MPL
REFERENCE MANUAL

i Vicrocets D

MPL REFERENCE MANUAL

© 1976 Microdata Corporation

TM Trademark of Microdata Corporation
Printed in U.S.A.

98800 76 1022A

SMPL-1

September 1975

32/S PROGRAMMING LANGUAGE

®

Microdata Corporation
17481 Red Hill Avenue, Irvine, California 92714
Post Office Box 19501, Irvine, California 92713
Telephone: 714/540-6730 - TWX: 910-595-1764

I el el e N I Sy Sy S gy Sy S T Sy W gy

NN NN NN
® e o e s 4 e ® s+ s e 8 e v e s+ e e s

[V R RV R

NN NNN R e O
e s+ & o s e o e e s e o o

[)

N N N R N N N e N e ey T = =)

Section

AU A NN

NV AW N

HOo~NOUHLN =

[« N B~ U SN]

TABLE OF CONTENTS

INTRODUCTION ..t iii it sttt it tenennnnnnsnanss
Summary of the Language0000...
Block Structure.......covvivvenevnnnns
Data Descriptioniuieeeeeenns
Storage Allocationcceevuveens
Data Organizationccvveeeun.
Input/OUutput .. it it ittt ernnenesennens
EXpressionsieeiiinerenneneeennas
Syntax Notationieeiiiiirreonnnans
Notation Variablescieeuievennnns
Notation Constantsceceeeennn
Vertical Strokeciiiiiiin.
Braces ...ttt ittt ittt iii et
Bracketsc.iiiiiiiiiiiiii i
EllipSis vttt enenneeennaeonnenenns
The Definition Symbol

ELEMENTS OF THE LANGUAGEc.cicienann
Basic Language Structure
Character Setiiiiiiiiiiiiienenns
Delimitersivietiieeiinennennnnenns
OperatorsS ... eeeeeeeeennenneaeonsennan
Separators and Other Delimiters
Data Character Setccivevveen.
Identifiersciiiiiiiiiiirennnn
Keywordsiiiiiiiiinnneeieennnnns
Built-In Function Namescc000
Use of Blanksciiiiiiiiiinennans
Commentscieieiiieennnnnnnnsanans
Basic Program Structurec....
Simple Statements 0000
The IF Statementccicveun.
Label List ...t itiiiiineinnnnnnonsenss

DATA ELEMENTS ... ittt ittt it ittt ittt eeennnnnns
Data Organizationcceeveeenneanns
Scalar Ttemscoieiieieteeeneennens
CoONStants ...t iieeeeeeenennacnenna

=
s8]
0]

VU E PR UWUWWNNDDNDN N -

viouviTviniunuiunnuniuTuniviTniviot o

[e) e Ne R We)

rhrrrhrpbRrrPRrRAES RN NN R NN HWHN NN

NN -=O
« .

NN NNNNNDNNNDNNHEO
. . e o o s s s e e o

WAHRWWR NN

DO b e b et i el b e O

Section

[39)

NN = LS ON I S N =

DO 5 b bt b
= NS I SO

N =

[e)We W Weo We W WIRT NI BTN N R
[P RE ORI WS]

0N =

TABLE OF CONTENTS (con't)

Page
Scalar Variables 19
ATTAYS v ittt ittt ittt 19
Referencing of Datacviivin.n. 20
Simple Reference 20
Subscripted Reference 20
Indirect Referencec.veuivevveenn. 21
Subfield Reference e 22
DAta TYyPeS et evie ittt nneennneeennnns 23
Decimal Numbersiciiiiiinnnnns 23
Bit Strings ...ttt iiiiiiniteneenns 24
S o o 1 ¢ 1 25
DATA MANIPULATION ... ittt ittt iiiiennennnns 26
EXpPTressionseiieiiiiiiiieinennennnns 26
Simple EXpPressSionseeeeeenees 26
Arithmetic Operations 27
Arithmetic Comparison Operations ... 28
Logical Comparison Operations 28
Logical Operationscceeeeen 29
Shift Operationsc.ccviuune.n 30
The Assignment Operation 30
Conditional EXpressionseeee.. 31
Evaluation of Expressionsc.... 32
DATA DESCRIPTIONt iii i iinnennneennns 34
Attributes i i i i i i e e 34
Declarationsieeneneneneeenonnnncenas 34
The Declare Statement 35
Factoring of Attributes 36
Multiple Declarations 36
Procedure Labelsciveiiennenn. 37
Scope of Declarations 37
Scope of External Names 38
Basic Rule For The Use Of Identifiers 40
Declare Elementscieeeeeennn, 41
Literally Declare Element 41
Procedure Declare Element 42
Data Item Declare Element 44
Size Attribute 44
Area Attribute L. 45
PROCEDURES, FUNCTIONS, AND SUBROUTINES 48
ParTametersS ... iveeeneneeneeteosencnnnsnnns 48
Procedure References 0. 48
Function Reference 49
Built-In Functionscccieenn. 50

ii

TABLE OF CONTENTS (con't)

Section
6.2.3 Subroutine Referencesc......
6.3 Procedure Reference Examples
6.4 Arguments in a Procedure Reference
7.0 DYNAMIC PROGRAM STRUCTUREcvvvvrvenunns
7.1 Program Controlciiiiiiinnnnnens
7.2 Activation and Termaination of Blocks ...
7.3 Allocation of Dataciii v eeunn.
7.3.1 Definitions and Rulescc0vve...
7.3.2 Storage Classesvieiveenenesnnns
7.3.2.1 The Static Storage Class
7.3.2.2 The Automatic Classceuvee..
8.0 STATEMENT S i ittt it ittt ittt e eeneannannnan
8.1 Relationship of Statements
8.1.1 Assignment Statements
8.1.2 Control Statementsocevveeeons
8.1.3 Data Declaration Statement
8.1.4 Block Statementseeeeeeeonnnnen
8.2 Sequence of Controlciviivueennn
8.3 Alphabetic List of Statements
8§.3.1 The Assignment Statement
8.3.2 The Begin Statementccc0u0ee..
8.3.3 The Call Statementeieeeeeeneen.
8.3.4 The Declare Statementcce00...
8.3.5 The Do Statementoeverunneen.
8.3.6 The End Statementceeeeeuenn.
8.3.7 The EOF Statementc.ccieieveennn
8.3.8 The GOTO Statementeoivuiveeeennn
8.3.9 The If Statementvpevereenneens
8.3.10 The Null Statementc.eeeeeuenn
8§.3.11 The Procedure Statement
8.3.12 The Repeat Statement e
8§.3.13 The Return Statementccoccee..
APPENDIX A SYNTAX OF MPL ...ttt iii i itinnns
APPENDIX B SYNTAX CROSS REFERENCEc.vuu...
APPENDIX C COMPILER TOGGLES it ieneeennnens
APPENDIX D 32/S STANDARD SYMBOL-CODE
CORRESPONDENCESttt iiiiintennnnn
APPENDIX E SAMPLE MPL PROGRAMiiirinnnnn.

111

.1.

INTRODUCTION

SUMMARY OF THE LANGUAGE

This document describes the Microdata Programming Language
(MPL). The MPL language is used to write programs for the
32/S Computer System.

A program, called the MPL compiler, translates MPL statements
into 32/S machine instructions, assigns storage locations,
and performs other functions required to produce an
executable machine language program.

MPL is designed to be the primary implementation language

for the 32/S computer system. Although MPL is a high

level programming language, it is not machine independent.

In fact the 32/S machine and MPL were designed symbiotically.
Full access to the resources of the 32/S computer is
provided through appropriate language constructs. Each

construct of MPL is directly mirrored in the 32/S architecture.

For this reason the compiler of MPL can generate execution
code that is as efficient as that generated by assembly
language programs.

The remainder of this section briefly summarizes the MPL
language and describes the syntax notation used in the
remainder of this manual. Sections 2 through 8 describe
the full details of the MPL language.

Block Structure

MPL statements are organized into sections called blocks.
A program may consist of one or more blocks. Blocks may
be separate from one another with no statements in common
or they may be nested. A block is said to be nested when
all the statements comprising the block are contained
within another block.

Blocks serve two functions. (1) They provide for the
automatic allocation of storage. Storage for data declared
in a block is automatically allocated when the block 1is
entered and freed for use by other blocks when the block is
terminated. (2) They provide a means of using the same
name for different purposes in different blocks without
ambiguity.

Certain blocks, called procedures, may be invoked from
different places in the program and will return control
to the point from which they were invoked.

1.

1.

1.

1.

1.

.1.

1.

1

2

.6

Data Description

All data used in an MPL program are described as having
certain attributes. For example, numeric data have a size
attribute such as BYTE or WORD. The programmer must declare
all the attributes for a variable before the variable is
referenced.

Storage Allocation

The storage for data in a program may be assigned statically
or dynamically. Static storage is assigned before a program
begins execution and remains allocated during the entire
program execution. Dynamic storage is allocated on block
entry and freed on block exit.

Data Organization

The MPL supports two types of data organization: scalars
and arrays of one dimension.

Input/Output

Input and output communication with system peripheral
devices is accomplished by assigning variable names to the
memory addresses of the various registers of an I1/0 device
controller. The contents of these registers may then be
accessed by name in a manner identical to the accessing of
any other variable. Facilities are provided to enable

the programmer to write interrupt routines to service the
interrupts generated by I/0 devices.

Expressions

Expressions are used in MPL to specify computations to be
performed. Two types of expressions may be written in MPL.

The first type of expression, called a simple expression,
is similar to that of algebra. For example, the expression:

A+2%*(B+C)

specifies multiplying the sum of B and C by 2 and adding

the result to A. Data with different size attributes may
be used in the same expression. In the example above, A

may be a BYTE variable, B a WORD variable, and C a DOUBLE
variable.

1.2

The second type of expression is the conditional expression.
For example:

IF A > B THEN A+1 ELSE B-5

The value of this expression is A+l if the value of A is
greater then the value of B. Otherwise the value of this
expression is B-5.

MPL allows the use of a conditional expression anywhere
that a simple expression is allowed.

SYNTAX NOTATION

In this manual a uniform system of notation is used to
describe the manner of writing MPL statements or parts

of statements. This system of notation is not part of

MPL. It is a standard notation that may be used to describe
the syntax of any phrase structured programming language.

A system of notation such as this is commonly called a
metalanguage. The following paragraphs describe the notation.

Notation Variables

A notation variable is used to name a general class of
elements in the programming language. A notation variable
is written in lower case letters. Multiple words in the
notation variable are connected by an underscore and no
spaces may exist in a notation variable. Some examples

of notation variables are:

item list
goto_statement

Notation Constants

Notation constants specify the literal occurrence of the
characters in the language element being described and
are written in upper case letters. For example:

DECLARE identifier BYTE;

indicates the literal occurrence of the word DECLARE
followed by the notation variable "identifier" followed
by the literal occurrence of the word BYTE followed by
the literal occurrence of the semicolon (;).

C2.

.2.

.2,

Vertical Stroke

The vertical stroke | indicates that a choice of alternatives
is to be made. For example:

BYTE | WORD | DOUBLE

indicates that a choice is to be made from one of the three
notation constants BYTE, WORD, or DOUBLE.

Braces

Braces {} are used to group notation constants and notation
variables into a syntactical wunit. When braces are used

for this grouping, the presence of the syntactical unit

is required. For example:

indentifier {BYTE | WORD}

indicates that the notation variable "identifier'" must be
followed by the occurrence of either the notation constant
BYTE or the notation constant WORD.

The notation:
{identifier BYTE | identifier WORD}
has exactly the same meaning as the previous example.

Brackets

Brackets [] are also used to group notation constants and
notation variables into syntactical units. When brackets
are used, the syntactical unit is optional. For example:

identifier DOUBLE [BASED]

indicates that the notation variable '"identifier" is
followed by the occurrence of the notation constant
DOUBLE and optionally followed by the occurrence of the
notation constant BASED.

Brackets may be used to enclose a syntactical unit containing
alternatives. When used in this fashion, the brackets
indicate that any one alternative may be used or that

none of them may be used. For example:

[alphabetic_character | digit]
indicates a choice of either the notation variable 'alphabetic_

character'", or the notation variable '"digit', or neither
of them.

Ellipsis

Ellipsis ... following a syntactical unit indicate that

the unit may be repeated. If the syntactical unit contains
alternatives, a different choice of alternative may be used
for each repetition. For example:

[alphabetic character | digit]...

indicates that any number of "alphabetic character's or
"digit''s may appear in any order.

The Definition Symbol

The definition symbol ::= is used to define a notation
variable. The symbol may be interpreted to mean ''may be
composed of'". For example:

identifier ::= alphabetic character [alphabetic character | digit]...

defines the notation variable "identifier'". The example
indicates that an "identifier' may be composed of an
"alphabetic character" followed optionally by any sequence

of "alphabetic character"s and/or "digit"s, or by none at all.

Appendix A used the syntax notation to present a formal
syntactical description of MPL. In other parts of the manual
the notation is used to describe the language elements in

an informal way.

2.

2.

.0

1

1.

ELEMENTS OF THE LANGUAGE

BASIC LANGUAGE STRUCTURE

MPL programs consist of a collection of statements. A
statement is composed of characters and is always terminated
with the special character semicolon. Statements may be
written in free form format and are independent of any
physical record boundaries.

Character Set

The character set is composed of digits, special characters,
and English language alphabetic characters. The corresponding
English language upper and lower case letters are considered
to be identical when used in identifiers (and keywords).
In this manual only the upper case form of the letters
are used.
There are 28 alphabetic character symbols defined as follows:
alphabetic character ::=
A|B|C|DJ|]E|]F]|G | H| 1| J] K|
LIM|NJO|P|QIRIS|T]U][V]
wlx|yl]z| _|#
There are 10 digit symbols defined as follows:
digit ::=
o112]|3|4]s5]6]7]|8]29
An alphameric character is defined as:
alphameric character ::=

alphabetic character | digit

The names of the special character symbols and their
graphic representations follow in table 1.

NAME GRAPHIC

Blank

Equal or assignment symbol =
Plus +
Minus -

Asterisk or multiply symbol

Slash or divide symbol /
Left parenthesis (
Right parenthesis)
Comma >

Single Quote

Double Quote "

Currency symbol $
Commercial-at sign @
Semicolon ;
Colon

Not symbol -
And symbol &
Or symbol | or !
Greater-than symbol >
Less-than symbol <
Question mark ?

Table 1: Special Characters

2.1.2 Delimiters

The special characters are used to form delimiters. A
delimiter is an operator or a separator.

2.1.3 Operators

The operators are used in expressions to indicate the operation
to be performed. The expression operators are shown in
table 2 below.

Table 2: Expression Operators

GRAPHIC USE
+ denoting addition or (prefix) plus
- denoting subtraction or (prefix) negation
* denoting multiplication
/ denoting division
> denoting greater-than
>= denoting greater-than-or-equal-to
=< denoting not less-than
= denoting equal-to
~= denoting not equal-to
~> denoting not greater-than
<= denoting less-than-or-equal-to
< denoting less-than
- denoting prefix not (one's complement)
| or denoting logical inclusive or
& denoting logical and
= denoting assigned-to

In addition the following identifiers are keywords which are
reserved for use as operators in expressions:

Identifiers Used As Expression Operators

Table 3:
IDENTIFIER USE

XOR denoting
MULD denoting
DIVD denoting
MOD denoting
SRA denoting
SRL denoting
SLC denoting
SLL denoting
LLT denoting
LLE denoting
LEQ denoting
LNE denoting
LGE denoting
LGT denoting

logical

exclusive-or

double word multiply

double word divide

modulo
shift
shift
shift
shift
logical
logical
logical
logical
logical

logical

right arithmetic
right logical
left circular

left logical

less-than
less-than-or-equal-to
equal-to

not-equal-to
greater-than-or-equal-to

greater-than

.1.

.1.

Separators and Other Delimiters

The following special characters are used to separate
and delimit elements of the language:

Table 4: Separator Characters

Used for enclosing subscripts, subexpressions,
and for specifying information associated with
various keywords.

