
U NIB A SIC

USE R I S G U IDE

M i c r 0 era f t Cor p 0 rat ion

A S V E R S ION

6 8 0 - 0 2 00- 100

NOTICE

Micro Craft Corporation reserves the right to make improvements
in the product described in this manual at any time and without
notice.

DISCLAIMER OF ALL WARRANTIES AND LIABILITY -- --- ---
MICRO CRAFT CORPORATION MAKES NO WARRANTIES, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS MANUAL OR WITH RESPECT TO THE
SOFTWARE DESCRIBED IN THIS MANUAL, ITS QUALITY, PERFORMANCE,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. MICRO
CRAFT CORPORATION SOFTWARE IS SOLD OR LICENSED "AS IS." THE
ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE IS WITH THE BUYER.
SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWING THEIR PURCHASE, THE
BUYER (AND NOT MICRO CRAFT CORPORATION ITS DISTRIBUTOR, OR ITS
RETAILER) ASSUMES THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR, OR CORRECTION AND ANY INCIDENTAL OR CONSEQUENTIAL
DAMAGES. IN NO EVENT WILL MICRO CRAFT CORPORATION BE LIABLE FOR
DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING
FROM ANY DEFECT IN THE SOFTWARE, EVEN IF MICRO CRAFT CORPORATION
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES
DO NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR
LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE
LIMITATION OR EXCLUSTION MAY NOT APPLY TO YOU.

This manual is copyrighted. All rights are reserved. This docu­
ment may not, in whole or in part, be copied, photocopied, trans­
lated or reduced to any electronic medium or machine readable
form without prior consent, in writing, from Micro Craft Corpora­
tion.

Copyright 1983 by Micro Craft Corporation

Micro Craft Corporation
4747 Irving Blvd.
Dallas, Texas 75247
(214)630-2562

Additional copies of this manual

may be ordered from your DEALER

by using the MICRO CRAFT part number 680-0200-100.

Ask your DEALER also for a

free brochure with a complete list of all

Micro Craft manuals and products

MICRO CRAFT CORPORATION
Customer Support

4747 Irving
Dallas, Texas

Department
Blvd.

75247

Page i

UNIBASIC

page ii

Pg. 1
Pg. 3
Pg. 3
Pg. 4
Pg. 4
Pg. 5
Pg. 6

Pg. 7
Pg. 9
Pg. 9
Pg. 113
Pg. 11

Pg. 13
Pg. 15
Pg. 17

Pg. 19
Pg. 21
Pg. 22
Pg. 23
Pg. 23
Pg. 23
Pg. 25
Pg. 27
Pg. 28
Pg. 29

Pg. 33
Pg. 35
Pg. 36

Pg. A-I
Pg. B-1

Pg. X-I

UNIBASIC

Table of Contents

INTRODUCTION
SIMILARITIES TO APPLESOFT BASIC
REQUIREMENTS
HOW UNIBASIC IS SHIPPED
HOW TO USE THIS MANUAL
SYNTAX NOTATION
LEARNING MORE ABOUT BASIC

CHAPTER 1 - UNIBASIC ON THE DIMENSION 6Bf3f3f3 SYSTEM
HOW TO INITIALIZE UNIBASIC
HOW TO EXIT UNIBASIC
FILE NAMING CONVENTIONS
CATALOG

CHAPTER 2 - CONVERTING PROGRAMS TO UNIBASIC
MODE COMMAND
VARPTR FUNCTION

CHAPTER 3 - DISK FILE HANDLING
FILENAMES
PROGRAM FILE COMMANDS
DISK DATA FILES - SEQUENTIAL AND RANDOM ACCESS
SEQUENTIAL ACCESS

CREATING A SEQUENTIAL ACCESS FILE
ADDING DATA TO A SEQUENTIAL FILE

RANDOM ACCESS
CREATING A RANDOM ACCESS FILE
ACCESSING A RANDOM ACCESS FILE

CHAPTER 4 - UNIBASIC ASSEMBLY LANGUAGE SUBROUTINES
CALL STATEMENT
VARPTR FUNCTION

APPENDICES
TERMINOLOGY
BACK-UP PROCEDURE

INDEX

Page 1

I N T ROD U C T ION

INTRODUCTION

Page 2

INTRODUCTION

Page 3

We are Micro Craft Corporation, designers and manufacturers of the
the DIMENSION 68000, the first and only universal microcomputer availa­
ble today. To go with this powerful machine, we have commissioned the
design of a UNIVERSAL BASIC, UNIBASIC (TM). The version that has been
delivered with your machine is the AS Version, which has been designed
to be source code compatible with programs written in APPLESOFT (TM)
BASIC. UNIBASIC, AS Version, will run most APPLESOFT programs without
change, however UNIBASIC has some very powerful extensions. The purpose
of this manual is to explain the use of those extensions, and how to
make the most of them to unleash the power of your DIMENSION 68000.

Welcome to the realm of DIMENSION computing.

SIMILARITIES TO APPLESOFT BASIC

The UNIBASIC BASIC language interpreter, by Micro Craft Corporation, is
very similar to APPLESOFT (TM) BASIC, a product of Apple Computer, Inc.
UNIBASIC also includes most of the standard APPLESOFT peeks and pokes,
and it has some powerful extensions beyond the standard APPLESOFT. UNI­
UNIBASIC also allows peeks and pokes to absolute memory locations using
the APEEK and APOKE commands.

REQUIREMENTS

UNIBASIC requires:

256K of memory minimum:

60K for UNIBASIC
64K for graphics and text buffers
32K for CP/M-68K
Additional memory to run programs

I diskette drive

All Dimension 68000 systems are shipped from the factory with a mInImum
of 256K bytes of memory and 2 diskette drives, which meets the above
requirements.

INTRODUCTION

Page 4

HOW UNIBASIC IS SHIPPED

UNIBASIC is shipped
Corporation, bundled
system is purchased.

as a standard offering from Micro Craft
at no additional charge when a Dimension 68999

UNIBASIC resides on the "SYSTEM 1" diskette.

The Dimension 68000 system is shipped with a "SYSTEM 1" diskette and a
"SYSTEM 2" diskette. Micro Craft Corporation strongly advises the
customer to copy the "SYSTEM 1" and the "SYSTEM 2" diskettes onto
formatted blank diskettes, and then to operate off of the copies and
not the originals that were shipped with the system. The process of
making copies of valuable information on diskettes, etc., so as to
safeguard the original information is called "backing-up". For a
detailed discussion on making "back-ups", see "BACK-UP PROCEDURE" in
the appendix.

PLEASE, if you have not already made working copies of your distribu­
tion diskettes, DO IT NOW 11

HOW TO USE THIS MANUAL

The Micro Craft Corporation UNIBASIC USER'S GUIDE contains information
about UNIBASIC for the Dimension 68000 system. Also provided are chap­
ters on converting previously written programs to UNIBASIC, handling
disk files, and calling assembly language subroutines. Briefly:

This "Introduction" tells you about UNIBASIC and its special features,
your system requirements, the diskettes that you receive with your
Dimension 68000 system, and the conventions used in syntax notation. It
also lists additional sources of information about programming in
BASIC.

Chapter 1, UNIBASIC ON THE DIMENSION 68000 SYSTEM, tells you how to use
UNIBASIC and explains some of the features of UNIBASIC.

Chapter 2, CONVERTING PROGRAMS TO UNIBASIC, describes the minor
adjustments necessary to run BASIC programs in UNIBASIC.

