Microdata

Microdata 32/S Computer (MPL)

$5.00

Microdata 32/S Programming Language

(©) 1973 Microdata Corporation

Reference Manual
(MPL)

PUMPL-2

November 1973

TM Trademark of Microdata Corporation

Printed in U. S. A.

M—'

™ Microdata

Microdata Corporation
17481 Red Hill Avenue
Irvine, California 92705

SECTION 1
.1

SECTION 2

= 1—1 | e o R B R Y S o o O - T U Gy W Gy B}
. L . L] . . .
.

.
N O BN e

NN NN NN NN
e & & & e e e e =
N I = T o T * S Sy S
e e e & & e e e
NN O AW N
L]

.
(=N ¥ B ¥ N S

TABLE OF CONTENTS

Page
INTRODUCTION

Summary of the Languagec.ceeveeeesnonsecnannns . 1-1
BlOoCKk StTUCLUTE o oot s s esoecsasssnssecasssononocsssocs 1-1
Data DesCTiption..«ceeveeetcenrerennssronensssannns 1-2
Storage AlloCationcovveeeereennoconcasasosocenas 1-2
Data Organizationcceeveeeetonacnonennsaoasnnsans 1-2
INPUE/OULPUL « + vttt i et eie teetnaeesononesannnnsones 1-2
EXPresSions « ot v vt et ittt ittt ittt ' 1-3
Syntax NOtations .. .veeveieiaintnentneetnasnassansenns 1-3
Notation Variables « « c o vttt vt i ieneeeeeneeesonnnnas 1-4
Notation ConStants « « « e o oot vvvenonensoosensnsnananenns 1-4
Vertical Stroke.o oviiiiii ittt inieennsenannas 1-4
BYraCes « v ot oo v oeeetonenensoesoceasnssssosansneons 1-4
23 i Lol - 1-5
BllipSiSe e vv v e e etenenennnnnneeeeeeeersnnnnnneesos 1-5
The Definition Symbol........iiiiiiieienernrooonnans 1-5

ELEMENTS OF THE LANGUAGE
Basic Lanaguage StruCture « « « « t et e v e vt netaennenonnennns 2-1
Character Set. vttt ittt ittt ienensensnsnecnnns 2-1
S 11 o= o 2-2
(6 07 o oo 2-3
Separators and Other Delimiters: « <« cc s toeencancosennn 2-4
Data CharaCter Set .. vviviinneenennnnennnneeonnnnns 2-4
Identifiers ...oii ittt ittt ittt 2-5
Keywords. S reressresesessenresansen s 2-5
Built-In FUNCtion Names. « « « v v v v v v nene e nnneeeennns 2-6

SECTION 2
1.

SECTION 3

N [\ N 58] NN (S N N
.

nNo [\ NN NN [\ =

.

[¥ B & S

N L W N N N W
NN NN N R e e

P I R

(2 BN W W
. . . .
N W [BN O]
. . .

(@3]

N = =
L Y

TABLE OF CONTENTS (Cont)

Page
(Continued)
The Use of Blankscviiiiiiniinnnnennennnnennnn 2-7
0001111111) 5= 2-7
Basic Program StIuCtUTEo vv i entnneernnenonnnnns 2-7
Simple Statements « <« e v v et etn it etneeeenennaasannn 2-8
The IF Statement « « v v v vttt it tnnteneensnenenannns 2-8
Label List ...ttt it iiietnnennnenanenennns 2-8
GrOUDS: « ¢ ¢ ¢ et e e e nneneennseneencenesnssassnnsonss 2-9
BlOCKS: « ¢ ot v v ettt tnnnoeeeenensessnsnsnsssnnss 2-10
0] - ¢ 111 2-13
DATA ELEMENTS
Data Organization« ««:evevrenesineotinenenneennennnn, 3-1
Scalar Items. i ittt ittt innenensonsennnnnns 3-1
Constants, . . u. i iiin it iiiii it ternnennananns 3-1
Scalar VariablesS. « v v vt v ittt ittt tenenttaennan 3-1
o o =1 4= T 3-1
Referencing of Data. . v v vt v ittt it ittt it tnneenennn 3-2
Simple Referencecciiiiniiiniennnennnnnnn 3-2
Subscripted Reference............... et 3-2
Indirect Reference. « v v v o v v ittt ittt i it tnenneeeennnns 3-3
Subfield Reference. v« v v v vt ittt ittt iieeenenennnss 3-4
2 o T) T 3-5
Decimal NUMDEYS « v v v vttt ittt it teeseansnacensennnnas 3-5
Bit Strings .. vvi it it ittt i e e e e e 3-6
Character STrings..........c..oviiiinineeneenennenns. 3-7

ii

TABLE OF CONTENTS (Cont)

Page
SECTION 4 DATA MANI PULATION
4.1 EXPreSSioNS. ¢ o vt v et et e teeeneneeneeneeneananonennes . 4-1
4.1.1 Simple EXpPresSions . v vvveeeeeeeesnseoesoncesconnsnens 4-1
4,1.1.1 Arithmetic Operationsvveeeeeeeeneceennnneas 4-1
4.1.1.2 Comparison Operationscoevtieneeennnennenns 4-3
4.1.1.3 Logical Operations.ovueveveneenrnenneonnanans 4-3
4,1.1.4 Shift Operationsvvuiveeeeneoenennoenenenconanss 4-4
4.1.1.5 The Assignment Operationoeveeveannnnennss 4-5
4.1.2 Conditional EXpressSions.cieeereeeneeeeacocens 4-5
4.2 Evaluation of EXpressions.eeeeivieensonnnnn. 4-6
SECTION 5 DATA DESCRIPTION
5.1 Attributes ... i it i i i i et st e e 5-1
5.2 DeClarTationsS. v v v vt ittt o s noeentoentsoescensennsennses 5-1
5.2.1 The Declare Statement.t eiennenrenensenennes 5-2
5.2.2 Factoring of Attributes................ [5-3 |
5.2.3 Multiple Declarations.vi i e it neeeneenencnsns 5-4
5.2.4 Procedure Labels.ot iiiineennenneenneennnns 5-4
5.2.5 Scope of Declarations.cvveeeiereeeneeneeenneess 5-4
5.2.5.1 Scope of External Namescovvvvnnunnn.. 5-4
5.2.5.2 Basic Rules for the Use of Identifiers,,............. 5-8
5.2.6 The Attributesiitiiiiniiiinninninnnnnnnn. 5-8
5.2.6.1 The Type Attributeiiiiinnnnnnneeennnnnn 5-8
5.2.6.2 The Procedure Attribute.,.......................... 5-9
5.2.6.3 The Micro Attribute .,cc0viiunnn... 5-10
5.2.6.4 The Dimension Attribute...............ciiivvennn.. 5-11
5.2.6.5 The Size Attributecviiiiiiiiiiiiiieeennnnns 5-12
5.2.6.6 The Area Attributeiuviiiiinnennnennnn 5-13
5.2.6.7 The Literally Attribute..............cccvivuvunannn 5-15

iii

SECTION 6

(o)« N © "N« N« AN =) W = N ©
. - . . N . . .
BA NN NN
L] L) L] .

W

SECTION 7

7.3.1
7.3.2
7.3.2.1
7.3.2.2

SECTION 8
8.1

8.1.1
8.1.2
8.1.3
8.1.4

8.2

TABLE OF CONTENTS (Cont)

, Page
PROCEDURES, FUNCTIONS, AND SUBROUTINES
Parameters. .« v ittt i i it i i c e c e 6-1
Procedure Referencesciviiiiiiiiiininennnnnnns 6-1
Function Referenceciviiiiiiiiiiininiennennnnn 6-2
Built-In FUNCtionsvvvitiiiniennennenennaeannns 6-3
Subroutine References . . v vv v vt ii it it ietenreenennens 6-5
Procedure Reference Examples. i iiiiinnenenennnn. 6-5
ArgumEntsS & ot it i ittt i i i ittt i i 6-7
Passing Arguments to a Procedurecciieuvenenn. 6-8
DYNAMIC PROGRAM STRUCTURE
Program Control ittt i ittt ittt 7-1
Activation and Termination of Blocks......c.ovvivvunnnn.. 7-1
Dynamic DescCendents . . .o v vt vttt tnterenennnsenenens 7-1
Allocation of Data. c v v v ittt iinianeenneneneenenenens 7-2
Definitions and Rules. . ..ot it ittt ittt i i iieeenenenens 7-3
Storage ClassSes. s v v ittt it tenotneeenenecennennes 7-3
The Static Storage ClassS ¢ v v v v it ittt iiereennenaens 7-3
The Automatic Storage ClasS.veueereeenenenennns 7-4
STATEMENTS
Relationship of Statements.........ciiiiiiiiinennnnnnn 8-1
Assignment Statementsivutieenenenennneennns 8-1
Control Statements........covvevveenn ceececnsrsassa 8-1
Data Declaration Statementveeverneeeenenennn. 8-1
Block Statements. . v v v vttt tn ettt etenenetensennnennns 8-1
Sequence of CONtrol ... iiiitiiieetineeneennneeeennens 8-2

iv

SECTION 8
.3

[e <] o co 0 oo o oo oo oo o oo oo o
. . . L] » .] . . L] . L] L]

N B W N N W N W W W W\ (93} [0}

. [] L] L]

O W 3 O 1 &+ NN

L]
s
W N O

TABLE OF CONTENTS (Cont)

(Continued)

Alphabetic List of Statementscovinrenunnns
The Assignment Statementc0evinenenenns
The Begin Statementcciiitiiiiiitirieroesnnsnnnn
The Call Statement . .. oot ittt ittt nneeneeeneennsennss
The Declare Statement. . .« v vt vttt ittt inneeesenenanss
The Do Statement.ttt ittt teneenneennennnns

The Procedure Statement. . . v v v vttt et teeeeeeneneneeennnns

The Repeat Statementc.ciiiiininnieenennnnnn

The Return Statement i ittt i it eneenneenneenns

APPENDIX A SYNTAX OF THE LANGUAGE

Level 1 SyntaX. ... v it iittinienoienetonneennnennnenees
Level 2 SyntaX. . .uvei it in i ineeenenenenenenenenenens

Syntax Cross Referenceit ittt ennennns

APPENDIX B COMPILIER TOGGLES

APPENDIX C

SAMPLE MPL PROGRAM

8-17

Section 1.
INTRODUCTION

1.1 SUMMARY OF TIHE LANGUAGE
This document describes the Microdata 32/S Programming Language (MPL). The

MPL language 1is used to write programs for the 32/S system.

A program, called the MPL compiler, translates MPL statements into 32/S
machine instructions, assigns storage locations, and performs other functions

required to produce an executable machine language program.

MPL 1s designed to be the primary implementation language for the 32/S comput-
er. Although MPL is a high-level programming language, it is not machine
independent. In fact the 32/S machine and MPL were designed symbiotically.
Full access to the resources of the 32/S computer is provided through appro-
priate language constructs. Lach construct of MPL is directly mirrored in the
32/S architecture. For this reason the compiler of MPL can generate execution

code that is as efficient as that generated by assembly language programs.

In the immediately following subsections, the language is summarized briefly.

Full details of the language are given in Sections 2 through 8.

1.1.1 BLOCK STRUCTURE

MPL statements are organized into sections called blocks. A program may
consist of one or more blocks. Blocks may be separate from one another with
no statements in common, or they may be nested. A block is said to be nested

if the statements comprising the block are contained within another block.

Blocks serve two functions. (1) They provide for the automatic allocation of

storage. Storage for data declared in a block is automatically allocated when

the block is entered and freed for use by other blocks when a block is
terminated. (2) They provide a means of using the same name for different

purposes in different blocks without ambiguity.

Certain blocks called procedures may be invoked from different places in the

program, and will return control to the point from which they were invoked.

1.1.2 DATA DESCRIPTION
All data used in an MPL program are described as having certain attributes.
For example numeric data have a size attribute such as BYTE or WORD. The

programmer must declare all the attributes for a variable before the variable

is referenced.

1.1.3 STORAGE ALLOCATION

The storage for data in a program may be assigned statically or dynamically.
Static storage is assigned when a program begins execution and remains
allocated during the entire program execution. Dynamic storage is allocated

on block entry and freed upon block exit.

1.1.4 DATA ORGANIZATION
The MPL language supports two types of data organization; scalars and arrays

of one dimension.

1.1.5 INPUT/OUTPUT

Input and output communication with system peripheral devices is accomplished
by assigning variable names to the various registers of a device controller.
The contents of these registers may then be accessed by name in a manner
identical to the accessing of any other variable. Facilities are provided to
enable the programmer to write interrupt routines to service the interrupts

generated by input/output devices.

1.1.6 EXPRESSIONS
Expressions are used in MPL to specify computations to be performed. Two types

of expressions may be written in MPL.

The first type of expression, called a simple expression, is similar to that of
algebra. For example: A+2*(B+C)

Specifies multiplying the sum of B and C by 2 and adding the result to A.

Data with different size-attributes may be used in the same expression. In

the example above, A may be a BYTE variable, B a WORD variable, and C a

DOUBLE variable.

