
MDBS - MICROSOFT Compiled BASIC/FORTRAN Intertaee Notes

SYS.MCBF

MDBS -
CP/M Interface Notes

CF'/M with MICROSOFT Compiled E3ASIC/FORTRAN

= znm dddddddd bbbbbbbb ssssss
mmm mmm ddddddddd bbbbbbbbb ssssssss
mmmm mmmm dd dd bb bb ss ss
mm mmmm mm dd cid bb bb ss
mm mm mm dd dd bbbbbbbbb sssssssss
mm mm dd dd bbbbbbbbb sssssssss
mm mm dd dd bb bb ss
mm mm dd dd bb bb ss ss
mm mm ddddddddd bbbbbbbbb ssssssss
mm mm ddddddcid bbbbbbbb ssssss

Micro Data Base Systems, Inc.
P. O. Box 248

Lafayette, Indiana 47902

(317) 448-1616

(317) 742-7388

August 1980

Copyright Notice

This entire manual is provided for the use of" the eustomer and the

eustomer"s employees. The entire contents have been ce>pyrighted by

Micro Data Base Systems, Inc., and reproduction 'by any means is

prohibited except as permitted in a written agreement with Micro Data

Base Systems, Inc.

CP/M is a registered trademark of the Digital Research Corporation.
© COPYRIGHT 1980, Micro Data Base Systems, Inc. l



MDBS — MICROSOFT Compiled BASIC/FORTRAN Interf"ace Notes

I. INTRODUCTION

The MDBS.DDL and MDBS.DMS User"s Manual was written in a non—

machine—dependent manner. The purpose of the manual is to diseuss the

specif"ics of running the MDBS packages on CP/M systems with

MICROSOFT's compiled 13ASIC-80 and FORTRAN-80 or related produets.

The following files are on the two MDBS diskettesC

(a) MDBS.DDL

1. DDL.COM - An absolute version or MDBS.DDL loading at

100 hex

2. INVNTRY - A sample data description fjile
3. RLC.COM — An absolute relocator

4. RELOC.IHF — A relocatable reloeator loading at lOó hex.

5. DDL.IHF — A relocatable version of" the MDBS.DDL system

(b) MDBS.DMS

1. DMS.REL - A relocatable version of the MDBS.DMS system

2. SAMF'LE.BAS - Sample BASIC Program

3. SAMPLE.FOR - Sample FORTRAN Program

4. SAMPLDDL - DDL f"iie for use with sample programs

MDBS.DDL is your personalized Data Def"inition Language Analyzer/

Editor and MDBS.DMS your Data Management System. DDL loads at 1OOH

and extends to approximately 340OH. It uses standard CP/M I/O entry

points. If you are using nonstandard I/O entries or require other

lDepending on the size OF the diskettes used, the files on the two
diskettes may actually be organized difTerently.

© COPYRIGHT 1980, Micro Data Base Systems, Inc. 2



MDBS - MICROSOFT Compiled BASIC/FORTRAN InteMaee Notes

patching, refer to Section IV ror patching proeedurem

MDBS.DMS is supplied in a relocatable format eompatib!e with the

object files produced by the MICROSOFT BASIC-80 and FORTRAN-80

eompilers. The program area for the MDBSoDMS system is approximately

44QQí (hex) bytes long. Additionally, memory is required for the

variotis tables and buff"ers required by the system. This memory spaee

is allocated by the calling program so that the user may easily change

the amount of memory available to the MDBS.DMS system. Since

inereased memory available to MDBSoDMS will result in greater system

throughput, maximization of available memory is encouraged.

In Section VI we show how to call the OMS routines rrom MICROSOFT

BASIC-80 and FORTRAN-80.

Finally, in Section VII we provide some general"notes for the CF'/M

user or the MDBS package.

You can run your version or DDL by fkAlowing the procedure given in

Figure 1. At the end of" Step 2 you are in the DDL program. Refer to

Section II.E of' the MDBS user"s manual for the DDL commands. However,

to quickly see some action, continue with the procedure in Figure 1.

Steps 3—5 result in the reading of a sample data base deseription
fTom the rile INVNTRY. Step E3 results in the listing M the sample

description. Step 8 returns control to the operating system.

i The size or the MDBS.DMS system will vary depending on the functions
available and the operating system/host language selected.

