
' ;

I
l
I·

!_

i

L

[---~
"'-"-

A Beginner's Guide to baZicCR)

Developed for

Beginning baZic Programmers

Revision 02
January 12, 1983

developed by

Micro Mike's, Inc.
3015 Plains Blvd.

Amarillo, TX 79102 USA
telephone: 806-372-3633

making technology uncomplicated ••• for PeopleSM

Copyright 1981," 1983 Micro Mike's, Inc. All rights reserved worldwide.

Unauthorized duplication of this manual is illegal.

.. " ,,

l,
L...

COPYRIGHT NOTICE

Copyright (c) 1982 by Micro Mike's, Inc. All rights reserved.
No part of this publication or associated programs may be
reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer language, in
any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior written
permission of Micro Mike's, Inc., 3015 Plains Blvd., Amarillo,
Texas 79102.

This program package is licensed for use on one (1) CPU •

DISCLAIMER

Micro Mike's, Inc. makes no representation or warranties with
respect tp the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Micro Mike's, Inc •. r~serves the
right to revise this publication and to make changes from time to
time in the content hereof without obligation of Micro Mike's,
Inc. to notify any persons of such revision or changes.

TRADEMARK NOTICES

This document will mention.several names and products which have
been granted trademarks. It is the intent of Micro Mike's, Inc.
to acknowledge and respect the trademarks of these companies so
that all the rights and privileges of these companies are
·preserved.

baZic (R) and MicroDoZ (R) are registered trademarks of Micro
Mike's, Inc.

CP/M(R) and MP/M(R) are registered trademarks of Digital Research
Corp.

za0(R) is a registered trademark of Zilog, Incorporated.

. _-:;!
·::.

i."·

L.

A Beginner's Guide to baZic TABLE OF CONTENTS

TABLE OF CONTENTS.

Introduction 1

Session Page Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

. 16

17

What is a program? • •

Working With a Program

Line Numbers
Commands, Statements, & Functions
Getting Information In and Out •
Line Editor
Branching
Relational Operators
Decision Making .
FOR NEXT Loops •
Subroutines . •
Arithmetic Operators
Boolean Operators
Math Functions
Additional Print Information
Strings .
String Functions •

3

7

14

18

24

32

37

40

45

49

55

58

62

65

69

73

77

18 Input Functions • 81

Miscellaneous Functions 87 19

20

21

22

Using Flags xx

Storing Program Constants xx

File Functions • • • xx

{C) MICRO MIKE'S, INC. TABLE OF CONTENTS

A Beginner's Guide to baZic TABLE OF CONTENTS

23

24

25

26

File Accessing •••• xx
xx

xx

xx

oser-Def ined Functions •

Miscellaneous Statements

Error Trapping • • • • •

(C) MICRO MIKE'S, INC.

.
.

.

TABLE OF CONTENTS

I
D
[
[..

[

c
[

r
[

[

L
I
[

[

f

L

L

.·,

. •

A Beginner's Guide to baZic Introduction

A Beginner's Guide to baZic

This manual is designed to teach the programming language baZic,
a high-level BASIC interpreter, to the computer novice. This
manual assumes no knowledge on the part of the user of baZic or
any other programming language. The student should have a work­
ing computer system running baZic to practice those things
learned from this manual.

In this manual, all of the special computer words you will need
to remember will always be shown in OPPER CASE only, because this
is the only way the computer will accept and recognize these
words. In the instructions, the computer will generally print
something on the CRT and the user or programmer will be required
to make an entry.

All user entries will be underlined so that the reader of the
manual will be able to distinguish the computer printed informa­
tion from the information the user or programmer is to enter.
The symbol <CR> will appear at all places where the user is to
press the Carriage Return or Enter Key.

All computer sessions will be indenied in this manual t6 make
them readily discernable f ram the text of the manual. As you are
working with the computer and the baZic interpreter, you will not
indent your responses.

Tests are presented after each session. The student should place
a piece of paper over the test page and try to answer each
question without looking at the answer, which is printed directly
after each question. If the student cannot answer the questions,
he should reread the text and do additional exercises.

The student is encouraged to take the tests "honestly" and review
his answers to the questions to be certain that he understands
the concepts. The only person who has something to gain from
reading this manual and taking the tests is the student wanting
·to learn. If you don't tinderstand an answer, go back through
that lesson or, if possible, ask some knowledgeable person to
help you.

The cursor is used to mark the position on the CRT where the next
character is to be entered. The cursor varies from CRT to CRT
but is usually a white box or an underline.

Take the sessions at any speed that makes you comfortable. How­
ever, you should probably take at least one session a day and
more if you feel confident. Never move to the next session until
you have mastered all previous sessions •

(C) 1981 Micro Mike's, Inc. Page 1 Introduction

A Beginner's Guide to baZic Introduction

You should consult the baZic Operator's Manual as a reference
when in doubt about the use of any command, statement, or
function described here.

If you are using floppy disks, the write-protect tab must be
removed from the disk before continuing with the sessions.

As you work the excercises, take careful note of any error mes­
sages that occur when you make mistakes. baZic, upon the occur­
rence of an error, will give you a message which indicates the
error. The message may not make sense to you when you first see
it, but you should become proficient at interpreting error mes­
sages by the time you finish this manual.

While working with programs in this manual, you may encounter an
error. Look very carefully at the program presented and the way
you have entered the program into the computer. Many times the
problem will be caused because you have not entered the program
correctly. Correct the problem and try again.

Each Session will be divided into five parts. The first part is
the OBJECT of the session. The purpose of the OBJECT is to let
the student know what the session will try to teach. An attempt
has been made to present one unified concept in each session and
the OBJECT is used to identify the topics to be learned within
that concept.

The LESSON follows the OBJECT- and is the text to be learned.
Once the LESSON has been completed, you should read the addition­
al information as listed in the ADDITIONAL READING section. Here
you will find references to the baZic Operator's Manual and any
other pertinent books.

The next section of each session is the TEST. Answer the ques­
tions to the best of your ability. If you can not answer the
question, you may review the material in the session or use the
computer to write a program which will help you determine the
answer.

The last section consists of EXERCISES for you to practice to
~ncrease your skill with information learned in that session.

It is suggested that you read the manual while at the computer
terminal. Practice everything you learn on the computer. The
only way to really learn a computer system is by keeping your
hands on the keyboard and spending lots of-time working with the
computer. This manual should be your guide through this process.

You should read the suggested sections of the bazic Operator's
Manual as you progress through this manual. To get the best
understanding of baZic, read the baZic Operator's Manual "cover
to cover" once you have finished this manual.

ADDITIONAL READING: bazic Operator's Manual Introduction.

(C) 1981 Micro Mike's, Inc. Page 2 Introduction

. -··
I

[

(

l
L

[

r
r
[

l

l

I
I.:

'· ...
l''.·i

r.

1· ..
I~

I·~
~

A Beginner's Guide to baZic What is a Program?

What is a Program?

OBJECT

To instruct the student in how to recognize and write a simple
program with the correct syntax, to understand the meaning of the
words •statement" and "argument,• and to recognize and use the
baZic programming instructions LIST, PRINT, RUN, and SCRatch.

LESSON

A program is a series ~f instructions which tell the computer
what it should do. One such instruction under the programming
language baZic is called a statement. The most simple baZic
program is a program with one statement. A LISTing of one such
simple program would appear as follows:

10 PRINT "This is probably the most simple program."

In this instance the program has a line number of "10" and the
single statement "PRINT" with an argument of "This is probably
the simplest program." Under baZic, each step of the process of
executing t~e program must be controlled by a line number.

Because statements are always executed in line number .o~der, line
numbers guide baZic through the program so that the steps of the
program are executed in the right order. The line number could
be any number in the range of 0 to 65535 but 10 is where most
programmers start numbering.

The first and only statement of the sample program is the reserv­
ed word PRINT followed by the information (enclosed in quotes)
you want the program.to print. A reserved word (like PRINT) is a
word reserved by baZic to mean an instruction for the computer to
execute.

Many of the instructions (statements) are followed by an argument
for the statement to "work on." In our example program, the
PRINT statement is used to cause the rnessase, "This is probably
the most simple program," to be printed en the terminal by the
program.

If this program is RUN, the following will appear on the termi­
nal:

This is probably the most simple program.

Notice that the quote marks do not appear in the printout because
quotation marks are used to delineate the bounds of the message
to be printed. This message is the argument to the PRINT state­
ment. Not all statements have arguments and many statements can
have more than one argument.

(C) 1981 Micro Mike's, Inc. Page 3 · session 1

_·!

A Beginner's Guide to baZic What is a Program?

If the reserved word PRINT was spelled incorrectly or one of the
quote marks was left out, the program will not have the correct
syntax. Syntax is the correct representation of a program so
that the computer "knows" what action the program is to perform.
For the syntax to be correct, the statement must match the syntax
of the given language. Items which affect syntax can be spaces,
commas, spelling, and quote marks, etc.

To write this program we start by looking for the READY message
of baZic. This prompt is used to tell the programmer that the
language is READY to take instructions. To make sure there are
no instructions already in baZic, we will first type the command
to SCRatch any previous program. This.sequence will appear as
follows:

READY
~~
READY

Now we may begin directly under the last READY message by typing
the following:

li PRINT "This J..§. probably the most simple program."

Type everything exactly as you see it above (you should not
indent because this is used to separate the computer .sessions
from the text). Once you have entered this information, you may
RUN the program by typing:

This is probably the most simple program.
READY

When you typed RUN, the program immediately executed the program,
printed the READY message, and returned to the command mode so
that you could enter more program or RUN the program again.

If you now want to view the program, you can type the command
LIST and the program will be displayed by the computer as
follows:

READY
~~
10 PRINT "This is probably the most simple program."
READY

we now know that a program is RUN to make it execute. We can
LIST the program if we want to see what it looks like. To erase
a program we type SCR, which is an abbreviation for SCRatch.
PRINT is a baZic statement which is used to print messages on the
CRT.

(C) 1981 Micro Mike's, Inc. Page_4 Session 1

r

[

[

F

[

l

[

l
l
l
L

A Beginner's Guide to baZic What is a Program?

ADDITIONAL READING

baZic Operator's .Manual Sections 3.1.1, 3.1.3, 3.3.1, and 4.2.1.

TEST

1. What is a reserved word?

A reserved word is a special word used by baZic to mean some
specific action (PRINT, etc.) to be taken by the
interpreter.

2. What is a statement?

A statement is a single instruction which tells the computer
to do something for the programmer.

3. What is a program?

A program is a set of instructions which is executed in a
specific sequence to cause the computer to accomplish some
task.

4. What is a line number?

A line number is an integer number in the range of 0 to
65535 which is used to guide the order of execution of a
program.

5. What is an argument?

An argument follows a statement and is something for the
statement to act upon.

6. What is the meaning of RUN?

RUN is a command used to cause a program to beg in executing.

7. What is the meaning of LIST?

LIST is the command used when the programmer wants to view a
LISTing of the program on the CRT.

8. What is the meaning of PRINT?

PRINT is a baZic statement used by the programmer to cause
some message which is delineated by quotes to be displayed
on the CRT.

9. What is the meaning of SCR?

SCR is the reserved word for SCRatch which instructs baZic
to clear internal memory of any previous program that it
might have contained.

(C} 1981 Micro Mike's, Inc. Page 5 Session 1

A Beginner's Guide to baZic What is a Program?

10. What is the meaning of the word syntax?

Syntax is the way in which words and symbols are put togeth­
er to form a program that will execute properly.

EXERCISES

Which of the following programs has the correct form and will
work properly when run? If it will not RUN properly, tell why.
You may use a computer to test each of the possibilities to see
if it will execute correctly.

A. 1000 print "This is a program statement."
B. 0 PRINT "This is a program.
C. 100000 PRINT "This is a program."
D. 0 PRINT "This is a program."

Only Option D will work correctly. Option A will generate a
SYNTAX error because the reserved word PRINT is not in uppercase
{all capital letters). Option B will also give a SYNTAX error
because the information to be printed is not enclosed in double
quote marks. Option C will return an OUT OF BOUNDS error because
the line number is not within the· proper range.

Write and run a program which will print the message "This is
also a very simpl_e program." on the CRT.

READY
ll PRINT "This .i.§. also ·.s. very simple program."~
.mm~

This is also a very simple program.
READY

Write and RUN a program which prints the message "This is Line
one." and then prints the message "This is Line two." on the next
line.

ll PRINT "This is Line One."~
20.. PRINT "This is Line Two."~
.fillli ~

This is Line One.
This is Line Two.
READY

(C) .1981 Micro Mike's, Inc. ·page 6 Session l

[

l._

[

[. ..

[

[

{

[

L

l
l
r

··.:·

~:~l
1·:-'
' ·-i.:::::

A Beginner's Guide to baZic Working With a Program

Working With a Program

OBJECT

To learn the use of the CAT, NSAVE, SAVE, LOAD, and PSIZE com­
mands. Also, to learn the difference between internal memory
(RAM) and external memory (disks) and how to recognize the cur­
rent program.

LESSON

Internal memory, called Random Access Memory (RAM), is the work­
ing memory of the computer. The central processing unit (CPU) is
closely associated with the internal memory and this is where all
of the "work" is done. Internal memory is very fast in that the
processor can access any part of the internal memory in a few
billionths of a second.

Internal memory is called volatile because it requires an elec­
trical current to retain its contents. This memory is said to be
volatile memory because its contents disappear when the
electricity is turned off. The current program is always located
in the internal memory of 'the computer.

Extern al memory r et a i n-s its contents when the power is turned
off; therefore it is called non-volatile. This memory is much
slower to access but usually has room for much more information
than the internal memory. Programs and data files are stored in
the external memory. The computer has the ability tc exchange
information between the internal and external memory. A program
becomes the current program when it is moved from the external
memory to the internal memory.

Now that we have created a program (from Session 1), we may want
to SAVE this program for future use. Because the inter~al memory
of the computer is volatile and will "forget" when the power is
turned off, we must store the program in non-volatile memory
(floppy or hard disks).

Because the external memory can hold hundreds or even thousands
of programs, we must have some method for organizing the programs
on the disk so that they may be found easily. The CA~alog of a
disk is the listing of the names of all the programs (and data
files) which are located on that disk.

If we want to look at a collection of names of the programs on a
disk, we will look at the CATalog (sometimes called directory) of
that disk. The proper command therefore is to CATalog the disk
and will appear as follows (MicroDoZ version of baZic):

{C) 1981 Micro Mike's, Inc. Page 7 session 2

·•
\

A Beginner's Guide to bazic Working With a Program

Because the file TEST is already created to hold the program
TEST, you can use the SAVE command to reSAVE the TEST program.
The NSAVE command is used only the first time you need to SAVE a
program in order to create a file in which to SAVE the program.
All additional SAVEs of the TEST program to the TEST file will
appear as follows:

READY
..sAil ~~
READY

To verify that the program was saved correctly, we will repeat
the previous sequence. First SCRatch the current program, LIST
it to show that there is no program, LOAD the TEST program and
then LIST it to show the program was LOADed from the disk into
internal memory. The entire sequence will appear as follows:

READY
~~
READY
~~

READY
LQAI2 ~ ~
READY
LIS.l'. ~
10 PRINT "This is probably the most simple program."
20 PRINT "This is now a more complex program."
READY

You should understand at this point how a program can be modified
and the resulting program SAVEd back into the same file. Of
course, any program residing in the file will be written over
each time the SAVE command is used.

The next topic to be consid~red is how fh~ size ~f a program is
determined. When we CATaloged the disk, we saw the file name
with several numbers directly after the file name. The first
number is the size of the program file in blocks. Blocks are
used by the computer to allocate space for disk files.

A block can hold 256 bytes or characters of information. If you
want to see how large your prograrr. is, you could count each
letter, number, space, or special character in you program and
divide by 256 to arrive at the approximate size of the program in
blocks.