The second type of expression is the conditional expression. For example:
IF A > B THEN A+1 ELSE B-5
The value of this expression is A+l if the value of A is greater then the

value of B. Otherwise the value of the expression is B-5.

MPL allows the use of a conditional expression anywhere that a simple expres-

sion 1s allowed.

1.2 SYNTAX NOTATION

In this manual a uniform system of notation is used to describe the manner of

writing MPL statements or parts of statements. This system of notation is not
part of MPL. It is a standard notation that may be used to describe the
syntax of any phrase-structured programming language. A system of notation

such as this is commonly called a metalanguage.

The following paragraphs describe the notation.

1.2.1 NOTATION VARIABLES

A notation variable is used to name a general class of elements in the
programming language. A notation variable is written in lower case letters.
Multiple words in the notation variable are connected by hyphens; no spaces
may exist in a notation variable. Some examples of notation variables are:
1. item-list

2. gto-statement

1.2.2 NOTATION CONSTANTS
Notation constants specify the literal occurrence of the characters in the
language element being described. For example:

DECLARE identifier BYTE;
indicates the literal occurrence of the word DECLARE followed by the notation
variable "identifier'" followed by the literal occurrence of the word BYTE

followed by the literal occurrence of the semicolon (;).

1.2.3 VERTICAL STROKE
The vertical stroke | indicates that a choice of alternatives is to be made.
For example:

BYTE | WORD | DOUBLE

indicates that a choice is to be made from one of the three notation constants

BYTE, WORD, or DOUBLE.

1.2.4 BRACES

Braces {} are used to group notations constants and variables into a

syntatical unit. When braces are used for this grouping, the presence of the
syntactical unit is required. For example:

identifier {BYTE | WORD |
indicates that the notation variable "identifier" must be followed by the

literal occurrence of either the word BYTE or the word WORD.

1-4

The notation:
|identifier BYTE | identifier WORD }

has exactly the same meaning as the previous example.

1.2.5 BRACKETS
Brackets [] are also used to group notation constants and notation
variables into syntactial units. When brackets are used, the syntactial unit
is optional. For example:

identifier DOUBLE [BASED |
indicates the literal occurrence of the word DECLARE followed by the notation
variable. "identifier" followed by the literal occurrence of the word BYTE

followed by the literal occurrence of the semicolon (;).

Brackets may be used to enclose a syntactical unit containing alternatives.
When used in this fashion, the brackets indicate that any one alternative may
be used or that none of them may be used. For example:

[alphabetic-character | digit]
indicates a choice of either the notation variable '"alphabetic-character' or

the notation variable ''digit'" or neither of them.

1.2.6 ELLIPSIS

Ellipsis ... following a syntactical unit indicates that the unit may be

repeated. If the syntactial unit contains alternatives, a different choice of

alternative may be used for each repetition. For example:
[alphabetic-character | digit] e

indicates that any number of '"alphabetic-character's or ''digit''s may appear

in any order.
1.2.7 THE DEFINITION SYMBOL

The definition symbol ::= is used to define a notation variable. The symbol

may be interpreted to mean 'may be composed of'.

1-5

For example:

identifier ::= alphabetic-character [alphabetic-character |digit]
defines the notation variable 'identifier'. The example indicates that an
""identifier' may be composed of an "alphabetic-character' followed optionally

- by any sequence of '"alphabetic-character" and/or ''digit'", or by none at all.
Appendix A uses the syntax notation to present a formal syntatical description

of MPL. In other parts of the manual the notation is used to describe the

language elements in an informal way.

1-6

Section 2.
ELEMENTS OF THE LANGUAGE

2.1 BASIC LANGUAGE STRUCTURE

MPL programs consist of a collection of statements. A statement is composed

of characters and is always terminated with the special character semicolon.
Statements may be written in free-field format and are independent of any

physical record boundaries.

The programmer may define record margins so that programs can be entered
through fixed-length records such as cards. Characters in the margin are not
considered to be part of the program and can be used for arbitrary purposes

such as card deck identification.

2.1.1 (HARACTER SET

The character set is composed of digits, special characters, and English
language alphabetic characters. The corresponding English language upper and
lower case letters are considered to be identical. In this manual only the

upper case form of the letters are used.

There are 28 alphabetic-character symbols defined as follows:
alphabetic-character ::=
AlB|c|p|E|E|Gc|u|I|J|K|L|M|N|o|P|Q|[R]|S|T]|U|V]|W
X|Y|z|-|¢#

There are 10 digit symbols defined as follows:
digit ::=
of1]z|3]4]s]|6]|7 8]0

An alphameric-character is defined as
alphameric-character: :=
alphabetic-character | digit

There are 20 special character symbols. Their names and graphic representations

are given in table 1 below.

Table 1. Special Characters

NAME GRAPHIC
Blank

Equal or Assignment symbol =
Plus +
Minus -
Asterisk or Multiply Symbol *
Slash or Divide Symbol /
Left Parenthesis (
Right Parenthesis)
Comma ,
Single Quote '
Double Quote "
Currency Symbol $
Commercial-at Sign e
Semicolon ;
Colon

Not Symbol B
And Symbol &
Or Symbol |
Greater-Than Symbol >
Less-Than Symbol <
Question Mark ?

For keyboards without the symbols | and ™
the following substitutions are made

Not symbol A
Or symbol !

2.1.2 DELIMITERS

The special characters are used to from delimiters. A delimiter is an

operator or a separator.

2.1.3 OPERATORS

The operators are used in expressions to indicate computations to be

performed. The expression operators are shown in table 2 below.

Table 2. Expression Operators

GRAPHIC USAGE

+ denoting addition or (prefix) plus

- denoting subtraction or (prefix) negation

* denoting multiplication

/ denoting division

> denoting greater-than

>= denoting greater-than-or-equal-to

= denoting equal-to

= denoting not equal to

<= denoting less-than-or-equal-to

< denoting less-than

- denoting prefix not (one's complement)

| denoting logical inclusive Or
& denoting logical And

= denoting assigned-to

In addition the following identifiers are reserved for use as operators in

expressions.
Table 3. Identifiers Used As Expression Operators

IDENTIFIER USE

XOR denoting logical Exclusive Or

MULD denoting double-word multiply

DIVD denoting double-word divide

MOD denoting modulo

SRA - denoting shift-right arithmetic

2-3

Table 3. Identifiers Used As Expression Operators (continued)

IDENTIFIER USE
SRL denoting shift-right logical
SLC denoting shift-left circular
SLL denoting shift-left logical

2.1.4 SEPARATORS AND OTHER DELIMITERS
The following special characters are used to separate and delimit elements of

the language.

Table 4. Separator Characters

GRAPHIC USE

() used in expressions, for enclosing subscripts, and for
specifying information associated with various keywords.

Separates elements of a list

terminates a statement

= used in the assignment statement and DO statement
= used in the assignment statement

+= used in the assignment statement

: used to terminate a label and in field selection.
$ used to specify field selection

used to enclose character strings

" used to enclose bit strings

@ used to modify a storage reference

? Used to terminate scanning of a physical record

2.1.5 DATA CHARACTER SET

The MPL source language statements are written in the character set defined in
the preceding section. However, the characters that can be processed as data
are not limited. Data characters may include all 256 8-bit combinations. The

collating sequence for data characters is ASCII-67.

2-4

2.1.6 IDENTIFIERS
Identifiers are strings of alphameric characters, the first of which is

alphabetic. Identifiers may consist of from 1 to 255 characters. The
definition of a an identifier is:
identifier ::=

alphabetic-character [alphameric—character] ce

Identifiers in MPL are used for the following:
Scalar variable names
Array names
Statement labels
Procedure names
Keywords

Examples:
X
VARA
RATE_OF PAY
#2152
X2

TTY_STATUS
#7

2.1.7 KEYWORDS
A keyword is an identifier which is a part of the language. Some keywords are
reserved words and may not be used except in their intended structural use.

The following is a list of the reserved keywords.

BASED LITERALLY
BEGIN MAIN

BIT MICRO

BY MOD

BYTE MULD
CALL POINTER
CASE PROCEDURE
CONSTANT PRTNUM
DECLARE REPEAT
DIVD RETURN
DO SLC
DOUBLE SLL

ELSE SRA

END SRL
EXTERNAL THEN
FOREVER TIMES

GO TO

GOTO WHILE

IF WORD
INTERRUPT XOR

2.1.7.1 BUILT-IN FUNCTION NAMES. Built-in function names are keywords that
name functions accessible to the programmer. Built-in function names are not
reserved and may be used as variable identifiers or labels. The use of a
buiit-in function name as an identifier overrides the built-in function itself
in the scope where identifier is known (see Section 5 ''Scope of Declarations'').

Table 10 (in Section 6) lists the built-in function names.

2-6

2.1.8 THE USE OF BLANKS

Identifiers, constants, and composite operators (e.g., >=) may not contain

blanks.

Identifiers and/or constants may not be immediately adjacent. They must be
separated by a delimiter, one or more blanks, or a comment.
Examples:

CALL SUB is not equivalent to CALLSUB

A TO 10 BY 3 is not equivalent ATO10BY3

A=5 is equivalent to A = 5

2.1.9 COMMENTS
General format:
/*comment-string#*/
Comments are used for documentation of the source program and have no effect
on execution. However, the character $ appearing in a comment is used to

control the compilation process. See Appendix 2 for details.

A comment may appear wherever a blank is allowed, except in a character-string.
The comment-string in a comment may not contain the character pair */ in that
order.
Example:
FACTORIAL: /* PROCEDURE TO COMPUTE X' */
PROCEDURE (X) ;

END;

2.2 BASIC PROGRAM STRUCTURE

An MPL program is composed of basic program elements called statements.

Statements are grouped into larger elements the group and the block. There

are two types of statements: the simple statement and the if-statement.

2.2.1 SIMPLE STATEMENTS
General format:
simple-statement::=
[label-list] [[statement-identifier] ' statement-body] :

The statement-identifier is a keyword indicating the kind of statement. If no

statement-identifier appears the statement is an assignment-statement. If only

the terminating semicolon appears the statement is a null-statement.

Examples:
IABEL: DO I =1 TOS5; /* DO is the '"'statement-identifier' */
Ll:@: A =B+ C; /* assignment-statement with two labels */
; /* null-statement */

2.2.2 THE IF STATEMENT
General format:
IF-statement::=
IF expression THEN unit-1 [ELSE unit—Z]
The if-statement is a compound statement that contains other statements

within it.

Each unit of an if-statement has a terminal semicolon. The semicolon of the
final unit also temminates the if-statement. The if-statement itself is not
otherwise terminated by a semicolon.
Example:

IF A =B THEN C += 2; ELSE C=5;

2.2.3 LABEL LIST
General format:
label-list::=
{identifier: } e

Statements may be preceded by a label-list. The identifiers in the list are

called labels and any one of them may be used to refer to the statement.

The label-list of a procedure-statement is a special case. For this statement
the label-list is mandatory and may only contain a single identifier. The

label of a procedure statement is called the entry-name of the prdcedure.

2.2.4 GROUPS

A group is a collection of one or more statements and is used to control the

sequence of execution of a program. There are three forms of group. The
first, called the do-group, is defined by:
do-group: :=

[label-listJ do-statement
statement...
END [identifier] ;
If an identifier follows END, it must correspond to an identifier in the

label-1list of the do-statement.

The second form of group, called the repeat-group, is defined by:

repeat-group: :=

[label-list] repeat-statement
statement...
END [identifier] ;
If an identifier follows END, it must correspond to an identifier in the

label-1list of the repeat-statement.

The third form of group is a single statement as follows:

[label-list] statement

The statement-identifier of the single statement group may not be DO, END,
PROCEDURE, BEGIN, or DECLARE.

Example:
ALPHA: DO;
IF A = B THEN
DO;
X=Y;
P=Q;
END;
END ALPHA;

This example contains two do-groups. The first do-group contains the second
do-group within it. In the example every statement except the DO and END

statements is a single statement group.

2.2.5 BLOCKS
A block is a collection of statements that define the program region--or
scope--throughout which identifiers are known, and for which storage is allocated

to them. Blocks are also used to control the sequence of execution.

There are two kinds of blocks, begin-blocks and procedures.
A begin-block has the form:
begin-block::=

[1abe1- 1ist] begin-statement
statement...
END [identifier] ;

If an identifier follows END, it must correspond to an identifier in the
label-list of the begin-statement.
A procedure has the form:
procedure: :=

identifier: procedure-statement
statement...
END [identifier] ;
If an identifier follows END, it must correspond to the identifier of the

procedure-statement.

The begin-statement and procedure-statement in the above forms are called

heading-statements.

Although begin-blocks and procedures have the same role in delimiting scope
of names and allocation of storage, they differ in the way in which they are
activated. A begin-block, like a single statement, is activated by normal
sequential flow of coﬁtrol, and can appear wherever a single statement can
appear. A procedure may only be activated by a CALL statement or by a

function reference. Normal sequential flow of control skips over procedures.

