MICRODATA

EZ(;L&S COBOL

INTERNAL DESIGN SPECIFICATION

~

'

/° CALIFORNIA SOFTWARE PRODUCTS, INC.
s N

H : S
\\ 525 NORTH CABRILLO PARK -DRIVE, SUIT?/;OO

\, 7 ~ N -
SANTA ANA, CALIFORNIA 9270I

7
v

- OCTo8Ee ;1979

CAuFoer'Nc~A-~'soF'rWAng:'ﬂ00»
m - thel
> s T EE

S5 ot 1

Table of Contents

Chapter ‘ Page.
1 INTRODUCTION - . - - - * = e .o - - - - 1- 1
2 PRODUCT OVERVIEW . v« v ¢ ¢ o o « « o & 2-1
2.1 CompileX . . ¢« v & v v ¢ o o o o o o 2-1
2.2 Generated Code & ¢ ¢ ¢ ¢ o 2-1
2.3 Implementation Language « . 2-1
3 COMPILER DESIGN . . ¢ o o o o o « o =« 3-1
3.1 Compiler Interpreter Module 3-1
3.1.1 overview ¢ . 4 v 4 o o o o o . 3-1
3.1.2 ‘Basic Interpretive Data Structure . . 3-2
3.1.3 MOM Instruction Format « 3-8
3.1.4 ‘MOM Instruction Repertoire Description 3-9

3.1.4.1 Operand TYPE « v« v v v« o o o o o« o o 3-9
3.1.4.2 MOM Instruction Descriptions 3-11

3.2 Stack Management Concept 3-24
3.3 Stack Descriptions « . . 3-27
3.3.1 ACC Stack . & ¢ v ¢ ¢ v e o o o o o @ 3~-27
3.3.2 Array Stack . . ¢ ¢ ¢ ¢ 4 e e o o o @ 3-28
3.3.3 Copy Replacing Stack . . . v « « « o & 3-29
3.3.4- Data Stack « . . « « .« . . . 3-30
3.3.4.1 Data-name, parse ¢« o « + o o . 3-30

3.3.4.2 Data-name, after allocate phase . . . 3-34
3.3.4.3 Condition-name (level 88 item) 3-35
3.3.4.4 Condition-name switch status 3-36
3.3.4.5 Index-name (INDEXED BY) . . v « o« . -« 3-37
3.3.4.6 Report ilriter Items 3-38

3.3.4.6.1 Report Croup (01 Level in Report
Section) 3-38

3.3.4.6.2 Non Report Group . « « =« =« =« o o o o . 3-40
3.3.4.6.3 Control Save Item - Report Writer . . 3-41

CALIFORNIA SOFTWARE PRODUCTS, INC.

Chagter

3.3.5
3.3.6
3.3.7
3.3.8
3.3.8.1
3.3.9
3.3.10
3.3.11
3.3.12
3.3.13
3.3.14
3.3.15
3.3.16
3.3.17
3.3.18
3.3.19
3.3.20
3.3.21
3.3.22
3.3.23
3.3.24
3.3.25
3.3.26
3.3.27
3.3.28
3.3.29

©3.3.30
3.3.31
3.3.32
3.4
3.4.1
3.4.2
3.4.3

S
e

Data Debug Stack .
Data Line Number Stack .

DECA Stack . . .
File Stack . . .

Report Writer group - RD

File Base Stack

.

Filler Stack

Forward Reference Stack
Library Ref Stack

Literal Stack .
Literal Optimize
Messenger ‘Stack
Operator Stack .
Polish Stack . .
Procedure Stack

Qualification Stack

Renames Stack .
Report Stack . .
Script Stack . .
Segment Stack .
Sta Debug Stack

Sta Polish Stack
Sum Upon Stack .
Temp Stack . . .
Triad Stack . .
True Label Stack

False Label Stack

USE Section Stack

Symbol Table . .

Reserved Word Table

Compile Work File Descriptions

Data Text (DT-Text)
Encoded Procedure Text, EP-Text
Optimized Procedure Text, OP-Text

ii

.

N7

Page

. . . 3-42
. . . 3-43
. . . 3-44
. . . 3-45
. . . 3-48
.« . 3-49
.« . 3-50
. .. 3-51
. - . 3-52
. . . 3-53
. . . 3-54
.« . 3-55
. . . 3-56
.« . 3-57
.« . 3-58
.« . 3-60
. . . 3-61
. . . 3-62
. . . 3-63
. . . 3-66
. - . 3-67
. . . 3-68
. e . 371
.. . 3-72
.. . 3273

. . . 3-75
. . . 3-76
. . . 3-77
. . . 3-78
. . . 3-81
. . . 3-81
. . . 3-88

. . 3-98

CALIFORNIA SOFTWARE PRODUCTS, INC.

3.4.4.1
3.4.4.2
3.4.5
3.5

3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6
3.6.7

4.1

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.1.8
4.2

5.1
5.2
5.2.1
5.2.2
5.3

-~ -~

5.3.1

Cross Reference and Diagnostic
Text . . ¢« « ¢ ¢ ¢ ¢ o o

Cross Reference Text, XR-Text
Diagnostic Text, ER-Text . . .
RW-Text+ o ¢« + . .
Compilation Options
Compiler Output
OVerview . « « +o o o o o « o« &
Source Listing
Diagnostics Listing
Object Listing
Dataname Map Listing
Procedure Map Listing ', .« . .
Cross Reference Listing . . .

Compiler Phase Descriptions .

Compiler Organizations
Phase 0 ¢ ¢« . . .
Phase

- - - . - 3 - - - . .

Phase e o e o o s o o o o o
Phase
Phase

Phase

A U b W N
.
.
.
D
.
»
D
.
.
.

Phase e o o o o o o o o o o

Phase 7 .« ¢« ¢ v v ¢ o o o o« .
Compiler External Flowchart .

Compiler Generated Object Code

Ooverview « &« o o o o .
Generation Sequence
Generated Order
Calling Sequence Conventions .

External References Naming Conven

Object Program . . . « . « « .

iii

.

Page

. . . 3-99

. . . 3-99

. . . 3-100
. . . 3-101
.« . . 3-104
. - . 3-105
. « . 3-105
. . . 3-105
. « . 3-105
. . . 3-106
. - . 3-106
. -« . 3-106
. . . 3-106

o o 5-1
o o o 5-1
- . . 5-1
o« o 5-1
. . . 5-2

CALIFORNIA SOFTWARE PRODUCTS, INC.

Chapter

5.3.2
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.5.1
5.4.5.2
5.4.6
5.5
5.5.1
5.5.2
5.5.2.1
5.5.2.2
5.5.2.3
5.5.2.4
5.5.2.5
5.5.3
5.5.3.1
5.5.3.2
5.5.3.3

5.5.3.3.1
5.5.3.3.2

5.5.3.4

5.5.4

5.5.4.1
5.5.4.2
5.5.4.3
5.5.4.4
5.5.4.5
5.5.4.6

Runtime Library
Generated Data Formats . . .
File Information Table, FIT
Data Name Descriptor, DD . .
Literals ¢ « « . .
Array Subscript Descriptor .
Edited Data-name Descriptor,
Alphanumeric Edit Table . .
Numeric Edit Table
Index-name Descriptor, XD .
Procedure Code Generation .
Summary . « o ¢ ¢ ¢ o & o .
Arithmetic
ADD . . . ¢ ¢ e e ¢ s e o
DIVIDE .« . ©¢ ¢« v o o o o o =
MULTIPLY . .« «v o o ¢ o o o o
SUBTRACT . . +. ¢ ¢ ¢ o o o« &
COMPUTE . . . ¢ o « o s o &
Conditions
Class Condition
SIGN Condition
Relational Condition
Alphanumeric
Numeric « . .

An Example of Code Generated
Statement

Procedure Branching . . .

Jump Exit Table (JET) . . .
Segment Interface Table (SIT)
GO TO ¢ ¢ o ¢ o ¢ o o o = =
GO TO DEPENDING ON
ALTER . . v ¢ ¢ ¢ & o o o =
PERFORM « « .« .

iv

5-3
5-4
5-4
5-8
5-10
5-11
5-13
5-14
5-15
5-18
5-19
5-19
5-22
5-22
5-23
5-24
5-25
5-26
5-27
5-27
5-29
5-30
5-30
5-31

5-34
5-35
5-35
5-36
5-38
5-39
5-40
5-40

CALIFORNIA SOFTWARE PRODUCTS. INC.

5.5.6.1
5.5.6.2
5.5.6.3
5.5.6.4
5.5.6.5
5.5.7
5.5.7.1
5.5.7.2
5.5.7.3
5.5.8
5.5.8.1
5.5.8.2
5.5.8.3
5.5.8.4
5.5.8.5
5.5.9
5.5.9.1
5.5.9.2
5.5.9.3
5.5.9.4
5.5.9.5
5.5.9.6
5.5.9.7
5.5.10
5.5.10.1
5.5.10.2
5.5.10.3

T i = s L T TR
T By
U - R
o= CTTUSTR IR
- ER— 1 gz o8
j= Sl A S HT e,
“

EXIT 2PR0GRRM
STOP . . o o « o o
Data Manipulation .
MOVE « .
Conversions
INSPECT . ¢ « « « o«
STRING . . ¢« ¢ o o o«
UNSTRING . + « « « =«
Special INPUT/OUTPUT
Accept « o .
DISPLAY =«
STOP 'literal' . . .
Sequential I/0 . . .
CLOSE . . . « « « =«
OPEN « « « =«
READ ¢« &« o ¢ o o o =
REWRITE . . « o « =«
WRITE
Relative I/O0
CLOSE o o o =«
DELETE . « .« « « « &
OPEN . . .« « « o « =
READ . . « o ¢ o « =«
REWRITE
START . . « o « « =
WRITE . . « « « « =
INDEXED I/O
CLOSE . .« « « « « =
DELETE . . . « « .« &
OPEN . . .« « « « +« =

2o gt
Pasie
. - Tk

« . . 5-44
e o . 5-45
- o . 5-46
. - e 5-46
.« . . 5-4¢
. o 5-51
e o o 5-52
. . . 5-53
e o . 5-54
.« . . 5-54
.« o o 5-56
o o 5-56
. . . 5-57
. o 5-57
.« o . 5-58
o« o . 5-58
.« o . 5-58
« o . 5-59
.« e . 5-60
. o 5-60
. - . 5-60
.« o . 5-61
.« o . 5-61
. o - 5-62
e o 5-62
.« o . 5-63
« o 5-64
.« . . 5-64
o o = 5-64
.« e 5-64

CALIFORNIA SOFTWARE PRODUCTS, INC.

Chaéter

5.5.10.4
5.5.10.5
5.5.10.6
5.5.10.7
5.5.11

5.5.11.1
5.5.11.2
5.5.12

5.5.12.1
5.5.12.2
5.5.12.3
5.5.12.4
5.5.12.5
5.5.13

5.5.13.1
5.5.13.2
5.5.13.3
5.5.14

5.5.14.1
5.5.14.2
5.5.14.3
5.5.14.4
5.5.15

5.5.15.1
5.5.15.2
5.5.15.3
5.5.15.4
5.5.15.5
5.5.15.6
5.5.15.7
5.5.16

5.5.16.1
5.5.16.2

READ « & o . ..
REWRITE . « v v o o o o o .
START . ¢ ¢ v v ¢ ¢ o o o .
WRITE ¢« « « « o <
Subscription/Indexing . . .
Subscript
IndeX « v « ¢ o e e o4 . . .
Table Handling
SEARCH . « . ¢ ¢ ¢ &« ¢ ¢ o &
SEARCH ALL . ¢ ¢« & « & o o =
SET v ¢ & o o o o o o o o &
SET UP/DOWN . . + ¢« « « . .
OCCURS DEPENDING
ANS Debugging
Procedure-name
Identifier (data-name) . . .
File-name
IBM Extensions
EXAMINE « . .
EXHIBIT . . ¢ ¢ v o« o o o .
TRACE . . ©v ¢ ¢ o ¢ o« o & .
TRANSFORM +« o « . .
Sort/Merge
Sort Control Block, SCB . .
Sort Key List
RELEASE . . ¢ ¢ ¢ o o o o
RETURN « <« ¢ ¢ ¢ + ¢ « o o .
SORT/MERGE . .« « « . . .« . .
Input Procedure of Sort . .
Output Procedure of Sort . .
Report Writer
Operations
Report Writer System Overview

vi

.« . . 5-65
.« . . 5-66
. o . 5-66
. . . 5-67
- . - 5-68
. . 5-68
e . . 5-68
.« . . 5-69
o o . 5-69
. . . 5-71
.« o . 5~-73
.« . . 5-75
. . . 5-76
e o 5-79
.« .o . 5-79
e .o . 5-83
. o 5-84
.« o . 5-86
.« o . 5-86
- . . 5-86
. . . 5-87
. o . 5-88
. . . 5-89
. - . 5-90
e o . 5-91
e o . 5-92
.« . . 5-93
e o o 5-94
.« o . 5-94
o o . 5-95
- o . 5-96
e e . 5-97
- o - 5-99

CALIFORNIA SOFTWARE PRODUCTS, INC.

Chapter Page

5.5.16.3 Report Control Block, RCB 5-100
5.5.16.4 CH, CF & Reset Tables 5-101
5.5.16.5 Detail Flag Table ¢ ¢ v ¢ v o« o . 5-102
5.5.16.6 Code Generation . « ¢ ¢ o o « o o o & o« = 5-103

vii CALIFORNIA SOFTWARE PRODUCTS, INC.

INTRODUCTION

he—purpose of this spe01f1catlon is to prov1de—a‘wof%:

ing document for the MICRODATA COBOL 1mp1ementatlon.

It 1s 1ntended _to be’ expanded at later date.and used aé

interEnce. - j

am ntenanpo manuuT ‘ R JUNN

-

Chapter 1 covers the deSLgn of the product and some of

- the ratlonale behind the selectlon of de51gn approach

Chapters 2 and 3 deal in detall with the internal intxi-
cacies of the compiler: Compiler Data Structure, MOM -
Instruction Repértoire, Stack Management Techniqué, etc.
.'.Chaptér 4Adescribés the seven phaseé of the compiler.
Each pHase'is described chronologically and work files

are discussed as the compiler creates or first references
then.

Chapter 5 describes the generxated object code and its

interface with various tables at runtime.

Chapter 6 is reserved for the runtime library descriptions.

CALIFORNIA SOFTWARE PRODUCTS, INC.

PRODUCT OVERVIEW

2.1 Compiler
The compiler is multiphase, i.e., modularly coded by
compiler function and COBOL language division. It is
also multipass in that it reads the user's program in
its original and subseguent encoded forms morce bthan
once. It utilizes random access devices for the storage
of encoded text streams. The compiier will translate
1974 ANS COBOL language statements into machine language
instructions which will be output in the form of a
relocatable object module which can then be loaded by the
system ioader along with selected runtime.I/O and library
- routines for subsegquent execution of the user task. The
compiler outputs listings of the user program along with

various debugging aids to help the user in getting the
program operational.

2.2 Generated Code (1$Paa¢¢

Due to the nature of the MIERODARA. computer, it is not
considered practical to attempt to generate in-line code

for the majority of the functlonsipf the COBOL language.
computer is not

The primary reason is that the MSCROD

a business oriented computer; that is, decimal arithmetic

and string manipulation must be done with software. Because
of this, the design of the COBOL object system includes library
routines for performing most functions and compiler generated

code consists of a series of calls to these routines.

2.3 Implementation Language

A special interpretive software development language,

K MOM (Macro Operation Module), 13 ~used in the develop-
\\‘\ ment of the compiler.

QwAV
S ﬂé&/&t Ay gt poicric
! .
(g7 oﬁ/‘/ D s e ﬁ’”/ % r'r;:;”"-‘;ﬁ"r oo z./ i
L'” A fiort ﬁzkvﬂffv?, S R
2-1 ‘

< /M'\ 4] (’\)
CALIFORNIA SOFTWARE PRODUCTS, INC.

The MOM statements are similar to any Macxo type
language with one basic exception: instead of

being expanded into in-line code they are executed
M (J‘;{ C’/Z’ OL ey D
by gn 1nterpret tha decodes them “and calls the

appropriate subroutine to perform the MOM function.
This approach permits a substantial saving in main
memory to be realized over standard assembly lan-—

guage programming approaches.

Another advantage to MOM instructions is that they.

are designed to operate on dynamic stacks. Thus,

their use allows most of the needed tabular 1nformatlon
during compllatlon to be kept in main memory.' Th}s
reduces the use of secondary storage for passing of
information from phase to-phase and the attendant
encoding and decoding of that information. The use

of stacks not only speeds up the overall compilation,.
but permits the spilling of tables to disk when main
memory becomes full. This means the user can compile

a sizable program with a limited amount of memory.

One final advantage to MOM coding is that it is clearerxr.
than assembly language coding. Therefore, it is easier
to code and debug, and usually easier to understand

the code of other programmers. -

CALIFORNIA SOFTWARE PRODUCTS, INC.

While there is some overhead for the decoding of
each MOM the number of instructions performed
during the entire compilation is actuélly fewer
than with conventional assembly language-coding-
This occurs because: .

- © Stack management eliminates unnecessary
reading, writing, encoding and decoding
of text streams. '

° The powerful nature of MOMS,.(avérage

 one MOM instruction equals 20 assemblf

1an§uage instructions) greatly xeduces
the nuﬁber of overlays xequired in the .
compiler. This translates to fewer
loads, less swapping, less interface
communication, fewer interface problems
and ultimately fewer complaints from
users when the product is released.

CALIFORNIA SOFTWARE PRODUCTS, 1™C.

3. COMPILER DESIGN

3.1 Compiler Interpreter Module

3.1.1 Overview

The MOM (Macro Operation Module) Interpreter is a group
of routines and an interpretive control loop that simu-

lates a hypothetical "compiling machine.,® The core of

the interpreter is the control loopiwhich interprets
— o - Lo

' MOM instructions, executes them, and-maintains.the MOM
pseudo-instruction counter. The "MOM machine,"” is a
e e o o . R e bt

stored program machine with single-address instructions.
The primary difference between the "MOM machine"” and a
conventional one is the organization of memory into a
number of single memory locations plus a number of
named stacks whose lengths vary dynamically during

compilation.

A stack is a last-in-first-out memory in which the value
most recently stored in the stack (the "Top") may be
removed, exposing the valuve next most recently stored,

and so on. Stacks are dyngmically allocated and, if
necessary, spilled to auxiliary storage and fheir contents

may be searched, added to, or entirely deleted.

The Work Stack, which is the principal operating element
of the MOM machine, is special in that many MOMs address
the top element implicitly, in addition to an explicit

The Exit Stack contains subroutine return points

operand.

as well as the calling program's Answer Box setting.

CALIFORNIA SOFTWARE PRODUCTS, INC.

The Answer Box is a two-position switch’ which is set by

some MOMs and tested by others.

Control pseudo—lnstructlons deserve special attention

r____./’_——'-’" At <ot
here. The jump MOMs (J, JS, QJS, etc.) alter the MoM

T ———
location counter. J (jump) merely resets the location

counter. JS (jump to subroutine) and QJS'(query jump to
subroutlne) perform the same function but in addltlon
they create a link entry on a push-down stack called the
Exit Srack. The execution of PX (pop and exit) causes
the most recent entry on the Exit Stack to pop up and it

is used to reset the MOM location counter.

3.1.2 Basic Interpretive Data Structure

Inherent to the design and uﬁderstanding of the MOM
interpreter are basic data structures either referenced
as MOM instruction operands directly, oY maintained by
the various MOM subroutlnes.

1. Work Stack
The top location of the work stack is referred
to as W0, the next to the top location is referred
to as Wl and so on. Many MOMs refer implicitly
to WO. Two operations basic to many MOMs are
"fetcﬁ" and "pop". Fetching is the operation of
extending the work stack by one location, so that
what was WO becomes W1, etc., and copying the
value fetched into the work stack as the new
value of W0. Popping is the operation of reducing

3-2

CALIFORNIA SOFTWARE PRODUCTS, INC.

the length of stack (by one or by some stated
amount). Popping one location from the work
stack makes what was Wl into W0, etc. This oper-
~ation is what is referred to when the term "pop"

is ﬁéed without qualification.

- MOM Subroutines and the Exit Stack'

Although only a minority of MOM subroutines are .
actually recursive, Moﬁ coding is usually done

in a way to facilitate recursion, since it some-
times,happenstthat a routine written to be non-
recursive becomes recursive as a result of modifi-
cation of prbgram specifications or implementation

strategy. Thus, all MOM subroutine calls are
potentially recursive. The effect of the jump to
subroutine MOM (JS) is to lengthen thé exit stack
by one gﬁﬁiﬁgga and store there the location of
the MOM'following the JS. The "exit" operation
retrieves this return point from the exit stack
and reduced the length of the exit stack by one
Qocstion

pesition.

Answer BoX

The Answer Box is a two-position switch set by HOMs
whose mnemonic names begin with Q. It affects the
execution of MOMs whose mnemonic names end with :T
and :F suffixes. & MOM with a :T suffix, such as
J:T will be executed if the Answver Box is set True
and performs no operation if the Answer Box is set

False. The suffixes :T and :F may only be appended

3—-3 CALIFORNIA SOFTWARE PRODUCTS, INC.

7 ‘
to Conditional MOMs. * The Answer Box 1s saved

on the exit stack so that each subroutine level
has its own answer box. This means that ordinarily
invokiné a subroutine does not affect the Answer
Box in the calling routine. The exception is a
subroutine which is called by the QJS MOM and some
XEC routineé which are expected to set tﬁe Answer
Box.

4. String
Each COBOL symbol'is formed in the string.area by

el

7QQ or QQA MOM or an XEC routine and is in packed

° : . .
bias 38 internal code. The symbol is hashed from
\ .

the internal code and the hash is used as the argu-—
ment for reserved word recognition and also for
COBOL source symbol collection.

5. Common
The Common area is used primarily in conjunction
with constructing and’then registering of a group
: into'a stack. The'Common area is referenced
implicitly by the REGF MOM and explicitly by others.
6. Field Ny
The Fielad area'isAused primarily to implode from
or explode into the information. It is referenced

implicitly by IMPL and EXPL MOMs and explicitly

by others.

CALIFORNIA SOFTWARE PRODUCTS, INC.

7. Internal Representation of COBOL Words

-

Valid COBOL word characters are assigned values in

the range 0 through 37 as follows:

0 Blank . .
1 , Hyphen
2 - 11 Numeric Characters (0 to 9)

12 - 37 Alphabetic Characters (A through Z)
T

A threé—character symbol is packed into a half:\
word according to the algorithm:
((C1*38)+C2)38+C3 where Cn is the assigned
character value

8. W0, Wl, W2---etc., as MOM Operands |
A liﬁe containing a MOM operation code which refer-
ences memory may have as its operand a symbol of
the form W0, W1, W2 standing for the current top
word of the work stack, etc. When such a line is
translated, the operand will reference a fixed -
location in the compiler data area. The execution
of a fetch or pop type of MOM will lengthen or

shorten the work stack. Only five ds of the

work stack (W0 - W4) are kept in the fixed area.

The rest of the stack is dynanlc G&&,§+nck nefontnces
oL wado U-Q{L, g $f‘¢.ch {’o.n’@,\, o~ WO,
9. Stack Pointer

A position in a stack can be indicated by giving the

stack number and the distance in groups from the

A These two values, stack number

bottom of the stacl.

<:j// and group number, are combined tOjQL“Lr in a
qfﬁ-ouy é\tecu&mgewés §"‘ ot FM\L rlon stack “"J‘ Cans ‘V\"'k—
C.OV“' '{‘0_\ w é ‘/\-
0'9 V\-ﬁ U glacﬁh,FORNlA SOFTWARE PRODUCTS, InC.
Loy
preek .