Chapter 3, DISK FILE HANDLING, explains disk file handling procedures.
This chapter can be read as an overview or used for reference for disk
related operations while running UNIBASIC.

Chapter 4, UNIBASIC ASSEMBLY LANGUAGE SUBROUTINES, provides information
about calling assembly language subroutines.

INTRODUCTION

Page 5

SYNTAX NOTATION

The following notation is used throughout this manual in descriptions
of command and statement syntax:

[]

<)

{ }

CAPS

Square brackets indicate that the enclosed entry is
optional.

Angle brackets indicate user-entered data. When the
angle brackets enclose lowercase text, the user must
type in an entry defined by the text; for example,
<filename). When the angle brackets enclose uppercase
text, the user must press the key named by the text;
for example, <CR) for either the key marked 'Retrn' or
the key marked 'Enter'.

Braces indicate that the user has a choice between two
or more entries. At least one of the entries enclosed
in braces must be chosen unless the entries are also
enclosed in square brackets.

A vertical bar means "or": The material on the left
or right of the bar may be specified.

Ellipses indicate that an entry can be repeated as
many times as needed or desired.

Capital letters indicate portions of statements or
commands that must be entered, exactly as shown.

All other punctuation, such as commas, colons, slash marks, and equal
signs, must be entered, exactly as shown. Spaces, or blanks are
ignored, except as noted.

INTRODUCTION

?age 6

LEARNING MORE ABOUT BASIC

The manuals in this package provide complete referen~e information for
UNIBASIC. they do not, however, teach you to write programs in BASIC.
If you are new to BASIC or need help in learning to program, we suggest
that you read one of the following books:

Apple Computer, Inc. "APPLESOFT BASIC programming Reference Manual".
Cupertino, California: Apple Computer, Inc., 1978.

Lien, David A. "The BASIC Handbook, 2nd Edition". San Diego,
California: Compusoft Publishing, 1981.

Billings, Karen and Moursand, David. "Are You Computer Literate ?".
Beaverton, Oregon: Dilithium press, 1979.

Albrecht, Robert 1., Finkel, LeRoy, and Brown, Jerry. "BASIC". New
York: wiley Interscience, 2nd ed., 1978.

Coan, James. "Basic BASIC". Rochelle Park, N. J.: Hayden Book Company,
1978.

Dwyer, Thomas A. and Critchfield, Margot. "BASIC and the Personal
Computer". Reading, Mass.: Addison Wesley Publishing Company, 1978.

Simon, David E. "BASIC From the Ground Up". Rochelle Park, N.J.: Hayden
Book Company, 1978.

INTRODUCTION

Page 7

C HAP T E R 1

U NIB A SIC

o N THE DIM ENS ION 6 8 000 SYSTEM

CHAPTER 1

Page 8

::::HAPTER 1

Page 9

HOW TO RUN UNIBASIC

To run UNIBASIC on your Dimension system, enter the following command:

A> BASIC

The system will reply:

UniBasic Version AS-X.X (mm/dd/yy) Copyrighted YYYY by RD Software

Then the system will display the UNIBASIC prompt character

You can also specify a set of options in the command line. The syntax
is:

A> BASIC [<filename>]

where <filename> follows the file naming convention described later in
this chapter.

Notes: -The file naming convention for UNIBASIC is not the same as the
file naming convention for CP/M-68K.

-At least one single space, or blank, is required between BASIC
and "filename", as per the CP/M-68K commands convention. (See
the CP/M-68K (TM) USER'S GUIDE.)

If <filename> is present, UNIBASIC procedes as if a RUN <filename>
command were typed after initialization IS complete. this allows
UNIBASIC programs to be executed in batch mode using the CP/M-68K
SUBMIT facility.

HOW TO EXIT UNIBASIC

To exit UNIBASIC and return to the CP/M-68K operating system level,
enter the command:

:QUIT

which closes all files and then reloads CP/M-68K into memory without
deleting any existing programs or data (i.e. performs a "warm start").
Note that a <Control-C>, when executed within UNIBASIC, returns to the
UNIBASIC command level, not to CP/M-68K.

CHAPTER 1

Page 10

FILE NAMING CONVENTIONS

Filenames are a combination of the CP/M-68K and the APPLESOFT (TM)
naming conventions. All UNIBASIC filenames consist of three parts:

- The FILENAME

- The FILETYPE

- The DRIVE SPECIFICATION

The FILENAME consists of from one to eight characters. The first
character must be alphabetic. All of the rest of the characters may be
either alphabetic or numeric.

The FILETYPE consists of a period (.) followed by from one to three
characters. The characters may be either alphabetic or numeric.

The DRIVE SPECIFICATION consists of a comma (,), followed by a 0,
followed by either a 1, a 2, a 3, or a 4. The numbers 1, 2, 3, and 4
correspond to the drives A:, B:, C:, and D:. If no DRIVE
SPECIFICATION is included, the system will use the CP/M default drive.

As an example, the standard CP/M-68K filename B:TEST.DAT would be
TEST.DAT,D2 for UNIBASIC.

Under normal CP/M-68K conventions for compilers and interpreters, if no
period (.) appears in the filename and if the filename is less than 9
characters long, a default filetype extension would be appended to the
filename. If the filename is 9 characters long or more than 9 charac­
ters long, then the ninth and subsequent characters, up to a total of
three characters, become the filetype extension. UNIBASIC does NOT ap­
pend a default extension of .BAS to the LOAD <filename> command, to the
the SAVE <filename> command, and to the RUN <filename> command.

For more information on the CP/M conventions for assigning filenames
and assigning filetype extensions, see the CP/M-68K (TM) USER'S GUIDE.

CHAPTER 1

Page 11

CATALOG

UNIBASIC includes a CATALOG command, which displays the names of files
on the CP/M default disk or disk specified. A detailed discussion of
this command is described in the UNIBASIC REFERENCE MANUAL.

Syntax CATALOG [,Dx]

where x is the drive number desired (1, 2, 3, or
4), or IF NO drive is specified, then the CP/M-68K
default disk drive will be used.

HIGH RESOLUTION GRAPHICS

The high resolution graphics shape table starts at POKE address 4000
decimal. To load the shape table requires either using the SHLOAD com­
mand to load a shape table that already exists, or using the POKE com­
mand and POKEing the values into the table area in memory, one at a
time, until the table is loaded. To POKE in a shape table, start the
POKEs at address 4000 decimal. To save the table, use the SHSAVE com­
mand. The default shape table size is 500 bytes. To set a different
shape table size, use the SHSIZE command.

CHAPTER 1

Page 12

CHAPTER 1

Page 13

C HAP T E R 2

CON V E R TIN G PRO G RAM S T 0 UNIBASIC

CHAPTER 2

Page 14

CHAPTER 2

Page 15

This section in the manual is intended to show the differences between
APPLESOFT (TM) BASIC and UNIBASIC. To obtain information about the dif­
ferences between APPLESOFT (TM) BASIC and other BASICs, The reader is
advised to refer to the "APPLESOFT BASIC Programming Reference Manual",
published by APPLE COMPUTER, Inc.

MODE COMMAND

The Dimension 68000 system has some significant differences from the
APPLE in the area of the video display. The APPLE, in the HIRES
graphics mode has a total of 6 colors, while the Dimension has a total
of 16 colors. The MODE values and command sequences are:

o Initialize video to 80 columns by 24 lines.
MODE:fI:0: TEXT:

1 Reset ERROR FLAG to OFF

Note: If the ERROR FLAG is ON, then when an attempt is made to
plot a point outside of the screen window, an OUT OF RANGE
ERROR message is given and execution is terminated.

