Micro Data Base Systems, inc,

P.OBOX 248 LAFAYETTE, IN 47

USER’'S MANUAL

MDBS-DMS
MDBS-DDL

@ COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc.

MDBS Data Management System Documentation

Version 1.04

Micro Data Base Systems, Inc.
P. O. Box 248
Lafayette, Indiana 47902

(317) 448-1616

(317) 742-7388

August 1980

Copyright Notice

This entire manual is provided for the use of the customer and the

customer’s employees. The entire contents have been
Micro Data Base Systenms, Inc., and reproduction
prohibited except as permitted in a written agreement

Base Systems, Inc.

©@ COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc.

copyrighted Dby

by any means is

with Micro

Data

MDBS Data Management System Documentation

PREFACE

This manual is concerned with data base management and its use as a
tool in software development. Many experts have predicted that two
innovations will dominate the computing scene in the 1880°s. The
first innovation is in the area of computer hardware with the
development of the micro—computers {(computer on a chip). The second,
a software advance, is the use of highly sophisticated data base
management techniques to control complex data structures. These two
innovations are combined together in the Micro Data Base Systems’
sophisticated Data Base Management System. We believe that data base
management systems (DBMS) with their capability of supporting
selective retrieval to "what if" type inquiries and their ability to
support restructuring as the nature of the demands change, will become
the focal software in micro’s as they are already in mini-— and maxi-
computers., The micro—computer, with its fantastic computing power on
a per—-dollar basis, c¢ombined with a powerful data base management

system, will be a formidable tcol for managing enterprises of all

types.
The purpose of this wuser’s manual is twofold. First there is
introductory material to the area of data base management. Since this

is such a vast and important area we really can’t do complete justice
to this topic and suitable references are:

1. Haseman. W.D. and A.B. Whinston, Introduction to Data

Management, Richard D. Irwin. Inc., Homewoeod, IL, 1977.

2. Martin, J., Computer Data—Base Organization, Prentice Hall,

Englewood Cliffs, NJ, 1875.

© COPYRIGHT 1978, 1980, Micro Data Base Systems, Inc. 2

MDBS Data Management System Documentation

3. Holsapple, C., Primer on Data Base Management, MDBS Inc., Box

248, Lafayette, IN, 1973.
The second goal of this manual 1is to give a detailed guided tour
through the use of MDBS.DDL and MDBS.DMS. Here our aim is to be as

complete and as comprehensive as possible.

Finally, we request comments from our readers as to how successful,
in their view, we have been in achieving these goals. Have you been
able to follow our description of how MDBS.DDL and MDBS.DMS should be
used and actually have you achieved the expected results? Or have
there ©been points where the steps were unclear or ambiguous? We plan
to incorporate these suggestions in future versions to finally achieve
a manual that is a fit companion to what we feel is a remarkable and

truly innovative software product in the micro—computer area.

© COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 3

MDBS Data Management System Documentation

TABLE OF CONTENTS

...

IT. MDBS.DDL DATA DESCRIPTION LANGUAGE

...................

A Introduction. i i e e e
B. Features...... ... e e
C. Getting Started With MDBS.DDL....................
1. Initial loading and test run.................
2. Relocating MDBS.DDL. o,

3. Important MDES.DDL addresses:

Personalizing and patching MDBS.DDL..........

D. MDBS Data Description Language..........c.ovoo...
1. Introduction and Definitions.................

2. DDL Example. e e

3. Many—to—Many Example.......

4, Multiple owner/member example................

5. DDL Specifications.,

6. Notes on Data Base Files.....................

E. Modes of Operation.
1. Introduction. i e

2. Text Entry/Command mode......... .o eununn.on..

© COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc.

17

17

13

20

20

22

23

25

25

27

33

40

44

70

MDBS Data Management System Documentation

3. Line editing mode.t it innnnnn 95

4, DDL analyzer mode...... ...t ennens. 103

III. MDBS.DMS DATA MANAGEMENT SYSTEM....... ... 149
A. Introduction. . ..o i i it i e e e e e e 149

B. Features......., e e e e e e 150

C. Getting Started With MDBS.DMS.................... 181

1. Relocating MDBS.DMS. ... it ittt ittt ey 1851

2. Perscnalizing and patching MDBS.DMS.......... 151

D. MDBS Data Management System............, 185

1. Introduction. ittt e 155

2. Calling procedure.ttt ienennnsas 174

3. Data management system routines.............. 177

IV. CONCLUDING REMARKS. . .. ittt ittt ettt et e et e e 258
APPENDTI X L.t ittt e it ettt et e e e e e 262
APPEND I X 2. i ittt e e e e e e e e e e e e e e 264

© COPYRIGHT 1878, 1980, Micro Data Base Systems, Inc.

MDBS Data Management System Documentation

(a) By Mnenmonic
BACKSPACE~-key
BYE
c
c
Control C
Control H
Control P
Control X
D
DDL
DELETE Key
DR
E
EN
ESCAPE~ Key
FI
IT
L
ME
N
ow
P
PA

R

© COPYRIGHT 18973,

Delete text

DDL COMMANDS

.............................

Return to operating system..............

Change a line of text...................

Repeat changes.

Interrupt an operation..................

Backspace and delete a character........

Toggle output e

Interrupt a line of input...............

Delete texrt. .. i i i it i e e e e e e

Data Definition Language Analyzer.......

Backspace and delete a character........

Data

Enter

Data

description format for drive.......
line edit mode.

description format for end line...

Return to operating system............ ..

Data

Data

List

Data

deseription format for file........
description format for item........
L= oA

description format for member......

Renumber the text........

Data

description format for owner.......

Print a space ruler............

Data description format for password..

Read a text file. i i i,

1980,

Micro Data Base Systems, Inc.

74

74

73

73

80

82

73

83

85

83

79

83

83

86

88

83

a0

83

a1

MDBS Data Management System Documentation

RE
RETURN-Key
RETURN-Key
S

SE

© COPYRIGHT 1979,

Data description format for record......

End the current line of input

Move through text.............
Leave the editor mode
Data description format for set

Write a text file

1980,

Micro Data Base Systems,

.........

.............

..........

..........

..........

.........

..........

Inc.

83

73

96

99

83

83

MDBS Data Management System Documentation

DDL COMMANDS

(b) By Function
Backspace and delete a character

.......................

Change a line of text

..................................

Data definition language analyzer

......................

Data description format commands.......
Delete CLext. . it i e e e e e e e e e e
End the current line of input........
Enter line edit mode. ittt it ittt et
T = R o
Move through texb. . . i i i i i i e e e e e e e
Print a space ruler. ittt st
Read a text file. . it it et e e e e e e e
Renumber the btext. i i i e s e i e
Repeabh changes. ... i e e e e e e
Restart a line. ittt e e ettt e e

Return to cperating system...

Write a text faile. ... it it e et et e et e e

© COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc.

73

97

82

83

80

73

85

99

88

6

S0

91

88

MDBS Data Management System Documentation

DDL ERROR MESSAGES

Page
A DEPENDING ON ITEM CANNOCT RE A REPEATED FIELD 108
A VARIABLE LENGTH ITEM MUST BE LAST IN A RECCRD 106
CANNOT WRITE TO DISK . i it ittt e e e ettt e s et o sen oo e 107
CAN'T HAVE OTHER OWNERS WITH SYSTEM, 108
DEPENDING ON ITEM MUST BE A TWO BYTE BINARY VARIABLE .. 108
DEPENDING ON ITEM MUST BE BINARY 110

DEPENDING ON ITEM NOT PREVIOUSLY DEFINED IN TH

DUPLICATE ITEM NAME IN RECORD

................

DUPLICATE RECORD NAME

........................

DUPLICATE ZSET NAME

...........................

...

EXPECTING A NUMBER IN A FIELD

................

EXPECTING A RECORD, ITEM, OR SET LINE

.......

EXPECTING AUTO OR MAN

........................

EXPECTING SET OR END LINE

....................

FILE HAS NOT BEEN CREATED: PLEASE DO SO

IMPROPER DRIVE NUMBER

........................

INCORRECT MEMBER ORDER

.......................

INCORRECT OWNER ORDER

INVALID ITEM TYPE ittt

.

...............................

© COPYRIGHT 1979, 13880, Micro Data Base Systems,

IS RECORDU 111

Iinc.

MDBS Data Management System Documentation

...................
..........

NAMES CANNOT START WITH A $ OR BE BLANK

...............

NO MEMBER AND/OR OWNER LINE FOR A SETc.ouv.....
NO PAGES ALLOCATED TO A FILE i
NOT ENQUGH ROOM ON DRIVE 1 i,
NUMBER LARGER THAN 285 i
PAGE LENGTH MUST BE DIVISIBLE BY 256
PASSWORD LINE EXPECTEDttt
PASSWORD ENTRY OR RECORD LINE EXPECTED
PREMATURE END OF INPUTt i i,
READ ACCESS GREATER THAN WRITE ACCESS
RECORD ACCESS GREATER THAN SET'S
RECORD NOT FOUND .. it i i e i e e e v e e e s
REPEATED ITEM TOO LARGE e
R/W ACCESS NOT EQUAL FOR DEPENDING AND CURRENT ITEM

SECOND LINE OF SET DEFINITION INVALID

SORT KEY NOT IN RECORD ...ttt i i e i e e

SYSTEM CAN'T BE A MEMBER. it

® COPYRIGHT 19739, 1980, Micro Data Base Systems, Inc.

139

140

141

142

143

144

145

148

147

148

10

MDBS Data

Manage

ment System Documentation

CRS

DEFINE

DEC

DRM

BRO

DRR

EXTEND

FLO

FMSK

FNM

DML C

INDEX OF DML COMMANDS

ommand

Add C

Add M

Creat

DEFIN

Delet

Delet

Delet

Delet

EXTEN

Find

Find

FIND

FIND

Find

Find

Find

Find

Find

urrent of run unit to Set 00,
ember Lo Seb e e e e e e e e
Current of run unit Type ...
Lhe dabta base ... i ittt s et e e e
current Member Type i
current Owner Type ...,
& Reacord ... i e e e e e e e e e
e Record and Store data
E a data block. ... ittt ittt et
e Record based on Current of run unit
e Record based on current Member
e Record based on current Owner
e Record based on current Record

D a data block.. .. ittt i e e e e e

LI T T S T T S T
...............................

....................................
.....................................

...............................

Last Owner

................................

Member based on Sort Key

..................

Next Member

...............................

Next Owner

................................

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc.

11

MDBS Data Management System Documentation

FOSK Find Owner based on Sort Key 208
FPM Find Previous Member 210
FPO Find Previous Owner nineo.. 211
GETC GET data from Current of run unit 212
GETM GET data from current Member 213
GETO GET data from current Owner 214
GETR GET data from current Record 2185
GFC GET Field from Current of run unit 2186
GFM Get Field from current Member 217
GFO Get Field from current Owner 218
GFR Get Field from current Record 219
GMC Get Member Counbt e 220
GOC Get Owner Count e e e 221
GTC Get record-Type of Current of run unit 222
GTM Get record-Type of current Member 223
GTO Get record-Type of current Owner z24
OPEN OPEN data basettt e 225
PUTC PUT data into Current of run unit 227
PUTM PUT data into current Member 228
PUTO PUT data into current Owner 230
PUTR PUT data into current Record 232
RMS Remove current Member from Set 233
RSM Remove all Set Members, 234
SCM Set Current of run unit based on Member 235
SCO Set Current of run unit based on Owner 236
SCR Set Current of run unit based on Record 237

® COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc.

MDBS Data Management System Documentation

SFC Set Field in Current of run unit
SFM Set Field in current Member
SFO Set Field in current Owner
SFR Set Field in current Record
SMC Set Member based on Current of run unit
SMM Set current Member based on current Men
SMO Set current Member based on current Own
SMR Set current Member based on current Rec
S0C Set Owner based on Current of run unit

SOM Set current Owner based on current Memb
S00 Set current Owner based on current Owne
SOR Set current Owner based on current Reco
SRC Set Record based on Current of run unit
SRM Set current Record based on Member
SRO Set current Record based on Owner
STAT return run STATistics..................

TOGGLE TOGGLE run optimization switch

© COPYRIGHT 1879, 1980, Micro Data Base Systems,

.........

.........

.........

er

ord

.........

er ...

S

rd

........

.........

.........

Inec.

243

244

245

247

248

252

253

254

13

MDBS Data Management System Documentation

NEW RELEASES, VERSIONS, AND A WARNING

Any programming endeavor of the magnitude of the MDBS systems is
bound to <c¢ontinue to evolve over time. Realizing this, Miecrc Data
Base Systems vows to provide its users with updates to their version
for a nominal handling fee. Updates can be provided only after the

signed End User Agreement Form is on file with MDBS, Inc.

New versions of MDBS software will be considered =as separate
products, However, owners of previous versions will be entitled to =z
preferential rate structure (as soon as the signed End User Agreement

Form is received by MDBS, Inc.).

Finally, each <copy of MDBS products 1is personalized with the

licensee's name. There are several levels of this personalization,
some of which involve encryption methods guaranteed to be
combinatorally hard to decypher. MDBS products were produced with a

sizable investment of capital! and labor fto say nothing of the years of
prior involvement in the data base management area by oprincipals of
MDBS. Accordingly, we are seriously concerned about any unauthorized
copying of our products and will take any and all available legal

action against illegal copying or distribution of our products.

© COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 14

MDBS Data Management System Documentation

I. INTRODUCTION

The Micro Data Base Systems (MDBS) has components for defining data
structures and for the storage and retrieval of data. Add-on packages
available for MDBS allow the logging of transacticns for recovery, the

restructuring of a data base, and guery handling. MDBS is not a mere

file management system, The ideas used in designing MDBS take the

CODASYL Data Base Task Group Report (April 71) as a starting point.
However, MDBS provides many additional data structuring and data
manipulation features that are not available in strictly CODASYL data

base systems. MDBS is implemented entirely in machine language.

For each application system a logical structure of the data base
must initially be defined; that is, a formal definition 1is made in
which the relationships between the data elements 1is presented.
Initially a user may list the various data items (field names) that
will be involved in a particular application. The process of defining
a logical data structure consists of grouping data items into record
types {or, in conventional data processing terminoloegy, into logical
files) and indicating appropriate relationships between record types.
These relationships are only conceptual and do not imply any physical
storage allocation. Nowhere in the use of the data management system
does a user refer to an actual data storage location, but rather, he
refers to the c¢onceptual structure as initially defined. This
defining of the data structure is done via the DDL (gata Definition

kanguage) and processed by the program named MDBS.DDL.

©® COPYRIGHT 1879, 1880, Micro Data Base Systems, Inc. 18

MDBS Data Management System Documentation

After the structure has been defined the application programs wilil,

of course, need to access data from or place new data into the data
base. An application program does not, however, read {(or write) the
desired data directly from f(or to) the data base. Instead, it

v

rform the

{

requests the data management routines (MDBS. DMS) to pe

necessary operations. This regquires the writer of the application
programs to know only the conceptual structure of the data base; the
DMS 1is responsible for maintaining the physical structure. The

requests to the DMS are made via subroutine calls which make up a

collection of commands comprising the DML (Qata Manipulation
Language).

The basic MDBS package consists of MDBS.DDL and MDBS.DMS. There
are other, very useful, add-ons to MDES. Occasicorally, it may become

necessary to alter the logical structure of an existing data base.
The MDBS.DRS system is designed to permit changes teo be mzade to a data
base structure without the need to dump and reload the data base.
Another add-on is MIOB3S.RTL which logs all transsctions made on a data
base since the last data base backup. In the event of a system crash
(e.g., power loss) the data base can be restored automatically by
invoking a recovery utility. A third add-on is MDEZ.QRS which accepts
English—like, nonprocedural queries and produces desired reports.
This cuts programming effort substantially. Full details about +Lthese
add-ons may be found in the MDBS.DRS, MDBS.RTL, and MDBS.QRS User's

Manuals.

® COPYRIGHT 1872, 1880, Micro Data Base Systems, Inc. 186

MDBS Data Management System Dcoccumentation

A Introduction

In this section, we concentrate on Micro Data Base Sysktem’'s Data

Description Analyzer/Editor which we cal!l MDBS.DDL {(for Micro Data

Base System's Data Description Language).

In Part B we list several features of S.20L whiech =are then

described in more detail in later sechtions. Ir Section the user
iz instructed on hrow to "bring-up” HDBS.DDL:; the kind of

modifications that can e made to this are also described.

case proper, data vase management concepts are

U

nacessary. In ection D, we discuss such concepts and present the
data description language (DDL) f{or describing a data base

structure. The user may also want to look ahead to Section III.D

to see how such concepts are used.

To create & data base, the user must first describe the structure

of the data using the data description language

<

as discussed in

~~

v

Section D) and then physically initialize the data base with the
preper tables. This is all done by the DL anslyzer /editor which

is discussed in Section E. The analyzer/editcr permibts the input,

edifting and analysis of a data descripbion.

© COPYRIGHT 12782, 1880, Micro Data Base Systems, Inc. 17

MDBS Data Management System Documentation

B. Features

MDBS.DDL allows the user to describe a data base structure and
initialize a data base. A data base structure is defined using
the data description language (DDL). Such a description 1is
entered into the computer (either in lower or upper case) via the

Text Entry/Command mode of MDBS.DDL. This mode supports:

1. Text entry
2. Listing

3. Deleting
4. Saving

5. Retrieving

8. Renumbering
as well as providing formats and other text entry aids.

Once entered, the text can be edited wusing the line editor of

MDBS. DDL. Finally, &the DDL analyzer processes a data base
description and, if no errors are detected, initializes a data
base. If a syntactical or logical error is detected, an error

message is displayed and the user can quickly correct the problem

using the text entry or edit features.

MDBS supports the following features for data base design work:

1. Variable and fixed length records.

2. Character, integer, floating point (real), logical,
internal decimal, external decimal, and binary
record fields (data items).

©® COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 18

szta HManagement Zystem Documentation

2 -4 & many—Lo—one, and many-to-—
He Ty Lywes
4 4., LIFOQ. FIF0D. next, pnrior. and immaterial set

%, Automabic or manual record insertion into sets.

& and write a&ccess protection via passwords at
~acord and set jevels of organization.
7. Recora tbtypes own otner occurrencaes of the same
type (i.e., recursive sets).
e sord bLypes can parbilcipate In o=
g, F nenwork data struclhures.

I3

ese f{eatures are discussed in Section .

{

4 data base can be vhysically spread over a number of drives (8
maximum) and %the drives can be floppy (mini-or full- sized) or

hard disks.

The data base is organized using a paging system. A single drive
can logicalily <¢ontain 8181 pages and a page 1is logically
restricted to, =t most, 8B538 bytes. Thus large data bases can be

e

a

supported {sub,

Wz
o

ze of

8

L to operating system constrazints on the s

been entered snd a data base

initialized, Lhe wuser can easily access the data base through a

{such as BASIC) using MDBS.DMS. In Section III we

take up the dizcussion of MDES IOMS.

MDBS Data Management System Documentation

C. Getting Started with MDBS.DDL

1. Tnitial Loading and Test Run

The details specific to your system for making an initial test of
the MDBS.DDL package are outlined in the MDBS system specific manual
which is supplied when you purchase the system. Briefly, you will
execute program DDL (see the manual MDBS system specific manual for

its fully gualified name) which will display:

MDBS.DDL VER X.X

(C) COPYRIGHT 1979, 1980, Micro Data Base Systems, Incorporated

Reg # XXXXX
Your name and

address

At this point you can read a sample data base description! stored
in file INVNTRY (again see the system specific manual for the fully
qualified name). The procedure 1is shown below (underlined text is

generated by the MDBS.DDL system):

I This example was used by M. Gagle, G. Koehler, and A.B. Whinston in
their article "Data—Base Systems And Micro—Computers: An Overview',
published in BYTE magazine.

© COPYRIGHT 18728, 1980, Micro Data Base Systems, Inc. 20

MDBS Data Management System Documentation

R "Read a File" command
FILENAMT computer prompt
INVNTRY fully qualified file

name for INVNTRY

LI]

To list this sample description type "L". To actually initialize a
small data base with this description type DDL. This will result in
the prompt:

DATA-BASE FILENAME?

to which ycu should respond with a fully qualified file name which
exists on the first drive of your system (use a temporary file for
this purpose). The data description will then be displayed <{without

line numbers) and a data base initialized.

The ~omplete sequence looks like

DDL "Enter DDL Analyzer” command
DATA-BASE FILENAME? computer prompt

name fully qualified file name
{DDL output) computer generated output

DDL PROCESSING COMPLETED

If you have not had a successful run, re-read this s:cticn and the
system specific manual and try again. it you still have no luck,
please call Micro Data Base Systems, Inc. for help.

© COPYRIGHT 1873, 1980, Micre Data Base Systems, Inc. 21

MDBS Data Management System Documentation

2. Relccating MIBS.DDL

Under some operating systems, it may be desiravle bto locate
MDBS.DDL at a position other than that supplied by Micro Data Base
Systems. For this purpose, we have provided a relocatable form of the
data description analyzer and a relocator so that an executable form
of the analyzer can be ORGed to any place in memory. Please refer to

the system specific manual for further information.

© COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc, 22

MDBS Data Management System Documentation

3. Important Addresses: Personalizing and Patching MDBS.DDL

MDBS.DDL consishs of a program region and work area region. These
are contiguous and the work area immediately follows the program area.
The size of the work area can be increased or decreased Lthrough a

patch to the systen.

(G

There are several addresses that the user shouid be aware of in
MDBS.DDL. The user may alter these as shown in the system specific

manual . A brief description of each item follows.

(a) Initial Entry Point
Upon entry at this point, all program variables and regions are
either physically or logically re—initialized. Registers are not

saved but the entering stack is preserved.

{b} I/0 Entry Points
Different operating systems handle input and output to terminals,
printers and disks in a variety of ways. To keep this manual
free of system specifics the I/0 information relevant for your
system is published in the system specific manual. Patches to
non—-standard I/0 routines should be made in accordance with the

instructions of the system specific manual.

{¢) Echo Toggle (Default 00 hex)
This byte is checked to see if the user wants to have MDBS.DDL
echo input to 1the output device. If the byte value is zero,

achoing will take vplace. If it is the value one, nc echoing will

rpe performed.

& COFPYRIGHT 18979, 1880, Micro Data Rase Systems, Inc. an

MDBS Data Management System Documentaticn

(d) Last Word of Memory (Default OBFFF hex)
The address stored here gives the last available word of memory
that the MDBZ.DDL program may use. Note that MDBS.DDL wuses all
memory starting from its Jload address up to Lthe value in this
field. Needless to say, the user should make sure thsot cthe last

word of memory is physically beyond the end of the program.

{(e) Screen Control Byte (Default 0B hex)

This byte should have one of the following values:

Screen Width Byte Value
less than or equal to 84 11 (OB hex)
characters
greater than or equal to 80 18 (OF hex)
characters
B84 to 80 characters per greatest integer less
line (cail it N) than or equal to:

N/B -1

(f) Re—entry Point
If the user wishes to re—enter MDBS.DDL while preserving all

program varisbles and regions, then he must issue a jump to this

address.

In the next section we discuss the data description language. The
data description language and features of a data base design are

illustrated with examples.

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 24

MDBS Data Management System Documentation

D. DDL (Data Definition Language)

1. Introduction and Definitions

The DDL 1is wused to formally describe a conceptual (or logical)
structure of a data base. These descriptions are in terms of data

items, record types, and sets.

A DATA-TTEM is the smallest unit of named data. An ITEM—OCCURRENCE

is a representation of a value of a data—item. (Eg. AGE is a data-
item, and an age of 21 might be an occurrence of AGE) A "repeating
item" acts as a one—dimensional array whose maximum replication factor
must be specifi d; a "depending on" item may optionally be specified

which indicates the current "length” of the "array.'

A RECORD~-TYPE is a named collection of zero, one, or more data-—

items. A RECORD-QCCURRENCE is a sampling of values of the data—items

1

defined to be contained by the record-type. There may be an nrbitrary
number of oc¢currences in the data base of each record—-type specified.
No two record-typess may have the same name. The data—item names must
be unique only within the record-type. {(The same data—item name may
be used in more than one record type.) The order, type, and size of

the items within a record type are defined in the record description.

Consider the following example of a record description:

RECORD EMPLOYEE

ITEM NUMBER INT 8
ITEM JAME CHAR 20
ITEM WAGE REAL 8
ITEM TAX REAL 8

©® COPYRIGHT 1873, 1880, Micro Data Base Systems, Inec. 25

MDBS Data Management System Documentation

The above example defines a record-type EMPLOYEE containing four
data-items: NUMBER (employee number), NAME, WAGE (wages) and TAX
(taxes withheld). The "types"” of the data—items are integer,
character, real, and real, respectively, and NAME is specifi=d to be a
maximum of 20 characters in length. An occurrence of this record—type
might be (1520, A B SMITH, 7520.20, 158.42). There would be an

occurrence for each employee in the company.

"Record—type” is used in defining a structure, and "record
occurrence” is wused to refer to the actual data values. A group of
data values may make up a record occurrence, and they are stored using

the name of the record-type and the names of the data—-items. If the

names of all employees are desired (using the definition az in the
above example), the application program would request of the DMS all
occurrences of the record—-type EMPLOYEE and for each one it would

request the occurrence (the value) of the data—-item NAME.

