MICROPROGRAMMING
HANDBOOK

Microdata

T

Microdata Corporation
- 644 East Young Street

Santa Ana, California

Copyright 1971 by
Microdata Corporation
644 E. Young St.
Santa Ana, California

PRINTED IN US.A.

PARTI

MICROPROGRAMMED COMPUTER PRIMER

PART Il

APPLICATION OF THE
MICROPROGRAMMED COMPUTERS

PART 1l

MICRO 800 USERS MANUAL

- PART IV

MICRO 810 FIRMWARE MANUAL

PART V

SYSTEM DESIGN PROCEDURES USING
MICROPROGRAMMING

PART VI

PRODUCT CATALOG

FOREWORD

This is the first and only handbook on microprogramming. It has been
written and published by Microdata Corporation, the company which has
pioneered the practical application of microprogramming in the mini-
computer field. Its purpose is to introduce the computer user to this
powerful concept, to illustrate its many clear-cut advantages in computing
and control applications and to provide detailed instructions to the system
designer for the most economical and efficient application of micro-
programming technology.

Microdata believes, as do many other know|edgeable individuals and
organizations, that the microprogrammable computer architecture will
emerge as the dominant concept in the small computer area. The inevita-
bility of microprogramming rests on fundamental advantages to both the
computer manufacturer and to the computer user.

To the manufacturer, a microprogrammable architecture permlts develop-
ment and production of a single system of compatible hardware which can
be program tailored to fit a much wider range of requirements than can be
met by conventional software-oriented machines. From a design stand-
point, only microprogramming permits full and extensive use of commer-
cial MSI and LSI devices which result in higher performance for a given
cost than in conventional designs. These benefits are, of course, passed
directly to the user.

Microdata recognized the inherent practical advantages in the micro-
programming concept- for ‘minicomputers at a very early date. Accord-
ingly, the MICRO 800 series of computers was introduced early in 1969,

and to date hundreds of these machines have been delivered. Acceptance
of this product and its concept has prompted recent introduction of the
MICRO 1600 series which builds on the MICRO 800 technology but
which offers stgmfucant improvements in performance at a lower cost.

These computers are unique in the field and offer users a set of advantages
which cannot be obtained elsewhere.

This publication is offered as an aid to users and potential users of com-
puters who, at some point, will avail themselves of microprogramming.
Comments and additions by readers who wish to help expand upon the
growing body of knowledge in this field are encouraged and solicited by
Microdata.

PART |

PART Ii

TABLE OF CONTENTS

Introduction.
MICROPROGRAMMED COMPUTER PRIMER

Introduction.
Organization of the Microprogrammed Computer . ..

The Fixed Instruction Computer

Memory
ArithmeticUnit . ., S
Input/Output
ControlUnit. e e .

The Microprogrammed Coniputer

Memory
ArithmeticUnit
Input/Output
ControlUnit.

Cost and Performance Advantages of the
Microprogrammed Computer

The MICRO 1600 Microprogrammable Computer
Microprogram Function Summary

Processor e
ControlUnit . .,
Command Execution
ControlMemory
CoreMemory
Programmable Byte 1/O Channel

Comparison of a Microprogrammable Computer to a
General Purpose Fixed Instruction Computer. .,)

Instruction Repertoire PR

Instruction Speeds.
GloSSary v i e e e e e e e e e e
APPLICATION OF THE MICROPROGRAMMED
COMPUTER. e e e e e e e e e e e e
Introduction. e
Classes of Application. e

General Purpose Computers e e e e e e e
Special Purpose Computers
Emulator Computer
Language Processors

12
12
12
15

ApplicationExamples. 61

Automatic TestSystem 61
Floating Point Processor (Special Purpose) 62
Fast Fourier Transform Processor (Special Purpose) . . 62
Multilane Parking Facility Computer 63
Data Communications Applications, Special
Purpose Concentrator, 64
Numerical Control of Vertical Machining Center. . . . 65
Vibration Analyzer (Special Purpose) 66
Interface for Campus Central Processor,
Satellite Computers. 66
PART lII MICRO 800 USERSMANUAL 69
Chapter 1. System Design Features . ., 71
General Characteristics. 72
System Organization oL 72
Registersand File 73
CoreMemory.0... .. 75
ControlMemory 75
Arithmetic Functions 76
Status and ConditionFlags. 80
Command Timing 81
Chapter 2. Microcommand Repertoire 82
Command Formats 82
Terms and Symbols Used in the Command
Descriptions 84
Microcommands—Formats, Descriptions and
Examples. 84
Load T 85
LoadM 85
LoadN 86
LoadU 86
Load ZeroControl 87
LoadSevenControl 88
Jump Lo, 89
Load File 91
AddtoFile 92
TestifZero. 93
TestifNotZero 94
Compare 96
Control L 96
Add L 103
Subtract. 106
Read Memory, Write Memory. 108
Copy . . ., 112
OR . . . 114
ExclusiveOR 116
AND. . . . L 118
Shift. 120
Execute 123

CPU Microcommand Repertoire D
Chapter 3. Input/Qutput
General Description
Bytel/OBus.
Internal Status Interrupt
BusLlines e e e e e
InputLines
OutputLines
Serial Interface
Direct Memory Access
Typical Byte /O Interface
Examples of I/_O Microprogramming
Chapter 4. Central Processor Options
Real-TimeClock
Power-Fail/AutomaticRestart
Chapter 5. OperatorControls-.
Consoles,
Displays
Switches R
Operating Procedures — System Console.

Chapter 6. Programming Systems for MICRO 800
Firmware Development

AP800 Cross Assembler
MAPS8O00 Cross Assembler
Symbolic Language e e e e e e e
MachineCommands
Operand Field Expressions e .
Microcommands BT
Alphabetic List of Commands
Assembler Instructions.
Assembly Listing and DiodeMap.
Format for AP800 e e e e e
ErrorFlags
DiodeMapforAP800
SampleListing
Operation Program Card Deck From APS00
Simulator Operating System (SOS) and

Simulator Program (SIM800).

Introduction e e e e e
InstructionforUse
Operators v v v i it
Program Tape Format
Appendixes o

Alterable Read-Only Memory Operating System
(AROS). e e e e e e e e e

\

Operators v v v v v b e e e e 177

Program Tape Format. 178
Summary of AROS Operators 179
Program Checkout and Debugging 180
Chapter 7. Techniques and Examples 190
Techniques for Efficient Microprogramming. 190
1. Generation of delays for memory accesses,
U Register Applications and input/output . . 191
2. Double Functions on a Single Command . . . 192
3. Uses, Setting and TestingLink 192
4. Usesof theU Register L. 192
5. Setting and Using Condition flags. 193
6. Use of Loops vs Straight Line Programming. . 194
7. Small General Purpose Subroutines. 195
8. Use of shift Right 4 Command 195
9. Use of File Register for Flags, Counters, and
ReferenceData 195
10. Organization of Op Codes, File Register
numbers, and Core Memory Addresses to
minimize Commands 195
11. Saving of Diodes by Selection of Files and
INStructions . . . « « v v v v v b e . 195
12. Saving Jump Instructions when Branching . . 196
13. Reducing two Branches to one by Multi-)
FunctionCommands 197
14. Interlacing vs. Cascading of Subroutines . . . 198
15. Use of Inhibit FileWrite 198
16. Moving Data from a Fileto a Reglster 198
Microprogramming Examples 198
1. Multiply Two Positive Numbers 200
2. SubroutineJumps. 203
3. TimeDelayRoutine 205
4. Data Input from 4 External Registers. 208
5. Load 8 successive File Registers from 8
successive core locations 210
6. 16Bit Add (CoretoFile}. 212
7. Input a 32 Bit Word from an External Device
toCoreMemory 213
8. 16 Bit Right Shift with End Around Carry
with the Shift Count in File RegisterS 216
9. AORedwithBtoA 217
10. Update 10 BCD Digit Display from Core . . . 217
11. Clear a Block of Core Memory 220
12a. Read 8 consecutive Core locations into 8
consecutive File Registers 222
12b. Write 8 consecutive Files into 8 consecutive
Corelocations. « « « v v v v v o v 223
13a. Output from 8 Files to 8 Shift Registers . . . 225
13b. File to Register; with Hardware Rotation

ofBitPattern. 228

vi

14. Input from 8 Shift Registers to 8 Files in

MICROS800. 230
15. Input Block of Data to Core from A to D

Converter 233
16. Conversion of 3 Digit BCD plus sign into

Binary. 237
17. Binary to BCD Conversion 239

18. General Purpose Multiple File Shift Routine . 244
19. Hexadecimal to ASCII Conversion Routine. . 249
20. General Purpose Code Conversion by Table

Translation 254
21. Binary Multiply (16 Bits) 257

22. Generate Cyclic Code for One 8 Bit Data
Byte 261
23. Generate ASCHl Parity 263
PART IV MICRO 810 FIRMWARE MANUAL 265
Introduction 267
MICRO 810 Functions 267
File Register Assignments ., 268
Information Formats 270
Operand AddressingModes 271
MICRO 810 Instructions 275
Interrupts 277
Concurrent1/O 277
Serial Input/Output Instructions 277
Byte Input/Output Instructions 278
Top Level Flow Chart S e e e e 279
MICRO 810 Assembly Listings L 304

PART V

Function Flow Examples of a MICRO 810 Instruction. 304

SYSTEM DESIGN PROCEDURES USING

MICROPROGRAMMING 313

Introduction 3156
1. System Functional Definition 317
2. System Configuration Definition -. : . 318
3. Detailed System Performance Specifications. . . 318
4. Interface Performance Specifications 319
5. Program Specifications. 319
6. Tradeoffs -, . ..320
7. 'HardwareSpecs 322
8. Software or Firmware Program Specifications . . 322
9. Detailed Program Functions Analysis

Definitions and Programming e e e 323

vii

PART VI

PRODUCTCATALOG« 325
MICRO 400 Computer« v v v v v v o v s 327
MICRO 800 Computer« oo v v v v v v oo 328
MICRO 810Computer« v v v v o v o v 329
MICRO 820 Computer v v v v v v v v v v o 330
MICRO 1600 Computer « ¢« v« o o v o 332
Firmware TrainingSystem 334
Alterable Read-Only Memory System 336

viii

INTRODUCTION

The story of Microdata Corporation’s success is the story of micropro-
gramming, a unique element which is the secret of the significant advan-
tages of the company’s advanced minicomputers over fixed-instruction
machines.

The major difference between Microdata’s products and conventional
minicomputers is the skillful incorporation of microprogrammed control
memories as a major adjunct to the usual basic elements of any computer—
control unit, main memory, arithmetic/logic unit and input/output.

The advantages are manyfold. Ease of programming using the widest
possible choice of language selection is a major gain. In turn, this permits
the use of low-skill (and lower salaried) programmers to operate the
equipment.)

Microprogramming also means higher speed with much more efficient use
of the main memory of the computer. :

In many cases, the storage capacity of the main memory is increased
because the programs used in conventional minicomputers to perform
certain operational instructions are stored in the control memory, thus
freeing storage capacity in the main memory for the purpose it was
intended—problem-solving.

Inherently, microprogramming gives the user unequalled flexibility in
accordance with the design philosophy of Microdata Corporation. This
flexibility is extremely important to the user because the computer can be
tailored to his specific needs, no matter how complex or simple, and can
be changed at will.

By strictly adhering to this philosophy, Microdata Corporation has set
new industry standards for performance at minimum cost, unequalled
memory efficiency and the availability of a wide variety of languagés from
which to choose. In short, Microdata has reached a pinnacle in the only
meaningful measurement of computer performance—the ability to solve
specific problems accurately and efficiently in terms of time and therefore
cost to the user. "

Microprogrammable computers also have ripped away many barriers to
broader application of minicomputers. The way is clear for use of Micro-
data’s products in business and scientific applications because of the ease
and flexibility of programming techniques.

A -number of factors have contributed to these advances by Microdata
Corporation, including modern facilities geared to volume production,
exploitation of the most advanced technologies and concepts availabie in
the industry, and the field-proven reliability of hundreds of the company'’s
minicomputers.

PARTI

MICRDPROGRAMMED COMPUTER PRIMER

INTRODUCTION

December 1945, ENIAC, the first electronic high-speed stored program
general purpose computer was completed. Six years later Professor M.V.
Wilkes of Cambridge University coined the word microprogramming to
describe computer instructions that ¢arry out numerous information trans-
fers in a single execution cycle. Cost-performance improvements as a
result of 25 vears of advancement in computer technologies have been
almost overwhelming. In 1965 it became practical and possible to build
computers with control units driven by microprograms. The concept was
not exploited on a widespread basis until recently. In large and medium
scale computers microprogramming provides the capability to emulate
other computers, and to maintain upward/downward compatibility over a
wide range of models within a computer series.

The small or so called minicomputer incorporating microprogramming now
exploits the advances in semiconductor and memory technologies with
microprogramming far beyond the larger model computers. Full advantage
of new low cost memories are realized only by users of small micro-
programmed computers. The spectrum of applications between the special
purpose computer, where the entire program is implemented in a micro-
program, to the general purpose computer implemented by microprogram
can be selected by the user to achieve a meaningful price/performance
ratio for the application.

ORGANIZATION OF THE MICROPROGRAMMED COMPUTER

The organization of the microprogrammed computer can best be described
after we first review the organization of its predecessor, the fixed instruc-
tion stored program general purpose computer.

The Fixed lnstruction Computer

In simple terms the fixed instruction stored program computer is built
around a storage and retrieval scheme, typically a magnetic core memory.
The structure and information paths of a computer are represented in the
simplified block diagram (Figure 1).

As defined in most textbooks, the five elements comprising a digital com-
puter are: memory, arithmetic unit, input, output and control unit.

Memory: Modern computer memories are implemented using high speed
semiconductors or magnetic core memory systems, These memories are
high-speed random access devices of which information, usually in a binary
form, is written or read from any addressed section of the memory.

Arithmetic Unit: In many instances is referred to as the arithmetic and
fogic unit (ALU). As the name implies it performs the arithmetic opera-
tions on data transferred within the computer, the memory, the input and
the output.

Input/Output: Communication with a wide variety of devices in the
language of the operator are made possible by transfer channels referred to
as the input and output sections of a computer. Devices connected to the
input/output of a computer referred to as computer peripherals include
elementary switches and indicator lamps, typewriters, magnetic or paper
tape units, line printers, analog converters, cathode ray tube displays (TV
type devices), card readers and punches, communication lines, etc.

CONTROL
UNIT

A

y MEMORY ' OUTPUT

A

1

ARITHMETIC
UNIT

. Figure 1. Simplified Block Diagram
Fixed Instruction Stored Program General Purpose Computer

In addition to man communication type devices the input/output of a
computer may be connected to intermediate storage devices for mass
memory requirements. Such mass memory devices include but are not
limited to magnetic disc storage systems, magnetic drums, and a larger
scale computer memory,

Control Unit: The control unit may be referred to as the ““brain”’ portion
of any computer because it coordinates all units of the computer in timed
logical sequence. The control unit of a small fixed instruction computer
receives sequences of instructions from memory. These sequences, called
programs, reside in the memory and are referred to as “software.” The
control unit is closely synchronized to the memory cycle speed and execu-
tion time of each fixed instruction is usually a multiple of the memory
speed.

The Microprogrammed Computer

Four of the elements of the microprogrammed computer are nearly identi-
cal to the fixed instruction computer. The significant difference is in the
control unit (“Brain’’). The basic control sequences of a microprogrammed
computer originate in a separate “control memory,” usually a read-only
memory (ROM) which operates at speeds many times faster than the main
memory section of the computer. Thus the simplified block diagram (Fig-
ure 2) of the microprogrammed computer has one more element than the
fixed instruction computer.

CONTROL .
MEMORY
CONTROL
UNIT
)
& !
N
INPU'I'/ MEMORY OUTPUT

ARITHMETIC
UNIT

Figure 2. Simplified Block Diagram
Microprogrammed Computer

Memory: The random access main memory of the microprogrammed com-
puter differs little from the fixed instruction computer. It is implemented
with magnetic core or semiconductor systems in similar sizes and speeds
to the fixed instruction computer. The basic difference is the timing and
control of the memory system. The control unit of the microprogrammed
computer is clocked to a significantly higher speed separate memory sys-
tem. Hence, the main memory speed is essentially independent of the
processor speed and is operated in a manner similar to an input/output
device.

6

Arithmetic Unit: The arithmetic and logic unit in a microprogrammed
computer operates on fixed data lengths, typically 8 bits. The speed of the
unit is 10 to 50 times faster than fixed instruction computer arithmetic
units operating on smaller portions of arithmetic problems at each step.
Microcommands are much more intimately related to the computer archi-
tecture and to bit patterns. This allows high versatility in problem solution
and minimizes the restrictions usually encountered at the software level,

Input/Output: Microprogrammed computers provide extremely fast ele-
mentary 1/O capabilities. Data paths are fixed length, typically 8 bits, and
the 1/0 control functians are simple elements sequenced by high speed
control memory firmware. This permits special 1/0 Systems to be designed
for the users’ requirements. The microprogrammed computer offers all of
the 1/0O capabilities found in fixed instruction computers coupled with the
unique advantage of providing only the capabilities needed, and the versa-
tility to be changed when required. ~ '

Control Unit: The control unit of the microprogrammed computer 'is
simple and straightforward. It operates and controls all elements of the
computer system including two levels of memory. Because it is more basic
than the control units in fixed instruction computers it provides capability
to solve problems in an added dimension. The control unit is program-
mable, not fixed. Programs operating upon the control unit are called
microprograms, and are referred to as firmware. These programs are as
easy to write and implement as is software in the fixed instruction
computer. : ‘ ’

If we refer to the control unit of any computer as the “Brain,” then the
microprogrammed computer control unit could be referred to as a brain
ingredient, which we can readily adjust to suit our needs.

Control Memory: The control memory is the element that most dramati-
cally distinguishes the microprogrammed computer. The control memory
contains the stored sequence of control functions that dictate end user
architecture of the microprogrammed computer. These stored sequences
are called ““microprograms” or “firmware’’ corresponding to fixed instruc-
tion computer sequences called “programs’ or “‘software.”

The tontrol memory has been called many other names including, read-
only store (ROS), read-only memory (ROM) and control store. Termi-
nology relating to the control memory of microprogrammed computers is
most complex because of many misnomers coined by computer and semi-
conductor manufacturers, Present terminology that relates to the mechani-
zation of control memory are:

ROM: Read-Only Memory: Any memory system in which the bit patterns
of each word are fixed, and unalterable. '

In application, few ROM’s can be modified after manufacture. Those
ROM's that can, may be called modifiable. To make any change requires
a hardware modification such as adding or deleting diodes in a diode
" matrix ROM or rerouting of wires in a core ROM.

7

BROM: Bipolar Read Only Memory: Large scale integration (LS1) bipolar
devices are used for volume manufacture. Original setup masking is expen-
sive. Cost for manufactured elements is low.

PROM: Programmable Read Only Memory: A semiconductor diode array
is programmed by fusing or burning out diode junctions. Cost for setup is
minimal. Manufacturing cost is moderate to high. The PROM is usually
used for final shake down of a system prior to investing in the BROM
setup.

AROM: Alterable Read Only Memory: A true misnomer. The AROM is
actually a read-write memory that is used for initial checkout of firmware.
The firmware is typically loaded into the AROM via a paper tape input
device. Once loaded the AROM operates the control unit as does any
ROM contro! memory. The advantage of the AROM is programming
within a few minutes rather than a manufacturing process. Cost is high;
however, the devices are used indefinitely for checkout and analysis of
numerous firmware implementations.

COST AND PERFORMANCE ADVANTAGES OF THE MICROPﬁO-
GRAMMED COMPUTER

Fixed instruction minicomputers are basically application sensitive. Even
with numerous models to choose from only a few offer good price per-
formance for any specific application. Even more important to note is the
fact that if a specific fixed instruction computer offers the best price per-
formance for a given application at one level of complexity it may offer
less relative value as the complexity changes.

Typically, to increase the performance of the fixed instruction computer
the main memory {usually core memory) is increased in size.

When all the smoke settles the performance of any computer is measured
by its ability to solve a specific problem within a given period of time.

For most project managers the selection of a minicomputer is a traumatic
experience. He is exposed to numerous technical concepts, specifications
and a variety of salesmen and skilled technicians from companies with one
goal—to sell him their solution to his technical problem. If a thorough
up-to-date evaluation was performed with all minicomputer manufacturers
the evaluation could cost him more than the project implementation. The
prime criteria for selection of the appropriate minicomputer is time and
cost of implementation over the entire project life. In this light, the
microprogrammed minicomputer offers an answer to this enigma. The
user selects the cost/performance lines between three elements; hardware,
firmware, and software for his specific application.

One of the primary purposes of this “Microprogramming Handbook”, is
to educate and illustrate for the user the capabilities of $pecific product
lines and to assist these cost/performance trade-off selections.

The following comparison chart illustrates five capability levels comparing
one of the more popular fixed instruction minicomputers, referred to as
brand X, and a microprogrammable minicomputer, the MICRO 1600. Each
level represents computer problem solving capability with corresponding
notation on price, memory use and relative speed (micro vs. fixed). Within

8

any capability level numerous trade-offs between control memory size and
core memory size can be established for the MICRO 1600.

For example, level number 4 shown in the comparison chart represents
a computer capability for a time-sharing system employing high-level
interpretive language and executive programs. Implementation of floating
point arithmetic and executive subroutines in firmware thus expands
the ROM from 768 words to 8192 words. As a result, the MICRO 1600
cost is reduced approximately 15 percent and execution time is improved
by a factor of approximately 20.

. This comparison clearly illustrates that as the size of the control memory
increases advantages result in price and relative speed. In addition, pro-
gramming costs and implementation time can be significantly reduced
once the users’ needs are established in firmware. Now, with the avail-
ability of supporting systems from Microdata, firmware development is in
the same dimension in price and turn-around time normally associated
with fixed instruction computers. The result: computer users can benefit
from microprogramming along with the computer manufacturer.

Microprogrammed Computer Fixed Instruction
(MICRO 1600) Computer (Brand X)
Core Control Core
Memory Memory System Relative System Memory
Level Size Size Price Speed Price Size
1. 8K X 8 512 X 16 | $5,910 1:2 ’
4KX8 | 1024X16 | $5.420 | 21 $6.250 | 4K X 16
2 16K X 8 512X 16 | $8,610 1:2
12K X8 | 2048 X 16 | $7.690 | 5.1 $8,950 | 8K X 16
3. | 32kx8 | s512Xx16|$14010| 1:2
24K X8 | 1024X 16 |$11.470 | 10:7 | $14,350 | 16K X 16
4 48K X 8 768 X 16 | $19,770 2:3
24K X8 | 8192X 16 |$16.750 | 15:1 $19,750 | 24K X 16
5 65K X 8 1024 X 16 | $25,170 1:1
32K X8 | 12K X 16 |$221250 | 20:1 $27,000 | 32K X 16

THE MICRO 1600 MICROPROGRAMMABLE COMPUTER

The term }nicroprogram, its associated terms microprogrammable and
microprogrammed is used to denote programmable sub steps of general
purpose processor instructions. i

The MICRO 1600, however, is organized to use its basic instructions
{called commands) either as sub steps of a general purpose processor
instruction set, or directly for application programs. All classes of micro-
programs used in the MICRO 1600 are called firmware, which may be
considered as a mix of hardware and software. The MICRO 1600 read
only memory has a fixed hardware design except for the firmware patterns
in the memory matrix. Much less original design effort is necessary for
firmware in comparison. to hardware since only the pattern need be
checked out. With electrically-alterable read only memories and high-
. capacity bipolar read only memories, firmware is as flexible as software
and retains the inherent speed advantage of microprogramming.

9

Microprogram Function Summary

Figure 3 illustrates the basic functional MICRO 1600 units and their
interrelation in the processor. There is no direct one-to-one correspondence
between the functions in Figure 3 and the hardware implementation in
the MICRO 1600 because some of the functional elements are dispersed on
more than one board. All of the essential data and control paths are
shown, with data shown as solid lines and control as broken lines. No data
passes through the control portion of the computer.

CORE —_——
MEMORY i ~1 MEMORY SEQUENCE
| TIMING AND
| CONTROL
y i
DATA EASQ |
T0 Rl |
MEMORY MEMORY MEMORY |
5~ ADDRESS
A 1
o
BYTE OUTPUTS T FLAss
PROCESSOR ! LITERALS
}
DATA BYTE INPUTS |
CONTROL [[' |
! |
1
“—{ PROGRAMMABLE | PROCESSOR | PROCESSOR |
——» BYTE | CONTROL | STATUS | READ ONLY
INPUT/OUTPUT 1 1 MEMORY
CHANNEL I
- | |
A L
Lo e e e e CONTROL = mwww ww = e o o o =
1/0 CONTROL CODES UNIT ROM ADDRESS _Jl
[COMMANDS (INSTRUCTIONS)
AND JUMP ADDRESSES
Figure 3. Functional Block Diagram of the MICRO 1600
Processor

The basic processor functions are as follows:

Arithmetic (Add, Subtract).

Logical {“OR,” “Exclusive OR,” “AND").

Shift.

Load Registers With Literals from ROM.

Load or Add to Files With Literals From ROM.
Transfer Data to and from Core Memory.

Transfer Data to and From Byte 1/0.

Compare Data in Files With Literals from ROM.
Provide and Update Address Value to Core Memory.

The processor consists of the following basic functional elements:

Arithmetic/Logic Unit.

File Registers.

Core Memory Address Registers.
Operand Register.

Memory Buffer Register.

/O Register.

Interconnecting Logic.

10

The processor is set up to do its various functions by the control unit. It
provides the control unit directly with zero, negative and overflow condi-
tion status. Other status functions are tested using compare commands of
bit test with literal commands.

Control Unit
The basic control functions are as follows:

® Processor Command Decoding and Control.
® Data Steering: :
Files to Arithmetic/Logic Unit (ALU).
Input to ALU,
Operand Register to ALU.
Input to ALU.
Literals From ROM to Files or Registers.
Memory to Processor.
ALU to Files and Registers.
Instruction Skipping Based on Processor Conditions.
Advancing ROM Addresses.
Jumping to ROM Addresses.
Fetching and Holding Commands from ROM.,
1/0 Control Code Generation.
Core Memory Transfer Timing.
Full or Half Cycle.
Read or Write.

Command Execution

In the microprogrammable computer, the instruction fetch, decode, exe-
cute, and distribution functions are not divided into distinct, separate
steps as they are in most fixed instruction computers. i nstead, the various
functions go on simultaneously during the time between clock pulses.
Sufficient time is allowed for all functions to settle between clocks. Read-
ing of instructions from ROM is done on a lookahead basis. The instruc-
tions are clocked into the ROM register where all other functions, such as
decoding, steering, and processing are done {(and results are entered into
designated registers) on the next clock.

Because . of this, the effective execution time for most instruction is 200
nanoseconds, and 400 nanoseconds for those involving skips or jumps
because of the lookahead function.

Control Memory

The Control Memory contains 16-bit words which consist of commands,
or literals. The literals are used to initialize files or registers, to add to files,
for comparison test purposes, or for control memory address jumping.

Core Memory

The core memory stores 8-bit data words from the processor. Read and
write cycles can be either full or half cycle. The memory address is pro-
vided by the processor. Timing pulses are provided by the control function.
Data, pointers, and flags are stored in the core memory. If the micropro-
gram is a general purposes processar implementation, then the core
memory also is used 1o store instructions.

1

Programmable Byte 1/0 Channel

There is a high degree of flexibility in microprogramming of 1/0. Data is
transferred into and out of the processor under the direction of the con-
trol unit. Output data is transferred directly from the processor's output
register. Input data transferred via the input bus can be directly copied
into files or registers by microcode. A large number of peripheral devices
can be connected to the computer and serviced one at a time through the
byte 1/0 channel.

COMPARISON OF A MICROPROGRAMMABLE COMPUTER TO A
GENERAL PURPOSE FIXED INSTRUCTION COMPUTER

In the general purpose fixed instruction computer, the instructions are
stored in core memory along with data. Both instructions and data can be
altered by the program. In a microprogrammable computer, the instruc-
tions are stored in a read only memory along with permanent {or con-
stant) data. Only variable data, pointer, and flags are stored in core
memory.

Instruction Repertoire

In the general purpose fixed instruction computer there is usually a
limited instruction repertoire with variations of instruction, and memory
reference instructions having limited addressing modes.

In the microprogrammable computer there is usually a smaller number of
instructions which are more compact and specialized than the fixed
instructional computer. Memory addressing and 1/0 functions usually are
built up by assembling a group of micro instructions. The micro instruc-.
tions are closely related to the internal architecture and 1/O structure of
the basic computer.

Instruction Speeds

Microprogrammable computers are faster than fixed instruction computers
for the following reasons:

1. Instruction execution times are from 5 to 30 times faster in a micro-
programmed computer,

2. File registers can be used for data storage, and pointers, where core is
required in a fixed instruction computer, thus program execution time
can be sped up by avoiding memory access cycles.

3. Subroutines are closely tailored to specific requirements and data word
lenghts, thus improving computer efficiency and speed.

4. Input/output routines can be simplified for the application to increase
1/0 speed.

5. Special time-consuming algorithms {math, logic, etc.), which are not
available in the general purpose processor can be easily incorporated
into a microprogrammed processor.

Additional comparisons between a general purpose processor and a micro-
programmable processor are included in Table 1.

12

Table 1. Comparison of Microprogrammed Computer to
General Purpose Software Programmed Computer

Function

General Purpose

Microprogrammed
MICRO 1600

Arithmetic and logic
operations

Shift Operations

Conditional Skips

Jumps/Return Jumps

Memory Accesses

»

Memory Addressing

1/0

Interrupts
Concurrent 1/0
DMA

Indexing

Program
Execution Time

e memory reference/
register reference

e conditions automatically
set ‘

® usually 12 or 16 bits
e specific registers are used

e execution time 2-10
microseconds

multiple bits at a time
left/right

limited types of shift
usually 16 bits
specific registers only
forward/reverse

to multiply locations

fixed registers used
and tested

® program conditions tested

programmable locations

return jump, automatic
address set up

o referred to as part of

Memory Reference
Instruction

e address in instruction

o 16K to 65K Bytes core
memory

o control-fixed

® instruction designates
destinationi and source

® automatic hardware
function

® optional, referred to as
direct multiplex channel
or 3 cycle data break

external memory access

software

microseconds

specific register(s) assigned

e register reference

e conditions set when
enabled

" 8 bits

e general purpose file
registers

® 200 nanoseconds

® single bit at a time
o |eft/right

e unlimited types of shift
® 8 bits

e any file registers
o forward

® to one location
.

any file register can be
tested

® basic conditions tested
e programmable locations

e set up return jump
address with microcode

e set up memory address
registers, initiate transfer
in microcode

® address in any file register
o 65K Bytes core memory

® control variable, ROM;
256 x 16 expandable to
16,386 x 16

® data transfer and timing
controlled by microcode

® microcode test, and
handling

® implemented directly in
microcode

external memory access

[]
e index in any file register
o firmware
. °

nanoseconds

13

GLOSSARY
A

ACCESS, IMMEDIATE — Ablllty to obtain data from or place data in a storage de-
vice, or register directly without serial delay, usually in a relatively short time.

ACCESS, PARALLEL — Obtaining data from or placing data into storage where
time required is dependent on simultaneous transfer of all elements of a word
from a given location.

ACCESS, RANDOM — (1) Obtaining data from or placing data into storage where
time required is independent of location of information most recently ob-
tained or stored; (2) device in which random access, as defined in defintiion 1,
can be achieved without time penalty.

ACCESS, SERIAL — Obtaining data from or placing data into storage where time
required is dependent on necessity for waiting while nondesired storage loca-
tions are processed.

ACCUMULATOR — (1) Register and associated equipment in arithmetic unit of
computer in which arithmetical and logical operations are performed; (2) unit
in a digital computer where numbers are accumulated. Often the accumulator
stores -one operand and on receipt of any second operand, it forms and stores
result.

ACCURACY — Degree of exactness of an approximation or measurement. Accuracy
normally denotes absolute quality of computed results; precision refers to the
amount of detail used in representing those results.

ADDER — Device which forms, as output, the sum of two or more numbers bre-
sented as inputs. Often no data retention feature is included; the output signal
remains only as long as the input signals are present.

ADDRESS — (1) Identification, represented by a name, label, or number, for regis-
ters or location in storage. Addresses are also a part of an instruction word
along with commands, tags, and other symbols; (2) part of an instruction
which specifies an. operand.

ADDRESS, ABSOLUTE — Address which indicates exact storage location where the
referenced operand is to be found or stored in the actual machine code
address numbering system.

ADDRESS, BASE — (1) Number which appears as an address in a computer instruc-
tion, but which serves as base, index, initial or starting point for subsequent
addresses to be modified; (2} number used in symbolic coding in conjunction
with relative address. .

ADDRESS, DIRECT — Address which indicates the location where referenced
operand is to be found or stored with no reference to index register or B-Box.

ADDRESS, EFFECTIVE — (1) Modified address; (2) address actually considered to
be used in particular execution of computer instruction.

ADDRESS, IMMEDIATE — Instruction address in which address part of instruction
is operand. "

ADDRESS, INDEXED — Address that is to be modlfled or has been modified by
mdex register or similar device.

ADDRESS, INDIRECT — Address in computer instruction whlch indicates location
of address of referenced operand

ADDRESS PART — Part of instruction word that defines address of register or
location.

15

ADDRESS, RELATIVE — Address to which base address must be added to find
machine adcress.

ADDRESS, SYMBOLIC — Label, alphabetic or alphameric, used t0 specily storage
location in context of a particular program. Programs are often first written
using a symbolic address in some convenient code, which are translated into
absolute addresses by assembly program.

ADDRESS, VARIABLE — See address, indexed.
ADP - Automatic Data Processing.

ALGEBRA, BOOLLEAN — Process of reasoning or deductive system of theorems
using symbolic logic, and dealing with classes, propositions, or on-off circuit
elements. It employs symbols to represent operators such as AND, OR, NOT,
EXCEPT, IF ... THEN, etc., to permit mathematical calculation. (Named for
George Boole, English mathematician [1815-1864]).

ALGOL — ALGOrithmic Language. See language, algorithmic.

ALGORITHMIC — Constructive calculating process usually assumed to lead to solu-
tion of problem in finite number of steps.

ALLOCATION, STORAGE — Process of reserving blocks of storage to specified
blocks of information.

ALPHAMERIC — Contraction of alphanumeric and alphabetic-numeric. Characters
which include letters of the alphabet, numerals, and other sucy symbols as
punctuation or mathematical symbols. :

ALU — Arithmetic and L.ogical Unit.

ANALOG — Representation of numerical quantities by means of physical variables:
translation, rotation, voltage, or resistance. Contrasted with digital.

ANALYSIS, NUMERICAL — Study of methods of obtaining useful quantitative
solutions to mathematical problems, regardiess of whether an analytic solution
exists, and study of errors and bounds on errors in obtaining such solutions.

ANALYSIS, SYSTEMS — Examination of an activity, procedure, method, technigue,
or business to determine what must be accomplished and how necessary opera-
tions may best be accomplished.

ANALYST — Person skilled in definition and development of techniques for solving
problems; especially those techniques for solutions on computer.

ANALYZER — Computer routine to analyze program written for the same or a dif-
ferent computer. Computer (usually analog) designed and used primarily for
solving many types of different equations.

APPLICATION — System or problem to which a computer is applied. Reference is
often made to an application as being either computational type, wherein
arithmetic computations predominate, or data processing type, wherein data
handling operations predominate.

ARGUMENT — (1) Independent variable: in looking up quantity in a table, number
or any numbers which identify location of desired value; or in mathematical
function, variable which when certain value is substituted for it, value of
function is determined; (2) operand in an operation on one or more variables.

ARITHMETIC, FLOATING POINT — Calculation which automatically accounts for
location of radix point. Usually accomplished by handling number as signed
mantissa times radix raised to an integral exponent.

ARITHMETIC SECTION — See unit, arithmetic.

AROM — Electrically Alterable Read Only Memory.

16

ASSEMBLE — (1) To integrate subroutines that are supplied, selected, or generated
into main routine, by means of preset parameters, by adapting, or changing
relative and symbolic addresses to absolute form, or by placing them in storage;
(2) to operate, or perform functions of an assembler.

ASSEMBLER — Computer program which operates on symbolic input data to pro-
duce machine instructions by carrying out such functions as: translation of
symbolic operation codes into computer operating instructions; assigning
locations in storage for successive instructions; or computation of absoiute
addresses from symbolic addresses. An assembler generally translates input
symbolic codes into machine instructions item for item, and produces as out-
put the same number of instructions or constants which were defined in the
input symbolic codes.

ASYNCHRONOUS — Lack of time coincidence in set of repeated events where the
term is applied to computer to indicate that execution of one operation is
dependent on a signal that previous operation is completed.

ATLAS — Abbreviated Test Language for Avionics Systems.

AUTOMATION — (1) Implementation of processes by automatic means; (2) theory,
art, or technique of making a process more automatic; (3) investigation,
design, development, application of methods of rendering processes automatic,
self-moving, or self-controlling.

‘BASIC — Beginner's All-purpose Symbolic Instruction Codes. A simple, easy to
learn, machine independent, conversational computer language.

BAUD — (1) Unit of sighalling speed equal to number of code elements per second;
(2) unit of signalling speed equal to twice the number of Morse code dots
continuously sent per second.

BINARY — Characteristic, property, or condition in which there are but two possible
alternatives: binary number system using 2 as its base and using only digits
zero and one.

BIT — (1) Abbreviation of binary digit; (2) single character in binary number; (3)
single pulse in group of pulses, (4) unit of information capacity of a storage
device. Capacity in bits is the logarithm to the base two of the number of
possible states of the device. -

BIT, PARITY — Check bit that indicates whether total number of binary 1’ digits
in a character or word (excluding parity bit) is odd or even. If a *'1"’ parity bit
indicates an odd number of ‘'1’’ digits, then a "’0’’ bit indicates an even num-
ber. If total number of '*1’’ bits, including parity bit, is always even, system is
called an even parity system. In an odd parity system, total number of ‘1"’
bits, including parity bit, is always odd. °

BLOCK — (1) Group of computer words considered as a unit by virtue of their being
stored in successive storage locations; (2) set of locations or tape positions in
which a block of words is stored or recorded; (3) circuit assemblage which
functions as a unit: circuit building block of standard design, and logic block
in sequential circuit. .

BOOTSTRAP — Technique for loading first instructions of a routine into storage;
then using these instructions to bring in the rest of the routine; usually involves
either entering of a few instructions manually or use of a special console key.

BRANCH — Selection of one, two, or more possible paths in flow of control based on
some criterion. Instructions which mechanize this concept .are sometimes
called branch instructions, but the terms transfer of control and jump are
more widely used.

BRANCHPOINT — Point in a routine where one of two or more choices is selected
under control of routine.

17

BREAKPOINT — Point in computer program at which conditional interruption, to
permit visual check, printing out, or other analysis. Breakpoints are usually
used in debugging operations.

BROM - Bipolar Read Onily Memory.

BUFFER — (1) Internal portion of data processing system serving as intermediary
storage between two storage or data handling systems with different access
times or formats; usually to connect an input or output device with main or
internal high-speed storage; (2) logical OR circuit; (3) an isolating component
designed to eliminate reaction of a driven circuit on circuits driving it: buffer
amplifier; (4) diode.

BUS — (1) Circuit over which data or power is transmitted, often one which.acts as a
common connection among a number of locations; (2) communications path
between two switching points,

BYTE — (1) Generic term to indicate measurable portion of consecutive binary
digits: an 8-bit or 6-bit byte; (2) group of binary digits usually operated upon
as a unit.

C

CAPACITY, CHANNEL — {1) Maximum number of binary digits or elementary dig-
its to other bases which can be handled in a particular channel per unit time;
(2) maximum possible information transmission rate through channel at speci-
fied error rate. Channel capacity may be measured in bits per second or bauds.

CAPACITY, STORAGE - Number of elementary pieces of data that can be con-
tained in storage device. Frequently defined in terms of characters in a particu-
lar code or words of fixed size.

CARD, PUNCH — Heavy stiff paper of constant size and shape, suitable for punching
in a pattern that has meaning and that can be handled mechanically. Punched
holes are sensed electrically by wire brushes, mechanically by metal fingers,
or photoelectrig:ally by photocells.

CARRY — (1) Signal, or expression, produced as result of arithmetic operation on
one digit place of two or more numbers expressed in positional notation and
transferred to next higher place for processing there; (2) signal or expression
as defined above which arises in adding, when the sum of two digits in the
same digit place equals or exceeds base of the number system in use. If a carry-
into-a-digit place will resuit in a carry-out of the same digit place, and if the
normal adding circuit is bypassed when generating this new carry, it is called
a high speed carry, or “‘standing on nines” carry. If the normal adding circuit
is used in such a case, the carry is called a cascaded carry. If a carry resulting
from the addition of carries is not allowed to propagate {(when forming the
partial product in one step of a multiplication process) process is called a
partial carry. If it is allowed to propagate, the process is called a complete
carry. |f a carry generated in the most significant digit place is sent directly to
least significant place (when adding two negative numbers using nine comple-
ments) that carry is called an end-around carry; (3) signal or expression in
direct subtraction, as defined in (1) above which arises when the difference
between the digits is less than zero. Such a carry is frequently called a borrow;
(4) action of forwarding a carry; (5) command directing a carry to be forwarded.

CELL — (1) Storage for one unit of information, usually one character or one word;
{2) location specified by whole or part of address and possessed of the facuity
of store. Specific terms such as column, field, location, and block are pre-
ferable when appropriate.

CHAD — Small piece of paper tape or punch card removed when punching a hole to
represent information.

CHADLESS — Type of punching of paper tape in which each chad is left fastened by
about a quarter of the circumference of the hole, at the leading edge. This

18

mode of punching is useful where it is undesirable to destroy information
written or printed on punched tape or it is undesirable to produce chads.
Chadless punched paper tape must be sensed by mechanical fingers, for the
presence of chad in the tape would interfere with reliable electrical or photo-
electric reading of the paper tape.

CHAIN — (1) Any series of items linked together; (2) routine consisting of segments
which are run through computer in tandem, only one being within computer
at any one time and each using output from previous program as its input.

CHANNEL — (1) Path along which information, particularly a series of digits or
characters, may flow; (2} one or more parallel tracks treated as a unit; (3) in a
circulating storage, a channel is one recirculating path containing fixed number
of words stored serially by word; (4) path for electrical communication; (5)
band of frequencies used for communication.

CHARACTER — (1) One symbol of a set of elementary symbols such as those corre-
sponding to typewriter keys. Symbols usually include decimal digits O through
9, letters A through Z, punctuation marks, operation symbols, and any other
single symbols which computer may read, store, or write; (2) electrical, mag-
netic, or mechanical profile used to represent character in a computer, and its
various storage and peripheral devices. Character may be represented by a group
of other elementary marks, such as bits or pulses.

CHARACTER, BINARY CODED — One element of a notation system representing
alphameric character such as deciminal digits, alphabetic letters, and punctua-
tion marks by predetermined configuration of consecutive binary digits.

CHARACTER, |ILLEGAL — Character or combination of bits which is not accepted
as a valid representation by the machine design or by a specific routine. illegal
characters are commonly detected and used as an indication of machine
malfunctlon

-

CHARACTER, REDUNDANT — Character specifically added to a group of charac-
ters to ensure conformity with certain rules which can be used to detect com-
puter malfunction.

CHART, FLOW — Graphic representation of the major steps of work in process.
lustrative symbols may represent documents, machines, or actions taken
during process. The area of concentration is on where or who does what rather
than how it is to be done.

CHART, LOGICAL FLOW — Detailed solution of work order in terms of the logic,
or built-in operations and characteristics, of a specific machine. Concise sym-
bolic notation is used to represent.information and describe input, output,
arithmetic, and logical operations involved. Chart indicates types of operations
by use of a standard set of block symbols. Coding process normally follows the
logical flow chart.

CHECK — Process of partial or complete testing of the correctness of machine
operations, the existence of certain prescribed conditions within the com-
puter, or the correctness of the results produced by a program. A check of any
of these conditions may be made automatically by the equipment or may be
programmed.

CHECK, PARITY — Summation check in which binary digits, in character or word,
are added, modulo 2, and the sum checked against a single, previously com-
puted parity digit: a check which tests whether number of ones in a word is
odd or even.

CHECK-SUM — Check in which groups of digits are summed, usually without regard
for overflow, and that sum checked against a previously computed sum to
verify that no digits have been changed since the last summation.

CHECK, VALIDITY — Check based on knqwn limits or on given information or

computer results: a calendar month will not be numbered greater than 12; a
week does not have more than 168 hours.

19

CIRCUIT — (1) System of conductors and related electrical elements through which
electrical current flows; (2) communications link between two or more points.

CLEAR — To erase the contents of storage device by replacing the contents with
blanks, or zeros.

CLOCK, REAL TIME - Clock which indicates passage of actual time, in contrast
to a fictitious time set up by the computer program, such as elapsed time in
the flight of a missile, wherein a 60-second trajectory is computed in 200
actual milliseconds, or a 0.1 second interval is integrated in 100 actual
microseconds.

COBOL — Common Business Oriented Language.

CODE — (1) System of symbols for meaningful communication; (2) system of
symbols for representing data or instructions in a computer or tabulating
machine; {3) to translate program for the solution of a problem on a given
computer into a sequence of machine language or pseudo instructions and
addresses acceptable to that computer; (4) machine language program.

CODE, BINARY — (1) Coding system in which encoding of any data is done through
use of bits, 0 or 1; (2) a code for the ten decimal digits, O through 9, in which
each is represented by its binary, radix 2, equivalent: straight binary.

CODE, COMPUTER — (1) System of combinations of binary digits used by a given
computer; (2) repertoire of instructions.

CODE, ERROR CORRECTING — Error-detecting code in which forbidden pulse
combination produced by gain or loss of a bit indicates which bit is wrong.

CODE, ERROR DETECTING — Code in which errors produce forbidden combina-
tions. A single error-detecting code produces a forbidden combination if a
digit gains or loses a single bit. A double error-detecting code produces a for-
bidden combination if digit gains or loses either one or two bits.

CODE, INSTRUCTION — List of symbols, names, and definitions of instructions
which are intelligible to a given computer or computing system.

CODE, MICRO -- (1) System of coding making use of suboperations not ordinarily
accessible in programming: coding that makes use of parts of multiplication
or division operations; (2) list of small program steps. Combinations of these
steps, performed automatically in a prescribed sequence from a macro-
operation (multiply, divide, and square root).

CODE, STRAIGHT LINE — Repetition of sequence of instructions, with or without
address modification, by explicitly writing instructions for each repetition.
Generally straight line coding will require less execution time and more space
than equivalent loop coding. If number of repetitions is large, this type of
coding is tedious unless a generator is used. Feasibility of straight fine coding
is limited by required space and difficulty of coding a variable number of
repetitions. i

CODE, SYMBOL.IC — Code which expresses programs in source language: by refer-
ring to storage locations and machine operations by symbolic names and
addresses which are independent of their hardware determined names and
addresses.

CODING — Ordered list in computer code or pseudo code, of successive computer
instructions representing successive computer operations for solvirig a specific
problem.

COLLATE — To merge two or more ordered sets of data or cards to produce one or
more ordered sets that still reflect the original ordering relations. The collation
process is the merging of two sequences of cards, each ordered on some mutual
key, into a single sequence ordered on the same key.

20

COLUMN — {1) Character or digit position in a positional information format, partic-
ularly one in which characters appear in rows, and rows are placed one above
another: the rightmost column in a five decimal place table, or in a list of data;
(2) character or digit position in a physical device, such as punch card or a
register, corresponding to a position in a written table or list: the rightmost
place in a register; or the third column in an eighty column punch card.

COMMAND — (1) Electronic pulse, signal, or set of signals to start, stop, or continue
some operation. It is incorrect to use command as a synonym for instruction;
(2) portion of an instruction word which specifies operation to be performed.

COMMENT — Expression which explains or identifies a particular step in a routine,
but which has no effect on the operation of the computer in performing
instructions for the routine.

COMPARE — To examine representation of a quantity to discover its relationship to
zero, or to examine two quantities usually for the purposes of discovering
identity or relative magnitude.

COMPATIBILITY, EQUIPMENT — Characteristic of computers by which one com-
r Puter may accept and process data prepared by another computer without
conversion or code modification.

COMPILE — To produce a machine language routine from: a routine written in
source language by selecting appropriate subroutines from a subroutine
library, as directed by the instructions or other symbols of the original
routine, supplying the linkage which combines the subroutines into a work-
able routine and translating the subroutines and linkage into machine language.
The compiled. routine is then ready to be loaded into storage and run: the
compiler does not usually run the routine it produces.

COMPILER — Computer program more powerful than an assembler. In addition to
its translating function which is generally the same process as that used in an
assembiler, it is able to replace items of input with series of instructions {sub-
routines). Thus, where an assembler transiates item for item, and produces as
output the same number of instructions or constants which were put into it,
a compiler will do more. Program which results from compiling is a translated
and expanded version of the original.

COMPLEMENT — (1) Quantity expressed to the base N, which is derived from a
given quantity by a particular rule; frequently wsed to represent the negative
of the given quantity; (2) a complement on N, obtained by subtracting each
digit of the given quantity from N-1, adding unity to the least significant
digit, and performing all resultant carrys: the twos complement of binary
11010 is 00110; the tens complement of decimal 456 is 544; (3) a comple-
ment of N-1, obtained by subtracting each digit of the given quantity from
N-1: the ones complement of binary 11010 is 00101; the nines complement
of decimal 456 is 543.

COMPUTER — Device capable of accepting information, applying prescribed pro-
cesses to that information, and supplying the results of these processes. It
usually consists of input and output devices, storage, arithmetic, and logical
units, and a control unit.

COMPUTER, ANALOG - Computer which represents variables by physical analogies.
Any computer which solves problems by translating physical conditions such
as flow, temperature, pressure, angular position, or voltage into related
mechanical or electrical quantities and uses mechanical or electrical equiva-
lent circuits as an analog for the physical ‘phenomenon being investigated.
Computer which generally uses an analog for each variable and produces
analogs as output. Thus an analog computer measures continuously whereas
a digital computer counts discretely.

COMPUTER, DIGITAL — Computer which processes information represented by
combinations of discrete or discontinuous data as compared with an analog
computer for continuous data. A device for performing sequences of arith-
metic and logical operations, not only on data but its own program. A stored

21

program digital computer capable of performing sequences of internally
stored instructions, as opposed to such calculators as card-programmed calcu-
lators, on which the sequence is impressed manually.

COMPUTER, FIXED PROGRAM — Computer in which the sequence of instructions
are permanently stored or wired, and performs automatically. Not subject to
change either by the computer or the programmer except by rewiring or
changing the storage input.

COMPUTER, GENERAL PURPOSE — Computer designed to solve a large variety
of problems: a stored program computer which may be adapted to any of a
very large class of applications.

COMPUTER, SOLID STATE — Computer built primarily from solid state: electronic
circuit elements.

COMPUTER, SPECIAL PURPOSE — Computer designed to solve a specific class or
narrow range of problems.

COMPUTER, STORED PROGRAM — Computer capable of performing sequences of
internally stored instructions, usually capable of modifying those instructions
as directed by the instructions.

