MDBS DATA BASE DESIGN REFERENCE MANUAL

The MDBS DDL MANUAL
Version 3.08

Micro Data Base Systems, Inc.
P. O. Box 248
Lafayette, Indiana 47902
USA
Telex: 209147 ISE UR

(312) 303-6300 (in Ilinois)

December 1985

Copyright Notice

This entire manual is provided for the use of the customer and the customer’s
employees. The entire contents have been copyrighted by Micro Data Base Systems,
Inc., and reproduction by any means is prohibited except as permitted in a written
agreement with Micro Data Base Systems, Inc.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A

3250321

NEW RELEASES, VERSIONS, AND A WARNING

Any programming endeavor of the magnitude of the MDBS software will
necessarily continue to evolve over time. Realizing this, Micro Data
Base Systems, Inc., vows to provide its users with updates to this
version for a nominal handling fee.

New versions of MDBS software will be considered as separate products.
However, bona fide owners of previous versions are generally entitled
to a preferential rate structure.

Finally, each copy of our software is personalized to identify the
licensee. There are several levels of this personalization, some of
which involve encryption methods guaranteed to be combinatorially
difficult to decipher. Our products have been produced with a very
substantial investment of capital and labor, to say nothing of the
years of prior involvement in the data base management area by our
principals. Accordingly, we are seriously concerned about any
unauthorized copying of our products and will take any and all

available legal action against illegal copying or distribution of our
products.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

PREFACE

By the mid-1960s, application developers were well aware of the
data handling limitations of programming languages and file management
systems. To overcome these limitations, data base management systems
began to appear. By 1971, four major approaches to data base
management had taken shape: the hierarchical, shallow-network,
relational, and CODASYL-network approaches to logical data structuring
and manipulation. Each represented an advance over the o0ld file-
oriented data handling methods and the latter two approaches offered
advances over the former two. By the mid-1970s, data base management
software was well established as the cornerstone for application
development on mainframes and some mini computers.

Near the end of the decade, microcomputers =-- with their
phenomenal computing power on a per dollar basis -- began to
proliferate. The acceptance of mainframe data base management systems
coupled with the rise of microcomputers led to the formation of Micro
Data Base Systems Incorporated by a group with expertise in both
areas. The initial objective was to make genuine data base management
tools available in the micro realm. This objective was fulfilled in
1979 with the release of MDBS I -- the first authentic and viable data
base management system (dbms) for microcomputers. Over the years,
this has evolved into the present MDBS III which operates not only on
many microcomputers but on larger machines as well. The evolution of
MDBS III is highlighted with many firsts: first micro dbms with
built-in 1logging and recovery, first full implementation of a
postrelational dbms, first multiuser micro dbms, first dbms to run
under PCDOS, MSDOS and UNIX.

Today, MDBS III offers professional application developers a
degree of power and flexibility unavailable with any other data base
management software ~- be it on micros, minis or mainframes. This is
partially due to the highly efficient, proprietary implementation
techniques. MDBS III is not a mainframe retread shoehorned into. a
microcomputer. It is also due to the innovative data modeling
features that MDBS III provides. Because these features go far beyond
those of the older data base management approaches, MDBS III is
variously referred to as postrelational or multiarchical or extended-
network. The emphasis in this approach to data base management is on
direct, natural representation of the application world. The result
is a tremendous increase in developer productivity. As stated in the
authoritative ata - the i

(ed. D.J.L. Gradwell, Pergamon Press, Oxford, England, 1982):

"The data modelling capability of MDBS III is superior to any
other commercially available DBMS."™ MDBS III is "... a product

that is, in many ways, ahead of mainframe DBMSs." (D.J.L.
Gradwell)

All of this translates into convenience and productivity for
application system developers and administrators.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. " Rev. 85A

The MDBS R&D Lab's expertise in the areas of decision support
systems and artificial intelligence has resulted in two unique
environments for processing MDBS III data bases. One is a decision
support environment called KnowledgeMan. It functions as a universal
knowledge management system, allowing users to represent and process
knowledge in many different ways -- including spreadsheets, text,
graphics, forms, procedural models, relational data bases, and
postrelational MDBS III data bases. The second is a revolutionary
artificial intelligence environment called Guru. It makes the
benefits of both expert system technology and natural language
processing easily accessible to business users, without sacrificing
familiar business computing capabilities.

This manual provides an introductory overview of application
development with MDBS III. It then concentrates in detail on the
features and utilization of the MDBS III Data Description Language.
Companion manuals discuss the MDBS III Data Manipulation Language and
various optional modules. This is a reference manual. It 1is
therefore not intended to be a tutorial. For a tutorial treatment of
data base management (explaining its value, characteristics, and
advantages), the reader is advised to consult such suitable references
ass

i. Micro Database Management ~ Practical Techniques. for Appli-
cation_ Development by R.H. Bonczek, et. al., 536 pages,
Academic Press, New York, 1984.

2. "A Perspective on Data Models," PC_Tech Journal, Vol. 2, No.
1, 1984.

3. "Micros Get Mainframe Data Scheme," Systems and Software,
Vol. 3, No. 5, 1984.

4. "Uniting Relational and Postrelational Database Management
Tools", Systems and Software, Vol. 3, No. 11, 1984,

The first reference provides the most definitive coverage to date of
the postrelational approach, comparing and contrasting it with the
four older data base management approaches., That book also includes
extensive examples of MDBS III usage. It is available through your
local bookstore, from the publisher, or from MDBS, Inc. For many
years, the Company has offered practical MDBS III training seminars in
major cities and at customer sites.

The MDBS, Inc. commitment to customer success does not stop with
software innovation, quality and support. The Company offers a full

range of consulting and application development services to clients
through regional offices in the Dallas, Chicago and New York offices.

Services include:
1. Customized application systems design

2. Customized application systems development using Guru,
KnowledgeMan and/or the MDBS III tools

3. Communications interfaces including mainframe-micro links

Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

4. Special training on a wide variety of topics including
specific application systems, C programming, MDBS III usage,
and Guru usage

5. General consulting including feasibility studies and
hardwarefboftware recommendations

The experienced professional staff handles consulting and application
development needs of some of the world's largest corporations and
governments. It has developed very extensive micro application
systems in such diverse areas as cash management, strategic planning,
human resources administration, waste disposal management, and
distributed service support. 1In many cases, these application systems
have involved multiuser processing or mainframe-micro links.

MDBS and KnowledgeMan are registered trademarks of Micro Data

Base Systems, Incorporated. Guru, Screen Maker and Menu Builder are
trademarks of Micro Data Base Systems, Inc.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A

MDBS DDL MANUAL

PREFACE
CHAPTERI OVERVIEW , ., . . .

B.
c.
D.
E.
F.
G.
H.
I.
J.
K.
L.
M.

Table of Contents

Manual Organlzatlon. . e .
Introduction to MDBS III .
MDBS Software Modules. . .
Data Base Design
Access Languages « . « .
Data Integrity Facilities. .
Data Security Facilities . .

e

Performance Tuning Facilities
Multiuser Processing . . .
MDBS III and Screen Maker.

MDBS III and KnowledgeMan: Decision

MDBS III and Guru: Expert Systems

Summary of the MDBS Data Description La

Software . . .

CHAPTER II. DEFINITIONS AND EXAMPLES

B.
C.
D.
E.
F.

CHAPTER IIIl. MDBS.DDL SPECIFICATIONS

A.
B.

CHAPTER IV. DATA SECURITY

A.
B.

CHAPTER V. DATA INTEGRITY

A.
B.
C.
D.
E.
F.

CHAPTER VL

A.
B.
c.

Data Base Areas and Pages. . « « .

The Logical Structure of an MDBS Data B

Types and Sizes of Data Items. .
Controlling Record Placement . .
Data Security. « « « « « o « ¢ &
Miscellaneous. . .

Notational Conventions . . .
DDL Sections . . .

PasSsSWOIdS. « « s o o o o
Encryption « ¢« « « .+ .« .

Access Codes . . .

]

¢« MDe o o o o o =

Preventing Unauthorized Chang
Fixed Set Retention.
Duplicate Key Exclusion.
Invalid Dates and Times Prohibite
Feasibility Range Specification.
Data Base Recovery and Transaction

a

Ul o ¢ o o s o o ¢ o o
M & o o o & & o s o o @

c
o]

e o o o o ¢ (De a o L o O e o o o ¢ s ¢ o o o o

[Te]

S

e 8 o & o 5 & o o o s » s s o o fNle o s T

¢ & & e s &8 6 8 & e & & * & v o
. e o e o & o ¢ o

Logglng

USING THE MDBS.DDL SOFTWARE . .

Interactive Usage of the MDBS.DDL Program.

The Interactive Modes of Operation
Batch Usage of MDBS.DDL.

CHAPTER VII. DDL ANALYZER' MESSAGES

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

a}

V]

e« o« o & o Qe (e o s o @ o & o & o o

(17

MDBS

[\
e ® e 8 & 8 6 o e 0 & 5 & 8 & 8 & 6 e 8 T3 e e & & & s & & & s & e

s o & s & o o

o

® & © & 6 e o & © s & s &
L[] . L] L] L) L] L] L L) * L . L]

e e 8 & e e ® 8 & ¢ s &6 & & & & & & 5 s 5 s ¢ » &
e @ 6 & @ 8 & & 6 & & & 8 & & e 6 a2 s a2 s s o+ o s o @

Rev.

DDL

MA

e o & @& ¢ ¢ & a2 o+ &

0

@©

e & & 8 & & S ¢ 8 8 6 & ¢ s & s v o+ s s s 0

85A

NUAL

g

s ¢ COODOCOOOOO
WHOON-NAMNDAAWND

s o o o o o

[on
O WO

MDBS DDL MANUAL MDBS DDL

FIGURES

MANUAL

¢ N)e o o o & ¢ ¢ o o 2 o
—
o

to B-5

to C-2

L] L . L]
1
i
st

to H-3

ndex-1

I-1. MDBS Software Modules “ o
I-2. Examples of the Three Kinds of Relatlonshlps between
a Pair of Record Types. . . . e o o s o o o s .
I-3. Examples of the Three Kinds of Recurs1ve Relatlonshlps
Involving a Single Record TYPC: ¢ o o o o o o o o o o
I-4. Examples of Some Forked Relationships . . « « ¢ o « o &
I-5. Using the MDBS.DDL Module . ¢ & ¢ ¢ o o ¢ o o o « o o o
I-6. Using the MDBS.DMS MOAUle . « ¢ ¢ o o o o o o o o o o o
II-1. Areas and PageS . « « o « o o o o ¢ o o o o o o o o o o
II-2. A Sample Logical Structure. « . v ¢ « o o ¢ ¢ o o o o
II-3. System-owned Sets . ¢ o v ¢ o « o ¢ o ¢ o o o o o o o
ITI-4. A Recursive Set . . o ¢ ¢ o ¢ o o o o o o o o o o o o o
II-5. Multiple Member Set . . . &+ ¢ ¢ ¢ ¢ o o o o « o o o o
II-6. Multiple Owner Set. . ¢« o ¢ o « & o o o o o o o o o o o
III-1. Sample DDL. . . . e ¢ e e s o o o s o o e o s o s o o
III-2. Sample DDL- Advanced « o s ¢ e 4 o s 8 e o e e o o o o o
ITI-3. Notation . ¢ & ¢ 4o ¢ ¢ ¢ &« o o s o o o o o o o o o o o
IV-1. Using MDBS.DDL. o« &+ o « « o o o o o o o o o o o « o o s
TABLES
II-1. Types of Data ItemsS . o o o o o o o o o o « o« o o o o o
IV-1. Read and Write ACCESS ¢ v o« ¢ o« o o o o o o o o o o o
V-1l. Minimum Lower Bounds and Maximum Upper Bounds for
Feasibility RANge€S. « v o & « o o o o o o« ¢ s o o o o
APPENDICES
APPENDIX A. Lata Description Language KeywordsS. . « « « o« o &
APPENDIX B. MDBS Data Description Language Syntax B-1
APPENDIX C. Maximums and Minimums in a DDL Source
Specification « « ¢ « 4 ¢ ¢ ¢ ¢ o o e o s o« o C-1
APPENDIX D. DefaultS. . ¢ ¢ ¢ o o o o ¢ o o o o o o o o o =
APPENDIX E. Data Item Range ExamplesS. . « « ¢ « o ¢ o o o« o o
APPENDIX F. Estimating Data Base SizeS. + ¢« o ¢ ¢ ¢ o o o o =
APPENDIX G. List of QRS Keywords. . . . e s e e s e s o s
APPENDIX H. Alternative Layout for DDL SpeCLflcatlon of
Figure III=2. « « « o o o o o s o o o o o o o« H=1
APPENDIX I. MDBS.CNV. . . . e o o s & 6 o e = o o o e & @
APPENDIX J. Flow of Control When Using MDBS.DDL . « « « o« « =«
INDEX ¢« ¢ ¢ ¢ ¢ ¢ o o o o o o o o s o« o o o o o o« o s o o « oI
ii Rev., 85A (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL MDBS DDL MANUAL

I. OVERVIEW

A. Manual Organization

This MDBS DDL Manual is the first component in the set of MDBS
III Reference Manuals. It describes the data structuring facilities
available for designing MDBS data bases and the Data Description
Language (DDL) for formally specifying data base designs. The second
component in the manual set is the MDBS DMS Manual, which describes
data manipulation commands available to application programmers.
Beyond these two basics, other manuals in the set describe various
MDBS software options.

The MDBS III Reference Manuals are not oriented toward any
specific hardware, operating system, or host programming language.
They discuss those aspects of MDBS usage that are unaffected by the
host hardware, operating system, and programming language. The
variations in MDBS usage caused by differences in hardware, operating
systems and host languages are detailed in the various MDBS System
Specific Manuals. These variations are relatively minor.

MDBS III is available in two forms: Version 3a and Version 3c.
Version 3a 1is implemented with assembly language. Version 3¢ is
implemented with the C 1language. To an application developer,
Versions 3a and 3c are practically indistinguishable. With a few
noted exceptions, documentation in the MDBS Reference Manuals 1is
equally applicable to both implementations.

The MDBS III data structuring features presented in this manual
can be partitioned into two levels: fundamental and advanced.
Advanced features are denoted by a heavy vertical bar in the outside
margin. The reader who is new to the data base field 1is strongly
advised to 1initially concentrate on the fundamental features, ignoring
those portions of the documentation that are marked with a vertical
bar. An understanding of the fundamentals is sufficient for designing
many application systems using MDBS.

When the fundamentals have been mastered, the advanced features
should be examined (on a second pass through the manual). The
advanced features include facilities for governing the mapping of
records into storage, for segmenting a data base into physically
distinct areas, for providing data security, for feasibility range
checking, for performance tuning, etc. For the application developer
who does not use the advanced features, there is a standard default
provided for each such feature when the data base is initialized. In
using the advanced features, an application developer has greater
flexibility and control over the characteristics of the resultant
application system.

Chapter I of this manual provides an introduction to the family
of MDBS 1III application development tools. It concludes with a
summary of the DDL features and associated software. The MDBS
constructs available for building an MDBS schema are rigorously
defined in Chapter II. That chapter also contains an example schema.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A 1

MDBS DDL MANUAL - I: OVERVIEW - MDBS DDL MANUAL

Chapter 1III documents the Data Description Language syntax. DDL
source specifications for the Chapter II schema are included in
Chapter III. Data security specifications are treated in Chapter IV
and automatic data integrity facilities are presented in Chapter V.
Thus Chapters 1II-v deal with utilizing the MDBS Data Description
Language. Chapter VI describes the DDL Analyzer software. Called
MDBS.DDL, this software can be used for text entry to create a DDL
source specification, text 1line editing, and DDL analysis to
initialize a data base. Chapter VII discusses the diagnostics that
can arise during DDL analysis.

B. Introduction to MDBS III

MDBS III 1is an extremely powerful data base management system
(dbms) for serious application development. Specially designed to
maximize the productivity of professional application developers. MDBS
I1I addresses all the major issues facing OEMs, VARs, and information
services droups: providing quality application system software,
minimizing the development time and cost, facilitating the effective
administration of application systems, promoting data sharing among
customized application systems and generic decision support software,
and porting application software into multiple operating environments.

Because of MDBS III, truly extensive application systems that
were once possible only on large computers are now in everyday use on
microcomputers. Application systems built with MDBS III span
virtually all industries and functional areas. They include the most
ambitious application systems ever developed for microcomputers --
systems which would have been technically or economically infeasible

without MDBS 1III. The development times and costs for these
sophisticated micro-based application systems are substantially less
than for larger machines. MDBS run~-time tokens allow these

application systems to be inexpensively distributed.

One reason for these savings is that MDBS III allows development
to proceed with inexpensive, dedicated microcomputers. But even more
important is MDBS's unique postrelational approach to data modeling,
which has yet to be equaled -- even by the most advanced mainframe
dbms. The innate naturalness, rich flexibility, and expressive power
furnished by this innovative data model combine to yield significant
increases in developer productivity by eliminating many of the
limitations inherent in conventional hierarchical, network and
relational dbms approaches.

The MDBS III facilities for enforcing data security, ensuring
data integrity, automatic program generation, concurrency control and
performance tuning are all on a par with the best that is available in
the mainframe world. These are important not only for productive
application development, but also for on-going effective
administration. Operating costs of large-scale application systems
built with MDBS III are normally substantially less than mainframe or
time sharing alternatives.

2 Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - I: OVERVIEW - MDBS DDL MANUAL

MDBS III data bases are implemented with a proprietary technique
that results in very rapid response times. It is much more efficient
than the o0ld chaining and redundancy techniques that are so
commonplace among leading mainframe data base management systems.
Coupled with performance advantages implicit in the postrelational
model and with the built-in performance tuning mechanisms, this
proprietary technique yields very pleasing performance -- even for
quite sizable data bases being processed on microcomputers.

Subject to its highly refined integrity and security controls,
MDBS 1III promotes data sharing in both 1local area network and
multiuser operating system settings. The same data base can
simultaneously be accessed by a variety of application programs whose
host languages may vary from COBOL to C. It can be directly accessed

by expert systems using the Guru inference engine. It can also be
directly accessed through end user facilities such as the
nonprocedural query interface and the popular KnowledgeMan system -- a

comprehensive and integrated decision support environment for
graphics, text processing, spreadsheet analysis, modeling, customized
report generation, etc.

MDBS III operates on a wide variety of hardware including the IBM
PC series and compatibles, the Intel 286/310, 68000-based machines,
the AT&T 3B2-3B5, the DEC PDP-11 series and VAX 11/780 under operating
systems such as PCDOS, MSDOS, UNIX, XENIX and ULTRIX. In many of
these environments, Screen Maker is available as a screen management
complement to MDBS III data base management. This versatile tool for
designing and processing polished end user interfaces supports a high
degree of terminal independence. The resultant portability of
application systems built with MDBS 1III and Screen Maker 1is a
significant consideration.

C. MDBS Software Modules

There are two essential MDBS III software modules: the DDL
Analyzer (MDBS.DDL) and the Data Base Control System (MDBS.DMS). All
other modules are opticnal.* A data base design is specified with the
Data Description Language (DDL). The DDL Analyzer uses this DDL
specification to produce a corresponding data dictionary and
initialize the data base. After this initialization, Data
Manipulation Language (DML) commands can be wused in application
programs to create, retrieve and modify data in the data base. These
commands are processed by the data base control system software.

* All of the optional software modules may not be available in all
environments at all times.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A 3

MDBS DDL MANUAL - I: OVERVIEW - MDBS DDL MANUAL

In addition to the DML, other means are optionally available for
accessing the data base contents. Each of these involves an
additional software module that in turn uses the Data Base Control
System in carrying out access requests. Optional access modules exist
for interactive DML processing, English-like gqueries, data base
browsing, batch loading, customized report generation, access within a
decision support environment, and inference engine processing of data
base contents. Optional modules are also available to help data base
administrators and developers modify or restructure existing data
bases to conform with new designs.

Although screen management and data base management are separate
activities, both are important to application developers. The MDBS
data base management software is complemented by two Screen Maker
software modules. One allows a developer to interactively design
screens and preserve them in a screen dictionary. Screen Manipulation
Language (SML) commands can be used in application programs to display
and process these screens, The SML commands are executed by the
second module: the Screen Control System software.

There are two basic forms of the MDBS III software: standard
MDBS and the RTL form of MDBS. The RTL (recovery and transaction
logging) form has all the capabilities of standard MDBS. However, it
has a very different Data Base Control System with built-in recovery
and transaction logging facilities that do not exist in the standard
MDBS. The RTL form is also furnished with a recovery utility for
processing transaction logs. The MDBS RTL Manual describes the MDBS
recovery and transaction logging facilities.

Figure 1I-1 shows how the various software modules can fit
together in constructing and using an application system, This
diagram refers to the following terms:

DDL Analyzer - the Data Description Language Analyzer that
transforms a DDL schema specification into an internal data
dictionary and initializes a corresponding postrelational
data base.

DMU - the Design Modification Utility that a data base
administrator uses to monitor space utilization, expand data
base size, and modify user access privileges.

DBRS - the Data Base Restructuring System that a data base
administrator uses to revise the schema of an existing data
base and to re-optimize physical storage utilization.

Data Base Control System - the dictionary-driven Data Base
Control System that controls all access to the encrypted
postrelational data base, controls all aspects of data
sharing among concurrent users, and (for the RTL form)
automatically logs all transactions.

4 Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - I: OVERVIEW - MDBS DDL MANUAL

BLF - the Batch Load Facility that automatically 1loads the
contents of an external file into a postrelational data
base.

RCV - the Recovery Utility that a data base administrator uses to
monitor the transaction log, roll the data base back to a
former state, and selectively recover from data base
corruption.

DML - the complete postrelational Data Manipulation Language
whose commands can be embedded in a wide variety of host

languages.

RDL Analyzer - the Report Definition Language Analyzer that a
developer uses to automatically generate interactive C
application programs containing all necessary I1/0

statements, computations, and DML logic.

ISD - the 1Interactive Screen Designer that allows screens to be
interactively created and revised for an application
system's screen dictionary.

SCS - the dictionary-driven Screen Control System that carries
out all SML requests made by an application program.

SML - the high-level Screen Manipulation Language whose commands
can be embedded in an application program with full screen
independence and terminal independence.

IDML - the Interactive Data Manipulation Language for interactive
DML training, testing DML logic, and ad hoc data base
surgery.

IBS - the Interactive Browsing System for interactively browsing
through data base records for purposes of viewing, editing,
or creating their contents.

QRS - the non-procedural, English-like Query Retrieval System for
satisfying ad hoc and "what-if" information needs.

KnowledgeMan - the decision support environment with a complete
set of synergistically integrated knowledge management
facilities including spreadsheet, graphics, text processing,
procedural modeling, local data management, SQL inquiry,
etc.; also a valuable prototyping tool for developers.

Guru - the artificial intelligence environment for constructing
and consulting business expert systems.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A 5

MDBS DDL MANUAL - I OVERVIEW - MDBS DDL MANUAL

QRS
IBS . i I
' \
KnowledgeMan |. IDML { D ! Application | S
{ M, Program M f
L (L SCs
i I
L -
Data Base r
Guru & Control System
RDL Screen
(MDBS.DMS) Dictionary
Analyzer
\ \\\
1SD
T
/ DDL
. Integral Analyzer
BLF RCV Postrelational Data Base ‘! Data (MDBS.DDL)
Dictionary :

External
Data File

Transaction

Log

Figure I-1. MDBS Software Modules

D. Data Base Design

An initial step in developing an application system is designing
the logical structure of its data base. This logical structure 1is
called a schema. It shows the kinds of data and relationships that
will exist in the data base. The importance of dbms facilities for
schematically representing an application world in a clear, concise,
self-documenting fashion cannot be overstated. MDBS III provides a
wealth of logical data structuring facilities that are non-existent in
data base management systems that follow the old inverted,
hierarchical, relational and network data models.* By eliminating the
old structuring restrictions, MDBS 111 makes 1t easy for the
application developer to design a schema that accurately mirrors the
real world.

* For a detailed comparative analysis of the postrelational and

conventional data models, the most definitive presentation to date is:
: a _ : . i .

Development by R.H. Bonczek, et. al., Academic Press, 1984, 536 pp.

6 Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - I: OVERVIEW - MDBS DDL MANUAL

The expressive power and flexibility that MDBS III provides for
schema design result from its capacity to directly represent every
kind of naturally occurring relationship that is commonly encountered
in real world applications. With conventional data models, schema
design involves an attempt to fit the application into a schema that
does not violate the structural restrictions imposed by a relational,
hierarchical, or network dbms. With MDBS III, a developer is free to
simply allow the schema to conform to the application world. Every
relationship can be given a semantically meaningful name and each
relationship's integrity is automatically guaranteed by the data base
control system.

The real world relationships that can be directly represented 1in
a postrelational schema include:
one-to-one, one-to-many, and many-to-many relationships between

two record types (Figure I-2)

. recursive one-to-one, one-to-many., and many-to-many
relationships involving a single record type (Figure I-3)

. forked one-to-one, one-to-many, and many-to-many relationships
among many record types (Figure I-4)

Multiple semantically-distinct relationships can exist between the
same pair of record types and there is absolutely no restriction on
the overall configuration of a schema's relationships.

Each MDBS schema looks like the world it represents, with every
relationship depicted in a clear, self-documenting way. MDBS schemas
are invariably more lucid and concise than conventional schemas where
a developer must resort to field redundancy, artificial record types,
extraneous sets, or various modeling tricks.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A 7

8

MDBS DDL MANUAL

Figure I-2.

Figure

Rev.

I: OVERVIEW -

HAS
EMPLOYEE

BIOGRAPHY

MDBS DDL MANUAL

PLACES
CUSTOMER

ORDER

Each employee has at most
one biography and each
biography belongs to at
most one employee.

SUFPLIER

L CAN
SUPPLY

PART

Each customer can place
many orders and each order
is placed by at most one
customer.

Each supplier can supply
many parts and each part
can be supplied by many
suppliers.

Examples of the Three Kinds of Relationships

between a Pair of Record Types

EVENT ‘)*FOLLOWS

In a critical path, each
event follows at most one
other event and is followed
by at most one other event.

I-3.

EMPLOYEE

:)MANAGE

Each employee can manage
many other employees and
is managed by at most one
other employee.

ACTION ' PREREQUISITE

Involving a Single Record Type

one-to~many representation:

CONTRACT| | LOT

STATUS
VEHICLE

Each contract, rental lot, or
service center can involve

many vehicles and each vehicle

can be either under contract,
in a lot, or in a service
center.

Figure I-4.

85A

SERVICE
CENTER

PORTFOLIO |

)

one-to-many representation:

Each portfolio can contain
many positions in stocks,
bonds and/or cash. Each
stock, bond or cash position
is contained in at most one
portfolio.

Each action can be the
prerequisite for many
other actions and can
have many other actions
as its prerequisites.

Examples of the Three Kinds of Recursive Relationships

many-to-many representation:

(recursive)

REFER

BOOK

ARTICLE

Each book and/or article
can refer to many other
books and/or articles
and can be referred to by
many other books and/or
articles.

Examples of Some Forked Relationships

(C) COPYRIGHT 1981 Micro Data BRase Systems,

Inc.

MDBS DDL MANUAL

streamlined,

structure of a postrelational data base.

for
next, prior,
provided for
German, Swed

data base's logical structure,
physical placement of records,

and to define

fields and numerous relationship orderings such

I: OVERVIEW MDBS DDL MANUAL

The MDBS 1III Data Description Language 1is a
free-form language for formally specifying the schematic
It supports nine data types
as 1lifo, £fifo.

and multi-field sorts. Built-in sorting sequences are

several languages including English, Danish, French,
ish, Norwegian and Finnish. 1In addition to specifying a

the DDL can also be used to control
to prescribe data security conditions,
data integrity constraints.

The DDL Analyzer (MDBS.DDL) 1is a program that can be used
interactively to create, edit, save, and retrieve the DDL
specification of a given application's schema. This DDL source
specification can also be analyzed by MDBS.DDL for consistency. If an
inconsistency 1is detected, a message explaining the error appears on
the screen. It can then be corrected with the MDBS.DDL editing
facilities. If no inconsistency is detected, the user can request
MDBS.DDL to generate a data dictionary from the DDL source and
1nitia;ize a corresponding data base. The foregoing steps are
summarized in Figure I-5. MDBS.DDL can also be used in a batch mode
to initialize a data base.

KNOWLEDGE |
ABOUT AN PICTORIAL FORM
APPLICATION OF SCHEMA
AREA
\)
MDBS.DDL
DDL SAVE CREATE THE (TEXT ENTRY MODE)
SPECS DDL SPECS OR A
4 EDLTOR
OF YOUR
RETRIEVE OWN
AS NEEDENQ CHOOSING
EDIT THE MDBS.DDL
SAVE NEW DDL SPECS (EDIT MODE)
SPECS AS NEEDED
{] ifF ERROR _
RETRIRVE \
AS NEEDED ANALYZE THE
DDL SPECS
IF NO ERROR
¥ MDBS.DDL
Ir {ANALYSIS MODE)
INITIALIZED, | INTEGRAL INITIALIZE DATA
EMPTY DATA '\\ DI ONARY BASE IF DESIRED
! J
Figure I-5. Using the MDBS.DDL Module
(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A 8.1

MDBS DDL MANUAL - I: OVERVIEW - MDBS DDL MANUAL

Qhapters II - VII of this manual describe the MDBS Data
Description Language and DDL Analyzer operations in detail.

DBRS. The MDBS 1III Data Base Restructuring System (DBRS)
supports all types of schematic restructuring for existing
postrelational data bases. This includes the addition and removal of
fields, record types, or relationships for MDBS schemas. Data Base
contents are automatically revised to conform with the new schematic

structure. This optional software module is documented in the MDBS
DBRS Manual.

