MICROPROGRAMMING
REFERENCE MANUAL

[l Microdata Bl

3200
MICROPROGRAMMING
REFERENCE MANUAL

February, 1976

PROPRIETARY INFORMATION

The information contained herein is proprietary to and
considered a trade secret of Microdata Corporation and
shall not be reproduced in whole or part without the
written authorization of Microdata Corporation.

©1976 Microdata Corporation MiCI'Odata COI‘pOI’atiOn

® Registered Trademark of Microdata Corporation 17481 Red Hill Avenue, Irvine, California 92714

Printed in U.S.A.
98800 76 1020A

Post Oftice Box 19501, Irvine, California 92713
Telephone: 714/540-6730 - TWX: 910-595-1764

Section

1

TABLE OF CONTENTS

Title

INTRODUCTION .
THE MICRODATA 3200 COMPUTER
HOW TO USE THIS MANUAL

HARDWARE ORGANIZATION
AN OVERVIEW
THE MICRO-CONTROL SECTION
THE USER-LEVEL INSTRUCTION FETCH SECTION
THE DATA INTERFACE SECTION
THE ARITHMETIC/LOGIC SECTION
THE LOCAL MEMORY AND AUXILIARIES SECTION
THE FRONT PANEL SECTION

INTRODUCTION TO CAP32
MICROINSTRUCTION FORMAT
C-REGISTER FIELDS

FBUS DESTINATIONS AND SOURCES
DIRECT FBUS DESTINATIONS
LOCAL MEMORY (LM) FBUS DESTINATIONS
LOCAL MEMORY (LM) AND SINGLE-BIT GENERATOR
ARRAYS AS FBUS SOURCES
OTHER DIRECT FBUS SOURCES
MONOBUS DATA ACCESS

MONOBUS WORD AND BYTE TRANSFERS

ALU SOURCES AND OPERATIONS
ALU SOURCES
ALU PAIRED LOGIC OPERATIONS AND ABUS
DECREMENTATION
ALU ARITHMETIC OPERATIONS
ALU ARITHMETIC FLAGS
ALU TARGET FLAG REGISTER
ELEMENTARY SHIFT OPERATIONS

CONTROL MEMORY ADDRESSING AND CAP32 ASSEMBLY
LISTING

CONTROL MEMORY ADDRESSING

CAP32 ASSEMBLY LISTING

BRANCHING CAPABILITIES

UNCONDITIONAL AND CONDITIONAL BRANCHING

CONDITIONAL BRANCHING: GI AND WNZ TESTS

CONDITIONAL BRANCHING: ARITHMETIC FLAG AND
WORKING REGISTER TESTS

SUBROUTINE BRANCHING

FULL-BYTE LITERAL SUBROUTINES AND CONTROLLED
WORD PAIRING

ABSOLUTE STATEMENT LOCATION AND CONTROL
BRANCHING

Topic

[
N

[FA R} NN
. . e o s e s e e
N = N ~N oo -

>~ B > B~
[0 W&, IR RO

(]
[

v ot
e e ..
S T, RN

[@) Ne))
[N

N
N =

~N
N

7.6

TABLE OF CONTENTS (Continued)

Section Title

8 VECTORS AND PSEUDO-INSTRUCTIONS
AN OVERVIEW
DATA VECTORS
USER-LEVEL INSTRUCTION FETCH AND DECODE CYCLE
FIRST-DIGIT BRANCHING VECTORS AND
INTERRUPT VECTORS
SECOND-DIGIT BRANCHING VECTORS
FURTHER CAP32 PSEUDO-INSTRUCTIONS

9 STACK PROCESSING
STACK PROCESSING IN MAIN MEMORY ONLY
STACK ORGANIZATION: THE T-COUNTER AND N-STATS
SIMPLE STACK OPERATIONS IN AN ACTIVE STACK
HEAD
SPECIAL STACK HEAD PROCESSES
STATE DIAGRAM

10 INPUT/OUTPUT MICROPROGRAMMING
INPUT/OUTPUT CONTROLLERS
INTERRUPT SYSTEM

11 CONTROL PANELS
BASIC PANEL
MAINTENANCE PANEL
MAINTENANCE PANEL CONTROLS AND INDICATORS
MAINTENANCE PANEL FIRMWARE DISPLAY SELECTOR

SWITCHES AND MONOBUS INTERFACE

MAINTENANCE PANEL BREAK CONDITION
MAINTENANCE PANEL INTERNAL LOGIC

Appendix

A REFERENCE TABLES
SYNTAX FOR CAP32 OPF AND REF FIELDS
RELATED TO C-FIELD VALUES
DIRECT FBUS DESTINATION CODE SETS USED IN
CAP32 SUBFIELD REF1
LOCAL MEMORY FBUS DESTINATION CODES USED
IN CAP32 SUBFIELD REF1
LOCAL ARRAY FBUS SOURCE CODES USED IN CAP32
SUBFIELD OPF1
CONTROL AND USE OF THE G-COUNTER
DIRECT FBUS SOURCES OTHER THAN LOCAL ARRAYS
ALU SOURCES USED IN CAP32 SUBFIELD OPF1
ELEMENTARY LEFT SHIFT CODES
ELEMENTARY RIGHT SHIFT CODES
CCNTROL MEMORY ADDRESSING MODE
AVAILABLE CONDITIONAL BRANCH TESTS
I-REGISTER BYTE EFFECTS ON THE CPU
INTERRUPT TYPES IN PRIORITY ORDER

ii

Topic

oo 00 0o oo 00 OO
L
(e, ¥ BE - wNo -

Do

HeoRleoRNo]
[Oa B0 S NN

10.
10.

[SS

11.
11.
11.

11.
11.

o Ul

Table

[' |
(@3] 0o =

i
o O 00O
neNHO

>>¢>>'>:>§>?>>>>:> b -

TABLE OF CONTENTS (Continued)

Aggendix Title Table
' STACK HEAD CONTROL: MANIPULATION OF T-COUNTER

AND N-STATS A-14

DEVICE REGISTER BLOCK STATUS WORD (DRB(0)) A-15

DEVICE REGISTER BLOCK ORDER BYTE (DRB(1).7:0) A-16
DEVICE REGISTER BLOCK MODE BYTE (DRB(1).15:8) A-17
BASIC PANEL KEY-SWITCH FUNCTIONS A-18
MAINTENANCE PANEL STATUS INDICATORS A-19
MAINTENANCE PANEL HARDWARE CONTROL SWITCHES (HC) A-20
MAINTENANCE PANEL HARDWARE DISPLAY SELECTOR

SWITCHES (HS) A-21
MAINTENANCE PANEL ACCESS THROUGH THE MONOBUS A-22
STRUCTURE OF THE PANEL STATUS WORD (PSW) A-23

INDEX

iii

1 INTRODUCTION

1.1 THE MICRODATA 3200 COMPUTER

The Microdata 3200 is a high-performance, low-priced computer which
employs microprogramming techniques to expand user capabilities. This
manual describes the logical and physical structure of the 3200, and
presents microprogramming procedures for users wishing to develop a
computer that is an extension of the standard Microdata 32/S computer.

The 3200 Computer

The Microdata 3200 is a 16-bit machine with 16K bytes of 350 nanosecond
MOS main memory, addressable to the byte level. It is microprogrammed

using a bipolar 32-bit Control Memory (expandable to 4K words) that has
a 135 nanosecond cycle time.

The 3200 utilizes a common bus, called the MONOBUS, for accessing all main
memory modules and I/0 device controllers. Memories and controllers of
various speeds may be mixed on the asynchronous MONOBUS and uniformly
accessed with standard memory reference instructions. Overlapped bus
requesting and data transferring permits very high-speed data transfers.

Input/Output (I/O) can be byte or word oriented under program control,

or block oriented under either computer control (concurrent I/0) or con-
troller hardware control (Direct Memory Access). Four external interrupt
lines establish the relative priorities of groups of I/O device controllers.
Relative priority among the controllers on each line is established by their
positions along the MONOBUS. Each I/O device controller may be manually
assigned to a specific address and interrupt line. A unique interrupt

processing procedure and environment may be specified for each I/0 device
address.

3200 Microprogramming

The standard Microdata 32/S computer is implemented via firmware on the

microprogrammable 3200. To develop a computer that is an extension of the
standard 32/S, an appropriate set of microprograms (i.e., firmware) must
be developed, debugged, and stored in the Control Memory of the 3200. The

3200 then efficiently emulates the computer defined by the special micro-
programmed firmware.

Meaningful microprograms may be realized through the use of the CAP32
Microassembly Language. Source routines written in CAP32 are assembled by
the CAP32 Microassembler, which is a program written in PL/1 for operation
on host machines such as the IBM 360/50, 370/145, or larger machines of
that family. A CAP32 Microassembler that will run on the Microdata 32/8

is currently being planned; consult a Microdata representative for avail-
ability information.

Conventional programming can often be performed with little attention being
paid to hardware aspects. This is not true of microprogramming. The 3200

structure makes it mandatory that the programmer have a thorough knowledge
of the logical and physical structure of the system. The 3200 is competent
.over a wide range of problems, but is superlative where the problem matches
the optimization features of the machine. Thus, the programmer must know
the 3200 hHardware from a logic viewpoint, must know the CAP32 language,

and must know the effects of one upon the other.

The 3200 machine language microcode that results from the CAP32 micro-
assembly is stored in the 3200 Control Memory, defining a user-level
machine language. The "3200-x" machine defined by that microcode will
then execute user-programs written in user-language "x".

1.1

1 INTRODUCTION

1.2 HOW TO USE THIS MANUAL

This manual is written in modular format with each pair of facing
pages presenting a single topic.

The approach taken in this manual differs substantially from the typical
reference manual format. Here each pair of facing pages discusses an
individual topic. Generally the left-hand page is devoted to text, while
the right-hand page presents figures referred to by that text. At the head
of each text page are a pair of titles, the first one naming the section
and the second one naming the topic. Immediately below these titles is

a brief summary of the material covered in the topic.

The advantage of this format will become readily apparent to the reader as
he begins to use this manual. First of all, the figures referred to in
the text are always conveniently right in front of the reader at the point
where the reference is made. Secondly, there is a psychological advantage
to the reader in knowing that when he has completed reading a topic and
goes to turn the page, he is done with one idea and ready to encounter a
new one.

A scan of the Table of Contents provides a quick overview of the

objectives of this manual. The topics should normally be studied in the
sequence in which they are presented; however, extensive cross-references
(and a complete index) permit random access. Cross-references are provided
via footnotes which reference the applicable topic(s) by topic number.

A complete set of reference tables are provided in the appendix to this
manual. These tables are referenced as needed throughout the topics.

Special symbols are used throughout this manual for purposes of clarity
and conciseness; these symbols are defined in Figure A. In presenting

general instruction and code formats, certain conventions apply; these

conventions are defined in Figure B.

Symbol

Description

The period character (.) is used in signal names
to specify the applicable bit(s). For example,
"FBUS. 3" denotes the third bit of the FBUS,
while "Z.2" denotes the second bit of the
Z-Register.

The colon (:) is used as a separator for range
limits. For example, "0:9" denotes the
numeral 0 through 9, while "FBUS.4:0" denotes
bits 4 through 0 of the FBUS.

This sumbol is used to denote replacement. For

example, "X := 13" means that the current content
of the X-Register is replaced by the value 13,
while "Y := Y+1" means that the current content

of the Y-Register is incremented by 1. This
symbol is primarily used in the Reference Tables
in the appendix to this manual.

Figure A. Special Symbols Used in This Manual
Convention Description
UPPER CASE Characters or words printed in upper case are

lower case

[]

required and must appear exactly as shown.

Characters or words printed in lower case are
parameters to be supplied by the user.

Brackets surrounding a word and/or parameter
indicate that the word and/or parameter is
optional and may be included or omitted at
the user's option.

Figure B.

Conventions Used in General Formats

2 HARDWARE ORGANIZATION

2.1 AN OVERVIEW

The hardware of the 3200 is divided into two main categories: the
Central Processing Unit (CPU) and the External Devices. Communication
between the CPU and the External Devices is via the high-speed MONOBUS.

The overall organization of the 3200 hardware is illustrated in Figure A.
The CPU is divided into six main sections:

The Micro-Control Section

The User-Level Instruction Fetch Section
The Data Interface Section

The Arithmetic/Logic Section

The Local Memory and Auxiliaries Section
The Front Panel Section

These sections of the CPU are synchronized with a 135-nanosecond clock;
they are described in detail in the remaining topics of this section.

The External Devices . consist of the Main User-Level Memory and a full
complement of peripherals (such as tapes, discs, terminals, and com-
munications controllers). All external devices, including the Main User-
Level Memory, work asynchronously from the CPU and communicate over a
high-speed bus arrangement, called the MONOBUS.

The MONOBUS contains 16 data lines, 18 address lines, and 19 control 1lines,
providing high-speed data transfers in as little as 500 nanoseconds (depend-
ing on the speed of the external device). The MONOBUS is controlled by the
CPU and the Direct Memory Access (DMA) unit. Allocation of the MONOBUS

to one of the controlling units is by priority polling, each unit holding
the MONOBUS just long enough to effect the current transfer. The MONOBUS
includes 4 priority interrupt lines to signal the CPU for service.

The Main User-Level Memory uses MOS semiconductor technology, and has a
write and read access time of 300 nanoseconds. The memory module contains
16K bytes of storage, and is addressed at the byte level. A two-byte word
structure is superimposed, with word addresses being even. Word addresses
therefore correspond to the byte address of the more significant (left)
byte of the word. Data transfer is via 16-bit words over the MONOBUS.

With the MONOBUS addressing capability of 18 bits, there are 256K addresses
available. Some of these are reserved for I/0 devices, and for addressing
the Control Memory for the transfer of microcode. The rest are available
for addressing main memory.

EXTERNAL DEVICES

| I
I I
I I
| |
I I
I I
1/0 DISC
| DEVICE |®® ® STORE !
I I
: i T
I
| |
| MAIN 1/0 DMA |
| USER-LEVEL ‘ CON- LI CON- |
| MEMORY TROLLER TROLLER |
I |

A
e e T ——

= MONOBUS

Y \ \

USER-LEVEL
MICRO- DATA
CONTROL 'Ns:gTUé:J'ON INTERFACE
SECTION SECTION

SECTION

ARITHMETIC
f’zgfgz LOGIC MEMORY
SECTION

|
|
|
|
|
|
|
|
|
|
|
|
LocAL |
|
I
|
|
|
|
|
|
|
|
I

Figure A. Overall Organization of 3200 Hardware

2 HARDWARE ORGANIZATION

2.2 THE MICRO-CONTROL SECTION

The structure of the Micro-Control section is shown in Figure A. The
eight parts of the Micro-Control section have significant roles in
microprogramming.

To the programmer, the 32-bit Control (C) Register is probably the most
important item in the 3200. The C-Register receives and executes a single
32-bit microcommand from the Control Memory. Control signals diverge from
the C-Register and effect gates throughout the CPU and on the MONOBUS, thus
controlling all data transfers and transformations. The programmer must
know the effect of each C-Register bit and how statements in the CAP32
language effect those bits.?

The Control Memory (32-bits/word, 4K words max) stores the microroutines
which define the behavior of the user-level machine. The Control Memory
may be implemented either in Read-Only Memory or in Writable Control
Memory (or a blend of both).

Control Memory Addressing Logic provides decoding for the 8 addressing
modes of the Control Memory. Since the Control Word is short (32 bits)
and is accessed from the Control Memory with each CPU clock, optimum use
must be made of Control Memory addressing bits. The CAP32 Microassembler
assists in this regard, as most Control Memory addressing is handled auto-
matically by CAP32. The programmer must know the addressing modes suffi-
ciently to understand CAP32's limitation problems, and modify his micro-
routine structure so that CAP 32 can cope with his demands. 2

The 12-bit Last Access (L) Register holds the Control Memory address of

the microcommand being executed. In several Control Memory addressing
modes, the L-Register contents form part of the address of the next control
word accessed.®

The 16-bit Save (S) Register is a multipurpose register which receives and
saves the contents of the L-Register, and effects a subroutine return.

The S-Register can receive data from the CPU on the FBUS. These data are
used for Control Memory addressing.l+

The Plus-Minus Branching Test Logic monitors selected bits throughout the
system, and (under microprogram control) modifies the least significant
bit of the Control Memory address under designated test conditions.®

The Procedure Control Branch Logic responds to machine conditions and
external interrupt signals. Normally, the handling of machine faults

and interrupts occurs automatically through the efforts of the PC Branch
hardware at the time of each first digit branch. However, microroutines
must be provided to define desired responses to various conditions arising.

The 8-bit Query (Q) Register contains a mask word controlling the set of

interrupts enabling the PC Branching Logic.

The Q-Register is set from

the FBUS.°
References:
1Topic 3.2
2Topic 6.1
3Topic 6.1
“Topics 7.4, 7.5, and 8.2
5Topics 7.1, 7.2, and 7.3
6Topic 8.4
FROM MONOBUS
CONTROL /
MEMORY CONTROL C-REG _—"" CONTROL SIGNALS
(4K MAX) WORD (32) (32) -
(32) }\;
] ()
(18) EMIT
SIGNAL EBUS
FD & SD
controL BRANCH SIGNALS FROM 1BUS
MEMORY py
ADDRESS 31;6 ——— FROM FBUS
LOGIC
(12)
\ L-REG
(12)
[TEST
PM | o«— SIGNALS
(PLUS-MINUS) | o— FROM
TEST LOGIC f«+—ALL
PC- +— OVER
BRANCH .
LOGIC MASK — SRt
| oG B FROM FBUS
INTERRUPT
SIGNALS
Figure A. The Micro-Control Section

2 HARDWARE ORGANIZATION

2.3 THE USER-LEVEL INSTRUCTION FETCH SECTION

The User-Level Instruction Fetch section of the Microdata 3200 is the
mechanism which implements the user-program at the microlevel.

The microroutine is a sequence of microcommands which carry out a single
user-level machine instruction. The User-Level Instruction Fetch section
retrieves and interprets user-instructions one at a time, transferring
microlevel control to the microroutine which will execute the microcommand
sequence for instruction fetched.

Figure A illustrates the User-Level Instruction Fetch section; this section
contains two main registers:

° Instruction (I) Register
° Program (P) Register

Associated with the I-Register is an I-Save section including the First
Digit (FD) and Second Digit (SD). This portion of the 3200 also includes
two miscellaneous items: the General Indicators (GI) and the W-Counter.

The 18-bit P-Register is 1 of 2 CPU registers capable of directly addressing
the MONOBUS. The other is the M-Register, which is used to fetch data.

(The P-Register has the higher priority.) The P-Register fetches instruction
words ~and any other words in the program stream from the Main User-Level
Memory into the I-Register. When the P-Register is incremented to an even
value corresponding to a word address in Main Memory, the instruction

fetch cycle is automatically initiated and the P-Register addresses the
MONOBUS. About 300 nanoseconds later (barring MONOBUS congestion) the
fetched instruction or program stream word appears in the I-Register.

The 16-bit I-Register word is subsequently handled byte~by-byte in the

CPU, with the Least Significant Bit (LSB) of P-Register determining which
I-Byte is to be used. An I-Byte may be sent to the Arithmetic/Logic
section via the IBUS and BBUS. Alternatively, the First Digit (upper 4
bits of the current I-Byte) may be used to control a 16- or 32-way branch
in Control Memory. The P-Register is incremented automatically by a First
Digit Branch (FDB). The programmer can optionally increment the P-Register
when an I-Byte is sent to the Arithmetic/Logic section.?

The I-Save Register retains the current I-Byte when the FDB is used, freeing
the I-Register to receive the néxt I-Word prior to the time needed.

SD, the second digit of I-Save, is available for a second 16—~ or 32-way
branch, or for further general decoding in the Arithmetic/Logic section.
Selected combinations of bits from both digits of I-Save may be the basis
for simple 2-way branches as well.?

The General Indicators (GI) can be set to any values by a block transfer
from the FBUS, then read back into the Arithmetic/Logic section via the’
IBUS. The GI's can also be used as independent bits to control 2-way
branching.3

The W-Counter is a 4-bit down-counter that can be initialized from the
FBUS, then read back into the Arithmetic/Logic section, or tested against
zero and decremented.”

References:
1Topics 8.3 and 8.4
2Topic 8.5
3Topic 7.2
qTopic 7.2
MONOBUS DATA MONOBUS ADDRESS
lns) (18) T
I-REG P-REG
(INSTRUCTION “ (PROGRAM P(17:16)
REGISTER) COUNTER) —» TO
M (16) P. O (18) FX
TestT | 20290900000 jem—— e
SELECTOR Y
(8) (8) OF IBY
mBY" (2)
“ED” (2), (8), (16) (16)
@) IBUS
A
ISAVE () <
(8)
FD SD (4)
(FIRST | (SECOND BRANCH
DIGIT) |DIGIT) TEST
(4) (4)
A 7
\ /
\ / FBUS
v w (4)
BRANCH COUNTER
TESTS BRANCH <— @
(4) TEST
-1
FD OR SD
‘?STA FROM
CONTROL +—2. (2) _ FROM FX-REGISTER IN ARITHMETIC/
« (16) DATA INTERFACE SECTION LOGIC
MEMORY (8) SECTION
ADDRESS
LOGIC
TO BBUS
IN ARITHMETIC/LOGIC
SECTION
Figure A. The User-Level Instruction Fetch Section

2 HARDWARE ORGANIZATION

2.4 THE DATA INTERFACE SECTION

The Data Interface section is the second path of the communication between
the MONOBUS and the CPU; this communication path is of lower priority
than the User-Level Instruction Fetch interface. Whereas the Instruction
Fetch section is used only to direct words from the program stream into
the CPU, the Data Interface is bidirectional and is used for moving to
and from the CPU.

The Data Interface section is illustrated in Figure A. This logic section
consists of 2 main registers (the M-Register and the D-Register), a set of
input D-Gates, 2 auxiliary registers, and 2 l-bit MONOBUS Write Flags.

The CPU side of the Data Interface is almost entirely the FBUS (the CPU's
16-bit central data bus). There is a connection from the upper 2 bits

of the P-Register (P.17:16) into the FX-Register to aid in 18-bit addressing
within a 16-bit system. P.17:16 is also referred to as PX.

When loaded with an 18-bit address, the M-Register initiates a request for
MONOBUS control. The address may point to a word or byte in the Main User-
Level Memory, to a word in the Control Memory, or to a peripheral controller.
When the MONOBUS responds, a read or write action occurs that depends on

the loading of the D-Register with a word or byte to be transmitted. If

the full D-Register (or either byte of the D-Register) is loaded before the
conclusion of the current MONOBUS access, one or both of the MONOBUS Write
Flags are turned on. The contents of the D-Register are then read into the
CPU from the MONOBUS. Without Write Flags on, data are read into the CPU
from the MONOBUS through the D-Gates, onto the FBUS.

Though the D-Register, D-Gates, and FBUS are all 16-bits wide, adequate
provision is made for handling 8-bit data. Provision is also made to con-
trol the release of MONOBUS, so that a fast Read/Write cycle can be execu-
ted without losing MONOBUS Control.

Auxiliary registers FX and SX assist in extending the normal 16-bit data
orientation of the system to permit 18-bit addressing of the MONOBUS.
Connections from the FBUS, PX, SX, and Local Memory addressing logic provide
data and control for establishing the upper 2-bits of the MONOBUS address.
This is accomplished by explicit microinstructions, or as a natural bypro-
duct of other actvity.l

Reference:

1Topic 4.5

MONOBUS MONOBUS

MONOBUS MONOBUS
1BUS ADDRESS CONTROL DATA DATA
A
T 1 Tns) (2) T«s) Tus) T(s) l(a). (16
FX- M-REG
REG MONOBUS D-REG D-GATES
6] RODRESS {DATA QUTPUT (18
REGISTER) REGISTER)
FROM ¥ (18) (ve)
s
(2) i i -
(8) (8}
2) (16) MONOBUS (18) (16}
SX- WRITE
(2) REG FLAGS
2 2)
b
(2)
< L >
Figure A. The Data Interface Section

2.4

2 . HARDWARE ORGANIZATION

2.5 THE ARITHMETIC/LOGIC SECTION

The Arithmetic/Logic section of the 3200 CPU consists of three 16-bit
Working Registers (X, Y, and Z), the ALU proper, Arithmetic Flags, and
the Target Flags (TFG) Register. All of these entities are intercon-
nected through the ABUS, the BBUS, and the FBUS.

The Arithmetic/Logic section is illustrated in Figure A. The BBUS receives
outside inputs via the IBUS (from the User-Level Instruction Fetch section)
and from the C-Register (in the Micro-Control section) via the EBUS.
Selected bits from the ALU are transmitted to the Branching Test Logic in
the Micro-Control section, and to the Local Memory Addressing Logic.

Registers X, Y, and Z provide a variety of single and combinatorial shift
capabilities, with bit fill selectable by the programmer. Shifting is
carried out as a separate working register operation, not as part of an
ALU operation. ! ‘

The ALU provides addition and subtraction (with and without use of an
input carry or borrow), data transfer, complementing, AND, OR, and
EXCLUSIVE-OR operations. Data widths are 8 or 1l6-bits and are determined
by the output destination. ALU output is always via the FBUS to the
selected destination(s).?

-Input to the ALU is via the ABUS and/or BBUS. The ABUS is fed by the Y-
or Z-Register. The BBUS is fed by the X- or Y-Register, and the EBUS or
IBUS. Restrictions which apply to the combination of sources, data widths,
etc., are discussed in the referenced topics.3

ALU number representation and arithmetic are in 2's complement form. The

Arithmetic Flags, when specifically enabled, are set after each ALU opera-
tion and reflect the Carry/Borrow, Overflow, Negative, and Zero conditions
of the ALU output. The left-to-right order of the target flags (C, 0, N,

Z) are worth remembering.

