

PROPRIETARY INFORMATION

The information contained herein is proprietary to and
considered a trade secret of Microdata Corporation
and shall not be reproduced in whoie or part without
the written authorization of Microdata Corporation.

© 1975 Microdata Corporation

All Rights Reserved

TM — Trademark of Microdata Corporation
Specifications Subject to Change Without Notice
Printed in USA

January 1977

771026A

Price: $5.00

Introduction
to

Express ™
Multiprogramming
Operating
System

Preliminary
771026A
August 1976

® Microdata Corporation

17481 Red Hill Avenue, Irvine, California 92714
Post Office Box 19501, Irvine, California 92713
Telephone: 714/540-6730 - TWX: 910-595-1764

PREFACE

This manual presents a general overview of the EXPRESS'™ Multiprogramming
Operating System. It does not describe the specific commands nor

does it define system procedure names and calling sequences. For more
detailed information, the reader is referred to the following manuals.

1. EXPRESS Multiprogramming Operating System, Shell User's Guide

2. EXPRESS Multiprogramming Operating System, Programmer's Guide
3. EXPRESS Programming Language Reference Manual

4. EXPRESS Programming Language User's Guide

5. EXPRESS BASIC Interpreter Reference Manual

NOTE: This document is a preliminary manual and is subject to major
revision.

Section

. .
.

.
.

.
.
AV wN

. .
.

.

I e ol ol el el e i el e
. e
UID WWwWwwWwRhNNRHRFRFBP
. . .
N

e e
_w N

N

-

.
. .
.

T el

.

.
.
.

Ul W N

B WwwWwwwwwwwNhN =
. .

WWWwwwwwwwwww
« o s .

. .

.
ot Wi

.

O N N A L

.
N

76 1026

TABLE

Title

INTRODUCTION .
Major Features .
Multiprogramming
Virtual Memory .
Re-entrant Code

Input/Output . .
Security
User Interface

Processing Modes
Batch Processing

OF CONTENTS

.

Interactive Processing
Programming Languages.

BASIC
Fortran/IV . . .
COROL, &
EPL. .« « « « =«

Software Components
Hardware Requirements

.

SYSTEM ARCHITECTURE.

ACCESSING EMOS .

User Capabilities .
Logging on to the System

The Session . .
The SHELL . . .

The SHELL Commands

.

Program Execution Commands
File Maintenance Commands.

File Connection Commands

Debug Commands .
Utility Commands

Interrupt Commands .
User Coded Command Interpreter

THE FILE SYSTEM
Connections . .
Cataloged Files

File Access and Security
Disc File Organization .

Access Methods .
Serial Access. .
Direct Access

-

.

-

-

Page

doO T uUTu s D BWwWwwNDNKFFHF

e}

17
17
17
17
18
18
19
19
19
19
20
20
20

21
21
21
22
23
24
25
25

TABLE OF CONTENTS
(continued)

Section Title , Page
Collated ACCESS .« v v v o v v v o o v o o . 25

Content ACCESS. . + « ¢ ¢ ¢ o o« o o o o « & 25
File System Comparison « « « . 25

b b
[e) IO RN}
W

5 USER PROGRAMS . . . ¢ & & «c ¢ o o « o « « = 29
5.1 Creating a Load Module 29
5.2 The Segment Editor. 30
6 THE SYSTEM KERNEL . . + &« « ¢ ¢ ¢ « « o o« =« 31
6.1 Processes e e s e s e e e e e e e e e e 31
6.1.1 Tasks e e e e e e e e e e e e e e e e e 32
6.2 Process States 0 . o . . . 33
6.3 Process Scheduling « . . 33
6.4 Kernel Levels . . . ¢ ¢« ¢ ¢ ¢ ¢ o« o o o o = 34
6.4.1 Level 1 e e e e e e e e e e e e e e e e 34
6.4.2 Level 2 e e e e e e e e e e e e e e e e 34

ii

76 1026

Figure

N O U Ww N

76 1026

FIGURES

Title

Program Environment

The Program Segment Library
A Program Segment

Stack Organization

Disc File Structure

Access Methods

Comparison of Access Methods

iii

Page

11
12
13
14
23
24
26

1.1

76 1026

CHAPTER 1

INTRODUCTION

The EXPRESS Multiprogramming Operating System (EMOS) is a general
purpose multiprogramming, virtual memory operating system. EMOS is
designed to simplify the use of the EXPRESS computer system. it
performs the functions of input/output, memory management, file
management, process scheduling, and system accounting.

MAJOR FEATURES

The following paragraphs describe the major features of EMOS.

MULTIPROGRAMMING

A primary feature of the EXPRESS Multiprogramming Operating System is
that it allows several processes to be executed simultaneously. This
facility of an operating system is called multiprogramming. Multi-
programming is the normal mode of operation of EMOS. There are two
fundamental reasons for multiprogramming.

1. Efficiency of system utilization. Most programs run on a com=
puter system do not require all of the resources available.
By allowing several such programs to run simultaneously, rather
than serially, more efficient use of the system is realized.