E. Access Languages

MDBS III supports a variety of access languages for processing
postrelational data bases. Each language 1is oriented toward a
particular kind of processing need or purpose. Each can be used
without any knowledge of how data is physically organized in the data
base. The most that is needed is the data base's schematic diagram or
a subschema diagram that portrays only those aspects of the overall
schema that are of interest to a particular processing task.
Processing can begin anywhere in a schema and any schematic
relationship can be processed in any direction.

The additional ability of MDBS III access languages to support
refined field-oriented processing results in a high degree of data
independence, insulating application programs and queries from
schematic changes. All processing of an MDBS 1III data base is
entirely dictionary driven. A processing request from any of the
access languages 1is always executed by the Data Base Control System
(MDBS.DMS) on the basis of information held in the data dictionary.
It is fully independent of all host programming languages. This
software module is the guardian of data base security and integrity,
the monitor of concurrent processing situations, the virtual memory
manager, and the controller of all internal physical aspects of data
access. By mainframe standards, it is very compact in spite of its
support of advanced postrelational processing.

DML. The MDBS III Data Manipulation Language (DML) provides a
complete set of commands for processing all aspects of a
postrelational data Dbase. After a data base has been initialized,
application programs containing DML commands can be written. The
language in which the application program is written is called the
host language (e.g., COBOL). An application program serves as an
interface between the data base and an end user of the application
system. The end user typically 1is not a programmer and is not
familiar with data structures. Nevertheless, the end user desires to
put data into the data base or modify data that exists in the data
base or extract data from the data base. Application programs are
usually menu-driven; through the menu, the program determines what it
is that an end user wants to do. Control is then passed to a portion
of the program having DML commands that will perform the desired data
manipulation: loading, modification, or extraction of data. However,
this data manipulation is not explicitly performed in the application
program. Instead, the application program's DML requests are actually
executed by the data base control system.

8.2 Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - I: OVERVIEW - MDBS DDL MANUAL

A major software component of MDBS is its data base control
system. This is a collection of data base management routines,
collectively referred to as MDBS.DMS. An application program calls
these routines as needed. They carry out all physical details
required to perform the data manipulation indicated by a DML command.
The routines consult the data dictionary in the course of performing
the data manipulation. By embedding a DML command in an application
program, the programmer is giving a command to the data base control
system. In order to use DML commands., the writer of an application
program needs only to know the data base's schema. The application
programmer 1is not concerned with the physical details involved 1in
executing a DML command. There is no concern with pointers, with
searching indices, with merging files, with file formats, with disk
characteristics, with disk I/0, with free space management, etc. The
working relationship between an application program and MDBS.DMS in an
application system is shown in Figqure I-6.

KNOWLEDGE
OF DATA APPLICATION

BASE SCHEMA PROGRAMMER

|
APPLICATION END
PROGRAM WITH USER
DML COMMANDS

[

KNOWLEDGE
OF
APPLICATION
AREA

DATA BASE
CONTROL SYSTEM
(MDBS.DMS)

\

.
!

POSTRELATIONAL ,' INTEGRAL
DATA BASE \ DATA DICTIONARY
1

i
N

Figure I-6. Using the MDBS.DMS Module

It must be stressed that the MDBS DML provides a gtandard,
unlfng language for handling all data manipulation regardless of the
application system being developed and regardless of:

the central processor being used,

the mixture of disk drives available,
the operating system being employed,
the host languages desired.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A 8.3

MDBS DDL MANUAL -~ I: OVERVIEW - MDBS DDL MANUAL

There are many DML commands for record-at-a-time processing.
There 1is also a group of extremely powerful Boolean DML commands =—-—
each of which generates an entire collection of records satisfying
desired criteria. The MDBS III DML eliminates the troublesome aspects
of CODASYL-network DML. Because the MDBS III DML allows many records
to be simultaneously available for immediate processing, CODASYL's
current-of-run—-unit bottleneck is absent. Furthermore, the
postrelational DML logic obsoletes the restrictive current-of-set
navigation method that lies at the heart of CODASYL DML.

MDBS 1III DML commands can be invoked from application programs
written in COBOL, Pascal, BASIC. FORTRAN, C and/or assembler. They
can also be directly invoked as innate operations at any point within
an interactive KnowledgeMan decision support session. Developers can
also embed DML commands in programs written in the KnowledgeMan
programming language or in expert system rule sets built in the Guru
artificial intelligence environment. The DML commands are documented
in the MDBS DMS Manual.

IDML. The MDBS III Interactive Data Manipulation Language (IDML)
supports the interactive execution of nearly all DML commands. It is
independent of all programming languages. The optional IDML software
module has a built-in help facility, supports data dictionary
inquiries, and parameterized macros for frequently used command
fragments or command sequences. This access language is especially
useful for DML training, testing DML logic, and performing ad hoc data
base surgery. It is described in the MDBS IDML Manual.

QRS. The MDBS III Query Retrieval System (QRS) accepts
nonprocedural structured English requests from non-programmers. After
analyzing a query request, QRS internally employs the necessary DML
logic for accessing desired data from a data base. This data is then
presented as a report in tabular form or saved as a flat file on disk.
QRS can be used directly from the operating system or it can be used
at any juncture within an interactive KnowledgeMan or Guru session.
In either mode of operation, QRS 1is particularly valuable for
satisfying the ad hoc and "what if " information needs of end users,
developers and administrators.

The QRS language itself 1is considerably more powerful and
flexible than those of hierarchical or network systems, and it has
been specially designed to be much easier to use than the relational
SQL language. Rather than specifying the tables to be used and
equating redundant fields existing in those tables. a QRS user merely
states the names of the desired relationships.

Included among the many QRS features are user-definable jargon
and commands, tabular end user views, virtual fields, data dictionary
viewing, environment control options, fully selective retrieval,
arithmetic expressions, dynamic output sorting, control breaks (with
full statistics), value labels, batched query execution, and a DIF
output capability. All aspects of the query language and the optional
QRS module are presented in the MDBS QRS Manual.

8.4 Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - I: OVERVIEW - MDBS DDL MANUAL

RDL. The MDBS III Report Definition Language (RDL) is a
nonprocedural language that can be used to formally specify the
characteristics of a desired report and the prompting behavior of a
program that will generate that report. An RDL specification is input
to the RDL Analyzer. This optional MDBS module is an automatic
program generator which produces an efficient C language program
containing all DML logic, all computations, all input prompting, and
all output formatting needed to generate a report having the desired
content and appearance.

Included among the many RDL features are extensive output
controls, built-in statistical functions, user-definable functions,
free-form layouts for report details, detail sorting, headers/footers
for pages and for detail groupings, multi-level grouping, fully
selective retrieval criteria, wildcard string and character matching,
character class matching, and computed variables. The MDBS RDL Manual
contains a full description of the RDL and the RDL Analyzer.

IBS. The MDBS III Interactive Browsing System (IBS) is a menu
driven interface to postrelational data bases. It can be used to
browse through a data base's records in order to view their data
values or for on-screen editing of record contents. IBS can also be
used to create and delete records. As such, it provides an access
facility that can be used by non-programmers, as well as the
application system's developer and administrator. IBS has a built-in
help facility, supports data dictionary inquiries, and allows multiple
methods for reaching a desired record. The optional IBS module 1is
fully described in the MDBS IBS Manual.

BLE. The MDBS III Batch Load Facility (BLF) is an optional
module that automatically loads the contents of external flat files
into a postrelational data base. From a single file it is able to
create data base records of various types and correctly establish
their interrelationships within a data base. Thus, BLF allows data
from external sources to be incorporated into a data base without any

programming effort. This software module is fully described in the
MDBS BLF Manual.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A 8.5

MDBS DDL MANUAL - I: OVERVIEW - MDBS DDL MANUAL

F. Data Integrity Facilities

Every professional developer realizes that preserving an
application system's data integrity is essential. MDBS III provides a
variety of automated facilities for reducing the possibility of
integrity breaches and for recovering from any data base destruction
or corruption that may occur. These integrity facilities exist above
and beyond MDBS III's extensive data security mechanisms for
preventing unauthorized modifications to the data base.

The MDBS III data base control system automatically prevents a
data value from being stored for a field if it is not consistent with
the field's type. MDBS.DMS also checks for valid data values. For
instance, invalid dates and times are automatically prevented for date
and time fields. For any field, the developer can designate a range
of feasible values. Held in the data dictionary, these feasibility
ranges are automatically enforced by the data base control system.
The referential integrity of all one-to-one and one-to-many
relationships 1is automatically guaranteed. A developer <can also
specify that fixed relationship retention is to be enforced for any
schematic relationships.

To reduce the possibility of data base corruption due to external
factors, standard MDBS supports developer controlled buffer flushing.
In addition. the RTL form supports page image posting, transaction
logging, and selective recovery. Page image posting allows warm
restarts in single user processing situations. Transaction logging is
pertinent to both single user and multiuser applications. RTL's data
base control system can automatically log all transactions to a log
file. The scope of logical work units is developer controllable.
Each transaction 1is accompanied by the identity of the user who
performed it. In the event of data base corruption, the Recovery
(RCV) Utility can regenerate a valid data base up to the point of the
last completed 1logical work unit. Selective regeneration 1is also
permitted to allow data base contents to be rolled back to any desired
earlier state. The RTL form of MDBS is fully described in the MDBS
RTL Manual.

8.6 Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems. Inc.

MDBS DDL MANUAL - I: OVERVIEW - MDBS DDL MANUAL

G. Data Security Facilities

The security mechanisms built into MDBS III are extensive, even
by mainframe standards. Security control information for a data base
is maintained in the integral data dictionary. This includes each
user's password and access privileges, plus the access restrictions
defined for each field, record type, area and relationship existing in
the schema. The security control information itself can be viewed and
modified only by authorized users of DBRS or the MDBS III Design
Modification Utility (DMU). Design modification capabilities of the
optional DMU module are described in the MDBS DMU Manual.

To be able to wuse any of the MDBS 1III access languages or
utilities for data base access, a bona fide user name and associated
password must be provided. The retrieval and/or modification access
privileges of that user are automatically observed by the data base
control system. If a user's privileges do not supersede the access
restrictions on a data resource, then that user's attempts to access
it are denied. One of the more innovative aspects of this security
mechanism is the ability to define access restrictions for data

relationships, a valuable feature rarely supported by other dbms
software.

Of course, no security mechanism is complete without built-in
data encryption. MDBS 1III supports fully selective encryption,
allowing the developer to control which fields are to have their
values automatically encrypted. Naturally, this encryption occurs for
data held in both the data base and any of its transaction logs.

H. Performance Tuning Facilities

Because of its direct. concise postrelational representation of
real world relationships, MDBS III enjoys very significant processing
and storage advantages over conventional data base management systems.
The avoidance of traditional chaining and redundancy methods for
implementing relationships gives MDBS III a further processing speed
advantage. Beyond these inherent performance benefits, MDBS 1III
provides a variety of performance tuning controls that allow the
developer to adjust certain aspects of data base control system's
behavior in the interests of maximizing its performance with respect
to a particular application system.

The MDBS III tuning facilities include autcmatic data compression
for designated fields, assignment of record types to desired areas
(e.g., devices), control over area page sizes, physical clustering of
logically related records, variable field replication, record
storage/retrieval via hashing, and multiple secondary key indexes for
any record type. In addition, a developer can request the MDBS III
Data Base Restructuring System (DBRS) to rebuild an existing data base

so that the physical placements of contents are optimized with respect
to data base design criteria.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A 8.7

MDBS DDL MANUAL - I: OVERVIEW - MDBS DDL MANUAL

I. Multiuser Processing

Ensuring the integrity of a data base that is being used
concurrently by multiple users is a crucial concern for application
system developers. Versions of MDBS III implemented for multiuser
environments provide the developer with a complete range of locking
and contention controls. These enable the developer to effectively
avoid disastrous consequences that can result when one end user
attempts to either view or alter data that another user is updating.

For maximum flexibility and performance optimization, locking can
be applied to individual records. relationships, or groups of records.
MDBS 1III supports both passive and active 1locking techniques. A
contention count protocol is provided to release the system from
potential deadlock situations. For each application program, the
developer can control the number of automatic retries that will occur
whenever an attempt is made to access a locked resource. The time
interval between retries is also developer controllable.

The MDBS III locking and contention controls are the same across
all supported multiuser operating systems and local area networks.
These include the UNIX, XENIX and ULTRIX multiuser operating systems
and the IBM, Novell, and 3COM EtherShare local area networks. The
underlying data base control system implementation is dependent on the
nature of the multiuser environment. Characteristics of MDBS 1III
multiuser processing that are applicable to particular environments
are documented in pertinent MDBS System Specific Manuals and/or
Multiuser Supplements.

Jde MDBS III and Screen Maker

Screen Maker 1is a very extensive software tool that enables
professional application developers to create highly sophisticated,
extremely portable end user interfaces. Its flexible, powerful screen
management facilities are an ideal complement to MDBS III's data base
management abilities in the construction and administration of truly
polished application systems. As with MDBS III, maximizing developer
productivity is the keynote of the Screen Maker. The various Screen
Maker <capabilities are fully documented in the set of Screen Maker
Reference Manuals.

Using Screen Maker's Interactive Screen Designer (ISD), a
developer can interactively create and revise the screens that are to
be used by an application system. The screen designs are maintained
in a screen dictionary. To access and process these stored screens, a
high-level screen manipulation language (SML) 1is provided. SML
commands can be invoked from within the host programming language used
to implement an application system. Because all SML processing is
dictionary-driven, Screen Maker furnishes very high degrees of both
screen and terminal independence., as well as very significant savings
in application system program size and development time.

8.8 Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems. Inc.

MDBS DDL MANUAL - I: OVERVIEW - MDBS DDL MANUAL

ISD is a menu-driven screen design facility used to both build
and maintain an application system's screen dictionary. Each screen
in the dictionary is created only once, regardless of how many
different application programs will be using it. As each screen ‘is
designed, the developer can associate multiple windows with it.
Similarly, many frames can be associated with each window of a screen
as that window 1is designed. A frame is simply a screen position
through which an application program can output a data value for end
user viewing and/or input a data value from an end user into a program
variable.

with 1ISD, the developer has complete control over visual
locations of a screen's windows and their respective frames. As each
screen, window or frame is interactively designed, the developer can
give it wvarious special effects (including foreground/background
colors, full/half intensity, etc.), specify any literal characters it
is to contain, create help text for it, and assign a message line to
it. ISD gives the developer full control over the positioning,
content and special effects for such literals, message lines and help
text.

As each aspect of a screen, window or frame is designed, a visual
image of it appears on the console screen. Any characteristics of a
screen, window or frame can be redesigned at any time by the
application developer or administrator. Such changes automatically
alter the screen dictionary and are entirely independent of existing
application programs., Thus ISD allows the 1layout and other
characteristics of any screen to be quickly and easily changed without
modifying or even recompiling any application programs that use the
screen. :

In addition to this high degree of screen independence, Screen
Maker supports a high degree of terminal independence. Both the
screen dictionary and the application programs that use it are fully
insulated from changes in the types of terminals being used. A single
screen dictionary can simultaneously drive the terminals being used.
A single screen dictionary can simultaneously drive the screen 1/0
processing of the same or different application programs concurrently
executing on machines with different kinds of terminals. Thus Screen
Maker greatly amplifies the results that a developer can achieve, by
mak ing an application system's software and screen dictionary
perfectly portable across a wide range of terminal environments.

Screen Maker's high-level SML commands can be invoked from a
variety of host programming languages to make use of any existing
screen dictionary. Each of the high-level SML commands has a very
simple syntax and it typically replaces dozens or even hundreds of
program statements that would be required to accomplish a comparable
screen I1/0 task. 1In this way, Screen Maker drastically extends a host
language's screen handling abilities, by allowing an application
developer to govern all the dynamics of screen usage via a few high
level commands. Any application program containing SML commands for
screen processing can also contain MDBS III DML commands for data base
processing.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A 8.9

MDBS DDL MANUAL - I: OVERVIEW -~ MDBS DDL MANUAL

SML commands are furnished for the following kinds of screen
manipulation tasks:

- selecting a desired screen, window or frame existing in the
screen dictionary

- displaying a frame, a window with any or all of its frames, or
a screen with any or all of its windows

- accepting end user data input or data editing for any frame

- saving the present appearance of any frame, window or screen

- clearing any displayed frame, window or screen from the
terminal screen

- restoring any saved frame, window or screen appearance to the
terminal screen

- moving windows or frames to new positions on the terminal
screen

- displaying, moving and clearing the help text or message line
associated with any screen, window or frame

Screen Maker's Screen Control System (SCS) carries out each SML
request embedded in an application program. The dictionary driven SCS
processing causes all screen, window and frame characteristics defined
in the screen dictionary to be automatically observed while an
application program executes.

For advanced developers with very wunusual screen management
needs, Screen Maker also provides a comprehensive library of over one
hundred specialized screen support routines. Like the higher-level
SML commands, these routines can be invoked within a host programming
language.

8.10 Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL -1 OVERVIEW - MDBS DDL MANUAL

K. MDBS III and KnowledgeMan: Decision Support

KnowledgeMan is the highly acclaimed decision support environment
that provides end users with a means for satisfying many of their own
knowledge management needs. By helping end users and casual
developers to be more productive, KnowledgeMan frees the professional
application developer to concentrate on truly challenging applications
involving large data bases. KnowledgeMan can directly access these
massive MDBS III data bases subject to all of the usual security and
integrity controls enforced by the MDBS III data base control system.
The tight inteqgration of MDBS III with KnowledgeMan makes the data
held in massive MDBS 111 data bases susceptible to fast local decision

support processing, without endangering the security or integrity of
these central data bases.

KnowledgeMan 1is a single program that encompasses a broad

spectrum of knowledge management facilities for supporting decision
makers. These* include:

relational data base management
spreadsheet analysis

business graphics

full-screen text processing

customized report generation

ad hoc, SQL inquiry

mathematical functions and calculations
forms management

customized procedures

remote communications

They are fully described in the KnowledgeMan Reference Manual and its
varlous supplements.

* Some KnowledgeMan facilities are optional and some may not be
available in all environments at all times.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A 8.11

MDBS DDL MANUAL - I: OVERVIEW - MDBS DDL MANUAL

Unlike ordinary integrated software, KnowledgeMan's facilities
are not merely separate tools operating within a window manager.
KnowledgeMan obsoletes the cumbersome process of "cutting and pasting"
and the inconvenience of being forced to switch back and forth among
different tools and windows. Nor does KnowledgeMan follow the
restrictive nested approach to "integration" used by 1-2-3, Symphony.
Framework, and their clones.* With KnowledgeMan, a user is not forced
to carry on all processing within the constraints of a single dominant
component such as a spreadsheet or outline processor.

KnowledgeMan is based on a synergistic philosophy of integration
that allows any facility to be used independently of the others. It
also allows multiple facilities to be used together within a single
operation, resulting in a total effect that is much greater than the
sum of individual effects. Individually, each KnowledgeMan facility
is quite extensive when compared to standalone packages. Fused
together, they support many kinds of processing that are simply
impossible with collections of leading standalone packages or with
conventional "integrated" software.

KnowledgeMan has been carefully designed to give users plenty of
room to grow. It is simple enough that novice users can become
productive in a very short time. As experience and needs increase, a
user 1is free to grow in any desired direction with KnowledgeMan's
universe of knowledge management possibilities. One direction is
toward the use of massive postrelational MDBS III data bases. For
instance. in the midst of a KnowledgeMan session QRS can be invoked to
query a postrelational data base. Upon exiting QRS, KnowledgeMan
processing resumes and a single request will incorporate query results
into KnowledgeMan's local relational data base., Furthermore, MDBS III
application programs for processing postrelational data bases can be
executed at any desired juncture within a KnowledgeMan session. These
programs can use data exported by KnowledgeMan for updating a
postrelational data base or they can extract information from the
postrelational data base for subsequent import into KnowledgeMan's
local processing environment.

There is an even closer connection between MDBS III and
KnowledgeMan. As explained in the KnowledgeMan Reference Manual, the
entire MDBS III data manipulation language is available as a fully
integral component of KnowledgeMan. Any DML command can be invoked at
any point in an interactive KnowledgeMan session to transfer data
between a <central postrelational data base and 1local KnowledgeMan
variables, arrays, spreadsheets. or relational tables. DML commands
can also be embedded in the cell definitions of spreadsheets and in
customized KnowledgeMan procedures. Application developers can use
these latter two techniques to provide KnowledgeMan users with direct
access to the latest information held in a central MDBS III data base.
This requires no DML comprehension on the part of KnowledgeMan's end
users.

* 1-2-3 and Symphony are trademarks of Lotus and Framework is a
trademark of Ashton-Tate.

8.12 Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems. Inc.

MDBS DDL MANUAL - I: OVERVIEW - MDBS DDL MANUAL

L. MDBS III and Guru: Expert Systems

Guru is an artificial intelligence environment designed
especially for business problem solving. 1In addition to its extensive
facilities for business computing (spreadsheet, procedural modeling.
graphics, etc.), Guru provides full-scale facilities for expert system
construction and expert system consultation. All of these are blended
together into a single environment. Guru is well-suited for
developing artificially intelligent application systems with their own
built~in expert reasoning capabilities. Expert systems built with
Guru can directly process spreadsheets, relational data tables.
models, forms, etc. In addition, they can directly access MDBS III
data bases subject to all the usual security and integrity controls
enforced by the MDBS data base control system.

Ordinary expert system development tools do not support even the
most basic kinds of knowledge representation and processing: real
data base management, spreadsheets, structured programming, business
graphics, remote communications, forms management, text processing and
so on. Not only does Guru handle all of these, it also handles
reasoning knowledge in the convenient guise of rules. An expert
system is constructed by building a set of rules that capture an
expert's knowledge about solving problems in an application area.
Unlike ordinary tools, Guru allows rules to be specified in terms of
spreadsheet calculations, relational data base retrieval, statistics

generation, graphics display. model execution, MDBS DML commands, and
so forth.

When an end user consults an expert system, Guru's innate
inference engine reasons with the rule set in order to reach a

solution. End users can directly ask for a consultation or the
developer can embed consultation requests in application programs that
end users execute. In either case, the inference engine is able to

carry out all business computing actions specified in the rule set's
rules. Guru's inference engine 1is able to use both forward and
reverse reasoning, accommodate fuzzy variables, reason about uncertain
situations, and explain the line of reasoning it used in reaching a

solution. Guru's capabilities are fully described in the two-volume
Guru Reference Manual.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A 8.13

MDBS DDL MANUAL - I: OVERVIEW - MDBS DDL MANUAL

M. Summary of the MDBS Data Description Language and Software

The remainder of this manual concentrates on the Data Description
Language that can be used to formally specify schemas designed for a
postrelational data base. It also focuses on the DDL Analyzer which
is the software module provided for processing a DDL specification.
This chapter concludes with summaries of the DDL and DDL Analyzer
features.

1. Summary of MDBS DDL Data Structuring Features:

a. Up to 255 record types are allowed per 1logical data
structure.

b. Variable and fixed length records are supported.

C. Up to 65535 data items (fields) are allowed per record
type.

d. The following kinds of data items are allowed:
character, integer, real (floating point), string
(variable length character data item), binary (variable
length data item), wunsigned, internal decimal, time,
date.

e. Encryption of a data item's values is supported.

f. A feasibility range can be specified for a data item's
values.

g. The following kinds of sets are allowed for defining
relationships among record types: one-to-many (i.e.,
CODASYL set), one-to-one, many-to-many.

h. A record type can be the owner of many sets (of any
kind) and the member of many sets (of any kind); many
sets (of any kind) can exist between two record types.

i. Any set can be forked into multiple member record types
and/or multiple owner record types.

Ja Recursive sets are permitted.

k. Sorted, LIFO, FIFO, next, prior, and immaterial
orderings supported for member records of a one-to-many
set. These orderings are supported for both owner
records and member records of a many-to-many set.

1. A sorted ordering can be ascending or descending and
can be based on multiple data item types.

8.14 Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - I: OVERVIEW - MDBS DDL MANUAL

m. Sorted orderings can be based on English sequences or
on any of a variety of non-English (e.g., French)
sequences. :

n. Automatic or manual record insertion for sets.
o. Fixed or optional record retention for sets.

pP. Aside from the main data base area, up to 15 extra
(physically distinct) areas can be defined for holding
data base records. In some environments, there is a
maximum of seven extra areas.

g. Occurrences of a record type can be assigned to one or
more areas.

r. Related occurrences of more than one record type can be
physically clustered.

Se. Records can be "hashed" into the data base for fast,
direct access.

t. An extensive access code mechanism is provided for
automatic enforcement of read and write access
constraints placed on each data base user.

u. Record interrelationships are not implemented by
redundancy of data values (as in flat file systems),
nor are they implemented by pointer chaining (as in
most CODASYL network and hierarchical systems). For
superior performance, MDBS record interrelationships
are implemented with a proprietary technique involving
enhanced, multi-level, indexed, dynamic pointer arrays.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A 8.15

MDBS DDL MANUAL - I: OVERVIEW - MDBS DDL MANUAL

2. Summary of the DDL Analyzer (MDBS.DDL) Features:
a. Supports free format DDL source text.

b. Can be used in batch manner to analyze a DDL source
text file and initialize a data base for it.

C. Can be used interactively in text entry mode which
supports:

i) Creating DDL source text
ii) Listing DDL source text
iii) Deleting DDL source text

iv) Saving DDL source text on a disk file
v) Retrieving DDL source text from a disk file
vi) Renumbering DDL source text

d. Can be used interactively in an edit mode which allows
line editing of DDL source text.

e. Can be used interactively in an analysis mode which:
i) Analyzes DDL source text for consistency
ii) Displays error message if error detected

iii) Can initialize the data base if no error is
detected

8.16 Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems., Inc.

MDBS DDL MANUAL MDBS DDL MANUAL

II. DEFINITIONS AND EXAMPLES

A. Data Base Areas and Pages

A data base consists of one or more areas. An area exists on a
disk file. Each area consists of two or more pages. A page is a
fixed-size block of bytes or words that is transferred as a logical
whole between central memory and disk. This transfer is automatically
performed as needed by MDBS.DMS in order to carry out DML commands.
Each area can hold up to 4095 pages (8191 in some environments). A
few pages in each area are reserved for use by MDBS.DMS. These are
called System pages. System pages contain data dictionary (and other)
information. A DML command to store data will cause the MDBS.DMS to
place that data on the non-System pages in an area.

The name of a data base is stated with the DDL. Wwhen the data
base is initialized, one area having the same name as the data base is
automatically prepared for use. This area is referred to as the main
data base area. The System pages of this area contain the data
dictionary. Additional areas (up to 7 or 15 more) can be optionally
defined with the DDL. The DDL is used to give each of these extra
areas a name and each is automatically prepared for use when the data
base is initialized. The designer can control:

the name of the file on which an area resides.
the disk on which an area resides, and
the disk drive to which an area is assigned.

This means that all data base areas do pot need to be on-line when the
data base is initialized by MDBS.DDL or when the data base is used by
MDBS.DMS in response to a DML command (or query). However, the area
having the data base name (i.e., the main area) should always be kept
on-line, since it contains the data dictionary. MDBS.DMS needs to
consult the data dictionary in order to carry out DML commands.
Notice that some part of the data base can exist on fast drives. while
another part of the data base is on relatively slower (less expensive)
drives.

Figure II-1 illustrates the foregoing relationships. In this
example, the data base DBEX consists of four areas. These areas are
named DBEX, AR4, BAREA and AR3. They have been defined as residing on
FILEA, FILEB, FILEC, and FILED, respectively. DBEX has three System
pages that «contain the data dictionary; the other areas have two
System pages apiece. FILEA is on Diskl, FILED is on Disk3, and the
other two files are on Disk2. The DBEX area has been assigned to
Drivel. The other three areas have been assigned to Drive2. Suppose
an application program needs to access data from the DBEX and BAREA
areas, then Diskl is mounted in Drivel and Disk2 is mounted in Drive2.
Suppose that another application program needs to access data from the
DBEX, AR3, and BAREA areas. Since both AR3 and BAREA are assigned to
the same drive but are on different disks, they cannot be used
simultaneously. However, the application program can prompt the end
user to assure that the appropriate disk is in Drive2 at the proper
time. Simultaneous usage of the two areas is accomplished by allowing

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A 9

MDBS DDL MANUAL - II: DEFINITIONS - MDBS DDL MANUAL

one of them to reside on Diskl or by allowing them to reside on the
same disk or by assigning one of them to a third drive. The file name
and drive for an area can be altered with the DML when that area 1is
"opened" in an application program.

FILEA
ASSIGNED TO
’f/ //
_
PAGE 1| (SYSTEM PAGE)
DBEX PAGE 2| (SYSTEM PAGE) DRIVEL
PAGE 3| (SYSTEM PAGE)
AREA
\PAGE 18 ASSIGNED
FILEB EILEC ASSIGNED TO
ARG BAREA DISk2
r - - \\ >~
PAGE 1] (SYSTEM PAGE) (| PAGE 1| (SYSTEM PAGE)
PAGE 2 | (SYSTEM PAGE) PAGE 2| (SYSTEM PAGE)
ARYL PAG
E 3 BAREA PAGE 3
AREA ; AREA ; DRIVE2
| {PAGE 100 | {PAGE 165
FILED ASSIGNED TO
N
@O e
//’ -
PAGE 1| (SYSTEM PAGE)
AR3 PAGE 2] (SYSTEM PAGE)
AREA ‘
PAGE 50

Figure II-1. Areas and Pages

The selection of an appropriate page size is important, since it
influences the number of pages in memory during system execution and

thus impacts the performance of the system. If the memory available
for page buffers is relatively limited, it is advisable to select a
small page size to maximize the number of pages 1in memory. For

instance, performance with four small pages in memory will typically
surpass performances based on two larger pages in memory. On the

10 (C) COPYRIGHT 1981 Micro Data Base Systems., Inc.

MDBS DDL MANUAL - II: DEFINITIONS - MDBS DDL MANUAL

other hand, if the buffer region is large, then a comparatively large
page size can be advantageous, providing a minimum of about 5 to 8 of
these pages will fit in the buffer region.