If the program were large, this could be a very time-consuming
procedure. Because baZic has a command to do this task, we
should take advantage of this feature. The command is PSIZE
(Program SIZE). By issuing this command, baZic will tell us the
size of the current program in blocks. If we execute the command
on our present program, the sequence and results will appear as
follows:

(C) 1981 Micro Mike's, Inc. Page 10 Session 2

I
r!
[~'

r
!

[

[

[

[

[

[

l

l
l

l

A Beginner's Guide to baZic

READY
PSIZE ~
1 BLOCKS
READY

Working With a Program

If you try to save a program which is too large for the space
allocated on the disk, you will be given an OUT OF BOUNDS error.
Your program will not be SAVEd. Of course this condition can be
checked easily by executing the PSIZE command and comparing the
results with the size number as shown by the CAT command. By
comparing the two numbers, you can easily determine if your
program will fit into the available space.

If your program will not fit into the existing space, you will
have to NSAVE your program under another name. In future lessons
you will learn how to DESTROY any files that you may net want.

ADDITIONAL READING

baZ ic Operator• s Manual Sect ions 3 .2 .1, 3 .2 .2, 3 .2 .3, 3 .2 .4, and
3.1.6.

{C) 1981 Micro Mike's, Inc. Page 11 Session 2

A Beginner's Guide to baZic Working With a Program

TEST

1.

2.

What is the command used to determine the size of a program?

PSIZE

What command lists a program?

LIST

3. What command is used to save a new program?

NSAVE <PROGRAM NAME>

4. What command is used to save a program in an existing file?

5.

6.

7.

8.

SAVE <PROGRAM NAME>

What command is used to retrieve a program from the disk and
place it in internal memory?

LOAD <PROGRAM NAME>

If we want to erase a program from internal memory, what
is the command?

SCR

What is the current program?

The current program is the program residing in the internal
memory of the computer which has been LOADed from disk or
entered by a programmer.

To determine the size of a program stored on disk, we use
what command?

CAT

9. What happens to internal memory (and your program) when the
power is turned off to the computer?

The memory forgets and your program is lost.

HJ. What happens to disk storage when the power is turned off to .
the computer?

Nothing. All programs and data are preserved.

11. What is RAM?

RAM is the internal Random Access Memory of the computer.

(C) 1981 Micro Mike's, Inc. _ Page 12 Session 2

r
i

r .

G

[

f
. ~
...

[

\.

l.
L
l.

l_

L

A Beginner's Guide to baZic Working With a Program

12. What is the CPU?

The CPO is the Central Processing Unit which actually
performs the work of the computer.

EXERCISES

Store the same program under two different names.

Practice writing a short program, NSAVEing it, LOADing it back,
modifying it, PSIZEing it, SAVEing it back on disk, and then
CATaloging the disk to see the program files listed and the size
of each.

(C) 1981 Micro Mike's, Inc. Page 13 Session 2

r.

.,
<!

A Beginner's Guide to baZic Line Numbers

Line Numbers

OBJECT

To learn more about line numbers, how to have the computer gener­
ate them AUTOmatically, how to RENumber them, and how to DELete
them.

LESSON

For the benefit of the programmer, baZic has the ability to
generate line numbers without the user having to enter line
numbers with each line of code written. The AUTO command can be
used to start line numbering at any valid line number and
increment by any value as long as the line number generated falls
within the allowable range of line numbers (0 to 65535).

The most simple case of the AUTO command is to type AUTO without
any arguments. This issuance of the command will cause line
numbers to be generated starting with Line 10 and incrementing by
10 for each additional line number required. To use the AUTO
command, type AUTO in response to the READY prompt as shown
below:

READY
Alll'.Q ~
10 PRINT "This ..i.a. probably the most simple program."~
20

The cursor will appear directly after the first line number (10).
You may now enter your program statement. When you enter a
Return (<CR>) at the end of each statement, baZic will enter the
next line number for you AUTOmatically. To terminate the AUTO
mode, enter a Return immediately after baZic generates the line
number.

If you want your program to start with Line 100, use the AUTO
command and the starting line number argument. This time we will
pass a single argument to the command as follows:

READY
A!ITQ ll..a ~
100 PRINT "This ..i.a. probably .tM most simple program."~
110

The next line number generated will be 110. If we want the line
numbers to be 100 apart (100,200,300, etc.), we will use the AUTO
command and pass two arguments (starting line number and
incremental value). The following example shows this situation:

_(C) 1981 Micro Mike's, Inc. Page 14 Session 3

r
I

r
r
[

[

L
[

[

L

[

L
l
l
l

A Beginner's Guide to baZic Line Nmnbers

READY
Alll'.Q 100.100 ~
100 PRINT "This li probably the~ simple program."~
200

The RENumber command is similar to the AOTO command except that
the program has already been created when we use the RENumber
command and we just want to RENumber the line numbers. In many
programming situations, a program is written using the AOTO
command to generate line numbers which start at 10 and increment
by 10. Because programmers are not perfect (just program awhile
and you will find that this is true), usually one or more line
numbers will have to be added to the program so that the program
will execute correctly.

Once the program is completed and working correctly, we will
probably want to "clean it up" by RENumbering the program so that
all of the line numbers are separated by the same incremental
value. To RENumber a program starting at Line 10 and
incrementing by 10, issue the REN command as follows:

READY
.E.filI ~
READY

bazic will now RENumber your program to the new specification.
If you are in doubt, recall (LOAD) your program from the previous
session, RENumber it and LIST it to see the affect. Programs may
also be RENumbered to any starting value and any incremental
value as in the AUTO command (REN 18,27). If we want to RENumber
a program so that the first line number is 100 and the incremen­
tal value is 5, we w il 1 issue the command as follows:

READY
REN 100.5 ~
READY

The DELete command works in a similar manner to DELete line
numbers, except the arguments must always be supplied. Issuing
the DEL command without arguments will result in baZic printing a
SYNTAX error. Remember, if you want to DELete all the line
numbers (and the associated program line), use the SCRatch com­
mand to delete the entire program. The DELete command is issued
with the number of the first line you want DELeted, then a comma,
fallowed by the number of the last line you want DELeted.

Enter this sample program:

10 PRINT "This is Line One. n

20 PRINT "This is Line Two. n

·30 PRINT "This is Line Three. "
40 PRINT "This is Line Four. "
50 PRINT "This is Line Five. 11

60 PRINT "This is Line Six. n

(C} 1981 Micro Mike's, Inc. Page 15 Session 3

A Beginner's Guide to bazic Line Numbers

To DELete lines 30 through 50, inclusive, issue the command as
follows:

READY
m 30.s0 ~
READY

Now LIST the program and you will find that the specified lines
are not in the current program. The LISTing will now appear as
follows:

10 PRINT "This is Line One."
20 PRINT "This is Line Two."
60 PRINT "This is Line Six."

For further practice, RENumber this program to start at 100 and
increment by 50. LIST the program. The sequence will be:

READY
.E.E.N 100.50 ~
READY
.L.I.Sl'. ~
100 PRINT "This is Line One."
150 PRINT "This is Line Two."
200 PRINT "This is Line Six."
READY

T~ delete a single line only, type the line number followed·
immediately by a Return. The line number and line will no longer
be in the program. Using the preceding program, type:

READY
150<CR>
READY
Lll'.l'. ~
100 PRINT "This is Lihe One."
200 PRINT "This is Line Six."

Notice that Line 150 is now removed from the program. If we have
SAVEd our original program on disk, we will need to SAVE it again
if we want to retain this final version.

ADDITIONAL READING

baZic Operator's Manual Sections 3.1.2, 3.1.4, and 3.1.5.

(C) 1981 Micro Mike's, Inc. Page 16 ·· Session 3

' !

l

[

[

[
r:·
r

[

L

[

[

A Beginner's Guide to baZic Line Numbers

TEST

1. What command would be used to renumber a program so that the
first line number in the program is 35 and each additional
line number is 5 greater than the previous line number?

REN 35,5

2. How do you delete a single program line?

Type the line number followed immediately by a Return.

3. What command is used to cause baZic to generate line num­
bers automatically?

AUTO

4. Show the AUTO command to start numbering at 1500 with an
incremental value of 55.

AUTO 1500,55

5. Show how to delete line numbers l to 15.

DEL 1,15

EXERCISE

Practice using the AUTO, REN, and DEL commands.'

(C) 1981 Micro Mike's, Inc. Page 17 Session 3

A Beginner's Guide to baZic Commands, Statements, & Functions

Commands, Statements, & Functions

OBJECT

To learn to recognize the difference between the commands, state­
ments, and functions of bazic and to be able to recognize, DIMen­
sion, and use a baZic variable.

LESSON

baZic has two major modes: direct (or command) mode and program
execution mode. Programs and commands are always entered in the
direct mode while programs run in the program mode. Commands
(such as LIST, RUN, SCR, etc.) may be executed in the direct mode
but not in the program execution mode (in a program).

Normally statements are executed in the program mode which is
initiated by the RUN command. Some statements will work in the
direct mode and can be used for such things as calculations, etc.
The statements which can be used directly are listed in the baZic
Opera tor's Manual in Section 2. An example of a statement
follows:

10 PRINT A

You should by_ now be familiar with some of the commands of ·baZic
because you have used them in the previous sessions. A command
is always issued by the programmer while in the direct mode. The
command is issued by typing the command reserved word followed by
a Return (<CR>). The command is executed immediately. An
example of a command follows:

READY
.,CK!~

A program is made by combining a series of statements. Although
baZic has many statements, only one has been covered (PRINT).
More will be learned about the other statements as each one is
covered individually in later sessions.

The built-in functions may be a little harder to understand
unless you have experience with mathematical functions (trig
functions, etc.). A built-in function is a predefined operation
which is controlled by and operates on one or more arguments and
which returns, upon completion, a value based on the operation of
the function.

As an example of functions, if we want to find the square root of
some number, we will use the SQuare RooT (SQRT) function. The
following seq~ence will cause the computer to PRINT the square
root of the number 4:

{C) 1981 Micro Mike's, Inc. Page 18 Session 4

r
i
!

-
i

I
r
.[

[

r
[
[,.
t

f
L

[_

L
L

l
[

I·.

r
..
.

A Beginner's Guide to baZic

READY
PRINT SORT(4) ~
2
READY

Commands, Statements, & Functions

The number 4 is the argument to the function and is enclosed in
parentheses. This is the value on which we want the function to
operate. The value returned from the function call is the number
2 which is printed by the PRINT statement associated with the
function call. A function is called, or invoked, by using the
function name in a statement.

baZic has many "built-in" functions, that is, functions which are
contained in the baZic interpreter. baZic also has the ability
to let the user "write" his own function, give it a name, and
then use it as needed within a program. several more sessions
will be devoted to functions because they are a very powerful and
important part of baZic.

The next topic to be covered is variables. Because much of the
information baZic deals with is constantly changing, each symbo­
lic "piece" of information is given a name with which to
reference that information. One such piece of information could
be an accounts receivable total, a general ledger account number,
a person's name, and so on.

bazic uses a strict me~hod of naming variables. All variable
names must begin with a letter of the alphabet and all letters
must be OPPER CASE only. The basic variables are the ·1etters A
to z. Alternately, each letter may be followed by a number from
0 to 9. Obviously, this allows many variable names, but there
are even more as we will find out later. Some sample legal
variable names are:

A Al C3 X0 B9 D E FS R2 y z

These variable names are cilled numeric variables because each
variable name can store one number. A string variable is used to
store any other character which appears on the keyboard. A
string variable name can have the same combination of letters and
numbers but always has a dollar sign ($) on the end of the name.
When you see the dollar sign, you should say the word "string."
The variable A$ should be called "A string." Some sample legal
string variable names are:

A$ Al$ B$ C3$ X0$ B9$ D$. E$ FS$ R2$ Y$ Z$

An additional type of variable is called an array variable. Even
though there are 260 (26 letters times 10 numbers per letter)
numeric variables, it is not uncommon for a bazic program to have
more than 260 different numbers with which it has to work. To
handle this situation, we should to use an array variable.

{C) 1981 Micro Mike's, Inc. Page 19 Session 4

A Beginner's Guide to baZic Commands, Statements, & Functions

Array variables have the same.name as the numeric variables
except the name is followed by parentheses containing a sub­
script. The subscript "points" to the proper element of the
array and is used to reference the variable within the array that
we want. The subscript may be a variable itself, providing
almost unlimited ways to access any element of the array.

Array variables use one variable name to signify an entire group
of numeric variables. As an example, the array variable A() can
represent 10 or more variables. A(l) represents the first
variable, A(2) can represent the second, and etc. As you can
see, the number of variables which baZic can accommodate is
enormous.

To t~e computer, a variable is actually a name fer a place in the
internal memory that is going to be used by the program to "hold"
a particular piece cf information whose value will change as the
program executes. That is why it is called a variable.

Because each variable requires some arnoun·t of "room" to "store"
its information, in many cases we must "tell" baZic how much room
to teserve.for each variable. This process of "telling" baZic is
called DIMensioning the variable. Only string and numeric array
variables need be DIMensioned. If you use either variable with­
out first DIMensioning the variable, baZic will assign a standard
DIMension of 10 to a ~tring variable and 11 to an array variable.

If a string variable has a DIMension of 10, that means that 10
letters, numbers, or special characters can be stored in that
string. The string "ABCDEFGHIJ~ could be stored in an un-DIMen­
sioned string variable, but the string "ABCDEFGHIJK" will not fit
because it has too many letters. The last letter "K" will not be
assigned to the variable. To make the "K" fit, we will have to
DIMension the string to·ll before we use the variable in the
program. The following shows the DIMension of the A$ variable to
11:

10 DIM A$(11)

The D~Mension statement must occur before the first use of the
va~iable in a program. Once a variable is used, its DIMension is
set to the default value (10 for a string and 11 for a numeric)
and cannot be changed within the program.

In a similar manner, the .numeric array variables must be DIMen­
sioned before their use. As stated before, the DIMension of an
array variable is set to 11. By simply using a numeric array
variable in a program, you get 11 "places" in the variable to
store a number. These 11 places are referenced by using sub­
scripts ranging·from 0 through 10. If we want to allow 100
numerics to be stored within the A array variable, we would
DIMension the variable as follows before the variable is used in
the program:

10 DIM A(l00)

(C) 1981 Micro Mike's, Inc. Page 20 .Session 4

r
B

' . ..

c
f
..
·~ ·•
·~

E
c
[

[

•[

L

A Beginner's Guide to baZic Commands, Statements, & Functions

This tells baZic to reserve room for 100 (actually 101 counting
the array element 0) numbers to be stored within the A array
variable. Each number stored within the array is called an
element of the array. The elements are now referenced by sub­
scripts from 0 to 100.

In case you need even more variables, numeric arrays can have
more than one dimension and those dimesnsions can be as large as
available memory. A two-dimension array can be visualized as a
table having columns and rows of numbers. The entire table will
be stored in the single array. An example will be:

10 DIM A (Hl 0 I 10)

This array could store HJ00 numbers (actually 1111 or 101 times
11). To reference an element of this array, you would have to
state the element you want to access by giving its row and column
position within the array. You might want to access Element
A(21,5), or A(99,9), or any other of the 1000 possible combina­
tions.

A three-dimensional array would be:

10 DIM A(l0,l0,10)

This array· would again hold 1000 numbers (really 1331 or 11 times
11 times Jl). To access one element, you must specify the posi­
tion in the array giving each of the three dimensions. Care must
be used in creating large arrays because the last example would
use almost 8000 bytes of internal RAM storage.

The user-defined functions mentioned earlier in this session are
given names which are.similar to variable names. Functions cari
be string or numeric functions as reflected by their names and as
determined by the type of .·data they return (string or numeric).
The function name is composed of the letters nFN" followed by a
numeric or string variable name. Some legal function names would
be:

FNA FNA$ FNBl FNB1$ FNX FNY$

Functions will be covered in more detail in later sessions.

(C) 1981 Micro Mike's, Inc. Page 21 Session 4

A Beginner's Guide to baZic commands, Statements, & Functions

TEST

l.

2.

What is the difference between the command mode and the
direct mode of bazic?

None. The command and direct mode are
used by the programmer to issue commands
as well as to actually write a program.
baZic is the program execution mode.

