
U NIB A SIC

REF ERE NeE MAN U A L

M i c r 0 era f t Cor p 0 rat ion

A S V E R S ION

6 8 0 - 0 2 00- 2 0 0

NOTICE

Micro Craft Corporation reserves the right to make improvements
in the product described in this manual at any time and without
notice.

DISCLAIMER OF ALL WARRANTIES AND LIABILITY -- --- --- ---------
MICRO CRAFT CORPORATION MAKES NO WARRANTIES, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS MANUAL OR WITH RESPECT TO THE
SOFTWARE DESCRIBED IN THIS MANUAL, ITS QUALITY, PERFORMANCE,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. MICRO
CRAFT CORPORATION SOFTWARE IS SOLD OR LICENSED "AS IS." THE
ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE IS WITH THE BUYER.
SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWING THEIR PURCHASE, THE
BUYER (AND NOT MICRO CRAFT CORPORATION ITS DISTRIBUTOR, OR ITS
RETAILER) ASSUMES THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR, OR CORRECTION AND ANY INCIDENTAL OR CONSEQUENTIAL
DAMAGES. IN NO EVENT WILL MICRO CRAFT CORPORATION BE LIABLE FOR
DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING
FROM ANY DEFECT IN THE SOFTWARE, EVEN IF MICRO CRAFT CORPORATION
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES
DO NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR
LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE
LIMITATION OR EXCLUSTION MAY NOT APPLY TO YOU.

This manual is copyrighted. All rights are reserved. This docu­
ment may not, in whole or in part, be copied, photocopied, trans­
lated or reduced to any electronic medium or machine readable
form without prior consent, in writing, from Micro Craft Corpora­
tion.

Copyright 1983 by Micro Craft Corporation

Micro Craft Corporation
4747 Irving Blvd.
Dallas, Texas 75247
(214)630-2562

Page i

Additional copies of this manual

may be ordered from your DEALER

by using the MICRO CRAFT part number 680-020~-200.

Ask your DEALER also for a

free brochure with a complete list of all

Micro Craft manuals and products

MICRO CRAFT CORPORATION
Customer Support Department

4747 Irving Blvd.
Dallas, Texas 75247

UNIBASIC

Page ii

Pg. 1
Pg. 3
Pg. 4

Pg. 5
Pg. 7
Pg. 7
Pg. 7
Pg. 8
Pg. 8
Pg. 8
Pg. 9
Pg. 113
Pg. 11
Pg. 12
Pg. 12
Pg. 12
Pg. 13
Pg. 13
Pg. 15
Pg. 16
Pg. 17
Pg. 17
Pg. 18
Pg. 18
Pg. 19
Pg. 21
Pg. 21
Pg. 22
Pg. 22
Pg. 22
Pg. 22

Pg. 23
Pg. 25
Pg. 26
Pg. 27
Pg. 28
Pg. 29
Pg. 313
Pg. 31
Pg. 32
Pg. 33
Pg. 34
Pg. 35
Pg. 36
Pg. 37
Pg. 39

TAB L E o F CON TEN T S

INTRODUCTION
HOW TO USE THIS MANUAL
SYNTAX NOTATION

CHAPTER 1 - GENERAL INFORMATION ABOUT UNIBASIC
GETTING STARTED
RUNNING UNIBASIC
FILE NAMING CONVENTIONS
MODES OF OPERATION
LINE FORMAT
LINE NUMBERS
CHARACTER SET
CONTROL CHARACTERS
CONSTANTS
PRECISION FORM FOR NUMERIC CONSTANTS
VARIABLES
VARIABLE NAMES AND DECLARATION CHARACTERS
ARRA Y VARIABLES
SPACE REQUIREMENTS
TYPE CONVERSION
EXPRESSIONS AND OPERATORS
ARITHMETIC OPERATORS
OVERFLOW AND DIVISION BY ZERO
RELATIONAL OPERATORS
LOGICAL OPERATORS
RELATIONAL OPERATORS TRUTH TABLE
FUNCTIONAL OPERATORS
STRING OPERATORS
HIGH RESOLUTION GRAPHICS
SHAPE TABLE
INPUT EDITING
ERROR MESSAGES

CHAPTER 2 - UNIBASIC COMMANDS
EDITING - alt arrow
(BREAK> key
ALOAD
ASAVE
APEEK
APOKE
AT
CALL
CATALOG
COLOR
CLEAR
CONT
DATA
DEF FN

TABLE OF CONTENTS

Page iii

Pg. 41 DISK OPERATIONS
Pg. 41 OPEN
Pg. 41 CLOSE
Pg. 42 READ
Pg. 42 WRITE
Pg. 42 APPEND
Pg. 42 RENAME
Pg. 42 DELETE
Pg. 42 BSAVE
Pg. 43 BLOAD
Pg. 44 DEL
Pg. 45 DIM
Pg. 47 DRAW
Pg. 48 END
Pg. 49 FLASH
Pg. 50 FN
Pg. 51 FOR
Pg. 53 GET
Pg. 54 GOSUB
Pg. 55 GOTO
Pg. 56 GR
Pg. 57 HCOLOR
Pg. 58 HGR
Pg. 59 HGR2
Pg. 60 HLIN
Pg. 61 HOME
Pg. 62 HPLOT
Pg. 63 HTAB
Pg. 64 IF
Pg. 66 IN#
Pg. 67 INPUT
Pg. 69 INVERSE
Pg. 70 LET
Pg. 71 LIST
Pg. 73 LOAD
Pg. 74 MODE#
Pg. 77 NEW
Pg. 78 NEXT
Pg. 79 NORMAL
Pg. 80 NOTRACE
Pg. 81 ON ••• GOTO
Pg. 81 ON ••• GOSUB
Pg. 82 ONERR GO TO
Pg. 83 PAGE#
Pg. 84 PEEK
Pg. 85 PLOT
Pg. 86 POKE

TABLE OF CONTENTS

Page iv

Pg. 87 POP
Pg. 88 POS
Pg. 89 PR#
Pg. 90 PRINT
Pg. 92 QUIT
Pg. 93 READ
Pg. 94 REM
Pg. 95 Reset Button
Pg. 96 RESTORE
Pg. 97 RESUME
Pg. 98 RETURN
Pg. 99 ROT=
Pg. 100 RUN
Pg. 101 SAVE
Pg. 102 SCALE
Pg. 103 SHLOAD
Pg. 104 SHSAVE
Pg. 105 SHSIZE
Pg. 106 SPC
Pg. 107 STEP
Pg. 108 STOP
Pg. 109 TAB
Pg. 110 TEXT
Pg. 111 TRACE
Pg. 112 VLIN
Pg. 113 VTAB
Pg. 114 WAIT
Pg. 115 XDRAW

Pg. 117 CHAPTER 3 - UNIBASIC FUNCTIONS
Pg. 119 ABS
Pg. 120 ASC
Pg. 121 ATN
Pg. 122 CALL
Pg. 123 COS
Pg. 124 CHR$
Pg. 125 DEF FN
Pg. 127 EXP
Pg. 128 FN
Pg. 129 INT
Pg. 130 LEFT$
Pg. 131 LEN
Pg. 132 LOG
Pg. 133 MID$
Pg. 135 NF#
Pg. 136 PDL
Pg. 137 RIGHT$
Pg. 138 RND
Pg. 139 SCRN
Pg. 140 SGN
Pg. 141 SIN

TABLE OF CONTENTS

Page v

Pg. 142 SQR
Pg. 143 STR$
Pg. 144 TAN
Pg. 145 USR
Pg. 146 VAL
Pg. 147 VARPTR

APPENDICES
Pg. A-I TERMINOLOGY
Pg. B-1 BACK-UP PROCEDURE

Pg. X-I INDEX

TABLE OF CONTENTS

Page vi

TABLE OF CONTENTS

Page 1

I N T ROD U C T ION

INTRODUCTION

Page 2

INTRODUCTION

Page 3

UNIBASIC is a powerful BASIC language interpreter for the Dimension
68000 system. UNIBASIC is designed to run under the CP/M-68K operating
system. UNIBASIC is supplied "bundled" with the Dimension 68000 system.

HOW TO USE THIS MANUAL

This manual is a reference for the UNIBASIC interpreter.

This manual is divided into three chapters plus appendices. Chapter 1
covers a variety of topics, largely pertaining to data representation
in UNIBASIC. Chapter 2 describes the syntax and semantics of every
command and statement in UNIBASIC, ordered alphabetically. Chapter 3
describes all UNIBASIC intrinsic functions, also ordered
alphabetically. The appendices contain, among other things, a list of
error messages and codes, a list of mathematical functions, a list of
ASCII character codes, and a list of UNIBASIC reserved words.

Additional information about programming UNIBASIC is covered in the
UNIBASIC USER'S GUIDE. the USER'S GUIDE describes the features of
UNIBASIC. It also contains information relevant to your operating
system, CP/M-68K, and helpful hints about such matters as data I/O and
assembly language subroutines.

INTRODUCTION

Page 4

SYNTAX NOTATION

unibasic commands and statements are described using the following
conventions and definitions:

CAPITALS

Lower-case
words

[]

{}

Items in capital letters must be input as shown.

Lower-case words shown in the syntax definition should
be replaced with their value when entered.
For example, in RUN [line-number], the lower-case
name line-number, if specified, should be replaced
with an actual line number. Example: RUN 10.

Square brackets indicate that the enclosed material is
optional. Example: RUN [line-number]. The brackets
indicate that line-number need not be specified.

Braces indicate that the enclosed material may be
repeated.

A vertical bar means "or": The material on the left
or right of the bar may be specified.

All punctuation except angle brackets and square brackets (i.e.,
commas, parentheses, semicolons, hyphens, equal signs) must be included
where shown. Blanks or spaces are generally ignored.

CHAPTER 1

G ENE R A L

C HAP T E R 1

I N FOR MAT ION

U NIB A SIC

Page 5

ABO U T

CHAPTER 1

Page 6

CHAPTER 1

Page 7

GETTING STARTED

The Dimension 68000 system is shipped with a "SYSTEM 1" diskette and a
"SYSTEM 2" diskette. Before doing ANYTHING else, make a copy of the
"system diskettes that were shipped with your DImension 68000 system. A
step by step procedure for making these copies, or "BACKING-UP" these
diskettes is included in the appendices, BACKING-UP.

Always make a back-up of any diskettes received from Micro Craft, Inc.

If you should damage the "SYSTEM" diskette or the "LANGUAGES U~ILITIES"
diskette, additional diskettes may be purchased from Micro Craft, Inc.,
for $350.00 plus shipping and handling fees.

RUNNING UNIBASIC

To use the Micro Craft, Inc., UNIBASIC interpreter on the Dimension
68000 system, insert the "SYSTEM 1" diskette into the "A" diskette
drive. Then, either type

BASIC

or

BASIC filename

where filename the name of the file that contains the basic program
to be run.

FILE NAMING CONVENTIONS

Filenames are a combination of the CP/M-68K and the APPLESOFT (TM)
naming conventions. All UNIBASIC filenames consist of three parts:

- the FILENAME
- the FILETYPE
- the DRIVE SPECIFICATION

The FILENAME consists of from one to eight characters. The first char­
acter must be alphabetic. All of the rest of the characters may be
either alphabetic or numeric.

The FILETYPE consists of a period (.), followed by up to three charac­
ters. The dharacters may be either alphabetic or numeric.

The DRIVE SPECIFICATION consists of a comma (,), followed by a D, fol­
lowed by either a 1, a 2, a 3, or a 4. The numbers 1, 2, 3, and 4 cor­
respond to the disk drives A:, B:, C:, AND D:. If no DRIVE SPECIFICA­
TION is included, the system will use the system default disk drive.

CHAPTER 1

Page 8

MODES OF OPERATION

When UNIBASIC is initialized it displays the prompt character ":". The
prompt character indicates that UNIBASIC is at the command level; that
is, it is ready to accept commands. At this point, UNIBASIC may be used
in either of two modes: direct mode or indirect mode.

In direct mode, UNIBASIC statements and commands are not preceded by
line numbers. They are executed as they are entered. Results of
arithmetic and logical operations may be displayed immediately and
stored for later use but the instructions themselves are lost after
execution. Direct mode is useful for debugging and for using UNIBASIC
as a "calculator" for quick computations that do not require a complete
program.

Indirect mode is used for entering programs. program lines are preceded
by line numbers and are stored in memory. The program stored in memory
is executed by entering the RUN command.

LINE FORMAT

UNIBASIC program lines have the following format (square brackets
indicate optional input):

nnnnn UNIBASIC-STATEMENT[:UNIBASIC-STATEMENT •••] <CR>

More than one UNIBASIC statement may be placed on a line, but each must
be separated from the last by a colon.

A UNIBASIC program line always begins with a line number and ends with
a carriage return. A line may contain a maximum of 255 characters.

It is possible to extend a logical line over more than one physical
line by using the <LINE-FEED> key. <LINE-FEED> lets you continue typing
a logical line on the next physical line without entering a <CR>
(carraige return).

LINE NUMBERS

Every UNIBASIC program line begins with a line number. Line numbers
indicate the order in which the program lines are stored in memory.
Line numbers are also used as references in branching and editing. line
numbers must be in the range of 0 to 63999.

A period (.) may be used in EDIT, LIST, AUTO, and DELETE commands to
refer to the current line.

CHAPTER 1

Page 9

CHARACTER SET

The UNIBASIC character set is comprised of the alphabetic characters,
numeric characters, and special characters.

The alphabetic characters in UNIBASIC are the upper-case letters of the
alphabet.

The UNIBASIC numeric characters include the digits 0 through 9.

In addition, the following special characters and terminal keys are
recognized by UNIBASIC:

CHARACTER

+

*
~
(
)
%

* $

[
]

&

?
<
)

@

"
<BS)
<ESC)
<BREAK)
<CR)
<LINE FEED)

ACTION

Blank or Space
Equals sign or assignment symbol
Plus sign
Minus sign
Asterisk or multiplication symbol
Slash or division symbol
Up arrow or exponentiation symbol
Left or open parenthesis
Right or close parenthesis
Percent
Number or pound sign
Dollar sign
Exclamation point or "bang"
Left or open bracket
Right or close bracket
Comma
Period
Semicolon
Colon
Ampersand or and sign
Single quotation mark (apostrophe)
Question mark
Less than
Greater than
At sign
Quotation mark
Back Space key - deletes the last character typed
Escape key
Break key
Carriage Return keys (marked "Retrn" and "Enter")
Line feed key (Ctrl-L)

CHAPTER I

Page 10

CONTROL CHARACTERS

UNIBASIC supports the following control characters:

CONTROL
CHARACTER

CTRL-A

CTRL-C

CTRL-G

CTRL-H

CTRL-I

CTRL-L

CTRL-M

CTRL-O

CTRL-R

CTRL-S

CTRL-Q

CTRL-U

CONSTANTS

ACTION

Enters edit mode on the line being typed.

Interrupts program execution and returns to
UNIBASIC command level.

Rings the bell at the terminal.

Backspaces. Deletes the last character typed.

Tabs to the next tab stop. Tab stops are set
every eight columns.

Line Feed. Moves the cursor down one line.

Carriage Return. Moves the cursor to the left side of
the screen

Halts program output while execution continues. A second
CTRL-O resumes output.

Lists the line that is currently being typed.

Suspends program execution.

Resumes program execution after a CTRL-S.

Deletes the line that is currently being typed.

Constants are the values UNIBASIC uses during execution. There are two
types of constants: string and numeric.

A string constant is a sequence of up to 255 alphanumeric characters
enclosed in quotation marks(").

Examples

"HELLO"
"$25,0130.00"
"Number of Employees"

INTRODUCTION

Page 11

Numeric constants are positive or negative numbers.
constants cannot contain commas. There are five
constants:

UNIBASIC
types of

numeric
numeric

1. Integer
constants

2. Fixed-point
constants

3. Floating-point
constants

Whole numbers between -32,767 and 32,767.
Integer constants do not contain decimal
points.

positive or negative real numbers, i.e.,
numbers that contain decimal points.

positive or negative numbers represented
in exponential form (similar to scien­
tific notation). A floating-point con­
stant consists of an optionally signed
integer or fixed-point number (the man­
tissa) followed by the letter E and an
optionally signed integer (the exponent).
The allowable range for floating-point
constants is -lE38 to +lE38.

Examples

235.988E-7
2359E6

• ~HHHl235988
2359000000

(Double precision floating-point constants
are denoted by the letter D instead of E).

CHAPTER 1

Page 12

PRECISION FORM FOR NUMERIC CONSTANTS

Numeric constants are stored with up to 10 digits of precision. The
tenth digit is rounded off.

Examples

46.8
-1.09E-06
3489.0
22.5

VARIABLES

variables are names used to represent values used in a UNIBASIC
program. The value of a variable may be assigned explicitly by the
programmer, or it may be assigned as the result of calculations in the
program. Before a variable is assigned a value, its value is assumed to
be zero.

VARIABLE NAMES AND DECLARATION CHARACTERS

UNIBASIC variable names may be any length up to 238 characters. Only
the first 8 characters are used by UNIBASIC. Variable names can contain
letters and digits. However, the first character must be a letter.
No special characters or reserved words may be used in a variable name.

Reserved words include all UNIBASIC commands, statements, function
names, and operator names. If a variable begins with FN, it is assumed
to be a call to a user defined function.

Variables may represent either a numeric value or a string. String
variable names are written with a dollar sign ($) as the last
character. For example: A$ = "SALES REPORT." The dollar sign is a
variable type declaration character; that is, it "declares" that the
variable will represent a string.

Numeric variable names may declare integer or single precision names
and are denoted as follows:

% Integer variable

Single precision variable

CHAPTER 1

Page 13

Examples of UNIBASIC variable names:

MINIMUM Declares a single precision value.

LIMIT% Declares an integer value.

N$ Declares a string value.

ARRAY VARIABLES

An array is a group or table of values referenced by the same variable
name. Each element in an array is referenced by an array variable that
is subscripted with an integer or an integer expression. An array
variable name has many subscripts as there are dimensions in the array.
For example, V(10) would reference a value in a one-dimension array,
T(l,4) would reference a value in a two-dimension array, and so on. The
maximum number of elements per dimension is 32,767. The maximum number
of dimensions is 88.

SPACE REQUIREMENTS

All UNIBASIC variables and arrays have a data header. The data headers
are shown below for each data type:

INTEGER

+-+-+-+-+
IPOINTERI a 4 byte pointer to the next data header
+-+-+-+-+-+-+-+-+
I VARIABLE NAME I an 8 byte ASCII string
+-+-+-+-+-+-+-+-+
ID-TI the 2 byte long data type value
+-+-+-+-+-+-+
IVALIUNUSED I the 2 byte integer value and 4 unused bytes
+-+-+-+-+-+-+

REAL

+-+-+-+-+
IPOINTERI a 4 byte pointer to the next data header
+-+-+-+-+-+-+-+-+
I VARIABLE NAME I an 8 byte ASCII string
+-+-+-+-+-+-+-+-+
ID-TI the 2 byte long data type value
+-+-+-+-+-+-+
I VALUE I I the 4 byte real value
+-+-+-+-+-+-+

CHAPTER 1

Page 14

STRING

+-+-+-+-+
IPOINTERI a 4 byte pointer to the next data header
+-+-+-+-+-+-+-+-+
I VARIABLE NAME I an 8 byte ASCII string
+-+-+-+-+-+-+-+-+
ID-TI the 2 byte long data type value
+-+-+-+-+-+-+
ILENIEL-PNTRI 2 byte string
+-+-+-+-+-+-+ length pointer

and the string element
pointer

ARRAY

+-+-+-+-+
IPOINTERI a 4 byte pointer to the next data header
+-+-+-+-+-+-+-+-+
I VARIABLE NAME I an 8 byte ASCII string
+-+-+-+-+-+-+-+-+
ID-TI the 2 byte long data type value
+-+-+-+-+-+-+
I AR-PNTR I I a 4 byte pointer to the data
+-+-+-+-+-+-+

The string element has the following layout in memory:

STRING ELEMENT

+-+-+-+- -+-+-+-+-+
ICI STRING DATA 101 1 byte link
+-+-+-+- -+-+-+-+-+ count value

CHAPTER 1

then the bytes of
string data

then a null
byte

Page 15

Array data is stored in the same sequence as APPLESOFT BASIC. The array
data is stored as follows:

INTEGER ARRAY

+-+-+-+-+-+-+-+-+
Iv(0Iv(1Iv(2Iv(31 2 byte integer array values - v(0) through v(3)
+-+-+-+-+-+-+-+-+
I v (41 v (51 v (61 v (71 v (4) thru v (7)
+-+-+-+-+-+-+-+-+
I I I I I and on as necessary

REAL ARRAY

+-+-+-+-+-+-+-+-+
Iv(0) Iv{l) I 4 byte real array values - v(0) and v{l)
+-+-+-+-+-+-+-+-+
Iv(2) Iv(3) I v(2) and v(3)
+-+-+-+-+-+-+-+-+
I I I and on as necessary

STRING ARRAY

+-+-+-+-+-+-+
ILENIEL-PNTRI 2 byte integer and 4 byte string for v$(0)
+-+-+-+-+-+-+ length value element pointer
ILENIEL-PNTRI 2 byte integer and 4 byte string for v${l)
+-+-+-+-+-+-+ length value element pointer
ILENIEL-PNTRI 2 byte integer and 4 byte string for v$(2)
+-+-+-+-+-+-+ length value element pointer

I I I and on as necessary

TYPE CONVERSION

When necessary, UNIBASIC will convert a numeric constant from one type
to another. The following rules and examples should be kept in mind.

1. If a numeric constant of one type is set equal to a numeric variable
of a different type, the number will be stored as the type declared in
the variable name. (If a string variable is set equal to a numeric
value or vice versa, a "Type mismatch" error occurs.)

CHAPTER 1

Page 16

Example

10 A% = 23.42
20 PRINT A%
RUN

23

2. When a floating-point value is converted to an integer, the frac­
tional portion is rounded.

Example

10 C% = 55.88
20 PRINT C%
RUN

56

3. Logical operators (see later in this section) convert their operands
to integers and return an integer result. Operands must be in the
range -32767 to 32767 or an "Overflow" error occurs.

EXPRESSIONS AND OPERATORS

An expression may be a string or numeric constant, a variable, or a
combination of constants and variables with operators which produces a
single value.

Operators perform mathematical or logical operations on values. The
UNIBASIC operators may be divided into four categories:

1. Arithmetic

2. Relational

3. Logical

4. Functional

Each category is described in the following sections.

CHAPTER 1

Page 17

ARITHMETIC OPERATORS

The arithmetic operators, in order of precedence, are:

Operator Operation Expression

Exponentiation

Negation -x
*, / Multiplication, Division x*Y, x/Y

+, - Addition, Subtraction x+Y, X-Y

To change the order in which the operations are performed, use
parentheses. Operations within parentheses are performed first. Inside
parentheses, the usual order of operations is maintained.

OVERFLOW AND DIVISION BY ZERO

If, during the evaluation of an expression, division by zero is
encountered, the following things occur:

- the "Division by zero" error message is displayed.

- the result is machine infinity with the sign of the numerator.

- execution continues.

If, during the evaluation of an exponentiation expression, zero being
raised to a negative power is encountered, the following things occur:

- the "Division by zero" error message is displayed.

- the result is positive machine infinity.

- execution continues.

If overflow occurs, the following things occur:

- the "Overflow" error message is displayed.

the result is machine infinity with the algebraically correct sign.

- execution continues.

CHAPTER 1

Page 18

RELATIONAL OPERATORS

Relational operators are used to compare two values. The result of the
comparison is either "true" (-1) or "false" (0) ~ This result may then
be used to make a decision regarding program flow. (See "IF" statements
in a later section.)