Since a procedure can be activated only by a reference to it, every procedure

must have an entry-name. The identifier required on the procedure-statement

serves as the entry-name.

Any block, A, may include another block, B, within it. However, partial
overlap is not possible. Block B must be completely included within block A.
The inclusion of one block within another is called nesting. Such nesting

may occur to a maximum of 16 nesting levels.

A procedure-block that is not included in any other block is called an

external -procedure.

A procedure nested within a block is called an internal-procedure.

Begin blocks must be nested within another block. Therefore, the only form

of external block is the procedure.

All of the text of a block except the label on the block heading-statement is

said to be contained in the block.

The part of the text of a block B that is contained in the block B, but is

not contained within any other block nested inside of B, is said to be

internal to the block B.

The notion internal to is vital to the understanding of the definition of

scope and to the understanding of allocation of storage.

Example:

A: PROCEDURE;
statement-1

B: BEGIN;
statement-2
statement-3

END B;

statement-4

C: PROCEDURE;

statement-5

D: BEGIN;
statement-6 block

statement-7 D
END D;
statement-8
END C;

statement-9

block

block

END A;

block

In the example, statement-1 through statement-9 represent simple statements.

As shown by the brackets to the right of the example, block A contains blocks

B and C, and block C in turn contains block D.

Block A is an external-procedure (it is not contained within any other block).

The entry-name is A and is an external name.

Blocks B and D are begin-blocks.

Block C 1is an internal-procedure (it is contained in block A).

The text internal to block A is:
PROCEDURE;
statement-1
B:
statement-4
C:
statement-9

END A;

The text internal to block B is:
BEGIN:
statement-2
statement-3
END B;

The text internal to block C is:
PROCEDURL ;
statement-5
D:
statement-8

END C;

The text internal to block D is:
BEGIN;
statement-6
statement-7

END D;

2.2.6 PROGRAMS
A program is composed of one or more external-procedures. Thus a.program is a

set of procedure blocks each of which may have other procedures contained in them.

2-13

Section 3
DATA ELEMENTS

Information manipulated by MPL programs during execution is called data. Data

may be integers, characters, arbitrary collections of bits, or pointers to

other items of data.

3.1 DATA ORGANIZATION

Data may be either scalars (i.e., single items) or arrays (i.e., collections

of single items)

3.1.1 SCALAR ITEMS

A scalar item may be a constant or the value of a scalar variable.

3.1.1.1 CONSTANTS. A constant is a data item that denotes itself. That is,
its representation in a program is both its name and its value; thus, the

value of a constant cannot change during execution of a program.

3.1.1.2 SCALAR VARIABLES. A scalar variable denotes a data item. This data
item is called the value of the variable. The identifier used in a program to
reference the data item is called the name of the variable. A variable may
take on more than one value during the execution of a program. The set of

possible values of a variable is called the range of the variable.

3.1.2 ARRAYS

An array is an ordered collection of scalar data items all of which have the
same declaration. The number of scalar elements in the array is specified by

the use of a dimension attribute in the declaration for the name of the array.

_The elements of the array are numbered starting with zero. The maximum ele-

e R e

ment number corresponds to the declared dimension.

Example:

DECLARE X(3) WORD;
This statement declares X to be an array containing four scalar elements. The
number, 3, appearing in the example is the dimension. Each element is a word.
The elements of the array X can be conceptualized as a collection of data
items referenced as follows:

X(0)

X(1)

X(2)

X(3)
The number in parentheses following the array name identifies the particular

element being referenced.

3.2 REFERENCING OF DATA

This portion of the manual describes the rules for refering to data items.

Reference is made to data items via a simple reference, a subscripted reference
or an indirect reference. Additionally any subfield of a variable

declared with WORD precision may be referenced via a field selection modifier.

3.2.1 SIMPLE REFERENCE
A simple reference is an identifier (see section 2). A simple reference may
refer to a scalar or to an array. If a simple reference is prefixed by the
commercial at sign @, then the reference is to the storage location of the
variable and not to the value.
Example:

ABC is a reference to the value of the data item. -

@ABC is a reference to the storage location of the data item.

3.2.2 SUBSCRIPTED REFERENCE

A subscripted -reference is used to refer to a particular element of an

array.

The general form of a subscripted reference is
subscripted-reference: :=
identifier (expression)
The value of the expression within the parenthesis specifies the particular
element of the array.
Example:
Assume that I has a value of 3, and that the array X is declared as
DECLARE X(5) WORD;

then
X(0) references element zero of the array

X(I+2) references element five of the array

3.2.3 INDIRECT REFERENCE
A commercial at sign, @, following a variable indicates that the value of the

variable is an address of some other variable. The commercial at sign may

follow only variables declared with the POINTER TO attribute (see '"The Area
Attribute'', Section 5).

The general form of an indirect reference is:
indirect-reference: :=

variable @ [(expression)]

When the (expression) option is used, it indicates an index on the indirect

reference (post indexing).

The use of the indirect reference will be illustrated by the following

example.

Consider the following declarations and assignments.
DECLARE X(1) POINTER TO WORD;
DECLARE A WORD;
DECLARE B(2) WORD;

DECLARE Y POINTER TO WORD

X (0) = eA;
X (1) = eB(0);
Y = @B(0);

Then, subsequent to the above statements, and within their scope:
X(0)e ' is a reference to the value of A
X(0) is a reference to the value of X(0)
(i.e., it is a reference to the storage location of A)
Ye(1) is a reference to the value of B(1)
X(1)e(2) is a reference to the value of B(2)

3.2.4 SUBFIELD REFERENCE
If a data item has been declared WORD, then the reference (simple, sub-

scripted, or indirect) may be qualified with a field-select.

The general form of a field-select is:
field-select::=
$ (expression:expression)
Subfield qualification is accomplished by writing the field-select

after the reference to the data item.

The first expression of a field-select specifies the number of bits to be ref-

erenced. The second expression specifies the right most bit position of the

field. Bi ithi d are numbered in des] dex from left to

‘ \E?ght starting with 15 and ending with 0.

Examples:
X$(1:0) references the least significant bit of the WORD X.
A$(4:12) references a field consisting of the 4 most significant bits of

the WORD A.

3.3 DATA TYPES
There is no data type for variables in MPL. The type of operations to be
performed on the data is determined by the operators of the language, not by
the operands. For example if the variable A and B appear in the expression:
A+B "
then the values will be considered to be binary integers and will be combined
by the rules of algebraic addition. On the other hand if the same values
appear in the expression
AgB
then the values will be treated as bit strings and will be combined bit by bit

according to the rules for the operator Logical And.

Although there is no data type associated with variables, there is a type
associated with the representation of constant data. It should be noted that
different representations of a constant may have the same value. For example
the two constants:

255

"ERN
represent the same value and using either representation in a source program

will have an identical effect.
The following paragraphs describe the various representations of constants.

3.3.1 DECIMAL NUMBERS
General format:
decimal-number: :=
digit...
A decimal-number is treated as an integer. The precision is self-defining.

The possible precisions are 4, 8, 16 and 32 bits.

Examples:

12 precision used is 4 bits
200 precision used is 8 bits
15972 precision used is 16 bits

87962 precision used is 32 bits

3.3.2 BIT STRINGS
General format:
bit-string::=
"{[(size)] legal-digit...}..."
size::=
1[213]4

The size determines the number of bits that will be generated from each of the

legal-digits. The legal-digit must correspond with size as shown in the table

below.

Table 6. Legal Digits for Bit Strings

SIZE LEGAL DIGIT

1 011

2 0111213

3 011121314151617

4 01112131415161718I91AIBICIDIEIF

when size option is omitted, a default of 4 is used.

Examples:

bit string binary value
"3z 00110010

"(3)32" 00011010

"z (invalid)
"FA(1)1010(2)21" 1111101010101001

3-6

precision

3.3.3 CHARACTER STRINGS
General format::=

'[character] ...’

The character symbols that may appear include any characters available at the
keyboard used to prepare the source program. When a single quote character is
required in the character-string it must be represented by two consecutive
single quotes.
Example:

'"THIS IS A '' character-string'"’
represents the characters:

THIS IS A 'character-string'
Note that lower-case characters are permitted in character-string. Also note

the use of consecutive single quotes within the character-string.

Section 4
DATA MANIPULATION

4.1 EXPRESSIONS

An expression describes an algorithm for computing a value. Expressions are

of two types: simple and conditional. Each operation performed in evaluating

an expression is carried out with precision WORD or DOUBLE. The precision

used is determined by the precision of the operands. If the operands are

WORD or BYTE, then the precision used is WORD. If both operands are precision
DOUBLE, then the precision used is DOUBLE. If one operand is precision DOUBLE

and the other is either WORD or BYTE, then the lesser precision operand is converted

to DOUBLE and the precision used is DOUBLE.

4.1.1 SIMPLE EXPRESSIONS
Simple expressions have a form similar to the formulas of algebra. A simple
expression consists of a sequence of one or more operands separated by infix

operators. Additionally an operand may be preceded by prefix operators. The

operands of an expression may be data references or constants. Additionally
an expression enclosed in parenthesis may be used as an operand. The follow-
ing are examples of valid MPL expressions:

A

-A

A+B

A+B*C

A>36C<D

(A+B) * (C-D)

A+-B

4.1.1.1 ARITHMETIC OPERATIONS. Arithmetic operations treat the operands as

signed integers. BYTE (8 bit) precision operands are treated as 8 bit positive

values and are converted to WORD (16 bit) precision by extending the precision

4-1

with zeros to the left. WORD precision variables are converted to DOUBLE

precision by extending the most significant bit (sign bit) to the left.

Negative values are represented in two's complement binary notation.

The following infix operators are used to indicate arithmetic operations.
+ indicates addition. The precision is determined by the operands.
- indicates subtraction. The second operand is subtracted from the

first. The precision is determined by the operands.

* indicates multiplication. The precision is determined by the
operands.
/ indicates division. The first operand is divided by the second.

The precision is determined by the operands.

MOD indicates remainder after division of the first operand by the
second. The precision is WORD. The sign is the sign of the divisor.

MULD indicates double-precision multiplication. The result of this
operation is precision DOUBLE even though the operands are of
precision WORD or BYTE.

DIVD indicates double precision division. The first operand is divided
by the second. The result of this operation is precision WORD. It
is used when a DOUBLE precision operand is divided by a WORD or

BYTE precision operand and the desired result is WORD.
The following are the prefix operators used to indicate arithmetic operations.

+ no effect on the value of the operand.

- negation. The algebraic sign of the operand is changed.

4-2

4,1.1.2 COMPARISON OPERATIONS. The comparison operations are all infix
operations. Comparison operations treat the operands as signed numbers in
two's complement binary notation. The result of the operation is the value 1

if the relation is true. The result of the operation is the value 0 if the

relation is false.

The following are the operators are used to indicate comparison operations.
> indicates greater than
>= indicates greater than or equal to
= indicates equal to

= indicates not equal to

<= indicates less than or equal to
< indicates less than
Examples:

5 > 3 has the value 1
2 > 2 has the value 0
3 >= 3 has the value 1

4.1.1.3 LOGICAL OPERATIONS. Logical operations operate on the operands on a
bit by bit basis. The result in each bit position is determined by the values
of the corresponding bit positions of the operands according to the following
table.

Table 7. Logical Operations

A B NOT A NOT B A AND B A OR B A EXCLUSIVE OR B

S = O =

0
0
1
1

— o o
e e
S H = o

1
0
0
0

oS O

The following infix operators are used to indicate logical operations:
I indicates logical or
& indicates logical and

XOR indicates logical exclusive or

The following prefix operator indicates a logical operation
7 indicates logical not
Examples:
assume
A has the value ''(1)00010111"
B has the value ''(1)11111111"
C has the value ''(1)10100000"
then
1A has the value ''(1)11101000"
B&C has the value ''(1)10100000"
Al-C has the value ''(1)01011111"
A XOR B has the value ''(1)11101000"

4,1.1.4 SHIFT OPERATIONS. Shift operations cause the first operand to be

shifted the number of bit positions equal to the value of the second operand.

The following infix operators are used to specify shift operations.

SRA indicates shift-right-arithmetic. Bit shifted off the right are

lost. Bits positions vacated on the left are filled with the sign

of the original value.

SRL Indicates shift-right-logical. Bits shifted off the right are

lost. Bit positions vacated on the left are filled with zeros.

SLL. indicates shift-left-logical. Bits shifted off the left are lost.

Bit positions vacated on the right are filled with zeros.

SLC indicates shift-left-circular. Each bit shifted off on the left

fills the bit position vacated on the right.

4-4

Examples:
-25 SRA 2 has the value -7
"FFFF'' SRA 7 has the value "FFFF"
"FA" SLL 1 has the value ''1F4"
""'8000" SLC 2 has the value '0002"

4.1.1.5 THE ASSIGNMENT OPERATION. The assignment operation is used to create
the side effect of storing the value of the expression that appears to the right

of the assignment operator. The assignment operator is:

This operation can only be used in an expression in the form:
storage-reference := expression
That is, the operand to the left of the assignment operator must be a storage-
reference. An expression or a constant may not appear to the left of the
assignment operator. The assignment may only be made to WORD variables.
Examples:
X:=3+5 X is assigned the value 8. The value of the expression is 8
X:=Y:=7-2 X and Y are each assigned the value 5. The value of the
expression is 5.