2. Multiple access to data. Modern mass storage devices make it
possible to keep extremely large amounts of data on-line and
available to a computer system (e.g., a small version of the
EXPRESS system provides 50,000,000 bytes of on-line storage).
Through the use of multiprogramming, many individuals, each
at a different terminal, may gain simultaneous access to large
data bases.

The number of processes that can be executed simultaneously depends
on such factors as the hardware configuration and the resources
required by the various concurrent processes.

76 1026

VIRTUAL MEMORY

The EXPRESS hardware and software provides a virtual memory system.
The term virtual memory is used to mean that the size of a program
is not limited to the size of main memory actually available in
the hardware.

In the EXPRESS system a program is divided into one or more parts
called segments. In order for a program to execute, only one of its
procedure segments and its data segment needs to be in memory.

The system is designed so that infrequently used segments, such as
program initialization routines, are placed in separate segments

and normally kept in virtual memory (i.e., they are on the disc).
Thus, the amount of main storage required to run programs efficiently
is significantly less then the total program size.

The EXPRESS computer system has hardware that recognizes a program
reference to an absent segment. When such a reference occurs, an
interrupt is generated. Execution of the program is suspended until
such time as the virtual memory manager can move the required segment
into main memory. In the meantime, the dispatcher allows other
programs to continue execution.

RE-ENTRANT CODE

In the EXPRESS system, code segments and data segments are logically
and physically separate. The system guarantees that the code seg-
ments cannot be altered by normal program execution. Such unalterable
segments help mechanize re-entrant code.

The use of re-entrant code means that if a particular code segment is
accessible to several concurrent processes, then only a single copy
of that segment need be in memory at any one time. If a process
using that segment is interrupted, another process may use the same
code segment. But since the new process cannot alter the code, when
the original process resumes execution, the code segment is still
intact and available for use.

The use of re-entrant code also reduces the input/output requirements
for virtual memory management. If a segment of code must be overlaid,
it is never necessary to move it from main memory to the disc, since
the original disc copy is identical to the copy currently in memory.

76 1026

INPUT/OUTPUT

EMOS treats all input/output operations as file accesses. The
programmer accesses a file by an entity referred to as a logical
unit. The logical units used in a program are independent of
physical devices. The association of logical units with devices

is not made until the program is executed. This means that a program
may use a different physical file for its input and/or its output
each time it is run without changing the program itself.

Programs may also be written that interact with an operator to ask
for the name of a file to be operated on.

Files that are physically located on magnetic tape, card readers,
terminals, or printers, are accessed sequentially. Files on disc
may be accessed sequentially or directly (by specifying a oarticular
record).

Additionally, disc records may be keyed. That is, there may be a
key associated with each record of a file. Retrieval from a keyed
file may be in the order of the collating sequence of the keys, or
specific records may be retrieved by specifying the key.

Records in a file may be fixed length, variable length, or undefined
length (stream). Space for disc files is allocated automatically
as needed.

SECURITY

The EXPRESS system provides security at two levels. Hardware pro-
tection is provided for main memory accesses. This hardware pro-
tection prevents one process from accessing a portion of memory
allocated to another process.

File security is provided by software and is implemented through
security information contained in a file description record associated
with each file.

USER INTERFACE

The EXPRESS Multiprogramming Operating System allows the user to
interface with the system at several levels of sophistication. At
the lowest level, the user need not be aware of the fact that the
system is a programmed processor. He need only know the commands
necessary to perform the data accessing or data entry functions
required by particular applications.

76 1026

At the next level, the user may interface with the system through
the BASIC interface. This interface provides the user with a com-
putational facility. In the simplest case, the user may perform
calculations much the same way as he would using a calculator.
However, using the BASIC interface, the user may create, edit, and
save for future execution, programs of considerable complexity.

A user planning still more complex operations may need to know more
about the facilities provided by EMOS. He may have accessing capa-
bilities that allow access to more sophisticated system resources
such as task initiation and privileged instruction execution.

PROCESSING MODES

EMOS provides two basic modes of operation: batch and interactive.

BATCH PROCESSING

The batch processing mode allows the user to submit commands in a
single input stream that requests operations such as compilation
and execution. Such a stream is called a batch job. Included in
the batch input may be source programs and data. Once the user has
submitted the batch job, processing of the commands takes place
with no further action required by the user.

The input batch may be presented via an input device such as a card
reader or magnetic tape unit, or it may be a file previously created
and stored on the disc.

INTERACTIVE PROCESSING

In the interactive processing mode the user interacts with the system
through the use of a terminal. The interactive mode can be used for
program development, data entry, information retrieval, and many

other applications where immediate access to the system is required.

The interactive user may create input for a batch job and submit it
to be run in batch mode directly from his terminal. He may then
continue to perform other interactive operations at the terminal
while the system is concurrently executing his batch jobs.

76 1026

PROGRAMMING LANGUAGES

The user may prepare programs in any of the following languages:

BASIC
FORTRAN/IV
COBOL

EPL

BASIC

The EXPRESS BASIC language is derived from Dartmouth BASIC. This
language is designed to be highly interactive. It allows immediate
execution of statements, and includes a simple editing facility.
BASIC is not intended for applications that require significant
amounts of computation.