2 Set ERROR FLAG to ON

3 = Reset COLOR to OFF (Black & White ON)
LSB of COLOR Byte = 0 for BLACK & WHITE

MODE:fI:3 :

4 = SET COLOR to ON
LSB of COLOR Byte

MODE:fI:4 :
1 for COLOR

5 = Mixed Graphics and Text
TEXT 40 columns by 24 lines

MODE:fI:5: TEXT
GRAPHICS = 320 x 240 pixels

MODE:fI:5: HGR:

6 = Mixed Graphics and Text
TEXT = 40 columns by 48 lines

MODE:fI:6: TEXT:
GRAPHICS = 320 x 480 pixels

MODE:fI:6: HGR:

CHAPTER 2

)age 16

7 = Mixed Graphics and Text
TEXT = 813 columns by 24 lines

MODE#7: TEXT:
GRAPHICS = 6413 x 2413 pixels

MODE#7: HGR:

8 = Mixed Graphics and Text
TEXT = 813 columns by 48 lines

MODE#8: TEXT:
GRAPHICS = 6413 x 4813 pixels

MODE#8 : HGR:

9 = INTERNAL USE ONLY

1xx Mixed Graphics and Text
GRAPHICS = as chosen on the preselected Mixed page with

xx lines of text on the preselected Mixed page
where xx is 13 <= xx <= maximum number of lines

on the Mixed page.

The graphics area is de£ined as the equivalent space from the top of
the screen to the text line "n" (where "n" is defined to be the value
of "(maximum-1 ines - xx)". In other words, "n" is defau1 ted to 4 and
therefore in the 813 x 24 mode, the graphics portion is from line 1 to
line 213, (24 - 4 = 2(3), and text is lines 21 through 24.

Text can be PRINTed any where on the screen using the HTAB and VTAB
commands to define the starting point of the text to be printed. The
significance of the mixed mode print is the following:

1 - If the text is printed on a line inside of the graphics area, then
the inverse cursor will not be shown and the PRINTed text only will
show on the screen.

2 - If the text is PRINTed on a line inside of the text area, then the
normal inverse cursor will be shown.

3 - When the text PRINTed exceeds the bottom of the screen, then the
bottom "n" lines of text will be scrolled upward on the screen.

4 - Graphics can be plotted anywhere on the screen, even in the "text"
area.

Using the
lines in
graphics
line.

!HAPTER 2

last fact and setting the mode value xx to the number
the text mode (i.e. xx=24 in the 813 x 24 mode) allows

screen to scroll if a carriage return is printed on the

of
the

last

Page 17

PAGE COMMAND

To change high resolution graphics pages on the DIMENSION, use the PAGE
command. By issuing either a PAGE#l or a PAGE#2 command, the user can
select either page 1 of the high resolution graphics or page 2.

NF FUNCTION

The NF function is an extension to the standard APPLESOFT that allows
the determination of whether or not a file existed prior to the issu­
ance of an OPEN command. This can be very helpful as the system dupli­
cates APPLESOFT in that if the file does not exist, the file is then
created.

VARPTR FUNCTION

The DIMENSION 68000 has some significant extensions to the standard
APPLESOFT (TM) BASIC. The VARPTR function returns an integer whose val­
ue is the location, in memory, of the variable whose name was given as
the argument in the call to the VARPTR function. The VARPTR function is
discussed in Chapter 4 of this manual and in detail in the UNIBASIC
REFERENCE MANUAL.

CHAPTER 2

Page 18

CHAPTER 2

Page 19

C HAP T E R 3

DIS K F I L E HAN D LIN G

CHAPTER 3

Page 29

CHAPTER 3

Page 21

FILENAMES

UNIBASIC filenames are made up of a combination of the CP/M-G8K and the
APPLESOFT (TM) conventions. The filename consists of three parts;

- The FILENAME
- The FILETYPE
- The DRIVE SPECIFICATION

The FILENAME consists of from one to eight characters. The first
character must be alphabetic. All of the rest of the characters may be
either alphabetic or numeric.

The FILETYPE consists of a period (.) followed by from one to three
characters. The characters may be either alphabetic or numeric.

The DRIVE SPECIFICATION consists of a comma (,), followed by a D,
followed by either a 1, a 2, a 3'Lor a 4. The numbers 1, 2, 3, and 4
correspond to the drives A:, B:,'~:, and D:. If no DRIVE SPECIFICATION
is provided, then the CP/M-G8K default disk drive will be used.

As an example, the standard CP/M-G8K filename B:TEST.DAT
TEST.DAT,D2 for UNIBASIC.

would be

UNIBASIC operates under the CP/M-GaK operating system. CP/M forces all
FILENAMES to be a characters internally. If the FILENAME is less than a
characters, then CP/M pads the FILENAME out to 8 characters with
blanks. If the FILENAME is greater than 8 characters, then CP/M
assumes that the first a characters are the FILENAME. CP/M then inserts
a period (.) after the first a characters, and then treats the next
characters, up to 3 characters, as the FILETYPE.

CP/M assumes that there is always a FILETYPE. CP/M also ,assumes that
the FILETYPE is always 3 characters long. If the FILETYPE is less than
3 characters long, then CP/M pads the FILETYPE out to 3 characters with
blanks.

CHAPTER 3

Page 22

PROGRAM FILE COMMANDS

The following commands are used to manipulate program files. Each of
these commands is discussed in detail in the UNIBASIC REFERENCE MANUAL.

SAVE <filename>

LOAD <filename>

RUN <filename>

ALOAD <filename>

ASAVE <filename>

writes to disk the program that currently
resides in memory.

Loads the program from disk into memory.
LOAD always deletes the current contents of
memory and closes all files before LOADing.

Loads the program from disk into memory and
runs it. RUN deletes the current contents
of memory and closes all files before
loading the program.

Loads an ASCII text file as the program
from disk into memory. ALOAD always deletes
the current contents of memory and closes
all files before loading the program.

writes to disk, in ASCII text file format,
the program that currently resides in mem­
ory.

BLOAD <filename>[,A<addr>1 [,D<drive-number>1
Loads a binary file into memory from
disk <filename> specified. The file
loaded at address <addr>. If <addr> is
specified, then the address saved in
disk file that is the location that
file was saved from is used.

the
is

not
the
the

BRUN <filename> [,A<addr>1 [,D<drive-number>1
Loads a binary file into the same memory
locations from which the file was saved, or
if specified, into the address <addr>. Then
jumps to the file's first memory address
and begins to attempt to execute.

BSAVE <filename>,A<addr>,L<length>, [D<drive-number>1

CHAPTER 3

writes to disk, in binary file format, the
contents of memory at address <addr>, the
length of memory written <length> bytes, to
the disk file <filename>.

Page 23

DISK DATA FILES
SEQUENTIAL AND RANDOM ACCESS

Two types of disk data files can be created and accessed by a UNIBASIC
programi sequential access files and random access files. Both types of
files are described in the following sections.

SEQUENTIAL ACCESS

Sequential access data files are easier to create than are random
access data files, but they are limited in flexibility and speed when
it comes to accessing data. Data is written to a sequential file as
ASCII characters. These characters are stored, one after another
(sequentially), in the order that the characters are sent to the disk.
They are read back from the disk in the same way.

The statements and functions that are used with sequential files are:

OPEN
READ
WRITE
POSITION
PRINT
APPEND
CLOSE

See the UNIBASIC REFERENCE MANUAL for a more detailed discussion of
these commands.