(X:=7)+X+2 X 1s assigned the value 7. The value of the expression is 16.

4.1.2 CONDITIONAL EXPRESSIONS
General form:
conditional-expression: :=
IF expr-a THEN expr-b ELSE expr-c
where ''expr-a', '"expr-b' and 'expr-c' are arbitrary expressions including the

possibility of conditional expressions.

Conditional expressions are interpreted as follows. If the value of "expr-a"
is an odd number (least significant bit is a 1) then the value of the
"condition-expression' is the same as the value of '"'expr-b''. If the value of
Yexpr-a'" is an even number (least significant bit is a zero) then the value of
‘the "conditional-expression' is the same as the value of "expr-c'. In the
evaluation of a conditional expression only one of the, expr-b expr-c,

expressions is evaluated.

Normally "'expr-a'" in the ''conditional-expression'" will be an expression with
comparison operators. However, this need not be the case.
Examples:
IF A > B THEN C*D+2 ELSE C/D
IF A THEN B ELSE A
IF A THEN A ELSE B
Note that if the range of values for A and B is restricted to 0 and 1, then
the value of the second example is identical to the value of the expression:
AGB
and that the value of the third expression is identical to the value of the
. expression:

Al B

4.2 EVALUATION OF EXPRESSIONS

Operations within an expression are assigned a priority as follows:

unary : +,-, 0 highest
multiplication and shift: * / ,MOD,DIVD,MULD,SRA,SRL,SLL,SLC

addition: +,-

comparison: >>= == <= <

and &

or |, XOR \ 4
assignment = lowest

4-6

operations within an expression are performed in the order of decreasing
priority. For example, in the expression A+B*C multiplication of B by C is
performed first and then the result is added to A. Consecutive assignment
operations are performed in right to left order. All other infix operations
of the same priority are performed in left to right order. Consecutive prefix

operations are performed in right to left order.

If an expression is enclosed in parentheses, it is treated as a single operand.
The parenthesized expression is evaluated before its associated operation is
performed. For example, in the expression

(A+B) * (C+D)
B will be added to A, D will be added to C and the first result will he multipliec
by the second. Thus the use of parentheses may modify the normal priority of the
onerators.
The operands of an expression are always evaluated in left to right order.
This is true regardless of the order in which the operands themselves are com-
bined with operators. For example if A, B, and C represent operands to be
evaluated (e.g. expressions in parentheses or function references), then the
expression:

A+B*C
is evaluated in the following steps:
1. A is evaluated
2. B is evaluated
3. C is evaluated
4, The multiplication of B’by C is performed
5. The result of the multiplication is added to A
The expression:

A*B+C
is evaluated in the followihg steps:
1. A is evaluated

2. B is evaluated

3. The multiplication of A by B is performed

4. C is evaluated '

5. C is added to the result of the multiplication.

This strict left to right evaluation of operands guarantees the programmer

can control side effects.

Section 5
DATA DESCRIPTION

5.1 ATTRIBUTES

An identifier in an MPL program may represent one of several types of objects.
It may represent a data variable, a procedure name or a statement label.

Those properties that characterize the object represented by the identifier,
and other properties of the identifier (such as precision and accessing

method) make up a set of attributes of the identifier.

When an identifier is used in a program, the attributes of the identifier must
be known.
Examples of Attributes:
EXTERNAL - This attribute defines an identifier to have a certain special
scope.
CONSTANT (5) - This attribute defines an identifier to be the name of a con-
stant data item with the value of 5.

DOUBLE - This attribute defines an identifier to have a precision of 32 bits.

5.2 DECLARATIONS

An identifier is established as the name of some object and the attributes of

the identifier are specified by means of a declaration.

If a declaration of an identifier is internal to a certain block, then the

identifier is said to be declared in that block.

In a given program an identifier may represent more than one object. In this
case each different object represented by the identifier is said to be a
different use of the identifier. For example an identifier may represent a

data item with precision BYTE in one part of the program and the same identifier

may represent a statement label in another part of the program. These two

parts of the program, of course, cannot overlap.

Each use of an identifier is established by a separate declaration. Ref-
erences to different uses of the same identifier are distinguished by the rules

of scope (See ''scope of declarations' in this section).

Declarations are made by the use of the ''declare-statement' or by the appear-

ance of an identifier as a label of a statement.

5.2.1 THE DECLARE STATEMENT
Function:

The declare-statement is a non executable statement used to establish an

identifier and to specify the attributes of the identifier.

General Format:
declare-statement::=
DECLARE item-spec [, item-spec] ...;
item-spec::=
{item type-attributell
{item size-attribute [area-attribute]}l
{identifier LITERALLY string}
item::=

identifier [(constant)]

Syntax Rules:
1. Any number of identifiers may be declared in a single declare-statement

and declarations must be separated by commas.

2. Attributes must follow the items to which they refer. (Note the above
general form does not show the factoring of attributes which is allowed

and explained later).

3. A label is not allowed on a declaration-statement.

General Rules:

1. All of the attributes of a given identifier must be declared in a single
declare-statement. |

2. Attributes of an EXTERNAL name declared in separate blocks and compilations
must be identical.

3. The declaration-statements within any block must follow immediately after
the block heading statement and before any other statements in the block.

Example:

DECLARE JOE BYTE, JIM WORD, SAM (15) BIT (4);

JOE is declared to be a data-item with a precision of 8 bits. JIM is
declared to be a data-item with a precision of 16 bits. SAM is declared to

be an array of 16 data-items each item with a precision of 4 bits.

5.2.2 FACTORING OF ATTRIBUTES
When several data-items have the same attributes (other than the dimension
attribute), then the attributes can be factored to eliminate repeated specifi-
cation of the same attribute for many identifiers. The factoring is accom-
plished by enclosing the items in parentheses and following them with the
attributes that apply to all the items. The items within the parentheses are
separated by commas.
Example:

DECLARE (A,B) WORD, (D,E) BYTE EXTERNAL;
‘'This declaration is equivalent to the following:

DECLARE A WORD, B WORD, D BYTE EXTERNAL, E BYTE EXTERNAL;

5.2.3 MULTIPLE DECLARATIONS

More than one declaration of the same identifier, internal to the same block
constitutes a multiple declaration of that identifier. Multiple declarations
are in error with the exception that the declaration of an identifier as a
PROCEDURE in a declare-statement does not constitute a multiple declaration if

the same identifier appears subsequently as the label of a procedure-statement.

5.2.4 PROCEDURE LABELS

A label on a procedure statement declares the identifier as an entry-name. If
the procedure is the outermost block, the EXTERNAL attribute is also implicitly
declared for the label.

5.2.5 SCOPE OF DECLARATIONS
When a declaration of an identifier is made, there is a certain well defined
region of the program over which this declaration is applicable. This region

is called the scope of the declaration. Outside the scope of the declaration,

the identifier is said to be unknown or undefined.

The scope of a declaration of an identifier is defined by the block, B, in
which the identifier is declared but excluding any blocks contained in B

where the same identifier is declared again.

5.2.5.1 SCOPE OF EXTERNAL NAMES. In general, declarations of the same

identifier made in different blocks represent different distinct objects with
non overlapping scopes. It is possible to declare the same identifier in more
than one block such that each declaration represents the same object. This is

done by using the EXTERNAL attribute.

When the same data item is declared EXTERNAL in more than one block, each

declaration represents the same object.

If an identifier is declared with the type-attribute EXTERNAL PROCEDURE, then

the identifier represents the external procedure whose label is the same as

the identifier being declared.

The following examples illustrate scope of declarations.

explain the scope and use of each name for example 1.

Example 1:

A: PROCEDURE;
DECLARE (X, Z) WORD;

B:

END A,

PROCEDURE (Y);
DECLARE Y BYTE;
C: BEGIN;
DECPARE (A, X) DOUBLE;

Y: i=A;
END C;
END B;
PROCEDURE;
DECLARE X WORD;
Y=172+X;
END.D;

5-5

/*LINE
/*LINE
/*LINE
/*LINE
/*LINE
/*LINE

/*LINE

/*LINE
/*LINE
/*LINE

Tables 8 and 9

*/
*/
*/
*/
*/
*/

(o) N ¥ B Y, B \S]

8 */
9 */
10, WITH ERROR */

Table 8. Scope and Use of Names of Example 1

LINE NAME USE SCOPE (BY BLOCK LABELS)
1 A external procedure all of A except C
2 X WORD data-item all of A except C and D
2 Z Word data-item all of A
3 B internal procedure all of A
4 Y BYTE data-item all of B except C
5 C Statement label all of B
6 A DOUBLE data-item all of C
6 X DOUBLE data-item all of C
7 Y Statement label all of C
8 D internal procedure all of A
9 X WORD data-item all of D

Table 9. Items Referenced By Example 1

LINE OF REFERENCE NAME ITEM REFERENCED
7 Z WORD data-item declared on line 2
7 A DOUBLE data-item declared on line
10 Y Invalid reference. Y is not known in block D
10 Z WORD data-item declared on line 2
10 X WORD data-item declared on line 9

5-6

Example 2:
A: MAIN PROCEDURE; ‘
DECLARE X WORD EXTERNAL; /*LINE 1 */

B: PROCEDURE;
DECLARE X BYTE; /*LINE 2 */
C: BEGIN;
DECLARE X WORD EXTERNAL; /*LINE 3 */
END C;
END B;
END A;
D: PROCEDURE;
DECLARE X DOUBLE; /*LINE 4 */
E: PROCEDURE;
DECLARE X WORD EXTERNAL; ' /*LINE 5 */
END E;
END D;

In example 2 there are five declarations of the identifier X.

The declaration of line 2 declares X as a BYTE data-item. Its scope is all of
block B except block C.

The declaration of line 4 declares X a DOUBLE data-item. This item is distinct

from that of line 2. Its scope is all of block D except block E.

Declarations in lines 1, 3, and 5 all declare X to be the same WORD data-item.

Its scope is all of the program except the scopes of declarations in lines 2 and 4.

5.2.5.2 BASIC RULE FOR THE USE OF IDENTIFIERS. The fact that an identifier is
unknown outside its scope suggests the following basic rule on the use of
identifiers.

All appearences of an identifier which are intended to represent a

given object in a program must lie within the scope of that identifier.

The most important implication of the above rule is on the limitation of trans-

fer of control by the statement, GOTO LAB, where LAB is a statement-label.

The statement, GOTO LAB, internal to a block B, can cause transfer of
control to another statement (having label LAB internal to B)or to a state-
ment in a block that contains B, and to no other statement. In particular it

cannot transfer control to any statement internal to a block contained in B.

5.2.6 THE ATTRIBUTES
Attributes are used to give characteristics to their associated identifiers.
The attributes are divided into the following classes:

type-attribute

dimension-attribute

size-attribute

area-attribute

literally-attribute

5.2.6.1 THE TYPE ATTRIBUTES. The type attributes are PROCEDURE and MICRO.
Identifiers are declared to be procedure-names or micro-procedure-names if they
appear in a declaration with a type-attribute. All identifiers appearing in a

declaration without the type-attribute are declared to be data-items.

5.2.6.2 THE PROCEDURE-ATTRIBUTE.

Function:

The procedure-attribute specifies that the identifier is a entry-name.

General Format:
procedure-attribute::=
[EXTERNAL] PROCEDURE [BYTE |WORD|DOUBLE]

General Rules:

Identifiers must be declared with the procedure-attribute in two cases

1. A reference is made to an external procedure other than the one containing
the reference by either a call-statement or a function reference. In this
case the EXTERNAL option is required in the declaration.

2. A reference is made to an internal-procedure by either a call-statement or
a function reference appearing in the scope of the declaration and the

reference occurs prior to the procedure itself.

The BYTE, WORD, or DOUBLE option is required with the procedure attribute if
the procedure is to be referenced as a function. In this case the option

specifies the precision of the value returned by the function.

Example:
A: PROCEDURE;
DECLARE B PROCEDURE, C PROCEDURE,
D EXTERNAL PROCEDURE;
CALL D;
CALL B;
B: PROCEDURE;

CALL D;
END B;

C: PROCEDURE;

ENb C;
CALL C;
END A;

D: PROCEDURE;

END D;

In the example the declaration 'B PROCEDURE'" is required because the ''CALL B;"
statement occurs prior to the occurence of the procedure-block B. The
declaration ''C PROCEDURE" is not required (however it is allowed) because the
"CALL C" statemeht occurs after theprocedure-block C. The declaration |

"D EXTERNAL PROCEDURE" is required because the external-procedure D is ref-

erenced from block A which is not in the scope of block D.

5.2.6.3 THE MICRO ATTRIBUTE.
Function:
The micro-attribute allows the programmer to access micro-coded procedures of

the 32/S that are not accessed by any of the normal MPL constructs.

