MicroSystems Inc.

Micro 800 Computer AP800 Assembly
Program

MICRO 800 COMPUTER

AP800 ASSEMBLY PROGRAM

69—-1--0800-002

July 1969

Micro Systems Inc
644 East Young Street
Santa Ana, California 92705

TABLE OF CONTENTS

INTRODUCTION o . 1
SOURCE LANGUAGE o . 3
Statement Format 3
Operand Field Expressions 3
MACHINE COMMANDS 5
ASSEMBLER INSTRUCTIONS 9
ASSEMBLY LISTING AND DIODEMAP 11
Format 11
ErrorFlags 11
Sample Listing 12
DiodeMap 12
OBJECT PROGRAM CARDDECK 15
ILLUSTRATIONS
Sample Listing 13

1. INTRODUCTION

AP800 is a symbolic assembly program for the MICRO 800 computer. The assembler
provides for symbolic addressing and mnemonics for machine and assembler instructions,
This program is written in FORTRAN IV and may be adapted to many computer systems.
The MICRO 800 source program is entered by punch cards and the output of the assembler
includes an assembly listing, read only storage diode map, and an object program card deck.

The AP800 assembly language includes the following features:

Address Arithmetic — Decimal and hexadecimal numbers, symbolic addresses, and
arithmetic expressions.

Listing Control — The format of the listing which may be controlled with
comment cards included.

Diagnostics — Diagnostics for source program errors included in the output
listing.

Option Flags — Single letter flags to signify options to micro-commands.

2. SOURCE LANGUAGE

The source language is a sequence of symbolic instructions, called statements, which are
punched on cards. Each statement is punched on a single card. Each statement may consist
of from one to four entries: a name field, an operation field, an operand field, and a
comment field. Columns 73-80 are normally used for identification or sequence numbers.
Entries in the operand field are expressions which may consist of decimal numbers,
hexadecimal numbers, and symbolic values.

STATEMENT FORMAT

Name Field

The name field entry is a symbol composed of from one to six characters starting with
column 1 and terminating with the first blank. The first character of a symbol is alphabetic
or period; subsequent characters may be alphabetic, numeric or a period. A name entry is
usually optional and the type of instruction determines the legal content of the name field.
The symbol takes on the current value of the assembler’s location counter unless assigned
another value by an assembler instruction. When an asterisk (*) appears in column 1 the
remainder of the line is considered as comment and is not processed by the assembler except
to place it on the listing.

Operation Field

The operation field entry is a mnemonic operation code specifying the machine or assembler
instruction. The field begins in column 8 and is terminated by the first blank. Certain
memory referencing instruction modes use special symbols suffixed to the mnemonic.
Operand Field

The operand field entries identify and describe data to be acted upon by instructions as, for
example, memory locations, or literals. One or more operands may be written, depending on
the needs of the instruction. Entries are separated by commas, and no blanks may appear in
the field. The operand field starts in column 14, It is terminated by the first blank column.
Comments Field

Comments describing the information about the program may be inserted between the end

of the operand field and column 72. All characters, including spaces, may be used in writing
a comment.

OPERAND FIELD EXPRESSIONS

Expressions in the operand field are made up of one or more terms which are connected by
+ and — arithmetic operators. No parenthetical expressions are allowed. Each term of the

expression represents a value. Values may be assigned by the assembler program (symbols),
or there may be inherent in the term itself (constants). The range of values depends on the
operand and the instruction. Address expressions for relative type addressing are written as
if they are not relative. The assembler will convert these expressions to a relative
displacement.

Symbols

A symbol is composed of one to six characters. The first character must be alphabetic or
period; subsequent characters may be numeric, alphabetic, or period. Imbedded blanks are
not allowed and the assembler stops scanning the symbol with the first character which is
not alphanumeric or a period. All symbols, except the special symbols * and **, used in an
operand field, must be defined by a single appearance in the name field of statement within
the program.

Special Symbols

The special symbol * represents the momentary value of the assembler’s location counter. It
may be used as any other symbol in an expression but must never appear in the name field.
When used in the operand field of a multi-byte instruction it will assume the value of the
address of the first byte of the instruction.

Constants

The values of the constant terms are not assigned by the assembler program but are inherent
in the terms. There are two types of constant terms: decimal and hexadecimal.

a. Decimal Constant

A decimal constant is an unsigned decimal number. The value must be less than
65,536.

b. Hexadecimal Constant

A hexadecimal constant is an unsigned hexadecimal number of up to four
characters written as a sequence of hexadecimal digits. The digits are enclosed in
single quotation marks and preceded by the letter X. Each hexadecimal digit
represents a four-bit binary number. The characters A through F are used to
identify the hexadecimal integers 10 through 15.