COMPUTER, WIRED PROGRAM — Computer in which instructions that specify.
the operations are specified by the placement and interconnection of wires.
Wires are usually held by a removable control panel, allowing flexibility of
operation, but the term is also applied to permanently wired machines which
are then called fixed program computers.

CONDITIONAL TRANSFER OF CONTROL — Computer instruction which when
reached in a program will cause the computer either to continue with the next
instruction in the original sequence or to transfer control to another stated
instruction, depending on a condition regarding some property of numbers
which has then been determined.

CONFIGURATION — Group of machines which are interconnected and are pro-
grammed to operate as a system. .

CONJUNCTION — Logical operation which makes use of the AND operator or logi-
cal product.

CONSOLE — Portion of the computer which may be used to control the machine
manually, correct errors, determine the status of machine circuits, registers
and courters, determine contents of storage, and manually revise storage
contents.

CONSTANT(S) — Quantities or messages present in the machine and available as data
for the program and which usually are not subject to change.

CONTENT{S} -~ Data contained in any storage medium. Quite prevalently, the
symbol {) is used to indicate the contents of: (M) indicates the contents of
the storage location whose address is M; or (To) may indicate the contents of
the tape on input-output unit two.

CONTROL — (1) Part of a digital computer or processor which determines the
execution and interpretation of instructions in proper sequence, including
. decoding of each instruction and application of the proper signals to the
arithmetic unit and other registers in accordance with the decoded informa-
tion; (2) one or more of the components in any mechanism responsible for
interpreting and carrying out manually-initiated directions. Sometimes it is
called manual control; (3) in some business applications, a rnathematical
check; (4) in programming, instructions which determine conditional jumps
are often referred to as control instructions; time sequence of execution of
instructions is called the flow of control.

CONTROL, MANUAL — Direction of a computer by means of manually operated
switches.

22

CONTROL, MASTER — Application-oriented routine usually applied to the highest
level of a subroutine hierarchy. : .

CONTROL, NUMERICAL — Descriptive of sysfems in which digital computers are
used for the control of operations, particularly of automatic machines wherein
the operation control is applied at discrete points in the operation or process.

CONTROL, PROGRAM — Daescriptive of system in which a computer is used to
direct an operation or process and automatically hold or make changes in the
operation or process on the basis of a prescribed sequence of events.

CONVERSION — (1) Process of changing information from one form of representa-
tion to another, such as from the language of one type of machine to that of
another or from tape to print; (2) process of changing from one data pro-
cessing method to another, or from one type of equipment to another: con-
version from punch card equipment to magnetic tape equipment.

CONVERSION, BINARY TO DECIMAL — Process of converting a number written
to base of two to the equivalent number written to base of ten.

CONVERSION, DECIMAL TO BINARY — Process of converting.a number written
to base of ten, or decimal, into the equivalent number written to base of two,
or binary. N

CONVERT — (1) To change numerical information from one number base to
another; (2) to transfer information from one recorded medium to another.,

CONVERTER — Device which converts representation of information, or which
permits changing the method for data processing from one form to another: a
unit which accepts information from punch cards and records the information
on magnetic tape, possibly including editing facilities.

COPY — To reproduce information in a new location, replacing whatever was .
previously stored there, usually leaving information unchanged at the original
location. -

COPY, HARD — A prihted copy of machine ouiput: printed reports, listings, docu-
ments, summaries.

COUNTER — Device, register, or location in storage for storing numbers or number
representations which permits these numbers to be increased or decreased by
the value of another number, or to be changed or reset to zero or to an arbi-
trary value. .

COUNTER, PROGRAM — Register which holds the identification of the instruction
word to be executed next in time sequence, following present operation.
Register- often a counter which is incremented to the address of the next
sequential storage location, unless transfer or other special instruction is
specified by the program.

CPU — Central Processing Unit.

CROSS ASSEMBLER — A symbolic language translator that operates on one type of
computer to produce machine code for another type of computer.

CROSSTALK — (1) Unwanted signals in a channel which originate from one or
more other channels in the same communication system: (2) signals electri-
cally coupled from another circuit, usually undesirably, but sometimes useful.

CYBERNETICS — Technology involved in the comparative study of the control and
intracommunication of information-handling machines and nervous systems
of animals and man to understand and improve communication,

CYCLE — (1) Same as loop (1); (2) a nonarithmetic shift in which digits dropped off

at one end of a word are returned at the other end in circular fashion: cycle
left and cycle right; (3} to repeat a set of operations indefinitely or until a

23

stated condition is met. The set of operations may be subject to variation on
each repetition, as by address changes obtained by programmed computation
or by use of devices such as an index register; (4} occurrence, phenomena, or
interval of space or time that recurs regularly and in the same sequence: the
interval required for completion of one operation in a repetitive sequence of
operations.

CYCLE, STORAGE — (1) Periodic sequence of events occurring when information is
transferred to or from the storage device of a computer; (2) storing, sensing,
and regeneration form parts of storage sequence.

D

DATA — General term denoting any or all facts, numbers, letters, and symbols, or
facts that refer to or describe an object, idea, condition, situation, or other
factors. Connotes basic elements of information which can be processed or
produced by a computer. Sometimes data is considered to be expressible only
in numerical form, but information is not so limited.

-DATA, RAW -- Data which has not been processed. Such data may or may not be
in machine-sensible form.

DATA-REDUCTION — Process of transforming masses of raw data, usually gathered
by automatic recording equipment, into useful, condensed, or simplified
intelligence.

DATA-REDUCTION, ON-LINE — Processing of information as rapidly as the infor-
mation is received by the computing system or as rapidly as it is generated by
the source.

DECADE — Group or assembly of ten units: a counter which counts to ten in one
column or a resistor box which inserts resistance quantities in multiples of
powers of 10.

DECIMAL, BINARY CODED — Decimal notation in which the individual decimal
digits are represented by a pattern of ones and zeros: in the 8-4-2-1 coded
decimal notation, the number twelve is represented as 0001 0020 for 1 and 2,
respectively, whereas in pure or straight binary notation it is represented as
1100.

DECISION — Computer operation to determine if a certain relationship exists
between words in storage or registers, and taking alternative courses of
action, affected by conditional jumps or equivalent techniques. The process
consists of making comparisons by use of arithmetic to determine the relation-
ship of two terms (numeric, alphabetic or a combination of both): equal,
greater than, or less than, :

DECISION, LOGICAL — Choice or ability to choose between alternatives. Basically
this amounts to an ability to answer yes or no with respect to certain funda-
mental questions involving equality and relative magnitude: in an inventory
application, it is necessary to determine whether or not there has been an

issue or a given stock item.

DECODE — (1) To apply a code to reverse some previous encoding; (2) to determine
meaning of individual characters or groups of characters in a message; (3) to
determine the meaning of an instruction from the set of pulses which describes
the instruction, command, or operation to be performed.

DECODER — (1) Device which determines the meaning of a set of signals and
initiates a computer operation based thereon; (2) matrix of switching elements
which selects one or more output channels according to the combination of
input signals present.

DECREMENT — (1) Quantity by which a variable is decreased; (2) specific part of an
instruction word in some binary computers — a set of digits.

24

DEFINITION — (1) Resolution and sharpness of an image, or the extent to which an
image is brought into sharp relief; (2) degree with which a communication
system reproduces sound images or messages.

DELAY — (1) Time after the close of a reporting period before information pertain-
ing to that period becomes available. Delay may also cover the time to process
data and to report; (2) retardation of the flow of information in a channel for
a finite period of time.

DELIMITER — A character which limits a string of éharacters, and therefore cannot
be a member of the string.

DENSITY, CHARACTER — Number of characters stored per unit of length: on some
magnetic tape drives, 800 or 1600 bits can be stored serially, linearly, and
axially per inch.)

DENSITY, PACKING — Number of units of useful information contained within a
given linear dimension, usually expressed in units per inch: the number of
binary digit magnetic pulses or number of characters stored on tape or drum
per linear inch on a single track by a single head. '

DESIGN, LOGICAL — (1) Planning of a data processing system before detailed
entineering design; (2) synthesizing of a network of logical elements to per-
form a specified function; (3) result of (1) and {(2), frequently called the logic
of a computer or of a data processing system.

DEVICE, INPUT — Mechanical unit designed to bring data to be processed into a
computer: a card reader, a tape reader, or a keyboard.

DEVICE, OUTPUT — The part of a machine which translates the electrical impulses
representing data processed by the machine into permanent results such as
printed forms, punched cards, and magnetic writing on tape.

DIAGRAM — (1) Schematic representation of a sequence of subroutines designed to
solve a problem; (2) coarser and less symbolic representation than a flow
chart, frequently including descriptions in words; (3) schematic or logical
drawing showing the electrical circuit or ‘logical arrangements within a
component.

DIAGRAM, BLOCK — (1) Graphic representation of the hardware in a computer
system. A block diagram indicates the paths along which information and
control flows between the various parts of a computer system, not to be
confused with the term flow chart; {2) coarser and less symbolic representa-
tion than a flow chart.

DICTIONARY — List of code names used in a routine or system; their intended
meaning in that routine or system.

DIGIT — Sign or symbol used to convey a specific quantity of information either by
itself or with other numbers of its set; 2, 3, 4, and 5 are digits; the base or
radix must be specified and each digit’s value assigned.

DIGITAL — Pertaining to utilization of discrete integral numbers in a given base to
represent all the quantities that occur in a problem or calculation. It is
possible to express in digital form all information stored, transferred, or pro-
cessed by a dual state condition: on-off, open-closed, and true-false.

DIRECTORY — File containing the layout for each field of the described record.
A directory describes the layout of a record within a file.

DISK, MAGNETIC — Storage device on which information is recorded on the
magnetizable surface of a rotating disk. A magnetic disk storage system is an
array of such devices, with associated reading and writing ‘heads which are
mounted on movable arms.

DUMP, STORAGE — Listing of contents of a storage device, or parts of it.

25

DUPLEX — Twin, pair, or two-in-one situation: channel providing simultaneous
transmission in both directions or a second set of equipment to be used in
event of failure of the primary or either device.

E

EDP — Electronic Data Processing.

ENCODE — {1) To apply a code, frequently one consisting of binary numbers, to
represent individual characters or groups of characters in a message; (2) to
substitute letters, numbers, or characters for other numbers, letters, or charac-
ters, usually to intentionally hide the meaning of the message except to cer-
tain individuals who know the enciphering scheme.

ENCODER — Device capable of transiating from one method of expression to
another method of expression; translating a message into a series of binary
digits. .

END OF FILE — Termination or point of completion of a quantity of data.

ENTRY — {1) Statement in a programming system. in general, each entry is usually
written on one line of a coding form and punched on one card; some systems
permit a single entry to overflow several cards; (2) item of a list.

EQUIPMENT, OFF-LINE — Peripheral equipment or devices not in direct communi-
cation with the central processing unit of a computer.

EQUIPMENT, ON-LINE -- System and peripheral equipment or devices in which the
operation of such equipment is-under contro! of the central processing unit,
in which information reflecting current activity is introduced into the ‘data
processing system as soon as it occurs, directly in-line with the main flow of
transaction processing. .

EQUIPMENT, PERIPHERAL — Auxiliary machines which may be placed under
central computer control: card readers, card punches, magnetic tape feeds,
and high-speed printers. Peripheral equipment may be used on-line or off-line
depending upon computer design and job requirements.

ERROR — (1) General term referring to any deviation of a computed or a measured
quantity from the theoretically correct or true value; (2) part of the error due
to a particular identifiable cause: a truncation error, or a rounding error. in a
restricted sense, that deviation due to unavoidable random disturbances, or to
the use of finite approximations to what is defined by an infinite series; (3)
amount by which the computed or measured quantity differs from the
theoretically correct or true value.

ERROR, ABSOLUTE — Magnitude of the error disregarding the algebraic sign or (if
a vectorial error) disregarding its direction.

ERROR, INHERITED — Error in initial values, especially the error inherited from
previous steps in the step-by-step integration. This error could also be the
error introduced by the inability to make exact measurements of physical
quantities.

ERROR, ROUNDING — Error resulting from rounding off a quantity by deleting the
less significant digits and applying some rule of correction to the part retained:
0.2751 can be rounded to 0.275 with a rounding error of .0001.

ERROR, TRUNCATION — Error resulting from the use of only a finite number of
terms of an infinite series, or from approximation of operations in the
infinitesimal calculus by operations in calculus of finite differences. Frequently
convenient to define truncation error, by exclusion, as any error generated in
computation not due to rounding, initial conditions, or mistakes. A truncation
error would thus be that deviation of a computed quantity from the theoreti-
cally correct value that would be present even in the hypothetical situation in
which no mistakes were made, all given data were exact, no inherited error,
and infinitely many digits retained in all calculations.

26

EXECUTE — To interpret a machine instruction and perform the .indicated opera-
tion(s) on the operand(s).

EXIT — A way of momentarily interrupting or leaving a repeated cycle of opera-
tions in a program.

EXPRESSION — Any symbol or group of symbols representing a variable, or group
of variables, possibly combined by symbols representlng operators to a set of
definitions and rules.

FETCH — To obtain data from storage.
FIELD — Assigned area in a record to be marked with information.

FIELD, CONTROL — A constant location where information for control purposes
is placed; e.g., in a set of punch cards, if columns 79 and 80 contain various
codes which control whether or not certain operations will be performed on
any particular card, then columns 79 and 80 constitute a control field.

FILE — Organized information directed toward some purpose; may or may not be
sequenced according to a key contained in each’record.

FLAG — (1) Bit of information attached to a character or word indicating boundary
of a field; (2) indicator used to tell some later part of a program that some
condition occurred earlier; (3) indicator used to identify the members of
several intermixed sets.

FORTRAN — FORmuia TRANSslator. Programming language designed for problems
which can be expressed in algebraic notation allowing for exponentiation up
to three subscripts. The FORTRAN compiler is a routine for a given machine
which accepts a program written in FORTRAN source language and produces
a machine language routine object program. FORTRAN I} added considerably
to the power of the original language by giving it the ability to define and use
almost unlimited hierarchies of subroutines, all sharing a common storage
region if desired. Later improvemients have added the use of Boolean expres-
sions, and some capabilities for inserting symbolic machine language sequences
wnthm a source program

f

G

GAP — (1) Space or time interval used as an automatic sentinel to indicate the end of
a word, record, or file of data on a tape: a word gap at the end of a word a
record or item gap at the end of a group of words, a file gap at the end of a
group of records or items; (2) absence of mformatnon for a specified length of
time or space on.a.recording medium, contrasted with marks and sentinels
which are the presence of specific information to achieve a-similar purpose.
Marks are used primarily internally in variabie word length machines. Sentinels
achieve similar purposes either internally or externally, but sentinels are pro-
grammed, not inherent in the hardware; (3) space between the reading or re-
cording head and the recording medium, such as tape, drum, or disk.

GAP, RECORD — Interval of space or time associated with a record to indicate or
signal the end of the record.

GATE, AND - Signal circuit with two or more input wires in which the output wire
gives a signal only if all input wires receive coincident signals.

GATE, OR - Electrical gate or mechanical device which implements the logical OR
operator. An output signal occurs whenever there are one or more inputs on a
multi-channel input. An OR gate performs the function of the logical “in-
clusive-OR Operator.”

27

GENERATE — To produce or prepare a specific term in accordance with a specific
and defined rule or program.

GENERATOR, PROGRAM — Program which permits a computer to write other
programs automatically. Two types: 1. the character controlled generator,
which operates like a compiler in that it takes entries from a library tape, but
unlike a simple compiler in that it examines control characters associated with
each entry, and alters instructions found in the library according to the direc-
tions contained in control characters. 2. Pure generator is a program that
writes another program. When associated with an assembler, a pure generator
is usually a program section called into storage by the assembler from a
library tape, which then writes one or more_entries in another program. Most
assemblers are also compilers and generators. The entire system is usually re-
ferred to as an assembly system. '

GENERATOR, RANDOM NUMBER — Machine routine or hardware designed to
produce a random number or series of random numbers to specified limi-
tations.

GENERATOR, REPORT — Technique for producing complete data processing re-
ports giving only description of the desired content and format of output re-
ports, and certain information concerning the input file,

H

HANDLING, DATA — Same as processing, data (2).

HARDWARE — The physical equipment or devices forming a computer‘and periph-
eral equipment.

HEAD — Device which reads, records, or erases information in a storage medium,
usually a small electromagnet used to read, write or erase information on a
magnetic drum or tape or the set of perforating or reading fingers and block
assembly for punching or reading holes in paper tape or cards.

HOLLERITH — System of encoding alphanumeric information onto cards, synony-
mous with punch cards.

HOUSEKEEPING — Administrative or overhead operations necessary tc maintain
control of a situation: involves setting up of constants and variables to be
used in the program.

HYSTERESIS — (1) Lagging in the response of a unit of a system behind an increase
or a decrease in the strength of a signal; (2) phenomenom demonstrated by
materials which make their behavior a function of the history of their
environment.

IMAGE - Exact duplicate array of information or data stored in (or in transit to) a
different medium.)

IMAGE, CARD — Representation in storage of the holes punched in a card, so that
the holes are represented by one binary digit and the unpunched spaces are
represented by the other binary digit.

INDEX — Symboi or a number identifying a particular quantity in an array of simi-
lar quantities: X5 is the fifth item in an array of X's.

INDICATORS — Devices registering conditions such as high or equal conditions re-
sulting from a computation. Sequence of operations within a procedure may
be varied according to the position of an indicator.

INPUT — (1) Information or data transferred or to be transferred from an external
storage medium into internal storage of the computer; (2) describing the
routines which direct input as defined in (1) or the devices from which such
information is available to the computer; (3) device or collective set of de-
vices necessary for input as defined in {1).

28

INPUT-OUTPUT — General term for the equipment used to communicate with a
computer and the data involved in the communication.

INQUIRY — Technique whereby the interrogation of computer storage may be
initiated at a keyboard.

INSTRUCTION — (1) Set of characters which defines an operation together with
one or more addresses, or no address, and which, as a unit, causes the com-
puter to perform the operation on the indicated quantities. "“Instruction’ is
preferable to the terms “command’’ and “order’’; “‘command’’ is reserved for
a specific portion of the instruction woid: the part which specifies the opera-
tion which is to be performed. Order is reserved for the ordering of the charac-
ters, implying sequence, or the order of the. interpolation, or the order of the
differential equation; (2) the operation or command to be executed by a
computer, together with associated addresses, tags and indices. '

INSTRUCTION, MACRO — (1) Instruction consisting of a sequence of micro in-
structions inserted into the object routine for performing a specific operation;
(2) more powerful instructions which combine several operations in one
instruction.

INSTRUCTION, MICRO — Small, single, short, add, shift or delete type of command.

INSTRUCTION, SYMBOLIC — Instruction in assembly language directly translatable
into a machine code.

INTELLIGENCE, ARTIFICIAL — Study of computer techniques to supplement
human capabilities. As man has invented and used tools to increase his
physical powers, he now is beginning to use artificial intelligence to increase
his mental powers. In a more restricted sense, the study of techniques for
more effective use of digital computers by improved programming techniques.

INTERFACE — Common boundary between automatic data processing systems or
parts of a single system. :

INTERLACE — To assign successive storage locations: on a magnetic drum, usually
to reduce access time.

INTERPRETER — (1} Punch card machine which will take a punch card with no
printing on it, read the information in the punched holes, and print a transla-
tion in characters in specified rows and columns; (2) executive routine which
as computation progresses translates a stored program expressed in machine-
like pseudo code into machine code and performs indicated operations, by
subroutines, as translated. An interpreter is essentially a closed subroutine
which operates successively. on an indefinitely long sequence of program
parameters, the pseudo instructions, and operands. It may usually be entered
as a closed subroutine and left by a pseudo-code exit instruction.

INTERRUPT — To temporarily disrupt the normal operation of a routine by a
special signal from the computer. Normal operation can normally be resumed
from that point later.

ITEM — (1) Set of one or more fields containing related information; (2) unit of
correlated information relating to a single person or object; (3) contents of a
single message. .

ITERATIVE — Procedure or process which repeatedly executes a series of opera-

tions until some condition -is satisfied. Can be implemented by a loop in
routine. :

J

JAM, CARD — A pile-up of cards in a machine.

29

K

KEY — (1) A group of characters which identifies or is part of a record or item; any
entry in a record or item can be used as a key for collating or sorting; (2)
marked lever manually operated for copying a character: a typewriter, paper
tape perforator, card punch, manual keyboard, digitizer or manual word
generator; (3) lever or switch on a computer console for manually altering
computer action.

KEYPUNCH — (1) A special device to record information in cards or taperby punch-
ing holes in the cards or tape to represent letters, digits, and special characters;
(2) to operate a device for punching holes in cards or tape.

L

LABEL — Symbols used to identify or describe an item, record, message, or file.
1t may be the same as the address in storage.

LANGUAGE — System for representing and communicating information or data
between people, or between people and machines. A system consists of a
carefully defined set of characters and rules for combining them into larger
units, such as words or expressions, and rules for word arrangement or usage
to achieve specific meanings.

LANGUAGE, ALGORITHMIC — Arithmetic language by which numerical pro-
cedures may be precisely presented to a computer in a standard form.
Language is intended as a means of directly presenting any numerical pro-
cedure to any suitable computer for which a compiler exists, and also to
corhmunicate numerical procedures among individuals. The language itself re-
sults from international cooperation to obtain a standardized algorithmic
fanguage.

LANGUAGE, COMMON MACHINE — Machine-sensible information representation
common to a related group of data processing machines.

LANGUAGE, COMMON BUSINESS ORIENTED — Specific language by which busi-
ness data processing procedures may be precisely described in a standard
form, intended not only to present any business program to any suitable com-
puter for which a compiler exists, but as a means of communicating such
procedures among individuals.

LANGUAGE, INTERNATIONAL ALGEBRAIC — Forerunner of ALGOL..

LANGUAGE, MACHINE - (1) Language designed for interpretation and use by a
machine without translation; (2) system for expressing information which is
intelligible to a specific machine (a computer or class of computers). Such a
language may include instructions which define and direct machine opera-
tions, and information to be recorded by or acted upon by these machine
operations; {3) set of instructions expressed in the number system basic to a
computer, together with symbolic operation codes with absolute addresses,
relative addresses, or symbolic addresses.

LANGUAGE, OBJECT — Language which is output of an automatic coding routine.
Usually object language and machine language are the same, but a series of
steps in an automatic coding system may involve object language of one step
serving as a source language for the next step.

LANGUAGE, PROBLEM ORIENTED — (1) Language designed for convenience of
program specification in a general problem area rather than for easy con-
version to machine instruction code. (Components of such language may bear
little resermiblance to machine instructions.); (2) machine-independent language
where one need only state the problem, not the how of solution.

LANGUAGE, PROGRAM — Language used by programmers 1o write computer
routines.

LANGUAGE, SOURCE — Original form in which a program is-prepared before
machine processing.

30

LENGTH, RECORD — Number of characters necessary to contain all the informa-
tion in a record. .

LENGTH, WORD — Number of characters in a machine word. In a given computer,
the number may be constant or variable.

LIBRARY — Collection of information available to a computer, usually on magnetic
tapes. .

LIBRARY, ROUTINE — Collection of standard, proven routines and subroutines by
which probiems may be solved.

LIBRARY, SUBROUTINE — Standard and proven subroutines kept on file for use
at any time.

LINE, ACOUSTIC DELAY — Delay line using a medium providing acoustic delay as
mercury or quartz delay lines.

LIST, ASSEMBLY — Printed list, the byproduct of an assembly-procedure. It lists
in logical instruction sequence details of a routine showing the coded and
symbolic notation next to the actual notations established by the assembly
procedure. Highly useful in the debugging of a routine.

LIST, PUSH DOWN — List of items where the last item entered is the first item of
the' list, and the relative position of the other items is “‘pushed back’’ by one
item.

LIST, PUSH UP — List of items where each item is entered at the end of the list, and
the other items maintain their same relative position in the list.

LOAD — (1) To put data into a register or storage; (2) to put a magnetic tape onto a
tape drive, or to put cards into a card reader.

LOAD-AND-GO — Automatic . coding procedure which compiles the program,
creating machine language, and proceeds to execute the created program.
Such’ procedures are usually part of a monitor.

LOCATION — Storage position in the main internal storage which stores one com-
puter word and which is usually identified by an address.

LOGIC — (1) Science dealing with criteria or formal principles of reasoning and
thought; (2) systematic scheme which defines the interactions of signals in the
design of an automatic data processing system; (3) principles and application
of truth tables and interconnection between logical elements required for
arithmetic computation in an automatic data processing system.

LOGIC, SYMBOLIC — (1) Study of formal logic and mathematics by special written
language which avoids the ambiguity and inadequacy of ordinary language;
(2) mathematical concepts, techniques, and languages as used in {1), whatever
their particular application or context. P

LOOK UP TABLES — See table.

LOOP — (1) Self-contained series of instructions in which the last instruction can
‘modify and repeat itself until a terminal condition is reached, Productive in-
structions in the loop generally manipulate the operands, while bookkeeping
instructions modify the productive instructions, count the number of repeti-
tions. A loop may contain any number of conditions for termination. The
equivalent can be achieved by the technique of straight line coding, whereby
the repetition of productive and bookkeeping operations is accomplished by
explicitly writing the instructions for each repetition; {2) communications
circuit between two private subscribers or between subscriber and local switch-
ing center. .

LOW-ORDER — Pertaining to the weight or significance assigned to the digits of a
number: in the number 123456, the lower order digit is six. The three low-
order bits of a binary word are another example.

LPM — Lines Per Minute.

31

M

MAINTENANCE, FILE — Periodic file modification to incorporate changes accurring
during a given period.

MAINTENANCE, PREVENTIVE - Maintenance of a computer system to keep
equipment in operating condition and prevent failures during productive runs.

MAINTENANCE, REMEDIAL — Maintenance performed by contractor following
equipment failure: performed as required, on an unscheduled basis.

MALFUNCTION - Failure in the operation of the hardware of a computer.

MASKING — (1) Process of extracting a nonword group or a field of characters from
a word or string of words; (2) process of setting internal program controls to
prevent transfers that otherwise would occur upon setting of internal machine
latches.

MATRIX — (1) Array of quantities in a prescribed form. In mathematics, usually
capable of being subject to mathematical operation by an operator or another
“matrix; (2) array of coupled circuit elements: diodes, wires, magnetic cores,
and relays, capable of performing a specific function such as conversion from
one numerical system to another. The elements are usually arranged in rows
and columns. A matrix is a particular type of encoder or decoder.

MESSAGE — (1) Group of words, variable in length, transported as a unit; (2) trans-
ported item of information. . . ‘

MICROCOMMAND — A word obtained from the control store that exercises ele-
mentary control over the various system elements within a basic machine
cycle.

MICROPROGRAM — (1) Program of analytic instructions which the programmer
constructs from the basic subcommands of a digital computer; (2) sequence of
pseudo commands translated by hardware into machine subcommands; (3)
means of building various analytic instructions as needed from the sub-
command structure of a computer; (4) plan for obtaining maximum utilization
of the abilities of a digital computer by efficient use of the subcornmands of
the machine. .

MISTAKE — Human failing: faulty arithmetic, use of incorrect formula, or incorrect
instructions: sometimes called gross errors to distinguish from rounding and
truncation errors. Computers malfunction and humans make mistakes. Com-
puters do not make mistakes and humans do not malfunction, in this sense.

MIT — Master Instruction Tape. See tape, master instruction.

MNEMONIC —- Pertaining to the assisting of human memory: a mnemonic term,
usually an abbreviation, that is easy to remember {mpy for multiply and acc
for accumulator).

MODIFY — (1) To alter a portion of an instruction to make its interpretation and
execution other than normal. Modification may or may not permanently
change the instruction or affect only the current execution, Most frequent
modification is that of the effective address through use of index registers;
(2) to alter a subroutine according to a defined parameter.

MODULE — (1) Interchangeable plug-in item containing components; (2) an in-
cremental block of storage or other building block for expanding the com-
puter capacity.

MONITOR — To supervise and verify the correct operation of a program during its
execution, usually by a diagnostic routine used from time to time to answer
questions about the program.

MONITOR ROUTINE — See routine, executive.

32

MULTIPLEX — The process of transferring data from several storage devices opera-
ting at relatively low transfer rates to one storage device operating at a high
transfer rate so that the high-speed device is not obliged to wait for the low-
speed devices. :

MULTIPROGRAMMING — Technique for handling numerous routines or programs
simultaneously by an interweaving process. .

N
NANOSECOND — One-thousandth of a millionth of a second; 109 seconds.

NOISE — Meaningless extra bits or words which must be ignored or removed from
the data when the data are used.

NORMALIZE — (1) To adjust the exponent and fraction of a floating point quantity
’ so that the fraction lies in the prescribed normal standard range; (2) to reduce
a set of symbols or numbers to a normal or standard form. :

NOTATION — (1) Act, process, or method of representing facts or quantities by a
system or set of marks, signs, figures, or characters; (2) system of such symbols
or abbreviations used to express technical facts or quantities; as mathematical
notations; (3) annotation; note.

NOTATION, SYMBOLIC — Method of representing a Storage location by one or
more figures. :

NUMBER — (1) The, or a total, aggregate, or amount of units; (2) a figure or word,
or a group of figures or words, representing graphically an arithmetical sum; a
numeral, as the number 45; (3) numeral by which a thing is designated in a
series, as a pulse number; (4) single member of a series designated by consecu-
tive numerals, as a part number; (5) character, or a group of characters, unique-
ly identifying or describing an article, process, condition, document, or class;
(6) to count, enumerate; {7) to distinguish by a number.

NUMBER, BINARY — A number, usually consisting of more than one figure, repre-
senting a sum, in which the individual quantity represented by each figure is
-based on a radix of two. The figures used are 0 and 1.

NUMBER, DECIMAL — A number, usually of more than one figure, representing a
sum, in which the quantity represented by each figure is based on the radix of
ten. The figuresare 0, 1,2, 3,4,5,6, 7,8, and 9.

NUMBER, HEXADECIMAL — Number, usually of more than one figure, repre-
senting a sum in which the quantity represented by each figure is based on a
radix of sixteen. .

NUMBER, SYMBOLIC — Numeral, used in writing routines, for referring to a specific
’ storage location; such numerals are converted to actual storage addresses in the
final assembling of the program.

(o)

OCTAL — Pertaining to eight; usually a number system of base or radix eight: in
octal notation, octal 214 is 2 times 64, plus 1 times 8, plus 4 times 1, and
equals decimal 140. Octal 214 in binary-coded-octal is represented as 01 0,
001, 100; octal 214, as a straight binary number is written 10001100. Note
that binary coded octal and straight binary differ only in the use of commas;
in the example shown, the initial zero in the straight binary is dropped. E

OFF-LINE — Descriptive of a system and peripheral equipment or devices in which
the operation of peripheral equipment is not under the control of the central
processing unit, . !

ON-LINE — Descriptive of a system and of peripheral equipment or devices in which
the operation of such equipment is under control of the central processing

33

unit, and in which information reflecting current activity is introduced into
the data processing system as soon as it occurs. Thus, directly in-line with the
main flow of transaction processing.

OPEN-ENDED — Quality by which addition of new terms, subject heedings, or
classifications does not disturb the preexisting system.

OPERAND — Quantity entering or arising in an instruction. An operand may be an
argument, a result, a parameter, or an indication of the location of the next
instruction, as opposed to the operation code or symbol.itself. it may be the
address portion of an instruction.

OPERATION, HOUSEKEEPING — General term for the operation performed for a
machine run before actual processing begins. Examples of housekeeping opera-
tions are establishing controlling marks, setting up auxiliary storage units,
reading in first record for processing, initializing, setup verification operations,
and file identification.

OPERATION, PARALLEL — The performance of several actions, usually of a similar
nature, simultaneously through provision of individual similar or identical de-
vices for each such action. Particularly flow or processing of information.
Parallel operation is performed to save time over serial operation. Parallel
operation usually requires more equipment.

OPERATION, REAL TIME — Use of computer as an element of a processing system
in which times of occurrence of data transmission are controlled by other
portions of the system, or by physical events outside the system, and cannot
be modified for convenience in computer programming. Such an operation
either proceeds at the same speed as the events being simulated or at a suffi-
cient speed to analyze or control simultaneous external events.

OPERATION, SEQUENTIAL — Performance of actions one after the other in time.
The actions referred to are of a large scale as opposed to the smaller scale
operations referred to by the term serial operation. For an example of
sequential operation consider Ax(BxC). The two multiplications indicated
follow each other sequentially. However, the processing of the individual
digits in each multiplication may be either parallel or serial.

OPERATION, SERIAL — Flow of information through a computer in time sequence
using only one digit, word, line or channel at a time. ‘

OPERATOR — (1) A mathematical symbol which represents a mathematical process
to be performed on an associated operand; (2) the portion of an instruction
which tells the machine what to do; (3) a machine operator.

OPERATOR, AND — (1) Logical operator which has the property that if P is a state-
ment and Q is a statement, then P AND Q is true if both statements are true,
false if either is false or both are faise. Truth is normally expressed by the
value 1, falsity by 0. The AND operator is often represented by a centered dot
(P-Q), by no sign (PQ), by an inverted “‘u” or logical product symbol (PnQ),
or by the fetter **X’ or multiplication symbol (PxQ). Note that the letters
AND are capitalized to differentiate between the logical operator AND the
conjunction; (2) the logical operation which makes use of the AND operator
or logical product.

OPERATOR, EXCLUSIVE OR — A logical operator which has the property that if
P and Q are two statements, then the statement P*Q, where the * is the
Exclusive OR operator, is true if either P or Q, but not both are true, and
false if P and Q are both false or both true, according to the following table,
wherein the figure 1 signifies a binary digit or truth.

P Q P*Q

0 0 0 (even)
¢ 1 1 (odd)
1 0 1 (odd)
1 1 0 (even)

34

The Exclusive OR is the same as the Inclusive OR, except that the case with
both inputs true yields no output: P*Q is true if P or Q are true, but not
both. Primarily used in compare operations.

OPERATOR, INCLUSIVE OR — Logical operator which has the property that P or
Qis true, if P or Q or both is true; when the term OR is used alone, as in OR-
gate, the inclusive OR is usually implied.

OPERATOR, OR — Logical operator which has the property such that if P or Q ére
two statements, then the statement P or Q is true or false varies according to
the following possible combinations:

P | Q | PorQ
False True " True
True False True
True True True
False False False

ORDER — (1) Defined successive arrangement of elements or events. Losing favor as
a synonym for instructions, due to ambiguity; (2) to sequence or arrange in a
series; (3) weight or sngmf:cance assigned to a digit position in a number.

ORIGIN — The absolute storage address in relatwe codlng to which addresses in a
region are referenced.

OUTPUT — (1) Information transferred from internal storage of a computer to
secondary or.external storage, or to any device outside of the computer; (2)
routines which direct (1); (3) device or collective set of devices necessary for
(1); (4) to transfer from internal storage on to external media.

OVERFLOW — (1) The condmon whuch arises when the result of an arithmetic
operation exceeds the capacity of the storage space allotted in a digital com-
puter; (2) digit arising from this condition if a mechanical or programmed
indicator is included (otherwise digit may be lost.

OVERLAY — Technique for bringing routines into high-speed storage from some
other form of storage during processing, so that several routines will occupy
the same storage locations at different times. Overlay is used when the total
storage requirements for instructions exceed the available main storage.

OVERPUNCH — To add holes in a card column that already contain one or more
- holes.

P

PANEL, CONTROL — (1) Interconnection device, usually removable, which employs
removable wires to control .the operation of computing equipment. Used on
punch card machines to carry out functions controlled by the user. On com-
puters it is used primarily to control input and output functions; (2) device or
component of some data processing machines that permits the expression of
instructions in a semifixed computer program by the insertion of pins, plugs,
or wires into sockets, or hubs in the device, in a pattern to represent instruc-
tions, thus making electrical mterconnectlons which may be sensed by the
data processing machine.

PARALLEL — (1) To handle simultaneously in separate facilities; (2) to operate on
two or more parts of a word or item simultaneously.

PARAMETER — (1) Quantity in a subroutine whose value specifies or partly speci-
fies the process to be performed. It may be given different values when the -
subroutine is used in different main routines or in different parts of one main
routine, but which usually remains unchanged throlighout any one such use;
(2) quantity used in a generator to specify machine configuration, designate
subroutines to be included, or otherwise to describe the desired routine to be
generated; (3) constant or a variable in mathematics, which remains constant

35

during some calculation; (4) definable characteristic of an item, device, or
system,

PASS — Complete cycle of reading, processing and writing: a machine run.

PATCH — (1) Section of coding inserted into a routine to correct a mistake or alter
the routine, often not inserted into the actual sequence of the routine being
corrected, but placed somewhere else, with an exit to the patch and a return
to the routine provided; (2) to insert corrected coding.

PERIOD, PERFORMANCE — Period of 30 consecutive calendar days during which
a newly installed computer is being tested for acceptance by the U. S. Govern-
ment. Such a period does not include equipment time used for data purifica-
tion, file conversion, and similar preparatory operations or those hours of
operation rescheduled as a result of equipment failure.

PING-PONG — Programming technique of using two magnetic tape units for multiple
reel files and switching automaticaily between the two units until the com-
plete file is processed.

PLOTTER — Visual display or board in which a dependent variable is graphed by an
automatically controlled marker as a function of one or more variables.

POINTER, BINARY — Radix pointer in a binary number system: the dot that marks
the position between the integral and fractional, or units and halves in a binary
number.

POINT, LOAD — Preset point at which magnetic tape is initially positioned under
the read-write head to start reading or writing.

POINT, RADIX — Dot delineating the integer digits from the fractional digits of a
number; specifically, the dot that delineates the digital position, involving the
zero exponent of the radix from the digital position involving the minus-one
exponent of the radix. The radix point is often identified by the name of the
system (binary point, octal point, or decimal point). In the writing of any
number in any system, if no dot is included, the radix point is assumed to
follow the rightmost digit.

PRE-EDIT — To edit the input data previous to the computation.

PRECISION — (1) Degree of exactness with which a quantity is stated; (2) degree
of discrimination or amount of detail: a 3 decimal digit quantity discriminates
among 1000 possible quantities. A result may have more precision than it has
accuracy: the true value of pi to 6 significant digits is 3.14159; the value
3.14162 is precise to 6 figures, given to 6 figures, but is accurate only to about
5.

PRIMITIVE — Primitive usually pertains to the lowest level of a machine instruction
or lowest unit of language translation.

PROBLEM, BENCHMARK — Routine used to determine the speed performance of a
computer. One method is to use one-tenth of the time required to perform
nine complete additions and one complete muitiplication. A complets addition
or a complete multiplication time includes the time required to procure two
operands from storage, perform the operation and store the result, and the
time required to select and execute the required number of instructions.

PROCESS — General term covering such terms as assemble, compile, generate, inter-
pret, and compute.

PROCESS, ITERATIVE — A process for calculating a desired result by means of a
repeating cycle of operations, which comes closer and closer tc the desired re-
sult; e:g., the arithmetical square root of N may be approximated by an itera-
tive process using additions, subtractions, and divisions only.

PROCESSING, AUTOMATIC DATA — Processing performed by a system of elec-
tronic or electrical machines so interce: rected and interacting as to reduce to

36

a minimum the need for human assistance or intervention. Synonymous with
(ADP) and related to (system, automatic data processing).

PROCESSING, BATCH — Technique by which terms to be processed must be coded
and collected into groups before processing. :

PROCESSING, DATA — (1) Preparation of source media which contain data or
basic elements of information, and the handling of such data according to
precise rules or procedures to accomplish such operations as classifying, sort-
ing, calculating, summarizing, and recording; (2) production of records and
reports.

PROCESSING, ELECTRONIC DATA — Data processing performed largely by elec-
tronic equipment.

PROCESSING, INFORMATION — A less restrictive term than data processing,
encompassing the complete scientific and business operations performed by a
computer.

PROCESSING, PARALLEL — The operation of a computer so that programs for
more than one run are stored simultaneously in its storage, and executed
concurrently.

PROCESSING, REAL TIME — Processing of information or data in a sufficiently
rapid manner -so th.at the results of the processing are available in time to
influence the process being monitored or controlled.

PROCESSOR — (1) Géneric term which includes aséembly, compiling, and generation;
(2) shorter term for automatic data processor or arithmetic unit.

PROGRAM — (1) Complete plan for the solution of a problem, more specifically the
complete sequence of machine instructions and routines necessary to solve a
problem; (2) to plan the procedures for solving a probiem. This involves the
analysis of the problem, preparation of a flow diagram, preparing details, test-
ing, and developing subroutines, allocation of storage locations, specification
of input and output formats, and incorporation of a computer run into a
complete data processing system.

PROGRAM, CONTROL — Sequence of instructions which prescribes the steps to be
taken by a computer system or any other device.

PROGRAM, GENERAL — Program expressed in computer code designed to solve u
class of problems, or specializing on a specific problem. when appropriate
parametric values are supplied.

PROGRAM, OBJECT — Program which is the output of an automatic coding sys-
tem. Often the object program is a machine language program ready for execu-
tion, but it may well be in an intermediate language. Contrasted with (pro-
gram, source). : :

PROGRAM, SOURCE — Computer program written in a language designed for ease
of expression of a class of problems or procedures, by humans: symbolic or
algebraic. A" generator, assembler, translator, or compiler routine is used to
perform the mechanics of translating the source program into an object pro-
gram in machine language. See program, object, above,

PROGRAMMING, INTERPRETIVE — Writing of programs in pseudo machine
language, which is precisely converted by the computer into actual machine
language instructions before being performed by the computer.

PROGRAMMING, MICRO — Technique of using a special set of instructions for an
automatic computer that consists only of basic elemental operations which the
programmer may combine into higher level instructions, which he may then
program using the higher level instructions only: if a computer has only basic
instructions for adding, subtracting, and multiplying, the instruction for
dividing would be defined by microprogramming.

37

PROGRAMMING, SYMBOLIC — Use of arbitrary symbols to represent addresses in
order to facilitate programming.

PROM — Programmable Read Only Memory. Integrated circuit array that is manu-
factured with a pattern of all logical zeros or ones and has a specific pattern
written into it by a special hardware programmer.

PSEUDO-OPERATION — An operation which is not part of the computer’s opera-
tion repertoire as realized by hardware; hence an extension of the set of
machine operations.

PSEUDO-RANDOM — Property of satisfying one or more of the standard criteria for
statistical randomness but being produced by a definite calculation process.

PUNCH, CARD — Machine which punches cards in designated locations to store data
which can be conveyed to other machines or devices by reading or sensing the
holes.

R

RADIX — Quantity of characters for use in each of the digital positions of a number-
ing system. In the more common numbering systems the characters are some
or all of the Arabic numerals:

System Name | Character | Radix
Binary (0,1) 2.
Octal (0,1,2,3,4,5,6,7) 8
Decimal {0,1,2,3,45,6,7,89) 10

Uniess otherwise indicated, the radix of any number is assumed to be 10, For
positive identification of a radix 10 number, the radix is written in parentheses
as a subscript to the expressed number: 126(10). The radix of any nondecimal
number is expressed in similar fashion: 1%(2) and 5(g). Synonymous with
base.

~ RANDOM ACCESS — See access, random.

RATE, BIT — Rate at which binary digits, or pulses representing them, pass a given
point on a communications line or channel.

RATE, CLOCK — Time rate at which pulses are emitted from the clock. The clock
rate determines the rate at which logical or arithmetic gating is performed with
a synchronous computer.

RATE, ERROR — Total amount of information in error, due to the transmission
media, divided by the total amount of information received.

RATE, SAMPLING — Rate at which measurements of physical quantities are made:
if it is desired to calculate the velocity of a missile and its position is measured
each millisecond, then the sampling rate is 1,000 measurements per second.

RATIO, SIGNAL-TO-NOISE — Ratio of the amount of signals conveying informa-
tion to the amount of signals not conveying information.

READ — (1) To sense information contained in some source; (2) the sensing of
information contained in some source.

READ-IN — To sense information contained in some source and transmit this
information to an internal storage.

READ, NONDESTRUCTIVE — Reading of the information in a register without
changing that information. ’

READ-OUT — To sense information contained in some internal storage and transmit
this information to a storage external to the computer.

38

READ, CARD — (1) Mechanism that senses information punched into cards; (2) in-
put device consisting of a mechanical punch card reader and related electronic
circuitry which transcribes data from punch cards to working storage or
magnetic tape.

READER, CHARACTER — Specialized device which cah convert data represented
in one of the type fonts or scripts read by human beings directly into machine
language. Such a reader may operate optically, or if the characters are printed
in magnetic ink, the device may operate magnetically or opticaily.

READER, HIGH-SPEED — Reading device capable of being connected to a computer
to operate online without seriously holding up the computer. A card reader
reading more than 250 cards per minute would be called a high-speed reader.
A reader which reads punched paper tape at a rate greater than 50 characters
per second could also be called a high-speed reader.

READER, MAGNETIC TAPE — Device capable of sensing information recorded on
a magnetic tape in the form of a series of magnetized spots.

READER, PAPER TAPE — Device capable of sensing information punched on a
paper tape in the form of a series of holes.

RECORD, UNIT — (1) Separate record that is similar in form and content to other
records; (2) sometimes a piece of nontape auxiliary equipment (card reader,
printer or console typewriter). .

REGISTER — Hardware device used to store bits or characters. A register is usually
constructed of elements such as transistors or tubes and usually contains
approximately one word of information. Common programming usage de-
mands that a register have the ability to operate upon information and not
merely store information; hardware usage does not make the distinction.

REGISTER, INDEX — A register which contains a quantity which may be used to
modify addresses. B-register.

REGISTER, SHIFT — Register in which the characters may be shifted one or more
positions to the right or left. In a right shift, the rightmost characters are lost.
In a left shift, the leftmost characters are lost.

RELIABILITY — (1) A measure of the ability to function without failure; (2) the
amount of credence placed in a result.

RERUN — To repeat all or part of a program on a computer.

RESTART — To go back to a specific planned point in a routine, usually in the case
of machine malfunction, for the purpose of rerunning the portion of the
routine in which the error occurred. The iength of time between restart points
in a given routine should be a functlon of the mean free-error time of the
machine itself.

RESTORE — To return an index register, a variable address, or other computer word
to its initial or preselected value.

RETRIEVAL, INFORMATION — Recovering of desired information or data from a
collection of graphic records.

RETURN — Mechanism providing for a return in the usual sense, in particular a set
of instructions at the end of a subroutine which permit control to return to
the proper point in the main routine.

ROUND — Deletion of the least significant d|g|t(s) with or without modlflcatlons to
reduce bias.

ROUTINE — Set of coded instructions arranged in proper sequence to direct the com-
puter to perform a desired operation or sequence of operations, or a sub-
division of a program consisting of two or more instructions that are func-
tionally related (a program). See subroutine and program.

39

ROUTINE, DIAGNOSTIC — Routine used to locate a malfunction in a computer, or
to aid in locating mistakes in a computer program. Thus, any routine specifi-
cally designed to aid in debugging or trouble shooting.

ROUTINE, EXECUTIVE — Routine which controls loading and relocation of
routines and in some cases makes use of instructions which are unknown. to
the general programmer. Effectively, an executive routine is part of the
machine itself.

ROUTINE, FLOATING POINT — Set of subroutines which cause a computer to
execute floating point arithmetic. These routines may be used to simulate
floating point operations on a computer with no built-in floating point hard-
ware.

ROUTINE, HOUSEKEEPING — Initial mstructnons in a program which are executed
on|y one time: clear storage.

ROUTINE, INTERPRETIVE — Routine that decodes and executes instructions
written as pseudocodes, contrasted with a compiler which decodes the
pseudocodas into a machine language routine to be executed at a later time.
The essential characteristic of an interpretive routine is that a particular pseudo
code operation must be decoded each time it is executed.

RUN — Performance of one program on a computer, thus the performance of one
routine, or several routines linked so that they form an automatic operating
unit, during which manual manipulations by the computer operator are
minimal.

S

SCALE — A range of values frequently dictated by the computer word- length or
routine at hand.

SCAN — To examine every reference or every entry in a file routinely as a part of a
retrieval scheme; occasionally, to collate.

SCREEN — (1) Surface in an electrostatic cathode ray storage tube where electro-
static charges are stored, and by means of which information is displayed or
stored temporarily; {2) to make preliminary selection from a set of entities,
selection criteria being based on a given set of rules or conditions.

SEARCH — To examine a series of items for any that have a desired property or
properties.

SEARCH, BINARY — Search in which the series of items is divided into two parts,
one of which is rejected, and the process repeated on the unrejected part until
the item with the desired property is found. This process usually depends
upon the presence of a known sequence in the series.

SEGMENT — (1) To divide a routine in parts, each consisting of an integral number
of subroutines, and each part capable of being completely stored in the inter-
nal storage and containing the necessary instructions to jump to other seg-
ments; (2) that portion of a routine too long to fit into internal storage
which is short enough to be stored entirely in the internal storage. Such a
segment contains the coding necessary to call in other segments automati-
cally. Routines which exceed internal storage capacity may be automatically
divided into segments by a compiler.

SELECT — (1) To take the alternative A if the report on a condition is of one state,
and alternative B if the report on the condition is of another state; (2) to
choose a needed subroutine from a file of subroutines.

SELECTOR — Device which interrogates a condition and initiates one of several
alternate operations.

SENSE — (1) To examine, particularly relative to a criterion; (2) to determine the

present arrangement of some element of hardware, especially a manually-set
switch; {3) to read punched holes or other marks.

40

SENSING, MARK — Technique for detecting special pencil marks entered in special
places on a punch card and automatically translating the marks into punched
hole.

SEQUENCE — (1) To put a set of symbols into an arbitrarily defined order: to select
Aif A is greater than or equal to B, or select B if A is less than B; (2) arbitrarily
-defined order of a set of symbols: an orderly progression of items of informa-
tion or of operations in accordance with some rule.

SEQUENCE, CALLING — Instructions used for linking a closed subroutine with a
main routine: standard linkage and a list of the parameters.

SEQUENCE, CONTROL — Normal order of selection of instructions for execution.
In some computers one of the addresses in each instruction specifies the con-
trol sequence. In most computers, the sequence is consecutive except where a
transfer occurs. . :

SEQUENCE, RANDOM NUMBER — Unpredictable array of numbers produced by
change, and satisfying one or more of the tests for randomness.

SERIAL — (1) Handling of one after the other in a single facility, such as transfer or
store in a digit-by-digit time sequence, or to process a sequence of instructjons
one at a time (sequentially); {2) time sequence transmission' of, storage of, or
logical operations on the parts of a word, with the same facilities for successive
parts. Related to operation, serial and contrasted with parallel (2).

' SERIAL-PARALLEL — (1) Combination of serial and parallel (serial by character,
paraliel by bits comprising the characters; (2) descriptive of a device which
converts a serial input into a parallel output.

"SET — (1) To place a storage device in a prescribed state; (2) to place a binary cell in
the one state; (3) a collection of elements having some feature in common or
which bear a certain relation to one another: all even numbers, geometrical
figures, terms in a series, a group of irrational numbers, all positive even

" integers less than 100 may be a set or a subset.

