre ClNlrt 

C-preprocessor_text a 

. ).~ 

~ t 
.-+.~ Control text (C-EOL) ~.-+. 
,- 1 t .~ .ord )t 

.~ . 
Word a '* Any word 'rOR the lexical analyzer except two: .. , 

.~ Any except • (CONTROL> • exoept • (C-EOL)' ~ 

Words III 

. ).~ . 

~ V 
.~ Word +-. 
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Control_text • 

page 0-2 

e-) include <STRING) ------~--------------------------------)--) 
V 6 
e_) include «STRING» ---------------------------------------)­
V 6 e_) c-,nclude <STRING) _______________________________________ )e 

I 6 
V lI6cro ~: aody: I 
e-) define -)e-) <NOJPARHs) -)--) Words -----------------------)-

I ~<----------------------_------. 6 
V 116cnI_~: 6 
--) <WITHJPARnS) ( -).-----------------).-) ) -). 

V PU8IMtN.: 6 
--) <IDENTIFIER) -). . 
6 V 
-<------ , <--------v 

--) undef ~~<IDENTlfIER) -----------------------------)­
V - 6 
--) l' E <C-EOL) I'Words -------------------)-
V V 
--) ifdef --)--) <IDENTIFIER) <C-EOL) Words -)-
V, V 
--) ifndef -)- -(--------------------------

E :z 

V ~J~J:. 6 
e_) elif E <C-EOL) Words -)­
V 
.-------------------------)--) endi, -------)-
V J'1~· 6 
--) else <C-EOL) WOrds -)-

/* See the High C PSG. */ 

--) C_conditional_cornpilation_expression -} 

,- The E nonterllinal generates the SIRe l~ as E2 in the C phrase- -, 
,- structure grlMe:JPSG: see Section EJJ1U6ssionsand below), except that-' 
,- PriMlY is ext wi th the following two additional al ternati yes: -, 

--) defined H6CTo_n8lfle (IDENTIFIER) -----)--) 
V A 
--) defined ( HacTo_n8llle <IDENTIFIER) ) -)-

end C-preprocessor_text 
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'Appendix E 
High C - Lexical Chart 

The chart below was produced by the MetaWare Translator 
Writing System (TWS) from the grammar that also produces 
tables by which High C compliers lexically analyze their Input 
programs. A few of the diagrams in the chart have been 
touched up by hand for increased efficiency of space usage. For 
more information on how to read such charts" consult the 
introductory paragraphs of Appendix High C Phrase-Structure 
Chart. 

~ Text ~ 

Text = 
~. )~, )~ 

~ lords Eol -+1 ~ Control_line Text -+2 

· ~. 1 
• ) Skipped_lines Control_line Text ~ 

Words -
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Word • 

--) String ------------)--) 
V 6 
--) Char --------------)-
V 6 
--) Number ------------)-
V 6 
--) Identifier --------)-
V 6 
--) Delimiter ---------)-
V 6 
--) Comment -----------)-
V 6 
--) Punotuator --------)-
V 6 
--) Operator ----------)-

Identifier • 
Id_text = 
--) A -)--)-------------)--) 
V 6 V '6 
--) Z -)- --)--) A -)--) 
V 6 6 V" •• 6 
--) a -)- --) Z -)-
V 6 V 6 
--) z -)- --) a -)-
V 6 V 6 
--) -)- --) z -)-

V 6 
--) -)-

V 6 
--) 0 -)-
V 6 
--) 9 -)-

V 
(-------------

v.11.01.85 
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Number • 

'\,-) Integer -)--) 
'V 6 
--) Octal ---)-
V 6 
--) Hex -----)-
V 6 
--) Float ---)-

Integer = 

--) Digit except 0 -)--------------------)--)---------------------)--) 
V 6 V' 6 

'Octal II: 

-------)--) Digits -)- --) Integral_suffix -)­
V 6 
--) - -)-

--) 0 -)--------------------)--)-------~-------------)--) 

Hex = 

V 6 V 6 
-------)--) Digits -)- --) Integral_suffix -)­
V 6 
--) -)-

--) 0 -)--) X -)--) Higits -)---------------------)--) 
V 6 V 6 
--) x -)- --) Integral_suffix -)-

Y.11.01.85 I) 19B4-8S tteUUare Incorporated 



High C Lexical Chart 

Integral_suffix • 

--) u -)-------)--) 
I V tJ 
I --) 1 -)-
V tJ 

--) 1 -)-------)-
I V tJ 
I --) u -)-
V tJ 
--) U -)-------)-
I V tJ 
I --) L -)-
V tJ 
--) L -)-------)­

V tJ 
a_) U -)-

Float = 

page E-4 

Float_stdfix: --) F -)--) 
6 A 
--) f -)-
6 6 

Hantissa: --) L -)-
6 6 

------------)--) .. Digits -)- --) 1 -)-
V 6 V 6 6 
--) Digits -)--) . --------)--------------)---~---)-

V V 6 
--------------)--) Exponent -)-

Exponent = 

--) E -)--)-------)--) Digits -) 
V tJ V 6 
--) e -)- --) + -)-

v.11.01.8S 

V 6 
--) - -)-
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Digits • Digit • 

--) Digit -)--) --) 0 -)--) 
'6 I V 6 
-(----------- --) 7 -)-
6 V 
-(--- (---- Digit • 

--) 0 -)--) 
Diaits = V 6 

--) 7 -)-
--) Diait -)--) 
6 ·V Higit • 
-(-----------
6 V --) 0 -)--) 
-(--- (---- V 6 

--) 9 -)-
V 6 

Higits • --) A -)-
V 6 

--) Higit -)--) --) F -.)-
6 V V 6 
-(----------- --) a -)-
6 V V 6 
-(--- (---- --) f -)-
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String • 
Strin(Ltext = 

page E-6 

--) . -)---------------------------------)--) . -) 
V 6 
--)--) Any except \ except • -)--)-
6 V 6 I 
I --) \ -)--) Octal_hex -)---)- I 
I V 6 I 
I --) Any -------)- I " 
I V 
-(---------------------------------, 

----) Digit -)-----------------------)--) 
I V 6 
I --) Oigit -)-----------)-
I . V 6 
I --) Oigit -)-
V 6 
--) X -)--~-----) Higit -)-----------)-
V 6 V 6 
--) x -)- --) Higit -)-

Char = 

--) • -)--) Any except \ except • -)--) • -) 
V 6 
--) \ -)--) Octal_hex -)---)-

V 6 
--) Any -------)-
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Operator • 

--) AssignOp -)--) 
V 6 
--) OtherOp --)-

AssignOp • 

__ ) A ___ )--)-------)-~) 

V 6 V 6 
. --) ) ) -)- --). -)-

V 6 
--) < < -)_. 
V 6 
--) + ---)-
V 6 
--) .. ---)-
V 6 
--) & ---)-
V 6 
--) , ---)-
V 6 
--) - ---)-
V 6 
--) I ---)-
V 6 
--) I ---)-

Y.11.01.85 

page E-7 

OtherOp • 

--) ,. ---)--) 

V 6 
--) & & -)-
V 6 
--) I I -)-
V 6 
--) ) . -)-
V 6 
--) < ---)-
V 6 
--) .. -)-
V 6 
--) ! • -)-
V 6 
--) < • -)-
V 6 
--) ) ---)-