Target Flags (TFG) is a 4-bit register than can be set to the same four
condition values as the Arithmetic Flags. Alternately, TFG can be set from
the lowest 4 bits of the Z-Register (Z.3:0 = %4 = ZA)."*

References:

1Topic 5.6

2Topics 4.1 and 4.2
3Topics 5.1, 5.2, and 5.3
“Topic 5.5

< FBUS
‘ h
(16
(16)
(16) (4)
1-BUS ve (18) 2o, zc, z8, 2A J
8 (16) 1@ 8) @
(4 3 z
8
(18)
X-REG Y-REG -
- (18) [> (18) — > v
(16)
BRANCH BRANCH BRANCH —
(18)
TEST TEST (18 (18) TEST ol B TO G-CTR
zulzL
BBUS (16 (16) ABUS
4) . 4)(8).
(s)Ieaus @ @
“EMIT”
CONSTANT @
FROM
ALU
C-REG (16 AND (8) <
(1) (1
{18} (8)
CARRY =
OVERFLOW
NEGATIVE |(4)
ZERO
AF
TCO
AR METIC (TARGET
) c‘onnmous)
CONZ
BRANCH
TEST c
o
7
(§1}
J
FBus
Figure A. The Arithmetic/Logic Section

2 HARDWARE ORGANIZATION

2.6 THE LOCAL MEMORY AND AUXILIARIES SECTION

This section of the 3200 CPU contains the Local (Fast) Memory and
several auxiliary sub-sections. The Local Memory consists of 32 high-
speed, l6-bit registers.

The structure of the Local Memory and Auxiliaries section is shown in
Figure A. This logic section contains the following sub-sections:

Local Memory (LM)

Single-Bit Generator (SB) .
LM and SB Addressing Logic

G-Counter

T-Counter

N-Stats

Communication with the Local Memory (LM) and Auxiliaries is via the FBUS,
with the C- and Z-Register having some direct inputs. The LM and SB
Addressing Logic provides control signals effecting the upper 2 bits of
M-Register (for MONOBUS addressing).

The Single-Bit Generator (SB) provides a 16-bit signal on the FBUS equal

to any one of the 16 possible powers of 2 which are expressable in 16 bits
(the selected power of 2 corresponding to the specified LM and SB address
in the range 0:15). Each signal consists of one "1", bit, hence the name.

The LM consists of 32 high-speed, 16-bit registers arranged in 2 banks of
16 registers each, for addressing purposes. These are designated as
"Primary" and "Secondary" Local Memory. Ten of the 16 Primary LM Registers
have special hardwired functions as well as serving as general-purpose
high-speed local storages. LMO0:LM3 serve as part of the stack head.
LM10:LM15, when addressed, effect the 2 most significant bits of the
MONOBUS address (M.17:16). See referenced topics for further details. !

The LM and SB addressing Logic provides capabilities for addressing any one
of the SB Generators, or any one of the 32 Local Memory registers as a
source or destination (but not both in the same microcycle). It also pro-
vides for a variety of side-effects that can be specified to occur in a
Local Memory access microcycle.

The G-Counter is a 4-bit cyclic up-counter that can be initialized from
the lowest 4 bits of the Z-Register or Emit Field. The G-Counter is then
used for LM and SB addressing and optionally incremented as a side effect.?

The T-Counter is a 2-bit cyclic bidirettional counter used by the 32/S
emulation in stack head manipulation. The N-Stats is a 5-bit shift register
used to represent the current stack head structure. Detailed stack head
processing is discussed in the referenced topics.3 For now, it is enough

to recognize that stack head manipulation provided in the 3200 localizes

the Top-of-Stack in the Y-Register, with 0 to 4 additional words in

LMO:LM3 forming the rest of the stack head. The remainder of the stack

is in the Main Memory. The Stack Handling Logic provides the integration

of N-Stats, T-Counter, and LM and SB Addressing, that makes efficient

stack handling possible.

References:

1‘I‘opics 4.2 and 4.3

2Topic 4.3

3Topics 9.1 through 9.5

9>
{/\> FROM
C-REG N-
cB STATS |—* PM TESTS
FIELD (5)
S
~
¥
|
Il
T-CTR |jeee — —
T (2)
! N STACK-
T +1 HANDLING
G-CTR | - LOGIC
(@) |
A Y Vv
-
‘/
(4) LM AND SB T
ADDRESSING l
FROM {4) _(“
Z2.3:0 b '
» }b_ I
2 —_— JR—
[4e]
w
PRIMARY
(16) LOCAL
FROM MEMORY
CI-FIELD : (16;16)
CURRENT
ARRAY
CONTROL
: SECONDARY
(16} LOCAL
< MEMORY
(16;16)
K SB
2 SINGLE-BIT
GENERATORS
V (16)
Figure A. The Local Memory and Auxiliaries Section

2 HARDWARE ORGANIZATION

2.7 THE FRONT PANEL SECTION

The Front Panel section of the CPU is unique in that a large fraction of
the available front-panel display and control capabilities is subject to
microprogram control. It can be tailored to the particular firmware set
(and user-level instruction set) that is being implemented.

The front panel normally supplied for users interested in extensive micro-
programming development is adapted for operation with the 32/S firmware set.
Every panel contains switches for the following basic functions: OFF, STOP,
LOCK, RUN, HOLD, LOAD, and INT. The full maintenance panels used in micro-
programming development also contain 7 Status Indicators, 11 Control Switches,
18 Data Bit Entry Switches, 18 Display Selector Switches, an 18-Light Address
Display, and a 16-Light Data Display.

Due to flexible firmware control of the Front Panel logic, the displays
and controls are not 'limited in their effect to the CPU, but may also
interact with the remainder of the system via the MONOBUS.

The complete maintenance panel is directly addressable on the MONOBUS, to
permit the necessary microprogram to read the Data Switches and Panel Status
Word, and to output to the Display Registers.

The basic front panel is illustrated in Figure A. Figure B shows the
complete maintenance front panel of the 32/S emulation.

Details regarding the Front Panel are covered in a separate section of this
" manual.

Reference:
lTopics 11.1 through 11.6

RUN Lock
sTOP @ STOP
HOLD OFF

Basic Panel

Figure A.
¥

f a [=] a a o a o o o (=} (=] [=} o [=} a (=] o Q

ADR &‘_A CMU_ NCMA CMA DAR [<d L._ _i'_ i __3_'_

DDA M8D CML F 1 LOC/M ABS/M P8/M EP/M SB/M SP/M TOS NSTM PL SPEP PSA SL
o ey s o o o o o oo [o [o [e [

a a o a [=] o [=} a j=} Q a a a [=] (=] o a [=]

ADDRESS
a a o [=] o =] a [=] a =] =} a a a a (=] a a
DATA

0 | | e e e o

INSTR CMA MBA BREAK ADDR DATA ADV
ENTER ENTER DAR STEP

SYS PCREG CLOCK
STOP BREAKBREAK +-/W

AESET ENASL HALT

MEM ON LOCK CLOCK 8US INSTR BREAK D D D D D D D E:] D D D

0O o o o o a o

AUN Lock
vyt m e
OFF

HOLD

Figure B. Maintenance Panel

3 INTRODUCTION TO CAP32

3.1 MICROINSTRUCTION FORMAT

This topic describes the general format of the CAP32 microinstruction.

CAP32 source microprograms contain one statement per line: an executable
microinstruction which will assemble into a line of object microcode, or

a microassembler pseudoinstruction directing CAP32 to. perform an evolution
at microassembly time. Each CAP32 instruction contains up to four specific
fields, as shown in Figure A.

The Label Field (LAF), which starts in column 1, is conventional in form.
It may be empty, contain an asterisk denoting a comment line, or contain a
symbol. (Many of the CAP32 pseudoinstructions require a symbol in LAF.)

If the line contains an executable instruction, a symbol in LAF will permit
the line to assume the destination of a normal jump or branch instruction.!
Jumps or branches to unlabeled lines in CAP32 are restricted to in from the
microprogram counter (denoted by *+n or *-n). Jumps or branches to a line
relative to a labeled line (of the form symbol +n) are not supported.

A symbol in CAP32 consists of 1 to 6 alphanumerics, beginning with a letter.
Letters include the period symbol (.), and the 26 letters (A through 7).

The alphanumerics consist of the letters and the decimal digits (0 through
9). Hence, a symbol in CAP32 may have a period inserted anywhere, and may
include digits after the first character. For example: I5D, FD3, .FDX,

and .001 are legitimate CAP32 symbols. 4FLUSH, SEGMENT, and $SAFE are
illegal.

In a pseudoinstruction, the Operation Field (OPF) consists of a keyword
identifying the particular pseudo operation called for. Otherwise, the
instruction is executable and the OPF consists of 1 or 2 subfields (OPF1
and OPF2) separated by a comma (with no space). OPF2 may in turn contain
2 subfields separated by a comma.

OPF1 specifies in part the principal operation to take place during the
135-nanosecond microcycle in which the current microinstruction is executed.
Other fields of the statement must also be interpreted to complete the
specification of the action. The principal operation specified by OPF1

may be:

° A shift in one or more working registers (X, Y, or Z).

° An arithmetic or logic expression evaluation.

° A data transfer from the D-Gates (hence the MONOBUS), the
Local Memory, or one of the other sources feeding the FBUS.

When occurring, OPF2 specifies a concurrent secondary action involving the
stack handling facilities or the G-Counter.?

The Result Field (REF) consists of 1 to 3 subfields (REF1l, REF2, and REF3).
REF]l completes the specification of the principal operation partially
specified by OPFl. The allowed values of REF1l are heavily dependent on
OPFl. For shift operations, REFl specifies the working register(s) to be

shifted. For data transfers and arithmetic or logic operations, REF1
specifies the destinations receiving the FBUS signal from the Arithmetic/
Logic section, or the named signal source. Allowable destinations, opera-
tions, and sources are discussed in detail in the referenced topics.?

When occurring, REF2 specifies the label of the next microinstruction to be
executed. When making a conditional branch, REF2 also specifies the con-
dition to be tested and the alternative destinations. If REF2 does not
appear, CAP32 selects the next sequential microinstruction.

When occurring, REF3 specifies desired concurrent side effects." REF3 also
permits direct encoding of the C-Register bits, free from CAP32 micro-
assembler constraint, but without its aid and protection.

References:

1Topics 7.1 through 7.6

2Topic 4.3 and Topics 9.1 through 9.5
3Topics 4.1 through 4.6

“Topics 4.3, 5.5, and 8.4

Field Definition

Label Field (LAF) From col 1 to the first blank; empty
‘ if col 1 is blank.

Operation Field (OPF) From next non-blank to first
subsequent blank

Result Field (REF) From next non-blank to first
subsequent blank.

Comment Field (COF) ‘ From next non-blank, <1f any, to
end of line.

Figure A. CAP32 Instruction Fields

3 INTRODUCTION TO CAP32

3.2 C-REGISTER FIELDS

This topic describes the relationship of the CAP32 microinstruction
fields to the related Control (C) Register fields.

The C-Register fields are shown in Figure A by bit position, field name,
field function, and the CAP32 microinstruction field effecting them. The
C-Register is 32 bits wide, numbered from 31 at the most significant end to
0 at the least significant end. The C-Register contains bits C.31:0, with
nine fields identified (CcJ, CI, CG, CF, CE, CD, CC, CB, and CA). All of
the fields are four bits wide (on Hex digit boundaries), except CE and CD
which share a single HEX digit (CE is one bit wide and CD is three bits
wide). Since CD is based on a natural Hex digit boundary at its right end,
its range is valued at 0:F. CE is to the right of Hex digit boundary, so
when interpreting a Hex display of the microcode, CE will add either 0 or

8 to the Hex digit containing CE and CD. Hence the CE field has a value of
either 0 or 8.

When a given field has a specified value, such as field "Cx" having value

v", the condition "Cxv" is said to exist. For example, condition CIA
occurs when field CI has Hex value A.

Usage of the CB field, thus probably blocking it for other usage during
the current microcommand cycle, is referred to as "CB-Constraint".

Knowledge of the C fields is required to understand constraints that the
machine architecture places on source language statements, and the result-
ing performance. Each CAP32 instruction is assembled into one Control Word.
A "loading" of the C-Register occurs at the time the Control Word is executed
as a microinstruction. The C-Register appears on the microprogram listing

as the object microcode in Hexadecimal notation. !

Normally, the CAP32 Microassembler determines the value of each C~Register
field as the programmer desires (expressed in CAP32), handling many of the
details automatically. For example, the choice of Control Memory addressing
mode (field CD) is established by CAP32 in most cases, and the address is
determined by CAP32 through use of a memory allocation routine. The routine
seeks to completely fill up the available memory, while meeting the restric=
tions inherent in the 3200 branching structure. ”

If the programmer desires, he may force CAP32 to establish each micro-
instruction precisely as desired, using one or more expressions of the form
"Cfield=value" in subfield REF3 of the CAP32 instruction. For example,
"CB=14,CA=2" would force the CB field to value Hex E, and the CA field to
value 2. These forced specifications supersede those values the remainder
of the CAP32 statement would have produced. This procedure has inherent
hazards.

References:

1Topic 6.2
2Topics 7.1 through 7.6

C-Register
L

CAP32
Microlnstruction
More-significant end Field
3]
300
;%— cJ Shift functions
27| Sources for data mcves OPF1
26 / .
—~+ CI ALU operations
25| / P
;i / (SB Generator address control OPF1
= LM address control, either source OPF1,REF1
ol CG or destination
ol Side effects on G-Counter, stack ‘OPF1,0PF2
19| \ \ handling, & interrupts REF1,REF3
i%_ CF \ | Shift function objects REF1
ig = Destinations for data moves & ALU REF1
=1 erations ‘
17 opera
13] <D o — Address mode
ii‘ Address of next microinstruction REF2
10|
=+ cC
9| C
8
2—— All-purpose helper & extender OPF1l,REF1,REF2
T CB Emit field OPF1
a1 (Assists CJ, DI, CG, CD, CA)
3——-— .
iA— CA Branch cordition specification ——— REF2
_{
0

Less-significant end

Figure A.

Field Structure of the C-Register with Relation to
Fields and Subfields of the CAP32 Microinstruction

3.2

4 FBUS DESTINATIONS AND SOURCES

4.1 DIRECT FBUS DESTINATIONS

FBUS destinations are specified in the REF1l subfield of the CAP32
microinstruction; they are separated into two categories: direct FBUS
destinations and Local Memory (LM) FBUS destinations.

Direct FBUS destinations are specified by using one code from Reference
Table A-2 (e.g., X, or Y:Z, or ZU:F). Local Memory (LM) FBUS destinations
are specified by using one code from Reference Table A-3 (e.g., LM(G,IG)).
Two destination codes may appear in the same microinstruction REF1 subfield
if one is from each category (e.g., X:LM(8), or DB:LM(T,DT), or LM(G) :Y:2).

The remainder of this topic is devoted to a discussion of the direct FBUS
destination codes. The user should refer to Reference Table A-2 (in
Appendix A) and to Figure A (in this topic).

The null code (.) is used in REF1l if no destination is required for the
FBUS signal (i.e., the microcommand is a conditional branch, without data
movement) .

REF1l code F is an input selector for the Target Register, and an enabling
specification for the Arithmetic Flags (AF).! Here the AF's are to be set
to reflect the Carry, Overflow, Negative, and Zero status of the ALU output.
(As such, F is not a true FBUS destination code but is listed with them.)

REF1 code SBR specifies selected bits of the S-Register to store the I-
Register contents. The L-Register holds the Control Memory address of the
current microcommand.? SBR is distinguished from REF1 code S which directs
setting of the full S-Register from the FBUS.

REF1l codes X, Y, and Z specify the most common: FBUS destinations (Working
Registers X, ¥, and Z), which in turn may drive the ALU, provide for shifts,
or be tested.?

REF1 codes XU, XL, and ZU specify transfer of half the FBUS to half of a
Working Register. Similarly, code DB specifies output of a single byte
(half the FBUS) to the MONOBUS Data Register D. Each o6f these codes directs
copying of the ALU output low-order byte (ALU.7:0) into the ALU output high-
order byte (ALU.15:8). Thus if the FBUS source is the ALU, a shift of the
ALU output lower-byte into both halves of the FBUS results. Note that if
the ALU is not the FBUS source, no shift occurs on the FBUS.

REF1 codes D, DB, MR, MW, and P impact the MONOBUS, providing memory and
I/0 device access.' REF1 codes P and PX control the user-level Program
Counter. The user is cautioned that code P loads P.15:0 from the FBUS and
also initiates MONOBUS action; thus, code PX must be used first if a major
jump in memory or I/O address space is planned. This direct control of
the user-level Program Counter is only for jumps and unusual situations.
Normal advance of the counter to the next sequential instruction is pro-
vided automatically.5

REF1 codes FXA, and FXB, and SX enable the selection of the memory bank for the
next data access to the main memory or I/0O devices. Final selection of
memory location or I/O address is through REF1 codes MR or MW.® REF1 codes

W and GI provide for setting of the W Counter and General Indicator (GI)

bits.

References:

ITopics 5.4 and 5.5

2Topic 2.2

3Topics 4.3, 5.1, 5.3, and 5.6
“Topics 4.5 and 4.6

Finally, code Q provides for setting of the Interrupt Masks.’

STopic 8.3
6Topic 4.5
7Topic 8.4
I MONOBUS {
P.
17:18 P.15:0 o FX.1:0 —
3 r 3 b
PX Plexa | rxe
F.15:14 15:14| 1:0
GI sx
GI.3:
3:0 3:0
SX T
w -
W.3: H
3:0 3:0 15:14 1
v M, -
xu |x J:F) | xLF Y(:F) 2U(:F) 2(:SBR)(:F) 17116 M15-0
15:8 | 16: 7:0 15:0 15:8 15:0
3 A MR OR MW T Mm.C
x.15:8 | x.7:0 z.16:8 150 !
Y.15:0 I
X.15:0 2.15:0
|
|
1]
2 MONOB D.15:0 l
= (:)F e ITE 5.158 | D70 |
LAt J—1 awaso _Xu.xt,2u. 08 L i |
CF] DB.15:8 g |
ALU.7: : 15:8 D.15:0 ~ I
TCO) L 2:0 DB.7:0 > |
Y |
] N
Q | 15:0
Qz:
0 7:0 *
T |) LOCAL MEMORY
siems | 83:1]s0] S 150 NObE
b Z:38R(:F) v
L10:0 Ln
Figure A. Effects of Direct FBUS Destination Codes

4 FBUS DESTINATIONS AND SOURCES

4.2 LOCAL MEMORY (LM) FBUS DESTINATIONS

The second category of FBUS destination is Local Memory (LM). LM
destinations are specified by using one code from Reference Table A-3.

LM consists of 32 high-speed registers in two arrays, denoted Primary and
Secondary.1 Array selection (Primarg and Secondary) is accomplished when
LM is used as an FBUS signal source. LM destination codes cannot modify
the current array selection mode established by a previous LM source code.
Thus an LM destination is always in the "Current" LM array, denoted CLM.

The syntax of an LM destination code used in subfield REF1l is either of
the following:

LM (index)
LM(index, side-effect)

where "index" has a value in the range 0:15, and where "side-effect"
specifies a unique concurrent side-effect, such as setting or incrementing
the G-Counter.

The G-Counter is a 4-bit register specifically connnected an an LM index.
When the G-Counter is used as an index, incrementation of the register can
be a specified side-effect (i.e., using code IF), thus providing a conven-
ient means of "stepping" through either array of 16 LM registers. Incre-
mentation occurs after use of the G-Counter as an index. The G-Counter is
initially set as the side-effect load G (LF) when one of the other indexing
methods is used.

Index code Z4 allows direct use of data to index into the LM. The data item
is first loaded into Z.3:0, then LM destination code LM(Z4) or LM(Z4,LG) is
used, where LG loads the G-Counter with the current value Z4.

LM can be indexed directly through a microcode literal value, denoted by

rn in Table A-3. 1In the CAP32 program form a symbol previously defined by

a REGNAM pseudoinstruction may be used for rn. In the final machine Control
Word, the value of rn is contained in the CB field. Hence, where possible,
G or Z4 LM indexing should be used rather than rn indexing, to minimize the
use of the all-purpose helper field CB. This also reduces the probability
of conflict between the indexing and another control function of the same
microcommand. Often, LM(rn,LG) will be used when an LM register is written
(2 few microcommands later), thus eliminating the CB-Constraint.

The fourth method of LM indexing is via the T-Counter (codes LM(U,IT) or
(LM(T,DT)). This method is totally involved with the specific facilities
for stack handling.3

An important restriction to keep in mind is that LM may be used as a source
or as a destination during one microcycle, but not as both. Word transfers

from one LM register to another (with or without modification) requires
cycling the word through Working Register X, Y, or Z, and the ALU, which
takes two microcommands.

Finally, anticipating subsequent topic coverage, the user should note that
certain LM registers have special properties. Registers 0:3 of one array
are used in the stack head, addressable by the T-Counter." Registers 10:11
have special influence on MONOBUS addressing, making them particularly
appropriate as Program Counters. Registers 12:15 have special influence

on MONOBUS addressing, making them particularly appropriate as Data Stack
Environment Pointers.

References:

1Topic 2.6
2Topic 4.3
3Topics 9.1 through 9.5
l+Topic 9.2

4 FBUS DESTINATIONS AND SOURCES

4.3 LOCAL MEMORY (LM) AND SINGLE~BIT GENERATOR ARRAYS AS FBUS SOURCES

FBUS sources are specified in the OPFl subfield of the CAP32 microinstruc-'
tion. The local array FBUS sources consist of the Local Memory (LM)
and the Single~Bit Generator arrays.

A Single-Bit Generator produces a full word of 16 bits; this word contains
a single 1l-bit, with the rest 0's. If the code SB(index) or SB(index,side-
effect) is used in the OPF1l subfield of a CAP32 statement, the value
2**index is placed on the FBUS. That is, bit "FBUS.index" is set to 1

and all other FBUS bits are set to 0. The allowable syntax and sematics
for "index" are shown in part 2 of Reference Table A-4. For example, if
OPF1=SB(5), then at execution time FBUS=0020,¢=100000,. Similarly, if

G=15 and OPF1=SB(G), then at execution time FBUS=8000;¢.

Specification of an LM register as a source is complicated by the existence
of the two LM arrays (Primary and Secondary) each containing 16 registers.

Two of the OPF1l codes, LM and LMS, establish a definite (permanent) LM

mode. The LM code establishes the Primary LM array as the Current Local
Memory (CLM). LMS establishes the Secondary array as the CLM. The other

two OPF1l codes, LMC and LMN, leave the established CLM as is: LMC prescribes
use of the CLM, while LMN prescribes use of the Noncurrent Local Memory (NLM).

The codes used to index within the selected LM array are identical to those
described for LM FBUS destinations!, except that they are used in subfield
OPF1 instead of REFl. Also, codes U and T may be used with or without side-
effects, as desired. Codes U and T are discussed in conjunction with Stack
Handling.? Note again that LM may be either a source or destination in

any microcommand, but not both, since C-Field CG is used for gating both
separately.

Working registers X, Y, and Z may be used as FBUS sources, by using codes
X, ¥, or Z (respectively) in subfield OPFl. The signals from X, Y, or
Z come through the ALU, as discussed in the referenced topics.3

Codes LG and IG, used for independent of local array source or destination
codes, also effect the G-Counter. (Reference Table A-5 provides details.)
The G-Counter can be set by using code Z4,LG or code rn,LG as subfield

OPF2 of a CAP32 statement. In this case Z4=Z.3:0 and rn denotes a register
name defined by REGNAM, or a decimal number in the range 0:15. The G-
Counter can be incremented by using code IG as subfield REF3 of a CAP32
statement, inserting a null REF2 subfield if necessary.

Sample usage of the source codes described above are illustrated in Figure A.

References:

lropic 4.2
2Topics 9.1 through 9.5
3Topics 5.1 through 5.6

CAP32 Microinstruction

SB(0)
SB(1)

LMC (7,LG)

LMS (14)

LMN (G, IG)

Y

Z

Action
Loads Register Y with value 1.
Loads Register 7 with value 2.

Loads Register Z with the value now
stored in Register 7 of the currently
active LM array, and sets the G-
Counter to 7.

Selects the secondary LM array to be
currently active, and loads registers
Y and 7 with the contents of secondary
LM register 14.

With the primary LM array currently
active (and keeping it that way),
this instruction loads the MONOBUS
D-Register with the contents of the
secondary LM array indexed by the G-
Counter. The G-Counter is then
incremented.

Figure A.

Sample Usage of LM and Single-Bit Generator Arrays as

FBUS Sources.

4 FBUS DESTINATIONS AND SOURCES

4.4 OTHER DIRECT FBUS SOURCES

In addition to the local array FBUS sourcesl, seventeen other sources
drive the FBUS directly, bypassing the ALU. These sources vary from
le bits to 1 bit in active width, and provide 0O's in unused bit posi-
tions. Each is specified by use of the proper code in subfield OPF1.

Reference Table A-6 summarizes these additional direct FBUS sources.

OPFl codes D or DB cause the current MONOBUS Data Word (MDW), or possibly
just one byte of that word, to be placed on the FBUS.?

OPFl code TFG loads the 4 low-order bits of the FBUS from the 4-bit Target
Flags Register (TFG). TFG is a register which reflects the conditions

of same previous ALU operation.3 Each bit loaded into the F-BUS reflects
a specific target flag: 3, carry; 2, overflow; 1, negative; 0, zero.

OPFl code SWIT allows bits representing 4 hardware test switches in the 4
low-order bit positions of the FBUS. These internal cabinet switches are
for programmed maintenance use and are not operator-available.

Four OPF1l codes (ZD, ZC, ZB, and ZA) load FBUS.3:0, the 4 low-order bits of
the FBUS, with the 4 Hex digits stored in the Z~Register. 2D indicates the
most significant Hex digit; ZA indicates the least. These source codes are
convenient for many decoding operations. OPFl code YB loads FBUS.3:0 with
Hex digit B from Y-Register Y.7:4.

Finally, eight OPF1l codes of the form F(f) bring to the low-order bit of

the FBUS (FBUS.0) selected 1l-bit flags derived logically from the 4 micro-
level hardware Arithmetic Flags (AF) .* Six of the eight codes provide all
of the normal comparisons of the ALU result against zero (Zero, Non-Zero,
Negative, Non-Negative, Positive, Non-Positive). The final two codes report
Carry and Overflow conditions. A CB-Constraint results.

All direct sources listed in Table A-6 drive the FBUS directly (not through
the ALU); hence, they do not respond to the Byte-type destination codes®

so as to copy their bit pattern from the lower byte to the upper byte of
the FBUS. Thus, destination codes XU, ZU, or DB will not cause any trans-
fer of these 4-bit or 1l-bit source signals into the upper byte of X, Z, or
D (respectively).

