
. ~ .. .

..
. -...,. ..

MICRO MIKE'S, INCORPORATED 905 South Buchanan Amarillo, Texas 79101 U.S.A. 806/372-3633

.·

DOCUMENTATION FOR CSUB VERSION 5.1

(Preliminary)

Micro Mike's Table-Driven Application Software Package

The basic purpose of this package is to allow easy, rapid creation of
application software and data bases that run under North Star DOS and
BASIC. CSUB establishes a Common set of SUBroutines that eliminate a
programmer's need to "re-invent the wheel" for every program written.
All functions generally required in an application program are
contained in the Common SUBroutine package. These routines require an
addressable cursor CRT, since use of the addressable cursor is the
most efficient method of data entry, particularly for inexperienced
users.

North Start Basic differs from many other BASICs in that string
length is limited only by available memory. Most other BASICs allow
string arrays with a maximum of 255 characters in a string, but in
North Star BASIC, string arrays are handled differently. CSUB takes
advantage of the string capabilities of North Star BASIC in several
important ways. All string information (variables) in application

· programs . written under CSUB are stored in a single string (B$). This
g.iv-es: ·.the · ,pr·ogra:uililer' ; rapi'd · random access to any pqr ti on of the
d~r~ngf resulting in Quick and easy accessing and printing of string
i nforma t :.1 on. The programmer merely· references the part of B $ that
co~tains the stridg information to be dealt with (B$(101 ,110)). This
mearis > .many sep-arate: strings are stored in one string and individual
str inog_s can be variable · in 1 ength. For storing strings on disk, Nor th
Star· BASIC requirei 2 BYTES of overhead for each string stored that
is under 255 .characters, and 3 BYTES for each string over 255. By
stori~i : •ll string iriformation in one string, a minimum of disk space

·is u.s·e\i,,. . '
~ •• -;.; ·.-:·~: 11. ..

In th~ sa~~ way ·4hat all string information is stored in one string,
all nu1i?'et;:·1c .'··.1nformation is stored in one numeric variable (B(SUBS))
array. ~~ields 6 and 7 of the DATA statements table for strings, and
field 8 for : all other variables, represent the location in the string
pi' .. '. array where the particular variable is located. The DATA state­

'me'-tlts '; table will be discussed elsewhere, but generally it uniquely
defin~s each variible that is used for input and/or display by the
parameters that are set in each DATA statement for each variable •

CSUB Input routines are accessed by first RESTOREing to the
appropriate set of data statements the programmer is concerned with
and then calling the particular function that performs the desired
task. Each line of data statements completely and uniquely defines
all parameters associated with every variable input from or displayed
on the CRT.

Virtually any application program needs a data base for storage of
information. Therefore, the first program needed by an application
programmer is one that allows creation of the data base. This program
is the file maintenance program (BONES) for keyed access files or the

MICRO MIKE'S, INCORPORATED 905 South Buchanan Amarillo, Texas 79101 U.S.A. 806/372-3633

sequential input program (INBONES) for sequential files.

At the most primitive level, there are two classes of files. One
class is a temporary file for input of data in a rapid and easy
manner. Normally, sequential entries are made into this file for a
period of time and then the information in this file is processed and
either passed to another file or printed. This input process is
accomplished by INBONES.

The other primitive class of file is the permanent file which holds
information that will be kept for a long period of time. Individual
fields and records within the file may change, but the total file
remains fairly constant. BONES is a keyed access program which
represents one way of accomplishing such a purpose.

The basic functions of the file maintenance program (BONES) are: (1)
allow new records to be placed into the data base; (2) allow old
records to be deleted; (3) allow all fields within every record to be
viewed, changed, and copied back into the file.

Use of a table-driven package offers numerous advantages over BASIC.
The routines of CSUB define standards for both the programmer and the
operator. The operator, after becoming familiar with the oper­
ation of the subroutines, learns standard formats and oper~t~ng
procedures that follow throug~ eac~ and every program. This reduces
training time and operator fatj;gue ;

..... ,.
The programmer has similar bene_~i_ tE3 . ·~ . .P:rogr-am cr~ea_tio_n ·is st~ndardized
by CSUB, allowing the programm·ez:-'· ·t .o c~ _ncentr~te on how the data, base
is to be manipulated, rather thaii : wrlting seemirigly ~ndless- ~nput . and
file accessing statements. CSUB's te~ted · ·~ ~utines a~€ · - very
dependable, reducing program errors t6 only the specific line~ ~ added
for any particular program. CSUB makes BASIC a much ·m9r·e · ·itr1,1_Qtured
language, resulting in easier program con.strurc tion. · P-ro. grams-1 ~ '6ecome
more understandable between . di.f:ferent ·· · prograthmers, .. a·116wi.9 g . one
person to more quickly and '. easily '° Understand :: another t ~, : p,rog·r •allf:: Fewer

. - .• r~ • \ 'r

errors result, programs · ~r.e · · morie ea:sil-Y ·. mod,i.fi;ed·:·· -a-mi ·program
construction is simplifi_ed.- . W.i·.t~_ -_' _aj)!'p op-r,iate . REM ".st.B.:.-t·em..::eµts, the
program becomes essenti.ally · se1.f-·d·o9}.lm~nit ·i .ng:-;. · ' " "~

: ~, ;. :. - --~ .- · ::-~ -
f . r) -: L 'lat\ . •: :·; .; -

~ .).~ : l~ '~ ' .. - ? .. ,.