The relational operators are:

Operator Relation Tested Example

Equality X=Y

<> Inequality X<>Y

< Less than X<Y

> Greater than X>Y

<= Less than or equal to X<=Y

>= Greater than or equal to X>=y

(The equal sign is also used to assign a value to a variable. See "LET"
statements in a later section.)

When arithmetic and relational operators are combined in one expres­
sion, the arithmetic is always performed first. For example, the ex­
pression

X+Y< (T-l) /Z

is true if the value of X plus Y is less than the value of T minus 1
divided by z.

Examples

IF SIN(X)<0 GOTO 1000
IF 1**2<>0 THEN K=K+l

LOGICAL OPERATORS

Logical operators perform tests on multiple relations, bit manipula­
tion, or Boolean operations. The logical operator returns a bitwise
result which is either "true" (not zero) or "false" (zero). In an ex­
pression, logical operations are performed after arithmetic and
relational operations. The outcome of a logical operation is determined
as shown in the table below. the operators are listed in order of pre­
cedence.

CHAPTER 1

Page 19

UNIBASIC
RELATIONAL OPERATORS TRUTH TABLE

NOT
X NOT X

(3 1
1 (3

AND
X Y X AND Y

(3 (3 (3

(3 1 (3

1 (3 (3

1 1 1

OR
X Y X OR Y

(3 (3 (3

(3 1 1
1 (3 1
1 1 1

CHAPTER 1

Page 20

Just as the relational operators can be used to make decisions regard­
ing program flow, logical operators can connect two or more relations
and return a true or false value to be used in a decision (see "IF"
statements in a later section).

Examples

IF C<250 AND F<5 THEN 80
IF 1)10 OR K<0 THEN 50
IF NOT P THEN 100

Logical operators work by con~erting their operands to 16-bit, signed,
two's complement integers In the range -32767 to 32767. (if the
operands are not in this range, an error results.) If both operands are
supplied as 0 or -1, logical operators return 0 or -1. The given
operation is performed on these integers in bitwise fashion, i.e., each
bit of the result is determined by the corresponding bits in the two
operands.

Thus, it is possible to use logical operators to test bytes for a
particular bit pattern. For instance, the AND operator may be used to
"mask" all but one of the bits of a status byte at a machine I/O port.
The OR operator may be used to merge two bytes to create a particular
binary value. The following examples will help demonstrate how the
logical operators work.

63 AND 16 = 16

15 AND 14 14

-1 AND 8 8

4 OR 2 6

10 OR 10 10

-lOR -2 -1

NOT X=-(X+1)

CHAPTER 1

63
16

binary 111111 and 16 = binary 010~00, so 63 AND
16 (binary 0010000)

15 binary 1111 and 14 = binary 1110, so 15 AND 14
= 14

-1 binary 1111111111111111 and 8 = binary 1000, so
-1 AND 8 = 8

4 = binary 0100 and 2 = binary 0010, so
(binary 0110)

4 OR 2 6

10 binary 1010, so 1010 OR 1010 = 1010 (decimal 10)

-1 binary 1111111111111111 and
-2 binary 1111111111111110, so -lOR -2 = -1. The
bit complement of sixteen zeroes is sixteen ones,
which is the two's complement representation of -1

The two's complement of any integer is the bit com­
plement plus one.

Page 21

FUNCTIONAL OPERATORS

A function is used in an expression to call a predetermined operation
that is to be preformed on an operand. UNIBASIC has "intrinsic"
functions that reside in the system, such as SQR (square root) or SIN
(sine). All UNIBASIC intrinsic functions are described in Chapter 3.

UNIBASIC also allows "user-defined" functions that are written by the
programmer. See "DEF FN" in a later section.

STRING OPERATORS

Strings may be concatenated by using +.

Example

10 A$ = "FILE": B$ = "NAME"
20 PRINT A$+B$
30 PRINT "NEW"+A$+B$
RUN
FILENAME
NEWFILENAME

Strings may be compared using the same relational operators that are
used with numbers:

<> < > <= >=

string comparisons are made by taking one character at a time from each
string and comparing the ASCII codes. If all the ASCII codes are the
same, the strings are equal. If the ASCII codes differ, the lower code
number precedes the higher. If during string comparison, the end of one
string is reached, the shorter string is said to be smaller. Leading
and trailing blanks ARE significant.

Examples

"AA"<"AB"
"FILENAME"="FILENAME"
"X&">"X#"
"CL">"CL"
"kg">"KG"
"SMYTH"<"SMYTHE"
B$<"9/l2/78" where
B$="8/12/78"

Thus, string comparisons can be used to test string values or to alpha­
betize strings. All string constants used in comparison expressions
must be enclosed in quotation (") marks.

CHAPTER 1

Page 22

HIGH RESOLUTION GRAPHICS

There are two pages of high resolution graphics. The user selects the
page desired by issuing either a PAGE#1 command or a PAGE#2 command.

SHAPE TABLE

The shape table begins at address 4000 decimal. The shape table has a
default size of 500 bytes. The shape table size can be changed by using
the SHSIZE command. The shape table is loaded either from a disk file
by using the SHLOAD command or by POKEing the values in starting at ad­
dress 4000 decimal. The shape table can be saved into a disk file by
using the SHSAVE command.

INPUT EDITING

If an incorrect character is entered as a line
be deleted with the <Back Space> (<BS>) key
the <BS> key and CONTROL-H have the effect
character and erasing it. Once a character(s)
continue typing the line as desired.

is being typed, it can
or with CONTROL-H. Both
of backspacing over a
has been deleted, simply

To delete a line that is in the process of being typed, type CONTROL-U.
A carriage return is executed automatically after the line is deleted.

To correct program lines for a program that is currently in memory,
simply retype the line using the same line number. UNIBASIC will
automatically replace the old line with the new line.

More sophisticated editing capabilities are provided. See the "EDIT"
statement in a later section.

To delete the entire program currently residing in memory, enter the
NEW command. (See the "NEW" cornmanQ in a later section.) NEW is usually
used to clear memory prior to entering a new program.

ERROR MESSAGES

If an error causes program execution to terminate, an error message is
printed. For a complete list of UNIBASIC error codes and error
messages, see the APPENDICES.

CHAPTER I

Page 23

C HAP T E R 2

U NIB A SIC COM MAN 0 S

CHAPTER 2

Page 24

CHAPTER 2

Page 25

EDITING - alt arrow

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

alt ->
alt <­
alt V
alt A

These commands do not affect characters moved over
by the cursor: the characters remain both on the TV
screen and in memory. By themselves, these commands
do not affect the program line being typed.

alt -> moves the cursor one space to the right
alt <- moves the cursor one space to the left
alt V moves the cursor one space down
alt A moves the cursor one space up

None.

- To change a program line: LIST the line on the
screen and use the alt arrow commands to place the
cursor over the first character of the line. Use
the right-arrow key to move across the line,
stopping at characters you wish to change and
entering the desired character. When you are
finished changing the line, press RETURN to store
or execute the corrected line. If you did not use
LIST to display the line, do not copy the prompt
character (:).

The alt arrow commands may be used in the immediate
execution mode only.

CHAPTER 2

Page 26

<BREAK> key

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

break

break interrupts the current process immediately
after the statement that is currently being executed.

None.

- break may be entered to interrupt an INPUT or GET
but must be the first character entered. The
interruption occurs when return is pressed for INPUT
and immediately for GET.

- BREAK IN line-number is displayed a program is
executing.

- break may be used in the deferred execution mode
only.

ALOAD

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 27

ALOAD filename

This command loads a UNIBASIC program from an ASCII
file, and converts the ASCII program to UNIBASIC in­
ternal format.

Filename is the name of the file in UNIBASIC format as
described in the UNIBASIC USER'S GUIDE.

CHAPTER 2

Page 28

ASAVE

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

ASAVE filename

This command saves a UNIBASIC program on diskette as
an ASCII file.

Filename is the name of the file in UNIBASIC format as
described in the UNIBASIC USER'S GUIDE.

APEEK

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 29

APEEK (address)

This command reads a byte out of the 68000 memory at
the absolute address.

Address is an absoulute address in the 68000 memory.
It is a 32 bit integer value.

CHAPTER 2

Page 313

APOKE

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

APOKE address, data

This command is used to place a byte of information,
data, into the 68131313 memory at the absolute location
specified by address.

Address is the absolute location in 68131313 memory that
is desired to have information placed into. It is a 32
bit integer.

Data is the byte of information that is to be placed
into 68131313 memory.

AT

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

DRAW arithexp1 AT arithexp2, arithexp3
HLIN arithexp1, arithexp2 AT arithexp3
VLIN arithexp1, arithexp2 AT arithexp3
XDRAW arithexp1 AT arithexp2, arithexp3

Page 31

See description of the commands for DRAW, HLIN, VLIN,
and XDRAW

CHAPTER 2

Page 32

CALL

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

CALL address[(argl",arg14)]

This command allows UNIBASIC to "call" an assembly
language subroutine.

Address is the 32 bit integer absolute location in
68000 memory where the assembly language subroutine is
residing.

Arg1 is the 32 bit real number used to pass data to
the assembly language subroutine.

- There can be up to 14 arguments

- Address & arguments can be arithmetic-expressions.

- When CALL is used as a function, the value is
returned in the D0 register.

CATALOG

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 33

CATALOG [,On]

This command causes a list of the contents of the di­
rectory of the disk drive specified to be displayed on
the screen.

n is the number of the disk drive that the directory
is to be displayed for. The following is a correlation
of disk drive numbers and CP/M-68K drive specifiers:

DRIVE CP/M-68K
NUMBER DRIVE

1 A:
2 B:
3 C:
4 D:

If no disk drive is specified, then the disk drive
that was most recently accessed will be used.

CHAPTER 2

Page 34

COLOR

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

COLOR = arithexpr

Sets the color for plotting in low resolution
graphics mode.

The range of values for arithexpr is from 9 through
255.

Color numbers and their associated names are:

9 black 4 dark green 8 brown 12 green
1 magenta 5 grey 9 orange 13 yellow
2 dark blue 6 medium blue 19 grey 14 aqua
3 purple 7 light blue 11 pink 15 white

COLOR evaluates arithexpr modulo 16 to return a
value in the range of 9 to 15.

- In high-resolution graphics mode COLOR has
no meaning.

- See SCRN and PLOT for more information.

When used in TEXT mode with PLOT, COLOR will affect
which character the PLOT instruction places in the
text window.

CLEAR

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 35

CLEAR

CLEAR zeros (clears) all variables, strings, and
arrays.

None.

- CLEAR places zeros in numeric variables and nulls
(nothing) in string variables.

- CLEAR may be used in either the immediate or
deferred execution mode.

CHAPTER 2

Page 36

CONT

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

CONT

If a STOP, END, or break command halts a
CONT will resume program execution at
instruction, but not necessarily the
number. Memory is not cleared or changed.

None.

program,
the next

next line

- If no program has been halted, then CONT has no
effect.

- CONT may only be used in the immediate execution
mode.

If the user changes or deletes a program line or
causes an error message when a program has halted,
the ?CAN'T CONTINUE ERROR message is displayed.

When the DEL command is used in deferred execution
mode, the specified lines are deleted and program
execution stops. If CONT is entered, the ?CAN'T
CONTINUE MESSAGE will be displayed.

DATA

Syntax

Description

Parameters

Notes

Error
Messages

Page 37

DATA [datavalue] [{,[datavalue]}]
note: datavalue = [literal string real integer]

Creates a list of elements which can be used by READ
statements.

DATA elements may be any mixture of reals, integers,
strings and literals.

"Non-existent" (zero or null string) data elements
occur when any of the following are true:

1) There is no non-space character between DATA
and return.

2) Comma is the first non-space character following
DATA.

3) There is no non-space character between 2
commas.

4) Comma is the last non-space character before
return.

- Each DATA statement adds data elements to the list
of elements built up by the program's previous
(lower line number) DATA statements.

- DATA statements may
a program. They do
READ statements.

appear anywhere throughout
not have to precede the

- The rules for DATA elements READ into variables
are the same as the rules for INPUT responses
assigned to variables with 1 exception. The
colon cannot be included as a character in a
numeric DATA element.

- See INPUT for more details.

- DATA may be used in deferred execution mode only.

?SYNTAX ERROR
For any quotation mark appearing within a string. Or
for an attempt to assign a string or literal DATA
element to a numeric variable.

CHAPTER 2

Page 38

DATA (cont'd)

Examples

Caveat

CHAPTER 2

100 DATA"
When READ, this statement may return up to 3 elements
consisting of zeros or null strings.

10 DATA ,4,100,99
20 READ A,B,C
30 PRINT A,B,C
RUN

4 100

120 DATA "Commas , may appear , in quoted strings"

When used in immediate execution mode, DATA does not
cause a SYNTAX ERROR, but the data elements are not
available to READ statements.

DEF FN

Syntax

Description

Parameters

Notes

DEF FN name (dummyvariable)
FN name (arithexpr2)

arithexprl

page 39

Defines functions in a program. Functions may be
used wherever arithmetic expressions may be used.
After the execution of a program line containing DEF,
the DEFined function may be used in the form

FN name (argument)

where the argument may be any arithmetic expression.

The rules
function
unique) •

for using arithmetic variables
names (the first 8 characters

apply
must

Arithexprl may be only 1 program line in length.

to
be

Dummyvariable
variable.

must be a real number arithmetic

FN substitutes the argument for dummyvariable
wherever dummyvariable appears in the DEFinition.
Arithexprl may contain any number of variables. At
most 1 of those variables corrresponds to
dummyvariable.

- The DEFinition's dummyvariable need not appear in
arithexprl. In that case, when the function is
used, the function's argument is ignored in
evaluating arithexprl. The function's argument
must always be legal.

- Functions may be redefined during the course of a
program.

- When a new function is defined by a DEF statement,
6 bytes in memory are used to store the pointer to
the definition.

- DEF may be used in deferred execution mode only.
FN may be used in deferred or immediate execution
mode.

CHAPTER 2

Page 40

DEF FN (cont'd)

Error
Messages

Examples

Caveat

CHAPTER 2

?UNDEFN'D FUNCTION ERROR
If a deferred execution DEF FN name statement is not
executed prior to using FN name.

100 DEF FN A(W) = 2 * W + W
110 PRINT FN A(23)
120 DEF FN B(X = 4 + 3
130 G = FN B(23)
140 PRINT G
150 DEF FN A(Y) = FN B(Z) + Y
160 PRINT FN A(G)

RUN
69
7
14

FN A(23) = 2 * 23 + 23
FN B(anything) = 7
new FN A(7) = 7 + 7

10 DEF FN ABC(I) = COS (I)
20 DEF FN ABC (I) = TAN (I)
The function AB is defined in line 10 and then
redefined in line 20.

User-defined string functions are not allowed.

Functions defined using an integer name (name%) for
the function name or for dummyvariable are not
allowed.

If CLEAR, NEW, DEL, or RUN destroys or skips a
DEFined function in memory, the function may not be
defined.

DISK OPERATIONS

Syntax

Description

Parameters

Notes

Page 41

PRINT D$;"operation [,filenm] [,specification]"

Disk commands are given from print statements. The
first character of the print statement must have a
decimal value of 4 (CHR$(4) or CNTRL D).

Various literal strings, string variables, or
arithmetic variables are included as PRINT parameters
to form the desired command.

D$ must equal CHR$(4) (CONTROL D).

Operation is one of the operations described below.

Filenm is a filename in CPM format.

Specification is
decimal number.
specification.
last used drive.
n 1 is drive A
n 2 is drive B
n = 3 is drive C
n = 4 is drive D

a capital letter followed by a
Dn is an optional diskdrive

If Dn is omitted, the default is the

The following disk operations are available:

OPEN Opens the specified file if it exists, or
creates the file if it does not exist. A
maximum of 16 files may be open at any one
time. The function NF# may be called to
determine if the file was created.
EXAMPLE:

PRINT CHR$(4) "OPEN FILENM,Dl"

CLOSE Closes the named disk file, or all disk files.
EXAMPLE:

PRINT D$;"CLOSE FILENM"
Closes FILENM.

PRINT D$;"CLOSE"
Closes all disk files.

CHAPTER 2

Page 42

DISK OPERATIONS (cont'd)

CHAPTER 2

READ Causes INPUT and GET statements to read
statements from the named file. If the file
was previously being written, then it is
closed and re-opened. READing starts at the
beginning of the file.
EXAMPLE:

PRINT D$;"READ FILENM"

WRITE Causes PRINT statements to write to the
specified file. If the previous command for
the file was APPEND, the writing starts at the
end of the file. If not, writing starts at
the beginning of the file. If file was being
read, then it is closed and writing starts at
the beginning.

APPEND

EXAMPLE:

PRINT D$;"WRITE FILENM"

Used in place of
write statements
file. Dn is
specification.
EXAMPLE:

the OPEN command. Subsequent
will start at the end of the

the optional disk drive

PRINT D$;"APPEND FILENM,D2"

RENAME Changes the name of a disk file. Dn is the
optional disk drive specification.
EXAMPLE:

PRINT D$;"RENAME OLDNM,NEWNM,D4"

DELETE Removes a file from disk.
disk drive specification.
EXAMPLE:

Dn is the optional

PRINT D$;"DELETE FILENM,D3"

BSAVE Saves binary data from
display screen, on disk.
disk drive specification.
decimal data address.
decimal data length. The
is insignificant.
EXAMPLE:

memory, such as a
Dn is the optional
An is the required

Ln is the required
order of the options

PRINT D$;"BSAVE FILENM,A4000,Ll024,D2"

Page 43

DISK OPERATIONS (cont'd)

Error
Messages

Examples

Caveat

BLOAD Reloads binary data from disk to memory.
Specifications are the same as BSAVE. If An
and Ln are omitted, then BLOAD uses values
from BSAVE on the file.
EXAMPLE:

PRINT D$;"BLOAD FILENM,D2"

See Above

CHAPTER 2

Page 44

DEL

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

DEL line-number-l, line-number-2

DEL deletes program lines line-number-l to line­
number-2, inclusive.

line-number-l is a program line number and specifies
the first line to be deleted.

line-number-2 is a program line number and specified
the last line to be deleted.

- Both line-number-l and line-number-2 are required.

- If line-number-l does not exist in the program, the
next greater line number in the program is used
instead of line-number-l; if line-number-2 does not
exist in the program, the next smaller program line
number is used.

- When used in deferred execution, DEL
described above, then halts execution.
not work in this situation.

works as
CONT will

- DEL may be used in either immediate or deferred
execution mode.

DEL 7,9 deletes program line numbers 7 through 9.

DIM

Syntax

Description

Parameters

Notes

Page 45

DIM variable (subscript [{, subscript}])

The DIM statement declares and reserves memory space
for an array and clears all elements.

variable is an array name.

subscript specifies the largest numbered element of a
dimension. Note that subscript numbering begins with
0.

- DIM reserves 8 bytes for the array's variable name,
4 bytes for linkage, 4 for data pointer, 2 for the
number of dimensions, and 2 for each dimension.

- To determine the number of elements in an array,
add 1 to each subscript parameter and multiply the
resulting numbers.

- The maximum number of dimensions for an array may
not exceed 88, regardless of the number of elements
in each dimension.

- The amount of memory available when DIM is executed
will limit the size of arrays. An integer array
element will occupy 2 bytes in memory; a real array
element will occupy 8 bytes. A string array
element will occupy 6 bytes for each element
including 2 for the length and 4 for a location
pointer. As characters are stored they occupy one
byte.

- If an array element is referenced before the array
is DIMensioned, Unibasic assigns a maXImum
subscript of 10 for each dimension referenced by
the statement.

- string arrays are allocated memory dynamically, as
the strings are created and assigned by the
program. The arrays will become larger or smaller
depending on the string assigned.

- The RUN and CLEAR commands reset numeric array
elements to 0, and string array elements to null.

- Do not attempt to DIMension an array more than
once.

- DIM may be used in either the immediate or deferred
execution mode.

CHAPTER 2

Page 46

DIM (cont'd)

Error
Messages

Examples

Caveat

CHAPTER 2

Referencing a subscript larger than the maximum
declared for a variable will cause the ?BAD SUBSCRIPT
ERROR to be displayed.

If an array variable is used which requires a
different number of dimensions than reserved by the
DIM statement, the ?BAD SUBSCRIPT ERROR is displayed.

An attempt to DIMension an array variable which
already exists causes the ?REDIM'D ARRAY ERROR, even
if the first array was dimensioned by default.

DIM NEW (2,3,4) reserves 3*4*5 (6@) elements for the
array named NEW.

DIM STARRAY$(ROW,COLUMN)
array elements for the
STARRAY$.

reserves ROW+l * COLUMN+l
string variable named

DRAW

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

DRAW shapenumber AT X, Y
DRAW shapenumber

Page 47

This command will draw the shape specified, in the
high-resolution GRaphics mode, on the screen. If no X
and Y co-ordinates are specified by the AT clause,
then the shape will be drawn at the last point
plotted.

Shapenumber is the number of the shape, in the shape
table, to be drawn. Shapenumber must be in the range
of 0 through n, where n is the number of shape
definitions in byte 0 of the shape table (max = 278).

X is the horizontal co-ordinate arithmetic expression.

Y is the vertical co-ordinate arithmetic expression.

CHAPTER 2

Page 48

END

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

END

END stops program execution and returns control to
the user.

None.

- No BREAK IN message is displayed.

- END may be used in either the immediate or deferred
execution mode.

FLASH

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 49

FLASH

FLASH sets the output video mode so that the
computer's output is black letters on a white back­
ground. This the same as reverse video.

None.

- FLASH does not effect the display of characters as
you type them into the computer nor characters
already on the screen.

- FLASH may be used in either the immediate or
deferred execution mode.

CHAPTER 2

Page 513

FN

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

FN name (arithexpr2)

See DEF FN name (arithexprl)

Arithexpr2 may be any valid arithmetic expression.

- FN may be used in immediate or deferred execution
mode.

?UNDEF'D FUNCTION ERROR
If the function has not been DEFined yet.

FOR

Syntax

Description

Parameters

Notes

Page 51

FOR realvar = aexprl TO aexpr2 [STEP aexpr3]

Controls looping in a program. The lines of the
program between the FOR statement and the
corresponding NEXT statement comprise the body of the
loop.

Realvar is incremented by aexpr3 and compared to
aexpr2 at the bottom of the FOR ••• NEXT loop. Aexpr3
is optional. It defaults to 1.

The portion of the program inside the loop executes
at least once.

Realvar is set to aexprl, and the statements
following the FOR are executed until a statement

NEXT realvar

is encountered.

is incremented by aexpr3 and compared to
If realvar is greater than aexpr2, then
proceeds with the statement following the

realvar is less than or equal to aexpr2,
proceeds from the statement following the

Realvar
aexpr2.
execution
NEXT. If
execution
FOR.

If aexpr3 is less than 0 then operation is different
after it is added to realvar. If realvar is less
than aexpr2, execution proceeds with the statement
following the NEXT. If realvar is greater than or
equal to aexpr2, the loop is repeated.

The arithmetic expressions (aexpr) which form the
parameters of the FOR loop may be reals, real
variables, integers, or integer variables. Realvar
must be a real variable.

- Each active FOR ••• NEXT loop uses 52 bytes in
memory.

- FOR ••• NEXT loops may be used in immediate or
deferred execution mode.

- TO run a FOR ••• NEXT loop in immediate-execution
mode, the FOR statement and the NEXT statement
should be included in the same line (a line is up
to 239 characters long).

CHAPTER 2

Page 52

FOR (cont'd)

Error
Messages

Examples

caveat

CHAPTER 2

?SYNTAX ERROR
For attempting to use an integer variable
realvar.

?NEXT WITHOUT FOR ERROR
If FOR ••• NEXT loops cross each other.

See NEXT for more information.

for

If the letter A is used immediately prior to TO, do
not allow a space between the T and O.

FOR I=BETA TO 56

is fine, but

FOR I=BETA T 0 56

parses as

FOR I=BET AT ~56

and generates a

?SYNTAX ERROR

on execution.