CREATING A SEQUENTIAL ACCESS FILE

The following program steps are required to create a sequential file
and access the data in the file:

1. OPEN the file.

PRINT CHR$(4)i"OPEN DATA,Dl"

2. WRITE data to the file.

PRINT CHR$(4)i"WRITE DATA"
PRINT INFOI
PRINT INF02
PRINT INF03

CHAPTER 3

'age 24

3. To access the data in the file,
it to READ the data.

PRINT CHR$(4);"CLOSE DATA"
PRINT CHR$(4);"OPEN DATA"

you must CLOSE the file and reOPEN

4. Use the INPUT statement to read data from the sequential file into
the program.

PRINT CHR$(4);"READ DATA"
FOR I = I TO 3

INPUT X$(I)
NEXT I

Program I creates a sequential file, named "DATA," from information you
input at the keyboard.

PROGRAM 1 - CREATE A SEQUENTIAL DATA FILE (UNTESTED, REF. ONLY)

10 PRINT CHR$(4);"OPEN DATA.DAT,D1": REM CREATES & OPENS FILE
20 INPUT "NAME?";N$
30 IF N$="DONE" GOTO 90: REM USED TO END INPUT
40 INPUT "DEPARTMENT?";D$
50 INPUT "DATE HIRED?";H$
60 PRINT CHR$(4);"WRITE DATA.DAT": REM WRITE DATA TO FILE
70 PRINT N$,D$,H$
80 PRINT:GOTO 20
90 PRINT CHR$(4) ;"CLOSE":END
RUN
NAME?MICKEY MOUSE
DEPARTMENT? AUDIO-VISUAL AIDS
DATE HIRED? 01/12/72

NAME?SHERLOCK HOLMES
DEPARTMENT?RESEARCH
DATE HIRED? 12/03/78

NAME?EBENEEZER SCROOGE
DEPARTMENT?ACCOUNTING
DATE HIRED?04/27/78

NAME?SUPER MAN
DEPARTMENT?MAINTENANCE
DATE HIRED?08/16/78

NAME?etc.

~HAPTER 3

Page 25

Program 2 accesses and files "DATA" that was created in Program 1 and
displays the name of everyone hired in 1978.

PROGRAM 2 - ACCESSING A SEQUENTIAL FILE (UNTESTED, REF. ONLY)

10 PRINT CHR$(4);"OPEN DATA.DAT,D2": REM OPENS FILE
20 PRINT CHR$(4);"READ DATA.DAT": REM READS
30 INPUT N$,D$,H$: REM FILE
40 IF RIGHT$(H$,2)="78" THEN PRINT N$: REM TESTS DATE HIRED
50 GOTO 20
RUN
EBENEEZER SCROOGE
SUPER MAN
Input past end in 20
Ok

program 2 reads, sequentially, every item in the file. when all the
data has been read, line 20 causes an "Input past end" error. To avoid
getting this error, use the ONERR GOTO approach.

ADDING DATA TO A SEQUENTIAL FILE

Data can be added to an existing sequential access data file. It is
important, however, to follow carefully the procedure given below.

WARNING

If you have a sequential access data file residing on disk and later
want to add more data to the end of it, you must use the APPEND command
instead of the WRITE command.

CHAPTER 3

?age 26

The following procedure will add data to an existing sequential access
data file called "NAMES.OAT"

1. OPEN "NAMES.OAT"

2. APPEND the new information to the end of "NAMES.DAT"

3. Now the file, on the disk, called "NAMES.OAT" includes all the pre­
vious data plus the data you just added.

Program 3 illustrates this technique. It can be used to create or add
onto a file called "NAMES.DAT".

PROGRAM 3 - ADDING DATA TO A SEQUENTIAL FILE (UNTESTED, REF. ONLY)

10 ON ERR GO TO 2000
20 PRINT CHR$(4);"OPEN NAMES.OAT"
30 REM ADD NEW ENTRIES TO FILE
40 INPUT "NAME?";N$
50 IF N$="" GOTO 140
60 REM CARRIAGE RETURN EXITS INPUT LOOP
70 INPUT "AOORESS?";A$
80 INPUT "BIRTHOAY?";B$
90 PRINT CHR$(4);"APPEND NAMES.DAT"
100 PRINT N$
110 PRINT A$
120 PRINT B$
130 PRINT: GO TO 40
140 PRINT CHR$(4);"CLOSE"
150 END
2000 IF ERR = 53 AND ERL 20 THEN PRINT CHR$(4);"OPEN NAMES.OAT":GOTO

40
2020 ON ERR GOTO 0

The error handling routine in line.2000 traps a "File not found" error
in line 20. If this happens, the statements that copy the file are
skipped, and "NAMES.OAT" is created as if it were a new file.

CHAPTER 3

Page 27

RANDOM ACCESS

Creating and accessing random access data files requires more program
steps than for sequential aCCess files. However, there are advantages
too in using random access data files. The biggest advantage of using
random access data files is that data can be accessed randomly, i.e.,
anywhere on the disk - it is not necessary to read through all the
information, as with sequential access files. This is possible because
the information is stored and accessed in distinct units, called
records, and each record is numbered.

The statements and functions that are used with random access files
are:

OPEN
READ
WRITE
PRINT
CLOSE

See the UNIBASIC REFERENCE MANUAL for a detailed discussion of these
statements and functions.

CHAPTER 3

)age 28

CREATING A RANDOM ACCESS FILE

The following program steps are required to create a random access
file.

1. OPEN the file for random access. This example specifies a record
length of 32 bytes. If the record length is omitted, the file will
not be opened as a random access data file.

PRINT CHR$(4);"OPEN FILE.DAT,L32"

2. WRITE the data to the file.

FOR I 1 TO 41
PRINT CHR$(4);"WRITE FILE.DAT,R";I
PRINT DATA

NEXT I

In this example, I is used as the record number.

Program 4 writes information that is input at the terminal to a random
access data file.

PROGRAM 4 - CREATE A RANDOM ACCESS FILE (UNTESTED, REF. ONLY)

10 PRINT CHR$(4);"OPEN FILE.DAT,L32"
20 REM N$ = 20 CHAR, A$ = 4 CHAR, p$ 8 CHAR
30 INPUT "2-DIGIT CODE";CODE%
40 INPUT "NAME?";N$
50 INPUT "AMOUNT";AMT
60 INPUT "PHONE";TEL$: PRINT
70 REM DO CONVERTS
75 N$ LEFT$(N$+" ",20)
80 A$ = RIGHT$("0000"+STR$(AMT) ,4)
90 p$ = LEFT$(TEL$+" ",8)
100 PRINT CHR$(4) ;"WRITE FILE.DAT,R";CODE%
105 PRINT N$;A$;P$
110 GOTO 30

Each time lines 100 and 105 are executed, a record is written to the
file. The two-digit code that is input in line 30 becomes the record
number.

~HAPTER 3

Page 29

ACCESSING A RANDOM ACCESS FILE

The following steps are required to access a random access data file:

1. OPEN the file in random access mode.

PRINT CHR$(4);"OPEN FILE.DAT,L32"

2. READ the record.

PRINT CHR$(4) ;"READ FILE.DAT,R";CODE%
INPUT XX$

3. SEPARATE the string that was input into the various data fields.

N$ LEFT${XX$,20)
A$ MID${XX$,2l,4)
p$ MID${XX$,25,8)

program 5 accesses the random access data file "FILE.DAT" that was
created in Program 4. When the two-digit code set up in Program 4 is
input, the information associated with that code is read from the file
and displayed, hence "RANDOM ACCESS".