There are certain lower limits on the page size. For Version 3c,
it must be at least 256. For Version 3a, the page size must be a
multiple of 256 and- furthermore, it must be large enough to hold an
occurrence of the 1largest record type in the area. Another
consideration involved is how the record occurrences are distributed
on a page. It is possible (depending on the size of the record) that
records are put on a page in such a way that a great deal of room 1s
"wasted" on each page. As an example, consider the extreme case where
only one record type of 260 bytes has been assigned to an area with a
page size of 512 bytes. Since records are not split over two or more
pages, this would mean that only one record is being stored on a page.
This can result in a great deal of "wasted" space- except that MDBS
will attempt to wuse such space to hold internally used indices.
Consideration of the factors such as these, will aid the application
developer in selecting a good page size for an area.

B. The Logical Structure of an MDBS Data Base
Data Items and Record Types

The logical structure of a data base is specified in terms of
data items. record types. and sets. A record type is a named group of
zero, one, or more data items. Data items (fields) are the most
elemental components of a logical structure. Every data item is given
a name and is described in terms of the type and size of its values.
The permissible types and sizes are discussed later in Section II-C.
Two data items in the same record type cannot be given the same name
(the same item name may be used in different record types).

As an example. we may want a data base to contain information
about all departments in an organization. For each department we may
want to keep track of the department's number, name, and location.
The 1logical structure for such a data base would have a record type
(call it DEPT) which consists of three data items: call them DNUMBER,
NAME, LOCATION. Pictorially, a record type is represented by a
labeled rectangle, with the names of its data items inside. The DEPT
record type is represented as shown in Figure II-2. This Figure also
shows four other record types: EMPLOYEE, BIOGRAPH, JOB, SKILL. No
two record types can have the same name. The meaning of the arrows in
this logical structure is discussed later.

For each record type declared in a data base's logical structure,
there can exist zero, one, or more occurrences of that record type in
the data base itself. An occurrence of a record type consists of a
value for each of the record type's data items. For instance, an
occurrence of the DEPT record type might be [101,SALES,CHICAGO].

Another occurrence of the same record type might be
{108, FOUNDRY,DETROIT]. A sample occurrence of the record type JOB is
(A15,JANITORI]. MDBS places no upper 1limit on the number of

occurrences for a record type that can exist in a data base.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A 11

MDBS DDL MANUAL - I1: DEFINITIONS - MDBS DDL MANUAL

DEPT EMPLOYEE BIOGRAPH
DNUMBER ID
NAME HAS LASTNAME | DETAILS LINE
LOCATION 1 PASTJUOBS]
YTDEARN
POSSESS
FILLEDBY

JOB SKILL
JOBCODE SKILCODE

NEEDS ! DESCRIPT
DESCRIPT RATING

Figure II-2., A Sample Logical Structure

A data item can optionally be specified to be an array. It is
then called a repeating item. For instance, PASTJOBS in EMPLOYEE
could be a repeating item of length 3, if we desire to keep track of
the three most recent jobs of each employee. A data value of PASTJOBS
would consist of an array of length 3 (i.e., an array having three
entries).

An occurrence of a record type is called a record occurrence (or
simply: a record). A value for a data item is <called "an iten
occurrence. Thus a record occurrence exists in the data base and
contains an item occurrence for each data item in the record type. It
must be emphasized that jitem occurrences and record gccurrences exist
in the data base itself, while data items and record types are used to
mmmuwgmmm The DDL is used to
specify a data base's logical structure in terms of data items and
record types. The DML is used to create, modify, and extract item
occurrences and record occurrences of a data Dbase. This data
manipulation is always made in accordance with the data base's logical
structure. To create a new occurrence of the DEPT record type, a DML
create command is qualified by DEPT. If another application program
needs to generate a list of all employee names, it would use the DML
to request all record occurrences of EMPLOYEE and for each of these it
would request the values of the LASTNAME and FNAME data items.
Needless to say. MDBS.DMS automatically performs the tasks of
physically locating the record occurrences, bringing them into central
memory, and depositing the desired data values into application
program variables.

As each record type is defined in the DDL, the designer has the
option of assigning it to one or more areas. This means that when
MDBS.DMS creates occurrences of that record type. they are stored in
the assigned area(s). More than one record type can be assigned to
the same area. One result is that frequently accessed record
occurrences can be clustered for use on a fast disk drive. Another
result is that record occurrences with particularly sensitive
information can be physically protected, by assigning them to an area
on a separate disk. This disk is manually placed on-line only for
users with sufficient security clearance.

12 (C) COPYRIGHT 1981 Micro Data Base Systems. Inc.-

MDBS DDL MANUAL = II: DEFINITIONS - MDBS DDL MANUAL

Relationships Between Record Types

In designing the logical structure of a data base, it is vital
for an application developer to have some means for defining relation-
ships among record types. In systems that support only flat file
structures, this is accomplished by redundancy. These flat file
structures are also called "relational" or tabular structures. One or
more data items in one record type are repeated in another record
type. Occurrences of one record type that are related to a given
occurrence of another record type can then be found by looking for
matching values between the repeated data items. For instance, to
represent the fact that a department has employees, the DNUMBER data
item of DEPT could be repeated as a data item in EMPLOYEE. For a
given occurrence of EMPLOYEE, a DEPT occurrence with a matching value
for DNUMBER could be found. Conversely, for a given occurrence of
DEPT, all EMPLOYEE occurrences having a matching DNUMBER value could
be found. This approach to representing a relationship between two
record types (cross-referencing by redundancy) is entirely permissible
within MDBS data structures.

However, it must be pointed out that the flat file approach to
data structuring has a number of inherent drawbacks. It does not
convey the semantics of a relationship. This is important when
multiple, semantically-distinct relationships exist between two record
types. From a data integrity standpoint, there is no structural
mechanism for restricting a relationship to be a one-to-many or one-
to-one relationship. In looking at a flat file structure, the
relationships between record types are not always easy to pick out,
especially if two record types are indirectly related through several
other record types. This problem is compounded for realistic logical
structures, which typically involve many record types (not just two or
three). The number of record types in a flat file structure
proliferates rapidly if the application developer decides to use a
third normal form (from relational theory). For realistic application
development, flat file structures tend to cause greater storage and
processing overhead than do the alternative approaches to representing
inter-record type relationships (discussed below).

Although the application developer using MDBS is free to define
flat file structures, he should be aware of the inherent limitations
and inconveniences of the flat file approach. The application
developer using MDBS could also restrict himself to hierarchical
structures, shallow network structures, or CODASYL network structures.
Here again, limitations, inefficiencies, and inconveniences are
frequently incurred.

With MDBS, a named relationship between two record types can be
defined as a get. One record type is called the gwner of the set and
the other record type is called the member of the set.l The term
"set" as used in data base management has no relationship to the

1 sets with multiple owner record types and multiple member record
types, as well as recursive sets, are also allowed in MDBS; these are
explained in a later section entitled "Special Ways of Using Sets."

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. 13

MDBS DDL MANUAL - II: DEFINITIONS - MDBS DDIL MANUAL

mathematical notion of a set. In the pictorial representation of a
logical structure (e.g., Figure II-2), a set is represented by a line
between the owner record type and the member record type. The name of
the set is placed alongside the line. An arrowhead appearing on a
line always points from the owner record type to the member record
type. The positioning of arrowheads on lines is used to distinguish
among the various kinds of sets. If an arrowhead is adjacent to the
member record type, then there can be many member record occurrences
related to each record occurrence, otherwise there is no more than one
related member record for any owner record. If an arrowhead is
adjacent to the owner record type, then there can be many owner record
occurrences related to each member record occurrence, otherwise there
is no more than one related owner record for any member record.

Four distinct kinds of sets are allowed in MDBS data structures:

1:N Set for representing a one-to-many relationship
(Owner ———>»member)

N:M Set for representing a many-to-many relationship
(Owner >»—3>»member)

l1:1 Set for representing a one-to-one relationship
(Owner —»—member)

N:1 Set for representing a many~to-one relationship
(Owner »——member)

In all MDBS manuals the term "set", used by itself, refers to all four
kinds of MDBS sets.

A 1l:N gset (—>) is a traditional CODASYL set. (It is also
analogous to what is called a parent-child relationship in
hierarchical systems.) In specifying a 1:N set, the application
developer is stating that one occurrence of the owner record type can
be associated with N (N 2 0) occurrences of the member record type.
However, an occurrence of the member record type is associated with no
more than one occurrence of the owner record type. In Figure II-2,
HAS 1is an example of a 1l:N set. One department can have many
employees, but an employee is associated with no more than one
department. FILLEDBY is another 1:N set; a Jjob type can be filled by
many employees, but an employee fills only one job at a time. Unlike
shallow network systems, in MDBS structures a record type can be the
owner of many sets and it can be the member of many sets. Unlike
hierarchical systems, a record type can be the member of many sets.

An N:M set (O»—3») relationship between two record types means
that an occurrence of the owner record type may be associated with M
(M 2> 0) occurrences of the member record type. Furthermore, an
occurrence of the member record type may be associated with N (N > 0)
occurrences of the owner record type. Thus an N:M set is used to
directly represent a many-to-many relationship between record types.
In Figure II-2, NEEDS is an N:M set. A job may need many skills and a
skill may be needed by many jobs. POSSESS is another N:M set; an
employee may possess many skills and a skill may be possessed by many
employees. Such relationships cannot be directly represented in
hierarchical, shallow network, or CODASYL network structures. For

14 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - II: DEFINITIONS - MDBS DDL MANUAL

instance. the CODASYL approach to representing the relatignshlp
between JOB and SKILL necessitates the definition of an additional,
artificial record type that is the member of a set owned by JOB and
the member of another set owned by SKILL. This indirect mgthod for
representing many-to-many relationships is supported in MDBS.
However, it is recommended that the N:M set be used instead, since it
gives a simpler logical structure, makes application programming much
easier, requires less storage, and yields faster processing.

A 1l:1 set (—pmw—) relationship between two record types indicates
that an occurrence of the owner record type is associated with, at
most, one occurrence of the member record type and an occurrence of
the member record type is associated with, at most, one occurrence of
the owner record type. In Fiqure II - 2, DETAILS is an example of a
l:1 set. An employee has no more than one biography and a biography
is associated with no more than one employee. LINE is a string (i.e.,
variable length) data item, which could have a very long occurrence
for some employees and a short value for other employees. LINE could
have been included in the EMPLOYEE record type. However, if it is
less frequently used than other employee data, it is reasonable to
place LINE in a separate record type. This means that 1lengthy
biographical data will not be brought into main memory each time an
EMPLOYEE record is accessed. It also allows biographical information
to be assigned to an area that is usually not on-line and that is
utilized by a slow access disk drive.

The N:1 set (pw——) is an operationalization of the functional
dependency notion in relational theory. It is the exact converse of a
1:N set. For a N:1 set, a member occurrence can have N (N > 0) owner
occurrences. However, an owher occurrence is associated with, at
most, one member occurrence.

A set occurrence consists of an occurrence of the set's owner
record type and all associated member record occurrences (for example.
a department and all employees in that department; another example, a
job and all skills that job needs). Set occurrences for a 1l:N set do
not overlap; they have no record occurrences in common. The same is
true for set occurrences of a l:1 set. Set occurrences for a N:M set
can overlap. For instance, a SKILL occurrence can belong to more than
one JOB occurrence.

Set Ordering

For a given set, the member record occurrences associated with an
owner record occurrence can be declared (in the DDL) to be ordered.
This is referred to as the set's member order. Similarly, the owner
record occurrences associated with a member record can be declared to
be ordered. This is referred to as the set's owner order. Specifying
a member order is meaningful only for 1:N sets and N:M sets (for 1:1
sets and N:1 sets there is no more than one member record occurrence
per owner record occurrence). Specifying an owner order is meaningful
only for N:M sets and N:1 sets (for l:1 sets and 1:N sets there is at
most, one owner record occurrence per member record occurrence). All
member records for a given owner record can be accessed in the logical

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A 15

MDBS DDL MANUAL - II: DEFINITIONS - MDBS DDL MANUAL

sequence defined by the set's member order. All owner records for a
given member record can be accessed in the logical sequence defined by
the set's owner order. In either case, the MDBS DML also allows
reverse sequence accessing.

There are six allowable set orders: FIFO, LIFO, NEXT, PRIOR,
IMMATERIAL, SORTED. These orderings are logical; they do not control
the physical placement of record occurrences. Regardless of the
ordering chosen, MDBS automatically maintains that logical order
during the creation, deletion. and modification of record occurrences.
The six kinds of set orders are described with respect to specifying
member order. The descriptions would be identical for specifying
owner order except that the term "owner" replaces the term "member"
and vice versa.

FIFQ (first in. first gut) - The first member record occurrence
that becomes associated with a given owner record is logically
the first to be accessed. The second member record to become
associated with that owner record is logically the second to be
accessed, and so forth.

Example: 1If the member order for HAS in Figure 1II-2 1is
FIFO, then the employees associated with a given
department can be accessed on a first in - first
out basis.

LIFQ (last in. first gut) - The last member record occurrence to
become associated with a given owner record is logically the
first to be accessed. The second-to-last is the second to be
accessed, and so forth.

Example: If the member order for HAS is LIFO. then the
employees associated with a given department can
be accessed on a last in-first out basis.

NEXT - A new member record that becomes associated with a given
owner record 1is inserted into the logical sequence of member
records immediately after the "current™ member record of the set.
("Current" is defined in the MDBS DMS Manual discussion; a DML
command allows a user to make any member record "current.")

PRIOR - A new member record that becomes associated with a given
owner record is inserted into the logical sequence of member
records immediately before the current member record of the set.

Example: Suppose the member order of HAS is PRIOR. Suppose
department 101 has four employee record
occurrences and the third one is presently the
current member of HAS. The next employee record
occurrence to become associated with department
101 will enter the logical sequence of employee
records immediately before the third one.

16 Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - II: DEFINITIONS - MDBS DDL MANUAL

IMMATERIAL - This order option should be used if the application
designer does not care about the set order. This ordering allows
MDBS to realize certain efficiencies and should be used if
possible.

SORTED - The member record occurrences for a given owner record
occurrence are logically sorted on the basis of one or more data
items in the member record type. These data items are
collectively called the member sQrt key. The sorting for each
data item in a sort key may be on an ascending or descending
basis. In the DDL, the application designer can also specify how
MDBS.DMS should handle member records with duplicate sort key
values. The options are to prohibit dupiicates or to incorporate
them on a FIFO, LIFO or IMMATERIAL basis. Finally, the designer
can optionally specify how many bytes of a sort key are to be
used in maintaining the set's member order index.

Example: Suppose the member order for the HAS set is sorted
on last name, first name, and ID (all on an
ascending basis). Then all employees in a given
department can be accessed according to this
sorted order. It also permits MDBS.DMS to very
quickly find the EMPLOYEE record occurrence that
has a particular sort key value.

These six ordering options have been described for a set's member
order. The same options are available for a set's owner order. For
instance, the NEEDS set in Figure II-2 might have as its owner order:
sorted on JOBCODE. The member order could be: sorted on SKILCODE.
The result is that all jobs for a particular skill can be accessed in
sorted order on the basis of JOBCODE values. All skills for a given
job can be accessed in sorted order on the basis of SKILCODE values.

To have MDBS.DMS maintain two (or more) different orderings, two
(or more) sets between the two record types can be defined. For
example, 1if it is desired to have the employees in a department
maintained in sorted order on the basis of ID and to be maintained in
sorted order on the basis of LASTNAME, then two 1:N sets would be
defined in place of HAS. One would have as its member order: sorted
on ID. The other would have as its member order: sorted on LASTNAME.

Special Ways of Using Sets

To this point a set has been used to represent a relationship
between two different record types defined by the application
designer. There are four other ways for using sets: SYSTEM-owned
sets, recursive sets, sets with multiple member record types, and sets
with multiple owner record types. In the last three situations, all
four kinds of sets are allowed. In the case of SYSTEM-owned sets,
only 1l:1 and 1:N sets are permitted. There is also a special 1:N set
called $SYSSET that is automatically defined by MDBS.DDL when the data
base is initialized.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. 17

MDBS DDL MANUAL - II: DEFINITIONS - MDBS DDL MANUAL
[EMP
DEPT EMPLOYEE BIOGRAPH
1D
DNUMBER LASTNAME
IDEP | NAME HAS FNAME DETAILS ‘ LINE
LOCATION PASTJOBS >
YTDEARN
SYSTEM Y.
FILLEDBY IOSSESS
JOB SKILL
K1LCODE
1J0B | JOBCODE R
DESCRIPT REvea

Figure II-3. System~owned Sets

System-ownegd set. When a data base is initialized, MDBS.DDL
automatically creates a special record type called SYSTEM. This
special record type has one record occurrence in the data base; the
SYSTEM record occurrence is also created when the data base 1is
initialized. It contains no data. A system-owned set is a set that
has SYSTEM as its owner and some other record type as its member.
Figure II-3 shows three system-owned sets: IEMP, IDEP, IJOB. A
record type can be the member of zero, one, or more system~owned sets.

Declaring a sorted system-owned set causes MDBS to automatically
form and maintain an index into the occurrences of the member record
type. For efficiency, this is actually a multi-level, balanced index.
The index 1s malntained in accordance with the member order declared
for the system-owned set (e.g., FIFO, LIFO, SORTED, etc.). Suppose
that IEMP is sorted on LASTNAME and FNAME. Then a sorted list (on
last and first names) of employees can be gquickly produced through
IEMP. This also allows MDBS.DMS to quickly find a particular employee
occurrence on the basis of its sort key value (i.e., a last and first
name). Many system-owned sets can be declared for the same member
record type. A system-owned set incurs very little overhead relative
to most other kinds of sets.

A set is recursive when it has the same record
type as both owner and member. It is a means for relating occurrences
of a record type to other occurrences of the same record type. For
example, an employee can manage many other employees who, in turn,
manage still other employees, and so forth. Thus there is a one-to-
many relationship among employees. This recursive situation is easily
handled by the recursive set, MANAGES, that is shown in Figure II-4.
Just like any other 1:N set, MANAGES will have a member order. The
need for recursive 1:N and N:M sets is encountered in many application
areas (e.g., the chart of accounts in accounting applications).
Recursive sets are not allowed in flat file, hierarchical, shallow
network, or CCODASYL network systems.

Recursive sekt.

18 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - II: DEFINITIONS - MDBS DDL MANUAL

EMPLOYEE

ID
LASTNAME MANAGES
FNAME

PASTJOBS

Figure II-4. A Recursive Set

i Member Forked Sets. Just as with CODASYL networks, MDBS
extended networks permit 1:N sets that have multiple member record
types. With MDBS, multiple member record types are also allowed for
1:1, N:1. and N:M sets. Figure II-5 gives an example of a forked 1:N
set with multiple member record types. This set is called CONTAINS.

HRLYEMP

ID

LNAME
™ FNAME
DEPT HRLYRATE
HRS

DNUMBER CONTAINS
NAME SALEMP

ID

LNAME
‘ ™ FNAME
MOSAL

Figure II-5. Multiple Member Forked Set

Because this is a 1:N set, a record occurrence of DEPT can have
many member record occurrences, some of the type HRLYEMP and some of
the type SALEMP. Note that the two member record types have some data
items in common and others that are different.

All of the usual set orders are allowed with a multiple member
set. For instance, CONTAIN could be sorted (ascending) on LNAME and
FNAME. The employees in a given department can then be accessed
alphabetically, regardless of whether they are salaried or hourly
workers. In addition, the record type name could be included as part
of the sort key. If CONTAINS is sorted first on (ascending) record
type name and then on LNAME and FNAME, then for a given department, an
alphabetical list of hourly employees followed by an alphabetical list
of salaried employees could be accessed. A maximum of 127 member
record types are allowed for any set.

Multiple Owner Forked Sets. With MDBS, more than one record type
is allowed as the owner of any set. An example of a forked N:M set
with multiple owner record types is shown in Figure 1II-6. It
indicates that many skills can be possessed by an hourly or salaried
employee. Conversely, a skill may be possessed by many employees. If
the member order for POSSESS is sorted (ascending) on SKILCODE. then
the skills for each employee (salaried or hourly) can be accessed in

(C) COPYRIGHT 1981 Micro Data Base Systems. Inc. Rev. 85A 19

MDBS DDL MANUAL - II: DEFINITIONS - MDBS DDL MANUAL

sorted order. If the owner order for POSSESS is sorted (ascending) on
ID, then all employees having a given skill (regardless of whether
they are salaried or hourly) can be accessed in order according to ID.
A maximum of 127 owner record types are allowed for any set.

SSYSSET Set. This 1is a special FIFO 1l:N set that MDBS.DDL
automatically defines whenever a data base is initialized. Its owner
record type is SYSTEM. Its member record type(s) is (are)
automatically and dynamically established (and re-established) by
MDBS.DMS during the execution of an application program. The member
record dccurrences of $SYSSET at any given moment during the execution
of an application program are those record occurrences that are the
result of a Boolean DML command. The result of a Boolean DML command
consists of zero, one, or more record occurrences (see the MDBS.DMS
Manual for a full description of Boolean DML commands).

HRLYEMP

1D
LNAME
FNAME
HRLYRATE
[HRs

SKILL

SKILCODE
| POSSESS .} pEscRIPT
SALEMP RATING

Figure II-6. Multiple Owner Forked Set

Set Retention

Any set in the DDL source can be declared to have a FIXED or
OPTIONAL set retention. If the set retention is FIXED, then any
connection that 1is made between an owner record occurrence and a
member record occurrence is permanent. Although either record could
be deleted, they cannot be disconnected from each other without
deletion. OPTIONAL set retention means that there is no restriction
on disconnecting an owner record from a member record, (i.e., the two
records can be disconnected without deleting either record).

Set Insertion (Connection)

Inserting a member (or owner) record into a set means that it is
being connected to an owner (or member) record. The member record
type(s) of a set can be declared to have either automatic (AUTO) or
MANUAL set insertion. AUTO means that whenever an occurrence of the
member record type is created in the data base, it is automatically
connected to an occurrence of the set's owner record type(s). MANUAL

20 Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - II: DEFINITIONS - MDBS DDL MANUAL

means that whenever a member record is created in the data base, a DML
command can be used to connect it to an occurrence of the set's owner
record type(s). The owner record type(s) of a set can also be
declared to be either AUTO or MANUAL. AUTO means that whenever an
occurrence of the owner record type is created in the data base, it is
automatically connected to an occurrence of the set's member record
type(s). MANUAL means that this connecting is not automatic, but can
be accomplished as needed with a DML command.

C. Types and Sizes of Data Items

Each data item declared with the DDL must be given a type and
size. MDBS supports nine different types of data items. Data item
size refers to the length of an occurrence of the data item.
Permissible data item size depends on the type of the data item. The
nine types of data items are:

integer unsigned string
real internal decimal (idec) time
binary character date

No size is explicitly stated in the DDL source for date or time
data items. The size for an internal decimal data item is stated in
terms of the total number of digits to be used (the number of digits
to the right of the decimal point is also stated). Sizes for the
other six types of data items are stated in terms of bytes. Automatic
data compression occurs for string, binary, date, and time data items.
Suppose FNAME is a string data item of 12 bytes. When the item
occurrence 'Bob' is stored, MDBS allocates fewer than 12 (not 12)
bytes. Suppose LINE in Figure II-2 is a string data item of size 250
that repeats five times. Thus a maximum of 1250 bytes are allowed in
a LINE occurrence. If only the first 375 bytes are nonblank in a
given LINE occurrence, MDBS allocates only about 375 bytes for that
occurrence.

Table II-1 shows the minimum and maximum size (n) that can be
specified in the DDL for each type of data item. The corresponding
storage requirement (in bytes) for a specified n is shown in the
table. For example, an occurrence of an IDEC data item of size n=8
will occupy 5 bytes of storage. The maximum range of values for each
type of data item is also given. These are maximums with respect to
the data base. A host language may impose additional constraints (see
MDBS System Specific Manuals). For instance, a data item that is
integer of size n=2 can take on any value in the range

-32768 to 32767 (-28n-1 to 28n-l-1 yhere n=2).
Further data item range examples are shown in Appendix E.

The following are guidelines for determining what type to declare
for a data item. If the data item's values can take on positive and
negative integer values, then an appropriate type declaration is
integer. If the values are integers, but never negative, then
unsigned is a proper choice. The selection of real versus internal

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. 21

MDBS DDL MANUAL - II: DEFINITIONS - MDBS DDL MANUAL

decimal representation for a data item is largely dependent on the
host language(s) being used (see the appropriate system specific
manuals). For a host language that supports both real and internal
decimal variables, real is used for data items with floating point
values; if great precision is required for a data item's values, in
order to avoid small round-off errors during host language computa-
tions, then the internal decimal (IDEC) type should be used. The
binary type is used when a data item's values need to be manipulated
in a binary form within a host language program (e.dg., representation
of graphical images, voice images, etc.). If a data item's values are
times or dates, then the time or date type (respectively) should be
used. This takes advantage of MDBS data compression. The exceptions
are where the times cover more than 256 hours, where dates range
across more than 126 years, or where dates prior to 01/01/0000 are
needed. In such cases, the character data type can be used.

Table II-1. Types of Data Items

Storage
requirement
Min Max in bytes
Type Size(n)| Size(n) (n=specified size) | Maximum Range (n=specified size)
integer n 1 16 n _pfnml p8n-l
real n 2 16 n -21227 (12256177 to 2127 (1-25617T)
binary n 1 65535 typically < n 00000000 to 11111111 (bhinary} for each byte
unsigned n 1 16 n 0 to 256°-1
. A 63 -n 63 -n, .
idec n(digits) 1 30 ((n+1)/2)+1 -1077(1-10) to 10 " (1-10) if n is even
rounded down e
-10%3(1-10™" 1) to 10%3(1-10™""1) if n is oda
character n 1 65535 n ‘ any legitimate character {usually 0 to 255)
for each byte
string n 1 250 typically <n any character (except control characters)
for each byte
time -- -~ 3 00:00:00 to 255:59:59
date -- -- 2 any 126 year period

For character data there is a choice of using either the
character type or the string type. If the string type is selected,
data values are compressed while in the data base, through the
elimination of trailing blanks and the compression of consecutive
repeating characters. Of course, these values are restored to their
original form when extracted from the data base. For the string type,
any control characters (including tabs) are permanently transformed
into blanks. For alphanumeric data values, (especially for text data)
the string type is recommended if there are numerous instances of

22 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - II: DEFINITIONS - MDBS DDL MANUAL

consecutive repeating characters. If there are very few consecutive
repeating characters or if n is small (less than 7), then the
character type is recommended. If a string type is declared, but no
compression is possible for a data value, then the storage space used
for that data value is n + 2 + n/127 (rounded down). This is also the
worst case storage space requirement for a binary data type (occurring
when a binary value cannot be compressed). The best case storage
requirement for a value of a string or binary data item is 1 byte.

With the exception of binary, any of these types of data items
may appear in a sort key. Except for binary data items, any data item
can have a feasibility range specified with the DDL. When a
feasibility range for a data item exists, the data base control system
will automatically perform appropriate data integrity checks whenever
attempts are made to store or modify an occurrence of the data item.

When a data value is stored into a data base, it is automatically
converted into an internal MDBS representation. This internal
representation is the same, regardless of the host language of the
application program that loaded the data. When data is retrieved, it
is automaticalgy converted from its internal MDBS representation into
the representation used by the host language of the retrieval program
(or by the query system). Thus application programs in many different
host languages can access the same data base. The conversion between
internal MDBS representation and a host language representation 1is
described in the system specific manual for that host language. Since
most host languages do not support all of the MDBS types. two
different MDBS types may be mapped into a single variable type in the
host language during data storage and retrieval. These mappings are
explained in the system specific manuals. An application developer
who intends to use multiple host languages. should be aware of the
different language mappings and should select a data item's type and
size on the basis of the most restrictive host language mapping.

D. Controlling Record Placement

As mentioned earlier, a record type (and therefore its
occurrences) can be assigned to one or more areas. This gives the
application developer some control over the physical placement of
records. An even greater degree of control is allowed. With MDBS,
the application developer has three options for governing the

of a record occurrence within its allotted area{s): CALC,
clustering, and system default.

CALC. Any data item or group of data items within a record type
can be declared to be the gcalc key for that record type. The calc key
value for an occurrence of that record type is input to a hash routine
that controls the physical placement of the record occurrence in the
allotted area(s). The application designer has the option of
prohibiting duplicate calc key values, if desired. If a record type
has a calc key, any of its record occurrences can be directly accessed
on the basis of a calc key value. Note that a record type can have a
calc key and can also be the member of one or more system-owned sets.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A 23

MDBS DDL MANUAL - II: DEFINITIONS - MDBS DDL MANUAL

MDBS has several calc algorithms. If the first algorithm yields
a page with insufficient space for the record occurrence being
created, the second algorithm is used, and so forth until a page with
sufficient space 1is found. If none of the algorithms calculates a
page with sufficient space. then a spillover approach to overflow is
used commencing with the first page following the page computed by the
last algorithm. The spillover is restricted to the area in which the
last computed page is located and is a wrap-around spillover within
that area. If no pages in the area have sufficient space- then
MDBS.DMS issues an error indicating that there is insufficient room.

Clustering. In the DDL source specification. an application
designer can request MDBS to cluster member (or ownher) records close
to the owner (or member) record(s) with which they are associated
(i.e., connected) via an indicated set. The purpose is to have all
member (or owner) records for a particular owner (or member) record
clustered 1in such a way that they can all be resident in central
memory at once. This is useful (from the standpoint of minimizing
disk 1I/0) if it is often necessary to access all member (or owner)
records whenever an owner (or member) record is accessed. Note that
clustering is comparable to the VIA SET record location mode proposed
for CODASYL data base management systems, except that it 1is also
available for N:M sets in MDBS.