GET

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 53

GET var

Fetches a single character from the keyboard.
user is not required to press the return key.
character is not displayed on the screen.

Accepts string or numeric variables.

- Ctrl @ returns the null character (ASCII 0).

- Break interrupts program execution.

The
The

- If var is a numeric variable, then +, -, ctrl @, E,
space, colon, comma, and the period return zero as
the typed value.

- GET may be used in deferred execution mode only.

?EXTRA IGNORED
For issuing a GET which receives a colon or comma for
a numeric variable.

?SYNTAX ERROR
For typing a return or non-numeric input for a
numeric variable.

Because of the limitations on numeric variables, it
is recommened that programmers GET numbers using
string variables (GET stringvar). Convert the
resulting string to a number using the VAL function.

CHAPTER 2

Page 54

GOSUB

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

GOSUB linenumber

The program branches to the indicated line. When a
RETURN statement is executed, the program branches to
the statement immediately following the most recently
executed GOSUB.

Linenumber must correspond to a line in the program.

- Each active GOSUB (that has not RETURNed yet) uses
14 bytes of memory. Each time a GOSUB is executed,
the address of the following statement is stored on
top of a "stack" of return addresses. The program
may return to the correct statement by looking on
the top of the stack. A RETURN or a POP removes
the top address of the RETURN stack.

- GOSUB may be used in immediate or
execution mode.

deferred

- If used in immediate mode, the program branches to
linenumber. Variables are kept. On RETURN the
program halts like END.

- See RETURN and POP for more information.

?UNDEFINED STATEMENT ERROR IN linenumber
If the linenumber of GOSUB does not correspond to an
existing program line. IN linenumber indicates the
program line containing the GOSUB statement.

11313 DATA 12
1113 READ A
1213 GOSUB 51313
1313 PRINT A
1413 END
51313 A = A*5
5113 RETURN
RUN
613

GOTO

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 55

GOTO linenumber

Branches to the line whose number is linenumber.

Linenumber must be the number of a line in the
program.

- GO TO may be executed in immediate or deferred
execution mode.

?UNDEF'D STATEMENT ERROR IN number
If there is no such line with linenumber, or if
linenumber is absent from the GOTO statement. Number
indicates the number of the line containing the GOTO
statement.

10 A = 0
20 GO TO 40
30 A = 99
40 PRINT A
RUN
0

CHAPTER 2

Page 56

GR

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

GR

Sets the screen for low-resolution GRaphics mode (80
by 40).

Leaves a 4 line text window at the bottom of the
screen.

Clears the screen to black and moves the cursor to
the text window.

Sets COLOR to zero.

None.

- See MODE#, HLIN, VLIN, COLOR and TEXT for more
information.

HCOLOR

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 57

HCOLOR = arithmetic-expression

This command sets the high-resolution GRaphics color
to that specified by the value of arithmetic-expres­
sion.

The range of values for arithmetic-expression is from
(3 through 255.

- In the low-resolution graphics mode, HCOLOR has no
meaning.

CHAPTER 2

Page 58

HGR

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

HGR

Sets the screen for High-resolution GRaphics mode
(180 by 160).

Displays the bottom 4 lines of the text window below
the graphics.

Clears the screen to black and displays page 1 of
memory.

None.

- HCOLOR is not changed.

- Text screen memory is not affected.

- Leaves the text "window" at full screen, but only
the bottom 4 text lines are visible below the
graphics. The cursor will still be in the text
"window", but may not be visible unless moved to 1
of the bottom 4 lines.

- See MODE#, PAGE#, GR, HGR2, TEXT and COLOR for more
information.

If the reserved word HGR
characters of a variable
executed before the

? SYNTAX ERROR

is used
name, the

appears. Executing the statement

HGRIP=4

as the
HGR

first
may be

sets high-resolution graphics mode, which may erase
the program.

HGR2

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

HGR2

Sets the screen to full-screen
GRaphics mode (28~ by 192).

Page 59

High-resolution

Clears the screen to black and displays page 2 of
memory.

None.

- No portion of the text screen memory is displayed.

- HCOLOR is not changed.

- Text screen memory is not affected.

- See MODE#, PAGE#, GR, HGR, TEXT
for related information.

?SYNTAX ERROR

and HCOLOR

If the reserved word HGR2 appears as the first
characters of a variable name.

If the reserved word HGR2 is used as the first
characters of a variable name, the HGR2 may be
executed before the

?SYNTAX ERROR

appears. Executing the statement

l4~ IF X > 15~ THEN HGR2PIECES = 12
clears the screen, and may erase part of the program.

CHAPTER 2

Page 60

HLIN

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

HLIN Xl, X2 AT Y

In low-resolution GRaphics mode, draws a Horizontal
LINe from (Xl, Y) to (X2, Y).

Xl and X2 are arithmetic expressions in the range 0
to 79. Y is an arithmetic expression in the range 0
to 47.

- HLIN has no visible effect when used in high­
resolution graphics mode.

- The "H" in "HLIN" refers to horizontal, not high­
resolution. Except for HLIN and HTAB, the prefix
"H" refers to a high-resolution instruction.

- See GR, MODE* and COLOR.

?ILLEGAL QUANTITY ERROR
If Xl or X2 are less than 0 or greater than 79, or if
Y is less than 0 or greater than 47.

If HLIN is used on a TEXT window, a line of
characters is placed where the line of graphic dots
would have been plotted. (A character occupies the
space of 2 low-resolution dots stacked vertically.)

HOME

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 61

HOME

HOME moves the cursor to the upper left screen
position within the scrolling window and clears all
text within the window.

None.

- HOME may be used in either the immediate or
deferred execution mode.

CHAPTER 2

Page 62

HPLOT

Syntax

Description

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

HPLOT Xl, Yl
HPLOT TO X2, Y2
HPLOT Xl, Yl TO X2, Y2

This command will draw a high-resolution dot or line.
If only Xl and Yl are specified, then a dot will be
drawn. If only X2 and Y2 are specified, then a line
will be drawn from the last point plotted to the co­
ordinates specified. If both the Xl, Yl and X2, Y2 co­
ordinates are specified, then a line will be plotted
from the Xl, Yl co-ordinates to the X2, Y2 co-ordi­
nates.

HTAB

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 63

HTAB arithmetic-expression

HTAB moves the cursor horizontally from the extreme
left of the current screen line.

arithmetic-expression is a cursor screen position and
must be in the range 1 through 255.

- Assume the line in which the cursor is located has
255 positions, 1 through 255. Regardless of the
text window width you may have set, positions 1
through 80 are on the current line, positions 81
through 160 are on the next line down, and so on.

- HTAB's moves are relative to the left margin of the
text window, but independent of the line width.

- HTAB can move the cursor outside the text window,
but only long enough to PRINT one character.

- To place the cursor in the leftmost position of the
current line, use HTAB 1.

- The
HTABs
cause
lower
80} +

effects of HTAB and VTAB are not parallel.
beyond the right edge of the screen do not
an error message. The cursor jumps to the

line and tabs to «arithmetic-expression) MOD
1.

- HTAB may be used in either immediate or deferred
execution mode.

If arithmetic-expression is out of range,
?ILLEGAL QUANTITY ERROR message is displayed.

the

HTAB NUM moves the cursor to the horizontal position
specified by the variable called NUM.

CHAPTER 2

Page 64

IF

Syntax

Description

Parameters

Notes

Error
Messages

Examples

CHAPTER 2

IF expr THEN instruction [{: instruction }]
IF expr THEN [GOTO] linenumber
IF expr [THEN] GOTO linenumber

Compares an expression. If expr is true, then
statements following the THEN are executed. If expr
is false execution passes on to the instruction in
the next numbered line of the program.

If expr is an arithmetic expression whose value is
not zero (and whose absolute value is greater than
about 2.93873E-39), expr is considered to be true.

If expr is an arithmetic expression whose value is
zero (or whose absolute value is less than about
2.93873E-39), expr is considered to be false.

If expr is an expression involving string expressions
and string logical operators, expr is evaluated by
comparing the alphabetic ranking of the string
expressions as determined by the ASCII codes for the
characters involved (see Appendix K).

UNIBASIC compares strings character by character. If
2 strings contain the same characters, and they are
the same length, then the 2 strings are equal. If
stringl is equal to string2 when compared character
by character, but stringl has more characters than
string2, then stringl is greater than string2. The
first mismatched character determines which string is
greater.

- IF may be used in deferred execution mode only.

?SYNTAX ERROR
Causes by a THEN without a corresponding IF or an IF
without a corresponding THEN. Caused by trying to
execute IF in immediate execution mode.

This statement

IF A THEN A=B

compares A to 0 (zero).

Page 65

IF (cont'd)

These are equivalent:

IF A=3 THEN 160
IF A=3 GOTO 160
IF A=3 THEN GOTO 160

Caveat Before THEN, the letter A causes parsing problems:

IF BETA THEN 230

parses to

IF BET AT HEN230

which generates a

?SYNTAX ERROR

message on execution.

CHAPTER 2

Page 66

IN#

Syntax

Description

Parameters

Notes

Error
Messages

Examples

caveat

CHAPTER 2

IN# arithexpr

Specifies which peripheral will provide input for
subsequent INPUT statements.

IN# 0
Indicates that subsequent input will be from the
keyboard instead of the peripheral. $lot 0 is not
addressable from uniBasic for use with a peripheral
device. All values other than 0 are illegal.

- IN# may be used in immediate or deferred execution
mode.

- See MODE#.

?ILLEGAL QUANTITY ERROR
If arithexpr is not equal to zero.

INPUT

Syntax

Description

Parameters

Notes

Page 67

INPUT [promptstring ;]var [{, var, ••• ,var}]

This command reads values from the keyboard. It waits
for the user to type a numbe,r (if var is an arithmetic
variable) or characters (if var is a string variable).
The value of the number or the string is placed into
var.

Promptstring must be a literal, if it is present. It
must appear directly after "INPUT" and be followed ~y
a semi-colon. Promptstring prints exactly as speCl­
fied. No question mark, no spaces or blanks, nor other
punctuation is printed after promptstring. If prompt­
string is used, only one promptstring may be used.

If promptstring is left out, then a question mark is
printed.

Successive variables get successively typed values.

String variables and arithmetic variables may be mixed
in the same INPUT statement, but the user's responses
must be of the appropriate types, that is the user
must respond with a number for an arithmetic variable
and a character string for a string input.

Responses must be separated by colons or commas. A
colon or a comma as the first INPUT response evaluates
as a zero or a null string. Break will interrupt an
INPUT statement only if it is the first key typed.

NUMERIC VARIABLES

INPUT accepts only real or integer as numeric input.
Arithmetic expressions are invalid. The characters +,
-, space, E, and period are legitimate parts of numer­
ic input. INPUT accepts any combination of these char­
acters in acceptable form (e.g. +E- is acceptable, +­
is not). such input, by itself, evaluates as 0. Spaces
in any position are ignored. If a colon or a comma is
the first character, the response evaluates to zero.

CHAPTER 2

)age 68

INPUT (cont'd)

Error
Messages

Examples

Caveat

:HAPTER 2

STRING VARIABLES

A response assigned to a string variable must be a
single string or literal, not a string expression.
Spaces, or blanks, preceding the first character are
ignored. within a string, all characters, except the
quotation mark, are accepted as input, except the
first non-blank character. Spaces following the last
character are accepted as part of the literal. The
comma and the colon are not accepted as characters in
the literal. If the return key <CR> alone is pressed,
the response is interpreted as a null string.

INPUT may be used in deferred execution mode only.

If a carriage return is encountered before all the
var's have been assigned, then the system will display
??

If the response contains more fields than the state­
ment expected, or if a colon exists in the final ex­
pected response (but not within a string), the system
will display
?EXTRA IGNORED

For numeric input which is not a real-, an integer, a
comma, or a colon, and for string input containing a
quotation mark, the system will display
?REENTER

If attempting to CONTinue execution after the program
has been halted by a 'break', the system will display
?SYNTAX ERROR

100 INPUT "WHAT IS YOUR NAME? ";NAME$
110 PRINT "HELLO "; NAME$; " !"
RUN
WHAT IS YOUR NAME? MIKE
HELLO MIKE !

INVERSE

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 69

INVERSE

This command sets the video output mode so that the
display shows as black letters on a white background,
instead of the normal white letters on a black back­
ground.

None.

- INVERSE does not affect the display of characters as
you type them into the computer, nor does it effect
characters already on the screen.

- INVERSE will NOT inverse lower-case letters.

- INVERSE may be used in either the immediate or the
deferred execution mode.

CHAPTER 2

Page 70

LET

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

[LET] arithvariable[subscript] = arithexpr
[LET] stringvariable[subscript] = stringexpr

This
the
the

command assigns the value of the expression on
right of the equals sign to the variable named on
left.

Arithmetic values may only be assigned to arithmetic
variables. String values may only be assigned to
string variables.

LET may be used in either immediate or deferred execu­
tion mode.

?TYPE MISMATCH ERROR
for assigning:
1) an arithmetic expression to a string variable name.
2) a string variable name to a literal ("DOG" = AS).
3) a string expression to an arithmetic variable name.

LET A=2
and
A=2
are equivalent.

If a literal assigned to an arithmetic variable name,
it is parsed as an arithmetic expression.

LIST

Syntax

Description

Parameter

Notes

LIST [line-number-I] [- line-number-2]
LIST [line-number-I] [, line-number-2]

Page 71

This command displays lines in a program on the
screen.

Line-number-1 is a program line number and it speci­
fies the first program line to be displayed.

Line-number-2 is a program line number and it speci­
fies the last program line to be displayed.

- If no parameters are specified, the entire program
is displayed.

- If line-number-1 is a 0 and line-number-2 is not
specified, the entire program is displayed.

- If line-number-l is specified without a delimiter,
or if line-number-1 = line-number-2, then just the
line numbered line-number-1 is displayed.

- If line-number-l and a delimiter are specified, then
the program is listed from line-number-1 through the
end.

- If a delimiter and 1ine-number-2 are specified, then
the program is listed from the beginning through the
line numbered line-number-2.

- If line-number-I, a delimiter, and line-number-2 are
all present, then the program is listed from the
line numbered line-number-1 through the line number­
ed 1ine-numbered-2, inclusive.

- If more than one line is listed, and line-number-1
in the LIST command does not exist in the actual
program, then the LIST command will use the next
greater line that does exist.

- If line-number-2 in the LIST command does not exist
in the program, then the LIST command will use the
next smaller line number that does exist.

CHAPTER 2

Page 72

LIST (cont'd)

Error
Messages

Examples

Caveat

:::HAPTER 2

- Since UNIBASIC "tokenizes" your program lines before
storing them, thus removing unnecessary spaces in
the process, the LIST command "reconstitutes" the
tokenized program lines, adding spaces according to
its own rules. For example

l~ C=+5/-6:B=-5
becomes

l~ C = + 5 / - 6:B = - 5
when listed.

- LIST may be used in either immediate or deferred ex­
ecution mode.

LIST displays the entire program.

LIST 1~-5~ displays those program lines numbered l~
through 5~.

LIST ,45 displays all program lines from the begining
of the program through line number 45.

LOAD

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 73

LOAD filename

This command causes UNIBASIC to attempt to "load" into
memory the filename specified from disk as a UNIBASIC
program.

Filename is the name of a disk file in the form speci­
fied in the UNIBASIC USER'S GUIDE.

CHAPTER 2

Page 74

MODE#

Syntax

Description

Parameters

CHAPTER 2

MODE# modenumber

This command selects various graphics and text screen
options, based on the value of modenumber. This state­
ment is executed instead of PEEKing and POKEing.

Modenumber has the following options and values:

Mode# Option

o Initializes video to 80 columns by 24 lines

MODE#0 : TEXT

1 Reset the ERROR FLAG to OFF

Note: If the ERROR FLAG is ON, then when an attempt
is made to plot a point outside of the screen
window, an OUT OF RANGE ERROR message is given
and execution is terminated.

2 Set the ERROR FLAG to ON

3 Set COLOR to OFF

LSB of COLOR BYTE o for BLACK & WHITE

MODE#3

4 Set COLOR to ON

LSB of COLOR BYTE 1 for COLOR

MODE#4

5 Mixed Graphics and Text

for TEXT of 40 columns by 24 lines

MODE#5 : TEXT :

for GRAPHICS of 320 x 240 pixels

MODE#5 : HGR

MODE# (cont'd)

Page 75

6 Mixed Graphics and Text

for TEXT of 40 columns by 48 lines

MODE#6 : TEXT :

for GRAPHICS of 320 x 480 pixels

MODE#6 : HGR

7 Mixed Graphics and Text

for TEXT of 80 columns by 24 lines

MODE#7 : TEXT :

for GRAPHICS of 640 x 240 pixels

MODE#7 : HGR

8 Mixed Graphics and Text

for TEXT of 80 columns by 48 lines

MODE#8 : TEXT :

for GRAPHICS of 640 x 480 pixels

MODE#8 : HGR

9 INTERNAL USE ONLY

lxx Mixed Graphics and Text

the graphics are as chosen on the preselected
page with xx lines of text on the preselected
MIXED page
where xx = the number of lines of text in the

range of from 0 to the maximum num­
ber of lines on the MIXED page.

Example

MODE# 100
sets 0 lines of text, all graphics
MODE# 106

CHAPTER 2

Page 76

Notes

Error
Messages

Caveat

CHAPTER 2

sets 6 lines of text, rest of screen graphics

See GR, HGR, HGR2, and TEXT.

NEW

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 77

NEW

This command clears UNIBASIC program memory and resets
UNIBASIC so that it can accept a "new" program.

None.

CHAPTER 2

Page 78

NEXT

Syntax

Description

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

NEXT [realvar]

This command is used with the FOR command to control
looping. The NEXT command terminates, or marks the
logical end point, in a program, of a loop.

See the FOR command.

NORMAL

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

NORMAL

This command sets the video output to
white letters on a black background,
"normal" video mode.

None.

Page 79

the mode
which is

of
the

NORMAL may be used in either the immediate or the de­
ferred execution mode.

CHAPTER 2

Page 80

NOTRACE

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

NOTRACE

This command turns off the TRACE debugging option.

None.

- See the TRACE command.

- NOTRACE may be used in either the immediate or the
deferred execution mode.

Page 81

ON GOTO
ON GOSUB

Syntax ON arithexpr GOTO linenumber [{,linenumber}]
ON arithexpr GOSUB 1inenumber [{,linenumber}]

Descriptions

Parameters

Notes

Error
Messages

Examples

Caveat

ON ••• GOTO branches to the line number whose position
in the list corresponds to arithexpr.

ON ••• GOSUB operates in a similar fashion, but as a
subroutine call rather than a branch.

If arithexpr is equal to 0 or greater than the number
of listed 1inenumbers, then execution proceeds to the
next statement.

Arithexpr must be in the range of from 0 to 255.

See the GOTO and GOSUB commands.

If arithexpr is less than 0 or greater than 255, then
the system will display
?ILLEGAL QUANTITY ERROR

100 INPUT "TYPE A NUMBER (1, 2, OR 3) >";NUM
110 ON NUM GOTO 150, 200, 250
120 PRINT "SORRY, "NUM" IS NOT A VALID CHOICE."
130 GO TO 100
150 PRINT "NUM IS 1": GOTO 100
200 PRINT "NUM IS 2": ~OTO 100
250 PRINT "NUM IS 3": GOTO 100
RUN
TYPE A NUMBER (1, 2, OR 3) >5
SORRY, 5 IS NOT A VALID CHOICE.
TYPE A NUMBER (1, 2, OR 3) >3
NUM IS 3
TYPE A NUMBER (1, 2, OR 3) >500
?ILLEGAL QUANTITY ERROR

CHAPTER 2

Page 82

ONERR GOTO

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

ONERR GOTO linenumber

This command causes an unconditional branch to the
program line indicated by linenumber, when an error
occurs in the program. This command must be placed in
the sequence of execution ahead of the statement that
an error is expected to occur in.

Error messages are suppressed. Execution of the pro­
gram is NOT halted. Error codes are available to indi­
cate the type of error that occurred. The error codes
are:

o NEXT WITHOUT FOR
5 END OF DEVICE
6 FILE NOT FOUND
8 INPUT/OUTPUT ERROR
9 DISK FULL
16 SYNTAX
22 RETURN WITHOUT GOSUB
42 OUT OF DATA
53 ILLEGAL QUANTITY
69 OVERFLOW
77 OUT OF MEMORY

90 UNDEFINED STATEMENT
107 BAD SUBSCRIPT
120 REDIMENSIONED ARRAY
133 DIVISION BY ZERO
163 TYPE MISMATCH
176 STRING TOO LONG
191 FORMULA TOO COMPLEX
224 UNDEFINED FUNCTION
254 BAD RESPONSE TO INPUT

STATEMENT

Linenumber must be the number of a statement in the
program.

The ONERR GOTO statement must be executed before the
occurance of an error to avoid program interruption.

See the RESUME command

?NEXT WITHOUT FOR ERROR
?RETURN WITHOUT GOSUB ERROR
For a return to a NEXT or RETURN after error handling.

Care must be taken when handling errors that occur
within FOR ••• NEXT loops or between GOSUB and RETURN.
The pointers and RETURN stacks are disturbed after
errors if ONERR ••• GOTO is in effect. The error
handling routine must return to the FOR or GOSUB
statement, NOT the NEXT or RETURN statement.

PAGE#

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

PAGE#l
PAGE#2

Page 83

This command selects a high resolution page for plot­
ting.

None.

Permits drawing in the background while the previous
drawing is displayed.

- Does not change the page that is displayed on the
screen.

CHAPTER 2

Page 84

PEEK

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

PEEK (address)

This command is to "read" a location in memory.

Address is the arithmetic expression whose value is
the location to be PEEKed.

A list of PEEKs and POKEs that are implemented in
UNIBASIC is included in the appendices.

PLOT

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 85

PLOT x, Y

In low resolution graphics mode, this command places a
dot on the screen at screen location (x, y).

X and y must be arithmetic expressions.

X must be in the range of 0 to 79.

Y must be in the range of 0 to 47.

The origin (0,0) is the upper left corner of the
screen.

The most recently executed COLOR statement determines
the color of the dot.

PLOT has no visible effect when used in HGR2 mode.
This is true even if GR precedes PLOT, because the
screen is not "looking at" the low resolution graphics
page (page one) of memory.

See the GR and the TEXT commands.

?ILLEGAL QUANTITY ERROR
If the arithmetic expression for X is not in the range
of 0 to 79 or if the arithmetic expression for Y is not
in the range of 0 to 47.

PLOT 0,0

places a dot in the upper left corner of the screen.

Attempting to PLOT to a TEXT window results in a char­
acter being placed where the dot would have appeared.
(A character occupies the space of 2 low resolution
graphics characters stacked vertically.)

CHAPTER 2

)age 86

POKE

Syntax

Description_

Parameters

Notes

Error
Messages

Examples

Caveat

HAPTER 2

POKE address, arithexpr

This command places the eight bit value of arithexpr
in the location address.

Address is a 32 bit real number.

Arithexpr is an arithmetic expression whose value is
in the range of 0 to 255.

POP

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 87

POP

This command has the effect of a RETURN without the
GOSUB. The next RETURN encountered will branch to the
statement after the second most recently executed
GOSUB.

None.

This command is called "POP" because it POPs 1 address
off of the "stack" of RETURN addresses.

See the GOSUB and the RETURN commands.

?RETURN WITHOUT GOSUB ERROR
If POP is executed before a GOSUB has been encounter­
ed.

CHAPTER 2

Page 88

POS

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

:HAPTER 2

POS (expression)

This command returns the cursor's current
position on the screen, counting from
window's leftmost position (which is 0).

horizontal
the text

Expression is a dummy parameter which is used to se­
parate the parenthesis. It must be a legal number, a
legal string, a legal literal, or a legal variable. If
expression is not a legal variable name, then it must
be enclosed in quotation marks (unless it is a num­
ber) •

- positions are numbered from the left, beginning with
o (for TAB and HTAB, the positions are numbered from
the left, beginning with 1).