A BSET is a named relationship between record-types. One or more
record-types are declared as the "owners" and one or more record-types
are declared as the "members” of the set. Any record—-type may be
declared as the owner record—-type of one or more sets; likewise for
member record-types. A set occurrence may have an arbit-ary rumber of
occurrences of each of the record-types. The "set order” (the logical

order of the member record occurrences) must be declared.

The set is the basic structural unit of the data base. I+ is used
to define the relationship between different record-types. In
particular, the set links each owner record occurrence to its related

© COPYRIGHT 1879, 1880, Micro Data Base Systems, Inc. 26

MDBS Data Management System Documentation

member record occurrences. This is best explained through examples.

2. DDL Example

A simple but commen business problem is the need to maintain lists
of people or organizations sorted in different orders. Consider the
case of a company which maintains lists of customers sorted by name,

address, and zip code. The MDBS system handles this problem using the

data structure of Figure I1II1.D.1. The actual options available for the
data definition =ure detailed in the remaining portions of this
section. Note trnat only one record type (CUSTOMER) has been defined,

while three sets (NAMES, NUMBERS and ZIP) are shown. The record type
SYSTEM, used as owner in these sets, is a special record predefined by
MDBS.DDL which permits access to data in the data base. There is only
one instance of the SYSTEM record-type in the data base and there is
no data associated with this record-type. The SYSTEM record 1is

discussed later in this section.

The CUSTOMER record type <c¢ontains all the data relating to a

customer. Data—item NUMBER contains the customer number, item NAME
the customer name, ete. All of the data—items store character data,
as indicated by the CHAR specification. The item size foilows the
word CHAR.

The use of three sets is the key to maintaining the customer file
in three differer. orders. The MDBS.DMS system will automatically
insert a record in the proper location in each of these three sets
when the record is created. Note that this 1is a logical construct
only =—- a record is only physically present in one place. By use of

© COPYRIGHT 1879, 1880, Micro Data Base Systems, Inc. 27

MDBS Data Management System Documentation

appropriate DML commands, a given record can be accessed efficiently,
or, by use of other DML commands, a sorted list of records can be

accessed. Examples of such programs are illustrated in Section III.D.

All three sets in Figure II.D.1 are SORTED. The "sort key" is
stated for each set (NAME for set NAMES, etc.) and 1s the field
defined for the seft to be sorted upon. Each customer receord occurs

only once in the data base, yet three logical set orders exist.

There are six allowable set orders. Besides SORTED, there are
also: FIFO — record occurrences are added to the end of the set such
that each new record occurrence becomes logically the last member of
the set; LIFO — record occurrences are added to the front of the set
such that each new record occurrence becomes logicaliy the first
member of the set; NEXT — a new record occurrence is logically placed
in the set after the "current” member record of the set {"current” is
defined in the DML discussion); PRIOR — a new record occurrence is
logically placed in the set before the "current” member record of the
set; and IMMAT —~ the user does not care about the set order. Ncte
that the IMMAT set ordering allows the MDBS system to realize certain

efficiencies and should be used if possible.

In the set description of Figure II.D.1 the specification "AUTO"
appears. This indicates that as occurrences of record type CUSTOMER
are created, the records will automatically be inserted in set ONORDER
by the MDBS system. The word "MAN" (for manual) could also rave been
specified. These options are discussed further in Section II.D.S.

Also, the specification "1:N" states that the relationship between the

® COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc. 28

MDBS Data Management System Documentation

owner of the sel and its members is a one—to-many relationship. For
each owner occurrence there may be many member occurrences, but not
vise versa. Most data base systems support only this type of
relationship ~— a many—to—many (N:M) relationship supported by the

MDBS system is described in the next section.

Developing the DDL for a data base to be used in the MDBS system
does not require any knowledge of the DML (Data Management Language).
The user needs only to define the data base structure; the system will
take care of data storage and retrieval for application programs.
However, much insight will be gained if the section describing the DML
is read (Section III.D). By seeing what commands are available, it
will be easier to understand how to design the data base and establish
set relationships. Also, the additional examples will be extremely

helpful.

Our example of Figure 1II.D.1 can be extended to include more

information. Suppose that we wish to keep a record of orders that a
customer has placed. Conceptually, each customer may have several (or
one or even zero) orders that have been placed. Each order though is
associated with just one customer. Thus we have what is called a
"one—to-many" structure (one customer to many orders), which 1is a
natural structure for a data base set relationshig. In order to

extend the example of Figure I1.D.1, we define a second record type
which represents a customer order (see Figure II.D.2). Of course, to
actually define the complete DDL for this exanmple, we would add the

new record description after the description for the CUSTOMER record.

© COPYRIGHT 1972, 1880, Micro Data Base Systems, Inc. 29

MDBS Data Management System Documentation

Note that in record type ORDER we have defined five data items:
NUMBER (for order numbers), DATE (order date), PART (thes stock number
of the part ordered), QUANTITY (the quantity ordered) and PRICE <{(the
invoice price). Three of the data items hold character data, but
QUANTITY and PRICE have data types BIN (Binary) and REAL respectively.
QUANTITY is stored as a binary data item to reduce storage
requirements. This is reasonable since QUANTITY will never exceed
85535 in this application. The binary data type iz used to store
integral values in binéry format instead of the packed decimal format
common to many BASICs. The digit "2" after BIN indicates that two
bytes should be allocated to store the binary value. The REAL
specification for PRICE is a real number whose data length i< 8 bytes.

LOG (Logical) and INT (Integer) data types are also supported.

The set ONORDER links each customer to his orders. The set
ordering 1is FIFO, so that, for each customer, the orders will be
maintained in a first—-in, first—out basis, which will normally be the
sequence in which the orders were received. The new set dezcription

would be added to the DDL after all the record descriptisns are given.

© COPYRIGHT 1879, 188G, Micro Data Base Systems, Inc. 30

MDBS Data Management System Documentation

RECORD CUSTOMER Customer record
ITEM NUMBER CHAR 8 Customer number
ITEM NAME CHAR 20 Customer name
ITEM ADDRESS CHAR 20 Street address
ITEM CITY CHAR 20 City

ITEM ZIP-CIJE CHAR B Zip code

SET NAMES AUTO 1:N Sorted by Name

SORTED NAME
OWNER SYSTEM
MEMBER CUSTOMER

SET NUMBERS AUTO 1:N Sorted by Number
SORTED NUMBER

OWNER SYSTEM

MEMBER CUSTOMER

SET Z1P AUTO 1:N Sorted by Zip code
SORTED Z1P-CODE

OWNER SYSTEM

MEMBER CUSTOMER

END

FIGURE II.D.1
DDL Declarations for Multiply Sorted Records

© COPYRIGHT 1878, 1880, Micro Data Base Systems, Inc. 31

MDBS Data Management System Documentation

RECORD

ITEM

ITEM

ITEM

ITEM

ITEM

SET

OWNER

ORDER

NUMBER CHAR

DATE CHAR

PART CHAR

QUANTITY BIN

PRICE REAL

ONORDER MAN

CUSTOMER

MEMBER ORDER

END

Custoemer corders

B8 Order numbker

8 Date received

] Part number

2 Quantity ordered

8 Unit cost

1:N Link customers
FIFO to orders

FIGURE II.D.2

DDL Declarations for Customer Orders

© COPYRIGHT 1879, 1880, Micro Data Base Systems, Inc. 32

MDBS Data Management System Documentation

3. Many—-to—Many Example

Standard (CODASYL) data base systems require a "one-to—many’
relationship between the owner and the members of a set occurrence.
This restriction may force the use of unnatural data structures, which

complicates DML programs unnecessarily, making the program harder to

conceptualize and to maintain. These unnatural structures o=re also
quite inefficient in terms of both storage and processing. As an
example, imagine .. computerized bibliography system in which we have

book titles that may be classified by a number of keywords. We wish
to be able to cbtain: 1) A sorted list of books corresponding to a
given keyword, and, 2) A sorted list of keywords corrasponding to a
given book. Since each keyword describes many books, and since one
book c¢an have several keywords, a many—to—many relationship exists

between keywords and books.

If we are restricted to standard "one—-to—many" sets, we would be
forced to introduce artificial "link records"” which are used to
simulate many—-to-many sets in conventional database systems. These

link records force wus to adept a highly unnatural, restricted data
structure which, since the link records contain no data, has little
conceptual value. A DDIL. (Data Description Language) description of

such a structure is shown in Figure II.D.3.

The set relations involved are all one—to-many relationships ——

however, we must c¢create an occurrence of record type LINK for each
book—keyword pair in our database. In a more complex example {(such as
when authors ar= introduced), the actual data relationships present

© COPYRIGHT 1873, 1880, Micro Data Base Systems, Inc. 33

MDBS Data Management System Documentation

quickly become unclear. An additional problem with this structure is
that it is quite difficult to maintain a sorted order befLween the
books and keywords. Also, the wuse of 1link records results in a

wastage of data base storage space.

The MDBS Data Management System permits explicit use of many-—to-—
many sets. A special internal structure is used which ailows the MPBS
system to automatically maintain the data base pointers necessary to
represent such sets,. This means that situations such as the
bibliography example <c¢an be conveniently handled by the schema

declaration of Figure II1.D.4.

In the declaration for set S3, the specification of a second set
ordering indicates that the set is a many—to-many set and that the
owner records are to be maintained in sorted order. The first set
ordering specification indicates that the members of the set are also
to be maintained in a sorted order. Note that this feature allows one
to either find all keywords for a given book or to list all books for

a given keyword.

Use of many-to-many sets blurs the distinction between the owners
and members of a set, since the rigid one—-to-many ordering is no
longer required. The terms "owner” and "member" are thus arbitrarily

assigned and are used for notational convenience only.

Many—to—-many sets are processed like conventional (one~to—-many)
sets — i.e., DML commands such‘as Find Next Member {FNM) sznd Find
Member based on Sort Key (FMSK) are used. Additional DML commands
have been defined to process the owners of a set: Find Next Owner

© COPYRIGHT 1978, 1980, Micro Data Base Systems, Inc. 34

MDBS Data Management System Documentation

(FNGC) and Find Owner based on Sort Key (FOSK). These are fully

described in section III.

© COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc. 35

MDBS Data Management System Documentation

BOOK

KEYWORD

LINK

Data Diagram for Many—to—-Many Example

© COPYRIGHT 19879,

FIGURE II.D.3 (a)

1980, Micro Data Base Systens,

Inc.

36

MDBS Data Management System Documentation

RECORD BOOK
ITEM TITLE
ITEM AUTHORS
ITEM PUBLISGH

RECORD KEYWORD
ITEM KEYWORD

RECORD LINK

SET S1
OWNER SYSTEM
MEMBER BOOK
SET S2
OWNER SYSTEM
MEMBER KEYWCRD
SET S3
OWNER BOOK
MEMBER LINK
SET sS4

OWNER KEYWCRD
MEMBER LINK

END

© COPYRIGHT 1979,

CHAR
CHAR
R CHAR

CHAR

AUTO

AUTO

MAN

MAN

30
30
80

10

SORTED

SORTED

IMMAT

IMMAT

TITLE

KEYWORD

DDL for Link Record Example

FIGURE II.D.3 (b)

1880, Micro Data Base Systems,

Book record
Book title
Author (s’
Publisher

Keyword

Link record

Sorted list
of boocks

Sorted list
of keywords

Linkage set
for books

Linkage set
for kreywerds

Inc.

37

MDBS Data Management System Documentation

S3

KEYWORD

Data Diagram for Many—-to-Many Example

FIGURE I11.D.4 (=a)

© COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc. 38

MDBS Data Management System Documentation

RECORD
ITEM
ITEM
ITEM
RECORD
ITEM
SET
OWNER
MEMBER
SET
OWNER
MEMBER
SET

OWNER
MEMBER

END

©® COPYRIGHT

BOOK
TITLE CHAR 30
AUTHORS CHAR 30
PUBLISHR CHAR 60
KEYWORD
KEYWORD CHAR 10
S1 AUTO 1:N
SORTED TITLE
SYSTEM
BOOK
S2 AUTO 1:N
SORTED KEYWORD
SYSTEM
KEYWORD
S3 MAN N:M
SORTED TITLE SORTED KEYWORD
BOOK
KEYWORD

DDL for Many—-to-Many example
FIGURE II1.D.4 (b)

1973, 1980, Micro Data Base Systems,

Book record
Book title
Author(s)
Publisher

Keyword

Sorted list
of books

Sorted list
of keywords

Book/Keyword
relationship

Inc.

39

MDBS Data Management System Documentation

4. Multiple Owner/Member Example

Most set relationships have one record type defined as the owner of
the set type and another defined as the member record type. An
example of this weould be a set (SET1) with owner reco-~d +type DEPT
(Department) and member EMPLOYEE, corresponding to a grouping of
employees within departments. Suppose record type EMPLIYWEE contains
payroll information such as hourly wage, union membership, and
seniority. If we wish to define a record type SALARIED corresponding
to salaried emplioyees (which presumably would require different
payroll information than hourly employees), it might be desirable to
allow both record types EMPLOYEE and SALARIED to be possible members
of SET1. This is permitted in MDBS; in fact, as many record types as
needed may be defined as members (or owners) of a set type. Special
MDBS routines are available to determine the achtual record type of the

active member (or owner) of a set.

This concept is further extended in MDBS by alleoewing a swi to have
the same record type as both its owner record type and its member
record type. Imagine a set SUPERVIS which indicates the hourly
employees (EMPLOYEE) who supervise other thourly employes. A
hierarchy of supervision c¢an be conveniently representad by such a

data structure (Figure I1I1.D.5).

© COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 40

MDBS Data Management System Documentation

RECORD EMPLOYEE Employee record
ITEM NUMBER CHAR 8 Employee number
ITEM STATUS CHAR 8 Employee status
ITEM NAME CHAR 20 Employee name
ITEM WAGCERATE REAL 8 Hourly rate
ITEM ADDRESS CHAR 20 Street address
ITEM CITY CHAR 2B ity and state
RECORD SALARIED Salarisd employee
ITEM NUMRER CHAR & Employee number
ITEM STATUS CHAR 8 Empioyese status
ITEM NAME CHAR 20 Employes name
ITEM WACTZRATE REAL B8 Hourly rate
ITEM ADDREZSS CHAR 20 Ztreet address
ITEM C1Ty CHAR 2B City ond state
SET S1 AUTO 1:H Employee iist
SORTED NUMEER hy employee number
OWNER SYSTEM
MEMBER EMPLOYEE
SET 2 AUTC 1:N Salaried employees
SORTED NUMBER by employee number
OWNER SYSTEM
MEMBER SALARIED
SET SUPERVIS MAN 1:N Supervisory
SORTED NUMBER relationships

OWNER EMPLOYEE
OWNER SALARIED
MEMBER EMPLOYEE
MEMBER SALARIED

DCL for Employee Supervision Example

® COPYRIGHT 1879, 1880, Micro Data Base Syetems, Inc. 41

MDBS Data Management System Documentation

Finally, consider a data base used to cross—-reference computer
subroutines. It is desirable to be able to obtain sorted lists of all
subroutines which call a given routine and of all subroutines called

by a given routine. Consider record type SUBR in Figure I1.0D.6.

Record type SUBR stores the name of each subroutine in the system.
Set S1 allows any subroutine name to be accessed easily. Set CALL is
a many-to—many set type with record type SUBR as both owner and
member. To obtain a sorted list of all subroutines that call =a
specified routine, all that 1is necessary is to make the specified
routine the current member of set type CALL and then access the owner
records in sequence, Similarly, a specified routine could be made the
current owner of set type CALL and the members of the st occurrence

accessed in turn to produce a sorted list of subroutines called.

Much more powerful data structures than those possible with other
data base systems can ke conveniently used due to MDB3's extreme
flexibility. The basic tools are present in MDBS to nrocess even the

most complex data structures in a clear, intuitive way.

@ COPYRIGHT 1978, 1980, Micro Data Base Systems, Inc. 42

MDBS Data Management Systen Documentation

RECORD SURBR Subroutine name

ITEM NAME CHAR 8

SET S1 AUTO 1:N Sorted list of
SORTED NAME names

OWNER SYSTEM
MEMBER SUEBR

: N Subroutine calling

AME SORTED NAME relationship

SET CAaLL MAN
SORTED

=

OWNER SUBR
MEMBER SUERR
END

DDL for Subroutine Cross—-reference Exanple

FIGURE II.D.8

© COPYRIGHT 1878, 1980, Micro Data Base Systems, Inc. 43

MDBS Data Management System Documentation

DDL Specification

In the following lists a summary of the parameters

DDL specifications is presented. This section detai!

parameters in detail. The order in which the

presented to the DDL analyzer is:
FILES (optional)
DRIVE
PASSWORDS
RECORD
ITEM (optional)
SET
CWNER
MEMBER

END

for each of the

each

a of the

sections must be

Each line of text must be preceded by a 4 digit line number and a
blank space so that column 1 would refer to the sixih character
entered (See the P command of Section II.E). Figure I11.D.7
illustrates a typical DDL stream. This Figure appears following
descriptions of the various kinds of lines that can appear in =a DDL
specification stream.

Before presenting the layouts, the following summary is given on
the various relationships between access levels one must adher to:

© COPYRIGHT 1879, 1880, Micro Data Base Systems, Iinc. 44

MDBS Data Managemant System Documentation

For any data item type, record type or set

its write access level & 1its read access level

For any data item type
its read access level = the read access level of its record
type

its write access level Z the write access level of its record

type

For any variable length item type
its read access level = the read access level of its depending
on 1iten
its write access level = the write access level of its

depending cn item

For any record type
its read access level = the read access level of any set in

which it w»articipates

HA

o

its write access level the write access level of any seb in

which it participates

DDL. errors will result if these conventions are not observed.

It is recommended (but not mandatory) that the data base designer

observe the following convention:

For any sort key
its read access level £ the read access level for the set(s)

which it is a sort key

©® COPYRIGHT 1879, 1880, Micro Data Base Systems, Inc. 45

MDBS Data Management System Documentation

its write access level Z the write access level for the set(s)

which it is & sort key

No DDL errors will result if a designer decides not to follow this

convention.

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 486

MDBS Data Management System Documentation

DRIVE Line

The DRIVE line specifiies the number of data base pages that reside
on a particular drive. The wuser’s first physical drive is called

drive 1. The second drive 2, etc. The DRIVE line layoubt is:

Columns Parameter Description
1-5 "DRIVE" - line type
8 Drive number
12-15 Number of pages allowed on
Notes:

1. The drive numbers must be cne of 1,2,3,4,5,8,7, or 8.

2. The last drive line will be used if there are two or more

drive lines with the same drive number.

3. The number of pages must be non—zero.

4. The DRIVE lines must immediately feollow a FILES card.

© COPYRIGHT 1873, 1980, Micro Data Base Systems, Inc. 47

MDBS Data Management System Documentation

END Line

The END 1line is wused tc signify the end

description to the DDL analyzer. The format is:
Columns Parameter Description
1-3 "END" - line type

® COPYRIGHT 19878, 1880, Micro Data Base Systems,

of

Tne.

the

data base

48

MDRS Data Management System Documentation

FILES Line

The FILES line and FILES section (which includes the DRIVE lines)
are used to define the data base name, size and location. This is an
optional section which, if missing from a data description, is

supplied by the system using standard defaults.

The FILES section information consists of:

D

1. The data base filename,

2. The maximum number of disk drives on which the data base will

reside (default is 1), and

3. The data base page size (default is B12).

If the FILES section is not present, the user is prompted for a fully
qualified filename by:

DATA-BASE FILENAME?

This name, together with the standard defaults, is used in place of

the FILES section.

The FILES line format is:

Columns Parameter Description
1-3 "FILES" - line type
8-18 Data base file name. This must be fully gualified

according to the conventions of the operating

systemn.

© COPYRIGHT 1878, 1880, Micro Data Base Systems, Inc. 49

MDBS Data Management System Documentation

23 Maximum disk drive nunmber. Calling the first
drive number 1, this field must contain the

number of the maximal such index.

26-29 Data base page size. This must be a multiple of

256. A recommended value is B512.

Notes:

1. When the FILES section is missing, the defaults are equivalent

to:

FILES "prompt name” 1 512

DRIVE 1 B0

2. Suppose the user wanted his data base on the first and third
drive. Column 23 would contain the number 3. There would be no

DRIVE line for drive 2.

3. The first drive must always be used in a data base. If there
is not enough room on the first drive to hold all of the tables
need to generate the data base, an errcr message will be

generated.

4. The DDL analyzer expects a file on the first drive having the
name of the data base file specified in columns 8-19. If this is

not the case, an error is generated.

5. For a multiple drive data base, the DDL analyzer reguires only
that the first drive have a file with the data base filename. Of
course, the MDBS.DMS system requires that all raierenced drives

© COPYRIGHT 1978, 1880, Micro Data Base Systems, Inc. 50

MDBS Data Management System Documentation

have a file with the data base filename.

© COPYRIGHT 1879, 1980, Micro Data Base Systems,

Inc.

51

MDBS Data Management System Documentation

The

record—type.

and access

Columns

1-4
8-15
17-20

© COPYRIGHT 1878,

ITEM

ITEM Line

line defines a data item within the most recently defined

Parameters define the item's type, size, replications

levels.

Parameter Description

"ITEM" - line type

Item name — this field must contain & valid name
for the item. The name must not start with a
dollar sign ("$") or be blank.

Item type. Valid item types are:

INT (Integer) — The item iz stored undar your host

language format for integer variables.

REAL — The item is stored under your host language

format for real variables.

BIN (Binary) — The item i3 an integer whose

maximum value is limited by the item size

specified. Binary variables may only be 1

or 2 bytes in length.

LOG (Logical) - The item has a =zero/one (true/

false) value and is stored in one byte in

the data base.

CHAR (Character) — The iten is & character string
and is stored as a fixed length string,
padded on the right with blanks il
1980, Micro Data Base Systems, Inc. 52

MDBS Data Management System Documentation

21-24

© COPYRIGHT 1879,

necessary.

IDEC (Internal Decimal) — The item is stored under
your host language format for internal
decimal variables, {i.e., COBOL

COMPUTATIONAL-3 fields).

XDEC (External Decimal) — The 1tem is stored under
your host language format for external
decimal variables, (i.e., COBCOL fields with

a SO99 picture).

Item size. This value is the number of bytes

allocated in a record occurrence for the item.

Size ranges vary according te the item type:

INTeger and REAL — The number of bytes specified
should be the number of bytes used by your
host language to =store integer and real
variables internally (see the MDBS.SYS
manual). Using a size larger than this will
result in wasted space in the data base;
using a smaller size will result in a
standard default (see the MDBS.SYS manual).
Note that INT always will use the default
value.

BINary — The size may be 1 byte or 2 bytes. A
size of 1 allows values from —-127 through
127 to be stored. A size of 2 allows values

from —32787 through 32787 to be stored.

1980, Micro Data Base Systems, Inc. 53

MDBS Data Management System Documentation

LOGical — The size may only be 1 byte.
CHARacter - The size should be equal to the

largest string size te bhe stored in this

item. Ne bytes need be allocated for string
headers.
26—-28 (optional)Read amccess level — a number between zero and 255

may be specified here to define the item’s read
access level. A 1tem with a read access level of

zero may be accessed by any valid data bass user.

30-32 (optional)Write access level — a number between zero and 255
may be specified here to define the record's write
access level. A record with a write access level
of zero may be created, deleted or altered by any

valid data base user.

38—-43 (optional)Depending item name. If the last data item of a
record type 1is a repeated item (see columns 46—
47), the number of replications can be controlled
by the value of another data item in this record.
This other data item is called the depending (or
depending—on) item. A dJdepending item name can
only be specified for the last data item of a
record type. If no depending item name 1is
specified and if the item is a repeated item, it

is assumed to repeat a fixed number of times.

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 54

MDBS Data Management System Documentation

44-47 (opticnal)Replication factor. If the data item is a

Notes:

© COPYRIGHT 1978, 1880, Micro Data Base Systems,

repeated item, the replication factor is specified
in this field. If the item is a variable length
item, the replication f{actor is ths maximum number

of times the item is allowed to repeat.

If no read access level {(columns 26-28) is specified, the read
access level for the item will default to the read access
level of the record containing the item.

The read access level for the item must not exceed the write
access level,

The read access level for the item muct be greater than or
equal to the read access level for the record type containing
the item.

The write access level for the item must be greater than or
equal to the write access level for the record type containing
the item.

A variable length data item can only be spescified as the last
item in a record type.

The read and write access levels of a variable length item
type must be equal to the read and write access levals of its

depending—on item type.

=t

n 55

¢}

MDBS Data Management System Documentation

MEMBER Line

The MEMBER line is used to specify a member record type of a set.

The format is:

Column Parameter Description
1-6 "MEMBER" — line type
8-15 Record type name of a previously defined record

type that is to be treated as a member record

type.

Notes:

1. One or more MEMBER lines must follow the OWNER line{(s) for

each set in the DDL specification.

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 568

MDBS Data Management System Documentation

The OWNER line

The format is:

Columns

1-5

Notes:

1. One or more

OVNER Line

is used to specify an owner record type of a set.

Parameter Description

"OWHNER" - line type.