SET, CHARACTER — Agreed set of representations (characters) from which selec-
tions are made to denote and distinguish data. Each character differs from all
others, and the total number of characters in a given set is fixed: a set may
include the numerals O to 9, the letters A to Z, punctuation marks and a blank
or space. Clarified by alphabet. .

SHIFT — To move the characters of a unit of information columnwise right or left.
For a number, this is equivalent to multiplying or dividing by a power of the
base of notation. See below.

SHIFT, ARITHMETIC — To muitiply or divide a quantity by a power of the number
base: if binary 1101, which represents decimal 13, is arithmetically shifted
twice to the left, the result is 110100, which represents 52, which is also
obtained by multiplying 13 by 2 twice; on the other hand, if the decimal 13
were to be shifted to the left twice, the result would be the same as multiply-
ing by 10 twice, or 1300. .

SHIFT, CYCLIC — Shift in which the digits dropped-off at one end of a word are
returned at the other in a circular fashion: if register holds eight digits,
23456789, the result of a cyclic shift two columns to the left would be to
change the contents of the register to 45678923.

SIMULATION — (1) The representation of physical systems and phenomena by com-
puters, models or other equipment: an. imitative type of data processing in
which an automatic computer is used as a model of some entity; a chemical
process. Information enters the computer to represent the factors entering the
real process, the computer produces information that represents the results of
the process, and the processing done by the computer represents the process
itself; (2) in computer programming, the technique of setting up a routine for
one computer to make it operate as nearly as possible like some other com-
puter.

41

SIMULATOR -- (1) Computer or model representing a system or phenomenon
“which mirrors or maps the effects of various changes in the original, enabling
the original to be studied, analyzed, and understood by means of the behavior
of the model; (2) a program or routine corresponding to a mathematical
model or representing a physical model; (3} a routine executed by one com-
puter but which imitates the operations of another computer.

SOFTWARE — The totality of programs and routines used to extend the capabilities
of computers, such as compilers, assemblers, narrators, routines, and sub-
routines. Contrasted with hardware.

SORT — To arrange items of information according to rules dependent upon a key
) or field contained in the items or records: to digital-sort is to sort first the
keys on the least significant digit, and to resort on each higher order digit
until the items are sorted on the most significant digit.

SORT, MERGE — To produce a single sequence of items, ordered according to some
rule, from two or more previously unordered sequences, without changing the
iterns in size, structure, or total number. More than one pass may be required
for a complete sort, but items are selected during each pass on the basis of
the entire key.

STORAGE — (1) The term preferred to memory; (2) pertaining to a device in which
data can be stored and from which it can be obtained at a later time. The
means of storing data may be chemical, electrical or mechanical; (3) a device
consisting of electronic, electrostatic, electrical, hardware or other elements
into which data may be entered, and from which data may be obtained as
desired; (4) the erasable storage in any given computer. See memory.

STORAGE, BUFFER — (1) Synchronizing element between two different forms of
storage, usually between internal and external; (2) input device in which
information is assembled from external or secondary storage and stored ready
for transfer to internal storage; (3) output device into which information is
copied from internal storage and held for transfer to secondary or external
storage. Computation continues while transfers between buffer storage and
secondary or internal storage or vice versa take place; (4) device which stores
information temporarily during data transfers. See buffer.

STORAGE, DISK — Storage of data on the surface of magnetic disks. See disk,
magnetic and storage, magnetic disk.

STORAGE, MAGNETIC CORE — Storage device in which binary data are represented
by the direction of magnetization in each unit of an array of magnetic material,
usually in the shape of o-rings, but also in other forms such as wraps on
bobbins. Synonymous with core storage.

STORAGE, MAGNETIC DISK — Storage system consisting of magnetically coated
disks, on the surface of which information is stored in the form of magnetic
spots arranged to represent binary. data. These data are arranged in circular
tracks around the disks and are accessible to reading and writing heads on an
arm which can be moved mechanically to the desired disk and then to the
desired track on that disk. Data from a given track are read or written
sequentially as the disk rotates. See storage, disk.

STORAGE, PARALLEL — Storage of data in which all bits, characters, or words are
essentially equally available in space, without time being one of the factors.
When words are in parallel, the storage is said to be parallel by words; when
characters within words, or binary digits within words or characters, are dealt
with simultaneously, not one after the other, the storage is parallel by charac-
ters, or parallel by bit.

STORAGE, PROGRAM - Portion of the internal storage reserved for the storage of
programs, routines, and subroutines. In many systems protection devices are
used to prevent inadvertent alteration of the contents of the program storage.
Contrasted with storage, temporary.

42

STORAGE, TEMPORARY — Portion of the internal storage reserved for the data
upon which operations are being performed. Synonymous with working space
and storage; contrasted with storage, program. ,

STORE — (1) To transfer an element of information to a device from which the .
unaltered- information can be obtained at a later time; (2) to retain data in a
device from which it can be obtained at a later time.

SUBPROGRAM. — Part of a Iérger program which can be converted into machine
language independently. See microprogram. :

SUBROUTINE — (1) Set of instfuctions necessary to direct the computer to catry
out a well defined mathematical or logical operation; (2) subunit of a routine.
A subroutine is' often written in relative or symbolic coding even when the
routine to which it belongs is not; (3) portion of a routine that causes a com-
puter to carry out a well-defined mathematical or logical operation; (4) routine
arranged so that control may be transferred to it from a master routine and so
that, at the conclusion of the subroutine, control reverts to the master routine
(usually called closed subroutine); (5) single routine may simultaneously be
both a subroutine with respect to another routine and a master routine with
respect to a third. Control is usually transferred to a single subroutine from
more than one place in the master routine; the reason for using the sub-
routine is to avoid having to repeat the same sequence of instructions in
different places in the master routine. See routine.

SUBROUTINE, CLOSED — Subroutine not stored in the main path of the routine.
Such a subroutine is entered by a jump operation; provision is made to return
control to the main routine at the end of the operation. The instructions re-
lated to the entry and reentry function constitute a linkage.

SUBROUTINE, STATIC — A subroutine which involves no parameters other than
the addresses of the operands. ‘

SUBSET — (1) A set contained within a set; (2) a subscriber apparatus in a communi-
cations network.

SUBTRAHEND — The number or quantity which is subtracted from another num-
ber, called .the minuend, giving a result usually called the difference, or some-
times called the remainder. .

SUM, LOGICAL — A result, similar to an arithmetic_sum, obtained in the process of
ordinary addition, except that the rules are such that a result of one is obtained
when either one or both input variables is a one, and an output of zero is
obtained when the input variables are both zero. The logical sum is the name
given the result produced by the inclusive or operator. :

SYMBOL, LOGICAL — Sign used as an operator to denote the particular operation
to be performed on the associated variables. '

SYNTAX — The rules governing sentence structure in a language, or statement
structure in a language such-as that of a compiler. :

SYSTEM — Assembly of procedures, processes, methods, routines, or techniques
united by regulated interaction to form an organized whole,

SYSTEM, INFORMATION — Network of all communication methods within an
organization. Information may be derived from many sources other than a
data processing unit: telephone, personal contact, or by studying an operation.

SYSTEM, INFORMATION RETRIEVAL — System for locating and selecting, on

© demand, certain documents or other graphic records relevant to a given infor-

mation requirement from a file. Examples of information retrieval systems are
classification, indexing, and machine searching systems.

SYSTEM, NUMBER — (1) Systematic method for representing numerical quantities
in which any quantity is represented as the sequence of coefficients of the

43

successive powers of a particular base with an appropriate po:nt. Each
succeeding coefficient from right to left is associated with and usually multi-
plies the next higher power of the base. The first coefficient to the left of the
point is associated with the zero power of the base. For example, in decimal
notation 371.426 represents (3x102)+(7x101)+(1x100)+(4x10-1)+(2x102)
+(6x10°3); (2) following are names of the number systems with bases 2
through 20: 2, binary; 3, ternary; 4, quaternary; 5, quinary; 6, senary; 7,
septenary; 3, octal, or octonary; 9, novenary; 10, decimal; 11, undecimal; 12,
duodecimal: 13, terdenary; 14, quaterdenary; 15, quindenary; 16, sexadecimal,
or hexadecimal; 17, septendecimal; 18, octodenary; 19, novemdenary; 20,
vicenary. 32, duosexadecimal, or duotricinary; and 60, sexagenary. The
Binary, Octal, Decimal, and Sexadecimal systems are widely used in com-
puters.

SYSTEM, OPERATING — Integrated collection of service routines for supervising
the sequencing of programs by a computer. Operating systems may perform
debugging, input-output, accounting, compilation, and storage assignment
tasks.

T

TABLE — Collection of data in a form suitable for ready reference, frequently as
stored in sequenced machine locations or written in the form of an array of
rows and columns for easy entry and in which an intersection of labeled rows
and columns serves to locate a specific piece of data or information.

TABLE, FUNCTION — (1) Two or more sets of information so arranged that an entry
in one set selects one or more entries in the remaining sets; (2) a dictionary;
(3) a device constructed of hardware, or a subroutine, which can either decode
multiple inputs into a single output or encode a single input into multiple
outputs; (4) a tabulation of the values of a function for a set of values of the
variable. :

TABLE LOOK UP (TLU) — Obtaining a function value corresponding to an argu-
ment, stated or implied, from a table of function values stored in the com-
puter. Also, the operation of obtaining a value from a table.

TABLE, TRUTH — Representation of a switching function, or truth function, in
which every possible configuration of argument values 0, 1, or true-false is
listed, and beside each is given the associated function value 0-1 or true-false.
The number of configurations is 2N, where N is the number of arguments,
unless the function is incompletely specified: don’t care conditions. An exam-
ple of a truth table for the AND-function and the OR-function (inclusive) is:

VARIABLE AND OR
A B AB A+B
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

TAG — Unit of information whose composition differs from that of other members
of the set so that it can be used as a marker or label. A tag bit is an instruction
word that is also called a sentinel.

TAPE, MAGNETIC — Tape or ribbon of any material impregnated or coated with
magnetic or other material on which information may be placed in the form
of magnetically polarized spots.

TAPE, PAPER — Strip of paper capable of storing or recording information. Storage
may be in the form of punched holes, partially punched holes, carbonization
or chemical change of impregnated material, or imprinting. Some paper tapes,
such as punched paper tapes, are capable of being read by the input device of a
computer or a transmitting device by sensing the pattern of holes which
represent coded information.

44

TAPE, PUNCH — Tape, usually paper, upon which data may be stored in the form of
punched holes. Hole locations are arranged in columns across the width of the
tape. There are usually 5 to 8 positions (channels) per column, with data
represented by a binary coded decimal system. All holes in a column are
sensed simultaneously in a manner similar to that for punch cards.

TIME, ACCESS — (1) Time it takes a computer to locate data or an instruction word
in its storage section and transfer it to its arithmetic unit where the required
computations are performed; (2) time required to transfer information which
has been operated on from the arithmetic unit to the location in storage
where the information is to be stored.

TIME, EXECUTION — The portion of an instruction cycle during which the actual
work is performed or operation executed: the time required to decode and
perform an instruction. See below.

TIME, INSTRUCTION — Portion of an instruction cycle during which the control
unit is analyzing the instruction and setting up to perform the indicated
operation. Same as time, execution.

TIME, LATENCY — (1) Time lag between completion of instruction staticizing and
the initiation of the movement of data from its storage location; (2) rotational
delay time from a disc file or a drum file.

TIME-SHARING — Use of a device for two or more purposes during the same overall
time, accomplished by interspersing component actions in time.

TIME, SWITCHING — (1) Time interval between the reference-time, or time at which
the leading edge of switching or driving pulse occurs, and the last instant at
which the instantaneous voltage response of a magnetic cell reaches a stated
fraction of its peak value; (2) time interval between the reference time and the
first instant at which the instantaneous integrated voltage response reaches a
stated fraction of its peak value.

TIME, TURN-AROUND. — Time required to reverse the direction of transmission in
a communication channel.

TRACE — Interpretive diagnostic technique which provides an analysis of each exe-
cuted instruction and writes it on an output device as each instruction is
executed. .

TRACK — Path along which information is recorded on a storage device: the track
on a drum or tape. .

TRANSFER — (1) Conveyance of control from one mode to another by means of
instructions or signals; (2) conveyance of data from one place to another; (3)
instruction for transfer; (4) to copy, exchange, read, record, store, transmit,
transport, or write data; (5) instruction which provides the ability to break
the normal sequential flow of control.

TRANSFER OPERATION — See operation, transfer.

TRAP — (1) Special form of a conditional breakpoint activated by the hardware
itself, by conditions imposed by the operating system, or by a combination of
the two. Traps are an outgrowth of switch-controlled halts or jumps. Internal
triggers or traps often exist in a computer. Since these are usually set only by
unexpected or unpredictable occurrences and since the execution time and
number of instructions for testing them can be burdensome, these triggers
usually cause an automatic transfer of control, or jump to a known location,
to record in other standard locations the location from which the transfer
occurred and the cause of the transfer. Some trapping features can also be
enabled or inhibited under program control: an overflow trap; (2) routine to
determine indirectly the setting of internal triggers in the computer.

\

TROUBLE-SHOOT — To seek the cause of a malfunction or erroneous program
behavior to remove the malfunction.

45

TRUNCATE — To drop digits of a number of terms of a series, lessening precision:
the number 3.14159266 is truncated to five figures in 3.1415, whereas one
may round off to 3.1416.

U

UNDERFLOW — (1) Condition which arises when a machine computation yields a
result which is smaller than the smallest possible quantity which the machine
is capable of storing; (2) a condition in which the exponent plus the excess
becomes negative in a floating point arithmetic operation.

UNIT — Portion or subassembly of a computer which constitutes the means of
accomplishing some inclusive operation or function.

UNIT, ARITHMETIC — Portion of the hardware of a computer in which arithmetic
and logical operations are performed. The arithmetic unit generally consists of
an accumulator, special registers for the storage of operands and results,
supplemented by shifting and sequencing circuitry for implementing multipli-
cation, division, and other desired operations. -

UNIT, ASSEMBLY — (1) Device which performs the function of associating and
joining several parts or piecing together a program; (2} a portion of a program
capable of being assembled into a larger whole program.

UNIT, CONTROL. — Computer segment which directs the sequence of operations,
interprets the coded instructions, and initiates the proper commands to the
computer circuits preparatory to execution.

UNIT, PAPER TAPE — Mechanism which handles punched paper tape and usually
consists of a paper tape transport, sensing and recording or perforating heads
and associated electrical and electronic equipments.

UNIT, READ PUNCH — Input-output unit of a computing system which punches
computed results into cards, reads input information into the system, and
segregates output cards. The read-punch unit generally consists of a card feed,
a read station, a punch station, another read station, and output card stackers.

UNIT, TAPE — Device consisting of a tape transport, controls, a set of reels and a
tength of tape capable of recording and reading information on and from the
tape, at the request of the computer under the influence of a program.

UPDATE — (1) To put into a master file the changes required by current irformation
or transactions; (2) to modify an instruction so that the address numbers are
increased by a stated amount each time the instruction is performed.

- \

VALIDITY — Correctness: especially degree of closeness by which iterated results
approach the correct result.

VALIDITY CHECK ~— See check, validity.

VARIABLE — (1) Quantity which can assume any of the numbers of some set of
numbers; (2) condition, transaction, or event which changes or may be
changed as a result of processing additional data through the system.

VECTOR — Quantity having magnitude and direction, in contrast with a scalar which
has quantity only.

VERIFIER — Device on which a record can be compared or tested for identity
character-by-character with a retranscription or copy as it is being prepared.

VERIFEY — To check a transcribing operation by a-compare operation. It usually
applies to transcriptions which can be read mechanically or electrically.

VOCABULARY - List of operating codes or instructions available to the programmer
for writing the program for a given problem for a specific computer.

46

VOCABULARY, SOPHISTICATED — Advanced and elaborate set of instructions.
Some computers can perform only the more common mathematical calcula-
tions such as addition, multiplication, and subtraction, A sophisticated
vocabulary computer can go beyond this and perform such operations as
linearize, extract square root, and select highest number.

w

WORD — Ordered set of characters which occupies one storage location and is treated
by the computer circuits as a unit and transferred as such. Ordinarily a word
is treated by the control unit as an instruction, and by the arithmetic unit as a
quantity. Word lengths may be fixed or variable.

WORD, CONTROL — Word, usually the first or last of a record, or first or last word
of ‘a block, which carries indicative information for the following words,
records, or blocks.)

WORD, DATA — Word which may be primarily regarded as part of the information
manipulated by a program. A data word may be used to modify a program .
instruction or be arithmetically combined with other data words.

WORD, INFORMATION — Ordered set of characters bearing at least one meaning
and handied by a computer as a unit, including separating and spacing, which
may be contrasted with instruction words. See word, machine.

WORD-LENGTH, VARIABLE — Having the property that a machine word may have
a variable number of characters, applicable either to a single entry whose
information content may be changed from time to time, or to a group of
functionally similar entries whose corresponding components are of different
lengths.

WORD, MACHINE — A unit of information of a standard number of characters
which a machine regularly handles in each transfer: a machine may regularly
handle numbers or instruction in units of 36 binary digits; this is then the
machine word. See word, information.

WRITE — (1) To transfer information, usually from main storage, to an output
device; {2) to record data in a register, location, or other storage device.

z

ZERO — Numeral normally denoting lack of magnitude. 'n many computers there
are distinct representations for plus and minus zero.

ZONE — (1) Portion of internal storage allocated for a particular function or purpose;
(2) three top positions of 12, 11 and 0 on certain punch cards. In these posi-
tions, a second punch can be inserted so that with punches in the remaining
positions — 1 to 9 — alphabetic characters may be represented.

ZONE, NEUTRAL — Area in space or an interval of time in which a state of being
other than the implementing state exists: a range of values in which no control
action occurs or a brief period between words when certain switching action
takes place. Similar to dead band.

47

PART II

APPLICATION OF THE
MICROPROGRAMMED COMPUTERS

INTRODUCTION

There are four classes of applications which are established for Micro-
programmed computers. Each class contains several sub classes which are
implemented by control unit programming (firmware) variation.

Any class, augmentation of, or variation of, represents a computer archi-
tecture different from one another each offering specific advantages to
the intended end application.

General Purpose Computers

e General Purpose Computers With Standard Instruction Set.

® General Purpose Computers With Added Special Instructions.

® General Purpose Computers With Background for Special Data Pro-
cessing or Input/Output Functions.

® General Purpose Computer With Addition of Special Microprogram
Which is Entered and Exits From the Software Program, and Remains
Active for a Relatively Long Period of Time. ’

Special Purpose Computers)

Special Instruction Set.

Direct Application Microprogram.

Direct Sequence of Subroutines.

Interlaced Microprogram Instructions and/or Subroutines With Partial
Processing.

® Subroutine Branching According to System States.

Emulator Computer

® Duplication or Approaching Equal Functional Capability With a Pre-
existing Fixed Instruction Stored Program General Purpose Computer.

e Duplication or Approaching Equal Functional Capability With a Pre-
existing Special Purpose Computer.

Language Processor

@ Direct Execution of High Level Language Statements.
® Partial Execution of High Level Language Statements.

With such a large selection of organizations to choose from, use of a
microprogrammable computer provides a very useful method for arriving
at the most cost-effective processing or control system, including develop-
ment, hardware, programming and operating costs.

CLASSES OF APPLICATION

General Purpose Computers
e General Purpose Computer with Standard Instruction Set.

In this class of computers the microprogram is designed to fetch instruc-
tions from core memory and to execute them by microprogram sub-
routines. Once started the microprogram continues to loop back on
itself, looking for and executing instructions until it sees a halt instruc-
tion, or gets into an input mode, and waits for a character. The instruc-

50

tions share the core memory with data and flags. The coding of the in-
structions in core bears no particular relationship in format to the micro-
commands.

The general flow of firmware functions for the General Purpose Computer
is shown in Figure 4.

All operations, including arithmetic, logical, control, shift, branchirng,
jumps, input/output, and register transfer are programmed into micro-
program subroutines.

An example of General Purpose firmware’is described in detail in Part |V
“MICRO 810 Firmware Manual’’.
® General Purpose Computer with added special instructions.

Firmware for a general purpose computer will contain several unused
operation codes which can be used for additional instructions. The simplest

COLD START

INSTRUCTION -
RETURN TO
FETCH INSTRUCTION
FETCH
ACKNOWLEDGE
AN
INTERRUPT

ADDRESS

MEMORY
REFERENCE

FETCH, PREPARE
OPERAND
APDRESS

JUMP TO
INSTRUCTION
ROUTINE

¥
Y v ¥ v

SPARE SUB- SUB- SUB-

ROUTINE ROUTINE ROUTINE | - ROUTINE
ADDRESS A B N

v v Yy 3
Figure 4. Firmware Function Flow

51

way to add instructions is to.make use of a spare operation code which
can easily be converted to a jump instruction to enter a new firmware
routine. The new instruction can be either a memory reference or non
memory reference instruction. Multiple instructions can be added by using
sub-operation codes. Typical instructions which may be added are as
follows:

Floating Point Arithmetic.

BCD Arithmetic.

Data Block Manipulation Routines.

Error Code Generation and Checking.

Push Down Stacks and Related Functions.

Specia! Input/Output Routines for Greater Speed, Increased Func-
tional Complexity, or Simplified interfaces.

Curve Fitting Routines and Interpolation.

Square, Square Root, and Other Related Functions.
Table Search.

Character Test and Manipulation.

Communications Handshaking.

Filtering and Spectrum Analysis Operations.
Pattern Manipulation and Recognition Functions.

The capacity to add instructions of these types tremendously increases
throughput capability and processing power of any General Purpose
computer.

The procedure for adding instructions is to define the instruction algorithm,
flow chart, and microcode, then to do a timing analysis of the routine to:
see if it is equal to or less than the maximum permissible interrupt time.
If not, the routine must be subdivided to do only a portion of the opera-
tion each time it is entered, or to allow testing of interrupts at scheduled
times during the routine,

® General Purpose Computer with Background Microprogram.

Microprograms can be added to the general purpose computer which run
continuously, or on command, and perform some function independent of
the software, or indirectly related to the software. These programs are
periodically entered as interrupt routines although they don't divert the
software program like a normal interrupt does. One example of this is the
concurrent input/output routine of the MICRO 810. This firmware trans-
fers a block of data between interface devices and core memory. The con-
current input/ocutput operation is set up and initiated by software, but
proceeds independent of the software until the complete block of data has
been transferred. Another example is the communications multiplexing
function of the MICRO 820 Series computers. This firmware handles up
to 32 low speed asynchronous communications lines with character
assembly and- disassembly performed by firmware. A character queue, and
status flags are maintained by the multiplexing firmware to provide a link
to the software program. The multiplexer firmware is controlled by the
software by means of programmable rates and configurations, enable and
disable functions, buffer assignments, and setting or resetting of control
flags. Once set up, however, the multiplexer firmware proceeds independ-
ently of any specific instructions from the software program. Sampling
rate are timed by hardware rate generators.

52

Other typical background micré'programs which fit into this category are
as follows: .

Analog Data Channel Scanning and Input, or Analog Time Series
Sampling.

Matrix Manipulations.
Mapping Functions.
Coordinate Conversions.
Output of Memory Map to Large-Scale Lamp Display.

Statistical Functions, Such as Determining Average, Standard Devia-
tion, and Trends of Large Blocks of Data. '

Continuous Data String Manipulations and Code Conversions.

® General qupose Compufer with Special Microprogram.

Occasionally there is a requirement for high processing rate (requiring
dedicated uninterrupted microprogramming) combined with software flex-
ibility. This combination may be achieved by placing a general purpose
instruction set, and a special microprogram instruction set in the same
computer. The general purpose or software instruction set is used for
relatively slow functions, such as system initialization, monitoring console
parameters, updating displays, determination of system states, implement-
ing of relatively slow but complex system control functions, and message
preparation.

The microprogram routine is used for high-speed and/or complex data
input/output, computation, and control functions. The general procedure
for this type computer system is to perform all software functions neces-
sary to set-up the microprogram for some segment of its entire job, and
then turn complete program control over to the special microprogram until
the segment is complete, At this time the special microprogram returns
control to the software program. A typical application for this approach
is machine tool control. The machine control function involves position
sampling, polynomial curve fitting, system control computations, control
outputs, timing, status monitoring, and other functions depending on the
machine function complexity. Use of microprogramming provides for
large increases in processing rate which are necessary to maintain precise
control, with complex curves, at specified machine rates.

The software sets up the curves and process rates for a machine processing
segment. These curves and rates are interpolated by the microprogram.

" Other examples besides machine tool control are as follows:

Sampling a large block of high speed data which occurs in a burst.
Spectrum analysis or filtering with frequency parameters set up by
software program.. '

Contour plotter controller.

Special Purpose Computers

® Special Instruction Set

For many applications a standard software instruction set, such as the
MICRO 820 may be more sophisticated than needed. Such features as
multiple addressing modes, variable word length, concurrent 1/0, etc.,

53

may not be needed. In this case it is possible and desirable to create a
special instruction set which will increase throughput rates, make better
use of core memory, and provide an instruction set tailored to a specific
need. The general organization for this firmware is the same as for the
MICRO 820 firmware. However, functions may be deleted or modified,
such as testing for interrupts, operand addressing, etc.

Typical applications for a special purpose software instruction set are as
follows:

Compiler or Interpreter.

Special Communications Processor.
Automatic Tester.

Sequence Controller.

Business Processor.

Batch Terminal.

Inventory System.

Data collection/reduction system.

e Direct Application Microprogram.

In this case, the application program is completely written at the firmware
level. This type of program is suitable for dedicated applications, where
the processing is relatively simple, but very high processing rates are re-
quired, a permanent program is desired, or simplified interface hardware
is used, which requires microprogramming for the interface control and
data transfer sequences.

Direct application microprograms may occur in one of many different
general structures. Three of these which will be described are as follows:

Direct Sequence of Instructions and/or Subroutings.

Interlaced Subroutines with Processing Status Flags and Partial Pro-
cessing During Each Entry to a Routine.

Branching to Subroutines Dependent on System States.

Each of these will be discussed briefly in the following paragraphs.

In many applications a combination of any two or all three of these
methods may be used.

Direct Sequence of Instructions and/or Subroutines.

This approach is the simplest, and potentially the fastest, if it fits the
application. The flow diagram for this approach is shown in Figure 5.

The sequence of instruction execution is always the same. The loop may
be free running for very simple applications, or it may be initialized by a
real time clock where time precision is required.

A typical example of this organization is a dedicated communication line
processor where the computer samples and updates a large number of full
duplex, serial, asynchronous data lines. The firmware does sampling, char-
acter assembly and disassembly, and loads a buffer when a character is
assembled. The data is then transferred to another device. A program such
as this must be able to handle maximum line load conditions without loss
of data. Some of the functions, such as loading the buffer could be spread
.out over a full character time to smooth out the work load, but then the

54

COLD START

Figure 5. Subroutines or Instructions

program would become more complex, and would become category 2.
Statistical averaging shows that the possibility of all lines being active, and
in both bit and character sync, is extremely remote. A system like this
could handle a line rate times line quantity product which has a theoretical
peak instantaneous load of at least 130% of the processing time available
and not lose nearly as much data due to processing time limitations as due
to random line errors, because the probability of an instantaneous load
approaching even 100% is very remote.

Other examples of the direct sequence approach are as follows:

Low Speed Sequence Controller.,

Dedicated Synchronous Data Line Concentrator.
Dedicated-Device Controller.

High-Speed Status Monitor.

On-Line Performance Monitor.

Auxiliary High-Speed Processor.

Interlaced Microprogram Subroutines with Processing Status Flags and
Partial Processing during each entry to a Routine.

Many direct application microprograms involve a number of slow-speed
peripheral devices which could be serviced by the microprogram on a part-
time basis, or handle data formatted to cause load peaking. Each time a

55

device, or data value is looked at by the microprogram some different
phase of the process may occur, or many times no processing is required
at all. The phase may depend on the previous phase, or on the tirne inter-
val, or a status flag. The microprogram for this class of organization has
an execution, or main loop routine which goes from one routine to the
next, in sequence and tests status flags to see if the subroutine is to be
entered and what processing is required. The general flow is in Figure 6
and the expansion of one functional step is in Figure 7.

In Figure 6 each circle represents a subroutine status, retrieval, test,
entry, update and storage function. The boxes represent the routines
which are entered from the main loop.

COLD
START
A
B
MAIN
LOOP
1 ¢
N
X

Figure 6. General Flow for Interlaced Subroutines

As can be seen from Figure 7. processing time must be expended to fetch,
test, and store flags, pointer, and data, and this reduces the overall pro-
cessing capacity. However, this approach allows time spreading of the
work load which in most cases makes up for the loss in average processing
capacity by a large increase in peak load capacity. The two improvements
to interlacing are increased peak load capacity and increased overall
throughput capacity.

For example, to process a string of serial characters, load peaking comes
when a character has been assembled, and when a block has been assem-
bled. In each case there is a time gap until the next character is assembled.
Therefore, the work load can be spread out over a number of bit sample
times. It can be partitioned according to line number to simplify sub-
routine organization. When a message block has been assembled, there is
even more time until the next block is assembled, so that the time for
character checking, buffer moving, etc., can sometimes be spread out
over an entire message block. Another requirement might be a code con-
version on an assembled character. This could be broken down into sub-
routines with only a portion being executed at each time interval.

56

UPDATE SYSTEM
FLAG POINTERS

[]

FETCH SUBROUTINE
FLAGS POINTERS,
AND DATA

y

l TESTPROGRAM STATUS FLAGS]

ENTER SUBROUTINE
AND PERFORM
PARTIAL PROCESSING

PROCESSING
REQUIRED

<t
-

o 3

RESTORE SUBROUTINE : UPDATE FLAGS
FLAGS AND POINTERS AND POINTERS

v

Figure 7. Expansion of One Functional Element of Interlaced
Routine Flow Chart

A typical situation which must be handled by interlacing to achieve high
throughput is as follows:

In Figureé is a block diagram of a microprogrammed peripheral controller.

CORE MEMORY
COMPUTER - ROM
A B c

Figure 8. Peripheral Contrbller Block Diagram
57

The three devices must run concurrently to achieve maximum throughput.
Each of the devices has operations which can be broken up into sub-
operations as shown in Figure 9.

SUBOPERATION

A TTTTTIHTT L—
8 ITTT1T1i i

c TTTTTTTTL—

Figure 9. Simplified Processing Profiles

Device B could start as soon as device A has completed some of the sub-
operations. Therefore the sub-operations are interlaced. If the devices are
asynchronous, and the correspondence between sub-operations is noton a
one-to-one basis, the subroutine status tests may at times indicate no pro-
cessing for one cycle of the microprogram.

Typical applications for interlaced subroutines are as follows:

Batch Processing Terminals.

On-Line Inventory and Audit Systems.
Process Controllers.

General Purpose Communications Terminals.
Monitoring Systems.

Subroutine Branching According to System States.

In some programs branching into subroutines may be a function of the
state of a peripheral device or time, or the settings on a control panel. In
many of these cases it is not necessary to fetch the status, data or flags of.
each subroutine in sequence to see if it is to be processed.

For example in a particular machine control application, the processing
functions depend on machine temperature, RPM, etc.

For many of these parameters, a truth table may be prepared, which indi-
cates the next program state as a function of the previous and present
system states. Then the executive routine tests the states, and determines
which subroutines to execute next. Typical examples where this method
of microprogramming applies are as follows:

Power Plant Control.

Petroleum System Control.

Chemical Processing Plant.

Interactive Systems.

Numerical Machine Tool Control.) -
Medical and Laboratory Instrumentation Control.

58

Emulator Computer

In the truest sense all applications of the microprogrammed computer can
be considered emulation. However, as defined here, the emulator computer
is the microprogrammed computer with its firmware allowing functional
duplication of another computer. Direct emulation of a preexisting generat
purpose or special purpose computer is practical only if an advantage re-
sults. Usually a cost advantage is realized if the preexisting computer is
several yers old. In many cases a speed advantage will result.

Many parameters heed be considered to determine feasibility and efficiency
of a microprogrammed computer emulating any specific general purpose
or special purpose computer. Essentially these parameters are:

Complexity and Number of Logical Elements.

Word Size and Number of Hardware Registers.
Maximum Main Memory (Core) Size and Word Length.
Execution Time Required Per Operation.
Input/Output Requirements.

Detailed knoWIedge of both the preexisting computer and the micro-
programmed camputer is needed to properly evaluate the feasibility and
fit of emulation. . '

Language Processors

The instruction set configuration of a special purpose computer which is
to be programmed at the assembler language level is usually a “’hostile’”
environment to the implementation of compiler level languages. The
microprogrammed processor permits the configuration of a minicomputer
architecture which is efficient in a compiler language environment. In
essence, the utilization of an assembler may be minimized and the com-
piler statements are in effect interpreted more directly.

For purpose of illustration the implementation of a BASIC compiler in
the MICRO 820 computer will be discussed. The MICRO 820 has a general
purpose instruction repertoire with conventional assembler and utility
software. A single-user BASIC has been developed for the MICRO 820
computer. This BASIC compiler is written in ‘the MICRO 820 assembler
language. The early version of the BASIC was installed in the MICRO 820,
occupying approximately 7,500 bytes of core memory. A subsequent
version of the MICRO 820 architecture is being augmented with special
firmware routines such as floating point and other firmware routines. By
doubling the micro memory from 768 words to 1,636 words of micro-
commands, the storage requirement of the compiler in core memory is
reduced approximately 66 percent, or from 7,500 bytes to 2,500 bytes.
As a result, greater working storage is available for the user and the com-
pile time for the processor is sharply decreased.

This improvement in processor efficiency becomes more significant as the
system is extended to perform time share BASIC. An important capability
in the implementation of time share BASIC is an operating system which
permits the computer to look like a single machine to multiple users.
Microdata’s time-sharing operating system (MICROshare) initially resides
in approximately 4,096 bytes of core memory. Through microprogram-
ming the performance of MICROshare can be sharply increased by con-

59

verting various features of MICROshare from software (1 user per 8-bit
instruction) into firmware (200 ns per 16-bit instruction). When a time-
sharing system is under control of a high-performance operating system,
it provides for the efficient transfer and execution of programs and files in
mass storage (disc memory). System response time is sharply increased;
core usage is significantly minimized.

The MICRO 1600 is designed to accommodate all the functions of the
MICRO 800 product line. This includes direct function processors, special
purpose computers which may or may not require architectural augmenta-
tion and compiler language processors. The MICRO 1600 provides a new
dimension in the minicomputer field as a compiler language processor.
Large arrays of micromemories can be conveniently implemented. The
control memory in the MICRO 1600 can be addressed up to 16K X 16.
It permits the effective implementation of higher level languages such as
BASIC, COBOL, FORTRAN, SNOBOL, ATLAS or equivalent.

60

APPLICATION EXAMPLES

Automatic Test System

MICRO 811 computers are used to control all functions contained in auto-
matic facilities for routine testing and detailed trouble-shooting of printed
circuit boards (Figure 10).

The MICRO 811, intended primarily for testing boards used in the MICRO
800 computer, generates stimulus functions and measures corresponding
responses of any circuit boards which are digital in nature. Memory boards
which are primarily analog are handled on a special tester.

Components of the automatic test system are the MICRO 811 computer
with 8K memory, instruction repertoire and input/output line driver and
receiver. The card test unit includes stimulus, response and control boards,
power supply, 480-pin patch board receiver, 10 test characters and inter-
face cable. i

Software includes a Microdata board test control program, board test tape
generator, board test tape, control board and data board. Other options
are available for special-purpose uses.

Figure 10. Automatic Test System

61

Floating Point Processor (Special Purpose)

An ideal use of the MICRO 800 computer is as a floating point processor,
since the machine is an extremely high performance processor with the
facility for creating specialized instruction sets at the micro step level. .

The machine can be mechanized by microprogramming, thus achieving
floating point operations at high processing and throughput rates.

As a floating point processor, the MICRO 800 operates on variable word
fength floating point data. These word lengths may be specified — and
changed at any time — to be 8-128-bit fraction plus 8 bits for sign and
exponent. Floating point operations use four operating accumulator regis-
ters, each 136 bits long, which can be maintained either in core memory or
in a special high-speed scratchpad memory.

Data is transferred between accumulator registers and file registers at a
high rate of speed by using the microprogram. Maintaining the accumu-
lators in core memory results in low hardware cost, but processing speed
is somewhat slower than if the slightly more costly high-speed scratchpad
memory is used.)

The floating point processor can be integrated into a system in a variety of
configurations, each of which has a slightly different equipment require-
ment, a different mode of operation, requires a different microprogram
and yields a different throughput rate.

These configurations are: a peripheral processor to an existing computer;
a separate, complete, self-contained floating point computer; a dual pro-
cessor, sharing memory with a standard processor or computer, or a com-
bined floating point processor and general purpose integer processor such
as the MICRO 810.

Fast Fourier Transform Processor (Special Purpose)

MICRO 800 computers are being used to perform spectral analyses of
electrical signals using the computational technique known as fast Fourier
transform.

Using specially designed fast Fourier transform read-only memories, the
MICRO 800 and other components of the system sample and digitize input
signals at uniformly spaced time intervals, performs the spectral analysis
and processes the results to construct outputs of a specified form.

The output is displayed on one of three devices — an oscilloscope, slow
X-Y plotter or fast X-Y plotter. The displays are driven by two 8-bit
digital-to-analog converters in a number of modes, including small-interval
stairstep, recurrent and single-cycle,

Several functions are displayed, including input signal frame, power spec-
trum, log power spectrum, amplitude spectrum and phase spectrum.

The system features a special resolution of one part in 200 over the signal
input bandwidth and an amplitude error of less than 10%.

The MICRO 800 computers used in the system are configured with a 4096-
word core memory, real time clock, power fail protect, 1/0 expander with
32 inputs and 32 outputs, and ADC-DAC unit with power supply.

62

Multilane Parking Facility Computer

Multilane parking facilities associated with large modern buildings are
relativély complex and are now being automated with various technologies.

The microprogrammed computer provides a significant reduction in the
amount of interface hardware, and provides for the permanence of fixed
hardwired control systems. Microprogramming provides this capability in
all functions:

Fee Calculation.

Customer 1.D. Card Validation.
Audit Calculations and Printouts.
Automobile Counts by Lane.
Lane and Area Count Totalizations.
Violation Detections.

Fee Disptay Update.

Real Time Clock.

Input Customer [.D. Data.

To keep the interfaces simple, all data including treadle pulses, 1.D. card
information, local data entry and loop detector pulses enter the computer
in bit serial form. Display data is on a common bus, with select lines to
control distribution.

All data assembly, accumulation, evaluation, storage, retrieval, and control
functions are done within the processor, eliminating the requirement for
special external hardware to do counting, data assembly, detection logic,
and arithmetic functions.

In Figure 1 is a generél block diagram showing the types of data going in
and out of the processor.

The ticket machines, treadles, loops, and fee displays are in remote loca-
tions from the computer and the printer, keyboard, etc., are nearby. The
data from the ticket machines consists of contact closures detecting the
presence of a ticket, or indicating output, and taking of a ticket. The
ticket machine reader inputs serial data which is organized similar to a
. serial teletype message. This information consists of entry and exit time,
or customer 1.D. :

In the lanes are loop detectors and treadles. Loop detectors input contact
closures when they are crossed. The treadle detectors input a ‘series of
closures to indicate direction of travel.

For generation of time of day clock, external time of day pulses are used
instead of the internal computer clock to maintain time synchronism with
the local power company.-

Fee disblay is output in digit serial BCD form accorhpanied by display
select codes, to minimize the number of wires to the display units.

For this example, which represents a medium size parking facility, the local
keyboard, printer, and punch is a teletype.

All of the items shown are mounted in the basic computer cabinet.

A system of this type will handle 10-20 lanes with typical numbers of
devices such as 25 treadles, 50 loops, and 10 ticket machines.

63

In a program like this the core - memory is used to store data tables, flags,
input and output maps, partially processed data, messages, clock, fee
totals, lane totals, and area totals. No program is stored in core because
the entire program is in firmware,

Data Communications Application, Special Purpose Concentrator

The MICRO 800 computer with a dedicated microprogram used as a con-
centrator connects a large number of local data terminals to a small group
of dedicated trunk line modems on a time share basis. All data messages
handled have fixed formats.

The data concentrator is designed to function as a complete data and con-
trol interface, performing the following functions:

Data Source Scanning and Queueing.
Modem Poll Monitor and Response.

1 K SCRATCH PAD
MEMORY x
REAL
TIME MICRO 800 READ
CLOCK PROCESSOR ONLY v
OPTION -
H
bcmmcomemmn = >
4 CHANNEL 8 CHANNEL 8 CHANNEL
FULL DUPLEX DATA DATA
TRUNK MODEM TERMINAL TERMINAL
INTERFACE INTERFACE INTERFACE
A) . :
! |
TO TRUNK TO DATA TERMINALS
MODEMS (UP TO 120 TERMINALS)

Figure 11. Concentrator Block Diagram

Data Routing Control.

Control Character Examining and Processing.
Header ldentification and Stripping.

Hand Shaking With Trunk Modem:s.

Data Transfer,

Supervisory Data Processing.

Canned Status Message Generation.
Addition of Header Information.

Parity and Block Character Check.

Character Bit Stripping and Adding.

64

All of these operations are performed with a maximum throughput delay
of 3 characters.

The interfaces to the data terminals and trunk modems is in bit serial
form, thus simplifying the interface hardware.

The concentrator operates on the 2400 baud synchronous data with the
trunk modems and simultaneously provides data clocks to the terminals.

A block diagram of the concentrator is shown in Figure 11. There are two

- interface types, the trunk modem interface and the data terminal interface.
The .scratchpad memory is used to store pointers, transfer instructions,
flags, request queues, and as a data buffer. All programming is in the read
only memory.

Within the MICRO 800, the arithmetic/logic unit is used for character
recognition, character shifting, conditional branching, parity and block
character checking, bit stripping, |I-D to address conversion, gueueing
preparation and evaluation, code conversion, and other miscellaneous
character processing functions.

The MICRO 800 file registers are used for storage of data immediately
after it is read in from one -of the modules or before reading it out; for
storage of status, and control words, for storage of indices, for storage of
outputs from the arithmetic unit, and as operational registers for the
arithmetic, logic and control functions performed by the MICRO 800.

The firmware instructions are organized in sequences similar to core
memory programs with the capability to execute nested subroutines, con-
ditional branching, and various arithmetic control and logic functions
necessary to efficiently perform identical functions on multiple data paths
with asynchronous timing between paths.

The real time clock option is used to generate an internal timing interrupt
at approximately 2600 cps. which controls all bit and character processing
cycles within the concentrator. The 2500 cps. rate ensures that no data bit
changes at 2400 cps. will be missed by the system.

Numerical Control of Vertical Machining Center

A MICRO 800 computer is being used as the complete numerical control
system for a vertical machining center utilizing some innovative machine
tool programming technigues.

Consisting of a vertical mill, an automatic tool changer‘and a digital con-
trol system with its assomatecl panels, the mill is completely hydraullc
with options for high accuracy laser positioning feedback.

The MICRO 800 positions the table, saddle and spindle (X, Y and Z axis)
and controls the direction and speed of rotation of the spindle. The
microprogramming feature of the MICRO 800 is used to perform the feed-
back control of the position and velocity of the axis.

Both linear and circular contouring are provided with a positioning
accuracy of 200 micro-inches and velocity of the tool with respect to the
workpiece of 0.01 to 200 inches per minute.

The MICRO 800 also controls an automatic’ tool changer containing 20
tools. All motions are initiated and confirmed by the computer to achieve
the necessary sequences.

-

65

Machining operations are specified through choice of a manual or tape
preparation panel,

The manual panel permits moving the mill in a very simple manner and
also provides for entry of tool dimensions used for offset and length
compensation.

The tape preparation panel permits programming the machine operations
in a sort of “graphical APT" manner. Canned sequences such as drill,
bore, tap, mill, etc., are specified along with all pertinent data without
regard to tool dimensions. Workpiece dimensions are specified in absolute,
relative or trigonometric form. Contours also are specified.

When the computer has validated the requested operation, it assumes con-
trol of the machining and can initiate, abort, terminate, test, accept or
reject through the tape panel. If accepted by the operator, the operation is
preserved on magnetic tape for later use. '

After completion of the first workpiece, additional copies are made by
merely replaying the cassette magnetic tape with the MICRO 800 control
system in the automatic mode. The cassette can be removed from the con-
troller for future use.

Vibration Analyzer (Special Purpose)

The MICRO 800 computer is being used as the heart of a vibration analysis
system operating with six channels of frequency shifters and filters, a
high-speed multiplexer and analog-to-digital converter, a specially designed
control panel and 13 other digital-to-analog converters.

Input to the system is from vibration sensors or other noise sources for
which power spectral density plots are desired. Freguency range for
analysis is 4 Hz to 6 KHz. Output data, both linear and decibel, is plotted
on up to 12 X-Y plotters, and analysis of all six channels is done con-
currently.

Using customized firmware, the MICRO 800 computer operates the panel,
controis frequency shifting through a voltage controlled oscillator, per-
forms data averaging and maintains system timing.

In addition, the computer calculates both linear and logarithmic (decibels)
power spectra, controls the X-Y recorders and can measure the period of
an external signal and convert it to frequency (4 Hz to 8 KHz) with an
accuracy of 0.1% of indicated frequency over the entire range.

Interface for Campus Central Processor, Satellite Computers

MICRO 800 computers are in use at a major university as the key ingred-
ients of remote terminals interfacing satellite computers at various campus
locations to a large-scale central computer (Figure 12).

These ‘“smart terminals’’ — versatile displays ranging from elegant to
not so elegant — provide straightforward interfacing to other com-
puters which handle specific kinds of communications.

66

Use of the MICRO 800 in this application has eliminated the need for a
large amount of specialized hardware at remote sites, and provides an
abundance of flexible programming capabmty through the use of micro-
-programmed firmware.

With its 220 nanosecond microcommand time and the ability to put input/
output and interface functions into firmware provides a far greater
throughput rate than is possible with core memory.

A safety factor is provided, too. Storage is fixed in the read-only control
memory, insuring that no one, no matter how inexperienced can modify
or destroy programs, Storage can be modified according to need by simply
exchanging boards.

The MICRO 800 also gives the university. a “‘do- |t-yourse|f” computer
capability. Computer center engineers can economically tailor the per-
formance characteristics of the computer in firmware to suit the specific
needs of each terminal location.

Eventually, the university plans to interface all existing campus computers
to its large-scale central processor.

The MICRO 800 represents a general solution to the university’s vast
number of applications because of its flexibility. Among these applications
are interactive display systems and automated systems, which, without the
MICRO 800, would have required two completely different sets of hard-
ware,

Figure 12, Campus Interface System

67

PART Il

MICRO 800 USERS MANUAL

CHAPTER 1
SYSTEM DESIGN FEATURES

MICRO 800 is a byte-oriented microprogrammed computer designed for
dedicated applications. The functional, mechanical and electrical design of
the computer provides a set of functional elements which can be tailored
to specific application requirements. The MICRO 800 is a basic set of
hardware which, with modification, ‘can be expanded to a series of
‘machines. '

The design concepts embodied in the MICRO 800 provide a unique combi-
nation of features unavailable in other computer systems. These include:

Microprogramming

The MICRO 800 incorporates a set of commands which exert powerful
micro-control .over the machine’s data manipulation paths and control.
Command sequences which form microprograms are stored in a read-only
storage. The MICRO 800 can be programmed to emulate instructions of
general or special purpose computers or to perform specific applications.

Speed

The machine features a 1.1 microsecond core memory cycle time and a
220 nanosecond command execution time. This speed permits rapid emula-
tion of macro instructions and can be used to 'minimize interface hardware
by applying the speed of the machine to interface functions.

Modularity

The modular electrical and mechanical design has all the flexibility needed
to apply the MICRO 800 to a wide range of applications. The modular
design of the core memory read-only storage, processor options, and
input/output elements permits expansion of the system as required. The
compact 8%-inch-high enclosure has a number of spare circuit board slots
and ample power for system and peripheral interfaces even when the
processor is fully expanded.

Low Cost

The MICRO 800 uses TTL monolithic integrated circuits, including a large
number of the medium scale integration type for savings in parts and
assembly time. The use of a read-only memory for control further reduces
the number of circuits that might otherwise be required to provide similar
functional capability. Packaging and powering of .the MICRO 800 is
designed for significant cost savings.

Software

Programs for the MICRO 800 include an assembler written in FORTRAN
for use on large-scale computers, utility programs for generating the read-
only memory maps, processor and memory diagnostics, and a simulator
program for checking our microprograms. See Chapter 6, ‘Programming
Systems.”

71

GENERAL CHARACTERISTICS

The advanced features and operating characteristics include:
Memory addressing to 32K.
1024, 4096 or 8192 byte memory modules.

32,768 bytes of memory in basic 8%-inch-high cabinet.

1.1 microsecond memory speed (full cycle).

8 or 9 bit memory bytes for efficient character handling.

Direct memory access (DMA) option.

16 general-purpose eight-bit file registers.

Up to 1024 words of read only storage in 256 word modules with
optional expansion capability to 2048 words.

220 nanosecond microcommand execution time.

15 basic commands.

Three versions of control consoles.

TTL integrated circuitry.

Operating temperature range 0°C to 50°C.

Dimensions: 8% inches high, 19 inches wide, 23 inches deep.

Power: 115/230 vac, 50-60 cycle.

Four versions of read only memory.

SYSTEM ORGANIZATION

The MICRO 800 is a bus organized machine built around a file of 16 pro-
grammable registers and employing microprogrammed control. The basic
elements of the machine are shown in the block diagram of Figure 13.

The machine executes 15 basic commands with many variations. All com-
mands are 16 bits in length and are in one of three formats. MICRO 800
programs, which are known as microprograms, are placed in a read-only
memory and thereafter become a part of the machine’s hardware. The
program can be changed by replacing the printed circuit boards containing
the read-only memory. The commands read out of the read-only memory
control all aspects of the operation of the basic machine and are executed
in a single machine clock cycle.

The eight-bit arithmetic/logic unit performs all manipulation of data, in-
cluding: addition, subtraction, logical AND, logical OR, logical exclusive
OR, and one-bit left and right shifts. The output of the logic network is
the A-bus which is the input to the files and other machine registers. All
byte data movement is performed over this bus. The output of the file is
one of the inputs to the arithmetic/logic unit; the other is the B bus. Inputs
to this bus are determined by the command, its options, and the |/O mode.
Bus inputs are the true output of the T register, the complement output of
the T register, the input bus and the eight-bit literal contained in some
commands.

The memory data and address busses communicate between the core
memory modules, the processor and the DMA. Either the processor or the
DMA may operate with the memory, with the DMA having top priority.

