
MICROPROGRAMMING
HANDBOOK

Microdata

Microdata Corporation
· 644 East Young Street

Santa Ana, California

Copyright 1971 by
M icrodata Corporation

644 E. Young St.
Santa Ana, California

PRINTED IN U.S.A.

PARTI

MICROPROGRAMMED COMPUTER PRIMER

PART II

APPLICATION OF THE
MICROPROGRAMMED COMPUTERS

PART Ill

MICRO 800 USERS MANUAL

PART IV

MICRO 810 FIRMWARE MANUAL

PARTV

SYSTEM DESIGN PROCEDURES USING
MICROPROGRAMMING

PART VI

PRODUCT CATALOG

FOREWORD

This is the first and only handbook on microprogramming. It has been
written and published by Microdata Corporation, the company which has
pioneered the practical, application of microprogramming iii the mini­
computer field. Its purpose is to introduce the computer user to this
powerful concept; to illustrate its many clear-cut advantages in computing
a_nd control applications and to provide detailed instructions to the system
designer for the most economical and efficient application of micro­
programming technology.

Microdata believes, as do niany other knowledgeable individuals and
organizations, that the microprogrammable computer architecture will
emerge as the dominant concept in the smallcomputer area. The inevita­
bility of microprogramming rests on fundamental advantages to both the
computer manufacturer and to the comp,uter user.

To the manufacturer, a microprogrammable architecture permits develop­
ment and production oi a single system of compatible hardware which can
be program tailored to fit a much wider range of requirements than can be
met by conventional softwdre-oriented machines. From a design stand­
point, only microprogramming permits full and extensive use of commer­
cial MSI and LSI devices which result in higher performance for a given
cost than in conventional designs. These benefits are, of course, passed
directly to the user.

Microdata recognized the inherent practical advantages in the micro­
programming concept for· minicomputers at a very early date. Accord­
ingly, the MICRO 800 series of computers was introduced early in 1969,
and to date hundreds of these machines have been delivered. Acceptance
of this product and its concept has prompted recent introduction of the
MICRO 1600 series which builds on the MICRO 800 technology but
which offers significant improvements in performance at a lower cost.
These computers are. unique in the field and offer' users a set of advantages
which cannot be obtained elsewhere.

This publication is offered as an aid to users and potential users of com­
puters who, at some point, will avail themselves of microprogramming.
Comments and additions by readers who wish to help expand upon the
growing body of knowledge in this field are encouraged and solicited by
Microdata:

TABLE OF CONTENTS

Introduction.

PART I MICROPROGRAMMED COMPUTER PRIMER 3

Introduction. 4

Organization of the Microprogrammed Computer 4

The Fixed Instruction Computer 4

Memory 4
Arithmetic Unit 4
Input/Output 5
Control Unit . . 5

The Microprogrammed Comp.uter. 6

Memory 6
Arithmetic Unit 7
Input/Output 7
Control Unit . . 7
Control Memory . 7

Cost and Performance Advantages of the
Microprogrammed Computer 8

The MICRO 1600 Microprogrammable Computer 9

Microprogram Function Summary . 10

Processor 10
Control Unit 11
Command Execution 11
Control Memory . . 11
Core Memory 11
Programmable Byte 1/0 Channel 12

Comp~rison of a Microprogrammable Computer to a
General Purpose Fixed Instruction Computer . 12

Instruction Repertoire . 12

Instruction Speeds. 12

Glossary , 15

PART II APPLICATION OF THE MICROPROGRAMMED
COMPUTER. 49

Introduction.

Classes of Application .

General Purpose Computers
Special Purpose Computers
Emulator Computer
Language Processors

iii

50

50

50
53
59
59

Application Examples 61

Automatic Test System 61
1=1oating Point Processor (Special Purpose). 62
1=ast Fourier Transform Processor (Special Purpose?) . 62
Multilane Parking Facility Computer 63
Data Communications Applications, Special

Purpose Concentrator 64
Numerical Control of Vertical Machining Center. 65
Vibration Analyzer (Special Purpose) . 66
Interface for Campus Central Processor,

Satellite Computers. . . . 66

PART Ill MICRO 800 USERS MANUAL ..

Chapter 1. System Design Features

General Characteristics .
System Organization .
Hegisters and File . .
Core Memory.
Control Memory ...
Arithmetic Functions
Status and Condition Flags.
Command Timing

Chapter 2. Microcommand Repertoire

Command Formats
Terms and Symbols Used in the Command

Descriptions
Microcommands-Formats, Descriptions and

Examples.

Load T
Load M
Load N
Load U
Load Zero Control
Load Seven Control .
Jump
Load File ..
Add to File .
Test If Zero .
Test If Not Zero
Compare
Control .
Add ...
Subtract.
Read Memory, Write Memory.
Copy
OR
Exclusive OR
AND .. .
Shift .. .
Execute .

iv

69

71

72
72
73
75
75
76
80
81

82

82

84

84

85
85
86
86
87
88
89
91
92
93
94
96
96

103
106
108
112
114
116
118
120
123

CPU Microcommand Repertoire . 130

Chapter3. Input/Output 131

General Description . 131
Byte 1/0 Bus. 131

Internal Status Interrupt 133
Bus Lines . . 133
Input Lines 133
Output Lines 135
Serial Interface 137
Direct Memory Access 137
Typical Byte 1/0 Interface 137

Examples of 1/0 Microprogramming . 140

Chapter 4. Central Processor Options . 145

Real-Time Clock ~ . . 145
Power-Fail/Automatic Restart . 145

Chapter 5. Operator Controls . 146

Consoles 146
Displays .. '. 147
Switches 147
Operating Procedures - System Console. 148

Chapter 6. Programming Systems for MICRO 800
Firmware Development . . 155

AP800 Cross Assembler . 155
MAP800 Cross Assembler 155
Symbolic Language . . . 155
Machine Commands 157
Operand Fierd Expressions. 157
M icrocommands 158
Alphabetic List of Commands 159
Assembler Instructions 159
Assembly Listing and Diode Map. 160
Format for AP800 . . 160
Error Flags 161
Diode Map for AP800 161
Sample Listing 161
Operation Program Card Deck From AP800 . 165
Simulator Operating System (SOS) and

Simulator Program (SIM800). 165

Introduction 165
Instruction for use . . 166
Operators 168
Program Tape Format 171
Appendixes . . ,, . . . 172

Alterable Read-Only Memory Operating System
(AROS) ,, . . 175

Introduction 175
Instructions for Use. 175

v

Operators
Program Tape Format
Summary of AROS Operators ..
Program Checkout and Debugging

Chapter 7. Techniques and Examples ..

Techniques for Efficient Microprogramming.

1. Generation of delays for memory accesses,

177
178
179
180

190

190

U Register Applications and input/output 191
2. Double Functions on a Single Command 192
3. Uses, Setting and Testing Link 192
4. Uses of the U Register 192
5. Setting and Using Condition flags. 193
6. Use of Loops vs Straight Line Programming. 194
7. Small General Purpose Subroutines. 195
8. Use of shift Right 4 Command 195
9. Use of File Register for Flags, Counters, and

Reference Data 195
10. Organization of Op Codes, File Register

numbers, and Core Memory Addresses to
minimize Commands 195

11. Saving of Diodes by Selection of Files and
Instructions 195

12. Saving Jump Instructions when Branching 196
13. Reducing two Branches to one by Multi-

Function Commands 197
14. Interlacing vs. Cascading of Subroutines 198
15. UseoflnhibitFileWr_ite........ 198
16. Moving Data from a File to a Register. 198

Microprogramming Examples

1. Multiply Two Positive Numbers
2. Subroutine J1.Jmps.
3. Time Delay Routine
4. Data Input from 4 External Registers.
5. Load 8 successive File Registers from 8

198

200
. 203
. 205
. 208

successive core locations 210
6. 16 Bit Add (Core to File) 212
7. Input a 32 Bit Word from an External Device

to Core Memory
8. 16 Bit Right Shift with End Around Carry

with the Shift Count in File Register S ..
9. A 0 Red with B to A

10. Update 10 BCD Digit Display from Core .
11. Clear a Block of Core Memory
12a. Read 8 consecutive Core locations into 8

213

216
. 217

217
. 220

consecutive File Registers 222
12b. Write 8 consecutive Files into 8 consecutive

Core locations. ,223
13a. Output from 8 Files to 8 Shift Registers . 225
13b. File to Register; with Hardware Rotation

of Bit Pattern 228

vi

14. Input from 8 Shift Registers to 8 Files in
MICRO 800. . 230

15. Input Block of Data to Core from A to D
Converter . . 233

16. Conversion of 3 Digit BCD plus sign into
Binary. . 237

17. Binary to BCD Conversion . 239
18. General Purpose Multiple File Shift Routine 244
19. Hexadecimal to ASCII Conversion Routine . . 249
20. General Purpose Code Conversion by Table

Translation . 254
21. Binary Multiply (16 Bits) 257
22. Generate Cyclic Code for One 8 Bit Data

Byte . 261
23. Generate ASCII Parity . 263

PART IV MICRO 810 FIRMWARE MANUAL . 265

Introduction 267

MICRO 810 Functions . 267

File Register Assignments . . 268

Information Formats 270

Operand Addressing Modes . 271

MICRO 810 Instructions . 275

Interrupts 277
Concurrent 1/0 277
Serial Input/Output Instructions . 277
Byte Input/Output Instructions . 278
Top Level Flow Chart 279

MICRO 810 Assembly Listings ... 304

Function Flow Examples of a MICRO 810 Instruction. 304

PART V SYSTEM DESIGN PROCEDURES USING
MICROPROGRAMMING . . 313

Introduction 315

1. System Functional Definition . 317
2. System Configuration Definition ·. . 318
3. Detailed System Performance Specifications. . 318
4. Interface Performance Specifications . 319
5. Program Specifications. 319
6. Tradeoffs . ; · . . 320
7. · Hardware Specs 322
8. Software or Firmware Program Specifications .. 322
9. Detailed Program Functions Analysis

Definitions and Programming 323

vii·

PART VI PRODUCT CATALOG . 325

MICRO 400 Computer . 327

MICRO 800 Computer . 328

MICRO 810 Computer . 329

MICRO 820 Computer . 330

MICRO 1600 Computer . 332

Firmware Training System . 334

Alterable Read-Only Memory System . . 336

viii

INTRODUCTION

The story of Microdata Corporation's success is the story of micropro­
gramming, a unique element which is the secret of the significant advan­
tages of the company's advanced minicomputers over fixed-instruction
machines.

The major difference between Microdata's products and conventional
minicomputers is the skillful incorporation of microprogrammed control
memories as a major adjunct to the usual basic elements of any computer­
control unit, main memory, arithmetic/logic unit and input/output.

The advantages are manyfold. Ease of programming using the widest
possible choice of language selection is a major gain. In turn, this permits
the use of low-skill (and lower salaried) programmers to operate the
equipment. ,

Microprogramming also means higher speed with much more efficient use
of the main memory of the computer.

In many cases, the storage capacity of the main memory is increased
because the programs used in conventional minicomputers to perform
certain operational instructions are stored in the control memory, thus
freeing storage capacity in the main memory for the purpose it was
i,ntended-problem-solving.

Inherently, microprogramming gives the user unequalled flexibility in
accordance with the design philosophy of Microdata Corporation. This
flexibility is extremely important to the user because the computer can be
tailored to his specific needs, no matter how complex or simple, and can
be changed at will.

By strictly adhering to this philosophy, Microdata Corporation has set
new industry ,standards for performance at minimum cost, unequalled
memory efficiency and the availability of a wide variety of languages from
which to choose. In short, Microdata has reached a pinnacle in the only
meaningful measurement of computer performance-the ability to solve
specific problems accurately and efficiently in terms of time and therefore
c~st to the user. ,

Microprogrammable computers also have ripped away many barriers to
broader application of minicomputers. The way is clear for use of Micro­
data's products in business and scientific applications because of the ease
and flexibility of programming techniques.

A number of factors have contributed to these advances by M icrodata
Corporation, including modern facilities geared to volume production,
exploitation of the most advanced technologies and concepts available in
the industry, and the field-proven reliability of hundreds of the company's
minicomputers.

PARTI

MICROPROGRAMMED COMPUTER PRIMER

INTRODUCTION

December 1945, ENIAC, the first electronic high-speed stored program
general purpose computer was completed. Six years later Professor M.V.
Wilkes of Cambridge University coined the word microprogramming to
describe computer instructions that carry out numerous information trans­
fers in a single execution cycle. Cost-performance improvements as a
result of 25 vears of advancement in computer technologies have been
almost overwhelming. In 1965 it became practical and possible to build
computers with control units driven by microprograms. The concept was
not exploited on a widespread basis until recently. In large and medium
scale computers microprogramming provides the capability to emulate
other computers, and to maintain upward/downward compatibility over a
wide range of models within a computer series.

The small or so c~lled minicomputer incorporating microprogramming now
exploits the advances in semiconductor and memory technologies with
microprogrammiing far beyond the larger model computers. Full advantage
of new low cost memories are realized only by users of small micro­
programmed computers. The spectrum of applications between the special
purpose computer, where the entire program is implemented in a micro­
program, to the general purpose computer implemented by microprogram
can be selected by the user to achieve a meaningful price/performance
ratio for the application.

ORGANIZATION OF THE MICROPROGRAMMED COMPUTER

The organization of the microprogrammed computer can best be described
after we first review the organization of its predecessor, the fixed instruc­
tion stored program general purpose computer.

The Fixed Instruction Computer

In simple terms the fixed instruction stored program computer is built
around a storage and retrieval scheme, typically a magnetic core memory.
The structure and information paths of a computer are represented in the
simplified block diagram (Figure 1).

As defined in most textbooks, the five el,ements comprising a digital com­
puter are: memory, arithmetic unit, input, output and control unit.

Memory: Modem computer memories are implemented using high speed
semiconductors or magnetic core memory systems. These memories are
high-speed random access devices of which information, usually in a binary
form, is written or read from any addressed section of the memory.

Arithmetic Unit: In many instances is referred to as the arithmetic and
logic unit (ALU). As the name implies it performs the arithmetic opera­
tions on data transferred within the computer, the memory, the input and
the output.

4

Input/Output: Communication with a wide variety of devices in the
language of the operat'or are made possible by transfer channels referred to
as the input and output sections of a computer. Devices connected to the
input/output of a computer referred to as computer peripherals include
elementary switches and indicator lamps, typewriters, magnetic or paper
tape units, line printers, analog converters, cathode ray tube displays (TV
type devices), card readers and punches, communication lines, etc.

CONTROL
UNIT

MEMORY

ARITHMETIC
UNIT

Figure 1. Simplified Block Diagram
Fixed Instruction Stored Program General Purpose Computer

In addition to man communication type devices the input/output of a
computer may be connected to intermediate storage devices for mass
memory requirements. Such mass memory devices include but are not
limited to magnetic disc storage systems, magnetic drums, and a larger
scale computer memory.

Control Unit: The control unit may be referred to as the "brain" portion
of any computer because it coordinates all units of the computer in timed
logical sequence. The control unit of a small fixed instruction corriputer
receives sequences of instructions from memory. These sequences, called
programs, reside in the memory and are referred to as "software." The
control unit is closely synchronized to the memory cycle speed and execu­
tion time of each fixed instruction is usually a multiple of the memory
speed.

5

The Microprogrammed Computer

Four of the elements of the microprogrammed computer are nearly identi­
cal to the fixed instruction computer. The significant difference is in the
control unit ("Brain,.,). The basic control sequences of a microprogrammed
computer originate in a separate "control memory," usually 'a read-only
memory (ROM) which operates at speeds many times faster than the main
memory section of the computer. Thus the simplified block diagram (Fig­
ure 2) of the microprogrammed computer has one more element than the
fixed instruction computer.

CONTROL
MEMORY

CONTROL
UNIT

ARITHMETIC
UNIT

Figure 2. Simplified Block Diagram
Microprogrammed Computer

Memory: The random access main memory of the microprogrammed com­
puter differs little from the fixed instruction computer. It is implemented
with magnetic core or semiconductor systems in similar sizes and speeds
to the fixed instruction computer. The basic difference is the timing and
control of the memory system. The control unit of the microprogrammed
computer is clocked to a significantly higher speed separate memory sys­
tem. Hence, the main memory speed is essentially independent of the
processor speed and is operated in a manner similar to an input/output
device.

6

Arithmetic Unit: The arithmetic and logic unit in a microprogrammed
computer operates on fixed data lengths, typically 8 bits. The speed of the
unit is 10 to 50 times faster than fixed instruction computer arithmetic
units operating on smaller portions of arithmetic problems at each step.
Microcommands are much more intimately related to the computer archi­
tectur:e and to bit patterns. This allows high versatility in problem solution
and minimizes the restrictions usuall_y encountered at the software level.

Input/Output: Microprogramm:ed computers provide extremely fast ele­
mentary 1/0 capabilities·. Data paths are fixed length, typically 8 bits, and
the 1/0 control functions are simple elements sequenced by high speed
control memory firmware. This permits special 1/0 systems to be designed
for the users' requirements. The microprogrammed computer offers all of
the 1/0 capabilities found in fixed instruction computers coupled with the
unique advantage of providing only the capabilities needed, and the versa­
tility to be changed when required.

Control Unit: The control unit of the microprogrammed computer is
simple and straightforward. It operates and controls all elements of the
computer system including two levels ofmemor.y. Because it is more basic
than the control units in fixed instruction computers it provides capability
to solve problems in an added dimension. The control unit is program­
mable, not fixed. Programs operating upon the control unit are called
microprograms, and are referred to as firmware. These programs are as
easy to write and implement as is software in the fixed instructi·on
computer.

If we refer to the control unit of any computer as the "Brain," then the
microprogrammed computer control unit could be referred to as a brain
ingredient, which we can readily adjust to suit our needs.

Control Memory: The control memory is the element that most dramati­
cally distinguishes the microprogrammed computer. The control memory
contains the stored sequence of control functions that dictate end user
architecture of the microprogrammed computer. These stored sequences
are called "microprograms" or "firmware" corresponding to fixed instruc­
tion computer sequences called "programs" or "software."

The control memory has been called many other names including, read­
only store (ROS), read-only memory (ROM) and control store. Termi­
nology relating to the C08trol memory of microprogrammed computers is
most complex because of many misnomers coined by computer and semi­
conductor manufacturers. Present terminology that relates to the mechani­
zation of control memory are:

ROM: Read-Only Memory: Any memory system inwhich the bit patterns
of each word are fixed, and unalterable.

In application, few ROM's can be modified after manufacture. Those
ROM's that can, may be called modifiable. To make any change reqt,1ires
a hardware modification such as adding or deleting diodes in a diode
matrix ROM or rerouting of wires in a core ROM.

7

BROM: Bipolar Read Only Memory: Large scale integration (LSI) bipolar
devices are used for volume manufacture. Original setup masking is expen­
sive. Cost for manufactured elements is low.

PROM: Programmable Read Only Memory: A semiconductor diode array
is programmed by fusing or burning out diode junctions. Cost for setup is
minimal. Manufacturing cost is moderate to high. The PROM is usually
used for final shake down of a system prior to investing in the BROM
setup.

AROM: Alterable Read Only Memory: A true misnomer. The AROM is
actually a read-write memory that is used for initial checkout of firmware.
The firmware is typically loaded into the AROM via a paper tape input
device. Once loaded the AROM operates the control unit as does any
ROM control memory. The advantage of the AROM is programming
within a few minutes rather than a manufacturing process. Cost is high;
however, the devices are used indefinitely for checkout and analysis of
numerous firmware implementations.

COST AND PERFORMANCE ADVANTAGES OF THE MICROPRO­
GRAMMED COMPUTER

Fixed instruction minicomputers are basically application sensitive. Even
with numerous models to choose from only a few offer good price per­
formance for any specific application. Even more important to note is the
fact that if a specific fixed instruction computer offers the best price per­
formance for a given application at one level of complexity it may offer
less relative value as the complexity changes.

Typically, to increase the performance of 1he fixed instruction computer
the main memory (usually core memory) is increased in size.

When all the smoke seftles the performance of any computer is measured
by its ability to solve a specific problem within a given period of time.

For most project managers the selection of a minicomputer is a traumatic
experience. He is exposed to numerous technical concepts, specifications
and a variety of salesmen and skilled technicians from companies with one
goal-to selt him their solution to his technical problem. If a thorough
up-to-date evaluation was performed with all minicomputer manufacturers
the evaluation could cost him more than the project implementation. The
prime criteria for selection of the appropriate minicomputer is time and
cost of implementation over the entire project life. In this light, the
microprogrammed minicomputer offers an answer to this enigma. The
user selects thEi cost/performance lines between three elements; hardware,
firmware, and software for his specific application.

One of the primary purposes of this "Microprogramming Handbook", is
to educate and illustrate for the user the capabilities of specific product
lines and to assist these cost/performance trade-off selections.

The following comparison chart illustrates five capability levels comparing
one of the more popular fixed instruction minicomputers, referred to as
brand X, and a microprogrammable minicomputer, the MICRO 1600. Each
level represents computer problem solving capability with corresponding
notation on price, memory use and relative speed (micro vs. fixed). Within

8

any capability level numerous trade-offs between control memory size and
core memory size can be established for the MICRO 1600.

For example, level number 4 shown in the comparison chart represents
a computer capability for a time-sharing system employing high-level
interpretive language and executive programs. Implementation of floating
point arithmetic and executive subroutines in firmware thus expands
the ROM from 768 words to 8,192 words. As a result, the MICRO 1600
cost is reduced approximately 15 percent and execution time is improved
by a factor of approximately 20.

, This comparison clearly illustrates that as the size of the control memory
increa_ses advantages result in price and relative speed. In addition, pro­
gramming costs and implementation time can be significantly reduced
once the users' needs are established in firmware.- Now, with the avail­
ability of supporting systems from Microdata, firmware development is in
the same dimension in price and turn-around time normally associated
with fixed instruction computers. The result: computer users can benefit
from microprogramming along with the computer manufacturer.

Mtcroprogrammed Computer Fixed Instruction
(MICRO 1600) Computer (Brand X)

Core Control Core
Memory Memory System Relative System Memory

Level Size Size Price Speed Price Size

1. BK XS 512 x 16 $5,910 1 :2 $6,250 4K X 16 4K XS 1024 x 16 $5,420 2:1

2. 16K X 8 512 x 16 $8,610 1 :2
$8,950 8K X 16 12K X 8 2048 x 16 $7,690 5:1

3. 32K X 8 512 x 16 $14,010 1 :2 $14,350 16K X 16 24K X 8 1024 x 16 $11,470 10:1

4. 48K X 8 768 x 16 $19,770 2:3 $19,750 24K X 16 24K X 8 8192 x 16 $16,750 15: 1

5. 65K X8 1024 x 16 $25,170 1: 1 $27,000 32K X 16 32K X 8 12K X 16 $22,250 20:1

THE MICRO 1600 MICROPROGRAMMABLE COMPUTER

The term microprogram, its associated terms microprogrammable and
microprogrammed is used to denote programmable sub steps of general
purpose processor instructions.

The MICRO 1600, however, is organized to use its basic ins.tructions
(called commands) either as sub steps of a general purpose processor
instruction set, or directly for application programs. All classes of micro­
programs used in the MICRO 1600 are called firmware, which may be
considered as a mix of hardware and software. The MICRO 1600 read
only memory has a fixed hardware design except for the firmware patterns
in the memory matrix. Much less original design effort is necessary for
firmware in comparison to hardware since only the pattern need be
checked out. With electrically-alterable read only memories and high­
capacity bipolar read only memories, firmware is as flexible as software
and retains the inherent speed advantage of microprogramming.

9

Microprogram f=unction Summary

Figure 3 illustrates the basic functional MICRO 1600 units and their
interrelation in the processor. There is no direct one-to-one correspondence
between the functions in Figure 3 and the hardware implementation in
the MICRO 1600 because some of the functional elements are dispersed on
more than om~ board. All of the essential data and control paths are
shown, with data shown as solid lines and control as broken lihes. No data
passes through the control portion of the computer.