3. MACHINE COMMANDS

Machine commands are expressed by a one or two character mnemonic code in the
operation field. The required operands depend on the command type. The four syntax types
are described below. Examples of the method of writing machine commands in the assembly
language are shown in the sample listing in section 5.

Load Register Commands (Command 1)

All commands of this syntax type have two character mnemonics beginning with L, except
for the Jump Command (JP). The second character is the register identifier character. The
operand field of all commands of this type except Jump must contain a single operand
which is an expression, whose value is less than 1024 and greater or equal to -256. It is
evaluated modulo 256. The Jump command must contain an operand expression which has
a positive value less than 1024,

Literal-File Commands

The commands of this syntax group (commands 2-6), have two character mnemonics and
require two operands. The first operand is an expression which designates a file register (f)
and must be in the range 0-15. The second operand (n) is an expression which must be less
than 1024 and greater than or equal to -256. 1t is evaluted modulo 256.

Execute and Control Commands

The commands of this syntax group have operation code mnemonics identical to those of
the next group, and require two operands. The first operand is an expression which
designates a file register (f) and must be in the range 0-15. The second operand (c) is an
expression which designates the option bits (7-4) and must be in the range 0-15.

Operate Class Commands other than Execute and Control

The commands of this syntax group have basic operation code mnemonics which are a single
character. If the result of the operation is to be routed to a machine register the designator
of that register is appended as a second character of the mnemonic. If the result is not to be
placed in the designated file register, an * is appended to the mnemonic. The second
character register designators are given in the table shown on the next page.

Register Register

Code Designator Register
0 None
1 T T Register
2 M M Register
3 N N Register
4 L L Register: addresses 000-OFF and 200-2FF
5 K L Register: addresses 100-1FF and 300-3FF
6 U U Register
7 S OR U Register into bits 15-8 of

command (except Control commands)

The first operand is an expression which designates a file register (f) and must be in the
range 0-15. Other operands are optional and if included, each consists of a single character
which designates an option for the command. The allowable option flags for each command
are given on the table on the next page and the meaning of each is given below. The order of
writing the options is immaterial.

L — Link Control

I — Add one or insert one on shift

D — Decrement one

T — T register for operand

F — Complement of T register for operand

H — Half Cycle memory operation
(otherwise full cycle)

R — Right shift (otherwise left shift)

C — Set condition flags

MICROCOMMANDS

Command Mnemonic Operand Field
Load T LT n

Load M LM n

Load N LN n

Load U LU n

Load Zero Control LZ n

Load Seven Control LS n

Jump JP n

Load File LF f,n

Add to File AF f.n

Test If Zero TZ f,n

Test If Not Zero TN fn
Compare CP fn
Execute Er* f,c
Control Kr* fc

Add Ar* f,L1,T,C
Increment Ir* fL,.C
Subtract Sr* f,L,D,T,C
Decrement Dr* fL,C
Copy Cr* fLI1T,C
Read Rr* fL,I1,DH
Write Wr* f,LI,DH
Logical OR Or* f,L,F,T,C
Move Mr* fLC
Exclusive-OR Xr* fL,F,T,C
Logical AND Nr* fL,F,T,C
Shift Hr* f,LI,RC

4. ASSEMBLER INSTRUCTIONS

Seven assembler instructions are included for control of the assembly process and the

output listing.

ORG

EQU

DC

IDENT

END

SPACE

|

|

Set Location Counter

The ORG assembler instruction alters the setting of the location counter.
The name field entry, if any, will be assigned the value of the program
counter after it is altered. The operand field of ORG must contain an
expression whose value will be placed in the location counter. All symbols in
the expression must have been previously defined when the instruction is
first encountered. The next instruction which places object code in the
program is forced to begin a new object card.

Equate Symbol

The EQU assembler instruction is used to define a symbol by assigning to it
the value of the operand field. Any symbols appearing in the expression
must have been previously defined when the instruction is first encountered.
A name field entry must be present.

Define Constant

The DC assembler instruction is used to provide constant data in memory.
Each statement specified only one constant. The constant is written as an
expression and is assembled as a 16-bit word in storage.

Program Identification

The IDENT assembler instruction is used to identify the start of a program
and to supply the program name which is located in the operand field. The
IDENT must be the first statement in a source program.

