Microdata ## **COMPUTER REFERENCE MANUAL** Micro 1600/21 Micro 821 # **COMPUTER REFERENCE MANUAL** Micro 1600/21 Micro 821 71-1-821-001 August 1971 ## **Microdata** Microdata Corporation 644 East Young Street Santa Ana, California 92705 ## TABLE OF CONTENTS | SYSTEM DESIGN FEATURES | | | | | | | | | | | | | | | | | • | • | • | • | • | • | 1 | |---|------------|------|-----|----|----|-----|----|----|-----|-----|------|----|----|-----|---|---|---|---|---|---|---|---|------| | General Characteristics | • | | | • | | | | | • | • | • | • | • | | • | • | • | • | • | • | • | • | 1 | | SYSTEM ORGANIZATION | 5 | | Registers | | | | | | | | | | | | | | | | | • | | • | • | | • | 5 | | Δ Register | | | | | | | | | | | | | | • . | | | • | | • | • | • | • | 5 | | P Pogistor | | | | | | | | | _ | | | | | | | | | | | | | | 5 | | V Posistor | | | | | | | | | | | | _ | _ | | | | | | | | | | 5 | | P Register | | | | | | • | | | | | • | • | • | • | • | • | • | • | • | • | • | • | 5 | | W Register | | | | | | | | | | | | | | | | | | • | • | • | • | • | 5 | | O Register | | | | | | | | | | | | | | | | | • | | • | • | • | ٠ | 5 | | Core Memory | | | _ | _ | | | | | | | | | | | | | | | | • | • | | 6 | | Interrupte | | | | _ | | | | | | | | | | | | | | | | • | • | • | 6 | | Internal Interrupts | | | _ | _ | | | | | | | | | | | | | | | • | • | • | • | 6 | | Console | | | | | | | | | | | | | | • | | • | • | • | • | • | • | • | 6 | | DMA Termination | | | | | | | | | | | | | | | | | | • | • | • | • | • | 6 | | Real-Time Clock . | | | | | | | | | | | | | | | • | | • | • | | • | • | • | 6 | | Power-Fail Power Res | tai | rts | | | _ | _ | _ | | | | | | | | | | | | | | | | 7 | | External Interrunts | | | | | | | | | _ | _ | _ | | | | | | | | | | | | 7 | | Information Format | _ | - | | | | | | | | | | | | | • | • | | • | • | • | • | • | 7 | | Data Format | | | | | | | | | | | | | | | | | • | • | • | • | • | • | 7 | | Address Word Forma | t | | | | | | | | | | | | | | | | | | | • | | | 8 | | Instruction Format | | | | | | | | | | | • | | | ٠ | • | • | • | • | • | ٠ | • | • | 8 | | Operand Addressing Mode | S | _ | _ | | | | | | | | | | | | | | | | • | • | • | • | 8 | | Indiract Address Mar | d F | - ni | m | at | | | | _ | _ | _ | | | | | | | | | | • | • | | 9 | | Direct Page 0 (m=0) Direct Relative (m=1) | | | | | | | | | | | | | | | ٠ | | • | • | • | • | • | • | 9 | | Direct Relative (m=1) |) | | | | | | | | | | | | | | | | | • | • | • | • | • | 9 | | Indirect Page 0 (m=2) |) | | | | | | | | | | | | • | | • | • | • | • | • | • | • | • | ç | | Indirect Relative (m= | 3) | | | | | | | | | | | | | | | | | • | • | • | • | • | 10 | | Indexed (m=4) | | | | | | | | | | | | | | | | | | • | • | • | • | • | 10 | | Indoved With Rise (m | <u>-</u> ا | 5) | | | | | | _ | | | | | | | | | | | | | • | • | 10 | | Extended Address (m | 1=6 | 3) | | | | | | | | | | | | | | | | • | • | • | • | • | 10 | | 1:41/7) | | | | | | | | | | | | | _ | | | | | | | | | • | 11 | | Jump/Return Jump I | nd | ire | ct | Ex | te | nde | ed | Αc | ddr | ess | s (r | n= | 7) | | | • | • | • | • | | • | • | 11 | | INSTRUCTION REPERTOIRE | 13 | | Control | | | | | | | | | _ | | | | | | | | | | | | | | - 13 | | ULT UAI+ | | | | | | | | | _ | | | | | | | | | | | | • | • | - 1 | | TDD Tran | | | | | | | | _ | _ | | | | | | | | | | • | • | • | • | - 1 | | ESW Enter Sense Sw | /ito | che | es | 1- | | DIN Disable Interru | nt | Sv | ste | m | | | | | | | | | | | | | | | | | | | 14 | # TABLE OF CONTENTS (Continued) | EIN Enable Interrupt System | | | | | | | | | | | . 1 | |-----------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|---|-----| | DRT Disable Real-Time Clock | | | | | | | | | | | 1 | | En Enable near tille Clock | | | | | | | | | | | - 1 | | Reset Overflow and Set Word Lengt | h | • | ٠. | • | | | • | • • | • | | 1 | | Set Overflow and Set Word Length | | • | ٠. | • | • • | ٠. | • | | • | | 1 | | NOT NO ODEIATION | | | | | | | | | | | _ | | Conditional Jumps | | • | • • | • | • • | • • | • | • • | • | | 1 | | Shifts | ٠. | • | | • | | ٠. | • | | • | | 1 | | LLA Logical Left A | ٠. | • | ٠. | • | • | | • | | • | | 1 | | LLB Logical Left B | | • | | • | • | | • | • • | • | | 1 | | III Logical Left Long | ٠. | • | • • | ٠. | • | | • | | • | | 1 | | LLL Logical Left Long | | • | • • | | • | • • | • | | • | | 1 | | LRA Logical Right A | | • | • • | ٠. | • | | • | | | | 17 | | LRB Logical Right B | | • | • • | | • | | | | | | 18 | | LRL Logical Right Long | | • | | ٠. | • | | | | | | 18 | | ALA Arithmetic Left A | | • | | | | | | | | | 18 | | ALD Anumeuc Left B | _ | | | | | | | | | | 10 | | ALL Antimetic Lett Long | | | | | | | | | | | 10 | | ANA Antinmetic Right A | | | | | | | | | | | 19 | | And Arithmetic Right B | | | | | | | | | | | 10 | | _ AN L Arithmetic Right Long | | | | | | | | | | | 19 | | Extended Artuilletto | | | | | | | | | | | 20 | | DAD Decimal Add | | | | | | | | | | | 20 | | Dob Decimal Subtract | | | | | | | | | | | 24 | | MOE MUITON (BINARY) | | | | | | | | | | | | | Div Divide (Binary) | | | | | | | | | | | 21 | | Register Operate | • | • | | • • | • • | • • | • • | • | | • | 22 | | ORA ORB WITH A | | | | | | | | | | | | | XRA Exclusive-OR B With A | • • | • | • | ٠. | • | • | ٠. | • | | • | 22 | | ORB OR A With B | ٠. | • | • | | | • | • • | • | | • | 22 | | XRB Exclusive-OR A With B | | • | • | | | • | • • | • | | | 22 | | INA Increment A | | • • | • | | | • | | • | | • | 22 | | INB Increment B | | | • | • • | | • | | | | | 23 | | INB Increment B | • • | | • | | | • | | | | | 23 | | OCA One's Complement A | • • | | • | | | • | | | | | 23 | | OCB One's Complement B | | | • | | | | | | | | 23 | | INA Inclement A | | | | | | | | | | | 24 | | DOX Decrement X | | | | | | | | | | | 24 | | AWA Add Word Length to X | | | | | | | | | | | 24 | | SWA Subtract Word Length from X | | | | | | | | | | | 24 | | TAX Transfer A to X | | | | | | | | | | | 25 | | TBX Transfer B to X | | | | | | | | | | _ | 25 | | TXA Transfer X to A | | | | | | | | | | _ | 25 | | IXB I ransfer X to B | | | | | | | | _ | | • | 25 | | MS1 Multiply Step | | | | | | | | | | • | 25 | | ADX Add to X | | | | | | | | | • | • | 26 | | EBX Exchange B and X | | | | | | • | | • | • • | • | 26 | | Stack Control | | | | | ٠. | • | • | • | | • | 26 | | Push-Down/Pull-Up Operation | | | | | • • | • | | • | ٠. | • | 26 | | RTN Return | | | • | | • | • | | • | | • | 27 | | CAL Call | • | | • | | • • | • | | • | • • | • | | | PLX Pull X | | • • | • | • | | • | | ٠. | • | • | 27 | | PSX Push X | • • | | • | • | | • | | | • | • | 27 | ## **TABLE OF CONTENTS (Continued)** | PLA Pull A | | | | | | | | | | | | | | | | | | • | 28 | |--|--------|-------|-------------|---------------|-----------|-----------------|------------|--------------|-----------------------|---------------------------------------|---------|-------------------|---|--------|---|---|---|-----|--| | PSA Push A | - | | | | | | | | | | | | | | | | | . 2 | 28 | | PLB Pull B | Ċ | | | | | | | | | | | | | | | | | . 2 | 28 | | PSB Push B | | | | | | | | | | | | | | | | | | . 2 | 29 | | Character/String Manipulation | | | | | | | | | | | | | | | | | | . 2 | 29 | | CLC Compare Logical | | | | | | | | | | | | | | | | | | . 4 | 29 | | MOV Move | | | | | | | | | | | | | | | | | | . 2 | 29 | | GCC Generate Cyclic Coc | le | | | | | | | | | | | | | | | | | . 3 | 30 | | SCH Search | | | | | | | | | | | | | | | | | | . 3 | 30 | | SCH Search Not | | | | | | | | | | | | | | | | | | . 3 | 31 | | GAP Generate ASCII Par | itv | | | | | | | | | | | | | | | | | . 3 | 32 | | Memory Reference | | | | | | | | | | | | | | | | | | . ; | 32 | | JMP Jump | | | | | | | | | | | | | | | | | | . ; | 32 | | RTJ Return Jump | | | | |
| | | | | | | | | | | | | . ; | 33 | | IWM Increment Word in I | Men | าดท | , | | | | | | | | | | | | | | | . ; | 33 | | DWM Decrement Word in | . Me | m∩ | rv | | | | | | | | | | | | | | | . ; | 33 | | LDX Load X | 1 1110 | ,,,,, | ٠, | • | | | | | | | | | | | | | | . ; | 33 | | STX Store X | • | | • | • | • | | | | | | | | | | | | | . ; | 34 | | LDB Load B | • | | • | • | • | • | Ī | i | | | | | | | | | | . : | 34 | | STB Store B | • | | • | • | • | • | • | • | • | • | | | | | | | | . : | 34 | | ADA Add to A | • | | • | • | • | | • | • | • | • | • | • | | | _ | | | | 34 | | ADV Add Variable | • | | • • | • | • | • • | • | • | • | • | • | • | • | | | - | | | 35 | | SBA Subtract from A . | • | • | • | • | • | | • | • | • | • | • | • | • | | | - | | | 35 | | SBV Subtract Variable | • | • | • • | • | • | | • | • | • | • | • | • | • | • | • | | | - | 35 | | SBA SUBILIACI ANTIADIE | • | | • • | | | | | | ٠, | • | • | • | • | • | • | - | - | - | 35 | | CDA Commore A /Loss TI | 220 | Ear | uəl | T_{Λ} | l-r | ΔЭТ | ¤r ∣ | ı na | nı | | | | | | _ | _ | _ | - | | | CPA Compare A (Less T) | han, | Eq. | ual | To, | Gr
Ial | eat
To | er i
Gi | i na
reat | n)
ter | Th | nan | | • | • | • | • | | - | 36 | | CPA Compare A (Less TI | Less | :Th | an, | Eq | ual | Τo, | , Gı | reat | ter | ۱r | nan |) | | | • | • | • | | | | CPA Compare A (Less TI
CPV Compare Variable (
ANA AND | Less | Th | an,
 | Eq | ual | То,
 | . Gı | reat | ter | ir | nan | | | | : | • | • | • | 36 | | CPA Compare A (Less TI
CPV Compare Variable (
ANA AND
ANV AND Variable | Less | Th | an,

 | Eq | ual | То,

 | . Gı | reat | ter | ir | nan | ·
•
• | | ·
· | : | • | | | 36
36 | | CPA Compare A (Less TI
CPV Compare Variable (
ANA AND
ANV AND Variable | Less | Th | an,

 | Eq: | | То,

 | . Gı | reat | ter | 1 r | nan | ·
·
· | | | | | | | 36
36
36 | | CPA Compare A (Less TI
CPV Compare Variable (
ANA AND
ANV AND Variable
LDA Load A
LDV Load Variable | Less | Th | an, | Eq: | | То,

 | . Gı | rea1 | ter | 1 h | nan | ·
·
· | | | | | | | 36
36
36
36 | | CPA Compare A (Less TI
CPV Compare Variable (
ANA AND
ANV AND Variable .
LDA Load A
LDV Load Variable
STA Store A | Less | :Th | an, | Eq: | ual | To,

 | . Gı | rea1 | ter | 1 h | nan | ·)
·
·
· | | | | | | | 36
36
36
36
37 | | CPA Compare A (Less TI
CPV Compare Variable (
ANA AND
ANV AND Variable
LDA Load A
LDV Load Variable | Less | :Th | an, | Eq: | ual | To,

 | . Gı | rea1 | ter | 1 h | nan | ·)
·
·
· | | | | | | | 36
36
36
36
37
37 | | CPA Compare A (Less TI
CPV Compare Variable (
ANA AND
ANV AND Variable
LDA Load A
LDV Load Variable
STA Store A
STV Store Variable | Less | : Th | an, | Eq: | | To, | . Gı | reat | ter | 1 h | | | | | | | | | 36
36
36
37
37
37 | | CPA Compare A (Less TI CPV Compare Variable (ANA AND ANV AND Variable LDA Load A LDV Load Variable STA Store A STV Store Variable | Less | : Th | an, | Eq. | | To, | . Gı | reat | ter | 1 h | | | | | | | | | 36
36
36
37
37
37 | | CPA Compare A (Less TI CPV Compare Variable (ANA AND ANV AND Variable LDA Load A LDV Load Variable STA Store A STV Store Variable INPUT/OUTPUT OPERATIONS Byte Input/Output Instruction | Less | . Th | an, | Eq. | | To, | . Gı | rea1 | ter | | |) | | | | | | | 36
36
36
37
37
37
39 | | CPA Compare A (Less TI CPV Compare Variable (ANA AND ANV AND Variable LDA Load A LDV Load Variable STA Store A STV Store Variable INPUT/OUTPUT OPERATIONS Byte Input/Output Instruction Device Address | Less | :Th | an, | Equ | ual | To, | Gi | rea1 | :
:
:
:
: | | |) | | | | | | | 36
36
36
37
37
37
39
39 | | CPA Compare A (Less TI CPV Compare Variable (ANA AND ANV AND Variable . LDA Load A LDV Load Variable STA Store A STV Store Variable INPUT/OUTPUT OPERATIONS Byte Input/Output Instruction Device Address Device Orders | Less | :Th | an, | Eq | ual
 | To, | . Gi | | | · · · · · · · · · · · · · · · · · · · | |) | | | | | | | 36
36
36
37
37
37
39
39 | | CPA Compare A (Less TR
CPV Compare Variable (
ANA AND
ANV AND Variable
LDA Load A
LDV Load Variable
STA Store A
STV Store Variable INPUT/OUTPUT OPERATIONS Byte Input/Output Instruction Device Address Device Orders Status Bytes | Less | :Th | an, | Eq. | ual | To, | . Gi | | ter | · · · · · · · · · · · · · · · · · · · | |) | | | | | | | 36
36
36
37
37
37
39
39
40 | | CPA Compare A (Less TR CPV Compare Variable (ANA AND ANV AND Variable LDA Load A LDV Load Variable STA Store A STV Store Variable INPUT/OUTPUT OPERATIONS Byte Input/Output Instruction Device Address Device Orders Status Bytes | Less | :Th | an,, | Eq. | ual | To, | . Gi | | ter
 | 1 r | |) | | | | | | | 36
36
36
37
37
37
39
39
40
40 | | CPA Compare A (Less TR CPV Compare Variable (ANA AND ANV AND Variable LDA Load A LDV Load Variable STA Store A STV Store Variable INPUT/OUTPUT OPERATIONS Byte Input/Output Instruction Device Address Device Orders Status Bytes Instructions | Less | :Th | an, | Eq | ual | To, | Gi | | ter
 | | |) | | | | | | | 36
36
36
37
37
37
39
39
40
40
40
40 | | CPA Compare A (Less TR CPV Compare Variable (ANA AND ANV AND Variable LDA Load A LDV Load Variable STA Store A STV Store Variable INPUT/OUTPUT OPERATIONS Byte Input/Output Instruction Device Address Device Orders Status Bytes Instructions IBA Input Byte to A | Less | :Th | an, | Eq | ual | To, | Gi | | | | |) | | | | | | | 36
36
36
37
37
37
39
39
40
40
40
40 | | CPA Compare A (Less TR CPV Compare Variable (ANA AND ANV AND Variable . LDA Load A LDV Load Variable . STA Store A STV Store Variable INPUT/OUTPUT OPERATIONS Byte Input/Output Instruction Device Address Device Orders Status Bytes Instructions IBA Input Byte to A IBB Input Byte to B IBM Input Byte to Memory | Less | :Th | an, | Eq. | ual | To, | Gi | | ter | | |) | | | | | | | 36
36
36
37
37
37
39
40
40
40
40
40
40
42 | | CPA Compare A (Less TR CPV Compare Variable (ANA AND ANV AND Variable . LDA Load A LDV Load Variable . STA Store A STV Store Variable INPUT/OUTPUT OPERATIONS Byte Input/Output Instruction Device Address Device Orders Status Bytes Instructions IBA Input Byte to A IBB Input Byte to B IBM Input Byte to Memoral | Less | :Th | an, | Eq | ual | To, | Gi | | ter | 1r | |) | | | | | | | 36
36
36
37
37
37
39
40
40
40
40
42
42 | | CPA Compare A (Less TR CPV Compare Variable (ANA AND ANV AND Variable LDA Load A LDV Load Variable STA Store A STV Store Variable INPUT/OUTPUT OPERATIONS Byte Input/Output Instruction Device Address Device Orders Status Bytes Instructions IBA Input Byte to A IBB Input Byte to B IBM Input Byte to Memory Orders OBA Output Byte from | Less | :Th | an, | Eq | ual | To, | Gi | | ter | 1r | าan
 |) | | | | | | | 36
36
36
37
37
37
39
40
40
40
40
42
42
42 | | CPA Compare A (Less TR CPV Compare Variable (ANA AND ANV AND Variable LDA Load A LDV Load Variable STA Store A STV Store Variable INPUT/OUTPUT OPERATIONS Byte Input/Output Instruction Device Address Device Orders Status Bytes Instructions IBA Input Byte to A IBB Input Byte to B IBM Input Byte to Memory OBA Output Byte from OBB Output Byte from | Less | :Th | an, | Eq | ual | To, | Gi | reat | ter | 1r | าan
 |) | | | | | | | 36
36
36
37
37
37
39
39
40
40
40
40
42
42
42
42
42 | | CPA Compare A (Less TR CPV Compare Variable (ANA AND ANV AND Variable LDA Load A LDV Load Variable STA Store A STV Store Variable INPUT/OUTPUT OPERATIONS Byte Input/Output Instruction Device Address Device Orders Status Bytes Instructions IBA Input Byte to A IBB Input Byte to B IBM Input Byte to Memory Output Byte from OBA Output Byte from OBM Output Byte from OBM Output Byte from Concurrent Input/Output | Less | :Th | an, | Eq | ual | To, | Gi | reat | ter | 1r | nan |) | | | | | | | 36
36
36
37
37
37
39
40
40
40
42
42
42
43 | | CPA Compare A (Less TR CPV Compare Variable (ANA AND ANV AND Variable LDA Load A LDV Load Variable STA Store A STV Store Variable INPUT/OUTPUT OPERATIONS Byte Input/Output Instruction Device Address Device Orders Status Bytes Instructions IBA Input Byte to A IBB Input Byte to B IBM Input Byte to B IBM Input Byte to Memoral Byte Input Inp | Less | :Th | an, | Eq | ual | To, | Gi | reat | ter | 1r | nan |) | | | | | | | 36
36
36
37
37
37
39
40
40
40
42
42
42
43
43 | | CPA Compare A (Less TR CPV Compare Variable (ANA AND ANV AND Variable LDA Load A LDV Load Variable STA Store A STV Store Variable INPUT/OUTPUT OPERATIONS Byte Input/Output Instruction Device Address Device Orders Status Bytes Instructions IBA Input Byte to A IBB Input Byte to B IBM Input Byte to Memory Output Byte from OBA Output Byte from OBM Output Byte from OBM Output Byte from Concurrent Input/Output | Less | . Th | an, | Eq | ual | To, | Gi | reat | ter | 1r | nan |) | | | | | | | 36
36
36
37
37
37
39
40
40
40
42
42
42
43 | # TABLE OF CONTENTS (Continued) | MICHO | 1600/21 OP | EKA | IU | H (| JU | 1/1 | H | JL | S | | | | | | | | | | | | | | | | _ | 45 | |--------|--|----------------------------|-------|----------|-------|------|----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--------|--| | Sys | tem Console | ٠. | | | | | | | | | _ | | | | | | | | | Ī | i | · | Ī | Ī | • | 45 | |
Dis | plays | | | | | | | | | _ | _ | | , | | | | | | | | | | | | | 46 | | | Data Dispi | ay | , | | | | | | _ | _ | _ | | | | | | | | | | | | | | | 46 | | | Run Lamp | | | | | | | | | | | | Ī | • | · | · | • | • | • | • | • | • | • | • | • | 46 | | | Hait Lamp | 46 | | | Display Se | lecto |)r (L | ו , כ | VI. (| J. 1 | _) | | | _ | | | | | | | | | | | | | | | | 46 | | Swi | tches Sense Swit | | | ΄. | | | -, | | | | | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 46 | | | Sense Swit | ches | (4) | | | _ | | | • | • | | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 46 | | | Command
Rup Switel | Swit | che | s (| 16) | • | • | • | • | | | • | • | • | • | • | • | • | • | • | • | • | • | • | ٠ | 46 | | | Run Switch | า | | | , | | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 40 | | | Halt/Step S | Swite | h | • | • | • | • | • | • | | • | • | • | • | • | • | • | • | ٠ | • | ٠ | • | • | • | ٠ | 47 | | | Clock Step | Swi | tch | • | • | • | • | • | • | | • | • | • | • | • | • | ٠ | • | ٠ | • | • | ٠ | ٠ | • | • | 47 | | | Master Res | et Si | wite | h | • | • | • | • | • | • | • | • | • | • | • | • | ٠ | ٠ | • | • | ٠ | • | • | • | • | | | | Master Res | wito | h | ,,,, | | • | • | • | • | | • | • | • | • | ٠ | ٠ | ٠ | • | • | • | • | • | ٠ | • | | 47 | | | Interrupt S | t SIA | iitok | | • | • | • | • | | • | • | • | • | • | ٠ | • | • | • | ٠ | • | ٠ | • | • | • | | 47 | | | Panel Select | Off/ | 1 00 | ا
مار | • | • | • | • | | | • | • | ٠ | ٠ | • | • | • | • | • | • | • | • | • | • | | 47 | | Rasi | Power ON/ | OH/ | LUC | ж | | • | • | • | | • | • | • | • | ٠ | • | • | ٠ | • | | | | • | • | | | 47 | | Dasi | c Console . | | • | • | • | • | • | • | | • | • | • | • | • | • | ٠ | • | | | • | | • | | | | 47 | | MICROS | R21 OPERAT | ΓΛΡ | 20 | רוא | -D | \ . | Con | 321 OPERAT | On | CO | 14 1 | חנ | JL | • | | | • | • | • | • | • | ٠ | • | ٠ | • | | • | • | • | | | | 49 | | 0011 | | · · | | • | • | • | • | • | | • | • | • | ٠ | • | • | • | • | • | • | • | | • | | | | 49 | | | System Cor | Ja
Ja | • | • | • | • | • | | | • | • | • | • | • | • | • | • | • | | | | | | | | 49 | | Dier | Basic Conso | Jie | • | • | • | • | | | | • | • | ٠ | • | • | | | | • | | | • | | | | | 50 | | Disp | | | • | • | • | ٠. | 50 | | | Run Lamp | • | _ | | | | | | | • | • | | • | • | • | • | • | • | • | • | • | • | • | • | - | | | | | | • | • | • | | | | | | _ | | | | | | | | | | | | | | | 50 | | | Hait Lamp | | | | | | | | • | • | • | • | • | | • | | • | | | | • | | | | | 51 | | Swit | Data Displa |
У . | : | | | | | | | • | • | • | • | | | | • | | | | | | | : | | 51
51 | | Swit | Data Displa
ches | у .
 | | | · · | | | • | | • | • | | • | | | | • | | • | | | | • | | ·
· | 51
51
51 | | Swit | Data Displa
ches
Display Sele | · ·
y ·
· ·
ector | 51
51
51
51 | | Swit | Data Displa
ches
Display Sele
Command | y .
y .
ector | 51
51
51 | | Swit | Data Displaches Display Sele Command Select . | y .
y .