Define command.

the same and are
directly to baZic
The other mode of

A command is a baZic reserved word which causes the
computer to take some immediate action as specified by the
programmer.

3. Define statement.

4.

5.

A statement is a single instruction contained within a
program which causes the computer to perform some operation
when a program is executing. Some statements also can be
used as commands.

Define function.

A function is an operation, either built-in to bazic or
defined by the programmer, which operates upon one or more
arguments to obtain a result which is passed from the func­
tion to the part of the program which called the function.
Functions are named similarly to variables.

What is a numeric variable?

A numeric variable is a legal symbolic name used by baZic
to store a number.

6. What is a string variable?

7.

a.

A string variable is a legal symbolic name used by bazic to
store any character, or group of characters, which appear
on the terminal keyboard.

What is a numeric array variable?

A numeric array variable is a legal symbolic. name used by
bazic to store a series of related numeric variables.

What is the standard DIMension of a string and numeric
variable?

10 for a string and 11 for a numeric.

{C) 1981 Micro Mike's, Inc. Page 22 Session 4

\:

[

·P
[

[

r·

I
[

[

L
[

[

1
:··

. ;

.- : ..

. .,

··~

A Beginner's Guide to baZic Commands, Statements, & Functions

9.

10.

11.

How many dimensions can a numeric array contain?

As many as you want, provided your computer has enough
memory to support the array.

How many times can you DIMension a variable within a
program?

A variable can be dimensioned only once in a program. Any
use of a variable before it is dimensioned causes the vari­
able to be dimensioned to its default value.

What is a subscript?

A subscript is a reference to a particular element in an
array.

EXERCISES

Which of the following sets of variables are legal
variables?

A.
B.
c .
D.

bl
FR
Hl
X$

C3
D9
M6
Y0

D4$
H$
8B
00

Only D co~tains all legal variable names. In Option A, bl
is not legal because the letter is not in uppercase.
Option B is not valid because FR is not a legal name.
Option c can be excused because the number precedes the
letter in SB. The last variable under Option D looks wrong
but is correct because it has the letter "O" followed by
the number "0."

(C) 1981 Micro Mike's, Inc. Page 23 Session 4

A Beginner's Guide to baZic Getting Information In and Out

Getting Information In and Out

OBJECT

To teach the student how to use the basic methods for exchanging
information between the terminal and the internal memory of the
computer by using the PRINT, !, INPUT, and INPUTl statements.

LESSON

In the first session, we had some experience with the PRINT
statement. Now we will learn more about the PRINT statement and
some of its variations.

LOAD your test program (or re-enter it if you do not have it
stored). You should see the following upon LOADing and LrsTing
the program:

READY
L.QAI2 ~ ~
READY
.LISl'. ~
10 PRINT "This is probably the most simple program."
20 PRINT "This is now~ more complex program."
READY

If the program is RUN, the following will appear on the terminal:

This is probably the most simple program.
This is now a more complex program.
READY

For a change, we might want the program to PRINT the same mes­
sages but want them separated by a single line. To accomplish
this change, enter the following line:

l.5. PRINT <CR>

When the program is LISTed, it will appear as follows:

10 PRINT "This is probably the most simple program."
15 PRINT
20 PRINT "This is now a more complex program."
READY

Now if the program is RUN, the results would be:

This is probably the most· simple program.

This is now a more complex program.
READY

(C) 1981 Micro Mike's, Inc. Page 24 Session 5

...
I .

I-

[

[

[
I
I,
t:....:

[

r
~: ..

. !

[

c
[

l
[

[

L
l
L

A Beginner's Guide to baZic Getting Information In and Out

Notice that the two lines are separated by one blank line (a line
space). For each PRINT statement which contains no argument
(item to print), a blank line is printed.

Now let us add to Lirie 15. By entering a line number which is
the same as a line number which already exists, the ·riew line
takes the place of the old. Enter the following:

1.5. PRINT ~ sure. _.:..

Be sure you enter the line exactly as shown including spaces. If
the program is LISTed, you should see:

10 PRINT aThis is probably the most simple program."
15 PRINT •For sure. ",
20 PRINT •This is now a more complex program."
READY

If this program is RUN, you will see the following on your termi­
nal:

This is probably the most simple program.
For sure. This is now a more complex program.
READY

As you can see, the effect of the comma was to keep the computer
from printing the ca~riage return at the end of the PRINT state­
ment. Normally a PRINT statement causes a carriage return and a
line feed to be issued to the terminal. When you want to have
two PRINT statements print their messages on the same line of the
terminal, include a comma at the end of the first PRINT statement
and any additional PRINT statement will print on that same line.

In summary, a PRINT statement always prints a carriage return and
line feed after each use of the PRINT statement, except when the
statement is followed by a comma.

Because most programmers are lazy by nature, bazic includes a.
shorthand notation for the reserved word PRINT. This shorthand
statement is the exclamation mark (!). Anywhere you see the
·reserved word PRINT, you may substitute ! . If the preceding
program were SCRatched and entered again using ! instead of
PRINT, it would work exactly as before and would appear as fol­
lows when LISTed:

10 ! "This is probably the most simple program."
15 ! "For sure. ",
20 ! "This is now a more complex program."
READY

Most programmers use the reserved word PRINT when they are first
starting, but switch to ! when they bec.ome familiar with
programming because fewer keystrokes are required to enter the
reserved word.

(C) 1981 Micro Mike's, Inc. Page 25 Session 5

A Beginner's Guide to bazic Getting Information In and Out

The next topic to cover is how to INPUT information from the
terminal to a variable in internal memory. You sharpies will
have probably already figured out that we use the INPUT state­
ment. To use the INPUT statement, enter a line number, the INPUT
reserved word, and the name of a variable you want the informa­
tion passed to.

SCRatch any previous program and enter the following:

READY
.s..c.E. ~
READY
ll INPUT A~
..2..[PRINT A ~

Upon LISTing the program you will see:

READY
~~
10 INPUT A
20 PRINT A
READY

If you RUN this program, you will see:

READY
.rum ~
?25.~
25
READY

The question mark indicates that baZic is waiting for you to
enter something, or in other words, the INPUT instruction is
being executed. In this example the value entered must be a
number because the variable to be INPUT is, A, a numeric variable.·
In the example, we show the number .25 being entered by the user
and then the program PRINTS the number on the next line.

In analyzing this program we see that the INPUT statement is used
t-0 assign a value to the variable A. The program, upon encoun­
tering this statement, displays a question mark on the terminal
and waits for the user to enter a number. When the number is
entered, the program places that number in the assigned variable
(numeric variable A). The next statement in the program says to
PRINT the value of the variable A. Because A has been set to the
value entered by the user, the program will PRINT the same number
entered.

The INPUT statement has several variations. · The first variation
is the INPUTl statement. The only difference between INPUT and
INPUTl is that INPUTl suppresses the carriage return· and line
feed normally issued by the INPUT statement when the user makes
his entry.

(C) 1981 Micro Mike~s, Inc. Page 26 Session 5

r
r
[

r
[

[

r
[

[

l

{

l
l

l

.,
J

A Beginner's Guide to baZic Getting Information In and Out

If the previous program is changed to use the INPUTl statement
instead of the INPUT statement the LISTing will appear as fol­
lows:

READY
~~
10 INPUTl A
20 PRINT A
READY

If you RUN this program, you will see:

READY
.fillli ~

?2..5.. ~ 25
READY

Notice that the variable A is now PRINTed on the same line as it
was INPUT. (On the INPUT we assigned the value 25 to the
variable A.)

One last example combines a PRINT statement and an INPUT
statement into one. This combination is used to let the person
using the program know what you want them to enter. SCRatch any
previous program and enter the following:

READY
.fil:E ~
READY
.ll INPUT "Enter .s number ~ ~
2Jl PRINT A ~

Upon LISTing the program you will see:

READY
L.I.fil'. ~
10 INPUT "Enter a number 11 ,A
20 PRINT A
READY

If you RUN this program, you will see:

READY
.fillli ~

Enter a number 2..5.. ~
25
READY

Notice that the question mark has been replaced by the prompt
message "Enter a number " which tells the user what is expected
of him.

(C) 1981 Micro Mike's, Inc. Page 27 Session 5

\

A Beginner's Guide to bazic Getting Information In and out

Strings also may be entered by using a string variable with the
INPUT statement. Follow the sequence listed below to write a
program which will enter string information:

READY
~~
READY
J...a INPUT •Enter s string ~ s.c.B2.
2.a PRINT M ~

Upon LISTing the program you will see:

READY
.L.I.S'.r ~
10 INPUT "Enter a string ",A$
20 PRINT A$
READY

If you RUN this program, you will see:

READY
.rum ~
Enter a string Mike ~
Mike
READY

Notice that INPUTting a· string is similar to INPUTting a number.
This program provides a good demo~stration of the DIMension
principle as described in a previous session. Try running this
program again, but this time enter a string which is more than 10
characters long. You will see that when the string is printed,
only the first ten characters will show. To correct this
problem, enter the following line:

5. .IllM ASC80l

Upon LISTing the program you will see:

5 DIM A$ (80}
10 INPUT "Enter a string ",A$
20 PRINT A$
READY

Now you can RON the program and enter a string of any size up to
80 characters before baZic "cuts" the string off.

If your INPUT statement is expecting a string and you enter a
number, the INPUT statement will accept the number as a string.
However, if you try to enter a string when the INPUT is expecting
a number, bazic will print the message:

INPUT ERROR--RETYPE THE INPUT

(C) 1981 Micro Mike's, Inc. Page 28 Session 5

r
!
'

r-·

i·
l

r
L
[
r
L

E
F
[

[

[

[

L
[

[

A Beginner's Guide to baZic Getting Information In and Out

The program will then wait patiently for you to enter the correct
type of information (a number).

We are now at the stage of beginning to write useful programs.
You should now have a basic understanding of how to collect
information from the person using the program and how to PRINT
that information back to the terminal. Writing useful programs
involves these steps, as well as many others. Generally, after
information is entered using an INPUT statement, i~ is stored,
added, subtracted, and otherwise manipulated to get the results
you want before it is PRINTed.

ADDITIONAL READING

baZic Operator's.Manual Sections 4.2.1, 4.2.2, and 4.2.3.

(C) 1981 Micro Mike's, Inc. Page 29 Session 5

A Beginner's Guide to bazic Getting Information In and Out

TEST

1. How do you make baZic print a line space (blank line)?

2.

3.

4.

5.

Use the PRINT (or !) statement without an argument or a
comma.

How do you make two print statements print on the same line?

Follow the first PRINT statement argument with a comma. A
comma causes the carriage return and line feed to be sup­
pressed.

What is the shorthand notation for the reserved word PRINT?

!

What statement is used to gather information from the user
of a program?

INPUT

Wh~ch input statement -is used to suppress the carriage
return and line feed normally generated by an input
statement?

IN PU Tl

6. What is the standard prompt printed by an input statement? .

?

7. Show a sample input statement which prints a prompt instead
of the standard question mark.

INPUT nThis is a prompt", A$

8. What dist~nguishes a numeric input from a string input?

The variable name. If the variable name is numeric, a
number is to be entered. If the variable name is a string
name, a string is to be input.

9. What happens if you enter a number in response to a string
INPUT?

The number is entered as a string. This means that it
cannot be used in any arithmetic calculation without first
converting the number to a numeric variable.

10. What happens if you enter a string in response to a numeric
INPUT?

baZic will print an error message and wait for a number to
be entered.

(C) 1981 Micro Mike's, Inc. Page 30 Session 5 ·

[
[.

r
r
L

[

[1
'

[

[

[

[
n
Ll

L
[

[

A Beginner's Guide to baZic Getting Information In and Out

EXERCISES

Write a program which will input a person's name, age, and state
and then print the results.

10 DIM A$(50)
20 INPUT nEnter your name n,A$
30 INPUT uEnter your age •,A
40 INPUT nEnter your state n,B$
50 PRINT nyour name is n,
60 PRINT AS
70 uyour age is ",
80 ! A
90 ! nyour state is u,
100 ! BS

(C) 1981 Micro Mike's, Inc. Page 31

' '

Session 5

A Beginner's Guide to baZic Line Editor

Line Editor

OBJECT

To learn the use of the baZic line editor and EDIT command..-

LESSON

At this time we will digress from programming for one lesson and
learn to use the line editor. By now, you should be tired of
typing and re-typing program statements. The line editor will
not relieve you of the task of typing programs into baZic, but it
will help a great deal when changing lines already entered.

Start by LOADing (or typing if neccessary), the program from
previous Sessions. A LISTing should appear as follows:

10 PRINT "This is probably the most simple program.•
20 PRINT "This is now a more complex program."
READY

In a previous session, we changed the PRINT statement to its
abbreviated form (!). Before, we had to re-type the entire line
to make a single change. Now we will use the line editor to
simplify this task. With the above program residing as the
current program, enter the editor by typing:

READY
.fillD: ll ~
10 PRINT "This is probably the most simple program."

As you can see, the editor has now displayed the line you told it
you wanted to edit. The cursor will be under the 111 11 of the line
number.

All of the editor commands are invoked by holding the Control Key
while pressing the specified letter. The Control Key is much
like a second Shift Key in that pressing the Control Key and
another character cause the character key to "mean" something
different. In this case it means it is a command to the line
editor.

Now to edit Line 10. Press the Control Key and the A key.
Notice that a l is printed directly below the 1 in the line
number of the line to be edited. Press the same combination
(Control A) again, and the 0 will be printed. Press the same
combination one more time and the space will be •aisplayed" and
the cursor will be under the P of the PRINT statement. So what
does Control A do? It prints one character from the line to be
edited to the new line we are forming directly below the old
line.

(C) 1981 Micro Mike's, Inc. .Page 32 Session 6

' .
i

[

[
'•\

f
··.,

[

L
I
[

L
[

[

A Beginner's Guide to baZic Line Editor

The display should now look like this:

READY
.ED.IX li ~
10 PRINT "This is probably the most simple program."
10

Now enter an exclamation mark (the shorthand for PRINT). The p
should be overwritten by the exclamation mark and the cursor
should now be below the R of PRINT.

The display will appear as follows:

READY
.E.Dll li ~
10 PRINT "This is probably the most simple program."
10 !

The "RINT" needs to be deleted, so type Control z four times.
Control z is used to delete characters from the old line so that
they do not appear in the new line. A percent sign (%) is
displayed for each character that is deleted. The display should
now appear- like this:

READY
filU.! li ~
10 PRINT "This is probably the most simple program."
10 !%%%%

From this point on, a n•u will be substitued-for the word "Con­
trol." When you see the symbol "-A," it means to enter a Control
A (press the A key while holding down the Control key). - ·

To complete the edit, type ·G. The ·G command is used to "copy
to the end of the line." Everything from the character at the
cursor position to the end of the old line will be copied from
the old line to the new line. The display will now show:

READY
.ED.ll li ~
10 PRINT "This is probably the most simple program."
10 !%%%% "This is probably the most simple program."<CR>

To enter the new line as a line in the program, you must follow
the ·G command with a carriage return. A carriage return termi­
nates the edit in that the new line now becomes the old line and
is placed in the program.

If, for some reason, you don't want the edited version of the
line to be placed in the program, you can enter a -N. The ·N
command is the cancel command. The cursor will advance to the
next line below the line being edited as if a Return had been
entered, except the old line remains in the editor for further
editing.

(C) 1981 Micro Mike's, Inc. Page 33 Session 6

A Beginner's Guide to baZic Line Editor

If you want to see the entire line as it has been edited, you may
enter the AG command again and a Return or AN. The display will
now show:

READY
.EDll ll ~
10 PRINT "This is probably the most simple program."·
10 !%%%% •This is probably the most simple program.·~
10 ! "This is probably the most simple program."~

The line has now been edited. This procedure may sound like it
takes a long time and maybe is not worth the eff art. This entire
procedure can be executed in a matter of seconds, once you become
accustomed to using the line editor.