72

MREGISTER | N REGISTER
(8 ®
DATA, MEMORY ADDRESS
«—| DiRECT
gngLlésérs' MEMORY [BUS MEMORY ADDRESS .
CONTROL ACCESS CORE MEMORY
7 0-32K BYTES
MEMORY DATA BUS ' { rgggsgv
[
o |SONTROL /6 conTroL SET BY COMMAND CONTROL
103X | 3 LinEs |REGISTER DECODE AND CONTROL
OUTPUT BUS * -
T COMPLEMENT (8 BITS)
INPUT BUS (8 BITS) FILE
. REGISTERS
(16x8)
CONTROL
Gl [}]
LINK ARITHMETIC/LOGIC UNIT FLAGS ! fzogz%,r 1oNs
) (8) . POSITIVE,
OVERFLOW.)
‘ ABUS

£

L REGISTER
CONSOLE (10) BITS
READ-ONT
U REGISTER
STORAGE
2661024 WORDS (8 BITS)
i R BUS

8 BIT LITERALS FROM ROM

R REGISTER
(16) BITS

COMMAND
TO ALL FUNCTIONS DECODE CONSOLE
AND CONTROL

Figure 13. MICRO 800 Block Diagram

The registers, file, arithmetic/logic unit and bussing are organized onto two
identical ““data” printed circuit boards—a four-bit slice of the machine on
each board. All command decoding, control, clock generation and memory
timing are located on a single ““control” board. Each 256 words of diode
read-only storage requires a single board and the core memory a pair of
boards. The fusable diode, and bipolar- ROM's contain up to 2048 instruc-
tions on one board.

REGISTERS AND FILE v . .

There are eight registers and 16 file registers, each of which has a specific
use in the processor, while the file is used for general storage and flags.

T Register:

The eight-bit T register serves as the operand register for most of the
operate class commands, and as a buffer register for output and memory
operations. Both the true and complement output of the T register can be
gated to the B-bus as an operand. When both the contents of T and its
compiement are selected as operands, the effective operand is all 1-bits; if
neither is selected the operand is all O-bits. The T register can be loaded

73

from core memory on a read instruction, directly from read-only memory
using a load T instruction or from a file register by designating T as the
destination register of an operate class command. All programmed outputs
including both control and data bytes go out via the T register.

M Register

The eight-bit M register contains the seven high order bits of the processor
memory address. This register is gated onto the memory address bus at all
times except when a DMA operation is in process. The M register can be
loaded directly from ROM using a load M command, or can be loaded by
designating M as the destination register of an operate class command. The
M register is cleared on a load N command.

N Register

The eight-bit N register contains the eight low order bits of the processor
memory address. This register is gated onto the memory address bus at all
times except when a DMA memory operation is in process. The N register
can be loaded directly from ROM using a load N command, or by being
designated as the destination register of an operate class command.

L Register

The 10-bit L register is the machine’s program counter and contains the
read-only storage address of the next command to be executed, unless
altered by a jump command. The eight low order bits of the L register are
a counter which is incremented by one at each clock time when the pro-
cessor is running unless there is a command execution delay imposed. L is
loaded by a load L command, or as a destination register of an operate
class command. '

U Register

The eight-bit U register is used to modify the output of the read-only
storage. For commands with 0s in the four high order bits of 1’s in bit 15
and the three low order bits, the contents of the U register is inclusive-
ORed with the eight high order bits of the read-only memory output as it
is gated into the R register. This allows for dynamic modification and
changing of operation codes and file register designators. U is loaded by a
joad U command or as a destination register of an operate class command.

R Register

The 16-bit register holds the present command being executed. |1s output
is decoded and controls the operation of the processor at each clock time.

LINK Register

The one-bit LINK register holds the adder’s high order carry from add,
subtract, and compare commands and the shifted off end bit from the
shift command.

/0 Control Register

This three-bit register generates the control signals for the 1/0 bus. Seven
separate control signals can be developed by decoding of the register out-
puts, It is loaded and cleared by a control command, placing the timing of

74

e

1/0 control signals under command control. There are three output modes
and four input modes. The high order bit of the register is the input flag.
When this bit is a 1-bit the input bus is substituted for the T register when
it is selected and the input bus is the source of data when executing an
external 1/0 control command, :

File Registers

The file consists of 16 eight-bit operational registers. All commands except
the load register with OP code (1) specify a file register to be operated on
or to provide an operand or both. All file registers are functionally identi-
cal except for file register 0 which contains eight flags, and cannot be used
for general storage. The flags of file register O are given in Table 2.

Table 2. File Register O Flags

BIT . FLAG

— Overflow Result Condition
— Negative Result Condition

— Zero Result Condition

— Concurrent 1/0 Request Line
— Internal Interrupt

— 1/0 Reply Line

— Serial Teletype

— External Interrupt Line

NOUTRWN =

CORE MEMORY

The magnetic core memory is organized into pluggable modules of 4096 or
8192 bytes. The memory is addressed at the byte level and each byte con-
tains 8 or 9 bits. The ninth bit is devoted to the memory parity bit
option. Memory may be expanded up to four modules (32,768 bytes)
within the basic 8%-inch cabinet.

The memory is operated in read/write and full/half cycle operations, The
full-cycle memory timing is five 220 ns clock cycles (1.1 microseconds);
the half-cycle timing in the system is three clock cycles (660 ns). For a
read operation, the accessed data is placed inthe T register two clock cycles
after the start of the memory operation. Full cycle regeneration of the
data in the memory does not require the use of the T register and T may
be modified by the microprogram before completion of the restore part of
the cycle.

The four memory modules plug into the memory address and data busses
which run vertically on the back-plane. A spare board slot wired for access
options which can include a DMA /0 channel and a special DMA
peripheral controller,

CONTROL MEMORY

The read-only memory provides the storage for commands and constants
of the microprogram. Its output is gated into the R register where it con-
trols the operation of the machine at the next clock time. :

75

The read-only memory is organized into modules of 256 words contained
on a single printed circuit board. Each of the four possible read-only
memory boards receives an address from the L register via the read only
memory address bus, and the selected board gates its addressed contents
onto the read-only memory data bus where it is entered into the R register.

The memory is constructed of diodes with a diode being placed .at the
proper coordinates for 1-bits in the commands. The commands are de-
signed to use O-bits as the normal case to reduce the number of diodes on
the board; on the average, about one-third of the total bits contain 1's.

The read-only memory is always accessed for the next command while the
current command is being executed. This lookahead achieves faster com-
mand execution time. When the sequence of command execution is altered
by a jump or skip, an additional cycle must be taken to perform an access
before the next command is executed. When the machine is halted, the L
register contains the address of the first command to be executed when
operation is started.

ARITHMETIC FUNCTIONS

The MICRO 800 uses a 2's complement binary number system. The
registers and memory cells are 8 bits in length. For convenience of pro-
gramming, entering data, printing out, and preparing punched paper tape,
the 8 bits are organized into two hexadecimal digits. The hexadecimal
digits, with their decimal and binary equivalents, are as follows:

Decimal Hexadecimal | Binary
0 0 0000
1 1 0001
2 2 0010
3 -3 0011
4 4 0100 Throughout this document
5 5 0101 hexadecimal nurnbers are
6 6 0110 identified with singie
.7 7 0111 quotes:
8 8 1000 ‘33’
9 9 1001 ‘AA’
10 A 1010
11 B 1011
12 Cc 1100
13 D 1101
14 E 1110
15 F 1111

For additional. functions, the two numbers are added directly with the
carry out of the most significant bit going to LINK, and overflow setting
the overflow bit, if designated in the command.

For subtraction, one number is converted to a 2's complement and added
to the other.

76

For single byte operations, with a 2's
range of numbers is as follows:

complement number system, the

Binary Hexadecimal Decimal
on111111 A 127
00000007 01’ I POSITIVE
00000000 ‘00’ 0
IRRRARRN ‘FF’ - 1
1111110 “FE” =2 ,
10000000 8o 158 NEGATIVE
Sign bit
Examples of Arithmetic Functions:
Addition: A +B =C
Example Decimal Hexadecimal Binary
#1
3 ‘03’ 00000011
+5 ‘05’ 00000101
8 ‘008" Link=0 000001000
) Overflow = 0
Link Link
Example Decimal Hexadecimal Binary
65 ‘41’ 01000001
+82 +'52' 01010010
147 ‘093 Link=0 010010011
Overflow = 1
Beyond normal Link Link “—Sign be-
range of +127 comes
negative

On example #2 the overflow occurred because the range of positive num-
bers was exceeded. LINK was 0 because the carryout of the add was 0

even though overflow occurred.

Example
#3

Decimal

-93

+(-105)

-198

Overflow
occurs because
-198 exceeds
the maximum
negative
number,

Hexadecimal
2's Complement

IA3I
+97"
"13A7

Link = 1
‘Overflow = 1

77

Binary

(2’'s Complement)

10100011
10010111
100111010

Link

Effective 8 bit
result is a
positive number.

Example Decimal Hexadecimal, Binary

#4 2's Complement (2's Complement)
45 2D’ 00101101
+(-62) +'C2’ 11000010
-17 ‘OEF' Link=0 011101111
A Overflow =0
No overflow, Link Link
within number
range,
Example Decimal Hexadecimal Binary
2’s Complement (2's Complement)
77 ‘4D’ 01001101
+(-27) +'EB’ +11100101
+50 +132 100110010
No overflow Link =1 Link =1
within number
range.
Link =1
No overflow

in general, arithmetic overflow occurs whenever the number range (+127
to —128) of the MICRO 800 is exceeded on an arithmetic operation. As
can be seen in the examples, the link bit may be set even though an over-
flow did not occur. This is the result of using a 2's complement number
system.

To mechanize overflow detection in the MICRO 800 use is made of the
fact that when there is an overflow, the carry into the most significant bit
does not equal the carry out of the most significant bit. This can be shown
as follows:

Overflow Examples:

_Decimal Hexadecimal Binary

127 ‘TF' 01111111

+ 1 ‘01’ 00000001

128 ‘080" 010000000
Overflow The carry into bit7 =1
because the 7=

- positive range The carry outof bit 7=0
was exceeded, Therefore overflow
occurred.
Link =0

78

Decimal

126
-+ 1
127

No overflow

because positive -

range not
exceeded,

Decimal
-93
+(-105)
-198

- Overflow

Decimal

77
-27
+50

No overflow

Decimal

93
+105
198 -

Overflow

For 2's complement, the number is first converted t

then 1 is added.

Hexadecimal

I7EI
1011
‘07F’

Hexadecimal

’A3"
+1971
“13A7

Link

Hexadecimal
:4Dl
+'EB’
+132’

}
Link

Hexadecimal

ISDI
+ 69
0cé

Example —2’s complement of ‘35’

‘35" hex = 00110101 binary

2's comp.

Binary

01111110
00000001

001111111

carry in
0 carry out

Carry into bit 7 = carry out
of bit 7. v
Therefore no overflow.

Binary
10100011

+10010111

1?0111010

Carry into bit7 =0
Carry out of bit 7 =1
Therefore overflow

occurred.

Binai’y

01001101
11100101

1?0110010

.Carry into bit 7 = 1
arry out of bit 7 =1
Therefore no overflow.

Binary

01010010
01101001
011000110 -

01

Carry in does not = carry
out. Therefore overflow

occurred.

11001010 ones complement
‘CB’ hex= 11001011 ones complement +1

79

o 1’s complement,

STATUS AND CONDITION FLAGS

Internal Status

Eight internal status bits are provided to designate a particular internal
interrupt condition, When any of the internal status bits are a 1-bit, the
internal interrupt flag (bit 4) in file register O is also a 1-bit. This flag is
tested by the microprogram to detect the presence of the internal inter-
rupt condition. The internal status bits are entered via the A-bus into the
selected file register by a control command, at which time the status bits
are cleared. The eight internal status bits have the assignments given in
Table 3. %

Table 3. Internal Status Bits

BIT INTERNAL STATUS

Console Interrupt

DMA Termination

Real-Time Clock Interrupt
(Spare)

Memory Parity Error Interrupt
(Spare) .

Console Halt Switc

Power Fail/Restart Interrupt

NOUAWN=O

All the internal status bits except the console interrupt and halt are
associated with processor options and may be reassigned for special
applications.

Condition Flags

The overflow, negative and zero conditions resulting from an operation
involving the arithmetic/logic unit may be stored in file register O (see
Table 3). The condition flags are updated for command 7 and for com-
mands 8, 9, B — F if bit 4 is a 1-bit. These condition flags can be tested by
the microprogram for implementing various conditiona! operations, Defini-
tion of the condition flags is as follows:

Overflow — The Overflow condition flag stores the arithmetic overflow
condition during an add, subtract or copy command. The overflow condi-
tion flag stores the shifted off end bit during a shift command, Arithmetic
overflow occurs, when the result exceeds the range of the computer’s 8-bit
registers.

Negative — The Negative condition flag stores the high order bit of the
result on the A-bus, since the 2's complement number system uses the
most significant bit as the sign bit.

Zero — The zero condition flag stores the zero test condition of the result
on the A-bus. When the link control (bit 7) of the operate commands is a
1-bit, the zero condition flag may not be set to indicate a zero result unless
it is already set; it may be reset to indicate a non-zero result. This provides

80

a linked zero test over multiple bytes of a variable byte operation. For a
detailed description of linked zero test, refer to the description of the Add
command. :

COMMAND TIMING

Each command is executed in a single clock cycle time, although execu-
- tion may be delayed because of core memory or read-only. memory opera-
tions. The system clock rate is 4,65 mHz, and the clock cycle 220 nano-
seconds,

“Memory Busy Delays

If the memory ‘is busy (because of processor or DMA operation) at the
time a read or write memory command or a command which will modify
the M or N registers is to be executed, execution is delayed until the
memory operation is completed. These commands are executed on the
last clock of the memory half or full cycle.. If a DMA request is pending at
the time a read or write memory command is to be executed, execution
is delayed to give the DMA memory priority.

Memory Data Delays

Operate class commands which select the contents of either the T register
or its complement during the first two cycles of a'processor memory read
operation are executed during the third cycle of the read operation. This
allows time for the accessed byte to be placed in the T register.

The memory delays are explained in more detail in the description of the
memory command,

Read-Only Memory Delays

An extra cycle is required for command execution because of the look-
ahead nature of the read-only memory for the following conditions:

® Jump command.

® Test If zero command when a skip occurs.

® Test If not zero command when a skip occurs.

® Compare command when a skip occurs.

® Operate class commands which have the L register designated.

81

CHAPTER 2
MICROCOMMAND REPERTOIRE

This section contairs descriptions of all MICRO 800 commands. With each
description is a diagram showing the format of the command and its opera-
tion code, given in hexadecimal. Above each diagram is the command’s
mnemonic code and the name of the command. Under each diagram is a
description of the command, followed by a list of the registers and indi-
cators that can be affected by the command. The timing of each command
is one clock cycle {220 ns) unless the L register is designated as the desti-
nation of the result, in which case the command execution time is two
cycles. '

COMMAND FORMATS

There are three basic command formats. Each command is 16 bits in
length and is contained in a single read-only memory location.

The formats are literal commands, operate commands and execute
commands.

Literal Commands

The literal class commands have the following format:

oP f/r Literal

151413121110 9 8 7 6 6 4 3 2 1 0

In this format the operation code occupies the four high order bits. Bits
11-8 contain either a file register designator (f) or a register or control
group designator (r). Bits 7-0 contain an eight-bit literal which is trans-
ferred as an operand to the B-bus.

Operate Commands
The operate class commands have the following format:

oP f c * r

151413121110 9 8 7 6 6 4 3 2 1 0

In this format the operation code occupies the four high order bits, Bits
11-8 contain a file register designator (f) which specifies one of the 16 file
registers to be used in command execution. Bits 7-4 contain control
option bits (c) which are unique to the specific command. When bit 3 is
one, the result of an operate class command is inhibited from being placed
in the designated file register. Symbolically, this is specified to the pro-
gram assembler by appending an * to the command mnemonic. The
register designator {r) in bits 2-0 specifies a processor register destination
to receive the result of the operation.

82

Since there is only one file register selected at a time, the only file register
that can receive the result of a particular operate command is the same
file register selected for the operand. The register’s identifier is added as a
second character of the command mnemonic. The register codes (Table 4)
are: . ' ,

Table 4. Register Designators for Operate Commands

Designator Mnemonic Register
0 none *
1 T T Register
2 M M Register
3 N N Register
4 L L Register-addresses: 000-OFF and 200-2FF
5 K L Register-addresses: 100-1FF and 300-3FF
6 U ~ U Register)
7 S U Register ORed into command (except for

Control command)

Execute Command

The execute command causes the contents of the U register to be ORed
with the eight high order bits of the command to, form an effective
command. This operation is also performed when r=7 for the operate
class commands. The execute command has zero-bits in the four high order
bits. The remainder of the command has the format required for the
effective command to be executed.

Formats for Executé Commands

0 f c *| v If U contains Operate
command OP code.

51413121110 9 8 7 6 5 4 3 2 1 0

0 /r Literal If U contains Literal
command OP code.

151413121110 9 8 7 6 6 4 3 2 1 0

Literal Commands
The literal commands, listed by OP code are as follows:

OP Code Command

Load Register
Load File
Add to File
Test Zero
Test Not Zero
Compare

O RARWN -

83

The literal commands are used to load constants into various MICRO 800
registers, to test for bit configurations and data values in file registers, and
to load or add constants to file registers. Eight of the 16 bits are used as
command, and the other 8 are available as data.

Operate Commands
The operate commands, listed by OP code are as follows:

OP Code Command

Control

Add

Subtract
Memory

Copy

OR

EXCLUSIVE OR
AND '
SHIFT

MTMUOW»>OE~N

The operate commands are used to control the flow of data in or out and
through the MICRO 800 computer, and to perform the arithmetic and
logic functions in the computer,

With this powerful command set it is possible to implement all of the data
handling and control functions of a larger computer.

TERMS AND SYMBOLS USED IN THE COMMAND DESCRIPTIONS

{f1) Contents of file 1.

(f1)—~T Contents of file 1 to T register.

e Indeterminate value or function,

‘AA! Hexadecimal number in flow chart.

X‘AA’ Hexadecimal constant in assembly language statement.

Affected Register States

For each command certain registers are modified. These are described in
examples as affected registers.

A LOGICAL AND
VvV LOGICAL OR
% LOGICAL EXCLUSIVE OR

r Effective Address of L register as used in examples. (Eecause of
024' the lookahead feature of the MICRO 800, the actual L address is
one higher than indicated in the examples.) -

MICROCOMMANDS—FORMATS, DESCRIPTIONS, AND EXAMPLES

The formats of the examples for each command have been selected to
facilitate explanation of that particular command. Because of the differ-
ences in characteristics and utilization of -the various commands, and
associated data patterns, the example formats are different for each
command category.

84

Command Mnemonic OP Code
LoadT = LT n

1119 Literal

151413121110 9 8 7 6 56 4 3 2 1 0

The contents of the eight-bit literal field are placed in the T register. The
condition flags and LINK register are not affected.

This command is used to provide constant data values, bit patterns for
comparison tests, masks, and inptlt/qutput control codes, which are most
conveniently used in the T Register.)

The T register is also modified by designation as destination register in
operate commands, : ’

Example: Load T with hexadecimal value ‘AA’

Machine Assembly Flow Chart
L. Code Language Notation
‘024’ ‘11AA’ LT X‘AA’ ‘AA" —T
Affected Register States:
’ Register Before After
L ‘024’ ‘025’
T ce ‘AA’

Command Execution Time — 220 nanoseconds.

Cbmmand Mnemonic OP Code
Load M LM 12

12 Literal

161413121110 9 8 7 6 6 4 3 2 1 0

The contents of the eight-bit literal field are placed in the M register. The
condition flags and LINK register are not affected.)

This command is used to set the M register for accessing dedicated core
locations. The M register is also modified by designation as destination
register in operate commands,

Example: Load M With page address hexadecimal value ‘55’

Machine Assembly Flow Chart
L Code. Language Notation
‘“134' ‘1255’ LM X‘55° ‘65" —=M

- 85

Affected Register States:

Register Before After
L ‘134' '135’
M PR ‘\.;5'

Command Execution Time — 220 nanoseconds.

Command Mnemonic QP Code

Load N LN 13

13 Literal

151413121110 9 8 7 6 6 4 3 2 1 0

The contents of the eight-bit literal field are placed in the N register and
the M register is cleared. The condition flags and LINK register are not
affected.

This command is used to set the N register for accessing dedicated core
locations. If the location is in page O of core (‘0000’—‘00FF’) only this
command is required to set both the M and N registers, since M is auto-
matically cleared. If M is not to be page 0, then N must first be set, follow-
ed by M.

Example: Load N with address hexadecimal value “F' and set M = ‘00

Machine Assembly Flow Chart
[Code Language Notation
235 13FF’ LN X'FF’ ‘FF' —=N
‘00" —=M

Affected Register States:

Register Before After
L ‘235’ ‘236’
M — ‘FF’
N —_— ‘00’

Command Execution Time: 220 nanoseconds,

Command Mnemonic OP Code

Load U LU 16

16 Literal

151413121110 9 8 7 6 56 4 3 2 1 0

86

This command is used to place specific command codes into the U register,
which is used in conjunction with general function EXECUTE class com-
mands. The U register can also be modified by being designated as the
destination register in an operate command. The differences in utilization
of these two approaches for modifying the U register are described in a
later paragraph which discusses U register applications.

Whenever the U register is modified it is necessary to place at least one
command between the modifying' command and a command which uses
the U register as an input. Otherwise an undefined value of U may be used.

Example: Load U with hexadecimal value ‘84°

: Machine Assembly Flow Chart
L . Code Language Notation
‘155’ ‘1684" LU X's84 ‘84'—= U

~ Affected Register States:

Register Before After
L ‘165’ ‘156’
U —_ ‘84’
Command Mnemonic OP Code
Load Zero LZ 10
Control :
10 ’ Literal

16141312 11 10 8876643210

When this command is executed, g pulse called CGOX of approximately
200 nanoseconds width is generated. CGOX is available on the 1/0 and
option board connectors of the MICRO 800. During CGOX, the literal
value is on the A-bus, which is available to the option board. An 8 bit con-
trol latch can be set on the option board by this command and used for
any purpose, such as enabling counters, interrupts, or control lines.

On 1/0 boards, a literal value must be first placed in T, and then strobed
+ out with CGOX. CGOX can be used without the literal to initiate special
I/Q sequences. '

Example: Set bits 1 and 2 of special control latch on option board using
Load Zero Control.

Bit pattern 00000110 — ‘06’
Machine Assembly Flow Chart
L Code Language Notation
‘055’ ‘1006’ LZ X‘06' ‘06'—~2Z

87

Affected Register States:

Register Before After
L ‘055’ ‘056
Special —_ ‘06’
Command Mnemonic. OP Code
l.oad Seven LS 17
Control
17 Literal

151413121110 9 8 7 6 5 4 3 2 10

The eight bits of the literal perform control functions as described below.

1700 — No operation.

1701 — Enable serial teletype. The.serial teletype input is gated into bit 6
of file register 0. The serial TTY value is available all the time.

1704 — Disable external interrupts: Recognition of external interrupts is
inhibited.

1708 — Enable external interrupts: Recognition of external interrupts is
enabled.

Note: Commands 1704 and 1708 are meaningful only when the option
board has been instalied in the MICRO 800, and a modification has been
made to the computer backplane. These commands set and reset an inter-
rupt input enable latch on the option board. Without the option hoard the
external interrupt line is always enabled.

1710 — Disable real time clock: The real-time clock and interrupt are
disabled.

1720 — Enable real time clock: The real-time clock and interrupt are
enabled.

Note: These commands are meaningful only when the option board con-
taining the real time clock is installed. When the clock is enabled it is pre-
set to its wired value. Each time the real time clock cycles, it sets internal
status bit 2, which remains set until sampled by the microprogram.

1740 — Spare.
1780 — Halt: The processor is halted.

When the processor halts, all clocks stop, except for clock 6, and the L
register remains at the next value after the halt command. Depressing the
run switch will start the program at the next instruction after the halt
command.

Command Execution Time — 220 nanoseconds.

88

Non-conflicting commands can be executed simultaneously. For example,
enable external interrupts can be combined with enable real time clock.
The bits of the literal parts of the commands are ORed to produce the
hexadecimal code. :

Example: ‘ Machine Literal
i Code Bits
Enable Interrupts : 1708 0000 | 1000
Enable Real Time Clock 1720 0010 | 0000
Composite Command 1728 0010 | 1000
Command Mnemon'ic OP Codes
Jump JP ~ 14,15, 1C, 1D
(Also called :
Load L)
14/15/1C/1D Literal

151413121110 9 8 7 6 5 4 3 2 1 0

‘The contents of the eight-bit literal are placed in the eight low order bits
‘of the L register; the content of bit 8 is placed in Lg and the content of
bit 11 is placed in Lg. The location of the next command to be executed
is at the address specified by the new contents of the L register. The execu-
tion time of the command is two cycles. The jymp operation codes for
the four 256-word pages in read-only memory are as follows:

14 — Jump to locations 000-OF F (page 0)
15 — Jump to locations 100-1FF (page 1)
1C — Jump to locations 200-2FF (page 2)
1D — Jump to locations 300-3FF (page 3)

In order to fully explain this command, a detailed description of the L
register follows:

L Register Organization

9 8 7 0

8 bits

Bits 0 to 7 act somewhat like a counter in that they are incremented like a
counter after each command execution except conditional skips, jumps, or
operate commands containing L or K as a destination. I the L count is at.
XFF, and the next command causes L to be incremented, the' L count will
go to X00, with no indication of a carry. If a command causes L to skip,
L will go from XFF to XO01.

To change pages, it is necessary to change bit 8 or 9. Bit 9 can be changed
~ only with a jump (literal to L) command. With the jump command, any
part of L can be reached,

89

Bit 8 can be changed with either a jump command or by designating the L
register as the destination register in an operate command,

As shown in Table 4, a destination designator of 4 or 5 affects the L regis-
ter. The designator 4 causes bit 8 to reset, and 5 causes bit 8 to set. In the
assembly language mnemonics, a 4 is labeled L, and a 5 is labeled K.

The various methods of changing L are shown in the following read-only
map outline.

Variations of L Register L Register
t } Address
] I Page 3 Page Within Page
[]|
i | Page 2 1 1
| | Page 1
| | 1 0
| i = Page O
JUMPl L | Increment L 0 1
Dest| tor Skip

I | ol o

Since L is always addressing the next command to be executed, any con-
dition, such as a skip, jump, or L destination results in a clock cycle skip
because the “next’” command must be discarded for a new “next”
command. '

Examples:
Machine Assembly Flow Chart
L Code Language Notation

1) Jump to page O location ‘33

‘021 ‘1433 JP X033 ‘033'—-L
Sometimes just shown
as a line from one block
to another in flow chart.

2) Jump to page 2 location ‘46’

‘150’ '1C46’ JP X'24¢6’ ‘246" —-L
3) Jump to page 3 location ‘31"
‘230’ ‘1D31’ JP X'331"° ‘331"—L
L Register States:
Example Before After
1 ‘021’ ‘033’
2 ‘150’ ‘246°
3 230 . "33V

Command Execution Time — 440 nanoseconds.

90

Command Mnemonic OP Code
Load File LF . . 2f

2 f Literal

151413121110 9 8 7 6 6 4 3 2 1 0

The contents of the eight-bit literal field are placed in the file register
designated by f. File register 0 cannot be loaded by this command. The
condition flags and LINK register are not affected.

This command is used for ‘initializing or clearing file registers. It is also
used for setting relative and absolute jump addresses into files. It can also
be used as part of a table look-up routine. Another appllcatnon is for
setting indirect return addresses into files.

A brief description of a table look-up technique follows:

The table look-up function can be implemented using a combination of
load file, jump, and operate class (L destination) commands.

A table of values is stored in the ROM which are accessed by jumping to a
selected command using an operate class command with an L destihation.
The selected command is a load file command. After the load file com-
mand there must be a jump command to get back to the program routine,

Flow: ‘ ;
‘ Table
,0'2;4, Table Address —»T ~| Load File | '{,‘;‘55
| |
P ' . nst.
025 | (T) —L register 'BO24’
‘ - - r
‘026’ Next Instruction 1= Jum ' Inst.
‘ P ! 1426°

{

If, because of a large table, it is necessary to conserve memory locations in
the ROM, a number of load file commands could be grouped with each
jump command. This will temporarily tie up_as many files as load file
commands.

Example of load file command:
Load file 3 with ‘55’

Machine Assembly " Flow Chart
L Code Language Notation
‘025’ ‘23565’ LF 3, X'b%’ ‘65’ 3

Affected Register States:

Register Before After
L ‘025’ ‘026’
file 3 . = ‘65’

91

Command Mnemonic QP Code
Add to File AF 3f
3 f Literal

161413121110 9 8 7 6 64 3 2 10

The contents of the eight-bit literal field are added to the contents of the
file register designated by f and the sum replacés the original contents of
the file register. Subtraction is performed by placing the 2's complement
of the number in the literal field. The condition flags and LINK register

are not affected. File 0 may not be selected by this command.

This command is used whenever it is desired to add a number other than 1
(in which case the operate class add is used) to a file register. Specific
cases are where a file is used for a pointer or to update the U register and
changes of 2 or greater are required. Another use is to clear out higher
order bits from a register. This command can also be used to set a flag bit

in a file without resetting the other flag bits.

Examples:

1) All ‘2A’ to file 3 which contains ‘31’
2) Subtract ‘03’ from file 5 which contains ‘54’
3) Set flag bit 6 in file 9 which has flag bit 1 set

Example Machine
Number L Code
1) ‘015’ ‘332A°
2) ‘105’ ‘35FD’ @
3) '250° '3940° Q@

Affected Register States:

Example ,
Number Register
1) L

file 3
2) L

file 5
3) L

file 9

Assembly

Language

AF 3, X2A’
AF 5 X'FD’
AF 9,X'40’
O] 2's complement of ‘03’
@ Hexadecimal equivalent of bit 6 = 1

Execution Time — 220 nanoseconds.

92

Before

‘015’
l31 ’
‘105
‘54’
250"
102l

Flow Chart
Notation

(f3)+2A">f3
{fg)-'03" »fg
(fg)+40° = fp

After

‘016’
15BI
‘106"
51’
‘251
42

"~ Command Mnemonic OP Code
Test If Zero TZ 4f

4 f Literal

151413121110 9 8 7 6 5 4 3 2 1 0

If, for all the 1-bits of the literal field, the corresponding bits of the file
register designated by f are 0-bits, the next command is skipped. The con-
dition flags, LINK register and the file register are not affected. If the skip
is taken, the timing of the command is two clock cycles.

This is a conditional branch type of command designed to test for the
following conditions or functions existing in the referenced file register:
negative or positive -number, odd or even number, interrupt or internal
status bits, sense switch bits, condition flags set or not set, teletype input
bitset or not set. Since all of the selected bits must be 0, this is a logical
AND type function. If a test bit is 0, the corresponding bit in the file does
not affect the skip. -

Bit Pattern Examples:

File Register - 10001000

Test Zero Literal 00111000 No Skip
File Register 11100111 Ski

Test Zero Literal 00011000 P
File Register ‘ 10110000 SKi

Test Zero Literal 01001010 P
File Register 00010000 .
Test Zero Literal 00010000 No Skip

Since all bits tested must be 0, this command is good for testing for the
occurrence of any of a number of possibilities, such as testing for the
presence of any of 3 interrupt flags.

The conditional skip can be used for branching, or for simply skipping
one instruction for certain conditions, For branching, the skip is followed
by a jump command.

Example of Branch: ‘
, Test Zero file 3 bit | T bit1= interfupt
Skip the Y ,
Jump to Jump to Interrupt routine S
Interrupt

= Next Instruction if no Interrupt

93

A three-way branch can be implemented with two test and skip commands
and two jump commands.

Example:
TEST AND
SKIP
TEST AND N
JUMP SKIP JUuMP
BRANCH 1 BRANCH 2 BRANCH 3

Example: Skip if bits 3, 4, and 7 are not set in file 0.

Machine Flow Chart
L Code Mnemonic Notation
‘00E’ ‘4098’ TZ FO,X'98’
bits
3,40r 7\Y
set in / No Skip
FO?
Skip
Affected Register States:
Register Before After
L ‘O0E’ ‘010’ .
Case 1 FO 43 43 Skip
L ‘O0E’ ‘00F’ .
Case 2 FO ‘80" ‘80’ No Sk'p

Command Execution Time — 220 nanoseconds — No .Skip.
— 440 nanoseconds with Skip.

This timing applies to test not zero, and compare, as well.

Command Mnemonic OP Code
Test If Not Zero TN 5f
5 f Literal

151413121110 9 8 7 6 56 4 3 2 1 0

94

If, for any bit of the literal field which is a 1-bit, the corresponding bit of
‘the file register designated by f is also a 1-bit, the next command is
skipped. The condition flags, LINK register and file register are not affect-
ed. If the skip is taken the timing of the command is two clock cycles.

This: command differs from the test zero command in two ways. First it
skips on 1’s instead of 0's, and it skips on any 1 as opposed to all 0's on
the test zero instruction.

If both tests (zero and not zero) were reduced to one bit comparisons, the
only variation would be that one command produces the opposite result
of the other. The choice would then be if a jump was wanted if the tested
bitwas 1,0or 0. ,

If multiple bits are tested, the test not zero is the MAX TERM, and test
zero is the MIN TERM logic equivalent.

Bit Pattern Examples for test not zero:

File Register 01101100 Ski
Test Not Zero Literal 00110001 P
File Register 01000001 .
Test Not Zero Literal - ooo11010 No Skip
File Register 01100110 Ski
Test Not Zero Literal 01101000 P
File Register 11100111 .
Test Not Zero Literal 00010000 o Skip
Example: Skip if bit 0'in file 1 =1
Machi’ne Flow Chart
L Code Mnemonic Notation
‘01C’ ‘56101" “TN 1,X‘01’
Affected Register States:
Register Before After P
L ‘01C’ ‘0O1E’ .
Case 1 Fy 01’ 01’ Skip
L ‘01C’ ‘01D’ .
Case 2 . Fq ‘80" 80" No Skip

Command Execution Time — 220 nanoseconds — No Skip.’
440 nanoseconds — Skip.

" 95

Command Mnemonic OP Code
Compare cpP 6f

6 f Literal

151413121110 9 8 7 6 6 4 3 2 1 0

If the sum of the contents of the file register designated by f and the con-
tents of the eight-bit literal is greater than 2°-1, the next command is
skipped. The condition flags, and file register are not affected. | the skip
is taken the timing of the command is two clock cycles. The LINK stores
the carry out of the adder, File 0 may not be selected by this command,

This command is used for looping control, and for data value testing. It is
also used to test OP codes in instructions for selection of a particular class
of OP codes, such as memory reference, having OP code (MICRO 810)
greater than 5, for example. To test if the content of a file register exceeds
a selected number, the 1's complement is placed in the literal part of the
compare command.

Example: Skip if (f{) > ‘BF’

Machine Flow Chart
L Code Mnemonic Notation
‘014 ‘61A0° CcP 1, X'A0’

f)>'5b—*
! NNo

Y‘ Skip
Skip
Affected Register States:
Register - Before After
L ‘014’ ‘016’ .
Case 1 Fq 5’ 59’ No Skip
L ‘014’ ‘015" Skip
Case 2 F 66’ 66’

Command Execution Time — 220 nanoseconds — No Skip.
440 nanoseconds — Skip.

Command Mnemonic QP Code
Control - K 7f
7 f c * r

151413121110 9 8 7 6 5 4 3 2 1 0

96

"This command is used to control special data flow operations, and input/
output functions. The prime functions are as follows:

® Enter sense switches from panel to selected file register.

® Shift selected file right 4 bit places.

® Enter internal status to selected file register.

® Set and clear the 3 input/output control flip flops (IOXX)

A secondary function for some of the prime functions is that data can
simultaneously be moved from a file, or the input bus ANDed with the
selected file, to a register. File O may be selected by the shift right 4
function only. These functions will be explained in detail in the following
paragraphs This command uncondmonally updates the arithmetic condi-
tion flags in file 0.

The prime functions of this command are determined by the value of the
c field as follows:

c Operation ' Explanation
0 _ — No Operation
1 — Enter Sense Switches: —Th'e> status of the four console sense

switches are placed in the four high
order bits of the file register designated
by f. The four low order bits are set to
1-bits. The status can also be placed in
the designated destination register.

N
!

Shift File Right 4: The four high order bits of the file
‘ register designated by f are placed in
four low order bits of the file register.
The four high bits are set to 1-bits.
The result can also be transferred to

the designated destination register.

3 — Unused

4 — Enter Internal Status: The eight internal status bits are placed
in the file register designated by f, and
the designated destination register. The
internal interrupt flag in file O is reset
by this command, along with the con-
sole interrupt, real time clock, memory
parity, and. power fail/restart. Console
step is reset upon release of the con-
sole switch and spare bits are con-
trolled according to their individual
implementation in hardware,

t

5 — Unused
6 — Unused
97

7 — Enter Console Switches:

8 — Clear 1/0 Mode:

9-F — Set I/0O Mode:

The contents of the eight low order
console command switches are ANDed
with eight low order bits of the next
command. File register 0 and destina-
tion register 0 must be selected to pre-
vent any modification of the fiie or
register during the execution of the
Control command. The command
physically preceding this operation
must not cause a read-only memory
delay.

The 1/O Control register is cleared.
Data from the designated file or the
input bus ANDed with the designated
file can be transferred to the desig-
nated file register and register (r).

The 1/O Control register is loaded with
the three low order bits of ¢ placing it
in one of seven 1/0 bus or serial tele-
type modes. These modes are described
in Section 4, Data from the designated
file or the input bus ANDed with the
designated file can be transferred to a
designated file register and register (r).

Affected: F, 1/0 Control, Condition Flags, r

For all values of c, except 0, 3, 5, 6, or 7, source data is placed in the
designated file, if bit 3 = 0 and in the designated destination register.
Destination r = 7 is undefined for this command. In other words, the U

register is not used.

Examples:

C=1 Enter sense switches into file 1

L
‘005’

Affected Register Status:

Case 1

Case 2

Machine Fiow Chart
Code Mnemonic Notation

7110° K 1,1 (SSW)—f4
Register Before After

L ‘005’ ‘006"

file 1 —_— ‘OF’

Sense SW (Binary) 1001 1001

File O (Bits 2-0) —_ c10

L ‘005’ ‘006’

file 1 —_— 2F’

Sense SW (Binary) 0010 0010

File O (Bits 2-0) ——— 000

98

C=2 Shiftfile 1right 4

Machine Flow Chart
L Code Mnemonic Notation
‘012 ‘7120" K 1,2 : F1SR4 — F4
Affected Register States:)
Register Before After
L ‘012 ‘013
file 1 ‘EQ’ _'FE’
file 0 (Bits 2-0) ——— 010
C=4 Enter internal status to file 1
Machine Flow Chart
L Code Mnemonic Notation
. “1E3" ‘7140’ K14 - Status—f1q
‘Affected Register Status:
’ Register Before After
L ‘“1E3’ ‘1E4"
file 1 —_ ‘45’
Status ‘45’ ‘40’
file 0 (Bits 2-0) ——— 000

Note: Sense switch 4 can be tested by testing negative condition flag
. after entering SSW to file 0.

C=7 Enter console switches

“This requires two commands, the first being the enter console switches,
followed by a load file, if the switch settings are to go into a file; a load
register if switch settings are to go into a register, or an operate command
if switches are to modify the command. A load file operation will be used
for the example. The load file literal must be FF to duplicate the switch
settings into the file.

. Example: - Enter console switches into f5.
Machine Flow Chart
L Code Mnemonic Notation
‘112" ‘7070’ K 0,7 f5 ACSW—f5
‘113' ‘25FF’ LF 5, X'FF’
Affected Register Status:
Register Before After
L 112" 114
file b —— ‘A5’
Console SW ‘A5’ . 'Ab’
file 0 (Bit 2-0) ——— .~ 010

This command cannot be executed via the front panel because it requires a
dynamic situation, and two separate functions entered on the front panel.

99

C=8-F ~ Input/Output control

When ¢ equals 8-F, the operations are associated with external input/
output, and the three low order bits of ¢ are placed in the 1/0 Control
register. On the same operation, data can be moved from the designated
file register or the input bus ANDed with the designated file register as
determined by the current contents of the 1/0 Control register, to the
designated file or destination register. The data source is specified as
follows: .

I/0 Control Register Mode Source
0-3 Designated file register.
4.7 Input bus A designated file register.

The values 4-7 correspond to the 103X control flip flop. This flip flop
must be set in order to transfer data from the input bit to the computer
internal registers. Other than this restriction, the three 1/0O control register
bits can be used in any manner desired at the microprogramming level of
the MICRO 800 and as long as standard 1/0 interface modules are not used.

For purposes of standardization of common interface modules, and
implementation of standard |/O software instructions, a convention for
1/0 codes has been adopted as shown inTable 5.

Table 5. MICRO 810/820 Standard 1/0 Control Codes

¢ Field 1/0 I0XX
(Hex) | Mode | 3 2 1 Control Activity
11

8 0 0,0,0] None
9 1 0101 1| Control Qutput (COXX/) Output
A 2 | 01110| DataOutput (DOXX/) Code
B 3 | 01111| SpaceSerial Teletype s
C 4 11010| Concurrent Acknowledge (CACK/)(
D 5 110t 1] 1/0 Acknowledge (IACK/) Input
E 6 | 111}0| Datalnput(DIXX/) Codes
F 7 1,111 Spare -

Note that the 1/0 mode is directly represented as the 3 least significant
bits of the c field.

Standard Output Functions:

The two output codes COXX, DOXX represent a two-byte cutput se-
quence, where the first byte is for control, and the second byte is for
data. A device select control byte is first put in the T register (which is
also the output bus) and then COXX is set and reset. Then a data value is
placed in T and DOXX is set and reset.

Standard Input Functions:

COXX and DIXX control codes are used for data input routines. A device
select control byte is first placed in T, and COXX is set and reset. Then
DIXX is set, data is input while DIXX is set and then DIXX is reset.

100

While DIXX is set, data can be entered two different ways:

1) Operate commands involving T get the input bus instead of T as long
as 103X is set. These commands are ADD, OR, COPY, EXCLUSIVE
OR, AND. Any of these can be used to mput data whlle DIXX i is set as
Iong as T complement is not selected.

2) The control command with the ¢ field = 8-F causes the input bus to be
ANDed with the selected file register as long as 103X is set. This method
allows inputting on the same command that resets DIXX (prowdmg
the selected file has first been set to ‘FF’).

/O Examples:
1) Generate following output wave form:

OUTPUT | DEVICE SELECT U oata 1
BUS —

COXX J coxx |
DOXX : [Tooxx |

cLOCK 1 2 3 4 5 6 7 8 9 10 u
; , 1/0 CONTROL
MACHINE
FLOW CHART: CODES

l DEVICE SELECT CODE —T 1 — e

L SET COXX] —_— 7090°

'

L DELAY (NO OP} J _— “1000°

L RESET COXX 1 J— 7080’

l DELAY (JUMP TO NEXT I S JUMP CAUSES 2
INSTRUCTION) CLOCK DELAY

L OUTPUT DATA BYTE —=T] _ ——

'

L SET DOXX] —_ 70A0

[oetavinoor —I _ “1000°

[RESET DOXX B —_ 7080°

101

2) Input data according to following wave form:

OUTPUT | DEVICE SELECT l
BUS
l COXX I
COXX — .
[DATA READY
INPUT

BUS

L
BIXX ’ N DIXX L
INPUT 1

DATA
SAMPLE
CLOCK 1 1 1 1 . 1 I it 1 1 J
FLOW CHART: 1/0 CONTROL
MACHINE
CODES
[DEVICE SELECT CODE —=T |
—_ 7080’
— ‘1000
— “7080°

— Jump to next
inst. 2 clock delay

— ‘70E0’

— Jump to next
inst. 2 clock delay

— Operate class
[CinpuT DATA Operate o
EHESET DIXX — “7080°

For a very simple interface having only 3 data registers to set, a single
byte sequence will suffice for outputting data.

102

3) Output a byte to interface Latch No. 2, where only 3 interface latches
exist in the system, using the simple interface technique mentioned
above, '

1/0 CONTROL

FLOW CHART: l _ , MACHINE CODES
OUTPUT DATA BYTE —»T
SET 1/0 MODE =2 o “70A0’
RESET I/0O MODE _ : 7080

On an input cycle it is necessary to wait at least one clock cycle after
generating DIXX to input data, The 1/O controls are set in time at the
completion of the control command. An input on the next clock would
attempt to transfer data before the interface unit has the correct response
data ready for input.

¢ field = B which is 1/0 mode 3 is used to set the serial teletype mode to
SPACE, which ties up the 1/0 channel,

cfield = D which is I/O_mode 5 is used to acknowledge interrupts.

" Command Mnemonic OP Code

Add AT gf
8 f c *| r
LY

11413121110 8 8 7 6 6 4 3\2 1 0
Inhibit File Write

The selected operand is added to the contents of the file register designated
by f. The sum is placed in the file register (f), if * is a 0-bit, and in the
register designated by r. The state of the carry out of the high order bit of
the adder is placed in LINK. File 0 may not be selected by this command.
The c field controls selection of the operand, incrementing the result and
modification of the condition flags as follows:

103

c-bits
7 65 4

1T x x x

x 1 x x

x x 1 x

x x x 1

Link Control: The content of LINK is added to the sum.
The zero condition flag can be reset but cannot be set,
providing a linked zero test over multiple bytes. A linked
zero over multiple bytes functions as follows: Assume a
2-byte add is to be performed. Two file registers contain a
16-bit number to be added to another 16-bit number in
core memory. The add is performed one byte at a time,
with the LINK used for carry into the second add. On the
first byte addition the condition flags are modified. | the
result of the first byte addition is not zero, then af course
the entire addition results in a non-zero condition, so that
the zero condition flag should not be set on the second
byte add even if its result is zero, On the other hard, if the
first add produces a zero condition, the second may not,
therefore the zero condition flag should be resettable on
the second byte add. '

The add function can be used to move data from a file to
another register by not selecting any input in the ¢ field.

Add One: Oné is added to the sum.

Select T: The contents of the T register or the input bus
are selected as the operand. If the T register is not selected,
the operand is zero.

Modifying Condition Flags: The condition flags are updated
according to the result.

Eight different examples have been selected to illustrate various c states,
data values, and destination registers. Since the L register advances 1
unless it is the destination, its state will not be shown in the affected
register state chart. File 1 will be used in all examples.

The various functions selected for each example are shown,in Tables 6, 7,

8 and 9.

Table 6.

The general form of the examples is —

Add the contents of file 1 to one or more of the following:

Destination register choices are

Link is always updated.

Condition flags are updated on selected examples.

Link, 1, T

T,F1,0I‘N

104

Table 7.

Add command uses file 1 for all examples.
Table of functions selected for each example.

¢ Field’ Destination
Hexa-
. |[Modify|decimal [Selected Hexa-
) Add [Add|Select|{Cond. {Code for|Register |Binary|decimal
Example Link| 1 T |Flags ' jcField |Symbol |Code | Code
1. Add (file 1) to 0ol 1 3 |T.¢ |ooo1| 1
(T), put result in
T and 4, and up-
date condition
flags.
2. Add (file 1) to 0 0 1 1 3 T 1001 9
(T), put result in
T, update condi-
tion flags. ,
3. Add (file 1) to 0 0 1 1 3 N 1011 B
T, put result in N,
update condition
flags.
4. Add (file 1) to 0 1 1. 0 6 N, f 0011 3
T, +1, put result
in f{ and N,
5. Add (file 1) to 1 ol o 0 8 4 0000 4]
(LINK), put
result in f1.
6. Add one to f4 0 1 0 1 5 f1 0000 (4]
and put result
in f1, update C.
7.Add (fy)t0o T 1 0 1 0 A T. 4 0000 0
and (LINK)., -
Putresult in fq. .
8.-Add (file 1) to 0 1 1 0 6 T, 0001 1
(T) plus 1. Put :
resultin T, f1.

The coding for the‘8 Addition examples is shown below.

Table 8. -
Machine Assembly
Code Language Flow Chart
Example (Hex) Mnemonics Notation

1 -8131 AT 1,T,C (f1) +(T)—T,1,C
2 8139 AT* 1,T,C (f1) +(T)—T,C
3 813B AN* 1, T,C (f1) +(T)—N, C
4 8163 AN 1,1, T ~(fq) +(T) +1—=N, fq
5 8180 A 1,L (fq) + (L) —f1 :
6 8150 A 1,1,C (f1) + 1——1f4
7 81A0 < A 1,L, T (f1) + T + (L)—=f1
8 8161 AT 1.1, T (f1) +(T) + 1—T, fq

NOTE:

Command Execution Time — é20 nanoseconds.

Table 9. Affected Register State Chart

If both Link and 1 are selected as inputs, they are ORed instead
of added, thus the effective input is 1 regardless of the value of L.

Example

1

The complement of the selected operand plus one is added to the contents
of the file register designated by f. The difference is placed in the file
register (f) if * is a 0-bit, and in the register designated by r. The result is a
2's complement subtraction. The state of the carry out of the high order
bit of the adder is placed in LINK. File 0 may not be selected by this
command. The c field controls selection of the operand, incrementing the
result, and modification of the condition flags as follows:

File T
Before ‘65’ ‘9B’
After 00 00
Before ‘65" ‘15
After ‘65’ A’
Before ‘65’ ‘65’
After ‘65’ ‘65’
Before ‘65’ ‘00’
After ‘66’ ‘00’
Before ‘00" | -
After 01 | -
Before ‘FF' | -
After ‘00" | -
Before ‘00’ ‘00’
After ‘01’ ‘00’
Before ‘01’ ‘01’
After ‘03’ ‘03’
Command Mnemonic
Subtract S

f

151413121110 9 8 7 6 6 4 3

106

Inhibit File Write

c-bits
7 65 4 : Operation

1 x x x Link control: The content of LINK is added to the sum.
Selection of the LINK inhibits the automatic addition of
one. The zero condition flag cannot be set, providing a link-
ed zero test over multiple bytes. Refer to the add descrip-
tion for details on linked zero test.

x 1 x x Inhibit add one: If link control is not selected, one is auto-
matically added to the result to produce a 2's complement
subtraction. This control bit inhibits this addition, provid-
ing a 1's complement subtraction.

x x 1 x Select T: This complement of the contents of the T register
are selected as the operand to the adder. If not selected, the
operand consists of a 1-bit in each bit position.

x x x 1 Modify Condition Flags: The condition flags are updated
according to the result.

Affected: F, LINK, Condition Flags, r

If the input bus is enabled (103X), this command will yield an unpredict-
able result because the complement of the input bus is not available,

Examples:

1. Subtract zero from file 1.

(f1) — 0 —f4
Machine Code Mnemonic
‘9100° S 1

Affected register states:

Register -~ Before - After

Link _— 1
file 1 00’ ‘00’

Even though 0 is subtracted from 0, since 2's complement adding is
~ used there is a carry of 1 all through the adder to the Link.

2. Subtract T, 1 from file 1
Destination T Update condition flags

Machine Flow Chart
Code Mnemonic Notation
‘9179 ST* 1D,TC (f}) = T-+—=TC

107

Affected register states:

Register Before After
fq 31 31
T ‘31 ‘FF'=2’s comple-
ment for -1
L —_ 0
C e 010

Zero/ ng ‘Bverflow

Command execution time — 220 nanoseconds.

Command Mnemonic OP Code
Read Memory R Af
Write Memory w . Af

A f c * r

151413121110 2 8 7 6 5 4 3 2 1 0

The primary function of this command is to initiate a core memory cycle
in which one byte is transferred between the T register and core memory.
The address in core is determined by the contents of the M and M registers.
File 0 may not be selected by this command.