Record type name of a previously defined record
type (or SVSTEM) that is to be treated as an owner

record type.

OWHER lines must follow each SET line pair in the

DDL specification.

2. SYSTEM owned sets may have only one owner.

© COPYRIGHT 1878, 1880, Micro Data Base Systems, Inc. g7

MDBS Data Management System Documentation

FASSWORDS Line

The PASSWORDS line and section specifies the system’'s users, their

passwords and access levels. The format for the PASSWORDS line is:
Columns Parameter Description
1-2 "PASSWORDS" - line type
Following this line are the user definitions. The formats are:
Columns
8-23 User identification.
26-28 User's read access level. The user can access
(look—at) any record, item or set having read
access level of this value or lower. The value

must be in the range 0-255.

30-32 User's write access level. The user can write
(modify) any item having 2 write access level of
this value or lower. The wvalue must be in the

range 0-2595.

368-47 User 's Password.

Notes:

1. A user name need not be the actual name of an individual. For

example., the user may be called "RECEIVING CLERK" or "SECRETARY."

© COPYRIGHT 1879, 1880, Micro Data Base Systems, Inc. 58

MDBS Data Management System Documentation

2. The names and passwords are stored in

encrypted form.

the

© COPYRIGHT 18978, 13980, Miecro Data Rase Systems,

data

Inc.

base

in

an

59

MDBS Data Management System Documentation

RECORD Line

The RECORD line defines the start of a record description.
Parameters include the record name and, optionally, read and write

£

access levels for the record.

Column Parameter Description

1-68 "RECORD" - line type

8-15 RECORD name — this field must contain & valid name
for the record. The name must not start with a

dollar sign ("$") or be biank.

26—-28 (optional)Read access level — a number between zero and 285
may be specified here to define the record’'s read
access level. A record with a read access level

of zero may be accessed by any valid data base

user.
30-32 (optional)Write access level — a number between zerc and 285
may be specified here to define the record’s
write access level. A record with a write access

level of zero may be created, deleted cr altered

by any valid data base user.

Notes:

1. The read access level for the record must not excesed the write

access level.

®© COPYRIGHT 1279, 1980, Micro Data Base Systems, Inc. 60

MDBS Data Management System Documentation

2. A record-type named "SYSTEM" is predefined by the MDBS system;

thus, no user-~defined record can be named "SYSTEM"

©® COPYRIGHT 18739, 1880, Micro Data Base Systems, Inc. 61

MDBS Data Management System Documentation

SET Line
The SET Iline actually consists of two card. Set characteristics
include the set type, set mode, wusage factors, access levels and

ordering information.

Columns Parameter Description

1-3 "SET" - line type

8-15 Sett name ~ this field must contain a valid name
for the set. The name must not start with a

dollar sign ("$") or be blank.

17-20 Set mode

— Either "AUTQ" or "MAN" may be

specified. A set mode of AUTO indicates that

whenever

for this

will be

an occurrence of the member record type
set is created, the record occurrence

automatically added to the set. Ir

MANual is specified, the user must explicitly add

the record to this set.

2224 Set type

— One of the following set tyvpes must be

specified:

1:N — Each owner record occurrence may own Zero,

ona or more member record occurrences.

Each member record may have at most one

owner. (Note: This is a standard

"one—to—

many” set).

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 62

MDBS Data Management System Documentation

N:M -~ Each owner rec~rd occurrence may own 2zero,
one or more member record occurrences.
Each member record occurrence may be owned
by more than one owner. (Note: This is a
"many—to-many" set).

1:1 ~ Each owner record occurrence can own at most
one member record occurrence. Each member
record occurrence can be owned by no more
than one owner record occurrence.

N:1 -~ Each owner record occurrence can own at most
one member record occurrence. Each member
record occurrence may be owned by one or

more owner record occurrences.

26-28 (optional)Read access level — a number between zero and 2855
may be specified here to define the set’s read
access level. A set with a read access level of

zero may be accessed by any valid data base user.

30-32 (optional)Write access level — a number between zero and 28B
may be specified here to define the set’s write
access level. A set with a write access level of
zero may be modified (i. e., records may be added

or removed) by any user.

34--36 Set usage factor. The set usage factor is a
parameter which affects the trade off bLetween

processing time and disk space usage. A small

® COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 63

MDBS Data Management System Decumentation

8-13 (Line 2)

© COPYRIGHT 1978,

[N

value (1 s the minimum value) optimizes disk
utilization at the cost of increased overhesad for

each record insertion. A large vaiue will resul

or

in less overhead for record insertions, but wi

=
fo—
oms

result in a wastage of disk space. Sets which

tend to have few occurrences (i.e. f

3]

P

, ew owner
record occurrences with one or more members) but
are highly dynamic in terms of record insertions
and removals should have a large value (such as
32) specified. Relatively static sets with many
set occurrences should use a low value {(such as 1

or 2. Choosing a set usage factor is a rather

technical point and we recommend that you

-

2t 1t
default. {The default value is currently 8). Ir
too large a number is specified, a default value
is computed giving the maximuim number consistent

with the data base page size.

Owner order - An order may be specified for the

owher records of N:M or N:1 set Permissable

in

set orderings are:

FIFO ~— When a new owner record occurrence is added
to the set, it is logically placed as the
last owner record occurrence in that set.

LIFO — When a new owner record occurrence is added
to the set, it is logically placed as the

first owner record occurrence in that set.

1980, Microc Data Base Systems, Inc. 6241

MDBS Data Management System Documentation

SORTED - When a new owner record occurrence is

added to the set, it is placed in a sorted

order in the set. The record occurrence
with the smallest sort key value is
logically first in the set. Sets can be

accessed in descending order by use of the
FL.O and FPO commands.

IMMAT - The user is not concerned with the order
of the record occurrences in the set. Use
of the IMMATerial set order signals that
MDBS.DMS may insert records into the set

to maximize access efficiency.

17-24 (Line 2) Owner sort key — if the owner set order is SORTED,
an item name may be specified as the sort key for
the set. This must be a data item that has been
defined in the owner record tyvpe. If this field

is blank, the full record is used as a sort key.

30-35 (Line 2) Member order — An order may be specified for the
member records of N:M or N:1 sets. Permissable
set orderings are:

FIFO — When a new member record occurrence 1is
added to the set, it is logically placed
as the last member record occurrence 1in
that set.

LIFO - When a new member record occurrence is
added to the set, it is logically placed

© COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 85

MDBS Data Management System Documentation

as the first member record occcurrence in
that set.
SORTED — When a new member record occurrence 1is

added to the set, it is placed in a sorted

order in the set. The record occurrence
with the smallest sort key value 1is
logically first in the set. Sets can Dbe

accessed in descending order by use of the
FLM and FPM commands.

IMMAT — The user is not concerned with the order
of the record occurrences in the set. Use
of the IMMATerial set order signals that
MDBS.DMS may insert records inteo the set
to maximize access efficiency.

PRIOR - When a new member record occurrence is
added to the set, it is logically placed
before the record indicated by the current
member of the set. If the currency
indicator for the current member of the
set~-type 1is null, the FIFDO ordering is
used.

NEXT — When a new member record occurrence 1is
added to the set, it is logically placed
after the record indicated by the current
member of the set. If the currency
indicator for the current member of the
set-type is null, the LIFO ordering is

© COPYRIGHT 1978, 1980, Micro Data Base Systems, Inc. 66

MDBS Data Management System Documentation

39-48 (Line 2)

Notes:

Member sort key — if the member set order 1is
SORTED, an item name may be specified as the sort
key for the set. This must be a data item that
has been specified in the member record type. if
this field is blank, the full reccrd is used as a

sort key.

1. If the set has a member sort key and has more than one member

record type, then the set’'s sort key must exist as a data item

type in

same name,

each of the member record types. It must have the

type, and size in each of these record types.

2. If the set has an owner sort key and has more than one owner

record type, then the set's sort key must exist as a data item

type in each of the owner record types. It must have the same

name, type,

©® COPYRIGHT 1979,

and size in each of these record types.

18980, Micro Data Base Systems, Inc. 87

MDBS Data Management System Documentation

0010
0020
0030
0040
0050
0060
0070
0080
0080
0100
0110
0120
0130
0140
0150
0160
0170
0180
0180
0200
0210
0220
0230
0240
0250
0260

FILES DUM
DRIVE 1
DRIVE 2
PASSWORDS
PAM
GARY
ANYONE
RECORD A
ITEM Al
ITEM A2
ITEM A4
ITEM AD
ITEM AB
RECORD B
ITEM B1
ITEM B2
ITEM B4
ITEM BS
ITEM B6
RECORD C
ITEM co
ITEM C1
ITEM c2
RECORD D
RECORD E
ITEM E1l

© COPYRIGHT 1978,

CHAR
LOG
BIN
REAL
INT

CHAR
LCG
BIN
REAL
INT

INT
BIN
CHAR

CHAR

1980,

001

002
012
008

003
ooz
012
007
004

002
001

010

512

FROGGY
255 255 8468—-46-1322
004 004
001 007
002 040

001 007

004

NWAN

C1 100
008 012
004 008
012 018

Sample DDL Input

FIGURE II.D.7 (Part 1)

Micro Data Base Systems,

‘nc.

c8

MDBS Data Management System Documentation

0270 SET S1 MAN 1:N 020 030 008
0280 SORTED Al
0280 OWNER SYSTEM

0300 MEMBER A

0310 SET S2 MAN 1:N 00% 032
0320 SORTED A1l
0330 OWNER B

0340 MEMBER A

0350 SET S3 MAN N:M 007 007
0360 IMMAT FIFO
0370 OWNER A

0380 MEMBER B

0380 SET S4 MAN N:M

0400 SORTED C1 LIFO
0410 OWNER C

0420 MEMBER C

0430 BET S5 MAN N:M 007 007
0440 NEXT PRIOR
0450 OWNER A

0460 MEMBER E

0470 SET 56 MAN 1:1 007 007

0490 OWNER A
0500 MEMBER B
0510 SET S7 MAN N:1 008 008

0530 OWNER C
0540 OWNER B
0550 MEMBER B
0560 MEMBER A
0570 MEMBER E
0580 END

Sample DDL Input

FIGURE II.D.7 (Part 2)

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc.

MDBS Data Management System Documentation

6. Notes on Data Base Files

An MDBS data base 1is organized by a paging system and can be

physically spread over up to 8 disk drives (floppy or hard disks may

be used). The first drive of the user's system must have a data base
file. The user can select other drives to participate in the data
base.

During Data Definition analysis, a data base is initialized, and

the first disk drive needs to be "on—-line. However, whenever the
data base 1is accessed by the Data Management System, all drives need

to contain the appropriate disks.

Once the data base has placed information on a disk loaded on a

particular drive, the disk must always be placed on that drive.

The maximum number of pages per drive is 8,191 and each page is
logically restricted to 85,535 bytes. However, a page must also be
able to fit in memory so a practical page size limit is probably under

4096 bytes.

In deciding on a page size, a user should take into account the
trade—off between the number of pages that can be memory resident at
one time and the number of times new pages will have to be read into
memory. No simple rules can be given. However, the following ad hoc

settings have been reliable in a number of applications:

1. Choose a page size so that at least 3 pages can be memory

resident (see Section III.C.2).

© COPYRIGHT 18979, 1880, Micro Data Base Systems, Inc. 70

MDBS Data Management System Documentation

2. A page size allowing 8 pages in memery usually is quite

efficient.

3. In the absence of the above rules, choose a page size of 5Bl2

bytes.

In the appendix we present the results of an experiment which
relates processing time to the number of memory resident pages. Since
the number of memory resident pages is a function of both the page
size and the amount of memory available to the DMS, the page size can
play an important role in the execution efficiency of the data base

system.

We conclude this section with a warning to BACK UP YOUR DATA BASE

after any access that physically alters the data base.

© COPYRIGHT 1879, 1880, Micro Data Base Systems, Inc. 71

MDBS Data Management System Documentation

E. Modes of Operation

1. Introduction

The purpose of MDBS.DDL is to describe a data base structure and,
once the description has been completed, to initialize a data base.
To waccomplish this task MDBS.DDL provides features which allow the
user to enter, alter and analyze his data base description. The data
description analyzer attempts to initialize a data base using the data
base description inputted by the user. This analysis is interrupted
when a syntax or logical error is detected by the analiyzer. At this
point the user can quickly alter his description and again try to
initialize the data base. This feature allows the user considerable
flexibility and provides immediate feedback in building a data base

description.

MDBS.DDL has three integrated modes of operation. They are:

1. Text Entry/Command Mode — where data descriptions are entered.
2. Line Editing Mode — where text lines are altered.
3. DDL Analyzer Mode — where a data base description is analyzed

and a data base initialized.

In the next three sections each of these areas will be discugsed in

detail.

The normal procedure for using the MDBS.DDBL package 1is to first
enter a description of the data base using text entry and command
features such as listing, deleting and saving; second, to edit the

©® COPYRIGHT 19739, 1280, Micro Data Base Systems, Inc. 72

MDBS Data Management System Documentation

text to correct errors; and third, to analyze the description and
initialize a data base. If the analysis fails, the user automatically
re—enters the Text Entry/Command mode so that changes can be made to

the data base description.

Upon first entering MDBS.DDL, the user is in the Text Entry/Command
mode. To enter the line editeor or the DDL analyzer mode the user

enters the appropriate command.

We will turn to a detailed discussion of the Text Entry/Command

mode after the following general comments concerning conversation with

MDBS. DDL.

Line—input editing conforms to the standard features of your

operating system. While the system specific manual c¢overs more on
this, the following general comments are usually applicable. When
entering a line (either of text or a command) the following keys are

of special importance:

RETURN (ENTER) this key terminates a line of input

CONTROL-X this key interrupts the line entry and restarts the
input.
CONTROL-P this key toggles the DDL output between the console

and printer.

DELETE this key causes a physical backspace and character

deletion in a line being entered.

© COPYRIGHT 1979, 18980, Micro Data Base Systems, Inc. 73

MDBS Data Management System Documentation

CONTROL-~H same as DELETE.
BACKSPACE same as DELETE.
CONTROL.-C this key interrupts a DDL operation and returns

control to the entry mode.

When too many DELETE or BACKSPACEs are entered (i.e., the user has

deleted all of his current line), these keys act as a line feed.

One key that operates the same in all three modes of operation 1is
the ESCAPE key. Pressing this key always results in an exit from

MDBS.DDL and returns control to the operating system.

The input buffer is limited to 80 positions. Hence a line longer
than 80 characters cannot be entered. If the user attempts to type
more than 80 characters, the message

d)kk LINE TOO LONG
will be displayed and the input line will be ignored. The user is

still in Text Entry/Command mode.

An empty line (i.e., a line entered by pressing only the RETURN
key) results in the message:
#%% ERROR

As above, the user is still in Text Entry/Command mode.

© COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 74

MDBS Data Management System Documentation

2. Text Entry/Command Mode

In the Text Entry/Command mode, the user can enter both commands

and text. Commands can be entered in lower or upper case. However,

the user should be aware of the fact that file names are translated to
upper case and that in the actual tables created for the data base,
all names are stored as upper case. Specifically, user names and
passwords, record names, item names and set names are stored in upper
case. Of course, data to be stored in the data bases via MDBS.DMS

routines are maintained as specified by the user.

© COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc. 75

MDBS Data Management System Documentation

a. Text Entry

A line of text is preceded by a four (4) digit line number.
Entered text is maintained in the order indicated by the line numbers.

Examples of valid lines are:
0010 LINE OF TEXT
0020 MORE
7301 STILL MORE
0000 THIS IS OK
073250 IS THIS

9999 HIGHEST LINE NUMBER

A line started with a line number consisting of fewer than 4 digits
results in an error message:

KK AKERROR

and the line is ignored. The user is still in the Text Entry/Command

mode.

If too much text is entered (i.e., if there is insufficient memory
to hold all of the text) the following message is printed:

#4kk0UT OF ROOM IN MEMORY

and the current line being entered is lost. However all text entered

up to this point is still preserved. The user can expand the amount

© COPYRIGHT 1879, 1880, Micro Data Base Systems, Inc. 76

MDBS Data Management System Documentation

of room available as outlined in the section "Impertant MDBS.DDL

Addresses" (Section I1I.C.3).

If a line number has already been used, its subseguent re—use will

remove the prior line.

©® COPYRIGHT 1879, 1880, Micro Data Base Systems, Inc. T7

e

MDBS Data Management System Documentation

b. Commands

In the following pages we describe each command. Commands are not
preceded by blanks and must be followed immediately by a RETURN. If
the command is not recognizable, the message:

*)kkERROR

is displayed. The user is still in Text Entry/Command mode when this

happens.

© COPYRIGHT 1978, 1980, Micro Data Base Systems, Inc. 78

MDBS Data Management System Documentation

Purpose:

(BYE, ESCAPE~key) Return to the Operating System

Exit from the program and return to the operating system.

Command Syntax:

BYE Return to the operating system
ESCAPE-key Return to the Operating System
Notes:
1. All text and variables are preserved so that the user can re-

enter through the normal re—entry point.

The ESCAPE-key differs from the BYE command in that the BYE

command 1is limited only to usage in the Text Entry/Command
mode while the ESCAPE key can be used in all the modes of
MDBS.DDL.

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 79

MDBS Data Management System Documentation

(D) Deleting Text

Purpose: Delete all or a portion of the entered text.

Command Syntax and Prompts:

Dn delete line n

D n,m delete from line n to m {(inclusive)
Dnm delete from line n to m (inclusive)
D delete all the entered text

results in computer prompt of:

DELETE ALL? (Y/N)

the text 1is deleted if a response of Y is given.

Examples of valid usage:

D 10 Deletes line 10

D 10, B0 Deletes lines 10,11,...43,50
D10 BO Deletes lines 10,11,...498,50
D 10 B0 Deletes lines 10,11,...,48,80
D Deletes all lines

DELETE ALL? (Y/N)

Y user responds with "Y'

Notes:
1. Commas or blanks serve as delimiters.
2. If there are no lines in the range to be deleted, the program

returns to the Text Entry/Command mode.

© COPYRIGHT 1979, 1980, Micreo Data Base Systens, Inc. 80

MDBS Data Management System Documentation

3. After lines are

Entry/Comrmnand mode.

deleted

the program returns to normal

© COPYRIGHT 1879, 1980, Micre Data Base Systems, Inc.

Text

81

MDBS Data Management System Documentation

Purpose:

(DDL) Data Definition Language Analyzer

This command is invoked to analyze the data base definition

currently in text and, if no errors were encountered, to

initialize a data base.

Command Syntax:

Notes:

DDL invokes the data definition language analyzer.

The DDL analyzer proceeds until either an error is encountered
or a data base has been successfully initialized. Both types
of terminations return the program to the Text Entry/Command
mode., All text is preserved in memory.

The CONTROL-C key terminates the analysis process and returns
the program to normal Text Entry/Command mode.

During the analysis, pressing any key (except CONTROL-C or
ESCAPE) causes a pause until another key is pressed.

Before invoking the Analyzer, create the data base file on the
primary drive. The file name should match the name given on
the FILES line of the data base description being analyzed.
See Section II.E.4 for a more detailed discussion of the DDL

Analyzer.

© COPYRIGHT 19738, 1880, Micro Data Base Systems, Inc. 82

MDBS Data Management System Documentation

(DR, EN, FI, IT, ME, OW, PA, RE, SE) Data Description Format Commands
Purpose:
Display the format for the:
DRIVE
END
FILES
ITEM
MEMBER
OWNER
PASSWORDS
RECORD
SET
commands of a data base description. These are extremely useful
while inputting text to describe a data base.
Command Syntax:
DR For the drive section format
EN For the end card format
FI For the file section format
IT For an item format
ME For a set member format
oW For a set owner format
PA For the password section format
RE For a record format
SE For a set format
© COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 83

MDBS Data Management System Documentation

Examples of Valid Usage:
PA Prints the password section format
PASS Prints the password section format

PASSWORD:S Prints the password section format

Notes:

1. These commands do not affect the current text in any way. The
user remains in Text Entry/Command mode.

2. Each of the commands can be entered by typing a portion of the
section ¢r card type name as long as at least the {irst two
characters are typed. For example SE or SET results in the
set card format but S alone will result in an error.

3. All the formats are displayed taking into account the the four
digit line number and a leading blank (which is necessary in

the data description text).

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 84

MDBS Data Management System Documentation

(E) Enter Line Edit Mode

Purpose:
This command is used to enter the line editor. The

referred to the next section on LINE EDITING.

Command Syntax:

user 1is

E edit the entire text
En edit the text starting at line n
En, m edit the text starting at line n and ending at line

m (inclusive)

Examples of Valid Usage:

E edit all text starting at the the first
E 100 edit text starting at line 0100
E100, 200 edit text between lines 0100 and 0200

E 100, 200 edit text between lines 0100 and 0200

E 100 200 edit text between lines 0100 and 0200

Notes:

line

inclusive

inclusive

inclusive

1. If there is no text within the range to be edited, the program

returns to Text Entry/Command mode

2. If there is text within the range to be edited, the first such

line 1is displayed. The user is now in the line editor mode.

© COPYRIGHT 19738, 1980, Micro Data Base Systems, Inc.

85

MDBS Data Management System Documentation

Purpose:

List

Command

Examples

Notes:

© COPYR

(L) Listing Text

the text entered by the user.

Syntax:

L list all lines of text

Ln list line number n

L n,m list text from line n to line m

of Valid Usage:

L list all lines of text
L10, 20 list lines 10 through 20
L10 20 list lines 10 through 20
L10 , 20 list lines 10 through 20
Lio list line 10

LO list line O

Commas or blanks serve as delimiters.

During a listing, pressing any key (except CONTROL-C or
ESCAPE) causes a pause until another key is pressed.

The CONTROL-C key terminates the listing process and returns

the program to normal Text Entry/Command mode.

IGHT 1878, 1980, Micro Data Base Systems, Inc. 86

MDBS Data Management System Documentation

4. If there is no text to list the program remains in normal Text

Entry/Command mode.

8. At the end of the listing the program returns to normal Text

Entry/Command mode.

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 87

MDBS Data Management System Documentation

(N) Renumbering Text

Purpose:

Renumber all of the text entered by the user.

Command Syntax:

N renumbers all text giving the first

increments by 0001.

Nn renumbers all text giving the first

increments by 00O01.

Nn,m renumbers all text giving the first

increments by m.

Examples of Valid Usage:

N First line
N 30 First line
N10,10 First line
Nio, 10 First line
NO, 3 First line

Notes:

will

will

will

will

will

0000,
0030,
0010,
0010,

0000,

1. Commas or blanks serve as delimiters.

2. If an increment of zero is specified,

printed:

line the number 0000 and

line the number n and

line the number n

second

second

second

second

second

soksk IMPROPER LISTING PARAMETERS

and the text is renumbered using N 0001 0001.

3. If the parameters n and m are such that a line number

00601,
0031,

0020,

0003,

etc.

ete.

ete.

etc.

ete.

and

the following message is

greater

than 9999 would result, the following message is printed:

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc.

88

MDBS Data Management System Documentation

K} IMPROPER LISTING PARAMETER
and the text is numbered using:

L n 0001

At the completion of renumbering the program returns to normal

Text Entry/Command mode.

© COPYRIGHT 1879, 1880, Micro Data Base Systems,

Inec.

89

MDBS Data Management éystem Documentation

(P) Print a Space Ruler

Purpose:

This command is used to produce a space ruler to act as a guide

for text entry. For example,

this command results in

on a 84 character ocutput device

1...5...10...15...20...25...30...35...40...45...
so that text can be entered as:
1...5...10...15...20...258...30...35...40...45...
0020 TEXT
Command Syntax:
P Produces a space ruler.
Notes:
1. This comnand does not affect the current text

The user remains in Text Entry/Command mode.

® COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc.

in any way.

S0

MDBS Data Management System Documentation

(R} Reading a Text File

Purpose:

Allows the user to read a previously saved text file.

Command Syntax and Prompts:

R ' read a previously saved file
FILENAME prompt from computer
name the user should respond with a valid file

name (fully qualified)

on a successful read the computer
responds with:

XxXxxxXx BYTES

Example of Valid Usage:
R
FILENAME
name

4683 BYTES

Notes:
1. Any text in memory 1is replaced by the file brought in by a
successful read.
2. If a file is not successfully read the message:
*dokERROR
is displaved (in addition to any messages the operating system
may print). Some read errors may result in a return to the

operating system in which case the user may re—enter MDBS.DDL

© COPYRIGHT 1879, 1880, Micro Data Base Systems, Inc. g1

MDBS Data Management System Documentation

through the standard re-entry point.
3. If a file is not successfully read, text present in memory may

still be intact, depending of course on the nature of the read

error.
4. Normal causes for read errors include the absence of the
indicated file on the indicated disk drive. Other standard

problems causing read errors may alsoc be encountered.
B, To escapz from a FILENAME prompt the user may enter a null
line (a simple RETURN). This will result in the message
*kkFERROR
but will return the user to the normal Text Entry/Command
mode.
8. The response to a successful read:
xxxxx BYTES
gives the total number of bytes transferred.
6. If there 1is not enough memory available for the text to be
read—in the following message is displayed:
**xOUT OF ROOM IN MEMORY
and reading discontinues. Text in memory before the R command
remains in memory and the program returns to Text Entry/

Command mode.