- POS may be used in either the immediate or the de­
ferred execution mode.

PR.

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 89

PR. arithexpr

This command transfers output to the slot whose value
is arithexpr. This command specifies which peripheral
will receive output from subsequent PRINT statements.

Arithexpr is an arithmetic expression whose value is
in the range of 0 to 1.

PR. 0 indicates subsequent output will be to the dis­
play, not slot 0. Slot 0 is not addressable from UNI­
BASIC for use with a peripheral device.

PR. 1 directs output to the parallel printer port, on
the Dimension 68000 system, as well as the display.

See the IN. command.

?ILLEGAL QUANTITY ERROR
If arithexpr is less than 0 or greater than 1.

CHAPTER 2

Page 90

PRINT

Syntax

Description

Parameters

Notes

CHAPTER 2

PRINT [{expr}[{,li [{expr}]}]] [,Ii]
PRINT {i}
PRINT {,}

This command, when executed without options, causes a
line feed and a carriage return to be executed on the
screen or designated output device.

When this command is executed with options, the values
of the list of the specified expressions are printed.
If neither a comma nor a semi-colon ends the 1is-t,
then a line feed and a carriage return are executed
following the last item printed. If an item on the
list is followed by a comma, then the first character
of the next item to be printed will appear in the
first position of the next available tab field.

The first tab field comprises the leftmost 16 printing
positions in the text window (HTAB positions 1 through
16). The second tab field occupies the next 16 posi­
tions (17 through 32), and it is available for tab
field printing only if nothing is printed in position
16. The third tab field consists of the next 16
positions (33 through 48), and is available only if
nothing is printed in position 32. The remaining tab
positions follow the same rules.

If an item on the list is followed by a semi-colon,
then the next item is concatenated, it is printed di­
rectly afterward with no intervening spaces or blanks.

Items listed without intervening commas or semi-colons
are concatenated if the items can be parsed without
syntax problems.

If a period cannot be treated as a decimal point, then
it is assumed to be the number zero.

PRINT followed by a list of semi-colons does nothing
more than PRINT alone. Print followed by a list of
commas spaces across 1 tab field per comma, up to a
limit of 239 characters per instruction.

The question mark (?) may be used as an abbreviation
for the PRINT command, it LISTs as PRINT.

PRINT may be used in immediate or deferred execution
mode.

PRINT (cont'd)

Error
Messages

Examples

Caveat

page 91

A=l : B=2 : C=3 : C(4)=5 : C5=7

PRINT 1/3(2*4)51, : PRINT l(A)2(B)3C(4)C5
.333333333851 1122357

PRINT 3.4.5.6. , : PRINT A."B."C.4
3.4.5.60 10B.3.4

CHAPTER 2

Page 92

QUIT

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

~HAPTER 2

QUIT

This command returns control to CP/M-68K.

None.

READ

Syntax

Description

Parameters

Notes

Error
Messages

Examples

caveat

Page 93

READ var [{var}]

This command transfers values from a DATA list to the
variable(s) specified in this READ command. When the
first READ statement is executed in a program, then
its first variable takes on the value of the first el­
ement in the DATA list (the DATA list consists of all
the elements from all the DATA statements in the
stored program).

The second variable (if there is one) takes on the
value of the second element in the DATA list, and so
on.

When the READ statement finishes execution, it leaves
a data list pointer after the last element of data
used. The next READ statement executed (if any) begins
using the data list from the position of the pointer.

Either RUN or RESTORE resets the pointer to the first
element in the DATA list.

Successive variables get successively typed values.

String variables and arithmetic variables may be mixed
in the same READ statement, but the DATA list must
contain values of the appropriate types.

Extra data left unread is alright.

In immediate mode, you can only READ elements from
DATA statements which exist as lines in a currently
stored program. The elements of DATA in a stored pro­
gram can be READ even if the stored program has not
been RUN. Executing a program in the immediate mode
does not set the data list pointer to the first
element in the DATA list.

?OUT OF DATA ERROR IN linenumber
Attempting to READ more data than the DATA list con­
tains. Linenumber is the line number of the READ
statement which asked for the additional DATA.

?OUT OF DATA ERROR
If no DATA statement has been stored while executing
READ in the immediate mode.

CHAPTER 2

Page 94

REM

Syntax

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

REM [character(s)]

All characters, including statement separators, may be
included. Their usual meanings are ignored.

- A REM is terminated only by a <CR> (carraige re­
turn).

- When REMs are LISTed, UNIBASIC inserts one space, or
blank, after REM, no matter how many spaces were
typed after REM by the user.

- REM may be used in either the immediate of the de­
ferred execution mode.

10 REM THIS IS A REMARK
creates a comment or remark.
The comment is "THIS IS A REMARK".

Reset Button

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 95

None, just push the button.

This action immediately stops all UNIBASIC program
processing. The program that was executing is destroy­
ed.

None.

- pressing the reset button puts the Dimension 68~~~
system under the control of the monitor program. The
monitor program prompt character (:) is displayed.

CHAPTER 2

Page 96

RESTORE

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

RESTORE

This command resets the DATA list pointer back to the
beginning of the DATA list.

None.

RESTORE may be used in the immediate or the deferred
execution mode.

RESUME

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 97

RESUME

Used at the end of the error handling routines. RESUME
causes the program to resume execution at the begin­
ning of the statement in which the error occured.

None.

If an error occurs in an error handling routine, the
use of RESUME will place the program in an infinite
loop.

See the ONERR GOTO command.

CHAPTER 2

Page 98

RETURN

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

RETURN

This command causes the program to branch to the
statement following the most recently executed GOSUB.
The address of the statement branched to is on top of
the RETURN "stack".

None.

See the GOSUB and the POP commands.

?RETURN WITHOUT GOSUB ERROR
If a program encounters RETURN (and/or POP) statements
once more than it has encountered GOSUB statements.

ROT

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 99

ROT = arithexpr

This command causes the shape plotted on the high res­
olution display to be rotated angularly on the display
screen by arithexpr amount.

Arithexpr is the amount of angular rotation which is
in the range of from 0 to 255.

See the DRAW, the XDRAW, and the SCALE commands.

ROT can be used in the immediate and the deferred ex­
ecution modes.

CHAPTER 2

Page 100

RUN

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

RUN [filename]
RUN [linenumber]

This command clears all variables and starts execution
of the program currently in memory. If this command is
given with a filename, then the system attempt to load
the specified file as a UNIBASIC program and then
execute the loaded program. If this command is given
with a linenumber, then the system attempts to execute
the program in memory at the linenumber specified.

Filename is the name of a CP/M-68K file that contains
a UNIBASIC program. Filename is in the file naming
convention given in the UNIBASIC USER'S GUIDE.

Linenumber is the program line number.

- When no program is currently in memory, RUN returns
control to the user.

- RUN may be used in either the immediate or the de­
ferred execution mode.

?UNDEF'D STATEMENT ERROR
When a line number is specified, but it does not exist

RUN 40
starts executing the current program at line number 40

SAVE

Syntax

Description

Parameters

Notes

Error
Messag.es

Examples

Caveat

Page un

SAVE [filename]

This command saves a program that is ~esiding in mem­
ory onto the disk as a .program type file.

Filename is a name for the disk file in the format
described in the UNIBASIC USER'S GUIDE under file nam­
ing conventions.

- SAVE will not display a prompt.

- After the SAVE command has executed, the current
program continues executing.

- SAVE may be interrupted by pressing the reset button
only.

- SAVE may be used in either the immediate or the de­
ferred execution mode.

?SYNTAX ERROR
When the first 4 characters of a variable name are
"SAVE", an actual SAVE command must be entered or the
error message is displayed.

SAVE NEWFILE.BAS,D3
saves the program as NEWFILE.BAS on disk drive 3.

CHAPTER 2

Page 102

SCALE

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

SCALE = arithexpr

This command sets the high resolution scale size for a
shape to be drawn.

Arithexpr is the size factor and is in the range of 1
to 255. A value of 1 is for a point for point repro­
duction of the shape table definition. A value of 255
extends each vector by 255.

SCALE=0 is MAXIMUM size and not a single point.

SHLOAD

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 103

SHLOAD filename

This command loads a shape table into memory from the
disk file specified.

Filename is the name of the file on the disk that con­
tains the shape table desired. The filename follows
the FILE NAMING CONVENTIONS given earlier in this man­
ual.

- The shape table starts at location 4000 decimal in
UNIBASIC.

CHAPTER 2

Page 104

SHSAVE

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

SHSAVE filename

This command saves the shape table from memory to the
disk file specified.

Filename is the name of the file where the shape table
is to be saved. The filename follows the FILE NAMING
CONVENTIONS given earlier in this manual.

- The shape table starts at location 4000 decimal in
UNIBASIC. Data must be POKEd into the shape table.

SHSIZE

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page HJ5

SHSIZE (size)

This command is used to set the size of the shape
table to the value desi~ed.

Size is an arithmetic expression that is equal to the
desired size of the shape table.

The default size of the shape table is 500 bytes.

- Data is inserted into the shape table by using the
POKE command. The shape table starts at the location
4000 decimal.

CHAPTER 2

Page 1136

SPC

Syntax

Description

Parameters

Notes

Error
Message

Examples

Caveat

CHAPTER 2

SPC (arithexpr)

This command prints spaces, or blanks, from the cur­
rent cursor position.

Arithexpr is an arithmetic expression that specifies
the number of spaces, or blanks, to be printed. It
must be enclosed in parenthesis and be in the range of
from 13 to 255.

- SPC may only be used in a print statement.

- SPC (13) will not print a space.

- A large number of spaces may be printed by repeating
the SPC command, for example, PRINT SPC(513)SPC(255).

- The difference between HTAB and SPC is that SPC
print a specified number of spaces, while HTAB moves
the cursor to a specified position.

- When
text
next

spacing goes beyond the rightmost edge of
window, it continues at the left edge of
line.

the
the

- When printing in tab fields, spacing may be within a
tab field or across into another tab field, or it
may occupy a tab field of its own.

- If arithexpr is a real number, it will be converted
to an integer.

- SPC will be interpreted as a reserved word if the
next non-blank character is a left parenthesis.

?ILLEGAL QUANTITY ERROR
If arithexpr is out of range

N=l13 : PRINT lSPC(N)2
1 2
the above printed the digit 1 followed by 113 spaces
and then the digit 2.

STEP

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 1137

FOR realavar = aexprl TO aexpr2 STEP aexpr3

This command is used with the FOR ••• NEXT command as a
modifier to specify the looping increment amount.

Aexpr3 set the looping increment amount, and it must
be in the range of -32767 to 32767. Aexpr3 is added to
realvar at each loop iterration.

See the FOR ••• NEXT command.

11313 FOR IJ 1 TO 11313 STEP 5

21313 NEXT IJ

CHAPTER 2

Page 108

STOP

Syntax

Description

Parameters

Notes

Error
Message

Examples

Caveat

~HAPTER 2

STOP

This command causes the program execution to halt and
returns control to the user.

None.

- STOP displays the message
BREAK IN 1inenumber
where 1inenumber is line number of the statement
that contains the STOP statement.

- STOP may be used in either the immediate or the de­
ferred execution mode.

TAB

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

page 109

TAB (arithmetic-expression)

This command positions the cursor to the position spe­
cifiedby arithmetic-expression.

Arithmetic-expression must be enclosed in parenthesis.

- TAB may only be used in a PRINT statement.

- TAB will not move the cursor to the left (use HTAB).
If the value of arithmetic expression is less than
the value of the current cursor position, the cursor
is not moved.

- When TAB causes the cursor to move beyond the cur­
rent text window line, the cursor goes to the begin­
ning of the next line and continues spacing.

- TAB will be interpreted as a reserved word only if
the next non-blank character is a left parenthesis.

- TAB may be used in either the immediate or the de­
ferred execution mode.

?ILLEGAL QUANTITY ERROR
If arithmetic-expression is out of range.

CHAPTER 2

Page 110

TEXT

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

TEXT

This command sets the screen to non,;..graphics text mode
which is 80 characters per line and 24 lines on the
screen.

None.

The prompt and the cursor are moved to the last line
of the screen, which is equivalent to a VTAB 24 in the
TEXT mode.

TEXT always resets to a full screen.

TEXT does not clear the screen.
graphics will be distorted.

Low resolution

TEXT should be executed before switching from HGR2 to
GR.

See the MODE# command.

TRACE

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 111

TRACE

This command activates the debugging feature of
UNIBASIC which causes each line number in the program
to be displayed as it is executed.

None.

- When a program is displaying output, TRACE output
may be changed or destroyed.

- RUN, CLEAR, NEW, and DEL will NOT turn off TRACE.

- TRACE may be used in either the immediate or the de­
ferred execution mode.

CHAPTER 2

Page 112

VLIN

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

VLIN Y1, Y2 AT X

This command draws, in low resolution GRaphics mode, a
vertical line from the co-ordinates (X,Y1) to (X,Y2).

Y1 and Y2 are arithmetic expressions in the range of
from 0 to 47.

X is an arithmetic expression in the range of from 0
to 79.

The most recently executed COLOR statement determines
the color of the line.

VLIN has no visible effect when used in the high reso­
lution graphics mode.

See the GR, the HLIN, and the MODE# commands.

?ILLEGAL QUANTITY ERROR
If Y1, Y2 or X is out of range.

If VLIN is used on a TEXT window, a line of characters
is pJaced where the line of graphic dots would have
been plotted. (A character occupies the space of 2 low
resolution dots stacked vertically.)

VTAB

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 113

VTAB arithmetic-expression

This command moves the cursor vertically
screen. The top line is line number 1 and the
line is line number 24.

on the
bottom

Arithmetic-expression indicates the screen line number
that the cursor is moved to and must be in the range
of from 1 to 24.

- VTAB move the cursor only vertically (up or down)
and will not move it horizontally (right or left).

- VTAB makes absolute moves, relative only to the top
or bottom of the screen. the text window is ignored.

- In the graphics mode, VTAB will move the cursor into
the graphics area of the screen.

- VTAB may be used in either the immediate or the de­
ferred execution mode.

?ILLEGAL QUANTITY ERROR
If the arithmetic-expression is out of the range of
from 1 to 24.

CHAPTER 2

Page 114

WAIT

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

~HAPTER 2

WAIT address,and-mask[,xor-mask]

This command causes the program that is executing to
conditionally pause.

Address is an arithmetic expression (in the range of
-65535 to +65535) that gives the location in memory of
the word that is to be tested to determine when to end
the program pause.

And-mask is an arithmetic expression that is equiva­
lent to an 8-bit mask. The mask is ANDed with the con­
tents of <address>. For each bit, this ANDing gives a
o unless both of the corresponding bits are high (1).
If the results of this process are eight zeros, then
the test is repeated. Only when the result is non-zero
(which means at least one high (1) bit is and-mask was
matched by a corresponding high (1) bit at location
<address», is the WAIT completed and the program re­
sumes execution at the next instruction.

Xor-mask is an arithmetic expression that is Equiva­
lent to an 8-bit mask. The mask is XORed with the con­
tents of location <address> first, and then the result
of this XORing is compared against the <and-mask> as
described above. The XOR process specifies that high
(1) bit in the <xor-mask> gives a result that is the
REVERSE of the corresponding bit at location <address>
(a 1 becomes a 0; a 0 becomes a 1). A low (0) bit in
<xor-mask> give a result that is the same as the cor­
responding bit in location <address>. If <xor-mask> is
all zeros, the XOR portion does nothing.

- Only pressing the Reset Button can interrupt a WAIT.

XDRAW

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 115

XDRAW shapenumber [AT X, Y]

This command is used to draw the shape specified, from
the shape table, by shapenumber. If the optional X and
Y co-ordinates are NOT specified, then the shape is
drawn at the point that the last point on the screen
was plotted. If the X and Y co-ordinates are specifi­
ed, then the shape is drawn at those co-ordinates. The
color that the shape is plotted in is the complement
of the COLOR existing at each point being drawn over.

Shapenumber is the number of the shape definition in
the shape definition table that was previously loaded
using the SHLOAD command. Shape number is an arithmet­
ic expression.

X and Yare arithmetic expressions. X must be in the
range of from 0 to 278. Y must be in the range of from
o to 191.

?ILLEGAL QUANTITY ERROR
If any of the parameters are out of range.

CHAPTER 2

Page 116

CHAPTER 2

Page 117

C HAP T E R 3

U NIB A SIC FUN C T ION S

CHAPTER 3

Page 118

CHAPTER 3

ABS

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 119

ABS (arithexpr)

Returns the absolute value of arithexpr.
Returns arithexpr if arithexpr is greater than or
equal to 9.
Returns -(arithexpr) if arithexpr is less than 9.

Arithexpr may be any arithmetic expression.

- This function may be used wherever an expression
the same type may be used.

CHAPTER 3

Page 120

ASC

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

:HAPTER 3

ASC (string-expression)

The ASC function returns an ASCII code for the first
character of string-expression.

String-expression is the string examined. If it is a
literal string, it must be enclosed in quotation
marks, and quotation marks must not be used within
the string.

- ASC may be used in either the immediate or deferred
execution mode.

If string-expression is a null string, the ?ILLEGAL
QUANTITY ERROR message is displayed.

If the string variable STRING$ has the value "ALL",
then PRINT ASC(STRING$) will print the ASCII code 65.

100 CODE=ASC("C") will assign the ASCII code 67 to
the variable named CODE.

ATN

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

ATN (arithexpr)

Returns the arctangent in radians,
The angle returned is in the range
+pi/2.

Page 121

of arithexpr.
-pi/2 through

Arithexpr may be any arithmetic expression.

- This function may be used wherever an expression
of the same type may be used.

CHAPTER 3

Page 122

CALL

Syntax

Description

~HAPTER 3

CALL address[(arg1",arg14)

See the description of the CALL command in a previous
chapter.

cos

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 123

COS (arithexpr)

Returns the cosine of arithexpr radians.

Arithexpr may be any arithmetic expression.

- This function may be used wherever an expression
of the same type may be used.

To derive the function secant: SEC (X) l/COS(x)

CHAPTER 3

Page 124

CHR$

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 3

CHR$ (arithmetic-expression)

CHR$ is a function which
expression and returns the
corresponds to it.

evaluates arithmetic­
ASCII character which

arithmetic-expression must be in the range 0 through
255.

- Real numbers are converted to integers.

- CHR$ may be used in either the immediate or
deferred execution mode.

If arithmetic-expression is out of
?ILLEGAL QUANTITY ERROR is displayed.

range, the

100 A$=CHR$(N) will return the ASCII code for the
contents of the variable N.

DEF FN

Syntax

Description

Parameters

Notes

DEF FN name (dummyvariab1e)
FN name (arithexpr2)

arithexpr1

Page 125

Defines functions in a program. Functions may be
used wherever arithmetic expressions may be used.
After the execution of a program line containing DEF,
the DEFined function may be used in the form

FN name (argument)

where the argument may be any arithmetic expression.

The rules
function
unique) •

for using arithmetic variables
names (the first 8 characters

apply
must

Arithexpr1 may be only 1 program line in length.

to
be

Dummyvariable
variable.

must be a real number arithmetic

FN substitutes the argument for dummyvariab1e
wherever dummyvariable appears in the DEFinition.
Arithexpr1 may contain any number of variables. At
most 1 of those variables corrresponds to
dummyvariable.

- The DEFinition's dummyvariable need not appear in
arithexpr1. In that case, when the function is
used, the function's argument is ignored in
evaluating arithexprl. The function's argument
must always be legal.

- Functions may be redefined during the course of a
program.

- When a new func~ion is defined by a DEF statement,
6 bytes in memory are used to store the pointer to
the definition.

- DEF may be used in deferred execution mode only.
FN may be used in deferred or immediate execution
mode.

CHAPTER 3

Page 126

DEF FN (cont'd)

Error
Messages

Examples

caveat

'HAPTER 3

?UNDEFN'D FUNCTION ERROR
If a deferred execution DEF FN name statement is not
executed prior to using FN name.

100 DEF FN A(W} = 2 * W + W
110 PRINT FN A(23}
120 DEF FN B(X = 4 + 3
130 G = FN B(23}
140 PRINT G
150 DEF FN A(Y} = FN B(Z} + Y
160 PRINT FN A(G}

RUN
69
7
14

FN A(23} = 2 * 23 + 23
FN B(anything} = 7
new FN A(7} = 7 + 7

10 DEF FN ABC(I} = COS (I)
20 DEF FN ABC(I} = TAN (I)
The function AB is defined in line 10 and then
redefined in line 20.

User-defined string functions are not allowed.

Functions defined using an integer name (name%) for
the function name or for dummyvariable are not
allowed.

If CLEAR, NEW, DEL, or RUN destroys or skips a
DEFined function in memory, the function may not be
defined.

EXP

Syntax

Description

Parameters

Notes

Error
Messages

Caveat

Page 127

EXP (arithmetic-expression)

This function returns the value of e (the natural log­
rithm base - e=2.7l8289 to 6 places) raised to the
power which is the value of arithmetic-expression.

Arithmetic-expression mat be any valid arithmetic ex­
pression.

CHAPTER 3

Page 128

FN

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 3

FN name (arithexpr2)

See DEF FN name (arithexpr1)

Arithexpr2 may be any valid arithmetic expression.

- FN may be used in immediate or deferred execution
mode.

?UNDEF'D FUNCTION ERROR
If the function has not been DEFined yet.

INT

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 129

INT (arithmetic-expression)

This function returns the integer value that is less
than or equal to the value of arithmetic-expression.

Arithmetic-expression may be any valid arithmetic ex­
pression.

This function may be used wherever an expression of
the same type may be used.

CHAPTER 3

Page 130

LEFT$

Syntax

Description

Parameters

Notes

Error

Examples

Caveat

CHAPTER 3

LEFT$ (string-expression, arithmetic-expression)

This function returns the first arithmetic-expression
characters out of string-expression.

String-expression is the string examined.

Arithmetic-expression is converted to an integer and
its value, after conversion to integer, must be great­
er than or equal to 1 and it must be less than or
equal to 255.

If arithmetic-expression is greater than the length
of string expression, only the characters in the
string-expression are returned.

- LEFT$ may be used in either the immediate or the de­
ferred execution mode.

If the arithmetic-expression is out of range, the
"?ILLEGAL QUANTITY ERROR" message is displayed.

PRINT LEFT$("MICRO CRAFT",5) selects the first 5 char­
acters of the string "MICRO CRAFT" and returns the
string "MICRO".

LEN

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 131

LEN (string-expression)

This function returns the number of characters in
string-expression.

String-expression is the string examined.

- LEN may be used in either immediate or deferred ex­
ecution mode.

LEN ("ASTRING") returns a value for the string length
of 7.

CHAPTER 3

Page 132

LOG

syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 3

LOG (arithmetic-expression)

This function returns the natural logrithm value of
the arithmetic-expression.

Arithmetic-expression is any valid arithmetic expres­
sion.

MID$

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Page 133

MID$ (string-expression, arithmetic-expression-1,
[arithmetic-expression-2])

This function returns a sub-string, or portion of a
string.

String-expression is the string examined.

Arithmetic-expression-l is the first position within
the string from which characters are extracted. It
must be in the range of from 1 to 255.

Arithmetic-expression-2 is the number of characters to
be extracted from the string. It must be in the range
of from 1 to 255.

- If arithmetic-expression-2 is not specified, the
entire string is returned, beginning with the posi­
tion specified by arithmetic-expression-l.

- If arithmetic-expression-l is greater than the
length of string-expression, then a null string is
returned.

- If the sum of arithmetic-expression-1 and
arithmetic-expression-2 is greater than 255 or the
length of string-expression, only the sub-string is
returned.

- MID$(STR$,255,255) will return 1 character if the
length of STR$ is equal to 255, otherwise a null
string is returned.