Separates elements of a list

Terminates a statement

Used in the assignment statement and DO statement

GRAPHIC USE
0
= Used
+= Used
Used
$ Used
! Used
" Used
@ Used
? Used
/* Used
*/ Used

in
in
to
to
to
to
to
to
to

to

Data Character Set

the assignment statement and DO statement
the assignment statement

terminate a label and in field selection
specify field selection

enclose character strings

enclose bit strings

modify a storage reference

terminate scanning of a physical record
specify the beginning of a comment

specify the ending of a comment

The MPL source language statements are written in the
character set defined in the preceding section. However,
the characters that can be processed as data are not

limited.

combinations.
in Appendix D.

Data characters may include all 256 8-bit
The data characters are fully described

.1.6 Identifiers

Identifiers are strings of alphameric characters, the
first of which is alphabetic. Identifiers may consist
of from 1 to 255 characters. The definition of an
identifier is:

identifier ::=
alphabetic _character [alphameric character]. ..
Identifiers in MPL are used for the following:

Scalar variable names

Array variable names

Statement labels

Procedure names

Keywords

Literally names
Examples:

X

VARA

RATE OF PAY
#2152

X2

TTY STATUS

#7

.1.7 Keywords

A keyword is an identifier which is a part of the language.
All keywords are reserved and may not be used except

in their intended structural use. The following is a

list of the keywords:

BASED FOREVER MULD
BEGIN GO POINTER
BIT GOTO PROC

BY IF PROCEDURE
BYTE INTERRUPT PRTNUM
CALL INIT REPEAT
CASE INITIAL RETURN
CONSTANT LEQ SLC

DCL LGE SLL
DECLARE LGT SRA

DIVD LIT SRL

DO LITERALLY STATIC
DOUBLE LLE THEN

ELSE LLT TIMES

END LNE TO

EOF MAIN WHILE

EXT MICRO WORD
EXTERNAL MOD XOR

2.

1.

.1.

8

Built-In Function Names

Built-in function names are identifiers that name functions
accessible to the programmer. Built-in function names

are not reserved and may be used as variabe names, statement
labels, or procedure names. The use of a built-in function
name as an identifier overrides the built-in function

itself in the scope where identifier is known (see

Section 5). Table 10 (in Section 6) lists the built-in
function names. '

Use of Blanks

Blanks are defined to be a string of blank characters
and/or comments (see 2.1.10). Blanks are not allowed
within identifiers, decimal numbers, or multiple character
operators:

A B C represent the three identifiers A, B, and C.
1 2 3 represent the three decimal numbers 1, 2, and 3.
> = represent the two separate operators > and =.

Blanks within a character string are recognized as legitimate
characters:

'A B C' represent the five characters A B C.
'/*B*/' represent the five characters /*B*/.

Blanks are required after an identifier and before an
otherwise adjacent identifier or decimal number:

ABC represent the single identifier ABC.
A23 represent the single identifier A23.

Otherwise blanks are optional:
IF'X'->ALPHA THEN B="5";
is equivalent to:

IF 'X' /*%/ -> ALPHA/**/THEN B =" (/**/4)5";

CALL SUB is not equivalent to CALLSUB.
A TO 10 BY 3 is not equivalent ATO10BY3.
A=5 is equivalent to A = 5.

2.1.10 Comments

General format:
/*comment string*/

Comments are used for documentation of the source program
and have no effect on execution. However, the characters
$, &, and % appearing in a comment are used to control

the compilation process. See Appendix C for details.

A comment may appear wherever a blank is allowed except

in a character string. The comment string in a comment
may not contain a semicolon character (;) or the character
pair */ in that order. For example:

FACTORIAL: /* PROCEDURE TO COMPUTE X! */
PROCEDURE (X);
END FACTORIAL;
2.2 BASIC PROGRAM STRUCTURE
An MPL program is composed of basic program elements
called statements. Statements are grouped into larger
elements, the group and the block. There are two types of

statements: the simple statement and the if statement.

2.2.1 Simple Statements

General format:
simple statement ::=
[label 1list] [[statement_identifier] statement body];
The statement identifier is a keyword indicating the kind
of statement. If no statement identifier appears the statement
is an assignment statement. If only the terminating
semicolon appears the statement is a null statement.
Examples:
LABEL: DO I =1 TO 5; /*D0O is the "statement identifier" */
L1:L2: A =B + C; /*assignment statement with two labels */

; /*null statement */

2.

2.

.2,

.2,

2

The IF Statement

General format:
if statement ::=
IF expression THEN unit-1 [ELSE unit-2]

The if statement is a compound statement that contains
other statements within it.

Each unit of an if statement has a terminal semicolon. The
semicolon of the final unit also terminates the if statement.
The if statement itself is not otherwise terminated by a
semicolon. For example:

IF A= B THEN C += 2; ELSE C = 5;

Label List

General format:
label list::=
{identifier:}...

Statements may be preceded by a label list. The identifiers
in the list are called labels and any one of them may be
used to refer to the statement.

The label 1list of a procedure statement is a special case.
For this statement the label 1list is mandatory and may
only contain a single identifier. The label of a procedure
statement is called the entry name of the procedure.

Grougs

A group is a collection of one or more statements and is
used to control the sequence of execution of a program.
There are three forms of group. The first, called the do
group, is defined by:

do_group::=
[label list] do_statement

statement...
END [identifier];

L2,

If an identifier follows END, it must correspond to an
identifier in the label 1list of the do statement.

The second form of group, called the repeat group, is
defined by:

repeat _group ::=
[label list] repeat_statement
statement...

END [identifier];

If an identifier follows END, it must correspond to an
identifier in the label 1list of the repeat statement.

The third form of group is a single statement as follows:
[label 1list] statement

The statement identifier of the single statement group may
not be DO, END, PROCEDURE, BEGIN, or DECLARE. For example:

ALPHA: DO;
IF A = B THEN
DO;
X=Y;
P=Q;
END;
END ALPHA;

This example contains two do groups. The first do group
contains the second do group within it. In the example
every statement except the DO and END statements is a
single statement group.

Blocks

A block is a collection of statements that define the
program region -- or scope -- throughout which the names
of the identifiers are known and for which storage is
allocated to the identifiers. Blocks are also used to
control the sequence of execution.

There are two kinds of blocks: begin and procedure. A
begin block has the form:

begin block ::=
[label 1list] begin_statement

statement...
END [identifier];

If an identifier follows END, it must correspond to an
identifier in the label 1list of the begin statement. A
procedure has the form:

procedure ::=

jdentifier: procedure_statement
statement...
END [identifier];

1f an identifier follows END, it must correspond to the
identifier of the procedure statement.

Although begin blocks and procedures have the same role in
delimiting scope of names and allocation of storage, they
differ in the way in which they are activated. A begin
block, like a single statement, is activated by normal
sequential flow of control and can appear wherever a
single statement can appear. A procedure may only be
activated by a CALL statement or by a function reference.
Normal sequential flow of control skips over procedures.

Since a procedure can be activated only by a reference to
it, every procedure must have an entry name. The identifier
required on the procedure statement serves as the entry
name.

Any block, A, may include another block, B, within it.
However, partial overlap is not possible. Block B must be
completely included within block A. The inclusion of one
block within another is called nesting. Such nesting

may occur to a maximum of 16 nesting levels.

A procedure block that is not included in any other block
is called an external procedure.

A procedure nested within a block is called an internal
procedure.

Begin blocks must be nested within another block. Therefore,
the only form of external block is the procedure.

All of the text of a block except the label on the block
heading statement is said to be contained in the block.

The part of the text of a block B that is contained in
block B, but is not contained within any other block nested
inside of B, is said to be internal to block B.

The notation internal to is vital to the understanding of the
definition of scope and to the understanding of allocation

of storage. For example:

A:
PROCEDURE
statement-1
B:

BEGIN;
statement-2
statement-3

END B;

statement-4
C:

PROCEDURE ;
statement-5
D:

BEGIN;
statement-6
statement-7

END D;

statement-8

END C;

statement-9
END A;

In the example, statement-1 through statement-9 represent
simple statements.

As shown by the boxes enclosing the statements, block A
contains blocks B and C, and block C in turn contains

block D.

Block A is an external procedure (it is not contained
within any other block). The entry name is A and is an
external name.

Blocks B and D are begin blocks.
Block C is an internal procedure (it is contained in

block A).
The text internal to block A is:

PROCEDURE;
statement-1
B:
statement-4
C:
statement-9
END A;

The text internal to block B is:

BEGIN:
statement-2
statement-3

END B;

The text internal to block C is:

PROCEDURE;
statement-5
D:
statement-8
END C;

The text internal to block D is:

BEGIN;
statement-6
statement-7

END D;

Programs

A program is composed of one main procedure and,optionally
additional external procedures. Thus a program is a set

of procedure blocks each of which may have other procedures
contained in them.

DATA ELEMENTS

Information manipulated by MPL programs during execution is
called data. Data may be integers, characters, arbitrary
collections of bits, or pointers to other items of data.
DATA ORGANIZATION

Data may be either scalars (i.e., single items) or arrays

(i.e., collections of single items).

Scalar Items

A scalar item may be a constant or the value of a scalar
variable.

Constants

A constant is a data item that denotes itself. That is,
its representation in a program is both its name and its
value; thus, the value of a constant cannot change during
execution of a program.

Scalar Variables

A scalar variable denotes a data item. This data item is
called the value of the variable. The identifier used in

a program to reference the data item is called the name

of the variable. A variable may take on more than one

value during the execution of a program. The set of possible
values of a variable is called the range of the variable.

Arrays

An array is an ordered collection of scalar data items

all of which have the same declaration. The number of
scalar elements in the array is specified by the use of

a dimension in the declaration for the name of the array.
The elements of the array are numbered starting with zero.
The maximum element number corresponds to the declared
dimension. For example:

DECLARE X(3) WORD;

3.

2

2.

.2,

This statement declares X to be an array containing four
scalar elements. The number, 3, appearing in the example
is the dimension. FEach element is a word. The elements
of the array X can be conceptualized as a collection of
data items referenced as follows:

X(0)
X(1)
X(2)
X(3)

The number in parentheses following the array name identifies
the particular element being referenced.

REFERENCING OF DATA

This portion of the manual describes the rules for referencing
a data item. Reference is made to data items via a

simple reference, a subscripted reference, or an indirect
reference. Additionally any subfield of a variable declared
with WORD precision may be referenced via a field selection
modifier.

Simple Reference

A simple reference is an identifier (see Section 2.1.6).

A simple reference may refer to a scalar or to an array.
If a simple reference is prefixed by the commercial at-
sign (@), then the reference is to the storage location of
the variable and not to the value. Example:

ABC 1is a reference to the value of the data item.
@ABC is a reference to the storage location of the
data item.

Subscripted Reference

A subscripted reference is used to refer to a particular
element of an array. The general form of a subscripted
reference is:

subscripted reference ::=
identifier (expression)

The value of the expression within the parentheses specifies
the particular element of the array.

Example:

Assume that I has a value of 3 and that the array X
is declared as:

DECLARE X(5) WORD;
then:

X(0) references element zero of the array
X(I+2) references element five of the array

Indirect Reference

A commercial at-sign (@) following a variable indicates

that the value of the variable is an address of some other
variable. The commercial at-sign may follow only variables
declared with the POINTER TO attribute (see Section 5.2.6.5).

The general form of an indirect reference is:
indirect reference ::=
variable @ [(expression)]

When the (expression) option is used, it indicates an
index on the indirect reference (post indexing).

The use of the indirect reference will be illustrated by
the following example.

Consider the following declarations and assignments:

DECLARE X(1) POINTER TO WORD;
DECLARE A WORD;

DECLARE B(2) WORD;

DECLARE Y POINTER TO WORD;

X (0) = @A;
X (1) = @B(0);
Y = @B(0);

Then, subsequent to the above statements and within their
scope:

(0)e is a reference to the value of A

(0) is a reference to the value of X(0)
(i.e., it is a reference to the storage
location of A)

Ye(l) is a reference to the value of B(1)

X(1)e(2) is a reference to the value of B(2)

X
X

3.

2.

4

Subfield Reference

If a data item has been declared WORD, then the reference
(simple, subcripted, or indirect) may be qualified
with a field select.

The general form of a field select is:

field select ::=
$ (expression [: expression])
Subfield qualification is accomplished by writing the
field select after the reference to the data item.

In a two expression field select, the first expression
specifies the number of bits to be referenced and the
second expression specifies the right most bit position

of the field. Bits within a word are numbered in descending

order from left to right starting with 15 and ending
with 0. For example:

X$(1:0) references the least significant bit of
the WORD X

A$(4:12) references a field consisting of the four
most significant bits of the WORD A

The one expression field select is primarily used to
reference a single bit at the specified bit position.
Example:

X$(0) references the least significant bit of the
WORD X

A$(15) references the most significant bit of the
WORD A

However, the one expression field select may be used to
reference any field in a word. Bits 7 through 4 of the
field select expression specify one less than the number
of bits in the referenced field and bits 3 through 0

of the field select expression specify the least
significant bit position of the referenced field. Example:

A$("3C") references a field consisting of the four
most significant bits of the WORD A

X$(64) references a field consisting of the five
least significant bits of the WORD X

.3.

1

DATA TYPES

There is no data type for variables in MPL. The type of
operations to be performed on the data is determined

by the operators of the language not by the operands.
For example, if the variable A and B appear in the
expression:

A+ B

then the values will be considered to be binary integers
and will be combined by the rules of algebraic addition.
On the other hand, if the same values appear in the
expression:

AGB

then the values will be treated as bit strings and will
be combined bit by bit according to the rules for the
operator Logical And.

Although there is no data type associated with variables,
there is a type associated with the representation of
constant data. It should be noted that different
representations of a constant may have the same value.
For example the two constants:

255
HFFII

represent the same value and using either representation
in a source program will have an identical effect.

The following paragraphs describe the various representations

of constants.

Decimal Numbers

General format:

decimal number ::=
digit...

A decimal number is treated as an integer whose precision
depends upon the arithmetic value of the decimal number.
Decimal numbers in the range of 0 through 32,767 have a
precision of 16 bits. Decimal numbers in the range of
32,768 through 2,147,483,647 have a precision of 32 bits.
Leading zeros have no effect on the arithmetic value

or precision of a decimal number. Examples:

00012 precision used is 16 bits

200 precision used is 16 bits
15972 precision used is 16 bits
87962 precision used 1s 32 bits

Bit Strings

General format:

bit string ::=
"[[(legal size)] [legal digit]]..."

legal size ::=
17 2| 3| 4

The legal size determines the number of bits that will
be generated from each of the legal digits. The legal
digit must correspond with legal size as shown in the
table below.

Table 6: Legal Digits for Bit Strings

Legal Size Legal Digit
1 0]1
2 0]1]2]3
3 0|1|2|3]4|5]6]7
4 0|1]2|3]4|5|6|7|8|9|A|B|C|D|E|F

When the legal size option is omitted, a default of 4 is used.

A bit is treated as an integer whose precision depends
upon the arithmetic value and the total number of bits
specified in the bit string (where the total number

of bits is equal to the sum of all of legal digits times
their associated legal size). Bit strings whose total number
of bits specified is in the range of 0 through 16 have

a precision of 16 bits. Bit strings whose total number
of bits specified is in the range of 17 through 32 have
a precision of 32 bits. Leading zeros are counted as
legal digits and hence are significant in determining
the precision of bit strings.

Examples:

bit string binary value precision
RKYAL 00110010 16 bits
"(3)32" 00011010 16 bits
"FA(1)1010(2)21" 1111101010101001 16 bits
"00001" 00000000000000000001 32 bits
"(1iz" (invalid)

Strings

General format:

string ::=
' [non_quote_char]... ' [string]

The character symbols that may appear include any characters
in Appendix C. However, when a single quote character

is required within the string it is represented by two
consecutive single quote characters. Example:

'"THIS IS A ''characters string'''
represents the characters:
THIS IS A 'character string'
The length of a string may be from 0 to 255 characters.

