MPL COMPILER
REFERENCE MANUAL

Mﬂ Microdata m




MPL COMPILER
REFERENCE MANUAL

© 1976 Microdata Corporation

TM Trademark of Microdata Corporation
Printed in U.S A,

98800 76 1024A

August' 1, 1975

Microdata Corporation
17481 Red Hill Avenue, Irvine, California 92714
Post Oftice Box 19501, Irvine, California 92713
Telephone: 714/540-6730 - TWX: 910-595-1764



OUuUT! INE

Introduction

Compiler Operation

2.1 Control Toggles
2.2 Console Log
2.3 Memory Use

Compiler Formats

3.1 Source Format
3.2 Object Format
3.3 Listing Formats

3.3.1 Page Organ zation

3.3.2 Listing Ti-les
3.3.3 Program Li: ting
3.3.4 Flag lListirg
3.3.5 Object Lis ing
3.3.6 Code listirg
3.3.7 Symbol! Tab e
3.3.8 Program Sunmary
Diagnostics

4.1 Flags: Detected .. rrors
Undetected Errors

Fouls: Consisten:y Checks
Hardware Consider. tions

EEC =Y
B N

Translation Algorithms

5.1 Blocks
5.2 Declarations

5.2.1 Value Allocation
5.2.2 Preset Var ables
5.2.3 Initial St ings
5.2.4 1Initial Li: ts

5.3 Groups

5.4 Statements

5.5 Operators

5.6 Operands
5.6.1 Conditiona Expressions
5.6.2 Literals
5.6.3 Memory Ref¢rences

5.7 Procedure References

5.8 Instructions

5.9 Loader Directives



6.0

0 Expressions
1 Operands
2 Sample Modifications

Internal Translator Operation
6.1 System Interface
6.2 Input/Cutput

6.3 Utilities

6.4 Symbol Table

6.5 Scanner

6.6 Code Generation
6.7 Program Structure
6.8 Declarations

6.9 Statements

6.1

6.1

6.1



Figure

Figure

Figure

LIST OF

I/0 File s
Sample Con

FIGURES

~ructure
sole Log

Compiler Limits and Memory Costs

I/0 Reccord
Sample Sou
Sample Obj
Listing Pa
Sample Prc
Sample Pro

Sample Sym:

Sample Pro
Flag Class

Block Tran
Value Attr
Unary Oper
Binary Ope
Binary Ope

Structure

rce Program

*ct Program

je Layout

jram Listing -- Listing Options Off
jram Listing -- Listing Options On
>ol Table

Jjram Summary
]

s;lation Algorithms

:bute for Symbols

itor Translation

‘ator Result Size

‘ator Operand Preparation

Binary Ope -ator Code Generation

Memory Ref
Memory Ref
Memory Ref
Builtin Fu
Instructio
Instructio
Loader Dir

Memory Con
Symbol Tab
String For
Chain Form
Use of Cha
Token Code
Token Case

'rence Translation

>rence Translation for Automatic Variables
rence Mode Use

iction Translation

v S5et Classification

1 Translation

ctives

“iguration
e Entry
nat
it
ns



LIST

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

Appendix

OF APPENDTICTIES

Bibliography

Flags -- Ordered By Number
Flags -- Ordered By Severity
Flags -- Detailed Description
Toggles —-- Simple List

Toggles -- Detailed Description
List of Fouls

Flag References
Load Map
External Procedure References

External Variable References

Syntax



SPECIFICATTIONS

Language Implemented:
Implementation Language
Host (Compile-Time) Mac! ine:
Target (Run-Time) Machiire:
Compile-Time Support:
Run-Time Support:

Translation Strategy:

Memory:
Symbol Table (6 characte¢r names,
4 references per symbol, 8000
bytes total)
Hash Table Size:
Symbol Count, No References:
Symbol Count, With Ret!erences:

Speed:

I/0 Structure:

Translation Control:

Diagnostics:

MPL

MPL

Microdata 32/S

Microdata 32/S

Loader, I/O System
Loader, I/0 System

One pass, top-down parse,
in memory operation, hash

addressing of symbols

64K Bytes

401 Symbols
363 Symbols
210 Symbols

1200 Records per minute
(typical) when not I/0
bound

Source file, object file,
listing file, console

24 toggles including listing
selection, format control,
and error control

100 discursive diagnostics,
35 consistency checks, memory
checksums, stack overflow
protection



Sec 1.0 7

INTRODUCTION

The MPL 64K Self Compiler is a modern, high-performance,
user-oriented language translator. Emphasis is placed on
simplicity of operation ard complete diagnosis of error
conditions. This compiler is a self compiler in two senses:
it is written in the same language, MPL, it translates,

and it runs on the same machine, Microdata 32/S, for which
it generates code.

The present reference mancal describes a language translator
for MPL: Microdata Programming Language. The MPL language

is described in a companicn language reference manual. The
present MPL langquage is ar outgrowth of an earlier MPL that

is a subset of the current MPL. A cross compiler exists

that implements the earlier MPL; the cross compiler runs on any
machine that has an XPL implementation, in particular an IBM
System/370. A complete bibliography of documents related

to the MPL language and translators is shown in Appendix A.

This compiler reference menual is organized in 6 chapters

and several appendicies. Chapter 1 is an introduction to the
compiler and compiler reference manual. Chapter 2 discusses
compiler operation. Chapter 3 describes compiler formats

and is mainly useful for interpreting the listings. Chapter
4 discusses diagnostics ard is useful when the on-line
messages do not suffice. Chapter 5 specifies the translation
algorithms used to convert source to object. Chapter 6
describes internal compiler operation and organization and

is useful for compiler maintenance or enhancement. The
appendicies provide a quick reference guide to the flags

and toggles.

The term compiler is used to refer specifically to the
subject of this present dccument: the MPL 64K Byte Self
Compiler; the term translator is used generically as
appropriate. The term prcgram is used colloguially for an
external procedure. Likewise, a card is a colloquialism
for a source record. A program as input to the compiler is
a source program, as output from the compiler (and used

as input to the loader) ar object program. A routine name
of the compiler is writter in capital italics (ROUTINE),

a variable of the compiler in small italics (variable).

In programming examples, keywords are written in upper case
(KEYWORD) and variables ir lower case (variable). The
graphic 'B' is used to rerresent a blank.




COMPILER OPERATION

This chapter discusses the various aspects of compiler
operation. The compiler is controlled by means of toggles.
A console log is maintainel of compiler activity. Large
Oor unusual programs may re juire attention to compiler
memory use.

Operation of the MPL compi.er is designed for convenience

and simplicity. The compiier requires only one pass and
operates in memory. No scratch peripherals are required,

nor program overlays. In iddition to a console device, up

to 3 peripherals are required for source, object, and listing
as shown in Figure 2.0a; tie object and listing devices

are necessary only if used

The compiler is invoked as appropriate to the operating
system at hand. It may be loaded as any other program or
invoked directly as a memo-y image.

Compilation speed is typicilly 1200 records per minute when
not limited by I/0. Compi ation rythmn is steady except
for brief pauses to comput:: checksums at compiler start

and program end, to assign addresses after a declaration
set, and to sort the symbo table before it is listed.

Sec 2.0



Fig 2.0a 9

Unit 1*

MPI, Compiler

Console

Unit 2
\ 4
Program Symbol Program \\
Listing -- Table (A) Summary (Y)
Source (L) **
Flags (F)
Code (C)

Object (H) j//

I/0 system logical unit number
**  Controlling toggle

Figure 2.0a: I/0 File Structure




10 Sec 2.1

CONTROL TOGGLES

Control over compiler ope:ration is through the mechanism
of toggles. Toggles are :nternal to the source program;
there is no external operating system mechanism for
controlling compiler oper«tion. Each toggle controls a
single aspect of compiler operation and has a binary value:
on or off.

The complete set of 24 tocgles is listed in Appendix E.
with their default values. A detailed explanation of the
operation of each toggle :s given in Appendix F.

All toggles assume a defailt value when the compiler is
invoked. Toggles change curing program compilation as
specified by the user, or occasionally are altered by the
compiler. At the start o! subsequent programs toggles
reassume their default va ues unless frozen by the P-toggle.
The state of all toggles &t the end of a program is displayed
in the program summary (sc¢e Section 3.3.8).

Toggles may be altered by the user in any comment. Three
characters are used as tocgle control operators:

$ (dollar sign) - If on set off, if off set on
& (ampersand) - S5et on
% (percent sign) - Set off

The character that immedi:tely follows the toggle operator
is interpreted as the togcle to be altered. Should this
character not be an implerented toggle, compiler operation
is not affected. Toggles that are sometimes altered by
the compiler are the H-tocgle, O-toggle, U-toggle, and
X-toggle as described in 7 ppendix F.

Toggle changes are honorec by the compiler as soon as they
occur. Since a listing line is buffered, toggles that
affect the listing format become effective before the line
in which they appear is listed. Since the compiler parse
is top-down, toggles that affect object generation should
appear before the external procedure entry. It is common
practice to collect all tcggles together as a preamble to
the program proper.



Sec 2.2 11

CONSOLE LOG

During the operation of the compiler a console log

is maintained on the conscle device to track compiler
progress and report major errors. Figure 2.2a shows
a typical console log.

The content and format of the console log are fixed

and may not be suppressed or altered. The first entry

on the log is a preamble that contains the version
identification; the appearance of the preamble assures
that the compiler has been invoked successfully. The
last entry on the log is a postamble that is issued

just before exit to the operating system; the appearance
of the postamble assures that the compiler has terminated
successfully.

The body of the console log consists of program entries,
compiler aborts, and operating system messages.

For each program the program name and flag count is
shown; the name is listed as soon as encountered, the
flag count is appended when the program ends. A
compiler abort is listed on the log; all other flags

are not. If the abort is suppressed, this is noted

and compilation continues, otherwise end-of-job

activity occurs. Operating system messages are also
included in the console log as they occur.



12

GENASYS /D

ENTER DATH

» DBG 1

?2rn mpl.mrl

MPL COM

COMPILIMG
COMPILING
COMPILING
COMPILING
COMPILING
COMPILING
COMPILING
COMPILING
COMPILING
COMPILING

END OF

Figure 2.2a:

26jun75

FILER: VERSION

LIST8080:
IF_CLAUS:
IF _STMT
IF _THEN
TN _SYM
NG PC
e _SC
[NC_XC e
TN DEX
,IGTB080 :

JOR

DO DO OOOOoOoOoN

0.93

FLAGS
FLAGS
FLAGS
FLAGS
FLAGS
FLAGS
FLAGS
FLAGS
FLAGS
FLAGS

Sample Console Log

Fig 2.2a



o
.

Sec 2.3 13

MEMORY USE

Compiler memory use is of concern only with very large or
unusual programs. The compiler is designed to handle
ordinary programs of modest size without strain. A large
program may exceed the available symbol table space, a
pathological program the available stack space. Stack and
symbol table use is monitored and overflow causes a compiler
abort.

A fixed portion of memory is devoted to the operating system,
the program space of the compiler, and the compiler's stack.
The remainder of memory is used for the symbol table. The
use of memory and the memory cost of various compiler
features i1s shown in Figure 2.3a. Where feasible, memory

is shared and reclaimed so that, in ordinary programs,

memory is exhausted only by symbol table overflow.

Should the stack overflow, Figure 2.3a can be used to judge
how to reorganize the program to fit. Usually the overflow
is precipated by an excessively complicated expression

and can be corrected by breaking the offending expression
into simpler components.

Should the symbol table overflow, references may be suppressed
with the R-toggle. This usually doubles the effective

symbol table size. Ultimately, the symbol table is completely
full and the only remedy possible i1s to break the offending
program into smaller segments. It is considered good
programming practice to separate a large program into several
smaller functional modules.

The compiler and operating system require 64K bytes.



14 Fig 2.3a
Type Item Controlling Limit Unit Cost
Variable
Stack Pool #stacksize 6000 bytes
Procedure block
nesting (about 5000 48 bytes
is overhead) |
Begin block g 72
nesting i
Do nesting . 58
i
Expression nesting 106
If statement 20
nesting !
If expression .30
nesting
Symbol Table None: Uses |8000 bytes
Pool remainder . (typical)
Attributes of available| 16 bytes
memory |
Name text 1l per
character
Symbol referer ce b4
Forward Pool #fwdmax 160 items
Label 5 bytes
Entry 5
Initialized 5
variable |
S S - — U S * —
Individual i
Literally #maxlit 10 items 8 bytes
nesting ‘
Block nesting #fmaxlex 15 6
Do nesting #domax 20 { 2
Do cases #casemax 300 i 2
Hash table #hashsize 401 )

Figure 2. 3a:

Compiler Limits and Memory Costs




Sec 3.0

COMPILER FORMATS

The source, object,

15

and listing formats are described in

this chapter. Figure 3.02 shows the I/0O record structure.



16 Fig 3.0a

i Maximum Record }

Function Logical Unit | Record Format Length | Block Size
Source 1 : Variable 80 i SYSIN
Listing 2 Variable 120 SYSOUT
Obiject 4 ; Fixed 4 80 80

Figure 3.0a: I/0 Record Structure




Sec 3.1 17

SOURCE FORMAT

The source program compiled is read from logical unit 1.
This logical unit is used by the operating system as
SYSIN and is typically blccked, double buffered, and open.
Figure 3.1la shows a sample source program.

Input is streamed: that is record boundaries have no
syntactic significance. FHowever, each record is listed

on a separate line in the program listing. Input records
may be up to 80 bytes in length and may be of variable or
fixed length. If variable length records are used, trailing
blanks are appended by the compiler to produce an 80 byte
record.

Source may also come from the symbol table via literallys.
Literallys may contain arlitrary text, may be nested, and
follow the same scoping rules as other symbols.

When a program ends any text remaining in a active literally
or a partially used source record is discarded. The next
program begins with the ne xt source record.

An end-of-file in the source stream terminates compilation.
All output buffers are flushed and exit is made to the
operating system.



LISYBOROY MAIN PRNC)H

neL /hkw SYSIN TO SYSNAUY RO/RAH L1ISY teh/

EXT PROC wORD,

EXT PROC,

WORD,

BYTE,

WORD INITIAL ("0D0A")3

D0 WHILE SYSGET(@BUF (1), &0) > 03

SYSGEY
SYSPUT
K
BUF(80)
CRLF
DO k=zAD
IF
END
WRITE 3
CaL{ Sy
rapy Sv:

ENDJ
END LISTRQ803

TO Y RY =13

BUF (k) t= 1 ¢

THEN GO TO WRI1TE}

1), K3
11

o}
-
-
(VIR ]

Figure 3.la:

/% READ SYSIN UNTIL EOF */

/% TRIM TRATLING RLANKS */

/% WRITE SYSQUT, APPEND CRLF %/

Sample Source Program

BT

el ¢ brg



Sec 3.2 19

OBJECT FORMAT

The object program is written on logical unit 4. This
logical unit has no special significance to the operating
system. It is double buffered by the compiler and is
unblocked. Object is written in response to the O-toggle.

The object record format uvses the hexadecimal format defined
in Section 5.9. A sample object program is shown in Figure 3.2a.

The first object record is used as a title card. Reading
from left to right the title card contains:

e Object Record Header: This will always be '#B010100°'.

@ Program Name: The first 25 characters of the program
name. Only the first ¢ are passed in the body of the
object program.

® Date/Time: The date ard time at the start of the
compilation of the current program.

e Version: The version identification of the compiler.



N R & e

0¢

010100 LI3T8086 20 JUNTS 00300500 MPL 0,93

DB032306000059010004R3000102002DB30007055A002E50158900010971060C000441S5052058
6804230370201386000004A415071711000090008488B000008F204F3044]1202B138800000157
4005240100880000830030880036830036024A0FB300268B003883003301008B00388300380154
BFO62UNU00PESOIURGN0N2NBTINEOCOONAF2045205501489000209060900SCT72%5205U6UAR3001A
BUNTNCARRNONSSRIANSSNISUB20000N0

Figure 3.2a: Sanple Object Program

bta

C
<

[N



Sec 3.3 21

LISTING FORMATS

All listings are written »>n logical unit 2. This logical
unit is used by the opera:ing system as SYSOUT and is
typically blocked, double buffered, and open.

Listing output is streamei: that is line boundaries have
no relationship to record boundaries. Line boundaries are
specified by explicit car-iage return/line feed sequences;
page boundaries are specified by explicit form feeds or
carriage return/line feeds, as selected by the E-toggle.
Listing output may be spo>sled to a secondary storage device
for later printing.

The listings consist of 3 major components: program,
symbol table, and summary. The program listing consists
of 4 subcomponents: sour e, flags, object, and code.
All listings share a comm n page organization and title
structure.



. 3.

Sec

Page Organization

I listing page may be formatted for 11x12" sheets,

8Lx12" sheets or 7" rolls. Figure 3.3.la shows the listing
page layout and the controlling toggles. Note that in

the short page, full width format the listing may be copied
directly to 8%x1l" paper losing only the block name.

3.3.1



23

Figure 3.3.la:

Fig 3.3.1la
1 1 107 12 t 20 = 140 characters
T r I
|
header { * 4
' -
title t 5
17 80_| 10 12 |
] 1
left | ' } right locK
hand | { jhand [name
anno- body | anno- o
¢ ltation ' tation o | 40 (55)
ya I | | g
o d
g | i , &
£ | | o
H | £
p | | | 2
— { M
i ] |
. N 2
trailer i
L o
70 narrow page 70 =51 (66) lines
fold point
Toggle Description State Function
N Format for of £ Width = 120 characters (12" @10 per inch
narrow page Or Width = 70 characters (7" @10 per inch)
Q Chop Of £ List full line
program listing (0)¢ Suppress right hand annotation and blockname
S Format for of ¢ Length = 66 lines (11" @6 per inch)
short page Or Length = 51 lines (8%" @6 per inch)
*Area shown inside heavy lines is 8% x 11"

sisting Page Layout




. 3.

24 Sec 3.3.2

IListing Titles

Each listing page contains a title. This title is common
to all listing components. Each page also contains a
subtitle peculiar to the listing components.

Eeading from left to right the listing title consists of:

® Program Name: The first 8 characters of the program
name. Until the program name is encountered, this field
is blank. To ensure that the program name appears on the
first title, the program name must appear on the first
line.

® Data/Time: The date and time at the start of the
compilation of the current program.

e Version: The version identification of the compiler.

e Listing Component: The componrent to which the page
belongs: Program Listing, Symbol Table, or Program
Summary.

e Page: The page number. The page number starts at 1
at the start of the current program and is common to
all listing components.



.3.3

Sec 3.3.3 25

Program Listing

The program listing consists primarily of an annotated source
listing. Program listing is enabled by the L-toggle. 1If
desired, flags, object, and code are interspersed as they

are generated. Figure 3.3.3a shows a sample program listing
with object and code suppressed, Figure 3.3.3b a sample
program listing with flag:, object, and code in evidence.

Where feasible, the annotition to the left of a source
line reflects the state of the translation before the

line is translated, the aanotation to the right, the state
afterwards. Exceptions t» this rule are noted below.

Actual listing of a line :.s buffered one line. This buffering
permits toggles to be pro-essed before a line is listed.
However, if a flag is gen‘:rated, or code or object listed,

the buffer is first flush:d so that the source line always
preceeds any derived list:ng; in such a case the righthand
annotation reflects the translation state before line trans-
lation.

Reading from left to righ- the fields of the annotated
source listing are:

e DEC: Program counter .n decimal. In some cases the
location listed points to an SSP instruction that
precedes the statement proper.

e HEX: Program counter :n hexidecimal.

e LINE: Source record n mber from start of current program.

e SOURCE: The source liie padded on the right with blanks
to 80 characters. Nonrinting characters (a
character whose cnde i35 not in the range 32 to 126
inclusive) are listed s a period ('.').

e DL: Do level. The do level is defined as the nesting
depth of all active bl cks and groups. A block is a
procedure block or beg.n block. A group is a repeat
or any type of do.) Tn1e external procedure name is
level 0. The do level is useful in reconciling mismatched
ends, and in clarifyinj block and group structure.

If a do case is active the do level field is used to

specify the do case it:m and do case nest level. Item and level
are given for the translation state before line translation

and are separated by a hyphen ('-').



Sec 3.3.3

BN, Block Number: The block number is defined as the
ordinal count of the most recent block entry. The
external procedure name is block 0. The block number
is useful in identifying block boundaries.

LL, Lex Level: The lex level is defined as the nesting
depth of all active blocks. The external procedure name
is lex level 0. The lex level is useful in analyzing
scoping restrictions.

BLOCK: The block field gives the first 10 characters
of the innermost active procedure block. A begin block
or group does not alter the block field.



LISTBNBO

DFC

~NNO 2SO DOO

HE X

0000
0000
0000
0000
0000
nann
0000
0007
0007
001C
0028
002€E
0036
0038
0038
0048
0053
0055

26JUNTS

LINE

O ®~N T U E Ve

00200800 MPL 0,93 e P ROGR AWM LI STING Y
.---..-.-SOUQCE-----------.--...-.-.--.-.—.ooo-.----.--.----'--—--------.---....
LISTROBOY MAIN PROCH DCL / Rk SYSIN TO SYSQOUT BO/80 LISY *hk/

SYSGE?Y £xT PROC «(QORD,
SYSPUT EXYT PROC,
K “0RD,
QdiiErany nvfc?
CRLF NORD INITIAL ("CDOA"))
/* READ SYSIN UNTIL EOF w/
DO wHILE SYSGET(®BUF(i1), B80) > 03
DO K=80 TO | PRY =13 /* TRIM TRAILING BLANKS */
IF  RUF(K) t= ' !
THEN GO TO wWRITE?}
ENDJ
WRITE g3 /* WRITE SYSOQOUT, APPEND CRLF %/
CALL SYSPUT(GRUF(L), K)J
CALL SYSPUT(OCRLF, 2))
ENDI
END LISTRO080}
Figure 3.3.3a: Sample Program Listing -- Listing Options Off

PAGE

b1a

L

&3

DL BN

O NPTV Wd e il Y = s s s s 58 s s

CD o SB i s D Pt G i G Gl e D e et B B P

LZ

—
— e

Dt =t s 4l b P D Pulh G o o (M P Pt P P P



LISTHOB0 26JUNTS GO:00100 MPL 0,93 *h*k PR OGRAM LI STING LR
CEC SEX LINE wvwemecewmaSR(feancccccnncncenntornarrecnnnstsvararsssnsrocacsetonannnvesossscan®?
0 0000 {1 LIST=aRQ:r MAIN PROCH DCL AR SYSIN YO SYSOUT B8(Q/80 LIJIST ‘x/
# 051010¢C LISTRQ80 26JUNTS 00:00300 MPL 0,93
0 0000 2
0 0000 3 SYSGET FXT PROC wORD,
g 0000 4 SYSPUT EXxT PROC,
0 0000 S JUNK JUNK,
$
Axxxx (0) ERRQOR &7 BAD SIZE, wORD USED
$
sxkwek (S5) ERROR 89 JUNK IN DCL STHMT, TEXT SKIPPED TOQ NEXT #,i QOW
0 0000 6 K wWORD,
0 0000 7 BUF (80) BYTE,
0 0000 8 CRLF WORD INITIAL ("0DO0OAY)
B 110224B1904CU9S3543R303A3INQ0008RSISISIATUSSU2020000188535953505554202000020154A
0 0000 « SA 0000 SSP ¢
3 0003 = 59 01 FILL
S 00085 = 0poa WORD 3338
7 0007 9 /* READ SYSIN UNTIL ECF */
7 0007 10 DO wHILE SYSGET(®BUF(i), 80) > 01
0 G000 %= 54 002t SsP dé
7 0007 = SA Q02F SsP 47
10 0004 * S0 150001 MARK 21,85YSGET
14 000E » 71 Li
15 000F = 06 0C000C LADR {2,RUF
19 0013 = 41 S0 LBL 80
21 0045 = 5¢ 05 CaLL S
8 DCO32306000059010D0AB30G00102002ER30NNT70554002F501589000109710A0C000C41505208
23 0017 = 70 L0
24 (0N18 «+ 20 67
25 0019 =« 13 0000 BRF 0
#8 001C 11 DO K=BQ TO { BY =13} /* TRIM TRAILING BLANKS */
28 004{C = 41 S0 LeL 8¢
30 001E = T Ly
31 ONLF = T L
12 0020 + 10 NES
33 002% + 06 090004 LADR 9,k

PAGE }
DL BN L
0o 0 0
{ 1 i
i1 11
O S |
S S|
i 1 }
f 1t
1 1 i
1 1
1 1 1
3 0t i
5]

',..4.

[te]

(U9}

"€



ISTRORN  2rJUNTS nKeL00IO0  MPL 0,93 Ak PR DGR &M L 1 8T 1 NG * &k

OFC HE‘ LINE ’.-'-.-'-SOUQCE-..'.-.----.-.-O-..----------’-..--'-'-'-..--..--....----------‘-

37 0025 = 48 0000 oIB 0
4o 0028 12 IF  HUF(K) *= ' !
40 0028 F2 05 LW 2K
42 002A * Fs oC LB 3,BUF
4d 002C 4y 20 LeL 32
e 002E 13 THEN GO TO wWRITES
U 002E = 2B NE
47 Q02F » 13 0000 BRF 0

g 6D0U2303702D13RRO0ON0AULISOTITILI0009000448BRONONORF205FROCE1202R138R00000L5T
S0 0032 + S7T 000000 GOTO 0,wRITE

Sd 0036 14 END S
UY 0N2F =+ {3 0036 ARF S4
S4 0036 48 OF DSRB 15
37 0025 =+ 48 0038 DiIB N6

Se 0N3A {5 wikITE:: /* wRITF SYSQUT, APPEND CRLF =/
S (032 sx 5T 2on21R GATD 2 ,wWRITE

8 un052001008RONONBINNIOBROO3ILATINOIS02UA0FRIN026BRN0IARRI003301008B003AR3003R0154

56 00318 » SA 002F SsP 47

59 0038 16 CALL SYSPUT(®BUF(1), K}
SQ Q03B » S0 140002 MARK 20,SYSPUT
6% 003F «* 71 Ly
bU 0QUN * 06 0C000C LADR {2,BUF
68 00UU « Fe 08 LW 2sK
70 00uUe » S2 0S8 CaLlL S

7é 0048 17 CALL SYSPUT(OCRLF, 21}
72 0048 = S0 t40002 MARK 20,SYSPUT
76 004C » 06 09005E LADR 9,CRLF
RO 0050 = 72 L2
8 0051 « 52 05 CalL S

83 0053 18 ENDY
B3 0053 « 46 4A BRR 74

8 95062404002F5n14B90NN20KRT1060C000CF20552055014890002090609005E7252054644830014

25 0019 *» 13 0055 BRF 8%

RS nNSS 19 END L ISTROROI
85 0055 = 5S4 ExIY

# ACOTOCRRNNSSHINNS55015482000008

Figure 3.3.3b: Sample Program Listing -- Listing Options On

PAGE 2
DL BN LL
KT DR |
I3 1 1
L S
2 1 1
e 1t 1
e 1 1
| S S |
6 0 0
[\]

O



. 3.

39 Sec

Flag Listing

Flags are interspersed in the program listing as they are
detected. Flag listing is enabled by the F-toggle. 1If
the F-toggle is on and the L-toggle (list source program)
off the current source line is also listed. This feature
is useful in scanning for errors. Figure 3.3.3b includes
some flags.

Zach flag generates 4 lines of listing: a cursor line, a
description line, and 2 blank lines. The cursor indicates

the point in the source line at which the flag was generated.

Reading from left to right the description line consists
of:

e Last Line: The last flagged line. If the current flag
1s the first flag this field :s 0. The last line field
simplifies flag location in a large listing.

® Severity: The severity of the flag: warning, error,
blunder, or abort.

® Number: The code number of the flag. This code is an
index to the flag descriptions in Appendix D.

e Description: A brief description of the cause for the
flag and the compiler response. Cause and response are
separated by a comma (',').

3.

3.



.3.5

Sec 3.3.5

Object Listing

31

The object program is interspersed in the program listing
as it is generated. Object listing is enabled by the
H-toggle and is exactly the same as the object program
written on logical unit 4 (see Section 3.2 Object Format).

This listing is rarely activated.
object listing.

Figure 3.3.3b includes an



. 3.

32 Sec 3.3.6

Code Listing

The translated 32/$ instructions are interspersed in the
program listing as they are generated. Code listing is
enabled by the C-toggle. This listing is useful in low
level debugging and for clarifying translation algorithms.
For better readability, the code listing is indented

50 spaces in response to the I-toggle. Figure 3.3.3b
includes a code listing.

Reading form left to right the code listing consists of:
e DEC: Program counter in decimal.
e HEX: Program counter in hexadecimal.

® Frogram Counter Type: This field distinguishes the
3 uses of the DEC/HEX program counter fields:

blank - source
* - generated in-line instruction
* % - generated fixup instruction
e Numeric Operation Code: The 32,5 instruction operation
code in hexidecimal. 1In the case of data this field
is blank.
e Numeric Operand: Up to 4 bytes of operand or data in

hexidecimal.

e <Symbolic Operation Code: The 32/S instruction operation
mnemonic or pseudo-operation. The instruction mnemonics
used are defined in Reference 6.

e Numeric Operand: The operation code dependent operand
in decimal. This field is not always present.

e Symbolic Operand: The operation code dependent operand
as a symbol. This field is not always present; if
present it is separated from the numeric operand by
a comma (',').