® COPYRIGHT 1972, 1980, Micro Data Base Systems, Inc. 92

MDBS Data Management System Documentation

(W) Writing a Text File

Purpose:

Allows the user to write a text file.

Command Syntax and Prompts:

W write the current text onto a file
FILENAME prompt from computer
name the user should respond with a valid file

name {(fully qualified)

on a successful write the computer
responds with:

xXxxxx BYTES

Example of Valid Usage:
W
FILENAME
name

463 BYTES

Notes:

1. A successful write will produce an image of the text on the
appropriate file,. The text still resides in memory. At the
completicr of the WRITE operation the program returns to
normal Text Entry/Command mode.

2. If a file is nct successfully written the message:

*AkERROR

is displayed (in addition to any messages the operating system

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 93

MDBS Data Management System Documentation

may print). Some write errors may result in a return to the
operating system in which case the user may re—enter MDBS.DDL
through the standard re—entry point.

3. Normal causes for write errors include the absence of the
indicated file on the indicated disk drive. Other standard
problems causing write errors may also be encountered.

4., To escape from a FILENAME prompt the user may enter a null
line (a simple RETURN). This will result in the message

*%kERROR
but will return the wuser to the normal Text Entry/Command
mode.

5. The response to a successful write

xxxxx BYTES

gives the total number of bytes transferred.

©® COPYRIGHT 18738, 1980, Micro Data Base Systems, Inc. 84

MDBS Data Management System Documentation

3. Line Editing

In the line editing mode, current text can be altered within a line
without retyping the line. The line editing mode 1s entered through
the E command of the Text Entry/Command mode. Once in the line
editor, the current line being edited is displayed. At this point,
the user may advance to the next line of text or may make c¢changes 1in
the current line. A given line can be repeatedly altered before

advancing to the next line.

As in the Text Entry/Command mode, all communication with the
system can be performed in lower or upper case and all special keys

retain their normal functions.

We now turn to a detailed discussion of the line editing features
and commands. Note that the entry of an improper command syntax

results in a prompt of:

When this occurs the user is still in line editor mode and can give a

correct response.

© COPYRIGHT 19789, 1880, Micro Data Base Systems, Inc. 95

MDBS Data Management System Documentation

Purpose:

(RETURN key) Move Through Text

This allows the user to advance from the current line of text to

the next line of text and to make the next line of text current.

Command

Syntax:

Press RETURN key to move to the next line of text

Notes:

When entering the line editor mode through the E command of
the Text Entry/Command mode, the user specifies a target
region for editing. Once the end of the region is encountered
and the user presses the RETURN key, the program reiurns ¢to
Text Entry/Command mode.

After pressing the RETURN key, the new current line of text is

displaye«.

© COPYRIGHT 1878, 1980, Micro Data Base Systems, Inc. 96

MDBS Data Management System Documentation

(C) Change a Line of Text

Purpose:

This command is used to alter a string of text within a line.

f

Command Syntax:
CdSOURCEJdNEWd where "d" is any delimiter, SOQURCE is the
original string and NEW is the

replacement string.

Example of Valid Usage:

Assume the following is being edited:

0010 HTIS IS TWO DEMANSTRATE THE LINE LINE EDTOR
C/HT/TH/ results in:

0010 THIS IS TWO DEMANSTRATE THE LINE LINE EDTOR
C.TWO.TO results in:

0010 THIS IS TO DEMANSTRATE THE LINE LINE EDTOR
CQMAQMO results in:

0010 THIS IS TC DEMONSTRATE THE LINE LINE EDTOR

C. LINE. results in:

0010 THIS IS TO DEMONSTRATE THE LINE EDTOR
C/ED/EDI results in:

0010 THIS IS TO DEMONSTRATE THE LINE EDITOR
Typing:

S

returns the program to Text Entry/Command mode.

Notes:

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. a7

MDBS Data Management System Documentation

1. The first character following the C is used as the delimiter.

2. The last delimiter is optional. The RETURN key also acts as

the last delimiter.
3. If the source string is not found, the computer responds with:
?
and a proper response can then be given.

4. The line number cannot be altered by the [ine editor.

© COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 88

MDBS Data Management System Documentation

(8) Leaving the Editor Mode

Purpose:

To return the program to Text Entry/Command mode.

Command Syntax:

S return to Text Entry/Command mode

© COPYRIGHT 1973, 1980, Micro Data Base Systems, Inc.

99

MDBS Data Management System Documentation

(C) Repeated Changes

Purpose:

To make the same changes within and across lines.

Method:
When a <change 1is entered, it is "remembered”. The next change
replaces the remembered change and becomes the new “remembered”
change. Upon entering the text editor, the "remembered" change

is the default of

c///

Entering a C followed by a RETURN invokes the last remembered

change. This can be done within a line or, after advancing

lines, within a new line.

Command Syntax:

C make remembered change

Examples of Valid Usage:

Suppose the following text is to be edited:
0010 PRCDUCT 64KGB IS NOT NEW
0020 B84KGB AND 64KGB DERIVATIVES
0030 HAVE BEEN AROUND FOREVER.

0040 ... 64KGB REPORT.

and the user entered E in the Text Entry/Command mnode.

results in:

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc.

This

100

MDBS Data Management System Documentation

0010 PRODUCT 64KGB IS NOT NEW.

being displayed. At this point the remembered change is:

C///

Suppose B4KGB is to be replaced by T473. The user may enter:

C.B84KGB.T47S

which will result in:

0010 PRODUCT T47S IS NOT NEW.

and the current remembered change is:
C.B84KGB.T47S

Pressing the RETURN key will result in:

0020 864KGB AND 64KGB DERIVATIVES
Pressing C and then RETURN results in:

0020 T47S AND B84KGB DERIVATIVES
since C.84KGB.T473 was remembered. Repeating with C and RETURN
gives:

0020 T47S AND T47S DERIVATIVES
Pressing RETURN gives:

0030 HAVE BEEN AROUND FOREVER
Pressing RETURN gives:

0040 ... 84KGB REPORT.
Entering C and RETURN gives:

0040 ... T475 REPORT.

Notes:

© COPYRIGHT 18978, 1980, Micro Data Base Systems, Inc. 101

MDES Data Management System Documentation

1. A remembered change will not be forgotten until either another
properly entered change is submitted or the program returns to

Text Entry/Command mode.

© COPYRIGHT 1879, 1880, Micro Data Base Systems, Inc. 102

MDBS Data Management System Documentation

4. DDL Analyzer

In the DDL analyzer mode, text containing a data base description
is first analyzed and then, if error free, used to initialize a data

base.

While a data base may be spread over several disks, (as explained
in the FILES section of the Data Description Language discussion),
MDBS.DDL expects to initialize a file on the first physical drive.
Only this drive needs to have the indicated file present during the
DDL analysis. Of course, during MDBS.DMS operations, all files need

to be active.

If a data description is successfully analyzed and a data base

initialized, the message

DDL PROCESSING COMPLETED

is displayed. The program then returns to Text Entry/Command mode.

All text has been preserved.

If an error is detected during the analysis, an error message is

displayed and the program returns to the Text Entry/Command mode. All

text is preserved.

During a DDL analysis, pressing any key (other than CONTROL-C or
ESCAPE) results in a pause until a key 1is again pressed. This 1is

useful for purposes of controlling the output displayed.

© COPYRIGHT 19789, 1980, Micro Data Base Systems, Inc. 103

MDBS Data Management System Documentation

CONTROL~C interrupts the analysis and returns the program to the
Text Entry/Command mode. The ESCAPE key returns control to the

operating system.

The DDL analyzer builds tables in memory beyvond the text region.
If there is insufficient room in memory to complete all of the tables,
the message

*%xQUT OF ROOM IN MEMORY

is displayed. As with all errors, control i1s returned to the Text
Entry/Command mode and all text is preserved. The user should refer

to Section II.C.3 for information on expanding available memory.

While analyzing the data description, each line of description is

printed (without line numbers).

In the following, a list of errors detected by the DDL analyzer 1is

given along with explanations and possible causes.

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 104

MDBS Data Management System Documentation

w)*k A DEPENDING ON ITEM CANNOT BE A REPEATED FIELD

Line Type: I1ITEM

Columns: 36-43

Explanation:

A "depending on" item was specified in columns 36-43 for the item
currently being processed. The depending on item was defined as

a repeated field, which is not permitted.

Possible Causes:

1. Typographical error.

2. Incorrect item specified as depending itenm.

3. Data base design error.

© COPYRIGHT 1978, 1880, Micro Data Base Systems, Inec. 1083

MDBS Data Management System Documentation

*%% A VARIABLE LENGTH ITEM MUST BE LAST IN A RECORD

Line Type: ITEM

Explanation:

A variable length item (i.e., one with an entry in columns 36-43)
must be the last item in a record. The ITEM line being processed
immediately follows & variable length item. Only one variable

length item may appear in a record, and it must be the last item.

Possible Causes:

1. ITEM lines out of order.

2. Missing RECORD line.

3. Data base design error.

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 108

MDBS Data Management System Documentation

sskk CANNOT WRITE TO DISK

Explanation:

A request to the operating system was made by the DIOL analyzer to

write to a file. The operating system returned an error flag.

Possible Errors:

1. Refer te the standard causes for disk errors.

2. A file with the data base name cannot be found on drive 1.

© COPYRIGHT 1879, 18980, Micro Data Base Systems, Inc. 107

MDBS Data Management System Documentation

kikk CAN'T HAVE OTHER OWNERS WITH SYSTEM

Line Type: OWNER

Columns: 8-13

Explanation:

Two or more owner lines were specified for this set and one of
the lines defined SYSTEM as an owner. If SYSTEM is the owner
record for a set, then no other owner record types may be defined

for that set.

Possible causes:

1. Specified OWNER instead of MEMBER on a line,

2. Data base design error.

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 108

MDBS Data Management System Documentation

)k DEPENDING ON ITEM MUST BE A TWO BYTE BINARY VARIABLE

Line Type: ITEM

Columns: 36-43

Explanation:

A "depending on" item was specified in columns 36-43 for the item
currently being processed. The depending on item 1is a Dbinary

variable, but does nct have length two as required.

Possible Causes:

1. Typographical error.

2. Incorrect item specified as depending item.

3. Data base design error.

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 108

MDBS Data Management System Documentation

k% DEPENDING ON ITEM MUST BE BINARY

Line Type: ITEM

Columns: 38-43

Explanation

A "depending on”" item was specified in columns 36-43 for the item
currently being processed. The depending on item must be BINary

with a length of 2 bytes.

Possible Causes:

1. Typographical error.

2. Incorrect item specified as depending item.

3. Data base design error.

© COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 110

MDBS Data Management System Documentation

sokk DEPENDING ON ITEM NOT PREVIOUSLY DEFINED IN THIS RECORD

Line Type: ITEM

Columns:

36—-43

Explanation:

The

not defined on a prior ITEM

item specified in columns 36-43 of the current ITEM line was

Possible Causes:

1.

line for the current record type.

The ITEM line for the depending on item is missing or out of

sequence,

The name of the depending item was misspelled when the item

was defined.

The item name is columns 36-43 is misspelled.

The item name for the depending—on item

column 36.

Typographical error.

Data base design error.

© COPYRIGHT 1978, 18980, Micro Data Base Systems,

does nokt start in

Inc. 111

MDBS Data Management System Documentation

#*kk DUPLICATE ITEM NAME IN RECORD

Line Type: ITEM

Columns: 8-15

Explanation:

The same name has been given to two ITEMs in the same record.

Possible Causes:
1. A redundant line of text.
2. Typographical error.
3. Missing RECORD line before the replicated ITEM.
4. The second ITEM line should have been a RECORD or SET line.

5. Data base design error.
Notes:

1. An ITEM may be replicated across RECORDs. That is, the same

ITEM name may appear in different RECORDs.

® COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc. 112

MDBS Data Management System Documentation

kkk DUPLICATE RECORD NAME

Line Type: RECORD

Columns: 8-15

Explanation:

Two RECORD types have the same name.

Possible Causes:
1. A redundant line of text.
2. Typographical error.
3. The second RECORD line should have been an ITEM or SET line.

4. Data base deéign error.

© COPYRIGHT 12789, 1980, Micro Data Base Systems, Inc. 113

©® COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 118

MDBS Data Management System Documentation

k%kk EXPECTING A NUMBER IN A FIELD

Line Type: See Below

Columns: See Below

Explanation:

A non—-numeric

numeric characters are the digits 0-89 and blanks.

Possible Causes:

1. Typographical

character

error.

2. Number entered in wrong columns.

Note:

Numeric fields are found in the following columns:

PASSWORDS line

26-28
30-32

DRIVE line

8-8

ITEM line

21-24
26-28
30-32
44-47

® COPYRIGHT 18973, 1880

, Micro Data Base Systems, Inc.

FILES line

22-22
26-29

RECORD line

26-28
30-32

SET line
268—-28

30-32
34-36

was entered in a numeric field.

Valid

118

MDBS Data Management System Documentation

dkk EXPECTING A RECORD, ITEM, OR SET LINE

Explanation:

Something other than a RECORD, ITEM, or SET line was encountered
after the PASSWORDS or FILES section or within the RECORD

section.

Possible Causes:

1. Sections out of order.

2. Typographical error.

3. Missing RECORD, ITEM or SET line.

4., Columns 1-6 of the line were blank.

© COPYRIGHT 1879, 18980, Micro Data Base Systems, Inc. 117

MDBS Data Management System Documentation

xx% EXPECTING AUTO OR MAN

Line Type: SET

Columns: 17-20

Explanation:

Sets may be either AUTO or MANual. One of these two set modes

was not specified.

Possible Causes:

1. Typographical error.

2. The word AUTO or MAN did not start in column 17.

3. No set mode was specified.

© COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 118

MDBS Data Management System Documentation

k)3¥k EXPECTING SET OR END LINE

Explanation:

Something other than a SET or END line was encountered while in

the SET section.

Possible Causes:
1. Sections out of order.
2. Typographical error.
3. Missing SET or END line.

4, Columns 1—-8 of line were blank.

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 119

MDBS Data Management System Documentation

dokk FILE HAS NOT BEEN CREATED: PLEASE DO SO

Explanation:

The DDL analyzer has attempted to initialize a data base, but the

data base file does not exist on the disk on the first physical

drive.

Possible Errors:

1. The user has not yet cr=2ated a file with the appropriate name.

2. The file exists on a disk located on some drive other than the

first drive.

3. The filename may have been misspelled in the FILES section or

in the DDL prompt if there is no FILES section.

© COPYRIGHT 1978, 1880, Micro Data Base Systems, Inc. 120

MDBS Data Management System Documentation

kxck IMPROPER DRIVE NUMBER

Line Type: DRIVE

Column: 8

Explanation:

A drive numb

drives allowed

Possible Errors:

er was either =zero or greater than the number of

. The number of drives allowed

specified

was
the FILES line.
1. The FILES line has too small an allocation.
2. Column 8 of the current DRIVE line was left blank.
3. Typographical error.

1980, Micro Data Base Systems, Inc.

© COPYRIGHT 1979,

on

121

MDBS Data Management System Documentation

*ksk INCORRECT MEMBER ORDER

Line Type: SET (line #2)

Columns: 30-35

Explanation:

The ordering specification for the members of the current set is

not valid. Defined orders are:
FIFO first in-first out
LIFO last in—-first out
NEXT insert "after” current member
PRIOR insert "prior to" current menmber
IMMAT ordering is immaterial
SORTED set is sorted

Possible Causes:

1. Typographical error.

2. The ordering information does not start in column 30.

Notes:

1. If columns 30-35 are blank, IMMAT is assumed.

2. It is not meaningful
1:1 sets. However,

for validity.

to specify an member ordering for N:1

or

if an order is given, it will be checked

© COPYRIGHT 1879, 1880, Micro Data Base Systems, Inc.

122

MDBS Data Management System Documentation

*x*kx INCORRECT OWNER ORDER

Line Type: SET (line #2)

Columns: 8-13

Explanation:

The ordering specification for the owners of the current set 1is

not valid. Defined orders are:
FIFO first in-first out
LIFO last in—first out
NEXT insert "after"” current owner
PRIOR insert "prior to" current owner
IMMAT ordering is immaterial
SORTED set is sorted

Possible Causes:

1. Typographical error.

2. The ordering information does not start in column 3.

Notes:

1. If columns 8-13 are blank, IMMAT is assumed.

2. It 1is not meaningful to specify an owner ordering in 1:N or
1:1 sets. However, if an order is given, it will be checkead
for validity.

© COPYRIGHT 1978, 1980, Micro Data Base Systems, Inc. 123

MDBS Data Management Systemn Documentation

*kk INVALID ITEM TYPE

Line Type: ITEM

Columns: 17-20

Explanation:

The type specified for the item being processsd is not cone of the

types listed below:

BIN Binary
CHAR Character
INT Integer
LOG Logical
REAL Real

Possible Causes:

1. Typographical error.

2. The item type name does not start in column 17.

3. No item type was specified.

© COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 124

MDBS Data Management System Documentation

sokk INVALID SET CHARACTERISTICS

Line Type: SET

Explanation:

An inconsistency was detected by the DDL Analyzer while
generating the set description tables for the set being
processed. This error is internal to the DDL Analyzer code and
should not normally occur. If it can be determined that the
possible causes listed below are not responsible for this error,

please contact MDBS for assistance.

Possible Causes:

1. Improper user patch. Check MDBS manual for proper patch

procedures.

2. A hardware or software malfunction has caused the set

descriptors to become inconsistent.

© COPYRIGHT 1978, 1880, Micro Data Base Systems, Inc. 125

MDBS Data Management System Documentation

k%% INVALID SET TYPE

Line Type: SET

Columns: 22-24

Explanation

One of the four possible set types has not been specified on the

SET line. Valid set types include:

1:N One ownher record occurrence may be associated with

Zero or mnore member record occurrences (Standard
CODASYL set)

N:M Each owner record occurrence may have more than one
member record oc¢ccurrence and each member record
occurrence may have more than one owner record
occurrence (many—to-many).

1:1 Each owner record occurrence may be associated with
at most one member record occurrence.

N:1 Each member record occurrence may be associated
with one or more owner record occurrences; each
owner may have at most one membar record
occurrence.

Possible Causes:

1. Typographical error.

2. The set type specification does not start in column 22.

3. No set type was specified.

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 126

MDBS Data Management System Documentation

sk ITEM READ OR WRITE ACCESS LESS THAN RECORD’S

Line Type: ITEM

Columns: 26—-28 or 30-32

Explanation:

Either the read or write access level for the

item being

processed is less than the corresponding access level for the
record containing this item. This usually indicates that an
error has been made in the record or item access level
specifications.

Possible Causes:
1. Typographical error.
2. Data base design error.

Note:
If the access levels for an 1item are left blank, they will
default to the record access levels.

© COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 127

MDBS Data Management System Documentation

k¥ KEY UNDECLARED

Line Type: SET (line #2)

Columns: 17-24 or 39-48

Explanation:

A sort key was specified which does not appear as an item type in
the owner (for sorted owner type) or member (for sorted member

order) record type.

Possible Causes:
1. Typographical error.
2. Sort key name does not start in proper column.

3. Data base design error.

Notes:

1. It is not meaningful to specify a sort key wunless the set
order 1s SORTED. If the set order is not SORTED and a sort
key is specified, the sort key mname will be checked for

validity, but will not be used.

2. It 1is permissable to not specify a sort hey for a sorted set.
If this is done, the full record is used as the sort key.

© COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc. 12

MDBS Data Management System Documentation

sk MAX LENGTH FOR BINARY VARIABLE IS 2

Line Type: ITEM

Columns: 22-24

Explanation:

An item of type binary (BIN in column 17-20) has heen encountered
with an item size <(columns 22-24) larger than 2. Binary

variables may be only one or two bytes in length.

Possible Causes:

1. Typographical error.

2. Data base design error.

3. Item size not right justified in columns 22-24.

©® COPYRIGHT 1979, 1980, Micreo Data Base Systems, Inc. 129

MDBS Data Management System Documentation

dook MAXIMUM RECORD SIZE TOO LARGE TO FIT ON PAGE

Explanation:

This error is displayed after the END line has been reached when,

in the process of initializing the data base, the DDL Analyzer
discovers that a record is too large to fit on a data base page.
The data base page size is defined on the FILES line. Each page

also has a 10 byte page header.!

Possible Causes:

1. Page size on FILES line (columns 2868-28) too small.

2. An item in a record has an item length and specification count

too large.

! It is possible that future releases of MDBS.DMS will require
slightly larger record and page headers. We recommend that you make
allowances for this when you select the page size and record sizes for

your data base.

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 130

MDBS Data Management System Documentation

#)kk NAMES CANNOT START WITH A $ OR BE BLANK

Line Type: RECORD, ITEM, SET

Columns: 8-15

Explanation:

All records, items and sets must be given a non-blank name.
Names starting with a dollar sign are reserved for use by MDBS

processors.

Possible Causes:

1. Typographical error.
2. Incomplete specification.

3. Data base design error.

© COPYRIGHT 1978, 1980, Micro Data Base Systems, Inc. 131

MDBS Data Management System Documentation

*k% NO MEMBER AND/OR OWNER LINE FOR A SET

Explanation:

A set declaration was encountered which did net contain at

one owner line and at least one member line.

Possible Causes:

1. Typographical error in word OWNER or MEMBER.

2. Omitted OWNER or MEMBER line.

3. MEMBER line specified before OWNER line.

© COPYRIGHT 1878, 1980, Micro Data Base Systems, Inc.

least

MDBS Data Management System Documentation

dkk NOQ PAGES ALLCOCATED TO A FILE

Line Type: DRIVE

2—

Columns: 1 15

Explanation:

A DRIVE line specified a

pages.

Possible Causes:

file length (on that drive) of zero

1. Conceptual error (see note below).
2. Missing DRIVE line.
3. Typographical error.

Notes:

1. A file of length zero can never be used by the data base
management system. Hence this error points out a null
request. If the user has entered such a line in the mistaken
belief that the data base must be allocated on drives in a
contiguous fashion, the following illustration may be of wuse:

DRIVE 3 20
DRIVE 1 20
This example states that drives 1 and 3 will hold the data
© COPYRIGHT 1973, 1980, Micro Data Base Systems, Inc. 133

MDBS Data Management System Documentation

base {(notice drive 2 will not be wused) and that each will

hold, at mazimum, 20 pages.

© COPYRIGHT‘1979, 1980, Micro Data Base Systems, Inc. 134

MDBS Data Management System Documentation

%% NOT ENOUGH ROOM ON DRIVE 1

Explanation:

The DDL analyzer has attempted to initialize a data base, but the
amount of information needed to be placed on the file on drive 1

exceeds the amount of room available on this file.

Possible Errors:

1. A specification line for DRIVE 1 (in the FILES section) does
not provide for enough pages on the drive. Provide for more

room if possible.

© COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 138

MDES Data Management System Documentabtion

Fkk NUMBER LARGER THAN 255

Line Type: See below

Explanation:

A number larger than 285 has been encountered. The following

numeric fields are limited teo a maximum value of 2B8S:

PASSWORDS RECORD
26-28 26-28
30-32 30-32
ITEM SET
26-28 26-2
30-32 30-32
34-36

© COPYRIGHT 1878, 1980, Micro Data Base Systems, Inc. 136

MDBS Data Management System Documentation

#kok PAGE LENGTH MUST BE DIVISIBLE BY 286

Line Type: FILES

Columns: 286-29

Explanation:

The data management system assumes that page sizes are mulbtiples

of 2B6. Hence a page length must be evenly divisible by 286.

Possible Errors:

1. A page length of zero generates this message. Hence c¢olumns

26—-29 may be bilank.
-

2. Typographical error.

3. Improper specification.

1

© COPYRIGHT 1978, 1880, Micro Data Base Systems, n

[v]
[
2

MDBS Data Management System Documentation

*kk PASSWORD LINE EXPECTED

Explanation:

A PASSWORDS line must be the first line of the data description.

Possible Causes:

1. Sections out of order.

2. Typographical error.

3. PASSWORDS section missing or PASSWORDS lines missing.

4., Columnhs 1-8 of line were blank.

© COPYRIGHT 1878, 1980, Micro Data Base Systems, Inc. 138

MDBS Data Managemont System Documentation

dokk PASSWORD ENTRY OR RECORD LIND EXPECTED

Explanation:

A line following the PASSHWORDS line has been encountered

noet & password entry or a RECORD line.

Possible Causes:

i. "RECORD" misspelled on RECORD line.

2. Columns 1-7 of password entry line neon—-blank.

o

3. Sections out of order.

@ COPYRIGHT 1872, 128C, Micro DUaba Base Systenms,

Inec.

which is

132

MDBS Data Management System Documentation

*xk PREMATURE END OF INPUT

Explanation:

The data description is incomplete.

Possible Causes:

1. The END line was not present.

2. Not all sections of a data base description are present, or,
if present, possibly are out of order. The sections (in

appropriate order) are:

PASSWORDS
FILES {(optional)

DRIVE (optional)

RECORD

ITEMS (optional)
SET

OWNER

MEMBER
END

© COPYRIGHT 1878, 1980, Micro Data Base Systems, Inc. 140

MDBS Data Management System Documentation

ook READ ACCESS GREATER THAN WRITE ACCESS

Line Type: PASSWORDS, RECORD, ITEM, SET

Columns: 26-28, 30-32

Explanation:

The read access level specified (in columns 26-28) was greater
than the write access level specified (columns 30-32). Since
larger access levels indicate more restrictive access, the read
access is more highly restricted than the write access, which 1is

not meaningful.