&thGﬁUZ %ﬂéof f\

single elemént called a "Stack pointer". The posi-
tion indicated by a stack pointer remains effective
even after the stack management routines have're—'-
arranged stéck memory.

15 12| 11 0

Stack # Group #
& | &

%‘,%e 2 W [(aPrall #) |

) ‘ ’ J o /

A At THe enteids 5z =Tl)

/€ %7 %%J‘L@ woaeslid Aol

C &t Wonrfo a-& Cxit A@M,/Léef,eo#me%z
z ‘L-C“’Zau/é ftf;) /&?-n/»—l”b

g '
e %)—F—a—}/z&d %0?('0 _/;Z,,’\/,C)/&i&//tl/ 4’:’_172”

b Py i Bol ammag + data "l

2 ¢

jo. sarmark

An Earmark is a data structure that is used to
interrogateé;deﬁi&e-ersée}et§§a specific character-—
istic of an eexmask value in the top' the

0.
work stack)\ASpecific MOMs reference Earmarks as 0
their operand value. Earmarks consist of two

words: a mask and a value.

15 o]
Mask
Value
Mask A bit pattern used to isolate the

trait value in the stack trait word

value A bit pattern used to compare trait
values after isolation

11. Character Scanning
Character Scanning is performed during the syntactical
analysis of COBOL source input. The primary routine
in control of scanning is named NXTCHR. Calls to
NXTCHR can be made either by the character handling
MOMs (QC, QQ, etc.) or dircctly in XEC MOM. NXTCHR

returns the next valid COBOL charagt&k, ARdrwhSe rrooucts, inc.
3-6

responsible for source sequence, comment, debugging
and continuation card processing. Several variables
are maintained during the COBOL source input scanning
to record the information being scanned and the
position of scan. At all times, the variable

CRNTCH holds the source statement character which

is currently being inspected. The position of the

current character within the input record is . cxuvafL
reiorded in a varlax% CHPOS. mpos 415\~ a]-ﬁ{‘l
/wv%uv ASrpedtt

anco bl
Stack Statlstféfa’

Associated with each COBOL stack is a group of

information items called stack statistics.

Stack statistics consists of the following entries.

wp

X. size)/_ M _
_ 2. Qu«ary Lojo
‘1‘4. Disk word count (s Memo-ry Gotho m

3.

Group size is a count of the number of words in

5282 stacﬁ*gfogaydry
Coxe 'top and saxe bottom are addresses that define

WA WALDT .
the extent of theAga;e resident portion of a stack.

Mev\'\ov—\l

€ere/top is the address of the first word on the
™Meno

next group to be added to the stack. IWhen core-

wwpwry
top equals cere 'bottom, the stack is empty.

3-7

CALIFORNIA SOFTWARE PRODUCTS, INC.

Mewmo r7

cere 'top of stack n can never be larger than
core bottom of stack n+l. When an operation on
stack n would cause coxe top of stack n to exceed
sereabottom of stack n+l, the stack management
routines reallocate the stacks to allow stack n
to grow.
Disk word count is the number of words from the
" ‘stack that have been written to disk. When disk
' word count is zero, the disk resident portion of
a stack is empty. Most stacks are initialized
in the empty state; that is, disk spill count
equals zero and eere top equals eere bottom.
mearot (QSRCH) oOperalisw.,

Y

13. Data Base

Wn X'00’

Common n same for all phases
—- physically not replaced

Field after phase 1l

Phase independent
variables X'80'

Phase local var-
iables

phzfe Jependent
Constants variables & constants

Earmarks

3.1.3 MOM Instruction Format

¢ MOM instructions are made‘up of an Operation
- Code and an Operand Field

15 9]._8 0

Operation Code ~r=2rand

a. Operation Code

Vhe 672@/4/?25% osde o @g{/f/y%~/ﬂf
ALY FH B horel o s le. /7047,
ﬁéizé?f%ﬂ_/wvcbw~m$l€4éidzf /cfjifiz;5;zzf,/lf732 /1%;£Ziﬂng%L
/%v:;ﬁ};ﬁm o il Atoel o SHeaE
%2 cée‘Zao/aw 2:4 /z’%éa-e.r /%Q,Ip (}'5/‘ ;707
Pl e /€$3446V%*21T ~1L{;f'/4%ual;czcl§; 0u~4ﬂdZZQ&L/
S 5908 o Conwdilipe X (oihon 7 ov /)
6L e Copclbs o, §5¢'/€Zi/ 77017 o
condiTmed . Zhe eyl boftnrat AL tndicd.
_eillhev Trwa Codidtmed C2T) oo Falias
@4%Lé£27?%7temp (3F::)>7_ —==£, flﬂi;, nal e e

@G{Z{, WA;/K';/;L/’PLMLT o Ry o / 2, }

Sp Coden = 0—3/ TT, Lpeaclie XHy FOI7
o Ao frower E5% < Tae

= 32-43 E epeece #Z, Forr o
‘/é%;.f%%ﬁ4¢842 43J79 c;'<7%bé;£

~ G¢-95 Czazfﬁ/,ﬁféaﬂ2§'alg‘ ,;,
| e o T

Er‘?é‘d /2;7 | .Aayﬁbh;gé ﬁﬂﬁnbjzz, 1%?1(}&%?%

CéhcgbudQ%andalfﬂQﬂ7k. e a

as ally, e,

Fovtiecoclidiprall 190675

b. Operand Field
The Operand Field is a nine-bit field that
addresses static storage, data structure,
stack number, character constant or immediate
value.

MOM Instruction Repertoire Description

3.1.4.1 Operand Type

The foilowing list defines the operand functional

codes:

1. A Static memory cell address
Static memory ceils are grouped under-éég‘ﬁiagﬁdﬁ
base. The address A is word felative to
that base. The maximum size of h is 511.
W0 through W4 are static memory cells.

2. S Stack number
Stack numbers are immediate data

3. R Rung
Rung number is immediate displacement
‘value into the stack group.

4. C Character is immediate eight-bit display
format character representation.

5. E Earmark address
Earmarks are under the static base.
Earmark address is a word relative dis-

placement into the base.

CALIFORNIA SOFTWARE PRODUCTS, INC.

%-3/4., ang tuwe-posihien (TruefFaLs
switches. Thuog are 64 @Qo.‘r.,

' 4’&3 migbon 15 Timmediade dato
6. F Flag number s&é&le- .
&

7. P Pattern address

Patterns are under the static base.
Pattern address is a word relative
displacement into that base.

8. SJ Self relative jump

A self-relative word address is eibhex 3’18:{1’\-"’;‘“’\
+han -’LS‘_C awd L?—SS +han 25¢C . i

9. J Jump Address
A jump address is either local or global.
forward self-velative velug o
A local jump address isfeess.than 512.
A global jump is an index into a jump table
~of 16-bit addresses.
10. N Number

is immediate numeric data.

© In the descriptive‘paragraphs, an arrow
denotes replacement of the contents of the
location on the right by a copy of the value
on the left. "sJ —— MOM Location Counter"”
means that the MOM location counter is incremented
by SJ.
Parentheses around an expression denoting a
memory location denote the contents of that
location. The phrase "new W0" indicates that the
work stack is lengthened so that the previous

(W0) becomes (Wl). The phrase "pop one" means

3-10 "

CALIFORNIA SOFTWARE PRODUCTS, INC.

that the top item is removed from the work stack
and (W1l) becomes (W0). The phrases "set True" and

"set False" always refer to setting the Answer Box

state either True or False.

The use of the vector operator,“?, indicates that
the value must be.a stack pointexr. The expreééion
ZK) refers to the location pointed to by the
pointer in location A.
3.1.4.2 MOM Instruction Descriptions
‘1. Aaad
ADD A
(wo) + (a) — wb
2. .Add'to Mémory
ADDM A
(Wwo) + (aA) ——» A
3. Add to‘Memory and Pop
ADDMP A
(Wo) + (A) — A and then pop one
4. Logical AND
AND A
(w0) A (A) — WO
5. Diminish and Jump
DIIJ SJ
(W0) - 1—>wh. If (WO > 0), Huw
énmp, otherwise pop one and

execute the noxt MOM in sequence

CALIFORNIA SOFTWARE PRODUCTS, INC.

3-11

Divide
DIV A

(W0)/(A) —> WO
Exclusive Or
EOR A

(W0) -5~ (A)—> WO
Error Diagnostic
ERR N
ELRC - N

_Place Error Code, N, and

statement number in EX-file

ErR guves o diaquashie N\
ow e hoken mosk recen \9.
accopted ; ERR gVesw & oshc_

on Hee fask 42 Jceu e»cawm{_Q/

lo0.

A
\

11.

12.

13.

>
Empty Stack

ES S
Stack S is made empty
Explode Fields
EXPL P
(Wo) is exploded into fields,
FIELD n, according to the
field pattern, P, then pop one
Fetch
F A

(a) — New WO _———=

b
Fetch Immediate Leif///w}‘éu&
(”7””“/

FIL N .
X'NNOQ'-*‘9 New W0

Fetch Immediate Right

FIR N

ew WO

X' QNN

12 CALIFORNIA SOFTWARE PRODUCTS. INC.

14. Fetch Pointer to Top Group

' FPTG S
Zero rung pointer of the current

top group — New W0
15. Fetch Ralative
FR R
((W0) + R) — New WO
l6. FImplode Fields .

a IMPL P
IMPL is the inverse of EXPL;

the destination word is new WO
17. Jump

J SJ

53*4—}MOM location counter.
The next MOM to be executed
is at location SJ.

18. Jump to Subroutine

Js J

The current MOM location counter
is pushed onto the top of the
exit stack. The ANSWER BOX is
also saved on the exit stack ana
will be restored when control is
returned from the subroutine.
Finally, J—> MOM location counter.
The next MOM to‘be executed is at
location J.

19. Multiply

MPY A

(‘.:0) v (AJAL-.I.;}OFE:NQA SOSFTWARE PRODUCTS, INC.

3-13

20.

21.

22,

230

24.

25.

26.

Or
OR | A
(Wo) VvV (a) — WO
Or Memory and Pop ’
ORMP A
(A) V (w0)—> A, Popud WO
Pop and Jump '
PJ . SJ
Same as Jump except W0 1is popped
Push to Stack
PSH s
The stack S is extended one new
rung with (WO) o .oow v~y o
Push to Stack and Pop

PSHP S

The stack S is extended one new
rung with (W0}, then pop one
Pop Work Stack
PW N
?op N words from the Work Stack
Pop and Exit
PX N
N entries are popped from the
Work Stack. The top entry of
the exit stack is popped to
define the now value of the N0
lJocation counter and, if the

entry was placed there by the

CALIFORNIA SCFTWARE PRODUCTS, INC.

28.

29.

30.

31.

\'4
JS MOM, a new $alue of the b//

ANSWER BOX.

Publish Character

PUBC

Publish

PUBL

c
G
Output characterﬁfo the print
buffer
A

Output the character string to

the print buffer. The address A

" is the address of the string to be

published. The first word of the
string is a character count; re-
maiﬁing words contain the charac-

ters two per word.

Query Adjust Pointer

QAP

Query Bit

0B

N

—> — .

(W0) + N— WO. If (W0) is a
valid pointexr, set True. Other-

wise, pop one and set ralse.

N
If Bit N of (WQ0) is on, set True;
otherwise s=2t False.

0=N=15

Query Character

ocC

c
If C equals CRXTCH, set True.

Otherwise,sct False.
CALIFORNIA SOFTWARE PRODUCTS. INC.

32.

33.

34.

35.

36.

37.

Query Cha?acter and Advance.

QCA C
If C equals CRNTCH, set True and
advance to nexf ;haracter posiﬁior
Otherwise,'set False.

Query Character, Space and Advance

QCSsSA &
If C equals CRNTCH and CRNTCH is
followed by space(s), set True
and advance to next character
position. Otherwise, set False.

Query Earmark

QE E
1f (wo) A(E)= (E+1), set True.
Otherwise, set False.

Query Earmark and Pop

QEP E
If (WO)I\(E)= (E+1), set True.
Otherwise.set False. In either
case, pop one.

Query Equal)

QEQ A
If (W0) = (A), set True, otherwise

set False.

Query Fetch

or A
If (A) is non-zero, (A)—)New WOI(’L
and s2f :
Set Answer Box to True. If zevro,

CALIFORNIA SOFTWARE PRODUCTS, INC.

3-16 set False

38.

390

40.

41.

Query Fetch Relative

QFR

Query Flag

OFL

Query Jump

QJS

Query Less

OLE

R
s .
If ((W0) + R) is non-zero,
((ﬁﬁ) + %}—%New WO0. Set Answer
—>
Box to True. If ((W0) + R) 1is

zero, set False.

F

If Fth Flag is one, set True.
Otherwise, set false. O:EF5563

to Subroutine

J.

Thé?current MOM location counter
is pushed on the top of the exit
stack. The Answer Box is not
saved. When control retuxrns from
the subroutine, the Answer Box
will contain the value last estab-
lished in the subroutinei J— oM
location counter. The next MOM to
be executed is at location J. &
or Equal

A

IfV(WO)fE(A), set True; other-—

wise, set False.

CALIFORNIA SOFTWARE PRODUCTS, INC.

42. Query Quote
QQ Q]
' Q is the number of a reserved .
A . word in the Reserved Word Table.
' If the current source string
matches the reserved word pointed
to, the following steps are
performed in order: :

1. If the Comma Flag is still
on, issue a diagnostic and
reset the Comma Flag.

2. Move T (trait) field to
Trait Word.

3. Set Answer _Box True

4. Set QQ performed flag
Otherwise set the Answer Box False

43. Query Quote and Advance
Fd .
¥ q

Q is the number of a reserved
7 word in the Reserved Word Table.
! . If the current source string
matches the reserved word pointed
to, parform the following:

1. If QQ performed flag is on,
-clear the QQ performed flag.
Otherwise, perform 1 through
3 as described in QQ.

3-18

vy

7.

Check FIPS level and issue
diagnostic if required.

Set COMMA FLAG if '," or ';!
precedes the word.

If P (followed by a period bit)
is off, go to b). Otherwise,
check a period and a space
follows. If not, issue a diag-
nostic. .-)

If A (area A bit) is on, check
to see that the word is in Area
A. Issue a diagnostic if the"
word is in Area B.

If M (Both Area A and B allowed .
flag) is on, set the Area A Flag
if the word resides in Area A.

If neither A nor M is on, and

the word resides in Area A, issue
a diagngstic.)
The cd;rent scanning pointer is
advénced,to the next space char-
acter

Otherwise, set the Answer Box False.

" 44. Query Search

QSRCH

a

3-19

S

Stack S is searched for a grqbp '
matching COMMON. I one jis found,

" the Answer Box is set True and a

pointer to the group is placed

in a new k0. Otherwise, the

Answer Box is set False.’

—— 27" "Set the Answer Box to’True)

P

44.M,Queryw§géré§

QSRCH

pointer to the gfdpp is placed

i
!

i
§

S

3. Set COMMA FLAG if.",' or ‘f;°
v

) follows the wofd

7. The current scanning pointer,

CHP??, is qdvanced to th

!
{
i
!

next space character

[l
i

'Othérwise, set the Answer-Hox| Fals
. N) -

Stack S is searched for a grou
matching COMMON. If one is found,

the Answer Box -is set True andla

.,

AN
in a new WO. Otherwigs, the

Answer Box is set False.

i
45. Query Take

QTT

off Top

S

If the Stack S is empty, set
False. Otherwise, pop the top
rung of Stack S and place it

in new W0 and set Answer Box True,

46. Register and Fe*ch Pointer

REGF

S
The content of COMMON is placed

) aacksfad<§ﬁouﬁa
on the top of Stack §ﬁ@nd a pointer

Wuvp-—l
to whe—fITSE—Iord-of the)sntry is

placed in a new WO,

CALIFORNIA SOFTWARE PRODUCTS, INC.

47.

- 48.

49

50-

51.

52.

53-

54-

Reset Flag

RFL F .
Reset the flag specified by F.

.

0=F =63
Replace
RPL . A
| (A)—> WO

Replace Relative
RPLR ' R
((38) +R)—> WO
Set Flag |
SFL F
Set the flag specified by F.
0=F=63
Shift Logical Left
sLL N
shift (wW0) left N bits
Shift Logical Right
SLR . N
Shift (W0) logical right N bits
Store Relative

SR R

-—>
(WO0) > I§{wl) + R and pop one

Store

ST A
(WO)— A

3—21 CALIFORNIA SOFTWARE PRODUCTS, INC

55.

56,

57.

58.

59.

60.

6L .

Store and Pop
STP A
(W0)—> A and pop one

Store Relative and Pop

SRP R
(Wo)— ((Wl)+R)), then pop two

Sﬁbtract
SUB ‘ A
(wo) - (A)—> WO
Switch
SWT . A
(Wwo)—aAa -and o;riginal (A)—> WO
Tab
TAB N
Set current output position to
. column N
Tally
TLY A
(A) + 1—> A
Execute
XEC N

XEC is a generic name for any
intefpretive instruction which
does not reguire an operand. The
instruction subroutine address
located at the Nth element of the
XEC jump vector is executed just

"as any other interpretive instruc-

3 : CALIFORNIA SOFTWARE PRODUCTS, INC.

62.

63.

tion and control continues with
tﬁe‘next MO |
Index Next Instruction
XNI A
(a) is added té the operand of
the next MOM prior to execution
Zero Memory
ZM A

0—>A

CALIFORNIA SOFTWARE PRODUCTS, INC.

3-23

3.2

Stack Management Concept

One of the major advantages of a compiler that oper-
ates interpretively is that the procedural code takes
less memory than is the case with compilers that employ
in-line assembly language code. This means that more
memoxy is available for keeping tabular information
about the source program and that much less data

needs to be written out to secondary storage. This

saves time and secondary storage space.

The MOM language is specifically designed for -
managenent of information kept in “stacks" in
memory. Some of the majox stacks kept by the

compiller are:

Symbol Table A record of the definition of
: each unique symbol presented in
the COBOL source program

Data Stack Describes the characteristics
of data items in the source
program

Procedure Stack Describes all procedure names

’ defined in the source program

File Stack Describes all of the file names

used in the source program

Stacks are primarily constructed in Pass 1. They are
utilized in all of the passes. There are generally
three classes of information needed by the compiler

during its operation: (1).information of global

interest to more than one phase, (2) information of
local interest, usually needed only sequentially and
infrequently, and (3) compilation control informatioh

CALIFORNIA SOFTWARE PRODUCTS. 1HC.

(compiler options). The first type (type 1 in-—
formation) is kept in stacks. Type 2 is output
to files to be used in subsecuent phases. Type
3 is kept in bit tables in sﬁecial data bases

and queried as required. These tables are also
kept in memory and are utilized throughout the

compilation.

MOMs work by moving information between stacks and -

a work stack. Ttems in the work stack can be ex-—

—

amined, stored, tested and evaluated. The work

stack operates like a series of registers but
with push/pull capability. The MOM language has

a great deal of machine independence built into it.

The, stacks all share a common memory pool as shown

- in Figure 3-3.

high stack
address

SYrMBOL TABLE

v
)

STACK O (DATA)

i\

STACK 1

0

STACK N

low stack
address

Figure 3-3. STACK ALLOCATION.

3-25 CALIFORNIA SOFTWARE PRODUCTS, INC.

The Symbol Table, shown in Figure 3-3, grows down

from the top of stack memory; the other stacks

P

grow up from the bottom of memdry- Stacks can

be dynamiéally rearranged (squeeze) when more
-space is required for an individual stack. If ”/W\

this operation does not provide enough space, \

.thenlthe.Data Stacg)is~spi;Led—éaqikﬁen 'Q%WJ;AQ'C&QéE)
0l Crocodunt Stack cam e ARl T5 disk., ao That

TReae three stecRe can Rarx “oitied Wv*d'ua.“-

CALIFORNIA SOFTWARE PRODUCTS, INC.

s P 4 17 4
3.3 Stack Descriptions

3.3.1 acc stack (Stadk 4, thane G)

The ACC stack contains information for each binary
pseudo-register whose contents are Yecognized by code gen

phase for optimization.

There are eight groups on the stack. Each pseudo-register
is represented by the corresponding numbered group.

111111
5432109876.54.3.2.10

word. 0 " Contents
i 1) Name
2 U) D L

Contents - a pointer to the item which is in the register.
In most cases, the'contents' pointer is

either a Data or Triad stack pointer.
contains the stored pointer of an assignment.

U = Uéed count. The number of times the value in the

register is used.
decimal position

L = length

)
I

For example, A =
Triad pointer of B + C in ‘contents’

B + C is recorded in the stack as follows:

Data pointer of A in 'Name'

CALIFORNIA SOFTWARE PRODUCTS, INC.

3.3.2 Array Stack (Stack 5, Chase [,2,3, ¢)

The Array stack is used to collect the OCCURS clause
information. It is built along with the Data stack

for table items and is accessed via the Data Stack.

111111
543210987¢6543210
rung O FROM OCCURS #
1 - TO OCCURS ¢
2 . DATA PQINTER of OD
3 S Number of keys (=n)
4 Data Pointer of keyl'
5 -
. iterate
n-1 Data Pointer of keyn
n 0
Where FROM occurs # = minimum occurrence number
TO occurs # = maximum occurrence number

= 0 if no TO option

Data Pointer of OD = DEPENDING ON data item pointer ov 0

Il

S 1 ASCENDING

= 0 DESCENDING

CALIFORNIA SOFTWARE PRODUCTS, 1NC.

3.3.3 Copy Replacing Stack

The Copy Replacing Stack is used as a temporary hold area
for strings to be replaced and the replacing. strings. As
each word in the source stream is encountered, it is com-

~ pared to all of the "replaces” stored in the stack. When

a match is made the "replacer"Zis_substituted in the source
input text. The Copy Replacing Stack is built and used

in the first pass.

1 1
5 4

A , _ L
<{’ ’ s (Optional) <:i

Where A = 0 REPLACING string
= 1 BY string

L = Byte size of S
S= String (up to 256 bytes)

CALIFORNIA SOFTWARE PRODUCTS, INC

3.3.4 Dpata stack C%ack 0, RRases 1—7)
This stack records the definition of each data-name/condition-~

name/index-name in the order of COBOL source presentation.

The stack is used by all phases and is likely to have the

highest activity. In addition to named data-names, the

FILLER items described with Ol level, OCCURS and/or VALUE

clause are also registered. ﬂj‘éL 7 oy .Z . @
nof uae® Ao Thes M@%ﬁk%wlwmw ”ﬁ?

3.3.4.1 Data-name, parse

98976543210

Rung 0 Level Base |G| Trait

Displacement

Rl Y |SILIP{Z|{J|F{U| X Class

v |AlD|C}| not used

Length

Qualification Pointer

- T, B R O

Array Pointer/File Pointer

“level 77

1-49 level 1-49

50 level 66 (RENAMES)
RENAMES edited item
Linkage Section

File Section
Working-Storage Section
Report Section
Compiler-generated registers
Condition-name/Index-name
Procedure-name reference

]
o

Level =

il

I
wn
=

Base

(LI | N N 1 |
HdoOoWwmN O

I

3-30 CALIFORNIA SOFTWARE PRODUCTS, <.

not used

Trait = 0
= 1 DATE
= 2 DAY
= 3 TIME
= 4 PRINT-SWITCH
= 5 DEBUG-ITEM
6 DEBUG-LINE
= 7 DEBUG-NAME
= 8 DEBUG-SUB-1
= 9 DEBUG-SUB-2 U‘\\(”/
= 10 DEBUG-SUB-3 _—
= 11 DEBUGTCONTqug,//’ i ,
= 12 LINAGE-COUNTER ' '
= 13 < B
= 14 % =

Base = 7 t -
1 Condition—namé*‘\x““”‘““-(7“éﬁi/

Trait

= 2. Index-name
= 5 Condition-switch
Displacement =
o before the record resolution
a. 1f R = 1, redefined Data pointer
b. if Level = 50, Renamed Data pointer
c. for others, not used
o after the record resolution
a. if Base = 0 (Linkage Section), contains the
byte displacement of the item from the level 01 item
b. if Base = 1 (File Section), byte displacement
from the file base
c. 1if Base = 2 (Working-Storage Section), byte
displacement from the working-storage base.
R = redefined flag in phase 1
= debugging item flag in phase Q’E§
Y = 0 no SYHNCHRONIZED
= 1 SYNC RIGHT
2 SYNC LEFT

i

CALIFORNIA SOFTWARE PRODUCTS, INC.