Source codes D or DB must not be used in the same microcommand as destina-
tion codes D or DB. If such use is attempted, the MONOBUS Controller may

hang in permanent error.
g

The entire set of direct FBUS inputs is shown graphically in Figure A.

References:

'Topic 4.3 $Topic 5.5 STopic 4.2
2Topic 4.5 “Topic 5.4

R

D
GATES

X.15:0 - MONOBUS
x INPUT
Y.15:0 D _.15:0
2U.7:0 _
2.15:0 D_.7:0
70 IF M.0 = 0, DB SELECTS MW.15.9
2L.7: ELSE DB SELECTS MW.7:0
M - » - [
ZU ZL
Y z LG L
24 — - —- t - l_9_ cB T
= |zA3:0
IYBI zn[zclza ZA P z4 \G 1t u”
[T 2830 \ ADDRESS./ / #
ING
| :
2C3:0 g \ \ / J/
| 2D.3:0 e M
[LMS ===
1 Y3.3:0 e tMCE LM
e - PLM
: ' CcLM 5$§a
1 - o am -
ALU -
AF ' < NLM ! ij\l SLM
J TFG 3:0 | [LMN:15:0 | U
AFC |AFB |AFN |AFZ TFG
[F(z) .0 $B.15:0
<« SB-GEN
F(CAR) F(ZBRN) .0
F(OVFL)
ol o O|FINEG) o | FINZORN)
\ 2R
<: FBUS

*These FBUS inputs are in fact through the ALU

(see Topic 5.1).

Figure A.

Direct FBUS Inputs and Selected ALU FBUS Inputs

4 FBUS DESTINATIONS AND SOURCES

4.5 MONOBUS DATA ACCESS

The three modes of MONOBUS data access are: Read, Read-Rewrite, and Write.
All three involve data transfers between the MONOBUS and the FBUS, using
the D-Register for data written to the MONOBUS from the FBUS, and using
D-Gates to input (read) a MONOBUS Data Word to the FBUS.

MONOBUS access begins by establishing a MONOBUS address in the 18-bit Mono-
bus Address Register (M). The upper 2-bit segment (M.17:16) should be plan-
ned first; these bits are set as a side-effect of loading the lower 16 bits
of M from the FBUS. M.17:16 is set from the Local 2-bit FX Register unless
the lower 16 bits of M come from the Local Memory (LM) Registers, specified
by CB indexing in the range 10:15. TIf the CB type index specification of
LM source indexing is 10 or 11, then M.17:16 is set from the upper 2 Program
Counter bits (P.17:16), thus setting FX. In the CB type index is 12,13,14,
or 15, then M.17:16 is set from the two-bit 5X Register, thus setting FX.
With the setting of the upper 2 MONOBUS address bits planned, a micro-
command is executed transferring the lower 16 bits from their source to M,
via the FBUS. The microcommand has the basic syntax:

address-source MR
or
address-source MW

REF1 code MR is used for Read access; MW is used for either Write access or
Read-Rewrite access. MR and MW do not actually establish data flow direction
across the MONOBUS/FBUS interface. Rather, they specify conditions under
which the MONOBUS will be released after use. Code MR specifies immediate
release of the MONOBUS after any access. Code MW specifies the MONOBUS is

to be held until after a Write access is completed. Sequence 'source MR,
source D' does not work.

The actual data flow direction between FBUS and MONOBUS is set by the pair
of MONOBUS Write Flags associated with the two bytes of the D-Register. The
data flow direction is MONOBUS to FBUS (i.e., read) unless one or both Write
Flags are set. This occurs when destination code D or DB is used in sub-
field REF1l, shown in Reference Table A-2. The Write Flags are cleared at
the end of every MONOBUS Write access. Hence, if D or DB is used in REF1],
then a Write occurs; otherwise a Read access occurs and D or DB should be
used in OPF1l to take the data from the D-Gates and place then on the FBUS.

Summaries of the three different access modes are depicted in Figures A,
B, and C.

The user should note that microcommand "data-source D" can precede micro-
command "address-source MW" if desired. However, "data-source DB" must
follow "address-source MW". The system will suspend operation if D or DB
is used in subfield OPF1l without prior use of MR or-MW in REF1l since pre-
vious access.

Use following microcommand:

address-source MR
2. Allow other microcommands to intervene here; up to 2.cause
no further delay.
3. Use one of the following microcommands:
' D data-destination
DB data-destination
4. MONOBUS is released as soon as data is received on the FBUS.
Figure A. Read Access Procedufe
1 Use following microcommand:
address-source Mw
2. Allow other microcommands to intervene here; up to 2 cause
no further delay.
3. Use one of the following microcommands:
D data-destination
DB data-destination
4. MONOBUS is not released after Read; provide data revision
microcode here but do not waste any microcycles as the
MONOBUS is tied up.
5. Use one of the following microcommands:
L]
data-source D
data-source DB
6. MONOBUS is released after Write.
Figure B. Read-Rewrite Access Procedure
1. Use following microcommand:
address-source MW
2. Allow other microcommands to intervene here; up to 2 cause no
further delay.
3. Use one of the following microcommands:
data-source D
data-source DB
4. The MONOBUS is released as soon as the WRITE is complete.

Figure C. Write Access Procedure

4 FBUS DESTINATIONS AND SOURCES

4.6 MONOBUS WORD AND BYTE TRANSFERS

The lowest order bit of a MONOBUS address (M.0) denotes the byte
address within the current MONOBUS word. The high-order byte is
indicated by an M.0 value of 0; a value of 1 indicates the low-

order byte.

The incoming signal on the MONOBUS from the I/O or Memory Controller

to the D-Gates includes both bytes. The high-order byte is always

from the even address (with address-bit.0=0); the low-order byte

is always from the odd address (with address-bit.0=1). Therefore, a
MONOBUS access is always full-word oriented, up to the D-Gates connected
to the FBUS.

If the FUBS source code DB is used in subfield OPF1l, then bit M.0 is used
to select one byte of the input word at the D-Gates for transmission to the
FBUS. The other byte of the input word is lost insofar as that Read cycle
is concerned. The MONOBUS is realeased after the selected byte is passed
to the FBUS, and that word must be fetched again if the other byte is
subsequently needed.

Behavior is slightly different on output. DB as a destination code in REF1
causes a data transfer from the FBUS into one byte of the D-Register as
determined by M.0O, and sets the corresponding Upper or Lower MONOBUS Write
Flag.

CAUTION

Because M.0 selects the byte, the value of M must be
set before D is loaded, or the wrong byte may be selected.

Only the selected byte is transmitted from D to the MONOBUS; the Controller
receiving the byte also receives a control signal indicating it is just a
single byte.

Since M cannot be set without initiating a MONOBUS access cycle, it is not
possible to load the two bytes into D separately and then write them both
out together as a MONOBUS word. DB is designed for byte-by-byte output
only. Composition of separate bytes into an output word should be carried
out in the Working Registers, then transmitted to the D-Register by use of
output code D in subfield REF1.

Figure A presents a number of CAP32 examples illustrating the concepts
introduced in this and the previous topic.

CAP32 Sequence

LM(7)
LMS (5)

LM(4)
DB

LM(5)

Y+1

U UO X

LM(8)

ZU

D,8,LG
ZU
ZL

Y,4,LG
LM (G, IG)
LM(G)

MW
D

MR

~g

o

K:%M%

XL:F

Action

Writes SLM(5) in memory at FX//PLM(7);
i.e., writes secondary LM register 5
to the MONOBUS address given by FX
and primary LM register 7.

Reads from the MONOBUS address given
in PLM(4) and places input data byte
in Y.

Increments the word at MONOBUS address
given in PLM(5). Note that "incre-
ment" means Read, Add 1, Rewrite.

Reads a full word from the address now
specified in FX and X (i.e., FX//X).
That word is then used as the 16 lower-
order bits of a new address, still
using FX as the upper two bits of the
address. A data word is then read
from the new address and placed in Y.

‘Reads the word addressed by FX//PLM(8)

and then interchanges the two bytes
of that word, rewriting it at the
same address.

Reads a word addressed by FX//Y.
Places the upper byte of that word in
the lower byte of CLM(8) (i.e.,’
CLM(8).7=0). Places the lower byte
of the word in the lower byte of
CLM(3).

Composes a data word from upper bytes
of CLM(4) and CLM(5), and writes this

‘word at address FX//Y.

Figure A. Sample MONOBUS Word and Byte Transfers

5 ALU SOURCES AND OPERATIONS

5.1 ALU SOURCES

The ALU is a major channel for signal transfer to the FBUS. The
ALU transfers, complements, decrements, and provides two-operand
logic and arithmetic functions of up to 14 different sources.
These include numeric literals, Program Counter (P), Instruction
Register (I), and the Working Registers (X, ¥, and Z).

Figure A illustrates all ALU sources. The reader should also carefully
study Reference Table A-7 in Appendix A.

If an FBUS destination is specified as byte-type (by use of XU, XL, 2ZU, or
DB in REF1l), the lower 8 bits of the ALU output are copied into the upper
byte of the FBUS (15:8); the upper byte of the ALU output (ALU.15:8) is lost.

When any signal is transmitted through the ALU, the Arithmetic Flags and
the Target Flags may be set at the option of the programmer.1

The syntax for transfers from any source via the ALU to the FBUS is to
simply name the source in the OPFl subfield. To transfer the one's comple-
ment of the source rather than the source signal itself, place a prime
(single quote) after the source name in OPFl. Figure B gives a number of
examples.

Any ALU source signal can be transmitted (or complemented and then trans-
mitted) to the FBUS. However, for arithmetic and logical functions (or
decrementing) the ALU input bus structure must be considered. Figure A
emphasizes bus identification of each source (ABUS or BBUS). Only Working
Register Y appears on both the ABUS and the BBUS. All other sources appear
on one bus only, not both. An entire family of sources feed into the BBUS
through its extension (IBUS). These include the Program Counter (P), its
upper byte (PU), two mixed fields (SDX and GIW), and a group of I-type
inputs.

References:

lTopics 5.4 and 5.5
2Popics 8.3, 8.4, and 8.5

X x < .15:0
X - .15:0 > Y Y Y
715:0
. zz
P l——
rm_rn 15:0 z
cB 30 > 2s " zs'
4 50
o ,
m _, 50 (=S) Yel2Y_ 2V | zu zL
T rn’ _, 50 (= 8) * .7:0
cc s CB a ’ B
.7:0 NI iy P-4 S
o .7:0
g iy
0 4\
I - I 1= b’
1BY .7:0 .P§§ l
12 12 12H 121 OTHERS 18:0
ol+2 >
.8:1 » ALU
XU, XL, o
P.17:16 IBUS zu, DB .15:8 |a|
4 ALU.7:0 2
AS ‘ .7:0 w
P .. c | pest /™™
Px PL P CODES IN REF 1
oU .15:0 CARRY
. |3 | Borrow
I @ 1BIT v
PU PV .7:0 >
sbx spx' | |"ciw Giw’
SD IPX FX s Gt | w *INDICATES
PTRREIRE) V e CB - CONSTRAINT
Figure A. ALU Sources and Bus Structure

CAP32 Microinstruction

Action

Sets Y equal to FFFig (i.e., one's
complement of 12).

Sets CLM(5) equal to FFF0is.

Complements Y and stores result in
both Y and in CLM(6).

12! Y

15" LM(5)

Y' Y:LM(6)
Figure B

. Complementation Examples

5 ALU SOURCES AND OPERATIONS

5.2 ALU PAIRED LOGIC OPERATIONS AND ABUS DECREMENTATION

The ALU provides four two-input (paired) logic operations, taking
one input from the ABUS and the other from the BBUS. A special
decrementation logic operation is also provided.

Paired Logic Operations

For these operations, the syntax of subfield OPFl taken on one of the
following four forms:

al'b
asb
asb!
a*b

where "a" and "b" denote ABUS and BBUS source codes respectively); where
"1" denotes a bitwise Inclusive-OR logic operation; where "&" denotes a
bitwise AND logic operation; where "*" denotes a bitwise Exclusive-OR
logic operation. Note that only in the form a&b' is complementation pro-
vided for the operand.

All logical operations are performed on 16 bits; however, a code used for
a byte-size destination (XU, XL, ZU, DB) causes loss of the upper 8 bits,
with the lower 8 bits of the result being copied into the upper byte
(thus the result is present in both bytes of the ALU output).

Reference Table A-7 indicates that literals may be used as masks (i.e.,
as inputs to AND operations) only on BBUS inputs to the ALU. These are
somewhat restricted by the normal limitation of literals to 4 bits. An
8-bit literal requires a subroutine call and return.®' All literals may
be complemented, which aids in forming masks. Working Registers also aid
in forming complex masks through their upper byte and Hex digit codes.

If destination code F is used in REF1 (singly or in combination), the
Arithmetic Flags (AF) for Zero (AFZ) and Negative (AFN) conditions are

set to reflect the result. However, the Carry Flag (AFC) and the Overflow
Flag (AFO) settings are always zero after a logic operation.2 Target Flags
may also be influenced. ®

Sample logic operations are shown in Figure A.

ABUS Decrementation

Decrementation is normally considered arithmetic (subtracting 1 from the
operand); however, the 3200 includes a special decrementation instruction
which does not effect the Overflow and Carry Flags, but rather acts as

a special logic operation. Special decrementation applies to ABUS sources
only; it is specified by the following syntax:

a-ONE destination

where "a" denotes an ABUS source code. The "a" is followed by a minus sign
and "ONE" spelled out. If "1" is used in place of "ONE", decrementing will
occur, but through normal channels of arithmetic with Carry (Borrow) and
Overflow provided, and with CB-Constraint.” The use of "ONE" avoids CB-
Constraint. Sample ABUS decrementation operations are illustrated in Figure B.

References:
1Topic 7.5 3Topic 5.5
2Topic 5.4 *Topic 5.3
CAP32 Microinstruction(s) Action
Y*Y LM(G) Clears CLM(G).
zZ11 Z Z.0 is set to 1, while Z.15:1 remain
unchanged.
LMC (G) Z Clears the bits of CLM(G) that cor-
zZ&Y' LM(G) respond in position to bits Y of
value 1.
Figure A. Sample Paired Logic Operations
CAP32 Microinstruction(s) Action
Y-ONE Y Sets Y equal to Y-1 mod 100004 -
Y-ONE LM(24,LG) Sets CIM(Z.3:0) equal to Y-1 mod
10000165 sets G equal to Z.3:0;
leaves Y and Z unchanged.
SB(6) Y - Clears upper 10 bits of X without
Y-ONE Y using Z.
Y&X X
Z—-ONE Z Clears the upper k bits of X, where
z' Z k is the value stored in 7.3:0. If
SB(Z4) Y 7.3:0 = 0, then all of X 1s cleared.
Y-ONE Y
Y&x X
Y&X X Reads a word from the MONOBUS at loca-
LMN (9) MR tion FX//SIM(9), then places a value
D Y one less than the value of that word
Y-ONE Y:LM(14) into Y and PLM(14); assumes PIM = CLM.

Figure B. Sample ABUS Decrementation and Paired Logic Operations

5 ALU SOURCES AND OPERATIONS

5.3 ALU ARITHMETIC OPERATIONS

The ALU provides 4 two's complement arithmetic operations: addition
or subtraction with carry or borrow, and addition or subtraction
without carry or borrow.

An arithmetic operation is specified by using one of the following
syntax forms in the OPF1l subfield:

a+b
a+b+C
a-b
a-b-C

where "a" and "b" denote the ABUS and BBUS source codes, as for the paired
logic operations!; and where "C" denotes the use of the carry or borrow

bit from the next less significant word (i.e., carry for addition and borrow
for subtraction). Note that reverse subtraction (i.e., b-a) is not provided.

A carry output bit is provided from either addition operation, and a

borrow output bit is provided from either subtraction operation. The borrow
bit is the complement of the carry bit normally provided at a simple binary
adder's output; the borrow is 1 if a borrow is required.

If destination code F is used in subfield REF1, then all four AF's are set
by the results of the arithmetic operation.? Similarly, if code TFG is
used in subfield REF3, and code F is used in subfield REF1l, then the 4
bits of TFG are also set by the arithmetic result.’

Arithmetic is either 16-bits or 8-bits wide, depending on the FBUS destina-
tion code. REF1l codes XU, XL, 2U, and DB are 8-bit arithmetic; all other

destination codes are 16-bit arithmetic.

Figure A shows sample arithmetic operations.

References:

1Topic 5.2
2Topic 5.4
3Topic 5.5

CAP32 Microinstruction (s) Action
Y-¥Y LM(G) Clears CLM(G) to 0.
Y+X Y Adds X to Y.
Z+Y Y Adds 7 to Y.
Z MW Adds X to memory word addressed
D Y by FX//7.
Y+X D
LM(G) Y
Y+1 LM(G) Increments PLM(G).
Y-ONE Y
y! Y Changes sign of Y.
Y,6,LG MR
D X Adds word from memory at address Y
LM(G) Z to the two-word integer in
Z+X LM(G, IG):F PLM(7)//PLM(8).
LM(G) Z
Z+0+C LM(G)
Y MR Adds 1 to the secondary LM register
D Z indexed by the 4 lowest-order bits of
LM(Z4,LG) Z the memory word addressed by Y.
Z+1 LM(G)
LMC (4,LG) Y Adds X to CLM(4).
Y+X LM(G)
LMC (4) Y Adds CLM(4) to X.
Y+X X
X,4,LG Y Subtracts CLM(4) from X.
LMC (G) X
Y-X X
Y,5,LG MR Adds the memory word addressed by Y
D X to the memory word addressed by PLM(5).
LM(G) MW
D Z
Z+X D
Figure A. Sample Arithmetic Operations

5 ALU SOURCES AND OPERATION

5.4 ALU ARITHMETIC FLAGS

Upon request, the Arithmetic Flags (AF's) and the Target Flag Register
(TFG) will monitor and report the Carry, Overflow, Negative, or
Zero conditions of ALU output. This topic describes the AF’'s.

AF's remain unchanged by microcommand execution unless destination code F
is used in subfield REF1l (alone or in combination). When F is used, the
AF's are enabled. (Unless enabled, the AF's remain unchanged.) If the
AF's are enabled, their new values depend upon the ALU output as discussed
in the following paragraphs.

If the destination code used in REF1l is either XL:F or ZU:F, then the

AF settings reflect the lower half condition of the ALU output (ALU.7:0),
rather than the full 16-bit ALU output. All other destination codes in-
volving F cause the new AF settings to reflect the full ALU output. (In
the following discussions, the term ""AALU" denotes the appropriate ALU
output, full or half.)

The new values of the enabled AF depend on whether the ALU operation was
arithmetic or not. Only OPFl codes atb, atb+C, a-b, and a-b-C are considered
to be arithmetic (OPF1l code a-ONE is not considered arithmetic for this
purpose). If the ALU operation is not arithmetic, and if the AF's are
enabled, then:

° AFC (Carry Flag) is cleared to 0.
° AFO (Overflow Flag) is cleared to 0.

° AFN (Negative Flag) is set equal to the sign bit of AALU
(ALU.7 or ALU.15 as appropriate), with a value of 1 for
negative, 0 for positive.

° AFZ (Zero Flag) is set to 1 if all AALU bits are 0, otherwise
AFZ is cleared to O.

If the ALU operation is a+b, and the AF's are enabled, then:

° AFC (Carry Flag) is set to the value of the carry bit out
of the sign position of AALU (i.e., 1 if a carry is propagated,
0 otherwise).

° AFO (Overflow Flag) is set to 1 if the addition has overflowed,
otherwise AFO is cleared to 0. (Overflow is defined as if
ABUS.SIGN and BBUS.SIGN are equal to each other and not equal
to the AALU.SIGN an overflow exists.

° AFN (Negative Flag) is set to the true sign of the sum,
regardless of overflow. (If there has been overflow,
AFN#AALU.SIGN, otherwise AFS=AALU.SIGN.)

° AFZ (Zero Flag) is set to 1 if all AALU bits are 0,
otherwise AFZ is cleared to O.

If the ALU operation is a+b+C, and the AF's are enabled, then:
® AFC, AFO, and AFN are set as described for a+b above.

™ AFZ (Zero Flag) is left a 0 if it was to 0 at the start of
the operation; otherwise it is set as described for the a+b
operation. The effect is to provide a multiword precision
arithmetic zero test. If any word of the result fails to be
zero, the overall zero test will fail, and AFZ will be =zero.

If the ALU operation is a-b, and the AF's are enabled, then:

e AFC (Carry Flag) is set to the borrow bit (the one's complement
of the carry bit) out of the sign position of AALU; it is set
to 1 if a borrow of 1 is required.

® AFO (Overflow Flag) is set to 1 if the subtraction has overflowed,

otherwise AFO is cleared to 0. (Here overflow is defined as if

ABUS.SIGN is not equal to BBUS.SIGN and the ABUS.SIGN is not equal

to AALU.SIGN then an overflow exists.

° AFN and AFZ are set as described for the a+b operation.

If the ALU operation is a-b-C, and the AF's are enabled, then:
® AFC, AFO, and AFN are set as described for a-b above.

) AFZ is set as described for the a+b+C operation above.

The utility of the AF bits is primarily for branch testing.1 If desired,
the individual AF bits (or the logical-OR of bits AFZ and AFN) may be
placed directly in FBUS.0, as shown in Reference Table A-6. In any case,

use of the AF bits causes CB-Constraint. Sample setting of the AF's is
illustrated in Figure A.

Reference:
lropic 7.3
CAP32 Microinstruction Action
Z+Y F:Z Adds Y to Z; sets AF's: AFC AFO AFN AFZ

E42616+C077 16 1 0 1 0
52AA1¢+ABCD g o 0 1 0
9E4F16+A017 16 1 1 1 0

Z-X F:X Subtracts X from Z; sets AF's:
AFC AFO AFN AFZ

E48616-C07716: 0 0 0 0

9E4F16-A0171¢: 1 0 1 0
57DD15—A82315.‘ 1 y) 0 0

Figure A. Sample Setting of Arithmetic Flags (AF's)

5.

5 ALU SOURCES AND OPERATIONS

5.5 ALU TARGET FLAG REGISTER

This topic describes the Target Flag Register (TFG) of the ALU.

The Target Flags are similar to the Arithmetic Flags described in the
preceding topic.1 The differences are as follows:

° The TFG is an ordered-bit register (C,0O,N,Z) from TFG.3
to TCO.0. TFG may be loaded from the lowest four bits of
Z-Register (Z.3:0). TFG may be sent to the FBUS as a 4-bit
Hex digit. This differs from the behavior of the AF's.

° The TFG can be enabled to reflect the ALU output conditions
(as the AF's can), but with a subtle difference in the reflec-
tion of overflow. The TFG remains unchanged unless it is
enabled. Enabling of the TFG occurs if code TFG is used in
subfield REF3. If TFG is enabled, and code F is used as part
of the destination code in REF1l, then the TFG will reflect
the C,0,N,Z ALU output conditions.

When both the AF's and the TFG are enabled (by code F in REF1l, and code TFG

in REF3), then the AF's and the TFG are set identically, except for the
following: the overflow-Flag bit (TFG.2) is not cleared by ALU action, but
only by moving a zero into that position from Z.2. The AF-Overflow bit (AFO)
is cleared by execution of any non-arithmetic ALU operation, or any arithmetic
operation that does not overflow. Therefore, if TFG.2 is set to 1 at the
beginning of an arithmetic operation, and that operation does not overflow,
then TFG.2 will still be set to 1 at the end of the operation, whereas AFO
will equal O. '

The TFG may not be tested directly for branching purposes, but must first be
transmitted to a Working Register (X, Y, or Z), where it may be tested.?

If the TFG is enabled by code TFG in REF3, and code F is not used in REF1,
then the TFG will be set equal to Z.3:0. This is the method required for
resetting the TFG. If code TFG is used in subfield OPF1l, then the TFG will
be the source of the FBUS signal. This use of TFG as a source is the
primary action of the microcommand in which it appears; TFG as a destination

is secondary, since TFG is driven by private "back-door" paths, and not
the FBUS.

Figure A exemplifies the setting of the TFG.

Use of AF's Versus Use of TFG

Since the AF's and the TFG are similar in many ways, questions may arise

as to when one should be used as opposed to the other. Normally, AF's
should be used at the microlevel to monitor internal workings of the micro-
routines. Many such conditions need not be reported to the user. The TFG,
on the contrary, should normally be used to report results of the micro-
routine. The user may then decide other actions before attending to the

particular TFG condition reported.
stay undistrubed in the TFG, and AF's may be used extensively at microlevel

without interference to or from the TFG.

when the TFG manipulated by the ALU output; therefore, conditions cannot

be set in the TFG from the ALU, without their existence in the AF's.

AF's, however, can be affected without influencing the TFG.

In the time-sharing context at the user level, the machine state must be

savable and restorable.

It

would be difficult to use AF's in that way, since AF bits are not easily

restored.

precision arithmetic.

Precautions should be taken when using the TFG for multiword
Overflow bit TFG.2 must explicitly be cleared via

the Z-Register immediately before processing the most significant word
(i.e., since TFG.2 may well have been set by earlier words, and clearing
of that bit is not automatic).

References:

lTopic 5.4
2Topic 7.3

Note that the AF's are effected

The

In the interim, the condition codes may

Since the TFG can be reloaded via the Z-Register,
the TFG is well adapted to that particular operational requirement.

CAP32 Sequence Action
LMS (0) . Saves the TFG in secondary Local
TFG LM(0) Memory cell 0.
LMS (0) Z Retrieves and restores the TFG
Y <+, TFG stored above.
LMC (5,LG) Z Adds a one-word integer in X to the
Z+X F:LM(G) two-word integer in LM(4)//LM(5).
LMC (4,LG) Z Sets AF and TFG.
Z+0+C ¥:2,,TFG
Z LM(G)
F(2Z) Z
TFG X
Z&X Z
Y .+, TFG
Figure A. Sample Setting of the Target Flag Register (TFG)

5 ALU SOURCES AND OPERATIONS

5.6 ELEMENTARY SHIFT OPERATIONS

This topic presents a discussion of elementary shift operations.

Shifts are performed in one or more of the Working Registers (X, Y, and Z).
All microlevel shifts are shifted one bit position. For longer shifts, a
small loop is established which performs the desired number of elementary
shifts. Refer to the referenced topic for examples of multibit shift loops
under control of W.'