Possible Causes:

1. Typographical error.

2. Data base design error.

3. Omission of an access level entry.

© COPYRIGHT 1978, 1980, Micro Data Base Systems, Inc. 141

MDBS Data Management System Documentation

*kiok RECORD ACCESS GREATER THAN SET'S

Line Type: OWNER, MEMBER

Explanation:

The record specified on the OWNER (MEMBER) line being processed
has a higher (i.e., more restrictive) read or write access level

than the set to which it belongs.

Possible Causes:

1. Typographical error.

2. Data base design error.

3. Omitted access level.

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 142

MDBS Data Management System Documentation

sk RECORD NOT FOUND

Line Types: OWNER, MEMBER

Columns: 8-13

Explanation:

The record type specified on columns 8-13 was not previously

defined.

Pessible Causes:

1. Typographical error.

Record name does not start in column 8.

V)

3. No record name specified.
4. Record name mis-specified on RECORD line.

5. Data base design error.

© COPYRIGHT 1978, 1880, Micro Data Base Systems, Inc. 143

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 1458

MDBS Data Management System Documentation

skk SECOND LINE OF SET DEFINITION INVALID

Line Type: SET

Columns: 1-8

Explanation:

The set description actually consists cof two line—images. The

1

first has the word SET in columns 1-6 and the second has blanks
in these columns. A valid first line of the set description was
processed, and a line which was non-blank in columns 1-8 has been

encountered after it.

Possible Causes:

1. Omission of second line of set description.

2. Typographical error.

© COPYRIGHT 1978, 1980, Micro Data Base Systems, Inc. 146

MDBS Data Management System Documentation

dokk SORT KEY NOT IN RECORD

Line Type: OWNER, MEMBER

Columns: 8-13

Explanation:

A sort key was specified for the owner (member) of this set, but
the record on this OWNER (MEMBER) line does not contain the sort

key.

Possible Causes:

1. Typograrhical error.

2. Data base design error.

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 147

MDBS Data Management System Documentation

sk SYSTEM CAN'T BE A MEMBER

Line Type: MEMBER

8-13

Explanation:

SYSTEM was defined as a member of a set. SYSTEM is aonly allowed

toe be the owner of a set.

Possible Causes:

1. Data base design error.

© COPYRIGHT 1278, 1980, Micro Data Base Systems, Inc. 148

MDBS Data Management System Documentation

I1I. MDBS.DMS

Al Introduction

In this section, we present Micro Data Base Systems’ Data
Management System which we call MDBS.DMS (for Micro Data Base Systems’
Data Management §ystem). A user controls the Data Management System

through the Data Manipulation Language (DML).

In part B we list several features of the vstem which are

%

described in more detail elsewhere. In section C the wuser is
instructed on how to "bring-up" MDBS.DMS and how to modify bthe

package.

In the MDBS system, various data manipulation langunge commands are

used. In section D we discuss each {(DML) command in detzil. Section
D also provides examples of the use of these commands. It is strongly
recommended that these examples be read before the detailed

information of Section III1.D.3 is studied.

Understanding of the DML commands can be evwvpedited by first
examining the following commands. These commands enable a user to
actually use a data base, and serve as a basis for gaining an overview
of the system:

1. DEFINE 8. FNM
2. OPEN 7. GFM
3. CRS 8. SOM
4. AMS 8. SMM

5. FFM 10. CLOSE

® COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 1438

MDBS Data Management System Documentation

B. Features

MDBS.DMS allows the wuser to store and retrieve data in the data
base and to establish and use the variocus set razlaticonships defined in
the MDBS Data Definition Language. All details of physical!ly managing
the data are handled by the MDBS.DMS system —— specifically, the tasks

of reading, writing and managing disk storage are handled by MDBS.DMS.

MDBS.DMS supports the following features for data bhase management
work:
1. Convenient host language calling sequence.
2. Powerful data block features for communicaticon with hest
language variables— a must for non record oriented
languages.

3. Records may be fixed or variable length.

(u

4, Data items may be character, integer, real (floating
point), logical, or binary.

5. Sets may be one—-to-many, many-to-many, ohe—-to-one, or
many—to—one, instead of merely one-to—-many.

6. Sets may be ordered as SORTED, FIFQ, LIFO, NEXT, PRIOR or
IMMATerial. The immaterial ordering allows the system
to achieve certain econcmies in accessing the data base.

7. Automatic or manual insertion of reccords into sets 1is
supported.

8. Read and write access protection via passwords at the

item, record and set levels of organization.

© COPYRIGHT 1978, 1880, Micro Data Base Systens, Inc. 150

MDBS Data Management System Documentation

C. Getting Started with MDBS.DMS
1. Relocating MDBS.DMS

For interpreted languages it is often desirable to be able to
relocate the data management system to a position in memory other than
that provided by Micro Data DBase Systems. In particular, it 1is
frequently useful to mesh HMDES.DMS with the host language. For
example, if BASIC is the host language, the user may wish to
physically append MDBS.DMS to his BASIC interpreter and store the
appended version as, say, BASDMS. Undoubtedly, MDBS.DDL will have ¢to

be relocated for this purpose.

For this purpose we have provided a relocatabie form of the data
management system and a relocator so that an executable form of the

system can be ORGed to any place in memory. Refer to the system

specific manual for further information.
2. Personalizing And Patching MDBS.DMS

MDBS.DMS consists of a program region, table region, page region
and defined block region (in non record oriented languages). The last

three are contiguous and dynamically allocated.

©® COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 151

MDBS Data Management Svstem Documentation

To roughly compute the size of the table region. add the following

partial sums:

+ 25 * Number of Record Types

+ 21 % Number of Items

+ 42 * Number of Sets

+ 3 & Number of Owner Lines

+ 3 * Number of Mzmber Lines

+ 30 x Number of Password Lines

+ 2 % Total Number of Pages Allocated

+ 44 » Number of Disk Drives
We will refer to this value as T.

The page region consists of at least one block of memory ecual in

size to the page length specified in the FILES sestion of the data
base description. This area 1is allocated depending on 2 number of
factors listed below. An extremely important factor is the last word
of memory specification, which is discussed later in thisz section.
Finally, in non record oriented languages the host language user
defines data-biocks for transferring informaticn into (out of) the
data base from (te) his program variables. The =size of the block

region can be computed by:

12 s Number of defined blocks
+ 2 % Total number of variables occurring in Uthes defined

blocks.

©® COPYRIGHT 19739, 1880, Micro Data Base Systems, Inc. 152

MDBS Data Management System Documentation

We will refer to this value as B. For record orientaed languages

(COBOL, PASCAL, PL/I, etc.), use B=0.

There are several addresses that the user should be aware of 1in
MDBS.DMS. Two of these give the first and last word of memory that
the data management system can use. Call these wvalues W and LW.
Given FW and LW and the size of the user tables, the number of pages
available for buffering data to and from memory is computed by
MDBS.DMS as follows:

(LW = FW = T - B)
———————————————— = # of Pages
(Page Size + 3)
Whenever a new data-block is defined in a user program, the number of

pages 1s recomputed by the data management system. If this number 1is

less than one, an error is returned to the user.

In the Appendix we present the results of an experiment which
relates processing time to the number of memory resident pages. Since
the number of memory resident pages is a functien of both the page
size and the amount of memory available to the DMS, the number of
pages available can play an important role in the execution efficiency

of the data base system.

Below we discuss addresses of interest to the user of MDBS.DMS.

The user may alter these. A brief description of each follows:
(a) Data Management System Entry Point(s)

The user enters at these points teo execute all of the

DMS commands.

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc 153

MDBS Data Management System Documentation

(b) Last Word of Memory

The address stored here gives the

of memory that MDBS.DMS may use.

(¢) First Word of Memory

last available

word

The address stored here gives the first available word

of memory that MDBS.DMS may use.

(d) Operating System Entry Points

Different operating systems handle

writes in a variety of ways. To hkeep the manual

and:

free

of system specifics, such information relevant to your

system 1s published in the system specific manual.

Patches to non—-standard routines

accordance with the instructions

© COPYRIGHT 1979, 1980, Micro Data Base Systems,

zhould

found there.

Inc.

in

154

MDBS Data Management System Documentation

D. MDBS Data Management System

1. Introduction and Definitions

The Micro Data Base Systems’ Data Management System supports a Data
Management Language (DML) which is comprised of a large set of
subroutines. When c¢alled from a host program, the DML routines

request the DMS to perform certain operations with the data base.

These operations include finding, adding and deleting record
occurrences, fetching and putting item occurrences, and setting
currency indicators. See Appendix 2 for a brief description of the

DML, functions.

In this discussion, a data item in a record type will be referred
to as a "field"; the fields are ordered, and their values occupy
consecutive words in memory in a record occurrence. Consider the
recovd type:

RECORD EMPLOYEE

ITEM NaME CHAR 20
ITEM NUMBER INT 8
ITEM WAGE REAL 8
ITEM TaX REAL 8

In an ocecurrence o¢f this record type, a 20 byte value for NAME is

first, followed by an 8 byte wvalue for NUMBER, etc.

A DML command is actually a subroutine call. The FMSK command {(for
example) has the BASIC format:
EO = CALL (A0, "FMSK, set—-type, data—-block-name")
Most commands (the DEFINE and EXTEND commands are the only exceptions)
pass a string which indicates the command to be processed and the

@ COPYRIGHT 1978, 1980, Micro Data Base Systems, Inc. 158

MDBS Data Management System Documentation

parameters for the command. The commands return a value {(here Lo
variable EO) which is set to zero if the command executes properly and
non—-zerc upon detection of any error or abnormal status. A list of
possible errors is given later in this manual. The A0 refers to the

address of the entry point of the DMS.

© A DATA-BASE KEY (refered to as the "key") is an address associated

with a record occurrence indicating where in the data base thal record

occurrence is physically located. Each record occurrence has a unique
key associated with it. No two record occurrences can have the sane
key.

© A CURRENCY INDICATOR 1is a special key maintained by the DMS

containing the data base address of a particular record occurrence.
There are two currency indicators for each set—-lype, one indicating

the current owner record occurrence and the other indicating the

current member receord occurrence. So, for each sebt. there is a

"current owner" and a "current member.” There is also a currancy

indicator for each record—-type, specifying the current record

occurrence of that record-type. A third type of currency indicator

maintained by the DMS is the current of run unit. The current of run

unit is simply the data base key of the record last referenced by the
DMS. Certain DML commands use the currency indicators to spacify on
which record occurrence to operate, and others will change appropriate
currency indicators; the currency indicators will be changed to show

that another record occurrence is now current.

© COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 156

MDBS Data Management System Documentation

For example, if SET S1 is scrted on NAME and has owner SYSTEM and

member CUSTOMER,

SYSTEM

S1

CUSTOMER

NAME

then the Find Member based on Sort Key command:

EO = CALL (a0, "FMSK, 81, NO")
~2auses tThe following to happen: The system uses a binary search on the
member record occurrences of set S1 until it finds one with the NAME
field equal to the value of variable NO. It then saves the data-base
key of that record in the currency indicator for the member record of

set S1i. That is, the system makes that record the current member of

S1.

The statement:
E0O = CALL (A0, "DRM, S1")
(the Delete Record based or c¢urrent Member command) instructs the
system to delete the current member record occurrence of set S1. The
system gets the key from the currency indicator for the member record
of set &S1 and delstes the record beginning at the location indicated
by the key. The scquence of the above two commands would cause the
record with a sort key value equal to variable NO to be deleted.

© COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc. 1857

MBBS Data Management System Documentation

(Actually, in the above discussion NO is the name of =2 data block

pointing to a userr variable called NO.)

Every time the data base system is used, an initialization process
must take place at the beginning of execution. This is Thandled via

the OPEN comnmand. With the poessible exception of the DEFINE and

EXTEND commands, the OPEN command must be the first DML~ command

executed each time MDBS.DMS system is used. The format of the command

is:
E0 = CALL (A0, "OPEN, OPENLIST")
OPENLIST is a data block pointing to four wuser variables. In this

case the four variables must be character strings containing:

1. The data base name, for example:
F$ = "CUSTOMER"
2. The user’'s name, for example:
N$ = "GEORGE SHELL"
3. The user’s password, for example:
P$ = "IGLOO"
4., The data base access status, for example:
S$ = "MODIFY"
This allows the user to modify (i.e., write onte) the data
base. Any other string would restrict the wuser ©Ln read-only
mode.

At the beginning of execution of MDBS.DMS, all currency indicators
are initialized. Execution of the OPEN command has the following
effect: All sets which have been defined in the DDL as having SYSTEM
as their owner record—type will have their currency indicator for

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 158

MDBS Data Management System Documentation

current owner equivalenced to SYSTEM. These sets will initially be
the only ones with current owners, and almost all DML ccmmands work
with a currency indicator to obtain a particular record. So it can be
seen that the OQPEN command and a set with owner SYSTEM is required to
get "a foot in the door" to begin fetching or storing record

occurrences.

Just as OPEN must be executed as the first DML command, CLOSE must

be executed as the last DML command. CLOSE has no parameters.

The owner—member relationships of sets is a very important concept
to understand. In the examples that follow, diagrams will be used
similar to those in the DDL discussion. Figure III.D.1 is a
representation of set S1 having owner SYSTEM and member A and set S2
having owner A and member B. (In all future diagrams, the topmost
record—type is assumed to have SYSTEM as the owner, and the box for
the SYSTEM record-type will not be drawn.) The lines in these
diagrams indicate the owner—-member relation of twec record-types.
Remember that Figure III.D.1 represents record types; Figure II1I1.D.2

gives an example of record occurrences. (Future examples will

illustrate only the record-type; the record c¢ccurrences will be

implicit.)

Retrieving records is done through current owner—-member
combinations. The OPEN command will set SYSTEM to be the current
owner of set 81 in Figure I1I.D.Z2. Since set 31 has a current owner,

it is allowable (and possible) te find a member record occurrence {(or

member) of set S1. The methed of doing this will be discussed

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 159

MDBS Data Management System Documentation

shortly. Once a member of Si is found, the DMS will denote it to be

the current member of S1. Other commands will allew us now to

retrieve the data from the record {(the item occurrences or fields).

So far, set 81 has a current owner and a current member, These are
the only currency indicators that have been set. Currency indicators
for set 82 are still null. (Currency indicators for "current of
record type" are set by certain commands. These commands will not be
used in examples presented here, and therefore changes in these
currency indicators will not be mentioned in the examples. The user

will learn the use of these through experience in writing routines

with DML commands.)

At this point there is no way of fetching any member records of set
s2 (that is, occurrences of record-type B). There 1s a command,

though, which will set the current member of set Si to be the current

owner of S22 (SOM). So now we have found the link that attaches an
occurrence of A to the related occurrences of R. Since SZ2 now has =&
current owner, then members of S2 (B) may be searched through to

locate and define a current member, which in turn allows us to fetch

the data from the particular occurrence of B that is current.

Example: The data base has been opened, setting a current owner lor
set S1. We desire the data from B4. We first search through member
records of S1 to find A2 (which is automaticaliy set to be the current

member of S1). Then we set the current member of 31 te be the current

oy

owner of S2 (make A2 the current owner of S2). We now

1]

earch through

member records of S2 to find B4 and execute a command to get a fileld

© COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 160

MDBS Data Management System Documentation

from the current member of SZ2.

The set structure of a data base can be thought of as a network of
record—types with one or more ways of getting to a record-type.
Getting to a record occurrence is a matter of chaining through the
structure, finding a member of one set, making it the owner of the
next set, finding a member of that set and making it the owner of the
next set, on down the line until the set having the desired record-—
type as a member is reached. Then after one more search through that

last set the data is ready to be retrieved.

Figure III.D.3 shows two paths to reach record-type F. One path
involves finding members and setting owners through sets 51, S3, 54,
and S5. The other path is through sets 31, S2 and 37. The user need
not be concerned about poscible interactions between the currency
indicators of these sets -~ once currency indicators are set, they
remain until they are changed; setting the currency indicators of one
set does not affect these of another set. If the 3S1-82-27 path is
chosen to fetch an occurrence of F, the user can then easily fetch an
occurrence of E that is related to the current record occurrence of
S2. This is done by setting the current member of S2 to be the

current owner of S6 (it is already the current owner of 87).

© COPYRIGHT 1879, 1880, Micro Data Base Systems, Inc. 161

MDBS Data Management System Documentation

St

S2

FIGURE III.D.1

® COPYRIGHT 1878,

A A
Al — | A2
s2
B B
B3 B4
S2
B B
Bl B2
FIGURE III.D.2
1980, Micro Data Base Systems, Inc.

162

MDBS Data Management System Documentation

s2 S3

s6 S C
S S

S5

3
5|

FIGURE III.D.S3

© COPYRIGHT 1978, 1880, Micro Data Base Systems, Inec. 183

MDBS Data Management System Documentation

The following lengthy example should clarify not only the wuse of

the DML, but also the design of the DDL. The actual DML commands will

be given along with explanations. A detailed description of each DML
command is given in a later section. The sample routines are written
in BASIC.

We are going to develop a system to work with a data base for a

high school district containing several separate schools. We have
decided beforehand what types of data will be saved: school names;
teacher names and seniority; student names, nuwuber and grade point

average; class titles, room and semester offered; and the grade and

teacher for each class each student takes. Given this informaticnr it
is a simple matter to define the record and date—items f{sese Figure
II1.D.4).

The next step, to define the sets (or how the record-types relate
to one another), is based upon the type of queries that will be made
of the data base,. We will assume that it was decided fto limit the
queries to the following (refer to Figure III.D.5 while reading this
list):

1. alphabetical list of all schools (handled via s=t S1)

2. alphabetical list of all students at a particular school (handled
via sets S1 and S24)

3. list of all students by student number at a particular school
(handled via sets S1 and S2B)

4. alphabetical list of all classes offered at a particular school
(handled via sets S1 and S3)

5. alphabetical list of all teachers at a particular school (handled
via sets S1 and S4)

© COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc. 1684

MDBS Data Management System Documentation

G. list of classes taught by each teacher at a particular school
(handled via sets 81, S4, and S5)

7. list of classes taken by a particular student at a particular
school (handled via sets S1, 824, S6 and S7)

3. list of all students in eazh class at a particular school (handled
via sets Si1, S3, 88 and S8 [not only can a member be found from an
owner, but an owner can also be found from a member])

Figure III.D.5 lists the DDL for the sets. Figure 1II1I1.D.8
illustrates the set structure as defined in the DDL. The easiest
method of developing the DDL is by drawing the picture first: identify
each type of record, and then draw arrows between the records showing
what type of record is desired to be linked from the particular
record—type. Each arrow reprecents a set with the owner at the tail

and the member at the head.

We now Dbegin programming the desired queries. We assume the data

base is already open and that the following data blocks have been

defined:
Block Name Variable List
SCHNM S$
SCHOOL S$
NAME N$
NUMBER N
AVERAGE A
NAMET T$
DATA C$, R, S
DATAZ G
GRaADE F
STUDENT Pg
DATA3 N$, N, A
TITLE L$

© COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 185

MDBS Data Management System Documentation

ol
1 EOC = CALL (AO, "FFM, S1")
2 EO0 = CALL (A0, "GFM, NAME,S1,SCHNM")
3 PRINT 3%
4 EO = CALL (A0, "FNM, S1")
5 IF EO = 0 THEN 2
NOTES:

1 Find First Member in set S1 and make it current.

2 Get Field from Member. Get the NAME field from current member of
S1 and put it in the BASIC variable S$%.

4 Find Next Member of set S1 and make it current.

5 If EO is 283, the end of the set has been reached, signifying the

last school has been processed.

e2.
1 E0 = CALL (A0, "FMSK, S1, SCHOOL")
2 IF EO = 0 THEN ©
3 IF EO < 285 THEN 500
4 PRINT " SCHOCL NAME NOT FOUND "
5 GOTO 500
6 E0O = CALL (AG, "SOM, 324 ,S1")
7 E0 = CALL (A0, "GFM, NAME,S2A ,NAME")
8 EO = CALL (A0, "GFM, NUMBER,S2A ,NUMBER")
=] EO = CALL (A0, "GFM, GPA ,S2A ,AVERAGE")
10 PRINT N$, N, A
11 EO = CALL (A0, "FNM, 324 ")
12 IF EO = 0O THEN 7
NOTES:

1 Find Member Based on Sort Key. Search through set S1 looking for
NAME equal to value of S$. The NAME field was identified as the sort
key in the DDL. When found, make the record the current member of S1.

2 1If E0C is non—zero, some error was encountered, most likely
indicating a school with the desired name was not found.

3 Set QOwner Based on Member. Make the current member of S1 the
current owner of S2A. We have locked onto a particular school; we now

© COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc. 166

MDBS Data Management System Documentation

link to the students at that school. The {irst member of S2A is

automatically set by this command to be the current member of S2A.

03.
1 EO = CALL (A0, "SOM, S2B ,S1")
2 E0O = CALL (A0, "FFM, 82B ")
3 E0 = CALL (A0, "GFM, NAME,S2B ,NAME")
4 EO0 = CALL (A0, "GFM, NUMBER,S2B ,NUMBER")
5 EO = CALL (A0, "GFM, GPA ,S2B ,AVERAGE")
6 PRINT N$, N, A
7 EO = CALL (A0, "FNM, S2B")
8 IF EO = 0 THEN 3
NOTES:

1 We have already set the current member o¢f S1 {rom a previous

query.

o4.

Similar to 3.

05.

Similar to 3.

08,
1 E0 = CALL (A0, "FMSK, S1,SCHOOL")
2 E0 = CALL (A0, "sSOM, 84,81")
3 E0 = CALL (A0, "FM3K, S4,NAMET")
4 E0O = CALL (A0, "SOM, 85,84")
5 E0 = CALL (A0, "GETM, S5,DATA")
6 PRINT C%, R, S
7 E0O = CALL (A0, "FNM, $3")
8 IF E0C = 0 THEN B
NOTES:

1 Find the school.

2 Link that school to its teachers.

3 Find the teacher’s record. Here, N$ is assumed to be a string of
up to 20 characters as defined in the DDL.

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 187

MDBS Data Management System Documentation

4 Link that teacher to the classes he teaches. Again, the first

member of S5 is made the current member.

S GET Data from Current Member. This replaces the three GFM’s that
would have been necessary to fetch the fields from the record. GETM
will fetch all the fields from the current member of S% and place themnm

into the variables C$, R and S as defined by the Data Blocks.

e7.
1 EO = CALL (A0, "FMSK, S1,SCHOOL")
2 E0O = CALL (AOQ, "SOM, S24 ,S1")
3 E0 = CALL (a0, "FMSK, sS24 ,NAME")
4 EO = CALL (A0, "GFM, NAME,S24, NaAME")
5 E0 = CalLL (A0, "GFM, NUMBER, S2A ,NUMBER")
6 EC = CALL (A0, "GFM, GPA , S2A ,AVERAGE")
7 PRINT N$, N, A
8 EO = CALL (A0, "SOM, 886, S2Aa ")
9 EO = CALL (A0, "GETM, S6, GRADE")
10 PRINT G
11 EO = CALL (A0, "SMM, S7, S8")
12 E0 = CALL (A0, "GETO, S7, DATA")
13 PRINT C$, R, S
14 EO = CALL (A®, "FNM, S8")
15 IF EC = 0 THEN 9
NOTES:

1 Find the school.

2 Link to students.

3 Find the student.

4 Get the data.

8 Link the student to his classes.

9 Fetch the grade.

11 Link to classes.

12 Fetch class title, room, semester.

14 Find the next class the student has taken.

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 188

MDBS Data Management System Documentation

This c¢an be developed from the principles demonstrated in 7. The

command SMM will be needed to 1ink backwards through set S6.

We now attempt to add a new student who has taken several courses.

EO CALL (A0, "FMSK, S1,SCHOOL")
EO = CALL (A0, "SOM, S2a ,81")
EO CALL (A0, "SOM, S2B ,S1")
EO0 = CALL (A0, "SOM, 83,81")
EO = CALL (A0, "FMSK, S2A ,STUDENT")
IF EO = 0 THEN 10
EO = CALL (A0, "CRS, STUDENT, DATA3")
EO = CALL (A0, "AMS, STUDENT ,S24")
EO CaLL (A0, "AMS, STUDENT ,S2B")

0 EO CALL (A0, "SOM, s8, s8S2A")

il

il

> OO0 MQINE

Repeat the following for each of the studenty,s classes:
—

11 E0 = CcALL (A0, "FMSK, 83, TITLE")

12 IF EO > O THEN 500

13 E0 = CALL (AD, "CRS, SCLASS, GRADE")
14 EO = CALL (AOQ, "AMS, SCLASS, s8")

15 EO CaLL (A0, "aMsS, CLASS, S7")

o
i

NOTES ON ABOVE EXAMPLE:

S See if student already exists.

7 Create a new occurrsance of record-type STUDENT and store the
student’'s name, number and grade point average.
8 Add Member to Set. Add the newly created record occurrence to set
S2A, placing it in alphabetical order as indicated in the DDL.