End Assembly

The END assembler instruction terminates the assembly of a program and
must be the last statement in a source program.

Space Listing

The SPACE assembler instruction causes one or more blank lines to be
inserted into the listing. The name field is disregarded by the assembler. The
operand field contains an expression specifying the number of blank lines. If
the spacing is beyond the end of the current page, the listing begins at the
top of the next page.

EJECT — Start New Listing Page
The EJECT instruction causes the next line of the listing to appear at the top

of the next page. The name and operand fields are disregarded by the
assembler.

10

5. ASSEMBLY LISTING AND DIODE MAP

The output listing from AP800 contains the memory address, and contents of words in the
object program. The source statement is printed side-by-side with the object code.

FORMAT
Printer Columns Contents
8- 11 — Error flags
15— 17 — Storage address
21-24 - Storage contents
31-110 - Source statement
ERROR FLAGS

A — Address Error

This error occurs when an address expression in the operand field is incorrectly
written or the value is out of range for one of the operands. An error flag will
occur for each operand in error or out of range.

F — Flag Error

This error occurs when an operate class command has an option flag in the
operand field which is not allowed for the command or is unrecognizable.

M — Multidefined Symbol Error

This error occurs when the symbol in the name field has been previously defined
by appearing in the name field of another instruction.

N — Name Field Error

This error flag occurs when the symbol in the name field starts with a character
other than alphabetic or period, or contains a non alphanumeric or non period
character.

O — Operation Mnemonic Error

This error occurs when the assembler does not recognize the contents of the
operation field starting in column 8. A zero value is assembled to allow patching.

U — Undefined Symbol Error

This error occurs when the symbol encountered in an expression of the operand
field is not defined by an appearance in the name field.

1"

SAMPLE LISTING

The sample listing on the next page shows the format of the listing and provides examples of
how to write each instruction type, literals, constants, and assembler instructions. The six
types of error conditions are also illustrated.

DIODE MAP

The read only storage diode map is printed if the control card followilg the END card
contains a 1, 2, or 3 in column 1. The digit specifies the number of diode maps to be
printed. The diode map for each 256 word read only storage board is placed on three pages
of the assembly listing. The format of the map is the same as the physical layout of the ROS
board. An X on the map indicates a 1-bit and that a diode is to be placed at the position of
the X, while an 0 indicates a 0-bit and no diode.

Fach of the 64 lines of the diode map for a board contains the diodes for four words. The
address of the first word is printed at the left of the map. The four words are interleaved so
that the same bit position in each of the four words are grouped together and printed as a
cluster at four diode positions. The 16 bit positions are printed across the page and the sum
of the number of diodes on the line is placed at the right of the map.

12

000
001
002
0n3
004
0ns

006
007

100
101
102
103

174
108
106
107
108
109
1eA

108
1nC
100
10E
10F
110
111
112
113
114
115
116
117
118
119

114
118
11¢
110
11E
11F
120
12)
122
123
124

200

300

1112
1204
1318
16AA
160A
1780

1468
14020

1502
1Cce
1002
00690

2AFF
2200
2A02
3202
4004
SAa¢C
6SFE

0250
7580
82Fo
8200
92F 0
9200
B2F 5
A260
A260
A270
cefFo
€270
02Fp
E2Fn
F2Fq

Capj
8548
cS518
B069
H543
8A23
9848
8224
8245
8541
0560
00NA

1048

1508

IDENT SAMPLE
THIS SAMPLE PROGRAM SHOWS HOw TO WRITE VARIOUS COMMANDS.