. 3.

Sec 3.3.7 33

Symbol Table

A symbol table listing follcws the program listing and is
enabled by the A-toggle. F.gure 3.3.7a shows a sample
symbol table.

The symbol table has many ures. For new programs it is
an aid to finding and elimirating flags. For old programs
it aids in maintenance and cocumentation. In addition,

the symbol table clarifies . ttribution and scoping.

Each symbol defined or refe:enced in the program is listed
in the symbol table in alph.betical order. Literallys
and builtins qualify as symi ols, but keywords do not.

Each symbol is represented Iy a single symbol table entry
with the occasional exceptiin of forward labels. TIf a
label is first encountered n a goto statement and 1is
potentially satisfied ‘n mo e than one block, then a
separate entry is made for - ach block in which the label
is potentially defined. Th entry at the lowest lex level
is the ultimate defini-ion - £ the label and the references
are scattered among the miul iple entries. The generated
code is always correct. ro example, the following program
results in two entries in ti.e symbol table for the label

x of which cne will renain :ndefined:

p: PROC;
GO x;
q: PROC;
GO x;
END qg:;
X:
END p;

Reading from left to right -"he symbol table listing consists
of:

e NAME: The first 12 char icters of the symbol name. If
the name has more than 1’ characters, a plus sign ('+'")
is appended to the name.

e DEF: The source program record number on which the symbol
is defined. If the symb>l is never defined, 4 stars ('****')
are displayed; except fo  built-ins this is an error. For
procedures that acquire some of their attributes from a declare
statement and some from : procedure statement, the declare
statement 1s used to der.ve the definition line. This
field may be viewed as t:e first element on the list of
references.



15 defined.

34

® BN:
® L_.IJ.:
e 5T:

The definition state of the symbol.

Sec 3. 3.

The block number of the block in which the symbol

The lex level at which the symbol is defined.

If a symbol

1s completely defined this field is blank, otherwise

)

('**') are inserted,

except for forward labels

that are potentially defined in more than one block, this

o

ey}

an error.

this field for non-blank entries.

e DEC/HEX:

Undefined symbols may be spotted by scanning

The decimal and hexadecimal values of the symbol.

The meaning of the value is conditioned by symbol class

as

® CLASS:

described below.

C The compiler division of symbol types. The
possible classes are:

Class Description Use of Value Field
AUTO Automatic variable Stack location, EP relative
STATIC Static variable Internal: Static location
External: External data sequence

number

PARAMETHR Parameter Stack location, EP relative

CONSTANT Constant Program location, PB relative

CBASE Constant basec variable Base value, absolute

VBASE Variable based variable Symbol table address of base

PRCCEDURE Ordinary procedure Isternal: Program location, PB relative

MAIN Main procedure External: External procedure sequence
number or program location

INTERRUP'T Interrupt procedure of 0 if external procedure
head

MICRO Micro coded procedure Microstore entry location

BUILTIN Builtin procedure Builtin code

LABEL Ordinary label Frogram location, PB relative

DOLABEL Label on a group head Program location, PB relative

BEGIN Label on a begin block Program location, PB relative

head
LITERALLY Literally Length of text

2?2

Unclassified symbol
(Appears only if job is
aborted)




Sec 3.3.7 35

e SCOPE: The scope of a symbol:

Scope Description
I Internal
EXT Exteraal

When not explicitly su»nplied, this attribute is always
defined by the compiler according to the rules of the
language.

e ©SIZE: The size of a s/mbol (specified only where

meaningful) :

Size Description
BYTE Byt
WORD Word

DOUBLE Double

PTR B Pointer .o byte
PTR W Pointer o word
PTR D Pointer o double
BIT 1 Bit (1)

BIT 2 Bit (2)

BIT 4 Bit (4)

® OSET: 1Indicates i1if the symbol is preset before the
procedure 1is executed:

Set Descr ption
YES Symbo. pre et
Blark | Not preset or not meaningful

e DIM: The dimension of a symbol:

Dimension Descr .ption

SCALR Scalar var. able

ARRAY Array vari.ble whose dimension was not retained
number Array vari«ble of specified dimension

blank Not meanin«tul




36 Sec 3.2.7

REFERENCES: The source program record numbers on which the
symbol is referenced. The definition field may be viewed

ac the first item on this list. Possible entries are:

Reference Description

nunber Source program record number of reference

- NONE - No references

SUPPRESSED Some references may have been suppressed by
the R-toggle




LISTROBO0

NAME

BUF

CRLF
LISTENGD
SYSGET
SYSPUT

wWRITE

26JUNTS

DEF

14

00300200

BN LL 8T OEC

! 1 10
| 1 92
0 0 0
1 0 t
| 0 2
{ 1 Se

Figure 3.3.7a:

MPL 0,93

HE X

0004

n00SC

PP
2
- o

0000
0001
6002

0038

* ko

MAIN
PROCEDURE
PROCEDUNE

LAREL

SyMmMBo0QL

SCOPE

ExY
Ex?

EXY

SIZE

RYTE
wWORD

~ADmM
[

WORD

Sample Symbol Table

T 4B L E

SET

YES

DIM

80

SCaLR

er Al D

¥ -

16

10

18

1s

12

‘XX PAGE
REFERENCES

i 1S

! s

16

btg

S A S

LE



.3.8

33 Sec 3.

Program Summary

A program summary follows the symbol table listing and is
enabled by the Y-toggle. Figure 3.3.8a shows a sample
program summary.

The summary is useful in checking for program flags,
summarizing the source and object programs, and optimizing
compiler memory use.

The program summary consists of 7 parts: flags, source
program, object program, symbol table, compiler stack,
toggles, and flag link.

Flags --

® ABORTS: The number of compiler aborts. This number

includes any aborts suppressed by the X-toggle and, hence,
may be more than 1.

® BLUNDERS: The numker of program blunders. If there are
any blunders the object program (0O-toggle) and object listing
(H-toggle) will be turned off, urless suppressed by the
D-toggle. There is no way to suppress blunders.

® ERRORS: The number of program errors. There is no way to
SUPPress errors.

e WARNINGS: The number of program warnings. This number
includes any warnings suppressed with the W-toggle.

Source Program --
e LINES: The number of lines (records) in the source program.

e STATEMENTS: The number of statements (delimiting semicolons
(";')) 1in the source program.

® BLOCKS: The number of blocks in the source program.
e LEXDEPTH: The maximum lex depth acheived.
Object Program —-

® BYTES PROGRAM: The number of bytes in the object program
exclusive of stack requirements.

® BYTES STATIC: The number of static bytes required by the
object program. This value is always rounded up to a word
boundary and is the value passed to the loader.

3.



Sec 3.3.8 39

BYTES STACK(l): The maximum stack depth achieved by

the outer procedure blcck. It is the sum of the automatic
data allocation and the scratch required for instruction
execution.

OBJECT RECORDS: The numnber of object records even if
object 1s suppressed by the O-toggle.

Symbol Table --

BYTES USED: The number of bytes in the symbol table used.

BYTES SPARE: The number of bytes in the symbol table
unused.

SYMBOLS: The number of symbols of all types.

REFERENCES: The number of references to all symbols
even if references are suppressed with the R-toggle.

The sum of the BYTES USD and the BYTES SPARE is a
constant. If symbol table space is a problem the

symbol table summary can be used to determine corrective
action. See Figure 2.3 for symbol table costs.

Compiler Stack =--

BYTES USED: The number of bytes in the compiler stack
used.

BYTES SPARE: The numbe:r of bytes in the compiler stack
unused.

ACCESSES: The number ¢t primary accesses to the hash
table (used to address the symbol table).

COLLISIONS: The number of secondary accesses to the
hash table due to hashing collisions.

The sum of BYTES USED and BYTES SPARE is a constant.
If stack space is a pronlem the compiler stack summary

can be used to monitor stack use. See Figure 2.3a
for stack costs. Hash table use can be monitored with
the hash table summary. So long as symbol names are

not highly pathological and the hash table is less than
90% full (Warning 39 has not been generated) the number
of collisions should remain, at worst, a few times the
number of accesses. If the number of collisions exceeds
10 times the number of iccesses and there are no
extenuating circumstanc:s, compiler performance will
start to degrade and th: situation should be brought to
the attention of Microdita.



49 Sec

Toggle Summary --

e TOGGLES OFF: All toggles that are off when the program
ends, listed in alphabetical order.

e TOGGLES ON: All toggles that are on when the program
ends, listed in alphabetical order.

Flag Link --

The final item in the program summary is a link to the

line number of the last flag, excluding suppressed warnings.

IZ there are no such flags the message given is:

N O FLAGS

3.3,

8



LISTRO8N

4

26JUNTS

L & G S

[}

0
0

0

TOGGLES

TOGGLES

ARNRTS
BLUNDERS
ERRORS

NARNINGS

OFF ¢

ONtg

00100200 MPL 0,99 kR PRODGRAM S UMMARY
SOURCE PROGRAM DRJIELT PROGRAM SYM30_ TABLE
18 1 INES RA RYTES DONMQAM 194 RKVYIER OSEN
t1 STATEMENTS 0 BYTES STATIC Bdb BYTES SPARE
i BLOCKS 106 BYTES STACK(1) 7 SYMBOLS
1 LEXDEPTH 7 OBJECT KECORDS 12 REFERENCES
cC 0O F W N 0 Q@ U V 4 X
F ! 1. M P R § Y 7?2
G S

Figure 3.3.8a: Sample Program Summary

kR PAGE

COMPILER STACK

C4Lg avYTEe 11gEN

S

835 RYTES SPARE

53 ACCESSES
0 COLLISIONS

187



Sec 4.0

42

DIAGNOSTICS

Error conditions that occur while the compiler is running
fall in three areas: operating system errors, compiler
errors, and hardware errors.

Operating system errors depend on the operating system in
use and are discussed in detail in the appropriate operating
system reference manual.

Compiler errors are either detected or undetected; detected
errors are called flags which are in turn classified as
warnings, errors, blunders, and aborts. Internal compiler
operation is monitored for consistency and any fault
reported as a foul. On o:casion, some hardware problems
may not be completely dia jnosed.



Sec 4.1 ' 43

FLAGS: DETECTED ERRORS

Whenever feasible, compilation errors are detected and an
explicit diagnostic is issued in discursive form. The
generic term flag is used to refer to detected errors which
are classified in four levels according to thelr severity.
The four flag classes, in order of increasing severity

are: warnings, errors, blunders, and aborts. The attributes
of the flag classes are shown in Figure 4.1la. The highest
severity flag that occurs is noted in the object program

for later job control by the operating system.

Warnings may be suppressed by means of the W-toggle to
improve listing appearance in cases where the warnings are
anticipated. The routine suppression of warnings is a
dangerous practice.

An error results in a suspect object program, a blunder in

a faulty object program. However, the program may still be
executable depending on the circumstances. Once again, the
routine use of object programs that contain errors or blunders

is a dangerous practice. Object program generation is suppressed
after a blunder unless object suppression is disabled by use

of the D-toggle.

Compilation is usually discontinued after an abort; end-
cf-program and end-of-job activity s attempted and a return
is made to the operating system. However, aborts may be
suppressed (although the diagnostic is still issued) by

use of the X-toggle; the compiler response to a suppressed
abort is given in the description of each abort in Appendix D.

Flags are inserted in-line in the program listing as they
cccur. In addition, aborts are listed on the console.
The flag listing format is described in Section 3.3.4.
Flags are listed by number in Appendix B, by severity in
Appendix C, and are described in detail in Appendix D.



44 Fig 4.1a
Flag Loader | Compilation Source Object Compiler Related
Class | Code Continuation | Program | Program | Integrity | Toggles
Warning 4 Yes Suspect { OK OK w
Error 8 Yes Ead Suspect | OK -
Blunder 12 Yes Fad Bad OK D,H,O
Abort - No Suspect | Suspect ! Suspect X

Figure 4.1la:

Flag Classes




Sec 4.2 45

UNDETECTED ERRORS

Some program errors go undetected by the compiler either
because detection is not feasible or is not possible.

Good programming practice will reduce the occurrence of
undatected errors. The major undetected errors are listed
below in no particular order.

® Do Case Range: There is no compiler or hardware
protection against a do case index exceeding the range
Df the supplied cases. It is good coding practice to
>rotect against range violation.

@ Subscript Range: Likewise, there is no compiler or
hardware protection against a subscript exceeding the
declared dimension of an array. Indeed, it is common
practice to declare external arrays to have dimension 0
in all but a single routine. Still, it is good
coding practice to guard agaiast subscript range violatiorn.

e Dangling Else: The language associates an else clause
with the innermost unmatched then-clause. It is good coding
oractice to physically format t:e source program to '
ensure that this association is correct.

e 0Dbject Cards in Source: A source record with a pound
sign ('#') 1in the first byte is passed to the object
nrogram directly. This feature is activated by the
k-toggle and it 1s good practice to deactivate it when
not in use lest legitimate sourze be unadvertantly missed.

e Non-Distinct Symbol References: As a block structured
language, MPL allows a symbol defined in an outer block
to be used in an inner block. Indeed, this is the

»rominent feature of block struzturing. However, in the
case of scratch variables this feature is generally

a liability as the use of the scratch variables gets
inadvertantly multiplexed. It is good coding practice
to define scratch variables separately for each block.

® Fforward Labels: There is one circumstance where the
current compiler, that makes only a single pass over the
source, fails to detect a scoping violation.




46

Consider the program:

p: PROC;
DCL x WORD;
g: PROC;
x = 1;
X: GO x;
END qg;
END p;

The multiple use of x as

Sec 4.2

a variable and label goes undetected.

This circumstance is rare and, inasmuch as the correct code

is generated, is only of

academic interest.

Redefined Literallys: Tle compiler performs literally

text substitution before
spite of the fact that 1
scoping rules and may be

symbol processing. Thus, in
sterally symbols follow the ordinary
redefined in an inner block, in

effect redefinition is nct possible. The following example

illustrates this problem

p: PROC;
DCL x LITERALLY
g: PROC (xi;
DCL x WORD;
END qg;
END p;

The legal redefinition o

Initial Value Range: Ca
the interpretation of co
to the use at hand; lest
See Subsection 5.2.4.

Distribution of Initial

TR

x 1s never honored.
‘e should be taken to assure that

stant precision is appropriate
constant truncation go undetected.

,ists Over Namelists: When an

initial list is applied
initial 1list 1s wvalidate

the namelist. The prope-

part of the initial list

Interative Do Index: Th:

(or repeat) is a signed
positive indicies over 3
do-while construct.

~0 a namelist the length of the

1 against the aggregate length of
association of each name to each

cannot be validated by the compiler.

index of an interative do
~ord variable. Thus, the use of
2,767 requires the use of a



Sec 4.2 47

e Operand Size Alteration: 1In evaluating an expression the
size of an operand may be automatically altered according
to the translation algorithms of Section 5.5. Care must
be taken to ensure that such size alteration preserves
the sense of the desired operation. For example, the logical
comparisons (LEQ, etc.) convert both operands to word size
and any decision based on the high-order part of a double
size operand will be erroneous.




48 Sec 4.3

FOULS: CONSISTENCY CHECK::

The compiler contains man' internal consistency checks,
called fouls, to facilitate compiler checkout and
maintenance. For example, fouls are used to guard against
faulty symbol table use. A foul will never occur if the
compiler and hardware are functioning properly. Should

a foul persist, contact M:crodata.

A list of fouls is given :n Appendix G. A foul results
in a message being issued on both the console and program
listing in the form:

'XXXX' FOUL

where 'XXXX' represents tte type of foul.



Sec 4.4 49

HARDWARE CONSIDERATIONS

There are certain hardware characteristics of the 32/S processor
that may lead to undiagnosed errors, or unreported operational
problems. This section is a discussion cf these hardware
aspects, indicating how they are exhibited and how they may

be minimized.

® Memory Validity: On a 32/S not equipped with memory parity,
failing memory may be undetected. The symptoms of failing
memory are any unexplained compiler behavior. On a machine
equipped with parity, the compiler may be used to validate
memory.

The compiler is capable of checking memory wvalidity in

the program space it occupies: from PB (program base)

tc PB4+PL (program length). The default toggle settings
check memory at the end of each program. By use of the
V-toggle, memory validity may be checked each source
record. (Memory checking is too time consuming to do this
ac a matter of course.)

Stould bad memory be a problem, place the suspect memories
between PB and PB+PI, and ensure that the M-toggle and
V-toggles are on, and hardware parity is disabled. A
faulty memory is indicated by a console and listing message:

BAD MEMORY IN MODULE mm, ROW rr, BIT bb, BITS xx

where (mm,rr,bb) jointly specify a faulty memory chip.
If a multiple bit error has occurred, {(xx) will have
more than one bit on and the rightmost will be decoded
as (mm,rr,bb). Bad memory also results in Abort 30.

e Stack Overflow: On a 32/S not equipped with stack
overflow protection, stack overflow will go undiagnosed
until program end. The stack overflows into the symbol
table; thus the symptoms of stack overflow are unexpected
symbol table behavior, usually a foul or a loop in a
reference chain.

The compiler checks for stack overflow at program end,
and if the V-toggle is on, each source record. Stack
overflow results in Abort 36.

The compiler stack size has been chosen so that any
ordinary program is accommodated. See Section Z.3
for a discussion of compiler stack use.



50

Sec 4.4

Misread Source Data: Scurce devices occasionally misread
data. The entropy of MFL is low enough so that most
instances of misread sotrce data cause computer flags.

Miswritten Object Data: Object devices occasionally misread
data. Object records are checksummed and sequenced so that
all instances of miswritten object data are detected later

by the loader.




Sec 5.0 51

TRANSLATION ALGORITHMS

The translation of source program to object program is
specified by a set of translation algorithms that are the
subject of the present chap-er. These algorithms define
the language as actually imolemented. Translation
algorithms are useful whenever knowledge of the generated
code is required. Should tiese algorithms be found
unclear or incomplete, the jenerated code may be
displayed by use of the C-t»ggle, and the generated
loader directives displayed by use of the H-toggle.

An analytic (top-down) approach is taken in presenting

the translation algorithms: blocks are discussed first

and operands last. Some aljorithms show the direct
translation of MPL statemen=: to loader directives.

Other algorithms show the translation of MPL statements

to 32/S instructions. The translation of 32/S instructions
to loader directives, and tie loader directives themselves,
are discussed in the final sections of this chapter.

Source text may be passed cirectly to the object program,
bypassing all tiranslation a:tivity, by use of the #-toggle
as discussed in Appendix F. This is the only mechanism
available to generate arbitrary instruction sequences.
There is no mechanism in th< language to generate
unimplemented or unused instructions, or instruction
sequences that are not the product of an algorithm in

this chapter. The locatior counters maintained by the
compiler during translatior are:

Mnemonic Name Number Initial Value
pc Program Ccunter 1 0
XC Static Counter 1 0
sc Stack Counter 1 per block 8

The program and static cour ters are common to all blocks
within an external prcocedura, start at 0, and increase

monotonically as translaticn progresses. The stack counter
is unique to each block anc starts at 8 to leave room for
the stack mark. The stack counter moves up and down as

translation progresses, retuarning to its initial state at
the end of each block; eacl 32/S instruction has an
associated stack increment (or decrement).

In the code sequences that follow, a box in the place of an
instruction ([__] ) repres nts the generated code for the
entity enclosed in the box




5.1

52

BLOCKS

The block translation algorithms are shown in Figure 5.1la.

Blocks are of 4 types: main, procedure, interrupt, and
begin. A block may be internal or external. External
blocks, that is programs, are bounded by the begin and
end loader directives. Internal begin blocks are entered
with a BENT instruction; other internal blocks are
skipped over with a BRA instruction. A block is exited
with one of the 3 exit instructions as determined by

the block type.

Sec 5.1



Fig 5.1la 53
Entry Exit
Loader Loader Entry 32/S Exit 32/S
Block Type Scope Directives Directive Instruction!Instruction
Main External "81', "o(" "ga" -- EXIT
Procedure |External "g1", "gr" "g2" -- EXIT
Internal -- - BRA <end> EXIT
Interrupt |External "g81l", "Be" "g2" -
Internal -- -- BRA <end> IXIT
IXIT
Begin Internal -- - BENT BXIT

Figure 5.la:

Block Translation Algorithms




w

54 Sec 5.2

DECLARATIONS

Symbol declarations are contained in procedure heads, labels,
and declaration statements. The attributes of a symbol are
stored in the symbol table. The declaration process may be
viewed as the translation of declarations into attributes

in the symbol table. (The classification of symbols is
discussed in conjunction with the symbol table listing in
Section 3.3.7.)

The only declarations that result in loader directives are
those for external symbols. The only declarations that
result in 32/S instructions are those for labels and initial
values.

In the case of a symbol that is a label, parameter, or
procedure, the complete declaration may be fragmented in

two parts. In such cases the symbol is marked as undefined
until all attributes are in hand. A symbol that is undefined
when used (which is illegal) resul<s in automatic declaration
appropriate to the context in which the symbol is used.

A procedure head declaration defines the entry name. 1In
the case of a forward procedure, the procedure head is the
second half of a fragmented declaration, and the size
attribute must agree with that previously declared. The
generated code and loader directives issued for a procedure
head are discussed in conjunction with block translation

in Section 5.1.

A label declaration defines the label name. In the case

of a forward label, the label declaration is the second
half of a fragmented declaration. A label is reclassified
as a do label or begin label if it is subsequently found

to appear on a group or begin. This subclassification of
labels is used to mechanize labeled-end checking. A label
generates an SSP instruction to purge any iteration context
from the stack should the label be invoked from within an
iterative group:

SSP (sc-2)/2

The declaration-statement declarations form the bulk of the
declarations. In the case of parameters, the declaration
statement is the second half of a fragmented declaration;
in the case of forward procedures, the first half. Each
name is entered in the symbol table; the symbol class and
all attributes, except value, are filled in from the
attributes appearing in the declaration statement. As

each external procedure is encountered an "88" loader
directive 1is issued; as each literazlly is encountered the
literally text is saved in the symkol table.



Sec 5.2.1 55

Value Allocation

The value attribute is determined when all declaration
statements are in hand, that is, when the first non-declaration
statement 1s encountered. (It is necessary to delay address
allocation to this time to accommodate parameters which

must be allocated first, but need not be declared first.)
Figure 5.2a shows the use and value of the value attribute.
Before the value is assigned it is rounded up to a word
boundary, if appropriate, as indicated in the word alignment
column. After the value is assigned it is incremented by
the value increment column.

At the same time values are assigned, external variables

are delivered to the loader with a series of "8F" directives.
The extent field of this directive uses the value increment of
Figure 5.2.1la.

Following a declaration set, an SSP instruction is issued
to skip over the stack mark, initial values, variables,
and parameters:

SSP (sc-1)/2

and, finally the stack counter, sc, rounded up to a word
boundary in preparaticon for future stack activity.



static counter
stack counter
dimension+1l

Figure 5.2.1la:

Value Attribute for Symbols

First i Word Value
Class Scope Size Value Value Alignment Increment
Procedure External -- External procedure 1 - 1
sequence number

Internal -- pc 0 -- --

Static External -- External variable 1 -- 1
sequence number
Internal -- XC 0 Except byte See automatic
Constant -= ~-- pc 0 Except byte See automatic

Parameter -- Double sc 8 Yes 4
Other 2

Automatic -- Byte sc 8 Only if first 1*D

of namelisl
and initialized

Word Yes 2*%D

Double Yes 4*D

Bit (1) Yes (L*D+7) /8

Bit (2) Yes (2*D+7) /8

Bit (4) Yes (4*D+7) /8

Pointer Yes Z2*D

pc program counter

e1°¢'g bta




Sec 5.2.2 57

Preset Variables

There are two types of preset variables: constant variables
(constants) and initialized variables (initialized automatic
variables). Constants require less execution time and

space but may not be addressed as freely as initialized
variables. There are two ways of specifying the preset
values: with an initial string or with an initial list,
as discussed in the next two subsections. These sections
contain examples of preset variable translation.

Constant variable text appears only in program space and
never in the stack. The text is inserted in program space
and skipped over with a breznch instruction. A new branch

is issued if the constant set is broken by an initial
variable. A BYTE pseudo-irstruction is issued, if necessary,
to align a constant of worc or double size on a word boundary.

Initialized variable text ¢ppears in program space and
is moved to the stack each time the procedure is entered.
Data is moved from program space to stack space with FILL
instructions. A SSP instruction is also generated for

each name list to route the¢ FILL data to the proper stack
location:

SSP (sc-2)/2

where sc is stack address f the first item of the name list.



2.3

58 Sec 5.2.3

Initial Strings

Initial text that appears as a string is converted to an
infix format. (A string appearing as an element in an
initial value list is used without alteration.)

The infix string format is:

]length1 t! el x! t? } 0!

The <length™ indicates the number of characters in the
<text>. Note that a string is restricted to 255 bytes.

A 0 is appended to the string, if necessary, to pad out the
text for a FILL instruction to a full word. The total
length of the converted string is:

Preset Type Length Byte Padded Total Length

Constant -- No <length>+1
Initial odd No <length>+1
Even Yes <length>+2

If the first or only name of the name list is not an array the
variable is changed to an array and the <length> inserted as
the dimension; if the variable is an array, the dimension

is validated against the string length: the length must
exactly match for a constant variable and may not be longer
for an initialized variable. The s.ize attribute must be

BYTE or a flag is generated.

Should an initial string be applied to a name list the
translation depends on whether the first name is dimensioned.
I[f it is not, the string will exactly match the created
dimension of the first name and subsequent names will not be
initialized. If a dimension is supolied and is more than

the string length, the tail of the first variable, and all
subsequent variables are not initialized; a flag is generated
for a constant variable. Finally, if a dimension is supplied
and is less than the string length, the string text will
spill into the trailing variables; a flag is always generated
and the length field for subsequent variables contains a
<text> character.



Sec 5.2.3 59

The code generated for an initial string is a series of
DBLE pseudo-instructions. f the total length is not a
multiple of 4, the WORD and BYTE pseudo-instructions are
used for the final bytes. !'or an initial variable, a FILL
instruction is inserted every 16 words; the final FILL

may have a count of less than 16.

The example below illustrates initial string translation:

P: PROC; DCL /* &C */

A BYTE CONSTANT “A3C7,
0 0000 * 47 0000 BRA O
3 0003 * 03414243 DBLE 54608451

B(1) RYTE CONSTARNT ~° 77,
7 0007 * 0127 HORD 2935

C BYTE INITIAL o
0 0000 ** 47 0009 BRA 9
9 3009 * 5A 0000 SsP 0
12 000C * 59 01 FILL 1
14 000E * 0000 WORD 0

D(99) BYTE TNITIAL "1234567897A123456789B123456789C12";
16 0010 * 5A 0000 ssp 0
19 0013 * 59 10 FILL 16
21 0015 * 20313233 DBLE 54000950627
25 0019 * 34353637 DBLE 875902519
29 001p * 38394131 DBLE 9432762337
33 0021 * 32333435 DBLE 842216501
37 0025 «* 36373839 DBLE 909588%37
41 0029 * 42313233 DBLE 1110520371
45 002D * 34353637 DBLE 875902519
49 0031 * 38394331 DBLE 943276849
53 0035 * 59 01 FILL 1
55 0037 * 3200 WORD 12800

END P;

9 0009 ** 5a 0003 ssp 3
16 0010 ** 5a 0004 SSP 4
57 0039 * 5A 0036 SSP 54

60 003C * 54 EXIT



5

2.4

60 Sec 5.2.4

Initial Lists

Initial text that appears in a list is packed into a buffer
whose elements correspond to the declared size: double,
word, byte, bit(4), bit(2), or bit(l). Pointers are

treated as word; after packing, bits are treated as byte.
The buffer is padded with 0's to the next word boundary.
There is no limit to the length of an initial list.

If ar initial list is applied to a name list, the first
name list element corresponds to the first initial list
element, the second to the second, and so forth. Should
the rame list contain arrays, each array element qualifies
as a name list element.

For a constant variable name list, the acggregate number of
elements in the name list must exactly match the number of
elements in the initial list. For an initialized variable
name list, the initial list may not be longer.

Each constant of the initial list is inserted in the element
buffer as follows. The constant magnitucde is first evaluated
in 3Z bit precision. A prelininary overflow flag is
generated if a bit string has more than 32 bits (leading

0's are significant), a character string has more than 4
bytes, or a decimal number has more than 31 magnitude bits
(leaciing 0's are not significant). The constant sign,

if ary, 1is applied using 2's complement arithmetic. The

32 bit result is then inserted in the element buffer
truncating high-order bits. &An overflow flag is generated
1if all the truncated bits do not have the same sign.

This interpretation cf precision treats a constant as a
magnitude number whole value may be represented with a
signed number. Since decimal constants in expressions are
strictly 2's complemenrt (see Section 5.7), care must be
exercised as shown in the following examples of constant
translation in initial lists:

Declared

Implicit

External Value | Variable Size | Internal Value | Flagged | Expression Size
4 Bit(2) "o Yes Word
-1 Bit (4) e Nc Word
€0000 WORD "EA60" Nc (!) Double




Sec 5.2.4 61

The code generated for an iritial list is a series of
DBLE, WORD, or BYTE pseudo-instruction. For an initial
variable, a FILL instructior is inserted every 16 words;
the final FILL may have a ccunt of less than 16 and may be
padded with an extra byte of 0 to fill out the final word.