S =
L =0 sign is TRAILING
= 1 sign is LEADING
P = 0 "sign is not separate
= 1 sign is SEPARATE
Z = 1 BLANK WHEN Zﬁ!RO
J = 1 JUSTIFIED RIGHT
F = 1 FILLER item
U 1 USAGE specified
X = subscript level, 0 S x < 3.
Class = 0 group
= 1 alphabetic
= 2 alphanumeric
= 3 numeric (DISPLAY)
= 4 packed decimal (CorMP-3)
= 5 binary (COMP & COMP-4)
= 6 index (INDEX)
= 10 alphabetic edited
= 11 alphanumeric edited
= 12 numeric edited
V = Value class
0 Value not specified
1 not used
2 alphanumeric
3 numeric
A = Variable length
D = OCCURS DEPENDING item -
C = PICTURE clause specified

CALIFORNIA SOFTWARE PRODUCTS, INC.

Length =

for variable group items, it contains the maximum

group length
. for numeric items,

- Bits 15—10 contains the number of decimal
positions.
=18 < Decimal < +18 when Decimal is <0, the
assumed decimal position is | D | digits to the
right of the item.

- Bits 4-0 contains the logical length. Maximum
is 18.

. for non-numeric items, it contains the logical

length. Maximum is 32K characters.
e e) . .
Qualification pointer =

. for gualified data items, it contains the Data
pointer of a synonym item that precedes the item

. for all others, it contains zero
Array Pointer/File Pointer
. for OCCURS item, it contains the Array pointer.

. for Level 01l items in a file record, it contains

the file pointer.

CALIFORNIA SOFTWARE PRODUCTS, INC.

3.3.4.2 Data-name, after allocate phase

Rung 0 . Same as Parse

- Location

Same as Parse

DD Location

Same as Parse

Mask Location

O Mo W N

Same as Parse

where Iocation is ,
e byte address of the item if not in the Linkage section

3-34 CALIFORNIA SOFTWARE PRODUCTS. INC

3.3.4.3 condition-name (level 88 item):

111111
543210 9876543210
Rung O : : 7 1
Conditional Variable
2 Procedure pointer of subroutinﬁ
3 o
not used
4
5 Condition Qualification
6 not used
wherxe

Conditional Variable = Data stack pointer of conditional
variable item.

Condition Qualification = Data stack pointer of condition-
name qualification chain.

Procedure pointer of subroutine = compiler-defined pro-
cedure pointer to the condition closed subroutine.

CALIFORNIA SOFTWARE PRODUCTS, INC.

3.3.4.4
Rung 0O
1
2
3
4
5
6
where

Condition-name switch status:

111111
543210987¢€¢543210

7

5

Switch Condition

Switch Number

not used

Switch Condition‘

= 0 ,

=

1

’

OFF status
ON status A

Switch Number

1

= 2

-

8w SWITC H—|
BHE SWIlTCcH -2

16 sure SWITCH-1b

CALIFORNIA SOFTWARE PRODUCTS, 1NC.

3.3.4.5

Rung O

v
[N

Index-name (INDEXED BY)

1111
3210

9876543210

7

2

Associated Data Pointerx

XD Location

O U™ W N

not used

CALIFORNIA SOFTWARE PRODUCTS, INC.

3.3.4.6

Report Writer Items

3.3.4.6.1 Report Group (01 Level in Report Section)

V77 : :
S5+ 3 21 ¢ 9% 9L 5% 3 =170
we © / 5 |4 Tyre
/ / Sum o¥ relative (e or O
> Report Trart Control # /D= 2=/ 0
3 Spank ‘
4 Report Grovp prsccdut psinlin ,
5 | _USE DEBUSAGING procedun prindiv o d
2 Fle Poivior of KD
Type = X'00' DE (Detail)
X'01l' RF (Report Footing)
X'02' PF (Page Footing)
X'04' CF (Control Footing)
X'08' CH (Control Heading)
X'10' PH (Page Heading)
X'20' RH (Report Heading)

Sum of relative line

0 absolute LINE NUMBER is specified in the

report group

0 sum of relative line number specified in

the report group.

integers.)

(i.e.,

sum of PLUS LINE
The number is used by report

writer routines to perform the report

group fit test.

CALIFORNIA SOFTWARE PRODUCTS, I1IN€C.

Report Trait
Bit 15 = CODE
Bit 14 = CONTROL
Bit 13 = PAGE
Bit 12 = TYPE
Bit 11 = NEXT GROUP
Bit 10 = LINE

Control #

When TYPE = CH or CF, the CONTROL numbers are sequen-—
tially assigned from major to minor. (i.e., FINAL

will always be X if specified.)
' 0

DE #

When TYPE = DE, the number associated with each DEs

is assigned in the order of presentation. DE § > 0.

USE REPORTING procedure pointer

Procedure pointer to USE FOR REPORTING declarative

section

Report Group procedure pointer

Procedure pointer of compiler-generated subroutine
for the report group that performs the moves and writes
as implied by VALUE, SOURCE, COLUMN and LINE clauses.

CALIFORNIA SOFTWARE PRODUCTS. INC.

3.3.4.6.2 Non Report Group

o Other report writer levels (not level 01)

111111
5432109876543210
Rung 0 Level 5 1 0

1 Column number

2 L} 0 |S}| 0 |z|JjolUu] 0 [Class

3 Decimal Report Trait

4 Length

5 Qualification pointer

6 Data pointer of report group

Report trait

Bit 9 VALUE

= PICTURE

= JUSTIFIED

= BLANK WHEN ZERO
= COLUMN

GROUP INDICATE
= SOURCE

= SUM

= RESET

= UPON

O H N W & 1 O 3 @
Il

CALIFORNIA SOFTWARE PRODUCTS, INC.

3.3.4.6.3 Control Save Item - Report Writer

The data stack group of CONTROL item is copied to

the control save group and a new data location is assigned.

Rung 0
; Same as CONTROL item
3
4 DD Location
5 Same as CONTROL item
6 [Procedure pointer to RESET or 0

CALIFORNIA SOFTWARE PRODUCTS, INC.

3.3.5 Data Debug Stack (Stack %, Fhase 5)
optindzalion -
In ellecdte phase, the symbol string of all identifiers

(data-name and its qualifier) which are specified in
the USE FOR bEBUGGING statements are allocated. The
stack is used to collect the addresses of these symbol

strings.

(S

Rung 0 Data Pointer

1 |Procedure Pointer of Declarative

2 Symbol Location

A not used

where A = ALL REFERENCES

CALIFORANIA SOFTWARE PRODUCTS, INC.

3.3.6 Data Line Number Stack (Stack 4, Phase 1)

The Data Line Number Stack is used to temporarily hold
the line number and the column number of eaéﬁ data and
filler item described in a given 01 level record.
Although the stack is emptied after each level 0L record

resolution, a direct correlation exists between this |

stack. and the Data stack.
v

Rung 0 Line Number
1 Symbol table pointer
2 | Column Number
3-43

CALIFORNIA SOFTWARE PRODUCTS. INC.

MWW

3.3.7 DECA Stack (Stack %, Phase G)

The DECA stack contains information for each decimal

pseudo-register whose contents are recognized by code gen

phase for optimization.

There are eight groups on the stack. Each pseudo-register

is represented by the corresponding numbered group.

-7

111111 .
5432109876543210

word O " Contents
1) Name
2 U i D L

Contents - a pointer to the item which is in the register.
In most cases, the'contents' pointer is
either a Data or Triad stack pointer.

contains the stored pointer of an assignment.

U = Used count. The number of times the value in the
register is used.

D = decimal position

L = length

For example, A = B + C is recorded in the stack as follows:

Triad pointer of B + C in ‘contents’

Data pointer of A in 'Name'’

CALIFORNIA SOFTWARE PRODUCTS, INC.

3.3.8 File Stack (éfack 2, PP lhases f*"(7>

The File Stack is created in parse phase and used by
It contains all pertinent information relating to the

files declared by the user in the source program.

others.

3 1/0///f//]>

T K%covg Base

111111
543210987654 2
T | o afe[r{s[c[a[rr[Fxl0
= =
' Biéck Size
Record Size
E%éf:: Data pointer of Record Area

Data pointer of File Status

Data pointer of LINAGE-COUNTER/
"RELATIVE KEY/RECORD KEY.

Procedure pointer or
Error Declarative

~Procedure pointer of

. : '\\\\ b

]

. s}

o Q

W 0 9 O U b W N = O

DEBUGGING
10 | \ ;,2%5%f3=
11 File-rane |
12 | o]
13 C'%)#‘VlilquH) QLDj%
14 Number of RESERVE drea
15 RERUN number
16 CODE-SET alphabet-name
17 Data pointer of ALTERNATE KEY 1
18 Data pointer of ALTERNATE KEY 2
19 Data pointer of ALTERNATE KEY 3
20 LINAGE pointer/number
21 FOOTING pointer/number
22 TOP pointer/numbexr
23 BOTTOM pointer/number
24 Spare
25 Spare

CALIFORN!A SOFTWARE PRODUCTS, INC.

where

T = Type
0 FD (File Description)
1 SD (Sort Description)
2 RD (Report Description)

0 = Ofganization

o] Sequential I/0
1 Relative I/0
2 Indexed I/0

A = Access Mode

0 Sequential® access
1 ~ Random access
2 Dynamic access

P = OPTIONAL specified
F = LABEL RECORD
o " Omitted
1 Standaxd
= START sp;&ciified for the file
= ADVANCING specified
= LINAGE specified

RERUN specified
= RESERVE specified L&owué bM)

= Block mode

W oa o0 on
1

0 for RECORDS

1 for CHARACTERS
K = ALTERNATE KEY spscified
Q = CODE-SET specified

RLEe————— //
0 Not specigied'” /////,/fff
1 SAME_AREA AT
2 “SAME RECORD- REA /

293 SAME. SORT AREA~ S
(,- Z g _3 SAME SORT-)mRGE ARgA

~— 3-46 e
. ~ e . e s - CAERIFORNLIA SOFTWARE PRODUCTS, INC.

%

File Name =¢éf:;aracter logical name to be used

0
i

t
i

[
I

&

g o u
N
rooun o n

-
g

. ne.Me .
for physical dewiea connection.

Opened as INPUT (Sequential 1/0 only)

Opened as either OUTPUT or EXTEND (Sequential

1/0 onlz'd2 ' o E.Q
LI%%&E Type

0 Data pointer
1 number
FOOTING Type

0 Data pointer

1 nurbexr

TOP Type
0 ' Data pointer
1l numbexr

BOTTOM Type

0 Data pointer

1 number

DUPLICATES for alternate key 1

DUPLICATES for alternate key 2

DUPLICATES for alternate key 3

CALIFORNIA SOFTWARE PRODUCTS, INC.

3.3.8.1 Report Writer group - RD group

111
5 4 3 0
Rung O 2 not used

1 CODE literal value
2 Data Pointer of Control Save area
3 pata Pointer -of first item of group
4 Ppata Pointer of last item of group
5 Data Pointer of record area
6 Data Pointer of LINE~-COUNTER
7 Data Pointer of PAGE-COUNTER
8 File Pointer of FD
9 # of Controls (CONTROLS ARE)

10 # of detail groups (DE%)

11 . spare

12 , spare

13 . PAGE-LIMIT #
14 HEADING #

15 FIRST DETAIL #
16 LAST DETAIL #
17 FOOTING #

18 RCB Location

19 Procedure pointer of Control break|

20 Procedure pointer of save move

21 Data pointer of Control variable

22 : ' CH Table Location

23 CF Table Location

24 Reset Flags Table Location
25 DE Flags Table Location

CALIFORNIA SOFTWARE PRODUCTS, INC.

3-48

3.3.9. File Base Stack CST’&CJL €, lp(uasd ‘(—B

The File Base Stack is used to record the buffer and
- xrecord size needed for each file base. The files
specified in the SAME AREA clause are assigned the
same base number. Likewise, the records within the
same file are assigned the same record number. The
order of the group registration corresponds to the
assignéd base number ofkeph files.

The stack is exclusively used by allocate phase for
allocation. After all files are recorded, a xun oOf

the stack is made to allocate the buffer and recoxd
areas and to replace contents of rungs with appropriate

location value.

Block Size/Location

0
1 Alt. Block Size/Location
2

Record Size/Location

CALIFORNIA SOFTWARE PRODUCTS, INC.

3.3.10 Filler Stack (Stack 10, Chase 1)

The Filler Stack is used to temporarily accumulate FILLER
item information prior to its record group (01 Level)
resolution. The format of each group is identical to that

of Data Stack except that rung 6 contains a Data 3stack
pointer of the nearest @receding data name. The stack

is used only in data parse phase, and after each 0l

level record group resolution, it is emptied.

Rung 0

same as Data stack

6 preceding Data Pointer

3"50 CALIFORNIA SOFTWARE PRODUCTS, INC.

3.3.11 Forward Reference Stack (;SfaAXQ 1, XQQaQL l:)

The Forward Reference Stack is created during data
parse phase to hold the forward data-name reference
attribute. At the end of phase 1, a run is made on
this stack to

-~ 1. Update the appropriate>stack with data
stack pointer

— 2. Diagnose undefined or non unique gualification,

] etc.
— 3. Output cross-reference records.

11
. 54 0
Rung 0 Q Type
1l Symbol Table Pointer
2 Pointer
3 Line Number
4 Column Number

Q0 = qualifier

Type = 0 FILE STATUS
spare

RECORD KEY
ALTERNATE KEY
spare
RELATIVE KEY
spare

DATA RECORD
LINAGE
FOOTING

= 10 TOP

= 11 BOTTOM

= 127 ASCENDING/DESCINDING KEY

I
W N Vs W N

il
G

=)3 OCCUR5 DEPENDING

CALLIFORNIA SCFTWARE PRODUCTS, INC.

3-51

3.3.12 Library@Stack ('S‘Fau:,f? 12, Plhans é)

The Library @é:ontains the link addresses of all

runtime library routine references that a COBOL object

module may require.

o MJQ(%

-
p—

word O Link Address

CALIFORNIA SOFTWARE PRODUCTS, INC.

3.3.13 Literal Stack (9‘&"an ”; ﬂ"—“g’zs‘ L+'—4°.>

The Literal stack is used to hold the current batch of
edit picture masks and procedure literals. The stack is

emptied when processing of each functional block is done.

Rung 0
1
2
3
4
5 Literal
6
7
8
9
10 literal attribute
11 Literal DD header value
12 Literal Location

3 53 CALIFORNIA SOFTWARE PRODUCTS., INC.

3.3.14 Literal Optimize Stack (Stack 12, ¥haws 4, 5)

Literals and edit masks whose length is iess than or

equal to 6 characters are collected in this stack to

eliminate the repetitive generation of literals.

literal attribute

literal

literal address

54

w
|

CALIFORNIA SOFTWARE PRODUCTS, INC.

3.3.15 Messenger Stack (Stack # 6, Phases 1,2,3, 5"_)

The Messenger stack is used in parse phases to tempo-
rarily hold MS file (Messenger File)}. At the end of the
encoding of each statement, the contents of the Messenger

Stack are transferred to the MS file via XEC MOM and the

stack is emptied.

Rung 0 , Encoded Text

CALIFORNIA SOFTWARE PRODUCTS, INC.

3.3.16 Operator Stack (‘§+aalé (%, Plocac 2—)

The Operator stack is used during the expression
analyzer to facilitate the construction of Polish

strings.

Opergtor

Rung 0

CALIFORNIA SOFTWARE PRODUCTS. INC.

3.3.1% Polish stack (Stachk (I, Phase 2>

The Polish Stack is used for the necessary rearrangement
It is created and used in procedure

of expressions.

parse.

Pointer or Operator

CALIFORNIA SOFTWVARE PRODUCTS, INC.

3.3.18 Procedure Stack (féfwtk \, WQ&OLC 2”7’)

The Procedure Stack records the definiﬁion'and/br
references of each procedure-name SPécified in the

Procedure Division.

© 1in procedure phase

111111 .
54321098765 % 3210
Rung O : Section Pointer
1 St IC|IB|E|G|A|U!D! Segment #
2 Qualificatiqn Pointgr
3 v " Not Used
4 ol F| T Definition Number

.Where Section pointer - contains Procedure pointer of
séction—name in which this paragraph is
defined.

= Section-name

= Defined in Declarative Section

= Defined in Debugging Section

= Procedure-name of PERFORM exit

= Procedure-name of simple GO TO

= Referenced by ALTﬁR subject

Referenced by USE FOR DEBUGGING

= Defined

Rung contains a circular synonym chain for qualification

I

Input Procedure of SORT
= Output Procedure of SORT

= FROM procedure-name of SORT procedure

H M O R VMUY OB W O 0
il

= TO procedure-name. of SORT procedure

CALIFORNIA SOFTWARE PROCUCTS, INC.

© After parse

11111
54 3 21 7 6 0
Rung O JET Number or O
1 SIT Number or O Segment #
2 . Definition Address
3 'Symbol String Address
4 Same USE DEBUGGYING. group #

JET number = Index value into the Jump Exit
Table, JET
SIT number = Index value into the Segment Intex-

face Table, SIT. The SIT facilitates

branching between segments§.

For further descriptions of JET and SIT, see

Section 5.6, Procedure Code Generation.

CALIFORNIA SOFTWARE PRODUCTS, INC.

3.3.19 OQualification Stack (Stack 12, P hases 3)

The Qualification Stack is used during procedure parse
phase to hold the order of data-name and its qualifiers.
It is used to locate the qualified name in the Data '
stack. The information in this stack is also used in

generating the cross reference record.

The group format of both qualified and gualifier is:

Rung 0 Symbol Table Pointer
1 Line Number
2 Column Number

The order of registration of each group is:

Group O ' Qo
01
) {
n Qn
n+l T

Where Qo = Qualified group

Q1 ~ Qn = Qualifying groups
T = Termination group which contains 0

CALIFORNIA SOFTWARE PRODUCTS, INC.

3.3.20 Renames Stack CS%n&ﬁL ¥, lase ‘>

The Renames Stack is used to temporarily hold the Data
Stack pointers of "from" and “"through" renamed data-name.
This stack is used to resolve the displacement of renaming
data-name during the Q1 Level record resolution. The
stack is emptied at the end of each 0l Level xecoxd

resolution.
Rung 0 FROM Data Pointer
1 THRU Data Pointer or 0

CALIFORNIA SOFTWARE PRODUCTS, INC.

3.3.21 Report Stack

A group is registered in the stack for each record-name .
specified in the REPORTS ARE clause of FD. This stack is
used to make the connection between the file name and its

report names. The stack is active during data parse and

report writer parse.

Rung 0 : File Pointer

1 Symbol Table Displacement

2 Line Number

3 Column Number

3—62 CALIFORNIA SOFTWARE PRODUCTS, INC.

3.3.22 Script Stack [Stack (o, $Ranes 4-C)
L‘l

The Script Stack is constructed and used in Phase 8. Aa
search of the Script Stack is made for each array re-
ference and if a match is found, the pointer to the
matched group is used. Otherwise, a new group is re-

gistered onto the stack and its pointer is used.

CALIFORNIA SOFTWARE PRODUCTS. INC.

Array

Rung 0

Data Pointer of Array

Sum of Constant Indexes

Scriptl/o

Script2/0

Script3/0

Variable data

Rung 0
1

2

0

Data Pointer of Variable Item

Data/Triad Pointer of OCCURS DEPENDING

0

0

Array Condition-name

Rung 0
1

2

Data Pointer of Condition-name

Sum of Constant Indexes

Scriptl/O

Script2/0

Script3/0

CALIFORN!A SOFTWARE PRODUCTS, INC.

Variable Group Condition-name

0

Data Pointer of Variable Item

Data/Triad Pointer of OCCURS DEPENDING

Data Pointer of Condition-name

0

65

CALIFORPNIA SOFTWARE PRODUCTS, INC.

3.3.23 Segment Stack (5T34§ﬂ

An entry is made to the Segment Stack for ‘each pnique(\ﬂw

i - .ﬁ_——~ v
prleggtv number defined. The stack is used to hold

information for code geneération needed in

the segment interface.

1111
5 4 32 0
Ruhg 0] Priority Number
1 JET Location
2 SIT Number
3 LINK Location
4 IN|D|G . . 0
where

N = Noncontiguous segment

D = Defined (used in Collapse phase to detect
non-contiguous segments)

Generated (used in Code Generation phase)

Q
il

CALIFORNIA SOFTWARE PRODUCTS, INC.

3.3.24 Sta Debug Stack CsS CLCC"- 3, P oz g>

The Sta Debug Stack is used to collect debugging
information for each statement. At the end of verb
generation, debugging codes are produced through this

stack.

General format is

Rung O File/Data Pointer-

If "Data pointer"™ is an array item, then two
additional rungs are pushed onto the stack for each
subscript level. In addition, a script pointer is

pushed as follows:

Rung 1 Data/Index Pointer/0 s c]_;ipt
1
2 Constant script value1
3 Data/Index Pointer/0
, script2
4 Constant script value2
J
5 Data/Index Pointer/0
script3
6 Constant script value3
J
7 Script pointer
L pt p

This stack is in plex form. In other words, a pointer
to the current top of stack is pushed onto the stack
for each stack group and is used to distinguish one

statement from another when nested.

CALIFORNIA SOFTWARE PRODUCTS, INC.

3.3.25

Sta Polish Stack

The Sta Polish Stack is produced along with the Triad

and Script stacks for each procedural block in optlmlze

phase. At the end of each block, all three stafks are

— -~
written out to the OP-file as an intermediate text. The

it

code gen phase, in turn, places the contents of the file ,)
back into their respective stack area and the code gen-— .

eration for the block is done by driving through this J

stack.

11111
54321 0
Rung O r A B
} C (optional) 2
A . B C

0 | Data Pointer Group Nurber - T

1 | Procedure Pointer K GRoup P/ N -

2 | sgare Rle Pointer ® q/wu,o N ponfiens -

3 | Spare - -

4 | Spare - -

5 | Spare - -

6 | Absolute String String length in words String

7 | Spare - -

8 | Spare - -

9 | Sta Polish Pointer Group Number -
10 | Script Pointer v -
il Literal Pointer " -
12 | Procedure Definition » -
13 | Statement Sentence = Line Nunber
14 | Triad Pointer Group Number -
15 | Verb Verb Number Operands

-68

CALIFORNIA SOFTWARE PRODUCTS, .