A string which is used as a constant is treated as an
integer whose precision depends upon the length of the
string. The length of a string used as a constant

may be from 0 to 4 characters. Strings used as a
constant whose length is 0 through 2 have a precision of
16 bits. Strings used as a constant whose length is

3 or 4 have a precision of 32 bits. Strings used as a
constant are right justified and left zero filled.

Examples:
string precision
v 16 bits
'A! 16 bits
'AB' 16 bits
'ABC' 32 bits
"ABCD' 32 bits
'ABCDE' (invalid)

.0

1.

1

DATA MANIPULATION

EXPRESSIONS

An expression describes an algorithm for computing a value.
Expressions are of two types: simple and conditional. Each
operation performed in evaluating an expression is carried

out with precision WORD (16 bits) or DOUBLE (32 bits). The
precision used is determined by the precision of the operands.
If the operands are WORD or BYTE, or BIT(n) then the precision
used is WORD. If both operands are precision DOUBLE, then the
precision used is DOUBLE. If one operand is precision

DOUBLE and the other is either WORD or BYTE, then the lesser
precision operand is converted to DOUBLE and the precision
used is DOUBLE,

Simple Expressions

Simple expressions have a form similar to the formulas of
algebra. A simple expression consists of a sequence of

one or more operands separated by infix operators.
Additionally, an operand may be preceded by prefix operators.
The operands of an expression may be data references or
constants. Additionally, an expression enclosed in
parentheses may be used as an operand. The following are
examples of valid MPL expressions:

A

-A

A+B

A+B*C
A>3§C<D
(A+B)*(C-D)

A+-B

4.1.1.1

Arithmetic Operations

Arithmetic operations treat the operands as signed integers.
BIT(n) operands are treated as 1,2, or 4 positive values and
are converted to WORD (16 bit) precision by extending the
value with zeros to the left. BYTE (8 bit) operands are
treated as 8 bit positive values and are converted to a WORD
(16 bit) value by extending the value with zeros to the left.
WORD operands are converted to DOUBLE values by extending

the most significant bit (sign bit) to the left. Negative
values are represented in two's complement binary notation.

The following infix operators are used to indicate
arithmetic operations.

+ indicates addition. The precision is determined
by the operands.

- indicates subtraction. The second operand
is subtracted from the first. The precision
is determined by the operands.

® indicates multiplication. The precision is
determined by the operands.

/ indicates division. The first operand is
divided by the second. The precision is
determined by the operands.

MOD indicates remainder after division of the
first operand by the second. The precision
is WORD. The sign of the result is the sign
of the dividend.

MULD indicates double precision multiplication.
The result of this operation is precision
DOUBLE even though the operands are WORD,
BYTE, or BIT(n).

DIVD indicates double precision division. The
first operand is divided by the second. The
result of this operation is precision WORD.
It is used when a DOUBLE precision operand
is divided by a WORD, BYTE, BIT(n) operand
and the desired result is WORD.

The following are the prefix operators used to indicate
arithmetic operations.

+ no effect on the value of the operand.

- negation. The sign of the operand is changed.

4.1.1.2

4.1.1.3

Arithmetic Comparison Operations

The arithmetic comparison operations are all infix
operations. Arithmetic comparison operations treat the
operands as signed numbers in two's complement binary
notation. The result of the operation is the value one
if the relation is true. The result of the operation is
the value zero if the relation is false.

The following are the operators used to indicate arithmetic
comparison operations:

> indicates greater-than
>= indicates greater-than-or-equal-to
=< indicates not less-than
= indicates equal-to
-= indicates not equal-to
-> indicates not greater-than
<= 1indicates less-than-or-equal-to
< indicates less-than
Examples:
g has the value 1

5 >
2 > has the value 0
3 >= 3 has the value 1
Logical Comparison Operations

The logical comparison operations are all infix operations.
Logical comparison operations treat the operands as
unsigned 16 bit numbers in binary notation. The result

of the operation is the value one if the relation is true.
The result of the operation is the value zero if the
relation is false.

The following are the operators that are used to indicate
comparison operations.

LGT indicates logical greater-than

LGE indicates logical greater-than-or-equal-to
LEQ indicates logical equal-to

LNE indicates logical not equal-to

LLE indicates logical less-than-or-equal-to
LLT indicates logical less-than

- 28 -

Examples:

5 LGT 3 has the value 1
2 LGT 2 has the value 0
3 LGT 3 has the value 1
-1 LGT 4 has the value 1
-2 LGT -1 has the value 0

4.1.1.4 Logical Operations

Logical operations operate on the operands on a bit by bit
basis. The result in each bit position is determined by
the values of the corresponding bit positions of the
operands according to the following table.

Table 7: Logical Operations

A B ~A sB A& B A | B A XOR B
1 1 0 0 1 1 (1)
1 0 0 1 0 1 1
0 1 1 0 0 1 5
0 0 1 1 0 0

The following infix operators are used to indicate
logical operations:

or ! indicates logical or
- . g -
& indicates logical and
XOR indicates logical exclusive or

The following prefix operator indicates a logical operation:

-~ indicates logical not

Examples:
assume
A has the value ' (1)00010111"
B has the value "(1)11111111"
C has the value '"(1)10100000"
then
-A has the value '"(1)11101000"
B&C has the value " (1)10100000"
A|-C has the value '"(1)01011111"

A XOR B has the value '"(1)11101000"

29

4.1.1.5 Shift Operations

Shift operations cause the first operand to be shifted
the number of bit positions equal to the value of the
second operand.

The following infix operators are used to specify shift
operations:

SRA indicates shift right arithmetic. Bit shifted
off the right are lost. Bits positions vacated
on the left are filled with the sign of the
original value.

SRL indicates shift right logical. Bits shifted
off the right are lost. Bit positions vacated
on the left are filled with zeros.

SLL indicates shift left logical. Bits shifted off
the left are lost. Bit positions vacated on
the right are filled with zeros.

SLC indicates shift left circular. Each bit shifted
off on the left fills the bit position vacated
on the right.

Examples:
-25 SRA 2 has the value -7
"FFFF" SRA 7 has the value "FFFE"
"FA" SLL 1 has the value "01F4"

"8000'" SLC 2 has the value '"0002"

4.1.1.6 The Assignment Operation

The assignment operation is used to create the side effect
of storing the value of the expression that appears to

the right of the assignment operator. The assignment
operator 1is:

. =

The operation can only be used in an expression in the form:
storage reference := expression

That is, the operand to the left of the assignment operator
must be a storage reference. An expression or a constant
may not appear to the left of the assignment operator.

The assignment may only be made to WORD variables.

.1.

Example:

X:=3+5 X is assigned the value 8. The value of
the expression is 8.

X:=Y:=7-2 X and Y are each assigned the value of 5.
The value of the expression 1is 5.

(X:=7)+X+2 X is assigned the value 7. The value of
the expression is 16.

Conditional Expressions

General form:

conditional expression ::=
IF expr-a THEN expr-b ELSE expr-c

where "expr-a'", "expr-b'", and '"expr-c'" are arbitrary
expressions including the possibility of conditional
expressions.

Conditional expressions are interpreted as follows. If
the value of "expr-a" is an odd number (least significant
bit is a 1) then the value of the ''condition expression"

is the same as the value of "expr-b". If the value of
"expr-a'" is an even number (least significant bit is a
zero) then the value of the '"conditional expression' is

the same as the value of "expr-c'". In the evaluation of

a conditional expression only one of the, expr-b or expr-c,
expressions is evaluated.

Normally "expr-a" in the "conditional expression' will
be an expression with comparison operators. However, this
need not be the case. For example:

IF A > B THEN C*D+2 ELSE C/D
IF A THEN B ELSE A
IF A THEN A ELSE B

Note that if the range of values for A and B is restricted
to 0 and 1, then the value of the second example is
identical to the value of the expression:

A GB

and that the value of the third expression is identical
to the value of the expression:

A B

4.

2

EVALUATION OF EXPRESSIONS

Operations within an expression are assigned a priority
as follows:

unary: +,-," highest

multiplication and shift: * /,MOD,DIVD,MULD,SRA,
SRL,SLL,SLC

addition: *,-

comparison: >,>=,=,a= ,<= < 4> <,
LLT,LLE,LEQ,LNE,LGE,LGT

and: &

or: | , XOR

assignment: 1= lowest

Operations within an expression are performed in the order
of decreasing priority. For example, in the expression:

A+B*(C

multiplication of B by C is performed first and then the
result is added to A. Consecutive assignment operations

are performed in right to left order. All other infix
operations of the same priority are performed in left

to right order. Consecutive prefix operations are performed
in right to left order.

If an expression is enclosed in parentheses, it is treated
as a single operand. The parenthesized expression is
evaluated before its associated operation is performed.
For example, in the expression:

(A +B) * (C+ D)

B will be added to A, D will be added to C, and the first
result will be multiplied by the second. Thus, the use
of the parantheses may modify the normal priority of the
operators.

The operands of an expression are always evaluated in

left to right order. This is true regardless of the

order in which the operands themselves are combined

with operators. For example, if A, B, and C represent
operands to be evaluated (e.g. expressions in parentheses
or function references), then the expression:

A+ B *C
is evaluated in the following steps:

A is evaluated

B is evaluated

C is evaluated

The multiplication of B by C is performed

The result of the multiplication is added to A

(AR~ BV I NN

- 32 -

The expression:
A*B +C
is evaluated in the following steps:

1. A is evaluated

2. B is evaluated

3. The multiplication of A by B is performed

4. C is evaluated

5. C is added to the result of the multiplication

This strict left to right evaluation of operands guarantees
the programmer can control side effects.

5.

DATA DESCRIPTION

ATTRIBUTES

An identifier in an MPL program may represent one of
several types of objects. It may represent a data variable,
a procedure name, or a statement label. Those properties
that characterize the object represented by the identifier
and other properties of the identifier (such as precision
and accessing method) make up a set of attributes of the
identifier.

When an identifier is used in a program, the attributes
of the identifier must be known. Examples of attributes are:

EXTERNAL - This attribute defines an identifier to have
a certain special scope.

INITIAL(5) - This attribute defines an identifier to
be the name of a data item with the
initialized wvalue of 5.

DOUBLE - This attribute defines an identifier to
have a precision of 32 bits.

DECLARATIONS

An identifier is established as the name of some object
and the attributes of the identifier are specified by
means of a declaration.

If a declaration of an identifier is internal to a certain
block, then the identifier is said to be declared in
that block.

In a given program, an identifier may represent more than
one object. In this case each different object represented
by the identifier is said to be a different use of the
identifier. For example, an identifier may represent a
data item with precision BYTE in one part of the program
and the same identifier may represent a statement label

in another part of the program. These two parts of the
program, of course, cannot overlap.

Each use of an identifier is established by a separate
declaration. References to different uses of the same
identifier are distinguished by the rules of scope
(see 5.2.5).

Declarations are made by the use of the '"declare statement"
or by the appearance of an identifier as a label of a
statement.

5.

2.

1

The Declare Statement

Function:

The declare statement is a non-executable statement
used to establish an identifier and to specify the
attributes of the identifier.

General Format:

declare statement ::=
DECLARE declare element [, declare element]... ;

declare _element ::=
identifier LITERALLY string |
entry name type attribute %
item list size attribute [area attribute]

type attribute ::=
TEXTERNAL] procedure [simple size] |
(constant) MICRO [simple size]

item list ::=
identifier [(constant)] |
(identifier [(constant)] [, identifier [(constant)]]...

size attribute ::=
simple size |
POINTER TO simple size
BIT (constant) B

area_attribute ::=
EXTERNAL |
STATIC
CONSTANT string
CONSTANT ([+ | -)] constant [, [+ | -] constant]...) |
INITIAL string
INITIAL ([+ | -] constant [, [+ | -] constant]...) |
BASED constant
BASED identifier

simple _size ::=
BYTE | WORD | DOUBLE

.2,

.2.

General Rules:

1. A label is not allowed on a declare statement.

2 The declaration statements within any block must
follow immediately after the block heading
statement and before any other statements in the
block.

3. Any number of identifiers may be declared in a
single declare statement and declarations must
be separated by commas. -

4. Attributes must follow the items to which they
refer.

5. All of the attributes of a given identifier must
be declared in a single declare statement.

6. Attributes of an EXTERNAL name declared in separate
blocks and compilations must be identical.

Example:

DECLARE JOE BYTE, JIM WORD, SAM (15) BIT (4);
JOE is declared to be a data item with a precision of
8 bits. JIM is declared to be a data item with a precision
of 16 bits. SAM is declared to be an array of 16 data
items each item with a precision of 4 bits.

Factoring of Attributes

When several data items have the same size attribute and
area attribute, then the attributes may be factored to
eliminate repeated specification of the same attribute for
many identifiers. The factoring is accomplished by
enclosing the data items in parentheses and following them
with the attributes that apply to all the data items.

The data items within the parentheses are separated by
commas. Example:

DECLARE (A,B) WORD, (D,E) BYTE EXTERNAL;

This declaration is equivalent to the following:

DECLARE A WORD, B WORD, D BYTE EXTERNAL, E BYTE EXTERNAL;

Multiple Declarations

More than one declaration (implicit or explicit) of the
same identifier internal to the same block constitutes

a multiple declaration of that identifier. Multiple
declarations are in error with the exception that the
declaration of an identifier as a PROCEDURE in a declare

5.

5.

2.

2.

5

statement does not constitute a multiple declaration if
the same identifier appears subsequently as the entry
name of a procedure statement. The multiple declarations
are:

1. An identifier being declared more than once
internal to the same block. :

2. An identifier appearing as a label more than once
internal to the same block.

3. An identifier being declared and appearing as a
label internal to the same block.

4. Declaring a parameter with an area attribute.

Procedure Labels

A label on a procedure statement declares the identifier
as an entry name. If the procedure is the outermost
block, the EXTERNAL attribute is also implicitly declared
for the label.

Scope of Declarations

When a declaration of an identifier is made, there is a
certain well defined region of the program over which
this declaration is applicable. This region is called
the scope of the declaration. Outside the scope of the
declaration, the identifier is said to be unknown or
undefined.

The scope of a declaration of an identifier is defined by
the block, B, in which the identifier is declared but

excluding any blocks contained in B where the same identifier

is declared again.

5.2.5.1

Scope of External Names

In general, declarations of the same identifier made in
different blocks represent different distinct objects
with non-overlapping scopes. It is possible to declare
the same identifier in more than one block such that each
declaration represents the same object. This is done

by using the EXTERNAL attribute. When the same data item
is declared EXTERNAL in more than one block, each
declaration represents the same object.

If an identifier is declared with the type attribute
EXTERNAL PROCEDURE, then the identifier represents the
external procedure whose label is the same as the
identifier being declared.

The following examples illustrate scope of declarations.
Tables 8 and 9 explain the scope and use of each name
for example 1.

Example 1:
A: PROCEDURE; /*LINE 1%*/
DECLARE (X,Z) WORD; /*LINE 2%/
B: PROCEDURE (Y); /*LINE 3%/
DECLARE Y BYTE; /*LINE 4%*/
C: BEGIN; /*LINE 5%/
DECLARE (A,X) DOUBLE; /*LINE 6%*/
Y: Z=A; /*LINE 7%/
END C;
END B;
D: PROCEDURE; /*LINE 8%/
DECLARE X WORD; /*LINE 9%/
Y = Z + X; /*LINE 10, WITH ERROR%*/
END D;
END A;

Table 8: Scope and Use of Names of Example 1

LINE NAME USE SCOPE (BY BLOCK LABELS)
1 A External procedure all of A except C
2 X WORD data item all of A except C and D
2 Z WORD data item all of A
3 B Internal procedure all of A
4 Y BYTE data item all of B except C
5 C Statement label all of B
6 A DOUBLE data item all of C
6 X DOUBLE data item all of C
7 Y Statement label all of C
8 D Internal procedure all of A
9 X WORD data item all of D

Table 9: Items Referenced By Example 1

LINE OF REFERENCE NAME ITEM REFERENCED
7 Z WORD data item declared on line 2
7 A DOUBLE data item declared on line 6
10 Y Invalid reference. Y is not known
in block D
10 Z WORD data item declared on line 2
10 X WORD data item declared on line 9

Example 2:

A: MAIN PROCEDURE; »
DECLARE X WORD EXTERNAL; /*LINE 1%/

B: PROCEDURE; |
DECLARE X BYTE; J*LINE 2%/

C: BEGIN;
DECLARE X WORD EXTERNAL:; /*LINE 3*/

END C;
END B;
END A;
D: PROCEDURE;

DECLARE X DOUBLE; /*LINE 4%/

E: PROCEDURE;
" DECLARE X WORD EXTERNAL; J*LINE 5%/

END E;
END D;

In example 2 there are five declarations of the identifier X.