V 6 
--) + + -)-

V 6 
--) -:- - -)-

V 6 
--) - ) -)-

V 6 
--) . ) -)-

.V 6 
--) ! ---)-
V 6 
--) . ---)-
V 6 
--) . ---)-
V 6 
--) ? ---)-

1m 19U-8S ",tauare Incorporated 
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Delimiter = 

--)--)--) Space: -)--)--)--) 
Il I Il V Il I 
I I -(------------- I I 
I V I I 
I --) HorizTab:ht ---)- I 
I V Il I 
I --) FormFeed:ff ---)- I 
I V Il I 
I --) Vert:Tab:vt ---)- I 
I V 
-(-------------------------

Conrnent -= 

--) I * Rest -) 

Rest • 

page E-8 

Punctuator = 
--) ( -----)--) 
V Il 
--) ) -----)-
V 6 
--) ; -----)-
V 6 
--) . . ---)-
V 6 
--) [ --~--)-
V Il 
--) ] -----)-
V 6 
--), -----)-
V 6 
--) . . . -)-
V 6 
--) { -----)-
V 6 
--) } -----)-
V 6 
--) : -----)-

a _________ )a_) __ ) • -)--)--) I ------------------)--) 
6 V 6 V V 6 
-(- Host (-- -(------- --) Host except I Rest -)-

Host = 
--) Any except * -)--) 
V Il 
--) Eol ----------)-
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, Preprocessor lexicon: 

Control_line = 

--) , -)--) Delimiter -)-
V V 

-(-------(---------------
V 
------------------------------------------------)--) Eol -) 
V 6 
--) d e fin e Delimiter Id text -)--) Words -)-
1-6 
I -(-------------------
V IJ 
--) inc 1 u d e -)---------------)--) ( File name ) -)-
I V 6· - IJ 
I --) Delimiter -)- I 
V I 
--) Id text -)-----------------------------------------)-V - 6 . 
• -) Digit ---)-
6 V 
-(-------------

------------------------------------------)--) 
V. 6 
--)--) Any except \ except • exoept ) -)--)-
6 V 6 I 
I --) \ -)--) Octal_hex-)------------)- I 
I V 6 I 
I --) Any -------)- I 
I V 
-<-----------------------------------~------
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Skipped_lines = 

----------------------------------------------)--) 
V . 6 
--)---------------------------------)--) Eol -) 
6 V 6 

--)--)--) Any except /, • -)--)--)-
6 I 6 V 6 I 
I I -(--------------------- I I 
I V I I 
I --) / ---------------------)- I 
I V 6 I 
I --) Comment ---------------)- I 
I V 6 I 
I --) Strin~text -----------)- I 
I V 
-(---------------------------------

V 
-(----------------~-----------------------------
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Index 
Starting on the next page is a "permuted key word in 

context## index for this document. In the center column is the 
particular key word W being indexed, in the context of a phrase 
or sentence containing W. The phrase appears to the left and 
right of W. 

Occasionally the text of the phrase preceding W does not 
fit in the space to the left of W. In that case the index entry 
looks like 

b tnt tMt lIS tit 1 .... tI ,rtcHI tItt _ Mi .. i...... Tltis ............ 1.' 

where the first word HThisH of the sentence did not fit on the 
left. Simi larly the text to the right of W can be crowded: 

till rililt. "is at is flU .... " til .. text... •.... 7.4 

where Hthe rightH did not fit on the right. 

If the texts both to the left and right do not fit, or the left 
(right) text cannot be completely wrapped around to the right 
(left), the entry is continued on another line. For example: 

lilt .t tit lICIt tnt ... tIIIltft. Tltis at is flU .... " fu til IIIdI text lit ••• 
••• tJtt rililt .................................. 7.4 

After locating an entry, proceed directly to the referenced 
section(s). If a reference is to Section X.Y, look on page X-V 
first and you wi II usually be within a page of the~ desired 
referent. 
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_ tilt tI 11ft 

1Oi1 .. 1IiiIt1-: 
Equell t, CoIJUis.IIS: -- .. 

IIlti,licaufI Operlttrs: • I 
Peilter hflrna: 

dznf, 
lit-.ist 1M: 

s..-Ull ClljIKti_: 
• • 

O¥trrl~l .. Operlttr Pr~: 
FUlctl. tall: 

hilter .. nflr .. : 
lultiJlicatifl Oftrlters: 

uSldaU". 
Ult, 

u.u, si .. .,.rltlrs: - ... 
ldtIiuUI O(Mraten: 

'r.tiI IICr .. t .. Iea ... t: 
Ptstfb laa_t .. Ita_t: 

usedati .... , 
Ust, ., 

Plutar "rlnrllCt 1M ..... r Sl1tctiII: 
lilt, ., ., 7, L 

Y.11.01.85 

"ltt,licati" O(Mraten: • 
__ ri .. c.,uisllS: 
~ ~lft Oftrlters: 

".rill c.,uiSllS: < ) 
Issi .... ts: 

ElIIIlitJ c:o..uiSllS: 
... rill c.,uiulS: < 

OrMrili c.,ariSllS: < ) <­
SIIift .rltors: « .. 
c.iti.u EilirnsillS: 

, lilt,·,·, 
Irr., lMnill: 

lit-list £adai"-tr: 
., ., I, 

_LlIE_ 

lit-I1Si lIcllsi .. -tr: 
., ., I, .. , lid 
Ust, ., ., 1, 

s..-tilllisjulctill: 
lit-.is. Cllfl .... t: 

tilt t". .f • Hclultlr Dr 
Cut ",IS ... 

,rapas fr .. 

... tilt h ript _ ........... StetiH 
T:"":"':' •••••••••••••••••••••••••••• ::--t:'B 
I .................................. '.5 
I·. ............................... •. 1. 
t ................................. '.1. 
C ................................. 1.11 
I ............................. 1.211.n 
I .................................. I.' 
U .................................•.• 
I, ", .. I ClllltlUUI .. USlCiIU". . 1.12 
( ) ............................... I.ZI 
() ................................ '.2' •................................. '.1' 
• I t ............................. '.1' 
., ., I, .. , .., I a.taU,. .., ....... 1.12 
., ., 1, I, .......... ' .............. 2.2 .. ...... . . . . . . . . . . . . . . . . . . . . . . . . .. '.1' 
• .. -............................ '.13 
...... --.......................... '.U 
•• l1li --••.•.•••••.......••....••• '.Z3 
., I, ", l1li I a.tlti .. MIll ......... 1.12 
., 1, I, ........................... Z.Z 
-) ................................•. lI 
•. • ••..••......••........•........ l.l 
I •............................... 1.1" 
( ) (. ).. ....•.................... 1.11 
« l1li ». . .............•.......... '.ll 
<- )-. • . . • • . • . • • • • • • . . . • • . • • . • • . • .. '.11 
-.................................. '.3 _ .... 'a .......................... '.11 
) <- )-. .•••••••••••...••.••••.••.• 1.11 
>-••••••••••.••••••..••••••••••••• 1.11 
» •••••••••••••••••..•••••.••••••• 1.12 
1 : .................................. .. 
7, I, ............................. l.Z 
[ ] ............................... '.n 
\ ................................ '.2 •.• 
\ u li. Cllti_ttr. .. .. .. .. .. . . . . ... I. Z 
" ............................•..... 1.1 
.. , .. I ~tlU" aM uslCi.1i ....... 1.12 
_FRE_ ••.•...•.......••.•.••...••. 5.1 

('

11(_ Jllf_ .................... 5.' 