System default. If neither CALC nor clustering is selected to
control record placement within an area(s), then MDBS will control
this placement.

E. Data Security

In addition to data encryption and user passwords. highly
selective data security is provided by an access code technique. This
is fully described in Chapter IV.

F. Miscellaneous

Comments are allowed in the DDL source for documentation
purposes. Each data base, area, record type, set, and data item name

can be given synonyms and/or a title. A synonym can be substituted
for the original name when issuing a QRS query. Titles and synonyms
are 1incorporated into the data dictionary. Titles can be wused to

provide comments about a data item, set, etc., for users of the data
dictionary. They also appear on the console screen during IBS
browsing. The data dictionary can be interactively queried via the
QRS, IDML, and IBS modules.

24 Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems. Inc.

MDBS DDL MANUAL MDBS DDL MANUAL

I11. MDBS.DDL SPECIFICATIONS

A. Notational Conventions

After the logical structure for a data base has been drawn out,
as in Figure II~2, it can be formally specified with the MDBS Data
Description Language. A sample data base description on an
introductory level is shown in Figure III-l. An elaboration of that
schema description, incorporating many advanced features, is shown in
Figure III-2. This chapter gives a detailed explanation of the DDL.

A DDL source specification consists of several sections. Each
section consists of various kinds of clauses; some of which are
optional and some of which are required. These clauses are presented
on a section-by-section basis. Discussion of those clauses that can
be regarded as advanced features are denoted in the left margin by a
vertical bar. The complete BNF syntactic description of all clauses
appears in Appendix B. Figure III-3 shows the meanings of the
notations used.

A clause is composed of one or more of the following terms:
keywords, identifiers, file names, strings, integers, user names, and
passwords.

Keywords are denoted by upper case letters. All other terms in a
clause are in lower case. This upper case vs. lower case distinction
is for documentation purposes only. Upper and lower case can be mixed
in an actual DDL source specification (see Figure III-1, for example).
When the data base is initialized, all lower case characters are
mapped into upper case characters in the data dictionary, with the
exception of characters enclosed in double quotes (""). A complete
list of DDL keywords appears in Appendix A.

Identifiers used in describing a DDL section are denoted by id-1,
id-2, 1id-3, etc. Identifiers are selected by the application designer.
An identifier consists of an alphabetic character followed by from
zero to seven alphanumeric characters. A DDL keyword can also be used
as an identifier, by using one of the following DDL keywords prior to
the identifier: Is, ARE, WITH, OF, TO, BY. A list of MDBS-QRS
keywords is in Appendix G. These QRS keywords should not be used as
identifiers.

Identifiers that have already been defined as the names of data
items are denoted by di-1, di-2, etc. Identifiers that have
previously been defined as names of record types are denoted by rt-1,
rt-2, etc. Identifiers that have already been defined as set names
are denoted by st-1, st-2, etc. Identifiers previously defined as
area names are represented by ar-1, ar-2, etc.

File pames used in describing a DDL section are denoted by file-
1, file-2, file-3, etc. File names are chosen by the application

developer; they must be fully qualified file names within the host
operating system.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. 25

MDBS DDI. MANUAL - III: DDL SPECIFICATION - MDBS DDL MANUAL

/**x*x%k*xx%x gample data base description (introductory level) ***xkxxk*/
[REKkkkhRk KRR kkhkkkk*% Jdata base identification ***kkxkkkkkkkxkkxkxkk/
database name is JOBS

file "JOBS.DB", size is 300 pages, page size is 512 bytes
/****************** user and password definitions *******************/
user is "BOB SMITH"™ with GTC
user is ANALYST with 7778%XK4
[Rhkkkkkkkkkhkhxkxkxkx** roecord type defintions ****kkkkkkkkkkhkkkkkkk/
record name is DEPT

item name is DNUMBER integer 1
item name is NAME character 12
item name is LOCATION string 35
record name is EMPLOYEE
item ID character 9
item LASTNAME string 20
item FNAME string 12
item PASTJOBS string 25 occurs 3 times
item YTDEARN idec 7,2
record BIOGRAPH
item LINE string 50 occurs 5 times
record SKILL
item SKILCODE integer 2
item DESCRIPT string 55
item RATING real 2
record JOB
item JOBCODE integer 2
item DESCRIPT string 30

JRERKRIKRKKRKKRKRKRRRKRAR% ot definitions *** kA X kX k kA kkhhhk Ak ARk kkkk /

set name is IEMP
type is 1l:n
owner is SYSTEM
member is EMPLOYEE order is sorted
by ascending (LASTNAME, FNAME)

set name POSSESS type is n:m
owner is EMPLOYEE order is sorted by az ID
member is SKILL order is immaterial

set DETAILS type is 1l:1
owner is EMPLOYEE, member is BIOGRAPH

set FILLEDBY type is 1l:n

owner is JOB, member is EMPLOYEE order is fifo
set NEEDS n:m

owner JOB sorted descending JOBCODE

member SKILL sorted ascending (RATING,SKILCODE)
set HAS l:n

owner DEPT, member EMPLOYEE order lifo

set IDEP l:n

owner SYSTEM member DEPT
set IJOB l:n

owner SYSTEM member JOB fifo
end

Figure III-1.

26 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - III: DDL SPECIFICATION - MDBS DDL MANUAL

VAL RS
*
* sample data base description (advanced level)
%*
*****/

db JOBS file "JOBS.DB"
size 300 pages, page size 1024
logfile "JOBS.LOG"

[Rhkkkhkhkkkkhkkkkkkk® dafine defaults for item types ******************/

default for unsigned 2
default for str 50

user "BOB SMITH" with GTC read access (a,b) write access a
user ANALYST with 7778XK4 read (b-e) write (b-f)

user "K FERGUSON" with "tashi" access (b,p)

user "D LEHR" with "smiles" access (a-p)

/** define additional areas to supplement the main data base area ***/

area name is jobl
file name is "JOBl.DB"
size is 100 pages, pointers not allowed
page size is 512 /* Note: this page size would not be
allowed in Version 3a because
the main area's page size is 1024 */
read access is (a-d) write access is (a,p)
area JOB2 file "JoB2.DB"
size 700 pages
read (b,d) write (a,b,f,p)

/********************* record type definitions **********************/

record DEPT
in JOBS calc key is NAME nodup
read access b write access (a,b)
item DNUMBER int 1
range is 1 to 42
syn is DNO
item is NAME char 12 encrypted
write access b
item LOCATION str 35 syn LOC
range "A" to "Z222ZZz"
record employee in JOBl, key is ID nodup
read access (a,d) write access (a,p)
item ID char 9 encrypted range is "0" to "999999999"
item LASTNAME str 20 range "Aa" "2z"
item FNAME str 12 range "aa" "izz"
item PASTJOBS str 25 occurs 3 times
item YTDEARN idec 7,2 encrypted range 0.00 94000.00
read access a Wwrite access a

Figure III-2. Sample DDL

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A 27

MDBS DDL MANUAL - III: DDL SPECIFICATION - MDBS DDL MANUAL

record BIOGRAPH in JOB2
read access b write access p
item LINE str occurs 5 times
record SKILL in (JOBS,JOB2) calc key is SKILCODE nodup
read access (b,d) write access £
item SKILCODE unsigned syn SC range 0 to 3000
item DESCRIPT str 55
item RATING real 2 range 0.0 to 4.0
record JOB in any area
read access b write access (a,p)
item JOBCODE unsigned 1 range 1 to 250
item DESCRIPT str

VAREEE R AR SR SR AL R LR AR LS set definitions ****kkkkkkkkkkhkkhkhkrdhhkk/

set IEMP, type 1l:n, retention fixed
read access d write access p
owner SYSTEM
member EMPLOYEE, order sorted by ascending (lastname, Fname)
insertion auto
set POSSESS, type n:m
read access (a,d) write access (f,p)
owner EMPLOYEE, order sorted by az ID
member SKILL
set DETAILS, type 1l:1, fixed
read access (b,d) write access p
owner EMPLOYEE
member BIOGRAPH auto
set FILLEDBY, type 1l:n ,
read access (a-d) write access p
owner JOB
member EMPLOYEE fifo auto
set NEEDS n:m
read access b write access (f,p)
owner JOB sorted za JOBCODE
member SKILL sorted az (RATING,SKILCODE)
set HAS 1l:n
read access (a,b) write access a
owner DEPT
member EMPLOYEE lifo auto
set IDEP l:n, read access b
owner SYSTEM member DEPT auto
set IJOB l:n, read access b
owner SYSTEM member JOB auto fifo

Figure III-2., Sample DDL (continued)

(See Appendix H for an alternative layout of this DDL specification.)

28 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL. MANUAL - III: DDL SPECIFICATION - MDBS DDL MANUAL

Integers used in describing a DDL section are denoted by int-1,
int-2, int-3, etc.

stripngs of characters are denoted by string-l, string-2, etc.
Each string within a DDL section has a unique number as its suffix.
The actual string values are chosen by the application designer. A
string value must fit within a pair of matching double quotes on one
line of the DDL source specification.

User names, denoted by usr, are one to sixteen character
(alphanumeric) names.

Passwords, denoted by pass, are one to twelve character
(alphanumeric) strings.

AN UNDERLINED EXPRESSION MUST APPEAR.

ZERO OR ONE OF THE ALTERNATIVES WITHIN THE
BRACKETS MUST BE USED.

EXACTLY ONE OF THE ALTERNATIVES WITHIN THE
BRACES MUST APPEAR.

ONE OR MORE OF THE ALTERNATIVES WITHIN THE
BRACES MUST APPEAR,

Figure III-3. Notation

B. DDL Sections

A DDL source specification consists of up to nine kinds of
sections. These sections must appear in the order given below.
Clauses within a section are stated in a free format (i.e., column
positioning is unimportant for the DDL analyzer). Upper case and
lower case can be used interchangeably. More than one clause can
appear on a line; a clause (but not a term) can be split over more
than one line; unless otherwise indicated, optional clauses within a
section can appear in any order. Clauses can be separated by a comma
or blanks. A section is terminated with a blank or period. Comments
can appear between any two terms or clauses within a DDL source
specification.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. 29

MDBS DDL MANUAL - III: DDL SPECIFICATION - MDBS DDL MANUAL

The kinds of DDL sections and their ordering are as follows:

Identification Section
User Section
Area Section (optional)
Record Sections
Data Item Sections for each record section (optional)
Set Sections (optional)
Owner Section for each set section
Member Section for each set section
End Section

The identification section identifies the data base. The user
section indicates the possible data base users (or user classes) and
gives a password to each. The optional area section is used to define
extra areas if they are desired. There follows a series of record
sections. There is one record section for each record type in the
logical structure. Associated with each record section is a data item
section for each of that record type's data items. If a record type
has no data items, then the corresponding record section has no data
item sections. After all record types (and associated data item
types) have been defined in the record (and data item) sections, all
sets in the logical structure are defined in the set sections. There
is one set section per set. Associated with each set section is an
owner section indicating the set's owner(s) and a member section
indicating the set's member(s). A DDL source specification always
terminates with the end section.

Comments in a DDL source specification

/* 1located anywhere in the DDL source specification indicates
that all text that follows is a comment, until the comment is
terminated by */

Comments can extend over many lines.

Examples: /* THIS IS A COMMENT */

VEITIX
*

* DDL SOURCE SPECIFICATION
*

kkkhk)
/*

RECORD TYPE DEFINITIONS
*/

30 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - III: DDL SPECIFICATION - MDBS DDL MANUAL

1. Identification Section:

The identification section must be present. This section is
used to give a name to the data base. In addition, the data
base designer can optionally specify:

the physical file that will hold the data base

the number of pages in the data base

the size of a data base page

the physical file that will hold the logged
transactions

a title for the data base

synonyms for the data base name

data item size defaults for the DDL specification

the 1language (English, French, German, etc.) to be
used as a basis for sorting

Required Clause
DATABASE

0000

0000

NAME IS id-1
DB

The data base name is indicated by identifier id-l. A data
base area named id-1 is automatically created when the data
base is initialized. This is referred to as the main area of
the data base.

Examples: DATABASE NAME IS MED
DB NAME IS SCHOOL
DATABASE PILOT

. DB PILOT
Optional Clauses
a) File clause FILE NAME IS "file-1"

The main data base area will physically reside on the disk
file indicated by file-1. MDBS.DDL will automatically
create file-l during data base initialization. File-1 is a
fully qualified file name for the host operating system.

Default: based on the data base name id-l1. but operating

system dependent
Examples: FILE NAME IS "SCHDR"
FILE "INVEN/DB:1"
FILE "B:DEB"
FILE "/usr/db/customer.db"”

b) Page clause SIZE IS int~1 PAGES
The number of pages in the area id-1 will be int-1. If

the environment allows 16 areas, the maximum size is 4095

pages- If only 8 areas are allowed, the maximum size is
8191.

Default: operating system dependent (typically 50)

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A 31

MDBS DDL MANUAL - III: DDL SPECIFICATION - MDBS DDL MANUAL

32

c)

d)

e)

Examples: SIZE IS 35 PAGES
SIZE 215
SIZE 1000 PAGES
BYTES
Page size clause PAGE SIZE IS int-2
WORDS

The size of each page in the area id-1 is int-2 bytes or
words.

Defaults: 1) operating system dependent (typically 512

bytes)
ii) if WORDS is not specified, the page size is
in terms of bytes

Examples: PAGE SIZE IS 256 BYTES
PAGE 1024 WORDS
PAGE 1024

Note: i) with MDBS version 3a, int-2 must be a

multiple of 256

ii) with MDBS version 3¢, int-2 must be at
least 256 (but need not be a multiple of
256)

iii) with MDBS version 3a, each area must have
page sizes of int-2

iv) with MDBS version 3c. no area can have page
sizes that exceed int-2

LOG FILE
NAME IS "file-2"
LOGFILE

Transactions will be logged to the file indicated by
file-2, MDBS.DDL will automatically create file-2 during
data base initialization. This file is reinitialized by
the MDBS-RTL recovery utility (called RCV). File-2 is a
fully qualified file name in the host operating system.

Log file clause {

Default: no log file for transaction logging
Examples: LOGFILE NAME IS "MED.LOG"
LOG FILE NAME IS "PILOTL"
LOG "B:DEBLOG"
Title clause TITLE IS "string-1"
The data base is given the title indicated by string-l.
Default: no title

Examples: TITLE IS "MEDICAL SCHEDULING DATA BASE"
TITLE "PILOT PROJECT: VERSION 5.2"

(C) COPYRIGHT 1981 Micro Data Base Systems. Inc.

MDBS DDL MANUAL

£)

g)

(C) COPYRIGHT 1981 Micro Data Base Systems. Inc.

MDBS DDL MANUAL

- III: DDL SPECIFICATION -
SYN)
Synonym clause IS id-2
SYNONYM

The name indicated by id-2 is a synonym for the data base
name id-1. Many synonyms can be defined by repeated use
of this clause. MDBS imposes no maximum on the number of

synonyms.
Default: none
Examples: SYNONYM IS MEDSCH
SYN S
Default clause
4 (Lmsmnm\ 1 \ h
REAL
INTEGER
AINT .
BINARY int-3 >
DEFAULT SIZE FOR ﬁ BIN ><
CHARACTER &>
CHAR
STRING
\ STR J N\ J
o
L IDEC int=4(,int-51f

This clause is used to specify the default size for an
indicated type of data item (real, integer, unsigned,
etc.). A specified default size for a given type applies
to all data items defined within the data base
description for id-1. If no size is specified for a data
item in a data item section, then the default size stated
with this clause is assumed. One default clause can be
used for each of the nine types of data items, except for
time and date, Default clauses must be the last clauses
of an identification section. The default size (in
bytes) is indicated by int-3 with the exception of IDEC.
For IDEC, int-4 is the total default size (in digits) and
the optional int-5 indicates the number of digits to the
right of the decimal point. If int-5 is not specified,
it is assumed to be zero.

Default: none

DEFAULT SIZE FOR REAL 4
DEFAULT CHAR 200
DEFAULT IDEC 10,1
DEFAULT DECIMAL 8

Examples:

Rev. 83A 33

MDBS DDL MANUAL -~ III: DDL SPECIFICATION - MDBS DDL MANUAL

34

h) Language clause

(" panism
ENGLISH
FINNISH
LANGUAGE IS < ERENCH >
GERMAN
NORWEGIAN
_ SHEDISH

J/
Any sorting carried out by any MDBS software for the data
base's contents will use the normal character collating
sequence of the specified language. This includes the
maintenance of sorted sets, dynamic sorting of QRS
output, and the sorting of report contents produced by
programs that RDL generates.

Default: English (i.e,, standard ASCII sequence)

Examples: LANGUAGE IS FINNISH
LANGUAGE FRENCH

2. User Section:

The user section must be present. It is used to give the
names and passwords of all data base users. The following
clause is used to define each user. For a data base to have
five different users (or user groups), five successive clauses
of this kind must be specified. No two users can have the
same user name. The value of a password for providing data
security is discussed in Chapter 1IV.

Required Clause

USER NAME 1S usr WITH pass
"!!EE" ' llpassi

The user whose name is usr has the password pass. If a user
name or password is not enclosed in double quotes, then its
alphabetic characters are converted to upper case. When
double quotes are used, no case conversion occurs.

Examples: USER IS "Alvin Wade" WITH SECRET
USER GCl15 , "DJL"
USER PRESIDENT MONROE

QOptional Access Clause

An optional access clause can accompany any instance of a USER
clause. This access clause is discussed in Chapter 1IV.

Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems. Inc.

MDBS DDL MANUAL -~ III: DDL SPECIFICATION - MDBS DDL MANUAL

3. Area Section (optional)

The area section is optional. It is used to define additional
areas for the data base. Depending on the environment, a
maximum of either 7 or 15 extra areas can be defined in the
area section. See the pertinent System Specific Manual.

Required Clause
AREA NAME IS id-1

An area named id-1 is automatically created when the data base
is initialized. This kind of clause (together with its
optional clauses shown below) is required for each additional
area. Two areas should not have the same name.

Examples: AREA NAME IS REALM4
AREA IS PAYROLL
AREA FASTAC1

Optional Clauses
a) File clause FILE NAME Is "file-1"

The area named id-1 will physically reside on the disk file
indicated by file-l. MDBS.DDL will automatically create
file-1 during data base initialization. Two areas cannot
be assigned to the same file. File-1 is a fully qualified
file name for the host operating system.

Default: File-1 default is based on the id-1 area name,
but is operating system dependent, (e.g., if id-1
is TREE, then the default for file-1 could be
TREE.DBA).

Examples: FILE NAME IS "B:RAE"
FILE IS "USV/DB/SALES.DBA"
FILE "SCHREC/DBA:2"

b) Page clause SIZE IS int-1 PAGES
The number of pages in the area id-1 is indicated by int-1.
For environments allowing 16 areas there is a maximum of

4095 pages per area. The maximum is 8191 for environments
allowing no more than 8 areas.

Default: operating system dependent (typically 50)

Examples: SIZE IS 89 PAGES
SIZE 200 PAGES
SIZE 77

BYTES
c) Page size clause PAGE SIZE IS int-2
WORDS

The size of each page in area id-1 is int-2 bytes or words.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A 35

MDBS DDL MANUAL - III: DDL SPECIFICATION - MDBS DDL MANUAL

36

d)

e)

£)

q)

Rev.

Defaults: i) defaults to the size of the main area
ii) if WORDS is not specified, the page size is
in terms of bytes

Examples: PAGE SIZE IS 512 BYTES
PAGE 512 WORDS
PAGE 256

Note: i) with MDBS version 3a, each area's page size
must equal the page size of the main area of
the data base

ii) with MDBS version 3c, one area's page size
can differ from another area's page size;
the page size for an area must be at least
256 bytes, but cannot exceed the page size
of the main area

Pointer control clause POINTERS ARE [NOT] ALLOWED

This clause allows the application designer to control
whether or not dynamic pointer indices are allowed within
the area. Disallowing dynamic pointer indices in an area,
with many CALCed records- «can yield higher CALC access
performance. If pointer indices are allowed in an area,
then every user must have write access to that area and

that area must be on-line for all DML commands that alter
the data base.

Default: dynamic pointer indices are allowed in the area

Examples: POINTERS NOT ALLOWED
POINTERS ALLOWED

Title clause TITLE IS "string-1"

The area is given the title indicated by string—i.

Default: no title for area

Examples: TITLE IS "AREA FOR SALARY INFORMATION"
TITLE "BIOGRAPHICAL DATA AREA"

Synonym clause SYNONYM IS id-2
SYN

The name indicated by id—-2 is a synonym for the area name
id-1. More than one (no maximum) synonym can be defined.
Default: no synonym

Examples: SYNONYM IS BIO
SYN WAGEAREA

An optional access clause can be specified for any area.
This access clause is discussed in Chapter 1IV.

83A (C) COPYRIGHT 1981 Micro Data Base Systems. Inc.

MDBS DDL MANUAL - III: DDL SPECIFICATION - MDBS DDL MANUAL

4., Record Section

One or more record sections must appear in a DDL source
specification. Each record section is used to define a record
type. If the record type has data items, then data item
sections for each data item must immediately follow the record
section. Record types can be defined in any sequence within
the group of record sections. More than 255 record sections
(i.e., record types) per data base are not allowed.

Reguired Clause
RECORD NAME IS id-=1l

This clause defines a record type having the name id-1. The
name SYSTEM is not allowed. The SYSTEM record type is
automatically defined during data base initialization.

Examples: RECORD NAME IS SKILL
RECORD IS EMPLOYEE
RECORD DEPT

Optional Clauses

a) Record location clause
([aNY AREA)
¢ aI:l,}*L &CALC-key-clause>]

WITHIN |
IN QWNER >
AREA OF OF id-2

MEMBER

~ /
This optional clause allows the application designer to
control where the occurrences of a record type will be
located in the data base. The record type can be assigned
to any area or to one or more specified areas (ar-1, ar-2,
etc.) with the option of specifying a CALC key for the
record type. Alternatively, the record type can be
assigned to the area(s) of the owner or member of the set
id-2, in which case MDBS will physically cluster those
record occurrences that are related to each other through
the set id-2. Later in the DDL source specification, id-2
must appear as the name of a set.

The optional CALC-key-clause, within the record location
clause, has the following form:

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 83A 37

MDBS DDL MANUAL

CALC
CALC

Defaults

- II1: DDL SPECIFICATION - MDBS DDL MANUAL

<CALC-key-clause>:

KEX IS . NODUP ALLOWED

KEYS [|ARE ({id=3,}") [DUPLICATES ARE [NOT] ALLQOWED
A calc key consists of the data item id-3 or the
sequence of data items (id-3, id-4, etc.). The
sequence of data items determines the calc key
values. Parentheses are not required if there is
only one data item in the calc key. All data
items that make up a record type's calc key must
be defined to be data items for that record type.
The application designer can indicate whether or

not two record occurrences with the same calc key
values are allowed.

Default: duplicates are allowed

Examples: KEY IS ID NODUP ALLOWED
KEY IS (LNAME, FNAME)
KEY IS LNAME FNAME
KEY (ID,LNAME,FNAME) NODUP

(for record location clause):

i) omission of this clause means that
occurrences of the record type can be placed
in any defined area .

ii) omission of the optional CALC-key-clause
means that MDBS determines the placement of
record occurrences within the assigned
area(s)

Examples: WITHIN ANY AREA

CALC KEY ID NODUP
WITHIN PAYROLL

KEY (LNAME,FNAME)
IN ANY
IN DBAREA2 DBAREA3
IN (AREAS, AREA7)

KEY IS JOBCODE NODUP
IN AREA OF MEMBER OF POSSESS
IN AREA OF OWNER FILLEDBY
IN MEMBER POSSESS
WITHIN OWNER FILLEDBY

b) Title clause TITLE IS "string-=l1"

The record type is given the title indicated by string-l1.

Default:

no title for the record type

Examples: TITLE IS "EMPLOYEE DATA"

38

TITLE "SKILL DESCRIPTION AND RATING"

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - III: DDL SPECIFICATION - MDBS DDL MANUAL

c) Synonym clause SYNONYM IS id-=5
SIN

The name indicated by id-5 is a synonym for the record type
name id-l. Multiple (no maximum) synonym clauses are
allowed.
Default: no synonym
Examples: SYNONYM EMP

SYN DEP

d) An optional access clause can be specified for any record
type. This access clause is discussed in Chapter 1IV.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. 39

MDBS DDL MANUAL - IIT: DDL SPECIFICATION - MDBS DDL MANUAL

40

5.

Rev.

Data Item Section

Following each record section is a group of (possibly zero)
data item sections. There is one data item section for each
data item in a record type. The sequence of data item
sections for a given record section is irrelevant to the DDL
analyzer. No more than 65535 data items per record type are
allowed.

Required Clause

((UNSIGNED Y ())
REAL

INTEGER

INT

BINARY
ITEM NAME IS igd-1 '< BIN >' 'Jint:l ”
CHARACTER

<< CHAR

STRING
_ STR) .
{ DECIMAL }

IDEC {int:Z[,int—3]}

TIME
_ DATE _//

This clause defines a data item having the name id-l. It also
indicates the type and size of that data item. Permissible
types are UNSIGNED, REAL, INTEGER (or INT), BINARY (or BIN),
CHARACTER (or CHAR), STRING (or STR), internal decimal denoted
by IDEC or DECIMAL, TIME, and DATE. No size is specified for
TIME or DATE. For internal decimal, int-2 indicates the
number of digits stored and int-3 indicates the number of
digits to the right of the decimal point; int-3 cannot exceed
7. The default for the optional int-3 is 0. For all other
types, int-1 indicates the number of bytes for the data item.
Maximum and minimum sizes were discussed in the preceding
chapter.

DATE data values can be automatically converted to alternative
formats by the DBCNV DML command and by the DATFORM QRS
command. The DBCNV command can also be used to permit null
(i.e., blank) DATE and TIME values.

Examples: ITEM NAME IS NAME CHAR 25
ITEM YTDWAGE IDEC 8,2
ITEM ZIP STRING 9
ITEM BIRTHDT DATE
ITEM NAME ELAPSETM TIME
ITEM AGE INT 2

83A (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - III: DDL SPECIFICATION - MDBS DDL MANUAL

Optional Clause

a)

b)

c)

d)

Occurs clause QOCCURS int—-4 TIMES

This clause is used to indicate that the data item is a
repeating item. Each occurrence of the repeating item ;s
an array of length int-4. The maximum value for int-4 is
255.

Default: the data item is not a repeating item (in other
words, int-4 = 1)

Examples: OCCURS 8 TIMES
OCCURS 35

Encryption clause IS ENCRYPIED

This clause indicates that values of the data item are
stored in the data base in encrypted form. Those values
are automatically decrypted when they are retrieved
(subject to data security restrictions, discussed in
Chapter 1IV).

Default: no encryption

Examples: IS ENCRYPTED
ENCRYPTED

Title clause TITLE IS “string=l"
The data item is given the title indicated by string-l.
Default: no title for the data item

Examples: TITLE IS "GROSS PAY"
TITLE "EMPLOYEE ADDRESS"

Synonym clause {SXNQNXM?} IS igd=2
SIN

The name indicated by id-2 is a synonym for the data item
name id-1. Multiple (no maximum) synonyms can be declared.
Default: no synonym

Examples: SYNONYM GP
SYN IS EMPADD

An optional access clause can be specified for any data
item. This access clause is discussed in Chapter 1IV.

The optional range clause, for automatic feasibility
checking, is discussed in Chapter V.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. 41

MDBS DDI. MANUAL -~ III: DDL SPECIFICATION - MDBS DDL MANUAL

42

6. Set Section

Zero, one, or more set sections must appear in a DDL source
specification. Each set section is used to define a set. A
set section must be immediately followed by an owner section,
which is immediately followed by a member section. Sets can
be defined in any sequence within the group of set sections.
MDBS imposes no maximum on the number of set sections in a DDL
source specification.

Required Clause
SET NAME IS id=1
This clause defines a set having the name id-1l.

Examples: SET NAME IS NAME
SET IS CONTAINS
SET POSSESS

Qptiopal Clauses

a) Set type clause 1:N
N:Y

TYPE IS M:N

l:1

N:l

This clause indicates whether the set is 1:N, N:M (or
equivalently M:N), 1l:1, or N:l. Any two distinct
alphabetic characters can be used in place of N and M.

Default: 1:N

Examples: TYPE IS N:M
TYPE 1:A
IS 1:1
TYPE M:N
X:2
A:A

b) Retention clause RETENTION IS FIXED
OPTIONAL

This clause declares the set retention to be either FIXED
(a participating record occurrence cannot be disconnected;
it can be deleted) or optional (a record occurrence can be
connected and disconnected as desired).

Default: optional
Examples: RETENTION IS FIXED
RETENTION FIXED

IS OPTIONAL
FIXED

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - III: DDL SPECIFICATION - MDBS DDL MANUAL

¢c) Title clause TITLE IS "string-=l1l"
The set is given the title indicated by string-1l.
Default: no title for the set

Examples: TITLE IS "MANY-TO-MANY RELATIONSHIP"
TITLE "EMPLOYEE POSSESSES SKILL"

d) Synonym clause {-SXNQNXM } Is id=2
SIN

The name indicated by id-2 is a synonym for the set name
id-1. Multiple (no maximum) synonym clauses are allowed.

Default: none

Examples: SYNONYM IS POSS
SYN FBY

e) An optional access clause can be specified for any set.
This access clause is discussed in Chapter 1IV.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. 43

MDBS DDL MANUAL - III: DDL SPECIFICATION - MDBS DDL MANUAL

7. Qwner Section

An owner section must immediately follow each set section. An
owner section describes the owner(s) of a set.

Reguired Clause

QWNER IS rt- .
OWNERS ARE (nxzz,})

If the set has a single owner record type, its name 1is
indicated by rt-1. If the set has multiple owner record
types, those record types are indicated by (rt-2, rt-3,
etc.); the ordering of these multiple record type names is
irrelevant. No more than 127 record types can own a set.