ector | 51
51
51
51 | | Swit | Data Displaches Display Sele
Command
Select . Sense | y . ctor | 51
51
51
51
51 | | Swit | Data Displaches Display Sele Command Select . Sense | y . y . ector | 51
51
51
51
51
51 | | Swit | Data Displaches Display Sele Command Select . Sense . Run Step | y . y . ctor ctor | 51
51
51
51
51
51
51 | | Swit | Data Displaches Display Sele Command Select . Sense . Run Step Interrupt | y . ector . . . | 51
51
51
51
51
51
51
52 | | Swit | Data Displaches Display Sele Command Select . Sense | 51
51
51
51
51
51
51
52
52 | | Swit | Data Displaches Display Sele Command Select . Sense | y . ector . . . | 51
51
51
51
51
51
51
52
52
52 | ## **APPENDIXES** | Α. | File Register Assignments | |----|---| | B. | Dedicated Memory | | C. | MICRO 1600/21 Execution Times | | D. | MICRO 821 Execution Times | | E. | Standard Character Codes | | F. | Teletype Control and Transmission Codes | | G. | Table of Power of Two | | Н. | Hexadecimal = Decimal Integer Conversion Tables | | | | ## **TABLES** | 1. | Effective Address Computation | | | | | ٠ | • | • | | • | • | 11 | |----|-------------------------------|--|--|--|--|---|---|---|--|---|---|----| | 2. | Device Orders | | | | | | | | | • | | 41 | | 3 | Status Bytes Definition | | | | | | | | | | | 42 | Figure 1. MICRO 821 Computer With Systems Panel Figure 2. MICRO 1600/21 Computer With Systems Panel ## SYSTEM DESIGN FEATURES The MICRO 1600/21 and MICRO 821 are high-speed microprogrammed general-purpose computers which provide a comprehensive instruction repertoire and powerful input/output facilities. The two computers are directly program compatible, with the major difference being that the MICRO 1600/21 features about a 10 percent faster execution time than the MICRO 821. System architecture of both computers is byte-oriented, allowing precision operations and character manipulation to be highly efficient in speed and memory utilization. Superior price/performance of the MICRO 821 and 1600/21 in terms of efficient core utilization and high throughput is achieved through the availability of powerful macro instructions. Both systems use TTL monolithic integrated circuits, including a large number of medium and large-scale integration types. The use of read-only memories for control greatly reduces the number of circuits that otherwise would be required to provide comparable functions. Modular design of core memory, read-only memory, processor options and input/output elements permits inexpensive system expansion within the compact basic enclosure. Basic models of the MICRO 800 and 1600 series of computers differ mainly in mechanical configuration (see Figures 1 and 2). The MICRO 800 features flexibility, functional modularity and system-oriented packaging which make it ideally suited for dedicated volume applications and permit the computer to be expanded or reduced to the exact configuration needed for any application. The MICRO 1600 family is the newest and most advanced Microdata product, designed as a companion line to the MICRO 800 and featuring improvements in speed and function. Both the 1600 and 800 are functionally compatible, enabling established MICRO 800 users to use the 1600 directly without redevelopment of firmware, software or system peripherals or interfaces. However, new and revised firmware can achieve significant performance improvements in the MICRO 1600 at both the micro and macro levels of programming. #### **GENERAL CHARACTERISTICS** The features and characteristics of the MICRO 1600/21 and MICRO 821 include: - Variable precision operations - Character/string manipulation - Stack processing - Memory addressing to 32,768 bytes 4096 and 8192 byte plug-in memory modules 32,768 bytes of memory in basic enclosure 1 microsecond memory cycle time (1.1 microseconds for the 821) • Six operational registers Accumulator (A) - 16 bits Auxiliary accumulator (B) - 16 bits Index register (X) - 16 bits Program counter (P) - 15 bits Overflow (O) - 1 bit Word length control (W) -2 bits • Extensive, powerful instruction set including 107 individual operations: Control (16) Multi-bit arithmetic and logical shifts (12) Conditional jumps (17) Input/Output (6) Inter-register (19) Stack control (8) Character/string manipulation (5) Multiply/Divide (2) Decimal arithmetic (add and subtract instructions) (2) Memory reference including jump, compare and variable word length operations (20) • Eight operand addressing modes including: Direct to page 0 (first 256 bytes) Direct relative to P (± 128 bytes) Indirect to page 0 (first 256 bytes) Indirect relative to P (±128 bytes) Indexed (to 32,768 bytes) Indexed with bias (to 32,768 bytes) Extended address (to 32,768 bytes) Literal - Multi-precision 1, 2, 3, or 4-byte load, store, and arithmetic operations - Flexible I/O facilities including: Programmed transfers to/from A register, B register and memory Concurrent buffered I/O Direct memory access - Expandable priority interrupt system - Processor options including: Real-time clock Power-fail detect and automatic restart (standard on 1600/21) - Built-in bootstrap loader in non-volatile read-only memory - Standard supplied software including: loaders teletype debug and operating system two-pass assembler text editor diagnostics • TTL integrated circuitry • Power: 115/230 vac, 50-60 cycle, 380 watts • Environment: 0-50° C ## SYSTEM ORGANIZATION Basic elements of both computers include the operational registers, core memory, interrupt system, input/output system, and control console. A group of processor options is also available to meet a broad range of special system requirements. #### REGISTERS Both computers contain six operational registers which are accessible to the programmer. These operational registers occupy nine of the 16 file registers in the basic microprogrammable hardware; the remaining seven file registers are used for internal operation and are not accessible to the programmer. The assignment of the file registers is given in Appendix A. ### A Register The 16-bit A register is the accumulator with which most operations are performed. The A register holds the upper portion of 24- or 32-bit data words and all of 8- and 16-bit data words. The
A register may be shifted by itself or in conjunction with the B register. ## **B** Register The 16-bit B register is the auxiliary accumulator and is used mainly as an extension of the accumulator to hold the lower 16 bits of 24- and 32-bit data. The B register may be shifted by itself or in conjunction with the A register. #### X Register The 16-bit X register is an index register used in address modification. It can communicate directly with memory, be operated on arithmetically, and compared with the A register. #### P Register The 15-bit P register is the program counter which holds the address of next memory instruction to be executed. #### W Register The 2-bit W register holds the word length mode. It is loaded by a control instruction and sets the byte length of the operand for all variable word length instructions. #### O Register The one-bit O register holds the overflow flag. The overflow is set by arithmetic instructions when an overflow occurs, or by execution of a Control instruction. It may be reset by execution of a Control instruction or by a Conditional Jump instruction that tests for an overflow condition. #### **CORE MEMORY** The magnetic core memory is organized into pluggable modules of 4096 or 8192 bytes. The memory is byte addressable. Each byte contains eight information bits. The core memory may be expanded up to 32,768 bytes (four 8192 byte modules) within the basic enclosure. The memory cycle time is 1 and 1.1 microseconds respectively on the 1600/21 and 821. The direct memory access (DMA) selector channel option allows for interfacing peripheral devices directly with the memory to provide peak transfer rates of up to 1,000,000 and 909,000 bytes per second respectively. #### **INTERRUPTS** The priority interrupt system provides for internal processor interrupts, I/O peripheral device interrupts, and groups of individual external interrupts, each with its own unique interrupt memory address and priority assignment. #### Internal Interrupts Internal interrupts include those that are supplied as part of the basic system as well as optional features. The internal interrupts have priority over external interrupts and are listed below in order of their priority, with the lowest listed first. **Console.** The standard console interrupt is triggered by a switch on the console, allowing an operator to exert control. This interrupt routine also is used by the trap instruction. **DMA Termination.** The DMA termination interrupt occurs when a direct memory access channel has reached a terminal condition and is requesting software attention. **Real-Time Clock.** The real-time clock interrupt occurs when a preset clock count in a unique memory location is incremented to zero. The clock count location is automatically advanced at each clock time. The real-time clock interrupt is enabled and disabled under program control. **Power-Fail.** The power-fail interrupt provides an interrupt when a loss of primary power is detected. A minimum of one millisecond of computer operation is assured after the interrupt. Programming Note: The following three instructions must be the first instructions of any power-fail subroutine. This will remove a microprogram set, interrupt lock-out flag from the push-down stack. Failure to remove it would inhibit the recognition of any interrupt following a power restart. | PWR | LDA* | X'8C' | Pick Up $\phi v/w$ | |-----|------|---------|--------------------| | | ANA= | X'7FFF' | Remove Flag | | | STA* | X'8C' | Put Back | **Power-Restart.** Power-restart interrupt occurs when the power is applied and is up to normal operating levels and the processor placed in the run mode. #### **External Interrupts** External interrupts may be associated with peripheral devices or may be individual lines not associated with devices on the I/O bus. The device interrupts are used to indicate such conditions as data ready, error and end of operation conditions in the device. These interrupts are enabled by sending a function code to the device controllers. The memory location containing the interrupt routine address is 100_{16} plus twice the device address. Individual interrupts may be handled by an external interrupt module which provides for arming/disarming individual interrupts and enabling/disabling recognition of interrupts in the group. Standard external interrupt cards containing 8 priority interrupt lines are available. A total of 64 external interrupts can be implemented. ## INFORMATION FORMAT The basic element of information is an 8-bit byte in which the bit positions are numbered from 7 through 0, left to right. Both instructions and data occupy a variable number of bytes for maximum storage efficiency. A word is a 16-bit element of information consisting of two bytes. The accumulator and index register both hold a 16-bit word. #### **Data Format** Data is variable precision of 8, 16, 24, or 32-bit length. Negative numbers are represented in 2's complement form. The range of magnitude and data format in the A and B registers for the four data lengths is shown as follows: 8 Bits (1 Byte) - Range: +2⁷-1 to -2⁷ 16 Bits (2 Bytes) - Range: +2¹⁵-1 to -2¹⁵ 24 Bits (3 Bytes) - Range: $+2^{23}$ -1 to -2^{23} 32 Bits (4 Bytes) - Range: +2³¹-1 to -2³¹ #### **Address Word Format** A 16-bit address word contains a 15-bit memory address and an index flag as shown below. The address may be direct or indirect address as dictated by the instruction operation code. The value of the address word is equal to the contents of bits 14-0 and is equal to the contents of bits 14-0 plus the contents of the X register if bit 15 is a 1-bit. #### Instruction Format Instruction formats are one to five bytes, but in all cases the first contains an eight-bit operation code which defines the operation class, the sub-operation code, and any modifiers. Succeeding byte(s) contain such information as: Single byte absolute or relative address Double byte address word Single byte shift count Single byte I/O function and device address 1, 2, 3, or 4 byte literal data. #### **OPERAND ADDRESSING MODES** The memory reference instructions defined in the following section each have eight possible modes of addressing an operand in memory. The number of bytes in the instruction format varies with the mode. The additional bytes of the instruction contain addresses, partial addresses, or data (literals). The basic memory reference instruction is one byte containing two fields as follows: The 5-bit operation code defines the basic instruction; the 3-bit m field specifies the address mode. Additional bytes contain the address of an operand, an indirect address, a base address, or a literal depending upon the addressing mode. The effective operand address is the memory location specified after all indirect and/or index modifications have been performed. When an indirect address mode is specified, the location of the indirect address word is the first byte of a two-byte word having the format shown below: #### **Indirect Address Word Format** Bit 7 of the first byte (x) defines whether or not the indirect address word will be modified by the contents of the index register: If x = 0, the 15-bit number formed by y and z is the effective operand address. If x = 1, the 15-bit number formed by y and z is a base address to which is added the contents of the X register. The result is the effective operand address. The individual addressing modes and the memory reference instruction format for that mode are defined below. ## Direct Page 0 (m=0) The effective operand address is given by the contents of the second byte of the instruction (y) with seven high order zero bits appended. This mode provides direct addressing of operands in the first 256 memory locations. #### Direct Relative (m=1) The effective operand address is given by the sum of the contents of the second byte (y) with its high order sign bit (bit 7) extended and the contents of the P register. The contents of the P register at the time the addition is performed is the address of the memory location following y. This mode provides for addressing from 127 locations ahead to 128 locations behind the memory location of the next instruction. #### Indirect Page 0 (m=2) An indirect address word is specified by the contents of the second byte (y) of the instruction with seven high order zero bits appended. The 2-byte indirect address word addressed is located in the first 256 memory locations. The effective operand address is given by the contents of the indirect address word if the index flag (bit 15) is a 0-bit, or by the sum of the contents of the indirect address word and the X register if the index flag (bit 15) is a 1-bit. #### Indirect Relative (m=3) A relative indirect address word is specified by the sum of the contents of the second byte (y) with its high order bit (bit 7) extended and the contents of the P register. The contents of the P register at the time the addition is performed is the address of the memory location following y. The effective operand address is given by the contents of indirect address word if the index flag (bit 15) is a 0-bit or by the sum of the contents of the indirect address word and the X register if the index flag (bit 15) is a 1-bit. ### Indexed (m=4) The effective operand address is given by the contents of the X register. #### Indexed With Bias (m=5) The effective operand address is given by the sum of the contents of the X register and the contents of the second byte (y) of the instruction. #### Extended Address (m=6) A 16-bit address word is located in the second and third byte of the instruction. The effective operand address is given by the contents of the address word if the index flag bit in bit 15 is a 0-bit, or by the sum of the contents of the address word and the X register if the index flag is a 1-bit. #### Literal (m=7) The effective operand address is given by the contents of the P register. The operand is located in
from 1-4 bytes following the first byte of the instruction, depending upon the operand precision. The P register is incremented for each operand byte accessed. The Jump and Return Jump memory referencing instructions do not have a literal mode. ## Jump/Return Jump Indirect Extended Address (m=7) A 16-bit direct address word is located in the second and third bytes of the instruction. This word addresses an indirect address word located at the address given by the contents of the second and third bytes if bit 15 of the address word is a 0-bit or by the sum of the contents of the second and third bytes and the X register is the index flag bit in bit 15 is a 1-bit. The effective jump address is given by the contents of the indirect address word if the index flag in bit 15 of the indirect address word is a 0-bit, or by the sum of the contents of the indirect word and the X register if the index flag bit in bit 15 of the indirect address word is a 1-bit. Table 1. Effective Address Computation | M | Effect | ive Address | Mode | |---|--------------|----------------|---| | 0 | | У | Direct Page 0 | | 1 | | y+(P) | Direct Relative | | 2 | | (y) | Indirect Page 0 | | 3 | | (y+(P)) | Indirect Relative | | 4 | | (X) | Indexed | | 5 | | y+(X) | Indexed with Bias | | 6 | x=0:
x=1: | y,z
y,z+(X) | Extended Address Extended Address Indexed | | 7 | | (P) | Literal | | 7 | x=0: | (y,z) | Indirect Extended Address (Jump and Return Jump only) | | | x=1: | (y,z+(X)) | Indirect Extended Address Indexed (Jump and Return Jump only) | ## INSTRUCTION REPERTOIRE This section contains descriptions of all instructions except input/output, described later. With each description is a diagram showing the format of the instruction and its operation code, normally given in hexadecimal. Above each diagram are the mnemonic code and the name of the instruction, followed by a list of the registers and indicators that can be affected by the instruction. The timing of each instruction is given in Appendixes C and D. #### CONTROL The control group of instructions are single byte instructions which provide specific control functions. The processor, and concurrent I/O are halted. The contents of the P register will be the address of the halt instruction plus one. Depressing the console run or step switches will cause the next instruction to be executed. Interrupts or concurrent I/O requests cannot be recognized before the execution of the next instruction. TRP Trap The contents of the P register are stored at the two-byte memory location specified by the two-byte address word at location 80₁₆. Subsequently, the two-byte address word (at 80₁₆) plus two replaces the original contents of the P register. Execution of this instruction is the same as depressing the console interrupt switch. Interrupts or concurrent I/O requests cannot be recognized before the execution of the next instruction. Affected: P, Memory. ## **ESW** Enter Sense Switches The status of the four console sense switches is placed in bits 15-12 of the A register. If the sense switch is on, the corresponding bit in the A register will be set to one. Bits 8-11 of the A register are set to one and bits 0-7 are unaltered. Affected: A (high order 8 bits) ## DIN Disable Interrupt System All external interrupts are disabled, preventing the processor from recognizing an external interrupt request. Interrupts are saved in the disabled state. Internal interrupts or concurrent I/O requests cannot be recognized before the execution of the next instruction. ## EIN Enable Interrupt System All external interrupts are enabled, allowing the processor to recognize an external interrupt. Interrupts or concurrent I/O requests cannot be recognized before the execution of the next instruction. #### DRT Disable Real-Time Clock The updating of the real-time clock memory location and the generation of real-time clock interrupts are inhibited. Interrupts or concurrent I/O requests cannot be recognized before the execution of the next instruction. #### ERT Enable Real-Time Clock The updating of the real-time clock memory location and the generation of real-time clock interrupts are enabled. Interrupts or concurrent I/O requests cannot be recognized before the execution of the next instruction. ## Reset Overflow and Set Word Length The Overflow register is reset and the variable precision mode (byte length) is placed in the W register. The four instructions are as follows: | OP Code | Mnemonic | Instructions | |------------|----------|---| | 08 | RO1 | - RESET OVERFLOW AND SET WORD LENGTH TO 1 | | 09 | RO2 | - RESET OVERFLOW AND SET WORD LENGTH TO 2 | | 0 A | RO3 | - RESET OVERFLOW AND SET WORD LENGTH TO 3 | | OB | RO4 | RESET OVERFLOW AND SET WORD LENGTH TO 4 | Affected: O, W ## Set Overflow and Set Word Length The overflow register is set to one and the variable precision mode (byte length) is placed in the W register. The four instructions are as follows: | OP Code | Mnemonic | Instructions | |---------|----------|---| | 0C | SO1 | SET OVERFLOW AND SET WORD LENGTH TO 1 | | 0D | SO2 | - SET OVERFLOW AND SET WORD LENGTH TO 2 | | 0E | SO3 | SET OVERFLOW AND SET WORD LENGTH TO 3 | | 0F | SO4 | SET OVERFLOW AND SET WORD LENGTH TO 4 | Affected: O, W NOP No Operation 3 4 7 6 5 4 3 2 1 0 This instruction performs no operation. #### **Conditional Jumps** The conditional jump instructions are a two byte format. The first byte provides the operation code which includes the condition being tested (bits 2-0) and whether the jump will be made on the condition being true or false (bit 3). The second byte contains an 8-bit signed value, y, which specifies a jump location relative to P. If the test condition is met, the sum of the contents of the second byte (y) with its high order bit extended and the current contents of the P register are placed in the P register; otherwise the P register remains unaltered and the next instruction in sequence is accessed. The contents of the P register at the time of addition is the address of the next instruction. The instructions which test the overflow condition also reset the overflow register. The conditional jump instructions, their operation codes and mnemonics follows: | OP Code | Mnemonic | Instructions | |------------|----------|--| | 10 | JOV | JUMP IF OVERFLOW SET | | 11 | JAZ | JUMP IF A EQUAL TO ZERO | | 12 | JBZ | JUMP IF B EQUAL TO ZERO | | 13 | JXZ | JUMP IF X EQUAL TO ZERO | | 14 | JAN | JUMP IF A NEGATIVE | | 15 | JXN | JUMP IF X NEGATIVE | | 16 | JAB | JUMP IF A EQUALS B | | 17 | JAX | JUMP IF A EQUALS X | | 18 | NOV | JUMP IF OVERFLOW NOT SET | | 19 | NAZ | JUMP IF A NOT EQUAL TO ZERO | | 1 A | NBZ | JUMP IF B NOT EQUAL TO ZERO | | 1B | NXZ | JUMP IF X NOT EQUAL TO ZERO | | 1C | NAN | JUMP IF A NOT NEGATIVE | | 1D | NXN | JUMP IF X NOT NEGATIVE | | 1E | NAB | JUMP IF A NOT EQUAL TO B | | 1F | NAX | JUMP IF A NOT EQUAL TO X | | 5 A | JEP | JUMP IF EVEN PARITY (the A Register contains an even number of "1" Bits) | Affected: P, O #### SHIFTS The shift group of instructions provides both arithmetic and logic shifts of A register, B register and A and B registers together. A signed shift count is specified in the second byte of the instructions. The shift count is any positive number from 0 to 127; if negative, a no operation results. A concurrent input/output request is acknowledged between bit shifts of all shift instructions. However, normal interrupts are not recognized until the end of the complete shift instruction. In addition, the response time to an external request should be considered when programming long bit shifts. ## LLA Logical Left A | | 2 0 | | | | | n | | | | | | | | | | |---|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | The contents of the A register are shifted n bits to the left. Bits shifted out of A_{15} are shifted into A_0 . Affected: A ## LLB Logical Left B The contents of the B register are shifted n bits to the left. Bits shifted out of B₁₅ are shifted into B₀. Affected: B #### LLL Logical Left Long The contents of the A and B registers are shifted n bits to the left. Bits shifted out of A_{15} are shifted into B_0 . Bits shifted out of B_{15} are shifted into A_0 . Affected: A, B #### LRA Logical Right A The contents of the A register are shifted n bits to the right. Zeros are shifted into A_{15} , and bits shifted out of A_0 are lost. Affected: A ## LRB Logical Right B | | 2 5 | | | | | | | | | n | | | | | | | |---|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Ī | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | _ | The contents of the B register are shifted n bits to the right. Zeros are shifted into B_{15} , and bits shifted out of B_0 are lost. Affected: B ## LRL Logical Right Long The contents of the A and B registers are shifted n bits to the right. Zeros are shifted into A_{15} . Bits shifted out of A_0 are shifted into B_{15} , and bits shifted out of B_0 are lost. Affected: A, B ## ALA Arithmetic Left A The contents of the A register are shifted n bits to the left. Bits shifted out of A_{15} are lost. Zeros are shifted into A_0 . Affected: A ### ALB Arithmetic Left B The contents of the B register are shifted n bits to the left. Bits shifted out of B_{15} are lost. Zeros are shifted into B_0 . Affected: B ## ALL Arithmetic Left Long | | | | 2 | Α | | | | | | | 1 | n | | | | | |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | The contents of the A and B
register are shifted n bits to the left. Bits shifted out of A₁₅ are lost. Bits shifted out of B₁₅ are shifted into A₀. Zeros are shifted into B₀. Affected: A, B ## ARA Arithmetic Right A The contents of the A register are shifted n bits to the right. The sign bit in A_{15} is copied into vacated high order bits. Bits shifted out of A_0 are lost. Affected: A ## ARB Arithmetic Right B The contents of the B register are shifted n bits to the right. The sign bit in B₁₅ is copied into vacated high order bits. Bits shifted out of B₀ are lost. Affected: B ## ARL Arithmetic Right Long The contents of the A and B registers are shifted n bits to the right. The sign bit in A_{15} is copies into vacated high order bits. Bits shifted out of A_0 are shifted into B_{15} , and bits shifted out of B_0 are lost. Affected: A, B #### EXTENDED ARITHMETIC Decimal numbers are strings of ASCII characters from 1 to 16 digits in length. The decimal digits zero to 9 are represented by the hexadecimal values B0 to B9. Hexadecimal values of A0 (Blank) or 00 will be treated as B0. The rightmost, or units position, digit of the number contains the sign of the number. If this digit is in the range of B0 to B9, the number is positive. When this digit is in the range of D0 to D9, the number is considered to be negative. When performing decimal arithmetic operations, the B and X registers point to the leftmost, or high-order, digit of each operand. The lower eight bits of the A register contains two four bit values indicating the number of digits to the right that each operand extends. Bits 7-4 contain the field length for the B register and bits 3-0 contain the field length for the X register. The memory address, formed by the sum of a register and its initial field length, points to the units position of that operand. During decimal arithmetic operations, bit 15 of the B register is set to zero. This should be of no concern, since all valid memory addresses would have this bit set to zero anyway. When the operation is an add, with signs opposite, or a subtract, with signs alike, and a carryout of the high-order digit does not occur, the result is not in true form. This initiates a recomplement cycle to tens complement the sum or difference. DAD Decimal Add The variable length operand at the memory location given by the contents of the B register (ADDEND), is added decimally by digit (bytes) to the variable length operand at the memory location given by the contents of the X register (AUGEND) and the sum replaces the augend. If the addend is shorter than the augend, high-order zero digits are supplied. When the addend is longer than the augend, the sum will be correct if the extra high-order addend digits are zero. If the magnitude of the sum exceeds the field length to contain it, the overflow register will be set, otherwise it will be reset. The sign of the result is determined by the rules of algebra and is attached to the units position of the sum. A zero sum is always positive. When a high-order digit is lost because of an overflow, a zero result has the sign of the correct sum. After the operation, the content of the A register will be set to minus one, zero, or plus 255 to indicate the condition of the result as negative, zero, or positive. Interrupts and concurrent I/O requests may be serviced during the execution of this instruction. Affected: A, O, Memory ## **DSB** Decimal Subtract The variable length operand at the memory location given by the contents of the B register (SUBTRAHEND), is subtracted decimally by digit (byte) from the variable length operand at the memory location given by the contents of the X register (MINUEND) and the difference replaces the minuend. If the subtrahend is shorter than the minuend, high-order zero digits are supplied. When the subtrahend is longer than the minuend, the difference will be correct if the extra high-order subtrahend digits are zero. If the magnitude of the difference exceeds the field length to contain it, the overflow register will be set, otherwise it will be reset. The sign of the result is determined by the rules of algebra and is attached to the units position of the difference. A zero difference is always positive. When a high-order digit is lost because of an overflow, a zero result has the sign of the correct difference. After the operation, the content of the A register will be set to minus one, zero, or plus 255 to indicate the condition of the result as negative, zero, or positive. Interrupts and concurrent I/O requests may be serviced during the execution of this instruction. Affected: A, O, Memory ## MUL Multiply (Binary) The two-byte operand located at the effective memory address is multiplied by the contents of the A register and the product is placed in the A-B register. The multiply is an integer type and the 30 bit resultant magnitude occupies the 30 low order bits of A-B register and a double sign bit occupies the two high order bits. A concurrent I/O request can be serviced during the instruction execution. Affected: A, B ## DIV Divide (Binary) The contents of the A-B register is divided by the two byte operand located at the effective memory address. The signed quotient is placed in the B register and the signed remainder is placed in the A register. The remainder will have the same sign as the original dividend unless the remainder is zero. The divide is an integer type operation. If the relative magnitude of the original contents of the A-B register (dividend) and the operand (divisor) is such that the quotient would be greater than 2^{15} -1 or less than -2^{15} , the overflow register is set. A concurrent I/O request can be serviced during the instruction execution. Affected: A, B, O ## **REGISTER OPERATE** The register operate group of instructions provides for special arithmetic and logical operations on individual registers and between registers. ORA OR B With A The logical inclusive-OR of the contents of the A register and the contents of the B register are placed in the A register. Affected: A XRA Exclusive-OR B With A The logical exclusive-OR of the contents of the A register and the contents of the B register are placed in the A register. Affected: A ORB OR A With B The logical inclusive-OR of the contents of the A register and the contents of the B register are placed in the B register. Affected: B XRB Exclusive-OR A With B The logical exclusive-OR of the contents of the A register and the contents of the B register are placed in the B register. Affected: B INX Increment X The contents of the X register plus one replaces the contents of the X register. If the result is greater than 215-1, the overflow register is set. Affected: X, O DCX Decrement X The contents of the X register minus one replaces the contents of the X register. If the result is less than -215, the overflow register is set. Affected: X, O AWX Add Word Length to X The contents of the W register plus one is added to the contents of the X register and the sum is placed in the X register. If the sum is greater than 2¹⁵-1, the overflow register is set. Affected: X, O SWX Subtract Word Length from X The contents of the W register plus one is subtracted from the contents of the X register and the difference is placed in the X register. If the difference is less than -215, the overflow register is set. Affected: X, O ## INA Increment A The contents of the A register plus one replaces the contents of the A register. If the sum is greater than 2^{15-1} , the overflow register is set. Affected: A, O ## INB increment B The contents of the B register plus one replaces the contents of the B register. If the sum is greater than 2¹⁵-1, the overflow register is set. Affected: B, O ## OCA One's Complement A The one's complement of the contents of the A register replaces the contents of the A register. Affected: A ## OCB One's Complement B The one's complement of the contents of the B register replaces the contents of the B register. Affected: B TAX Transfer A to X The contents of the A register are placed in the X register. Affected: X TBX Transfer B to X The contents of the B register are placed in the X register. Affected: X TXA Transfer X to A The contents of the X register are placed in the A register. Affected: A TXB Transfer X to B The contents of the X register are placed in the B register. Affected: B MST Multiply Step If the low order bit of the B register is a 1-bit, the 16-bit literal contained in the second and third bytes of the instruction is added to the contents of the A register and the contents of the A and B registers are shifted one bit to the right. If the low order bit of the B register is a 0-bit, the contents of the A and B registers are shifted one bit to the right without the addition. Bits shifted out of A_0 are shifted into B_{15} . Bits shifted out of B_0 are lost. The sign bit in A_{15} is copied into the vacated high order bit. Overflow cannot occur on the addition since the result is shifted one bit to the right as the addition takes place. Affected: A, B #### ADX Add to X The 16-bit literal, contained in the second and third bytes of the instruction is added to contents of the X register. If the result is greater than 215-1, or less than -215, the overflow register is set. Affected: X, O ## EBX Exchange B and X The contents of the B and X registers are interchanged. Affected: B, X #### STACK CONTROL The Stack Control group of instructions provides for CPU context switching of all active registers to and from a designated stack. The stacking capability of the MICRO 1600/21 and MICRO 821 is extremely efficient in processing multiple external interrupts and in employing reentrant coding techniques. ## Push-Down/Pull-Up Operation The push-down stack is a reserved area of memory (stack) into which registers are pushed (stored) and from which registers are pulled (loaded) on a last-in, first-out basis. Instructions are provided for pushing and