9 Add the record occurrence tc set S2B, also, placing it in numerical
order.

10 Link the new student record to his classes, of which there are

currently none. "S2B" could have been used in place of "S2A",

©® COPYRIGHT 1879, 1880, Micro Data Base Systems, Inc. 168

MDBS Data Management System Documentation

achieving the same result.

11 See if the course exists.

When removing data from the data base, the user must be very
careful. Read about the DRM and the RMS commands. When a record 1is
deleted, it is actually lost such that it can never be recovered, On
the other hand, when a member is removed from a set, only the Ilinkage
between the implied owner and member is lost. This is important when

a record is a member of multiple sets.

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 170

MDBS Data Management
RECORD SCHOOL
ITEM NAME CHAR
RECORD TEACHER
ITEM NAME CHAR
ITEM SENIORTY INT

RECORD STUDENT

ITEM NAME CHAR
ITEM NUMBER INT
ITEM GPA REAL

RECORD CLASS

ITEM TITLE CHAR
ITEM ROOM INT

ITEM SEMESTER INT

RECORD SCLASS
ITEM GRADE INT

© COPYRIGHT 1879, 1880, Micro Data Base Systems,

System Documentation

ALL SCHOOLS
NaAME OF SCHOOL

ALL TEACHERS
TEACHER NAME
SENIORITY

ALL STUDENTS
STUDENT NAME
STUDENT NUMBER
GRADE POINT AVERAGE

ALL CLASSES OFFERED
COURSE TITLE

ROOM NUMBER
SEMESTER OFFERED

STUDENT S CLASSES
GRADE RECEIVED

FIGURE III.D.4

Inc.

171

MDBS Data Management

System Documentation

SET

OWNER

MEMBER

SET

OWNER

MEMBER

SET

OWNER

MEMBER

SET

OWNER

MEMBER

SET

OWNER

MEMBER

SET

OWNER

MEMBER

SET

QWNER

MEMBER

SET

OWNER
MEMBER

© COPYRIGHT 18979,

St

SYSTEM

SCHOOL

SZ2A

SCHOOL

STUDENT

SZ2B

SCHOOL

STUDENT

S3

SCHOOL

CLASS

sS4

SCHOOL

TEACHER

S8

TEACHER

CLASS

S6

STUDENT

SCLASS

S7

CLASS
SCLASS

AUTO 1:N
SORT NAME

MAN 1:N
SORT NAME

MAN 1:N
SORT NUMBER

MAN 1:N
SORT TITLE

MAN 1:N
SORT NAME

MAN 1:N
FIFO

MAN 1:N
FIFO

MAN 1:N
IMMAT

Schools sorted by name

Students sorted by name

Students sorted by number

Classes offered by a school

Teachers in a school

Teachers teach classes

Students take classes

Classes consist of students

FIGURE III.D.S

1980, Micro Data Base Systems, Inc. 172

MDBS Data Management System Documentation

S7

‘Sl
SCHOOL
i
NAME
l
S24
5S4 S2B
TEACHER STUDENT
[l I |
NAME NAME
SENIORTY NUMBER
GPA
S3 Se
SCLASS
1
S5 GRADE
CLASS
L
TITLE
ROOM
SEMESTER
FIGURE III.D.8
©® COPYRIGHT 1978, 1980, Micro Data Base Systems, Inc.

173

MDBS Data Management System Documentation

2. Calling Procedures

MDBS.DMS routines c¢an be called from either machine language
routines or from higher level languages such as BASIC, FORTRAN, COBOL,
PASCAL, PL/I, etc. While the machine language <calls result in a
faster more efficient usage of the DMS package, calling from a higher
level language simplifies programmer tasks and results in a quick and

easily programmed data base application.
a. Calls from Machine Language Routines.

Machine language callable forms of MDBS.DMS use calling conventions
that are a function of the CPU. These are discussed in detail in the

appropriate system specific manual.
b. Calls From Higher Level Languages

A call te a DML routine from a higher level language {(such as

BASIC) will look (generically) like:
E0 = CALL (A, "routine name, arguments”, host language arguments)
where:
A A DMS entry point address
Routine name Name of a DML routine
Arguments A list of arguments, separated by

commas, giving item, record, set or
data block names as required by the
DML routines.

Host language arguments Host language variables separated by
commas. These are used only in the

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 174

MDBS Data Management System Documentation

DEFINE and EXTEND DML commands.
EO Represents a program variable where
a status value is returned.
The exact form of host language calls on your system is given in the

system specific manual.

A powerful feature of the Data Management System is the usage of

data blocks. A data block 1is a named collection of host language
variables. A given variable may participate in more than one data
block.

As an illustration, c¢consider the following record type that may

appear in an order processing system:

RECORD CUSTOMER

ITEM NAME CHAR 18
ITEM STREET CHAR 16
ITEM CITY CHAR 186
ITEM STATE CHAR 2
ITEM ZIPCODE CHAR 5]
ITEM CREDL.IM REAL 8
ITEM LASTSIZE REAL 8

We wish to store the customer’s name, address, credit limit, and size

of the last purchase.

A BASIC user c¢an issue the following call to DMS:
EO = CALL (A1, "DEFINE, DETAIL", N$, S$, C$, T%, 2%, C, S)
which will define a data block named DETAIL having variables N$, S3%,
C$, T$, Z$, C and S. Whenever the data block DETAIL is referred after
this definition, its wvariables will either receive (supply) values
from (to) the data base. For example, to get data from the current
customer record we would use:

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 175

MDBS Data Management System Documentation

E0 = CALL (A0, "GETR, CUSTOMER, DETAIL")
and this has the effect of retrieving the contents of the current
customer record and saving the contents of each customer field in the
associated host language variable. Likewise, a <call to create a
record and store data:

E0 = CALL (A0,"CRS, CUSTOMER, DETAIL")
will store the contents of each variable in the corresponding record

field.

In many cases it is convenient toc let the MDBS.DMS system select a
default data block name by omitting the data block name parameter in
the call statement:

EC = CALL (AOQ,"CRS, CUSTOMER")

In this case, a data block name of CUSTOMER will be used. If the
command specified is a record-oriented command (CRS, GETx, PUTx), the
record name is used as the default data block name. If the command 1is
an item—oriented command (GFx, SFx), the item name is used as a the

default data block name.

© COPYRIGHT 19738, 1880, Micro Data Base Systems, Inc. 176

MDBS Data Management System Documentation

3. Data Management System Routines

Error

DMS ERRORS

Explanation

01
oz
03
04
05
08
07
08
03
10
11
12
13
14
15
16
17
18
19

20
24
26
27
28
29
32
33
34
36
40
41
88
90
a1
92
93
94
958
96
7
S8
S8
100
101

Data Base not open

Invalid set—type

Invalid record-type

Invalid item—type for this record—-type
Invalid owner—type for this set—-type
Invalid member—type for this set—-type
Invalid data base key

No current owner of set—type

No current member of set-type

No current of record-type

Record already member of set

Record not member of set

Depending on item too large or negative
Data Base already open

Data Base not closed previously

No current of run unit

No more space in Data Base

Set not sorted

Depending—on item not binary with size 2 or it
item

A record type cannct have more than 1 variable
Duplicate name specified

Sole owner/member may not be deleted
Depending item or sort key may not be deleted
Invalid set characteristics

System—owned set cannot have other owners
Data Base opened for read access only
Record size too large

Invalid number

Improper password

Maximum value of depending on item is 32767
Binary number toco large

Variable length inconsistency

No such DMS routine

Insufficient room in memory

Incorrect number of arguments

Buplicate data—block name

Block name not found

Invalid data block name

Invalid number of arguments

Cannot read from data base files

Record occurrence(s) lost

Catastrophe

User may not read this record

User may not write this record

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc.

is a replicated

length item

177

MDBS Data Management System Documentation

102 User may not read this item

103 User may not write this item
104 Disk in wrong drive

105 Disk read or write error

1068 Cannot expand file for new page
107 File not present

108 VUser may not read this set

108 User may not write this set

110 Access levels inconsistent

111 Syntax error in command line

285 End—-of—-set or end of specification

® COPYRIGHT 1979, 1980, Micro Data Base Systems, Inec, 178

MDBS Data Management System Documentation

Add Current of run unit to Set

E0 = cALL (A0, "ACS, set—type")

Arguments:

set—type(input)

Currency Indicators Involved:

current of run unit{(input)
current owner of set—type(input)
current member of set—type(input)

current member of set—type(output)

Description:

The current record of the run unit is added
occurrence identified by the current owner of that set.

The

by the ordering criteria given in the
the given

similarly.

The new member becomes the current member of

set—-type.

Errors:

o1.
02.
06.
08.
11.
16.
17.
90.
83,
105.
108.
109.

© COPYRIGHT 1979,

ACS

Lo

set

position of the new member in the set is determined

DDL Set Description

for

set—type. If the set has been defined as a N:1 or
N:M set the position of the current owner with
other owners of the member record occurrence is determined

data base not open

invalid set—type

invalid member type for this set—type
no current owner of set—-type
record already member of set

no current of run unit

no more space in Data Base

no such DMS routine

catastrophe

disk read or write error

cannot expand file for new page
user may not write this set

1980, Micro Data Base Systems, Inc.

respect

the

to

given

179

MDBS Data Management System Documentation

Add Member to Set AMS

EO0 = CALL (A0, "AMS, record-type, set—-type")

Arguments:

record—-type(input)
set—type{(input)

Currency Indicators Involved:

current of record-type{input)
current owner of set—type(input)
current member of set-type(input)

current member of set—type(output)
current of run unit(output)

Description:

The current record of the given record-type is added to
the set occurrence identified by the current owner of that
set.

The position of the new member in the set is determined
by the ordering criteria given in the DDL Set Description for
the given set-type. If the set has been defined as a N:M or a
N:1 set the position of the current owner with respect to

other owners of the member record occurrence is determined
similarly.

The new member becomes the current member of the given
set—-type.

Errors:

01. data base not open

02. invalid set—type

03. invalid record-type

086. invalid menmber type for this set—type

08. no current owner of set—-type
10. no current of record—-type
11. record already member of set
17. no more space in Data Base
Q0. no such DMS routine

99. catastrophe

© COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 180

MDBS Data Management System Documentation

104. disk in wrong drive

105. disk read or write error

108, cannot expand file for new page
107. file not present

109. user may not write this set

© COPYRIGHT 1978, 1980, Micro Data Base Systems, Inc. 181

MDBS Data Management System Documentation

Check Current of run unit Type CCT
EO = CALL (A0, "CCT, record-type")

Arguments:

record—-type(input)

Currency Indicators Involved:

current of run unit(input)

Description:

The record—-type of the current record of the run unit is
compared to the given record—-type. If the current type 1is
equal te the given record-type, EC = 0. 1If the current type
is not equal to the given record-type, EO = 3.

Errors:

01. data base not open

03. invalid record-—type

16. ne current of run unit

90. no such DMS routine

99. catastrophe

100. user may not read this record
104. disk in wrong drive

105. disk read or write error

107. file not present

© COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc. 182

MDBS Data Management System Documentation

CLOSE the data base CLOSE

EO = CALL (A0, "CLOSE")

Arguments:

none

Currency Indicators Involved:

not applicable

Description:

This routine must be the last DML command executed in
any program that uses the data base. Otherwise, the data base
file will be inconsistent. All buffers are rewritten, and the
data base is properly closed.

Errors:
30. no such DMS routine
99. catastrophe
104. disk in wrong drive
105. disk read or write error

107. file not present

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 183

MDBS Data Management System Documentation

Check current Member Type CMT
EO = CALL (A0, "CMT, record-type, set—type")
Arguments:

record—type(input)
set—-type(input)

Currency Indicators Invelved:

current member of set—-type(input)

Description:

The record—type of the current member of the given set-—

type is compared to the given record—type. If the

member—type is equal to the given record—type, E0O = O.
current member—type is not equal to the given record-type,

= 3.

Errors:

01. data base not open

0z2. invalid set—type

03. invalid record—-type

08. no current member of set-type
90. no such DMS routine

99. catastrophe

104. disk in wrong drive

105. disk read or write error
107. file not present

108. user may not read this set

© COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc.

current
If the

EO

184

MDBS Data Management System Documentation

Check current Owner Type caT

E0O = CALL (A0, "COT, record-type, set-type")

Arguments:
record—-type(input)
set—type(input)
Currency Indicators Involved:

current owner of set—type(input)

Description:

The record-type of the current owner of the given set-—
type is compared to the given record-type. If the current
owner—type is equal to the given record-type, EO0O = 0. If the
current owner—-type is not equal to the given record-type, EO0O =
3.

Errors:
01. data base not open

0z2. invalid set—type
03. invalid record-type

08. no current owner of set—type
30. no such DMS routine

99. catastrophe

104. disk in wrong drive

105. disk read or write error
107. file not present

108. user may not read this set

© COPYRIGHT 18973, 1880, Micro Data Base Systems, Inc. 188

MDBS Data Management System Documentation

95, invalid data block name

36. invalid number of arguments

99. catastrophe

101. user may not write this record
103. user may not write this item
105. disk read or write error

106. cannot expand file for new page
107. file not present

© COPYRIGHT 19879, 1980, Micro Data Base Systems, Inc. 188

MDBS Data Management System Documentation

DEFINE a data block DEFINE

E0 = CALL (Al, "DEFINE, data-block”, hlv)

Arguments:

data—-block name (input)

hlv — host language variables (input)
Currency Indicators Involved:

none

Description:

A data block with the user specified name is created and
the indicated host language variables are associated with the

data block.
Errors:
01. data base not open
0. no such DMS routine
91. insufficient room in memory
92. incorrect number of arguments
93. duplicate data block name
5. invalid data block name
96. invalid number of arguments

99. catastrophe

Notes:

1. Al is the address of the entry to the DMS for the
DEFINE and EXTEND DML commands.

2. The hlv list contains at least one variable name
(constants are not allowed) and, if there is more
than one variable, the variables are separated by
commas.

3. A given host language variable can appear in more
than one data block.

4. Any host language variable can appear more than once
in a data block.

5. DEFINE can be called before or after an OPEN.

© COPYRIGHT 1873, 1980, Micro Data Base Systems, Inc. 189

MDBS Data Management System Documentation

ot e e s e i i e et ot e e e . i St Bt . o S S ot S i e e Bt e S e e PO e T St e A At At et

Delete Record based on Current of run unit DRC

EO0 = CaLL (A0, "DRC")

Arguments:

Currency Indicators Involved:

current of run unit(input)

all indicators referencing the specified record (output)

Description:

The record identified by the current of the run unit is
logically and physically deleted from the data base.

For all sets of which the record to be deleted is an
owner, the set cccurrence is deleted.

For all sets of which the record to be deleted is a

member, the record is removed from the set, i.e., the previous
member is linked to the next member relative to the deleted
member.

For all set-types of which the deleted record was the
current owner, the current owner and current member currency
indicators are set to null.

For all set-types of which the deleted record was the
current member, the currency indicator of the member is set to
null. (Note that it is possible to reach the end of the set
this way without it being indicated via EO0).

If the deleted record was the current of its record-
type, the currency indicator of that record-type is set to

null.

Additionally, the currency indicator of the run unit 1is
set to null.

Errors:

ot. data base not open
02. invalid set-type

© COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 190

MDBS Data Management System Documentation

18. no current of run unit

90. no such DMS routine

99. catastrophe
101. wuser may not write this record
104. disk in wrong drive
105. disk read or write error

107. file not present

© COPYRIGHT 1978, 1980, Micro Data Base Systems, Inc. 191

MDBS Data Management System Documentation

Delete Record based on current Member DRM
EO = CALL (AO, "DRM, set-type")

Arguments:

set—~type(input)

Currency Indicators Involved:

current member of set-type(input)

all indicators referencing the specified record (output)

Description:

The record identified by the current member of the set-—
type is logically and physically deleted from the data base.

For all sets of which the record tec be deleted 1is an
owner, the set occurrence is deleted.

For all sets of which the record to be deleted is a

member, the record is removed from the set, i.e., the previous
member is linked to the next member relative to the deleted
member.

For all set—-types of which the deleted record was the
current owner, the current owner and current member currency
indicators are set to null.

For all set—-types of which the deleted record was the
current member, the currency indicator of the member is set to
null. (Note that it is possible to reach the end of the set
this way without it being indicated via EO).

If the deleted record was the current of its record-
type, the currency indicator of that record-type 1is set to
null.

If the deleted record was the current of the run unit,

the current of the run unit is set to null.

Errors:

©® COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 182

MDBS Data Management System Documentation

01. data base not open
02. invalid set—-type
08. no current member of set—type

90. no such DMS routine
98. catastrophe

101. user may nhot write this record
104. disk in wrong drive

105. disk read or write error

107. file not present

108. user may not read this set

© COPYRIGHT 19789, 1980, Micro Data Base Systems, Inc. 193

MDBS Data Management System Documentation

Delete Record based on current Owner DRO
E0 = CALL (A0, "DRO, set-type")

Arguments:

set—type(input)

Currency Indicators Involved:
current owner of set—type(input)

all indicators referencing the specified record (output)

Description:

The record identified by the current owner of the set-—
type is logically and physically deleted from the data base.

For all sets of which the record to be deleted is an
owher, the set occurrence is deleted.

For all sets of which the record to be deleted 1is a

member, the record is removed from the set, i.e., the previous
member is linked to the next member relative to the deleted
member.

For all set-types of which the deleted record was the
current owner, the current owner and current member <currency
indicators are set to null.

For all set—types of which the deleted record was the
current member, the currency indicator of the member is set to
null. {(Note that it is possible to reach the end of the set
this way without it being indicated via EO).

If the deleted record was the current of its record-
type, the current of that record-type is set to null.

If the deleted record was the current of the run unit,
the currency indicator of the current of run unit 1is set to
null.

Errors:

01. data base not open

©® COPYRIGHT 1878, 1880, Micro Data Base Systems, Inc. 184

MDBS Data Management System Documentation

0z2.
08.
90.
99.
101.
104.
108.
107.
108.

© COPYRIGHT 1979,

invalid set—-type

no current owner of set—-type
no such DMS routine
catastrophe

user
disk
disk
file
user

1980,

may not write this record
in wrong drive

read or write error

not present

may not read this set

Micro Data Base Systems,

Inc.

195

MDBS Data Management System Documentation

Delete Record based on current Record DRR

E0 = CALL (A0, "DRR, record-type")

Arguments:

record—-type(input)

Currency Indicators Involved:
current of record-type{(input)

all indicators referencing the specified record (output)

Description:

The record identified by the current of the record—-type
is logically and physically deleted from the data base.

For all sets of which the recerd to be deleted is an
owher, the set occurrence is deleted.

For all sets of which the record to be deleted 1is a

member, the record is removed from the set, i.e., the previous
member is linked to the next member relative to the deleted
member.

For all set-types of which the deleted record was the
current owner, the current owner and current member currency
indicators are set to null.

For all set—types of which the deleted record was the
current member, the currency indicator of the member is set to
null. (Note that it is possible to reach the end of the set
this way without it being indicated via EO).

If the deleted record was the current of its record-
type, the currency indicator of that record-type is set to
null.

If the deleted record was the current of the run unit,

the currency indicator of the current of run unit is set to
null.

Errors:

® COPYRIGHT 1879, 1880, Micro Data Base Systems, Inc. 196

MDBS Data Management System Documentation

o1. data base not open
03. invalid record-type
10. no current of record-type

S0. no such DMS routine
99. catastrophe

101. user may not write this record
104. disk in wrong drive
105. disk read or write error

107. file not present

©® COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc. 187

MDBS Data Management System Documentation

EXTEND a data block EXTEND

E0 = CALL (Al, "EXTEND, data-block", hlv)

Arguments:

data block name (input)
hlv — host language variables {(input)

Currency Indicators Involved:

none

Description:

This routine adds more host language variables to an
already defined data-block. This is useful if the size of a
host language line of text is too limited.

Errors:
30. noe such DMS routine
91. insufficient room in memory
Q2. incorrect number of arguments
84. data block name not found
95. invalid data block name
96. invalid number of arguments
99. catastrophe

Notes:

1. An EXTEND call for a given block must follow either
another EXTEND <c¢all for that block or the DEFINE

call for that block. Other EXTEND or DEFINE calls
cannot be intermixed.

2. The call:
E0 = CALL (A1, "DEFINE, RX", A, B3, C, D, E, F)
is equivalent to:
E0O = CALL (A1, "DEFINE, RX", A,B,C,D)
E0 = CALL (Al, "EXTEND, RX", E, F)

3. The hlv list must contain at least one variable name
(constants are not allowed) and, if there is more

than one variable, the variables are separated by
commas.

©@ COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 198

MDBS Data Management System Documentation

4. A given host language variable can appear in more
than one data block.

5. A host language variable can appear more than once in
a data block.

8. EXTEND can be called before or after an OPEN.

© COPYRIGHT 1878, 1880, Micro Data Base Systems, Inc. 189

MDBS Data Management System Documentation

Find First Member FFM
EO = CALL (A0, "FFM, set—-type")

Arguments:

set—type(input)

Currency Indicators Involved:
current owner of set—-type(input)

current member of set-type(output)
current of run unit(output)

Description:

The first member of the given set-type is made the
current member of that set—-type.

If the set contains no members, EO is set to 285,

Errors:
01. data base not open
02. invalid set—-type
08. no current owner of set-type
80. no such DMS routine
99. catastrophe
104. disk in wrong drive
105. disk read or write error
107. file not present
108. user may not read this set

255. end—of—-set

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 200

MDBS Data Management System Documentation

Find First Owner FFO

EO = CALL (A0, "FFO, set—type")

Arguments:

set—type(input)

Currency Indicators Involved:
current member of set—-type(input)
current owner of set-type(output)
current of run unit(output)
Description:

The first owner of the given set—-type 1is made the
current owner of that set—-type.

Errors:
01. data base not open
02, invalid set—type
09, no current member of set—type
90. no such DMS routine
98. catastrophe
104. disk in wrong drive
105. disk read or write error
107. file not present
108. user may hot read this set

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 201

MDBS Data Management System Documentation

FIND Member FINDM

EO = CALL (A0, "FINDM, item-~type, set—type, data-block")

Arguments:

item—type
set—-type(input)
data-block(input)

Currency Indicators Involved:
current owner of set—type(input)

current member of set—type{output)
current of run unit(output)

Description:

The current set 1is searched for the logically first
member in which the item—type specified has a value equal to
the value given in the data-block. If such a member is found,
it is made the current member of the given set-type. If such
a member is not found, EO is set to 285.

Errors:
o1. data base not open
02. invalid set-type
08. no current owner of set—-type
90. no such DMS routine
94. block name not found
96. invalid number of arguments
99. catastrophe
100. user may not read this record
102. user may not read this item
104. disk in wrong drive
105. disk read or write error
107. file not present
108. user may not read this set

255, end—of—-set

® COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 202

MDBS Data Management System Documentation

FIND Owner FINDO

EO = CALL (A0, "FINDO, item-type, set—type, data—-block")

Arguments:

item—type
set—type(input)
data-block(input)

Currency Indicators Involved:
current member of set—type(input)

current owner of set—type(output)
current of run unit(output)

Description:

The current set 1is searched for the logically first
owner in which the item—type specified has a value equal to
the value given in the data-block. If such an owner is found,
it is made the current owner of the given set—type. If such a
owner is net found, EO0O is set to 2B5.

Errors:
01. data base not open
0z. invalid set—-type
09. no current member of set—type
90. no such DMS routine
84, block name not found
S96. invalid number of arguments
99. catastrophe
100. user may not read this record
102. user may not read this item
104. disk in wrong drive
105. disk read or write error
107. file not present
108. user may not read this set

255. end—of—-set

©® COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 203

MDBS Data Management System Documentation

Find Last Member FLM

E0 = CALL (A0, "FLM, set-type")

Arguments:

set-type(input)

Currency Indicators Involved:
current owner of set—type(input)
current member of set-type(output)
current of run unit(output)
Description:

The last member of the given set—type 1s made the
current member of that set-type.

If the set contains no members, EO0 is set to 28B5.

Errors:
01. data base not open
02. invalid set—type
08. no current owner of set—type
0. no such DMS routine
89. catastrophe
104. disk in wrong drive
105. disk read or write error
107. file not present
108. user may not read this set

255. end—of—set

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 204

MDBS Data Management System Documentation

Find Last Owner FLO

E0O = CALL (A0, "FLO, set-type")

Arguments:

set-type(input)

Currency Indicators Involved:
current member of set—type(input)

current owner of set—type(output)
current of run unit(output)

Description:

The last owner of the given set—-type is made the current
owner of that set-type.