. (~ { : ~. ;"" ,.. :_ ·
•. , ... ' :.... - 'i ~ - l..

, • •· I 2 ~ : ...
Basic routines in CSUB ar~;

FNA (N,N) - Non-destructive cursor positioning
FNB(N) Flash Nth error message ... ~

FNC($) Flash String error message
FND(N) - Display N items on CRT
FNE(N) Input Nth item
FNF(N) Input Nth item
FNG($,N,N,N) - Sequential file access
FNH($,N,$,$,$) - Keyed File access
FNX($,$,$,N) - Exit to another program
FND$(N) - Converts a number into a date
FNL$(N,N) - Left justify a string from B$

-2-

·. ~

(.;

•Y f'
_ ; ~

~.-.

MICRO MIKE'S, INCORPORATED 905 South Buchanan Amarillo, Texas 79101 U.S.A. 806/372-3633

··"":I

. ": ~:~~- ~:.-
·. ·

FUNCTION DEFINITIONS

X:FNA (Line #, Position on Line) : Non destructive cursor positioning
X=A dummy variable for this function

This function positions the cusor non-destructively anywhere on the
CRT by passing the coordinators of where you want the cursor to
appear.

X=FNB(N) Flash the Nth Error Message
X:Dummy Variable

This function is generally preceded by a RESTORE statement to ref­
erence the DATA statements' pointer to the appropriate set of DATA
statements (i.e., the error messages). The pointer is read down the
errors messages until the Nth one is found. This function then rings
the "bell" and flashes the error message (or bulletin) on the 4th
line of the CRT. The most used messages should be placed closest to
the "front" of the DATA table in order to insure the most rapid
execution of the function.

·_ ~. ·. •;;

X=FNC($): Displays~er~6~:me~sag~- or bull~tin.
X:DUJ,llmy Variable · ··. i . : . -

.•;.

A string of up to 80 cha_r,~_ct_ors
displays the message ;on· the. ~th

. ..: ' i - . - . : ~/ ·-

·is ··pas:s-;d: .t.o this function which then
li:nf· ~'r.· t~~. CRT.

X:FND(N): Displays.N'item1~qn.CRT
X=Dummy Variable · · .. ~. .,> :·

,. ,., .

,-: " ' '~ --• ~ .c·. :. • ~o ::: '•' '<,

Generally ·pre-9eded by a RE.ST.O.RE· -statement·~ to the Variable Parameters
DATA Statetiie.nt', (VPDS). line: number• ·Ttie:·set.=of parameters for each
variabl~ ·c6~ce~~~d,should~·~e;~~-a se~a~ite i~ne numbe~. Each should
also· be··. REMa'.r,.ke.A':a'ppropr·iately.;so tha(·eas_Y:.Yvariab·1e identification
is possible. ·:By .s~;tt±ng: 'tpe DA}'_A. sta:telie)1;ts} •. :p,o'inte:~ to the beginning
of the· V:ariable)>.~r.ameters. ta bl~; :a:n<:l.E'. 'S'l:)ec'l'f'ying the appropriate N,
all the- varia~les can be ~rint~d~with.a.single call. By setting the
pointer with.in .. the table' and specifying N:: 1 · (or any· other number),
one or more items can be di~played. Structure of the DATA tables is
covered elsewhere. .. ,

X:FNE(N): INPUT the Nth i·t·e~1t·~~.: .the CRT
X:Dummy Variable

• >

After RESTOREing to the VPDS, this function does INPUT on the Nth
DATA statement. The parameters of the INPUT are discussed elsewhere •

X:FNF(N): Displays the Nth prompt on line 2 and does 3rd line Input
X:Dummy Variable

After RESTOREing, the Nth prompt is displayed at the beginning of
line 2 and the standard INPUT is executed according to the parameters
of the DATA statement on line 3 of the CRT. Used for all 3rd line
inputs that require a prompt (i.e., "Is Information Correct?".)

-3-

MICRO MIKE'S, INCORPORATED 905 South Buchanan Amarillo, Texas 79101

X:FNX ($1,$2,$3,N): EXIT program and CHAIN to another
X:Dummy Variable

U.S.A. 806/372-3633

This function FILLs the CR/LF byte in BASIC with its normal value.
The function then clears the screen and prints a message indicating
which program is Loading which program and CHAINs to the appropriate
program. Parameters passed to this function are:

1. $1 - Descriptive Name of Program
2. $2 - Descriptive Name of Calling Program
3. $3 - Actual file name of program to CHAIN to
4. N - Disk drive number of program to CHAIN to

X$:FND${N) : Change a numeric date into a string
X$:String date of the form MM/DD/YY

To save file space all dates are stored as a numeric. This function
is generally called when printing a date on paper. A numeric argument
is passed and the function returns a string. A typical call of the
function would look like this: !#1,FND$(B{1))

X$:FNL$(N,N1): Left Justify a String
X$:The left justified string

All string information input µsing FNE or FNF is Right justified
within B$ where it is st.or~.d. In other. words, if a string is input
and the user does not enter a character in all of the positions
available, then the information entered will be justified (moved) to
the right and leading spaces will be entered in that portion of the
string not filled. The FNL$ function reverses this process (usually
for printing) so that the information is moved left and trailing
spaces are entered. The values passed to FNL$ are the Left$ and
Right$ positions within B$ which you want Left justified.