FORTRAN/IV

The FORTRAN/IV language may be used for programs that require more
computing power than BASIC applications. Because the FORTRAN lan-
guage was designed before the advent of modern interactive facilities
and file systems, programs written in FORTRAN/IV are normally non-
interactive and are typically executed in batch mode.

COBOL .

COBOL was designed as a business application language. Consequently
COBOL provides considerably more file manipulation capability then

is provided with either BASIC or FORTRAN/IV. Like FORTRAN/IV, programs
written in COBOL are normally executed in batch mode.

EPL

EPL is the primary programming language for EXPRESS. EPL is a modern
block-structured programming language providing features such as
dynamic storage allocation and recursiveness not available in the
other programming languages.

EPL provides programmer access to all of the hardware and software
facilities available in the EXPRESS system. Programs may be written
in EPL to run either interactively or in batch mode.

1.4

SOFTWARE COMPONENTS

The following paragraphs describe the primary components of the
EXPRESS Multiprogramming Operating System.

System Builder The system builder is a program that runs
under control of the operating system.
It is used to manufacture a self loading
system generator. The system builder may
also be used for such functions as system
backup and selective file saving.

System Generator The system generator is a stand-alone
program (i.e., it does not run under
control of the operating system). The
generator is a self-loading module on
magnetic tape that creates the disc resident
EXPRESS Multiprogramming Operating System.

Memory Manager The memory manager dynamically allocates
main memory and virtual memory among
concurrent processes.

Dispatcher The dispatcher switches the use of the
processor among concurrent processes.

Input/Output System The Input/Output System schedules and
performs input and output operations and
services device interrupts.

Job and Session The Job and Session Initiator allocates

Initiation a process to a terminal session or batch
job.

File System The file system provides for accessing

of data files and maintains file security.
System Librarian The system librarian maintains frequently
used procedure segments that are shareable

among users.

Logon Program The logon program verifies user identifi-
cation at the beginning of a session.

76 1026

76 1026

Shell Shell is the system command interpreter.
It allows the user to run programs. Shell
also provides an interactive debugging
facility.

Segment Editor The segment editor accepts language
" translator generated object modules as
input and converts them into executable
segments, resolving external references.

HARDWARE REQUIREMENTS

The minimum hardware configuration required to support EMOS and the
programming languages is:

. Central processing unit with 65,536 bytes of main storage.
. 10 million bytes of REFLEX' ™ disc storage.

. LODESTAR = magnetic tape cartridge unit.

. PRISM'™ video display terminal.

. Line printer.

The following additional hardware may be added to the system:

. Main memory up to 1 million bytes.
. Moving head disc storage.
. Fixed head disc storage.
. LODESTAR tape cartridge units.
. IBM-Compatible reel to reel tape units.
. Line printers.
. Card readers.
. Paper tape readers.
. Paper tape punches.
. Local and remote terminals.
7

76 1026

76 1026

CHAPTER 2

SYSTEM ARCHITECTURE

The EXPRESS computer system was designed with the goals of multi-
programming capability and ease of programming.

The goal of multiprogramming requires a mechanism for keeping only
those portions of the active programs in- memory that are actually in
use. This means that a large program must be divided into smaller
units. The two methods normally used for dividing programs into
these smaller units are paging and segmenting. With paging, programs
are divided into fixed size units along physical boundaries. Thus

a single procedure (subroutine) may be split and reside in more than
one page. With segmenting, programs are divided into logical units
on procedure boundaries. Segments need not be of uniform size.

The EXPRESS system uses the segmentation method. This method has
the advantage that the activation and deactivation of a segment
can only happen as the result of a transition from one procedure
to another from a procedure-call or a procedure-return. Thus,

a minimum of hardware is required to recognize these transitions.

Keeping only active segments of programs in main memory requires
that swapping of data and programs be made as efficient as possible.
For this reason, automatic relocation of procedures and data is pro-
vided for in the EXPRESS hardware. When a segment is loaded it may
be placed into any available memory location without requiring any
changes in the instruction addresses that reference the segment.

Not only does automatic relocation mean that segments can be swapped
quickly, it also means that a single copy of a procedure can operate
on many different sets of data. This ability to share procedures
effects a considerable saving in memory requirements.

Another important requirement for multiprogramming is that of mini-
mizing the memory requirements of programs.

Memory space for code is minimized through the design of the instruction
set. The instructions of the EXPRESS system are not of uniform length.
The most frequently used instructions are one byte (8 bits) long.

Data referencing instructions are either two or three bytes long.
Instructions occupy consecutive memory locations independent of word
boundaries; pad bytes are not required for the purpose of word
alignment.

Data space compression is provided for with the EXPRESS system.

Storage for data local to a procedure is automatically allocated

(i.e., assigned physical memory locations) by hardware when the
procedure is activated. The storage is automatically freed on
procedure exit. Thus, the same memory may be used by several proce-
dures. Memory for temporary variables, such as intermediate expression
results, is also automatically allocated and freed by hardware.

Efficient multiprogramming requires that I/O for one or more
processes can occur simultaneously with computations being performed
for another process. In the EXPRESS system all I/O devices may

move data concurrent with CPU activity.