Errors:
0l1. data base not open
02. invalid set—-type
09. no current member of set—-type
90. no such DMS routine
99, catastrophe
104. disk in wrong drive
105. disk read or write error
107. file not present
108. user may not read this set

©@ COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 2095

MDBS Data Management System Documentation

Find Member based on Sort Key FMSK

EO = CALL (AQ0, "FMSK, set—type, data-block")

Arguments:

set—type(input)
data-block(input)

Currency Indicators Involved:
current owner of set—type(input)
current member of set—type{output)

current of run unit(output)

Description:

The current set is searched for the logically first

member with a sort key value equal to the value given the
data-block. If such a member is found, it is made the current
member of the given set—type and the current record of the run
unit. If such a member is not found, E0 is set to 2855 and the
current member of the set-type is set to the record logically
prior to the requested record. Note that the current of run
unit is not altered when error 255 is returned.
Errors:
01. data base not open
02. invalid set—-type
08. no current owner of set—-type
90. no such DMS routine
94. block name not found
8. invalid number of arguments
99. catastrophe
100. user may not read this record
102. user may not read this item
104. disk in wrong drive
105. disk read or write error
107. file not present
108, user may not read this set
255, end—-of-set
© COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc. 206

MDBS Data Management System Documentation

Find Next Member FNM

E0O = CALL (A0, "FNM, set—type")

Arguments:

set—type(input)

Currency Indicators Involved:

current owner of set—type(input)
current member of set—type(input)

current member of set—-type(output)
current of run unit{output)
Description:

The logically next member of the given set—-type is made
the current member of the given set—type.

If there 1is no next member (the current member is the
last, or the set is empty) EO is set to 285 and the currency
indicator for the current member of the set is not affected.

If there is no current member of the given set—-type,
then this is the same as FFM.

Errors:
01. data base not open
0z2. invalid set—-type
08. no current owner of set—-type

30. no such DM3 routine
99. catastrophe

104. disk in wrong drive

105. disk read or write error
107. file not present

108. user may hot read this set

2958. end—of—-set

© COPYRIGHT 19739, 1980, Micro Data Base Systems, Inc. 207

MDBS Data Management System Documentation

Find Next Owner

E0 = CALL (AO, "FNO, set—type")

Arguments:

set-type(input)

Currency Indicators Involved:

current owner of set—-type(input)

current member of set—type(input)

current owner of set—type(output)
current of run unit(output)

Description:

The

If there is no next owner (the current

last) EO

Errors:

01.
02.
08.
09.
90.
99.
104.
105.
107.
108.

© COPYRIGHT 1979,

FNO

logically mnext owner of the given set—-type is made
the current owner of the given set—-type.

owner

is

the

is set to 2B5 and the currency indicator for the
current owner of the set is not affected.

data base not open

invalid set-type

no current owner of set—type
no current member of set—type
no such DMS routine
catastrophe

disk in wrong drive

disk read or write error

file not present

user may not read this set

end—of—set

1980, Micro Data Base Systems, Inc.

208

MDBS Data Management System Documentation

Find Owner based on Sort Key FOSK

E0 = CALL (AQ0, "FOSK, set-type, data-block”)

Arguments:

set—type{(input)
data-block{(input)

Currency Indicators Involved:
current member of set—type(input)

current owner of set—-type{(output)
current of run unit{output)

Description:

The current set is searched for the logically first
owner with a sort key value equal to the value given in the
data-block. If such an owner is found, it is made the current
owner of the given set—-type and the current record of the run
unit. If such a owner is not found, EO0 is set to 2855 and the
current member of the set—-type is set to the record logically
prior to the requested record. Note that the current run unit
is not altered when error 285 is returned.

Errors:
01. data base not open
02. invalid set—-type
09. ne current member of set—type
90. no such DMS routine
94. block name not found
96. invalid number of arguments
88. catastrophe
100. wuser may not read this record
102. user may hot read this item
104. disk in wrong drive
105. disk read or write error
107. file not present
108. user may not read this set

255. end—of—-set

© COPYRIGHT 1978, 1980, Micro Data Base Systems, Inc. 208

MDBS Data Management System Documentation

Find Previous Member FPM

EO = CALL (A0, "FPM, set—type")

Arguments:

set—type(input)

Currency Indicators Involved:

current owner of set—type(input)
current member of set—type(input)

current member of set—-type(output)
current of run unit{(output)

Description:

The logically previous member of the given set—-type is
made the current member of the given set—type.

If there is no previous member (the current member 1is
the first, or the set is empty) EO is set to 255 and the
currency indicator for the current member of the set is not
affected.

If there is mno current member of the given set—-type,
then this is the same as FLM.

Errors:
01. data base not open
02Z2. invalid set—type
08. no current owner of set—-type
90. no such DMS routine
99. catastrophe
104. disk in wrong drive
105. disk read or write error
107. file not present
108, user may not read this set

255, end—of—set

© COPYRIGHT 1878, 1880, Micro Data Base Systems, Inc. 210

MDBS Data Management System Documentation

Find Previous Owner

E0 = CALL

Arguments:

(A0, "FPO, set-type")

set—type(input)

Currency Indicators Involved:

current owner of set—type(input)
current member of set—-type(input)

current owner of set—type(output)
current of run unit(output)

Description:

The

logically previous owner of the

given

made the current owner of the given set—type.

If

first) EO is set to 255 and the currency
current owner of the set is not affected.

Errors:

o1l.
c2.
08.
09.
S0.
93.
104.
105.
107.
108.

255.

©@ COPYRIGHT 1978,

data base not open

invalid set—-type

no current owner of set—type
no current member of set—type
no such DMS routine
catastrophe

disk in wrong drive

disk read or write error

file not present

user may not read this set

end—-of—set

1880, Micro Data Base Systems,

FPO

set—type

indicator

Inc.

is

there is no previous owner (the current owner is the

the

211

MDBS Data Management System Documentation

GET data from Current of run unit GETC

E0 = CALL (A0, "GETC, data-block")

Arguments:

data-block{(ocutput)

Currency Indicators Involved:

current of run unit(input)

Description:

The value of all items associated with the current
record of the run unit are returned in the data-block. The
values are returned in the same order as the items in the DDL
for the given record—-type.

There is no check made that variables in the data-block
are of the right type or size.

Errors:
01. data base not ocpen
16. no current of run unit
90. no such DMS routine
94. block name not found
95, invalid data block name
96. invalid number of arguments
83. catastrophe
100. user may hot read this record
102. user may not read this item
104. disk in wrong drive
105. disk read or write error

107. file not present

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 212

MDBS Data Management System Documentation

GET data from current Member GETM

E0 = CALL (A0, "GETM, set—type, data-block")

Arguments:
set—type(input)

data-block(output)

Currency Indicators Involved:

current owner of set—type(input)
current member of set—type(input)

Description:

The value of all items associated with the current
member of the set—type are returned in the data-block. The
values are returned in the same order as the items in the DDL
for the given record-type.

There is no check made that the variables in the data-
kblock are of the correct type or size. These checks are
solely the responsibility of the applications precgrammer.

Errors:
01. data base not open
o2, invalid set—type
08. no current owner of set—-type
09. no current member of set—type
S0. no such DMS routine
94. block name not found
95. invalid data block name
98, invalid number of arguments
99. catastrophe
100. user may not read this record
102. user may not read this item
104. disk in wrong drive
105. disk read or write error
107. file not present
108. user may not read this set

©® COPYRIGHT 1879, 1880, Micro Data Base Systems, Inc. 213

MDBS Data Management System Documentation

GET data from current Owner GETO

EQ = CALL (A0,

Arguments:

"GETO, set—-type, data-block")

set—type(input)

data-block(output)

Currency Indicators Involved:

current owner of set—type(input)

Description

.
.

The value of all items associated with the current owner

of the set-type

are returned in the data-block. The values

are returned in the same order as the items in the DDL for the
given record—type.

There

is

noe check made that the variables in the data-—

block are of the correct type or size. These checks are
solely the responsibility of the applications programmer.

Errors:

01l.
0z2.
08.
90.
94.
SB.
S6.
99.
100.
102.
104,
105.
107.
108.

® COPYRIGHT 1978,

data

base not open

invalid set—-type

no current owner of set—-type
no such DMS routine

block rame not found

invalid data block name
invalid number of arguments
catastrophe

user
user
disk
disk
file
user

1980,

may not read this record
may not read this item
in wrong drive

read or write error

not present

may not read this set

Micro Data Base Systems, Inc. 214

MDBS Data Management System Documentation

GET data from current Record GETR

E0O = CALL (A0, "GETR, record-type, data-block")

Arguments:
record—-type(input)

data~block(output)

Currency Indicators Involved:

current of record—-type(input)

Description:

The value of all items associated with the current of
the specified record type are returned in the data-block. The
values are returned in the same order as the items in the DDL
for the given record-type.

There 1is no check made that the variables in the data-
block are of the correct type or size. These checks are
solely the responsibility of the applications programmer.

Errors:
01. data base not open
03. invalid record-type
10. no current of record-type
80. noe such DMS routine
94. block name not found
a5, invalid data block name
96. invalid number of arguments
99. catastrophe
100. user may not read this record
102. user may not read this iten
104. disk in wrong drive
108. disk read or write error

107. file not present

© COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc. 2185

MDBS Data Management System Documentation

Get Field from Current of run unit GFC

EO = CALL (A0, "GFC, item—type, data-block")

Arguments:
item—type(input)

data-block(output)

Currency Indicators Involved:

current of run unit{input)

Description:

The wvalue of the given item—type 1in the record
identified by the current record of the run unit is returned
in the data-block.

There is no check made that the variable in the data-
block is of the correct type or size. These checks are solely
the responsibility of the applications programmer.

If the item—type is a depending item, the depended on
item 1s used to determine the number of instances of the item
te return.

Errors:

01. data base not open

02. invalid set—type

04. invalid item—type for this record-type
13. depended on item too large or negative
16. no current of run unit

90. no such DMS routine

94. block name not found

96. invalid number of arguments

99. catastrophe
100. user may not read this record

102. user may not read this item

104. disk in wrong drive

105. disk read or write error

107. file not present

© COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc. 216

MDBS Data Management System Documentation

Get Field from current Member GFM

EO = CALL (A0, "GFM, item—type, set—type, data-block")

Arguments:

item—type{input)
set—type(input)

data-block(output)
Currency Indicators Involved:

current owner of set—type(input)
current member of set—type(input)

Description:

The value of ©the given item—type in the record
identified by the current member of the specified set—-type is
returned in the data-block.

There is no c¢heck made that the variable in the data-
block is of the correct type or size. These checks are solely
the responsibility of the applications programmer.

If the item—type is a depending item, the depended on
item 1is used to determine the number of instances of the item
to return.

Errors:

01. data base not open

02. invalid set—type

c4. invalid item—type for this record-type
08. no current owner of set-type

093. no current member of set-type

13. depended on item too large or negative
30. no such DMS routine

94, block name not found

95. invalid data block name

96. invalid number of arguments

93. catastrophe

100. user may not read this record

102. user may not read this item

104. disk in wrong drive
105. disk read or write error
107. file not present

108. user may nct read this set

© COPYRIGHT 1879, 1880, Micro Data Base Systems, Inc. 217

MDBS Data Management System Documentation

Get Field from current Owner GFO

E0 = CALL (A0, "GFO, item—type, set—type, data—-block")

Arguments:

item—type(input)
set—type(input)

data-block(output)

Currency Indicators Involved:

current owner of set-type(input)

Description:

The wvalue of the given item—type 1in the record
identified by the current owner of the specified set-type is
returned in the data-block.

There is no check made that the variable in the data—
block is of the correct type or size. These checks are solely
the responsibility of the applications programmer.

If the item—type is a depending item, the depended on
item 1s used to determine the number of instances of the item
to return.

Errors:
01. data base not open

02, invalid set—-type
04. invalid item—type for this record-type

08. no current owner of set—type
13. depended on item too large or negative
S0, no such DMS routine

94, block name not found

95, invalid data block name

96, invalid number of arguments
99, catastrophe
100. user may not read this record
102. user may not read this item
104. disk in wrong drive

105. disk read or write error

107. filez not present

108. user may not read this set

© COPYRIGHT 1878, 1880, Micro Data Base Systems, Inc. 218

MDBS Data Management System Documentation

Get Field from current Record GFR

EO = CALL (A0, "GFR, item-type, record-type, data-block")

Arguments:

item—type(input)
record-type(input)

data-block{(output)

Currency Indicators Involved:

current of record—type{(input)

Description:

The wvalue of the given item—type in the record
identified by the current record of the specified record—type
is returned in the data-block.

There is no check made that the variable in the data-—
block is of the correct type or size. These checks are solely
the responsibility of the applications programmer.

If the item~type is a depending item, the depended on
item is used to determine the number of instances of the item
to return.

Errors:

01. data base not open
03. invalid record-type
04. invalid item~type for this record-type

10, no current of record-type

13. depended on item too large or negative
S80. no such DMS routine

o4, block name not found

95. invalid data block name

98, invalid number of arguments
89. catastrophe
100. user may not read this record
102. user may not read this item
104. disk in wrong drive
105. disk read or write error
107. file not present

©@ COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc. 219

MDBS Data Management System Documentation

Get Member Count

E0 = CALL (AO0, "GMC, set-type, data—block")

Arguments:

set—type(input)

data—-block(output)

Currency Indicators Involved:

current owner of set—type(input)

Description:

This
occurrences
data—-block

routine returns the number
owned by the current owner of the set—type.

must contain two integer

illustration purposes, call them I and J.

Total Number = 32768 x T + J

Normally, I

Errors:

01.
0z2.
08.
90.
34.
96.
99.
104.
105.
107.
108.

© COPYRIGHT 1879, 1880,

will be zero.

data base not open

invalid set—-type

ne current owner of set—-type
no such DMS routine

block name not found
invalid number of arguments
catastrophe

disk in wrong drive

disk read or write error
fiie not present

user may not read this set

Micro Data Base Systems,

I

of

GMC

member

variables.

The total
occurrences is computed by the user with the formula:

nc.

record

The
For

number of

220

MDBS Data Management System Documentation

Get Owner Count GOC

E0 = CALL (A0, "GOC, set—type, data-block")

Arguments:
set—type(input)

data-block{(output)

Currency Indicators Involved:

current member of set-type(input)

Description:

This routine returns the number of owner
occurrences owned by the current member of the set-type.
data-block must contain two integer variables.
illustration purposes, call them I and J. The total

occurrences 1is computed by the user with the formula:
Total Number = 32768 % I + J

Normally, I will be zero.

Errors:
01. data base not open
0z. invalid set—-type
08. no current member of set-type
90. no such DMS routine
Q4. block name not found
96. invalid number of arguments
99. catastrophe
104. disk in wrong drive
105. disk read or write error
107. file not present
108. user may not read this set

© COPYRIGHT 1873, 1980, Micro Data Base Systems, Inc.

record

The
For

number of

221

MDBS Data Management System Documentation

Get record-Type of Current of run unit GTC

E0 = CALL (A0, "GTC, data-block")

Arguments:

data—-block(output)

Currency Indicators Involved:

current of run unit{input)

Description:

The record-—-type name of the record identified by the
current record of the run unit is returned in the first data-—
block variable.

The record—-type name is in character format, and is
padded with trailing blanks.

Errors:
o1. data base not open
18. no current of run unit
90. no such DMS routine
94, block name not found
95. invalid data block name
96. invalid number of arguments
93. catastrophe
104. disk in wrong drive
105. disk read or write error
107. file not present
108. user may not read this set

© COPYRIGHT 1978, 1980, Micro Data Base Systems, Inc. 222

MDBS Data Management System Documentation

e e e e] e e e e it e e e i e e e ———— —_———

Get record-Type of current Member GTM

E0 = cALL (A0, "GTM, set—type, data-block")

Arguments:
set~type(input)

data-block{output)

Currency Indicators Involved:

current owner of set—type(input)

current member of set-type(input)
Description:

The record—-type name of the record identified by the
current member of the set—type is returned in the first data-

block variable.

The record-type name 1is in character format, and is
padded with trailing blanks.

Errors:
01. data base not open
02. invalid set—type
08. no current owner of set-type
09. no current member of set—-type
90. no such DMS routine
94. block name not found
95. invalid data block name
96. invalid number of arguments
99, catastrophe
100. user may not read this record
104. disk in wrong drive
105. disk read or write error
107. file not present
108. user may nhot read this set

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 223

MDBS Data Management System Documentation

Get record-Type of current Owner

EO = CALL (A0, "GTO, set-type, data-block"™)

Arguments:
set—type(input)

data-block(output)

Currency Indicators Involved:

current owner of set—-type(input)

Description:

The record-type name of the record identified by

the

current owner of the set-type is returned in the first data—

block variable.

The record—type name is in character
padded with trailing blanks.

Errors:
o1l. data base not open
02. invalid set—-type
08. no current owner of set—-type
90. no such DMS routine
94. block name not found
95. invalid data block name
96, invalid number of arguments
99, catastrophe
104. disk in wrong drive
105. disk read or write error
107. file not present
108. wuser may not read this set

©® COPYRIGHT 1878, 1980, Micro Data Base Systems, Inc.

is

224

MDBS Data Management System Documentation

OPEN data base OPEN

E0 = CALL (A0, "OPEN, data-block")

Arguments:

data-block (input)

Currency indicators involved:

all

Description:

This subroutine must be called before any other of the
subroutines in the DMS are called (except DEFINE and EXTEND).

Table initialization is taken care of by this
subroutine.

All sets which have been defined in the DDL as having
SYSTEM as their owner have their current owner set to SYSTEM.
The current of run unit is set to SYSTEM. All other currency
indicators are set to null.

The data block must contain the following:

a. Data base file name
This must be a character string containing a
fully qualifiied file name as specified in the
DDL..

b. User’s name
This must be an upper case character string
containing the user’s name as declared in the
PASSWORDS section of the DDL.

c. Password
This must be an upper <c¢ase character string
containing the user’s password as declared in
the PASSWORDS section of the DDL.

d. Read/write status
This must be an upper case character string
containing "MOD" if the user wishes to write and
read from the data base. Any other string will
put the data base in a read-only mode.

Errors:

© COPYRIGHT 19793, 1980, Micro Data Base Systems, Inc. 225

MDBS Data Management System Documentation

14.
18.
36.
90.
S1.
92.
94.
95.
96.
97.
93.
104.
108.
107.

©@ COPYRIGHT 1878,

data base already open

data base not closed previously
improper password

no such DMS routine
insufficient room in memory
incorrect number of arguments
block name not found

invalid data block name

invalid number of arguments
cannot read from data base files
catastrophe

disk in wrong drive

disk read or write error

file not present

1980, Micro Data Base Systems, Inc.

226

MDBS Data Management System Documentation

PUT data into Current of run unit PUTC

E0O = CALL (A0, "PUTC, data-block")

Arguments:

data—-block(output)

Currency Indicators Involved:

current of run unit{input)

Description:

The data-block specified is stored in the record
specified by the current record of the run unit. The data-
block is assumed toc be in the same order and alignment as the
items in the DDL for the given record-type.

There 1is no check made that data-block is of the right
type, alignment or size.

If any item—type in the given record-type is a depending
item, the location of the depended on item is assumed to
contain the correct value to determine the number of instances
of the depending on item to store.

Errors:
01. data base not open
168. no current of run unit
83. variable length inconsistency
Q0. no such DMS routine
94. Dblock name not found
95. invalid data block name
99. catastrophe
101. wuser may not write this record
103. wuser may not write this item
104. disk in wrong drive
105. disk read or write error
106. cannot expand file for new page

107. file not present

© COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc. 227

MDBS Data Management System Documentation

et e et . et e e vl e e A i R ek .) S s e S o e e i e

PUT data into current Member PUTM

E0O = CALL (A0, "PUTM, set-type, data-block")

Arguments:
set—type(input)

data-block(output)

Currency Indicators Involved:

current owner of set-type(input)
current member of set—-type(input)

Description:

The data—-block specified 1s stored 1in the record
indicated by the current member of the specified set—-type.
The data-block is assumed ¢to be in the same order and
alignment as the items in the DDL for the given record-type.

There 1is no check made that data-block is of the right
type, alignment or size.

If any item—~type in the given record—type is a depending
item, the location of the depended on item is assumed to
contain the correct value to determine the number of instances
of the depending on item to store.

Errors:
01. data base not open
0z2. invalid set—-type
08. no current owner of set-type
09. no current member of set—type
88. variable length inconsistency
90. no such DMS routine
94. block name not found
95. invalid data block name
9a. invalid number of arguments
99. catastrophe
101. user may not write this record
108. user may hot write this item
104. disk in wrong drive
105. disk read or write error
106. cannot expand file for new page

© COPYRIGHT 1878, 1980, Micro Data Base Systems, Inc. 228

MDBS Data Management System Documentation

107. file not present
108. user may not read this set

® COPYRIGHT 1879, 1880, Micro Data Base Systems, Inc. 229

MDBS Data Management System Documentation

PUT data into current Owner PUTO
E0 = CALL (A0, "PUTO, set-type, data-block")

Arguments:
set—-type(input)

data—-block{output)

Currency Indicators Involved:

current owner of set—-type(input)

Description:

The data-biock specified is stored in the record
indicated by the current record of the specified set-type.
The data-block 1is assumed to be in the same order and
alignment as the items in the DDL for the given record-type.

There is no check made that data-block is of the right
type, alignment or size.

If any item—~type in the given record—-type is a depending
item, the location of the depended on item is assumed to
contain the correct value to determine the number of instances
of the depending on item Lo store.

Errors:
01. data base not open
oz. invalid set-type
08. no current owner of set-type
90. noe such DMS routine
99. catastrophe
83. variable length inconsistency
90. ne such DMS routine
o4, block name not found
g5, invalid data block name
96. invalid number of arguments
30. no such DMS routine
S9. catastrophe
101. user may not write this record
103. user may not write this item
104. disk in wrong drive
105. disk read or write error

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 230

MDBSJData Management System Documentation

106, cannot expand file for new page
107. file not present
108. user may not read this set

©® COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 231

MDBS Data Management System Documentation

PUT data into current Record PUTR

E0O = CALL (A0, "PUTR, record—-type, data—block")

Arguments:
record—type(input)

data-block(output)

Currency Indicators Involved:

current of record-type{input)

Description:

The data-block specified 1is stored in the record
indicated by the current of the specified record-—-type. The
data-block is assumed to be in the same order and alignment as
the items in the DDL for the given record-—-type.

There is no check made that data-block is of the right
type, alignment or size.

If any item—~type in the given record-type is a depending
item, the location of the depended on item 1is assumed to
contain the correct value to determine the number of instances
of the depending on item to store.

Errors:
01. data base not open
03. invalid record-type
10. no current of record-type
89. variable length inconsistency
90. no such DMS routine
94. block name not found
95. invalid data block name
96. invalid number of arguments
899. catastrophe
101. wuser may not write this record
103. user may not write this item
104. disk in wrong drive
105. disk read or write error
106. cannot expand file for new page

107. file not present

©® COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc. 232

MDBS Data Management System Documentation

Remove current Member from Set RMS

EO = CALL (A0, "RMS, set—type")

Arguments:

set—type{input)

Currency Indicators Involved:

current owner of set—type(input)
current member of set—type(input)

current member of set—type(output)

Description:

The current member of the given set—-type is logically
removed from the set, i.e., the previous member is linked to
the next member, and the current member is no longer
associated with the current owner of the set—type.

The currency indicator of the member of the given set-
type becomes null. (Note that it is possible to reach the end
of the set this way without it being indicated via EO).

Note that the record is only removed from the given set;
it is not deleted from the data base.

Errors:
01. data base not open
02. invalid set-type
08. no current owner of set—-type
09. no current member of set—type
90. no such DMS routine
998. catastrophe
104. disk in wrong drive
105. disk read or write error
107. file not present
108. user may not read this set
108. user may not write this set

© COPYRIGHT 19739, 1980, Micro Data Base Systems, Inec. 233

MDBS Data Management System Documentation

Remove all Set Members
E0 = CALL (A0, "RSM, set-type”)
Arguments:

set—type(input)

Currency Indicators Involved:
current owner of set—-type(input)

current member of set—-typeloutput)

Description:

The current set is set to have no members,

The currency indicator of the member of the given

type becomes null.

RSM

i.e.,
members of the set are logically removed from the set.

Note that the records removed from the set

deleted from the data base, nor is the owner of the given

type deleted from the data base.

Errors:
01. data base not open
02. invalid set—-type
08. no current owner of set-type

90. no such DMS routine
99. catastrophe

104. disk in wrong drive

105. disk read or write error
107. file not present

108. user may not read this set
109. user may not write this set

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc.

all

set—

not
set—

234

MDBS Data Management System Documentation

Set Current of run unit based on Member SCM

E0O = CALL (A0, "SCM, set-type")

Arguments: .

set-type(input)

Currency Indicators Involved:

current owner of set—type (input)
current member of set—-type (input)

current of run unit(output)

Description:

The record identified by the current member of the
specified set-type is set to be the current record of the run

unit.
Errors:
01. data base not open
02. invalid set-type
08. no current owner of set—type
08. no current member of set-—type
a0, no such DMS routine
99. catastrophe
108. user may not read this set

© COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc. 238

MDBS Data Management System Documentation

Set Current of run unit based on Owner SCO

E0O = CALL (A0, "SCO, set—-type")

Arguments:

set—type(input)

Currency Indicators Involved:
current owner of set—-type(input)

current of run unit(output)

Description:

The record identified by the current owner of the
specified set—-type is set to be the current record of the run

unit.
Errors:
01. data base not open
oz. invalid set—-type
08. no current owner of set-type
80. no such DMS routine
89. catastrophe
108. user may not read this set

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 236

MDBS Data Management System Documentation

Set Current of run unit based on Record SCR

EQ0 = CALL (A0, "SCR, record-type")

Arguments:

record—-type(input)

Currency Indicators Involved:
current record of record type(input)

current of run unit{output)

Description:

The record identified by the current of the specified
record-type 1is set to be the current record of the run unit.