. c»iiitiii,i .. iiiic1iu,,: . : : : : : : : : : '1 ~,~ 
1 
................................ Z.Z 
................................. '.5 
....................... -.......... I. " _*, _Ii., .JIll ...................... 1.1 

.stract Mclulter. .................. '.5 
Mlstract IIcluaters. . . . . . . . . . . . . . . . .. 1.31 
"sUIet_uclulter ............... 1.5 1.11 
MlSUICt..Pll_ttrs .......•........ 1.5 1.1 
................................... 1.1 
addi till, _Uacti... . . . . . . .. I. 13 •. 22 I.ll 
..wiU" .ratlrs: • aM -.............. 13 

~ 1084-85 HetaWare Incorporated 
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falctin 
.,-lHl1 

salar .. 
...... r 

,.intlr 
sttr. 
llxical 
llxical 

lit-lise 

.at ,.,..ten 1M 
_i.ll .... r .f 

,.ll1ter 

Itclarati .... 

.... ru.tlr 
• , ., I, .. , .. I ~ti" _ 

ClMuti,ity, ,na"lCI, 
<DELETE>, 

StIr._claslS 

daus. 

Sc:Ipn. 
WI", C Extltlsins ltalllntn in tilt IIMual 

I18C1'I 

u • 

Y. 11. 01. OS 

"'ress If • arr., .................. 1.17 
IINreu .. nn f1Ill-fnction value. . ..... 1.5 
Mfrlssllll ........................... 1.5 

==t::. i'-"rt: . iiiiPi': ·i.·.: . 'iii'-.: 'J 
... r .. ate ill tiaUzatin. . .......... ft.2 1.3 
..r.pte ~s ••••••••••••••••••••••. 3.5 
Ili ...... t ........................... 5 .• 
Ili .... t .......................... 1.11 
1l1ati.. . . . . . . . . . . . . . . . . . . . . . . . .. 1.111 
MI .. lt, ........................... Z.l 
MIl,sis ................•.......... '.15 
... : I .............................. I.' 
ar ..... t c:.tIni. at fwct1. entr,. .... 1.1 
UfIIIIIt t". cMdrili .•.............. 1.2' 
ar .... t li_i ..... rtni ........... 1.1 
ar ..... ts ........................... 5.1 
arr:.:ts tI • *-ti •............... I.Z4 
ar ~.ttic. . . . . . . . . . . . . . . . . . . . .. I. 13 I. n 
Iri~tic Cllftrsi .. s .... 3.113.1' 3.15 7.1l 
aritMttic tJfIS .•.•.•••.•......•..... I.] 
ari_tic t".s .. ." ................... 3 .• 
arrlf ............................... 1.11 
arr., .. ..,...t t".. . ............. 3.5 
may t"et .......................... 1.5 
arrlfS ...........•.................. 4.1 
arrays If cHrlCtlrs ................... 1.31 
arr.,s tI "titers ........... 1.17 1.21 I.l! 
001 ...............................•. 1 
asilllltt. . . . . . . . . . . . . . . . . . . . . . . . . .. 1.1 
tld .... t c.,atl'llit, ........... 1.13 1.1 
Issi ...... ts: =. • ..••.••..•.•.•.•••••• 1.3 
hstciltill .......................... I .• 
aslCilti... . . . . . . . . . . . . . . . . . . . . . . .. 1.12 
ISslCilt1.itJ. ...................... 7.12 
aStdlt1.ity tn ..,rnsills ........ : .. 7.11 
<IS_IS>. ••••••••••••••••••••••••.••• Z. Z 
uti. utln .. rllistlr. t,...f. static. 1.1 
.~tic stir. dlSs. ............... 1.2 
.tllltic, ItatiC, .. tJItIftf stir... .. 3.' 
.tllltic, t,,",f. .................. I.] 
_i .. rMlfftdti •................... 5.1 
'it tt.1.. . ......................... I.' 
'it-flll11 ltIItit. .. . . . . . . . . . . . . . . . . .. ..]] 
Itt-I1s. 1M: C ....................... I.' 
11t-.ll1 ..,1 ... t: - ................ '.1' 
Iit-I1s. hdlSi ..... r: •. . ............. 1.1 
lit ... i" IltClni"-er: I. . ............. 1.7 
~ltd ............................... 1.1 
Iltd" OrililS, lIfili .. "illts, ....... 3.2 
..., ............................... 1.1 
"'Y. . ............................. 5.1 
hl1 ...... ti.: I. ................. l.lI 
......,il$ ...........................•. 1 
.r.lt .............................. 7.! 
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<stilI&>, 
<IITEGEI>, <fLOII>, 

tarpt ....... st 
Stri.IM 

ICtal, .IMIdIIl i. Itri. 1M 
. .rlJl If 
..... t tJIII 

sur. 
... , type, SU"" 
.blllie stir ... 

star. 
.lIHtie, ItatiC, 1M tDHIf sur. ,r ... CalliILCIMIIU., llta, 1M 

Y.11.01.85 

Clatrll LiltS: Pr.,rlCtSslr 
,",rlClSSlr 

., ., I, ., ... I 

",.rIte 
C8Itdl tillll 

lit-lise 
urlY'" 

Irief Tutorial • Prlut"lS ............ 1.1 
~Jte. . ............................ '.21 
c .................................. 1.2 
C EltnsillS IIc:IIutH II 1M IIMl IMJ. 1.1 
C Prllru. .......................... Z. 71 
all. ............................. 1.11 
all ............................... I.' 
all nU_iUt, ...................... 1.1 
all SIIIIUCI. ••••••••••••••••••••• 1.24 
Call: (). . ......................... I.Z' 
Calli .... ClftVtlti., llta, .. CMI .•..... 1.1 
CUI eMstlllt ....................... I.ll 
ClSI r.tts. . .................... 7.3 1.3 
cast. tIIfMl t. ...................... 1.3 
CUt 'fIllS 1M IhtrlCt lIdulters ...... 1.11 
CUts ................ ." ............. 1.15 
cItIr ..........•.....•.... -...•...... 1.3 
au, ilt, fl .. t, .. II, IIi •........ 1.3 
(~> •••••••••••••••••••••••••••••• 3.4 
< .. > •••••••••••••••••••••••••••••• 4.1 
< .. > , <OCT">, <lEX>, <STUI&>. ••••••• 1.30 
OirlCtlr $It. ••••...........•....... •. 1 
cIIarICtIr Sit. ..•....••....•.••..•••. •• 1 
ClaarlCters ..•.•.•.....•............•• 4.1 
c:laar1CUr1. • • • • • • • • • • • • • • • • • • • • • • • • •• 4.1 
c:laar1Ctlr1. • • • • • • • • • • • • • • • • • • • • • • • •• 1.30 
ciIcIIl ............................. 1.24 
clus .............................. 3.11 
clus ............................... 1.3 
clas ............................... 1.2 
duStS. . ........................ 1. I 1.' 
duus ............................. 1.1 
c.. ............................... 1.1 
c..iuti. ef .rIM 'JIIIS. .......... 3.15 
~ .,.rlter. ..................... 1.11 
CIlIa ,-rater: , ..................... I. Z 
CIIIIMs. . .......................... 4.14 
~s ............................ 4.15 
ClllHt CIItral U. L.IiCli. ....•...... 5.3 
CIIItIu. .......................... 4.12 
c-icati. ,i" Itller L....... . ..... 1.1 
ClllltaUM 1M Unci.tiM ............ 7.12 
Clllltau,lty, ustdaU,lt, ........... 7.1Z 
~I •••••••••••••••••••••••••••• 1.7 

fNpirislU: < > (a )a. ••••••••••••••• 1.11 
CnprisllS: aa 1M 'a. ••••••••••••••• 1.18 
Cllpati~ilitJ. . .................. 1.11 1.1 
Cilptnl. ,,,IS. ...... . . . . . . . . . . . . .. 3.12 
~illti .. nit ...................... 2.1 
ClllPilltin .its. ................... 1. 11 
CllPllltlH ...................... 2.' 4.15 
CllJI .... t: -. .... . . . . . . . . . . . . . . . . .. I. 19 
~nt t"e. . ..................... 1.5 
Coaplsition of I C PrOlrlll .............. 2.1 
CUp_ SUtltltlt .................... 7.1 