CORE
MEMORY - - - '"1 MEMORY SEQUENCE

TIMING AND
CONTROL

DATA
TO
MEMORY

DATA

~~~~RY MEMORY 
¥ADDRESS ,......... _ ___..._ __ _........,. 

BYTE OUTPUTS 

DATA [=UTS 
CONTROL 

PROG~Aft~ABLE -] 
BYTE 
INPUT/OUTPUT 

4
_ CHANNEi. 

PROCESSOR 

I 
I PROCESSOR 
I CONTROL 

1/ 
PROCESSOR 
STATUS 

____ _J 

LITERALS s ::J ----.---· 
L------

1/0 CONTROL CODES. 
CONTROL 
UNIT 

-ROMADDRESs- - __ I : 
_____________ _J 
COMMANDS (INSTRUCTIONS) 
AND JUMP ADDRESSES 

Figure 3. Functional Block Diagram of the MICRO 1600 

Processor 

The basic processo,r functions are as follows: 

• Arithmetic (Add, Subtract). 
• Logical ("OR," "Exclusive OR," "AND"). 
• Shift. . 
• Load Registers With Literals from ROM. 
• Load or Add to Files With Literals From ROM. 
• Transfer Data to and from Core Memory. 
• Transfer Data to and From Byte 1/0. 
• Compare Data in Files With Literals from ROM. 
• Provide and Update Address Value to Core Memory. 

The processor consists of the following basic functional elements: 

• Arithmetic/Logic Unit. 
• File Registers. 
• Core Memory Address Registers. 
• Operand Register. 
• Memory Buffer Register. 
• 1/0 Register. 
• Interconnecting Logic. 

10 



The processor is set up to do its various functions by the control unit. It 
provides the control unit directly with zero, negative and overflow condi­
tion status. Other status functions are tested using compare commands of 
bit test with literal commands. 

Control Unit 

The basic control functions are as follows: 

• Processor Command Decoding and Control. 
• Data Steering: 

Files to Arithmetic/Logic Unit (ALU). 
Input to ALU. 
Operand Register to ALU. 
Input to ALU. 
Literals From ROM to Files or Registers. 
Memory to Processor. 
ALU to Files and Registers. 

• Instruction Skipping Based on Processor Conditions. 
• Advancing ROM Addresses. 
• Jumping to ROM Addresses. 
• Fetching and Holding Commands from ROM. 
• 1/0 Control Code Generation. 
• Core Memory Transfer Timing. 

Fu II or Half Cycle. 
Read or Write. 

Command Execution 

In the microprogrammable computer, the instruction fetch, decode, exe­
cute, and distribution functions are not divided into distinct, separate 
steps as they are in most fixed instruction computers. Instead, the various 
functions go on simultaneously during the time between clock pulses. 
Sufficient time is allowed for all functions to settle between clocks. Read­
ing of instructions from ROM is done on a lookahead· basis. The instruc­
tions are clocked into the ROM register where all other functions, such as 
decoding, steering, _and processing are done (and results are entered into 
designated registers) on the next clock. 

Because. of this, the effective execution time for most instruction is 200 
nanoseconds, and 400 nanoseconds for those involving skips or jumps 
because of the lookahead fonction. 

Control Memory 

The Control Memory contains 16-bit words which consist of commands, 
or literals. The literals are used to initialize files or registers, to add to files, 
for comparison test purposes, or for control memory address jumping. 

Core Memory 

The core memory stores 8-bit data words from the processor. Read and 
write cycles can be either full or half cycle. The memory adaress is pro­
vided by the processor. Timing pulses are provided by the control function. 
Data, pointers, and flags are stored in the core memory. If the micropro­
gram is a general purposes processor implementation, then the core 
memory also is used to store instructions. 

11 



Programmable Byte 1/0 Channel 

There is a high degree of flexibility in microprogramming of 1/0. Data is 
transferred into and out of the processor under the direction of the con­
trol unit. Output data is transferred directly from the processor's output 
register. Input data transferred via the input bus can be directly copied 
into files or registers by microcode. A large number of peripheral devices 
can be connected to the computer and serviced one at a time through the 
byte 1/0 channel. 

COMPARISON OF A MICROPROGRAMMABLE COMPUTER TO A 
GENERAL PURPOSE FIXED INSTRUCTION COMPUTER 

In the general purpose fixed instruction computer, the instructions are 
stored in core memory along with data. Both instructions and data can be 
altered by the program. In a microprogrammable computer, the instruc­
tions are stored in a read only memory along with permanent (or con­
stant) data. Only variable data, pointer, and flags are stored in core 
memory. 

Instruction Repertoire 

In the general purpose fixed instruction computer there is usually a 
limited instruction repertoire with variations of instruction, and memory 
reference instruc:tions having limited addressing modes. 

In the microprogrammable computer there is usually a smaller number of 
instructions which are more compact and specialized than the fixed 
instructional computer. Memory addressing and 1/0 fuoctions usu.ally are 
built up by assembling a group of micro instructions. The micro instruc­
tions are closely related to the internal architecture and 1/0 structure of 
the basic computer. 

Instruction SpeE!Cls 

Microprogrammable computers are faster than fixed instruction computers 
for the following reasons: 

1. Instruction e!xecution times are from 5 to 30 times faster in a micro­
programmed computer. 

2. Fite registers can be used for data storage, and pointers, where core is 
required in a fixed instruction computer, thus program execution time 
can be sped up by avoiding memory access cycles. 

3. Subroutines are closely tailored to specific requirements and data word 
lenghts, thus improving computer efficiency and speed. 

4. lnpu.t/output routines can be simplified for the application to increase 
1/0 speed. 

5. Special time-consuming algorithms (math, logic, etc.), which are not 
available in the general purpose processor can be easily incorporated 
into a microprogrammed processor. 

Additional comparisons between a general purpose processor and a micro­
programmable processor are included in Table 1. 

12 



Table 1. Comparison of Microprogrammed Computer to 
General Purpose Software Programmed Computer 

Function 

Arithmetic and logic 
operations 

Shift Operations 

Conditional Skips 

Jumps/Return Jumps 

Memory Accesses 

Memory Addressing 

1/0 

Interrupts 

Concurrent 1/0 

OMA 

Indexing 

Program 

Execution Time 

General Purpose 

• memory reference/ 
register reference 

• conditions automatically 
set 

• usually 12 or 16 bits 

• specific registers are used 

• execution time 2-10 
microseconds 

• multiple bits at a time 

• left/right 

• limited types of shift 

• usually 16 bits 

• specific registers only 

• forward/reverse 

• to multiply locations 

• fixed registers used 
and tested 

• program conditions tested 

• programmable locations 

• return jump, automatic 
address set up 

• referred to as part of 
Memory Reference 
Instruction 

• address in instruction 

• 16K to 65K Bytes core 
memory 

• control-fixed 

• instruction designates 
destination and source 

• automatic hardware 
function 

• optional, referred to as 
direct multiplex channel 
or 3 cycle data break 

Microprogrammed 
MICRO 1600 

• register reference 

• conditions set when 
enabled 

· • 8 bits 

• general purpose file 
registers 

• 200 nanoseconds 

• single bit at a time 

• left/right 

• unlimited types of shift 

• 8 bits 

• any file registers 

•forward 

• to one location 

• any file register can be 
tested 

• basic conditions tested 

• programmable locations 

• set up return jump 
address with microcode 

• set up memory address 
registers, initiate transfer 
in microcode 

• address iii any file register 

• 65K Bytes cbr~ memory 

• control variable, ROM; 
256 x 16 expandable to 
16,386 x 16 

• data transfer and timing 
controlled by microcode 

• microcode test, and 
handling 

• implemented directly in 
microcode · 

• external memory access • external memory access 

• specific register(s) assigned • index in _any file register 

• software •firmware 

• microseconds • nanoseconds 

13 



14 



GLOSSARY 

A 

ACCESS, IMMEDIATE - Ability to obtain data from or place data in a storage de­
vice, or register directly without serial delay, usually in a relatively short time. 

ACCESS, PARALLEL - Obtaining data from or placing data into storage where 
time required is dependent on simultaneous transfer of all elements of a word 
from a given location. 

ACCESS, RAN DOM - ( 1) Obtaining data from or placing data into storage where 
time required is independent of location of information most recently ob­
tained or stored; (2) device in which random access, as defined in defintiion 1, 
can be achieved without time penalty. 

ACCESS, SERIAL - Obtaining data from or placing data into storage where time 
required is dependent on necessity for waiting while nondesired storage loca­
tions are processed. 

ACCUMULATOR - (1) Register· and associated equipment in arithmetic unit of 
computer in which arithmetical and logical operations are performed; (2) unit 
in a digital computer where numbers are accumulated. Often the accumulator 
stores one operand and on receipt of any second operand, it forms and stores 
result. 

ACCURACY - Degree of exactness of an approximation or measurement. Accuracy 
normally denotes absolute quality of computed results; precision refers to the 
amount of detail used in representing those results. 

ADDER - Device which forms, as output, the sum of two or more numbers pre­
sented as inputs. Often no data retention feature is included; the output signal 
remains only as long as the iriput signals are present. 

ADDRESS - ( 1) Identification, represented by a name, label, or number, for regis­
ters or location in storage. Addresses are also a part of an instruction word 
along with commands, tags, and other symbols; (2) part of an instruction 
which specifies an operand. 

ADDRESS, ABSOLUTE - Address which indicates exact storage location where the 
referenced operand is to be found or stored in the actual machine code 
address numbering system. 

ADDRESS, BASE - (1) Number .which appears as an address in a computer instruc­
tion, but which serves as base, index, initial or starting point for subsequent 
addresses to be modified; (2) number used in symbolic coding in conjunction 
with relative address. 

ADDRESS, DIRECT - Address which indicates the location where referenced 
operand is to be found or stored with no reference to index register or B-Box. 

ADDRESS, EFFECTIVE - (1) Modified address; (2) address actually considered to 
be used in particular execution of computer instruction. 

ADDRESS, IMMEDIATE - Instruction address in which address part of instruction 
is operand.· 

ADDRESS, INDEXED - Address that is to be modified or has been modified by 
index register or similar device. 

ADDRESS, INDIRECT - Address in computer instruction which indicates location 
of address of referenced operand. ' 

ADDRESS PART - Part of instruction word that defines address of register or 
location. 

15 



ADDRESS, RELATIVE - Address to which base address must be added to find 
machine address. 

ADDRESS, SYMBOLIC - Label, alphabetic or alphameric, used to specify storage 
location in context of a particular program. Programs are often first written 
using a symbolic address in some convenient code, which are translated into 
absolute addresses by assembly program. 

ADDRESS, VARIABLE - See address, indexed. 

ADP - Automatic Data Processing. 

ALGEBRA, BOOLEAN - Process of reasoning or deductive system of theorems 
using symbl>lic logic, and dealing with classes, propositions, or on-off circuit 
elements. It employs symbols to represent operators such as AND, OR, NOT, 
EXCEPT, IF ... THEN, etc., to permit mathematical calculation. (Named for 
George Boole, English mathematician [1815-1864] ). 

ALGOL - ALGOrithmic Language. See language, algorithmic. 

ALGORITHMIC-· Constructive calculating process usually assumed to lead to solu­
tion of problem in finite number of steps. 

ALLOCATION, STORAGE - Process of reserving blocks of storage to specified 
blocks of information. 

ALPHAMERIC - Contraction of alphanumeric and alphabetic-numeric. Characters 
which inc'lude letters of the alphabet, numerals, and other sucy symbols as 
punctuation or mathematical symbols. 

ALU - Arithmetic and Logical Unit. 

ANALOG - Representation of numerical quantities by means of physical variables: 
translation, rotation, voltage, or resistance. Contrasted with digital. 

ANALYSIS, NUMERICAL - Study of methods of obtaining useful quantitative 
solutions tCll mathematical problems, regardless of whether an analytic solution 
exists, and study of errors and bounds on errors in obtaining such solutions. 

ANALYSIS, SYSTEMS - Examination of an activity, procedure, method, technique, 
or business to determine what must be accomplished and how necessary opera­
tions may best be accomplished. 

ANALYST - Person skilled in definition and development of techniques for solving 
problems; especially those techniques for so.lutions on computer. 

ANALYZER - Computer routine to analyze program written for the same or a dif­
ferent computer. Computer (usually analog) designed and used primarily for 
solving many types of different equations. 

APPLICATION - System or problem to which a computer is applied. Reference is 
often mad1~ to an application as being either computational type, wherein 
arithmetic computations predominate, or data processing type, wherein data 
handling operations predominate. 

ARGUMENT - O) Independent variable: in looking up quantity in a table, number 
or any numbers which identify location of desired value; or in mathematical 
function, variable which when certain value is substituted for it, value of 
function is determined; (2) operand in an operation on one or more variables. 

ARITHMETIC, FLOATING POINT - Calculation which automatically accounts for 
location of radix point. Usually accomplished by handling number as signed 
mantissa times radix raised to an integral exponent. 

ARITHMETIC SECTION - See unit, arithmetic. 

AROM - Electrically Alterable Read Only Memory. 

16 



ASSEMBLE - (1) To integrate subroutines that are supplied, selected, or generated 
into main routine, by means of preset parameters, by adapting, or changing 
relative and symbolic addresses to absolute fo.rm, or by placing them in storage; 
(2) to operate, or perform functions of an assembler. 

ASSEMBLER - Computer program which operates on symbolic input data to pro­
duce machine instructions by carrying out such functions as:, translation of 
symbolic operation codes into computer operating instructions; assigning 
locations in storage for successive instructions; or computation of absolute 
addresses from symbolic addresses. An assembler generally translates input 
symbolic codes into machine instructions item for item, and produces as out­
put the same number of instructions or constants which were defined in the 
input symbolic codes. 

ASYNCHRONOUS - Lack of time coincidence in set of repeated events where the 
term is applied to computer to indicate that execution of one operation is 
dependent on a signal that previous operation is completed. 

ATLAS - Abbreviated Test Language for Avionics Systems. 

AUTOMATION - (1) Implementation of processes by automatic means; (2) theory, 
art, or technique of making a process more automatic; (3) investigation, 
design, development, application of methods of rendering processes automatic, 
self-moving, or self-controlling. 

B 

BASIC - Beginner's All-purpose Symbolic Instruction Codes. A simple, easy to 
learn, machine independent, conversational computer language~ 

BAUD - (1) Unit of signalling speed equal to number of code elements per second; 
(2) unit of signalling speed equal to twice the number of Morse code dots 
continuously sent per second. 

BINARY - Characteristic, property, or condition in which there are but two possible 
alternatives: binary number system using 2 as its base and using only digits 
zero and one. 

BIT - (1) Abbreviation of binary digit; (2) single character in binary number; (3) 
single pulse in group of pulses; (4) unit of information capacity of a storage 
device. Capacity in bits is the logarithm to the base two of the number of 
possible states of the device. , 

BIT, PARITY - Check bit that indicates whether total number of binary "1" digits 
in a character or word (excluding parity bit.) is odd or even. If a "1" parity bit 
indicates an odd number of "1" digits, then a "O" bit indicates an even num­
ber. If total number of "1" bits, including parity bit, is always even, system is 
called an even parity system. In an odd parity system, total number of "1" 
bits, including parity bit, is always odd. • · 

BLOCK - (1) Group of computer words considered as a unit by virtue of their being 
stored in successive storage locations; (2) set of locations or tape positions in 
which a block of words is stored or recorded; (3) circuit assemblage which 
functions as a unit: circuit building block of standard design, and logic block 
in sequential circuit. .. 

BOOTSTRAP - Technique for loading first instructions of a routine into storage; 
then using these instructions to bring in the rest of the routine; usually involves 
either entering of a few instructions manually or use of a special console key. 

BRANCH -Selection of one, two, or more possible paths in flow 9f control based on 
some criterion. Instructions which mechanize this concept are some.times 
called branch instructions, but the terms tra'nsfer of control and jump are 
more widely used. 

BRANCHPOINT - Point in a routine where one of two or more choices is selected 
under control of routine. 

17 



BREAKPOINT - Point in computer program at which conditional interruption, to 
permit visu.al check, printing out, or other analysis. Breakpoints are usually 
used in debugging operations. 

BROM - Bipolar Read Only Memory. 

BUFFER - (1) Internal portion of data processing system serving as intermediary 
storage between two storage or data handling systems with different access 
times or formats; usually to connect an input or output device with main or 
internal high-speed storage; (2) logical OR circuit; (3) an isolating component 
designed to eliminate reaction of a driven circuit on circuits driving it: buffer 
amplifier; (4) diode. 

BUS - (1) Circuit over which data or power is transmitted, often one which acts as a 
common coinnection among a number of locations; (2) communications path 
between two switching points. 

BYTE - ( 1) Generic term to indicate measurable portion of consecutive binary 
digits: an 8-bit or 6-bit byte; (2) group of binary digits usuaUy operated upon 
as a unit. 

c 

CAPACITY, CHANNEL - (1) Maximum number of binarydigitsorelementarydig­
its to other bases which can be handled in a particular channel per unit time; 
(2) maximuim possible information transmission rate through channel at speci­
fied error rate. Channel capacity may be measured in bits per second or bauds. 

CAPACITY, STORAGE - Number of elementary pieces of data that can be con­
tained in storage device. Frequently defined in terms of characters in a particu­
lar code or words of fixed size. 

CARD, PUNCH - Heavy stiff paper of constant size and shape, suitable for punching 
in a pattern that has meaning and that can be handled mechanically. Punched 
holes are sensed electrically by wire brushes, mechanically by metal fingers, 
or photoelectri~ally by photocells. 

CARRY - (1) Signal, or expression, produced as1 result of arithmetic operation on 
one digit place of two or more numbers expressed in positional notation and 
transferred to next higher place for processing there; (2) signal or expression 
as defined above which arises in adding, when the sum o'f two digits in the 
same digit place equals or exceeds base of the number system in use. If a carry­
into-a-digit place will result in a carry-out of the same digit place, and if the 
normal adding circuit is bypassed when generating this new carry, it is called 
a high speed carry, or "standing on nines" carry. If the normal adding circuit 
is used in such a case, the carry is called a cascaded carry. If a carry resulting 
from the addition of carries is not allowed to propagate (when forming the 
partial product in one step of a multiplication process) process is called a 
partial carry. If it is allowed to propagate, the process is called a complete 
carry. If a carry generated in the most significant digit place is sent directly to 
least significant place (when adding two negative numbers using nine comple­
ments) that carry is called an end-around carry; (3) signal or expression in 
direct subtraction, as defined in ( 1) above which arises when the difference 
between the digits is less than zero. Such a carry is frequently called a borrow; 
(4) action of forwarding a carry; (5) command directing a carry to be forwarded. 

CELL - (1) Storage for one unit of information, usually one character or one word; 
(2) location specified by whole or part of address and possessed of the faculty 
of store. Specific terms such as column, field, location, and block are pre­
ferable when appropriate. 

CHAD - Small piece of paper tape or punch card removed when punching a hole to 
represent information. 

CHADLESS - Type of punching of paper tape in which each chad is left fastened by 
about a quarter of the circumference of the hole, at the leading edge. This 

18 



mode of punching is useful where it is undesirable to destroy information 
written or printed on punched tape or it is undesirable to produce chads. 
Chadless punched paper tape must be sensed by mechanical fingers, for the 
presence of chad in the tape would interfere with reliable electrical or photo­
electric reading of the paper tape. 

CHAIN --'- (1) Any series of items linked together; (2) routine consisting of segments 
which are run through computer in tandem, only one being within computer 
at any one time and each using output from previous program as its input. 

CHANNEL - ( 1) Path along which information, particularly a series of digits or 
characters, may flow; (2) one or more parallel tracks treated as a unit; (3) in a 
circulating storage, a channel is one recirculating path containing fixed number 
of words stored serially by word; (4) path for electrical communication; (5) 
band of frequencies used for communication. 

CHARACTER - (1) One symbol of a set of elementary symbols such as those corre­
sponding to typewriter keys. Symbols usually include decimal digits 0 through 
9, letters A through Z, punctuation marks, operation symbols, and any other 
single symbols which computer may read, store, or write; (2) electrical, mag­
netic, or mechanical profile used to represent character in a computer, and its 
various storage and peripheral devices. Character may be represented by a group 
of other elementary marks, such as bits or pulses. 

CHARACTER, BINARY CODED - One element of a notation system representing 
alphameric character such as deciminal digits, alphabetic letters, and punctua­
tion marks by predetermined configuration of consecutive binary digits. 

CHARACTER, ILLEGAL - Character or combination 'of bits which is not accepted 
as a valid representation by the machine design or by a specific routine. Illegal 
characters are commonly detected and used as an indication of machine 
malfunction. 

CHARACTER, REDUNDANT - Character specifically added to a group of charac­
ters to ensure conformity with certain rules which can be used to detect com­
puter malfunction. 

CHART, FLOW - Graphic representation of the major steps of work in process. 
Illustrative symbols may represent documents, machines, or actions taken 
during process. The area of concentration is on where or who does what rather 
than how it is to be done. 

CHART, LOGICAL FLOW - Detailed solution of work order in terms of the logic, 
or built-in operations and characteristics, of a specific machine. Concise sym­
bolic notation is used to represent. information and describe input, output, 
arithmetic, and logical operations involved. Chart indicates types of operations 
by use of a standard set of block symbols. Coding process normally follows the 
logical flow chart. 

CHECK - Process of partial or complete testing of the correctness of machine 
operations, the existence of certain prescribed conditions within the com­
puter, or the correctness of the results produced by a program. A check of any 
of these conditions may be made automatical~y by the equipment or may be 
programmed. 

CHECK, PARITY - Summation check in which binary digits, in character or word, 
are added, modulo 2, and the sum checked against a single, previously com­
puted parity digit: a check which tests whether number of ones in a word is 
odd or even. 

CHECK-SUM - Check in which groups of digits are summed, usually without regard 
for overflow, and that sum checked against a previously computed sum to 
verify that no digits have been changed since the last summation. 

CHECK, VALIDITY - Check based on knq.wn limits or on given information or 
computer results: a calendar month will not be numbered greater than 12; a 
week does not have more than 168 hours. 

19 



Cl RCU IT - ( 1) System of conductors and related electrical elements through which 
electrical current flows; (2) communications link between two or more points. 

CLEAR - To erase the contents of storage device by replacing the contents with 
blanks, or zeros. 

CLOCK, REAL TIME - Clock which indicates passage of actual time, in contrast 
to a fictitiious time set up by the computer program, such as elapsed time in 
the flight of a missile, wherein a 60-second trajectory is computed in 200 
actual milliseconds, or a 0 .. 1 second interval is integrated in 100 actual 
microseconds. 

COBOL - Common Business Oriented Language. 

CODE - ( 1) Svstem of symbols for meaningful communication; (2) system of 
symbols for representing data or instructions in a computer or tabulating 
machine; {3) to translate program for the solution of a problem on a given 
computer into a sequence of machine language or pseudo instructions and 
addresses acceptable to that computer; (4) machine language program. 

CODE, BINARY - (1) Coding system in which encoding of any data is done through 
use of bits, 0 or 1: (2) a code for the ten decimal digits, 0 through 9, in which 
each is represented by its binary, radix 2, equivalent: straight binary. 

CODE, COMPUTER - (1) System of combinations of binary digits used by a given 
computer; (2) repertoire of instructions. 

CODE, ERROR CORRECTING - Error-detecting code in which forbidden pulse 
combination produced by gain or loss of a bit indicates which bit is wrong. 

CODE, ERROR DETECTING - Code in which errors produce forbidden combina­
tions. A single error-detecting code produces a forbidden combination if a 
digit gains or loses a single bit. A double error-detecting code produces a for­
bidden combination if digit gains or loses either one or two bits. 

CODE, INSTRUCTION - List of symbols, names, and definitions of instructions 
which are intelligible to a given computer or computing system. 

CODE, MICRO -- (1) System of coding making use of suboperations not ordinarily 
accessible in programming: coding that makes use of parts of multiplication 
or division operations; (2) list of small program steps. Combinations of these 
steps, performed automatically in a prescribed sequence from a macro­
operation (multiply, divide, and square root). 

CODE, STRAIGHT LINE - Repetition of sequence of instructions, with or without 
address modification, by explicitly writing instructions for each repetition. 
Generally straight line coding will require less execution time and more space 
than equivalent loop coding. If number of repetitions is large, this type of 
coding is tedious unless a generator is used. Feasibility of straight line coding 
is limited by required space and difficulty of coding a variable number of 
repetitions. 

CODE, SYMBOL.IC - Code which expresses programs in source language: by refer­
ring to storage locations and machine operations by symbolic names and 
addresses which are independent of their hardware d.etermined names and 
addresses. 

CODING - Ord1~red list in computer code or pseudo code, of successive computer 
instructions representing successive computer operations for solving a specific 
problem. 

COLLATE - To merge two or more ordered sets of data or cards to produce one or 
more ordered sets that still reflect the original ordering relations. The collation 
process is the merging of two sequences of cards, each ordered on some mutual 
key, into ai single sequence ordered on the same key. 

20 



COLUMN - ( 1) Character or digit position in a positional information format, partic­
ularly one in which characters appear in rows, and rows are placed one above 
another: the rightmost column in a five decimal place table, or in a list of data; 
(2) character or digit position in a physical device, such as punch card or a 
register, corresponding to a position in a written table or list: the rightmost 
place in a register; or the third column in an eighty column punch card. 

COMMAND - ( 1) Electronic pulse, signal, or set of signals to start, stop, or continue 
some operation. It is incorrect to use command as a synonym for instruction; 
(2) portion of an instruction word which specifies operation to be performed. 

COMMENT - Expression which explains or identifies a particular step in a routine, 
but which has no effect on the operation of the computer in performing 
instructions for the routine. 

COMPARE - To examine representation of a quantity to discover its relationship to 
zero, or to examine two quantities usually for the purposes of discovering 
identity or relative magnitude. 

COMPATIBILITY, EQUIPMENT - Characteristic of computers by which one com­
puter may accept and process data prepared by another computer without 
conversion or code modification. 

COMPILE - To produce a machine language routine from a routine written in 
source language by selecting appropriate subroutines from a subroutine 
library, as directed by the instructions or other symbols of the original 
routine, supplying the linkage which combines the subroutines into a work­
able routine and translating the subroutines and linkage into machine language. 
The compiled routine is then ready to be loaded into storage and run: the 
compiler does not usually run the routine it produces. 

COMPILER - Computer program more powerful than an assembler. In addition to 
its translating function which is generally the same process as that used in an 
assembler, it is able to replace items of input with series of instructions (sub­
routines). Thus, where an assembler translates item for item, and produces as 
output the same number of instructions or constants which were put into it, 
a compiler will do more. Program which results from compiling is a translated 
and expanded version of the original. 

COMPLEMENT - (1) Quantity expressed to the base'N, which is derived from a 
given quantity by a particular rule; frequently t1.sed to represent the negative 
of the given quantity; (2) a complement on N, obtained by subtracting each 
digit of the given quantity from N-1, adding unity to the least significant 
digit, and performing all resultant carrys: the twos complement of binary 
11010 is 0011 O; the tens complement of decimal 456 is 544; (3) a comple­
ment of N-1, obtained by subtracting each digit of the given quantity from 
N-1: the ones complement of binary 11010 is 00101; the nines complement 
of decimal 456 is 543. 

COMPUTER - Device capable of accepting information, applying prescribed pro­
cesses to that information, and supplying the results of these processes. It 
usually consists of input and output devices, storage, arithmetic, and logical 
units, and a control unit. 

COMPUTER, ANALOG - Computer which represents variables by physical analogies. 
Any computer which solves problems by translating physical conditions such 
as flow, temperature, pressure, angular position, or voltage into related 
mechanical or electrical quantities and uses mechanical or electrical equiva­
lent circuits as an analog for the physical phenomenon being investigated. 
Computer which generally uses an analog for each variable and produces 
analogs as output. Thus an analog computer measures continuously whereas 
a digital computer counts discretely. 

COMPUTER, DIGITAL - Computer which processes information represented by 
combin!'ltions of discrete or discontinuous data as compared with an analog 
computer for continuous data. A device for performing sequences of arith­
metic and logical operations, not only on data but its own program. A stored 

21 



program digital computer capable of performing sequences of internally 
stored instructions, as opposed to such calculators as card-programmed calcu­
lators, on which the sequence is impressed manually. 

COMPUTER. FIXED PROGRAM - Computer in which the sequence of instructions 
are permanently stored or wired, and performs automatically. Not subject to 
change ~either by the computer or the programmer except by rewiring or 
changing the storage input. 

COMPUTER, GENERAL PURPOSE - Computer designed to solve a large variety 
of problems: a stored program computer which may be adapted to any of a 
very large dass of applications. 

COMPUTER, SOLID STATE - Computer built primarily from solid state electronic 
circuit elements. 

COMPUTER, SPECIAL PURPOSE - Computer designed to solve a specific class or 
narrow range of problems. 

COMPUTER, STORED PROGRAM - Computer capable of performing sequences of 
internally stored instructions, usually capable of modifying those instructions 
as directed by the instructions. 

COMPUTER, WIRED PBOGRAM - Computer in which instructions that specify 
the operations are specified by the placement and interconnection of wires. 
Wires are usually held by a removable control panel, allowing flexibility of 
operation, but the term is also applied to permanently wired machines which 
are then called fixed program computers. 

CONDITIONAL TRANSFER OF CONTROL - Computer instruction which when 
reached in a program will cause the computer either to continue with the next 
instruction in the original sequence or to transfer control to another stated 
instruction, depending on a condition regarding some property of numbers 
which has then been determined. 

CONFIGURATION - Group of machines which are interconnected and are pro­
grammed to operate as a system. 

CONJUNCT! ON - Logical operation which makes use of the AND operator or logi­
cal product. 

CONSOLE - Portion of the computer which may be used to control the machine 
manually, correct errors, determine the status of machine circuits, registers 
and counters, determine contents of storage, and manually revise storage 
contents. 

CONST ANT(S) - Quantities or messages present in the machine an~ available as data 
for the program and which usually are not subject to change. 

CONTENT(S) -- Data contained in any storage medium. Quite prevalently, the 
symbol ( ) is used to indicate the contents of: (M) indicates the contents of 
the stora!}e location whose address is M; or (T2) may indicate the contents of 
the tape on input-output unit two. 

CONTROL - ( 1) Part of a digital computer or processor which determines the 
execution and interpretation of instructions in proper sequence, including 
decoding of each instruction and application of the proper signals to ·the 
arithmetic unit and other registers in accordance with the decoded informa­
tion; (2) one or more of the components in any mechanism re8ponsible for 
interpretmg and carrying out manually-initiated directions. Sometimes it is 
called manual control; (3) in some business applications, a mathematical 
check; (4) in programming, instructions which determine conditional jumps 
are often referred to as control instructions; time sequence of execution of 
instructions is called the flow of control. 

CONTROL, MANUAL - Direction of a computer by means of manually operated 
switches. 

22 



CONTROL, MASTER - Application-oriented routine usually applied to the highest 
level of a subroutine hierarchy. 

CONTROL, NUMERICAL - Descriptive of systems in which digital computers are 
used for the control of operations, particularly of automatic machines wherein 
the operation control is applied at discrete points in the operation or process. 

CONTROL, PROGRAM - Descriptive of system in which a computer is used to 
direct an operation or process and automatically hold or make changes in the 
operation or process on the basis of a prescribed sequence of events. 

CONVERSION - (1) Process of changing information from one form of representa­
tion to another, such as from the language of one type of machine to that of 
another or from tape to print; (2) process of changing from one data pro­
cessing method to another, or from one type of equipment to another: con­
version from punch card equipment to magnetic tape equipment. 

CONVERSION, BINARY TO DECIMAL - Process of. converting a number written 
to base of two to the equivalent number written to base of ten. 

CONVERSION, DECIMAL TO BINARY - Process of converting.a number written 
to base of ten, or decimal, into the equivalent number written to base of two, 
or binary. -

CONVERT - (1) To change numerical information from one number base to 
another; (2) to transfer information from one recorded medium to another. 

CON VE RTE R :- Device which converts representation of information, or which 
permits changing the method for data processing from one form to another: a 
unit which accepts information from punch cards and records the information 
on magnetic tape, possibly including editing facilities. 

COPY - To reproduce information in a new location, replacing whatever was , 
previously stored there, usually leaving information unchanged at the original 
location. 

COPY, HARD - A printed copy of machine output: printed reports, listings, docu­
ments, summaries. 

COUNTER - Device, register, or location in storage for storing numbers or number 
representations which permits these numbers to be increased or decreased by 
the value of another number, or to be changed or reset to zero or to an arbi­
trary value. 

COUNTER, PROGRAM - Register which holds the identification of the instruction 
word to be executed next in time sequence, following present operation. 
Register often a counter which is incremented to the address of the next 
sequential storage location, unless transfer or other special instruction is 
specified by the program. 

CPU - Central Processing Unit. 

CROSS ASSEMBLER - A symbolic language translator that operates on one type of 
computer to produce machine code for another type of computer. 

CROSSTALK - (1) Unwanted signals in a channel which originate from one or 
more other channels in the same communication system; (2) signals electri­
cally coupled from another circuit, usually undesirably, but sometimes useful. 

CYBERNETICS - Technology involved in the comparative study of the control and 
intracommunication of information-handling machines and nervous systems 
of animals and man to understand and improve communication. 

CYCLE - (1) Same as loop (1 ); (2) a nonarithmetic shift in which digits dropped off 
at one end of a word are returned at the other end in circular fashion: cycle 
left and cycle right; (3) to repeat a set of operations indefinitely or until a 

23 



stated condition is met. The set of operations may be subject to variation on 
each repe1tition, as by address changes obtained by programmed computation 
or by use of devices such as an index register; (4) occurrence, phenomena, or 
interval of space or time that recurs regularly and in the same sequence: the 
interval required for completion of one operation in a repetitive sequence of 
operations. 

CYCLE, STORAGE - (1) Periodic sequence of events occurring when information is 
transferred to or from the storage device of a computer; (2) storing, sensing, 
and regeneration form parts of storage sequence. 

D 

DAT A - General term denoting any or all facts, numbers, letters, and symbols, or 
facts that refer to or describe an object, idea, condition, situation, or other 
factors. Connotes basic elements of information which can be processed or 
produced by a computer. Sometimes data is considered to be expressible only 
in numericiil form, but information is not so limited. 

DAT A, RAW -- Data which has not been processed. Such data may or may not be 
in machine-sensible form. 

DATA-REDUCTION - Process of transforming masses of raw data, usually gathered 
by automatic recording equipment, into useful, condensed, or simplified 
i ntel I igence1. 

DATA-REDUCTION, ON-LINE - Processing of information as rapidly as the infor­
mation is received by the computing system or as rapidly as it is generated by 
the source. 

DECADE - Group or assembly of ten units: a counter which counts to ten in one 
column or a resistor box which inserts resistance quantities in multiples of 
powers of 10. 

DECIMAL, BINARY CODED - Decimal notation in which the individual decimal 
digits are represented by a pattern of ones and zeros: in the 8-4-2-1 coded 
decimal notation, the number twelve is represented as 0001 0020 for 1 and 2, 
respectively, whereas in pure or straight binary notation it is represented as 
1100. 

DECISION - Computer operation to determine if a certain relationship exists 
between words in storage or registers, and taking alternative courses of 
action, affected by conditional jumps or equivalent techniques. The process 
consists of making comparisons by use of arithmetic to determine the relation­
ship of two terms (numeric, alphabetic or a combination of both): equal, 
greater than, or less than. 

DECISION, LOGICAL - Choice or ability to choose between alternatives. Basically 
this amounts to an ability to answer yes or no with respect to certain funda­
mental questions involving equality and relative magnitude: in an inventory 
application, it is necessary to determine whether or not there has been an 
issue or a given stock item. 

DECODE - ('I) To apply a code to reverse some previous encoding; (2) to determine 
meaning of individual characters or groups of characters in a message; (3) to 
determine the meaning of an instruction from the set of pulses which describes 
the instruction, command, or operation to be performed. 

DECODER - ( 1) Device which determines the meaning of a set of signals and 
initiates a computer operation based thereon; (2) matrix of switching elements 
which selects one or more output channels according to the combination of 
input signals present. 

DECREMENT-· (1) Quantity by which a variable is decreased; (2) specific part of an 
instruction word in some binary computers - a set of digits. 

24 



DEFINITION - (1) Resolution and sharpness of an image, or the extent to which an 
image is brought into sharp relief; (2) degree with which a communication 
system reproduces sound images or messages. 

DE LAY - ( 1) Time after the close of a reporting period before information pertain­
ing to that period becomes available. Delay may also cover the time to process 
data and to report; (2) retardation of the flow of information in a channel for 
a finite period of time. 

DELIMITER - A character which limits a string of characters, and therefore cannot 
be a member of the string. 

DENSITY, CHARACTER - Number of characters stored per unit of length: on some 
magnetic tape drives, 800 or 1600 bits can be stored serially, I in early, and 
axially per inch. 

DENSITY, PACKING - Number of units of useful information contained within a 
given linear dimension, usually expressed in units per inch: the number of 
binary digit magnetic pulses or number of characters stored on tape or drum 
per linear inch on a single track by a single head. 

DESIGN, LOGICAL - (1) Planning of a data processing system before detailed 
entineering design; (2) synthesizing of a network of logical elements to perc 
form a specified function; (3) result of (1) and (2), frequently called the logic 
of a computer or of a data processing system. 

DEVICE, INPUT - Mechanical unit designed to bring data to be processed into a 
computer: a card reader, a tape reader, or a keyboard. 

DEVICE, OUTPUT - The part of a machine which translates the electrical impulses 
representing data processed by the machine into permanent results such as 
printed forms, punched cards, and magnetic writing on tape. 

DIAGRAM - (1) Schematic representation of a sequence of subroutines designed to 
solve a problem; (2) coarser and less symbolic representation than a flow 
chart, frequently including descriptions in words; (3) schematic or logical 
drawing showing the electrical circuit or logical arrangements within a 
component. 

DIAGRAM, BLOCK - (1) Graphic representation of the hardware in a computer 
system. A block diagram indicates the paths along which information and 
control flows between the various parts of a computer system, not to be 
confused with the term flow chart; (2) coarser and less symbolic representa­
tion than a flow chart. 

DICTIONARY - List of code names used in a routine or system; their intended 
meaning in that routine or system. 

DIGIT - Sign or symbol used to convey a specific quantity of information either by 
itself or with other numbers of its set; 2, 3, 4, and 5 are digits; the base or 
radix must be specified and each digit's value assigned. 

DIGITAL - Pertaining to utilization of discrete integral numbers in a given base to 
represent all the quantities that occur in a problem or calculation. It is 
possible to express in digital form all information stored, transferred, or pro­
cessed by a duat state condition: on-off, open-closed, and true-false. 

DI RECTORY - File containing the layout for each field of the described record. 
A directory describes the layout of a record within a file. 

DISK, MAGNETIC - Storage device on which information is recorded on the 
magnetizable surface of a rotating disk. A magnetic disk storage system is an 
array of such devices, with associated reading and writing ·heads which are 
mounted on movable arms. 

DUMP, STORAGE - Listing of contents of a storage device, or parts of it. 

25 



DUPLEX - Twin, pair, or two-in-one situation: channel providing simultaneous 
transmission in both directions or a second set of equipment to he used in 
event of failure of the primary or either device. 

E 

EDP - Electronic Data Processing. 

ENCODE - ( 1) To apply a code, frequently one consisting of binary numbers, to 
represent individual characters or groups of characters in a message; (2) to 
substitute letters, numbers, or characters for other numbers, letters, or charac­
ters, usually to intentionally hide the meaning of the message except to cer­
tain individuals who know the enciphering scheme. 

ENCODER - Device capable of translating from one method of expression to 
another meithod of expression; translating a message into a series of binary 
digits. 

END OF FILE - Termination or point of completion of a quantity of data. 

ENTRY - (1) Statement in a programming system. In general, each entry is usually 
written on one line of a coding form and punched on one card; some systems 
permit a single entry to overflow several cards; (2) item of a list. 

EQUIPMENT, OFF-LINE - Peripheral equipment or devices not in direct communi­
cation with the central processing unit of a computer. 

EQUIPMENT, 01\1-LINE -- System and peripheral equipment or devices in which the 
operation of such equipment is under control of the central proce:·ssing unit, 
in which information reflecting current activity is introduced into the 'data 
processing system as soon as it occurs, directly in-line with the main flow of 
transaction processing. 

EQUIPMENT, PERIPHEnAL - Auxiliary machines which may be placed under 
central computer control: card readers, card punches, magnetic tape feeds, 
and high-speed printers. Peripheral equipment may be used on-line or off-line 
depending upon computer design and job requirements. 

ERROR - (1) General term referring to any deviation of a computed or a measured 
quantity from the theoretically correct or true value; (2) part of the error due 
to a particular identifiable cause: a truncation error, or a rounding error. In a 
restricted sense, that deviation due to unavoidable random disturbances, or to 
the use of finite approximations to what is defined by an infinite series; (3) 
amount bv which the computed or measured quantity differs from the 
theoretically correct or true value. 

ERROR, ABSOLUTE - Magnitude of the error disregarding the algebraic sign or (if 
a vectorial error) disregarding its direction. 

ERROR, INHERITED - Error in initial values, especially the error inherited from 
previous steps in the step-by-step integration. This error could also be the 
error introduced by the inability to make exact measurements of physical 
quantities. 

ERROR, ROUNDING - Error resulting from rounding off a quantity by deleting the 
less significant digits and applying some rule of correction to the part retained: 
0.2751 can be rounded to 0.275 with a rounding error of .0001. 

ERROR, TRUNCATION - Error resulting from the use of only a finite number of 
terms of an infinite series, or from approximation of operations in the 
infinitesimal calculus by operations in calculus of finite differences. Frequently 
convenient to define truncation error, b.y exclusion, as any error generated in 
computation not due to rounding, initial conditions, or mistakes. A truncation 
error would thus be that deviation of a computed quantity from the theoreti­
cally correct value that would be present even in the hypothetical situation in 
which no mistakes were made, all given data were exact, no inherited error, 
and infinitely many digits retained in all calculations. 

26 



EXECUTE - To interpret a machine instruction and perform the indicated opera­
tion (s) on the operand(s). 

EXIT - A way of momentarily interrupting or leaving a repeated cycle of opera­
tions in a program. 

EXPRESSION - Any symbol or group of symbols representing a variable, or group 
of variables, possibly combined by symbols representing operators to a set of 
definitions and rules. 

F 

FETCH - To obtain data from storage. 

FIELD - Assigned area in a record to be marked with information. 

FIELD, CONTROL - A constant location where information for control purposes 
is placed; e.g., in a set of punch cards, if columns 79 and 80 contain various 
codes which control whether or not certain operations will be performed on 
any particular card, then columns 79 and 80 constitute a control field. 

FILE - Organized information directed toward some purpose; may or may not be 
sequenced according to a key contained in each record. 

FLAG - ( 1) Bit of information attached to a character or word indicating boundary 
of a field; (2) indicator used to tell some later part of a program that some 
condition occurred earlier; (3) indicator used to identify the members of 
several inte~mixed sets. 

FORTRAN - FORmula TRANslator. Programming language designed for problems 
which can be expressed in algebraic notation allowing for exponentiation up 
to three subscripts. The FORTRAN compiler is a routine for a given machine 
which accepts a program written in FORTRAN source language and produces 
a machine language routine object program. FORTRAN 11 added considerably 
to the power of the original language by giving it the ability to define and use 
almost unlimited hierarchies of subroutines, all sharing a common storage 
region if desired. Later improvements have added the use of Boolean expres­
sions, and some capabilities for inserting symbolic machine language sequences 
within a source program. 

G 

GAP - ( 1) Space or time interval used as an automatic sentinel to indicate the end of 
a word, record, or file of data on a tape: a word gap at the end of a word-; a 
record or item gap at the end of a group of words, a file gap at the end of a 
group of records or items; (2) absence of information for a specified length of 
time or space on a _recording medium, contrasted with marks and sentinels 
which are the presence of specific information to achieve a-similar purpose. 
Marks are used primarily internally in variable word length machines. Sentinels 
achieve similar purposes either internally or externally, but sentinels are pro­
grammed, not inherent in the hardware; (3) space between the reading or re­
cording head and the recording medium, such as tape, drum, or disk. 

GAP, RECORD - Interval of space or time associated with a record to indicate or 
signal the end of the record. 

GATE, AND - Signal circuit with two or more input wires in which the output wire 
gives a signal only if all input wires receive coincident signals. 

GATE, OR "'7'" Electrical gate or mechanical device which implements the logical OR 
operator. An output signal occurs whenever there are one or more inputs on a 
multi-channel input. An OR gate performs the function of the logical "in­
clusive OR Operator." 

27_ 



GENERATE - To produce or prepare a specific term in accordance with a specific 
and defined rule or program. 

GENERATOR, PFIOGRAM - Program which permits a computer to write other 
programs automatically. Two types: 1. the character controlled generator, 
which operates like a compiler in that it takes entries from a library tape, but 
unlike a simple compiler in that it examines control characters associated with 
each entry, and alters instructions found in the library according to the direc­
tions contafned in control characters. 2. Pure generator is a program that 
writes anothef program. When associated with an assembler, a pure generator 
is usually a program section called into storage by the assernble·r from a 
library tape, which then writes one or more entries in another program. Most 
assemblers are also compilers and generators: The entire system is usually re­
ferred to as an assembly system. 

GENE RA TOR, RANDOM NUMBER - Machine routine or hardware designed to 
produce a random number or series of random numbers to specified limi­
tations. 

GENERATOR. REPORT - Technique for producing complete data processing re­
ports giving only description of the desired content and format of output re­
ports, and certain information concerning the input file. 

H 

HANDLING, DATA - Sarne as processing, data (2). 

HARDWARE - The physical equipment or devices forming a computer and periph­
eral equipment. 

HEAD - Device which reads, records, or erases information in a storage medium, 
usually a small electromagnet used to read, write or erase information on a 
magnetic drum or tape or the set of perforating or reading fingers and block 
assembly for punching or reading holes in paper tape or cards. 

HOLLERITH - System of encoding alphanumeric information onto cards, synony­
mous with punch cards. 

HOUSEKEEPING - Administrative or overhead operations necessary to maintain 
control of a situation: involves setting up of constants and variables to be 
used in the program. 

HYSTERESIS - ( 1) Lagging in the response of a unit of a system behind an increase 
or a decrease in the strength of a signal; (2) phenornenom demonstrated by 
materials which make their behavior a function of the history of their 
environment. 

IMAGE - Exact duplicate array of information or data stored in (or -~n transit to) a 
different medium. 

IMAGE, CARD - Representation in storage of the holes punched in a card, so that 
the holes are represented by one binary digit and the unpunched spaces are 
represented by the other binary digit. 

INDEX - Syrnboll or a number identifying a particular quantity in an array of simi­
lar quantiti1~s: X5 is the fifth item in an array of X's. 

INDICATORS - Devices registering conditions such as high or equal conditions re­
sulting from a computation. Sequence of operations within a procedure may 
be varied according to the position of an indicator. 

INPUT - ( 1) I nforrnation or data transferred or to be transferred from an external 
storage medium into internal storage of the computer; (2) describing the 
routines which direct input as defined in ( 1) or the devices from which such 
information is available to the computer; (3) device or collective set of de­
vices necessary for input as defined in (1). 

28 



INPUT-OUTPUT - General term for the equipment used to communicate with a 
computer and the data involved in the communication. 

I NOU I RY - Technique whereby the interrogation of computer storage may be 
initiated at a keyboard. 

INSTRUCTION - (1) Set of characters which defines an operation together with 
one or more addresses, or no address, and which, as a unit, causes the com­
puter to perform the operation on the indicated quantities. "Instruction" is 
preferable to the terms ~·command" and "order"; "command" is reserved for 
a specific portion of the instruction word: the part which specifies the opera­
tion which is to be performed. Order is reserved for the ordering of the charac­
ters, implying sequence, or the order of the. interpolation, or the order of the 
differential equation; (2) the operation or command to be executed by a 
computer, together with associated addresses, tags and indices. 

INSTRUCTION, MACRO - (1) Instruction consisting of a sequence of micro in­
structions inserted into the .object routine for performing a specific operation; 
(2) more powerful instructions which combine several operations in one 
instruction. 

INSTRUCTION, MICRO-Small, single, short, add, shift or delete type of command. 

INSTRUCTION, SYMBOLIC - Instruction in assembly language directly translatable 
into a machine code. 

INTELLIGENCE, ARTIFIC.IAL - Study pf computer techniques to supplement 
human capabilities. As man has invented and used tools to increase his 
physical powers, he now is beginning to use artificial intelligence to increase 
his mental powers. In a more restricted sense, the study of techniques for 
more effe~tive use of digit?I computers by improved programming techniques. 

INTERFACE - Common boundary between automatic data processing systems or 
parts of a single system. 

INTER LACE - To assign successive storage locations: on a magnetic drum, usually 
to reduce access time. 

INTERPRETER - (1) Punc'h card machine which will take a punch card with no 
printing on it, read the information in the punched holes, and print a transla­
tion in characters in specified rows and columns; (2) executive routine which 
as computation progresses translates a stored program expressed in machine­
like pseudo code into machine code and performs indicated operations, by 
subroutines, as translated. An interpreter is essentially a closed subroutine 
which operates successively. on an indefinitely long sequence of program 
parameters, the pseudo instructions, and operands. It may usually be entered 
as a closed subroutine and left by a pseudo-code exit instruction. 

INTERRUPT - To temporarily disrupt the normal operation of a routine by a 
special signal from the computer. Normal operation can normally be resumed 
from that point later. 

ITEM - (1) Set of one or more fields containing related information; (2) unit of 
correlated information relating to a single person or object; (3) contents of a 
single message. 

ITERATIVE - Procedure or process which repeatedly executes a series of opera­
tions until some condition· is satisfied. Can be implemented by a loop in 
routine. 

J 

JAM, CARD - A pile-up of cards in a machine. 

29 



K 

KEY - (1) A group of characters which identifies or is part of a record or item; any 
entry in a record or item can be used as a key for collating or sorting; (2) 
marked lever manually operated for copying a character: a typewriter, paper 
tape perforator, card punch, manual keyboard, digitizer or manual word 
generator; (3) lever or switch on a computer console for manuallv altering 
computer ac:tion. 

KEYPUNCH - ( 1) A special device to record information in cards or tape by punch­
ing holes in the cards or tape to represent letters, digits, and special characters; 
(2) to operate a device for punching holes in cards or tape. 

L 

LABEL - Symbols used to identify or describe an item, record, message, or file. 
It may be the same as the address in storage. 

LANGUAGE - System for representing and communicating information or data 
between people, or between people and machines. A system consists of a 
carefully defined set of characters and rules for combining them into larger 
units, such as words or expressions, and rules for word arrangement or usage 
to achieve specific meanings. 

LANGUAGE, ALGORITHMIC - Arithmetic language by which numerical pro­
cedures may be precisely presented to a computer in a standard form. 
Language is intended as a means of directly presenting any numeirical pro­
cedure to <my suitable computer for which a compiler exists, and also to 
communicate numerical procedures among individuals. The languag•:J itself re­
sults from international cooperation to obtain a standardized algorithmic 
language. 

LANGUAGE, COMMON MACHINE - Machine-sensible information representation 
common to a related group of data processing machines. 

LANGUAGE, COMMON BUSINESS ORIENTED - Specific language by which busi­
ness data processing procedures may be precisely described in a standard 
form, intended not only to present any business program to any suitable com­
puter for which a compiler exists, but as a means of communic'3ting such 
procedures among individuals. 

LANGUAGE, INTERNATIONAL ALGEBRAIC - Forerunner of ALGOL. 

LANGUAGE, MACHINE - (1) Language designed for interpretation and use by a 
machine without translation; (2) system for expressing information which is 
intelligible to a specific machine (a computer or class of computers). Such a 
language may include instructions which define and direct machine opera­
tions, and information to be recorded by or acted upon by these machine 
operations; (3) set of instructions expressed in the number system basic to a 
computer, together with symbolic operation codes with absolute addresses, 
relative addresses, or symbolic addresses. 

LANGUAGE, OBJECT - Language which is output of an automatic coding routine. 
Usually object language and machine language are the same, but a series of 
steps in an automatic coding system may involve object language of one step 
serving as a source language for the next step. 

LANGUAGE, PROBLEM ORIENTED - (1) Language designed for convenience of 
program specification in a general problem area rather than for easy con­
version to machine instruction code. (Components of such language may bear 
little resemblance to machine instructions.); (2) machine-independent language 
where one need only state the problem, not the how of solution. 

LANGUAGE, PFmGRAM - Language used by programmers to write computer 
routines. 

LANGUAGE, SOURCE - Original form in which a program is-prepared before 
machine processing. 

30 



LENGTH, RECORD - Number of characters necessary to contain all the informa­
tion in a record. 

LENGTH, WORD - Number of characters in a machine word. In a given computer, 
the number may be constant or variable. 

LI BR ARY - Collection of information available to a computer, usually on magnetic 
tapes. 

LIBRARY, ROUTINE - Collection of standard, proven routines and subroutines by 
which problems may be solved. 

LIBRARY, SUBROUTINE - Standard and proven subroutines kept on file for use 
at any time. 

LINE, ACOUSTIC DELAY - Delay line using a medium providing acoustic delay as 
mercury or quartz delay lines. 

LIST, ASSEMBLY - Printed list, the byproduct of an assembly procedure. It lists 
in logical instruction sequence details of a routine showing the coded and 
symbolic notation next to the actual notations established by the assembly 
procequre. Highly useful in the debugging of a routine. 

LIST, PUSH DOWN - List of items where the last item entered is the first item of 
the list, and the relative position of the other items is "pushed back" by one 
item. 

LIST, PUSH UP - List of items where each item is entered at the end of the list, and 
the other items maintain their same relative position in the list. 

LOAD - (1) To put data into a register or storage; (2) to put a. magnetic tape onto a 
tape drive, or to put cards into a card reader. 

LOAD-AND-GO. - Automatic. coding procedure which compiles the program, 
creating machine language, and proceeds to execute the created program. 
Such procedures are usually part of a monitor. 

LOCATION - Storage position in the main internal storage which stores one com­
puter word and which is usually identified by an address. 

LOGIC - (1) Science dealing with criteria or formal principles of reasoning and 
thought; (2) systematic scheme which defines the interactions of signals in the 
design of an automatic data processing system; (3) principles and application 
of truth tables and interconnection between logical elements required for 
arithmetic computation in an automatic data processing system. 

LOGIC, SYM BOLi C - ( 1) Study of fo.rmal logic and mathematics by special written 
language which avoids the ambiguity and inadequacy of ordinary language; 
(2) mathematical concepts, techniques, and languages as used in ( 1), whatever 
their particular application or context. 

LOOK UP TABLES - See table. 

LOOP - (1) Self-contained series of instructions in which the last instruction can 
modify and repeat itself until a terminal condition is reached. Productive in­
structions in the loop generally manipulate the operands, while bookkeeping 
instructions modify the productive instructions, count the number of repeti­
tions. A loop may contain any number of conditions for termination. The 
equivalent can be achieved by the technique of straight line coding, whereby 
the repetition of productive and bookkeeping operations is accomplished by 
explicitly writing the instructions· for each repetition; (2) communications 
circuit b.etween two private subscribers or between subscriber and local switch­
ing center. 

LOW-ORDER - Pertaining to the weight or significance assigned to the digits of a 
number: in the number 123456, the lower order digit is six. The three low­
order bits of a binary word are another example. 

LPM - Lines Per Minute. 

31 



M 

MAINTENANCE, Fl LE - Periodic file modification to incorporate changes occurring 
during a given period. 

MAINTENANCE, PREVENTIVE - Maintenance of a computer system to keep 
equipment in operating condition and prevent failures during productive runs. 

MAINTENANCE, REMEDIAL - Maintenance performed by contractor following 
equipment failure: performed as required, on an unscheduled basis. 

MALFUNCTION -- Failure in the operation of the hardware of a computer. 

MASK I NG - ( 1) Process of extracting a nonword group or a field of characters from 
a word or string of words; (2) process of setting internal program controls to 
prevent transfers that otherwise would occur upon setting of internal machine 
latches. 

MATRIX - (1) Array of quantities in a prescribed form. In mathematics, usually 
capable of being subject to mathematical operation by an operator or another 

-matrix; (2) array of coupled circuit elements: diodes, wires, magnetic cores, 
and relays, capable of performing a specific function such as conversion from 
one numerical system to another. The elements are usually arranged in rows 
and columns. A matrix is a particular type of encoder or decoder. 

MESSAGE - (1) Group of words, variable in length, transported as a unit; (2) trans-
ported item of information. ' 

MICROC°oMMAND - A word obtained from the control store that exercises ele­
mentary control over the various system elements within a basic machine 
cycle. 

MICROPROGRAM - (1) Program of analytic instructions which the programmer 
constructs from the basic subcommands of a digital computer; (2) sequence of 
pseudo commands translated by hardware into machine subcommands; (3) 
means of building various analytic instructions as needed from the sub­
command structure of a computer; (4) plan for obtaining maximum utilization 
of the abilities of a digital computer by efficient use of the subcommands of 
the machine. 

MISTAKE - Human failing: faulty arithmetic, use of incorrect formula, or incorrect 
instructions: sometimes called gross errors to distinguish from rounding and 
truncation errors. Computers malfunction and humans make mistakes. Com­
puters do not make mistakes and humans do not malfunction, in this sense. 

MIT - Master Instruction Tape. See tape, master instruction. 

MNEMONIC --''Pertaining to the assisting of human memory: a mnemonic term, 
usually an abbreviation, that is easy to remember (mpy for multiply and ace 
for accumulator). 

MODI FY - ( 1) To alter a portion of an instruction to make its interpretation and 
execution other than normal. Modification may or may not permanently 
change the instruction or affect only the current execution. Most frequent 
modification is that of the effective address through use of index registers; 
(2) to alteli" a subroutine according to a defined parameter. 

MODULE - (1) Interchangeable plug-in item containing components; (2) an in­
cremental block of storage or other building block for expanding the com­
puter capacity. 

MONITOR - To supervise and verify the correct operation of a program during its 
execution, usually by a diagnostic routine used from time to timo to answer 
questions about the program. 

MONITOR ROUTINE - See routine, executive. 

32 



MULTIPLEX - The process of transferring data from several storage devices opera­
ting at relatively low transfer rates to one storage device operating at a high 
transfer rate so that the high-speed device is not obliged to wait for the low­
speed devices. 

MULTIPROGRAMMING - Technique for handling numerous routines or programs 
simultaneously by all interweaving process. 

N 

NANOSECOND - One-thousandth of a millionth of a second; 10-9 seconds. 

NOISE - Meaningless extra bits or words which must be ignored or removed from 
the data when the data are used. 

NORMALIZE - (1) To adjust the exponent and fraction of a floating point quantity 
· so that the fraction lies in the prescribed normal standard range; (2) to reduce 

a set of symbols or numbers to a normal or standard form. 

NOT A Tl ON - ( 1) Act, process, or method of representing facts or quantities by a 
system or set of marks, signs, figures, or characters; (2) system of such symbols 
or abbreviations used to express technical facts or quantities; as mathematical 
notations; (3) annotation; note. 

NOTATION, SYMBOLIC - Method of representing a storage location by one or 
more figures. 

NUMBER - ( 1) The, qr a total, aggregate, or amount of units; (2) a figure or word, 
or a group of figures or words, representing graphically an arithmetical sum; a 
numeral, as the number 45; (3) numeral by which a thing is designated in a 
series, as a pulse number; (4) single member of a series designated by consecu­
tive numeral~, as a part number; (5) character, or a group of characters, unique­
ly identifying or describing an article, process, condition, document, or class; 
(6) to count, enumerate; (7) to distinguish by a number. 

NUMBER, BINARY - A number, usually consisting of more than one figure, repre­
senting a sum, in which the individual quantity represented by each figure is 
based on a radix of two. The figures used are 0 and 1. 

NUMBER, DECIMAL - A number, usually of more than one figure, representing a 
sum, in which the quantity represehted by each figure is based on the radix of 
ten. The figures are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. 

NUMBER, HEXADECIMAL - Number, usually of more than one figure, repre­
senting a sum in which the quantity represented by each figure is based on a 
radix of sixteen. 

NUMBER, SYMBOLIC - Numeral, used in writing routines, for r:.,eferring to a specific 
storage location; such numerals are converted to actual storage addresses in the 
final assembling of the program. -

0 

OCTAL - Pertaining to eight; usually a number system of base or radix eight: in 
octal notation, octal 214 is 2 times 64, plus 1 times 8, plus 4 times 1, and 
equals decimal 140. Octal 214 in binary-coded-octal is represented as 010, 
001, 100; octal 214, as a straight binary number is ~ritten 10001100. Note 
that binary coded octal and straight binary differ only in the use of commas; 
in the example shown, the initial zero in the straight binary is dropped. 

OFF-LINE - Descriptive of a system and peripheral equipment or devices in which 
the operation of peripheral equipment is not under the control of the central 
processing unit. . 1 

ON-LINE - Descriptive of a system and of peripheral equipment or devices in which 
the operation of such equipment is under control of the central processing 

33 



unit, and in which information reflecting current activity is introduced into 
the data proicessing system as soon as it occurs. Thus, directly in-line with the 
main flow of transaction processing. 

OPEN-ENDED - Quality by which addition of new terms, subject headings, or 
classifications does not disturb the preexisting system. 

OPERAND - Quantity entering or arising in an instruction. An operand may be an 
argument, a result, a parameter, or an indication of the location of the next 
instruction, as opposed to the operation code or symbol.itself. It may be the 
address portion of an instruction. 

OPERATION, HOUSEKEEPING - General term for the operation performed for a 
machine run before actual processing begins. Examples of housekeeping opera­
tions are establishing controlling marks, setting up auxiliary storage units, 
reading in first record for processing, initializing, setup verification operations, 
and file identification. 

OPERATION, PABALLEL - The performance of several actions, usually of a similar 
nature, simultaneously through provision of individual similar or idEJntical de­
vices for each such action. Particularly flow or processing of information. 
Parallel ope·ration is performed to save time over serial operation. Parallel 
operation usually requires more equipment. 

OPERATION, REAL TIME - Use of computer as an element of a processing system 
in which times of occurrence of data transmission are controlled by other 
portions of the system, or by physical events outside the system, and cannot 
be modified for convenience in computer programming. Such an operation 
eittier proce?eds at the same speed as the events being simulated or at a suffi­
cient speed to analyze or control simultaneous external events. 

OPERATION, SE<lUENTIAL - Performance of actions one after the other in time. 
The actions referred to are of a large scale as opposed to the smaller scale 
operations referred to by the term serial operation. For an example of 
sequential operation consider Ax(BxC). The two multiplications indicated 
follow each other sequentially. However, the processing of the individual 
digits in each multiplication may be either parallel or serial. 

OPERATION, SERIAL - Flow of information through a computer in time sequence 
using only one digit, word, line or channel at a time. 

OPE RA TOR - ( 1) A mathematical symbol which represents a mathematical process 
to be performed on an associated operand; (2) the portion of an instruction 
which tells the machine what to do; (3) a machine operator. 

OPE RA TOR, AND - ( 1) Logical operator which has the property that if P is a state­
ment and Q is a statement, then P AND Q is true if both statements are true, 
false if either is false or both are false. Truth is normally expressed by the 
value 1, falsity by 0. The AND operator is often represented by a centered dot 
(P·Q), by no sign (PQ), by an inverted "u" or logical product symbol (P n Q), 
or by the 1etter "X" or multiplication symbol (PxQ). Note that the letters 
AND are capitalized to differentiate between the logical operator AND the 
conjunction; (2) the logical operation which makes use of the AND operator 
or logical product. 

OPERATOR, EXCLUSIVE OR - A logical operator which has th~ property that if 
P and Q are two statements, then the statement P*Q, where the * is the 
Exclusive OR operator, is true if eHher P or Q, but not both are true, and 
false if P and Q are both false or both true, according to the following table, 
wherein the figure 1 signifies a binary digit or truth. 

_ __!:1 __ _9r*Q 0 0 0 
0 1 1 
1 0 1 
1 1 0 

34 

(even) 
(odd) 
(odd) 
(even) 



The Exclusive OR is the same as the Inclusive OR, except that the case with 
both inputs true yields no output: P*Q is true if P or Q are true, but not 
both. Primarily used in compare operations. 

OPERATOR, INCLUSIVE OR - Logical operator which has the property that P or 
Q is true, if P or Q or both is true; when the term OR is used alone, as in OR­
gate, the inclusive OR is usually implied. 

OPERATOR, OR - Logical operator which has the property such that if P or Qare 
two statements, then the statement P or Q is true or false varies according to 
the following possible combinations: 

p Q P or Q 

False True irue 
True False True 
True True True 
False False False 

ORDER - (1) Defined successive arrangement of elements or events. Losing favor as 
a synonym for instructions, due to ambiguity; (2) to sequence or arrange in a 
series; (3) weight or significance assigned to a digit position in a number. 

ORIGIN - The absolute storage address in relative coding to which addresses in a 
region are referenced. 

OUTPUT - ( 1) Information transferred from internal storage of a computer to 
secondary or. external storage, or to any device outside of the computer; (2) 
routines which direct (1 ); ·(3) device or collective set of devices necessary for 
( 1 ); (4) to transfer from internal storage on to external media. 

OVERFLOW - (l) The condition which arises when the result of ;:m arithmetic 
operation exceeds the capacity of the storage space allotted in a digital com­
puter; (2) digit arising from this condition if a mechanical or programmed 
indicator is included (otherwise digit may be lost. 

OVERLAY - Technique for bringing routines into high-speed storage from some 
· other form of storage .during processing, so that several routines will occupy 

the same storage locations at different times. Overlay is used when the total 
storage requirements for instructions exceed the available main storage. 

OVERPUNCH - To add holes in a card column that already contain one or more 
holes. 

p 

PANEL, CONTROL - (1) Interconnection device, usually removable, which employs 
removable wires to control the operation of computing equipment. Used on 
punch card machines to carry out functions controlled by the user. On com­
puters it is used primarily to control input and output functions; (2) device or 
component of some data processing machines that permits the expression of 
instructions in a semifixed computer program by the insertion of pins, plugs, 
or wires into sockets, or hubs in the device, in a pattern to represent instruc­
tions, thus making electrical interconnections which may be sensed by the 
data processing machine. 

PARALLEL - (1) To handle simultaneously in separate facilities; (2) to operate on 
two or more parts of a word or item simultaneously. 

PARAMETER - (1) Quantity in a subroutine whose value specifies or partly speci­
fies the process to be performed. It may be given different values when the 
subroutine is used in different main routines or in different parts of one main 
routine, but which usually remains unchanged throughout any one such use; 
(2) quantity used in a generator to specify machine configuration, designate 
subroutines to be included, or otherwise to describe the desired routine to be 
generated; (3) constant or a variable in mathematics, which remains constant 

35 



during some· calculation; (4) definable characteristic of an item, device, or 
system. 

PASS - Complete cycle of reading, processing and writing: a machine run. 

PATCH - ( 1) Section of coding inserted into a routine to correct a mistake or alter 
the routine, often not inserted into the actual sequence of the routine being 
corrected, but placed somewhere else, with an exit to the patch and a return 
to the routine provided; (2) to insert corrected coding. 

PERIOD, PERFORMANCE - Period of 30 consecutive calendar days during which 
a newly installed computer is being tested for acceptance by the U.S. Govern­
ment. Such a period does not include equipment time used for data purifica­
tion, file conversion, and similar preparatory operations or ·those hours of 
operation re·scheduled as a result of equipment failure. 

PING-PONG - Programming technique of using two magnetic tape units for multiple 
reel files and switching automatically between the two units until the com­
plete file is processed. 

PLOTTER - Visual display or board in which a dependent variable is graphed by an 
automatically controlled marker as a function of one or more variablus. 

POINTER, BINARY - Radix pointer in a binary number system: the dot that m.arks 
the position between the integral and fractional, or units and halves in a binary 
number. 

POI NT, LOAD - Preset point at which magnetic tape is initially positioned under 
the !ead-write head to start reading or writing. 

POINT, RADIX - Dot delineating the integer digits from the fractional digits of a 
number; spe'Cifically, the dot that delineates the digital position, involving the 
zero exponent of the radix from the digital position involving the minus-one 
exponent of the radix. The radix point is often identified by the name of the 
system (binary point, octal point, or decimal point). In the writing of any 
number in any system, if no dot is included, the radix point is a.ssumed to 
follow the rightmost digit. 

PRE-EDIT - To eclit the input data previous to the computation. 

PRECISION - ( 1) Degree of exactness with which a quantity is stated; (2) degree 
of discrimination or amount of detail: a 3 decimal digit quantity discriminates 
among 1000 possible quantities. A result may have more precision than it has 
accuracy: the true value of pi to 6 significant digits is 3.14159; the value 
3.14162 is precise to 6 figures, given to 6 figures, but is accurate onlv to about 
5. 

PRIMITIVE - Primitive usually pertains to the lowest level of a machine instruction 
or lowest unit of language translation. 

PROBLEM, BENCHMARK - Routine used to determine the speed performance of a 
computer. One method is to use one-tenth of the time required to perform 
nine comple!te additions and one complete multiplication. A complet•:! addition 
or a complete multiplication time includes the time required to procure two 
operands from storage, perform the operation and store the result, and the 
time required to select and execute the required number of instructions. 

PROCESS - General term covering such terms as assemble, compile, generate, inter­
pret, ;:ind compute. 

PROCESS, ITE R.L\TIVE - A process for calculating a desired result by means of a 
repeating cycle of operations, which comes closer and closer tc the desired re­
sult; e;g., the arithmetical square root of N may be approximated by an itera­
tive process using additions, subtractions, and divisions only. 

PROCESSING, AUTOMATIC DATA - Processing performed by a system of elec­
tronic or electrical machines so interc<.« fleeted and interacting as to reduce to 

36 



a minimum the need for human assistance or intervention. Synonymous with 
(ADP) and related to (system, automati_c data processing). 

PROCESSING, BATCH - Technique by which terms to be processed must be coded 
and collected into groups before processing. 

PROCESSING, DATA - (1) Preparation of source media which contain data or 
basic elements of information, and the handling of such data according to 
precise rules or procedures to accomplish such operations as classifying, sort­
ing, calculating, summarizing, and recording; (2) production of records and 
reports. 

PROCESSING, ELECTRONIC DATA - Data processing performed largely by elec­
tronic equipment. 

PROCESSING, INFORMATION - A less restrictive term than data processing, 
encompassing the complete scientific and business operations performed by a 
computer. 

PROCESSING, PARALLEL - The operation of a computer so that programs for 
more than one run are stored simultaneously in its storage, and executed 
concurrently. 

PROCESSING, REAL TIME - Processing of information or data in a sufficiently 
rapid manner so that the results of the processing are available in time to 
influence the process being monitored or controlled. 

PROCESSOR- (1) Generic term which include.s assembly,compiling, and generation; 
(2) shorter term for automatic data processor or arithmetic unit. 

PROGRAM - ( 1) Complete plan for the solution of a problem, more specifically the 
complete sequence of machine instructions and routines necessary to solve a 
problem; (2) to plan the procedures for solving a problem. This involves the 
analysis of the problem., preparation of a flow diagram, preparing details, test­
ing, and developing subroutines, allocation of storage locations, specification 
of input and output formats, and incorporation of a computer run into a 
complete data processing system. 

PROGRAM, CONTROL - Sequence of instructions which prescribes the steps to be 
taken by a computer system or any other device. 

PROGRAM, GENERAL - Program expressed in computer code designed to solve a 
class of problems, or specializing on a specific problem when appropriate 
parametric values are supplied. 

PROGRAM, OBJECT - Program which is the output of an automatic coding sys­
tem. Often the object program is a machine language program ready for execu­
tion~ but it may well be in an intermediate language. Contrasted with (pro­
gram, source). 

PROGRAM, SOURCE - Computer program written in a language designed for ease 
of expression of a class of problems or procedures, by humans: symbolic or 
algebraic. A generator, assembler, translator, or compiler routine is used to 
perform the mechanics of translating the source program into an object pro­
gram in machine language. See program, object, above. 

PROGRAMMING, INTERPRETIVE - Writing of programs in pseudo machine 
language, which is precisely converted by the computer into actual machine 
language instructions before being performed by the computer. 

PROGRAMMING, MICRO - Technique of using a special set of instructions for an 
automatic computer that consists only of basic elemental operations which the 
programmer may combine into higher level instructions, which he may then 
program using the higher level instructions only: if a computer has only basic 
instructions for adding, subtracting, and multiplying, the instruction for 
dividing would be defined by microprogramming. 

37 



PROGRAMMING, SYMBOLIC - Use of arbitrary symbols to represent addresses in 
order to faciilitate programming .. 

PROM - Programmable Read Only Memory. Integrated circuit array that is manu­
factured with a pattern of all logical zeros or ones and has a specific pattern 
written into it by a special hardware programmer. 

PSEUDO-OPERATION - An operation which is not part of the computer's opera­
tion repertoire as realized by hardware; hence an extension of the set of 
machine operations. 

PSEUDO-RANDOM - Property of satisfying one or more of the standard criteria for 
statistical randomness but being produced by a definite calculation process. 

PUNCH, CARD - Machine which punches cards in designated locations to store data 
which can be conveyed to other machines or devices by reading or sensing the 
holes. 

R 

RADIX - Quantity of characters for use in each of the digital positions of a number­
ing system. In the more common numbering systems the characters are some 
or all of the1 Arabic numerals: 

:~;:;~~-~~:_-----1--ft~~act~r 
Octal (0, 1,2,3,4,5,6,7) 
Decimal (0, 1,2,3,4,5,6,7 ,8,9) 

Radix 

2. 
8 
10 

Unless otherwise indicated, the radix of any number is assumed to be 10. For 
positive identification of a radix 10 number, the radix is written in parentheses 
as a subscript to the expressed number: 126(10)· The radix of any nondecimal 
number is expressed in similar fashion: 11 (2) and 5(8)· Synonymous with 
base. 

RANDOM ACCESS - See access, random. 

RATE, Bl T - Rate at which binary digits, or pulses representing them, pass a given 
point on a communications line or channel. 

RATE, CLOCK -· Time rate at which pulses are emitted from the clock. The clock 
rate determines the rate at which logical or arithmetic gating is performed with 
a synchronous computer. 

RATE, ERROR - Total amount of information in error, due to the transmission 
media, diviided by the total amount of information received. 

RATE, SAMPLING - Rate at which measurements of physical qvantitie!; are made: 
if it is desired to calculate the velocity of a missile and its position is measured 
each millisecond, then the sampling rate is 1,000 measurements per second. 

RATIO, SIGNAL-TO-NOISE - Ratio of the amount of signals conveying informa­
tion to the amount of signals not conveying information. 

READ - ( 1) To sense information contained in some source; (2) the sensing of 
information contained in some source. 

READ-IN - To _sense information contained in some source and transmit this 
information to an internal storage. 

READ, NONDESTRUCTIVE - Reading of the information in a register without 
changing that information. 

READ-OUT - To sense information contained in some internal storage and transmit 
this information to a storage external to the computer. 

38 



READ, CARD - (1) Mechanism that senses information punched into cards; (2) in­
put device consisting of a mechanical punch card reader and related electronic 
circuitry which transcribes data from punch cards to working storage or 
magnetic tape. 

READER, CHARACTER - Specialized device which cah convert data represented 
in one of the type fonts or scripts read by human beings directly into machine 
language. Such a reader may operate optically, or if the characters are printed 
in magnetic ink, the device may operate magnetically or optically. 

READER, HIGH-SPEED - Reading device capable of being connected to a computer 
to operate online without seriously holding up the computer. A card reader 
reading more than 250 cards per minute would be called a high-speed reader. 
A reader which reads punched paper tape at a rate greater than 50 characters 
per second could also be called a high-speed reader. 

READER, MAGNETIC TAPE - Device capable of sensing information recorded on 
a magnetic tape in the form of a series of magnetized spots. 

READER, PAPER TAPE - Device capable of sensing information punched on a 
paper tape in the form of a series of holes. 

RECORD, UNll - (1) Separate re~ord that is similar in form and content to other 
records; (2) sometimes a piece of nontape auxiliary equipment (card reader, 
printer or console typewriter). 

REGISTER - Hardware device used to store bits or characters. A register is usually 
constructed of elements such as transistors or tubes and usually contains 
approximately one word of information. Common programming usage de­
mands· that a register have the ability to operate upon information and not 
merely store information; hardware usage does not make the distinction. 

REGISTER, INDEX - A register which contains a quantity which may be used to 
modify addresses. B-register. 

REGISTER, SHI FT - Register in which the characters may be shifted one or more 
positions to the right or left. In a right shift, the rightmost characters are lost. 
In a left shift, the leftmost characters are lost. 

RELIABILITY - (1) A measure of the ability to function without failure; (2) the 
amount of credence placed in a result. 

RERUN~ To repeat all or part of a program on a computer. 

REST ART - To go back to a specific planned point in a routine, usually in the case 
of machine malfunction, for the purpose of rerunning the portion of the 
routine in which the error occurred. The length of time between restart points 
in a given routine should be a function of the mean free-error time of the 
machine itself. 

RESTORE - To return an index register, a variable address, or other computer word 
to its initial or preselected value. 

RETRIEVAL, INFORMATION - Recovering of desired information or data from a 
collection of graphic records. 

RETURN - Mechanism providing for a return in the U$ual sense, in particular a set 
of instructions at the end of a subroutine which permit control to return to 
the proper point in the main routine. 

ROUND - Deletion of the least significant digit(s) with or without modifications to 
reduce bias. 

ROUTINE - Set of coded instructions arranged in proper sequence to direct the com­
puter to perform a desired operation or sequence of operations, or a sub­
division of a program consisting of two or more instructions that are func­
tionally related (a program). See subroutine and program. 

39 



ROUTINE, DIAGNOSTIC - Routine used to locate a malfunction in a computer, or 
to aid in locating mistakes in a computer program. Thus, any routine specifi­
cally designed to aid in debugging or trouble shooting. 

ROUTINE, EXECUTIVE - Routine which controls loading and relocation of 
routines and in some cases makes use of instructions which are unknown to 
the general programmer. Effectively, an executive routine is part of the 
machine itself. 

ROUTINE, FLO/i,TING POINT - Set of subroutines which cause a computer to 
execute floating point arithmetic. These routines may be used to simulate 
floating point operations on a computer with no built-in floating point hard­
ware. 

ROUTINE, HOUSEKEEPING - Initial instructions in a program which are executed 
only one time: clear storage. 

ROUTINE, INTERPRETIVE - Routine that decodes and executes instructions 
written as pseudocodes, contrasted with a compiler which decodes the 
pseudocod1::is into a machine language routine to be executed at a later time. 
The essential characteristic of an interpretive routine is that a particular pseudo 
code operation must be decoded each time it is executed. 

RUN - Performance of one program on a computer, thus the performance of one 
routine, or several routines linked so that they form an automatic operating 
unit, during which manual manipulations by the computer operator are 
minimal. 

s 

SCALE - A range of values frequently dictated by the computer word-length or 
routine at hand. 

SCAN - To examine every reference or every entry in a file routinely as a part of a 
retrieval scheme; occasionally, to collate. 

SCREEN - ( 1 l Surface in an electrostatic cathode ray storage tube where electro­
static charges are stored, and by means of which information is displayed or 
stored temporarily; (2) to make preliminary selection from a set of entities, 
selection criteria being based on a given set of rules or conditions. 

SEARCH - To uxamine a series of items for any that have a desired property or 
properties. 

SEARCH, BINAFtY - Search in which the series of items is divided into two parts, 
one of whiich is rejected, and the process repeated on the unrejected part until 
the item with the desired property is found. This process usually depends 
upon the presence of a known sequence in the series. 

SEGMENT- 11) To divide a routine in parts, each consisting of an integral number 
of subroutines, and each part capable of being completely stored in the inter­
nal storage! and containing the necessary instructions to jump to other seg­
ments; (2) that portion of a routine too long to fit into internal storage 
which is slhort enough to be stored entirely in the internal storage. Such a 
segment contains the coding necessary to call in other segments automati­
cally. Routines which exceed internal storage capacity may be automatically 
divided into segments by a compiler. 

SELECT - (1) To take the alternative A if the report on a condition is of one state, 
and alternative B if the report on the condition is of another state; (2) to 
choose a needed subroutine from a file of subroutines. 

SELECTOR - Device which interrogates a condition and initiates one of several 
alternate operations. 

SENSE - ( 1) Tei examine, particularly rel~tive to a criterion; (2) to determine the 
present arrangement of some element of hardware, especially a manually-set 
switch; (3) to read punched holes or other marks. 

40 



SENSING, MARK - Technique for detecting special pencil marks entered in special 
places on a punch card and automatically translating the marks into punched 
hole. 

SEQUENCE - (1) To put a set of symbols into an arbitrarily defined order: to select 
A if A is greater than or equal to B, or select B if A is less than B; (2) arbitrarily 

. defined order of a set of symbols: an orderly progression of items of informa-
tion or of operations in accordance with some rule. · 

SEQUENCE, CALLING - Instructions used for linking a closed subroutine with a 
main routine: standard linkage and a list of the parameters. 

SEQUENCE, CONTROL - Normal order of selection of instructions for execution. 
In some computers one of the addresses in each instruction specifies the con­
trol sequence. In most computers, the sequence is consecutive except where a 
transfer occurs. 

SEQUENCE, RANDOM NUMBER - Unpredictable array of numbers produced by 
change, and satisfying one or more of the tests for randomness. 

SERIAL - (1) Handling of one after the other in a single facility, such as transfer or 
store in a digit-by-digit time sequence, or to process a sequence of instructjons 
one at a time (sequentially); (2) time sequence transmission of, storage of, or 
logical operations on the parts of a word, with the same facilities for successive 
parts. Related to operation, serial and contrasted with parallel (2). 

SERIAL-PARALLEL - (1) Combination of serial and parallel (serial by character, 
parallel by bits comprising the characters; (2) descriptive of a device which 
converts a serial input into a parallel output. 

·SET - (.1) To place a storage device in a prescribed state; (2) to place a binary cell in 
the one state; (3) a collection of elements having some feature in common or 
which bear a certain relation to one another: all even numbers, geometrical 
figures, terms in a series, a group of irrational numbers, all positive even 
integers less than 100 may be a set or a subset. 

SET, CHARACTER - Agreed set of representations (characters) from which selec­
tions are made to denote and distinguish data. Each character differs from all 
others, and the total number of characters in a given set is fixed: a set may 
include the numerals 0 to 9, the letters A to Z, punctuation marks and a blank 
or space. Clarified by alphabet. 

SHIFT - To move the characters of a unit of information columnwise right or left. 
For a number, this is equivalent to multiplying or dividing by a power of the 
base of notation. See below. · 

SHI FT, ARITHMETIC - To multiply or divide a quantity by a power of the number 
base: if binary 1101, which represents decimal 13, is arithmetically shifted 
twice to the left, the result is 110100, which represents 52, which is also 
obtained by multiplying 13 by 2 twice; on the other hand, if the decimal 13 
were to be shifted to the left twice, the result would be the same as multiply­
ing by 10 twice, or 1300. 

SHIFT, CYCLIC - Shift in which the digits dropped-off at one end of a word are 
returned at the other in a circular fashion: if register holds eight digits, 
23456789, the result of a cyclic shift two columns to the left would be to 
change the contents of the register to 45678923. 

SI MU LATI ON - ( 1) The representation of physical systems and phenomena by com­
puters, models or other equipment: an, imitative type of data processing in 
which an automatic computer is used as a model of some entity; a chemical 
process. Information enters the computer to represent the factors entering the 
real process, the computer produces information that represents the results of 
the process, and the processing done by the computer represents the process 
itself; (2) in computer programming, the technique of setting up a routine for 
one computer to make it operate as nearly as possible like some other com­
puter. 

41 



SIMULATOR - (1) Computer or model representing a systen:i or phe·nomenon 
which mirrors or maps the effects of various changes in the original, enabling 
the original to be studied, analyzed, and understood by means of thu behavior 
of the model; (2) a program or routine corresponding to a mathematical 
model or representing a physical model; (3) a routine executed by one com­
puter but which imitates the operations of another computer. 