Errors:
01. data base not open
03. invalid record-type
10. no current of record—-type
Q0. noe such DMS routine
99. catastrophe
100. user may not read this record

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 237

MDBS Data Management System Documentation

o e . e et e s et i i e e s S e e e o e _— _— J—

Set Field in Current of run unit SFC

EO = CALL (A0, "SFC, item—-type, data—-block")

Arguments:

item—type(input)
data-block(input)

Currency Indicators Involved:

current of run unit(input)

Description:

The value of the variable in the data-block is stored in
the given item—type of the record identified by the current
record of the run unit.

There is no check made that the variable is of the right
type or size.

If the item—type 1is a depending item, the depended on
item value in the record is used to determine the number of
instances of the given item—-type to store.

Errors:
01. data base not open
04. invalid item—type for this record-type
16. no current of run unit
13. depended on item too large or negative
40. maximum value of depending on item is 32768
S0. no such DMS routine
94. Dblock name not found
36. invalid number of arguments
99. catastrophe
101. user may hot write this record
103. wuser may not write this item
104. disk in wrong drive
108. disk read or write error
108. cannot expand file for new page
107. file not present
108. user may not read this set

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 238

MDBS Data Management System Documentation

i e S S S o e . S ot oot S S et i e e S - o et S e A s it i it Aot e et e i St St . it S

Set Field in current Member SFM

EOC = CALL (A0, "SFM, item—type, set—type, data-block")

Arguments:
item—type(input)
set—type(input)
data—-block(input)
Currency Indicators Involved:
current owner of set—type(input)

current member of set-type(input)

Description:

The value of the variable in the data—-block is stored in

the given item—-type of the record identified by the
member of the specified set-type.

current

There is no check made that the variable is of the right

type or size.

If the item—type is a depending item, the depended on
item value in the record is used to determine the number of

instances of the given item—type to store.

Errors:

01. data base not open

0z2. invalid set—-type

04. invalid item—~type for this record-type
08. no current owner of set—type

08. no current member of set—type

13. depended on item too large or negative
40. maximum value of depending on item is 327868
90. no such DMS routine

94, Dblock name not found

95. invalid data block name

96. invalid number of arguments

101. user may not write this record
103. wuser may not write this item

104. disk in wrong drive

105. disk read or write error
108. cannot expand file for new page

107. file not present

© COPYRIGHT 19789, 1980, Micro Data Base Systems, Inc.

Wl . woTL [RYE= 4 11 WL o wlld A e v e

103. user may not write this item
104. disk in wrong drive

108. disk read or write error

106. cannot expand file for new page
107. file not present

108. user may not read this set

© COPYRIGHT 19789, 1980, Micro Data Base Systems, Inc.

239

241

MDBS Data Management System Documentation

Set Field in current Record SFR

E0O = CALL (A0, "SFR, item-type, record-type, data-block")

Arguments:
item—type(input)

record—-type(input)
data-block(input)

Currency Indicators Involved:

current record of record-type(input)

Description:

The value of the variable in the data-block is stored in
the given item—-type of the record identified by the current
record of the run unit.

There is no check made that the variable is of the right
type or size.

If the item—type is a depending item, the depended on
item value in the record is used to determine the number of
instances of the given item—type to store.

Errors:

o1l. data base not open

04. invalid item—-type for this record—type
10. no current of record-type

13. depended on item too large or negative
40. maximum value of depending on item is 32768
80. no such DMS routine

94. block name not found

95. invalid data block name

96. invalid number of arguments
101. user may not write this record

103. user may not write this item

104. disk in wrong drive

105. disk read or write error

1086. cannot expand file for new page

107. file not present

108. user may not read this set

© COPYRIGHT 18789, 1980, Micro Data Base Systems, Inc. 242

MDBS Data Management System Documentation

Set Member based on Current of run unit SMC

E0O = CALL (A0, "SMC, set—type")

Arguments:

set—type(input)

Currency Indicators Involved:
current of run unit{(input)

current owner of set—type(output)
current member of set—type(output)

Description:

The record identified by the current record of the run
unit becomes the current member of the given set—-type. The
logically first owner associated with the new current member
becomes the new current owner of the given set—type.

Errors:

o1. data base not open

0z2. invalid set-type

06. invalid member type for this set-type
08. no current owner of set—type
16. no current of run unit

12. record not member of set

80. no such DMS routine

99. catastrophe

104. disk in wrong drive

105. disk read or write error
107. file not present
108. wuser may not read this set
109. user may not write this set

255. end—of—set

©® COPYRIGHT 18978, 1980, Micro Data Base Systems, Inc. 243

MDBS Data Management System Documentation

Set current Member based on current Member

E0 = CALL (A0, "SMM, set-type-1, set—-type—-2")

Arguments:

set—type—1{(input)
set—type—-2(input)

Currency Indicators Involved:

current owner of set—-type-2(input)
current member of set—-type—-2(input)

current owner of set—type-1(output)
current member of set—type—-1(output)
current of run unit{output)

Description:

The record identified by the current

SMM

member of the

second set—type specified becomes the current member the
first set—-type. The logically first owner associated with the
new current member becomes the new current owner of the given
set—type.
Errors:
01. data base not open
02. invalid set—type
08, invalid member type for this set-type
08. no current owner of set—type
08. no current member of set—type
12. record not member of set
30. no such DMS routine
99, catastrophe
104. disk in wrong drive
108. disk read or write error
107. file not present
108. user may not read this set
108. user may not write this set
285. end—of—-set
©® COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 244

MDBS .Data Management System Documentation

Set current Member based on current Owner

EO = CALL (A0,

Arguments:

"SMO, set—-type—-1, set—type-2")

set—-type~1{(input)
set—type-2(input)

Currency Indicators Involved:

current
current

current

current
current

Description:

owner of set—-type—-2(input)
member of set—type—-2(input)

owner of set—-type—1{(output)
member of set—type-1{output)
of run unit{(output)

SMO

The record identified by the current owner of the second
set—type specified becomes the current member

set—type. The

the

first
logically first owner associated with the new

current member becomes the new current owner of the given set-—

type.

Errors:

o1. data base not open
02. invalid set-type

08. invalid member type for this set-type

08. no current owner of set—type
12. record not member of set

90. no such DMSZ routine

Q9. catastrophe

104. disk in wrong drive

108. disk read or write error
107. file not present

108. wuser may not read this set
109. user may not write this set

255, end—-of—-set

©® COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc.

245

MDBS Data Management System Documentation

Set current Member based on current Record SMR

E0 = CALL (A0, "SMR, record-type, set—type")

Arguments:

record-type(input)
set—type(input)

Currency Indicators Involved:
current record of record—type(input)

current owner of set—type(output)
current member of set—-type{(output)
current of run unit{output)

Description:

The record identified by the current of the specified
record-type becomes the current member of the given set-type.
The logically first owner associated with the new current
member becomes the new current owner of the given set—-type.

Errors:
01. data base not open
02. invalid set—-type
03. invalid record-type
06. invalid member type for this set—-type
08. no current owner of set—-type
10. no current of record-type
12. record not member of set
90. no such DMS routine
88. catastrophe
100. user may not read this record
104. disk in wrong drive
105. disk read or write error
107. file not present
108. user may not read this set
108. user may not write this set

255. end~of—set

® COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc. 246

MDBS Data Management System Documentation

st S e o S . Pt i, i . i S e S A et

Set Owner based on Current of run unit S0C

EO = CALL (A0, "SOC, set—-type")

Arguments:

set—type (input)

Currency Indicators Involved:

current of run unit(input)

current owner of set—type(output)
current member of set—-type(output)

Description:

The record identified by the current record of the

unit is

made the current owner of the given set-—-type.

first member of the set becomes the current member of that
(note that this is equivalent to an implied call to FFM).

If

the set 1is empty, the currency indicator of

member of the given set-type becomes null, and EO 1is set
285. This routine executes an implicit FFM command; that
the specified record is made the owner of the set and
first member associated with the new owner is made the current
member of the set—type.

Errors:

01.
02.
0%,
16.
90.
99.
104.
105.
107.
108.
108.

255.

© COPYRIGHT 1978,

data base not open

invalid set—type

invalid owner type for this set-type
no current of run unit

no such DMS routine
catastrophe

disk in wrong drive

disk read or write error
file not present

user may not read this set
user may not write this set

end—of—-set

1980, Micro Data Base Systems, Inc.

run
The
set

the
to
is,

the

247

MDBS Data Management System Documentation

Set current Owner based on current Member

E0O = CALL (A0, "SOM, set—type-1, set—type-2")

Arguments:

set—-type~1(input)
set—type—-2(input)

Currency Indicators Involved:
current owner of set—-type-1{output)
current member of set—type—1(output)
current of run unit(output)
current owner of set—-type—-2{(input)

current member of set-type—-2(input)

Description:

The record identified by the current member

SOM

the

second set—type 1is made the current owner of the first set-

type. The first member of the set becomes the current

member

of that set (note that this is equivalent to an implied call

to FFM).

If the set is empty, the currency indicator

the

member of the given set—-type becomes null, and E0O is set equal

to 288. This routine executes an implicit FFM

is, the specified record is made the owner of the

member of the set—-type.

Errors:
01. data base not open
0z. invalid set-—-type
0B. invalid owner type for this set—-type
08. no current owner of set-type
09. no current member of set-type
90. no such DMS routine
998, catastrophe
104. disk in wrong drive
105. disk read or write error
107. file not present
108. user may not read this set

© COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc.

command ;

that

set and the
first member asscciated with the new owner 1s made the current

248

MDBS Data Management System Documentation

——— — — — e e e ——— s e e

108. user may not write this set

255. end—of—set

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 249

MDBS Data Management System Doccumentation

Set current Owner based on current Owner SO0

E0O = CALL (A0, "SOO, set—type—1, set—type-2")

Arguments:

set-type—1(input)
set—type—2(input)

Currency Indicators Involved:

current owner of set—-type—1{output)
current member of set—-type—1{(output)
current of run unit(output)

current owner of set-type—-2(input)
current member of set—-type—-2(input)

Description:

The record identified by the current owner of the second
set-type is made the current owner of the first set—-type. The
first member of the set becomes the current member of that set
(note that this is equivalent to an implied call to FFM). The
first member of the set becomes the current member of that set
(note that this is equivalent to an implied call to FFM).

If the set is empty, the currency indicator of the
member of the given set—-type becomes null, and EO is set equal
to 289, This routine executes an implicit FFM command; that

is, the spde thecified record is made owner of the set and the
first member associated with the new owner is made the current
member of the set-type.

Errors:
01. data base not open
02. invalid set—type
05. invalid owner type for this set-type
08. no current owner of set-type
03. no current member of set—type
Q0. noe such DM3 routine
99, catastrophe
104. disk in wrong drive
105. disk read or write error
107. file not present
108. wuser may not read this set

©® COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 250

MDBS. Data Management System Documentation

109. user may not write this set

2B5. end—of—set

© COPYRIGHT 1879, 1980, Micro Data Base Systems, Inc. 251

MDBS Data Management System Documentation

Set current Owner based on current Record SOR
EO = CALL (A0, "SOR, record-type, set—type")

Arguments: record-type(input)
set—type{(input)

Currency Indicators Involved:
current record of record-type(input)
current owner of set—-type(output)

current member of set—-type(output)
current of run unit{output)

Description:

The record 1identified by the current of the specified
record-type is made the current owner of the given set—-type.

If the set 1is empty, the currency indicator of the
member of the given set—type becomes null, and EO is set equal
to 2B55. This routine executes an implicit FFM command; that

is, the specified record is made the owner of the set and the
first member associated with the new owner is made the current
member of the set—type.

Errors:
01. data base not open
0z2. invalid set—-type
03. invalid record-type
08. invalid owner type for this set—type
10. no current of record—-type
90. no such DMS routine
99. catastrophe
100. user may not read this record
104. disk in wrong drive
105. disk read or write error
107. file not present
108. user may not read this set
108. user may not write this set

258. end—-of—-set

© COPYRIGHT 1979, 1880, Micro Data Base Systems, Inc. 2582

MDBS Data Management System Documentation

Set Record based on Current of run unit SRC

EO = CALL (A0, "SRC")

Arguments:

Currency Indicators Involved:

current of run unit(input)
current of record—-type(output)

Description:

The record identified by the current record of the run
unit is set to be the current record of its record type.

Errors:

01. data base not open

16. no current of run unit

90. no such DMS routine

99. catastroephe

100. wuser may not read this record
104. disk in wrong drive

105. disk read ¢r write error

107. file not present

©® COPYRIGHT 1879, 1880, Micro Data Base Systems, Inc. 253

MDBS Data Management System Documentation

Set current Record based on Member

E0 = CALL (A0,

Arguments:

"SRM, set-type")

set—type(input)

Currency Indicators Involved:

current
current

current of
current of

Description:

The

record

owner of set-—type (input)
member of set—-type (input)

record—type(output)
run unit(output)

identified by the current

specified set—type is set to be the current
record type.

Errors:

01.
02.
08.
08.
90.
99,
100.
104.
105.
107.
108.

© COPYRIGHT 1979,

data

base not open

invalid set—-type

no current owner of set—-type
no current member of set—type
no such DMS routine
catastrophe

user
disk
disk
file
user

1980,

may not read this record
in wrong drive

read or write error

not present

may not read this set

Micro Data Base Systems, Inc.

SRM

member of the
record

its

254

MDBS Data Management System Documentation

Set current Record based on Owner SRO

EQ0 = CALL (A0, "SRO, set—type")

Arguments:

set—type(input)

Currency Indicators Involved:
current owner of set—-type(input)
current of record-type{output)
current of run unit{(output)
Description:
The record identified by the current owner of the

specified set—~type is set to be the current record of its
record type.

Errors:
01. data base not open
0z2. invalid set-type
08. no current owner of set-type
S0. no such DMS routine
99. catastrophe
100. user may not read this record
104, disk in wrong drive
105. disk read or write error
107. file not present
108. wuser may noct read this set

© COPYRIGHT 1978, 1980, Micro Data Base Systems, Inc. 255

MDBS Data Management System Documentation

return data base run STATistics STAT
EO = CALL (A0, "STAT, data-block")

Arguments:

data-block (input)

Currency Indicators Involved:

not applicable

Description:

Various operating statistics from the current execution
of the MDBS.DMS system are returned in the variables of the
data-block. The data—block must contain five integer
variables which take on the following values:

Variable Value

of page buffers in menory
of page references

of page faults

of disk reads

of disk writes

Ol W
B R

Errors:
01. data base not open
89. variable length inconsistency
0. no such DMS routine
34. block name not found
95. invalid data block name
S6. invalid number of arguments
9g. catastrophe
Notes:
1. The number of page references 1is the number of

different times a data base page was requested by the internal
routines of the MDBS.DMS system. The number of page faults is
the number of times a page other than the most recently
accessed page was requested.

2. All values returned are modulo 32768.

© COPYRIGHT 1978, 1880, Micr® Data Base Systems, Inc. 256

MDBS Data Management System Documentation

TOGGLE run optimization switch TOGGLE

E0O = CALL (A0, "TOGGLE")

Arguments:

none

Currency Indicators Involved:

not applicable

Description:

A call to the TOGGLE routine toggles the value of an
internal switch in the MDBS.DMS package. When the switch is
on (default), the MDNS.DMS package performs full error
checking. When the switch is off, checks for certain errors
which occur infrequently and have minimal impact on data base
integrity, yet which require substantial amounis of processing

time to perform, are bypassed. It 1is recommended that the
switch be kept on except in well—debugged programs which work
with large data bases. The switch is set to on whenever the

OPEN routine is executed.
Errors:

20. no such DMS routine
99. catastrophe

©® COPYRIGHT 1878, 1880, Micro Data Base Systems, Inc. 257

MDBS Data Management System Documentation

Iv. CONCLUDING REMARKS

This manual describes the features of MDBS in a comprehensive
fashion. It may be useful to sketch out some of the extensions that
are presently available. First, as the wuser will quickly become
aware, data base requirements change over time. A logical structure
that appears to be ideal during some period of time may need
alteration. For example, in order to improve access efficiency new
set relationships may be desirable. In some instances, new but
relevant data sets appear desirable and both new record types and
associated set relationships are needed. In all these cases it would
be desirable not to have to restart the data base but have available
dynamic restructuring capability. This capability exists with the

system known as MDBS.DRS.

As the system currently exists, it is oriented towards supporting
the applications programmer writing in BASIC, PASCAL, FORTRAN, COBOL,
PL/I and other languages. These programs may be doing a variety of
things including generating mailing lists, doing general accounting,
solving linear programming problems, performing regression analyses,
and forecasting to name a few. Some of the application programs could
be specifically written to do data retrieval. For this class of
programs it is possible to develop software which would automatically
perform these tasks. A query language capability would thus obviate
the wuser from writing application programs but would specify an
English—like language for defining the desired reports. The Micro
Data Base System MDBS.QRS is a high level query system /report writer
having such capabilities.

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 258

MDBS Data Management System Documentation

Additional Software Products from Micro Data Base Systems, Inc

include:

QRS (Query/Report Writer System)

QRS allows a non—-programmer to extract data from any MDBS data base
(a version of QRS for use with HDBS data bases is also available).
QRS accepts nonprocedural, English—-like queries on an ad hoc¢ basis and
automatically produces desired reports. Complex conditions on
retrieval c¢an be specified. Arithmetic expressions are also allowed.
Queries can be batched. Reports can be routed te the console, a
printer or a disk file. DML commands can be executed interactively.

QRS is implemented in machine language.

MUS (Multi User System)

MDBS.MUS is the multiuser version of MDBS. Multiple users can
share a single data base. MUS automatically saves and restores
currency indicators of each executing run unit as needed. MUS also

handles page lock—outs for run units that alter a data base.

VAC (Via Set, Area, Calc)

MDBS.VAC has all features of MDBS, plus features that offer the
designer added control over the maping of record occurrences ¢to
storage. The designer c¢an partition a data base into areas, each
consisting of a number of logically contiguous data base pages.
Record types c¢an be assigned to specific areas. This means that all
occurrences of a record type are placed in a specified area.
Occurrences are mapped into an area, either on the basis of a calc

©® COPYRIGHT 1978, 1880, Micro Data Base Systems, Inc. 258

MDBS Data Management System Documentation

key, a via set option, or a "don't care” option. Added DML commands

allow records to be directly accessed on the basis of their calc key

values.

® COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 260

MDBS Data Management System Documentation

APPENDIX 1

Memory / Processing Time Trade—off

In order to assess the trade—off betweer the processing time
required for the MDBS.DMS system to process a data base and the amount
of memory available to the system, a simple experiment was performed
with version 1.0 of MDBS.DMS. In this experiment, 1000 ywull records
(i.e., records with no data items defined) were created and added to a
FIFO set. The DDL for this experiment is shown in Figure 1. The
optimization toggle (see DMS rcutine TOGGLE) was off. The data base
file resided on a single Shugart—-Mini disk drive in single density

format.

The following observations were made:

of pages time required

in memory (min, sec)
1 24, 18
2 16, 48
3 12, 18
4 8, 58
5 1, 26
G 0, 40
7 0, 36
8 0, 34
18 0, 29
Obviously a ec¢ritical point exists where the execuktion time

radically decreases as the number of pages available to the system
increases. The extra speed realized by going from 6 pages to 7 pages
is much less than that realized by going from B pages to 6 pages. Of
course the characteristics of the data base being used and the types

© COPYRIGHT 1979, 1980, Micro Data Base Systems, Inc. 261

MDBS Data Management System Documentation

of operations being performed will cause some variance in where this
cutoff occurs, but we recommend that, in general, at least 8 pages be

allocated if possible.

The primary cause of the differences in execution speed is due to
the number of disk accesses performed by the systemn. Naturally, a
faster disk system would result in a marked decrease in execution

time.

The relationship between the number of d4isk accesses and the memory
available to the MDBS.DMS package is in the number of page buffers
that the system can allocate. The number of these buffers, then, is
the number of pages which can be kept in memory in anticipation of
future references. The more page buffers resident in memory, the
greater is the chance that a given page will be memory resident when
it is required, thus saving a disk access. The actual CPU processing
time is trivial compared te the amount of time spent on 1/0

operations.

® COPYRIGHT 1878, 1980, Micro Data Base Systems, Inc. 262

MDBS Data Management System Documentation

0010 FILES DEMO 1 512

0020 DRIVE 1 100

0030 PASSWORDS

0040 PAM 253-56-9058
0050 GARY 288 285 665-46-3082
00680 RECORD B

0070 SET S3 MAN 1:N

0080 FIFO

0090 OWNER SYSTEM

0100 MEMBER B

0110 END

DDL for Experiment

Figure 1

© COPYRIGHT 1878, 1880, Micro Data Base Systems, Inc. 283

MDBS Data Management System Documentation

APPENDIX 2

MDBS.DMS Command Usage

This appendix lists the commands in the MDBS.DMS system and briefly
describes common uses for each command. A number has been assigned to
give a relative indication of the frequency of use of each of these
commands. A number such as 4 or 5 does not indicate that use of a

routine should be avoided, but merely indicates the routine tends to

be used rarely. The codes indicate:
1. This command is used in almost all applications.
2. This command is used extensively.
3. This command is used frequently.
4. This command is used moderately.
5. This command is used rarely.

® COPYRIGHT 1878, 1980, Micro Data Base Systems, Inc. 264

MDBS Data Management System Documentation

Command Usage

one

a

Name Level Use
ACS 1 Used whenever records are added to set occurrences
AMS 3 Alternative to ACS
CCT 5 Typically used in complex networking programs which
involve a variety of record types
CLOSE 1 Always used
CMT 4 Used with sets with multiple member types
COT 4 Used with sets with multiple owner types
CR 2 Used te create null (link) records
Used to defer data storage
(Typically CRS is used)
CRS 1 Used to create a record and store data
DEFINE 1 Always used
DRC 3 Used to delete record occurrence
DRM 4 Typically, DRC is used
DRO 4 Typically, DRC is used
DRR 4 Typically DRC is used
EXTEND 4 Useful if a DEFINE statement will not it on
source line
FFM 1 Basic operator for sequentially traversing a set
FFO 3 Useful with many—-to-—many sets
FINDM 2 General routine for locating a record with
specified data-value
FINDO 3 Many—to—-many analcg of FINDM
FL! 3 Useful if set is traversed "backwards”
FLO 4 Many—to—-many analog of FLM
FMSK 2 Locate a record in a sorted set
© COPYRIGHT 1879, 1880, Micro Data Base Systems, Inc.

285

MDBS Data‘Management System Documentation

Command Usage

Name Level Use

FNM 1 Basic operator for sequentially traversing set

FNO 3 Many—-to—many analog of FNM

I"OSK 3 Many—-to—-many analog of FMSK

FPM 3 Useful if set is traversed "backwards”

FPO 4 Many—-to-—many analog of FPM

GETC 1 Used to retrieve all data items from a record

GETM 1 Used to retrieve all data items from a rgcord

GETO 2 Useful when “"working wup”" in =a Thierarchical data
structure

GETR 2 Typically, GETM is used

GFC 1 Used to retrieve a single data item from a record

GFM 1 Used to retrieve a single data item from a record

GO 2 Useful when "working up” in a hierarchical structure

GFR 2 Tvpically, GFM is used

GMC 4 Useful if only the number of members in a set is
required

GOC 4 Many—-to—many analog of GMC

GTC 5 Typically used in complex netwerking programs which
involve a variety of record types

GTM 4 Used with sets with multiple member types

GTO 4 Used with sets with multiple owner types

OPEN 1 Always used

PUTC 4 Typically, PUTM is used

PUTM 2 Used to store all data items for a record

PUTO 3 Typically, PUTM is used

PUTR 3 Typically, PUTM is used

® COPYRIGHT 1878, 1980, Micro Data Base Systems, Inc. 268

MOBS Data Management System Documentation

Command Usage

Name Level Use

RMS 3 Used when altering set

RSM 4 Used when altering set

SCM 4 Allows user alteration

SCO 4 Allows user alteration

SCR 4 Allows user alteration

SFC 2 Used to store a single data item

SFM 2 Used to store a single data item

SFO 3 Typically, SFM is used

SFR 3 Typically, SFM is used

SMC 4 Tyvpically, SMM or SMO is used

SMM 2 Useful when processing

SMO 2 Useful when "working "
structure

SMR 3 Typically, SMM or SMO is used

SOoC 4 Typically, SOR is used

SCM 2 Useful when "working down"
structure

S00 3 Usefu! in "forked" data structures

SOR 2 Useful
for AMS

SRC 4 Useful when necessary to
indicator

SRM 3 Typically SRC is used

SRO B Typically SRC is used

STAT 5 Used to measure memory/disk access trade-offs

TOGGLZ 4 Userful

© COPYRIGHT

1979,

quantities of data

1980,

Micro Data Base Systems,

membership
membership
of currency indicator
of currency indicator
of currency indicator
in a record

in a record

non~hierarchical

up in a

preserve a

in well-debugged programs which process

Inc.

hierarchical

structures

data

in a hierarchical data

in data load programs te sebt the current owner

currency

large

267