The EXPRESS system architecture is a departure from the traditional
von Neumann type of mini-machine where there is no distinction
between program code and data. In the EXPRESS system, code and data
are separated into distinct (normally disjoint) segments each with
an independent address space (Figure 1). Code segments are non-
modifiable; there are no instructions in the hardware for storing
into the active code segment. The data segment consists of a static
data area and a dynamic data area in the form of a hardware managed
push-down stack.

-10~

76 1026

~<—PL «—SL
INCREASING «—SP -
ADDRESSES
{
ACTIVE INACTIVE DATA
PROGRAM PROGRAM SEGMENT
SEGMENT SEGMENT

Figure 1. Program Environment

A program consists of one or more program segments and a data
segment (Figure 1). A program segment may contain one or more
pProcedures (subroutines). Segments may be of any size up to a
maximum of 65,536 bytes. There is a directory called the Program
Segment Library (PLIB) that contains an entry for each procedure
segment (Figure 2). The PLIB is ‘maintained by the operating system
and is used by the hardware for procedure entry and exit. Each
entry in the PLIB consists of two words. The first word contains
the 16 most significant bits of the 20-bit procedure segment base
address (PB). The four least significant bits of the 20 bit
address are taken by the hardware as zero. The second word of

PLIB contains the 14 most significant bits of the sixteen bit
Program Limit (PL). PL defines the extent of the segment. In
addition to PB and PL, the PLIB entry contains two bits that are
used by the hardware; the Trace bit and the Attention bit. If the
Trace bit is set, the hardware generates a call to the TRACE routine
after each instruction in the segment has been executed. If the
Attention bit is set, an interrupt is generated when a segment is
activated as a result of a subroutine entry or exit. The attention
interrupt is used to implement the least-recently-used overlay
algorithm.

-11-

76 1026

(255)

(1)

(0)

INCREASING ADDRESSES

A

0 13 18 15
L N PROGRAM LIMIT [A]l T
— g PROGRAM BASE
—] A - ATTENTION BIT
T-TRACEBIT

76 1026

Figure 2. The Program Segment Library

Each Program Segment contains a Procedure Reference Table (PRT)

as part of it (Figure 3). The PRT, in turn, contains the entry
address of all the procedures whose entries are 'known' to proce-
dures external to the segment. References to external procedures
are accomplished by specifying the couple: PLIB-number, PRT-number
(PLIBN,PRTN). The PLIBN is used as an index into PLIB to obtain
the PB and PL of the referenced segment. The PRTN is then used

as an index into the PRT of the segment to determine the actual
entry address. The PRT for each segment is created by the segment

editor when the segment is bound.

-12-

ENTRY 1
ENTRY 2

E PROCEDURE REFERENCE TABLE
ENTRY n Y

PROCEDURE n

PROCEDURES

eeecsevccecce

PROCEDURE 2

PROCEDURE 1

< [PB

Figure 3. A Program Segment

\

All addresses appearing in a program are relative. Program

branch addresses are relative to the Program Base or to the Program
Pointer. The Program Pointer is itself a program base relative
address. Data addresses are relative to the Stack Base or to the
Environment Pointer. Because the Program Base and the Stack Base
are distinct, branch instructions and data referencing instructions
containing the same address will actually reference different
physical memory locations.

The data segment is organized into the form of a push-down stack
that is automatically maintained by the hardware (Figure 4). The
stack provides for dynamic storage allocation, automatic recur-
siveness, an automatic and systematic mechanism for subroutine
linkage and argument passing, automatic saving of the environment
at the occurrence of an interrupt, and a simple and efficient

mechanism for switching the central processor from one process to
another.

-13-

76 1026 e

UNUSED PORTION OF THE SEGMENT

TEMPORARY VARIABLES

LOCAL VARIABLES
PARAMETERS

MARK FOR INTERMEDIATE PROCEDURE _ EP

INTERMEDIATE DATA

MARK FOR MAIN PROCEDURE

[

GLOBAL DATA

76 1026

Figure 4. Stack Organization

Each time a procedure is called, a mark is placed into the stack.
The mark contains the information for changing the environment
back to the calling program upon procedure exit. Marks are also
placed into the stack automatically as the result of an interrupt.

The Express System has two types of interrupts; internal and external.
Internal interrupts occur as a result of conditions in the currently
executing process; for example, an attempt to execute a privileged
instruction or an attempt to access data outside the current data
segment. External interrupts occur as the result of an event out-
side the currently executing process; for example, the completion

of an I/O operation scheduled by some other process.

when an external interrupt occurs, the hardware automatically
places a mark in the stack of the current process, thus saving its
environment. Next, the interrupt procedure is invoked. At the end
of the interrupt procedure, the hardware automatically turns control
over to the Dispatcher. This portion of the operating system then
resumes execution of the highest priority process that is now ready.
This may or may not be the process that was interrupted.

-14-

76 1026

Programming ease on the Express system is achieved through the use of
EPL. EPL is an easy to use language that makes effective use of

the hardware facilities provided by the Express system. EPL replaces
the low level assemblers normally used on other machines. All system

software for EXPRESS is written in EPL (this includes the compiler
for EPL).