Il

VOO WO

{1 ¢ O | | | | | | | | | (O (| O (Y O | Y Y (A 1 A

o)
w

, verb number is

end of block

Accept console
Accept date

Accept day

Accept time

Alter

Alter segment
Branch LE

Branch NE

Branch GE

Branch GT

Branch EQ

Branch LT

Report Writer Definition
Binary Compare
Binary Store

Binary Store Index
Call

Class Alpha Test
Class Numeric Test
Close Sequential I/0
Close Relative I/O
Close Indexed I/O
Compare Alpha
Compare Figcon
Compare Group
Compare Numeric
Debug Setup

spawe Enter

Display Console
Display égﬁput- §Y$°“+-
Delete Relative I/0
Delete Indexed I/0
Test switch-name
Report Writer end
Linage procedure definition
Gec

Go Depending

Go Depending Segment
Go Indirect

Go Segment

Inspect .y
spare C‘\O TM(’“ GQ\.%
Sort EOF

Link

spare W/m.()mﬁ Dz

CALIFORNIA SOFTWARE PRODUCTS, INC.

AND

OR

Convert Binary to Numeric
Convert Binary to Packed
Convert Numeric to Packed
Convert Numeric to Binary
Convert Packed to Numeric
Convert Packed to Binary
Start Relative 1/0

Start Indexed I/0

Made Label Definition
Stop

kmqaﬁ#mﬁ&m&sa$~bec mm&wm m#wwmai_
e"j"me'f'g""u
Move Figcon Edited " TP

Return
Search Initialize
Search

Search All

Search A]l Dxrect1on

PN

A1 —-_________
String

Unstring ,
Segment Branch’ 1

Exit Program ————-”Q
Unstring Control

Unstring Into
Unstring Into End |

Call Variable
Cancel
Merge . __

3-65

oA
/o7
3%
/0§
s
/11!
/7%
/13
A
/7
(¢
/777
/18
/9
/20
/2]
/[220
(23
| 2%
/2%,
/26

17
/25
(2

/?Z
(3)

LI IO SO I I T T TS AR T B R U SRR

S riew

Unst i

Jfa/;omﬁ Wnifer Tnitialize
rQe//;orl Wy ter ?cneraZ}
Kepont- Wailte Teryminale
eyt Waide. Wnils
M? E-_upé
TeA~

5

Tsace

Jrerve

iz o2
%w-é‘w Definitrs

700 Du%»»m T o
/Z‘x‘?‘z/wﬂ DaZz
?;:Z:;a:/bé

Scrpit=
Report Ll Acdvngre @

46
47
48
49
50
51

- 52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

e O T R O O TR R R R R B | mun

Move Figcon

Move Alpha

Move alpha just-right
Move alpha edited

Move alpha figcon just-right

Move group

Null

Open Sequential I/O
Open Relative I/0O
Open Indexed 1/0
Perform

Perform Terminate
Read Sequential I/O
Read Relative I/0O
Read Indexed I/0O
Release

Rewrite Sequential I/0
Rewrite Relative I/0
Rewrite Indexed I1/0
Sort Control Block Setup
Set Adjust Index

Set Store

Sort

Store Edited

Set False

Store numeric

Stop Literal

Set True

Size Jump

Size Reset

Debug Procedure Test

Declarative Procedure end . .

Perform Segment

Write Sequential I/0
Write Relative I/O

Write Indexed 1/0

spare- “Transfrrm

Program Collating Sequence
Test Numeric

Test Binary

CALIFORNIA SOFTWARE PRODUCTS, INC.

3.3.26

For each item to be summed (addend),

a group is registered onto the stack.

Sum Upon Stack

in the report writer,

The Sum Upon stack

is used to construct appropriate RESET and SUM routines for

each control level in a report.

Rung 0

1
2
3

where

Stack group type

Data Pointer of addend

Data Pointer of sum—-counter

Data ptr of sum—-ctr's report group

Data Pointer of RESET control

Data Pointer of addend report group

rung 4 = 0 FINAL
0 Data pointer of RESET control

rung 5 = 0 addend is not in the report section

Stack group type

= 0 non-array

= 1, 2 or 3 Number of subscripts/indexed needed

for addend. The next group in the

stack contains subscript/indexes

information.

Rung 0 Data Pointer of subscriptj]

Relative Index integerj or 0

Data Pointer of subscriptj

Relative Index integer; or 0

Data Pointer of subscriptj

(ST - S VA S

Relative Index integer3 or 0

CALIFORNIA SOFTWARE PRODUCTS, iNC.

3.3. 27 Temp Stack (‘§T 13, P5A44o !-7_)

The Temp Stack is used by all phases to hold temporary

information.

.Rung 0

CALIFORNIA SOFTWARE PRODUCTS, INC,

3.3.28 Triad Stack

For each collapsible operator, a Triad group is con-
struc%én the Common area énd is searched agéinst the
Triad Stack. When a match is found, the matched group

"in the stack is marked as being used one more time.

If a match is not found, thé group in.Common-is
registered onto the stack as a new entry. In
either case, a pointer to the Triad Stack is used
to describe the operand in Sta Polish Stack.
Collapsible operations are any operations that
can be optimized; that is, arithmetic and mode
conversions.

- In optimize phase, each use of the Triad group is noted
on the group by decrementing the 'used'count. As long
as the 'used' count is non-zero, the integrity of the
Triad group is maintained in either a pseudo register

or a temp cell.

111111
54321098765 43210
Rung O A Operand
1 B Operand
2 S Class Driver
3 |Used Count Decimal |° Length

A and B operands contain one of
followihg pointers or zero.

@ Data

° Index

© Script

° Literal

by 73 CALIFORNIA SOFTWARE PRODUCTS, INC.

Two operands of an operation, A and B, are
canonized when possible. That is, operands
are reordered to some logical sequence so
that an operation, X * ¥, will match with
Y * X operation. |
S = Spodiled flag. The operation is "spoiled"
‘when‘either of the opérands is modified.
Cléss = see Data Stack Description. |
Driver = 1 Unary minus, - .
= 2 Exponentiation, **
= 3 Multiplication,-*
='4 Division, /
= 5. Addition, +
= 6 Subtraction, -
= 7 Binary load
= 8 Binary load of index-name
= 9 Load
= 10 Load figurative constant
= 11 Round
= 12 SET load (load occurrence number)
= 13 Numeric to packed conversion
= 14 Numeric to binary conversion
= 15 Packed to numeric conversion
= 16 Packed to binary conversion
= 17 Binary to numeric conversion

= 18 Binary to packed conversion

= 19 Binary Load immediate

Used Count = Number of times the Triad result is used.
Decimal = Decimal position of Triad result

Length = Logical length of Triad result.

3~74 CALIFORNIA SOFTWARE PRODUCTS, iNC.

3.3.29 True Label Stack { Stacke 7, Pluac S’)
False Label Stack CS"LO*JC"’L 15, Plrsee s

These two stacks are used during the logical expression

X .
analyze to record branches for relationals.

Rung O - Sta Polish Pointer

1 ' Label Code .

Where Label Code
= 0 Synonym Spodil
= 1 Synonym Label Start

w
1

CALIFORNIA SOFTWARE PRODUCTS, INC.

3.3.30 USE Section Stack Cs—t_&c,\(g, P lase "5>

The USE Section stack is used during procedure parse to
temporarily hold USE FOR DEBUGGING identifier or USE FOR

REPORTING information. At the conclusion of procedure
parse, the section pointers held in this stack are trans-

ferred to rung 5 of appropriate data stack groups and the

stack is popped.

Rung 0 Section Pointer

1 Data Pointer of USE item

CALIFORNIA SOFTWARE PRODUCTS. INC.

3.3.31 Symbol Table

The Symbol Table rec
unique symbol presen

ords the definitions of every

ted by a COBOL compilation. The

implementor—names are predefined and initialized in

the table. -
1.1-1 1°1:;
54321 0 9 8 7 6543210
w0 Relative locat
v - * esyné%&%xiléi
1 T .
yeel Ty 1 T
2 Not used L
3
Symbol

<

(in bias-38 form)

For Type = 0 - 14,

Type = stack number

Tl and T2 =

For Type = 15

group numbexr

Tl = 0 mnemonic-name, T2 = file number
Tl = 1 switch-name, T2 = switch number
T1 = 2 device-name, T2 = device number

T3} = 3 alphabet-

name, T, = 0 STANDARD-1

=1 NATIVE

2 EBCDIC

'T -4 \mw@u&g& ué;:b\\‘ literal >“

L = number of characters in symbol. (Maximum 30 characters)

CALIFORNIA SOFTWARL PRODUCTS, INC.

A.

/?5.

//~ 3.3.32

\
\ > The reserved\word table consists of four distinct tables.

Reserved Word Table

N

Hash Llnkage Table
This table contalns 128 one- word entries.

Each word contalns word displacement of a re-
servedeord in.the Reéerved Word Table (RWT) for
the first haéh synonym. It contains zero for a /
null hash synonym. This table is used to reduce

the/search time required to dlstlngulsh usexr-—

efined woxrds from reserved words. Each word
is accessed via 1ts “hash number. N

Word Number Table
The word number table consists of five entries.

Each entry is the number (in alphabetical order) of

the first reserved word requiring a given amount of

space in the reserved word table. These numbers

are compared to QQ and QQA operands to determine

the size of the word being asked for.

Word Displacement Table

Each word in the five-word table contains the

word displacement into the Reserved Word Table (RWT)

for the first entry of a given size. It is used to

jocate and obtain required information of the re-

served word in question. .

To locate a word in the RWT from a QQ or QQA

operand, the following ste.. are per formed:

3"78 CALIFORNIA SOFTWARE PRODUCTS, $18C.

1. Search Word Numbér Table for largest
entry'less than or equal to operand.

2. Subtract WNT éntry from operénd. |

Multiply xesult by RWT entry size

(2 + subscript of WNT entry).

4. &4 to corresponding WDT entry to‘

| get RWT displacement.

D. Reserved Word Tablé (RWT)

This table contains the information of each
reserved word;‘such as leﬁgth, forward synonym
linkage, reserved.yo;d characteristics and packed
reserxved word\symbbi. This table is accessed via
the Hash Linkage Table or Word Number Table and

Word Displacement Table. The format of each entry

is:
111111
54321098765 43210
w 0 L S
PRy A M[PR T
Resexved Word Symbol t:>
(in bias-38 form)
n

CALIFORNIA SOFTWARE PRODUCTS, INC.

Wherxe L
S

2

H XN R oW

1l

character count of reserved word symbol

relative halfword.location of the next hash

synonym in chain. & value of z2ro

signifies the end of chain.

Federal Standard level indicator

0 low A ‘ 4 4@%7#M/

1 low-intermediate Fﬁ/

2 high-intermediate S

3 high

Keyword. fThis flag is used when the

syntax analyzer 1s ln the recovery mode.

Reserved word used as a name (e. g.,

LINAGE-COUNTER) . '

Area A required. _

Both area A and area B allowed.

Period required after this reserved word.

Clause recovery flag.

Trait which is division dependent or a pre-=

assigned value for the reserved word. '

1. For a figurative constant - it contains
the actual fiqgurative constant value.

2. . For Division, Section, Paragréph and
Clause header — the last four bits are
"encountered bits"” associateq
with its occurrence.

3. For a verb in the Procedure bivision -
it contains the "Verb Control" value,

4. For a reserved word used as a name in
the Procedure Division - it contains a

preassigned number.

3"‘80 CALIFORNIA SOFTWARE PRODUCTS,

INC.

3.4 Compile Work File Descriptions

3.4.1 Data Text (DT-Text)

The Data Text is used to record the information in Data Division in

order to minimize the size of various stack for those information

not directly used during the parsing phases.

The format of the text is:

e

1
5 -8 7 0
word O T L
1 .)
Optional ,::>
- .
n

Where T = Type of the text
L Word length of B '
B Body of the text (word 1 through word n)

It

1l

The following is a list of texts being generated.

1. Data Item Header (DIH)

This text is generated for each data item defined in

the Data Division. The DIH precedes any text that

pertains to it.
T = X'00'
L =n
w 1 = Data Stack Pointer
w 2-n = Packed symbol of the data itenm,

if required

CALIFORNIA SOFTWARE PRODUCTS, INC.

Line Number (LIN)

T = X'01"
L =1
w1l = Source image record number in bits 15-1
'Copied from library' flag in bit 0O

Initial Value (VAL)
This text is generated for any data item with an initial
value specified. -

T = X'02°
L =n
w1l = Literal attribute as follows:

‘Figurative Constant

1
5

11
4 3 38 7 0
C

not used

not used FC

Where C = 0 for figurative constant

FC = figurative constant value
X'00' = LOW-VALUE

X'20' = SPACE

X'30' = ZERO

X'22' = QUOTE - double

X'27' = QUOTE - single

X'FF' = HIGH-VALUE

CALIFORNIA SOFTWARE PRODUCTS, INC.

b. Alphanumeric

1111
54 3 2 7 6 0
w 1 C |A not used AL
2 .
Alphanumeric Literal <%?>
AL/2
Where C = 2 for alphanumeric
A = ALL

AL = alphanumeric literal length (= 120)

c. Numeric

1111
5 4 3 2 7 6 0
w 1 CcC|sS D NL
2 . .
'bjuﬂmuygl Li+ﬁVuLQ
NL/2
Where C = 3 for numeric
S = negative signed

D = decimal positions
NL = numeric literal length

CALIFORNIA SOFTWARE PRODUCTS, INC.

4. Edit Mask String (EMS)

This text is generated for the data item with edit

picture.
T = X'03"
L =n

w:1l = Edit mask string-attribute
w 2-n = Edit mask string

i

111111
543210 5 4 0
w1 C |S{AlF D L
2
Edit mask string <::;::>
L/2
Where C = class
0 for alphanumeric
1 for numeric '
S = digit select not present (i.e. no 9's)
A = asterisk protect :
F = floating character present
D = replaceable decimal position
R = number of replaceable positions (= 18)

3]

—84 CALIFORNIA SOFTWARE PRODUCTS, INC.

5. Condition Name Header (CNH)
This text is generated for each 88 level item and is
"followed by condition literal text.
T = X'04°
L=n
w 1 = Condition-Name Stack Pointer
w 2-n contains the packed symbol of
the condition-name, if required.
6. Condition Literal Single (CLS)
This text is generated for each condition .literal
without "THRU" option.
T = X'05°
L =n
w 1 = Literal attribute, same format as

VALUE 1literal
w 2-n = Literal string

7. Condition FROM literal (CFL)

This text is generated for each FROM condition

literal:
T = X'06"'
L = n
w 1 = Literal attribute
w 2-n = Literal string
3-85

CALIFORNIA SOFTWARE PRODUCTS. 114C.

8. Condition TO literal (CTL)

This text is generated for each TO condition

literal:
T = X'07"
L =n

"w 1 = Literal attribute

w 2-n = Literal string
9. Condition Terminator
T = X'08"
L=20
10. Data Item Terminator
T X'09°*
L =20

11. Report Name Header

This text is generated to identify RD (report
file).

T = X'0A°

L =1

word 1 = fgle Pointer

12. Report Name Terminator

X'0B’
0

T
L

1l

13. Alphabet-name definition
T = X'0C!
L = 0 or 129
w 1 = mnemonic number (see Symbol Table desc;iption)

w 2-129 = 256-byte translation table if not
'STANDARD'.

CALIFORNIA SOFTWARE PRODUCTS, INC.

14. Program Collating Sequence

T = X'0D'
L =1
w 1 = mnemonic

15. Line Number
T = X'DO’
L =1
16. DT-Text Terminator

This text is generated to flag the termination of

DT-text
T = X'FF'
L =1

3-8 7 CALIFORNIA SOFTWARE PRODUCTS, INC.

3.4.2 Encoded Procedurce Text, EP—Text

The Encoded Procedure Text is a simple encoding of PROCEDURE
2ncoced Troe ‘

DIVISION. The format is:

Ul -
N

W -
N
=

-

_ optional

Where opP = Dataname/Condition-name/Index-name
’Procedﬁre—name

File—-name

Spare

Spare

Mnemonic-name

Miscellaneous

Qualified Procedure reference

Expression

W 0o 9 60 1 i W N O

Spare

=10 Compiler-generated tag

=11 Literal or Figurative constant
=12 Procedure Definition

=13 Source Line Number }
=14 Procedure Syntax information

=15 COBOL verb

3-88 . CALIFORNIA SOFTWARE PRODUCTS, INC.

control field, C, is as follows: Sl////)

©

©

0

o

/

For OP = 0,1,2,§/By7,12
C = group number of étack
For OP = 5, C= '8nn' where nn is collating sequence
For OP = 6 table number.
C = 0 for implied subject in an expression
For OP = 8, C consists of two su. fields; Order and
Operator §#. The Order field is bits 4-7
and the Operator # field is bits 8-15,
Operator Order Operator #
expression end 0 0
unary minus 1 1l
* % 2 2
* 3 3
/ 3 4
+ 4 5
- 4 6
> 6 7
= 6 8
6 9
condition relational 6 12
numeric test 7 13
alphabetic test 7 : 14
positive test 7 15
zero test 7 16
negative test 7 i 17
NOT 8 g 18
AND 9 : 19
OR 10 i 20
expression start j 15 E 0 :
3-89

CALIFORNIA SOFTWARE PRODUCTS, INC.

-
\ o For OF = |2
: C= jﬂou? bt Oy 2rccedue stack
Wil o= 5 $(ASCIT) lewsth o7
: m*mw %Tgﬁ&{ﬁ;uﬂ
’ W2 => v = S%M(;*Q«'c s-Ff:.,.,gr Ly P”*OCQ&QUAQ~MM
e For &P =13
ol pounal
\ wl = &t (S~ coctamue ‘*‘LLAM nedrer

GEL b eoloins He ‘copred A
NG A 7

= 10,
C = 0 next sentence
= 1 true label
= 2 false label
e For Op 11, C consists of two subfields:
where Cl is bits and c,
Cl = 0 literal attribute and liﬁfral is'wordg 1;3..
(= 4 integer in word 1 1{ - 3‘?‘ :%Pmk;i*+m TASCII
= 5 + self-relative integer in word 1 :
= 6 - self-relative integer inword 1
C, = word length of optional words (words l-n)
&2 .
J{ e For OP = 15, C contains verb number
4%&& X'o00" USING (Procedure Division Header)
X'01"' DECLARATIVES
X'o2! USE DEBUGGING
X'o3 USE REPORTING
X'04° USE STANDARD
X'05" END DECLARATIVES
X'06" REPORT NAME HEADER
X'07! REPORT GROUP HEADER
X'08’ REPORT NAME END
X'09" SRER SpanQ
X'10' ACCEPT
X'11" 'ADD
Xx'12! ALTER
X'13" CALL
X'15" CLOSE
X'1le6® COMPUTE
X'17! DELETE
X'19'’ DISPLAY
CXT1IAY DIVIDE
X'1c' ENTER

CALIFORNIA SOFTWARE PRODUCTS, INC.

!/
\.

X'1D" ENTRY
X'1E! EXAMINE
X'1F" EXHIBIT
X'20" EXIT .
X'21' GENERATE
X'22° co
X'23" GOBACK
X' 24" IF
X'25" INITIATE
X'26" INSPECT
X'27" MERGE
X'28" MOVE
X'29" MULTIPLY
nggzrn—-~‘“—“—ﬁﬁ§3}*”_“,”
X'2B" . OPEN
x'2c! PERFORM
X'2D’ READ
X'2E" READY TRACE
X'30° RELEASE
X'31° RESET TRACE
X'32' RETURN
X'33" REWRITE
X'34" SEARCH
X'37° SET
X'38" SORT
X'39" START
X'3a" STOP
X'3B! STRING
X'3c' SUBTRACT
X'3E TERMINATE .
X'3F" TRANSFORM X4z’
X'40' UNSTRING / L
X'41' ____ _WRITE -
X'4g: . (f REPORT WRITE
,

X 4N,\
acts
3

-91

GROUP INDICATE

S

UN LOCK
[N QUIKE.

LINE povencE (Report wWatter)

CALIFORNIA SOFTWARE PRODUCTS, INC.

For OP = 14, this field is a statement option increment.
USE DEBUGGING

X'00" ALL PROCEDURES
X'01’ ' ALL REFERENCES

USE STANDARD

X'100°" EXTEND
X'200°" - I-0
X'400°' OUTPUT
X'800" INPUT
ACCEPT
X'01" DATE
X'02' DAY
X'04" TIME
S Aan SHSTN 2
X'10" CONSOLE
ADD
X'00°’ TO
X'02' GIVING
X'04’ \ ROUNDED
X'10' CORRESPONDING IDENTIFIER
X'40' ON SIZE ERROR
X'80" CORRESPONDING
CALL
X'80" ON OVERFLOW
CLOSE
X'01’ UNIT/REEL
X'02" WITH LOCK
X'04" NO REWIND
X'20" REMOVAL

CALIFORNIA SOFTWARE PRODUCTS, INC.

COMPUTE

X'04" . ROUNDED
X'20" =
X'40°' - oN SIZE ERROR
DISPLAY |
x'10"' CONSOLE
xg-11 vqs&spmeﬁ——————-——/c. 2 T
-2 : SYSOQUT e S
DIVIDE
X'00" INTO
X'ol!) BY
X'02° GIVING
X'04" ~ ROUNDED -
X'08"’ REMAINDER
X' 40’ ON SIZE ERROR
EXAMINE
X'0l' ALL
X'02" LEADING
X'04" FIRST
X'08' UNTIL FIRST
X'20" REPLACING
EXHIBIT
X'00’ NAMED
x'ol’ CHANGED
X'02' CHANGED NAMED
EXIT
X'00"' PROGRAM
. _ b
INQWY{\L X«O'Z/ EXICT
X, 0%, €y
y oy orE N
Y68’ fAcCESS
¥'10’ O re M EATON
X '26 SHARED
x'¢o! 3-g3 Locl<

he ! YB ! (.«/’KST }éé‘,ca@ CALIFORNIA SOFTWARE PRODUCTS, INC.

INSPECT

X'00" CHARACTERS
X'01" ALL
X'o02' LEADING
X'04° FPIRST
- x'0s8! BEFORE INITIAL
. X'10° AFTER INITIAL
X'20" REPLACING
X'40! TALLYING data—-name
MERGE
' X'00" ASCEND1NG KEY
X'01" ' DESCENDING KEY
X'04’ ~ USING
X'02" GIVING
X'20' COLLATING SEQUENCE (followed by
mnemon ic—name)
X'40" OUTPUT PROCEDURE
MOVE
X'1o0’ . CORRESPONDING Identifier
X'80" CORRESPONDING
MULTIPLY
X'01° GIVING
X'04" ROUNDED
X' 40" ON SIZE ERROR
OPEN
X'04’ NO REWIND
X'08' REVERSED
X'10" EXTEND
X'20" 1-0
X'40" OUTPUT
X'80° INPUT
X '4-50' CecKK
x'200 SHMCED

CALIFORNIA SOFTWARE PRODUCTS, INC.

PERFORM
X'00'
xX'01'
X'10'
X'20°
X'40°

READ

RELEASE
X'00"

RETURN
S Xtol’
. X*20"

REWRITE
X' 40°

FROM

BY
AFTER
UNTIL
VARYING

NEXT
INTO
KEY

AT END

INVALID KEY XJ / Lock

AT END

FROM

i\x‘ 2007 SHNEED

INTO

— %

SEARCH
X'00"
X'02"
X' 04"
X'10"
X120"
X' 40"

SET
X'00'
X'oy!
X'o2'

IUALID KB/l Lock

L e sip b
VARYING L -
WHEN

NEXT SENTENCE
Next Sentence Tag
AT END

ALL

TO
UP BY .
DOWN BY

CALIFORMNIA SOFTWARE PRODUCTS, INC.