pulling the A, B and X registers individually, or all the registers together. Also all internal and external interrupts except the console, power restart, and stack overflow interrupts cause all operational registers to be pushed into the stack and a jump to be made to the appropriate service routine. The push-down stack has a maximum size of 255 bytes and is fully contained in any single 256 byte page of memory. Control of the current stack location is performed by a stack pointer word located at memory location 8C16. This pointer, which is the address of the last byte stored or the next byte to be loaded from the top of the stack, is decremented before each byte is pushed into the stack and is incremented after each byte is pulled from the stack. When a register or group of registers is to be pushed into the stack, a check is made to see if the registers can be stored without causing the stack to fill the page. If there is not sufficient storage available, the stack pointer will be unaltered and the system will perform a return jump to the address contained in the stack overflow pointer located at memory location 8816. There is no error indication if the stack pointer is incremented, (pulled) past the upper limit of the page. A maximum stack size of 255 bytes may be obtained by initializing the stack pointer equal to the first byte of the page. This will permit stacking to start in location FF₁₆ of that page, since the stack pointer is decremented before storing and arithmetic is performed only on the low order 8-bits of the address. For proper operation, pulling operations should not be performed without previous pushing operations, and over a given period of time, all pushing and pulling must be of equal occurrence. #### RTN Return | | | | 5 | 0 | | | | |---|---|---|---|---|---|---|---| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | The O and W, P, B, A, and X registers, in this order, are loaded from the nine bytes at the top of the stack and the stack pointer is incremented by nine. The next instruction is obtained at the address loaded into the P register from the stack. Affected: P, Stack Pointer, A, B, X, O and W CAL Call The X, A, B, P, O and W registers, in this order, are pushed into the stack and the effective address replaces the contents of the P register. The stack pointer is decremented by nine and points to the memory location containing the overflow and word length. Interrupts or concurrent I/O requests cannot be recognized before the execution of the next instruction. Affected: P, Memory, Stack Pointer #### PLX Pull X The two-byte operand located at the top of the push-down stack is placed in the X register and the stack pointer is incremented by two. Affected: X, Stack Pointer PSX Push X The contents of the X register are stored in memory at the top of the push-down stack and the stack pointer is decremented by two. Affected: Memory, Stack Pointer PLA Pull A The two-byte operand located at the top of the push-down stack is placed in the A register and the stack pointer is incremented by two. Affected: A, Stack Pointer PSA Push A The contents of the A register are stored in memory at the top of the push-down stack and the stack pointer is decremented by two. Affected: Memory, Stack Pointer PLB Pull B The two byte operand located at the top of the push-down stack is placed in the B register and the stack pointer is incremented by two. Affected: B, Stack Pointer The contents of the B register are stored in memory at the top of the push-down stack and the stack pointer is decremented by two. Affected: Memory, Stack Pointer # CHARACTER/STRING MANIPULATION The character/string manipulation group of instructions provide the capability to process both individual characters and strings of characters in a manner compatible to common Input-Output operations and communications processing. # **CLC** Compare Logical The byte operand located at the memory location given by the contents of the X register is compared with the byte operand given by the contents of the A register and then the contents of the A and X registers are incremented by one. If the two operands were equal and the modified contents of the X register is less than or equal to the contents of the B register the instruction is executed again. If the operand given by the contents of the X register was less than the operand given by the contents of the A register, the following two byte instruction is executed. If the two operands were equal and the modified contents of the X register was greater than the contents of the B register, the next two bytes are skipped and the following two byte instruction is executed. If the operand given by the contents of the X register was greater than the operand given by the contents of the A register, the next four bytes are skipped. Comparison is binary on any 8-bit value and proceeds from left to right. Interrupts and concurrent I/O requests may be serviced after each byte is compared. Affected: A, X, P Programming Note: The repeated execution of this instruction compares a string of characters starting with the address contained in the X register and ending with the address contained in the B register, to the string of characters starting with the address contained in the A register and indicating a less than, equal to, or greater than result. # MOV Move The byte operand located at the memory location given by the contents of the X register is stored at the memory location given by the contents of the A register and then the contents of the A and X registers are incremented by one. If the modified contents of the X register is less than or equal to the contents of the B register, the instruction is executed again; otherwise, the following instruction is executed next. Interrupts and concurrent I/O requests may be serviced after each byte has been moved. Affected: A, X, Memory Programming Note: The repeated execution of this instruction causes the block of memory starting with the address contained in the X register and ending with the address contained in the B register to be moved to the memory area starting with the address contained in the A register. # GCC Generate Cyclic Code The byte operand located at the memory location given by the contents of the X register is entered into the 16-bit cyclic code contained in the A register and the contents of the X register is incremented by one. The polynomial used for the cyclic code is $X^{16} + X^{15} + X^2 + 1$. If the modified contents of the X register are less than or equal to the contents of the B register, the instruction is executed again; otherwise, the next instruction is executed. Interrupts and concurrent I/O requests may be serviced after each byte is processed. Affected: A, X Programming Note: This instruction is used to encode a block of eight bit characters starting with the address contained in the X register and ending with the address contained in the B register. This type of cyclic redundancy code (CRC) is used with the IBM Binary Synchronous Communication System (BSC), and assumes that each byte is transmitted low order bit first. Since the sixteen bit CRC, which is accumulated in the A register, will be transmitted as two bytes, the A register must be rotated eight-bits before attaching it to a message. #### SCH Search The byte operand located at the memory location given by the contents of the X register is compared with the Search key in a control list whose address is given by the contents of the A register. The control list contains one or more Search key bytes, each of which is followed by a two byte jump address. The list is terminated with a zero value Search key and jump address. If the operand is equal to one of the Search keys, the associated jump address from the control list replaces the contents of the P register. If the operand is not equal to any of the Search keys in the control list, the contents of the X register is incremented by one. If the modified contents of the X register is less than or equal to the contents of the B register, the instruction is executed again; otherwise, the following instruction is executed next. Interrupts or concurrent I/O requests will not be serviced until a match is found and the jump is performed, or until the complete control list is checked and the instruction is re-executed. #### Afected: P, X Programming Note: The repeated execution of the instruction compares the bytes in the block of memory starting with the address contained in the X register and ending with the address contained in the B register with the Search keys in a control list. When a match is found, a jump is made to the address contained in the word following the matched byte in the control list. When the jump is made, the X register contains the address of the byte in the data list which compared with the byte in the control list. When the control list address contained in the A register has its index bit set to one, the byte operands in the data list are only compared with the first search key in the control list and a jump is made only when a match is not found. Following each successful match, the X register is incremented by one. If the modified contents of the X register is less than or equal to the contents of the B register, the instruction is executed again; otherwise, the following instruction is executed next. Interrupts and concurrent I/O requests may be serviced after each successful match before the instruction is re-executed, or after an unsuccessful match and the jump is performed. Affected: P, X # GAP Generate ASCII Parity The byte operand located at the memory location given by the contents of the X register is given a high order parity bit which makes an odd number 1-bits in the byte, and the modified operand is exclusive-ORed with the low order eight bits of the A register. Subsequently, the contents of the X register are incremented and if the modified contents are less than or equal to the contents of the
B register, the instruction is executed again; otherwise, the next instruction is executed. Interrupts and concurrent I/O requests may be serviced after each byte is processed. Affected: A (low order 8 bits), Memory Programming Note: The repeated execution of this instruction will generate and attach an odd parity bit (VRC) for each character and will generate a block longitudinal parity (LRC) for all the characters starting with the address contained in the X register and ending with the address contained in the B register. #### **MEMORY REFERENCE** The 20 instructions of the memory reference group obtain their operands from memory. The operand memory location is addressed by one of eight modes as explained in Section 2. The number of bytes required for the instruction depends on the addressing mode and, for the literal mode, the length of the operand. In the following instruction descriptions, only the first byte of the instruction which contains the basic operation code and the addressing mode is shown. The two-digit hexadecimal code given is for an operand addressing mode of 0 (m=0). For another addressing mode, the value of m must be added to the low order digit; i.e., for the Jump instruction, the code is: $$(60_{16} + m).$$ For example, if the addressing mode is indirect to page 0 (m = 2), the hexadecimal value of the operation code is: $$60_{16} + 2 = 62_{16}$$. JMP Jump The effective address replaces the contents of the P register causing the next instruction to be accessed at that location. Interrupts or concurrent I/O requests are not recognized before the execution of the next instruction. Affected: P RTJ Return Jump The current contents of the P register are stored in memory at the two-byte location specified by the effective address, and the effective address plus two replaces the original contents of the P register causing the next instruction to be accessed at that location. Interrupts or concurrent I/O requests are not recognized before the execution of the next instruction. Affected: P, Memory **IWM** Increment Word in Memory The two-byte word in memory at the location specified by the effective address is incremented by one. If the result is greater than 2^{15} -1, the overflow register is set. Affected: O, Memory **DWM** Decrement Word in Memory The two-byte word in memory at the location specified by the effective address is decremented by one. If the result is less than -215 the overflow register is set. Affected: O, Memory LDX Load X The two-byte operand located at the effective memory location replaces the contents of the X register. Affected: X ## STX Store X 8 8 The contents of the X register are stored in memory at the two-byte location specified by the effective address. Affected: Memory #### LDB Load B The two-byte operand located at the effective memory location replaces the contents of the B register. Affected: B #### STB Store B The contents of the B register are stored in memory at the two-byte location specified by the effective address. Affected: Memory #### ADA Add to A The two-byte operand located at the effective memory location is added to the contents of the A register and the sum is placed in the A register. If the sum is greater than 215-1, or less than -215, the overflow register is set. Affected: A, O ADV Add Variable The variable length operand located at the effective memory location is added to the contents of the A or A-B register and the sum is placed in the A or A-B register. If the magnitude of the sum is greater than can be contained in A or A-B for the specified word length, the overflow register is set. Affected: A, B, O SBA Subtract from A The two-byte operand located at the effective memory location is subtracted from the contents of the A register and the result is placed in the A register. If the result is greater than 2^{15} -1, or less than -2^{15} , the overflow register is set. Affected: A, O SBV Subtract Variable The variable length operand located at the effective memory location is subtracted from the contents of the A or A-B register and the result is placed in the A or A-B register. If the magnitude of the difference is greater than can be contained in A or A-B for the specified word length, the overflow register is set. Afected: A, B, O CPA Compare A (Less Than, Equal To, Greater Than) The contents of the A register is compared with the two-byte operand at the effective memory location and the result determines the address of the next instruction to be executed. If the contents of the A register is less than the operand, the following two byte instruction is executed. If the contents of the A register is equal to the operand, the next two bytes are skipped and the following two byte instruction is executed. If the contents of the A register is greater than the operand the next four bytes are skipped. Affected: P # CPV Compare Variable (Less Than, Equal To, Greater Than) | | | | С | 8 | | | | |---|---|---|---|---|---|---|---| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | Ω | The contents of the A or A-B register is compared with the operand at the effective memory location and the result determines the address of the next instruction to be executed. If the contents of the A or A-B register is less than the operand, the following two byte instruction is executed next. If the contents of the A or A-B register is equal to the operand, the next two bytes are skipped and the following two byte instruction is executed. If the contents of the A or A-B register is greater than the operand, the next four bytes are skipped. Affected: P # ANA AND The two-byte operand located at the effective memory locations is logically ANDed with the contents of the A register and the result is placed in the A register. Affected: A # ANV AND Variable The variable length operand located at the effective memory location is logically ANDed with the contents of the A or A-B register and the result is placed in the A or A-B register. Affected: A, B ## LDA Load A The two-byte operand located at the effective memory location replaces the contents of the A register. Affected: A #### LDV Load Variable The variable length operand located at the effective memory location replaces the contents of the A or A-B register. Affected: A, B #### STA Store A The contents of the A register are stored in memory at the two-byte location specified by the effective address. Affected: Memory #### STV Store Variable The contents of the A or A-B register are stored in memory at the effective address. Affected: Memory # INPUT/OUTPUT OPERATIONS The MICRO 1600/21 and MICRO 821 provide three types of input/output: Program-controlled transfer of data bytes via the Byte Input/Output Bus Buffered concurrent transfer of data bytes via the Byte Input/Output Bus Direct transfer to memory via the direct memory access (DMA) channel The Byte I/O Bus provides a path for transfer of data, control, and status between the processor and external peripheral devices. The direct memory access (DMA) channel communicates directly with memory. #### BYTE INPUT/OUTPUT INSTRUCTIONS Byte programmed input/output operations provides transfers of data, control, and status over the Byte I/O channel. This multiplex channel permits intermixed program and concurrent I/O transfers. More than one device on the bus may be operating in a concurrent block transfer mode at the same time. A maximum of 32 devices may normally be addressed on the Byte I/O bus. The second byte of the instruction is a control byte which provides a three-bit device order and a five-bit device number as follows: Byte input/output is basically a two phase operation. First, the control byte is placed on the output bus prior to the actual transfer of data. All devices examine the transmitted device number. The device, whose assigned number is the same as contained in the control word, accepts the control byte and performs the input or output of a single byte. When a device order does not require a data transfer, the second byte is disregarded by the device controller. #### **Device Address** Each device on the Byte I/O bus is assigned a unique five-bit device number. The numbers are assigned by means of selectively placed jumper wires on the printed circuit board of the device controller. The assigned device number is used by the device controller to compare against the device number of the control byte to determine if it is being addressed, and for identifying the device to the processor when requesting an interrupt or concurrent I/O transfer. Device number zero is always assigned to the parallel teletype interface. #### **Device Orders** The 3-bit device order specifies the type of I/O operation which will be performed. The device order accompanies the device number and is sent prior to each programmed transfer or to start a concurrent transfer. Standard device orders designate the operations given in Table 2. Order codes 2, 3, 5, 6, and 7 are shown with their standard assignment, but they may be changed, depending on individual interface requirements. #### **Status Bytes** The eight-bit status byte input as the result of a status order has four bits which are common to all devices and four which are device dependent. This byte is input to the A or B register or to memory by an input instruction with device order 1. The meaning of the status bits is given in Table 3. #### **INSTRUCTIONS** Three input and three output instructions provide for byte transfers between external devices and the A register, B register, or memory. When the transfer is to or from the A or B registers, only the eight low order bits are used. Interrupts or concurrent I/O requests are not recognized immediately following the execution of all Byte I/O instructions except, input byte to memory. IBA Input Byte to A The order code, f, is sent to the device designated by d. An eight-bit data byte is input from the device and placed in the low order bits of A. The eight high order bits of A remain
unchanged. Affected: A (low order 8-bits) IBB Input Byte to B The order code, f, is sent to the device designated by d. An eight-bit data byte is input from the device and placed in the eight low order bits of B. The eight high order bits of B remain unchanged. Affected: B (low order 8-bits) Table 2. Device Orders | Order
Number | Operation | Description | |-----------------|------------------|--| | 0 | Data Transfer | A data byte will be transferred between the addressed device and the processor. Direction of the transfer will depend on whether the instruction is an input or an output. | | 1 | Status/Function | A status byte will be input from the addressed device or a function byte will be output to the addressed device, depending on whether the instruction is an input or an output. | | 2 | Block Input/INT | The addressed device will start a concurrent block input to memory and will generate an external interrupt at the conclusion of the transfer unless the interrupt has been subsequently disarmed. This order should be sent by an output instruction. | | 3 | Arm Interrupt | Permits the addressed device to make an external interrupt request upon the satisfaction of an interrupt condition. This order should be sent by an output instruction. | | 4 | Disconnect | The block transfer in progress by the addressed device is stopped and end of block interrupt will occur unless the interrupt has been disarmed. This order should be sent by an output instruction. | | 5 | Disarm Interrupt | Inhibits the addressed device from making an external interrupt request under any condition. This order should be sent by an output instruction. | | 6 | Block Output/INT | The addressed device will start a concurrent block output from memory and will generate an external interrupt at the conclusion of the transfer unless the interrupt has been subsequently disarmed. This order should be sent by an output instruction. | | 7 | Unassigned | This order, if assigned, may perform any required function as interpreted by the individual interface. If a byte transfer is desired the order may be sent by an input or an output instruction. | Table 3. Status Bytes Definition | Bit
Number | Status | Description | |---------------|-------------|--| | 0 | Ready | This bit is a 1-bit when the external device is in a ready state. | | 1 | Input Flag | This bit is a 1-bit when the external device has a byte ready for input to the computer. | | 2 | Output Flag | This bit is a 1-bit when the external device is ready to receive a byte from the computer. | | 3 | Error | This bit is a 1-bit when an error has occurred during
a transfer. Errors may be timing, or device malfunc-
tion. This bit is cleared when the status byte is
input. | | 4-7 | | Device dependent | # IBM Input Byte to Memory | ſ | | | 3 | 3 | | | | | f | | | | d | | | x | | | | У | | | | | | | z | | | | | |---| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | The order code, f, is sent to the device designated by d. An eight-bit byte is input from the device and stored in memory at the effective memory address. Affected: Memory # OBA Output Byte from A The order code, f, is sent to the device designated by d. The contents of the eight low order bits of A are output to the device. The contents of A remain unchanged. #### OBB Output Byte from B The order code, f, is sent to the device designated by d. The contents of the eight low order bits of B are output to the device. The contents of B remain unchanged. # OBM Output Byte from Memory | | | | 3 | В | | | | | | f | | | | d | | | x | Γ | | | У | | | | | | | z | | | | |---|---|---|---|---|---|---|----|-------|--| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | į. | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | _ | 7 | - | 5 | | 3 |
1 | | The order code, f, is sent to the device designated by d. The contents of the eight bit byte at the effective memory address are sent to the device. The contents of memory remain unchanged. #### CONCURRENT INPUT/OUTPUT The concurrent I/O allows for block transfers between the external device on the Byte I/O bus and memory, at a maximum rate of 20,000 bytes per second. The transfers are fully automatic, and once started, proceed without program intervention. Concurrent I/O takes priority over instruction execution and forces momentary sequence breaks during executions of long instructions to insure that concurrent I/O delays are not excessive. #### **Address Control** Concurrent I/O addresses for each external device are controlled by a pair of two-byte address words. These two words are located in memory starting at an address equal to four times the device number. The first word is the current address (CA) and contains the address of the next memory byte to be used for the transfer. The second word is the End Address (EA) and contains the address of the last byte of the block. The first 128 locations in memory are reserved for storing concurrent I/O addresses for control of up to 32 external devices. The four bytes for each device have the following format: When the processor detects a request for concurrent I/O, it inputs an externally supplied address (ESA) from the requesting device. This byte must contain a device address in bits 5-1, zeros in bits 0 and 6, and an output flag in bit 7. When bit 7 is a one, it signifies that the device is requesting an output transfer; otherwise an input is performed. The ESA is used by the processor to define the type of concurrent I/O operation requested and to locate the appropriate address control words. The ESA has the following format: #### **Concurrent Operations** Concurrent I/O operations are started by executing byte I/O instructions with the proper device order codes. These codes are given in Table 2. A block transfer can be performed with or without an interrupt at the end of the transfer. After a concurrent I/O operation is initiated by a processor instruction, byte transfers proceed automatically until the last byte of the block is transferred. Following each transfer, the processor increments the current address. When the current address (CA) is greater than the end address, the processor automatically sends a disconnect order code to the device. This order code causes the concurrent I/O operation to cease and a device interrupt to be generated, unless it was previously disabled. # **EXTERNAL INTERRUPTS** External interrupts originate with device controllers or interrupt modules on the Byte I/O bus. An interrupt module provides control of eight external interrupt signals. Device controllers may also generate interrupts to signify individual data transfers, end of operation, or error conditions. The external interrupt system contains a single interrupt line, a priority line, and a select line. A device may initiate an interrupt request only if priority has been received from higher level interrupts on the priority chain. Devices not requiring interrupt service will propagate priority to the next device in line. When the processor recognizes the interrupt signal, it enables the select line for the interrupt system. Each device in order will interrogate the select line and, if not requesting, will propagate this signal to the next device in line. Once the select signal has been propagated by a device, it will be locked out from acknowledging this signal until the select is removed. When the select signal is received by the requesting device, it will input its address on the data in bus. This ESA address may be six bits, (bits 6-1) since interrupt modules may take on interrupt addresses in the range of 32 to 63. The ESA address is used to locate the interrupt subroutine address located in memory starting at location 10016. The processor reads this subroutine address and performs a call to the specified address. This entails storing all the operational registers into the push down stack and performing a jump to the subroutine address. Interrupts or concurrent I/O requests cannot be recognized before the execution of the instruction located at the subroutine address. # MICRO 1600/21 OPERATOR CONTROLS Basic and system consoles, differing in number of displays and controls, are available with the MICRO 1600/21 computer. Choice of console can be based on the user's needs to meet control and display capability required for specific applications, and he can tailor the cost accordingly. All console panels are pluggable and fully interchangeable without modification to the computer. An optional parallel Teletype controller, physically contained within the control consoles, may be specified. #### SYSTEM CONSOLE The system console (Figure 3) provides control plus a selectable display of all hardware registers in the machine including the files. It is designed for maintenance operations and for installations where system development and firmware checkout is being performed. Figure 3. MICRO 1600/21 System Console #### **DISPLAYS** #### **Data Display** Illuminated lamps (16 on system console), display the output of the A Bus, Memory Address, R Register input and the "L" counter from the processor. #### Run Lamp Run lamp is illuminated when processor is in run mode. #### Halt Lamp Halt lamp is illuminated when processor is in halt mode. Instruction step, clock
step, reset switches, and data display are active only in this mode. # Display Selector (D, M, C, L) Display selection includes: four alternate action switches which select the file registers or the other hardware registers (when the processor is in the halt mode) as follows: D - A Bus Data (8 bits) M - Memory Address (16 bits) C - Control Memory Output (16 bits) L – Microprogram location counter (15 bits) #### **SWITCHES** #### Sense Switches (4) Four alternate action switches which can be entered and tested by microcommand, permitting implementation of various conditional sense switch macro instructions. Address Stop: The 16th switch enables an address stop mode if L is selected on the display switch. The lower 15 command switches are used to select the address stop location. This facility provides a console breakpoint operation for the microprogram and is useful for troubleshooting and firmware debugging. Address Sync: A sync jack is mounted on the rear of the front panel for maintenance purposes. If "L" is selected on the display switches and the 16th command switch is not depressed, a sync will occur for the address set by the lower 15 command switches. # Command Switches (16) Sixteen alternate action switches which provide manual input of microcommand word for execution. Switches are enabled only when the panel select switch is in the down position. #### **Run Switch** Momentary contact switch places processor in run mode. #### Halt/Step Switch Momentary contact switch places processor in the halt mode from the run mode. In the halt mode, depressing the switch causes execution of a single macro instruction step from core memory. #### **Clock Step Switch** Momentary contact switch which executes a single micro clock step in the halt mode. #### Master Reset Switch Three-position switch: up lock, down momentary contact. Sets the processor to the halt mode from the run mode, clears the microprogram location counter (L), overflow indicator, and all internal status flags. Also generates a master reset signal over the I/O bus. Placing switch in the up position before turning power off will provide a memory data save function. #### Interrupt Switch Momentary contact switch which generates micro level interrupt. #### Panel Select Switch Used primarily for maintenance purposes, the alternate action switch selects the microprogram control store as microcommand source in the up position. When the switch is in the down position, microcommands are executed from the 16 console command switches. ## Power On/Off/Lock A three-position key lock switch applies dc power to the system. A Master Reset is generated and the halt lamp will be illuminated when power is first applied. The lock position inhibits panel control switches except sense switches but leaves power applied to the system. #### **BASIC CONSOLE** The basic console provides a minimal control facility. The control switches (run, halt/step, clock step, reset, and interrupt) permit a basic ability to sequence the machine. # MICRO 821 OPERATOR CONTROLS #### **CONSOLES** Two control consoles are available: system console and basic console. These consoles differ in their number of displays and controls. This range of consoles permits the user to tailor the cost to meet the control and display capability required for a particular application. The systems control console is shown in Figure 4. ## **System Console** The system console provides complete control and display facilities. It is primarily used for maintenance, system and firmware checkout. This console provides for display of the registers in addition to the functions of the operator console. The features include: Run and halt indicators Display of A-bus Display of M, N, and L registers Display of output of read-only memory Four sense switches Six control switches including: Run Step Interrupt Clock Reset Save Manual Command execution Power on/off Figure 4. MICRO 821 System Console # **Basic Console** The basic console provides minimal control capability and is designed for dedicated system applications where operator control is not required. The features include: Run and halt indicators Four sense switches Six control switches including: Run Step Interrupt Clock Reset Save Power on/off #### **DISPLAYS** # Run Lamp The run lamp is illuminated when the processor is running. ## Halt Lamp The halt lamp is illuminated when the power is on and the process is not running. ## **Data Display** On the operator console, eight lamps display the data which is on the A bus of the processor. When the processor is halted, the contents of a file register or the T register can be displayed by setting the proper command in the command switches and enabling the switches by placing the select switch in the panel position. The hexadecimal commands used for display are: | File Register f | -Cf00 | |-----------------|--------| | T Register | -B020 | | Link Register | - B080 | On the system console, a set of display selector switches select the data to be displayed on a set of 10 lamps. (See Data Selector Switches). #### **SWITCHES** #### **Display Selector** These seven interlocked switches select the register or bus to be displayed on the system console. The displays which can be selected are: L register, M register, N register, eight high order bits of the read-only-storage output, eight low order bits of the read-only-storage and the A-bus. When the machine is halted, the output of the read-only-storage is the same as the contents of the R register, and is the next command to be executed. #### Command These 16 alternate action switches are substituted for the read only storage on the system and operator consoles when the select switch is in the panel position. Depressing the clock switch causes the command set on the switches to be executed. The command may also be executed repeatedly by depressing the run switch. These switches are used to gate registers to the A bus display and for entering data into the file and registers. #### Select This alternate action switch selects the console panel command switches (panel) or the read only memory (ROM) as the command to be executed next. This switch is not available on the basic console. #### Sense The four alternate action sense switches are available on all consoles. The state of these switches may be transferred to the A register by the enter sense switch instruction to provide manual control over program execution. #### Run This momentary contact switch places the processor in the run mode causing it to run. #### Step This momentary contact switch causes the execution of one Micro 821 instruction and also halts the machine at the end of the current instruction execution, if it is running. If the instruction executed will not permit recognition of interrupts following it, at least one more instruction will be executed. #### Interrupt This momentary contact switch places the processor in the run mode and causes a console interrupt. #### Clock This momentary contact switch causes the processor to execute a single microcommand. If the processor is running at the time the switch is depressed, the processor will come to a forced halt following the current microcommand execution. #### Reset This momentary contact switch instantly halts the processor and clears the L register, I/O control register and other control flip-flops. The reset is made available to I/O devices. Since the current microcommand execution will not be completed, the computer should not be stopped by this switch. Starting the computer after a reset causes it to start instruction execution at memory location 0. #### Save This alternate action switch is the same as the reset switch but can be set on providing a continuous reset. If this switch is on at the time the power is turned on or off, the contents of the memory will not be lost or altered. This switch need not be used when proper power fail/restart software is resident in core memory. # APPENDIX A. FILE REGISTER ASSIGNMENTS The 16 file registers of the MICRO 800 and 1600 are used for temporary storage and for the operational registers of the MICRO 821 and MICRO 1600/21 as shown below: | File