SOFTWARE - The totality of programs and routines used to extend the capabilities 
of computers, such as compilers, assemblers, narrators, routines, and sub­
routines. Contrasted with hardware. 

SORT - To arrange items of information according to rules dependent upon a key 
or field contained in the items or records: to digital-sort is to sort first the 
keys on the least significant digit, and to resort on each higher order digit 
until the items are sorted on the most significant digit. 

SORT, MERGE - To produce a single sequence of items, ordered according to some 
rule, from two or more previously unordered sequences, without changing the 
items in size, structure, or total number. More than one pass may be required 
for a complete sort, but items are selected during each pass on the basis of 
the entire key. 

STORAGE - ( 1) The term preferred to memory; (2) pertaining to a device in which 
data can be stored and from which it can be obtained at a later time. The 
means of storing data may be chemical, electrical or mechanical; (~I) a device 
consisting of electronic, electrostatic, electrical, hardware or other elements 
into which data may be entered, and from which data may be obtained as 
desired; (4) the erasable storage in any given computer. See memory. 

STORAGE, BUFFER - (1) Synchronizing element between two different forms of 
storage, usually between internal and external; (2) input device iri which 
information is assembled from external or secondary storage and stored ready 
for transfer to internal storage; (3) output device into which information is 
copied from internal storage and held for transfer to secondary or external 
storage. Computation continues while transfers between buffer storage and 
secondary or internal storage or vice versa take place; (4) device which stores 
information temporarily during data transfers. See buffer. 

STORAGE, DISK - Storage of data on the surface of magnetic disks. See disk, 
magnetic and storage, magnetic disk. 

STORAGE, MAGNETIC CORE - Storage device in which binary data are represented 
by the direction of magnetization in each unit of an array of magnetic material, 
usually in the shape of o-rings, but also in other forms such as wraps on 
bobbins. Synonymous with core storage. 

STORAGE, MAGNETIC DISK - Storage system consisting of magnetically coated 
disks, on the surface of which information is stored in the form of magnetic 
spots arranged to represent binarv. data. These data are arranged in circular 
tracks around the disks and are accessible to reading and writing heads on an 
arm which can be moved mechanically to the desired disk and then to the 
desired track on that disk. Data from a given track are read or written 
sequentially as the disk rotates. See storage, disk. 

STORAGE, PARALLEL - Storage of data in which all bits, characters, or words are 
essentially equally available in space, without time being one of the factors. 
When words are in parallel, the storage is said to be parallel by words; when 
characters within words, or binary digits within words or characters, are dealt 
with simultaneously, not one after the other, the storage is parallel by charac­
ters, or parallel by bit. 

STORAGE, PROGRAM -- Portion of the internal storage reserved for the storage of 
programs, routines, and subroutines. In rnany systems protection devices are 
used to prevent inadvertent alteration of the contents of the program storage. 
Contrasted with storage, temporary. 

42 



STORAGE, TEMPORARY - Portion of the internal storage reserved for the data 
upon which operations are being performed. Synonymous with working space 
and storage; contrasted with storage, program. 

STORE - (1) To transfer an element of information to a device from which the 
unaltered information can be obtained at a later time; (2) to retain data in a 
device from which it can be obtained at a later time. 

SUBPROGRAM - Part of a larger program which can be converted into machine 
language independently. See microprogram. 

SUBROUTINE - (1) Set of instructions necessary to direct the computer to carry 
out a well defined mathematical or logical operation; (2) subunit of a routine. 
A subroutine is often written in relative or symbolic coding even when the 
routine to which it belongs is not; (3) portion of a·routine that causes a com­
puter to carry out a well-defined mathematical or logical operation; (4) routine 
arranged so that control may be transferred to it from a master routine and so 
that, at the conclusion of the subroutine, control reverts to the master routine 
(usually called closed subroutine); (5) single routine may simultaneously be 
both a subroutine with respect to another routine and a master routine with 
respect to a third. Control is usually transferred to a single subroutine from 
more than one place in the master routine; the reason for using the sub­
routine is to avoid having to repeat the same sequence of instructions in 
different places in the master routine. See routine. 

SUBROUTINE, CLOSED - Subroutine not stored in the main path of the routine. 
Such a subroutine is entered by a jump operation; provision is made to return 
control to the main routine at the end of the operation. The instructions re­
lated to the entry and reentry function constitute a linkage. 

SUBROUTINE, STATIC - A subroutine which involves no parameters oth'er than 
the addresses of the operands. 

SUBSET - (1) A set contained within a set; (2) a subscriber apparatus in a communi­
cations network. 

SUBTRAHEND - The number or quantity which is subtracted from another num­
ber, called .the minuend, giving a result usually called the difference, or some­
times called the remainder. 

SUM, LOGICAL - A result, similar to an arithmetic sum, obtained in the process of 
ordinary addition, except that the rules are such that a result of one is obtained 
when either one or both input vadables is a one, and an output of zero is 
obtained when the input variables are both zero. The logical sum is the name 
given the result produced by the inclusive or operator. 

SYMBOL, LOGICAL - Sign used as an operator to denote the particular operation 
to be performed on the associated variables. , 

SYNTAX - The rules governing sentence structure in a language, or statement 
structure in a language such as that of a compiler. 

SYSTEM - Assembly of procedures, processes, methods, routines, or techniques 
united by regulated interaction to form an organized whole. 

SYSTEM, INFORMATION - Network of all communication methods within an 
organization. Information may be derived from many sources other than a 
data processing unit: telephone, personal contact, or by studying an operation. 

SYSTEM, INFORMATION RETRIEVAL - System for locating and selecting, on 
demand, certain documents or other graphic records relevant to a given infor­
mation requirement from a file. Examples of information retrieval systems are 
classification, indexing, and machine searching systems. 

SYSTEM, NUMBER - (1) Systematic method for representing numerical quantities 
in whi<:h any quantity is represented as the sequence of coefficients of the 

43 



successive powers of a particular base with an appropriate poi1nt. Each 
succeeding coefficient from right to left is associated with and usually multi­
plies the ne:i<t higher power of the base .. The first coefficient to the left of the 
point is associated with the zero power of the base. For example in decimal 
notation 371.426 represents (3x102)+(7x1 o1 )+(1 x100)+(4x10-1 )+(2x1Q-2) 
+(6x1Q-3); (2) following are names of the number systems with bases 2 
through 20: 2, binary; 3, ternary; 4, quaternary; 5, quinary; 6, senary; 7, 
septenary; :~.octal, or octonary; 9, novenary; 10, decimal; 11, undecimal; 12, 
duodecimal; 13, terdenary; 14, quaterdenary; 15, quindenary; 16, sexadecimal, 
or hexadecimal; 17, septendecimal; 18, octodenary; 19, novemdenary; 20, 
vicenary. 32, duosexadecimal, or duotricinary; and 60, sexagenary. The 
Binary, Octal, Decimal, and Sexadecimal systems are widely used in com­
puters. 

SYSTEM, OPERATING - ln,tegrated collection of service routines for supervising 
the sequencing of programs by a computer. Operating systems mav perform 
debugging, input-output, accounting, compilation, and storage assignment 
tasks. 

T 

TABLE - Collection of data in a form suitable for ready reference, frequently as 
stored in st?quenced machine locations or written in the form of an array of 
rows and columns for easy entry and in which an intersection of labeled rows 
and columns serves to locate a specific piece of data or information. 

TABLE, FUNCTION-(1) Two or more sets of information so arranged that an entry 
in one set selects one or more entries in the remaining sets; (2) a dictionary; 
(3) a device constructed of hardware, or a subroutine, which can either decode 
multiple inputs into a single output or encode a single input into multiple 
outputs; (4) a tabulation of the values of a function for a set of values of the 
variable. 

TABLE LOOK UP (TLU) - Obtaining a function value corresponding to an argu­
ment, stated or implied, from a table of function values stored in the com­
puter. Also, the operation of obtaining a value from a table. 

TABLE, TRUTH - Representation of a switching function, or truth function, in 
which every possible configuration of argument values 0, 1, or true-false is 
listed, and beside each is given the associated function value 0-1 or true-false. 
The number of configurations is 2N, where N is the number of arguments, 
unless the function is incompletely specified: don't care conditions. An exam­
ple of a truth table for the ANO-function and the OR-function (inclusive) is: 

VARIABLE 
A B 
0 0 
0 1 
1 0 
1 1 

AND 
AB 

0 
0 
o-
1 

OR 
A+B 

0 
1 
1 
1 

TAG - Unit of information whose composition differs from that of other members 
of the set so that it can be used as a marker or label. A tag bit is an instruction 
word that is also called a sentinel. 

TAPE, MAGNETIC - Tape or ribbon of any material impregnated or coated with 
magnetic m other material on which information may be placed i:n the form 
of magnetically polarized spots. 

TAPE, PAPER - Strip of paper capable of storing or recording information. Storage 
may be in the form of punched holes, partially punched holes, carbonization 
or chemical change of impregnated material, or imprinting. Some paper tapes, 
such as punched paper tapes, are capable of being read by the input device of a 
computer or a transmitting device by sensing the pattern of holes which 
represent coded information. 

44 



TAPE, PUNCH - Tape, usually paper, upon which data may be stored in the form of 
punched holes. Hole locations are arranged in columns across the width of the 
tape. There are usually 5 to 8 positions (channels) per column, with data 
represented by a binary coded decimal system. All holes in a column are 
sensed simultaneously in a manner similar to that for punch cards. 

TIME, ACCESS - (1) Time it takes a computer to locate data or an instruction word 
in its storage section and transfer it to its arithmetic unit where the required 
computations are performed; (2) time required to transfer information which 
has been operated on from the arithmetic unit to the location in storage 
where the information is to be stored. 

TIME, EXECUTION - The portion of an instruction cycle during which the actual 
work is performed or operation executed: the time required to decode and 
perform an instruction. See below. 

TIME, INSTRUCTION - Portion of an instruction cycle during which the control 
unit is analyzing the instruction and setting up to perform the. indicated 
operation. Same as time, execution. 

TIME, LATENCY - (1) Time lag between completion of instruction staticizing and 
the initiation of the movement of data from its storage location; (2) rotational 
delay time from a disc file or a drum file. 

TIME-SHARING - Use of a device. for two or more purposes during the same overall 
time, accomplished by interspersing component actions in time. 

TIME, SWITCHING- (1) Time interval between the reference-time, or time at which 
the leading edge of switching or driving pulse occurs, and the last instant at 
which the instantaneous voltage response of a magnetic cell reaches a stated 
fraction of its peak value; (2) time interval between the reference time and the 
first instant at which the instantaneous integrated voltage response reaches a 
stated fraction of its peak value. 

TIME, TURN-AROUND - Time required to reverse the direction of transmission in 
a communication channel. 

TRACE - Interpretive diagnostic technique which provides an analysis of each exe­
cuted instruction and writes it on an output device as each instruction is 
executed. 

TRACK - Path along which information is recorded on a storage device: the track 
on a drym or tape. 

TRANSFER - (1) Conveyance of control from one mode to another by means of 
instructions or signals; (2) conveyance of data from one place to another; (3) 
instruction for transfer; (4) to copy, exchange, read, record, store, transmit, 
transport, or write data; (5) instruction which provides the ability to break 
the normal sequential flow of control. 

TRANSFER OPERATION - See operation, transfer. 

TRAP - ( 1) Special form of a conditional breakpoint activated by the hardware 
itself, by conditions imposed by the operating system, or by a combination of 
the two. Traps are an outgrowth of switch-controlled halts or jumps. Internal 
triggers or traps often exist in a computer. Since these are usually set only by 
unexpected or unpredictable occurrences and since the execution time and 
nu.mber of instructions for testing them can be burdensome, these triggers 
usually cause an automatic transfer of control, or jump to a known location, 
to record in other standard locations the location from which the transfer 
occurred and the cause of the transfer. Some trapping features can also be 
enabled or inhibited under program control: an overflow trap; (2) routine to 
determine indirectly the setting of internal triggers in the computer. 

TROUBLE-SHOOT - To seek the cause of a malfunction or erroneous program 
behavior to remove the malfunction. 

45 



TRUNCATE - To drop digits of a number of terms of a series, lessening precision: 
the number 3.14159265 is truncated to five figures in 3.1415, whereas one 
may round off to 3.1416. 

u 

UNDERFLOW - ( 1) Condition which arises when a machine computation yields a 
result which is smaller than the smallest possible quantity which th13 machine 
is capable Clf storing; (2) a condition in which the exponent plus the excess 
becomes negative in a floating point arithmetic operation. 

UNIT - Portion or subassembly of a computer which constitutes the means of 
accomplishing some inclusive operation or function. 

UNIT, ARITHMETIC - Portion of the hardware of a computer in which arithmetic 
and logical operations are performed. The arithmetic unit generally c:onsists of 
an accumulator, special registers for the storage of operands and results, 
supplemented by shifting and sequencing circuitry for implementing multipli­
cation, division, and other desired operations. 

UNIT, ASSEMBLY - (1) Device which performs the function of associating and 
joining several parts or piecing together a program; (2) a portion of a program 
capable of being assembled into a larger whole program. 

UNIT, CONTROL. - Computer segment which directs the sequence of operations, 
interprets the coded instructions, and initiates the proper commands to the 
computer circuits preparatory to execution. 

UNIT, PAPER TAPE - Mechanism which handles punched paper tape and usually 
consists of a paper tape transport, sensing and recording or perforating heads 
and associated electrical and electronic equipments. 

UNIT, READ PUNCH -- Input-output unit of a computing system which punches 
computed results into cards, reads input information into the system, and 
segregates output cards. The read-punch unit generally consists of a card feed, 
a read station, a punch station, another read station, and output card stackers. 

UNIT, TAPE - Device consisting of a tape transport, controls, a set of reels and a 
length of tape capable of recording and reading information on and from the 
tape, at the request of the computer under the influence.of a program. 

UPDATE - ( 1) To put into a master file the changes required by current information 
or transactions; (2) to modify an instruction so that the address numbers are 
increased by a stated amount each time the instruction is performed. 

v 

VALIDITY - Cairrectness: especially degree of closeness by which iterated results 
approach the correct result. 

VALIDITY CHEC:K - See check, validity. 

VAR I ABLE - ( 1) Quantity which can assume any of the numbers of some set of 
numbers; (2) condition, transaction, or event which changes or may be 
changed as a result of processing additional data through the system. 

VECTOR - Quantity having magnitude and direction, in contrast with a scalar which 
has quantity only. 

VERIFIER - Device on which a record can be compared or tested for identity 
character-by-character with a retranscription or copy as it is being prepared. 

VERIFY - To check a transcribing operation by a ·compare operation. It usually 
applies to transcriptions which can be read mechanically or electrically. 

VOCABULARY -- List of operating codes or instructions available to the programmer 
for writing the program for a given problem for a specific computer .. 

46 



VOCABULARY, SOPHISTICATED - Advanced and elaborate set of instructions. 
Some computers can perform only the more common mathematical calcula­
tions such as addition, multiplication, and subtraction. A sophisticated 
vocabulary computer can go beyond this and perform such operations as 
linearize, extract square root, and select highest number. 

w 

WORD - Ordered set of characters which occupies one storage location and is treated 
by the computer circuits as a unit and transferred as such. Ordinarily a word 
is treated by the control unit as an instruction, and by the arithmetic unit as a 
quantity. Word lengths may be fixed or variable. 

WORD, CONTROL - Word, usually the first or last of a record, or first or last word 
of a block, which carries indicative information for the following words, 
records, or blocks .. 

WORD, DATA - Word which may be primarily regarded as part of th'e information 
manipulated by a program. A data word may be used to modify a program 
instruction or be arithmetically combined with other clata words. 

WORD, INFORMATION - Ordered set of characters bearing at least one meaning 
and handled by a computer as a unit, including separating and spacing, which 
may be contrasted with instruction words. See word, machine. 

WORD-LENGTH, VARIABLE - Having the property that a machine word may have 
a variable number of characters; applicable either to a single entry whose 
information content may be changed from time to time, or to a group of 
functionally similar entries whose corresponding components are of different 
lengths. 

WORD, MACHINE - A unit of information of a standard number of characters 
which a machine regularly handles in each transfer: a machine may regularly 
handle numbers or instruction in units of 36 binary digits; this is then the 
machine word. See word, information. 

WRITE - ( 1) To transfer information, usually from main storage, to an output 
device; (2) to record data in a register, location, or other storage device. 

z 

ZERO - Numeral normally denoting lack of magnitude. Iii many computers there 
are distinct representations for plus and minus zero. 

ZONE - (1) Portion of internal storage allocated for a particular function or purpose; 
(2) three top positions of 12, 11 and 0 on certain punch cards. In these posi­
tions, a second punch can be inserted so that with punches in the remaining 
positions __: 1 to 9 - alphabetic characters may be represented. 

ZONE, NEUTRAL - Area in space or an interval of time in which a state of being 
other than the implementing state exists: a range of values in which no control 
action occurs or a brief period between words when certain switching action 
takes place. Similar to dead band. 

47 





PART II 

APPLICATION OF THE 
MIC~OPROGRAMMED COMPUTERS 

\ 



INTRODUCTION 

There are four classes of applications which are established for Micro­
programmed computers. Each class contains several sub classes which are 
implemented by control unit programming (firmware) variation. 

Any class, augmentation of, or variation of, represents a computer archi­
tecture different from one another each offering specific advantages to 
the intended end application. 

General Purpose Computers 

• General Purpose Computers With Standard Instruction Set. 
• General Purpose Computers With Added Special Instructions. 
• General Purpose Computers With Background for Special Data Pro­

cessing or Input/Output Functions. 
• General Purpose Computer With Addition of Special Microprogram 

Which is Entered and Exits From the Software Program, and Remains 
Active for a Relatively Long Period of Time. 

Special Purpose Computers 

• Special Instruction Set. 
• Direct Application Microprogram. 
• Direct Sequence of Subroutines. 
• Interlaced Microprogram Instructions and/or Subroutines With Partial 

Processing. 
• Subroutine Branching According to System States. 

Emulator Computer 

• Duplication or Approaching Equal Functional Capability With a Pre­
existing Fixed Instruction Stored Program General Purpose Computer. 

• Duplication or Approaching Equal Functional Capability With a Pre­
existing Special Purpose Computer. 

Language Processor 

• Direct Execution of High Level Language Statements. 
• Partial Execution of High Level Language Statements. 

With such a lairge selection of organizations to choose from, use of a 
microprogrammable computer provides a very useful method for arriving 
at the most cost-effective processing or control system, including develop­
ment, hardware, programming and operating costs. 

CLASSES OF APPLICATION 

General PurposEi Computers 

• General Purpose Computer with Standard Instruction Set. 

In this class of computers the microprogram is designed to fetch instruc­
tions from core memory and to execute them by microprogram sub­
routines. Once started the microprogram continues to loop back on 
itself, looking for and executing instructio1;1s until it sees a halt instruc­
tion, or gets into an input mode, and waits for a character. The instruc-

50 



tions share the core memory with data and flags. The coding of the in­
structions in core bears no particular relationship in format to the micro­
commands. 

The general flow of firmware functions for the General Purpose Computer 
is shown in Figure 4. 

All operations, including arithmetic, logical, control, shift, branching, 
jumps; input/output, and register transfer are programmed into micro­
program subroutines. 

An example of General Purpose firmware' is described in detail in Part IV 
"MICRO 810 Firmware Manual". 

• General Purpose Computer with added special instructions. 

Firmware for a general purpose computer will contain several unused 
operation codes which can be used for additional instructions. The simplest 

ACKNOWLEDGE 
AN 

INTERRUPT 
ADDRESS 

SPARE 
ROUTINE 
ADDRESS 

y 

SUB­
ROUTINE 

A 

COLD START 

INSTRUCTION 
FETCH 

FETCH, PREPARE 
OPERAND 
Ali>DRESS 

JUMP TO 
INSTRUCTION 

ROUTINE 

SUB­
ROUTINE 

B 

N 

Figure 4. Firmware Function Flow 

51 

RETURN TO 
INSTRUCTION 
FETCH 

SUB­
ROUTINE 

N 



way to add instructions is to. make use of a spare operation code which 
can easily be converted to a jump instruction to enter a new firmware 
routine. The new instruction can be either a memory reference or non 
memory reference instruction. Multiple instructions can be added by using 
sub-operation codes. Typical instructions which may be added are as 
follows: 

Floating Point Arithmetic. 
BCD Arithmetic. 
Data Block Manipulation Routines. 
Error Code Generation and Checking. 
Push Down Stacks and Related Functions. 
Special Input/Output Routines for Greater Speed, Increased Func­
tional Complexity, or Simplified Interfaces. 
Curve Fitting Routines and Interpolation. 
Square, Squall"e Root, and Other Related Functions. 
Table Search. 
Character Te!;t and Manipulation. 
Communications Handshaking. 
Filtering and Spectrum Analysis Operations. 
Pattern Manipulation and Recognition Functions. 

The capacity to add instructions of these types tremendously increases 
throughput capability and processing power of any General Purpose 
computer. 

The procedure for adding instructions is to define the instruction algorithm, 
flow chart, and microcode, then to do a timing analysis of the routine to· 
see if it is equal to or less than the maximum permissible interrupt time. 
If not, the rout.lne must be subdivided to do only a portion of the opera­
tion each time it is entered, or to allow testing of interrupts at scheduled 
times during the! routine. 

• General Purpose Computer with Background Microprogram. 

Microprograms can be added to the general purpose computer which run 
continuously, or on command, and perform some function indep£mdent of 
the software, or indirectly related to the software. These programs are 
periodically entered as interrupt routines although they don't divert the 
software program like a normal interrupt does. One example of this is the 
concurrent input/output routine of the MICRO 810. This firmware trans­
fers a block of data between interface devices and core memory. The con­
current input/output operation is set up and initiated by software, but 
proceeds independent of the software until the complete block of data has 
been transferred. Another example is the communications multiplexing 
function of the! MICRO 820 Series computers. This firmware handles up 
to 32 low sp·eed asynchronous commu'nications lines with character 
assembly and disassembly performed by firmware. A character queue, and 
status flags are maintained by the multiplexing firmware to provide a link 
to the software program. The multiplexer firmware is controlled by the 
software by means of programmable rates and configurations, enable and 
disable func-tions, buffer assignments, and setting or resetting of control 
flags. Once set up, however, the multiplexer firmware proceeds independ­
ently of any specific instructions from the software program. Sampling 
rate are timed by hardware rate generators. 

52 



Other typical background microprograms which fit into this category are 
as follows: 

Analog Data Channel Scanning and Input, or Analog Time Series 
Sampling. 
Matrix Manipulations. 
Mapping Functions. 
Coordinate Conversions. 
Output of Memory Map to Large-Scale Lamp Display. 
Statistical Functions, Such as Determining Average, Standard Devia­
tion, and Trends of Large 8 locks of Data. 
Continuous Data String Manipulations and Code Conversions. 

• General Purpose Computer with Special Microprogram. 

Occasionally there is a requirement for high processing rate (requiring 
dedicated uninterrupted microprogramming) combined with software flex­
ibility. This combination may be achieved by placing a general purpose 
instruction set, and a special microprogram instruction set in the same 
computer. The general purpose or software instruction set is used for 
relatively slow functions, such as system initialization, monitoring console 
parameters, updating displays, determination of system states, implement­
ing of relatively slow but complex system control functions, and message 
preparation. 

The microprogram routine is used for high-speed and/or complex data 
input/output, computation, and control functions. The general procedure 
for this type computer system is to perform all software functions neces­
sary to set up the microprogram for some segment of its entire job, and 
then turn complete program control over to the special microprogram until 
the segment is complete. At this time the special microprogram returns 
control to the software program. A typical application for this approach 
is machine tool control. The machine control function involves position 
sampling, polynomial curve fitting, system control computations, control 
outputs, timing, status monitoring, and other functions depending on the 
machine function complexity. Use of microprogramming provides for 
large increases in processing rate which are necessary to maintain precise 
control, with complex curves, at specified machine rates. 

The software sets up the curves and process rates for a machine processing 
segment. These curves and rates are interpolated by the microprogram. 

Other examples besides machine tool ~ontrol are as follows: 

Sampling a large block of high speed data which occurs in a burst. 
Spectrum analysis or filtering with frequency parameters set up by 
software program •. 
Contour plotter controller. 

Special Purpose Computers 

• Special Instruction Set 

For many applications a standard software instruction set, such as the 
MICRO 820 may be more sophisticated than needed. Such features as 
multiple addressing modes, variable word length, concurrent 1/0, etc., 

53 



may not be needed. In this case it is possible and desirable to create. a 
special instruction set which will increase throughput rates, make better 
use of core memory, and provide an instruction set tailored to a specific 
need. The general organization for this firmware is the same as for the 
MICRO 820 firmware. However, functions may be deleted or modified, 
such as testing for interrupts, operand addressing, etc. 

Typical applications for a special purpose software instrL1ction set are as 
follows: 

Compiler or Interpreter. 
Special Communications Processor. 
Automatic Tester. 
Sequence Controller. 
Business Processor. 
Batch Terminal. 
Inventory System. 
Data collection/reduction system. 

• Direct Applic:ation Microprogram. 

In this case, the application program is completely written at the firmware 
level. This type of program is suitable for dedicated applications, where 
the processing is relatively simple, but very high processing rates are re­
quired, a permanent program is desired, or simplified interface hardware 
is used, which requires microprogramming for the interface control and 
data transfer sequences. 

Direct application microprograms may occur in one of many different 
general structures. Three of these which will be described are as follows: 

Direct SequE~nce of Instructions and/or Subroutir1fis. 
Interlaced Subroutines with Processing Status Flags and Partial Pro­
cessing During Each Entry to a Routine. 
Branching to Subroutines Dependent on System States. 

Each ot these will be discussed briefly in the following paragraphs. 

In many applications a combination of any two or all three of these 
methods may be used. 

Direct Sequence of Instructions and/or Subroutines. 

This approach is the simplest, and potentially the fastest, if it fits the 
application. The flow diagram for this approach is shown in Figure 5. 

The sequence of instruction execution is always the same. The loop may 
be free running for very simple applications, or it may be initialized by a 
real time clock where time precision is required. 

A typical example of this organization is a dedicated communication line 
processor where the computer samples and updates a large number of full 
duplex, serial, asynchronous data lines. The firmware does sampling, char­
acter assembry and disassembly, and loads a buffer when a character is 
assembl~d. The data is then transferred to another device. A program such 
as this must be able to handle maximum line load conditions without loss 
of data. Some of the functions, such as loading the buffer could be spread 

,out over a full character time to smooth out the work load, but then the 

54 



COLD START 

A 

B 

c 

N 

Figure 5. Subroutines or Instructions 

program would become more complex, and would become category 2. 
Statistical averaging shows that the possibility of all lines being active, and 
in both bit and character sync, is extremely remote. A system like this 
could handle a line rate times line quantity product which has a theoretical 
peak instantaneous load of at least 130% of the processing time available 
and not lose nearly as much data due to processing time limitations as due 
to random line errors, because the probability of an instantaneous load 
approaching even 100% is very remote. 

Other examples of the direct sequence approach are as follows: 

Low Speed Sequence Controller. 
Dedicated Synchronous Data Line Concentrator. 
Dedicated Device Controller. 
High-Speed Status Monitor. 
On-Line Performance Monitor. 
Auxiliary High-Speed Processor. 

Interlaced Microprogram Subroutines with Processing Status Flags and 
Partial Processing during each entry to a Routine. 

Many direct application microprograms involve a number of slow-speed 
peripheral devices which could be serviced by the microprogram on a part­
time basis, or handle data formatted to cause load peaking. Each time a 

55 



device, or data value is looked at by the microprogram some differe.nt 
phase of the process may occur, or many times no processing is required 
at all. The phase1 may depend on the previous phase, or on the time inter­
val, or a status flag. The microprogram for this class of <>rganization has 
an execution, or main loop routine which goes from one routine to the 
next, in sequenc:e and tests status flags to see if the subroutine is to be 
entered and what processing is required. The general flow is in Figure 6 
and the expansion of one functional step is in Figure 7. 

In Figure 6 each circle represents a subroutine status, retrieval, test, 
entry, update_ and storage function. The boxes represent the routines 
which are entered from the main loop. 

MAIN 
LOOP 

Figure 6. General Flow for Interlaced Subroutines 

As can be seen from Figure 7. processing time must be expended to fetch, 
test, and store flags, pointer, and data, and this reduces the overall pro­
cessing capacity. However, this approach allows time spreading of the 
work load which in most cases makes up for the loss in average processing 
capacity by a large increase in peak load capacity. The two improvements 
to interlacing are increased peak load capacity and increased overall 
throughput capacity. 

For example, to process a string of serial characters, load peaking comes 
when a character has been assembled, and when a block has been assem­
bled. In each case there is a time gap until the next character is assembled. 
Therefore, the work load can be spread out over a number of bit sample 
times. It can be partitioned according to line number to simplify sub­
routine organization. When a message block has been assembled, there is 
even more time until the next block is assembled, so that the! time for 
character checking, buffer moving, etc., can sometimes be spread out 
over an entire message block. Another requirement might be a code con­
version on an assembled character. This could be broken down into sub­
routines with only a portion being executed at each time interval .. 

56 



UPDATE SYSTEM 
FLAG POINTERS 

FETCH SUBROUTINE 
FLAGS POINTERS, 
AND DATA 

TEST.PROGRAM STATUS FLAGS 

RESTORE SUBROUTINE 
FLAGS AND POINTERS 

ENTER SUBROUTINE 
AND PERFORM 
PARTIAL PROCESSl°NG 

UPDATE FLAGS 
AND POINTERS 

Figure 7. Expansion of One Functional Element of Interlaced 
Routine Flow Chart 

A typical situation which must be handled by interlacing to achieve high 
throughput is as follows: 

In Figure 8 is a block diagram of a microprogrammed peripheral controller. 

CORE MEMORY 

COMPUTER ROM 

A B c 

Figure 8. Peripheral Controller Block Diagram 

57 



The three devicE!S must run concurrently to achieve maximum throughput. 
Each of the devices has operations which can be broken up into sub­
operations as shown in Figure 9. 

SUBOPERATION 

_ A __ r1111 

s __ _J 11 

c 

I 11 __ 

1111_1_ 
I I I I I I IL_ 

Figure 9. Simplified Processing Profiles 

Device B could start as soon as device A has completed some of the sub­
operations. Therefore the sub-operations are interlaced. If the duvices are 
asynchronous, and the correspondence between sub-operations is not on a 
one-to-one basis, the subroutine status tests may at times Indicate no pro­
cessing for one cycle of the microprogram. 

Typical applications for interlaced subroutines are as follows: 

Batch Processing Terminals. 
On-Line Inventory and Audit Systems. 
Process Controllers. 
General Purpose Communications Terminals. 
Monitoring Systems. 

Subroutine Branching According to System States. 

In some progrcims branching into subroutines may be a function of the 
state of a peripheral device or time, or the settings on a control panel. In 
many of these cases it is not necessary to fetch the status, data or flags of. 
each subroutimi in sequence to see if it is to be processed. 

For example in a particular machine control application, the processing 
functions depend on machine temperature, RPM, etc. 

For many of these parameters, a truth table may be prepared, which indi­
cates the next program state as a function of the previous and present 
system states. Then the executive routine tests the states, and determines 
which subroutines to execute next. Typical examples where this method 
of microprogramming applies are as follows: 

Power Plant Control. 
Petroleum System Control. 
Chemical Processing Plant. 
Interactive Systems. 
Numerical Machine Tool Control. 
Medical and Laboratory I nstrutnentation Control. 

58 



Emulator Computer 

In the truest sense all applications of the microprogrammed computer can 
be considered emulation. However, as defined here, the emulator computer 
is the microprogrammed computer with its firmware allowing functional 
duplication of another computer. Direct emulation of a preexisting generat 
purpose or special purpose computer is practical only if an advantage re­
sults. Usually a cost advantage is realized if the preexisting computer is 
several yers old. In many cases a speed advantage will result. 

Many parameters need be considered to determine feasibility and efficiency 
of a microprogrammed computer emulating any specific general purpose 
or special purpose computer. Essentially these parameters are: 

Complexity and Number of Logical Elements. 
Word Size and Number of Hardware Registers. 
Maximum Main Memory (Core) Size and Word Length. 
Execution Time Required Per Operation. 
Input/Output Requirements. 

Detailed knowledge of both the preexisting computer and the micro­
programmed computer is needed to properly evaluate the feasibility and 
fit of emulation. 

Language Processors 

The instruction set configuration of a special purpose computer which is 
to be programmed at the assembler language level is usually a "hostile" 
environment to the implementation of compiler level languages. The 
microprogrammed processor permits the configuration of a minicomputer 
architecture which is efficient in a compiler language environment. In 
essence, the utilization of an assembler may be minimized and the com­
piler statements are in effect interpreted more directly. 

For purpose of illustration the· implementation of a BASIC compiler in 
the MICRO 820 computer will be discussed. The MICRO 820 has a general 
purpose instruction repertoire with conventional assembler and utility 
software. A single-user BASIC has been developed for the MICRO 820 
computer. This BASIC compiler is written in 'the MICRO 820 assembler 
language. The early version of the BASIC was installed in the MICRO 820, 
occupying approximately 7,500 bytes of core memory. A subsequent 
version of the MJCRO 820 architecture is being augmented with special 
firmware routines such as floating point and other firmware routines. By 
doubling the micro memory from 768 words to 1,536 words of micro­
commands, ·the storage requirement of the compiler in core memory is 
reduced approximately 66 percent, or from 7 ,500 bytes to 2,500 bytes. 
As a result, greater working storage is available for the user and the com­
pile time for the processor is sharply decreased. 

This improvement in processor efficiency becomes more significant as the 
system is extended to perform time share BASIC. An important capability 
in the implementation of time share BASIC is an operating system which 
permits the computer to look like a single machine to multiple users. 
Microdata's time-sharing operating system (MICROshare) initially resides 
in approximately 4,096 bytes of core memory. Through microprogram­
ming the performance of MICROshare can be sharply increased by con-

59 



verting various features of M ICROshare from software ( 1 user per 8-bit 
instruction) into firmware (200 ns per 16-bit instruction). When a time­
sharing system is under control of a high-performance operating system, 
it provides for the efficient transfer and execution of programs and files in 
mass storage (dlisc memory). System response time is sharply increased; 
core usage is siunificantly minimized. 

The MICRO H;OO is designed to accommodate all the functions of the 
MICRO 800 product line. This includes direct function processors, special 
purpose computers which may or may not require architectural augmenta­
tion and compiler language processors. The MICRO 1600 provides a new 
dimension in the minicomputer field as a compiler language processor. 
Large arrays o·f micromemories can be conveniently implemented. The 
control memory in the MICRO 1600 can be addressed up to 16K X 16. 
It permits the effective implementation of higher level languages such as 
BASIC, COBOL, FORTRAN, SNOBOL, ATLAS or equivalent. 

60 



APPLICATION EXAMPLES 

Automatic Test System 

MICRO 811 computers are used to control all functions contained in auto­
matic facilities for routine testing and detailed trouble-shooting of printed 
circuit boards (Figure 10). 

The MICRO 811, intended primarily for testing boards used in the MICRO 
800 computer, generates stimulus functions and measures corresponding 
responses of any circuit boards which are digital in nature. Memory boards 
which are primarily analog are handled on a special tester. 

Components of the automatic test system are the MICRO 811 computer 
with SK memory~ instruction repertoire and input/output line driver and 
receiver. The card test unit includes stimulus, response and control boards, 
power supply, 480-pin patch board receiver, 10 test characters and inter­
face cable. 

Software includes a Microdata board test control program, board test tape 
generator, board test tape, control board and data board. Other options 
are available for special-purpose uses. 

Figure 10. Automatic Test System 

61 



Floating Point Processor (Special Purpose)_ 

An ideal use of the MICRO 800 computer is as a floating point processor, 
since the machine is an extremely high performance processor with the 
facility for creating specialized instruction sets at the micro stup level. 

The machine can be mechanized by microprogramming, thus achieving 
floating point operations at high processing and throughput rates. 

As a floating point processor, the MICRO 800 operates on variable word 
length floating point data. These word lengths may be specified - and 
changed at any time - to be 8-128-bit fraction plus 8 bits for sign and 
exponent. Floating point operations use four operating accumulator regis­
ters, each 136 bits long, which can be maintained either in core memory or 
in a special high-:speed scratchpad memory. 

Data is transferred between accumulator registers and file registers at a 
high rate of speed by using the microprogram. Maintaining the accumu­
lators in core memory results in low hardware cost, but processing speed 
is somewhat slower than if the slightly more costly high-speed scratchpad 
memory is used. 

The floating point processor can be integrated into a system in a variety of 
configurations, E!ach of which has a slightly different equipment require­
ment, a different mode of operation, requires a different microprogram 
and yields a different throughput rate. · 

These configurations are: a peripheral processor to an existing computer; 
a separate, complete, self-contained floating point computer; a dual pro­
cessor, sharing memory with a standard processor or computer, or a com­
bined floating point processor and general purpose integer processor such 
as the MICRO 8'10. 

Fast Fourier Transform Processor (Special Purpose) 

MICRO 800 computers are being used to perform spectral analyses of 
electrical signals using the computational technique known as fast Fourier 
transform. 

Using specially designed fast Fourier transform read-only memories, the 
MICRO 800and other components of the system sample and digitize input 
signals at uniformly spaced time intervals, performs the spectral analysis 
and processes the results to construct outputs of a specified form. 

The output is displayed on one of three devices - an oscilloscope, slow 
X-Y plotter or fast X-Y plotter. The displays are driven by two 8-bit 
digital-to-analog converters in a number of modes, including small-interval 
stairstep, recurrent and single-cycle. 

Several functions are displayed, including input signal frame, power spec­
trum, log power spectrum, amplitude spectrum and phase spectrum. 

The system features a special resolution of one part in 200 over the signal 
input bandwidth and an amplitude error of less than 100Ai. 

The MICRO 800 computers used in the system are configured with a 4096-
word core memory, real time clock, power fail protect, 1/0 expander with 
32 ir;iputs and 32 outputs, and ADC-DAC unit with power supply. 

62 



Multilane Parking Facility Computer 

Multilane parking facilities associated with large modern buildings are 
relatively complex and are now being automated with various technoJogies. 

The microprogrammed computer provides a significant reduction in the 
amount of interface hardware, and provides for the permanence of fixed 
hardwired control systems. Microprogramming provides this capability in 
all functions: 

Fee Calculation. 
Customer l.D. Card Validation. 
Audit Calculations and Printouts. 
Automobile Counts by Lane. 
Lane and Area Count Totalizations. 
Violation Detections. 
Fee Display Update. 
Real Time Clock. 
Input Customer l.D. Data. 

To keep the interfaces simple, all data including treadle pulses, l.D. card 
information~ local data entry and loop detector pulses enter the computer 
in bit serial form. Display data is on a common bus, with select lines to 
control distribution. 

All data assembly, accumulation, evaluation, storage, retrieval, and control 
functions are done within the processor, eliminating the requirement for 
special external hardware to do counting, data assembly, detection logic, 
and arithmetic functions. 

In Figure 1 is a general block diagram showing the types of data going in 
and out of the processor. 

The ticket machines •. treadles, loops, and fee displays are in remote loca~ 
tions from the computer and the printer, .keyboard, etc., are nearby. The 
data from the ticket machines consists of contact closures detecting the 
presence of a ticket, or indicating output, and taking of a ticket. The 
ticket machine· reader inputs serial data which is organized similar to a 
serial teletype message. This information consists of entry and exit time, 
or customer l.D. 

In the lanes are loop detectors and treadles. Loop detectors input contact 
closures when they are crossed. The treadle detectors input a 'series of 
closures to indicate direction of travel. 

For generation of time of day clock, external time of day pulses are used 
instead of the internal computer clock to maintain time synchronism with 
the local power company. 

Fee display is output in digit· serial BCD form accompanied by display 
select codes, to minimize the number of wires to the display units. 

For this example, which represents a medium size parking facility, the local 
keyboard, printer, and punch is a teletype. 

All of the items shown are mounted in the basic computer cabinet. 

A system of this type will handle 10-20 lanes with typical numbers of 
devices such as 25 treadles, 50 loops, and 10 ticket machines. 

63 



In a program like this the core.memory is used to store data tables, flags, 
input and output maps, partially processed data, messages, clock, fee 
totals, lane totals, and area totals. No program is stored in core! because 
the entire program is in firmware. 

Data Communications Application, Special Purpose Concentrator 

.. 
The MICRO 800 computer with a dedicated microprogram used as a con­
centrator connects a large number of local data terminals to a small group 
of dedicated trunk line modems on a time share basis. All data messages 
handled have fixed formats. 

The data concentrator is designed to function as a complete data and con­
trol interface, pEffforming the following functions: 

Data Source Scanning and Queueing. 
Modem Poll Monitor and Response. 

REAL 
TIME 
CLOCK 
OPTION 

4CHANNEL 
FULL DUPLEX 
TRUNK MODEM 
INTERFACE 

1 K SCRATCH PAD 
MEMORY 

MICRO BOO 
PROCESSOR 

SCHANNEL 
DATA 
TERMINAL 
INTERFACE 

, 
I 
I 

READ J ONLY 
MEMORY 

1...------------+ 

SCHANNEL 
DATA 
TERMINAL 
INTERFACE 

TO TRUNK 
MODEMS 

TO DATA TERMINALS 
(UP TO 120 TERMINALS) 

Figure 11. Concentrator Block Diagram 

Data Routing Control. 
Control Character Examining and Processing. 
Header Identification and Stripping. 
Hand Shaking With Trunk Modems. 
Data Transfer. 
Supervisory Data Processing. 
Canned Status Message Generation. 
Addition of Header Information. 
Parity and Block Character Check. 
Character Bit Stripping and Adding. 

64 



All of these operations are performed ,,with a maximum throughput delay 
of 3 characters. · 

The interfaces to the data terminals and trunk modems is in bit serial 
form, thus simplifying the interface hardware. 

The concentrator operates on the 2400 baud synchronous data with the 
trunk modems and simultaneously provides data clocks to the terminals. 

A block diagram of the concentrator is shown in Figure 11. There are two 
interface types, the trunk modem interface and the data terminal interface. 
The .scratchpad memory is used to store pointers, transfer instructions, 
flags, request queues, and as a data buffer. All programming is in the read 
only memory. 

Within the MICRO 800, the arithmetic/logic unit is used for character 
recognition, character shifting, conditional branching, parity and block 
character checking, bit stripping, 1-0 to address conversion, queueing 
preparation and evaluation, code conversion, and other miscellaneous 
character processing functions. 

The MICRO 800 file registers are used for storage of data immediately 
after it is read in from one of the modules or before reading it out; for 
storage of status, and control words, for storage of indices, for storage of 
outputs from the arithmetic unit, and as operational registers for the 
arithmetic, logic and control functions performed by the MICRO 800. 

The firmware instructions are organized in sequences similar to core 
memory programs with the capability to execute nested subroutines, con­
ditional branching, and various arithmetic control and logic functions 
necessary to efficiently perform identical functions on multiple data paths 
with asynchronous timing between paths. 

The real time clock option is used to generate an internal timing interrupt 
at approximately 2500 cps. which controls all bit and character processing 
cycles within the concentrator. The 2500 cps. rate ensures that no data bit 
changes at 2400 cps. will be missed by the system. 

Numerical Control of Vertical Machining Center 

A MICRO 800 computer is being used as the complete numerical control 
system for a vertical machining center utilizing some innovative-machine 
tool programming techniques. 

Consisting of a vertical mill, an automatic tool changer and a digital con­
trol system with its associated panels, the mill is completely hydraulic 
with options for high accuracy laser positioning feedback. 

The MICRO 800 positions the table, saddle and spindle (X, Y and Z axis) 
and controls the direction and speed of rotation of the spindle. The 
microprogramming feature of the MICRO 800 is used to perform the feed­
back control of the position and velocity of the axis. 

Both linear and circular contouring are provided with a positioning 
accuracy of 200 micro-inches and velocity of the tool with respect to the 
workpiece of 0.01 to 200 inches per minute. 

The MICRO 800 also controls an automatic tool changer containing 20 
tools. All motions are initiated and confirmed by the computer to achieve 
the necessary sequences. 

65 



Machining operations are specified through choice of a manual or tape 
preparation panel. 

The manual panel permits moving the mill in a very simple manner and 
also provides for entry of tool dimensio_ns used for offset and length 
compensation. 

The tape preparation panel permits programming the machine operations 
in a sort of "graphical APT" manner. Canned sequences such as drill, 
bore, tap, mill, etc., are specified along with all pertinent data without 
regard to tool dimensions. Workpiece dimensions are specified in absolute, 
relative or trigonometric form. Contours also are specified. 

When the computer has validated the requested operation, it assumes con­
trol of the machining and can initiate, abort, terminate, test, accept or 
reject through the tape panel.. If accepted by the operator, the operation is 
preserved on magnetic tape for later use. · 

After completion of the first workpiece, additional copies are made by 
merely replayin~1 the cassette magnetic tape with the MICRO 800 control 
system in the automatic mode. The cassette can be removed from the con­
troller for future use. 

Vibration Analyzer (Special Purpose) 

The MICRO 800 computer is being used as the heart of a vibration analysis 
system operating with six channels of frequency shifters and 'filters, a 
high-speed multiplexer and analog-to-digital converter, a specially designed 
control panel and 13 other digital-to-analog converters. 

Input to the system is from vibration sensors or other noise sources for 
which power spectral density plots are desired. Frequency range for 
analysis is 4 Hz to 6 KHz. Output data, both linear and decibel, is plotted 
on up to 12 X-Y plotters, and analysis of all six channels is done con­
currently. 

Using customized firmware, the MICRO 800 computer operates the panel, 
controls frequency shifting through a voltage controlled oscillator, per­
forms data averaging and maintains system timing. 

In addition, the computer calculates both linear and logarithmic (decibels) 
power spectra, controls the X-Y recorders and can measure the period of 
an external signal and convert it to frequency (4 Hz to 8 KHz) with an 
accuracy of 0.1% of indicated frequency over the entire range. 

Interface for Campus Central Processor, Satellite Computers 

MICRO 800 computers are in use at a major university as the key ingred­
ients of remote terminals interfacing satellite comouters at various campus 
locations to a large-scale central computer (Figure 12). 

These "smart terminals" - versatile displays ranging from elegant to 
not so elegant - provide straightforward interfacing to other com­
puters which handle specific kinds of communications. 

66 



Use of the MICRO 800 in this application has eliminated the need for a 
large amount of specialized hardware at remote sites, and provides an 
abundance of flexible programming capability through the use of micro-

. programmed firmware. 

With its 220 nanosecond microcommand time and the ability to put input/ 
output and interface functions into firmware provides a far greater 
throughput rate than is possible with core memory. 

A safety factor is provided, too. Storage is fixed in the read-only control 
memory, insuring that no one, no matter how inexperienced can modify 
or destroy programs. Storage can be modified according to need by simply 
exchanging boards. 

The MICRO 800 also gives the university. a "do-it-yourself" computer 
capability. Computer center engineers can economically tailor the per­
formance characteristics of the computer in firmware to suit the specific 
needs of each terminal location. 

Eventually, tl:le university plans to interface all existing campus computers 
to its large-scale central processor. 

The MICRO 800 represents a general solution to the university's vast 
number of applications because of its flexibility. Among these applications 
are interactive display systems and automated systems, which, without the 
MICRO 800, would have required two completely different sets of hard­
ware. 

Figure 12. Campus Interface System 

67 





PART Ill 

MICRO 800 USERS MANUAL 



70 



CHAPTER 1 

SYSTEM DESIGN FEATURES 

MICRO 800 is a byte-oriented microprogrammed computer designed for 
dedicated applications. The functional, mechanical and electrical design of 
the computer provides a set of functional elements which can be tailored 
to specific application requirements. The MICRO 800 is a basic set of 
hardware which, with modification, ·can be expanded to a series of 
machines. 

The design concepts embodied in .the MICRO 800 provide a unique combi­
nation of features unavailable in other computer systems. These include: 

Microprogramming 

The MICRO 800 incorporates a set of commands which exert powerful 
micro-control .over the machine's data manipulation paths and control. 
Command sequences which form microprograms are stored in a read-only 
storage. The MICRO 800 can be programmed to emulate instructions of 
general or special purpose computers or to perform specific applications. 

Speed 

The machine features a 1.1 microsecond core memory cycle time and a 
220 nanosecond command execution time. This speed permits rapid emula­
tion of macro instructions and can be used to minimize interface hardware 
by applying the speed of the machine to interface functions. 

Modl!larity 

The modular electrical and mechanical design has all the flexibility needed 
to apply the MICRO 800 to a wide range o'f applications. The modular 
design of the core memory read-only storage, processor options, and 
input/output elements permits expansion of the system as required. The 
compact 8%-inch-high enclosure has a number of spare circuit board slots 
and ample power for system and peripheral interfaces even when the 
processor is fully expanded. 

Low Cost 

The MICRO 800 uses TTL monolithic integrated circuits, including a large 
number of the medium scale integration type for savings in parts and 
assembly time. The use of a read-only memory for control further reduces 
the number of circuits that might otherwise be required to provide similar 
functional capability. Packaging and powering of the MICRO 800 is 
designed for significant cost savings. 

Software 

Programs for the MICRO 800 indude an assembler written in FORTRAN 
for use on large-scale computers, utility programs for generating the read­
only memory maps, processor and memory diagnostics, and a simulator 
program for checking our microprograms. See Chapter 6, "Programming 
Systems." 

n 



GENERAL CHARACTERISTICS 

The advanced features and operating characteristics include:: 

• Memory addressing to 32K. 
• 1024, 4096 or 8192 byte memory modules. 
• 32,768 bytes of memory in basic 8%~inch-high cabinet. 
• 1.1 microsecond memory speed (full cycle). 
• 8 or 9 bit memory bytes for efficient character handling. 
• Direct memory access (OMA) option. 
• 16 general-purpose eight-bit file registers. 
• Up to 1024 words of read only storage in 256 worcl modules with 

optional expansion capability to 2048 words. 
• 220 nanosecond microcommand execution time. 
• 15 basic commands. 
• Three versions of control consoles. 
• TTL integrated circuitry. 
• Operating temperature range o0 c to 50°c. 
• Dimensions: 8% inches high, 19 inches wide, 23 inches deep. 
• Power: 115/230 Va/;, 50-60 cycle. 
• Four versions of read only memory. 

SYSTEM ORGANIZATION 

The MICRO 800 is a bus organized machine built around a file of 16 pro­
grammable registers and employing microprogrammed control. The basic 
elements of the machine are shown in the block diagram of Figure 13. 

The machine executes 15 basic commands with many variations. All com­
mands are 16 bits in length and are in one of three formats. MICRO 800 
programs, which are known as microprograms, are placed in a read-only 
memory and thereafter become a part of the machine's hardware. The 
program can be changed by replacing the printed circuit boards containing 
the read-only memory. The commands read out of the read-only memory 
control all aspects of the operation of the basic machine and are executed 
in a single machine clock cycle. 

The eight-bit arithmetic/logic unit performs all manipulation of data, in­
cluding: addition, subtraction, logical AND, logical OR, logical exclusive 
OR, and one-bit left and right shifts. The output of the logic network is 
the A-bus which is the input to the files and other machine registers. All 
byte data movement is performed over this bus. The output of the file is 
one of the inputs to the arithmetic/logic unit; the other is the B bus. Inputs 
to this bus are determined by the command, its options, and the 1/0 mode. 
Bus inputs are the true output of the T register, the complement output of 
the T register, the input bus and the eight-bit literal contained in some 
commands. 

The memory data and address busses communicate bt~tween the core 
memory modules, the processor and the OMA. Either the processor or the 
OMA may operate with the memory, with the OMA having top priority. 

72 



DATA, 
STATUS, 
REQUESTS, 
CONTROL 

M REGISTER N REGISTER 
(8) (8) 

DIRECT MEMORY ADDRESS 
MEMORY BUS 
ACCESS 

R BUS 

8 BIT LITERALS FROM ROM 

TO ALL FUNCTIONS 

MEMORY 
ACCESS 
CONTROL 

Figure 13. MICRO 800 Block Diagram 

CONDITIONS 
(ZERO, 
POSITIVE, 
OVERFLOW.) 

The registers, file, arithmetic/logic unit and bussing are organized onto two 
identical "data" printed circuit boards-a four-bit slice of the machine on 
each board. All command decoding, control, clock generation and memory 
timing are located on a single "control" board. Each 256 words of diode 
read .. only storage requires a single board and the core memory a pair of 
boards. The fusable diode, and bipolar ROM's contain up to 2048 instruc­
tions on one board. 

REGISTERS AND FILE 

There are eight registers and 16 file registers, each of which has a specific 
use in the processor, while the file is used for general storage and flags. 

T Register 

The eight-bit T register serves as the operand register for most of the 
operate class commands, and as a buffer register for output and memory 
operations. Both the true and complement output of the T register can be 
gated to the B-bus as an operand. When both the contents of T and its 
complement are selected as operands, the effective operand is all 1-bits; if 
neither is selected the operand is all 0-bits. The T regis~er can be loaded 

73 



from core memory on a read instruction, directly from read-only memory 
using a load T instruction or from a file register by designating T as the 
destination register of an operate class command. All programmed outputs 
including both control and data bytes go out via the T register: 

M Register 

The eight-bit M ·register contains the seven high order bits of the processor 
memory address. This register is gated onto the memory address bus at all 
times except when a OMA operation is in process. The M register can be 
loaded directly from ROM using a load M command, or c:an be loaded by 
designating M as the destination register of an operate class command. The 
M register is cleared on a load N command. 

N Register 

The eight-bit N register contains the eight low order bits of the processor 
memory address. This register is gated ontQ the memory address bus at all 
times except when a OMA memory operation is in process. The N register 
can be loaded directly from ROM using a load N command, or by being 
designated as the destination register of an operate class command. 

L Register 

The 10-bit L register is the machine's program counter and contains the 
read-only storage address of the next command to be executud, unless 
altered by a jump command. The eight low order bits of the L register are 
a counter which is incremented by one at each clock time when the pro­
cessor is running unless there is a command execution delay imposed. L is 
loaded by a load L command, or as a destination register of an operate 
class command. 

U Register 

The eight-bit U register is used to modify the .output of the read-only 
storage. For commands with O's in the four high order bits of 1 'sin bit 15 
and the three low order bits, the contents of the U register is inclusive-
0 Red with the~ eight high order bits of the read-only memory output as it 
is gated into the R register. This allows for dynamic modification and 
changing of operation codes and file register designators. U is loaded by a 
load U command or as a destination register of an operate class command. 

R Register 

The 16-bit register holds the present command being executed. Its output 
is decoded and controls the operation of the processor at each dock time. 

LINK Register 

The one-bit LINK register holds the adder's high order carry from add, 
subtract, and compare commands and the shifted off end bit from the 
shift command. 

1/0 Control R1egister 

This three-bit register generates the control signals for the 1/0 bus. Seven 
separate control signals can be developed by decoding of the rngister out­
puts. It is loaded and cleared by a control command, placing the timing of 

74 



1/0 control signals under command control. There are three output modes 
and four input modes. The high order bit of the register is the input flag. 
When this bit is a 1-bit the input bus is substituted for the T register when 
it is selected and the input bus is the source of data when executing an 
external 1/0 control command. 

File Registers 

The file consists of 16 eight-bit operational registers. All commands except 
the load register with OP code ( 1) specify a file register to be operated on 
or to provide an operand or both. All file registers are functionally identi­
cal except for file register 0 which contains eight flags, and cannot be used 
for general storage. The flags of file register 0 are given in Table 2. 

BIT 

0 
1 
2 
3 
4 
5 
6 
7 

CORE MEMORY 

Table 2. File Register 0 Flags 

FLAG 

Overflow Result Condition 
Negative Result Condition 
Zero Result Condition 
Concurrent 1/0 Request Line 
Internal Interrupt 
1/0 Reply Line 
Serial Teletype 

- External Interrupt Line 

The magnetic core memory is organized into pluggable modules of 4096 or 
8192 bytes. The memory is addressed at the byte level and each byte con­
tains 8 or 9 bits. The ninth bit is devoted to the memory parity bit 
option. Memory may be expanded up to four modules (32,768 bytes) 
within the basic 8%-inch cabinet. 

The memory is operated in read/write and full/half cycle operations. The 
fu II-cycle memory timing is five 220 ns clock cycles ( 1. 1 microseconds); 
the half-cycle timing in the system is three clock cycles (660 ns). For a 
read operation, the accessed data is placed in the T register two clock cycles 
after the start of the memory operation. Full cycle regeneration of the 
data in the memory does not require the use of the T register and T may 
be. modified by the microprogram before completion of the restore part of 
the cycle. 

The four memory modules plug into the memory address and data busses 
which run vertically on the back-plane. A spare board slot wired for access 
options which can include a OMA 1/0 channel and a special OMA 
peripheral controller. 

CONTROL MEMORY 

The read-only memory provides the storage for commands and constants 
of the microprogram. Its output is gated into the R register where it con­
trols the operation of the machine at the next clock time. 

75 



The read-only memory is organized into modules of 256 words contained 
on a single printed circuit board. Each of the four possible read-only 
memory boards receives an address from the L register via the read only 
memory address bus, and the selected board gates its addressed contents 
onto the read-only memory data bus where it is entered into the R register. 

The memory is constructed of diodes with a diode being placed at the 
proper coordinates for 1-bits in the commands. The commands are de­
signed to use 0-bits as the normal case to reduce the number of diodes on 
the board; on the average, about one-third of the total bits contain 1 's. 

The read-only memory is always accessed for the next command while the 
current command is being executed. This lookahead achieves faster com­
mand execution time. When the sequence of command execution is altered 
by a jump or skip, an additional cycle must be taken to perform an access 
before the next command is executed. When the machine is halted, the L 
register contains the address of the first command to be executed when 
operation is started. 

ARITHMETIC FUNCTIONS 

The MICRO 800 uses a 2's complement binary number system. The 
registers and memory cells are 8 bits in length. For convenienc:e of pro­
gramming, entering data, printing out, and preparing punched paper tape, 
the 8 bits are organized into two hexadecimal digits. The hexadecimal 
digits, with their decimal and binary equivalents, are as follows: 

Decimal Hexadecimal 

0 0 
1 1 
2 2 
3 3 
4 4 
5 5 
6 6 

,7 7 
8 8 
9 9 

10 A 
11 B 
12 c 
13 D 
14 E 
15 F 

Binary 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

Throughout this document 
hexadecimal numbers are 
identified with single 
quotes: 

'33' 
'AA' 

For additional functions, the two numbers are added directly with the 
carry out of the most significant bit going to LINK, and overflow setting 
the overflow bit, if designated in the command. 

For subtraction, one number is converted to a 2's complement and added 
to the other. 

76 



For single byte operations, with a 2's complement number system, the 
range of numbers is as follows: 

Binary Hexadecimal Decimal 

01111111 ----------------
00000001 
00000000 

11111111 
11111110 ----------------
10000000 

t 
Sign bit 

'7F' 

'01' 
'00' 

'FF' 
"FE" 

'80' 

+127 

+ 1 
0 

1 
2 

-128 

POSITIVE 

NEGATIVE· 

Examples of Arithmetic Functions: 

Addition: A+ B = C 

Example 
#1 

Example 
#2 

Decimal 

3 
+5 
8 

Decimal 

65 
+82 
147 

t 
Beyond normal 
range of + 127 

Hexadecimal 

'03' 
'05' 

'008' Link = 0 
4 Overflow = 0 · 
Link 

Hexadecimal 

Binary 

00000011 
00000101 

000001000 

t . 
Ltnk 

Binary 

01000001 
01010010 

'41' 
+'52' 
'093' Link= 0 010010011 
t 
Link 

Overflow = 1 t l 
Link Sign be­

comes 
negative 

On example #2 the overflow occurred because the range of positive num­
bers was exceeded. LINK was 0 because the carryout of the add was 0 
even though overflow occurred. 

Example 
#3 

Decimal 

-93 
+(-105) 

-198 

Overflow 
occurs because 
-198 exceeds 
the maximum 
negative 
number. 

Hexadecimal 
2's Complement 

'A3' 
+'97' 
'13A' 

+ 
Link = 1 

·Overflow = 1 

77 

Binary 
(2's C.omplement) 

10100011 
+10010111 
100111010 

Lint t 
Effective 8 bit 
result is a 
positive number. 



Example 
#4 

Example 
#5 

Decimal 

45 
.:H-62) 

-17 

No o!erflow, 
with in number 
range. 

Decimal 

77 
+(-27) 

+50 

No overflow 
within number 
range. 

Link= 1 
No overflow 

Binary Hexadecimal, 
2's Complement (2''s Complement) 

'2D' 
+'C2' 
'OEF' Link= 0 
t. Overflow = 0 
Link 

00101101 
1 ioooo10 

011101111 

f Link 

Binary Hexadecimal 
2's Complement (2's Complement) 

'4D' 
+'E5' 

+'132' 
t 
Link= 1 

01001101 
+11 ·100101 
100110010 

t 
Link= 1 

In general, arithmetic overflow occurs whenever the number range (+127 
to -128) of the MICRO 800 is exceeded on an arithmetic operation. As 
can be seen in the examples, the link bit may be set even though an over­
flow did not occur. This is the result of using a 2's complement number 
system. 

To mechanize overflow detection in the MICRO 800 use is made of the 
fact that when there is an overflow, the carry into the most significant bit 
does not equal the carry out of the most significant bit. This can be shown 
as follows: 

Overflow Examples: 

Decimal 

127 
+ 1 

128 

·+ Overflow 
because the 
positive range 
was exceieded. 

Hexadecimal 

'7F' 
'01' 

'080' 

78 

Binary 

01111111 
00000001 

010000000 

t 
The carry into bit 7 = 1 

The carry out of bit 7=0 

Therefore overflow 
occurred. 

Link= 0 



Decimal 

126 
+ 1 

127 

t 
No overflow 
because positive 
range not 
exceeded. 

Decimal 

-93 
+(-105) 

-198 

Overflow 

Decimal 

77 
-27 
+50 

No overflow 

Decimal 

93 
+105 

198 . 

Overflow 

Hexadecimal 

'7E' 
'01' 

'07F' 

Hexadecimal 

'A3' 
+'97' 
'13A' 

t 
Link 

Hexadecimal 

'4D' 
+'E5' 

+'132' 
t 
Link 

Hexadecimal 

'5D' 
+ 69 
OC6 

Binary 

01111110 
00000001 

001111111 

rt carry in 
0 carry out 

Carry into bit 7 = carry out 
of bit 7. 
Therefore no overflow. 

Binary 

10100011 
+10010111 
100111010 

ttarry into bit 7 = 0 
Carry out of bit 7 = 1 
Therefore overflow 

occurred. 

Binary 

01001101 
11100101 

100110010 

t6arry into bit 7 = 1 
tarry out of bit 7 = 1 
Therefore no overflow. 

Binary 

01010010 
01101001 

011000110 

'' 01 

Carry in does not = carry 
out. Therefore overflow 
occurred. 

For 2's comRlement, the number is first converted to 1 's complement, 
then 1 is added. 

Example-.. 2's complement of '35' 

r- '35' hex = 00110101 binary 
2's comp. 11001010 ones complement 

L-'CB' hex= 11001011 ones complement +1 

79 



STATUS AND CONDITION FLAGS 

Internal Status 

Eight internal status bits are provided to designate a particular internal 
interrupt condition. When any of the internal status bits are a 1-bit, the 
internal interrupt flag (bit 4) in file register 0 is also a 1-bit. This flag is 
tested by the microprogram to detect the presence of the internal inter­
rupt condition. The internal status bits are entered via the A-bus into the 
selected file register by a control command, at which time the status bits 
are cleared. The eight internal status bits have the assignments given in 
Table 3. 

BIT 

0 
1 
2 
3 
4 
5 
6 
7 

Table 3. Internal Status Bits 

INTERNAL STATUS 

Console Interrupt 
OMA Termination 
Real-Time Clock Interrupt 
(Spare) 
Memory Parity Error Interrupt 
(Spare) · 
Console Halt Switch 
Power Fail/Restart Interrupt 

All the internal status bits except the console interrupt and halt are 
associated with processor options and may be reassigned for special 
applications. 

Condition Flag:s 

The overflow, negative and zero conditions resulting from an operation 
involving the arithmetic/logic unit may be stored in file register 0 (see 
Table 3). The condition flags are updated for command 7 and for com­
mands 8, 9, B - F if bit 4 is a 1-bit. These condition flags can be tested by 
the microprogram for implementing various conditional operations. Defini­
tion of the condition flags is as follows: 

Overflow - The Overflow condition flag stores the arithmetic overflow 
condition during an add, subtract or copy command. The overflow cond i­
tion flag stores the shifted off end bit during a shift command. Arithmetic 
overflow occurs, when the result exceeds the range of the computer's 8-bit 
registers. 

Negative - The Negative condition flag stores the high order bit of the 
result on the A-bus, since the 2's complement number .system uses the 
most significant bit as the sign bit. 

Zero - The zero condition flag stores the zero test condition of the result 
on the A-bus. When the link control (bit 7) of the operate commands is a 
1-bit, the zero condition flag may not be set to indicate a zero result unless 
it is already set; it may be reset to indicate a non-zero result. This provides 

80 



a linked zero test over multiple bytes of a variable byte operation. For a 
detailed description of linked zero test, refer to the description of the Add 
command. 

COMMAND TIMING 

Each command is executed in a single clock cycle time, although execu­
tion may be delayed because of core memory or read-only. memory opera­
tions. The system clock rate is 4.55 mHz, and the 'clock cycle 220 nano­
seconds. 

Memory Busy Delays 

If the memory ·is busy (because of processor or DMA operation) at the 
time a read or write memory command or a command which will modify 
the M or N registers is to be executed, execution is delayed until the 
memory operation is completed. These commands are executed on the 
last clock of the memory half or full cycle. If a DMA request is pending at 
the time a read or write memory command is to be executed, execution 
~s delayed to give the OMA memory priority. 

Memory Data Delays 

Operate class commands which select the contents of either the T register 
or its complement during the first two cycles of a' processor memory read 
operation are executed during the third cycle of the read operation. This 
allows time for the accessed byte to be placed in the T register. 

The memory delays are explained in more detail in the description of the 
memory command. 

Read-Only Memory Delays 

An extra cycle is required for command execution because of the look­
ahead nature of the read-only memory for the following conditions: 

• Jump command. 
• Test If zero command when a skip occurs. 
• Test If not zero command when a skip occurs. 
• Compare command when a skip occurs. 
• Operate class commands which have the L register designated. 

81 



CHAPTER 2 

MICROCOMMAND REPERTOIRE 

This section contairi"s descriptions of all MICRO 800 commands. With each 
description is a diagram showing the format of the command and ]ts opera­
tion code, given in hexadet:imal. Above each diagram is the command's 
mnemonic code and the name of the command. Under each diagram is a 
description of the command, followed by a list of the registers and indi­
cators that can be affected by the command. The timing of each command 
is one clock cycle (220 ns) unless the L register is designated as the desti­
nation of the result, in which case the command execution time is two 
cycles. · 

COMMAND FORMATS 

There are threE! basic command formats. Each command is 16 bits in 
length and is contained in a single read-only memory location. 

The formats are literal commands, operate commands and execute 
commands. 

Literal Commands 

The literal class commands have the following format: 

I OP f/r Literal I 
15 14 13 12 11 10 9 8 7 6 6 4 3 2 1 0 

In this format the operation code occupies the four high order bits. Bits 
11-8 contain either a file register designator (f) or a register or control 
group designator (r). Bits 7-0 contain an eight-bit literal which is trans­
ferred as an operand to the 8-bus. 

Operate Commands 

The operate class commands have the following format: 

I OP f c H I 
16 14 13 12 11 10 9 8 7 6 6 4 3 2 1 0 

In this format the operation code occupies the four high order bits. Bits 
11-8 contain a file register designator (f) which specifies one of the 16 file 
registers to be used in command execution. Bits 7-4 contain control 
option bits (c) which are unique to the specific command. When bit 3 is 
one, the result of an operate class command is inhibited from being placed 
in the designated file register. Symbolically, this is specified to the pro­
gram assembler by appending an * to the command mnemonic. The 
register designator (r) in bits 2-0 specifies a processot register destination 
to receive the result of the operation. 

82 



Since there is only one file register selected at a time, the only file register 
that can receive the result of a particular operate command is the same 
file register selected for the operand. The register's identifier is added as a 
second character of the command mnemonic. The register codes {Table 4) 
are: 

Table 4. Register Designators for Operate Commands 

Designator Mnemonic Register 

none 
T T Register 
M M Register 
N N Register 

0 
1 
2 
3 
4 
5 
6 
7 

L L Register-addresses: 000-0FF and 200-2FF 
K L Register-addresses: 100-1FF and 300-3FF 
U U Register 
S U Register ORed into command (except fpr 

Control command) 

Execute. Command 

The execute command causes the contents of the U register to be ORed 
with the eight high order bits of the command to. form .an effective 
command. This operation is also performed when r=7 for the. operate 
class commands. The execute command has zero-bits in the four high order 
bits. The remainder of the command has the format required for the 
effective command to be executed. 

Formats for Execute Commands 

I o • H . 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

o f/r Literal I 
15 14'13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Literal Commands 

If U contains Operate 
command OP code. 

If U contains Literal 
command OP code. 

The literal commands, listed by OP code are as follows: 

OP Code 

1 
2 
3 
4 
5 
6 

Command 

Load Register 
Load File 
Add to File 
Test Zero 
Test Not Zero 
Compare 

83 



The literal commands-are used to load constants into various MICRO 800 
registers, to test for bit configurations and data values in file registers, and 
to load or add constants to file registers. Eight of the 16 bits are used as 
command, and the other 8 are available as data. 

Operate Commands 

The operate commands, listed by OP code are as follows: 

OP Code 

7 
8 
9 
A 
B 
c 
D 
E 
F 

Command 

Control 
Add 
Subtract 
Memory 
Ca,py 
OR 
EXCLUSIVE OR 
AND 
SHIFT 

The operate commands are used to control the flow of data in or out and 
through the MICRO 800 computer, and to perform the arithmetic and 
logic functions in the computer. 

With this powerful command set it is possible to implement all of the data 
handling and control functions of a larger computer. 

TERMS AND SYMBOLS USED IN THE COMMAND DESCRIPTIONS 

(f1) 
(f1)-T 

'AA' 
X'AA' 

Contents of file 1. 
Contents of file 1 to T register. 
Indeterminate value or function. 
Hexadecimal number in flow chart. 
Hexadecimal constant in assembly language statement. 

Affected Register States 

For each command certain registers are modified. These are described in 
examples as affected registers. 

/\ LOGICAL AND 
V LOGICAL OR 
¥ LOGICAL EXCLUSIVE OR 

Effective Address of L register as used in examples. (Because of 
the lookahead feature of the MICRO 800, the actual L address is 
one higher than indicated in the examples.) 

MICROCOMM.ANDS-FORMATS, DESCRIPTIONS, AND EXAMPLES 

The formats of the examples for each command have been selected to 
facilitate explanation of that particular command. Because of the differ­
ences in characteristics and utilization of. the various commands, and 
associated data patterns, the example formats are different for each 
command category. 

84 



Command 

load T 

Mnemonic 

LT 

OP Code 

11 

I 1-1/19 Literal 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

The contents of the eight-bit literal field are placed in the T register. The 
condition flags and LINK register are not affected. 

This command is used to provide constant data values, bit patterns for 
comparison tests, masks, and inpbt/output control codes, which are most 
conveniently used in the T Register. -

The T register is also modified by designation as destination register in 
operate commands. 

Example: Load T with hexadecimal value 'AA' 

Machine Assembly Flow Chart 
L Code Language Notation 

'024' '11AA' LT X'AA' 'AA'---T 

Affected Register States: 

Register Before After 

L '024' '025' 
T 'AA' 

Command Execution Time - 220 nanoseconds. 

Command 

loadM 

Mnemonic OP Code 

12 

I 12 Literal I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

The contents of the eight-bit literal field are placed in the M register. The 
condition flags and LINK register are not affected. 

This command is used to set the M register for accessing dedicated core 
locations. The M register is also modified by designation as destination 
register in operate commands. 

Example: Load M with page address hexadecimal value '55' 

L 

'134' 

Machine 
Code 

'1255' 

Assembly 
Language 

LM X'55' 

85 

Flow Chart 
Notation 

'55' ----M 



Affected Register States: 

Register 

L 
M 

Before 

'134' 

After 

'135' 
'fi5' 

Command Execution Time - 220 nanoseconds. 

Command 

Load N 

Mnemonic 

LN 

OP Code 

13 

I 13 Literal 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

The contents of the eight-bit literal field are placed in the N register and 
the M register is cleared. The condition flags and LINK register are not 
affected. 

This command is used to set the N register for accessing dedicated core 
locations. If the location is in page 0 of core ('0000'-·'00FF'} only this 
command is mquired to set both the M and N registers, since M is auto­
matically cleared. If M is not to be page 0, then N must first be set, follow­
ed by M. 

Example: Load N with address hexadecimal value "F" and set M = '00' 

Machine Assembly Flow Chart 
L Code Language Notation 

'235' '13FF' LN X'FF' 'FF'-.... N 
'00'-... M 

Affected Register States: 

Register Before After 

L '235' '236' 
M 'FF' 
N '00' 

Command Execution Time: 220 nanoseconds. 

Command 

Load U 

Mnemonic 

LU 

OP Code; 

16 

I 16 Literal I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

86 



This command is used to place specific command codes into the U register, 
which is used in conjunction with general function EXECUTE class com­
mands. The U register can also be modified by being designated as the 
destination register in an operate command. The differences in utilization 
of these two approaches for modifying the U register are described in a 
later paragraph which discusses U register appiications. 

Whenever the U register is modified it is necessary· to place at least one 
command between the modifying command and a command which uses 
the U register as an input. Otherwise an undefined value of U may be used. 

Example: Load U with hexadecimal value '84' 

L 

'155' 

Machine 
Code 

'1684' 

Affected Register States: 

Register 

L 
u 

Asse.mbly 
Language 

LU X'84' 

Before 

'155' 

Command 

Load Zero 
Control 

Mnemonic 

LZ 

OP Code 

10 

I 10 I Literal I 
15 14 13 12 11 10 9, 8 7 6 5 4 3 2 1 0 

Flow Chart 
Notation 

'84'-U 

After 

'156' 
'84' 

When this command is executed, q pulse called CGOX of approximately 
200 nanoseconds width is generated. CGOX is available on the 1/0 and 
option board connectors of the MICRO 800. During CGOX, the literal 
value is on the A-bus, which is available to. the option board. An 8 bit con­
trol latch can be set on the option board by this. command and used for 
any purpose, such as enabling counters, interrupts, or control lines. 

On 1/0 boards, a literal value must be first placed in T, and then strobed 
out with CGOX. CGOX can be used without the literal to initiate special 
1/0 sequences. 

Example: . Set bits 1 and 2 of special control latch on option board using 
Load Zero Control. 

Bit pattern 00000110 - '06' 

Machine Assembly Flow Chart 
L Code Language Notation 

'055' '1006' LZ X'06' ·00·_..z 

87 



Affec:ted Register States: 

Register 

L 
Special 

Before 

'055' 

Command 

Load Seven 
Control 

Mnemonic. 

LS 

OP Code 

17 

L 17 Literal 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

After 

'056 
'06' 

The eight bits of the literal perform control functions as described below. 

1700 - No operation. 

1701 - Enable serial teletype. The.serial teletype input is gated into bit 6 
of file register 0. The serial TTY value is available all the time. 

1704 - Disable external interrupts: Recognition of external interrupts is 
inhibited. 

1708 - Enable external interrupts: Recognition of external interrupts 'is 
enabled. 

Note: Commands 1704 and 1708 are meaningful only when the option 
board has been installed in the MICRO 800, and a modification has been 
made to the computer backplane. These commands set and rese1 an inter­
rupt input enable latch on the option board. Without the option board the 
external interrupt line is always enabled. 

1710 - Disable real time clock: The real-time clock and interrupt are 
disabled. 

1720 - Enable real time clock: The real-time clock and inte~rrupt are 
enabled. 

Note: These commands are meaningful onl~ when the option board con­
taining the real time clock is installed. When tht;i clock is enabled it is pre­
set to its wired value. Each time the real time clock cycles, it sets internal 
status bit 2, which remains set until sampled by the microprogram. 

1740 - Spare. 

1780 - Halt: The processor is halted. 

When the processor halts, all clocks stop, except for clock 6, and the L 
register remains at the next value after the halt command. Depressing the 
run switch will start the program at the next instruction after the halt 
command. 

Command Execution Time - 220 nanoseconds. 

88 



,.. 

Non-conflicting commands can be executed simultaneously. For example, 
enable external interrupts can be combined with enable real time clock. 
The bits of the literal parts of the commands are ORed to produce the 
hexadecimal code. 

Example: 

Enable Interrupts 
Enable Real Time Clock 
Composite Command 

Command 

Jump 
(Also called 
Load L) 

Machine 
Code 

1708 
1720 
1728 

Literal 
Bits 

0000 
0010 
0010 

1000 
0000 
1000 

Mnemonic OP Codes 

JP 14, 15, 1C, 10 

I 14/15/IC/10 Literal I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

The contents of the eight-bit literal ~re placed in the eight low order bits 
of the L register; the content of bit 8 is placed in Lg and the content of 
bit 11 is placed in Lg. The location of the next command to be executed 
is at the address specified by the new contents of the L register. The execu­
tion time of the command is two cycles. The jqmp operation codes for 
the four 256-word pages in read-only memory are as follows: 

14 - Jump to locations 000:-0FF (page 0) 
15 - Jump to locations 100-1 FF (page 1) 
TC - Jump to locations 200-2FF (page 2) 
10 - Jump to locations 300-3FF (page 3) 

In order to fully explain this command, a detailed description of the L 
register follows: 

L Register Organization 

9 8 7 0 

8 bits 

Bits 0 to 7 act somewhat I ike a counter in that they are incremented like a 
counter after each command execution except conditional skips, jumps, or 
operate commands containing L or K as a destination. If the L count is at 
XFF, and the next command causes L to· be incremented, the· L count will 
go to XOO, with no indication of a carry. If a command causes L to skip, 
L will go from XFF to X01. 

To change pages, it is necessary to change bit 8 or 9. Bit 9 can be changed 
only with a jump (literal to L) command. With the jump command, any 
part of L can be reached. 

89 



Bit 8 can be changed with either a jump command or by de·signating the L 
register as the destination register in an operate command. 

As shown in Table 4, a destination designator of 4 or 5 affects the L regis­
ter. The designator 4 causes bit 8 to reset, and 5 causes bit8 to set. In the 
assembly language mnemonics, a 4 is labeled L, and a 5 is labeled K. 

The various methods of changing L are shown in the following mad-only 
map out I ine. 

Variations of L Register 
..L 

1 r 

I I 
I I 
I~ r-1 

~ 

I I 

I I 
__,__ ._...__, 

I 
JUMPI L I 

Dest.j 
I I 

I' 
Page 3 

Page 2 

Page 1 

Page 0 

I Increment L 
---1"-or Skip 

I 

L Register 

Address 
Page Within Page 

~ 
0 =:J 

0 ~ 
0 0 ~ 

Since L is always addressing the next command to be executed, any con­
dition, such as a skip, jump, or L destination results in a clock cycle skip 
because the "next" command must be discarded for a new "next" 
command. 

Examples: 
Machine Assembly 

L Code Language 

1) Jump to page 0 location '33' 

'021' I 1433' JP x '033' 

2) Jump to page 2 location '46' 

'150' '1C46' JP X'246' 

3) Jump to page 3 location '31' 

'230' '1031' JP X'331'. 

L Register States: 

Example 

1 
2 
3 

Before 

'021' 
'150' 
'230' 

Command Execution Time - 440 nanoseconds. 

90 

Flow Chart 
Notation 

'033'_.,·L 
Sometimes just shown 
as a line~ from one block 
to another in flow chart. 

'246'__..L 

'331'---.. L 

After 

'033' 
'246' 
'331' 



Command Mnemonic OP Code 

Load File LF 2f 

I 2 f Literal I 
15 14 13 12 11 10 9 8 7 6 6 4 3 2 1 0 

The contents of the eight-bit literal field are placed in the file register 
designated by f. File register 0 cannot be loaded by this command. The 
condition flags and LINK register are not affected. 

This command is used for initializing or clearing file registers. It is also 
used for setting relative and absolute jump addresses into files. It can also 
be used as part of a table look-up routine. Another application is for 
setting indirect return addresses into files. 

A brief description of a table look-up technique follows: 

The table look-up function can be implemented using a combination of 
_load file, jump, and operate class (L destination) commands. 

A table of values is stored in the ROM which are accessed by jumping to a 
selected command using an operate class command with an L destihation. 
The selected command is a load file command. After the load file com­
mand there must be a jump command to get back to the program routine. 

Flow: 

L Table Address --..T '024' 

'025' (T) - L. register 

'026' Next Instruction 

Inst. 
'B024' 

..... 

Table 

.... Load File 

Jump 

Inst. 
'2355' 

Inst. 
'1426' 

If, because of a large table, it is necessary to conserve memory locations in 
the ROM, a number of load file commands could be grouped with each 
jump command. This will temporarily tie up as many files as load file 
commands. · 

Example of load file command: 

Load file 3 with '55' 

Machine 
L Code 

'025' '2355' 

Affected Register States: 

Register 

L 
file 3 

Assembly 
Language -

91 

LF 3, X'55' 

Before 

'025' 

Flow Chart 
Notation 

'55' 

After 

'026' 
'55' 

f 3 



Command Mnemonic OP Code -----
Add to File AF 3f 

I 3 f I Literal I 
16 14 13 12 11 10 9 8 7 6 5. 4 3 2 1 0 

The contents of the eight-bit literal field are added to the contents of the 
file register de.signated by f and the sum replaces the original contents of 
the file register .. Subtraction is performed by placing the 2's complement 
of the number in the literal field. The condition flags and LINK register 
are not affected. File 0 may not be selected by this command. 

This command is used whenever it is desired to add a number other than 1 
(in which case the operate class add is used) to a file register. Specific 
cases are where a file is used for a pointer or to update the U register and 
changes of 2 or greater are required. Another use is to clear out higher 
order bits from a register. This command can also be used to set a flag bit 
in a file without resetting the other flag bits. 

Examples: 

1) All '2A' to file 3 which contains '31' 
2) Subtract '03' from file 5 which contains '54' 
3) Set flag bit 6 in file 9 which has flag bit 1 set 

Example 
Number L 

1) '01!5' 
2) '10!5' 

Machine 
Code 

Assembly 
Language 

'332A' AF 3 X'2A' 
'35FD' <D AF 5

1

X'FD' 

Flow Chart 
Notation 

3) '250' '3940' (2) AF 9
1

X'40' 
CD 2's complement of '03' 
~Hexadecimal equivalent of bit 6 = 1 

(f3)+'2A' .... f3 
(f5)-~03'' --f5 
(fg)+'40' _..f A 

Affected Register States: 

Example 
Register Number Before After 

1) L '015' '016' 
file 3 '31' '58' 

2) L '105' '106' 
file 5 '54' '51' 

3) L '250' '251' 
file 9 '02' '42' 

Execution Time - 220 nanoseconds. 

92 



Command Mnemonic OP Code 

Test If Zero TZ 4f 

4 I f I Literal I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

If, for all the 1-bits of the literal field, the corresponding bits of the file 
register designated by f are 0-bits, the next command is skipped. The con­
dition flags, LINK register and the file register are not affected. If the skip 
is taken, the timing of the command is two clock cycles. 

This is a conditional branch type of command designed to test for the 
following conditions or functions existing in the referenced file register: 
negative or positive number, odd or even number, interrupt or internal 
status bits, sense switch bits, condition flags set or not set, teletype input 
bit set or not set. Since all of the selected bits must be 0, this is a logical 
AND type function. If a test bit is 0, the corresponding bit in the file does 
not affect the skip. 

8 it Pattern Examples: 

File Register 10001000 No Skip Test Zero Literal 00111000 

File Register 11100111 
Skip 

Test Zero Literal 00011000 

File Register 10110000 
Skip Test Zero Literal 01001010 

File Register 00010000 No Skip Test Zero Literal 00010000 

Since all bits tested must be 0, this command is good for testing for the 
occurrence of any of a number of possibilities, such as testing for the 
presence of any of 3 interrupt flags. 

The conditional skip can be used for branching, or for simply skipping 
one instruction for certain conditions. For branching, the skip is followed 
by a jump command. 

Example of Branch: 

Skip the 
Jump to 
Interrupt 

Test Zero file 3 bit l 

Jump to Interrupt routine 

L.j Next Instruction if no I nte~ 

93 

. bit 1 = interrupt 



A three-way branch can be implemented with two test and skip commands 
and two jump commands. 

Example: 

BRANCH 1 

TEST AND 
SKIP 

[ JUMP 
TEST AND 
SKIP 

BRANCH 2 

Example: Skip if bits 3, 4, and 7 are not set in file 0. 

L 

'OOE' 

Machine 
Code 

'4098' 

Affected Register States: 

Register 

Case 1 L 
FO 

Case 2 L 
FO 

Mnemonic 

TZ FO,X'98' 

Before 

'OOE' 
'43' 

'OOE' 
'80' 

JUMP] 
~-

BRANCH 3 

Flow Chart 
Notation 

bits 
3,4or·~ 

~/Nc)Skip 
i N Skip 

After 

'010' 
Skip '43' 

'OOF' 
No Skip '80' 

Command Execution Time - 220 nanoseconds - No Skip. 
- 440 nanoseconds with Skip. 

This timing applies to test not zero, and compare, as well. 

Command Mnemonic 

Test If Not Zero TN 

OP Code 

5f 

I 5 f I Literal I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

94 



If, for any bit of the literal field which is a 1-bit, the corresponding bit of 
the file register designated by f is also a 1-bit, the next command is 
skipped. The condition flags, LINK register and file register are not affect­
ed. If the skip is taken the timing of the command is two clock cycles. 

This command differs from the test zero command in two ways. First it 
skips on 1 's instead of O's, and it skips on any 1 as opposed to all O's on 
the test zero instruction. 

If both tests (zero and not zero) were reduced to one bit comparisons, the 
only variation would be that one command produces the opposite result 
of the other. The choice would then be if a jump was wanted if the tested 
bit was 1, or 0. 

If multiple bits are tested, the test not zero is the MAX TERM, and test 
zero is the MIN TERM logic equivalent. 

8 it Pattern Examples for test not zero: 

File Register 01101100 Skip Test Not Zero Literal 00110001 

File Register 01000001 No Skip Test Not Zero Literal - 00011010 

File Register 01100110 
Skip Test Not Zero Literal 01101000 

File Register 11100111 No Skip Test Not Zero Literal 00010000 

Example: Skip if bit 0 in file 1 = 1 

L 

'01C' 

Machine 
Code 

'5101' 

Mnemonic 

TN 1,X'01' 

Flow Chart 
Notation 

N 
No Skip 

Affected Register States: 

Register Before After 

Case 1 L '01C' '01E' 
F1 '01' '01' 

Case 2 L '01C' '010' 
F1 '80' '80' 

Command Execution Time - 220 nanoseconds - No Skip. 
440 nanoseconds - Skip. 

/ 

Skip 

No Skip 



Command Mnemonic OP Code 

Compare CP 6f 

6 I f I Literal I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

If the sum of the contents of the file register d~signated by f and the con­
tents of the eight-bit literal is greater than 2 -1, the next command is 
skipped. The condition flags, and file register are not affected. If the skip 
is taken the timing of the command is two clock cycles. The LINK stores 
the carry out of the adder. File 0 may not be selected by this command. 

This command is used for looping control, and for data value testing. It is 
also used to test OP codes in instructions for selection of a particular class 
of OP codes, such as memory reference, having OP code (MICRO 810) 
greater than 5, for example. To test if the content of a file register exceeds 
a selected number, the l's complement is placed in the literal part of the 
compare command. 

Example: Skip if (f1) > '5F' 

L 

'014' 

Machine 
Code 

'61AO' 

Affected Register States: 

Register 

Case 1 L 
Fl 

Case 2 
L 
Fl 

Mnemonic 

CP 1,X'AO' 

·Before 

'014' 
'52' 

'014' 
'66' 

Flow Chart 
Notation 

After 

'016' No Skip 