SORT

X'00’ ASCENDING

X'01"' DESCENDING

X'04’ USING

X'02' GIVING

X'20' COLLATING SEQUENCE (followed by

_ mnemonic-name)

X'40° OUTPUT PROCEDURE

X'80’ INPUT PROCEDURE
START

&Koz __USING-® I

X'04' EQUAL

X'08"' GREATEKk

X'10" NOT LESS

' /
]

X'40" WINVALID KEY)(-4-61) LOC{C—
STRING . X' oen! SHALED

X'o1? INTO '

X'02' SIZE

X'04' DELIMITED

X'08"' POINTER

xX'80" ON OVERFLOW
SUBTRACT

X'00° FROM

X'02' GIVING

X'04" ROUNDED

X'10® ’ CORRESPONDING Identifier

X'40' ON SIZE ERROR

X'so0’ CORRESPONDING

3-96

CALIFORNIA SOFTWARE PRODUCTS, INC.

y NLociC

UNSTRING

!

Y 62

X'o1’
X'o2'
X'04I

X'08"

WRITE

X'10"
X'20"
X' 40"
X' 80"

€2

INTO

ALL
DELIMITED
POINTER
COURT
DELIMITER.
TALLYING

ON OVERFLOW

EOP, END-OF-PAGE
pAGE _—— K o4 PosTieNING

BEFORE - .

§ ’
AFTER W‘rﬁ‘ﬁé‘@ﬁ‘
! | QR I

INVALID KEY

CALIFORNIA SOFTWARE PROJDUCTS, INC.

3.4.3 Optimized Procedure Text, OP-Text

This text is a conglomeration of the contents of several stacks
used in phase & for collapsing and analyzing of EP-Text. Since
_the collapsing occurs from one procedure=-name definition to the
. next definition {a functional b]ocgl: information collected in
thesa stacks are no longer needed at the end of each "block".
At this time, these stacks are copied out to the OP-file before
baing poppec. ‘

The general format of OP-text is as follows for each block:

Segment Pointer or 0

last Mode Label Pointer .. O

iast Literal Pointer or O

N\ Literal addresses SN

Tast Triad Pointer or O

!
. . ‘
- Triad Stack dump . ‘fk

jast Script Pointer or O

N Script Stack dump Y#‘ :

\,
~

last Sta Polish Pointer or 0

ﬁi% Sta Polish stack dump <5>

3-N

3.4.4 Cross Reference and Diagnostic Text

The Cross Reference and Diagnostic Text consists of Cross Réference

&

Records and Diagnostic Records. Each recorxd contains’)ﬂ’words and

the whole record is used as a sort key.

3.4.4.1 Cross Reference Text, XR-Text

The Cross Reference Record is created by the parsfzg phases when

RUN Copprar

the CR option is specified on COBOL Feb—Eentrotr—€ard.

11
5 4 0
"w 0 F
1
Symbolic string <<:;:>
10 i
11 Pointexr
3R Not—Uoed éEL,_a
13 ﬁf Line Number //

+y
1l

= 1 for procedure-name ' qu;____EiEEQ:EZZZY

R = 0 for definition

1 for reference

3_99 CALIFORNIA SOFTWARE PRODUCTS, INC.

\ 17~ = **‘““"““\
s~/ zi [N '
0 for data-name : 3¢____£i2221:;.fﬂ»'

3.4.4.2 Diagnostic Text, ER-Text

F .

Line Number

Column Ngmber

w N H o

Error Number

Not Used -

\§ F

Where F =(i) for diagnostic

v

3-100

CALIFORNIA SOFTWARE PRODUCTS, INC.

3.4.5

RW-Text

The RW-Text is identical to DT-Text with following extensions

and is used to temporarily hold the report writer information
between the passes in Phase R. The general format is:

Word O

111111
543210

>

9876543210

R

P

‘Optional

-
-
.

CODE

R X'EO0"
P 2

Word 1 = CODE literal value

CONTROL
R X'El'
P

]

Words l-n =

Lin@ggz/

R X'E2"
P

1 T A I I 1

B WO

0 FINAL not specified
1 FINAL specified

Data pointers of CONTROL items
in order of sequence.

PAGE-LIMIT is specified
HEADING is specified
FIRST DETAIL is specified
LAST DETAIL is specified
FOOTING is specified

The integer value associated with above clauses are

L1 T I [I
b
o
S

]

X'20'

DE
RF
PF
CF

+ X!

CH

+ X!

PH
RH

- placed in the File Stack.

and word 1 = lata Pointer
40' CF FINAL
and word 1 = Data Pointer
40' CH FINAL

CALIFORNIA SOFTWARE PRODUCTS, INC.

3-101

NEXT GROUP

R = X'E4®
P = 1 word 1 contains integer
= 2 NEXT PAGE
= 3 integer with NEXT PAGE
= 4 PLUS and word 1 contains integer
LINE
R = X'E5'
P = 1 word 1 contains integer
= 2 NEXT PAGE
= 3 1integer with NEXT PAGE
= 4 PLUS and word 1 contains integer
COLUMN
R = X'E6'

P = not used
word 1 = integer

GROUP INDICATE

R = X'E7'
P =20
SOURCE

R = X'ES8'
P=20

words l-n = Data pointer and subscript/index
information if an array.

VALUE

R = X'E9'

P =20

words l1l-n = value literal

RESET

R = X'EA®

P =0 word 1 contains Data Pointer
= 8 FINAL

Forward Referenced Data Item
R X'70"'
P number of data-names used for the reference
0 for each of qualifying data-names
word 1 contains
. 1if bit 15=0, symbol table displacement
. if bit 15=1, compiler-generated register number
(e.g., PAGE-COUNTER reference is X'800D')

o

3-102

CALIFORNIA SOFTWARE PRODUCTS, INC.

APPENDIX D
OPERATIONAL CONSIDERATIONS

Compiler Control Options

. JEURPIG — e e = —— —_—
~— -

Compiler continl options are listed on the RN. COBOL line.

A ccmma or space may be used to separate options. A minus sign
i = usea to sepatd et Sl mesbedeinird

turns an option off. Compiler control options .and their meanings

ars the followings

Ootion Mearing:

ANS Use ANSI mode in the compiler: £lag any

nonstandard clause or syntax as invalid.

*CR Proérce cross-reference listing.
DM Prcdaee data map.
TQ Use the double quotation mark (") instead of

-+he apostrophe (') to delimit alphanumeric literals.

oW Displiay warning messageé;
GO Gar=rate object code file.)
LI Lors listing: use this option for ll—ihch paper
cr 3 lines/inch printing. e
o IListc cbject code. LO may ce f;ii;wedlby:; T T
i specification of lines for yhich dbject code is .
; to be listed. This specification takes the form
' (Ry, Ry, R3, Ry, RS). Each R, may be a single
line number or a range lo-hi, where lo =hi.
LS "List source code.
R80O Allow 80 columns for source. If R80 is not

specified, columns 73-80.

771058

KEO

SZ 4
SJUb

TCACr

Cotion Meaning

SEG Use of the segmentation feature is permitted.
SUB ‘ This is a subroutine.

SYN Check source program syntax only.

TRACE Enables trace on and trace off statements.

The opticns CX, GO, and LS are on unless. they are explicitly
turned off by a minus sign. -All other options are off unless

they are explici=lr turned on in the RMN. COBOL line.

PIZE STATUS Data Tiem

1]

The FILE STATTS data item is a two-character data item which
indicates the stz2+us of an OPEN, CLOSE, READ, START, WRITEZ, or
REWRITE statesent Zuring the execution of the statement and
befsore any applicable USE procedure i .xecuted. The data item
has a2 valid czdée czliy if the FILE STATUS clause is specified
-in the file cornt=cl entry for a file.

The codes 2né their meanings are given in table D-1.

7710538

3.5 COMPILATION OPTIONS

The compilation options (through $OPTION statement) provide
the user a wide range of capabilities. ‘

10

n

13

14

15

16

spacifies that the source and any accompany-

- ing diagnostics are not to be listed.

causes the object program to be not written
out on the system binary out file.

Causas a map of the Data Division to Ee nat
produced. .

causes a cross reference Tist to be not
produced.

causas the object program to be written out
o the system Toad-and-go file.

causes an object 1isting to be produced.

-

signais the compiler to list warning diag-
nostics along with the other diagnostics.

Source program is checked for syntax only.
imforms the compiler that the source program

has 2 double quotation mark instead of apostro-
phes that are to be used as enclosing characters
Tor alphanumeric literals.

raceral Information Standard (FIPS) low level

"~ cdiagnosis.

Federal Information Standard (FIPS) Tow-
intermediate level diagnosis. B

Federal Information Standard (FIPS) high;‘

intermediate level diagnosis.

causes secment numbers to be ignored so that
the object program is not segmented.

informs the compiler to produce a subprogram
Jobject. This option is required when no
argument is being passed to a subprogram.

informs the compiler that all 80 columns of
input are significant, rather than Just the
first 72.

produces a deb&é file to be interfaced with
the interactive debugger.

3-94

word 2
word 3

For example,

Line number
Column numnber

produce following RW-Text:

word

"
11]
[1]
"

0
1
2
3
4
5
6
7

(LI | (T | A | R I A

X'7002"'

Data pointer of A

line #

column #

X'7000"

Data pointer of B
line # '
column #

3-103

a forward reference of A of B will

CALIFORNIA SOFTWARE PRODUCTS, INC.

3.5 Compillation Options gé%i{: o

The compilation options provx%e the user a wide range

of capabilities.

A brief description of each option follows: Any of the
options can be negated by preceding the option with a '-'
(minus) character, e.g., -LS. If the option is a default

value it is underxrlined.

+ Bt S ~--\

r)Tﬁgf“ produces a debug flle to be 1nterfaced‘w1th?
the interactive debugger. : f ‘

51gnals the compilexr to llSt warnlng/ﬁlag—
nostics along with the other diagnostics.

DM N\ .causes a map of the Data Division to be L
roduced g ‘
| S e
[PM ~ causes a map of the Procedure DlVlblon
‘ to bexproduced.
CR causes cross reference Xist to be i
produce , 1
LS specifies that the source and any accompany-

ing dlagnost Ccs are/to be listed.

Lo causes an obje t«llstlng to be produced. _
Dg " informs the coﬁﬁllgf that the source program has
double quotaéion m

marks thép/ére to be\usea as enclosing characters
for alphanumeric lit 1s. :

GO causes the object prograi _to be written out on
the System GO file.

BO cdauses the object progren to
he system BO file.

(&;ﬁinstead of single quotation

written oulbt on

L]
}
5
i
{
'
7

SEG informs the compiler to honor t egment numbers
that are associated with each section—name. ;

informs the compiler to produce a subph gram objpckn
This option is reguired when no argument %Slng

assed to a subprogran. :

3-104

CALIFORNIA SOFTWARE PRODUCTS, INC.

3.6 Compilexr Output

3.6.1 Overvicw
The COBOL compiler optionally produces the
following outputs: | .
° Source listing
° Diagnostics listing
o Binary loader text
o Object listing
° ‘Data.name map listing
e Cross Reference listing

° Procedure map listing

3.6.2 Source Listing

The Source listing is produced with the LS option,
and each Source line consists of a line number,
location of generated code, and the 80-column

- image of a source input. Column 1-6 of each
source record is sequence checked and if it is
out of sequence, "#" is printed to the left of
the source record. If blanks appear in column
1-6, the record is assumed to be in sequence.

Sequence checking is done alphanumerically.

3.6.3 Diagnostics Listing

The compiler collects the diagnostics throughout
the parsing and code generation phases and pro-
duces the list at the end of compilation. Warning

- diagnostics are inhibited from printing unless
specifically requested with the DW option. Critical

diagnostics are always produced.

3-105

CALIFORNIA SOFTWARE PRODUCTS, INC.

Each diagnostic consists of line and column
numbers which pinpoints the position which
the diagnostic refers to and a description of
the error along with its number.

Object Listing

‘The Object program listing is invoked with the

LO.option and appears in the source program

listing. The code generated for each source

line follows the line and symbolic verb of

that line. It consists of a relative location
in héxédecimal, a hexadecimal operation code,
a relative operand in hexadecimal, a symbolic
operatidn code and symbolic operand. Object
listings are descriptive much like an.assembly
listing.

Dataname Map Listing

The dataname map listing is produced with the
DM option and appears after the source object

listing in an alphabetical order.

Procedure Map Listing

The procedure map listing is produced with the
PM option and appears afte> the dataname map
listing, if specified. - It is in an alphabetic

oxrdexr.

Cross Reference Listing

The CR option produces a cross-reference listing
of data and procedure names. If DM or PM is
‘specified also, the maps are intermixed with the

cross—reiference listing.

CALIFORNIA SOFTWARE PRODUCTS, 11NC.

3-106

COMPILER PHASE DESCRIPTIONS

4.1 Compiler Organizations

The COBOL Compiler is organized into seven (7) phases
which overlay each other and use a common MOM inter-
preter with Phase Driver as a root phase as shown in
Figure 1. The functions of the Root and seven phases

are as follows:

Root — MOM interpreter and phase driver

Phase 0 - Compiler initialization

Phase 1 - Identification, Environment and
Data Divisions Parse

Phase 2 - Report Writer Parse

Phase 3 - Procedure Division Parse

Phase 4 - Data Allocation A
Phase 5 - Procedure Code Optimization
Phase 6 - Proceduie Code Generation
Phase 7 - Cross-Reference List

The compiler can also be described as three required

"passes"” and an optional fourth "pass": (Phase 1
through Phase 3). Pass 1 parses the source text and

encodes it for further processing. Pass 2 (Phases
3 and 4) reads the encoded output of Pass 1, allocates
data areas and optimizes the procedure code. Pass 3

(Phase 6) generates the object code. Pass 4 (Phase 7)
is optional; it produces the cross-reference listing.

4.1.1 Phase 0

Phase 0 performs compiler initialization. It processes
the compilation parameters (options specified on the
COBOL Job Control card), determines file requirements
for pass 1 and available storage for the Symbol Table

CALIFORNIA SOFTWARE PRODUCTS, tNC.

and the stack area. In addition, Phase 0 initializes
the Syn®ol 'Table with implementor-name symbols and

their attributes.

4.1.2 Phase l

Input: Source of Identification, Environment and
' Data Divisions ' |

Output: . XR-Text and ER-Text of Ex-File

External Output: Source listing of above mentioned

divisions.

Phase 1 perforhs a syntax analysis of the Identification,
Environment and bata Divisions. This checking results
in the generation of'Ethext (error) if user errors are
deteéted._ Moxe importantiy, this phase’éreates stack

. entries for data-names, index—-names, file;names and
condition-names so that subsequent phases can readily
access this information. In addition, the‘infprmation
relating to initial values, edit mask strings and data
map symbols is output as DT-text (data clusters) for
input to Pass 2. Phase 1 also optionally produces

cross-reference information in the forim of XR-text.

CALIFORNIA SOFTWARE PRODUCTS, INC.

4.1.3 Phase 2
Input: Source of Report SEction

Output: DT-Text
EP-Text

External Output: Source listing of Report Section
Intermediate: RW-Text

This is an optional phase and is called only when the
REPORT SECTION is recognized. Included in Phase 2
are some of Phase 1 parsing routines and a special
set of syntax routines to process the Report Section.
This special set of routines is required because of
different syntax rules from their standard Data
Division counterparts. Phase 2 is comprised of two

parts: syntax analysis and encode.

CALIFORNIA SOFTWARE PRODUCTS, INC.

4.1.4 Pphase3

Input: Source of Procedure Division

OQutput: EP-Text

XR-Text and ER-Text
Phase 3 is similar to Phdse 1 except that this phase
operates on procedure statements. Phase 3 performs a
syntax analysis of the Procedure Diviéién and creates

intermediate. text called EP-text (encoded procedure).

EP—text\cbntainsmtwgnmajopwcategories: procedure-name
definitions aﬁd,yefb?s;rings. A procedure name defini-
tion element-is simply a control number followed by a

' poinfer to the Procedure Stack. Verb striﬁgs‘consist

of a verb identifying number followed by arguments
thggwdgsgripekvgyy operands. These aréuments may be

stack pointers or some syntactical attributes. For

example, the statement MOVE A TO B is translated into

a verb string containing a MOVE verb number and Data

stack pointers of A and B as its arguments.

Phase 3 creates stack entries for procedure-names

and, like Phase 1, produces XR- and ER-text. At the

"end of source input, Phase 4 is called and after this

time the symbol table is no longer required.
4.1.5 phase 4

Input: DT-Text

Output: OP-Text

External Output: Object list for a}located data area
Object for data area

CALIFORNIA SOFTWARE PRODUCTS, tNC.

Phase 4 allocates data -stxrustures as described in the
Data Division; that is, it assigns locations for the

data fields defined and generates code necessary for

initial values and data section allocation.

in thg firsfipart of the data area, ail the.iﬁformation
that pertains to file description is generated. To do
_this Phase_4'makes a run on the File Stack. Each file's
record area is al;péated at this time and the address of
the area ié recorded in the File Stack. Following record
area allocation, a second pass is made through the File

Stack to produce File Information tables.

The primary function of FIT is to provide the addresses
of abnormal exit points to various bOBOL I/0 routines.
‘Furthermore, it provides additional information about
file's attributes and status; i.e., block size, address

of STATUS item, current lock position, etc.

The next step in Phase 4 processing is to make a run on
the Data Stack assigning addresses for each data item
defined. The order of allocation is same as the order
of source presentation except for items which are re-
defined or renamad. After the data item allocation,

another run is done on the Data Stack and Data

Descriptors are produced. Each Data Descriptor (DD)
contains the attributes of the data item and the

address where it can bes found.

CALIFORNIA SOFTWARE PRODUCTS, INC.

4.1.6 Phase 5

Input: EP-Text

Output: OP-Text

External Output: Object list for procedure-reference
literals. '

Phase 5 carries out the second stage of 3-stage process
of converting the COBOL procedural code as described in
the Procedure Division into object program. This stage
consists of breaking down certain statements into simpler
structures that resemble the final object sequence.

The process of optimizatién in phase 3 is accomplished'
when r¢¥translating from Polish notatfqn to triad form.
The triad form is especially amenable to analysis for
‘the removal of removable operations. ' As each triplet
is constructed, it is compared Eo triplets already
‘created within the same functional block. When a
match is found, the matched triplet is marked as being
used once more and the pointer to this triplet is used
" to describe the latest operation. In this way, all
optimizable oparations are collapsed into thehleast
nunber of operations for a give~ programn.

4.1.7 Phase 6

Input: OP—-Text

Externai Outputi Object listing of Procedure Division

Object program

Phase 6 can be thought of as the generation or assembler
phase, because it prepares a machine language program
from a pseudo-language text. In this case, the pseudo
language is OP-text, that was prepared in Phaéégmzwéhd 5.

R

CALIFORNIA SOFTWARE PRODUCTS, INC.

The main function of Phase 6 is to perform the last

e e .

stage of the translatlon process for procedure state-

ments:

-a. Translate OP-text into an object module suit-
able for‘input to the loader.
b. Create separate object files for each segment

module.

/

— c-‘ Generate the code necessary for registex house-
keepihg; i.e., generéte régistér stores and
loads of intermediate results when required.

d. Produce object llStlng,‘lf requested. Thls
1isting will be a "one-pass” listing, with
forward references being ieéqlved by the

loader.
N

 The opfimizhtion process in phase 6 is accomplishead by
developing all arithmetic xesults in.a set of pseudo-
registefs éliocéted in memory. For each of the pseudo—
régisters,'tﬁe contents and their destination are

remembered. The algorithm used for selecting the next

register takes advahtage of a mark left on each triplet
indicatihg the remaining number of times it is to be

used by selecting the register with the least number.

=

4.1.8 Phase 7
Input: XR~-Text and ER-Text of XR-File

External Output: Cross reference listing
The sole function of Phase 7 is to sort the XR-File

(XR-Text and ER-Text) and to priht out the cross

reference and diagnostic listings.

CALIFORNIA SOFTWARE PRODUCTS, INC.

If the CR option is specified, XR-text is generated

by Phases 1 through 3. It contains symbolic, name

attributes, and references of user-defined names.

CALIFORNIA SOFTWARE PRCDJCTS, INC.

4.2 Conpilexr External Flowehart

v

PHASES

1, 2 & 3

\2

Source
Listing

PHASES
4 & 5
A4
XR/ER—text;
v
!
PHASE
J 7
PHASE ‘
6
‘ A4
XREF/
! | Diagnostics
—Y Listings
Object -

CALIFORNIA SOFTWARE PRODUCTS, INC.

COMPILER GENERATED OBJECT CODE
5.1 Overview

Due to the nature of the Microdata Express computer,
it is not practical to attempt to generate in-line
code for the majority of the functions of the COBOL
1anguage. The primary reason is that the Microdata
Express computer is not a business oriented computer;
that is, decimal arithmetic must be done with software.
Furthermore, the environment in which the COBOL object
must execute in is rather restrictive for good sized
COBOL. An average COBOL program is usually in excess
of 1000 source lines. Because of this, the design of
the Microdata COBOL system includes library routines
for performing these functions and compiler generated
code consisting of calling sequences to these routines
whenever one of the COBOL functions needs to be per-
formed.

5.2 Generation Sequence

5.2.1 Generated order

In the following discussion of the calling sequences for
COBOL runtime routines, it is understood that whenever
necessary, subscribts, indexes, and data format conver-
sions have been computed, adjusted for typé, and placed
in the appropriate temporaries or dummies. The code
géneration for each COBOL verb, in most cases, has the

following format:

subscript or index conversion of source

subscript or index calculation of source

source data format conversion ' prolog
subscript or index conversion of target

subscript or index calculation of target

target data format conversion

COBOL verb processor

computed data format conversion } epilog

CALIFORNIA SOFTWARE PRODUCTS. INC.

5.2.2 Calling Sequence Conventions

The general calling sequence that the compiller generates

for COBOL runtime routines is

MARK "14", routine name
LWL DD of data-namej
LWL DD of data-namejp
LWL DD of data-namep’
CALL 3+n '

Since this calling sequence is laborious and un-
necessarily redundant to document, a simplified form
of describing the calling sequence is used whenever

practical.

Foxr example:

MARK "14", C#LOAD

Lr where r=DECA number
LWL DD of idj source item

CALL 5

MARK "14", C#STE

Lr

LWL DD of idj destination item
CALL 5 ‘

are documented as

LOAD r,idl
STE r,idy
5-2

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.3 External References Naming Conventions

5.3.1 Object Program

The first éiéht characters of PROGRAM-ID literal are used to
identify the root program produced by a COBOL compilatibn.
for the segmented object programs, the last two characters
of significant PROGRAM-ID characters are replaced by a
segment number. For instance, an object program for the
segment 76 of a program called ABCDEF is identified as

EDCDEF76.

5.3.2 Ruﬁtime Library

Each of the COBOL runtime routines is distinguished with
C_ prefix. This is done to differentiate COBOL runtime
library from other external references which may appear

in a load program.

3 CALIFORNIA SOFTWARE PRODUCTS, INC.

Generated Data Formats

5.4.1 PFile Information Table, FIT

The File Information Table, FIT, contains the informa-

tion necessary\to'interface COBOL I/0 runtime routines.

One FIT is produced for each File Description (FD) entry

in the source program.

FIT Flags
1 File Connection name
2 ppA (File Status)
3 A(Error Declarative) cr 0
s | 17 Disfladenect 5} Relurchive
5 Block Size
6 Record Size
7 | A(Record Area)
8 | "Wagnaptd Tl
9 0

9(Ly
M: J’; ~4
"0 = 4~/0

CALIFORNIA SOFTWARE PRODUCTS, INC.

Conventions used are

A()
DDA ()

[}

DD
FIT flags are

Bit 15

Bit 14
*Bits 12-13

Bit 10
*Bit 3¢

Bit 8
“Bit 7

Bit
) \ Bit
/' —hit

oo}
}.J
r'.
O N W U o

to
e
rr

Bit fields

e m——

I/

i
o e

addfess of

address of

Current record pointer un-

defined
Not a read
SEQUENTIAL access mode

N

0
=1 RANDOM access mode
=2 DYNAMIC access mode

SELECT OPTIONAL

EQF detected

START specified
_.Variable length

i

it

I

'
1

-—

Reversed

il

O = RSV (PR

first time flag .