General Format:

micro-attribute::=
(constant) MICRO [BYTE | WORD | DOUBLE]

General Rules:
The constant represents the address in control storage where the microcoded

process begins.

The BYTE, WORD, or DOUBLE option is required if the process leaves a value in
the stack of the 32/S. If this option is not given it is assumed that the

process does not place a value in the stack.

Example:

DECLARE ABC ("'3F2'") MICRO WORD;

VALUE = ABC (I,J);
The first statement in the example declares the identifier ABC to be a micro-
coded procedure. The WORD option specifies that the procedure will leave a
word result on the top of the 32/S stack. The second statement invokes the
procedure. The value of the variables I and J are placed on the 32/S stack

before the procedure is invoked.

5.2.6.4 THE DIMENSION ATTRIBUTE
Function:
The dimension attribute declares an identifier to be an array name and-speci-
fies the upper bound of the array.
General Format:
dimension-attribute::=

(constant)

General Rule:

The constant specifies the upper bound of the array. The upper bound is the
largest value of a subscript that may be used to reference an element of the
array. The lower bound of an array is always zero; therefore, the number of

elements in an array in one greater than the value of the upper bound.

Example:

DECLARE A(10) WORD, B(5) BYTE;

In the example, A is a WORD array of 11 elements (upper bound = 10). B is a
BYTE array of 6 words (upper bound = 5).

5.2.6.5 THE SIZE ATTRIBUTE
Function:
The size-attribute is required for the declaration of all data-item identifiers.
The size-attribute specifies the precision of the data item. The size-attribute
is also used as an option of the type-attribute (see ''Type Attribute' in this
section).
General Format:
size attribute::=
BYTE | WORD | DOUBLE | BIT ({11214}l
POINTER TO {WORD | BYTE | DOUBLE}
General Rules:
1. The size-attribute must be given with the declaration of all data-item
identifiers.
2. The BIT option is only allowed if the dimension-attribute is also given.

3. The precision implied by the various size-attribute options are:

BYTE 8 bits of precision
WORD 16 bits of precision
DOUBLE 32 bits of precision
BIT (1) 1 bit of precision

BIT (2) 2 bits of precision
BIT (4) 4 bits of precision

POINTER TO 16 bits of precision

5-12

Example:
DECLARE A(7) BIT (4), B BYTE, C WORD,
D POINTER TO BYTE;

C - D;

B = De;
In the example A is an array of 8 data-items each with a precision of 4 bits,
B is a data-item with a precision of 8 bits, C is a data-item with a precision
of 16 bits, and D is a item with a precision of 16 bits. The fact that D is
declared a POINTER TO BYTE indicates that it may be used for indirect

referencing.

The assignment statement C=D; of the example assigns the value of the 16 bit
item D to the 16-bit item C. The assignment statement B=D@; assumes that the
value of D is the location of an 8 bit item. That 8-bit item is assigned to

the 8-bit item, B.

5.2.6.6 THE AREA ATTRIBUTE
Function:
The area-attribute is used to declare identifiers as occupying an area of
storage outside the area implied by the normal dynamic storage allocation
rules. (See storage allocation in section 7).
General format:
area-attribute::=
EXTERNAL|IBASED {constantlidentifier}|
CONSTANT {string | (constant [, constant]...)}
General Rules:
1. The EXTERNAL attribute declares a identifier to be identical to the item of
the same name declared EXTERNAL in another block. (see '"'Scope of External

Names' in this section).

(921
'

13

2. The BASED attribute is used to assign absolute storage locations to
identifiers. The value of the {constantlidentifier} is multiplied by 4 to
generate the base for an absolute address. The BASED attribute can only
be used in programs that operate in executive mode.

3. The CONSTANT attribute allows the programmer to assign names to constants.

4. The string option may only be used with the BYTE size-attribute. The
string option assumes the dimension-attribute. If the dimension-attribute
is not given, the upper bound is set equal to the number of characters in
the string. The first value of the array is set equal to the number of

characters of the string.

Example 1.

DECLARE TTY (7) BYTE BASED "'F800'";
This example declares the BYTE array TTY to be based at the absolute location
"F800" *4. If a reference is made to the item TTY (6), the actual address to
be referenced is computed by multiplying "'F800" by 4 and then adjusting the
result by the index value of 6.

Example 2.

DECLARE WORK AREA (1000) WORD BASED STACK;
In this example the identifier STACK must have been previously declared as a
word variable. If a reference is made to WORK-AREA (1), the actual address to
be referenced is computed by multiplying the value of the data-item STACK by 4.
The result is adjusted by the subscript 1, to form the absolute adaress for the

reference.

Example 3.

DECLARE TEXT CONSTANT 'ERROR MESSAGE';
This example generates an array of byte constants. TEXT (0) is the constant 13
(the number of bytes in the string). TEXT (1) is the constant "45" (the ASCII

Section 6
PROCEDURES, FUNCTIONS, AND SUBROUTINES

6.1 PARAMETERS

The procedure-statement that heads a given procedure may specify a parameter-

list (see section 8 for the syntax and details of the procedure-statement).

Parameters are identifiers and may represent scalar variable names or array
names used in the procedure. The appearance of an identifier in the
parameter-list declares the identifier as a parameter. This declaration
causes the scope of the parameters to be the procedure-block. Identifiers
that appear as parameters must also appear in a declare-statement. The declare-
statement must assign a size-attribute and optionally, a dimension attribute
to the identifier.
Example:

ABC: PROCEDURE (X,Y,Z);

DECLARE (A,Z) WORD, (X,Y(6)) BYTE;

In this example there are four variables declared in the scope of the block
ABC. Three of the variables X, Y, and Z are declared to be parameters by vir-
tue of their appearance in the parameter-list of the procedure-statement.

The fourth variable, A, is not a parameter.

The use of the dimension attribute for the parameter, Y, merly identifies Y as
an array. No storage for the array is allocated by the declaration. The

storage is allocated by the calling procedure.

6.2 PROCEDURE REFERENCES

The label appearing on a procedure is called the procedure entry-name. At any

point in a program where an entry name for a given procedure is known, the

procedure may be invoked by a procedure-reference. The procedure reference

has the form:

entry-name [(argument [, argument]...)]
The number of arguments in the procedure-reference (possibly zero) should be
eqﬁﬁl to the number of parameters in the parameter-list of the procedure being

invoked.

When a procedure-reference invokes a procedure, each argument specified in the
reference is associated with a formal parameter in the corresponding position
of the parameter-list of the denoted procedure. Control is then passed to the
procedure. The manner of associating arguments with parameters is discussed

under the heading '"arguments in a procedure reference' in this section.

There are two distinct uses of procedures, determined by the way in which they
are referenced.
1. A procedure reference may appear as an operand in an expression. In this

case the reference is said to be a function reference and the procedure

is said to be invoked as a function.
2. The procedure may appear after the keyword CALL in a call-statement.

In this case the reference is said to be a subroutine reference and the

procedure -is said to be invoked as a subroutine.

Ordinarily a given procedure will be used exclusively as a function or
exclusively as a procedure. However, it is not mandatory that this be the

case.

6.2.1 FUNCTION REFERENCE

When a function reference appears in an expression, the function procedure is
invoked. The procedure is then executed, using the arguments (if any) that
were specified in the function-reference. The result of this execution is the

required value of the function which is passed with return of control back to

6-2

the point of invocation. This value is then used in place of the function

reference, as an operand, and the evaluation of the expression continues.

The procedure invoked by the function-reference normally will terminate with
the execution of a statement of the form:

RETURN expression ;
It is the value of the expression appearing in the return-statement that is

returned as the function value.

If the invoked function terminates with a goto-statement, the evaluation of the
expression that invoked the function will not be completed (imbedded assign-
ments that occurred before the invocation will be performed), and control will

pass to the point specified by the goto-statement.

If the invoked function terminates with an end-statement, evaluation of the
expression containing the function reference continues, however, the value of
the function in this case is undefined. This type of termination of a func-

tion is normally an error.

6.2.2 BUILT IN FUNCTIONS

Besides functions written by the programmer, a function reference may invoke

one of several built-in functions.

The built-in functions are an intrinsic part of MPL. Entry-names for built-in
functions are not declared by the programmer. However, if the programmer
declares an identifier that is identical to a built-in function name, the
normal scoping rules apply and the built-in function cannot be invoked in the

scope where the programmer's identifier is known.

Each built-in function has a specific number of arguments and returns a value

of a specified precision.

The table below sumarizes the built-in functions.

Table 10. Built-In Functions
FUNCTION ARGUMENT RETURN
NAME SIZE SIZE DESCRIPTION

SUPERVISOR WORD null Generates a supervisor call instruction

OVERFLOW None WORD Returns the state or the arithmetic
overflow indicator 1 is on. 0 is off.

RESUME WORD null Resume the process whose stack base is
the argument. Can be executed only in
executive mode.

HIGH DOUBLE WORD Returns the most significant half of the
argument.

LOW DOUBLE WORD Returns the least significant part of
the argument.

ABS WORD WORD Returns the absolute value of the
argument.

XIM WORD WORD Places the argument into the interrupt
mask register. Returns the previous
contents of the interrupt mask register

CARRY none WORD Returns the status of the carry indi-
cator. One (1) indicates on, 0 indi-
cates off.

SWITCHES none WORD Returns the value in the configuration
switch register.

NOP none null Generates a NOP instruction.

PNOP none null Generates a PNOP instruction.

WAIT none null Generates a WAIT instruction.

TRAP none null Generates a TRAP instruction.

PRTNUM procedure- WORD Returns the procedure reference table

name entry number of the argument.

6.2.3 SUBROUTINE REFERENCES

When a procedure is invoked as a subroutine by the execution of a

call-statement, the arguments (if any) are associated with the formal param-

eters and control passes to the called subroutine.

Unlike the function, subroutines do not return a value to the point of invoca-

tion. Subroutines may terminate in the following ways:

1.

Control reaches a return-statement. When this occurs the expression in
the return-statement (if present) is evaluated. The value of the
expression is lost. Control then passes to the fifst statement following
the invoking call-statement.

Control reaches a goto-statement. In this case control passes to the
point specified by the goto-statement.

Control reaches an end-statement. In this control passes to the first

statement following the invoking call-statement.

6.3 PROCEDURE REFERENCE EXAMPLES

Example of a function reference:

COMP: PROCEDURE;
DECLARE (P,Q,R,V) WORD;
POLY: PROCEDURE (C,X);
DECLARE (C,X) WORD;
RETURN (C+ X * (1 +X* (2+X));

END POLY;
S1: P =Q* POLY (R,V);

END COMP;

In this example, the external-procedure COMP contains the function POLY which
is invoked when the expression appearing in the statement labeled S1 is being
evaluated. When the procedure POLY is invoked the values of the arguments R

and V will be substituted for the parameters C and X respectively.

Example of a subroutine reference:
COMP: PROCEDURE;

DECLARE (P,Q,R,V, TEMP) WORD;

POLY: PROCEDURE (C,X);
DECLARE (C,X) WORD;
TEMP= C+X*(1+X*(2+X));
END POLY;

S1: CALL POLY (R,V);

S2: P=Q * TEMP;

END COMé;
In this example, the effect is the same as in the previous example. The sub-
routine procedure POLY is invoked by the call-statement labeled Sl. POLY com-
putes the polynominal and assigns it to the variable TEMP. Then control passes
to the statement labeled S2. This statement then uses the value placed in TEMP
to compute the final result. Thus the value of the polynominal is communi-
cated thru the variable TEMP. This is possible because the name TEMP is known
to both the procedures COMP and POLY, and by the rules of scope TEMP represents

the same object to both procedures.

In some cases the invoked procedure cannot share a variable with the invoking

procedure. For example it may be that both procedures are external and then

6-6

by definition it is not possible to share a variable (see scope of
declarations). Another more general way of returning values from subroutines
in such cases is shown in the following example:
COMP: PROCEDURE;
DECLARE (P,Q,R,V, TEMP) WORD;
DECLARE POLY EXTERNAL PROCEDURE;
S1: CALL POLY (R,V,@TEMP);

S2: P =Q * TEMP;

END éOMP;
POLY: PROCEDURE (C,V, PTR);

DECLARE (C,V) WORD;

DECLARE PTR POINTER TO WORD;

PTRE = C+X*(1+X*(2+X));

END POLY;
In this example the call to POLY contains an additional argument, namely the
location of the variable TEMP. POLY is declared with one additional parameter,
PTR,which is a POINTER TO WORD. Then the value is returned indirectly via the

PTR parameter.

6.4 ARGUMENTS IN A PROCEDURE REFERENCE

In general, an argument in a procedure-reference may be any one.of the

following:

1. A simple variable or subscripted variable

2. An expression.

3. An variable array name. An array name used as an argument is equivalent
to a pointer to element zero of the array.

A constant array name may not be used as an argument in a procedure-reference.