© COPYRIGHT 1980, Micro Data Base Systems, Inc. 3



Mij13S - MICROSOFT Compiled BASIC/FORTRAN Interface Notes

Figure i
Sample DDL execution

STE? F'ROCEDURE/RESULTS

t. you DDL

2. Computer MDBS.DDL VER X.X

(C) COPYRIGHT 1980, Micro Data Base Systems, Incorporated
Reg # XXXXX

4

your name and address

36 you R

4g Computer FILENAME

5q you INVNTRY

6. you L

7. Computer listing or sample data description

8. you BYE

9. Computer A>

(return to Monitor)

E) COPYRIGHT 1380, Micro Data Base Systems, Incn 4



MDBS - MICROSOFT Compiled 13ASIC/FORTRAN Interface Notes

II. RELOCATING MDBS.DDL

To relocate and produce an executable form or MDBS.DDL and

MDBS.DMS, we have provided an exeeutabie relocator and a relocatable

f"orm or the reloeator. RLCcCOM loads at OÍOOH. To use it merely

enter the sequence of" lines shown in Figure 2 at your termina!. Mter
peMorming this sequence of steps you may want to save the U!e. If a

reloeator is needed at an address other than O1OOH refer to Section

III.

.

© COPYRIGHT 1980, Micro Data Base Systems, Inc. 5



MDBS - MICROSOFT Compiled BASIC/FORTRAN Interf"aee Notes

Figure 2

Producing an Executable Form of" MBDS.DDL

Step Proeedure Example

1. you RLC RLC

2. Computer INPUT

3. you DDL.IHF DDL.IHF

4. Computer LOAD ADDRESS

5. you yyyy (,ZZZZ) 2DOO

6. Computer tttt
(return to Monitor) >

Explanation:

This sequence of" steps produces an executable fbrm of MDBS.DDL .i.n,

memory starting at memory location yyyyH + Z.ZZZH and ORGed at yyyyH.

The ",zzzz" is optional. The high memory address used by the routine

is indicated by the "tttt" response from RLC. The user should insure

that the relocator and the program locations are not in conflict with

one another.

Following this procedure, the user may want to make patches to the

executable program (as outlined in Section II.C.3 ot the MDBS user"s
B

manual and in Sections IV and V of" this manual) and then save the

resulting executable program.

© COPYRIGHT 1980, Micro Data Base Systems, Inc. 6



blDElS - MICROSOFT Compiled BASIC/FORTRAN InteMace Notes

III. GENERATING A NEW RELOCATOR

To produce a reloeator at an address other than O1OOH f"o!low Mhe

sequence of" steps shown in Figure 3.

Figure 3

Produeing an Executable Relocator "

SteE Procedure Example

i. you RLC RLC

2. Computer INPUT

3. you RELOC.IHF RELOC.IHF

4. Computer LOAD ADDRESS

5. you yyyy (,ZZZZ) 6000

6. Computer tttt
(Return to Monitor) >

Explanation:

This sequence of" steps produces an executable form of RELOC.IHF in

memory starting at memory location yyyyH + ZZZZH and ORGed at yyyyH

(the "ZzzzH" is optional). Executing RLC.COM results in its loading

and subsequent execution at O1OOFi and the user must be careful not to

have a memory conflict between RLC.COM and the newly formed RLC which

will be placed at yyyyH + zzzzH.

The user may then want to save this program.

© COPYRIGHT 1980, Micro Data Base Systems, Ine. 7



MDBS - MICROSOFT Compiled BASIC/FORTRAN InteMaee Notes

IVo MDBS.DDL PATCHING

MDBS.DDL consists M a program region and work area region. These

are eontiguous and the work area immediately hllows the program area.

The size of" the work area can be increased or decreased through a

patch to the system.

There are several addresses that the user should be aware of" in
MDBS.DDL. Figure 4 maps out these areas. A brief description or each

item fbllows. All address patches should be made with normal 8080

eonventions, i.m the lower 8 bits of the address precede the higher
8 bits.

(a) Initial Entry Point

Upon enbry at this point, all program variables and regions are

either physically or logically re—initialized. Registers are not
saved but the entering stack is preserved.

(b) BDOS Jump (DeMult 0005 hex)

This is the address OÍ" the disk management and peripheral

processing routines.

(C) CP/M Warm Entry Jump (Default 0000 hex)

This address is the warm entry point to CP/M.