Advancing & [2€c

!
{

Opened output
Opened input
Opened

LOCK on a close encountered

t

L
;@Q“%
R

¥

-Label Declarative specified i

with * are set by COBOL I/0 routines.

FIT - Sequential File Extension

Following is continued from common FIT if sequential

files.

word c+0 | A (Linage Setup Subroutine) /0

c+1l

A (Linage Table) /0

C+a

At 10 buffor)) |

5-5

CALIFORNIA SOFTNARE PRODUCTS, INC.

If a data-name is specified for any of LINAGE parameters, a

subroutine is generated by the compiler to place the binary

contents of each data—-name in the appropriate entry of the

LINAGE table.

The LINAGE table is pointed to by word c+l of

the sequential FIT and,itﬁiﬁ_él}Qcated,és follows:

77
77
77
77
77

LINAGE-COUNTER PIC 9(4)
LINAGE PIC 9(4)
FOOTING PIC 9(4)
TOP PIC 9(4;
BOTTOM PIC 9(4)

-

USAGE COMP-4.
USAGE COMP-4.

USAGE COMP-4.
USAGE COMP-4.

USAGE COMP-4.

If literals are specified for all of LINAGE parameters (FOOTING,

TOP, etc.), then the word c+0 of sequential FIT is set to zero

by the compiler and the entries in the LINAGE Table are init-

ialized with appropriate literal values.

FIT - Relative File Extension Zfi//w

c+0

c+l

c+2

c+3

DDA (RELATIVE KEY)

in binary form

Current

Record Number

CALIFORNIA SOFTWARE PRODUCTS, INC.

FIT - Indexed File Extension

+

word c+0
c+l

c+2‘

c+3.

c+4

15

Key Length

DDA (RECORD KEY)

Spare

Spare

Current Record
Key (=255 Bytes)

CALIFORN!A SOFTWARE PRODUCTS., INC

5.4.2

Data Name Descriptor, DD

A Dataname Descriptor, DD, is generated by the compiler for

each data-name defined in the COBOL source program. Each

DD consists of a pair of words; data-name attributes followed

by the leftmost address of the item.

The general format of a DD is

word O

word 1

Attributes

Byte address

The leftmost bit of the attribute word determines whether

the DD is of alphanumeric or numeric type.

An alphanumeric DD's attribute word is

H
I

=
il

1
4

1
5
T

length in characters.

0 indicating alphanumeric type

length is 32767 bytes.

Maximum alphanumeric

CALIFORNIA SOFTWARE PRODUCTS, INC.

A numeric DD's attribute word is

111111 /
54321009876 5J4 3210 ’ﬁ’?
7i{s|L |p D)é L {91
T = 1 numeric type .
S = 0 unsigned ”
= 1 signed.
L = 0 Sign on right (trailing)
= 1 Sign on left (leading)
P = 0 Sign is not separate

=] Sign is separate
D = decimal digit count. (=18< D =18)
“When D is £ 0, the assumed decimal point is ID[digits to
the right of the item.
e.g. PICTURE 999PP , D = -2, L=3
I = logical digit length. That-is, the number of 9's

in the PICTURE clause

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.4.3 Literals
Each literal being allocated in the data area of the object

program is preceded by a DD of the literal. The literal

arguments to the runtime routine point to these DD's.
Thus, in the runtime, literals are not differentiated from

user-defined data-names. The literals are always left

justified when allocated.

literal DD

<:>> literal ' <£>>

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.4.4 Array Subscript Descriptor

An Array Subscript Descriptor, ASD, is generated for each
array item defined. It contains the number of dimensions
and each dimension's element length in memory. The ASD

is produced immediately after the array DD to which it

pertains.

word O ‘ .
array item DD DD
1
2 Number of Dimensions
3 Element length of levelj ASD
4 v level2
5 n levels
Where

Number of Dimensions
= 1 one-dimension array
= 2 two-dimension array

= 3 three-dimension array

CALIFORNIA SOFTWARE PRODUCTS, INC.

For instance, if arrays are described as

05 ARRAY-X OCCURS 5
06 ARRAY-Y OCCURS = 3
07 ARRAY-Z OCCURS 2

08 FILLER PICTURE 99

then ARRAY-X's ASD is

ARRAY-X's DD

12

and ARRAY-Z's ASD is

ARRAY-Z's DD

12

CALIFORNIA SOFTWARE PRODUCTS,. INC.

5.4.5 Edited Data-name Descriptor, EDD

An Edited Data-name Descriptor, EDD, is generated for
each edited data-name defined in the source program. It

contains all the edit mask information necessary for inter—
face between the object program and the edited move routines.
The BLANK WHEN ZERO item is considered edited. The EDD

precedes the DD of the edited data item.

word -1 Edit table address EDD

word g edited item DD > . DD

The edit table address points to either an alphanumeric

or numeric edit table.

CALIFORNIA SOFTWARE PRODUCTS, INC

5.4.5.1 Alphanumeric Edit Table

The table consists of a word that contains the

table length in words followed by edit mask éntries.
Eacﬁ two- word entry in the‘table contains an edit

mask characteristic and its repetition count.

w 0 Table Length (=n)

1 Characteristicl

2 Repetition Countj;

o]

/

n-1 Characteristic n/2

n Repetition Count n/2

Where characteristic is

I

0 for 9, A, X
=}1 for B
= 2 for 0

= 3 for /

5"‘14 CALIFORNIA SOFTWARE PRODIJCTS, INC.

5.4.5.2 MNumeric Edit Table

Each numeric edit table contains a two- word mask
characteristic and an edit mask string which interacts

with sending numeric data items to produce edited data.

/

111111 L
| 5 432109876543210
w 71 : ' FC oxr O
w 0 [ulg{al [c] . b , L
1
<> Edit Mask String %
n .
FC = float character
M=0 no edit mask string
=1 edit mask editing
B =0 no BLANK WHEN ZERO
=1 BLANK WHEN ZERO
A =19 zexro suppress (Z)
= 1 asterisk protect (*)
cC=20 decimal-point is period
= 1 decimal-point is comma
b = repiaceable decimal coank
T. = roumtar o, f raninsant, o 2d st ey LIPENN ¢ 2

CALIFORNIA SOFTWAIIL PIRODUC T .. 1L

The Edit Mask String consists of following mask codes
that represent edit character functions.

Replaceable codes are
"10" = digit select (ds); insert digit if not

leading zero
"11" = significant start (ssf; same as "ds'",

but following is significant
"12" = f}pat start (fs); start floating insertion -
"13% = start immediate (si); digit is significant

Non-replaceables are

'0' = digit ©
' ' = blank
'/’ = stroke
',' = comma
= period
! =’plus

'-' = minus
'$' = dollar (fixed)
'B' = letter B
'C' = letter C
‘D' = letter D
'R' = letter R

CALIFORNIA SOFTWARE PRODUCTS, INC.

5-16

The following table lists for a given edit character

the condition under which each mask code is used:

Edit Edit Code .y s
Char. . Used Condition
9 si Always
+ fs If leading float
+ ss 1f float and followed
immediately by 9/./V
+ + If first and non-float
+ + If trailing
+ ds All others
- fs If leading float
- ss I1f float and followed
immediately by 9/./V
- - If first and non-float
- - If trailing
- ds All others
$ fs "If leading float
$ ss If float and followed
immediately by 9/./V
$ $ If non-float
$ ds All others
zZ ss If followed immediately
by 9/./V
zZ ds All others
* ss If followed immediately
by 9/./V
* ds 211 others

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.4.6 Index-name Descriptor, XD

For each index-name defined in the compilation, a pairx

of words is generated as follows:

w 0 - element length

1 displacement value

.7

puring the execution of a COBOL program, the word 1 of
XD is used . to hold the displacement value as specified

by a most recent SET verb.

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5 Procedure Code Generation

on the pages following, the techniques and rationale used

for code generation are described.

5.5.1 Summary

The sections describing the code generation are oxganized

under the following general headings:
1. Arithmetic

a.
b.
c.
a.

e.

7/

ADD
DIVIDE
MULTIPLY -
SUBTRACT
COMPUTE

2. Conditions

a.

b.

C.

Class Condition
Sign condition

Relational condition

3. Procedure Branching

a. Jump Exit Table, JET
b. Segment Interface Table, SIT
c. GOTO
d. GOTO DEPENDING ON
e. ALTER
f. PERFORM
4. Subprogram Linkage
a. Linkage Control Block, LCB
b. CALL
c. EXIT PROGRAM
d. STOP
5. Data Manipulation
a. MOVE
b. COXVERSION
c. INSPECT
d. STRING
C. UNSTRING

CALIFORNIA SOFTWARE PRODUCTS, INC.

10.
11.

Special Input/Output

a. NCCEPT
b. DISPLAY
Sequential I/O
a. CLOSE
b. OPEN

c. READ

d. REWRITE
e, WRITE
Relative I/0
a. CLOSE
b. DELETE
c. OPEN

d. READ

e. REWRITE
f. START
g. WRITE
Indexed I1/0
-‘a. CLOSE
b. DELETE
C. OPEN

d. READ

e. REWRITE
f. START
g. WRITE

Subscripting/Indexing

Table Handling

a.
b.
c.
d.

SEARCH

SEARCH ALL

SET

OCCURS DEPENDING

CALIFORNIA SOFTWARE PRQDUCTS, INC.

12. ANS Debugging
13. IBM Extensions

a. EXAMINE
b. EXHIBIT
c. TRANSFORM

l4. Sort

a. RELEASE
b. RETURN
c. SORT/MERGE

15. Report Wfiter

5_21 CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.2 Arithmetic

The COBOL arithmetic routines develop all arithmetic results
in a set of pseudo-registers allc~-ted in memory. A total of

16 pseudo regiéters are always allocated by the compiler; eight

are used for decimal (ASCII) arithmetic and eight are used for
binary arithmetic. The decimal pseudo—registersvare called
DECAs and are numbered 1 through 8. (i.e., DECA 1, DECA 2,
we..., DECA 8). Each DECA is 38 bytes in length; this in-

cludes an extra digit position for possible rounding.

The binary pseudo-registers are called ACCs and each ACC is
5 bytes long. Of these bytes, 4 bytes hold the binary result;

the last byte contains the assumed decimal location.

5.5.2.1 ADD
- 1d; to id, ROUNDED

LOAD r,idl

ADD r,id2

RND r,id2

STO r,id2
- 1 J 1 1 NDFE
| ldl, 1d2 GIVING ld3 164 ROUNDED

LOAD r,id1

ADD r,id2
STO r,id3
RND r,id4
ST0 r,i.d4

CALIFORNIA SOFTWARE PRODUCTS, INC.

(~
i
3]
D]

- idl, id, TO GIVING id. ROUNDED id, ON SIZE ERROR

2 3 4
SZRS
LOAD r,idl
ADD‘ r,id2
STO. r,ré
RND r,id3
STO r,id3
STO -rz,id4
SZQ? next sentence

SIZE ERROR. statements
0 ;

next sentence
5.5.2.Z DIVIDE

- idl INTO id2 ROUNDED id3 ON SIZE ERROR

 SZRS

LOAD r,id2

DIV r,idl

RND r,id2

STO r,id2

LOAD rz,id3

DIV rz,idl

STO rz,id3

SZJp next sentence

’”~

]
SIZE ERROR statements

d

next sentence

CALIFORNIA SOFTWARE PRODUCTS, INC.

id, INTO id

1

2 3

ON SIZE ERROR

SZRS
LOAD:
DIV
STO
RND
STO
MULT
LOAD.
SUB’
STO
.SZgP
SIZE
next
5.5.2.3
id, BY
LOAD

MULT

STO
LOAD .
MULT
RND

sSTO

r3,1d2

r3,r2
T3rid,
next sentence

ERROR statements

sentence

MULTIPLY

id., ROUNDED id. ROUNDED

2 3

GIVING id, ROUNDED REMAINDER id4

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.2.4 SUBTRACT

—

idl id2
LOAD
ADD
ADD
LOAD
SUB‘
STO'

LOAD

SUB

STO

id, FROM id

3
r,idl
r,id2
r,id3
rz,id4
r,,r
rz,id4
r3.§d5
X3sX

r3,1d5

25

CALIFORNIA SOFTWARE PRODUCTS, INC

5.5.2.5 COMPUTE

= 1id, ROUNDED id, ROUNDED = A + B - C * D ** E + F

1 2
LOAD r,A
ADD | r,B

LOAD x,,D
EXPp rz,E

MULT rz)c

SuB r,x,

ADD r,F-

STO r,r3

RND r,idl

STO ?'ldl

RND r3,id2

STO r3,id2

- 'idl = A *¥* B + (-C + D)

LOAD r,A

EXP xr,B

LOAD r2,C

NEG r2
ADD r2,D
ADD r,r,
STO I,ldl

CALIFORNIA SOFTWARE PRODUCTS, INC.

Conditions

5.5.3.1 Class Condition

Class condition test is performed on an alphanumeric,
alphanumeric edited, or numeric edited item to determine
whether the item is composed entirely of ALPHABETIC

(A through Z and space) or NUMERIC (0 through 9)

characters. In addition, the NUMERIC test may be

performed on a numeric item while the ALPHABETIC test

may be performed on an alpahbetic item.

If the PICTURE of the numeric item contains an
operational sign, a valid sign must be present.
Valid operational signs are A-I and {'for positive
and J-R and } for negative. In the case of SEPARATE

SIGN, valid operational signs are + and -.

- IF id ALPHABETIC
CLSA id

BEQ "false

N

|

true statema2nt

!
false: next sentence

5—27 CALIFORNIA SOFTWARF PRODUCTS, INC.

= If id NOT ALPHABETIC

CLSA id
BNE false
N

|

true statement

s

false: next sentence

- If id NUMERIC

CLSN id
BEQ false

T
true statement

!
false: next sentence

CAULIFORNIA SOFTWARE PRODUCTS. INT

5.5.3.Z SIGN Condition

The sign condition tests are prcformed on numeric
items or arithmetic expressions.
- If id POSITIVE statement

LOAD r,id

TEST r
BLE next sentence
statement

next sentence

- If (A + B - C) NOT NEGATIVE statement

LOAD r,A

ADD r,B

SUB r,C

-TEST x

BLT next sentence
T.
statement
l

next sentence

The false branches gererated for sign conditions are

summarized below:

POSITIVE --BLE
NOT POSITIVE —-BGT
NEGATIVE ~—BGE
NOT NEGATIVE --BLT
ZERO ——DNE

NOT ZERD ==BED

5 9 CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.3.3 Relational Condition
Relationals are classified as either alphanumeric ox

numeric.

5.5.3.3.1 Alphanumeric

The alphanumeric comparison proceeds byte by byte from
left to right until an inequality is encountered.

When items of unequal length are compared, the excess

characters in the longer of the two items are compared

to spaces.

- IF id, > id, AND id,

1 2
CMPAN | 1dl, 1d2
BLE false
CMPAN 1dl, 1d3

BLE false

T

True statement

false: Next sentence

For relational tests involving an ALL ®'leteral' where
the 'literal' contains more than just a single charac-—-
ter, the string of characters comprising the 'literal'

is repeatedly compared to successive "string"” unit of

characters.

CALIFORNIA SOFTWARE PRODUCTS, INC.

IF ALL 'literal' = id

COMPFC flag, literal, id
BNE‘ false

T

True statement

]

Y

false: Next sentence

where flag = 0 first operand is figurative

constant

1 second operand

5.5.3.3.2 Numeric

Numeric comparisons involving single-word binary

data-names are performed in binary mode:

IF ldl = 1d2

BLOAD r, id

AND 1d3

1
BCOMP x, idz

BNE false
BCOMP r, id3
BNE false

true:

true statement

false: next sentence

Numeric comparisons involving other than single-

word binary data-names are performed in decimal

mode.

CALIFORNIA SOFTWARE PRODUCTS, INC.

- IF id, = id. OR id3'

1 2
LOAD x,id;
COM? r,id2
BEQ true
comp r,id3
BNE .-false

A
true:

true statement
J
false: next sentence

Comparisons involviné index-names and/or index data

items are performed in binary mode.

° Comparison of an index name with other than an
"index data item

- IF index-name > id

SETLD r, index-name
BCMP r, id
BLE false

true statement

v

false: next sentence

. Comparison involving two index-names
- IF index—name1 < index—name2
SETLD x, index—namel

SETLD rp, index-name,

CALIFORNIA SOFTWARE PROCDUCTS, INC.

BCOMP r, rp
BGE false
true: I
true.statement

false: next sentence

Comparison of an index data item with an index-
name or with another index data item

- IF index data item = index-name

BLOAD r, index data item
BLOADX rj, index-name
BCOMP r, rp

" BNE | false

true: T

true statement

false: next sentence

5-33 CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.3.4

truel:

falsezz

falsel:

An example of code generated by IF statement

IF A ALPHABETIC IF B = C AND (D OR E)

AND F STOP 'l' ELSE STOP '2' ELSE STOP '3°

CLSA A
BEQ ‘/‘falsel
LOAD r,B
coMpP.) r,C
‘,BNE _false2
CcoMP r,D
BEQ truel
COMP r,E
BNE false2
CoMP r,F
BNE false2
STOP 'y
B - next sentence
STOP 2!
B next sentence
SfOP '3

next sentence

wn
I

34

CALIFORNIA SOFTWARE PRODUCTS, INC

ol

5.5.4 PROCEDURE BRANCHING

5.5.4.1 Jump Exit Table (JET)

To process ALTER and PERFORM EXIT statements and also to
handie the compiler-generated GO TO which links the sections
with different priority segment humbers, a table called the
3ump Exit Table (JET) is produced to cause the desired pro-
A JET is produced in the static

~ 4 "
gram counter modification.

area.

The following coﬁditions require an entry in the.table:
1. Subjectvprocedure-name of ALTER statemént
2. Exit procedure-name of PERFORM statement
3. Section-name which is followed by a section with

different segment number.

An independent segment (priority number > 50) is always
considered to be in its initial state each time it is made
available to the program, while a fixed segment is always

made available in its last used state.

In order to satisfy above requirements, a single JET is
generated in the data area of the root module for all |
segments. Entries for each independent segment are grouped
together so that an initialization process of entries can be

performed when an independent segment is made available.

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.4.2 Segment Interface Table (SIT)

All branches into an overlayable segmert are always to a
single entry point. This is preferrable to having multiple
entry points since a branch to another overlayable segment

is effected through the MARK and CALL mechanism.

What is being passed to the overlay segment is an unique
" number assigned to each procedure-name referenced by otherx
segments. The number is uséd as an index into the Segment
Interface Table and the contents.of the.pointed to entry

is placed in the program counter.

CALIFORNIA SOFTWARE PRODUCTS, INC.

At the beginning of root module with segmentation present,
a segment interface handler is generated.

SEGMENT-INTERFACE-HANDLER:

LWL SEGMENT-INTERFACE-HANDLER
STW ‘C_SIH

MARK 0

LWL C_SEGBS éhdiﬂMﬂdZ “d&g
STW 2,2

LW 0,C_SEGN

CALL 4

EXIT

At the segment entry point,

SEGMENT-nn-ENTRY:

LWL program address 0
STW C_SEGLOC

LWL SEGMENT-EXIT

STW C_SEXT

w 6,SIT

BTOS

SEGMENT-EXIT:

EXIT

SIT:
ADDR procedure-namej;
ADDR procedure-name,
ADDR procedure-name,

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.4.3 GO TO
- if procedure-name is in the root segment or in the same
segment:
BRA . procedure—-name

- if procedure-name is in another segment

MARK "14", C_GOSG

LWL segmént base

LWL displacement into\y§§
CALL 3+2

C#G0OSG performs following functions:
C_SEGBS := segment base
C_SEGN := (displacement into E£IT & "7FFF")
C_SEXT := 0
If displacement $(15) = 1, then the branch is
from root to a segment, MARK + 6 := C_SIH
If displacement $(1,0) = 0, then the branch is
from segment to another segment,

MARK + 6 :

C_SEXT

(MARK ADDRESS + 4) := C_SIH

- a simple GO TO (i.e., without procedure-name)

9 MARK - "14",C_GOI
i LWL JET of current par.graph-name
CALL 3+ 1

5—38 CALIFORNIA SOFTWARE PRODUCTS. INC

5.5.4.4 GO TO DEPENDING ON

if the procedure-names referenced in the statement are

all defined in the same segment or in the fixed segments

MARK

Lr

Ln

LWL

LWL

LWL

CALL

"14",C_GODP

where r=ACC register number
where n=number of proc arguments
procy

procsy

proc,

34+ 2+ n

if any of the procedure-names referenced is in another

segment, a pair of words is generated for each pro-

cedure name

MARK

Lxr

Ln

LWL

LWL

LO

LWL

LWL

LWL

CALL

"14",C_GODPSG
where r=ACC register number
where n=number of proc arguments

segment base of proc; >if procq is in
1

SIT A of procj anothex segment
if procsis in the
proc2 same segment

segment base of procy :
proc,

SIT A of procy

3+ 2 + (2*%n)

5"39 CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.4.5

ALTER

- in the root segment or in the same segment

- in another segment

MARK "14",C_ALTER
LWL proc,
LWL) JET of proc;
CALL . 3 + 2

s

MARK "14",C_ALTRSG
LWL segment base of proc,,
LWL SIT A of pro-c2
- LWL JET of proc,
CALL 3+ 3
PERFORM

5.5.4.6

The general PERFORM sequence is as follows:

- in the root segment or in the same'independent segment

- from

MARK ."14",C_PERFM

LWL procl

LWL JET of proc,

CALL 3+ 2

the root segment to an independent segment
MARK "14",C_PERFMS

LWL segment base of proc,
LWL SIT A of proc,

LWL JET of proc,

LWL segment base of return
LWL SIT A of return

CALL 3+ 5

CALIFORNIA SOFTWARE PRODUCTS, INC.

5-40

In the following descriptions of PERFORM, 'perform' is

documented to mean one of the general formats above.

- PERFORM proc, thru proc,
pexrform
PERFMT JET of proc,

- ° PERFORM proc idl times

1
LOAD r,idl
TEST X
BLE 1abel2
STO . r,temp

labellz pexform

LOAD r,temp

SUB r,=l
STO 4 r,temp
TEST b o)
BGT labell
labe12: PERFMT JET of proc,

-~ PERFORM p, UNTIL A + B - C =D
1

labellt iOAD r,A

ADD r,B

SuB r,C

COMNP r,D

BEQ . 1abe12

perform

B labell
labe12: PERFMT JET of procy

CALIFORNIA SOFTWARE PRODUCTS. INC.

- PERFORM proc, THRU proc., VARYING id, FROX id2 BY id3

1 2 1
UNTIL Condl AFTER id4 FROM id5 BY id6 UNTIL cond2

LOAD r,id, '

STO r,id;

LOAD r,,idg

STO ' rz,id4

labell:» condl | |
Bxx truel
labelzz cond2

Bxx . true,

" perform '

LOAD r3,id4

ADD r3,id6

STO r3,id4

B label,
true;: LOAD ' x,ridg

STO r4,id4

LOAD rs,idl

ADD rs,id3

STO - rs,idl

.B labcll
true,: PERFMT JET of proc,

5-42

CALIFORNIA SOFTWARE PRODUCTS, iN. .