The lower two bits of the ¢ field determine whether the memory operation
is read or write and whether the operation is a full or half cycle.

The c-bits control the type of memory operation as follows:

c-bits :
765 4 Memory Access Operation

x x 1 x Half Cycle: If this bit is a 1-bit, a half cycle memory opera-
tion is performed; otherwise a full cycle operation is selected.

X x x 1 Write: If this bit is a 1-bit, a write memory operation is per-
formed; otherwise a read operation is selected.

A full cycle takes 5 clock times.

A half cycle takes 3 clock times. .

A full cycle read leaves the data in core unchanged.

A full cycle write causes the old data to be cleared so the new value is
unaffected by the old.

A half cycle read leaves all ones in the core location,

A half cycle write ANDS the data to be written with the data already in
core.

108

If a half cycle write into a particular memory cell was preceded by a haif
cycle read, the data value gets stored without modification since it is
ANDed with all 1's, left from the previous half cycle read.

A secondary function of this command is to simultaneously move data
between registers while initiating the memory cycle,

"The contents of the file register designated by f is unaltered, incremented,
or decremented as controlled by the ¢ field. The result is-placed in the file
register (f) if * is a O-bit, and in the register designated by r. At the same
time, a read (R) or write (W) memory operation is initiated as controlled
by bit 4. If the operation is a memory read, the T register is cleared and
the accessed data is set into the T register after two clock cycle times.
Data to be written into memory must be placed in the T register during or
before the write memory command, if the operation is a half cycle write,
and by the first clock cycle time after the write memory command on a
full cycle.write. The condition flags and LINK are not affected. Execution
of the memory command is delayed if the memory is in a busy condition
from a previous R or W command or DMA operation.

The bits of the c field control the transfer of data from the file reglster as
follows:

c-bits
76 5 4 Operation -

00 x x Transfer: The contents of the file reglster are transferred
unaltered.

0.1 x x Decrement: The contents of the file register minus one are
-routed as specified. If the M register is selected as the desti-
nation and the content of LINK is a 1-bit, the contents of
the file register are transferred without being decremented.
This provides a decrement with link control when M is the
destination,

10 x x Add Link: The content of LINK is added to the conteﬁts of
the file register, and the sum is transferred as specified.

1T 1 x x Increment: The contents of the file register plus one are
transferred as specified.

This data transfer feature permits setting up one of the registers directly
involved with the memory access (M, N, or T) at the same time the
~memory cycle is initiated. There are some timing restrictions pertaining to
modification of M, N, or T registers during a memory cycle. Some of the
functions have logic interlocks to prevent errors, and some do not. These
restrictions must be carefully considered with respect to data errors, and
unexpected program time delays. The restrictions are as follows:

1) Attempting to change M, or N while a memory cycle is in progress
stops the computer clock until the memory cycle is over. No data
errors result, Either M or N can be changed by the command initiating
the memory cycle without causing delay.

109

2) Accessing T during a read cycle causes the clock to stop until the new
data value from core is correctly in T. This causes delay but no data

error,

3) Changing T during a write cycle will not cause delay but it may cause
a data error.

The memory access restrictions are specifically defined in the following

chart:
Full Cycle| Full Cycle | Half Cycle| Half Cycle
Read Write Read Write
Delay from changing Upto 4 Upto4 Upto2 Upto2
M and N clocks clocks clocks clocks
Delay due to T access Upto2 0 Upto2 0
clocks clocks clocks
Data in T available 2nd clock 2nd clock
(on Read) after after
memory memory
command command
T must be loaded by 1st clock Memory
(on Write) after Cycle
memory Command
cycle
command
T must stay loaded 4 clocks 2 clocks
until (on Write) after after
memory memory
command command

Timing Diagrarn for Memory Accesses:

oY

MEMORY |
COMMAND |
CLOCK

M & N MUST
BE SET ON

OR BEFORE |
THIS CLOCK |

|
T MUST BE
SET ON OR
BEFORE |
THIS CLOCK
oN A WRITE |
HALF CYCLE
COMMAND

[

1

18T !

CLOCK |

AFTER)
MEMORY

INST. 1

1

|

1

|

|

T MUST BE
SET ON OR
BEFORE

THIS CLOCK |
ON A WRITE
FULL CYCLE |

| COMMAND |

T

2ND
CLOCK
AFTER
MEMORY
INST.

— e ———— A - - — e a —— o

\KF

3RD
CLOCK
AFTER
MEMORY
INST.

DATA IS
AVAILABLE
INTON
THIS CLOCK
AFTER A
READ
COMMAND.

110

\/

!

4TH
CLOCK
AFTER
MEMORY
INST.

/
!

5TH
CLOCK

M,NAND T
CAN BE
CHANGED ON
THIS CLOCK
WITHOUT
DELAY OR
ERROR.

A3

Examples:

Machine
Code
f d c
i e c Field Binary Field
o | s Functions and Codes for | Hex.
E xample p e t - Mnemonics Memory Commands Code General Description
1) Full cycle write A1 3 WN 1,1 Increment Full cycle D Full cycle write memory is initiated
(file 1} + 1— N, f, write and N register is updated as well as
1 1 0 1 1. . ’
2) Half cycle read A 2 2 RM 2,H Transfer Half cycle 2 Half cycle read memory is initiated
(file 2) ———=M, f2 read while M register is updated directly
0 0 1 0 from fg.
3) Half cycle write A2 2 WM 2,L.H Add Link Half cycle B Half cycle write memory is initiated
(file 2) + (Link)—M, f,) . write while file 2 and M are updated by
1 0 1 1 adding (LINK).
4) Full cycle write A 3 1 wT 3 Transfer Full cycle | 1 Full cycle write memory is initiated,
{file 3}——— T, f3 write T is updated from f3 on the same
0 0 0 1 command. _
5) Half cycle read Inhibit file write Decrement Half cycle Half cycle read memory is initiated,
{f1) —1—=N read followed by T register access on the
followed A1 B RN * 1,D,H o] 1 1 0 6 next instruction. This will cause a
| {f3) +(T)—T, 15 8 3 1 AT 3T - - - — | — | program delay until the third clock.
6) Half cycle write followed Transfer Half cycle Half cycle write memory is initiated,
by loading T - write followed by loading T on next
(f3}—T, f3 A0 0 w 0, H 0 0 1 1 3 instruction. No_time delay occurs,
) 8 3 1 AT 3 — - - - — | but data written into memory may
be incorrect.
7) Full cycle réad, decrement Decrement Full cycle A full cycle read is initiated. (f{) is
{file 1) and transfer to M . read decremented and transferred to M.
(f}) = 1———M, fq A1 2 RM 1,D 0 1 0 0 4 If (LINK) = 1 the contents of the

file are transferred without being
decremented.

Command Mnemonic OP Code
Copy C Bf

B f c * r

151413121110 9 8 7 6 56 4 3 2 1 0

The selected operand is placed in the file register designated by f, if * isa
0-bit, and in the register designated by r. The LINK is not affected. The c
field controls selection of the operand, incrementing the operand, and
modification of condition flags as follows:

c-bits
765

»

Operation

T x x X Link Control: The content of LINK is added to the sum.
The zero condition flag can be reset but cannot be set, pro-
viding a linked zero test over multiple bytes.

x 1 x x Add One: One is added to the sum.

x x 1 x Select T: The contents of the T register or Input bus are
selected as the operand. If the T register is not selected, the
operand is zero.

X X x 1 Modify condition flags: The condition flags are updated
according to the result.

Affected: F, Condition Flags, r

This command is used to transfer T to a selected file register, with the
option of incrementing or adding LINK while transferring. it is also used
for inputting data, because when the input control flip flop (103X) is set
during an input mode, operate commands selecting T get the input bus
instead.

The command can be used to test the condition of T by selecting fO as the
file register (which is unaffected) and setting the modify condition flag in
the c field.

The command can also be used to clear one file and another selected
register by not selecting any input in the c field.

Command Execution Time — 220 nanoseconds.

112

gLt

Eile register 1.is used for all examples except setting condition flag example.
E xamples of Copy Command:

Machine Destination for
Code ¢ field for Copy Commands Copy Commands
f d
i e Mod. | }
o | s Add | Select | Cond.| Hex. | Selected | Binary | Hex. .
E xamples p e c t [Link 1 T Flags | Code | Registers | ‘Code | Code| Mnemonics General Discussion
(T)— 14 B 12 0|0, 0 1 0 ‘ 2 fq 0000 0o |C 1, T | (T) is transferred,
. unaltered to file 1.
() +1—=f¢,N B 16 3|0 1 1 0 6 f1,N 0011 3 | CN 1,I,T |(T) is incremented and
' transferred to file 1,
and to the N register.
(T) + (LINK) — f4 B 1 AO0]|1 (4] 1 0 A fq 0000 0|C 1,T,L | (T) is added to (LINK)
and transferred to f1.
0—f1, N B 103{0 0 0 4] 0 f1. N 0011 3 |CN 1 File 1 and N registers
! are cleared because no
input is selected.
(T)—fp,C B-1 3 0|0 0 1 1 3 fo 0000 o|C 0,T,C | Condition flags are set
s ’ according to the state
Set Condition Flags of (T). File O can't be
loaded by this instruc-
tion so is unchanged.
Set DIXX 7 0 EO K O,X’E’ |The input flip flop is
set by the DIXX
Delay 1000 LZ X'00° |command, so the copy
. : T command transfers
(T)— 14, T B121]|0 0 1 0 2 fq.T .~ 0001 1 CT 1.7 the Input bus to file 1
andto T.
Reset DIXX 7080 K 08

Command Mnemonic OP Code Symbol
OR 0 cf AVB

C f c |% r

151413121110 9 8 7 6 5 4 3 2 1 0

The selected operand is logically inclusive-ORed on a bit-for-bit basis with
the contents of the file register designated by f and the result is placed in
the file register, if * is a 0-bit, and in the register designated by r. The LINK
is not affected. The c field controls selection of the operand and modifica-
tion of the condition flags as shown below:

c-bits
765

1 x x x Link control: The zero condition flag can be reset but can-
not be set, providing a linked zero test over multiple bytes.
See the description of the add command for a detailed
description of linked zero test.

F-S

Operation

x 1 x x Select complement T: The complement of the contents of
the T register is selected as the operand. If the T register is
also selected, the effective operand contains a 1-bit in each
bit position.

x x 1 x Select T: The contents of the T register or Input bus are
selected as the operand. {f neither the T register nor the
complement of the T register is selected, the operand is zero.

x x x 1 Modify Condition Flags: The condition flags are updated
according to the result,

Affected: F, Condition Flags, r

If both complement T and T are selected, the operand is all 1's. If the
input bit is enabled (103X), complement T must not be selected.

This command is used for the general function of logical ORing as needed
in a microprogram. It also has the following specific applications: Setting
flag bits without disturbing other bits (with the OR function it doesn't
matter if the flag is already set since there is no carry); moving data from a
file to another register by not selecting any operand; setting all 1's in a file
register and/or one other selected register by selecting both T and T
complement as operands; combining two numbers into one byte, such as
for assembling hexadecimal digits into multiple digit numbers after the
digits have been input to the computer as a string.

Bit pattern example of OR function:

Binary Hexadecimal
file 1 01101000 ‘68’
T 00110100 ‘34
Result 01111100 7c’

Command Execution Time — 220 nanoseconds.
114

File register 1 is used for all examples.
Examples of OR commanc_l:

Machine : Destination for
Code ¢ field for OR commands OR command results"
f

Select Mod.)
Comp. | Select |Cond.| Hex. [Selected | Binary | Fex.
Link T T . | Flags | Code |Registers| Code .| Code | Mnemonics | General Discussion

Flow Chart
Notation

@ = -
“~ v oo

O] T O

f) VT)—>T 12 9(0 4] 1 0 2 T 1001 9 OT* 1, T |OR (file 1) with (T),
: inhibit file write put

result in T.

{f1) v.0—N, fq c103|0 0 0 0 o] N, fq 0011 3 |ON 1 Move {(file 1) to N by
. . ; . - |ORing with 0 and
putting result in N.

Sl

(f1) v (T —> fq cC120] 0 0 1 0 2 4 0000 0{O0 1,T [OR {File 1) with {T)
! and put result in
file 1.

(f) VAT), (T)—=N - cC16 B| O 1 1 0 6 N 1011 B | ON* 1,T,F |Set N = FF (all ones)

’ .) by ORing (f1) with
T, T and putting
result in N.

(fq) VATI(T) —>14 1€ 1 6 0| O 1 1 0 6 fq 0000 0 |O 1,TF |[Setfy=FFby _

ORing fy with T, T

and putting result
in fq.

la

(f1) v (T)—Link, C C 1B 8 1 -0 1 1 B none 1000’ 8 | O* 1,T,L.,C{Perform conditional
‘ , ‘ test on (f1) V (T)
without changing f1
or T. Select L to
perform linked zero
test with a previous
command.

Command Mnemonic OP Code Symbol

Exclusive OR X Df A ANB

D f c * r
1N
151413121110 9 8 7 6 56 4 3\2 1 0

- Inhibit File Write

The selected operand is logically exclusive-ORed on a bit for bit basis with
the contents of the file register designated by f and the result is placed in
the file register, if * is a0-bit, and in the register designated by r. The LINK
is not affected. The c field controls selection of the operand and modjfica-
tion of the condition flags as shown below:

c-bits
7 65

1T x x X Link Control: The zero condition flags can be reset but
cannot be set, providing a linked zero test over multiple
bytes. See the description of the Add command for a
detailed description of linked zero test.

F-S

Operation

x 1T x x Select Complement T: The complement of the contents of
the T register is selected as the operand. If the T register is
also selected, the effectlve operand contains a 1-bit in each
bit position.

x x 1 x Select T: The contents of the T register or input bus are
selected as the operand. If neither the T register nor the
complement of the T register is selected, the operand is zero.

x x x 1 Modify Condition Flags: The condition flags are updated
according to the result.

Affected: IF, Condition Flags, r

If both T and T are selected, this command produces the one’s comple-
ment of the value in the file register. |f the input bus is enabled (103X},
complement T must not be selected,

This command is used.for the following functions: general purpose ex-
clusive OR; data comparison; ones complementing; and flipping selected
bits such as controls and status flags.

Bit pattern example of exclusive OR.

Binary Hexadecimal
file 1 01101100 ‘6C’
T 00011010 “aA’

Result 01110110 76’

Command execution time — 220 nanoseconds.

116

LLL

File register 1 is used for all examplés.

Examples of Exclusive OR command:

Machine Destination for E xclusive
Code c field for OR commands OR command results
f d
Example i e Select Mod.
Flow Chart o | s Comp. | Select | Cond.| Hex.| Selected | Binary | Hex.
Notation p e ¢t Link T T Flags | Code | Registers| Code | Code | Mnemonics| General Discussion
f)¥ (T)—T D129 0 0 1 0 2 T 1001 9. [XT* 1, T YExclusive OR {file
' 1) with (T) inhibit
file write, put
result in T.

(f1) ¥ 0 —=N, fq D10 3 0 0 0 0 0 N, fq 0011 3 XN 1 Move (fite 1) to N
by exclusive ORing
with O (same result
as ORY}, put result

) ~lin N.

(f1) % (T4 D120 0 0 1 0 "2 1 0000 0 (X 1, T |Exclusive OR (file

1) with (T) and put
. result in file 1.
(f1) ¥ (T, {T)—=T . D16 B 0 1 1 0 6 N 1001 9 | XT* 1,TF |Produce ones com-
piement of (f{) and
. place result in T.
1 ¥ (T), (T) —f4 D160 0 1 1 0 6 fq 0000 0 (X ° 1,T,F |Produce ones com-
plement of (f1} and
put it back into fq.
(f1) ¥ (T)— Link, C D1 B 8 1 0 1 1 B none 1000 8 | X* 1, T, |Perform conditional
‘) LC test and linked zero

test on (f1) ¥ (T)
without changing

| (F)or (T). -

Command Mnemonic OP Code Symbol
And N Ef ANB

E f c * r

151413121110 9 8 7 6 5 4 3{ 10
— Inhibit File Write

The selected operand is logically ANDed on a bit-for-bit basis with the
contents of the file register designated by f and the resuit is placed in the
file register, if * is a 0-bit, and in the register designated by r. The LINK is
not affected. The c field controls selection of the operand and modifica-
tion of the condition flags as shown below:

c-bits
7 65 4 Operation

T x x x Link control: The zero condition flag can be reset but
cannot be set, providing a linked zero test over multiple
bytes. See the description of the add command for a detail-
ed description of a linked zero test.

x 1 x x Select complement T: The complement of the contents of
the T register is selected as the operand. If the T register is
also selected, the effective operand contains a 1-bit in each
bit position. :

x x 1 x Select T: The contents of the T register or input bus are
selected as the operand. If neither the T register nor the
complement of the T register is selected, the operand is
zero.

x x x 1 Modify condition flags: The condition flags are modified
by execution of the command. Updated according to the
result.

Affected: F, Condition Flags, r

I both T and T are selected and And command moves the data, unchanged
from the selected file register to the designated destination register. If the
input bus is enabled (103X), complement T must not be selected.

The and command is used for the following functions: General purpose

anding of files and T; resetting selected flag or status bits, without dis-
turbing other flags; and masking out parts of a byte.

118

6L1L

File register 1 is used for all examples.

Examples of And Command:

Example

Flow Chart
Notation

Machine
Code
f

i.
I
e ¢

oo

c field for And commands

Destination for
And command results

Link

| Mod.
Cond.
Flags

Select
Comp. | Select
T T

Hex.
Code

Hex.
Code

Selected
Registers

Binary
Codg

Mnemonics

General Discussion

(A (T)—14

m| T o

1 2

o

o - 1 0

fq 0000 | ©

N

1T

(f1) is anded with (T).
The result is put into
fq.) g

(f))AO—>N, fy

0011 3

NN

(f1) is anded with 0.
The result {which is 0)
is put into N, and fq. .

FPAT)—>T

T 1001 9

NT* 1T

(f1) is anded with (T).
Theresultisputin T
and inhibited from f1.

{FPA(T), (T)—=N

N 1011 B

NN* 1T, F

(f1) is anded with (T),
{T} which is same as
anding with FF (all
ones). Result is put in
N and inhibited from
1. .

(1) A (T)—= £

f1 | o000 | .0

1,F

{f1) is anded with {T).
The result is put into
f1 .

(f1) A(T) —Link, C

none 1000 8

,-_.
©

{f1) is anded with (T).
The result is not put in
any register. Only the
condition flags are set.
Use of link results in
multi byte zero test.

Bit pattern examples of the and function.

file 1
T

Result

file 1
T

Result

file 1
T —
(Select T)

Result

file 1
T,T

Result

Command Execution Time — 220 nanoseconds.

Command

Mnemonic

Binary Hexadecimal
01101011 ‘6B’
10101101 ‘AD’
00101001, 29’
01000010 ‘42
Joinii BF
00000010 ‘02’

Reset a flag
10100101 ‘AB’
11010011 ‘DI
(00101100) (2C’)
00100100 24’
10100101 ‘AB’
11111111 ‘FF'
10100101 ‘AB’

OP Code

Shift

H

Ff

F

f

c

*

r

151413121110 9 8 7 6 6 4 3

\2 1 0
Inhibit File Write

The contents of the file register designated by f is shifted left or right one
bit position and placed in the file register, if * is a O-bit, and in the register
designated by r. The high order or low order bit which is shifted off is
placed in LINK and in the overflow fiag if the modify condition flag is
selected. The ¢ field controls the direction of shift, entry of an end bit,
and modification of the condition flags as follows:

c-bit
7 65 4

Operation

1 x x X Link control: The content of the LINK is inserted into the
vacated low order or high order bit position. The zero con-
dition flag can be reset but cannot be set, providing a linked
zero test over multiple bytes. See the description of the add
command for a detailed description of the linked zero test.

x 1 x x insert 1: A 1-bit is unconditionally inserted into the
vacated low order or high order bit position; otherwise a
0-bit is inserted unless the contents of LINK is selected.

120

c-bit
7 6654

Cx x 1 x

x x x 1

Affected:

Operation

Shift right: if bit 5 is a 1-bit, the operation is a right shift; ‘
otherwise a left shift is performed.

Modify condition flags: The zero and negative flags are
updated accordlng to the result. The content of the blt
shifted out is placed in the overflow flag.

F, LINK, Condition Flags, r

This command provides great flexibility for various shifting functions
mechanized by microprogramming. These are as follows:

Left or right shifting;

End around carry or no end around carry;

Arithmetic or logical shifts;

Multiple byte shift register implementations in either file registers or

core memory;

® Pattern rotations by successive shlftlng of 8 files one bit at a time and
assembling into a 9th file;

® Set or reset link bit by shifting with no destination register.

Bit pattern examples of shift command. All examples are for shift (f1) and
put result back in fq.

file 1
Sequence file 1 Hexa- | Condition
Instruction Number Binary Link decimal Flags
Shift Right before 01101001 0 ‘69’ —_
after 00110100 1 - ‘34’ —
Shift Left before -| 01101001 1 ‘69’ —_
after 11010010 0 ‘D2’ —_
Shift
Right before 00111000 1 ‘38’ -
Enter after 10011100 0 ‘9C’ —_
Link
ohirt before | 10001010 | O -7 —
after 00010101 1 ‘15’ —_
Enter 1
Shift Left .
Modify before 11001011 0 ‘CB’ —_
Condition after 10010110 1 ‘96" 011
Flag
Shift Right
Modify before | 00000001 0 : ‘01 —_
Condition after 00000000 1 .00 101
Flag

121

zecl

Instruction codes for bit pattern examples of shift command.

These examples are the same except for additional Destination Registers.

Machine Destination for
Code c field Shift Command results
f d
i e Mod.
Flow Chart o | s | Insert| Insert] Shift [Cond.| Hex. | Selected | Binary | Hex.

Example Notation p e ct Link 1 |Right|Flags | Code| Registers| Code | Code | Mnemonics General Discussion
Shift right (frleg—=11,T F1 21 0 0 1 0 2 f1,T 0001 1 HT 1,R {file 1) is shifted right
result to one bit, link, or 1 are
1, T. not inserted. The result

isputinT and fq.
Shift left (fl@ —Fq F100 0 0 0 0 1] f1 0000 0 H 1 (file 1) is shifted left
result to one bit, link or 1 are
fq. not inserted. The result
. is put in f1.
Shift right (fl)Jeg+Lk»f4N|F 1 A 3 1 0 1 4] A f1.N 0011 3 HN 1,R,L | (file 1) is shifted right
insert link one bit, (Link) is
result to inserted in vacated left
fq,N. hand bit. Result is put
) in fq and N.
Shift left (fp@ +t—=f{ M| F 1 4 2 0 1 0 0 4 f1.M 0010 2 HM 1,1 (file 1) is shifted left.
insert 1 1 is inserted into the
result to vacated right hand bit.
fq, M. Result is put in f{ and
M.
Shift left {f1)@ —11.C F110 4] 0 0 1 1 fq 0000 0 H 1,C (file 1) is shifted left.
modify cond|] The resuit is put into
flag. Result file 1. Condition flags
to fy. are modified.
Shift right (f)@g—F1.C F130 0 0 1 1 3 t1 0000 0 H 1,R,C | (fiie 1} is shifted right.
Modify cond) The result is put into
flag. Result file 1. Condition fiags
to fq. are modified.

Command Mnemaonic

Execute E

0

151413121110 9 8 7 6 6 4 3 2 1 0

The eight-bit contents of the U register are ORed with the eight high order
bits of the execute command to form an effective command. This provides
a means of partially modifying the contents of aread only storage location,
The ORing is performed before the output of the read only storage is gated
into the R register. The meaning of bits present in positions 0-11 is depend-
ent upon the desired effective operation code after the modification. Due
to the lookahead feature of the read-only memory, the new contents of the
U register are not available until after one machine cycle following the
transfer of data to it. '

The execute command provides a means for program modification of a
command. This capability is used for many different functions, three of
which are as follows:

® Indexing of file registers in a program loop.

® Having a general purpose instruction which may take on different
specific functions, such as load a register, add to the register, AND with
the register, etc., depending on program variables.

® Selection of alternate file registers depending on program variables.

Sometimes a combination of two of the above is used.

The U register can be set with the load U command, or by being designated
as the destination register of an operate class command, such as Add, Copy,
etc. :

For file register indexing, a separate file register is designated as an index
register, It is loaded with an initial value, then incremented, with the result
being put in U each time through the loop, until the loop is exited.

Examples of execute commands:

U register : ‘84’
Execute This command is stored in ROM
Command ‘0021 ET 0,62
Effective
. ' (fg) + (T)——=1y, T
Command 8421 [AT 4T

Incrementing the U register value leaves the command the same, but
changes the file register number to 5. If this continued to file F, the next
increment would change the command to a subtract. .

123

U Register 'F1’

Execute /This command is stored in ROM
Command ‘0020° E 0,2
Effective ‘F120' Shift Right file 1
Command H 1,R

The meaning of the c field of the lower two hexadecimal digits in the
execute command changes with the OP code value in the U register.
Therefore the ¢ field is left as a digit in the MNEMONIC for the execute
command.

Commands can also be modified by the U register by using the operate
commands with a 7 in the destination register. This method is advantage-
ous if there are two variable functions to be done in one loop, with one U
register setting. For example, a program may be indexing through a set of
files where it is necessary to add to afile, and shift the same file in the same
program loop. This could be mechanized as follows:

(fp) + 1—= U, fg

——— NOP

(fg) + (T)-—=T1p, Destination = 7 (OR U with command)
(Fg) @ g——=Fq, Destination = 7

The coding for this is:

Machine
Code Mnemonic
‘8F 46’ AU F, I
another command —_— ———
‘8027' AS 0,T Add to fileO
‘FO27’ HS 0,R Shiftfile0

Assume U = ‘04’ after the first command.
The effective commands following are:

‘8427" Add to file 4
‘F427’ Shift file 4 right

This method of command modification has the limitation of no destination
register since the destination register code position is tied up selecting U
as a modifier to the command. The execute command does not have this
restriction.

124

COMMAND REFERENCE TABLE

Mnemonic

S —

Command Operation Code Comments
Load T LT 11719 Literal

. X
151413121110 8 8 7 6 5 4 3 2 1 0

Load M LM 12 Literal
151413121110 9 8 7 6 6§ 4 3 2 1 0

Load N - LN 13 Literal
151413121110 9 8 7 6 5 4'3 210

Load U LU 16 Literal

151413121110 9 8 7 6 6 4 3 2 10

Load Zero . Lz 19 Literal
161413121110 98 7 6 5 4 3 2 1 0

Load Seven LS 17 Lit(.aral
151413121110 9 8 7 6 5 4 3 2 1 0 -

1 7 0 0 NoOp

1 7 0 1 Enable Serial TTY
1 7 0 2 . Reset Tg

1 F 0 2 SetTg

1 7 0 4 Disable} External
17 0 8 Enable | 'Mterrupts
1 7 1 0 Disable) Reaf Time
1 7 2 0 Enable] Clock

1 7 4 0 Load Protect Bit

1 7 8 0 Halt

125

Mnemonic

Command

Jump

Load File

Add To File

Test Zero

Test Not Zero

Compare

JP

LE

AF

TZ

TN

cp

Opertion Code
14 Literal
151413121110 © 8 7 6 5 4 3 2 1
15 Literal
R '
161413121110 9 8 7 6 6 4 3 2 1
ic Literal
151413121110 9 8 7 6 5 4 3 2 1
D Literal
151412121110 9 8 7 6 5 4 3 2 1
2 f Literal
N
151413121110 9 8 7 6 5 4 3 2 1
3 f Literal
151413121110 8 8 7 6 6 4 3 2 1
I 4 f Literal
:
151413121110 9 8 7 6 5 4 3 2 1
| 5 f Literal
151413121110 9 8 7 6 5 4 3 2 1
6 f Literal
1413121110 9 8 7 6 6 4 3 2 1

126

Comments

000-0FF

100-1FF

200-2FF

300-3FF

Mnemonic

Command

Control

Add

Subtract

Sr*

Operation Code Comments
7 Foo ¢ | v
151413121110 9 8 7 6 56 4 3 2 1 0
0 NoOp
1 Enter Sense SW
2 Shift Right 4
4 Enter Internal Status
7 Enter Console SW
8 Clear 1/0
9 Sst COXX (in MICRO 810/820)
A Set DOXX (in MICRO 810/820)
B Space Serial TTY
C SetCACK (in MICRO 810/820)
D Set IACK (in MICRO 810/820)
E Set DIXX (in MICRO 810/820)
F Spare
8 f c ®| r
161413121110 9 8 7 6 5 4 3 2 1 0
1 x x x Link
x 1 xx Add1
x x 1 x SelectT
xx x 1 Modifi/ Condition Flags
9 f c # r

151413121110 9 8 7 6 5§ 4 3 2 1 0

1xxx
x 1xx
Xxx1x

x x x 1

127

Link

Decrement

Select T

Modify Condition Flags

Operand
Field

O - O r

Mnemonic

Command

Memory

Copy

OR

Exclusive

Wr*
Rr*

Cr*

OperationCode Comments

A

f

c * r

161413121110 9 B 7 6 5 4 3 2 1 0

1 x x x Link
x 1 x x Decrement
11xx Increment

xx 1x Half Cycle Operation

Operand
Field

D
I
H

x X x 1 Write Operation (supplied by OP Code)

B

f

c * r

151413121110 9 8 7 6 56 4 3 2 1 0

1T x xx Link

x1xx Add1

x x 1 x SelectT

xx x 1 Modify Condition Fiags

C

f

4 * r

151413121110 9 8 7 6 5§ 4 3 2 1 0

1 x x x Link
x1xx T
xx1x T

x x x 1 Modify Condition Fiags

D

f

c - r

1413121110 8 8 7 6 6 4 3 2 1 0

1x x x Link
x1xx T
xx1Tx T

x x x 1 Modify Condition Flags

128

O - =m r

o A m r

Mnemonic
Operand
Command Operation Code Comments Field
AND Nr* L E f [* r
151413121110 9 87 6 6 4 3 2 1 0
1x xx Link L
x1xx T F
xx1x T T
x x x 1 Modify Condition Flags Cc
Shift Hr* i F f c * r
151413121110 9 8 7 6 6 4 3 2 1 0
Txxx Link L

x 1 x x - Insert1 I
x x 1 x ShiftR
x x x 1 Modify Condition Flags

129

CPU MICRO COMMAND REPERTOIRE

Code | Mnemonic Name Operation
Literal OXXX E Execute 0X is ORed with U Register
Class 10XX Lz Load Zero No Operation
Commands | 11XX LT Load T XX replaced contents of T
12XX LM Load M XX replaces contents of M
13XX LN Load N XX replaces N & M is cleared
14X X JP Jump to page O
15XX JP Jump to page 1
1CXX JP Jump to page 2
1DXX JP Jump to page 3
16XX LY Load U XX replaces contents of U
17XX LS Load Seven Internal Controls
2fXX LF Load File (f) f = File number
3fXX AF Add to File f = File number
4fXX TZ Test if zero Skip on no bits match
5fXX TN Test if zero Skip on Any bits match
6fXX CcP Compare Skipon f+ XX 281
Code | Mnemonic Name c Field (Binary
Qperate 7fC*r K Control 0000 No Operation
Class 0001 Enter Sense Switches
Commands 0010 Shift Right Four Bits
0100 Enter Internal Status
0111 Enter Console Switches
1000 Ciear 1/0O Mode
1001 Control Output
1010 Data Qutput
1011 Space Serial TTY
1100 Concurrent Acknowledge
1101 Interrupt Acknowledge
1110 Data Input
1111 Spare
8fC*r A Add 0001 Modify Flags !
: 0010 File+T
0100 Sum + 1
1000 Sum + Link Bit
OfC*r S Subtract 0001 Modify Flags
0010 File + T complement
0100 Inhibit Increment
1000 Difference + Link
AfC*r R/S Read/Write 00XX Transfer
Memory 01XX Decrement
10XX Add Link
11XX Increment
XX1X Half Cycle
XXX1 Write (Not Read)
BfC*r C Copy XXX1 Modify Flags
XX1X Select T
X1XX Select + 1
1XXX Select Link
CfC*r |+ 0 OR XXX 1 Modify Flags
XX1X Select T
1f*=0, X1 XX Sglect T complement
resuit of 1XXX Linked Zero Tuost
operation | DfC*r X E xclusive OR Same as OR
b Ff’:f:Ed Efc* r| N AND Same as OR
(). FfC*r | . H Shift XXX1 Modify Flags
XX1X Shift Right
X1XX Insert ONE
1XXX Insert Link

130

CHAPTER 3
INPUT/OUTPUT

_GENERAL DESCRIPTION

The CPU provides an extremely fast, elementary input/output capability.
The data paths and control functions are simple elements that are se-
quenced from the control memory with flexible disciplines. The fact that
the 1/0 element is very fast, 220 ns/step, microprograms (firmware) in the
control memory can implement facilities with a high degree of versatility
in timing, data paths and /O capabilities such as priority interrupts, fully
buffered data channels, macroprogrammable transfers, and special purpose
communication multiplexer channels. This basic |/O element called the
“Byte 1/0 Bus’ is described in the following paragraphs. In addition, the
direct memory occurs (DMA) and serial data interface are described.

BYTE I/0 BUS

The byte 1/0 facility allows for data transfers over a party-line 1/0 bus
under microprogram control. This |/O facility consists of a byte input bus,
a byte output bus, and a three-bit 1/0 control register.

The 1/O control register is loaded by bits 6-4 of the control command.
The contents of the I/O control register define an 1/0 bus mode. The I/0
control register outputs may be decoded to form individual control
signals defining the type of transfer being performed -on the byte 1/0 bus
and the state of the serial interface output. Of the eight possible states of
the 1/0 control register, one represents no activity on the bus, three are
output modes, and four are input modes. One of the output modes re-
moves the MARKing current from the serial interface output a SPACE to
be output. :

The byte 1/0 control modes are given in Table 10.
Table 10. Byte I/O Control Modes

Control Command
7 ¢ f
514131211110 9 @

o
*
-

32 1 0 Hex Mode Control Activity

0 No Operation

Enter Sense Switches

Shift “f"’ Right Four Places
Enter Internal Status

Enter Console Switches (0-7)

} 10 Clear 1/0 Mode
OUTPUT 10

10

10

OO0OCOO| N
Y Y-Y-1K.
—_O=00 v
_-OO=O| »
NAN =

SPARE (*)
FUNCTIONS SPARE (*)

Space Serial Interface
SPARE (*)

SPARE (*)

SPARE (*)

SPARE

*These functions are used in the MICRO 810 and 820 /0 systems. °

INPUT -
FUNCTIONS

S QR
P Y
==00
-0 - O
MmMMOO WHOX
NOOIHA WN=O

131

When the ¢ field equals hexadecimal 8-F, the operations are associated
with external input/output, and the three low order bits of c are placed in
the 1/0 control register,

This three-bit register generates the control signals for the |/O bus by a
decoding of the register outputs. It is loaded and cleared by a control
command and therefore the timing of 1/O control signals is under com-
mand control. There are three output modes and four .input modes. The
high order bit of the register is the input flag. When this bit is a 1-bit the
input bus is substituted for the T register inputs, thus providing a source
of data when executing an external 1/O control command. On the same
operation, data can be moved from the designated file register or the input
bus, as determined by the current contents of the I/O control register, to
the designated file or destination register. The data source is specified as
follows: /
1/0O Control Register Mode Source

103X 102X 101X

1 ! 0o 0 0=0
} { g (1) (1) : ; Designated File Register
1 : 0 1 1=3 (Output Data or Control)
1 vl 0 0=4
1 =
: 1 } (1) 8 - g Input Bus
1 '} 1 1 1=7 (input Data or Control)
151413121110 9 8 7 6 6 4 3 2 1 0
7 f c * r
Mode Control Activity Comments
0 Clear /O Mode: The 1/0 control register is cleared. Data from

the designated file or Input bus can be trans-
ferred to the designated file register and
register (R).

1-7 Set /0O Mode: The 1/0O Control register is loaded with the
three low order bits of ¢ placing it in one of
seven |/O bus or serial interface modes.
These modes are described above. Data from
the designated file or Input bus can be trans-
ferred to a designated file register and regis-
ter (r).

NOTE: Once an /O control register mode has been SET, an I/0 clear

mode must be executed to change the [/O control register mode
of operation.

132

Internal Status — Interrupt

Eight internal status bits are provided to designate a particular internal
interrupt condition. When any of the internal status bits are a 1-bit, the
internal interrupt flag (bit 4) in the file register O is also a 1-bit. This flag
bit is tested by the microprogram to detect the presence of the internal
interrupt condition. The internal status bits are entered via the A bus into
the selected file register by a control command. The eight internal status
bits have the assignments given- as follows:

Internal Status Bits

Internal Status
Bit Without Processor Option Bd With Processor Option bd
0 Console Interrupt Console Interrupt
1 SPARE (DMA)* SPARE (DMA)*
2 SPARE Real Time Clock Interrupt
3 SPARE SPARE
4 SPARE : ‘ Memory Parity Error Interrupt
5 SPARE SPARE
6 Console Halt Switch : Console Halt Switch
7 SPARE Power Fail/Restart Interrupt

*Not available as SPARE if DMA is installed.

All the internal status bits except the console interrupt and halt are associ-
ated with processor options and may be reassigned for special applications,

Bus Lines
The byte I/0 bus consists of

® input data lines

® input cantrol lines
® output data lines

® output control lines

The electrical implementation of the input and output bus lines is shown
in Figure 14,

Input Lines

The data lines are an input to the B bus gating. The centrol lines are input
to bits of file register 0. The input lines are ground TRUE signals which
are properly terminated at the processor. If the bus is carried out of the
basic enclosure it also must be terminated at the remote end. Each
peripheral device gates information onto the bus by means of open collec-
tor type 944 DTL drive circuits. Up to 15 drivers may be connected to
each line.

The logic level on the twisted pairs are:

One — 0 Volts
Zero — +3 Volts

133

*Typical Byte 1/0 Control Modes
(MICRO 810/820)

Mode Control Activity Term
0 None Ncne
1 Control Output COXX/
2 Data Output DOXX/
3 Space Serial Interface SP1X/
4 Interrupt Acknowledge IACK/
5 Concurrent Acknowledge CACK/
6 Data Input DIXX/
7 Spare SP3X/
DEVICE
CONTROLLER
_______ M
l
1 N
Py, A o
op—oe A ’o)
9022 ,X: X P s S | \X,
a0 & n NS S Iaan ¢
! l
PROCESSOR : 1
i
w5
v ! DEVICE
, | CONTROLLER
20003 |
RECEIVER 1 1
: Y s —t A m
0 S
30003 : ,_T__ .l. _i_
|
== |
|
| .
________ -
ENABLE DATA ENABLE - DATA
ENABLE DATA

TRANSMITTERS

RECOMMENDED CONFIGURATION
N< TEN GATES
M< FIFTEEN GATES

Figure 14. Bus Lines
134

Output Lines .

The output data lines originate with the FALSE output of the T register.
The output control lines originate with the 1/O control register. If all
peripheral devices on the bus are local to the enclosure, and the bus does
not leave the enclosure, then the bus is standard logic levels and no DTL
drivers and terminations are used. |t may be necessary to repower the
signals. If the bus leaves the enclosure, an |/O control board is required to
provide type 944 DTL output drivers and decoding the control register.
The cable length can be up to 30 feet.in length and must be terminated at
the remote end. Up to 15 receivers can be accommodated. The levels on
the twisted pairs are:

One — 0 Volts
Zero — +3 Volts

Control Lines In . Typical Use in the System

External Interrupt (EINT/): A peripheral device makes this line low to
request an interrupt of the macroprogram.
The microprogram must respond with an
1/0 acknowledge (mode 5)* signal. This line
is bit 7 of the file gegister 0 where a 1-bit
indicates an external interrupt request.

1/0 Reply (ERPY/): A peripheral device makes this line low in
response to an 1/O operation when closed-
loop operation is required. This line is bit 5
of the file register 0.

1/0 Request (ECIQ/): . A peripheral device makes this line low in
‘ order to request a concurrent data transfer.
The microprogram must respond with an /O
acknowledge (mode 5)* signal. This line is

bit 3 of the file register 0. *

File Register O Flags

-
=

Flag

— Overflow Result Condition

— Negative Result Condition

— Zero Result Condition

— Concurrent 1/0 Request Line** or (SPARE)
— Internal Interrupt

— 1/O Reply Line** or (SPARE)

— Serial Interface

- External Interrupt Line** or (SPARE)

NOOIA_RWN-O

**|f a standard CPU interface is not used, these Flags may be used as
SPARE bits.

135

FNOX —
- B
e [—w coxx REGISTER[—
CONTROL. CONTROL [—# DOXX
102X —#1 LINE DECODER |—-# DIXX DoXx-#4 |
RECEIVERS | KIXX 88IT
03X —» 00—] 0D e e — 8YTE
Qpoo—¢ QUTPUTS
r coxx FNnX =1 outeut | .
LATCH
REGISTER[™
[0D00 DOXX~4
BIT 0 —— poei ODDO ODO1 =8 DEVICE
ouTPUT o, 0D02~# ADDRESS [—® DAXX
BT s 0D03 & DECODER
FROI == pevice [™ 0D04
REGISTER oo
BIT 7 s RECEIVERS |—g ODO7 KIXX CONN MRES DIGITAL
t 0N
0005~ erion |-
. [®-— DIXX 0D0G —#4 DECODE AND - FNnX T I As BIT
lé—— cONN STORAGE |-
BITO @ 0007 — FNX . FDOS FDOB BYTE
INPUT > INPUTS
ik INPUT
4 «—- SELECT ¥ v
GATES
nPuT FDO5 FDOG pIGITAL
ULTI- f—
BIT 7 i 8 LINES PLEXER
L
KIXX iy
CONNECTION| -
LATCH CONN FDO5 FDO0B
DAXX ——)
MRST ':EASS;EH | MRES

Figure 15. I/O Interface Block Diagram

Since the function code is only 3 bits instead of 4 it is effectively multi-
plied by 2 when put into the device and function code word.

Description of functional block diagram (Figure 15).

The control decoder receives the 10XX lines from the contro! line re-
ceivers and first decodes them into COXX, DOXX, and DIXX. These
three are ORed to produce KIXX which is used to set and reset function
and connect latches.

The device address decoder becomes active whenever the boards address
appears on the 0D00-OD04 lines. DAXX is active only when COXX is
active. Otherwise DAXX would become active every time the device
address appeared on the output data lines.

The function latches set or reset every time there is a KIXX pulse. The
output functions FNOX, etc., are not enabled unless CONN is active. The
functions are used to enable the output latch.

The connection latch is set when the board detects its device address and
COXX is active. It is reset on the trailing edge of the next DIXX or DOXX
pulse.

The connection latch enables the functions and the input selection gate.

The input selection gates place the input data onto the input bus during
DIXX whenever the CONN latch has been set indicating that this board
has been addressed.

The output latches are updated to the values on the ODOX lines during
DOXX whenever the corresponding function code FNNX is active.

136

Serial Interface

The processor contains a serial interface capable of communicating with a
full duplex teletype. The input from the teletype appears as bit 6 of file
register 0 where a 1-bit indicates that the teletype is transmitting a SPACE.
The output to the teletype normally transmits a'20 milliampere MARKing
current which can be keyed off to send a SPACE signal by placing the 1/0
control register in mode 3. Character assembly and disassembly, including
all timing and synchronization, are performed by microprogramming.

The serial interface is standard. A teletype or CRT wired for 4-wire full
duplex 20 milliampere operation may be directly connected to the cable
provided with the machine. Other types of serial 1/0O devnces also may use
this condition,

A

Direct Memory Access

The direct memory access (DMA) interface allows for direct connection
to the memory address, data and control busses. Within the machine en-
closure there is a circuit board slot which is reserved for the DMA. This
board may contain a channel to which a number of peripheral devices are
connected, or a device controller which has direct memory access capabil-
ity. Generally the DMA system will be customized for special applications.

The maximum data transfer rate is 909,000 bytes per second. The DMA
I/0 takes precedence over the processor for memory operations. The DMA
must supply its own address control.

Typical Byte 1/0 Interface

To illustrate byte I/0 programming, a typical interface has been selected
which has minimum functions for transferring bytes in and out of the com-
puter. A more complex device, such as a tape controller, or card reader,
using the byte 1/O function would contain logic similar to this for trans-
ferring control, status, and data between the controller and the MICRO
800.

The byte 1/O interface described contains the following basic functions.

Line receivers and drivers
Device address decoder
Function latch and decoder
Connection latch

Input multiplexer

Input selection gates
Output latches

Control decoder

For the following examples assume that the device code is 00001. This
results in the following device and function codes:

Function Code Device and Function Code
- Binary Hex Binary Hex
000 o 000 0 0001 01
001 1 001 00001 21
010 2 010 0 0001 a1
o1 3 011 00001 61

137

For summary purposes the logic terms used in the /O interface example
(which are standard for MICRO 800 interfaces) are defined in Table 11.

Table 11. Definition of Terms in 1/O Interface Block Diagram

COXX FUNCTION AND DEVICE CODE OUTPUT
CONTROL PULSE

DOXX DATA OUTPUT CONTROL PULSE

DIXX DATA INPUT CONTROL PULSE

KIXX INTERFACE CLOCK PULSE FORMED BY ORing
COXX, DOXX, and DIXX

DAXX DETECTED DEVICE ADDRESS ENABLED BY
COXX

0D00-0D07 OUTPUT DATA LINES RECEIVES FROM MICRO
800 T COMPLEMENT REGISTER

FNOX-FN7X LATCHED AND DECODED FUNCTIONS ENABLED
BY CONN.

FDO05-FDO6 LATCHED BUT UNDECODED FUNCTION BITS

CONN CONNECT LATCH INDICATING THAT THE 1/O
BOARD HAS RECEIVED ITS DEVICE CODE
WITH COXX.

MRES MASTER RESET FROM MICRO 800

101X-103X 3 BITS FROM CONTROL OUTPUT REGISTER

DIG MUX DIGITAL MULTIPLEXER

See Figure 16 for 1/0 signal source.

138

[1D00/
1001/
1D02/
INPUT
DATA 1D03/
SIGNALS 1004/
1005/
1D06/
INPUT ior
CONTROL Eeal
LINES tRPY/
SERIAL TELETYPE t1|N
INPUT DMAH/
DMA INPUT DMAR/
CONTROL DMAW/
DMAS/
RUNP/
EONTEMEL | T
CO! 1
SWITCH s’{-{,ﬁf
INPUTS { MRST/
DSXX
FRONT PANEL
CPEN
povecy switen (crev/
FRONT PANEL
SENSE SWiTCH { ESO05/
INPUTS £S06/
ES07/
CROO/
CRO1/
CRO2/
CRO3/
CRO4/
CROS/
oo | coi
07,
R
INPUTS CRO9/
CR10/
CR11/
CR12/
CR13/
CR14/
\ CR15/

El

3
]

>
o)
=

2
e

>
|
=

&
&

|

ElsaalaEe

!
b=
i

EEEES

K

Rk

iRklalzlz

>
it
[~

el

J1
J10, 11

}Jﬂ

J10-21
42

J10
J10, 12

] Jiz

>
[
N

12

J12

© OUTPUTS

L Toox/

A3 yo1x/

AT0- o2/ :

A2 103/ | “T~ REGISTER DATA

d
@)
N

T04X/ { OUTPUT LINES

IAS7_ 105X/

A0 1ogx/

[A27 107X/

A9 1ryx ” SERIAL TTY OUTPUT
B17_ (yp, 1/0 CONTROL

ATe, _ioIX / REG OUTPUTS[377

30%7—-

DMA
A3l [LW——_I X
Al

ZEEE

-Figure 16. CPU Input/Output Signals

139

DMAH/
DMAR/
DMAS/
DMAW/

CONTROL OUTPUTS
TO THE CPU

EXAMPLES OF |/0 MICROPROGRAMMING

Example 1. For the first Input/Output example the timing of events and
the microprogram routine are described for outputting a byte
from the MICRO 800 to latch O in the interface board with
device code 01.

Timing Diagram: Output a byte to latch register 0.
v

i

OUTPUT
BYTE FUNCTION & | ' OUTPUT DATA 1 l
1 DEVICE CODE I BYTE | ——
| .

ODOX (8
|
|

|
! DOXX
' J L___
| DAXX i
|

COXX -

- RN

— b ——

— s ——

I : I ! I
: " { CONN i 1
] I !

| | H |

| f FNOX | 1

I Ll

y ! I :

r1 " OUTPUT LATCH 0 BITS I !

T 1 H i
MICROPROGRAM | L |
FUNCTIONS | LATCH 0 UPDATE TIME

A 4—|

| ! . I |

| 1 Reset COXX which | .'—]

i | deactivates DAXX Reset DOXX

and Klé())(I:Ir\‘ld g which dezctivates
causes an KIXX and resets
FNOX to set. CONN and FNCX
Load T with Set COXX which Set DOXX which
device address then causes DAXX causes KIXX to
and function and KIXX to become active,
code for become active on and strobes the
latch register 0 the interface output data into
on this board board becauss the latch 0, because
board's device FNOX is set.

code is on the
output data lines.

140

Microprogram: ~ For outputting a data byfe from the MICRO 800 to
device 1, byte 0.

Example 1.
FLOW CHART MACHINE CODE | ASSEMBLY LANGUAGE CODE
y L COMMAND
3§VL°E & FUNCTION
DE —T 04 1101 T Xor
(‘01 —T) 0 : L
l SET COXX l | oa1 7090 K 0,9
3 SLOCK DELAY* 042 1000 LS X'00'
+ X N B ’
JMP TO NEXT COMM. - 043 1941 P Xo4d
l RESET COXX , 044 7080 | K 0,8
GET OUTPUT DATA
FROM CORE MEMORY 045 A1C3 RN 1,1
[SET DOXX l | o046 70A0 K 0,10
3CLOCK DELAY* I 047 1000 LS x'00
l_ YCK DELA 048 1449 JP X'49°
I RESET DOXX l ' 049 7080 K o8 .
REMOVE DATA FROM T 04A -
<— ANY INSTRUCTION WiTH T AS
‘ DESTINATION :

*This is the standard delay in the MICRO 810 to generate an 880 ns
COXX and DOXX. 1t could be shorter if the interface is in the computer.
Housekeeping can be done on delay clocks.

141

Example 2. For the second input/output example, the timing of events
and the microprogram are described for inputting a byte from
input byte 2 of device 01 to file register 1 and T.

|

OUTPUT ' '
FUNCTION & DEVICE |

0DOX (8) | |
y COXX ‘ i i

[L, |

— —
-

!

DIXX

INPUT DATA SAMPLE TIME

R e i

B

Vil

: FUNCTION OF
INTERFACE

INPUT INPUT DATA VALUE | *+— ICE

DATA i ! t DEVIC

BYTE

DAXX

S

|
J KIXX

i

CONN

FDO6

-j-

L— RESET DIXX

— INPUT DATA FROM
INPUT BUS TO f1q
AND T.

L— SET DIXX WHICH ENABLES
DATA TO THE INPUT BUS

|
|
]
|
1
|
|
|
|
l
|
|
|
|
I
|
|
|
: L_ RESET COXX WHICH

i DEACTIVATES DAXX
| AND KIXX

|

L— SET COXX WHICH

ACTIVATES DAXX
AND KIXX

142

Microprogram for example 2 inputting a data byte from device 01, byte 2
tofiand T.