(d) FCB Location (Default 005C hex)

This points to the File Control Block area.

© COPYRIGHT 1980, Micro Data Base Systems, Inc. 8



MDBS - MICROSOFT Compiled BASIC/FORTRAN InteMaee Notes

(e) BUFF Location (Derault 0080 hex)

This points to a- 128 byte butter area.

(f") Reserved Regions

This area is reserved for internal use by the MDBScDDL routines.

It should not be altered.

(g) Eeho Toggle (DeMult 01 hex)

This byte is cheeked to see if" the user wants to have MDBS.DDL

echo input to the output device. ir the byte value is zero,.

echoing will take place. If" it is the value one, no echoing will
be perf7ormed.

(h) Size of" BASIC Integer (DeMult 02 hex)

The value in this f"ield gives the number or bytes required tQ

store a numeric element in Microsof"t BASIC. This value should be

2.

(i) Size M BASIC Single Precision Variable (Default 04 hex)

This f"ield must contain the size of a Microsoft BASIC single
.

precision variable. This value is 4.

(i) Last Word of" Memory (Default OBFFF hex)

The address stored here gives the last available word of memory

that the MDBS.DDL program may use. Note that MDBS.DDL uses all
memory starting f"rom its load address up to the value in this

© COPYRIGHT 1980, Miero Data Base Systems, Inc. 9



MDBS — MICROSOFT Compiled BASIC/FORTRAN InteMace Notes

f"ieid. Needless to say, the user should make sure that the last

word or memory is physieally beyond the end or the program.

(k) Screen Control Byte (Default OB hex)

This byte should have one c}r the following values:

Screen Width Byte Value

less than or equal to 64 11 (OB hex)
characters

greater than or equal to 80 15 (OF hex)
characters

64 to 80 characters per greatest integer less
line (call it N) than or equal to:

N/5 -1

(I) Re-entry Point

The user may re—enter MDBS.DDL while preserving all program

variables and regions by issuing a jump to this address.

© COPYRIGHT 1980, Micro Data Base Systems, Inc. ' 10



?4DBS - MICROSOFT Compiled BASIC/FORTRAN Interfbee Notes

Figure 4

MDBS.DDL ADDRESSES

Address Deseription DefbnUt Value

0100 (hex) Initial Entry Point ——

0103 (hex) BDOS Jump 0005 (hex)

0106 (hex) CP/M Warm Entry 0000 (hex)

0108 (hex) FCB Location 005C (hex)

O1OA (hex) BUFF Location 0080 (hex)

O1OC-O126 Reserved

0127 (hex) Echo Toggle 01 (hex)

0128 (hex) BASIC Integer Size 02 (hex)

0129 (hex) BASIC Single Precision Size 04 (hex)

012A (hex) Last Word of" Memory BFFF (hex)

012C (hex) Screen Control Byte 11 (hex)

0139 (hex) Re-Entry Point ——

0

© COPYRIGHT 1980, Micro Data Base Systems, Inc. ii



MDBS - MICROSOFT Compiled BASIC/FORTRAN Interfaee Notes

V. INTERFACING MICROSOFT BASIC-80 AND FOF?TRAN-80

A. MDBS.DMS Entry Points

The MDBSeDMS system has 4 host language callable entry points. The

entry points are:
DMS — The primary entry point for requesting DMS processing.

All DMS eommands described in the MDE3S User's Manual

(exeept DEFINE and EXTEND) are performed by calling this
entry point.

DMSDEF - The entry poinb for the DEFINE and EXTEND commands.

SETF'BF - An entry point which must be called prior to the first
cal! to OMS or DMSDEF to allocate memory for use by the

MDBS.DMS system.

ALTEOS — This entry is used by FORTRAN programs to permit the use

or three branch (arithmetic) IF's for error checking

(See below).

The same version or the DM3S.DMS system can be used with both BASIC

and FORTRAN. A parameter specified on the call to SETPBF indicates in
which language the calling program has been written (O indicates
BASIC, 1 FORTRAN).