- MID$ may be used in either the immediate or deferred
execution mode.

If arithmetic-exp.ression-l or arithmetic-expression-2
are out of range, the "?ILLEGAL QUANTITY ERROR"
message is displayed.

The "$" must not be omitted from MID$ or UNIBASIC will
interpret it as an arithmetic variable and the "?TYPE
MISMATCH ERROR" message will be displayed.

MID$("TESTSTRING",3,4) extracts 4 characters from the
string "TESTSTRING" begining in position 3 and returns
the string "STST".

MID$("TESTSTRING",5) extracts 6 characters from the
string "TESTSTRING" begining in position 5 and returns
the string "STRING".

CHAPTER 3

Page 134

MID$ (cont'd)

Caveat

CHAPTER 3

NF#

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 135

NF#

This function, NF# (No File) returns information on
the most recently opened file, as follows:

the file already existed. NF#
NF#

fcJ
1 the file did not exist and was created.

See the commands for DISK OPERATIONS in a previous
section.

IfcJ CREATED = NF#
2fcJ IF CREATED THEN GOTO 4fcJ
or the equivalent,
1fcJ IF NF# THEN GO TO 4fcJ

If the file was created, then the program branches to
line 4fcJ.

CHAPTER 3

Page 136

POL

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 3

POL (paddlenumber)

This function returns the current value of the game
control (paadle) specified by paddlenumber.

The arithmetic-expression paddlenumber must be in the
range of 0 to 3.

See the appendices for information about other game
switches.

If paddlenumber is less than 00r greater than 3, then
a "?ILLEGAL QUANTITY ERROR" message is displayed.

10 PPOS = PDL(l)
Sets the variable PPOS to the value of game control
number one.

RIGHT$

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 137

RIGHT$ (string-expressiom, arithmetic-expression)

This function returns the last arithmetic-expression
characters of string-expression.

String-expression is the string examined.

Arithmetic-expression is any valid arithmetic expres­
sion. It must be in the range of from 1 to 255.

- If arithmetic-expression is greater than or equal to
the length of the string, then the entire string is
returned.

- RIGHT$ may be used in either the immediate or the
deferred execution mode.

If arithmetic-expression is out of range,
"?ILLEGAL QUANTITY ERROR" message is displayed.

the

The "$" must not be omitted from RIGHT$ or UNIBASIC
will interpret it as an arithmetic variable, and the
"?TYPE MISMATCH ERROR" will be displayed.

PRINT RIGHT$("UNIBASIC",5) selects the last 5 char­
acters of the string "UNIBASIC" and returns the string
"BASIC".

CHAPTER 3

~age 138

RND

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

:HAPTER 3

RND (arithmetic-expression)

This function returns the a random real number that is
greater than or equal to 0 and is less than or equal
to 1.

If arithmetic-expression is greater than 0, then RND
returns a new random number each time it is used.

If arithmetic-expression is less than 0, then RND
generates the same random number each time it is used
with the same arithmetic-expression as if from a
permanent random number generator table.

If a particular negative argument is used to generate
a random number, then subsequent random numbers gener­
ated with positive arguments will follow the same se­
quence each time. A different random sequence is ini­
tialized by each different negative argument.

The reason for using a negative argument for RND is to
initialize a repeatable sequence of random numbers.

If arithmetic-expression is zero, RND returns the most
recent previous random number generated.

SCRN

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 139

SCRN (X, Y)

This function only operates in the low-resolution
GRaphics mode. This function returns the color code of
the dot whose co-ordinate is (X, Y).

CHAPTER 3

age 140

SGN

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

HAPTER 3

SGN (arithmetic-expression)

This function returns the following values:

Returns -1 If arithmetic-expression < 0
Returns 0 If arithmetic-expression 0
Returns +1 If arithmetic-expression> 0

Arithmetic-expression may be any arithmetic expres­
sion.

This function may be used wherever an expression of
the same type may be used.

SIN

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 141

SIN (arithmetic-expression)

This function returns the sine of arithmetic-expres­
sion in radians.

Arithmetic-expression may be any arithmetic expres­
sion.

This function may be used wherever an expression of
the same type may be used.

CHAPTER 3

Page 142

SQR

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 3

SQR (arithmetic-expression)

This function returns the positive square root of the
arithmetic-expression.

Arithmetic-expression may be any arithmetic expres­
sion.

STR$

Syntax

Description

Parameters

Notes

Error
Messages

"Examples

Caveat

Page 143

STR$ (arithmetic-expression)

This function converts the value of arithmetic-expres­
sion into a string.

Arithmetic-expression is evaluated before conversion.

- STR$ may be used in either the immediate or the de­
ferred execution mode.

If arithmetic-expression is outside the limits for
real numbers, then the "?OVERFLOW ERROR" message is
displayed.

4!:J N = -3.5
5!:J NN$ = STR$(N}

NN$ = "-3.5"

CHAPTER 3

Page 144

TAN

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 3

TAN (arithmetic-expression)

This function returns the tangent of the arithmetic
expression.

Arithmetic-expression may be any arithmetic expres­
sion.

This function may be used wherever an expression of
the same type may be used.

USR

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 145

USR (arith-expr)

This function is NOT implemented in UNIBASIC. See the
description of the CALL command in a previous chapter.

CHAPTER 3

Page 146

VAL

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

:HAPTER 3

VAL (string-expression)

This function attempts to convert a string into an
integer or a real number, and then return the resul­
ting number.

The first character of the string-expression must be a
legal numeric character or a space, otherwise a ~ will
be returned.

- VAL looks at each character of string-expression. If
a non-numeric character is found, the search ends
and VAL interprets the string up to that point as an
integer or real number.

- Legal numeric characters are the digits ~ through 9,
spaces, the letter E, a decimal point, and the + and
- signs.

If the absolute value of the number returned is
greater than 1E38, less than -lE38 j or the number con­
tains more than 38 digits, including zeros, then the
"?OVERFLOW ERROR" message is displayed.

4~ A$ "-l.58E-l~.3"
5~ AA = VAL (A$)

AA = -l.58E-l~

VARPTR

Syntax

Description

Notes

Error
Messages

Examples

Caveat

Page 147

VARPTR (name)

This function returns an integer whose value is the
location, in memory, of the variable whose name is
given as the argument (name). This function always re­
turns the address, in memory, of the data for the ar­
gument (name).

- A value must be assigned to the varaible given as
the argument (name) for this function prior to exe­
cution of VARPTR. Otherwise an ILLEGAL FUNCTION CALL
ERROR message results.

- A function call of the form VARPTR(A(0» is usually
specified when passing an array, so that the lowest­
addressed element of the array is returned.

- The address returned will be a signed integer in the
range of from -32767 to +32768. If a negative ad­
dress is returned, add it to 65536 to obtain the ac­
tual address.

?ILLEGAL FUNCTION CALL
A value was not assigned to (name) prior to execution
of VARPTR function.

100 CALL (VARPTR(YY»

The UNIBASIC interpreter may assign more than one
string variable (name) to the same string data in mem­
ory. The byte that immediately precedes the string
data contains an integer value that is the number of
string variables that are "linked" or are using that
data string in memory. All strings terminate with a
zero or "null" byte. Because of the way that multiple
string variables can share the same string data, the
user is strongly discouraged from writing string data
to memory using the VARPTR function.

CHAPTER 3

Page A-l

A P PEN 0 I X A

T E R MIN 0 LOG Y

TERMINOLOGY

Page A-2

TERMINOLOGY

Page A-3

TERMINOLOGY

ALPHANUMERIC. Characters which consist of letters and/or digits.

APPLEDOS. Apple Disc Operating System: The disk operating system used
in Apple computers.

APPLICATIONS PROGRAM. Programs, or software, designed for word­
processing, games, education, home-finance, and other practical uses.

ASCII. A contraction for the "American Standard Code for Information
Interchange. This standard defines the codes for a character set to be
used for information interchange. It is used to store characters in
memory and to transmit them to peripheral devices such as printers and
other computers.

BACKUP. A copy of a file that can be used in the event that the ori­
ginal is lost or damaged, or used instead of the original to protect
the original.

BASIC. A contraction for the "Beginner's All-purpose Instruction Code.
It is a computer language that is easy to learn and use. BASIC is wide­
ly used with microcomputers. BASIC was developed at Dartmouth College
with the assistance of General Electric.

BINARY. A characteristic, property, or condition in which there are but
two possible alternatives. The binary number system using 2 as its base
or radix, uses only the digits zero (0) and (1). Most computers store
numbers in binary format.

BIT. A binary digit, either 0 or 1. The most basic unit of memory in
a binary computer.

BIT MAPPED I/O. A technique whereby bits in memory are used to con-
trol the Input/Output.

BOOT. To ready a computer for use by loading the disk operating sys­
tem into the computer's temporary memory, or RAM. The term derives from
the idea that the "bootable" program loads itself into the system by
it's own bootstraps.

BYTE.
tity.
ber.

A group of eight adjacent bits that are treated as a single en­
A byte may be used to store a single character or a binary num-

CHAINING. The process where one program causes another program to ex­
ecute when it finishes. The first program is said to "chain" to the se­
cond if it transfers control to the next program and it keeps the vari­
ables from the first program intact.

CHARACTER. A string of bits (a byte) which represents a symbol that can
be displayed on a screen or printed.

TERMINOLOGY

Page A-4

CHARACTER COORDINATES. The position on the screen denoted by a line
number and a character position within that line. The standard Dimen­
sion screen consists of 80 columns of characters by 24 lines of charac­
ters. See SCREEN COORDINATES.

CHARACTER SET.
computer. The
Characters 0-127
special symbols.

All the characters that can be used with a particular
Dimension character set consists of 256 characters.

are the ASCII character set. The other 128 are

CHIP. An integrated circuit made by etching myriads of transistors
and other electronic components onto a wafer of Silicon a fraction of
an inch on a side.

COMMAND. An order to the computer to execute a task.

COMPILER. A computer program that translates a computer language such
as BASIC to a form known as machine language, which is a form that can
be interpreted or executed directly by a computer.

CONTINUOUS FORMS. Sheets of perforated paper with sprocket holes on
the side that can be fed into a printer continuously rather than one
sheet at a time. (Usually Fan-Folded)

CONTROL KEY. Key that executes commands, in conjunction with other
keys pressed simultaneously.

COPY. To duplicate a file or program in order to retain the original
and work on the duplicate. Usually refers to duplicating one disk to
another. Also see BACKUP.

COpy PROTECT.
copied.

A technique which prevents a diskette from being

CP/M. Control Program for Microprocessors, developed by Gary Kildall
of the Digital Research Corp. The disk operating system that has become
an industry standard for business-oriented personal computers.

CPU (Central Processing unit). The chip that directs the flow of
information within the computer and does the actual computing. Also
frequently used to refer to the physical part of the computer that
contains the CPU chip and other ancillary hardware.

CRASH. Abrupt computer failure.

CRT. The Cathode Ray Tube in a television set or video display
monitor.

CURSOR. A small rectangle of light which marks the input position on
the screen.

DATA. Information that a computer processes.

TERMINOLOGY

Page A-5

DATABASE. A collection of related data, such as in inventory or a
collection of names on a mailing list.

DEFAULT. A preset system parameter value that will be used unless it
is changed.

DISK DRIVE. A device that uses a rotating platter or disk to store
data and programs.

DISK OPERATING SYSTEM (DOS). The program that instructs the
computer's CPU how to transfer information to and from a disk.

DISKETTE. A low-cost sheet of magnetic material enclosed in an enve­
lope. A diskette can be put into a disk drive and used to store data.

DISPLAY. The information on a video screen.

DOCUMENTATION. Written instructions that tell you how to use computer
hardware or software.

DOT MATRIX. A technique whereby characters are defined as a two­
dimensional array of dots.

DOUBLE DENSITY. A way of putting information on a disk that allows
the disk to store twice as much data as a single-density disk.

EDITOR. A computer program that can be used to enter and change data
on the screen.

ENHANCEMENT. Improvement.

EXCLUSIVE-OR. A Boolean operation that is true(l) if either, but not
both, of its inputs are true (1). Otherwise, the result is false (0).

FILE. A set of records stored on a device such as a diskette or tape.

FIRMWARE. A program stored in the computer's permanent memory, or
ROM. Since such a program doesn't have to be re-entered every time
the computer is turned on, it is "harder" than software.

FLOPPY DISK.
data.

A small, flexible sheet of magnetic media used to store

FONT. A set of characters.

FORMATTED DISK. A diskette that has been initialized with timing
information so that it can be read and written by a computer.

FRIENDLINESS. How easy a program or computer is to work with. A
"user friendly" program is one that takes little time to learn, or
that offers on-screen prompts, or that protects the user from making
disastrous mistakes.

TERMINOLOGY

)age A-6

GRAPHICS. Visual information constructed using objects such as lines,
circles, and rectangles.

GRAPHICS LANGUAGE. A set of commands that are used to describe how
graphics images are to be drawn.

GRAPHICS PRINTER.
the printed page.
pixel elements.

A printer capable of transferring graphics data to
Most graphics printers print dots to represent the

HALF ADDER. A circuit that sums two binary (~ or 1) inputs.

HARD COPY. Text or other work printed on paper by a printer. Same as
print-out.

HARD DISK. A rigid disk used to store information. Hard disks can
store far more information than floppy disks and can write and read
information more quickly.

HARDWARE. The physical parts of a computer system as opposed to the
programs, or software.

HIGH-LEVEL LANGUAGE. A programming language such as BASIC, written in
a kind of English shorthand rather than in numbers and symbols.

IMAGE FILE. A file on a diskette or other media that contains the
bits that comprise a graphics image. If this file is read into the
area of memory that is mapped to the screen, the image is displayed.

INITIALIZE. To reset the computer and its peripherals to a starting
state before beginning a task. Done automatically by the disk
operating system.

INTERFACE. A communication path between a computer and peripheral
devices such as printers and disk drives.

INTERFACE CARD. A printed circuit card providing the control logic
needed for communication between the computer and an external device.

INPUT/OUTPUT (I/O). An input device such as a keyboard feeds
information into the computer. An output device such as a printer or
monitor takes information from the computer and turns it into usable
form. Modems, cassettes, and disks work in both directions, so they
are I/O devices. Input and output are also used as verbs: You input
data from the keyboard.

I/O SLOT.
computer.

The location where an interface card plugs into the

K. One kilobyte, or 1,~24 bytes of memory.

TERMINOLOGY

Page A-7

LINKAGE. The establishing of a communication path between programs or
parts of programs.

LITERAL. A string of characters within quotes, i.e., "LITERAL".

LOAD. To enter a program into the computer from cartridge, cassette,
or disk.

MEMORY. An area inside the computer where data such as numbers,
characters, and program instructions are stored. A computer's memory
capacty IS measured in units known as K's. One K is equal to 1024
bytes of memory.

MENU. A list of options displayed on the screen. The options can
usually be selected by typing a single letter or number.

MICROPROCESSOR. Another name for the CPU chip.

MODEM. Short for modulator-demodulator--a piece of equipment that
links two computers over a telephone line.

MONITOR. A supervisory program that controls the sequencing of other
activities. Video device; quality of display is better than that of a
television set's.

MS-DOS. A disk operating system developed by MicroSoft. Used in
modified form by the IBM Personal Computer, under the designation PC­
DOS, and now used in a number of other computers as well.

ON-LINE. An I/O device is on-line if it is attached to the computer
via an active interface. Otherwise, it is off-line.

OPEN (FILE). Before a file can be read or written, the program must
locate the file and open it.

OPERATING SYSTEM. Programs, such as monitors and compilers, that
enable you to use a computer.

OVERLAY.
memory is
needed.

A technique whereby a program that is too large to fit
divided into segments that are loaded only as they

in
are

PAGE. The basic unit of a file.
either text or graphics.

Each page is one screen of data--

PARALLEL INTERFACE. A port that sends or receives the eight bits in
each byte all at one time. Many printers likely to be used in homes
use a parallel interface to connect to the computer.

TERMINOLOGY

Page A-8

PARSE. A procedure or technique used to separate a group or groups of
characters (i.e. letters, words, or numbers) from a line of text so
that the groups or phrases may be used in later processing.

PASCAL. A general-purpose computer language that is easy to
understand and to use.

PC-DOS. IBM's name for the disk operating system used in the IBM
Personal Computer. Similar to MS-DOS.

PERIPHERALS. Accessory parts of a computer system not considered
essential to its operation. Printers and modems are peripherals.

PIXEL. A picture element. Each pixel defines one dot on the screen.

PORT. The gateway that connects the computer to its outside world.

POWERFUL. Usually refers either to a computer with a lot of memory or
a lot of processing speed (a DIMENSION 68000 computer with 256K RAM is
"powerful") or to a program with unusual versatility (a spreadsheet is
a "powerful" business tool).

PRINT CONTROL CHARACTERS. Character codes that are not printed on
paper. Instead, they are used to cause a printer action such as move
to the top of the next page or to skip a line.

PRINTER. Transforms computer's output into hard copy.

PRINTOUT. See HARD COPY.

PROGRAM. A sequence of instructions wribten in a computer language
such as BASIC that controls what a computer does.

PROGRAMMABLE KEY. Another term for user or program defined key.

PROMPT. An on-screen hint to the u~er about what to do next.

RAM. Random Access Memory: "Temporary" memory on chips.
store data in RAM or take data from RAM at very high rates of
It's temporary, or volatile, because information stored
disappears when the computer is switched off.

You can
speed.
in it

READ.
disk.

To extract data from a computer's memory or from a tape or

RESET. See INITIALIZE.

ROM. Read Only Memory: "Permanent" memory on chips. You can read
permanently stored programs from ROM but cannot store information in
it. It's permanent memory because the information stored in ROM
remains there when you turn the computer off. (Also called firmware)

TERMINOLOGY

Page A-9

SAVE.
disk.

A command to the computer to store completed work on tape or

SCREEN COORDINATES. The x,y location of pixel elements on the screen.
The Dimension high-resolution screen consists of 640 rows. Each row
contains 480 pixels.

SCROLL. To move a video display up or down, line by line, or row by
row, character by character.

SEGMENTATION. The process of dividing a program into pieces that can
be overlayed in memory.

SERIAL INTERFACE. A port that sends or receives the eight bits in
each byte one by one, much like beads on a string. Printers that will
be located far from the computer usually require a serial interface.

SOFT-FUNCTION KEY. See USER-DEFINED KEY.

SOFTWARE. Another name for programs.

SPECIAL-FUNCTION KEY. Usually understood to mean the CONTROL, SHIFT,
ESCAPE, ALTERNATE, or PRINT SCREEN keys.

STORAGE. Usually refers to long-term storage, such as storage of
files on tape or disk.

SUPPORT. Help available from computer and software merchants. Also
used as a verb to describe what things are compatible with each other,
as in: "with a Z-80 card, the DIMENSION 68000 will support CP/M-80 and
TRS-80 software."

TRSDOS. TRS Disk Operating System: The disk operating system used in
Tandy Radio Shack's personal computers.

TYPE-AHEAD BUFFER. A set of memory locations that is used to store
characters as they are typed. The program may accept these characters
from the buffer at a slower rate than they are typed. A type-ahead
buffer is used so that if characters are being typed faster than the
program can accept them, they are not lost.

USER-DEFINED KEY. A key whose function you or a program can change,
so that a command or sequence of commands can be exected with a single
keystroke. Same as programmable key and soft-function key. Unlike a
special-function key, a user-defined key may have a predefined
purpose.

UTILILTY PROGRAM. A program that can be used for basic file
operations such as formattiing and copying diskettes and printing
files.

TERMINOLOGY

Page A-10

VOLUME. A device capable of storing one or more files. Each diskette
has a volume name that identifies it. Devices such as printers and
disk drives sometimes are specified by a volume number.

WINCHESTER DRIVE. A form of hard disk permanently sealed into a case.

WRITE. To enter information into memory or onto a tape or disk.

WRITE-PROTECT. Any technique that prevents a diskette or tape from
being written on. The write-protect notch is located on the right
side of a 5 and 1/4 inch diskette. If this notch is covered with a
piece of tape, data on the diskette cannot be written over because the
write electronics are prevented from doing so by a sensor that senses
the absense of an open notch.

TERMINOLOGY

Page B-1

A P PEN D I X B

B A C K - U P PRO C E D U R E

BACK-UP PROCEDURE

Page B-2

BACK-UP PROCEDURE

Page B-3

BACK-UP PROCEDURE

The DIMENSION 68000 System is shipped with two diskettes, the diskettes
are labeled "SYSTEM 1" and "SYSTEM 2".' It is STRONGLY recommended that
you make copies of these diskettes, and then operate off of the copies.
This protects the originals. If anything should happen to the copies,
new copies can be made, as the originals are intact. The process of
making copies of any important diskettes, so as to protect them from
damage, etc., is called "making back-ups" or "backing up".

To BACK-UP the "SYSTEM 1" and "SYSTEM 2" diskettes, perform the follow­
ing steps:

1 - TURN ON the POWER

2 - INSERT the "SYSTEM 1" diskette into DISK DRIVE A:

3 - INSERT a BLANK, UNFORMATTED DISKETTE into DISK DRIVE B:

4 - When the CP/M prompt (A)) appears at the left side of the screen,
type in the following command:

A)format(CR)

where (CR) means the "Retrn" key or the "Enter" key.
keys cause the ASCII carriage return
generated.

Both of these
code to be

5 - The format program will then display the DIMENSION 68000 FORMAT
program select menu, which looks something like the following:

Micro Craft DIMENSION 68000 Disk Formatting Program
****** 5 1/4 Inch Drives ******
A Micro Craft Standard 40 track
B Micro Craft Standard 80 track
C IBM-PC Single and Double Sided
D TRS-80 Model III
E KayPro
F Cromeco Single Density
G Osborne Single Density
****** 8 Inch Drives ******
H = 8 Inch 3740 Format, Single Density, Single Sided
I = 8 Inch TRS-16, Double Density, Double Sided
Select Type

6 - PRESS the A Key.

The format program will then ask the following

Which drive to use? (a-h)

BACK-UP PROCEDURE

?age B-4

7 - PRESS the B Key.

The format program will next ask the following:

Do you wish (F)ormat, (T)est, (D)ump, (P)rint

8 - PRESS the F Key.

The format program will then display the following message.

Starting format

After the above message is displayed, the red indicator light on
disk drive B will turn on and disk drive B will make noise as the
disk head is positioned. The disk drive will make noises every time
it repositions the disk head for another track on the disk. Format­
ting the disk takes about 62 seconds. When the disk has been for­
matted, the disk is then tested. The format program will display
the following message:

Starting test

After the above message is displayed, the format program tests the
formatted diskette by attempting to read what was written on each
track of the diskette. In this fashion, each track of the diskette
is verified. If the format program cannot verify any part of the
diskette, an error message is displayed. The error message will i­
dentify specifically the disk head, the disk track, and the disk
sector where the error occurred.

Do not attempt to use a disk that fails this test.

9 - When the format program has finished, the format program will then
ask the following:

Another function (y) or return to cpm (n)

PRESS the Y key.

10- REMOVE the diskette that has just been formatted from disk drive B
and put it aside to be used later.

INSERT another BLANK, UNFORMATTED DISKETTE into DISK DRIVE B:

11- The format program will again display the DIMENSION 68000 FORMAT
program select menu, as in step 5.

12- PRESS the A Key, as in Step 6.

13- PRESS the B Key, as in Step 7.

3ACK-UP PROCEDURE

Page B-5

14- PRESS the F Key, as in Step 8.

15- When this diskette has been formatted, the format program will a­
gain ask:

Another function (y) or return to cpm (n)

PRESS the N key

16- The format program will display the CP/M prompt (A». ENTER the
following command:

A>copy all a b [v]

This command will load the CP/M-68K DISK COPY program and instruct
the copy program to copy the contents of the diskette in disk drive
A onto the diskette in disk drive B and to verify that the informa­
tion is copied correctly.