=15~

76 1026

-16-

3.1

3.2

76 1026

CHAPTER 3

ACCESSING EMOS

USER CAPABILITIES

Information concerning each user of EMOS is stored internally in
the User Capability File. The System Manager controls this file
and may add and delete users. He also assigns the capabilities

to the user.

The user capabilities specify the particular system services
available to the user, and the files that are accessible to the user,
along with the type of file access allowed. For example, a user

may be allowed to access a file containing a program but only for
the purpose of execution, while some other user may be allowed to
modify the same program file.

LOGGING ON TO THE SYSTEM

When a terminal is activated, the system creates a process that
initiates the LOGON program. The LOGON program requests the
individual at the terminal to identify himself. The identity is
checked by looking through the User Capability File. If the
individual is an authorized user, the LOGON process determines the
program that the particular user is to run. This program is nor-
mally SHELL (a general-purpose user command interpreter) or BASIC
(the BASIC language interpreter). However, the User Capability
File may specify that the individual is to run a particular
application such as a data entry program.

THE SESSION

Once a user has successfully logged on to the system, his subse-
quent interaction with the system is called a session. The session
exists until the user logs off of the system. A session may also
be inadvertently terminated. For example, if the terminal is
connected through a communication link, an interruption in the link
will terminate the session. During a session the user may execute
a number of operations allowed by the user's capability list. As
an example, a session with a user having normal programming capa-
bility might consist of the following operations:

1. Run the text editor to create or modify a source program.

2. sSubmit the program created by Step 1 to the background batch
process for compilation and execution.

-17-

76 1026

3. Run the text editor to create another source program.

4. Run the compiler as a session task to compile the program
created in Step 3. '

5. Run the compiled program using the on-line debugging facility.
6. Save the compiled version of the program for subsequent execution.
7. Log off.

Note that the program submitted in Step 2 above may or may not have
been completed before the user logged off the system.

THE SHELL

SHELL is the command interpreter that is normally invoked by the
LOGON programs for users who are doing program development. SHELL
communicates with the person at the terminal by accepting commands.
As a result of the commands, SHELL may cause a series of subtasks to
be executed; e.g., compile, do segment linking, and run the linked
program. In setting up a subtask, SHELL may establish a connection
between the subtask and one or more files. Such connections can be
established as a result of explicit SHELL commands or as a result of
initialization information stored with the program to be run. This
is accomplished by connecting the files to SHELL and allowing the
subtask to share the file. Passing of files from one step to the
next is accomplished by connecting the file to SHELL and allowing
shared access by each subtask in turn.

THE SHELL COMMANDS

SHELL normally accepts commands from the terminal, one at a time,
checks the command for validity, and causes the proper action.
Additionally, the user may create a file containing a list of command
images and instruct SHELL to accept commands from that file.

The type of action taken by SHELL when it receives an erroneous
command depends on whether the command was input from the terminal

or a command file. If the command was input from thé terminal, an
error message is displayed and the user is prompted for another
command. If the command was read from a file, the command along with
an error message is displayed on the message file and the commands

in the command file are ignored.

The following paragraphs summarize the types of commands that
are available under SHELL.

-18-

3.3.1.1

3.3.1.2

3.3.1.3

3.3.1.4

76 1026

Program Execution Commands

The program execution commands allow the user to execute previously
created programs. These programs include the system programs such s
as the Text Editor, the EPL, FORTRAN, and COBOL compilers, etc., as
well as user created programs. .

With the use of the program execution commands, the SHELL user can
invoke the BASIC Interpreter Subsystem.

File Maintenance Commands

This group of commands is used to save and delete files. The files
may be object modules generated as the result of a compilation, or
they may be arbitrary text files. These commands also control file
accessibility rights.

V File Connection Commands

‘These commands are used to connect or disconnect a file to a program.

See Chapter 4 - THE FILE SYSTEM for a description of the concept of
a connection.

Debug Commands

The debug commands provide interactive debugging capability. The
facilities provided with these commands are:

1. Interpretive Execution of Portions of a Program. The facility
makes use of the hardware trace feature. Using this facility
allows programs to be executed one instruction at a time dis-
playing the results of each instruction. Additionally, a program
may be controlled to execute until one of a list of breakpoints
is reached with or without instruction results being displayed.

2. Dumping of Data and Procedures. Any portion of the user's data
segment and/or procedure segments may be dumped.

3. Mark Display. The marks in the stack may be displayed. This
is done to show the dynamic procedure calling history.

4. Expression Evaluation. Expressions can be evaluated. Con-
stants in expressions can be input as decimal or hexadecimal
values, and the result can be displayed in either decimal or
hexadecimal.

-]19-

3.3.1.5

3.3.1.6

3.4

76 1026

Utility Commands

The utility commands provide the following functions:
1. Display current time and date.
2. Show the status of the session or of the background batch

process.

Interrupt Commands

When SHELL is not in command accept mode, certain control characters
can be used to interrupt the current subtask. The interrupts per-
forms the following functions:

1. Enter Debug Mode. This interrupt allows the user to use the
debug commands to inspect the status of a program. He may
then resume execution, resume in interpretive execution mode,
or he may abort execution of the subtask.