PROGRAM 5 - ACCESS A RANDOM FILE (UNTESTED, REF. ONLY)

10 PRINT CHR$(4) ;"OPEN FILE.DAT,L32"
20 REM N$ = 20 CHAR, A$ = 4 CHAR, p$ = 8 CHAR
30 INPUT "2-DIGIT CODE?";CODE%
40 PRINT CHR$(4) ;"READ FILE.DAT,R";CODE%:INPUT XX$
45 N$ = LEFT${XX$,20) :A$ = MID${XX$,21,4):P$ = MID${XX$,25,8)
50 PRINT N$
55 AMT = INT{VAL{A$»: ANT = (VAL{A$)-AMT)*100
56 AN$ = RIGHT${"00"+STR${ANT) ,2):AM$ = RIGHT${"0000"+STR${AMT) ,4)
60 PRINT "$";AM$;".";AN$
70 PRINT P$:PRINT
80 GOTO 30

CHAPTER 3

Page 30

Program 6 is an inventory program that illustrates random file access.
In this program, the record number is used as the part number. It is
assumed that the inventory will contain no more than 100 different part
numbers.

Lines 900-960 initialize the data file by writing CHR$(255) as the
first character of each record. This is used later (line 270and line
500) to determine whether an entry already exists for that part number.

Lines 140-210 display the different inventory functions that the
program performs. When you type in the desired function number, line
230 branches to the appropriate subroutine.

PROGRAM 6 - INVENTORY (UNTESTED, REF. ONLY)

120 PRINT CHR$(4);"OPEN INVEN.DAT, L39"
130 REM F$ - 1, 0$ - 30, Q$ - 5, R$ - 5, p$ - 6
140 PRINT:PRINT"FUNCTIONS:":PRINT
150 PRINT"l INITIALIZE FILE"
160 PRINT"2 CREATE A NEW ENTRY"
170 PRINT"3 DISPLAY INVENTORY FOR ONE PART"
180 PRINT"4 ADD TO STOCK"
190 PRINT"5 SUBTRACT FROM STOCK"
200 PRINT"6 DISPLAY ALL ITEMS BELOW REORDER LEVEL"
210 PRINT:PRINT:INPUT"FUNCTION?";FUNCTION
220 IF (FUNCTION<l) OR (FUNCTION>6) THEN PRINT "BAD FUNCTION NUMBER":

GOTO 140
230 ON FUNCTION GOSUB 900,250,390,480,560,680
240 GOTO 210
250 REM BUILD NEW ENTRY
260 GOSUB 840
270 IF ASC(F$)<>255 THEN INPUT "OVERWRITE?";A$:IF A$<>"Y" THEN RETURN
280 F$ = CHR$(0)
290 INPUT "DESCRIPTION?";DESC$
300 D$ = DESC$
310 INPUT "QUANTITY IN STOCK?";Q%
320 Q$ = LEFT$ (" "+STR$ (Q%) ,5)
330 INPUT "REORDER LEVEL?";R%
340 R$ = LEFT$(" "+STR$(R%) ,5)
350 INPUT "UNIT PRICE?";P
355 PA = INT(P + .5): PB = INT((P - PAl * 100 + .5)
360 p$ = RIGHT$ (" "+STR$ (PA) ,3) +". "+RIGHT$ ("00"+STR$ (PB) ,2)
370 GOSUB 970: REM PUT IT IN FILE
380 RETURN

CHAPTER 3

390 REM DISPLAY ENTRY
400 GOSUB 840
410 IF ASC(F$) = 255 THEN PRINT "NULL ENTRY": RETURN
420 PRINT "PART NUMBER ";p$
430 PRINT D$
440 PRINT "QUANTITY ON HAND ";Q$
450 PRINT "REORDER LEVEL ";R$
460 PRINT "UNIT PRICE $";p$
470 RETURN
480 REM ADD TO STOCK
490 GOSUB 840
500 IF ASC(F$)=255 THEN PRINT "NULL ENTRY": RETURN
510 PRINT D$: INPUT "QUANTITY TO ADD?";A%
520 Q% = INT(VAL(Q$» + A%
530 Q$ = LEFT$(" "+STR$(Q%) ,5)
540 GOSUB 970: REM PUT IT IN THE FILE
550 RETURN
560 REM REMOVE FROM STOCK
570 GOSUB 840
580 IF ASC(F$)=255 THEN PRINT "NULL ENTRY": RETURN
590 PRINT D$
600 INPUT "QUANTITY TO SUBTRACT?";S%
610 Q% = INT(VAL(Q$»

Page 31

620 IF (Q%-S%)<0 THEN PRINT "ONLY ";Q%;" IN STOCK": GOTO 600
630 Q% = Q% - S%
635 R% = INT(VAL(R$»
640 IF Q%<R% THEN PRINT "QUANTITY NOW ";Q%;" REORDER LEVEL ";R%
650 Q$ = LEFT$(" "+STR$(Q%) ,5)
660 GOSUN 970: REM PUT IT IN FILE
670 RETURN
680 REM DISPLAY ITEMS BELOW REORDER LEVEL
690 FOR I = 1 TO 100
710 GOSUB 1040: REM GET IT FROM FILE
715 Q% = INT(VAL(Q$»: R% = INT(VAL(R$»
720 IF Q%<R% THEN PRINT D$;" QUANTITY ";Q%;" REORDER LEVEL ";R%
730 NEXT I
740 RETURN
840 INPUT "PART NUMBER?";PART%
850 IF (PART%<l) OR (PART%>100) THEN PRINT "BAD PART NUMBER":GOTO 840
855 GOSUB 1040: RETURN
890 END
900 REM INITIALIZE FILE
910 INPUT ~ARE YOU SURE?";B$:IF B$<>"Y" THEN RETURN
920 F$ = CHR$(255)
930 FOR I = 1 TO 100
940 GOSUB 970: REM PUT IT IN FILE
950 NEXT I
960 RETURN

CHAPTER 3

~age 32

97~ REM WRITE TO FILE
980 F$=LEFT${F$+" ",1)
99~ D$=LEFT${D$+" ",3~)
l~~~ Q$ = LEFT${Q$+" ",5): R$ = LEFT${R$+" ",5)
l~l~ p$ = LEFT${P$+" ",6)
1~2~ PRINT CHR$(4);"WRITE INVEN.DAT,R";PART%:PRINT F$;D$;Q$;R$;P$
1~3~ RETURN
1~4~ REM READ FROM FILE
1~5~ PRINT CHR$(4);"READ INVEN.DAT,R";PART%:INPUT XX$
1~6~ F$ = LEFT${XX$,l): D$ = MID${XX$,2,30)
1~7~ Q$ = MID${XX$,32,5): R$ = MID${XX$,34,5)
1~8~ p$ = MID${XX$,36,6)
1~9~ RETURN
ll~~ END

CHAPTER 3

Page 33

C HAP T E R 4

U NIB A SIC

ASSEMBLY LAN G U AGE SUB R 0 UTI N E S

CHAPTER 4

Page 34

CHAPTER 4

Page 35

UNIBASIC provides interfacing with assembly language programs with the
CALL statement and the CALL function.

CALL STATEMENT

Assembly language subroutine calls can be made with the call statement.
The syntax is:

CALL <address> [(<argument list>)]

where <address>

<argument list>

an arithmetic expression whose value is the lo­
cation in memory of the assembly language sub­
routine that is to be accessed.
a list of arguments, or variables, whose val­
ues are to be available to the assembly lan­
guage sub-routine.