FLOW CHART MACHINE CODE ASSEMBLY LANGUAGE CODE
‘ L COMMAND '
DEVICE & FUNCTION .
CODETO T 060 1141 LT Xxar
‘417 —=T .

| SET COXX 061 7090 K 0,9

3 CLOCK DELAY

NO OP + 062 1000 Lz X‘00’
JMP TO NEXT COMM. 063 1464 JP X‘64

RESET COXX ; 064 7080 K 0,8

Hirir

SET DIXX 065 | 70E0 K 0,14
2 CLOCK DELAY 066 1467 _ JP X'67°
INPUT DATA
USING COPY T 067 B121 1T
COMMAND cr !

RESET DIXX 068 7080 - K 0,8

I

NEXT
INSTRUCTION 069 ANY INSTRUCTION CAN BE NEXT

!

143

Example 3. Special input Function

To achieve minimum input time and still achieve one clock
delay after setting DIXX use the following:

K 0,14 Set DIXX

LF K, X'FF’ Set file 1 = all ones and generate
1 clock delay

K 1, 11 Reset DIXX and simultaneously

‘and’ the input bus with (file 1)

Example 4. High speed multiple byte output to a special interface. OQutput
bytes from files 1, 2, 3, and 4 to a 32 bit register on a special
interface unit is an /0 connector. Use DOXX followed by a
load zero command (CGOX). DOXX is used to distinguish
from input command, followed by 4 file to T commands:

K 0,10 DOXX Set
LZ X‘'00 CGOX
AT 1
AT 2
Transfer filesto T
AT 3
AT 4
K 0,8 Reset DOXX

For this a very simple interface can be designed to transfer 32 bits of data
from the MICRO 800 to an interface in only 1.54 microseconds.

144

CHAPTER 4
CENTRAL PROCESSOR OPTIONS

In addition to the option hardware, proper firmware must be provided to
implement system action and response. This firmware may be designed
specially for a given application. Standard firmware for each option
described below is available.

Real-Time Clock

“The real-time clock option provides an internal interrupt at a crystal-
controlled timing rate. This may be used at the macroprogramming level
for a real-time clock, The timing is derived from the processor internal
clock which is divided down by some integer number less than 2'°, as
determined by optional strapping on the option board. '

*When the timing signal occurs, it provides an internal interrupt by setting
condition flag bit 4 and bit 2 of the internal status byte. The timing signal
internal interrupt may be disabled and enabled by commands 1710 and
1720 respectively. The microprogram must detect the internal interrupt
and take appropriate action. Special real-time clock interrupt handling
firmware is available. .

Power-Fail/Automatic Restart
The power-fail and automatic restart option provides the following:

1. An internal interrupt by setting condition flag bit 5 and bit 7 of the
internal status byte upon detection of loss of primary power.

2. A machine reset when the computer is halted after loss of primary
power. :

3. A machine reset for 200 milliseconds after power is applied.
4, Automatic switch to run mode after the power-on reset period.

5. Power-restart interrupt immediately after automatic switch to run
mode. ‘

A power-fail interrupt detected while the machine is in the run mode can
be used to cause the machine registers to be stored and to bring the pro-
cessor 1o a halt. The automatic machine reset that follows the halt and the
one following power-on prevents any spurious operations in the core
memory. At power-on, the machine reset clears the L register causing the -
machine to start at read-only memory location 0. The power-fail interrupt
which occurs at this time can be detected and treated as a restart interrupt
to cause a restoring of the machine registers, Standard power-fail/auto-
matic restart interrupt firmware is available. ‘

145

CHAPTER b
OPERATOR CONTROLS

CONSOLES

Two control console options are available: system console and basic con-
sole. These consoles differ in their number of displays and controls. This
range of consoles permits the user to tailor the cost to meet the control
and display capability required for a particular application. The system
console is shown in Figure 17.

System Console

The system console provides complete control and display facilities. It is
primarily used for maintenance, system and firmware checkout. This con-
sole provides for display of the MICRO 800 registers in addition to the
functions of the basic console. The features include:

Run and halt indicators

Display of A-bus

Display of M, N, and L registers

Display of output of read-only memory

Four sense switches

Six control switches, including run, step, interrupt, clock reset, and save
Manual command execution

Power on-off

Basic Console

The basic console provides minimal control capability and is designed for
dedicated system application where operator control is not required. The
features include:

® Run and halt indicators

Figure 17. System Console

146

® Four sense switches
® Six control switches, lncludmg run, step, interrupt, clock, reset and save
® Power on-off

DISPLAYS

Run Lamp
The run lamp is illuminated when the processor is running.

Halt Lamp

The halt lamp is illuminated when the power is on and the process is not
running.

SWITCHES

Display Selector

These seven interlocked switches select the register or bus to be displayed
on the system console. The displays which can be selected are: L register,
M register, N register, eight high order bits of the read-only memory out-
put, eight low order bits of the read-only memory and the A bus. When
the machine is halted the output of the read-only memory is the same as
the contents of the R register, and is the next command to be executed.

Command

These 16 alternate action switches are substituted for the read-only stor-
age on the system console when the SELECT switch is in the PANEL
position, Depressing the CLOCK switch causes the command set on the
switches to be executed. The command may also be executed repeatedly
by depressing the RUN switch. These switches are used to gate registers
to the A bus display and for entering data into the fjle and registers.

Select

This alternate action switch selects the console panel command switches
(PANEL) or the read only memory (ROM) as the command to be executed
next. This switch is not available on the basic console,

Sense

The four alternate action sense switches are available on both consoles.
The state of these switches may be transferred to a file register or machine
register by the control command. These switches may be used to provide
manual control of micro level and macro level programs.

Run

This momentary contact switch places the processor in the run mode
causing it to execute mlcrocommands

Step

This momentary contact switch places the processor in the run mode and
as long as the switch is depressed causes an internal interrupt. The halt
internal interrupt is bit 7 of the internal status. This switch is normally
microprogrammed to cause a processor halt. Since the processor is forced
to run when the switch is depressed, the machine can be microprogrammed
t0 cause a single macro instruction to be executed.

147

Interrupt

This momentary contact switch places the processor in the run mode and
causes an internal interrupt. The console interrupt is bit 0 of the internal
status. This switch is normally microprogrammed to cause a console
interrupt.

Clock

This momentary contact switch causes the processor to execute a single
microcommand. If the processor is running at the time the switch is de-
pressed, the processor will come to a forced halt following the current
microcommand execution.

Reset

This momentary contact switch halts the processor and clears the L regis-
ter, 1/0 control register and other control flip flops. The reset is made
available to 1/0 devices. Since the current microcommand execution will
not be completed, the computer should not be stopped by this switch.

Save

This alternate action switch is the same as the RESET switch but can be
set on providing a continuous reset. If this switch is on at the time the
power is turned on or off the contents of the memory will not be lost or
altered.

OPERATING PROCEDURES — SYSTEM CONSOLE

Execution of Commands from the front panel of the System Console

Most microcommands can be executed from the front panel by using the
command switches to simulate read only memory. These commands can be
used to check-out most of the MICRO 800 logic, and also to gain familiar-
ity with the microcommand set. The following list of commands is a mini-
mum that should be tried out when first becoming acquainted with the
MICRO 800.

For the examples all command switch settings and displays are shown in
hexadecimal.

1. Loading and stepping the L register
a. Load L
1) Set CLOCK, RESET
2) Set ‘SELECT’ to panel
3) Select L display

4) Set the following commands into the command switches, and
press the CLOCK switch once for each

Setting Switches Display
14AA 0AA
1455 055
15FF 1FF
1C11 211
1DEE 3EE

148

b. Step L
1) Set SELECT to ROM ~
2) Set RESET
3_.) Select L display

4) Each time the CLOCK switch is pressed, the L count should
increment, skip, or jump. If no ROM board is plugged in, the L

count WI" step.
2. Test M and N
1) Set SELECT to PANEL
2) Display toM or N -

3) Set the following command into the command switches and press
the clock switch once for each.

1255 Load M
13AA Load N

Try other values and repeat.
3. Test ROM and L register (with 810 firmware).

1) Set SELECT to ROM
2) Set RESET
3) Select L, or R2or R1 -

a9 L R2
000 BF
001 2B
002 2A
003 40

M
N

R1

02
00
00
10

=bb
=AA,M=0

Repeafedly press
the CLOCK

After this, the L value depends on computer register states,
because of conditional skips and jumps.

4. Test the T register
1) Set SELECT to-PANEL
2) Set DISPLAY to D (A bus)

3) Set the following sequences into the command switches and

press the CLOCK switch.

11AA CLOCK
B020
1165 CLOCK
B020

Try other values and repeat.

5. Test the File Registers
a. Load and Read each File.
1) Set SELECT to PANEL
2) Set DISPLAY to D (A bus)

149

Load T
Display T = AA withcopy T
Load T
Display T = 55 with Copy T

3) Set the following sequences into the command switches and press
the CLOCK switch.

21AA CLOCK Load file 1 with ‘AA’
C100 OR 0 with file 1 (Display file 1)
OBSERVE 'AA’
Repeat with file numbers 2-F and different data patterns.
b. Load all files first, and then read back.
1) SELECT to PANEL
2) DISPLAY 1o D (A bus)

3) Set command switches to 2111, press CLOCK, change command
switches to 2222, press CLOCK. Repeat up to 2FFF.

4) Display file 1 with 8100 or C100, and repeat for 8200, 8300,
etc., to 8F00.

c. Test Add to File
1) SELECT to PANEL
2) DISPLAY to D
3) Set command switches to 2100 (clear file 1), press CLOCK.

4) Set command switches to 3101 (Add 1 to file 1). Display will be
at 01 before CLOCK is pressed. Each time CLOCK is pressed,
display will increment.

5) Repeat for different file values and increment sizes (3102, etc.).
6. Test various Arithmetic, Logic and Shift Commands

1) SELECT to PANEL

2) DISPLAY to D

a. ADD

1101 CLOCK 01—=T

2101 CLOCK 01— fq

8120 (f1)+{(T)—=f4 Initial display=02
Each time CLOCK is pressed display will increment.

1101 CLOCK 01—T

2101 CLOCK 01— f1 .

8121 (f1)+(T)—>"F1, T Initial display=02
Each time CLOCK is pressed display value will double.

2100 CLOCK

8140 (file 1)+1—file 1 Display = 01

Repeat with different initial values in f{ and T.

Change destination register to M and N and display these directly
while repeating above tests.

150

b. SUBTRACT
1101 - CLOCK 01—T

" 21FF CLOCK FF— f1
9120 (f1)-(T)—f1 Display = FE

Each time CLOCK is pressed display value will decrement.
Repeat for other values in f1 and T.
c. Logic Functions

11AA CLOCK AA—T

21CC CLOCK CC —fq
OR 120 C140 Display result of logic function

EXOR D120 D140
AND E120 E140

‘Table of Values:

¢ field =2 OR EX OR AND
T 10101010 10101010 . 10101010
f1 11001100 11001100 11001100
Display 11101110 © 01100110 10001000
c field=4 :
T 01010101 01010101 01010101
f1 11001100 11001100 11001100
11011101 10011001 01000100
d. Shift
-1) 2101 CLOCK 01— file 1
F100 Display bit shifted left 1
Each time CLOCK is pressed the bit will shift left one place.
2) 2100 CLOCK 00—=f;
F100 CLOCK Clears link
2101 CLOCK 01—1q
F18D Display bit shifted left.1

Repeated pressing of CLOCK will cause a left shift with end
around carry.

F120 Causes Right Shift
F140 v Causes Left Shift insert ones.
151

7. Load and Read Memory

This requires setting M and N, loading T, and executing a write memory
command to load. To read, set M and N, execute a read memory com-
mand, and a BO20 to display T. Set SELECT on PANEL and display on
D. :

Load core location 0210 with AA.

1310 10—N, 0—M
1202 02—M

11AA AA—T

A010 Write memory

Read core location 0010

1310 10-—N, 0— M
A000 Read memory
B020 Display T

8. Enter Sense Switches

Set SELECT to PANEL
DISPLAY to D

Set command switches to 7010, sense switch settings will appear on
display as follows:

Binary
XX XX 1111
switch all s
settings

9. Shift file right 4

Set SELECT to PANEL
DISPLAY to D
21A0 CLOCK A0—f1
7120 Shift right 4
Display = FA

10. Test U Register

The lower 4 bits of the U register can easily be loaded and tested by
observing its effect on a file display command. First load all files in
sequence with the file number for a value. Then load U with a Cf value,
followed by an execute command, with 0000 set on the command
switches. This will cause the value of file f to be displayed..

152

1) Set SELECT to PANEL
2) DISPLAY to D

3) Load files -
2101 CLOCK 01——1f4
2202 CLOCK 02-—f9
(repeat for all files up to F)

4) Load U _
16C1 CLOCK ‘ C1-f>U

5) Set 0000 on command switches
Display 01 from _file 1

6) Load U
1CC2 CLOCK C2——U

7) Set 0000 on command switches
Display 02 from file 2

Repeat 6 and 7 for éll files to F.
11. Set and Display Condition Flags and Link

The flags can be displayed by the command C000 (file 0 V 0—=file 0),
and the link can be displayed by B08O. Copy link—sno destination
which displays the link as LSB on the A bus.

1) Set SELECT to PANEL
2) DISPLAY toD
3) Depress CLOCK for first two instructions only:

2

Load File 2101 2100 zero condition
Add to file = 8110 © 8100
Display link B080 Link=0 B0O80 Link=0
Display flags C000 All flags = 0 C000 Flag=1
2180 Negative " 217F Overflow
. 8110 cond. 8150
B0OB0 Link=0 BO80 Link=0
C000 Flag=1 C000 Flag=1
" 21FF Zero cond.
8150

B0O80 Link =1
S C000 Flag=1

163

Condition Flag Display (File zero)

X X X

T

Overflow condition
Negative condition
Zero condition

Explanation of Codes

8110 Add0to file1 Update Condition flags
8150 Add 1 to file 1 Update Condition flags
BO8S0 Copy Link to no destination except A bus
C000 OR file 0 with no operand

12. External Internal Status

This instruction will demonstrate sensing of the console STEP, and
console interrupt inputs.
1) Set SELECT to PANEL

2) DISPLAY to D

Command switches

7040
6 0
Display X . X
Console STEP Console
Interrupt

Press console STEP and interrupt switches, and observe changes
in bits 0 and 6.

154

- CHAPTER 6

PROGRAMMING SYSTEMS FOR MICRO 800
' FIRMWARE DEVELOPMENT

The programming systems for the MICRO 800 computer permits the user
to develop special application firmware at a cost and turnaround time that
is now comparable to software development in competitively priced fixed
instruction computers. This chapter describes the assemblers, operating
systems, simulator and use of the Alterable Read Only Memory system
which ‘are used as standard aids in micreprogramming. In addition, pro-
cedures for checkout and debugging of microprograms are provided.

AP800 CROSS ASSEMBLER

AP800 is a symbolic assembly program for the MICRO 800 computer.
The assembler provides for symbolic addressing and mnemonics for
machine and assembler instructions. This program is written in FORTRAN
IV and may be adapted to many computer systems. The MICRO 800
source program is entered by punch cards and the output of the assembler
includes an assembly listing, read only storage diode map, and an object
program card deck. .

MAP800 CROSS ASSEMBLER

MAPS8O0O0 is a two pass symbolic assembly program which allows for assem-
bly of MICRO 800 microprograms on the MICRO 810 or MICRO 820
computer. It is designed to operate using an ASR 33 Teletype with paper
tape reader and punch. Output consists of an assembly listing and an object
program paper tape for use by the MICRO ‘800 simulator program,

SIM800.)

The assembly language includes the following featureS'

Address Arithmetic — Decimal and hexadecimal numbers, symbolié
addresses, and arithmetic expressions.

Listing Control The format of the listing. may be controlled, with com-
ment cards included. .

Dlagnostlcs — Diagnostics for source program errors included in the output
listing.

Option Flags — Single letter flags.to signify 6ptions to microcommands.

SYMBOLIC LANGUAGE

The source -language is a sequence of symbolic commands, called state-
- ments. Each statement is written on a single line and may consist of from
one to four entries: a name field, an operation field, an operand field, and
a comments field.

Name Fie_ld .

The name field entry is always a symbol. The first character of a
symbol is alphabetic or a period; subsequent characters may be

165

alphabetic, numeric, or a period. A name entry is usually optional. When
an asterisk, *, appears as the first character the remainder of the line is
considered as comment. The type of command determines the legal con-
tent of the name field.

Operation Field

The operation field entry is a mnemonic operation code specifying the
machine command or assembler instruction. The field begins with the
first non biank character following the name field in paper tape or with
column 8 in cards. All machine command mnemonics are two characters’
except those of the operate class where no destination register is desig-
nated. The operate class commands have a basic single letter mnemonics. If
the result of the operation is to be sent to a machine register then the
register identifier character, r, is appended as the second character of the
mnemonic. Register identifier characters are shown below. An asterisk, *,
is appended to the mnemonic if the result of the operation is not to be
placed in the designated file register. Some of the mnemonics accepted by
the assembler are commonly used forms of other commands.

Register
Designator r Register
0 None.
1 T T Register.
2 M M Register.
3 N N Register.
4 [L Register Addresses: 000-OFF and 200-2FF.
5 K L Register Addresses: 100-1FF and 300-3FF.
6 U U Register.
7) U Register ORed in command

{Except for K command).

Operand Field

The operand field entries provide the file register designators, literals, and
option bits for the machine commands. The operand field may start any-
where following the operation field. When punched in cards, column 14 is
the normal starting column. It is terminated by the first blank. One or
more operands, separated by commas may be written, depending on the
needs of the command. All entries in the operand field, except the single
character option bit identifiers for the operate class commands, are expres-
sions. An expression is a symbol, decimal number, or hexadecimal number,
or a combination of these terms made by + and — operators.

The following single character option identifiers, designators and literals
may appear in the operand field.

L — Link Control.

Add one or insert one on Shift.

— Decrement one.

— T register operand.

— Complement of T register operand.

Half cycle memory operation (otherwise full cycle).
— Right shift (otherwise left shift).

— Set condition flags.

|

OIT-HO
|

156

f = File register designator (0-15)
¢ — Option code (0-15)
n — Literal (8, 9, or 10 bit)

Comments Field

Comments describing the information about the program may be inserted
between the end of the operand field and column 72. All characters, in-
cluding spaces, may be used in writing a comment. If the listing is printed
on a teletype, only the first 53 characters of the source line are printed,

MACHINE COMMANDS

Machine commands are expressed by a one or two character mnemonic
code in the operation field. The required operands depend on the com-
mand type. The four syntax types are described below. Examples of the
method of writing machine commands in the assembly language are shown
in the sample listing in section 5.

Loéd Register Commands’ (Command 1)

All commands of this syntax type have two character mnemonics begin-
ning with L, except for the jump command. The second character is the
register identifier character. The operand field of all commands of this
type except jump must contain a single operand which is an expression,
whose value is less than 1024 and greater or equal to -256. It is evaluated
modulo 256. The jump commands must contain an operand expression
which has a positive value less than 1024.

Literal-File Commands

The commands of this syntax group (commands 2-6), have two character
mnemonics and require two operands. The first operand is an expression
which designates a file register (f) and must be in the range 0-15. The
second operand (n) is an expression which must be less than 1024 and
-greater than or equal to -256. It is evaluated modulo 256

Execute and Control Commands

The commands of this syntax group have operation code mnemonics .

identical to those of the next group, and require two operands. The first
operand is an expression which designates a file register (f) and must be in
the range 0-15. The second operand (c) is an expression which designates
the option bits (7-4) and must be in the range 0-15. '

Operate Class Commands other than Execute and Control

The commands of this syntax group have basic operation code mnemonics
which are a single character. If the result of the operation is to be routed
to a machine register the designator of that register is appended as a
second character of the mnemonic. If the result is not to be placed in the
designated file register, an * is appended to the mnemonic.

OPERAND FIELD EXPRESSIONS

Expressions in the operand field are made up of one or more terms which
are connected by + and — arithmetic operators. No parenthetical expres-
sions are allowed. Each term of the expression represents a value. Values

167

MICROCOMMANDS

Command Mnemonics Operand Field
Load T LT n
Load M LM n
Load N LN n
Load U LU n
Load Zero Control LZ (L) n
Load Seven Control LS n
Jump JP) n
Load File LF f.n
Add to File AF fn
Test If Zero TZ f,n
Test If Not Zero TN f.n
Compare CcP f,n
Execute Er* fc
Control Kr* f.c
Add Ar* fL1,T,C
Increment Ir* fL,C
Subtract Sr* fL.D,TC
Decrement Dr* fL.C
Copy Cr* fLITC
Read Rr* f,L1,DH
Write Wr* fL,1,DH
Logical OR or* fLFTC
Move Mr* fL,C
Exclusive-OR Xr* fLFTC
Logical AND Nr* fLFTC
Shift Hr* fL,1,R,C

may be assigned by the assembier program (symbols), or there may be
inherent in the term itself {(constants). The range of values depends on the
operand and the instruction.

Symbols

A symbol is composed of one to three characters in MAP80O, or one to six
characters in AP800. The first character must be alphabetic or period; sub-
sequent characters may be numeric, alphabetic, or period. Imbedded
blanks are not allowed and the assembler stops scanning the syrnbol with
the first character which is not alphanumeric or a period. All symbols,
except the special symbol *, used in an operand field, must be defined
by a single appearance in the name field of statement within the program.

Special Symbol

The special symbol * represents the momentary values of the assembler’s
location counter. It may be used as any other symbol in an expression but
must never appear in the name field.

168

ALPHABETIC LIST OF COMMANDS

Command Mnemonic Operation Code Page
AND N Ef 118
Add A 8f 103
Add To File AF 3f 92
Compare cpP 6f 96
Control K 7f 96
Copy . c Bf 112
Exclusive-OR X Df 116
Execute E 0 123
Jump JP 14,15,1C,1D 89
Load File LF 2f 91
Load T LT 11,19 : 85
Load M LM 12 85
Load N LN 13 " 86
LoadU LU : 16 86
Load Seven Control L.S ‘ 17 88
Load Zero Control LZ (L) 10 87
OR] (0] Cf 114
Read R Af - 108
Shift H Ff 120
Subtract S : of. i 106
Test if Zero TZ 4f 93
Test if Not Zero TN - 5f 94
Write w Af 108

Constants

The values of the constant terms are not assigned by the assembler pro-
gram but are inherent in the terms. There are two types of constant terms:
decimal and hexadecimal.

a.,

Decimal Constant

A decimal constant is an unsigned decimal number. The value must be
less than 65,536. : :

. Hexadecimal Constant

A hexadecimal constant is an unsigned hexadecimal number of up to
four characters written as a sequence of hexadecimal digits. The digits
are-enclosed in single gquotation marks and preceded by the letter X.
Each hexadecimal digit represents a four-bit binary number. The char-
acters A through F are used to identify the hexadecimal integers 10
through 15. ’ - i

ASSEMBLER INSTRUCTIONS

Seven assembler instructions are included for control of the assembly pro-
cess and the output listing.
ORG — Set Location Counter '

The ORG assembler instruction alters the setting of the location counter.
The name field entry, if any, will be assigned the value of the program

159

counter after it is altered, The operand field of ORG must contain an
expression whose value will be placed in the location counter. All symbols
in the expression must have been previously defined when the instruction
is first encountered. The next command which places object code in the
program is forced to begin a new object card.

EQU — Equate Symbol

The EQU assembler instruction is used to define a symbol by assigning to
it the value of the operand field. Any symbols appearing in the expression
must have been previously defined when the instruction is first ercounter-
ed. A name field entry must be present. \

DC — Define Constant

The DC assembler instruction is used to create any microcommand for
which a symbolic representation does not exist. Each statement specified
only one constant. The constant is written as an expression and is assem-
bled as a 16-bit word in storage.

END — End Assembly
The END assembler instruction terminates the assembly of a program and
must be the last statement in a source program.

The next three descriptions are available only in the AP800 version.

IDEhiT — Program Identification

The IDENT assembler instruction is used to identify the start of a pro-
gram and to supply the program name which is located in the operand
field. The IDENT must be the first statement in a source program.

SPACE — Space Listing .

The SPACE assembler instruction causes one or more blank lines to be
inserted into the listing. The name field is disregarded by the assembler. The
operand field contains an expression specifying the number of blank lines.
If the spacing is beyond the end of the current page, the listing begins at
the top of the next page.

EJECT — Start New Listing Page

The EJECT instruction causes the next line of the listing to appear at the
top of the next page. The name and operand fields are disregarded by the
assembler.

ASSEMBLY LISTING AND DIODE MAP

The output listing from the assembler contains the memory address, and
contents of words in the object program. The source statement is printed
side-by-side with the object code.

FORMAT FOR AP800

Printer Columns Contents
8- 11 Error flags
15-17 Storage address
21-24 Storage contents
31-110 Source statement

160

ERROR FLAGS

A-— Address Error

This error occurs when an address expression in the operand field is in-
correctly written or the value is out of range for one of the operands. An
error flag will occur for each operand in error or out of range.

F — Flag Error

This error occurs when an operate class command has an option flag in the
operand field which is not allowed for the command or is unrecognizable.

M — Multidefined Symbol Error

This error occurs when the symbol in the name field has been previously
defined by appearing in the name field of another instruction.

N — Name Field Error

This error occurs when the symbol in the name field starts with a character
other than alphabetic or period, or contains a non alphanumeric or non
period character.

O — Operation Mnemonic Error

This error occurs when the assembler does not recognize the contents of
the operation field starting in column 8. A zero value is assembled to allow
patching.

U — Undefined Symbol Error

This error occurs when the symbol encountered in an expression of the
operand field is not defined by an appearance in the name field.

DIODE MAP FOR AP800

The read only memory diode map is printed if a control card following the
END card contains a 1, 2 or 3 in column 1. The digit specifies the number
of diode maps to be printed. The diode map for each 256 word read only

- memory board is placed on three pages of the assembly listing. The format
of the map is the same as the physical layout of the ROM board. An X on
the map indicates a 1-bit and that a diode is to be placed at the position of
the X, while an 0 indicates a 0-bit and no diode.

Each of the 64 lines of the diode map for a board contains the diodes for
four words. The address of the first word is printed at the left of the map.
The four words are interleaved so that the same bit position in each of
the four words are grouped together and printed as a cluster at four diode
positions, The 16 bit positions are printed across the page and the sum of
the number of diodes on the line is placed at the right of the map.

SAMPLE LISTING

In order to illustrate assembly language programming, three examples are
included in this manual (Figures 18, 19 and 20). The first is a set of unre-
lated commands assembled by AP800 showing how to write various
commands. The second is a listing of a portion of the MICRO 810 firmware
assembled by MAP800. The third example is a sample coding sheet with a
portion of a program on it.

161

ASSEMBLY ERROR FLAGS

e

COLUMNS

1 8 14 30"
3 2
Q o
= 2 g
wa o Zo sa
= w_l I.u" s—l
qW oW g W ouw
2L ok Ou (a1
| | ‘_'/J/ FIRST CARD OF MICRO 800
¢ IOENT SAMPLE | ASSEMBLY PROGRAM
L ACHHNE & THIS SAMPLE]PROGRAM SHONS HOs TO WRITE VARIOUS COMNANDSe
COUNT COD v
*e LOAD aeexsvcu comuuos
oo 1112 START LT LOAD T = HEXADECIMAL LITERAL
001 1204 [A LUAD M = OECIMAL LITERAL
002 1304 N ALPHA«2 LUAD M » EXPRESSION LITERaL
003 16AA w X#AAw LUAD U
006 160A 123456 L Xuas smsoL IN NAME F1ELD IS [LLEGAL
00s 1780 y LS ;5”' LUAD SEVEN CONTROL =~ wWalY ____ ASSEMBLER
® JUMP COMMA
006 1408 ALPHA JP % JUMP IN PAGE zeao Iégﬁﬁ;?aN
007 1400 4 SAM SYMBOL UNDEF INE!
oHe 256 OKO ASSEMBLER msmocnon - PAGE !
lo0 1502 PAGE1 JUP 2 JUMP [N PAGE 1
11 1C02 Jp PAGE2+2 JUMP. TO PAGE 2
102 1002 » PAGEDe2 JUMP 10 PAGE 3
103 0000 Lid 2+2 OFERATION MNEMONIC 1S ILLEGAL
#s FILE LITERAL COMMANDS
Ira 24FF LF 100 K2FF8 LUAD FILE = n:nuf.um\g LITERAL
1605 2200 LF 2 EHROR [N OPERAND FIELD
186 2402 LF TENs2 LUAD FILE = UECIMAL LITERAL
a7 3202 AF 242 . AUD 7O FILE
108 4004 103 0o TEST 1F ZERO
1*¢ SAcC ™ vcmnci YEST 1F NOT ZgRO
1rA 65FE ce LT CUMPARE « NEGATIVE OPERAND 0K
éu OPERATE COHHANUS wifW LEGAL UPTION FLAGS
1rt 0299 OPER € EXECUTE
1rG 7580 L CUNTROL
100 82F0Q A AUD = LINK¢INCH,! Rco. COND FLAG
10 8200 1 INCREMENT = FURM OF AnD
10F 92Fy S SUBTRACT = glNK-DEch-r HEGYCONE FLAG
110 92ue v VLCREMENT = FURM OF SUBTRACT
111 B2y [CuPY
112 A2e0 ® READ MEMORY = LINK
13 A200 R READ MEMORY = L OR I OR Dy NALF
114 A270 L] 2oL WHITE MEMORY « L OR [OR Dy MAL
115 c2fFo] z.ur-hc UM« LINKsCOMP T REGy TRUE T kEOc COND
116 €20 " 2.00C MUVE = LINK,COND FLAG
nt VeFo X 2L F T C EAcLusuc-nn
118 E2re « z.ur v.c
119 F2fo v 2ol 1oReC sanv = LINKsONEJRIGHT,COND FLAG
e vnalnxons oF oPDulE COMMANDS
114 Cag) TEN MUVE FILE REG 10 YO T
118 8548 n.- s ® PREVENTS RESYLT FROM GUING YO FILE
1¢ cs18 C Me 8¢ FILE S 1S TESTED AND COND FLAGS SET
110 8069 cre 9eTel THIS COMMAND INCREMENTS THE T REG
116 M543 In S INCREMENT FILE REG 5 AND PLACE [M N REG
11F 8A2) AN TENoT FILE DESIGNATOR MAY BE EXPRESSIOM
120 9Be8 one 11 FILE 1) MINUS ONE IS PLACED IN N REG
12) ¥224 AL 2e7 JuMP IN PAGE ¢ OR 2
122 828 x 2 JUMP IN not 19R 3
123 4561 v 13 ILLEGAL FLAS
1264 0500 v € S KO FLAGS ON EXECUTE OR CONTROL
8004 TEN EQU 10
ONG X#200% UNG FOR PAGE 2
200 10aR aGER OC AW)0ARY COMMAND MADE nv ConsTany
G X9300% OHG FOR PAGE 3
300 1508 PAGE] JP OPER
END LAST CARD

Figure 18. Sample Listing
162

L
COUNT

000
001
002
003
004

006
007
068
009
00A
008
00C

00E
(112
010
011
012
013
014
015

916
017
018
019
014
(3]
01C

MACHINE
CODE

0000
0001
0002
0003
0004
000y
0006
0007
0008
0009
000A
0008
aoec
a00p
S00E
000F
oun1
0000

8833
5101

FIELD
OPERATION
FIELD
OPERAND
FIELD

| |
t¢
MICRO 8310l SYSTFH

fll% ALLOFAI[ON
LaQu 0

eI e g . NAME

Fo

1
MICRO 810 SYSTEM LISTINGS

| X ‘
IDENTIFIES PROGRAM TO
| IDENT| HB10<— cnos's ASSEMBLER

| .
t COMMENTS FIELD
ICONDITION FLAGS W

| MK |,Sl !
. VESr GET PPERAND AUDRESS

OPERAND APDRESSING
on !

JADDR €T
1z 1.%704"

1 1JP | ADR4

| IN | PL

] RM PU,L

T fen lou,T,c

1 1IN Jlextol?

|

11 jEQU |1 JINSTRUCTION REGISTER
XL Fou 2 INDEX WEGISTER
o leou '3 !
1AL JEQu |4 | ACCUMULATOR
|Au jEQU 5 | THIS
BL EQuU 6 EXVENDED ACCUMULATUR SECTION
Isu tequ 17 1 ASSIGNS
0L Fau 6 | OPERAND ADDRESS b SYMBOLS
ou EQL |9 70 THE
IpL leou 110 | PROGRAM COUNTER EILE
PU LQu 11
1 Peou 'iz ! EMPORARY STORAGE REGISTERS
Is2 legu 113 !
1S3 |EQU |14 |
ov EQU 15 OVERFLOW AND WORD LENGTH
If1 teay 1 TUSED WITH EXECUTE FOR uDD FILE
ISKZE | EGU jO }SI1ZE OF BASIC LOADFR)
.
! Tore 1o goarn 1
le | .] THIS STATEMENT
|» READ NEXT| INSTRUCTION | CAUSES ASSEMBLER
RNIO !E: ‘2; ‘s Igt::: gvm AND M TO START
,
! ! If; 'ft'x::g: " JNIERNAL INTERRUPT gggingaw A
)X R

| lop tinrz 1YEs ADDRESS 00.
| | K j it JENTER SENSE SWITCHES

12 1ox*80¢ SHITCH 4 ON
! [INCIE Y) I YES, LOAD BOOT STRAP
IRNIZ [LF | OV,X'00" | CLEAR OV/M
[RNI5 Mmoo Py]
RNI4 RN PL GET OP CODE
1 1 JP IRNIE | IGNORE INTERRUPTS
(RN [IN L | UPDATE P }
RNI3 | RM PUSL.
IrN12 T2 lF0,X'98" I TEST FOR INTERRUPTS
| | 9P | INT } SERVICE REQUEST
RNI6 . C 1.7 SAVE OP CODE
! Ier 1s1,0TABe16 | BASE ADDRESS OF TABLE
1 | KTe |12 JSHIFT RIGHT 4

A $1.7
! Ve Ti,xtane 1 MEMORY REFERENCE
| NO
|

|

|

JCLEAR 0U AND ¥
B <4

| NO

JGET ADDRESS WYTE

I'SET CONDITION CODE
}PAGE 7ERD

Figure 19. MICRO 810 System Listings

163

oL
S 008 OHIIW "0Z 24nbi4

salg

MICRO 800 SERIES SYMBOLIC CODING FORM

PROGRAM NAME TAUTHOR TPROJECT NUMBER [DATE PAGE CARD
SA’MPLE i | i [oF NUMBER »
NAME OPERATION |OPERAND FIELD TCOMMENTS R
T2 3456 7 H‘IZIJalsiﬁ |1|s|szm;§mnm:u m:asw:n:sao.u X -snesmT
N Ly llllllnllllllngxlllilllllxilllltlll T ST -
Ll g IIIIIllIIIIIillllllillll|l|ll|lllllllllllljjljlllllllll Ll i1 i11]w
ST) NN E RN NN NN SN ?
1 CM MILLLL[I!IL[LJMMMIIII1I|ll||lll!llllllijlll P11t z
NN Lt Vl.le'lﬂQ il 1|$Lﬂﬂjﬂﬁ TSN E NN RN NN SN N NN
FNBEENN Y 2 IPLI:I&.ppIIIIIIIII!|I|I lkllllllllllllllllllll]lLlIllIlllII R g
ta sy i ..Xulgn'uu..‘ MMMMT?HH||A|11]1||1|1111|||1| NN W
AEEEEE | /AR ﬂﬂlH:Hl; |!”IllllllllllllllilllIIIIIIIllllllllllllll NS
L1 ||&1] ;.l|||; LEBATER SENSE SWITCHS® 1 | 11 1111t p el et cg.
L1 L ! PN I T T U U A W R A A O U B B A B 0 0 A
NENEEY | AR m_m_mm_ﬂmM|lllllllllllullllll|lll EEEEEEE
[S IR NN NN NN
PG e et by T
ISR RN Illlllll‘l_ll|ll|!l|ll||(llII|ll|llIllllllllIIIllllllllLlilllllllll 3
Lev e b e e Pt e r e errrververer gt
Lo b e e b e ety rr ey e by o
[N NN |c||||l|mt|||1|!|||||||||||||1|||||1||||||1|1||||||||l|11| R)
N SN TN NN AT SN S T -y
T T U OO e U S T U T T 0 O A O I IO 0 0 W O I
F I R N A SR AU 0N AUV U U 5 0 S T OB 0V O A A B A O A B A B
N N T T T T O O N S S 0 B I B A A
Lo b e feve v r gt ey e r v v e).
_I_J._.I_L_I_L!IIIIllll]lllill‘lllI!IIIII!I[l|IIIlIIIlLLlJIlilIIlllIIIIIIlIIIllIIIT
O T T T T U T S 0 B O O A A A Y O B 0 R I I A l'Jlltllgg
FIS IO S T N TN T N T U T U0 S S W U U T T U W U0 A W W O A A N 0 A 0 O O A A A U W B

FORAM 9-133

OPERATION PROGRAM CARD DECK FROM AP800

The assembly program generates a deck of cards which contain the blnary
object code, if-a control card following the END card contains a 0 in
column 2. All information punched on the cards isin Hollerith code, with
" a single hexadecimal digit (four binary bits) punch in each column. This
format allows easy visual reading of the cards after they are interpreted
and permits rapid patching or generation of patches to the deck. Each
card contains 16 program words. If all 16 words are zero the card is not
punched

The cards have two fields as follows:

Columns 1-4 — Load address.
Columns 5-68 — Object code, four columns per word

.‘The format of the binary paper tape created by MAPB800 is described
under Simulator Operating System.

© SIMULATOR OPERATING SYSTEM (SOS) AND
SIMULATOR PROGRAM (SIM800)
INTRODUCTION

The Simulator Operating System (SOS) is an on-line executive system for
controlling the operations of the MICRO 800 simulator (SIM800) and
incorporates. teletype control of debug, console, and executive functions.
The teletype is used rather than any console operations except for the
console interrupt, which is used to cause control to return to SOS while
the simulator-is operating. SIM800 and SOS are always loaded into the
MICRO 810 or 820 as a single program because all simulator operations
are controlled by- SOS.

The following is a list of the features available to the user:

Display and change the content of a simulated read only memory
location. .

Display and change the content of a simulated core memory location.
Two breakpoints for microprogram debugging.

Display and change the content of a simulated MICRO 800 element.
Display the content of all simulated MICRO 800 el_ements:

Simulate execution of a microprogram.

Load a formatted prbgram tape into simulated read .only memory.
Load a formatted tape into simulated core memory.

Punch the content of simulated read only memory into paper tape.

Punch the content of 5|mulated core memory into paper tape

165

INSTRUCTIONS FOR USE
This section provides instructions for using the SOS program.

Loading the SOS and SIM800 by the bootstrap and basic loaders

The SOS is loaded into memory via the basic paper tape loader. This basic
loader is in the bootstrap format (1 data byte per frame of tape) and is
spliced onto the front of the SOS tape. The splice is made so that the last
frame of the loader is followed immediately with the leader of the SOS
tape. The microprogrammed bootstrap loader loads the basic loader and
transfers control to it. Then the basic loader loads the SOS and, after a
successful load, transfers control to the SOS. Following is a procedure for
loading a formatted paper tape through the teletype via the bootstrap and
basic loaders.

1. Place the TTY in the off-line mode, place the reader controi lever to
the “free’’ position and enable the teletype reader. Type control and Q.

2. Place the TTY in the on-line mode and insert the SOS tape in the reader
with the first rub-out character at the read station. Set the reader con-
trol lever in the stop (center) position.

3. Set the front pane! sense switches as follows:

Sense switch 1: off for serial TTY interface, on for parallel TTY inter-
face.

Sense switch 2: must be off,
Sense switch 3: must be off.

Sense switch 4: must be on. This selects the bootstrap loader whenever
the run switch is selected and was preceded by a reset.

4. Press the reset and the run switches and the system will wait for the
teletype reader to be started.

5. Press the TTY reader lever to the start position. When the basic loader
is loaded and operating properly, the teletype page printer mechanism
will chatter whenever a record separator passes the read station. This is
caused by the issuance of reader off and reader on codes between
records.

If a checksum error is found, the message ‘CE’ is typed and the system will
halt. Another attempt to properly load the record may be accomplished by
backing up the tape to the previous record separator, placing the reader
control lever in the stop (center) position, and pressing the run switch on
the front console. When the SOS is properly loaded, control will transfer
to it, the teletype bell will ring, and an equal sign will be typed.

Loading the SOS and SIM800 by the R Operator of TOS

Unroll about 30 inches of the program tape to bypass the basic loader
and locate the leader (any frame with channel 8 present) of the formatted
tape. Insert the tape into the reader with any part of the leader at the
read station and set the reader control lever to center position. Typing an
R will start the loading. A checksum is calculated for each record loaded
and if it doesn’t equal the checksum read with the record, the letters ‘CE’

166

will be typed and control will return to the standard teletype operating
system program (TOS). By backing up the tape to the previous separator
and typing an R, another attempt may be made to load the tape:

SOS Operators

All operations which are performed by SOS are initiated by typing a single
alphabetic character which designates one of 13 operators. These opera-
tors are described in detail in Section 3 and are summarized in Appendix
A.

The SOS program is ready to accept an Operator designator character at
any time after ringing the bell and typing an equal sign. If a.character
other than a legal operator designator is typed, SOS will reject the charac-
ter, ring the bell, and type an equal sign again.

NOTE: For the pt:crposes of this manual, all references to the teletype
carriage return are as shown; (CR). -

Hexadecimal Input/Outpuf

All data and addresses are displayed and entered in hexadecimal. The 16
hexadecimal digits are: 0, 1, 2,3,4,5,6,7,8,9,A,B,C,D, Eand F, The
hexadecimal .values may not be signed. When entering a two-digit memory
cell value or a four-digit memory address, no spaces or other than hexa-
decimal characters may be in the digit string. SOS assumes that the hexa-
decimal digit string is terminated when it receives the first non-hexadeci-
mal character; therefore, it will not act on an input until the digit string is
terminated. If more than the required number of digits are entered, SOS
will take the last two or four as required. Leading zero digits need not be
typed. If the first non-hexadecimal character is not a space, comma, or
carriage return (CR), the data or address value is ignored and the opera-
tion is terminated. However, before termination, all valid hexadecimal
data or address values that were accepted are retained. When more than
one address or data value is typed they may be separated by either a
comma or a space. For clarity in this document only commas are shown.
When an operator requires an address, it will ignore leading spaces, i.e.:

W ssss, eeee (CR)

Console Interrupt

The console interrupt is used to interrupt the simulation of a microprogram
or to abort the |, O, R, or W operator and return control to SOS. The user
should be careful if the simulator is interrupted because complete simula-
tion of the current command may not be complete but the K,L register will
be pointing to the next sequential location.

If the console intérrupt is activated when control is residing in SOS (wait-
ing for an operator), an exit is made to the resident TOS. When using the
serial teletype interface, the exit is not taken until one character is typed
on the keyboard to force completion of the IBS instruction.

" Halt and Error Returns

If a microcommand halt (1780) is detected, control will return to SOS
and an H followed by the content of the K L register plus one will be
typed

167

During the simulation of microprograms, various undefined microcom-
mands and system timing violations are checked for and if detected will
cause an error return to SOS. The'letter E and a three digit error number
will be typed, followed by the content of the K,L register plus one, and
control will return to SOS. A list of the error codes and their meaning are
contained in Appendix B.

OPERATORS

Card Read: C

The C operator causes SOS to load a program card deck into simulated
ROS. The format of the cards must be as described in the AP800 Assembly
Program manual. Loading is terminated and control is returned to SOS,
" when a card is read containing a blank in column 5. If a blank card is read,
any character other than a hexadecimal character is read, or a card reader
malfunction occurs; the message ERR will be typed and control will re-
turn to SOS. Loading may continue, by correcting the error condition,
backing up one card, starting the reader, and typing a C. Since no informa-
tion goes through the reader when a blank card is read or when a pick
failure occurs, it is not necessary to back up one card.

Display: Dn

The D operation causes the contents of the simulated system element n to
be typed out followed by a dash. At this time the contents of the element
may be changed by typing in one or two hexadecimal digits. When a
comma or space is typed after the data or after the dash, the contents of
the next element in sequence will be displayed. The various simulated
system elements (n) and their meaning are listed below in sequence. If a
(CR) is typed, or if a space or comma is typed after the contents of the
panel switches (P) has been displayed, this operator is terminated. All
examination must be completed on one line of type.

List of values for “’n”’, in order of their appearance:
0 Files O through F

“po-c

T Register

M Register

N Register

(L Register Bits 9, 8)

L. Register (Bit 7-0)

U Register

Link flip-flop (1 bit)

R Register (Bits 15-8)

R Register {Bits 7-0)
Internal Status Register
Input bus

1/0 Control Register (3 bits)
Panel command switches (7-0)

TO~WmIONCHrAZE- T

168

Display: D (CR)

This mode of the D operator causes all of the simulator system elements to
be typed out on two lines. A single space is provided between each element
and there is a double space after every fourth element. Sixteen files are
contained on line one with thirteen additional elements being displayed on
line two in the following manner.

D (CR)
00010203 04 05 06 07 08 09 OA OB OC OD OE OF
01020304 05060708 090A0BOC OD -

End of Tape: E

The E operation punches an end of tape record consisting of a zero record
size and an execution address of zero. This ensures that tapes punched by
SOS will not contain a load and go address. Following the punching of
this record, six inches of trailer will be punched automatically.

Go To: G ssss, tttt, uuuu (CR)

The G operation causes SOS to set trap operations for read only memory
locations tttt and uuuu, and to start simulation at read only memory loca-
tion ssss. If a (CR) is typed after G, simulation starts at the location con-
tained in the K,L register. If a (CR) is typed after ssss, no traps are set, and
if a (CR) is typed after tttt only one trap is set. Ail traps set are auto-
matically cleared when either one is reached or control is transferred to
SOS, signalled by the ringing of the teletype bell and the printing of an
equal sign. Upon return from a trap, a T, followed by the contents of the
K,L registers, is typed out. At this time the command located at the trap
location has not been executed. A trap at location zero is not permitted as
this value is used by SOS to indicate that a trap has not been set.

Input: |

The | operator causes SOS to load a MICRO 800 program tape into simu-
lated read only memory in the same manner as the R operator loads a
formatted tape into core memory. The tape may be created by the O oper-
_ ator of SOS or by the MAP800 assembler.

Leader/Trailer: L

The L operator will cause the paper tape punching device to punch six
inches of tape containing channel eight punches only.

Memory: M ssss, .

The M operator causes the contents of the simulated memory location
specified by ssss to be typed out followed by a dash. At this time the con-
tents of the memory location may be changed by typing in two hexadeci-
mal digits. When a space or comma is typed after the data or after the dash,
the contents of the next sequential location is typed by SOS. A (CR)
terminates this operator. The actual amount of simulated core memory will
vary depending on the size of the actual memory and the amount of
simulated read only memory desired. Standard configuration is 768 words
of read only memory and 256 bytes of core memory.

169

Output: O ssss, eeee (CR)

The O operator causes the contents of the simulated read only memory
area starting with ssss and ending with eeee to be written on the standard
output device in the same format as with the W operator. Each record will
contain 6419 commands from read only memory except the last record
which will contain a number of commands equal to the total number
module 6410. Typing a (CR) following the second address will start the
operation. ‘

Print ROM: P ssss,

The P operator causes the simulated read only memory address specified
by ssss to be typed out on a new line followed by the contents of that
location. A dash is typed after the value to indicate that it may be changed
by typing in one to four hexadecimal digits. When a space or comma is
typed after the new data or after the dash, the next sequential read only
storage address and its contents are typed by SOS on a new line. A (CR)
terminates this operator.

Read: R

The R operator causes SOS to load a formatted tape into simulated core
memory. This operation can be configured for any standard input device,
but normally the device will be the teletype paper tape reader. The tape
must be inserted in the reader with the leader {any frame with channel 8
present) placed at the read station before the R is typed. When the loader
encounters an end of tape record the loading process is terminated and
controls are transferred to SOS. If an end of tape record is not read, load-
ing will continue until the computer is halted or until the console interrupt
is activated. A checksum is calculated for each record loaded and if it
doesn’t equal the checksum read with the record, the ietters ‘CE’ will be
typed and control will return to SOS. By backing up the tape to the
previous separator and typing an R, another attempt may be made to load
the tape.

Time: T

The T operator causes SOS to print the letters |, M, and E, followed by a
four digit hexadecimal number and a dash. This number represents the
total number of machine cycles accumilated threugh simulatien since
the last reset or preset. The counter may be reset or preset by typing in
one to four hexadecimal digits before typing a carriage return te terminate
the operation.

Write: W ssss, eece (CR)

The W operation causes the contents of the simulated memory area start-
ing with ssss and ending with eeee to be written on the standard output
device, normally the teletype punch. Each record of the cutput will con-
tain 12810 data bytes except the last record which will contain a number
of bytes equal to the total byte count module 1281g. Typing a (CR)
following the second address will start the operation.

Zero Flags: Z

The Z operation causes SOS to reset flags used by the simulator for error
detection and to simulate the functions performed by the reset switch on

170

the front panel. File zero will be cleared, all internal status bits will be
cleared, and the K,L register, 1/0 coentrol register, and the value of the
input bus will be set to zero. This operator should be used before setting
up parameters and starting a simulation sequence.

PROGRAM TAPE FORMAT

The binary paper tape format (Figure 21), can be generated by the two
pass assembler, and by the output and write subroutines of SOS. This
format allows for variable length records of up to 641 sixteen-bit micro-
commands, or 1281 eight-bit bytes, a record load address, and a record
checksum. Each record contains a count of the number of data bytes and
the 15 bit address at which data is to be loaded. The record is loaded
sequentially starting with this address. When there is a discontinuity in the
loading addresses, a 'new record is started so that a load address may be
specified. The last byte of each record is a checksum which is the summa-
tion of the byte count, load address, and data bytes formed on an eight-bit
basis with overflow added into the least significant bit of the sum.

A byte count of zero Vsignifies an end of tape record and if present will be
the last record read. The paper tape reader will be stopped and control is
returned to SOS.

CHANNEL 8 LEADER/TRAILER OR AREA OUTSIDE OF A RECORD
CHANNELS 6-7 NOT USED WITHIN A RECORD (RECORD MARK TO CHECKSUM)

CHANNEL 5 CONTROLS PRINT SUPPRESSION
l ‘—— CHANNELS 1-4 CONTAIN A HEXADECIMAL DIGIT

— —

LEADER

SEPARATOR

~=— RECORD MARK (1 BLANK FRAMF'
RECORD SIZE (VALUE OF 03)

LOAD ADDRESS (VALUE OF 016A)

DATA BYTE (VALUE OF AB)
DATABYTE (VALUE OF CD) - -
DATA BYTE (VALUE OF EF)
CHECKSUM (VALUE OF D5)

3334 [SEPARATOR

~=— RECORD MARK (1 BLANK FRAME) .
RECORD SIZE (VALUE OF ZERO) END OF TAPE

EXECUTION ADDRESS (VALUE OF 016B) (IGNORED BY SOS)
CHECKSUM (VALUE OF 6C) ’

TRAILER

Figure 21. Binary Péper Tape Format
171

APPENDIXES

APPENDIX A

SUMMARY OF SOS OPERATORS

Underlined items are typed out by SOS:

C

D1 xx-, xx-nn (CR)

D (CR)

E
G (CR)

G ssss (CR)
G ssss, tttt (CR)

G ssss, tttt, uuuu (CR)

G, tttt (CR)

G, tttt, uuuu (CR)

L

M ssss, xx-nn, xx- (CR)

O ssss, tttt (CR)

Read a program card deck into simulated
ROM.