Examples: OWNER IS SYSTEM
OWNER DEPT
OWNERS ARE (HRLYEMP,SALEMP)
OWNERS (SALEMP,HRLYEMP)
OWNERS REC1 REC2

QOptional Clauses

a) Set insertion clause INSERTION IS AUTQ
MANUAL

This clause indicates whether or not the creation of an
owner record occurrence causes it to be automatically
(AUTO) connected to a member record.

Default: MANUAL

Examples: INSERTION IS AUTO
MANUAL
INSERTION AUTO

~
b) Owner order clause FIFQ _W
LIEQ

NEXT

PRIOR

IMMATERIAL

IMMAT

| SORTED<sort=-clause>

A

ORDER IS

This clause indicates the ordering of owner record
occurrences that are associated with any given member
record occurrence. The permissible orderings are FIFO,
LIFO, NEXT, PRIOR, IMMATERIAL (or IMMAT), and SORTED. The
sort—-clause has the following form:

44 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL

ASCENDING | |RECORD-TYPE|| * NOT ALLOWED
aZ FIFQ
BY | DESCENDING . DUPLICATES ARE < LIFQ
ZB i{dizzr}) IMMATERIAL
IMMAT
INDEX WIDTH IS in;:l]

(C) COPYRIGHT 1981

- III: DDL SPECIFICATION - MDBS DDL MANUAL

<{sort-clause>:

If the owner order is SORTED, then the sort-clause
is required. It indicates the basis for the
sorting of owner record occurrences that are
connected to a member record occurrence. The sort
is made on the basis of one or more data items
(di-1, di-2, etc.) that have been defined for the
owner record type. A binary data item may not be
used as a basis for sorting. If the set has
multiple owner record types, then the owner record
type names can also be used as a criterion for
sorting. Thus a sort key consists of a sequence
of data items, plus the possible inclusion of the
literal: RECORD-TYPE. The ordering of these
components within the sort key definition is from
the most important to the least important. The
entire sort key can be declared to be ASCENDING
(AZ) or DESCENDING (ZA). Alternatively, each
component (or groups of sort key components) is
declared to be either ASCENDING or DESCENDING.
The character code of the host operating system
determines ascending and descending seguences.

Once the sort key has been specified, the designer
can optionally indicate how MDBS should handle
record occurrences with duplicate sort key values.
The options are: NOT ALLOWED, FIFO, LIFO,
IMMATERIAL (or IMMAT). The designer can also
optionally indicate how many bytes (int-1) of the
sort key are to be used in the multilevel owner
index. For instance, if int-1 is 7, then the
first seven bytes of the sort key values will be
used in maintaining the index. The owner record
occurrences are still sorted on the basis of the
entire sort key. The index width (of up to 28
bytes) is normally chosen to maximize the
uniqueness of the entries in the index, while
minimizing storage requirements. For Version 3¢
an even width (rounded up, if necessary) is always
used internally.

Defaults: i) the default for duplicates is IMMAT

ii) the default for int-1 is never
longer than the sort key size

Micro Data Base Systems, Inc. 45

MDBS DDL MANUAL - III: DDL SPECIFICATION - MDBS DDI. MANUAL

Examples: BY ASCENDING (LASTNAME,FNAME)

DUPLICATES ARE IMMAT

BY AZ LASTNAME DESCENDING ID
DUPLICATES NOT ALLOWED

ZA JOBCODE DUPLICATES NOT ALLOWED
INDEX LENGTH IS 2

ASCENDING RECORD-TYPE AZ (LNAME FNAME)
INDEX 1

Default (for owner order clause): IMMAT

Examples: ORDER IS LIFO

ORDER FIFO

LIFO

SORTED BY AZ (LASTNAME, FNAME)

SORTED BY AZ LASTNAME ZA FNAME
DUPLICATES FIFO

ORDER IS SORTED ZA JOBCODE
DUPLICATES NOT ALLOWED
INDEX 2

46 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDIL MANUAL - III: DDL SPECIFICATION - MDBS DDL MANUAL

8. Member Section

A member section must immediately follow each owner section.
The member(s) of a set are described in a member section.

Reguired Clause

MEMBER IS rt-= .

MEMBERS ARE ({rt=2,}"™
If the set has a single member record type, its name is
indicated by rt-1. If the set has multiple member record
types, those record types are indicated by (rt-2, rt-3,
etc.); the ordering of these multiple record type names is

irrelevant. No more than 127 record types can be declared as
members of a set.

Examples: MEMBER IS DEPT
MEMBERS ARE (HRLYEMP, SALEMP)
MEMBERS SALEMP HRLYEMP

Qptional Clauses

a) Set insertion clause INSERTION IS AUTQ
MANUAL

This clause indicates whether or not the creation of a
member record occurrence causes it to be automatically
(AUTO) connected to an owher record.

Default: MANUAL

Examples: INSERTION IS AUTO
AUTO
INSERTION MANUAL

b) Member order clause EIFQ

LIEQ
NEXT
ORDER IS < PRIOR >~
IMMAIERIAL

IMMAT

 SORIED <sort clause> P
This optional clause indicates the ordering of member
record occurrences within a set occurrence. The
permissible orderings are FIFO, LIFO, NEXT, PRIOR,
IMMATERIAL (or IMMAT), and SORTED. The sort-clause has the
same form as shown for the optional owner order clause in
an owner section.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. 47

MDBS DDL MANUAL - III: DDL SPECIFICATION - MDBS DDL MANUAL

<sort-clause>:

ASCENDING | [RECORD-TYPE | |* NOT ALLOQWED
AZ EIFQ
BY | DESCENDING . DUBLICATES ARE< LIFQ
: Za {?izz.} L IMMATERIAL
IMMAT

E;Nnﬁx WIDTH IS int=l]

If the member order is SORTED, then the sort-
clause is required. It indicates the basis for
the sorting of member record occurrences that are
connected to an owner record occurrence. The sort
is made on the basis of one or more data items
(di-1, di-2, etc.) that have been defined for the
member record type. A binary data item may not be
used as a basis for sorting. If the set has
multiple member record types, then the member
record type names can also be used as a criterion
for sorting. Thus a sort key consists of a
sequence of data items, plus the possible
inclusion of the 1literal: RECORD-TYPE. The
ordering of these components within the sort key
definition is from the most important to the least
important. The entire sort Key can be declared to
be ASCENDING (or AZ) or DESCENDING (ZA).
Alternatively, each component (or groups of sort
key components) is declared to be either ASCENDING
or DESCENDING.

Once the sort key has been specified, the designer
can optionally indicate how MDBS should handle
record occurrences with duplicate sort key values.
The options are: NOT ALLOWED, FIFO, LIFO,
IMMATERIAL (or IMMAT). The designer can also
optionally indicate how many bytes (int-1) of the
sort key are to be used in the multilevel member
index. For instance, if int-1 is 7, then the
first seven bytes of the sort key values will be
used in maintaining the index. The member record
occurrences are still sorted on the basis of the
entire sort key. The maximum width is 28 bytes
and the width is always even (rounded up, if
needed) for Version 3c.

Defaults: i) the default for duplicates is IMMAT
ii) the default for int-1 is never
longer than the sort key size

Examples: BY ASCENDING SKILCODE DUPLICATES NOT ALLOWED
DESCENDING RATING AZ SKILCODE
DUPLICATES NOT ALLOWED INDEX 4
ZA (DNUMBER,NAME) DUPLICATES NOT ALLOWED
AZ LASTNAME DUPLICATES LIFO
BY Az (LNAME) ZA (RECORD-TYPE) INDEX 3

48 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDI. MANUAL - III: DDL SPECIFICATION - MDBS DDL MANUAL

Default (for member order clause): IMMAT

Examples: ORDER IS FIFO
FIFO
IS LIFO
ORDER NEXT
SORTED BY ASCENDING SKILCODE
DUPLICATES NOT ALLOWED
SORTED AZ LASTNAME DUPLICATES LIFO INDEX 1

9. End Section

The end section terminates a DDL source specification.
Reqguired Clause:
ENDI[.]

Example: end

(C) COPYRIGHT 1981 Micro bata Base Systems, Inc. 49

MDBS DDL MANUAL ~ I1I1I: DDL SPECIFICATION - MDBS DDL MANUAL

This page intentionally left blank.

50 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL MDBS DDL MANUAL

~

IV. DATA SECURITY

Three approaches to data security are provided by MDBS: pass-
words, encryption., and access codes. The password approach is
required for every MDBS data base. An application designer can
optionally make use of encryption and access codes to provide very
extensive data security. As discussed in Chapter 1II, physical
security is provided by allowing some portions of the data base to be
off-line while the remainder of the data base is being used.

A. Passwords

Many data base users can be defined in the User Section of a DDL
source specification. MDBS will not allow any part of the data base to
be accessed through the DML in an application program or through the
query system, unless a user can furnish his or her assigned password.
With the optional DMU module. an application developer can add, delete
or change any user's password at any time, without re-initializing the
data base (subject to security restrictions).

B. Encryption

Any data item defined in a DDL source specification can
optionally be declared to be encrypted. Each occurrence of an
encrypted data item 1is stored in an encrypted form. When an
occurrence of an encrypted data item is accessed with either the DML
or query language. MDBS automatically decodes the encrypted value.
Thus the fact that a data item is encrypted is invisible to the wusers
of DML application programs and the query language.

Encryption protects the data from unauthorized viewing that can
occur through a sequential scan of auxiliary memory. If. for
instance, employee name and salary information are stored in the same
record, then a memory scan via the operating system can reveal the
salary that accompanies each name. This kind of security breach is
averted by declaring either (or both) the name or the salary data item
to be encrypted.

C. Access Codes
Qverview

An application designer can optionally use access codes to
restrict a user's access to only certain parts of a data base. MDBS
differentiates between two kinds of access: read access and write
access. Read access allows data to be found and viewed. Write access
allows data (and data interrelationships) to be stored. modified or
deleted. Table IV-1 shows what is permitted when a user has read or
write access to a data item, record type, set, or area. This assumes
that the user has furnished the correct password.

(C) COPYRIGHT 1981 Micro Data Base Systems. Inc. Rev. 85A 51

MDBS DDL MANUAL = Iv: SECURITY - MDBS DDL MANUAL

Table IV-1l. Read and Write Access

If a user has

access to a Read Access Write Access
data item occurrences of the data occurrences (values) of
item can be retrieved the data item can be
modified
record type occurrences of the record occurrences of the record

type can be retrieved type can be created,
deleted, or modified

set the . owner record owner record occurrences
occurrences associated can be connected to and
with (connected to), a disconnected from occur-

member record occurrence rences of the set's member
can be found; the member record type

records connected to an
owner record occurrence
can be found

area record occurrences and record occurrences and
data item occurrences in data item occurrences in
the area can be retrieved the area can be modified
for those record types (created, deleted), for
and data items to which these record types and
the user has read access data items to which the
user has write access

The MDBS technique for allowing the application designer to
gelectively restrict a user's access to various data items, record
types, sets and areas. is based on an access code principle. In MDBS
there are 16 access codes: a, b, ¢+ «..s P. A combination of one or
more access codes can be assigned to any data item to specify its read
access. Another, (or the same) combination can be used to specify the
data item's write access. For example. SKILCODE might have a read
access of a, ¢, 1 and a write access of c-f (i.e., c¢,d,e and f£f).
Notice that with 16 different access codes. there are 65535 different
access assignments that could be made. A combination of one or more
access codes can also be assigned to any record type. set, or area to
specify its read access. Similarly, a write access combination can be
specified for a record type. set, or area.

The following eight rules must be observed when assigning access
codes:

1. A data item's read access codes must be a subset of the read
access codes of its record type.

2. A data item's write access codes must be a subset of the
write access codes of its record type.

52 (C) COPYRIGHT 1979, 1980, 1981 Micro Data Base Systems. Inc-

MDBS DDL MANUAL - IV: SECURITY - MDBS DDL MANUAL

3. A record type's read access codes must overlap (i.e.,
intersect with) the read access codes of each set in which
that record type participates.

4. A record type's write access codes must overlap with the
write access codes of each set in which that record type
participates.

5. For record types having a calc key: All areas to which the
record type is assigned must have one or more read access
codes in common. Furthermore, the record type's read access
codes must be a subset of these common access codes. (In
other words, the record type's read access codes are a
subset of the intersection of the areas' read access codes.)

6. Same as 5, except for write access.

7. For record types with no CALC key: The record type's read
access codes must overlap with the read access codes of each
area to which the record type is assigned.

8. Same as 7, except for write access.

9. If pointer indices are allowed in an area, then that area's
write access codes must overlap with every user's write
access codes.

The application developer cannot assign an access code to the
main area of a data base. The main area can be accessed (both read
and write) by any bona fide data base user.

An application designer can assign a combination of access codes
to any user, to establish that user's read access authorization.
Another (or the same) combination is used to establish that user's
write authorization. If a user's read access codes overlap (i.e.,
intersect with) an area's read access codes, then the user has read
access to that area (see Table IV-1). Suppose an area has b, g, m
read access. Suppose user-1 has an a-c read authorization and user-2
has an h and p read authorization; then user-1 does have read access
to the area (b overlaps, {b,g,m} N {a,b,c} = {b}). User-2 does not
have read access to the area (no overlap, {b,g,m} () {h,p} = @).
Similarly, if the access codes in a user's write authorization overlap
the write access codes for an area, then the user has write access to
that area.

If a user's read access codes overlap a set's read access codes,
then the user has read access to the set. If a user's write access
codes overlap a set's write access codes, then the user has write
access to that set. For a user to have read access to occurrences of
a record type, the user's read access codes must overlap both the
record type's read access codes, and the read access codes of the
area(s) containing the record occurrences. A user has write access to
a record type's occurrences if the user's write access codes overlap
with both the write access codes of the record type and the write
access codes of the area(s) containing the record occurrences.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 82A 53

MDBS DDI MANUAL - IV: SECURITY - MDBS DDL MANUAL

For a user to have read access to occurrences of a data item, the
user's read access codes must overlap both the data item's read access
codes and the read access codes of the area(s) containing the data
item occurrences. A user has write access to a data item's
occurrences if the user's write access codes overlap with both the
write access codes of the data item and the write access codes of the
area(s) containing the record occurrences.

No access code can be assigned to a data item, record type, set,
or area that has not also been assigned to at least one user.

DDL Specification of Access Codes

An application designer can optionally specify a combination of
access codes for any user, area, set, record type or data item
appearing in a DDL source specification. This is accomplished by
means of the optional access clause which can be

- appended to any user specification in the user section
- appended to any area specification in the area section
-~ included in any record type section

- included in any set section

- included in any data item section.

An access clause has the same form, regardless of which section it is
used in. This form is given below.

An access code list, denoted by aclist, can be either a single
access code or a parenthesized list of access codes and/or access code
ranges. A single access code is simply one of the letters from a
through p. An access code range is indicated by two single access
codes (in alphabetic order) with a hyphen between them. For instance,
the access code range e-i is a shorthand way of referring to the
single access codes: e,f,qg,h,1i.

Access clause forms:

[READ ACCESS IS aclist-1] [WRITE ACCESS IS acligt-21
ACCESS IS aclist=3

The read access codes (for a user, area, set, record type, or
data item) are specified in aclist-l1. The write access codes are
specified in aclist-2. If the read and write access codes are
identical, the second form of this clause (ACCESS IS aclist-3) can be
used. The codes specified in aclist-3 will be used as both the read
and the write access codes.

Defaults: i) for a user, the read and write access codes
default to a
ii) for an area, the read and write access codes

default to a

54 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL

iii)

iv)

. V)

- Iv: SECURITY - MDBS DDL MANUAL

for a record type, the read and write access codes
default to a

for a data item, the read and write access codes
default to the read and write access codes
(respectively) of that data item's record type

for a set, the read and write access codes default
to a

If an application designer allows all access codes to default.
then the eight rules for access code assignment are satisfied. If the
designer allows only some (or none) of the access codes to default-. he
or she must be careful that the eight assignment rules are satisfied.
Failure to observe these rules results in an error diagnostic when the
DDL Analyzer is executed.

Eiamples:

READ ACCESS IS 4 WRITE ACCESS IS j
READ d WRITE J

READ (a,d,mp) WRITE (a,f-g,e,i-k)
ACCESS IS (a-e)

ACCESS (a,c¢,d,mn)

READ (a,K,P)

WRITE (A-P)

(C) COPYRIGHT 1981 Micro Data Base Systems. Inc. Rev. 85A 55

MDBS DDL MANUAL - IV: SECURITY - MDBS DDL MANUAL

This page intentionally left blank.

56 (C) COPYRIGHT 1981 Micro Data Base Systems. Inc-

MDBS DDL MANUAL MDBS DDL MANUAL

V. DATA INTEGRITY

With MDBS, the application developer can use either (or both) of
two broad approaches to providing data integrity. One involves the
inclusion of integrity checking in those DML application programs that
can modify data or data relationships. The other approach is to
declare various integrity constraints in the DDL source specification;
these are automatically enforced by MDBS during all DML and query
processing.

Incorporating integrity checking into DML application programs
gives an application developer very extensive and flexible control
over data integrity. For instance, compatibility checking and
combination checks are straightforward within a DML application
program. The degree and extent of integrity control that can be
achieved within DML application programs far exceeds what can be
provided with a stand-alone, nonprocedural language. Nonprocedural
languages are not at all well-suited for stating the detailed, complex
integrity checks that are very often needed in devising a rigorous,
professional application system.

MDBS automatically enforces certain kinds of data integrity on
the basis of the DDL source specification. These include the
prevention of unauthorized changes, fixed set retention, exclusion of
duplicate CALC key values and duplicate sort key values, and limiting
the values of a data item to a desired feasible range. Of course, the
integrity of 1-to-1, l-to-many, and many-to-many relationships is
automatically enforced. The DDL source specification can also be used
to define a transaction logging file. All alterations to a data base,
since the last data base backup, are recorded on this file if the
MDBS-RTL package has been acquired. In the event of a breach in data
base integrity, all (or, if desired, some) of the logged transactions
can automatically be reapplied to the data base backup copy to
reestablish the data base's integrity.

A. Preventing Unauthorized Changes

The MDBS data security features presented in Chapter IV give an
application developer extensive and highly selective automatic control
over who can make which kinds of alterations to the data and data
interrelationships. This guards against both accidental and
intentional assaults on data integrity.

B. Fixed Set Retention

As discussed in prior chapters, the fixed set retention option
allows an application developer to declare a fixed data
interrelationship. Once owner and member record occurrences are
connected for a fixed set, their interrelationships can never be
altered. The integrity of data relationships that should never change
is, therefore, automatically maintained.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. 57

MDBS DDL MANUAL - V: INTEGRITY - MDBS DDL MANUAL

c. Duplicate Key Exclusion

If it is important to prohibit the existence of two record
occurrences with the same sort key value, this can be accomplished by
indicating (in a sort-clause) that duplicates are not allowed.
Duplicate calc key values can also be prohibited from the data base by
indicating (in a CALC-key-clause) that duplicates are not allowed.

D. Invalid Dates and Times Prohibited

If a data item is declared to be of the type date, then invalid
occurrences of that data item are automatically prohibited from the
data base. For instance, 09/31/1957 is not a valid occurrence of a
date data item. Any attempt to create such an occurrence is
automatically prohibited. The maximum day allowed for a February date
is 28, except in leap years. 1In leap years, the maximum day for a
February date is 29. Not all years that are divisible by 4 are leap
years. For instance, 1900 is not a leap year and such facts are known
by MDBS. All leap years from the year 0000 to the year 9999 are
handled by MDBS. The maximum day allowed for April, June, September
or November is 30. The maximum day allowed for any other month is 31.

If a time data item is declared in a DDL specification, then
invalid occurrences of that data item are automatically prohibited
from the data base. For instance, 221:65:03 is not a valid occurrence
of a time data item. Any attempt to create such an occurrence is
automatically prohibited. The maximum number of seconds that can be
used in a time occurrence is 59. The maximum number of minutes that
can be used in a time occurrence is 59.

E. Feasibility Range Specification

An optional clause may be used in any data item section to
specify the range of permissible values for the data item being
defined. The one exception is that a range of feasible values cannot
be specified for a data item whose type is declared to be binary.
Whenever an attempt is made to create or modify an occurrence of a
data item, MDBS checks the new data value to determine whether it is
in the range of feasible values for that data item. 1If it is out of
the feasible range, the creation or modification does not take place
and an error message to that effect is issued.

The permissible lower and upper bounds for a data item's
feasibility range depend on that data item's type and size. The
minimum lower bound and the maximum upper bound for each type of data
item (of size n) is shown in Table V-1. Notice that the maximum upper
bound for date data items is 126 years above whatever lower bound is
specified. Upper and lower bounds for character and string data items
must be in quotes.

58 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - V: INTEGRITY - MDBS DDL MANUAL

If a DDL source specification gives an upper bound that exceeds
the maximum upper bound or is less than the minimum lower bound. then
the DDL Analyzer will issue an error message. A DDL source
specification that gives a lower bound. which is less than the minimum
lower bound or greater than the maximum upper bound, will also result
in an error when the DDL Analyzer is executed. The DDL Analyzer also
issues an error if the stated lower bound exceeds the specified upper

bound. Numeric ordering is wused for numeric data items. The
character code convention of the host operating system (e.g., ASCII)
is used for string and character data item orderings- For string

data, control characters are treated as blanks. For string and
character data, some parity bits may be stripped away by MDBS.
Chronological ordering is used for date and time data items.

Table V-1. Minimum Lower Bounds and Maximum Upper
Bounds for Feasibility Ranges

Minimum Max imum
Type Size Lower Bound Upper Bound
integer n _p8n-1 ,8n-1
real n -2127 (12256170 2127 (1-256177)
unsigned n 0 256N
-1083(1-10™" 63 -n
idec n even 1077 (1-10 1077 (1-10 %)
n odd _1063(1_10—n—1) 1063(1_10-n-1)
character n the lowest character in a sequence of n charac-
the host operating sys- ters, each of which is
tem's charactéer code the highest character in

the host operating sys-
tems's character code

string n the lowest character in a sequence of n charac-
the host operating sys- ters, each of which is
tem's character code the highest character in

the host operating sys-
tems's character code

time - 000:00:00 255:59:59

date - 01/01/0000 126 years beyond the
specified lower bound

(C) COPYRIGHT 1981 Micro Data Base Systems. Inc- 59

MDBS DDL MANUAL = V: INTEGRITY - MDBS DDL MANUAL

Letting 1lbound indicate lower bound and ubound indicate upper
bound. the optional clause for stating a data item's feasibility range
is:

lbound ubound
RANGE IS TO

LOWEST HIGHEST

If LOWEST is declared rather than lbound. then the lower bound takes
on a default value. If HIGHEST is specified rather than ubound, then
the upper bound assumes a default value. Stating that RANGE IS LOWEST
TO HIGHEST has the same logical effect as altogether omitting the
range clause; defaults are used for both the upper and lower bounds.

Defaults: With the exception of date data items, the lower bound
defaults to the minimum lower bound and the upper bound
defaults to the maximum upper bound. The lower bound
default for a date data item is 01/01/1900. The upper
bound default for a date data item is 126 years beyond
the lower bound.

Examples: RANGE IS =273 TO 10000
RANGE 0.00 TO 4900.00
RANGE LOWEST TO 65:00:00
RANGE "BROWN" TO "BROWN"
RANGE IS "AARDVARK" "ZEBRA"
RANGE 01/01/1869 TO HIGHEST
RANGE 240 HIGHEST
RANGE "A" "ZZZZ%ZZ7Z7"
RANGE "3" TO "am9" (ASCII assumed)
RANGE "mmm"™ "AXY" (ASCII assumed)

F. Data Base Recovery and Transaction Logging

The RTL form of MDBS supports additional data integrity
mechanisms 1including page image posting., transaction 1logging and
transaction recovery. These mechanisms are fully described 1in the
MDBS RTL Manual.

60 Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems. Inc.

MDBS DDL MANUAL MDBS DDL MANUAL

VI. USING THE MDBS.DDL SOFTWARE

After designing a data base schema and specifying that schema in
terms of the MDBS Data Description Language. an application developer
can make use of the MDBS.DDI. software. The MDBS.DDL program can be
executed either interactively or in a batch basis. When executing
MDBS.DDL interactively, a variety of commands are available. As
explained in Chapter I (Figure I-5), these commands allow the MDBS.DDL
user to enter, edit, and gnalyze a DDL source specification.

This chapter explains the interactive usage of MDBS.DDL,
including a discussion of each interactive command. These commands
are briefly summarized in Figure VI-1. Appendix J presents an
overview of the control flow in using MDBS.DDL. Batch usage of the
MDBS.DDL program is also described in this chapter. The procedure for
invoking MDBS.DDL (either interactively or in batch) 1is operating
system dependent and 1is therefore documented in the MDBS System
Specific Manuals. When invoking MDBS.DDL, a user can optionally
indicate. on the operating system command line, how many bytes are to
be allocated for use by MDBS.DDL. The allocation is for the number of
bytes beyond the MDBS.DDL program size. The allocation is made by
using the -bnn argument on the operating system command line, where -b
is a literal and nn is the number of bytes to be allocated. If -bnn
is not wused, then all available bytes are allocated to MDBS.DDL
(regardless of whether or not MDBS.DDL needs all of these bytes).

When wusing Version 3a, a -v argument must be included on the
command 1line if there is an intention of eventually processing the
data base with the "obsolete" DML commands (see Appendix A of the
MDBS DMS Manual for a description of these commands).

If MDBS.DDL is overlaid, all overlay files must be on the proper
drive(s) as they are needed during the execution of MDBS.DDL. If they
are not, a message to the effect that the DDL overlay file(s) is (are)
not found is displayed. In this event, overlay files should be put
onto the proper drives before the command is resubmitted. Again,
these operating system dependent factors are discussed in the
appropriate MDBS System Specific Manuals.

A, Interactive Usage of the MDBS.DDL Program

The MDBS System Specific Manual for your host operating system
shows how to invoke the MDBS.DDL program so that it will interact with
you. MDBS.DDL first of all responds with the MDBS copyright notice,
and possibly your name and serial number. The user is then presented
with the prompt symbol (::). This symbol always indicates that
MDBS.DDL 1is ready to accept a line of input from you. The line that
you enter will contain either an interactive command (see Figure VI-1)
or DDL source text.

If the input line begins with from one to four digits (0-9999),.
then MDBS.DDL interprets the rest of the line as being a line in the

(C) COPYRIGHT 1981 Micro Data Base Systems. Inc- Rev. 85A 61

MDBS DDL MANUAL - VI: USING MDBS.DDL - ‘ MDBS DDL MANUAL

DDL source text. The one to four digit number indicates the relative
position of that line in the DDL source text. The other kind of input
line simply consists of a command for help, text handling, line
editing, DDL analysis, or returning control to the operating system.
Text lines and command lines can be inter-mixed as desired. Regard-
less of which type of line is being input, the standard conventions of
the host operating system apply for such tasks as backspacing,
restarting a line, etc. While system specific manuals cover more on
this, the following general comments are ugually applicable.

MDBS.DDL
l program 'l
Interacfﬁve Usage Batch Usage
Interactive Commands
for help h description of all of the available interactive
commands
for text entry 4 delete all text
(and deletion) d nn delete line nunber nn
d nn mm delete all line of text from nn through mm
i insert text on line 1
inn insert text after line number nn
1 list text
1 nn list line number nn of the text
1 nn mm list the text from line nn through mm
n renunber the text .
n nn renumber the text so the first line is numbered
nn
n nn mm renumber the text to begin with nn using
increments of mm
r read DDL source text from a disk file
r filename read DDL source text from the named disk file
w write DDL source text to a disk file
w filename write DDL source text to the named disk file
for line editing e edit all lines of text
e nn edit line nurber nn
e nn m edit lines of text from nn through mm
for global c/ps/ns change all occurrences of the present string ps
editing to the new string ns
¢ nn/ps/ns change occurrences of ps in line nn to the new
string ns
c nn m/ps/ns change occurrences of ps to ns in lines nn
through mm
a/ps get and display all lines containing an

occurrence of the string ps
g nn mm/ps get and display all lines from nn through mm that
contain ps
for DDL apalysis init analyze DDL source text and initialize data base
init filename analyze DDL source text on the named disk file
and initialize data base
for stopping stop stop the execution of MDBS.DDL and return control
to operating system

Figure VI-1l. Using MDBS.DDL Interactively

62 Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - VI: USING MDBS.DDL - MDBS DDL MANUAL

Special Keys. When entering a text line or command line, there
are several keys that perform special functions. The key that must be
pressed to perform a special function differs from one operating
system to another. The special keys that exist within a given
operating system are described in the pertinent system specific
manual. The special functions performed by these keys are:

a key to terminate an input line (e.g., RETURN)

a key to interrupt the line entry and restart the input line
(e.g., CONTROL-X)

a key to cause a physical backspace and character deletion in the
line being input (e.g., CONTROL-H)

a key to cause a tab character to be placed in the line (e.g.,
CONTROL-1I)

a key to return control to the operating system (e.g., CONTROL-C)

key to cause the :: prompt to appear (e.g., ESCAPE)

key to toggle the DDL Analyzer ocutput between the console and

printer (e.g., CONTROL-P)

o o

Input Line Length and Composition. The input buffer for MDBS.DDL
is limited to 100 positions. Thus an input line that exceeds 100
characters (including blanks) cannot be entered. If the user attempts
to enter more than 100 characters on a line, MDBS.DDL will not use the
excess.

There are no strict rules for the placement of a command or DDL
source text within an input line. MDBS.DDL ignores leading blanks and
tabs. For instance, any of the following input lines will result in
the "help" command being executed.

::h
I h
:3 h

Any of the following input lines will produce the same DDL source text
on line 5834.