B. BASIC-80 Interface

To call the MDBS.DMS system rrom BASIC-80 the Tollowing proeedures

inust be used. First the user must define the working memory available

for use by MDBS.DMS. This is done by the SETFBF entry described in

Part D below. The eal!ing sequence used is:

© COPYRIGHT 1980, Micro Data Base Systems, Inc. 12



MDBS - MICROSOFT Compiled BASIC/FORTRAN Interface Notes

10 DIM 139%(2048)

15 N% = 4096

20 1% = O

25 CALL SETF'BF (B9%, N%, 1%)

Note that each element of the integer array B9% occupies two bytes;

thus, the call to SETPBF indicates that ><2048, or 4096, bytes are

available f"or use.

To define a data block, a call of' the f1>llowing f"orm is used:

30 N% = 4

40 C$ = "DEFINE,OPENBLK"

50 CALL DMSDEF (E0%, C$, N%, 01$, 02$, 03$, 04$)

This dMines a data block named "OPENBLK" with four string
variables (01$, 02$, 03$, 04$). EO% is an integer variable which

returns the error status (equivalent to ED in the MDBS User's Manual)

and N% is a count OÍ" the number or variables passed.

Finally, a oat! is made to a standard DMS routine (OPEN in this
ease) by a call M the hrm:

60 01$ = "SAMF'LEDB.DB"

70 02$ = "USER"

80 03$ = "PASSWORD"

90 04$ = "MOD" ·

lOó C$ = "OPEN,OPENBLK"

110 CALL DMS (E0%, C$)

© COPYRIGHT 1980, Micro Data Base Systems, Inc. 13



d

MDBS - MICROSOFT Compiled BASIC/FORTRAN InteMace Notes

01$ through 04$ are string variables which comprise the parameters

f"or the OPEN cal!. The actual function to be perfbrmed is stored in

string variable C$ and is passed in the eall to OMS along with the

error response variable, EO%.

C. FORTRAN-80 InteMace

To call the MDBS.DMS system fTom FORTRAN-80 the following

procedures must be used. First the user must dMine the working

memory available for use by MDBS.DMS. This is done by the SETPBF

entry described in Part D below. The calling sequence used is:

LOGICAL DMSBUF (4096)

CALL SETPBF (DMSBUF, 4096, I)

To dMine a data block, a call OT the fbllowing fbrm is used:
K

REAL 01(3), 02(4), 03(3), 04

DATA 01 / 4HSAMP,4HLED13,4H.DB /, 02 / 4HUSER,3MH /,
* 02 / 4HPASS,4HWORD,4H /, 04 / 4HMOD /

CALL DMSDEF (IER, 'DEFINE,OPENBLK.', 4, 01, 02, 03, 04)

This def"ines a data block named "OPENBLK" with fk>ur character

variables (01, 02, 03, 04). IER is an integer variable which returns

the error status (equivalent to EO in the MDBS User's Manual) and the

4 is a count of" the number a: variables passed.

Finally, a call is made to a standard DMS routine (OPEN in this
ease) by a eall of the rorm:

© COPYRIGHT 1980, Micro Data Base Systems, Inc. 14



MDBS - MICROSOFT Compiled BASIC/FORTRAN Interface Notes

CALL DMS (IER, 'OPEN,OPENBLK.')

Note that the command string ('OF'EN,OPENBLK.', etc.) must always

be terminated by a period in FORTRAN calls. This is due to the tact

that FORTRAN, unlike BASIC, does zjQt have a facility to pass the

length M a literal string. The period provides the means f"or

MDBS6DMS to determine the length of the string.

D. Use of" SETF'BF

As mentioned earlier, the SETPBF entry point passes to the MDBS.DMS

system a eontiguous section of memory. This memory segment is used to

store tables and bufTers fbr use by the MDBS.DMS system and MUST NOT

BE ALTERED by the user's program. Since the MDBS.DMS system uses a

- dynamic buf"fer'ing scheme, it is important that as much memory as

possible be allocated for use by the MDBS system (we recommend that at

least 4000 bytes be allocated). Since the amount of memory available

to the MDBS.DMS system can radically afYeet the throughput ot the

system (more memory implies more disk buf"fers which implies fewer disk

accesses), it is usually well worth your while to do a compilation and

a LINK to determine the amount of" memory used by the object program.

The host language array can then be dimensioned to allocate most of'

the free memory ror by MDBS.DMS. Note, however, that FORTRAN—80

allocates rix buÍí"ers dynamically and sufTieient memory must be left
for this purpose.