The attribute of each argument in a procedure reference should match the
attributes of the corresponding parameters.
For example, assume the procedure ABC in a program defined by:
ABC: PROCEDURE (A,X,Y,Z);
DECLARE (X,Z) WORD, Y DOUBLE, A (0) BYTE;

This implies that the first parameter is used as a BYIE array, the second and
fourth parameters are used as WORD scalars, and the third parameter is a
DOUBLE scalar. If the subroutine ABC is invoked by the statement:

CALL ABC (P, B + 2, C-5, W);
It is assumed that:
1. P is the name of a byte array.
2. The expression B + 2 has precision WORD.
3. The expression C-5 has precision DOUBLE.
4

. The variable W has precision WORD.

6.4.1 PASSING ARGUMENTS TO A PROCEDURE
When a procedure is invoked by a procedure reference and each argument is
associated with its corresponding parameter, the arguments are said to be

passed to the invoked procedure.

The mechanism used for passing arguments in MPL is referred to as pass by
value. Passing by value is accomplished in the following way. The called
procedure has a location of appropriate precision allocated for each parameter
in the parameter-list. When a procedure-reference is encountered each argu-
ment is evaluated. The result of the evaluation is, in effect, stored in the
location reserved for the corresponding parameter. This value is used in the

same way as any variable declared in the called procedure. In other words a

parameter is a variable local to the called procedure which, upon entry, is

initialized to the value of the corresponding argument.

In general a called subroutine canhot affect the value of a variable passed to
it as an argument. For example, in the program:
A: PROCEDURE;
DECLARE (X,Y) WORD;
B: PROCEDURE (T);
DECLARE T WORD;

T=T+T;
END B;
S1: X =53
S2: CALL B (X);
S3: Y = X;
EﬁD A;

The statement labeled S1 assigns the value 5 to the variable X. The subrou-
tine B is passed the value 5 as an initial value for T. The subroutine then
adds T to itself. llowever, this has no affect on the value of X. Therefore,

when the statement S3 is executed, the value of the variable X is still 5.

6-9

Section 7
DYNAMIC PROGRAM STRUCTURE

7.1 PROGRAM CONTROL

Execution of a program is initialized by an operating system, which invokes

the initial procedure. The initial procedure must be a main-procedure. When
the program is being executed there is a control that determines the order of
execution of the statements. For a discussion of the order of execution see

nsequence of control' section 8.

7.2 ACTIVATION AND TERMINATION OF BLOCKS

A begin-block is said to be activated when control passes through the begin-

statement for the block. A procedure-block is activated when it is invoked by

a procedure-reference.

A block is active if it has been activated and has not yet terminated. The

following rules describe the ways that a block may be terminated:

1. A begin-block is terminated when control passes through the end-statement
of the block.

2. A procedure-block is terminated when control passes through a return-
statement or the end-statement of the block.

3. Either type of block is terminated by execution of a goto-statement that

transfers control to a point not contained in the block. The go-to state-
ment may terminate more than one block (see the ''goto-statement in

section 8).

7.2.1 DYNAMIC DESCENDANTS
If a block B is active another block Bl may be activated from a point internal
to block B while B still remains active. The following rules describe the case

in which this will occur.

1. Bl is a procedure-block immediately contained in B (the label of Bl is
internal to B) and is reached through a procedure-reference.

2. Bl is a begin-block internal to B and is reached through normal flow of
control.

3. Bl is a procedure-block not contained in B and is reached through a
procedure-reference. Bl in this case, may be identical to B, i.e., B is
called recursively. However, it is still regarded as a dynamically
different block.

In any of the above cases, while Bl is active it is said to be an immediate

dynamic descendant of B.

Block Bl may itself have an immediate dynamic descendant B2, etc., so that a
chain of blocks (B,B1,B2...) is created, where all the blocks in the chain are
active. In this chain each of the blocks Bl, B2, etc., is a dynamic descendant

of B.

It is important to note that the termination of a given block may imply the
termination of other blocks and that these other blocks need not be contained

in the given block.

7.3 ALLOCATION OF DATA

The simple static process of data allocation implied by many programming
languages--the assignment of a distinct storage region for each distinct vari-
able used in a source program--may be wasteful. Multiple use of storage for
different data during program execution can reduce the total storage require-
ments of the program. MPL provides automatic allocation-and release of stor-

age during program execution, in order to minimize the use of storage.

7.3.1 DEFINITIONS AND RULES
Storage is said to be allocated for a variable when a region of storage is
associated with it. Allocation of storage takes place dynamically, during

program execution.

Storage that has been allocated for a variable may subsequently be released.
Thus the storage is freed for possible use in a later allocation. If storage
has been allocated and has not been substantially released, the variable is in

the allocated state.

When a variable appears in an executable statement of a program, the appear-

ance is called a reference.

At any point where a variable is referenced, it must be in the

allocated state.

Violation of the above rule is a program error. However, the error may not be

detected.

7.3.2 STORAGE CLASSES

Every variable in a program has a storage class which specifies the manner of

storage allocation.

There are two storage classes, static and automatic.

7.3.2.1 THE STATIC STORAGE CLASS. The storage for variables declared in the
main-program is in the static class. Storage for these variables is allocated

when the program begins execution and is never released during execution.

Variables declared EXTERNAL are also of the static class.

7-3

7.3.2.2 THE AUTOMATIC CLASS. Variables declared in any block except the
main-program (or variables declared EXTERNAL) are in the automatic storage
class. Whenever a block B is activated, storage for all variables declared in
the block (including parameters) is allocated. The variables remain in the
allocated state until termination of the block. At the time of termination
storage for the variables is released. Thus the time interval during whiéh
the variable is in the allocated state includes the interval when the vari-

able is known (see ''Scope of Declarations').

Termination of a block by means of a goto-statement may imply termination of
other blocks and, consequently, the simultaneous release of storage for all

variables declared in these blocks.

If a block B is a procedure and is referenced from a statement contained in B
or from a statement contained in a dynamic descendant of B, then the proce-
dure B is said to be invoked recursively. Each recursive activation of a pro-
cedure causes the previous allocation to be ''pushed-down' (assignments of
values in the previous allocation are retained) and a new allocation for the
variables declared in the procedure is made. On each return from the procedure
the most recent allocation is released. Each invocation of the procedure is
called a new generation of the procedure. References to data items declared

internal to a procedure always reference the most recent generation of the procedure.

Once a block has termminated, the values assigned to the variables that were
released by the termination becomes undefined. If the block is subsequently
reactivated, the storage for variables is reallocated. However, the values

assigned in the previous activation are not known in the current activation.

7-4

Example:

A: PROCEDURE;

B: BEGIN;
DECLARE X(1000) WORD;
CALL PROCESS (X);
END B;

C: BEGIN;
DECLARE Y(1000) WORD;
CALL PROCESS (Y);
END C; |

END A;

In this example the arrays X and Y are declared in separate begin-blocks. Since
both blocks B and C cannot both be active at the same time, the storage for the
array X and Y will not be allocated at the same time. Thus 1001 words are
required for both arrays. This contrasts with the following example where X and

Y are declared in the same block thus requiring 2002 words.

A: PROCEDURE;
DECLARE (X(1000), Y(1000))WORD;
CALL PROCESS (X);

CALL PROCESS (Y):
END A;

Section 8
STATEMENTS

This section gives a description of each statement in the language. The

statement are described in alphabetical order.

8.1 RELATIONSHIP OF STATEMENTS

Statements may be classed into the following four logical groups:
1. Assignment

2. Control

3. Data Declaration

4

. Block statements

8.1.1 ASSIGNMENT STATEMENTS
There are two types of assignment statements; assignment by replacement and
assignment by addition. The assignment statements are used to evaluate expres-

sions and to assign values to scalars and array elements.

8.1.2 CONTROL STATEMENTS
The control statements affect the normal sequential flow of control through a

program. The control statements are GOTO, IF, DO, CALL, RETURN, and REPEAT.

8.1.3 DATA DECLARATION STATEMENT
The data declaration statement, DECLARE, specifies attributes of identifiers.

This statement is described in section 5.
8.1.4 BLOCK STATEMENTS

The block statements are used to delimit procedure-blocks and begin-blocks.
The block statements are BEGIN, PROCEDURE, EOF, and END.

8-1

8.2 SEQUENCE CF CONTROL

Within a block, control normally passes sequentially from statement to
statement. If an internal procedure is encountered, control passes to the
statement following the end of the procedure. Control passes to the statement
following an if-statement when control reaches the end of the '"THEN unit-1"
(The "ELSE unit-2'" is skipped in this case). This occurs if control reaches
one of the statements of unit-1 as the result of a goto-statement that ref-
erences a label of a unit-1 statement. Sequential operation is modified by the

following statements: CALL, END, GOTO, PROCEDURE, and RETURN.

A call-statement passes control to the specified procedure.

A goto-statement causes control to transfer to the statement with the specified

label.

A procedure-statement heads a procedure. Procedures are independent blocks and
may be placed anywhere within an external procedure, consistent with the
identifier scopes desired by the programmer. However, a procedure may be
invoked only by a procedure-reference in a call-statement or an expression.
Thus control passes around a nested procedure from the statement before the
procedure statement to the statement following the end-statement of the

procedure.

The RETURN statement returns control from a procedure to the invoking

procedure.

The following conditions may modify the sequential statement execution:

1. A function reference in any expression causes control to pass to the
specified procedure.

2. The flow of control through an if-statement and do-group may or may not be

sequential.

The following program segment illustrates the sequence of control:
A: PROCEDURE;

X=Y+Z;

CALL G;

IF 2>1 THEN

P=Q; ELSE

P=R; .

PROCEDURE;

S=Té&P;

RETURN;;

END G;

GOTO N;

x.u:—u::m'-nmcnw

N: END A;
The statements are executed in the order A, B, C, G, H,‘I, D, E, K, N.

8.3 ALPHABETIC LIST OF STATEMENTS
8.3.1 THE ASSIGNMENT STATEMENT

Function:

The assignment statement evaluates an expression and to assigns the value to a

variable.

General Format:
assignment statement::=
storage-reference assign-operator expression;

assign-operator::=

Syntax Rules:

1.

The assignment-statement is recognized by the absence of a statement-
identifier keyword as the first identifier.
The storage-reference may be of any precision. Variables of WORD precision

may contain a field-reference option.

The storage-reference may also specify an indirect reference.

General Rules:

1.

If the storage-reference contains a subscript, the subscript expression is
evaluated first. The expression to the right of the assign-operator is
then evaluated.

If the assign-operator is either = or := then the value of the expression
replaces the value previously assigned to the storage-reference. If a
field-reference option is specified with the storage reference, then only
the contents of that field is changed by the assignment.

If the assign-operator is += then the value of the expression is added to
the value of the storage-reference. In this case the storage-reference must
be of WORD precision and may not contain a field-reference option.

If an indirect storage-reference is used, the variable pointed to by the
reference must be currently allocated.

If the storage-reference is of precision BYTE or BIT(n), then the expres-
sion is truncated on the left before the assignment is made. If the
storage-reference is of precision WORD, BYTE, or BIT(n), and expression 1is
of precision DOUBLE, then the expression is truncated on the left before
the assignment is made. If the expression is of precision WORD and the
storage-reference is of precision DOUBLE, then the expression is sign

extended to the left before the assignment is made.

Example 1:

X=3+2;

This statement assigns the value 5 to the variable X.

8-4

Example 2:
W$(4:0) = "F";
This statement assigns the value "F'" to bits 3 through 0 of W. Bits 15

through 4 of W are not changed.

Example 3:
PTRE = X;
This statement assigns the value of X to the variable pointed to by the vari-

able PTR.

Example 4:
X+=-1;

This statement causes the variable X to be decremented by 1.

8.3.2 THE BEGIN STATEMENT
Function:
The begin-statement is the heading of a begin-block.
General Format:
begin-statement: :=

BEGIN;

General Rules:

1. A begin-statement is used in conjunction with an end-statement to delimit a
begin-block. See Section 2 for a discussion of blocks.

2. Declarations appearing in a begin-block must immediately follow the begin-

statement with no intervening statements.

Example:
BEGIN;
DECLARE X(100) WORD;

END;

8.3.3 THE CALL STATEMENT
Function:
The call statement invokes a procedure.
General Format:
call-statement::=

CALL entry-name [(argument[, argument]...)];

Syntax Rules:

1. The entry-name represents the label on the procedure to be invoked.

2. Each argument may be any of the following: an expression, a scalar-
constant name, an array-name or a pointer. A pointer is a variable pre-
ceded by the commercial at sign (e.g., @X is a pointer to X).

3. An array-name used as an argument is equivalent to a pointer to the array.
For example if X is an array name then the following two statements are
equivalent:

CALL (X);
CALL (ex(0));

Example:
CALL SUB (A,@B, 'XYZ', X+3*Y);

8-6

8.3.4 THE DECLARE STATEMENT

Function:
The declare-statement is used to specify attributes for identifiers.
General format:
declare-statement::=
DECLARE item-spec [, item-spec]... ;
item-spec::=
item type-attribute |
item size-attribute [area-attribute]|

identifier LITERALLY string

General rules:

See Section 5 for a description of the declare-statement.