To perform an elementary shift, the user must specify the direction (left

or right), the register(s) to be shifted, and the source of the fill bit

to be moved into the bit position vacated at one end of each shifted register.
The CAP32 syntax for elementary shift specification is:

SL(lsb-fill) registers
SR(msb-£fill) registers

where "SL" denotes a shift left operation, "SR" denotes a shift right opera-
tion, "lsb-fill" denotes the least significant bit fill character, "msb-
fill" denotes the most significant bit fill character, and "registers"
denotes a suitable destination code from Reference Table A-2, of one of the
following types:

Type Xy: X or XL or XU or Y
Type z: Z or 2ZU
Type yz: Y:Z2

If a type Xy or type z register code is specified, a single register (or
half-register) is shifted, as named by the code. If Y:Z is specified, both
registers Y and Z are shifted during the same microcycle.

For each shift direction, the allowable fill values depend on the type of
register code specified. The possibilities are displayed in Reference
Tables A-8 and A-9.

The available elementary shifts may be related to conventional shift concepts.
For example, among the available single-word (16-bit) shifts are:

Single Left Circular: SL(Y) Y
Single Right Arithmetic: SR(Y) Y
Single Left Logical: SL(0) X
single Left Logical: SL(0) Y
Single Left Logical: SL(,0) Z
Single Right Logical: SR (O) X
Single Right Logical: SR(0O) Y
Single Right Logical: SR(,0) Z

Here are two sets of simultaneous logical one-word shifts:

Single Left Logical Pair: SL(0,0) Y:Z
Single Right Logical Pair: SR(0,0) Y:Z

The available conventional double-word (32-bit) shifts are:

Double Left Circular: SL(Z,Y) Y:Z
Double Right Circular: SR(Z,Y) Y:Z
Double Right Arithmetic: SR(Y,Y) Y:Z
Double Left Logical: SL(Z,0) Y:Z
Double Left Logical: SL(0,Y) Y:Z
Double Right Logical: SR(0O,Y) Y:2
A novel arithmetic right shift is available for X or Y, based on the true

sign of the most recent ALU result that occurred with Arithmetic Flags enabled:

Single Right True-sign: SR(N) Y
Single Right True-sign: ' SR(N) X
Double Right True-sign: SR(N,Y) Y:Z

A novel left shift of Z is available, with fill of 1 if the sign bits of X
and Y are the same, and fill of 0O if the sign bits of X and Y are different:

Single Left Sign-equivalent: SL(,XY) Z

Triple-word shifts may be compounded by a succession of single and/or
double word shifts. Here is one example (others are in the exercises):

Triple Left Logical: SL(Y) X
SL(Z,0) Y:Z

Figure A illustrates some sample shift operations. For further details
regarding shifts, the reader should refer to Reference Tables A-8 and A-9.

Reference:

1Topic 7.2
CAP32 Sequence Action
Y Z Causes a single right
SR(Z) Y eircular shift of Y.
Y,4,LG .
LMC (G, IG) Y Causes a triple-word (48-bit)
LMC (G, 1G) Z right arithmetic shift of
LMC (G) X CLM(4)//CIM(5)//CLM(6).
SR(2Z) X
SR(Y,Y) ,4,LG Y:Z
Y LM(G,IG)
Z LM(G,IG)
X LM(G)

Figure A. Sample Shift Operations

6 CONTROL MEMORY ADDRESSING AND CAP32 ASSEMBLY LISTING

6.1 CONTROL MEMORY ADDRESSING

This section consists of two topics. This initial topic describes
Control Memory addressing. The second topic discusses the format of
the CAP32 assembly listing. These topics are presented at this point
to provide sufficient background information for subsequent sections
of this manual.

The Control Memory of the 3200 consists of 4K 32-bit words, organized as
shown in Figure A. The address of the current microinstruction control
location is in the 1ll-bit L-Register at the start of its execution. By
convention, the least significant bit of L is interpreted as a sign (O

as minus, 1 as plus) and displayed (on the Maintenance Panel) as the right
most 4 bits with value 0= - 1l=+. That sign if conventionally written after
the pair address, in listings of 3200 microprograms.1 Figure B presents
some examples of Control Memory addressing.

The Control Memory is highly structured; the two words of a location are
the next alternative instructions in a simple branch.? The 16 pairs in a
block are the alternatives in a vector branch (computed GO TO).® These
restrictions on branching yield substantial efficiency and speed at execu-
tion time, but cause extra microassembler effort to fit every Control Word
into a usable location.

Every 3200 microprogram Control Word contains (or points to) the address of
its successor (next microinstruction) or alternative successors. There is
no "automatic" control flow to the next higher absolute Control Memory
address. However, if not otherwise specified, the CAP32 microassembler
assigns the next Control Word in the input sequence. At execution time, the
3200 discovers this by examining the Word, which must point to the next one.

There are 8 addressing modes for the Control Memory. The mode value (0:7),
which is used to fetch the next Control Word, is stored in the CD-Field of
the current Control Word (C-Register bits C.14.12). The programmer generally
has only partial control over the mode used; CAP32 exercises a great deal

of judgment in placing the microcommands in control memory. The 8 addressing
modes are presented in Reference Table A-10. The modes will be examined
herein as needed.

The programmer exercises required control over the Control Word location
through use of selected CAP32 pseudoinstructions such as PLACE“, through
entries in subfield REF2 (next-address subfield), and through use of state-
ment labels.

References:

lTopic 6.2
2Topics 7.1 through 7.6
3Topics 8.1 through 8.5
“Topic 8.6

ion

Organizat Bits Location Value
Control Memory = 8 pages XXX L.10:8 0:7
Each page = 16 blocks XXXX L.7:4 O:F
Each block = 16 location XXXX L.3:0 0:F
Each location = 2 words X -+
Figure A. Control Memory Organization
Value in L Meaning
10E1 10E+ (Page 1, Block 0, Pair E, Word +)
3c20 3C2- (Page 3, Block C, Pair 2, Word -)
07B1 07B+ (Page 0, Block 7, Pair B, Word +)
7D00 7D0- (Page 7, Block D, Pair 0, Word -)
2CEl 2CE+ (Page 2, Block C, Pair E, Word +)
Figure B. Sample Control Memory Addressing

6 CONTROL MEMORY ADDRESSING AND CAP32 ASSEMBLY LISTING

6.2 CAP32 ASSEMBLY LISTING

The format of the assembly listing produced by the CAP32 Microassembler
is discussed in this topic.

Figure A presents a sample (partial) CAP32 assembly listing. The page
heading of the listing identifies the assembler, the program being assem-
bled, the date and time of assembly, and the page number. A partial list
of column headings is given on the second line of the listing. There are
12 columns of interest, as discussed in the following paragraphs.

The extreme left column of Figure A is blank since there were no assembly
errors. If the programmer requests an address structure that CAP32 cannot

handle, an E appears in the first column. Other error flags may also occur.

The column titled "LOCN" gives the Control Memory assigned by the assembler

for every executable statement (and VECTOR pseudoinstruction). As shown,
the assembler often takes advantage of addressing properties, and uses
successive addresses having a common pair address (7 in this case). Also,

note that of the 6 executable statements shown, 4 are paired.
The column titled "INSTR" gives the Control Word value in hexadec¢imal notation.

Two character positions to the right of the Control Word value, an asterisk
(*) is shown if the statement was CB-Constrained by the programmer, calling
for specific use of the CB Field. (The assembler may or may not have used
CB for its purposes.)

The column titled "+ SUCC -" lists the Instruction Sequence Number (see
below) of the successor to the current instruction. If the successor is

a + word, it is listed under the "+"; if the successor is a - word, it is
listed under the "-". If the current line is a conditional branch instruc-
tion,1 then the two successors will be shown (one for each possible branch).
The user should note that the assembler assigns a Control Word to a + word
or - word at its pleasure, if not forced to a particular sign via branching
or other considerations.

The column titled "ISN" gives the Instruction Sequence Number of the current
line, which the assembler uses to refer to the source code line during the
assembly process. Note that the source code is in ISN order, but that the
actual Control Memory addresses (as given in the LOCN column) are far out

of order on the listing.

Five columns are bracketed under the title "SOURCE"; these columns represent
the CAP32 source statements as input by the user. The first column shows
the Label Field (LAF); an asterisk in character position 1 of this field
indicates a comment line. Following the LAF are the Operation Field (OPF),
the Result Field (REF), and the Comment Field (COF), as previously dis-
cussed.? Card numbers occur in the right-most column of the assembly
listing.

The assembler also provides a complete cross-reference listing, tables of
all vectors, and the final machine language code arranged in Control

Memory address order.

References:

Iropics 7.1 through 7.6
2Topic 3.1

221
222
223
224
225
226

LOCN INSTR + succ
017+ 00C1254B 222 223
054+ 007300C2 * 450
054— 03031240 * 224
024— 81F02CF1 225
OCE+ 0E02700F 12
017— 03032240 * 224

CAP3200 MICRO-ASSEMBLER. VERSION 1.
ISN

* *
*

FD7

FD7.3
FD7.4

FD7.

ASSEMBLY LISTING

PROGRAM: F32SA 74/01/17 12:18 PAGE 10

SOURCE

FIRST DIGIT 7 -FOUR BIT LITERAL (SECOND DIGIT)

LM(U) X,N5(,FD7.3)
LM(SP,LG) Z,SBR{PUSH)
SDX z

Y LM(U,IT)

ZB Y ,NT(NEXT)

SDX Z,FD7.4

SAVE POSS. SPILL, SKIP IF NOT FULL
PUSH SPILL INTO MEM

GET SECOND DIGIT OF OPCODE
PUSH TOS

4 BIT SEC. DIG. TO TOS, EXIT

GET SEC. DIG. OF OPCODE

471.
472.
473.
474.
475.
476.
a477.
478.
479.
480.

Figure A. Sample CAP32 Assembly Listing (Partial)

7 BRANCHING CAPABILITIES

7.1 UNCONDITIONAL AND CONDITIONAL BRANCHING

This topic describes the unconditional branching capability of CAP32,
and presents a discussion of the general syntax for the conditional
branching capabilities.

Unconditional Branching

Labels used in CAP32 statements must consist of 1 to 6 letters, digits, or
period characters (.). Labels must begin with a letter, and must begin

in character position 1 on the line that defines them (i.e., the line in
which they appear in the LAF field). Use of a defined label in subfield
REF2 of a statement causes assembly of an unconditional branch (i.e., a
simple jump) to the defining statement of that label. The jump may be
forward or backward. Figure A illustrates the general format of a simple
jump. An unconditional branch may also be made to a location relative to
the current statement, *+n in REF2. Here the asterisk (*) refers to the
current instruction. As a specific example, consider Figure B. 1In the
example, note that the "-4" applies to the Instruction Sequence Number (ISM)
series, not to the absolute Control Memory addresses.

Conditional Branching Syntax

A conditional branch in a CAP32 microprogram is called for by the use of
subfield REF2 in one of the following forms:

test-code(tlabel, flabel)
test-code (tlabel)
test-code (,flabel)
test-code (=S)

where "test-code" is selected from Reference Table A-11l; where "tlabel"
names the statement to be branched to if the test succeeds (is true);

where "flabel" names the statement to branched to if the test fails (is
false); and where "=S" is a keyword indicating that the word to be branched
to is one word of the pair addressed by S.15:4. The +word is used if the
test succeeds, -and the -word is used if the test fails.)! In all cases,
the two alternative statements to be branched to must be the + and - words
of the same pair. The CAP32 assembler always assigns "tlabel" to the

+ word and "flabel" to the - word of a pair.

If either "tlabel" or "flabel" is missing (with the other present) the
missing label is assumed to have the value *+1 (i.e., the next executable
statement in the listing having ISN one greater than the ISN of the
current statement). That next statement is compélled to be one of the
paired alternatives to which control will transfer, and accordingly is
paired with the given label. Either "tlabel" or "flabel" (or both) may
be of the form *+n rather than a symbol. Here "n" denotes a decimal
integer, and "*" denotes the current statement, thus *+n denotes the
executable statement with ISN = CISN + n (where CISN is the current
instruction sequence number). Some examples of allowed REF2 forms are
shown in Figure B.

The test evaluates conditions existing at the start of the current
instruction (not at completion). Though the current instruction is "after
the fact" of the test, it is executed each time regardless of which alterna-
tive branch is taken. The flowchart of Figure C clearly shows this effect:
the test is before the main action of the instruction, and the branch is
after the action.

The available "test-codes" are summarized in Reference Table A-11, and are
also detailed in subsequent topics within this section.?

References:
1Topic 7.4 2Topics 7.2 through 7.5
LAF OPF REF COF
label opf ref label usage in LAF defines label.

opf ref,label label usage in REF2 causes jump.

Figure A. General Form of Unconditional Branch (Simple Jump)

REF2 Subfield Action

test-code (CRY1) Branches to CRY1 if "test" succeeds; other-
wise continues to *+1.

test-code (*) Repeats current instruction if "test" suc-
ceeds; otherwise continues to *+1.

test-code (, *) Repeats current instruction if "test" fails;
o otherwise continues to *+1.

test-code (GULF,*~4) Branches to GULF if "test! succeeds; other-
wise branches back to *-4.

Figure B. Sample REF2 Test Forms

IN

TEST

ACTION OF
CURRENT STATEMENT

TEST TEST
YT Fy

TLABEL + - FLABEL
Figure C. General Flowchart of a Conditional Branch (Showing Test Before
the Action to Paired Statements, and Branch After the Action).

7.1

7 BRANCHING CAPABILITIES

7.2 CONDITIONAL BRANCHING: GI AND WNZ TESTS

The GI tests are used to test the General Indicator bits. The WNZ test
is used to test the W-Counter.

GI Tests

GI tests are specified by using test-codes GI3, GI2, GIl, or GIO; they test
General Indicator Bits GI.3, GI.2, GI.l, or GI.O (respectively). The test
succeeds if the specified GI bit is 1.

Any 4-bit quantity may be loaded into the GI-Register (from the FBUS) for
testing. Figure A shows an example where bit Z.10 is tested, and a branch
to label ZGO occurs if Z.10 has a value of 1. Figure B illustrates the
flowchart for this example.

WNZ Test

The "W-Counter Not Zero" test is specified by using test~code WNZ. The
W-Counter will be tested; if the W-Counter is not equal to 0, the test
succeeds. Additionally, the W-Counter will be decremented by 1.

The W-Counter is a 4-bit counter, which is initialized from the FBUS via
REF1l code W. Thus, the W-Counter is an excellent mechanism for all
microlevel interactions of 16 cycles or less.

The example in Figure C shifts the Z-Register left logically 5 bits,
filling Z.0 with zero each time. A flowchart of this example is shown
in Figure D.

OPF REF COF
zC GI LOAD Z.11:8 INTO GI.
Y* .,GI IF GI.2=1 GOTO ZGO; ELSE GOTO *+1.
Figure A. Sample Usage of GI Test (See Text on Opposite Page)
Gl «2C
GL2?
NULL ACTION
1 0
2Go |><l NEXT ISN
Figure B. Flowchart for Example Shown in Figure A.
OPF REF COF
4 W INITIALIZES W AT 4.
SL(0) Z,WNZ(*) IF W#0, DECREMENT W AND SET REPEAT;
SHIFT Z; REPEAT IF SET.
Figure C. Sample Usage of WNZ Test (See Text on Opposite Page)
We 4
W #0?
W: = W-1
SHIFT Z LEFT, NEXT ISN
-FILLWITHO
|a&o =0 l
Figure D. Flowchart for Example Shown in Figure C

7 BRANCHING CAPABILITIES

7.3 CONDITIONAL BRANCHING: ARITHMETIC FLAG AND WORKING REGISTER TESTS

Arithmetic Flag tests are used to test the results of ALU operations.
Working Register tests are used to test the "end bits" of the Working
Registers.

Arithmetic Flag Tests

Arithmetic Flag Tests are coded similarly to the corresponding AF source
codes. '’ They test the result of the most recent ALU operation in which
REF1 code F was specified. All AF tests cause CB-Constraint.

The AF test-codes are listed in Figure A. To interpret the AF tests, the
detailed behavior of the ALU must be understood.? In particular, recall
AFC and AFO are cleared by every non-arithmetic operation, that AFN reports
the "true-sign" of arithmetic (corrected for overflow) and not just the
sign bit, and that AFC on subtraction is the borrow bit (the complement

of the binary-adder carry).

The example in Figure C will cause a branch to YBIG if Y>X, otherwise a
branch will be made to XBIG. The example in Figure D will write the larger

of X and Y to the location addressed by Z.

Working Register Tests

Working Register tests are used to test the "end bits" of the X, Y, and 2
Working Registers. Figure B presents selected samples of the test-codes
used for these tests. Note these tests reflect the actual bits; if an
overflow occurred in Y, for example, then test-code Y15 may give a different
answer than test-code NEG. The Working Register tests may often be usefully
combines with shifts.

The example in Figure E counts the number of "1" bits in Y, placing the
count in CLM(7). The flowchart for this example is shown in Figure F.

References:

lropic 5.4 2Topics 5.1 through 5.6
Condition Test-Code AF Tested
Zero Z AFZ
Negative NEG AFN
Positive NZORN AFZ' & AFN’
Non-Zero NZ AFZ’
Non-Negative NNEG AFN’
Non-Positive ZORN AFZ ! AFN
Carry CAR AFC
Overflow OVFL AFO

Figure A. Arithmetic Flag Test-Codes

Condition ‘ Test-Code Bit Tested

Y shows negative Y15 Y.15=1

Z shows negative Z15 Z15=1

Z shows odd Z0 Z0=1

X and Y are of different sign XY156 X.15#Y.15
Y and Z are different parity YZ00 Y.0#Z.0

Figure B. Working Register Test-Codes (Selected Samples)

ISN OPF REF
. 101 Y - X F
102 Y ..NZORN(YBIG,XBIG)

Figure C. Sample Usage of AF Test (Branches to YBIG if Y > X,
Otherwise Branches to XBIG)

ISN OPF REF
201 Y- X F
* 202 z MW,NNEG(*+2)
203 X D,(*+2)
204 Y D

Figure D. Sample Usage of AF Test (Writes Larger of X and Y to
Location Addressed by Z)

+ SUCC - ISN LAF OPF REF CO
302 301 Y*Y z CLEAR Z.
* 303 302 z'7,.G w W=15,G=7.
* 304 305 303 SLY SL{Y) Y, Y15(,*+2) SHIFT AND TEST Y.
* 305 304 Z+1 z ADD 1 TO COUNT
303 306 305 z LM(G) WNZ(SLY) STORE COUNT, TEST
FOR END.

Figure E. Sample Usage of Working Register Test (Counts 1"
Bits in Y, Placing Count in CLM (7)).

301] z «— o0
W €4—15
02| 6 7
Y.15 306
303
RoTATE IN ...
Y LEFT
1 ol 0
304 305 w
Za—2Z+1
(TALLY) [/JLM7) 4— 2
WF0 0

Figure F. Flowchart for Example in Figure E

7 BRANCHING CAPABILTIES

7.4 SUBROUTINE BRANCHING

A subroutine call saves the "other-word address" of the current pair of
words in the S-Register before branching to the subroutine. Hence a
subroutine called from the + word of a pair returns to the - word of that
same pair, and vice versa.

A subroutine call may be specified by use of the code SBR(label) in sub-
field REF2 of a CAP32 statement. The current word address (with + or -
changed) is saved in S.15:4//S.0, and control then passes to the statement
beginning with the label. Consider the example shown in Figure A. State-
ment ISN 253 (located at 057+) contains subroutine call SBR{(PUSH). Hence,
return address 057- will be stored in S$.15:4//S.0, and there will be a
branch to PUSH. The + successor column shows that PUSH is at ISN 450. Sub=
routine PUSH contains two statements (ISN 450 and 451) located at 037+ and
032+. No successor is shown for ISN 451, because 451 is the subroutine
return, and the assembler cannot predict where the subroutine will return
(as it cannot know from where the subroutine has been called). The sub-
routine return code is SO0(=S) in REF2. Test SO tests the value of S.0O.
Keyword (=S) indicates S.15:4 holds the address of the pair to be branched
to. Hence return is to 057-. The flowchart for this example is shown in
Figure B.

A second method of calling a subroutine uses destination code Z:SBR or
Z:F:SBR in subfield REF1l. A "Store L in S" then supplements the normal
meaning of Z or Z:F as destination and flag codes. L is saved just as
when SBR(label) is used in REF2, except that now REF2 is still free for a
branch destination specification. For example, if ISN 500 is paired with
ISN 501, and 500 contains:

Z-ONE Z:SBR,Z15(DUN,RIT)

then a conditional branch to either DUN or RIT occurs, depending on the
value of Z2.15. A subroutine return in either DUN or RIT would return con-
trol to ISN 501. A flowchart of this example is given in Figure C.

Both methods of calling subroutines normally pair the statement containing
the SBR in REF1l or REF2 with the next statement (having ISN one larger).
However, if for some other reason the calling statement is paired, that
other pairing prevails. Consider the example shown in Figure D. Here
statement ISN 107 (PL) is paired with ISN 212 (MI) by the branch test in
ISN 100. Control passes either to ISN 107 (PL) or 212 (MI), depending on
"testx". If control goes to 107, subroutine RHO is entered as ISN 440,
after execution of statement 107. Return after the subroutine is from

441 to 212. The conventional return point (ISN 108) is used for other
purposes entirely.

LOCN + SUCC - ISN LAF OPF REF
057+ * 450 253 LM(SP,LG) Z,SBR(PUSH
057- * 255 254 SDX Z
037+ * 451 450 PUSH Z+2 - MW:LM(G)
037+ 451 X D,S0(=8)
Figure A. Sample Subroutine Branch (See Text)
_ 253 + — 254
+
450
PUSH
L]
451
Figure B. Flowchart for Example Shown in Figure A
500 | ><| 501
' ! ‘
DUN RIT
RETURN
RETURN
Figure C. Flowchart Showing Conditional Branch to One of Two
Subroutines with Common Return (See Text)
+ SUCC - ISN LAF OPF REF
107 212 100 opf refl,testx (PL,MI)
400 107 PL opf refl,SBR(RHO)
108
213 212 MI opf ref
213
441 440 RHO opf ref
441 opf refl,SO(=S)
Figure D. Sample of Subroutine Call and Return Words Having

Non-Successive ISN Values (See Text)

7 BRANCHING CAPABILITIES

7.5 FULL-BYTE LITERAL SUBROUTINES AND CONTROLLED WORD PAIRING

Two additional branching capabilities are discussed in this topic:
full-byte literal subroutines and controlled word pairing.

Full-Byte Literal Subroutines

In subroutine return code SO(=S), test SO calls for bit S.0 to determine
whether the + or - word of the pair addressed by =S will be used. (S.0

= 1 calls for +.) Any use of =S in REF2 calls for mode CD5 Control Memory
addressing. As shown in Reference Table A-8, C-Field CC is not used in mode
CD5, thus both CC and CB are available to hold an 8-bit literal, provided

CB is not constrained some other way.

Since the CB field can only hold a 4-bit literal, in order to use this fea-
ture the CC field must be filled in with the high order 4 bits of the
literal. This can be accomplished by writing:

Y-4 2Z,,cc=2

which causes 36 to be subtracted from Y and the result placed in the Z
register.

A useful form is the one-line full-byte literal subroutine shown in Figure A.
ISN 66 will be executed between ISN 47 and 48, and will set Y = AC;¢ before

executing ISN 48. Thus, full-byte literals may be used in one-line sub-
routines, or in the last line of any subroutine.

Controlled Word Pairing

Two useful test-codes are available: "+" and "-". Code "+" selects the +
word of the addressed pair. Code "-" selects the - word unconditionally.
Consider the example shown in Figure B. In ISN 120, code "-" in subfield

REF2 always transfers control to SIS (ISN 161). The inclusion of BRO as

label forces BRO to be paired with SIS. Control does not go to BRO at all
up to this point.

For controlled word pairing, the full-byte literal one-line subroutine can
be placed in-line (in the used ISN sequence), instead of remotely. An
example is shown in Figure C. Here, ISN 101 causes A and C to be paired

+ and - {respectively). Hence, SBR in REF2 of A establishes its return at
C, since A and C are already paired. So, for convenience, B and C can be
put in execution order after A. Operationally, this result is no different
result than when the one-line subroutine B is remote; however, the program
is more readable, and the desired pairing is guaranteed. If the desired
result is not feasible, the assembler will inform the programmer, avoiding
the obscure run-time error.

LOCN + SUCC - ISN LAF OPF REF

66 47 opf refl,SBR(LIT)
XXX+ 48
XXX- * 66 LIT 12 Y,S0(=8), cc=10

Figure A. Sample One-Line Full-Byte Literal Subroutine

LOCN + SUCC - ISN LAF OPF REF
161l 120 opf refl,~(BRO,SIS)
xxx+ 135 BRO opf ref
XXX~ 162 l61l SIS opf ref
162

Figure B. Sample Controlled Word Pairing

LOCN + SUCC - ISN LAF OPF REF
102 101 opf refl,+(A,QC)
XXX+ 103 102 A opf refl,SBR(B)
104 103 B lita dest,SO(=S) ,cc-1itb.
XXX— 105 104 C opf ref
105

where lc is the low order 4 bit of the literal and lc is
the high order 4 bits.

Figure C. Sample One-Line Full-Byte Literal Subroutines with
Controlled Word Pairing

7 BRANCHING CAPABILITIES

7.6 ABSOLUTE STATEMENT LOCATION AND CONTROL BRANCHING

If desired, the programmer can exercise absolute control over statement
location in Control Memory (not only the pairing). Furthermore, absolute
branching may be specified based on data values stored in main memory.
These techniques should be used sparingly, with careful consideration

of their necessity.