The third parameter in the SETF'BF call is a flag indicating whether

the calling program is written in FORTRAN or BASIC. A value or O

indicates BASIC; 1 indieates FORTRAN.

© COPYRIGHT 1980, Micro Data Base Systems, Inc. 15



MDBS — MICROSOFT Compiled 3ASIC/FORTRAN Interface Notes

E. Use of ALTEOS

The error response (IER in our FORTRAN examples, ED in the MDBS

User's Manual) can in may cases be thought of as being logically

divisible into the rollowing three groups:

1. No problems (IER = O)

2. End or Set Encountered, or.key Not Found (IER = 255)

3. Error Encountered (anything else)

Usually an error of the third type indicates a programming problem.

An error of the second type can be expected from a number of commands

(FMSK, SOM or FNM) and do not indicate a programming error, but rather

the end of a set processing loop. Since in FORÍRAN the three branch

arithmetic IF exists, it is convenient to alter the 255 response from

the DMS tor use with such an IF statement. The entry ALTEOS has been

defined for this purpose. After ALTEOS has been called, the normal

255 error response is returned as —1. This makes the task or examing

the error response simpler tor the FORTRAN programmer. Please reMr

to the sample program (SAMPLE.FOR) which is included with the MDBS

system disks ror an example or this reature. Subsequent calls to
ALTEQS toggle this feature.

d

© COPYRIGHT 1980, Micro Data Base Systems, Inc. 16



MDBS - MICROSOFT Compiled BASIC/FORTRAN Interface Notes

VI. LINKING THE HOST LANGUAGE PROGRAM AND MDBS.DMS

The MDBS.DMS system (on the DMS.REL file) may be linked with your

compiled source program by using the LINK—80 linker. All that is

neeessary is to load the DMS and your program as shown in Figure li3.

Steps 1 through 5 show how to load the programs. Step 7 demonstrates

the method used to save the linked program as a com rile.

Figure 5

Linking the MDBS.DMS system

Step Procedure Example

1. you invoke linker L80

2. Computer * *
3. you load DMS DMS

4. Computer * *
5. you load program BIN

í3. Computer * *
7. you save COM file BIN/N

8. Computer * *
9. you exit linker Ie

© COPYRIGHT 1980, Micro Data Base Systems, Inc. í7



MDBS - MICROSOFT Compiled 3ASIC/FORTRAN Interface Notes

VII. GENERAL NOTES

1. Replicated items (see Section II.D.5 or the User"s Manual) are

given and returned to IdDBS.DMS from the host language using

arrays.

2. Binary and Integer Item Types are supplied from (and to) FORTRAN

through INTEGER variables. CHARacter items in MOBS are

represented in FORTRAN by appropriate use of LOGICAL, INTEGER or

REAL arrays. The MDBS system views the character data as a

sequence of bytes, so the representation selected in the FORTRAN

program is irrelevant so long as a sufficient number of bytes have

been allocated. LOGical Item Types correspond exactly to LOGICAL

variables in FORTRAN. REAL Item Types are supplied through Single

Precision and Double Precision variables. In the DDL Analyzer, a

blank item size for a REAL variable results in a single precision

default. Double Precision variables result when the appropriate

item size (8) is specified.

3. Binary and Integer Item Types are supplied from (and to) BASIC

through INTEGER variables. CHARacter items in MDBS correspond to

string variables in BASIC. LOGieal variables may be accessed f"rom

BASIC, but their use is undefined. REAL Item Types are supplied

through Single Precision and Double Precision variables. In the

DDL Analyzer, a blank item size fbr a REAL variable results in a

single precision default. Double ?recision variables result when

the appropriate item size (8) is specified.

© COPYRIGHT 1980, Miero Data Base Systems, Inc. 18



MDBS - MICROSOFT Compiled BASIC/FORTRAN Interface Notes

4. In BASIC, when retrieving character strings K"om a data base, the

user should make sure that the destination string variable has

been previously initialized to a length suMieiently large to hold

the incoming string. If this is not done, the incoming string
will be truncated. Further, the string should not be initialized
by setting it equal to a program literal. This can cause the

literal in the program to be modif"ied with undesirable results.

It is recommended that the string variable be initialized with the
SPACE$ function. Alternatively, the FIELD command may be used to

insure that adequate space has been allocated for a string.

5. Note that two byte integer variables run Trom -32767 to 32767 and

not from -32768 to 32767.