L0AD REGISTER COMMANDS

LOAD T = HEXADECIMAL LITERAL
LOAD M =« ODECIMAL LITERAL

LUAD M =« EXPRESSION LITERAL
LUAD U

SYMBOL IN NAME FIELD IS ILLEGAL
LUAD SEVEN CONTROL = HALT

JUMP IN PAGE ZERO

SYMBOL UNDEF INED

OKG ASSEMBLER INSTRUCTION = PAGE 1
JUMP [N PAGE 1}

JUMP T0 PAGE 2

JUMP TO PAGE 3

OFPERATION MNEMONIC IS ILLEGAL

LOAD FILE = HEXADECIMAL LITERAL
ERROR IN OPERAND FIELD

LUAD FILE = OECIMAL LITERAL

AUD TO FILE

TEST IF ZERO

TEST IF NOT ZgRO

CUMPARE « NEGATIVE OPERAND 0K

cp
#% OPERATE COMMANDS WITH LEGAL OPTION FLAGS

EXECUTE

CUNTROL

AUD <« LINKJINCRs1 REGy COND FLAG
INCREMENT = FURM OF ADD

SUBTRACT = LINKyDECRyT REGsCOND FLAG
DECREMENT « FORM OF SUBTRACT

COPY

READ MEMORY « LINK

READ MEMORY « L OR I OR 0Oy HALF
WKITE MEMORY « L OR I OR Dy HALF

OR = LINK9sCOMP T REGy TRUE T REGs COND
MUVE « LINK,COND FLAG

EXCLUSIVE=OR

AND

SHIFT « LINKyONESRIGHT,COND FLAG

MUVE FILE REG 10 TO T

PREVENTS RESULT FROM GOING TO FILE
FILE 5 IS TESTED AND CONp FLAGS SET
THIS COMMAND INCREMENTS THE T REG
INCREMENT FILE REG S AND PLACE IN N REG
FILE DESIGNATOR MAY BE EXPRESSION
FILE)1 MINUS ONE IS PLACED IN N REG
JUMP IN PAGE o OR 2

JUMP IN PAGE] OR 3

ILLEGAL FLAG

NO FLAGS ON EXECUTE OR CONTROL

ORG FOR PAGE 2
COMMAND MADE BY CONSTANT
ORG FOR PAGE 3

START LT X#l2#
LM 3
LN ALPHA+2
Ly X#AAS
123456 LY XA
LS X#80#
o JUMP COMMANDS
ALPHA JP #e2
JP SAM
ORG 256
PAGEl JP ®e2
JP PAGE2+2
JP PAGE3+2
PP 242
#® FILE LITERAL COMMANDS
LF 100 X2FF#
LF 2
LF TENs2
AF 292
1< Oeé
TN TENgX#C#
Se=2
0OPER E 245
K 5.8
A 29LeIeTHC
I 2+L9C
S 2sL2DsToC
0 2+L0C
C 2elaleTeC
R 2+L90oH
R 2sLeleDoH
w 2+L919D0H
0 29LsFTeC
M 2+LC
X 29L9FTC
N 24LoFeToC
H 2+LsloRe ¢
L1 VARIATIONSTgF OPERATE COMMANDS
MT
InN® S
Me 5sC
Cie 09Tl
IN S
AN TENT
One 1}
AL 2T
1K 2
IT SeX
€ SeL
TEN EQU 10
OKG X#200#
paGE2 OC X#10AH#
ORG X#300%
PAGE3 JP OPER
END

LAST CARD

FIGURE 1. SAMPLE LISTING

13

6. OBJECT PROGRAM CARD DECK

The AP800 assembly program generates a deck of cards which contain the binary object
code. All information punched on the cards is in Hollerith code, with a single hexadecimal
digit (four binary bits) punch in each column. This format allows easy visual reading of the
cards after they are interpreted and permits rapid patching or generation of patches to the
deck. Each card contains 16 program words. If all 16 words are zero, the card is not
punched.

The cards have two fields as follows:

Columns 14 — Load address
Columns 5-68 — Object code, four columns per word

15

COMMENT AND EVALUATION SHEET
MICRO 800 COMPUTER
AP800 Assembly Program

Pub. No. 69—1-0800-002 July 1969
YOUR EVALUATION OF THIS MANUAL WILL BE WELCOMED BY
MICRO SYSTEMS INC. ANY ERRORS,SUGGESTED ADDITIONS OR
DELETIONS OR GENERAL COMMENTS MAY BE MADE BELOW.
PLEASE INCLUDE PAGE NUMBER REFERENCE.

FROM nNaME:

BUSINESS
ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE

STAPLE
FOLD FOLD
First Class
Permit No. 1972
Santa Ana
California 92711

P

BUSINESS REPLY MAIL EE———

NO POSTAGE NECESSARY IF MAILED IN THE U.S.A. I ——

r——

[——

E——

r—]

Postage Will Be Paid By S ——

S

T

MICRO SYSTEMS INC. ———

644 East Young Street I—

> . S

Santa Ana, California 92705 ——

[r—]
FOLD FOLD

STAPLE STAPLE

MicroSystems Inc.

644 East Young Street
Santa Ana, California 92705
Telephone: (714) 540-6730
TWX: 910-595-1764

	0001
	0002
	001
	01
	03
	04
	05
	06
	07
	09
	10
	11
	12
	13
	15
	replyA
	replyB
	xBack