@ 1984-85 Hetaware Incorporated 
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sui .. 
• nlltUnt 

instllet If 

\ a 11. 

c..t 
OtIIer 

Prllnl 'I.t 
u ..... t 

trt tlllttic 
IlItllrll Vi ... illl 

uithntic 

,r.u Callilll..ClMlltilll, 
"Uate 

shrill 
_Uate 
E.teoo 

SptdfiH 
.t.rlti. If 

iltlnixi .. statllnts .. 

llttnin .. 
tM t"e If I dtclulter tr IhtrlCt 

tItt tnt of I 

Y. 11.01. as 

CUt Twa 1M .sUItt 
Prefix IlICI'tIIftt _ 

Ptstfix IRCl'tIIIt .-
111 ta, CUt, IIMI 

111ds... Orilins .. 
nacrl 

r...,.n4_Statelilftt ................. J.II.3 
CIIIate.ltion. . .•.................... R. Z 
Cllldt tiH. ..••.•••••............•.. 5. 1 • 
aMi ti.1l ..,Ulti... ........... 2.1 4. 15 
ClHi tiRIl EQrtSsins: 1 :. ........... 1.4 
C1nititllal Itd,sion ................. 5.1D 
CDljllctt .. : 'I .••.••...............•. 1.1 
Ctlstllt. .......................... I.]] 
CIIstilt n,rusitl. ................. 5. 11 
Clatllt E.,r"silM. . . . . . . . . . . . . . . . .. 1.33 
CIIStillt SlffiDS ..••................. 'LZ 
CllstilU. ...•.••.•.....•.......... I. 31 
CIISUailits. . •..•. : • • . • . . • . . . . . . . . . .. 2. 1 
CllstrailU _ Snlltics ............... 2.5 
CIIltrlCtH t"" .................. ].5 ].1 
CIIStrlCti... ...•..•................. ].1 
Clltelt-fnt Ir .................... 2.1 2.Z 
Cllti_ur. . . . . . . . . . . . . . . . . . . . . . . . .. 1.2 
CIItl_. . ..................... 7.11 7.7 
etttillt .. I fer "'UI, tr .. statlnlt. 7. 1. 
CIItrtl Li .. lnlC11 ................... 5.l 
CeRtrll Li .. ltdctl .•................. 5.5 
CIItril U. "ras. StnctIr •........... 5.1 
CIIUtl LiltS •..•.•......•.....•.•... 5.2 
CIIUtl U.s: 'r.,ncnllr CIM..n ..... ~.1' 
Cllttltitls ............•............. z .• 
ClMlrsi .. It fIIcti. IItry ..•.......... 1.1 
Cllftrsi .. 'f ur. te ,.bUrs. 1.17 I.Z1 I.l! 
CIMIrsi .. s. . . . . . . . . . . . . . . . . . . .. l. 13 l. 14 
CllttrsillS. . . . . . . . . . . . . . . . . . . . . . . .. l. 1. 
Cllttrsilu ..... _ ............... 3.15 1. 12 
C'IItIrt. ........................... 7. 12 
llta, _ CIIII. . ...•................. 1.1 
Mc:lUlti.. . . . . . . • . • . . . . . . . . . . . . . . .. 3.2 
aclulti. ,r'lllrt, Itt ............... 3.1 
ltc1ulti .. Pn,trt, SlU .••••........•. 3.3 
IIIclUltitlS. ....................... 3.11 
hclulti.s ........................ 3.11 
IItc:lUltitlS ......•.... ' .............. 1.1 
lItc:larltilU. ...•.................... I. Z 
RclarltilU ................... 7.1 7.3 7.1 
RclarltilllS ....•.................... 1.3 
IIclUlt1t1S .. lIft,iutIS ........... 3.1. 
*tlultitlS .. statMIU ............. 7.1 
lIIcluIUr ........................... 1.5 
aclulUr tr IhtrlCt *daraUr. ....... 1.5 
lIclarlurs. . . . . . . . . . . . . . . . . . . . . . . . .. 1.5 
Itclarlters. . . . . . . . . . . . . . . . . . . . . . . .. 1.11 
haM"t: •• _ --. . . . . . . . . . . . . . . . .. 1.22 
lItcr ... t: .... --. . . . . . . . . . . . . . . . .. 1.23 
IIIf.lt ............................ 7.3 
... fl • .., ..... f ................... 5.1 
"fiM ........................... 5.10 
IIfhi" 'lilts .. an ~ ............. 3.2 
Dtfiniti8ft LexiCDI ..••.....•..•......• 5 .• 

tID 198.4-85 HetaUare Incorporated 



Index: High C - Language Reference Manual page 1-6 
IIdUltillll _ 

flleti. 
"'-fllett. 

t", 

Paitt" 
hilter __ Ual 

.1 u,11catl .. , 
C8IItiftlilil I fir, Rill, If 

lIitl111 • Stltd!, fir, Nill, Ir 

Ii" C £11II1illS 
1 ... 

nil', 
Qu, 1It, ft.t, 

si. 
u,r.ssill E.alati., Si. 

si .. -

~f, ~Hef, ~fUlf, 

~f, ~Hlf, ~fMIf, .. Ut, 

IIf, lIH1f, IIfM1f, IIUf, IIlu, 
IfIIIIIIt CIMIni. at fwcti. 

ItrICt, .iM, 
.... ItrlCt-tII, •• -tII, 
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hilts. E.,r.ss1. 

lacl_ .­
lit-vist 
prllr. 

ItltIIIIt. 
r ... lu 

CIIIStilt 
Sa .... hllu. 