The argument list, if used, can contain up to 15 arguments. Each argu­
ment is a 32 bit double integer. Addresses, data, and arguments can be
arithmetic expressions. Arguments are written into the D0 - 07 and A0 -
A6 registers respectively.

When CALL is used as a function, the value shall be returned in the 00
register.

CHAPTER 4

>age 36

VARPTR

UNIBASIC includes a VARPTR function, which returns a signed integer
whose value is the address of the first byte of the data identified by
the named <variable>. A detailed discussion of the function is describ­
ed in the UNIBASIC REFERENCE MANUAL.

Syntax

CHAPTER 4

VARPTR «variable»

where <variable> is the name of a numeric variable, a string
variable, or an array variable.

Page A-I

A P PEN 0 I X A

T E R MIN 0 LOG Y

TERMINOLOGY

page A-2

TERMINOLOGY

Page A-3

TERMINOLOGY

ALPHANUMERIC. Characters which consist of letters and/or digits.

APPLEDOS. Apple Disc Operating System: The disk operating system used
in Apple computers.

APPLICATIONS PROGRAM. Programs, or software, designed for word­
processing, games, education, horne-finance, and other practical uses.

ASCII. A contraction for the "American Standard Code for Information
Interchange. This standard defines the codes for a character set to be
used for information interchange. It is used to store characters in
memory and to transmit them to peripheral devices such as printers and
other computers.

BACKUP. A copy of a file that can be used in the event that the ori­
ginal is lost or damaged, or used instead of the original to protect
the original.

BASIC. A contraction for the "Beginner's All-purpose Instruction Code.
It is a computer language that is easy to learn and use. BASIC is wide­
ly used with microcomputers. BASIC was developed at Dartmouth College
with the assistance of General Electric.

BINARY. A characteristic, property, or condition in which there are but
two possible alternatives. The binary number system using 2 as its base
or radix, uses only the digits zero (0) and (1). Most computers store
numbers in binary format.

BIT. A binary digit, either 0 or 1. The most basic unit of memory in
a binary computer.

BIT MAPPED I/O. A technique whereby bits in memory are used to con-
trol the Input/Output.

BOOT. To ready a computer for use by loading the disk operating sys­
tem into the computer's temporary memory, or RAM. The term derives from
the idea that the "bootable" program loads itself into the system by
it's own bootstraps.

BYTE.
tity.
ber.

A group of eight adjacent bits that are treated as a single en­
A byte may be used to store a single character or a binary num-

CHAINING. The process where one program causes another program to ex­
ecute when it finishes. The first program is said to "chain" to the se­
cond if it transfers control to the next program and it keeps the vari­
ables from the first program intact.

CHARACTER. A string of bits (a byte) which represents a symbol that can
be displayed on a screen or printed.

TERMINOLOGY

)age A-4

CHARACTER COORDINATES. The position on the screen denoted by a line
number and a character position within that line. The standard Dimen­
sion screen consists of 80 columns of characters by 24 lines of charac­
ters. See SCREEN COORDINATES.

CHARACTER SET.
computer. The
Characters 0-127
special symbols.

All the characters that can be used with a particular
Dimension character set consists of 256 characters.

are the ASCII character set. The other 128 are

CHIP. An integrated circuit made by etching myriads of transistors
and other electronic components onto a wafer of Silicon a fraction of
an inch on a side.

COMMAND. An order to the computer to execute a task.

COMPILER. A computer program that translates a computer language such
as BASIC to a form known as machine language, which is a form that can
be interpreted or executed directly by a computer.

CONTINUOUS FORMS. Sheets of perforated paper with sprocket holes on
the side that can be fed into a printer continuously rather than one
sheet at a time. (Usually Fan-Folded)

CONTROL KEY. Key that executes commands, in conjunction with other
keys pressed simultaneously.

COPY. To duplicate a file or program in order to retain the original
and work on the duplicate. Usually refers to duplicating one disk to
another. Also see BACKUP.

COpy PROTECT.
copied.

A technique which prevents a diskette from being

CP/M. Control program for Microprocessors, developed by Gary Kildall
of the Digital Research Corp. The disk operating system that has become
an industry standard for business-oriented personal computers.

CPU (Central Processing unit). The chip that directs the flow of
information within the computer and does the actual computing. Also
frequently used to refer to the physical part of the computer that
contains the CPU chip and other ancillary hardware.

CRASH. Abrupt computer failure.

CRT. The Cathode Ray Tube in a television set or video display
monitor.

CURSOR. A small rectangle of light which marks the input position on
the screen.

DATA. Information that a computer processes.

TERMINOLOGY

page A-5

DATABASE. A collection of related data, such as in inventory or a
collection of names on a mailing list.

DEFAULT. A preset system parameter value that will be used unless it
is changed.

DISK DRIVE. A device that uses a rotating platter or disk to store
data and programs.

DISK OPERATING SYSTEM (DOS). The program that instructs the
computer's CPU how to transfer information to and from a disk.

DISKETTE. A low-cost sheet of magnetic material enclosed in an enve­
lope. A diskette can be put into a disk drive and used to store data.

DISPLAY. The information on a video screen.

DOCUMENTATION. Written instructions that tell you how to use computer
hardware or software.

DOT MATRIX. A technique whereby characters are defined as a two­
dimensional array of dots.

DOUBLE DENSITY. A way of putting information on a disk that allows
the disk to store twice as much data as a single-density disk.

EDITOR. A computer program that can be used to enter and change data
on the screen.

ENHANCEMENT. Improvement.

EXCLUSIVE-OR. A Boolean operation that is true(l) if either, but not
both, of its inputs are true (1). Otherwise, the result is false (0).

FILE. A set of records stored on a device such as a diskette or tape.

FIRMWARE. A program stored in the computer's permanent memory, or
ROM. Since such a program doesn't have to be re-entered every time
the computer is turned on, it is "harder" than software.

FLOPPY DISK.
data.

A small, flexible sheet of magnetic media used to store

FONT. A set of characters.

FORMATTED DISK. A diskette that has been initialized with timing
information so that it can be read and written by a computer.

FRIENDLINESS. How easy a program or computer is to work with. A
"user friendly" program is one that takes little time to learn, or
that offers on-screen prompts, or that protects the user from making
disastrous mistakes.

TERMINOLOGY

Page A-6

GRAPHICS. Visual information constructed using objects such as lines,
circles, and rectangles.

GRAPHICS LANGUAGE. A set of commands that are used to describe how
graphics images are to be drawn.

GRAPHICS PRINTER.
the printed page.
pixel elements.

A printer capable of transferring graphics data to
Most graphics printers print dots to represent the

HALF ADDER. A circuit that sums two binary (0 or 1) inputs.

HARD COPY. Text or other work printed on paper by a printer. Same as
print-out.

HARD DISK. A rigid disk used to store information. Hard disks can
store far more information than floppy disks and can write and read
information more quickly.

HARDWARE. The physical parts of a computer system as opposed to the
programs, or software.

HIGH-LEVEL LANGUAGE. A programming language such as BASIC, written in
a kind of English shorthand rather than in numbers and symbols.

IMAGE FILE. A file on a diskette or other media that contains the
bits that comprise a graphics image. If this file is read into the
area of memory that is mapped to the screen, the image is displayed.

INITIALIZE. To reset the computer and its peripherals to a starting
state before beginning a task. Done automatically by the disk
operating system.