Register | Use | |------------------|-------------------------------| | 0 | Condition Flags | | 1 | Instruction Register | | 2 | Lower Byte of X Register | | 3 | Upper Byte of X Register | | 4 | Lower Byte of A Register | | 5 | Upper Byte of A Register | | 6 | Lower Byte of B Register | | 7 | Upper Byte of B Register | | 8 | Lower Byte of P Register | | 9 | Upper Byte of P Register | | A (Bit 1-0) | W Register | | A (Bit 2) | O Register | | В | Temporary Storage | | С | Temporary Storage | | D | Temporary Storage | | E | Lower Byte of Operand Address | | F | Upper Byte of Operand Address | Note: The MICRO 1600 has a secondary bank of file registers which are unused in the implementation of the MICRO 1600/21. # APPENDIX B. DEDICATED MEMORY | Hex
Address | Assignment | |--------------------|--| | 000-001 | Device 0 CA | | 002-003 | Device 0 EA | | 004-005 | Device 1 CA | | 006-007 | Device 1 EA | | • | • | | 058 | DMA Channel 1 Status | | 059 | DMA Channel 1 Status DMA Channel 2 Status | | | DMA Channel 2 Status | | • | | | 060-061 | DMA Channel 1, Buffer 1 SA | | 062-063 | DMA Channel 1, Buffer 1 EA | | • | | | 06C-06D | DMA Channel 1, Buffer 4 SA | | 06E-06F | DMA Channel 1, Buffer 4 SA DMA Channel 1, Buffer 4 EA | | 070-071 | DMA Channel 2, Buffer 1 SA | | 072-073 | DMA Channel 2, Buffer 1 EA | | | , | | 07C-07D | 211.0 | | 0/C-0/D | DMA Channel 2, Buffer 4 SA | | 07E-07F | or, Device 31 CA | | 3/2 3/1 | DMA Channel 2, Buffer 4 EA or, Device 31 EA | | | or, bevice of EA | | 080-081 | Console Interrupt | | 082-083 | DMA Channel Interrupt | | 084-085 | Real-Time Clock Counter | | 086-087 | Real-Time Clock Interrupt | | 088-089
08A-08B | Stack Overflow Interrupt | | 08C-08D | Memory Parity Interrupt | | 08E-08F | Push
Down Stack Pointer | | 090-091 | Power Fail Interrupt
Power Restart Interrupt | | 092 | DMA Umbrella Cell | | Hex
Address | Assignment | |----------------|---------------------------------------| | 097 | | | | Undedicated Page 0 | | OFF | | | 100-101 | Device 0 Interrupt Device 1 Interrupt | | 102-103 | Device i interrupt | | • | • | | 13E-13F | Device 31 Interrupt | | 140-141 | External Interrupt 32 | | 142-143 | External Interrupt 33 | | • | • | | 17E-17F | External Interrupt 63 | # APPENDIX C. MICRO 1600/21 EXECUTION TIMES | He | x | Time (micro- Mnemonic seconds) | Additions or Conditions | | | | |-----|---|--------------------------------|-------------------------|------------|-----------------------------------|--| | 0 0 | | HLT | | 5.2 | | | | | 1 | TRP | | 15.4 | Includes Return Jump | | | | 2 | ESW | | 4.4 | • | | | 0 | 4 | DIN | | 4.4 | | | | 0 | 5 | EIN | | 4.4 | | | | 0 | 6 | DRT | | 4.4 | | | | 0 | 7 | ERT | | 4.0 | | | | | 8 | RO1 | | 4.8 | | | | 0 | 9 | RO2 | | 4.8 | | | | | Α | RO3 | | 4.8 | | | | | В | RO4 | | 4.8 | | | | | С | SO1 | | 4.8 | | | | | D | SO2 | | 4.8 | | | | | E | SO3 | | 4.8 | | | | | F | SO4 | | 4.8 | | | | 1 | 0 | JOA | Jump | 7.8 | Add .2 if displacement negative | | | | | | No Jump | 6.2 | | | | 1 | 1 | JAZ | Jump | 7.6 | Add .2 if displacement negative | | | 1 | 2 | וחד | No Jump | 6.8 | Add 0:4 diamles | | | 1 | 2 | JBZ | Jump | 7.4 | Add .2 if displacement negative | | | 1 | 2 | 172 | No Jump | 6.6 | Add 2 if displacement resetting | | | 1 | 3 | JXZ | Jump
No lump | 7.2 | Add .2 if displacement negative | | | 1 | 1 | LANI | No Jump | 6.4 | Add 2 if displacement paretice | | | 1 | 4 | JAN | Jump
No lump | 7.6 | Add .2 if displacement negative | | | 1 | _ | IVNI | No Jump | 6.8
7.4 | Add 2 if displacement paretive | | | 1 | 5 | JXN | Jump
No lump | | Add .2 if displacement negative | | | 1 | 6 | JAB | No Jump | 6.6
7.8 | Add 2 if displacement pagetive | | | 1 | 6 | JAD | Jump
No Jump | 7.8
7.0 | Add .2 if displacement negative | | | 1 | 7 | JAX | Jump | 7.6 | Add .2 if displacement negative | | | • | , | JAA | No Jump | 6.8 | Aud .2 if displacement negative | | | 1 | 8 | NOV | Jump | 7.0 | Add .2 if displacement negative | | | • | O | 140 4 | No Jump | 7.0
7.0 | Add .2 if displacement negative | | | 1 | 9 | NAZ | Jump | 7.6 | Add .2 if displacement negative | | | , | 3 | INAL | No Jump | 6.8 | Add .2 ii displacement negative | | | 1 | Α | NBZ | Jump | 7.4 | Add .2 if displacement negative | | | · | ~ | 1402 | No Jump | 6.6 | , tad 12 ii dispidooment nogative | | | 1 B NXZ Jump | Н | ex | Mnemonic | | Time
(micro-
seconds) | Additions or Conditions | | |--|---|----|----------|-----------|-----------------------------|---------------------------------------|--| | 1 C NAN Jump 6.8 1 D NXN Jump 7.4 Add .2 if displacement negative No Jump 6.6 1 E NAB Jump 7.8 Add .20 if displacement negative No Jump 7.0 1 F NAX Jump 7.6 Add .20 if displacement negative No Jump 7.0 1 F NAX Jump 7.6 Add .20 if displacement negative No Jump 6.8 2 0 LLA 5.8 Add 3.2 for each bit position shifted Add 3.2 for each bit position shifted Add 3.4 for each bit position shifted Add 3.0 p | 1 | В | NXZ | • | | Add .2 if displacement negative | | | No Jump | 1 | C | NAN | • | | Add 2 if displacement negative | | | 1 D NXN Jump No Jump 1.8 Add .2 if displacement negative 1 E NAB Jump No Jump No Jump 7.0 Add .20 if displacement negative 1 F NAX Jump No Ju | • | • | , | • | | Add 12 if displacement negative | | | No Jump 7.8 Add .20 if displacement negative No Jump 7.0 Add .20 if displacement negative No Jump 7.0 Add .20 if displacement negative No Jump 7.6 Add .20 if displacement negative No Jump 6.8 Add 3.2 for each bit position shifted LLB 5.8 Add 3.2 for each bit position shifted 2.1 LLB 5.8 Add 3.2 for each bit position shifted 2.2 LLL 5.8 Add 3.4 for each bit position shifted 3.4 LRA 5.8 Add 3.0 for each bit position shifted 4.5 LRB 5.8 Add 3.0 for each bit position shifted 4.5 LRB 5.8 Add 3.0 for each bit position shifted 4.5 LRL 5.8 Add 3.0 for each bit position shifted 4.5 LRL 5.8 Add 3.2 for each bit position shifted 4.5 LRL 5.8 Add 3.2 for each bit position shifted 4.5 LRL 5.8 Add 3.2 for each bit position shifted 4.5 LRL 5.8 Add 3.2 for each bit position shifted 5.8 Add 3.0 for each bit position shifted 5.8 Add 3.6 3. | 1 | D | NXN | | | Add .2 if displacement negative | | | No Jump 7.0 1 F NAX Jump 7.6 No Jump 6.8 2 0 LLA 5.8 Add 3.2 for each bit position shifted 5.8 Add 3.2 for each bit position shifted 6.8 2 1 LLB 5.8 Add 3.2 for each bit position shifted 6.8 2 2 LLL 5.8 Add 3.4 for each bit position shifted 6.8 2 4 LRA 5.8 Add 3.0 for each bit position shifted 6.8 2 5 LRB 5.8 Add 3.0 for each bit position shifted 6.8 2 6 LRL 5.8 Add 3.0 for each bit position shifted 7.8 2 8 ALA 5.8 Add 3.2 for each bit position shifted 7.8 2 9 ALB 5.8 Add 3.2 for each bit position shifted 7.8 2 0 ALL 5.8 Add 3.2 for each bit position shifted 7.8 2 1 ALL 5.8 Add 3.4 for each bit position shifted 7.8 3 1 LBA 5.8 Add 3.0 for each bit position shifted 7.8 3 1 LBA 7.6 3 1 LBA 7.6 3 1 LBA 7.6 3 2 LBB 8.0 3 3 LBM 13.0 Add 1.2 if indexed 7.8 3 1 LBA 7.6 4 NOP 4.0 3 5 CLC 9.6 Per byte, if equal 7.0 For last byte, if less than 7.0 For last byte, if less than 7.0 For last byte, if greater than 7.0 3 C DAD (Average) 17.4 Per non-units position digit (Average) 17.0 Per digit for re-complementing 17.0 Per digit for 17.0 Per digit for 17.0 Per digit | | | | No Jump | 6.6 | | | | 1 F NAX Jump No Jump 6.8 1 C DAD (Average) (A | 1 | Ε | NAB | Jump | | Add .20 if displacement negative | | | No Jump 6.8 2 0 LLA 5.8 Add 3.2 for each bit position shifted 5.8 Add 3.2 for each bit position shifted 5.8 Add 3.2 for each bit position shifted 5.8 Add 3.0 for each bit position shifted 5.8 Add 3.6 for each bit position shifted 5.8 Add 3.2 for each bit position shifted 5.8 Add 3.0 for each bit position shifted 6.8 Add 3.0 for each bit position shifted 7.6 Add 3.1 IBA 7.6 Add 3.2 IBB 8.0 Add 3.6 for each bit position shifted 7.6 Add 3.1 IBA 7.6 Add 3.2 IBB 8.0 Add 3.2 for each bit position shifted 7.6 Add 3.2 IBB 8.0 Add 3.3 for each bit position shifted 7.6 Add 3.1 IBA 7.6 Add 3.2 IBB 8.0 Add 3.2 for each bit position shifted 7.6 Add 3.0 8.0 Add 3.0 for each bit position shifted 8.0 Add 3.0 for each bit position shifted 8.0 Add 3.0 for each bit position shifted 9.0 | | | | • | | | | | 2 0 LLA 5.8 Add 3.2 for each bit position shifted 5.8 Add 3.2 for each bit position shifted 5.8 Add 3.4 for each bit position shifted 5.8 Add 3.4 for each bit position shifted 5.8 Add 3.0 for each bit position shifted 5.8 Add 3.2 for each bit position shifted 6.8 Add 3.2 for each bit position shifted 6.8 Add 3.2 for each bit position shifted 6.8 Add 3.0 for each bit position shifted 6.8 Add 3.6 for each bit position shifted 6.8 Add 3.6 for each bit position shifted 7.8 Add 3.1 for each bit position shifted 7.8 Add 3.2 8. 3.0 for each bit position shifted 8. Add 3.0 for each bit position shifted 8. Add 3.0 for each bit position shift | 1 | F | NAX | • | | Add .20 if displacement negative | | | 2 1 LLB 5.8 Add 3.2 for each bit position shifted 5.8 Add 3.4 for each bit position shifted 5.8 Add 3.0 for each bit position shifted 5.8 Add 3.6 for each bit position shifted 5.8 Add 3.2 for each bit position shifted 5.8 Add 3.0 for each bit position shifted 6.8 ARL 6.8 Add 3.0 for each bit position shifted 6.8 ARL 7.6 Add 3.6 for each bit position shifted 7.6 Add 3.6 for each bit position shifted 7.6 Add 3.6 for each bit position shifted 7.6 Add 3.1 IBA 7.6 Add 3.2 IBB 7.0 Add 1.2 if indexed 7.0 For last byte, if legual 7.0 For last byte, if equal 7.0 For last byte, if greater than 7.0 For last byte, if greater than 7.0 Per digit for re-complementing 7.0 Add 1.2 if result overflows 7.0 Per digit for re-complementing | | | | No Jump | | | | | 2 LLL 2 4 LRA 3 5.8 Add 3.4 for each bit position shifted 2 4 LRA 5.8 Add 3.0 for each
bit position shifted 2 5 LRB 5.8 Add 3.0 for each bit position shifted 3 6 LRL 5.8 Add 3.0 for each bit position shifted 4 8 ALA 5.8 Add 3.2 for each bit position shifted 5.8 Add 3.4 for each bit position shifted 5.8 Add 3.0 for each bit position shifted 5.8 Add 3.0 for each bit position shifted 5.8 Add 3.0 for each bit position shifted 5.8 Add 3.6 for each bit position shifted 5.8 Add 3.6 for each bit position shifted 5.8 Add 3.6 for each bit position shifted 6.8 Add 3.6 for each bit position shifted 7.6 8.0 Add 3.6 for each bit position shifted 9.0 ARB 9.0 Add 3.2 for each bit position shifted 3.6 | 2 | | | | | | | | 2 4 LRA 5.8 Add 3.0 for each bit position shifted 5.8 Add 3.0 for each bit position shifted 5.8 Add 3.0 for each bit position shifted 5.8 Add 3.6 for each bit position shifted 5.8 Add 3.6 for each bit position shifted 5.8 Add 3.2 for each bit position shifted 5.8 Add 3.2 for each bit position shifted 5.8 Add 3.2 for each bit position shifted 5.8 Add 3.0 for each bit position shifted 6.8 ARL 6.8 Add 3.0 for each bit position shifted 7.6 Add 3.6 3.0 for each bit position shifted 8. Add 3.0 for each bit position shifted 8. Add 3.0 for each bit position shifted 8. Add 3.0 for each bit position shifted 9. shift | | | | | | • | | | 2 5 LRB 2 6 LRL 3 6 LRL 5 8 Add 3.0 for each bit position shifted 2 8 ALA 5 8 Add 3.2 for each bit position shifted 2 9 ALB 5 8 Add 3.2 for each bit position shifted 2 9 ALB 5 8 Add 3.2 for each bit position shifted 2 A ALL 5 8 Add 3.2 for each bit position shifted 3 1 ALB 5 8 Add 3.0 for each bit position shifted 4 D ARB 5 8 Add 3.0 for each bit position shifted 5 8 Add 3.0 for each bit position shifted 6 ARL 5 8 Add 3.0 for each bit position shifted 7 8 Add 3.0 for each bit position shifted 8 Add 3.0 for each bit position shifted 9 ARB 9 Add 3.0 for each bit position shifted 9 ARB 9 Add 3.0 for each bit position shifted 9 Add 3.6 1.2 if each position shifted 9 Add 1.2 if each pos | 2 | | | | | • | | | 2 6 LRL 2 8 ALA 5.8 Add 3.6 for each bit position shifted 5.8 Add 3.2 for each bit position shifted 5.8 Add 3.0 for each bit position shifted 6.8 Add 3.6 for each bit position shifted 7.6 3.0 fo | | | | | | • | | | 2 8 ALA 2 9 ALB 5.8 Add 3.2 for each bit position shifted 5.8 Add 3.2 for each bit position shifted 5.8 Add 3.2 for each bit position shifted 5.8 Add 3.4 for each bit position shifted 5.8 Add 3.0 for each bit position shifted 5.8 Add 3.0 for each bit position shifted 5.8 Add 3.0 for each bit position shifted 6.8 Add 3.0 for each bit position shifted 7.6 Add 3.6 fo | | | | | | • | | | 2 A ALL 2 C ARA 3 C ARB 3 C CLC 4 RA 5 R Add 3.4 for each bit position shifted 5 RAL 5 RAL 5 RAC 6 RAC 6 RAC 7 RAC 7 RAC 7 RAC 7 RAC 8 | 2 | | | | | | | | 2 A ALL 2 C ARA 3 C ARB 3 C CLC 4 RA 5 R Add 3.4 for each bit position shifted 5 RAL 5 RAL 5 RAC 6 RAC 6 RAC 7 RAC 7 RAC 7 RAC 7 RAC 8 | 2 | | | | | • | | | 2 C ARA 2 D ARB 3 S.8 Add 3.0 for each bit position shifted 5 E ARL 5.8 Add 3.0 for each bit position shifted 6 ARL 5.8 Add 3.0 for each bit position shifted 7.6 Add 3.6 1.2 if indexed 7.6 Add 1.2 if indexed 7.0 Per last byte, if equal 7.0 Per digit for re-complementing 7.0 Add 1.2 if result overflows 7.0 Add 1.2 if result overflows 7.0 DSB (Average) | 2 | | | | | | | | 2 D ARB 2 E ARL 5.8 Add 3.0 for each bit position shifted 5.8 Add 3.6 for each bit position shifted 3 1 IBA 3 2 IBB 3 3 IBM 13.0 Add 1.2 if indexed 3 4 NOP 4.0 3 5 CLC 9.6 Per byte, if equal 10.0 For last byte, if less than 11.0 For last byte, if greater than 3 C DAD (Average) (Average) (Average) 17.4 Per non-units position digit (Average) (Average) 17.0 Per digit for re-complementing High order digit Add 1.2 if result overflows 3 D DSB (Average) 17.4 Per non-units position digit (Average) 17.4 Per non-units position digit Add 1.2 if result overflows 4 Description of the position of the position of the position digit (Average) 17.0 Per digit for re-complementing (Average) 17.4 Per non-units position digit (Average) 17.4 Per non-units position digit (Average) 17.4 Per non-units position digit (Average) 17.0 Per digit for re-complementing (Average) 17.0 Per digit for re-complementing High order digit | | | | | | • | | | 2 E ARL 5.8 Add 3.6 for each bit position shifted 3 1 IBA 3 2 IBB 8.0 3 3 IBM 13.0 Add 1.2 if indexed 3 4 NOP 4.0 5 CLC 9.6 Per byte, if equal 10.0 For last byte, if less than 11.0 For last byte, if greater than 5 C DAD (Average) | | | | | | | | | 3 1 IBA 7.6 3 2 IBB 8.0 3 3 IBM 13.0 Add 1.2 if indexed 3 4 NOP 4.0 3 5 CLC 9.6 Per byte, if equal 10.0 For last byte, if less than 11.0 For last byte, if greater than 3 C DAD (Average) 17.4 Per non-units position digit (Average) 17.0 Per digit for re-complementing (Average) 17.4 Per non-units position digit Add 1.2 if result overflows 3 D DSB (Average) 21.0 Units position digit Add 1.2 if result overflows 3 D DSB (Average) 17.4 Per non-units position digit (Average) 17.4 Per non-units position digit (Average) 17.0 Per digit for re-complementing | | | | | | · | | | 3 2 IBB 3 3 IBM 13.0 Add 1.2 if indexed 3 4 NOP 4.0 3 5 CLC 9.6 Per byte, if equal 10.0 For last byte, if less than 11.0 For last byte, if greater than 3 C DAD (Average) (Average) (Average) 17.4 Per non-units position digit (Average) (Average) 17.0 Per digit for re-complementing (Average) (Average) 17.0 High order digit Add 1.2 if result overflows 3 D DSB (Average) 17.4 Per non-units position digit Per non-units position digit Add 1.2 if result overflows 4 Description of the per non-units position digit Per non-units position digit Per non-units position digit Per digit for re-complementing (Average) (Average) 17.0 Per digit for re-complementing (Average) (Average) 17.0 Per digit for re-complementing (Average) (Average) (Average) 17.0 Per digit for re-complementing (Average) (Aver | 2 | E | ARL | | 5.8 | Add 3.6 for each bit position shifted | | | 3 4 NOP 4.0 5 CLC 9.6 Per byte, if equal 10.0 For last byte, if less than 11.0 For last byte, if greater than 10.8 For last byte, if greater than C DAD (Average) (Average) 17.4 Per non-units position digit (Average) 17.0 Per digit for re-complementing (Average) 20.6 High order digit Add 1.2 if result overflows D DSB (Average) 17.4 Per non-units position digit (Average) 17.4 Per non-units position digit (Average) 17.4 Per non-units position digit (Average) 17.0 Per digit for re-complementing | 3 | | | | | | | | 3 4 NOP 4.0 9.6 Per byte, if equal 10.0 For last byte, if less than 11.0 For last byte, if greater than 10.8 For last byte, if greater than 3 C DAD (Average) (Average) 17.4 Per non-units position digit (Average) 17.0 Per digit for re-complementing (Average) 20.6 High order digit Add 1.2 if result overflows 3 D DSB (Average) 17.4 Per non-units position digit (Average) 17.4 Per non-units position digit (Average) 17.4 Per non-units position digit (Average) 17.0 Per digit for re-complementing | 3 | | | | | | | | 3 5 CLC 9.6 Per byte, if equal 10.0 For last byte, if less than 11.0 For last byte, if equal 10.8 For last byte, if greater than 3 C DAD (Average) (Average) 17.4 Per non-units position digit (Average) 17.0 Per digit for re-complementing (Average) 4 High order digit Add 1.2 if result overflows 3 D DSB (Average) 17.4 Per non-units position digit (Average) 17.4 Per non-units position digit (Average) 17.4 Per non-units position digit (Average) 17.0 Per digit for re-complementing | 3 | 3 | IBM | | 13.0 | Add 1.2 if indexed | | | 10.0 For last byte, if less than 11.0 For last byte, if equal 10.8 For last byte, if greater than 3 C DAD (Average) (Average) (Average) 17.4 Per non-units position digit (Average) 17.0 Per digit for re-complementing (Average) 4 High order digit Add 1.2 if result overflows 3 D DSB (Average) 17.4 Per non-units position digit (Average) 17.4 Per non-units position digit (Average) 17.4 Per non-units position digit (Average) 17.0 Per digit for re-complementing (Average) 17.0 High order digit | 3 | 4 | NOP | | 4.0 | | | | 11.0 For last byte, if equal 10.8 For last byte, if greater than 3 C DAD (Average) (Average) (Average) (Average) 17.4 Per non-units position digit (Average) (Average) 20.6 High order digit Add 1.2 if result overflows 3 D DSB (Average) (Average) 17.4 Per non-units position digit (Average) 17.4 Per non-units position digit (Average) 17.4 Per non-units position digit (Average) 17.0 Per digit for re-complementing (Average) (Average) 17.0 Per digit for re-complementing (Average) (Average) 17.0 High order digit | 3 | 5 | CLC | | | | | | 10.8 For last byte, if greater than 3 C DAD (Average) 21.0 Units position digit (Average) 17.4 Per non-units position digit (Average) 17.0 Per digit for re-complementing (Average) 20.6 High order digit Add 1.2 if result overflows 3 D DSB (Average) 21.0 Units position digit (Average) 17.4 Per non-units position digit (Average) 17.0 Per digit for re-complementing (Average) 20.6 High order digit | | | | | | | | | 3 C DAD (Average) 21.0 Units position digit (Average) 17.4 Per non-units position digit (Average) 17.0 Per digit for re-complementing (Average) 20.6 High order digit Add 1.2 if result overflows 3 D DSB (Average) 21.0 Units position digit (Average) 17.4 Per non-units position digit (Average) 17.0 Per digit for re-complementing (Average) 20.6 High order digit | | | | | | | | | (Average) 17.4 Per non-units position digit (Average) 17.0 Per digit for re-complementing (Average) 20.6 High order digit Add 1.2 if result overflows 3 D DSB (Average) 21.0 Units position digit (Average) 17.4 Per non-units position digit (Average) 17.0 Per digit for re-complementing (Average) 20.6 High order digit | | | | | 10.8 | For last byte, if greater than | | | (Average) 17.0 Per digit for re-complementing (Average) 20.6 High order digit Add 1.2 if result overflows 3 D DSB (Average) 21.0 Units position digit (Average) 17.4 Per non-units position digit (Average) 17.0 Per digit for re-complementing (Average) 20.6 High order digit | 3 | С | DAD | | | | | | (Average) 20.6 High order digit Add 1.2 if
result overflows 3 D DSB (Average) (Average) (Average) (Average) 17.4 Per non-units position digit (Average) (Average) 17.0 Per digit for re-complementing (Average) 4 High order digit | | | | | | | | | Add 1.2 if result overflows 3 D DSB (Average) 21.0 Units position digit (Average) 17.4 Per non-units position digit (Average) 17.0 Per digit for re-complementing (Average) 20.6 High order digit | | | | | | | | | 3 D DSB (Average) 21.0 Units position digit (Average) 17.4 Per non-units position digit (Average) 17.0 Per digit for re-complementing (Average) 20.6 High order digit | | | | (Average) | 20.6 | | | | (Average) 17.4 Per non-units position digit
(Average) 17.0 Per digit for re-complementing
(Average) 20.6 High order digit | | | | | | Add 1.2 if result overflows | | | (Average) 17.0 Per digit for re-complementing (Average) 20.6 High order digit | 3 | D | DSB | • | | | | | (Average) 20.6 High order digit | | | | | | | | | | | | | _ | | | | | | | | | (Average) | 20.6 | | | | Add 1.2 if result overflows | | | | | | Add 1.2 if result overflows | | | Hex | | Mnemonic | | Time
(micro-
seconds) | Additions or Conditions | | |--------|--------|------------|-----------|-----------------------------|--|--| | 3 | E | MUL | (Minimum) | 59.8 | Multiplier (A) equals zero Add 1.2 if indexed | | | | | | (Maximum) | 73.2 | Multiplier (A) -2 ¹⁵ +1
Add 1.2 if indexed | | | 3 | F | DIV | (Minimum) | 90.0 | No remainder, quotient equal to 2 ⁿ
Add 1.2 if indexed | | | | | | (Maximum) | 95.4 | Negative divident, quotient equal to 215 -2 | | | | | | | | Add 1.2 if indexed | | | 20 | oncu | rrent I/ | 0 | | | | | | | Ouring M | lultiply | 14.4 | Add 4.4 if end of block occurs | | | | C | Ouring D | ivide | 13.8 | Add 4.4 if end of block occurs | | | 3 | 9 | OBA | | 7.6 | | | | 3 | Α | OBB | | 8.4 | | | | 3 | В | OBM | | 13.2 | Add 1.2 if indexed | | | 1 | 0 | ORA | | 5.8 | | | | 4 | 1
2 | XRA
ORB | | 5.8 | | | | 4
4 | 3 | XRB | | 6.0
6.0 | | | | 4 | 4 | INX | | 6.4 | Add .60 if result overflows | | | 4 | 5 | DCX | | 6.4 | Add .60 if result overflows | | | 4 | 6 | AWX | | 6.4 | Add .60 if result overflows | | | 1 | 7 | SWX | | 6.4 | Add .60 if result overflows | | | Ļ | 8 | INA | | 6.4 | Add .60 if result overflows | | | 1 | 9 | INB | | 6.4 | Add .60 if result overflows | | | 1 | Α | OCA | | 6.0 | | | | 4 | В | OCB | | 6.0 | | | | 4 | C | TAX | | 6.4 | | | | 4 | D
E | TBX | | 6.4 | | | | 1
1 | F | TXA
TXB | | 6.6
6.6 | | | | †
5 | 0 | RTN | | 29.6 | | | | 5 | 1 | CAL | | 31.4 | Add 1.2 if indexed | | | 5 | 2 | PLX | | 13.8 | AGG TE IT HIGOROG | | | 5 | 3 | PSX | | 12.8 | | | | 5 | 4 | PLA | | 13.8 | | | | 5 | 5 | PSA | | 12.8 | | | | 5 | 6 | PLB | | 13.8 | | | | 5 | 7 | PSB | | 12.8 | A 11 00 'F D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 5 | 8 | MST | | 8.2 | Add .60 if B register is odd | | | 5 | 9 | ADX | | 8.0 | Add .60 if overflow occurs | | | Hex | | Mnemonic | | Time
(micro-
seconds) | | Additions or Conditions | | |--------|---|--|---|------------------------------|--|--|--| |
5 | Α | JEP | (Minimum) | /A-0\ | 8.6 | Add .20 if displacement negative | | | | | | Jump
No Jump
(Maximum) | (A=0)
(A=1) | 7.8 | Add .2011 displacement negative | | | | | | Jump
No Jump | (A<0)
(A<0) | 29.6
28.8 | Add .20 if displacement negative | | | 5 | В | EBX | • | | 6.4 | | | | 5 | Ċ | MOV | | | 9.2 | Per Byte, less .60 for termination | | | 5 | Ď | GCC | (Minimum) | | 27.0 | Per Byte, less .60 for termination | | | _ | _ | | (Maximum) | | 31.8 | Per Byte, less .60 for termination | | | 5 | Ε | SCH | • | | 7.2 | General overhead per data byte | | | _ | _ | | | | | Add 3.00 for each non-zero, unmatched key checked | | | | | | | | | Add 4.8 for zero key (no match) | | | | | | | | | Add 4.8 to perform jump (any match) | | | | | | | | | Less .6 for termination (no match) | | | | _ | | search key | | • | control list, data byte two is matched with | | | | | | (7.2 + (2X3 | | 8) + (7.2 + | 3.0 + 4.8) = 33.0 | | | 5 | E | SCH | (Not) | 3.0) + 4.3 | | | | | 5 | Ε | SCH | (Not)
Match, No J | 3.0) + 4.3
ump | 11.4 | Per data byte | | | | | | (Not)
Match, No J
No Match, J | 3.0) + 4.3
ump | 11.4
12.0 | Per data byte
Less .6 for termination (all matched) | | | 5
5 | | SCH
GAP | (Not)
Match, No J
No Match, J
(Data = 0) | 3.0) + 4.3
ump | 11.4
12.0
9.8 | Per data byte
Less .6 for termination (all matched)
Per byte, less .6 for termination | | | | | | (Not) Match, No J No Match, J (Data = 0) (Data < 32) | 3.0) + 4.3
ump | 11.4
12.0
9.8
14.6 | Per data byte
Less .6 for termination (all matched)
Per byte, less .6 for termination
Per byte, less .6 for termination | | | | | | (Not) Match, No J No Match, J (Data = 0) (Data < 32) (Data < 64) | 3.0) + 4.
ump
ump | 11.4
12.0
9.8
14.6
15.8 | Per data byte Less .6 for termination (all matched) Per byte, less .6 for termination Per byte, less .6 for termination Per byte, less .6 for termination | | | | | | (Not) Match, No J No Match, J (Data = 0) (Data < 32) | 3.0) + 4.
ump
ump | 11.4
12.0
9.8
14.6 | Per data byte
Less .6 for termination (all matched)
Per byte, less .6 for termination
Per byte, less .6 for termination | | | 5 | F | GAP | (Not) Match, No J No Match, J (Data = 0) (Data < 32) (Data < 64) (Data < 128 (Data < 0) | 3.0) + 4.:
ump
ump | 11.4
12.0
9.8
14.6
15.8
17.0
18.2 | Per data byte Less .6 for termination (all matched) Per byte, less .6 for termination | | | 5 | F | GAP
RESSIN | (Not) Match, No J No Match, J (Data = 0) (Data < 32) (Data < 64) (Data < 128 (Data < 0) G MODES — | 3.0) + 4.:
ump
ump | 11.4
12.0
9.8
14.6
15.8
17.0
18.2
be added t | Per data byte Less .6 for termination (all matched) Per byte, less .6 for termination | | | 5 | F | GAP
RESSIN
Direct | (Not) Match, No J No Match, J (Data = 0) (Data < 32) (Data < 64) (Data < 128 (Data < 0) G MODES — | 3.0) + 4.:
ump
ump | 11.4
12.0
9.8
14.6
15.8
17.0
18.2
be added t | Per data byte Less .6 for termination (all matched) Per byte, less .6 for termination The system of o | | | 5 | F | GAP RESSIN Direct | (Not) Match, No J No Match, J (Data = 0) (Data < 32) (Data < 64) (Data < 128 (Data < 0) G MODES — t Page 0 t Relative | 3.0) + 4.:
ump
ump | 11.4
12.0
9.8
14.6
15.8
17.0
18.2
be added t | Per data byte Less .6 for termination (all matched) Per byte, less .6 for termination | | | 5 | F | GAP RESSIN Direct Direct Indire | (Not) Match, No J No Match, J (Data = 0) (Data < 32) (Data < 64) (Data < 128 (Data < 0) G MODES — t Page 0 t Relative | 3.0) + 4.:
ump
ump | 11.4
12.0
9.8
14.6
15.8
17.0
18.2
be added t | Per data byte Less .6 for termination (all matched) Per byte, less .6 for termination To memory referencing instructions Add .6 if displacement negative Add 1.2 if post indexed Add 1.2 if post indexed | | | 5 | F | GAP RESSIN Direct Direct Indire | (Not) Match, No J No Match, J (Data = 0) (Data < 32) (Data < 64) (Data < 128 (Data < 0) G MODES — t Page 0 t Relative | 3.0) + 4.:
ump
ump | 11.4
12.0
9.8
14.6
15.8
17.0
18.2
be added t
4.8
5.8
7.8
8.8 | Per data byte Less .6 for termination (all matched) Per byte, less .6 for termination Add .6 if displacement negative Add 1.2 if post indexed | | | 5 | F | GAP RESSIN Direct Indirect Indirect
Indirect Indirect | (Not) Match, No J No Match, J (Data = 0) (Data < 32) (Data < 64) (Data < 128 (Data < 0) G MODES — t Page 0 t Relative ect Page 0 ect Relative ed | 3.0) + 4.:
ump
ump | 11.4
12.0
9.8
14.6
15.8
17.0
18.2
be added t
4.8
5.8
7.8
8.8 | Per data byte Less .6 for termination (all matched) Per byte, less .6 for termination To memory referencing instructions Add .6 if displacement negative Add 1.2 if post indexed Add 1.2 if post indexed | | | 5 | F | GAP RESSIN Direct Indirect Indirect Indirect Indirect | (Not) Match, No J No Match, J (Data = 0) (Data < 32) (Data < 64) (Data < 128 (Data < 0) G MODES — t Page 0 t Relative ect Page 0 ect Relative | 3.0) + 4.:
ump
ump | 11.4
12.0
9.8
14.6
15.8
17.0
18.2
be added t
4.8
5.8
7.8
8.8
4.8
5.6 | Per data byte Less .6 for termination (all matched) Per byte, less .6 for termination O memory referencing instructions Add .6 if displacement negative Add 1.2 if post indexed Add 1.2 if post indexed Add .6 if displacement negative | | | 5 | F | GAP RESSIN Direct Indirect Indirect Indirect Indirect | (Not) Match, No J No Match, J (Data = 0) (Data < 32) (Data < 64) (Data < 128 (Data < 0) G MODES — t Page 0 t Relative ect Page 0 ect Relative ed ed with Bias | 3.0) + 4.:
ump
ump | 11.4
12.0
9.8
14.6
15.8
17.0
18.2
be added t
4.8
5.8
7.8
8.8 | Per data byte Less .6 for termination (all matched) Per byte, less .6 for termination To memory referencing instructions Add .6 if displacement negative Add 1.2 if post indexed Add 1.2 if post indexed | | | 5 | F | GAP RESSIN Direct Indirect Indirect Indirect Index Index Index | (Not) Match, No J No Match, J (Data = 0) (Data < 32) (Data < 64) (Data < 128 (Data < 0) G MODES — t Page 0 t Relative ect Page 0 ect Relative ed ed with Bias | 3.0) + 4.:
ump
ump | 11.4
12.0
9.8
14.6
15.8
17.0
18.2
be added t
4.8
5.8
7.8
8.8
4.8
5.6
6.2 | Per data byte Less .6 for termination (all matched) Per byte, less .6 for termination O memory referencing instructions Add .6 if displacement negative Add 1.2 if post indexed Add 1.2 if post indexed Add .6 if displacement negative | | | 5 | F | GAP RESSIN Direct Indirect Indirect Index Index Index Exter Litera | (Not) Match, No J No Match, J (Data = 0) (Data < 32) (Data < 64) (Data < 128 (Data < 0) G MODES — t Page 0 t Relative ect Page 0 ect Relative ed ed with Bias | 3.0) + 4.:
ump
ump | 11.4
12.0
9.8
14.6
15.8
17.0
18.2
be added t
4.8
5.8
7.8
8.8
4.8
5.6
6.2 | Per data byte Less .6 for termination (all matched) Per byte, less .6 for termination O memory referencing instructions Add .6 if displacement negative Add 1.2 if post indexed Add 1.2 if post indexed Add .6 if displacement negative | | | 5 | F | GAP RESSIN Direct Indirect Index Index Exter Litera Tw | (Not) Match, No J No Match, J (Data = 0) (Data < 32) (Data < 64) (Data < 128 (Data < 0) G MODES — t Page 0 t Relative ect Page 0 ect Relative ed ed with Bias ed ed Length to Byte with A | 3.0) + 4.
ump
ump
) | 11.4
12.0
9.8
14.6
15.8
17.0
18.2
be added t
4.8
5.8
7.8
8.8
4.8
5.6
6.2
7.4
7.8 | Per data byte Less .6 for termination (all matched) Per byte, less .6 for termination O memory referencing instructions Add .6 if displacement negative Add 1.2 if post indexed Add 1.2 if post indexed Add .6 if displacement negative | | | 5 | F | GAP RESSIN Direct Indirect Index Index Exter Litera Tw | (Not) Match, No J No Match, J (Data = 0) (Data < 32) (Data < 64) (Data < 128 (Data < 0) G MODES — t Page 0 t Relative ect Page 0 ect Relative ed ed with Bias eded el sed Length | 3.0) + 4.
ump
ump
) | 11.4
12.0
9.8
14.6
15.8
17.0
18.2
be added t
4.8
5.8
7.8
8.8
4.8
5.6
6.2
7.4
7.8 | Per data byte Less .6 for termination (all matched) Per byte, less .6 for termination To memory referencing instructions Add .6 if displacement negative Add 1.2 if post indexed Add 1.2 if post indexed Add .6 if displacement negative Add 1.2 if indexed | | | 5 | F | GAP RESSIN Direct Indiret Index Index Exter Litera Tw Va | (Not) Match, No J No Match, J (Data = 0) (Data < 32) (Data < 64) (Data < 128 (Data < 0) G MODES — t Page 0 t Relative ect Page 0 ect Relative ed ed with Bias ed ed Length to Byte with A | 3.0) + 4.