Display content of File 1, leave File 1 un-
altered and display content of File 2,
change the content to nn and terminate
the operation.

Display the content of all simulated ele-
ments. Line one contains the 16 files and
line two contains 13 additional elements.

Write an end of tape record into for-
matted paper tape.

Simulation starts at the location con-
tained in the K,L register.

Simulation starts at location ssss.

Simulation starts at location ssss, a trap
is set for location tttt.

Simulation starts at location ssss, traps are
set for locations tttt and uuuu.

Simulation starts at the location contain-
ed in the K,L register, a trap is set for
location tttt.

Simulation starts at the location contain-
ed in the K,L register, traps are set for
locations tttt and uuuu.

Input a formatted program tape to simu-
lated read only memory. After loading,
control returns to SOS.

Punch six inches of paper tape leader
(channel 8 only).

Display the contents of simulated mem-
ory location ssss and change the contents
to nn. Display the contents of location
ssss+1, leave the location unaltered and
terminate the operation, This operation
must be completed on one line of type.

Output the contents of simulated read
only memory from locations ssss through
tttt into formatted paper tape.

172

P ssss,
SS55 XXXX-,
ssss xxxx-nnnn (CR)

TIME xxxx- O (CR)

W ssss, tttt (CR)

Print the content of simulated read only
memory location ssss, leave the location
unaltered and display the content of loca-
tion ssss+1. Change the content of ssss+1
to nnnn and terminate the operation.

Read a formatted paper tape into simu-
lated core memory. After loading, con-
trol returns to SOS.

Display the number of machine cycles
accumulated during simulation. Reset the
time to zero and terminate the operation.

Write the contents of simulated core foca-
tions ssss through tttt into formatted
paper tape.

Zero simulator error flags and reset the
simulated MICRO 800 system. .

173

001

002

003

004

005

006

007

008

009

010

011

012

APPENDIX B
SIM800: ERROR MESSAGES

Meaning

U-Register timing — can’t use U during first cycle following
its setting.

Console command switches — Command preceding 707X con-
trol command causes an ROM delay.

Memory write full cycle — attempt to set T during second,
third or fourth cycle following the memory command.

Memory read — T is set without being selected, during the
first or second cycle following the memory command.

Attempt to load literal with an undefined register destination
of 8, 9, A, B, E, or F. Destination 9 is undefined bacause the
memory spare bit option is not simulated.

Attempt to load or add literal into file register zero.

Attempt to use undefined C-bit combinations 3, 5, or 6 in a
control command.

Console command switches — file register zero not selected in
707X control command. '

Address in M and N exceeds available simulated memory.

Memory write half cycle — attempt to set T during first or
second cycle following the memory command.

Execute command found after U-register OR-ed’ into instruc-
tion.

Undefined B-bus operand — usually resulting from selection of

_ complement T when the input bus (103X) is enabled.

174

ALTERABLE READ-ONLY MEMORY OPERATING SYSTEM
(AROS)

INTRODUCTION

The Alterable Read-Only Memory Operating System (AROS) is a program

.which permits on-line control, loading and dumping of firmware code
using the teletypewriter and/or card reader. The program is used in con-
junction with Microdata’s Alterable Read-Only Memory System (AROM).
The AROM system described in Part VI ‘“Product Catalog’ is a valuable
tool for checkout of firmware systems. It is particularly useful in real-
time firmware or 1/0 oriented applications that require precise timing to
be analyzed which cannot be done with the simulator system.

The features of the AROS program include the following:

Loading of the AROM system (memory) with firmware code in the
form of formatted punched cards or punched paper tapes.

Display and/or change of operator designated AROM locations using
the teletypewriter.

Lisfing and/or dumping of AROM on teletypewriter and punched paper
tape.

INSTRUCTIONS FOR USE
This section provides instructions for using the AROS program.

Loading AROS by the bootstrap and basic loaders

The AROS is loaded into memory via the basic paper tape loader. This
basic loader is in the bootstrap format (1 data byte per frame of tape) and
is spliced onto the front of the AROS tape. The splice is made so that the
last frame of the loader is followed immediately with the leader of the
AROS tape. The microprogrammed bootstrap loader loads the basic loader
and transfers contrel to it. Then the basic loader loads the AROS and,
after a successful lead, transfers control to the AROS. Following is a pro-
cedure for loading a formatted paper tape through the teletype via the
boeotstrap and basic leaders.

1. Place the TTY in the off-line moede, place the reader centrol lever to
the “free’’ position and enable the teletype reader. Type control and Q.

2. Place the TTY in the on-line mode and insert the AROS tape in the
reader with the first sub-out character at the read station. Set the
reader control lever in the stop (center) position.

3. Set the front panel sense switches as follows:

Sense switch 1: off for serial TTY interface, on for parallel TTY inter-
face.

Sense switch 2: must be off. '

Sense switch 3: must be off.

Sense switch 4: must be on. ThIS selects the bootstrap Ioader whenever
the run switch-is selected and was preceded by a reset.

175

4. Press the reset and the run switches and the system will wait for the
teletype reader to be started.

5. Press the TTY reader lever to the start position. When the basic loader
is loaded and operating properly, the teletype page printer rnechanism
will chatter whenever a record separator passes the read station. This is
caused by the issuance of reader off and reader on codes between
records.

If a checksum error is found, the message “CE’’ is typed and the system
will halt. Another attempt to properly load the record may be accom-
plished by backing up the tape to the previous record separator, placing the
reader control lever in the stop (center) position, and pressing the run
switch on the front console. When the AROS is properly loaded, control
will transfer to it, the teletype bell will ring, and an at sign (@) will be
typed.

Loading AROS by the R Operator of TOS

Unroll about 30 inches of the program tape to bypass the basic loader and
locate the leader (any frame with channel 8 present) of the formatted
tape. Insert the tape into the reader with any part of the leader at the read
station and set the reader control lever to center position. Typing an R will
start the loading. A checksum is calculated for each record loaded and if it
doesn’t equal the checksum read with the record, the letters ““CE" will be
typed and control will return to TOS. By backing up the tape to the
previous separator and typing an R, another attempt may be made to load
the tape.

AROS Operators

All operations which are performed by AROS are initiated by typing a
single alphabetic character which designates one of 10 operators.

The AROS program is ready to accept an operator designator character at
any time after ringing the bell and typing at sign (®). If a character other
than a legal operator designator is typed, AROS will reject the character,
ring the bell, and type an at sign (@) again.

NOTE: For the purposes of this manual, all references to- the teletype
carriage return are shown as; (CR).

Hexadecimal Input/Qutput

All data and addresses are displayed and entered in hexadecimal. The 16
hexadecimal digits are: 0, 1, 2,3,4,5,6,7,8,9,A,B,C,D,E and F. The
hexadecimal values may not be signed. When entering a four digit data
value or a four digit memory address, no spaces or other than hexadecimal
characters may be in the digit string. AROS assumes that the hexadecimal
digit string is terminated when it receives the first non-hexadecimal charac-
ter. Therefore, it will not act on an input until the digit string is termi-
nated. If more than the required number of digits are entered, AROS will
take the last four as required.

Leading zero digits need not be typed. If the first non-hexadecimal charac-
ter is not a space, comma, or carriage return (CR), the data or address
value is ignored and the operation is terminated. However, before termi-
nation, all valid hexadecimal data or address values that were accepted
are retained. When more than one address is typed they may be separated

176

by either a comma or a space. For clarity in this document only commas
are shown. When an operator requires an address, it will ignore leading
spaces, i.e.:

W ssss, eeee (CR)

Console Interrupt

The console interrupt may be used to terminate the D, R, V, and W opera-
tions, return control to ARQOS and type a carriage return, line feed, bell,
and at sign (@). If the console interrupt is activated when control is resid-
ing in AROS (waiting for an operator), an exit is made to the resident
TOS. When using the serial teletype interface, the exit is not taken until
one character is typed on the keyboard to force completion of the I1BS
instruction. ‘

OPERATORS

Card Read: C

The C operator causes AROS to load a program card deck into reference
ROS. The format of the cards must be as described in the AP800 Assem-
bly Program manual. Loading is terminated and control is returned to
AROS, when a card is read containing a blank in column 5. If a blank card
is read, any character other than a hexadecimal character is read, or a card
reader malfunction occurs; the message ERR will be typed and control
will return to AROS. Loading may continue, by correcting the error condi-
tion, backing up one card, starting the reader, and typing a C. Since no
information goes through the reader when a blank card is read or when a
pick failure occurs, it is not necessary to back up one card.

Dump: D ssss, eeee (CR)

The D operation causes the contents of AROM to be dumped on the tele-
type printer starting with the address ssss and ending with the address eeee.
AROS types the four digit address at the left margin followed by eight
16-bit- words of AROM. This operation is terminated when the contents
of the last AROM location has been typed, or the console interrupt is
activated. Typing a (CR) after the second address will start the operation.

End of Tape: E

The E operation punches an end of tape record consisting of a zero record
size, a zero address, and a zero checksum followed by six inches of tape
containing channel eight punches only.

Leader: L

‘The L operator will cause the punching device to punch six inches of tape
containing channel eight punches only.

Print Reference ROS: P ssss,

The P operator causes the reference ROS address specified by ssss to be
typed out on a new line followed by the contents of that location. A dash
is typed after the value to indicate that it may be changed by typing in one
to four hexadecimal digits. When a comma or space is typed, after the
new data or after the dash, the next sequential reference ROS address and
its contents are typed on a new line. A (CR) terminates the operation.

177

Read: R

The R operator causes AROS to load a formatted tape into reference ROS.
The tape must be inserted into the teletype reader with the leader (any
frame with channel 8 present) placed at the read station before the R is
typed. When the loader encounters an end of tape record, the loading pro-
cess is terminated and control is returned to ARQS. If an end of tape
record is not read, loading will continue until the reader is empty or until
the console interrupt is activated. A checksum is calculated for each
record loaded, and if it doesn’t equal the checksum read with the record,
the letters ‘CE’ will be typed and control will return to AROS. By backing
up the tape to the previous separator and typing an R, another attempt
may be made to load the tape.

Transfer: T ssss, eeee (CR)

The T operation causes a clock of reference ROS starting with location
ssss and ending with location eeee to be transferred to the corresponding
locations in AROM. The operation is started by typing a (CR) following
the second address and is terminated when the contents of the last loca-
tion specified is transferred. There is no verification or check of the data
written made by this operator.

Verify: V ssss, eeee (CR)

The V operation causes a block of AROM starting with location ssss and
ending with location eeee to be read and compared with the corresponding
locations in reference ROS. All variances will be displayed along with
their associated address. The operation is started by typing a (CR) follow-
ing the second address. Termination occurs when the last specified location
is checked and a message is typed or the console interrupt is activated.

Write: W ssss, eeee (CR)

The W operation causes the contents of reference ROS starting with loca-
tion ssss and ending with location eeee to be written on the standard out-
put device, normally the teletype punch. Each record of the output will
contain 641 16-bit words, except the last record, which will contain the
number of words equal to the total word count modulo 6410. Typing a
(CR) following the second address will start the operation.

Zero: Z ssss, eeze (CR)

The Z operator causes the reference ROS locations starting with ssss and
ending with eeee to be set to zero. Typing a (CR) following the second
address will start the operation.

PROGRAM TAPE FORMAT

The binary paper tape format (Figure 22) can be generated by the MAP800
assembler, by the O operator of the simulator and by the W operator of
AROS. This format allows for variable length records of up to 6410 16-bit
words (punched as 128 bytes), a record load address (address X 2), and a
record checksum. Each record contains a byte count of the number of data
bytes and the address at which loading is to start. The last byte of each
record is a checksum which is the summation of the byte count, load
address, and data bytes formed on an eight bit basis with overflow added
into the least significant bit of the sum.

178

CHANNEL 8 LEADER/TRAILER OR AREA OUTSIDE OF A RECORD
CHANNELS 6-7 NOT USED WITHIN A RECORD (RECORD MARK TO CHECKSUM)

CHANNEL 5 CONTROLS PRINT SUPPRESSION
l r———CHANNELS 1-4 CONTAIN A HEXADECIMAL DIGIT

LEADER

SEPARATOR

~=— RECORD MARK (1 BLANK FRAME) .
RECORD SIZE (VALUE OF 03)

LOAD ADDRESS (VALUE OF 016A)

DATA BYTE (VALUE OF AB)
DATA BYTE (VALUE OF CD)
DATA BYTE (VALUE OF EF)
CHECKSUM (VALUE OF D5)

28008004 SEPARATOR

~=— RECORD MARK (1 BLANK FRAME)
RECORD SIZE (VALUE OF ZERO) END OF TAPE

EXECUTION ADDRESS (VALUE OF 016B) (IGNORED BY AROS)

CHECKSUM (VALUE OF 6C)

TRAILER

>Figure 22. Binary Paper Tape'Format
'SUMMARY OF AROS OPERATORS

Underlined items are fyped out by AROS:

C Read a program card deck into reference
0s.
D ssss, eeee (CR) Dump the contents of AROM locations

ssss through eeee onto the teletype print-
er. Each line will contain an address and
up to eight 16-bit values.

E ; Write an end of tape record into format-
ted paper tape.
L Punch six inches of paper tape leader
{channel 8 only).
P ssss, Print the content of reference ROS loca-
$558 XXXX-, - S tion ssss, leave the location unaltered and
ssss xxxx-nnnn (CR display the content of location ssss+1.

Change the content of ssss+1 to nnnn and
terminate the operation.

179

R Read a formatted paper tape into refer-
ence ROS. After loading, controi returns

to AROS.

T ssss, eeee (CR) Transfer the block of reference ROS from
ssss 1o eeee to the corresponding locations
in AROM. ’

V ssss, eeee (CR}" Verify the block of AROM from ssss to
LOC ROM REF ceee to the corresponding locations in
555 XXXX YYYY reference ROS. An error is indicated at
Verify Compieted location ssss. :

W ssss, eeee (CR) ‘Write the contents of reference ROS loca-
tions ssss through eeee into formatted
paper tape.

Z ssss, eeee (CR) Set the contents of reference ROS loca-

tions ssss through eeee to zero.

PROGRAM CHECKOUT AND DEBUGGING

After a program has been written and assembled, the program debugging
phase begins. Depending on the size and complexity of the program, and
the care used in preparing the program, this phase may be routine, requiring
only a few hours, or it may require many days.

The simulator is very useful for debugging because commands can be
easily modified to correct errors or to help in finding errors. This also
applies to the Alterable Read Only Storage (AROS).

Programs can also be checked and modified quite easily even if they have
already been put in diode read only memory.

This discussion of checkout and debugging is divided into four sections:

General Checkout Procedures

Checkout with Simulator

Checkout with AROS

Checkout with Diode Read Only Storage

General Checkout Procedures

There are a number of programming errors which might possibly occur,
and are sometimes very difficult to detect. These are the kind that repre-
sent valid program commands as far as the assembler and simulatcr are con-
cerned, thus are not flagged as errors by these two programs. Being aware
of the typical errors and their effect on a program helps considerably in
locating them.

Some of the error types can definitely cause any one of the symptoms, and
these should be checked out first. The procedures for detection and check-
out of error symptoms differ for use of the simulator, alterable read only,
or diode board, and for that reason will be discussed separately.

Simulator

The simulator is useful for checking internal programs for correct se-
quences, correctness of results of algorithms, math routines, etc. and for

180

input output sequences. Since the simulator does not run in real time, it
is limited in its ability to test the entire program in normal operation. Also,
since it is simulated, it is not possible to step through the program by
means of the clock switch and observe the L count and ROS outputs.
With the simulator, the ROS can be checked using the teletype, and all
files, etc. can be set up using the teletype. Then breakpoints can be
placed in the routines and the program can be started at convenient
points to test individual routines, or combinations of routines, after the
breakpoint is reached.

Some of the more common errors and error symptoms are listed in Table
12.

The reason why all of these are mentioned is that they become the base
for establishment of a growing check list which should always be referred
to during program checkout. As errors are found in different categories
not on the list, they are added to the list. For certain phases of a checkout
process, such as checking individual subroutines, obviously all of the error’
categories don’t apply so only selected ones needto be considered.

Many times hours and even days are wasted trying to track down an
apparent error cause when a few minutes spent going through the check
list would show that a few other items could cause the same symptom.
The diagnostic effectiveness of the check list is increased by putting it in.
the form of a table which relates errors to symptoms, or symptoms to
errors. For most cases this table is apphcable to checkout W|th the simula-
tor, AROS, or diode board.

One big advantage of firmware checkout over software checkout is that
firmware errors don’t cause the program to destroy itself, thus wiping out
the error symptoms.

The program error check list relating symptom to error takes on the form
shown in the example of Table A. The X's indicate the most likely rela-
.tions between program errors and symptoms, although under certain con-
ditions any one of the symptoms might be caused by any of the program
error types. The various files, registers and flags are tested to see if the
routines operated correctly. Once error symptoms are detected, the pro-
gram errors can be tracked down by the relationships illustrated in Table A.

In Table A the general functions such as algorithms, flow charts, and trans-
fer of flow chart information to coding can introduce errors causing any
of the listed symptoms. Therefore, these parts require special checkout on
paper before committing to read only storage. One method which proves
quite successful in many cases is to define the algorithm and flow chart,
and do the coding in MICRO 810, 811 or 820 software as close in format
as possible to the firmware coding, and check out these routines first
before committing to firmware. This works satisfactorily except for the
real time limitation in high speed operations.

Use of the Simulator to Check Subroutines

- Two simple subroutines have been selected to illustrate use of the simula-
tor for checkout. The first routine sets files 1-E to ‘AA’, and the second
routine does a simple 8-bit positive number multiply.

181

The simulator operators to be used for these two examples are as follows:
a. DN — Display files, registers, and flags.

b. G ssss, tttt, uuuu (CR) — Execute a program starting at ssss, with traps
at tttt, and uuuu.

c. P ssss — Prints out and permits loading of ROS commands starting at
location ssss.

d. Z — Resets flags used by the simulator.
e. D — Display all Files and Registers.

Routine 1 — Set files 1-E to ‘AA’

The U register is used for file indexing. File F is used to contain, and up-
date the U register value. The machine code for this program is as follows:

Example 1. Set files I-E=AA

L
Counter
Address Command Operation
000 2FBO U Reg. Code to File F.
001 8F46 Update File F and U Reg. .
002 11AA Set T=AA
003 0020 Execute Command
(Effectively copy T)
004 6F42 Compare for last file value
005 1401 Jump to repeat loop
006 1780 Halt*

*Fpr demo only, usually a jump or
subroutine exit.

Simulator Operations
1. Z — to initialize the simulator.

2. P 000, .
000 xxxx 2FBO,
001 xxxx 8F46,
002 xxxx 11AA,
003 xxxx 0020,
004 xxxx 6F42,
005 xxxx 1401,
006 'xxxx 1780 @)
This part is New commands are
printed out typed in followed by
by simulator, comma until last command.

3. G 000 @ execute program without traps.

For correct operation program halts and prints out an H followed by
0007 which is L register +1. .

182

4. Use of D1, followed by commas, will cause the teletype to print out the
content of the files:

D1 AA-, AA-, AA, etc.

Typical errors and symptoms:

1. 001 — 8F06 instead of 8F46 — File F not incremented. Program will
never exit from loop to halt instruction. No files will be loaded with
AA. i

2. 004 — 6F41 — File F incremented once too often. Program will loop
one extra time, setting file F=AA, which will then cause additional
loops storing T into memory at locations determined by M & N. Then
program will repeat loading AA into files. Program will never exit loop.

3. 005 — 1400 or 1402 — File F will either be reinitialized every time or
nonincremented, so loop will never be exited.

Routine 2 — 8 bit positive number multiply.

X *y>Zy, Z|
file2=X
file3=Y and Z|_
file4 =2y

file 5 = Shift Count

Machine Code

L. Counter
Address Command ~ Operation
000 2508 Shiftcount=8 .
001 C201 Move X to T Register
002 2400 Clear Zy
003 4301 Test Y for odd/even
004 8420 Add T to Ty
005 F420 Shift Zy
006 F3A0 Shift Z_
007 9550 Decrement Shift Count
008 5004 Zero Condition Test
009 1403 Jump to repeat loop
00A 1780 Halt* :
*For demo only.
Simulator

" 1. Z — to initialize this simulator.

2. P 00O,
000 xxxx 2508,
001 xxxx C201,

Complete until enfire program up to 00A 1780 is loaded.
183

3. D2, xx-02 exampleof2x4=8

D3, xx-04 x=2
y=4
ZL=8,2y=0
4. G 000 Execute, with no traps.
5. Results
H ooB Halt location +1
D3, 08, OF
ZL Zy

Typical errors and symptoms:

1. 008 — 4004 instead of 5004
The requirement is to skip on zero shift count which would seem like
Test Zero is correct. However, the zero condition flag is being tested.
This must be =1when shift cound is 0. A 4004 would cause program not
to loop.

2. 007 — 9540 Condition flag not updated.
Subroutine will never exit because zero condition fiag will never be set.

If flag had been set when routine was entered, exiting would occur on
first pass.

3. 006 — F320 Link not entered.

With this error, the program would loop properly and exit to the halt,
but the Z|_ value in file 3 would always be 0.

As larger and more complex subroutines and entire programs po_nsisting of
many subroutines are checked out, more of the error sources included in
Table A must be considered.

Many times, if a timing error for memory access or 1/0 is found, it can be
corrected without addition of instructions requiring relo€ation by changing

the order of instructions or changing a no-op to a jump to next instruction
to increase a delay factor.

Consider the following example:

1 Memory Write
: fy+ 1T—N, N

2. [x—T B

A

3 Memory Write
: fy+1—=1N, N

184

Assume that this is a programming error because the value in X is not
supposed to be stored until the 2nd memory write cycle shown. The
routine could be changed to the following:

1 . Memory Write

: fN+H1—TN, N
2. fN+HT—1f, N
3 - Memory Write

) fX—T

!

The same number of instructions are required, but instruction 2 which
causes modification of N will cause a delay until the first memory cycle is
complete, thus causing f(X) to go into memory on the 2nd cycle. Changes
of this type are particularly important when the program being checked is
in diode read-only memory.

Checkout of an applications microprogram can be facilitated by prepara-
tion of simple programs for display of registers and core memory and
placing these in the upper part of the read only memory.

Also checkout of short firmware subroutines is facilitated by using a
MICRO 810, 811, or 820 having an additional ROS which is electrically
alterable by the program. Then the software programs can be used to test
core memory and to display most of the file registers.

Checking Subroutines with the Alterable Read Only Storage

An alterable read only storage (AROS) has the advantages of running in
real time as well as ease of command modification.

Programs can be checked out by manually clocking one step at a time while
testing the L counter for proper looping, by preparing and testing one sub-
routine at a time using. halt instructions to break up loops, and test partial
routine functions. Real time /O operations can be tested by looping on
1/0 subroutines, or looping on small groups of subroutines. When the
individual routines have been checked, it becomes much easier to assemble
and to test the entire program.

Checkout of Programs in Diode .Read Only Storage

Programs in diode read only mémory should first be manually clocked to

see if the L counter follows the correct branching paths, and to check each
command in read only storage. File registers are checked at various points
in the routine by switching to front panel control and setting command
switches to Cf00 and display to D. To bypass loops, the L count is set to
the next instruction after the loop. Those items in Table 12 causing all
possible symptoms to occur should be checked first. This includes the

185

L4

diode map, instruction op codes and functions to flow charts, to coding.
When stepping through a program, /O timing cannot be tested in real.
time, nor can omissions of U register modification delay be detected,
therefore these two areas should be thoroughly checked on the flow charts
and coding sheets.

To facilitate checkout with diode boards, temporary halt, or loop instruc-
tions can be put in the program, and easily changed after the subroutines
have been checked out."

Many times in the firmware development phases it is possible to correct
an error or omission by placing a jump instruction to an unused part of
read only storage, programming the fix there, and jumping back to the
first correct instruction after the error. These detours or patches can then
be eliminated in the firmware production phase after the firmware program
has been checked out.

186

*319|dwodu] 10 198.1400Ul 8q

01 aunNoIqns BuISNed SUOIPUOI paldadxaun

-121516aJ 8|14 JO 8SN 2|QNOP 1US1IBADEU |

*(SOY 10 8103 uf)

satepunoq abed 6uisso10 10} uoisincid Jo oeT

*juasqe J433si6a4 N Buibueyd usyye Aeaq]
*10J PS1UNOIJBUN SAB|AP BWUI) SS3008 AJOLUB

“peoj awil Buissasoud

10 SjuleNsuoo Bulwiy jeUCIPUOD Paldadxaun

*BUIINOJ € WOJ) PUBLLLLIOD B JO UOISSILIQ

“139ys 2p0od 01

14EUD MOJ} WIOIY UOILOUNS JO 18§SUBI] 1931400U|

*UO1IOUNy 11eYD MOJ} JO UOISSILIO 10 ‘Ul 10113

*10413 uonziuebio 1ieyds moj4

("018 ‘onjawsyliie ‘|ed16of) Joa1a wylob|y
“wesboad ul UoIIUAP [BUOIIDUNY 3084100U|

Table 12. Program Error Check List

~«——— Programming Error

Error Symptom

X

{ncorrect or Missing 1/O Data

Incorrect Results but Correct
Files Modified

Incorrect Files Modified

Program Hangs up in a Loop

X
X

Program Fails to Loop in a
Subroutine

X
X
X
X
X

Program Exits a Subroutine
Loop too early or too late

Incorrect Core Memory
Storage Locations

Core Data/Flags Destroyed

Incorrect Data/Flags Stored

X[XIX|[X

X[XX |X

X| X[X |X

X| X[X |X-

X|{ X[X |X

X | X [X|X

Incorrect or No Return
From Subroutine

X
X
X
X

X
X

Program Never gets to
Correct Subroutine

X

X

Intermittent Program Errors

Program Does Not Enter a Loop
According to Expected Flags or Status

Program Enters Loop when Conditions
Say it Should Not

Incorrect or Lack of 1/0
Control Pulses

Program Stays in One Paée of ROS

Program Follows Unexpected Mean-
ingless Path Through Routines

Program Jumps to an
Unused ROS Area

Timing Errors

187

*a0e 491Ul Ul 1UaWAIdWod

“Buiwny O/ Jedoidw|

*(uolsianul

ajgnop Ajuiew) uoiipuod dijs 10a1400u|

10 's3|qe1 YynJ} ‘saouanbas ‘Builill 193.4100U
“al} e ul s31q Bejy JO UONEDIIPOW lusliBAPRU|

*SuUo13oUN} UOIEZIIEITIUL Ul SUOISSILIO JO S10413

“PUBLLLLOD 4O PJal} D Ul WAl PalWo 10 198.100U|
“NqIYUT 1M B]1} JO UOISSIWIQ

*159} 11Xa doo| 10} BunUNodSI
*ssasppe Buoim HuUIOs|as 1o ‘uolled0lal

BuiIno. Jaye sassaippe dwnf 6uibueyd 10N
*UOISSILIO 10 JoJt2 Ja1siBal uoneunsaQg

“UONEINJ|BI BUIINOJ Ae|Sp 8L Ul 10013

‘puewiwod dwn{ [2UOPUOD Ul [B43l] 1031100U}

Table 12. Program Error Check List
(Continued)

~+————— Programming Error

“UONIPUOD MO|JIBA0 Pal1dadxaun

Error Symptom

% | incorrect or Missing 1/0 Data

X1 X

Incorrect Results but Correct
Files Modified

Incorrect Files Modified

Program Hangs up in a Loop

Program Fails to Loop in a
Subroutine

Program Exits a Subroutine
Loop too early or too late

Incorrect Core Memory
Storage Locations

Core Data/Flags Destroyed

x | Incorrect Data/Flags Stored

X[X | XX

Incorrect or No Return
From Subroutine

X

Program Never gets to
Correct Subroutine

Intermittent Program Errors

Program Does Not Enter a Loop
According to Expected Flags or Status

Program Enters Loop when Conditions
Say it Should Not

Incorrect or Lack of 1/O
Control Pulses

Program Stays in One Page of ROS

Program Follows Unexpected Mean-
ingless-Path Through Routines

Program Jumps to an
Unused ROS Area

Timing Errors

188

*}1 S3SN Y2IYM PUBLILIOD PUE 11

$13S YOIYM pUBLILIOD ugamiaq Bejy uonIpuod

© 10 11 Jjui| 0 UoHEdIPOW pauueldup)

*SOY ui padejd A[3381100Ul S31Q 1O SapoiQ

‘43151604 (\ Jarye u31sibas) Buillas JON

*ap02 dO PUBLIWOD 1931100U1 JO 9S()
*sbe|y jeusa1ul 10y Buiunodde 193.1100U|
*abesn Jajutod duwinf auiznoigns 1931100U|

Table 12. Program Error Check List
(Continued)

~+—————— Programming Error

*sauInoagns Anus

ajdininw 104 1utod A1jua Buoam JO UONDII|AS
*puBWIWOd 1YBu 141ys AQ paonpouiut
*SaYd1IMs 3suas 4o BU1as 199.1100U|

s,| SE yons ‘synsal |e1oads 104 Buizunodoe 10N

Error Symptom

X

Incorrect or Missing |/O Data -

x | > |. |!Incorrect Results but Correct
Files Modified

B4 Incorrect Files Modified

X | Program Hangs up in a Loop

Program Fails to Loop in a
Subroutine

X

X

Program Exits a Subroutine
Loop too early or too late

Incorrect Core Memory
x . | Storage Locations

Core Data/Flags Destroyed

Incorrect Data/Flags Stored

X{X|X |X

X[X X X

< Incorrect or No Return
From Subroutine

X

X

Program Never gets to
Correct Subroutine

Intermittent Program Errors

Program Does Not Enter a Loop
According to Expected Flags or Status

Program Enters Loop when Conditions
Say it Shouid Not

Incorrect or Lack of 1/0
Control Pulses

Program Stays in One Page of ROS

Program Follows Unexpected Mean-
ingless Path Through Routines

Program Jumps to an
Unused ROS Area

Timing Errors '

189

CHAPTER 7
TECHNIQUES AND EXAMPLES

TECHNIQUES FOR EFFICIENT MICROPROGRAMMING

In many aspects microprogramming is similar to assembly language soft-

ware programming of small computers. There are basic arithmetic, logic,

1/0, control, and memory functions, Programs are organized with exec- .
utives and subroutines. Jumps and return jumps can be made. The basic

differences are as follows:

_ register.

There are no variable addressing modes at the microcommand level.
Memory accesses must be programmed on a step-by-step basis, with
commands to set memory address, and to transfer data to and from T,
which is the memory transfer register.

Execution of commands is much faster than in a software machine.

1/O functions ‘must be programmed on a step-by-step basis, including
setting up device connect codes in T, and programming input and out-
put strobe pulses.

Return jumps must be set up by storing return addresses in a file

~ Arithmetic shift, control and logic functions are all register oriented,

and are limited in scope, such as shift one bit position, add 8 bits, 8 bit
logic, skip only one location, etc.

The command or instruction memory is semi-permanent read only
memory with a limited capacity, so that much care must be taken to
conserve the number of commands or instructions in the program.

The commands or instructions are much more intimately related to the
machine architecture, and to bit pattérns, therefore some knowledge
of logic Boolean algebra, and small computer organization is highly
desirable, and is applied to the programs.

Interrupts are monitored by status sampling rather than hardware
interrupts as found in software programmed machines.

All commands or instructions are single word (16 bits) and relate to
files, or register.

Commands are organized in such a manner as to make is possible
sometimes to do more than one function on a command, and this is
necessary many times to conserve commands.

The flexibility of programmable alteration commands is not as great as
with software programs. A special register, called the U register, is
necessary for this function.

There are two levels of high-speed storage — the file register and core
memory. The files are general purpose at the microprogramming level.
There are special commands in microcode not normally found in soft-
ware commands, such as shift right 4, load zero, and literal to register,
which simplify many functions. ,
There are certain timing constraints related to I/O, memory, skips,
jumps, and U register applications, which must be taken into account
when preparing microprograms.

190

Even with all of the above constraints, it is possible to have microprograms
which are 10-50 times as fast as equivalént software programs and which
require the same or fewer instructions than a software program.

In order to make full use of the power of microprogramming a large
number of techniques are possible to reduce the number of instructions,
and/or to reduce execution time. ’

The following techniques are discussed in this next section:

1. Generation of delays for memory accesses, U register applications,
and input/output. : '

Double functions on a single command.

Uses, setting and testing of Link.

Uses of U register. .

Setting and using of condition flags.

Use of loops vs straight line programming.

Small general purpose subroutines. .’)

Use of shift right 4 instruction (generated with and without U).
Use of files for flags, counters, and reference data.

Organization of Op codes, file, and core allocations to reduce
instructions.

SO ®ND U A WN

-

11. Saving diodes by selection of instructions and files.
12. Saving jump instructions when branching.

13. Reducing two branches to one by multifunction commands, and
commands which become effective No Ops in one branch.

14. Interlacing vs cascading of routines.
15. Uses of inhibit file write.
16. Moving data from file to register.

1. Generation of delays for memory accesses, U register applications
and input/output. S

Each of these items requires a delay of 1 to 3 clock times after the com-
mand. The desirable thing to do is some required function which provides
the delay with no error. For example, on a memory write, T must not be
written into for 4 clock times. On the 32-bit input example (#2) the write
memory. command is followed by reset DIXX, a skip test, and a jump.
None of these affect T, so the entire memory delay is achieved with no
loss of execution time. The memory time is then reduced from 1.1 ps to
-22 ps. Also in this same example, the one clock delay after DIXX, prior
to data input is achieved by advancing the byte address counter, thus
avoiding a No Op. Most of the input and output delays can be generated
by updating program counters, and addresses, etc. Microprogram Example

" No. 10 contains many of this type command. Microprogram Example No.
12A shows an example of placing a memory access command after up-
dating U to provide a delay without a No Op.

191

2. Double functions on a single command.

The following double functions can be done, and should always be used
when possible:

a. Clear both a file and register with a copy O command. Similar
techniques can be used to set both equal to 01, OR, FF.

b. Update a file or register on a memory command. (This does not
have to be a memory register.)

¢c. Update a file, or register on an 1/0O control command. {Output
moves only.)

3. Uses, setting and testing Link.

Link is used to indicate carry for an arithmetic function, or the shifted out
bit on a shift function. It is used for multibyte arithmetic, shifting, or
memory address incrementing.

Link can be preset by shifting a file, with inhibit file write. If link is to be
set specifically to 1 or 0, it may be accomplished by subtracting zero or
adding zero to any selected file regardless of its contents. For sign exten-
sion on a shift, link is preset to whatever value is in the end bit of the
designated file. :

The state of link can be tested without disturbing a file by executing a
shift right command with the following c field functions: inhibit file write,
enter link, and update the condition flags. The link appears in the MSB
which sets or resets the negative condition flag. If the condition flags must
be saved, then link can be entered into MSB or LSB of a file, and tested.
Link can also be tested by entering into a file using the copy command as
well as the shift command.

If link is used in a routine, care must be taken to avoid setting or resetting
it on a function before the time it is to be tested.

4, Uses of the U register.

The U register is used for file indexing, and command modification. It is
ORed with the upper 8 bits of the execute command or operate com-
mands (except control) which select destination register value 7. Typical
modifications are as follows:

-a. Execute 0020

The 2 in the c field selects T for add, subtract, logic functions, and
copy. Therefore the 0020 can be used for multi-purpose command
execution, by loading U with the desired Op code, and fil2 register
number,

For moving, loading or clearing a group of files, the Op code will
remain fixed, and only the file number will change. In this case, the
Op code for copy (‘B’) or move (‘C’) can be used with a 0 for the
file number.

When U has been set, the new value does not become effective until
the second clock. Sometimes two entirely different functions can be
implemented using U. For example, if it is necessary to move the

192

upper 4 bits or alternately the lower 4 bits of a file to the T register,
this can be done as follows:

Machine Code

l

Move file nEr 11
4t0T ‘ .OF —T ! 110F

execute, C = 2 0021
Case one: - move upper 4 ‘ (U)=74

with ¢ = 2 this becomes 7421 shift right 4 ——T

Case two: Move lower 4 U=E4

with C = 2 this becomes E421
And fg with T—T

If a number of different functions are to be done to a register in one pass
through a loop, the operate command with destination code 7 is used. This
can not be used if a destination register is required.

5. Setting and using condition flags.

The three condition flags are overflow, negative, zero. The condition flags
remain unchanged unless the c field in an operate command is, set for
updating condition flags, or a control command is executed. The zero con-
dition flag is used to test for arithmetic zero conditions, and for end of a
subroutine loop. Condition flags can be set without changing files. Some
of the techniques are as follows:

a. fa+ 0——C by inhibiting file write, and adding 0, the

condition flags for a file state can be set.

b, LT——>f0, C by copying T and inhibiting file write, the

condition flags for a T state can be tested,

c. [enter sense switches to f0— C] Sense switch 4 can be used

to set the negative 6ondition flag without affecting any register,

d. ,JA +T—C 1 setting C for normal add function.

e. Copy Link—-C Set negatitive, and zero condition flags.

193

6. Use of loops vs straight line programming

The two main factors of consideration are execution time and number of
commands. 1f the number of commands using a straight line approach is
five or less, there are no command savings using a loop because four com-
mands are required to set up the loop as shown:

+ STRAIGHT LINE

SET COUNTER @ ;
. + FUNCTION 1

—p FUNCTION +
* FUNCTION 2

INCREMENT

COUNT @ *
‘ FUNCTION 3
FUNCTION N

v

The loop takes much longer than the straight line approach. A typical
loop is shown in Example 7. In this routine there would be nine functional
commands per input byte for a total of 36 for four bytes. Using a loop
reduces the command count to 12 commands. The straight line approach
takes 7.94 us instead of 10.56 us as in Example 7. Therefore if time were
very critical it might be desirable to use the straight line approach.

194

7. Small general purpose subroutines.

To reduce the total number of commands in a microprogram, subroutines
can be used in a manner similar to software programs,

To jump to a routine on the same page requires 2 or 3 instructions, one for
the return address, one for the jump, and usually one to set a flag, pointer,
etc., for the subroutine. Therefore if the subroutine requires only 4 or 5
instructions it is not worth making as a standard. I1f the routine, such as a
general purpose I/O routine requires 10 or so instructions and is used more
than once, then it is definitely of value to make the routine general
purpose.

8. Use of shift right 4 command.

This command is used to transfer the upper four bits of a file to the lower
four in the file and/or to a destination register. The upper four are re-
placed with 1's, which may or may not have to be cleared. To clear the 1's,
simply add ‘10’ to the file after shifting. If the value is an Op code to be
tested, the 1’s can be treated as a constant. If the result is to be subtracted
from another value obtained by similar means, the 1's will cancel.

9. Use of file register for flags, counters, and reference data.

File registers are used for routine control words as well as data. When it is
necessary to conserve files, flags, etc., are sometimes stored in core between
routines so that file register meanings may change during a microprogram.
Also files can sometimes serve a dual function by judicious location of
flags. In Example 19, there is a subroutine which must perform differently
on alternate passes. On one pass there is an effective shift right 4 leaving
1’s to be cleared. One file contains a flag to indicate which pass it is. This
flag is also placed in bit position 4; therefore the file content can be added
to the file containing 1’s to be cleared, thus serving a dual function. Also a
file assigned to update U can be used as the loop program counter.

10. Organization of Op codes, file register numbers, and core memory
addresses to minimize commands.)

Many times it is possible to use particular files to make -their addresses
correspond to memory addresses, such as in Example 12A. This will save
both files and commands. Also locating a block of data in one page saves
an instruction. Use of file F for an instruction which may be either a shift
or add will minimize instructions, as shown in Example 19,

11. Saving of diodes by selection of files and instructions.

If possible files used very often should have'numbers which have the least
number of diodes. If there is a choice of TZ, TN, or using condition flags
vs. testing the file directly, the method which requires the fewest diodes
should be used, particularly if there are very many ‘ROM’s to be built
using discrete diodes.

195

12. Saving jump instructions when branching.

This example shows that if there are two branches, each having two or
more commands, doing one of the branches first reduces the number of

commands by two.

{

COMMAND 1a

TEST

COMMAND 1b

———-[JUMP

L—3P» COMMAND 1a

COMMAND 1b
P COMMAND 2a

COMMAND 2b

COMMAND 2a ———%

6 INSTRUCTIONS
| COMMAND 2b

>
\J

8 INSTRUCTIONS

196

13. - Reducing two branches to one by multi-function commands which /
become effective No Ops in one branch.

- Many times a function varies with program state, such as moving upper or
lower half of a byte in BCD manipulations. Sometimes widely varying
functions can be combined by organizing the routine for the worst case
function, and having some of its steps become effective no ops for the

simpler functions.

This is illustrated in Exahple 19.

‘FO" ———p~ fm

70 i feo

INITIALIZATION

fu-1 = fu

OF =—p- Fm

EQ > fe2

]

MOVE '

fegtl ——>T

y

futT == u

Y

@ ‘OF ——-T
y

@ [execure—1.c-2

@ foqtT —aT

The odd state is for moving
the upper byte. The even for
the lower byte. If odd, the
pertinent state when entering
‘move’ is

fep =70’

With this stage the value in U
becomes 7f :

Control Selected file
register

This causes a shift R 4at @
with result to T, which nulli-
fies command (@

‘OF —=T

If the state is even, the state of fep, entering the move is EO. This causes
U to become Ef which is the And function. This causes the contents of f to
be Anded with (f) with result to T. In this case the ‘OF ' loaded in T causes
selection of only the lower half of (f). The next instruction
feq+T—T adds ‘10" to T if in the odd state, which clears the 1's resulting
from the shift R. If in the even state, feq contains ‘00’ so command @ is
an effective no OP.

14. Interlacing vs. cascading of subroutines.

What this means is entering a subroutine and remaining until an operation
is complete, vs. doing parts of routines, and moving on to subsequent
routines before finishing. Cascading results in the fewest instructions, but
can drastically reduce throughput, if the routines are time paced by exter-
nal devices, such as card readers, serial teletypes, line printers, in which
case the microprogram must wait for data to be supplied by the interface.
For example, teletype lines should be monitored by the microprogram on
a bit sample basis instead of assembling an entire character. More com-
mands are required to store and fetch pointers and status bits and to test
for status, but the throughput improvements are worth the extra coding,
and sometimes an absolute necessity.

15. Use of inhibit file write.

Inhibit file write is used for the following functions:

a. Setting registers without changing the content of a file.
b. Presetting Link using shift or arithmetic functions.
c. Presetting the condition flags without changing the state of a file.

16. Moving data from a file to a register.

Normally data is moved from a file to a register using the OR function
because it doesn’t affect link. If the state of link is not needed, the move
can be implemented using the Add O to file with a savings of one diode and
always resetting Link.

MICROPROGRAMMING EXAMPLES

The following Microprogramming Examples illustrate basic micrcprogram-
ming techniques. Many routines, such as the 8-bit positive number multiply
have been simplified from standard routines by omitting such capabilities
as handling negative numbers as well as positive numbers. For a more de-
tailed description of typical subroutines, and an entire program, refer to
Part IV—-MICRQ 810 firmware reference manual.

Most of the routines do not contain the linkages to an executive program,
such as setting return addresses, etc., because these vary with the type of
executive in which the routine may be used.

Some of the routines were selected only as examples to illustrate certain
microprogramming techniques, and may not use the simplest possible
algorithm.

198

The examples are done in flow chart and assembly language coding,
along with comments. For normal programming, the comments are not
usually as detailed as these examples. Execution times are included to
illustrate the high processing rates possible using microprogramming.
Machine code is included for the first 15 examples.

The names of the e;(ample subroutines are as follows:
1. Multiply 2 Positive 8 Bit Numbers

Subroutine Jumps -

Time Delay Routine

Input Data from 4 External Registers

Load 8 Successive File Registers from 8 Successive Core Locations

o o » w b

16-bit Addition, Core to File Register
7. Input a 32-Bit Word From an External Device to Core Memory
8. 16-Bit Right Shift with End Around Carry
9. A ORed with B, Result to A '
10. Update a 10 BCD Di'gitDispIéy From Core
11. Clear a Block of Core Memory '
12. vRead and Write Between 8 Files and 8 Consecutive Core Locations
13. Output From 8 Files to 8 Shift Registers
14, lhput From 8 Shift Registers to 8 Files.
15. Input a Block of Data to Coré From an A to D Converter
16. BCD to Binary Conversion
17. Binary to BCD Conversion
18. General Purpose Multiple File Shift Routine
19. Hexadecimal to ASCII Conversion Routine
20. General Purppse Code Cbnversion by Table Lookup
.21, Binary Multiply (16 bits)
22. Generate Cyclic Redundancy Code for one 8-Bit Data Byte

23. Generate ASCII Parity
199

MICROPROGRAM EXAMPLE NO. 1
Multiply Two Positive Numbers XxY=2

Specific Considerations

e Each number 8 bits maximum including sign.
® Result to occupy two 8-bit file registers.
® Numbers to be in file registers before multiply routine.

General Approach
Use Add and Shift Algorithm.

File Register Assignments

F2 = X
F3 =Y, and Z Lower
F4 = Z Upper
F5 = Loop Counter
Data Flow N
FILE 2 (X)
T REGISTER

v

TEST LSB TO SEE
IF T CONTENTS
SHOULD BE ADDED

FILE 3
FILE 4 (Z upper) Y&2Z
LOWER
LINKED SHIFT

200

}

SET PROGRAM
COUNTER =8

'

MOVE (F2) TO
T REGISTER

!

CLEAR F4

DOES ' YES
LSBOF F3=0

ADD (T REG.)
TO F4

LSB = Least
significant Bit.

SHIFT (F4)
RIGHT (SAVING
LSB) N

SHIFT {F3) RIGHT,
ENTERING LSB
SHIFTED OUT FROM
PREVIOUS STEP

" ADVANCE LOOP COUNTER

NO

NO LAST BIT? -

Functional Flow Chart for Multiply
201

" HALT

Program for Multiply routine:

Machine Code

Assembly Language

L Command Name Operation Operand Comments
000 2508 LF 5, X'08" | Set Loop Ctr=8
001 C201 MT 2 Move X to T Reg.
002 2400 LF 4, X'00" | Clear ZU
003 4301 DD TZ 3, X017 | YBit0O=1
004 8420 A 4, T Add X to Z
005 F420 H 4, R Shift Zy
006 F3A0 H 3,L,R Shift Z_

007 9550 D 5C Decrement Ctr
008 5004 TN 0, X'04' | LoopCtr=0
009 1403 JP ADD Jump Loop
00A 1780 LS X ‘80 Halt

For Sim_ulator:

1. Load ROS:
2. Data Values:

3. Execute:

PO00, 2508, C201, etc.

Set file 2, f3
D2, type in X
D3, typeinY

G0000 CR

4. Display resuits with D2, D3, D4.

BINARY DECIMAL VALUES
BIT BY BIT X = 89
EXAMPLE OF Y = 106
MULTIPLY Z = 9434
Binary Values
X0 1011001 Initially Y, this ends
Yyo1101010 up gs Z lower

ADDO 0 0 0 0 0000 1101 0 1 0%
1.SHIFT 0 0 0 0 0 0 0 0 O 0 1 1 O 1 O 1 Leastsignificant

ADDX 0 1 0 1 1 0 01 0 0.1 1 0 1 O % bitistested each
2, SHIFT 0 01 01100100110 1 0 time-todeter-

ADDO 0 0 1 01 1 001001 10 1 0 mineifXshould
3.SHIFT 0 0 0 1 01 1 0 01 00 1 1 0 1 beaddedor not.

ADDX 011 0111 101001101
4. SHIFT 00t 1011110100110

ADDO 0011011t 1110100110
5, SHIFT o0 0o 011011110100 11

ADDX 0 1 1 1010011010011
6. SHIFT o001 1101001101001

ADDX 1 00 1001101101001
7.8HFT 0t 001 00110110100

ADDO 01 001 00110110100
8. SHIFT 8 01001001101 1010

7
v

FINAL RESULT =9434

This program loops 8 times.

Execution time = 14.74 microseconds.

202

MICROPROGRAM EXAMPLE NO. 2
Subroutine Jumps .

Return jumps to subroutines can easily be implemented in microprograms.
Two examples are shown below. One is for return jumps to programs on
the same page, and the other is for return jumps to another page. A page
is 266 locations,

a. Return Jump to Routine on same page (or pair of pages).

034F 2A0A LF V, 10

. 1Loading Return
0350 2852 LF W, CVB1 +—p o8 nd ol
0351 1D61 JP_ CVB4 Jumping
0352 210F (CVB1) 2 LF OP, X ‘OF

Jump
Address C——

0361 bH1FF (CvB4 TN OP, X‘FF’
0362 CBO5 4
Return Jump Address

To do a return jump to the same page (or pair of pages), the address of
the next command after the jump command 3 is loaded into a tempo-
rary file register, called W in this example. T Then the jump is made
to the first command of the subroutine 2. The return jump command
4 moves the return address (stored in W for this example) into L or K.
(K is simply L with the page bit set to 1.) This command causes L to
jump to the programmed return jump location.

Return Jumping

b. General Return Jump

To jump to any location in the read only memory requires an additional
step besides that described in example a. It is necessary to have an
additional return address for page identification. One way to mechanize
a general scheme for return jumping to subroutine is to have a pointing
command on each page and to use an indirect jumping technique.

This is illustrated by the following read only memory map. The
indirect jump location is at the same address on each page (FF for this
example).

Two files are assigned for return addresses, one contains the page, and
"the other the return address on the page. Both of these must be set

203

PAGE O
PAGE 2
SET RP
FILES SETRJ
JUMP SBR —
ML RJ FF ML RJ
- - FF
—-—— PAGE 3
--- SBR SuB
“mp PAGE 1 MU RP ¢ ROUTINE
RJ EXECUTE
FF MK RJ FF MK RJ

prior to making the jump. RP is the page pointer. If for a number of
commands there is no multiple re-entry points, or multiple nesting
across page boundaries, RP can be set, and left set for a nhumber of
commands.

The return jump to originating PAGE is accomplished using the execute
command with the U register. Since the intermediate jump locations are
all at XFF, it is only necessary to load U with the X (or page identifier)
from RP. This is mechanized as follows:

RP = file E
RJ = file F
Page 0 for Jump Command
015 2E14 LF RP, X’14° Return Page to RP
016 2F18 LF RJ, X'18’ Return Address
017 1D41 JP suB
018 Next command after subroutine
341 2104 SUB LF 1, X'04' Any command may be here
350 CEO1 MU RP Set Page into U
351 8000 A 0 No Op delay, to use U
352 OOFF ES* 0,15 Execute to interpret RP value

as page jump command
Execute command:

00FF Execute

14 in U Register

14FF effective command
Jump to Page O location FF

at Page O location FF
OFF CF04 ML =~ RJ
This loads L with return address in RJ.