'52' 

'015' Skip 
'66' 

Command Exeieution Time - 220 nanoseconds - No Skip. 
· 440 nanoseconds - Skip. 

Command 

Control 

Mnemonic 

K 

OP Code 

7f 

I 1 f • H ·I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

96 



·This command is used to control special data flow operations, and input/ 
,. output functions. The prime functions are as follows: 

• Enter sense switches from panel to selected file register. 
• Shift selected file right 4 bit places. 
• Enter internal status to selected file register. 
• Set and clear the 3 input/output control flip flops (IOXX). 

A secondary function for some of the prime functions is that data can 
simultaneously be moved from a file, or the input bus ANDed with the 
selected file, to a register. File 0 may be selected by the shift right 4 
function only. These functions will be explained in detail in the following 
paragraphs. This command unconditionally updates the arithmetic condi­
tion flags in file 0. 

The prime functions of this command are determined by the value of the 
c field as follows: 

c Operation 

0 No Operation 

Enter Sense Switches: 

2 Shift File Right 4: 

3 Unused 

4 Enter Internal Status: 

5 Unused 

6 Unused 

Explanation 

-The status of the four console sense 
switches are placed in the four high 
order bits of the file register designated 
by f. The four low order bits are set to 
1-bits. The status can also be placed in 
the designated destination register. 

The four high order bits of the file 
register designated by f are placed in 
four low order bits of the file register. 
The four high bits are set to 1-bits. 
The result can also be transferred to 
the designated destination register. 

The eight internal status bits are placed 
in the file register designated by f, and 
the designated destination register. The 
internal interrupt flag in file 0 is reset 
by this command, along with the con­
sole interrupt, real time clock, memory 
parity, and. power fail/restart. Console 
step is reset upon release of the con­
sole switch and spare bits are con­
trolled according to their individual 
impiementation in hardware. 

97 



7 - Enter Console Switches: The contents of the eight low order 
console command switches am ANDed 
with eight low order bits of the next 
command. File register 0 and destina­
tion register 0 must be selected to pre­
vent any modification -of the file or 
register during the execution of the 
Control command. The command 
physically preceding this operation 
must not cause a read-only memory 
delay. 

8 - Clear 1/0 Mode: The 1/0 Control register is cleared. 
Data from the designated file or the 
input bus ANDed with the designated 
file can be transferred to the desig­
nated file register and register (r). 

9-F - Set 1/0 Mode: The 1/0 Control register is loaded with 
the three low order bits of c placing it 
in one of seven I /0 bus or serial tele­
type modes. These modes are described 
in Section 4. Data from the designated 
file or the input bus ANDed with the 
designated file can be transferred to a 
designated file register and register (r). 

Affected: F, 1/0 Control, Condition Flags, r 

For all values of c, except 0, 3, 5, 6, or 7, source data is placed in the 
designated file, if bit _3 = 0 and in the designated destination register. 
Destination r = 7 is undefined for this command. In other words, the U 
register is not used. 

Examples: 

C = 1 Enter sense switches into file 1 

L 

'005' 

Machine 
Code 

'7110' 

Mnemonic 

K 1 ,1 

Affected Register Status: 

Case 1 

Case 2 

Register Before 

L '005' 
file 1 
Sense SW (Binary) 1001 
File 0 (Bits 2-0) 

L '005' 
file 1 
Sense SW (Binary) 0010 
File 0 (Bits 2-0) 

98 

Flow Chart 
Notation 

(SSW)-f1 

After 

'006' 
'9F' 

1001 
010 

'006' 
'2F' 

0010 
000 



C=2 Shift file 1 right 4 

Machine Flow Chqrt 
L Code Mnemonic Notation 

'012' '7120' K 1,2 F1SR4--F1 

Affected Register States: 

Register Before After 

L - '012' '013' 
file 1 'EO' 'FE' 
file 0 (Bits 2-0) 010 

C=4 Enter internal status to file 1 

Machine Flow Chart 
L Code Mnemonic Notation 

'1E3' '7140' K 1,4 Status--f 1 

Affected Register Status: 

Register Before After 

L '1E3' '1E4' 
file 1 '45' 
Status '45' '40' 
file 0 (Bits 2-0) 000 

Note: Sense switch 4 can be tested by testing negative condition flag 
after entering SSW to file 0. 

C = 7 Enter console switches 

·This requires two commands, the first being the enter console switches, 
followed by a load file, if the switch settings are to go into a file; a load 
register if switch settings are to go into a register, or an operate command 
if switches are to modify the command. A load file operation will be used 
for the example. The load file literal must be FF to duplicate the switch 
settings into the file. 

Example: Enter console switches into f5. 

Machine Flow Chart 
L Code Mnemonic Notation 

'112' '7070' K 0,7 f5 /\CSW-f5 
'113' '25FF' LF 5, X'FF' 

Affected Register Status: 

Register Before After 

L '112' '114' 
file 5 'A5' 
Console SW 'A5' 'A5' 
file 0 (Bit 2-0) 010 

This co111mand cannot be executed via the front panel because it requires a 
dynamic situation, and two separate functions entered on the front panel. 

99 



C = 8-F Input/Output control 

When· c equals 8-F, the operations are associated with external input/ 
output, and the three low order bits of c are placed in the I /0 Control 
register.· On the same operation, data can be moved from the d(!Signated 
file register or the input bus ANDed with the designated file rngister as 
determined by the current contents of the 1/0 Control register, to the 
designated file or destination register. The data source is specified as 
follows: 

1/0 Control Register Mode 

0-3 
4-7 

Source 

Designated file register. 
Input bus A designated file reuister. 

The values 4-7 correspond to the 103X control flip flop. This flip flop 
must be set in order to transfer data from the input bit to the computer 
internal register:s. Other than this restriction, the three 1/0 control register 
bits can be used in any manner desired at the microprogramming level of 
the MICRO 800 and as long as standard 1/0 interface modules are not used. 

For purposes of standardization of common interface modules, and 
implementation of standard I /0 software instructions, a convention for 
1/0 codes has been adopted as shown inTable 5. 

Table 5. MICRO 810/820 Standard 1/0 Control Codes 

c Field 1/0 
(Hex) Mode 

8 0 
9 1 
A 2 
B 3 
c 4 
D 5 
E 6 
F 7 

IOXX 
3 2 1 

I I 

010,0 
0 I 01 1 
0 • 110 
QI 11 1 
11 QI Q 

1 I QI 1 
1 I 1 1 0 
1 I 1 I 1 

I I 

Control Activit 

None 
Control Output (COXX/) 
Data Output (DOXX/) 
Space Serial Teletype 

y 

{
Output 

· Codes 

Concurrent Acknowledge (C ACK/){. 
1/0 Acknowledge ( IACK/) Input 
Data Input (DIXX/) Codes 
Spare 

Note that the 1/0 mode is directly represented as the 3 least significant 
bits of the c field. 

Standard Output Functions: 

The two output codes COXX, DOXX represent a two-byte eiutput se­
quence, where the first byte is for control, and the second byte is for 
data. A device select control byte is first put in the T register (which is 
also the output bus) and then COXX is set and reset. Then a data value is 
placed in T and DOXX is set and reset. 

Standard Input Functions: 

COXX and DIXX control codes are used for data input routines. A device 
select control byte is first placed in T, and COXX is set and rnset. Then 
DIXX is set, data is input while DIXX is set and then DIXX is res·et. 

100 



While DIXX is set, data can be entered two different ways: 

1) Operate commands involving T get the input bus instead of T as long 
as 103X is set. These commands are ADD, OR, COPY, EXCLUSIVE 
OR, AND. Any of these can be used to input data while DIXX is set as 

·long as T complement is not selected. 

2) The control command with the c field = 8-F causes the input bus to be 
ANDed with the selected file register as long as 103X is set. This method 
allows inputting on the same command that resets DIXX (providing 
the selected file has first been set to 'FF'). 

1/0 Examples: 

1) Generate following output wave form: 

OUTPUT __j DEVICE SELECT 
BUS 

coxx----- co xx 

u DATA 

ooxx~~~~~~~~~~~~~~~~-J 

CLOCK 2 3 4 

FLOWCHART: 

DEVICE SELECT CODE -T 

SETCOXX 

DELAY (NO OP) 

RESETCOXX 

DELAY (JUMP TO NEXT 
INSTRUCTION) 

OUTPUT DATA BYTE -T 

SET DOXX 

DELAY (NO OP) 

RESET DOXX 

5 6 7 8 

101 

DOXX 

9 10 11 

l/OCONTROL 
MACHINE 
CODES 

'7090' 

'1000' 

'7080' 

I 
Lo.--. 

JUMP CAUSES 2 
CLOCK DELAY 

'70AO' 

'1000' 

'7080' 



2) Input data according to following wave form: 

OUTPUT__j 
BUS 

co xx 

DEVICE SELECT 

co xx 

INPUT ---------------' 
BUS 

DIXX 

INPUT 
DATA 
SAMPLE 

CLOCK 

FLOWCHARTo _J 
1 DeVIC:_e sne~T coDE -T 

L SETCOXX 

L DELAY 

!"""i:tESET COXX '-------

L DELAY 

L SETDIXX 

L DELAY 

[!NPUTDATA 

l___ 

DATA READY -----i__ 

l/OCONTROL 
MACHINE 
CODES 

'7090' 

'1000' 

'7080' 

Jump to next 
inst. 2 clock delay 

'70EO' 

Jump to next 
inst. 2 clock delay 

Operate class 
command 

'708(1' 

For a very simple interface having only 3 data registers to set, a single 
byte sequence will suffice for outputting data. 

102 



3) Output a byte to interface Latch No. 2, where only 3 interface latches 
exist in the system, using the simple interface technique mentioned 
above. 

FLOW CHAR1: 

OUTPUT DATA BYTE ___.,;T 

SET 1/0 MODE = 2 

RESET 1/0 MODE 

1/0 CONTROL 
MACHINE CODES 

'70AO' 

'7080' 

On an input cycle it is necessary to wait at least one clock cycle after 
generating DIXX to input data. The 1/0 controls are set in time at the 
completion of the control command. An input on the next clock would 
attempt to transfer data before the interface unit has the correct response 
data ready for input. 

c field = B which is 1/0 mode 3 is used to set the serial teletype mode to 
SPACE, which ties up the 1/0 channel. 

c·field = D which is 1/0 mode 5 is used to acknowledge interrupts. 

Command Mnemonic OP Code 

Add A 8f 

8 f c 

16 14 13 12 11 10 9 8 7 6 6 4 1 0 
--- Inhibit File Wrfte 

The selected operand is added to the contents of the file register designated 
by f. The sum is placed in the file register (f), if * is a 0-bit, and in the 
register designated by r. The state of the carry out of the high order bit of 
the adder is placed in LINK. File 0 may not be selected by this command. 
The c field controls selection of the operand, incrementing the result and 
modification of the condition flags as follows: 

103 



c-bits 
7 6 5 4 

x x x 

x 1 x x 

x x 1 x 

x x x 1 

Link Control: The content of LINK is added to the sum. 
The zero condition flag can be reset but cannot be set, 
providing a linked zero test over multiple bytes. /.\ linked 
zero over multiple bytes functions as follows:· Assume a 
2-byte add is to be performed. Two file registers c·ontain a 
16-bit number to be added to another 16-bit number in 
core memory. The add is performed one byte at a time, 
with the LINK used for carry into the second add .. On the 
first byte addition the condition flags are modified. If the 
result of the first byte addition is not zero, then of course 
the entire addition results in a non-zero condition, so that 
the zero condition flag should not be set on the· second 
byte add even if its result is zero. On the other hand, if the 
first add produces a zero condition, the second may not, 
therefore the zero condition flag should be resettable on 
the second byte add. 

The add function can be used to move data from a file to 
another register by not selecting any input in thu c field. 

Add One: One is added to the sum. 

Select T: The contents of the T register or the input bus 
are selected as the operand. If the T register is not selected, 
the operand is zero. 

Modifying Condition Flags: The condition flags are updated 
according to the result. 

Eight different examples have been selected to illustrate various c states, 
data values, and destination registers. Since the L register advances 1 
unless it is the destination, its state will not be shown in the affected 
register state chart. File 1 will be used in all examples. 

The various functions selected for each example are show I\ in Tables 6, 7, 
8 and 9. 

Table 6. 

The general form of the examples is -

Add the contents of file 1 to one or more of the following: 

Link, 1, T 

Destination register choices are 

T, F 1, or N 

Link is always updated. 

Condition flags are updated on selected examples, 

104 



Table 7. 

Add command uses file 1 for all examples. 
Table of functions selected for each example. 

c Field 

Hex a-
Modify decimal 

Add Add Select Cond. Code for 
Example Link 1 T Flags· c Field 

1. Add (file 1) to 0 0 1 1 3 
(T), put result in 
T and f 1, and up-
date condition · 
flags. 

2. Add (file 1) to 0 0 1 1 3 
(T), put result in 
T, update condi-
tion flags. 

3. Add (file 1) to 0 0 1 1 3 
T, put result in N, 
update condition 
flags. 

4. Add (file ~) to. 0 1 1 0 6 
T, +1, put result 
inf1 andN. 

5. Add (file 1) to 1 0 0 0 8 
(LINK), put 
result in f 1. 

6. Add ·one to f 1 0 1 0 1 5 
and put result 
inf 1, update C. 

7. Add (f 1 ) to T 1 0 1 0 A 
and (LINK). 
Put res~lt in f 1. 

8. ·Add (file 1) to 0 1 1 0 6 
(T) plus 1. Put 
result in T, t 1. 

Destination 

Selected Hexa-
Register Binary decimal 
Symbol Code Code 

T, f 1 0001 1 

T 1001 9 

N 1011 B 

N, f 1 0011 3 

f1 0000 0 

f 1 0000 0 

T, f 1 0000 0 

T, f 1 0001 1 

The coding for the 8 Addition examples is shown below. 

Table 8. 

Machine Assembly 
Code Language Flow Chart 

Example (Hex) Mnemonics Notation 

1 . 8131 AT 1, T, C (f1) + (T)--T, f1, C 
2 8139 AT* 1, T, C (f1) + (T)---T, C 
3 8138 AN* 1, T, C (f1) + (T).-N, C 
4 8163 AN 1, I, T (f1) + (T) +1--=---N, f1 
5 8180 A 1, L (f1) + (L) .-f1 
6 8150 A 1, I, C (f1) + 1-t1 
7 81AO . A 1, L, T (f1) + T + (L)~f1 
8 8161 AT 1, I, T (f1) + (T) + 1-T, f1 

105 



NOTE: If both Link and 1 are selected as inputs, they are ORed instead 
of added, thus the effective input is 1 regardless of the value of L. 

Command Execution Time - 220 nanoseconds. 

Table 9. Affected Register State Chart --
Conditions 

Example File T Link N Zero Neg Ovflow 

1 Before '65' '98' ----- ----- . -----
After 00 00 1 ----- 1 0 0 

2 Before '65' '15' ----- ----- '-----
After '65' '7A' 0 ............ 0 0 0 

3 Before ''65' '65' ----- ----- -----
After '65' '65' 0 'CA' 0 l 1 

4 Before '65' '00' ----- ----- -----
After '66' '00' 0 '66' -----

5 Before '00' ----- 1 ............. -----
After '01' ----- 0 ----- -----

6 Before 'FF' ........... ----- ... ........ .. ......... 
After '00' .......... 1 ----- 1 0 0 

7 Before '00' '00' 1 ----- ........... 

After '01' '00' 0 ----- -----

8 Before '01' '01' ----- ----- -----
After '03' '03' 0 ----- -----

Command Mnemonic OP Code 

Subtract s 9f 

9 f c 

15 14 13 12 11 10 9 8 1 6 5 1 0 

.....__ __ Inhibit f!ile Write 

The complement of the selected operand plus one is added to the contents 
of the file register designated by f. The difference is placed in the file 
register (f) if * is a 0-bit, and in the register designated by r. The result is a 
2's complement subtraction. The state of the carry out of the high order 
bit of the adder is placed in LINK. File 0 may not be selected by th is 
command. The c field controls selection of the operand, incrementing the 
result, and modification of the condition flags as follows: 

106 



c-bits 
7 6 5 4 

x x x 

x 1 x x 

x x 1 x 

x x x 1 

Affected: 

Operation 

Link control: The content of LINK is added to the sum. 
Selection of the LINK inhibits the automatic addition of 
one. The zero condition flag cannot be set, providing a link­
ed zero test over multiple bytes. Refer to the add descrip­
tion for details on linked zero test. 

Inhibit add one: If link control is not selected, one is auto­
matically added to the result to produce a 2's complement 
subtraction. This control bit inhibits this addition, provid­
ing a 1's complement subtraction. 

Select T: This complement of the .contents of the T register 
are selected as the operand to the adder. If not selected, the 
operand consists of a 1-bit in each bit.position. 

Modify Condition Flags: The condition flags are updated 
according to the result. 

F, LINK, Condition Flags, r 

If the input bus is enabled (103X), this command will yield an unpredict­
able result because the complement of the input bus is not available. 

Examples: 

1. Sub!ract zero from file 1. 

Machine Code 

'9100' 

Affected register states: 

Register 

Link 
file 1 

Mnemonic 

s 

Before After 

'00' '00' 

Even though 0 is subtracted from 0, since 2's complement adding is 
us~d there is a carry of 1 all through the adder to the Link. 

2. Subtract T, 1 from file 1 
Destination T Update condition flags 

Machine 
Code 

'9179' 

Mnemonic 

ST* 1,D,T,C 

107 

Flow Chart 
Notation 

(f1) - T-1--T,C 



Affected register states: 

Register 

L 
c 

Before 

'31' 
'31' 

After 

'31' 
'FF' ... 2's comple­

ment for -1 
0 

0 1 0 

Zer/ N1g bverflow 

Command execution time - 220 nanoseconds. 

Command Mnemonic OP Code 

Read Memory R Af 
Write Memory w Af 

A f c H r I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

The primary function of this command is to initiate a core memory cycle 
in which one byte is transferred between the T register and corn memory. 
The address in core is determined by the contents of the M and N registers. 
File 0 may not be selected by this command. 

The lower two bits of the c field determine whether the memory operation 
is read or write and whether the operation is a fu II or half cycle. 

The c-bits control the type of memory operation as follows: 

c-bits 
7 6 5 4 

x x 1 x 

x x x 1 

Memory Access Operation 

Half Cycle: If this bit is a 1-bit, a half cycle memory opera­
tion is performed; otherwise a full cycle operation is selected. 

Write: If this bit is a 1-bit, a write memory operation is per­
formed; otherwise a read operation is selected. 

A full cycle takes 5 clock times. 

A half cycle takes 3 clock times. 

A full cycle read leaves the data in core unchanged. 

A full cycle yyrite causes the old data to be cleared so the new value is 
unaffected by the _old. 

A half cycle read leaves all ones in the core location. 

A half cycle write ANDS the data to be written with the data already in 
core. 

108 



If a half cycle write into a particular memory cell was preceded by a half 
cycle read, the data value gets stored without modification since it is 
ANDed with all l's, left from the previous half cycle read. 

A secondary function of this command is to simultaneously move data 
between registers while initiating the memory cycle. 

The contents of the file register designated by f 'is unaltered, incremented, 
or decremented as controlled by the c field. The result is placed in the file 
register (f) if * is a 0-bit, and in the register designated by r. At the same 
time, a read (R) or write. (\/\0 memory operation is initiated as controlled 
by bit 4. If the operation Js a memory read, the T register is cleared and 
the accessed data is set into the T register after two clock cycle times. 
Data to be written into mernory must be placed in the T register during or 
before the write memory command, if the operation is a half cycle write, 
and by the first clock cycle time after the write memory command on a 
full cycle write. The condition flags and LINK are not affected. Execution 
of the memory command is delayed if the memory is in a busy condition 
from a previous R or W command or OMA operation. 

The bits of the c field control the transfer of data from the file register as 
follows: 

c-bits 
7 6 5 4 

0 0 x x 

0 .1 x x 

1 0 x x 

1 1 x x 

Operation 

Transfer: The contents of the file register are transferred 
unaltered. 

Decrement: The contents of the file register minus one are 
routed as specified. If the M register is selected as the desti­
nation and the content of LINK is a 1-bit, the contents of 
the file register are transferred without being decremented. 
This provides a decrement with link control when M is the 
destination. · 

Add Link: The content of LINK is added to the contents of 
the file register, and the sum is transferred as specified. 

Increment: The contents of the file register plus one are 
transferred as specified. 

This data transfer. feature permits setting up one of the registers directly 
involved with the memory access (M, N, or T) at the same time the 
memory cycle is initiated. There are some timing restrictions pertaining to 
modification of M, N, or T registers during a memory cycle. Some of the 
fµnctions have logic interlocks to prevent errors, and some do not. These 
restrictions must be carefully considered with respect to data errors, and 
unexpected program time delays. The restrictions are as follows: 

1) Attempting to change M, or N while a memory cycle is in progress 
stops the computer clock until the memory cycle is over. No data 
errors result. Either M or N cari be changed by the command initiating 
the memory cycle without causing delay. 

109 



2) Accessing T during a read cycle causes the clock to stop until the new 
data value from core is correctly in T. Th is causes delay but no data 
error. 

3) Changing T during a write cycle will not cause delay but it may cause 
a data error. 

The memory access restrictions are specifically defined in the following 
chart: 

Delay from changing 
Mand N 

Delay due to T access 

Data in T available 
(on Read) 

T must be loaded by 
(on Write) 

T must stay loaded 
until (on Write) 

Full Cycle 
Read 

Up to 4 
clocks 

Up to 2 
clocks 

2nd clock 
after 
memory 
command 

Full Cycle 
Write 

Up to 4 
clocks 

0 

1st clock 
after 
memory 
cycle 
command 

4 clocks 
after 
memory 
command 

Timing Diagram for Memory Accesses: 

-v-
t. 

MEMORY 
COMMAND 
CLOCK 

M&N MUST 
BESET ON 
OR BEFORE 
THIS CLOCK 

1 
1ST 
CLOCK 
AFTER 
MEMORY 
INST. 

T MUST BE T MUST BE 
SET ON OR SET ON OR 
BEFORE BEFORE 
THIS CLOCK THIS CLOCK 
ON A WRITE ON A WRITE 
HALF CYCLE I FULL CYCLE 
COMMAND • COMMAND 

t 
2ND 
CLOCK 
AFTER 
MEMORY 
INST. 

110 

3RD 
CLOCK 
AFTER 
MEMORY 
INST. 

DATA IS 
AVAILABLE 
INTON 
THIS CLOCK 
AFTER A 
READ 
COMMAND. 

Half Cycle 
Read 

Up to2 
clocks 

Up to 2 
clocks 

2nd clock 
after 
memory 
command 

t 
4TH 
CLOCK 
AFTER 
MEMORY 
INST. 

-----, 

Half Cycle 
Write _ __.__ 

Up to 2 
docks 

0 
docks 
--

--
Memory 
Cycle 
Command 

--
2 clocks 
after 
memory 
command 

\_] 
t 

5TH 
CLOCK 

M, N ANDT 
C:AN BE 
C:HANGED ON 
THIS CLOCK 
WITHOUT 
tlELAY OR 
ERROR. 



Examples: 
Machine 

Code 
f d c 
i e c Field Binary Field 

0 I s Functions and Codes for Hex. 
Example p e c t . Mnemonics Memory Commands Code General Description 

1) Full cycle write A 1 D 3 WN 1, I Increment Full cycle D Full cycle write memory is initiated 
(file 1) + 1--N, f1 write and N register is updated as well as 

1 1 0 1 ·f1. 
2) Half cycle read A 2 2 2 RM 2,H Transfer Half cycle 2 Half cycle read memory is initiated 

(file 2) M,f2 read while M register is updated directly 
0 0 1 0 from f2. 

3) Half cycle write A 2 B 2 WM 2,L,H Add Link Half cycle B Half cycle write memory is initiated 
(file 2) + (Link)--M, f2 write while file 2 and M are updated by 

1 0 1 1 adding (LINK). 
4) Full cycle write A 3 1 1 WT 3 Transfer Full cycle 1 Full cycle write memory is initiated, 

(file 3) .. T, f3 write T is updated from f3 on the same 
0 0 0 , , command. 

5) Half cycle read Inhibit file write Decrement Half cycle Half cycle read memory is initiated, 
. (f1l-1-N ~ read followed by T register access on the 
followed A 1 6 B RN* 1, D, H 0 1 1 0 6 next instruction. This will cause a 
(f3) + (T)-~T, f_a_ 8 3 2 1 AT 3,T - - - - - program delay until the third clock. 

6) Half cycle write followed Transfer Half cycle Half cycle write memory is initiated, 
by loading T write followed by loading T on next 
(f3t--T, f3 A 0 3 0 w O,H 0 0 1 1 3 instruction. No. time delay occurs, 

8 3 0 1 AT 3 - - - - - but data written into memory may 
be incorrect. 

7) Full cycle read, decrement Decrer:nent Full cycje A full cycle read is initiated. (f1) is 
(file 1) and transfer to M read decremented and transferred to M. 
(f1) - 1---M, ft A 1 4 2 RM 1, D 0 1 0 0 4 If (LINK)= 1 the contents of the 

file are transferred without being 
decremented. 



Command Mnemonic OP Code 

Copy c Bf 

B I f c H r I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

The selected operand is placed in the file register designated by f, if * is a 
0-bit, and in the register designated by r. The LINK is not affe,cted. The c 
field controls selection of the operand, incrementing the operand, and 
modification of condition flags as follows: 

c-bits 
7 6 5 4 

x x x 

x 1 x x 

x x 1 x 

x x x 1 

Affected: 

Operation 

Link Control: The content of LINK is added to the sum. 
The zero condition flag can be reset but cannot be set, pro­
viding a linked zero test over multiple bytes. 

Add One: One is added to the sum. 

Select T: The contents of the T register or Input bus are 
selected as the operand. If the T register is not sulected, the 
operand is zero. 

Modify condition flags: The condition flags are updated 
according to the result. 

F, Condition Flags, r 

This command is used to transfer T to a selected file register, with the 
option of incrementing or adding LINK while transferring. It is also used 
for inputting data, because when the input control flip flop (I 03X) is set 
during an input mode, operate commands selecting T get thu input bus 
instead. 

The command can be used to test the condition of T by selecting fO as the 
file register (which is unaffected) and setting the modify condition flag in 
the c field. 

The command can also be used to clear one file and another selected 
register by not selecting any input in the c field. 

Command Execution Time - 220 nanoseconds. 

112 



File register 1 is used for all examples except setting condition flag example. 

Examples of Copy Command: 

Machine Destination for 
Code c field for Copy Commands Copy Commands 
f d 
i e Mod. 

0 I s Add Select Cond. Hex. Selected Binary Hex. 
Examples p e c t Link 1 T Flags Code Registers Code Code Mnemonics General Discussion 

(T)-f1 B 1 2 0 0. 0 1 0 2 f1 0000 0 c 1, T (T) is transferred, 
unaltered to file 1. 

(T) + 1-f1,N B 1 6 3 0 1 1 0 6 f1, N 0011 3 CN 1,1,T (T) is incremented and 
transferred to file 1 , 
and to the N register. 

(T) +(LINK) ·-f1 B 1 A 0 1 0 1 0 A f1 0000 0 c 1,T,L (T) is added to (LINK) 
and transferred to f1. 

o--f1, N B 1 0 3 0 0 0 0 0 f1, N 0011 3 CN 1 File 1 and N registers 
are cleared because no 
input is selected. 

m-f0,c B 1 3 0 0 0 1 1 3 fo 0000 0 c O,T,C Condition flags are set 

Set Condition Flags according to the state 
of (T). File 0 can't be 
loaded by this instruc-
tion so is unchanged. 

Set DIXX 7 0 E 0 K O,X'E' The input flip flop is 
set by the DIXX 

Delay 1 0 0 0 LZ X'OO' command, so the copy 
T command transfers 

(T)-f1, T B 1 2 1 0 0 1 0 2 f1,T 0001 1 CT 1,T the Input bus to fil~ 1 
and to T. 

Reset DIXX 7 0 8 0 K 0,8 



Command Mnemonic OP Code §ymbol ----
OIR 0 Cf AVB 

c f c H r I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

The selected operand is logically inclusive-ORed on a bit,.for-bit basis with 
the contents o-f the file register designated by f and the result is placed in 
the file register, if * is a 0-bit, and in the register designated by r;.The LINK 
is not affected. The c field controls selection of the operand and modifica­
tion of the condition flags as shown below: 

c-bits 
7 6 5 4 

1 x x x 

x 1 x x 

x ~ 1 x 

x x x 1 

Affected: 

Operation 

Link control: The zero condition flag can be reseit but can­
not be set, providing a linked zero test over multiple bytes. 
:See the description of the add command for a detailed 
description of linked zero test. 

Select complement T: The complement of the contents of 
the T register is selected as the operand. If the T register is 
also selected, the effective operand contains a 1-bit in each 
bit position. 

Select T: The contents of the T register or Input bus are 
~selected as the operand. If neither the T registe!r nor the 
complement of the T register is selected, the operand is zero. 

Modify Condition Flags: The condition flags am updated 
according to the resu It. 

IF, Condition Flags, r 

If both complement T and f are selected, the operand is all 1's. If the 
input bit is enabled (103X), complement T must not be selected. 

This command is used for the general function of logical ORing as needed 
in a microprogram. It also has the following specific applications: Setting 
flag bits without disturbing other bits (with the OR function it doesn't 
matter if the flag is already set since there is no carry); moving data from a 
file to another register by not selecting any operand; setting all 1's in a file 
register and/or one other selected register by selecting both T and T 
complement as operands; combining two numbers into one byte, such as 
for assembling hexadecimal digits into multiple digit numbers after the 
digits have been input to the computer as a string. 

Bit pattern example of OR function: 

file 1 
T 

Result 

Binary 

01101000 
00110100 

01111100 
Command Execution Time - 220 nanoseconds. 

114 

Hexadecimal 

'68' 
'34' 

'7C' 



File register 1 is used for all examples. 

Examples of OR command: 

Machine 
Code c field for OR commands 

Destination for 
OR command results 

f d --~--.-~~~-r-~~--..~~-.-~---if--~~--....~~~~~-1 

Flow Chart 
Notation 

tf1) V (Tl--Unk, C 

i e 
o I· s 
p e c t Link 

c 1 2 9 0 

c 1 0 3 0 

c 1 2 0 0 

c 1 6 s a 

c 1 6 0 0 

c 1 8 8 

Select 
Comp. 

T 

0 

0 

0 

0 

Select 
T 

0 

Mod. 
Cond. Hex. Selected Binary 
F Lags Code Registers Code 

0 2 T 1001 

0 0 0011 

0 2 0000 

0 6 N 1011 

0 6 0000 

8 none 

~ex. 
Code Mnemonics General Discussion 

9 OT* 1, T OR (file 1) with (T), 
inhibit file write put 
result in T. 

3 ON 1 

0 0 1, T 

Move (file 1) to N by 
OR ing with 0 and 
putting result in N. 

OR (file 1) with {T) 
and put resuli in 
file 1. 

8 ON* 1 ,T ,F Set N = FF (all ones) 
by .QRing (f1) with 
T, T and putting 
result in N. 

0 0 1,T,F Setf1=FFby _ 
ORing f1 with T, T 
and putting result 
in f1. 

8 O* 1,T,L,C Perform conditional 
test on (f1) V (T) 
without changing f1 
or T. Select L to 
perform linked zero 
test with a previous 
command. 



Command Mnemonic OP Code Symbol 

Exclusive OR X Of A/\ B 

D f 

15 14 13 12 11 10 9 8 7 6 5 1 0 

- I nhibi1 File Write 

The selected operand is logically exclusive-ORed on a bit for bit basis with 
the contents of the file register designated by f and the result is placed in 
the file register, if * is a 0-bit, and in the register desig·nated by r. The LINK 
is not affected. The c field controls selection of the operand and mod_ifica­
tion of the condition flags as shown below: 

c-bits 
7 6 5 4 

1 x x x 

x 1 x x 

x x 1 x 

x x x 1 

Affected: 

Operation 

Link Control: The zero condition flags can be reset but 
cannot be set, providing a linked zero test over multiple 
bytes. See the description of the Add command for a 
detailed description of linked zero test. 

Select Complement T: The complement of the contents of 
the T register is selected as the operand. If the T register is 
<llso selected, the effective operand contains a 1-bit in each 
bit position. 

Select T: The contents of the T register or input bus are 
selected as the operand. If neither the T register nor the 
complement of the T register is selected, the operand is zero. 

Modify Condition Flags: The condition flags are updated 
according to the result. 

F, Condition Flags, r 

If both T and T are selected, this command produces the one's comple­
ment of the value in the file register. If the input bus is enabled (103X), 
complement T must not be selected. 

This command is used. for the following functions: general purpose ex­
clusive OR; data comparison; ones complementing; and flippin1B selected 
bits such as controls and status flags. 

Bit pattern example of exclusive OR. 

file 1 
T 

Result 

Binary 

01101100 
00011010 

01110110 

Command execution time - 220 nanoseconds. 

116 

Hexadecimal 

'6C' 
'1A' 

'76' 



..... ..... 
" 

File register 1 is used for all examples. 

Examples of Exclusive OR command: 

Machine 
Code 
f 

Example i 
Flow Chart 0 I 
Notation p e c 

{f1)¥ {T)-T D 1 2 

{f1)¥ o-N,f1 D 1 0 

{f1) -V {Tr-- f1 D 1 2 

-
(f1i-¥ (Ti, (T)--T - D 1 6 

t 1 -v m, m- t 1 D 1 6 

(f1) -v m-Link, c D 1 B 

c field for OR commands 
d 
e Select Mod. 
s Comp. Select Cond. 
t Link T T Flags 

9 0 0 1 0 

3 0 0 0 0 

0 0 0 1 0 

B 0 1 1 0 

0 0 1 1 0 

8 1 0 1 1 

Destination for Exclusive 
OR command results 

Hex. Selected Bil)ary Hex. 
Code Registers Code Code Mnemonics General Discussion 

2 T 1001 g, XT* 1, T ' Exclusive OR {file 
1) with {T) inhibit 
file write, put 
result in T. 

0 N, f1 0011 3 XN 1 Move {file 1) to N 
by exclusive ORing 
with 0 {same resu It 
as OR), put result 
in N . 

2 f1 0000 0 x 1, T Exclusive OR {file 
1) with {T) and put 
result in file 1. 

6 N 1001 9 XT* 1,T,F Produce ones com-
plement of (f1) and 
place result in T. 

6 f1 0000 0 x 1,T,F Produce ones com-
plement of {f1) and 
put it back into f1. 

B none 1000 8 X* 1, T, Perform conditional 
L,C test and linked zero 

test on {f1) ¥ {T) 
without changing 
{f1)or{T). 



Command Mnemonic OP Code Symbol 

And N Ef l\ /\ B 

E c J 
15 14 13 12 11 10 9 8 7 6 5 

- Inhibit File Write 

The selected operand is logically ANDed on a bit-for-bit basis with the 
contents of the file register designated by f and the result is placed in the 
file register, if * is a 0-bit, and in the register designated by r. The LINK is 
not affected. The c field controls selection of the operand and modifica­
tion of the condition flags as shown below: 

c-bits 
7 6 5 4 

x x x 

x 1 x x 

x x 1 x 

x x x 1 

Affected: 

Operation 

Link control: The zero condition flag can be reset but 
cannot be set, providing a linked zero test over multiple 
bytes. See the description of the add command for a detail­
ed description of a linked zero test. 

Select complement T: The complement o'f the contents of 
the T register is selected as the operand. If the T register is 
also se1ected, the effective operand contains a 1-bit in .each 
bit position. 

Select T: The contents of the T register or Input bus are 
selected as the operand. If neither the T register nor the 
complement of the T register is selected, the operand is 
zero. 

Modify condition flags: The condition flags are modified 
by execution of the command. Updated according to the 
result. 

F, Condit ion Flags, r 

If both T and 'fare selected and And command moves the data, unchanged 
from the selected file register to the designated destination register. If the 
input bus is enabled ( 103X), complement T must not be selected. 

The and command is used for the following functions: General purpose 
anding of files and T; resetting selected flag or status bits, without dis­
turbing other flags; and masking out parts of a byte. 

118 



..... ..... 
c.o 

File register 1 is used for all examples. 

Examples of And Command: 

Machine 
Code 

Example f d 
i· e 

Flow Chart 0 I s 
Notation p e c t 

(f1)A (T)---f1 E 1 2 0 

(f1)AO-N,f1 E 1 0 3 

(f1)/\ (T)___.T E 1 2 9 

(f1)/\(T), (T)---N E 1 6 B 

(f1YJ\(T)-.f1 E 1 4 0 

(f1) J\ (T) - Link, C E 1 B 8 

c field for And commands 

Select Mod. 
Comp. Select Cond. 

Link T T Flags 

0 0 1 0 

0 0 0 0 

0 0 1 0 

0 1 1 0 

0 1 0 0 

1 0 1 1 

Destination for 
And command results 

Hex. Selected Binary Hex. 
Code Registers Code Code Mnemonics General Discussion 

2 f1 0000 0 N 1,T (f 1) is anded with (T). 
The result is put into 
f1. 

0 N, f1 0011 3 NN 1 (f1) is anded with 0. 
The result (which is 0) 

-~ is put into N, and f1 .. 

2 T 1001 9 NT* 1,T (f1) is anded with (T). 
The result is put in T 
and inhibited from f1. 

6 N 1011 B NN* 1,T,F (!.:J) is anded with (T), 
(T) which is same as 
anding with FF (all 
ones). Result is put in 
N and inhibited from 
f1. 

4 f 1 0000 0 N 1,F (f 1) is anded with (T). 
The resu It is put into 
f1· 

B none 1000 8 N 1,T, (f1) is anded with (T). 
L,C The result is not put in 

any register. Only the 
condition flags are set. 
Use of link results in 
multi byte zero test. 



Bit pattern examples of the and function. 

file 1 
T 

Result 

file 1 
T 

Result 

file 1 
T 

(Select T) 
Result 

file 1 
T,'f 
Result 

Binary 

01101011 
10101101 

00101001. 

Hexadeci111al 

'6B' 
'AD' 

'29' 

01000010 '42 
10111111 'BF' 

00000010 '02' 

"" Reset a flag 

10100101 'A5' 
11010011 'D3' 

(00101100) ('2C') 

00100100 '24' 

10100101 'A5' 
11111111 'FF' 

10100101 'A5' 

Command Execution Time - 220 nanoseconds. 

Command Mnemonic OP Code 

Shift H Ff 

F f c 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Inhibit File Write 

The contents of the file register designated by f is shifted left or right one 
bit position and placed in the file register, if * is a 0-bit, and in the register 
designated by r. The high order or low order bit which is shifted off is 
placed in LINK and in the overflow flag if the modify condition flag is 
selected. The c field controls the direction of shift, entry of an end bit, 
and modification of the condition flags as follows: 

c-bit 
7 6 5 4 

1 x x x 

x 1 x x 

Operation 

link control: The content of the LINK is inserted into the 
vacated low order or high order bit position. The zero con­
dition flag can be reset but cannot be set, providing a linked 
:zero test over multiple bytes. See the description of the add 
command for a detailed description of the linked zero test. 

Insert 1: A 1-bit is unconditionally inserted into the 
vacated low order or high order bit position; otherwise a 
0-bit is inserted unless the contents of LINK is selected. 

120 



c-bit 
7 6 5 4 

x x 1 x 

x x x 1 

Affected: 

Operation 

Shift right: if bit 5 is a 1-bit, the operation is a right shift; 
otherwise a left shift is performed. 

Modify condition flags: The zero and negative flags are 
updated according to the result. The content of the bit 
shifted out is placed in the overflow flag. 

F, LINK, Condition Flags, r 

This command provides great flexibility for various shifting functions 
mechanized by microprogramming. These are as follows: 

• Left or right shifting; 
• End around carry or no end around carry; 
• Arithmetic or logical shifts; 
• Multiple byte shift register implementations in either file registers or 

core memory; 
• Pattern rotations by successive shifting of 8 files one bit at a time and 

assembling into a 9th file; 
• Set or reset link bit by shifting with no destination register. 

Bit pattern examples of shift command. All examples are for shift (t,) and 
put result back in f1. 

file 1 
Sequence file 1 Hexa- Condition 

Instruction Number Binary Link decimal Flags 

Shift Right before 01101001 0 '69' ---
after 00110100 1 - '34' ---

Shift Left before 01101001 1 '69' ---
after 11010010 0 '02' ---

Shift 
Right before 00111000 1 '38' ---
Enter after 10011100 0 '9C' ---
Link 

Shift before 10001010 0 '8A' 
Left 

---

Enter 1 
after 00010101 1 '15' ---

Shift Left 
Modify before 11001011 0 'CB' ---
Condition after 10010110 1 '96' 011 
Flag 

Shift Rigf:lt 
Modify before 00000001 0 '01' ---
Condition after 00000000 1 '00' 101 
Flag 

121 



Instruction codes for bit pattern examples of shift command. 
These examples are the same except for additional Destination Registers. 

Machine Destination for 

l Code c field Shift Command results 
f d 
i e ,,Mod. 

Flow Chart 0 I s Insert Insert Shift Cond. Hex. Selected Binary Hex. 
I Example Notation p e c t Link 1 Right I Flags Code I Registers Code Code Mnemonics I General Discussion I 
Shift right (f1 )@R--f1 ,T F 1 2 1 0 0 1 

1 
0 2 f1 ,T 0001 1 HT 1,R I (file 1) is shifted right 

result to one bit, link, or 1 are 
f1, T. I I not inserted. The result 

l I l is put in T and f1. 

Shift left (f1)@L-F1 F 1 0 0 0 0 0 0 0 fl 0000 0 H 1 (file 1) is shifted left 
result to one bit, link or 1 are 
f,. not inserted. The result 

is put in fl. 

Shift right (f1 l@R+LK--f1 ,N F 1 A 3 1 0 1 0 A f1 ,N 0011 3 HN 1,R,L (file 1) is shifted right 
insert link one bit, (Link) is 
result to inserted in vacated left 
f1 IN. hand bit. Result is put 

in fl and N. 

Shift left (f1 l@L +1--f1 ,M F 1 4 2 0 1 0 0 4 fl, M 0010 2 HM 1, I (file 1 l is shifted left. 
insert 1 1 is inserted into the 
result to vacated right hand bit. 
f1, M. Result is put in f1 and 

M. 

Shift left (f1l@L-f1,C F 1 1 0 0 0 0 1 1 fl 0000 0 H 1,C (file 1) is shifted left. 
modify cond. The result is put into 
flag. Result file 1. Condition flags 
to f1. are modified. 

Shift right (f1)@~F1,C IF 1 3 01 0 

I 
0 1 1 3 t1 uooo 0 H ·1,R,C I {fiie i) is shifted right. I 

Modify cond 

l l I The result is put into j 
flag. Result file 1. Condition flags 
to f1. are modified. 



Command Mnemonic 

Execute E 

0 I 
15 14 13 12 11 10 9 8 7 6 6 4 3 2 1 0 

The eight-bit contents of the U register are ORed with the eight high order 
bits of the execute command to form an effective command. This provides 
a means of partially modifying the contents of a read only storage location. 
The OR ing is performed before the output of the read only storage is gated 
into the R register. The meaning of bits present in positions 0-11 is depend­
ent upon the desired effective operation code after the modification. Due 
to the lookahead feature of the read-only memory, the new contents of the 
U register are not available until after one machine cycle following the 
transfer of data to it. , 

The execute command provides a means for program modification of a 
command; This capability is used for many different functions, three of 
which are as follows: 

• Indexing of file registers in a program loop. 
• Having a general purpose instruction which may take on different 

specific functions, such as load a register, add to the register, AND with 
the register, etc., depending on program variables. 

• Selection of alternate file registers depending on program variables. 

Sometimes a combination of two of the above is used. 

The U register can be set with the load U command, or by being designated 
as the destination register of an operate class command, such as Add, Copy, 
etc. 

For file register indexing, a separate file register is designated as an index 
register. It is loaded with an initial value, then incremented, with the result 
being put in U each time through the loop, until the loop is exited. 

Examples of execute commands: 

U register 

Execute 
Command 

Effective 
Command 

'84' 

~This command is stored in ROM 
'0021'...,....- ET 0, 2 

'8421' 

Incrementing the U register value leaves the command the same, but 
changes the file register number to 5. If this continued to file F, the next 
increment would change the command to a subtract. 

123 



U Register 

Execute 
Command 

Effective 
Command 

'F1 I 

../"'This command is stored in ROM 
'0020'~ E 0, 2 

'F 120, {Shift Right file 1 
H 1, R 

The meaning of the c field of the lower two hexadecimal digit; in the 
execute command changes with the OP code value in the U register. 
Therefore the c field is left as a digit in the MNEMONIC for the execute 
command. 

Commands can also be modified by the U register by using the operate 
commands with a 7 in the destination register. This method is advantage­
ous if there are two variable functions to be done in one loop, with one U 
register setting. For example, a program may be indexing through a set of 
files where it is necessary to add to a file, and shift the same file in the sanie 
program loop. This could be mechanized as follows: 

(fF) + 1-- U, fF 

---NOP 

(fo) + (T)----fo, Destination= 7 (OR U with command) 

(Fo) @ R-----Fo. Destination= 7 

The coding for this is: 

another command 

Machine 
Code 

'8F46' 

'8027' 

'F027' 

Assume U = '04' after the first command. 

The effective commands following are: 

'8427' 

'F427' 

Mnemonic 

AU F, I 

AS 0, T Add to file 0 

HS 0, R Shift file 0 

Add to file 4 

Shift file 4 right 

This method of command modification has the limitation of no destination 
register since the destination register code position is tied up selecting U 
as a modifier to the command. The execute command does not have this 
restriction. 

124 



COMMAND REFERENCE TABLE 

Mnemonic 

Command Operation Code Comments 

Load T LT 11/19 I Literal 
I I 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

LoadM LM 12 r Literal 
I I 

15 14 13 12 11 10 9 8 7 6543210 

Load N LN 13 I Literal 
I I 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Load U LU 16 I Literal 
I I 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Load Zero LZ I 10 I Literal 
I I 

16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Load Seven LS 17 I Literal I I I 
15 14 13 12 11 10 9 8 7 654321 0 

7 0 0 No Op 

1 7 0 Enable Serial TTY 

7 0 2 Reset Ts 

F 0 2 Set Ts 

7 0 4 Disable} External 

7 0 s Enable Interrupts 

7 0 Disable } Real Time 

7 2 0 Enable Clock 

7 4 0 Load Protect Bit 

7 s 0 Halt 

125 



Mnemonic 

Command Opertion Code Comments 

Jump JP 14 I Literal J 000-0FF 
I I 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

15 I Literal J 100-1 FF 
I I 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

lC I Literal J 200-2FF 
I I 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

10 I Literal J 300-3FF 
I I 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Load File LF 2 I I Literal J I 
15 14 13 12 11 10 9 8 7 8 5 4 3 2 1 0 

Add To File AF 3 I I Literal J I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Test Zero TZ 4 I I Literal J I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Test Not Zero TN 5 I I Literal J I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Compare CP 6 I I Literal J I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

126 



Mnemonic 

Operand 
Command Operation Code Comments Field 

Control K 7 I I l *I 
r I 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 No Op 

Enter Sense SW 

2 Shift Right 4 

4 Enter Internal Status 

7 Enter Console SW 

8 Clear 1/0 

9 Set COXX (in MICRO 810/820) 

A Set DOXX (in MICRO 810/820) 

~ Space Serial TTY 

c Set CACK (in MICRO 810/820) 

D Set IACK (in MICRO 810/820) 

E Set DIXX (in MICRO 810/820) 

F Spare 

Add Ar* I 8 I I 
c 

I* I 1 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

x x x Link L 

x 1 x x Add 1 

x x 1 x Select T T 

x x x Modify Condition Flags c 

Subtract Sr* 9 
I I 

c 
I* I r ] 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

x x x Link L 

x 1 x x Decrement D 

x x 1 x Select T T 

x x x Modify Condition Flags c 

127 



Mnemonic 

Operand 
Command OperationCode Comments Field 

Memory Wr* A I I c 
I* I Rr* 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

x x x Link L 

x 1 x x Decrement D 

x x Increment 

x x 1 x Half Cycle Operation H 

x x x Write Operation (supplied by OP Code) 

Copy Cr* B I I c 
I* I r I 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

xx x Link L 

x 1 x x Add 1 

x x 1 x Select T T 

x x x Modify Condition Flags c 

OR Or* c I I I* I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

x x x Link L 

x 1 x x T F 

x x 1 x T T 

x x x Modify Condition Flags c 

Exclusive 

I I I· I OR Xr* D c 

16 14 13 12 11 10 9 8 7 6 6 4 3 2 1 0 

x x x Link L 

x 1 x x T F 

x x 1 x T T 

x x x Modify Condition Flags c 

128 



Mnemonic 

Command Operation Code Comments 

AND 
N<* ""~' J,,. 9 J, : ' .I :1, ' J 

x x x Link 

x 1 x x f 

xx 1 x T 

x x x Modify Condition Flags 

Shift Hr* F I I c H r] 
16 14 13 12 11 10 9 8 7 6 6 4 3 2 1 0 

x x x Link 

x 1 x x Insert 1 

x x 1 x Shift R 

x x x Modify Condition Flags 

129 

Operand 
Field 

L 

F 

T 

c 

L 

R 

c 



CPU MICRO COMMAND REPERTOIRE 
r------t-_C_o_d __ e_ Mnemonic Name O_.e._eration 

Literal OXXX E Execute OX is ORed with U Register 
Class 10XX LZ Load Zero No Operation 
Commands 11 XX LT Load T XX replaced contents of T 

12XX LM Load M XX replaces contents of M 
13XX LN Load N XX replaces N & M is cleared 
14XX JP Jump to page 0 
15XX JP Jump to page 1 
1 CXX JP Jump to page 2 
1 DXX JP Jump to page 3 
16XX LU Load U XX replaces contents of U 
17XX LS Load Seven Internal Controls 
2fXX LF Load File (f) f =File number 
3fXX AF Add to File f =File number 
4fXX TZ Test if zero Skip on no bits match 
5fXX TN Test if zero Skip on Any bits match 
6fXX CP Compare Skip on f +XX 28.1 

t---·--- Cod;- Mne~onic _N_a_m_e _______ c_F_i_e-ld--(B_i_n_a-ry:1----1 
t-------+-- --t----------------t---·-·--- ------·-·--+----------·-·--·---
Operate 7fC •r K Control 0000 No Operation 
Class 0001 Enter Sense Switches 
Commands 0010 Shift Right Fou Bits 

0100 Enter I nterna I Status 
0111 Enter Console Switches 
1000 Clear 1/0 Mode 
1001 Control Output 
1010 Data Output 
1011 Space Serial TTY 
1100 Concurrent Acknowledge 
1101 Interrupt Acknowledge 
1110 Data Input 
1111 Spare 

r---- l-·--t---------+----·------1----'----------
BfC *r A Add 0001 Modify Flags 

0010 File+ T 
0100 Sum+ I 
1000 Sum-+ Link Bit ------+----t--·--·------;----------------'---+------·---·-

9fC *r S Subtract 0001 Modify Flags 
0010 File+ T complement 
0100 Inhibit Increment 
1000 Difference+ Link 

t---------1------+----·-------·---+-----·---·--------l----··--·------··-
AfC *r R/S Read/Write OOXX Transfer 

Memory 01 XX Decrement 
10XX Add Link 
11XX Increment 
XX 1 X Half Cycle 

i-------+----1---------t------------+--X_X_X_l_W_ri_te_(_N_o_t _R_e_a_d_) 

If*=:== 0, 
result of 
operation 
is placed 
in file 
(f). 

BfC*r C Copy XXX1 Modify Flags 
XX1 X Select T 
X1 XX Select + 1 
1 XXX Select Link 

1----f--------+----------+---------·-
CfC*r • 0 OR XXX1 Modify Flags 

XX1X Select T 

DfC*r x 
EfC*r N 

FfC*r H 

Exclusive OR 

AND 

Shift 

130 

X1 XX Select T complement 
1 XXX Unked Zero T1!st 

Same as OR 
Same as OR 

XXX1 Modify Flags 
XX1 X Shift Right 
X1 XX Insert ONE 
1XXX Insert Link 



CHAPTER 3 

INPUT/OUTPUT 

GENERAL DESCRIPTION 

The CPU provide!i, an extremely fast, elementary input/output capability. 
:The data paths and control functions are simple elements that are se­
quenced from the control memory with flexible disciplines. The fact that 
the 1/0 element is very fast, 220 ns/step, microprograms (firmware) in the 
control memory can implement facilities with a high degree of versatility 
in timing, data paths and 1/0 capabilities such as priority interrupts, fully 
buffered data channels, macroprogrammable transfers, and special purpose 
communication multiplexer channels. This basic 1/0 element called the 
"Byte 1/0 Bus" is described in the following paragraphs. In addition, the 
direct memory occurs (OMA) and seriat data interface are described. 

BYTE 1/0 BUS 

The byte 1/0 facility allows for data transfers over a party-line 1/0 bus 
under microprogram control. This 1/0 facility consists of a byte input bus, 
a byte output bus, and a three~bit 1/0 control register. 

The 1/0 control register is loaded by bits 6-4: of the control command. 
The contents of the 1/0 control register define an 1/0 bus mode. The 1/0 
control register outputs may be decoded to form individual control 
signals defining the type of transfer being performed on the byte 1/0 bus 
and the state of the serial interface output. Of the eight possible states of 
the 1/0 control register, one represents no activity on the bus, three are 
output modes, and four are input modes. One of the output modes re­
moves the MAR King current from the serial interface output a SPACE to 
be output. 

The byte 1/0 control modes are given in Table 10. 

Table 10. Byte 1/0 Control Modes 

Control Command 

Hex Mode Control Activity 

0 0 0 0 0 No Operation 
0 0 0 1 1 Enter Sense Switches 
0 0 1 0 2 Shift "f" Right Four Places 
O 1 0 0 4 Enter Internal Status 
O 1 1 1 7 Enter Console Switches (0-7) 

- - - - - -1 o o o - - - - - - - - 8 - - o- - Ciear l/o Mode - - - - - -
'OUTPUT ·1 0 0 1 9 1 SPARE(*) 
FUNCTIONS 1 0 1 0 l/O A 2 SPARE(*) 

______ 1_0_ 1_ 1 __ CONTROL B 3 Space Serial Interface 
1 1 0 0 C 4 SPARE(*) 

INPUT 1 1 0 1 D 5 SPARE (*) 
FUNCTIONS 1 1 1 0 E 6 SPARE (*) 

1 1 1 1 F 7 SPARE 

*These functions are used in the MICRO 810 and 820 1/0 systems. · 

131 



When the c field equals hexadecimal 8-F, the operations are associated 
with external input/output, and the three low order bits of care placed in 
the 1/0 control register. 

This three-bit register generates the control signals for the 1/0 bus by a 
decoding of the register outputs. It is loaded and cleared by a control 
command and therefore the timing of 1/0 control signals is under com­
mand control. There are three output modes and four input modes. The 
high order bit of the register is the input flag. When this bit is a 1-bit the 
input bus is substituted for the T register inputs, thus providing a source 
of data when executing an external 1/0 control command. On the same 
operation, data can be moved from the designated file register or the input 
bus, as determined by the current contents of the 1/0 control re,gister, to 
the designated file or destination register. The data source is specified as 
follows: 

1/0 Control Register Mode 

103X 102X 101X 

I 0 
: 0 
: 0 
I · 0 
: 1 
I 1 
: 1 

0 
0 
1 
1 
0 
0 
1 

O=O 
1 = 1 
0=2 
1 = 3 
0=4 
1 = 5 
0=6 

1~\ l /"7 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

CJ>l·H 

Source 

Designated File Register 
(Output Data or Control) 

Input Bus 
(Input Data or Control) 

Mode Control Activi_t.~y __ _ Comments 

0 Clear 1/0 Mode: 

1-7 Set 1/0 Mode: 

The 1/0 control register is cleared. Data from 
the designated file or Input bus can be trans­
ferred to the designated file register and 
register (R). 

The 1/0 Control register is loaded with the 
three low order bits of c placing it in one of 
seven 1/0 bus or serial interface modes. 
These modes are described above. Data from 
the designated file or Input bus can be trans­
ferred to a designated file register and regis­
ter (r). 

NOTE: Once an 1/0 control register mode has been SET, an 1/0 clear 
mode must be executed to change the 1/0 control register mode 
of operation. 

132 



Internal Status - Interrupt 

Eight internal status bits are provided to designate a particular internal 
interrupt condition. When any of the internal status bits are a 1-bit, the 
internal interrupt flag (bit 4) in the file register 0 is also a 1-bit. This flag 
bit is tested by the microprogram to detect the presence of the internal 
interrupt condition. The internal status bits are entered via the A bus into 
the selected file register by a control command. The eight internal status 
bits have the assignments given- as follows: 

Internal Status Bits 

Internal Status 

Bit 

0 
1 
2 
3 
4 
5 
6 
7 

Without Processor Option Bd 

Console Interrupt 
SPARE (OMA)* 
SPARE 
SPARE 
SPARE 
SPARE 
Console Halt Switch 
SPARE 

With Processor Option bd 

Console Interrupt 
SPARE (OMA)* 
Real Time Clock Interrupt 
SPARE 
Memory Parity Error Interrupt 
SPARE 
Console Halt Switch 
Power Fail/Restart Interrupt 

*Not available as SPARE if OMA is installed. 

All the internal status bits except the console interrupt and halt are associ­
ated with processor options and may be reassigned for special applications. 

Bus Lines 

The byte 1/0 bus consists of 

• input data lines 
• input cmtrol lines 
• output data lines 
• output control lines 

The electrical implementation of the input and output bus lines is shown 
in Figure 14. 

Input Lines 

The data lines are an input to the B bus gating. The control lines are input 
to bits of file register 0. The input lines are ground TRUE signals which' 
are properly terminated at the processor. If the bus is carried out of the 
basic enclosure it also must be terminated at the remote end. Each 
peripheral device gates information onto the bus by means of open colrec­
tor type 944 OTL drive circuits. Up to 15 drivers may be connected to 
each line. 

The logic level on the twisted pairs are: 

One 0 Volts 
Zero - +3 Volts 

133 



*Typical Byte 1/0 Control Modes 
(MICRO 810/820) 

Mode Control Activity 

0 None 
1 Control Output 
2 Data Output 
3 Space Serial Interface 
4 Interrupt Acknowledge 
5 Concurrent Acknowledge 
6 Data Input 
7 Spare 

----------, 

+!5 

! 
2oon~ 

RECEIVER 

I 
I 

DEVICE 
CONTROLLER 

~ .. M 

-------.....-----------------------~~ 
I 
I 
I 
I 
I 
I ________ _, 

ENABLE DATA 

ENABLE DATA 

TRANSMITTERS 

RECOMMENDED CONFIGURATION 
NS TEN GATES 
M'S FIFTEEN GATES 

Figure 14. Bus Lines 

134 

Term 

None 
COXX/ 
DOXX/ 
SP1X/ 
IACK/ 
GACK/ 
DIXX/ 
SP3X/ 



Output Lines 

The output data lines originate with the FALSE out.put of the T register. 
The output control lines originate with the 1/0 control register. If all 
peripheral devices on the bus are local to the enclosure, and the bus does 
not leave the enclosure, then the bus is standard logic levels and no DTL 
drivers and terminations are used. It may be necessary to repower the 
signals. If the bus leaves the enclosure, an 1/0 control board is required to 
provide type 944 DTL output drivers and decoding the control register. 
The cable length can be up to 30 feet in length and must be terminated at 
the remote end. Up to 15 receivers can be accommodated. The levels on 
the twisted pairs are: 

One 0 Volts 
Zero - +3 Volts 

Control Lines In Typical Use· in the System 

External Interrupt (EINT/): A peripheral device makes this line low to 
request an interrupt of the macroprogram. 
The microprogram must respond with an 
1/0 acknowledge (mode 5) * signal. This line 
is bit 7 of the file register 0 where a 1-bit 
indicates an external interrupt request. 

1/0 Reply (ERPY/): 

1/0 Request (ECIO/): 

A peripheral device makes this line low in 
response to an 1/0 operation when closed­
loop operation is required. This line is bit 5 
of the file register 0. 

A peripheral device makes this line low in 
order to request a concurrent data transfer. 
The microprogram must respond with an 1/0 
acknowledge (mode 5)* signal. This line is 
bit 3 of the file register 0. / 

File Register O Flags 

Bit Flag 

0 - Overflow Result Condition 
1 - Negative Result Condition 
2 · - Zero Result Condition 
3 - Concurrent 1/0 Request Line** or (SPARE) 
4 - Internal Interrupt 
5 - 1/0 Reply Line** or (SPARE) 
6 - Serial Interface 
7 - External Interrupt Line** or (SPARE) 

**If a standard CPU interface is not used, these Flags may be used as 
SPARE bits. 

135 



I01X~tNTROL' CONTROL gg~~ 
102X LINE 1-------.i DECODER •DIXX 

RECEIVERS KIXX 

103X 0000 
0007 

co xx 

~
-----

OUTPUT BIT 0 OJI TA, 
BYTE FUNCTION 

!:ROM - ~~~ICE 
T CCIOE '"'~" [.,., _::""'" 

0000 
ODDO 0001 

0002 
0003 
0004 

0007 

0005 

0006 

0007 

FOOS FOO& 
8 LINES 

KIXX~ CONNECTION CONN 
LATCH 

DAXX 

MRES 

.:~:~ -_] ~i~TS 
DIGITAL 
MULTI­
PLEXER 

F005 FOO& 

Figure 15. 1/0 Interface Block Diagram 

Since the function code is only 3 bits instead of 4 it is effectively multi­
plied by 2 when put into the device and function code word. 

Description of functional block diagram (Figure 15). 

The control decoder receives the IOXX lines from the control line re­
ceivers and first decodes them into COXX, DOXX, and DIXX. These 
three are ORed to produce KIXX which is used to set and reset function 
and connect latches. 

The device address decoder becomes active whenever the board:; address 
appears on the ODOO-OD04 lines. DAXX is active only when COXX is 
active. Otherwise DAXX would become active every time the device 
address appeared on the output data lines. 

The function latches set or reset every time there is a KIXX pulse. The 
output functions FNOX, etc., are not enabled unless CONN is active. The 
functions are usud to enable the output latch. 

The connection latch is set when the board detects its device address and 
COXX is active. It is reset on the trailing edge of the next DIXX or DOXX 
pulse. 

The connection latch enables the functions and the input selectiion gate. 

The input selection gates place the input data onto the input bus during 
DI XX whenever the CONN latch has been set indicating that this board 
has been addressed. 

The output latches are updated to the values on the ODOX lines during 
DOXX whenever the corresponding function code FNNX is active. 

136 



Serial Interface 

The processor contains a serial interface capable of communicating with a 
full duplex teletype. The input from the teletype appears as bit 6· of file 
register 0 where a 1-bit indicates that the teletype is transmitting a SPACE. 
The output to the teletype normally transmits a·20 milliampere MAR King 
current which can be keyed off to send a SPACE signal by placing the 1/0 
control register in mode 3. Character assembly and disassembly, including 
all timing and synchronization, are performed by microprogramming. 

The serial interface is standard. A teletype or CRT wired for 4-wire full 
duplex 20 milliampere operation may be directly connected to the cable 
provided with the machine. Other types of serial 1/0 devices also may use 
this condition. 

Direct Memory Access 

The direct memory access (OMA) interface allows for direct connection 
to the memory address, data and control busses. Within the machine en­
closure there is a circuit board slot which is reserved for the OMA. This 
board may contain a channel to which a number of peripheral devices are 
connected, or a device controller which has direct memory access capabil­
ity. Generally the OMA system wilt be customized for special applications. 

The maximum data transfer rate is 909,000 bytes per second. The OMA 
1/0 takes precedence over the processor for memory operations. The OMA 
must supply its own address control. · 

Typical By_te 1/0 Interface 

To illustrate byte 1/0 programming, a typical interface has been selected 
which has minimum functions for transferring bytes in and out of the com­
puter. A more complex device, such as a tape controller, or card reader, 
using the byte 1/0 function would contain logic similar to this for trans­
ferring control, status, and data between the controller and the MICRO 
800. 

The byte 1/0 interface described contains the following basic functions. 

• Line receivers and drivers 
• Device address decoder 
• Function latch and decoder 
• Connection latch 
• Input multiplexer 
• Input selection gates 
• Output latches 
• Control decoder 

For the following examples assume that the device code is 00001. This 
results in the following device and function codes: 

Function Code Device and Function Code 

Binary Hex Binary Hex 

000 0 000 0 0001 01 
001 1 001 0 0001 21 
010 2 010 0 0001 41 
011 3 01100001 61 

137 



For summary purposes the logic terms used in the 1/0 interface 13xample 
(which are standard for MICRO 800 interfaces) are defined in Table 11. 

Table 11. Definition of Terms in 1/0 Interface Block Diagram 

COXX FUNCTION AND DEVICE CODE OUTPUT 
CONTROL PULSE 

DOXX DATA OUTPUT CONTROL PULSE 

DIXX DATA INPUT CONTROL PULSE 

KIXX INTERFACE CLOCK PULSE FORMED BY ORing 
COXX, DOXX, and DIXX 

DAXX DETECTED DEVICE ADDRESS ENABLED BY 
co xx 

ODOO-OD07 OUTPUT DATA LINES RECEIVES FROM MICRO 
800 T COMPLEMENT REGISTER 

FNOX-FN7X LATCHED AND DECODED FUNCTIONS ENABLED 
BY CONN. 

FD05-FD06 LATCHED BUT UNDECODED FUNCTION BITS 

CONN CONNECT LATCH INDICATING THAT THE 1/0 
BOARD HAS RECEIVED l

1
TS DEVICE CODE . 

WITH COXX. 

MAES MASTER RESET FROM MICRO 800 

101X-103X 3 BITS FROM CONTROL OUTPUT REGISTER 

DIG MUX DIGITAL MULTIPLEXER 
--------------·-------

See Figure 16 for 1/0 signal source. 

138 



INPUTS OUTPUTS r, CPU 

ID01/ 
}J10 J10{ 

INPUT 1002/ 
DATA 1003/ 
SIGNALS 1004/ 

1005/ 
1006/ 
1007/ 

~rg'~iROL { ECl0/ 

LINES ~':P~/ 
SERIAL TELETYPE TTIN 
INPUT [ DMAHI 

OMA INPUT OMAR/ 
CONTROL DMAW/ 

DMAS/ 

DMAH/} 850 OMAR/ CONTROL OUTPUTS = DMAS/ TO THE CPU 
A4S DMAW/ 

{ RUNPI FRONT PANEL HLTP/ 
CONTROL INTP/ 
SWITCH STPP/ 
INPUTS MAST/ 
FRONT PANEL DSXX 
SELECT SWITCH { CPEN 
INPUTS CPEN/ 

FRONT PANEL [ ES04/ 
SENSE SWITCH ESOS/ 
INPUTS ES06/ 

ES07/ 
CROO/ 

}J10 
CR01/ 
CR02/ 
CR03/ 

J12 { 
CR04/ 
CR05/ 

FRONT PANEL CR06/ 
COMMAND CR07/ 

J10{ 
SWITCH CROS/ INPUTS CR09/ 

CR10/ 
CR11/ 

J12{ 
CR12/ 
CR13/ 
CR14/ 
CR16/ 

·Figure 16. CPU Input/Output Signals 

139 



EXAMPLES OF 1/0 MICROPROGRAMMING 

Example 1. For the first Input/Output example the timing of events and 
the microprogram routine are described for outputting a byte 
from the MICRO 800 to latch 0 in the interface board with 
device code 01. 

Timing Diagram: Output a byte to latch register 0. 

I I I I 
OUTPUTJ I I I 
BYTE FUNCTION & l J OUTPUT DATA I l 
ODOX (S) I D~VICE CODE I eyTE I ---

--~: _r coxx i : _j_ __ 
I I I I 

----+I ___ I ----+- ~ DOXX 1---
rDAXX 1 : : ---......-.... 1 I I .-----

__ __......_,f KIXX i }--K-IX-x-·J__ __ _ 

I I I I 

-----+--:'--·----f CONN : l_ __ 

l J FNOX ! -L __ _ 
--~-'--'~· '---~~-· 

I : OUTPUT LATCH 0 BITS l -t-----
MICROPROGRAM L I 
FUNCTIONS I I LATCH O UPDATE TIME 

I i I... I 

I
: I . I R. eset COXX which I : 41 
1 ~I ~:~r~~sa~:xx 1 Reset ooxx which d82lctivates 

causes CONN and KIXX ancl resets 
FNOX to set. CONN and FNOX 

Load T with Set COXX which Set DOXX which 
device address then causes DAXX causes KIXX to 
and function and KIXX to become active, 
code for become active on and strobes the 
latch register 0 the interface output data into 
on this board board because the latch 0, because 

board's device FNOX is set. 
code is on the 
output data lines. 

140 



Microprogram: For outputting a data byte from the MICRO 800 to 
dev!ce 1, byte 0. 

Example 1. 

FLOW CHART MACHINE CODE ASSEMBLY LANGUAGE CODE 

L COMMAND 

DEVICE & FUNCTION 
CODE-T 040 1101 LT X'01' 
('01' -Tl 

041 7090 K 0,9 

3 CLOCK DELAY* 042 • 1000 LS X'OO' NOOP+ 043 1444 JP X'044' 
JMP TO NEXT COMM. 

044 7080 K 0,8 

GET OUTPUT DATA 
045 RN FROM CORE MEMORY A1C3 1, 1 

046 70AO K 0, 10 

3 CLQCK DELAY* 047 1000 LS X'OO' 
048 1449 JP X'49' 

049 7080 K 0,8 

REMOVE DATA FROM T 04A 

._.__ ANY INSTRUCTION WiTH T AS 
DESTINATION 

*This is the standard delay in the MICRO 810 to generate an 880 ns 
COXX and DOXX. It could be shorter if the interface is in the computer. 
Housekeeping can be done on delay clocks. 

141 



Example 2. For the second input/output example, the timing of events 
and the microprogram are described for inputting a byte from 
input byte 2 of device 01 to file register 1 and T. 

I I I I I 

I I I 1 ' OUTPUT ____I'FUNCTION & DEVICE I 
BYTE CODE I 1 ""-I -----
ODOX (8) j I I I 

coxx 1 I I 1 
~-I ,.._~,~~--.-,---1~~~~ 

__ J_ t DIXX : i ___ _ 
I I I 
I n INPUT DATA SAMPLE !IME 

I FUNCTION OF 
I 1 I I I INTERFACE 

INPUT j f INPUT
1 
D~TA VALU~ I 1..- DEVl~E 

DATA ~~-_,--' I 
BYTE J I I I 

DAXX l I I I 
~~--+-l----+1---1-----

1 I I I I 
... -K-IX-x--1 r KIXX I l 

---l l'-1 I 1----
. ____ t I CONN : i __ _ 

I I I 

, ___ ...,..f FD06 : }-----

1 I 
I I 
I I 
I I...- RESET DIXX 
I 
I 
L INPUT DATA FROM 

INPUT BUS TO f1 
ANDT. 

L SET DIXX WHICH ENABLES 
DATA TO THE INPUT BUS 

L RESET COXX WHICH 
DEACTIVATES DAXX 
AND KIXX 

L- SET COXX WHICH 
ACTIVATES DAXX 
AND KIXX 

142 



Microprogram for example 2 inputting a data byte from device 01, byte 2 
to f1 and T. 

FLOWCHART MACHINE CODE ASSEMBLY LANGUAGE CODE 

L COMMAND 

DEVICE & FUNCTION 
CODE TOT 060 1141 LT X'41' 
'41'-T 

061 7090 K 0,9 

3 CLOCK DELAY 
NOOP+ 062 1000 LZ X'OO' 
JMP TO NEXT COMM. 063 1464 JP X'64' 

064 7080 K 0,8 

065 70EO K 0, 14 

2 CLOCK DELAY 066 1467 JP X'67' 

INPUT DATA 
USING COPY T 067 8121 CT 1, T 
COMMAND 

068 7080 K 0,8 

NEXT 
INSTRUCTION 069 ANY INSTRUCTION CAN BE NEXT 

143 



Example 3. Special Input Function 

To achieve minimum input time and still achieve one clock 
deiay after setting DI XX use the following: 

K 0, 14 Set DIXX 

LF K, X'FF' Set file 1 = all ones and generate 
1 clock delay 

K 1, 11 Reset DI XX and simultaneously 
'and' the input bus with (file 1) 

Example 4. High speed multiple byte output to a special interfac:e. Output 
bytes from files 1, 2, 3, and 4 to a 32 bit register on a special 
interface unit is an 1/0 connector. Use DOXX followed by a 
load zero command (CGOX). DOXX is used to distinguish 
frC1m input command, followed by 4 file to T commands: 

K 0, 10 DOXX Set 

l2'. x '00' CGOX 

AT 

AT 2 
Transfer files to T 

AT 3 

AT 4 

K 0;8 Reset DOXX 

For this a very simple interface can be designed to transfer 32 bits of data 
from the MICRO 800 to an interface in only 1.54 microseconds. 

144 



CHAPTER 4 

CENTRAL PROCESSOR OPTIONS 

In addition to the option hardware, proper firmware must be provided to 
implement system action and ,response. This firmware may be designed 
specially for a given application. Standard firmware for each option 
described below is available. 

Real-Time Clock 

'The real-time clock option provides an internal interrupt at a crystal­
co11trolled timing rate. This may be used at the macroprogramming level 
for a real-time clock. The timing is derived from the processor internal 
clock which is divided down by some integer number less than 213, as 
determined by optional strapping on the option board. 

When the timing signal occurs, it provides an internal interrupt by setting 
condition flag bit 4 and bit 2 of the internal status byte. The timing signal 
internal interrupt may be disabled and enabled by commands 1710 and 
1720 respectively. The microprogram must detect the internal interrupt 
and take appropriate action. Special real-time clock interrupt handling 
firmware is available. 

Power-Fail/ ~utomatic Restart 

The power-fail and automatic restart option provides the following: 

1. An internal interrupt by setting condition flag bit 5 anc:! bit 7 of the 
internal status byte upon detection of loss of primary power. 

2. A machine reset when the computer is halted after loss of primary 
power. 

3. A machine reset for 200 milliseconds after power is applied. 

4. Automatic switch to run mode after the power-on reset period. 

5. Power-restart interrupt immediately after automatic switch to r,un 
mode. 

A power-fail interrupt detected while the machine is in the run mode can 
be used to cause the machine registers to be stored and to bring the pro­
cessor to a halt. The automatic machine reset that follows the halt and the 
one following power-on prevents any spurious operations in the core 
memory. Ai power-on, the machine reset clears the L register causing the 
machine to start at read-only memory location 0. The power-fail interrupt 
which occurs at this time can be detected and treated as a restart interrupt 
to cause a restoring of the machine registers. Standard power-fail/auto­
matic restart interrupt firmware is available. 

145 



CHAPTER 5 

OPERATOR CONTROLS 

CONSOLES 

Two control console options are available: system console and basic con­
sole. These consoles differ in their number of displays and controls. This 
range of consoles permits the user to tailor the cost to meet the control 
and display capability required for a particular application. The system 
console is shown in Figure 17. 

System Console 

The system console provides complete control and display facilities. It is 
primarily used for maintenance, system and firmware checkout. This con­
sole provides for display of the MICRO 800 registers in addition to the 
functions of the basic console. The features include: 

• Run and halt indicators 
• Display of A-bus 
• Display of M, N, and L registers 
• Display of output of read-only memory 
• Four sense switches 
• Six control switches, including run, step, interrupt, clock reset, and save 
• Manual command execution 
• Power on-o'ff 

Basic Console 

The basic console provides minimal control capability and is designed for 
dedicated system application where operator control is not required. The 
features include: 

• Run and halt indicators 

~ 
llillliilil 

--­._, 
Figure 17. System Console 

146 



• Four sense switches 
• Six control switches, including run, step, interrupt, clock, reset and save 
• Power on-off 

DISPLAYS 

Run Lamp 

The run lamp is illuminated when the processor is running. 

Halt Lamp 

The halt lamp is illuminated when the power is on and the process is not 
running. 

SWITCHES 

Display Selector 

These seven interlocked switches select the register or bus to be displayed 
on the system console. The displays which can be selected are: L register, 
M register, N register, eight high order bits of the read-only memory out­
put, eight· 1ow order bits of the read-only memory and the A bus. When 
the machine is halted the output of the read-only memory is the same as 
the contents of the R register, and is the next command to be executed. 

Command 

These 16 alternate action switches are substituted for the read-only stor­
age on the system console when the SELECT switch is in the PANEL 
position. Depressing the CLOCK switch causes the command set on the 
switches to be executed. The command may also be executed repeatedly 
by depressing the RUN switch. These switches are used to gate registers 
to the A bus display and for entering data into the fjle and registers. 

Select 

This alternate action switch selects the console panel command switches 
(PANEL) or the read only memory (ROM) as the command to be executed 
next. This switch is not available on the basic console~ 

Sense 

The four alternate action sense switches are available on both consoles. 
The state of these switches may be transferred to a file register or machine 
register by the control command. These switches may be used to provide 
manual control of micro level and macro level programs. 

Run 

This momentary contact switch places the processor in the run mode 
causing it to execute microcommands. 

Step 
This momentary contact switch places the processor in the run mode and 
as long as the switch is depressed causes an internal interrupt. The halt 
internal interrupt is bit 7 of the internal status. This switch is normally 
microprogrammed to cause a processor halt. Since the processor is forced 
to run when the switch is depressed, the machine can be microprogrammed 
to cause a single macro instruction to be executed. 

147 



Interrupt 

This momentary contact switch places the processor in the run mode and 
causes an internal interrupt. The console interrupt is bit 0 of the internal 
status. This switch is normally microprogrammed to cause a console 
interrupt. 

Clock 

This momentary contact switch causes the processor to execute a single 
microcommand. If the processor is running at the time the switch is de­
pressed, the processor will come to a forced halt following the current 
microcommand execution. 

Reset 
This momentary contact switch halts the processor and clears the L regis­
ter, 1/0 control register and other control flip flops. The reset is made 
available to 1/0 devices. Since the current microcommand execution will 
not be completed, the computer should not be stopped by this switch. 

Save 

This alternate action switch is the same as the RESET switch but can be 
set on providing a continuous reset. If this switch is on at the time the 
power is turned on or off the contents of the memory will not be lost or 
altered. 

OPERATING PROCEDURES - SYSTEM CONSOLE 

Execution of Commands from the front panel of the System Console 

Most microcommands can be executed from the front panel by using the 
command switches to simulate read only memory. These commands can be 
used to check-out most of the MICRO 800 logic, and also to gain familiar­
ity with the rnicrocommand set. The following list of commands is a mini­
mum that should be tried out when first becoming acquainted with the 
MICRO 800. 

For the examples all command switch settings and displays arn shown in 
hexadecimal. 

1. Loading and stepping the L register 

a. Load L 

1) Set ClOCK, RESET 

2) Set 'SELECT' to panel 

3) Select L display 

4) Set the following commands into the command switches, and 
press the CLOCK switch once for each 

Setting Switches Display 

14AA OAA 
1455 055 
15FF 1FF 
1C11 211 
lDEE 3EE 

148 



b. Step L 

1) Set SELECT to ROM 

2) Set RESET 

~) Select L display 

4) Each time the CLOCK switch is pressed, the L count should 
increment, skip, or jump. If no ROM board is plugged in, the L 
count wirt step. 

2. Test M and N 

1) Set SELECT to PANEL 

2) Display to Mor N 

3) Set the following command into the command switches and press 
the clock switch once for each. 

1255 Load M M = 55 
13AA Load N N =AA,M =O 

Try other values and repeat. 

3. Test ROM and L register (with 810 firmware). 

1) Set SELECT to ROM 

2) Set RESET 

3) Select L, or R2 or R 1 

4) b. R2 

000 BF 
001 28 
002 2A 
003 40 

R1 

02 
00 
00 
10 

} Repeatedly press 
the CLOCK 

After this, the L value depends on computer register states, 
because of conditional skip,s and jumps. 

4. Test.the T register 

1) Set SELECT to PANEL 

2) Set DISPLAY to D (A bus) 

3) Set the following sequences 
press the CLOCK switch. 

11AA CLOCK 
8020 
1155 CLOCK 
8020 

Try other values and repeat. 

5. Test the File Registers 

a. Load and Read each File. 

1) Set SELECT to PANEL 

2) Set DISPLAY to D (A bus) 

149 

into the command switches and 

Load T 
Display T =AA with copy T 
Load T 
Display T = 55 with Copy T 



3) Set the following sequences into the command switches and press 
the CLOCK switch. 

21AA CLOCK Load file 1 with 'AA' 

C100 OR 0 with file 1 (Display file 1) 

OBSERVE 'AA' 

Repeat with file numbers 2-F and different data patterns. 

b. Load all files first, and then read back. 

1) SELECT to PANEL 

2) DISPLAY to D (A bus) 

3) Set command switches to 2111, press CLOCK, change command 
switches to 2222, press CLOCK. Repeat up to 2FFF. 

4) Display file 1 with 8100 or C100, and repeat for 8200, 8300, 
etc., to 8FOO. 

c. Test Add to File 

1) SELECT to PANEL 

2) DISPLAY to D 

3) Set command switches to 2100 (clear file 1), press CLOCK. 

4) Set command switches to 3101 (Add 1 to file 1). Display will be 
at 01 before CLOCK is pressed. Each time CLOCK is pressed, 
display will increment. 

5) Repeat for different file values and increment sizes (:1102, etc.). 

6. Test various Arithmetic, Logic and Shift Commands 

1) SELECT to PANEL 

2) DISPLAY to D 

a. ADD 

1101 

2101 

8120 

CLOCK 

CLOCK 

01-T 

01-f1 

(f1 )+(T)--f1 Initial display=02 

Each time CLOCK is pressed display will increment. 

1 "I01 CLOCK 01-T 

2·101 CLOCK 01- t1 

8121 (f1 )+(T)--t,, T lnitialdisplay=02 

Each time CLOCK is pressed display value will double. 

2100 

8'140 

CLOCK 

(file 1)+1-file 1 Display= 01 

Repeat with different initial values in f1 and T. 

Change destination register to M and N and display these directly 
while repeating above tests. 

150 



b. SUBTRACT 

1101 

21FF 

9120 

·CLOCK 

CLOCK 

01-T 

FF--t, 

(f1)-(T)---f1 Display= FE 

Each time CLOCK is pressed display value will decrement. 

Repeat for other values in fl and T. 

c. Logic Functions 

11AA CLOCK AA--T 

21CC CLOCK cc--f1 

OR G120 C140 Display result of logic function 

EXOR D120 D140 

AND E120 E140 

Table of Values: 

· c field= 2 OR EX OR AND 

T 10101010 10101010 10101010 
f 1 11001100 11001100 11001100 

Display 11101110 01100110 10001000 

c field= 4 

f 01010101 01010101 01010101 
f 1 11001100 11001100 11001100 

11011101 10011001 01000100 

d. Shift 

. 1) .2101 CLOCK 01-file 1 

F100 Display bit shifted left 1 

Each time CLOCK is pressed the bit will shift left one place. 

2) 2100 CLOCK oo--t, 
F100 CLOCK .J Clears link 

2101 CLOCK 01-f1 

F18D. Display bit shifted left 1 

Repeated pressing of CLOCK will cause a left shift with end 
around carry. 

F120 

F140 

Causes Right Shift 

Causes Left Shift insert ones. 

151 



7. Load and Read Memory 

This requires setting M and N, loading T, and executing a write memory 
command to load. To read, set M and N, execute a read memory com­
mand, and a 8020 to display T. Set SELECT on PANEL and display on 
D. 

Load core location 0210 with AA. 

13·10 

1202 

11AA 

A010 

10-N,O-M 

02-M 

AA--T 

Write memory 

Read core location 0010 

13'!0 

AOOO 

8020 

10-~N,O-M 

Read memory 

Display T 

8. Enter Sense Switches 

Set SELECT to PANEL 

DISPLAY to D 

Set command switches to 7010, sense switch settings will appear on 
display as follows: 

Binary 

x x x x 
switch 
settings 

9. Shift file right 4 

-Set SELECT to PANEL 

DISPLAY to D 

1 1 1 

all 1 's 

21AO CLOCK 

7120 

Display= FA 

10. Test U Register 

AO-f1 

Shift right 4 

The lower 4 bits of the U register can easily be loaded and tested by 
observing its effect on a file display command. First load all files in 
sequence with the file number for a val.ue. Then load U with a Cf value, 
followed by an execute command, with 0000 set on the command 
switches. This will cause the value of file f to be displayed .. 

152 



1) Set SELECT to PANEL 

2) DISPLAY to D 

3) Load files 

2101 CLOCK 

2202 CLOCK 

(repeat for all files up to F) 

4) Load U 

16C1 CLOCK 

5) Set 0000 on command switches 

Display 01 from file 1 

6) Load U 

1CC2 CLOCK 

7) Set 0000 on command switches 

Display 02 from file 2 

Repeat 6 and 7 for all files to F. 

c1----u 

c2-u 

11. Set and Display Condition Flags and Link 

The flags can be displayed by the command COOO (file 0 Va-file 0), 
and the li_nk can be displayed by 8080. Copy link-no destination, 
which displays the link as LS8 on the A bus. 

1) Set SELECT to PANEL 

2) DISPLAY to D 

3) Depress CLOCK for first two instructions only: 

Load File 2101 2100 zero condition 

Add to file 8110 8100 

Display link 8080 Link== 0 8080 Link= 0 

Display flags cooo All flags= 0 cooo Flag= 1 

2180 Negative 217F Overflow 

8110 cond. 8150 

8080 Link= 0 8080 Link= 0 

cooo Flag= 1 cooo Flag= 1 

21FF Zero cond. 

8150 

8080 Link= 1 

"' cooo Flag= 1 

153 



Condition Flag Display (File zero) 

x x 

Ovedlow condition 
Negative condition 

Zero condition 

Explanation of Godes 

8110 Add IJ to file 1 Update Condition flags 
8150 Add 1 to file 1 Update Condition flags 
8080 Copy Link to no destination except A bus 
COOO OR file 0 with no operand 

12. External I nt1~rnal Status 

This instruction will demonstrate sensing of the console STf:P, and 
console interrupt inputs. 

1) Set SELECT to PANEL 

2) DISPLAY to D 

Command switches 

7040 

6 

Display c: I x 
t 

Cens0le STEP 

0 

rip 
Console 

Interrupt 

Press console STEP and interrupt switches, and observe changes 
in bits 0 and 6. 

154 



- CHAPTER 6 

PROGRAMMING SYSTEMS FOR MICRO 800 
FIRMWARE DEVELOPMENT 

The programming systems for the MICRO 800 computer permits the user 
to develop special application firmware at a cost and turnaround time that 
is now comparable to software development in competitively priced fixed 
instruction computers. This chapter describes the assemblers, operating 
systems, simulator and use of the Alterable Read Only Memory system 
which are used as standard aids in microprogramming. In addition, pro­
cedures for checkout and debugging of microprograms are provided. 

AP800 CROSS ASSEMBLER 

AP800 is a symbolic assembly program for the MICRO 800 computer. 
The assembler provides for symbolic addressing and mnemonics for 
machine and assembler instructions. This program is written in FORTRAN 
IV and may be adapted to many computer systems. The MICRO 800 
source program is entered by punch cards and the output of th.e assembler 
includes an assembly listing, read only storage diode map, and an object 
program card deck. 

MAP800 CROSS ASSEMBLER 

MAPBOO is a two pass symbolic assembly program which allows for assem­
bly of MICRO 800 microprograms on the MICRO 810 or MICRO 820 
computer. It is designed to operate using an ASR 33 Teletype with paper 
tape reader and punch. Output consists of an assembly listing and an object 
program paper tape for use by the MICRO ·BOO simulator program, 
SIM800. 

The assembly language includes the following features: 

Address Arithme~ic - Decimal and hexadecimal numbers, symbolic 
addresses, and arithmetic expressions. 

Listing Control - The format of the listing may be controlled. with com­
ment cards included. 

Diagnostics - Diagnostics for source program errors included in the output 
listing. 

Option Flags - Single letter flags. to signify options to mlcrocommands. 

SYMBOLIC LANGUAGE 

The source ·language is a sequence of symbolic commands, called· state­
ments. Each statement is written on a single line and may consist of.from 
one to four entries: a name field, an operation field, an operand field, and 
a comments field. 

Name Field 

The name field entry is always a symbol. The first character of a 
symbol is alphabetic or a period; subsequent characters may be 

155 



alphabetic, numeric, or a period. A name entry is usually optional. When 
an asterisk, *, appears as the first character the remainder of the I ine is 
considered as comment. The type of command determines the legal con­
tent of the name field. 

Operation Field 

The operation field entry is a mnemonic operation code specifying the 
machine command or assembler instruction. The field begins with the 
first non blank character following the name field in paper tap1~ or with 
column 8 in cards. All machine command mnemonics are two characters 
except those of the operate class where no destination register is desig­
nated. The operate class commands have a basic single letter mnemonics. If 
the result of the operation is to be sent to a machine register then the 
register identifier character, r, is appended as the second character of the 
mnemonic. Register identifier characters are shown below. An asterisk, *, 
is appended to the mnemonic if the result of the operation is not to be 
placed in the designated file register. Some of the mnemonics accepted by 
the assembler are commonly used forms of other commands. 

Register 
Designator Register 

0 
1 
2 
3 
4 
5 
6 
7 

Operand Field 

T 
M 
N 
L 
I< 
u 

None. 
T Register. 
M Register. 
N Register. 
L Register Addresses: 000-0F F and 200-2F F. 
L Register Addresses: 100-1FF and 300-3FF. 
U Register. 
U Register ORed in command 
(Except for K command). 

The operand fiield entries provide the file register designators, literals, and 
option bits for the machine commands. The operand field may start any­
where followin1g the operation field. When punched in cards, column 14 is 
the normal starting column. It is terminated by the first blank. One or 
more operands, separated by commas may be written, depending on the 
needs of the command. All entries in the operand field, except the single 
character option bit identifiers for the operate class commands, are expres­
sions. An expression is a symbol, decimal number, or hexadecimal number, 
or a combination of these terms made by + and - operators. 

The following single character option identifiers, designators and literals 
may appear in the operand field. 

L Link Control. 
I Add one or insert one on Shift. 
D Decrement one. 
T T register operand. 
F Complement of T register operand. 
H Half cycle memory operation (otherwise full cycle). 
R Right shift (otherwise left shift). 
C Set condition flags. 

156 



f File register designator (0-15) 
c - Option code (0-15) 
n - Literal (8, 9, or 10 bit) 

Comments Field 

Comments describing the information about the program may be inserted 
between the end of the operand field and column 72. All characters, in­
cluding spaces, may be used in writing a comment. If the listing is printed 
on a t.eletype, only the first 53 characters of the source line are printed. 

M~CHINE COMMANDS 

Machine commands are expressed by a one or two character mnemonic 
code in the operatjon field. The· required operands depend on the com­
mand type. The four syntax types are described below. Examples of the 
method of writing machine commands in the assembly language are shown 
in the sample listing in section 5. 

Load Register Commands (Command 1) 

All commands of this syntax type have two character mnemonics begin­
ning with L, except for the jump command. The second character is the 
register identifier character. The operand field· of all commands of this 
type except jump must coQtain a single operand which is an expression, 
whose value is less than 1024 and greater or equal to -256. It is evaluated 
modulo 256. The jump commands must contain an operand expression 
which has a positive value less than 1024. 

Literal-File Commands 

The commands of this syntax group (commands 2-6), have two character 
mnemonics and require two operands. The first operand is an expression 
which designates a file register (f) and must be in the range 0-15. The 
second operand (n) is an expression which must be less than 1024 and 
·greater than or equal to -256. It is evaluated modulo 256 

Execute and Control Commands 

The commands of this syntax group have operation code mnemonics 
identical to those of the next group, and require two operands. The first 
operand is an expression which designates a file register (f) and must be in 
the range 0-15. The second operand (c) is an expression which designates 
the option bits (7-4) and must be in the range 0-15. 

Operate Class Commands other than Execute and Control 

The commands of this syntax group have basic operation code mnemonics 
which are a single character. If the result of the operation is to be routed 
to a machine register the designator of that register is appended as a 
second character of the mnemonic. If the result is not to be placed in the 
designated file register, an * is appended to the mnemonic. 

OPERAND FIELD EXPRESSIONS 

Expressions in the operand field are made up of one or more terms which 
are connected by + and - arithmetic operators. No parenthetical exprei;­
sions are allowed. Each term of the expression represents a value. Values 

157 



MICROCOMMANDS 

Command Mnemonics Operand Field 
----··---· 

Load T LT n 
Load M LM n 
Load N LN n 
Load U LU n 
Load Zero Control LZ (L) n 
Load Seven Control LS n 
Jump JP n 
Load File LF f ,11 

Add to File AF - f ,11 
Test If Zero TZ f,n 
Test If Not Zero TN f,n 
Compare CP f,n 
Execute Er* . f,c 
Control Kr* f,c 
Add Ar* f,l,l,T,C 
Increment Ir* f,l,C 
Subtract Sr* f,L,D,T,C 
Decrement Dr* f,L,C 
Copy Cr* f,L,l,T,C 
Read Rr* f,L,l,D,H 
Write Wr* f,L,l,D,H 
Logical OR Or* f,L,F,T,C 
Move Mr* f,L,C 
Exclusive-Oft Xr* f,L,F,T,C 
Logical AND Nr* f,L,F,T,C 
Shift Hr* f,L,l,R,C 

may be assigned by the assembler program (symbols), or thern may be 
inherent in the term itself (constants). The range of values depends on the 
operand and the instruction. 

Symbols 

A symbol is composed of one to three characters in MAP800, or one to six 
characters in AP800. The first character must be alphabetic or period; sub­
sequent characters may be numeric, alphabetic, or period. lmbedded 
blanks are not allowed and the assembler stops scanning the symbol with 
the first character which is not alphanumeric or a period. All symbols, 
except the special symbol *, used in an operand field, must be defined 
by a single appearance in the name field of statement within the program. 

Special Symbol 

The special symbol * represents the momentary values of the a!;sembler's 
location counter. It may be used as any other symbol in an expression but 
must never appear in the name field. 

158 



ALPHABETIC LIST OF COMMANDS 

Command 

AND 
Add 
Add To File 
Compare 
Control 
Copy 
Exclusive-OR 
Execute 
Jump 
Load File 
Load T 
Load M 
Load N 
Load U 
Load Seven Control 
Load Zero Control 
OR 
Read 
Shift 
Subtract 
Test if Zero 
Test if Not Zero 
Write 

Censtants. 

Mnemonic 

N 
A 
AF 
CP 
K 
c 
x 
E 
JP 
LF 
LT 
LM 
LN 
LU 
LS 
LZ (L) 
0 
R 
H 
s. 
TZ 
TN 
w 

Operation Code 

Ef 
8f 
3f 
6f 
7f 
Bf 
Of 
0 
14, 15, 1C, 1D 
2f 
11, 19 
12 
13 
16 
17 
10 
Cf 
Af 
Ff 
9f 
4f 
5f 
Af 

Page 

118 
103 
92 
96 
96 

112 
116 
123 
89 
91 
85 
85 
86 
86 
88 
87 

114 
108 
120 
106 
93 
94 

108 

The values of the constant terms are not assigned by the assembler pro­
gram but are inherent in the terms. There.are two types of constant terms: 
decimal and hexadecimal. 

a. Decimal Censtant 

A decimal constant is an unsignecl decimal number. The value must be 
less than 65,536. 

h>. Hexadecimal Constant 

A fllexaelecimal c0Astarnt is aA urnsigried ~exaaecimal numh>.er of wi;> ta 
fot:1·r characters written as a se<quer.ice 0f t.iexa<!Jecimal digits. The ~Hgi1-s 
are encl0secl in s·in~·e liJU0tati0n rnar?ks amd Ji).rececled b:y tf:te letter X. 
Each hexadecimal eigit re13resents a four-oit binary number. The char­
acters A throwgh F are used to identify the hexadecimal integers H> 
thr0ugh 15. 

A89EM&.E ~ l•NSTftl:JCTION8 

Seven assembler instructions are included for control of the assembly pro­
cess and the output I isting. 

ORG - Set Location Counter 

The ORG assembler instruction alters the setting of the location counter. 
The name field entry, if any, will be assigned the value of the program 

159 



counter after it is altered. The operand field of ORG must contain an 
expression whose value will be placed in the location counter. All symbols 
in the expression must have been previously defined when the instruction 
is first encountered. The next command which places object code in the 
program is forced to begin a new object card. 

EOU - Equate Symbol 

The EOU assembler instruction is used to define a symbol by assigning to 
it the value of the operand field. Any symbols appearing in the expression 
must have been previously defined when the instruction is first encounter­
ed. A name field entry must be present. 

DC - Define <;onstant 

The DC assembler instruction is used to create any microcommand for 
which a symbolic representation does not exist. Each statement specified 
only one constant. The constant is written as an expression and is assem­
bled as a 16-bit word in storage. 

END - End Assembly 

The END assembler instruction terminates the assembly of a prorgram and 
must be the last statement in a source program. 

The next three descriptions are available only in the AP800 version. 

IDENT - Program Identification 

The I DENT assembler instruction is used to identify the start of a pro­
gram and to supply the program name which is located in the! operand 
field. The IDENT must be the first statement in a source program. 

SPACE - Space Listing 

The SPACE assembler instruction causes one or more blank lines to be 
inserted into the listing. The name field is disregarded by the assembler. The 
operand field contains an expression specifying the number of blank lines. 
If the spacing is beyond the end of the current page, the listing begins at 
the top o_f the next page. 

EJECT - Start New Listing Page 

The EJECT instruction causes the next line of the listing to appear at the 
top of the next page. The name and operand fields are disregarded by the 
assembler. 

ASSEMBLY LISTING AND DIODE MAP 

The output listing from the assembler contains the memory address, and 
contents of words in the object program. The source statement is printed 
side-by-side with the object code. 

FORMAT FOR APSOO 

Printer Columns 

8 - 11 
15 - 17 
21 - 24 
31 - 110 

Contents 

Error flags 
Storage address 
Storage contents 
Source statement 

160 



ERROR FLAGS 

A - Address Error 

This error occurs when an address expression in the operand field is in­
correctly written or the value is out of range for one of the operands. An 
error flag will occur for each operand in error or out of range. 

F - Flag Error 

This error occurs when an operate class command has an option flag in the 
_operand field which is not allowed for the command or is unrecognizable. 

M - Multidefined Symbol Error 

This error occurs when the symbol in the name field has been previously 
defined by appearing in the name field of another instruction. 

N - N_ame Field Error 

This error occurs when the symbol in the name field starts with a character 
other than alphabetic or period, or contains a non alphanumeric or non 
period character. 

0 - Operation Mnemonic Error 

This error occurs when the assembler does not recognize the contents of 
the operation field starting in column 8. A zero value is assembled to allow 
patching. 

U - Undefined Symbol Error 

This error occurs when the symbol encountered in an expression of the 
operand field is not defined by an appearance in the name field. 

DIODE MAP FOR APSOO 

The read only memory diode map is printed if a control card following the 
END card contains a 1, 2 or 3 in column 1. The digit specifies the number 
of diode maps to be printed. The diode map for each 256 word read only 

· memory board is placed on three pages of the assembly listing. The format 
of the map is the same as the physical layout of the ROM board. An X on 
the map indicates a 1-bit and that a diode is to be placed at the position of 
the X, while an 0 indicates a 0-bit and no diode. 

Each of the 64 lines of the diode map for a board contains the diodes for 
four words. The address of the first word is printed at the left of the map. 
The four words are interleaved so that the same bit position in each of 
the four words are grouped together and printed as a cluster at four diode 
positions. The 16 bit positions are printed across the page and the sum of 
the number of diodes on the line is placed at the right of the map. 

SAMPLE LISTING 

In order to illustrate assembly language programming, three examples are 
included in this manual (Figures 18, 19 and 20). The first is a set of unre­
lated commands _assembled by AP800 showing how to write various 
commands. The second is a listing of a portion of the MICRO 810 firmware 
assembled by MAP800. The third example is a sample coding sheet with a 
portion of a program on it. 

161 



L 
en COUNT Cl 
<t 

000 ....J 
u. 001 
a: 002 

~f 
003 
oo• 
0115 

006 
iii u 007 

::!: too w 
en I nl en In? <t !Ill 

1"• 
tn5 
1•6 
I", 
1n11 
1 •<1 
lrA 

l•tl 
l •G. 
l•U 
JOE 
lnF 
Ill) 
111 
112 
lll 
114 
115 
116 
117 
118 
119 

ll' 
118 
llC 
110 
llE 
llF 
llO 
121 
12l 
lll 
124 

2'11~ 

]ft~ 

WO 
::!;....J 
.i;w 
zU:: 

8 
z 
0 
i= 
<t 0 
a::....J 
Ww 
Q. -Ou. 

COLUMNS 

14 

~ 
0 z z w 
<to ::!;O 
a: ....J :::E ....J 
~!!:! o!!:! 
Ou. <JU. 

I I I - FIRST CARD OF MICRO 800 
ASSEMBLY PROGRAM ... lO[NT SAMPLE - I 

~~g~iNE. fHIS +AHPLE ... ROGRAM liHOWS HJ_• TO WllITE VARIOUS COMMANDS• 

•• LOAD AEGISTEll COMMANDS ,, 
1112 
IZo• 
llOli 
160 
ll>OA 
1780 

HOS 
1•00 

lSoZ 
ICOZ 
1002 
ouoo 

10•~ 

15rtt 

5HllT LT OlZll LOAD r • HEXAUECIHAL LITERAL 

I 
L" 4 LUAO H • DECIMAL LITERAL 
LN ALPHA<;i! LUAD H • ElPREsSION-LITER&L 
LU Jl.llAlul LUAO U 

123456 L·l llOll liYl4BOL IN NAME FIELD IS ILLEGAL 'f: LS 08011 LUAD S[Yf:N CONTllOL • HALT ~SSEMBLER 

A~P~~MP J;OHMA~-{ JUMP IN PAGE ZEllO LOCATION 

I ~=G ::: ~!:F!~~s~=m~N~~sr11umoN • Pm ;ouNTER 
PAGEi JP ••Z JUMP IN PAGE l 

i JP PAGEi!'•2 J<'MP TO PAGE 2 
JI' PAGE3•2 JVHP TO PAGE 3 
Pf' z,z Ol'ERll lON MNEMONIC IS IL.LEGAL 

H FILE LITERAL COMMANDS 

1 
LF lOtllllfFll LUAO FILE • HEJlAUEClHllL LITERAL 
LF 2 EHROR IN OPERANU FIELU 
LF TENt2 LUAO FILE • UECIMAL LETERAL 
AF Z•Z &uO TO FIL£ 
fl Oo4 ffST If ZERO 
TN T[NeXllCll Tt.ST IF NOT Z[llO 
CP 5 • •2 CUMPAll£ • "l[GA Tl YE OPERAND OK 

•• OPEFIAIE COMHA"IUS •lfH LEGAL UPTION FLAGS 
OPE!il E Zt'.i E ... EcurE 

K 5, 8 CUNTR\lL 
2oLoltToC AUD • LlNl<olNCHol RE<" COp;D FLAG 
ZoltC lNCRE.,ENT • FURM OF AOD 
2oltUtTtC liVllTAACT • LINKoOECAo'f HEGtCONr. FLllG 
21L1C . Ut:CREMENT • FUAM OF SIJBTA&CT 
ZtLt It TIC cuPY 
i!tLtDoH At:AO M[MOAY • LINK 
21Lt I oDtH Rt:AD HEHOAY • L UH I DA Do HALF 

fl i!tLtltOtH WHITE HEMOAY • L OR 1 l)A Ot HAV 
0 ZtLtFtTtC uM • 1.INKtCOHP f REGo TllU[ T REGo COND 
"' ZtL ,c MvYE - LlNK,CO"u FLAli 
II. i!•L•F•T•C EACLUSIYE•Dll 
" 2tLtFtTtC AND 
"' ZoLtloA•C: Sl'll'T • LINK10"EtlllGHr,co1110 FL-G 

.•• Y&AlAllDNS OF OPEMAIE COHl'IA.,DS 

l 
HT TEN MUYE F 11.E REG 10 TU r 
IN• S • PAE VENTS R[SUL T l'ROM GUI NG TO F ILf. 
M• 5oC F lLE 5 IS TESTt.U ""D CONo FLAGS !;ET 
er• 01T1l T"ls COMMAND l"CMEME:NfS THE T RE(• 
IN S l"CAEME"T FIL[ MEG 5 ANO PLACE I~! N REG 
AN TEN• T FILE DESIGNATOR HAY BE UPRESSIO" 
0"1• 11 F lLE 11 MINUS ONE IS PLACED IN N REG 
AL il!tT JUMP IN PAGE O OM 2 
Ill 2 JUMP IN PAGE I OR l 
IT 5tll ILLEGAL FLAG 
E SoL NIJ FLAGS ON UECUTE 011 CONTROL 

TEN EQU 10 

t.r;Ez ~~G ::m: .. 
• UllG XllJOOol 
PAGEJ JP OPEii 

END 

UHG FOR PAGE 2 
CIJMMAlllD HaDE llY CONSTANT 
ONG FOii PAGE l 

LAST CARD 

Figure 18. Sample Listing 

162 



z 
0 0 
j: z 

~g ~9 ~9 
""w Ww Ww 
~k ~u:: ~u:: 

:l I MICRO $10 SYSTEM LISTINGS . 
I I I . I 

I :DENTI H8io- ~~~Ns11~~~~~~~~AM TO 

1: -t.., t • I 
L I MACHINE I• HICRO 8101 SYSTFH I 
COUNT CODE 1•. ~ f I COMMENTS FIELD 

f IL ALLO /tT lON 
0000 iro If.Ill 0 lcoNOITJON FLAG~ 

00 0 
0 01 
0 02 
003 
0 04 
005 
006 
0 07 
008 
009 
OOA 
OOB 
ooc 
OOD 
OOE 
our 
010 
011 
012 
O.H 
014 
015 

OJ6 
017 

.018 
019 
DlA 
018 
81C 

0001 11 lQl.J 11 1 INSTRllCT!ON ilf:GISTIR 