17- After the above command has been entered, the format program will
display the following message:

(AC to ABORT)
RETURN to copy ALL from A to B

BACK-UP PROCEDURE

Page B-6

18- PRESS the <CR> Key

This will start the copying process.
display the following message:

The format program will then

*** COPYING TRACKS ***

disk
A>

o

As each diskette track is copied, the format program will display
the number of the track that it is copying on the next line. So,
that when the format program is copying track 5, the format program
will be displaying the following message:

COPYING TRACKS ***

0
1
2
3
4
5

When the last track has been copied, the format program will
display the following message:

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

full

BACK-UP PROCEDURE

Page B-7

19- MAKE a diskette LABEL for the diskette that has just been copied.
write the'label BEFORE it is put on the diskette. DO NOT ever put a
label on a diskette and then write on the label with a hard writing
instrument, such as a ball-point pen. If this is done, the diskette
may be permanently damaged, and the diskette will NOT be usable.

If it is necessary to mark on a label that is already on a disk­
ette, then use a felt-tip pen.

REMOVE the diskette from disk drive B and PUT the LABEL on the
diskette that has just been copied.

20- PUT the diskette that was formatted earlier and set aside (in Step
10) into disk drive B.

21- ENTER the following command:

A>copy all a b [v]

22- The copy program will display the following message:

(.... C to ABORT)
RETURN to copy ALL from A to B

REMOVE the "SYSTEM 1" diskette from disk drive A: and PUT the disk­
ette in a safe place for safe keeping.

Diskettes should NOT be left in direct sunlight, they should not be
exposed to magnetic fields, they should NOT be stapled, paper­
clipped, or folded. The magnetic surface should NOT be touched. Nor
should any liquid be spilled on the diskette. Also, diskettes
should not be exposed to heat above about 120 degrees F., nor
should they be exposed to cold below about 32 degrees F. (Do NOT
leave diskettes in a locked automobile in the summer!)

23- INSERT the "SYSTEM 2" diskette .into disk drive A:

24- PRESS the <CR> Key.

This will start the copying of the "SYSTEM 2" diskette.

25- When the copying is complete, REMOVE the "SYSTEM 2" diskette from
disk drive A and PUT the diskette with the "SYSTEM 1" diskette in a
safe place.

26- RE-INSERT the copied "SYSTEM 1" diskette and CONFIGURE the CP/M op­
erating system for the amount of memory on the system.

BACK-UP PROCEDURE

Page B-8

If the system has 128K bytes of Random Access Memory (RAM) install­
ed, then ENTER the following command:

A>sys128

If the system has 256K bytes of Random Access Memory (RAM) install­
ed, then ENTER the following command:

A>sys256

If the system has 384K bytes of Random Access Memory (RAM) install­
ed, then ENTER the following command:

A>sys384

If the system has 512K bytes of Random Access Memory (RAM) install­
ed, then ENTER the following command:

A>sys512

The execution of the "SYS" command will cause the CP!M-68K opera­
ting system to be configured to the memory size specified in the
"SYS" command.

It is a good idea to copy the configured diskette so that there is
a back-up of the configured "SYSTEM 1" diskette. The steps to take
are similar to the steps taken above.

BACK-UP PROCEDURE

Page C-l

A P PEN D I X C

A SCI I COD E S

ASCII CODES

Page C-2

ASCII CODES

Page C-3

American Standard Code for Information Interchange

A S C I I C H A R A C T E R S E T

7 - B I T C 0 D E

MSD 0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 III

LSD I -------+-------+-------+-------+-------+-------+-------+-------+-------
0 0000 NUL DLE SP 0 @ P

..
P

1 0001 SOH DCl 1 A Q a q
2 0010 STX DC2 .. 2 B R b r
3 0011 ETX DC3 # 3 C S c s

4 0100 EOT DC4 $ 4 D T d t
5 0101 ENQ NAK % 5 E U e u
6 0110 ACK SYN & 6 F V f v
7 0111 BEL ETB 7 G W g w

8 1000 BS CAN (8 H X h x
9 1001 HT EM) 9 I Y i y
A 1010 LF SUB * J Z j z
B 1011 VT ESC + K [k {

C 1100 FF FS < L \ 1
D 1101 CR GS M] m
E 1110 SO RS . > N A n
F 1111 SI US / ? 0 0 DEL

ASCII CODES

Page C-4

ASCII CODES

Page 0-1

A P PEN 0 I X 0

MAT H MAT I CAL FUN C T ION S

o E R I V E 0 FUN C T ION S

MATHEMATIC FUNCTIONS

Page 0-2

MATHEMATIC FUNCTIONS

SEC (X)
CSC(X)
COT (X)
ARCSIN(X)
ARCCOS (X)
ARCSEC(X)
ARCCSC(X)
ARCCOT(X)
SINH(X)
COSH(X)
TANH (X)
SECH(X)
CSCH(X)
COTH(X)
ARCSINH(X)
ARCCOSH(X)
ARCTANH(X)
ARCSECH(X)
ARCCSCH(X)
ARCCOTH(X)

MAT HEM A TIC A L FUN C T ION S

o E R I V E 0 FUN C T ION S

l/COS(X)
l/SIN(X)
l/TAN(X)
ATN(X/SQR(-X*X+l))
-ATN(X/SQR(-X*X+l))+1.5708
ATN(X/SQR(X*X-l))+SGN(SGN(X)-1)*1.5708
ATN(X/SQR(X*X-l))+(SGN(X)-1)*1.5708
ATN(X)+1.5708
(EXP(X)-EXP(-X))/2
(EXP(X)+EXP(-X))/2
(EXP(-X)/EXP(X)+EXP(-X))*2+1
2/(EXP(X)+EXP(-X))
2/(EXP(X)-EXP(-X))
EXP(-X)/(EXP(X)-EXP(-X))*2+1
LOG(X+SQR(X*X+l))
LOG(X+SQR(X*X-l))
LOG((1+X)/(1-X))/2
LOG((SQR(-X*X+l)+l)/X)
LOG((SGN(X)*SQR(X*X+l)+l)/X)
LOG((X+l)/(X-l))/2

Page 0-3

MATHEMATIC FUNCTIONS

Page 0-4

MATHEMATIC FUNCTIONS

Page E-l

A P PEN D I X E

RES E R V E D W 0 R D S

RESERVED WORDS

Page E-2

RESERVED WORDS

Page E-3

RESERVED WORDS

ABS HOME PR#
ASC HPLOT READ
ATN HTAB RECALL
CALL IF REM
CHR$ INPUT RESTORE
CLEAR INT RESUME
COLOR INVERSE RETURN
CONT IN# RIGHT$
DATA LEFT$ ROT
DEF FN LEN RND
DEL LET RUN
DIM LIST SAVE
DRAW LOAD SCALE
END LOG SCRN
EXP MID$ SGN
FOR NEW SHLOAD
FLASH NEXT SIN
GET NORMAL SPC
GOSUB NOTRACE SQR
GOTO ON STEP
GR ONERR STOP
HCOLOR PDL STORE
HGR PEEK STR$
HGR2 PLOT TAB
HLIN POKE TAN

POP TEXT
POS TRACE
PRINT VAL

VARPTR
VLIN
VTAB
XDRAW

RESERVED WORDS

Page E-4

RESERVED WORDS

Page F-l

A P PEN 0 I X F

ERR 0 R M E S SAG E S

ERROR MESSAGES

Page F-2

ERROR MESSAGES

CAN'T CONTINUE
ILLEGAL DIRECT

o NEXT WITHOUT FOR
5 END OF DEVICE
6 FILE NOT FOUND
8 INPUT/OUTPUT ERROR
9 DISK FULL

16 SYNTAX ERROR

ERROR MESSGAES

22 RETURN WITHOUT GOSUB
42 OUT OF DATA
53 ILLEGAL QUANTITY
69 OVERFLOW
77 OUT OF MEMORY
90 UNDEFINED STATEMENT

107 BAD SUBSCRIPT
120 REDIMENSIONED ARRAY
133 DIVISION BY ZERO
163 TYPE MISMATCH
176 STRING TOO LONG
191 FORMULA TOO COMPLEX
224 UNDEFINED FUNCTION
254 BAD RESPONSE TO INPUT STATEMENT

Page F-3

ERROR MESSAGES

Page F-4

ERROR MESSAGES

Page G-l

A P PEN D I X G

PEE K s and P 0 K E s

PEEKs and POKEs

Page G-2

PEEKs and POKEs

POKE 216

POKE -16368,0

POKE -16304,0

POKE -16303,0

POKE -16302,0

POKE -16301,0

PEEKs and POKEs

P 0 K E S

- Clears ERROR FLAG

- Clear Keyboard Ready

- GRaphics ON

- TEXT ON

- No Mixed TEXT and GRaphics

- Mixed TEXT and GRaphics

POKE -16300,0 - Ignored but accepted

POKE -16299,0 - Ignored but accepted

POKE -16298,0 - Sets LO RES

POKE -16297,0 - Sets HI RES

PEE K S

PEEK(216) Error Flag

PEEK(218) Reads LSB of Error Line Number

PEEK(219) Reads MSB of Error Line Number

PEEK(222) Error Code

PEEK(-16384) KEYBOARD

PEEK(-16336) TOGGLES SPEAKER ONCE

PEEK(-16287) READS GAME CONTROL *0 PUSHBUTTON

PEEK(-16286) READS GAME CONTROL *1 PUSHBUTTON

PEEK(-16285) READS GAME CONTROL *2 PUSHBUTTON

Page G-3

PEEKs and POKEs

Page G-4

PEEKs and POKEs

Page X-I

I N D E X

SYSTEM REF ERE NeE MAN U A L

INDEX

Page X-2

INDEX

ABS
Addition
ALL
ALOAD
APEEK
APOKE
APPLESOFT (TM)
A1t Arrow
Array variables
Arrays
ASAVE
ASC
ASCII codes
Assembly language
AT
ATN

BASIC
Binary
BLOAD
Boolean operations
Break
BSAVE

CALL
Carriage Return
CATALOG
Character set
CHR$
CLEAR
CLOSE
COLOR
Command level
Concatenation
Constants
CONT
Control characters
COS

DATA
DEF FN
DEL
DIM
Direct mode
Division
DRAW

subroutines

INDEX

119
17
12~
27
29
3~

7
25
13, 14, 15
12, 13, 14,
28
12~
21, 64, 12~

32
31
121

3, 7
19, 2~

42
19
26
42

32, 122
9, 1~

33
9
124
35
41
34

9~
11, 12
36
1~
123'

37
39,125,128
44
45
8
17
31, 47

Page X-3

15

INDEX

Page X-4

Edit mode 22, 25
END 48
Error codes 82
Error handling 82
Error messages 17
Error trapping 82
Escape Key 9
Exponentiation 17
Expressions 16, 17, 18
EXP 127

File Naming Conventions 7
Fixed point Constants 11
FLASH 49
FN 50, 128
Format 8
FOR ••• NEXT 51, 78
Functions 3, 21
Floating Point Constants 11

GET 53
GOSUB 54
GOTO 55
GR 56

HGR 58
High Resolution Graphics 22, 47
HCOLOR 57
HLIN 31, 60
HPLOT 62
HTAB 63

IF ••• GOTO 64
IF ••• GOSUB 64
Indirect mode 8
INPUT 67
INT 129
Integer 12, 13
INVERSE 69

LEFT$ 130
LEN 131
LET 70
Line feed 9
Line Format 8
Line numbers 8
LIST 71
LOAD 73
LOG 132
Logical operators 18
Loops 51, 78, 107

INDEX

Page X-5

MID$ 133
MODE 74
Multiplication 17

Negation 17
NEW 77
NF# 135
NORMAL 79
NOTRACE 80
Numeric constants 12, 13
Numeric variables 12, 13

ONERR GOTO 82, 97
ON ••• GOTO 81
ON ••• GOSUB 81
OPEN 41
Operators 82
Overflow 17, 143

PAGE# 83
POL 136
PEEK 84
PLOT 85
POKE 86
POP 87
POS 88
PR# 89
Precision 11, 13, 16
PRINT 41, 90

QUIT 92

Random numbers 138
READ 42, 93
Relational operators 18, 19
REM 94
Reset Button 95
RESTORE 96
RESUME 97
RETURN 98
RIGHT$ 137
RND 138
ROT= 99
RUN 100

INDEX

Page X-6

SAVE un
SCALE 102
SCRN 139
SGN 140
Shape Table 22
SIN 21, 141
Space Requirements 13
SPC 106
SQR 22, 142
STEP 107
STOP 108
STR$ 143
String constants 10
String operators 21
string variables 12, 14
Subroutines 54
Subtraction 17
Syntax Notation 4
SYSTEM 1 diskette 7

TAB 109
TAN 144
TEXT 110
TRACE III

USR 145

VAL 146
Variable 12, 13
VARPTR 147
VLIN 31, 112
VTAB 113

WAIT 114
WRITE 41

XDRAW 31, 115

INDEX

dimansian
"II

MICRO CRAFT CORPORATION
January 5, 1984

The Unibasic Reference Manual (part number 680-0200-200)
has been revised. Here are the new, revised pages that
are to be placed into the manual.

The pages to be replaced are as follows:

Page to be
Replaced

7,8
9,10

13,14
21,22
25,26
33,34
57,58
61,62
73,74
75,76
85,86

135,136

4747 Irving Blvd .. Suite 241. Dallas. Texas 75247. (214) 630-2562

New Page

7,8
9,10

13,14
21,22
25,26
33,34
57,58
61,62
73,74
75,76
85,86

135,136

U NIB A

REF E R ENe E

M i c r 0 era f t

SIC

MAN U A L

Cor p 0 rat

V E R S ION

6 8 0 - 0 200 - 2 0 0 A

A S

o 1/0 5/8 4 REV I S ION

o n

NOTICE

Micro Craft Corporation reserves the right to make improvements
in the product described in this manual at any time and without
notice.

DISCLAIMER OF ALL WARRANTIES AND LIABILITY -- --- ---
MICRO CRAFT CORPORATION MAKES NO WARRANTIES, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS MANUAL OR WITH RESPECT TO THE
SOFTWARE DESCRIBED IN THIS MANUAL, ITS QUALITY, PERFORMANCE,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. MICRO
CRAFT CORPORATION SOFTWARE IS SOLD OR LICENSED "AS IS." THE
ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE IS WITH THE BUYER.
SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWING THEIR PURCHASE, THE
BUYER (AND NOT MICRO CRAFT CORPORATION ITS DISTRIBUTOR, OR ITS
RETAILER) ASSUMES THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR, OR CORRECTION AND ANY INCIDENTAL OR CONSEQUENTIAL
DAMAGES. IN NO EVENT WILL MICRO CRAFT CORPORATION BE LIABLE FOR
DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING
FROM ANY DEFECT IN THE SOFTWARE, EVEN IF MICRO CRAFT CORPORATION
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES
DO NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR
LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE
LIMITATION OR EXCLUSTION MAY NOT APPLY TO YOU.

This manual is copyrighted. All rights are reserved. This docu­
ment may not, in whole or in part, be copied, photocopied, trans­
lated or reduced to any electronic medium or machine readable
form without prior consent, in writing, from Micro Craft Corpora­
tion.

Copyright 1983 by Micro Craft Corporation

Micro Craft Corporation
4747 Irving Blvd.
Dallas, Texas 75247
(214)630-2562

GETTING STARTED

01/05/84 REVISION
Page 7

The Dimension 68000 system is shipped with a "SYSTEM 1" diskette and a
"SYSTEM 2" diskette. Before doing ANYTHING else, make a copy of the
"system diskettes that were shipped with your DImension 68000 system. A
step by step procedure for making these copies, or "BACKING-UP" these
diskettes is included in the "BACKING-UP" APPENDIX.

Always make a back-up of any diskettes received from Micro Craft, Inc.

If you should damage the "SYSTEM" diskette or the "LANGUAGES UTILITIES"
diskette, additional diskettes may be purchased from Micro Craft, Inc.,
for $350.00 plus shipping and handling fees.

RUNNING UNIBASIC

To use the Micro Craft, Inc., UNIBASIC interpreter on the Dimension
68000 system, insert the "SYSTEM 1" diskette into the "A" diskette
drive. Then, either type

BASIC

or

BASIC filename

where filename the name of the file that contains the basic program
to be run.

FILE NAMING CONVENTIONS

Filenames are a combination of the CP/M-68K and the APPLESOFT (TM)
naming conventions. All UNIBASIC filenames consist of three parts:

- the FILENAME
- the FILETYPE
- the DRIVE SPECIFICATION

The FILENAME consists of from one to eight characters. The first char­
acter must be alphabetic. All of the rest of the characters may be
either alphabetic or numeric.

The FILETYPE consists of a period (.), followed by up to three charac­
ters. The characters may be either alphabetic or numeric. CP/M normally
reserves certain FILETYPES (such as .BAS for BASIC programs or .$$$ for
temporary files). UNIBASIC does not require that it's programs have a
specific FILETYPE.

The DRIVE SPECIFICATION consists of a comma (,), followed by a D, fol­
lowed by either a 1, a 2, a 3, or a 4. The numbers 1, 2, 3, and 4 cor­
respond to the disk drives A:, B:, C:, AND D:. If no DRIVE SPECIFICA­
TION is included, the system will use the system default disk drive.

CHAPTER 1

01/08/84 REVISION
Page 8

MODES OF OPERATION

When UNIBASIC is initialized it displays the prompt character ":11. The
prompt character indicates that UNIBASIC is at the command level; that
is, it is ready to accept commands. At this point, UNIBASIC may be used
in either of two modes: direct mode or indirect mode.

In direct mode, UNIBASIC statements and commands are not preceded by
line numbers. They are executed as they are entered. Results of
arithmetic and logical operations may be displayed immediately and
stored for later use but the instructions themselves are lost after
execution. Direct mode is useful for debugging and for using UNIBASIC
as a "calculator" for quick computations that do not require a complete
program.

Indirect mode is used for entering programs. Program lines are preceded
by line numbers and are stored in memory. The program stored in memory
is executed by entering the RUN command.

LINE FORMAT

UNIBASIC program lines have the following format
indicate optional input):

(square brackets

nnnnn UNIBASIC-STATEMENT[:UNIBASIC-STATEMENT •••] <CR>

More than one UNIBASIC statement may be placed on a line, but each must
be separated from the last by a colon.

A UNIBASIC program line always begins with a line number and ends with
a carriage return. A line may contain a maximum of 255 characters.

A line may contain up to 256 characters. When the line displayed re­
quires more characters than a physical CRT line contains, UNIBASIC au­
tomatically continues displaying the line on the next physical line of
the CRT.

LINE NUMBERS

Every UNIBASIC program line begins with a line number. Line numbers
indicate the order in which the program lines are stored in memory.
Line numbers are also used as references in branching and editing. line
numbers must be in the range of 0 to 63999.

A period (.) may be used in the LIST, and the DELETE commands to refer
to the current line.

CHAPTER 1

Page 9

CHARACTER SET

The UNIBASIC character set is comprised of the alphabetic characters,
numeric characters, and special characters.

The alphabetic characters in UNIBASIC are the upper-case letters of the
alphabet.

The UNIBASIC numeric characters include the digits 0 through 9.

In addition, the following special characters and terminal keys are
recognized by UNIBASIC:

CHARACTER

+

*
/

(
)
%

$

[
]

&

?
<
)

@ ..
<BS)
<ESC)
<BREAK)
<CR)
<LINE FEED)

ACTION

Blank or Space
Equals sign or assignment symbol
plus sign
Minus sign
Asterisk or multiplication symbol
Slash or division symbol
Up arrow or exponentiation symbol
Left or open parenthesis
Right or close parenthesis
Percent
Number or pound sign
Dollar sign
Exclamation point or "bang"
Left or open bracket
Right or close bracket
Comma
Period
Semicolon
Colon
Ampersand or and sign
Single quotation mark (apostrophe)
Question mark
Less than
Greater than
At sign
Quotation mark
Back Space key - deletes the last character typed
Escape key
Break key
Carriage Return keys (marked "Retrn" and "Enter")
Line feed key (Ctrl-L)

CHAPTER 1

01/05/84 REVISION
Page 10

CONTROL CHARACTERS

UNIBASIC supports the following control characters:

CONTROL
CHARACTER

<break>

CTRL-C

CTRL-G

CTRL-H

CTRL-I

CTRL-L

CTRL-M

CTRL-S

CTRL-Q

CONSTANTS

ACTION

Interrupts program execution and returns to
UNIBASIC command level when at an INPUT statement.

Interrupts program execution and returns to
CP/M command levelwhen at an INPUT statement.

Rings the bell at the terminal.

Backspaces. Deletes the last character typed.

Tabs to the next tab stop. Tab stops are set
every eight columns.

Line Feed. Moves the cursor down one line.

Carriage Return. Moves the cursor to the left side of
the screen

Suspends output to the CRT.

Resumes output to the CRT after a CTRL-S.

Constants are the values UNIBASIC uses during execution. There are two
types of constants: string and numeric.

A string constant is a sequence of up to 255 alphanumeric characters
enclosed in quotation marks(").

Examples

"HELLO"
"$25,000.00"
"Number of Employees"

CHAPTER 1

01/05/84 REVI810N
Page 13

ARRAY VARIABLES

An array is a group or table of values referenced by the same variable
name. Each element in an array is referenced by an array variable that
is subscripted with an integer or an integer expression. An array
variable name has many subscripts as there are dimensions in the array.
For example, V(10) would reference a value in a one-dimension array,
T(1,4) would reference a value in a two-dimension array, and so on. The
maximum number of elements per dimension is 32,767. The maximum number
of dimensions is 88.

SPACE REQUIREMENTS

All UNIBASIC variables and arrays have a data header. The data headers
are located in the UNIBASIC's data area. The data area is located be­
tween the location of the interpreter in memory and the location of the
interpreter's stack in memory. The interpreter's stack is located just
below the CP/M kernal in memory. The CP/M kernal is located in the top
approximately 8100 (hex) of RAM. The spaces that are occupied by the
interpreter, by the data area, and by the interpreter's stack are allo­
cated dynamically. The data headers are shown below for each data type:

INTEGER

+-+-+-+-+
IpOINTERI a 4 byte pointer to the next data header
+-+-+-+-+-+-+-+-+
I VARIABLE NAME I an 8 byte ASCII string
+-+-+-+-+-+-+-+-+
ID-TI the 2 byte long data type value
+-+-+-+-+-+-+
IVALIUNUSED I the 2 byte integer value and 4 unused bytes
+-+-+-+-+-+-+

REAL

+-+-+-+-+
IpOINTERI a 4 byte pointer to the next data header
+-+-+-+-+-+-+-+-+
I VARIABLE NAME I an 8 byte ASCII string
+-+-+-+-+-+-+-+-+
ID-TI the 2 byte long data type value
+-+-+-+-+-+-+
I VALUE I I the 4 byte real value
+-+-+-+-+-+-+

CHAPTER 1

Page 14

STRING

+-+-+-+-+
IPOINTERI a 4 byte pointer to the next data header
+-+-+-+-+-+-+-+-+
I VARIABLE NAME I an 8 byte ASCII string
+-+-+-+-+-+-+-+-+
ID-TI the 2 byte long data type value
+-+-+-+-+-+-+
ILENIEL-PNTRI 2 byte string
+-+-+-+-+-+-+ length pointer

and the string element
pointer

ARRAY

+-+-+-+-+
IPOINTERI a 4 byte pointer to the next data header
+-+-+-+-+-+-+-+-+
I VARIABLE NAME I an 8 byte ASCII string
+-+-+-+-+-+-+-+-+
ID-TI the 2 byte long data type value
+-+-+-+-+-+-+
IAR-PNTRI I a 4 byte pointer to the data
+-+-+-+-+-+-+

The string element has the following layout in memory:

STRING ELEMENT

+-+-+-+- -+-+-+-+-+
ICI STRING DATA 101
+-+-+-+- -+-+-+-+-+

CHAPTER 1

1 byte link
count value

then the bytes of
string data

then a null
byte

Page 21

FUNCTIONAL OPERATORS

A function is used in an expression to call a predetermined operation
that is to be preformed on an operand. UNIBASIC has "intrinsic"
functions that reside in the system, such as SQR (square root) or SIN
(sine). All UNIBASIC intrinsic functions are described in Chapter 3.