2. Interrupt Listing. This interrupt is recognized by certain
System Programs such as the Text Editor. This interrupt causes
the listing operation currently being performed to be aborted.
However, the execution of the program continues.

USER CODED COMMAND INTERPRETER

EMOS provides the user with the ability to write his own command
interpreter. 1In fact, SHELL is a user level program. The difference
between SHELL and other user programs is that SHELL is invoked by
LOGON. If the user wants to provide a different command interpreter,
say, X, he may do so by writing the Program X. This program is then
entered into any (or all) accounts of the user capability file as

the program to be activated by LOGON.

-20-

4.1

76 1026

CHAPTER 4

THE FILE SYSTEM

One of the major components of EMOS is the set of intrinsic proce-
dures referred to collectively as the file system. The file system
allows the user's program to perform I/O at a logical rather than a
physical level. This means that the user need not concern himself
with the physical characteristics of I/0 devices.

CONNECTIONS

Within a program, files are referenced indirectly by using a file
name. This file name is actually the name of the control block

that is used by the file system intrinsic procedures to coordinate
and control the I/O activity. The control block contains information
about the physical device and about the buffers associated with the
device.

Prior to performing I/O activity on a file, there must be an asso-
ciation made between the file name and an actual data set. This
association is called a connection.

The connection can be made either before the program begins execution
through the use of SHELL commands, or can be made by the program it-
self after execution begins. Each time a program is run, a given
file name can be connected to a different physical data set. As an
example, an inventory update program may refer to the file that it
processes by the file name 'UPDATEFILE'. Then each time the program
is run it may request the operator to name an inventory data set

to be updated. On the first run the user may specify 'PARTSINVENTORY'
as the data set name and on the second run he might specify 'EQUIP-
MENTINVENTORY'. In each case the program calls upon the CONNECT
system intrinsic passing the actual data set as a parameter. Then
the program uses the name 'UPDATEFILE' to perform all file I/0O
operations.

CATALOGED FILES

The names of all permanent disc files are maintained in the System
Catalog. The Catalog is an hierarchically structured directory.

A directory is a special file whose keys are a data set and whose
records are data set descriptions.

-21-

76 1026

The description (location on the disc, etc.) of the root of the
directory is known a priori to the file system connection intrinsic.
To locate a file cataloged in another directory, a path name

naming in order the directory nodes required to reach the required
file, must be given.

When a user logs on to the system, the path name for the directory
of his 'private' files is made known to SHELL. Thus, to reference
a user's private files, only the last name in the path is required
in order to form a connection to the file.

The user need not be aware of the internal organization of the

catalog. System services are provided to catalog files and delete
files.

FILE ACCESS AND SECURITY

In order to access a cataloged file, the user must:
1. Know the name of the file.

2. Know the path name to the directory in which the file is
cataloged. 1In the case of the user's private files, the path
name to his directory is known to SHELL and need not be known
to the user.

3. Have the authority to perform the type of access requested.

File access security information is stored in the file descriptor
and is checked by the connection intrinsic. If the requesting pro-
gram does not have the authority to access the file, the connection
will not be made.

The account under which a file is created is termed the owner
account. Only the owner account and the System Manager account

are permitted to alter the access information contained in the file
description.

The owner can control access privileges for three classes of user
accounts.

1. The owner's account.

2. A list of accounts, specified by the owner.

3. All other accounts.

The owner may specify the same or differing access privileges for
each class. For most files, the owner account (Class 1) will have
total accessing privileges and the other classes will be denied any

access to the file.

-22-

The permitted accesses are based on the fundamental actions of:

Read Read data from a file

Append Add new records to a file at the end

Write Change the contents of a file, including record deletion
Execute Execute a program contained in a file

Probe ' Search through a directory

Alter Modify a directory

DISC FILE ORGANIZATION

Each file on the disc consists of two components, data records

and record indexes. Each index points to a single data record and
there is exactly one index per record. There are two distinct index
types: position and key (see Figure 5). The two index types result
in two distinct file structures; positional and keyed. A positional
file record consists only of data, a keyed file consists of a key
and data; both have indexes to speed access.

KEYS DATA
(optional)
255 bytes 65535 bytes max
max

76 1026

Figure 5. Disc File Structure

23~

Each file structure has an access method for sequential trans-
action ordering and for random transaction ordering. Either file
structure allows records of arbitrary length. Records may be
inserted, deleted, expanded, or contracted at any point in the file.
The current record position may be altered forward or backward at
any time. In particular, forward space, backspace, position-to-
start, and position-to-end are allowed.

Indexes are part of every file. They are visible only to the file
system intrinsics and are removed from the user's concern. Also
record blocking and file space allocation are removed from the
user's concern. Files grow and shrink as records are added and
deleted. The user never need concern himself with space allocation
for his files.

ACCESS METHODS

After a connection is established, access to data may be by any of
four methods; serial, direct, collated, or content. For connections
to data sets on devices other than disc, only serial access is per-
mitted. (See Figure 6).