~~~~ I~~ ~~~ I~ I INOEX Hfr.ISHR 

0004 IAL EQU 14 iACCUHIJL.AlOR

~~:~ I:~ ~~~ I~ I FXlEl-lOED ACClJHllLATUR
0007 IBl.J EQll I 7 1
~~~~ I~~ ~~~ I~ I OPIRANfl AOllR~SS 
OOOA IPL f.QU I 10 I PROGRAM COUNTER 

~~~~ I~~ ~~~ I g I TEMPORARY STORAGE 
OOOLJ ls2 l:QU i 13 I

::~~ ISJ ~~~: II~]; I OVl;RfLOW AhO WORD LENGlH
0001 I~~ EOIJ lusFO lollTH EXtCUH IOR UDU rILE
0000 ISIZl EQU f ll I SIZE OF BASIC LOAOfR

THIS
SECTION
ASSIGNS
SYMBOLS
TO THE
FILE
REGISTERS

I* ORG
1 0----:--------r'~B~OA~R~O~------~~~~

I• I I THIS STATEMENT

11ro2
2800
2AOO
4 010
t!>re
7110
4180
1574
2F 00
CB02
AA03
1410
8A43
~882
4098
1!>03
8120
2C1U
71?.9
8C2Q
6IAO
CC05

9901
4104
142E.
8HJ
AB Ill
8833
5101

1;Nl~EApC~l;Xl1 ~~ST~UCTION ~CLEAR OV/W AND H ~~~~~SR~SSEMBLER
I I LF I pu, x' o·o' I CLl;.AR P ASSEMBL v AT

1Lr PL,x•oo• IJIHfRNAL. lNTERRUPT PAGEO
I ~~ ~ ~ r~' 1.0' l YES ADDRESS 00.

I ~z : :!•so• I ~~mHs~N~~ SWITCHES

I JP LOAD I YES, LOAD BOOT STRAP
tRNJ1 I Lr ov,x•oo• I CLl:AR OY/W

1:::: I~: ~~ I GET OP CODE
I I ,IP RNl6 I IGNORE INTERRUPTS

l:~: 3 I~= :~,I. I UPDATE P

IRNl2 I TZ FO,X 1 96' I TEST FOR INHliRUPTS

IRNl6 I ~p :~~ I ~:~~lg~ ~~~~EST
I I LF' Sl,OTAll•16 I t1ASE ADDRESS or TAbLE

1 •
1.

1 KT• I 12 I SHIFT RIGHT 4

l~p t~!~!AO' lt1EHORY REFERENCE
l"K 1.s1 1.No

. YES(OET pPERAND Al!DRESS I

I• OPEfUND APDRESS I NO

f ~~IX I 04 1

I
tADDR I g
I I JP

I~=
ICN
I JN

I

I ADR4

I~~.~
I OL, T ,c
, 1. x. 01'