As an example, if:

B$(1,10):" _DOG 11 ,,_. f
·' I

and we call the function . , . .,
X$:FNL$(1,10)
then:
X$: 11 DOG II

A typical function call would look lik~ this:
! # 1 , FNL $ (1 , 1 0)

G:FNG ("File Name 11 , Drive.CMD, LEFT$, SUBS, RECORD): Sequential File
Access
G:Number of Records in File or Error Condition

This function reads or writes a sequential access file. The
parameters passed to this function are:

1. "File Name" - name of file to be accessed.

2. Drive.CMD - drive number where file is located. The drive number
also controls whether this function executes a read or write.

-4-

MICRO MIKE'S, INCORPORATED 905 South Buchanan Amarillo, Texas 79101 U.S.A. 806/372-3633

If the INT(Drive):Drive (1.0, 2.0, 1, etc.) then this function READs
the file. If the INT(Drive)<>Drive (1.1, 2.1, etc.), then this
function WRITEs to the file. The integer portion of Drive is the
drive number.

3. LEFT$ - LEFT$ of B$ where read or write to B$ will start.

4. SUBS - the B(subscript) where read or write to B() will start.

5. Record - the record number of the file one wishes to read to or
write from. Record 0 doesn't exist and numbering starts with 1. If
record = -1 and the operation is a write, then the record is written
onto the ~nd of the file.

Structure of Fil~ Accessed by FNG

The sequential file is set up with three numeric values placed at the
beginning of the file. The first numeric value contains the number of
records written to the file (0 if file is empty). The second numeric
value contains the length of the string containing all string in­
formation stored in each record of the file. If this value is O, then
no string information is in each record. The third numeric value
contains the number of numeric variables for each record in the file.
cg must be set to the number of bytes--:o·f ~-;storage required for any

·particular precision of BASIC. This- is· 'd1.scussed elsewhere.

Sequential File Form.at Summary ,

A, B, C, $ 1 s 1st record, Numeric's 1st record, $ 1 s 2nd record, etc.,
where:

A = number of records wri tteri·/ 0 if' none
B = length of' string portions of' each record, 0 ~f none
C = number of numerics per record, 0 if' none

Af'ter calling this function (G:FNG()), G contains the number of
records in the f'ile if' everything went co~rectly. However, if an
error condition has occurred, then G will be negative and will in­
dicate what type of error has occurred. Programs using this function
should check G to make sure it is positive before using the variable
and to assure oneself that' the func1Hon performed its job correctly.
Function errors returned in G are:

-1 = File Error ·-·
-2 = Hard Disk Error
-3 = File Not Found
-4 = Incorrect File TYPE
~5 = File Length Exceeded
-6 = TYPE Error
-7 = File Name Longer than 8 Characters
-8 = Record Doesn't Exist (Record # incorrect)
-9 = B$ Length Not Valid or B() Not Diminsioned
-10= Attempt to Write Beyond End Mark (Record # passed was too large)

-5-

MICRO MIKE'S, INCORPORATED 905 South Buchanan Amarillo, Texas 79101 U.S.A. 806/ 372-3633

This function contains its own error trapping routines. This means
that anyone using the routine must disable their own error trapping
before calling the function and re-enable their error trapping upon
completion of the function call.

Keyed Access Fil_e__lLoutine

H:FNH ("File", Drive. CMD, 11 Index 11
, "Rename", 11 Keyfile IJ")

H:Record Number or Error Condition

This function returns a pointer to a main data file by looking up an
index in a keyfile and returning the appropriate information (key)
about the location of data in the main file. Multiple keyfiles are
allowed for any particular data file. The actual file accessing is
accomplished by using the sequential access file routine FNG. Keyed
access differs from sequential access in that the sequential file
starts with only three numeric values initialized to 0 at the be­
ginning of the file, while keyed access has to have all records in
the file completely initialized by setting them to blank records. In
keyed access, a large file is divided into records of uniform length
so that a record index can be looked up quickly in the keyfile and
the main file accessed directly by passing the value returned from
FNH to FNG. FNH can perform the following tasks:

1. Create a KEY
2. Delete a KEY
3. Find a KEY
4. RENAME an Index

Structure of the Keyfil~

The keyfile is created with the name of the main file plus an al­
phanumeric digit from 0-9 or A-Z, which indicates the keyfile for any
particular data file that is to be accessed. Thus, for any one data
file, up to 36 keyfiles are allowed which lets the programmer access
information in the main file by any of 36 different indexes. At the
first of the keyfile are three numeric entries which contain in­
formation about the structure of each particular keyfile. The first
numeric value is the number of keys in the file, while the second
numeric contains the number of keys in use. The third numeric in­
dicates the length of the index string. When the keyfile is initially
set up, the first numeric is written with the number of keys, the
second numeric is set to O, and the third is set to the length of the
index. The actual indexes and keys start immediately following the
three numerics. Each index string is first filled with spaces and
written into the file, followed by a numeric key which indicates the
record number in the main file.