The example below illustrates initial list translation:

P: PROC; DCL /* &C */
A BYTE CONSTANT (1),
0 0000 * 47 0000
3 0003 * 01
B(1) WORD INITIAL (2, 3),
0 0000 ** 47 0004
4 0004 * 5A 0000
7 0007 * 59 02
9 0009 * 0002
11 000B * 0003
(CR, LF) BYTE INITIAL ("op", "0a"™),
13 000D * 5aA 0000
16 0010 =* 59 01
18 0012 * 0D
19 0013 =* 0A
D{(2) BIT(2) CONSTANT (0, 1, 2),
20 0014 ~* 47 0000
23 0017 =* 00
24 0018 =* 18
E(99) BYTE INITIAL (A, “B°, ‘C");
20 0014 ** 47 0019
25 0019 * 5A 0000
28 001C =* 59 02
30 001lE * 41
31 001lF * 42
32 0020 * 43
33 0021 =* 00
END P;

4 0004 ** 5A 0003
13 000D ** O5A 0005
25 0019 ** 5p 0006
34 0022 * 5A 0038
37 0025 ~* 54

BRA
BYTE

BRA
SSP
FILL
WORD
WORD

SSP

FILL
BYTE
BYTE

BRA
BYTE
BYTE

BRA

SSP

FILL
BYTE
BYTE
BYTE
BYTE

SS5Pp
SSP
SSP
SSP
EXIT

O

Wb o O



62 Sec 5.3

GROUPS

There are 6 grouping statements: simple do, repeat, do
forever, do while, do iterative, and do case. The simple
do cenerates no code. All others generate some code for

tne group head and scome code for the matching group end.
The do case also genereates code for each enclosed case
(blcck sentence).

In the algorithms in this section it is understood that all
expressions that result in double size are converted to

word size with a SNGL instruction. Further, should the
distance of a backward branch exceed 254 bytes, the long
form is substituted for the short form shown: DBL for DBB,

BRA for BRB, and DSBL for DSEB.

e REPEAT exp TIMES:

lexp

BRA  y
. [oou]
y _gg;_l X

e DO FOREVER:

X body

BRB X

® DO WHILE exp:

BRF  y
body%
BRB X



Sec 5.3 63

e DO ref = expl TO exp2 BY exp3:

expl
exp2

e xXp 3

LADR ref

DIB Y

X body

i
O

DSBB X

y

If the increment is missing. a L1 instruction is substituted
for the evaluation of ~“exp3-.

e DO CASE exp:

l

exXp |

CASE X

1
|
cO Case Oi

cl case l\
L

cn case n‘

ADDR cn

ADDR cl
X ADDR c0

The NOP instruction at the 1ead of the case branch table
is generated only if requir:d to force the table to a
word boundary.



64 Sec

STATEMENTS

There are only 6 true statements in MPL if blocks, groups, and
declarations are considered separately. These are treated in
this section in alphabetical order: assignment, call, go-to,
if, null, and return.

Assignment Statement --

There are 4 flavors of the assignment statement: regular,
multiple, embedded, and increment. The last 3 require an
expression of size word (and a storage reference of size word).
If the expression results in size double, a SNGL instruction,
not shown below, is generated; if the storage reference is not
of size word, a flag is generated.

® Reqgular ref = exp:
[exp_]
store]

The <ref> store is in detail in Section 5.6.3.

e Multiple, ref0 := refl ... := refn := exp:
STWN refn
STWN refl
W ref0
® Emmbedded, ref := exp:
exp
STWN exp

e Increment, ref += exp:

[exp ]

AWM

Call Statement -

The ¢all statement is discussed in conjunction
references in Section 5.7.

ref

Go-to Statement --

A go-to statement generates a GOTO instruction.

with procedure

5.4



Sec 5.4 65

If Statement --

An if statement has slightly different translation depending
on the presence of an else unit:

e If exp THEN unit:

Iwi
AR
483 ko
w

nit

X

@ If exp THEN unitl ELSE urit2:

exp
BRF X

bnitl

Null Statement --

The null statement generate: no code.

Return Statement --

The return statement generates an EXIT instruction unless the
containing procedure block 1s an interrupt procedure in which
case an IXIT is used. A return statment in a begin block behaves
as if the return statement were in the containing procedure block.

Should the return statement contain an expression, the expression
is evaluated and converted to the declared size of the current

procedure. The conversion instructions generated are:
Procedure Size
Expression
Size Byte Word Double

Word LBL "FF" -- DBL1
AND

Double SNGL
LBL "FF"
AND SNGL -—




66

The following program illustrates statement

P: PROC BYTE; /*
X: BEGIN; DCL (A,B,C)

A = 1;

A =B = C 1= 2
A = (B 1= 3);

A += 4;

GO TO ¥%:

IF 1<2 THEN A=5;

IF 1=2 THEN A=6;

RETURN "10000";

END X

END F;

&C */
WORD?;

ELSE A=7;

WA Ui

Cad L Ly ) )ty

O Oy N

[CRR NN )}

(82} &
[Sat

@)
~J

0000
0003
0006

0007
000A
000B

000D
000E
001¢
0012

0014
0015
0017

0019
001a

0o01cC

0020
0021
0022
0023
0026
0027

0023
0029
00247
0028
002cC
002F
0030
0032
002cC
0035
0036
0032

0038

003D
003E

0040
0041
0042

0043

translation:

53

54
71
B2

* % *

72
Al
AR
B2

* o+ % %

*

73

A2

71
72
28
13
75
B2

* % % 4 * %

*

13
71
72
2A
13
76
B2
47
13
77
B2
47

* % ok ko ok * F F % % F
*

*

42

37
41

25
54

* % F % X

0003

0003

0006

04

06K

05
04

0000

04

Q000
2035

34

0038
00010000

FF

Sec 5.

Ssp
5SP
BENT

SSF
L1
STW

L2
STWN
STWN
STW

L3
STWN
S5TW

L4
AWM

GOTO

L1
L2
LT
BRF
L5
STW

BRE
L1
L2
0]
BRF
L6
STW
8RA
BRF
L7
S5TW
BRA

LDL

SNGL
LBL

AND
EXIT
BXIT

EXIT

w W

2,0
2,3
24N\

2,]]
A

24 A

[SaN ]
)

[GalN SNl
N~

65536

255



Sec 5.5 67

OPERATORS

This section discusses the translation of operators. For the
present purposes, an expression 1s composed of a series of
operators applied to operancs. (The language allows for operator
precedence, subexpressions, and conditional expressions.)
Operand fetching, discussed in the next section, places the
operand in the stack; the result of any operation is also in
the stack. Each operand anc the result of an operation are
either of size word or double. Operand translation concerns
the determination of the result size, the conversion of the
operands to a compatible size, and the selection of the 32/S
instruction to execute the c¢peration.

Operators are of 2 types: tunary (1 operand) and binary
(2 operands).

Unary Operators --

There are 3 unary operators as shown in Figure 5.5a. The unary
addition operator ('+') generates no code, the others a single
instruction. The size of tlo result is always the same as the
size of the operand.

Binary Operators --

There are 26 binary operators as shown in Figure 5.5d. There

are 5 classes of binary operators from the point of view of

the translation algorithms: other, shift, logical, DIVD, and
MULD. Figure 5.5b shows the result size by class, Figure 5.5c
the operand preparatior by class, and Figure 5.5d the code
generation by individual operation and also the class definitions.

® Other: The other class c¢o>nsists of the bulk of the
arithmetic operators. It distinguishes the word-word
case from the others. Tre2 word-word case is done exclusively
in word size, the other cases convert word to double, use
double operations, and proyduce a double result.

@ Shift: The shift class c¢onsists of the 4 shifts. It
operates in, and produces a result of, the first operand
size, but requires the second operand, the shift count, to
be word.

e Logical: The logical class consists of the 6 logical
comparisons. It works ex<=lusively in word size.

e DIVD: The DIVD class corsists only of DIVD. The first
operand (the dividend) must be double, the second operand
(the divisor) must be wori, and the result is always word.

e MULD: The MULD class consists only of MULD. Both operands
must be word and the resuit is always double.




68

Operand Size

Unary
Operator Word Double
+ PR— — —
- NEG DNEG
* NOT DNOT
INSTRUCTIONS GENERATED
Operand Size
Unary
Operator Word Double
+ Word Double
- Word Double
+ Word Double

Figure 5.5a:

RESULT SIZE

Unary Operator Translation

Fig 5.5a



69

Fig 5.5b
Operand Sizes

Binary
Operator

Class Word-Word Double-Double Word-Double Double~-Word
Other Word Double Double Double
Shift Word Double Word Double
Logical Word Nord Word Word
DIVD Word Nord Word Word
MULD Double Jouble Double Double

Figure 5.5b:

Binary Operator Result Size




70 Fig 5.5c

Operand Sizes

Binary
Operator
Class Word-Word Double-Double Word-Double Double-Word
el ep1 ]
(562 ] 5p2 657 ]
Other DBL?2 DBL_.}_"A o
| op1 (o5 ]
2] | (557 ] 5P 657
Shift | SNGL SNGL
el | Gl
i SNGL | SNGL
Logical op2 | [opz ] op2 52 ]
: SNGL » SNGL )
E2m opT N
DBL1 DBL1
pIVD 657 ] 7] 7] 1 e
SNGL SNGL E
6oL 51 | e [l
SNGL i SNGL
MULD lop2 ] [op2 ] [op2_ | | X
SNGL SNGL i
opl = code for first operand fetch
op2 = code for second operand fetch

Figure 5.5c: Binary Operator Operand Preparation




Fig 5.5d

Operand Sizes

71

Binary
Operator
Class Operator Word-Word Double-~Double Word-Double Double~Word
Other + ADD DADD
- SUB DSUB
* MUL DMUL
/ DIV DDIV
& AND DAND
| OR DOR
XOR XOR DXOR
MOD MOD DMOD
<= LE DLE
LT DLT
= EQ DEQ
t= NE DNE
> GT DGT
>= GE DGE
+
Shift SLC SLC DSLC ! SLC DSLC
SLL SLL DSLL 5 SLL DSLL
SRA SRA DSRA ! SRA DSRA
SRL SRL DSRL } SRL DSRL
Logical LEQ LEQ
LGE LGE
LGT LGT
LLE LLE
LLT LLT
LNE LNE
DIVD DIVD DIVD
MULD MULD MULD

Figure 5.54:

Binary Ojerator Code Generation




72 Sec

OPERANDS

This section discusses expression operands. There are 5
types: procedure references, subexpressions, conditional
expressions, literals, and memory references. Procedure
references are discussed in Section 5.7. Subexpressions
are a linguistic artifact and have no bearing on the
translation algorithms.



Sec 5.6.1

Conditional Expressions

A conditional expression operand has the form:
IF expl THEN exp2 ELSE 2xp3

The result size of a conditiosnal expression is double

if either <exp2> or <exp3> i3 double; the result size is
single if both <exp2> and <exp3> are word. The code
generated is:

Size2 = Double Size2 = Word
Size2 = Size3 Size3 = Word Size3 = Double
!
[expT] [expl]
BRF X ERF X ; BRF be
[e xp2 [exp2]
1 1
BRA Y ; ERA Yy : BRA y

k]
g

X [Egéﬂ ‘ X lexpﬂ

v I[BL1 ! BRA z

y i y DBLI




24 Sec

Litearals

Literal operands may be written in 3 forms: bit strings,
character strings, and decimal numbers. A literal operand
does not include a sign. The literal is converted to a

22 bit internal value with an associated precision and

a load literal instruction generated. An overflow flag

1s Jenerated if the internal representation requires

more than 32 bits. Unused bit positions are filled with
zeroes.

e 3it Strings: A bit string is regarded as representing
a4 binary magnitude number. It has the bit precision
of the number of bits written. Leading zeroes are
significant. If overflow occurs, the 32 low-order
Dits are retained.

e <cCharacter Strings: A character string is regarded
a8 representing a binary magnitude number, as with
a bit string. It has the bit precision of the number
of characters written times 8. If overflow occurs
~he high-order characters are retained.

® Decimal Numbers: A decimal number is regarded as
representing a signed binary number. It has the
precision of the number of magnitude bits present in
the converted binary representation plus a sign bit
{(which is always 0). Leading zeroes are not significant.
If overflow occurs, the 32 low-order bits are retained.
This interpretation of decimal precision differs
from that used in initial lists (see Section 5.2.4).

The load literal instruction genera:ed is a function of
the precision:

Precision (bits) Opcode Operand
0-4 Lx none
5-8 LBL 1 byte literal
9-1e6 LWL 2 byte literal
17-32 LDL 4 byte literal

5.6.2



Sec 5.6.3 75

Memory References

Memory reference operands o-cur in 2 symetric forms:

loads and stores. This subsection deals exclusively with
loads but applies equally t> stores with the following
alterations: all load oper itions become store operations;
memory reference preparation (index evaluation, etc.) is
separated from expression s:.ze conversion and the actual
store, by expression evalua.ion; and, finally, constant
variables may be loaded from but not stored into. (Parameters
may be stored into, but sin.-e they are mechanized with a
call-by-value scheme, they ‘lisappear when the procedure
is terminated.)

The memory reference transl..tion algorithms are shown
in Figures 5.6.3a (non-autonatic variables) and 5.6.3b

(automatic variables). For non-automatic variables there
is no difference in the algorithms for the different
sizes, except of course, fo' the actual store. For automatic

variables the address “or by te size is a byte address,
the address for word and doible size is a word address.
In all cases the size field for a LADR instruction is
conditioned by the variable size. Figure 5.6.3c shows
the correspondence between ! ardware address mode and
language variable class.

Memory reference translatior for automatic variables is

a function of locality and s¢pan. A variable is local

if it is referenced in the :ame block it is defined; a
variable is remote if it is referenced in a block that

is nested in the block in wrich it is defined. The span
of a variable is its EP byte¢ address for a byte variable,
and its EP word address (byt= address divided by 2) for

a word or double variakle; the span is short if less then
255, long if 256 or over.

The pointer size attribute may be applied to a variable
of any class. The code consists of a load of the pointer
followed by a load of the actual data. The bit size
attribute and field select svecification may be applied
to any storage class; however, the size attribute must
be word for field select and is effectively word for
bit, as the final LF (load fleld) instruction assumes
word. The algorithms shown issume that the load can be
accomplished in a single LF iistruction. Should an index
or other supporting operand »e required, the necessary
code is inserted before the “inal LF per the algorithm
of the parent symbol class.



76 Sec 5

The 2 argument form of a field select specification
generates a field descriptor using a GFD instruction
pased on the supplied length and position; the 1 argument
form assumes the single argument is a prefabricated
descriptor.

Data when allocated by the translator is always left
justified. A bit scalar occupies the leftmost bits of
the full word required to hold it leaving the rightmost
bits unused; a byte variable, allocated on an even byvte,
followed by a word variable, leaves the preceding byte
(the rightmost of the preceding word) unused. (This byte
would have been used if the byte variable were followed
by another byte variable.)

Data when loaded by a load instruction is always right justified.
For bytes, this justification discrepancy can be resolved

when addresses are assigned. For bits, this discrepancy

can only be resolved when the field descriptor is generated

for the load instruction: a non-parameter bit variable is

left justified, a parameter bit variable is right justified.

Constant variable are subject to several constraints

not shared by the other variables. As mentioned above,

they may not be stored into. In addition, the address

of a constant may not be passed as data (the LADR instruction
has no provision for specifying the space the address is

in: program or stack) or as the object of the address
function ('@'). Note that although this addressing constant
prevents pointer variables from being unused to reference
constant arrays, the same effect can be achieved in the

local routine by use cf array addressing.

Some memory references require supporting operands in the
stack at the time the actual memory reference is made:

a base, an index, or a field select descriptor. In such
cases, the supporting operands are inserted in the stack

in the order they appear in a left-to-right scan with any
basing operands appearing first. Thus a base or indirect
address appears before an array index which appears before
a bit or field descriptor. Further, some preliminary
operands in the stack get used in the computation of others.

6.



Sec 5.6.3

The following program illustrates some, but by no means
all, aspects of memory reference translation.

77



7

15}

P: PROC(PARAM_REMOTE_BIT2_ARRAY);

8

DCL

AUTO_REMOTE_RYTE_SCALAR
AUTO_REMOTE_WORD _ARRAY (0)
PARAM_RFEMOTE_BITZ2_ARRAY (D)

Q:

CALL P{ /

AUTO_LOCAL_SHCRT_BYT®

AUTO_LOCAL

AUTO_RTOT

AUTO_REMOT

AUTO_LCCAL

AUTO_LGCCAL

STATIC INT_

IC_EXT

=]
(3%

PROC(2ARAM_ILOCAL_BYTE SCALAR,

(INDEX, A_INDEX, P_INDEX,
“EM, LOT, FIELDS )
AUTC_LOCAL_SHORT_BYTE SCALAR

]

AUTO_LOCAL_SHORT_DBLE_ARRAY (0)

FILLER(10CD)
AUTO_LOCAL_LOMNG_BYTE_SCALAR
AUTO_LOCAL_LONG_DBLE_ARRAY (0)
STATIC_INT BYTE_SCALAR
STATIC_EXT BITI1_ARRAY(0)
CBASE_BIT2 SCALAR

VBASE_WORD ARRAY (0)
CONSTANT_BYTE_SCALAR
PARAM_LOCAL_BYTE_SCALAPR
PARAM_LOCAL_WORD_ARRAY (0)
PTR_BYTE_STALAR
PTR_WORD_ARRAY (0)

* 5C */
SCALAR,

17 0011

*

_SHCRT_DRLE_ARRAY (INTCEX),
*

19 0013
21 0015
E_HBYTE_SCALAR,
23 7017
27 1018
E_VIORD_ARRAY (INDEX) ,
28
32
34
_LONG_BYT<_ SCALAR,
35 D023
39 0027
_LCNG_DBLE_ARRAY (INDEX),
40 n028
44 n02¢C
46 102E

J01C
D020
No22

BYTE_SCALAR,

47
_BIT1_ARRAY (INDEX),
50
52
53

D02F

0032
0034
nC35

*

_SCALAR,
56
57
58
60

Jo3s8
2039
0D03a
203cC

L S B

FA

.
[WRN N

06
rc

06
P2
rs

06
F2

C5

F8

F2
CD
D1
TA
70
41
o7

/*

RYTE,
WORD,
2IT(2):

FARAM_LOCAL_WORD_ARRAY);

WORD,
BYTE,
NCUBLE,
BYTE,
BYTE,
DOUBLE,
BYTE
BIT (1)
BIT(2)
VIDRD
BYTE
HYTE,
VIORD),

Sec 5.6.3

SWox/

DCL

STATIC,

EXTERNAL,

BASED 10,

BASED STATIC_INT_BYTE_SCAIAR,
COMSTANT (12),

POINTER TO RBRYTE,

POINTER

18 LB 2,AUTO_TLOCAL_SHCRT_BYTZ_SCA
06 LW 2, INDEX
aD LD 3,AUTO_LOCAL_SHORT_DBLZ_ARR
18000A LADR 24,AUTO_REMOTE_BYTE_SCALAR
LB 4
19000C LADR 25,AUTO_REMOTE_WORD_ARIAY
06 LW 2, INDEX
LW 5
080407 LADR B8,AUTO_LOCAL_LONG_BYTE SCAL
LR 4
0A0408 LADR 10,AUTO_LOCAL_LONG_DBL}_ARR
06 LW 2,INDEX
LD 5
0000 LB 0, STATIC_INT_BYTE_SCALAR
06 LW 2, INDEX
XB1
0001 LF¥ 1,STATIC_EXT_BIT1_ARRAY
L10
LO
18 LBL 30
LF 7

TO WORD;



Sec 5.6.3

VBASE_WORD_ARRAY (INDEX) $ (LEN:LOC),

61

64

66

68

70

71
CONSTANT_BYTE_SCALAR,

72

73
PAPA/I_LOCAL_BYTE_SCALAR,

76
PARA™M_LOCAL_WORD_ARRAY (IMNDEX)

78

80

82

24
PARAM _REMOTE_RBIT2_ARRAY (IMDFEX)

85

89

90

an

93
PTR_UTORD_ARRAY (INDEX),

94

g

100
PTR_BYTE_SCALAR @,

101

105

106
PTR_BYTE_SCALAR @ (P_INDRX),

107

111

112

114

PTR_WORD_ARRAY (A_INDEX) A (P_INDEX)

115
119
121
122
124
125
END Q7
N P

0035
0049
0042
0044
0045
0047

0043
0042

004"

S (FIRELD

004+
0059
0052
00sS4
nosSs
27059
005N
nosT
00sn

0o0ctn
00¢2
0064

00€5
00c 9
006A

0063
00EF
00790
cov2

0073
0077
00 /9
007A
007C
007D

*
*
*
*
*
*

* %

*

*

* * X % A X * * %

* % % *

P S S . B

F8
F2
%
F2
2F

D7

70
FE

oM — M
™

rrato o=

)

F4

on

N
a6
Fh
06

Fa
Lo

0000
06
09
0A

0009
09
05
06
0B

190008

06

09040E
06

0ao040C

29040C
08
SC */

0904cn
07

08

17

-
’

LB
LW
LW
LW
GFD
LF

TJ%

LW
LW
T

Lk

LADR
L.
LW
¥32
LF

LADR
LW
LW

LADR
LW
LB

LADR
LW
LW
LB

LADR
LW
LW
LW
LW
CALL

79

0,STATIC_TIMIT_BYTE_GSCALAR
2, INDEX

2,LEN

2,L0C

9

6, CONSTANT BYTE_SCALAR
2, PARAM_LOCAL_BYTE_SCALA;

2, PARAM_LOCAL_WORD_ARRAY
2, INDEX
, FIELDS

25, PARAM REMOTE_BIT._ARRAY
4
2, INDEX

5

9, PTR_UORD_ARRAY
2, INDEX

5

9,PTR_BYTT_SCALAR
4
4

9, PTR_BYTE_SZALAR
4

2, P_INDEX

5

P

-3

R_VICRD_ARRAY

h
i

>
=~
)
s}
~<

, P_INDEX

PO UM U PO O

(O8]



3a

80 Pig 5.6.
Symbol Clas:s Subcase Scalar Array
Static Internal L* 0,SB L* 1,SB
External findexl
L* 0,0000 L* 1,0000
Constart Based Ebase| “base
LO index
L* 7 L* 7
Variable Based Ebasel lvbase
LO index
L* 7 L* 7
Constar.t LO index]
L* 6,PB L* 6,PB
Parameter Local see automatic I LW 2,EP
Figure 5.6.3b ! Endgg
| -
]
B e 11,
Remote see automatic ; LADR A,size,EP
Figure 5.6.3b } LW 4
| fnded
! L* 5
Any Pointer, } ! 2 -index
no index bointeg ointer
L* 4 L* 4
Pointer, a-inde
with index (pointe pointer]
-index ip-index
L* 5 L* 5

Bit

LBL bitspec
LF mode ,address

fodex]
XBi

LF mode ,address

Field select,
1 argument

Fieidg]
LF

mode ,address

E l’ld(g
fields
LF mode ,address

Field select,
2 arguments

lengt
Eocatio

GFL
LF mode ,address

LF mode ,address




Fig 5.6.3a 81

SB - Stack base stack location

EP - Environment pointer sta:k location

PB - Program pointer program location

* - B (byte), W (word), or » (double) depending on variable size
size - "g" (byte), "9" (word), or "A" (double) depending on parameter size
A - Differential lex level from current to variable

i -~ 1 (BIT(1)), 2 (BIT(2)), 4 (BIT(4)) depending on bit size
0000 - 16 bit address of 0 filled in later by loader

local - See text

span - See text

mode - Mode of parent variable

address - Address of parent variaole

Code for loading constaat base: a load literal of some variety,
result is word

cbase

{vbase - Code for loading varial le base, result is word

I8 &

=

o]

Q

U]

bl
|

Code for loading array index, result is word
a-index| - Code for loading array index, result is word
p—inagk - Code for loading pointer index, result is word
ointer - Code for loading pointec
ength Code for loading bit field length, result is word

ocation| - Code for loading bit f:eld length, result is word

ields ~ Code for loading prefalricated field descriptor

o [ [FE]=1T |
P i
‘-?- - -

1)

el

o

a

]

- Prefabricated descriptcr of bit scalar:

Size Parareter ‘ Non Parameter
(right justified) (left justified)
Blt (l) o " "OF"
Bit (2) "le" "1E"
Bit (4) ||3( L1 " 3Cll

Figure 5.6.3a: Memory Reference Translation




82

Case

Dimension

Byte Size

Word Size

Fig 5.6.3b

Double Size

Local short- Scalar LB Z2,EP Lw 2,EP/2 LD 2,EP/2
span
aray | pmae |
LB :,EP Lw 3,EP/2 LD 3,EP/2
Local long- Scalar LADR A,8,EP + LADR A,9,EP LADR ALA,EP
sran, LB 4 . LW 4 LD 4
Remote I
i
!
Array LADR A,8,EP ; LADR A,9,EP LADR A,A,EP
|

[index]

LB 5

[ndes]
LW 5

LD 5

Note:

Figure 5.6.3b:

Terms defined in Figure 5.6. 3a

Memory Reference Translation for Automatic Variables




Fig 5.6.3c

83

Hardware
Address
Mode Effective Address Use
0] SB + dle6 Scalar static
1 SB + d16 + tos({x) Array static
2 SB + EP + ds Locel short-span scalar automatic
3 SB + EP + d8 + Local short-span array automatic
tos (x)
4 SB + tos(dl6) Non- indexed pointer, Local longspan scalar
auvtomatic, Remote scalar automatic
5 SB + tos(x) + Indexed pointer, Parameter, Local long-span
tosl(dlo) array automatic, Remote array automatic
6 PB + dl6 + tos(x) Constant
7 tos(x) + Base 1
4 * tcsl(dls)
SB - Stack base stack location
EP - Environment pointer stack location
PB - Program base program locat ion
d8 - Displacement of 8 bits
dlé - Displacement of 16 bits
dl8 - Displacement of 18 bits of which the low-order 2 are assumed 0O
tos - Top of stack, use indicatel in parentheses
tosl - Next to top of stack, use :indicated in parentheses

Figure 5.6.3c:

Mcmory Reference Mode Use




84 Sec 5.7

PROCEDURE REFERENCES

This section discusses the translation algorithms for a
called procedure. For the purposes of the present discussion
it is convenient to classify procedure in 3 groups: user ,
micro, and built-in. Arguments are translated in the same
manner for all procedures.

e Arguments: Scalar arguments are passed by value, array
arguments by address.

A scalar argument is any expression. (An expression may
result in an address.) The expression is evaluated,
which will leave the result in the stack.

An array argument 1s a symbol declared as an array but
referenced without a subscript. & LADR instruction is
generated, which will place the address of the first
array element in the stack.

Note that all arguments occupy a word, except for an
expression that results in a double size which will
occupy 2 words.,

The following example illustrates argument translation:

2: PROC: DCL /* &C */
SY3pUT EXT PROC,

BUF(79) BYTE ¢
CALL SYSPUT (BUF, LOW({("1 CO000" + 82)):

¢ Qopo * 5A 002B SSp 43
: 0003 * 50 140001 MARK 20,3YSPUT
7 0007 * 06 080008 LADE 8,BUF
11 000B * 42 00010000 LDL 65536
l1¢ 0010 * 41 50 LBL 80
18 0012 * 08 DBL1
19 0013 * 4r00 DADD
21 0015 * 37 SNGL
2z 0016 * 52 05 CALL 5

END P:
24 0018 * 54 EXIT



Sec 5.7

85

& User Procedures: A user procedure reference generates:

CALL name (agrl, arg2,

MARK flags,locat

CALL length

where <length> is the tot
words including the mark;
address of the invoked pr
<flags> contains several

nature of the call as dis
translation of the MARK 1

® Micro Procedures: A micr

CALL name (argl, arg2,
arqgl

arqg?

argn

MICR location

.. argn);

on

11 size of the argument list in

<location> is the PB
)cedure (which may be
vieces of information
‘ussed in conjunction
istruction in Section

» procedure reference

argn) ;

relative
external} ;
about the
with the
5.8.

generates:

where <location> is the d-:clared microstore address.

® Built-in Procedures: There are 17 built-in procedures all

of which generate in-line
declared, rather it is de
With the exception of the
definition is made in the
the environment built-in
in which it is invoked.

a built-in name to be use

an inner block.

code. A built-in is

not

ined when first encountered.
environment built-in,

the

outermost block, block 0;

is defined anew in each block
Jote that the language permits
1 as a user symbol; however,
there 1s no way to redefiie the symbol as a built-in in



86 Sec

Figure 5.7a shows the attributes given to the built-ins.

The following points are worth noting. The built-ins
shown with a return size may be invoked either in a
call statement or expression. The built-ins without
a return size may only be invoked in a call statement.
The return size of abs is the same as its argument;
that is abs is a generic built-in. The environment
built-in is best viewed as an array of pointers whose
first element is the first word of the current stack
environment; it has the properties of any other array
of pointers and generates code accordingly.

Arguments to built-in procedures are validated for
correct size and flagged if incorrect. This is the
only circumstance in the compiler where an expression
is not automatically converted to the desired target
size.