INDEX ORGANIZATION

POSITIONAL KEYED
]
<
|_
2
g Serial Collated
TRANSACTION 8
77
ORDERING =
(@]
2 Direct Content
<
o'

Figure 6. Access Methods

-24~
76 1026

4.6

76 1026

SERIAL ACCESS

Serial accessing applies to positional files on disc and to files on
sequential devices such as card readers, printers and magnetic tape.

When positional file records are written, an index to the record
is created. When records are retrieved from a positional file using
serial accessing, they are retrieved in positional order.

DIRECT ACCESS

Any record in a positional file may be directly accessed by specifying
a logical record number. The logical record number is implied by

the position of the index entry. Insertions and deletions are allowed
for positional files. These operations alter the logical record
number of records following the position of the insertion or deletion.

COLLATED ACCESS

Records in a keyed file may be thought of as being in sequence by
key name. With collated access the next record retrieved is the
one whose key is next in the collating sequence. The collating
sequence used to define key order is the ASCII sequence.

CONTENT ACCESS
Records in a keyed file may be accessed by key name. If there is no
record with the given key name, the file is positioned to the first

record whose key is higher in the collating sequence and no record is
retrieved.

FILE SYSTEM COMPARISON

The Express File System offers accessing capability comparable to
that of large data management systems. Because the IBM OS and
IBM VS system are well known, a comparison with these systems is
made here.

IBM OS data sets have four possible organizations:

1. Sequential

2. Indexed sedquential

3. Direct

4. Partitioned

-25-

IBM VS supports two additional data set organizations:
1. Keyed sequenced
2. Entry sequenced

Figure 7 compares IBM organization and access method with Express

equivalents.
IBM IBM Access

Organization Method Express

Sequential BSAM, QSAM Serial access on a posi-
tional file

Indexed BISAM, QISAM Collated or content access

sequential on keyed file.

Direct BDAM Direct access on a posi-
tional file

Partitioned BPAM A directory of positional
files

Entry Sequenced| VSAM Positional

Key Sequenced VISAM Keyed

Figure 7. Comparison of Access Methods

IBM access method names are preceeded by letters to indicate the
access technique. B for basic, Q for queued, and V for virtual.
Basic accessing involves no system record blocking and no I/O
event synchronization, meaning that the user must provide these
operations in his program. Queued accessing provides record
blocking and I/O synchronization by the system. Virtual access
allocates and moves data in units of virtual memory pages.

Express I/0O to non-disc files is serial and supports all features

of IBM sequential I/O to such files. ‘Express disc file I/O supports
most IBM features and is less cumbersome. Buffering, space allocation,
blocking, addressing, and reorganization are handled by the system
rather then requiring user involvement.

-26—~

76 1026

76 1026

IBM disc space must be allocated by the user in contigquous blocks
before using a file. The Express File System allocates space
dynamically as it is needed. IBM Job control language requires the
user to be concerned with physical block sizes. Express allows

a record to span many blocks and performs all blocking of logical
records.

Express positional index files combine features of IBM sequential
and direct data sets. Records may be inserted, deleted or randomly
selected on the bases of record number. Records may be read in
reverse order which is not possible with IBM methods. The Express
user works with logical record numbers. The file system handles
actual disc addresses. IBM methods require the user to deal with
disc addresses, making insertions difficult.

-2 =

76 1026

-28-

CHAPTER 5

USER PROGRAMS

This chapter describes the mechanisms for creating and executing
user written programs. The discussion applies to EPL, FORTRAN,
and COBOL programs. The maintenance of BASIC programs is accom-
plished directly by the BASIC interpreter. For details see the
"Express BASIC Interpreter Reference Manual".

CREATING A LOAD MODULE

Several steps are required to prepare a program for execution.
The first step is the compilation of the source program. The
compiler generates output called object modules. These object
modules are specially formatted files that are used as inptt to
the Segment Editor. Object files are normally cataloged in the
user's directory.

The next step takes each of the object modules that comprise the
user's program and converts it into a load module. A load module
consists of one or more code segments and an encoded set of in-
structions for creating a data stack. The conversion from object-
module to load module is performed by the Segment Editor. The
primary function of the Segment Editor is to resolve all external
data and procedure references and to create a procedure reference
table for each segment. The load module, created by the segment
editor, is also normally cataloged in the user's directory.

Once the load module has been prepared, it may be executed at any
time by using the SHELL run-command. At this time, appropriate
connection commands may be given to override possible default
connections defined in the load module. When the run-command is
given, the load segments are moved from the user's file into virtual
memory. At this time, references to system library procedures are
resolved and the library procedures are also moved into virtual
memory, if they are not already there. The result is a program
that is scheduled for execution based on its priority.

-29-

76 1026

76 1026

THE SEGMENT EDITOR

The Segment Editor's primary function is to combine compiler
generated object modules into a program module. This is

accomplished in the following way. The user specifies the name of
the main program. He may also specify any number of directories

to be searched. If no directories are specified, only the user's
directory and the system public directory are used. The Segment
Editor reads the object module converting it into program module
form. If this module references any other object modules, these

are searched for in the directories specified by the user, and in the
order specified. This process continues until all the referenced
object modules (except System Intrinsics) have been bound into the
program module. System Intrinsics are not bound into a user segment.
Instead, they are bound into public, shareable segments.