Using FNH

H:FNH (11 File 11
, Drive.CMD, 11 Index 11

, 11 Rename 11
,

11 Keyfile IJ") where:

1. 11 File 11 =name of the main file being accessed
2. Drive = drive number of file plus:

.O:read when accessing key file to read the main file

-6-

. - '

MICRO MIKE'S, INCORPORATED 905 South Buchanan Amarillo, Texas 79101 U.S.A. 806/372-3633

.1=write when accessing keyfile to write the main file

.2 when deleting a record

.3 when creating a record

.4 when renaming an index

3. "Index" = the index which will be compared to the indexes in the
keyfile for performing the various keyed access functions

4. "Rename" = a new index that is to replace "Index" in the keyfile.

5. "Keyfile # 11 = Name of keyfile being accessed. Up to 36 keyfiles
are allowed for any data file. This is a string of one character (0-
9, A-Z) that is added to the main file name by the routines of CSUB
when keyed access is being used.

Upon returning from the function, H contains the record number of the
data in the main file if no error conditions were encountered. Thus,
H may be passed to FNG to actually read the appropriate information
from the file.

If an error condition has occurred, then H will have a negative value
such that:

-1 = File Name Too Long
-2 = Key File Not Found
-3 = Key File Incorrect Type
-4 = Blank Index String
-5 = File is Empty
-6 = File is Full
-7 = Duplicate Record Name
-8 = Record Not Found
-9 = Index String Too Long
-10 = Hard Disk Error

FNH becomes very convenient if any particular data file exceeds the
length of a disk. For example, if one had a data file with 1000
associated keys in the keyfile, and the size of the disks and records
are such that only 500 records can be placed on a disk, then FNH can
be used to access both sections of the file. After calling FNH,
simply examine the returned value. If it is less than or equal to
500, then use FNG to access the information on the first drive. If
the returned value is greater than 500, then subtract 500 and in­
crement drive# by 1, and access the information on the next drive.

Normally, the fourth argument of FNH is set to ""· This argument is
only used when renaming an index. If one wanted to rename the index
"JOE" to 11 SAM 11 for the File 11 TEST 11 on drive 2, then:
H:FNH(11 TEST 11 ,2.4, 11 SAM 11 , 11 JOE 11 , 11 K11). "SAM" will replace the index 11 JOE 11

and "JOE" will no longer be an index to the data file.

When deleting an index from a keyfile, a 0 is returned in H if the
deletion was successful.

Programmers should always check the value returned from FNH and FNG
to make sure that no error conditions have occurred. One way of

-7-

MICRO MIKE' S, INCORPORATED 905 South Buchanan Amarillo, Texas 79101

accomplishing this is:

10 H:FNH(TEST 11 ,D1, 11 JOE 11
,

1111
, 11 K11)\REM CALL

20 IF H>O THEN 30 ELSE GOSUB 55200\GOTO
30 G:FNG("TEST",D1 ,1,1,H)\READ RECORD H
40 IF G>O THEN 50 ELSE GOSUB 55000
50 REM

FUNCTION
_\

U.S.A. 806/372-3633

55000 contains optional file error messages that are displayed based
upon the ABSolute value of G after its return from FNG. 55200 is the
same as 55000 but works on the ABSolute value of H after FNH call.

Index strings are processed as follows:

1. Delete leading spaces.
2. Delete trailing spaces.
3. Add spaces to the right until the length of the string equals the
index string length.

Index strings are &orted alphanumerically, NOT NUMERICALLY. Thus, the
following order would result after sorting:

100
--> 1100
--> 900

901
ALPHA
BETA
ZETA
ZFF

Care should be taken to study this order, as problems can arise if
the programmer isn't aware of the sorting technique used.

BASIC "Memory Map"

Lines 1-4 - Reserved for IFCALL which APPENDS the necessary CSUB onto
every program. The BASIC supplied on this disk will now Append
without lines 1,2, & 4. This BASIC is a special version of BASIC
modified to allow multiple APPENDS.

Line 5 Always a REMark statement that gives the exact file name
under which program is stored. This line may also contain the name of
the programmer and a descriptive program name.

Line 6 - Always a GOSUB 65000 to DIMinsion variables always needed by
CSUB itself. Variable DIMinsions for variables specific to a
particular program are generally DIMinsioned within the program
itself.

Line 7 Always a GOSUB 65100 to set numerous variables needed by
CSUB and the programmer. These are generally variables used by all
programs running under CSUB.