Fig 5.7a 87

Number of Argument Return Code
Function Arguments Size Size Generated
abs 1 Word, Word,
Double Double ABS!
carry 0,1 Word, Word TCAR?
Double
dble 1,2 Word Double DBL1?®
environment 1 Word Word B
high 1 Double Word POP
low 1 Double Word QMSQQL i
nop 0 -- - NOP
overflow 0,1 I Word, Word | TOVF?
Double
pnop 0 - - - pNoP
resume 1 Word -- RESM
Ssr 0 -- - SSR
supervisor 1 Word - SUPV
switches 0 -— Word ESW
trap 0 -- - TRAEVV
wait 0 -= -- WAIT
xim 1 Word Word Xiﬁ___f
prtnum 1 Procedure | Word LWL addr?®

1 DABS if argument size doible

2 Preceded by POP if argument size double, additional POP
if 1 argument form

No instructions generatec if 2 argument form

See text

PB address of start of procedure for internal procedures,
PLIB number of segment aj'pended to PRTNUM of procedure
for external procedure.

s W

Figure 5.7a: Built-in Function Translation




88 Sec

INSTRUCTIONS

This section discusses the translation of 32/S instructions
into loader directives. It is convenient to classify

the instruction set 15 ways accordinc to the opcode length
and operand type as shown in Figure 5.8b. The mapping

from instruction to class is shown :n Figure 5.8d. The
translation algorithms from instruction class to lcoader
directive are also shown in Figure 5.8b and are amplified
below.

Most instruction classes can occur only in-line. The
branch, GOTO, and pseudo-ADDR classes may also occur

out of line as fixups to previously generated directives
where a 0 was used for a PB address that was a forward

reference. Fixups are mechanized by changing the program
counter to the fixup location, performing the fixup, then
restoring the program counter. The original opcode is

not rewritten as it remains unchanged.

Absolute text is implied in Figure £.8b where a directive
of the form <0x> is shown. The <x> bytes of absolute
text are appended to an absolute text string if one is
already in progress. A new absolute text string is begun
if none is in progress or an object record boundary would
ke crossed.

The pseudo-instructions are created by the compiler and
do not exist in the 32/S processor. They have no opcodes,
consisting only of an operand.

The IADR, MARK, and GOTO instructions have an associated
flag byte of absolute text described in detail in Sections
9.9, 9.2, and 9.10 respectively of Reference 6. The

DLEX field, common to all instructicns, measures the

lex level difference ketween the current block and block

of interest; if the reference is to the current block,

DLEX is 0. TFor LADR the L-field encodes the size of the
referenced item even if use of this field is not enabled

by the I-flag which is set when LADR is used to compute

the effective address of an array element specified by

use c¢f the address operator ('@'). The D-flag is set for
all references except those tc static data (internal,
declared with STATIC area attribute, and external, declared
with EXTERNAL). For MARK the Z-flag is always off indicating
the called procedure is in the same segment, and the R-field
is set according to the declared return size: 0 for none,

1 for word, 2 for double.



Fig 5.8a 89

Mnemonic Opcode Class Mnemoric Opcode Class Mnemonic Opcode Class
ABS 1E 1 DSRA 4F11 2 SLC 33 1
ADD 20 1 DSRL 4F12 2 SLL 30 1
ADDR  pseudo 11 DSUR 4F01 2 SNGL 37 1
AND 25 1 DUP 1F 1 SRA 31 1
AW EO 9 DXOR 4707 2 SRL 32 1
AWM a0 9 sSSP 54 4

EQ 2a 1 SSPI 5B 1
BENT 53 1 ESW 05 1 SSR 5F 1
BEQZ 1a 5 EXIT 54 1 STB B8 9
BGEZ 1C 5 STD 80 9
BGTZ 1D 5 FILL 59 3 STF 88 9
BLEZ 19 5 STW BO 9
BLTZ 18 5 GE 2C 1 STWN A8 9
BNEZ 1B 5 GFD 2E 1 SUB 21 1
BRA 47 5 GOTC 57 8 sSupv 09 1
BRB 46 3 GT 2D 1 swW ES8 9
BRF 13 5
BRT 12 5 IXIT 55 1 TCAR 04 1
BTOS 15 1 TOVF 03 1
BXIT 58 1 LADE 06 6 TRAP 00 1
BYTE pseudo 12 LB F8 9

LBL 41 3 WAIT 5C 1
CALL 52 3 LD Cco 9 WORD pseudo 13
CASE 14 5 LDL 42 10

LE 29 1 XB1 oD 1
DABS 3E 1 L¥ DO 9 XB2 OE 1
DADD 4F00 2 LGE 3A 1 XB4 OF 1
DAND 4F05 2 LGT 3B 1 XCH 2F 1
DBB 16 3 LLE 39 1 XIM (6:1 1
DBL 17 5 LLT 38 1 XOR 27 1
DBLE pseudo 14 LT 28 1
DBL1 08 1 LW FO 9 07 0
DBL2 4F16 2 L* 7* 1 34 0
DDIV 4F03 2 LWL 40 4 35 0
DDUP 3F 1 43 0
DEQ 4F0A 2 MARK 50 7 44 0
DGE 4F0C 2 MICF oC 4 45 0
DGT 4F0D 2 MOD 24 1 49 0
DIB 48 5 MUL 22 1 4cC 0
DIV 23 1 MULL 36 1 4D 0
DIVD 4F14 2 4E 0
DLE 4F09 2 NE 2B 1 4F¥0QE 0
DLT 4r08 2 NEG 10 1 4FOQF 0
DMOD 4F04 2 NOP 01 1 4F15 0
DMUL 4F02 2 NOT 11 1 4F17+ O©
DNE 4FO0OB 2 51 0
DNEG ki 1 OR 26 1 5D 0
DNOT 3D 1 5E 0
DOR 4F06 2 PNOE 02 1 6* 0
DSBB 4n 3 POP OB 1 90 0
DSBL 4B 5 28 0
DSLC 4F13 2 RESM 56 1 C8 0
DSLL 4F10 2 D8 0

Figure 5.8a: Instruction Set Classification




Lengthi Membership

Inline Directives

Fixup Directives

Opcode Operand i Total I
Class| Description’ Description
0 Unused
[ . i
1 Short None 1
. - i
2 |Long None 2
3 |short 1 byte literal 2 '
4 |rong 2 byte literal. 3
5 |pranch PB address "3
6 LADR 'Flags + stack ' 4
address
| :
7 MARK 'Flags t PB !
‘ address ;
g |coro . rlags + B 4
1 address
(; V B v if,—.uﬁq‘:’-‘ h ) V 10:)"
=z e, llU.LX rvaraico i S |
Reference '
S (S - N
10 oL 4 byte Jiteral | &
P S P
11 |aDbDR fPB address P2
12 BYTE l byte llteralz 1
13 WORD 2 byte literal 2 ;
BN e L
14 DBLE 4 byte literal 4 |

1

ABS
DADD ..
BRB ...

MARK

N

- 02/06+flags,

Never generated
Oi/op
02/4F+op
02/op+lit
03/0p+lit
0l/0p, 8B/PB address

02/EP address

8A/EDSN
8C/SB address

02/0000

02/50+flags, [02/EPSN
{BB/PB address

v2/57+flags, 8B/PB address
MY /A Qr /o 2AARAVvAn~
ViSO, Qv /o adGQicos
8A/EDSN
01/1it
8B/PB address
none
05/42+1it

' 8B/PB address

0l/1it

02/1it

04/1it

!

[ DU —

Q3/f1xup, 8B/PB address, 83/current

(automatic variable)
(external static variable)
(internal static variable)
{external procedure)
(internal forward procedure)
(1nternal backward procedure)

i
§3/fixup,
83/current

P

Ol/flags, 8B/PBE address,

madac Nl
\uluuca vl g

(modes 0&l,
(modes 2&3)
(mode 6)

(modes 4&5&7)

Reb e 1 v ak
internaxs var O

i e}
external variable)

83/f1xup, 8B/address, 83/current

Ob



curre
EDSN
EPSN
fixup
flags
lit
op

nt -

ABS

ADD
AN

BENT
BTOS
BXIT

DABS
DBL1
DDUP
DIV

DNEG
DNOT
DUP

EQ
ESW
EXIT

GE
GFD
GT

current PB location 3 DADD
External Data Segquence Number DAND
External Procedure Sequence Number DBL2
fixup PB location DDIV
see text DEQ
literal text or absolute operands DGE
opcode
“  BRB
All opcodes with no mnemonics shown at
the end of Figure 5.8b. CALL
IXIT MOD  TCAR > BEQZ
MUL TOVF BGLZ
E MTIT ™Y TRAT SRR
LGE BLEZ
LGT NE WAIT BLTZ
LLE NEG
LLT NOP XB1
LT NOT  XB2 R \%
LO XB4 AWM
Ll OR XCH
L2 XIM
L3 PNOP XOR
L4 POP
LS
L6 RESM
L7
L8 SLC
L9 SLL
L10 SNGL
L1l SRA
L12 SRL
113 SSPI
L14 SSR
L15 SUB
SuUpv

Figure 5.8b:

Instruction Translation

DGT
DIVD
DLE
DLT
DMOD
DMUL

DBB
DSBB

LB
LD
LF
Lw

DNE
LOR
DSLC
DSLL
DSRA
DSRL

FILL

CASE

STB
STD
STF

DSUB
DXOR

LBL

DBL
DIB

wobl

STW
STWN
SW

qg°s brta

16



92 Sec

LOADER DIRECTIVES

This section describes the loader directives used by the
compiler.

Directives are written in ASCII on 80 byte fixed length
records. Each record consists of a 5 byte preamble and

up to 75 bytes of actual directives. Directives may cross
record boundaries (although the compiler does not take
advantage of this facility). The preamble consists of:

e Byte 1, Logical Record Sentinel: Always contains a
pound sign ('#'). This permits logical records to be
dissociated from physical records {(although the compiler
does not take advantage of this facility).

e Byte 2, Format Indicator: Always contains a blank
("B) indicating ASCII format. The loader can accommodate
a binary format (although the comp:ler does not take
advantage of this facility).

e Byte 3, Checksum: The checksum of each of the subsequently
used bytes, starting with byte 4. The checksum is
formed by byte addition with end-around carry.

e Byte 4, Sequence Number: The record number starting with
1 when the external procedure star<s. If there are more
than 255 records, the sequence number repeats going
from 255 to 1.

e Byte 5, Byte Count: The number of bytes of load text in
this record.

There are 15 loader directive types of which 2 are used
only by the cross compiler but are included here for
completeness. The first byte of each directive determines
the directive type. The number of bytes in the directive
is conditioned by the directive type. The directives are
summarized in Figure 5.9a and described in detail below.
The diagrams with each directive show the directive code,
supporting operands, and the length of each field.

e 0 to "7F', Load Absolute Text: Specifies that the next
<code> bytes contains absolute tex:. The loader will
insert the text in program space without relocation.

The loader program pointer will be advanced by <code> bytes.

<code>
code! text ode

0 <= code <= "7F"

5.9



Sec 5.9 93

e "8l", Begin External Procedure: Signals the beginning
of an external procedure (or other external block).
The loader will prepare for a new external procedure.

“8]_" 1
e "82", End External Procedure: Signals the end of an
external procedure (or other external block). The static

field contains the number of words of static storage
rounded up a word boundary. The possible error codes
are described in Section 4.1. The loader will increment
its static relocation counter by the static length.

1

mgant static length 2 error code

e "83", Set Program Pointer: Specifies a non-sequential
change to the program pointer. The loader will set its
program pointer to the location field (after relocation).

ng3n! location

e "84", Define Cross Compiler Main Procedure Entry Point:
Identifies the name of a main procedure compiled under
the cross compiler. Dirzctive "90" performs a similar
function for the self comnpiler. The name field contains
the first 8 characters of the entry name; characters
beyond the 8th are lost and a short name is padded with
trailing blanks. The lo:ation field contains the
relocatable address of the first instruction; 0 is always
used for the compilers at hand. The loader will add the
name to its symbol table.

"gqnt name 8 location 2
e "B85", Define External Procedure Entry Point: Identifies
the name of an external »rocedure. Use the same as

directive "84".

nggnl name 8 location




94

Sec 5.9

"86", Define External Interrupt Procedure Entry Point:

Identifies the name of an external interrupt procedure.
Use is the same as directive "84".

2

"ge"! name location

"87", Define Cross Compiler Externzl Variable Reference
Number: Identifies the name of an external variable
compiled under the cross compiler and assigns to it a
reference number for later use by directive "8A".
Directive "8F" performs a similar function for the self
compiler. The name field contains the first 8 characters
of the entry name; characters beyond the 8th are lost and
a short name is padded with trailing blanks. The size
field measures the extent of the variable in bytes.

The loader will add the name to its symbol table.

g | reference 2

ngynl size name
8 number

"88", Define External Procedure Reference Number: Identifies
the name of an external procedure and assigns to it

a reference number for later use by directive "89".

The name field contains the first 8 characters of the

entry name; characters beyond the 8th are lost and

trailing blanks ('B') are used to pad a short name.

The loader will add the name to its symbol table.

reference

nggn! name 8
number

"89", Reference External Procedure: Invokes an external
procedure whose reference number was previously defined
in an "88" directive. The loader will insert the runtime
address of the referenced external procedure. The loader
program pointer will be advanced by 2.

reference 2

n nl
89 number




Sec 5.9 95

e "8A", Reference External Variable: Invokes an external
variable whose reference number was previously defined
in an "87" or "8F" directive. The loader will insert
the runtime address of the referenced external variable
in program space. The loader program pointer will be
advanced by 2.

" wl reference 2
8A number
e "8B", Relocate Program Address: Specifies relocation

of a program address. The loader will insert the address
field in program space rel »cating the address with respect
to the loadtime program base. The loader program pointer
will be advanced by 2.

"gR"! address

e "8C", Relocate Stack Address: Specifies relocation of
a stack address. The loader will insert the address
field in program space relocating the address with
respect to the loadtime stack base. The loader program
pointer will be advarced kv 2.

ngcn! address




"8F", Define Self Compiler External Variable Reference
Number: Identifies the name of an external variable
compiled under the self compiler and assigns to it a
reference number for later uvse by directive "8A™.
Directive "87" performs a similar function for the cross
compiler. The name field ccntains the first 8 characters
of the entry name; characters beyond the 8th are lost
and short name is padded with trailing blanks. The

size field measures the extent of the variable in bytes.
The <attributes> field encodes the variable data type.
The loader will add the name to its symbol table.

Sec

{“8}?‘"1 attributes ! size

2 i g| reference,
name
number

/

units

0.y 0.4

size

<units> <slze> Declared Size

1 1 BIT (1
2 BIT (2
3 BIT (4

W N
=3
@]
W
o

DOUBLE

POINTER TO BYTE
POINTER TO WORD
POINTER TO DOUBLE

[OS IR

"90", Define Self Compiler Main Procedure Entry Point:
Identifies the name of a main procedure compiled under
the self compiler. "84" performs a similar function for
the cross compiler. Directive use is the same as
directive "B84".

"ggn! name 8 location 2

5.



Fig 5.9a 97
Program
Loader Directive Pointer
Code Length Change Description
0 to "7F" <code> +1 - code> Load absolute text -
"g1" 1 -- Begin external procedure
"g2" 4 - End external procedure
"83" 3 set Set program pointer
"84 11 -- Define cross compiler main
procedure entry point
"gs5" 11 -- ! Define external procedure
| entry point
; i
"ge" 11 g -- Define external interrupt
i , procedure entry point
| |
"87" 14 1 -- Define cross compiler
] external variable
| reference number
"g8" 11 i -- Define external procedure
; reference number
"8a" 3 \ 2 ; Reference external procedure
"8A" 3 2 i Reference external variable
i
"8B" 3 2 Relocate program address
"gc" 3 2 Relocate stack address
"8F" 14 - Define self compiler external
variable reference number
"go" 11 - Define self compiler main

procedure entry point

Figure 5.9a:

Loader Directives




98 Sec 6.0

INTERNAL TRANSLATOR OPERATION

This final chapter is concerned with internal translator
organization and operation. It is of interest when the
compiler is being maintained or enhanced.

The routines of the compiler may be broadly classified

as passive or active. The passive routines are defined
as being independent of the language at hand, and could
be applied to another languvage. The passive routines
deal with the system interface I/0, utilities, symbol
table, scanner, and code generation. The active routines
are defined as being dependent on the language. They
correspond to, and are named for, the syntax equations

of Appendix L. The active routines deal with declarations,
block structure, statements, expressions, and operands.
This chapter discusses the passive routines first and

the active routines last.

Several of the appendicies are included to illuminate
translator structure. The lLoad map of Appendix T lists
all external procedures anc¢ variables giving their
dynamic locations. The flag references of Appendix H
show from which procedure =ach flag is generated; a
procedure is listed more than once if it generates the
flag in more than one circimstance.

The external procedure references of Appendix J show

from which translator procedure each translator and system
procedure (shown starred) is called. There is exactly

one uncalled procedure, MPL, the main procedures. Appendix J
is the inverse mappinc¢ of the external procedure references
shown in the symbol table listings when the compiler

itself translated.

The external variable referances of Appendix K show
from which translator procedure each external variable
is referenced. Each variakle is referenced in MPL, the
main program. Once again, Appendix K is the invVerse
mapping of the static external references shown in the
translated compiler symbol tables.

Several coding conventions are followed throughout the
compiler. All external variables are defined and
initialized in the main prcgram (MPL); no use is made of
static variables. I/C buff»r lengths are always l-indexed
(except when the buffer is lefined when they are 0-indexed).
The symbol table size may exceed 32K so logical operations
are substituted for arithmetic operations in symbol

table addressing. All routines that return a true/false
response and all flags use ) for false (off) and 1 for



Sec 6.0 99

true (on). Unless otherwise noted, all variables are of
size word and all buffers and string text of size byte;
bit variables are never used, double variables are only
used during constant conversion and lccation counter
updates.

The basic translation strategies uzed are one-pass,
top-down parse, in memory op=raticn, and hash-addressing
of symbols.

Only a single pass 1s made over the source program. One-
pass translation saves time, simplifies external operation,
and eliminates communication between passes. However,
one-pass translation complicates the processing of

forward labels and requires code generation to allow for
fixups.

The parse of the source program is strictly top-down. This
makes i1t possible for the translator structure to

follow the language syntax directly. Further, a top-

down parse makes the generation of diagnostics simple and
complete.

Translation occurs in memory. All translation context

is retained in translator variables and the symbol table.
In-memory operation removes dependence on external
peripherals, increasing reliabilitv, simplicity, and

per formance at the cost of a modes: amount of additional
mnemory .

Symbols of the target program are addressed with a

hashing technique that makes symbol access time independent
cf symbol table size, increasing performance. Once

again, this increased speed is paid for with a modest
amount of additional memory.

Although the compiler is a fairly large program, the only
genuine logical complexity results when a translation
algorithm cannot be completed on-the-fly. This occurs
with variable allocation, forward bhranches, forward calls,
and statement type determinazion. Several tactics are
used as a substitute for the desired ability to look
ahead: the scanner can back up, the code generators can
fixup previously generated code, the symbol table can

link entries in chains, and when a.l else fails, external
flags are maintained to indicate translation state.



100 Sec 6.1

SYSTEM INTERFACE

The compiler is entered vic the main program MPL. All
table size parameters are defined there (as literallys)

as are all external variab.es. Compiler memory use is
shown in Figure 6.la. The program base (pb) and program
length (pl) are extracted 'rom the PLIB and the top of the
compiler computed in stbasc0 as a base address. After
room is left for the stack (stacksiz bytes) and sort
buffer (4 * width4 bytes) the bottom of the symbol table
is established as stbase (:¢lso a base address). The
symbol table continues upw«rd for textmin0O bytes to the
top of memory. (Note that the addition of memory

beyond 64K is not automatically used by the symbol table
because of hardware restrictions.) Memory checksums are
computed in checks for the program space occupied by

the compiler: from pb for pl bytes.

External variable initiali:ation is performed in MPIL.
Variables which are used a: static storage are set just
once. Before each externa. procedure is translated the
non-static external variab)es are reset, the stack

preset to "55" so that stack use may be measured, and the
hash table cleared. F[Ixterral procedures are translated
until a physical EOF is c¢ncountered.

Return to the operating system is via EXIT which sets

the second word of the curi2nt mark to -1 which causes

a system return. (Were extoernal labels permitted, a
normal return from the mair program would have been used.)

Memory integrity is checkec by MEMCHECK at the end of

each external procedure, ard if enabled (V-toggle), before each
source record 1is read. The checksums previously computed

are validated, if enabled iM-toggle) and the unused

portion of the stack deternined and noted in stackuse.

Toggles state is maintainec in the byte vector toggle
which is initialized once per external procedure by
SETTOGS (if enabled by P-tcggle).



Fig 6.la
64K~
name 1 name 2 literally
text
ref 1 ref 2 ref 3 ref 4
Symbol Table
entry 2
entr 1
stbase- 7
Sort Buffer
Stack
SB, s3tbasel-
Program
PB-

0-

Operating System

Figure 6.1la:

#widtha
#width4

#widthd

#stacksize

PL

Memory Configuration

101

textminQ

textmin

itemmax




102 Sec 6.2

INPUT/OUTPUT

I/0 consists of physical 1’0, formatted output and
radix conversion.

Source input is done by SRIAD. The source buffer is
sobuf of size sosize; each read increments the source
record counter line. The aictual physical input is done
by the system routine SYSG:T which manages the SYSIN
system file. If objec 11 source is enabled (#-toggle),
SREAD loops until a true ssurce record is obtained.
Should a physical EOF occu- a normal return to the
system is made if eofflag ‘controlled by MPL) is set,
otherwise an error re-urn .s made. An EOF is legal only
between external procedure:. Note that object in source
is processed before an EOF thus object in source may
occur after the final prog am.

Listing output is done by ‘RINWRIT. The listing buffer
for the annotated source i .istbuf of size listsize;
the first byte is used for carriage control. The actual
physical output is done by the system routine SYSPUT

which manages the SYSOUT s 'stem file. PRINWRIT 1s used for all

listing functions (annotat.-d source, generated code, etc.)
and handles page titling, —age numbering, forms control,

and line width formatting. The current page number is
maintained in page, the cu rent line in pagelin. The
type of listing line 1s pa sed to PRINWRIT so that the
proper title may be used: 'A' selects the symbol table,
'Y' the summary, and anyth ng else the source. The

title skeleton is referenc: d through titleptr and

contains the date, time, a; d version which are built
by MPL.

Object output is done by OVRITE. The object buffer is
objbuf of size objsize +1; an extra byte is added at the
front (high-order position for carriage control when
the object is listed with the H-toggle. The actual
physical output is done by the system routine PUT

which uses a file defined ty the compiler (unlike the
above I/0). The working b\ ffers are objbufl and

objbuf2 both of size ggi§i;9+l, the FCB is objfcb. This
file is opened (and closed) only if used; objecton is
set when the file is openec. 1I/0 errors are reported

to the compiler which generates a compiler flag. The
number of object records, even if not written, is
maintained in objitem for tse by SUMMARY.

The annotated source listiry is constructed by LIST, an
error flag listing by FLAG, the symbol table listing by
LISTST, the summary listinc by SUMMARY, the object
listing by OWRITE, and the -ode listing is begun by
LST-ADR, continued by the chde generation routines and
finished by OUT-WRT.




Sec 6.2 103

The listing of the annotated source is normally delayed

a lire to permit the level annotation to reflect translation
status after line translation. The argument to LIST

is a flag indicating if the listing of the next line is

to be delayed. A call to LIST with the flag set is

made before an error flag, the code, or the object 1is
listed. The current state of the buffering 1is maintained

in listwait; set means delay the next line.

The scrt algoithm used by LISTST to sort the symbol
table is the classic Floyd tree sort (see Reference 7) ;
it is an in-place sort whose sort time is proportional
to N*log(N), when N is the number of items.

Formatted output is aided by FORMAT which fills an output
buffer according to a format specification and a list

of arguments. Text is transferred directly from the
format specification to the output buffer with the exception
of certain reserved formatting characters. A period ('.")
causes decimal conversion of the next argument into the
next 5 positions of the output buffexr right justified

with leading blanks. A dollar sign ('$') causes
hexadecimal conversion of the next argument into the

next 4 positions of the output buffer right justified
with leading zeroes. A pound sign ('#') inserts the next
argument as text in the next 2 buffer positions. A

slash ('/'! inserts a carriage return/line feed in the
next 2 buffer positions; this character cannot be used
with the listing file as it is incompatible with the line
control in PRINWRIT. Formatted outout to the listing
file is performed by PRINT, to the c-onsole by TYPE.

Radix conversion from internal binary to external ASCII
is performed by a set of routines. The basic binary

to decimal routine is B2010 which converts 32 bits to
right justified form with leading z=roes; B2D10L leaves
the result left justified; B2DNR leaves the result right
justified with leading blanks in a specified field
width. The basic binary to hexadecimal routine is
BIN2HEX which converts 4 bits to a hexadecimal character:
3IN2HEX2 converts 8 bits to 2 characters with leading
zeroes; BIN2HEX4 converts 16 bits to 4 characters with
leading zeroes.




104 Sec 6.3

UTILITIES

The utility routines move cata, manipulate the location
counters, search strings, .nd generate diagnostics.

A field is set from anothe: field with MOVE, a field

is set to a character with SET, and a field is set to

a symbol name with MOVEST. 1In all cases the length of

the target field is limitec to the range 0 to 255 inclusive
to protect against destroy:ng program space. MOVEST uses
the current symbol table e: try.

The compiler maintains 3 lccation counters: pc (program
counter), sc (stack counte:), and xc (static counter).
They are incremented with _NC-PC, INC-SC, and INC-XC
respectively; sc is decremented with DEC-SC (pc and

xc cannot be decremented). The increment (or decrement)
1s passed to these routine: in double size and all
computation is performed 1i: double precision. This
ensures that any overflow n the construction of the
increment c¢r in the incrementing itself is detected.

The maximum value achieved by sc(l) (the outmost block
with statements) 1s monitored in sclmax.

INDEX provides a primitive substring capability. The
prototype string is in com iler infix format (see

Section 5.2.3) with items :eparated by periods ('.'):
the target string is in syribol table string format (see
Figure 6.4b). INDEX retur:s the ordinal item number of

the target string in the prototype string, or 0 if not
present.

Flags (detected errors) ar« generated by FLAG, fouls
(consistency checks) by FOI L. The listing buffer for
flags is flagbuf of size 1 stsize; the first byte is

used for carriage control. A flag count is maintained

in aborts, blunders, error:., warnings, and warningt, a1}
warnings are counted in wainingt, only unsuppressed
warnings in warnings. A mcximum of errmax blunders and
erros is allowed. The lin« number of the most recent

flag is maintained in last'lag. Flags are listed only

if the listing is sure not to generate another flag.

The offending flags are se ected by the internal procedure
LISTOK which currently always returns true. The processing
of aborts avoids the possil ility of secondary aborts

by temporarily suppressing aborts (X-toggle).




Sec 5.4 105

SYMBOL TABLE

The symbol table occupies all of unused meinory from
stbase to 64K, a distance of textmin0 bytes (see Figure
6.1a). Each entry consists of a 4 * width4 (currently
16) byte fixed length part and variable-length supporting
text. The fixed length entries are built from the bottom
of the table up and at any moment occupy itemmax bytes.
The variable length text is built from the top of the
table down and at any moment has reached textmin bytes
from the bottom of the table. When the fixed entries

run into the variable text (itemmax exceeds textmin)

the symbol table is full. All symbol table text is
retained for eventual inclusion in the symbol table
listing; there is no way to discard an entry.

Symbol table entries are referenced by the use of base
addressing: stbase is the base address of the first
entry, itembase the base address of the current entry
of interest. The base addresses of successive entries
differ by width4.

The fixed-length part format of a symbol table entry is
shown in Figure 6.4a. The name is stored in the descriptor
format shown in Figure 6.4b. The use of most of the

entry fields is described in conjunction with the symbol
table listing in Section 3.3.7, the remainder are

described here. The entry link field is used to link
variables together, hold the do levz2l number for procedures
and labels, and is a text pointer for literallys (byte
address relative to stbase). The d=f field holds the
definition line number, the ref linx field a link (word
index relative to stbase) to the next reference; a

0 liak indicates the end of the ref=zrence chain. The

sparz field indicates an active basz in a base chain,

and an active parameter in a name list.

Of tie 16 bytes in the fixed length entry, 5 are poténtially
unus2d. The high order byte of the length field is

always 0 since names are restricted to 2%5 bytes in

length. The ref link field is unused if references are
suppressed (R-toggle) in which case the def field may

be r=garded as extraneous.

The variable-length text part of the symbol table consists
of name text, literally text, and -eferences. Text may
start on any byte, references are adjusted, if necessary,
to szart on an even byte so that hardware word indexing
works; this adjustment leaves an occasional unused byte.
Name text 1s pointed to by the text pointer field,
literally text by the entry link field (for literallys
only', and references by the ref link field.