As a short review, we have now learned four editor commands: AA
copies one character from the old line to the new, AZ deletes one
character f rem the old line so that it does not appear in the new
line, AN cancels the new line being edited, and AG copies all
characters from the current cursor position to the end of the
line.

-
In the next exercise, we shall edit Line 20 and use a new com-
mand. Type:

READY
.E.D..ll'." 2..a ~
20 PRINT "This is now a more complex program.•·

In the previous example, we typed AA until the cursor moved under
the P of the PRINT statement. This time, we will let the compu­
ter search for and find the P. The command is AD. When you
enter the AD command, nothing will happen. baZic is now waiting
for you to enter another character, the character for which you
want it to search. Enter a P and the cursor should move to
locate itself directly under t_he· P of the. PRINT statement.

The AD (search} command searches for the first occurrence of the
specified character. If the character appears more than once,
you must execute the command the proper number of times to get to
the correct character. Often, you can search for some other
character which appears only once before the character you want
and then search for the desired character. If the character you
specified does not appear in the line, the editor will "ring the
bell" of your terminal to tell you that you made a "dumb" mis­
take.

Using the same sequence as before, enter a 11 ! 11 below the P, type
four AZ's to erase the RINT, type AG to copy to the end of the
line, and enter Return to terminate the edit. To view the line
again, enter the AG command again followed by a Return. The
entire sequence should appear as follows:

(C) 1981 Micro Mike's, Inc. ·- Page 34 Session 6

I
r
~ . .

[. .

[

l
[

[

[

[

[

~ .. r· I r·:•

!
i -
I

r
L
('·"'. ,_,.:;

8

A Beginner's Guide to baZic Line Editor

READY
.E.lU.'.l! ll ~
20 PRINT •This is now a more complex program."
20 !%%%% •This is now a more complex program."~
20 ! "This is now _a more complex program."~

The line editor has two more commands: ""y, the insert command,
and -a or Backspace, the backspace command. The ""Q (or you can
use the Backspace key) command is used to back up while editing.

The -y command is more complex, as it
insert mode on and off. For practice,
"much" between "a" and "more" of Line 20.
edit mode by typing:

READY
.E.lU.'.l! 2.[~

is used to toggle the
let's insert the word
Begin by entering the

20 PRINT "This is now a more complex program."

Now search for the letter "m." Enter ""D and a lowercase "m" as
the character for which to search. The cursor should advance to
below the letter m of the word more. we are now in the correct
position to insert the new word. Enter ""y and the editor will
print a "less than" symbol (<) to tell you that the text which
follows is being inserted. Now type "much." Be sure to type a
space after the word "much." Enter another ""y to exit the insert
mode and the editor will print a greater than sign (>) to
indicate the insert mode is off. Enter ""G.and a Return to
complete the edit. The entire sequence will appear as follows:

READY
.EDll 2..a. ~
20 PRINT "This is now a more complex program."
20 PRINT "This is now a <much>more complex-program."~

By typing ""G and Return (or ""N) again, you can see the edited
line:

20 PRINT "This is now a much more complex program."

You should now know the editor commands but practice is the only
·way you can become proficient in using the editor commands.

There are two additional instances when you can use the line
editor without having to type EDIT <Line #>. When you have
entered any line of text into a program, that line is in the
editor and can be edited immediately. All of the edit commands
are available. The other situation is the user response to an
INPUT statement. The user may use the line editor to edit any
resporise to any INPUT statement.

ADDITIONAL READING

baZic Operator's Manual Sections 9.1, 9.1.1, 9.1.2, 9.1.3, 9.1.4,
9.1.5, 9.1.6, and 9.1.7.

(C) 1981 Micro Mike's, Inc. Page 35 Session 6

A Beginner's Guide to baZic Line Editor

TEST

1. What is the abbreviation for the word "control?"

- (up arrow)

2. What is the use of the -z command?

-z erases one character from the old line.

3. What is the use of the -A command?

-A copies one character from the old line to the new line.

4. What is the use of the -D command?

-D is the search command. It must be followed by the
character to be found.

5. What is the use of the -G command?

6.

7.

-G is used to copy all characters from the old line to the
line starting at the present cursor postion and continuing
to the last character in the line.

'
What is the use of the -o command and which other key
provides th~ same service?

-Q is used to back up one character. The backspace key·may
also be used for this purpose.

What is the use of the -y command?

:Y is the toggle insert command.
want to begin inserting and is
complete the insert.

-y is ~ntered when you
entered again when you

8. List the three times the editor commands are available.

1. When the programmer types EDIT followed by a legal line
number and Return, 2. When the programmer has just ty?ed a
line of program, 3. When a user is making a response to an
INPUT statement.

EXERCISES

Practice using the line editor on any sample programs you may
have and continue using the editor for all future sessions.

(C) 1981 Micro Mike's, Inc. Page 36 Session 6

r .

[

i
L

[

r
r
[

l
I
r
L
l

l

A Beginner's Guide to baZic Branching

Branching

OBJECT

To learn the elementary branching techniques available in baZic
and the statements GOTO and ON GOTO.

LESSON

If no branching capabilities within baZic were available, pro­
gramming would indeed be a chore. Every single operaticn would
have to be defined explicitly for each occurrence cf the opera­
tion. Programs would have many line numbers and would be very
large.

Fortunately, this is not the case. By using a simple GOTO
statement, control can be passed to any valid line number in your
program. As an example, enter the following program:

10 DIM AS (5 0)
20 INPUT "Enter your name ",AS
30 PRINT AS
40 GOTO 20

Everything should be familiar to you except Line 40 •. Line 40
says to continue processing at Line 20. If this program is RUN,
the user will be asked for his name continually, the name will be
printed,· and the question will be asked again. This is called an
endless loop because there is no provision for ending the
program. RUN the program to see the results.

There is one method available to STOP the program. Whil~ the
program is RUNning, press Cpn~rol c (""c)·. The computer will
print STOP IN LINE 20, or· whichever line you were executing when
the ""c was executed. ""c is called the panic button, because it
allows you to stop whatever is going on.

The GOTO is the most simple case of a branching statement. In
the next few sessions, we will learn more. The GOTO statement
does have a twin statement which is quite similar. This
statement is the ON GOTO statement which allows the user to
branch to·more than one line number from one statement. SCRatch
the previous program and enter the following:

10 INPUT "Enter a number from 1 to 3 n ,A
20 ON A GOTO 30, 50, 70
30 PRINT "This is Option 1. II
40 GOTO 10
50 PRINT "This is Option 2. II
60 GOTO 10
70 PRINT "This is 9ption 3. II

80 GOTO HJ

(C) 1981 Micro Mike's, Inc. Page 37 Session 7

A Beginner's Guide to baZic Branching

In this example, Line 10 is used to INPUT a number. The user
should enter a number between 1 and 3 because this program does
no check on the validity of the user's response. If the user
does not enter a value in the proper range, Line 20 will generate
a SYNTAX error. You may want to SAVE this program for the next
lesson.

Line 20 shows the use of the ON GOTO statement. Depending on the
value of A (1, 2, or 3), Line 20 will branch to Line 30, Line 50,
or Line 70. If A is equal to 1, processing will continue at Line
30. If A is equal to 2, processing will continue at Line 50,
etc. Notice that each option will print a message indicating
which option was selected and is followed by a GOTO statement to
Line 10. This program is also an endless loop and can only be
terminated by using ~C~

These two examples show the basic use of the GOTO and ON GOTO
statements. The GOTO statement can be one of the most powerful
features of baZic but also can be one of the most troublesome
features. The problem is that the GOTO statement of any BASIC
interpreter gives the programmer too much flexibility to branch
to any point in a program. This often results in a program which
has no structure.

When a program is written, the programmer should take the time to
divide the program into.modules, each of which does one particu­
lar task, has one entry point and one exit point. These are the
basic premises of. structured programming to which a 11
programmers, new or old, should adhere. GOTOs should be used
only at the end of modules to return to some controlling module,
or within the module to branch to internal points or the exit
point. Many problems can arise when the programmer tries to
branch out of the middle of one module into the middle of another
module.

This is not saying that the· p'rogram won't work. Often the
program will work, even if th~ logic is overly complex because of
unneccessary branching. The worst problem with unneeded GOTOs is
the program becomes very hard to follow if it is branching in
every direction constantly. This is hard on not only the pro­
grammer who wrote the program, but any other person who tries to
understand the program.

The best approach is to research the task to be performed by the
program and divide the program into the proper modules, each
designed to accomplish only its specific task. GOTOs are not
inherently bad, but should be used sparingly in the appropriate
places. One of the worst temptations to new programmers is to
use GOTOs without regard to the guidelines previously stated.

The ON GOTO statement is fine to use because it allows an orderly
transfer of program control to different sections of the program.
However, the ON GOTO should branch to the beginning of a module
and adhere to the rules of structured programming. ·

(C) 198i Micro Mike's, Inc. Page 38 . ~ Session 7

l.
r

r

r
[

I

L

r
I

L
[

L

l
[

[

L
l
l

;.

A Beginner's Guide to baZic Branching

ADDITIONAL READING

baZic Operator's Manual Sections 4.3.1 and 4.3.4.

TEST

1. What is an endless loop?

A program which has no provisions for termination, and
which, theoretically, will continue forever.

2. How do you activate the panic button?

Press the Control and the C key simultaneously.

3. What is structured programming?

Programming where program modules are written to perform
each individual task, each module having only one entrance
and exit point, and where all modules are arranged in a
logical fashion so that the program has continuity and order
as a whole.

EXERCISES

Practice writing programs using the GOTO and ON GOTO statements.

~

(C) 1981 Micro Mike's, Inc. Page 39 Session 7

A Beginner's Guide to baZic Relational Operators

Relational Operators

OBJECT

To learn the meaning of =, <, >, <=, >=, <>, LET, REM, and the
words constant and operator.

LESSON

Everyone knows the meaning of equal -- if two items are the same
in every way they are said to be equal. The concepts to be
discussed in this session are similar to the equal concept.
While programming in baZic, variables and constants will be
compared to determine if they are equal. Variables also will be
set equal to other variables or constants by use of the LET
statement. If variables are not equal, they can be larger than
or less than other variables or constants.

The symbols used to compare variables with other variables or
constants are called the relational operators. usually a state­
ment consists of an operator (which specifies the action) and an
operand (which receives the action). In this section, all of the
operators are relational because they are used to determine. the
relationship between variables·and variables or variables and
constants. Operators may be. of other kinds (arithmetic and
Boolean), and are used to "operate" on the variables. The vari­
ables would be called the operands.

To set a variable equal to another, use the LET statement as
follows:

10 LET A=B

This statement sets the variable A so that it is equal to the
value stored in variable B. A variable may also be set to a con­
stant, as below:

10 LET A=lS

In this case, the variable A will contain the constant 15 upon
the execution of Line 10. Most programmers use the reserved word
LET only when they first begin programming. Like the PRINT
statement, there is a shorthand for the LET statement. The
shorthand is to assume the word LET by leaving it out entirely.
The previous example appears as follows in the shorthand
notation:

10 A=lS

As you can see, variables can be set to any value that you might
want and can also be changed as many times as you want.

(C) 1981 Micro Mike's, Inc. Page 40 . _ . _ -. Session 8

I
l

r
I

f
r­
t
'·

[

r
r-
!
;
i

[

r
[

[

L

[

[

L
[

[

A Beginner's Guide to baZic Relational Operators

One of the problems in using variables is that it is easy for the
programmer to forget what each symbolic variable name represents.
One way to solve this problem is the use of the REMark statement.
What does the REMark statement do? Nothing!

Everything appearing to the right of the REMark statement is
unconditionally ignored by baZic. The REMark statement is used
to place messages within a program to help remind the programmer
of things easy to forget. The last example could be helped by a
REMark statement, such as:

10 A=lS\REM A IS THE NUMBER OF ACCOUNTS

Notice that before we can use the REMark statement after another
statement which has th~ same line number, we must use a statement
separator symbol, which is a backslash (\). The REMark statement
should be one of the most used statements in any program, because
it helps the programmer, and anyone else who has to work with the
program, understand and remember how the pr~gram works.

Now to return to the relational expressions. You should know the
meaning of equal, but what about less than or greater than?
These relations are as they sound and·are represented by the
symbols < and >, respectively.

If you have trouble rem~mbering which symbol. means what, look at
the symbol. The less than symbol (<) can be distinquished by the.
fact that whatever appears on the left side of the symbol is less
than what.appears on the right side. Notice the left side of the
symbol is "less than" the right side of the symbol. The same
logic can be applied to the greater than symbol (>) in that the
left side is greater than the right side.

The equal sign can be "added" to either the greater than or
lesser than sign to arrive at two new relations; greater than or
equal to (>=} and less than or equal to {<=). As examples, the
following are true:

5 <= 5
5 >= 5
5 >= 4
5 <= 6

The less than and greater than symbols can be combined into one
more significant relation, not equal. The not equal relation is
defined by the combination of the two symbols(<>). When this
combination is spotted within a program it is pronounced "not
equal to."

The relationals can also be used to compare string _variables and
constants and to set string variables to other string variables
or string _constants. As an example:

10 AS="FILENAME ..

(C) 1981 Micro Mike's, Inc. Page 41 Session 8

A Beginner's Guide to baZic Relational Operators

String variables may be ·compared just as we compared numeric
variables. The comparisons are made by starting with the first
character of each string, using the ASCII value to compare the
value for each character. If the first characters are the same,
baZic will continue advancing through the string, comparing one
pair of characters at a time until a difference is found where
one string is greater or less than the other string.

Under this convention, the string •ABCD" would be less than (<)
the string •BBCD" and the string nBBCD" would be greater than
"ABCD." The string "AABC" would be greater than the string
"AAAC."

To find the value of any particular character, look up the letter
in the ASCII table in the back of the baZic Operator's Manual.
You should notice that numbers are "less_ than" letters of the
alphabet and upper case letters are "less than" lower case
letters.

Strings can be set to the "null" string by setting them to a
double quote (A$=""). This null string contains "nothing" and is
"less than" any other string.

ADDITIONAL READING

baZic Operator's Manual Section 6.2.

(C) 198i Micro Mike's, Inc. Page 42 Session 8

.-­
'

..­.
I

I

l
r.
[

[

' ' -

L
l

L

[

l
L

L
I

~ . '

A Beginner's Guide to baZic Relational Operators

TEST

1. What is the symbol for less than?

<

2. What is the symbol for greater than or equal to?

>= (also =>)

3. What is the symbol for equal to?

=
4. What is the syrr.bol for less than or equal to?

<= (also =<)

5. What is the symbol for greater than?

>

6. What is the symbol for not equal to?

<>

7. What is the reserved wo~d LET used for?

LET is used to assign values to v~riables.

8. What is shorthand for the reserved word LET?

Simply leave out the word LET.

9. For what reason is the REM statement used?

REMark is used to add remarks within a program to document
the program, making it easier for the programmer to remember
how the program functions and what the variables names stand
for.

·10. What is a constant?

A constant is a value which appears in the program but does
not change within a program. A constant is often used to
"setu the value of a variable which can and does change· its
value throughout the program.

11. What is an operator?

An operator is a symbol which represents an operation to be
performed on one or more operands.

(C) 1981 Micro Mike's, Inc. Page 43 Session 8

A Beginner's Guide to baZic Relational Operators

12. What is an operand?

An operand is the •quantityn upon which an operation is
performed.

EXERCISES

Which of the following are true situations?

A. 6=5 .
B. 6<=5
c. 6<5
D. 6>5
E. 6>=5

D and E are the only valid relations. All others are false.

What is the value of A when the following program has completed
execution?

HJ A=20
20 B=A
30 B=30
40 A=B
50 B=50

A is equal to 30.

Of the following strings, which are greater than the string "This
is a string":

A "THIS IS A STRING"
B "THIS IS NOT A STRING"
C "THIS IS NOT TBE LONGEST STRING IN THE WORLD"
D "U II

Only Option D is larger than the specified string. Each of
the others begins with the same letter, but because the
second letter of A, B, and c is upper case and the second
letter of the string to be compared is a lower case letter,
the specified string is "greater than" each of the three
even though B and C are longer strings.