Pseudo-instruction PLACE determines absolutely the location of the execu-
table statement following it. (PLACE is discussed in a subsequent topic.)1
The PLACE statement itself is not given an ISN, since the next line contains
the statement it locates, with its own ISN. PLACE statements are vitally
important in setting up vector arrays for controlled or computed jumps, as
discussed subsequently.2

An absolute branch in Control Memory (based on an address stored in a

data word in main memory) is set up by storing the desired target pair
address in the upper three Hex digits of the word (bits .15:4). The

example shown in Figure A shows a CAP32 sequence which reads such an address
word, and jumps to the - word of the pair so addressed. Assume a pointer

to the word in main memory in CLM(10), with FX holding the upper two bits

of the main memory address. Statement ISN 102 is executed before the jump
occurs, and it can involve a full-byte literal, since it uses mode CD5 to
establish the next statement to be executed. This example would be extremely
difficult to implement in a real system, since there is no check on the
validity of the word coming from main memory (considered as a target pair
address in the control memory). It is safer to jump to one of a closely
controlled set of target Control Memory addresses. ’

References:

1Topic 8.6
2Topic 8.1
3Topics 8.1 through 8.6

LOCN + SUCC - ISN OPF REF COF
101 100 LM(10) MR ADDRESS MAIN MEMORY.
102 101 D S READ WORD INTO S, VALUE XxXX.
102 opf refl,-(=S) JUMP USING MODE CD5.
159 PLACE XXX= DEFINES NEXT LINE AT XXX-—.
XXX~ l6l 160 opf ref JUMP DESTINATION.
Figure A. Absolute Branching Example

8 VECTORS AND PSEUDOINSTRUCTIONS

8.1 AN OVERVIEW

This section discusses Vectors and CAP32 pseudoinstructions. This
initial topic introduces the main concepts involved.

A pseudoinstruction is a directive to the CAP32 microassembler; it does
not result in generation of an object microcommand.

A branch set is a named list of labels defined by the BRSET pseudoinstruction,
which has the following syntax:

LAF OPF REF

list-name BRSET label-list

where "label-list" is an ordered list of from 1 to 16 statement labels,
separated by commas. Each label is defined elsewhere in the program by its
occurrence in the Label Field (LAF) of an executable statement. The label-
list may contain null elements indicated by two adjacent commas, and may be
broken after any comma and continued on the next input line. When the
Control Memory locations for all labels in the label-list are finally
established by CAP32, the labels will be at consecutive word addresses of
the same sign. The fact that the labels are at consecutive locations is
not a serious restriction, because of the non-consecutive nature of Control
Word access in the 3200. A BRSET label-list in CAP32 functionally corres-
ponds to a label array in PL/I, to the list of statement numbers in a
FORTRAN computed GO TO, and to the list of procedure names in the COBOL
statement "GO TO procedure-list DEPENDING ON ...". A BRSET must appear in
the CAP32 source code before any statement referring to it, and before

any label in its label-list is defined.

A Vector consists of one or two branch sets associated with a method of
determining an index value specifying one of the labels to be branched

to. A Vector must be defined by a VECTOR pseudoinstruction, which has the
following syntax:

LAF OPF REF

vector-name VECTOR type,list-name [, list—name]
type-,list-name
type+,list-name

where each "list-name" has been defined previously by a BRSET pseudo-
instruction, and where "type" associates the Vector with one of the index
methods shown in Figure A. A VECTOR pseudoinstruction containing a single
list-name in REF establishes that list as a 1l-to-1l6-way switch (label
array), with all addresses of the some wordsign. If + or - is specified
as a suffix to "type" in REF, the wordsign is established as specified.

If no sign is specified in REF, the assembler decides on the sign.

A VECTOR pseudoinstruction containing two list-names in REF establishes

a 2-to-32-way switch (label array), with the first list-name defining the
labels at - words, and the second list-name defining the labels at + words.
Labels in corresponding ordinal positions in the two label-lists are
necessarily at the - and + word locations of the same pair in Control Memory.

If the programmer wishes to establish the absolute location of a Vector, a
PLACE pSeudoinstruction1 may be used immediately before the VECTOR pseudo-
instruction. The sign specified in the PLACE argument must be acceptable
to the VECTOR statement. Consider the example shown in Figure B. Here
Vector MAVEC is a Second-Digit (SDB) Vector with four pairs of labels, the
- word labels identified by list "MAV" and the corresponding + words labels
identified by list "MAV.". The location of the first word of the first label-
list named in the VECTOR statement is given as the location of the Vector
(here 020-). Hence MAO, MAl, MA2, and MA3 are at 020-, 021-, 022-, and
023- (respectively), and MAO., MAl., MA2., and MA3. are at 020+, 021+,
022+, and 023+ (respectively). An ISN is given to a VECTOR statement,
because the assembler must reference it often. Vector MAVEC is sketched

in flowchart form in Figure C. "

The user should note that each location of a Vector hold a full CAP32
statement, not just an address. A Vector is neither a data table nor a
pure jump table; it is a procedure switch. When reaching an element of a
Vector list, it is already in the first statement of an algorithm. Note
that a subroutine called in a statement that is a Vector element auto-
matically returns to the corresponding Vector element of opposite wordsign,
or its equivalent. A Vector branch is called for in REF2 of a CAP32 state-
ment, by naming the Vector (for single-list Vectors) or by using "test (vec-
tor)" (for two-list Vectors). Subsequent topics explore the various

Vector branch calls.

Reference: 1Topic 8.6
Type Control Memory Address Mode
DATA CD4 (Data Branch)
FDB CD7 (First-Digit Branch)
INT CD7 (Interrupt or PC Branch)
SDB CDo6 (Second-Digit Branch)
Figure A. Vector Types
LOCN ISN LAF OPF REF
MAV BRSET MAO,MAl,MA2,MA3
MAV. BRSET MAO.,MAl.,MA2.,MA3.
PLACE 020-
020- 358 MAVEC VECTOR SDB, MAV,MAV.
Figure B. Sample Absolute Vector Location (See Text)
sDB
MAV L MAV
020- f MAQ |- +| MAO. | 020+
021- | mA1 |- +] MA1. | 021+
022- | MA2 15+ | ma2. | 022+
023- |MA3 |- +| MA3. | 023+

Figure C. Flowchart of Vector MAVEC from Figure B

8 VECTORS AND PSEUDOINSTRUCTIONS

8.2 DATA VECTORS

The simplest type of 3200 Vector is the DATA Vector.

The index for a DATA Vector is the low-order four bits of the S-Register
(S.3:0). Hence, to branch into a one-list DATA-type switch, the general
CAP32 sequence shown in Figure A may be used. A specific example of this
form is shown in Figure B. Here the DATA Vector is called simply by nam-
ing it in REF2. If the DATA Vector were of two-list form, however, the
call would require a test of the following form:

. opf refl,test(vec2)

For example, Figure C shows an 8-by-2 Vector called with selection from
Y¥.2:0 and Z.15. To show it can be done, a new value for Z has been
established at the end of the sequence (in ISN 150). The 2.15 tested is
the sign bit of the o0ld value of Z.

A DATA Vector uses Control Memory addressing mode CD4 (the Data Branch)

in which the address word has the composition shown in Figure D. The
variable data values set the low-order Hex digit of the pair address and
the sign. The CC-Field is. set by the assembler to correspond to the block
of the Vector. It is now seen that a DATA Vector should be placed at the
beginning of a block having low-order digit 0. The current page must be
used, since L.10:8 is not changed in CD4 mode addressing. Hence a DATA
Vector can be called only in the page in which it is defined.

Another important restriction is that a DATA Vector cannot be called from
within a conventional microlevel subroutine, since the loading of S.3:0

through destination code S in REF1 destroys the currently saved subroutine
return address.

LOCN LAF OPF REF
aaa BRSET label-list
XXx+ bbb VECTOR DATA,aaa
source S
opf refl,bbb

Figure A. General Form for Branching into a One-List DATA Vector

LOCN + SUCC - ISN LAF OPF REF
DVSET BRSET DVA,DVB,DVC,DVD,DVE,DVF
210 701 VVD VECTOR DATA ,DVSET
26D+ 742 741 ZB X
25D~ 742 Y ., VVD
Figure B. Specific Example of Branching into a One-List DATA Vector
LOCN ISN LAF OPF REF
NEG BRSET NA,NB,NC,ND,NE,NF,NG, NH
POZS BRSET PA,PB,PC,PD,PE,PF,PG,PH
PLACE 230~
230~ 100 NAV VECTOR DATA ,NEGS, POZS
149 Y&7 S
150 LM(G) 2,215 (NAV)
Figure C. Specific Example of Branching into a Two-List DATA
Vector
New bit |L.10 L.9 L.8|L.7 L.6 L.5 L.4 |L.3 L.2 L.1 L.OJlL.11
Set from|L.10 L.9 L.8| CC.3 CC.2 CC.1 cc.0|s.3 s.2 s.1 s.0 +test
*example 2 3 data data
(same) (new) (variable) (variable)
*See Figure C

Figure D. Address Word Composition Used by DATA Vector

8 VECTORS AND PSEUDOINSTRUCTIONS

8.3 USER-LEVEL INSTRUCTION FETCH AND DECODE CYCLE

The First-Digit and Second-Digit Branch Vector mechanisms are best under-
stood in the context of the user-level instruction fetch cycle built into
the hardware.

The user-level instruction fetch MONOBUS cycle is initiated by the P-Register
(the user-level program counter), when either of these two events occurs:

° P is loaded from the FBUS through use of code P in subfield REF1l.

™ P is incremented from an odd to an even value when either 1)
a First-Digit Branch (FDB) Vector name is used in a REF2 sub-
. field with syntax "vector" or "test(vector)" and an FDB occurs,
or 2) code "I" or "I2" is used as the b-code in OPFl, to feed
part of the I-Register to the BBUS as an ALU input (CB-constrained).

Once the instruction fetch MONOBUS cycle is initiated, any subsequent ref-
erence to I-Register automatically causes a delay (for completion of the
fetch cycle), so that the new value of the I-Register will be used. At all
times the lowest order bit of P (P.0Q) acts as a byte selector on the I-
Register, making only one of the two I-Bytes available to the CPU. If P

is even, -the high (left) byte of I is selected; if P is odd, the low byte
is selected. 1In the following discussion, the selected byte of I is
denoted by "IBY".

When P is incremented from even to odd, IBY switches from high to low byte
with no MONOBUS fetch cycle occurring (since the needed byte is already
placed in I). However, if P is loaded with an odd value from the FBUS, a
MONOBUS fetch cycle occurs, and the low byte is selected as soon as I is
loaded. In this case the high byte is not accessible to the CPU at all.

IBY can affect the CPU in eleven different ways, as tabulated in Reference
Table A-12. Five of these involve the currently selected IBY; the other
six involve ISAVE (the saved value.of IBY from a previous selection). Each
of the eleven effects are discussed below.

The first two IBY effects involve the current IBY, causing no change in the
I-Register or the selection of IBY. Code IH used as the b-code in OPF1l
places IBY on the BBUS as the low byte of the b-input to the ALU. Code

I2H used similarly in OPF1l places IBY on the BBUS, shifted left one bit
from the low byte.

The next two IBY effects are similar except that they also increment P,
causing an advance of IBY to the next I-Register byte (with or without a
MONOBUS access), as required to get the next IBY. Code I (like IH) places
IBY in the low byte position on the BBUS. Code I2 (as I2H) shifts IBY one
bit left before placing it on the BBUS, effectively multiplying IBY by 2.

The fifth IBY effect, the Vector First-Digit Branch (FDB), also uses the
current IBY. First, all pending interrupts are handled before any other
action takes place. Secondly the current IBY is saved as ISAVE, replacing

the byte saved by the previous FDB. Third, the four high-order bits of
IBY (the "First Digit") are placed in L.3:0, to effect a l6-way branch.
Finally, P is incremented, advancing IBY to the next I-Register byte (with
MONOBUS access only if required). To cause an FDB, an FDB-type Vector
name is used in REF2, as discussed in the next topic. The FDB is particu-
larly important, as it is the sole method of attending to interrupts, and
is the only way to load ISAVE.

The last six effects involve ISAVE, the type which was the IBY at the
previous FDB time. In the Vector Second-Digit Branch (SDB), the low-order
(second) digit of ISAVE is placed in L.3:0 to effect a 16-way branch. To
get an SDB, and SDB-type Vector name is used in REF2. Note that SDB is a
branch on the lower 4 bits of the same byte the previous FDB used for a
branch on the upper 4 bits.

Effect 7 in Reference Table A-12 takes second-digit (SD) on the BBUS as
part of a compound ALU input that also includes FX and PX. The OPFl code
-for this is SDX. SD appears as BBUS.7:4 and can most readily be separated
from SX and FX by routing the signal to Z, then using code ZB as the next
OPF1l.

Finally, there are four separate + branch tests based on selected bits of
ISAVE. These tests involve bits of Second-Digit (SD), and also bits of the
Previous First-Digit (PFD); they were designed to optimize the decoding of
the user-level instruction set. A general test capability on IBY may be
implemented by using an I-type OPFl subfield on the current IBY to get it
into Y or % for masking, shifting, and testing.

As an example, assume that P has just been incremented to point to the
even memory address containing the byte named G, and that the next four
bytes in memory are named H, I, J, and K. Figure A shows the effects of
a sample I-Register action sequence.

I-Register Bits Acted MONOBUS Resulting Resulting
Action Upon P Incremented Access IBY ISAVE
FDB G.7:4 YES NO H G
"I2H" H.15:0 NO NO H G
SDB G.3:0 NO NO H G
" H.15:0 YES YES I G
"BYTE" G.5:3 NO NO I G
"DBL" G.5:3 NO NO I G
FDB I1.7:4 YES NO J I
"I2" J.15:0 YES YES K I

Figure A. Sample I-Register Action Sequence (See Text Above)

8 VECTORS AND PSEUDOINSTRUCTIONS

8.4 FIRST-DIGIT BRANCHING VECTORS AND INTERRURT VECTORS

First-Digit Branching (FDB) Vectors and Interrupt (INT) Vectors are
established using type-codes FDB and INT (respectively). Addressing
in Control Memory resulting from these Vectors is of mode CD7.

The chosen strategy for decoding a user-level instruction depends on the
specific format of the instruction. As described earlier, the 3200 opti-
mizes decoding of instructions having a byte structure. An initial FDB

on the 4 left bits of the instruction can be followed (as needed) by an
SDB on the 4 right bits of the same instruction, preserved in ISAVE. Sub-
sequent program bytes can be read into the CPU by I-type OPFl codes (via)
the BBUS) and handled as parameters or addresses, as appropriate. When
the first byte of the next instruction is in the IBY position and the cur-
rent instruction is complete, an FDB will start the next decoding cycle.

If the user-level instruction word structure does not adapt to this opti-
mum scheme, the program byte can be read into the CPU by use of I-type

OPF1l codes. The byte is then masked and selected using ALU logic func-
tions and shifts, and finally used via a DATA Vector branch or via ordinary
two-way + branches. The FDB or the SDB Vector branch cannot be used on any
argument other than IBY (for FDB) or ISAVE (for SDB). Interrupt handling
can only be invoked through an FDB call. Hence the 3200 programmer is
committed to using the First-Digit Branch mechanism.

The programmer establishes an FDB Vector just as a DATA Vector is established,
except that subfield REF1l of the defining VECTOR pseudoinstruction is "FDB".
An FDB-type Vector may have one or two label-lists, as desired. Each is
defined by a BRSET pseudoinstruction and is subject to the same conventions
on wordsign and pairing as other Vectors.! A unique FDB Vector restriction
is that it must be located either in Block 1 -or Block 9 of a Control Memory
page, and its associated Interrupt Vector (of type INT) must be right below
it, in Block 0 or Block 8. As Reference Table A-8 shows, addressing mode
CD7 places bit string 000 in L.6:4 if an interrupt is pending, otherwise

it places bit string 001 in L.6:4. These CD7 values define the block in
the page. The programmer should place the FDB Vector through use of the
PLACE pseudoinstruction, specifying value 010-, 090-, 110-, 190-, ...

(i.e., one of the legal locations for an FDB Vector). Then the matching
Vector of type INT must be defined, and placed at 000+, 080+, 100+, 180+,
... {(correspondingly). The INT Vector is necessarily of single-list type,
and must be placed at + address. The FDB Vector could be placed at +
addresses if it were of single-list type, but often double-list FDB Vectors
prove useful. Figure A provides an example. Note that every possible
target location must be named. The naming is arbitrary, but ordinal naming
is very helpful.

A 48-way conditional branch has been established in Figure A. It can be
entered by a statement having in its REF2 subfield the form test (NEXT).

The test result will determine whether to use list FDL. (for + word addres-
ses) or FDL (for - word addresses); test success causes entry to list

"FDL.". 1IBY.7:4 determines the point in the list to which control will be
transferred provided no interrupt is pending. If an interrupt is pending,
control will then transfer to the appropriate element of list INTL. When
interrupt handling is completed, control shall normally be returned to the
FDB Vector. Such a return is not automatic, and must be explicitly pro-
grammed into each interrupt routine.

The 16 possible types of interrupts are listed in Reference Table A-13
(from highest to lowest priority). Interrupts are handled in priority
order, if more than one are pending. Two forms of interrupts are directly
initiatable from the microprogram. First, if an FDB branch is desired
without interrupt servicing, code PI in subfield REF3 (of the statement
which precedes the statement containing the FDB Vector name in REF2) will
prevent interrupts for that one FDB. Second, 8 of the interrupts are
under the control of the Q-Register, and will not be accepted unless the
corresponding bit of Q is set to 1. Q-Bit assignments to the various
interrupts are also given in Reference Table A-13. For TRACE and WAIT,
the Q-Bit only enables the interrupt, but actually establishes it as pending.
TRACE has the highest priority; WAIT is the lowest.

Reference:

1'I‘opics 8.1 and 8.2

LOCN ISN LAF OPF REF

INTL BRSET WAIT,INTO,INT1,INT2,INT3,PARITY,OPRINT,
MONTIM, STOP, PANEL,CCIO,RTCLCK,LOAD,
RESTRT, PFAIL, TRACE

FDL BRSET FDO,FD1,FD2,FD3,FD4,FD5,FD6,FD7,FD8
¥D9,FDA,FDB,FDC,FDD,FDE,FDF

FDL. BRSET FDO.,FD1.,FD2.,FD3. ,FD4.,FD5. ,FD6. ,FD7.,
FD8.,FD9.,FDA.,FDB.,FDC.,FDD. ,FDE. ,FDF.

PLACE 000+

000+ 7 INTV VECTOR INT+,INTL
PLACE 010-

0lo- 8 NEXT VECTOR FDB,FDL. ,FDL

Figure A. Sample FDB and INT Vectors with Associated Mechanisms

8 VECTORS AND PSEUDOINSTRUCTIONS

8.5 SECOND-DIGIT BRANCHING VECTORS

A Second-Digit Branch (SDB) Vector is similar to a DATA Vector, except
for type-code SDB. Addressing in Control Memory resulting from an SDB
Vector is of mode CD6.

Mode CD6, like mode CD4 of the DATA Vector, allows any address in the
current page to be the target. The SDB Vector location should begin at
an address ending in digit 0; this CAP32 assembler automatically arranges
this, so no PLACE pseudoinstruction is required with SDB Vectors.

SDB Vectors may be one or two label-lists. In either case the index that
determines where the target is in the label-list is SD, bits ISAVE.3:0,
as listed in Reference Table A-12.

An SDB Vector will normally be used within a routine to which control has
been transferred to by a prior FDB Vector, since FDB execution is required
to place IBY into ISAVE, thus making an SDB branch possible. An SDB normal-
ly provides the second level of jump decoding for a particularly complex

set of instruction codes. At SDB time the next instruction byte is already
on its way to (or present in) IBY. If that next instruction byte is a
parameter, it may be transferred over the IBUS and the BBUS through use of
I-type codes. It can be gated, masked, and shifted in the ALU, as needed.
On the other hand, if the digits of SD (ISAVE.3:0) are a parameter that
should not just be a multiway jump, SD may then be transferred over the IBUS
and the BBUS to the ALU through use of OPF1l code SDX.

Eventually, by using I and I2 in most cases, the byte IBY is the first

byte of the next instruction. Then FDB normally is used. If, however,

FDB is unsuitable for decoding, the first instruction byte must be pre-

served by using an IH or I2H code in OPFl. Then FDB must be used to ser-

vice interrupts. If a jump is not desired, the WAIT interrupt may be set

by setting Q.0. Since WAIT is of lowest priority, other pending interrupts
will be serviced first. A WAIT interrupt routine is now written which

serves as the start of your actual decoding. The FDB is never actually execu-
ted. Normally, an FDB is a good way to begin the decoding of an instruction.

Figure A shows an example that starts after the FDB of an instruction decode,
and then increments the contents of a secondary Local Memory register, based
on bits SD.3:0 as a selection index.

Figure B illustrates an example that starts after the FDB of an instruction
decode, and interprets the second and third bytes of the instruction as a
byte address in the main memory, with the upper two bytes of the address
(used as M.17:16) given by ISAVE.1l:0. The addressed byte is fetched from
the main memory, and placed in the lower half of the Y-Register.

The example in Figure C shows an instruction fetch cycle that sets flag
GI.3 based on bit IBY.7 (1 for 1 and O for 0), and then branches to one of
eight routines based on the value in bits IBY.6:4.

OPF

SDX
ZB

LM (Z4)
Y+1

LM (24)

Figure A. Sample Routine Starting After FDB of Instruction

Decode (See text)

OPF REF
I XU
SDX Z
ZB FXB
I XL:F
X MR
DB Y
Figure B. Sample Routine Starting After FDB of Instruction
Decode (See text)
LAF QPF REF
FDL BRSET FDO,FD1,FD2,FD3,FD4,FD5,FD6,FD7
FD8,FD9,FDA,FDB,FDC,FDD,FDE,FDF
PLACE 0l0-
FDVEC VECTOR FDB,FDL
IH Y
GIW Z
ZB Z
z&7 Z,Y15(,*+2)
Y . ,FDVEC
FD1 opf ref
FD7 opf ref
FD8 Y ., FD1
FD9 Y ., FD2
FDF Y . ,FD7

Figure C.

Sample Instruction Fetch Cycle (See text)

8 VECTORS AND PSEUDOINSTRUCTIONS

8.6 FURTHER CAP32 PSEUDOINSTRUCTIONS

In addition to those previously discussed in this section, a number of
CAP32 pseudoinstructions are available. Pseudoinstructions are directivegd
to the CAP32 microassembler and do not result in the generation of object
microcode.

PAGE Pseudoinstruction

‘The PAGE pseudoinstruction assigns a name to the current block (512 words
maximum) of microcode to be assembled, and makes an absolute assignment to
a particular page of Control Memory. The syntax of this pseudoinstruction
is as follows:

LAF OPF REF
name PAGE startloc,endloc

where "name" is the name desired for the microcode block; where "startloc"
is the absolute address of the beginning of the block in Control Memory;

and where "endloc" is the absolute address of the end of block in Control
Memory (which must be in the same page as "startloc"). If omitted, "endloc"
is assumed to be at the end of the current page. The following illustrates
an example:

M32D PAGE 300-,3C7+

PLACE Pseudoinstruction

The PLACE pseudoinstruction assigns an absolute location to the executable
statement or the VECTOR definition which immediately follows the PLACE
statement. The syntax is: :

OPF REF

PLACE loc

where "loc" is an absolute location in the current page. An example places
vector NEXT at location 010- is shown below:

PLACE 0lo-
NEXT VECTOR PDB,FDX. ,FDX

END Pseudoinstruction

An END placed in field OPF terminates the assembly.

EXTERN Pseudoinstruction

The EXTERN pseudoinstruction provides linkage to other pages of the microcode.
CAP32 provides no automatic dynamic linkage capability.

The programmer must know the absolute location of the variable to be
referenced in the other page. The syntax is:

LAF OPF REF
symbol EXTERN LOC

where "symbol" is the name of the variable defined in the other page, and
"loc" is its absolute location. For example:

STF EXTERN 085-
When the "symbol" is the name of a vector defined by a VECTOR pseudo-

instruction in another page, then the Vector type (FDB or INT only) must be
given following "loc" (complete with + or -, if appropriate).

LAF OPF REF
vector-name EXTERN loc,type
For example:

NEXT EXTERN 000+ ,FDB

REGNAM Pseudoinstruction

Local symbol definition is provided by the REGNAM pseudoinstruction. The
syntax is:

LAF OPF REF
symbol REGNAM value
where "value"is a decimal number in the range 0:15. "Symbol" is usually

a Local Memory array register name when used with REGNAM. Symbol can then
be used as rn in any executable instruction where rn is applicable (see
Reference Table A-1l). For example:

LAF OPF REF COF
DAR REGNAM 8 DISPLAY ADDRESS REGISTER
SB REGNAM 13 STACK BASE

Note that REGNAM assigns a numeric value to a symbol used to reference a
Local Memory register, but has no control whatsoever over the Local Memory
mode (primary or secondary). The programmer must set the mode correctly

so that the symbol actually refers to the register it mnemonically suggests.
In the example, Stack Base (SB) is singularly primary register 13, yet

LMS (SB,LG) refers to secondary register 13.

BRSET and VECTOR Pseudoinstructions

These pseudoinstructions have previously been defined.!

Reference:

1Topic 8.1

8.6

9 STACK PROCESSING

9.1 STACK PROCESSING IN MAIN MEMORY ONLY

Stack processing on the 32/S is supported by special hardware features
and the CAP32 microcommand structure. Before discussing the special
features, however, it is necessary to discuss the simplest form of stack
processing, with the stack entirely in Main Memory.

A Main Memory stack begins at a location called the Stack Base (SB). Stack
elements are single words of two bytes each. As elements are pushed onto
the head of the stack, they are stored at every increasing addresses. A
Stack Pointer (SP) points to the word currently at the top of the stack
(TOS). The memory area reserved for the stack is bounded by an upper limit
called the Stack Limit (SL). The SL is equal to the largest allowable
value for SP. When SP attempts to exceed SL, a stack overflow condition
will result.

To push a word onto the main memory stack, SP must first be incremented by

2 (since memory addressing is in bytes); thus the new word is stored at
M(SP). The new word is now TOS, and the former TOS word is now TOSl, at
M(SP-2). If the new word to be pushed onto the stack is in Y, then the

CAP32 sequence shown in Figure A should be used. Note that SP in the

OPF field as an argument of IM has a value equal to the index of SP in

Local Memory. This sequence assumes the upper two bits of the memory address
are properly in FX, or that SP is stored in Local Memory so it will call

out the correct upper two bits from SX or P.17:16.' The SL is ignored.

Removing a word from the top of the stack is called a pop operation. To
pop TOS, read it into Y and then decrement SP by 2. The CAP32 sequence
for this operation is shown in Figure B.