106 Sec 6.4

To speed symbol entry locat.on, symbol entries are
addressed through an auxillary hash table, hashtab, of
size hashsize. The hash table is of fixed length; each
hash table entry is a pointer to symbol table entry

(as a base address); an unused hash table entry is 0. The
hashing algorithm computes an initial hash table address
and increment based on the symbol name. The block
number (which is required to uniquely define a symbol)
cannot be used as input to the hash function as it may
change in the case of a forward label. The hash table
length is chosen as prime so that secondary probes are
guaranteed to hit each cell of the hash table. Hash
table activity is monitored by noting the number of
accesses, accesses and the number of hash table probes
that result in a collison, colisons; the total number of
probes is accesses + colisons.

Routines are provided to lo-:-ate entries, add entries,

put and get attributes, and compose attributes. The

hash table entry of interest is always contained in
hashloc, the symbol table entry of interest in itembase.
Except for routines which lscate an entry, the convention
is followed that a routine ~hich alters hashloc or
itembase restores it.

SEARCH locates an entry of the specified name at the
specified block level. SEARCH contains the hashing
algorithm. STATEST searches for the specified name at
all active lex levels. Botnh routines leave hashloc

set to the located entry, or if none is present, to the
place it will occupy; itembase is set only if the entry

is successfully located.

Entries are added with DEFST and REFST. Using NEWENTRY,
itembase is set to the next available value, hashtab (hashloc)
to itembase; the text pointar, length, block and lex

fields are set {(the current block is used for block and

lex); the number of symbol table entries, symbols,

is incremented. Using INSERTST the name text is moved

to the upper part of the symbol table. Should the symbol
already exist DEFST and REFST simply return with

itembase set to the desired entry.

DEFST is called when the desired symbol is the object of
a definition: the symbol search occurs only at the
current level. A new symbcl sets the fields noted above
plus def and state.



Sec 6.4 107

REFST 1s called when the desired symbol is the obiject
of a reference: the symbol search occurs at all lex
levels. A new symbol sets just the fields noted above.

If the symbol is environment (checked by NAMESAME,) and

an old copy is found at an outer level, it is redefined
at the current level. If the symbol is new and is a
built-in, the definition is made in block 0 and the value,
size, units, scope, state, and class fields set.

Attributes are added to a symbol with PUTST. Field

codes and field values are included in Figure 6.4a.

The desired entry is specified by itembase. Attributes
are extracted from an entry with GETST which is symmetric
with respect to PUTST except for the ref field (code 9):
PUTST adds a referenoe to the end of the current chain,
GETST returns the ref field, rather than a ref element;
the ref chain must be burst manually. Each addition to

a reference chain increments the total reference count,
refs.

Several routines compose the attributes. BYTESIZE checks
for units of byte and size of 1. LABDOBEG checks for

class of label, do, or begin. GASZ GISU, and GPSZ
translate the size and units field in . different ways.
PROC-ID translates the class, block, scope, and state
attributes into the different procedure types. VAR-ID
redefines the class attribute. GET-LEX computes the

current differential lex level.

ADD-REF is a short form of the PUTST call for adding a
reference to the reference chain.

Symbol table entries are linked together with ENCHAIN and

the chains are burst with DECHAIN. Chains are referenced

by a 2 word descriptor that points to the head and

tail elements of the chain as showrn in Figure 6.4c.

The chains work as FIFO lists: ENCHAIN adds to the tail

and DECHAIN removes from the head. Internal chain links

are maintained in the entry link field as entry base addresses;
0 indicates the end of a chain. Ncte that an entry may

be ¢cn only one chain at a time. The chains used are

shown in Figure 6.4d.




108 Fig 6.4a
(0) 2] 2 | (2) 1}(3) 1} (1) 2 1 (5) 2 (6) 21 (7 2 (8) 2
text ptr length class]{block]entry 1l:nk | value flags def ref link
1 g
~ . I P
¢ - | -
$, e = — T -
n| 2y mj £ : I lipk?|res |
! 7
(10) (11) (12) (13) (14) (15) (16) (17} {
0, 1 o,#] o, 2]01 o.2f) o,2] o.2] 0,2 eg
lex scop: size junits}init jorg 0 ?lref ?
spare state
Code Interpretation
Code Field Class Scope State Size Units Init Org
0 | text ptr -- -- undefined -- -- -- -
1 length automatic -— defined 1 bit no scalar]
2 class cbase internel 2 byte yes array
3 block vbase externe L 4 ptr - -
4 entry link | label
5 value parameter
6 flags procedure
7 def main proc
8 ref link int proc
9 ref micro proc
10 spare builtin
11 lex literally
12 scope static
13 state do label
14 size begin label
15 units Legend:
16 init
17 org (field code) bytes.bitsg
field name
Figure 6.4a: Symbol Table Entry




Fig €.4b

Pointer:

descriptor 2 ]
pointer

e

/

A

1 1 1

<F—-text length —p

Descriptor:
text i
pointer
text g
length
Text: é
Legend:
Name :
size (bytes)
function
Note:

Descriptor pointer is a SB relative Lyte address,
text pointer is a stbase relative byte address

Figure 6.4b:

String Format

109



110

Chain Descriptor:

head )
pointer “\\
tail a
pointer R\T>
. é’ First entry:
/ entry 2
, link
| ’
S e T e
i é: Middle entries:
! 2
}‘,
—
3 QC Last entry:
2
0
Legend:

Name:

Note:
Pointers and entry links a- e base addresses

size (byt -s)

function

Figure 6.1c:

Chain Format

Fig 6.4c

Symbol
Table
Entries



Chain Name Use Reset By: Enchained By:| Examined By: Dechained By:

labchain Labels in label list LABELS LABELS - BLOC, GROUP

namchain Names in declaration DCLELEMT DCLELEMT - DCLELEMT
name list

parchain Parameters in PROCHEAD PROCHEAD DCLuiEMT PR&EEBﬁY
procedure head

varchain Variables in PROCBODY DCLELEMT -— PROCBODY

declaration set

Figure 6.4d:

Use of Chains

Pt -9 bta

11T



112 Sec 6.5

SCANNER

The scanner converts the s»urce stream into tokens, the
smallest unit of syntactic significance. The language

at hand in context-free: * token may be identified
independent of the context in which it appears; this

is accomplished at the cos- of reserving some identifiers
for use exclusively as keywords.

The main routine of the scinner is TOKEN which returns
the next token as a token ~—ode. The possible token
codes are shown in Figure +.5a.

If the token is a constant (code 1) the associated constant
value is contained in value which is of double size.

If the token is a symbol (code 2) the associated name

text is converted directly to the descriptor string

format of Figure 6.4b usin«a pointer ptr and descriptor
desc. If the token is a s-ring (code 3) the associated
string text is converted tc the same descriptor-referenced
string as for symbol text .bove; the conversion for a
string, however, removes de-limiting quotes and collapses
internal doubled single quctes into the single quote

they represent. Also the ‘irst 4 characters of a string
are moved to value; if there are less than 4, characters
are left justified wi<h treiling zeroes.

To gain speed, TOKEN does « 28-way branch on the first
character of a token to access the proper token processor.
The 28 token cases are shown in Figure 6.5b. The special
character and operator tokens present no special problems;
the semicolon token (';') :ncrements the statement
counter stmts. Constants ¢re processed by the auxillary
external routine CONSTUNT which checks for 32 bit
precision overflow. Strincs are processed by the
auxillary external routine STRING which does the quote
elimination and checks for 255 character overflow.
Identifier text is built by the internal routine BUILD
which is optimized for speed and does case shift and

checks for 255 character overflow. Identifiers are
potentially (in the order c¢f precedence) keywords,
literallys, or symbols. Keyword determination is made

by the internal routines KEYX.

Literally determination is done by checking the symbol

table for a symbol of this name and of class literally.

Should a literally be present, the literally level is

incremented and TOKEN recurs. Token recursion depth is
maintained in tokenlev and limited to maxlit; tokenlev

differs from litlev ir some instances of (illegal)

literally loops. When a literally is active source text is taken



Sec 6.5 113

frecm the literally text previously saved in the symbol
table when the literally was defired. To mechanize
literallys the literally level 1is maintained in litlev
where level 0 is the source file. For each level

litbase (litlev) contains the symkol table entry value of
itembase 0f the active literally, litcursr(litlev) the
Cheracter count of unused text, rptflag(litlev) the

repeat status of the current charzacter, and charsave(litlev)
the current character itself.

The: scanner provides for double token reuse: the current
and previous tokens are retained for possible reuse.

The reuse level is contained in reuselev. The first
call to REUSE causes the next call to TOKEN to reuse
the current token. The second ca’l to REUSE, without

an intervening call to TOKEN, causes the next call to
TOKEN to reuse the previous token: a subsequent call to
TOKEN without an intervening call to REUSE causes TOKEN

to reuse the original tcken. Both REUSE and TOKEN

protect against an illegal reuse “evel. The first

token reuse is mechanized by swapping ptr with ptrold

and tcode with tcodeold. The second reuse just increments
reuselev. T

Text from the source stream is distinguished as being
composed of logical and physical characters. A logical
character allows for leading blanks and comments and 1is
processed by LOGCHAR; the first character of any token
is a logical character. LOGCHAR processes the toggles
operators. A physical character is the next character
of the source stream and is proce:sed by PHYSCHAR;

th2 subsequent characters of most tokens are physical
characters.

Physical character processing provides for single
character reuse. Reuse is invoked by a call to RPTCHAR
which guards against double reuse. A repeat flag vector,
rptflag, is maintained for each literally level. Physical
Character processing also processes early source record
truncation (?-toggle) and gets the next character from

the source record or literally as appropriate. The
current character of the source buffer, sobuf is indexed
by cursor. -

Several routines compose the basic scanner routines for
convenience. LOOKFOR looks for the specified token and,
if absent, invokes reuse. SEMI looks for a semicolon
token and, if absent, generates a flag. SEMISCAN looks
for a semicolon token and, if absent, generates a flag
and scans tokens until a semicolon in encountered.

SYMBOL reclassifies the next token as a non-identifier,
new symbol, old symbol, or keyword. KONSTANT looks for

a numeric constant (CONSTUNT) or string constant (STRING).




114

Special Characters

21,

22

23
24§

25 @

26 (

27 )

Operators --

201 +
202 -
203 4
204 *
205 /
206 MOD
207 MULD
208 DIVD
209 SLL
210 SRA
211 SRL
212 SLC
213 <
214 <=, 4>
215 =
216 t=
217 >=, 4<
218 >
219 &
220 |, !
221 XOR
222 =
223 +=
224 LLT
225 LLE
226 LGE
227 LGT
228 LEQ
229 LNE

Figur

Classe=x

VTN O

21- ©
101-12
201-229

e 6.5a:

other
constant
symbol
string

special characters

keywords
operators

Keywords --

101
102
103
104
105

106
107
108
109
110

111
112
113
114
115

116
117
118
119
120

121
122
123
124
125

126
127
128
129
130

131
132
133
134
135

Token Codes

Fig 6.5a

BASED
BEGIN
BIT
BY
BYTE

CALL

CASE
CONSTANT
DECLARE, DCL
bo

DOUBLE

ELSE

END

EOF

EXTERNAL, EXT

FOREVER

GO

IF

INTERRUPT
INITIAL, INIT

LITERALLY, LIT
MAIN

MICRO

POINTER
PROCEDURE, PROC

PRTNUM
REPEAT
RETURN
STATIC
THEN

TIMES
TO
WHILE
WORD
GOTO



Fig 6.5Db 115
Class Case Leading Character Token Code
Junk 0 other 0
3ingle character 1 ’ 21
2 ; 22
3 $ 24
4 @ 25
5 ( i 26
6 ) P27
7 - i 202
8 * L 204
9 = ¢ 215
10 & 219
11 ;s ! 220
Possible double 12 : | 23, 222
character 13 + i 201, 223
14 4 i 203, 214, 216, 217
15 / 1 205
1o > b217, 218
17 < ©o213, 214
— . 4 R
String 18 ! 3
Bit string 19 " 1
e e |
Decimal number 20 0o, 1, 2, 3, 4, 5 1
€, 7, 8, 9
S : ]
Known symbol 21 #, H, J, K, N, O, O, 2
u, v, Y, Z,
Possikle keyword 22 A, B, C 2, keyword
23 D, E 2, keyword
24 F, G, 1 2, keyword
25 L 2, keyword
26 M, P, R 2, keyword
27 s, T, W, X 2, keyword

Figure 6.5b:

Token Cases




116 Sec 6.6

CODE GENERATION

Code generation is organized by instruction type with a
few supporting routines. The preparation of the code
listing is begun by LST-ADR continued by the various
OUT-xxxx routines and finished by OUT-WRT. The listing
buffer for code is codebuf »f length listsize; the first
byte is used for carriage control.

Loader directives are built by OLT and loader records by
OUT-REC. Directives are addled in binary form until the
current directive overflows the buffer. A record number
is added, the record checksuammed, and finally the record
is converted to hexadecimal form. The record is built-

in buffer objbuf which is of size objsize+l; objrecn holds
the record number. The current buffer position is in
objx and the last in lobjx.

Pseudo-instructions are processed by QUT-ADDR (ADDR),
OUT-BYTE (BYTE), OUT—WQBE»(JORD), and OUT-DBLE (DBLE).
Instructions are processed »ny OUT-INST except for LDL
handled by QUT-LIT, which processes all other literals
as well. OUT-LWL handles tie case of a LWL instruction
where the literal is an address.

All these OUT-xxxx routines augment the code listing,
generate loader directives, update the stack and program
counters, and list the code listing. OUT-ADDR and
OUT-LWL require that the adlress type be specified as
they are used to construct addresses; OUT-BYTE, OUT-WORD,
OUT-DBLE, and OUT-LIT require no address type as there

is no addressing; OUT-INST idetermines the address type
from the symbol table entry of the current symbol for
those instructions that reguire an address.

Size conversion (from double to word or form word to

double) across a binary operator is handled by A-CVT

for the assignment operators and B-CVT for the expression
operators. Memory referencing is handled by GET-MODE

which determines the hardware mode of the memory reference
and generates accessing instructions (see Subsection 5.6.3).




Sec €.7 117

PROGRAM STRUCTURE

MPL programs are structured in blocks and groups. Blocks
occuar as procedures and begins; groups occur as repeats,
and the various do's.

The current block number is maintained in block which is
used to qualify all symbol names. The outermost block
(which contains only the external entry point) is block 0.
The block number is incremented as each new block is
entered. The current lex level is contained in lex and
measures the nesting depth of the current active block.
The lex level starts at 0 and returns to 0 at program

end. For each active lex level, sc(lex) contains the
stack counter, blocklex(lex) contains the block number
(which differs from block as soon as the first block

is closed), and proclex(lex) contains the itembase

of the name of the current block (begin blocCks use the name
of the innermost active procedure block). The lex

level is limited to maxlex.

The current do level is maintained in donumber: the
outermost group is numbered 0. The do number is incremented
as each new group is entered. The current do level
is contained in dolevand measures the nesting depth

of the currently active group. The do level starts
at 0 and returns to 0 at program end. For each active
group, donest(dolev) contains the do number. The do

level is limited to domax.

The external procedure block has some special properties
and is processed by EXTPROC which generates the locader
title, record, console log entry, and lcader begin
program directive. The procedure type (main, interrupt,
or regular) is determined jointly by EXTPROC and PROCHEAD.
Following translation of the procedure body by PRCCBODY
the final exit and loader directives are issued and all
level counters are checked to ensure they have returned
to C.

Internal begin blocks are handled ky BLOC. They are
signaled by the keyword BEGIN after the label list.
Any labels that were present will appear on labchain
and are converted to begin labels with an associated
do number for labelled end checking by END-STMT.

Procedure head processing, common to all procedures,
is handled by PROCHEAD which is called from EXTPROC
and BLOCKSEN. Thé procedure is classified as interrupt
or regular, the lex level pushed by PUSH-LEX, and any

parameters defined and enchained on pgigﬁain; parameters

are marked as undefined and are processed further by
DCLELEMT as they are declared.




118 Sec

When a block is entered the lex level is pushed by PUSH-LEX
which is called from BLOC, I XTPROC, and PROCHEAD. The

lex and block are incremented, and the sc, proclex, and
Blocklex vectors set. The maximum lex level achieved is
maintained in lexdepth. Firally, the do level is pushed

by PUSH-DO.

when a block is terminated the lex level is pulled by
PULL-LEX which is called oniy from END-STMT. The lex

Tevel is decremented and the do level pulled by PULL-DO.
The main job of PULL-LEX is to update the forward reference
tables.

The forward tables are an array of structures used to
store forward label and procedure references that may
require later alteration. ‘or each element fwdbase
contains the itembase of th: symbol, fwdlex the lex level
of the point of reference, ind fwdpc the program counter
at the point of reference. Entries are added to the
forward tables with SAVE-RE" and removed with PURGEFWD.
The current entry is indexe! by fwdptr which is limited
to fwdmax.

The action by PULL-LEX with regard to the forward tables is:

Status in

Block New Block

Procedure Save

Label Defined Other Save

Absent

A saved entry is retained for later use. A purged entry
is removed and the space occupied reclaimed. A converted
entry changes the reference in forward table to the
symbol in the block being entered; the original entry
remains in the symbol table and plays no further part in
translation (but it is included in the symbol table
listing). An extracted entry changes the block and lex
attributes in the symbol teéble to the block being entered.

Current
Purge
Undefined Other
Save
Current Present Convert

Extract




Sec 6.7 119

These actions are clarified from the language point of
view. A defined label in the current block can no
longer be referenced and so it is purged. A defined
label in an outer block may yet be redefined in an
intermediate block and so it is saved. A defined label
in an inner block will already have been purged. An
undefined label in an outer block is yet to be defined
and go it is saved. An undefined label in an inner block
will already have been extracted to the current block.
An urdefined label in the current block that does not
appear in the new block is extracted to the new block
in hopes that it will appear there. And finally, an
undefined label in the current block that does appear
in the new block is the same symbol and is converted

to it.

When a forward label or procedure is defined, PURGEFWD

is used to scan the forward tables. A matching procedure
entry generates a fixup address. A matching label

entry generates a fixup GOTO instruction. Non-matching
entries are saved.

Wher. a group is entered the do levelis pushed by PUSH-DO
which 1s called from GROUP and PUSH-LEX. The dolev

and donumber are incremented and tr.e donumber is saved
in donest (dolev).

Wher. a group is terminated the do level is pulled by
PULL-DO which is called from END-STMT and PULL-LEX.
PULL-DO decrements dolev.

If the group is a do-case the do-case item index, caseitem,
and nesting level, caselev,are maintained by GROUP

for use by LIST in annotating the source listing. A

stack of active case indexes is maintained in casebuf
(caseptr) where the latest entry is the innermost active
do-case. There is a size limit on caseptr of casemax.

The first case is labeled 0 and the first nest labeled 1.

Labeled end checking is performed in END-STMT and is
performed only if the keyword END is followed by a
symbol. If a block is being closed the lex level is
pulled by PULL-LEX (which invokes PULL-DO) .

If a group is being closed the do level is pulled by
PULL-DO. A symbol, if present, must already be a defined
label or entry point, and must match the current do
number.



120 Sec 6.8

DECLARATIONS

The bulk of the declarations are contained in the
declaration statements and are processed by DCL-STMT
and PROCBODY. Entries are processed by EXTPROC or
PROCHEAD which enchain the parameters on parchain.
Label lists are processed bty LABELS.

PROCBODY loops on DCL-STMT until a non-declaration
statement i1s found. DCL-STMT loops on DCLELEMT until

the declaration elements (separated by commas) are
exhausted.

DCLELEMT uses SYMBOL to adc¢ each symbol to the symbol
table as it is encountered. Only a parameter may already
be present. Symbol processing is a function of symbol
type. Literallys cause the literally text to be saved

in the symbol table for later extraction by PHYSCHAR.
External procedures, interral procedures, and micro
procedures are processed w:thout complication; the
current external procedure sequence number is maintained
in numberp.

Variables are enchained on namchain. Should a name list
item be a parameter, it will already appear on the
parameter chain, and is marked as active with the spare
field. The dimension of a variable or parameter is
saved in the value field; scalars have dimension 0.
After namchain is built, the size and area attributes
(processed by SIZEATTR , AREAATTR) are saved in the first
name which is marked as such with the spare field; this
first name may be on either the namchain or parchain and
the attributes it contains are referred to below as
common .

When all attributes are in 1and the name list is
reprocessed. If the common variable class is constant,
namchain is burst and discarded. The common attributes
are moved to the subsequent elements, the entry 1link
field is used to hold the dimension, and the value
field set. The first value will have been left in
pccons by AREATTR (which is aware of any needed word
alignment) .

If the common variable class is not constant, variables
are moved from namchain to wvarchain copying common
attributes. A parameter is reclassified as automatic;

a based variable transfers -he common base to the value
field. The parameter chain is scanned (and then restored),
moving common attriubtes to those parameters marked as
active (that is, appearing :n the current name list)

and an active parameter is marked as inactive.




121
Sec 1.8

When all declaration statements are in hand, PROCBODY
performs value allocation (which must be delayed

in case parameters are defined after variables). The
parameter chain is burst and stack counter vaiues
assigned to the parameters. The variable chain 1s next
burst and the dimension moved from the value field to

the entry link field, and the first-in-name-list flag
(spare field) reset. Automatic variables use sc(lex)

for the value, word aligning non-byte initialized variables
if not the first variable of a name list. Static

internal variables use xc for the value word aligning

all non-byte variables. Static external variables use
numkterd, the external data sequence number, for the value.

The extent of each variable is determined by DELTA. The
function used is defined in Figure 5.2.la.

The required size attribute .s processed by SIZEATTR. A
simple size is handled by SIMPLESZ, pointer and bit size
directly.

The optional area attribute 1s processed by AREAATTR; if
none is present, automatic class and internal scope is
used. The external, static, and constant based area

attributes are processed without complication. The
var-able based area attributes ensures that the base is
of a legitimate class and is a backwards reference. A

constant area attribute constructs a branch around the
constant text in program space, if one is not already
present (consflag set); two pc values are noted: consloc
contains the branch location for later fixup by AREAATTR
or PROCBODY, and pccons contains the starting value for
add~ess allocations for use by DCLELEMT. An initial
area attribute closes an open cons:ant branch and invokes
SAVE-REF to save the SSP instructicn locations in the
forward tables for later fixup by “ROCBODY.

Initial or constant lists ars handled by INITLIST,

ini-ial or constant strings by INITSTR. The only difference
between initial and constant lists is initial lists

genarate FILL instructions and round text to full words.
Following value allocation, PROCBOJY scans +the forward

tables and fixes up the SSP instructions generated for
initial values.




122 Sec 6.9

STATEMENTS

Statement classification ard processing follows the
organization of the syntax fairly closely.

The highest level statement classification is between
executable unit and an internal procedure. BLOCKSEN

makes this distinction by looking for an entry point.

No label or no procedure head indicates an executable unit.
In the case of an executable unit, the nature of a possible
label is saved in labflag for later use by LABELS. In the
case of an internal procedure the attributes of the

entry point are validated against any previously declared
attributes.

An executable unit (handlec¢ by EXUNIT) is classified as an
unconditional executable urit (UNEXUNIT) or an 1if statement
(IF-STMT). An unconditioneal executable unit is further
broken intc blocks (BLOC), jroups (GROUP), and statements
(STMT) ; statements are classified as null (NUL-STMT),

call (CAL-STMT), or assignnent (AS-STMT).

An if statment (IF-STMT) is parsed slightly differently

than that shown in the forral syntax. The syntax shown

in Appendix L solves the dengling else problem by introducing
a balanced executable unit. With a top-down parse, this
mechanism is not required end the dangling else is processed
directly using the syntax:

if-statement ::=
if clause executable-unit [ELSE executable unit]

if clause ::=
[label-1list] if-then

1f-then ::=
IF exp THEN

The dangling else~clause is associated with the innermost
unmatched then-clause.

A return statement (RET-STMT) ensures that a return value

is present if and only if cne was specified, and converts
the return expression to the specified size.

A go to statement (GOTOSTMI) accommodates the possible
scoping configurations of the go to label, defining a
new symbol if the label is new, or new in the current
block. An entry is added to the forward table if the
label is forward, or bkackweard and in an outer block.



Sec 6.9 123

A label 1list (which is optional) is processed by LABELS
called from IF-CLAUS and UNEXUNIT. LABELS resets the
label chain {labchain), enchains all labels, and generates
an SSP instruction. The first label, if any, will have
been saved in labflag by BLOCKSEN. An old label
(sazisfying a forward go to) 1s checked for validity,

and corresponding entries in the forward table fixed

up and purged. The do number of the label is inserted

by BLOC or GROUP if the executable unit turns out to be a block
or group; the symbol class is altered at the same time

to begin-label or do-label.

The syntax alternatives are ordered so that label processing
for the unconditional executable units precedes label
processing for the if statement; this insures that the

label chaln is not reset before the do number is added.



124

EXPRESSIONS

Expression processing follows the formal syntax of
Appendix L with little complication. The main routine is
EXP and the lowest level routine for operand processing
is NUM-PRI. Each operator precedence level has an
associated routine that handles code generation for all
operators of that precedence: S-EXP (or operators),
LOG-TERM (and operator), LOG-FACT (comparison operators),
NUM-EXP (add operators), NUM-TERM (multiply operators),
NUM-FACT (unary operators).

An expression is either conditional (handled by C-EXP),
simple (handled by S-EXP), or invokes imbedded assignment
which is handled directly in EXP. In the latter case, the
first operand processed by NUM-PRI is later used as a
detination. The mode of this embedded destination is
saved by NUM-PRI in srefmode for later use by EXP.

Sec



.11

Sec 6.11

OPLRANDS

NUM-PRI is the main routine for processing operands.

A constant Qperand is handled directly. A procedure
reference operand is handled by PROC-REF. A storage
reference operand is handled by—§—REF”*}refmode is set
for possible later use by EXP in processing imbedded
assignment. An address function ('@') operand is handled
in conjunction with VAR. A subexpression operand is
handled by recurring on EXP. A PRTNUM function is
handled directly; the procedure that is the argument to
PRTNUM may be forward, backward, or external.

Procedure references are processed by PROC-REF. The
calling routine (CAL-STMT for procedure invocaticn,
NUM-PRI for function invocation) is specified so that
the presence of a return value is known. The prccedure
may be forward, built-in, etc. Built-in procedures
gererate in-line code and require the correct number and
size of arguments.

Stcrage references are processed by S-REF which calls
REF which calls VAR. S-REF handles field selection,
REF indirection, and VAR indexing. The resultant
reference type 1is encoded by each routine.

IN-SYM is used by PROC-REF, VAR, NUM-PRI, and GROUP
to check the symbol table for a defined symbol when a
symbol is referenced as an operanc. An undeclared

125

symbol is declared as word automatic with array organization

if followed by a left parenthesis (' (').



6.12

126

SAMPLE MODIFICATIONS

The scope of several natural compiler modifications
is outlined in this section.

Default Toggle Setting Change: The default toggle
settings are contained in SETTOGS. A change is made
by altering the default settings therein.

Built-in Function Addition: Built-in functions are
recognized in REFST. The name of the new built-in
is added to the string built-ins and the symbol
attributes to the corresponding position in the
arrays values, sizes, and units. Code generation
occurs in PROC-REF. The opcode generated is added
to biop and the code generation attributes to
biargsz, bif#args, and biretsz. Any special code
generation is dealt wi+h by program logic.

Operator Addition: Operators are recognized in TOKEN.
A new keyword operator is added to the appropriate
KEYx internal procedure«¢. A new symbolic operator

is recognized by program logic driven by the cases
table. In either case a new token code is returned
for use by the routine of the expression processor
corresponding to the desired precedence level.

Speed Enhancement: The basic translation strategies
make any significant speed improvement unlikely.
Further, speed improverients will be masked by

I/0 times in most circumstances. Nevertheless,
fine-tuning the scanne:r is the obvious candidate
for speed improvement. The blank (and comment)

scanning circuitry is +he most heavily used loop
in the compiler. It comprises the first loop in
LOGCHAR and the first . F in PHYSCHAR.

Symbol Table Size Increase: Short of symbol table
entry format alteration or compiler size reduction
(see below), a bigger =zymbol table requires more
real memory and altered symbol table addressing.
The simplest approach .s to place the additional
real memory in consecu .ive modules in bank 1 and
alter the memory size «determination in MPL that
comprises the computaticn of stbase0, stbase, and
textminO.

Sec 6.12



Sec 6.12

Memory Size Reduction:

127

A 32K byte compiler is feasible

with unaltered translation algorithms if most listing
features are sacrificed and a mninimal fixed I/O

system is introduced.
(LISTST)
eliminated entirely.

The symbol table listing

The program listing would

be converted to a simple source listing with coded

flags;
ERINT, and PRIN@BIT,
OUT-INST. All other

sacrificed as well:

this effectively eliminates FLAG, FORMAT,

LIST,

and the mnemonic tables from
extraneous features would be
memory and stack checking

(MEMCHECK) , hash addressing of symbol table, cross

reference fields in symbol table entry, etc.

The

resulting compiler would use memory roughly as follows:

Item

32K Compiler

64K Compiler

Code 23K 34K
Operating System 3 . 16
S—tdck ” N 4 6
Symbol Table 2 ) 8

S 0



128

APPENDICIES



App A 129

1)

2)

3)

4)

5)

6)

7)

APPENDIX A: BIBLIOGRAPHY

Current MPL Language: "MPL Language Reference Manual",
SMPL-1, September 1975.