·-

(C) 1981 Micro Mike's, Inc. Page 44 Session 8

~

' '

[

r
[
.,.

i'

L

[

l

[

[

L
[

[

A Beginner's Guide to baZic Decision Making

Decision Making

OBJECT

To learn how bazic makes decisions by the use of the IF THEN ELSE
statement.

LESSON

The concept cf the IF TEEN ELSE statement is used by people
everyday of their lives,. but most people are not aware that they
are implicitly making decisions by this convention. You might
say, "If it rains I'll go to the store, but if it doesn't rain
I' 11 go swimming." A translation of this sentence could be, "IF
it rains THEN I'll go to the store, ELSE I'll go swimming."

This is the same way that baZic makes decisions. baZic would
"look" at a situation, and based on the outcome, decide to do one
of two things. A typical program decision-making statement would
have the form:

10 IF A=0 TEEN GOTO 20 ELSE GOTO 30
20 PRINT. "THIS IS TEE FIRST CHOICE."
3 0 PRINT. "THIS IS THE SECOND CHOICE."

Line 10 is the decision-making line. baZic examines the variable
A to determine if the value of A equals 0. If this situation is
true, the THEN clause will be executed and processing will conti­
nue on Line 20. If the statement is not true (A equals any value
except 0), the ELSE clause will be executed and processing will
continue at Line 30.

The IF TEEN ELSE statement is one of the most powerful statements
in baZic and allows almost any problem to be solved by breaking
the problem into a series of decisions, each of which can be
solved by the IF THEN ELSE statement.

Any of the relational operators from the previous session could
be used to determine which clause of the IF THEN ELSE statement
is to be executed. Some example uses of the IF THEN ELSE follow:

10 IF A>B THEN 30 ELSE 40\REM GOTO 30 IF A GREATER THAN B

10 IF A<>B THEN 30 ELSE 40\REM GOTO 30 IF A NOT EQUAL B

10 IF A<=B THEN 30 ELSE 40\REM GOTO 30 IF A LESS THAN OR
EQUAL TO B

. (C) 1981 Micro Mike's, Inc. Page 45 Session 9

A Beginner's Guide to baZic Decision Making

Notice a difference between these examples and the first examples
of this session. In each of these examples, the GOTO statement
is implied and not explicitly stated in the IF THEN ELSE state­
ment. If the argument to the THEN or ELSE clause is a line
number, there is no need to say GOTO although the syntax of the
language certainly allows you to say GOTO if you want.

. .

The argument to the THEN and ELSE clause can be any statement.
The THEN clause can be followed by only one statement but the
ELSE clause can be followed by as many statements as will "fit"
on the line.

The ELSE clause is not required. An example of not using the
ELSE clause would be:

10 INPUT A
20 IF A=0 THEN 50
30 PRINT "A DOES NOT EQUAL 0"
40 GOTO HJ
50 PRINT "A IS EQUAL TO 0"
60 GOTO 10

If the IF argument is false, baZic will execute the next state­
ment which logically follows, be it on the same or next line of
the program. In our example, if the user inputs any value except
0, Line 20 will evaluate false, and processing will continue on
Line 30 of the program.

To practice the IF THEN ELSE statement, either LOAD (if you saved
the program) or re-type the following:

10 INPUT ·"Enter a number from 1 to 3 II' A
20 ON A GOTO 30, 50, 70
30 PRINT "This is Option l. II
40 GOTO 10
50 PRINT "This is Option 2. n

60 GOTO 10
70 PRINT "This is Option 3. II
80 GOTO 10

This program has a major fault in that there is no check on the
user's response. The user can enter a number less than 1 or
greater than 3, which would cause the program to generate a
SYNTAX error and stop execution. The reason this condition
generates a SYNTAX error will be given in the session on errors.

To correct the problem, add the following program lines to the
program:

READY
l2 .n: Ail .X1iE..N ll ~
ll.ll.AU~ll~

Now LIST the program. It should appear as follows:

(C) 1981 Micro Mike's, Inc. Page 46 Session 9

r
I

D
[

[

[

L!..

[

r
[

[

.
I

l.
L
l
l
l

A Beginner's Guide to baZic

10 INPUT "Enter a number from l to 3 ",A
12 IF A<l THEN 10
14 IF A>3 THEN 10
20 ON A GOTO 30, 50, 70
30 PRINT "This is Option l."
40 GOTO 10
50 PRINT "This is Option 2."
60 GOTO 10
70 PRINT "This is Option 3."
80 GOTO 10

Decision Making

The program will now do a check of the variable entered. If the
value is less than 1 (Line 12) the program will branch to Line 10
which will display the prompt and request that the information be
entered again. If the value of A is greater than 3 (Line 14),
the program will again branch to Line 10. This process will
continue until the user enters a value in the correct range.

RUN this program and check the results.

As a last exercise, RENumber this program and then LIST the
program to see the affect. The procedure should appear as fol­
lows:

READY
REN <CR>
READY
L.I..S.:r <CR>

10 INPUT "Enter a number from l to 3 ",A
20 IF A<l THEN 10
30 IF A>3 THEN 10
40 ON A GOTO 50, 70, 90
50 PRINT "This is Option l."
60 GOTO 10
70 PRINT "This is Option 2."
80 GOTO HJ
90 PRINT "This is Option 3."
100 GOTO 10

Notice that the line numbers in the ON GOTO have been changed to
reflect the new line numbers of the lines to which they were
pointing.

ADDITIONAL READING

bazic Operator's Manual Sections 4.3.6 and 9.3.2.

{C) 1981 Micro Mike's, Inc. Page 47 Session 9

A Beginner's Guide to baZic Decision Making

TEST

1. What is the decision-making statement?

IF THEN ELSE

2. Is the ELSE clause required?

No

3. Is the GOTO statement required as an argument to the IF TEEN
ELSE statement, if the statement is to branch to a line
number?

No

4. What part of the IF THEN ELSE statement is evaluated as true
or false?

The argument to the IF.

5. If the IF clause evaluates true, what happens?

The THEN clause statement is executed.

6. If the IF clause evaluates false, what happens?

The ELSE clause or next logical·statement is executed.

EXERCISES

Practice writing programs using the IF THEN ELSE statement.

(C) 1981 Micro Mike's, Inc. Page 48 Session 9 ·

I
!

I.
1 ·

[

L
[

[

L
\

[

L
l
L

L

A Beginner's Guide to baZic FOR NEXT Loops

FOR NEXT Loops

OBJECT

To learn to recognize and use the FOR, NEXT, STEP, EXIT, and END
statements.

LESSON

The FOR NEXT loop is one of the most-used and most powerful
branching and control.structures in baZic. These statements
allow the program to set up and control complex repetitous
situations with little work on the part of the programmer.

Basically, the FOR NEXT loop is a counter. The loop is esta­
blished with a control variable and a set of range variables.
The programmer "tells" the loop to keep the processing within the
loop as long as the conditions are met. Once the conditions are
exceeded, control passes from the loop to the statement which
immediately follows.

The basic form of the FOR NEXT loop is:

10 FOR N=l TO 10
20 PRINT N
30 NEXT N
40 END

In this example program, N is the control variable, 1 is the
beginning value, and 10 is the limit value. The FOR statement
marks the beginning of the loop. The NEXT statement marks the
end of the loop. Any statement, or statements, between these two
will be executed repeatedly until the loop is completed (the
control variable equals or exceeds the limit value).

This program will PRINT all of the integer numbers from 1 to 10.
If we examine the flow of processing, we would start at Line 10

·where the control structure is established. The statement says
to begin by setting N equal to the number 1. Line 20 says to
PRINT the number. At Line 30, the NEXT statement says to incre­
ment N by 1, return to Line 10, and continue through the loop.

This process will continue until the variable N is equal to 10.
Line 20 will print the last value (10), and processing will
continue to Line 30 where the NEXT statement will cause proces­
sing to continue with Line 40 (a new statement which means to END
the program). When the loop is completed, N will equal 11, 1
more than the value of the control variable.

(C} 1981 Micro Mike's, Inc. Page 49 Session 10

A Beginner's Guide to baZic FOR NEXT Loops

The same program could be written using an IF THEN ELSE statement
and a counter instead of the FOR NEXT statement. It would appear
as follows:

10 N=l
20 PRINT N
30 N=N+l
40 IF N>l0 THEN 50 ELSE 20
50 END

If we want to make the previous FOR NEXT program PRINT all of the
numbers from 1to10 but in increments of .1, we would modify the
program to appear like this:

10 FOR N=l TO 10 STEP .1
20 PRINT N
30 NEXT N
40 END

The only change to the program is the addition of STEP .1 in Line
10. This causes N to be incremented by .1 instead of 1 for each
journey through the loop. The STEP value adds even more flexi­
bility to the FOR NEXT loop. By changing the STEP value, the
loop can be made to retain control through a wide range of val­
ues.

If the starting value is greater than the limit value and the
STEP value is a negative number, the loop can be made to count
·"backwards." The following example demonstrates the loop PRINT-
ing from 10 to 1, STEPping by -1: ·

10 FOR N=l0 TO l STEP -1
20 PRINT N
30 NEXT N
40 END

The starting value, limit value, and STEP value need not be a
constant and can be a variable to lend even more flexibility to
the loop. The same loop can be used, by changing the starting,
limit, and step values, to count backwards or forwards by any
STEP values. An example of a FOR NEXT loop using all variables
appears as follows:

10 FOR N=A TO B STEP C
20 PRINT N
30 NEXT N
40 END

A FOR NEXT loop can be executed zero times (that is not executed
at all). If the starting value already exceeds the limit value
and the STEP value is a positive number, the loop will be skipped
by baZic and processing will continue on the statement immediate­
ly following the FOR NEXT loop.

. (C) 1981 Micro Mike's, Inc. . · Page 50 Session 10

;­
I

I

r
~
I~:~

[

[

L

[

l
[
[
L

>.
I.

A Beginner's Guide to bazic FOR NEXT Loops

In some cases, we may not want to execute all of a FOR NEXT loop.
We can EXIT from a FOR NEXT loop by using the EXIT statement.
baZic has a counter internally which keeps track of where the
program is within the loop. To leave a loop before the limit
value has been reached, we must always close the loop. This is
accomplished by telling bazic to EXIT the loop. A program which
demonstrates this statement is as follows:

10 FOR N=l TO 10 STEP 1
20 PRINT N
25 IF N=S THEN EXIT 40
30 NEXT N
40 END

This program would PRINT the numbers from 1 to 5 but would stop
at 5 instead of HJ. Line number 25 compares N to see if it is 5.
Once N becomes 5, the EXIT statement causes program flew to
branch to Line 40 where the program ENDs.

FOR NEXT loops can be nested. That is, one FOR NEXT loop can be
placed within another. The FOR NEXT loops can be nested to any
level which your available memory will support. In other words,
one loop can be within another, which is within another, which is
within another, etc.

When loops are nested, the innermost loop must be contained
completely within any exterior.loops. If you have noticed, in
the preceding examples, the NEXT statement is always followed by
the control variable for the loop. This variable is not re~uired
by baZic but is helpful when loops are nested. ·baZic will always
examine the variable to see if the proper NEXT is being executed
for the proper loop. If the loop control variable does not
match, the program will terminate with a CONTROL STACK error. A
sample nested loop would be:

10 FOR N=l TO 3 STEP l
20
30
40
50
60
70

PRINT "N= " , N
FOR X=l TO 3
PRINT "X=",X
NEXT X

NEXT N
END

In this example, the innermost loop (the X loop) is nested within
the N loop. When loops are nested, the innermost loop is usually
executed most of ten. The program above would produce . the
following output:

(C) 1981 Micro Mike's, Inc. Page 51 Session 10

A Beginner's Guide to baZic

N=l
X=l
X=2
X=3
N=2
X=l
X=2
X=3
N=3
X=l
X=2
X=3

FOR NEXT Loops

You can see that Statement 40 was executed 9 times, 3 times for
each time Statement 20 was executed.

The example shows the actual statements indented one space so
that it is easy to see what belongs to what loop. This is not
necessary but it is done by many programmers to make the program
more "readable."

ADDITIONAL READING

baZic Operator's Manual Section 4.3.7.

·{C) .1981 Micro Mike's, Inc~ Page 52 · . Session 10

r
E

[

[

f

r.:::
f< ..

r-
!
b::..

[

[_

L
L
l
[

A Beginner's Guide to baZic FOR NEXT Loops

TEST

1. What is a loop?

A loop is a control structure used in programming to control
repetitious tasks.

2. How are loops formed in bazic?

By using the FOR NEXT statement.

3. What is the step value?

The STEP value is the amount the loop step value will be
incremented or decremented each time through the loop.

4. What is the limit value of a FOR NEXT loop?

The limit value is the value which is being compared with
the present value of the loop counter to determine if the
loop has completed the proper number of repetitions. When
the limit value is reached, the loop is terminated.

S. What is the starting value of a FOR NEXT loop?

The starting value is the value assigned to the loop control
·variable the first time through ~he loop.

·6. How do you execute a FOR NEXT loop zero times?·

By setting the limit value greater than the starting value
when the loop is first encountered by baZic.

7. What is the EXIT statement used for?

The EXIT statement is used to terminate a FOR NEXT loop
before the limit value is reached.

a. What is nesting?

Nesting is when one FOR NEXT loop resides completely within
another FOR NEXT loop.

9. What is the END statement used for?

The END statement is used to end a program.

10. How many FOR NEXT statements can be nested?

As many as your computer has internal memory to handle.
Each FOR NEXT loop takes a predetermined amount of storage
to store the starting, limit, and step values.

(C) 1981 Micro.Mike's, Inc. · Page 53 Session 10

A Beginner's Guide to baZic FOR NEXT Loops

EXERCISES

Write a program which uses FOR NEXT statements to enter and then
print 10 numbers.

10 FOR N=l TO 10
20 INPUT nENTER A NUMBER •, A(N)
30 NEXT N
40 FOR X=l TO 10
5 0 PRINT A(X)
60 NEXT X
70 END

The preceding program uses the A array variable to store each of
the ten numbers which are to be entered. Once all of the numbers
have been entered, the program ~rints each of the values. Notice
that two different loop control variables are used, and the A
array is referenced by both (by N during input and by X during
printing). The same loop counter could have been used in both
parts of the program because the second use of the N variable
would have reset the variable to the proper number.

(C) 1981 Micro Mike's, Inc. Page 54 Session.10

I
I
I.

l
[

[

[

r~

r
i

r·
I j.

i
i-·­, _

L
L-:
@

:;

~

·~

'•

A Beginner's Guide to baZic Subroutines

Subroutines

OBJ'ECT

To learn the concept of subroutines and the baZic statements
GOSUB, ON GOSUB, and RETURN.

LESSON

Subroutines are extremely important. Without subroutines,
computers, as we know them today, would not exist. Programs, of
all levels, have many parts which are executed over and over
again and it is generally a subroutine which is "doing the work."
subroutines conserve memory and structure programs, making them
indispensable in modern programming.

A subroutine is a specialized "piece" of a program (module),
designed to accomplish one particular purpose, and available for
call from any other module of a program. GOSUBs (subroutine
calls) are different from GOTOs in that every subroutine called
has at least one RETURN statement which causes processing to
branch back to the statement immediately following the GOSUB
statement.

The following program demonstrates the use of a subroutine:

10 FOR N==l TO 3
20 GOSUB 50
30 NEXT N
40 END
50 PRINT "THE NUMBER IS n 1 N
60 RETURN

Notice the END statement a~· Line 40.· This statement keeps the
program from "falling into 11 the subroutine which is on Lines 50
and 60. If this program is RUN, the results would be:

READY
.fillli ~

THE NUMBER IS 1
THE NUMBER IS 2
THE NUMBER IS 3
READY

If we follow the execution of the program, we see the main con­
trol of the program is controlled by the FOR NEXT loop. The
action in each step is simply a call of the subroutine (20 GOSUB
50). The processing is changed to the subroutine which PRINTS
the message.