As shown, the routines for pushing and popping a word at the top of the
memory stack are straightforward, yet always involve a memory reference.
Also, there are no provisions for checking for stack overflow. A stack
overflow check is complex and time consuming. Popping TOS will never
induce overflow (underflow is ignored). A push operation could cause

an attempt by SP to exceed SL. Figure C shows a push operation which
tests for stack overflow. This test has increased the push routine from
3 words to 6. Also the stack overflow routine (STKOV) is paired with
ISN 25, because it was jumped to from a test and branch, rather than
from a single jump.

Reference:

1Topic 4.6

OPF REF COF
IM(SP,LG) Z FETCH SP INTO 2.
Z+2 MW:LM(G) INCREMENT, USE, AND
RESTORE SP.
Y D WRITE NEW TOS WORD TO
MEMORY
Figure A. CAP32 Sequence to Push Word From Y Onto Stack
OPF REF COF
IM(SP,1G) Z:MR FETCH SP, SET G, REQ
MONOBUS.
Z-2 ILM(G) DECREMENT AND RESTORE SP.
D Y RECEIVE TOS WORD FROM
MEMORY.
Figure B. CAP32 Sequence to Pop TOS
ISN ILAF OPF REF CoFr
21 PSOV LM(SP,LG) Z FETCH SP, SET G.
22 LM (SL) X FETCH SL.
23 Z~-X F COMPARE SP-SL.
24 Y . NNEG (STKOV) IF SP > SL, GO STKOV.
25 Z+2 MW:Z:1IM(G) NO OVFL: INCRMNT,USE
SAVE SP.
26 Y D WRITE NEW TOS WORD TO
MEMORY .
27 STKOV opf ref STACK OVFL, PAIRED WITH
25.
Figure C. CAP32 Push Sequence With Overflow Test

9 STACK PROCESSING

9.2 STACK ORGANIZATION: THE T-COUNTER AND N-STATS

The 3200 hardware supports a stack organization consisting of a main
stack body in Main Memory, with an active Stack Head of from 0 to 5
words in the Y-Register and primary Local Memory registers 0:3.

When the Stack Head is empty, the stack is fully in Main Memory, and can

be used as a simple stack (described in the previous topic) with the TOS
word pointed to by the Stack Pointer (SP). When the Stack Head is not
empty, the TOS word is stored in the Y-Register. There then may be from 0
to 4 additional words stored in Local Memory at locations called LT, LW, LV,
and LU (respectively), working down the stack from TOS. It is also conven-
ient to name the stack words TOS, TOS1l, TOS2, etc. from the top of stack
down. For a full Stack Head, the correspondence of these names is shown

in Figure A. If the Stack Head contains only 4 words, then LU is missing.
For 3 words, LV is also missing, and so on. For the minimum non-empty Stack
Head (1 word) the locations used are Y, M(SP), M(SP-2), etc.

The absolute locations of Stack Head words LT, LW, LV, and LU are generally
unimportant to the programmer; what is important is that the T-Counter
always points to LT when the stack is in a stable state; i.e., LT = IM(T).
Furthermore, (T+1l) mod 4 points to LU; i.e., if 1 is added to T (with 4
reset to O when it occurs), then LU is located at LM(T+l) mod 4. For
example, the correspondence between the virtual names and absolute loca-
tions for these registers might be as shown in Figure B.

The programmer can address IM(T) or IM(U) either as a source or as a desti-
nation; mod-4 arithmetic on the T-Counter is available. Thus, access to
Local Memory Stack Head worxds is in the cyclic virtual address space T,

U, V, or W (not in the normal absolute index address space of Local Memory).
That is why the absolute Local Memory address assignment is unimportant.

Since the Stack Head need not always be full, a device is needed to indi-
cate the number of words in the Stack Head, and also to indicate when the
T-Counter has been moved away from its stable-state location (pointing to
LT). A unique device, the 5-bit N-Stats shift register, is provided for
these purposes. When the stack is in a stable state, the left end of N-
Stats has a number of 1-bits equal to the number of words in the Stack
Head. For example, a full Stack Head has N = 11111; a Stack Head with
words in Y and LT has N = 11000; and an empty Stack Head shows N = 00000.

Figure C shows a sequence of push and pop operations, and the effect they
produce on the Stack Head and the N-Stats Register. Data moves shown

by solid arrows are real; the words are actually moved into and out of Y,
between Y and LT, from LU to M(SP), and out of M(SP). The moves shown by
dashed arrows are virtual, caused by changing the values of the two pointers
(T for Local Memory, and SP for Main Memory). In the first push shown, T

is incremented and points to the former LU register, then Y is moved to
where T now points. The former LT is now LW, etc., and data words 18 and

17 have not moved, but have been renamed. Similarly, on the fourth push,

SP is incremented by 2.

the Stack Head and N-Stats

TOS TOS1 TOS2 TOS3 TOS4 TOS5 TOS6 e
Y LT w v LU M(sP) M(SP-2) e
-< Stack Head - ¢——— Memory Stack—se- - .
Figure A. Nomenclature for a Full Stack Head
LT w LV LU
M (2) M (1) IM(0) IM(3)
Figure B. One of Possible Stack Head Local Memory Assignments
Action N-Stats Y LT Lw LV LU M(SP) M(SP-2) Comments
11100 19 18\ 17\ 16 15 LV, LU empty
PUSH \ A
11110 \20 19\ 18\ \17 16 15 (19, 20 moved
PUSH \ NN D
11111 \21 20 19 18 \17 16 15 .| 20, 21 moved
PUSH \ \ N N N \\ \ N N N
11111 22 21\ \20\ 19\ 18 17 16\ \ ... 17, 21, 22 moved
N\
PUSH \ \
11111 \23 22 \21 \zo \19 8 N7 X})
POP ~ / » g d » 4
11110 22 21 20; 19 18 17 . 123, 22 moved
POP A / P -
11100 21 20 19 18 17
POP ~ / p 7
11000 20 19 18 17
POP o /
10000 19 18 17
POP Ve
00000 /18 /17 / .« .| 19 moved
POP - o
00000 . 17 16 18 moved
PUSH '\
10000 24 . 17 16 . 124 moved
PUSH . \
11000 \25 24 17 16 . |etc.
Figure C. Effects of a Sequence of Push and Pop Operations on

9 STACK PROCESSING

9.3 SIMPLE STACK OPERATIONS IN AN ACTIVE STACK HEAD

This topic describes the use of the eight available Stack Head manipula-
tion command codes. These codes are summarized in Reference Table A-14.

A push can involve many different actions. If the Stack Head is empty,
the source is moved to Y, and N is shifted right with fill of 1. If
the Stack Head is partially full, then T is incremented, N is shifted
right with fill of 1, Y is stored at the new LT position (0ld LU), and
finally the source is moved to Y. If the Stack Head is full, the fore-
going action must be extended to save the old LU, add 2 to SP, and then
store the old LU at the new M(SP).

Figure A shows a subroutine to push X onto the stack. ISN 101 through 103
is a sequence to read LU and push it to memory if the Stack Head is full.

If N5 fails, the Stack Head is not full and control goes to ISN 104, with
the main action of 101 wasted. If N5 succeeds, the Stack Pointer (SP) is
advanced 2 bytes and LU is stored at the new M(SP). No change is made

in T or N because of what follows. ISN 104 advances T by 1 mod 4 (thus
making old LU new LT), shifts N right 1 with fill of 1, and moves Y to

new LT; hence 104 is "push Y to IM". ISN 105 copies X to Y, thus completing
the over-all "push X to stack" complies.

A similar subroutine which pops the stack to X is shown in Figure B.

Finally, a subroutine to read TOS to X is shown in Figure C. This routine
establishes TOS in Y if it is not already there. This routine establishes
TOS in Y if it is not already there. This routine is not a pop since

the TOS value and the stack length remain the same.

The reader should note that the Nx tests, as defined in Reference Table
A-11, succeed if the named bit of the N-Stats register is equal to 1.

LOCN + SUCC - ISN LAF OPF REF COF

104 102 101 PSX IM(SP,LG) Z,N5(,PSX4) GET SP; TEST N FOR FULL HEAD.
xxx+ 103 102 Z+2 MW:LM (G) ADVANCE SP; START MONOBUS.

104 103 LM (U) D READ LU, PUSH TO MEMORY.
XXX— 105 104 PSx4 Y IM(U,IT) SR(1) N, T+1; PUSH Y TO LT.

105 X Y,S0(=S) COPY X TO Y; RETURN.
Figure A. A Subroutine to Push X Onto the Stack

LOCN + SUCC - ISN LAF OPF REF COF

203 202 201 POX Y X,N1(,POX3) COPY Y TO X; TEST N NOT EMPTY.
XXX+ 202 IM(T,DT) Y,S0O(=S) POP LT; SL(0) N, T-1; RTN.
XXX= 204 203 POX3 LM(SP,LG) Z:MR GET & SEND SP; START MONOBUS.

205 204 2-2 IM(G) RETARD SP, SAVE IT.

205 D X,S80(=S) POP MEMORY TO X; RETURN.
Figure B. A Subroutine to Pop Stack to X

LOCN + SUCC - ISN . LAF OPF REF COF

303 302 301 RTXY Y .,N1(,RTXY3) TEST FOR N EMPTY.
XXX+ 302 RTXY2 Y X,80(=S) COPY Y TO X; RETURN.
XXX— 304 303 RTXY3 LM (SP,LG) Z:MR GET & SEND SP; START MONOBUS.

305 304 Z-2 1M (G) RETARD SP AND SAVE.

302 305 D Y,RTXY2,;,LT POP MEMORY, PUSH TO Y; SR(1l) N.

Figure C.

A Subroutine to Read TOS to X and Establish Y as TOS if Necessary

9 STACK PROCESSING

9.4 SPECIAL STACK HEAD PROCESSES

This topic discusses special Stack Head loading and unloading processes.

An active Stack Head involving the Y-Register and up to 4 Local Memory
registers serves as a speed and efficiency producer during long algebraic
or logical expansions. However, when the CPU is required for some other
task (possibly involving some other stack), it is necessary to unload

the Stack Head to memory, so that the stack can be saved for future use.
The Stack Head may be of any length in range 0:5 and must be unloaded from
the bottom, since that is the way it fits on top of stack memory. If the
Stack Head tests to be of length O or 1, the process is trivial. At length
2, a choice of methods is available. Lengths 3:5 dictate the standard way,
which for compact implementation is also used for length 2. This is
illustrated in the subroutine in Figure A.

The execution time for the subroutine shown in Figure A is dependent on
the Stack Head length:

Stack Head length: 0 1 2 3 4 5
Execution time: 3 4+1MW 10+2MW 12+3MW 14+4MW 16+5MW

For loading, five words are popped off the memory part of the stack to form
a full Stack Head. Command form "LM(T,DT)" in REF1l and also form "DT"

in REF3 are designed for the loading operation. The question arises of when
this should be done. Normally a Stack Head is "grown" item-by-item with

push operations. A full stack is rarely as effective as a partially full
one.

LOCN

uuu-

uuu+
wWww-—
www+

XXX+
XXX=
vvv+

+ succ - ISN LAF OPF
504 502 501 STUF 1M (SP,LG)
510 503 502 LM (T,DT)
503 Y
506 505 504 STUF4 IM(U,IT)
506 505 505 IM(U,IT)
507 506 STUF6 Z+2
508 509 507 X
506 508 ILM(U,IT)
510 509 STUF9 IM(U,IT)
511 510 STUFA 2+2
511 Y

REF
Z,N2 (STUF4)
. N1 (STUFA)
. +1SQ (=S)
X,N5 (STUF6)
X,N5(,*)
MW:Z:

D,N4 (,STUF9)
X,STUF6

MW:Z:IM(G)
D,SO(=S)

COF

IF > 1 IN HEAD, GO STUF4.

IF Y IN HEAD, CLEAR N & GO STUFA.
HEAD EMPTY, RETURN.

GET LU; IF HEAD FULL GO STUF6.
GET LU UNTIL ITS LB; SHIFT N RT.
ADVANCE.

UNLOAD ITEM; IF TOS, GO STUF9.
GET LU, SHIFT N RIGHT.

CLEAR N BY SR(0O) N.

ADVANCE & SAVE SP.

WRITE Y TO MEMORY AT SP.

Figure A.

Subroutine to Unload Stack Head of Any Length to Memory

9 STACK PROCESSING

9.5 STATE DIAGRAM

This topic presents a stack processing state diagram.

An over-all perspective of the 3200 stack handling capability is given in
the state diagram of Figure B. The states pictured are states of the
Stack Head, not of the full stack. Each Stack Head state has a value of
N associated with it, and some actions that cause a change of state. (In
some cases, the actions cause some change of content, but'no change of
state.)

It is essential to understand the distinction between stable and transient
states. The stable Stack Head states are those with N all zeros or N1=1,

in which the Stack Head contents are marked by the number of 1l's at the

left of N (as to the number of elements in the head), and where the T-Counter
points to TOS1 in LM. Transient states occur during the load or unload
process, in which the 1's of N are moved to the right (in unload action),

or have not arrived at the left (in load action), and where T points to the
location currently being unloaded or unloaded at the bottom of the Stack
Head.

In Figure A, the states marked "U" and the states marked "S" are transient
in nature, as intermediates in the load process (which ends stably at H5),
or in the unload process (which ends stably at HO). HO:H5 are the stable

states of indefinite duration.

1—>
00000 10000 11000 11100
N1 N1 AND N2’ N2 AND N3’

11110 11111
N3 AND N4’ N4 AND N5’ N5

Figure A. State Diagram of the 3200 Stack Head

10 INPUT/OUTPUT MICROPROGRAMMING

10.1 INPUT/OUTPUT CONTROLLERS

Input/Output (I/0) microprogramming depends critically on the design
of various I/O device controllers which can be attached to a system.
In the 3200, the I/O microprogramming situation is eased by the exist-
ence of a general pattern into which all I/O device controllers must
fit, and by the use of MONOBUS as the main communication medium to
and from the I/O devices.

I/0 device controllers fall into two main categories: active and passive.
An active controller contains logic and circuitry needed to request MONOBUS
control for data or control transfers. A passive controller cannot request
the MONOBUS, but can respond to a MONOBUS request signal bearing its
MONOBUS address. The principal active controllers are of CPU or Direct
Memory Access (DMA) type. Discussion here is limited to a system with

one CPU, in which that CPU can request a single transfer to or from a
passive I/0 controller. The CPU can also request a DMA controller to carry
out an entire sequence of memory accesses via the MONOBUS, without further
CPU intervention or control until the access sequence is complete and an
appropriate interrupt signal is sent.

Each I/0 controller is accessed through a Device Register Block (DRB), which
is 8 words (16 bytes) long and has a MONOBUS Address (MBA) in the range
3CO000:3FFFEF. (MBA range 3FFFO:3FFFF is reserved.) The general format

of a DRB is shown in Figure A. Variations from the general format may be
expected to satisfy special device needs, but such variations must be

within the scope of the available firmware.

User device operations generally consist of four phases:

° Observation of device status by reading word 0 (and possibly word
3) of the DRB, to see if access is possible at the moment.

° Establishment of DRB values that should apply to the access being
initiated, ending with establishment of an appropriate I/0 order
(command in word DRB(1l)).

° Determination of device access completion, through the interrupt
mechanism.
o Reading of input data (if any) from word DRB(2); also reading

of any error data from word DRB(O).

At the simplest firmware design level, all the above sequencing is pushed
up into software (at the user level), and the firmware simply reads and
writes words from and to the DRB. Firmware for such action may already
exist in adequate measure. More elaborate machine design will move some
of the above sequencing down to the firmware level, reducing the number
of separate software instructions the user must employ to accomplish an
access.

To understand the above decisions, three reference tables on I/0 program-
ming are included in the Appendix. Reference Table A-15 details the bits

of the Status Word (DRB(0)).
Byte (DRB(1l).7:0).

Reference Table A-16 describes the Order
Reference Table A-17 lists the mode controls of

DRB(1).15:8.
Word O | ALARM OR ERROR INTERRUPTS BUSY FLAGS |«STATUS
WORD
Word 1 | OPERATING MODES ORDER
Word 2 DATA
SUBDEVICE
Word EXTENDED STATUS
ord 3 ND NUMBER
DSA
Word 4 | 15.76| pIsc acTIoN
Word 5 DISC ADDRESS
Word 6 DMA START ADDRESS
Word 7 DMA LENGTH
Bits: 15 87 43 0

Figure A. General Format of a Device Register Block (DRB)

10.1

10 INPUT/OUTPUT MICROPROGRAMMING

10.2 INTERRUPT SYSTEM

This topic discusses the 3200 interrupt system.

A device external to the CPU (i.e., an I/O device) may interrupt the CPU
by pulling one of the following backplane signals low:

° INRO/ (External Interrupt O)
) INRl/ (External Interrupt 1)
° INR2/ (External Interrupt 2)

° CIOR/ (Concurrent I/O Interrupt)

This will eventually cause an action request and a procedure code branch
in the CPU. The CPU will read the appropriate interrupt Response Word (see
Figure A) to determine which device is causing the interrupt. As a side
effect of this read, the interrupt select daisychain will be activated.
Upon receipt of the Interrupt Select in (ISIX/), the external device
checks the four low-order MONOBUS address bits. If these bits correspond
to the interrupt (each Interrupt Response Word has unique four low-order
bits) the device is causing, then the device gates its device address onto
the D-Bus, replies, and ceases driving the backplane interrupt signal.
Otherwise, the device must drive Interrupt Select Out (ISOX/) low.

INTERRUPT

BACKPLANE SIGNAL

MONOBUS ADDRESS
OF RESPONSE WORD

External Interrupt O
External Interrupt 1
External Interrupt 2
Concurrent I/O Inter

rupt

INRO/
INR1/
INR2/
CIOR/

3FFFO
3FFF2
3FFF4
3FFF8

Figure A.

Interrupt Response Words

10.2

11 CONTROL PANELS

11.1 BASIC PANEL

This topic describes the 3200 Basic Panel.

The 3200 Basic Panel is illustrated in Figure A. This panel has only
three controls: an eight position rotary key-switch, and two push-
button switches. The key-switch has six labeled positions, as shown
below.

Position Function

OFF Causes the backplane signal PSCl/ to go low, which (in
turn) causes power supply shutoff. (This includes power
for the MOS memories.)

HOLD Causes the backplane signal PSC2/ to go low, which (in
turn) causes a Power Fail interrupt in the CPU and causes
the power supply to go to standby. This means that +5V,
+12V, and -12V are off, but the MOS memory power (+21V
and +5.2V) is on and the refresh logic is running. (The
unlabeled position between HOLD and OFF is wired to HOLD.)

STOP Causes the backplane signal STOP/ to go low, which (in
turn) causes a Stop interrupt in the CPU and enables the
LOAD push-button switch. There are two positions labeled
STOP, each performing the same function.

RUN This position does basically nothing. The power supply
is on and the CPU is running the default condition. (The

unlabeled position between RUN and LOCK is wired to RUN.)

LOCK Causes the backplane signal LOCK/ to go low. This has
implications only if the Maintenance Panel is installed.

The key-switch positions are summarized in Reference Table A~18.
The two push—button'switches are as follows:
Switch Function
LOAD If.the backplane signal STOP/ is low, pressing this switch
causes the backplane signal LOAD/ to go low and creates a

ILoad interrupt in the CPU.

INT Pressing this switch causes the backplane signal OINT/ to
go low and creates an Operator interrupt in the CPU.

AUN LoOCK
svor m sTOP m
HOLD OFF

AN

Z{;otary \\\Push—Button

Key-Switch Switches

Figure A. Basic Panel

11.

11 CONTROL PANELS

11.2 MAINTENANCE PANEL

The 3200 Maintenance Panel has two main components: the Maintenance
Panel Logic Board (MPLB) and the Maintenance Panel Switch Board

(MPSB) .

The MPIB plugs into any card slot in the backplane. In a multi-chassis
system the MPLB must be plugged into the same chassis as the CPU. 1In

a zoned chassis the MPLB must be in the same zone as the CPU.

The MPSB is mounted in a Basic Panel, as shown in Figure A. 'The MPSB
is not directly connected to the Basic Panel electronics. The MPSB is

connected to the MPIB by a ribbon cable that runs from the top edge of
both boards.

The Maintenance Panel will not function without a free-running CPU
clock (backplane signal CLK2/).

There are six functional areas of interest to a user of the Maintenance
Panel. They are as follows:

° Hardware Display Selector Switches
° Firmware Display Selector Switches
') Address Display

o Data Display

® Data Switches
) Indicator Display
® Control Switches

These areas are discussed in the remaining topic of this section.

Hardware Display _ Firmware Display
Selector Switches Selector Swifff§§%77
/ D= —

IS Il —
y < 2

o Qa

Aonl “?A CEU NCBMA o CMAE o o o DA .n 2 2 a Lad e E S E’ s’
Display—l]| L]
™ o a o o o o o o o a o o a o o o a o
ADDRESS
o o a o o o a a o o o a Data‘
Display

a a [=] o a
DATA

0 | O O { O B

SYS PCREGCLOCK INSTR CMA MBA SREAK ADDR DATA ADV
ENTER ENTER DAR STEP

Da ta e B "L—T S
SW i t Che S MEM ON LOCK CLOCK 8US INSTR IHEAJ RESEY ENABL HALT STOP BREAKBREAK +-/W
@ oo aaao O o e e gy o o | [o §

LY !
\ \

\ \

\ \
/’ \ \
\\\Indicator \\\Control

Switches

Basic Panel
Control Switches Display

1T

Figure A. Maintenance Panel

11 CONTROL PANELS

11.3 MAINTENANCE PANEL CONTROLS AND INDICATORS

This topic discusses the hardware display selector switches, the indicator
switches, and the control switches.

Hardware Display Selector Switches

The displays selected by the six extreme left display selector switches
are driven by hardware contained within the MPLB. These displays require
no CPU support, and therefore the MPLB generates no panel interrupts.
These six switches are summarized in Reference Table A-21, and are also
described below.

Switch Function

ADR/DDR Displays the contents of the ADR and DDR. This display is
used to "freeze" one of the firmware driven displays.

MBA/MBD Displays the Address, Data, and Write flags of the last
selected MONOBUS cycle. If the MBA Break switch is on
(down), then only MONOBUS cycles that meet the break
condition are selected.! The Write Even Byte Flag (WEBF/)
is bit 17 of the data display, and the Write 0dd Byte Flag
(WOBF/) is bit 16. This is the only time these bits of the
data display are used. The information for MBA/MBD display
is only stored in the ADR and DDR while any hardware display
except ADR/DDR is selected.

CMU/CML Displays the upper 16 bits of the current Control Word and
the lower 16 bits of the Control word.

NCMA /CML Displays the next Control Word address in bit 14 through bit
4 of the address display, the plus/minus address bit in bit
0 of the address display, and the lower 16 bits of the Con-
trol Word in the data display.

CMA/F Displays the address of the current Control Word in the
address display; previous to the last CPU clock, this was
the data in the NCMA/CML address display. The FBUS (FB15/
to FBOO/) is in the data display.

CMA/1 Displays the address of the current Control Word in the
address display, and the IBUS (IB15/ to IB0OO/) in the data
display.

Indicator Displays

There are seven indicator displays. These displays are summarized in
Reference Table A-19, and are discussed below.

Display Function
MEM Indicates the +21 and +5.2 voltages and the RFSH/ signal are

being supplied to the MOS memories. As long as this indicator
is on, the data stored in the MOS memories are preserved.

If this light goes out, it means there has been a loss of
power to the MOS memories and the data stored have been lost.
If this occurs, the key-switch on the Basic Panel must be
turned to the OFF position before the Power Supply will turn
on again.

ON Indicates the +5, +12, and -12 voltages are ON.

LOCK Indicates the key-switch is in the lock position and the
LOCK/ signal on the backplane is low.

CLOCK Indicates the CPU clock (CLK1l) is running.

BUS Indicates MONOBUS cycles are occurring.

INSTR Indicates software instructions are being executed.

BREAK Indicates a break condition has been satisfied.?

Control Switches

There are 11 control switches; these switches are described in Reference
Table A-20 and below:

Switch Function .

SYS RESET When ON, causes a CPU master reset (RSET/ goes low). This
function is disabled when the key-switch is in the LOCK
position.

PCREG ENABL When ON, enables the C-Register on the MPLB and disables all
other C-Registers. This C-Register is loaded from the data
switches with the ADD ENTER and DATA ENTER control switches.
This function is disabled when the key-switch is in the
LOCK position

CLOCK HALT When ON, causes a timing hold in the CPU. The CPU clock
(CIK1l) stops and firmware execution ceases. The switch
functions are disabled by an unsatisfied break condition or
when the key-switch is in the LOCK position.

INST STOP When ON, causes the backplane signal STOP/ to go low. This’
generates a Stop interrupt in the CPU, and execution of soft-
ware instructions ceases. If the CLOCK HALT switch is OFF,
then the function of this switch is disabled by an unsatis-
fied break condition. The switch functions are disabled
when the key-switch is in the LOCK position.

CMA BREAK The action of these three switches is related to the genera-
MBA BREAK tion of break conditions.?
BREAK + -/W *

ADDR ENTER When ON, causes bit 2 of the Panel Status Word" to be a 1.
If the PCREG ENABL switch is on, this causes the data switches
to be copied into the upper 16 bits of the panel C-Register.

DATA ENTER When ON, causes bit 1 of the Panel Status Word to be a 1.
If the PCREG ENABL switch is on, the data switches will be
copies into the lower 16 bits of the panel C-Register.

ADV DAR When ON, causes bit 0 of the Panel Status Word to be a 1.

STEP When ON, enables the Stop Break condition.

References:

1Topic 11.5
2Topic 11.5
3Topic 11.5
“Topic 11.4

11.3

11 CONTROL PANELS

11.4 MAINTENANCE PANEL FIRMWARE DISPLAY SELECTOR SWITCHES AND
MONOBUS INTERFACE

This topic discusses the firmware display selector switches, and the
Maintenance Panel MONOBUS Interface.

Firmware Display Selector Switches

The displays selected by the 12 extreme right display selector switches are
driven by the CPU in response to panel interrupts. When one of these dis-
plays is selected, the MPLB displays the ADR and the DDR, and generates a
Panel action/request (PANEL/) approximately every nine msec. In response

to the panel action request, the CPU (controlled by internal firmware)

reads the panel status and data switches, and writes the appropriate informa-
tion back into the ADR and the DDR.