Earlier MPL Language: "Microdata 32/S Programming
Language Reference Marual (MPL)", PUMPL-2, November 1973.

Tutorial on MPL Lanquage: "Introduction to Microdata
Programming Language (MPL)", 1975.

Disk Operating System: "Genasys/D", July 21, 1975.
Implementation Operating System: "Genasys", July 16, 1975.
32/S Processor: "Microdata 32/S Computer Reference Manual",

RM 20003250, January 1975.

Sort Algorithm: "Comrunications of the ACM", Volume 7
Number 12, December 964, page 701.




130

APPENDIX B:

CLASS NUMBER

,/#SPARE*/
) /¥MISS */
) /*RANGE*/
) /#MISS #*/
) /¥RANGE*/

,/*OTHER*/
) /*MISS #*/
L /*ATTR */
) /¥RANGE*/
) /¥OTHER*/

,/*RANGE*/
,/*ATTR */
V/*ATTR */
) /#MISS */
,/*ATTR */

*/

, /¥MISS

,/*MISS */
,/¥MISS #*/
) /*MISS */
) /¥RANGE*/

,/¥MISS */
/*ATTR */
) /*OTHER*/
) /AMISS */
) /¥RANGE*/

,/ *RANGE*/
) /*RANGE*/
, /RMISS */
) /#MISS */
) /*RANGE*/

,/ *OTHER*/
, /*OTHER*/
, /*RANGE*/
) /*RANGE*/
. /*RANGE*/

,/*SPARE*/
! 7*OTHER*/
/%I]0 #7
) /*OTHER*/
) /*QTHER*/

,/XT/0 */
,/*MISS */
J/®ATTR */
,/¥ATTR */
) /*RANGE*/

) /%SPARE*/

Miq

FLAGS

ORDERED BY NUMBER App B

SEVERITY

LSRN NN

NN LSRN
P E e PWOmY Dooon oowm dwEow s oo s

N

LY

N

)

N

A

~

[ Y

~

NN NN

A3 T R S Y

LSRN

kY

N A ) ~ ~ ~ N A Y NN
=

N

v A
FEsm owodEs

~

’

NO ENTRY
STRING OV
NO RIGHT
BIT STRII

BAD BIT
NO COLON
SYMBOL At
SYMBOL O
. N

DELTA LE:
SUBSCRIP’
INDIRECT:
NO SUBSCH
FIELD SE:

NO LEFT i
N FIELD

@ NO”
NO EXPRE!
CHAR STR

NO SYMBO!
PRTNUM S
JUNK IN
NO EXPRE!
PRCGRAM

STACK OV
CONSTANT
NO 7 THE}
NO ELS!
50 BLUND!

MEMORY B/
SYMBOL T/
256 BLOC!
16 LEX L!
TOO MANY

’

STACK QV!
SOURCE Pt
HASH TABI
HASH TABL

OBJECT I
NO ASSIiG!
OPERATOR
UNDECLARE
TOC MANY

KEYYORD I
L
NO 4 I'BQ

NO PARAMY

DESCRIPTION

NAME, JOB ABORTED’ ,
ER 255 BYTES, TAIL IGNORED
PAREN, ASSUMED )
G RADIX NOT 1 2 3 4, IGNORED

TRING DIGIT, IGNORED’

ASSUMED .
READY DEFINED, SEE SYMBOL TABLE
ER 255 BYTES, TAIL IGNORED
COMMENT, IGNORED

OVER 15, 0 USED” )
ON NON-DIMENSIONED VARIABLE, USED ANYWAY’

ON ON NON PTR TO VARIABLE, PtR TO WORD ASSUMED

IPT EXPRESSION, SKIPPED’ 3
ECT NEEDS WORD VARIABLE, ASSUMED

AREN, ASSUMED” ,

SELECT EXPRESSION, SKIPPED i
FOLLOWED BY STORAGE REF, SKIPPED
SION, SKIPPED )

NG OVER 4 CHARS, TAIL IGNORED

, SXIPPED’

MBOL NOT A PROC NAME, SKIPPED’

: TATEMENT, TEXT SKIPPED T NEXT “7; "°

SION OPERAND, SKIPPED )
VER 65535, REDUCED MOD 2*¥16

R H5535, REDUCED MOD 2%*16° ,
JVER 32 BITS, REDUCED MOD 2%%32
.., ASSUMED’

, ASSUMED )
RS AND ERRORS, JOB ABORTED

D, JOB ABORTED” )
SLE FULL, JOB ABORTED
3, JOB ABORTED
VELS, JOB ABORTED’ )
NESTED LITERALLY S, JOB ABORTED

RFLOW, JOB ABORTED’
YSICAL EOF, JOB ABOBTED
% FULL, JOB ABORTED
7 909 FULL, IGNORED

ERROR, JOB ABORTED’ )
MENT OPERATOR (=, +=, :=), IGNORED
NEEDS WORD DESTINATION, I&NORED

D VARIABLE, DECLARED AS WORD AUTO’ .

FORWARD REFS TO PROCS/LABELS/INITLiSTS, SKiPPED

SFINED AS SYMBOL, DEFINED BUT NO REFS POSSTELF’
. ASSUMED

ASSUMED”

TER, SKIPPED



App B 131

CLASS NUMBER SEVERITY PESCRIPTION

~

mmEEm
=
@]

,/¥MISS ®/ M50 #
J/EMISS ®/ M51 #
(/®MISS ¥/ M52 #
L /®MISS ¥/ MB3
L /®¥MISS */ MRh ¢

NQ EXTERNAL PROCHEAD, ““MAIN”” USED”

NO DECLARATION LIS” ELEMENT, SKIPPED
NAME LIST ITEM, SKIPPED

NO CONSTANT, SKIPPED

ND STRING, SKIPPED

N

N

LY

7.

,/¥MISS */ M55 # E NO INITIAL OR CONSTANT LIST ITEM, O USED’

'J*ATTR */ M56 # 7E PARAMETER NOT FULLY DECLARED, WORD USED ,
'J*ATTR */ M7 # “E INTERRUPT PROC DECLARED WITH LEX>1, USED AS DECLARED”
J/*ATTR */ M58 # 'E UNSATISFIED FORWARD LABELS OR PROCS, SEE SYMBOL TABLE’
'V%OTHER*/ M59 # “E JUNK IN DCL STMT, TEXT SKIPPED TO NEXT ~7,”7 OR ~7;
,/*RANGE*/ M60 # “W IXTERNAL SYMBOL OVER 8 CHARS, TAIL IGNORED’

'7*ATTR */ Mb1 # °E STRING NEEDS BYTE SIZE, TREATED AS BYTE ,
'/*ATTR %/ M62 # ‘W STRING LENGTH DOES NOT MATCH DIMENSION, IGNORED
/¥ATTR */ M6 # ‘W INITIAL LIST TOO _ONG, USED ANYWAY ,

'J%¥ATTR */ M6L # "W CONSTANT LIST TOO LONG OR SHORT, USED ANYWAY

,/*¥ATTR */ M65 # °E BASE VARIABLE MUS1 BE BACKWARD REF, CBASE=0 USED’
7*ATTR */ M66 # ‘B BASE NOT SCALAR STORAGE REF, USED ANYWAY

L /¥ATTR */ MH7 # °E 3AD SiZE, WORD USED )

'7¥ATTR %/ MA8 # ‘E 3AD BIT SIZE, BIT(4) USED )
) 7¥RANGE*/ MAQ # "W INITIAL OR CONSTANT VALUE TOC BIG, TRUNCATED ON LEFT
,/*ATTR */ M70 # “B PARAMETER MAY NOT HAVE AREA ATTRIBUTE, SEE SYMBOL TABLE’
,/*SPARE*/ M71 # ‘W ,

'V¥ATTR */ M72 # 'E BASE MISSING, CBASE=0 USED ,

J¥ATTR */ M72 # ‘E PROC S;ZE MISMATCE, NEW SIZE USED

'V*¥QTHER*/ M7U # NO IN ITERATLVE DO, ASSUMED’

,/*RANGE*/ M75 # “E CONSTANT OVER 16 EITS, REDUCED MOD 2*%16°
7%QOTHER*/ M76 # ‘W DO 'S NESTED TOO DEEP, NEST CHECKING INVALID
) J#QTHER*/ M77 # 'B TOO MANY DO CASES, IGNORED )

) /%¥MISS */ M78 # ‘B NO “'TO”” IN ITERATIVE DO, ASSUMED

/¥SPARE*/ M7Q # ‘W

,/*ATTR */ M80 # B BAD *“BASED’’ NESTING, IGNORED’ ,

J/%pATTR */ M81 # ‘B VARIABLE MUST BE STORAGE REF, IGNORED )
'“¥QTHER*/ M82 # “£ END IDENTIFiER MUST BE DO-LABEL/BEGIN-LABEL/ENTRY, IGNORED
b

b}

H

e

/®OTHER*/ MA3 # :é LABEL ON END DOES NOT MATCH CURRENT BLOCK, IGNORED”
/*¥OTHER*¥/ MB8L # “E LABEL ON END NOT DEFINED, IGNORED

,/*OTHER¥/ M85 # °W OVER 32765 DO BLOCKXS, NEST CHECKING INVALID’ ,
J/%RANGE*/ MR6 # W STACK UNDERFLOW (MAY BE DUE TO ANOTHER FLAG), IGNORED’
' 7#MISS */ MB7 # B NO PROC REF AFTER ~ CALL’”, IGNORED |

' 7%¥MISS %/ M88 # ‘B NO LABEL REF AFTER "GO TO’’, IGNORED .

'/*ATTR */ M89 # ’B CURRENT PROC CANNOT RSTURN A VALUE, IGNORED

/¥ATTR ¥/ M90 # B CURRENT PROC MUST RETURN A VALUE, IGNORED’

/*¥MISS */ Moi # ‘B NO STATEMENT AFTER ° THEN ', IGNORED’

/*MISS */ MG2 # ‘B NO STATEMENT AFTER °“ELSE’’, IGNOQRED )
7%OTHER*/ M93 # B EMBEDDED ASSIGNMENT DOES NOt ALLOW FIELD SELECT, IGNOKED
/*¥MISS */ M9L # B NO PROC ARG, IGNORED

/¥MISS */ M9S5 # ‘B BAD NUMBER OF ARGS TO BUILTIN PROC, ACCEPTED’
/¥MISS *7 M9h # B BAD ARG SIiZE FOR BUILTIN PROC, ACCEPTED’ ,
/¥MISS */ MQ7 # ‘B QUER,252 WORDS OF PROC ARGS, REDUCED MOD 252 )
/¥MISS ¥/ M98 # ‘B '€ " TLLE3AL WITH BASED VARIABLE OR CONSTANT, IGNORED
/¥MISS */ M9Q # ‘B CONSTANT CANNOT BE A DESTINATION, USED ANYWAY

- v e e

- a e e e



i
W

APPENDIX C: FLAGS -- ORDERED BY SEVERITY App C

CLASS NUMBER SEVERITY DESCRIPTION
WARNINGCS
,/¥SPARE*/ MO # ‘W ° )
,/*RANGE*/ M8 # W SYMBQL DVER 255 BYTES, TAIL IGNORED
,/¥OTHER*/ M9 # ‘W ~°.”7 IN COMMENT, IGNORED ,
,/¥ATTR ¥/ M12 # 'W INDIRECTION ON NON PTR TO VARIABLE, PTR TO WORD ASSUMED
,/*RANGE*/ M19 # "W CHAR STRING OVER 4 CHARS, TAIL IGNORED
,/¥SPARE#*/ M35 # "W ° ,
,/¥OTHER*/ M3Q # W HASH TASLE 90% FULL, IGNORED
,/¥MISS */ ML6 # "W NO . /PF)C ’, ASSUMED
,/®MISS *7 MUT # ‘W KO “7;°7) ASSUMED
,/*SPARE*/ M49Q # W
,/*MISS */ M51 # "W NO DECLARATION LIST ELEMENT, SKIPPED’
,/*MISS */ M52 # ‘W NO NAME LIST ITEM, SKIPPED )
,/*RANGE*/ MBO # °W EXTERNA. SYMBOL OVER 8 CHARS, TATL IGNORED )
,/¥ATTR %/ M62 # "W STRING .ENGTH DOES NOT MATCH DIMENSION, IGNORED
,/*ATTR %/ Mb3 # "W INITIAL LiST TOO LONG, USED ANYWAY

)/ XATTR %/ MoU # ‘W CONSTANT LIST TOO LONG OR SHORT, USED ANYWAY .

»/*RANGE*/ M69 # "W INITIAL OF CONSTANT VALUE T0OO BIG, TRUNCATED ON LEST

, /¥SPARE*/ M71 # "W ~ )

,/*OTHER*/ M76 # W D)°’5 N<STED TOO DEEP, NEST CHECKING INVALID

, /*SPARE*/ M79 # "W

,/*OTHER*/ M85 # "W QJER 32765 DO BLOCKS, NEST CHECKING INVALID’ .

» /*RANGE¥®/ M8hA # "W STACK UIDERFLOW (MAY BE DUE TO ANOTHER FLAG), IGNORED
ERRORS

,/¥RANGE*/ M2 # 'E STRING ‘VER 255 BYTES, TAIL IGNORED’

,/¥MISS %/ M3 4 "E NO RIGH ™ PAREN, ASSUMED )

,/*RANGE*/ ML # “E BIT STR NG RADIX NOT 1 2 3 U, IGNORED

,/*OTHER*/ M5 # °E BAD BIT STRING DIGiT, IGNORED

,/¥MISS */  MA # “E N COLC/, ASSUMED

,/*ATTR */ M7 # 'E SYMBOL 'LREADY DEFINED, SEE SYMBOL TABLE’

,/*MISS */ M15 # "E NO LEFT PAREN, ASSUMED }

,/*RANGE*/  M26 # 'E CONSTAN ' OVER 32 BITS, REDUCED MOD 2¥#32- ,
s /RATTR */ MUS ¢ 7E KOYWORD DEFINED AS SYMBQL, DEFINED BUT NO REFS POSSIRLE
,/*MISS */ M50 # 'E N7) EXTE NAL PROCHEAD, ~’MAIN’’ USED

,/¥MISS */ M53 4 “E NO CONS ANT, SKIPPED’

,/¥MISS */ MSL # “E NO STRIWG, SKIPPED i

,/*MISS */ M55 # “E N INIT Al, OR CONSTANT LIST ITEM, 0 USED

»/*ATTR */ M56 # °"E PARAMET 'R NOT FULLY DECLARED, WORD USED ,
,/*ATTR */ M57 # “E INTEFRU'T PROC DECLARED WITH LEX>1, USED AS DECLARED
»/WATIR %/ M58 # 'E UNSATIS) IED FORWARD LABELS OR PROCS, SEE SYMBOL TABLE’
»/XOTHER®/ M5Q # “E JUNK IN DCI, STMT, TEXT SKIPPED TO NEXT ~°,”° OR °’:
,/*ATTR */ M61 # 'E STRING ' EEDS BYTE SIZE, TREATED AS BYTE 3
,/*ATTR ¥/ M65 # 'E BASE VA: IABLE MUST BE BACKWARD REF, CBASE=0 USED

,/*ATTR ¥/ M67 # “E BAD SIZI, WORD USED

,/*ATTR */ M68 # 'E BAD EIT SIZE, BIT(Y4) USED’

,/¥ATTR */ M72 # "E BASE MI: SING, CBASE=0 USED i

,/*ATTR */ M73 # 'E PFOC SI'E MISMATCH, NEW SIZE USED ,

, /*RANGE*/ Mg5 # _E CCNSTAN' OVER 16 BITS, REDUCED MOD 2%#16 ,
,/*OTHER*/ M82 # “E END IDEMTIFIER MUST BE DO-LABEL/BEGIN-LABEL/ENTRY, IGNORIT
»/*OTHER*/  M83 # 7E LABEL OF END DOES NOT MATCH CURRENT BLOCK, IGNORED’
»/*OTHER*/ M8L # “E LABEL O END NOT DEFINED, IGNORED”



CLASS NUMBER SEVERITY

,/*RANGE*/
"J*ATTR */
L /¥MISS */
' /*ATTR */
L /*MISS */

*/

,/*MISS

,/¥MISS */
,/*MISS */
L/ ¥ATTR */
.,/ ¥*OTHEF*/

, /¥MISS */
,/ *RANGE*/
, /*RANGE*/
, / ¥MISS #/
,/¥MISS */

,/*MISS */
' /®ATTR */
/*ATTR */
L /¥RANGE*/
L /EMISS %/

,/¥ATTR */
/*ATTR */
. /*OTHER*/
. /*OTHER*/
) /EMISS %/

,/¥ATTR */
'J%ATTR %/
' UAMISS *7
WAL HEN :6

,/¥ATTR */
| /*MISS ¥/
L /*MISS */
, /*OTHER*/
L /#MISS ¥/

, /*MISS
, /¥MISS
) /*MISS
] /,*MISS *//
) /¥MISS

,/EMISS */
| /*RANGE* /
) /*QOTHER*/
y/
r

/*QTHER*/
, /¥RANGE*/

,/*RANGE*/
) /*RANGE*/
) /*OTHER*/
L/ %¥T/0 %/
, /¥OTHER*/

,/*1/0 %/

ML8

Mb 6
M70
MT4
M7
M7

M80
M81
M8
M8
M80Q

MAO
MO
M2
M9 3
Mol

MO 5
MO
M9 7
M98
M99

M1
M29
M30
M31
M32

M33
M3L

M36
M7
M38
M40

L S Y

fo=—Ts = = o=

L N

A

3>

B CURRENT PROC

133

DESCRIPTION

NDERS

DELTA LEX OVER 1%, 0 USED’ .
SUBSCRIPT ON NON-DIMENSIONED VARIAELE, USED ANYWAY
NO SUBSCRIPT EXPRESSION, SKIPPED ,

FIELD SELZCT NEEDS WORD VARIABLE, ASSUMED

NO FIELD SELECT EXPRESSION, SKIPPED

“’6”7 NOT FOLLOWED BY STORAGE REF, SKIPPED’

NO EXPRES3ION, SKIPPED

NO SYMBOL, SKiPPED )

PRTNUM SYVBOL NO” A PROC NAME, SKIPPED” =
JUNK IN STATEMEN”, TEXT SKIPPED TO NEXT ~°;

NO EXPRESSION OPERAND, SKIPPED'
PROGRAM OVER 65535, REDUCED MOD 2%¥16
STACK OVER 65535 REDUCED MOD 2%¥16

NO Z7THEN, ASSUMED’

NO “ELSE’”, ASSUMED

NO ASSIGNYMENT OPERATOR {=, +=, :=), IGNORED’

OPERATOR VEEDS WORD DESTINATION IGNORED )

UNDECLARED VARIABLE, DECLARED AS WORD AUTO ,
TOO MANY “ORWARD RE%S,TO PROCS/LABELS/INITLISTS, SKIPPED
NO PARAMETER, SKIPPED

PASE NOT SCALAR STORAGE REF, USED ANYWAY® )
PARAMETER MAY NO” HAVE AREA ATTRIBUTE, SEE SYMBOL TASLE
NO ~“="7 IN ITERATIVE DO, ASSUMED

TOO MANY DO CASES, IGNORED ,

NO ““TO”’ IN ITERATIVE DO, ASSUMED’

BAD “’BASED”’ NESTING, IGNORED’ ,
VARTABLE MUST BE STGRAGE,BEF, IGNORED
NO PROC REF AFTER ~CALL”", IGNORED |
NO LABEL REF AFTER ““GO TO ', IGNORED i
CURRENT PRGC CANNOT RETURN A VALUZ, IGNORED

MUST RETURN A VALUE, TGNORED’
AFTER  “THEN~, IGNORED’
AFTER 7 “ELSE’”, TGNORED

NO STATEMENT
NO STATEMENT

I EMBEDDED ASSIGNMUNT DOES NOT ALLOW FIELD SELECT, IGNDRED’
: NO PROC ARG,

IGNORED®

BAD NUMBER OF ARGS TO BUILTIN PROC, ACCEPTED'

EAD ARG SiZE FOR BUILTIN PROC, ACCEPTED ,

CVER 252 WORDS CF PROC ARGS REDUCED MOD 252 .
ﬂ ILLEGAL WITH PASED VARIABLE OR CONSTANT, IGNOR™D

CONSTANT CANNOT BE A DESTINATION, USED ANYWAY

ETS

NO ENTRY NAME, JUB ABORTED’ ,
50 BLUNDERS AND =ZRRORS, JOB ABORTED
MEMORY BAD, JOB ABORTED ,
SYMBCL TABLE FULL, JOB ABORTED

256 BLOCKS, JOB ABORTED

16 LEX LEVELS, JOB ABOHTEQ: ,
TOO MANY NESTED _ITERALLY""S, JOB ABORTED
STACK OVERFLOW, JOB ABORTED R

SOURCE PHYSICAL <0F, JOB ABORTED

HASH TABLE FULL, JOB ABORTED

OBJECT I0 ERROR, JOB ABORTED’



134

APPENDIX D: FLAGS -- DETAILED DESCRIPTION

(Warning) --
Spare

(Abort): No Entry Name, ‘ob Aborted --

No entry name was found for the external procedure. The
cursor indicates where th: entry name was expected. The
job is aborted. 1If the abort is suppressed the compiler
will not function correct y.

(Error): String Over 255 Bytes, Tail Ignored --

The body of a string, not including the delimiting quotes
and after collapsing cons:cutive single quotes into the
single quotes they repres:.nt, exceeds 255 bytes. The

cursor points the last va id byte. Bytes beyond the 255th
are ignored and compilatirn continues. This flag is usually
caused by a missing trail ng quote.

(Error): No Right Paren, Assumed --—
A right parenthesis (')') is required at the point indicated
by the cursor but was not found. Its presence is assumed

and compilation continues

(Error): Bit String Radi: Not 1 2 3 or 4, Ignored --

The radix, indicated by tle cursor, specified for a bit
string constant is not 1 binary), 2 (quaternary), 3
(octal), or 4 (hexidecima.). The current radix remains in
use and compilation contir ues.

(Error): Bad Bit String Iigit, Ignored --

The current digit, indicated by the cursor, in a bit string
constant is not in the rarge 0 to <current radix -1>. The
offending digit is ignorec and compilation continues.

(Error): No Colon, Assume 1 --
A colon (':') is required at the point indicated by the
cursor but was not found. Its presence is assumed and

compilation continues.

App D



App D 135

7 (Error): Symbol Already Defined, S=2e Symbol Table --

The symbol indicated by the cursor was previously defined

in the same scope. The attributes given to the symbol

are a mixture of the attributes of the multiple definitions
as shown in the symbol table listing. Compilation continues
and secondary flags can be expected.

8 (Warning): Symbol Over 255 Bytes, Tail Ignored --

The name of a symbol exceeds 255 bytes. The cursor indicates
the last valid byte. Bytes beyond the 255th are ignored
and compilation continues.

9 (Warning) : ';' in Comment, Ignored =--

A semicolon (';') is present in a comment as shown by

the cursor. It is ignored and compilation continues.
Usually this warning is caused by & missing close comment
operator ('*/'). This warning does not apply to a question
mark comment (see Appendix F).

10 (Blunder): Delta Lex Over 15, 0 Used --

A lex level difference of more than 15 is necessary at the
point indicated by the cursor to generate code. A delta
lex of 0 is used and compilation continues. (The current
compiler will generate Abort 33 before Blunder 10).

11 (Blunder): Subscript on Nondimens: oned Variable, Used Anyway -—-

A subscript, indicated by the cursor, modifies a variable
that+ was not dimensioned. Code is generated as if the
var.able was dimensioned and compilation continues.

12 (Warning): Indirection con Non Ptr to Variable, Ptr to
Word Assumed --

The indirection operator ('@'), indicated by the cursor,
has been applied to a variable that was not declared as
a pointer. A size of POINTER TO WORD is assumed and
compilation continues.

12  (Blunder): No Subscript Expression, Skipped --

A subscript expression is required at the point indicated
by the cursor. Subscript code generation is skipped
and compilation continues.



14

15

16

17

18

19

20

21

136 App

(Blunder) : Field Select Nceds Word Variable, Assumed --

The field select operator '$'), indicated by the cursor,
has been applied to a variible not declared as a word. Code
is generated as if word wa: declared and compilation
continues.

(Error): No Left Paren, Ai:sumed --

A left parenthesis ('({') i: required as the point indicated
by the cursor. Its presen-e is assumed and compilation
continues.

(Blunder): No Field Selec:. Expression, Skipped --

A field select expression .s required at the point indicated
by the cursor but is missiig. Code generation for the
field select expression is skipped and compilation continues.

(Blunder): '@' Not Follow:d By Storage Ref, Skipped --
The address operator ('@') indicated by the cursor is
not followed by a storage -eference. Code generation

for the address operator i3 skipped and compilation continues.

(Blunder): No Expression, Skipped --

An expression is required it the point indicated by the
cursor but is missing. Cocle generation for the expression
is skipped and compilation continues. This flag is a
catch-all when the exact niture of the missing expression
is not diagnosed.

(Warning) : Char String Ov:r 4 Chars, Tail Ignored --

A character string used as a constant contains more than

4 characters. The cursor voints to the last character of
the offending string. Characters beyond the 4th are ignored
and compilation continues.

(Blunder): No Symbol, Skipped --

A symbol is required at th: point indicated by the cursor
but is missing. Code generation for the symbol is skipped
and compilation continues.

(Blunder): PRTNUM Symbol Not a Proc Name, Skipped --

The symbol, indicated by tnae cursor, is the object of the
PRTNUM operator but is not a procedure name. Code generation
for the PRTNUM operation is skipped and compilation
continues.



App D 137

22 (Blunder): Junk in Statement, Text Skipped to Next ';' --

A statement cannot be decoded at the point indicated by

the cursor. Source text is skipped until the next
delimiting semicolon (';') is found. (Semicolons appearing
in a comment or string constant are skipped as well.)

This flag is a catch-all when a more specific diagnostic

is not provided for a faulty executable statement.

23 (Blunder): No Expression Operand, Skipped --

An operand (either a variable or constant) is required

at the point indicated by the cursor but is missing.

Code generation for the operand is skipped and compilation
continues.

24 (Blunder): Program Qver 65535, Reduced Mod 2**16 —-

The locaticn counter for program space (program counter)
is over 65,535 bytes as of the point indicated by the
cursor. Overflow in the program counter beyond 16 bits
is ignored and compilation continuecs. A common program
counter is used for all procedures nested in an external
procedure.

25 (Blunder) : Stack Over 65535, Reduced Mod 2**16 —-

The location counter for stack space (stack counter) is
over 65,535 bytes as of the point -ndicated by the cursor.
Overflow in the stack counter beyond 16 bits is ignored
and compilation continues. A separate location counter
is used for each procedure nested -n an external procedure.
This flag is usually caused by an array of excessive size.

26 (Errcr): Constant Over 32 Bits, Reduced Mod 2**32 --

A constant requires more than 32 bits of precision. The
cursor points to the last valid contribution to the constant.
For a numeric constant, overflow beyond 22 bits is lost;

for a string constant, characters beyond the 4th are lost:

in both cases compilation continues. For the purposes of
this flag, a constant is considered a 32 bit (unsigned)
magr.itude number.

27 (Blunder): No 'THEN', Assumed --

A then-clause is required in an if-statement or if-expression
at the point indicated by the curscr, but the keyword

THEN is missing. 1Its presence is assumed and compilation
continues.

28 (Blunder): No 'ELSE', Assumed --

An else~clause is required in an if-expression

at the point indicated by the cursor, but the keyword ELSE
is missing. Its presence is assumed and compilation
continues.



138 App D

29 (Abort) : 50 Blunders and Errors, Job Aborted --

The blunder or error indicated by the cursor is the 50th.
Compilation is aborted. If the abort is suppressed,
compilation continues norrially. The abort is issued only
once on the 50th offense. Warnings and aborts are not
included in the blunder ard error count.

30 (Abort): Memory Bad, Job Aborted --

A memory checksum discrepency has occurred at the point
indicated by the cursor. Compilation is aborted. If

the abort is suppressed ccmpiler behavior is unpredictable.
See Section 4.4 for a discussion of memory checking.

31 (Abort): Symbol Table Full, Job Aborted --

The symbol table is full &s of the point indicated by the
curosr. Compilation is alorted. If the abort is suppressed,
compiler behavior is unpredictable. See Section 2.3 for

a discussion of remedial ¢ction.

32 (Abort): 256 Blocks, Job Aborted --

The block indicated by the cursor is the 256th, exceeding

the capacity of the compiler. Compilation is aborted.

If the abort is suppressec, compiler behavior is unpredictable.
The only remedy for this condition is to rewrite the program
to use fewer blocks.

33 (Abort): 16 Lex Levels, Job Aborted =--

The block indicated by the¢ cursor is at the 16th lex level
exceeding the capacity of the compiler. Compilation is
aborted. If the abort i1is suppressed, compiler behavior

is unpredictable. The oniy remedy for this condition is
to rewrite the program to use few lex levels.

34 (Abort): Too Many Nested Literallys, Job Aborted --

The literally indicated by the cursor requires too many
references to other nestec literallys.

Compilation is aborted. 1f the abort is suppressed,
compiler behavior is unpre¢dictable. See Section 2.3 for
a discussion of literally nest depth. Usually this flag
is caused by a loop in a Iiterally chain.