{C) 1981 Micro Mike's, Inc. ·page 55 session 11

A Beginner's Guide to baZic Subroutines

When the message is PRINTed the RETURN statement at the end of
the subroutine causes control to pass to the next statement
following the subroutine call (30 NEXT N). The process is conti­
nued three times until the limit value is reached in the FOR NEXT
loop. When processing falls through the FOR NEXT loop, the END
statement is executed, which stops the program and prints the
READY message. ·

The ON GOSUB statement is similar to the ON GOTO statement,
except that when the subroutine is completed and the RETURN
executed, processing continues at the next statement which
follows the ON GOSUB statement. A sample program using the ON
GOSUB statement is:

10 FOR N=l TO 3
20 ON N GOSUB 50,70,90
30 NEXT N
40 END
50 PRINT "THIS IS THE FIRST SUBROUTINE"
60 RETURN
70 PRINT "THIS IS THE SECOND SUBROUTINE"
80 RETURN
90 PRINT "THIS IS THE THIRD SUBROUTINE"
100 RETURN

Running this program would produce the following results:

READY
.fillli ~

THIS IS TEE FIRST SUBROUTINE
THIS IS THE SECOND SUBROUTINE
THIS IS TEE THIRD SUBROUTINE
READY

Again, this program uses a FOR NEXT loop as the main control. N
is incremented to "feed" the· ON GOSUB. statement. ·Each time
through the loop, a different· .subroutine i-s called: Each subrou­
tine ends with a RETURN statement. The program ENDs when the
limit is reached and the END statement is executed.

ADDITIONAL READING

baZic Operator's Manual Sections 4.3.2, 4.3.3, and 4.3.5.

·(C) 1981 Micro Mike's, Inc. Page 56 .Session 11

r

I .

[

r
[

[

r
[

[

L

[

[

L
[;

[

A Beginner's Guide to baZic Subroutines

TEST

1. What is a subroutine?

2.

A subroutine is a single routine which accomplishes a
particular task and is terminated by a RETURN statement.

What happens when a RETURN statement is encountered during
the execution of a subroutine?

Control immediately passes to the statement which follows
the GOSUB which made the subroutine call.

EXERCISES

Practice using GOSUBs in your programs.

(C) -1981 Micro Mike's, Inc. - Page 57 Session 11

'
A Beginner's Guide to baZic Arithmetic Operators

Arithmetic Operators

OBJECT

To learn the arithmetic operators for negation (-), addition (+),
subtraction, (-), multiplication (*), division (/), and
exponentiation ("").

LESSON

The arithmetic ability is an integral part of bazic and can be
used in the direct (command) mode or the program mode. As an
example, type the following in the direct mode:

READY
PRINT li=.5.. ~
5
READY

In this example, we tell the computer to PRINT the answer to the
arithmetic operation of subtracting 5 from 10. The answer is
PRINTed immediately on the next line. Arithmetic can be used in
any program just as easily. Here is the same problem as solved
by a program:

10 PRINT 10-5

When the program is RUN, the answer (5) will be printed on the
terminal. These two examples should show how easy arithmetic
operations can be.used in baZic. In fact, the direct mode is
of ten called the calculator mode, because calculations can be
made so easily.

In the preceding examples, w~.used the minus sign to indicate the
subtraction operation. All of the symbols are straight-forward
except the sign for multiplication. Because most computer
terminals have no multiplication sign on the keyboard, baZic uses
an asterisk (*) to signify the multiplication operation.

The arithmetic operators can be mixed in virtually any
combination to allow complex calculations. However, the
precedence of the operators must be considered. The precedence
of operators means that some operators are considered before
other operators in a mixed numeric calculation. Consider the
following calculation:

10 PRINT 20-2*5

(C) 1981 Micro Mike's, Inc. Page 58 Session· 12

I
I .

r . .

[

r
[

·[
.~ , ...

r:-

\
L_

[

l

l
[

L
[

[

A Beginner's Guide to baZic Arithmetic Operators

If we take 20, subtract 2 and multiply by S we would get 90. If
you run this program, the answer printed will be 10. This is
because the precedence of operators controls baZic so that the
ambiguities previously mentioned do not cause problems. In the
example, the multiplication has the precedence so it is performed
fir st, so the problem becomes 20 minus 10 which equals 10.

Now that you have some idea of the meaning of precedence, here is
a list of the precedence of the operators starting with the
operators which have the highest precedence (will be perf armed
first) :

OPERATOR

* I
+ -

FUNCTION

. Negation
Exponentiation

Multiplication and Division
Addition and Subtraction

When two or more operators are involved in a calculation, baZic
first "looks" at the entire calculation and performs the
calculation starting with the operations with the highest prece­
dence.

If you want the precedence changed, use parentheses. Here is the
preceding example using parentheses to alter the precedence so
that the value becomes 90 instead of 10:

-10 PRINT (20-2)*5

Now the subtraction operation is done first. This result (18) is
then multiplied by 5 to get the value 90.·

If you are not familiar with the term "exponentiation," please
refer to a math book for a complete explanation. Exponentiation
is used to raise a number to a power, that is, the number is
multiplied by itself the number of times specified. The number 2
raised to the 2nd power would be 4 (2*2). The number 2 raised to
the 3rd power would be 8 (2*2*2).

Exponentiation is specified in bazic by using the up arrow key
(-). The number fallowing the up arrow is the exponent. An
example is:

Of course the answer would be 8.

Strings may also be •added" together although that operation is
called concatenation. An example of concatenating strings
follows:

(C) 1981 Micro Mike's, Inc. Page 59 Session 12

A Beginner's Guide to baZic - Arithmetic Operators

If A$ is PRINTed after RUNning this program, A$ would be "THIS
rs.• Remember that the length of a string cannot be changed
within a program. If the string is not long enough to hold the
results, all characters past the dimension will be dropped. Here
is an example where A$ is DIMensioned to the default value of 10
and the concatenation results in a string longer than 10:

10 A$="THIS IS •+"MY LANDM

If AS is printed after running this example, AS will contain only
"THIS IS MY." "LAND" will be not be added to A$ because there is
not enough room within the string.

ADDITIONAL READING

baZic Operator's Manual Section 6.1.

(C) 1981 Micro Mike's, Inc. - . Page 60 Session 12

··-·· --· ··------

r·
I

1

r
[

[

L

r
[

I
l
I

I
l

-.

·-..
~ ::.

.... ...

A Beginner's Guide to baZic Arithmetic Operators

TEST

1. Name the operators and give the symbol used to specify that
operation.

Negation (-), Exponentiation ("'), Multiplication (*), Divi­
sion (/), Addition (+), and Subtraction (-).

2. What is the meaning of precedence and what is the order of
precedence for the bazic arithmetic operations?

Precedence is used to establish the order in which baZic
handles numeric operators. The operators in order of prece­
dence are: negation, exponentiation, multiplication and
subtractions, and addition and subtraction.

3. What are parentheses used for in numeric operations?

To change the precedence of numeric operations.

4. What happens when you concatenate two strings together?

They are added together.

5. What is the exponent in the following problem: 45"'3.14?

3.14

EXERCISES

Give the result of the following numeric operations.

5*10-2+3/4

48.75

8+3+25/5+8*9

208

60/5+34-7+10"'2

1039 or l.039E3

Write programs using the arithmetic operators to add both numbers
and strings.

(C) 1981 Micro -Mike's, Inc. Page 61 Session 12

A Beginner's Guide to baZic Boolean Operators

Boolean Operators

OBJECT

To learn the use of the Boolean Operators, NOT, AND, and OR.

LESSON

George Boole was an English mathematician and logician who, in
the mid-nineteenth century, developed the basic rules of logical
algebra. He described propositions whose outcome can be
described as either true or false. We have already studied the
IF TEEN statement which is totally dependent upon deciding if a
situation is true or false.

The three logical operators to be learned in this session (NOT,
AND, and OR), are, like the IF THEN concept, integral parts of
~ur everyday language. We think nothing of saying, "I'll buy
this item and that one," meaning both items will be purchased.
Another common statement might be, "I want to go to Dallas or
Houston," meaning that you want to go to Dallas or to Houston but
will not be going to both. A last situation is represented by a
statement, "I'm not going,• where the phrase "I'm not going" is
the opposite of the statement -"I~m going."

The logical operators (Boolean operators) work within a bazic
program in the same manner we use them in our everyday speech.
If we want two conditions to be met, we use the AND operator. If
we want one (only one will satisfy us) condition of two, we use
the OR operator. If we want the opposite of a situation, we use
the NOT operator.

As an example:

10 IF A=l AND B=2 THEN 30

Line 10 will branch to Line 30
equal to 1 and B is equal to 2.
B will result in the program
immediately follows the IF THEN

Another example would be:

50 IF A=l OR B=2 THEN 70

only for the condition where A is
Any other values for either A or
executing the statement which

statement.

In this case, processing will branch to Line 70 if A=l or if B=2.
If either condition (or both) is met, the IF THEN statement will
be true and the THEN clause will be executed.

(C). 1981 Micro Mike's, Inc. Page 62 Session 13

I
r
~ . .

[

L.

C
c
Li

r
l:l

n
c
[

[

[
G L.

. r~~ L

. ffi"'· .~

.. }:,

..
~

A Beginner's Guide to baZic Boolean Operators

For all situations involving logical operators, a value of 1
signifies a true situation and a value of 0 signifies a false
situation. For instance, consider the following part of a pro­
gram:

10 IF NOT A TEEN 40

This statement is saying, in effect, •If A is not true (not equal
to 1) then branch to Line 40.• The logical operator NOT can be
used in many situations to reverse the •sense" of the operation.

ADDITIONAL READING

bazic Operator's Manual Sections 6.3 and 6.4.

(C) 1981 Micro Mike's, Inc. Page 63 Session 13

A Beginner's Guide to bazic Boolean Operators

TEST

1. Who was George Boole?

An English mathematician who developed the true/false
logical operations.

2. What is Boolean logic?

Logic based on the assumption that the results to the
operation will always be either true or false.

3. When is a situation true when using the AND operator?

When both parts of the operation are true.

4. When is a situation true when using the OR operation?

When either part (or both parts) of the operation is true.

5. When is a NOT operation true?

When the results of the operation evaluate to a logical 1.

EXERCISES

Determine the outcome (true or false) of the following opera­
tions. (Will the TEEN clause be exe~uted?)

A=0 and B=0
IF A=0 AND NOT B THEN

true

IF A=0 OR B=l THEN

true

(C) 1981 Micro Mike's, Inc. Page 64 Session 13

I
r
f
I
l
r

L

r

i"

L

l_

L
[

L
[

[

A Beginner's Guide to baZic Math Functions

Math Functions

OBJECT

To gain proficiency in the use of the baZic built-in functions
which return values for the ABSolute value, SiGN, INTeger value,
LOGarithmic value, EXPonetial value, SQare RooT, SINe, COSine,
and ArcTaNgent of a number.

LESSON

If you need to do math, baZic has some functions for you. Did
you ever "hate" all those formulas in school which were so very
hard to calculate? They become easy with bazic. About all you
really have to do is enter the formulas into baZic as
syntactically correct program statement lines.

_ Remember that you can use variables or constants in your
calculations. You can "feed" the equations with the proper INPUT
statements or f=om stored data as you will learn later. A sample
formula would be:

10 A=INT(3 .1416*R ... 2)

Enter and RUN this simple program to calculate the square root of
a number:

READY
..s5:E ~
READY
l.a PRINT "This program _calculates ~ ~
a PRINT "the sauare root Qf .s number."<CR>
.l.[PRINT ~
il INPUT "What .i§. the number? ~ ~
.5Jl PRINT <CR>
ti PRINT "The square root of the number .i§. ", SORTCNl ~
ll. film ~

film <CR>

This program calculates the square root of a number.

What is the number? li ~

The square root of tne number is 4
READY

(C) 1981 Micro Mike's, Inc. - Page 65 Session 14

A Beginner's Guide to baZic Math Functions

Lines 10 and 20 combine (because of the trailing comma of Line
10} to form the title of the program. Line 30 prints a Carriage
Return to issue a line feed to separate the title from the
prompt. The prompt is printed and the number input by Line 40.
Another PRINT statement separates the prompt from Line 60 which
PRINTS the answer.

To make the program calculate the square root of many numbers
change Line 70 from an END statement to a GOTO 40 statement. If
this modification is made, the program will form an endless loop.
To rectify this situation change Lines 40 and 70 (use the line
editor) and add Line 45 to appear as follows:

A.a INPUT 11 What is the number? il to END) II .N <CR>
il .ll: N=0 rnN .Elli2 ~

The program LISTing would now appear as follows:

10 PRINT "This program calculates ",
20 PRINT "the square root of a· number."
30 PRINT
40 INPUT "What is the number? (0 to END)",N
45 I? N=0 THEN END
50 PRINT
60 PRINT "The square root of the number is ",SQRT(N)
70 GOTO 40

This is now a useful program (if you need to know the square
roots of many numbers and you have only a computer and not a book
containing a table of square roots).

We have been working with the SQuare RooT function but we need to
learn the other numeric functions of baZic. If you are not sure
that you know how to use any of the functions, consult the proper
reference material for more information.

The ABSolute value function creturns the absoltite value of the
number passed to it. The effect is to make the number positive.
If the number passed is positive, the number is returned as
positive, but if the number is negative, the function returns the
positive (absolute) value of the number. This function is
generally used with variables when the programmer does not know
the actual value of the number. An example is:

PRINT ABS(-5) ~
5
READY

The SiGN function is used to return a value which indicates
whether the argument is positive, zero, or negative. If the
argument is a negative number, the function returns a -1. A zero
is returned for a number which is zero, and a +l is returned if
the argument is positive.

(C) 1981 Micro Mike's,· Inc. Page 66 Session 14

r-

l

[

[

[j

G
~

E
c

[

l.
[

B

[

r
L

.
L~

A Beginner's Guide to baZic Math Functions

The INTeger function is used to remove the fractional part of a
number. If the argument is already an integer, nothing is done
to the number. If the argument is not an integer, everything
right of the decimal point is stripped from the number. An
example would be:

PRINT INTC3.1416l ~
3
READY

The LOGarithm function, of course, returns the natural logarithm
of the number passed to the function (argument).

The EXPonential function returns an approximation of the value of
e raised to the power of the argument.

The SINe, COSine, and ArcTaNgent functions are all trigonometric
functions to use if you have a lot of triangles around with
unknown sides and/or angles.

ADDITIONAL READING

baZic Operator's Manual sections 5.1, 5.1.1, 5.1.2, 5.1.3, 5.1.4,
5.1.5, 5.1.6, 4.1.7, 5.1.8, and 5.1.9 •

(C) 1981 Micro Mike's, Inc. Page 67 Session 14

A Beginner's Guide to baZic Math Functions

TEST

l. What is a numeric function?

A numeric function is an operation which is passed an argu­
ment and through a numeric calculation it returns a value
which is based on the value of the argument passed. .

2. What is the ABS function?

Absolute value

3. What is the SQRT function?

4.

s.

6.

7.

8.

9.

Square root

What is the SGN function?

Sign of a number

What is the LOG function?

Logarithm of a number

What is the INT function?

Integer value of a number

What· is the SIN function?

Sine of a number

What is the EXP function?

e to the power

What is the cos function?

Cosine of a number

10. What is the ATN function?

Arctangent of a number

EXERCISES

Write programs using numeric functions.

(C) 1981 Micro Mike's, Inc. Page 68 Session 14

I
I

r-
1
I

r
r.

r

[

[

[

r

L
[_

l
l
[

A Beginner's Guide to baZic Additional Print Information

Additional Print Information

OBJECT

To learn the additional PRINTing capabilities of baZic,
including: PRINTing to a device number, TABb ing, formatted
PRINTing, cursor addressable l?RINTing, and the CLear Screen
statement.

LESSON

baZic has many more PRINTing capabilities than have been
discussed previously. One such capability is the ability to
PRINT to a device number, such as a printer. If baZic could
PRINT only to the display terminal, its value would be extremely
limited. However, by including a print device number in a print
statement, we can direct the printing of a program to as many as
eight different devices, if these devices are defined on your
machine. Assembly language routines must be in place to "talk"
to each defined device.