8.3.5 THE DO STATEMENT
Function:
The do-statement delimits the start of a do-group (see "Groups' in section 2)
and may specify iteration of statements within a group or may specify the selec-
tion of one of the statements within the group. The end of the go-group is
delimited by an end-statement.
General format:
There are 5 forms of the do statement.
option 1:
do-statement: :=
DO;
option 2:
do-statement ::=

DO WHILE expression;

option 3:
do-statement: :=
DO variable = expression-1 TO expression-2
| [BY expression-3];
option 4:
do-statement::=
DO CASE expression;
option 5:
do-statement: :=

DO FOREVER;

Syntax rules:

1. The "variable'" in option 3 must be a simple-variable. Indirect references
or array-variables may not be used.
2. IF "BY expression-3" is omitted in option 3, expression-3 is assumed to

have a value of one (1).

General rules:

1. In option 1 the do-statement delimits the start of the do-group. The
statements in the range of this form of do-group are executed according to
the normal sequence of control.

2. In option 2 the do-statement delimits the start of a do-group and also
specifies an iteration as indicated below.

LABEL: DO WHILE expression;
L1: statement-1

.
.

statement-n
END LABEL;
NEXT: statement

The effect of the above is exactly equivalent to the following expansion:

LABEL: DO;
L1: IF expression THEN
DO;

statement-1

S tzzltement-n

GOTO L1;

END;
END LABEL;
NEXT: statement
3. In option 3 the do-statement delimits the start of a do-group and specifies

a controlled iteration as indicated below:
LABEL: DO variable = expression-1

TO expression-2

By expression-3;

Ll1: statement-1

statément—n
END LABEL;
NEXT: Statement
The effect of the above is equivalent to the expansion shown below where T1,
TZ, and T3 are temporary variables created by the compiler.
LABEL: BEGIN;
DECLARE (T1, T2, T3) WORD;

Tl = expression-1;
T2 = expression-2;
T3 = expression-3;

variable = T1;

8-9

L1: IF (T3>=0) § (variable <=T2)|
(T3<0) § (variable >=T2) THEN
DO;

statement 1

s%atement n
variable += T3;
GOTO L1;
END;
END LABEL;
4. 1In option 4 the do-statement delimits the start of a do-group and selects
a single group within the do-case-group for execution as specified below:
LABEL: DO CASE expression;
group-0
group-1

gréup-n
END;
NEXT: statement
The above is equivalent to the expansion shown below where Tl is a temporary
variable created by the compiler.
LABEL BEGIN;
DECLARE T1 WORD;
IF expression =0 THEN

DO;
group-0
GOTO NEXT;
END;

IF expression =1 THEN
DO;
group-1
GOTO NEXT;
8-10

END;

IF éxpression = n THEN
DO;
group-n
R0TO NEXT;
END;
END LABEL;

NEXT: statement
In option 4 if the value of the expression is negative or if the value is

greater than n, the result is undefined. This is considered a program error.
In option 4, group-0, group-1, etc., may be do-groups, repeat-groups, begin-
blocks, or they may be simple statements.

5. In option 5 the do-statement delimits the start of a do-group and indi-

cates an indefinite iteration as indicated below:

LABEL: DO FOREVER;

statement 1

statement n

END LABEL;

The above is equivalent to the following expansion:
LABEL: DO;
statement 1

.
.

statement n
GOTO LABEL;
END LABEL;

8-11

Once the range of a do-forever-group has been entered execution of the group
can only be terminated by a goto-statement that references a label outside the
group, or by a return-statement.
Examples:

DO WHILE A > B;

D0O1=3T09 BY 2;

DO WHILE TAX-DEDUCT < GROSS & TAX-RATE > 0;

DO;

DO CASE I;

DO FOREVER;

8.3.6 THE END STATEMENT
Function:

The end-statement terminates blocks and groups.

General format:
end-statement: :=

END [label] ;

General rules:

1. The end-statement terminates that group or block headed by the nearest
preceding do-statement, procedure-statement, begin-statement or repeat-
statement for which there is no closer corresponding end-statement.

2. If a label follows END, it must correspond to a label on the group or block
heading being terminated.

3. An end-statement can terminate only one group or block.

4. If control reaches an end-statement which terminates a procedure, it is

treated as a return-statement.

8-12

8.3.7 THE EOF STATEMENT

Function:

The eof-statement is an optional statement that may appear after the end-

statement that terminates an external procedure.

General format:
eof -statement: :=

EOF

General rule:

The eof-statement is used to control the compiler. The statement forces the
compiler to end the compilation of the current external procedure. The state-
ment as no effect if the source program is properly constructed i.e., one end-
statement for each block heading statement. The use of the eof-statement is

suggested as a debugging aid.

8.3.8 THE GOTO STATEMENT
Function:

The goto statement causes control to be transferred to the

statement referenced.

General format:
goto-statement::=
{G0TO | GO TO} label;

General rules:
1. The label may not be the label of a procedure statement.
2. A goto-statement may not transfer control into a group that specifies

iteration.

3. A goto-statement that transfers control from a block B to a dynamically
encompassing block A has the effect of terminating block B as well as all
the other blocks that are dynamic descendents of the most recent activation
of block A. Variables allocated in these blocks are freed in the same way
as if the blocks had terminated normally. 7

4, When a goto-statement transfers control out of a procedure that was
invoked by a function reference, the evaluation of the corresponding
expression is discontinued and control passes to the specified statement.

Example 1

@ TO L2;

.

L2: statement

Example 2:
A: BEGIN;
statement
B: BEGIN;

DECLARE X(100) BYTE;

GOTO C;

END B;

C: statement

END A;
The goto-statement in the second example passes control to a point outside of
block B. Therefore, it has the effect of terminating block B and of freeing

the storage allocated to the array X.

8.3.9 THE IF STATEMENT

Function:

The if-statement causes program flow to depend on the value of an expression.

General Format:

if-statement::=

IF expression THEN unit-1 [ELSE unit-2]

Syntax rules:

1.

Each "unit'" is either a group or a begin-block (recall that a simple statement
is a special case of a group), either of which is terminated by a semicolon.
The if-statement itself is not terminated by a semicolon. Instead the
semicolon that terminates unit-1 (or unit-2) serves to terminate the
if-statement.

Each unit may contain labels.

General Rules:

1.

The expression following IF is evaluated. If the result of the expression
evaluation is an odd number (least significant bit is 1), the expression
is said to be true. If the result of the expression evaluation is an even
number (least significant bit is 0) the expression is said to be false.

If the expression is true '"unit-1" is executed and then control passes to
the next statement ('‘unit-2'"' is skipped).

If the expression is false "unit-1'" is skipped and control passes to
unit-2. If "unit-2" is not given control passes to the following
statement.

IF statements may be nested. That is either "unit-1" or "unit-2'" may
themselves be if-statements. When if-statements are nested the "ELSE
unit-2" portion of a statement is always associated with the innermost
unmatched "THEN unit-1'". For this reason a null-statement may be

required to specify a desired sequence of control.

The following two flowcharts illustrate the sequence of control for

if-statements with and without the "ELSE unit-2'" option.
The first flowchart illustrates the case of:

IF expression THEN unit-1

) False
expression

unit-1

The second flowchart illustrates the case of:

IF expression THEN unit-1 ELSE unit-2

True 4,/’////~\\\\\\‘ False
e

ression

L]

unit-1 unit-2

Examples:
1. IF SCAN STACK=EMPTY THEN CALL GET_INPUT;
2. IF X>YIY>Z THEN
IF Z=W THEN
IF W<P THEN Y=1,
ELSE Y=2;
ELSE;
ELSE Y=3;

8.3.10 THE NULL STATEMENT

Function:

The null statement causes no operation and does not modify the sequence of
control.

General format:

null-statement: :=

.
b

Example:
IF A>B THEN GOTO LABEL; ELSE;

The semicolon following ELSE is a null statement.

8.3.11 THE PROCEDURE STATEMENT

Function:

The procedure-statement has the following functions:

1. It heads a procedure block.

2. Defines the entry-name for the procedure.

3. Declares certain variables as having attribute ''parameter'.

4. Specifies the precision of the value to be returned if the procedure is
to be invoked as a function.

5. Defines any special attributes of the procedure.

8-17

General format:

The procedure-statement has three formats.

Option 1

procedure-statement::=

entry-name: MAIN PROCEDURE;

Option 2

procedure-statement: :=
entry-name: INTERRUPT PROCEDURE (parameter);

Option 3

procedure-statement: :=

entry-name: PROCEDURE
[(parameter [, parameter] ...)]
[WORD IBYTE | DOUBLE] ;

General rules:

1‘

The procedure-statement is used in conjunction with an end-statement to
delimit a procedure-block. See Section 2 for a discussion of blocks.

Any declarations appearing in a procedure block must immediately follow
the procedure-statement without any intervening statements.

If parameters appear in the procedure statement, they must also appear in
declaration statements that specify precision-attributes for them.

Option 1 specifies a procedure to be a main-procedure. The entry-name is
the starting point for program execution. There may be only one main pro-
cedure in a program and the main program may not be called recursively.
Option 2 specifies a procedure to be an interrupt-procedure. A interrupt-
procedure must have exactly one parameter. Interrupt. procedures must be
external procedures or they must be internal to an external procedure. An
interrupt procedure is a special form of procedure that can be invoked
outside the normal sequence of control. See the '"32/S Reference Manual"

for a discussion of interrupt-procedures.

6. The option BYTE, WORD or DOUBLE must be specified on a procedure that
returns a value unless the option was specified in a previous declaration

of the entry-name in a declare-statement.

Example
B: PROCEDURE;
DECLARE (C,X,Y) WORD;
F: PROCEDURE (B,C) WORD;
DECLARE (B,C) WORD;
éETURN B*C+5;
END F;
L1: C=F(X+2,F(Y,X-1));
END B;
The option WORD in the procedure-statement, F, specifies that when F is invoked
a function it is to return a value with precision WORD. The statement,Ll,

invokes the function twice.

8.3.12 THE REPEAT STATEMENT
Function:
The repeat-statement delimits the start of a repeat-group and specifies
repeated execution of the group.
General format:
repeat-statement::=

REPEAT expression TIMES;

General rules:
The repeat statement delimits the start of a repeat-group. It also specifies

an itteration as indicated below.

8-19

LABEL: REPEAT expression TIMES;
statement 1
stétement n
END LABEL;
The effect of the above is exactly equivalent to the expansion shown below where
Tl is a temporary created by the compiler.
LABEL: BEGIN;
DECLARE T1 WORD;
DO T1=1 TO expression;

statement 1

statement n
END;
END LABEL;
Example:
REPEAT IF X>Y THEN 5 ELSE 7 TIMES;

8.3.13 THE RETURN STATEMENT
Function:
The return statement terminates execution of a procedure and returns control
to the point of invocation.
General format:
return-statement: :=

RETURN [expression] ;

1. The expression option must be used if the procedure is invoked as a func-
tion. . If this option is used with a subroutine type of invocation the
expression is evaluated but no value is returned.

2. Any number of return-statements may appear in a procedure-block.

Example:
A: PROCEDURE;
DECLARE (X,Y,Z W) WORD;
B: PROCEDURE (P,X) WORD;
DECLARE (P,X) WORD;
Z+=1;
IF P THEN RETURN; ELSE RETURN (X*X);
END B;
CALL B(0,X);
W=2Z;
Y= B(1,X);
EﬁD A;
In this example procedure B is invoked once as a subroutine and once as a
function. The first argument is a 0 to indicate that the invocation was in
subroutine mode and the argument is 1 to indicate the invocation was in func-
tion mode. The procedure, B, contains both types of return-statements. The
procedure tests the parameter P to determine the type of return to be
executed. The "RETURN expression' form is executed if and only if the invoca-

tion was as a function. Otherwise the "RETURN'" form is executed.

8-21

Appendix A
SYNTAX OF MPL

This appendix gives the syntax of MPL using the notation of section 1. The
syntax is specified at two levels. Two levels of syntax are used in order to

reduce the number of rules that would be required in a single level of syntax.

Level-one syntax defines MPL source text in terms of delimiters and
non-delimiters.
The delimiters are defined as:
blank
comment
special characters
The non-delimiters are defined as:
identifiers
constants
In the level-one syntax MPL source text is defined as a string of delimiters
and non-delimiters. Furthermore, it is specified that between any two non-
delimiters there must be one or more delimiters. Since blanks and comments are
delimiters, this syntax specifies where blanks or comments may appear in an

MPL program.

Level-2 syntax is the major part of the syntactical description of MPL. It
defines an MPL program in terms of the programming character set and the fol-
lowing notation variables of the level-1 syntax:

identifier

decimal -number

string

bit-string
The level-2 syntax does not describe where blanks and comments may appear in a

MPL program, the spaces shown in the rules are provided to aid readability.