,r.CldIRCI, ISstciltivity in 
Cotstant 

IIfillitillll. ...... . . . . . . . . . . . . . . . . .. 3.11 
Ilft.tuNS .......................... 1.1 
IIftaitt.s .......................... 1.1 
<IELETE>, <IS_IS>. •••••.••••••.••••••• 2.2 
1I1i1i tin _ Ell. .................. ~. 11 
.... tatiOl ........................... 3.4 
... till ... l".s. . .................. 1.5 
ItreftrllCl 1M IIIMr S11Icti.: -) ..... '.21 
"reftrllCl: •...................... '.11 
lisjllctiN: II....................... 1.5 
'1,,1., ............................. 1.5 
.1,isl .. , .... 1.. . . . . . . . . . . . . . . . . . . .. •. 14 
.. statllltlt. . . . . . . . . . . . . . . . . . . . . . .. 7. 11 
M stattltlt ......................... 7.S 
.--'il •........................... 7.1 
1tCIIHt14 il tilt I..al". .......... 1.3 
.... 1 ••............................. 1.2 
....1., L .. -.... I.. .................. 3.4 
..... 1., Mit ......................... 1.3 
.,11cate tItclUltiU .................. 3.2 
..,lieat. ItclUlti.S. ............... 3.11 
.ffects ............................. 1.2 
£fftcts, 1M Sa..-. hilts ........... 3.11 
.fftct, st.... "ilt. ............ 1.3 1.23 
.l_flu •• f Mclulti.s ....... 1. 1 1.3 1. I 
.. Uf, .. lsi, .... If. ............... 5.11 
1111 1I11.icallr~s ............... 5.5 
.. 111, .... it. ..................... 5.11 
..... U .. ClMitl.. .................. 5. I • 
• -If-1111 .......................... 4.2 
IlMif. _ ............ _ ........... 5.11 
lIut ............................ 1.1 
............................... 1.4 
--til. . . . . . . . . . . . . . . . . . . . . . . .. 3.3 
... r.tl. liurl1. • •..••••• _ •.•••.•. U 
_rlti. Uterals .. '"e .......... 1.4 
... l~t ..••••••.•• _. ~ ..••.•... 1.5 
Ell .•.••••••.•••••••••.••.•••••••. 11 
E..-lity c.,uiSllS: •• _ la ••••••••• 1.1' 
E .. balnt lD1s. • • • • • . . • . . . . . • . . • •. 1.7 
.SCIII s,.....as. . . . . . . . . . . . . . . . . . .. 1.2 
"alati ... r .. r .................... 7.12 
EvalAtl., Si. EfftcU, IINII St41111C1 ••• 3.11 
Elel_ Ttxt .••••••••••••••••••••••. 13 
Excl... l'.t. • • • • • • • • . • . • • • • • . • • .. 4.4 
ExclaiM-Ir: ". .•.......•......... 1.8 
'ItatiID. . . . . . . . . . . . . . . . . . . . • . . .. 2.7 
.dti .. II.ita, fir, ''ill, Ir •.... 1.9 
..pr ••• i .. l: lilt, ., ., 1, I ....... 2.1 2.2 
• .,ressi •........................ 5.10, 
E.,r.sslH EVUlltiH, Side Efftcu, IIMI .. 3. 11 
..,ussi ... r"rltll1 .•..•....•.. .; .... 1.12 
•• pnssilM. • •...•...•.......•.... 1.12 
Expressions. • ••••••••••••••••••••• 8. 33 
Expussions IS Statlll.nts. .•••.•.•.•.• 1.2 

(5) 1984-85 netsWare Incorporated 
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1111t C 
XlJ11 

Sttr ... _cllSslS Uti, 

stlfce 
_11"_00, _sti._cW, 

diu, I.t .. 
<lOEIII>, <OCTIl>, <lEX> .. 

<InEfll>, 
iatltra!, ..... 

Clftti.i .. a 
nt till • Iii tell, 

fIIcti. MUns "rSlS 
IItstH Flltetb ... 

ruillill ...... r If u ..... u tt • 
nl •. 

milt .t 

Pacal 

fulctl. IIMml "nil flll­
IIstid FIICtiIM .. FIll­

,ntlt". .. 1IOn-,ntet". 
fllctionali tJ t"" _ ,ntet". 

. flnctiouli tin. 

I'ICInl" 
IIIstllll 

COIttxt-frH 

.ts. il lnical 
<lnE(lI>.. <OCTM.>, 

<lnEIlI>, <fUll>, <CIItII), <OCT">, 
ICtal .. 
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IIaMl ,",. 
targ.t 1M 

Ex,fllsins; ? ;. • • • • • • • • . • • • . • • . • .• 8. ~ 
IXtlttft. flllti,,-,Iint prldsion ....... 7.12 
EXUlliNS ltaIIIelitH 11 till lIuUll In,. . ".l 
Eltnsiens tI C. _.................. •. z 
•• ter., rllbter, t".fI', static ..... 1.3 
External lecluatilfts. ............... I. 1 
Exteraa! .duatio.. . _ . . . . . . . . . . . . .. I. Z 
feI, t,;eft, ..... -. . . . . . . . . . . . . . .. l. 1 
fltAack. • •••••••••••••••.••••••. ~. 15 
fill •..•.•• _ .••.••..••....•.•.... 3.J 
fl. 1 •. _ •• _ • _ •••••••• _ • • • • . • • • • • •• 1.4 
fll. llClnl •..••.. _ . _ ...... Z.I 4.15 5.7 
filH. _ ••••••••••••••..••. _ . . • . •. Z.l 
_11IL~ .••.•••••••..•••.•.•.... 1.1 
ft .. _ciu, _ui,_c:Mr .. _fill_diu. . .... 1.7 

;1 .. t, .... 1., t ... -.... l.. .....•..... l.4 
ft .. t, ..... 1., ", •...•............ I.l 
<fLOII> ••••••• _ ••••• _ •••••••••••• 4.1 
<fUMI>, ~ , <OCT"), <lEX>, <STIIIG>. 1.31 
n •• ti.... ul _tie t"u. ........... 3.4 
nRti .. .,.ilt ,oost.. . ............ 7. 1Z 
fir, .il... .r .. rtltIIIIt .••........ 7. ,. 
fir, .U., Ir .. stltnllt. . ... 0 • 0 0 • •• 7o! 
fill-facti. .al... . .. 0 • • • • • • • • • • • • •• 1.5 
flll-F.cti .. Jutlilin. ............... 105 
ftIcti.. .......................... 1.24 
fIIct111 Mftns "rm flU-fIIct1ll ..... 11.5 
fIIcti. call. •••••••.••••••..•••..• 7.11 
filet!. all ........................•. 4 
Meti .. all r.U.iUt, ............... 1.1 
fIIcti. all Slllltia ............... 1.24 
Flleti. Call: () .•••....••.....••••. I.Z4 
FIICti. leftliti.s ................... 1.1 
f1ntcti. ntr,. ...................... 1.1 
fIIcti. ,unt ..... ir_t .......... 11.5 
flKtill ,flU,",S. .................. I. Z 
t.U. fIl •....................... 1.5 
FIICti. 'ui.llS .................... 1.5 
t.tilllllitin ....................... 3.5 
fIIct1l111litiH ................ 1.5 1.1 1.24 
flKtillllitJ __ ,"Ut", .. 1.5 1.1 1.24 
flRcUlIIlitJ t"a. .................. 3.5 
fIIct1 .. s. ......................... I. Z4 
FnctillS .. Fln-FIICtiIi 'arflblls. .... 1.5 
fwcti._~i.iti •......... 1.1 1.2 1.3 1.1 
,llNI ... llal 11 fttillS. ... . . . . . . . . .. l.1 
.. tn 1M tlllt1s ...................... 7.1 
Ir...u .......................... Z.1 2.2 
Gr ....... uti •...................... 2.2 
Ir..,s ............................ 5.5 
< lIE X> , <flOll>. •••••••••.•....•.•..•••• 1 
<IIEX>, <STIIIG>...................... 1.31 
.xlUdllll il Itri .. s .. cUracters. .... 4.1 
lilll C ExtlftSilfts hen."tH ill till ...... 1.3 
ust cnrlcttr Sit. ................... •. 1 

~ 1984-85 ttet8Uare Incorporated 



Index: High C - Language Reference Manua I page 1-8 

V. 11. 01. BS 

<l1E.TIFIER>. <TYPElEf _ .. >. •.••.•.••• 8.32 
<I1f1'lfIEI)s. ...................... 1.2! 
I_utllrs ............................. . 
if ................................. 7.' 