Maintenance Panel MONOBUS Interface

The Maintenance Panel has an interface to the MONOBUS that allows firmware
control of some displays. The interface is nonstandard because it treats
the MONOBUS address as a word address. (It is not possible to do byte reads
or writes.) The interface responds to MONOBUS addresses in the range of
3FFFC;5 to 3FFFF;¢. The assignments of these addresses are as follows:

Address Assignment
3FFFC Panel Status Word
3FFFD Extension Word
3FFFE Address Word
3FFFF Data Word

These assignments are discussed further in Reference Table A-22. The for-
mat of the Panel Status Word is shown in Figure A. The bits of this word
have the following significance:

Bit(s) Description

Advance This bit is set when the ADV DAR control switch is de-
pressed. It is reset when the Panel Status Word is read
or the switch is released.

Data Enter This bit is set when the DATA ENTER switch is depressed.
It is reset when the Panel Status Word is read or the
switch is released.

Address This bit is set when the. ADDR ENTER control switch is

Enter depressed. It is reset when the Panel Status Word is
read or the switch is released.

Lock When this bit is ON, the Basic Panel key-switch is in
the LOCK position.

Display This 4-bit code shows which display has been selected.

Code Referring to the Display Selector Switches, the 6 on

the left have a code of zero and the 12 on the right
have (left to right) codes 1 to 12. Codes 13 to 15
are reserved for expansion.

Data Switch These 2 bits are (left to right) Data Switch 17 and
Extension Data Switch 16.

Reading the Panel Status Word resets the Panel Action Request. For further
information regarding the Panel Status Word, see Reference Table A-23.

The format of the Extension Word is illustrated in Figure B. "Writes" to
this word are used to specify the 2 high-order bits of the Address Display.
Note that "writes" to this word cause the upper 2 bits of the display to
be reset.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
110

*i’ t-----A,clvance

Data Enter
Address Enter
Lock

Display Code

Data Switch
Extension

Figure A. Panel Status Word

15 14 13 12 11 10 9 8 7 6 5

T ﬂx' Not used

Address Display
Register 16

Address Display
Register 17

Figure B. Extension Word (Write Only)

11.4

11 CONTROL PANELS

11.5 MAINTENANCE PANEL BREAK CONDITION

Break Conditions are used to debug hardware, firmware, and software.

A Break Condition isolates a particular event occurring within the CPU
and allows it to be used to control some MPLB action, resulting in some
useful diagnostic information.

A Break Condition is enabled as a result of user Maintenance Panel action
(e.g., turning on the MBA BREAK switch). At this time, an unsatisfied
Break Condition is said to exist. When the selected event occurs, the
specified diagnostic action takes place and a satisfied Break Condition
is said to exist. To repeat this cycle, it is necessary to disable the
Break Condition.

There are three types of Break Conditions:

° The Step Break Condition is enabled by depressing the STEP
control switch. This condition is satisfied by the occurrence
of a First Digit Branch. '

) The Control Memory Address (CMA) Break Condition is enabled
when the CMA BREAK control switch is ON and the MBA BREAK
control switch is OFF. It is satisfied by the occurrence
of a particular Control Word address, selected by the Data
Switches. The address is entered into the Data Switches in
the same format as the CMA display. The location address
-goes in bit positions 14 to 4 of the Data Switches and the
plus/minus address bit (if used) goes in bit 0. These Break
conditions are reset by disabling the CMA Break or by the
occurrence of a Step Break condition.

e The MONOBUS Address (MBA) Break Condition is enabled when the
MBA BREAK switch is ON. It is satisfied by the occurrence of
a particular MONOBUS address as selected by the Data Switches.
The desired 18-bit MONOBUS address is entered on the Data
Switches. These Break conditions are disabled by turning off
the MBA BREAK switch, or by the occurrence of a Step Break
condition.

References:

1Topic 8.4

CMA MBA

BREAK BREAK +-/W

SWITCH SWITCH SWITCH BREAK FUNCTION

ON OFF OFF Break on the selected C.M.
address.

ON OFF ON Break on the selected C.M.
address, but disregard the
+ address bit.

OFF ON OFF Break on the selected monobus
address.

OFF ON ON Break on the selected monobus
address, but only on writes.

ON ON OFF Break on the selected monobus
address, but disregard the low
order address bit.

ON ON OFF Break on the selected monobus

address, but disregard the low
order address bit and only on
writes.

Figure A. Enabling Various Types of Breaks

11.

11 CONTROL PANELS

11.6 MAINTENANCE PANEL INTERNAL LOGIC

This topic discusses the internal logic of the Maintenance Panel Logic
Board (MPLB) and the Maintenance Panel Switch Board (MPSB).

The MPLB and MPSB are connected by a full duplex serial channel, which

is controlled by hardware known as the Shift Control Logic. This logic is
driven by the 135-nanosecond free-running CPU clock (CLK2/). The clock

is divided down to provide a 60.44 usec shift clock (CKIN) and a 8.888
msec clock (CKPANEL), which start shift cycles and initiate Panel Action
Requests, if necessary. 48 Data bits are shifted each way every shift
cycle. ‘

On the MPSB, the Control and Data Switches (and an encoded version of the
Display Selector Switches) are clocked into the Input Shift Register (32
data bits and 16 pad bits) and are then shifted to the MPLB. Exceptions
are the Clock Halt and Sys Reset Control Switches which are debounced

and sent to the MPLB on dedicated lines. There the lower 16 Data Switches
are clocked into the Data Switch Register; the rest of the data are clocked
into the Control Register. The Control Register Output controls the
different functional capabilities of the MPLB such as Panel C-Register and
Break-Point Logic. The Control Register output also provides data for

the Panel Status Word.

Concurrent with the action described in the preceding paragraph, the
Display Code (a subset of the Control Register) feeds into the Display
Code (a subset of the Control Register) feeds into the Display Control
Logic which controls the Display Multiplexer. The dual 4-way by 16-bit
Display Multiplexer is fed by all possible address and data display
sources, and selects one of each source. These sources are clocked into
the Output Shift Register with the data for the Indicator Display and
the Display Code. These data are then shifted to the MPSB where they
are clocked into the Holding Register. -

The Holding Register output drives the Address Display, Data Display,
Indicator Display, and Display Code Decoder. The Decoder drives the
appropriate indicator above its corresponding Display Selector Switch.

Block diagrams of the MPSB and MPLB are presented in Figures A and B,
respectively.

—»1 OUTPUT SHIFT REGISTER INPL!T SHIFT REGISTER ————
‘ .
y
—— HOLDING REGISTER DISPLAY DATA
CODE SWITCHES
ENCODER
Y Y
INDICATOR DATA ADDRESS 1
DISPLAY DISPLAY DISPLAY
DISPLAY SELECTOR
SWITCHES
DISPLAY
CODE CONTROL SWITCHES
DECODER
SYS RESET
Y >
SELECTED DISPLAY CLOCK HALT R
INDICATORS i
Figure A. Maintenance Panel Switchboard (MPSB)
—>1 INPUT SHIFT REGISTER OUTPUT SHIFT REGISTER {L —>-
Y < —— DISPLAY — A fﬂ)
DATA SW CONTROL | €ODE || SHIFT
REGSTR REGISTER (6) CONTROL (6)
(16) |_ue PANE: ACTION
fgg;l‘cROL ™1 REQ GENERATOR
)y INDICATOR
BREAK | conTroL
S7] PoINT ™ Logic
g1l roaic (34)
5-1 a AA bls
PANEL [* 1z PLAY L DISPLAY MULTIPLEXER
_
c a w g CONTCROL 17 T I \
REG g Loat L REG | w16 | [i32) (12() 116 |01e)
(16 12)
(32) LI 1 (12)‘\ DATA) ADDRESS
i MONOBUS ADDRESS
Y CONTROL DISPLAY EXT. REG DISPLAY
LOGIC REG . REG
15) B) M 14 14 A YY)
D FBUS (16) o
- CBUS (32) >
~ CMA BUS (15) -
. DBUS (16) i
i MBA BUS (13) o
- | BUS (16) >
Figure B. Maintenance Panel Logic Board (MPLB)

11.

APPENDIX A

REFERENCE TABLES

This appendix presents 23 reference tables, labeled Reference Table
A-1 through A-23.

The following "symbols" are used in Reference Table A-1.

Symbol Columns Meaning

Underlining shows CB-Constaint.

1,2 C-Field value.

19 Use "." so REF1l will not be null. See Topic 4.2.
a 9,13,14 Items "a" and "b" are substituted as needed in
b column 9 expressions. A value for "a" may not

be used for "b", and vice versa; items may be used
in pairs only as shown. See notes i & n, and
Topics 5.1:5.3.

e 15:18 C-Field CG has default value 0 if none of the
forms shown appears. Then local memory is un-
disturbed. See Topics 4.2 and 4.3.

fg 18:20 REF1 may include a Local Memory destination from
column 18 (CG), or a destination from column 19
or 20 (CF), or both, separated by a ":". See
Topic 4.1; also see column 5, for REF1l (CB).

i 8,9,14 Any column 8 form may be used for "i" of column
14 in arithmetic/logic expressions of column 9.
See Topic 8.3.

js 2 Subscript "(js)" denotes a "jump-spec" or branch
specification of form (vector) or (label,label)
or (=S) or (label) or (,label). See Topics 7.1
and 8.1.

n 5,9,14 "n" is a decimal (not hex) number in the range
0:15, used as the b-input to arithmetic/logical
expressions of column 9. A symbol defined by
REGNAM may be used, but rarely makes sense; see
note rn. When the subroutine return statement
is used, numeric literal n is extended to 8 bits,
using field CC, and hence has range 0:255. See
Topic 7.5.

P 10,15,18 Column 15 shows the subscript or suffix that must
be used with LMx() or SB() of column 10 to form a
full OPF1l field specifying Local Memory or a

Symbol Columns
p (cont)
rn 6,15,16,
18
S 2
t 17
VW 11,12

Meaning

Single-Bit Generator as the data source. Column 18
shows the full REF1 forms for Local Memory as a
destination; note that "LM" is used without a third
letter. See Topics 4.2 and 4.3.

Parameter "rn" is either a decimal numeric constant
like "n", or a register name (symbol) that has been
set to a value in the range 0:15 by a REGNAM pseudo-
instruction (see Topic 8.6). In either case, "rn"
affects CG whether in OPF2 or REF1.

Field CA, values 0:3, is used to designate ex-
plicitly the + or - word of a Control Memory
pair, possibly with the subroutine feature (sav-
ing L in S). Assignment of these CA-values is
indirect (by CAP32) after its memory allocation
analysis.

Additional gsyntax for subfield REF3 is C-~Field
direct encoding, of form "Cx=n", where "x" is a
C-Field designation (A:G,I,J), and "n" is a deci-
mal number (0:15), giving the desired C-Field
value. See Topic 3.2.

Pairs "v" and pairs "w" are fill specifications
for the end bits emptied in the one-bit shifts

of column 9. The forms shown are for two staging
registers (Y:Z) shifted simultaneously. If only
one register is shifted, the form is shortened;
if the full form is "vwl,vw2", then for x or y
shifted the form becomes "vwl", and for Z shifted
the form becomes ",vw2". Note the comma in the
Z-shift fill-code. See Topic 5.6.

REFERENCE TABLE A-1.
Syntax for CAP 32 OPF and REF Fields Related to C-Field Values

CAP-32 OPF1! OPF2

field REF2 ! REF1 OPF1 and its parameters OPF2 |REF REF1: REF1

C-—

field CA CA cJ cl CG CF #

Condi- CAe| CA7 g‘z CGs €10 | See cJo cn | ciz|c3 cJo CJ(1:F) CEO [CE8

ti) H & !

fons 13 CG7 CIA |13 CJF Ci(0:4) CI(6:F)

| Subst: | q_fk o | m___ff__ i (m v __w |a_Iblp

in col 2 |2 13 [15,16,18 |10 13) 9 9 9 9 T10

Mne- 0]s Glo|Z o sym (Z H |m LM(p) 0,0 00|Y [(n |[e e e e . F 0

monics | 1|s Gli|Nz |1 sym (Nz [T [SL(v) |LMN(p) | OY |OY |Y |V Z4,LG X X:F 1
2|s GiZ|NEG [Z sym |NEG |[12H [SR(w) | LMS(p) | OXY |0X |Y | X | z4 LM(Z4) Y Y:F 2
3|s GI3 | NNEG |3 sym |NNEG {12 [a-ONE | LMClp) | 0,1 01 |Y |i | zaLG LM(Z4,LG)| Z Z:F 3
4| soljs) ZORN |4 sym |ZORN [SDX|ab SB(p) YO [(Y0|z2Uu|n TFG v:iz | Y:Z:F 4
5 SD3| NZORN'5 sym | NZORN|GIW |a-b-C Yy |vy|zu|Y m,LG Z:SBR| Z:SBR:F | 5
6/ aljs) DBL| CAR |6 sym |CAR |[PU |a+b |D YXY |YX|2U| X | m E— LM(rn) XU | XL:F 6
7| k(is) CI0 | OVFL |7 sym |OVFL [P |atb+c | DB Y1 |vi|zu|i | mLG TM(m,LG) | zU ZU:F 7
8| BYTE(js) z15 |8 sym a TFG 20 |NO|Z |n PI D DB 8
9| FETCH(js) 9 | Sym alb |YB zY |NY|Z |V IG MR:Z | MW:Z |9
Al WNZ(js) 10 Ssym b’ F(f) ZXY |NX|Z | X | G LM(G) MR | MW A
B| N5(js) REM (1T sym a’ SWIT z1 |n1lz |i | GG LM(G,IG) | P PX B
c| Najs) XY15 (12 sy a&b | 2D 10 |20 (2L |n |U I FXA |FXB c
D|N3(js) Y5 13 | sym b zc 1Y |zy|ZL |Y | T DT sX w D
E | N2(js) 20 14 | Sym a&b |zB 1.XY |[zX|zs | x | uT LM(UIT) | S Q E
F|N1(s) Y200 (15 | Sym a*b |ZA 1.1 z1|zs |i | TDT LM(T,DT) | GI F

Column | 1]2 3 |a 5 6 7 8 |9 10 1 12 {13 {14 | 15 16 17 |18 19 20 21

REFERENCE TABLE A-2. DIRECT FBUS DESTINATION CODE SETS USED IN CAP32 SUBFIELD REF1l
REF1 Action CFE
. null 00
F Enable AF, Select ALU for TFG. *1 08
X X:=FBUS. 10
X:F X:=FBUS, Enable AF, Select ALU for TFG. *1 18
Y Y:=FBUS. 20
Y:F Y:=FBUS, Enable AF, Select ALU for TFG. *1 .28
2 Z:=FBUS 30
Z:F Z:=FBUS, Enable AF, Select ALU for TFG. *1 38
Y:2 Y:=FBUS, Z:=FBUS. 40
Y:Z:F Y:=FBUS, Z:=FBUS, Enable AF, Select ALU for TFG. * 48
Z:SBR Z:=FBUS, S.14:4:=L.10:0, S.0:=(L.11)"'. 50
Z:SBR:F Z:=FBUS, S.14:4:=L.10:0, S.0:=(L.11)', Enable AF, Select ALU for TFG. 58
XU ALUU:=ALUL,*2 XU:=FBUSU. 60
XL:F ALUU:=ALUL,*2 XL:=FBUSL, Enable AF, Select ALUL for TFG. *1 68
zU ALUU:=ALUL,*2 2U:=FBUSU. 70
ZU:F ALUU:=ALUL,*2 2U:=FBUSU, Enable AF, Select ALUL for TFG. *1 78
D D:=FBUS, Set Monobus Write Flags. 80
DB ALUU:=ALUL, *2 next
IF M.0=0 THEN DU:=FBUSU, Set Monobus Upper-Write Flag;
ELSE DIL:=FBUSL, Set Monobus Lower-Write Flag. 88
MR:Z Z:=FBUS, Set M.17:16,*3 M.15:0:=FBUS, Start Monobus Read-release Acc. 90
MW:Z Z:=FBUS, Set M.17:16,*3 M.15:0:=FBUS, Start Monobus Write-release Acc. 98
MR Set M.17:16,*3 M.15:0:=FBUS, Start Monobus Read-release Access A0
MW Set M.17:16,*3 M.15:0:=FBUS, Start Monobus Write-release Access A8
P P.15:0:=FBYS, Start Monobus Read into I-Register BO
PX P.17:16:=FBUS.15:14 B8
FXA FPX:=FBUS.15:14 Cco
FXB FX:=FBUS.1:0 c8
SX:= SX:=FBUS.15:14 DO
1 W:=FBUS.3:0 D8
S S:=FBUS EO
Q Q:=FBUS E8
GI GI:FBUS.3:0 FO
NOTES: *1 For TFG-register to be enabled, "TFG" must be used in subfield REF3.
*2 ALUU:=ALUL has no effect unless ALU is source of FBUS signal.
*3 Set M.17:16 is:

M
_ | LMN J(rn) rn:=10:11 THEN FX,M.17:16:=P .17:16
IF OPFl =4 1hs {rn,LG)} AND 1 :=12:15 THEN FX,M.17:16:=SX
LMC

ELSE M.17:16:=FX.

REFERENCE TABLE A-3
LOCAL MEMORY FBUS DESTINATION CODES USED IN CAP32 SUBFIELD REF1l

REF1 code Action (Note CLM) (Note SD)- CG
LM(G) CIM(G) := FBUS A
ILM(G, IG) CLM(G) := FBUS; next G := (G+1) mod 16 B
LM (Zz4) CIM(Z.3:0) := FBUS 2
LM(24,LG) CIM(Z.3:0) := FBUS; next G := Z.3:0 3
LM(rn) (where rn = register-name defined by "rn REGNAM n:

(Note or rn = n, a decimal number in range 0:15)

CB) CB := rn; next CLM(CB) := FBUS 6
ILM(rn,LG) CB := rn; next CLM(CB) := FBUS, G := CB. 7
LM(U,IT) T :=(T+1) mod 4; SR(1l) N; next CLM(T) := FBUS C

(Used exclusively in stack handling, see Table A-14)
IM(T,DT) CLM(T) := FBUS; next SL(l) N; T := (T-1) mod 4 D
(Used exclusively in stack hapdling, see Table A-14)

NOTES: CB: Field CB is used directly as the value of rn, hence CB-
constraint applies to use of index "rn" or "rn,IG".

CIM: "CLM" denotes currently active local memory array, as set
in some prior microcommand which used a local memory source
code.

SD: Local memory may be used in a single microcommand either
as a source or as a destination, but not both. Fields CIT
and CJ reflect which it is; see Table A-1l. See Table A-4
for Local Memory Source Codes.

REFERENCE TABLE A-4

LOCAL ARRAY FBUS SOURCE CODES USED IN CAP32 SUBFIELD OPF1l

Syntax: OPF1l ::= array-code(index) ! array-code (index,side-effect)

Part 1. Array Selection:

Array
~code Semantics / Action CI

M Establish primary local memory as currently active; select from it; 0
perform side-effect if specified./

CLM:=P1LM, next FBUS:=CLM(index), Enext side-effect—action]

LMN Select from local memory array not currently active; perform side- 1
effect if specified /

FBUS:=NLM (index), [next side—effect—action]

LMS Establish secondary local memory array as currently active; select 2
from it; perform side-effect if specified /

CLM:=SLM, next FBUS:=CLM(index), [next side—effect-action]

MC Select from the currently active local memory array; perform side- ‘3
effect if specified /

FBUS:=CLM(index) , [pext side-effect—action]

SB Select the single-bit generator SB(index); perform side-effect if 4
specified /

FBUS:=2**index [next side-effect-action]

Part 2. Index Control:

OPF1 Action CG
array-code (G) FBUS:array (G) A
array-code (G, IG) FBUS:=array(G) , next G:=G+1 mod 16 B
array-code (Z4) FBUS:=array (Z.3:0) 2
array=-code (Z4,LG) FBUS:=array(Z.3:0), next G:=2.3:0) 3
array-code (rn) FBUS:=array (CB) (See note rn) 6
array-code (rn,LG) FBUS:=array (CB) , next G:=CB (See note rn) 7
array-code (U) FBUS:=array (T+1 mod 4) (See Table A-14) o]
array-code (U,IT) T:=T+1 mod 4, next FBUS:=array(T) (See Table A-14) E
array-code (T) FBUS:=array (T) (See Table A-14) D
array-code (T, DT) FBUS:=array(T), next T:=T-1 mod 4 (See Table A-14) F
NOTE rn: "rn" denotes a register name defined by a REGNAM pseudo-op, or a decimal number in the

range 0:15. The value of rn is stored directly in the microcommand, in field CB, hence
use of "rn" involves CB-constraint.

REFERENCE TABLE A-5

CONTROL AND USE OF THE G-COUNTER

CAP-32 Subfield

Subfield Code Action Comment

OPF2 24,1G G:=2.3:0 Local memory not used here

OPF1 array-~code (Z24,1G) FBUS:=array(Z.3:0), Local array as source. Note AS.
next G:=Z.3:0

REF1 IM(Z4,LG) CLM(Z.3:0) :=FBUS, Local memory as destination
next G:=Z.3:0

OPF2 rn,LG G:=CB (Note CB) Local memory not used here

OPF1 array-code (rn, LG) FBUS:=array (CB), Local array source. Note AS
next G:=CB Note CB.

REF1 IM(rn,LG) CLM(CB) :=FBUS, Local memory destination
next G:=CB Note CB.

REF3 IG G:=G+1 mod 16 Local memory not used

OPF1 array-code (G, IG) FBUS:array (G) Local array source, Note AS.
next G:=G+1 mod 16

REF1 IM (G, IG) CLM(G) :=FBUS, Local memory destination
next G:=G+1 mod 16

NOTES: AS. Array source denotes Local Memory or Single-bit Generator.

CB. rn denotes symbol defined by REGNAM pseudo-op, or decimal number, range 0:15.

Value is stored in C-field CB, hence CB-constraint results.

REFERENCE TABLE A-6

DIRECT FBUS SOURCES OTHER THAN LOCAL ARRAYS

OPF1l
Code Action CJI
D FBUS:=MDW / Monobus Data Word in to FBUS 06
DB FBUS.15:8:=0; IF M.0=0 THEN FBUS.7:0:=MDW.15:8
ELSE FBUS.7:0:=MDW.7:0.
/ Monobus Data Byte selected by lowest-order bit

of Monobus address register M input to FBUS 07

TFG FBUS.3:0:=TFG; FBUS.15:4:=0.
/ Load FBUS from Target Conditions Register 08

SWIT FBUS.3:0:=test-switch-settings, FBUS.15:4:=0. OB
ZD FBUS.3:0:=%.15:12, FBUS.15:4:=0 / Load 1lst Hex from Z. ocC
Zc FBUS.3:0:=2.11:8, FBUS.15:4:=0. / Load 2nd Hex from Z. oD
ZB FBUS.3:0:=2.7:4, FBUS.15:4:=0. / Load 3rd Hex from Z. OE
ZA FBUS.3:0:=%2.3:Q0, FBUS.15:4:=0. / Load 4th Hex from Z. OF
YB FBUS.3:0:=Y.7:4, FBUS.15:4:=0. / Load 3rd Hex from Y. 09
F(Z) FBUS.0:=AFZ, FBUS.15:1:=0. / Load the Zero-flag. OA
F (NZ) FBUS.0:-AFZ', FBUS.15:1:=0. / Load the virtual Non-zero flag. OA
F(NEG) FBUS.0:=AFN, FBUS.15:1:=0. / Load the Negative-flag. OA
F (NNEG) FBUS.0:=AFN', FBUS.15:1:=0. / Load virtual Non-negative flag. OA
F (ZORN) FBUS.0:=(AFZ!AFN), FBUS.15:1:=0. / Load virtual flag

indicating either Zero or Negative, i.e., Non-positive. OA
F (NZORN) FBUS.0:=(AFZ'&AFN'), FBUS.15:1:=0. / Load virtual flag

indicating neither Zero nor Negative, i.e., Positive OA
F (CAR) FBUS.0:=AFC. / Load the Carry-Borrow flag. OA
F (OVFL) FBUS.0:=AFO0. / Load the Overflow flag. OA

REFERENCE TABLE A-7

ALU SOURCES USED IN CAP32 SUBFIELD OPFl

OPF1 ALU Source Signal
COde Bus (FBUS is same, or complement, or function) CI CB
Z A ABUS:=7Z 8:B -
ZU A ABUS.15:8:=0, ABUS.7:0:=2%.15:8 4:7 -
ZL A ABUS.15:8:=0, ABUS.7:0:=2.7:0 c,D -
ZS A ABUS.15:8:=(8)Z.7, ABUS.7:0:=2.7:0 (Sign extend Z.7) E,F -
Y A ABUS:=Y 0:3 -
Y B BBUS:=Y (Y appears on BBUS in functional combinations) 1,5,9,D -
rn B BBUS.15:4:=0, BBUS.3:0:=CB (rn is a symbol defined by

REGNAM, or a decimal number 0:15, or a decimal number

0:255 in a subroutine return. CB-constraint.) 0,4,8,C rn
X B BBUS :=X 2,6,A,E -
P B BBUS:=P (Program Counter; CB-constraint) 3,7,B,F 7
PU B BBUS.15:8:=0, BBUS.7:0:=P.15:8 (CB-constraint) 3,7,B,F 6
I B BBUS.15:8:=0, IF P.0=0, THEN BBUS.7:0:=I.15:8,

ELSE BBUS.7:0:=I.7:0; next P:=P+l1 (CB-constraint) 3,7,B,F 0
IH B Like "I", except do not increment P -- "Hold P" (CB...) 3,7,B,F 1
12 B Like "I", except shift signal left 1 bit, i.e., times 2.