A-1

The following notation is used to avoid ambiguity:
bl is used to represent the blank character
1 The vertical stroke is underlined whenever the language character is
intended. When not underlined the vertical stroke represents the
alternative operator of the notation.
extra-lingual-character
this notation variable is used to represent any characters available at
the users input terminal that are not part of the MPL character set.
In the syntax presentation each rule is numbered. The notation variable being
defined is shown on the numbered line. The definition is given on the fol-

lowing unnumbered line(s).
LEVEL 1 SYNTAX

1. source-text::=
nondelimiter [tail-one] | delimiter [tail-one | tail-two]
2. tail-one::=
delimiter [tail-one | tail-two]
3. tail-two::=
nondelimiter [tail-one]
4. nondelimiter::=
identifier | decimal-number | bit-string | string
5. identifier::=
alphabetic-character [alphameric-character] ...
6. alphabetic-character::=
AIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZI# _
7. alphameric-character::=
alphabetic-character | digit
8. digit::=
0111213141516171819

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

decimal -number: :=

digit...

bit-string::= «

"{[(legal-size)] legal-digit...} ..."
legal-size::=

1121314

legal-digit::=

digit | AIBICIDIEIF

string::=

'string-character...'

string-character::=
bli=t+1-1%1/; (1) 1,1""1"1;1:1§1L171>1<|@ alphameric-character|
extra-lingual-character

delimiter::=

composite-operator | delimiting-character | bl | comment
composite-operator

>= | = | <= | 1= | +=

delimiting-character ::=

=l+1-1%0 /0 (D) 1,050 11§l <)e

comment: :=

/* [comment-character-string]*/
comment-character-string: :=

{comment-character | /} [comment-character-string]|
*,.. [comment-character [comment-character-string]]
comment-character: :=

bli=1+1-1(1) 1,015 -I§ 1L > 1< @)

alphameric-characterlextra-lingual-character

LEVEL 2 SYNTAX

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

program: :=

external -procedure. ..

external -procedure: :=

entry-name: external-procedure-head
[declare-statement]...[block-sentence] ... end-statement [EOF]
entry-name: :=

identifier

external-procedure-head: :=

MAIN PROCEDURE; | INTERRUPT PROCEDURE (parameter);|
PROCEDURE [(parameter-1list)] [simple-size] ;
parameter: :=

identifier

parameter-list::=

jidentifier [,identifier]...

simple-size::=

BYTE I WORD | DOUBLE

declare-statement: :=

DECLARE declaration-element [, declaration-element] ...;

- declaration-element::=

item-specification | identifier LITERALLY string
item-specification::=

entry-name type-attributel

item-list size-attribute [area-attribute]
type-attribute: :=

{ [EXTERNAL] PROCEDURE | (constant)MICRO} [simple-size]

Item-1list::=

identifier [(constant)] | (identifier[(constant)][,identifier[(constant)]]...

size-attribute::=
simple-size | POINTER TO simple-size | BIT (constant)

A-4

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

area-attribute: :=

EXTERNAL | CONSTANT {string | ([+!-] constant [, [+|-]constant]..

BASED {constant | identifier}
block-sentence: :=
procedure | executable-unit
procedure::=
entry-name: procedure-head
[declare-statement]... [block-sentence]... end-statement
procedure-head: :=
INTERRUPT PROCEDURE (parameter); |
PROCEDURE [(parameter-list)] [simple-size];
end-statement: :=
[1abel-1ist] END [label | entry-name];
label-list::=
{label:} ...
label::=
identifier
executable-unit::=
unconditional-executable-unit | if-statement
unconditional-executable-unit::=
blockigroup!command
block::=
[1abel-1ist] BEGIN; [declare-statement]...
[block-sentence] ... end-statement
group: :=
[label-1ist] group-heading [block-sentence]...end-statement
group-heading: :=
REPEAT expression TIMES; | DO [do-specification] ;
do-specification::=
identifier=expression TO expression [BY expression] |

CASE expression | WHILE expression | FOREVER

A-5

IH

47.

48,

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

command: :=
[label-1list] statement
statement: =
assignment-statement | call-statement
goto-statement | null-statement | return-statement
assignment-statement::=
storage-reference {= | := | +=} expression;
call-statement::=
CALL procedure-reference;
procedure-reference: :=
entry-name [(expression [,expression] ...)]
goto-statement: :=
{GOTO | O TO} label;
null-statement::=

>
return-statement: :=
RETURN [expression] ;
if-statement::=
if-clause executable-unit |
if-clause balanced-executable-unit ELSE executable-unit
if-clause::=
[1abel-1list] IF expression THEN
balanced-executable-unit: :="
uncondi tional -executable uniti
if-clause balanced-executable-unit ELSE balanced-executable-unit
expression: :=
conditional-expression | simple-expression |
storage-reference:= expression
conditional-expression::=

IF expression THEN expression ELSE expression

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72,

simple-expression: :=

logical-term [{L | XOR} logical-term]...
logical-term::=

logical-factor [§ logical-factor]...

logical-factor::=

numeric-expression [comparison-operator numeric-expression]...

numeric-expression: :=

numeric-term [{+!-} numeric-term]...

numeric-term::=

numeric-factor [multiply-operator numeric-factor]...
numeric-factor::=

numeric-primary | unary-operator numeric-factor

comparison-operator: :=

<l <=1 =1 =1 >=1>

multiply-operator::=

* |/ | MOD | MULD | DIVD | shift-operator
unary-operator: :=

+ 1 -0

shift-operator

SRA | SRL | SLL 1 SLC

numeric-primary: :=

constant | string | @ variable | procedure-reference |
storage-reference | PRINUM (entry-name) | (expression)
constant: :=

decimal-number | bit-string

variable::=

identifier [(expression)]

73. storage-reference::=
reference [§ (expression:expression)]
74. reference::=

variable [@ [(expression)]]
SYNTAX CROSS REFERENCE

The list below is a cross reference of the notation variables and reserved key
words that appear in both the level 1 and level 2 syntax. Each notation vari-
able is proceeded with the rule number in which it is defined. Following each
notation variable and reserved key word is the list of rule numbers where they
are referenced.

6 alphabetic-character

5,7
7 alphanumeric-character
5,14,20
34 area-attribuﬁe
30
49 assignment-statement
48
57 balanced-executable-unit
55,57
BASED
34
BEGIN
43
BIT
33

10 bit-string
4,71

43

35

50

47

18

20

19

66

16

59

block
42
block-sentence
22,36,43,44
BY
46
BYTE
27
CALL
50
call-statement
48
CASE
46
Command
42
comment
15
comment-character

29

comment-character-string

18,19

comparison-operator

62
composite-operator
15

conditional -expression

58
CONSTANT
34

71

29

28

29

17

46

constant

31,32,33,34,70

decimal -number
4,71

declaration-element

28
DECLARE

28
declare-statement

22,36,43
delimiter

1,2

delimiting-character

15
digit
7,9
DIVD
67

45
do-specification

45
DOUBLE

27
ELSE

55,57,59
END

38
EOF

22

56

55

32

30

40

39

12

11

62

61

IF

56,59
If-clause

55,57
if-statement

41
INTERRUPT

24,37
item-list

30
item-specification

29
label

38,39,52
label-list

38,43,44 ,47,56
LEAVE
legal-digit

10
legal-size

10
LITERALLY

29
logical-factor

61
logical-term

60
MAIN

24
MICRO

31

38

23

41

58

22

24

52

44

45

end-statement
22,36,43,44

entry-name

22,30,36,38,51,70

executable-unit
35,55

expression

45,46 ,49 ,51,54,56,58,59,70,72,73,74

extra-lingual-character

14,20
EXTERNAL
34

external -procedure

21
external -procedure -head
22
FOREVER
46
(0
52
GOTO
52

goto-statement
48

group
42

group-heading
44

identifier

4,23,25,26,29,32,34,40,46,72

67

53

63

65

70

64

25

26

36

37

MOD
67
MULD
67
mul tiply-operator
64
non-delimiter
1,3
null-statement
48
numeric-expression
62
numeric-factor
64,65
numeric-primary
65
numeric-term
63
parameter
24,37
parameter-1list
24,37
POINTER
33
PROCEDURE
24,31,37
procedure
35
procedure-head
36

A-11

51

21

74

54

69

60

27

33

procedure -reference

50,70
program
PRTNUM
70
reference
73
REPEAT
45
RETURN
54
return-statement
48
shift-operator
67
simple-expression
58
simple-size
24,31,33,37
size-attribute
30
SLC
69
SLL
69
source-text
SRA
69
SRL
69

48

73

13

14

31

68

42

72

statement

47
storage-refefence

49,70
string

4,29,34,70
string-character

13
tail-one

1,2
tail-two

1,2,3
THEN

56,59
TIMES

45
TO

33,46,52
type-attribute

30
unary-operator

65
unconditional-executable-unit

41,57
variable

70,74
WHILE

46
WORD

27
XOR

60

A-12

Appendix B
COMPILER TOGGLES

MPL provides some control over the compilation process through the use a
mechanism called compiler toggles. Each compiler toggle is represented by a
single character appearing in a comment immediately following a dollar sign
within a comment. For example in the comment:

/* $§C */
The character C is a toggle.

A toggle may have a value of true or false.
Each time a toggle appears its truth value is changed. The setting of the
toggle causes the compiler to take a specified action. For example the toggle,
C, causes the compiled operation codes to be listed. Therefore in the program
segment:

/* §C LINE 1 */

A=B; /* LINE 2 #/

C=B; /*LINE 3 */

/* $§C LINE 4 */

E=F; /*LINES */
The code for lines 2 and 3 will be listed but the code for line 5 will not be
listed.

The table below gives the function of the toggles.

TOGGLE

o 2 & T Mmoo oo o >

FUNCTION

Prints Symbol Table

Prints Operation Codes

Prints Symbol Table at Procedure End

Prints Allocation Map at Block End

Full Symbol Table Rather Than Current Block
Print Hexadecimal Load Records

Lists Source Program

Lists Without Numbering

Page Eject Immediately (This toggle resets
after the page is ejected)

Sets right hand margin. The portion of the
input record from this and all succeeding
records starting from the column containing

the vertical stroke will be ignored. The

subsequent appearance of a vertical stroke in

colum that is recognized cause the right mar-

gin to be set at colum 80
Outputs loader text to a separate file

INITIAL STATE

False
False
False
False
False
False
True

False

False

Column 80

False

Appendix C
SAMPLE MPL PROGRAM

S R R A R R R AN P A TR AR RN P IR KRR LR AR RRA AR ELE IR AT R INRN
IE] BVAACANNE TY AVYNT AL DRIMES §TAS TUITH InAn </
PR L R A A R LA S A a s R

oY Fy
MALS DOANLEALINE
neepAne .
onyMT CYTEOMAL PAARENEDE,
LIGLLANEELL LN fe THE ADAAY AT OVNMEG w/
7FCT |""'z'\‘ /’ ".'4”” had S Rilad TC';TE"\ */
(4,0 uenng /% 5MASEPIOTS «f

"Moo= T T
cALL 22070, Pl) =1);
ean;
TEST=5;
N SMILE TESTLINAG,
J=3;
N0 MPLE TEST/O(0)Y=P();
I1F TEST AN B())=n Tucwu ANTNA NNNT,
Je=1s
£,
CALL OUNMT(Y,2(1):=TFST);
1+=7;
mNl:
TEST+=2;
Fun .
FyYn poMe.

R T R T L L
/* POINT THN NECIMAL mencne «/
[ARR AR R AR R RSP RERACERRRR SR AN ARAARR AL RN R AR AR]

POINT
PROCENUTE (L, H) ;
nEryAne
ASCLENY unen, e THE AGLLL TARM AR A MIBRTR 4/
o, nnn, [# MUURERS TR ORIRT)
! NN, Jx 1ANP IrNEY Nt

NECCNSV e fo THIS ROUTIME CNIEPATS GIMARY VAP UE TO NENIHAL »/

panrenine(ry;
NECLABE K 40nh,
N = TN N RY =1.
ASCLI(1YaY 10D 1nstal,
K=y /10,
THN,
nn 1= T X,
IF ASAI (1Y =0t Tuen neETnY,
ASCIICY=" T,
NN
FHY NITCRNNY S,

TYPE: /+ THIS DAUTIME TYDEG CUADACTERS AN TNE TTY #/

pROAENINE(MY ;

NFCLARF
Ul “ynnn
TTY(7) '!970 "ASFN “mnann,
TTY(V="22",; J* STADT TUE TTY 3/
N f=h TO P21,
oL e(TTY(N YN N, FNN, Jx MALT EOD DEANV o/
TIY(2)=ASrI1(1); /% SEMN DOT A MUIANACTER o/
FNN,
TTY(1) =4 J* STAP TUE TTY 2/

ean TYPE,

[* MEXT STATFMEMT 1S START AT pASENINE ITontMT! +f

ASCEI (MY =N,
ASrI (1) ="AAN,
CALL TYoE(2);
CALL nECeanv());
CALL TYPE(R)Y;
CALL DECrnNYy (Y .
CALL TYPE(S);
£rnopainT;

’

Microdata

™

Microdata Corporation

17481 Red Hill Avenue

Irvine, California 92705

(714) 540-6730 TWX: 910-595-1764

	0001
	0002
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	7-01
	7-02
	7-03
	7-04
	7-05
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	B-02
	C-01
	xBack