UNIBASIC also allows "user-defined" functions that are written by the
programmer. See "DEF FN" in a later section.

STRING OPERATORS

strings may be concatenated by using +.

Example

10 A$ = "FILE": B$ = "NAME"
20 PRINT A$+B$
30 PRINT "NEW"+A$+B$
RUN
FILENAME
NEWFILENAME

strings may be compared using the same relational operators that are
used with numbers:

<> < > <= >=

String comparisons are made by taking one character at a time from each
string and comparing the ASCII codes. If all the ASCII codes are the
same, the strings are equal. If the ASCII codes differ, the lower code
number precedes the higher. If during string comparison, the end of one
string is reached, the shorter string is said to be smaller. Leading
and trailing blanks ARE significant.

Examples

"AA"<"AB"
"FILENAME"="FILENAME"
"X&">"X#"
"CL">"CL"
"kg">"KG"
"SMYTH"<"SMYTHE"
8$<"9/12/78" where
8$="8/12/78"

Thus, string comparisons can be used to test string values or to alpha­
betize strings. All string constants used in comparison expressions
must be enclosed in quotation (") marks.

CHAPTER 1

01/05/84 REVISION
Page 22

HIGH RESOLUTION GRAPHICS

There are two pages of high resolution graphics. The user selects the
page desired by issuing either a PAGE#l command or a PAGE#2 command.

SHAPE TABLE

The shape table begins at address 4000 decimal. The shape table has a
default size of 500 bytes. The shape table size can be changed by using
the SHSIZE command. The shape table is loaded either from a disk file
by using the SHLOAD command or by POKEing the values in starting at ad­
dress 4000 decimal. The shape table can be saved into a disk file by
using the SHSAVE command.

INPUT EDITING

If an incorrect character is entered as a line
be deleted with the <Back Space> (<BS>) key
the <BS> key and CONTROL-H have the effect
character and erasing it. Once a character(s)
continue typing the line as desir~d.

is being typed, it can
or with CONTROL-H. Both
of backspacing over a
has been deleted, simply

To delete a line that is in the process of being typed, type CONTROL-U.
A carriage return is executed automatically after the line is deleted.

To correct program lines for a program that is currently in memory,
simply retype the line using the same line number. UNIBASIC will
automatically replace the old line with the new line.

More sophisticated editing capabilities are provided. See the alternate
arrow commands in a later section.

To delete the entire program currently residing in memory, enter the
NEW command. (See the "NEW" command in a later section.) NEW is usually
used to clear memory prior to entering a new program.

ERROR MESSAGES

If an error causes program execution to terminate, an error message is
printed. For a complete list of UNIBASIC error codes and error
messages, see the APPENDICES.

CHAPTER 1

01/05/84 REVISION
Page 25

EDITING - alt arrow

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

alt
alt ..
alt'
alt.

These commands do not affect characters moved over by
the cursor: the characters remain both on the CRT
screen and in memory. By themselves, these commands
do not affect the program line being typed.

'alt moves the cursor one space to the right
alt .. moves the cursor one space to the left
alt • moves the cursor one space down
alt • moves the cursor one space up

None.

- To change a program line: LIST the line on the CRT
screen and use the alt. arrow commands to place the
cursor over the first character of the line. Use
the right-arrow key to move across the line,
stopping at characters you wish to change and
entering the desired character. When you are
finished changing the line, press RETURN to store
or execute the corrected line. If you did not use
LIST to display the line, do not copy the prompt
character (:).

- The alt arrow commands may be used in the immediate
execution mode only.

CHAPTER 2

Page 26

<BREAK) key

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

break

break interrupts the current process immediately
after the statement that is currently being executed.

None.

- break may be entered to interrupt an INPUT or GET
but must be the first character entered. The
interruption occurs when return is pressed for INPUT
and immediately for GET.

- BREAK IN line-number is displayed a program is
executing.

- break may be used in the deferred execution mode
only.

CATALOG

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 33

CATALOG [,On]

This command causes a list of the contents of the di­
rectory of the disk drive specified to be displayed on
the screen.

n is the number of the disk drive that the directory
is to be displayed for. The following is a correlation
of disk drive numbers and CP/M-68K drive specifiers:

DRIVE CP/M-68K
NUMBER DRIVE

1 A:
2 B:
3 C:
4 0:

If no disk drive is specified, then the disk drive
that was most recently accessed will be used.

CHAPTER 2

01/05/14 REVISION

Page 34

COLOR

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

::HAPTER 2

COLOR = arithexpr

Sets the color for plotting in low resolution
graphics mode.

The range of values for arithexpr is from 0 through
255.

Color numbers and their associated names are:

0 black 4 dark green 8 dark aqua
1 dark blue 5 grey 9 bright blue
2 red 6 orange 10 grey
3 magenta 7 pink 11 light blue

COLOR evaluates arithexpr modulo 16
value in the range of 0 to 15.

- In high-resolution graphics
no meaning.

mode

to

- See SCRN and PLOT for more information.

12 green
13 aqua
14 yellow
15 white

return a

COLOR has

When used in TEXT mode with PLOT, COLOR will affect
which character the PLOT instruction places in the
text window.

HCOLOR

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

HCOLOR = arithmetic-expression

01/05/84 REVISION
Page 57

This command sets the high-resolution GRaphics color
to that specified by the value of arithmetic-expres­
sion.

The range of values for arithmetic-expression is from
o through 15 if COLOR is ON. And, a range of 0 to 1 if
COLOR is OFF.

The colors are as follows:

COLOR = ON

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Black
Dark Blue
Red
Magenta
Dark Green
Grey
Orange
Pink
Dark Aqua
Bright Blue
Grey
Light Blue
Green
Aqua
Yellow
White

COLOR = OFF

o Black
1 = White

- In the low-resolution graphics mode, HCOLOR has no
meaning.

CHAPTER 2

01/05/84 REVISION
Page 58

HGR

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

HGR

Sets the screen for High-resolution GRaphics mode. The
resolution depends on the MODE# command.

Displays the bottom N lines of the text window below
the graphics.

Clears the screen to black and displays page 1 of
memory.

None.

- HCOLOR is not changed.

- Text screen memory is not affected.

- Leaves the text "window" at full screen, but only
the bottom N text lines are visible below the graph­
ics. The cursor will still be in the text "window",
but may not be visible unless moved to one of the
bottom N lines.

- See MODE#, PAGE#, GR, HGR2, TEXT, COLOR, and HCOLOR
for more information.

?SYNTAX ERROR
If the reserved word HGR appears as the first three
characters of a variable name.

If the reserved word HGR is used as
characters of a variable name, the
executed before the

?SYNTAX ERROR

appears. Executing the statement

HGRIP=4

sets the high-resolution graphics mode.

the first
HGR may be

HOME

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 61

HOME

HOME moves the cursor to the upper left screen
position within the scrolling window and clears all
text within the window.

None.

- HOME may be used in either the immediate or
deferred execution mode.

CHAPTER 2

01/05/84 REVISION
Page 62

HPLOT

Syntax

Description

Notes

Error
Messages

Examples

Caveat

CHAPTER 2

HPLOT Xl, YI
HPLOT TO X2, Y2
HPLOT Xl, YI TO X2, Y2 [TO Xm, Ym ••• TO Xn, Yn]

This command will draw a high-resolution dot or line.
If only Xl and YI are specified, then a dot will be
drawn. If only X2 and Y2 are specified, then a line
will be drawn from the last point plotted to the co­
ordinates specified. If both the Xl, YI and X2, Y2 co­
ordinates are specified, then a line will be plotted
from the Xl, YI co-ordinates to the X2, Y2 co-ordi­
nates.

LOAD

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

Page 73

LOAD filename

This command causes UNIBASIC to attempt to "load" into
memory the filename specified from disk as a UNIBASIC
program.

Filename is the name of a disk file in the form speci­
fied in the UNIBASIC USER'S GUIDE.

CHAPTER 2

01/05/84 REVISION
Page 74

MODE#

Syntax

Description

Parameters

CHAPTER 2

MODE# modenumber

This command selects various graphics and text screen
options, based on the value of modenumber. This state­
ment is executed instead of PEEKing and POKEing. This
statement must be immediately followed by either a
TEXT command, an HGR command, or by an HGR2 command.

Modenumber has the following options and values:

Mode# Option

o Initializes video to 80 columns by 24 lines

MODE#0

1 Reset the ERROR FLAG to OFF

MODE#l

Note: If the ERROR FLAG is ON, then when an at­
tempt is made to plot a point outside of
the screen window, an ?OUT OF RANGE ERROR
message is given and execution is termi­
nated.

2 Set the ERROR FLAG to ON

MODE#2

3 Set COLOR to OFF

MODE#3

4 Set COLOR to ON

MODE#4

5 Mixed Graphics and Text
for TEXT of 40 columns by 24 lines
or
for GRAPHICS of 320 x 240 pixels

MODE#5

MODE# (cont'd)

01/05/84 REVISION
Page 75

6 Mixed Graphics and Text
for TEXT of 40 columns by 48 lines
or
for GRAPHICS of 320 x 480 pixels

MODE#6

7 Mixed Graphics and Text
for TEXT of 80 columns by 24 lines
or
for GRAPHICS of 640 x 240 pixels

MODE#7

8 Mixed Graphics and Text
for TEXT of 80 columns by 48 lines
or
for GRAPHICS of 640 x 480 pixels

MODE#8

9 INTERNAL USE ONLY

lxx Mixed Graphics and Text

the graphics are as chosen on the preselected
page with xx lines of text on the preselected
MIXED page
where xx = the number of lines of text in the

range of from 0 to the maximum num­
ber of lines on the MIXED page.

Example

MODE#100
sets 0 lines of text, all graphics

MODE# 106
sets 6 lines of text, rest of screen graphics

CHAPTER 2

[)1/0S/84 REVISION
Page 76

MODE# (cont'd)

Notes

Error
Messages

Caveat

:::HAPTER 2

See GR, HGR, HGR2, and TEXT.

PLOT

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

PLOT x, Y

01/05/84 REVISION
Page 85

In low resolution graphics mode, this command places a
dot on the screen at screen location (x, y).

X and y must be arithmetic expressions.

X must be in the range of ° to 79.

Y must be in the range of ° to 47.

The origin (O,O) is the upper left corner of the
screen.

The most recently executed COLOR statement determines
the color of the dot.

PLOT has no visible effect when used in HGR2 mode.
This is true even if GR precedes PLOT, because the
screen is not "looking at" the low resolution graphics
page (page one) of memory.

See the GR and the TEXT commands.

?ILLEGAL QUANTITY ERROR
If the arithmetic expression for X is not in the range
of ° to 79, or if the arithmetic expression for Y is
not in the range of ° to 47.

PLOT 0,0

places a dot in the upper left corner of the screen.

Attempting to PLOT to a TEXT window results in a char­
acter being placed where the dot would have appeared.
(A character occupies the space of 2 low resolution
graphics characters stacked vertically.)

CHAPTER 2

Page 86

POKE

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

::::HAPTER 2

POKE address, arithexpr

This command places the eight bit value of arithexpr
in the location address.

Address is a 32 bit real number.

Arithexpr is an arithmetic expression whose value is
in the range of 0 to 255.

NF#

Syntax

Description

Parameters

Notes

Error
Messages

Example

Caveat

NF#

01/05/84 REVISION
Page 135

This function, NF# (NO File) returns information on
the most recently opened file, as follows:

the file already existed. NF#
NF#

o
1 the file did not exist and was created.

See the commands for DISK OPERATIONS in a previous
section.

10 IF NF# = 1 GO TO 40

or the equivalent

10 IF NF# GOTO 40

If the file was created, then the program branches to
line 40.

CHAPTER 3

01/05/84 REVISION
Page 136

PDL

Syntax

Description

Parameters

Notes

Error
Messages

Examples

Caveat

'HAPTER 3

PDL (paddlenumber)

This function returns the current value of the game
control (paddle) specified by paddlenumber.

The arithmetic-expression paddlenumber must be in the
range of 13 to 3.

See the appendices for information about other game
switches.

?ILLEGAL QUANTITY ERROR
If paddlenumber is less than 13 or greater than 3.

113 PPOS = PDL (1)
Sets the variable PPOS to the value of game control
number one.

MICRO CRAFT CORPORATION
January 5, 1984

The Unibasic User's Guide (part number 680-0200-100) has been
revised. Here are the new, revised pages that are to be placed
into the manual.

The pages to be replaced are as follows:

Pages to be
Replaced

3,4
15,16
17,18
21,22
23,24
25,26
27,28

4747 Irving Blvd, Suite 241, Dallas, Texas 75247, (214) 630-2562

New Page

3,4
15,16
17,18
21,22
23,24
25,26
27,28

M i c r 0

U N I B A S I C

U S E R
, S G U I 0 E

C r a f t C 0 r p 0 r

A S V E R S ION

6 8 0 - 0 200 - 1 (0 (0 A

(0 1/(0 5/8 4 REV I S I

a t i o n

o N

NOTICE

Micro Craft Corporation reserves the right to make improvements
in the product described in this manual at any time and without
n·otice.

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

MICRO CRAFT CORPORATION MAKES NO WARRANTIES, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS MANUAL OR WITH RESPECT TO THE
SOFTWARE DESCRIBED IN THIS MANUAL, ITS QUALITY, PERFORMANCE,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. MICRO
CRAFT CORPORATION SOFTWARE IS SOLD OR LICENSED "AS IS." THE
ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE IS WITH THE BUYER.
SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWING THEIR PURCHASE, THE
BUYER (AND NOT MICRO CRAFT CORPORATION ITS DISTRIBUTOR, OR ITS
RETAILER) ASSUMES THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR, OR CORRECTION AND ANY INCIDENTAL OR CO~SEQUENTIAL

DAMAGES. IN NO EVENT WILL MICRO CRAFT CORPORATION BE LIABLE FOR
DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING
FROM ANY DEFECT IN THE SOFTWARE, EVEN IF MICRO CRAFT CORPORATION
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES
DO NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR
LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE
LIMITATION OR EXCLUSTION MAY NOT APPLY TO YOU.

This manual is copyrighted. All rights are reserved. This docu­
ment may not, in whole or in part, be copied, photocopied, trans­
lated or reduced to any electronic medium or machine readable
form without prior consent, in writing, from Micro Craft Corpora­
tion.

Copyright 1983 by Micro Craft Corporation

Micro Craft Corporation
4747 Irving Blvd.
Dallas, Texas 75247
(214)630-2562

I N D E X

U NIB A SIC USE R ' S

01/05/84 REYISION
Page X-I

G U IDE

INDEX

Page X-2

INDEX

01/05/84 REVISION
Page X-3

INDEX
UNIBASIC USER'S GUIDE

.BAS

ALOAD
Argument in CALL statement
ASAVE
Assembly language subroutines

BASIC

CALL
CLOSE

Default extension
Disk file handling

Error handling routine
Error trapping

File naming conventions
Filename, in command line

LOAD

MODE#

OPEN

Parameters passed in CALL statement
Program file commands

Random Access files
RUN

SAVE
Sequential Access files
Syntax notation
System requirements

UNIBASIC requires

VARPTR

10

22
35
22
35

6

35
23, 24, 26, 27

10
21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32

26
26

10
9

22

15

23, 24, 25, 26, 27, 28, 29, 30,
32

35
22

27, 28, 29, 30, 31, 32
22

22
23, 24, 25, 26
5
3

3

36

INDEX

Page X-4

INDEX

01/05/84 REVISION
Page 3

We are Micro Craft Corporation, designers and manufacturers of the
the DIMENSION 68000, the first and only universal microcomputer availa­
ble today. To go with this powerful machine, we have commissioned the
design of a UNIVERSAL BASIC, UNIBASIC (TM). The version that has been
delivered with your machine is the AS Version, which has been designed
to be source code compatible with programs written in APPLESOFT (TM)
BASIC. UNIBASIC, AS Version, will run most APPLESOFT programs without
change, however UNIBASIC has some very powerful extensions. The purpose
of this manual is to explain the use of those extensions, and how to
make the most of them to unleash the power of your DIMENSION 68000.

Welcome to the realm of DIMENSION computing.

SIMILARITIES TO APPLESOFT BASIC

The UNIBASIC BASIC language interpreter, by RD Software, Inc., is very
similar to APPLESOFT (TM) BASIC, a product of Apple Computer, Inc. UNI­
BASIC also includes most of the standard APPLESOFT peeks and pokes, and
it has some powerful extensions beyond the standard APPLESOFT. UNIBASIC
also allows "peeks" and "pokes" to absolute memory locations using the
APEEK and APOKE commands.

REQUIREMENTS

UNIBASIC requires:

256K of memory minimum:

60K for UNIBASIC
64K for graphics and text buffers
32K for CP/M-68K
Additional memory to run programs

I diskette drive

All Dimension 68000 systems are shipped from the factory with a minimum
of 256K bytes of memory and 2 diskette drives, which meets the above
requirements.

INTRODUCTION

01/05/84 REVISION
Page 4

HOW UNIBASIC IS SHIPPED

UNIBASIC is shipped
Corporation, bundled
system is purchased.

as a standard offering from Micro
at no additional charge when a Dimension

UNIBASIC resides on the "SYSTEM 1" diskette.

Craft
68000

The Dimension 68000 system is shipped with a "SYSTEM 1" diskette and a
"SYSTEM 2" diskette. Micro Craft Corporation strongly advises the cus­
tomer to copy the "SYSTEM 1" and the "SYSTEM 2" diskettes onto format­
ted blank diskettes, and then to operate off of the copies and not the
originals which were shipped with the system. The process of making co­
pies of valuable information on diskettes, etc., so as to safeguard the
original information is called "backing-up". For a detailed discussion
on making "back-ups", see "BACK-UP PROCEDURE" in the appendix.

PLEASE, if you have not already made working copies of your distribu­
tion diskettes, DO IT NOW!!

HOW TO USE THIS MANUAL

The Micro Craft Corporation UNIBASIC USER'S GUIDE contains information
about UNIBASIC for the Dimension 68000 system. Also provided are chap­
ters on converting previously written programs to UNIBASIC, handling
disk files, and calling assembly language subroutines. Briefly:

This "Introduction" tells you about UNIBASIC and its special features,
your system requirements, the diskettes that you receive with your
Dimension 68000 system, and the conventions used in syntax notation. It
also lists additional sources of information about programming in
BASIC.

Chapter 1, UNIBASIC ON THE DIMENSION 68000 SYSTEM, tells you how to use
UNIBASIC and explains some of the features of UNIBASIC.

Chapter 2, CONVERTING PROGRAMS TO UNIBASIC, describes the minor
adjustments necessary to run BASIC programs in UNIBASIC.

Chapter 3, DISK FILE HANDLING, explains disk file handling procedures.
This chapter can be read as an overview or used for reference for disk
related operations while running UNIBASIC.

Chapter 4, UNIBASIC ASSEMBLY LANGUAGE SUBROUTINES, provides information
about calling assembly language subroutines.

INTRODUCTION

01/05/14 REYI81011
Page 15

This section in the manual is intended to show the differences between
APPLESOFT (TM) BASIC and UNIBASIC. To obtain information about the dif­
ferences between APPLESOFT (TM) BASIC and other BASICs, The reader is
advised to refer to the "APPLESOFT BASIC Programming Reference Manual",
published by APPLE COMPUTER, Inc.

MODE# COMMAND

The Dimension 68000 system has some significant differences from the
APPLE in the area of the video display. The APPLE, in the HIRES
graphics mode has a total of 6 colors, while the Dimension has a total
of 16 colors. The MODE# command must be followed immediately by either
a TEXT command, an HGR command, or an HGR2 command. The MODE values and
command sequences are shown below.

MODE#n where n is one of the following values:

o Initialize video to 80 columns by 24 lines.
MODE#0

1 Reset ERROR FLAG to OFF
MODE#l

Note: If the ERROR FLAG is ON, then when an attempt is made to
plot a point outside of the screen window, an OUT OF RANGE
ERROR message is given and execution is terminated.

2 Set ERROR FLAG to ON
MODE#2

3 Reset COLOR to OFF (Black & White
MODE#3

4 SET COLOR to ON
MODE#4

5 Mixed Graphics and Text
TEXT 40 columns by 24 lines
GRAPHICS = 320 x 240 pixels

MODE#5

6 Mixed Graphics and Text
TEXT 40 columns by 48 lines
GRAPHICS = 320 x 480 pixels

MODE#6

ON)

CHAPTER 2

01/05/84 IEYISION
Page 16

7 Mixed Graphics and Text
TEXT 80 columns by 24 lines
GRAPHICS = 640 x 240 pixels

MODE#7

8 Mixed Graphics and Text
TEXT 80 columns by 48 lines
GRAPHICS = 640 x 480 pixels

MODE#8

9 INTERNAL USE ONLY

1xx Mixed Graphics and Text
GRAPHICS = as chosen on the preselected Mixed page with

xx lines of text on the preselected Mixed page
where xx is 0 <= xx <= maximum number of lines

on the Mixed page.

The graphics area is defined as the equivalent space from the top of
the screen to the text line "n" (where "n" is defined to be the value
of "(maximum-lines - xx)". In other words, "n" is defaulted to 4 and
therefore in the 80 x 24 mode, the graphics portion is from line 1 to
line 20, (24 - 4 = 20), and text is lines 21 through 24.

Text can be PRINTed any where on the screen using the HTAB and VTAB
commands to define the starting point of the text to be printed. The
significance of the mixed mode print is the following:

1 - If the text is printed on a line inside of the graphics area, then
the inverse cursor will not be shown and the PRINTed text only will
show on the screen.

2 - If the text is PRINTed on a line inside of the text area, then the
normal inverse cursor will be shown.

3 - When the text PRINTed exceeds the bottom of the screen, then the
bottom "n" lines of text will be scrolled upward on the screen.

4 - Graphics can be plotted anywhere on the screen, even in the "text"
area.

Using the
lines in
graphics
line.

~HAPTER 2

last fact and setting the mode value xx to the number
the text mode (i.e. xx=24 in the 80 x 24 mode) allows

screen to scroll if a carriage return is printed on the

of
the

last

PAGE COMMAND

01/0&/84 REVISION
Page 17

To change high resolution graphics pages on the DIMENSION, use the PAGE
command. By issuing either a PAGE#l or a PAGE#2 command, the user can
select either page 1 of the high resolution graphics or page 2.

NF FUNCTION

The NF function is an extension to the standard APPLESOFT that allows
the determination of whether or not a file existed prior to the issu­
ance of an OPEN command. This can be very helpful as the system dupli­
cates APPLESOFT in that if the file does not exist, the file is then
created.

VARPTR FUNCTION

The DIMENSION 68000 has some significant extensions to the standard
APPLESOFT (TM) BASIC. The VARPTR function returns an integer whose val­
ue is the location, in memory, of the variable whose name was given as
the argument in the call to the VARPTR function. The VARPTR function is
discussed in Chapter 4 of this manual and in detail in the UNIBASIC
REFERENCE MANUAL.

CALL FUNCTION with Arguments

The CALL function can use arguments to link data to an assembly lan­
guage function. See the CALL function in Chapter 4 of this manual.

CHAPTER 2

Page 18

CHAPTER 2

FILENAMES

01/05/84 REVISION
Page 21

UNIBASIC filenames are made up of a combination of the CP/M-68K and the
APPLESOFT (TM) conventions. The filename consists of three parts;

- The FILENAME
- The FILETYPE
- The DRIVE SPECIFICATION

The FILENAME consists of from one to eight characters. The first
character must be alphabetic. All of the rest of the characters may be
either alphabetic or numeric.