Lines 10-49999 These are the unreserved program line numbers

-8-

MICRO MIKE'S, INCORPORATED 905 South Buchanan Amarillo, Texas 79101 U.S.A. 806/372-3633

available to all programmers for writing their programs.

Lines
puts.
user
occurs
always
number
by the

50000-50999 - The beginning of the DATA table used by FNF in­
The prompts contained within this data table are what guide the
through the program while it is RUNning. Input automatically
at position 1 on line 3 while the prompt string specified
appears at position 1 on line 2. This line number is the line
RESTOREd to by a FNF call. The inputs can be moved from line 3
use of C2 and C3 offset variables discussed later.

Lines
inputs.

51000-51999
Input or

The beginning
display occurs

of
at

the DATA table used by FNE
the specified position.

52000-58999 - Reserved for subroutines or additional function defini­
tions needed by the programmer.

59000-59999 - Reserved for user-defined print formatting routines.
These routines control all printing done on the CRT and only on the
CRT. Print formatting for hard copy is presently left up to the
programmer.

User-defined formatting statements should have the following form:

59000
59010
59020
59030
59040
59050
5906 0

ONINT(A5) GOTO 59010,59020,59030,59040,59050,59060
!%$10F2,B(A8)\RETURN\REM 1
!%9F4,B(A8)\RETURN\REM 2
!%2I,B(A8)\RETURN\REM 3
!%1I,B(A8)\RETURN\REM 4
!%6I,B(A8)\RETURN\REM 5
!%9F2,B(A8)\RETURN\REM 6

The variable A5 is extracted from the appropriate DATA statements and
passed to this user-defined routine by the printing routines of CSUB.
This is the integer portion of the format variable contained in row
five of the NUMERIC (Type 1) DATA statements. A8 is also passed from
the appropriate routines in CSUB to this formatting section to in­
dicate which subscript of B is to be printed. String and Date prin­
ting on the CRT are handled by other routines contained within CSUB.

60000-65535 - These lines are reserved for CSUB itself.

65000 - DIMinsion for CSUB variables

65100 - Defines variables needed by CSUB.

Organization of Data in the DATA Tables

The DATA statements contain information that uniquely and completely
defines all variables that are to be printed on or input from the
CRT. Please check the REFERENCE CHART FOR DATA STATEMENTS for rapid
summation of the DATA that is contained in the DATA statements.

-9-

< - '

MICRO MIKE'S, INCORPORATED 905 South Buchanan Amarillo, Texas 79101 U.S.A. 806/372-3633

REFERENCE CHART FOR FNE DATA STATEMENTS

TYPE J 2 3
NUMERIC 1 • x Line#.Y POS
STRING 2.X Line#.Y POS
STR/NUM 3.x Line#.Y POS
DATE 4.X Line# POS

where

X=O then display and input
X=1 then display only
X=2 then input only

FIELD #
!:l 5 6

#CHAR FORMAT.Z LOW LIM
#CHAR 0 LEFT$
#CHAR 0 LEFT$

0 0 0

Y:ASCII value of character to be displayed on input
Z=number of spaces to right displace numeric input

FIELDS OF DATA STATEMENTS

First Field (F.N.El

1 a
HILIM B(SUBS)
RIGHT$ 0
RIGHT$ B(SUBS)

0 B(SUBS)

The DATA statements for input, display, or input and display deal
with four basic TYPEs of DATA:

TYPE 1 is NUMERIC
TYPE 2 is ALPHA-NUMERIC (STRINGS)
TYPE 3 is STRING-NUMBER
TYPE 4 is DATES

This information is entered as the integer portion of the first field
in the DATA statements. The fraction portion of this field defines
what kind of DATA statement is being used, where:

.o = Input and Display

.1 = Display Only

.2 = Input Only

EXAMPLES:
1.0 =Numeric Input and Display
4.1 = Date to be Displayed Only
2.2 = String to be Input Only

TYPEs 1, 2, and 4 are mostly self-explanatory to anyone familiar with
BASIC, but TYPE 3 may not be readily understood. TYPE 3 STRING­
NUMBERS was implemented to deal with a specific problem that
constantly arises in the writing of application programs. If a
particular input is asking a question where only specific
alphanumeric responses are allowed, then this is the TYPE DATA
statement to use. As an example, if a particular input is requesting
a yes or no response (Y/N), then a problem arises if another
character is entered as the programmer has to check for the
appropriate response. TYPE 3 DATA statements do this check
automatically. This is done by entering the appropriate DATA into C$
(C$:"YNRST 11

) and specifying the appropriate range allowed for each

-10-

MICRO MIKE' S, INCORPORATED 905 South Buchanan Amarillo, Texas 79101 U.S.A . 806/ 372-3633

input in fields 6 and 7 of the DATA statement. In this particular
instance, if 1 and 2 are specified for fields 6 and 7 respectively,
then the input will allow only a response of ttytt or hN", but not "Ru,
"S" or "T". If field 7 is a 3, then inputs of 11 Y11

,
11 N11

, and 11 R 11 are
accepted. If a "Y" is input, then the function returns to t h e
spec i fied B subscript (field 8) the value 0. If an "Ntt is input , then
a 1 is returned, and if an "R" is input, a 2 is returned, etc.