::5834 ITEM ADDRESS STRING 40
HH 5834 ITEM ADDRESS STRING 40
HH 5834 ITEM ADDRESS STRING 40

Commands can be entered in either upper or lower case. DDL
source text can also be entered in either upper or lower case. When
the DDL Analyzer is used to initialize a data base, information from
the DDL source (for example, record type names, set names, etc.) 1is
stored in the data dictionary as upper case. The exception is that
characters enclosed in double quotes (a password, user name, filename,
or title) are not translated into upper case within the data
dictionary. Of course, actual data values stored in the data base via
MDBS.DMS are maintained exactly as specified by the person who creates

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. 63

MDBS DDL MANUAL - VI: USING MDBS.DDL - MDBS DDL MANUAL

or modifies the data values. The only exception is for character and

string data items where parity bits may be stripped away and control
characters are transformed into blanks.

B. The Interactive Modes of Operation

This section explains each mode of operation that is available
when using MDBS.DDL interactively. The presentation is organized in
accordance with Figure VI-1l. Help, text handling (entry/deletion),
line editing, DDL analysis, and stopping are discussed. The syntax
and meaning of the commands pertinent to each of these categories is
explained. If a command is not recognizable (due to misspelling, for
instance), MDBS.DDL responds with the message:

Invalid DDL command

and the

: prompt is displayed.

1. Help. The help command provides an alphabetic listing of
all other commands that can be used when the :: prompt is
displayed. A short explanation of each command 1is
furnished.

Help Command Syntax: h or help

2. Text Entry (and deletion). A DDL source specification that
is built through the MDBS.DDL text entry mode will consist
of many source lines, each of which is preceded by a number
in the range of 0 through 9999. MDBS.DDL maintains these
DDL source lines in numeric order. A DDL source
specification can also be built and maintained by a
separate, stand-alone text editor that is available in the
host operating system. In this case the source lines may
not be numbered.

During the execution of MDBS.DDL, only one DDL source
specification can be operated on at any given moment. With
the exception of the "read" command, all commands pertaining
to text entry operate on this local DDL source
specification. The "read" command takes the DDL source text
existing on a disk file and makes it the new local DDL
source specification. Line numbers are automatically added
to this local copy. To save the prior local source text on
a disk file, the "write" command would be used prior to the
read command. Whenever MDBS.DDL is used, there is no local
DDL source text until the user either gives a "read" command
or begins entering (i.e., creating) text via the MDBS.DDL
text entry mode.

As noted in Figure VI, there are several commands that can
be used in connection with text entry and deletion. As
explained in Section VI-B, lines of DDL source text can also
be generated without using any command at all. Both
approaches are discussed here.

64 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL

- VI: USING MDBS.DDL - MDBS DDL MANUAL

Text Insertion without a Command: A line of text to be
inserted in the local source text is preceded by a
number from 0 to 9999 and terminated by pressing the
RETURN (or ENTER) key. Entered source lines are
maintained in the order indicated by their line
numbers. If a line of the same number already exists
in the local text, the newly entered line will replace
the existing line. 1If there is no local text at the
time of a line insertion, the inserted line becomes the
local source text. Valid examples of this approach to
line insertion are:

10 LINE OF TEXT

20 MORE

0299 STILL MORE

0000 this is OK

8393s0 is this

9999 HIGHEST LINE NUMBER

Of course, these particular lines are not descriptive
of a schema.

If too much text is entered (i.e., 1if there is
insufficient memory to hold all of the text) the
following message is displayed:

Insufficient room in memory

and the current line being entered is lost. However,
all text entered up to this point is still preserved in
the local source text. In the event of this problem,
the user may choose to use the standard text editor
available on his computer to create and maintain the
DDL source specification; this is stored on a disk
file. Such files can be processed by the "read" and
"write" commands, and by the MDBS.DDL analyzer mode.

If the user desires to enter many lines in numeric
sequence, the "insert" command can be used. When an
"insert" command is given, MDBS.DDL automatically
provides line number prompts, so that line numbers need

not be keyed in. The "insert" command is described
next.

Insert Command Syntax:

i insert source lines beginning at the start of
the local source text

i nn insert source lines after line nn of the
local source text

Explanation: This command results in line number
prompts starting with line number nn (or, if that line
already exists, starting with line number nn+l). Upon
receiving a line number prompt, the user keys in the

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. 65

MDBS DDL MANUAL - VI: USING MDBS.DDL =~ MDBS DDL MANUAL

desired line of DDL source text and presses the RETURN
(or ENTER) key. MDBS.DDL will then issue a prompt for
the next line nn+l (or nn+2), and so forth. Lines of
existing source text following nn are automatically
"pushed down" and renumbered when conflicts arise. 1In
order to stop the line number prompts, press the RETURN
key when the next line number prompt appears. MDBS.DDL
will respond with the :: prompt.

Just as described for line insertion without a command,
the message:

Insufficient room in memory

can occur. This can be remedied as described earlier,
through the use of a standard text editor.

Examples of Valid Usage:

I Begins insertion at line 0; where line 0
already exists, the existing lines are
pushed down with renumbering as needed.

I 2001 Begins insertions at line 2001 if that
line does not already exist; insertions
begin at 2002 (with pushdown
renumbering) 1if that 1line already
exists.

c. Delete Command Syntax:

d deletes the entire local source text
d nn deletes line nn from the local source
text

d nn mm deletes lines nn through mm from the
local source text

Explanation: This command deletes the indicated line.
When no line is specified, MDBS.DDL responds with the
prompt of:

Delete all (y/n)

The entire text is deleted if a response of y is given.
No deletion is made if the user response is n. Commas
or blanks serve as delimiters between nn and mm. When
the deletion has taken place or if there are no lines
in the range to be deleted, MDBS.DDL gives the ::
prompt.

66 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - VI: USING MDBS.DDL - MDBS DDL MANUAL

Examples of Valid Usage:

d 10 Deletes line 10

d 977,1024 Deletes lines 977,978,...,1023,1024
d 30 40 Deletes lines 30,31,...,39,40

d 18 25 Deletes lines, 18,19,...,24,25

d

Delete all2(y/n) MDBS.DDL prompt .
y User responds with y to delete all lines.

d. List Command Syntax:

1 lists all lines in the local DDL source
text
1 nn lists line nn of the local source text

1 nn mm lists lines nn through mm of the local
source text

Explanation: This command lists the indicated lines of
the local DDL source text. Commas or blanks can serve
as the delimiter between nn and mm. During a listing,
pressing any key (except CONTROL-C or ESCAPE) causes a
pause until any key (except CONTROL-C or ESCAPE) is
again pressed. The ESCAPE key terminates the listing
process and MDBS.DDL responds with the :: prompt. When
a listing has gone to completion or if there are no
lines in the range to be listed, then MDBS.DDL gives
the :: prompt.

Examples of Valid Usage:

1 Lists all lines of text
15834,6000 Lists lines 5834 through 6000
10 Lists line O

110 20 Lists lines 10 through 20
122, 30 Lists lines 22 through 30

15 Lists line 5

e. Renumber Command Syntax:

n renumbers all text giving the first line
the number 0, with increments of 1
n nn renumber all text giving the first line

the number nn and incrementing by 1
n nn mm renumber all text giving the first line
the number nn and incrementing by mm

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. 67

MDBS DDL MANUAL

68

- VI: USING MDBS.DDL - MDBS DDL MANUAL

Explanation: This command renumbers all text using the
starting point and increment indicated. The mnemonic
ren can be used in place of n. Commas or blanks can
serve as the delimiter between nn and mm. If an
increment of zero is specified or if the parameters nn
and mm are such that a line number greater than 9999
would result, then the message:

requested resequencing not possible!
is printed and the :: prompt is given. At the
conclusion of the renumbering process, MDBS.DDL gives
the :: prompt.

Examples of Valid Usage:

n First line will be 0000, second 0001,

ren ;Eigt line will be 0000, second 0001,

n 30 g&i;t line will be 0030, second 0031,

renl0, 10 First line will be 0010, second 0020,

n 10 10 giigt line wil be 0010, second 0020,

no,3 ggi;t line will be 0000, second 0003,
etc.

Bead Command Syntax:

r read DDL source text from disk
file, making it the local text
r filename read text from the file "filename",

making it the local text

Explanation: This command allows a user to read a
previously saved text file. This becomes the local
source text, replacing all other source text that
happened to be local before the command was made. The
new local text is automatically numbered and can be
operated on by any of the MDBS.DDL commands.

If the first form of the "read" command is used, then
MDBS.DDL will prompt the user for a file name. Press-
ing the RETURN (ENTER) key, without having given a file
name, will result in the :: prompt. The file name that
a user specifies with the "read" command must be a
fully gqualified file name within the host operating
system. When MDBS.DDL has successfully completed a
read, the message

XXxx bytes

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL

-~ VI: USING MDBS.DDL - MDBS DDL MANUAL

is displayed, where xxxx indicates the total number of
source text bytes that were transferred into central
memory. The :: prompt then appears.

If not enough memory is available for the text to be
read-in, then the message

Insufficient room in memory

is displayed and the :: prompt is given. The text in
memory before the "read" command will probably be lost.
A data base can, nevertheless, still be initialized for
the oversized DDL source specification by using the
"init filename" command described in Section B-4 of
this Chapter.

There are other causes of read errors such as bad disk
sectors, hardware problems, failure to give a fully
gqualified file name, absence of the indicated file on
the indicated disk drive, etc. 1In cases such as these,
the message

Error in reading file

is displayed (in addition to any messages the operating
system may print) and the :: prompt is given. If a
file is not successfully read, the local text present
in memory may still be intact, depending on the nature
of the read error.

Examples of Valid Usage:

r Give the "read” command without a
file name
filename:: MDBS.DDL asks for a file name
DEPT.DDL User responds with fully qualified
file name such as DEPT.DDL
463 bytes MDBS.DDL responds with the bytes of
text read
r DEPT.DDL Read the text from the file
DEPT.DDL
463 bytes MDBS.DDL responds with the bytes of

text read

Write Command Syntax:

W write the local DDL source text
onto a disk file
w filename write the local DDL source text

onto the "filename" disk file

Explanation: This command allows a user to save an
image of the local source text on a disk file. Line
numbers of local text are stripped away during the

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. 69

MDBS DDL MANUAL - VI: USING MDBS.DDL - MDBS DDI. MANUAL

write operation. After the write has occurred, the
text is still local as well. If the first form of the
"write" command is used, then MDBS.DDL will prompt the
user for a file name. Pressing the RETURN (ENTER) key,
without having given a file name, will result in the ::
prompt. The file name that a user specifies with the
"write" command must be a fully qualified file name
within the host operating systenm. When MDBS has
successfully completed a write, the message

XXXX bytes

is displayed, where xxxx indicates the total number of
source text bytes that were transferred to the disk
file. The :: prompt then appears.

Typical causes of write errors include hardware
malfunctions, failure to use a fully qualified
filename, absence of the indicated file on the
indicated disk drive. In cases such as these, the
message

error

is displayed (in addition to any messages the operating
system may print) and the :: prompt is given.

Examples of Valid Usage:

W Give the "write" command without a
file name
filename:: MDBS.DDL asks for a file name
DEPT.DDL User responds with fully qualified
file name such as DEPT.DDL
463 byvtes MDBS.DDL responds with the bytes of
text written
w DEPT.DDL Write an image of the local text
onto the file DEPT.DDL
463 bytes MDBS.DDL responds with the bytes of

text written

3. Line Editing. In the line editing mode, alterations within
any line of the local DDL source text can be made without
retyping the entire 1line. The line editor is entered
through the "edit" command (recall Figure VI-1l).

a. Edit Command Syntax:

e edit the entire local DDL source text

e nn edit the local text in line nn

e nn mm edit the local text from line nn through
mm

70 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL

- VI: USING MDBS.DDL - MDBS DDL MANUAL

Explanation: This command is used to enter the line
editing mode. Commas or blanks can be used as the
delimiter between nn and mm. If there is no text
within the range of lines to be edited, MDBS.DDL
returns the :: prompt. If there is text within the
range of lines to be edited, the first such line 1is
displayed and the user is given the editor prompt of
1: . At this point, a user has the options of
advancing to the next line of text, changing the
current line of text, or exiting from the line editing
mode. A given line can be repeatedly altered before
advancing to the next line. Within the line edit mode,
the "change" command is used to change text and the
"stop" command is used to exit from the line edit mode.

If an improper command syntax is entered while in the
line editor, a prompt of ? is given. When this occurs,
the user is still in the line editor mode and can give
a correct response.

Examples of Valid Usage:

e Edit all text starting with the
first line

e24 Edit line 24

e 1000,1026 Edit all text from lines 1000
through 1026

e 10 15 Edit all text from lines 10 through
15

Mowving Through Text: The user can progress from the
current line of text to the next line of text by
pressing the RETURN (ENTER) key in response to the
editor prompt of 1: or ?. This results in the next
line of text being displayed, followed by the 1:
prompt. If there is no more text or if the next line
is beyond the range specified when entering the line
editor (beyond mm), then MDBS.DDL exits from the line
edit mode and displays the :: prompt.

Change Command Syntax:

CdPRESENTANEWAd where 4 is any delimiter,
change the PRESENT string
within the current line to the
NEW replacement string.

Explanation: This command replaces a specified string
of characters that presently exists in a line, with a
new specified string of characters. The first
character following the ¢ is used as the delimiter.
The final delimiter following the new string can be
omitted. If the specified present string is not found,

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. 71

MDBS DDL MANUAL - VI: USING MDBS.DDL - MDBS DDL MANUAL

72

the editor responds with a ? prompt. When a change has
been made, the line editor will display the revised
line and will display the prompt 1:.

Examples of Valid Usage:

Assume the following is being edited:

00010 HTIS IS TWO DEMANSTRATE THE LINE LINE EDTOR

c/HT/TH results in:

0010 THIS IS TWO DEMANSTRATE THE LINE LINE EDTOR

C.TWO.TO results in:

0010 THIS IS TO DEMANSTRATE THE LINE LINE EDTOR

COMAQMO results in:

0010 THIS IS TO DEMONSTRATE THE LINE LINE EDTOR

c. LINE. results in:
001Q¢ THIS IS TO DEMONSTRATE THE LINE EDTOR
¢/ED/EDI results in:

0010 THIS IS TO DEMONSTRATE THE LINE EDITOR

Repeated Changes: A user can make the same change
repeatedly within a line and across lines. When a
change is entered, it is remembered. The next change
replaces the remembered change and becomes the new
remembered change. Upon entering the line editing
mode, the remembered change is

c///

A remembered change will not be forgotten until another
properly entered change is submitted or until the user
exits from the line editing mode.
Command Syntax:

C makes the remembered change

Explanation: Entering a C followed by a RETURN (or
ENTER) invokes the last remembered change. This can be
done repeatedly within a line or, after advancing
lines, within another line.

Examples of Valid Usage:
Suppose the following local text is to be edited:
0010 PRODUCT 64KGB IS NOT NEW
0020 64KGB AND 64KGB DERIVATIVES
0030 HAVE BEEN AROUND FOREVER
0040 ...64KGB REPORT

and the user enters e in response to the ::
prompt. This results in:

0010 PRODUCT 64KGB IS NOT NEW

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL

e.

- VI: USING MDBS.DDL - MDBS DDL MANUAL

being displayed. At this point the remembered

change is:

c///

Suppose 64KGB is to be replaced by T47S. The user

may enter:
C.64KGB.T47S

which will result in:
0010 PRODUCT T47S IS NOT NEW

and the current remembered change is:
C.64KGB.T47S

Pressing the RETURN key will result in:
0020 64KGB AND 64KGB DERIVATIVES

Pressing C and then RETURN results in:
0020 T47S AND 64KGB DERIVATIVES

since C.64KGB.T47S was remembered. Repeating
C and RETURN gives:

0020 T47S AND T47S DERIVATIVES
Pressing RETURN gives:

0030 HAVE BEEN AROUND FOREVER.
Pressing RETURN gives:

0040 ... 64KGB REPORT.
Entering C and RETURN gives:

0040 ... T47S REPORT.

Stop Editing Command Syntax:

s stop line editing

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

with

Explanation: This command is used to exit from the line
editor mode. MDBS.DDL returns the :: prompt.

73

MDBS DDL MANUAL - VI: USING MDBS.DDL - MDBS DDL MANUAL

74

4.

Rev.

Global Editing. In addition to line-oriented editing, it is
possible to make more global changes to a DDL source
specification. Two related commands are provided for this
purpose, One will get and display all lines containing a
specified string of characters. The other actually changes
all instances of a specified character string to a new
character string.

a. Get and Display Command Syntax:

g/ps get and display all lines containing an
occurrence of the indicated string ps
g nn mn/ps get and display all lines from nn to mm

that contain ps

Explanation: This command is typically used to preview
all 1lines containing a particular character string
prior to making a global change for that string. If no
lines are specified in the command, then all DDL source
lines containing the string are displayed. If a range
of 1lines is specified, then the get and display
operation is restricted to the lines within that range.
Delimiters other than the / symbol are permissible.

Examples of Valid Usage:

g/retention displays all lines containing
"retention"

g 25 100/RETENTION displays all 1lines in the
range 25 through 100 that
contain "RETENTION"

g.nodup displays all lines containing
"nodup"
g 16,83.FIFO displays all 1lines 1in the

range 16 through 83 that
contain "FIFO"

b. Change Command Syntax:

c/ps/ns change all occurrences of the present
string ps to the new string ns
¢ nn/ps/ns change occurrences of ps in line nn to

the new string ns
¢ nn mm/ps/ns change occurrences of ps in lines nn
through mm to ns

Explanation: This command can be used to change many
instances of a particular character string in a single
operation. The scope of this change can be a single
line, a range of lines, or the entire DDL source
specification. Delimiters other than the / symbol are
permissible.

85A (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - VI: USING MDBS.DDL - MDBS DDL MANUAL

Examples of Valid Usage:

c/EMPLOYEE/emp changes all instances of
"EMPLOYEE" to "emp"

¢/nodup/ changes each instance of
"nodup" to a blank

¢ 75 90/FIFO/LIFO changes all instances of

"FIFO" in lines 75 through
90 to "LIFO"

¢ 1,23/STR 10/STR 12 changes all "STR 10" string
in lines 1 through 23 to
"STR 12"

DDL Analysis. This command is used to enter the DDL
analysis mode. A successful analysis gives the user the
option of initializing a data base. MDBS.DDL accepts ddl in
place of init. The first form of this command uses the
local DDL source specification. The other form uses the DDL
source specification residing on the named file (fully
gualified).

Initialization Command Syntax:

init Analyze and initialize the local DDL
source specification.

init filename Analyze and initialize the DDL source
specification on the indicated disk
file.

Explanation: The DDL analysis mode is used to check the
syntactic and logical consistency of a DDL source text
specification. If the DDL Analyzer detects an error in the
DDL source text, the analysis halts and a message 1is
displayed indicating the nature of that error. A full
explanation of each possible error message is given in
Chapter VII. The explanations include suggestions for
correcting the error.

When DDL processing halts, due to an error, the :: prompt
will appear. The error can then be corrected and the user
can re-enter the DDL analysis mode. If no error is
detected, MDBS.DDL responds with the messages:

*** Schema description successfully analyzed ***

and

Do you wish to initialize the data base? (y/n/s/o)

If the user replies with n, then the data base is not
initialized and the :: prompt is given. If the user replies
with y, then the data base is initialized. This means that
MDBS.DDL stores the data dictionary, initializes the system
pages in each area, and initializes all non-system pages in

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A 75

MDBS DDL MANUAL - VI: USING MDBS.DDL - MDBS DDL MANUAL

the data base area(s). Prior to processing each area,
Version 3a of MDBS.DDL prompts the user to ready the disk
which will hold that area (the disk must be on-line on the
proper drive). When the disk has been readied, the user
presses the RETURN (or ENTER) key, which permits MDBS.DDL to
perform the initialization for that area. After
initialization, area statistics are displayed to the user.

. If a transaction log file has been defined in the DDL source
specification, the Version 3a user is also prompted to ready
the disk that is to hold the transaction 1log file. When
initialization of all areas and the log file (if any) 1is
complete, the :: prompt is given.

If the user desires to initialize only a short form of the
data base, s 1is pressed rather than y. This has the same
effect as y, except none of the non-system pages are
initialized. This allows the physical file of each area to
be very short. The optional DMU module can later be used to
initialize the non-system pages, thereby extending the size
of the physical file for each area (up to the maximum number
of pages in the area). This is a very important facility for
OEM application developers. It allows an OEMer to send an
end user a brief version of the data base (e.g., on a floppy
disk). The end user can then invoke a DMU command in order
to expand the data base to its full potential size (e.g., on
hard disk), by initializing all data base pages. A page
must be initialized before data can be loaded into it.

The o option also initializes a short form of the data base.
This option has the added effect of disabling the DISPLAY
command. As described in the MDBS QRS Manual, QRS users can
invoke the DISPLAY command to query the data dictionary.
The o option allows an OEMer to prevent the display of a
schema developed for an application system.

Area statistics are displayed for both the regular form and
short forms of initialization. For each area, these
statistics include the page size, the number of pages
allocated, the number of system pages, and the remaining
bytes. The minimum single user DMS buffer region size is
also displayed. This size (in bytes) is exclusive of any
file control or data blocks that may be needed by a host
language program. The buffer region size for a host
language program is allocated with the SETPBF command as
described in the MDBS DMS Manual.

Examples of Valid Usage:
init

ddl DEPT.DDL
init DEPT.DDL

76 Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems. Inc.

MDBS DDL MANUAL - VI: USING MDBS.DDL - MDBS DDL MANUAL

6. Stop. The stop command terminates the interactive use of
MDBS.DDL. Control is returned to the operating system. The
local copy of text is destroyed.

Stop Command Syntax: stop (or bye or end or quit)

C. Batch Usage of MDBS.DDL

The MDBS.DDL program can be used on a batch basis by invoking it
from the operating system, with a file name specified as a parameter
on the operating system command line. The indicated file should
contain a valid DDL source specification. The contents of the file
are analyzed and the data base is fully initialized without any user
interaction. Upon completion of the analysis and initialization,
control passes back to the operating system. In the event of an
unsuccessful analysis or initialization, the operating system 1is
informed of an abnormal termination.

The optional byte allocation (-b) and obsolete DML vintage (-v)
arguments can be used in this batch mode, just as they are used in
interactive mode. In addition, several other optional arguments are
available. These arguments and the -b or -v arguments can appear in
any order on the command line. The additional arguments are:

-q suppress the page initialization message during data base
initialization

-h (for version 3a only) suppress the "disk-ready" prompts for
area initializations

-s initialize a short form of the data base
-0 initialize an "OEMer" form of the data base

-n no initialization is performed

Of the last three options only one can be used on a command line.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A 76.1

MDBS DDL MANUAL - VIi: USING MDBS.DDL - MDBS DDL MANUAL

This page intentionally left blank.

76.2 Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL MDBS DDL. MANUAL

VII. DDL ANALYZER MESSAGES

This chapter describes the error messages that can result from
the DDL Analyzer. These errors arise out of improper syntax or errors
in the logical structure as specified in the DDL description. In each
case, an explanation of what the error message means is given. The
possible situations under which the message would be obtained,
together with possible solutions to the problem, are also described.

The error messages described here do not include errors that
result from improper usage of the MDBS.DDL program. These have been
discussed in the preceding chapter. Most of the error messages
described here can occur in both Version 3a and Version 3c. Where
errors occur exclusively with one of the versions, these have been
appropriately indicated.

*** A CALC key item has not been defined.

Explanation:
All items forming part of the CALC key for a record type must be
defined as data items for that record type.
‘Possible Causes and/or Solutions:
1. One or more data items forming part of the CALC key for a
record type have not been defined.
2. Check data item specifications in RECORD and ITEM sections.

*** Access level not in the range a to p.

Explanation:
The access level defined for the construct (item, record, set or
area) is not in the range 'a' to 'p'.
Possible Causes and/or Solutions:
1. The access level for any item, record, set or area must be in
the range 'a' to 'p'.
2. Check item, record, set and area access level descriptions.

%%* An item in the sort clause is not in a record.

Explanation:
An item declared in the sort clause has not been defined in the
record type.
Possible Causes and/or Solutions:
l. A set has been declared sorted by an item which has not been
defined earlier in the owner/member record type.
2. Check item definitions in owner/member record types.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. 77

MDBS DDL MANUAL - VII: MESSAGES - MDBS DDL MANUAL

**%* Area and data base page sizes must be equal.

Explanation:
The page size defined for the data base and area(s) must be
equal. This error occurs only in Version 3a.
Possible Causes and/or Solutions:
1. Check page size definitions in the IDENTIFICATION and AREA
sections.

*** Area has pointer indices, so all users must have write access.

Explanation:
All users must have write access to an area that allows pointer
indices.
Possible Causes and/or Solutions:
1. Check write access codes of area and users.
2. User the POINTERS NOT ALLOWED clause in the area definition.

*** Area not previously defined.

Explanation:
The area has not been defined earlier.
Possible Cause and/or Solutions:
1. Check the main area definition in IDENTIFICATION section, and
subsequent area specifications in the AREA section.

*** Area page exceeds data base page size.

Explanation:
The page size for one or more areas is greater than the page size
defined for the main data base area. This error occurs only in
Version 3c.

Possible Causes and/or Solutions:
1. The page size for any of the areas must be less than or equal

to the page size defined for the main data base area.

2. Check page size definitions for the various areas.

*** AREA or RECORD section missing or misplaced.

Explanation:
The system was expecting an AREA or RECORD section based on an
end-of-section descriptor.
Possible Causes and/or Solutions:
1. Check end-of-section descriptors (e.g., a period) in the AREA
and RECORD sections.
2. Check AREA and RECORD section specifications.

78 Rev. 82A (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - VII: MESSAGES - MDBS DDL MANUAL

*** A gort-key item is not encrypted across participating records.

Explanation:

For sets with multiple owner/member record types, the sort-key

item is not encrypted across participating owner/member record

types; i.e., the item has been defined to be encrypted in one or
more owner/member record types, and not encrypted in one or more
owner/member record types.

Possible Causes and/or Solutions:

1. For sets sorted by their multiple owner/member record types,
the sort key item, if defined to be encrypted in any one
owner/member record type, must be defined as encrypted in all
participating owner/member record types.

2. Check sort-key item description in participating owner/member
record types.

*** A sort-key item length not constant across participating records.

Explanation:

For sets with multiple owner/member record types, the length of

the sort-key item is not constant across participating

owner/member record types. This error occurs only for sort-key
items which have been declared as string items.
Possible Causes and/or Solutions:

1. For sets sorted by their multiple owner/member record types,
the length of the sort key item must be the same in the
participating owner/member record types.

2. Check sort-key item description in participating owner/member
record types.

*** A sort-key item replication count not equal across participating
records.

Explanation:

For sets with multiple owner/member record types, the sort-key

item replication count is not equal across participating

owner/member record types.
Possible Causes and/or Solutions:

1. For sets sorted by their multiple owner/member record types,
the replication count for the repeating sort-key item must be
the same in the participating owner/member record types.

2. Check sort-key item description in participating owner/member
record types.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. 79

MDBS DDL MANUAL = VII: MESSAGES - MDBS DDL MANUAL

*%** A sort-key item type not equal across participating records.

Explanation:

For sets with multiple owner/member record types, the sort key

item type is not comparable across participating owner/member

record types.
Possible Causes and/or Solutions:

1. For sets sorted by their multiple owner/member record types,
the sort key item type must be the same in the participating
owner/member record types (e.g., CHAR, REAL).

2. Check sort-key item description in participating owner/member
record types.

*** At least one owner is required in a set.

Explanation:

A set description requires at least one owner record type.
Possible Causes and/or Solutions:

1. Check 'owner' clause description of SET section.

%x At least one member is required in a set.

Explanation:

A set description requires at least one member record type.
Possible Causes and/or Solutions:

1. Check 'member' clause description of SET section.

*** Bad character in number field.

Explanation:

A number field in a RANGE specification has a bad character.
Possible Causes and/or Solutions:

1. Check RANGE specification for this item.

*** Binary items cannot be ranged.

Explanation:

A range cannot be specified for binary items.
Possible Causes and/or Solutions:

1. Check binary item descriptions in ITEM section.

80 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - VII: MESSAGES - MDBS DDL MANUAL

*** Bjnary items cannot be part of a sort-key.

Explanation:

A sort-key item cannot include a binary item.
Possible Causes and/or Solutions:

1. Check item descriptions of sort-key items.

*** Cannot open file.

Explanation:
An error has occurred while trying to open a file for
initializing the data base.

Possible Causes and/or Solutions:

1. Disk on which file is to be opened may be full.
2. Bad sector on disk.

*** Data base IDENTIFICATION section missing or out of order.

Explanation:
Self-explanatory.
Possible Causes and/or Solutions:
1. Check sequence of different sections in DDL description.

*** Data base must have at least one record type.

Explanation:
Self-explanatory.
Possible Causes and/or Solutions:
1. The DDL specification contains no record type declaration.

2. The record type declarations are not in the proper position
(e.g., they follow the set declarations).

*** Duplicate area name.

Explanation:

The same area name has been defined twice.
Possible Causes and/or Solutions:
1. Check area descriptions.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A 81

MDBS DDL MANUAL - VII: MESSAGES - MDBS DDL

*** pDuplicate area specified in area list.

Explanation:

An area name has been specified twice in the area 1list
record description.

Possible Causes and/or Solutions:
1. Check area specifications in the RECORD section.

*** puplicate clause has an unrecognizable descriptor.

Explanation:

MANUAL

of a

The duplicate clause in the RECORD section does not have a valid

descriptor.
Possible Causes and/or Solutions:

1. The duplicate clause in the RECORD section does not have any

of the following descriptors: NOT ALLOWED, LIFO, FIFO,
2. Check duplicate clause section in RECORD section.

*** puplicate item within this record.

Explanation:

A record type has a duplicate item specification.
Possible Causes and/or Solutions:

1. Check item specifications for different record types.

*** pyplicate member record types for this set.

Explanation:

A set has the same record type specified twice as a member.
Possible Causes and/or Solutions:

1. Check member clause specification in SET section.

*** pDuplicate owner record types for this set.

Explanation:

A set has the same record type specified twice as an owner.
Possible Causes and/or Solutions:

1. Check owner clause specification in SET section.

IMMAT.