ump
ump
) | 11.4
12.0
9.8
14.6
15.8
17.0
18.2
be added t
4.8
5.8
7.8
8.8
4.8
5.6
6.2
7.4
7.8 | Per data byte Less .6 for termination (all matched) Per byte, less .6 for termination O memory referencing instructions Add .6 if displacement negative Add 1.2 if post indexed Add 1.2 if post indexed Add .6 if displacement negative | | | Hex | x Mnemonic | | Time
(micro-
seconds) | Additions or Conditions | | | |--------------------------------|------------|--------------|-----------------------------|--|--|--| | MEMORY REFERENCING INSTRUCTION | | | | | | | | 6 0 | JMP | | 3.2 | | | | | 6 8 | RTJ | | 5.8 | | | | | 7 0 | IWM | | 5.4 | Add .6 if result overflows | | | | 7 8 | DWM | | 5.4 | | | | | 8 0 | LDX | | 5.4 | | | | | 8 8 | STX | | 5.4 | | | | | 9 0 | LDB | | 5.4
5.8 | | | | | 9 8
A 0 | STB
ADA | | 5.8
4.8 | Add .60 if result overflows | | | | 0 A
A 8 | ADV | (1 Byte) | 4.6
6.2 | Add .60 if result overflows | | | | A 0 | ADV | (2 Bytes) | 5.8 | Add .60 if result overflows | | | | | | (3 Bytes) | 8.6 | Add .60 if result overflows | | | | | | (4 Bytes) | 8.2 | Add .60 if result overflows | | | | В 0 | SBA | (10)100/ | 5.2 | Add .60 if result overflows | | | | B 8 | SBV | (1 Byte) | 6.6 | Add .60 if result overflows | | | | | | (2 Bytes) | 6.2 | Add .60 if result overflows | | | | | | (3 Bytes) | 9.0 | Add .60 if result overflows | | | | | | (4 Bytes) | 8.6 | Add ,60 if result overflows | | | | C 0 | CPA | | 4.8 | Add .80 if A \geq memory | | | | C 8 | CPV | (1 Byte) | 4.8 | Add .80 if $A \ge memory$ | | | | | | (2 Bytes) | 5.6 | Add .80 if A,B ≥ memory | | | | | | (3 Bytes) | 7.2 | Add .80 if A,B ≥ memory | | | | n 0 | ANA | (4 Bytes) | 8.2
5.2 | Add .80 if A,B \geqslant memory | | | | D 0
D 8 | ANV | (1 Byte) | 5.2
6.6 | | | | | 0 | | (2 Bytes) | 6.2 | | | | | | | (3 Bytes) | 9.0 | | | | | | | (4 Bytes) | 8.6 | | | | | E 0 | LDA | (= 7 ===, | 5.2 | | | | | E 8 | LDV | (1 Byte) | 6.6 | | | | | | | (2 Bytes) | 6.2 | | | | | | | (3 Bytes) | 9.0 | | | | | | | (4 Bytes) | 8.6 | | | | | F 0 | STA | 44.7 | 4.2 | | | | | F 8 | STV | (1 Byte) | 3.4 | | | | | | | (2 Bytes) | 4.6 | | | | | | | (3 Bytes) | 8.0 | | | | | | | (4 Bytes) | 9.2 | | | | | NTE | RRUPTS | S | | | | | | | Copeo | le Interrupt | 13.8 | Includes Return Jump | | | | | | Termination | 34.2 | Includes Call, Operation | | | | | | ime Clock | 9.8 | Add 27.4 if result is zero, to perform Call, | | | | | | ement) | 5.0 | Operation | | | | Hex | Mnemonic | Time
(micro-
seconds) | Additions or Conditions | |------|---|---|--| | | Stack Overflow Memory Parity Console Halt Power Fail Power Restart External Interrupt | 12.8
34.2
6.8
33.8
10.2
32.0 | Includes Return Jump Includes Call, Operation Includes Call, Operation Includes Return Jump Includes Call, Operation | | INPU | IT OUTPUT | | | | | Concurrent I/O
Between Instructions
During Shift | 15.8
13.0 | Add 4.4 if end of block occurs
Add 4.4 if end of block occurs | # APPENDIX D. MICRO 821 EXECUTION TIMES | 0
0
0 | 0 | | | Time
(micro-
seconds) | Additions or Conditions | | |-------------|---|-------|-----------------|-----------------------------|--------------------------------------|--| | | 1 | HLT | | 5.72 | | | | 0 | | TRP | | 16.94 | Includes Return Jump | | | | 2 | ESW | | 4.84 | | | | 0 | 4 | DIN | | 4.84 | | | | 0 | 5 | EIN | | 4.84 | | | | 0 | 6 | DRT | | 4.84 | | | | 0 | 7 | ERT | | 4.40 | | | | 0 | 8 | R01 | | 5.28 | | | | 0 | 9 | R02 | | 5.28 | | | | 0 | Α | R03 | | 5.28 | | | | 0 | В | R04 | | 5.28 | | | | 0 | С | S01 | | 5.28 | | | | 0 | D | S02 | | 5.28 | | | | 0 | E | S03 | | 5.28 | | | | 0 | F | S04 | | 5.28 | | | | 1 | 0 | JOA | Jump | 8.58 | Add .22 if displacement negative | | | 1 | 1 | LA =2 | No Jump | 6.82 | V 11 00 .t 1. 1 | | | 1 | 1 | JAZ | Jump | 8.36
7.48 | Add .22 if displacement negative | | | 1 | 2 | JBZ | No Jump
Jump | 7.46
8.14 | Add .22 if displacement negative | | | • | _ | 302 | No Jump | 7.26 | Add .22 if displacement negative | | | 1 | 3 | JXZ | Jump | 7.92 | Add .22 if displacement negative | | | • | | 0712 | No Jump | 7.04 | riad 122 ii dispidocinicite nogative | | | 1 | 4 | JAN | Jump | 8.36 | Add .22 if displacement negative | | | | | | No Jump | 7.48 | , | | | 1 | 5 | JXN | Jump . | 8.14 | Add .22 if displacement negative | | | | | | No Jump | 7.26 | | | | 1 | 6 | JAB | Jump | 8.58 | Add .22 if displacement negative | | | | | | No Jump | 7.70 | | | | 1 | 7 | JAX | Jump | 8.36 | Add .22 if displacement negative | | | | _ | | No Jump | 7.48 | | | | 1 | 8 | NOV | Jump | 7.70 | Add .22 if displacement negative | | | _ | _ | | No Jump | 7.70 | A 1.1 00 'f 1' 1 | | | 1 | 9 | NAZ | Jump | 8.36 | Add .22 if displacement negative | | | | ٨ | NDZ | No Jump | 7.48 | A 1-1 00 if all - 1 - | | | 1 | Α | NBZ | Jump | 8.14 | Add .22 if displacement negative | | | 1 | D | NVZ | No Jump | 7.26 | Add 22 if displacement possible | | | 1 | В | NXZ | Jump
No Jump | 7.92
7.04 | Add .22 if displacement negative | | | Hex | Mnemonic | | Time
(micro-
seconds) | Additions or Conditions | |---
---|--|--|--| | 1 C | NAN | Jump
No. lump | 8.36
7.48 | Add .22 if displacement negative | | 1 D | NXN | No Jump
Jump
No Jump | 7.46
8.14
7.26 | Add .22 if displacement negative | | 1 E | NAB | Jump
No Jump | 8.58
7.70 | Add .22 if displacement negative | | 1 F | NAX | Jump
No Jump | 8.36
7.48 | Add .22 if displacement negative | | 2 0
2 1
2 2
2 4
2 5
2 6
2 8
2 9
2 C
2 D
2 E | LLA
LLB
LRA
LRB
LRL
ALA
ALB
ALL
ARA
ARB
ARL | · . | 6.38
6.38
6.38
6.38
6.38
6.38
6.38
6.38 | Add 3.52 for each bit position shifted Add 3.74 for each bit position shifted Add 3.74 for each bit position shifted Add 3.30 for each bit position shifted Add 3.30 for each bit position shifted Add 3.96 for each bit position shifted Add 3.52 for each bit position shifted Add 3.52 for each bit position shifted Add 3.74 for each bit position shifted Add 3.30 for each bit position shifted Add 3.30 for each bit position shifted Add 3.96 for each bit position shifted Add 3.96 for each bit position shifted | | 3 1
3 2
3 3
3 4 | IBA
IBB
IBM
NOP | | 8.36
8.80
14.30
4.40 | Add 1.32 if indexed | | 3 5 | CLC | | 10.56
11.00
12.10
11.88 | Per byte, if equal
For last byte, if less than
For last byte, if equal
For last byte, if greater than | | 3 C | DAD | (Average)
(Average)
(Average)
(Average) | 23.10
19.14
18.70
22.66 | Units position digit Per non-units position digit Per digit for re-complementing High order digit Add 1.32 if result overflows | | 3 D | DSB | (Average)
(Average)
(Average)
(Average) | 23.10
19.14
18.70
22.66 | Units position digit Per non-units position digit Per digit for re-complementing High order digit Add 1.32 if result overflows | | 3 E | MUL | (Minimum)
(Maximum) | 65.78
80.52 | Multiplier (A) equals zero
Add 1.32 if indexed
Multiplier (A) -2 ¹⁵ +1
Add 1.32 if indexed | | H | Hex Mnemon | | nonic | | Time
(micro-
seconds) | Additions or Conditions | |--------|------------|------------|----------------------|---------|-----------------------------|--| | 3 | F | DIV | (Minimum |) | 99.00 | No remainder, quotient equal to 2n
Add 1.32 if indexed | | | | | (Maximum |) . | 104.94 | Negative divident, quotient equal to 215-2 | | | | | | | | Add 1.32 if indexed | | C | oncı | urrent I/ | ′O | | | | | | ſ | During N | Multiply | | 15.84 | Add 4.84 if end of block occurs | | | (| During [| Divide | | 15.18 | Add 4.84 if end of block occurs | | 3 | 9 | OBA | | | 8.36 | | | 3 | Α | OBB | | | 9.24 | | | 3 | В | OBM | | | 14.52 | Add 1.32 if indexed | | 4 | 0 | ORA | | | 6.38 | | | 4 | 1
2 | XRA | | | 6.38 | | | 4 | 3 | ORB | | | 6.60 | | | 4 | 3
4 | XRB
INX | | | 6.60 | A.I.I. 00:11 | | 4 | 5 | DCX | | | 7.04
7.04 | Add .66 if result overflows | | 4 | 6 | AWX | | | 7.0 4
7.04 | Add .66 if result overflows | | 4 | 7 | SWX | | | 7.0 4
7.04 | Add .66 if result overflows Add .66 if result overflows | | 4 | 8 | INA | | | 7.04
7.04 | Add .66 if result overflows | | 4 | 9 | INB | | | 7.04 | Add .66 if result overflows | | 4 | Α | OCA | | | 6.60 | The real residence of the same | | 4 | В | OCB | | | 6.60 | | | 4 | С | TAX | | | 7.04 | | | 4 | D | TBX | | | 7.04 | | | 4 | E | TXA | | | 7.26 | | | 4 | F | TXB | | | 7.26 | | | 5 | 0 | RTN | | | 32.56 | 4.114.00 (6.1 | | 5
5 | 1
2 | CAL
PLX | | • | 34.54 | Add 1.32 if indexed | | 5
5 | 3 | PSX | | | 15.18
14.09 | | | 5 | 4 | PLA | | | 14.08
15.18 | | | 5 | 5 | PSA | | | 14.08 | | | 5 | 6 | PLB | | | 15.18 | | | 5 | 7 | PSB | | | 14.08 | | | | 8 | MST | | | 9.02 | Add .66 if B register is odd | | 5 | 9 | ADX | | | 8.80 | Add .66 if overflow occurs | | | Α | JEP | (Minimum) | | | The room of ro | | | | | Jump | (A=0) | 9.46 | Add .22 if displacement negative | | | | | No Jump
(Maximum) | (A=1) | 8.58 | , | | | | | Jump | (A<0) | 32.56 | Add .22 if displacement negative | | | | | No Jump | (A < 0) | 31.68 | , | | Hex | Mnemo | onic | Time
(micro-
seconds) | Additions or Conditions | |------------|-------------------|--|--------------------------------|---| | 5 B | EBX | | 7.04 | | | 5 C
5 D | MOV
GCC | (Minimum) | 10.12
29.70 | Per Byte, less .66 for termination Per Byte, less .66 for termination | | ט ט | GCC | (Maximum) | 34.98 | Per Byte, less .66 for termination | | 5 E | SCH | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 7.92 | General overhead per data byte | | | | | | Add 3.30 for each non-zero, unmatched, | | | | | | key checked
Add 5.28 for zero key (No Match) | | | | | | Add 5.28 to perform jump (Any Match) | | | | | | Less .66 for termination (no match) | | E | Example | : Two byte data liswith search key two 5.28) = 36.30 | t, three byte
wo. (7.92 + (| control list, data byte two is matched
(2X3.30) + 5.28) + (7.92 + 3.30 + | | 5 E | SCH | (Not) | | | | | | Match, No Jump | 12.54 | Per data byte | | | | No Match, Jump | 13.20 | Less .66 for termination (all matched) | | 5 F | GAP | (Data = 0) | 10.78 | Per byte, less .66 for termination | | | | (Data <32)
(Data <64) | 16.06
17.38 | Per byte, less .66 for termination Per byte, less .66 for termination | | | | (Data < 128) | 18.70 | Per byte, less .66 for termination | | | | (Data < 0) | 20.02 | Per byte, less .66 for termination | | ADDF | RESSIN | G MODES — Time t | o be added t | o memory referencing instructions | | | Direct | Page 0 | 5.28 | | | | | Relative | 6.38 | Add .66 if displacement negative | | | | ct Page 0 | 8.58 | Add 1.32 if post indexed | | | Indire | ct Relative | 9.68 | Add 1.32 if post indexed | | | Ludan | 1 | 5.28 | Add .66 if displacement negative | | | Index | ed
ed with Bias | 6.16 | | | | Exten | | 6.82 | Add 1.32 if indexed | | | Litera | | · · | | | | Fix | ed Length | 8.14 | | | | | o Byte with A | 8.58 | | | | | riable | 8.14 | Add 1 22 if indoved | | | Ind | irect Jumps | 11.44 | Add 1.32 if indexed
Add 1.32 if post indexed | | | ORY RE | EFERENCING INST | TRUCTION | | | MEM | | | 3.52 | | | | .IMP | | | | | 6 0 | JMP
RTJ | | 6.38 | | | | JMP
RTJ
IWM | | 6.38
5.94
5.94 | Add .66 if result overflows Add .66 if result overflows | | Hex | Mnen | nonic | Time
(micro-
seconds) | Additions or Changes | | | | | |------------|---------|-------------|-----------------------------|---|--|--|--|--| | 8 0 | LDX | | 5.94 | | | | | | | 8 8 | STX | | 5.94 | | | | | | | 9 0 | LDB | | 5.94 | | | | | | | 9 8 | | | 6.38 | | | | | | | A C | - | | 5.28 | Add .66 if result overflows | | | | | | A 8 | ADV | (1 Byte) | 6.82 | Add .66 if result overflows | | | | | | | | (2 Bytes) | 6.38 | Add .66 if result overflows | | | | | | | | (3 Bytes) | 9.46 | Add .66 if result overflows | | | | | | _ | | (4 Bytes) | 9.02 | Add .66 if result overflows | | | | | | B 0 | | | 5.72 | Add .66 if result overflows | | | | | | B 8 | SBV | (1 Byte) | 7.26 | Add .66 if result overflows | | | | | | | | (2 Bytes) | 6.82 | Add .66 if result overflows | | | | | | | | (3 Bytes) | 9.90 |
Add .66 if result overflows | | | | | | | | (4 Bytes) | 9.46 | Add .66 if result overflows | | | | | | C 0
C 8 | CPA | | 5.28 | Add .88 if A ≥ memory | | | | | | C 8 | CPV | (1 Byte) | 5.28 | Add .88 if A ≥ memory | | | | | | | | (2 Bytes) | 6.38 | Add .88 if A,B ≥ memory | | | | | | | | (3 Bytes) | 7.92 | Add .88 if A,B \geq memory | | | | | | D 0 | A N I A | (4 Bytes) | 9.02 | Add .88 if A,B ≥ memory | | | | | | D 0
D 8 | ANA | /1 D .) | 5.72 | · | | | | | | ס ט | ANV | (1 Byte) | 7.26 | | | | | | | | | (2 Bytes) | 6.82 | | | | | | | | | (3 Bytes) | 9.90 | | | | | | | E 0 | LDA | (4 Bytes) | 9.46 | | | | | | | E 8 | LDV | (1 Byte) | 5.72 | | | | | | | _ 0 | LDV | (2 Bytes) | 7.26 | | | | | | | | | (3 Bytes) | 6.82 | | | | | | | | | (4 Bytes) | 9.90 | | | | | | | F 0 | STA | (4 Dy tes) | 9.46 | | | | | | | F 8 | STV | (1 Byte) | 4.62 | | | | | | | J | • | (2 Bytes) | 3.74
5.06 | | | | | | | | | (3 Bytes) | 8.80 | | | | | | | | | (4 Bytes) | 10.12 | | | | | | | INTEI | RRUPTS | • | | | | | | | | | Console | e Interrupt | 15.18 | Includes Datum I | | | | | | | DMA T | ermination | 37.62 | Includes Return Jump | | | | | | | | me Clock | 10.78 | Includes Call, Operation | | | | | | | (Incre | | 10.70 | Add 30.14 if result is zero, to perform Call | | | | | | | | verflow | 14.08 | perform Call, Operation | | | | | | | | y Parity | 37.62 | Includes Return Jump | | | | | | | Console | | 7.48 | Includes Call, Operation | | | | | | | Power f | | 37.18 | Includes Call, Operation | | | | | | | Power I | | 11,22 | Includes Call, Operation Includes Return Jump | | | | | | | | Interrupt | 35.20 | Includes Call, Operation | | | | | | Hex | Mnemonic | Time
(micro-
seconds) | Additions or Conditions | |------|--|-----------------------------|--| | INPU | T OUTPUT | | | | | Concurrent I/O
Between Instructions
During Shift | 17.38
14.30 | Add 4.84 if end of block occurs
Add 4.84 if end of block occurs | APPENDIX E. STANDARD CHARACTER CODES | SYMBOL | | EBCDIC
(HEX) | | | SYMBOL | | EBCDIC
(HEX) | HOLLE
(029) | RITH
(026) | |--------|----|-----------------|-----------|--------|----------|----|-----------------|----------------|---------------| | blank | Α0 | 40 | bl | ank | @ | CO | 7C | 8-4 | 0-8-2 | | į | A1 | 5A | 11 | 1-8-2 | A | C1 | C1 | 12-1 | | | " | A2 | 7F | 8-7 | 0-8-5 | В | C2 | C2 | 12-2 | | | # | А3 | 7B | 8-3 | 0-8-7 | С | C3 | C3 | 12-3 | | | \$ | Α4 | 5B | 11 | -8-3 | D | C4 | C4 | 12-4 | | | % | A5 | 6C | 0-8-4 | 11-8-7 | E | C5 | C5 | 12-5 | | | & | A6 | 50 | 12 | 12-8-7 | F | C6 | C6 | 12-6 | | | , | Α7 | 7D | 8-5 | 8-4 | G | C7 | C7 | 12-7 | | | (| A8 | 4D | 12-8-5 | 0-8-4 | Н | C8 | C8 | 12-7 | | |) | Α9 | 5D | 11-8-5 | 12-8-4 | 1 | C9 | C9 | 12-9 | | | * | AA | 5C | 11-8-4 | | J | CA | D1 | 11-1 | | | + | AB | 4E | 12-8-6 12 | | K | СВ | D2 | 11-2 | | | , | AC | 6B | 0-8 | 3-3 | L | CC | D3 | 11-3 | | | _ | AD | 60 | 11 | | М | CD | D4 | 11-4 | | | | ΑE | 4B | 12 | -8-3 | N | CE | D5 | 11-5 | | | / | ΑF | 61 | 0- | İ | 0 | CF | D6 | 11-6 | | | 0 | B0 | F0 | 0 | | Р | D0 | D7 | 11-7 | | | 1 | B1 | F1 | 1 | | Q | D1 | D8 | 11-8 | | | 2 | B2 | F2 | 2 | | R | D2 | D9 | 11-9 | | | 3 | B3 | F3 | 3 | | S | D3 | E2 | 0-2 | | | 4 | B4 | F4 | 4 | | Т | D4 | E3 | 0-3 | | | 5 | B5 | F5 | 5 | | U | D5 | E4 | 0-4 | | | 6 | B6 | F6 | 6 | | V | D6 | E5 | 0-5 | | | 7 | B7 | F7 | 7 | | W | D7 | E6 | 0-6 | | | 8 | B8 | F8 | 8 | | × | D8 | E7 | 0-7 | | | 9 | B9 | F9 | 9 | | Υ | D9 | E8 | 0-8 | | | : | BA | 7A | 8-2 | 8-5 | Z | DA | E9 | 0-9 | | | ; | ВВ | 5E | 11- | 8-6 | [| DB | 4F | | 12-8-5 | | < | BC | 4C | 12-8-4 | 12-8-6 | \ | DC | 4A | | 0-8-6 | | = | BD | 7E | 8-6 | 8-3 |] | DD | 5F | | 11-8-5 | | > | BE | 6E | 0-8-6 | 8-6 | † | DE | | | 8-7 | | ? | BF | 6F | 0-8-7 | 12-8-2 | ← | DF | | | 8-2 | ## APPENDIX F. TELETYPE CONTROL AND TRANSMISSION CODES | FUNCTION | ASCII | | |----------------------|-------|--| |
NULL | 80 | | | SOM (Print on) | 81 | | | EAO | 82 | | | EOM | 83 | | | EOT (Print off) | 84 | | | WRU | 85 | | | RU | 86 | | | BELL | 87 | | | FEO | 88 | | | H.TAB | 89 | | | LINE FEED | 8A | | | V.TAB | 8B | | | FORM | 8C | | | CARRIAGE RETURN | 8D | | | SO | 8E | | | SI | 8F | | | DCO | 90 | | | X-ON (Reader on) | 91 | | | TAPE (Punch on) | 92 | | | X-OFF (Reader off) | 93 | | | TAPE OFF (Punch off) | 94 | | | ERROR | 95 | | | SYNC | 96 | | | LEM | 97 | | | S0 | 98 | | | S1 | 99 | | | S2 | 9A | | | S3 | 9B | | | S4 | 9C | | | S5 | 9D | | | S6 | 9E | | | S7 | 9F | | ## APPENDIX G. TABLE OF POWERS OF TWO 2^n ``` 2^{-n} 11 1 0 1.0 2 1 0.5 4 0.25 0.125 16 4 0.062 5 32 5 0.031 25 64 6 0.015 625 128 0.007 812 5 256 8 0.003 906 25 512 9 0.001 953 125 1 024 10 0.000 976 562 5 2 048 11 0.000 488 281 25 4 096 12 0.000 244 140 625 8 192 13 0.000 122 070 312 5 16 384 0.000 061 035 156 25 14 32 768 15 0.000 030 517 578 125 65 536 16 0.000 015 258 789 062 5 131 072 17 0.000 007 629 394 531 25 262 144 18 0.000 003 814 697 265 625 524 288 0.000 001 907 348 632 812 5 1 048 576 20 0.000 000 953 674 316 406 25 2 097 152 21 0.000 000 476 837 158 203 125 4 194 304 22 0.000 000 238 418 579 101 562 5 8 388 608 23 0.000 000 119 209 289 550 781 25 16 777 216 24 0.000 000 059 604 644 775 390 625 33 554 432 25 0.000 000 029 802 322 387 695 312 5 67 108 864 26 0.000 000 014 901 161 193 847 656 25 134 217 728 0.000 000 007 450 580 596 923 828 125 27 268 435 456 0.000 000 003 725 290 298 461 914 062 5 28 536 870 912 0.000 000 001 862 645 149 230 957 031 25 29 1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625 2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5 4 294 967 296 0.000 000 000 232 830 643 653 869 628 906 25 32 8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125 17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5 34 359 738 368 0.000 000 000 029 103 830 456 733 703 613 281 25 ``` ## APPENDIX H. HEXADECIMAL = DECIMAL INTEGER CONVERSION TABLES | The following tables aid | in converting hexadecimal | HEXADECIMAL | DECIMAL | |-------------------------------|-----------------------------|-------------|---------| | values to decimal values, o | r the reverse. | 1000 | 4096 | | | | 2000 | 8192 | | | | 3000 | 12288 | | | | 4000 | 16384 | | Direct Commercian Table | | 5000 | 20480 | | Direct Conversion Table | | 6000 | 24576 | | This table provides direct | conversion of decimal and | 7000 | 28672 | | hexadecimal numbers in th | on occinian and | 8000 | 32768 | | nexadecimal numbers in th | ese ranges: | 9000 | 36864 | | HEXADECIMAL | DECIMAL | A000 | 40960 | | 000 to FFF | 0000 to 4095 | B000 | 45056 | | | | C000 | 49152 | | For numbers outside the | range of the table, add the | D000 | 53248 | | following values to the table | figures: | E000 | 57344 | | 9 | 6 | F000 | 61440 | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | | D | E | F | |-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | 00_ | 0000 | 0001 | 0002 | 0003 | 0004 | 0005 | 0006 | 0007 | 0008 | 0009 | 0010 | 0011 | 0012 | 0013 | 0014 | 0015 | | 01_ | 0016 | 0017 | 0018 | 0019 | 0020 | 0021 | 0022 | 0023 | 0024 | 0025 | 0026 | 0027 | 0028 | 0029 | 0030 | 0031 | | 02_ | 0032 | 0033 | 0034 | 0035 | 0036 | 0037 | 0038 | 0039 | 0040 | 0041 | 0042 | 0043 | 0044 | 0045 | 0046 | 0047 | | 03_ | 0048 | 0049 | 0050 | 0051 | 0052 | 0053 | 0054 | 0055 | 0056 | 0057 | 0058 | 0059 | 0060 | 0061 | 0062 | 0063 | | 04_ | 0064 | 0065 | 0066 | 0067 | 0068 | 0069 | 0070 | 0071 | 0072 | 0073 | 0074 | 0075 | 0076 | 0077 | 0078 | 0079 | | 05_ | 0080 | 0081 | 0082 | 0083 | 0084 | 0085 | 0086 | 0087 | 0088 | 0089 | 0090 | 0091 | 0092 | 0093 | 0094 | 0095 | | 06_ | 0096 | 0097 | 0098 | 0099 | 0100 | 0101 | 0102 | 0103 | 0104 | 0105 | 0106 | 0107 | 0108 | 0109 | 0110 | 0111 | | 07_ | 0112 | 0113 | 0114 | 0115 | 0116 | 0117 | 0118 | 0119 | 0120 | 0121 | 0122 | 0123 | 0124 | 0125 | 0126 | 0127 | | 08_ | 0128 | 0129 | 0130 | 0131 | 0132 | 0133 | 0134 | 0135 | 0136 | 0137 | 0138 | 0139 | 0140 | 0141 | 0142 | 0143 | | 09_ | 0144 | 0145 | 0146 | 0147 | 0148 | 0149 | 0150 | 0151 | 0152 | 0153 | 0154 | 0155 | 0156 | 0157 | 0158 | 0159 | | 0A_ | 0160 | 0161 | 0162 | 0163 | 0164 | 0165 | 0166 | 0167 | 0168 | 0169 | 0170 | 0171 | 0172 | 0173 | 0174 | 0175 | | 0B_ | 0176 | 0177 | 0178 | 0179 | 0180 | 0181 | 0182 | 0183 | 0184 | 0185 | 0186 | 0187 | 0188 | 0189 | 0190 | 0191 | | 0C_ | 0192 | 0193 | 0194 | 0195 | 0196 | 0197 | 0198 | 0199 | 0200 | 0201 | 0202 | 0203 | 0204 | 0205 | 0206 | 0207 | | 0D_ | 0208 | 0209 | 0210 | 0211 | 0212 | 0213 | 0214 | 0215 | 0216 | 0217 | 0218 | 0219 | 0220 | 0221 | 0222 | 0223 | | 0E_ | 0224 | 0225 | 0226 | 0227 | 0228 | 0229 | 0230 | 0231 | 0232 | 0233 | 0234 | 0235 | 0236 | 0237 | 0238 | 0239 | | 0F_ | 0240 | 0241 | 0242 | 0243 | 0244 | 0245 | 0246 | 0247 | 0248 | 0249 | 0250 | 0251 | 0252 | 0253 | 0254 | 0255 | | 10_ | 0256 | 0257 | 0258 | 0259 | 0260 | 0261 | 0262 | 0263 | 0264 | 0265 | 0266 | 0267 | 0268 | 0269 | 0270 | 0271 | | 11_ | 0272 | 0273 | 0274 | 0275 | 0276 | 0277 | 0278 | 0279 | 0280 | 0281 | 0282 | 0283 | 0284 | 0285 | 0286 | 0287 | | 12_ | 0288 | 0289 | 0290 | 0291 | 0292 | 0293 | 0294 | 0295 | 0296 | 0297 | 0298 | 0299 | 0300 | 0301 | 0302 | 0303 | | 13_ | 0304 | 0305 | 0306 | 0307 | 0308 | 0309 | 0310 | 0311 | 0312 | 0313 | 0314 | 0315 | 0316 | 0317 | 0318 | 0319 | | 14_ | 0320 | 0321 | 0322 | 0323 | 0324 | 0325 | 0326 | 0327 | 0328 | 0329 | 0330 | 0331 | 0332 | 0333 | 0334 | 0335 | | 15_ | 0336 | 0337 | 0338 | 0339 | 0340 | 0341 | 0342 | 0343 | 0344 | 0345 | 0346 | 0347 | 0348 | 0349 | 0350 | 0351 | | 16_ | 0352 | 0353 | 0354 | 0355 | 0356 | 0357 | 0358 | 0359 | 0360 | 0361 | 0362 | 0363 | 0364 | 0365 | 0366 | 0367 | | 17_ | 0368 | 0369 | 0370 | 0371 | 0372 | 0373 | 0374 | 0375 | 0376 | 0377 | 0378 | 0379 | 0380 | 0381 | 0382 | 0383 | | 18_ | 0384 | 0385 | 0386 |
0387 | 0388 | 0389 | 0390 | 0391 | 0392 | 0393 | 0394 | 0395 | 0396 | 0397 | 0398 | 0399 | | 19_ | 0400 | 0401 | 0402 | 0403 | 0404 | 0405 | 0406 | 0407 | 0408 | 0409 | 0410 | 0411 | 0412 | 0413 | 0414 | 0415 | | 1A_ | 0416 | 0417 | 0418 | 0419 | 0420 | 0421 | 0422 | 0423 | 0424 | 0425 | 0426 | 0427 | 0428 | 0429 | 0430 | 0431 | | 1B_ | 0432 | 0433 | 0434 | 0435 | 0436 | 0437 | 0438 | 0439 | 0440 | 0441 | 0442 | 0443 | 0444 | 0445 | 0446 | 0447 | | IC_ | 0448 | 0449 | 0450 | 0451 | 0452 | 0453 | 0454 | 0455 | 0456 | 0457 | 0458 | 0459 | 0460 | 0461 | 0462 | 0463 | | ID_ | 0464 | 0465 | 0466 | 0467 | 0468 | 0469 | 0470 | 0471 | 0472 | 0473 | 0474 | 0475 | 0476 | 0477 | 0478 | 0479 | | IE_ | 0480 | 0481 | 0482 | 0483 | 0484 | 0485 | 0486 | 0487 | 0488 | 0489 | 0490 | 0491 | 0492 | 0493 | 0494 | 0495 | | IF_ | 0496 | 0497 | 0498 | 0499 | 0500 | 0501 | 0502 | 0503 | 0504 | 0505 | 0506 | 0507 | 0508 | 0509 | 0510 | 0511 | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | С | D | E | F | |---|---|---|--|--|--|---|--|--|--|--|--|--|--|--|--|--| | 20_ | 0512 | 0513 | 0514 | 0515
0531 | 0516
0532 | | | 0519
0535 | 0520
0536 | 0521
0537 | | 0523
0539 | 0524
0540 | 0525 0541 | $0526 \\ 0542$ | 0527
0543 | | 21_
22_ | 0528
0544 | 0529
0545 | 0530
0546 | 0547 | 0548
0564 | 0549 | 0550 | 0551
0567 | 0552
0568 | 0553
0569 | | 0555
0571 | $0556 \\ 0572$ | 0557
0573 | 0558
0574 | 0559
0575 | | 23_ | 0560
0576 | 0561
0577 | 0562
0578 | 0563
0579 | 0580 | 0581 | 0582 | 0583 | 0584 | 0585
0601 | 0586
0602 | 0587
0603 | 0588
0604 | 0589
0605 | 0590
0606 | 0591
0607 | | 25_
26_ | 0592
0608 | 0593
0609 | 0594
0610 | 0595
0611 | $0596 \\ 0612$ | 0613 | 0614 | 0599
0615 | 0600
0616 | 0617 | 0618 | 0619
0635 | 0620
0636 | 0621
0637 | 0622
0638 | 0623
0639 | | 27_ | 0624 | 0625
0641 | 0626
0642 | 0627
0643 | 0628
0644 | 0629
0645 | 0630
0646 | 0631
0647 | 0632
0648 | 0633
0649 | 0634
0650 | 0651 | 0652 | 0653 | 0654 | 0655 | | 28_
29_ | 0640
0656 | 0657 | 0658 | 0659
0675 | 0660
0676 | 0661
0677 | 0662
0678 | 0663
0679 | 0664
0680 | 0665
0681 | 0666
0682 | 0667
0683 | $0668 \\ 0684$ | 0669
0685 | 0670
0686 | 0671
0687 | | 2A_
2B_ | 0672
0688 | 0673
0689 | 0674
0690 | 0691 | 0692 | 0693 | 0694 | 0695 | 0696 | 0697
0713 | 0698
0714 | 0699
0715 | 0700
0716 | 0701
0717 | 0702
0718 | 0703 0719 | | 2C_
2D_ | 0704 | $0705 \\ 0721$ | $0706 \\ 0722$ | $0707 \\ 0723$ | $0708 \\ 0724$ | $0709 \\ 0725$ | 0710
0726 | 0711
0727 | 0712
0728 | 0729 | 0730 | 0731
0747 | 0732
0748 | 0733
0749 | 0734
0750 | 0735
0751 | | 2E_
2F_ | 0736
0752 | 0737
0753 | $0738 \\ 0754$ | 0739
07 5 5 | 0740
0756 | $0741 \\ 0757$ | 0742
0758 | $0743 \\ 0759$ | $0744 \\ 0760$ | 0745
0761 | $0746 \\ 0762$ | 0763 | 0764 | 0765 | 0766 | 0767 | | 30_ | 0768 | 0769 | 0770 | 0771 | 0772 | 0773 | 0774
0790 | 0775
0791 | $0776 \\ 0792$ | $0777 \\ 0793$ | $0778 \\ 0794$ | 0779
0795 | 0780
0796 | 0781
0797 | $0782 \\ 0798$ | 0783
0799 | | 31_
32_ | 0784
0800 | $0785 \\ 0801$ | $0786 \\ 0802$ | 0787
0803 | 0788
0804 | 0789
0805 | 0806 | 0807 | 0808
0824 | 0809
0825 | 0810
0826 | 0811
0827 | 0812
0828 | $0813 \\ 0829$ | 0814
0830 | 0815
0831 | | 33_ | 0816
0832 | 0817
0833 | 0818
0834 | 0819
0835 | 0820
0836 | 0821
0837 | 0822
0838 | 0823
0839 | 0840 | 0841 | 0842 | 0843 | 0844 | 0845 | 0846 | 0847
0863 | | 35_
36_ | 0848
0864 | 0849
0865 | 0850
0866 | 0851
0867 | 0852
0868 | 0853
0869 | $0854 \\ 0870$ | $0855 \\ 0871$ | $0856 \\ 0872$ | $0857 \\ 0873$ | $0858 \\ 0874$ | 0859
0875 | 0860
0876 | 0861
0877 | 0862
0878 | 0879 | | 37_ | 0880 | 0881 | 0882 | 0883 | 0884 | 0885 | 0886
0902 | 0887
0903 | 0888
0904 | 0889
0905 | 0890
0906 | 0891
0907 | 0892
0908 | 0893
0909 | 0894
0910 | 0895
0911 | | 38_
39_ | 0912 | 0897
0913 | 0898
0914 | 0899
0915 | 0900
0916 | 0901
0917 | 0918 | 0919
0935 | 0920
0936 | 0921
0937 | 0922
0938 | 0923
0939 | 0924
0940 | 0925 0941 | 0926
0942 | 0927
0943 | | 3A_
3B_ | | 0929
0945 | 0930
0946 | 0931
0947 | $0932 \\ 0948$ | 0933
0949 | 0934
0950 | 0951 | 0952 | 0953 | 0954 | 0955 | 0956 | 0957 | 0958
0974 | 0959
0975 | | 3C_
3D. | | 0961
0977 | 0962
0978 | 0963
0979 | 0964
0980 | 0965
0981 | 0966
0982 | 0967
0983 | 0968
0984 | 0969
0985 | 0970
0986 | 0971
0987 | 0972
0988 | 0973
0989 | 0990 | 0991 | | 3E
3F | - 0992 | 0993
1009 | 0994
1010 | 0995
1011 | 0996
1012 | 0997
1013 | 0998
1014 | $0999 \\ 1015$ | 1000
1016 | 1001
1017 | 1002
1018 | 1003
1019 | 1004
1020 | 1005
1021 | 1006
1022 | 1007
1023 | | L | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | С | D | Е | F | | 40_ | 1024 | | 1026 | 1027 | 1028 | 1029 | 1030
1046 | 1031
1047 | 1032
1048 | 1033
1049 | 1034
1050 | 1035
1051 | 1036
1052 | 1037
1053 | 1038
1054 | 1039
1055 | | 41_
42_ | 1040
1056 | 1057 | 1042
1058 | 1043
1059 | 1044
1060 | 1045
1061 | 1062 | 1063
1079 | 1043
1064
1080 | 1065
1081 | 1066
1082 | 1067
1083 | 1068
1084 | 1069
1085 | 1070
1086 | 1071
1087 | | 43_ | 1072 | | 1074
1090 | 1075
1091 | 1076
1092 | 1077
1093 | 1078
1094 | 1095 | 1096 | 1097 | 1098 | 1099 | 1100 | 1101 | 1102
1118 | 1103
1119 | | 45_
46_ | 1104 | 1105 | 1106
1122 | $\frac{1107}{1123}$ | 1108
1124 | 1109
1125 | 1110
1126 | 1111
1127 | 1112
1128 | 1113
1129 | 1114
1130 | 1115
1131 | 1116
1132 | 1117 | 1134 | 1135
1151 | | 47_ | 1136 | 1137 | 1138 | 1139
1155 | 1140
1156 | 1141
1157 | 1142
1158 | 1143
1159 | 1144
1160 | 1145
1161 | 1146
1162 | 1147
1163 | 1148
1164 | 1149
1165 | 1150
1166 | 1167 | | 48_
49_ | 1168 | 1169 | 1154
1170 | 1171 | 1172
1188 | 1173
1189 | 1174
1190 | 1175
1191 | 1176
1192 | 1177
1193 | 1178
1194 | 1179
1195 | 1180
1196 | 1181
1197 | 1182
1198 | 1183
1199 | | 4A_
4B_ | | | 1186
1202 | 1203 | 1204 | 1205 | 1206 | 1207 | 1208 | 1209 | 1210 | 1211
1227 | 1212
1228 | 1213
1229 | 1214
1230 | 1215
1231 | | 4C.