INTERFACE. A communication path between a computer and peripheral
devices such as printers and disk drives.

INTERFACE CARD. A printed circuit card providing the control logic
needed for communication between the computer and an external device.

INPUT/OUTPUT (I/O). An input device such as a keyboard feeds
information into the computer. An output device such as a printer or
monitor takes information from the computer and turns it into usable
form. Modems, cassettes, and disks work in both directions, so they
are I/O devices. Input and output are also used as verbs: You input
data from the keyboard.

I/O SLOT.
computer.

The location where an interface card plugs into the

K. One kilobyte, or 1,024 bytes of memory.

TERMINOLOGY

Page A-7

LINKAGE. The establishing of a communication path between programs or
parts of programs.

LITERAL. A string of characters within quotes, i.e., "LITERAL".

LOAD. To enter a program into the computer from cartridge, cassette,
or disk.

MEMORY. An area inside the computer where data such as numbers,
characters, and program instructions are stored. A computer's memory
capacty is measured in units known as K's. One K is equal to 1024
bytes of memory.

MENU. A list of options displayed on the screen. The options can
usually be selected by typing a single letter or number.

MICROPROCESSOR. Another name for the CPU chip.

MODEM. Short for modulator-demodulator--a piece of equipment that
links two computers over a telephone line.

MONITOR. A supervisory program that controls the sequencing of other
activities. Video device; quality of display is better than that of a
television set's.

MS-DOS. A disk operating system developed by MicroSoft. Used in
modified form by the IBM Personal Computer, under the designation PC­
DOS, and now used in a number of other computers as well.

ON-LINE. An I/O device is on-line if it is attached to the computer
via an active interface. Otherwise, it is off-line.

OPEN (FILE). Before a file can be read or written, the program must
locate the file and open it.

OPERATING SYSTEM. Programs, such as monitors and compilers, that
enable you to use a computer.

OVERLAY.
memory is
needed.

A technique whereby a program that is too large to fit
divided into segments that are loaded only as they

in
are

PAGE. The basic unit of a file.
either text or graphics.

Each page is one screen of data--

PARALLEL INTERFACE. A port that sends or receives the eight bits in
each byte all at one time. Many printers likely to be used in homes
use a parallel interface to connect to the computer.

TERMINOLOGY

Page A-a

PARSE. A procedure or technique used to separate a group or groups of
characters (i.e. letters, words, or numbers) from a line of text so
that the groups or phrases may be used in later processing.

PASCAL. A general-purpose computer language that is easy to
understand and to use.

PC-DOS. IBM's name for the disk operating system used in the IBM
Personal Computer. Similar to MS-DOS.

PERIPHERALS. Accessory parts of a computer system not considered
essential to its operation. Printers and modems are peripherals.

PIXEL. A picture element. Each pixel defines one dot on the screen.

PORT. The gateway that connects the computer to its outside world.

POWERFUL. Usually refers either to a computer with a lot of memory or
a lot of processing speed (a DIMENSION 68000 computer with 256K RAM is
"powerful") or to a program with unusual versatility (a spreadsheet is
a "powerful" business tool).

PRINT CONTROL CHARACTERS. Character codes that are not printed on
paper. Instead, they are used to cause a printer action such as move
to the top of the next page or to skip a line.

PRINTER. Transforms computer's output into hard copy.

PRINTOUT. See HARD COPY.

PROGRAM. A sequence of instructions written in a computer language
such as BASIC that controls what a computer does.

PROGRAMMABLE KEY. Another term for user or program defined key.

PROMPT. An on-screen hint to the user about what to do next.

RAM. Random Access Memory: "Temporary" memory on chips.
store data in RAM or take data from RAM at very high rates of
It's temporary, or volatile, because information stored
disappears when the computer is switched off.

You can
speed.
in it

READ.
disk.

To extract data from a computer's memory or from.a tape or

RESET. See INITIALIZE.

ROM. Read Only Memory: "Permanent" memory on chips. You can read
permanently stored programs from ROM but cannot store information in
it. It's permanent memory because the information stored in ROM
remains there when you turn the computer off. (Also called firmware)

TERMINOLOGY

Page A-9

SAVE.
disk.

A command to the computer to store completed work on tape or

SCREEN COORDINATES. The x,y location of pixel elements on the screen.
The Dimension high-resolution screen consists of 640 rows. Each row
contains 480 pixels.

SCROLL. To move a video display up or down, line by line, or row by
row, character by character.

SEGMENTATION. The process of dividing a program into pieces that can
be overlayed in memory.

SERIAL INTERFACE. A port that sends or receives the eight bits in
each byte one by one, much like beads on a string. Printers that will
be located far from the computer usually require a serial interface.

SOFT-FUNCTION KEY. See USER-DEFINED KEY.

SOFTWARE. Another name for programs.

SPECIAL-FUNCTION KEY. Usually understood to mean the CONTROL, SHIFT,
ESCAPE, ALTERNATE, or PRINT SCREEN keys.

STORAGE. Usually refers to long-term storage, such as storage of
files on tape or disk.

SUPPORT. Help available from computer and software merchants. Also
used as a verb to describe what things are compatible with each other,
as in: "with a Z-80 card, the DIMENSION 68000 will support CP/M-80 and
TRS-80 software."

TRSDOS. TRS Disk Operating System: The disk operating system used in
Tandy Radio Shack's personal computers.

TYPE-AHEAD BUFFER. A set of memory locations that is used to store
characters as they are typed. The program may accept these characters
from the buffer at a slower rate than they are typed. A type-ahead
buffer is used so that if characters are being typed faster than the
program can accept them, they are not lost.

USER-DEFINED KEY. A key whose function you or a program can change,
so that a command or sequence of commands can be exected with a single
keystroke. Same as programmable key and soft-function key. Unlike a
special-function key, a user-defined key may have a predefined
purpose.

UTILILTY PROGRAM.
operations such
files.

A program that can
as formattiing and copying

be used for basic file
diskettes and printing

TERMINOLOGY

page A-10

VOLUME. A device capable of storing one or more files. Each diskette
has a volume name that identifies it. Devices such as printers and
disk drives sometimes are specified by a volume number.

WINCHESTER DRIVE. A form of hard disk permanently sealed into a case.

WRITE. To enter information into memory or onto a tape or disk.

WRITE-PROTECT. Any technique that prevents a diskette or tape from
being written on. The write-protect notch is located on the right
side of a 5 and 1/4 inch diskette. If this notch is covered with a
piece of tape, data on the diskette cannot be written over because the
write electronics are prevented from doing so by a sensor that senses
the absense of an open notch.

TERMINOLOGY

Page B-1

A P PEN 0 I X B

B A C K - U P PRO CEO U R E

BACK-UP PROCEDURE

Page B-2

BACK-UP PROCEDURE

Page B-3

BACK-UP PROCEDURE

The DIMENSION 68000 System is shipped with two diskettes, the diskettes
are labeled "SYSTEM I" and "SYSTEM 2". It is STRONGLY recommended that
you make copies of these diskettes, and 'then operate off of the copies.
This protects the originals. If anything should happen to the copies,
new copies can be made, as the originals are intact. The process of
making copies of any important diskettes, so as to protect them from
damage, etc., is called "making back-ups" or "backing up".