6. In the DDL Analyzer', a new data base ean be initialized on any

drive. However, the initialized disk will have to reside on drive
A during data base operations.

7. In the DDL Analyzer, when no drive is specif"ied ror a rile, the

last rerereneed drive is the default.

8. DEFINE and EXTEND calls are limited to 4 variables per call.
Successive calls to EXTEND should be used to set up long data

blocks.

E

© CO?YRIGHT 1980, Micro Data Base Systems, Inc. 19



MDBS — MICROSOFT Compiled BASIC/FORTRAN Interf"aee Notes

Appendix: Using MDBS to implement an application system.

Figure A provides an overview or the four phases involved. The

executable Xmm of MDEIS.DDL is used to define a data base.

Application programs that access the data base musb be eompiled and

linked to a relocatable form of" MDE1S.DN!S (supplied on the DMS.REL

file).

© COPYRIGHT 198C), Micro Data Base Systems, Inc. 20



MD13S

- MICROSOFT Compiled BASIC/FORTRAN Interface Notes

Phase A

Create a U!e that will
hold the data base.

Phase B J

Exeeute the executable form of
MDBS.DDL in order to enter DDL

text that Formally specifies the
data base's logical structurm

l

t
invoke the DDL analyzer by
typing: DDL

L

Did the DDL analyzer f"ind an error?
yes no

J

Edit the DDL

text to remove
the error.l

l

t
Write (W) the DDL text onto a
file to save it.

Phase C L

Write a host language application
program with DML calls.

Phase D t

Link the relocatable form of MDBS.DMS

to the compiled application program and
execute it.

P

Debug application program
ir needed.

Figure A. Using MDBS to Implement an Application System

© COPYRIGHT 1980, Nicro Data 3ase Systems, Inc. 21



MDBS - MICROSOFT Compiled 3ASIC/FORTRAN InteMaee Notes

Phases A-D: Details

Phase A:

Create a ri1e that will hold the data base. This file must have

the same name as given on the FILE line in the DDL deseription. This

iRile must be created on drive 1 (and on any other drives specified

with the DRIVE eard(s) in the DDL).

Phase B:

Execute the executable form of MD13S.DDL that was supplied (or which

you have created in Figure 2). Now you are within the MDBS DDL

system, so you can:

(a) Read a Tile éjC DDL source text (e.g.,the files INVNTRY and

SAMPLDDL supplied on the diskettes you received).

(b) Generate a file or DDL source text for your own data base

application (text entry aids are provided).

(c) Edit a f"ile of" DDL source text.
(d) Write (i.e., save on disk) a file Cit DDL source text.

(e) Submit a Tile of DDL source text to the DDL analyzer which

checks your DDL text for correctness. Diagnostics are issued

for errors; otherwise the message DDL PROCESSING COMPLETE is

returned, indicating that the data base described in the DDL

source text is now def"ined for the file created in Phase A.

This data base file now contains a data base directory composed

or all schema information.

© COPYRIGHT 1980, Micro Data Base Systems, Inc. 22



MDBS - MICROSOFT Compiled BASIC/FORTRAN Interface Notes

Commands to aecomplish the fbregoing kinds or activities (along

with descriptions of error messages returned K"orn the DDL analyzer)

are described in the MDBS User's Manual.

Phase C:

Write host language application programs (containing MOBS DML

calls) for a data base defined in Phase B(e). These programs are used

to add data t'o the data base, extract data fTom the data base, change

data and their relationships within the data base, and/or delete data

from the data base. (The SAMPLE f4le on the diskettes you received is

an example application program for a data base whose source DDL text

exists on the SAMF'LDDL file.) The method for calling DML eommands

from a host language depends upon the nature or the host language.

The necessary calling protocol fbr your host language is illustrated
in the MDBS system specif"ic manual.

The nature of" each MDBS DML command that can be ealled f"rom your

host language is described in the MDBS User's Manual. Errors that can

result from the incorrect DML usage are described for each command.

It is suggested that you f7o!low through the code of SAMPLE in order to

become oriented to DML applieatins programming with your host

language.

Phase D:

Link the compiled application program with the relocatable MDBS.DMS

provided in the DMS.REL file (see Figure 5). Execute the result.

© COPYRIGHT 1980, Miero Data Base Systems, Inc. 23