The FILETYPE consists of a period (.) followed by from one to three
characters. The characters may be either alphabetic or numeric.

The DRIVE SPECIFICATION consists of a comma (,), followed by a 0,
followed by either a 1, a 2, a 3, or a 4. The numbers 1, 2, 3, and 4
correspond to the drives A:, B:, C:, and 0:. If no DRIVE SPECIFICATION
is provided, then the CP/M-68K default disk drive will be used.

As an example, the standard CP/M-68K filename B:TEST.DAT
TEST.DAT,D2 for UNIBASIC.

would be

UNIBASIC operates under the CP/M-68K operating system. CP/M forces all
FILENAMES to be 8 characters internally. If the FILENAME is less than 8
characters, then CP/M pads the FILENAME out to 8 characters with
blanks. If the FILENAME is greater than 8 characters, then CP/M
assumes that the first 8 characters are the FILENAME. CP/M then inserts
a period (.) after the first 8 characters, and then treats the next
characters, up to 3 characters, as the FILETYPE.

CP/M assumes that there is always a FILETYPE. If the FILETYPE is NOT
explicitly stated, then CP/M defines the FILETYPE to the default, which
is blanks. CP/M also assumes that the FILETYPE is always 3 characters
long. If the FILETYPE is less than 3 characters long, then CP/M pads
the FILETYPE out to 3 characters long with blanks.

CHAPTER 3

Page 22

PROGRAM FILE COMMANDS

The following commands are used to manipulate program files. Each of
these commands is discussed in detail in the UNIBASIC REFERENCE MANUAL.

SAVE <filename>

LOAD <filename>

RUN <filename>

ALOAD <filename>

ASAVE <filename>

writes to disk the program that currently
resides in memory.

Loads the program from disk into memory.
LOAD always deletes the current contents of
memory and closes all files before LOADing.

Loads the program from disk into memory and
runs it. RUN deletes the current contents
of memory and closes all files before
loading the program.

Loads an ASCII text file as the program
from disk into memory. ALOAD always deletes
the current contents of memory and closes
all files before loading the program.

writes to disk, in ASCII text file format,
the program that currently resides in mem­
ory.

BLOAD <filename>[,A<addr>] [,D<drive-number>]
Loads a binary file into memory from the
disk <filename> specified. The file is
loaded at address <addr>. If <addr> is not
specified, then the address saved in the
disk file that is the location that the
file was saved from is used.

BRUN <filename>[,A<addr>] [,D<drive-number>]
Loads a binary file into the same memory
locations from which the file was saved, or
if specified, into the address <addr>. Then
jumps to the file's first memory address
and begins to attempt to execute.

BSAVE <filename>,A<addr>,L<length>,[D<drive-number>]

CHAPTER 3

writes to disk, in binary file format, the
contents of memory at address <addr>, the
length of memory written <length> bytes, to
the disk file <filename>.

Page 23

DISK DATA FILES
SEQUENTIAL AND RANDOM ACCESS

Two types of disk data files can be created and accessed by a UNIBASIC
program; sequential access files and random access files. Both types of
files are described in the following sections.

SEQUENTIAL ACCESS

Sequential access data files are easier to create than are random
access data files, but they are limited in flexibility and speed when
it comes to accessing data. Data is written to a sequential file as
ASCII characters. These characters are stored, one after another
(sequentially), in the order that the characters are sent to the disk.
They are read back from the disk in the same way.

The statements and functions that are used with sequential files are:

OPEN
READ
WRITE
POSITION
PRINT
APPEND
CLOSE

See the UNIBASIC REFERENCE MANUAL for a more detailed discussion of
these commands.

CREATING A SEQUENTIAL ACCESS FILE

The following program steps are required to create a sequential file
and access the data in the file:

1. OPEN the file.

PRINT CHR$(4);"OPEN DATA,Dl"

2. WRITE data to the file.

PRINT CHR$(4);"WRITE DATA"
PRINT INFOl
PRINT INF02
PRINT INF03

CHAPTER 3

01/05/84 REVISION
Page 24

3. To access the data in the file,
it to READ the data.

PRINT CHR$(4) ;"CLOSE DATA"
PRINT CHR$(4) ;"OPEN DATA"

you must CLOSE the file and reOPEN

4. Use the INPUT statement to read data from the sequential file into
the program.

DIM X$(3)
PRINT CHR$(4);"READ DATA"
FOR I = 1 TO 3

INPUT X$(I)
NEXT I

Program 1 creates a sequential file, named "DATA," from information you
input at the keyboard.

PROGRAM 1 - CREATE A SEQUENTIAL DATA FILE (UNTESTED, REF. ONLY)

10 PRINT CHR$(4);"OPEN DATA.DAT,D1": REM CREATES & OPENS FILE
20 INPUT "NAME?";N$
30 IF N$="DONE" GOTO 90: REM USED TO END INPUT
40 INPUT "DEPARTMENT?";D$
50 INPUT "DATE HIRED?";H$
60 PRINT CHR$(4);"WRITE DATA.DAT": REM WRITE DATA TO FILE
70 PRINT N$,D$,H$
80 PRINT:GOTO 20
90 PRINT CHR$(4) ;"CLOSE":END
RUN
NAME?MICKEY MOUSE
DEPARTMENT? AUDIO-VISUAL AIDS
DATE HIRED? 01/12/72

NAME?SHERLOCK HOLMES
DEPARTMENT?RESEARCH
DATE HIRED? 12/03/78

NAME?EBENEEZER SCROOGE
DEPARTMENT?ACCOUNTING
DATE HIRED?04/27/78

NAME?SUPER MAN
DEPARTMENT?MAINTENANCE
DATE HIRED?08/16/78

NAME?etc.

CHAPTER 3

Page 25

Program 2 accesses and files "DATA" that was created in Program 1 and
displays the name of everyone hired in 1978.

PROGRAM 2 - ACCESSING A SEQUENTIAL FILE (UNTESTED, REF. ONLY)

10 PRINT CHR$(4);"OPEN DATA.DAT,D2": REM
20 PRINT CHR$(4) ;"READ DATA.DAT": REM
30 INPUT N$,D$,H$: REM
40 IF RIGHT$(H$,2)="78" THEN PRINT N$: REM
50 GOTO 20
RUN
EBENEEZER SCROOGE
SUPER MAN
Input past end in 20
Ok

OPENS FILE
READS

FILE
TESTS DATE HIRED

Program 2 reads, sequentially, every .item in the file. when all the
data has been read, line 20 causes an "Input past end" error. To avoid
getting this error, use the ONERR GO TO approach.

ADDING DATA TO A SEQUENTIAL FILE

Data can be added to an existing sequential access data file. It is
important, however, to follow carefully the procedure given below.

WARNING

If you have a sequential access data file residing on disk and later
want to add more data to the end of it, you must use the APPEND command
instead of the WRITE command.

CHAPTER 3

01/05/84 REVISION
Page 26

The following procedure will add data to an existing sequential access
data file called "NAMES.DAT"

1. OPEN "NAMES.DAT"

2. APPEND the new information to the end of "NAMES.DAT"

3. Now the file, on the disk, called "NAMES.DAT" includes all the pre­
vious data plus the data you just added.

program 3 illustrates this technique. It can be used to create or add
onto a file called "NAMES.DAT". For a list of error numbers, see the
UNIBASIC Reference Manual discussion regarding "ONERR ••• GOTO" on page
82.

PROGRAM 3 - ADDING DATA TO A SEQUENTIAL FILE (UNTESTED, REF. ONLY)

10 ON ERR GO TO 2000
20 PRINT CHR$(4) ;"OPEN NAMES.DAT"
30 REM ADD NEW ENTRIES TO FILE
40 INPUT "NAME?";N$
50 IF N$="" GOTO 140
60 REM CARRIAGE RETURN EXITS INPUT LOOP
70 INPUT "ADDRESS?";A$
80 INPUT "BIRTHDAY?";B$
90 PRINT CHR$(4) ; "APPEND NAMES.DAT"
100 PRINT N$
110 PRINT A$
120 PRINT B$
130 PRINT: GOTO 40
140 PRINT CHR$(4) ;"CLOSE"
150 END
1985 REM *************************
1990 REM ERR 42 = OUT OF DATA
1995 REM ERR 6 = END OF DEVICE
1997 REM *************************
2000 IF ERR = 42 OR ERR = 5 THEN PRINT CHR$(4) ;"OPEN NAMES.DAT":GOTO 40
2020 ON ERR GOTO 0

The error handling routine in line 2000 traps a "File not found" error
in line 20. If this happens, the statements that copy the file are
skipped, and "NAMES.DAT" is created as if it were a new file.

~HAPTER 3

Page 27

RANDOM ACCESS

Creating and accessing random access data files requires more program
steps than for sequential access files. However, there are advantages
too in using random access data files. The biggest advantage of using
random access data files is that data can be accessed randomly, i.e.,
anywhere on the disk - it is not necessary to read through all the
information, as with sequential access files. This is possible because
the information is stored and accessed in distinct units, called
records, and each record is numbered.

The statements and functions that are used with random access files
are:

OPEN
READ
WRITE
PRINT
CLOSE

See the UNIBASIC REFERENCE MANUAL for a detailed discussion of these
statements and functions.

CHAPTER 3

Page 28

CREATING A RANDOM ACCESS FILE

The following program steps are required to create a random access
file.

1. OPEN the file for random access. This example specifies a record
length of 32 bytes. If the record length is omitted, the file will
not be opened as a random access data file.

PRINT CHR$(4);"OPEN FILE.DAT,L32"

2. WRITE the data to the file.

FOR lITO 41
PRINT CHR$(4) ;"WRITE FILE.DAT,R";I
PRINT DATA

NEXT I

In this example, I is used as the record number.

Program 4 writes information that is input at the terminal to a random
access data file.

PROGRAM 4 - CREATE A RANDOM ACCESS FILE (UNTESTED, REF. ONLY)

10 PRINT CHR$(4);"OPEN FILE.DAT,L32"
20 REM N$ = 20 CHAR, A$ = 4 CHAR, p$ 8 CHAR
30 INPUT "2-DIGIT CODE";CODE%
40 INPUT "NAME?";N$
50 INPUT "AMOUNT";AMT
60 INPUT "PHONE";TEL$: PRINT
70 REM DO CONVERTS
75 N$ LEFT$(N$+" ",20)
80 A$ = RIGHT$("0000"+STR$(AMT) ,4)
90 p$ = LEFT$(TEL$+" ",8)
100 PRINT CHR$(4);"WRITE FILE.DAT,R";CODE%
105 PRINT N$;A$;P$
110 GOTO 30

Each time lines 100 and 105 are executed, a record is written to the
file. The two-digit code that is input in line 30 becomes the record
number.

CHAPTER 3

MICRO CRAFT CORPORATION
January 5, 1984

The Dimension 68000 Userls Guide, (part number 680-0001-100)
has been revised. Here are the new, revised pages that are
to be placed into the manual.

The pages to be replaced are as follows:

Page to be
Replaced

9,10
27,28
31,32
35,36

4747 Irving Blvd .. Suite 241. Dallas. Texas 75247, (214) 630-2562

New Page

9,10
27,28
31,32
35,36

D I M E N S I o N 6 8 (3 (3 (3

S y S T E M U S E R
,

S G U I D E

M i c r 0 era f t C 0 r p ora t i o n

6 8 (3 _ n IU (3 (3 1 - 1 (3 (3 A

(3 1/(3 5 /84 REV I S ION

NOT ICE

Micro Craft Corporation reserves the right to make improvements in the
product described in this manual at any time and without notice.

DISCLAIMER OF ALL WARANTIES AND LIABILITY --- --
MICRO CRAFT CORPORATION MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL OR WITH RESPECT TO THE SOFTWARE DESCRIBED
IN THIS MANUAL, ITS QUALITY, PERFORMANCE, MERCHANTIBILITY, OR FITNESS
FOR ANY PARTICULAR PURPOSE. MICRO CRAFT CORPORATION SOFTWARE IS SOLD OR
LICENSED "AS IS." THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE IS
WITH THE BUYER. SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWING THEIR
PURCHASE, THE BUYER (AND NOT MICRO CRAFT CORPORATION, ITS DISTRIBUTOR,
OR ITS RETAILER) ASSUMES THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR, OR CORRECTION AND ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES. IN
NO EVENT WILL MICRO CRAFT CORPORATION BE LIABLE FOR DIRECT, INDIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE
SOFTWARE, EVEN IF MICRO CRAFT CORPORATION HAS BEEN ADVISED OF THE POS­
SIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF IMPLIED WARRANTIES OR LIABILITY FOR INCIDENTAL OR CONSE­
QUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO
YOU.

This manual is copyrighted. All rights are reserved. This document may
not, in whole or in part, be copied, photocopied, translated, or reduc­
ed to any electronic medium or machine readable form without prior
consent, in writing, from Micro Craft Corporation.

Copyright 1983 by Micro Craft Corporation

Micro Craft Corporation
4747 Irving Blvd.
Dallas, Texas 75247
(214) 630-2562

01/05/84 REVISION
Page 9

NOTE: The lever on the diskette drives can NOT be moved unless either a
protector card or a diskette is inserted into the drive.

Forcing the lever will DAMAGE the drive!

II DIMENSION I
I RESET ~ --- 0

~I
i

=

t~~
0 I

I

l ~
I

-iJ ~
- - 00

POWER
INDICATOR

\ DISK LABEL UP ~
POWER
SWITCH

Inserting A Diskette Into The DIMENSION 68000

CHAPTER 1

Page 10

- OPTIONALLY, if there is a printer, it should be connected to the con­
nector on the rear of the System unit that is labeled "PARALLEL CEN­
TRONICS PRINTER".

- OPTIONALLY, if there is a modem, it should be connected to the con­
nector on the rear of the System unit that is labeled "RS232C". This
connection may be used for any device that uses the EIA (Electronics
Industry Association) RS-232C interface.

*** CAUTION ***

BE SURE THAT EACH CONNECTION HAS BEEN FIRMLY SEATED PRIOR TO "POWERING
UP" THE SYSTEM.

To "POWER UP" the system, use the following steps:

1 - TURN ON the CRT. Allow time for the CRT to warm up.

2 - TURN ON the DIMENSION 68000. The power switch is under the right
front edge of the System unit. When the power is turned on, the LED
in the RESET Switch will come ON. For the first few seconds, the
computer will perform a self test routine. After the self test
routine, the computer will display the message below, then the LED
on Disk Drive A will light up. The lighting of the LED on Disk
Drive A indicates that the system is ready for a "bootable" disk­
ette to be inserted into the disk drive. The system should display,
on the CRT, the following:

Welcome to the Realm
of

Dimensiori Computing
by

Micro Craft Corporation

There will be a character sized block, displayed in reversed
video (light in color, instead of dark) displayed on th~ left side
of the screen under the above message. This block is called the
cursor. Since the display on the screen is white letters on a dark
screen, the cursor will be a block of light.

3 - INSERT a "SYSTEM 1" diskette into Disk Drive A. The "SYSTEM 1" dis­
kette that you use should be a COpy of the "SYSTEM 1" diskette that
was shipped with the DIMENSION 68000 System, NOT THE ORIGINAL. If
you have not made copies of the "SYSTEM" diskettes, STOP! You need
to make copies NOW! The section on BACKING UP later in this chapter
tells how to make copies of your "SYSTEM" diskettes. So does APPEN­
DIX B which is titled "THE BACK UP PROCEDURE."

CHAPTER 1

KEYBOARD

01/05/84 REYISION
page 27

The keyboard for the DIMENSION 68000 is a microprocessor controlled, 30
character per second (300 BPS), ASCII coded, TTL output level device.
The keyboard has 10 function keys and a combination numeric pad/cursor
control pad •

CRT INTERFACE

The CRT interface is an EIA RS-170 compatible interface. The voltage
output is adjusted to be 1 volt pk-pk nominal. The interface supplies
composite sync. The interface can supply either an interlace or a non­
interlace output signal. The DIMENSION 68000 sets the mode to interlace
or to non-interlace as follows:

NON-INTERLACE

20x20 TEXT
40x24 TEXT
80x24 TEXT
50x25 TEXT
LO-RES and MEDIUM RES GRAPHICS

INTERLACE

80x50 TEXT
100x50 TEXT
HI-RES GRAPHICS

Interlace mode has two times the resolution as non-interlace mode. This
is because interlace mode has 525 horizontal lines on the screen, while
non-interlace mode has 262 1/2 horizontal lines.

REAL TIME CLOCK

There is an internal, interrupt driven, Real-Time Clock and event timer
that has programmable interval rates between 10 microseconds and 250
milliseconds.

PROCESSOR

The microprocessor used in the DIMENSION 68000 is an 8 MHz 68000 type
microprocessor. The 68000 microprocessor has 16 bit wide external data
paths. The internal architecture of the 68000 microprocessor is 32 bits
wide. The 68000 has the following registers:

- 8 DATA REGISTERS that are 32 BITS wide
- 7 ADDRESS REGISTERS that are 32 BITS wide
- 2 STACK POINTER REGISTERS that are 32 BITS wide

1 for the USER
1 for the SUPERVISOR

- 1 PROGRAM COUNTER REGISTER that is 32 BITS wide
- 1 STATUS REGISTER that is 16 BITS wide

CHAPTER 3

Page 28

Because of the internal architecture, the 68000 is properly described
as a 32 bit micro-processor.

Some of the features of the 68000 microprocessor are:

- 5 DATA TYPES
Bit
BCD Digits (4 bits)
Bytes (8 bits)
Words (16 bits)
Long Words (32 bits)

- 16M byte direct addressing range
14 addressing modes on 61 basic instructions for over 1000 total in­
struction types

DISK DRIVES

The standard disk drives used for diskettes in the DIMENSION 68000 sys­
tem are half height, 5 1/4 inch, double sided, double density, half
stepable, 40 track units. They are capable of storing up to 400K bytes.
Optionally, the DIMENSION 68000 system can be supplied with the follow­
ing types of drives:

- 80 track, 8l7K byte, 5 1/4 inch diskette drives
- 8 inch diskette drives
- 3 1/2 inch diskette drives
- 3 1/4 inch diskette drives
- Winchester-type Hard disk drives

Space is provided on the rear panel of the system unit for a 34 pin
connector and for a 50 pin connector. These connectors can be used for
connections to any externally mounted disk drives.

Micro Craft Corporation manufactures a disk drive expansion unit that
can contain two 8 inch diskette drives, or a mix of 3 1/2 inch diskette
drives, 3 1/4 inch diskette drives, and 8 inch diskette drives. These
diskette drives are packaged in an expansion chassis. The expansion
chassis also includes a power supply to supply the necessary voltages
and currents to operate the drives.

~HAPTER 3

EXPANSION SLOTS

01/05/84 REVISION
Page 31

The six expansion slots in the DIMENSION 68000 system may be used for
additional memory, co-processors, additional input or output (I/O)
ports, etc. as desired by the user. A description of the pinouts used
by the expansion slots is available in the DIMENSION 68000 System Ref­
erence Manual.

ADDITIONAL MEMORY

The DIMENSION 68000 can support up to 16M bytes of memory. If the user
desires to expand the RAM on the DIMENSION beyond 5l2K bytes, the addi­
tional memory may be added by installing cards that contain the extra
memory.

CO-PROCESSORS

The DIMENSION 68000 can support other microprocessors co-resident with
the 68000 type processor that resides in the system. The DIMENSION, by
using co-processors, can emulate other personal computers. By using the
6512 processor as a co-processor, the DIMENSION is able to emulate the
APPLE II. By using an 8086 processor, the DIMENSION is able to emulate
the IBM-PC and the IBM-PC look-alikes. And, by using a Z-80, the DIMEN­
SION can emulate most of the CP/M-80 machines and the TRS-80 units.

Micro Craft can provide the user with an APPLE II emulator card, an IBM
emulator card, and a Z-80 emulator card. The emulator cards from Micro
Craft do not have to be plugged into any particular slot. They are slot
independent.

HARD DISK

The DIMENSION 68000 winchester-type hard disk controller will plug into
any expansion slot. It is a ST506 type interface capable of handling 2
winchester-type disks with a total of 300M bytes of storage.

PROTOTYPING KIT

Micro Craft Corporation has a prototyping kit which contains a proto­
typing board and all of the necessary documentation for anyone to be a­
ble to build a card that will properly plug in to and properly operate
in the expansion slots of the DIMENSION 68000 system.

CHAPTER 3

Page 32

CHAPTER 3

ARCHITECTURE

01/05/14 REVISION
Page 35

The DIMENSION 68000 is designed to have the hardware functions that are
inside the system to be software configurable. This is accomplished by
means of software controlled hardware latches that are placed between
the system bus and the various device controllers. The system bus car­
ries the address signals, the data signals, and the control signals for
the whole DIMENSION 68000 system. The device controllers handle the
following devices for the system:

- memory
- video display
- speaker
- disk drives
- keyboard
- RS-232 interface
- parallel interface
- game controller interface
- real time clock

MEMORY USAGE

The organization of the DIMENSION 68000 memory is detailed in the DI­
MENSION 68000 SYSTEM REFERENCE MANUAL. The overall memory usage is as
follows:

ADDRESSES

000000 - 0000FF
000100 - 0001FF
000200 - 0011FF
001200 - 0012FF
001300 - FEFFFF
010000 - 01FFFF
020000 - 07FFFF
080000 - FEFFFF
FF0000 - FFIFFF
FF2000 - FF7FFF
FF8000 - FFFFFF

USAGE

INTERRUPT VECTORS
SYSTEM RAM AREA
VIDEO SCREEN TEXT AREA
SYSTEM FUNCTIONS
CP/M TRANSIENT AREA (Depending on Memory Size)
CO-PROCESSOR AREA DURING EMULATION (MIN.)
CO-PROCESSOR EXPANSION AREA
RAM EXPANSION AREA
ROMBIOS
RESERVED GRAPHICS RAM
PERIPHERAL CONTROL AREA

The DIMENSION 68000 has 8K of Read Only Memory (ROM) which is located
in memory between FF0000 and FFIFFF. This ROM is known as the ROMBIOS.
ROMBIOS stands for Read Only Memory Built-in Input / Output System. The
overall ROMBIOS usage is as a group of 68000 machine language routines
that handle the I/O requirements of the DIMENSION 68000.

CHAPTER 4

Page 36

I/O

The I/O requirements of the DIMENSION 68000 are handled by the machine
language routines in the ROMBIOS. The ROMBIOS functions are used to
handle the following I/O device requirements:

- the CRT Controller
- the Keyboard
- the Disk Drives
- the RS-232 Interface
- the Parallel Printer Interface
- the Real Time Clock

A detailed description of the ROMBIOS functions is contained in the DI­
MENSION 68000 SYSTEM REFERENCE MANUAL.

The DIMENSION 68000

The DIMENSION 68000 system is designed to allow software configuration
of the hardware controllers that are connected to the system bus. This
feature and the memory utilization design lend themselves to the easy
implementation of co-processor emulation of other microprocessor sys­
tems. Even the memory controllers are software configurable.

CO-PROCESSORS

The DIMENSION 68000 system was designed to allow co-processor emula~o~c
of other microprocessor systems. The Micro Craft Corporation can supply
for the DIMENSION 68000 system, as options, three co-processor boards.
These co-processor boards plug into the expansion slots on the main
board instde the DIMENSION 68000 system unit. The co-processor boards
do not have to be plugged into any particular expansion slot. They are
slot independent. The three co-processor boards are the 6512 board, the
8086 board, and the Z-80 board. The system can have one board, two
boards, or all three boards installed at the same time. However, only
one co-processor can be in operation at a time.

6512

The Micro Craft 6512 co-processor board is supplied with the necessary
software to allow the DIMENSION 68000 to be able to emulate the Apple
II (TM), the APPLE 11+ (TM), and the Apple lIe (TM) personal computers.

CHAPTER 4