5.5.5 Subprogram Linkage

5.5.5.1 PROCEDURE DIVISION USING

A table called the Linkage Control Block, LCB, is geherated
for the USING parameter list. The table is referenced by

C_LINK routine and is used to transfer the absolute addresses

to the Linkage Section DDs. The format of LCB is:

a 2

&

DD address. of arg,,

DD address of subord:.natel Isubordinz

argy ' A of'subordinatel

.ard;

DD address of subordinateN
subordin:

argy :
. A of subordinate

N

-1

5_4 3 CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.5.2 CALL 'ABC' USING id idz, e« - . . id

1’ n

MARK "14",ABC
LWL n =number of arguments
LWL . ldl
LWL 1d2
LWL id

n
CALL 3+1+n

- at the beginning of subprogram ABC

MARK "14",C_LINK
LWL ‘'n
LWL LCB LCB = Linkage Control Block
CALL 3+ 2

5.5.5.3 EXIT PROGRAM

- in main program

MARK © "14",C_GOI
LWL JET of current proc
CALL 3+ 1

- in subprograms

EXIT

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.5.4 sTOP

MARK C_EXIT
LO
CALL 3+1

5_ 4 5 CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.6 DATA MANIPULATION

5.5.6.1 MOVE

The transfer of data to an alphanumeric item is performed

with a 'Move' operation while the transfer to a numeric

item is done with a 'load/store' sequence.

The. table

below summarizes the permissable moves and the routines

that will be generateéd by the compiler to handle all

combination of these moves:

}

y

ource

' FC&
Receiving~| G A AN ANE N NE ALL P B
G MVG MVG MVG MVG MVG MVG MVFC MVG MVG
A MVG MVA MVA MVA - - MVFC - -
~ AN MVG MVA MVA MVA MVA MVA MVFC CVPN | CVBN
MVA MVA
ANE MVG |[MVANE [MVANE |[MVANE |{MVANE |MVANE [MVFCE CVPN | CVBN
MVANE [MVANE
N MVG - LOAD| -- LOAD| -- LOADFC| CVPN | CVBN
STO STO STO STO STO
NE MVG - LOAD | -~ LOAD |MVANE {LOADFC|} CVPN| CVBN
STE STE STE STE STE
P MVG - LOAD| —-- LOAD} =-- LOADFC| CVPN | CVBN
CVNP .CVNP CVNP CVNP | CVNP
B MVG - LOAD| -~ LOAD} -- LOADFC| CVPB |BLOAD
CVNB CVNB CVNB BSTO | BSTO
JR MVAJR |MVAJR| MVAJR MVAJR; LOAD|MVAJR {MVFCJR| CVPN| CVBN
‘MVAJR MVAJR JMVAJR
5_4 6 CALIFORNIA SOFTWARE PRODUCTS, INC.

where G = group

A = alphabetic

AN = alphanumeric

ANE = alphanumeric edited

N = numeric (DISPLAY forr-*%)

NE = numeric edited

FC = figurative constant

ALL = ALL 'literal'

P = packed (COMP-3 format)

B = binary (COMP & COMP-4 format)
JR = justified right

- group move

S
When either the gourse or the receiving field is a group
item, a call to C_MVG is generated so that a move is

performed without the mode conversion

MARK "14",C_MVG

LWL physical length of source
LWL DD of source item

LWL physical length of target
LWL DD of target item

CALL 3 + 4

- alphanumeric move

MARK "14",C_MVA

LWL DD of source item
LWL DD of receiving item
CALL 3 + 2

- ALL 'literal' source to an alphanumeric item

MARK "14",C_MVFC

LWL DD of ALL 'literal’
LWL DD of receiving item
CALL 3+ 2

5-4 7 CALIFORNIA SOFTWARE PRODUCTS, INC.

ALL 'literal' source to an alphanumeric edited item

MARK "14",C_MVFC

LWL DD of ALL literal
LWL DD of receiving item
CALL 3+ 2

alphanumerié edited move

MARK "14",C_MVANE

LWL DD of source item
LWL DD of receiving item
CALL 3+ 2

when the receiving item is specified with a JUSTIFIED
RIGHT caluse and the source item is not a figurative

constant.
MARK "l4",C_ﬂVAJR
LWL DD of source item
LWL DD of receiving item
CALL 3+ 2

a figurative constant of an ALL literal source to a
JUSTIFIED RIGHT item

MARK "14",C_MVFCJR

LWL DD of source item
LWL DD of receiving item
CALL 3+ 2

a move of ALL 'literal' source to a numeric or numeric
edited item generates a call to C_LOADFC. C_LOADFC loads
repetitive 'literal' or figurative constant into pseudo-

register r.

MARK "14",C_LOADFC
Lrxr
LWL DD of source item
CALL 3 + 2
48

Ry
!

CALIFORNIA SOFTWARE PRODUCTS, 151iC.

- numeric move

MARK
Lr
LWL
CALL
MARK
Lr
LWL
CALL

- numeric

MARK
Lr
LWL
CALL
MARK
Lr
LWL
CALL

"14",C_LOAD

DD of source
3 + 2
"14",C_STO

DD of target
3 +2

edited move

"14",C_LOAD

DD of source
3 + 2
"14%,C_STE

DD of target
3+ 2

5.5.6.2 Conversions

item

iter -

item

item

Any of the conversion routines listed below may be thought

. of as a load, since they can have register receiving ar-

gument.

CVPN - packed to numeric (ASCII)
CVBN - binary to numeric (ASCII)

CVPB - packed to binary

‘Store' conversion routines (register source) are

CVNP
CVNB
CVBN
CVBP

numeric to packed
numeric to binary
binary to numeric

binary to packed

CALIFORNIA SOFTWARE PRODULCTS, INC.

For instance, a move of packed source to a numeric
edited item produces following sequence of code:

MARK "14",C_CVPN

LWL DD of packed source

Lr

CALL _ 3+ 2

MARK "14",C_STE

Lx

LWL DD of receiving edit item
CALL 3+ 2

Another example, a statement MOVE A TO B, C, D, E.
where A & B are packed items

C is a numeric item

D is a binary item

E is a numeric edited item

CVPN A, r
CVNP . r, B
STO r, C
CVNB r, D
STE r, E

When a numeric item is being compared to either an index
data item or an index-name, a conversion to binary mode

is required.

MARK "14",C_CVNB
LWL DD of item
Lr
CALL 3+ 2
5~50

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.6.3 INSPECT

LWL DD of identifier-1

inspect argument,
_inspect argument.,

.

7

inspect argumenty

MARK

"14",C_INSPCT
CALL 3

~Where 'inspect argument' is as follows:

- for TALLYING

LWL Attribute
LWL DD of identifier-3 dv 0
LWL DD of identifier-2 oxr 0
LWL DD of identifier-4 or O
- for REPLACING
LWL attribute y
LWL DD of identifier-5 ot ¢ -
LWL DD of identifier-6 or 0 /= =
LWL DD of identifier-7 or 0 all "
and 'attribute' is EQ%’?ZZ'?jQ§MVJ)Q:wi /6675
- ,
M U""""/“/{’ s T
Bit 6 = TALLYING L*ﬁﬁk f;afy —
Bit 5 = REPLACING AQ/ . ,/ /)7:
_Bit 4 = AFTER INITIAL njf; —
Bit 3 = BEFORE INITIAL Lnlmate M
Bits 2-0 = 0 CHARACTERS B Z= EE%QJ“«Mi. agﬁgtgf%
= 1 ALL (:QQQgha'T74bby
= 2 LEADING
= 4 FIRST

CALIFORNIA SOFTWARE PRODUCTS. INC.

5.5.6.4 STRING

LWL string attribute
LWL DD of identifier-7 _
[LWL DD of identifier-8] if POINTER
LWL delimited attributel
[LWL _ DD of identifier-3] if id-3 DELIMITED
LWL DD of identifierxr-1
LWL . delimited attributeN
LWL DD of identifierN
- LWL -1 string terminator
ﬂfLWL————-——labe44——ovex£low—exitT~i£—6VEREL9W—~——’”3*————“’
MARK "14",C_STRG ~lm ks Zdmst
. CALL 3 -overflow exit
LBRA Qﬁgfi ~ cwoflst vk, IV ’LQQJ
BRA next sentence 1§ 6&) ;F vets
label: T if OVERFLOW specified

OVERFLOW statements

VU
next seﬂ%ence:

string attribute =

Bit O
Bit 1

OVERFLOW present
POINTER present

delimited attribute =

Bits 15-8 = 1 SIZE
0 identifier/literal
Bits 7-0 contains the number of ‘'STRING' identifiers/

literals

CALIFORNMIA SOFTWARE PRODUCTS. INC.

5.5.6.5 UNSTRING

LWL unstring attribute
LWL -DD of identifier-1
[LWL DD of identifier-10] POINTER
(LWL " DD of identifier-11] /if TALLYING

LWL 'delimited' option

LWL " DD of identifier-

LWL 'into' op¥ion

LWL, DD of %9é;tifier-4

[LWL DD of ¥dentifier-5] if DELIMITER
[LWL DD og/identifier—sl if COUNT

LWL -1 unstring terminator
[LWL label] overflow exit if OVERFLOW
MARK "14",C_UNSTRG
CALI/ 3
BRA next sentence
label: [if OVERFLOW

XézﬁRFLOW statements

2

next/sentence :

4

CALIFORNIA SOFTWARZ PRODUCTS, INC.

unstring attribute is

Bit (0 .= OVERFLOW present
Bit 1 = POINTER
Bit 2 = TALLYING

'delimited’ option is

Bit 0. ALL

Bit 45A= 0 for 'delimited' ontion
'into' option is

Bit 0 = DELIMITER present

Bit 1 = COUNT present

Bit 15 = 1 for 'into' option

5.5.7 'SPECIAL INPUT/OUTPUT

,5°5°7°l Accept

If the size of the accepting data item is greater than the

maximum of logical device, as many input records as necessary

are read. -

- FROM CONSOLE

MARK "14",C_ACPTC
LWL DD of id
CALL 3+ 1

- FROM SYSIN

MARK "14",C_ACPTS
LWL DD of id
CALL 3+ 1

S CALIFORNIA SOFTWARE PRODUCTS, INC,

ACCEPT DATE/DAY/TIME statements generated two calls:

one to load a compiler-generated item with a DATE/DAY/TIME
value and another to store the value into-the accepting
time. The store call follows the MOVE statement rules.

- ACCEPT DATE

MARK "14",C_ACPTDT
LWL DD of CURRENT-DATE item
CALL 3+ 1

The routine loads CURRENT-DATE with a YYMMDD value.

- ACCEPT DAY
MARK "14",C_ACPTDY
-LWL DD of DAY-OF-WEEK item
CALL 3 +1

The routine loads DAY-OF-WEEK with YYDDD value.

Where DDD = Julian day.

- ACCEPT TIME

MARK "14",C_ACPTTM
LWL DD of TIME-OF-DAY
CALL 3 +1

The routine loads TIME-OF-DAY with HHMMSSHH value.

where H = hour
M = minute
S = second
h = hundredth of second

5 55 CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.7.2 DISPLAY

A maximum logical record size is assumed for each device
and as many records as necessary are written to display
all the operands specified.

- UPON CONSOLE

MARK "14",C_DSPLC

LWL display attribute
LWL DD of operand;
LWL DD of operand,
LWL DD of operandj,
CALL 3+ 1+ n

where display'attribute is
Bit 15 = display continue code
Bits 7-0 = number of arguments. The maximum

is five per call.

- UPON SYSOUT

A call to C_DSPLS is generated instead.

5.5.7.3 STOP 'literal'

MARK "14",C_STOPLT
LWL DD of literal
" CALL 3+ 1
5-56

CALIFORNIA SOFTWARE PRODUCTS, tnC

5.5.8 SEQUENTIAL I/0

5.5.8.1 CLOSE

MARK "14",C_CLSSQ
LWL close attribute
LWL " FIT of file
CALL 3+ 2

Where close attribute is

~ Bit 0 = CLOSE REEL/UNIT
1l = CLOSE WITH LOCK
2 = NO REWIND
5 = REMOVAL
5.5.8.2 OPEN
MARK "14",C_OPNSQ
LWL open attribute -
LWL FIT of file

\

LW~ éﬁ%bDeclarative JEfj if specified
CALL 5?*13 + 2[+ 1]
Where open attribute is
‘ Bit 2 = NO REWIND
= REVERSED

3
4 = EXTEND
5

= I-0
6 = OUTPUT-
7 = INPUT

8 = Declarative JET argument present

wn
!

57

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.8.3 READ

- READ record-name INTO id AT END imperative-statements

MARK ~ "14",C_REDSQ

LWL - _ read attribute

LWL | FIT of record-name's file

CALL 3+ 2

BRA label, at end condition exit

!

move record-name to id

!

BRA label,
A
labelj: l
AT END imperative-statements

labelzz‘ next sentence

Where read attribute is

Bit 0 = AT END imperative statements present

5.5.8.4 REWRITE
- REWRITE record-name FROM id

Move id to record-name

MARK C_RWRSQ

LO

LWL FIT of record-name's file
CALL 3+ 2

NOTE: The sequential I/0 REWRITE is meaningful only in a mass
storage (disk) file and the file must be in I-O access

mode.

CALIFORNIA SOFTWARE PROOUCTS, INC.

5.5.8.5 WRITE
MARK "14",C_WRTSQ
LWL write attribute
LWL FIT of record-name's file
LWL DD of record-name o O:F»FfJFkﬁii'

™.

A LWL-——integer-or—0~

CALL 3 + 3 [+1}
BRA label
'BRA next sentence
label:

EQP imperative statements
;g%t sentence:Y

Write attribute is

Y A

; ;17
)} LWL DD of identifier—%&l:
, i

—

if EOP is specified

Bit 0 = EOP present
1 = PAGE
2 = spaze PO TIONING
- 3 = BEFORE ADVANCING
4 = AFTER ADVANCING
> =

6 =~§BVA§CTN§*integer present

~
I

= spare— ;':'..-' = -i —

-ADVANCING identifier-present

Llef

¢t ot

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.9 RELATIVE 1/0

5.5.9.1 CLOSE

MARK "14",C_CLSRL
LWL close attribute
LWL FIT of file
CALL 3+ 2

Close attribute’'is

Bit 1 = CLOSE WITH LOCK

5.5.9.2 DELETE

- DELETE file INVALID KEY imperative statement

MARK "14",C_DLTRL
LWL delete attribute
LWL FIT of file
CALL 3+ 2
BRA . " label B
BRA next sentence
label: T if INVALID KEY
is specified
INVALID KEY imperative statements
next sentence:

| . —

Delete attribute is

Bit 0 = INVALID KEY present

60

(%2}
!

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.9.3 OPEN
MARK
LWL

LWL

LWL éﬁf=nec1arative JE

'3+ 3 [+1]

CALL

"14",C_OPNRL
open attribute

FIT of file

Where open attribute is

Bit 5
Bit 6
Bit 7

Bit 8

5.5.9.4 READ

Il

I-0
OUTPUT

INPUT

i] if specified

Declarative JET present

- READ file INTO id AT END statements

MARK
LWL
LWL
CALL

[BRA

"14",C_REDRL
read attribute

FIT of file

3 + 2

label

1]

Move temp to KEY

Move record-name to id

BRA

label, : 1

AT END/INVALID statements

label

labe12: next sentence

Where read attribute is

Bit 0

Bit 2

i

2

abknormal exit if AT END
present

if KEY conversion required

AT END/INVALID KEY present

NEXT

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.9.5 REWRITE
MARK
LWL
LWL.
CALL
BRA
%FA

label:

INVALID

next sentence:

Rewrite attribute is

Bit

"5.5.9.6 START
MARK
LWL
LWL
CALL
BRA
BRA

label: I

0

INVALID

\ 4

next sentence:

Start attribute is

Bit
Bit
Bit

Bit

0

It

]

Il

"14",C_RWRRL
Rewrite attribute
FIT of file

3+ 2

label

-'‘next sentence

KEY statements

INVALID KEY present

"14",C_STTRL
Start attribute

FIT of file
3+ 2
label

next sentence

KEY statements

INVALID KEY present
EQUAL relational
GREATER relational

NOT LESS relational

5-62

CALIFORNIA SOFTWARE PRODUCTS, 'NC.

5.5.9.7 WRITE

MARK "14",C_WRTRL
LWL Write attribute
LWL FIT of file
CALL , 3+ 2

BRA label

BRA next sentence

label: T

INVALID KEY statements
next sentence:
Write attribute is

Bit 0 = INVALID KEY present

wn
!

63

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.10 INDEXED I/O

5.5.10.1 CLOSE
MARK
LVIL
LWL
CALL

"14", C-CLSIX
close attribute
FIT of file

3+ 2

Where close attribute is

Bit 1

5.5.10.2 DELETE
MARK
LWL
LWL
CALL
BRA
BRA
label: T

= CLOSE WITH LOCK

7

"14", C-DLTIX
delete attribute
FIT of file

3+ 2

label

next sentence

INVALID KEY statements

}

next sentence:

Where delete
Bit 0

5.5.10.3 OPEN
MARK
LWL
LWL

EC
ALL

attribute is
= INVALID KEY present

*"14", C-OPNIX
open attribute

FIT of file
iYAGDeclarative JE?]

éaﬁ3 + 2 [+ 1]

Where open attribute is

‘Bit 5
Bit 6
Bit 7
Bit 8

il

I-0

OuUTPUT

INPUT

Declarative JET present

il

normal return

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.10.4 READ

- READ file INTO id INVALID KEY statements

MARK "14", C-REDIX

LWL read attribute

LWL ’ FIT of file

Lwi Pp 5 @fq-mmj

CALL 3+ 2

BRA label AT END/INVALID KEY exit

1

move record-name to id

BRA label

/ INVALID KEY statements

L 4

labelzznext sentence

Where read attribute is

Bit 0 = AT END or INVALID KEY present
@ty = a-M&%M W
Bit 2 = NEXT

5-65 CALIFORNIA SOFTWARE PRODUCTS, INC.

- .

5.5.10.5 REWRITE
‘ MARK nyqn, c—@{/——\

LWL rewrite attribute
LWL FIT of file

CALL 3+ 2

BRA label

BRA next sentence

label: 4

INVALID KEY statement

v
next sentence
Rewrite attribute is.

Bit 0 = INVALID KEY present

5.5.10.6 START ,
MARK "14", C-STTIX

LWL start attribute
LWL FIT of file
[LWL DD of data-name]
CALL 3+ 2 [+ 1]

i BRA label
BRA next sentence

label: +4

INVALID KEY statements

h g
next sentence:
Where start attribute is

Bit 0 = INVALID KEY present

Bit 1 = data-name argument present
Bit 2 = EQUAL relational

Bit 3 = GREATEPR relational

Bit 4 = NOT LESS relational

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.10.7 WRITE

T

move id to record-name

l.

MARK "14", C-WRTIX

LWL write attribute

LWL FIT of record-name's file
CALL 3+ 2

BRA label

BRA next sentence

label: 4

INVALID KEY statements

next sentence:
Where write attribute is
Bit 0 = INVALID KEY presenc

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.11 SUBSCRIPTING/INDEXING

5.5.11.1 Subscript

MARK "14", C-SCRIPT

LWL DD of table item

LWL Sum of constant subscripts
LWL DD of subscriptl or 0

LWL DD of subscript2 or 0

LWL DD of subscript3 or 0

LWL DD of dummy

CALL 3+ 6

C-SCRIPT places the computed address of a table item into
the address word of dummy DD.

5.5.11.2 Index

MARK "14", C-INDEX
. LWL | DD of table item
LWL Sum of constant subscripts
LWL DD of subscript1 or O
LWL DD of subscript2 or 0
LWL DD of subscript3 or 0
LWL DD of dummy
CALL 3+ 6
5-68

CALIFORNIA SOFTWARE PRODUCTS. INC.

5.5.12 Table Handling

5.5.12.1 SEARCH

MARK "14", C-SRCI
| LWL Search attribute
{LWL Maximum occurrence # }
. LWL . DD of OCCURS DEPENDING item
LWL XD of varying index=name
CALL 3+ 3
labeli:MARK} Y}4", C-SRC
LWL XD of varying index-name
LWL 1abel2
CALL 3+ 2

A

AT END statements

1abe12.B%A next sentence
WHENlcondition s WHEN
Y
BRA next sentence)
S
label3. .
) > WHEN, - WHEN_
/

CALIFORNIA SOFTWARE PRODUCTS INC

labelp: MARK "14",C_BLOAD

Lrx

LWL - DD of binary literal 1

CALL 3+ 2

MARK "14",C_SETAX

Lr

LWL XD of varying index-name

CALL 3+ 2

| MARK "14",C_SETAX]
Lr ’ if specified
LWL XD of second varying index-name
CALL 3+ 2

BRA label __

1
next sentence:

where search attribute is
Bit 0 = 0 maximum occurrence argument is literal

= 1 maximum occurrence argument is data-name

5.-70 CALIFORNIA SOFTWARE PRODUCTS, INT.

5.5.12.2

label. :

label.:

labe13:

SEARCH ALL
MARK
LWL
LWL
LWL~
LWL
CALL
MARK
LWL
LWL

CALL

"i4",C~SRCI

Search attribute
Maximum occurrence #

DD of OCCURS DEPENDING item
XD of varying index-name
3+ 3

"14",C_SRCA

XD of varying index-name
label2

3+ 2

AT END statements

y

BRA
MARK
LWL

CALL

next sentence
"14",C_SRAD
Search direction attribute

3+ 1

WHEN condition

{

MARK
LWL

CALL
A

"l4",C_BNE
label3

3+ 1

WHEN imperative statements

BRA

BRA

next sentence:

~

next sentence

labell

CALIFORNIA SOFTWARE PRODUCTS, INC.

Where search attribute is

Bit 0 = 0 Maximum occurrence argument is literal

name

and search direction attribute is

I

Bit 15 0 DESCENDING

1 ASCENDING

1 Maximum occurrence argument is data-

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.12.3 SET

The compiler generates calls to convert from and to occurrence
number and array offset values when either the sending or the

receiving field is an index-name.

Permissable SET fields are:

Case Source _ Receiving - Action
1 integer index—-name occur # —» offset
2 index data item index-name ! no conversion
3 index—name | index-name offset—>occurf—>offset
4 index data item index data item no conversion
5 index-name index data item no comversion
6 index-name integer | offset—> occurs:
Case 1 integer — index-name
MARK "14",C_CVNB
Lx
LWL DD of integer item
CALL 3+ 2
MARK "14",C_SETST
Lr
LWL XD of index-name
CALL 3+ 2
Case 2 index data item Q—~> index-name
MARK "14",C_BLOAD
Lx
LWL DD of index data item
CALL 3 + 2
MARK "14",C_BSTX
Lr
LWL XD of index-name
CALL) 3 + 2 CALIFORNIA SOFTWARE PRODUCTS, INC.

5-73

Case 3

Case 4

Case 5

Case 6

index-namel-———-)*-index-name2

MARK "14",C_SETLD

Lr '

LWL XD of index-namel
CALL _ 3+ 2

MARK "14",C_SETST

Lx

LWL XD of index—name2
CALL 3+ 2

index data iteml ———index data item2
MARK "14",C_BLOAD

Lx

LWL DD of index data iteml
CALL 3+ 2

MARK ' "14",C_BSTO

Lx |

LWL DD od index data item2
CALL 3+ 2
index-name————=index data item
MARK "14",C_BLOADX

Lr

LWL XD of index-name

CALL : 3+ 2

MARK "14",C_BSTO

Lr

LWL DD of index data item
CALL 3+ 2

index-name ———3>integer

MARK "14",C_SETLD
Lr

LWL XD of index-name
CALL 3+ 2

MARK "14",C_BSTO

Lxr

LWL DD of integer item

CALL 3 + 2 CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.12.4 SET UP/DOWN

MARK "14",C_BLOAD
Lrx
LWL) DD of integer
CALL 3+ 2
MARK_ "14",C_BNEG if DOWN BY
Lr »
CALL 3+1
MARK "14",C_SETAX
. Lr
LWL XD of index-name
CALL 3+ 2

5—75 CALIFCRNIA SOFTWARE PRODUCTS. INC.