Normally, Devices 0, l and 2 are defined in most systems. Device
0 is usually the termina.l or CRT with which you have been work­
ing. Device 1 is usually the prin~er. Device 2 is normally a
combination of the other two because' it prints to both the CRT
and the printer.

Recall our first program:

10 PRINT "This is probably the most· simple program. 11

Now let's change this program ta PRINT orr the hard copy device
(printer). Use the line edit~r to change this line by typing
EDIT 10. Use -A to advanc~ to the space between the reserved
word PRINT and the beginning of the print argument. Now use •y
to insert a print device specification (#1,). Enter another •y
to terminate the insert mode and a -G to copy to the end of the
·line. A Return will insert the line into the program. The line
should now appear as follows:

10 PRINTil, "This is probably the most simple program."

RUNning this program will cause the message to be displayed on
the printer. We can make the program even more responsive to our
needs by changing the 111" to a variable such as D. Edit the line
so that the D replaces the 1 (EDIT 10,Return,·01,o,·G,Return).
Also add Line 5 so that the entire LISTing will appear as
follows:

5 INPUT "Enter print device number (0, 1, or 2) 11 ,D
10 PRINTiD, "This is probably the most simple program."

(C) 1981 Micro Mike's, Inc. Page 69 Session 15

A Beginner's Guide to baZic Additional Print Information

You can now determine which device will receive the print
message.

sometimes you may want the printed message to start at a location
other than the far left-hand margin. This is accomplished by
TABbing to the proper location. The TAB function is inserted in
the PRINT statement to cause the pr in tout to be off set f ram the
left margin the amount specified in the TAB function. The TAB
amount is always measured from the left margin and not from the
current position of the cursor or printhead of the printer. Here
is the previous program using a TAB function to off set the
message to start at Column 20:

5 INPUT "Enter print device number (0, 1, or 2) 11 ,D
10 PRINTiD,TAB(20) ,"This is probably the most simple program."

The next two topics are used for printing on a CRT-type device
only and will not work on most printers. They are the CLear
screen and PRINT@ (cursor addressing) statements. The CLS (CLear
Screen) statement is used any time you want the screen of the CRT
to be cleared. The statement can be used as a direct command or
as a program statement. A sample use of this statement would be:

10 CLS\REM CLEAR THE CRT SCREEN
20 INPUT "ENTER A NUMBER II ,A
3 0. PRINT "THE NUMBER IS ",A

This program would now clear the CRT and the· prompt will be
printed on the first line of the CRT. This leads us to the next
print statement which is PRINT@. By including the at-sign (@) at
the end of the PRINT statement and including row and column
coordinates as arguments, this PRINT statement can be made to
print anywhere on the CRT. As an example, if we want the message
to be printed on Line 10 and Column 20 of the CRT, we will modify
the program as follows:

10 CLS\REM CLEAR THE CRT SCREEN
20 INPUT "ENTER A NUMBER ",A
30 PRINT@(l0 ,20), "THE NUMBER IS ",A

The PRINT@ statement is now included to direct the message to the
proper location. Of course, the abbreviated print statement "!"
can be used in place of "PRINT." If we want the prompt message
to be printed at a specific location, we will modify the program
to be:

10 CLS\REM CLEAR THE CRT SCREEN
20 PRINT@(2,l) ,"ENTER A NUMBER ",\INPUT A
30 PRINT@(l0,20), "TEE NUMBER IS ",A

Notice we use a PRINT@ statement to print the prompt and a
backslash to separate the INPUT statement from the PRINT
statement.

{C) 1981 Micro Mike's, Inc. Page 70 Session 15

I
l.

r

[

r·
r

l
{

l
l
I

l
. l

~ .•
. ".:

A Beginner's Guide to baZic Additional Print Information

Let's now discuss bazic's formatted printing features. In the
previous example, if we were asking for a dollar amount, we would
want to print the number so that it looks like a dollar amount.
we want a dollar sign, commas in the correct place, and two
digits to the left of the decimal point. Formatted printing is
used to make this happen. Here is the same program re-written to
ask for a dollar amount and to format the printout into .a dollar
figure:

10 CLS\REM CLEAR THE CRT SCREEN
20 PRINT@(2,l) ,"ENTER A NUMBER (DOLLAR AMOUNT) ",\INPUT A
30 PRINT "TEE NUMBER IS ",%$CllF2,A

The PRINT@ has been removed from Line 30 to enforce the print
format specifications directly before the variable to be printed,
but print formatting and PRINT@ can be used together.

The print format begins with a percent sign(%). This •tells"
baZic that what follows is a print format specification. The
dollar sign ($) causes a dollar sign to be inserted at the left­
hand side of the number to be printed. The C inserts commas at
the appropriate places (every third digit to the left from the
decimal place).

The 11F2 is the size specification. It specifies that the entire
number, including all print specifications (dollar signs, commas,
decimal point, etc.), is to have 11 characters or fewer. The F
is the specification of the type of format: The 2 means that
there will be two digits to the right of the decimal place. The
entire field will be right-justified (the right margins will line
up) and if two or more numbers are printed in a column using this
format specification, they will line up along the decimal point.

Add Line 40 to the program to read:

40 GOTO 10

Now try RUNning this program several times, each time entering a
different value, to see how the formatted printing works. If you
enter a number which results in more than 11 digits total, you
will get a FORMAT error and the program will terminate.

All of the new print enhancements learned in this lesson can be
freely intermixed in a PRINT statement. You must, however, be
careful about using CLS or PRINT@ on a printer. Remember that
the shorthand for PRINT is ! and can be substituted anywhere you
would use the reserved word PRINT.

ADDITIONAL READING

baZic Operator's Manual Sections 4.2.1, 4.2.1.1, 4.2.1.2, 4.5.4,
5.5.4, and 8.1.S.

(C) 1981 Micro Mike's, Inc. Page 71 Session 15

J

J

A Beginner's Guide to baZic Additional Print Information

TEST

1. What is added to a PRINT statement to direct the pr in tout to
another device?

2.

3 •

4.

s.

6.

7.

8.

tl,

Can the print number specification be a variable?

Yes, this is often the best way.

What is the TAB function used for?

To move the starting column postion of a printout from the
first column to the specified column.

Write a statement to tabulate to Position 40.

10 PRINT TAB(40),"THIS IS IT"

How can you clear the screen under baZic?

Use the CLS statement.

What statement is used to address the cursor on the CRT?

PRINT@ 9r !@

What.arguments are passed to the PRINT@ and !@ statements?

Row and column coordinates of where you want to print.

What is the use of a percent sign (%) in a PRINT statement?

It signifies the number printed is to be formatted.

'

9. What happens when a dollar sign is included in a print
specification?

The number is printed with a dollar sign at the left of the
number.

10. What is a common print format specification for printing
dollar amounts'?

% $CllF2

EXERCISES

Write programs using the TAB function, device numbers, cursor
addressing, screen clearing and formatted printing.

(C) 1981 Micro Mike's, Inc. Page 72 Session 15

[

[

[

[

r
[

[

L
I
[

L
L
L
ff
L..

"

A Beginner's Guide to baZic Strings

Strings

OBJECT

To become more familiar with baZic strings, sub-strings, and
simulated string arrays.

LESSON

We have touched on strings in a previous session, but there is
much more to learn. Strings are used to store all alphanumeric
information. Alphanumeric means alphabetic characters as well as
numbers, and special characters. In the next session, we will
learn how strings may be converted to numbers and numbers
converted to strings.

In baZic, strings may be as long as you want, if you have enough
internal memory in your computer to support the string. Most
BASIC interpreters allow strings to be about 250 characters in
length.

Once a string is defined, any part cf the string can be accessed
easily~ Look at the following program:

10 DIM AS(60)
20 A$= 11 1-lOW IS TEE TIME FOR ALL GOOD MEN TO COME TO TEE AID 11

Every character position in AS can be represented by a number,
starting at the first position in the string. To represent this
numbering, AS is printed again with the string position numbers
directly under the string:

AS= "NOW IS TEE TIME FOR ALL GOOD MEN TO COME TO TEE AID 11

123456789Al23456789Al23456789Al23456789Al23456789Al
10 20 30 40 50

If, for some reason, we want to put the word 11 TIME 11 into B$, we
·would first decide where the word resides in A$. Looking
carefuly at A$, we see that 11 TIME" is located from Pastian 12 to
Pastian 15. To set B$ equal to the word "TIME," use the
following equate statement:

30 B$=A$(12,15)

This statement says to set B$ equal to the part of A$ which is
located between Positions 12 and 15. This process is called
randomly accessing a string. As you can see from the example, we
can access any part of a string by simply using the position

. numbers of the part to be accessed.

{C) 1981 Micro Mike's, Inc. · Page 73 Session 16

'.•.

A Beginner's Guide to baZic Strings

Now suppose we want B$ to be equal to the entire last part of the
string ("TO THE AID"). We could accomplish this task in the same
manner as the previous example, but because we want the end of
the string, there is an easier way as shown in the next example:

20 B$=A$(42)

Because we want all of the string f ram Position 42 to the end, we
need only enter the starting position and baZic will copy the
string from the starting postion to the end. Any part of a
string is called a sub string. If B$ was not DIMensioned large
enough to hold the string, only as many characters as B$ was
DIMensioned to hold will be copied. B$ can never hold more
characters than it is DIMensioned to hold.

In a similar manner, part of A$ could be set to the value of B $.
An example of this would be:

20 A$(12,15)="TIME" or
20 A$(12,14)=B$

So now we have learned how to pass information back and fourth
between strings.

One of the features which baZic does not have that many other
BASICS do have is string arrays. String arrays are similar to
numeric arrays in that many strings can be stored within one
string name. Although baZic does not support this feature
directly, it .is very easy to simulate. Overall, the string
handling capabilities of baZic are far greater than other BASICs.

A simple way to demonstrate a simulated string array is to use
this feature in a program which would be similar to one used
under a BASIC which has string arrays. One of the most simple
cases is where the programmer wants to INPUT 10 names, each of
which is 20 characters or less in length. The following .program
INPUTS the names into a sim~lated string arra~ (A$) ~nd 'then
prints each element of the "array" showing how each substring is
accessed by a record number:

10 DIM A$(20*10)
20 FOR N=l TO HJ
30 INPUT "ENTER A NAME ",A$(N*20-19,N*20)
40 NEXT N
5 0 INPUT "ENTER THE ELEMENT 'NUMBER TO PRINT ", N
60 PRINT A$(N*20-19,N*20)
70 GOTO 50

Line 10 DIMensions A$ to the array size (20 characters per name
times 10 names). Lines 20 to 40 INPUT the names into the
simulated array. We use a formula to calculate the position to

. put each name. Notice the first time through the loop, N equals
1 so the position evaluates to (1,20). The second time through
the loop,, N is equal to 2, so the position evaluates to {21,40).

(C) 1981 Micro Mike's, Inc. Page 74 Session 16

[

L
r
[

[

[

[

[

[

I
r

L
l
l
[

A Beginner's Guide to baZic
Strings

The array element is accessed in the same manner. Line 50 asks
for the array element number and then prints the appropriate name
using the same computation.

ADDITIONAL READING

baZic Operator's Manual Section 9.3.l.

(C) 1981 Micro Mike's, Inc. ·Page 75 session 16

A Beginner's Guide to baZic Strings

TEST

1. What is alphanumeric information?

Any character on the keyboard is alphanumeric.

2. How is alphanumeric information stored by baZic?

In strings.

3. How are the character positions numbered in strings?

Starting at 1 as the far left character and continuing to
the number of characters in the string. Each space,
character, special symbol or number counts as one position.

4. What is a substring?

A substring is any part of another string.

5. (What is a string array?

A string array is a string used to store more than one
string in an orderly manner so that any element of the
master string can be accessed through its element number.

6. .Does baZic support string arrays directly?

No.

7. Can baZic simulate a string array?

Yes

EXERCISES

Write programs using strings, substrings, and string arrays.

(C) 1981 Micro Mike's, Inc. Page 76 .Session 16

~

I
t

r;
[j

r
l:1

r .
.

[

[

L

[

[

L
[

[
I

A Beginner's Guide to baZic String Functions

String Functions

OBJECT

To master the use of the string functions LEN, CHR$, ASC, VAL,
and STR$.

LESSON

The string functions are provided to help the programmer work
with strings. If the programmer wants to know the length of a
string, all he has to do is call the LENgth function. All string
functions are called similarly to other functions. An argument
must be passed to the function. In the case of the LENgth
function, you must pass the variable name of the string you want
to find the length of.

The LEN function is used as follows:

10 A=LEN(A$) or
PRINT LEN (A$)

After executing .Line 10 of the first example, the variable A will
contain the length of A$. , The second exampie will print the
length of the. string. · ·

When a string is DIMensioned, the LENgth of the string becomes
its dimension. When a string is in use, the length is the number
of valid characters contained in the string.

One common use of the LENgth function is to center a string. The
programmer usually has no idea of the length of the string to be
centered because the string may have been entered by a user.
Assuming the print device is 80 characters wide, any string can
be centered as demonstrated by the foliowing program:

10 DIM A$(70)
20 INPUT "Enter a name to be centered ",AS
30 PRINT TAB(40-LEN(A$)/2) ,A$

To center the string the program must first find its length. The
length is divided by 2 and subtracted from half of the screen
width. The result is to TAB to the appropriate place to begin
printing the string so the string will be centered. Notice that
the precedence of operations assures that the length of the
string is divided by 2 before the result is subtracted from 40.

(C) 1981 Micro Mike's, Inc. Page 77 session 17

·A Beginner's Guide to baZic String Functions

A computer has no way of storing letters, numbers (as we know
them), or other symbols you see on the keyboard. All have to be
stored as binary numbers. Therefore, each letter, number, or
special symbol has a unique numeric code which represents the
symbol internally in the computer. The name of the code which is
used by most computers is the American Standard Code for Informa­
tion Interchange, better know as the ASCII code.

The string function which returns the ASCII value of a character
is the ASC function. To use this function, pass the string which
you want to know the ASCII value as the argument to the function
call. String constants also may be passed to return the ASCII
value of the character. The function works only on the first
letter of the string. A list of all the ASCII characters and
their associated codes is contained in Appendix A of the baZic
Operator's Manual.

A sample use of the ASC function is:

.PRINT A.SC("A"} ~
65
READY

baZic also provides a method of converting an ASCII code back to
its character equivalence. This function is called the CHR$
(character string) function. An ASCII value is passed to the
function and the function returns the appropriate character. A
sample use of this function would be:

PRINT CHR$(65l ~
A
READY

The last two string functions are used to convert numbers within
a string to numeric variables and to convert numeric variables to
strings. The VALue function is used when you have a number which
is stored as a string and you want the number stored as a numeric
variable. An example of this function is:

PRINT VALC"l234") ~
1234

READY

An error will be returned if you try to executed this function on
a string which does not contain valid numeric characters. The
reverse of this function is the STRing$ function. This function
takes, as its argument, a number (or numeric variable) and
converts this number into the string of your choice. As an
example:

PRINT STR$(1234) ~
1234

READY

(C) .1981 Micro Mike's, Inc. Page 78 Session 17

r
I.

l
[
r
b

[

r
[

[

l

r
[

I
l

A Beginner's Guide to baZic String Functions

Nor-mally, you wouldn't need to PRINT the value returned from the
function, but would set a string equal to the value returned. ·A
sample program to demonstrate this follows:

HJ A=l234
20 A$=STR$(A)
30 PRINT A$\REM A$=" 1234"

If you are using formatted variables, the string will be set to
the current format which is in effect at the time the STRS
function is called.

ADDITIONAL READING

bazic Operator's Manual Sections 5.2, 5.2.1, 5.2.2, 5.2.3, 5.2.4,
and 5.2.5.

(C) 1981 Micro Mike's, Inc. Page 79 Session 17

A Beginner's Guide to baZic String Functions

TEST

1. What is the LEN function used for?

To find the length of a string.