I

f ~L~A: OU AND T

IND
I GET ADDRt-SS tlYTE

ISET CONDITION CODE
I PAGE 7ERO

Figure 19. MICRO 810 System Listings

163

MICRO 800 SERIES SYMBOLIC CODING FORM

PROGRAM NAME s AM PLe AUTHOR lPROJE T NUMBER
! 00

DATE PAGE CARD
! OF NUMBER

,, ~~~-'-'--'--'--'--~~~'--'--'--'--'--.._.__.___._.__..L..J,.......1~~

c.e· c: l--'-"--'---'-~~L....L..L..J...~~--1-..L..J.....~~~..L....J......L~
(ti ~~~~~~~~~_J__LJ_L_l__LJLLL..LLLL.LLLJ.....L.!__..L.LL.LLI....J
N p ~~L...D.J..LJ..-.~~....L..L...l...-LL...L.J.......L.L..L..L....J-L..l.._L.L.J_LL...L..1..-.1..~....LL..L..L...
~~~L.LL..L.1......~luS.Ui.W~~~LLL.LL..LL.LLLJ.....L.!__..L.LL.LLI....J _. s: m n J--L--L--'---'-~~~~~~L.L..L...L...L.L...1......1.....L.L..L......L..L....L...L..j--L..L.l....l.. 

~JJ~· 
o~ 
00 0 ~~~~~....L..L...l...-LL...L..1......L.J......LL..L~L.L...L...L...L~~ 
0 en ~.L.....L.-L.... -+---'---'--~-'----'--'--'--~~,__,__.__,___._...J........L..~~~~ 
~ ~t-'--'-'-'-'-t-~~--'--+--'---'--_.__.__._.___._~'--'--'--'--'--.._.__.___._.__~~~ 

m·,..............~---'--+~~~~~.L......1..-...~~~~ 



OPERATION PROGRAM CARD DECK FROM AP800 

The assembly program generates a deck of cards which contain the binary 
object code, if a control card following the END card contains a O in 
column 2. All information punched on the carc;is is ·in Hollerith code, with 
a single hexadecimal digit (four binary bits) punch in each column. This 
format allows easy visual reading of the cards after they are interpreted 
and permits rapid patching or generation of patches to, the deck. Each 
card contains 16 program words. If all 16 words are zero, the card is not 
punched. 

The cards have two fields as follows: 

Columns 1-4 - Load address. 
Columns 5-68 - Object code, four columns per word 

The format of the binary paper tape created by MAP800 is described 
under Simulator Operating System. 

SIMULATOR OPERATING SYSTEM (SOS) AND 
SIMULATOR PROGRAM (SIM800) 

INTRODUCTION 

The Simulator Operating Syst~m (SOS) is an on-line executive system for 
controlling the operations of the MICRO 800 simulator (SIM800) and 
incorporates teletype control of debug, console, and executive functions. 
The teletype is used rather than any console operations except for the 
console interrupt, which is used to cause control to return to SOS while 
the simulator- is operating. SIM800 and SOS are always loaded into the 
MICRO 810 or 820 as a single program because all simulator operations 
are controlled by· SOS. 

The following is a I ist of the features available to the user: 

Display and change the content of a simulated read only memory 
location. 

Display and change the content of a simulated core memory location. 

Two breakpoints for microprogram debugging. 

Display and change the content of a simulated MICRO 800 element. 

Display the content of all simulated MICRO 800 elements. 

Simulate execution of a microprogram. 

Load a formatted program tape into simulated read only memory. 

Load a formatted tape into simulated core memory. 

Punch the content of simulated read only memory into paper tape. 

Punch the content of simulated core memory into paper tape. 

165 



INSTRUCTIONS FOR USE 

This section provides instructions for using the SOS program. 

Loading the SOS and SI M800 by the bootstrap and basic loaders 

The SOS is loaded into memory via the basic paper tape loader. This basic 
loader is in the bootstrap format ( 1 data byte per frame of tape) and is 
spliced onto the front of the SOS tape. The splice is made so that the last 
frame of the loader is followed immediately with the leader of the SOS 
tape. The microprogrammed bootstrap loader loads the basic loader and 
transfers control to it. Then the basic loader loads the SOS and, after a 
successful load, transfers control to the SOS. Following is a procedure for 
loading a formatted paper tape through the teletype via the bootstrap and 
basic loaders. 

1. Place the TTY in the off-line mode, place the reader control lever to 
the "free" position and enable the teletype reader. Type control and 0. 

2. Place the TTY in the on-I ine mode and insert the SOS tape in the reader 
with the first rub-out character at the read station. Set the reader con­
trol lever in the stop (center) position. 

3. Set the front panel sense switches as follows: 

Sense switch 1: off for serial TTY interface, on for parallel TTY inter­
face. 

Sense switch 2: must be off. 

Sense switch 3: must be off. 

Sense switch 4: must be on. This selects the bootstrap loader whenever 
the run switch is selected and was preceded by a reset. 

4. Press the res.et and the run switches and the system will wait for the 
teletype reader to be started. 

5. Press the TTY reader lever to the start position. When the basic loader 
is loaded and operating properly, the teletype page printer mechanism 
will chatter whenever a record separator passes the read station. This is 
caused by the issuance of reader off and reader on codes between 
records. 

If a checksum error is found, the message 'CE' is typed and the system will 
halt. Another attempt to properly load the record may be accomplished by 
backing up the tape to the previous record separator, placing the reader 
control lever in the stop (center) position, and pressing the run switch on 
the front console. When the SOS is properly loaded, control will transfer 
to it, the teletype bell will ring, and an equal sign will be typed. 

Loading the SOS and SIM800 by the R Operator of TOS 

Unroll about 30 inches of the program tape to bypass the basic loader 
and locate the leader (any frame with channel 8 present) of the formatted 
tape. Insert the tape into the reader with any part of the leader at the 
read station and set the reader control lever to center position. Typing an 
R will start the loading. A checksum is calculated for each record loaded 
and if it doesn't equal the checksum read with the record, the letters 'CE' 

166 



will be typed and control will return to the standard teletype operating 
system program (TOS). By backing up the tape to the previous separator 
and typing an R, another attempt may be made to load the tape; 

SOS Operators 

All operations which are performed by SOS are initiated by typing a single 
alphabetic character which designates one of 13 operators. These opera­
tors are described in detail in Section 3 and are summarized in Appendix 
A. 

The SOS program is ready to accept an operator designator character at 
any time after ringing the bell and typing an equal sign. If a .character 
other than a legal operator designator is typed, SOS will reject the charac­
ter, ring the bell, and type an equal sign again. 

NOTE: For the purposes of this manual, all references to the teletype 
carriage return are as shown; (CR). 

H·exadecimal Input/Output 

All data and addresses are displayed and entered in hexadecimal. The 16 
hexadecimal digits are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, 8, C, D, E and F. The 
hexadecimal values may not be signed. When entering a two-digit memory 
cell value or a four-digit memory address, no spaces or other than hexa­
decimal characters may be in the digit string. SOS assumes that the hexa­
decimal digit string is terminated when it receives the first non-hexadeci­
mal character; therefore, it will not act on an input until the digit string is 
terminated. If more than the required number of digits are entered, SOS 
will take the last two or four as required. Leading zero digits need not be 
typed. If the first non-hexadecimal character is not a space, comma, or 
carriage return (CR), the data or address value is ignored and the opera­
tion is terminated. However, before termination, all valid hexadecimal 
data or address values that were accepted are retained. When more than 
one address or data value is typed they may be separated by either a 
comma or a space. For clarity in this document only commas are shown. 
When an operator requires an address, it will ignore leading spaces, i.e.: 

W ssss, eeee (CR) 

Console Interrupt 

The console interrupt is used to interrupt the simulation of a microprogram 
or to abort the I, 0, R, or W operator and return control to SOS. The user 
should be careful if the simulator is interrupted because complete simula­
tion of the current command may not be complete but the K,L register will 
be pointing to the next sequential location. 

If the console interrupt is activated when control is residing in SOS (wait­
ing for an operator), an exit is made to the resident TOS. When using the 
serial teletype interface, the exit is not taken until one character is typed 
on the keyboard to force completion of the I BS instr_uction. 

· Halt and Error Returns 

If a microcommand halt ( 1780) is detected, control will return to SOS 
and an H followed by the content of the K,L register plus one will be 
typed. 

167 



During the simulation of microprograms, various undefined microcom­
mands and system timing violations are checked for and if detected will 
cause an error return to SOS. Th~f letter E and a three digit error number 
will be typed, followed by the content of the K,L register plus one, and 
control will return to SOS. A list of the error codes and their meaning are 
contained in Appendix B. 

OPERATORS 

Card Read: C 
The C operator causes SOS to load a program card deck into simulated 
ROS. The format of the cards must be as described in the AP800 Assembly 
Program manual. Loading is terminated and control is returned to SOS, 
when a card is read containing a blank in column 5. If a blank card is read, 
any character other than a hexadecimal character is read, or a card reader 
malfunction occurs; the message ERR will be typed and control will re­
turn to SOS. Loading may continue, by correcting the error condition, 
backing up one card, starting the reader, and typing a C. Since no informa­
tion goes through the reader when a blank caJ.d is read or whim a pick 
failure occurs, it is not necessary to back up one card. 

Display: On 

The D operation causes the contents of the simulated system element n to 
be typed out followed by a dash. At this time the contents of thu element 
may be changed by typing in one or two hexadecimal digits. When a 
comma or space is typed after the data or after the dash, the contents of 
the next element in sequence will be displayed. The various simulated 
system elements (n) and their meaning are listed below in sequence. If a 
(CR) is typed, or if a space or comma is typed after the contents of the 
panel switches (P) has been displayed, this operator is terminated. All 
examination must be completed on one line of type. 

List of values for "n", in order of their appearance: 

0 Files 0 through F 

9 
A 

F 

T T Register 
M M Register 
N N Register 
K (L Register Bits 9, 8) 
L L Register (Bit 7-0) 
U U Register 
Z Link flip-flop ( 1 bit) 
0 R Register (Bits 15-8) 
R R Register (Bits 7-0) 
S Internal Status Register 
I Input bus 
0 1/0 Control Register (3 bits) 
P Panel command switches (7-0) 

168 



Display: D (CR) 

This mode of the D operator causes all of the simulator system elements to 
be typed out on two lines. A single space is provided between each element 
and there is a double space after every fourth element. Sixteen files are 
contained on line one with thirteen additional elements being displayed on 
line two in the following manner. 

D(CR) 

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 
. 01 02 03 04 05 06 07 08 09 OA OB OC OD 

End of Tape: E 

The E operation punches an end of tape record consisting of a zero record 
size and an execution address of zero. This ensures that tapes punched by 
SOS will not contain a load and go address. Following the punching of 
this record, six inches of trailer will be punched automatically. 

Go To: G ssss, tttt, uuuu (CR) 

The G operation causes SOS to set trap operations for read only memory 
locations tttt and uuuu, and to start simulation at read only memory loca­
tion ssss. If a (CR) is typed after G, simulation starts at the location con­
tained in the K,L register. If a (CR) is typed afte~ ssss, no traps are set, and 
if a (CR) is typed after tttt only one trap is set. All traps set are auto­
matically cleared when either one is reached or control is transferred to 
SOS, signalled by the ringing of the teletype bell and the printing of an 
equal sign. Upon return from a trap, a T, followed by the contents of the 
K,L registers, is typed out. At this time the command located at the trap 
location has not been executed. A trap at location zero is not permitted as 
this value is used by SOS to indicate that a trap has not been set. 

Input: I 

The I operator causes SOS to load a MICRO 800 program tape into simu­
lated read only memory in the same manner as the R operator loads a 
formatted tape into core memory. The tape may be created by the 0 oper­
ator of SOS or by the MAP800 assembler. 

Leader/Trailer: L 

The L operator will cause the paper tape punching device to punch six 
inches of tape containing channel eignt punches only. 

Memory: M ssss, 

The .M operator causes the contents of the simulated memory location 
specified by ssss to be typed out followed by a dash. At this time the con­
tents of the memory location may be changed by typing in two hexadeci­
mal digits. When a space or comma is typed after the data or after the dash, 
the contents of the next sequential location is typed by SOS. A (CR) 
terminates this operator. The actual amount of simulated core memory will 
vary depending on the size of the actual memory and the amount of 
simulated read only memory desired. Standard configuration is 768words 
of read only memory and 256 bytes of core memory. 

169 



Output: 0 ssss, eeee (CR) -

The 0 operator causes the contents of the simulated read only memory 
area starting with ssss and ending with eeee to be written on the standard 
output device in the same format as with the W operator. Each record will 
contain 641 o commands from read only memory except the last record 
which will contain a number of commands equal to the total number 
module 6410. Typing a (CR) following the second address will start the 
operation. 

Print ROM: P ssss, 

The P operator causes the simulated read only memory address specified 
by ssss to be typed out on a new I ine followed by the contents of that 
location. A dash is typed after the value to indicate that it may be changed 
by typing in one to four hexadecimal digits. When a space or comma is 
typed after the new data or after the dash, the next sequential read only 
storage address and its contents are typed by SOS on a new line. A (CR) 
terminates this operator. 

Read: R 
The R operator causes SOS to load a formatted tape into simulated core 
memory. This operation can be configured for any standard input device, 
but normally the device will be the teletype paper tape reader. The tape 
must be inserted in the reader with the leader (any frame with channel 8 
present) placed at the read station before the R is typed. When the loader 
encounters an end of tape record the loading process is terminated and 
controls are transferred to SOS. If an end of tape record is not read, load­
ing will continue until the computer is halted or until the console interrupt 
is activated. A checksum is calculated for each record loaded and if it 
doesn't equal the checksum read with the record, the letters 'CE' will be 
typed and control will return to SOS. By backing up the tape to the 
previous separator and typing an R, another attempt may be madu to load 
the tape. 

Time: T 
The T operator causes SOS to print the letters I, M, ane E, followed by a 
four digit hexadecimal number and a dash. This number represents the 
total number of machine cycles accumulated thrnugh simulation since 
the last reset or JDreset. The c0unter may be reset er preset by ty,f!)ing in 
one to four hexadecimal digit-s 13efore typing a carriage return 1!0 turminate 
the operation. 

Writ-a: W ssss, eeee (,CR:) 

The W operation causes the content:s of the simulated memory area start­
ing with ssss and ending with eeee to be written on the standard owfput 
device, normally the teletype punch. Each record of the output will con­
tain 12810 data bytes except the last record which will contain a number 
of bytes equal to the total byte count module 12810. Typing a (CR) 
following the second address will start the operation. 

Zero Flags: Z 
The Z operation causes SOS to reset flags used by the simulator for error 
detection and to simulate the functions performed by the reset switch on 

170 



the front panel. File zero will be cleared, all internal status bits will be 
cleared, and the K,L register, 1/0 control register, and the value of the 
input bus will be set to zero. This operator should be used before setting 
up parameters and starting a simulation sequence. 

PROGRAM TAPE FORMAT 

The binary paper tape format (Figure 21), can be generated by the two 
pass assembler, and by the output and write subroutines of SOS. This 
format allows for variable length records of up to 641 o sixteen-bit micro­
commands, or 12810 eight-bit bytes, a record load address, and a record 
checksum. Each record contains a count of the number of data bytes and 
the 15 bit address at which data is to be loaded. The record is loaded 
sequentially starting with this address. When there is a discontinuity in the 
loading addresses, a 'new record is started so that a load address may be 
specified. The last byte of each record is a checksum which is the summa­
tion of the byte count, load address, and data bytes formed on an eight-bit 
basis with overflow added into tne least significant bit of the sum. 

A byte count of zero signifies an end of tape record and if present will be 
the last record read. The paper tape reader will be stopped and control is 
returned to SOS. 

• • • • • • ......... 
••••••••• ••••••••• 

. . . 
• . . .. .. . . .. . . .. . .. .... .... . ..... ······ ..... . .. . 

••••••••• ••••••••• ••••••••• 

. . .... ... .. . . .. .... . . ... 
• • • • • • • • • 

LEADER 

LEADER/TRAILER OR AREA OUTSIDE OF A RECORD 

NOT USED WITHIN A RECORD (RECORD MARK TO CHECKSUM) 

CONTROLS PRINT SUPPRESSION 

CONTAIN A HEXADECIMAL DIGIT 

}-- SEPARATOR 

- RECORD MARK (1 BLANK FRAMF' 

E 
RECORD SIZE (VALUE OF 03) 

LOAD ADDRESS (VALUE OF 016A) 

DATA BYTE (VALUE OF AB) 

~DATA BYTE (VALUE OF CD.) 

~DATA BYTE (VALUE O~ Efl r- CHECKSUM (VALUE OF DS) 

r- SEPARATOR 
- RECORD MARK (1 BLANK FRAME) . 

E 
RECORD SIZE (VALUE OF ZERO) END OF TAPE . 

EXECUTION ADDRESS (V,11.LUE OF 016B>_ (IGNORED BY SOS) 

CHECKSUM (VALUE OF 6C) 

TRAILER 

Figure 21. Binary Paper Tape Format 

171 



APPENDIXES 

APPENDIX A 

SUMMARY OF SOS OPERATORS 

Underlined items are typed out by SOS: 

c 

D1 xx-, fCX-nn (CR) 

D (CR) 

E 

G (CR) 

G ssss (CR) 

G ssss, tttt (CR) 

G ssss, tttt, uuuu (CR) 

G, tttt (CR) 

G, tttt, uuuu (CR) 

L 

M ssss, xx:nn, ~:x- (CR) 

0 ssss, tttt {CR) 

Read a program card deck into simulated 
ROM. 

Display content of File 1, leave File 1 un­
altered and display content of File 2, 
change the content to nn and terminate 
the operation. 

Display the content of all simulated ele­
ments. Line one contains the 16 files and 
line two contains 13 additional elements. 

Write an end of tape record into for­
matted paper tape. 

Simulation starts at the location con­
tained in the K,L register. 

Simulation starts at location ssss. 

Simulation starts at location ssss, a trap 
is set for location tttt. 

Simulation starts at location ssss, traps are 
set for locations tttt and uuuu. 

Simulation starts at the location contain­
ed in the K,L register, a trap is set for 
location tttt. 

Simulation starts at the location contain­
ed in the K,L register, traps are set for 
locations tttt and uuuu. 

Input a formatted program tape! to simu­
lated read only memory. After loading, 
control returns to SOS. 

Punch six inches of paper tape leader 
(channel 8 only). 

Display the contents of simulated mem­
ory location ssss and change the contents 
to nn. Display the contents of location 
ssss+1, leave the location unaltered and 
terminate the operation. This operation 
must be completed on one line of type. 

Output the contents of simulated read 
only memory from locations ssss through 
tttt into formatted paper tape. 

172 



p ssss, 
ssss xxxx-, 
ssss xxxx-nnnn (CR) 

R 

TIME xxxx- 0 (CR) 

W ssss, tttt (CR) 

z 

Print the content of simulated read only 
memory location ssss, leave .the location 
unaltered and display the content of loca­
tion ssss+ 1. Change the content of ssss+ 1 
to nnnn and terminate the operation. 

Read a formatted paper tape into simu­
lated core memory. After loading, con-
trol returns to SOS. · 

Display the number of machine cycles 
accumulated during simulation. Reset the 
time to zero and terminate the operation. 

Write the contents of simulated core loca­
tions ssss through tttt into formatted 
paper tape. 

Zero simulator error flags and reset the 
simulated MICRO 800 system. 

173 



APPENDIX B 

SIMBOO: ERROR MESSAGES 

# Meaning 

001 U-Register timing - can't use U during first cycle following 
its setting. 

002 Console command switches - Command preceding 707X con­
trol command causes an ROM delay. 

003 Memory write full cycle - attempt to set T during second, 
third or fourth cycle following the memory command. 

004 Memory read - T is set without being selected, during the 
first or second cycle following the memory command. 

005 Attempt to load literal with an undefined register destina~ion 
of 8, 9, A, B, E, or F. Destination 9 is undefined because the 
memory spare bit option is not simulated. 

006 Attempt to load or add literal into file register zero. 

007 Attempt to use undefined C-bit combinations 3, 5, or 6 in a 
control command. 

008 Console command switches - file register zer:.o not selected in 
707X control command. 

009 Address in M and N exceeds available simulated memory. 

010 Memory write half cycle - attempt to set T during first or 
second cycle following the memory command. 

011 Execute command found after U-register OR-ed· into instruc­
tion. 

012 Undefined B-bus operand - usually resulting from selection of 
complement T when the input bus (103X) is enabled. 

174 



ALTERABLE READ-ONLY MEMORY OPERATING SYSTEM 
(AROS) 

INTRODUCTION 

The Alterable Read-Only Memory Operating System (AROS) is a program 
. which permits on-line control, loading and dumping of firmware code 
using the teletypewriter and/or card reader. The program is used in con­
junction with Microdata's Alterable Read-Only Memory System (AROM). 
The AROM system described in Part VI "Product Catalog" is a valuable 
tool for checkout of firmware systems. It is particularly useful in -real­
time firmware or 1/0 oriented applications that require precise timing to 
be analyzed which cannot be done with the simulator system. 

The features of the AROS program include the following: 

Loading of the AROM system (memory) with firmware code in the 
form of formatted punched cards or punched paper tapes. 

Display and/or change of operator designated AROM locations using 
the teletypewriter. 

Listing and/or dumping of AROM on teletypewriter and punched paper 
tape. 

INSTRUCTIONS FOR USE 

This section provides instructions for using the AROS program. 

Loading AROS by the bootstrap and basic loaders 

The AROS is loaded into memory via the basic paper tape loader. This 
basic loader is in the bootstrap format ( 1 data byte per frame of tape) and 
is spliced onto the front of the AROS tape. The splice is made so that the 
last frame of the loacler is followed immediately with the leader of tile 
AROS tape. The micreprogrammed bootstrap loader loads the basic loader 
and transfers contrel to it. Then the basic loader lo.ads the A ROS and, 
after a successful l0acl, transfers control .fo the AROS. Fol·lowing is a pro­
cedure for loadiAg a formatted paper tape through the tel·etype via the 
b0otS1trar> aAcl l:!>asfa l0aa.ers. 

1. Place the TTY in the off-line mode, place the reader centrol lever to 
the "free" r:>0si-t-i0ri and enable the telety,r:>e reaeler. Ty.pe control ar.icl 0. 

2. Place the TTY in the on-line mocle and insert the AR•OS tape in the 
reader with the first sub-out character at the read station. Set the 
reader control lever in the stop (center) position. 

3. Set the front panel sense switches as follows: 

Sense switch 1: off for serfal TTY interface, on for parallel TTY inter­
face. 

Sense switch 2: must be off. 

Sense switch 3: must be off. 

Sense switch 4: must be on. This.selects the bootstrap loader whenever 
the run switch-is selected and was preceded by a reset. 

175 



4. Press the reset and the run switches and the system will wait for the 
teletype reader to be started. 

5. Press the TTY reader lever to the start position. When the basic loader 
is loaded and operating properly, the teletype page printer mechanism 
will chatter whenever a record separator passes the read station. This is 
caused by the issuance of reader off and reader on codes between 
records. 

If a checksum error is found, the message "CE" is typed and the system 
will halt. Another attempt to properly load the record may be accom­
plished by backing up the tape to the previous record separator, placing the 
reader control lever in the stop (center) position, and pressing the run 
switch on the front console. When the AROS is properly loaded, control 
will transfer to it, the teletype bell will ring, and an at sign (@) will be 
typed. 

Loading AROS by the R Operator of TOS 
Unroll about 30 inches of the program tape to bypass the basic loader and 
locate the leader (any frame with channel 8 present) of the formatted 
tape. Insert the tape into the reader with any part of the leader at the read 
station and set the reader control lever to center position. Typing an R will 
start the loading. A checksum is calculated for each record loaded and if it 
doesn't equal the checksum read with the record, the letters "CE" will be 
typed and control will return to TOS. By backing up the tape to the 
previous separator and typing an R, another attempt may be made to load 
the tape. 

AROS Operators 
All operations which are performed by AROS are initiated bv typing a 
single alphabetic character which designates one of 10 operators. 

The AROS program is ready to accept an operator designator character at 
any time after ringing the bell and typing at sign (@). l·f a character other 
than a legal operator designator is typed, AROS will reject the character, 
ring the bell, and type an at sign (@) again. 

NOTE: For the purposes of this manual, all references to· the teletype 
carriage return are shown as; (CR). 

Hexadecimal Input/Output 
All data and addresses are displayed and entered in hexadecimal. The 16 
hexadecimal digits are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F. The 
hexadecimal values may not be signed. When entering a four digit data 
value or a four digit memory address, no spaces or other than hexadecimal 
characters may be in the digit string. AROS assumes that the hexadecimal 
digit string is terminated when it receives the first non-hexadecimal charac­
ter. Therefore, it will not act on an input until the digit string is termi­
nated. If more than the required number of digits are entered, AROS will 
take the last four as required. 

Leading zero digits need not be typed. If the first non-hexadecimal charac­
ter is not a space, comma, or carriage return (CR), the data or address 
value is ignored and the operation is terminated. However, before termi­
nation, all valid hexadecimal data or address values that were accepted 
are retained. When more than one address is typed they may be separated 

176 



by· either a comma or a space. For clarity in this document only commas 
are shown. When an operator requires an address, it will ignore leading 
spaces, i.e.: 

W ssss, eeee (CR) 

Console Interrupt 

The console interrupt may be used to terminate the D, R, V, and W opera­
tions, return control to AROS and type a carriage return, line feed, bell, 
and at sign (@). If the console interrupt is activated when control is resid­
ing in AROS (waiting for an operator), an exit is made to the resident 
TOS. When using the serial teletype interface, the exit is not taken until 
one character is typed on the keyboard to force completion of the I BS 
instruction. 

OPERATORS 

Card Read: C 

The C operator causes AROS to load a program card deck into reference 
ROS. The format of the cards must be as described in the AP800 Assem­
bly Program manual. Loading is terminated and control is returned to 
AROS, when a card is read containing a blank in column 5. If a Qlank card 
is read, any character other than a hexadecimal character is read, or a card 
reader malfunction occurs; the message ERR will be typed and control 
will return to AROS. Loading may continue, by correcting the error condi­
tion, backing up one card, starting the reader, and typing a C. Since no 
information goes through the reader when a blank card is read or when a 
pick jailure occurs, it is not necessary to back up one card. 

Dump: D ssss, eeee (CR) 
The D operation causes the contents of AROM to be dumped on the tele­
type printer starting with the address ssss and ending with the address eeee. 
AROS types the four digit address at the left margin followed by eight 
16-bit words of AROM. This operation is' terminated when the contents 
of the last AROM location has been typed, or the console interrupt is 
activated. Typing a (CR) after the second address will start the operation. 

End of Tape: E 

The E operation punches an end of tape record consisting of a zero record 
size, a zero address, and a zero checksum followed by six inches of tape 
containing channel eight punches only. 

Leader: L 

·The L operator will cause the punching device to punch six inches of tape 
containing channel eight punches only. 

Print Reference ROS: P ssss, 

The P operator causes the reference ROS address specified by ssss to be 
typed out on a new line followed by the contents of that location. A dash 
is typed after the value to indicate that it _may be changed by typing in one 
to four hexadecimal digits. When a comma or space is typed, after the 
new data or after the dash, the next sequential reference ROS address and 
its contents are typed on a new line. A (CR) terminates the operation. 

177 



Read: R 

The R operator causes AROS to load a formatted tape into refere!nce ROS. 
The tape must be inserted into the teletype reader with the leader (any 
frame with channel 8 present) placed at the read station before the R is 
typed. When the loader encounters an end of tape record, the loading pro­
cess is terminated and control is returned to AROS. If an end of tape 
record is not read, loading will continue until the reader is empty or until 
the console interrupt is activated. A checksum is calculated for each 
record loaded, and if it doesn't equal the checksum read with the record, 
the letters 'CE' will be typed and control will return to AROS. By backing 
up the tape to the previous separator and typing an R, another attempt 
may be made to load the tape. 

Transfer: T ssss, eeee (CR) 

The T operation causes a clock of reference ROS starting with location 
ssss and ending with location eeee to be transferred to the corresponding 
locations in AROM. The operation is started by typing a (CR) following 
the second address and is terminated when the contents of the last loca­
tion specified is transferred. There is no verification or check of the data 
written made by this operator. 

Verify: V ssss, eeee (CR) 

The V operation causes a block of AROM starting with location ssss and 
ending with location eeee to be read and compared with the corresponding 
locations in reference ROS. All variances will be displayed along with 
their associated address. The operation is started by typing a (CR) follow­
ing the second address. Termination occurs when the last specified location 
is checked and a message is typed or the console interrupt is activated. 

Write: W ssss, eeee (CR) 

The W operation causes the contents of reference ROS starting with loca­
tion ssss and ending with location eeee to be written on the standard out­
put device, normally the teletype punch. Each record of the output will 
contain 6410 16-bit words, except the last record, which will contain the 
number of words equal to the total word count modulo 6410. Typing a 
(CR) following the second address will start the operation. 

Zero: Z ssss, eeee (CR) 

The Z operator causes the reference ROS locations starting with ssss and 
ending with eeee to be set to zero. Typing a (CR) following the second 
address will start the operation. 

PROGRAM TAPE FORMAT 

The binary paper tape format (Figure 22) can be generated by the~ MAP800 
assembler, by the 0 operator of the simulator and by the W operator of 
AROS. This format allows for variable length records of up to 6410 16-bit 
words (punched as 128 bytes), a record load address (address X 2), and a 
record checksum. Each record contains a byte count of the number of data 
bytes and the address at which loading is to start. The last byte of each 
record is a checksum which is the summation of the byte count, load 
address, and data bytes formed on an eight bit basis with overflow added 
into the least significant bit of the sum. 

178 



• • • • • . . 
••••••••• ••••••••• ••••••••• 

. .. 
• . . .. 

•• • • .. . . 
••• •• •••• •••• • ..... 
•••••• •••• • . . . . 

••••••••• ••••••••• ••••••••• 

. . .... .. . .. . . .. .... . . ... 
• • • • • • • • • 

LEADER 

LEADER/TRAILER OR AREA OUTSIDE OF A RECORD 

NOT USED WITHIN A RECORD (RECORD MARK TO CHECKSUM) 

CONTROLS PRINT SUPPRESSION 

CONTAIN A HEXADECIMAL DIGIT 

~SEPARATOR 
- RECORD MARK (1 BLANK FRAME) 

E 
RECORD SIZE (VALUE OF 03) . 

LOAD ADDRESS (VALUE OF 016A) 

DATA BYTE (VALUE OF AB) 

t--- DATA BYTE (VALUE OF CD) 

t--- DATA BYTE (VALUE OF EF) r-- CHECKSUM (VALUE OF D5) r-- SEPARATOR 
-- RECORD MARK (1 BLANK FRAME) 

E 
RECORD SIZE (VALUE OF ZERO) END OF TAPE 

EXECUTION ADDRESS (VALUE OF 016BI (IGNORED.BY AROSI 

CHECKSUM (VALUE OF 6C) 

TRAILER 

Figure 22. Binary Paper Tape Format 

SUMMARY OF AROS OPERATORS 

Underlined items are typed out by AROS: 

c 

D ssss, eeee (CR) 

E 

L 

p ssss, 
ssss xxxx-, 
ssss xxxx-nnnn (CR) 

Read a program card deck into reference 
ROS. 

Dump the contents of AROM locations 
ssss through eeee onto the teletype print­
er. Each line will contain an address and 
up to eight 16-bit values. 

Write an end of tape record into format­
ted paper tape. 

Punch six inches of paper tape leader 
(channel 8 only). 

Print the content of reference ROS loca­
tion ssss, leave the location unaltered and 
display the content of location ssss+ 1. 
Change the content of ssss+ 1 to nnnn and 
terminate the operation. 

179 



R 

T ssss, eeee (CR) 

V ssss, eeee (CR)· 
LOC_RQM REF 
ssss xxxx yyyy 
VerifYCompfeted 

W ssss, eeee (CR) 

Z ssss, eeee (CR) 

Read a formatted paper tape into. refer­
ence ROS. After loading, control returns 
to AROS. 

Transfer the block of reference ROS from 
ssss to eeee to the corresponding locations 
in AROM. 

Verify the block of AROM from ssss to 
eeee to the corresponding loc<1tions in 
reference ROS. An error is indi;cated at 
location ssss. 

Write the contents of reference ROS loca­
tions ssss through eeee into formatted 
paper tape. 

Set the contents of reference ROS loca­
tions ssss through eeee to zero. 

PROGRAM CHECKOUT AND DEBUGGING 

After a program has been written and assembled, the program debugging 
phase begins. Depending on the size and complexity of the program, and 
the care used in preparing the program, this phase may be routine, requiring 
only a few hours, or it may require many days. 

The simulator is very useful for debugging because commands can be 
easily modified to correct errors or to help in finding errors. This also 
applies to the Alterable Read Only Storage (AROS). 

.Programs can also be checked and modified quite easily even if they have 
already been put in diode read only memory. 

This discussion of checkout and debugging is divided into four sections: 

General Checkout Procedures 
Checkout with Simulator 
Checkout with AROS 
Checkout with Diode Read Only Storage 

General Checkout Procedures 

There are a number of programming errors which might possibly occur, 
and are sometimes very difficult to detect. These are the kind that ~epre­
sent valid program commands as far as the assembler and simulator are con­
cerned, thus are not flagged as errors by these two programs. Being aware 
of the typical errors and their effect on a program helps considerably in 
locating them. 

Some of the error types can definitely cause any one of the symptoms, and 
these should be checked out first. The procedures for detection and check­
out of error symptoms differ for use of the simulator, alterable read only, 
or diode board, and for that reason will be discussed separately. 

Simulator 

The simulator is useful for checking internal programs for correct se­
quences, correctness of results of algorithms, math ruutines, etc. and for 

180 



input output sequences. Since the simulator does not run in real time, it 
is limited in its ability to test the entire program in normal operation. Also, 
since it is simulated, it is not possible to step through the program by 
means of the clock switch and observe the L count and ROS outputs. 
With the simulator, the ROS can be checked using the teletype, and all 
files, etc. can be set up using the teletype. Then breakpoints can be 
placed in the routines and the program can be started at convenient 
points to test individual routines, or combinations of routines, after the 
breakpoint is reached. 

Some of the more common errors and error symptoms are listed in Table 
12. 

The reason why al I of these are mentioned is that they become the base 
for establishment of a growing check list which should always be referred 
to during program checkout. As errors are found in different categories 
not on the list, they are added to the list. For certain phases of a checkout 
process, such as checking individual subroutines, obviously all ofthe error 
categories don't apply so only selected ones need ,to be considered. 

Many times hours and even days are wasted trying to track down an 
apparent error cause when a few minutes spent going through the check 
list would show that a few other items could cause the same symptom. 
The diagnostic effectiveness of the check list is increased by putting it in. 
the form of a table which relates errors to symptoms, or symptoms to 
errors. For most cases this table is applicable to checkout with the simula­
tor, AROS, or diode board. 

One big advantage of firmware checkout over software checkout is that 
firmware errors don't cause the program to destroy itself, thus wiping out 
the error symptoms. 

The program error check list relating symptom to error takes on the form 
shown in the example of Table A. The X's indicate the most likely rela-

, tions between program errors and symptoms, although under certain con­
ditions any one of the symptoms might be caused by any of the program 
error types. The various files, registers and flags are tested to see if the 
routines operated correctly. Once error symptoms are detected, the pro­
gram errors can be tracked down by the relationships illustrated in Table A. 

In Table A the general functions such as algorithms, flow charts, and trans­
fer of flow chart information to coding can introduce errors causing any 
of the listed symptoms. Therefore,·these parts require special checkout on 
paper before committing to read only storage. One method which proves 
quite successful in many cases is to define the algorithm and flow chart, 
and do the coding in MICRO 810, 811 or 820 software as close in format 
as possible to the firmware coding, and check out these routines first 
before committing to firmware. This works satisfactorily except for the 
real time limitation in high speed operations. 

Use of the Simulator to Check Subroutines 

Two simple subroutines have been selected to illustrate use of the simula­
, tor for checkout. The first routine sets files 1-E to 'AA', and the second 

routine does a simple 8-bit positive number multiply. 

181 . 



The simulator operators to be used for these two examples are as follows: 

a. ON - Display files, registers, and flags. 

b. G ssss, tttt, uuuu (CR) - Execute a program starting at ssss, with traps 
at tttt, and uuuu. 

c. P ssss - Prints out and permits loading of ROS commands starting at 
location ssss. 

d. Z - Resets flags used by the simulator. 

e. D @ - Display all Files and Registers. 

Routine 1 - Set files 1-E to 'AA' 

The U register is used for file indexing. File F is used to contain, and up­
date the U register value. The machine code for this program is as follows: 

L 
Counter 
Address 

000 
001 
002 
003 

004 
005 
006 

Command 

2FBO 
8F46 
11AA 
0020 

6F42 
1401 
1780 

Example 1. Set files 1-E=AA 

Operation 

U Reg. Code.to File F. 
Update File F and U Reg. 
Set T=AA 
Execute Command 
(Effectively copy T) 
Compare for last file value 
Jump to repeat loop 
Halt* 

*For demo only, usually a jump or 
subroutine exit. 

Simulator Operations 

1. Z - to initialize the simulator. 

2. p 000, 

' 

000 xxxx 
001 xxxx 
002 xxxx 
003 xxxx 
004 xxxx 
005 xxxx 
.006 xxxx 

_.J 

2FBO, 
8F46, 
11AA, 
0020, 
6F42, 
1401, 
1780 @ 

This part is New commands are 
printed out typed in followed by 
by simulator. comma until last command. 

3. G 000 @ execute program without traps. 

For correct operation program halts and prints out an H followed by 
0007 which is L register + 1 . 

182 



4. Use of D 1. followed by commas, will cause the teletype to print out the 
content of the files: 

D 1 AA-, AA-, AA, etc. 

Typical errors and symptoms: 

1. 001 - 8F06 instead of 8F46 - File F not incremented. Program will 
never exit from loop to halt instruction. No files will be loaded with 
AA. 

2. 004 - 6F41 - File F incremented once too often. Program will loop 
one extra time, setting file F=AA, which will then cause additional 
loops storing T into memory at locations determined by M & N. Then 
program will repeat loading AA into files. Program will never exit loop. 

3. 005 - 1400 o"r 1402 - File F will either be reinitialized every time or 
nonincremented, so loop will never be exited. 

Routine 2 - 8 bit positive number multiply. 

x * y--Zu, ZL 
file2=X 
file 3 = Y and ZL 
file 4 = Zu 
file 5 =Shift Count 

Machine Code 

L Counter 
Address Command 

000 2508 
001 C201 
002 2400 
003 4301 
004 8420 
005 F420 
006 F3AO 
007 9550 
008 5004 
009 1403 
OOA 1780 

Simulator 

Operation 

Shift count= 8 
Move X to T Register 
Clear Zu 
Test Y for odd/even 
Add T to Tu 
Shift Zu 
Shift ZL 
Decrement Shift Count 
Zero Condition Test 
Jump to repeat loop 
Halt* 

*For demo only. 

1. Z - to initialize this simulator. 

2. p 000, 
000 xxxx 
001 xxxx 

2508, 
C201, 

Complete until entire program up to OOA 1780 is loaded. 

183 



3. 02, xx-02 } example of 2 x 4 = 8 
03, xx-04 x = 2 

y=4 
ZL = 8, Zu = 0 

4. G 000 § Execute, with no traps. 

5. Results 

H OOB Halt location +1 

03,08, 00 

t t 
ZL Zu 

Typical errors and symptoms: 

1. 008 - 4004 instead of 5004 

The requirement is to skip on zero shift count which would seem like 
Test Zero is correct. However, the zero condition flag is being tested. 
This must be =1 when shift cound is 0. A 4004would cause program not 
to loop. 

2. 007 - 9540 Condition flag not updated. 

Subroutine will never exit because zero condition flag will never be set. 

If flag had been set when routine was entered, exiting would occur on 
first pass. 

3. 006 - F320 Link not entered. 

With this error, the program would loop properly and exit to the halt, 
but the ZL value in file 3 would always be 0. 

As larger and more complex subroutines and entire programs cqnsisting of 
many subroutines are checked out, more of the error sources iricluded in 
Table A must be considered. 

Many times, if a timing error for memory access or 1/0 is found, it can be 
corrected without addition of instructions requiring relotation by changing 
the order of instructions or changing a no-op to a jump to next instruction 
to increase a delay factor. 

Consider the following example: 

1. 

2. 

3. 

Memory Write 
fN+1-fN, N 

(fX)-T 

Memory Write 
fN+1-fN,N 

184 



Assume that this is a programming error because the value in fX is not 
supposed· to be stored until the 2nd memory write cycle shown. The 
routine could be changed to the following: 

1. 

2. 

3. -

Memory Write 
fN+l~fN, N 

Memory Write 
fX----+-T 

The same number of instructions are required, but instruction 2 which 
causes modification of N will cause a delay until the first memory cycle is 
complete, thus ,causing f(X) to go into memory on the 2nd cycle. Changes 
of this type are particularly important when the program being checked is 
in diode read,only memory. 

Checkout of an applications microprogram can be facilitated by prepara­
tion of simple programs for display of registers and core memory and 
placing these in the upper part of the read only memory. 

Also checkout of short firmware subroutines is facilitated by using a 
MICRO 810, 811, or 820 having an additional ROS which is electrically 
alterable by the program. Then the software programs can be used to test 
core memory and to display most of the file registers. 

Checking Subroutines with the Alterable Read Only Storage 

An alterable read only storage (AROS) has the advantages of running in 
real time as well as ease of command modification. 

Programs can be checked out by manually clocking one step at a time while 
testing the L counter for proper looping, by preparing and testing one sub­
routine at a time using halt instructions to break up loops, and test partial 
routine functions. Real time 1/0 operations can be tested by looping on 
1/0 subroutines, or looping on small groups of subroutines. When the 
individual routines have been checked, it becomes much easier to assemble 
and to test the entire program. 

Checkout of Programs in Diode.Read Only Storage 

Programs in diode read only memory should first be manually clocked to 
see if the L counter follows the correct branching paths, and to check each 
command in read only storage. File registers are checked at various points 
in the routine by switching to front panel control and setting command 
switches to CfOO and display to D. To bypass loops, the L count is set to " 
the next instruction after the loop. Those items in Table 12 causing all 
possible symptoms to occur should be checked first. This includes the 

185 



diode map, instruction op codes and functions to flow charts, to coding. 
When stepping through a program, 1/0 timing cannot be tested in real. 
time, nor can omissions of U register modification delay be detected, 
therefore these two areas should be thoroughly checked on the flc1w charts 
and coding sheets. 

To facilitate checkout with diode boards, temporary halt, or loop instruc­
tions can be put in the program, and easily changed after the subroutines 
have been checked out.· 

Many times in the firmware development phases it is possible to correct 
an error or omission by placing a jump instruction to an unused part of 
read only storage, programming the fix there, and jumping back to the 
first correct instruction after the error. These detours or patches can then 
be eliminated in the firmware production phase after the firmware program 
has been checked out. 

186 



x 

x x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

Table 12. Program Error Check List 

---- Programming Error 

Error Symptom 

! 
X X X X X X X X X Incorrect or Missing 1/0 Data 

xx xx x xx xx Incorrect Results but Correct 
Files Modified 

x X X X X X X Incorrect Files Modified 

X X X X X X X Program Hangs up in a Loop 

xx xxxx 

xx xx xx 

xx xxxx 

Program Fails to Loop in a 
Subroutine 
Program Exits a Subroutine 
Loop too early or too late 
Incorrect Core Memory 
Storage Locations 

X x x x x x Core Data/Flags Destroyed 

xx X X X X X X Incorrect Data/Flags Stored 

xx xx xx 

xx xxxx 

xx x xx xx 

x xx xx xx 

X 'XX XXXX 

xx x xx xx 

xx xxxx 

xx xx xx 

xx xx xx 

Incorrect or No Return 
From Subroutine 
Program Never gets to 
Correc~ Subroutine 

Intermittent Program Error& 

Program Does Not Enter a Loop 
According to Expected Flags or Status 
Program Enters Loop when Conditions 
Say it Should Not 

Incorrect or Lack of 1/0 
Control Pulses 

Program Stays in One Page of ROS 

Program Follows Unexpected Mean­
ingless Path Through Routines 
Program Jumps to an 
Unused ROS Area 

X X X X X X X X Timing Errors 

187 



(') -
0 :I 
3 (') 
'2. ~ <1) <1) 

3 !l 
<1) .... 
:I-· .... 3 
:;· :;· 
-·IC :I • 
.... C/l 
<1) <1) .., .c 
ct c: 
(') <1) 
<1) ::> 

(') 
<1) 
~ 

x x 

xxx 

o S: (il z m., CJ - :;· - c 
3 -· - 0 :R 3 < :I :I -· l'l g .... a., .... "O !.!1 g <1)x 
~ o Q) (') -· a C/l ., 

(5' § ~. ;- :;· ~ i (5' (il "O 
::::1 .... 0::::1 .... ~ • .,::::1~~ 
o :;· .::::1 ce. 3-· g - :- C/l S' 
...,IC 0::::1 -. ~C. 
..., ..., ., IC <1) (il Q ij' 0 

~ Q ~ c· g. ce. ~. o ~ 
:E o CD 3 S S 2. g :b 
::!. 0 !l "O < :I c. 0 
,.... "O Ill ., IC -· < 
<1) :;· c. a !.11., • ~o' :: 
- <1)1Cc.c: .. 
::::1' x :E ., .... 0 :I 0 

~:·a~ ~· Q ~ 
~· IR :I :R o o ~ ;:;· 

~ ~ Q) !i£.. 3 :;· c;· 
c. ;::::- 2 iii' < ? 
~~ Q;'Cll c. 
<1) ., .... i5' 0 
~ g i5' ? §. 

§'· :I CD 
IC 

Table 12. Program Error Check List 
(Continued) 

....----- Programming Error 

Error Symptom 

1 
xxx X Incorrect or Missing 1/0 Data 

x x x Incorrect Results but Correct 
Files Modified r---+--+--+--1--+----+--+----+--I-+--+---+--+-_:.;..,;..:._ ___ ~-----------~ 

x x Incorrect Files Modified 
t---+--+--+---~--li--+---1-------+--+----+--+---lf-------------·--~-~ 

xxx :x xx Program Hangs up in a Loop 
t---+---+-·T--i~-+--t---+---t---il---+-----t----+--+--------------------­

program Fails to Loop in a xxx Subroutine 
t----t---+-t---lf--+---+---+---+--11---+-----t---1---+--------------------­

P rog ram Exits a Sl!broutine 

x 

x xxx Loop too early or too late 
Incorrect Core Memory x xx x Storage Locations 

t---t---+-t---11---t--t--t----+--ir--+-----+----+--+---------------------

x xx x Core Data/Flags Destroyed 

x x x Incorrect Data/Flags Stored 
t---+--+---+----'-··-+-t-1---+-+-+-+--+--+-------------------

x x x Incorrect or No Return 
From Subroutine 

t--+---+--+-r---+--+---+----1-~--1--+--l---+----------'------------­
Program Never gets to 

-----+---+- --1---1----l--x--1-+-x-4_+--t---lf--C_o_r_r_e_ct_S_u_b_r_o_u_t_in_e ___________ __; 

x x Intermittent Program Errors 
t---+--+----- --·--t----+--+-+----1-+----+--+--l---+---------------------x x x Program Does Not Enter a Loop 
1---+--+--t--+- According to Expected Flags or Statu_~ 

Program Enters Loop when Conditions 
1---1--x-+--+--x-+-~ ~-- __ -----i,-·-+----+--+--+----1-S_a--=y_it_S_h_o_u_l_d_N_o_t ___________ --' 

Incorrect or Lack of 1/0 
Control Pulses 

t--t---+----t·-t--+---+--+----+--t-+--+--+--+-----'---:.:..:.::~-------------~ 

x x x x 

Program Stays in One Page of ROS 
1---+---+--+--+- --+--4---r---t--+--+---+---1--Program Follows Unexpected Mean- _ __, 

X ingless-Path Through Routines 
t--+--+--+-~--t---+--l----+--lf--+---+---+--+----=:;._ _____ ____::;._ _________ _ 

Program Jumps to an 
Unused ROS Area x 

t---+--+--+--t-+--+---+-----+---+-1---+--+---1----------------------

x x x Timing Errors 

188 



x x 

x x x x x 

x x x x 

x x x 

x x x 

x x 

xxx x 

xx xx x 

x x x 

x x x 

x x x x 

x x x 

x xx 

x x x 

x x 

x x 

x x 

x x x x 

x x 

Table 12. Program Error Check List 
(Continued) 

------_Programming Error 

Error Symptom 

l 
Incorrect or Missing 1/0 Data · 

Incorrect Resu Its but Correct 
Files Modified 

Incorrect Files Modified 

X Program Hangs up in a Loop 

Program Fails to Loop in a 
Subroutine 
Program Exits a Subroutine 
Loop too early or too late 
Incorrect Core Memory 
Storage Locations 

Core Data/Flags Destroyed 

Incorrect Data/Flags Stored 

Incorrect or No Return 
From Subroutine 
Program Never gets to 
Correct Subroutine 

Intermittent Program Errors 

Program Does Not Enter a Loop 
X According to Expected Flags or Status 

Program Enters Loop when Conditions 
Say it Should Not 
Incorrect or Lack of 1/0 
Control Pulses 

Program Stays in One Page of ROS 

Program Follows Unexpected Mean­
ingless Path Through Routines 
Program Jumps to an 
Unused ROS Area 

Timing Errors 

189 



CHAPTER 7 

TECHNIQUES AND EXAMPLES 

TECHNIQUES FOR EFFICIENT MICROPROGRAMMING 
In many aspects microprogramming is similar to assembly language soft­
ware programming of small computers. There are basic arithmetic, logic, 
1/0, control, and memory functions. Programs are organized with exec- . 
utives and subroutines. Jumps and return jumps can be made. The basic 
differences are as follows: 

• There are no variable addressing modes at. the microcommaind level. 
Memory accesses must be programmed on a step-by-step basis, with 
commands to set memory address, and to transfer data to and from T, 
which is the memory transfer register. 

• Execution of commands is much faster than in a software machine. 

• 1/0 functions must be programmed on a step-by-step basis, including 
setting up device connect codes in T, and programming input and out­
put strobe pulses. 

• Return jumps must be set up by storing return addresses in a file 
register. 

• Arithmetic shift, control and logic functions are all register oriented, 
and are limited in scope, such as shift one bit position, add 8 bits, 8 bit 
logic, skip only one location, etc. 

• The command or instruction memory is semi-permanent read only 
memory with a limited capacity, so that much care must be taken to 
conserve the number of commands or instructions in the program. 

• The commands or instructions are much more intimately related to the 
machine architecture, and to bit patterns, therefore· some knowledge 
of logic Boolean algebra, and small computer organization is highly 
desirable, and is applied to the programs. 

• Interrupts are monitored by status sampling rather than hardware 
interrupts as found in software programmed machines. 

• All commands or instructions are single word ( 16 bits) and relate to 
files, or register. 

• Commands are organized in such a manner as to make is possible 
sometimes to do more than one function on a command, and this is 
necessary many times to conserve commands. 

• The flexibility of programmable alteration commands is not as great as 
with software programs. A special register, called the U rngister, is 
necessary for this function. 

• There are two levels of high-speed storage - the file register and core 
memory. The files are general purpose at the microprogramming level. 

• There are special commands in microcode not normally found in soft­
ware commands, such as shift right 4, load zero, and literal to register, 
which simplify many functions. 

• There are certain timing constraints related to 1/0, memory, skips, 
jumps, and U register applications, which must be taken into account 
when preparing microprograms. 

190 



Even with all of the above constraints, it is possible to have microprograms 
which are 10-50 times as fast as equivalent software programs and which 
require the same or fewer instructions than a software program. 

In order to make full use of the power of microprogramming a large 
number of techniques are possible to reduce the number of instructions, 
and/or to reduce execution time. 

The following techniques are discussed in this next section: 

1. Generation of delays for memory accesses, U register applications, 
and input/output. 

2. Double functions on a single command. 

3. Uses, setting and testing of Link. 

4. Uses of U register. 

. 5. Setting and using of condition flags. 

6. Use of loops vs straight line programming. 

7. Small general purpose subroutines . .' 

8. Use of shift right 4 ipstruction (generated with anq without U). 

9. Use of files for flags, counters, and reference data. 

10. Organization of Op codes, file, and core allocations to reduce 
instructions. 

11. Saving diodes by selection of instructions and files. 

12. Saving jump instructions when branching. 

13. Reducing two branches to one by multifunction commands, and 
commands which become effective No Ops in one branch. 

14. Interlacing vs cascading of routines. 

15. Uses of inhibit file write. 

16. Moving data from file to register. 

1. Generation of delays for memory accesses, U register applications 
and input/output. 

Each of these items requires a delay of 1 to 3 clock times after the com­
mand. The desirable thi11g to do is some required function which provides 
the delay with no error. For example, on a memory write, T must not be 
written into fQr 4 clock times. On the 32-bit input example (#2) the write 
memory command is followed by reset DIXX, a skip test, and a jump. 
None of these affect T, so the entire memory delay is achieved with no 
loss of execution time. The memory time is then reduced from 1. 1 J-IS to 
.22 JJS. Also in this same example, the one clock delay after DIXX, prior 
to data input is achieved by advancing the byte· address counter, thus 
avoiding a No Op. Most of the. input and output delays can be generated 
by updating program counters, and addresses, etc. Microprogram Example 
No. 10 contains many of this type command. Microprogram Example No. 
12A shows an example of placing a memory access command after up­
dating U to provide a delay without a No Op. 

191 



2. Double functions on a single command. 

The following double functions can be done, and should always be used 
when possible: 

a. Clear both a file and register with a copy 0 command. Similar 
techniques can be used to set both equal to 01, OR, FF. 

b. Update a file or register on a memory command. (This does not 
have to be a memory register.) 

c. Update a file, or register on an 1/0 control command. (Output 
moves only.) 

3. Uses, setting and testing Link. 

Link is used to indicate carry for an arithmetic function, or the shifted out 
bit on a shift function. It is used for multibyte arithmetic, shifting, or 
memory address incrementing. 

Link can be preset by shifting a file, with inhibit file write. If link is to be 
set specifically to 1 or 0, it may be accomplished by subtractinu zero or 
adding zero to any selected file regardless of its contents. For siun exten­
sion on a shift, link is preset to whatever value is in the end bit of the 
des~nated file. · 

The state of link can be tested without disturbing a file by exHcuting a 
shift right command with the following c field functions: inhibit file write, 
enter link, and update the condition flags. The link appears in the MSB 
which sets or resets the negative condition flag. If the condition flags must' 
be saved, then link can be entered ·into MSB or LSB of a file, and tested. 
Link can also b1~ tested by entering into a file using the copy command as 
well as the shift command. 

If link is used in a routine, care must be taken to avoid sett.ing or resetting 
it on a function before the time it is to be tested. 

4. Uses of the U register. 

The U register is used for file indexing, and command modification. It is 
ORed with the upper 8 bits of the execute command or operate com­
mands (except control) which select destination register value 7. Typical 
modifications are as follows: 

a. Execute 0020 

The 2 in the c field selects T for add, subtract, logic functions, and 
copy. Theirefore the 0020 can be used for multi-purpose command 
execution., by loading U with .the desired Op code, and filie register 
number. 

For moving, loading or clearing a group of files, the Op •code will 
remain fixed, and only the file number will change. In this case, the 
Op code for copy ('B') or move ('C') can be used with a 0 for the 
file number. 

When U has been set, the new value does not become effective until 
the second clock. Sometimes two entirely different functions can be 
implemented using U. For example, if it is necessary to move the 

192 



u'pper 4 bits or alternately the lower 4 bits of a file to the T register, 
this can be done as follows: 

Move file 
4to T 'OF'-T 

execute, C == 2 

Case one: move upper 4 (U) = 74 

Machine Code 

1l0f 

0021 

with c = 2 this becomes 7421 shift right 4-T 

Case two: Move lower 4 U = E4 

with C = 2 this becomes E421 
And f4 with T-T 

If a number of different functions are to be done to a register in one pass 
through a loop, the operate command with destination code 7 is used. This 
can not be used if a destination register is required. 

5. Setting and using condition flags. 

The three condition flags are overflow, negative, zero. The condition flags 
remain unchanged unless the c field in an operate command is. set for 
updating condition flags, or a control command is executed. The zero con­
dition flag is used to test for arithmetic zero conditions, and for end of a 
subroutine loop. Condition flags can be set without changing files. Some 
of the techniques are as follows: 

a. I fa+ o--c I by inhibiting file write, and adding 0, the 

condition flags for a file state can be set. 

b.1 T--fO,C I by copying T and inhibiting file write, the 

condition flags for a T state can be tested. 

c. I· enter sense switche~ to fO---C I Sense switch 4 can be used 

to set the negative condition flag without affecting any register. 

d. I fA + T~c setting C for normal add function. 

e. } Copy Link-C I Set negatitive, and zero condition flags. 

193 



6. Use of loops vs straight line programming 

The two main factors of consideration are execution time and number of 
commands. If the number of commands using a straight line approach is 
five or less, there are no command savings using a loop because four com­
mands are required to set up the loop as shown: 

The loop takes much longer than the straight line approach. A typical 
loop is shown in Example 7. In this routine there would be nine functional 
commands per input byte for a total of 36 for four bytes. Using a loop 
reduces the command count to 12 commands. The straight line approach 
takes 7 .94 us instead of 10.56 us as in Example 7. Therefore if time were 
very critical it might be desirable to use the straight line approach. 

194 



7. Small general purpose subroutines. 

To reduce the total number of commands in a microprogram, subroutines 
can be used in a manner similar to software programs. 

To jump to a routine on the same page requires 2 or 3 instructions, one for 
the return address, one for the jump, and usually one to set a flag, pointer, 
etc., for the subroutine. Therefore if the subroutine requires only 4 or 5 
instructions it is not worth making as a standard. If the routine, such as a 
general purpose 1/0 routine requires 10 or so instructions and is used more 
than once, then it is . definitely of value to make the routine general 
purpose. 

8. Use of shift right 4 command. 

This command is used to transfer the upper four bits of a file to the lower 
four in the file and/or to a destination register. The upper four are re­
placed with 1's, which may or may not have to be cleared. To clear the 1's, 
simply add '10' to the file after shifting. If the value is an Op code to be 
tested, the 1's can be treated as a constant. If the result is to be subtracted 
from another value obtained by similar means, the 1's will cancel. 

9. Use of file register for flags, counters, and reference data. 

File registers are used for routine control words as well as data. When it is 
necessary to conserve files, flags, etc., are sometimes stored in core between 
routines so that file register meanings may change during a microprogram. 
Also files can somet.imes serve a dual function by judicious location of 
flags. In Example 19, there is a subroutine which must perform differently 
on alternate passes. On one pass there is an effective shift right 4 leaving 
1's to be cleared. One file contains a flag to indicate which pass it' is. This 
flag is also placed in bit position 4; therefore the file content can be added 
to the file containing 1's to be cleared, thus serving a dual function. Also a 
file assigned to update U can be used as the loop program counter. 

10. Organization of Op codes, file register numbers, and core memory 
addresses to minimize commands. " 

Many times it is possible to use particular fiJes to make -their addresses 
correspond to memory addresses, such as in Example 12A. This will save 
both files and commands. Also locating a block of data in one page saves 
an instruction. Use of file F for an instruction which may be either a shift 
or add will minimize instructions, as shown in Example 19. 

11. Saving of diodes by selection of files and instructions. 

If possible files used very often should have·numbers which have the least 
number of diodes. If there is a choice of TZ, TN, or using condition flags 
vs. testing -the file, directly, the method which requires the fewest diodes 
should be used, particularly if there are very many ROM's to .be built 
using discrete diodes. 

195 



12. Saving jump instructions when branching. 

This example shows that if there are two branches, each having two or 
more commands, doing one of the branches first reduces the number of 
commands by two. 

COMMAN~ 

COMMAND 1b 

JUMP 

2 
JUMP 

COMMAND 1a 

JUMP 

COMMAND 1b 

JUMP 

COMMA~~ 
COMMAND 2a 

6 INSTRUCTIONS 

COMMAND2b 

8 INSTRUCTIONS 

196 



13. Reducing two branches to one by multi-function commands which 
become effective No Ops in one branch. -

Many times a function varies with program state, such as moving upper or 
lower half of a byte in BCD manipulations. Sometimes. widely varying 
functions can be combined by organizing the routine for the worst case 
function, and having some of its steps become effective no ops for the 
simpler functions. · · 

This is illustrated in Example 19. 

'FO'~fm 

70 ~fe2 

INITIALIZATION 

fu-1--+- fu 

OF--+-Fm 

EO---..fe2 

MOVE 
fe2+1 ---+- T 

fu+T--.. u 

0 
'OF' ____.,.. T 

CD EXECUTE__... T, C = 2 

0 fe1+T ____....T 

197 

The odd state is for moving 
the upper byte. The even for 
the lower byte. If odd, the 
pertinent state when entering 
'move' is 

fe2 = '70' 

With this stage the value in U 
becomes 7f 

/\ 
Control Selected file 

register 

This causes a shift R 4 at CD 
with result to T, which nulli­
fies c~mmand (2) 

'OF'-T 



If the state is even, the state of fe2, entering the move is EO. This causes 
U to become Ef which is the And function. This causes the contents of f to 
be Anded with (f) with result to T. In this case the 'OF' loaded in T causes 
selection of only the lower half of (f). The next instruction @ 
fe1+T-T adcls '10' to T if in the odd state, which clears the l's resulting 
from the shift R. If in the even state, fe1 contains '00' so command @ is 
an effective no OP. 

14. Interlacing vs. cascading of subroutines. 

What this means is entering a subroutine and remaining until an operation 
is complete, vs. doing parts of routines, and moving on to subsequent 
routines before finishing. Cascading results in the fewest instructions, but 
can drastically reduce throughput, if the routines are time paced by exter­
nal devices, such as card readers, serial teletypes, line printers, in which 
case the microprogram must wait for data to be supplied by the interface. 
For example, teletype lines should be monitored by the microprogram on 
a bit sample basis instead of assembling an entire character. More com­
mands are required to store and fetch pointers and status bits and to test 
for status, but the throughput improvements are worth the extra coding, 
and sometimes an absolute necessity. 

15. Use of inhibit file write. 

Inhibit file write is used for the following functions: 

a. Setting registers without changing the content of a file. 

b. Presetting Link using shift or arithmetic functions. 

c. Presetting the condition flags without changing the state of a file. 

16. Moving data from a file to a register. 

Normally data is moved from a file to a register using the OR function 
because it doesn't affect link. If the state of link is not needed, the move 
can be implemented using the Add 0 to file with a savings of one diode and 
always resetting Link. 

MICROPROGRAMMING EXAMPLES 

The following Microprogramming Examples illustrate basic microprogram­
ming techniques. Many routines, such as the 8-bit positive number multiply 
have been simplified from standard routines by omitting such capabilities 
as handling negative numbers as well as positive numbers. For a more de­
tailed description of typical subroutines, and an entire program, refer to 
Part IV-MICRO 810 firmware reference manual. 

Most of the routines do not contain the linkages to an executive program, 
such as setting return addresses, etc., because these vary with the type of 
executive in which the routine may be used. 

Some of the routines were selected only as examples to illustrate certain 
microprogramming techniques, and may not use the simplest possible 
algorithm. 

198 



The examples are done in .flow chart and assembly language coding, 
along with comments. For normal programming, the comments are not 
usually as detailed as these examples. Execution times are included to 
illustrate the high processing rates possible using microprogramming. 
Machine code is included for the first 15 examples. 

The names of the example subroutines are as follows: 

1. Multiply 2 Positive 8 Bit Numbers 

2. Subroutine Jumps 

3. Time Delay Routine 

4. Input Data from 4 External Registers 

5. Load 8 Successive File Registers from 8 Successive Core Locations 

6. 16-bit Addition, Core to File Register 

7. Input a 32-Bit Word From an External Device to Core Memory 

8. 16-Bit Right Shift with End Around Carry 

9. A ORed with B, Result to A 

10. Update a 10 BCD Di.gitDisplay From Core 

11. Clear a Block of Core Memory 

12. Read and Write Between 8 Files a'nd 8 Consecutive Core Locations 

13. Output F~om 8 Files to 8 Shift Registers 

14. Input From 8 Shift Registers to 8 Files. 

15. Input a Block of Data to Core From an A to D Converter 

16. BCD to Binary Conversion 

17. Binary to BCD Conversion 

18. General Purpose Multiple File Shift Routine 

19. Hexadecimal to ASCII Conversion Routine 

20. General Purpose Code Conversion by Table Lookup 

21. Binary Multiply (16 bits) 

22. Generate Cyclic Redundancy Code for one 8-Bit Data Byte 

23. Generate ASCII Parity 

199 



MICROPROGRAM EXAMPLE NO. 1 

Multiply Two Positive Numbers 

Specific Considerations 

• Each number 8 bits maximum including sign. 
• Result to occupy two 8-bit file registers. 
• Numbers to be in file registers before multiply routine. 

General Approach 

Use Add and Shift Algorithm. 

File Register Assignments 

Data Flow 

F2 X 
F3 Y, and Z Lower 
F4 Z Upper 
F5 Loop Counter 

FILE 2 (X) 

T REGISTER 

TEST LSB TO SEE 
IF T CONTENTS 
SHOULD BE ADDED 

ADD 

FILE 4 (Z upper) 

LINKED SHIFT 

200 

FILE 3 
Y&Z 
LOWER 



NO 

SET PROGRAM 
COUNTER =8 

MOVE (F2) TO 
T REGISTER 

CLEAR F4 

ADD (T REG.) 
TO F4 

SHIFT (F4) 
RIGHT (SAVING 
LSB) 

SHIFT (F3) RIGHT, 
ENTERING LSB 
SHIFTED OUT FROM 
PREVIOUS STEP 

ADVANCE LOOP COUNTER 

LSB =Least 
significant Bit. 

YES 

HALT 

Functional Flow Chart for Multiply 

201 



Program for Multiply routine: 
-

Machine Code Assembly Language 

L Command Name Operation Operand 

000 2508 LF 5, X'08' 
001 C201 MT 2 
002 2400 LF 4, X'OO' 
003 4301 i-ADD TZ 3, X'01' 
004 8420 A - 4, T 
005 F420 H 4, R 
006 F3AO H 3, L, R 
007 9550 D 5,C 
008 5004 TN 0, X'04' 
009 1403 JP ADD 
OOA 1780 LS x '80' 

-

For Simulator: 

1. Load ROS: POOO, 2508, C201, etc. 

2. Data Values: Set file 2, f3 
D2, type in X 
D3, type inY 

3. Execute: GOOOO CR 

4. Display results with D2, D3, D4. 

BINARY DECIMAL VALUES 
BIT BY BIT x 89 
EXAMPLE OF y = 1Q6 
MULTIPLY z = 9434 

Binary Values 

Comments 

Se t Loop Ctr= 8 
>ve X to T Reg. 
ear ZU 

Mc 
Cl 
y Bit 0 = 1 
A dd X to Z 
Sh 
Sh 
De 
Lo 

ift Zu 
ift ZL 
crement Ctr 
op Ctr= 0 

Ju mp Loop 
Ha It 

x 0 0 1 1 0 0 1 Initially Y, this ends 
y 0 1 0 1 0 1 0 up &S ~lower 

ADDO 0 0 0 0 0 0 0 0 'o i 1 0 1 0 1 0, . T 
1. SHIFT 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 Least s1gni 1cant 

ADDX 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 1 bit is tested each 
2. SHIFT 0 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 time to deter-

ADDO a 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 mine if X should 
3. SHIFT 0 0 0 1 0 1 1 0 0 1 0 0 1 1 0 1 be added or not. 

ADDX 0 1 1 0 1 1 1 1 0 1 0 0 1 1 0 1 
4. SHIFT 0 0 1 1 0 1 1 1 1 0 1 0 0 1 1 0 

ADDO 0 0 1 1 0 1 1 1 1 0 1 0 0 1 1 0 
5. SHIFT 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1 1 

ADDX 0 1 1 1 0 1 0 0 1 1 0 1 0 0 1 1 
6. SHIFT 0 0 1 1 1 0 1 0 0 1 1 0 1 0 0 1 

ADDX 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 
7. SHIFT 0 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 

ADDO 0 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 
8. SHIFT 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 0 

FINAL RESULT =9434 

This program loops 8 times. 

Execution time== 14.74 microseconds. 

202 



MICROPROGRAM EXAMPLE NO. 2 

Subroutine Jumps 

Return jumps to subroutines can easily be implemented in microprograms. 
Two examples are shown below. One is for return jumps to programs on 
the same page, and the other is for return jumps to another page. A page 
is 256 locations. 

a. Return Jump to Routine on same page (or pair of pages). 

034F 

0350 

0351 

0352 

2AOA 

2852 

1061 

210F 

Jump 
Address 

(cvs1) 

51FF (cvs4) 

CB05 

LF V, 10 

l~Loading .Return 
· ' Address in W 

~Jumping 
2 LF OP, X 'OF' 

TN OP, X'FF' 

4~---Return Jumping 

0361 

0362 

(cvs1) Return Jump Address 
/ 

To do a return jump to the same page (or pair of pages), the address of 
the next command after the jump command 3 is loaded into a tempo­
rary file register, called W in this example. 1 Then the jump is made 
to the first command of the subroutine 2. The return jump command 
4 moves the return address (stored in W for this example) into L or K. 
( K is simply L with the page bit set to 1.) This command causes L to 
jump to the programmed return jump location. 

b. General Return Jump 

To jump to any location in the read only memory requires an additional 
step besides that described in example a. It is necessary to have an 
additional return address for page identification. One way to mechanize 
a general scheme for return jumping to subroutine is to have a pointing 
command on each page and to use an indirect jumping technique. 

This is illustrated by the following read only memory map. The 
indirect jump location is at the same address on each page (FF for this 
example). 

Two files are assigned for return addresses, one contains the page, and 
·the other the return address on the page. Both of these must be set 

203 



PAGEO 

SET RP 
FILES SET RJ 

-~ 
JUMPSBR 

ML RJ ~ F 

RP 
PAGE 1 

RJ 

FF MK RJ 

PAGE 2 

FF ML RJ 

PAGE 3 

~SBR 
MU RP 

EXECUTE 

FF MK RJ 

1-1-
-

SUB­
ROUTINE 

prior to making the jump. RP is the page pointer. If for a number of 
commands there is no multiple re-entry points, or multiple nesting 
across page boundaries, RP can be set, and left set for a number of 
commands. 

The return jump to originating PAGE is accomplished using the execute 
command with the U register. Since the intermediate jump locations are 
all at XFF, it is only necessary to load U with the X (or page identifier) 
from RP. This is mechanized as follows: 

RP= file E 
RJ = file F 

015 2E14 
016 2F18 
017 1041 

LF 
LF 
JP 

RP, X'14' 
RJ, X'18' 
SUB 

Page 0 for Jump Command 

Return Page to RP 
Return Address 

018 Next command after subroutine 
341 2104 SUB LF 1, X'04' Any command may be here 

350 CE01 
351 8000 
352 OOFF 

Execute command: 

MU RP 
A 0 
ES* 0, 15 

0 0 F F 
1 4 
1 4 F F 

Set Page into U 
No Op delay, to use U 
Execute to interpret HP value 
as page jump command 

Execute 
in U Register 
effective command 

Jump to Page 0 location FF 

at Page 0 location FF 

OFF CF04 ML RJ 

This loads L with return address in RJ. 

204 



MICROPROGRAM EXAMPLE NO. 3 

Time Delay Routine 

Nested loop program to generate a time delay, such as can be used to 
sample serial teletype data. 

Specific Considerations 

• Two nested loops, with file 1 assigned to inner loop and file 2 assigned 
to outer loop. 

• File 0, zero condition flag, is used to indicate zero count for both 
loops. 

Functional Flow Chart: 

SET INITIAL VALUE IN f2 

SET INITIAL VALUE IN f1 

DECEMENT FILE 1 

N 

DECREMENT FILE 2 

N 

EXIT 

205 



Program for Time Delay Routine: 
-

Machine Code Assembly Language 
-

L Command Name Operation 

000 22® LF 

001 21 <D r-1-P2 LF 

002 9150 [_D 
003 5004 TN 

004 1402 JP 

005 9250 

006 5004 

007 1401 

@ outer link count 
<D inner link count 

Calculation of delay: 

D 

r-TN 

JP 

i--.. 

Operand 

2,X'®' 
1, x I <DI 
1, c 

0, X'04' 

LP1 

2,C 

0, X'04' 

LP2 

Comments 

s et outer loop 

s et inner loop 

ecrement inner 
op file 1 Set C 

D 
lo 

z ero count? 

ump inner loop J 

D ecrem ent outer 
op file 2 Set C lo 

z ero count 

J ump outer loop 

The delay of this routine can be calculated by preparing a flow graph with 
the number of clock times for each branch in the graph. The graph for 
this routine is as follows: 

Flow Graph for Time Delay Routine: 

1 CLOCK LOAD FILE 1 

...... 

(. 1 CLOCK LOAD FILE 2 

r 
2CLOCKS 2 CLOCKS DECREMENT FILE 1 

2CLOCKS JUMP TEST FOR ZERO COND. (NO SKIP) 
JUMP~ 

\___ 3CLOCKS TEST FOR ZERO COND. (2nd CLOCK 
FROM SKIP) 
DECREMENT FILE 2 
TEST FOR ZERO COND. (NO SKIP) 

1 CLOCK 2nd CLOCK FOR SKIP 

206 



Number of clock times, C 8 + 8 ( m - 1 ) + 4m ( n - 1) 

where 

· 4m (1 + n) 

t = .22 C microseconds = .88m ( 1 + n) 

m = outer loop counts 
n = inner loop counts 

This equation is· valid for 1 < m, n < 255. 

If m or n = 0, their effective value becomes 256. 

Examples of clock time calculations: 

m n c t (microseconds) 

1 1 8 1.76 
1 2 12 2.64 
2 1 16 3.52 
2 2 24 5.28 

Example of derivation of m and n: 

Calculate m and n for a time delay of 20 milliseconds = 20,000 micro­
seconds. 

Solution: 

.88m ( 1 + n) = 20,000 

pick m = 20,000 = 142 decimal '8E' hexadecimal 

then .88 x 142 (1 + n) = 20,000 

n = 20,000 - 1 
.88x142 

160-1 = 159 decimal '9F' hex. 

207 



MICROPROGRAM EXAMPLE NO. 4 

Data Input from 4 External Registers 

Input data from 4 registers (at device '08', '28', '48', '68') to core locations 
'0200', '0201', '0202', '0203'. 

Flow Chart: 

ENTER 

INITIALIZE RESISTER ADDRESS 

[INITIALIZE CORE LOCATION ADDRESS 

INPUT WITH COPY T COMMAND 

STORE DATA AND INCREMENT 
N ADDRESS 

INPUT DATA AND RESET DIXX 

ADD '20' TO RESISTER ADDRESS 

N 

208 

FILE A= BYTE ADDRESS 
FILE B = N ADDRESS 

HOLDING REGISTER 



Program for Input Date Byte Routine: 

Machine Code Assembly Language 

L Command Name Operation Operand Comments 

000 2A08 LF 10, X'08' Set R eg1ster 
Address 

001 1202 LM X'02' Set M Address 
register = '02' 

002 2BFF LF 11, X'FF' Set N Address 
register = Int. 
Add. -1 

003 CA01 ADD MT 10 Register Address 
to T 

004 7090 K 0,9 SetCOXX 

005 1000 LZ X'OO' No Op Delay* 

006 7080 K 0,8 Reset coxx 
007 70EO K 0, E Set DIXX 

008 21FF LF 1, X'FF' Set Data Mask 

009 ABD3 WN 11, I Update N, start a 
write 

OOA 7181 KT 1, 8 Input to T, 
reset DIXX 

008 3A20 AF 10, X'20' Update register 
address 

ooc 6A80 CP 10, X'80' Skip if (f A)> 68 

OOD 1403 JP ADD Jump Loop 

OOE Next command 

*If LZ is used for a special interface, it may not be usable as a No Op. 

209 



MICROPROGRAM EXAMPLE NO. 5 

Load 8 successive file registers (f1-fa) from 8 successive core locations 
(0301-0308) 

Use the execute command for loading files. The U register will be loaded 
with a value which has a Copy T as an Op code. Use file 9 to contain and 
update U register values. File 9 will also act as a loop counter. Use file A 
to contain and update N address register value. 

Flow Chart: ENTER 

LOAD FILE 9 WITH INITIAL 
U REGISTER VALUE -1 

SET M ADDRESS REGISTER 
T003 

SET FILE A WITH INITIAL 
N ADDRESS-1 

(FILE 9) + 1-+- U, FILE 9 

READ CORE MEMORY 
(FILE A)+ 1 _....N, FILE A 

EXECUTE COMMAND 
(COPY T TO Fl LE 
COMMAND IS IN U) 

N 

EXIT 

210 

WHEN AT LAST FILE, 
CONTENTS OF fg = 88 



Program for Loading 8 Successive Files from Core: 

Machine Code Assembly Language 

L Command Name Operation Operand Comments 

000 2980 LF 9, X'80' Initial U value -1 

001 1203 LM X'03' M address 

002 2AOO LF 10, X'OO' Initial N address -1 

003 8946 LP1 AU 9, I Update file 9 and 
U register 

004 AAC3 RN 10, I Read memory and 
update N, and 
file 10 

005 0020 E 0,2 Copy T to file 
register 1 to 8 in 
sequence 

006 6948 CP 9,X'48' (fg) > 87 

007 1403 JP LP1 Jump Loop 

008 Next command 

Effective command at 005: 

Execute 0020 
U register 81 

Effective 8120 Copy T to file 1 
command 

211 



MICROPROGRAM EXAMPLE NO. 6 

16 Bit add (core to file) 

This routine acids the contents of files Au, AL to a 16 bit word in core 
memory at the address contained in Ou, OL and places the result in Au, 
AL. 

File designations: 

Temp. re~1ister S = f1 

Data in files Au = f4, AL= fs 

Core memory address in Ou= fs, OL = fg 

Result in file Au = f4, AL= fs 

Memory Location: 