5.5.12.5 OCCURS DEPENDING

A table called the Variable Array Table, VAT, is generated
for each array that contains an OCCURS DEPENDING item.

The format of VAT is:

11
5 4 0
word O Dl max occurs of level 1
1 D2 max occurs of level 2
2 D3 max occurs of level 3

3 elementary length of levell'

4 elementary length of level2

5 elementary length of level3

where
D, = occurs depending level indicator

max occurs of level n = maximum occurrence number
specified for that level. For example, if
OCCURS FROM 1 TO 28 TIMES then the maximum
occurrence is 28.

elementary length of leveln = the sum of physical
byte length of every elementary items for that

level.

5—76 CALIFORNIA SOFTWARE PRODUCTS, INC.

- Data-name in variable array

A call to C_VAR is generated for each reference to variable

data—-name.

MARK ~ “"14",C_VAR

LWL DD of variable item

LWL DD of occurs depending in binary
LWL VAT

LWL A dummy DD

CALL 3+ 4

- Index-name in variable array

A call C_VARX is generated for each reference to an index-

name that refers to variable array.

MARK "l4",C_YARX

LWL DD of variable item

LWL DD occurs dependihg in binary
LWL VAT

LWL XD of index-name

CALL 3+ 4

For instance, if an array is described as:

01 A.
02 B PIC X(3).
02 C.
03 D PIC X(5)
03 E OCCURS 5.
04 F PIC X(2).
04 G OCCURS 3 PIC X(2).
04 H OCCURS 4.
05 I PIC X(5).
05 J OCCURS 2 PIC X(2).
05 K.
06 L OCCURS 2 TO 8 DEPENDING ON Z.
07 M PIC X(8).
07 N.
08 O PIC X(2).
08 P PIC X(3).

then all data items except B are considered variable since
the length or/and the definition address is/are altered

according to the current value of 2.
CALIFORNIA SOFTWARE PRODUCTS, inNnG.

5-77

The array A's VAT is:

word O 0 5 from E
1 4 from H
2 1 8 from L
3 ~2 4+ (2*3) = 8 from F & G
4 5 + (2%2) = 9 from I & J
5 8 + 2+ 3 =13 from M, O & P
and a reference to J produces a call to C_VAR as:
MARK *14",C_VAR
LWL 8000 DD of variable J
LWL 8700 - DD of variable 2 in binary
LWL B200 VAT
LWL 9C00 dummy DD
CALL 4
where
(8000) = 0002 DD of J
(8001) = 7403
(8002) = 3 $# of dimensions
(8003) = 460lo ASD of J length of levell
(8004) = 11310 length of level,
(8005) = 2 length of level3

(8701) = 7A50
(7A50) = 0003 contents of Z

(8700) = 8004 ‘} oD of Z

(B200) - as described for array A.

C_VAR performs following calculations:

(9Cc00) = 0002 from the first word of J's DD
(9Cc01) = 7403 . :
(9co02) = 3

(9C03) = 1483,

(9C04) = 3510

(9C05) = 2

78

wn
1

CAULIFORNIA SOFTWARE PRODUCTS, INC.

5.5.13 ANS Debugging

An object-time switch is used to activate the debug declaratives.
The switch is tested by each of debugging routines and if not. set,’
foliowing calls are treated as a non-functional.

5.5.13.1 procedure-name

Case 1 PERFOﬁM - immediately before the ‘perform' of

procedure—-name

MARK "14",C_DBGSU

LWL DD of DEBUG-ITEM item
LWL debug attribute

LWL Line number

CALL 3+ 3

debug attribute =

Bits 7-4 =1 PERFORM LOOP
Bits 3-0 = 0 vz
Case 2 ALTER - immediately after the execution of ALTER
MARK "14",C_DBGSU
LWL DD of DEBUG—ITEM item
LWL debug attribute -
LWL Line number
LWL symbolic string of ALTERED procedurel
LWL symbolic string of ALTERED procedure2
CALL 3+ 5

perform debugging declarative
+
debug attribute is

Bits 7-4 = 0 second symbolic string to
DEBUG-CONTENTS
Bits 3-0 = 2 number of symbolic string

arguments
[T
ivé N
CALIFORNIA SOFTWARE PRODUCTS, INC.

Case 3

Case 4

Case 5

USE procedure

MARK

LWL

LWL

LWL

- LWL

CALL

1

"14",C_DBGSU

DD of DEBUG-ITEM item

debug attribute

Line number

symbolic string of USE procedure

3+ 4

perform debugging declarative

.\

debug attribute is

<, ‘I
~

1 number of symbolic arguments

Bits 7-4 2 . USE PROCEDURE i

Bits 3-0

At the program entry - immediately before the first

non-declarative procedure-name definition.

MARK

LWL

LWL

-LWL

CALL

"14",C_DBGSU

DD of DEBUG-ITEM item
debug attribute

Line number

3+ 3

debug attribute is

Bits 7-4 3 START PROGRAM e

(v
N

Bits 3-0 = 0

GO TO - immediately before GO TO

MARK
LWL
LWL
LWL

CALL

"14",C_DBGSU

DD of DEBUG-ITEM item
debug attribute

Line number

3+ 3

CALIFORNIA SOFTWARE PRODUCTS, INC.

debug attribute is

Bits 7-4

t PN
0 ! ZE&

Bits 3-0 = O

Case 6 implicié transfer of control to procedure-name
MARK "14",C_DBGSU
LWL Dp,of DEBUG-ITEM item
LWL debug attribute
LWL Line number
CALL 3+ 3

debug attribute =

Bits 7-4 = 4 FALL THROUGH 5;‘¥;3{!
'Bits 3-0 = 0
Case 7 immediately after the procedure-name definition

MARK "14",C_DBGSU

LWL DD of DEBUG-ITEM item

LWL debug attribute

LWL Line number

LWL symbolic string of procedure-name

CALL 3+ 4 |

1

perform debug declarative
+

debug attribute =

Bits 7-4 = 8 do not clear the DEBUG-ITEM

sy
‘b"

il
[

place symbolic string to

Bits 3-0
‘ DEBUG-NAME

CALIFORNIA SOFTWARE PRODUCTS, INC.

Case 8 a reference to procedure-name in the INPUT or

OUTPUT phrase of a SORT or MERGE statement

MARK "14",C_DBGSU

LWL DD of DEBUG-ITEM item

LWL debug attribute |

LWL Line number

LWL symbolic string of procedure—name
CALL 3+ 4

perform debug declarative

debug attribute =
Bits 7-4 = 5 SORT INPUT
= 6 SORT OUTPUT

=7 MERGE OUTPUT

i
o)

Bits 3-0 symbolic string to

" DEBUG-NAME

5-82

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.13.2 Identifier (data-name)

MARK "14",C_DBGSU

LWL DD of DEBUG-ITEM item

LWL debug attribute

LWL line number

LWL symbolic string of identifier
CALL ‘ 3+ 4

7/

move subscript,to DEBUG-SUB-1

1

move subscript. to DEBUG-SUB-2

2
move subscript3 to DEBUG-SUB-3

move identifier to DEBUG-CONTENTS

¥

perform debug declarative

b

where debug attribute is
Bits 7-4 = 9 identifier, move
. spaces to DEBUG-SUB-1
thru -3.
Bits 3-0 = 1 symbolic string to

DEBUG-NAME.
l:

-~
"h—

5—‘83 CALIFORMIA SOFTWARE PRODBUCTS, 1N,

5.5.13.3 File-name

- other than READ statement

MARK "14",C_DBGSU
LWL DD of DEBUG-ITEM item
A LWL debug attribute
LWL line number
LWL symbolic string of file-name
CALL 3+ 4

T

perform debug declarative

v

where debug attribute is: 1

10 file-name, move spaces

il

Bits 7-4
to DEBUG-CONTENTS
Bits 3-0 = 1 symbolic string to

DEBUG-NAME

CALIFORNIA SOFTWARE PRODUCTS, INC.

- READ statement
1
READ statement
\2

move record-area to DEBUG-CONTENTS

v

MARK "14",C_DBGSU

LWL » DD .of DEBUG-ITEM item

LWL debug attribute

LWL line number

LWL symbolic string of file-name
CALL ' 3+ 4

A
!

perform debug declarative

N/ ,
where debug attribute is
‘ T L _
Bits 7-4 = 11 file-name, DE™"G-CONTENTS IS already
initialized with the record just read.

Bits 3-0 =1 symbolic string to DEBUG-NAME

Note: The symbolic string arguments in calls to C_DBGSU
are in the form of:
WORD byte count of string (=n)
WORD0 |
’ > symbolic string
A4

WORD (111} /2 }

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.14 1IBM Extensions

5.5.14.1 EXAMINE

The EXAMINE statement produces a call to C_INSPCT with -
appropriate attributes. See code generationbfor INSPECT

‘statements for more information.

5.5.14.2 EXHIBIT

- "

MARY W, C_ErbT

LWL exhibit attribute

[LWL changed save area] if CHANGED
LWL : exhibit operand éttribute1

LWL DD of id

LWL DD of literall

[LWL symbolic string of id,] if NAMED
LWL exhibit operand attributen

LWL DD of idn

LWL DD of literaln

[LWL symbolic string of idn] if NAMED
LWL exhibit operand attributen_*’_l

— e et e e ¢ ——

MARK "14",C_EXHBT *‘\L‘-#(.
- ' P $ - L g

- = 7 S A Y PoTAT

CALL 3 kiﬂ—bu———~ﬂ~t€3;Am“%ﬁxy? =

where exhibit attribute is

!

Bits 1-0 0 NAMED

1 CHANGED

2 CHANGED NAMED

CALIFORNIA SOFTWARE PRODUCTS, INC.

and exhibit operand attribute is
Bit 0 = 0 identifier argument
= 1 literal argument

Bits 3-0 = 15 end of argument

5.5.14.3 TRACE ﬂ? . éi
The IBM debugging switch, C_EB8BB&, is reserved by the
compiler and is referenced by C_TRON, C_TROFF and C_TRACE
routines.
- READY TRACE

MARK "14",C_TRON

CALL 3
- RESET TRACE

MARK "14",C_TROFF

CALL 3

- The trace calls are generated at each section or

paragraph definition point as follows:

MARK "14",C_TRACE
LWL symbolic string of procedure-name
CALL 3+ 1

where symbolic string is in the form of

DATA byte count of string
DATA
. symbolic string of procedure-name
DATA '
J

S~87 CALIFORMNIA SOFTWARE PRODUCTS. INC.

5.5.14.4 TRANSFORM

MARK
LWL
LWL
LWL

CALL

"14",C_TRSFRM
DD of id3
DD of idl
DD of 1d2
3+ 4

.7

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.15 Sort/Merge
The compiler generates an implicit input procedure if the
SORT statcment includes a USING clause. Following sequence

- of code is produced for each of file-name specified.

OPEN INPUT file-name
LOOP. READ record-name AT END GO TO CLOSE-FILE.

RELEASE sort-record FROM record-name.
GO TO LOOP.
CLOSE~FILE. CLOSE file-—namen

Likewise, if the SORT statement includes a GIVING clause
instead of OUTPUT PROCEDURE, the compiler produces equiva-

lent text.

OPEN OUTPUT file—namen

LOOP. RETURN,'file—-rlame?.n AT END GO TO CLOSE-FILE.
WRITE sort-record FROM record-name.
GO TO LOOP.

CLOSE-FILE. CLOSE file-name

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.15.1 Sort Control Block, SCB

word O Logical Unit Number

.1 A (input procedure)

. 2 A (output procedure)
3 A (sorxrt record area)
4 recora length
‘5 A (composite key area)
6 key length
7 miscellaneous bit flags
8 E
.9 .

10

11

12

13 for internal use
14 by SORT

15

16

17

18

19

20 spare

21 A (sort key list)

22 npul prec $1[_£t_______~______‘y

23 oufput paoc
where E = AT END indicator

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.15.2

woxrd O

S WwON e

n+2

Bit 15

Bits 11-§¢

Bit 14
Bit 13
Bit 12
Bits 7-0

Sort Key List

Total number of keys (=n)
AlS|D|P T L
Start Address key 1
" ' key 2
key n
A =0 ASCENDING
= 1 DESCENDING
T = type
=0 alphanumeric -) CrymP—)
_ S e (o) [*2 e gacked (Comp 3,
= 1 numeric *ﬁ“a R N - _
= : =2 ueeC ASCIL(DAy)
S =1 signed
D=1 leading sign
P =1 sign to separvate
L = Byte length of key (==255)

CALIFORNI!A SOFTWARE PRODUCTS, INC.

5.5.15.3 RELEASE

MARK "14",C_RELSE

LWL FIT of file to be sorted
LWL SCB

CALL 3+ 2

MARK "14",C_SRTRTN

LWL JET of input procedure
CALL 3+ 1

EXIT

label:
C_RELSE constructs a single composit key in the area
pointed to by word 5 of SCB. The composite key is
in an ascending logical ordexr. Following transfor-
mations are required on each key:
- alphanumeric - none
numeric - convert to binary and add bias.

Bias = "8000 o"

. if descending keys, do 1'l complement.

C_SRTRTN places the address of label (immediately
after the EXIT instruction) into the address portion

of pointed to JET.

5-92 CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.15.4 RETURN

MARK "14",C_SRTRTN

LWL JET of output procedure
CALL 3+ 1

EXIT

MARK "14",C_RETRN

LWL return attribute

LWL FIT of sorted output file
LWL SCB

CALL 3+ 3

BRA label

!

move record-area to INTO id

!

BRA next sentence
label: T'
AT END imperative statements

next sentence:
where return attribute is

Bit 0 = AT END statements present

5 9 3 CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.15.5 SORT/MERGE

MARK "14",SCBSU

LWL SCB

LWL ‘ FIT of sort file
LWL : input procedure
LWL oﬁtput procedure
'LWL sort key length
LWL sort key list
CALL 3+ 6

MARK "14",C_SORT

LWL SCB

CALL 3+1

5.5.15.6 Input Procedure of Sort .
The input procedure of a sort has following sequence of
codes,

entry: GOI sort proc JET

RELSE FIT,SCB
SRTRTN sort proc JET
EXIT
SRTEOF SCB
EXIT

5-94

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.15.7 Output Procedure of Sort

The output procedure of a sort has following sequence of

codes;‘

entry: GOI sort proc JET
SRTRTN sort proc JET
RETRN attribute, FIT, SCB
BRA label
move record-area to INTO id
BRA next sentence

label: .

-

AT END statements

next sentence:

SRTRTN sort proc JET

EXIT

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.16 Report Writer

Report Writer processing takes place in phases 1 through 5.
Phase 1 merely processes report file FDs like any other FDs,
except that report-names specified on REPORTS ARE clauses
are saved on the Report stack for later processing. The
Report Writer phase is called when a REPORT SECTION is xe-
cognized by the scan mechanism. This phase is composed of
two parts: report writer syntax analysis and the report
writer encode. Each part is essentially a pass over the
report writer source. The first pass places pertinent in-
formation out to the DT-Text and/or RW-Text after each line
is analyzed syntactially. When the end of DATA DIVISION is
detected, the encoding of RW-Text takes place by making a.
pass over the text and producing EP-Text for report writer
procedures. Phases 4 and 5, in turn, translates Report
Writer DT-Text into report writer data blocks and report
writer EP-Text into report writer OP-Text, respectively.

26

w
|

CALIFORNIA SOFTWARE PRODUCTS. INC.

5.5.16.1 Operations

Following table shows the Report Writer operations that occur

in.response to the various types of source statements:

Source Statements
FD...REPORT IS

RD report—name

CONTROLS ARE

PAGE, HEADING, etc.

TYPE
COLUMN

SOURCE

VALUE
SUM

02(-49)...LINE
USE BEFORE REPORTING

INITIATE report-name

GENERATE report-—name

GENERATE detail—-name

TERMINATE report-name

Summary of Compiler Activities

Store report-names in Report Stack
for diagnostic purpose.

. Make an entry in File Stack for
each report-name

. Generate Report Control Blocks

. Assign control level numbers to
data names

. Save line numbers for printer
carriage spacing on File Stack

. Significant line numbers are placed
in RCB

identifies Report Group

defines the column position in print
buffer

generate 'MOVE report item to print
buffer'

generate 'MOVE value to print buffer'’

generate 'ADD operand to sum-
counter' in a <wmming routine for the
group the sum-counter references.

generate a call to C_RWWT with RCB
address and line spacing information
as arguments.

generate a ‘perform' of declarative
section at the entry of report group
routine

generate a call to C_RWIN with RCB
address argument

generate a call to C_RWGN with RCB
address and a zero DE numbers argu-
ments.

generate a call to C_RWGN with RCB
address and DE number arguments.

generate a call to C_RWTM with RCB
address argument.

5-97 CALIFORNIA SOFTWARE PRODUCTS, INC.

Source Statements

RESET

Group Indicate

Suppress Printing

Next Group

UPON data-name-l

Summary of Compiler Activities

generate 'MOVE 0 to sum-counter' in
RESET SUM routine for that control
footing.

generate a call to C_RWGI with RCB
address, DE number, and address of
location to skip over move code.

generate '"MOVE 1 to print-switch'

‘generate a call to C_RWWT with RCB

address and next group information
as arguments.

generate 'ADD operand to sum—-counter'
in the summing routine named by
data-name-1.

CALIFORNIA SOFTWARKE PRODUCTS, 1NC.

5.5.16.2 Report Writer System Overview

C_RWIN C_RWGN C_RWTM C_RWWT C_RWGI

— [u |

~

> FIT]

| »| Control Break
Report Table
Control
Block,
RCB (for RH Routin
each ei~ ©
report-
name)

RF Routine

-ﬁrPH Routine J

i CH Major
N3 :
>L F Routine J cH Majo
->LCH Table < ' CH Minor
[Routine |
ﬁ{ CF Table }(
> Reset major | CF Major
%ﬁiReset table r——- E Rouﬁlne
LY Reset minor| .
CF Minor
Routine
| Detail flag H{flag first]
table :
| flag last |

>~ DEj Routine

.
4

*

- DE, Routine

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.16.3 Report Control Block, RCB

A Report Control Block is generated by the compiler for each

report name and is used to facilitate the report writer

functions.
word O A(FIT)
1l A(Control Break procedure)or G
2 CODE literal or 0
3 DD (PAGE-COUNTER)
4 DD (LENE—COUNTER)
5 PAGEALIMIT number or 0
6 HEADING number
7 FIRST DETAIL number
8 LAST DETAIL number
9 FOOTING number
10 DD (PRINT-SWITCH)
11 A (RH procedure) or O
12 A (RF procedure) or 0
13 A (PH procedure) or 0
14 A (PF procedure) or 0
15 A (CH Table) or 0
le A (CF Table) or 0
17 A (Reset Table) ov @
18 A (Detail Flag Table)
19 RCB Flags*
20 Next Group Line*
21 A (Move Control procedure)o.(.z
22 Current Control™ '¢1 6 . . X
24 23 CA (DE, procedurgz SthFCJ.L*nQS
25724 A (DE, procedure) .
2.3 22%n A(DE, procedure)
_Z7—23+n 0
where Al) = address of
DD () = DD address of

*are initialized to zero and are modified by report

writer runtime.

CALIFORNIA SOFTWARE PRODUCTS, INC.

5-100

5.5.16.4 CH, CF and Reset Tables

The tables are pointed to by the Report Control Block and

contains the addresses of the procedures.

0 Level number (=n)

1 | A (procedure) major

= <

n A (procedure) minor

5-101

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.16.5 Detail Flag Table

The Detail flag table is pointed to by the Report Control
Block and contains the flags for all of the detail report

groups.

5-102

CALIFORNIA SOFTWARE PRODUCTS, INC.

5.5.16.6

INITIATE
MARK
LWL
CALL
GENERATE
- report-name
MARK
LWL
L¢@
CALL
-~ detail-name
MARK

LWL
LWL

CALL

TERMINATE

MARK
LWL
CALL

Code Generation

"14,C_RWIN
RCB of repoxt-name
3+ 1

M14",C_RWGN

RCB of report-name

"14",C_RWGN

RCB of repoxrt-name
DE number

3+ 2

"14",C_RWTM
RCB of report-name
3+ 1

. SUPPRESS PRINTING
This statement generates MOVE 1 TO PRINT-SWITCH.

5-103

CA

LIFORNIA SOFTWARE PRODUCTS, INC.

et
G re
e
Mo s

x ‘o w2l
W
” v,
N
g St
wn = leed
gm/
%
'C%

\Z
XI
x’;nh
foRa)
/ W
WW
Aeue
ot
P
»

- At the beginning of report group with relative

line body.

MARK
LWL
LWL
call

* GROUP INDICATE
MARK
LWL
LWL
CALL

. gWAD G PR A e S i Y s
LINE o C%G @JZ‘:&"Q M’a%}rw - Y

"14,C_RWGR
RCB aof report group

Sum qg-relative lines

3+ 2

"14",C_RWGI

RCB of report ,.oup 'jg
DD of GROUP INDICATE A caon<@ éw/««’

MARK ¥ "14n,c_riwe 100 AD %&M’; y
LWL RCB of report group L;;g;aj gt f“ﬁPWLW
LWL attribute

T ~—3rrEee ’-~L-rm~—:::f:fi;> B
[LWL. advancing line #] Tgl BA%}&?LV ?;Q&QF.r é
CALL 3+ 3 [+1] - v

attribute is

Bit 0 = integer W‘}T@—-‘Q‘

1
2

It

Il

NEXT GROSP YAGE
PLUS

7= ‘Jé$j’cprL”€

M ArRK
Lw

Cyril-

147, Co Wy
r&cé S} @fm’(TP
4

5-104 CALIFORNIA SOFTWARE PRODUCTS, INC.

	000
	001
	002
	003
	004
	005
	006
	007
	1-01
	2-01
	2-02
	2-03
	3-001
	3-002
	3-003
	3-004
	3-005a
	3-005b
	3-006
	3-007
	3-008a
	3-008b
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070a
	3-070b
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090a
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103a
	3-103b
	3-103c
	3-103d
	3-103
	3-104
	3-105
	3-106
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	5-001
	5-002
	5-003
	5-004
	5-005
	5-006
	5-007
	5-008
	5-009
	5-010
	5-011
	5-012
	5-013
	5-014
	5-015
	5-016
	5-017
	5-018
	5-019
	5-020
	5-021
	5-022
	5-023
	5-024
	5-025
	5-026
	5-027
	5-028
	5-029
	5-030
	5-031
	5-032
	5-033
	5-034
	5-035
	5-036
	5-037
	5-038
	5-039
	5-040
	5-041
	5-042
	5-043
	5-044
	5-045
	5-046
	5-047
	5-048
	5-049
	5-050
	5-051
	5-052
	5-053
	5-054
	5-055
	5-056
	5-057
	5-058
	5-059
	5-060
	5-061
	5-062
	5-063
	5-064
	5-065
	5-066
	5-067
	5-068
	5-069
	5-070
	5-071
	5-072
	5-073
	5-074
	5-075
	5-076
	5-077
	5-078
	5-079
	5-080
	5-081
	5-082
	5-083
	5-084
	5-085
	5-086
	5-087
	5-088
	5-089
	5-090
	5-091
	5-092
	5-093
	5-094
	5-095
	5-096
	5-097
	5-098
	5-099
	5-100
	5-101
	5-102
	5-103
	5-104a
	5-104