Fi rst Field CF.NI.l.

This field is identical to FNE's 1st field except that a minus sign
is pl aced in front of the type specification.

Second Field (FNE)

The Second Field passes two pieces of information to the defined
functions and uses the form of "Line I. ASCII character" . The
integer portion of this field represents the line number on the CRT
where the input or display function is to take place for any specific
variable. Line numbering starts with one (1) as the first line on the
CRT. The fractional part of this field represents the ASCII code of
the character to be displayed on the CRT while taking an input.
Generally, if money is to be input, a 11 $ 11 (ASCII:36) is disp l aye d .
The standards normally used are:

1. $ (36) = Dollars
2. :f) (3 5) = Numbers
3. % (37) = Percentage
4. * (42) = String Info

For TYPE 4 DATE input and display, the integer portion only is
e n te r ed in Field 2 , as date input and displays are automat i cally
formatted to MM/DD/YY. The variable C2 works on the integer portion
of this field to displace downward the input or display line number
by the value of C2.

S e cond Field CFRE.l

Th is field contains the prompt that is to be displayed on t h e 2nd
line of the CRT for the input.

Thi r d Field (FNF) - This field represents the display char acter
t h at is the fractional portion of Field 2 for FNE DATA statements.

Thi r d Field (FREJ_ Fourth Field (FNF)

This field represents the position on the line where the inp u t or
dis play is to take place on the CRT. C3 works on this fi e ld by
displacing the input or display to the right by the value of c3.

Fou r th Field (FNE) .E.1.Lth Field (FNF)

This field represents the number of characters to be displayed upon
an inp u t. The character displayed will be the one represented by the
fractional part of field 2. If a 10 digit string is to be input, then

-11 -

MICRO MIKE'S, INCORPORATED 905 South Buchanan Amarillo, Texas 79101 U.S.A. 806/372-3633

field 4 will be 10 and field 2 will be X.42, where X:line number of
the input. For TYPE 4 - DATE inputs, this field should be set to O,
as the routines handle the number of characters displayed auto­
matically.

Fifth Field CF.N.E.l ~xth Field (FNF)

This field is used to specify the format or all numeric printing on
the CRT. For TYPE 2, 3, and 4, this field should be set to O. For
numerics, the value in this field will be converted to A5, where it
is passed to the user-defined formatting routines at 59000. Standard
formats are provided to assist programmers. The fractional portion of
this field represents a displacement to the right which is used to
displace an input from its normal display position.

Sixth and S eye n th_ F i e l d s (F NE) ~venth & Eight (FNF)

These fields have different definitions for each of the four TYPEs of
DATA. For TYPE 4 - DATE, these fields are both set to O. For TYPE 1
NUMERIC, Field 6 represents the lowest numerical value that this
input will accept, and Field 7 represents the maximum numerical value
that will be accepted. These fields are very important and are used
to strictly control all numeric inputs so that only appropriate
numeric responses are allowed. For TYPE 2 - STRING inputs and dis­
plays, fields 6 and 7 represent the LEFT$ and RIGHT$, respectively,
of the position within B$ where the string information is to be input
to or displayed from. For TYPE 3 STR/NUM, fields 6 and 7 represent
the LEFT$ and RIGHT$, respectively, of the range within C$ from which
inputs are to be allowed. See the discussion of TYPE 3 STR/NUM for
more explanation on the workings of this TYPE data input.

Eighth Field__lf.RE.J_ 1:!.i.nth Field (FNF)

This field represents the subscript of B() for all numeric variables
to be displayed or input. For TYPE 2 - STRING inputs and displays,
this field is set to 0 because fields 6 and 7 define the storage
parameters for the string variables. The number used in field 8 is
the variable reference number to be used when accessing any par­
ticular numeric variable during programming.

Variable Reseryat1ons and Defin1tio.!l§.

All variables A, B, C, and D are reserved.
variables, numerics, and numeric assays.

This includes string

A9 - "back up" variable. This variable will equal 2 after any input
in which a control B <: B) has been typed. A9 should be checked after
every input to determine of the user wants to "Back Up".

B(- contains ALL numeric file, input and display variables.

B$ - contains ALL string file, input, display and mask variables.

C$ - contains ALL string references for TYPE-3 inputs •
explained elsewhere.

-12-

Use of C$ is

- ..

MICRO MIKE'S, INCORPORATED 905 South Buchanan Amarillo, Texas 79101 U.S.A. 806/372-3633

C1 - Subscript offset variable which allows one to input or display
multiple records from any particular file or multiple files. For
example, if we read a data file consisting of 5 records, each with 10
numeric values, into B(1) throug~ B(50), and set C1:0, then function
calls will display or input to the first record. If C1:10, then the
second record will be displayed or input; if C1:20, the third record
will be displayed or input, and so on. Programmers must be sure to
reset C1 to the appropriate value after function calls are made.

C2 - Line Number offset variable that offsets any CRT display or
input by the value of the variable. This is a non-destructive offset
and is used primarily for formatting or displays when inputs and
displays need to be slightly different.