82 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - VII: MESSAGES - MDBS DDL MANUAL

*** Duplicate user.

Explanation:

A user has been defined twice with different (or same) passwords.
Possible Causes and/or Solutions:

1. Check user-password specifications in USER section.

% puplicate record type name.

Explanation:

The same record type has been specified twice.
Possible Causes and/or Solutions:

1. Check record type names in RECORD section.

%%* pDuplicate set name.

Explanation:

The same set name has been specified twice.
Possible Causes and/or Solutions:

1. Check set name specifications in SET section.

**%* Excessive date or time field.

Explanation:

The range specified for the date or time field is excessive.
Possible Causes and/or Solutions:

1. Check possible ranges for date and time fields.

2. Check range specifications for date and time fields.

*** Bxcessive width for sort-key.

Explanation:
The width specified for a sort-key exceeds the size of the sort-
key's fields.
Possible Causes and/or Solutions:
1. Add the sizes of the sort-key's fields to determine the
maximum sort-key width.

**%* Expecting a number.

Explanation:
A character other than a number was specified where the system
was expecting a number.

Possible Causes and/or Solutions:
1. Check required specification of construct.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 83A 83

MDBS DDL MANUAL - VII: MESSAGES - MDBS DDL MANUAL

*** Expecting a quoted file name.

Explanation:
A file name was not specified in quotes.

Possible Causes and/or Solutions:
l. Any file name in the DDL description should be enclosed in

quotes.
2. Check file name specifications in IDENTIFICATION and AREA

sections.

*** Expecting SET or END statement.

Explanation:
The system was expecting a SET or END statement based on an end-
of-section descriptor.
Possible Causes and/or Solutions:
1. Check end-of-section descriptors (e.g., a period) in the SET
section.
2. Check SET and END sections.

*** Expecting 'RECORD-TYPE' statement in sort-clause.

Explanation:
The system was expecting a 'RECORD-TYPE' statement in the sort-

clause of the SET section.

Possible Causes and/or Solutions:
1. Check sort clause specification of SET section.

*%% File not found.

Explanation:
Only for systems having the DDL source specification file over-

layed. The overlays are not on the currently logged-on drive.

Possible Causes and/or Solutions:
1. For systems with the DDL file overlayed, the overlays must be

on the currently logged-on drive.
2. Check files on currently logged-on drive to make sure DDL

overlays exist on this drive.

84 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - VII: MESSAGES - MDBS DDL MANUAL

*** High date must not precede low date.

Explanation: _ _
In the range specification for a date item type, the high date

must be specified after the low date.
Possible Causes and/or Solutions:
1. The high date has been specified before the low date in the
range specification for a date item type.
2. Check range specifications in date item type.

*%** Tnconsistent insertion for "set-name"

Explanation:
A set's insertion mode(s) must be consistent with set type and
record location.
Possible Causes and/or Solutions:
1. Both owner and member insertion are automatic.
2. Member (owner) insertion is automatic with member (owner)
records being placed in the area of the owner (member).
3. Members are declared to be clustered in an owner area and vice
versa; or, clustering is requested for a recursive set.

*** Tnconsistent item and record read access codes.

Explanation:
The read access codes defined for any item must be a subset of
the read access codes for the record type containing that item.
Possible Causes and/or Solutions:
l. The read access codes defined for the item and the record type
containing that item have no elements in common.
2. Check item and record type read access code specification.

% Tnconsistent item and record write access codes.

Explanation:
The write access codes defined for any item must be a subset of
the write access codes for the record type containing that item.
Possible Causes and/or Solutions:
1. The write access codes for the item and the record type
containing that item have no elements in common.
2. Check item and record type write access code specifications.

*** Tnconsistent set and record read access codes.

Explanation:
The read access codes defined for the record type and the set
having the given record type as owner/member must have at least
one element in common.

Possible Causes and/or Solutions:
1. The read access codes for the record type and the set having

that record type as owner/member have no elements in common.

2. Check record type and set read access code specifications.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 83A 85

MDBS DDL MANUAL - VII: MESSAGES - MDBS DDL MANUAL

**%2 Tnconsistent set and record write access codes.

Explanation:
The write access codes defined for the record type and the set
having the given record type as owner/member must have at least
one element in common.

Possible Causes and/or Solutions:
1. The write access codes for the record type and the set having

that record type as owner/member have no elements in common.

2. Check record type and set write access code specifications.

**%* Insufficient room for DDL processing.

Explanation:
There is insufficient room in memory for building tables during
DDL processing.
Possible Causes and/or Solutions:
1. There is not enough room in memory for the DDL analyzer to
build tables.
2. If the file has been read into memory using the 'R' command,
the '"INIT' command may instead be used to initialize the data
base without reading the file into memory.

*** Tnsufficient room in memory.

Explanation:
There is not enough room in memory for any further processing,
(i.e., to read a text file, to input a line of DDL source
specification, etc.).
Possible Causes and/or Solutions:
1. Not enough room is available to read a file into memory.
2. Not enough room is available to input a line of DDL text.
3. The 'INIT' command may be used instead of a 'R' command to
initialize a data base without reading the file into memory.
4. A text editor may be used instead of the DDL to input DDL
source specification.

**%* Tntegers may not have fractional parts.

Explanation:
The range specifications for an item defined as an integer have
been declared incorrectly.
Possible Causes and/or Solutions:
1. An integer item has a fractional part in its range
specifications.
2. Check range specifications of item.

86 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - VII: MESSAGES - MDBS DDL MANUAL

**%* Tnvalid date or time delimiter.

Explanation:
An invalid delimiter has been specified in the range clause for a
date or time field.
Possible Causes and/or Solutions:
l. A character other than a '/' (for a date field), or other than
a':' (for a time field) has been specified as a delimiter on
the range clause for these items.
2. Check range clause specifications for date and time data
items.

*** Ttem length must be at least 1.

Explanation:
The minimum size (number of bytes) for a data item, except a date
or time item, is 1.
Possible Causes and/or Solutions:
l. The size specified for any item (except date and time data
items) must be at least 1.
2. Check size specifications in data item section.

*** Ttem or set section missing or misplaced.

Explanation:
The system was expecting an ITEM or SET statement based on an
end-of-section descriptor.
Possible Causes and/or Solutions:
1. Check end-of-section descriptors (e.g., a period) in the ITEM
and SET sections.
2. Check ITEM and SET section specifications.

*** Ttem access codes must be a subset of the record.

Explanation:
The access codes defined for any item must be a subset of the
access codes for the record type containing that item.

Possible Causes and/or Solutions:

l. An access code has been defined for the item which is not
defined as an access code for the record type containing that
item.

2. Check item and record type access code specifications.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. 87

MDBS DDL MANUAL - VII: MESSAGES - MDBS DDL MANUAL

*** Ttem length too long.

Explanation:
The length of the data item is larger than the maximum allowable
for that data item type.
Possible Causes and/or Solutions:
l. The item size (number of bytes) is longer than the maximum
permissible for that data item type.
2. Check maximum allowable lengths (sizes) for different data
item types.
3. Check item size specifications.

*** JTtem type was not specified.

Explanation:
The type of the data item (e.g., CHAR,BIN) was not specified in
the DDL source specification.
Possible Causes and/or Solutions:
1. The data item specification did not include the type of the
data item (e.g., CHAR,BIN,IDEC).
2. Check data item specifications.

*** Maximum of 7 decimal positions for IDEC fields.

Explanation:
For IDEC fields, the number of digits to the right of the decimal
point cannot be greater than 7.

Possible Causes and/or Solutions:

l. A number greater than 7 has been specified for the number of
digits to the right of the decimal position in the size
specification for an IDEC item.

2. Check item size specification of IDEC items.

*** Missing set with record clustering for "record-type-name".

Explanation:
The set specified in the record clustering clause for the
indicated record type is missing from the SET section of the DDL
specification.
Possible Causes and/or Solutions:
l. The set specified in the c¢lustering clause has not been
defined in the SET section.
2. Typographical error in specifying set name.
3. Check SET section and clustering specifications in RECORD TYPE
section.

88 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL ~ VII: MESSAGES - MDBS DDL MANUAL

*%** Misspecified access code range.

Explanation: _
The range for the access code has not been specified correctly.
(e.g., f-a, etc.)

Possible Causes and/or Solutions:

1. An error has been made while specifying the range of access
codes for the construct.
2. Check access code specifications.

% Multiple owner/member declaration incorrect.

Explanation:

The specification of multiple owners/members for a set is

incorrect.

Possible Causes and/or Solutions:

1. While specifying multiple owners/members for a set, the format
'"OWNER/MEMBER IS’ rather than 'OWNERS/MEMBERS ARE' has been
used.

2. Check owner/member specifications.

*** Need at least one ascending/descending clause.

Explanation:
For a set declared to be sorted, at least one ascending/descend-
ing clause has to be specified in the sort clause.

Possible Causes and/or Solutions:

l. A set has been declared to be sorted, and no
ascending/descending clause has been specified as part of the
sort clause in the SET section.

2. Check sort clause specifications in SET section.

*** No item list in key-clause.

Explanation:
The calc key clause (record location clause) in the RECORD
section has no item list specified.

Possible Causes and/or Solutions:

l. No items have been specified in the calc key clause (or record
location clause) in the RECORD section of the DDL
specifications.

2. Check record location clause in RECORD section.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. 89

MDBS DDL MANUAL ‘ - VII: MESSAGES - MDBS DDL MANUAL

*** Not enough pages allocated.

Explanation:
Not enough pages have been allocated for the main area and/or
other area(s) to initialize the data base.
Possible Causes and/or Solutions:
1. The number of pages allocated for the main area and/or other
area(s) are not sufficient to hold the system tables.
2. Increase the number of pages allocated for the main area
and/or other areaf(s).

*** NO user can access construct.

Explanation:
An access code specification has been set up such that the

construct (item, record, set or area) cannot be accessed by any
user.

Possible Causes and/or Solutions:
1. The access code specifications for this construct do not

overlap (have no code in common) with the access codes of any
of the users. No user can, therefore, access this construct.

2. Check access code specifications for this construct and user
access code specifications.

*** Numerical overflow.

Explanation:
This error arises from improper range specifications for a data
item type. Self-explanatory.
Possible Causes and/or Solutions:
l. The range specification for a data item type has caused a
numerical overflow.
2. Check range specifications in ITEM section.

%%* Numerical underflow.

Explanation:
This error arises from improper range specifications for a data
item type. Self-explanatory.
Possible Causes and/or Solutions:
1. The range specification for a data item type has caused a
numerical underflow.
2. Check range specifications in ITEM section.

90 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - VII: MESSAGES - MDBS DDL MANUAL

*%% Only one title allowed per construct.

Explanation: .
Any area, item, record type, or set can have at most, one title
specification.

Possible Causes and/or Solutions:

1. More than one title has been specified for a construct (area,

item, record type or set).
2. Check title clause specifications for the construct.

*** Page size must be a multiple of 256 bytes.

Explanation:
This error arises only in Version 3a. The page size (for the
main area and area(s)) must be a multiple of 256 bytes.
Possible Causes and/or Solutions:
l. The page size defined for the main area and/or other area(s)
is not a multiple of 256 bytes.
2. Check page size specification in IDENTIFICATION and AREA
Sections.

*** Page size must be at least 256 bytes.

Explanation:
A page size must be at least 256 bytes.
Possible Causes and/or Solutions:
l. The page size defined for an area is less than 256 bytes.

2. Check page sizes specification in IDENTIFICATION and AREA
sections.

*** Reals must be at least 2 bytes long.

Explanation:
ghe minimum item size specification for a REAL data item is 2
ytes.
Possible Causes and/or Solutions:
1. The item size specification for a data item defined as REAL is
less than 2 bytes.
2. Check item size specifications.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 82A 91

MDBS DDL MANUAL - VII: MESSAGES - MDBS DDL MANUAL

*%** Record and area access codes inconsistent.

Explanation:

This error may arise in either of the following two cases:

l. For record types having a CALC key, the record type's
access codes must be a subset of the intersection of the
access codes for all areas to which the record type is
assigned.

2. For record types not having a CALC key, the record
type's access codes must overlap with the access codes
for each area to which the record type is assigned.

Possible Causes and/or Solutions:

1. For record types having a CALC key, an access code has been
defined for the record type which is not common to all areas
to which the record type is assigned.

2. For record types not having a CALC key, an access code has
been defined for the record type which does not overlap with
the access codes for one or more of the areas to which the
record type is assigned.

3. Check access code specifications for the record type and all
areas to which the record type has been assigned.

**%* Record name not present with clustering for "set—-name"

Explanation:
The record type specified does not properly participate in the
SET name indicated in the clustering clause.

Possible Causes and/or Solutions:

l. A record type having a clustering clause has not been defined
as the owner/member of the set indicated in the clustering
clause.

2. Typographical error in record type specification.

3. Check owner/member specifications and record type
specification in clustering declaration.

*** Record too big —— increase page size.

Explanation:
The page size specified must be at least as large as the length

of the largest record type defined in the data base.

Possible Causes and/or Solutions:
1. The page size is less than the length of the largest record

type defined in the data base.
2. For the same length of the above record type, the page size
must be increased.

92 Rev. 83A (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - VII: MESSAGES - MDBS DDL MANUAL

*** Record type not previously defined

Explanation: .
A record type which has not been defined earlier has been used in
the specification of a section of DDL text.

Possible Causes and/or Solutions:

1. A record type used in a particular section of DDL text has not
been defined earlier in the RECORD section.

2. Typographical error in record type specification.

3. Check record type specification and subsequent usage.

*** Replication already specified.

Explanation:
The replication factor in the 'occurs' clause of the ITEM section
has already been specified.

Possible Causes and/or Solutions:

1. The ‘'occurs' clause of the ITEM section has been specified
twice.

2. Check 'occurs' clause in ITEM section.

*** Requested resequencing not possible using REN.

Explanation:

An improper numbering sequence has been specified, or the
numbering sequence specified extends beyond line 9999.
Possible Causes and/or Solutions:

1. The numbering sequence specified causes the file to extend
beyond line 9999.

2. A negative increment (decrement) has been specified using the
REN command.
3. Respecify REN command.

*** SYSTEM cannot be a member of a set.

Explanation:

The SYSTEM record type can only be declared as an owner, and not
as a member of any set.
Possible Causes and/or Solutions:
l. SYSTEM has been declared as a member of some set.
2. Check owner/member specifications.

*** SYSTEM cannot own a multiple owner set.

Explanation:

A set with multiple owner record types cannot have SYSTEM as an
owner.

Possible Causes and/or Solutions:
1. Check the set's owner clause.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 82A 93

MDBS DDL MANUAL - VII: MESSAGES - MDBS DDL MANUAL

*** Text had to be renumbered.

Explanation:
The text of the DDL specification had to be extended beyond line
9999.
Possible Causes and/or Solutions:
1. The numbering sequence specified in the DDL command would have
caused the file to extend beyond line 9999.
2. Respecify DDL command.

*** The decimal point position exceeds the size.

Explanation:
The position specified for the decimal point in internal decimal
(IDEC) fields cannot be greater than the size of the field.
Possible Causes and/or Solutions:
1. The decimal point position on an IDEC field is larger than the
size (number of bytes) specified for the data item.
2. Decrease decimal point position so that it is less than the
item size.
3. Increase the item size (number of bytes).

*** Too many areas.

Explanation:
The number of areas specified in the AREA section is more than
the maximum number of permissible areas.

Possible Causes and/or Solutions:

1. More than 15 areas have been specified in the AREA section for
an environment that allows up to 16 areas per data base.

2. More than 7 areas have been specified in the AREA section for
an environment that allows up to 8 areas per data base.

3. Check area specifications in AREA section.

*** Too many owners/member in set.

Explanation:
A set can have at most 127 record types defined as owner/members.
Possible Causes and/or Solutions:
1. More than 127 record types have been defined as owners/members
for the set.
2. Check owner/member specifications for set.

*** Too many pages per area.

Explanation:
Too many pages are specified for an area.
Possible Causes and/or Solutions:
1. The pages specified for an area exceeds 4095 (for environments
that allow 16 areas per data base) or 8191 (for environments
allowing no more than 8 areas per data base).

94 Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - VII: MESSAGES - MDBS DDL MANUAL

*** Type already specified.

Explanation:
A type specification for a data item has already been made.
Possible Causes and/or Solutions: _
1. The type specification for a data item is made twice (e.g.,
CHAR 10 BIN).
2. Check item specifications in ITEM section.

*** Unable to create or open file.

Explanation:
The system has encountered an error when trying to open or create
a main area or other area file.
Possible Causes and/or Solutions:
1. Not enough room on disk.
2. Bad sector on disk.

*** Unrecognizable identifier.

Explanation:
The system was expecting a valid identifier name.
Possible Causes and/or Solutions:

1. The name for a data base, area, set, record type or data item
exceeds eight characters.

2. The name for a data base, area, set, record type or data item
contains non-alphanumeric characters.

*** Unrecognizable or misplaced input.

Explanation:

The indicated DDL text input is out of sequence, has a missing
word, or contains a misspelled term.
Possible Causes and/or Solutions:
1. Check sequence of DDL text input.
2. Check syntax of DDL text input.
3. Check keywords specification in DDL text input.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A 95

MDBS DDL MANUAL - VII: MESSAGES - MDBS DDL MANUAL

*** Upper value in range is less than lower value.

Explanation:
Self-explanatory.
Possible Causes and/or Solutions:
1. Check range specifications in ITEM section.

*** User section missing or misplaced.

Explanation:

The system was expecting a USER statement based on an end-of-
section descriptor.
Possible Causes and/or Solutions:

1. Check end-of-section descriptor (e.g., a period) in USER
section.

2. Check user-password specifications in USER section.

% Write error.

Explanation:
The system has encountered an error while trying to write to disk
during the data base initialization procedure.
Possible Causes and/or Solutions:
1. The number of pages defined for the main data base 1is less
than the number of system pages required to initialize the
data base,.

2. Increase the number of pages specified in IDENTIFICATION
section.

96 Rev. 82B (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL MDBS DDL MANUAL

Appendix A
Data Description Language Keywords

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL MDBS DDL MANUAL

Appendix A

MDBS.DDL recognizes the following as keywords:

access idec owners
allowed immat page
any immaterial pages
are in prior
area index range
ascending insertion read
auto int real

az integer record
bin is retention
binary item set

by key size
bytes keys sorted
calc language str
char lifo string
character log syn
database logfile synonym
date lowest time

db manual times
decimal member title
default members to
descending name type
duplicates next unsigned
encrypted nodup user
end not width
fifo occurs with
file of within
fixed optional words
for order write
highest owner za

No keyword can be used as an identifier, unquoted password, or
unquoted user name in DDL source specification unless it is preceded
by one of the following words: IS, ARE, WITH, OF, TO, or BY.

(C) COPYRIGHT 1981 Micro Data Base Systems. Inc. Rev. 85A A-1

MDBS DDL MANUAL

MDBS DDL MANUAL

This page intentionally left blank.

(C) COPYRIGHT 1981 Micro Data Base Systems. Inc.

MDBS DDL MANUAL MDBS DDL MANUAL

Appendix B

MDBS Data Description Language Syntax

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL MDBS DDL MANUAL

Appendix B

See Chapters III-V for a detailed presentation of the DDL.
NOTATION:
AN UNDERLINED EXPRESSION MUST APPEAR.

ZERO OR ONE OF THE ALTERNATIVES WITHIN THE
BRACKETS MUST BE USED.

EXACTLY ONE OF THE ALTERNATIVES WITHIN THE
BRACES MUST APPEAR,

ONE OR MORE OF THE ALTERNATIVES WITHIN THE
BRACES MUST APPEAR.

DEFINITIONS:

<access-clause>:

[READ ACCESS IS aclist-1] [WRITE ACCESS IS aglis_t;Z]}
ACCESS IS aclist-3

<CALC-key-clause>:

CALC KEY |[Is . », |NODUR ALLOWED
{CALC ms}lim% (ia=3,}") EQHRLICAIES ARE [NOT] ALLQ.WED]

<sort-clause>:

ASCENDING * NOT ALLOWED
gy JAZ RECORD-TYPE EIFQ
{‘%sgzmm {1 di-2, 1) RURLICATES ARE < TUMATERTAL

[INDEX WIDTH IS jinpt-11

<comment>:

/* comments */

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. B-1

MDBS DDL MANUAL MDBS DDL MANUAL

ORDERING OF DDL SECTIONS:

Identification Section
User Section

Area Section (optional)
Record Sections

Data Item Sections for each record section
Set Sections

Owner Section for each set section

Member Section for each set section
End Section

DDL SECTIONS:

l. Identification Section

{%gTABASE} NAME IS id-1

[FILE NAME IS "file-1"1
[SIZE IS int-1 PAGES]

ing-o |BYTES
E_AQE SIZE IS ipnt-2 [wom:é_n

[1}%2&?%2?} NAME IS "file-Z{J

[TITLE IS "string-1"]

[{gg%gguxmj» Is id-2 * J

~ Y T

pro=

< -

\STR L

<ﬁDEEAHL1 SIZE FOR BIN

[t

LANGUAGE IS <ERENCH

-

B-2 Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL

2. User

Section

s s e} [aaan)

[<access-clause>]

3. Area Section (zero, one, or more per schema)

AREA NAME IS id-l
[EILE NAME IS "file-1"]

(SIZE IS int-1 PAGES]

[EAGE SIZE IS int-2 [BYTESH

WORDS

[POINTERS ARE [NOT! ALLOWEDI

[<access~-clause)>]

[ZITLE IS “string-17]

({38} 15 102}]

4. Record Section (one or more per schema)

BECQBD NAME IS jid-1

-

ARE [<CALC-key-clause>]
fiuzan) || acss,]

REA O OWNER
AREA OF {;EMBER OF id-2

[<access—-clause>]

[DZITLE IS "string-1"]

Il

SINONYM
SIN

i)

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL

MDBS DDL MANUAL MDBS DDL MANUAL

5. Item Section (zero, one, or more per record type)
(" (UNSIGNED N Y
REAL \\
J INT
BINARY int~
S S

IIEMNAMEISid;l< %ﬁ?m >.

.

\—SIR J
{ID.EQ } {int-Z[.int-ﬁ]}
TIME

_ DAL J

[OCCURS int=-4 TIMES]
[IS ENCRYPTEDI

[<access~clause>]

o vt} (]

[{{geee} oo saf”]

6. Set Section (zero, one, or more per schema)

SET NAME IS id-1

2R

1l:
N:
TYPE IS M:
1:
No

EIXED

[<access~clause>]

[TITLE IS "string-1"]

(e} = sez}]

B-4 Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL

7.

8.

9.

(C) COPYRIGHT 1981

MANUAL

Owner Section

(one per set)

QWNER IS rt- .
OWNERS ARE (xtzz,})

-~

ORDER IS <

g

Member Section

— 7
ORDER IS <
L. .

INSERTION IS) AUTQ
MANUAL
(

EIFQ

LIEQ

NEXT

PRIOR
IMMATERIAL
IMMAT

_SQRTED SSQIL:QlauSEZJ

(one per set)

MEMBER IS rt- .
MEMBERS ARE (ntzz,})

INSERTION IS {AUTQ }]
MANUAL

FIEQ

LIFQ

NEXT

PRIOR

IMMATERIAL

IMMAT

SORIED <sort-clause>

End Section (one per schema)

END [.]

Micro Data Base Systems,

g

Inc .

MDBS DDL MANUAL

MDBS DDL MANUAL MDBS DDL MANUAL

Appendix C
Maximums and Minimums in a DDL

Source Specification

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL

Appendix C

Minimum

Identifier name...¢ees..... 1 alphanumeric character

PasSWOrdeeececeesaecsseassesse 1 alphanumeric character

User N@Me..:eeeossssesssasses 1 alphanumeric character

Title stringe.seeeesesese.. 1 character

Areas per data base........
Pages per area*..eceececees
Page size* (Version 3al)....

1.0.00'.-..-.l.ooloo’oc-o

lo....co.l-.n.'o..ocotcnc

256 bytes.oncotocncooooto

(Version 3¢)..oes 256 Dyt€Seeceeessoceccsces
Users per data base...ceee.
Passwords per uUSer..ececeea
Record types per

data bas€..ecsersccses
Record types per ar€ad......
Areas per record typ€......
Record Occurrences

PEL Are&..ceeeccessscse
Record Occurrences

per data base....ccce
Data items per

record typPCeisssececaces
Data items per

CALC-KeYeeoeosoeeonaas
Data items per

SOrt-KeY.eeeeoooooaannn
Repetitions of a

repeating item........
Data item size

(integer).cveieeceenncas

(real) eceveeeesceonancns

(binary) ceeeeeececsacs

(unsigned) coeeeeencens

(fixed decimal) eeevewe

(character) ..veeeceeen

(string) ceeveeeceenens
Data item feasi-

bility range€..ceeeecee.
Sets per data bas€....ccc..
Owner record. types

Per Sel.euiecececerncne

lloo-coocc.ocoo..ooo.-oo.

laoo.o‘o.oo..n.oolooolnt.
l......'......Q...Q...Q.O
0.0.-.!0..Q.oo...oo.-ooo-
l.oo.Doo.tloo..o.-oo..oto
loo..lo-oo..ooooo‘oonoooo
l..........l.'..........l
0.....Oll....‘.l.'..'l.l.
l.o.o..co'.nQ.n..-.oonooo
l.-.o.cooo.coc...coco‘o-o
l..’........'l.....l....'
looc...o.oo.co.o..Qo..'oo
20.0.-..oo.oooo..l..o‘oc.
l-nonocono'o.oo.nooo.oto.
1.0.0---..0.0-......0....
1,000000001-c...ooo...no.
l...l..l.".....'........
l-o.oo.uc..o.....n.ooonoo

0...co..o‘.ooo.....ocloo.

l..0..........0..........

MDBS DDL MANUAL

Maximum imposed

by MDBS software
8 alphanumeric

characters

16 alphanumeric
characters

12 alphanumeric
characters

determined by
line length

8 or 16

8191 or 4095

multiple of 256
bytes=area
page size

main area page

size
no limit
1

255

255
16

no limit#*
no limit#
65535
65535
65535

255

16

16

65535

16

30,7

65535
250

essseeseS€e Table V-1l.i.ceeeenen

no limit

127

* Subject to an overall data base size of 232 bytes (i.e., over 4
billion bytes) for Version 3a, and in some cases larger for
Version 3c.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A (C-1

MDBS DDL MANUAL MDBS DDL MANUAL

Maximum imposed

Minimum by MDPBS software

Member record types
PEr Set.eceeeecscccccee leceecsocsonanescnscnanas 127
Owner record
OCCUFILENCESeeeesesscse Jeoeoevoccocscasessasnsaase NO limit*
Member record
OCCUILYENCESesccscoscese Uessssosssecevnosesssssssss NO limit*
Access code combina-
tions per data bas€.ceeeee leceeceevseecevsescaneseanes 65535

The foregoing are limitations imposed by MDBS III software. The
environment (hardware, operating system, host language) within which
MDBS is used may impose more restrictive practical limitations. For
instance, if there is insufficient main memory to accommodate pages
exceeding 4096 bytes apiece, then a fixed length record occurrence

cannot exceed about 4000 bytes (nor can a data item value exceed this
size).

* Subject to an overall data base size of 232 bytes (i.e., over 4
billion bytes) for Version 3a, and in some cases larger for

Version 3c.

Cc-2 Rev. 85A (C) COPYRIGHT 1982 Micro Data Base Systems, Inc.

MDBS DDL MANUAL MDBS DDL MANUAL

Appendix D

Defaults

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL MDBS DDL MANUAL

Appendix D
Optional Omission Default

Data base (main area) file name....Generated by MDBS;
based on data base name
Area file NaAME..ceeveceecaseecasesss.Generated by MDBS;
based on area name
Main area's number of pages........Operating system dependent
(typically 50)
Area's number of pageS.............0Operating system dependent
(typically 50)
Main area page Siz€......¢s0.......0perating system dependent
(typically 512 bytes)
Area page SiZ€..eeeeceecscesascssss.Page size for main area
Record locatiON.cvsessecescecsseesss ANy area
CALC-key duplicateS...csecsceeeeees.Allowed
Data item replication factor.......l
Data item encryptioN....scseceecee...NO encryption
Data item feasibility range
(with the exception of date)
(lower bound) ce.veeeeeeeeeesss LOWEST
(upper bound) ¢ eceeeecescseesss HIGHEST
Set ELYPeeceetncacesccecccccsasaneaesl:N
Set retentioN...ccseesescccecsesss.Optional
Set insertion for owner............Manual
Set insertion for member...........Manual
Set OWNer Order...eeeesssseassesssselmmaterial
Set member Ordeér......ccseeae.0....Immaterial
Sort-key duplicates.....cccceses...Immaterial
Sort-key index width...............Determined by MDBS (does not exceed

sort-key length)
Sorting SeqUeNCe.....seeseesescess.English

Titleo.-oo.ooo...o..o.o.ooo..ooooo.No title

SYNONYM. ¢t ccevecesnsssssssssnsssseeses NO Synonym
Read access

(area, record type, set)......a
(data item) eceeececcececscss....Read access of the data item's

record type
Write access

(area, record type, set)......a
(data item)....eceeeseesecs..Write access of the data item’'s
record type

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A D-1

MDBS DDL MANUAL MDBS DDL MANUAL

This page intentionally left blank.

D-2 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL MDBS DDL MANUAL

Appendix E
Data Item Range Examples

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL MDBS DDL MANUAL
Appendix E
These are examples of the maximum range for various types and

sizes of data items. The ranges have been calculated in accordance
with the maximum range formulas given in Table II-1l.