To BACK-UP the "SYSTEM 1" and "SYSTEM 2" diskettes, perform the follow­
ing steps:

1 - TURN ON the POWER

2 - INSERT the "SYSTEM 1" diskette into DISK DRIVE A:

3 - INSERT a BLANK, UNFORMATTED DISKETTE into DISK DRIVE B:

4 - When the CP/M prompt (A>) appears at the left side of the screen,
type in the following command:

A>format<CR>

where <CR> means the "Retrn" key or the "Enter" key. Both of these
keys cause the ASCII carriage return code to be
generated.

5 - The format program will then display the DIMENSION 68000 FORMAT
,program select menu, which looks something like the following:

Micro Craft DIMENSION 68000 Disk Formatting Program
****** 5 1/4 Inch Drives ******
A Micro Craft Standard 40 track
B Micro Craft Standard 80 track
C IBM-PC Single and Double Sided
D TRS-80 Model, III
E KayPro
F Cromeco Single Density
G Osborne Single Density
****** 8 Inch Drives ******
H = 8 Inch 3740 Format, Single Density, Single Sided
I = 8 Inch TRS-16, Double Density, Double Sided
Select Type

6 - PRESS the A Key.

The format program will then ask the following

Which drive to use? (a-h)

BACK-UP PROCEDURE

Page B-4

7 - PRESS the B Key.

The format program will next ask the following:

Do you wish (F) ormat, (T) est, (D) ump, (P) r int

8 - PRESS the F Key.

The format program will then display the following, message.

Starting format

After the above message is displayed, the red indicator light on
disk drive B will turn on and disk drive B will make noise as the
disk head is positioned. The disk drive will make noises every time
it repositions the disk head for another track on the disk. Format­
ting the disk takes about 62 seconds. When the disk has been for­
matted, the disk is then tested. The format program will display
the following message:

Starting test

After the above message is displayed, the format program tests the
formatted diskette by attempting to read what was written on each
track of the diskette. In this fashion, each track of the diskette
is verified. If the format program cannot verify any part of the
diskette, an error message is displayed. The error message will i­
dentify specifically the disk head, the disk track, and the disk
sector where the error occurred.

Do not attempt to use a disk that fails this test.

9 - When the format program has finished, the format program will th~n
ask the following:

Another function (y) or return to cpm (n)

PRESS the Y key.

10- REMOVE the diskette that has just been formatted from disk drive B
and put it aside to be used later.

INSERT another BLANK, UNFORMATTED DISKETTE into DISK DRIVE B:

11- The format program will again display the DIMENSION 68000 FORMAT
program select menu, as in step 5.

12- PRESS the A Key, as in Step 6.

13- PRESS the B Key, as in Step 7.

BACK-UP PROCEDURE

Page B-5

14- PRESS the F Key, as in Step 8.

15- When this diskette has been formatted, the format program will a­
gain ask:

Another function (y) or return to cpm (n)

PRESS the N key

16- The format program will display the CP/M prompt (A>). ENTER the
following command:

A>COPy all a b [v]

This command will load the CP/M-68K DISK COpy program and instruct
the copy program to copy the contents of the diskette in disk drive
A onto the diskette in disk drive B and to verify that the informa­
tion is copied correctly.

17- After the above command has been entered, the format program will
display the following message:

(AC to ABORT)
RETURN to copy ALL from A to B

BACK-UP PROCEDURE

Page B-6

18- PRESS the <CR) Key

This will start the copying process.
display the following message:

*** COPYING TRACKS ***

The format program will then

As each diskette track is copied, the format program will display
the number of the track that it is copying on the next line. So,
that when the format program is copying track 5, the format program
will be displaying the following message:

*** COPYING TRACKS ***

o
1
2
3
4
5

When the last track has been copied, the format program will
display the following message:

disk full
A>

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

BACK-UP PROCEDURE

Paqe B-7

19- MAKE a diskette LABEL for the diskette that has just been copied.
write the label BEFORE it is put on the diskette. DO NOT ever put a
label on a diskette and then write on the label with a hard writing
instrument, such as a ball-point pen,. If this is done, the diskette
may be permanently damaged, and the diskette will NOT be usable.

If it is necessary to mark on a label that is already on a disk­
ette, then use a felt-tip pen.

REMOVE the diskette from disk drive B and PUT the LABEL on the
diskette that has just been copied.

20- PUT the diskette that was formatted earlier and set aside (in step
10) into disk drive B.

21- ENTER the following command:

A)copy all a b [v]

22- The copy program will display the following message:

("'C to ABORT)
RETURN to copy ALL from A to B

REMOVE the "SYSTEM 1" diskette from disk drive A: and PUT the disk­
ette in a safe place for safe keeping.

Diskettes should NOT be left in direct sunlight, they should not be
exposed to magnetic fields, they should NOT be stapled, paper­
clipped, or folded. The magnetic surface should NOT be touched. Nor
should any liquid be spilled on the diskette. Also, diskettes
should not be exposed to heat above about 120 degrees F., nor
should they be exposed to cold below about 32 degrees F. (Do NOT
leave diskettes in a locked automobile in the summer!)

23- INSERT the flSYSTEM 2" diskette into disk drive A:

24- PRESS the <CR) Key.

This will start the copying of the "SYSTEM 2" diskette.

25- When the copying is complete, REMOVE the "SYSTEM 2" diskette from
disk drive A and PUT the diskette with the "SYSTEM 1" diskette in a
safe place.

26- RE-INSERT the copied "SYSTEM 1" diskette and CONFIGURE the CP/M op­
erating system for the amount of memory on the system.

BACK-UP PROCEDURE

Page B-8

If the system has 128K bytes of Random Access Memory (RAM) install­
ed, then ENTER the following command:

A>sys128

If the system has 256K bytes of Random Access Memory (RAM) install­
ed, then ENTER the following command:

A>sys256

If the system has 384K bytes of Random Access Memory (RAM) install­
ed, then ENTER the following command:

A>sys384

If the system has 5I2K bytes of Random Access Memory (RAM) install­
ed, then ENTER the following command:

A>sys512

The execution of the "SYS" command will cause the CP/M-68K opera­
ting system to be configured to the memory size specified in the
"SYS" command.

It is a good idea to copy the configured diskette so that there is
a back-up of the configured "SYSTEM I" diskette. The steps to take
are similar to the steps taken above.

BACK-UP PROCEDURE

Page X-I

I N D E X

DIM ENS ION 6 8 (3 (3 (3

SYSTEM USE R ' S G U IDE

INDEX

Page X-2

INDEX

Page X-3

INDEX
DIMENSION 68000

SYSTEM USER'S GUIDE

Pg. 10 .BAS

Pg. 22 ALOAD,
Pg. 35 Argument,

in CALL statement,
Pg. 22 ASAVE,
Pg. 35 Assembly language subroutines,

Pg. 6 BASIC programming texts,

Pg. 35 CALL,
Pg. 23 - 32 CLOSE,

Pg. 10 Default extension,
Pg. 21 - 32 Disk file handling

Pg. 26 Error handling routine,
Pg. 26 Error trapping

Pg. 10 File naming conventions,
Pg. 9 Filename, in command line,

Pg. 22 LOAD,

Pg. 15 MODE#

Pg. 35 Opcodes,
CALL,
RET,

Pg. 23 - 32 OPEN,

Pg. 35 Parameters passed in CALL statement,
Pg. 22 Program file commands,

Pg. 27 - 32 Random access files,
Pg. 22 RUN,

Pg. 22 SAVE,
Pg. 23 - 26 Sequential access files,
Pg. 5 Syntax notation,
Pg. 3 System requirements,

Pg. 3 UNIBASIC requires

Pg. 36 VARPTR

INDEX

Page X-4

INDEX