The declaration of line 2 declares X as a BYTE data item.
Its scope is all of block B except block C.

The declaration of line 4 declares X a DOUBLE data itemn.
This item is distinct from that of line 2. 1Its scope is
all of block D except block E.

Declarations in lines 1, 3, and 5 all declare X to be
the same WORD data item. Its scope is all of the program
except the scopes of declarations in line 2 and 4.

5.2.5.2 Basic Rule For The Use Of Identifiers

The fact that an identifier is unknown outside its scope
suggests the following basic rule on the use of identifiers:

A1l appearances of an identifier, which are intended
to represent a given object in a program, must lie
within the scope of that identifier.

The most important implication of the above rule is on
the limitation of transfer of control by the statement,
GOTO LAB, where LAB is a statement label.

The statement GOTO LAB, which is internal to a block B,
can cause transfer of control to another statement
(having label LAB internal to B) or to a statement in

a block that contains B and to no other statement. In
particular, it cannot transfer control to any statement
internal to a block contained in B.

5.2.6 Declare Elements

The declare statement is made up of a list of declare
elements. A declare element is the declaration of a
LITERALLY item, a procedure, or a data item.

5.2.6.1 Literally Declare Element

The LITERALLY declare element is used to name any arbitrary
string of characters.

General form:

declare element ::=
identifier LITERALLY string

The normal scope rules apply to the identifier declared
with the LITERALLY declaration. The occurrence of the
identifier in the subsequent text of a block will result
in the substitution of the string for the identifier. A
use for the LITERALLY declaration allows the symbolic
representation of constants and the ease in changing

their values. For example the program segment:

A: PROCEDURE;
DECLARE INPUT PROCEDURE WORD;
DECLARE KONSTANT LITERALLY '1';
DECLARE SYMBOL LITERALLY '2';
DECLARE OPERATOR LITERALLY '3';
IF INPUT = KONSTANT THEN
DO;

END;
IF INPUT
DO;

SYMBOL THEN

END;
IF INPUT
DO;

OPERATOR THEN

END;

5.2.6.2

is equivalent to the program segment:

A: PROCEDURE;
DECLARE INPUT PROCEDURE WORD;
IF INPUT = 1 THEN
DO;

END;.
IF INPUT
DO;-

2 THEN

END;
IF INPUT
DO;

3 THEN

END;

Procedure Declare Element

The procedure declare element is used to declare identifiers
to be procedure names.

General form:

declare element ::=
entTy name type attribute

type attribute ::=
TEXTERNAL] PROCEDURE [BYTE | WORD | DOUBLE] |
(constant) MICRO [BYTE | WORD | DOUBLE]

Identifiers declared to be procedure names are used when:

1. A reference is made to an internal procedure by
either a call statement or a function reference
appearing in the scope of the declaration and the
reference occurs prior to the procedure itself.

2. A reference is made to an external procedure other
than the one containing the reference by either
a call statement or a function reference. In
this case the EXTERNAL option is required in
the declaration.

3. A reference is made to a procedure which has been
microcoded. The 'constant' represents the address
in the control storage of the 32/S where the
microcoded process begins.

The size specification of BYTE, WORD, or DOUBLE is

required with the procedure declaration when the procedure

is to be referenced as a function. In this case the size
specifies the precision of the value returned by the function.
Example:

A: PROCEDURE;
DECLARE B PROCEDURE:

CALL B;

B: PROCEDURE;
END B,
CALL B;

END A;

In this example the declaration "B PROCEDURE" is required
because the first "CALL B;" statement occurs prior to

the occurrence of the procedure block B. The declaration
"B PROCEDURE" is not required (however, it 1is allowed)
for the second "CALL B;" statement because it occurs
after the procedure block B. For example:

A: PROCEDURE;
DECLARE B EXTERNAL PROCEDURE;

CALL B;
END A;

In this example the declaration "B EXTERNAL PROCEDURE"

is required because the external procedure B is referenced
from block A which is not within the scope of block B.
Example:

A: PROCEDURE;
DECLARE B("3F0'") MICRO WORD;
VALUE = B(I,J);

END A;

In this example the declaration "B("3F0'") MICRO WORD"
declares the identifier B to be a microcoded procedure.

5.2.6.3

5.2.6.4

The WORD option specifies that the procedure will leave
a 16-bit result on the top of the 32/S stack. The
assignment statement invokes the microcoded procedure.
The value of the variables I and J are placed on the
32/S stack before the procedure is invoked.

Data Item Declare Element

The data item declare element is used to declare identifiers
as data items.

General form:

declare_element ::=
item list size attribute [area_attribute]

An item list can be a single identifier or a list of
identifiers. When the item list is a list of identifiers,
all of the identifiers in the 1list are declared to have
the same size and area attributes.

The item list can specify scalar and/or array identifiers.

An array identifier is specified with a constant which

is the upper array bound. The upper array bound is the
largest value of a subscript that may be used to reference
an element of the array. The lower bound of an array is
always zero; therefore, the number of elements in an

array is one greater than the value of the upper array bound.
Example:

DECLARE A(10) WORD, B(5) BYTE;

In the example, A is a WORD array of 11 (16-bit) elements
(upper bound 10). B is a BYTE array of 6 (8-bit) elements
(upper bound 5).

Size Attribute

The size attribute is required for the declaration of all
data item identifiers and specifies the precision of the
data item.

General format:
size_attribute ci=
BYTE l WORD | DOUBLE l BIT ({1|2|4})|
POINTER TO {WORD | BYTE | DOUBLE}

General rules:

1. The size attribute must be given with the declaration of
all data item identifiers.

5.2.6.5

2. The precision specified by the various size attribute
options are:

BYTE 8 bits of precision
WORD 16 bits of precision
DOUBLE 32 bits of precision
BIT(1) 1 bit of precision
BIT(2) 2 bits of precision
BIT(4) 4 bits of precision
POINTER TO 16 bits of precision
Example:

DECLARE A(7) BIT(4), B BYTE, C WORD, D POINTER TO BYTE;

D;
Da;

C
B

nwon

In this example A is an array of 8 data items each with a
precision of 4 bits, B is a data item with a precision of

8 bits, C is a data item with a precision of 16 bits, and

D is a data item with a precision of 16 bits. The fact that
D is declared a POINTER TO BYTE indicates that it may be used
for indirect referencing.

The assignment statement C = D assigns the value of the

16 bit data item D to the 16 bit data item C. The assignment
statement B = D@, assumes that the value of D is the location
of an 8 bit data item. That 8 bit data item is assigned to
the 8 bit data item, B.

Area Attribute

The area attribute is used to declare identifiers as
occupying an area of storage outside the area implied by the
normal dynamic storage allocation rules or that the normal
storage area is initialized to a specific value.

General format:

area attribute ::=
EXTERNAL |
STATIC |
CONSTANT string
CONSTANT ([+ | -] constant [, [+ | -] constant]...)
INITIAL string
INITIAL ([+ | -] constant [, [+ | -] constant]...) |
BASED constant
BASED identifier

General rules:

1.

The EXTERNAL area attribute declares an identifier to be
identical to the data item of the same name declared
EXTERNAL in another block. (See 5.2.5).

The STATIC area attibute declares that the space for a
data item ¥s to be allocated only once for all
invocations of a block.

The CONSTANT area attribute declares ,

values for the associated data items. The number of
data items and the number of initial values must be

the same. A data item declared with the CONSTANT

area attribute cannot be used as the object of any type
of assignment.

The string option may only be used with the BYTE size
attribute. The data item is assumed to be an array
variable whose dimension is specified by the MPL compiler
based upon the number of characters in the string. If
the data item is not specified as an array variable, then
the MPL compiler will assign the dimension upper bound

to the number of characters in the string. If the data
item is specified as an array variable then the dimension
must be specified to be equal to the number of characters
in the string. The first byte of the array is set to a
value by the MPL compiler which is equal to the number

of characters in the string.

The INITIAL area attribute declares initial

values for the associated data items. The number of
data items must be equal to or greater than the number
of initial values.

The string option may only be used with the BYTE size
attribute. The data item is assumed to be an array
variable whose dimension is specified by the MPL compiler
based upon the number of characters in the string. If

the data item is not specified as an array variable, then
the MPL compiler will assign the dimension upper bound

as the number of characters in the string. If the data
item is specified as an array variable, then the dimension
must be specified to be equal to or greater than the
number of characters in the string. The first byte of the
array is set to a value by the MPL compiler which is equal
to the number of characters in the string.

The BASED area attribute is used to assign absolute
storage locations to identifiers. The value of the
constant or the identifier base is multiplied by four
to generate the base for an absolute address whenever
the based variable is referenced.

The BASED area attribute can only be used in programs
that operate in executive mode.

6. The relationship between identifiers declared in an item
list and constants or strings specified in a value list
is that the space for the item listis allocated first.
The value 1list is then allocated into the same space
starting with the first item in the item list and
corresponding to the remainder of the item list on
a one-to-one basis.

Example 1.
DECLARE TTY (7) BYTE BASED "F800";

This example declares the BYTE array TTY to be used at the
absolute location "F800"*4. If a reference is made to the
item TTY(6), the actual address to be referenced is computed
by multiplying "F800" by four and then adjusting the result
by the index value of 6.

Example 2.
DECLARE WORK_AREA (1000) WORD BASED STACK;

In this example the identifier STACK must have been previously
declared. If a reference is made to WORK AREA(1), the actual
address to be referenced is computed by multiplying the

value of the data item STACK by four. The result is adjusted
by the subscript, 1, to form the absolute address for the
reference.

Example 3.
DECLARE TEXT BYTE CONSTANT 'ERROR MESSAGE';

This example generates an array of bytes in the program

space. TEXT(0) contains the value 13 (the number of bytes

in the string). TEXT(1) contains the value "45" (the ASCII
representation of the letter E). The remaining elements of

the array contain values that represent the remaining characters
of the string.

Example 4.
DECLARE (ONE, TWO, THREE) WORD INITIAL (1, 2, 3);

This example initially assigns to the identifiers ONE, TWO,
and THREE the 16 bit values 1, 2, and 3 respectively.

6.

.0

.1

2

PROCEDURES, FUNCTIONS, AND SUBROUTINES

PARAMETERS

The procedure statement that heads a given procedure may
specify a parameter list (see Section 8 for the syntax and
details of the procedure statement).

Parameters are identifiers and may represent scalar variable
names or array names which are used in the procedure. The
appearance of an identifier in the parameter list declares

the identifier as a parameter. This declaration causes the
scope of the parameters to be the procedure block. Identifiers
that appear as parameters must also appear in a declare
statement. The declare statement must assign a size attribute
to the identifier. For example:

ABC: PROCEDURE (X, Y, Z);
DECLARE (A, Z) WORD, (X, Y(6)) BYTE;

In this example there are four variables declared in the
scope of the block ABC. Three of the variables X, Y, and

Z are declared to be parameters by virtue of their appearance
in the parameter list of the procedure statement. The

fourth variable, A, is not a parameter.

The specification of a dimension for the parameter, Y,
jdentifies Y as an array. No storage for the array is
allocated by the declaration. The storage is allocated by
the calling procedure.

PROCEDURE REFERENCES

The label appearing on a procedure statement is called the
procedure entry name. At any point in a program where an
entry name for a given procedure is known, the procedure
may be invoked by a procedure reference. The procedure
reference has the form:

entry name [(argument [, argument]...)]

The number of arguments in the procedure reference (possibly
zero) should be equal to the number of parameters in the
parameter list of the procedure being invoked. Neither

the MPL compiler nor the 32/S instructions validate the number,
correspondence, or size of arguments and parameters.

When a procedure reference invokes a procedure, each argument
specified in the reference is associated with a formal
parameter in the corresponding position of the parameter

list of the denoted procedure. :Control is then passed to

the procedure. The manner of associating arguments with
parameters is discussed in Section 6.4.

- 48 -

There are two distinct ways by which a procedure may be
referenced:

1. A procedure reference may appear as an operand in
an expression. In this case the reference is said
to be a function reference and the procedure is
said to be invoked as a function.

2. The procedure reference may appear after the keyword
CALL in a call statement. In this case the reference
is said to be a subroutine reference and the procedure
is said to be invoked as a subroutine.

Ordinarily a given procedure will be used exclusively as a
function or exclusively as a subroutine. However, it 1s not
mandatory that this be the case, and neither the MPL
compiler nor the 32/S instructions check this.

.2.1 Function Reference

When a function reference appears in an expression, the
referenced procedure is invoked. The procedure is then executed
using the arguments (if any) that were specified in the

function reference. The result of executing this function
procedure requires that a value is passed with return of

control back to the point of invocation. This value is

then used in place of the function reference as an operand

and the evaluation of the expression continues.

The procedure invoked by the function reference normally
will terminate with the execution of a statement of the form:

RETURN expression;

It is the value of the expression appearing in the return
statement that is returned as the function value.

If the invoked function terminates with a goto statement,

the evaluation of the expression that invoked the function
will not be completed (imbedded assignments that occurred

before the invocation will be performed) and control will

pass to the point specified by the goto statement.

If the invoked function terminates with an end statement,
evaluation of the expression containing the function reference
continues, however, the value of the function in this case 1is
undefined. This type of termination of a function is normally
an error.

Built-In Functions

Besides functions written by the programmer, a function
reference may invoke one of several built-in functions.

The built-in functions are an intrinsic part of MPL. Entry
names for built-in functions are not declared by the programmer.
However, if the programmer declares an identifier that is
jdentical to a built-in function name, the normal scoping
rules apply and the built-in function cannot be invoked
in the scope where the programmer's identifier is known.

Each built-in function has a specific number of arguments
and returns a value of specified precision. The table below
summarizes the built-in functions.

Table 10: Built-In Functions

FUNCTION ARGUMENT RETURN
NAME SIZE SIZE DESCRIPTION
SUPERVISOR WORD null Generates a SUPV instruction.
OVERFLOW none, WORD Returns the state of the
WORD, ot arithmetic overflow indicator.
DBLE A value of one(l) indicates on and
a value of zero(0) indicates off.
RESUME WORD null Resume the process whose stack
base is the argument. Can be
executed only in executive mode.
HIGH DBLE WORD Returns the most significant part
of the argument.

LOW DBLE WORD Returns the least significant part
of the argument.

ABS WORD or WORD or Returns the absolute value of the

DBLE DBLE argument.

XIM WORD WORD Places the argument into the
interrupt mask register. Returns
the previous contents of the
interrupt mask register.

CARRY none, WORD Returns the status of the carry
WORD, or indicator. A value of one(l)
DBLE indicates on and a value of zero
(0) indicates off.
SWITCHES none WORD Returns the value in the
configuration switch register.

NOP none null Generates a NOP instruction.

PNOP none null Generates a PNOP instruction.
WAIT none null Generates a WAIT instruction.
TRAP none null Generates a TRAP instruction.

6.

FUNCTION
NAME

PRTNUM

DBLE

DBLE

SSR
ENVIRONMENT

ARGUMENT
SIZE

procedure-name

-DBLE
-DBLE,~DBLE

none

WORD

2.3 Subroutine References

RETURN

SIZE

WORD

DBLE

DBLE

null

WORD

DESCRIPTION

For internal procedures, returns
the PB relative address of the
procedure name. For external
procedures, returns a word
consisting of the PLIBN in bits
15 through 8 and the PRTN in
bits 7 through 0.

Makes a double precision value
from a non-double precision
argument.