Item Type Size Maximum Range (inclugive)

integer 1 -128 to 127

integer 2 -32768 to 32767

unsigned 1 0 to 255

unsigned 2 0 to 65535

real 4 -1.701411 (1038) to +1.701411 (1038)
(rounded to 7 digits)

real 8 -1.7014118346046921 (1038) to

(rounded to 17 digits) +1.7014118346046921 (1038)
idec 7 -.99999999 (1063) to +.99999999 (1063)
idec 8 -.99999999 (1063) to +.99999999 (1063)
binary 1 00000000 to 11111111 (binary)

date - 01/01/1799 to 12/31/1924

time - 00:00:00 to 255:59:59

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. E-1

MDBS DDL MANUAL MDBS DDL MANUAL

Appendix F
Estimating Data Base Sizes

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

APPENDIX F

1) Let NRO be total number of record occurrences for a record type
R in Version 3a, R=3; in Version 3c, R=4
DL be the length of the data in a record occurrence after

data compression (in bytes)

Sgyg number of sorted system-owned sets this record type
participates in

Séys number of non-sorted system-owned sets this record type
participates in

S1.1 number of 1l:1 sets this record type participates in

S1,5y number of non-system-owned sorted 1l:N sets this record
type is a member of

S1.5y number of non-system-owned nopn-sorted 1l:N sets this
record type is a member of

Ty.x number of 1:N sets this record type is an owner of

Sy:m number of N:M sets this record type participates in,
for which occurrences of this record type are gorted

Sn:m number of N:M sets this record type participates in,
for which occurrences of this type are pnot sorted

A average number of records related to an occurrence of
this record type via an N:M set

W average width (in bytes) of sort indices involving this
record type

Then- the approximate total number of bytes used by the

occurrences of this record type is obtained by multiplying NRO times
the quantity:

R+DL+4(SéYS+Sl:l+Sl:N+Tl:N+SN:M+S&:M(1+A))+8(Si:N+s&:M)*(4+W)(Sl:N+ASN:M+SSYS)

2) Note that the number of bytes "used" by a record occurrence are

not contiguous in memory. The actual size of a record occurrence is
approximately:

DL+R+4 (S],1+87 ;5*S1:N+T1 :N+SN:M+SN: M)

3) On each page there are 8 bytes that cannot be used to store
record occurrences.

4) 1In each area there are a few pages reserved as system pages, these
cannot be used to hold record occurrences. The number of System pages

in each area is reported to the console when MDBS.DDL initializes a
data base.

5) The smallest "hole" of free space that is permitted on a page is
4 bytes.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 82B F-1

MDBS DDL MANUAL MDBS DDL MANUAL

Appendix G

List of QRS Keywords

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL MDBS DDL MANUAL

Appendix G

AND

BY

BYE
CLOSE
COMPUTE
DATFORM
DBSTAT
DEFINE
DISP
DISPLAY
ECHO
EDIT
EQ

FOR
FROM
GE

GT
HELP
IN

LE
LIST
LT

NE

NOT
OPEN
OR
QUIT
READ
SELECT
SET
SPEW
STATS
THRU
WRITE
XOR

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A G-1

MDBS DDL MANUAL MDBS DDL MANUAL

This page intentionally left blank.

G-2 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL MDBS DDL MANUAL

Appendix H

Alternative Layout for DDL Specification
of Figure III-2

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL MDBS DDL MANUAL

Appendix H

[EXrkkk
*

* gsample data base description (advanced level)
*

kkkkk/

db JOBS
file "JOBS.DB"
size 300 pages, page size 1024
logfile "JOBS.LOG"

/rxEkxxkkxkkkkkkxk*x define defaults for item types ***kskxxkkxkkxkkkk/

default for unsigned 2
default for str 50

user "BOBR SMITH" with GTC read access (a,b) write access a
user ANALYST with 7778%XK4 read (b-e) write (b-£f)

user "K FERGUSON" with "tashi" access (b,p)

user "D LEHR" with "smiles" access (a-p)

/** define additional areas to supplement the main data base area ***/

area name is jobl
file name is "JOBl.DB"
size is 100 pages, pointers not allowed
page size is 512 /* Note: this page size would not be
allowed in Version 3a because
the main area's page size is 1024 */

read access is (a-d) write access is (a,p)
area JOB2

file "JOB2.DB"
size 700 pages
read (b,d) write (a,b,p,£f)

kkhkkkkkkkkkkkkkkkkkk*k ini i kkkkkhkkkhkhkkkkhkkhkhkkkkhkkk
record type definitions /

record DEPT
in JOBS calc key is NAME nodup
read access b write access (a,b)
item DNUMBER

int 1
range is 1 to 42
syn is DNO

item is NAME

char 12 encrypted
write access b

item LOCATION
str 35 syn LOC
range "A" to "ZZZZZzi"

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A H-1

MDBS DDL MANUAL

record employee in JOBl, key is ID nodup
read access (a,d) write access (a,p)
item ID
char 9
encrypted

range is "0" to "999999999"
item LASTNAME

str 20
range "Aa" "zz"
item FNAME
str 12
range "Aa" "zz"
item PASTJOBS
str 25
occurs 3 times
item YTDEARN
idec 7,2
encrypted
range 0.00 94000.00
read access a
write access a
record BIOGRAPH in JOB2
read access b write access p
item LINE
str occurs
5 times
record SKILL in (JOBS,JOB2) calc key is SKILCODE nodup
read access (b,d) write access £
item SKILCODE
unsigned
syn SC
range 0 to 3000
item DESCRIPT
str 55
item RATING
real 2
range 0.0 to 4.0
record JOB in any area
read access b write access (a,p)
item JOBCODE
unsigned 1
range 1 to 250
item DESCRIPT
str

MDBS DDL MANUAL

JEEIKKKIKKkkkKKXkhXkkk*hk*x* got Jefinitions ****rkkkkkkkkhkhkkhkkkkhkkk/

set IEMP, type l:n, retention fixed
read access d write access p
owner SYSTEM
member EMPLOYEE
order sorted by ascending (lastname, Fname)
insertion auto

H=-2 (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL | MDBS DDL. MANUAL

set POSSESS, type n:m
read access (a,d) write access (f,p)
owner EMPLOYEE
order sorted by az ID
member SKILL
set DETAILS, type 1l:1, fixed
read access (b,d) write access p
owner EMPLOYEE
member BIOGRAPH
auto
set FILLEDBY, type 1l:n
read access (a-d) write access p
owner JOB
member EMPLOYEE
fifo
auto
set NEEDS n:m
read access b write access (f,p)
owner JOB
sorted za JOBCODE
member SKILL
sorted az (RATING,SKILCODE)
set HAS l:n
read access (a,b) write access a

owner DEPT
member EMPLOYEE
lifo

auto

set IDEP l:n, read access b
owner SYSTEM
member DEPT
auto

set IJOB l:n, read access b
owner SYSTEM
member JOB
auto '
fifo

END

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. B-3

MDBS DDL MANUAL MDBS DDL MANUAL

Appendix |

MDBS.CNV

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL MDBS DDL MANUAL

Appendix I

MDBS.CNV is a utility program, available in many environments, to
aid a Version 1 MDBS user in converting to Version 3 of MDBS. This
utility converts an existing Version 1 schema description into its
corresponding Version 3 form. Because of the many differences in the
two formats, the Version 3 output may not provide a perfect equivalent
of the Version 1 description. Most discrepancies will arise if the
Version 1 schema contains depending~on items or more than 16 separate
access level specifications. If these situations are encountered, a
warning message 1is issued, however processing will continue.
Depending-on items are merely ignored in the Version 3 schema. Access
levels will be mapped correctly if there are less than 16 separate

access level specifications in the Version 1 schema. If there are
more than 16 separate access levels, the first sixteen will be mapped
consistently and the remainder will take on a default value. It 1is

suggested that MDBS.CNV be used only as a learning aid to gain
understanding of the format of a Version 3 schema description.

To use MDBS.CNV, the user must have on-line the MDBS.CNV program
as well as a copy of the DDL specification of the schema to be
converted. It is imperative that the Version 1 specification be free
from errors (i.e., it must be able to survive a pass through the
Version 1 DDL analyzer).

The MDBS.CNV program is menu driven and very easy to use. When
this program is executed in the host operating system, the wuser is
prompted for the name of the o0ld DDL file (i.e., the name of the file

containing the Version 1 schema description). The user is then
prompted for the name of the file name in which the Version 3 schema
description is to be placed. If this file already exists, its

contents will be overwritten. Otherwise, a file having the specified
name will be created.

Because of differences in various language interfaces, the user
is prompted for the host language being used.

During the course of MDBS.CNV processing, the Version 1 schema
description is first displayed, followed by the Version 3 description.
The Version 3 description may now be input to the Version 3 DDL
analyzer for analysis.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. I-1

MDBS DDL MANUAL MDBS DDL MANUAL

Appendix J

Flow of Control When Using MDBS.DDL

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

*oul ‘swe3sis osed ejeq OIDOTW T86T IHODIWAAOD (D)

¥e8 °*AdY

I-r

Flow of Control When Using MDBS.DDL

MDBS .DDL
batch interactive
help text entry line global analysis/ stop
editing editing initial< \

i 1 n r g c init stop
(delete) (insert) (list) (renumber) (read) W;;;;////f (get) (change)
Yy n s

return key ¢ s o}
(scroll) (change) (stop) (yes) (no) (short (OEM)
form)

r xtpuaddy

TYANVK 7T0d SEdW

TYANVK T30 SHAW

MDBS DDL MANUAL MDBS DDL MANUAL

This page intentionally left blank.

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL - INDEX MDBS DDL MANUAL

ACCESS ClAUSE .ieeeevscscsosossossosscsassacssosossesassoesssoesssscnses 54-55
QCCESS COUES sevssesssssesssscssosscssssscsssscssnsessee 8.6,8.14,51-55
ACCESS laANgUAGJES . eeeesscsccossscccsssssscsasssconsscssssssssce 83.2-8.5
application development ..ceceececccsccscsssscscssccsee 2,4-8.16,76-76
Q€A seesvecsssesssacsssssssncsoscsssssssacssscsscoss 1,8.7,8.14,9-11,35
area SeCLION .teeeeeescncccosscsccesssnsesossscscscsoasasescsssess 35-36
auto set insertion ...ccccecccccccrcsncascacscscacsss 8.,14,20-21,44,47
automatic program generatioNn ..cecescssescssessscscsscsscscscsce 5-6,8.5
batch DDL COMMANGA ¢.eeevescecsccosososcasscscsassosssncssascscsecs 71,7576
Batch Load Facility (see BLF)

DINArY teeeeeeeceaeracosscocosseasosscossascnssnsaseassasses 21,23,33,40,59
BLE ceececcscacsescscscscsassscscsessscacscscssesssessccscscscsee 5=6,8.5
bBUEfer IegioN .tieeieeceececcoscossasasccssssassosssscossnsssssesncessss 10-11
CAlC KEY teveeeacecosccesacoscessssonseosssasnseassnsasnssss 23—-24,37-38
ChainNing cecececeeeeessecnsessesssoossscasssasosssscsssocsssosssosnnns 3
change COMMANA seeeveeesersscccssssosscssessssscsscssssscsssssaseasse [1-73
Character ...cececesesscscoscoscacsscasecssssoasocssessess 21-23,33,40,59
CluStering ceeeeeecesccccscsccccecscsosscsosssacssassss 8.7,8.14,24,37-38
CODASYL-network data model ...eeceeecevscconcecccccasses 2,6,7,8.4,8.14
COMMENES 4seeeaosescscssacaacsccssscsassscssesssssssscsssssssessesacsss 30
contention count pProtoCoOl ...cececessscscccsasccscsscscssccccee 83.7-8.8
CONEIOLl KEYS ceeeesveseosocsosscsssssassossosescsesosssssoscscsscsese 02-63
data item .eeeeecceeccccacoccasscosascssccsasescssncssccsse 8.13,11,21-23
data item SeCtiON .tieeeerrescosccccoscscssessasssacnscsccsssasses 40-41
data ba@SEe cuiveeveoseesseososscessacsscassccsssnsssosssscsasscssseansses 9,31
data base control system¢cc0¢00000... 4,6,8.2-8.8,8.10-8.12,9,23
data base 1nitialization .te.ceeeeccescecsscsscscescaces 3,7,8.15,73=-75
Data Base Restructuring System (see DBRS)

Data Description Languageceeecescescscacsessssas 1-3,7,8.14,25-49
data dictionary .eeeeccesceccessscsscncsscscecscsaes 4,6,7,8.2-8.3,9,24
Data Manipulation Language ...eeesceeeeseessssss 1,3,8.2-8.4,8.11,9-10
data structuring featuUres .ceieececesecececsccascscscscscsaeas 1,7,9-24
AALE ciecereecesescrsossrcscscscscscscscsascscscscscss 8.13,21-23,40,59
DBRS cieeecceccccossoosscncsosscsosoasssssacsoccssssacccees 4,6,8.1,8.6-8.7
decision SUPPOLt ..veeeveccececcascccssoeosoeasasass 2-3,8.4,8.10-8.11
DDL ANBlYZer .¢eeeoseeeeccccsccsoccccscsss 2~3,4,6,7,8.1,8.13-8.15,73-75
DDL SE@CLIONS tieeeeveesoscoscassescasasasscacesscsssssssnscesnses 29-30
deCiSiON SUPPOIL 4teeeesesosostecccocossssscssssosscsscsssssacsocacaces 56
default ClaUSe ..iueecescoaococsccscosecossoaoscoossosnoncascannnocnse 33
delete COMMANGA ¢.vecevsesoscenscssoscsscsccscsscscsosssososcscsscncnaee 66
Design Modification Utility (see DMU)

DML s tcveeceesocccasasnnsossnosasossascscsssscscasssscsnacsscosnscsscsssssssss H—6
DML command
DMU ..ttt eececacceceacsecsosoossssososesasnsssscsssssscsacssssssece 4,6,8.6,51
ENCILYPEION ¢ iiitereieseansoosecascsossocacsscassseascncss 8.6,8.13,41,51
€Nnd SeCLION .iuiiereesesocsossesscacasccossscssosscssocnssscscscnsonoses 49
ENVIFONMENES +ivevesoeconososssacsscsscscosoocooscscssnssnoases 1,3,8.3
€rrOr MESSAYES cesseosssctcccccnssccssssscssassscscnsssccnasnenes 71,7796
exXpert SYStemS ..ccecececssescscscscscocscscssscscscsnncese 3,4-6,8.12
extended-network data model (see postrelational)

LR AN S I AR BN BE BN B IR BY B R Y BY BY IR B R B BN B Y B NN BN R R RY B I R IR I R A B R N IR Y 4,9’12'40

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A Index~1

MDBS DDL MANUAL Index MDBS DDL MANUAL

feasibility range (see range checking)

field (see data item)

FIFO OLAEriNg .eeeeceesencecsssvsccsavescascsasacee 7,16-17,44-45,47~48
£ile ClAUSE tiuieeeeecerenooossscssoccesessncoonassssosccassssnse 31,35
fixed set retentioncceeeeevecececcccecncoeeasesess 8.14,20,42,57
forked SetS c.eeeeessersceencecosnctooscsccsscsscceascsesacsoscnncss 7 8.13
forms management ...cceeecreiocccesaccocarsescecscoccacancacsas 8.10,8.12
global editing ceeeecescecccecosessscocasncnccncsscosccococense 62,74=75
graAPNiCS ceeeevencsccnnsosccscansscoosacosnoscsscoscoasecaceas 5,8.10,8,12
GUIU cecoccscccsconcacsscsccssscsscsosssssesssscscssscsnce 3,5-6,8.4,8.12
hashing eceeeeeececsconconcscssesscaccssossescsses 8.7,8.14,23-24,37-38
help COMMANA tevveevenesrssesscssossassssssscssoscscnsssccecscses 63-64
hierarchical data MOdel ..c.iveeececececcoscecscsacascensccese 2,6,7,8.14
hOSt 1anguUAgesS .eeieeeerecscescsossscascassasvasscasccssasess 3,8.2,8.4
IBS teeeeesececoceccoasocscscccsscossconcssssassonssssnsssensens 5-6,8.5,24
idec (see internal decimal)

identification SeCtioOn ..eeecesecscceecsasacosscsscscscsssscansses 31-33
IDML L N A A A IR B B B I B B AR I S B B BT AE A SR SR A A I I N B I S B R B R R R N N R R 5-6'804'24
IMMATERIAL .cecocccoacccocscoosssoascsccsscsccssccsssonsseces 17,44~45,47-48
index, secondary K€Y .eceeeecscecscsesssscscsssccsssasceasee 8.7,8.14,18
insert command ...ceeececsccoascccssecscosscsscccsscaccocescassses 65-66
integer .cccececoscsceocesscescccscscosscscccccesscecce 21,23,33,40,59
integrated SOrtWare ..cceeeeesccccesaeacsassascssaccccacsaass 8.10-8,12
integrity .eceeeecceecccoscavsacscacesscncas 3,7,8.2,8~5-8.6,8.11,57-60
Interactive Browsing System (see IBS)

Interactive Data Manipulation Language (see IDML)

interactive DDL COMMANAS eceesesccceosscssssscssscscssssssssaase 62=75
internal decimal ...ccveseececevrccsscesossascocssosacsess 21-23,33,40,59
iteM OCCULLENCE +cecaessccvoscoscsscososscssassossassansscsassssnsas 12
KEYWOIAS sccevececconosasscscenosscocssonccnosssccasccoassssossssssscancacs 2D
KnowledgeMan ..cccecesssscsscscsssssssosssossssssssnsse 3,5-6,8.4,8.10-8.11
language ClaUSE ..eseeeesoscnssccsssssssccssscsssesscssesssscsssssces 34
LIFO Ordering .sececececsccccccssacssceccssaossacsese 71,16-17,44-45,47-48
line editing ccceeeeeeceseseccsscsccsoscassscacsncaanns esescessses 62,70-73
list command ..ceceecescssocscsccsescoccacssossscosnssosssascecnsossscccs 07
local area NEtWOILK cceecescccsccccoscessccsassocccsscssssscscsncasss 3¢8.8
10CKING teceeenesacocessccssccosnssscoossesscsssscsecscsccecssssscsssse 8ol
1O0g £1il@ cieeeeecacceccncoscsssssoscscccscssssosccssssssce eeveccass 8.6,32
logical structure (also see schema)cccecececvececocecees 6,7,9-24
logical work UNit tieeeeceevseeseccessccocccssscsonscsccscscsccnsnsnsce 8.6
MACLIOS eeeeoececsscsecsscsoosasnososssosscsoscssssossssscsoscsssasonssocas esss 8.4
MAIN AGICA seeeecccocessssccccosossscsscososccscsssssssncccssnsccssss sessses 9
manual set insSertion .c.cecececscsccssoccssccscsocancscs 8 14,20-21,44,47
MDBS.DDL program (also see DDL Analyzer) ceseea « 247, 8 1,61-75,77
MDBS.DMS program (also see data base control system) 3,8.3,9
MEMDEY «eeeeeeccessasssscoasssosasssoossssnsscssssosssessasssassese 13,47
MEMDEL OFAEY teeeeseesoscocacessccnsoesosscesasossssccssssccscsasoscsssss 15
member sectioncceeccces ceesecsssssssesesccssssssssccccccsese 47-49
multiple member set ...ccac.s ceecesecsssascecsetsassses ceccscesce 19,47
multiple owner St ...ieeececececsccrcosccossscsscccccas cevese 19-20,44

Index-2 Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

MDBS DDL MANUAL Index MDBS DDL MANUAL

multiuser operating SysSteMm ...eceesceccscssccccccsscnscccscncsce 3,88
multiuser procesSinNg c.ccecescescssoscosscsescscsscssese 3,4,8.2,8.6-8.8
network (see CODASYL-network)

NEXT OrderinNg eceecececscscesscccsscesssccsasscseassacascacsscccsce 1,16,44,47
notational conventions ...ieecececcecsccscssesessrssssenscscccscss 25,29
OCCUILS ClAUSE cevecesoesassesosescosessoscsssnsssossoasssscssssscsccscce 41
optional set retention ...eececeecscesccscososcsncssscecsasscsscces 20,42
OWNEL .+ ceeassacscecoossasscoosssscsososaosasssossssssascsassscscccscss 13,44
OWNEL OFAEr teesaceonsscossaavssssosasesscsasssasscnssssscsscccsccs 15,4446
OWNEI SECLION tieeevsessecscsccssosassossossesacsacosseassnsscssosess 44-46
PAGE teeesoecnssosencaosccasosssssssssssssssasssssssssssssssscnnosasenas 9
Page bULfersS (c.ceececessssecoscscccosossssacasasssscsconssssssnssss 10-11
PAge ClAUSEe .iieecccessssocscsossscccassssasscssassacscasnasssscecscse 31=-32,35
page image POSEtiNg ceeeeeecescsscscscescoscasacssasscsseassosacsee 846,60
PAGE S1ZE@ tveeeescocrssosssccsscscsscosssscsassscsasscscsscscsssssss 10-11
page SizZe ClaAUSE ..ieeeseccaccsscnssosssscassscssscnsscccssesses 32,35-36
PASSWOLA teeeeevsscssncsccosssassssssncssccsssssscscsssscscccess 83+6,34,51
performance tUning ...ceceececesscssccscsccssccscocsssces 1,3,4,8.7,8.14
pointer CONtrol ClAUSE ceeceeccsccssscssccsscosacsssssssssssasesssace 30
postrelational data modelccceveeveeceeesss. 2,4-6,7-8,8.4,8.7,8.11
PRIOR OrderiNng eeseesscccoccscscosscscccssccscssscscssacccccsnscs 1,16,44,47
ORS ceceeececccccosecsscoccsassnosessasscosnsssssassnssse 5-6,8.4,8.11,24
query retrieval system (see QRS)

range ChecCking ..eeeeeeccccscosscecsacesnccoscsassaassacecssaess 8.13,58-60
FANQE ClAUSE secesecccstssscsscsossssscscsssssceansssssccccsssscscecse 5860
RCV teeeevesocsacesososnasscsssoosssssssosscssssesnssssssscscscssssccee 5-6,8.6
RDL S 8% 0 0 0 0 0 00 00 60 G 0 0 Q0SSO PG GOS0 L G OSSP OO OGS COIEGELESEEIOEOSTTE 5_6'8.5,8010
read COMMANGA ¢eeeeeosossssssccosssssacsssssscossssscsssssssssccce 08-69
FEAl it ieeevrcccssecacosnsssscsssassssacssssscccssssscecses 21,23,33,40,59
record 1ocation ClAUSE ..vececesssascssssscscsscsssscscsosnsssseasece 37/—38
FECOrd OCCULLENCE seeeesacsssssesscosscsassnssceassssssocssssssseese 11-12
record placement ...cesecesecccccssacesossssacessssscscscsassassccscs 23—24
FeCOrd SECLION t.iveeseosesssacsscssasscssosscssscsssssssassssassassens 37
record tYPE ceeeecscccecscsssscsossassccosssssaacncssssssasncseses 8.13,11,37
Recovery Utility (see RCV)

relational data model ...ceceececccaccscacaccsannnnaece 2,6,7,8.10-8.11
relationship, forked ...ceceececcccoscctsccsvsasssccseces 7—=8,8.13,19-20
relationship, many-to—many ..ccceeecscccascscecocoscscsscassss /7=8,8.13
relationship, one-to-many ..cceececeevcosccencoscenscacs /7—-8,8.6,8.13,14
relationship, one—-to~o0Ne ...c.cceeeeescrcceconccacses 7—-8,8.6,8.13,14-15
relationship, recursiveiceececsecscooscsocscccsvesseass 71—-8,8.13,18
FECOVELY ceeososcccosscccacsccssssosocnassasensossoscscsssscsccsscecocss 2;0

recurSive Set LA B B L IR I AR B AR I B B Y AN I BB RN A Y B Y Y I B R R Y I B N I B B R B N Y) 8.13'18
renumber COmmand (AR AR A IR 2L BN BN 2 B I X B B B R AT N B A BB A I B B A I IR B Y B R B I Y Y A R I I I 67—68

repeating item ...eeeeeeseereesesocncceeccasossascascassncssases 12,41
Report Definition Language (see RDL)

report generation ...eeeceeeecsescssssscssssscscscasssscosscnsscnsss 8.5
LESEIUCLUIING tuviereesesossrsonssasnssossscsossosscsscscsscssesccee 4,6
restructuring @ SChema@ceveeeceeococecssocsoncosssososacassses 8.1
retention clause

LR I 2R B IR B N B BE R IR I B BN B I B L I I B B N I I S R S B B Y I R R IR I S N RN R Y 42

(C) COPYRIGHT 1981 Micro Data Base Systems, Inc. Rev. 85A Index-3

MDBS DDL MANUAL Index MDBS DDL MANUAL

RTL £OIM cevevoccconccscacecacossoseasassassscsasscosconsnosasass ceeees 4,60
run-time t°kens ® 0 00 0 00 0 00 00 0SB DS AL OLOT S TP DO T LS GOS0 000N S GO SBEEGTOBSE 2
SChema LI I I NI S R R A A I I R A A A N I N I N R R SR S B SRS Y 1,6,7,8-3,8.13‘8.14,9‘24
ScCreen MAKerI eceveecsccssscccsccescosasscssssossnsasssssncsss 4-6,8.8-8.10
screen management (see Screen Maker)

SecUrity eeeceececesccsccceseossssess 1-3,4,8.2,8.5-8.7,8.11,24,51-55,57
SEL tececescrcecccrcccssssrssscsrssacsssscoessccssensssvosccns 8.13,13,42
Set, 1:1 ..ccececcccocecesscococessssscecssscoscscnncoonse 8.13,14~15,42
Sty 1:N cececcscconssssssccccoossssccassnsocscassscsascncsees B8.13,14,42
Set, N:l .cccocecccossosscsccsscssscsescssssassosscososscecsssessce 14—15,42
Set, N:iM (oceececccocossccscocosssccosoassescsssssscssccoess 8.13,14-15,42
S€L OCCULLENCE .teeesccrsscccscosssoccsssscsacosssnosssssnssscossssnccas 15
Set OFAer .eeeececccsacassscersacsasassacccsnnssancasass 3.13-8,14,15-17
Set SeCtiON .tiieeeorcecroscacerossssscscsocsssssssansnasns erecansess 42-43
SOFL ClAUSE .eevenssvsovecscsvosscscsasasassssancssccccccossssscosece 45,48
SOLt K@Y coevresoscsneessscsconcencsasscscnnccsss P |
SORTED «ceeoevsscsasasaossasssssonssssssssoccsssssscsccncccee 44—-45,47-48
sorting sequence for non-English languagesceesees0. 7,8.14,31,34
spreadsheet ...cceeecsvccscccccssssccssoccoscsssssccossnsssse 5,8.10-8.12
SQL ceceecceocssaccccnscsacssasasacscsnsssssseasnsossssnsscsssssassssssecs 5,8.10
standard fOIM eeccevecvcecococessossscsssscsscsccasosssccscssssssccses &
SErXiNg cecoeeecscescsocccecocoosesnssssssscsssscscsescos 21-23,33,40,59
SYNONYMS ¢ ceeceosccnssocoesccococsssccosossscnccascsece 24,33,36,39,41,43

$SYSSET (ISR I B R A A R B A AN B BN B A A 2 I B B A X B B B B 3N X BB B B RN IR U I B N BN B SN A BN R Y S BT B A 20

system-owned Set ...ccccctcccsrceccsctacccscsncrsscsessnnsns teseccecns 18
SYSELEIM PAGES ceevncccsrsvrososcssseccnacnssessscscssssncsscantasscssosscssas 9
LEXE tteeienssessescescsssnssrossosenscssaacsssoocssssosscssssassncccsss 5
teXt eNtrY ceiecececccecoscsacccecsssancascosscnssascacese 8.10,8.14,64-66
EiMe tiveeeeooscaaconsecasacsoosossossansacssccsasscssanccacsscs 21-23,40,59
titlesS tieeeeececcsscarscccccocassoscssccsssosssacsss 24,32,36,38,41,43
transaction 10gging ceececccascscsesacessssscasssnsscsssnssesss 8.6,32,60
types Of data@ .seeseeeccacescocecsacsscsccsacsacssscsossonnsnccsssses 8.13
UNSI1GNEA eeeecsceccscsrsccossssessscsssacssscccsscssocees 21,23,33,40,59
USEL NAME teesseovessscscasscscsscancsssncsconss cessecscssssssssassecs BB
USEr SECLION cvecesesscssoososssssosssosscsscocascsasssoscsccsossnsscece 34
value 1abelsS ceecasecscescscccoscocccconscscssncos sssceescecsessasnes 8.4
variable length data ..cceecececccccncccancane eesecesccsssesss 8.7,8.13
VEILSION 3@ eeeeevacecasacacaassasassssssaasssssssssnsssnsssassnses 1,11
VErSiON 3C ceeeccesccocsascssscsosssoscossossesscosssacnscssosesscsssccs Lgll
VIA set (see clustering)

WALM FESEArE eveeceescoscoccaosscasssscsoscsscssssasscssscssacsssccce 8.6
write command ..cccecceccccce cecavsessassccsesesnses ceeceacessessess 69-70

Index-4 Rev. 85A (C) COPYRIGHT 1981 Micro Data Base Systems, Inc.

DOCUMENTATION COMMENT FORM

MDBS Document Title:

We welcome and appreciate all comments and suggestions that can
help us to improve our manuals and products. Use this form to
express your views concerning this manual.

Please do not use this form to report system problems or to
request materials, etc. System problems should be reported to
MDBS by phone or telex, or in a separate letter addressed to the
attention of the technical support division. Requests for
published materials should be addressed to the attention of the
marketing division.

Sender:
(name) (position)
(company) (telephone)
(address)
(city, state, zip)
COMMENTS ¢

Areas of comment are general presentation, format, organization,
completeness, clarity, accuracy, etc. If a comment applies to a
specific page or pages, please cite the page number(s).

Continue on additional pages, as needed. Thank you for your response.