2. What is the VAL function used for?

To convert a string to a numeric variable.

3. What is the ASC function used for?

To find the ASCII value of the first character of a string.

4. For what is the CHRS function used?

To change an ASCII code to its string {character) equiva­
lent.

5. For what is the STRS function used?

To convert a numeric variable into a string variable.

EXERCISES

Practice writing programs using the LEN, ASC, STRS, CHRS, and VAL
functions.

.• (C) 1981 Micro Mike's, Inc. Page 80 Session 17

p

I

l
[

[

·[

[
[

[~

[

[
[

[
[

I

..

A Beginner's Guide to baZic Input Functions

Input Functions

OBJECT

To become familiar with the additional methods of inputting data
into baZic through the use of the INCHAR$, INP, INSTAT, and
OUTSTAT functions:.

LESSON

In previous sessions we have learned to use the INPUT statement
as a means of getting information from the keyboard into the
internal memory of the computer. A very useful input function is
the INCHAR$ (INput a CHARacter string). This function differs in
several important ways from the INPUT statement. When the
INCEAR$ function is called, t.he device number must be passed as
an argument to the function. If you want to gather data from
device zero {the terminal), the function is used as follows:

10 A$=INCEAR$ (0)

The results of the INCHAR$ function is always a single character
string. Numbers can be input with this function, but they must
be first input as string variables and then converted· to numeric
variables. Another .major difference is that the INCHAR$ function·

_takes only one keystroke at a time. When the function is called
in a program, the first keystroke entered by the user will be the
value entered into the string. The user does not have to enter a
carriage return to terminate the input.

The INCEAR$ function will also allow· the entry of "control"
characters (non-printing characters forme·a by pressing the con­
trol key and any other alphabetic character). Another major
difference is that the line editor may not be used during a
character input using the INCHAR$ function because only one
character is being input and the function' 11 takes 11 the input as
soon as the key is pressed.

A simple program using the INCHAR$ function, is:

10 PRINT "Continue with this program? (Y or N) 11

20 A$=INCHAR$ (0)
30 IF A$= 11 N" THEN END
40 IF A$= 11 Y" THEN 10
50 PRINT •you didn't enter a Y or an N."
60 GOTO HJ

(C) 1981 Micro Mike's, Inc. Page 81 session 18

A Beginner's Guide to baZic Input Functions

RUN this program to examine the results. If you enter any char­
acter, notice that the function "grabs" the character immediately
and.continues execution. This situation differs from the INPUT
statement which must be terminated by a carriage return before
bazic continues processing.

The following program is a practical example of the use· of the
INCHARS function:

10 A2=0\BS=""
20 PRINT
30 PRINT "ENTER A NUMBER OR SOMETHING ",
40 AlS=INCHAR$(0)
50 A3=ASC(Al$)
60 IF A3=8 THEN 110
70 IF A3=13 THEN 110
80 B$=BS+A1$
90 A2=A2+1
100 !Al$,
110 IF A3<>8 THEN 170
120 IF A2=0 THEN 170
130 IF LEN(B$)=1 THEN BS=""
140 IF LEN(B$)>1 THEN B$=B$(1,LEN(B$)-l)
150 A2=A2-l
16 0 ! CHR$ (8) , " ", CBRS (8) ,
170 IF A3<>13 THEN 40
180 PRINT .
190 IF BS="" THEN 260
200 FOR N=l TO LEN(BS)
210 IF ASC(BS(N,N))<48 THEN EXIT 260
22~ IF ASC(B$(N,N))>57 THEN EXIT 260
230 NEXT N
240 PRINT "YOU ENTERED THE NUMBER 11 ,BS
250 GOTO 10
260 PRINT 11 YOU ENTERED THE STRING ",CHRS(34) ,BS,CHRS(34)
270 GOTO 10

Obviously, this program is a little more complex than previous
program examples, therefore, a line-by-line explanation will be
given. The purpose of this program is to accept characters one
at a time through the use of the INCHAP.S function and to convert
these single characters into a separate string for storage. The
last purpose of this program is to determine if the information
entered is a string or a number.

10 The variable A2 must be set to zero. Becau~e the INCHARS
function only returns one character, we must use another string
to 11 hold" the characters as we get them one by one. The variable
A2 is used to "point" or keep track of the position within the
string which stores these characters. BS is "zeroed" tc clear
any previous characters from the string and to set the length to
zero.

20 The PRINT statement is used to print a line space.

, (C) 1981 Micro Mike's, Inc. Page 82 session 18

.-
I

r

r:
[. .
r
L

[

[

[

l
[

[

L

l
L

:.
L· ;

L
L
~

. . ,

.

A Beginner's Guide to baZic Input Functions

30 This line prints the prompt statement which tells the user
to •Enter a number or something.•

40 Here is the actual input of information. The one character
string is input into Al$ from Device 0.

50 This line converts the character input into its ASCII
equivalent. This conversion makes it easy to determine which
character was input.

60 & 70 There are two situations where a special character is
input. The user may want to back up to correct a mistake or he
may terminate the input with a carriage return. Line 60 makes a
check for a backspace character while Line 70 makes a check for a
return. Lines 60 and 70 could have been combined into one state­
ment using the Boolean operator OR:

60 IF A3=8 OR A3=13 THEN 110

80 If the character input was not a backspace or a carriage
return, it must be a character the user wants to input. This
line adds the last character input to B$ which acts as the
accumulator for all the character~ input.

90 We must keep track of the number of characters in B$.
Because we have just added a character we must "bump" the value
in A2 by l •. A2 now "points". to the last.character entered into
BS.

100 This line displays the last character input by printing Al$.
Notice that the PRINT statement is followed by a comma so that a
carriage return is not printed, allowing the cursor to remain on
the same line.

110 For processing to get to this line, the character entered
must be a backspace or a carriage return. If the character was
not a backspace, processing will branch to Line 170. Lines 120
through 170 are used to handle a backspace.

120 This line checks to make sure there is at least l character
in B$. If A2 is zero, there are no characters so there is no way
the user can back up. Processing branches to Lir.e 170 if A2 is
zero.

130 If there is 1 character in B$ and the user wants to back up
(he has entered a backspace), we would want to clear BS. The
easiest way to clear the string is to set it equal to "nothing."
This is accomplished by Line 130.

140 Line 140 "subtracts" 1 character from B$. If B$ is greater
than 1, there are enough characters in the string· to erase 1.
This task is accomplished by setting the string equal to itself,
minus the last character. By setting the LENgth of the string to
one fewer than it was previously, we have effectively erased the
last character.

(C) 1981 Micro Mike's, Inc. - Page 83 Session 18

A Beginner's Guide to baZic Input Functions

150 Because we have taken 1 character from B$ we must now
subtract 1 from the pointer A2.

160 This line backs up 1 space, prints a space character (to
erase the character being deleted, and backs up again to position
the cursor to the correct place. The backspace character is
•printedn by using the CHaRacter string function, because the
backspace •character• is a non-printing character.

170 Line 170 acts as a dual purpose line. It receives the
processing from Line 110 if the character input was not a
backspace and it also terminates the backspace handling section
by returning processing to Line 40 if A3 is not a return. If A3
is a return, the user has finished his input and the return is
PRINTed by Line 180.

190 This line is a special check for an empty string. If the
user has entered nothing except a carriage return, B$ will be
equal to 11

• and Line 190 will pass processing to Line 260. Lines
200 through 270 are used to determine if the user entered a
string or a number. The routine provided is used to display the
string or number and then return to let the user enter another.
Of course, more useful routines could be substituted to use the
numbers or strings input in your program.

200 Lines 200 through 230 are ·used to ."look" at each character
in B$ to determine if the character input was a string or a

·number. A FOR NEXT loop is established f rem 1 to the number of
characters in B$ {LENgth of B$).

210 & 220 Line 210 "looks" at Character N to see if the ASCII
value of that character is l~ss than 48, which is a zero (0). If
it is, the program branches to Line 260. The EXIT statement is
used to terminate the FOR NEXT loop because we have determined
that B$ is a string and not a number. Line 220 is similar,
except it looks to see if the c~aracter is· greater than 57, which
is the number 9. Check your ASCII chart in the back of your
baZic Operator's Manual for the ASCII codes for the numbers 0 to
9.

230 This process is repeated until all of the characters in B$
have been checked. If any character is not a number, B$ is
considered to be a string. If all the characters are numbers, B$
is printed as a number. The VAL function can be used to convert
B$ to a numeric variable.

240 & 250 These two lines handle a situation where a number has
been input. A message is printed and B$ is printed to indicate
that B$ contained a.number •. Line 250 returns processing to Line
10.

260 & 270 These two lines handle a situation where a string has
been input. A message is printed indicating this fact and the
string itself is then printed.

(C} 1981 Micro Mike's, Inc. Page 84 . Session 18

r­
i
!
t .

r·

[

[

[

~
.
. ..
~

r
[

L

J

[

L
l
[.

l

A Beginner's Guide to baZic Input Functions

The INP function is used only in special cases to input a single
character from a specified port. You must have some knowledge of
Z80 machine language to understand this function. The function
is passed the port number from which you want the character. The
Z80 supports 256 ports (numbered 0 to 255). When you call the
INP function, it returns the character that resides at the port
at the instant the function is called.

care should be used when using the INP function.
value at all 256 ports, run the following program:

10 FOR N=0 TO 255
20 A=INP(N)
3 0 PRINT "PORT NUMBER II, N, II HAS THE VALUE II' A
40 NEXT N

To see the

The INSTAT and OUTSTAT functions are not really used to input
information, but rather to determine if the port is ready.
Again, a knowledge of machine language is required to understand
how information is actually input. In most systems, there is a
control port for each device port. When a character is pressed
at the keyboard, a port goes true to indicate that a character is
ready at the device port. The INSTAT and OUTSTAT functions
monitor the control ports to let you know if a character is
ready.

A sample use of .these functions might be to monitor the keyboard
during a printout. For each.record printed, you can call the
INST AT function and if a character is ready, input it and
terminate printing if the right character is input. The OUTSTAT
function can be used to print a document or file at the same time
you are entering information.

ADDITIONAL READING

baZic Operator's Manual Sections 5 .3, 5 .3 .1, 5 .3 .2, 5 .3 .3, and
5.3.4.

(C) 1981 Micro Mike's, Inc. Page 85 session 18

A Beginner's Guide to baZic Input Functions

TEST

1. What argument is passed to the INCHAR$ function?

2.

3.

4.

5.

The device number.

How many characters are passed by the INCHAR$ function for
each call of the function?

One character is passed for each call of the function.

Is a return necessary to terminate a response to the INCHAR$
function?

No.

Can numbers be input using the INCHAR$ function?

Yes, but they must be specifically handled by additional
routines.

Can control characters be input using the INCHAR$ function?

Yes. All characters on the keyboard can be input using this
function.

6. Can the line editor be used during an INCHAR$ function call?

No.

EXERCISES

Change the INCHAR$ program so that the delete key can be used to
back up in addition to the backspace key.

Add Line 65 to read:

65 IF A3=127 THEN 110

and change Line 110 to read:

110 IF A3<>8 AND A3<>127 THEN 170

Change the INCHAR$ program so that all numeric responses are
changed to a numeric variable before printing the variable.

Add Line 235 to read:

235 B=VAL(B$)

and change Line 240 to read:

240 PRINT "YOU ENTERED THE NUMBER •,B

(C) 1981 Micro Mike's, Inc. Page 86 Session 18

r-
1
I

i

,. ...

\

[
r: u

c
Fl n

[

[

[

[

[

l
[

L

L

L
r.:.:
t::

A Beginner's Guide to baZic Miscellaneous Functions

Miscellaneous Functions

OBJECT

To learn the use of the baZic functions RND, EXAM, FREE, CALL,
and ADDR.

LESSON

All of the functions listed in this session are unrelated
functions so they will be described in no particular order.

The random function {RND) is used to generate a random number.
Care must be used when you ref er to a random number. It could be
argued that there are no random numbers, but if there are, this
function DOES NOT generate one. What this function does do is
generate,'a pseudo-random number. For all pratical purposes, the
numbers are random.

This function is called by passing an argument which is called
the seed. When the same seed is used as an argument, the same
sequence of random numbers is generated. For testing purposes,
it is often necessary to generate the .same random sequence, so
just use the same seed.

The seed may be a negative one, zero, or a positive number be­
tween zero and one. If the argument is a negative one, bazic
will use the refresh register of the Z80 microprocessor to obtain
a "random" number to use as the seed. If the argument is zero
(0), the previous number generated will be used as the seed. Any
number between 0 and 1 can be used as a seed to generate a
"standard" psuedo-random sequence.

The following functions a~e related to the machine language of
the Z80 processor. If you are not familiar with the concepts of
byte and address, you should inquire· before continuing with this
session.

The EXAM statement is used to 11 look 11 at a physical address within
internal memory. The argument must be in the range that can be
addressed by the Z80. This range is from 0 to 65535 decimal.
This function could be used to look at the baZic interpreter
itself or any program or data which resides in memory.

In a MicroDoZ and baZic system, you can determine the starting
address of MicroDoZ with the following program:

10 PRINT EXAM(l)+256*EXAM(2)

(C) 1981 Micro Mike's, Inc. Page 87 session 19

A Beginner's Guide to baZic Miscellaneous Functions

The FREE function is used ta return the amount of memory which is
free or unused in your system. The function is called by passing
a dummy argument, that is, any argument is allowed. A sample
function call would be:

PRINT FREE (0)

The value returned is the amount of memory that has not been used
ta store the operating system, the baZic interpreter, the baZic
program, and any associated data. The value is always a decimal
number.

The CALL function is a very special function and greatly e:~tends
the power of baZic. The call function gives the user the ability
to make a machine language call. In this situation, the values
passed as arguments are placed in internal Z80 registers and
control is passed to the specified address so that the machine
language routine can "do its thing." Great care should be used
when CALLing machine language because there is no error trapping
and catastrophic results can occur.

The CALL function is passed the address of the routine and a
single value which is to be placed in the DE register pair. The
machine language routine is terminated by the use of the RETurn
instruction. The value in the HL register pair is returned from
the function call.

The ADDR function is used ta return the address 'of a baZic
variable. This function can be used in conjuction with the EXAM
function and FILL statement to manipulate variables in internal
memory. One use of this function under MicroDoZ and baZic is to
define a buffer which can be used to pass data for disk backups
or copies.

The argument for this function is name of the variable for which
you want to know the address. As an example, to return the
address of the variable B$, call the function as shown below:

A=ADDR(B$)

A will now contain the decimal address of the variable B$.

ADDITIONAL READING

baZic Operator's Manual Sections 5.5.l, 4.5.2, 5.5.3, 5.5.5, and
5.5.6.

(C) 1981 Micro Mike's, Inc. Page 88 ... Session 19

-
' ;
1·.

-L

r:
c
.-­
' i

I
r
[

[

f ~ ·•

r.
[

l
[

l
[

I
f

i -
I

l .

:
I.:
t . ..

i . • ·
· ! .·
t '

r-·
..__

.......

f '

I .

I ~
r -·

' I
' ..

l "

[

A Beginner's Guide to baZic Miscellaneous Functions

TEST

1. · What are the allowable arguments to the RND function?

-1, 0, and any number between 0 and 1

2. What argument would you use to have baZic select the seed?

-1

3. Are random numbers really random?

4.

5 •

6.

7.

8.

No, just a psuedo-random sequence.

What does the EXAM function do?

It returns the value in the memory cell of the address
passed.

What number system is passed and returned from all baZic
functions?

Decimal.

What is returned from the FREE function?

The amount of unused memory in the system in decimal.

For what is the CALL function used?

The CALL function is used to pass arguments and control to a
machine language routine which passes a value back upon
completion of the routine •

What is returned from the ADDR function?

The address of the variable passed as the argument.

EXERCISES

Write a program to generate random numbers in the range of 1 to
10.

use the EXAM =unction to write a program to look at the first 10
instructions of baZic.

{C) 1981 Micro Mike's, Inc. Page 89 Session 19

.;
1
J