Data in Du and DL (successive bytes in core) 

The condition flags are set by this routine to indicate negative re:sult, over­
flow, or linked zero test over multiple bytes. 

TOP LEVEL FLOW 

FETCH Du, DL 

This routine has 8 microcommands, and takes· 2.86 microseconds* to 
execute. There is an effective 3 clock delay after the 1st memory com­
mand, due to changing N and selecting T, and a 2 clock delay after 2nd 
memory command due to selecting T. 

*Not including return jump. 

212 



DETAILED FLOW 
CHART 

0L+1-N,0L 

READ 
Ou+LINK-M,Ou 

T + AL -AL,C 

T +Au + L -Au. c 

MACHINE ASSEMBLY LANGUAGE 
ADD. CODE NAME OPER OPERAND 

000 C802 ADD MM OU 

001 A903 RN bl 

002 8120 c S, T 

003 8943 IN OL 

004 A882 RM OU, L 

005 8530 A AL, T,C 

006 C101 MT s 

007 8480 A AU, T, L, C 

MICROPROGRAM EXAMPLE NO. 7 

COMMENTS 

Move upper address 
byte to M. 

Read upper data byte, 
move lower address 
byte to N (data goes 
to T). 

Save up~r data byte 
in S. 

Move incremented 
lower address byte 
to M. 

Read lower data byte. 
Move upper address byte 
+(Link) to M. Data goes 
to T. 

Add (T) to lower byte of 
A, set condition flags. 

Move lower data byte 
from S to T. 

Add upper data bytes + 
Link. Set condition flags. 
Linked 0 test. 

Input a 32 bit word from an external device to core memory. 

This routine causes the data in a 32-bit word to be partitioned into 4 bytes 
which ar~ input to 4 consecutive core locations designated by Ou and OL. 

File Designations: 

• Core memory address for data is in Ou = fg, OL = fg. 
Byte address is in Fs = fs. 

; 

Byte Addresses: 01, 21, 41, 61. 

Memory Locations: 

4 successive bytes starting with the 1st location in Ou, OL. 

213 



TOP LEVEL FLOW CHART 

INITIALIZE BYTE ADDRESS FILE J 

N 

TRANSFER BYTE 
ADDRESS TOT 

INPUT A BYTE 
TOT 

STORE INPUT 
BYTE IN CORE 
MEMORY 

ADVANCE CORE 
MEMORY ADDRESS 
LOCATION 

EXIT 

In order to save microcommands some of the functions shown in the top 
level flow chart are dispersed and combined with other functions as shown 
in the detailed flow chart. 

The write memory command is deliberately placed before the data point 
command in the detailed flow chart to allow memory to sta1·t prior to 
changing T. 

This routine has 12 microcommands and takes 10.56 µs to execute, which 
includes all 1/0 and memory access timing, but does not include return 
jump. 

214 



DETAILED FLOW MACHINE ASSEMBLY LANGUAGE 
CHART ADD. CODE NAME OPER OPERAND COMMENTS 

001 2801 INP LF FB.x'01' Initialize byte 
address file. 

002 CB01 NXT MT FB Move byte address 
to T. 

003 7903 KN OL,9 Set COXX and N 
address register. 

OL + 1-0L 004 8940 OL Delay and update 

OL 0 

005 7882 KM OU,8 Reset COXX and set 
M address register 

006 70EO K 0,E Set DIXX. 

Fe +·20·-Fe 007 3820 AF FB,X'20' Delay and advance 
byte address. 

008 A880 w OU, L Store input byte 
and update Ou© . 

WRITE MEMORY 009 8021 CT 0, T Input byte_to T. 
Ou +LINK-Ou 

OOA 7080 K 0, 8 Reset DIXX. 

008 6880 CP FB, X '80' Test for last byte. 
Jump back of more 

.ooc 1402 JP NXT bytes to be input. 

Exit 

EXIT 0 The state of Link from this command 
must be saved for updating Ou. 

@ Input (Link) from update of OL .. 

215 



MICROPROGRAM EXAMPLE NO. 8 

16 bit right shift with end around carry with the shift count in file register S. 

File Designations: L 

• Data to be shifted in files Au, AL C' <ll>L ~ • Shift count in file S. 

FLOWCHART 

PRESET LINK FROM FILE AL 

SHIFT RIGHT A ENTER LINK 

DECREMENT Fs 
(SHIFT COUNT) 

N 

EXIT 

DETAILED FLOW MACHINE 
CHART ADD. CODE 

AL_@-L~ 000 F520 

AU@+LK-AU 001 F4AO 

AL@+ LK-ALI 002 F5AO 

Fs -1-F~ 003 9150 

004 4004 

005 1400 

EXIT 

File S = f 1 
Au= f4 
AL= f5 

L 

This subroutine has 6 commands. 
The execution time is 1.54 N* micro­
seconds, where n == number of bit 
positions shifted. 

*Not including return jump. 

ASSEMBLY LANGUAGE 
NAME OPER OPERAND COMMENTS 

SHS H* AL, R Link must be preset 
with LSH of AL. 

H AU, R, L Shift right AU. 
Enter link. 

H AL, R, L Shift right Jl,L. 
Enter lir1k. 

D FS,C Decremont shift 
count. 

TN 0, X'04' Skip when 0 con-
dition flag = 1 

JP SHS Jump loop. 

Exit 

The number of bytes shifted can be increased by adding one comma"'d 
per byte which is .22 ns/byte per loop additional time. 

216 



MICROPROGRAM EXAMPLE NO. 9 

A ORed with B to A Logic Symbol 

AVB_.....A 

In this routine the contents of Au and AL is logically ORed on a bit-by­
bit basis with the content of Bu and BL. The result is placed in Au, AL. 

File Register Designations: 

Data Files Au = f 4, AL= f5 

Files Bu =ts, BL = f7 

MACHINE ASSEMBLY LANGUAGE DETAILED FLOW 
CHART ADD. CODE NAME OPER OPERAND COMMENTS 

000 C701 OR MT BL MoveB -r 

001 C530 0 AL, T,C OR AL with T 

002 C601 MT BU Move BU -T 

AuVT - Au.c 003 C4BO 0 AU, T, C, L OR AU with T 

The last operand includes L to provide a linked zero test over multiple 
bytes. 

This routine has 4 commands and takes .88 microseconds, not including 
return jump. 

MICROPROGRAM EXAMPLE NO. 10 

Update 10 BCD digit display fro.m core. 

For this routine a 5-byte packed BCD image of the digital display is main­
tained at all times in core. This image is updated by other programs. 
Periodically this routine is utilized to transfer the image out to the display 
lamps. The routine uses the standard COXX, DOXX procedures, which 
output a device and function code, strobed by COXX, followed by a data 
value (in this case two packed BCD digits) strobed by DOXX. Two digits 
are updated by each output byte. 

217 



Data Characteristics: 

• 2 digit packed BCD per byte in core in consecutive locations. 

• Data sequenced to display one byte at a time, display logic automati­
cally sequences through latches. 

• Data sequencer enabled by 1st byte containing all 1 's, and disabled by 
last data byte. 

• Core location addresses in Ou = f6, OL = f1. 

• Display output byte address is in Fs = f5. 

• Standard 1/0 logic is used which automatically disconnects a1ter each 
byte is transferred. 

• Display byte count is in Fe= fc. 

• Data from memory is temporarily held in FD= fo. 

TOP LEVEL FLOW CHART 

INITIALIZE DISPLAY BYTE 
COUNT AND 1st BYTE = 'FF' 

OUTPUT A BYTE AND 
SET MEMORY ADDRESS 

READ MEMORY AND 
·PUT DATA BYTE IN FD 

DECREMENTBYTE COUNTER 

N 

EXIT 

This routine has 14 commands and takes 13.42 microseconds to execute. 

218 



DETAILED FLOW MACHINE ASSEMBLY LANGUAGE 
CHART ADD. CODE NAME OPER OPERAND COMMENTS 

000 2C04 DSP LF FC, X'04' Initialize byte count. 

001 2DFF LF FD, X'FF' Set 1st output byte 
='FF' 

002 C801 APT MT F8 Move byte address 
to T. 

003 7793 KN OL,9 Set COXX and N 
register. 

004 8740 OL Delay and update 
OL. 

005 7682 KM OU,8 Reset COXX, and 
set M register. 

006 CD01 MT FD Move output byte 
to T. 

007 70AO K 0, 10 Set DOXX. 

ou+LINK-ou 008 8680 A OU, L Delay and update OU. 

009 7080 K 0,8 Reset DOXX. 

READ MEMORY OOA AC40 R FC,D Read memory and Fe -1-Fc decrement byte 
count. 

008 8D20 c FD, T Transfer output byte, 
. just read from core 
to FD. 

ooc 4C03 TZ FC, X'03' Test for byte count 
= 0. 

1402 JP APT Jump loop. 

Exit 

219 



MICROPROGRAM EXAMPLE NO. 11 

Clear a block of core memory. 

This routine causes a selected block of core memory to be sut to all 
zeros. 

File Register Designations: 

Starting of current address Su = fa, SL = fg 

Ending address Eu = f A, EL= f9 

Zero value in FZ = f 1 

SET FZ = 0 SET ZERO VALUE 

------- FORT 

SET M& N 

[

WRITE 
(CLEAR T) 

UPDATE 
Su,SL,M, N 

EXIT 

INITIAL MEMORY ADDRESSES 

UPDATE BLOCK ADDRESSES 

TEST FOR LAST ADDRESS 

On a write memory command, data in T is stored in the memory location 
set by M and N. 

This routine has 12 commands. It takes 3.52 microseconds to clear the 
first byte, plus 3.08 microseconds for each additional byte. Clearing a 
fixed length block in one page takes only 1.1 JJS per additional byte. 

220 



DETAILED FLOW 
CHART 

WRITE 
FZ-T,FZ 

SL +1-SL,N 

su+ L -su.M 

EL·T-C 

Eu-T+ L-C 

EXIT 

MACHINE ASSEM8L Y !.ANGUAGE 
ADD. CODE NAME OPER OPERAND COMMENTS 

000 2100 CLR LF FZ, X'OO' Set zero value for T. 

001 C802 MM SU Initial value to M. 
002 C903 MN SL Initial value to N. 

003 A111 NXT WT 

004 8943 IN 

005 8882 AM 

006 'C901 MT 

007 9838 S* 

008 C801 MT 

009 9A88 S* 

OOA 5004 TN 

008 1403 JP 

221 

FZ Write zero into core. 

SL ) 

SU,L 

Increment 16 bit 
memory address. 

SL 

)[

Subtract 

EL, T,C SL from EL 

SU lf Subtract 

EU, T,L,cJlsu from EU 

O,x'04' Last byte cleared. 

NXT Jump loop. 



MICROPROGRAM EXAMPLE NO. 12A 

Read 8 consecutive core locations into 8 consecutive file registers. 

This routine is used to move a block of data from core to the files. 

File Designations: 

Files 1-8 to receive data 
File E Memory address and file index. 

U register is used to index through the files. 

Dedicated Core Locations: 

All on page 0, with N = 01, 02, 03, 04 ..... 08. 

TOP LEVEL FLOW CHART 

CLEAR Fl LE E AND M 

UPDATE FILE E & U REGISTER 

READ MEMORY 
(UPDATE N REGISTER) 

COPY T TO FILE DESIGNATED 
BY U REGISTER 

y 

JUMP EXIT 

6 commands are required. Execution time is 14.08 µs. 

222 



DET Al LED FLOW MACHINE ASSEMBLY LANGUAGE 
CHART ADD.CODE NAME Of>ER OPERAND COMMENTS 

·oo·-Fe.M 000 BE02 LFR CM 14 Copy 0 to FE and M 
to clear both. 

Fe+ 1 - Fe. u 001 8E46 NXT IU 14 Increment FE and 
put result in U and 
FE. 

002 AE03 RN 14 Read memory. 
Update N with (FE). 

(T)-t,S 003 8027 cs 0, T Copy Tto file 
designated by (U). 

004 6EF8 CP 14.x'FS' Test for last file. 

005 1401 JP NXT Jump loop. 

EXIT 

MICROPROGRAM EXAMPLE NO. 128 

Write 8 consecutive files into 8 consecutive core locations. 

This routine is similar to 7a except for use of a write command and a 
move to T command, which requires the execute command to have T as a 
destination. File U (fE) contains the Op code for ,a move, so it can't be 
used for the memory address if N = 01, 02, etc. 

7 commands are required. Execution time is 10.78 µs. 

223 



DETAILED FLOW MACHINE ASSEMBLY LANGUAGE 
CHART ADD. CODE NAME OPER. OPERAND 

000 2ECO STM lF f=U, X 'CO' 

CLEAR FN & M REGISTER 001 8802 CM FN 

FU +1-U, FU I 002 8E46 NXT IU FU 

WRITE 
FN +1-- N, FN 003 AB03 WN FN, I 

EXECUTE 
FX-T 004 0001 ET -0,0 

y 

l 
005 6E38 CP FU, X'38' 

EXIT 
006 1402 JP NXT 

224 



MICROPROGRAM EXAMPLE NO. 13A 

Output from 8 fil
1

es to 8 shift registers. 

Ba. File to register bit order the same. 

This routine provides the microprogramming for utilization of the 
minimum number of logic chips to get 64 .lines out from the com­
puter. These lines can be used to drive displays, printers, etc. 

This routine is used where the order of bits shifted out is important 
or where the number of output shift registers is less than 8 so there 
is no symmetry. 

The next Example (8b) shows much simpler coding to. interface 
with 8 shift registers without pattern rotation. 

File Allocations: 

Files 1-8 
File 9 
File E 
File F 

Data 
Shift assembly register 
File index register 
Shift count register 

Since this is a minimum· hardware interface, the load zero com­
mand (CGOX) will be used to strobe the data directly out of T. 

DATA FLOW 

FILE REGISTERS 1-8 

h 
Ji FILE 9 
f r+I_ hgfedcba e 
d 
c 
b 
a I-" 

BITSa-h ARE 
STRIPPED OFF ONE. 
AT A TIME AND 
SHIFTED INTO 
FILE 9 AND THENCE 
TOT. EACH TIME 
FILE 9 IS FILLED, 
CGOX STROBE IS 
GENERATED. 

COMPUTER INTERFACE 

] 
OD ..---, -

-1--• __.. T -- -t- .. 
~ 

.. ... 
~ 

SHIFT 
CLOCK 
CGOX· LRXX 

225 

8 BIT SERIAL IN 
PARALLEL OUT 
SHIFT REGISTERS 
1-8 

1 [ _.... --64 BITS OUT 

HIPS 
FOR 

RFACE. 

ONLY 8+C 
REQUIRED 
THIS INTE 



TOP LEVEL FLOW CHART 

SET SHI f'T COUNT 

SET FILE INDEX 

DECREMENT FILE 
INDEX, AND PUT 
RESULT IN U 

N 

SHI FT A BIT OUT 
OF FILE N 

GENERATECGOX·LRXX 

N 

DECREMENT SHIFT 
COUNT 

This routine has 12 commands. 

It takes 107 .36 microseconds to exe­
cute this routine. 

This routine used in conjunction with 
routine 7 for loading core to files re­
quires 19 commands total, and 118.14 
microseconds to output 8 core loca­
tions to 8 output bytes with an 8-chip 
interface. 

226 



DETAILED FLOW MACHINE ASSEMBLY LANGUAGE 
CHART ADD. CODE NAME OPER OPERAND COMMENTS 

000 2FOB SRO LF 15,X'08') 
Set shift count and 
file index. 

001 2E09 S_R1 LF 14, X'09' 

FE·1-FE,u 002 9E46 SR2 DU 14 Decrement index-u 

003 8000 A 0 Simple No Op (Add 
to file 0) 

004 F027 HS O,R Shift right file 
selected by index 
LSBto link. 

SHIFT RIGHT 005 F9A1 HT 9,R,L Shift file 9 right, 
FILE 9 ENTER LINK enter link, result to T. 
RESULT..;....... T 

006 4EOE TZ 14, X'OE' Output byte 
assembled. 

007 1402 JP SR2 Jump back to byte 
assembly. 

008 1000 LZ X'OO' Generate 
CGOX·LRXX strobe. 

FF· 1-FF,C 009 9F50 D 15,C Decrement shift 
count. 

OOA 5004 [N O,X'04' Shift count = 0. 

008 1401 JP SR1 Jump back to next 

Exit 
bit shift. 

227 



MICROPROGRAM EXAMPLE NO. 138 

File to register; with hardware rotation of bit pattern. 

In most cases, such as for updating digital displays, etc., it doesn't matter 
if the pattern in the S file registers is "rotated" with respect to the 8 out­
put shift registers. In the example below, file S becomes disassembled into 
1 bit in each of the S output shift registers. By changing the connection of 
wires to the display, the effective rotation can be cancelled. By allowing 
for rotation, the microprogram becomes much simpler than the example 
in Sa. 

ROTATION: 

8 FILES 

Fli;.E 8 

File Register Designations: 

f1 - fs 
f E 

output data 
file index 

TOP LEVEL FLOW CHART 

SET FILE INDEX AND 
INITIAL U VALUE 

MOVE A FILE TO U 
INDEXEDBYU 

ADVANCE FILE E & U 

8 OUTPUT 
SHIFT REGISTERS 

This routine requires 7 instructions, 
and takes 10. 7S m icrosei::.:onds to 
execute. So there is a tremendous 
time savings over the Sa example 
which requires pattern rotation by 
the microprogram. 

22S 



DETAILED FLOW MACHINE ASSEMBLY LANGUAGE 
CHART ADD. CODE NAME OPER OPERAND COMMENTS 

000 16C1 LU X'C1' Initial index value 
to U*. 

001 2EC1 OUT LF 14, X'C1' Initial index value 
to file E. 

FILE- T 002 0001 NXT ET 0,0 Move file selected 
INDEXED BY U by index to T which 
USING EXECUTE is the output bus. 

003 1000 LZ X'OO' Generate COGX with 
load zero command. 

(Fe> + 1-Fe, u 004 8E46 IU 14 Advance index file 
and U. 

005 6E37 CP 14, X'37' Test for last file 
output and skip if 
complete. 

JUMP 006 1402 JP NXT Jump loop. 

EXIT 

*In this routine FE and U are updated after the execute command to 
avoid an extra delay which is required after updating U. In this case the 
delay is accomplished by the test and jump instruction. 

229 



MICROPROGRAM EXAMPLE NO. 14 

Input from 8 shift registers to 8 files in MICRO 800. 

This routine is somewhat similar to routine 138 except that data is input. 
The shift registers in the interface are parallel in, serial out. 

Interface Block Diagram: 

PARALLEL 
ENTRY 
ENABLE 

SHIFT REGISTERS 

File Register Designations: 

SHIFT 
CLOCK 

101X 

file 1 - file 8 data file registers 

file E file index 

230 

INPUT GATES 

ID UNES TO 
MICHOHOO 

_._.COMPUTER 

INPUT 
ENABLE 

103X 



TOP LEVEL FLOW CHART 

SET FfLE INQEX 

SET AND RESET 101X 

ADVANCE FILE INDEX 
ANDU 

SETI03X 

PARALLEL ENTRY ENABLE TO 
SHI FT REGISTERS. 

DELAY 
TO ALLOW TIME 

~-- FOR 103X TO SET. 

COPY T TO FILE n, 
FILE n SELECTED BY 
INDEX VALUE IN U 

RESETI03X 

JUMP 

EXIT 

This routine has 10 instructions ard takes 14.52 microseconds to execute. 

231 



DETAILED FLOW MACHINE ASSEMBLY LANGUAGE 
CHART ADD. CODE NAME OPER OPERAND COMMENTS 

'OO'-Fll~ 000 2EOO IPT LF 14, X'OO' Initialize index file. 

001 7090 K 0,9 

l Generdte parallel 

RESETIO~ entry ienable strobe. 
002 1080 K 0,8 

FE+1-F~ 003 8E46 NXT IU 14 Update file index 
and U. 

004 70CO K 0, 12 Set int,C>Ut enable 
flip flop. 

005 8000 A· 0 Convenient No Op 
for time delay. 

COPY T TO FILE N I 006 8027 cs 0, T CopyT-- fn 
INDEX WITtt U index.ad. 

007 7080 K 0,8 Reset input enable 
flip flop. 

008 6EFB CP 14, X'FS' Are 8 files loaded. 

009 1403 JP NXT No, Jump loop. 

EXIT 

232 



MICROPROGRAM EXAMPLE NO. 15 

Input block of data to core from A to D converter. 

This routine shows a· method for inputting a series of 16-bit data words 
from an ADC. The 'sample rate is controlled by the read time clock option. 
The data words are placed in consecutive core locations. A software flag is 
set when the sample data block is complete. 

Block Diagram: 

16 BITS 

ADC 

\ 
· CONV. COMPLETE 

DIGITIZE COMMAND 

File Register Designations: 

COMPUTER 
INTERFACE 
UNIT 

COMPUTER 

su·= t4" SL= ts 

Eu =ta, EL~ f7 

FF= fF 

Starting (or current), address in data block. 

End address in data block. 

FE= fE 

Du = f2, DL = f3 

Fs = f1 

FB =ta 
'FF' and COXX = 

Bit 0 software flag. 

Input routine file index. 

Temporary files for input data. 

Input status file. 

Byte address file. 

Digitize Command. 

The microprogram tests the input status byte for conversion complete 
before inputting data. 

233 



TESTING FOR REAL TIME CLOCK 

ENTER DATA 
INPUT ROUTINE 

OUTPUT DIGITIZE COMMAND I 
~ 

INPUT STATUS BYTE FOLLOWED 
BY TWO DATA BYTES 

N 

I STORE INPUTDATA] =r __ 
!ADVANCE CURRENT 
~RESS REGISTER 

This routine has 40 commands in­
cluding the real time clock test. 

The execution time is approximate­
ly 26 microseconds per sample, in­
cluding time for conversion, and 
testing real time clock. 

The time delay from digitize com-
. mand to conversion complete could 

be used for housekeeping if it can 
be worked in at that time in the 
program. This would result in an 
effective time reduction for this 
routine. 

A status byte and two d<1ta bytes 
are input and then status byte is 
tested. If conversion is not com­
plete, the two input byte:> are dis­
carded, and another sample of data 
and status is taken. 

234 



DETAILED FLOW MACHINE ASSEMBLY LANGUAGE 
CHART ADD. CODE NAME OPER OPERAND COMMENTS 

000 11FF ADC LT X'FF' Load T with digitize 
command function. 

001 7090 K 0,9 

} Digitize command 
002 7080 K 0,8 strobe. 

003 2EOO EN1 LF FE, X'OO' Initialize file index. 

004 2BE8 LF FB, X'E8' Initialize byte address. 

005 8E46 EN2 IU FE Increment file index. 

006 3820 AF FB, X'20' Advance byte address. 

007 CB01 MT FB Byte address to T. 

008 7090 K 0,9 COXX set. 

009 C402 MM su· Delay, and set M. 

OOA 7080 K 0,8 COXX reset. 

OOB 70EO K 0, 14 DIXX set. 

ooc C503 MN SL Delay, and set N 

COPY T-FILE (INDEX) OOD 8027 cs 0, T Input data byte. 

OOE 7080 K 0,8 DIXX reset. 

OOF 6EFD CP FE, X'FD' Next byte input. 

010 1405 JP EN2 More bytes to input. 

011 5101 TN FS, X'01' Conversion complete. 

012 1403 JP EN1 Take another sample of 
status and data bytes. 

235 



DETAILED FLOW MACHINE ASSEMBLY LANGUAGE 
CHART ADD. CODE NAME OPER OPERAND COMMliNTS 

013 C201 MT DU Move most significant 
byte to T for storage. 

WRITE MEMORY 014 A5DO w SL, I Store most significant SL+ 1-SL byte and increment SL. 

015 8482 AM SU,L Update SU, M. 

016 C301 MT DL Store least significant 
byte, upda.te N. 

WRITE MEMORY 
017 A513 WN SL Store least significant SL-N byte, upd<:te N. 

018 8540 SL Increment SL. 

019 8482 AM SU,L Update SU, M (M for 
access delay) 

01A C501 MT SL 

Compare SL, SU to EL, 018 9738 S* EL, T,C EU to see if input block 
is complete. This is a 

01C C401 MT SU linked zero test over 
multiple bytes. 

010 9688 S* EU,T,C,L 

01E 5004 TN O,X'04' Test zero condition 
flag for end of block. 

01F 1422 JP EXIT Continue to input and 
store data on next real 
time clock. 

020 3101 AF FF, X'01' Set block complete 
flag bit. 

EXIT 

Notice in this routine that after the two write commands, M is deliberately 
made the destination register of a command, to generate a delay prior to 
modifying T. 

236 



MICROPROGRAM EXAMPLE NO. 16 

Conversion of 3 digit BCD plus sign into Binary. 

Given 3 digits in the registers BU and BL. Binary result will be in AU and 
AL. 

B register OS 02 01 oo· 

f4 =BU f5 =BL 

other files used: Op =file 1 Digit value 
v =file A Power of 10 Binary 
w =file B Return Address 

The basic technique is to multiply each BCD digit by its power of 10 
expressed in binary, and to add each converted digital value in an 
accumulator. The top level flow is as follows: 

ENTER 

MOVE LSD TOA 

SHI FT 10's DIGIT TO 
LSD POSITION AND 
USE AS INDEX TO 
MULTIPLY ROUTINE 

MULTIPLY 10's DIGIT 
BY.BCD VALUE. ADD 
TO ACCUMULATOR 

237 

A 

SET UP BINARY 
EQUIVALENT FOR 
100's DIGIT 

MULTIPLY 100's DIGIT 
BY BINARY VALUE AND 
ADD TO ACCUMULATOR 

SET BINARY NUMBER 
FOR CORRECT SIGN 

EXIT 



BCD to Binary Program: 

Name Operation Operand Comments 

CB LF AL,X'OF' Set Mask for lower BCD Digit. 
MT BL Move Lower 2 Digits to T. 
N AL, T Mask, select lower Digit of AL. 
c AU Clear A upper. 
c OP, T Copy lower 2 digits from T to Op. 
K OP, 2 Shift OP right 4, move 2nd digit to LSD. 
LT X'OF' Load Mask in T. 
N OP, T Mask out all but 2nd digit. 
LF V, 10 Put Binary value for 10 in V. 
LF W, CB1 Load Return Address into W. 
JP CB4 Jump to Multiply Routine. 

CB1 LF OP,X'OF' Set Mask in Op for 1 OO's digit. 
MT BU Move 100's digit to T. 
N OP, T Mask out all but 1 OO's digit. 
LF V, 100 Put Binary value for 100 in V. 
LF W,CB2 Load Return Address into W. 
JP CB4 Jump to Multiply Routine. 

CB2 TN BU,X'80' Test for Sign bit in B. 
JP CB3 Exit if Positive Sign. 
x AL, T, F Ones Complement AL. 
I AL Add one for 2's complement. 
x AU, T, F Ones complement AU. 
A AU, L Add carry for 2's complement. 

CB3 . MU RP Set up Page Jump. 
A 0 No OP after changing U. 
ES* 0, 15 Execute implements gen. Page Jump. 

MULTIPLY ROUTINE 

CB4 
CTN 

OP,X'FF' Test to see if Op has reached 0. 
MK MKW Return from Multiply Routine. 
MT MTV· Move power of 10 binary to T. 
A AL, T Add power of 10 to accumulator. 
A AU, L Add carry to AU. 
D OP Decrement Op. 
JP CB4 Jump Loop until Multiply over. 

The multiply routine selected for this example (at CB4) is designed for 
minimum commands rather than minimum execute time. The multiply 
routine execution time is dependent on the size of the digit being con­
verted. 

The BCD digit is put into one register, and the power of 10 in another 
. register. The BCD digit is decremented once each time the binary value 

for the power of 10 is added to the accumulator. When the digit is 
decremented to 0, the loop is exited. The average number of times 
through the loop per digit is 4. This is 35 clock times or about 7 micro­
seconds. 

The total average conversion time for 3 digit BCD numbers to binary is 
about 22 microseconds. 

238 



MICROPROGRAM EXAMPLE N0.17 

Binary to BCD Conversion. 

Convert a positive binary number with a value equal to or less than 999 
(decimal) into a 3-digit packed BCD integer. 

Conversion Algorithm: Binary number will be successively divided by 
powers of· 10 (starting with 100) with quotient equal to BCD value, and 
remainder to be divided by next lower power of 10. · 

Initial Binary Number 
--------01 R1 

100 r 
100's digit 

File Register Assignments: 

1. Binary number is initially in Au and AL. 

AU 

I I I 
2 upper bits 

2. BCD result is in Du and DL. 

DU 

D2 . I D1 

most significant 
digit 

middle 
digit 

AL 

8 lower bits 

DL 

DO 

least significant 
digit 

3. Au, AL, Bu, BL, Cu, CL are used for dividing registers as follows: 

a. A and B are an extended accumulator containing the dividend, C 
contains the divisor. 

b. After the divide, the quotient is in B, and the remainder is in A. 

c. Prior to the divide, the content of A is moved to B, and A is cleared. 

239 



4. The flow of data through the registers is as follows: 

a. Binary :umb~ .... __,, ___ a ___ _ 

Binary Number 

b.~ 
0 

B 

c. 100--{ c 

00 Bin.Num. 100 

d.1 A I~ ~ A 

Remainder 1 

e. Remainder 1 in A :::J_J: B 

Remainder 1 

f.y::L_~ 
0 

g. 10--{ c 

00 Remainder 1 10 

h.0 ..__C_s___.I+ QJ = .___A -.--. 

Remainder 2 

in DL in DL 

240 



Binary to BCD conversion routine flow chart: 

ENTER 

100 DECIMAL ~ C 

TRANSFER A TO B 
CLEAR A 

DIVIDE AB BY C 

MOVE 100's DIGIT 
IN BL TO DU 

10 DECIMAL ~c 

TRANSFER A TO B 
CLEAR A 

TRANSFER 1's DIGIT 
IN AL TO DL 

SHIFT LEFT THE 10's 
.DIGIT (WHICH IS IN BL) 
AND COMBINE 10's DIGIT 
IN ·BL WITH DL 

EXIT 

This routine (including the two divides), takes 47 commands, and approxi­
mately 150 microseconds to execute. 

241 



The divide routine used for this example is for positive binary integers 
only. It is implemented with a shift and subtract algorithm. 

DIVIDE FLOW CHART 

SET SHIFT COUNTER= 16 

SHIFT A, B LEFT 1 

SUBTRACT C (DIVISOR) FROM A 

N 

ADD C (DIVISOR) 
BACK TOA 

DECREMENT 
SHIFT 
COUNTER · 

EXIT 

ADD 1 TO BL J 

This divide algorithm will actually handle larger numbers than occurring 
in this example but is the simplest routine from a command count stand­
point. For numbers the size used in this example, the divide operation 
could be speeded up by shifting right 6 times before starting to subtract 
the divisor. 

242 



Assembly Language Program to 

Convert Positive Binary, 10 Bit Integer in A to 3 Digit Packed BCD Integer 
in D. 

Uses simplified Divide Routine. 

Name Operation Operand Comments 

CV LF CU,O Clear C upper. 

LF CL, 100 100's coefficient to CL. 

LF W,CV1 Set return address. 

JP CV3 Jump to divide set up routine. 

CV1 MT BL 
} Move most significant digit to DU. 

c DU, T 

LF CL, 10 10's coefficient to CL. 

LF W,CV2 Set return address. 

JP CV3 Jump to divide set up routine. 

CV2 MT AL 
} Move least significant digit to DL. 

c DL, T 

H BL 

} Shi~.the 10'~ digit left one digit H BL 

H BL pos1t1on. 
L 

HT BL 

0 DL, T Move middle digit to DL. 

MK y Return. 

CV3 MT AL 

} Move (A) to B. 
c BL,T 

MT AU 

c BU,T 

c AL 
} Clear A. c AU 

LF RJ, CV4 Set ret,urn address. 

JP DV Jump to divide routine. 

CV4 MK w Return to binary to BCD. 

The calling sequence for this routine is LF 
JP 

Y,RET 
CV 

Divide routine is on.the same page as conversion routine. 

243 



Assembly Language Program 
for Divide Routine Divide 

AB Quotient in B 
C Remainder in A 

Name Operation 

DV LF 

DV1 

DV3 

DV2 

H 

H 

H 

H 

MT 

s 
MT 

s 
TN 

JP 

MT 

A 

MT 

A 

D 

TZ 
JP 

MK 

JP 

Operand Comments 

Set shift counter= 16 decimal. V,X'10' 

BL 

BU,L 

AL, L 

AU, L 

} Shift left 1. 

Al, T,C Cl } 
Subtract divisor. cu 

AU,T,L,C . 

O,X'02' Test for Underflow. 

DV2 

Al,T,C AddCtoA. 
Cl } 

cu 
AU, T, l,C 

v 
V,X'FF' 

DV1 

RJ 

Bl 

DV3 

Decrement shift CTR. 

Test for zero count. 

Repeat loop. 

Return. 

Add 1 bit to Bl. 

Jump to decrement shift counter. 

MICROPROGRAM EXAMPLE NO. 18 

General purpose multiple file shift routine. 

This routine provides a general purpose capability for shifting a group of 
contiguous file registers with a number of variations as indicated below. 

The following items are program variable: 

• Number of bytes 1-8, always starting with file 1. 
• Number of positions shifted 1 to 256. 
• Direction le-ft or right. 
• Enter one of following into vacated bit: 0, 1, LSB, MSB; which pro­

vides the capability for arithmetic or logic shifts with sign extension, 
end around carry, clearing, or setting to 1 's. 

244 



RIGHT SHIFT 

MSB LSB 

For a right shift, entering MSB causes sign extension and LSB causes end 
around carry. 

LEFT SHIFT: 

MSB LSB 

For a left shift, entering MSB causes end around carry, while LSB causes 
odd/even extension. 

File Register Designations: 

File 1-8 
File 9 

Shift registers as selected by the instruction. 
Byte count, and shift mode. 

, To I 0 3 BITS 

BYTE COUNT 
(NUMBER OF FILE 
REGISTERS) 

Shift 
Mode Direction 

000 L 
001 L 
010 L 
011 L 
100 R 
101 R 
110 R 
111 R 

File A Shift count 

Fite B File index (fu) 

0 

3 BITS 

SHIFT MODE 

Enter into 
vacated bit 

enter 0 
enter 1 
enter LSB 
enter MSB 
enter 0 
enter 1 
enter LSB 
enter MSB 

245 



Presetting Link 

TOP LEVEL FLOW CHART 

ENTER 

PUT BYTE COUNT IN T 

PRESET LINK WITH 
VALUE FOR ENTERING 
INTO VACATED BIT 

Link is preset by one of the following: 

1. Shifting right file 9 to preset link with 0 of 1. 
2. Shifting left file 1 to preset link with MSB. 
3. Shifting right the highest numbered file of the shift register to preset 

link with LSB. 

In all cases, inhibit file write is used to preserve the value in the file. 

For the actual right or left shift, the execute command is used, with the 
file register number in U. 

The byte count in file 9 is shifted right 4 and placed in T and LI at the 
beginning of the program. The all l's left in the upper 4 bits can be left 
there because they conveniently form the Op code for shift. T is used to 
hold the maximum file register number for reference purposes. 

Since link is used extensively for holding shifted out bits for the next 
shift command, special care was taken in preparing the program to avoid 
commands other than the shift commands which affect link. 

This routine has 29 commands. 

The execution time is approximately 

[5.94 + 1.32 x (byte count)] x (bit count) microseconds 
For example 1 8 bytes, 4 bits 

Time= 66 microseconds 
For example 2 2 bytes, 1 bit 

Time= 8.58 microseconds. 

246 



DETAILED FLOW ASSEMBLY LANGUAGE 
CHART NAME OPER OPERAND COMMENTS 

SR4F9-T SR KT* 9, 2 Set byte count in T. 

D 
F9 SR1 H* 9,R Preset link with 1 or 0. 

KU* 9,2 Set byte count and 
shift instruction in U. 

y 
9,X'02' Test for link to be pre-TZ 

set or constant. 

JP SR2 Jump t9 shift routine. 

SHIFT LEFT* F1 H* Preset MSB 

TZ 9,X'01' MSBor LSB. 

JP SR2 Jump to shift routine. 

E* O,R Preset LSB. 

SR2 TZ 9,X'04' Test for right or left 
shift. 

JP SR4 Jump to right shift. 

c 11, T Initialize file index. 

SR3 MU 11 File index to U. 

AF 11, X'FF' Decrement file index. 

LEFT SHIFT, U E O,L Left shift, enter link, 
INDEX ENTER LINK file index. 

© 

247 



DETAILED FLOW ASSEMBLY LANGUAGE 
CHART NAME OPER OPERAND COMMENTS 

® 

TZ 11,X'OF' All files ~iftad. 

JP SR3 Shift additional files. 

SR6 D 10,C Decrement shift count. 

TN O,X'04' Zero count zero. 

JP SR1 No •. 

JP EXIT Done. 

EXIT 

® 
SR4 LF 11, X'F1' Initialize file index. 

SRS MU 11 File inde>: to U. 

AF 11, X'01' Increment file index. 

x 11, T, C Test for 1=u· •• (T). 

RIGHT SHIFT~ E 0, R, L Right shift, enter INDEX ENTER LINK link, file index. 

TN O,X'04' Test for l.ast file. 

JP SRS Shift more files. 

@ JP SR6 Shift COUL'lt tort. 

248 



MICROPROGRAM EXAMPLE NO. 19 , 

Hexadecimal to ASCII Conversion Routine. 

This routine converts an 8 bit binary number (which is also 2 hexadecimal 
digits) into two ASCII characters, and also generates an ASCII equivalent 
for a space. The 3 characters are assembled for sequencing to an output 
device for print out. 

Data Flow: 

.___1_0A_11_
1
=j==0=15=0=1 :~,I~~----_-_-_-_-_-_-_-_-_-:.,..·§§ Blank 

5 
A 

Typical print out sequ·ence: 

A5 FO D3 C4 ..... 

Data values and flags are maintained and updated in dedicated locations 
in core memory. If new characters are ready for output before converted 
characters are printed out, any queueing will be provided by a different 
routine. This routine will provide a flag to indicate when it's ready to 
receive a new character, and sets a flag for output request. Output is done 
by another routine, which monitors the output request flag of this routine 
and resets it after outputting a character. 

Core Memory Requirements: 

File register 

Flag word: 

2 
3 
4 
5 

Core 
0001 
0002 
0003 
0004 
0005 

Flags 
Binary word 
ASCII for blank 
ASCII for least significant digit 
ASCII for most significant digit and for output 

Next character to be transferred counter 
MSD 11 
LSD 10 
Blank 01 
None 00 

Zero count here and in bit 2 indicates ready for new character. 

New word to output 
ASCII output ready 

249 

Next character to be trans­
ferred counter. 



TOP LEVEL FLOW CHART: 

N 

TRANSFER NEXT 
CHARACTER TO 
OUTPUT LOCATION 

DECREMENT NEXT 
CHARACTER TO BE 
TRANSFERRED COUNTER 

RESTORE FLAGS AND 
DATA WORDS TO CORE 

EXIT 

Command Gou nt 53. 

TEST LOWER 
3 BITS IN 
FILE 1 

CONVERT 1st HEX DIGl"CJ 

CONVERT 2nd HEX DIGIT 

LOAD BLANK ASCII CHARACTER 

SET NEXT CHARACTER TO BE 
TRANSFERRED COUNTER= LSD 

ASCII Codes 
Hex ASCII 

0-9 - BO-B9 
A-F - C1-C6 

Code conversions are done by 
adding BO if 0-9, and B7 if A-F .. 

File assignments: 

f 1 flags 

f 2 Binary word 

f 3 Blank 

f 4 LSD 

f 5 MSD and output byte 

f d LSD MSD Flag 

Execution time for conversion of character is approximately 20 micro­
seconds. 

A. Routines already described. 

1. Get flags and data words from core. 

This subroutine is the same as subroutine example 7a with the one 
modification to change the file count from 8 to 5.6 commands 
required. 

250 



2. Restore flags and data words to core. 

This routine is similar to example 7b except that the file count is 
changed from 8 to 5. 8 commands required. 

B. Detailed flow charts for remaining routines: 

DETAILED FLOW ASSEMBLY LANGUAGE 
CHART NAME OPER OPERAND COMMENTS 

GET FLAGS & DATA 

y 
OTA TN 

Ft,X'OB' I 
Test for data to be 
processed. 

JP END 

TN 
Ft. X'03' I Test for character to 

be transferred or to 
be converted. 

JP CHR 

TZ 
Ft X'04' I 

Test for output flag 
cleared. 

JP END 

F3-T MT F3 Transfer BLANK. 

TZ F1, X'01' Test for LSB-BLANK. 

JP *+2 Bypass LSD. 

F4-T ' Transfer LSD. 

..._ ___ ....,A 
JP DEC Decrement counter. 

251 



® 

DETAILED FLOW 
CHART 

DIGIT CONVERSIONS 

t 
oo-FD 

'OF'-T "----·r= 
EXECUTE-T 

FD+T-T 

T-fs -~ 

'OA'-T 

t F6-T-c 
~-r--
.--1 -.-BO'~ 

Fs+~ 
~-r-

·01·-T==:i 

y 

F6+T-T. Fs 

T-F5 

ASSEMBLY LANGUAGE 
NAME OPER OPERAND COMMENTS 

CHR LF FD, X'OO' Clear MSD-LSD flag. 

LU X'E2' Set U for And command. 

MSK LT X'OF' Mask for LSD. 

ET o. 2 

AT FD,T 

c 

LT X'OA' } 

F5, T,C S* 

X'BO' } 

F6, T 

LT 

A 

LT X'07' 

TN 0, X'02' 

And with T or shift right 
4 depending on (U). 

Add (fd) to clear 1's 
resulting from shift 
right 4. 

Move Tto fs. 

Subtract OA to test for 
hex digit 0-9 or A·F. 

ASCII conversion value 
added to hex number 
for 0-9. 

Additional ASCII 
conversion for A· F. 

Test for value 0-9 or 
A-F. 

AT Fs. T Add final converskm value. 

C Fs, T Copy T to fs. 

TZ FD, X'10' Test for 9east significant 
digit. 

JP *+2 Leave in fs if MSCI. 

Move to f4 if LSD. 

252 



DETAILED FLOW 
CHART 

DET Al LED FLOW 
CHART 

A 

ASSEMBLY LANGUAGE 
NAME OPER OPERAND COMMENTS 

TZ fu, X'10' Test bit 4 to indicate 
'72' vs 'E2'. 

JP BLK Jump to load ASCII 
for blank. 

LU X'72' Set U for control 
command to do SR4. 

LF FD, X'10' Set fd for MSD. 

JP MSK 

BLK LF Fa, X'AO' ASCII for Blank. 

LT X'FC' 

) Set bits 0 and 1 in f1•0 
to clear next character 
to be transferred counter. 

N F1, T 

JP SET 

ASSEMBLY LANGUAGE 
NAME OPER OPERAND COMMENTS 

DEC D F1 Decrement next character 
to be transferred counter. 

SET LT X'04' ) Set ASCII output ready 

0 F1. T 
flag. 

END 

253 



MICROPROGRAM EXAMPLE NO. 20 

General Purpose Code Conversion by Table Translation. 

This routine will convert a string of characters from any one of 64 charac­
ters into any of 64 other _characters (character capacity easily changed). 
The translation table which is in core memory can be loaded with any 
desired code. 

The general approach is to use the character as a displacement value and 
index into a table to obtain the corresponding character. This type: of code 
conversion is useful where there is no simple mathematical relationship 
between the two character sets (as with BCD to ASCII, for instance). 

Table organization in core: 

...__ __ o_I~. code J 
(6 bits)= C 

C + N =New Character 

File Assignments: 

Table address= 

LL Lower 8-bits of data list address. 

LU Upper 7-bits of data list a~dress. 

n 

n + 1 

n+2 

n + 62 

n + 63 

TL Lower 8-bits of translation table address. 

TU Upper 7-bits of translation table address. 

CNT Number of characters in data list. 

FT Mask to limit the table to 64 entries. 

254 

----
new code 

j 

L_ 



READA 
CHARACTER 
FROM THE 
DATA LIST 

MASK THE 
CHARACTER TO 
REDUCE SIZE 
OF THE TABLE 

COMPUTE THE 
ADDRESS IN 
THE TRANSLATION 
TABLE 

READ THE 
CHARACTER FROM 
THE TRANSLATION 
TABLE 

PLACE THE NEW 
CHARACTER INTO 
THE DATA LIST 

EXIT 

This routine uses 13 commands, and takes 4.18 microseconds per charac­
ter for translation. 

255 



DET Al LED FLOW ASSEMBLY LANGUAGE 
CHART NAME OPER OPERAND COMMENTS 

I LL{L.N ]- TRN MN LL 

I Get a character from 

~ 
the data list. 

RM LU ~ 

~~ 
LF FT, X'3F' Set a mask for 64 

characters. 

-FT,T] NT FT, T Remove unwanted 
high order bits. 

[ TL+Tf N ] AN* TL,T I Add the value of the 
character with the base 
address of the table to 

!READ J RM* TU,L 
obtain the new charact111r. 

TU+L-M r-
~~--,c~~ 

D CNT,C Reduce character count. 

I LL- LL,N MN LL 

[N•T!=J 
Place the translated 
character back into 
the data list. 

u-LU,M WM LU ---=r--

I c LL _c_~-:'"_ LL ] LL 
Move the data list 
pointer to the next c--- ----] character. 

LU+L-LU A LU,L 
--·- ---·---

TN O,X'04' End of List. 

JP TRN No, get the next 
character. 

256 



MICROPROGRAM EXAMPLE NO. 21 

Binary Multiply (16 bits) 

This routine multiplies two 16 bit positive or negative numbers. The two 
byte operand in X is multiplied by the contents of A and the result is 
placed in the 32 bit A - B registers. The multiply is an integer type, and 
the 30 bit resultant magnitude occupies the 30 low order bits of A and B, 
and a double sign bit occupies the two high order bits. 

This example is the same as the routine used in the MICRO 810 firmware 
except for deletion of memory referencing, concurrent 1/0 servicing, and 
linking to the 810 program. 

The basic algorithm for this routine consists of testing the LSB of B, and 
adding X to A whenever LSB of B = 1; then shifting the accumulation 
right one place, as well as shifting B right one place .. Then the next LSB of 
B is tested. This is repeated until all parts of A have been tested. 

ADD--+~ : ___ s_H-IF_T ____ 

1 
B (TEST LSB 

To simplify programming, A is first transferred to B, then A i~ cleared. 
The contents of A are not tested for sign until after it 'has first been 
transferred to B. This is only for convenience of programming. If B is 
negative, both numbers are 2's complemented. If X is negative, the.sign is 
maintained by .sign extension, during shifting. 

257 



TOP LEVEL FLOW: 

TRANSFER A TO BAND SET SHIFT COUNT=:=] 

CONVERT BOTH 
BAND XTO 2's 
COMPLIMENt 

CLEAR A 

[ ADDXTOA 

y 

N 

-------0 
SET LINK= MSB 

file registers 

OFA 

SHIFT A & BRIGHT ONE BIT, 
ENTERING LINK 

AU, AL Multiplicand (1st) 
BU, BL Mul.tiplicand (2nd) 
XU, XL Multiplier 
S2 Shift Count 

AU,AL 
BU,BL 

Product 

A 

CD Link is set to provide for 
sign extension of the 
partial accumulation. 

® If there is overflow, link 
is already set to the 
correct sign value, which 
may not = MSB of A. 

This routine has 32 commands, and takes the following approximate time.: 
Max. 60 microseconds; Average 54 microseconds. 

258 



DETAILED FLOW ASSEMBLY LANGUAGE 
CHART NAME OPER OPERAND COMMENTS 

·10·-s2 MUL LF S2, X'10' Set shift count for 
16 bits. 

AL-AL, T 
MT T-BL AL 

) c BL,T 
Move Ii. register to 

AU-AU,T MT AU B register. 
T-eu 

c BU,T 

TN BU,X'SO' Test MSB of BU for 
negative condition. 

JP ML3 Bypass complementing .. 

Bi-BL x BL,T,F 
BL+ 1-B.L 

BL 

au-Bu x BU,T,F 2's complement B and BU+L-BU A BU,L X by exclusive ORing 
with all 1's using T, 
T as operand and 

XL-XL x XL, T, F adding 1 to B and X. 

XL+1-XL XL 

xu-xu x XU, T, F 
XU+L-XU A >CU, L 

'OO'-AL ML3 LF AL X'OO'} 
'OO'-AU ' Clear A after trans-

LF AU, X'OO' ferring A to B. 

259 



y 

DETAILED FLOW 
CHART 

XU-XU, T 
AU+T+ L-AU,C 

SHIFT LEFT AU 
TO SET LINK 
(INHIBIT FILE WRITE) 

SHIFT RIGHT AU 
ENTER LINK ----
SHIFT RIGHT AL 
ENTER LINK 

SHIFT RIGHT BU 
ENTER LINK 

SHIFT RIGHT BL :=J 
ENTER Ll!:!!S__ 

JMP 

EXIT 

ASSEMBLY LANGUAGE 
NAME OPER OPERAND 

ML1 TN BL, X'01' 

JP ML2 

MT XL 
A AL, T 

MT XU 
A AU, T,L,C 

TN 0, X'01' 

ML2 H* AU 

H AU, R, L 

H AL,R,L 

H BU,R,L 

H BL,R,L 

D S2,C 

TN 0, X'04' 

JP ML1 

260 

COMMENTS 

Test B for odd. 

Bypass addition func-
tion if B even. 

I Add X to IAI •nd put 
result in A. Set condition 
flag for overflow 1est. 

Test for overflow. 

Set link for sign entry. 

Shift A, B right one bit, 
entering contents •of link. 

Decrement shift cciunt 
and set condition Hag. 

Test for zero c<:mdition. 

More bits to IM1 shifted. 



MICROPROGRAM EXAMPLE NO. 22 

Generate Cyclic Code for one 8 bit data byte. 

This routine generates the CRC 16 cyclic redundancy code used in bi­
synchronous communication. 

The byte operand in S1 is entered into the 16 bit cyclic code contained in 
the A register. The polynomial used· for generating the cyclic code is 
x16 + x15 + x2 + 1. 

The general algorithm is to shift the 16 bit code in A, and to exclusive 
OR bits 15, 13, and 0 with the result of a comparison between the least 
significant bits of the cyclic code in A and the least significant bit of S1. 
shifted once for each comparison. 

This is a micropr9gram rendition of the feedback shift registers which are 
used to implement poly-nomial divisions for generating cyclic codes. 

At the beginning of a character string, A should be cleared. 

For each 8 bit data byte the top level flow is as fol lows: 

SHIFT DATA BYTE 

SHI FT 16 BIT CRC 

y 

EXCLUSIVE OR BITS 
15, 13, 0 
WITH 1's 

N 

EXIT. 

This routine takes 15 commands and 
takes the following approximate time: 

t max. 
t avg. 

file registers 

AU,AL 
S1 
S2 
I 

30 microseconds 
28 microseconds 

CRC code 
Data byte 
Save Link 
Shift Counter 

This routine; is the same as that used in 
the MICRO 820 except for the omission 
of memory referencing and linking to the 
main firmware. 

261 



DETAILED FLOW ASSEMBLY LANGUAGE 
CHART NAME OPER OPERAND COMMENTS 

·os·--1 ~ LF l,X'08' Set bit count. 

SHIFT S1 RIGHT SSR H S1, R } """• LSB of S1. 

SHIFT LEFT S2 
H S2,L ENTER LINK 

SHIFT RIGHT AU H AU,R 

}sh;ft ,;ght CRC •NO•d. 

SHIFT RIGHT Al 
ENTER LINK, UPDATE H Al, l,R,C 
CONDITION FLAGS 

S2+L-S2 A s2. L Add link to saved LSB 
to compare. 

TN S2, X'01' Equal? 

JP NOL Bypass exclusive OR 
function. 

'AO'-T LT X'AO' 
AU AT-AU x AU, T } Exclu•lve OR the poly· 
'01'-T LT X'01' nomial function into A. 
Al /\01-Al x Al, T 

1-1-1 ~ NOL D l,C Decrement bit counter. 

EXIT 
TN 0, X'04' Last bit. 

JUMP JP SSR Repeat. 

262 



~ICROPROGRAM EXAMPLE NO. 23 

Generate ASCII Parity. 

This routine will generate and attach an odd parity bit to bit 7 of a charac­
ter contained in file S2. It will also generate a block longitudinal parity 
LRC for this character, by exclusive OR ing with an LRC being accumu­
lated in AL. This routine is the same as used in the 820 except for omission 
of memory referencing and linking with the main 820 firmware. Parity is 
generated by shifting and testing the bits in S1 and toggling a bit in S2 
for each bit= 1 is S1. 

DETAILED FLOW 
CHART 

s1-T 

·ao·-s2 

S1@B - C 

TOGGLE S2 BIT 7 

JUMP 

AL¥T-AL 

EXIT 

ASSEMBLY LANGUAGE 
NAME OPER OPERAND COMMENTS 

PAR 

263 

MT S1 Save character. 

LF S2, X'80' Set initial parity. 

H S1, R, C Shift out a bit. 

TZ 0, X'01' Test for bit = 1. 

AF S2, X'80' Toggle parity bit. 

TN- 0, X'04' Test for all bits 
shifted out. 

JP PAR + 1 Repeat. 

Attach odd parity. 

X AL, T Generate LRC. 





PART IV 

MICRO 810 FIRMWARE MANUAL 



Semiconductor Read-Only Memory Expandable from 768 Words to 
2,048 Words. 

Diode Matrix 256-Word Read-Only Memory. 

266 



INTRODUCTION 

The basic steps for development of a general purpose computer architec­
ture using a microprogrammed computer are as follows: 

1. Functional Definition 

• Input/Output Characteristics. 
• Operating Registers Assignments (Accumulator, Index, Program 

Counter, etc.). · 
• Word Length (Fixed and Variable). 
• Core Memory Addressing Modes for Jumps and Operand Fetching. 
• Instruction Repertoire. 
• Instruction and Data Formats (Number of Bytes, Sign Extension, Op 

Codes, etc.). 
• Interrupt System (External/Internal). 
• Desired Instruction Execution Times. 
• Bootstrap Load Technique . 

. 2. Hardware Modification (if any). 

Modifications or additions may be required (particularly in the inter­
face) to achieve the desired specs. For example if a 16-bit 1/0 path were 
required in the emulator, an 1/0 expander would be required on the 
MICRO 800. For the MICRO 810 emulation, no hardware changes are 
required, since the byte 1/0 scheme is a direct mechanism of the 
MICRO 800 byte 1/0 channel. · 

3. Analysis and Selection Algorithms. 

Definition of subroutines, organization of routine hierarchy and prepa­
ration of top level flow chart. 

4. Detailed derivation of each algorithm to be used. 

5. Preparation of detailed flow charts for each subroutine. 

6. Assembly language coding. -

7. Assembly of program, diode map generation, and checkout. 

To illustrate these steps, annotation flow charts and the assembly language 
program for the *original version of the MICRO 810 except for compare, 
multiply, and divide instructions are included, along with a su.mmary of 
the 810 processor characteristics which affect the firmware. 

The MICRO 810 is an example of an emulation. Its characteristics as re­
lated to the microprogram are described in the following paragraphs. The 
first step in development is to define the basic functions. 

MICRO 810 Functions 
Six operational registers: 

• Accumulator (A) - 16 bits. 
• Auxiliary accumulator (B) - 16 bits. 
• Index register (X) - 16 bits. 
• Program counter (P) - 15 bits. 
• Overflow (0) - 1 bit. 
• Word length control (W) - 2 bits. 

267 



Extensive, powerful instruction set including 89 individual operations: 

• Multiply and divide (2). 
• Control ( 17). 
• Multi-bit arithmetic and logical shifts (12). 
• Conditional jumps (16). 
• Input/Output (8). 
• Inter-register ( 16). 
• Memory reference including jump, compare and variable word length 

operations - ( 18). 

Eight operand addressing modes including: 

• Direct to page 0 (first 256 bytes). 
• Direct relative to P (±128 bytes). 
• Indirect to page 0 (first 256 bytes). 
• Indirect relative to P (±128 bytes). 
• Indexed (to 32,768 bytes). 
• Indexed with bias Ho 32,768 bytes). 
• Extended address (to 32,768 bytes). 
• Literal. 

Multi-precision 1, 2, 3, or 4 byte load, store, and arithmetic operations. 
Flexible 1/0 facilities including: 

• programmed transfers to/from A and B registers and memory to byte 
1/0. 

• concurrent buffered 1/0. 
• serial 1/0 channel for local teletype. 

Expandable priority interrupt system 
Processor options which include: 

• real-time clock. 
• power-fail detect and automatic restart. 
• memory parity detect and interrupt. 

Built-in bootstrap loader in non-volatile read only store. 

*(Later MICRO 810 versions have modified interrupt, concurrent 1/0 and 
control firmware.) 

To provide all of this capability only 710 micro instructions were required. 
This leaves capability for addition of 314 additional microinstructions for 
special functions. 

FILE REGISTER ASSIGNMENTS 

The MICRO 810 contains six operational registers which are accessible to 
the programmer. These operational registers occupy nine of the 16 file 
registers of the basic MICRO 800 hardware; the remaining seven hardware 
registers are not accessible by the MICRO 810 instructions although 
specially designed macros could make use of these at the micro-level. 

268 



A REGISTER (file registers 4 and 5) 

The 16-bit A register is the accumulator with which most operations are 
performed. The A register holds the upper portion of 24- or 32-bit data 
words and all of 8- and 16-bit data words. The A register may be shifted by 
itself or in conjunction with the B register. 

B REGISTER (file registers 6 and 7) 

The 16-bit B register is the auxiliary accumulator and is used mainly as an 
extension of the accumulator to hold the lower 16 bits of 24- and 32-bit 
data. The B register may be shifted by itself or in conjunction with the A 
register. 

X REGISTER (file registers 2 and 3) 

The 16-bit X register'is an index register used in address modification. It 
can communicate directly with memory, be incremented, and compared 
with the A register. 

P REGISTER (file registers A and B) 

The 15-bit P register is the program counter which bolds the address of 
next memory instruction to be executed. 

W REGISTER (bit 2 of file register F) 

The 2~bit W register holds the word length mode. It is loaded by a control 
instruction and sets the byte length of the operand for all variable word 
length instructions. 

0 REGISTER (bits 1, 0 of file register F) 

The one-bit 0 register holds the overflow flag. The overflow is-set by 
arithmetic instructions when an overflow occurs, by execution of a control 
instruction, or by the compare instruction. It may be reset by execution 
of a control instruction or by a conditional jump instruction that tests for 
an overflow condition. 

Files 8, 9 are for the operand address. 

Files C, D, E are used for te-mporary storage. 

File 0 is for condition flags. 

File 1 is the instruction register. 

The file register assignments are completely accomplished by micro­
programming. There are no internal wiring modifications to convert a 
MICRO 800 to a MICRO 810 other than the arrangement of matrix diodes 
on the read only memory boards. 

269 



INFORMATION FORMATS 

The basic element of information is an 8-bit byte in which the bit positions 
are numbered from 7 through 0, left to right. Both instructions and data 
occupy a variable number of bytes for maximum storage efficiency. A 
word is a 16-bit element of information consisting of two bytes. The 
accumulator and index register both hold a 16-bit word. 

DATA FORMAT 

Data in the MICRO 810 is variable precision of 8, 16, 24, or 32-bit length. 
Negative numbers are represented in 2's complement. 

8 Bits (1 Byte) - Range: +27-1 to -27 

,__~S-i-gn_E~x-t-en_d __ -+1~ __ 1~-M-a~~n-i-tu_d_e __ ~l------~li----(u_n_us-~~)-------• ~ 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

A Register B Register 

16 Bits (2 Bytes) - Range: +215_1 to -215 

I ~~~li..---~i--~·M-a-g4~i-tu_d_e __ -+-l-------411------~l-----(u_nu+tsed~)----~I-~-~ 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

A Register B Register 

24 Bits (3 Bytes) - Range: +223_1 to -223 

Sign Extend Magnitude ------, 

I I I I 1-_J 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

A Register B Register 

32 Bits (4 Bytes) - Range: +231_1 to -231 

H M•gnitud• =:J 
1~14 13 12 

1
11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

A Register B Register 

To have variable word length operations, the microprogram must test the 
instruction Op code, bit 3 to see if variable word length is specified. It 
must then test file register F, bit 2 for which word length is set. Then the 
instruction is carried out by the microprogram according to the settings of 
these two bits. Testing and variable word length execution are dt:>nE? in the 
designated memory reference microprogram subroutine. 

ADDRESS WORD FORMAT FOR MEMORY 
REFERENCE INSTRUCTIONS 

A 16-bit address word containing a 15-bit memory address and an index 
flag as shown below. The address may be a direct or indirect address as 
dictated by the instruction operation code. The value of the address word 

270 



is equal to the contents of bits 14-0 and is equal to the contents of bits 
14-0 plus the contents of the x register if bit 15 is a 1-bit. 

H ,. I : 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

In the operand address subroutine, the address is determined by the micro­
program and placed into the operand address register. 

INSTRUCTION FORMAT 

Instruction formats are one to five bytes, but in al I cases the first contains 
an eight-bit operation code which defines the operation class, the sub­
operation code, and any modifiers. Succeeding byte(s) contain such infor­
mation as: 

Single byte absolute or relative address. 
Double byte address word. 
Single byte shift count. 
Single byte 1/0 function and device address. 
1, 2, 3, or 4 byte literal data. 

OPERAND ADDRESSING MODES 

The memory reference instructions defined in the following section each 
have eight possible modes of addressing an operand in memory. The num­
ber of bytes in the instruction format varies with the mode. The additional 
bytes of the instruction contain addresses, partial addresses, or data 
(literals). ' 

The basic memory reference instruction is one byte containing two fields 
as follows: -

OPCode I m 

7 6 5 4
1

3 2 1 0 

The 5-bit operation code defines the basic instructions; the 3-bit m field 
specifies the address mode. Additional bytes contain the address of an 
operand, an indirect address, a base address, or a literal depending oil the 
addressing mode. The effective operand address is the memory location 
specified after all indirect and/or index modifications have been per­
formed. 

For variable word length instructions, such as Load A versus Load Vari­
able, bit 3 is used to indicate whether variable word length is to be used. 
The microprogram tests this bit. For fixed word length instructions, such 
as multiply/divide, bit 3 indicates the instruction type. · 

271 



When an indirect address mode is specified, the location of the indirect 
address word is the first byte of a two-byte word having the format shown 
below: 

H ~ I I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Indirect Address Word Format 

For indirect addressing, the microprogram fetches the first referenced 
word, which points it to the actual address word, to which may be added 
the contents of the index register. 

Bit 7 of the first byte (x) defines whether or not the indirect address word 
will be modified by the contents of the index register: 

If x = 0, the 15-bit number formed by y and z is the effective operand 
address. 

If x = 1, the 15-bit number formed by y and z is a base address to which 
is added the contents of the X register. The result is the effective 
operand address. 

The individual addressing modes and the memory reference instruction 
format for that mode are defined below. The microprogram has a sub­
routine called operand addressing which examines the subsequent bytes 
of memory reference instructions, and uses th is information to deter­
mine the operand addr~ss. 

DIRECT PAGE 0 (m=O) 

I OP Cod•, I 0 r==J 
76543210 76543210 

The effective operand address is given by the contents of the second byte 
of the instruction (y) with seven high order zero bits appended. This mode 
provides direct addressing of operands in the first 256 memory locations. 

The microprogram clears the upper byte of the operand address register, 
and places byte.,.- in the lower byte of the operand address register. 

DIRECT RELATIVE (m=1) 

I OPCod•, I 1r==J 
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

The effective operand address is given by the sum of the contents of the 
second byte (y) with its high order sign bit (bit 7) extended and the con­
tents of the P register. The contents of the P register at the time the addi­
tion is performed is the address of the memory location following y. This 

272 



mode provides for addressing from 127 locations ahead to 128 locations 
behind the mem.ory location of the next instruction. 

The microprogram sets the P register to the next instruction location, adds 
the byte in y top and places the result in the operand address register. 

INDIRECT PAGE 0 (m=2) 

[op Code I 2 I ~ I 
7 6 5 4 13 2 1 0 7 6 5 4 3 2 1 0 

An indirect address word is specified by the contents of the second byte 
(y) of the instruction with seven high order zero bits appended. The 2-byte 
indirect address word addressed is located in the first 256 memory loca­
tions. The effective operand address is given by the contents of the indirect 
address word if the index flag (bit 15) is a 0-bit, or by the sum of the con­
tents of the indirect address word and the X register if the index flag 
(bit 15) is a 1-bit. 

The microprogram fetches the two byte address from page 0 designated· 
by byte Y: It adds the contents of the index register (if bit 15= 1), and 
places the resu It in the operand address register. 

INDIRECT RELATIVE (m=3) 

I OPCode I 3 I · 
7 6 6 413 2 1 0 7 6 5 4:3 2 1 0 

An indirect .address word is specified by the sum of the contents of the 
second byte (y) with its high order bit (bit 7) extended and the contents 
of the P register. The contents of the P register at the time the addition is 
performed is the address of the memory location following y. The effec­
tive operand address is given by the contents of indirect address word if 
the index flag (bit 15) is a 0-bit or by th.e sum of the contents of the in~ 
direct address word and the X register if the index flag (bit 15) is a 1-bit. 

The microprogram advances the P counter to the next instruction location, 
adds the content of byte y, fetches the 2 byte address from the resultant 
location, adds content of index (if bit 15=1) and places the result in the 
operand address register. 

I ND EX ED (m=4) 

I OPCode I 4 I 
7 6 5 4

1
3 2 1 0 

The effective operand address is given by the contents of the X register. 

The microprogram loads the content of X into the operand address 
register. 

273 



INDEXED WITl-I BIAS (m=5) 

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

The effective operand address is given by the sum of the contents of the 
X register and the contents of the second byte (y) of the instruction. 

The microprogram adds the content of X to byte Y, and places the result 
in the operand address register. 

EXTENDED ADDRESS (m=6) 

OPCod~ I 6 l•I 
1
v I ~ 

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

A 16-bit address word is located in the second and third byte of the 
instruction. The effective operand address is given by the contents of the 
address word if the index flag bit in bit 15 is an 0-bit, or by the sum of the 
contents of the address word and the X register if the index flag is a 1-bit. 

The microprogram takes bytes Y, and Z and adds the contents of index if 
bit X= 1 and places the result in the operand address register. 

LITERAL (m=7) 

I OPCode I 7~ 
7654

1
321076543210 

The effective operand address is given by the contents of the P register. 
The operand is located in from 1-4 bytes following the first byte of the 
instruction, depending upon the operand precision. The P register is 
incremented for each operand byte accessed. The Jump and Return Jump 
memory referencing instructions do not have a literal mode. 

The microprogram places the contents of the P register into the operand 
address register. 

JUMP/RETURN JUMP INDIRECT EXTENDED ADDRESS (m=7) 

1, :·:-:·J : E . ~3 2 • J ... :3 2 •• 

A 16-bit direct address word is located in the second and third bytes of 
the instruction. This word addresses an indirect address word located at 

274 



the address given by the contents of the second and third bytes if bit 15 of 
the address word is a 0-bit or by the sum of the contents of the second and 
third bytes and the X register if the index flag bit in bit 15 is a 1-bit. 

The effective jump address is given by the contents of the indirect address 
word if the index flag in bit 15 of the indirect address word is a 0-bit, or 
by the sum of the contents of the indirect word and the X register if the 
index flag bit in bit 15 of the indirect address word is a 1-bit. 

The microprogram tests to see if mode= 7, and the command is a jump or 
return jump. If all of these conditions are so, the' microprogram fetches 
the bytes Y, Z (with index if bit X= 1) and places them in the operand 
address register. 

MICRO 810 INSTRUCTIONS 

OPERATION 
CODE MNEMONIC 

CONTROL (one byte) 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 
OB 
oc 
OD 
OE 
OF 
34 

HLT 
TAP 
ESW 
PMP 
DIN 
EIN 
DAT 
EAT 
R01 
R02 
R03 
R04 
S01 
502 
S03 
S04 
NOP 

CONDITIONAL JUMP (2 bytes) 

. 10 xx 
11 xx 
12 xx 
13 xx 
14 xx 
15 xx 
16 xx 
17 xx 
18 xx 
19 xx 
1A XX 
1B xx 
1C XX 
10 xx 
1E XX 
1F XX 

JOV 
JAZ 
JBZ 
JXZ 
JAN 
JXN 
JAB 
JAX 
NOV 
NAZ 
NBZ 
NXZ 
NAN 
NXN 
NAB 
NAX 

Halt 
Trap 

lNSTRUCTION NAME 

Enter Sense Switches 
Protect Memory Page 
Disable Interrupt System 
Enable Interrupt System 
Disable Real Time Clock 
Enable Real Time Clock 
Reset Overflow and Set Word Length to 1 
Reset Overflow and Set Word Length to 2 
Reset Overflow and Set Word Length to 3 
Reset Overflow and Set Word Length to 4 
Set Overflow and Set Word Length to 1 
Set Overflow and Set Word Length to 2 
Set Overflow and Set Word Length to 3 
Set Overflow and Set Word .Length to 4 
No Operation 

Jump if Overflow Set 
Jump if A Equal to Zero 
Jump if B Equal to Zero 
Jump if X Equal to Zero 
Jump if A Negative 
Jump if X Negative 
Jump if A Equals B 
Jump if A Equals X 
Jump if Overflow not Set. 
Jump if A not Equal to Zero 
Jump if B not Equal to Zero 
Jump if X not Equal to Zero 
Jump if A not Negative 
Jump if X not Negative 
Jump if A not Equal to B 
Jump if A not Equal to X 

Where: XX is a relative jump address (plus or minus hex 7F from the first byte 
after the jump instruction. • 

275 



OPERATION 
CODE MNEMONIC 

SHIFT (2 byte instruction) 

20 xx 
21 xx 
22 xx 
24 xx 
25 xx 
26 xx 
28 xx 
29 xx 
2A XX 
2C XX 
20 xx 
2E XX 

LLA 
LLB 
LLL 
LRA 
LRB 
LRL 
ALA 
ALB 
ALL 
ARA 
ARB 
ARL 

Where: XX is shift count. 

INSTRUCTION NAME 

Logical Left A 
Logical Left B 
Logical Left Long 
Logical Right A 
Logical Right B 
Logical Right Long 
Arithmetic Left A 
Arithmetic Left B 
Arithmetic Left Long 
Arithmetic Right A 
Arithmetic Right B 
Arithmetic Right Long 

INPUT /OUTPUT (2 and 4 byte instruction) 

30 00 
31 xx 
32 xx. 
33 XX AAAA 
38 00 
39 xx 
3A XX 
3B XX AAAA 

IBS 
IBA 
IBB 
IBM 
OBS 
OBA 
OBB 
OBM 

Input Byte Serially 
Input Byte to A 
Input Byte to B 
Input Byte to Memory 
Output Byte Serially 
Output Byte from A 
Output Byte from B 
Output Byte from Memory 

Where: XX is a 3-bit function code and 5-bit device address. AAAA is a core 
memory address. 

REGISTER OPERATE (one byte) 

Group 1 
40 
41 
42 
43 
44 
45 
46 
47 

Group 2 
48 
49 
4A 
4B 
4C 
40 
4E 
4F 

ORA 
XRA 
ORB 
XRB 
INX 
DCX 
AWX 
SWX 

INA 
INB 
OCA 
OCB 
TAX 
TBX 
TXA 
TXB 

ORB with A 
Exclusive - ·oR B with A 
OR A with B 
Exclusive - OR A with B 
Increment X 
Decrement X 
Add Word Length to X 
Subtract Wo_rd Length from X 

Increment A 
Increment B 
One's Complement A 
One's Complement B 
Transfer A to X 
Transfer B to X 
Transfer X to A 
Transfer X to B 

276 



OPERATION 
CODE MNEMONIC INSTRUCTION NAME 

MEMORY REFERENCE (1, 2, 3, 4, 5 byte) 

60 
68 
70 
78 
80 
88 
90 
98 

AO 
A8 
BO 
B8 
co 
ca 
DO 
08 
EO 
E8 
FO 
F8 

INTERRUPTS 

JMP 
RTJ 
IWM 
DWM 
LOX 
STX 
MUL 
DIV 

ADA 
ADV 
SBA 
SBV 
CAP 
CPV 
ANA 
ANV 
LOA 
LDV 
STA 
STV 

Jump 
Return Jump 
Increment Word in Memory 
Decrement Word in Memory 
Load X 
Store X 
Multiply 
Divide 

Add to A 
Add Variable 
Subtract from A 
Subtract Variable 
Compare A 
Compare Variable 
And 
And Variable 
Load A 
Load Variable 
Store A . 
Store Variable 

The MICRO 810 has firmware to process both external and internal 
interrupts. The firmware tests for interrupts, acknowledges them, and 
executes a return jump to the designated software routine for each 
interrupt channel. 

CONCURRENT 1/0 

The concurrent 1/0 allows for block transfers between the external device 
on the Byte 1/0 bus and l)lemory at a maximum rate of 20,000 bytes per 
second. The transfers are fully automatic, and once started proceed with­
out program intervention. Concurrent 1/0 takes priority over instruction 
execution and forces momentary sequence breaks during execution of long 
instructions such as multiply, divide and shifts to insure that concurrent 
1/0 displays are not excessive. 

SERIAL INPUT/OUTPUT INSTRUCTIONS 

Two instructions are provided for bit serial transfers of-data between the 
A register and a serial 1/0 device. In the MICRO 810, these instructions 
are standardly timed to transfer bits at the rate of 110 bits/second for 
interface with a serial teletype. However, the timing can be easily altered 
by a simple change of firmware to handle another type of serial device. 

IBS INPUT BYTE SERIALLY 

277. 



An eight-bit byte is assembled from the serial teletype interface c1nd placed 
in the eight low order bits of the A register. The eight high order bits of A 
remain unchanged. The execution time of this instruction terminates when 
a complete teletype character has been received. The instruction must be 
accessed before the start of the teletype input for proper assembly of the 
character. Sampling of the teletype line and assembly of bits is done by a 
microprogram subroutine, which includes its own delay routine to time 
out the bits as shown below. 

OBS OUTPUT BYTE SERIALLY 

38 I~ 
_7_6_5_4-tl-3-2 1 0 7 6 5 4 3 2 1 0 

The eight low order bits of the A register are disassembled and output 
serially as a teletype character to the serial teletype interface. The eight 
low order bits of A will be set to one. The eight high order bits remain 
unchanged. The execution of this instruction terminates when a complete 
byte has been transmitted. 

Affected: A 

BYTE INPUT/OUTPUT INSTRUCTIONS 

Byte programmed input/output operations provide transfers of data, con­
trol and status over the Byte 1/0 channel. This multiplex channel permits 
intermixed program and concurrent 1/0 transfers. More than one device on 
the bus may be operating in a concurrent block transfer mode at the same 
time. A maximum of 32 devices may normally be addressed on the Byte 
1/0 bus. 

The second byte of the instruction is a control byte which provides a 
three-bit device order and a five-bit device number as follows: The micro­
program causes the second byte to be placed on the output bus, and gener­
ates a control putput strobe called COXX. In the output mode, the data 
is placed on the output bus ·and strobed out with DOXX. For input, data 
on the input bus is strobed in by DIXX. 

Device 
Orderf 

Device I 
Numb~ 

7 8 5 4 3 2 1 0 

Byte input/output is basically a two-phase operation. First the control 
byte is placed on the output bus before the actual transfer of data. All 
devices examine the transmitted device number. The device whose assigned 
number is the same as contained in the control word accepts the control 
byte and sets for a subsequent data byte transfer. The second phase con­
sists of the input or output of a single byte. When a device order does not 
require a data transfer, the second byte is disregarded by the device con­
troller. 

278 



TOP LEVEL FLOW CHART 

The purpose of the top level flow chart is to define the microprogram 
subroutines, and their interrelationship. This flow chart shows all of 
the basic paths that the microprogram can follow as it goes through its 
repetitive looping operation. 

The top level flow chart can be divided into six major areas for discussion 
purposes. 

• Instruction fetching 
• Interrupt and Concurrent 1/0 Processing 
• Operand Addressing 
• Nonmemory Reference Instruction Execution 
• Memory Reference I nstr:uction Execution 
• Bootstrap Load 

Instruction Fetching 

MICRO 810 instructions, stored in core, contain from 1 to 5 bytes, 
depending on the instruction. During the instruction fetch routine, only 
the first byte is fetched from core. Th is byte contains the basic Op code of 
the instruction, which identifies whether the instruction is memory refer­
ence or not, and what the specific instruction is. 

· First byte format. 

OP Code 
I 

7654321 J Sub OP Code 
I 

6 5 4 3 2 1 0 

The Op code identifies the class of instruction for nonmemory reference 
instructions, and the type of instruction for memory references.* 

The sub Op code identifies the type, in$truction for nonmemory reference, 
and the address mode, and fixed versus variable word length for the 
memory reference instructions. 

The Op codes are organized so that all memory reference instructions have 
Op codes 6. The microprogram makes use of this fact when testing to see 
if the instruction is memory reference. 

During the instruction fetch subroutine, the Op code is tested for memory 
reference, and a jump table number is set up to jump into the subroutine 
corresponding to the Op code. 

Other things done during instruction fetch are testing for interrupt, and 
advancing the program counter. 

The instruction fetch routine contains a cold start portion which initializes 
the program counter, tests for internal interrupts, and tests for bootstrap 
load. 

*On some of the memory reference instructions the sub Op code is also 
• required to indicate type of instruction. 

279 



The instruction fetch routine has many different entry points, which are a 
function of the state of the P register as determined by the previous sub­
routine that the microprogram executed. 

Interrupt Processing 

If there is an internal or external interrupt, the microprogram services it 
immediately. Servicing consists of acknowledging the interrupt, inputting 
the device address (if external), and jumping to the interrupt routine, or 
transferring a data byte if concurrent 1/0. When this is done, the micro­
program returns to the instruction fetch cycle. At this time, the interrupt 
routine address will be in the program counter. 

Operand Addressing 

This microprogram subroutine prepares the absolute address of the oper­
and of a memory reference instruction, and places it in the operand address 
register. The address modes are identified in the sub Op code. )l~ddress 
information is contained in the 2nd and 3rd bytes of the instruction. 

The addressing modes are as follows: 

1. Direct Page 0 (1st 256 bytes) 

The second byte is pl.aced directly in the operand address register by 
the microprogram. 

2. Direct Relative 

The second byte is added to the P counter, and the result is placed in 
the operand address register. 

3. Indirect Page 0 (1st 256 bytes) 

The address indicated by the second byte is fetched from Page 0 and 
added with the contents of the index register (if bit 15 is set), and 
placed in the operand address register. If bit 15 is not set, the address 
is placed directly in the operand address register. 

4. Indirect Relative 

The second byte is added to the P counter. This address is 1Jsed to 
fetch the. indirect address, which is added to the content of the index 
register (if bit 15 is set), and placed in the operand address register. If 
bit 15 is not set, the indirect address is placed directly in the operand 
address register. 

5. Indexed 

The address in the index register is transferred to the operand address 
register. 

6. Indexed With Bias 

The 2nd byte is added to the index register and placed in the operand 
address register. 

280 



7. Extended Address (Absolute Address) 

The 2nd and 3rd bytes of the instruction are added to the index register . 
(if bit 15 is set) and placed in the operand address register. If bit 15 is 
not set, the 2nd and 3rd bytes are placed directly in the operand address 
register. 

8. Literal 

The P counter is incremented and placed in the operand address 
register. 

Non-memory Reference Instruction 

The non-memory reference instructions consist of the following: 

• Conditional Jumps 
• Input/Output a byte of data (Parallel or Serial) 
• Control Operations 
• Register Shifts 
• Register Operations 

Since none of these involve an operand to be fetched from memory, the 
operand addressing function is bypassed by the microprogram. 

Memory Reference Instructions 

The memory reference instructions are grouped as follow~: 

• Load, Add, And, Subtract 
• Store 
• Unconditional Jump 
• Return Jump 
• Increment or Decrement Word in Memory 
• Compare 
• Multiply, Divide 

The operand for each of these operations is fetched from the address 
location contained in the operand address register. 

Bootstrap Load 

This microprogram is entered from the cold start part of the instruction 
fetch routine. It loads a program load routine which is on paper tape. 

Detailed Flow Charts 

The next step after preparing the top level flow chart is to prepare the de­
tailed flow charts for the individual subroutines. At this time it is neces­
sary to have a detailed definition of the procedures, equations, and algor­
ithms to be executed in each subroutine. The basic microprogramming 
approaches must be identified, such as use of the U register, combining 
multiple functions into the same routine, a definition of microprogram 
jump and return jump procedures. 

281 



There is no set rule for the detail level of symbology to be used in micro­
program flow charts. The general considerations for detail level are as · 
follows: 

1. Ease of identifying and defining'procedures. 

2. Ability to communicate program organization and steps to others. 

3. Ease of coding program from flow charts. 

To provide a detailed description of the MICRO 810 firmware selected, 
detailed flow charts, comments, and functional grouping indications are 
included in the following pages, along with a table of symbol definitions 
to facilitate reading the charts. Microcode addresses are included on the 
flow charts to facilitate relating the steps in the flow chart to the instruc­
tions in the assembly listing. 

Glossary of Fl9w Chart Symbols for MICRO 810 Firmware 

A. File Registers 

Fo File 0 

File 1 

XL File 2 
XU File 3 

AL File 4 
AU File 5 

BL File 6 
BU File 7 

OL File 8 
OU File 9 

PL File A 
PU File B 

s, FileC 

S2 File D 
S3 File E 

OV/W File F 

F1 File 1 

Flag Register. 

Instruction Register (for first byte oi instruc­
tion). 

Upper and Lower Bytes of Index Register. 

Upper and Lower Bytes of A Register. 

Upper and Lower Bytes of B Register. 

Upper and Lower Bytes of Operand Address 
Register. 

Upper and Lower Bytes of Program Counter 
Register. 

Temporary, Always Used for Subroutine Re­
turn Address. 

Temporary. 

Overflow and Word Length. 

Used for execute command referenc13 Register 
for selecting odd file. This does not actually 
select file 1 because of the U regist13r modifi­
cation. 

Designates a command selecting U register 
modification with File 0 reference, and modi­
fied by U register. 

282 



8. Other Registers 

T T Register 

U U Register 

L L Register (also referred to as K in assembly language) 

m,M M Register Upper Memory Address Register 

n,N N Register Lower Memory Address Register 

L,LK Also defined as LINK 

C Update condition Flags. 

C. Miscellaneous Mnemonics 

SS4 

RN1 

OP 

D. Symbols for Constants 

1. Constants to go into U Register for Instruction Modification 

LDAL 

ANAL 

S8AL 

ADAL 

LDXL 

STAL 

STXL 

ST8L 

Loading A using '84' op code which is COPY T to A. 

AND A using 'C4' op code which is AND to A. 

Subtract A using '94' op code which is Subtract from A. 

Add A using '84' op code which is ADD to A. 

Load X using '82' op code which Is Copy T to X. 

Store A using 'A4' op code which is Memory op code. 

Store X using 'A2' op code which is Memory op code. 

Store 8 using 'A6' which is memory op code. 

2. Jump Table Constants 

OTA8 = '10' Main table· jump reference to location 100. The 
'10' is used to clear the upper 4 ones in the op 
code which has been shifted ri_ght 4 places. 

JT8L = '4E' 

CT8L = '15' 

Jump base reference constant used in condi­
tion~! Jump routine,· to go to the selected con­
ditional jump subroutine. · 

Jump base reference constant used in control 
routine for jumping to selected control func­
tion. 

283 



E. Miscellaneous Symbols 

SR4 

SS4 

CTL 

CJ 

SH 

10 

REG 

SP 

RNI 

JMP 

RTJ 

IND 1 INDX 

ADDR, ADRO 

OP 

SOF 

SET 

OCK 

LDA 

ANA 

SBA 

ADA 

MR1 

LDX 

STA 

IWM 

M 

@ 

v 

/\ 

v 

Shift Right 4 

Sense Switch 4 

Control Subroutine 

Conditional Jump Subroutine 

Shift Routine 

Input Output Routine 

Register Operate Routine 

Spare 

Read Next Instruction 

Jump 

Return Jump 

Entry points to perform indexing 

Entry points in operand addressing routine 

Op Code 

Set Overflow 

Set Mask 

Test for Overflow set 

Load A 

And A 

Subtract A 

Add to A 

Memory Reference Entry from LDX 

Load X 

Store A 

Increment Word in Memory 

Address Mode (sometimes M Register) 

Shift 

OR Logic Symbol 

And Logic Symbol 

Exclusive OR Logic Symbol 

284 



F. Microprogram Command Symbols 

'OO'--OV,m 

Pu--+- Pu, m 

PL-P1, n 
(READ) 

ISR4-T 

PL+1--- PL, n 

WI\ T--+-T 

NOP 

JP*+1 

Uu--T 

(Write) 

N 

BL(F)T--- BL 

CTBL--SI 

OL---UL 

IVT, f---LK 

BL@+LK...._ BL 

Load OV and m registers with '00' to clear 
them. 

Move content of Pu to m (back to Pu is 
immaterial but saves a diode). 

Initiate a read m~mory cycle and also move con­
tent of PL to n Register. 

Shift right file 4 and put result in T. 

Increment (PL) and put result in n and PL. 

~AND' (W) with (T) and put result in T. 

General Purpose Command. 
UL Selectable file by U register. 
F Selectable command by U register. 
T Operand, Up date condition flags. 

No Operation. 

Jump to next location (2 clock delay). 

Execute command with memory op code in U 
register, T destination and write bit set in C 
field. 

Execute command selecting B register, with 
variable op code in U register. T register 
operand. 

Shift file S1 right, enter 1 into vacated bit, 
place result in S1 and U. 

Incrementing selected register with file address 
modified by content of U Register. 

Load ·file S1 with constant identified as CTBL. 

Complement selected file. 

Exclusive OR (I) with T and f.thus comple­
menting (I). 

Shift (BL) left, enter (LINK). 

Shift selected file right, enter link. File desig­
nated by contents of U. _.I 

Move (S1) to L (a jump command). 

Shift (I) left, result to T. 

285 



On the flow charts, the machine code address of each instruction is p'laced 
next to the box containing the instruction, as close as possible. Since jump 
instructions are not shown in the boxes, a dot is placed in the flow line 
having the jump and identified with the machine code address for the jump 

instruction. When the jump destination is indicated with @~)---,the 
machine code address of the jump destination is placed by the circle as 

follows 1 F8 (!~ 

The flow charts are shown in Figures 23 through 39. 

286 



I 
I 
I 
I 

-----'----
: UNASSIGNED I 
I OflERATION I 
I CODE! I 
L---------1 

Figure 23. 810 Top Level Flow Chart 

287 



CLEAR OVlAFLOW. I 
~c~~~~AANo I 

I 
I 
I 

STARTFAOM 
MASTl!lll ll!:ESIT TABLE Of 

~~-

MANUAL EUTRY 
F.AOl-'FAOUT 
l'ANt::L 

AFTER JUMPS 
~~D CONCURRENT 

AfT!:RSKIP 
WITtllNAPAGE 

AFT,.:R RETURN 
JU"'' 
AfT,'!R A B•XlT 
STR.\P LO.AO 

==R~:owen 
PROGRESS 
ROUTINE CIA 
FROM NII 
014& 

NOFMAL ENTRY 
POINT WHERE 
PCCl\JNTER 
ITE1JS TO filEXT 
INS":"RUCTtON 

CONTROL I 

INPUT 
OUTl'UT 

REGISTER 
OPERATE 

ra~~=TO 
HALT IN 

I MICAOB10} ._ _____ ..J 
GO DIRECTLY TO JUMP 
TABLE AT 100 FOR 
NON MEMORY REFERENCE 
INSTRUCTIONS 

Figure 24. Read Next Instruction 

288 



ADDRESSING 
FOR FIRST 
FOUR MODES 

GET 2ND BYTE FOR 
E>CTEND!O ADDRESS 
MODE 

51 _.,.. L 

TO TABLE 
JUMP 

I0311 
I~ 
I 

I 
1039 
I 

OPEftAND ADDRESSING 

r--- ----, 
I 
I 

""'1 
--~--' I 

I 
... 1 

I ~;I 
'-'----'I I 

,-- ------, 
! ~t +-;::: ~t: ~ = I ADD INDEX TO 

Xu -- >Cu, T 03p I oPERAND ADDRESS 
1 au+L+r ... au 040 1 L..; _______ _, 

SET WORD 
LENGTH INT 

Figure 25. Operand Addressing 

289 

'----- -- __ J 
ADVANCE I' COUNT&ft 
FOft NEXT INSTRUCTION 
TO ADJUST FOR 

~tr~'::t: LENGTH 



AT THIS POINT. 
ADDRESS IS TREATED 

~~JR~~ENDED 

ABSOLUTE 
ADDRESS 

51---L 

I MOVE 2NO IYTE OF 

I INSTRUCTION TO 
LOWE Fl IYTE Of 

I 
OPERAND ADDRESS 
REGISTER 

Pu·f+L __., T 

r----029------ - ----, 
0u--0u.m 02e I 
g:_e._A,01 __ oL o21 I ~~1c,re~o1Aecr 
Ou<L --au.m 028 f 

L----~~--------~ 
' 

I 
02cl 

I CALCULATE 
RELATIVE I ADDRESS 

FigurM 26. Operand Addressing (Continued) ""' 

290 



UTURIGISTI!R 
WITH INSTRUCTION 
Oft CODI TO PERFORM 
DHIGNATED 
OPERATION IN 
MICR0110 
INITl'tUCTION Oft CODI 

TABLE OF 
TEMPORARY STORAGES 

BYTE! 
LENGTH 

Figure 27. Memory Reference 

291 



•,,Ef!FOR21YTES 
fHE 2NO TIME 
THROUGH THE LOOP 
THEN LOOKS LIKE 
FIXCOWORDLENGTH 
!1 BYTESI FOR 
Sl)(. lHE:. LOOP IS 
ENTERED ONLY ONCE 

2'1 COMPLEME "4T 
llOR DECREMENT 

Figure 28. Memory Reference (Continued) 

292 



THIS PATH 18 TAKEN 
FOA ALL MODES 
EXCEPT INDIRECT 
EXTENDED ADDRESS 

,---- .;.,;------.;;--1 
I OC1 I 
: OC2 ~:~~· T ~~~uM T I 

L ___________ ~ __ J 
ig~~:~ITH JUMP 

OAS 

OAF 

JUMP AND RETURN JUMP 

COMf'ILIMENT (ll, 
WHICH CONTAINS OP 
CODE, TO FACILITATI 
TESTING POR M 
TEST ADDRESI MODI, 
M, FOR INDIRICT 
EXTENDED ADDRESS 

I FETCH INDIRECT JUMI' 
ADDRESS FOR 
INDIRECT EXTENDED 
ADDRESS MODI! 

} 

ADO llNDEXJ IF 
BITl15•1 

TEST OP CODE JN I 

INCREMENT ADDRESS 
OBD WO IN OPERAND 
-- ADDRESS REGISTER TO 

FIRST INSTRUCTION 
OBE TO BE EXECUTED IN 

..._ ___ .. SUBROUTINE 

Figure 29. Jump and Return Jump 

293 



,, 
<O' 
c ..., 
(t) 

(.U 

9 
:::c 
(t) 
(Q 

~· 
CD ..., 
0 
'O 
CD ..., 
s 
CD 

GROUP. I 
INSTRUCTIONS 
OR.EX OR. 
INX,Qf.C)C 
AOOWOL TO X 
sue WOl. FROM X 

LOADTWITH 
VARIABLE WD I _ __.,_=; 
LENGnt PARAMETERS I 

I 

REGISTER OPERATE 

SET FILE REGISTER 
! &HECT CODE FOR 
! B REGISTER 

I 
i 

GAOUP:Z 
INSTflUCTIONS 
INA, INI, OCA. OC9. 
TAX. TXA. TBX, TXI 



"Tl 
cCi" 
c 
..... 
CD 
w 

• 

FOR HALT SET P 
TO M:XT INSTRUCTION 
~~SS AND STOP 

GROUP1 
HLT, TRP,ESSW, 
PMP, DINT, EINT 
DRTC,ERTC 



VALVE FUNCTION 

0 OVERFLOW 
1 A•ZERO 
2 l•ZERO ! :~~aRo 

~ ~==G 

Figure 32. Conditional Jumps 

296 



81 ftl!TUftN 
t::28''''"' 
END AROOfrtD CARRY 

Ou COPY OP OPCOOI 
OL SHIFT COUNT 

----,.~ ll'rRITURNPOR 

S&TU FOftl 
REG SHIFT 