Makes a double precision value
from two non-double precision
arguments.

Stuffs stack registers.

A 'POINTER TO' WORD array
pointing to the mark in the
stack for the current
environment.

When a procedure is invoked as a subroutine by the execution
of a call statement, the arguments (if any) are associated with
the formal parameters and control passes to the called subroutine.

Unlike the function,
point of invocation.
following ways:

1.

subroutines do not return a value to the
Subroutines may terminate in the

Control reaches a return statement. When this occurs
the expression in the return statement (if present) is

evaluated.

The value of the expression is lost.

Control then passes to the first statement following the

invoking call statement.

Control reaches a goto statement which specifies that
control is to be transferred to a point outside the
scope of the called procedure. In this case control
passes to the point specified by the goto statement.

Control reaches the end statement associated with the
In this case control passes to
the first statement following the invoking call

called procedure.

statement.

.3 PROCEDURE REFERENCE EXAMPLES

Example of a function reference:

COMP: PROCEDURE;
DECLARE (P,Q,R,V) WORD;
POLY: PROCEDURE (C,X);
DECLARE (C,X) WORD;
RETURN (C + X * (1 + X * (2 + X)));

END POLY;
S1: P = Q * POLY (R,V);

END COMP;

In this example the external procedure COMP contains the

function POLY which is invoked when the expression appearing

in the statement labeled S1 is being evaluated. When the
procedure POLY is invoked, the values of the arguments R

and V will be substituted for the parameters C and X respectively.

Example of a subroutine reference:

COMP: PROCEDURE;
DECLARE (P,Q,R,V,TEMP) WORD;
POLY: PROCEDURE (C,X);
DECLARE (C,X) WORD;
TEMP = C + X * (1 + X * (2 + X));
END POLY;
S1: CALL POLY (R,V);
S2: P = Q * TEMP;

END COMP:;

In this example the effect is the same as in the previous
example. The subroutine procedure POLY is invoked by the call
statement labeled S1. POLY computes the polynominal and
assigns it to the variable TEMP. Then control passes to the
statement labeled S2. This statement then uses the value
placed in TEMP to compute the final result. Thus the value
of the polynominal is communicated thru the variable TEMP.
This is possible because the name TEMP is known to both the
procedures COMP and POLY and by the rules of scope TEMP
represents the same object to both procedures. In some
cases it may not be practical to return a value through a
shared variable. Another way of returning values from

.4

subroutines in such cases is shown in the following example:

COMP: PROCEDURE;
DECLARE (P,Q,R,V,TEMP) WORD;
DECLARE POLY EXTERNAL PROCEDURE;
S1: CALL POLY (R,V,@TEMP);

S2: P + Q * TEMP;

END COMP;
POLY: PROCEDURE (C,V,PTR);

DECLARE (C,V) WORD;

DECLARE PTR POINTER TO WORD;

PTRE = C + X * (1L + X * (2 + X));
END POLY;

In this example the call to POLY contains an additional
argument, namely the location of the variable TEMP. POLY
is declared with one additional parameter. PTR, which is a
POINTER TO WORD. The value is returned indirectly via the-
PTR parameter.

ARGUMENTS IN A PROCEDURE REFERENCE

In general, an argument in a procedure reference may be any
one of the following:

1. A simple variable or subscripted variable.
2. An expression.

3. An array variable name. An array name used as an
argument is equivalent to a pointer to element zero
of the array.

An argument in a procedure reference cannot be an identifier
which has been declared with a CONSTANT or BASED area attribute.

The attribute of each argument in a procedure reference
should match the attributes of the corresponding parameters,

For example, assume the procedure ABC in a program is defined by:

ABC: PROCEDURE (A,X,Y,Z);
DECLARE (X,Z) WORD, Y DOUBLE, A(0) BYTE;

.

END ABC;
This implies that the first parameter is used as a byte

array, the second and fourth parameters are used as WORD
scalars, and the third parameter is a DOUBLE scalar. If

- 54 -

the subroutine ABC is invoked by the statement:
CALL ABC (P,B+2,C-5,W);

It is assumed that:
1. P is the name of a byte array.
2. The expression B+2 has precision WORD.
3. The expression C-5 has precision DOUBLE.
4. The variable W has precision WORD.

When a procedure in invoked by a procedure reference and each
argument is associated with its corresponding parameter,

the arguments are said to be passed to the invoked procedure.
Scalar arguments in MPL are passed by value and array
arguments are passed by reference.

Passing by value is accomplished in the following way. The
called procedure has a location of appropriate precision
allocated for each scalar parameter in the parameter list.
When a procedure reference is encountered, each scalar argument
is evaluated. The result of the evaluation is, in effect,
stored in the location reserved for the corresponding scalar
parameter. This value is used in the same way as any scalar
variable declared in the called procedure. In other words,

a scalar parameter is a variable local to the called procedure
which, upon entry, is initialized to the value of the
corresponding argument.

In general, a called subroutine cannot effect the value of a
scalar variable passed to it as an argument. For example,
in the program:

A: PROCEDURE;
DECLARE (X,Y) WORD;
B: PROCEDURE (T);
DECLARE T WORD;

T =T + T,
END B;
S1: X = 5;
S2: CALL B (X);
S3: Y = X;

END A;

The statement labeled S1 assigns the value 5 to the variable

X. The subroutine B is passed the value 5 as an initial value
for T. The subroutine then adds T to itself. However, this
has no effect on the value of X. Therefore, when the statement
S3 is executed, the value of the variable X is still 5.

- 55 -

Passing by reference is accomplished in the following way.

The called procedure has a location of WORD precision allocated
for each array parameter in the parameter list. When a procedure
reference is encountered, the address of each array argument

is determined. The address is, in effect, stored in the
location reserved for the corresponding array parameter.

This value is used as an indirect address in the called
procedure. In other words,an array parameter is a variable
local to the called procedure which, upon entry, is initialized
to the value corresponding to the address of the base of the
array argument.

7.

7.

7

.2

DYNAMIC PROGRAM STRUCTURE

PROGRAM CONTROL

Execution of a program is initialized by an operating system
which invokes the initial procedure. The initial procedure
must be a MAIN procedure. When the program is being executed
there is a sequence that determines the order of execution of
the statements. For a discussion of the sequence of execution
see Section 8.2.

ACTIVATION AND TERMINATION OF BLOCKS

A begin block is activated when control passes through the
begin statement for the block. A procedure block is activated
when it is invoked by a procedure reference.

A block is active if it has been activated and has not yet
terminated. The following rules describe the ways that a
block may be terminated:

1. A begin block is terminated when control passes
through a return statement internal to the block
or the end statement of the block.

2. A procedure block is terminated when control passes
through a return statement internal to the block
or the end statement of the block.

3. Either type of block is terminated by execution of
a goto statement that transfers control to a point
not contained in the block. The goto statement may
termanate more than one block (see Section 8.3).

If a block B is active, another block Bl may be activated
from a point internal to block B while B still remains active.
The following rules describe the case in which this will occur:

1. Bl is a procedure block immediately contained 1n B
(the label of Bl is internal to B) and is reached
through a procedure reference.

2. Bl is a begin block internal to B and is reached
through normal flow of control.

3. Bl is a procedure block not contained in B and 1is
reached through a procedure reference. Bl in this
case, may be identical to B (i.e., B is called

.3,

3.

2

1

recursively). However, it is still regarded as a
dynamically different block.

In any of the above cases, while Bl is active it is said to
be an immediate dynamic descendant of B.

Block Bl may itself have an immediate dynamic descendant

B2, etc., so that a chain of blocks (B, Bl, B2,...) is created
where all the blocks in the chain are active. In this chain
each of the blocks B1l, B2, etc. is a dynamic descendant of B.

It is important to note that the termination of a given block
may imply the termination of other blocks and that these
other blocks need not be contained in the given block.

ALLOCATION OF DATA

The simple static process of data allocation implied by many
programming languages -- the assignment of a distinct storage
region for each distinct variable used in a source program --

may be wasteful. Multiple use of storage for different data
during program execution can reduce the total storage requirements
of the program. MPL provides automatic allocation and release

of storage during program execution in order to minimize

the use of storage.

Definitions and Rules

Storage is said to be allocated for a variable when a region
of storage is associated with it. Allocation of storage
takes place dynamically during program execution.

Storage that has been allocated for a variable may subsequently
be released. Thus, the storage is freed for possible use in

a later allocation. If storage has been allocated and has not
been subsequently released, the variable is in the allocated
state.

When a variable appears in an executable statement of a
program, the appearance is called a reference.

At any point where a variable is referenced, it must be in
the allocated state.

Violation of the above rule is a program error. However,
the error may not be detected.

Storage Classes

Every variable in a program has a storage class which specifies
the manner of storage allocation.

There are three storage classes: static, automatic, and based.

- 58 -

7.3.2.1 The Static Storage Class

The storage for variables declared EXTERNAL or STATIC is

in the static class. Storage for these variables is allocated
before the program begins execution and is never released
during execution.

7.3.2.2 The Automatic Storage Class

Variables declared in any block that are not declared

EXTERNAL, STATIC, BASED, or CONSTANT are in the automatic
storage class. Whenever a block is activated, storage for
all variables declared in the block (including parameters)

is allocated. The variables remain in the allocated state
until termination of the block. At the time of termination,
storage for the variables is released. Thus, the time interval
during which the variable is in the allocated state includes
the interval when the variable is known (see Section 5.2.5).

Termination of a block by means of a goto statement may imply
termination of other blocks and, consequently, the simultaneous
release of storage for all variables declared in these blocks.

If a block B is a procedure and is referenced from a statement
contained in B or from a statement contained in a dynamic
descendant of B, then the procedure B is said to be invoked
recursively. Each recursive activation of a procedure causes
the previous allocation to be "pushed down'" (assignments

of values in the previous allocation are retained) and new
allocation for the variables declared in the procedure is
made. On each return from the procedure the most recent
allocation is released. Each invocation of the procedure 1is
called a new generation of the procedure. References to

data items declared internal to a procedure always reference
the most recent generation of the procedure.

Once a block has terminated, the values assigned to the variables
that were released by the termination become undefined. If

the block is subsequently reactivated, the storage for variables
is reallocated. However, the values assigned in the previous
activation are not known in the current activation.

7.3.2.2

Example:

A: PROCEDURE;
B: BEGIN;
DECLARE X(1000) WORD;
CALL PROCESS (X);
END B;
C: BEGIN;
DECLARE Y(1000) WORD;
CALL PROCESS (Y);
END C;
END A;

In this example the arrays X and Y are declared in separate
begin blocks. Since both blocks B and C cannot be active at
the same time, the storage for the array X and Y will not be
allocated at the same time. Thus, only 1001 words are required
for both arrays. This contrasts with the following example
where X and Y are declared in the same block thus requiring
2002 words:

A: PROCEDURE;
DECLARE (X(1000),Y(1000)) WORD;
CALL PROCESS (X);
CALL PROCESS (Y);

END A;

The Based Storage Class

The storage for variables declared BASED is located in
absolute memory and not allocated by the MPL compiler.

- 60 -

STATEMENTS

This section gives a description of each statement in the
language. The statements are described in alphabetical order.

RELATIONSHIP OF STATEMENTS

Statements may be classed into the following four groups:

Assignment statement
Control statement

Data declaration statements
Block statements

PSRN

Assignment Statements

There are two types of assignment statements: assignment by
replacement and assignment by addition. The assignment
statements are used to evaluate expressions and to assign
values to scalars and array elements.

Control Statements

The control statements affect the normal sequential flow of
control through a program. The control statements are:
GOTO, IF, DO, CALL, RETURN, and REPEAT.

Data Declaration Statement

The data declaration statement, DECLARE, specifies attributes
of identifiers. This statement is described in Section 5.

Block Statements

The block statements are used to delimit procedure blocks
and begin blocks. The block statements are BEGIN, PROCEDURE,
and END.

.2

SEQUENCE OF CONTROL

Within a block, control normally passes sequentially from
statement to statement. If an internal procedure is encountered,
control passes to the statement following the end of the
internal procedure. Control passes to the statement following
an if statement when control reaches the end of the "THEN
unit-1'" (the "ELSE unit-2" is skipped in this case). This
occurs if control reaches one of the statements of unit-1

as the result of a goto statement that references a label

of a unit-1 statement. Sequential operation is modified by
the following statements: CALL, END, GOTO, PROCEDURE, and
RETURN.

A call statement passes control to the specified procedure.

A goto statement causes control to transfer to the statement
with the specified label.

A procedure statement heads a procedure. Procedures are
independent blocks and may be placed anywhere within an external
procedure consistent with the identifier scopes desired by the
programmer. However, a procedure may be invoked only by a
procedure reference in a call statement or an expression.

Thus control passes around a nested procedure from the

statement before the procedure statement to the statement
following the end statement of the procedure.

The RETURN statement returns control from a procedure to the
invoking procedure.

The following conditions may modify the sequential statement
execution:

1. A function reference in any expression causes control
to pass to the specified procedure.

2. The flow of control through an if statement and do
group may or may not be sequential.

The following program segment illustrates the sequence of
control:

PROCEDURE;
X =Y+ Z;
CALL G,
IF 2 > 1 THEN
P Q; ELSE
| R;
PROCEDURE ;
S =T § P;
RETURN;;
END G;
GOTO N;

RO TaATmoaOw >

N: END A:

The statements are executed in the order A, B, C, G, H, I,
D, E, K, N.

ALPHABETIC LIST OF STATEMENTS

The Assignment Statement

Function:

The assignment statement evaluates an expression and assigns
the value to a variable.

General format:

assignment statement ::=
storage reference assignment_operator expression ;

assignment operator ::=
= | .= I +=

Syntax rules:

1. The assignment statement is recognized by the absence
of a statement identifier keyword as the first
identifier.

2. The storage reference may be of any precision.
Variables of WORD precision may contain a field
reference option. The storage reference may also
specify an indirect reference.

General rules:

1. If the storage reference contains a subscript, the subscript
expression is evaluated first. The expression to the
right of the assignment operator is then evaluated.

2. If the assignment operator is either = or := then the value
of the expression replaces the value previously assigned
to the storage reference. If a field reference option

is specified with the storage reference, then only the
contents of that field is changed by the assignment.

3. If the assignment operator is += then the value of the
expression is added to the value of the storage reference.

In this case the storage reference must be WORD precision
and may not contain a field reference option.

4. If an indirect storage reference is used, the variable pointed
to by the storage reference must be currently allocated.

5. If the storage reference is precision BYTE or BIT(n),
then the expression is truncated on the left before the
assignment is made. If the storage reference is
precision WORD, BYTE, or BIT(n) and the expression is
precision DOUBLE, then the expression is truncated on the
left before the assignment is made. If the expression is
precision WORD and the storage reference is precision
DOUBLE, then the expression is sign extended to the left
before the assignment is made.

Example 1:

X =3+ 2;
This statement assigns the value 5 to the variable X.
Example 2:

W$(4:0) = "EF";

This statement assigns the value "F" to bits 3 through 0 of W.
Bits 15 through 4 of W are not changed.

Example 3:
PTRE = X;

This statement assigns the value of X to the variable pointed
to by the variable PTR.

Example 4:
X+= -1,

This statement causes the variable X to be decremented by 1.

- 64 -

.3.

.3.

2

The Begin Statement

Function:
The begin statement is the heading of a begin block.
General format:

begin_statement ::=
BEGIN ;

General rules:

1. A begin statement is used in conjunction with an end
statement to delimit a begin block. See Section 2 for
discussion of blocks.

2. Declarations appearing in a begin block must immediately
follow the begin statement with no intervening statements.

Example:
BEGIN;
DECLARE X(100) WORD;
END ;

The Call Statement

Function:
The call statement invokes a procedure.
General format:

call statement ::=
CALL procedure_reference ;

procedure reference ::=

entry name [(procedure_argument [, procedure argument]...)]

procedure_argument ::=
expression
array name

array name ::=
identifier

3.

3.