.... it. lit. IINII. IIIMII. "Uf. "lsi .... 5.lf' 
lit. IIfftf. IlfU1t. "llf. "lsi ..... if. 5.l~ 

lit. IlNet.. IIfHtf.. "Uf. "lSI.. ....if ...... 5.11 
Ilel ... l1li Eld..w Text. ..•. . . . . . • . .. • .• 

fil. IldlsiN. ...................... 2.1 •. 15 
ClMltillll Ildal.. . ........................ 5.1' 

fill IlCllSi.. .......................... 5.7 
11t-.isI IIClIs1"-er: I ....................... 1.7 

ilCllJI.u SUICtIrI Ir .. i. tJII ....... I .• 
iICIIIII.U tJfH ................... 1.5 1.5 

llferati. ila.uill ... ~ . . . . . . . . . . . . . . . . . . . . .. 1.11 
Prefix IlCrlMlt u4 Ita ... t: ~ .. --. ..... '.22 

Patfix IICr ... t 1M Ita ... t: •• 1M --. ..... '.23 
. iMt,....t ulISlati.. . ....... 2.7 3.11 3.7 

Irr., 1 .... 111: [ ]. ......•••..•......•... 1.15 
llferRU. llC1'lu1ll ................ 1.11 
illlnati. dlUu. ..•.............. 3.11 

laiti,Uz.rs" illtillizati.. . ..................... 1.7 
ilitilliz,u. ................ 1.11.1 I.n 

.. r ... tI ilitilliz,tiII. . .................. 1.2 1.3 
Ilitilllztn 1M ilidlllz,tiN .......... 1.1 
ilstllet If CllSulCti... .............. 3.1 au.. ilt .. n." "'11 .. Hi •.............. 1.1 

<IEX>.. <STIIIIG>. <II1E~I).. <fUI'>.. <c.>.. <OCTal>....... I. X 
<IITEClI>, <OCTal>, <lEX> .. <FLOII> ••••.•••. 1 
Ilutral lI1*Iill ClMrsillS. ......... 1. 1. 
ilutnl, fl"liII, uitllutic tJJlS ...... 1.' 
iltlnixill '-dar,ti.s 1M statlMlu. .. 7.1 
iltlnixill StitMIU 1M *clantilU. .. 1.3 
btriuics ........................... 1.7 
lUll .... SUICt ... 1 ... SJICIs. •• 1.1 
l .. ls .............................. 7.1 
L .. ls .••••••••••••••••. ~ •••••••.••• 1.1 
L ................................... 1.1 
ltIItil. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1.11 
L.dal "'ipit, ..................... Z.l 
l.xial III1JSis. • . • . . . • . . . . . . • . • • • .. .t.15 

1m 11 lexical ... .an ...................... 5.5 
Sptll. l.xical"fSIS ,..ru.-structur.. . . . . . . . .. Z. 1 

II.iCIII .••.••...•...•......•.•..•.. '.15 
Pr.,r.Clss.r" LuieN .............................•. 1 

c.-t COIUDI U.. LideN.............. • . . . . . . . . . . . . .. 5.1 
IIcrI .. fiatu. LlxiCII ............................. 5.' 

OtIItr CIIUIl Li.. L.xico.............. . . . . . . . . . . . . . .. 5.5 
L.x1c:ea "fIlS P~u.-Structllfl .......... 2.1 
liflti.s. . ......................... 1.( 

11MIl 1M local Ufttlus ........................... l.l 
lint blllduiH .......................•. ] 

\ U lilt CIIIURI,tlr. . . . . . . . . . . . . . . . . . . . .. 1.2 
CoUtnt Control Un Llxicon. ..•......•.............. 5.3 

OtIIIr CoItr.1 Ult L,xiCII. .........•.............. 5.5 

m. 1984-B5 ttetaWare Incorporated 
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Coatrol Uft' 'hrul Strlctlrl .................. 5.& 
Une SpUdRg. . ......•.....•......••.•. 2 

Clan.1 Lillis ............................... 5. Z 
CHUal U .. s: 'r"rlClssor COnlltds ............. 14 
static 11111t •••••.•••.•••••.••••.•••.•.••.. 1.5 

11.ill •••.•••.••••••...•......•.••• 2.1 
r",ln ..,rl$silU: Ust,·,·, 1, I, ................ 2.1 l.2 

...... r.tl.. literal ............................ 8.33 

...... Irati.. li urll' .. tJItI. :................... 1.4 
,1 .. 11.. 11C1l lifttilH ....................... 3.' 

1 .. .-11 ......................... ".2 
UjtctiHS sHrt, .d .... , 1 .. , d ............................ 1.3 

nllt, IMl., LIII-IMl •.......................... 3.4 
lttl ... rtal.. . ..................... 3.] 

;:: =tiitiii ·liiia.i: . :: : :: : : : : : : ::: ~:: 
ncr. ,..ears .. u ..... U .. 0 •••••••• 5.' 
.... r.,llCMIt. . ........ 2.' 4.15 5.11 5.' 
lllerts ...... 0 ••••••• 0 •••••• 0 •••••••• 5.' 

,uMftlrltss 1M JU_tlri_ IIaIS •.••.• o ••••••••••••••••••••••• 5.1 
'rMfl_ 1Icrts ... 0 •• 0 • • • • • • • • • • • • • • • • • • • • • •• 5.! 

Nip C Extlftsiens ~tId in U. l.ul..., ..•... ~ . . . . . . . . . . . . . . . . . .. 1.3 
_us, _Iii.. _IU. ..•••••...•••.•.........•..... 1.1 

..... r lI~t ......•............... 1.4 
lIMn .... r, fl,l •....................... 1.] 

Petlter ItrlftrlftCl" .... r Sellcti .. : -).................. •. ZI 
.... r S11.cti",: . •......•........•. '.27 
.... r-list. ... . . . . . . . . . . . . . . . . . . . . .. 3.5 

strlctln .r .1.. """rs ..... 0 ••••••••••••••••••••••• 1.4 
__ s.. _lin, __ . . . • . . . . . . . . . . . . . . . . . . . . . .. ".1 

... , lJIII, stir. clas ...........•... 1.1 
INn .... r, fi ..................... 1.] 
... , strICt-til, .IM-tII, ... -tel .. 3.1 
IMn IU.. nI... fa.. tJItIftf. . . . . . . .. 3.3 

.1tl,l1caU .. , ~1tis1.... ....1 •........................... o. •• 14 
_.w, ... _rilll, _CIIPI". •••..•••••. 1.7 

_.w, _ ... _rttlll, _a.,u •.............. : ... 1.7 
.1ti,liatill .. di'isi ........ 10 ........ 1.14 
IIltiJliatift o,.f.tars: • I t. ....... •. 14 

til .. 1111C1 •••••••••••••••.•••••••••••• I .• 
.. SIMIcts ••••••••••.••.•••••••••.•• 3.1 

erdiRUJ, til, 1.1, -.I strict ad .i. .... s,.:n ..•..............•..... 0 •• 3.1 
.... 'v_ttr .ssld,ulII ............. 1t.4 ,.s .............................. '.32 

JU_tlr •• , _ ~ .................... 1.5 I.' 
tJDI lilts a ,Vutters. .................. 1.5 

.... ti ............................. 1.18 
loti.... 'qati .. : I. 0.. . . . . . . . . . . . . . . . . . . . .. '.20 

"'ililies. 'estH FIICtiIl' -.I flll-FIIICtiOtl ....... 1.5 
"noti,. h' T",s ........................... 1.5 

ltI-fIllCU" IIff.ftillS. . ............. 1.7 
,retatypt" ftOI-,fotat". ftlctillllitiH ........... 3.5 

ltI_fllcti .. _dtfili ti... ............... 1.3 
loI_fatctill_HfillitiDIIs. . ....... 1.1 1.21.7 