~~~ 
r--- ---~ ---,
I i 1 I
1::: :~~::: t~=~~~11 1 =~== ~~== ~~ ::; I
I 11 I
L------~L------~ SHIFT A OR 8 DEPENDING SHIFT B LEFT
ON COMMAND ON LONG SHIFT

CONCURRENT 1/0 ll!CAUSI!
SHIFT ROUTINI CAN IE
INTERRUPTED FOR
CONE-110

Figure 33. Shifts

297

SET LINK WITH
A OR 8 REGISTER
MSB

SHIFT A OR B DEPENDING
ON COMMAND

SHIFT BON LONG
RIGHT SHIFT

SET SIZE OF
BOOTSTRAP LOAD
PROGRAM. IN THIS
PROGRAM SIZE• 218
~~T~~·:o IS SET TO

RETURN TO RNUS
WHICH BVP~ES
INTERRUPT TEST ANO
INCREMENTING OF
PCOUNTER

STANDARD BYTE
INPUT ROUTINE

STORE A BYTE ANO
DECREMENT P COUNTER
ANON REGISTER

Figure 34. Bootstrap Loader

298

MICR0810
~~~.!~~UTPUT OP CODE 

o4 BITS t BIT 3 BITS -

!v}LuE~ \\:NT ·o 
1 • A REG QUTPUT • 1 

2•1REG 
3•MEMORV 

DIXX 
DELAY 

INPUT 
RESETOIXX 

THE NOP CODE USES 
THE SAME BASIC OP 

~?~M~~~~: THE 

Figure 35. Input-Output 

299 

I GET OUTPUT BYTE 
I FROM MEMORY 



~L 1 DELAY COUNT 

Ou BITCOUNT 
52 E'XIT FROM OE LAYS 
S1 EXIT FFIOM SIO 

SET BIT 
COUNT•B I 
FOft INPUT I 

SAMPU INPUT LINE TO TEST 
FOR PACI CONDITION. KEEP 
SAWt..ING UNTIL SPACE OCCURS 
SIGNIF'l'ING THE BEGINNING OF 
ACHARACTlft 

JleLAY 1 AND 
Ol!LAY2 
AF4E MECHANIZED BY THE SAME 
D£LAY ROUTINE HAVING 1 
ENTFIY POINTS AS SHOWN ON 
THE NEXT PAGE 

SAMPLE INPUT LINE 

Figure 36. Serial Teletype 

300 

I SERIALOUlPUT 
I AOUTINE 

I 
I 
I 
I 
I 
I 
I 
I 



SERIAL TEUiTYPE OELAVS 

DECREMENT INNER 
LOOP.SETCOND 
FLAGS. 

DECREMENT OUTER 
LOOP COUNTER 

OUTER LOOP 
DONE 

SHIFT COUNT 
COMPLETE 

l/OCLIAR 
IS2-•LI 

:..1 DELAY COUNTER 

DELAY 19 ACHIEVED 
BY NESTED LOOP 

1C 

s,_ 

CLEAR 110 BIT ANO 
RETURN TO SAMPL.ING 
110 CLEAR IS USED 
FOR OUTPUTTING 
SERIAL DATA 

RETURN TO BOOTSTRAP 
LOAO, OR RNI VIA 
NPUT/OUTPUT ROUTINE 

Figure 37. Serial Teletype Delays 

301 



INTERNAL INTERRUPT 
TEST 111' COLO START 

RTC SOFTWAflE INTERRUPT 

UPDATE RTC 
COUNTER REGISTER 

10~ 
10~ LOAO INTEAAUfT l'OlllTiill IN ...__ ....... _ _. ! ~;m.:,~cro1:J~RUPT 

Figure 38. Interrupts 

302 

1E~ 
1E1 

I 
_J 



INCHEMENT DATA ADDRESS 
CLEA.ft 1/0 CONTROL CODES 

FETCH AND ADJUST CURRENT 
UPPER ADDRESS 

CONCURRENT INPUT/OUTPUT 

ENTRY POINT FROM NORMAL INTEfftNSTAUCTION 
CONCURRENT 1/0 TEST SUBROUTlt~E 

SET INDIRECT RETURN TO GO BACK 
TO RNI SUBROUTINE 

I 
ACKNOWLEDGE ANO INPUT 

-----. DEVICE ADDRESS 

----

l. SHIFT DEVICE ADDRESS LEFT TO 
MULTIPLY BY TWO ANO GET CURRENT 

---- 1/0 CORE MEMORY 

----

STORE CURRENT LOWER 
GET CURRENT UPPER 

RETURN TO MICROPROGRAM ADDRESS 

Figure 39. Concurrent Input/Output 

303 



MICRO 810 ASSEMBL V LISTINGS 

The assembly language program with machine code and comments is in­
cluded for reference from the flow charts. To illustrate the flow of micro 
commands for 810 operations, the dotted line flow is for a load A register 
direct relative address mode instruction. 

Load A Direct Relative Address Mode 

For this example, the op code in MICRO 810 machine language is.: 

0200 El 
0201 18 

The E signifies load, 

The 1 in binary is 0001 
I I 

Fixed Word Length Direct Relative 

The 18 specifies a relative address 18 hex from the P count of the next 
instruction, which is 0202 + 18 = 021A. 

In the RN I loop the op code, E 1 is fetched and tested for memory refer­
ence. E 5 means memory reference. Therefore the operand address 
mode is entered. The 1 says direct relative, so the relative address 18 is 
fetched from core and added to 0202 and the result, 021A, is placed in the 
operand address register. 

Then the microcommand jumps, via the jump table at 100, to the memory 
reference routine, entering at LDA. The 1 in the Op code signifies fixed 
word length (two bytes) so two bytes are fetched from core, starting at 
the location in the operand address register (021A) and placed in the A 
register. Then the microprogram returns to RN I lo advance the P c:ounter 
and fetch the next instruction. 

The sequence of both of these examples can be seen by following the solid 
or dotted flow lines on the listing. 

FUNCTION FLOW EXAMPLES OF A MICRO 810 INSTRUCTION 

Load A direct relative 

Machine Code of MICRO 810 Instruction Stored in Memory: 

01FF 34 No op 
0200 E1 Load A Dir. Rel. 
0201 18 Rel. Address 

304 



The instruction is located at P=0200 in core memory. For the example it 
is assumed that the previous instruction was a no Op, and there were no 
interrupts, or concurrent 1/0 requests. Therefore, the read next instruc­
tion routine will be entered at RNI. 

The MICRO 810 instruction bit configuration is as follows: 

E 1 

1110 0 001' 

I 
"Load" Fixed Mode 1 
Op Word Direct 
Code Length Relative 

The relative address '18' is a positive displacement. This instruction will 
cause a 16-bit number located at 021 A to be loaded into the A register 
(files 4 and 5). 

The basic functions (omitting tests and skips) for implementation of this 
instruction within the MICRO 800 are shown in the following flow chart: 

Enter 
_f 

RNI 

• Get instruction Op c~de (E 1) from memory . 

• Calculate and save Op code Jump Address . 

• Jump to operand addressing routine. 

J 
OPERAND ADDRESSING 

• Get address byte. 

• Calculate effective address (021 A) of operand . 

• Save in operand address register (files 8 & 9) . 

• Jump to Op code jump table. 

t 
OP CODE JUMP TABLE 

• Jump to "Load A" part of memory 
reference routine. 

J 
MEMORY REFERENCE ROUTINE 

• Set U register for copy T to "file 4 . 

• Read data byte #1 from memory 
(Loe 021A) using address calculated in 
operand addressing routine. 

• Read data byte 2 from memory (Loe 021 BL 

• Transfer data to A register (f4, fsl. 

t 
Return to RNI 

The sequence of micro instructions is traced out in the following coding 
which was lifted from the MICRO 810 Firmware reference manual. 

305 



IOENT M810 . MICRO 110 SVSTEH . rlLE ALLOCATION 
0000 ro EQU 0 CONDIT I ON FLAGS 
OH1 I EOU 1 INSTRUCT.JON REG I STEA 
0~02 XL iQU 2 INDEX REGISTER 
DC03 XU EQU 3 
0004 AL EOU 4 ACCUMULATOR 
OC105 AU EOU ' OC•D6 BL EOU 6 EXTENDED ACCUMULATOR 
01107 au EOU 7 
0008 OL EQU • OPERAND 4DDRESS 
0009 OU EQU 9 
OODA PL EQU 10 PROGRAM COUNTER 
0008 PU EQU 1l 
oooc 51 EOU n TEMPORARY STORAGE 
OOOD sz eau u 
oooE 53 EQU u 
ooor ov EDU n OVERFLOW AND WORD LENGTH 
0001 r1 EOU 1 USED WITH EXECUTE F'OA ODO FILE 
0000 SIZE EQU 0 SIZE or BASIC LOADER 

QRQ BOARD 1 . 
READ NEXT INSTRUCTION 

er oz RNIO C14 ov CLEAR OV/W ANO H ~EGISTERS 
2800 LF' Pu,x•oo• CLEAR P COUNTER UPPER 
2AOO Lf PL,X'DO' CLEAR P COUNTER LOWER 
4010 TZ ro.x' 10 1 INTERNAL I NTERRU~T 
1,;a JP INT2 YES, JUMP TO INTERRUPT ROUT I NE 
7110 K 1.1 ENTER SENSE SW I TC HES 
4180 TZ 1. x•10• SW ITCH 4 ON 
1!174 . JP Le Ao yes. LOAD BOOT STIUP PROGRAM 
2FOO RN!l LF ov,x•ao• CLE AR OY /W REG IS TER 

~ C902 RNl5 MM PU HOVE P UPPER TO H REG I STER 
AA03 RNl4 llN PL GET OP CODE !FIRST BYTE Of INST~UCTIOMl 

LOAD A 1410 JP RNl6 I ONORE INTERRUPTS cron SOME I NSTRUCTI nNS) 
DIRECT 11143 llHI JN PL UPDATE P BY JjjCREMENTlNG IT 

RELATIVE A882 RNl3 llM PU,L FETCH INSTRUCT ION BYTE 
4098 RNU TZ F8,x•te• TEST f"Oll INTERRUPTS 
1503 JP INT SERVICE REQUEST BY JUMP TO INT, ROUTINE 
euo RHl6 c l,T SAVE OP CODE STILL INT AF"TER f"ETC14 
2CU LF l~10TAB•U use ADDR•16 TO CLEAR ONES IN SWlrTED OP 
7129 Kh 1.2 SHIFT RIGHT 4 
ec20 A Si1T ADD BASE ADDRESS TO SMlrTED OP 
61AO CP hX'AO' HEHORY REFERENCE IF OP .GT, 5f" 
CCU MK NO, GO DIRECTLY TO JU~P TABLE . YEI, GET OPEll&ND ADDRESS . OP'EllAND ADDUISINO 

016 8901 ADDll CT OU CLEAR OU &ND T 
017 4104 TZ 1.x•o•• M ,LT, 4 !FIRST 4 ADDqESSING MODES) 
ua 142E JP Abll4 NO, MODE ,GT, 4 
019 U43 IN PL GET ADDRESS BYTE FOR PAGE ZERO OR RELATIVE 
01A A882 RM PU1L 
018 H33 CN OL1ToC IET CONDITION CODE f"OR SIGN or DISPLACEMENT 

l 
5101 TN 1.x•u• PAGE ZERO ADDRESS MODc 

010 1424 JP AOR2 YES, JUMP TO INDIRECT TEST 
OH 8A69 Ah PL.t, T ADD RELATIVE VALUE 
l• Bl2J CN OL, T TRANSrER RELATIVE VALIJE TO 0~ AND N 
20 4002 TZ ro,x•o2• DISPLACEMENT NEGATIVE <C SET AT OlBl 
21 142C JP AOll3 YE&, JUMP TO NEG, DIS"'LACEMENT CA• CULATIO~ 
22 IH9 Ah PU,L ADD C&RRY FOR PAGE AO\JNDARY 

023 8920 ADR1 c ou,T HUNS>ER RESUl T TO OU 
24 5102 ADll2 TN 1. ••02. INDIRECT ADDRESS MODE 
2~ CC05 MK h NO, EXIT TO JUHP TABLE 
26 A902 RM OU READ UPPER BYTE or INDIRECT AODRESS 

027 8840 I OL ADVANCE PO 1.NTfR TO LO'JER RY.TE 
028 8982 AH ou.L 
029 8920 c OU, T GET UPPER ADDRESS BYl~ <READ AT 026> 
02• AIDJ RN OL READ LOWER BYTE or INDIRECT ADDRESS 
D2B 1439 JP IND1 GO CHECK FOR POST IND;;XING 
02c 9889 ADR3 sr. PU,L SORROW FROM UPPER ADDRESS 
02n 1423 JP An111 GO TO INDIRECT ADDRESS ROUTINE 
02E 5103 ADll4 TN 1.x •o3 • M ,EQ, 4 INDEX MODE 
02r 1442 JP Anll7 YES. GO TO INrex FUNCTION 
DJO U43 INDX IN Pl ADVANCE P COUNTER 
031 ABU RM PU,L GET 2ND BYTE OF INSTR\JCTION FROM COR~ 

OJ2 5102 TN 1. x' 02. M ,EQ, 5 INDEXED WITM RIAS 
03~ 1442 JP ADR7 YES 
OJ• 4101 TZ 1.x • 01 • H ,EQ, 6 EXTENDED AD~RESS 
OJ5 1444 JP LIT NO 
OJ6 8920 ADR5 c ou,T GET UPPER ADDRESS BYTE <Rf AO AT 031 > 
037 043 IN PL ADVANCE P COUNTER 
OJ~ A882 1111 PU,L GET 3RD BYTE FROM CORE 
DJ9 Bl2J IND1 CN OL, T TRANS>ER !RO BYTE TO ~L 
D3A 59eo TN OU,¥ 1 A0 1 INDEK~O !BIT 15 ,EQ. 1> 
038 CC05 MK Si NO, EXIT 
OJC 3980 AF ou.x•eo• REMOVF BIT BY CARRY our, LEAVING A ZERO 
030 C201 ADA6 MT XL ADD x TO ADDRESS roR INDEWING 
D3E 8823 AN OL, T "OVE W INTO OPERAND AODRESS REGISTER 
03f C301 HT XU 
040 8UO A ou,L,' 
041 CC05 MK 51 EX! T TO JUMP TAAlE 
042 B820 ADR7 c OL, T GET BIAS (T ,fQ, o, WHEN M .EO, 4> 
043 1430 JP ADR6 
04• 6190 LIT CP l,)P9G' JHP,RTJ, IRH, OR Ol!H (TEST NON LIT~RAL MOD~> 
045 1436 JP AOR5 YES 
046 CA01 HT PL LI TERAl HllDf 
DH U23 CN OL, T }'Mnve p TO OPERA~D 
04~ C801 MT PU AnDRE~S RFGISTER 
049 8920 c Ou, T 
00 6160 CP J ,X'6ft' rtXED WORD LENGTH INSTRUCTION 
04A 1453 JP AOR9 YES 
04t 5108 TN I, X' 08' VAR URLE WORD LFNGTH HOOE 
040 1453 JP ADR9 YES 

306 



04E 1103 LT x• 03' SET MASK TO SELECT WORO LENGTH 
04F EF29 Nh OV, T WORD LENGTH TO T REGISTFR 
050 8A20 ADAS A PL, T ADJUST P FOR NEXT INSTRUCTION 
051 ~B80 A PUtL 
052 CC05 HK Si EXIT TO JIJHP TABLE 
053 1101 ADR9 LT x' 01 1 1 TO T FOR ADDING 1 TO P 
054 1450 JP ADR8 WITH rlXED WORD LFNGTl.f TYPE 

. MEMORY llEF"EllENCE 
055 1684 LOA LU X•B4 1 SET U WITM LOAD ICOPYI OP CODE 
056 145C JP Hll1 GO TO READ OPERANDS 
057 16E4 ANA LU X•E4' SET U W ITM LOG I CAL AND OP CODE 
058 145C JP Miil GO TO READ OPERANDS 
059 1694 SU LU Xt94 1 SET U MITM SUBTRACT OP CODE 
05A 145C JP MR1 GO TO READ OPERANDS 
05R 1684 ADA LU x•a•• SET U WI TM ADD OP CODE 

!IC A902 HR1 RH OU READ l.IYTE FROM MEMORY 
5D 5108 TN 1.x•o1• VARIABLE WORD LENGTH 
5E 1461 JP HR2 NO, !FIXED LENGTH OPEllANDSI 

05f" 5F01 TN ov,x• u • W ,EQ 0 OR 1 12 BYTES HAXIHUMI 
060 1464 JP Hll3 YES 
061 BC20 MR2 c Si1T GET A~ OPERAND 
062 8843 IN OL ADVANCE OPERAND ADDRESS AND 
063 A982 RH ou.1. READ NEXT BYTE f"ROH MEMORY 

64 eooo HR3 A FD RESET L'INK f"OR COPY ILOADI FUNCTION 
065 5108 TN 1.x•oe• VARIABLE WORD LENOTH 
066 1480 JP HH NO 

0 067 !lro2 TN ov.x•1i2• M ,LT. 2 12 BYTES HAX!HUl'll 
068 147E JP HA7 YES 
069 9C20 c Si!,T GET AN OPERAND 
06A 8843 IN OL } "'" '"' ....... 068 A982 RH OUoL OR 3RO AN~ 4 TH 
06C 9E20 c SS, T GET AN OPFRANO OPERANDS ~EPEND I NI: 
060 8843 IN OL ON WORD LENGTH 
06E A982 RH ou.l 
06f 8000 A rn RESET LINK roP COPY (LOADI ru~cT!ON, 
070 0620 E BLt2 OPERATE ON AL CfUNCTION IN lll 
071 cE01 HT ss HOVE OPERAND TO T 
072 OHO E 9u,10 OPERATE ON BU CfUNCTl~N IN Ill 
073 CC01 HT st HOVE OPERAND TO T 
074 0080 E ro.11 OPERATE ON AL 

J{ 
5F01 MR4 TN ov.x• 01• w .ea. 0 OR 2 11 OR 2 BYTFSI 
1482 JP HR9 YES 

77 CC01 MR!I HT Si MOVE OPFRAND TO T 
78 0180 E n:.11 OPERA TE 0'1 AU OR XU (f"UNCT I ON IN II) 
79 5001 OCK TN ro,x•o1• OVERFLOW SET 

RETURN 7A 140C JP RNI NO 
TO RNI 07g 1104 SET LT X 1 04 1 SET MASK 

07C CF2D sor 0 0V 1 T SET BIT IN OV 
070 140C JP RN! 

f::~ 
0030 MR7 E ro.3 OPERATE O'l AL CFUNCTJON IN Ul 
1475 JP HR4 

o8n 0020 MR8 E ro,2 OPERATE ON AL OR ~L (FUNCTION IN UI 
081 1477 JP HR5 
082 2500 MR9 lF Au.x•oo• CLEAR AU } SIGN OT~NSION 
083 4480 TZ ALtX 180 1 RESULT POSITIVE FOR VAR I ARLE 
084 C560 0 Aµ,T,, rr TO AU WORD LENGTH TYPE 
085 1479 JP oeK 
086 1682 LOK LU X•B2' SET U WIT~ LOAO X ICOPYI OP C~DE 
087 !1108 TN 1.x• oe • STORE 
088 145C JP HR1 NO, GO READ OPERANDS 
089 16A2 LU X•A2' SET U lllT14 STnRE X OP CODE 
OBA 2100 ST4 LF 1, x• oo • CLEAR I rnR ST.ORE OPE RAT I ON 
088 1480 JP ST1 GO STORE OPERANDS 
08C 16A4 STA LU X •A4 1 SET U W ITM STORE A OP CODF 
08n CV02 SH HM OU 
08F. '108 TN 1 ,x•os• VARIA9LE 
08F 1492 JP ST2 NO 
090 5F01 TN ov.x•o1• W , EQ, 0 !IR 2 
091 1495 JP ST3 YES 
09? 0111 ST2 ~T Fi,1 STORE UPPFR BYTE USING EXFCIJTE WITH lJ HOD. 
093 8843 IN OL INCRE11ENT OPERANU ADDllESS RFGISTE~ Tu 2~1J 
094 8982 AM ou.L OPERAND BVTF. 
0915 0011 ST3 ET rn .1 STORE LOWER BYTE 
096 5108 TN 1. x•oe • VARIARLF. 
097 1•oc JP RNI NO 
098 !1F02 TN ov,x•o2• w,EQ.00~1 
099 140C JP RN! YES 
09A 16A6 ~u X t A6' SET U WIT~ ST.ORF H OP COUF 
098 8843 IN OL INCRE~ENT OPERANu AODHESS RF(;!STc~ 
09!: 8980 A ou.L 
090 10A JP ST4 GO sr~RF n R!:Gl~T~R 
09[ 1600 IWM LU x• oo • CLEAR U 
09F CC60 0 57, T ,r SET F ~H OFCREHENT 
DAO !1108 TN It X 'QA• TEST roR INCREMENT 
OAI BD46' cu s2.1 SET F'OR I NCnE~ENT 
OA2 8848 IN• OL 
OA3 A9U RH• 011.L,H HALF READ OP~RAND 10 T Rcr.l~TrH 
0A4 8C29 Ah s2, T •1 OH -1 roH INCREMENT OR DF.CRcHENT 
0A5 AC77 ws s1.o.H WRITE AND DECR s2 Ir AN I NCRl:11EN T WAS nnw 
OA6 C803 MN OL 
0A7 A922 RH ou.H HALF" READ UPP~R BYTE TO T 
OAS 8CR1 AT S21L1T1C ADD CARRY TO LIPPER RYTE A"JO S•T C~Nn. FLG. 
0A9 A030 w ro,H HALr "RITF 
OU 1479 JP OCK CHECK FOR OVl:iRFLOW 

JUMP AND RE TURN JUMP 
OAR 0160 JHP x I, T ,F C011PLEHENT INSTRUCTIO'I Rcr.IST(R 
OAC 4107 TZ l. )(107 1 11 ,EQ. 7 EXT<N~E'l IN,IRl:CT 
DAO 1405 JP JH1 NO 
OAE A902 RH OU READ IJPPl:R AVTE or IN"IRECT A0DRESS 
ur 8840 I OL INCRE~ENT OPERAND 
080 A982 AH OUoL ADDRESS RFGISTEH 
081 R920 c OU, T GET HIGH RYTE WHICH I~ IN T 
082 A803 RN OL READ LOWER RYTE OF IN~IRECT ADORE!>S 
093 2C18 LF S1,PTR3 SET INDIRECT RETURN 
084 1439 JP IND1 CHECK FOR POST INllEXl''G 

307 



095 4108 JH1 TZ r .x•os• RETURN JUMP 
086 14BF JP Jlol2 NO 
0B7 IHO I PL ADJUST p roq ~EXT IUSTRllCTIO~ 
088 SS81 RJI" AT PUoL ArTER RTJ INSTRUCTION 
0B9 A912 WM au STORE PU } STORE PRO~RAH COUNTF.R 
08• 8843 IN OL AT r I RST ~wo I.OCH IONS 
OBB A992 WH ou.L STORE PL or ROUTINI' CAI.LEU BY 
oer. CAD1 HT PL RTJ, TRP, OR INTcRRllPT 
OBD 9140 I OL SET OPEAANO ADDRESS TO 
DBE 9982 AH ou.L rlRST INSTHUCTIO~ IN 
oar C901 JM2 HT Ou CALLED SUBROUTINF. AND 
oco BB22 CH Pu,T PLACE THE VALUE: INTO THE 
OC1 C80l HT OL PROGRAM COUNTER TO BEGIN 
OC2 U20 c PL ,T EXECUTION OF THE SUBROUT '.N!O 
OC3 140A JP Rt.114 RETURN TO RNI . REGISTEN OPERATF. 

OC4 8CD1 REG CT St CLEAR T At.ID 52 
DC5 rc66 HU 11, I.~ LOAD u WITH AOD OP cooe (80) 
OC6 4101 TZ 1. x • 01• GROUP1 
DC7 14DE JP R!G! NO 
DC& 4101 TZ 1,x 1 01 • SUB OR XOR INSTRUCTIONS 
DC9 1610 L.U x110• YES 
OCA 4104 TZ I .x I 04' INDEX COF>ITROL INSTRUCTION 
OCB 14DI JP REG2 YES 
ace 4102 TZ 1.x• 02 1 A REG DESTINATION INSTRUCTIO~ 
ocn 14DJ JP 11!01 NO 
OCE C601 HT BL B OR A TO A, USING U REG. HOD 
ocr C427 OS AL,T OR 
ODO C701 lo!T BU 9 XOR A TO A1 USING U REG. MOil 
001 C527 OS AU1 T 
002 140C JP RN! 
003 C401 REGl HT AL A OR B TO B, USING U REG, HOD 
004 C627 OS BL1T OR 
DD' C501 HT AU A XOR B TO B, USING U REG, HOO 
006 C?27 OS BU1T 
DD7 140C JP RNI 
008 41D2 REU TZ 1.x•n• WORD LENGTH CONTROL 
OD9 1103 LT ••n• YES, SET HASK f'OR WORD LENllTH BITS 
ODA l!r29 NT• OV1 T WITH AND COHIOND 
001! 1267 AS XL 1 I, T ADD OR suaTRacT WORD LENGTH. ':NcRr:HENT 
ODC 1397 AS XU,L,c OR DECREMENT X C DF.PE'ND ING ON II REil! STER I 
ODD 1479 JP Oci< CHECK roA OV&~rLOW 
ODE 4101 REH TZ 1.x•o1 1 B REG !STEii TO BE MOVED OR HOD··; I Ell 
Ol)f 3C02 Ar 11.1•62 1 YES 
oeo CC06 "u h SET U WITM BUIC OP CODE 
OE1 4104 TZ I ,X104 1 INTER REQISTill TRANSrERS 
OE2 14EB JP 111115 YU 
OEJ 4102 TZ 1.x•u COHl'L.EMENT A OR B RfGISTER 
OE4 14EI JP 11104 YES 
OE! 0440 E AL14 ADD 1 TD I NCREHENT A OR B 
OE6 0590 E AIJ,t ADD CARllY Te UPPER E!YTE 
OE7 1479 JP OCK CHECK f'OR OYERF'LOW 
DES D467 llE04 XS AL,T,r 111 COHl'LEHENT A OR B REOISTEJI 
OE9 D,67 XS AU1T1r 
GEA 14DC JP RN! 
DEB 4102 REO!I TZ 1.x•u• X AEGISTEll SOURCE FC•R TllANSF'EJI 
DEC 14rz JI' lllGI Yl!S 
OED 0401 ET AL A OR I TO T 
OEE 1220 c XL,T T TO X } TFUNSFEll 1, OR B TO X 
OEF 0501 ET AU A 011 I TO T DEPENDING ON II llEGi9TER 
oro 1320 c XlJtT T TO X 
Or1 140C JP Rlill 
Or2 C201 llU6 HT XL X TO T 
orJ 8421 cs AL1T T TO A OA B } TRANSrER r TO A OR a 
OF'4 C301 MT XIJ X TO T DEPEND I NQ ON II REG I 9TFR 
OH 1!527 cs AU1T T TO A OA I 
Or6 140C JP llNI . llllWT IMIF'TI 
on 4908 Sii TZ ou,x•oe LOlllCAL SMl'T 
ore nor Mb F'1 NO, SET LINK WITM SIGN 
OF'9 F'1A7 MS F'11Loll RIGHT 1 ) IHlrT RIQtlT SllLECTED 
or• F'OA7 HS ro,L,11 lllGHT 1 REGISTER IA Oil ll 
ore '9D2 TN ou.x•n• LONG SHIFT 
ore 1564 JP SM1 .. o 
oro F'7AO H au,L,R RIGHT 1 } Sl<llrT RIGHT 
OH FUD H BLoL,11 A I GHT 1 B REGISTER 
arr 1564 JP SW1 REPEAT SH!rTS 

QRQ 2'6 BOARD 2 

OP CODE JUHi' T lllLE 
100 1510 OTAB JP CTL CONTRnL 
101 1'J1 JI' CJ CONDITIONAL JUMPS 
102 15,A JP SM SHlrTS 
103 1586 JP Ill INPUT /OUTPUT 
104 14C4 JP Rl!G REGISTER OPERATE 
105 1COO JP SP, SPARE I NS TRUCT I ON OP r.ooe 
106 108 JP JMP JUMP AND RETURt.I JUHP 
107 149E JP IWM INCREMENT AND DECREHE"H HEHORY 
101 14!6 JP LnX LOAD AND STORE X 
109 1C01 JP MUL, HULTIHV/DIVIDE 
10A 1458 JP ADA ADD 
10FI 1459 JP SBA SUBTRACT I ~~g 1C02 JP CPA, COMPARE 

14'7 JP ANA AND 
-10F 1455 JP LftA LOAD A 

101' 148C JP STA STORE A . CONTROL 
11n 4108 CTL TZ 1. x I QI t TEST roR GROUP 1 OR :z 
111 152D JP GP2 OVERFLOW AND WORD LEl'lGTM EXIT 
112 r109 Nh I SET UP JUMP HBLE VA~UE 
113 2C15 LF' S!, CTBL ADD 11 l TM AASE ADDRESS 
114 !C25 AK S!o T TABLE JUMP 
115 U40 CT!IL I PL MALT CI NCREME~!T P COJNTER) 

308 



116 152A 
117 15E4 
11a 1485 
119 7510 
11A 140C 
UR C402 
11C 1527 
110 1704 
11E 1524 
11F 1708 
120 1524 
121 1710 
122 1'524 
123 1720 
124 8A43 
125 AB82 
126 1410 
127 C701 
128 1740 
129 HOC 
12A ee8o 
12~ 1780 
12c 1409 
120 UFO 
12E EF20 
12F C101 

130 147C 

131 1107 
132 E129 
133 2C4E 
134 1602 
135 RC60 
136 8C25 
137 5F04 
138 1540 
139 1104 
13A DF20 
138 153F 
13r C017 
130 C197 
13E 4004 
13F 0160 
140 8A43 
141 AB82 
142 5108 
143 140C 
144 8A63 
145 8030 
146 5002 
147 HOD 
148 AB42 
149 140E 
14A C117 
14R 4002 
14C 153F 
14D 1540 

14F 1537 
14F 1000 
150 F006 
151 153C 
152 1604 
153 150 
1'4 1606 
155 C401 
156 DOJf 
157 C501 
156 D1Bf 
159 153E 

15A C101 
158 8920 
1'C 2C66 
150 8A4J 
15E AB82 
15F 1604 
160 4901 
161 1606 
162 8820 
163 D860 
164 4008 
165 1C14 
166 8840 
167 5880 
168 140C 
169 4904 
16A 14F7 
160 5908 
16r F10F 
160 5902 
16E 1571 
16F F680 
17~ F780 
171 F087 
172 F187 
173 1564 

t 74 7120 
1is 3108 
176 2A00 
177 5101 
178 157F 
179 1120 

JP 
JP 

PTRJ JP 
K 
JP 
HH 
JP 
LS 
JP 
LS 
JP 
LS 
JP 
LS 

EC1 IN 
RH 
JP 

PMP HT 
LS 
JP 

HL T A 
HL T1 LS 

JP 
GP2 LT 

N 
HT 

J~ 

HLT 
TRP 
JM1 
AU,1 
RNI 
AL 
PMP 
x• 04 • 
Ec1 
x• oe• 
EC1 
x• 10 • 
Eel 
x• 20 • 
PL 
PO,L 
R~l6 
BU 
x •40. 
RN! 
PU,L 
x•eo• 
RNl5 
x• r(tt 
OV, T 
I 
SOF 

• CONDITIONAL JUMPS 
CJ LT x•o7• 

Nh I. T 
LF SI, JTBL 
LU X t 02 • 
C S~, J, T 
AK SI, T 

JO TN ov,x•o4• 
JP CJ3 
LT X1 04' 
X OV, T 
JP CJ2 

JJ HS Fo,c 
HS n .. L.c 

CJ1 TZ Fo,x•o4• 
CJ2 X J,T,F 
CJ3 IN PL 

RH PU, L 
TN J, X 'Oft' 
JP RNI 
AN PL, I, T 
c Fo. T ,c 
TN F 0, X' n2• 
JP RN I J 
RH Pu,o 
JP AN 12 

J5 HS Fl,C 
TZ Fo,x•o2• 
JP CJ2 

·JP CJ3 

CONn IT I ONAL JUMP TAR LE 
JT8L JP JO 

L X • 00 • 
HU U 
JP JS 
LU X•04' 
JP J5 
LU X•06 1 

J7 HT AL 
XS• Fo,T,c 

·MT AU 
XS• Ft.L.T.c 
JP CJ1 

• SHlrTS 
SH HT 

c 
LF 
IN 
RH 
LU 
TZ 
LU 
c 
x 

SH1 TZ 
JP 

SH~ I 
TN 
JP 
TZ 
JP 
TN 
HS• 
TN 
JP 
H 
H 

SL1 HS 
HS 
JP 

I 
OU, T 
Si ,SH2 
PL 
PU,L 
x t 04. 
ou.x•u• 
XI 06' 
OL,T 
OL, T ,, 

ro, x • oe' 
CI 0 
OL 
OL I)(' 80' 
RN I 
ou,x•o4• 
SR 
au, x • na• 
Fi 
OU,IP021 
SL1 
SL 1 L 
0l1,L 
ro, L 
r1, L 
SH1 

BOOTSTRAP LOADEq 
LOAD K l.2 

AF 1. x • oe • 
LF PL.SIZE 

LOD1 TN 1.x•o1• 
JP lODJ 

LOD5 LT X'20' 

309 

JHP TO HALT ROUTINE 
TRAP INSTRUCTION ISAHF AS CONSOLE INT, l 
IND rROM ADDR TO JUMP !NOT PART or CONTROi.) 
ENTER .SENSE SWITCHES 

PROTECT MEMORY PAGE 

DISABLE INTERRUPT SYSTEM 

ENABLF INTERRUPT SYSTFH 

DISABLE REAL TIME CLOCK 

ENABLE REAL TI HE CLOCK 
SET P TO NEXT INSTRUCTION ADDRESS 
AND FETCH INSTRUCTION BYTE 
BY PASS INTERRUPT CHECK 
SELECTED PROTECT RI TS TO T . 
SET PROTECT STATUS 

ADD CARRY TO ADJUST p UPPER roR NEXT INSTR, 
. STOP CLOCK 

SET MASK !TO SAVE UPPFR HALF OF OV!W) 
CLEA~ OV/W STATUS 
PUT OV/W SETTING INTO T 

GO SET NEW STATllS FOH UV/W 

MASK FOR CONO IT I ON 
REMOVF OP CODE 
BASE TABLE ADDRESS 
SET f'OR X REG I STER 
SET TO SELECT A, OR 0 ON 7ERO TEST 
DO A TABLE JUMP 
OVERFLOW TEST 
NO 
OVERFL.OW RESET P.1 T TO T 
RESET OVERFLOW RY TOG°-L l~G 

. TEST LOW gYTE } TFST A OR B WI TH 
TEST HIGH BYTE LINKED ZE:RO TFST 
RESULT ZERO 
YES, >LIP TEST BIT gy COHPLFMF.NT 
GET DISPLACEMENT WHICY IS 2NU 
BYTE OF JNSTRLICTJON 
CONDITION HET 
NO 
ADD DI $PLACEMENT 
LOOK AT T 
T NEG AT I VE 
NO 
ADJUST PAGE IF BOUNDARY CROSSED 

LOOK AT AU OR XU FOR SIGN TFST 
NEGATIVE 
YES 
NO 

OVERFLOW 
NOP 
SET FOR A OR B 

SET FOR A 

SET FOR 8 

} 

TFST FOH A•B OR A•X 
DEPEND I ~G ON U REC., 

COMPARE UPPER 
TEST RESULT OF COHPARISON 

COMPARE LOWER 

SAVE ~p CODE IN OPERANU 
ADDRESS REGISTER 
SET ADDR rQR CONCURRE~T 110 TEST 
GET ·SMlrT COUNT 12ND RYTE IN INSTRUCTION> 

SET U FOR SHIFTING A REGISTER 
TEST FOR A OR 8 SHIFT 
SET U fOR SHIFTING B REGISHR 
~OVE SH I FT COUNT TO OL 
AND COMPLEMENT IT FOR LOOP CONTROL, 
CONCUqRENT 1./0 REQUEST 
YES ISERVICF CONC 1/0 DURING SHlrT) 
ADO 1 TO COUNT A~n RESET LINK 
COUNT NEGATIVE 
NO 
LEFT ~HlrT 
NO, J'IMP TO RIGHT SHIFT ROUTl~E 
LOGICAL SHIFT 
YES, SE:T LINK WITH LO'' ORDER •IT 
LONG ~HIFT 
NO 
LEFT 1 
LEFT l 
LEFT 1 
LEFT 1 
RF.PEAT SHIFTS 

~
SHIFT B LFFT roR 
LONG 5HIFT . 
SHIFT A, OH R LEf T, 
OFPENDJNG ON JI 

SHIFT RIG"T (RIGHT JUSTIFY OP COD'> 
RE HOVE RI TS 0Y CAIJS IN'. CARRY ~N UPPER BIT~ 
SET LnADER Sl7E .Ea. ?56 
SER I AL HOOE 
YES 
SE! FOR STATUS IN 



17A 2C7C 
17R 1580 
11r. 5402 
17Il 1579 
17F 1100 
11r 2C81 
190 15ft8 
181 C401 
1&? U53 
183 Off 
114 1'77 
185 1409 

116 4104 
187 140C 
18P 8'43 
UQ A8e2 
UA 2CAJ 
180 5103 
iar. 1584 
un 7090 
19F 1000 
18F 1590 
19~ 7090 
191 41n8 
192 15'4 
193 70ED 
194 1595 
195 BC21 
196 7080 
197 5102 
19R 15AO 
19.9 5101 
19A 15'2 
19!' 2C90 
19C 1430 
190 A912 
19E CCDl 
ur 140c 
uo 8420 
u1 ccn 
U? BUD 
U3 140C 
U4 5102 
U5 1"0 
1U 5101 
U7 1'82 
ue 2cu 
U9 1430 
1U A902 
UR 2C9F 
ur 1"e 
UD C401 
UE 70AO 
ur 1000 
110 1'81 
111 7C85 
11' C601 
113 UAE 

114 29DA 
18' 4101 
186 1'C4 
1117 9940 
118 1701 

- 119 '040 
18A UH 
188 2141 
11C 2DBE 
llD UC7 
1BE 1701 
111r 4040 
lCO 3480 
1C1 15C6 
1c2 roeo 
lC3 5001 
1C4 7080 
1C5 2CC2 
1C6 2190 
1C7 2146 
tee •no 
1C9 5004 
1CA 15CI 
1CB 91'0 
1CC 5004 
1CD 15C7 
1CE '90F 
1cr ccn 
lDO 9940 
1D1 F460 
102 7C85 

10~ •F eo 
10• 1410 
10~ 4010 
10l• 15E3 
10;· 4008 
10~ 1C1J 
109 7000 
10• 2800 
lDft 1201 
tor: RC20 
ion 7080 
1Df' AC03 
10r 9910 

LF 
JP 

L002 TN 
JP 
LT 

St. LOl!2 
FUN 
AL,X'ft2' 
lOD5 

LOnJ LF" 
~' 00' 
51, LOD4 

JP I NA 
LOD4 "T Al 

PL,D WN 
TZ 
JP 
JP 

PL, X •FF' t 

l~Dl 
RNl5 

• INPUT-OUTPUT 
lo TZ 1.x•o4• 

JP R'll 
IN PL 
RM PU, L 
LF Slo IOK5 

INA TN 1.x•o3• 
JP SIO 

FUN K ro,9 
L X• DO' 
JP 101 

101 K Fo, ~ 
TZ I, X ! 08' 
JP OUT 
K Hol4 
JP 102 

102 CT S2oT 
K FD ,e 
TN 1,X' 02' 
JP ln4 
TN I, X '01' 
JP 105 
LF h.103 
JP INDX 

103 II" Ou 
MT 52 
JP RNI 

104 C AL, T 
IOU MK St 
105 C BLoT 
IOK5 JP RN I 
OUT TN 1.x•o2• 

JP 107 
TN I ,X' 01' 
JP I 010 
LF Si., 106 
JP INDX 

106 RM OU 
LF Si .104•1 
JP IOI 

107 IH AL 
IOI K F0,10 

L x•oo• 
JP 109 

109 KK Si,e 
1010 MT BL 

JP 1118 

SER Ul TELETYPE 
SID LF OU,l'OA' 

rz 1,x•oa• 
JP sour 
D OU 

5101 LS 1'01' 
TN ro,x••o• 
JP 5101 
LF 1.x•o• 
LF $2,9101 
JP OL Y1 

1101 LS X•D1' 
TZ ro,x••o• 
AF AL1X•IO' 
JP Dl Y2 

5100 H Sl!,l 
Tll s2,x•u• 

SOUT K ro.11 
L' u.s100 

Dl.YZ LF 1,X'90' 
DLY1 lF OL•X'46' 
DLi D OL1C 

TN re,x•o•• 
JP DL1 
D I .C 
TH ro.x•o•• 
JP DL Yl 
TN au.x•or• 
HK S\ 
D OU 
H AL.1,11 
KK 52, 8 

INTERRUPTS 
INT TZ ov,x•eo• 

JP RN 16 
TZ F o. x' 10 I 
JP INTO 
T Z f n, X • f\8' 
JP Cl01 

EXT K FOolJ 
Lr OL, x •no 1 

L.H X' 01' 
C 51, T 
K f ft ,8 

INT1 RN SI 
C OU, T 

310 

SET RFTUR'I 
GET STATUS 
CHARACTER RFADY 
NO 
SET FOR DATA IN 
SET RETURN 
GET DATA 
SET UHA IN T 
STORE BYTE 
DONE LOADING 
NO 
YES 

NOP 
YES 
GET DEVICF ADDRESS WHICH IS 
SEC ONO BYTE or I NS TRUr.T I ON 
RETUR'll TO RNI 
SERI AL MOnE 
YES 
CONTROL OllT 
NOP 

CLEAR 
INPUT 
NO 
OAT A IN 

GET DlH 
CLEAR 
H ,EQ, 1 
YES 
H ,EQ, 2 

}-cnx~ CONTROL 
ST RO BF. 

}.

DIXX INPUT 
STROBE 

} 
r•s'r F"OR INPUT To A 
Oq INPUT TO ij 
00 INPUT TO MF MORY 

GF.T STORE ADDRESS } sn AOD~ FOP I NPuT TO 
M[-HORY lhll STORF ~YTE 

STORE BYTF. 

PUT BYTE IN A 

l'UT BYTE IN 8 

11 ,EQ, 1 
YES 
H ,EQ, 2 
YES 

GET OUTPUT ADDRESS}F•TC,H 
0

0lllPU'I 
BYTE FROM MEMORY 

SET RF.TURN 

A TO T 
OUTPUT 
NOP 

CLEAR AND EXIT 
B TO T 

SET Bl T COUNT 
INPUT 
NO 

} 
onxx ou1PuT 
STROBE 

ADJUST 91T COUNT FOll INPUT SAMPLING 
ENA~LF. SERIAL TTY < IN°UT A SAMPLE! 
START BIT 
NO, REPEAT SAMPLE 
SET OF.LAY COU!iT C 220 NS I 
SH DELAY RETURN 

ENABLF. SER I AL TTY 
SPACE 
YES, REMOVE 8 IT 
GO, OFLAY 
GET UNK RIT 
CURRENT BIT, A ZERO 
YES, SPACE 
SET DFLAY RETURN 
SET DELAY ·coUNT 1220 "SI 

REDUCE LO~' COUNTER 
COUNTER ZFRO 
NO 
REDUCF UPPER COL•NTER 
COUNTER ZERO 
NO 
BIT COUNTER ZERO 
YES, EXIT 
REDUCE BIT COUNTER 
SHlrT LOW an TO LINk 
CLEAR AND EXIT (HARK I 

POWER FAIL IN PROq~es~ 
YES 
INTER~Al 

YES 
CONCURRENT I /0 
YES 
ACKNOWLE or.E • } 
CLEAR OL 1 ~A• I NTEO~UPT 
SET r~R P•GF. I ACKNOMLfDbE 
GF.T A00Rf~S STRnBF 
CLEAR 

GET UPPFR AOUPESS 



1EO ACC3 RN S1" 
1E1 8823 AN OL, T GET L~WER AOORlSS ANU RESFT LINK 
1E7. 1488 JP RJP 00 A RETUf!N JUMP 
1E3 7140 INTO K 1.4 GET l"TEH•'AL STATUS 
1E4 8802 TRP CH OL CLEAR OL H~~ H 
1E5 4101 INT3 Tl 1. x 1 01 1 CONSOLE: I NTERPUPT OR TIUP 
1E6 2C80 LI" si.x·~o· YES 
1E7 4102 TZ I ,X' 02' SPA HE 
HR 2C82 Lf s1.•·~i· YES 
1E9 4104 TZ 1. x• 04' REAL Tl"E CLOCK 
lEA 2C00 LI" St.~•DO' YFS 
1EB 4108 Tl 1. x• os • HF.MORY PRC•TFCT 
1EC 2C88 LF Si ,x 1 88' YES 
1ED 4110 TZ l, >P tn' MEMORY PARITY 
1EE 2C8A LF Sj, lC" ttA' YES 
1Er 4120 Tl 1. x•2n • HF.HORV ROHNOARY 
1FO 7.C8C LI" S1, M' BC' YES 
1r1 4180 TZ f ,)('80' PnwFR l"All 
1F2 1COJ JP l'WRF YES 
1F~ 4140 TZ 1, )( '4"' CONSOLE HALT 
1F 4 152B JP HL T1 YES 
1F5 4C80 Tl 51, X' RO' RF.AL TIME CLOC~ 

1F6 15DE JP l"T1 NO 
1f7 1C06 JP JNH 
1F8 7140 INT2 K I ,4 GH INIER"AL STATlJS 
1F9 5180 TN 1. x •an• POWER HEST A~T 
11"A 15E4 JP TRP NO 
lFR 1C10 JP INT' 

INDIRECT POINTERS 
1FC 1CJ8 PTR4 JP Cl02 tNUIRFCT !"ROM CIO OR !U rn r1n2 
1FO 1C7E PTR1 JP HllLJ INOIRfCT !"ROH CID TO ''UL 1 IPLY 
HF 1C9B PTR2 JP DIV3 !NO!Rf:CT F'ROM cro ro 01v1r.e 

O~G 512 BOARU J . . SECONDARY OP cone TABLE 
200 1780 SP, LS x '80' SPEC:l AL !F.RPOR l'Al T) 
20t 1C62 HUL, JP HllL MULTIPLY/nlVIOE 
202 1C40 CPA, JP CPA COHPA~E . . l NTERRUpT OPT IONS IPWFl./R[SfART ANO RTr) 

203 :IF'IO Pllllr AF' ov,x 1 10 1 IET f'LAI F'OR l'OWlll F' Al L 
204 2C8E LF' si1X•IE' 
20!1 UDE ,JP l~U. 
206 2C84 INT4 LF' :I:~::·· SET COUNTER ADDRESS 
207 _ACE3 RN GET LO HER HALF OF' COUNTER 
208 8879 Ah OL.l 1 ToC ADD l AND S!T. COND CODE 
209 A030 II F'Goll PUT BACK 
20A AC68 RN• S{,D,M QET UPPER HALF' OF COUNTl!R 
208 IOBl CT Fg,L,T,C ADD CARRY AND SET COND CODE 
20C ACF'O II Sl d, H PUT &ACM 
20D 4004 TZ rii.x•i4• COUNTER Z,ERO 
201! UDE ,JP INTl YES, GO TO SERVICE ROUTINE 
2or 1Cll8 ,JP Cl02 NO, QO RE-FETCH INSTRUCTION 
210 2800 INft LF' OL1X 1 00' CLEAR OL 
211 2C90 u· si.x•to• SET ADDRESS 
212 UDE JP INTt . 
213 2CF'C 

• CONCURRINT INPUT-outpUT 
CIOl LF' Sl11'Tll4 INDIRF.CT RETUllN ADDRESS FROM 

CONCURRENT 110, ENTERED . F'ROH NOllHAL INTERRUPT/CONC 1/0 . TEST ROUTINE 
214 7000 CID K re.n ACKNOWLEDGE REQUEST 
215 1000 L X•OO' NOP } """'"" 216 1200 LH x• ail• SET F'OA "GE ?ERO I /0 ACKNOWLEOG! 
217 9120 c I ;T GET ADDRESS STROBE 
218 7080 K rij,e CLEAR 
219 F'15G H 1.1.c ADJUST ANO REMOVE 110 F'LAG BY SlllrTING 
2lA A103 RN I 
UB BE20 c $3,T QET CURRENT ADDRESS LOWER 
2lC A148 RN• 1.D 
210 8022 CM ro, T GET CURRENT ADDRESS UPPER 
21E !1001 TN r~.x•u• INPUT (TEST OVERF'LOW CONO, FLAG.) 
21r 1C38 .JP Ci04 YES 
220 AE03 RN S3 READ OUTPUT BYTE F'ROM MEMORY 
221 B020 c F'D1 T WAIT F'OR DATA IDE!,.AY) 
222 7DAO K rn,10 OUTPUT 
223 1C24 ,JP CID:S DELAY } DOXX STROBE roR 
224 8E40 Cl03 I 13 ADJUST CURRENT LOWER CONCURRENT OUTPUT 
22!1 7080 K ro.1 CLEAR 
226 1200 LH x •_oa • SET FOR PAGE ?ERO !CONC 110 POINTER> 
227 A16B AN• I ,D,H GET CURllENT ADDRESS UPPER 
228 BOA1 CT Fo,L, T ADJUST I ADD CARRY I 
229 Aif'O II I .l1H PUT BACI< 
22A A1C8 RN• 1;1 GET ENDING LOWER 
229 9E38 S• s:i,T,c COMPARE LOW BYTES 
22C A153 WN 1.D STORE CIJRRENT LOWER 
22D CE01 HT n 
22E A148 RN• 1,D GET CURAEN.T UPPER 
22r eE20 c SS1T 
230 A1C:S RN I .I GET ENDING UPPER 
231 9EBO s S31L 1T,C COMPARE HIGH BYTES 
232 4QD6 TZ r6.x•a6' RESULT .LT, 0 !LINKED ZERO TEST> 
233 15A1 .JP ID4A GET TO SECOND PAGE TO ex IT 
23' ruo H (;R ADJUST DEVICE AODllESS 
235 F'161 HT 1, I ,R PUT IN f'UNCT I ON CODE } END or ~LOCK 
236 2109 Lf' 1·.x•o•• OUTPUT F'ROM t A 1 COMMA~D DI SCONNF.CT 
237 1580 .JP FUN DISCONNECT DEV I CE 
2H CA03 Cl02 MN PL GET CURllENT INSTRUCTION 
239 AB02 RM PU 
2U 140E .JP llNIZ 
ua 7QEO Cl04 K F'fi,14 INPUT 
nc 1000 L XIOO' NOP } CONCURRENT DA TA 
23D AEU llN Si STORE INPUT DA TA INPUT STROBE 
HE BOU CT m~ GET INPUT BYTE 
23r 1C24 JP 

311 





PARTV 

SYSTEM DESIGN PROCEDURES USING 
MICROPROGRAMMING 



314 



INTRODUCTION 

Computer system design is greatly simplified by adherence to a basic 
sequence of activities. Each step is essential to the overall success as 
thoroughly as possible to simplify subsequent steps and to reduce the 
amount of revision to previous steps. Many of the procedures listed below 
appear to be removed from the computer considerations because they 
deal with the system as a whole. However, it turns out that to obtain full 
advantage of the cost savings and system enhancement capabilities of 
a microprogrammable processor it is absolutely necessary to start consid­
ering the computer characteristics right at the beginning during the pre­
liminary system functional definition phase. 

Outline of System Definition Procedures 

1. System Functional Definition: 

Operations 
Inputs and Outputs 
Control Functions 
Basic Functional Units/Tasks 

2. System Configuration Definitions: 

System Block Diagram 
Basic Data Flow Definition 
Subunit Functional Definitions 

3. Detailed System Performance Specification: 

Data Rates 
Accuracies 
Data Processing Functions 
Data Formats 
Number of Channels 
Characteristics of Peripheral Devices 

4. Interface Specifications: 

Number of Lines 
Data Rates 
Interface Procedures 
Status Lines 
Control Lines 
Control Codes 
Device Addresses 

5. Program Specifications: 

Processing Functions 
Data Rates 
Data Characteristics 
General Subroutine Definition 
Mathematical Function Definition 
Nonmathematical Process Definition 
Input and Output Data Content and Formats 

315 



6. Tradeoff Analysis: 

Software 
Firmware 
Hardware 

7. Processor and Interface Hardware Specifications: 

Architecture 
Number of Lines 

8. Software/Firmware Program Specifications. 

9. Detailed Program Functions, Analysis and Definition: 

Top Level -flow of System Program 
Algorithm Selection and Definition 
Memory Allocations 
Interface Address and Functions Assignments 
Subroutine Hierarchy Definition 
Determination of Data Tables, Pointers, etc. 
Coding, Assembly 
Preparation of Diode Map 
Prepare Read Only Memory 
Prepare Software Programs (if any) 
System Checkout 

These steps are considered only in their relation to the programming re­
quirements. There are many other steps related to hardware design and 
component selection that are not covered here. 

To· illustrate the preceding points a generalized example of a computer 
system has been selected. This system would typically be used in a moni­
tor and control system. It has the following functions: 

Multichannel Analog Input 

Dual Channel DAC Output 

High Speed Paper Tape Reader for Entering Programs Locally 

Communications Channel for Remote Status Reports 

High Speed Printer for Local Status and Data Printout 

Status Switch Closure Monitor 

Control Relay Output 

Operating Mode Control and Status Display Panel 

Core Memory for Data and Storage Instruction 

Real Time Clock and Power Fail Detect Option 

Computer 

Read Only Memory 

316 



1. System Functional Definition 

In this section the following functions are defined for the example 
system: 

a. Operational characteristics of system to be controlled: 

Block Diagrams 
Graphs 
Transfer Functions for Control equations 
Timing Diagrams for Response Time 
Sequence Diagrams for Control Algorithms 

b. Function of each Analog Input Channel: 

Range 
Rates 
Accuracy 
Relation of Data to System Operation 
Signal Profile 

c. Function of each Analog Control Channel: 

Range 
Rates 
Accuracy 
Signal Profile 
Effect of Data on System Operation 

d. Definition of Status Switches: 

Functions 
Rates to be Monitored 
Meaning 

e. Control Relay Functional 'Definition 

Latch vs. Non Latch 
Effect of Each Relay on System Operation 

f. Communications Requirements 

Message Characteristics 
Data Rates 
Hand Shaking Procedure 
Formats 

g. Panel Control and Display Functions: 

Number and Meaning of Control Switches 
Quantity, Type and Meaning of Status Displays 

h. Printer 

Message Formats 
Printout rate 
Message Line Size 

317 



2. System Configuration Definition 

The System Block Diagram for the controller is as shown in F inure 40 
with basic data flow indicated on the block diagram as well as subunit 
functional definitions. 

3. Detailed System Performance Specifications 

Typical factors which affect the programming are as follows: 

• ADC Conversion Accuracy (Number of Bits) 
• ADC Sample Rate, and Conversion Time 
• DAC Update Rate 
• Code Conversions 
• Scaling Requirements 
• Curve Fitting Characteristics 
• Transfer Function Calculations 
• Averaging 
• Communication Link Requirements 

Rates 
Formats 
Controllers 
Handshaking 
Polling Procedures 

• Printout Message Requirements 
• Processing Variations Relative to Status and Control Panel 1 nputs 
• Control Point Output Requirements 
• Initialization of Cold Start Requirements 

CHANNEL 

DATA 

STATUS SWITCH CLOSIJRE 

RELAY CONTROL~ 

CONVERSION 
COMMAND 

1/0 INTERFACES 

PRINTER COREMEMOllY 

COMPUTER ~EAD 
NLY 

MEMORY 

REAL TIME CLOCK l 
POWE=:_] 

F=igure 40. System Example Block Diagram 

318 



4. Interface Performance Specifications 

After the peripheral hardware has been selected and defined in detail, 
the specifications for the interface to the computer can be defined. 
This consists of identifying data, status, and control lines from each 
peripheral device. Line groupings for each category are established, so 
they can be most efficiently organized to match the byte 1/0 charac­
teristics of the computer control and data transfer. Timing and sequence 
requirements for each interface are also defined. This information is 
used to help determine the degree of hardware vs. microprogramming 
to be used for the interface. 

5. Program Specifications 

The program specs define all processing functions. They include a list 
of all functional subroutines, data processing rates, organization of the 
executive routine, tables or lists of input and output data categories, 
and definition of the mathematical, logical, and algorithmic processes 
to take place, and the order in which these processes occur. 

A typical list of routines might be as follows: 

• Application Routines 
• Cold Start 
• Main Loop 
• Determine Next Processirl9 State 
• Output Analog Control Parameters to DAC's 
• Linear Interpolation 
• Galcu late Basic Control Parameters 
• Sample Console Settings 
• Sample Analog Parameters and Convert to System Units 
• Compute System RPM 
• Update System Status Display 
• Process Interrupts 
• Communications Routine 
• Status Message Printout Routine 
• Paper Tape Reader Input Routine 
• Code Conversion Routine 
• System Status Monitor Routine 
• Relay Cgntrol Update Routine 
• Utility Routines (If Microprogram Is Used) 
• Multiply . 
• Store X 
• Load X 
• Divide 
• BCD to B in Any 
• B in any to BCD 
• Shift Left N bits 
• Shift Right N bits 
• Square Root 
• Input/Output 
• Printout 
• Integrate 
• Data Average 

319 



The general organization of these routines is defined at this :;tage of 
analysis, along with an estimate and definition of core memory re­
quirements for flags, buffers, partially processed data, consi:>le and 
status switch memory maps, and system status information. 

Also, the processing time for the various routines are estimated and 
defined along with an estimate of micro instruction requirements. 

6. Tradeoffs 

Before the detailed hardware and program specifications are tied down 
it is necessary to conduct a tradeoff analysis to assure that the cost/ 
performance requirements for the system are being met. Hern the 
tradeoff is related to application of hardware, firmware, and software 
to the various internal and interface functions of the computer. The 
areas of cost reduction to be considered are as follows: 

• Interface Hardware Complexity 
• New hardware Design Requirements 
• Microprogram Size 
• Core Memory Requirements 
• Complexity of Peripheral Devices 
• Availability of Existing Programs 
• Program Development Times 

A large number of factors must be included in the tradeoff analysis. 
The most important ones related to program development are listed . 
below: 

• Overall data throughput requirements including peak and average 
data loads. 

• Variability of program functions, including operating modes, data 
formats, status combinations, processing states, number of 1/0 
channels, operating ranges, etc. 

• Permanence of program structure, once defined, and need to avoid 
having to load program on site. 

• Speed and complexity of peripheral devices and processing functions. 

• Existing standard interfaces, and the extent of microprogramming 
required for these interfaces. 

• Number of systems to be developed and available development time 
(affecting nonrecurring costs ratio, and development staffing re­
quirements). 

• Special processing requirements with high speed or complexity in 
the fields of arithmetic, logic data manipulation, character assembly, 
control functions, hand shaking, etc. 

• Over al I program size. 

320 



• Existing standard firmware and software routines which are appli­
~able to the system. 

• Operating complexity, maintenance and training requirements. 

• System reliability, including failure rates, and equipment redun­
dancy requirements, which may dictate the requirement for self con­
tained hardware functions. 

The result of the tradeoff study will be the following: 

• Use of sophisticated interfaces not requiring firmware, or use of 
extremely simple interfaces which do require firmware. (Tradeoff 
factors: Read only memory capacity for interface functions, speed 
of data transfer, interface control sequences, available process time.) 

• Use of software program for entire operation. 

• Use of software program with special 1/0 or processing routines 
added to microprogram. 

• Devel_opment of special instruction set for the application. 

• Combined use of special firmware, special hardware interfaces, and 
special hardware processing functions such as hardware multiply/ 
divide.· 

Typical functions which may be completely or partially done by two or 
three of the following: Software, firmware or hardware, depending on 
data processing rates, hardware complexity, system throughput re­
quirements, read only memory capacity, thus must have tradeoff 
analysis applied for selection. 

• Serial data character assembly/disassembly 
• Card reader control and data transfer 
• Binary to BCD or ASCii conversion 
• BCD to binary Conversion 
• Multiply or divide 
• Digital filtering 
• Magnetic tape controller functions 
• High-speed I ine printer control 
• ADC control and data input 
• Message Switching 
• Remote monitor functions 
• Synchronous modem control 
• Image scanning 
• Disc controller 
• Error detection, and code generation 
• Table lookup 
• Communications line polling/handshaking 
• Console parameter input/scaling 

321 



Tradeoff Examples: 

Example 1 

Firmware can be used to interface with a card reader having minimum 
readout electronics. However if the firmware must monitor the high­
speed stroke pulses from the card reader to synchronize with the 
reader data lines, the firmware becomes too tied down to service other 
peripherals. Therefore the card reader interface should have some 
character ·synch. even with firmware if multiple peripheral devices 
must operate simultaneously. 

Example 2 

Display lamps could be scanned by firmware to avoid_ using latches to 
hold display parameters. In a system of any size this will tie up the 
computer considerably, and the cost of the firmware may be as much 
as the latches. 

Example 3 

Firmware can be used to control a disk without using DMA except for 
character shifting for transfer to and from the track. However if there 
is a requirement to simultaneously interface with the disk and another 
peripheral device, even firmware may not be fast enough. 

1. Hardware Specs 

The hardware specs of interest here are for the interfaces and special 
processing functions and relate to the programming requirements. They 
include the following: 

• Definition of standard interfaces, including complete identification 
of data input and output channels, control line functions, status 
lines, device and function codes, and timing requirements for 
dynamic data or control lines. 

• Definition of special interfaces including all of the factors for 
standard interfaces plus special control sequences and special data 
input/output sequences which must be microprogrammed. These 
definitions must be in terms of the standard control and byte trans­
fer functions of the compu,,ter. 

• Definition of special processing hardware units, such as hardware 
multiply/divide, buffers, fast fourier processor, digital filter, etc. 
Again, the basic interest for this document is the programming re­
quired to transfer data and initiate th~ special processor operation. 

8. Software or Firmware Program Specifications 

These include a detailed functional description of all subroutines, e>cecu­
tive routine, data, control, status words, memory requirements, data 
tables, flags, pointers, etc. · 

322 



9. Detailed Program Functions Analysis Definitions and Programming 

The general steps to be followed in the programming phase should be 
adhered to simplify the entire task and to assure the best program 
results. 

• Top level flow chart 

• Detailed algorithm definition 

• Memory allocations (data, flags, pointers, etc.) 

• Interface address and function tabulation 

• Definition of subroutine, hierarchy (looping, branching, nesting). 

• Preparation of tables and formats for data, status, flags, pointers, 
scale factors, address pointers. 

• Top level flow charts for subroutines. 

• File register assignments. 

• Detail subroutine subcharts. 

• Coding, assembly, checkout, etc. 

These steps are illustrated in the emulator example which follows and 
in the microprogram subroutine examples in the microprogrammers 
manual. 

The last step consists of converting the flow chart functions into 
routines that are ready for implementation in hardware to yeild the 
system firmware. These steps include translating the MIC RO 800 in­
structions selected for each routing into the mnemonic or machine 
language code, loading them into a.n operating system, and eliminating 
any errors that may have been made during the previous steps. Micro­
data Corporation furnishes a software program (Simulator Operating 
System) for use on one of the 800 series computers which simulates 
the user's microprogram and provides operator control for debugging 
and evaluation -procedures. The completed program is printed in the 
form of a diode map to simplify the placement of diodes on the read 
only memory circuit boards which contain the complete microprogram. 

Microprogramming Aids 

The software aids for microprogramming, furnished by Microdat,fl 
Corporation are briefly described in Figure 41. Several methods are 
available to convert the microprogram source statements to the final 
diode map for hardware implementation. These methods incorporate 
different programs according to the processing equipment available to 
the user. For instance, the MAP800 program is used with a MICRO 811 
computer to enter source statements and assemble the listings. The 
AP800 program is used on a large-scale computer to produce an 
object program. Variations in methods also permit selection of media 
for recording and communicating the program information including 
punched cards, paper tap'e, printed documents, etc. · 

323 



MICROPROGRAM GENERATION 

Figure 41. Microprogramming Generation 

~~ 
~CJ 

The final step in the process is the implementation of the micropro­
gram by loading the signal diodes on the ROM circuit boards .. This 
process consists of inserting diodes in the board at locations designated 
by the diode map and corresponding to the logical 1 's in the machine 
language code. The absence of a diode indicates a logical 0. When the 
complete microprogram has been implemented in diodes on the ROM 
boards, the "new" computer is assembled by inserting these boards into 
the standard MICRO 800 enclosure which houses the hardware compo­
nents furnished by M icrodata Corporation. 

324 



PART VI 

PRODUCT CATALOG 





MICRO 400 COMPUTER 

The MICRO 400 is a programmable, high-speed, general-purpose computer 
designed for the large-volume user or original equipment manufacturer. 
Although small and low-priced, the MICRO 400 is remarkably powerful. 

Architectural simplicity is fundamental in the MICRO 400 and hardware 
packaging allows the user to easily incorporate basic equipment modules 
for his application. A comprehensive set of interfaces is available for 
peripheral, communications and utility devices. 

The input/output structure uses a standard programmable data channel and 
MICRObus, a single bus organization which provides direct access for all 
memory and system control devices and for the central processing t,1nit. 

Extensive standard support software is provided, including a symbolic 
assembler for preparation of source programs in symbolic notation. 

The MICRO 400 features 1.6 microsecond cycle time, 400 nanosecond 
access time, basic memory module sizes ranging from 1024 to 8, 192 words 
of core memory direct addressing to 4,096 words and operates up to 32 
1/0 devices. The machine weighs 23 pounds complete and uses 3.5 inches 
of rack space. 

327 



MICRO 800 COMPUTER 

The MICRO 800 is a high-speed microprogrammed computer whos13 flexi­
bility, functional modularity and system-oriented packaging make it ideally 
suited for dedicated volume applications. 

The MICRO 800's flexibility permits the computer system to be expanded 
cir reduced to the exact configuration needed for any application. For 
example, the computer can be used without a core memory as an inexpen­
sive controller or data concentrator. When memory is required for storage 
cif variable parameters, tables or data, high-speed core memory may be 
added to the system. 

The MICRO 800 also can be microprogrammed to emulate other general 
or special-purpose computers enabling the software of these machines to 
be compatible with the MICRO 800. In such a case, additional interface 
hardware can be furnished to provide plug~to-plug compatibility with 
other computers. 

In addition to low unit cost, the MICRO 800 system also can reduce over­
all syste.rn cost. The high-speed execution of firmware routines allows the 
processor logic to l:Je time-shared to minimize input/output interface 
hardware. 

-

328 



Microprogramming also provides exceptionally high performance with an 
unusually small amount of internal hardware. The basic computer consists 
of two identical data boards, each of which is a 4-bit slice of the com­
puter's data paths and registers, and a single control board which provides · 
command decoding and timing. 

Main frame options including memory parity, power fail/automatic restart, 
real-time clock and input/output interfaces are implemented on card 
modules which plug into the basic MICRO 800 enclosure. 

With its 1.1 microsecond core memory cycle time and 220 nanosecond 
command execution time, the MICRO 800 is the fastest machine in its 
class~ Core memory is expandable from 0 to 32,768 bytes in 4,096 byte 
or 8192 byte increments. A 1,024 byte core memory also is available for 
smaU, inexpensive systems. Weight is 75 pounds. 

MICRO 810 COMPUTER 

The MICRO 810 is a general purpose computer which is a micropro­
grammed adaptation of the MICRO 8QO. Microprogrammed subroutines, 
configured in the read only memory, interpret macro instructions of pro­
grams stored in the core memory. 

A powerful macro l~vel computer, the MICRO 810 also retains all the 
modular and functional advantages of the MICRO 800. 

The MICRO 810 has available considerably larger programs than most 
machines in its class, combined with ·ease of programming and program­
ming flexibility. Some of the advantages of the MICRO 800 can be ob~ 
tained by adding problem-oriented instructions or firmware subroutines 
to the MICRO 810: Multiply/divide instructions are standard. 

The MICRO 810 features 1.1 microsecond cycle time and 220 nanosecond 
execution time in the ROM. Core memory is field-expandable to 32,768 
Bytes (8, 9 or 10 bits). Extra memory bits may be used for memory parity 
and special applications. A 1024-byte by 9-bit core memory also is avail­
able. Weight is 75 pounds. 

329 



MICRO 820 COMPUTER 

Featuring a comprehensive instruction repertoire and powerful input/ 
output facility, the MICRO 820 is a high-speed, microprogrammed general 
piurpose computer capable of handling a wide variety of applications. 

Use of high-speed read-only memories for macro control greatly re!duces 
the number of CPU circuits which otherwise would be required to -provide 
the powerful instructions of the MICRO 820. 

A. superior price/performance ratio is achieved in the MICRO 820 by 
efficient core memory usage and ease of programming. 

The MICRO 820 system is designed to accommodate additional standard 
and special firmware inexpensively, permitting the user to specify aug­
mented capabilities such as multiply/d!vide instructions, BCD arithmetic, 
floating point arithmetic, trigonometric and transcendental functions and 
fully buffered communications multiplexers. 

P\mong features of the MICRO 820 are variable precision operation, 
character/string manipulation and stack processing. A complete line of 
peripheral options is available to achieve almost unlimited flexibility in 
application of the MICRO 820. 

Core memory is expandable to 32, 768 bytes in the basic 8%-inch cabinet 
using 4,096 and 8, 192 plug-in memory modules. Cycle time is 1.1 micro­
second in core memory and 220 nanosecond execution time in the ROM. 

330 



1 ~ So- & 

--~- '-;--~-

--.....,-~-- ~ ~ 

331 



MICRO 1600 COMPUTER 

Newest and most advanced of Microdata Corporation's families of com­
puters is the MICRO 1600, a companion product line to the MICRO 800 
which provides significant performance improvements in both sp1~ed and 
function. 

Both the 1600 and 800 are functionally compatible, enabling established 
MICRO 800 useirs to use the 1600 directly without redevelopment of 
firmware, software or system peripherals or interfaces. 

However, new and revised firmware can achieve significant performance 
improvements at both the micro an~ macro levels of programming. 

The MICRO 1600 is an economical machine with unequalled flexibility 
which can be tailored to fit almost any application. Modular design of 
core memory, processor, microprogram control memory and input/output 
modules provides easy, economical expansion of all functional areas of the 
computer. 

E:<tra space and power in the basic enclosure permits growth from a mini­
mum to a fully expanded configuration without the need for special or 
expansion enclosures. User-designed interfaces can be installed in the com­
puter cabinet. 

The widest range of hardware, firmware and software options in the 
industry is available to augment the MICRO 1600. 

Improved features of the MICRO 1600 are higher speed, processor options 
which are part of the CPU, additional general-purpose registers, control 
memory expansion to 16,384 words, core memory expansion to 65,000 
words, dual processor capability, memory data buffer, data output buffer, 
memory address link bit and expanded control panel facilitie~;. This is 
accomplished through maximum use of the most advanced MSI and LSI 
tHch no logy. 

Control memory cycle time is 1 microsecond, 200 nanosecond command 
execution rate-. 

332 



333 



FIRMWARE TRAINING SYSTEM 

The firmware trainer is a valuable tool for classroom teaching of micro­
programming techniques. Small firmware routines can be quickly set up 
and checked out with the aid of the comprehension switch panel layout 
and the built-in visual display. Firmware alterations and corrections are 
rnade quickly and efficiently, permitting the student to concentrate on 
the problem rather than the hardware. 

The system consists of a MICRO 800 computer with a utility read-only 
memory, a switch matrix read-only memory, a 4096 byte magnetk core 
memory, a TTY /display controller and an 1/0 display panel. 

The MICRO 800 computer includes a special interface wired to a panel 
with 512 switches. Each switch connects a diode to the computer to 
designate a logical 1 for binary values of the microprogram command 
sequence. A maximum of 32 commands may be used at one time on the 
panel. 

As an aid in demonstration and training activities, the preprogrammed 
utility ROM is included to facilitate input/output functions without ex­
pending instructions on the ROM switch panel. Six utility routines are 
included to permit display and recording of data obtained during uxecutio'n 
of microprograms. 

A 30-page operations manual and 50 copies of the micropro~1ramming 
handbook are included with the firmware trainer system. Price for the 
system is $10,000. 

334 



335 



ALTERABLE READ-ONLY MEMORY SYSTEM 

Designed for use with the MICRO 800 series of computers, Microdata 
Corporation's Alterable Read-Only Memory System for test and debugging 
of microprograms in a real-time environment permits implementation of 
firmware on a level comparable to software and gives the user a wide 
range of application flexibility. · 

Using the concept of dynamic microprogramming, the system operates at 
full control memory speed of 220 nanoseconds command execution time. 
The basic capacity of the system is 1 K by 16, but can be expanded to 2K 
bv 16. 

A supporting software package called the Alterable Read-Only Memory 
Operating System is included, and a card reader is optional. The software 
package permits loading of the machine from a variety peripheral devices 
and permits the operator to examine and alter the contents at will. 

336 



337 



June 1971 

MICRODATA CORPORATION 

COMMENT AND EVALUATION SHEET 
Microprogramming Handbook 

YOUR. EVALUATION OF THIS HANDBOOK WI LL BE WELCOMED BY 
MICRODATA CORPORATION. ANY ERRORS, SUGGESTED ADDITIONS 
OR DELETIONS OR GENERAL COMMENTS MAY BE MADE BELOW. 
PLEASE INCLUDE PAGE NUMBER REFERENCE. 

FROM 

BUSINESS 
ADDRESS:--------------------

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 
FOLD ON DOTTED LINE AND STAPLE 



I 
I 

;::>IP.ILi: ,, 

t- - - - - - - - - - - - - - - - FOLD HERE - - - - - - - - - - - - - - - - - -

I 
I 

Lil I 
a: I 
wl 
II 

2' _I 
a: I 
I- I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY IF MAILED IN THE U.S.A. 

Postage Will Be Paid By 

MICRODATA CORPORATION 
644 East Young Street 
Santa Ana, California 92705 

STAPLE 

First Class 
Permit No.1972 

Santa Ana 
California 92711 


	00001
	00002
	00003
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003_Part1
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049_Part2
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069_Part3
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265_Part4
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313_Part5
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325_Part6
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	replyA
	replyB