35 (Warning) --

Spare



App D 139

36 (Abort): Stack Overflow, Job Aborted --

The stack used by the compiler at compilation time has
overflowed at the point in the user's program indicated
by the cursor. Compilation is aborted. If the abort
is suppressed, compiler behavior is unpredictable. See
Section 2.3 for a discussion of compile-time stack use.

37 (Abort): Source Physical EOF, Job Aborted --

An unexpected end-of-file has been encountered on the source
file. Compilation is aborted. If the abort is suppressed,
compilation continues normally; the input file of course,
may be undefined after an EOF. An EOF is legitimate only
after the end of an external procedure and before the

entry name of an ensuing external procedure; comments and
loader text may appear in this interprogram region.

38 (Abcrt): Hash Table Full, Job Aborted --

The hash table used by the symbol table is full as of the
point indicated by the cursor. Compilation is abcrted.

If the abort is suppressed, compiler behavior is unpredictable.
See Section 2.3 for a discussion of hash table use.

39 (Warning) : Hash Table 90% Full, Ignored --

The hash table used by the symbol table is 90% as of the
poirt indicated by the cursor. No acticn is taken and
compilation continues. Compilation speed will degrade
as the hash table approaches 100% full, at which time
compilation is aborted; see Abort 8.

40 (Abort): Object I0 Error, Job Aborted --

An irrecoverable I/0 error has occurred with the cbject
file. Compilation is aborted. If the abort is suppressed,
compilaticn will continue normally; however, the contents
of the object file may be flawed. If the abort occurs
before any object has been written the problem likely

lies with the assignment or opening of the object file.

If the abort occurs after some object has been written,

the problem is necessarily with the data transfer to the
object file.

41 (Blunder): No Assignment Operator (=,+=,:=), Ignored --

An assignment operator is expected at the point indicated
by the cursor. Code generation for the missing assignment
operator is ignorecd and compilation continues.



42

43

44

45

46

47

48

140 App D

(Blunder): Operator Needs Word Destination, Ignored --

The operand indicated by the cursor must be of size word
but is otherwise declared. Code generation for the
operation is ignored and compilation continues.

(Blunder) : Undeclared Variable, Declared as Word Auto --

The variable indicated by the cursor is undeclared. It is given
automatic class, internal scope, word size, and dimension as
written, but no stack space is allocated. Compilation continues.

(Blunder): Too Many Forwards Refs to Procs/Labels/Initlists,
Skipped --

The forward reference indicated by the cursor overflows
the forward table. The reference is not saved and will
never be resolved. Compilation continues. Forward
references to procedures, labels, and initial lists share
a common table. A forwarc reference to a procedure is
resolved (making room for another) when the procedure
entry is encounted; a label is resolved when the label

is encountered; an initial list is resolved when the first
executable statement of a »nrocedure is encountered.

(Error): Keyword Defined as Symbol, Defined But No
Refs Possible --

The keyword indicated by the cursor is being defined as
a symbol. The declaratior is completed but subsequent
references to the keyword as a symbol will result in
further flags. Compilaticn continues.

(Warning): No 'PROC', Ascumed --

The keyword PROC (or PROCEDURE) is required at the point
indicated by the cursor bit is missing. Its presence is
assumed and compilation ccntinues.

(Warning): No ';', Assumed --
A semicolon (';') is required at the point indicated by
the cursor, but is missinc¢. Its presence is assumed

and compilation continues.

(Blunder): No Parameter, Skipped --

A parameter is required at the point indicated by the
cursor but is missing. Tle declaration of the missing
parameter is skipped and ¢ompilation continues.



49

50

51

52

53

54

55

56

App D

(Warning) --
Spare

(Error) : No External Prochead, 'MAIN' Used --

An external procedure head is required at the point
indicated by the cursor, but is missing. A head of
'MAIN PROCEDURE' is used and compilation continues.

(Warning): No Declaration List Element, Skipped --

A declaration list element is expected at the point indicated

141

by the cursor but is missing. Declaration of the missing

element is skipped and compilation continues.

(Warning): No Name List Element, Skipped --

A name list element (of a declarati.on list element) is

expected at the point indicated by the cursor but is missing.
Declaration of the missing element is skipped and compilation

continues.

(Error): No Constant, Skipped --

A constant is expected at the point indicated by the
cursor but is missing. Code generation for the missing
constant 1s skipped and compilation continues.

(Exrror): No String, Skipped --

A string is expected at the point 1ndicated by the
cursor but is missing. Code generation for the missing
strong is skipped and compilation continues.

(Error): No Initial or Constant List Item, 0 Used --

An initial or constant list element is expected at the
point indicated by the cursor but is missing. Zero is
used for the missing element and compilation continues.

(Error): Parameter Not Fully Declared, Word Used --

Cne or more parameters (a symbol in the parenthesized
name list following a procedure head) is never fully
declared. Word size and dimension of scalar is used.
The cursor is not meaningful. Compilation continues.
The offending parameters are flagged in the symbol table
listing in the state ('ST') field.



57

58

59

60

61

62

142 App D

(Error): Interrupt Proc Declared With Lex>1l, Used as
Declared --

The interrupt procedure, whose procedure head is indicated
by the cursor, appears at « lex depth greater than 1. The
procedure is used as decla ed but the object program may

not work. Compilation con‘inues.

(Error): Unsatisfied Forw:rd Labels or Procs, See Symbol
Table ~--

One or more forward refere.ces to a label or procedure 1is
never satisfied by an appropriate label or entry. The
cursor is not meaningful. Compilation continues. The

offending symbols are flagied in the symbol table listing
in the state ('ST') f:ield.

(Error): Junk in DCL Stmt. Text Skipped to Next ',' or ';' --

!

A declaration statement cainot be decoded at the point
indicated by the error cur;or. Source text is skipped
until the next delimiting -omma (',') or semicolon (';').
(Commas or semicolons appeiring in a comment or string
constant are skipped as well.) Compilation continues.

(Warning) : External Symbol Over 8 Chars, Tail Ignored --

An external symbol exceeds 8 characters. The cursor indicates
the offending symbol. Characters beyond the 8th are not
passed to the loader. Comvilation continues.

(Error): String Needs Byt:» Size, Treated as Byte --

A variable preset witn a string, to which the cursor points,
is not declared as size byte. The variable if treated

as size byte for the purpcses of initialization, but
otherwise as the declared size. Compilation continues.

(Warning): String Length Does Not Match Dimension, Ignored --

A variable preset with a string, to which the cursor points,
has an explicit dimension that does not match the string
length. The entire strinc is used even if a succeeding
variable overlaid; the dec lared dimension is unaltered.
Compilation continues. Tris flag is generated for an
INITIAL variable only if the string length exceeds the
declared dimension, for a CONSTANT variable if the length
does not exactly match the dimension.



63

64

66

67

68

69

App T 143

(Warning) : Initial List Too Long, Used Anyway --

The initial list, indicated by the cursor, for an INITIAL
variable exceeds the declared dimension. The entire

list is used even if it overlays succeeding variables;
the declared dimension is unaltered. Compilation
continues. No flag is generated if the initial list is
too short.

(Warning): Constant List Toc Long or Short, Used Anyway --

The constant list, indicated by the cursor, for a CONSTANT
variable does not match the declared dimension. The

entire list is used even if it overlays succeeding variables;
the declared dimension is unaltered. Compilation continues.

(Error) : Base Variable Must Be Backward Ref, Cbase=0 Used --

The basing variable, indicated by the cursor, of a based
variable has not been previously defined. A constant
bas2 of zero is used for the variable being declared

and compilation continues. If the basing variable is
subsequently declared it will be flagged as already
defined (Error 7).

{Blunder) : Base Not Scalar Storags Ref, Used Anyway --

The basing variable, indicated by the cursor, of a based
variable is not a scalar storage r=ference. The base

is used anyway but the generated code is erroneous.
Compilation continues. The hase muist be of class automatic,
static, parameter, constant based, or variable based.

(Error): Bad Size, Word Used -~

The size attribute, indicated by the cursor, is missing

or invalid. A size of word is used and compilation continues.
(Error): Bad Bit Size, Bit (4) Used --

The bit size attribute, indicated by the cursor, is not

1, 2, or 4. Bit(4) is used and compilation continues.
(Warning): Initial or Constant Va_ue Too Big, Truncated

on left --

The element in an initial or constant list, indicated by
the cursor, is too big for the declared size. Bits are
trurcated from the left. The flag is generated if the
bits discarded from a 32 bit intermediate value are not
all the same. This interpretation of precision differs
from that used in expression translation.



144 App D

70 (Blunder): Parameter May Not Have Area Attribute, See
Symbol Table --

An area attribute, indicat=d by the cursor, may not be
specified for a parameter. The attributes used for the
parameter are shown in the symbol table, but inasmuch as
they are inconsistent, the code generated for parameter
references will be erronecis. Compilation continues.

71 (Warning) --
Spare

72 (Error): Base Missing, Cbase=0 Used --

The based variable, indicated by the cursor, contains an
invalid or incomplete base reference at the point indicated
by the cursor. A constant base of zero is used and
compilation continues.

73 (Error): Proc Size Mismat:h, New Size Used --

The new size for a procedure specified in an entry statement
does not match the old siz: specified in a declaration
statement. The new size is used for all subseguent code
generation and compilatior continues. Previous code
generation will have used the old size. The cursor points
to the procedure head of the offending entry statement.

74 (Blunder): No '=' in Iterative Do, Assumed --

An interative do does not contain an equals operator

at the point indicated by the cursor. Its presence is
assumed and compilation ccatinues. Either an equal sign
('=') or a colon-equal sian (':=') may be used.

75 (Error): Constant Over 1l¢ Bits, Reduced Mod 2**16 --

The constant indicated by the cursor contains more than
16 bits of precision while the current context allows
for only 16 (word precisicn). The low-order 16 bits of
the constant are usec¢ and compilation continues.

76 (Warning): Do's Nested Tco Deep, Nest Checking Invalid --

The do indicated by the cursor in nested too deep for nest
checking. Compilaticn cortinues but future labeled ends
will not be properly matcled. See Section 2.3 for a
discussion of do nest depth.



77

78

79

80

81

82

83

App D

(Blunder): Too Many Do Cases, Ignored --

The do case indicated by the cursor exceeds the compiler
capacity for active do cases. The body of the case is
translated correctly but the link to the case is lost.
Compillation continues. A case 1is zactive until the
matching end for the enclosing do zase statement is
encountered.

(Blundexr): No 'T0' in Iterative Do, Assumed --

The keyword 'TO' is required in an iterative do at the
point indicated by the cursor. Itz presence is assumed
and compilation continues.

(Warning) --

Spare

(Blunder): Bad 'BASED' Nesting, Ignored --

The based variable, indicated by the cursor, has a loop
in the basing chain. The chain is prematurely terminated
and compilation continues. The flag cannot occur in the
current compiler because the basins variable must be a
backward reference; see Error 65.

(Blunder): Variable Must Be Storace Ref, Ignored --

The variable indicated by the cursocr is used in a context
that requires a storage reference. Code generation for
the storage reference is incorrectly generated and
compilation continues.

(Error): IEnd Identifier Must Be Do-Label/Begin-Label/
Entrzy, Ignored --

The identifier, indicated by the cursor, of a labeled end
is not the label on a do or begin statement nor is it an
entry to a procedure. Block closure checking for this
end 1s ignored and compilation con-=inues.

(Error): Label Does Not Match Current Block, Ignored --

The identifier, indicated by the cursor, of a labeled
end does not match the label on the innermost open block
or group. The mismatch is ignored, the block or group
is closed, and compilation continues.

145



146 App D

84 (Error): Label On End No- Defined, Ignored --

The identifier, indicated by the cursor, of a labeled end
is undefined. Block closure checking for this end is
ignored and compilation ccntinues.

85 (Warning): Over 32,765 Dc. Blocks, Nest Checking Invalid --

The do indicated by the cirsor is the 32,766th exceeding
the compiler capacity for groups. Compilation continues,
but future labeled ends will not be properly matched.

86 (Warning): Stack Underflcw (May Be Due To Another Flag),
Ignored --

The location counter for the pProgram's run-time stack
{(stack counter) has underflowed. The underflow is ignored
and compilation continues. The underflow is usually a
side effect of another flag.

87 (Blunder): No Proc Ref Af-er 'CALL', Ignored --

A procedurs reference is expected at the point indicated
by the cursor after the keyword CALL but is missing or
invalid. Code generaticn for the procedure reference is
ignored and compilation coatinues. The flag is usually
the result of an undeclarei nrocedure.

88 (Blunder): No Label Ref After 'GO TO', Ignored --

A label is expected at the point indicated by the cursor
after the keywords GO TO, :0TO, or GO but is missing or invalid.
Code generation for the lasel is ignored and compilation
continues.

89 (Blunder): Current Proc Cinnot Return a Value, Ignored --

A return statement in a prcedure is returning a value,
indicated by the cursor, b it the matching procedure head
did not include a return s ze. The procedure head size
omission is ignored, code :enerated for the return value,
and compilation continues.

90 (Blunder): Current Proc M:st Return a Value, Ignored --

A return statement in a pr«cedure requires a value at the
point indicated by the cursor but none is present or 1is
invalid. The value omissicn is ignored and compilation
continues. This flag is usrually caused by the inclusion

of a size in the matclhing | roccedure head where none was
intended.



App D 147

91 i@lynder): No Statement After 'THEN', Ignored --

A statement is expected at the point indicated by the cursor
following the keyword THEN but none is present. Code
gencration for the statement is ignored and compilation
continues.

92 (Blunder) : No Statement After 'ELSE', Ignored --

A statement is expected at the point indicated by the cursor
following the keyword ELSE but none is present. Code
generation for the statement is ignored and compilation
continues.

97 (Blunder): Embedded Assignment Do2s Not Allow Field
Select, Ignored --

The field select operator, indicated by the cursor, may not
be used in conjunction with an embedded assignment operator
(*:='). Code generation for the field selection 1S

ignored and compilation continues.

94 (Blunder) : No Proc Arg, Ignored --

A procedure argument is expected at the point indicated by
the cursor but is missing or invalid. Code generation for
the argument 1s ignored and compilation continues.

95 (Blunder): Bad Number of Args to Built-in Proc, Accepted --

The number of arguments to & built-in procedure is incorrect
The cursor points to the argument list. Code is generated
for the arguments written but the orocedure will not work
correctly. Compilation continues.

96 igjunder): Bad Arg Size for Builtin Procedure, Accepted --

The argument indicated by the cursor has an incorrect size
for the specified builtin procedure. Code is generated for
the size as written but the procedure will not werk correctly.
Compilation continues.

97 (Blunder): Over 252 Words of Proc Args, Reduced Mod 252 --

The total length of the argument _ist, indicated by the
cursor, exceeds 252 words. Code Ior the argument list
is generated but the call cannot be correctly executed.



98

99

148 App D

(Blunder) : '@' Illegal W th Based Variable or Constant,
Ignored --

The based variable or con.tant indicated by the cursor

is the object of the addriss operator ('@') which is illegal.
Code generation for the address operation is ignored and
compilation continues.

(Blunder): Constant Cannct Be a Destination, Used Anyway --

The constant indicated by the cursor is used as a storage
destination which is illecal. Code is generated anyway
but the code will not wor} .



App E 149

APPENDIX E: TOGG.ES -- SIMPLE LIST
Toggle Default Settiny Function
A On List symbol table
B On Ignore high source bit
C Off List generated code
D Off Continue object on blunder
E Off Space for top-of-form
F On List flags
H Off List object program
I On Indent code listing
L On List source program
M On Honor memory checks
N Off Format for narrow page
0 off Generate object program
P On Reset toggles at program start
Q Off Chop source program listing
R On Collect symbol references
S On Format for short page
U off Upspace listing
\Y Off Check memory each record
W off Suppress warnings
X Off Continue on abort
Y On List program summary
Z On Honor listing requests (A C F H L Y)
# Off Honor object in source
?

Off Honor early source truncation



150 App F

APPENDIX F: TOGGLES -- DETAILED DESCRIPTION

*
(On), List Symbol Table --

The A-toggle, when on, enal-les the symbol table listing.

It is checked after the conpilation of a program to determine
if a symbol table listing -s desired. It does not affect

the content of the symbol :*able in any way.

(On) , Ignore High Source B:t --

The B-toggle controls the use of the high-order (leftmost)
bit of the 8 bits that comprise a source program character. When
the B-toggle is on this bi' is ignored (set to zero),

when off this bit is left nchanged. The B-toggle is
normally left on when using 7 bit media, e.g. paper tape,
and left off when using 8 bit media.

(0ff), List Generated Code --

The C-toggle, when on, enanles the generated code listing.
It is checked as each 32/S instruction is constructed.
It does not affect the actial code generation in any way.

(0Off), Continue Object on 3lunder --

The D-toggle, when on, def:ats the normal suppression of
object after a blunder. (>bject is suppressed by turning
the H-toggle and O-toggle »>ff.) Inasmuch as a blunder
indicates a faulty object »rogram, extreme care should be
taken in using any object jenerated under the D-toggle.

(0ff), Space for Top-of-Form --

The E-toggle, when on, causes a sequence of carriage
return/line feeds to be sunstituted for form feeds when a
top-of-form is required. This toggle is useful when the
physical listing device do:s not recognize form feed or
interprets form feed for a) inappropriate page length.

(On), List Flags --

The F-toggle, when on, enaoles the listing of flags.

If the F-toggle is on and the L-toggle off, the offending
source line will be listeé in addition to the flag; this
is useful in scanning for errors. Any flags suppressed
because the F-toggle is off are still reflected in the
program summary.

* pefault setting



App I 151

(0ff), List Object Program --

The H-toggle, when on, enables the listing of the object
program. The H-toggle is independent of the O-toggle
(generate object). The H-toggle is turned off by the compiler
when a blunder occurs, unless the D-toggle is on.

(Or), Indent Code Listing --

The I-toggle, when on, causes any generated code that is
listed (which occurs when the C-toggle is on) to be indented
50 spaces for improved listing clarity. On slower printers
this indentation may slow output speed excessively.

(On) , List Source Program --

The L-toggle, when on, enables the listing of the annotated
source program. If the L-toggle is off, and the F-toggle
is on and a flag occurs, the offerding line is listed anyway.

(On), Honor Memory Checks --

The M-toggle, when cn, enables the checksumming of the
prcgram space occupied by the compiler. The frequency
of this checking is controlled by the V-toggle.

(Off), Format For Narrow Page --

The N-toggle, when on, folds all listing output after
character 70. This toggle is usually turned on only when a
Teletype is used as the output device, as the listing
becomes difficult to read.

(Off), Generate Object Program --

The O-toggle, when on, enables the generation of an object
program on the object file. The O-toggle (generate object)
i1s independent of the H-toggle (list object). The O-toggle
is turned off by the compiler when a blunder occurs unless
the D-toggle is on.

(On) , Reset Toggles at Program Start --

he P-toggle, when on, causes all toggles to be reset to
their default state before each program is compiled.

This reset may be defeated by turning the P-toggle off.
Nots that to apply the same set of toggles to a group

of programs, the common set of toggles need appear just
onc2 in the first program in conjunction with the P-toggle.



Q

152

(Off) , Chop Source Program Listing --

The Q-toggle, when on, causes the annotated source listing
to be truncated after the cource line: that is, the right-
hand annotation is not listed. No other listings or titles
are affected. This toggle will increase listing speed on
slow listing devices.

(On), Collect Symbol References --

The R-toggles, when on, enables the collection of symbol
references. This activity nas a negligible affect on
compilation speed but a sicnificant effect on symbol table
space. If symbol table space is insufficient, this toggle
is normally turned off. When the symbol table is listed
any symbol with no refsrenc:s generates a 'SUPPRESSED'
message; symbols with some references listed may also have
some suppressed.

(On) , Format for Short Page --

The S-~toggle, when on, defites the listing page size as 51
lines, when off as 66 (incl iding margins) .

(Off), Upspace Listing --

The U-toggle, when on, caus:s a top-of-form to be inserted
in the listing file before -he current line is listed.

This toggle is set off by tie compiler after it is processed.
The U-toggle may be used to control the pagewise formatting
of a listing. Should a U-t>yggle be encountered while the
L-toggle (list source progr wm) is off, the upspace request

is ignored, but its suppres:ion is indicated in the toggle
summary by the appearance o an asterisk ("*x').

(Off), Check Memory Each Re :ord --

The V-toggle, when on, caus: s memory checking to occur each
source record. Memory is a ways checked once per program

before the summary is listei. Memory checking consists of
2 parts: memory checksum c: eck (performed only if the
M-toggle is on) and compile- stack size check. TIf either

check discloses a problem, ti-e compiler aborts.

(Off), Suppress Warnings --

The W-toggle, when on, supp esses warnings. Suppressed
warnings are included in the flag summary but excluded
from the console log arnd fl.g link. This toggle is useful
when warnings are anticipatcd, but excessive use of the
W-toggle is poor programminc practice.

App F



X

App F 153

(0ffy, Continue on Abort --

The X-toggle, when on, causes compilation to continue after
an abort. If an abort is suppressed, an 'ABORT SUPPRESSED'
message is issued on the console log and program listing.
The exact response of the compiler after an abort is
indi-ated in Appendix D in conjunction with the flag
descriptions. The routine suppression of aborts is a
dang2rous practice.

(On), List Program Summary -—-

The Y-toggle, when on, enables the listing of the program
summary.

(On), Honor Listing Requests --

The Z-toggle causes other listing requests to be honored. The
Z-toggle is a master enable for the A, C, F, H, L, and
Y-toggles. The Z-toggle is useful in turning off all

listings without knowledge of which listing components are
enabled.

(0ff), Honor Object in Source --

The #-toggle, when on, causes source records with a pound
sign ('#') in the first byte to be transmitted directly to
the object file. Such records are otherwise treated as
comments. The object record buffer is flushed before the
source record is transmitted. No checksum or sequence 1is
computed for the transmitted recorc. The #-toggle provides
a mechanism for the direct construction of loader text.

For example, to insert a loader end reccrd into the object
file after the last program, suffix that last program with:

/* &0 &% */
#END



154 App F

(0Off), Honor Early Source Truncation --

The ?-toggle, when on, causes any text in a source record
beyond the first character and beyond the first question

mark ('?') to be discarded. This premature record truncation
occurs even if the questior mark appears in a comment or
string. To turn the ?-togcle off, the question mark must
appear as the first character in a record lest it be treated
as a comment. For example, the following program uses the
guestion mark both to delimit comments and as string text.

p: PROC; DCL /* &2 */

a WORD, ? Comment

b BYTE, ? Comment

/* %

? */

c BYTE CONSTANT '=2?2', /* &2 */

d WORD; ? Comment
END p;

The ?-toggle provides an a ternate mechanism for program
annotation, but is considered poor coding practice.



App G

Foul Procedure
CLEV extproc
CPTR extproc
CPTX group
DELT delta
DLEV extproc
ENDS end-stmt
FLG1 flag
FLG3 flag
GETI getst
GETS getst
IDEX index
INSE listst
INST insertst
LABLl labels
LAB2 labels
LABS labels
LIT physchar
LLEV extproc
MOST movest
MOVE move
PBSC procbody
PRIN print
PULD pull-do
PULL pull-lex
PURG purgefwd
PUTI putst
PUTS putst
RPTC rptchar
RUSE reuse
SET set

SIZE mpl

SPUT prinwrit
TUSE token
TYPE type
WEXP group

APPENDIX C

Case level
Case table
Case tabel

Symbol tab.e entry has bad units field

: LIST OF FOULS

Cause

not 0 at program end
nct empty at program end
pointer not in case table

Do level n>t O at program end

End statem:nt type out of range

Flag numbe
Flag sever

Symbol tab e entry pointer not in symbol table

Symbol tab

Item not f
Field desc
Text lengt
Symbol typ
Symbol typ

Symbol typ
Literally
Lex level
Target fie
Target fie

Stack coun

- out of range

ty invalid

e field code out of range

»und

iption not found

1 out of range

: not an identifier
+ is a keyword

- out of range

evel less than O

ot 0 at program end
d length out of range
d length out of range

er invalid at program end

Line size :.:xceeds buffer size
Do level 1li'ss than 1

Lex level
Purge type

Symbol tab. e entry pointer not in symbol table

Symbol tab
Repeat cha
Reusc leve
Target fie

Symbel tab

Line size -

Reuse leve

ess than 1
out of range

e field code out of range

racter flag already active

out of range
d length out of range

e base too big
‘xceeds buffer size
out of range

List size . xceeds buffer size

Expression

type invalid

155



156 App H

APPENDIX H: FLAG REFERENCES

Flag Is Generated By Procedure --
0 —
1 extproc
2 string
3 constunt dclelemt dclelemt .nitlist num-pri num-pri prochead prochead

proc-ref ref sizeattr s--ef var

4 constunt
5 constunt

6 extproc

7 blocksen dclelemt dclelemt dclelemt dclelemt dclelemt labels prochead
8 token

9 logchar

10 get-lex

11 var

12 ref

13 ref var var

14 s~ref

15 num-pri s-ref

16 s-ref s-ref

17 num-pri

18 Cc-exXp c-exp group if-then nim-pri
19 konstant

20 num-pri

21 num-pri

22 semiscan
23 as-stmt exp log-fact log-term num-exp num-fact num-term sS—-exp
24 inc-pc

25 inc-sc inc-xc

26 constunt constunt

27 if-then

28 c-exp
29 flag

30 memcheck

31 insertst putst

32 push-lex

33 push-lex

34 token

35 -

36 memcheck

37 sread

38 search

39 newentry



40
41
42
43
44

45

47
48
49

50
51
52
53
54

65
66
67
68
69

70
71
72
73
74

75
76
77
783
79

owrite owrite owrite
as-stmt exp
as—-stmt exp group

in-sym
save-ref

symbol
dclelemt
semi
prochead

extproc

dcl-stmt
dclelemt
dclelemt
dclelemt

areaattr
procbody
blocksen
extproc

dcl-stmt

areaattr
initstr
initstr
initlist
initlist

areaattr
areaattr
gizeattr
sizeattr
initlist

dclelemt
areaattr
blocksen
group

areaattr
push-do
group
group

prochead

dcl-stmt
dclelemt

initlist

dclelemt extproc

areaattr
sizeattr

dclelemt

157



158

80
81
82
83
84

85
86
87
88
89

90
S1
92
93
94

95
96
97
98
29

get-mode
group

end-stmt
end-stmt
end-stmt

push-do

dec-sc

cal-stmt

gotostmt gotostmt
num-pri ret-stmt

ret-stmt

if-stmt

if-stmt

exp

proc-ref proc-ref

proc-ref
proc-ref
proc-ref
num-pri proc-ref
as-stmt exp group

App H



App I 159

APPENDIX I: LOAD MAP



160
*APPOCED

MAME
HPL
ADD&RFF
ARPLAATTR
ASeSTHMT
A« VT
R20 1
R21 L
RoDHR
RTNDIF X
RIMNDUE XD
RIMNDIIF XA
RLuc
RLUCKSEN
RYTtS17¢
Re{ VT
CALeSTM]Y
CONSTUNT
Ceb X1
NCLELFMT
NCLeSTMTY
NELHAIN
NECLeSC
NEFST
NELTA
LNCHALDN
ENpes3TMT
EXIT
Lxw
txTpPior
LXxuyMly
LAY
FORMAT
T ouL
GALGZ
FETST
GEF Tet FXx
GET&M0NF
GLS7
ROTOSTMTY
GPs7
GRyUIP
TFeCt AlIR
1Fes5THY
1FeT ¢ N
TML &P
TNLeSO
INCexC
INDE X
INITLIST
INTTSTR
TNSERTST
I1MeSY
KONSTANT
LARDURBEC
{ARELS
LIG!T
LIGTST
LOLCHAR
(Y, e ACTY
!_ (g, e Tf oM

INRF ENIRY POINTS#w

FNTRY-ADDR
DEC /HE X
nW/740004
1346 /24106
tA6n/s/1124
1628 /7005(C
1908/27Ry
2414/73/NC
21B6/VR8A
2289 /79808
2384/2950
241473960
2444/¢Q98C
2480 /4A9RY
258B8/aA14
299Y2/02RK6
203674R78
2996 /(43R4
329474010
3511/ 20R6
1760 /3L RN
491271334
"A48/71 3RY8
S38KW /713038
K121/714014
R176/71138
52767149C
53447140 n
R538/15A2
5642 /10902
RA26 /71602
AD7R/1 8RR
A3J6 /184D
1a782/724908
1A014/9AA
1A96HR/2ANG
11 ABALDAFC
19264720V
11298/2(002
19748/2004
149728/72L U2
1211h/2F54
12150/2V 76
13316/340U41
13534734106
1847w /349C
13540 /%11 4
1386873549
1 36A44739AC
1 368K /73078
1 384873618
1A812/739D(.
1516873140
15264 /3RAH
1537673014
18430 /3CA6
1745873062
18750/ 3086
18R6A7 3L RC
1754R /74484
17756/ 455C
1 PARASARAD