Syntax rules:

1. The entry name represents the label on the procedure to
be invoked.

2. Each argument may be an expression or an array name.
3. An array name used as an argument is equivalent to a
pointer to element zero of the array. For example if X

is an array name then the following two statements are
equivalent:

CALL SUB(X);
CALL SUB(@X(0));

Example:
CALL SUB(A,@B,'XYZ',X+3*Y);

The Declare Statement

Function:
The declare statement is used to specify attributes for identifiers.
General format:

declare statement ::=
DECLARE declaration_element [, declaration element]... ;

General rules:
See Section 5 for a description of the declare statement.

The Do Statement

Function:

The do statement delimits the start of a do group (see
Section 2.2.4) and may specify iteration of statements
within a group or may specify the selection of one of the
statements within the group. The end of the do group 1is
delimited by an end statement. There are five forms of the
do statement.

General format 1:

1]

do statement
DO ;

General rules 1:
The do statement delimits the start of the do group. The

statements in the range of this form of do group are executed
according to the normal sequence of control.

Example of format 1:

IF A = B THEN
DO;

END;

All of the statements between the DO and the END are executed
if A = B.

General format 2:

do statement ::=
DO WHILE expression ;

General rules 2:

The do statement delimits the start of a do group and also
specifies an iteration as indicated below.

LABEL: DO WHILE expression;
L1: statement-1

statement-n
END LABEL;
NEXT : statement

The effect of the above is exactly equivalent to the following
expansion:

LABEL: DO;
L1: IF expression THEN
DO;

statement-1

statement-n

GOTO L1;
END;
END LABEL;
NEXT: statement

General format 3:

do statement :@:=
DO variable = expression-1 TO expression-2 [BY expression-3] ;

General rules 3:

1. The '"variable" must be a simple variable. Indirect
references or array variables may not be used.

2. If the "BY expression-3" is omitted, expression-3 1is
assumed to have a value of one (1).

3. The do statement delimits the start of a do group and
specifies a controlled iteration as indicated below:

LABEL: DO variable = expression-1 TO expression-2
BY expression-3;
L1: statement-1

statement-n
END LABEL;
NEXT: statement

The effect of the above is equivalent to the expansion
shown below where Tl, T2, and T3 are temporary variables
created by the compiler.

LABEL: BEGIN;
DECLARE (T1, T2, T3) WORD;

Tl = expression-1;
T2 = expression-2;
T3 = expression-3;

variable = T1;
Ll: IF (T3 >= 0) § (variable <= T2) |
(T3 < 0) & (variable >= T2) THEN
DO;
statement 1

statement n
variable += T3;
GOTO L1;
END:
END LABEL;

General format 4:

do_statment ::=
DO CASE expression ;

General rules 4:

The do statement delimits the start of a do group and selects
a single group within the do case group for execution as
specified below:

LABEL: DO CASE expression;

group-0
group-1
group-n
END LABEL,;
NEXT: statement

The above is equivalent to the expansion shown below where
Tl is a temporary variable created by the compiler.

LABEL BEGIN;
DECLARE T1 WORD;
Tl = expression;
IF T1 = 0 THEN
DO;
group-0
GOTO NEXT;
END;
IF T1 = 1 THEN
DO;
group-1
GOTO NEXT;
END;

IF T1 = n THEN

DO;
group-n
GOTO NEXT;
END;
END LABEL;

NEXT: statement

If the value of the expression is negative or if the value

is greater than n, the result is undefined. This is considered
a program error. However, the error may not be detected.

The groups: group-0, group-1, etc., may be do groups, repeat
groups, begin blocks, or they may be simple statements.

General format 5:

do statement ::=
DO FOREVER ;

General rules 5:

The do statement delimits the start of a do group and indicates
an indefinite iteration as indicated below:

LABEL: DO FOREVER;
statement 1

statement n
END LABEL;

The above is equivalent to the following expansion:

LABEL: DO;
statement 1

GOTO LABEL;
END LABEL;

Once the range of a do forever group has been entered
execution of the group can only be terminated by a goto
statement that references a label outside the group or by
a return statement.

The End Statement

Function:
The end statement terminates blocks and groups.
General format:

end statement ::=
[label 1ist] END [label | entry name] ;

General rules:

1. The end statement terminates that group or block headed
by the nearest preceding do statement, procedure statement,
begin statement, or repeat statement for which there 1is
no closer corresponding end statement.

.3.

.3,

7

2. If a label follows END, it must correspond to a label on
the group or block heading being terminated.

3. An end statement can terminate only one group or block.

4, TIf control reaches an end statement which terminates a
procedure, it is treated as a return statement.

The EOF Statement

Function:

The eof statement is an optional statement that may appear
before or after an external procedure.

General format:

eof statement ::=
EOF

General rule:

The eof statement is included in this MPL compiler in order
to be compatable with the 360/0S based MPL cross compiler.
The eof statement has no effect if the source program is
properly constructed (i.e., one end statement for each block
heading statement).

The GOTO statement

Function:

The goto statement causes control to be transferred to the
statement referenced.

General format:

goto_statement ::=
go_to label ;

go to ::=
GOTO |
GO [TO]

General rules:

1. The label may not be the label of a procedure statement.

2. A goto statement may not transfer control into a group
that specifies iteration.

3. A goto statement that transfers control from a block B
to a dynamically encompassing block A has the effect
of terminating block B as well as all the other blocks
that are dynamic descendents of the most recent activation
of block A. Variables allocated in these blocks are
freed in the same way as if the blocks had terminated
normally.

4. When a goto statement transfers control out of a procedure
that was invoked by a function reference, the evaluation
of the corresponding expression is discontinued and control
passes to the specified statement.

Example 1:

GO TO LZ;
L2: statement

Example 2:

A: BEGIN;
statement
B: BEGIN

DECLARE X(100) BYTE;
GOTO C;

END B;
C: statement

END A;

In the second example, the GOTO C statement

passes control to a point outside of block B. Therefore,
it has the effect of terminating block B and of freeing the
storage allocated to the array X.

. 3.

9

The If Statement

The if statement causes program flow to depend on the value
of an expression.

General format:

if statement ::=
if clause executable_unit |
if clause balanced executable unit ELSE executable_unit

if clause ::=
[label 1list] IF expression THEN

The executable unit and the balanced executable unit are either
a group or a begin block (recall that a simple statement is

a special case of a group) either of which is terminated by

a semicolon. The if statement itself is not terminated by a
semicolon. Instead the semicolon that terminates the executable
unit or the balanced executable unit serves to terminate the

if statement. Both the balanced executable unit and the
executable unit may contain labels.

General rules:

1. The expression following the IF is evaluated. If the
result of the expression evaluation is an odd number
(least significant bit is 1), the expression is said to
be true. If the result of the expression evaluation
is an even number (least significant bit is 0) the
expression is said to be false.

2. If the expression is true, the first executable unit
is executed and then control passes to the next statement
(the second executable unit is skipped).

3. If the expression is false, the first executable unit
is skipped and control passes to the second executable
unit. If a second executable unit is not given, control
passes to the next statement

4. If statements may be nested. That is, either the first
or second executable may themselves be if statements.
When if statements are nested the "ELSE second
executable unit" portion of a statement is always associated
with the innermost unmatched "THEN first executable unit'".
For this reason a null statement (see Section 8.3.10) may
be required to specify a desired sequence of control.

The following two flowcharts illustrate the sequence of

control for if statements with and without the "ELSE second
executable unit" option.

The first flowchart illustrates the case of:

IF expression THEN executable unit

executable

unit

le

The second flowchart illustrates the case of:

IF expression THEN first executable unit ELSE second
executable unit

TRUE (0DD) Sxpressio FALSE (EVEN)
first second
executable executable
unit unit

8.3.10

8.3.11

Examples:
1. IF SCAN_STACK = EMPTY THEN CALL GET_INPUT;

2. IF X>Y | Y > Z THEN
IF Z + W THEN
IFW<PTHEN Y = 1;
ELSE Y = Z;
ELSE;
ELSE Y = 3;

The Null Statement

Function:

The null statement causes no operation and does not modify
the sequence of control.

General format:

null statement ::=

Example:
IF A > B THEN GOTO LABEL,; ELSE;
The semicolon following the ELSE is a null statement.

The Procedure Statement

The procedure statement has the following functions:
1. Heads a procedure block.

2. Defines the entry name for the procedure.

3. Declares certain variables as parameters of the procedure.

4. Specifies the precision of the value to be returned if
the procedure is to be invoked as a function.

5. Defines any special attributes of the procedure.

General format:

The procedure statement has three formats.
Option 1:

procedure statement ::=
entry name: MAIN PROCEDURE ;

Option 2:

procedure statement ::=
entry name: INTERRUPT PROCEDURE (parameter)

Option 3:

procedure statement ::=
entry name: PROCEDURE

[(parameter [, parameter]...)] [WORD|BYTE|DOUBLE] ;

General rules:

1. The procedure statement is used in conjunction with an
end statement to delimit a procedure block. See Section
2 for a discussion of blocks.

2. Any declarations appearing in a procedure block must
immediately follow the procedure statement without any
intervening statements.

3. If parameters appear in the procedure statement, they
must also appear in declaration statements that specify
size attributes for them.

4. Option 1 specifies a procedure to be a main procedure.
The entry name is the starting point for program execution.
There may be only one main procedure in a program and the
main program may not be called recursively. However, the
error may not be detected.

5. Option 2 specifies a procedure to be an interrupt procedure.
An interrupt procedure must have exactly one parameter.
Interrupt procedures must be external procedures or they
must be internal to an external procedure. An interrupt
procedure is a special form of procedure that can be
invoked outside the normal sequence of control. See the
"32/S Reference Manual'" for a discussion of interrupt
procedures.

6. The option BYTE, WORD, or DOUBLE must be specified on a
procedure that returns a value.

8.3.12

Example:

B: PROCEDURE;
DECLARE (C,X,Y) WORD;
F: PROCEDURE (B,C) WORD;
DECLARE (B,C) WORD;

RETURN B*C+5;
END F;
Ll: C=F(X+2,F(Y,X-1));
END B;

The option WORD in the procedure statement, F, specifies that
when F is invoked as a function it is to return a value with
precision WORD. The statement, L1, invokes the function twice.

The Repeat Statement

The repeat statement delimits the start of a repeat group and
specifies repeated execution of the group.

General format:

repeat statement ::=
REPEAT expression TIMES ;

General rules:

The repeat statement delimits the start of a repeat group.
It also specifies an iteration as indicated below.

LABEL: REPEAT expression TIMES;
statement 1

statement n
END LABEL;

The effect of the above is equivalent to the expansion shown
below where Tl is a temporary variable created by the compiler.

LABEL: BEGIN;
DECLARE T1 WORD;
DO Tl=1 TO expression;
statement 1

statement n
END;
END LABEL ;

8.3.13

Example:
REPEAT IF X > Y THEN 5 ELSE 7 TIMES;

The Return Statement

The return statement terminates execution of a procedure and
returns control to the point of invocation.

General format:

return statement ::=
RETURN [expression] ;

General rules:

1. The expression option must be used if the procedure is
declared as a function.

2. The expression option cannot be used if the procedure 1is
not declared as a function.

3. Any number of return statements may appear in a procedure
block.

Example:

A: PROCEDURE;
DECLARE (W,X,Y,Z) WORD;
B: PROCEDURE (I) WORD;
DECLARE T WORD;

RETURN 1

END B;
C: PROCEDURE (J);
DECLARE J WORD;

RETURN ;
RETURN ;

END C;
W=1,;

X = B(W)
CALL B(Y);
CALL C(2);

END A;

In this example, procedure B is invoked once as a function

and once as a subroutine. Procedure C is invoked only as a
subroutine. Procedure C cannot be invoked as a function since
it is not declared to return a value.

APPENDIX

SYNTAX OF MPL

This appendix gives the actual syntax rules to which the MPL
compiler is implemented. The syntax rules which are used

in the text are correct as state. However, not all features
of the MPL compiler were fully described. The features which
were not described are the abbreviations and noise words.

The following syntax rules are complete and describe all of
the MPL language features. The only primitive which is not
specified in the syntax rules is non quote char which is
self-explanatory.

MPL.SYNTAX

1. program ::=
external_procedure

2. external_procedure ::=
entry_name : external_procedure_head procedure_body [EOF]...

3. entry_name ::=
identifier

4. external_procedure_head ::=
MAIN [procedurel ; |
procedure_head

5. procedure ::=
PROCEDURE |
PROC

6. procedure_head ::=
INTERRUPT [procedure] (parameter) ; |
procedure [(parameter_list)] [simple_sizel] 3

7. parameter ::=
identifier

8. parameter_list ::=
identifier [, identifierl...

9. simple_size ::=
BYTE |
WORD |
DOUBLE

10. procedure_bhody ::=
[declare_statement] ... [block_sentencel... end_statement

11. declare_statement ::=
declare declare_element [, declare_element]... ;
12. declare ::=
DECIARE |
PCL

13. Adeclare_element ::=
identifier literally strina |
entry_name type_attribute |
item_list size_attribute larea_attributel

14. literally ::=
LITERALLY |
LIT

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

type_attribute ::=

[external] procedure [simple_sizel
(konstant) MICRO [simple_size]

external ::=
EXTERNAL |
EXT

item_1list ::=
identifier [(konstant)] |
(identifier [(konstant)] [,

size_attribute ::=
simple_size |
POINTER [TO] simple_size |
BIT (konstant)

area_attribute ::=
external |
STATIC |
CONSTANT string |

CONSTANT ([+ | -] konstant [, [+

initial string |
initial ([+ | -] konstant [,
BASED konstant |
BASED identifier

initial ::=
INITIAL |
INIT

block_sentence ::=

entry_name : procedure_head procedure_body |

executable_unit
executabhle_unit ::=

if statement |
unconditional_executable_unit

if_statement ::=
if_clause executable_unit |

if_clause balanced_executable_unit ELSE executahle_unit

if_clause ::=
[label_list] if_then

if_then ::=
IF expression THEN

identifier [(konstant)ll...

konstant] ...

konstant] ...

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

balanced_executable_unit ::=
if_clause balanced_executable_unit ELSE
balanced_executable_unit |
unconditional_executable_unit

unconditional_executable_unit ::=
[label_1list] bhlock |
[label_list] aroup |
[label_list] statement

label_1list ::=
[label :]...

label ::=
identifier

block ::=
BEGIN ; procedure_body

group ::=
aroup_heading ; [block_sentencel... end_statement

group_heading ::=
REPEAT expression [TIMES] |
DO [do_specification]

do_specification ::=
FOREVER |
WHILE expression |
CASE expression |

identifier replace_op expression TO expression [BY expressionl]

replace_op ::=

statement ::=
null_statement |
return_statement |
goto_statement |
call_statement |
assignment_statement

null_statement ::=

-
’

return_statement ::=
RETURN [expression] ;

goto_statement ::=

go_to label ;

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

go_to ::=

GOTO |

GO [TO]
call_statement ::=

CALL procedure_reference ;

procedure_reference ::=

entry_name [(procedure_argument [, procedure_ argument]...)]

procedure_argument ::=
expression |
array_name

array_name ::=
identifier

assignment_statement ::=
storage_reference assignment_operator

assignment_operator ::=
= | = | +=

expression ::=
conditional_expression |
simple_expression |
storage_reference := expression

conditional_expression ::=
if _then expression ELSE expression

simple_expression ::=

expression

logical_term [or_operator logical_term]...

or_operator ::=
! | 1 | XOR

logical_term ::=
logical_factor [& logical_factor]...

logical_factor ::=

numeric expre551on [comparison_operator numeric expre*—:31on]...

| == 1 >= | =< | > |
| LNE | LGE | LGT

comparison_operator
< | <=] ™ | =
LLT | LLE | LEQ

numeric_expression ::=

numeric_term [add_operator numeric_term]...