BBUS.15:9:=0, BBUS.0:0=, IF P.0=0 THEN BBUS.8:1:=I.15:8,

ELSE BBUS.8:1:=I1.7:0; next P:=P+1 (CB-constraint) 3,7,B,F 2
I2H B Like "I2", except do not increment P. (CB~constraint) 3,7,B,F 3
SDX B BBUS.15:8:=0, BBUS.7:4:=SD, BBUS.3:2:-P.17:16,

BBUS.1:0:=FX (CB-constraint) 3,7,B,F 4
GIW B BBUS.15:8:=0, BBUS.7:4:=GI, BBUS.3:0:=W (CB-constraint) 3,7,B,F 5

REFERENCE TABLE A-8

ELEMENTARY LEFT SHIFT CODES

Left shift Syntax: "“SL(1lsb-fill) register"
Register Lsb-£fill Lsb-fill
Codes Codes Values Comments
X 0 0 Zero fill
XL Y Y.15 X from Y; Y circular left shift
Y Z Z.15 X or Y from 2
1 1 One fill
Xu 0 X.7 XU £ill is independent of 1sb-fill code
.0 0 Zero fill
V4 Y Y.15 Z from Y
' XY X.15=Y.15 One fill if X.15=Y.15, else zero fill
1 1 One fill
2U ,0 z.7 ZU £ill is independent of lsb-fill code
0,0 0,0 Two simultaneous logical shifts, zero fill
¥:7 0,Y 0,Y.15 2//Y double logical left shift
- 0,XY 0,X.15=Y.15 Z2//Y double, with Y inversion controlled by X.15
0,1 0,1 Two simultaneous shifts, 0 fill Y, 1 f£ill z
Y,0 Y.15,0 Two simultaneous shifts, Y circular, Z logical
€:z Y,Y Y.15,Y.15 Two simultaneous shifts, Y circular, Z from Y
- Y,XYy Y.15,X.15=Y.15 Two simultaneous shifts, Y circular, Z from XY test
Y,1 Y.15,1 Two simultaneous shifts, Y circular, 2 with 1fill
Z,0 z.15,0 Y//Z double logical left shift
Z,Y 2.15,Y.15 Y//Z Qouble circular left shift
Y: 2 Z,XY Z.15,X.15=Y.15 Y//Z double circular, with Y inversion controlled
by X.15 as bits shift into 2.0
Z,1 z.15,1 Y//Z double, with one fill of %
1,0 1,0 Two simultaneous shifts, 1 fill Y, 0 £fill 2
1l,Y 1,Y.15 Z//Y¥ double, with one fill of ¥
Y:Z 1,xy 1,X.15=Y.15 Z//Y double, with Y inversion controlled by X.15
and one fill of Y
1,1 1,1 Two simultaneous shifts, both one fill
l L Y
x 0 Y = 3
l 0
Z T .Y [1
XU XL < z 0
f—— 1 Al
t I 2u XY
0 0

REFERENCE TABLE A-9

ELEMENTARY RIGHT SHIFT CODES

Right Shift Syntax: "SR(msb-fill) register"
Register Msb-£fill Msb-fill ‘
Codes Codes Values Comments -
X o 0 Zero fill
XU Y Y.15 Y sign preservation; X fill from Y sign bit
Y N AFN Fill from Negative Arithmetic Flag
Z Z.0 X or Y from 2
XL o] X.8 XL fill is independent of msb-fill code
,0 0 Zero fill
Z Y Y.0 Z from Y
ZU X X.0 Z from X
1 1 One fill
0,0 0,0 Two simultaneous logical shifts, zero fill
7:2 0,Y 0,Y.0 Y//2 double logical right shift
) 0,X 0,X.0 Two simultaneous shifts, 0 fill Y, Z fill from X
0,1 0,1 Two simultaneous shifts, 0 fill Y, 1 fill Z
Y,0 Y.15,0 Two simult. shifts, Y sign preserve, Z zero fill
v:z Y,Y Y.15,Y.0 Y//Z double arithmetic right shift
) Y,X Y.15,X.0 Two simult. shifts, Y sign preserve, 2 fill from X
Y,1 Y.15,1 Two simult. shifts, Y sign preserve, Z one fill
N,O AFN, O Two simult. shifts, Y true~sign, Z zero fill
v:z N,Y AFN,Y.O Y//Z double true-sign right shift
: N,X AFN,X.0 Two simult. shifts, Y true-sign, Z fill from X
N,1 AFN,1 Two simult. shifts, Y true-sign, 2 one fill
Z,0 Z.0,0 Z//Y double logical right shift
¥:z Z,Y Z.0,Y.0 Y//Z or Z//Y double circular right shift
: Z,X Z.0,X.0 Z//Y double right shift with Z £fill from X
Z,1 Zz.0,1 Z//Y double right shift with Z one fill
z Y(SIGN PRESERVE)
Y
N 00—
Y S b4
AFN Y X
\ 4 27U
2 l

XU XL

REFERENCE TABLE A-10

CONTROL MEMORY ADDRESSING MODE

Address Mode Page Block Pair Word Comment

CDO (Block) L.10:8 L.7:4 cc f(ca) Any word in current block

CD1l (Mod 16) L.10:8 cc 1,3:0 f(ca) Either word in current pair of
any block in current page

CD2 (Page) L.10:8 cc CB f(ca) Any word in current page

CD3 (Newpage) CC.2:0 CC.3//000 CB f£(Ca) Any word in Block 0 or 8 of
any page

CD4 (Data) L.10:8 cc S.3:0 £(ca) Any word in current page

CD5 (Full S-Regq) S.14:12 S.11:8 S.7:4 £(ca) Any word in control memory

CD6 (2nd Digit) L.10:8 cc SD f(ca) Any word in current page

CD7 4 (1st Digit) CC.2:0 CC.3//001 FD f(ca) Any word in Block 1 or 9 of
any page, IF no interrupt!

(Interrupt) CC.2:0 CC.3//000 PC + If an interrupt is pending, any

+ word in Block 0 or 8 of any
page, as specified by PC, the
procedure (interrupt) code

The following diagram shows the range of locations accessible from location 25A+ for the next

instruction (for each addressing mode).

for CDé6.

Mode 0

200-
210-
220-
230-
240-

2§

25A+

250- |

Block = CC
—~—
1 2,4,6

— 4
20A+

21A+
22A+

b

250- -+

S.14:4

Page = CC.2:0
~‘

3

#cs

~

-1

(cC.3=0)

The asterisk (*) is CB for CD2, S.3:0 for CD4, and SD

PC (+ only)
FD
(CC.3=0)

270-
280-
290-
2A0-
2B0-
2C0-
2D0-
2EO-
2F0-
300-
310-
320-

260- ||

25F+ 1

2FA+ AL

[

CB
(CC.3=1)

ju]]

cB]
(CC.3=0) n

PC (+ only)
FD
(CC.3=1)

PC (+ only)
FD
(CC.3=0)

A-10

A-11

REFERENCE TABLE A-11l

AVAILABLE CONDITIONAL BRANCH TESTS

REF2 Success value / Comment CA | CB
S0(js) S.0 / S-register bit.0, the stored sign for a subroutine return; 4 -
SO normally used with js = "=8", as S0(=S).
WNZ(js) W#0 / W-counter not zero gives success value 1, causing W:=W-1. A -
N1l(js) N.1 / N is a shift register with five bits numbered 1:5. Each F -
N2 (js) N.2 of these tests succeeds if the corresponding bit of N E -
N3(js) N.3 is a 1. These tests are used in handling the stack D -
N4 (is) N.4 head of the 3200 in Y and 1M(0:3). o] -
N5(js) N.5 B
GIO(js) GI.0 / The General Indicators, GI, are four bits designed to 6 0]
GIl(js) GI.1 to be tested. Each test succeeds if the corresponding bit 6 1
GI2(js) GI.2 is a 1. CB-constrained. 6 2
GI3(js) GI.3 6| 3
Z(js) AFZ / These tests of the Arithmetic Flags AF succeed if 7 0
NZ(js) AFZ' the logical truth value of the expression given 7 1
NEG (js) AFN is 1. CB-constrained. 7 2
NNEG (js) AFN' NNEG = positive or zero. 7 3
ZORN (js) AFZ!AFN ZORN = zero or negative. 7 4
NZORN (js) (AFZ!AFN) ' NZORN = definitely positive, not zero. 7 5
CAR(js) AFC 7 6
OVFL(js) AFO 7| 7
Y15 (js) Y.15 / These tests of the end bits of selected staging 7 D
Zz15(3s) Z.15 registers succeed if the bit selected, or the 7 8
Z0(3s) z.0 logical truth value of the expression given, is 1. 7 E
XY15(js) X.15#Y.15 CB-constrained. 7 C
YZOO(js) Y.0#2.0 7| F
REM(js) (AFZ' & Z.15) ! (AFZ & X.15) / Remainder test; indeed it is a 7 B
more general switch test, selecting either Z.15 or X.15
depending on the value of AFZ.
CIO(js) Succeeds if Concurrent input-output request is pending; used only 6 7
with i-o controllers having the concurrent i-o feature.
FETCH (js) FD.2 / Special tests to speed the decoding of Microdata M32 machine instruc. 9 -
BYTE(Jjs) FD.1l & FD.O & SD.3 8 -
DBL(js) FD.1' & FD.O' & SD.3' 6 6
SD3(js) SD. 3 6| 5
+(3js) Transfers control unconditionally to the + or - word, as specified; 1
-(js) used to force the pairing of the two labels in js. (0]
NOTE: "js" in Table A-11 is a "jump specification" of one of the forms:

(tlabel,flabel)
(tlabel)
(,flabel)

(=s)

See Topic 7.1 for details.

REFERENCE TABLE A-12

I-REGISTER BYTE EFFECTS ON THE CPU

Part 1.

IF P.O = O THEN IBY := I.15:8; ELSE IBY := I.7:0.

Effects of the currently selected IBY, which depends on P.0 thus:

Use of IBY Bits

Code Used

Action

1 | BBUS: 00000000xXXXXXXXX "IH" in OPF1l b-code BBUS.15.8 := 0
(CB-constraint) BBUS.7.0 := IBY
2 | BBUS: 0000000xxxxxxxx0 "I2H" in OPFl b-code BBUS.15:9 := 0,
(CB-constraint) BBUS.8:1 := IBY,
BBUS.O := 0.
3 | BBUS: 00000000xXXXXXXXX "I" in OPFl b-code Same as for "IH", next
(CB-constraint) P := P+1l, advance IBY, next
IF P.0 = 0, start word fetch
4 | BBUS: 0000000xxxxxxx%xX0 "I2" in OPF1l b-code Same as for "I2H", next
(CB-constraint) P := P+1, advance IBY, next IF P.0 = O,
start word fetch.
51| - FDB-type vector lst, handle pending interrupts;
ISAVE: XXXXXXXX name in REF2 as 2nd, save IBY, ISAVE := IBY;
L.3:0: XXXK.e oo o vector or 3rd, branch on FD (First Digit),
test (vector) L.3:0 := IBY.7:4;
4th, P =: P+1, advance IBY;
5th, IF P.0 = 0, start word fetch.
Part 2. Effects of ISAVE (a former IBY) on the central processor.

Use if ISAVE BITS

Code Used

Action

6 | L.3:0: ..o XXXX
7 | BBUS: 00000000xxxxffss
8 | Test: ..111...
2 | Test: ..000...
10 | Test: Jd..... .
11.| Test: [P

SDB-type vector
name in REF2 as
vector or

test (vector)

"SDX" in OPF1l b-code
(CB-constraint)

"BYTE(js)" in REF2

"DBL(js)" in REF2
(CB-constraint)
"FETCH(js)" in REF2

"SD3(js)" in REF2
(CB~constraint)

Branch on SD (Second Digit),
L.30:0 := ISAVE.3:0
(See Topic 10.5)

BBUS.15:8 := 0,

BBUS.7:4 := ISAVE.3:0,
BBUS.3:2 := FX,
BBUS.1:0 := SX.

Test and branch on
ISAVE.5:3 = B'111"'.

Test and branch on
ISAVE.5:3 = B'000'.

Test and branch on
ISAVE.6 = B'l'.

Test and branch on
ISAVE.3 = B'l.

A-12

REFERENCE TABLE A-13

INTERRUPT TYPES IN PRIORITY ORDER (FROM HIGHEST TO LOWEST)

Position

in INT Q-

vector bit Name & description
F+ .1 Trace, a firmware interrupt, set by Q.1.

E+ Power Fail.

D+ Restart; recover from Power Fail. Occurs when the +5v. power supply resumes,

unless the panel RESET switch is held down.

Cc+ Load.
B+ .3 Real Time Clock, 120 Hertz.
A+ Concurrent I/O B

9+ Panel.

8+ Stop.

7+ Monobus Time Out; expected release did not occur.
6+ .2 Operator interrupt.
5+ Parity error.
4+ .7 I/0 Interrupt Line 3.

3+ .6 I/0 Interrupt Line 2.

2+ .5 I/0 Interrupt Line 1.

1+ .4 I/0 Interxupt Line O.
o+ .0 Wait, a firmware interrupt, set by Q.0.

NOTE: Where no Q-bit is given, the interrupt is not under Q-control. All interrupts may be
postponed by use of "PI" in REF3 of the statement preceding the FDB statement.

A-13

REFERENCE TABLE A-14

STACK HEAD CONTROL: MANIPULATION OF T-COUNTER AND N-STATS

OPF1 REF Action / Usage
source dest, ,IT SR(1) N; T:=(T+l) mod 4. Independently, dest:=source.
/ Establish dest (usually Y) as TOS when stack head is empty; incre-
menting of T is usually meaningless in this context.
source LM(U,IT) SR(1) N; T:=(T+1) mod 4; next CLM(T) :=source.
/ PUSH source (usually Y) into new LT; may be used to N-mark
establishment of TOS in Y (say) by prior statement.
LM (U) dest dest:=PLM(U).
/ Spill LU when it is bottom of a full stack head, in preparation for
storing it in memory part of stack.
LM(T,DT) dest dest:=PIM(T); next SL(0O) N; T:=(T-1) mod 4.
/ POP LT; may be used to mark POP of TOS from Y (say to empty the
stack head.
LM(T) dest dest :=PLM(T).
/ Read TOS1.
ILM(U,IT) dest SR(0) N; T:=(T+1l) mod 4; next dest:=PLM(T)
/ Unload step, or seek step, or marks unloading of TOS from Y
(say) in a subsequent step; in latter 2 uses, dest may be ".".
source dest, ,DT SL(1) N; T:=(T-1) mod 4. Independently, dest:=source.
/ Load dest (usually Y) as TOS when stack head is empty, as
first step of a complete load-stack-head process.
source LM(T,DT) CLM(T) :=source; next SL(1l) N; T:=T-1) mod 4.

/ Load step, the second thru fifth steps of the complete load-
stack-head process.

A-14

REFERENCE TABLE A-15

DEVICE REGISTER BLOCK STATUS WORD (DRB(0))

DRB(0) bits 15:0, from left. DRB(0) location at O mod 16 in range 3C000:3FFEF.

Bit Semantics

0] Controller Busy

1 Device Ready

2

3 ' Device Writeable

4 Data Service Interrupt Pending (Controller expects data transfer, and should be

serviced, then Acknowledged.)

5 Terminate Interrupt Pending (Bit O has just gone from 1 to 0.)
6 Ready Change Interrupt Pending (Bit 1 has just changed.)

7 Special Interrupt Pending

8 Error Bit(s) Set (Any one or more of bits 13:9 has gone to 1.)
9 Data Overrun Detected (Data arrived too fast to be handled; data lost.)
10 Device Parity Error Detected

11 Bus Parity Error Detected (Memory Bus)

12 Error 1 Detected (Varies with device.)

13 Error 2 Detected (Varies with device.)

14 Alarm (Exception condition such as "End of Tape")

15 Operation Aborted

NOTE: Additional Status information may be available in DRB(3), for complex devices.

In such cases, DRB(0).8 may be wired to reflect presence of error bits in DRB(4).

A-15

REFERENCE TABLE A-16

DEVICE REGISTER BLOCK ORDER BYTE (DRB(1).7:0)

“

Order Bits

6654|3210 Semantics

000(0O0O0O0 No Operation

xx 00010 Start Device in Programmed I/O Mode
xx1l|lo010 Start Device in Concurrent I/O (CIO) Mode
x0x|0010 Start Device in Read Mode

x1x/0010 Start Device in Write Mode

0xx|0010O0 Start Device in Run on Error Mode
lxx(0010 Start Device in Stop on Error Mode
Xxxx|0010 Start Device in Forward Mode

Xxxx|0010 Start Device in Reverse Mode

0000100 Stop Device

xxx|0110 Device Control

000j1000 Set Special Interrupt

xxx(1010 Acknowledge (and Clear) Special Interrupt
l1xx(lo1lo0 " " " Ready Change Interrupt
x1lx(lo1lo " " " Terminate Interrupt
xx 110110 " " " Data Service Interrupt
000|100 Start Device in Initial Program Load Mode
xxx|1110 Spare

indicates that this bit may be defined as shown on other lines of this table, to effect compound

device orders, e.g.,

10100010 is Start Device in Reverse, Run on Error, Write, Programmed I/0 Mode

A-lo6

REFERENCE TABLE A-17

DEVICE REGISTER BLOCK MODE BYTE (DRB(1).15:8)

Mode
Bits Value Semantics
9:8 00 Keep Interrupt Mode Unchanged
01 Enable Device Interrupts
10 Disable Device Interrupts
11 Undefined
11:10 00 Keep Parity Mode Unchanged
01 No Parity Check or Generation; Data at full width
10 Check for or Generate Even Parity; One Data-bus bit used for parity
11 Check for or Generate 0dd Parity; One Data-bus bit used for parity
13:12 00 Keep Mode Control #l1 Unchanged
01 Undefined
10 Clear Mode Control #1 to O
11 Set Mode Control #1 to 1
15:14 00 Keep Mode Control #2 Unchanged
01 Undefined
10 Clear Mode Control #2 to O
11 Set Mode Control #2 to 1

NOTE: Meaning of Mode Control #1 and #2 varies with device.

A-17

REFERENCE TABLE A-18

BASIC PANEL KEY-SWITCH FUNCTIONS

Label Function

OFF All power removed from the system, and battery option (if present) disabled.
In all other KEY SWITCH positions, the battery option preserves main
memory data in the event of power failure.

STOP All power on, but with a continuous STOP interrupt present at the processor
(position 8+ in the interrupt vector; see Table A-13).

LOCK Machine running, but with LOAD, INT, and HS1:HS4 disabled, and PSW.4 set.
(HS1:HS4 are SYST RESET, PCREG ENABL, CLOCK HALT, and INSTR STOP.)
With firmware properly responsive to PSW.4, the Firmware Selector
switches (FS1:FS12) will also be disabled.

RUN Machine running, with all controls operative.

STOP As in the other STOP position.

HOLD Main memory power on, to preserve main memory data, but all other power off.

A-18

REFERENCE TABLE A-19

MAINTENANCE PANEL STATUS INDICATORS

Label Indication

MEM Main memory power on, and memoxry contents preserved.

ON Processor power all on.

LOCK Panel locked, i.e., KEY SWITCH in LOCK position; see Table A-18.

CLOCK System clock running (with 135 ns period).

BUS Monobus access in progress.

INSTR User Level instruction fetches via the Monobus in progress.

BREAK Breakpoint condition true; see Table A-20, items HC5:HC7. The flash indicating a

momentary condition of the selected breakpoint condition true is electronically
brightened, so it is visible.

A-19

REFERENCE TABLE A-20

MAINTENANCE PANEL HARDWARE CONTROL SWITCHES (HC)

HC# Label Function

HC1l SYS If LOCK state not in effect, initialize processor and Monobus.
RESET

HC2 PCREG If LOCK state not in effect, inhibit all control memories; next CBUS := PCR
ENABL (Panel C-register to processor C-bus). Normally, actuation of HCI1

(STEP) will follow, to execute the panel microcommand. See also
HC8:HCY9, to establish microcommand.

HC3 CLOCK If LOCK state not in effect, halt processor clock; the currently
HALT executing microinstruction completes normally.

HC4 INSTR If LOCK state is not in effect, then cause STOP interrupt (position
STOP 8+ in the interrupt vector). Just like STOP position of the

KEY SWITCH; see Table A-18.

HCS5 CMA If HC7 = 0 (off) then BREAKPOINT := (ESR.11:0 = CMA.11:0)

BREAK else BREAKPOINT := (ESR.11.1 = CMA.11.1).
(Breakpoint condition occurs if the 12 lower switches of the
Enter Switch Register (except for the least significant switch,
if HC7 is set) are equal to the Control Memory Address.)

See entry HCll, this table, for BREAKPOINT condition effect.

HC6 MBA BREAKPOINT := (ESR = MBA) & (Not HC7 OR Monobus-Write) .

BREAK (BREAKPOINT condition occurs if the entire Enter Switch Register
(18 bits) is equal to the Monobus Address and either HC7 is off
or Monobus Write is in progress. 1In effect, if HC7 is on, only

a Write access to the ESR address will cause BREAKPOINT; if HC7 is
off, any access to the ESR address will cause BREAKPOINT.)

See entry HC1l, this table, for BREAKPOINT condition effect.

HC7 BREAK Flag that affects HC5 and HC6 BREAKPOINT tests. See HCS5:HC6.
-+/W

HC8 ADDR DAR.17:0 := ESR.17:0; PSW.2 := 1;
ENTER if HS3 = 1 (on) then PCR.31:16 := ESR.15:0

(Enter all Enter Switch settings into Digplay Address Register,
and sets Enter Address Bit in Panel Status Word; in a separate
action, if HS3 is on, the lower 16 bits of ESR are transferred to
the upper half of the Panel C-register, thus forming half of a
panel microcommand.) For HS3 detail, see Table A-21.

HC9 DATA DDR.15:0 := ESR.15:0; PSW.1 := 1;
ENTER if HS3 = 1 (on) then PCR.15:0 := ESR.15:0

(Enters lower 16 Enter Switch settings into Display Data Register,

and sets Enter Data Bit in Panel Status Word; in a separate action,

forms the lower half of a panel microcommand; see HC8, above.

HC10 ADV DAR := DAR + 1; PSW.0 := 1. (Advances Display Address Register by 1,
DAR and sets Advance Bit in Panel Status Word.) Note that any actual
incrementation of an address depends on the firmware.

HC11l STEP If HC3 & NOT HC5 & NOT HC6 then execute one microinstruction.
(CLOCK HALT on, with both BREAK controls off.)

If HC3 & (HC5 or HC6) then execute microinstructions until BREAKPOINT.
(CLOCK HALT on, one or both BREAK controls on; see HC5:HC7.)

IF NOT HC3 & HC4 & NOT HC5 & NOT HC6, execute one user-level instruction.
(CLOCK HALT off, INSTR HALT on, both BREAK controls off.)

If NOT HC3 & HC4 & (HC5 or HC6) then execute user-level instruction.
until end of instruction during which BREAKPOINT occurs.
(CLOCK HALT off, INSTR HALT on, one or both BREAK controls on.)

Else execute microcommands, i.e., RUN.

A-20

A-21

REFERENCE TABLE A-21

MAINTENANCE PANEL HARDWARE DISPLAY SELECTOR SWITCHES (HS)

HS# Label Display Pair in DAR/DDR, and Comments
HS1 DAR Display Address Register .
DDR Display Data Register (Static)
HS1 captures statically the dynamic values displayed in DAR and DDR at the
instant HS1 is actuated. DAR and DDR will have been displaying whatever
the most recently actuated HS2:HS6 or FS1:FS12 has prescribed.
HS2 MBA Monobus Address (Dynamic)
MBD Monobus Data Y
HS3 CMU Control Memory Upper Halfword .
CML Control Memory Lower Halfword (Dynamic)
HS3 also enables PCR loading from ESR, i.e., establishment of the panel
microcommand from two successive settings of the Enter Switch Register;
see Table A-20, items HCS8:HC9.
HS4 ‘NCMA Next Control Memory Address (Dynamic)
CML Control Memory Lower Halfword 4
Since CML contains all of the "next statement" bits, this is a natural pairing
that allows evaluation of test results, when stepping.
HSS5 CMA Control Memory Address (current) .
F F-bus Data (Dynamic)
HS6 CMA Control Memory Address (current) (Dynamic)
I I-bus Data
NOTE: Each HS, when actuated, turns on the lamp of the indicator right above it, and turns off the

effect of the previously actuated HS or FS (Firmware Selector switch).

REFERENCE TABLE A-22

MAINTENANCE PANEL ACCESS THROUGH THE MONOBUS

MBA REF Action
3FFFC MR Read PSW (Panel Status Word). For contents of PSW, see Table A-23.
3FFFD | MW Write DAR.17:16 (Upper two bits of Display Address Register)
from F.17:16.
3FFFE | MW Write DAR.15:0 (Lower 16 bits of Display Address Register).
3FFFF | MW Write DDR (Display Data Register).
3FFFF MR Read ESR.15:0 (Lower 16 bits of the Enter Switch Register); the
upper two bits of ESR are PSW.15:14; see Table A-21.
NOTE: These front panel MONOBUS addresses behave differently than normal Monobus addresses;

each of them causes access to a unique word, even though the odd ones, 3FFFD and 3FFFF,
would normally cause access to precisely the same word as the next lower even address,

3FFFC and 3FFFE, if the main memory were being accessed.

A-22

REFERENCE TABLE A-23

STRUCTURE OF THE PANEL STATUS WORD (PSW)

Bits Contents

PSW.15:14 ESR.17:16 (Highest order two bits of the Enter Switch Register)

PSW.13 1

PSW.12:8 0000

PSW.7:4 Identification of the FS (Firmware Selector switch) that has most recently
been actuated, range 1:12. If PSW.7:4 = 0000, then an HS (Hardware
Selector switch) has been actuated most recently.

PSW.3 IOCK Bit, equal to 1 if and only if the Panel KEY SWITCH is in the LOCK
position.

PSW.2 Address Enter Bit, set to 1 when HC8 (ADDR ENTER) is actuated, and restored
to 0 when PSW is read via the Monobus, or when HC8 is returned to off
position.

PSW.1 Data Enter Bit, set to 1 when HC9 (DATA ENTER) is actuated, and restored to
0 when PSW is read via the Monobus, or when HC8 is returned to off
position.

PSW.0 Advance Bit, set to 1 when HC1l0 (ADV DAR) is actuated, and restored to O

when PSW is read via the Monobus, or HC1l0 is returned to off position.

A-23

NOTE 1: The PSW may be Read via the Monobus through address MBA = 3FFFC.

NOTE 2:

PSW.3:0 are the flags that inform the processor how to respond to an Operator
Interrupt ("INT"); see Table A-20, HC8:HC1lO.

	0001
	0002
	001
	002
	003
	01-00
	01-01
	01-02
	01-03
	02-00
	02-01
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	10-01
	10-02
	10-03
	10-04
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25