GrIllllU ,.tati...... . . . . . . . . . . . . . . . . . . . . . . .. Z.2 

Y.11.01.B5 @) 1~4-8S ttetaUare Incorporated 
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type 
Thl 

m1.l • 

"flClns il 
size If 

1111111, l"as, II1II 
ciulCtlrs. 
<lllEGER>, 

<IIIEGEI>, <fLOII>, <CIIi>, 
c.luUNIf 

CIIII 
OMrri.iIt! 

r..a 

.. SJI(Is. 
11m, 

rllister 
tnt IMt$ U 

r"ister 
,.s1UMIl 

ilia. 
t.cti. 

rililt 

Cutr.l liM 
lIxiCli "rIUS 

lIdcal MrsUI 
si.- Ifftct, Sl4llKI 

.....-c:e 

.. tatill. ........................... l.5 

.. n Statuette ..................... 7.12 

... r If u ..... U tal tuaCUIi ....... 1.24 

.... rs ............................. 4.7 
""rs ............................. 1.1 .jact .............................. 3._ 
CltjecU ••.•.•...•.•.•....•.••.••••.• 3 .• 
ICtal, H •• dlll 11 strillS ............. 1 
<OCTIl>, <IIEX>, <FLOII>. •••••••••.••••• •. 7 
<OCT">, <lEX>, <STIIIG>. •.••••••••••• l.lI .r_ I",s. ...................... l. 15 
.,.r.ter. .......................... 3. I. 
.r.tar Prtcfttlcl: () .............. l.lI 
.... r.ter: ,. .. . . . . . . . . . . . . . . . . . . . . . .. 1.2 
",r.tars. .......................... ..! 
-,r.ten: • I ,. ................... I. ,. 
cter.ters: • 1M -. ................... I. 13 
.,.r.tera: - .. •. .................. I. 11 
",raten: « _ » .................. I.U 
,rller. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7.12 
Gnlri .. c.,uiSHS: < ) <. ).. . . . . . . .. I. 11 
.~illQ, til. 1.1, .. strICt _ .uN. 3.1 
OrililS, lefili .. hilts, _ SellIn. ..... 3.2 
OtIIIr CUtnl U.. LIIiCli. . . . . . . . . . . • •. 5.5 
GNrri.i .. cterater 'rec:ellHca: ( ) ...... 1.21 
hr_ter IsseciaUN .................. I .• 
,..._ur .. s 1M 'DIS ............ 1.5 1.1 
,..._ur tflllS .....•.....•..•..•....• l.r 
,u_teriza IIICRS ................... 5.1 
..... terlm 1M ..... teriztll IICI'IS. • •• 5. I 
Par_Un. . . . . . . . . . . . . . . . . . . . . . . . . .. 1.5 
,..._ten ........................... 1.5 
,..._ttrs. . . . . . . . . . . . . . . . . . . . . . . . . .. 1.5 
,..._ters ........................... 1.1 
,..._urs ........................... 1.4 
,..._tan .. U .... ts. . ............. 5.1 
,... .. t ... _if_to ... ~ ~ ........... 1.5 
....t If UI*-t. ................... 1.1 
Pascal .......•...................•.. 1.5 
Paw fIIcti. call SIIIIUCS •••••••••• 1.2. "'at StrllCtlrl. .. . . . . . . . . . . . . . . . . . .. 5.1 
"rUl-SUllCtlrl. . . . . . . . . . . . . . . . . . . . .. Z.1 
"rUl-strlCtln. . . . . . . . . . . . . . . . . . . .. •. 15 
"rue-strlCterl SJtltu ................ 2.1 
"ilt ........................... 1.3 1.23 
"i.t .... 7.12 7 .• 7.5 7.11.1 1.2. I .• 1.5 1.1 
,.ilter l1i ..... t. ................... I. 11 
,.ilttr _ ur., t".s ................ 1.5 
,.ilttr ari tlllltiC. .............. 8. 13 8.25 

->. ,.iAttr .. r.ftrna ....... r Sll.cti.:. 1.2' 
,.taur ler.fer.lCI: •. . . . . . . . . . . . . . .. I. 1~ 
reinter .Iferna: E.................. I. 11 
,.ilter tyPi. •••..••••...••.......•.• 3.5 

COIVlniOft of urQ$ to 
Evaluation, Sin Efftcts, .. SI",na 

v.11.01.85 

,.intars ................... 1.111.21 8.29 
hilu. E.,nssiea . . . . . . . . . . . . . . . . . .. l. 11 

@) 1984-65 HetaWare Incorporated 
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Ilodes. Orilins. Otfini,.. 

0.. 

OvIrrl.i.. o,trlur 
l.tI~ flllti .. -,.i.t 

.... is I 'rllr. I 'rllr.: tilt 

Cutr.l liltS: 

c.,nl tilll If I C 
UbItI is I 

.. ill 
Plbtll 

SIct1. 

StoI'lll_clustS .tI.. I.tln .. 
I. ... 

fuKtiOll call 
IICI'I 

lyllll, 

Ilodes.. Origins.. Defini ... Poinu.. _ 

Y.11.01.85 

'lilts. lid Sce,ts. • ........ ~ . . . . . . . .. 1. 2 
positional pal_ters ............ , ..... 1.4 
'lst11. IftCllltnt 1ft' Deerl"I't: •• and ..•. 21 
'r ........................... 1.17.11.3 
prllfllS CIlU .... cemntilll. Dlta. 1M •••••.• 
,rllAS frOll ~I. ____ • ____ •• _ • __ ••• _ 1.1 
,rlctdllcl. uslCiltiuit, in •• pr.ssilns. . 1. 12 
PrlClftlcl: (). .. _ ...• _ •. __ ......• 1.2' 
,rtdsi •. _ .••••• _ •• _ •..•.•..••.. _ 7. 12 
Prt*fiMti 1IIcr11. •••••••••••••••••• 5.' 
'nfl. IlIClllllllt ... Itantttt: •• _ --. I.ll 
,r.,rlClSstr. ..................... 2.1 
'r.,rtCIStIr. ....•................ 2.' 
'r.,rlClsslr eM l.xicea. .••••• . • • • . •• ..3 
',.,nasslr CllllMs. • •••••••••••••••. 1. 
,r"rKlSlIf CIIIufl .••••.•••..••..• 4.15 
' .... flClSSIf Ulns. • .••••••••.•••••• 5. 11 
'rllr.. • ••• __ . _ ••••• _ .•••...•• _. Z.7 
'rllr. I Prllr.: Ute '",rKlSser ...... Z.' 
'fllr. luati •.•..•.•.......•• _ .. Z.7 
'fllr. lnt ClMtti.s ...... _ ... _ . .. Z •• 
'rltr.: tH 'r.,roass.r. . ... _ . . . . . .. 2.' 
'r .... r~ Sit. • ••••••••••••••••••• _ 1. 1 
'fllllrt, Sits ••••••• _ •• _ •••• _ ••• _ •• 1.1 
,r.tet". ... ....,r.tet". . . . . . . . . . . . .. 1.5 
,ntl~ fIIcti_litil •............ 1.5 1.1 " 
,ntlt". fIKt1lHllt1n ............... '.Z4 
,r,utJIII$. . . . . . . . . . . . . . . . . . . . . . . . . .. I. Z 
PrIUt"". . . . . . . . . . . . . . . . . . . . . . . . . .. '.1 
r.tIaUn ......................... '.1' 
rllllS .......... , ................ 7.3 •. l 
nani" t.cti1lS. ................. '.24 
reafi.iti •.•.•.............•..•.... 5.' 
ItftrtICI: I ........................ '.17 
bflrtlClS. • . • . . • • • . . . . . • . . . . . . . . . . .. 1. 7 
ItflrtlClS. • • . • . • • . . . . • • . . • . . . . . . . . .. Z.I 
nPsttr ,.....tln. . ..............•. 5 1.1 
rlPstlr.. tnnef.. static. .............3 
r ... lu IIIIrtSsim:" list. - .... 1 •... Z.1 Z.2 
nU.iUt, .......................... I.' 
,..,llCMllt ............... Z.' 4. 15 5. 1. 5.' 
,..,llClfttllt tilt. . . . . . . . . . . . . . . . . . . . .. 5.' 
ns.r. "" ........................ Z.Z 
lise"" nr.s. ..................... •. 15 
"lilt If fIIcti", wl. .............. 7.11 
ntlr •............................ 7.11 
rl.ritilll .......................... 7.12 
dillt ,art If ud ..... t. . ............. '.3 
r,Il ....................... , ........ 3.3 
s.. lfltll ........................ 3.' 3.7 
s_ ,u11111.. . ...................... 3.7 
scalu .. IIInptl tflllS, ............. 3,5 
sapt 01 I_is ....................... 7.' 
SctJts .... , ................... , ..... 1.Z 
Slctila hftn.Cls .................... 2.' 