4D. | | | | | 1220
1236 | 1221
1237 | 1222
1238 | 1223
1239 | 1224
1240 | 1225
1241 | 1226
1242 | 1243 | 1244
1260 | 1245
1261 | 1246
1262 | 1247
1263 | | 4E
4F | 1248 | | | | 1252
1268 | 1253
1269 | 1254
1270 | 1255
1271 | 1256
1272 | 1257
1273 | | 1259 1275 | 1276 | 1277 | 1278 | 1279 | | 1 | 1 140 | 1200 | | | | | | | | | | 7001 | 1292 | 1293 | 1294 | 1295 | | 50_ | 1280 |) 1281 | 1282 | 1283 | 1284 | | 1286 | 1287 | 1288 | 1289 | | 1291
1307 | | | | 1011 | | 51_ | 1280
1290
1315 |) 1281
6 1297
2 1313 | 1282
1298
1314 | 1283
1299
1315 | 1300
1316 | 1301
1317 | 1302
1318 | 1303
1319 | 1304
1320 | 1305
1321 | 1306
1322 | 1307
1323 | 1308
1324 | 1309
1325 | 1310
1326 | 1311
1327 | | 51_
52_
53. | 1280
1290
1315
132 | 0 1281
6 1297
2 1313
8 1329 | 1282
1298
1314
1330 | 1283
1299
1315
1331 | 1300 | 1301
1317
1333 | 1302 | 1303
1319
1335
1351 | 1304
1320
1336
1352 | 1305
1321
1337
1353 | 1306
1322
1338
1354 | 1307
1323
1339
1355 | 1308
1324
1340
1356 | 1309
1325
1341
1357 | 1310
1326
1342
1358 | 1311
1327
1343
1359 | | 51_
52_
53_
54_
55_ | 1280
1290
1311
1321
134
136 | 0 1281
6 1297
2 1313
8 1329
4 1345
0 1361 | 1282
1298
1314
1330
1346
1362 | 1283
1299
1315
1331
1347
1363 | 1300
1316
1332 | 1301
1317
1333
1349
1365 | 1302
1318
1334 | 1303
1319
1335 | 1304
1320
1336
1352
1368
1384 |
1305
1321
1337
1353
1369
1385 | 1306
1322
1338
1354
1370
1386 | 1307
1323
1339
1355
1371
1387 | 1308
1324
1340
1356
1372
1388 | 1309
1325
1341
1357
1373
1389 | 1310
1326
1342
1358
1374
1390 | 1311
1327
1343
1359
1375
1391 | | 51_
52_
53_
54_
55_
56_
57_ | 1280
1290
1311
1324
1364
1370
139 | 0 1281
3 1297
2 1313
8 1329
4 1345
0 1361
6 1377
2 1393 | 1282
1298
1314
1330
1330
1346
1362
7 1378
1394 | 1283
1299
1315
1331
1347
2 1363
1379
1 1395 | 1300
1316
1332
1348
1364
1380
1396 | 1301
1317
1333
1349
1365
1381
1397 | 1302
1318
1334
1350
1366
1382
1398 | 1303
1319
1335
1351
1367
1383
1399 | 1304
1320
1336
1352
1368
1384
1400 | 1305
1321
1337
1353
1369
1385
1401 | 1306
1322
1338
1354
1370
1386
1402 | 1307
1323
1339
1355
1371
1387
1403 | 1308
1324
1340
1356
1372
1388
1404 | 1309
1325
1341
1357
1373
1389
1405 | 1310
1326
1342
1358
1374
1390
1406 | 1311
1327
1343
1359
1375
1391
1407
1423 | | 51_
52_
53_
54_
55_
56_
57_
58_
59_ | 128
129
131:
132:
134
136
137:
139
140 | 0 1281
6 1297
2 1313
8 1329
4 1345
0 1361
6 1377
2 1390
8 1400
4 1425 | 1282
1298
1314
1330
1346
1362
7 1378
3 1394
9 1410
5 1426 | 1283
1299
1315
1331
1347
2 1363
3 1379
4 1395
0 1411
3 1427 | 1300
1316
1332
1348
1364
1380
1396
1412 | 1301
1317
1333
1349
1365
1381
1397
1413
1429 | 1302
1318
1334
1350
1366
1382
1398
1414
1430 | 1303
1319
1335
1351
1367
1383
1399
1415
1431 | 1304
1320
1336
1352
1368
1384
1400
1416 | 1305
1321
1337
1353
1369
1385
1401
1417
2 1433 | 1306
1322
1338
1354
1370
1370
1402
1418
1434 | 1307
1323
1339
1355
1371
1387
1403
1419
1435 | 1308
1324
1340
1356
1372
1388
1404
1420 | 1309
1325
1341
1357
1373
1389
1405
1421
1437 | 1310
1326
1342
1358
1374
1390
1406
1422
1438 | 1311
1327
1343
1359
1375
1391
1407
1423
1439
1455 | | 51_
52_
53_
54_
55_
56_
57_
58_ | 128
129
131:
132:
134
136
137
139
140
142 | 1281
3 1297
2 1313
8 1329
4 1345
0 1361
6 1377
2 1393
8 1409
4 1425
0 144 | 1282
1298
1314
1330
1330
1346
1362
1378
3 1394
1410
5 1426
1 1442 | 1283
1299
1315
1331
1347
2 1363
3 1379
4 1395
1411
3 1427
2 1443
3 1459 | 1300
1316
1332
1348
1364
1380
1396
1412
1428
1444 | 1301
1317
1333
1349
1365
1381
1397
1413
1429
1445
1445 | 1302
1318
1334
1350
1366
1382
1398
1414
1430
1446 | 1303
1319
1335
1351
1367
1383
1399
1415
1431
1447
1463 | 1304
1320
1336
1352
1368
1384
1400
1416
1432
1448 | 1305
1321
1337
1353
1369
1385
1401
1417
2 1433
1449
1 1465 | 1306
1322
1338
1354
1370
1370
1402
1402
1418
1434
1450
1466 | 1307
1323
1339
1355
1371
1387
1403
1419
1435
1451
1467 | 1308
1324
1340
1356
1372
1388
1404
1420
1436
1452 | 1309
1325
1341
1357
1373
1389
1405
1421
1437
2 1453
3 1469 | 1310
1326
1342
1358
1374
1390
1406
1422
1438
1454
1470 | 1311
1327
1343
1359
1375
1391
1407
1423
1439
1455
1471 | | 51_
52_
53_
54_
55_
56_
57_
58_
59_
5A | 1288
1299
1319
1329
1324
1326
1337
137
139
140
142
144
144
145 | 0 1281
3 1297
2 1313
8 1329
4 1348
0 1366
6 1377
2 1393
8 1400
4 1422
0 144
6 1457
2 1476 | 1282
7 1298
8 1314
9 1330
6 1346
1 1362
7 1378
8 1394
9 1410
5 1426
1 1442
7 1458
3 1474 | 1283
1299
1315
1331
1347
1 1363
1 1379
1 1395
1 1411
1 1427
2 1443
3 1459
4 1475 | 1300
1316
1332
1348
1364
1380
1396
1412
1428 | 1301
1317
1333
1349
1365
1381
1397
1413
1429
1445
1445
1461
13 1477 | 1302
1318
1334
1350
1366
1382
1398
1414
1430
1446
1462
1478 | 1303
1319
1335
1351
1367
1383
1399
1415
1431
1447
1463
1479 | 1304
1320
1336
1352
1368
1384
1400
1416
1432
1448
1464
1466
1486 | 1305
1321
1337
1353
1369
1385
1401
1417
2 1433
8 1449
1 1465
0 1483
1 1497 | 1306
1322
1338
1354
1370
1370
1386
1402
1418
1434
1450
1450
1450
1482
1482
1482
1482
1491
1492 | 1307
1323
1339
1355
1371
1387
1403
1419
1435
1451
1451
1467
2 1483
1499 | 1308
1324
1340
1356
1372
1388
1404
1420
1436
1452
1468 | 1309
1325
1341
1357
1373
1389
1405
1421
1437
2 1453
3 1469
4 1485
0 1501 | 1310
1326
1342
1358
1374
1390
1406
1422
1438
1454
1470
1486
1502 | 1311
1327
1343
1359
1375
1391
1407
1423
1439
1455
1471
1487
1503 | | 60_ 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 61_ 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1565 1567 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | - D | | | | | |--|--|--|--|--|--|--|--
--|--|--|--|--|--|---|--|--|--| | 61- | 60_ | | | | | | | | | | | | | | | | | | 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1580 1580 1581 1582 1583 1586 1587 1588 1589 1580 1587 1588 1589 | 61_ | 1552 | 1553 | 1554 | 1555 | 1576 | 1577 | 1578 | 1579 | 1580 | 1581 | | 1583 | | 66_ 682 683 684 685 686 687 688 689 680 681 682 683 684 685 686 687 688 689 680 681 682 683 684 685 686 687 688 689 680 681 682 683 684 685 686 687 688 689 689 680 681 682 683 684 685 686 687 688 689 689 680 681 682 683 684 685 686 687 688 689 689 680 681 682 683 684 685 686 687 688 689 689 680 681 682 683 684 685 686 687 688 689 | i | - 1 | | | | | | | | | | | | | | | | | 667 | | | | | | | | | | | | | | | | | | | 1945 1949 1959 1651 1652 1653 1664 1665 1666 1671 1672 1673 1674 1675 1676 1677 1678 1679 98. 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1685 99. 1680 1681 1682 1683 1684 1685 1686 1671 1672 1770 1770 1770 1770 1770 1770 1770 1770 90. 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 90. 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1730 90. 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 90. 1730 1741 1746 1747 1748 1748 1749 1740 1 | | | 1633 | 1634 | 1635 | 1636 | 1637 | | 1639 | | | | | | | | | | 60.4 666 607 668 669 7100 7101 7102 7103 7104 7105 7106 6107 668 6107 6108 669 7100 7101 7102 7103 7104 7105 7106 6107 6108 7105 7106 | | 1 | | | | | | | | 1656 | 1657 | | | | | | | | 686 1897 1898 1899 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1707 1708 1709 1708 1709
1709 1709 1709 1709 1709 1709 1709 1709 1709 1709 1709 1709 1709 1709 1709 1709 1709 1709 1 | | | | | | | | | | | | | | | | | | | Ge C 1712 1713 1714 1715 1716 1717 1718 1719 1729 1722 1723 1724 1725 1726 1727 1728 172 | 6A_ | | | | | | | | | | | | | | | | | | | Į. | į. | | 1714 | 1715 | 1716 | 1742 | 1743 | | Fig. 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1791 1791 1792 1792 1792 1792 1792 1792 1792 1792 1792 1792 1792 1792 1792 1792 1793 1794 1795 1795 1799 1790 1791 1792 | | | | | | | | | | | | | | | | | | | To 1792 1793 1794 1795 1796 1797 1798 1796 1800 1801 1802 1803 1804 1805 1806 1807 1714 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1824 1825 1826 1827 1828 1829 1830 1831 1833 1838 1835 1836 1837 1838 1839 1831 1835 1836 1837 1838 1839 1831 1835 18 | 6F_ | 1776 | | | | | | | | | | | | | | | | | 1808 1809 1810 1810 1810 1810 1813 1814 1815 1816 1817 1818 1819 1820 1823 1822 1822 1823 1824 1825 1824 1825 1826 1827 1828 1829 1823 1823 1834 1835 1834 | | | 1793 | 1794 | 1795 | 1796 | 1797 | 1798 | 1799 | 1800 | 1801 | 1802 | 1803 | 1804 | 1805 | | | | Table | | | | | | | | | 1815 | 1816 | 1817 | 1818 | 1819 | | | | | | T4 | | | | | | | | | | | | | | | | | | | 1872 | | 1856 | | | | | | | | | | | | | | | | | 1885 1890 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1903 1903 1904 1905 1903 1903 1904 1905 1903 1903 1904 1905 1903 1903 1904 1905 1903 1903 1904 1905 1903 1903 1904 1905 1903 1903 1904 1905 1903 1903 1904 1905 1903 1904 1905 1903 1904 1905 1903 1904 1905 1903 1904 1905 1906 1907 1908 1909 1907 1903 1903 1904 1905 1906 1907 1908 1909 1907 1903 1903 1904 1905 1906 1907 1908 1909 1907 1903 1903 1904 1905 1906 1907 1908 1909 1903 1904 1905 1903 1904 1905 1906 1907 1908 1909 1903 1904 1905 1906 1907 1908 1909 1903 1904 1905 1906 1907 1908 1909 1903 1904 1905 1906 1907 1908 1909 1903 1904 1905 1906 1907 1908 1909 1903 1904 1905 1906 1907 1908 1909 1903 1904 1905 1906 1907 | | | 1873 | 1874 | 1875 | 1876 | 1877 | 1878 | 1879 | 1880 | | | | | | | | | The | | | | | | | | | | | | | | | | 1902 | 1903 | | TAL 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1951 1951 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1940 1951 1960 1961 1962 1963 1964 1965 1966 1967 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1980 1981 1982 1983 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1989 1989 1981 1982 1983 1989 1981 1982 1983 1989 1989 1989 1989 1989 1989 1989 1989 1989 1989 1989 1989 1980 1981 1982 1988 1989 1980 1981 1982 1988 1989 1980 1981 1982 1983 1989 1980 1981 1982 1983 1980 1981 1982 1983 1980 1981 1982 1983 1980 1981 1982 1983 1980 1981 1982 1983 1980 1981 1982 1983 1980 1981 1982 1983 1980 1981 1982 1983 1980 1981 1982 1 | 78_ | 1 | | | | | | | | | | | | | | | | | The | | | 1937 | 1938 | 1939 | 1940 | | | | | | | | | | | | | TD_ 2001 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2020 2021 2021 2022 2023 2024 2025 2026 2027 2028 2029 2020 2021 2021 2022 2023 2024 2025 2026 2027 2028 2029 2020 2021 2021 2021 2022 2023 2024 2025 2026 2027 2028 2029 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2020 2021 2022 2023 2024 2024 2044 2042 2043 2044 2045 2046 2047 2078 2084 2085 2086 2087 2085 2085 2086 2087 2085 2086 2 | | | | | | | | | | | | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | | The | | 1 | | | | | | | | | | | | | | | | | TF_ 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2020 2021 2020 2 | | 2000 | 2001 | | | | | | | | | | | | | | | | No. | | | | | | | | | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | | | | | 80_ 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 81_ 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 82_ 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2009 2092 2093 2094 2095 83_ 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 84_ 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 85_ 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 86_ 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 87_ 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 88_ 2179 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 88_ 2289 2209 2210 2211 2212 2213 2214 2215 2152 2153 88_ 2159 2194 2195 2196 2197 2198 2199 2100 2201 2202 2203 2204 2205 2206 2207 88_ 2284 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 8C_ 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2225 2253 2254 2255 85_ 2556 2257 2258 2259 2200 2201 2202 2203 2231 2232 2233 2234 2255 2256 2257 2258 2259 2200 2201 2202 2203 2231 2232 2233 2234 2255 2256 2257 2258 2259 2200 2201 2202 2203 2231 2232 2233 2234 2255 2258 2257 2258 2259 2200 2201 2202 2203 2231 2232 2233 2234 2255 2258 2257 2258 2259 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2200 2201 2202 2203 2231 2232 2232 2232 | | 2002 | 2000 | 2034 | 2035 | 2036 | 2037 | 2038 | 2039 | 2040 | 2041 | 2042 | 2043 | 2044 | 2045 | 2046 | 2047 | | 81_ 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 82_ 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 83_ 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 84_ 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2114 2125 2126 2127 85_ 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 86_ 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 87_ 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 88_ 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2167 2171 2172 2173 2174 2175 88_ 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2201 2202 2003 2204 2205 2206 2207 88_ 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 88_ 2244 2245 2246 2247 2248 2249 2240 2241 2242 2245 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2297 2271 8E_ 2272 2273 2274 2275 2276 2271 2278 2279 2280 2291 2292 2293 2294 2295 2290 2291 2292 2293 2294 2295 2290 2291 2292 2293 2294 2295 2296 2297 2288 2299 2290 2291 2292 2293 2294 2295 2296 2297 2288 2299 2290 2291 2292 2293 2294 2295 2296 2297 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2288 2299 2300 2301 2302 2303 90_ 2304 2305 2306 2307 2308 2309 2304 2305 2306 2307 2308 2309 2304 2305 2306 2307 2308 2309 2301 2302 2303 2301 2302 2303 90_ 2304 2305 2306 2307 2308 2309 2301 2301 2302 2303 2301 2302 2303 2301 2302 2303 2301 2302 2303 2304 2305 2306 2307 2308 2309 2301 2302 2303 2301 2302 2303 2301 2302 2303 2301 2302 2303 2304 2305 2306 2307 2308 2309 2304 2305 2306 2307 2308 2309 2309 2309 2309 2309 2309 2309 2309 | | + | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | С | D | Е | F | | 82 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 83_ 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2123 2114 2142 2142 2142 2142 2142 2142 2143 2144 2145 2146 2156 2157 2158 2159 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2190 2200 2201 2217 2173 2175< | | | | | | | | | | | | | | | | 2062 | 2063 | | 83_ 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 84_ 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 85_ 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 86_ 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 87_ 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 88_ 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 89_ 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 8A_ 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 8C_ 2244 2245 2246 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 8D_ 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 8F_ 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2280 2281 2328 2283 2284 2285 2286 2287 8F_ 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 90_ 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 91_ 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2300 2301 2302 2303 92_ 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2355 2366 2367 2366 2367 2368 2366 2367 2368 2366 2367 2368 2366 2367 2366 2367 2368 2366 2367 2368 2366 2367 2368 2366 2367 2368 2366 2367 2368 2366 2367 2368 2366 2367 2368 2366 2367 2368 2366 2367 2368 236 | | | | | | 2000 | 2009 | 2070 | 2071 | 20172 | 2073 | | | | | | | | 86_ 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 88_ 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 280_ 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 288_ 2228 2220 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2201 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2201 2202 2203 2204 2205 2206 2207 288_ 2224 2225 2226 2227 2228 2229 2220 2221 2221 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 224 2225 2226 2227 2228 2229 2220 2221 2222 2223 2231 2232 2233 2234 2235 2236 2237 2238 2239 2261 2262 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2290 2201 2202 2203 2204 2205 2266 2267 2268 2269 2270 2271 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 90_ 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2325 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2388 2389 2390 2301 2302 2303 2304 2335 2336 2337 2338 2339 2304 2341 2342 2345 2346 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2394 2365 2366 2367 2362 2363 2364 2365 2366 2367 2369 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2390 2301 2302 2303 2304 2365 2366 2367 2368
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2390 2391 2392 2393 2394 2395 2396 2396 2397 2398 2399 2396 2305 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2399 2390 2391 2392 2392 2392 2392 2392 2392 2392 | 1 | 10000 | 2001 | 2082 | 2083 | 2084 | | | | | | | | | | | | | 86_ 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 87_ 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 88_ 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 8A_ 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2200 2201 2202 2203 8B_ 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 8C_ 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 254 2255 8D_ 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2268 2268 2267 2268 2268 | 1 2/1 | | 2097 | 2098 | 2099 | | 2085 | 2086 | 2087 | 2088 | 2089 | 2090 | 2091 | 2092 | 2093 | 2094 | 2095 | | 87_ 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 88_ 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 89_ 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 88_ 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 88_ 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2238 8C_ 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 8B_ 2276 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2266 2266 2266 2267 2268 2269 2270 2271 8F_ 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 90_ 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 91_ 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 93_ 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 94_ 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 95_ 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 96_ 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 97_ 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 98_ 2432 2433 2434 2435 2436 2457 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2488 2489 2490 2491 2490 | | 2112 | 2097
2113 | 2098
2114 | 2099
2115 | 2100
2116 | 2085
2101
2117 | 2086
2102
2118 | 2087
2103
2119 | 2088
2104
2120 | 2089
2105
2121 | 2090
2106
2122 | 2091
2107
2123 | 2092
2108
2124 | 2093
2109 | 2094
2110 | 2095
2111 | | 88_ beta beta beta beta beta beta beta beta | 85_ | 2112
2128 | 2097
2113
2129 | 2098
2114
2130 | 2099
2115
2131 | 2100
2116
2132 | 2085
2101
2117
2133 | 2086
2102
2118
2134 | 2087
2103
2119
2135 | 2088
2104
2120
2136 | 2089
2105
2121
2137 | 2090
2106
2122
2138 | 2091
2107
2123
2139 | 2092
2108
2124
2140 | 2093
2109
2125
2141 | 2094
2110
2126
2142 | 2095
2111
2127
2143 | | 8A_ 2198 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2221 2222 2233 2233 2233 2233 2235 2235 2237 2238 2239 8C_ 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2253 2253 2253 2253 2254 2255 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2299 2300 | 85_
86_
87_ | 2112
2128
2144 | 2097
2113
2129
2145 | 2098
2114
2130
2146 | 2099
2115
2131
2147 | 2100
2116
2132
2148 | 2085
2101
2117
2133
2149 | 2086
2102
2118
2134
2150 | 2087
2103
2119
2135
2151 | 2088
2104
2120
2136
2152 | 2089
2105
2121
2137
2153 | 2090
2106
2122
2138
2154 | 2091
2107
2123
2139
2155 | 2092
2108
2124
2140
2156 | 2093
2109
2125
2141
2157 | 2094
2110
2126
2142
2158 | 2095
2111
2127
2143
2159 | | 8B_ 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2235 2235 2235 2236 2237 2238 2238 8C_ 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 8D_ 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2288 2289 2270 2271 8E_ 2272 2273 2274 2275 2276 2277 2278 2297 2280 2281 2282 2283 2284 2285 2286 2287 90_ 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2316 2317 2318 2319 91_ 2304 2352 <t< td=""><th>85_
86_
87_
88_</th><td>2112
2128
2144
2160
2176</td><td>2097
2113
2129
2145
2161
2177</td><td>2098
2114
2130
2146
2162
2178</td><td>2099
2115
2131
2147
2163
2179</td><td>2100
2116
2132
2148
2164
2180</td><td>2085
2101
2117
2133
2149
2165
2181</td><td>2086
2102
2118
2134
2150
2166
2182</td><td>2087
2103
2119
2135
2151
2167
2183</td><td>2088
2104
2120
2136
2152
2168
2184</td><td>2089
2105
2121
2137
2153
2169
2185</td><td>2090
2106
2122
2138
2154
2170</td><td>2091
2107
2123
2139
2155
2171</td><td>2092
2108
2124
2140
2156
2172</td><td>2093
2109
2125
2141
2157
2173</td><td>2094
2110
2126
2142
2158
2174</td><td>2095
2111
2127
2143
2159
2175</td></t<> | 85_
86_
87_
88_ | 2112
2128
2144
2160
2176 | 2097
2113
2129
2145
2161
2177 | 2098
2114
2130
2146
2162
2178 | 2099
2115
2131
2147
2163
2179 | 2100
2116
2132
2148
2164
2180 | 2085
2101
2117
2133
2149
2165
2181 | 2086
2102
2118
2134
2150
2166
2182 | 2087
2103
2119
2135
2151
2167
2183 | 2088
2104
2120
2136
2152
2168
2184 | 2089
2105
2121
2137
2153
2169
2185 | 2090
2106
2122
2138
2154
2170 | 2091
2107
2123
2139
2155
2171 | 2092
2108
2124
2140
2156
2172 | 2093
2109
2125
2141
2157
2173 | 2094
2110
2126
2142
2158
2174 | 2095
2111
2127
2143
2159
2175 | | 8C_ 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 8D_ 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2268 2269 2271 2271 8F_ 2272 2273 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 8F_ 2288 2289 2290 2291 2293 2294 2295 2296 2297 2288 2289 2299 2300 2301 2302 2303 90_ 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 91_ 2302 2321 2322 2323 2324 2325 2326 2327 2328 2330 2331 </td <th>85_
86_
87_
88_
89_</th> <td>2112
2128
2144
2160
2176
2192</td> <td>2097