C3 - Character Position on Line offset; similar to C2 except that the
offset is on the same line. Offset is to the right.

C4 - String offset; similar to C1 except that this variable controls
the offset of B$.

C5 - STRING-NUMERIC (TYPE 3) offset variable that controls the offset
for working with the string-numbers of C$. If C5:0, then the string­
number functions work as described elsewhere. If C5:1, then the first
character of C$ is ignored and processing continues in the normal
manner, starting with the second character in the string.

C9 - This variable must be set to the number of bytes required to
store a numeric variable (5 for 8 digit precision).

D2 This is a variable that is set by CSUB after determining if the
user has a single or double density version of BASIC (Release 4 or
5). This byte is FILLed by most application programs when it is
neccessary to turn off the CR & LF of BASIC. This procedure is
required when extensive cursor addressing is to be used in an
application programs. It keeps unwanted Carriage Returns and Line
Feeds from occuring during the cusor addressing.

USING CSUB

Keyed Access File Maintenance (F/M) Program

The BONES program is to be used as an example in demonstrating the
use of CSUB. This program should be LOADed and LISTed on hard copy
(if available) and consulted while reading this section.

To help the programmer organize his thoughts and programs several
work sheets are provided. One should generally start with the FILE
STRUCTURE sheet first. In this particular case we are going to make a
keyed access file using an account number as the index.

After establishing the file structure, we complete the MASK Sheet to
show where our mask as well as variables are to appear on the CRT.
All positions are carefully mapped on the mask sheet so that we can

-13-

MICRO MIKE'S, INCORPORATED 905 South Buchanan Amarillo, Texas 79101 U.S.A. 806/372-3633

exactly determine our DATA statements for
Next one can generally fill out the FNE
the enclosed example. Check the referance
if you have trouble determining the value
fields must have some entry even if it is

all variables concerned.
DATA TABLES worksheet. See
chart or the section on FNE
for any specific field. All
zero.

At this time we should be ready to do the FNF DATA TABLES chart. This
is, in essence, the prompts that will be used during program
execution to help guide the user through the program. In this
particular case we have four prompts. Sometimes the prompts won't be
known until we are actually writing the program. However, the more
structured our approach is to the program writing, the more likely we
are to know the prompts before we even start writing the program. One
should have a good idea of what the program is to do before one
starts writing it!

The VARIABLE MAP can now be filled out. Since all variables displayed
or input from the CRT and all file variables are contained within B()
or B$ we must carefully map out their position within these maps. The
more complex the program the more important it is for the programmer
to exactly define the variables used. The VARIABLE MAP gives the
programmer an overall view of his variable structure.

Multiple files can be accessed by MAPing their variables into
different regions of B$ and B(). Remember that all the string or
numeric variables for any one file must be consecutive within B$ or
B(). The starting position can be anywhere within the limits of the
variables and has to be specified in FNG when reading or writing a
file. The position of the variable is defined in the DATA tables when
imputig or displaying usig FND, FNE, or FNF.

PROGRAMS INCLUDED ON CSUB DISK

1. BONES - A standard keyed access file maintenance program. This
program can be used to very quickly establish a F/M program for any
new data base by merely changing a few parameters. Program and file
names should be changed at the beginning of the program. A new set of
DATA statements (FNE at 51000) should be written to accurately
reflect your file structure. FNF DATA statements may need to be
changed if they do not reflect what you want to do.

2. INBONES - A standard program for inputing information into a
sequential file. The parameters at the first of the program should be
checked for proper file & program names, ect. when changing this
program. Also one needs to set the FNE and FNF DATA statements to
reflect the particulars for your program.

3. PRBONES - This program is a standardized program for printing out
the contents of a sequential file. This program features a modular
type of printout where records are printed as an entity. The routine
at 500 should contain the heading for the top of each "page". The
routine at 600 is the one that actually prints a record. To change
this program to print a different file both of these routines should
be modified to reflect what you are printing. There are generally no
FNE DATA statements for this type of print out. Also the definitions

-14-

,.

MICRO MIKE'S, INCORPORATED 905 South Buchanan Amarillo, Texas 79101 U.S .A . 806/372-3633

before LINE I 100 should be examined and modified to fit your desired
circumstances.

4. CSUB - CSUB is APPENDed onto all application programs. This
APPEND is performed at RUN time and is dependant on the CALLs on
lines 1 ,2, and 4. Also. machine code must be in place at the top of
the 2900 section in DOS to allow the APPEND command to be an
executable statement. CSUB will not RUN by itself.

5. MENU - This program merely allows one to CHAIN to all the pro­
grams on this disk by selecting the program from a menu. MENU
operates under CSUB.

6. FILEXFER - This is a program that allows one to easily transfer
information from one data file (Type 3) to another. If the file
specified to receive the data exists, then the information from the
source file is written over any data previously entered into the
file. If the destination file does not exist it is CREA TED the same
size as the source file.