’

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

add_operator ::=

numeric_term ::=

+

numeric_factor [multiply_operator numeric_factor]...

multiply operator ::=

*

/ | MOD | MULD

numeric_factor ::=
unarv_operator numeric_factor |
numeric_primary

unary_operator ::=

+

- |-

numeric_primary ::=
konstant |
procedure_reference
storage_reference |
@ variable |
(expression) |
PRTNUM (entry_name

storage_reference ::=

reference [$

reference ::=

variable [a@

variable

)

DIVD | SLL | SRA

[(expression)1l

identifier [(expression)]

end_statement ::=

konstant

constant |
string

constant

decimal_number |
bit_string

decimal_number ::=
digit...

bit_string ::=

(

[(legal_size)]

{legal_digit]

(expression [: expression]

Jeoo

| SRL

)]

| sLC

legal_size ::=
112 1] 3] 4

legal_digit ::=
digit | A | Bl C|DJ]E|F

digit ::=
o | 112131415 | 6 | 7] 8 | 9

string ::=
* [non_auote_charl... ~ [string]

identifier ::=
alphabetic_character [alphameric]...

alphameric ::=
alphabetic_character | digit

alphabetic_character ::=
lower_case |
upper_case |

2 -

lower_case ::=
al|l b |
n| o

o B!

upper_case ::i=
A | B| C|
N | O | P

N 3

APPENDIX B

SYNTAX CROSS REFERENCE

The following is a cross reference of the syntax notation
variables and reserved key words that appear in the MPL
syntax. Each syntax notation variable is preceeded with
the syntax rule number in which it is defined. Following
each syntax notation variable and reserved key word is

a list of syntax rule numbers where they are referenced.

54
74
73
19
43
44
45

26

67

30

21

40

52

47

65

66

add_operator
53
alphabetic_character
72,73

alphameric
72
area_attribute
13
array_name
42
assignment_statement

35
assignment_operator
44

balanced_executable_unit

23,26
BASED
19
BEGIN
30
BIT
18
bit_string
65
block
27
block_sentence
10,31
BY
33
BYTE
9
CALL
40
call_statement
35
CASE
33
comparison_operator
51
conditional_expression
46
CONSTANT
19
constant
64
DCL
12
decimal__number
65

88

13

12

11

70

33

63

22

46
16

39

declare_element
11
declare
11
DECLARE
12
declare_statement.
10
digit
66,73
DIVD
56
DO
32
do_specification
32
DOUBLE
9
ELSE
23,26,47
END
63
EOF
2
end_statement
10,31
entry_name
2,13,21,41,59,63
executable_unit
21,23
expression
25,32,33,37,42,44,46,47,59,60,
external 61,62
15,19
EXT
16
EXTERNAL
16
external_procedure
1
external_ procedure_head
2
FOREVER
33
GO
39
go_to
38
GOTO
39

38
31
32

72

24

23

25

20

17

64

29

28

69

68

14

goto_statement
35

group
27

group_heading
31

identifier

3,7,8,13,17,19,29,33,43,62

IF
25
if_clause
23,26
if_statement
22
if_then
24,47
initial
19
INIT
20
INITIAL
20
INTERRUPT
6
item_list
13
konstant
15,17,18,19,59
label
28,38,63
label_1list
24,27,63
legal_digit
67
legal_size
67
LEQ
52
LGE
52
LGT
52
LIT
14
literally
13
LITERALLY
14
LLE
52

89

51
50
75

56

36

53

57

59

55
49

5

42

10

LLT
52
LNE
52
logical_factor
50
logical_term
48
lower_case
74
MAIN
4
MICRO
15
MOD
56
MULD
56
multiply_operator
55
non_guote_char
71
null_statement
35
numeric_expression
51
numeric_factor
55,57
numeric_primary
57
numeric_term
53
or_operaotr
48
parameter
6
parameter_list
6
POINTER
18
PROC
5
PROCEDURE
5
procedure
4,6,15
procedure_argumment
41
procedure_body
2,21,30

41

61

34

37

48

18

35

60

71

15

58

procedure_head
4,21
procedure_reference
40,59
program

PRTNUM
59
reference
60
REPEAT
32
replace_op
33
RETURN
37
return_statement
35
simple_expression
46
simple_size
6,15,18
size_attribute
13
SLC
56
SLL
56
SRA
56
SRL
56
statement
27
STATIC
19
storage_reference
44,46,59
string
13,19,64,71
THEN
25
TIMES
32
TO
18,33,39
type_attribute
13
unary_operator
57

90

27

76

62

unconditional _executable_unit
22,26
upper_case
74
variable
59,61
WHILE
33
WORD
9
XOR
49

APPENDIX C
COMPILER TOGGLES

Control over the compilation process is through the mechanism
of toggles. Toggles are internal to the source program;

there is no external operating system mechanism for controlling
compiler operation. Each toggle controls a single aspect

of compiler operation and has a binary value: on or off.

All toggles assume a default value when the compiler is

invoked. Toggles change during program compilation as specified
by the user or occasionally are altered by the compiler.

At the start of subsequent programs toggles reassume their
default values unless frozen by the P-toggle.

Toggles may be altered by the user in any comment string.
Three characters are used as toggle control operators:

$ (dollar sign) - If on set off, if off set on
& (ampersand) - Set on
% (percent sign) - Set off

The character that immediately follows the toggle operator
is interpreted as the toggle to be altered. Should this
character not be an implemented toggle, nothing is done.

Toggle changes are honored by the compiler as soon as they
occur. Since a listing line is buffered, toggles that
affect the listing format become effective before the line
in which they appear is listed. Since the compiler parse
is top-down, toggles that affect object generation should
appear before the external procedure entry.

TOGGLE DEFAULT SETTING FUNCTION

A On List symbol table

B On Ignore high source bit

C off List generated code

D off Continue object on blunder

E Off Space for top-of-form

F On List flags

H off List object program

I On Indent code listing

L On List source program

M On Honor memory checks

N off Format for narrow page

0 off Generate object program

p On Reset toggles at program start
Q Off Chop source program listing

R On Collect symbol references

S On Format for short page

U Ooff Upspace listing

\' off Check memory each record

W off Suppress warnings

X Ooff Continue on abort

Y On List program summary

Z On Honor listing requests (A C FH L Y)
off Honor object in source

? off Honor early source truncation

APPENDIX D
32/S STANDARD SYMBOL-CODE CORRESPONDENCES

HEX DEC ASCII HOLLERITH NAME A O V § COMMENTS
00 0 12-0-9-8-1 NUL 00| v NULL:used for time or media
fi11
01 1 12-9-1 SOH 01 v Start of Header:
Communications Control
02 2 12-9-2 STX 0 v Start of Text:
Communications Control
03 3 12-9-3 ETX 03 v End of Text:
Communications Control
04 4 9-7 EOT 31 v End of Transmission:
Communications Control
05 5 0-9-8-5 ENQ 2 v Enquiry:
Communications Control
06 6 0-9-8-6 ACK 2H vV Acknowledge:
Communications Control
07 7 0-9-8-7 BEL 2H vV Bell:
An audible signal
08 8 11-9-6 BS 16 v Backspace:
09 9 12-9-5 HT 0y v Horizontal Tab:
0A 10 0-9-5 LF 2 v Line Feed:also (New Line)
0B 11 12-9-8-3 VT 0 v Vertical Tab;
0C 12 12-9-8-4 FF oy v Form Feed:
0D 13 12-9-8-5 CR on v Carriage Return:
0E 14 12-9-8-6 SO 0F| v Shift Out:
Code Control
OF 15 12-9-8-7 SI 0F v Shift In:
Code Control
A - Equivalent EBCDIC code
© - Available on teletype model 33
V - Equivalent character on 029
§ - Equivalent character on 2741

- 94 -

HEX DEC ASCII HOLLERITH NAME AO V 8 COMMENTS
10 16 12-11-9-8-1 DLE 10 v/ Data Link Escape:
Communications Control
11 17 11-9-1 DC1 11 v Device Control 1: (X-ON)
Tape reader on
12 18 11-9-2 DC2 121 v Device Control 2:
Punch on
13 19 11-9-3 DC3 13 v/ Device Control 3: (X-OFF)
Tape reader off
14 20 9-8-4 DC4 3¢ v Device Control 4: (Stop)
Punch off
15 21 9-8-5 NAK 3DV Negative Acknowledge:
Communications Control
16 22 9-2 SYN 31 v Synchronous Idle:
Communications Control
17 23 0-9-6 ETB 260 v End of Transmission Block:
Communications Control
18 24 11-9-8 CAN 18 v Cancel:
19 25 11-9-8-1 EM 19 v End of Medium:
1A 26 9-8-7 SUB 3H V| Substitute:
1B 27 0-9-7 ESC 27 v Escape:
1C 28 11-9-8-4 ES 1q v File Separator:
1D 29 11-9-8-5 GS 1 v Group Separator:
1E 30 11-9-8-6 RS 1H v Record Separator:
1F 31 11-9-8-7 us 1§ v Unit Separator:
A - Equivalent EBCDIC code
© - Available on teletype model 33
Vv - Equivalent character on 029
§ - Equivalent character on 2741

95

HEX DEC ASCII HOLLERITH NAME AO V8§ COMMENTS

20 32 SP 40 V/|® [SP| Space:
21 33 ! 11-8-2 Explanation| 5A /| ! | !
Point
22 34 " 8-7 Quotation|7F[v |" ["
Marks
23 35 # 8-3 Number 7Bl v/ |# | #
Sign
24 36 $ 11-8-3 Dollar 5B} V|$ | §
Sign
25 37 % 0-8-4 Percent |[6C| V/|% | %
26 38 § 12 Ampersand |50| /& | &
27 39 ! 8-5 Apostrophg7D| /|' |’
28 40 (12-8-5 Opening [4D|vV | (| (
' Parenthesis
29 41) 11-8-5 Closing 5D V) |)
Parenthesis
2A 42 * 11-8-4 Asterisk |5C]/|* |*
2B 43 + 12-8-6 Plus AB| Y|+ | +
2C 44 , 0-8-3 Comma 6B{ /|, | »
2D 45 - 11 Hyphen |60} /|- | - | (Minus)
2E 46 . 12-8-3 Period {4B|v]. | . | (Decimal Point)
2F 47 / 0-1 Slant |61} v/ |/ | (Slash)
A - Equivalent EBCDIC code
© - Available on teletype model 33
V - Equivalent character on 029
§ - Equivalent character on 2741

- 96 -

HEX DEC ASCII HOLLERITH NAME AO V § COMMENTS
30 48 0 0 Zero Fojv | 00
31 49 1 1 One F1] v/ | 1|1
32 50 2 2 Two F2| /1| 2|2
33 51 3 3 Three F3] /|3 |3
34 52 4 4 Four F4| /|4 | 4
35 53 5 5 Five F5 /{5 |5
36 54 6 6 Six F6| /|6 | 6
37 55 7 7 Seven FR V|77
38 56 8 8 Eight F§ /|8 | 8
39 57 9 9 Nine F4 /]9 9
3A 58 8-2 Colon AR2E
3B 59 H 11-8-6 Semicolon|5H V|; | ;
3C 60 < 12-8-4 Less Than|{4Qq v|< | <
3D 61 = 8-6 Equals H /|=| =
3E 62 > 0-8-6 Greater |6H /][> | >
Than
3F 63 ? 0-8-7 Question |6H /| ? | ?
Mark

A - Equivalent EBCDIC code

© - Available on teletype model 33

V - Equivalent character on 029

§ - Equivalent character on 2741

97

HEX DEC ASCII HOLLERITH NAME AG V § COMMENTS

40 64 e 8-4 Commercial |7C| v/ |@ | @
At

41 65 A 12-1 Upp(;\r Case |C1] YA | A
42 66 B 12-2 Upp%r Case {C2| VY|B | B
43 67 C 12-3 Upp%r Case |CY V|C | C
44 68 D 12-4 Uppe]a)r Case {C4 VID | D
45 69 E 12-5 upp%r Case |CY V|{E | E
46 70 F 12-6 Uppei:r Case{Cq V|F| F
47 71 G 12-7 Uppc(e;r Case|C7| V|G| G
48 72 H 12-8 Uppe;{r Case |[C§ V/|/H| H
49 73 1 12-9 UppeIr Case {CH V]I | I
4A 74 J 11-1 UppeJr Case|DY V|J | J
4B 75 K 11-2 Upp(;(r Case|DZ V}K| K
4C 76 L 11-3 Uppéir Case|D3] V]L| L
4D 77 M 11-4 Uppcidr Case|D4 V|M| M
4E | 78 N | 11-5 Uppc;}r Case | DY /|N| N
4F 79 0 | 11-6 Upp%r Case |Dg v]O] O

A - Equivalent EBCDIC code

0 - Available on teletype model 33

V - Equivalent character on 029

§ - Equivalent character on 2741

- 98 -

HEX DEC ASCII HOLLERITH NAME AO V8§ COMMENTS
50 80 p 11-7 Upper Case |D7|V |P
P
51 81 Q 11-8 Upper Case |[D8{ v |Q
Q
52 82 R 11-9 Upper Case D9 v [R
R
53 83 S 0-2 Upper Case |E2| V/[S
S
54 84 T 0-3 Upper Case |E3| V|T
T
55 85 U 0-4 Upper Case |E4| /|U
)
56 86 v 0-5 Upper Case |E5| V|V
\
57 87 W 0-6 Upper Case [E6| /|W
W
58 88 X 0-7 Upper Case {E7 /| X
X
59 | 89 Y 0-8 Upper Case | E8| V| Y
Y
5A | 90 Z 0-9 Upper Case | E9| /| Z
Z
5B 91 [12-8-2 Opening |4A ¢
Bracket
sc |92 | \ |0-8-2 Reverse |EQ /| g
Slant 2
5D | 93 1 | 12-11 Closing |6A V!
Bracket
SE 94 ~ 11-8-7 Circumflex | SF V/ + on some devices
S5F 95 _ 0-8-5 Underline |6D _ < on some devices
A - Equivalent EBCDIC code
© - Available on teletype model 33
V - Equivalent character on 029
§ - Equivalent character on 2741

- 99 -

HEX DEC ASCII HOLLERITH NAME AO V § COMMENTS

60 96 h 8-1 Accent 79
Grave
61 97 a 12-0-1 Lower Case |81 a
a
62 98 b 12-0-2 Lower Case |82 b
b
63 99 C 12-0-3 Lower Case {83 c
c
64 100 d 12-0-4 Lower Case |84 d
d
65 101 e 12-0-5 Lower Case {85 e
e
66 102 f 12-0-6 Lower Case |86 f
f
67 103 g 12-0-7 Lower Case |87 g
g
68 104 h 12-0-8 Lower Case |88 h
h
69 105 i 12-0-9 Lower Case | 89 i
i
6A 106 j 12-11-1 Lower Case |91 j
J
6B 107 k 12-11-2 Lower Case | 92 k
k
6C 108 1 12-11-3 Lower Case | 93 1
1
6D 109 m 12-11-4 Lower Case | 94 m
m
6E 110 n 12-11-5 Lower Case| 95 n
n
6F 111 o} 12-11-6 Lower Case} 96 o
o
A - Equivalent EBCDIC code
® - Available on teletype model 33
V - Equivalent character on 029
§ - Equivalent character on 2741

- 100 -

HEX DEC ASCII HOLLERITH NAME AO V 8 COMMENTS
70 112 P 12-11-7 Lower Case |97 o)
p
71 113 q 12-11-8 Lower Case |98 q
q
72 114 T 12-11-9 Lower Case {99 T
T
73 115 s 11-0-2 Lower Case |A2 s
s
74 116 t 11-0-3 Lower Case {A3 t
t
75 117 u 11-0-4 Lower Case |A4 u
u
76 118 v 11-0-5 Lower Case | A5 v
\%
77 119 \ 11-0-6 Lower Case | A6 W
W
78 120 X 11-0-7 Lower Case { A7 X
X
79 121 y 11-0-8 Lower Case | A8 y
Yy
7A 122 z 11-0-9 Lower Case | A9 z
Z
7B 123 { 12-0 Opening |CO|
Brace
7C | 124 1 12-8-7 Vertical |4F [1|
Line
7D 125 } 11-0 Closing DO
Brace
7E 126 N 11-0-1 Overline Al (Tilde)
7F 127 12-9-7 DEL 07t v Delete:used to erase
characters on paper tape

t

g o>
]