2113
2129
2145
2161
2177
2193</td> <td>2098
2114
2130
2146
2162
2178
2194</td> <td>2099
2115
2131
2147
2163
2179
2195</td> <td>2100
2116
2132
2148
2164
2180
2196</td> <td>2085
2101
2117
2133
2149
2165
2181
2197</td> <td>2086
2102
2118
2134
2150
2166
2182
2198</td> <td>2087
2103
2119
2135
2151
2167
2183
2199</td> <td>2088
2104
2120
2136
2152
2168
2184
2200</td> <td>2089
2105
2121
2137
2153
2169
2185
2201</td> <td>2090
2106
2122
2138
2154
2170
2186
2202</td> <td>2091
2107
2123
2139
2155
2171
2187
2203</td> <td>2092
2108
2124
2140
2156
2172
2188
2204</td> <td>2093
2109
2125
2141
2157
2173
2189
2205</td> <td>2094
2110
2126
2142
2158
2174
2190
2206</td> <td>2095
2111
2127
2143
2159
2175
2191
2207</td> | 85_
86_
87_
88_
89_ | 2112
2128
2144
2160
2176
2192 | 2097
2113
2129
2145
2161
2177
2193 | 2098
2114
2130
2146
2162
2178
2194 | 2099
2115
2131
2147
2163
2179
2195 | 2100
2116
2132
2148
2164
2180
2196 | 2085
2101
2117
2133
2149
2165
2181
2197 | 2086
2102
2118
2134
2150
2166
2182
2198 | 2087
2103
2119
2135
2151
2167
2183
2199 | 2088
2104
2120
2136
2152
2168
2184
2200 | 2089
2105
2121
2137
2153
2169
2185
2201 | 2090
2106
2122
2138
2154
2170
2186
2202 | 2091
2107
2123
2139
2155
2171
2187
2203 | 2092
2108
2124
2140
2156
2172
2188
2204 | 2093
2109
2125
2141
2157
2173
2189
2205 | 2094
2110
2126
2142
2158
2174
2190
2206 | 2095
2111
2127
2143
2159
2175
2191
2207 | | SB 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 8F 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 8F 2288 2289 2290 2291 2293 2294 2295 2296 2297 2288 2289 2280 2301 2302 2302 2303 2302 2303 2303 2303 2303 2303 2303 2303 2303 2303 2316 2317 2318 2319 91 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 93 2352 2353 2354 2355 2356 2357 | 85_
86_
87_
88_
89_
8A_
8B_ | 2112
2128
2144
2160
2176
2192
2208
2224 |
2097
2113
2129
2145
2161
2177
2193
2209 | 2098
2114
2130
2146
2162
2178
2194
2210 | 2099
2115
2131
2147
2163
2179
2195
2211 | 2100
2116
2132
2148
2164
2180
2196
2212 | 2085
2101
2117
2133
2149
2165
2181
2197
2213 | 2086
2102
2118
2134
2150
2166
2182
2198
2214 | 2087
2103
2119
2135
2151
2167
2183
2199
2215 | 2088
2104
2120
2136
2152
2168
2184
2200
2216 | 2089
2105
2121
2137
2153
2169
2185
2201
2217 | 2090
2106
2122
2138
2154
2170
2186
2202
2218 | 2091
2107
2123
2139
2155
2171
2187
2203
2219 | 2092
2108
2124
2140
2156
2172
2188
2204
2220 | 2093
2109
2125
2141
2157
2173
2189
2205
2221 | 2094
2110
2126
2142
2158
2174
2190
2206
2222 | 2095
2111
2127
2143
2159
2175
2191
2207
2223 | | 8F_ 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2284 2285 2286 2287 90_ 2304 2305 2306 2307 2308 2309 2311 2312 2313 2314 2315 2316 2317 2318 2319 91_ 2320 2321 2322 2323 2324 2325 2326 2327 2328 2330 2331 2332 2333 2334 2335 92_ 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2352 2352 2352 2352 2352 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 94_ 2368 2369 2371 | 85_
86_
87_
88_
89_
8A_
8B_
8C_ | 2112
2128
2144
2160
2176
2192
2208
2224
2240 | 2097
2113
2129
2145
2161
2177
2193
2209
2225
2241 | 2098
2114
2130
2146
2162
2178
2194
2210
2226
2242 | 2099
2115
2131
2147
2163
2179
2195
2211
2227
2243 | 2100
2116
2132
2148
2164
2180
2196
2212
2228
2244 | 2085
2101
2117
2133
2149
2165
2181
2197
2213
2229
2245 | 2086
2102
2118
2134
2150
2166
2182
2198
2214
2230
2246 | 2087
2103
2119
2135
2151
2167
2183
2199
2215
2231
2247 | 2088
2104
2120
2136
2152
2168
2184
2200
2216
2232
2248 | 2089
2105
2121
2137
2153
2169
2185
2201
2217
2233
2249 | 2090
2106
2122
2138
2154
2170
2186
2202
2218
2234
2250 | 2091
2107
2123
2139
2155
2171
2187
2203
2219
2235
2251 | 2092
2108
2124
2140
2156
2172
2188
2204
2220
2236
2252 | 2093
2109
2125
2141
2157
2173
2189
2205
2221
2237 | 2094
2110
2126
2142
2158
2174
2190
2206
2222
2238 | 2095
2111
2127
2143
2159
2175
2191
2207
2223
2239 | | 90_ 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 91_ 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2332 2334 2335 92_ 2368 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 93_ 2352 2353 2354 2355 2356 2357 2358 2360 2361 2362 2363 2364 2365 2366 2367 94_ 2368 2369 2370 2371 2372 2373 2374 2375 2378 2379 2380 2381 2382 2389 2399 2392 2393 2394 2395 2396 2397 | 85_
86_
87_
88_
89_
8A_
8B_
8C_
8D_ | 2112
2128
2144
2160
2176
2192
2208
2224
2240
2256 | 2097
2113
2129
2145
2161
2177
2193
2209
2225
2241
2257 | 2098
2114
2130
2146
2162
2178
2194
2210
2226
2242
2258 | 2099
2115
2131
2147
2163
2179
2195
2211
2227
2243
2259 | 2100
2116
2132
2148
2164
2180
2196
2212
2228
2244
2260 | 2085
2101
2117
2133
2149
2165
2181
2197
2213
2229
2245
2261 | 2086
2102
2118
2134
2150
2166
2182
2198
2214
2230
2246
2262 | 2087
2103
2119
2135
2151
2167
2183
2199
2215
2231
2247
2263 | 2088
2104
2120
2136
2152
2168
2184
2200
2216
2232
2248
2264 | 2089
2105
2121
2137
2153
2169
2185
2201
2217
2233
2249
2265 | 2090
2106
2122
2138
2154
2170
2186
2202
2218
2234
2250
2266 | 2091
2107
2123
2139
2155
2171
2187
2203
2219
2235
2251
2267 | 2092
2108
2124
2140
2156
2172
2188
2204
2220
2236
2252
2268 | 2093
2109
2125
2141
2157
2173
2189
2205
2221
2237
2253
2269 | 2094
2110
2126
2142
2158
2174
2190
2206
2222
2238
2254
2270 | 2095
2111
2127
2143
2159
2175
2191
2207
2223
2239
2255
2271 | | 91_ 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2334 2335 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2391 2392 2393 2394 2395 2396 2397 2398 2399 2391 2392 2393 2394 2395 2396 2397 2398 2399 2391 2392 2393 2394 2395 2396 2397 2398 2399 2391 2392 2393 2394 2395 2396 2397 2398 2399 2391 2392 2393 2394 2395 2396 2397 2398 2399 2391 2392 2393 2394 2395 2396 2397 2398 2399 2391 2392 2393 2394 2395 2396 2397 2398 2399 2391 2392 2393 2394 2395 2396 2397 2398 2399 2391 2392 2393 2394 2395 2396 2397 2398 2399 2394 2410 2411 2412 2413 2413 2414 2415 2412 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2482 2483 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2490 2491 2492 2493 2494 2495 2496 2491 2492 2493 2494 2495 2512 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2545 2545 2545 2545 2556 2557 2586 2527 2545 2545 2545 2545 2545 2545 2545 | 85_
86_
87_
88_
89_
8A_
8B_
8C_
8D_
8E_ | 2112
2128
2144
2160
2176
2192
2208
2224
2240
2256
2272 | 2097
2113
2129
2145
2161
2177
2193
2209
2225
2241
2257
2273 | 2098
2114
2130
2146
2162
2178
2194
2210
2226
2242
2258
2274 | 2099
2115
2131
2147
2163
2179
2195
2211
2227
2243
2259
2275 | 2100
2116
2132
2148
2164
2180
2196
2212
2228
2244
2260
2276 | 2085
2101
2117
2133
2149
2165
2181
2197
2213
2229
2245
2261
2277 | 2086
2102
2118
2134
2150
2166
2182
2198
2214
2230
2246
2262
2278 | 2087
2103
2119
2135
2151
2167
2183
2199
2215
2231
2247
2263
2279 | 2088
2104
2120
2136
2152
2168
2184
2200
2216
2232
2248
2264
2280 | 2089
2105
2121
2137
2153
2169
2185
2201
2217
2233
2249
2265
2281 | 2090
2106
2122
2138
2154
2170
2186
2202
2218
2234
2250
2266
2282 | 2091
2107
2123
2139
2155
2171
2187
2203
2219
2235
2251
2267
2283 | 2092
2108
2124
2140
2156
2172
2188
2204
2220
2236
2252
2268
2284 | 2093
2109
2125
2141
2157
2173
2189
2205
2221
2237
2253
2269
2285 | 2094
2110
2126
2142
2158
2174
2190
2206
2222
2238
2254
2270
2286 | 2095
2111
2127
2143
2159
2175
2191
2207
2223
2239
2255
2271
2287 | | 93_ 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 94_ 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 95_ 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 96_ 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 97_ 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 98_ 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 98_ 2432 2433 2434 2455 2456 2457 2458 2459 2460 2461 2462 2463 99_ 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 98_ 2462 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 98_ 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 9C_ 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 9E_ 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 97_ 2544 2545 2546 2531 2531 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 | 85_
86_
87_
88_
89_
8A_
8B_
8C_
8D_
8E_
8F_ | 2112
2128
2144
2160
2176
2192
2208
2224
2240
2256
2272
2288 | 2097
2113
2129
2145
2161
2177
2193
2209
2225
2241
2257
2273
2289 | 2098
2114
2130
2146
2162
2178
2194
2210
2226
2242
2258
2274
2290 | 2099
2115
2131
2147
2163
2179
2195
2211
2227
2243
2259
2275
2291 | 2100
2116
2132
2148
2164
2180
2196
2212
2228
2244
2260
2276
2292 | 2085
2101
2117
2133
2149
2165
2181
2197
2213
2229
2245
2261
2277
2293 | 2086
2102
2118
2134
2150
2166
2182
2198
2214
2230
2246
2262
2278
2294 |
2087
2103
2119
2135
2151
2167
2183
2199
2215
2231
2247
2263
2279
2295 | 2088
2104
2120
2136
2152
2168
2184
2200
2216
2232
2248
2264
2280
2296 | 2089
2105
2121
2137
2153
2169
2185
2201
2217
2233
2249
2265
2281
2297 | 2090
2106
2122
2138
2154
2170
2186
2202
2218
2234
2250
2266
2282
2298 | 2091
2107
2123
2139
2155
2171
2187
2203
2219
2235
2251
2267
2283
2299 | 2092
2108
2124
2140
2156
2172
2188
2204
2220
2236
2252
2268
2284
2300 | 2093
2109
2125
2141
2157
2173
2189
2205
2221
2237
2253
2269
2285
2301 | 2094
2110
2126
2142
2158
2174
2190
2206
2222
2238
2254
2270
2286
2302 | 2095
2111
2127
2143
2159
2175
2191
2207
2223
2239
2255
2271
2287
2303 | | 94_ 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 95_ 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 96_ 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 98_ 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 94_ 2465 2466 2467 2468 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 9C_ 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 | 85_
86_
87_
88_
89_
8A_
8B_
8C_
8D_
8E_
8F_
90_
91_ | 2112
2128
2144
2160
2176
2192
2208
2224
2240
2256
2272
2288
2304
2320 | 2097
2113
2129
2145
2161
2177
2193
2209
2225
2241
2257
2273
2289
2305
2321 | 2098
2114
2130
2146
2162
2178
2194
2210
2226
2242
2258
2274
2290
2306
2322 | 2099
2115
2131
2147
2163
2179
2195
2211
2227
2243
2259
2275
2291
2307
2323 | 2100
2116
2132
2148
2164
2180
2196
2212
2228
2244
2260
2276
2292
2308
2324 | 2085
2101
2117
2133
2149
2165
2181
2197
2213
2229
2245
2261
2277
2293
2309
2325 | 2086
2102
2118
2134
2150
2166
2182
2198
2214
2230
2246
2262
2278
2294
2310
2326 | 2087
2103
2119
2135
2151
2167
2183
2199
2215
2231
2247
2263
2279
2295
2311
2327 | 2088
2104
2120
2136
2152
2168
2184
2200
2216
2232
2248
2264
2280
2296 | 2089
2105
2121
2137
2153
2169
2185
2201
2217
2233
2249
2265
2281
2297
2313 | 2090
2106
2122
2138
2154
2170
2186
2202
2218
2234
2250
2266
2282
2298
2314 | 2091
2107
2123
2139
2155
2175
2283
2219
2235
2251
2267
2283
2299
2315 | 2092
2108
2124
2140
2156
2172
2188
2204
2220
2236
2252
2268
2284
2300
2316 | 2093
2109
2125
2141
2157
2173
2189
2205
2221
2237
2253
2269
2285
2301
2317 | 2094
2110
2126
2142
2158
2174
2190
2206
2222
2238
2254
2270
2286
2302
2318 | 2095
2111
2127
2143
2159
2175
2191
2207
2223
2239
2255
2271
2287
2303
2319 | | 95_ 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 96_ 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 298_ 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 9A_ 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 9B_ 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 9B_ 2500 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 9F_ 2528 2529 2530 2531 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 | 85_
86_
87_
88_
89_
8A_
8B_
8C_
8D_
8E_
8F_
90_
91_
92_ | 2112
2128
2144
2160
2176
2192
2208
2224
2240
2256
2272
2288
2304
2320
2336 | 2097
2113
2129
2145
2161
2177
2193
2209
2225
2241
2257
2273
2289
2305
2321
2337 | 2098
2114
2130
2146
2162
2178
2194
2210
2226
2242
2258
2274
2290
2306
2322
2338 | 2099
2115
2131
2147
2163
2179
2195
2211
2227
2243
2259
2275
2291
2307
2323
2339 | 2100
2116
2132
2148
2164
2196
2212
2228
2244
2260
2276
2292
2308
2324
2340 | 2085
2101
2117
2133
2149
2165
2181
2197
2213
2229
2245
2261
2277
2293
2309
2325
2341 | 2086
2102
2118
2134
2150
2166
2182
2198
2214
2230
2246
2262
2278
2294
2310
2326
2342 | 2087
2103
2119
2135
2151
2167
2183
2199
2215
2231
2247
2263
2279
2295
2311
2327
2327
2343 | 2088
2104
2120
2136
2152
2168
2184
2200
2216
2232
2248
2264
2280
2296
2312
2328
2328
2344 | 2089
2105
2121
2137
2153
2169
2185
2201
2217
2233
2249
2265
2281
2297
2313
2329
2345 | 2090
2106
2122
2138
2154
2170
2186
2202
2218
2234
2250
2266
2282
2298
2314
2330
2346 | 2091
2107
2123
2139
2155
2171
2187
2203
2219
2235
2251
2267
2283
2299
2315
2331
2347 | 2092
2108
2124
2140
2156
2172
2188
2204
2220
2236
2252
2268
2284
2300
2316
2332
2348 | 2093
2109
2125
2141
2157
2173
2173
2205
2221
2237
2253
2269
2285
2301
2317
2333
2349 | 2094
2110
2126
2142
2158
2174
2190
2206
2222
2238
2254
2270
2286
2302
2318
2334
2350 | 2095
2111
2127
2143
2159
2175
2191
2207
2223
2239
2255
2271
2287
2303
2319
2335
2351 | | 97_ 2416 2407 2408 2409 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 98_ 98_ 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 99_ 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 98_ 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 99_ 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 9F_ 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 | 85_
86_
87_
88_
88_
8A_
8B_
8C_
8D_
8F_
90_
91_
92_
93_ | 2112
2128
2144
2160
2176
2192
2208
2224
2240
2256
2272
2288
2304
2320
2336
2352 | 2097
2113
2129
2145
2161
2177
2193
2209
2225
2241
2257
2273
2289
2305
2321
2337
2353 | 2098
2114
2130
2146
2162
2178
2194
2210
2226
2242
2258
2274
2290
2306
2322
2338
2354 | 2099
2115
2131
2147
2163
2179
2295
2211
2227
2243
2259
2275
2291
2307
2323
2339
2355 | 2100
2116
2132
2148
2164
2196
2212
2228
2244
2260
2276
2292
2308
2324
2340
2356 | 2085
2101
2117
2133
2149
2165
2181
2197
2213
2229
2245
2261
2277
2293
2309
2325
2341
2357 | 2086
2102
2118
2134
2150
2166
2182
2198
2214
2230
2246
2262
2278
2294
2310
2326
2342
2358 | 2087
2103
2119
2135
2151
2167
2183
2199
2215
2231
2247
2263
2279
2295
2311
2327
2343
2359 | 2088
2104
2120
2136
2152
2168
2184
2200
2216
2232
2248
2264
2280
2290
2312
2328
2328
2344
2360 | 2089
2105
2121
2137
2153
2169
2185
2201
2217
2233
2249
2265
2281
2297
2313
2329
2345
2361 | 2090
2106
2122
2138
2154
2170
2186
2202
2218
2234
2250
2266
2282
2298
2314
2330
2346
2362 | 2091
2107
2123
2139
2155
2171
2187
2203
2219
2235
2251
2267
2283
2299
2315
2331
2347
2363 | 2092
2108
2124
2140
2156
2172
2188
2204
2220
2236
2252
2268
2284
2300
2316
2332
2348
2364 | 2093
2109
2125
2141
2157
2173
2173
2205
2221
2237
2253
2269
2285
2301
2317
2333
2349
2365 | 2094
2110
2126
2142
2158
2174
2190
2206
2222
2238
2254
2270
2286
2302
2318
2334
2350
2366 | 2095
2111
2127
2143
2159
2175
2191
2207
2223
2239
2255
2271
2303
2319
2335
2351
2367 | | 98_ 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 99_ 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 98_ 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 98_ 2480 2481 2482 2483 2484 2485
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 99_ 2540 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 99_ 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 99_ 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 99_ 2544 2545 2546 2547 2548 2549 2549 2549 2549 2549 2549 2549 2549 | 85_
86_
87_
88_
88_
8A_
8B_
8C_
8D_
8E_
91_
92_
93_ | 2112
2128
2144
2160
2176
2192
2208
2224
2240
2256
2272
2288
2304
2336
2352
2368
2384 | 2097
2113
2129
2145
2161
2177
2193
2209
2225
2241
2257
2273
2289
2305
2321
2337
2353
2369
2385 | 2098
2114
2130
2146
2162
2178
2194
2210
2226
2242
2258
2274
2290
2306
2322
2338
2354
2370
2386 | 2099
2115
2131
2147
2163
2179
2195
2211
2227
2243
2259
2275
2291
2307
2323
2339
2355
2371
2387 | 2100
2116
2132
2148
2164
2196
2212
2228
2244
2260
2276
2292
2308
2324
2340
2356
2372
2388 | 2085
2101
2117
2133
2149
2165
2181
2197
2213
2229
2245
2261
2277
2293
2309
2325
2341
2357
2373
2389 | 2086
2102
2118
2134
2150
2166
2182
2198
2214
2230
2246
2262
2278
2294
2310
2326
2342
2358
2374
2390 | 2087
2103
2119
2135
2151
2167
2183
2199
2215
2231
2247
2263
2279
2295
2311
2327
2343
2359
2375 | 2088
2104
2120
2136
2152
2168
2184
2200
2216
2232
2248
2264
2280
2296
2312
2328
2328
2344
2360
2376 | 2089
2105
2121
2137
2153
2169
2185
2201
2217
2233
2249
2265
2281
2297
2313
2329
2345
2361
2377 | 2090
2106
2112
2138
2154
2170
2186
2202
2218
2234
2250
2266
2282
2298
2314
2330
2346
2362
2378 | 2091
2107
2123
2139
2155
2171
2187
2203
2219
2235
2251
2267
2283
2299
2315
2331
2347
2363
2379 | 2092
2108
2124
2140
2156
2172
2188
2204
2226
2236
2252
2268
2284
2300
2316
2332
2348
2348
2364
2380 | 2093
2109
2125
2141
2157
2173
2189
2205
2221
2237
2253
2269
2285
2301
2317
2337
2349
2365
2381 | 2094
2110
2126
2142
2158
2174
2190
2206
2222
2238
2254
2270
2286
2302
2318
2335
2356
2366
2382 | 2095
2111
2127
2143
2159
2175
2191
2207
2223
2239
2255
2271
2287
2303
2319
2335
2351
2367
2383 | | 99_ 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9B_ 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9C_ 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9B_ 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9F_ 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 | 85_
86_
87_
88_
89_
8A_
8B_
8C_
8D_
90_
91_
92_
93_
94_
95_ | 2112
2128
2144
2160
2176
2192
2208
2224
2240
2256
2272
2288
2304
2320
2336
2352
2368
2364
2400 | 2097
2113
2129
2145
2161
2177
2193
2209
2225
2241
2257
2273
2289
2305
2321
2337
2353
2369
2385
2401 | 2098
2114
2130
2146
2162
2178
2194
2210
2226
2242
2258
2274
2290
2306
2322
2338
2354
2370
2386
2402 | 2099
2115
2131
2147
2163
2179
2195
2211
2227
2243
2259
2275
2291
2307
2323
2339
2355
2371
2387
2403 | 2100
2116
2132
2148
2164
2196
2212
2228
2244
2260
2276
2292
2308
2324
2340
2356
2372
2388
2404 | 2085
2101
2117
2133
2149
2165
2181
2197
2213
2229
2245
2261
2277
2293
2309
2325
2341
2357
2373
2389
2405 | 2086
2102
2118
2134
2150
2166
2182
2198
2214
2230
2246
2262
2278
2294
2310
2326
2342
2358
2374
2390
2406 | 2087
2103
2119
2135
2151
2167
2183
2199
2215
2231
2247
2263
2279
2295
2311
2327
2343
2359
2375
2391
2407 | 2088
2104
2120
2136
2152
2168
2184
2200
2216
2232
2248
2264
2280
2296
2312
2328
2344
2360
2376
2392
2408 | 2089
2105
2121
2137
2153
2169
2185
2201
2217
2233
2249
2265
2281
2297
2313
2329
2345
2361
2377
2393
2409 | 2090
2106
2122
2138
2154
2170
2186
2202
2218
2234
2250
2266
2282
2298
2314
2330
2346
2362
2378
2378
2394
2410 | 2091
2107
2123
2139
2155
2171
2187
2203
2219
2235
2251
2267
2283
2299
2315
2347
2363
2379
2379
2395
2411 | 2092
2108
2114
2140
2156
2172
2188
2204
2220
2236
2252
2268
2284
2300
2316
2332
2348
2364
2380
2396
2412 | 2093
2109
2125
2141
2157
2173
2189
2205
2221
2237
2253
2269
2285
2301
2317
2333
2349
2365
2381
2397
2413 | 2094
2110
2126
2142
2158
2174
2190
2206
2222
2238
2254
2270
2286
2302
2318
2334
2350
2366
2382
2398
2414 | 2095
2111
2127
2143
2159
2175
2191
2207
2223
2239
2255
2271
2287
2303
2319
2335
2351
2367
2383
2399
2415 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 85_
86_
87_
88_
89_
8A_
8C_
8D_
8E_
90_
91_
92_
93_
94_
95_
97_
98_ | 2112
2128
2144
2160
2176
2192
2208
2224
2240
2256
2272
2288
2304
2320
2336
2352
2368
2364
2400
2416 | 2097
2113
2129
2145
2161
2177
2193
2209
2225
2241
2257
2273
2289
2305
2321
2337
2353
2369
2385
2401
2417 | 2098
2114
2130
2146
2162
2178
2194
2210
2226
2242
2258
2274
2290
2306
2322
2338
2354
2370
2386
2402
2418 | 2099
2115
2131
2147
2163
2179
2195
2211
2227
2243
2259
2275
2291
2307
2323
2339
2355
2371
2387
2403
2419 | 2100
2116
2132
2148
2164
2196
2212
2228
2244
2260
2276
2292
2308
2324
2340
2356
2372
2388
2404
2420 | 2085
2101
2117
2133
2149
2165
2181
2197
2213
2229
2245
2261
2277
2293
2309
2325
2341
2357
2373
2389
2405
2421 | 2086
2102
2118
2134
2150
2166
2182
2218
2214
2230
2246
2262
2278
2294
2310
2326
2342
2358
2374
2394
2406
2406
2422 | 2087
2103
2119
2135
2151
2167
2183
2199
2215
2231
2247
2263
2279
2295
2311
2327
2343
2359
2375
2391
2407
2423 | 2088
2104
2120
2136
2152
2168
2184
2200
2216
2232
2248
2264
2280
2296
2312
2328
2344
2360
2376
2392
2408
2424 | 2089
2105
2121
2137
2153
2169
2185
2201
2217
2233
2249
2265
2281
2297
2313
2329
2345
2361
2377
2393
2409
2425 | 2090
2106
2122
2138
2154
2170
2186
2202
2218
2234
2250
2266
2282
2298
2314
2330
2346
2362
2378
2410
2426 | 2091
2107
2123
2139
2155
2171
2187
2203
2219
2235
2251
2267
2283
2299
2315
2347
2363
2379
2411
2427 | 2092
2108
2114
2140
2156
2172
2188
2204
2236
2252
2268
2252
2348
2300
2316
2332
2348
2364
2386
2412
2428 | 2093
2109
2125
2141
2157
2173
2189
2205
2221
2237
2253
2269
2285
2301
2317
2333
2349
2365
2381
2397
2413
2429 | 2094
2110
2126
2142
2158
2174
2190
2206
2222
2238
2254
2270
2286
2302
2318
2334
2350
2366
2382
2414
2430 | 2095
2111
2127
2143
2159
2175
2191
2207
2223
2239
2255
2271
2287
2303
2319
2335
2351
2367
2383
2399
2415
2431 | | 9C_ 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 9E_ 2528 2529 2530 2531 2532 2533 2534 2559 2536 2537 2538 2539 2540 2541 2542 2543 2542 2543 | 85_
86_
87_
88_
89_
8A_
8B_
8C_
8B_
90_
91_
92_
93_
94_
95_
96_
97_
98_
99_ | 2112
2128
2144
2160
2176
2192
2208
2224
2240
2256
2272
2288
2304
2330
2336
2352
2368
2352
2400
2416
2432
2438 | 2097
2113
2129
2145
2161
2177
2193
2209
2225
2241
2257
2273
2289
2305
2337
2337
2353
2401
2417
2413
2413
2449 | 2098
2114
2130
2146
2162
2178
2194
2210
2226
2242
2258
2274
2290
2306
2322
2338
2354
2370
2386
2402
2418
2434
2450 | 2099
2115
2131
2147
2163
2179
2195
2211
2227
2243
2259
2275
2291
2307
2339
2339
2355
2419
2419
2435
2451 |
2100
2116
2132
2148
2164
2196
2212
2228
2244
2260
2276
2292
2308
2324
2340
2356
2372
2388
2404
2420
2436
2426
2436 | 2085
2101
2117
2133
2149
2165
2181
2197
2213
2229
2245
2261
2277