STATIC=0URG
NUC/HEX
R/NANA
R/7A708
B/NAPA
B/A7208
R/ARNS
R/7AAGA
R/4A0R
R/ANAR
R/7QAB0*8
R/7400R
R/780AA8
R/pAN8
R/ANP8
R/ANNS
R/AA4R
R/NAA8
R/ZAANR
374718
R/ZAANR
R/ZAANR
R/AMNR
R/VNIB
B/31 08
R/AAA8
R/ARR
2/AANAR
R/YM)8
R/ARAR
H/ZATAR
R/PAAR
R/UW7?HR
R/AMn8
R/aMAn
B/A0R
R/IPAAR
B/A108
R/ZAAVR
R/AASR
R/ZIAOR
R/ZAALSK
R/ZWAAR
R/AAUR
R/AANR
RIJANR
R/7ANMR
R/ZAANR
R/ZNANS
R/AANR
R/7pVANA
R/JAN8
R/UWANA
/A998
/4308
R/UMMRRA
R/AAGR
8/172148
/41408
R/AMNB
R/VNAAR
QIAANR

LOUKFOR
LSTeADR
MEMCHE CK
MOVE
MOVEST
NAME SAME
NEWENTRY
NULLeSTMTY
NlIMeEXP
NUIM&F ACT
NiMePRT
NUMe TERM
oLT
AMIT«ADDLR
QUTeRYTF
OUTeDHLF
QUT«INST
NUTeLTT
OUTel WL
QUTeRFC
NUTeNORD
NUITeNRT
DWRITE
PHYSLHAR
PRINT
PRI'WRTTY
PROCTBODY
PRUCHEF AD
PROC+Tb
PRUC+RFEF
PULLeDU
POLE #LFX
PLURGEFWN
PUGH&DU
PHSHeLF X
PUTST
Kt F
REEFST
RETeSTMT
REUSE
KPTCHAR
QAVI¢HFF
SEAPCH
SEM]
SEMISCAN
SET
SETTOGS
STMPLFS?
SIZEATTR
SREAD
STATESTY
STMT
STKING
SUMMARY
SYMROL
Ok XP
S¢KEF
TOKEN
TYHE
UNEXUNTT
VAK

VARE TN

18A81R /40644
tR186 /4684
1R182/470¢
185183/48506
1857474880
18664/4808
1R73R /4942
1RR74/49834
129888/49(8
19331 /4A%6
190150 /4ACE
107¢g2/4D50
23AB6/AEHD2
29692/5uD4
232K /515A
2r918/51Ro
21364 /5244
P37V /KCHA
24014/9NCL
P24132/5F A4
2435A4/85F D22
DAASR /S RA
PAAYD/S/FAC
SANAATHAAY
2493V /AL HD
2R AUD AL AA
2RATW/HHNE
PRHEHA/6HTL
2AQ94/60Q72
27176/69C4
2779676094
P7R2R/6(CR4
2816670006
2R3IDA/AE AL
PR441/6014
28504/ h0F5H
2R89R /7402
D2AOUAD /7172
2Q0444/7344
2066677302
20740/742C
2Q772/744¢
20838/ T74RL
IAAAN/T7HL8
AAABK /79T 4
A1 3R /754C
IA162/75HN2
INIIN/TATA
IAAPFA/TEC L
INGAP/TTIRR
IARDD/THOL
IARBW/TBAY
INg42/78DL
112147790 L
3I22RA/T7EL
1249677096
IDHAR/TF24
32764/7FFC
34533 /8AC 2
TALGHW/RTBA
3469K/R78H
34064798024

App T

G/UQANR
R/BANR
8/A01R
8749018
R/VMARA
B/YANR
RIVANR
RIVANR
R/A08
RIWPDSR
B/UAIR
R/NMANOR
R/VANR
B/ANANR
B/vANS
RIVWANSK
R /A
RgAnR
RAANARA
RyJgunR
RAGAIR
BLAANNR
RydAne
RIANNHRK
Hogn0n
R/ANQNR
RAJBNR
B/UMAR
H/ARMR
R/ANGR
]/40118
]/ANNKR
R/NANAR
R/d¢nR
R7PANR
R/ARAR
RAJANR
R/VANR
R/AANOR
RAAAIR
RAJANR
RAANNA
R/AANR
R/7A0A8
R/ADAK
R/ZWAIR
A/A008
B/42R
B/UAHR
[/7ARNR
R/A08
R/ZNANR
BR/UWAMA
R/ZBANR
R/AANS
R/A8
A/NANRR
R/UAQR
A/4A0R
R/ZANAR
H/AANR
G LAANDR



App I

A 2L XTHRMAL DATA ADPDRESSES*#
ADDRESS
NEC /HE X

NAMP
50812+
ORBISTIZF
LISTSI7F
STACKST?
HASHSTTZE
MAXLEX
MAXLTY
FWDMAX
NOMA X
CASTUMAX
WIDTnA
LRIKMAX
ABUKTS
RLUNDERS
[RKORS
WAKNINGS
AARNTINGLT

STMTS
3YMRGL S
KET S
PAGEL INE
PAuE
LASTHLACD

TITLEPTR
LISTwWATTY
STHASE
STRASEW
ITLMUBASF
ITEMMAR
TEXTMIN
TEXTMNGA
VARCIHATN
PARCHATM
NAMCHATY
L AHCHATN
VAKDLSrC
PAKDESC
NAMLESC
LABDESE
HASHL OC
HASHTAN
ACLISSES
COL TSONS
R OCK
LEX

L INE
CUKSOR
LEXDEPTH
NIUMRERP
NUMRER(
XC

s
PCLONS

R/AVWUE
1n/duaA
12/200U(
147300
16743149
tR/73A112
2n/7ant14
2273010
2473118
267301 A
28/7401C
v/ 31t
I/l
3470022
3674824
3B /72020
An/ Ad28
AD /392 A
aAA7 2020,
An/ 3920
AR/ A3y
WY /AA32
AP /An34
54/7¢a0 30
Sh/30n38
SR/7ZAvnJIA
o /Anic
0273030
eA/2444¢
oh /2042
OB/ AnAA
7u/da40
7274048
7473044
76723040
7273040
H2 /74052
B8A7Z7A056
g/ AnSA
4173050
Y6 /N6y

9/ J3R 1
9n2/43806
994 /3388
Qa6 /A3RA
QR /ZA3R(L
o1V /J38L
91274390
g14/4592
9i6/3304
91874396
Q22 /33948
aP2/7839A

SCIMAX
3C
RLUCKLFEX
PRUCLE X
ORJX
LOBJX
NBITTEM
NDRIRECN
SRLFMODEF
Pk
PTROLD
DESC
NESCOL D
1C0GE
TCUDLOLD
REUSEL Y
LOFFLAL
LABFLAG
POLE Y
NONUMBuER
noNLST
CAStPTK
CASELFV
CAUELITEM
CAGERIF
FOKENLFV
VITLREV
RPTFLAYG
CHARSAVE
LTTRASE
LITCURSK
NRJEC TUN
CONSEIL AC
CONSLNr
FWP TR
CHLCKS
STACKUSE
FR

°L
FWDRASE
FWDI'L
nRIFCr
SOHIY
ODRIBUF
LISTRUF
FLAGKHUF
covenuyr
OBJRUF Y
NUM 1
OBJIRUE?
nUMD
10LGLEF
FWDL [ X
VERSION
VALLUE

l61

924/430C

9267439

9458 733RL

99V /33NL
1227331 ¢L
{A2A72404 )
1tA26 /4442
1A28/744014
tA3Rn /74406
tA3I2/748408
143474094
tA36/ A4UC
tAan/3 110
1t YA/ 4414
1A 679310
tJ48/77418
1 IRV /241 A
1A52/72410
12547341 ¢
tAH6/31424
1ARR/A422
t120/444¢
11y¥2/7244L
11484734548
11678152
{787 *nA(
171 /260AF
t712/740684
1734740006
179K /2D
1778793672
12941/ 7118
1232747 00A
1834/270¢(
1336/727¢0C
12y /2714
1272/3750
1R7A4/74752
{R76/2754
tR7R/24756
I23A/8K98
2922 /AQNA
295y /4491 o
2630 /3A40
2742/3A08
2832/AR1Y
2952 /9R88
3A72/ACMA
3154/73CH2
T1588/7 4086
1240n74CA8
$24A4A/ACAC
159N/ ANAC
1H02 /AL AL
16607082



162

Procedure

mpl
add-ref

areaattr
*assign
as-stmt
a-cvt
b2d1o0
b2d4101
b2dnr
binZ2hex
bin2hex?2
bin2hex4

bloc
blocksen
bytesize
b-cvt
cal-stmt
*close
constunt
c-exp
*date
dclelemt
dcl-stmt
dechain
dec-sc
defst
delta
*display

enchain

App J

APPENDIX J: EXTEKNAL PROCEDURE REFERENCES

Is Called By Procedure --

areaattr blockser end-stmt gotostmt group num-pri proc-ref
token var

dclelemt

owrite

stmt

as-stmt exp if-tren log-fact num-term ref ret-stmt s-ref var
b2d101 b2dnr

flag out-addr out-byte out-dble out-inst out-1it out-lwl ocut-word
format list list:t lst-adr prinwrit

bin2hex2 binZhex«

out-byte out-ins' out-1lit outlwl out-rec

format list list:t 1lst-adr out-addr out-dble out-inst out-1lit
out-lwl out-wcrd

unexunit

group prochody

areaattr initstr procbody

log-fact log-terr num-exp num-term s-exp
stmt

exit

token

exp

mpl

dcl-stmt

procbody

bloc dclelemt group procbody

c-exp group out- nst proc-ref ret-stmt
gotostmt symbol

dclelemt procbod:

extproc type

dclelemt labels jprochead



App J

end-stmt
exit

exp
extproc
exunit

flag

format

foul

gasz

getst

get-lex
get-mcde
gisz
gotcstmt
gpsz
group
if-claus
if-stmt
if-then
inc-pc
inc-sc
inc-xc
index
initlist
initstr
insertst

in-sym

163

group procbody

flag sread

as-stmt c-exp group if-then num-pri proc-ref ref ret-stmt s-ref var
mpl

blocksen if-stmt

areaattr as-~stmt blocksen c-exp cal-stmt constunt dclelemt
dcl-stmt dec-sc end-stmt exp extproc get-lex get-mode gotostmt
group if-stmt if-then inc-pc inc-sc inc-xc initlist initstr
insertst in-sym konstant labels logchar log-fact log-term
memcheck newentry num-exp num-fact num-pri num-term owrite
procbody prochead proc-ref push-do push-lex putst ref ret-stmt
save-ref search semi semiscan sizeattr sread string symbol
s—-exp s-ref token var

print type

delta end-stmt extproc flag getst group index insertst labels
listst mpl move movest phyvschar print prinwrit procbody pull-do
pull-lex purgefwd putst reuse rptchar set token type

as-stmt num-pri proc-ref

areaattr as-stmt blocksen bytesize dclelemt dechain
delta end-stmt exp extproc gasz get-lex get-mode gisz gotostmt
gpsz group initlist initstr labdobeg labels listst movest
namesame num-pri olt out-inst physchar procbody proc-id proc-ref
pull-lex ref refst ret-stmt search s-ref token var var-id

gotostmt out-inst

num-pri var

as-stmt exp gasz get-mode num-pri ret-stmt
stmt

get-mode out-inst ret-stmt

unexunit

if-stmt

exunit

c-exp if-claus

out~addr out-byte out-dble out-inst out-lit out-lwl out-word
out-inst out-1lit out-lwl procbody proc-ref
extproc procbody

refst token

areaattr

areaattr

dclelemt newentry

group num-pri proc-ref var



l64

konstant
labdobeg
labels
list
listst
logchar
log-fact
log-term

lookfor

lst-adr
memcheck
move
movest
namesame
newentry
nul-stmt
num-exp
num—-fact
num-pri
num—-term

olt

*open
out-addr
out-byte
out-dble

out~inst

out~-lit
out-lwl
out-rec
out-word

out-wrt

App J

areaattr dclelemt .nitlist num-pri sizeattr
gotostmt pull-lex

if-claus unexunit

flag foul memcheck mpl out-wrt owrite sread
flag mpl

constunt token

log-term

s—exp

areaattr bloc blocxsen cal-stmt c-exp dclelemt dcl-stmt end-stmt
exp extproc gotostmt group if-stmt if-then initlist in-sym
labels log-ternm mpl nul-stmt num-pri prochead proc-ref ref
ret-stmt semi simplesz sizeattr s-ref var

out-addr out-byte Hur-dble out-inst out-lit out-lwl out-word
mpl sread

extproc flag listst mpl prinwrit sread
extproc list listst olt out-inst

refst

defst refst

stmt

log-fact

num-term

num~fact

num-exp

dclelemt extproc ut-addr out-byte out-dble out-inst out-1lit
out-lwl out-wo.d procbody prochead

owrite

group purgefwd

areaattr initlist initstr
initlist initstr

areaattr as-stmt i1-cvt bloc blocksen b-cvt cal-stmt c-exp exp
extproc get-mole gotostmt group if-stmt initlist initstr labels
log-fact log-t:rm num-exp num-fact num-pri num-term out-lit
procbody proc-ref purgefwd ref ret-stmt s-exp s-ref var

get-mode num-pri sar
num-pri

exit mpl olt sreal
initlist initstr

out-addr out-byte ocut-dble out-inst out-lit out-lwl out-word



App J

owrite
physchar
print
prinwrit
procbody
prochead
precc-id
proc-ref
pull-do
pull-lex
purgefwd
push-do
push-lex
*put

putst

ref
refst
ret-stmt

reuse

rptchar
save-ref
search
semi
semiscan
set
settogs
simplesz
sizeattr
sread
statest
stmt
string

summary

165

extproc out.-rec sread
constunt logchar string token
flag foul memcheck summary
flag list listst out-wrt owrite print summary
bloc blocksen extproc
blocksen extproc

cal-stmt numpri proc-ref
cal-stmt num~-pri

end-stmt pull-lex

end-stmt

blocksen labels

group push-lex

bloc extproc prochead

owrite

add-ref areaattr bloc blocksen dclelemt defst enchain ext-proc
get-mode gotostmt group initstr in-sym labels newentry procbody
prochead pull-lex ref-st simplesz sizeattr symbol

s-ref
areaattr end-stmt in-sym
stmt

as-stmt blocksen dcl-stmt gotostmt in-sym konstant labels log-fact
lookfor num-exp num-~fact num-pri num-term proc-ref symbol
s-exp s-ref var

constunt logchar string token

areaattr gotostmt num-pri out-inst

defst pull-lex statest

extproc prochead

as-stmt bloc cal-stmt end-stmt gotcstmt group procbody ret-stmt
extproc flag list listst mpl print prinwrit sread summary
mpl

dclelemt prochead sizeattr

dclelemt

physchar

gotostmt refst token

unexunit

token

flag mpl



166

symbol
*sysget
*sysput

S-exp

s-ref
*time

token

type
unexunit
var

var-id

App J

blocksen dclelemt extproc iabels prochead
sread

prinwrit

exp

as—-stmt exp num-p ‘i

mpl

as-stmt blocksen :lckstmt ext-proc gotostmt in-sym konstant
labels log-fac' lookfor num-exp num-fact num-pri num-term
semiscan symbo. s—-exp s-ref

exit flag foul mencheck mpl
exunit
num-pri ref

group var

* System procedure



App K

Variable

aborts
accesses

block

167

APPENDIX K: EXTERNAL VARIABLE REFERENCES

Is Referenced By Procedure —-—

mpl
mpl
mpl

blocklex (maxlex) mpl

blunders

mpl

casebuf (casemax) mpl

caseitem
caselev
casemax

caseptr

mpl
mpl
mpl
mpl

charsave (maxlit) wmpl

checks (31)

mpl

codebuf (listsize) mpl

colisons
consflag
consloc
cursor
desc (1)
descold (1)
dolev
domax
donest (domax)
donumber
duml (3)
dum2 (3)
eofflag
errmax

erxors

mpl
mpl
mpl
mpl
mpl
mpl
mpl
mpl
mpl
mpl
mpl
mpl
mpl
mpl
mpl

flagbuf (listsize) mpl

fwdbase (fwdmax) mpl

flag summary

search summary

push-lex summery

defst gotostmt list newentry pull-lex push-lex statest
flag olt procliody summary
group

group list

extproc group list

group

extproc group

physchar

memcheck

l1st-adr out-addr out-byte out-dble out-inst out-lit
out-lwl out-word out-wrt

search summar-’
areaattr procnody
areaattr procoody

flag physchar

end-stmt extproc list pull-do push-do
push-do
end-stmt pust-do

bloc gotostmt group prochead push~-do

sread
flag
flag olt procbody summary
flag

procbody puli-lex purgefwd save-ref



168 App K

fwdlex (fwdmax) mpl pull-lex purgefwd save-ref

fwdmax mpl save~-ref

fwdpc (fwdmax) mpl procbody pull-lex purgefwd save-ref

fwdptr mpl extproc procbody pull-lex purgefwd save-ref
hashloc mpl newentry search statest

hashsize mpl newentry search

hashtab(hashsize) mpl newentry search

itembase mpl areaattr as-stmt dclelemt dechain enchain exp getst get-mode
group list listst newentry physchar procbody prochead proc-ref
pull-lex purgefwd push-lex putst ref ret-stmt save-ref search
s-ref token var

itemmax mpl getst insertst newentry putst summary

labchain mpl bloc group labels

labdesc (1) mpl

labflag mpl blocksen labels

lastflag mpl flag summary

lex mpl bloc blocksen des-sc defst extproc get-lex get-mode gotostmt:

inc-sc inc-xc labels lis- newentry procbody prochead pull-lex
purgefwd push-lex refst ret-stmt save-ref statest

lexdepth mpl push-lex summary
line mpl add-ref dclelemt defst flag labels list sread summary

listbuf (listsize) mpl list listst print summary

listsize mpl flag list listst lst-adr out-inst out-wrt print prinwrit
summary
listwait mpl list

litbase (mexlit) mpl phsychar token

litcursr (maxlit) mpl physchar token

litlev mpl physchar rptchar token
lob:x mpl olt out-rec

maxlex mpl push-lex

maxlit mpl token

namchain mpl dclelemt

namdesc (1) mpl

numberd mpl procbody

numberp mpl dclelemt

objbuf (objsizel) mpl extproc olt out-rec owrite sread
objbufl (objsizel) mpl owrite
objbuf2 (objsizel) mpl owrite



App K

objecton
objfcb(13)
objitem
objrecn
objsize
objx

page
pagelin
parchain
pardesc(l)
pb

pc

pcecons

pl

proclex (maxlex)

ptr

ptrold
refs

reuselev

rptflag (maxlit)

sc (maxlex)

sclmax

sobuf (sosize)

sosize

srefmode
stacksiz
stackuse

stbase

stbasel
stmts
symbols

tcode

mpl
mpl
mpl
mpl
mpl
mpl
mpl
mpl
mpl
mpl
mpl
mpl

mpl
mpl
mpl
mpl

mpl
mpl
mpl
mpl

mpl
mpl
mpl
mpl
mpl
mpl
mpl

mpl
mpl
mpl
mpl

169

exit owrite

exit owrite

owrite summary

out-rec

extproc olt out-rec owrite sread
olt out-rec

prinwrit

prinwrit

dclelemt proctody prochead

memcheck

areaattr blocksen c-exp gotostmt group if-stmt inc-pc initlist
initstr label: list lst-adr num-pri out-addr out-byte out-dble
out-inst out-: it out-lwl out-word procbody proc-ref purgefwd
summary

areaattr dcle. emt
memcheck
bloc list pus! -lex ret-stmt

areaattr constunt dclelemt end-stmt gotostmt initstr in-sym
konstant num-} ri reuse string symbol token

reuse token

putst summary

reuse token

physchar rpt-c har token
dec-sc inc-sc inc-xc labels procbody push-lex
ing-sc summar

list physchar sread
list physchar sread

exp num-pri

memcheck summ.ry
memcheck summ.iry

getst inserts' listst movest namesame newentry physchar
pull-lex puts' search

memcheck pull -lex
summary token
listst newent y summary

reuse token



179

tcodeold
textmin
textminO
titleptr
toggle (255)

tokenlev

value

varchain
vardesc (1)
version
warnings
warningt
width4

XC

mpl
mpl
mpl
mpl

mpl
mpl

mpl
mpl
mpl
mpl
mpl
mpl
mpl

App K

reuse token

dclelemt insertst newentry putst summary
summary

extproc prinwrit

flag list listst logchar memcheck out-wrt owrite physchar
prinwrit putst settogs sread summary

token

areaattr constunt dclelemt initlist num-pri sizeattr string
token

dclelemt procbody

flag olt
flag summary
getst listst newentry putst

extproc¢ inc-sc inc-xc procbody summary



10.

11.

12.

13.

14.

App L APPENDIX L: SYNTAX 171

program ::=
external_ procedure

external_procedure ::=
entry_name : external_procedure_head procedure_bhodv (EOF]...

entry_name ::=
identifier

external_procedure_head ::=
MAIN [procedure] ; |
procedure_head

procedure ::=
PROCEDURE !
PROC

procedure_head ::=
INTERRUPT I[procedure]l ( parameter ) ; |
procedure [( parameter_lis- )] [simple_size] ;

marameter ::=
identifier

parameter_list ::=
identifier [, identif:erl...

il

simple_size
BYTE |
WORD |
DCUBLE

procedure_body ::=
[declare_statement]... [bl ck_sentencel... end_statement

declare_statement ::=
declare declare_element [, declare_element]... ;

declare ::=
DECLARE |
DCL

declare_element ::=
identifier literally strinc |
entry_name tyre_attrihute
item_list size_attribute [crea_attribute]

literally ::=
LITERALLY |
LIT



15.

16.

17.

18.

23.

172 App L

type_attribute ::=
[external] procedure [simple_sizel |
( konstant ) MICRO [simple_sizel

externa. :=
EXTERNAL |
EXT

item_list ::=
identifier [( konstant )1 |
( identifier [( konstant )] [, identifier [( konstant 11leee )

size_attribute ::=
simple_size |
POINTER (TC] simple_size
BIT ( konstant )

area_attribute ::=

extarnal |

3TATIC |

COMNSTANT string |

SONSTANT ( [+ | -1 xonstant [, [+ | -] konstant]l... ) |
inisial string |

~nit12' ( [+ | ~1 Xonstant [, (+ ' -] konstantl... ) !
2ASEZD <Zonstant

3IA3ZN sdentifiar

INITIAL |

-‘\]-vﬂ
PR TS

hlock_sentence ::=
entry_name : procedure_head procedure_body |
executable_unit

evecutahle_unit ::=
if_statement
unconditional_executable_unit

if_statement ::=
if_clause executable_unit |
if_clause balanced_executable_unit ELSE executable_unit

if_clause ::=
{label_list] if_then

1f_then ::=
IF expression THEN



26.

27.

33.

34.

35.

36.

37.

38.

App L 173

balanced_executable_unit ::=
if_clause balanced_executible_unit ELSE
balanced_executable_init |
unconditional_executable_ 1nit

unconditional_executable unit ::=
[label_list] block |
[label_list] aroup |
[label_list] statement

label_list ::=
(label :]...

label ::=
identifier

block ::=
BEGIN ; procedure_body

qroup ::=
aroup_heading ; [block_ser tence]... end_statement

aroup_heading ::=
REPEAT expression [TIMES] |
DC [do_specification]

do_specification ::=
FOREVER |
WHILE expression |
CASE expression |
identifier replace_op expression TO expression [BY expression]

replace_op ::=

= I =

statement ::=
null_statement |
return_statement |
goto_statement |
call_statement |
assignment__statement

null_statement ::=

.
’

return_statement ::=
RETURN [expression] :

goto_statement ::=
go_to label ;



174 App L

39. go_to ::=
GoTO |
GO (TO]
40. call_statement ::=
CALL procedure_reference ;
41. procedure_reference ::=
entry _name [( procedure_argument {, procedure_argument]... )]

42. procedure_argument ::=
expression |
array_name -

43. array_name ::=
tdentifier

44. assignment_statement ::=
storage_reference assignment_operator expression

-~

4%. assignment_operator I =
=|:=|+=

46. exprassion :=
conditional_expression |
simple_expression |
storage_referance := expression

>
~J
.

conditional_expression ::=
if_then expression ELSE expression

43. simple_expression ::=
locical_term [or_operator loaical_terml...

49. or_operator ::=
! 1 L | XCR

50. logical_term ::=

logical_factor [& logical_factor. ...
51. logical_factor ::=
numeric_expression (comparison_cperator numeric_expression]...

52. comparison_operator
< | <= > | =
LLT | LLE | LEQ

.Il =l>=]‘"< >I

I
LNE | LGE | LGT

53. numeric_expression ::=
numeric_term (add_operator numeric_term] ...



54.

55.

56.

57.

60.

61.

62.

63.

64.

65.

66.

67.

App L

add_operator ::=
+ | -

numeric_term ::=

numeric_factor [(multiply_operator numeric_factorl...

multiply_operator :
| MULD | DIVD | SLL | SRA | SRL | SLC

* |/ | MOD

numeric_factor ::=
unary_operator numeric_fa :tor |
numeric_primary

unary_operator ::=
+ | -1 "

it

numeric_primary
konstant |
procedure_reference !
storage_reference |
@ variable |
{ expression ) |
PRTNUM ( entry_name !

storage_reference ::=
reference [$ ( expression [: expression] )]

reference ::=
variable [@ [( expression )]]

variable ::=

identifier [( expression ]
end_statement ::=
{label_list] END [label | entry_namel :

konstant ::=
censtant |
string

constant ::=
decimal_number |
bit_string

decimal_number ::=
digit...

bit_string ::=
" [( legal_size )] [legcl_digit] l... ™

175



176 App L

63. legal_size ::=
112131 4

69. leqgal_digit ::=
digit | A} Bl CcC | D | E|F

70. digit =
ol 11213141516 1171]81]29

71. string ::=
* (non_guote_charl... ° [string]

72. identifier ::=
alphabetic_character [alphameric]...

73. alphameric ::=
alphabetic_character | digit

74. alphabetic_character :i:=
lower_case |
upper_case |

# |
75. lower_case =
a!'blecl dale!" €]l alnl il 4 x| 1] !
ntolplalr’stelulv]wlx!v]ez
7¢. upper_case ::=
A ' BlciDplEgl |l lHIII|JIIX L I|IMI]
vn ool P lQlRIsITIlUlVIWwI]IX]|Y |2



54

74

73

19

43

44

45

26

67

30

21

40

52

47

65

66

Syntax Cross Reference

add_operator
53
alrhabetic_character
72,73
alphameric

72
area_attrihute
13
array_name
42

assignment_statement
35
assignment_operator
44
balanced_executable_unit
23,26
BASED
19
BEGIN
30
BIT
183
bit_string
65
plock
27
block_sentence
10,31
3Y
33
BYTE
9
CALL
40
call_statement
35
CASE
33
comparison_operator
51
conditional_expression
46
CONSTANT
19
constant
64
DCL
12
decimal_number
65

13

12

11

70

33

63

22

46

16

39

177

declare_element
11
declare
11
DECLARE
12
declare_statement
10
digit
66,73
DIVD
56
DO
32
do_specification
32
DO UBLE
9
ELSE
23,26,47
END
63
EOF
2
end_statement
10, 31
entry_name
2,13,21,41,59,63
executable_unit
21,23
expression

25, 32, 33, 37’ 42' 44' 46; 47{5916("‘7

external
15,19
EXT
16
EXTERNAL
16
external_procedure
1
external_procedure_head
2
FOREVER
33
GO
39
ao_to
38
GQTO
39



38

31

24

23

25

20

64

23

28

69

68

14

178

goto_statement
35

group
27

group_heading
31

identifier

3! 7' 8’ 131 l7,lgf291 33’43'62

IF

25

if _clause
23,26

i1f _statement
22

i€ then
24,47
initial
19

mmrIT
20
INITIAL

0

INTERRUDT

(o2 WA o)

m_list

1

-~ t

s (b

konstant
15,17,.8,19,59
label
28,38,63
label_1l:st
24,227,632
legqal_digit
67
legal_size
67
LEQ
52
LGE
52
LGT
52
LIT
14
literally
13
LITERALLY
14
LLE
52

51
50

56

36

53

57

59

55

49

42

10

LLT
52
LNE
52
logical_factor
50
logical_term
48
lower_case
74
MAIN
4
MICRO
15
MOD
56
MULD
56
multiply operator
55
non_quote_char
71
null_statement
35
numeric_expression
51
numeric_factor
55,57
numeric_primary
57
numeric_term
53
or__operaotr
48
parameter
6
parameter__list
6
FOINTER
18
FRCC
5
PROCEDURE
5
procedure
4,6,15
procedure_argumment
41
procedure_body
2,21,30



41

61

34

37

43

}—
(0]

35

60

71

15

58

procedure_head
4,21
procedure_reference
40,59
program

PRTHNUM
59
reference
60
REPEAT
32
replace_op
33
RETURN
37
return_cstatement
35
simple_expression
46
simple_size
6,15,18
size_attrikute
13
SLC
56
SLL
56
SRA
56
SRL
56
statement
27
STATIC
19
storage_reference
44,46,59
string
13,19,64,71
THEN
25
TIMES
32
TO
18,33,39
type_attribute
13
unary_operator
57

27
76

62

179

unconditional_executable_unit
22,26
upper_case
74
variable
59,61
WHILE
33
WORD
9
XOR
49



	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179