7. MED I T - This program is the Mask EDIT program. It's function is
the creation and editing of masks. Masks are created by embedding
cursor addressing information within a string followed by the ASCII
characters that one wants to appear at that specific location. The
cursor addressing and clear screen information is set at the first of
the program and must be defined properly for the specific CRT one is
using. Masks are "built" with this program by specifying the INSERT
command , entering the proper coordinates taken from the mask
worksheet, and then typing in the actual information that is to
appear on the screen. Other commands are provided for modifying the
mask in different ways.

Wh en making a mask the first line should contain the program name.
Li nes 2,3, and 4 on the CRT are reserved for the prompt. Input, and
error messages respectively. Nothing should be entered on these three
lines because the routines of CSUB erase these lines per i odically
during their execution. Mask names are generally made by adding an
ampersand (&) sign to the program name that is using the mask.

8 . PMASK - This program will print a mask
assumed to be the printer and CRT toge t her.
mask has occured, this program will often
correctly.

on paper. Device #2 is
If much editing of the

not print the mask

9 . PNEFILE - This program allows one to Print any (NE) data (Type 3)
FILE on the CRT or Printer. After execution, this program CHAIN 1 s
back to the MENU.

10. FKCREATE - This program allows one to CREATE and initialize a
keyed access file and its associated KEY file. After taking the
parameters of your files. this program CREATEs the appropriate f i les
and writes all the records as blanks. The key file is set so that all
records are blank and available for use.

11 . FCREATE - This program CREATEs the appropriately sized sequential

-15-

MICRO MIKE'S, INCORPORATED 905 South Buchanan Amarillo, Texas 79101 U.S .A. 806/372-3633

file. The three beginning numerics are written into the file so that
the file is avaialbe for immediate use by a FNG function call.

Several additional programs are provided on this disk to demonstrate
other features of CSUB. These programs are not documented at the
present time but should offer help to anyone studying them.

Trading Type I Programs for Library Membership

One of the most important aspects of this CSUB package is the
standardization it brings to writing and running programs under North
Star BASIC. We believe this aspect is very important if large numbers
of programs are to be made available to work for large numbers of
people. Micro Mike's Program Library has been created to facilitate
the cataloging and storing of large numbers of programs. We are
currently interfacing a 50 megabyte hard disk to our Horizon computer
to store the programs of the Library. This computer will be equipped
with a modem that will allow members to call 24 hours a day and
recieve programs that are in the library.

In order to build the library as quickly as possible we are
soliciting programs from interested parties to be included in the
library. Membership in the library will be traded for programs that
are submitted and excepted by Micro Mike's, Inc. We are looking for
people that have specific knowledge of problems that they would like
solved by application software. A typical "program" submitted should
be a complete turnkey package. These packages will generally have
from 5 to 20 actual programs written under CSUB. Each program should
be a module that performs a specific task. Programs should be
connected by a MENU program and should CHAIN to the appropriate
program.

The CSUB disk as provided shows only the most elementary techniques
of using CSUB. Additional information can be obtained by purchasing
any of the application programs now available from Micro Mike's, Inc.
and studying them. Additional Documentation on using the more
advanced techniques of CSUB will be available in the future for a
nominal charge.

Programs to be traded should be submitted on diskette with all of the
worksheets filled out for all programs included. Programs will not be
rejected arbitrarily. Rejections will occur only when in our
estimation sufficient time and energy has not been expended to make
the programs useable by lay people.

Packettes of CSUB worksheets are available for a nominal fee from
Micro Mike's, INC.

-16-

MICRO MIKE' S, INCORPORATED 905 South Buchanan Amarillo, Texas 79101 U.S .A. 806/ 372-3633

NOTE FOR PROGRAMS USING CSUB

Before programs that use CSUB can function properly, two important
items must be considered: cursor address i ng and clear screen. These
items are extremely machine dependent (CRTs) and have to be set
specifi c ally for most users' systems.

Cursor addressing is normally conducted by using an escape seq u ence.
Wi th t h e ADM-3A, the sequence is Escape = R,C (27,61 ,R,C), wh ere R
and C r e present the Row and Column coord i nates. There is generally an
o f fset amount that must be added to the actual position so that the
cursor is positioned correctly. This function is handled by Fu n ct i on
A (FNA) within CSUB. FNA is called by passing the Row and Co l umn
position where the user wants the cursor to appear (X:FNA(R,C)). FNA
is DEFined at 60110-60120 in CSUB and must be correct for CS UB to
function. As supplied, CSUB supports the Escape Equals sequence wh ich
will work on the ADM-3A, Sorce IQ-120, and the Intertec I ntertube
Version 1.5X. For all other terminals or video display un i ts the
appropriate lines of CSUB must be modified to nondestructively move
the cursor to the correct location.

Z$ is used in all Application Programs to clear the screen on the
CRT. Z$ is defined in line 65120, and must be set to the proper value
or sequence needed to clear the screen on your particular CRT or
v i deo display. For the ADM-3A, Z$ must equal CHR$(26). For the Sorce
the proper definition of Z$ is the sequence ESCape, CHR$(12). The
Intertec Intertube uses a CHR$(12) to clear its screen.