2293
2309
2325
2341
2357
2373
2405
2405
2421
2437
2453 | 2086
2102
2118
2134
2150
2166
2182
2198
2214
2230
2246
2262
2278
2298
2310
2326
2342
2358
2374
2390
2406
2422
2438 | 2087
2103
2119
2135
2151
2167
2183
2199
2215
2231
2247
2263
2279
2295
2311
2327
2343
2359
2375
2391
2407
2423
2439 | 2088
2104
2120
2136
2152
2168
2184
2200
2216
2232
2248
2264
2280
2290
2312
2328
2344
2360
2376
2392
2408
2404
2404 | 2089
2105
2121
2137
2153
2169
2185
2201
2217
2233
2249
2265
2281
2329
2345
2329
2345
2361
2377
2393
2409
2425
2441 | 2090
2106
2112
2138
2154
2170
2186
2202
2218
2234
2250
2266
2282
2298
2314
2330
2346
2362
2378
2394
2410
2426
2442 | 2091
2107
2123
2139
2155
2171
2187
2203
2219
2235
2251
2267
2283
2299
2315
2347
2363
2379
2395
2411
2427
2443 | 2092
2108
2124
2140
2156
2172
2188
2204
2236
2252
2268
2284
2300
2316
2332
2348
2364
2380
2396
2412
2428
2428 | 2093
2109
2125
2141
2157
2173
2189
2205
2221
2237
2253
2269
2285
2301
2317
2333
2349
2365
2381
2397
2413
2429
2445 | 2094
2110
2126
2142
2158
2174
2190
2206
2222
2238
2254
2270
2286
2306
2318
2334
2350
2366
2382
2398
2414
2430 | 2095
2111
2127
2143
2159
2175
2191
2207
2223
2239
2255
2271
2287
2303
2319
2335
2351
2367
2383
2399
2415
2431 | | 9D_ 2512 2513 2514 2515 2516 2517 2518 2519 2520 2520 2521 2522 2523 2524 2525 2526 2527 9F_ 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2536 2537 2538 2539 2540 2541 2542 2543 9F_ 2544 2545 2546 2547 2548 2547 2548 2547 2542 2543 | 85_
86_
87_
88_
88_
8A_
8B_
8C_
8D_
8E_
90_
91_
92_
93_
94_
95_
96_
97_
98_ | 2112
2128
2144
2160
2176
2192
2208
2224
2240
2256
2272
2288
2304
2336
2336
2356
2352
2368
2416
2432
2448
2448 | 2097
2113
2129
2145
2161
2177
2193
2209
2225
2241
2257
2273
2289
2305
2321
2337
2353
2369
2385
2401
2417
2433
2449
2465 | 2098
2114
2130
2146
2162
2178
2194
2210
2226
2242
2258
2274
2290
2306
2322
2338
2354
2370
2386
2402
2418
2434
2450
2466 | 2099 2115 2131 2147 2163 2179 2195 2211 2227 2243 2259 2275 2291 2307 2323 2339 2355 2371 2387 2403 2419 2435 2451 2467 | 2100
2116
2132
2148
2164
2196
2212
2228
2244
2260
2276
2292
2308
2324
2340
2356
2372
2388
2404
2426
2436
2452
2468 | 2085
2101
2117
2133
2149
2165
2181
2197
2213
2229
2245
2261
2277
2293
2309
2325
2341
2357
2373
2389
2405
2421
2437
2453
2469 | 2086
2102
2118
2134
2150
2166
2182
2198
2214
2230
2246
2262
2278
2294
2310
2326
2342
2358
2374
2390
2406
2422
2438
2454
2470 | 2087
2103
2119
2135
2151
2167
2183
2199
2215
22215
22217
2263
2279
2295
2311
2327
2343
2359
2375
2391
2407
2423
2439
2455
2471 | 2088
2104
2120
2136
2152
2168
2184
2200
2216
2232
2248
2264
2280
2296
2312
2328
2344
2360
2376
2392
2408
2424
2440
2456
2472 | 2089
2105
2121
2137
2153
2169
2185
2201
2217
2233
2249
2265
2281
2297
2313
2329
2345
2361
2377
2393
2409
2425
2441
2457
2473 | 2090
2106
21122
2138
2154
2170
2186
2202
2218
2234
2250
2266
2282
2298
2314
2330
2346
2362
2378
2394
2410
2426
2442
2458
2474 | 2091
2107
2123
2139
2155
2171
2187
2203
2219
2235
2251
2267
2283
2299
2315
2331
2347
2363
2379
2395
2411
2427
2443
2443
2459
2475 | 2092
2108
2124
2140
2156
2172
2188
2204
2220
2236
2252
2268
2284
2300
2316
2332
2348
2348
2364
2396
2412
2428
2444
2460
2476 | 2093
2109
2125
2141
2157
2173
2189
2205
2221
2237
2253
2269
2285
2301
2317
2333
2349
2365
2381
2397
2413
2429
2445
2461
2477 | 2094
2110
2126
2142
2158
2174
2190
2206
2222
2238
2254
2270
2286
2302
2318
2334
2354
2366
2382
2398
2414
2436
2446
2462
2478 | 2095
2111
2127
2143
2159
2175
2191
2207
2223
2239
2255
2271
2287
2303
2319
2335
2351
2367
2383
2399
2415
2431
2447
2463
2479 | | 9F_ 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2542 2543 2542 2543 2545 2546 2547 2548 2549 2540 2541 2542 2543 | 85_
86_
87_
88_
88_
8B_
8C_
8D_
8E_
90_
91_
92_
93_
94_
95_
96_
97_
98_
98_ | 2112
2128
2144
2160
2176
2192
2208
2224
2240
2256
2272
2288
2304
2336
2336
2336
2368
2384
2400
2416
2432
2448
2448 | 2097 2113 2129 2145 2161 2177 2193 2209 2225 2241 2257 2273 2289 2305 2321 2337 2353 2369 2385 2401 2417 2433 2449 2465 2481 | 2098
2114
2130
2146
2162
2178
2194
2210
2226
2242
2258
2274
2290
2306
2322
2338
2354
2370
2386
2402
2418
2434
2450
2466
2482 | 2099 2115 2131 2147 2163 2179 2195 2211 2227 2243 2259 2275 2291 2307 2323 2339 2355 2371 2387 2403 2419 2435 2451 2467 2483 | 2100
2116
2132
2148
2164
2196
2212
2228
2244
2260
2276
2292
2308
2324
2340
2356
2372
2388
2404
2426
2436
2452
2468
2452 | 2085
2101
2117
2133
2149
2165
2181
2229
2245
2261
2277
2293
2325
2341
2357
2373
2389
2405
2421
2437
2453
2469
2485 | 2086
2102
2118
2134
2150
2166
2182
2198
2214
2230
2246
2262
2278
2294
2310
2326
2342
2358
2374
2390
2406
2422
2438
2470
2486 | 2087
2103
2119
2135
2151
2167
2183
2199
2215
2231
2247
2263
2279
2295
2311
2327
2343
2359
2375
2407
2423
2439
2455
2471
2487 | 2088
2104
2120
2136
2152
2168
2184
2206
2216
2232
2248
2264
2280
2296
2312
2328
2344
2360
2376
2392
2408
2424
2424
2448 | 2089
2105
2121
2137
2153
2169
2185
2201
2217
2233
2249
2265
2281
2297
2313
2329
2345
2361
2377
2393
2409
2425
2441
2457
2473
2489 | 2090
2106
21122
2138
2154
2170
2186
2202
2218
2234
2250
2266
2282
2298
2314
2330
2346
2362
2378
2394
2410
2426
2442
2458
2474
2490 | 2091
2107
2123
2139
2155
2171
2187
2203
2219
2235
2251
2267
2283
2299
2315
2331
2347
2363
2379
2395
2411
2427
2443
2459
2475
2491 | 2092
2108
2124
2140
2156
2172
2188
2204
2220
2236
2252
2268
2284
2300
2316
2332
2348
2348
2364
2396
2412
2428
2444
2460
2476
2492 | 2093
2109
2125
2141
2157
2173
2189
2205
2221
2237
2253
2269
2285
2301
2317
2333
2349
2365
2381
2397
2413
2429
2445
2461
2477
2493 | 2094
2110
2126
2142
2158
2174
2190
2206
2222
2238
2254
2270
2286
2302
2318
2334
2356
2366
2382
2398
2414
2430
2446
2462
2478
2494 | 2095
2111
2127
2143
2159
2175
2191
2207
2223
2239
2255
2271
2287
2303
2319
2335
2351
2367
2383
2399
2415
2447
2463
2479
2495 | | | 85_
86_
87_
88_
88_
8C_
8D_
8E_
90_
91_
92_
93_
94_
95_
96_
97_
98_
99_
9A_
9D_ | 2112
2128
2144
2160
2176
2192
2208
2224
2240
2256
2272
2288
2304
2336
2335
2368
2368
2416
2416
2432
2448
2464
2480
2496
2512 | 2097
2113
2129
2145
2161
2177
2193
2209
2225
2273
2289
2305
2321
2337
2353
2369
2385
2401
2417
2433
2449
2465
2481
2497
2513 | 2098
2114
2130
2146
2162
2178
2194
2210
2226
2242
2258
2274
2290
2306
2322
2338
2354
2370
2386
2402
2418
2434
2450
2462
2482
2498
2514 | 2099
2115
2131
2147
2163
2179
2195
2211
2227
2243
2259
2275
2291
2307
2323
2339
2355
2419
2403
2419
2451
2467
2489
2215 |
2100
2116
2132
2148
2164
2196
2212
2228
2244
2260
2276
2292
2308
2324
2340
2356
2372
2388
2404
2420
2436
2452
2468
2452
2468
2484
2500 | 2085
2101
2117
2133
2149
2165
2181
2197
2213
2229
2245
2261
2277
2293
2309
2325
2341
2357
2373
2405
2405
2421
2437
2453
2469
2485
2501 | 2086
2102
2118
2134
2150
2166
2182
2198
2214
2230
2246
2262
2278
2294
2310
2326
2342
2358
2374
2390
2406
2422
2438
2454
2454
2456
2486
2502 | 2087
2103
2119
2135
2151
2167
2183
2199
2215
2231
2247
2263
2279
2295
2311
2327
2343
2359
2375
2407
2423
2452
2471
2487
2503 | 2088
2104
2120
2136
2152
2168
2184
2202
2216
2232
2248
2264
2280
2296
2312
2328
2344
2360
2376
2392
2408
2424
2440
2456
2472
2488
2504 | 2089
2105
2121
2137
2153
2169
2185
2201
2217
2233
2249
2265
2281
2297
2313
2329
2345
2361
2377
2393
2409
2425
2441
2457
2473
2489
2505 | 2090
2106
2112
2138
2154
2170
2186
2202
2218
2234
2250
2266
2282
2298
2314
2330
2346
2362
2378
2394
2410
2426
2452
2452
2452
2452
2452
2452
2453
2506 | 2091
2107
2123
2139
2155
2171
2187
2203
2219
2235
2251
2267
2283
2299
2315
2347
2363
2379
2395
2411
2427
2443
2459
2475
2491 | 2092
2108
2114
2140
2156
2172
2188
2204
2236
2252
2268
2284
2300
2316
2332
2348
2364
2386
2412
2428
2412
2428
2444
2460
2476
2492
2508 | 2093
2109
2125
2141
2157
2173
2189
2205
2225
2221
2237
2253
2269
2285
2301
2317
2333
2349
2365
2381
2413
2429
2445
2461
2477
2493
2509 | 2094
2110
2126
2142
2158
2174
2190
2206
2222
2238
2254
2270
2286
2302
2318
2334
2350
2366
2382
2398
2414
2430
2446
2462
2478
2478
2494 | 2095
2111
2127
2143
2159
2175
2191
2207
2223
2239
2255
2271
2287
2303
2319
2335
2351
2367
2383
2415
2447
2463
2479
2495
2511 | | | 85_
86_
87_
88_
88_
8C_
8D_
8E_
90_
91_
92_
93_
94_
95_
96_
97_
98_
98_
99_
9A_
9D_
9D_ | 2112
2128
2144
2160
2176
2192
2208
2224
2240
2256
2272
2288
2304
2332
2336
2352
2368
2352
2400
2416
2432
2448
2496
2492
2492
2492
2492
2492
2492
2492 | 2097
2113
2129
2145
2161
2177
2193
2209
2225
2241
2257
2273
2289
2305
2337
2337
2353
2401
2417
2417
2433
2449
2465
2481
2497
2513
2529 | 2098
2114
2130
2146
2162
2178
2194
2210
2226
2242
2258
2274
2290
2306
2322
2338
2354
2370
2386
2402
2418
2434
2450
2466
2482
2498
2530 | 2099 2115 2131 2147 2163 2179 2195 2211 2227 2243 2259 2275 2291 2307 2323 2339 2355 2371 2387 2403 2419 2435 2451 2467 2483 2499 25515 2531 | 2100
2116
2132
2148
2164
2196
2212
2228
2244
2260
2276
2292
2308
2324
2340
2356
2372
2388
2404
2420
2436
2452
2468
2452
2468
2452
2516
2532 | 2085
2101
2117
2133
2149
2165
2181
2197
2213
2229
2245
2261
2277
2293
2305
2341
2357
2373
2389
2405
2421
2421
2437
2453
2469
2485
2501
2517
2533 | 2086
2102
2118
2134
2150
2166
2182
2198
2214
2230
2246
2262
2278
2294
2310
2326
2342
2358
2374
2390
2406
2402
2438
2454
2470
2486
2502
2518
2534 | 2087
2103
2119
2135
2151
2167
2183
2199
2215
2231
2247
2263
2279
2295
2311
2327
2343
2359
2375
2391
2407
2423
2423
2423
2423
2425
2421
2423
2425
2423
2519
2519
2519
2519 | 2088
2104
2120
2136
2152
2168
2184
2200
2216
2232
2248
2264
2280
2296
2312
2328
2344
2360
2376
2392
2408
2402
2402
2402
2402
2403
2404
2456
2472
2488
2504
2520
2536 | 2089
2105
2121
2137
2153
2169
2185
2201
2217
2233
2249
2265
2281
2297
2313
2329
2345
2361
2377
2393
2409
2425
2441
2457
2473
2489
2505
2521
2537 | 2090
2106
2112
2138
2154
2170
2186
2202
2218
2234
2250
2266
2282
2298
2314
2330
2346
2362
2378
2394
2410
2426
2426
2428
2458
2474
2490
2506
2502
2508
2508
2508
2508
2508
2508
2508 | 2091
2107
2123
2139
2155
2171
2187
2203
2219
2235
2251
2267
2283
2299
2315
2331
2347
2363
2379
2395
2417
2427
2427
2427
2427
2427
2429
2475
2493
2593
2593
2593
2593
2593
2593
2593
25 | 2092
2108
2124
2140
2156
2172
2188
2204
22236
2252
2268
2284
2300
2316
2332
2348
2364
2396
2412
2428
2428
2444
2460
2476
2492
2508
2524
2524
2524 | 2093
2109
2125
2141
2157
2173
2189
2205
2221
2237
2253
2269
2285
2301
2317
2333
2349
2365
2381
2397
2413
2429
2445
2461
2477
2493
2525
2525
2521 | 2094
2110
2126
2142
2158
2174
2190
2206
2222
2238
2254
2270
2286
2302
2318
2350
2366
2382
2398
2414
2430
2462
2478
2491
2516
2526
2526
2542 | 2095
2111
2127
2143
2159
2175
2191
2207
2223
2239
2255
2271
2287
2303
2319
2335
2351
2367
2383
2399
2415
2431
2447
2463
2479
2495
2511
2527
2527
2527
2543 | | 1 | _ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | С | D | Е | F | |------------|--------------|---------------------|----------------|----------------|---------------------|----------------|--------------|---------------------|----------------|--------------|----------------|---------------------|----------------|----------------|---------------------|--------------| | A0_ | 0
2560 | 2561 | 2562 | 2563 | 2564 | 2565 | 2566 | 2567 | | 2569 | 2570 | 2571 | 2572
2588 | | | 2575
2591 | | AU_
Al_ | 2576 | 2577 | 2578 | 2579 | 2580 | | | 2583
2599 | | 2585
2601 | 2586
2602 | 2587
2603 | 2604 | 2605 | 2606 | 2607 | | A2_
A3_ | 2592
2608 | 2593
2609 | 2594
2610 | 2595
2611 | $2596 \\ 2612$ | | | 2615 | 2616 | 2617 | 2618 | 2619 | 2620 | | | 2623 | | A4_ | 2624 | 2625 | 2626 | 2627 | 2628 | 2629 | 2630 | 2631 | | 2633
2649 | 2634
2650 | 2635
2651 | 2636
2652 | | 2638
2654 | 2639
2655 | | A5_ | 2640 | 2641
2657 | 2642
2658 | 2643
2659 | 2644
2660 | 2645
2661 | 2646
2662 | 2647
2663 | 2664 | 2665 | 2666 | 2667 | 2668 | 2669 | 2670 | 2671
2687 | | A6_
A7_ | 2656
2672 | -2673 | 2674 | 2675 | 2676 | 2677 | 2678 | 2679 | 2680 | 2681 | 2682 | 2683 | 2684
2700 | 2685
2701 | 2686
2702 | 2703 | | A8_ | 2688 | 2689 | 2690 | 2691 | 2692 | 2693
2709 | 2694
2710 | 2695
2711 | $2696 \\ 2712$ | 2697
2713 | 2698
2714 | $2699 \\ 2715$ | 2716 | 2717 | 2718 | 2719 | | A9_
AA_ | 2704
2720 | $2705 \\ 2721$ | $2706 \\ 2722$ | $2707 \\ 2723$ | $2708 \\ 2724$ | 2725 | 2726 | 2727 | 2728 | 2729 | 2730 | 2731 | $2732 \\ 2748$ | 2733
2749 | 2734
2750 | 2735
2751 | | AB_ | 2736 | 2737 | 2738 | 2739 | 2740 | 2741 | 2742 | 2743 | 2744 | 2745
2761 | 2746
2762 | 2747
2763 | 2764 | 2765 | 2766 | 2767 | | AC_ | 2752 | 2753 | $2754 \\ 2770$ | $2755 \\ 2771$ | $2756 \\ 2772$ | 2757
2773 | 2758
2774 | 2759
2775 | $2760 \\ 2776$ | 2777 | 2778 | 2779 | 2780 | 2781 | 2782 | 2783 | | AD_
AE_ | 2768
2784 | $2769 \\ 2785$ | 2786 | 2787 | 2788 | 2789 | 2790 | 2791 | 2792 | 2793
2809 | $2794 \\ 2810$ | $2795 \\ 2811$ | $2796 \\ 2812$ | 2797 2813 | 2798
2814 | 2799
2815 | | AF_ | 2800 | 2801 | 2802 | 2803 | 2804 | 2805 | 2806 | 2807 | 2808 | | | 2827 | 2828 | 2829 | 2830 | 2831 | | B0_ | 2816 | 2817 | 2818 | 2819 | 2820
2836 | 2821
2837 | 2822
2838 | 2823
2839 | $2824 \\ 2840$ | 2825 2841 | $2826 \\ 2842$ | 2843 | 2844 | 2845 | 2846 | 2847 | | B1_
B2_ | 2832
2848 | 2833
2849 | 2834
2850 | $2835 \\ 2851$ | 2852 | 2853 | 2854 | 2855 | 2856 | 2857 | $2858 \\ 2874$ | $2859 \\ 2875$ | 2860
2876 | $2861 \\ 2877$ | 2862
2878 | 2863
2879 | | B3_ | 2864 | 2865 | 2866 | 2867 | 2868 | 2869 | 2870 | 2871
2887 | 2872
2888 | 2873
2889 | 2890 | 2891 | 2892 | 2893 | 2894 | 2895 | | B4_
B5_ | 2880
2896 | $2881 \\ 2897$ | 2882
2898 | 2883
2899 | 2884
2900 | $2885 \\ 2901$ | 2886
2902 | 2903 | 2904 | 2905 | 2906 | 2907 | 2908 | 2909
2925 | 2910
2926 | 2911
2927 | | B6_ | 2912 | 2913 | 2914 | 2915 | 2916 | 2917 | 2918 | 2919
2935 | 2920
2936 | 2921
2937 | 2922
2938 | 2923
2939 | $2924 \\ 2940$ | 2925
2941 | 2942 | 2943 | | B7_ | 2928 | 2929 | 2930 | 2931 | 2932
2948 | 2933
2949 | 2934
2950 | 2951 | 2952 | 2953 | 2954 | 2955 | 2956 | 2957 | 2958 | 2959 | | B8_
B9_ | 2944
2960 | $\frac{2945}{2961}$ | 2946
2962 | 2947
2963 | 2964 | 2965 | 2966 |
2967 | 2968 | 2969 | 2970
2986 | 2971
2987 | 2972
2988 | 2973
2989 | 2974
2990 | 2975
2991 | | BA_ | 2976 | 2977 | 2978 | 2979
2995 | 2980
2996 | 2981
2997 | 2982
2998 | 2983
2999 | 2984
3000 | 2985
3001 | 3002 | 3003 | 3004 | 3005 | 3006 | 3007 | | BB_
BC_ | 2992
3008 | 2993
3009 | 2994
3010 | 3011 | 3012 | 3013 | 3014 | 3015 | 3016 | 3017 | 3018 | 3019 | 3020 | 3021 | 3022
3038 | 3023
3039 | | BD_ | 3024 | 3025 | 3026 | 3027 | 3028 | 3029 | 3030 | 3031
3047 | 3032
3048 | 3033
3049 | 3034
3050 | 3035
3051 | 3036
3052 | 3037
3053 | 3054 | 3055 | | BE_
BF_ | 3040
3056 | 3041
3057 | 3042
3058 | 3043
3059 | 3044
3060 | 3045
3061 | 3046
3062 | 3063 | 3064 | 3065 | 3066 | 3067 | 3068 | 3069 | 3070 | 3071 | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | С | D | Е | F | | L 60 | | 3073 | 3074 | 3075 | 3076 | 3077 | 3078 | 3079 | 3080 | 3081 | 3082 | 3083 | 3084 | 3085 | 3086 | 3087
3103 | | C0_
C1_ | 3072
3088 | 3089 | 3090 | 3091 | 3092 | 3093 | 3094 | 3095 | 3096
3112 | 3097
3113 | 3098
3114 | 3099
3115 | 3100
3116 | 3101
3117 | $\frac{3102}{3118}$ | 3119 | | C2_
C3_ | 3104
3120 | 3105
3121 | 3106
3122 | 3107
3123 | $\frac{3108}{3124}$ | 3109
3125 | 3110
3126 | $\frac{3111}{3127}$ | 3128 | 3129 | 3130 | 3131 | 3132 | 3133 | 3134 | 3135 | | C4_ | 3136 | 3137 | 3138 | 3139 | 3140 | 3141 | 3142 | 3143 | 3144 | 3145 | 3146 | 3147 | 3148
3164 | 3149
3165 | 3150
3166 | 3151
3167 | | C5_ | 3152 | 3153 | 3154 | 3155 | 3156 | 3157
3173 | 3158
3174 | 3159
3175 | 3160
3176 | 3161
3177 | 3162
3178 | 3163
3179 | 3180 | 3181 | 3182 | 3183 | | C6_
C7_ | 3168
3184 | 3169
3185 | 3170
3186 | 3171
3187 | 3172
3188 | 3189 | 3190 | 3191 | 3192 | 3193 | 3194 | | 3196 | 3197 | 3198 | 3199
3215 | | C8_ | 3200 | 3201 | 3202 | 3203 | 3204 | 3205 | 3206 | 3207 | 3208
3224 | 3209
3225 | 3210
3226 | $\frac{3211}{3227}$ | 3212
3228 | 3213
3229 | 3214
3230 | 3231 | | C9_
CA_ | 3216 | 3217
3233 | 3218
3234 | 3219
3235 | 3220
3236 | 3221
3237 | 3222
3238 | 3223
3239 | 3224 | 3241 | 3242 | 3243 | 3244 | 3245 | 3246 | 3247
3263 | | CB_ | 3232
3248 | | 3250 | | 3252 | 3253 | 3254 | 3255 | 3256 | 3257 | 3258 | | 3260
3276 | 3261
3277 | 3262
3278 | 3279 | | CC_ | 3264 | | 3266 | | 3268
3284 | 3269
3285 | 3270
3286 | $\frac{3271}{3287}$ | 3272
3288 | 3273
3289 | | | 3292 | 3293 | 3294 | 3295 | | CD_ | 3280 | | 3282
3298 | | 3300 | 3301 | 3302 | 3303 | 3304 | 3305 | 3306 | | 3308
3324 | 3309
3325 | 3310
3326 | 3311
3327 | | CF_ | 3312 | | | | 3316 | 3317 | 3318 | | 3320 | 3321 | | | 3340 | • | 3342 | 3343 | | D0_ | | | | | 3332 | | | | 3336
3352 | | | | 3356 | 3357 | 3358 | 3359 | | D1_
D2_ | | | | | 3348
3364 | 3365 | 3366 | 3367 | 3368 | 3369 | 3370 | 3371 | 3372
3388 | | | | | D3_ | 3376 | | 3378 | 3379 | 3380 | 3381 | | | 3384 | | | | 3404 | | | | | D4_
D5_ | | | | | 3396
3412 | | | | 3400
3416 | 3417 | 7 3418 | 3419 | 3420 | 3421 | 3422 | 3423 | | D6_ | 3424 | | 3426 | 3427 | 3428 | 3429 | 3430 | 3431 | 3432 | 343 | | | | | | | | D7_ | 3440 | 3441 | 3449 | | | | | | 3448
3464 | | | | | 3469 | 3470 | 3471 | | D8_
D9_ | | | | | | | | 3479 | 3480 | 348 | 1 3489 | 2 3483 | 3484 | | | | | DA_ | - 348 | 8 3489 | 349 | 0 3491 | 3499 | 3493 | 3494 | | | | | | | | | | | DB_
DC_ | 1 000 | | | | | | | | | | 9 353 | 0 3531 | 3532 | 3533 | | | | DD. | _ 353 | | | 8 3539 | 354 | 354 | 3549 | 2 3543 | 3544 | 4 354 | 5 354 | | | | | | | DE
DF | - 355 | 2 355 | 3 355 | 4 3555 | | | | | | | | | | | | | | Dr_ | _ 356 | 8 356 | 9 357 | 0 3371 | . 331 | _ 0010 | | | | | | | | _ | | | | | 0 | 1 | 2 | 3 | 4 | | | | | | | | | | | | |------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | | + | | | | | 5 | 6 | 7 | 8 | 9 | A | В | C | D | \mathbf{E} | F | | E0_
E1_ | 3584
3600 | 3585
3601 | 3586
3602 | 3587
3603 | 3583
3604 | 3589 | 3590 | 3591 | 3592 | 3593 | 3594 | 3595 | 3596 | 3597 | 3598 | 3599 | | E2_ | 3616 | 3617 | 3618 | 3619 | 3620 | 3605
3621 | 3606
3622 | 3607 | 3608 | 3609 | 3610 | 3611 | 3612 | 3613 | 3614 | 3615 | | E3_ | 3632 | 3633 | 3634 | 3635 | 3636 | 3637 | 3638 | 3623
3639 | 3624
3640 | 3625 | 3626 | 3627 | 3628 | 3629 | 3630 | 3631 | | E4_ | 3648 | 3649 | 3650 | 3651 | 3652 | 3653 | 3654 | 3655 | | 3641 | 3642 | 3643 | 3644 | 3645 | 3646 | 3647 | | E5_ | 3664 | 3665 | 3666 | 3667 | 3668 | 3669 | 3670 | 3671 | 3656
3672 | 3657
3673 | 3658 | 3659 | 3660 | 3661 | 3662 | 3663 | | E6_ | 3680 | 3681 | 3682 | 3683 | 3684 | 3685 | 3686 | 3687 | 3688 | 3689 | 3674
3690 | 3675
3691 | 3676 | 3677 | 3678 | 3679 | | E7_ | 3696 | 3697 | 3698 | 3699 | 3700 | 3701 | 3702 | 3703 | 3704 | 3705 | 3706 | 3707 | 3692
3708 | 3693
3709 | 3694
3710 | 3695 | | E8 _ | 3712 | 3713 | 3714 | 3715 | 3716 | 3717 | 3718 | 3719 | 3720 | 3721 | 3722 | 3723 | 3724 | 3725 | | 3711 | | E9_ | 3728 | 3729 | 3730 | 3731 | 3732 | 3733 | 3734 | 3735 | 3736 | 3737 | 3738 | 3739 | 3740 | 3741 | 3726
3742 | 3727
3743 | | EA_
EB_ | 3744 | 3745
3761 | 3746 | 3747 | 3748 | 3749 | 3750 | 3751 | 3752 | 3753 | 3754 | 3755 | 3756 | 3757 | 3758 | 3759 | | EC_ | 3776 | | 3762 | 3763 | 3764 | 3765 | 3766 | 3767 | 3768 | 3769 | 3770 | 3771 | 3772 | 3773 | 3774 | 3775 | | EC_ | 3776 | 3777
3793 | 3778
3794 | 3779 | 3780 | 3781 | 3782 | 3783 | 3784 | 3785 | 3786 | 3787 | 3788 | 3789 | 3790 | 3791 | | EE_ | 3808 | 3809 | 3810 | 3795
3811 | 3796
3812 | 3797 | 3798 | 3799 | 3800 | 3801 | 3802 | 3803 | 3804 | 3805 | 3806 | 3807 | | EF | 3824 | 3825 | 3826 | 3827 | 3828 | 3813
3829 | 3814
3830 | 3815 | 3816 | 3817 | 3818 | 3819 | 3820 | 3821 | 3822 | 3823 | | F0 | 1 | | - | | | | 3030 | 3831 | 3832 | 3833 | 3834 | 3835 | 3836 | 3837 | 3838 | 3839 | | F1_ | 3840
3856 | 3841
3857 | 3842
3858 | 3843 | 3844 | 3845 | 3846 | 3847 | 3848 | 3849 | 3850 | 3851 | 3852 | 3853 | 3854 | 3855 | | F2_ | 3872 | 3873 | 3874 | 3859
3875 | 3860
3876 | 3861 | 3862 | 3863 | 3864 | 3865 | 3866 | 3867 | 3868 | 3869 | 3870 | 3871 | | F3_ | 3888 | 3889 | 3890 | 3891 | 3892 | 3877
3893 | 3878
3894 | 3879 | 3880 | 3881 | 3882 | 3883 | 3884 | 3885 | 3886 | 3887 | | F4_ | 3904 | 3905 | 3906 | 3907 | 3908 | 3909 | | 3895 | 3896 | 3897 | 3898 | 3899 | 3900 | 3901 | 3902 | 3903 | | F5_ | 3920 | 3921 | 3922 | 3923 | 3924 | 3925 | 3910
3926 | 3911
3927 | 3912 | 3913 | 3914 | 3915 | 3916 | 3917 | 3918 | 3919 | | F6_ | 3936 | 3937 | 3938 | 3939 | 3940 | 3941 | 3942 | 3943 | 3928
3944 | 3929
3945 | 3930
3946 | 3931 | 3932 | 3933 | 3934 | 3935 | | F7_ | 3952 | 3953 | 3954 | 3955 | 3956 | 3957 | 3958 | 3959 | 3960 | 3961 | 3946 | 3947
3963 | 3948
3964 | 3949
3965 | 3950 | 3951 | | F8_ | 3968 | 3969 | 3970 | 3971 | 3972 | 3973 | 3974 | 3975 | 3976 | 3977 | 3978 | | | | 3966 | 3967 | | F9_ | 3984 | 3985 | 3986 | 3987 | 3988 | 3989 | 3990 | 3991 | 3992 | 3993 | 3978 | 3979
3995 | 3980 | 3981 | 3982 | 3983 | | FA_ | 4000 | 4001 | 4002 | 4003 | 4004 | 4005 | 4006 | 4007 | 4008 | 4009 | 4010 | 3993
4011 | 3996
4012 | 3997
4013 | 3998
4014 | 3999 | | FB_ | 4016 | 4017 | 4018 | 4019 | 4020 | 4021 | 4022 | 4023 | 4024 | 4025 | 4026 | 4027 | 4012 | 4013 | 4014 | 4015
4031 | | FC_
FD_ | 4032 | 4033 | 4034 | 4035 | 4036 | 4037 | 4038 | 4039 | 4040 | 4041 | 4042 | 4043 | 4044 | 4045 | 4046 | 4047 | | FE FE | 4048
4064 | 4049
4065 | 4050 | 4051 | 4052 | 4053 | 4054 | 4055 | 4056 | 4057 | 4058 | 4059 | 4060 | 4061 | 4062 | 4047 | | FF | 4080 | 4081 | 4066
4082 | 4067 | 4068 | 4069 | 4070 | 4071 | 4072 | 4073 | 4074 | 4075 | 4076 | 4077 | 4078 | 4079 | | | 1000 | 4001 | 400Z | 4083 | 4084 | 4085 | 4086 | 4087 | 4088 | 4089 | 4090 | 4091 | 4092 | 4093 | 4094 | 4095 | ## Microdata Microdata Corporation 644 East Young Street Santa Ana, California 92705 Telephone: (714) 540-6730 TWX: 910-595-1764