Equivalent EBCDIC code
Available on teletype model 33
Equivalent character on 029

Equivalent character on 2741

- 101

HEX DEC ASCII ~ HOLLERITH NAME AO V§ COMMENTS
80 | 128 11-0-9-8-1 20
81 | 129 0-9-1 21
82 | 130 0-9-2 22
83 | 131 0-9-3 23
84 | 132 0-9-4 24
85 | 133 11-9-5 15
86 | 134 12-9-6 06
87 | 135 11-9-7 17
88 | 136 0-9-8 28
89 | 137 0-9-8-1 29
8A | 138 0-9-8-2 2A
8B | 139 0-9-8-3 2B
8C | 140 0-9-8-4 20
8D | 141 12-9-8-1 09
8E | 142 12-9-8-2 0A
8F | 143 11-9-8-3 1B

w <] O >

Equivalent EBCDIC code
Available on teletype model 33
Equivalent character on 029
Equivalent character on 2741

102 -

HEX DEC ASCII HOLLERITH NAME AO V8§ COMMENTS
90 144 12-11-0-9-8-1 30
91 145 9-1 31
92 146 11-9-8-2 1A
93 147 9-3 33
94 148 9-4 34
95 149 9-5 35
96 150 9-6 36
97 151 12-9-8 08
98 152 9-8 38
99 153 9-8-1 39
9A 154 9-8-2 3A
9B 155 9-8-3 3B
9C 156 12-9-4 04
9D 157 11-9-4 14
9E 158 9-8-6 3E
9F 159 11-0-9-1 E1

A - Equivalent EBCDIC code

© - Available on teletype model 33

vV - Equivalent character on 029

§ - Equivalent character on 2741

103 -

104

HEX DEC ASCII HOLLERITH NAME A © V § COMMENTS
A0 160 12-0-9-1 41
Al 161 12-0-9-2 42
A2 162 12-0-9-3 43
-A3 163 12-0-9-4 44
Ad 164 12-0-9-5 45
A5 165 12-0-9-6 46
A6 166 12-0-9-7 47
A7 167 12-0-9-8 48
A8 168 12-8-1 49
A9 169 12-11-9-1 51
AA 170 12-11-9-2 52
AB 171 12-11-9-3 53
AC 172 12-11-9-4 54
AD 173 12-11-9-5 55
AE 174 12-11-9-6 56
AF 175 12-11-9-7 57

A - Equivalent EBCDIC code

© - Available on teletype model 33

V - Equivalent character on 029

§ - Equivalent character on 2741

HEX DEC ASCII HOLLERITH NAME AO V8§ COMMENTS

BO 176 12-11-9-8 58
B1 177 11-8-1 59
B2 178 11-0-9-2 : 62
B3 179 11-0-9-3 63
B4 180 11-0-9-4 64
B5 181 11-0-9-5 65
B6 182 11-0-9-6 66
B7 183 11-0-9-7 ' 67
B8 184 11-0-9-8 68
B9 185 0-8-1 69
BA 186 12-11-0 70
BB 187 12-11-0-9-1 71
BC 188 12-11-0-9-2 72
BD 189 12-11-0-9-3 73
BE 190 12-11-0-9-4 74
BF 191 12-11-0-9-5 75

A - Equivalent EBCDIC code

© - Available on teletype model 33

Vv - Equivalent character on 029

§ - Equivalent character on 2741

- 105

HEX DEC ASCII HOLLERITH NAME A O V § COMMENTS

co 192 12-11-0-9-6 76
Ct 193 12-11-0-9-7 77
C2 194 12-11-0-9-8 78
C3 195 12-0-8-1 80
ca 196 12-0-8-2 8A
C5 197 12-0-8-3 8B
Cé6 198 12-0-8-4 8C
Cc7 199 12-0-8-5 8D
C8 200 12-0-8-6 8E
Cc9 201 12-0-8-7 8H
CA 202 12-11-8-1 90
CB 203 12-11-8-2 9A
cC 204 12-11-8-3 9B
CD 205 12-11-8-4 9C
CE 206 12-11-8-5 9D
CF 207 12-11-8-6 9E

A - Equivalent EBCDIC code

® - Available on teletype model 33

V - Equivalent character on 029

§ - Equivalent character on 2741

- 106 -

HEX DEC ASCII HOLLERITH NAME AO V § COMMENTS
DO 208 12-11-8-7 9F
D1 209 11-0-8-1 A0
D2 210 11-0-8-2 AA
D3 211 11-0-8-3 AB
D4 212 11-0-8-4 AC
DS 213 11-0-8-5 AD
D6 214 11-0-8-6 AE
D7 215 11-0-8-7 AF
D8 216 12-11-0-8-1 BO
D9 217 12-11-0-1 Bl
DA 218 12-11-0-2 B2
DB 219 12-11-0-3 B3
DC 220 12-11-0-4 B4
DD 221 12-11-0-5 BS
DE 222 12-11-0-6 B6
DF 223 12-11-0-7 B7

A - Equivalent EBCDIC code

© - Available on teletype model 33

V - Equivalent character on 029

§ - Equivalent character on 2741

107

HEX DEC ASCII HOLLERITH NAME AO V § COMMENTS
EO 224 12-11-0-8 B8
El 225 12-11-0-9 B9
E2 226 12-11-0-8-2 BA
E3 227 12-11-0-8-3 BB
E4 228 12-11-0-8-4 BC
ES 229 12-11-0-8-5 BD
E6 230 12-11-0-8-6 BE
E7 231 12-11-0-8-7 BF
E8 232 12-0-9-8-2 CAl
E9 233 12-0-9-8-3 CB
EA 234 12-0-9-8-4 cc
EB 235 12-0-9-8-5 CDh
EC 236 12-0-9-8-6 CE
ED | 237 12-0-9-8-7 CH
EE 238 12-11-9-8-2 DA
EF 239 12-11-9-8-3 DB

A - Equivalent EBCDIC code

© - Available on teletype model 33

V - Equivalent character on 029

§ - Equivalent character on 2741

- 108 -

HEX DEC ASCII HOLLERITH NAME AOG V8§ COMMENTS

FO 240 12-11-9-8-4 DC
F1 241 12-11-9-8-5 DD
E2 242 12-11-9-8-6 DE
F3 243 12-11-9-8-7 DF
F4 244 11-0-9-8-2 EA
F5 245 11-0-9-8-3 EB
F6 246 11-0-9-8-4 EC
F7 247 11-0-9-8-5 ED
F8 248 11-0-9-8-6 EE
F9 249 11-0-9-8-7 EF
FA | 250 12-11-0-9-8-2 FA
FB 251 12-11-0-9-8-3 FB
FC 252 12-11-0-9-8-4 FC
FD 253 12-11-0-9-8-5 FD
FE 254 12-11-0-9-8-6 FE
FF 255 12-11-0-9-8-7 FF

A - Equivalent EBCDIC code

© - Available on teletype model 33

V - Equivalent character on 029

§ - Equivalent character on 2741

- 109

APPENDIX E

SAMPLE MPL PROGRAM

- 110 -

PRIME

DEC

OO0 0O0O0O0O0O0OO0 O

-
CVWVWVWO NNV BWNNDKE
WNNBODVOENOYNW

105
205
105
108
105
108
108
198
108
108
108
108
108
108
111

PRIME

DEC

114
114
114
114
128
142
148
150
160
177
186
188
188
201
214
216
217
217
217
217
2117
217
220
220
220
220
233
239
253
260
266
267
267
274
281
289
297
305
306

HEX

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
000D
0018
001D
0020
0029
002C
003B
0048
004E
0050
005SE
0061
0061
0067
0069
0069
0069
0069
0069
006C
006C
006C
006C
006C
006C
006C
006C
006C
006F

HEX

0072
0072
0072
0072
0080
0C8E
0094
0096
00AO
00B1
00BA
00BC
00BC
occo
00D6
ooD8
00D9
00D9
0009
00D9
00D9
00D9
00DC
00DC
0opC
00DC
00E9
OCEF
COFD
0104
010A
0108
0108
c112
0119
0121
0129
Cc13l
0132

75SEP02

LINE

Lo~ wWwh -

75SEPO2

LINE

41
42
43
44
45
46
47
48
49
50
S1
52

11:09:54 MPL 1.0 wes PROGRAM LISTING txe
--------- SOURCE -- -
PRIME:
/'l.ﬁﬁ'iﬁ.t*tiﬁt‘litﬂi'ﬁ.littttﬁtﬁﬁQ'tttﬁﬁlﬁﬁﬂﬁfiQ'iiti!ttt'iﬁkﬁ.ttt"./
/* THIS IS A PRGCEDURE TO PRINT ALL PRIME NUMBERS FROM 1 TO 1000 */
/i'iﬁktﬁt.ﬁf*tkttttkt*t'iittttttt".t'iitt'iiﬁttﬁ"ﬁiitii**tt’tﬁil*kﬁi'.i/

MAIN PROCEDURE:

DECEARE
PRINT PROCEDURE,
P(200) WORD, /* THE ARRAY OF PRIMES'*/
TEST WORD, /* VALUE BEING TESTED */

(1,J) WORD; /* SUBSCRIPTS */
DO I =1TO 37
CALL PRINT(I,P(I):=I);
END:
TEST = 5;
DO WHILE TEST < 1000;
J = 3:
DO WHILE TEST/2(J) »>= P(J):
IF TEST MOD P{(J) = 0 THEN GOTO PROLl:

J +=1;

END;

CALL PRINT(I,P(I):=TEST):

I +=1;

PROL1:

TEST += 2
END;
P e e R LA R AL S A AL LA ALY
/* THIS IS A PROCEDURE TO PRINT TWO DECIMAL NUMBERS */
T e bbbl
PRINT:

PROCEDURE (L,M);

DECLARE

(L,M) WORD, /* NUMBERS TO PRINT */
1 WORD, /* LOOP IMNDEX */

TYPE PROCECURE:
/iﬁtiiii*it'thtitt*itt'ttiittktﬁtﬁttttti**tttttt*titiftttttttt/

/* THIS IS A PROCEDURE TO CONVERT A 16 BIT BINARY VALUE TC */

/* FIVE PRINTEABLE DECIMAL CHARACTERS AND PRINT THEM */
/tt*tttttt*!tiitittkitttttktttttitttttttit**tttthttttttt*t***t,
DECCONV:

PROCEDURE (K):

PAGE

1

-- DL BN LL

WNRNNRNRNNNNNNNFEREHEREONORDRNWWBWNNRNNER RSO R -~ O0000

WRN NN N NN N s bt b o b b et bt o ot et (o b bt ot bk et i o bt e © O O O

11:09:54 MPL 1.0 e PROGRAM LISTING L] PAGE
--------- SOURCE-—- DL BN
DECLARE
ASCII(4) 3YTE,
K WORD;

DO I = 4 TO 0 BY -1;
ASCII(I) = K MOD 10 + "0°;
K = K/10;

DO I =0 TO 3;
IF ASCII(I) ~= °“0° THEN GOTO DECCONVL;
ASCII(I) = " 3

END;

DECCONV1:

DO I = 0 TO 4;
CALL TYPE(ASCII(I)):

END DECCONVL1:

END DECCONV;

R AR R A AR AR AR R AR R AR RN R AR AR E AR AR R R b RhAk
/* THIS IS A PROCEDURE TO OUTPUT THE SPECIFIED CHARACTER */

/* TOC THE TELETYPE */
/.iiiil"ttti’tttt"iii.ttitiﬁtitt.tttttﬂttttﬁ!‘t.itl*'ﬁitttiﬁ/
TYPE:
PROCEDURE (N);
DECLARE
N BYTE,

TTY(7) WORD BASED "F004°";

DO WHILE TTY(0); END; /* WAIT UNTIL CONTROLLER NOT BUSY */
PTTY(1) = "2"; /* START THE TTY */
DO WHILE TTY(0)&"4"=0; END; /* WAIT FOR DATA SERVICE */
TTY(2) = N; /* OUTPUT THE CHACT */
TTY(1) = 4; /* STOP THE TTY */

END TYPE;

/* NEXT STATEMENT IS START OF PROCEPURE °PRINT ™ */

CALL TYPE(™0D"); /* OUTPUT A CARRIAGE RETURN */

CALL TYPE("0A™); /* OUTPUT A LINE FEED */

CALL DECCONV(L!;

CALL TYPE(® “); /* QUTPUT A SPACE */

CALL DECCONV(M):

END PRINT;
END PRIME: - 111 -

O NONNNNNWWWWWWWWWNNNNNNWaL WWaELLEWLELEWWW

OFRNNNNNNNARALAAARAELANNNNNNWWWWWLWWWWWWWWWW

WRN NN RN RN R o e s bt et b bt b (b et e et b bt bt bt b et b e = O O O O

LL

OMNNNMNNNONNWWWWWWWWRWWNNNNNNN NWWWWWWWRWWWWWWYWWWW

BLOCK

PRIME
PRIME
PRIME
PRIME
PRIME
PRIME
PRIME
PRIME
PRIME
PRIME
PRIME
PRIME
PRIME
PRIME
PRIME
PRIME
PRIME
PRIME
PRIME
PRIME
PRIME
PRIME
PRIME
PRIME
PRIME
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
DECCONV

BLOCK

DECCONV
DECCONV
DECCONV
DECCONV
DECCONV
DECCONV
DECCONV
DECCONV
DECCORV
DECCONV
DECCONV
DECCONV
DECCONV
DECCONV
DECCONV
PRINT
PRINT
PRINT
PRIRT
PRINT
PRINT
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRIME

PRIME

NAME

ASCII
DECCONV
DECCONV1

I

LTS S I

PRO1
PRIME
PRINT

TEST

PRIME

1

HEX

oooa
0072
00BC

019C

000C

019E
0008

0008

- 000A

0009
0008
0061
0000
006C

019A

F004

00DC

1:09:54 MPL 1.0
BN LL ST DEC

3 3 10

2 2 114

3 3 188

1 1 412

2 2 12

1 1 414

3 3 8

2 2 8

2 2 19

4 3 9

1 1 8

1 1 97

0 0 0

1 1 108

1 1 410

4 3 61444

2 2 220

1:09:54 MPL 1.0

1

75SEF02
DEF
42
39
53
10
33
10
43
32
32
64
8
24
1
7
9
65
34
75SEPO2
LAGS
ABORTS
BLUNDERS
ERRCRS
WARNINGS
OFF:
]
cu:
A
F L

SOURCE PROGKRAM

79 LINES

49 STATEMENTS

4 BLOCKS

3 LEXDEPTH

i SYMBOL T
CLASS SCOPE SIZE SET
AUTO I BYTE
PROCEDURE I
DOLABEL I
AUTO I WCRD
AUTO I WORD
AUTO I WORD
PARAMETER I WORD
PARAMETER I WORD
PARRMETER I WORD
PARAMETER I BYTE
AUTO I WORD
LABEL 1
MAIN EXT
PROCEDURE I
AUTO I WORD
CBASE I WORD
PROCEDURE 1
el PROGRAM

CBJECT PROGRAM

307 BYTES PROGRAM
0 BYTES STATIC
438 BYTES STACK(1)

17 OBJECT RECORDS

112 -

ABLE

DIM

SCALR

SCALR

SCALR
SCALR
SCALR
SCALR
SCALR

200

SCALR

ARRAY

SUMMARY

SYMBOL TABLE

592 BYTES USED

7484 BYTES SPARE

17 SYMBOLS

66 REFERENCES

45
56
49

11
21

44
53

16
40
30
30
62
12
18
79
12

14
24

66

54
76

k&

REFERENCES
49 50
1577
55
12 12
22
45 48
54
17 17
45 46
75
77
69
1717
21 30
15 17
67 68
62 71

kkk

PAGE

54

12

49

18

46

18

78

18

69
73

PAGE

COMPILER STACK

5211 BYTES USED

789 BYTES SPARE

259 ACCESSES

58 COLLISIONS

3

21

50

19

21

21

70
74

	00001
	00002
	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112