1m 1084-85 tlet8Uare Incorporated 
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,.ilttlr llraflrllCl _ lI .... r 

..... r 
CUSua1nu· .... 

Paw fIIct1. call 

si ..... fftct, 

Ex,rlSsi .. ('llIlti., $1111 (ffects, aU 
'SCIfI 

.auati. pr.,.rt, 
OIarlCUr 

tarllt lid .. st cUrlCUr 
lIclarati. 'r.rt, 

Extrass!. ENi .. ti., 
liar, 

IllljectiYlI dirt, _liiIM, 1 .. , 

Si .... -lat, IIsi~-I.t, 

iltlr.tiM 

ur., 

_fi_Uiar, 

lItiti 
til ... .. 

tq, label. .. stnICt .r lIIIi ... 

l".s ., 

UBI 
CellpMu 

contiBui.. I fir. 111111. or III 
In lull 

v.11.01.85 

Sellctil.: -). ...................... 1.21 
Sel.ctien: . . ...................... 1.21 
$I_tics ........................... l.5 
SlI.tiCS. ......................... 1.24 
SlJUlti COIIIilltill uaiU. . . . . . . . . . . .. 3.1r 
s ...... ,.ilt ................... 1.3 1.2~ 
S_ICI peilt. . ...................... . 

•• , .•.. 7.11 7.4 7.5 7.1 7.7 1.24 I .• 1.5 1.1 
Se,utICI ,.ilts. . . . . . . . . . . . . . . . . . . . .. 3. 1. 
se..,.as ........................... I.l 
$I_till CIIjtIICUH: ce. .. . . . . . . . . . .. • .• 
s..-UlllisjlKtill: II. ............. 1.5 
s.t. ............................... 1.1 
Set. . ...•..........................•. 1 
Sit. . ..............................•. 1 
Sits ................ ~ .............. 3.3 
nui .. lItclarltiMS. . . . .. . . . . . . . . . . . .. 3. 11 
Slaift .rlten: « .... » ............. '.12 
IMrl, _I ... , 1 .. , 11_ ......... 1.1 
_rtlli ............................. I.' 
si.-Iffect, ~ ,.ilt ......... 1.11.23 
si. IffIc:ts ...•....•.........•...... 1.2 
$1. Effects, ... s.na 'liIU. ...... 3. 1. 
sill ""atln: - .. + ••••••••••••••• 1.1' 
li_ ............................. '.3 
li_ ............................. 1.2 
Sl ..... Qu, lal .... -au .............. 3.4 
Si .... -I.t ...........................•. { 
st.--Ilt, lui"-bt. . ............. 3 .• 
Si .... -1.t ... si ..... l.t. st~l ... -Ilt ..•. 1 
Si_-LIII-I.t ...................... 5.1' 
Si_-LIII-lIt, "'stild-LIII-lit. ...... 3 .• 
SipH-L .. -I.t, .. IiCd-LIIt-ilit. ...... ..1 
st .... -.rt-I.t, In ...... rt-I.t ...... 3 .• 
si.ilu. ........................... 3. 11 
stlilar ~s. ................... 3.12 3.7 
sizi. . ............................. 1.13 
Iizi If .jett ....................... 3.4 
IIZHf ............................ 1.21 
IUHf, C ...................... 1.27 I.l! 
_ski,_c:Mr, _fill_cUr. ................ 1.7 
.ree filts. ...........•............ Z.7 
1fICI ..•••.•.••......•.........•...•. 11 
SJICI .•••••••••.•.....•..•...•.••... 1.4 
~s ••..•.••••••.••••••••••.•••••• 3.1 
SJICIS. ordinar, ...................... 3.1 
s,tcifiH lIclarltius ................. 1.2 
Sptcifi.d_*clarlti .............. 1.1 1.2 1.3 
Specifiers .......•................ 1.2 1.3 
s,ecifi.rs •.......................... 1.7 
$fed ti.rs. . . . . . . . . . . . . . . . . . . . . . .. 1.5 I. ~ 
$pliei .............................. 4.2 
Stlt.tt. .......................... 7. 1 
statl_t. ......................... 1. 18 
StltlMlt. ......................... 1. 12 

(g 1984-85 ttet8Ware Incorporated 
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exi tint I sui tell. fir. "n.. ar .. 
interllixing dtclultilfts 1M 

EI,rlsst.s IS 
I interRtxtnt .tI. 'Ittn. rllbtlr. t' .... f, 

Utlllltic, 
ltatic-,ritltt, 
static-i.,.n, 
static-i.rt, 

Static-,rilltt, static-.xptrt, 
static-pri9lte. 
static-private. 

static-i.,.rt.. static-u,.rt .. 
static-i1"rt, static-• ."rt, 

static-i.rt. 

..... , "", 
.teMtic 

.tllatic. ItatiC.. t"...f 

t"..f, static. 

<FUll>, <aMI>, <OCT">, <11K>, 

ICtal.. _MedII! i, 
IrdilUJ, tit. 1_1, aM 

lttaItltte 
Uditi ... , 
c:outalt 

HiU .. I 

l.xlcal "rsas ~ras.-stractlr. 

spaces. ordinar,. 

v.11.01.OS 

I trill 
bel .. 

Incl ...... hel ..... 
rlpllClftlftt 
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More ~'eedback, Please 
(After some use.) 

We would greatly appreciate your ideas regarding im­
provement of the language, its compiler, and its documen­
tation. Please take time to jot down your ideas on this page· 
(front and back) and on additional sheets as necessary as you 
use the software. Then, after you have some significant 
experience with the software, please mail the results to: 

MetaWare™ Incorporated 
412 Liberty Street 

Santa Cruz, CA 95060 

MetaWare may use or distribute any information you supply 
in any way it believes appropriate without incurring anyobli­
gation whatever. You may, of course, continue to use that 
information. If you wish a reply, please provide your name and 
address. Thank you in advance, The Authors. 

Page Comment 
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