Commands are provided to the Segment Editor by the user so that

the user may segment the program so as to improve its run time
efficiency.

-30-

76 1026

CHAPTER 6

THE SYSTEM KERNEL

The Kernel is the minimum part of EMOS required to run programs.
The components of the Kernel are:

1. A dispatcher that switches the use of the processor among
processes.

2. A virtual memory swapper that switches the use of main '
memory among processes.

3. The device initiate and interrupt routines.

4. The time-of-day clock manager that organizes and signals time
events.

5. A job/session initiator that allocates a process to a terminal
session or to a background batch job.

6. A set of 'operations' that accomplish process synchronization,
process communication, and resource management.

7. A set of 'requests' that provide a protected interface between
slave mode programs and master mode services.

8. A set of intrinsic routines that support the file system.

PROCESSES

A process can be thought of as a program in execution. A process
is said to be active if it has not yet terminated its execution.
Many processes may be active simultaneously, although at any

instant only one process can be running.

one whose instructions are being executed by the CPU. The design
of EMOS is process oriented and the Kernel deals exclusively with

processes.

-31-

The running process is the

A process consists of a set of private data spaces, the stacks,

and active process descriptor blocks. When the process is not
running, information about which code segment and which instruction
in that segment will next be executed, is contained in marks in

the stacks for the process. When the process is running, this
information is contained in the hardware registers of the CPU. Note
that code segments are not owned by a process, but are merely used
by them. This is the reason that code may be shared among processes.

When a terminal is activated, a process is created whose function
is to communicate with the terminal. This process initially runs
the LOGON program which then proceeds to communicate with the
terminal user.

When users write programs they need not be aware of the process
structure. Their programs cannot exercise control over it. A user
may write a program being completely unaware of the multiprogramming
aspects of the system. Subsequently, this program can be shared

by many users simultaneously.

. Within EMOS, processes are logically organized in a tree structure.

76 1026

This means that a process may have only one immediate father (the
creator of the process) but it may have any number of sons (processes
created by the process).

There exists one process which is the root of the process tree.
This process is called the grandfather process. (AR

When EMOS is loaded into the Express Computer by the IPL button, the
only process running is the grandfather. This process immediately
creates a set of system service processes, a process for each 1I/0
device, and flnally a process that monitors terminals and batch
input devices. This latter process notifies the grandfather when a
terminal or batch input device is activated.

TASKS

The grandfather process creates two types of processes: system
service processes, and user service processes. System service
processes do not create son processes. User service processes may
create one or more son processes. These son processes are referred
to as tasks. A task may be considered to be-a co- -routine of its
father in the sense that when the son task is making progress, its
father cannot make progress and while the father tasks are making
progress, the son cannot make progress.

-32-

PROCESS STATES

Processes once created exist in one of several states:

1. The Running State. The process whose instructions are currently
being executed by the CPU. At any instant in time only one
brocess can be running.

2. The Ready State. A process is ready if it could run given the
CPU.

3. The Wait State. A process places itself in the wait state if
it requests a resource not immediately available (e.g., a
record from an I/O device).

4. The Suspended State. A process may be suspended from execution
by its father. Suspended processes can only be reactivated by
their father.

PROCESS SCHEDULING

A primary function of the Kernel is to dispatch ready processes. This
is accomplished by placing the ready process descriptor block in a
particular ready queue based on the priority of the process. The
dispatcher then runs the process at the head of the highest priority
queue. The descriptor block contains a pointer to the particular task
to be run.

Once a process is running, it will continue to run until one of four
events occurs:

1. The process completes execution.

2. The process places itself in the wait state by requesting an
unavailable resource (normally an I/O request).

3. The time quantum allocated to processes on this queue has been
used. The process then moves to the front of the queue. Some
queues have infinite time quantums. Processes assigned to such
queues are completed in FIFO order.

4. A process in a higher priority queue than that of the currently
running process, becomes ready. This can happen as the result
of an external interrupt.

-33-

76 1026

6.4

6.4.1

76 1026

KERNEL LEVELS

There are two levels of abstraction in the Kernel. Each level is
identified by its list of primitives. Level 1 primitives are called
‘operations'. Level 2 primitives are called 'requests'. The user
is normally not concerned with these levels of the Kernel. User
programs normally interface with the system at a higher level; i.e.,
the File System intrinsics.

LEVEL 1

The objects that exist at this level are processes semaphores
(process synchronization queues), interprocess message queues, and
I/0 buffers. Level 1 'operations' at this level run in master mode
since they must do absolute addressing (reference data outside a
stack) and execute other master mode instructions.-

LEVEL 2

The objects that exist at this level are tasks, connections, programs,

and files. The 'requests' manipulate these objects in order to
implement the File System intrinsics and provide other user program
services.

-34-

Microdata Corporation

17481 Red Hill Avenue, Irvine, California 92714
Post Office Box 19501, Irvine, California 92713
Telephone: 714/540-6730 - TWX: 910-595-1764

PRINTED IN USA 771026A

	0001
	0003
	0004
	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	xBack