204

MICROPROGRAM EXAMPLE NO. 3
Time Delay Routine '

Nested loop program to generate a time delay, such as can be used to
sample serial teletype data.
Specific Considerations

® Two nested loops, with file 1 assigned to inner loop and file 2 assigned
to outer loop.

® File 0, zero condition flag, is used to indicate zero count for both
loops.

Functional Flow Chart:

ENTER

SET INITIAL VALUE IN f,

!

— SET INITIAL VALUE IN f,

!

—p DECEMENT FILE 1

DECREMENT FILE 2

Program for Time Delay Routine:

Machine Code Assembly Language

L Command | Name Operation Operand Comments

000 2@ LF " 2,X"@'| Setouter loop

001 21® |LP2 LF 1,x* D] Setinner loop

002 9150 LP1 D 1,C Decrement inner

loop file 1 Set C

003 5004 TN 0, X‘'04’' Zero count?

004 1402 JP LP1 Jump inner loop

005 9250 D 2,C Decrement outer
' loop file 2 Set C

006 5004 — TN 0, X'04’ Zero count

007 1401 JP LP2 Jump outer loop

L

@ outer link count
@ inner link count

Calculation of delay:

The delay of this routine can be calculated by preparing a flow graph with
the number of clock times for each branch in the graph. The graph for
this routine is as follows: .

Flow Graph for Time Delay Routine:

o
1CLOCK LOAD FILE 1
/"’"ﬂ*
/ 1CLOCK LOAD FILE 2
2 CLOCKS 2CLOCKS DECREMENT FILE 1)
2 CLOCKS Jump TEST FOR ZERO COND. (NO SKIP)
JUMP \—} .
3CLOCKS TEST FOR ZERO COND. (2nd CLOCK
"~ FROM SKIP) -
DECREMENT FILE 2
TEST FOR ZERO COND. (NO SKIP)

1CLOCK 2nd CLOCK FOR SKIP

pas

206

Number of clock times, C = 8+8(m-1)+4m (n- 1)

= 4m (1+n)
t = .22 C microseconds = .88m (1+n)
where
m = outer loop counts
n = inner loop counts

This equation is valid for 1< m, n< 255,
If m or n = 0, their effective value becomes 256.

Examples of clock time calculations:

m n C t (microsecohds)
1 1 8 176
1 2 12 2.64
2 1 16 3.52
2 2 24 5.28

Example of derivation of m and n:

Calculate m and n for a time delay of 20 milliseconds = 20,000 micro-
" seconds.

Solution:
.88m (1 + n) = 20,000
pick m = 20,000 = 142 decimal = ‘8E’' hexadecimal
then .88 x 142 (1+n) = 20,000

_ 20,000
88x142

1 = 160-1 = 159 decimal = ‘OF’ hex.

207

MICROPROGRAM EXAMPLE NO. 4
Data Input from 4 External Registers -

Input data from 4 registers (at device ‘08’, '28’, ‘48’, '68’) to core locations
‘0200, ‘0201°, ‘0202’, ‘0203’.

Flow Chart:

ENTER

hNITIALIZE RESISTER ADDRESSJ

v

, INITIALIZE CORE LOCATION ADDRESS J

e
i

" |ResisTer ADDRESS —-T|

SET COXX

RESET COXX

SET DIXX
SET DATA MASK

l INPUT WITH COPY T COMMAND]

STORE DATA AND INCREMENT
N ADDRESS
¥

l INPUT DATA AND RESET DIXX J

Y

| ADD ‘20" TO RESISTER ADDRESS I

FILE A= BYTE ADDRESS

FILE B = N ADDRESS
HOLDING REGISTER

208

Program for Input Date Byte Routine:

Machine Code Assembly Language
L Command | Name Operation Operand Comments
000 2A08 LF - 10, X'08" | Set Register
Address
001 1202 LM - X'02 Set M Address
) register = ‘02’
002 2BFF LF 11, X'FF'| Set N Address
register = Int.
Add. -1
003 CAO01 ADD MT - 10 " Register Address
: toT
004 7090 K 0,9 Set COXX
005 1000 LZ X'00" No Op Delay*
006 7080 K 0,8 " | Reset COXX
007 70E0 K 0, E Set DIXX
008 21FF 'LF 1, X‘FF’ | Set Data Mask
009 ABD3 WN 11,1 Update N, start a
o ’ write
00A 7181 KT 1,8 Inputto T,
) reset DIXX
00B 3A20 ' AF 10, X“20' | Update register
. address
0oC 6A80 CP 10, X"80" | Skip if (fa) > 68
00D 1403 JP ADD Jump Loop
00E Next command '

*1f LZ is used for a special interface, it may not be usable as a No Op.

209

MICROPROGRAM EXAMPLE NO. 5

Load 8 successive file registers (f1—fg) from 8 successive core locations
{0301-0308)

Use the execute command for loading files. The U register will be loaded
with a value which has a Copy T as an Op code. Use file 9 to contain and
update U register values. File 9 will also act as a loop counter. Use file A
to contain and update N address register value.

Flow Chart:

LOAD FILE 9 WITH INITIAL
U REGISTER VALUE -1

Y

SET M ADDRESS REGISTER
TO 03

| !

SET FILE AWITH INITIAL
N ADDRESS -1

g}

(FILE9) +1—»U, FILE9

v

READ CORE MEMORY
(FILEA)+1=—>N,FILEA

Y

EXECUTE COMMAND
(COPY T TO FILE
COMMAND IS IN U)

WHEN AT LAST FILE,
CONTENTS OF fg = BE

Program for Loading 8 Successive Files from Core:

Machine Code Assembly Language ‘
L Command| Name Operation Operand Comments
000 29B0 LF 9, X‘B0O’ | Initial U value -1
001 1203 LM X'03’ M address
002 2A00 LF 10, X'00’ | Initial N address -1
003 8946 LP1 . AU 91 Update file 9 and
U register

004 AAC3 RN 10,1 Read memory and

- update N, and

file 10

005 0020 E 0,2 Copy T to file
register 1 to 8 in
sequence

006 6948 cpP 9, X'48' | (fg) >B7

007 1403 JP LP1 Jump Loop

- 008 Next command

Effective command at 005:

Execute 0020
U register B1
Effective B120
command

21

Copy T to file 1

MICROPROGRAM EXAMPLE NO. 6
16 Bit add (core to file)
This routine adds the centents of files Ay, AL to a 16 bit word in core‘

memory at the address contained in Oy, O and places the result in Ay,
AL.

File designations:
Temp. register S = fq
Datain files Ay =4, AL =15
Core memory address in Oy = fg, O =fg:

Result in file Ay =f4, AL="T5

Memory Location:

Data in Dy and Dy_ (successive bytes in core)

The condition flags are set by this routine to indicate negati\ie result, over-
flow, or linked zero test over multiple bytes.

TOP LEVEL FLOW

FETCH Dy, Dt

ADD Dy, D
TO Ay. AL

This routine has 8 microcommands, and takes 2.86 microseconds™ to
execute. There is an effective 3 clock delay after the 1st memory com-
mand, due to changing N and selecting T, and a 2 clock delay after 2nd
memory command due to selecting T.

*Not including return jump.

212

DETAILED FLOW MACHINE ASSEMBLY LANGUAGE
CHART ADD.CODE NAME OPER OPERAND COMMENTS

Oy —m 000 C802 ADD MM oOU Move upper address
: byte to M.

i

READ Read t|lpper data byte,

1 A903 RN oL move lower address
oL —nN 00 byte)to N (data goes
to T).

T—s8 002 B120 c ST Save upper data byte
inS. :

L OL+1—+N, O T 003 8943 IN oL I‘S&Z‘i!‘:&?é?f‘é‘y‘i‘i

to M.

READ 'Iaead lower de:’ta bvtte,.

004 A882 RM ou, L ove upper address byte
Ou* LINK—M. Oy + (Link) to M. Data goes
toT.

LT + AL —=AL, C —, 005 8530 A AL, T.C Add (T) to lower byte of
A, set condition flags.

§ —T 006 C101 MT S Move lower data byte
’ fromSto T.

[T+au+ L —au.c] oo7 semo A AU LC i s
. Linked O test.

-

MICROPROGRAM EXAMPLE NO. 7
Input a 32 bit word from an external device to core memory.

This routine causes the data in a 32-bit word to be partitioned into 4 bytes
which are input to 4 consecutive core locations designated by Oy and O|_.

File Designations:

® Core memory address for data is in Oy =1g, OL = fg.
Byte address is in Fg = fg.

Byte Addresses: 01, 21, 41, 61.
Memory Locations: N

4 successive bytes starting with the 1st location in Ou. OL.
213

TOP LEVEL FLOW CHART

¥

INITIALIZE BYTE ADDRESS FILE

"

TRANSFER BYTE
ADDRESSTO T

v

INPUT ABYTE

TOT

STORE INPUT
BYTE IN CORE
MEMORY

v

ADVANCE CORE
MEMORY ADDRESS
LOCATION

EXIT

In order to save microcommands some of the functions shown in the top
level flow chart are dispersed and combined with other functions as shown
in the detailed flow chart.

The write memory command is deliberately placed before the data point
command in the detailed flow chart to allow memory to-start prior to
changing T.

This routine has 12 microcommands and takes 10.56 ps to execute, which
includes all 1/O and memory access timing, but does not include return
jump.

214

ASSEMBLY LANGUAGE

DETAILED FLOW MACHINE
CHART ADD. CODE NAME OPER OPERAND COMMENTS
‘017 —FB 001 2B01 INP LF FBX'01 Initialize byte
address file.
002 CcBO1 > NXT MT FB Move byte address
toT.
SET COXX
oL —=N,0L 003 7903 KN OL,9 Set COXX and N
} address register.
oL +1—-0L] 004 8940 I oL Delay and update
7 *®
RESET COXX '
005 7882 KM oOu,8 Reset COXX and set
Ou —-M, Oy M address register
SET DIXX 006 70EQ K 0,E Set DIXX.
l Fp +'20'—Fp I 007 3B20 AF FB,X'20’ Delay and advance
byte address.
COPY T—~T 008 A880 W ouL Store input byte
and update Ou@ .
WRITE MEMOR
Oy + LINK—=0y 009 BO21 CT o,T Input byté_to T.
RESET DIXX 00A 7080 K 0,8 Reset DIXX.
00B 6B80 cpP FB, X ‘80° Test for last byte.
i . Jump back of more
.00C 1402 Jp NXT bytes to be input.
Exit

The state of Link from this command
must be saved for updating Oy.

@ Input (Link) from update of OL.

215

MICROPROGRAM EXAMPLE NO. 8
16 bit right shift with end around carry with the shift count in file register S.

File Designations:

® Shift count in file S.

L
e Data to be shifted in files A, AL
-—
L

FLOW CHART

o

[PRESET LINK FROM FILE AL]

v

[SHIFT RIGHT A ENTER LINK J

y

DECREMENT Fg
(SHIFT COUNT)

Y

EXIT

DETAILED FLOW MACHINE

CHART ADD. CODE
AL@—=LK 000 F520
001 F4AD

002 F5A0

003 9150

004 4004

005 1400

EXIT

FileS = f1
Ay=fa
AL=fpg

This subroutine has 6 commands.
The execution time is 1.54 N* micro-
seconds, where n = number of bit
positions shifted.

*Not including return jump.

ASSEMBLY LANGUAGE
NAME OPER OPERAND COMMENTS

SHS —p=H* AL, R Link must be preset
with LSB of AL.

H AUR,L Shift right AU.
Enter link.

H ALR,L Shift right AlL.
Enter lirk.

D Fs,C Decremaont shift
count.
TN 0, X'04’ Skip when C con-
dition flag = 1
JP SHS Jump loop.
Exit

The number of bytes shifted can be increased by adding one command
per byte which is .22 ns/byte per loop additional time.

216

MICROPROGRAM EXAMPLE NO. 9
A ORed withBto A Logic Symboi
| AV B—=A

In this routine the contents of Ay and AL is logically ORed on a bit-by-
bit basis with the content of By and B. The result is placed in Ay, AL.

File Register Desighations:
Data Files Ay =g, AL = f5
FilesBy =fg, B = f7

DETAILED FLOW MACHINE ASSEMBLY LANGUAGE
CHART ADD. CODE NAME OPER OPERAND COMMENTS

000 C701 OR MT BL Move B — T

001 . C530 N (o} AL, T,C OR AL with T

002 | C601 mT \BU Move BU —~ T
003 C4BO (o} AU, T,C,L OR AU with T

The last operand includes L to provide a linked zero test over multiple
bytes.

This routine has 4 commands and takes .88 microseconds, not including
return jump. .

MICROPROGRAM EXAMPLE NO. 10
Update 10 BCD digit display from core.

For this routine a 5-byte packed BCD image of the digital display is main-
tained at all times in core. This image is updated by other programs.
Periodically this routine is utilized to transfer the image out to the display
lamps. The routine uses the standard COXX, DOXX procedures, which
output a device and function code, strobed by COXX, followed by a data
value (in this case two packed BCD digits) strobed by DOXX. Two digits
are updated by each output byte.

217

Data Characteristics:

e 2 digit packed BCD per byte in core in consecutive locations.

® Data sequenced to display one byte at a time, display logic automati-
cally sequences through latches.

e Data sequencer enabled by 1st byte containing all 1’s, and disabled by
last data byte.

e Core location addresses in Oy = fg, OL = 7.
e Display output byte address is in Fg = fg.

® Standard 1/0 logic is used which automatically disconnects after each
byte is transferred.

® Display byte count is in F¢ = fC.
® Data from memory is temporarily held in Fp = fp.

TOP LEVEL FLOW CHART

Y

INITIALIZE DISPLAY BYTE
COUNT AND 1st BYTE = ‘FF’

——3

OUTPUT ABYTE AND ~
SET MEMORY ADDRESS

Y

READ MEMORY AND
-PUT DATABYTE IN Fp

Y

rDECHEMENT'BYTE COUNTER J

EXIT

This routine has 14 commands and takes 13.42 microseconds to execute.

218

DETAILED FLOW
CHART ADD. CODE
04 —F¢ 000 2C04 -
001 2DFF
. 002 CBO1
SET COXX '
oL 2N 003 7793
oL +1—-0L 004 8740
RESET COXX
ST o 005 7682
006 CDO1
SET DOXX 007 70A0
008 8680
RESET DOXX 009 7080
READ MEMORY
Fo 2 itofe | 00a Acao
00B BD20
00C 4C03
xiy 00D 1402

MACHINE

ASSEMBLY LANGUAGE
NAME OPER OPERAND

DsP

RPT r

Exit

219

LF

LF

MT

KN

KM

MT

TZ

Jp

FC, X'04’

FD, X'FF’

_FB

oL, 9

oL

ou, 8

FD

ou, L

0,8

FC,D

FD, T

FC, X'03'

RPT

COMMENTS
Initialize byte count.

Set 1st output byte
=FF’

Move byte address
toT.

Set COXX and N
register.

Delay and update
OL.

Reset COXX, and
set M register.

Move output byte
to T.

Set DOXX.
Delay and update OU.

Reset DOXX.

Read memory and
decrement byte
count.

Transfer output byte,

.just read from core

to FD.

Test for byte count

Jump loop.

MICROPROGRAM EXAMPLE NO. 11
Clear a block of core memory.

This routine causes a selected block of core memory to be set 10 all
zeros.

File Register Designations:

Starting of current address Sy = fg, S|_=fg
Ending address Ey =fa, EL =B
Zero value in FZ = f1

SETFZ=0 SET ZERO VALUE

& FORT

SETM&N INITIAL MEMORY ADDRESSES
WRITE
(CLEART)

v

UPDATE
SuU,SL.M, N UPDATE BLOCK ADDRESSES

TEST FOR LAST ADDRESS

EXIT

On a write memory command, data in T is stored in the memory location
set by M and N.

This routine has 12 commands. It takes 3.52 microseconds to clear the
first byte, plus 3.08 microseconds for each additional byte. Clearing a
fixed length block in one page takes only 1.1 us per additional byte.

220

DETAILED FLOW MACHINE ASSEMBLY ANGUAGE
CHART ADD. CODE NAME OPER OPERAND COMMENTS

" 00— FZ

000 2100 CLR LF FZ, X'00° Set zero value for T.

Sy —M 001 C802 MM SU Initial value to M,
Sy —N 002 C903 MN S Initial value to N.
WRITE ¢ F2 003 A111 NXT WT FZ - Write zero into core.
I ,
LSL +1—=SL. N l 004 8943 IN SL
‘ N | Increment 16 bit
memory address.
[Su+t—sum | 005 8882 . AM SU,L
006 "C901 MT SL Subtract
2
007 9B38 s* ELTcC || SLfromEL
p .
.
008 801 MT SU Subtract
009 9ABS s* EU,T,.L.c||SU from EU
y
00A 5004 ™ 0,X'04' Last byte cleared.
00B 1403 - JP NXT Jump loop.

EXIT

221

MICROPROGRAM EXAMPLE NO. 12A
Read 8 consecutive core locations into 8 consecutive file registers.
This routine is used to move a block of data from coré to the files.
File Designations:
Files 1-8 to receive data
FileE Memory address and file index.
U register is used to-index through the files.

Dedicated Core Locations:

All on page 0, with N =01, 02,03, 04. 08.

TOP LEVEL FLOW CHART
CLEAR FILE E AND M

,l

UPDATE FILE E & U REGISTER

Y

READ MEMORY
(UPDATE N REGISTER)

COPY T TO FILE DESIGNATED
BY U REGISTER

JUmP EXIT

6 commands are required. Execution time is 14.08 ps.

222

DETAILED FLOW MACHINE ASSEMBLY LANGUAGE
CHART ADD. CODE NAME OPER OPERAND COMMENTS

‘00" —Fg, M 000 BEO2 LFR CM 14 Copy 0 to FE and M
to clear both,
FE+1 —Fg, U 001 8E46 NXT U 14 Increment FE and

put result in U and
FE.

READ
FE — N 002 AEO03 - RN 14 Read memory.

Update N with (FE).

003 B027 cs o7 Copy T to file
designated by (U).

004 GEF8 cpP 14,X'F8' Test for last file.

005 1401 JP NXT Jump loop.

EXIT

MICROPROGRAM EXAMPLE NO. 12B
Write 8 consecutive files into 8 consecutive core locations.

This routine is similar to 7a except for use of a write command and a
move to T command, which requires the execute command to have T as a
destination. File U (fg) contains the Op code for a move, so it can’t be
used for the memory address if N = 01, 02, etc.

7 commands are required. Execution time is 10.78 ys.

223

DETAILED FLOW
CHART

'cO’'—Fy I

r CLEAR Fn & M REGISTER

r FU +1-——-U, FU

WRITE
FN +1—= N, FN

EXECUTE
FX > T

- EXIT

MACHINE
ADD. CODE
000 2ECO
001 BBO2
002 8E46
003 ABD3
004 0001
005 6E38
006 1402

224

ASSEMBLY LANGUAGE

ST™M

NXT

LF

cm

WN

ET

cpP

JP

NAME OPER. OPERAND

FU, X 'CO’

FU

FN, I

9,0

FU, X'38"

NXT

MICROPROGRAM EXAMPLE NO. 13A

Output from 8 files to 8 shift registers.

8a.

File to register bit order the same.

This routine brovides the microprogramming for utilization of the
minimum number of logic chips t6 get 64 lines out from the com-
puter. These lines can be used to drive displays, printers, etc.

This routine is used where the order of bits shifted out is important
or where the number of output shift registers is less than 8 so there
is no symmetry. .

The next Example (8b) shows much simpler coding to.interface
with 8 shift registers without pattern rotation,

File Allocations:

Files 1-8 Data »

File 9 Shift assembly register
File E File index register
File F Shift count register

Since this is a minimum 'hardware interface, the load zero com-
mand (CGOX) will be used to strobe the data directly out of T.

DATA FLOW COMPUTER| INTERFACE
FILE REGISTERS 1-8
B
8 BIT SERIAL IN
FILE9 PARALLEL OUT
hafedcba SHIFT REGISTERS
d oo
C
b
a b
BITS a-h ARE T
STRIPPED OFF ONE . +-
AT A TIME AND q
SHIFTED INTO : >
FILE 9 AND THENCE y
TO T. EACH TIME
FILE9 IS FILLED, i
- CGOX STROBE IS 64 BITS OUT
GENERATED, CLOCK BITS OU
COX:- | LRXX ONLY 8+ CHIPS
REQUIRED FOR
THIS INTERFACE.

225

TOP LEVEL FLOW CHART

SET SHIFT COUNT

SET FILE INDEX

DECREMENT FILE
INDEX, AND PUT

RESULTINU
.‘ This routine has 12 commands.
It takes 107.36 microseconds to exe-
No oP cute this routine.
‘ This routine used in conjunction with
routine 7 for loading core to files re-
SHIFT A BIT OUT quires 19 commands total, and 118.14
OF FILEN microseconds to output 8 core loca-

tions to 8 output bytes with an 8-chip
interface.

NAT

REGISTER

GENERATE CGOX - LRXX

!

DECREMENT SHIFT
COUNT

226

DETAILED FLOW
CHART '

08— FF
09'— FE

[Fe-1—re,u [o002°

SHIFT RIGHT
FILE

v

SHIFT RIGHT.
FILE 9 ENTER LINK
RESULT —T

MACHINE

000

001

003

004

005

ADD. CODE

2F08

2E09

9E46

8000

F027

' F9A1

4EOE

1402

1000

9F50

5004

1401

ASSEMBLY LANGUAGE
NAME OPER OPERAND

SRO

SR1

SR2

227

LF

LF

DU

HS

HT

TZ

Je

Lz

TN

JP
Exit

15, X'08’
14, X'09'

14

0,R

9, R, L

14, X'OE’

SR2
X'00"
15,C

0, X'04’

SR1

COMMENTS

Set shift count and
file index.

Decrement index »-U

Simple No Op (Add
to file 0)

Shift right file
selected by index
LSB to link.

Shift file 9 right,
enter link, result to T,

Output byte
assembled.

Jump back to byte
assembly.

Generate
CGOX-LRXX strobe.

Decrement shift
count.

Shift count = 0.

Jump back to next
bit shift.

MICROPROGRAM EXAMPLE NO. 13B
File to register; with hardware rotation of bit pattern.

In most cases, such as for updating digital displays, etc., it doesn’t matter
if the pattern in the 8 file registers is “‘rotated” with respect to the 8 out-
put shift registers. In the example below, file 8 becomes disassembled into
1 bit in each of the 8 output shift registers. By changing the connection of
wires to the display, the effective rotation can be cancelled. By allowing
for rotation, the microprogram becomes much simpler than the example
in 8a.

ROTATION: 8 OUTPUT
8 FILES SHIFT REGISTERS
Z
T
FILES

File Register Designations:

f1-fg output data
fg file index
TOP LEVEL FLOW CHART

SET FILE INDEX AND
INITIAL U VALUE

-—*

MOVE A FILETO U
INDEXED 8Y U

This routine requires 7 instructions,
and takes 10.78 microseconds to
ENE:RATECGOX e?(ecute. So there is a tremendous

time savings over the 8a example
which requires pattern rotation by
r ADVANCE FILEE & U ~ the microprogram.

228

DETAILED FLOW MACHINE ASSEMBLY LANGUAGE

CHART ADD. CODE NAME OPER OPERAND COMMENTS
000 16C1 LU xccr Initial index value
to U*,
001 2EC1 OoUT LF 14, XCV Initial index value
g to file E.
FILE— T 002 0001 NXT ET 0,0 Move file selected
INDEXED BY U by index to T which
USING EXECUTE N is the output bus.
m 003 1000 LZ Xo0 Generate COGX with
load zero command.
L(FE) +1—=FEg, U l 004 B8E46 w 14 Advance index file
and U.
6E37 CP 14, X'37 Test for last file
output and skip if
complete.
1402 JP NXT Jump loop.

*In this routine Fg and U are updated after the execute command to
avoid an extra delay which is required after updating U. In this case the
delay is accomplished by the test-and jump instruction.

229

MICROPROGRAM EXAMPLE NO. 14
input from 8 shift registers to 8 files in MICRO 800.

This routine is somewhat similar to routine 13B except that data is input.
The shift registers in the interface are parallel in, serial out.

Interface Block Diagram:

SHIFT REGISTERS INPUT GATES
[SRR N T AR 2R T |
L -
.})
(SRR R B IR | i%
K 4 » ID LINES T
CRO 800
| -
P
________________ | | _ p COMPUTER
IR L‘
L— >
PARALLEL x J
ENTRY $——
ENABLE : INPUT
ENABLE
SHIFT 103X
CLOCK
101X

File Register Designations:
file 1- file 8 data file registers

file E file index

230

TOP LEVEL FLOW CHART

SET FILE INDEX

PARALLEL ENTRY ENABLE TO

SET AND RESET 101X SHIFT REGISTERS.

\
ADVANCE FILE INDEX

ANDU
SET 103X
| TO ALLOW TIME
DELAY FOR 103X TO SET.

COPY T TO FILE n,
FILE n SELECTED BY
INDEX VALUE INU

RESET 103X

LAST
FILE REG-
ISTER

JUMP

EXIT

This routine has 10 instructions ard takes 14.52 microseconds to execute.

231

DETAILED FLOW MACHINE ASSEMBLY LANGUAGE
CHART ADD. CODE NAME OPER OPERAND

Y

r '00'—>F|I-EEJ 000 2E00 IPT LF 14,X00’

SET 101X 001 7090 K 0,9
RESET |01E:I 002 7080 K 08
FE+1—=FE,U 003 8E46 NXT U 14
SET 103X 004 70CO K 0,12
NO OP 005 8000 A 0
COPYTTOFILEN | 006 8027 cs 0T
007 7080 K 08
008 BEFS CP 14, X'F8'
009 1403 » NXT

EXIT

232

COMMENTS

Initialize index file.

Generate parallel
entry 2nable strobe.

Update file index
and U.

Set input enable
flip flop.

Convenient No Op
for tirne delay.

Copy T = fn
indexad.

Reset input enable
flip flop.

Are 8 files loaded.

No, Jump loop.

MICROPROGRAM EXAMPLE NO. 15

Input block of data to core from A to D converter.

This routine shows a'method for inputting a series of 16-bit data words
from an ADC. The sample rate is controlled by the read time clock option.
The data words are placed in consecutive core locations. A software flag is
set when the sample data block is complete.

Block Diagram:

16 BITS
— — — —] COMPUTER
—— ADC o] INTERFACE |we—a! COMPUTER

UNIT

*CONV. COMPLETE
DIGITIZE COMMAND

File Register Designations:

Sy=14,SL=f5 Starting (or current), address in data block.
Ey =fe, EL =17 End address in data block.

FF="fF Bit O software flag.

FE=fg Input routine file index.

Dy =f2, D =f3 Temporary files for input data.
Fs = f1 Input status file.

Fg=1g Byte address file,

‘FF’and COXX = Digitize Command.

The microprogram tests the input status byte for conversion complete
before inputting data.

233

TESTING FOR REAL TIME CLOCK

[ENTER DATA
INPUT ROUTINE

[ouTeuT DIGITIZE COMMAND |
>y

INPUT STATUS BYTE FOLLOWED
BY TWO DATA BYTES

[sTorE INPUT DATA |

ADVANCE CURRENT
ADDRESS REGISTER

This routine has 40 commands in-
cluding the real time clock test.

The execution time is approximate-
ly 26 microseconds per sample, in-
cluding time for conversion, and
testing real time clock.

The time delay from digitize com-

" mand to conversion complete could

be used for housekeeping if it can
be worked in at that time in the
program, This would result in an
effective time reduction for this
routine.

A status byte and two data bytes
are input and then status byte is
tested. |f conversion is not com-
plete, the two input bytes are dis-
carded, and another sample of data
and status is taken.

SET DATA
BLOCK FLAG |

234

DETAILED FLOW MACHINE ASSEMBLY LANGUAGE
CHART ’ ADD. CODE NAME OPER OPERAND COMMENTS

ENTER

000 11FF ADC LT XFF' Load T with digitize
command function.
001 7090 K 0,9 .
] Digitize command
002 7080 K 0,8 strobe.

003 2E00 EN1 LF FE, X‘00" Initialize file index.

004 2BES LF FB, X’E8’ Initialize byte address.

LFE+ 1—"’ FELU | o005 8E46 EN2 IU FE Increment file index.
" _FB+200—FB | o006 3820 AF FB,X'20' Advance byte address.
007 CBO1 MT FB Byte address to T.
008 7090 K 09 COXX set.
009 C402 MM SU’ Delay, and set M.
"~ 00A 7080 K 08 COXX reset.
00B 70E0 K 0,14 DIXX set.
00C C503 MN SL - Delay, and set N
- [eoPy T— FILE (INDEX)] 00D B027 cs 0T Input data byte.
00E 7080 K 08 . DIXX reset.
00F 6EFD CP FE,X'FD’ Nextbyte input.
010 1405 JP EN2 More bytes to input.
011 5101 TN FS, X071’ Conversion complete.
. p (®) 012 1403 ® e Take another sample of

status and data bytes.

235

DETAILED FLOW
CHART

WRITE MEMORY
SL+1—SL

[su+1—Su.M

WRITE MEMORY

SL —=N

[T su+1—=SU

SL—=T,SL

[EL-T—C

[su—T.su

[E-T-L—C

SET FLAG
BITO

EXIT ¢

MACHINE
ADD, CODE NAME OPER OPERAND

013
014

015
016
017

018
019
01A
o1B
01C

01D

01E

01F

020

Cc201

A5D0

8482

€301

A513

8540

8482

C501

9738

C401

96B8

5004

1422

3101

MT

AM

MT

WN

AM

MT

g*

MT

S*

TN

JP

AF

ASSEMBLY LANGUAGE

DU
SL, 1

SU, L
DL
SL

sL

su, L
sL
EL,T,C
su

EU, T.C L

0, X'04'

EXIT

FF, X071’

COMMENTS

Move most significant
byte to T for storage.

Store most significant
byte and increment SL.

Update SU, M.

Store least significant
byte, update M.

Store least significant
byte, update N.

Increment SL.

Update SU, M (M for
access delay)

Compare SL, SU to EL,
EU to see if input block
is complete. This is a
linked zero test over
multiple bytes.

Test zero condition
flag for end of block.

Continue to input and
store data on next real
time clock. :

Set block complete
flag bit.

Notice in this routine that after the two write commands, M is delibefately
made the destination register of a command, to generate a delay prior to

modifying T.

MICROPROGRAM EXAMPLE NO. 16

Conversion of 3 digit BCD plus sign into Binary.

Given 3 digits in the registers BU and BL. Binary result will be in AU and

AL. .
B register DS D2 D1 DO
w w
fq=8BU fs = BL
other files used: Op =file 1 Dig_it value
V =fileA Power of 10 Binary
W =fileB Return Address

The basic technique is to multiply each BCD digit by its power of 10
expressed in binary, and to add each converted digital value in

accumulator. The top level flow is as follows:

‘ ENTER)

MOVE LSDTO A

an

SET UP BINARY
EQUIVALENT FOR
100’s DIGIT

SHIFT 10’s DIGIT TO
LSD POSITION AND
USE AS INDEX TO
MULTIPLY ROUTINE

MULTIPLY 100's DIGIT
BY BINARY VALUE AND
ADD TO ACCUMULATOR

MULTIPLY 10's DIGIT
BY BCD VALUE. ADD
TO ACCUMULATOR

SET BINARY NUMBER
FOR CORRECT SIGN

237

‘ EXIT ’

s

BCD to Binary Program:

Name Operation Operand Comments .
CB LF AL, X‘OF" Set Mask for lower BCD Digit.
MT BL Move Lower 2 Digitsto T.
N AL, T Mask, select lower Digit of AL.
C AU Clear A upper.
C oP, T Copy lower 2 digits from T to Op.
K OP, 2 Shift OP right 4, move 2nd digit to LED.
LT X'0F’ Load Mask in T.
N oP, T Mask out all but 2nd digit.
LF Vv, 10 Put Binary value for 10 in V.
LF W, CB1 Load Return Address into W.
~— JP cB4 Jump to Multiply Routine.
CB1 LFﬁ OP,X'0OF" Set Mask in Op for 100’s digit.
MT BU Move 100's digitto T.
N OoP, T Mask out all but 100's digit.
LF V, 100 Put Binary value for 100 in V.
LF W, CB2 Load Return Address into W.
JP CcB4 Jump to Multiply Routine.
cB2 TN-4~ BU,X'80 Test for Sign bit in B.
JP CB3 Exit if Positive Sign.
X AL, T,F Ones Complement AL.
| AL Add one for 2's complement.
X AU, T, F Ones complement AU.
A AU, L Add carry for 2’s complement.
CB3 . MU RP Set up Page Jump.
A 0 No OP after changing U.
ES* 0,15 Execute implements gen. Page Jump.
* MULTIPLY ROUTINE
CB4 TN OP X‘FF’ Test to see if Op has reached 0.
MK —" MKW Return from Multiply Routine.
MT MT V- Move power of 10 binary to T.
A AL, T Add power of 10 to accumulator.
A AU, L Add carry to AU.
_ D oP Decrement Op.
JP CcB4 Jump Loop until Multiply over.

The multiply routine selected for this example (at CB4) is designed for
minimum commands rather than minimum execute time. The multiply
routine execution time is dependent on the size of the digit being con-
verted. .

The BCD digit is put into one register, and the power of 10 in another
register. The BCD digit is decremented once each time the binary value
for the power of 10 is added to the accumulator. When the digit is
decremented to 0, the loop is exited. The average number of times
through the loop per digit is 4. This is 35 clock times or about 7 micro-
seconds.

The total average conversion time for 3 digit BCD numbers to binary is
about 22 microseconds.

238

MICROPROGRAM EXAMPLE NO. 17
Binary to BCD Conversion.

Convert a positive binary number with a value equal to or less than 999
(decimal) into a 3-digit packed BCD integer.

Conversion Algorithm: Binary number will bevsuccessively divided by
powers of 10 (starting with 100) with quotient equal to BCD value, and
remainder to be divided by next lower power of 10.

Initial Binary Number A
Y =Q1 R1

100 T _
100's digit
\2

10's digit 1's digit

o]d

File Register Assignments:
1. Binary number is initially in Ay and A|.
AU AL

2 upper bits’ 8 lower bits

2. BCD resultisin Dy and D|_.

DU) DL
' D2 D1 DO
most significant middle least significant
digit digit digit

3. Ay, AL, By, BL, Cy, C_ are used for dividing registers as follows:

a. A and B are an extended accumulator containing the dividend, C
contains the divisor.

b. After the divide, the quotient is in B, and the remainder is in A.

c. Prior to the divide, the content of A is moved to B, and A is cleared.

239

4. The flow of data through the registers is as follows:

Binary Number

a. A B
\/
B'inary Number
b. A B
o/
c. 100— C
00 Bin.Num. - 100
d A B + C = A B
Remainder 1 Quotient|1
D2
D upper
e. Remainder 1in A B
/
Remainder 1
f. A B
/ _—
0
g. 10— C
00 Remainder 1 10
h A B -+ C = A B
Remainder|2 Quotient|2
y
DO D1
in DL inDL

240

Binary to BCD conversion routine flow chart:

ENTER

|

100 DECIMAL —C

TRANSFERATOB
CLEARA

]
DIVIDE ABBY C

|

MOVE 100’s DIGIT
INBL TO DU

\
10 DECIMAL —-C

TRANSFERATOB
CLEARA

DIVIDE

TRANSFER 1's DIGIT
INALTODL

SHIFT LEFT THE 10's

-.DIGIT (WHICH IS IN BL)
AND COMBINE 10's DIGIT
IN-BL WITH DL

l

EXIT

This routine (including the two divides), takes 47 commands, and approxi-
mately 150 microseconds to execute.

241

The divide routine used for this example is for positive binary integers
only. It is implemented with a shift and subtract algorithm,

DIVIDE FLOW CHART

+

SET SHIFT COUNTER = 16

SHIFTA,B LEFT 1

SUBTRACT C (DIVISOR) FROM A

ADD 1TO BL

ADD C (DIVISOR)
BACK TO A

DECREMENT
SHIFT
COUNTER

EXIT

This divide algorithm will actually handle larger numbers than occurring
in this example but is the simplest routine from a command count stand-
point. For numbers the size used in this example, the divide operation

could be speeded up by shifting right 6 times before starting to subtract
the divisor.

242

Assembly Language Program to

Convert Positive Binary, 10 Bit Integer in A to 3 Digit Packed BCD Integer
in D,

Uses simplified Divide Routine.

Name Operation Operand Comments
cv: LF CuU,0 Clear C upper.
LF CL, 100 100's coefficient to CL.
LF W, CV1 Set return address.
JP Cv3 Jump to divide set up routine.
cv1 MT BL } Move most significant digit to DU.
Cc DU, T
LF CL, 10 10’s coefficient to CL.
LF W, Cv2 Set return address.
P ~ Jump to divide set up routine.
cv2 MT }
Move least significant digit to DL.
Cc DL, T
H BL
H BL } Shift the 10s digit left one digit
H BL posmon
HT BL ‘
0 DL, T Move middle digit to DL.
MK Return.
CVvs3 MT
¢ BL, T } Move (A) to B.
MT
c BU, T
c AL } Clear A,
Cc AU]
. LF RJ, CV4 Set return address.
JP DV Jump to divide routine.
Ccv4 MK W Return to binary to BCD.
The calling sequence for this rbutine is LF Y, RET
JP cv

Divide routine is on the same page as conversion routine.

243

Assembly Language Program AB QuotientinB

for Divide Routine Divide C Remainder in A
Name Operation Operand Comments
DV LF V. X 10’ Set shift counter = 16 decimal.
DVt —=H BL h
H i b Shift left 1.
H AL, L
H AU, L y
MT CL
;T QLLJ' T.c } Subtract divisor.
S - AU, T,L,C
TN » 0,X'02' ’ Test for Underflow.
~JP DV2)
MT CL h
A AL T.C Add C to A.
MT CuU
A AU, T, L,C
DV3 ma \% Decrement shift CTR.
TZ V. X'FF' Test for zero count.
—+T1JP DV1i Repeat loop.
MK RJ Return.
DV2 - BL Add 1 bit to BL..
—JP DV3 Jump to decrement shift counter,

MICROPROGRAM EXAMPLE NO. 18
General purpose multiple file shift routine.

This routine provides a general purpose capability for shifting a group of
contiguous file registers with a number of variations as indicated below.

The following items are program variable:

Number of bytes 1-8, always starting with file 1.

Number of positions shifted 1 to 256.

Direction left or right.

Enter one of following into vacated bit: 0, 1, LSB, MSB; which pro-
vides the capability for arithmetic or logic shifts with sign extension,
~end around carry, clearing, or setting to 1's.

244

RIGHT SHIFT

L] C I N

msB : = LS8

For a right shift, entering MSB causes sign extension and LSB causes end
around carry.

LEFT SHIFT:

MmsB . LSB

For a left shift, entering MSB causes end around carry, while LSB causes
odd/even extension,

File Register Designations:

File 1-8 Shift registers as selected by the instruction.

File 9 Byte count, and shift mode.
7 al3 0
| 0 | 3BITS 0 1 3BITS
BYTE COUNT SHIFT MODE
(NUMBER OF FILE
REGISTERS)
Shift - Enter into
Mode Direction vacated bit
000 L enter 0
001 L enter 1
010 L enter LSB
011 L enter MSB
100 R enter O
101 R “enter 1
110 R enter LSB
111 R enter MSB

File A Shift count
File B File index (fy)
245

TOP LEVEL FLOW CHART
ENTER

¥

I PUT BYTE COUNT IN TJ
P |

b |

PRESET LINK WITH
VALUE FOR ENTERING
INTO VACATED BIT

DO LEFT DO RIGHT
SHIFT SHIFT

DECREMENT |q— |

SHIFT COUNT

N Y
EXIT

Presetting Link

Link is preset by one of the following:

1. Shifting right file 9 to preset link with 0 of 1.

2. Shifting left file 1 to preset link with MSB.

3. Shifting right the highest numbered file of the shift register to preset
link with LSB.

In all cases, inhibit file write is used to preserve the value in the file.

For the actual right or left shift, the execute command is used, with the
file register number in U.

The byte count in file 9 is shifted right 4 and placed in T and U at the
beginning of the program. The ail 1’s left in the upper 4 bits can be left
there because they conveniently form the Op code for shift. T is used to
hold the maximum file register number for reference purposes.

Since link is used extensively for holding shifted out bits for the next
shift command, special care was taken in preparing the prograrn to avoid
commands other than the shift commands which affect link.

This routine has 29 commands.
The execution time is approximately

[5.94 + 1.32 x {byte count)] x {bit count) microseconds
For example 1 8 bytes, 4 bits

Time = 66 microseconds
For example 2 2 bytes, 1 bit

Time = 8.58 microseconds.

246

DETAILED FLOW
CHART .

[SRaFo—T]

SHIFT RIGHT* F9

SR4 F9—=U]

_SHIFT LEFT* F1 |

FU-1— FU

LEFT SHIFT,U

INDEX ENTER LINK

Y
®

ASSEMBLY LANGUAGE
NAME OPER OPERAND

SR

SR1

SR2

SR3

247

KT* 9,2

H*

9, R

Ku* 9,2’

TZ

»P

Hi

TZ

JP

Eﬂ

TZ

JP

MU

AF

9, X‘02'

SR2

9, X'01"

SR2

0, R

9, X'04'

11, X'FF’

oL

COMMENTS
Set byte countin T.
Preset link with 1 or 0.

Set byte count and
shift instruction in U.

Test for link to be pre-
sat or constant.

Jump to shift routine.

Preset MSB

MSB or LSB.

Jump to shift routine.

Preset LSB.

Test for right or left
shift.,

Jump to right shift.
Initialize file index.
File index to U.

Decrement file index.

Left shift, enter link,
file index.

DETAILED FLOW ASSEMBLY LANGUAGE
CHART NAME OPER OPERAND COMMENTS

TZ 11, X'0OF Al files shifted.
TO SHIFT

COUNT
TEST
JP SR3 Shift additional files.
[FA-1—=FA,C | SR6 D 10,C Dacrement shift count.

TN 0, X'04' Zero count zero.

JP SR1 No..
P EXIT Done.
[p——Y) | SR4 LF 11, X‘F1' Initialize file index.
FU— U l SRS MU 1 File index to U.
| FU+1—FU] AF 11, X01" Increment file index.
| Fru»T—-C | X 11, T.C Test for FU = (T).
RIGHT SHIFT U : f
E 0,R L Right shift, enter
l INDEX ENTER LINK link, file index.

TN 0, X'04 Test for last file,

JP SRS Shift more files.

JP SR6 Shift count tost.

248

MICROPROGRAM EXAMPLE NO. 19 |
Hexadecimal to ASCI| Conversion Routine.

This routine converts an 8 bit binary number (which is also 2 hexadecimal
digits) into two ASCII characters, and also generates an ASCI| equivalent
for a space. The 3 characters are assembled for sequencing to an output
device for print out.

Data Flow:] P
) ! ASCII codes
[1011 [o101] A0 Blank
A 5 - BS 5
C1 A

Typical print out sequence:
A5FOD3C4.....

Data values and flags are maintained and updated in dedicated locations
in core memory. If new characters are ready for output before converted
characters are printed out, any queueing will be provided by a different
routine. This routine will provide a flag to indicate when it's ready to
receive a new character, and sets a flag for output request. Output is done
by another routine, which monitors the output request flag of this routine
and resets it after outputting a character.

Core Memory Requirements:

Core

0001 | Flags

0002 | Binary word

0003} ASCII for blank

0004 | ASCII for least significant digit

0005 | ASCII for most significant digit and for output

File register

O HWN =

Next character to be transferred counter
MSD 11
LSD 10
Blank 01
None 00

Zero count here and in bit 2 indicates ready for new character.

Flag word:
76543210

_J
New word to output Next character to be trans-

ASCII output ready ferred counter.
249

TOP LEVEL FLOW CHART:

Y

GET FLAGS AND
DATA WORDS
FROM CORE

NEW WORD TEST LOWER
3BITS IN
FILE1
CHARACTERN N [CONVERT 15t HEX DIGIT]
TRANSFERRED”
[CONVERT 2nd HEXDIGIT |

| LOAD BLANK ASCII CHARACTER |
\ 2

SET NEXT CHARACTER TO BE
TRANSFERRED COUNTER=LSD

ASCI! Codes
Hex ASCHI
TRANSFER NEXT 0-9 - BO-B9
CHARACTER TO
GUTPUT LOCATION A-F-C1-C6
+ Code conversions are done by
DECREMENT NEXT i if O- if A-
o 1o GE adding BO if 0-9, and B7 if A F:
TRANSFERRED COUNTER)]
File assignments:

READY FLAG .
fo Binary word

RESTORE FLAGS AND
DATA WORDS TO CORE f3 Blank
fq LSD

f5 MSD and output byte
fg LSD MSD Flag

{EXIT

Command Count 53.

Execution time for conversion of character is approximately 20 micro-
seconds.

A. Routines already described.
1. Get flags and data words from core.
This subroutine is the same as subroutine example 7a with the one

modification to change the file count from 8 to 5.6 commands
required.

250

2. Restore flags and data words to core.

This routine is similar to example 7b except that the file count is
changed from 8 to 5.'8 commands required.

B. Detailed flow charts for remaining routines:

DETAILED FLOW ASSEMBLY LANGUAGE
CHART NAME OPER OPERAND COMMENTS
(_GET FLAGS & DATA))

TEST FOR 1'S nmr)
IN FILE 1 BITS DTA TN F1, X‘0B'
0.1.3 | Tost for data to be
processed.
JP . END
TEST FOR1'S |)
TN Fq,X'03'
FILE1 BITSO, 1 1 Test for character to
b be transferred or to
be converted.
JP CHR J
TESTFOR1 IN nar)
_FILE1 BIT2 Tz F1.x04
’ | Test for output flag
) cleared.
JP END
P
L F—T | MT F3 Transfer BLANK.

TZ F1,X01" Test for LSB-BLANK.

JP %42 Bypass LSD.
MT Fg ’ Transfer LSD.
JP DEC Decrement counter.

251

DETAILED FLOW
CHART

: DIGIT CONVERSIONS

T)]

Y

[Ez—u]

I or—1]

v

[Execute—71 |

y

[FotT—T1 |

Y

L T—% |

[oA—T |

]

[Fe-T—cC]

[Bo—T |

[Fe+T—Fs |

{ 07r—T |

[F6+T—T,Fg |

_____.________._.’.*
[i—r]
Y .
LSD
N

ASSEMBLY LANGUAGE
NAME OPER OPERAND

CHR LF FD, X00
LU X'E2'
MSK LT X'OF
ET 0,2
) AT FD, T
C FgT
LT X0A’
S* Fg, T,C
LT X'BO’
‘A F6,T
LT X07'
™ 0, X'02
AT Fg T
[+ Fs5, T

TZ FD, X110

P w2

Cc Fq, T

252

COMMENTS

Clear MSD-LSD fleg.

Set U for And command.
Mask for LSD.

And with T or shift right
4 depending on {U).

Add (fd) to clear 1's

resuiting from shift
right 4.

Move T to fg.

Subtract QA to test for
hex digit 0-9 or A-F.

ASCII conversion value
added to hex number
for 0-9.

Additional ASCII
conversion for A-F.

Test for value 0-9 or

Add final conversion value.
Copy T to f5.

Test for least significant
digit.

Leave in fg if MSD.

Move to fgq if LSD.

DETAILED FLOW . ASSEMBLY LANGUAGE
NAME OPER OPERAND COMMENTS

. TZ fu, X“10' Test blt 4 to indicate
‘72" vs ‘€2,
m : JP BLK Jump to load ASCH
for blank.

LU X772 Set U for control
‘command to do SR4.

LF FD, X'10° Set fd for MSD.

‘10’ — FD

JP MSK -

BLK - LF F3,X'A0’ ASCII for Blank.

LT X'FC Set bits 0 and 1 in f1=0
to clear next character
to be transferred counter.
N F1.T
JP SET
DETAILED FLOW ASSEMBLY LANGUAGE :
CHART NAME OPER OPERAND COMMENTS
L F1-1— F1 I DEC D F1 Decrement next character

to be transferred counter.

[04— T] seT T xos

v Set ASCIl output ready
’ fla
I TVF1 —F1 I . (o] F1, T 9
RESTORE FLAGS AND ENb
DATA WORD}S TO CORE

253

MICROPROGRAM EXAMPLE NO. 20
General Purpose Code Conversion by Table Translation.

This routine will convert a string of characters from any one of 64 charac-
ters into any of 64 other characters (character capacity easily changed).
The translation table which is in core memory can be loaded with any
desired code.

The general approach is to use the character as a displacement value and
index into a table to obtain the corresponding character. This type of code
conversion is useful where there is no simple mathematical relationship
between the two character sets (as with BCD to ASCIl, for instance).

Table organization in core:

old code Table address= n new code
(6 bits) = C n+1
n+2

C + N = New Character

n+ 62
n+ 63
File Assignments:

LL = Lower 8-bits of data list address.
LU = Upper 7-bits of data list address.
TL = Lower 8-bits of translation table address.
TU = Upper 7-bits of translation table address.
CNT = Number of characters in data list.
FT = Mask to limit the table to 64 entries.

254

READ A
CHARACTER
FROM THE
DATA LIST

Y

MASK THE
CHARACTER TO
REDUCE SIZE
OF THE TABLE

Y

COMPUTE THE

- |ADDRESS IN

THE TRANSLATION

|[TABLE

Y

READ THE
CHARACTER FROM
THE TRANSLATION

TABLE
Y

PLACE THE NEW
CHARACTER INTO
THE DATA LIST

END OF
DATA LIST

This routine uses 13 commands, and takes 4.18 microseconds per charac-
ter for translation. ‘

255

DETAILED FLOW
CHART

READ
LU —= LU, N

[sr—rr |

[FTAT—F1,T |

[Test—n]

READ
TU+L—=M

[eNT-1—cnT. C |

Y

[tL—LLN]

Y

l WRITE

LU —> LU M

Y

[wvr—u |

Y

[wrt—1u |

ASSEMBLY LANGUAGE
NAME OPER OPERAND

TRN MN LL

RM LU
LF FT, X'3F

NT FT,T

AN* TL, T
RM* TU, L

D CNT,C

MN LL

wM LU

N

v

A LU, L

TN 0, X'04’

JP TRN

266

COMMENTS

Get a character from
the data list.

Set a mask for 64
characters.

Remove unwanted
high order bits.

Add the value of the
character with the base
address of the table to
obtain the new character.

Reduce character count.

Place the translatec!
character back into
the data list.

Move the data list
pointer to the next
character.

End of List.

No, get the next
character.

MICROPROGRAM EXAMPLE NO. 21
Binary Multiply (16 bits)

This routine multiplies two 16 bit positive or negative humbers. The two
" byte operand in X is multiplied by the contents of A and the result is
placed in the 32 bit A - B registers. The multiply is an integer type, and
the 30 bit resultant magnitude occupies the 30 low order bits of A and B,
and a double sign bit occupies the two high order bits.

This example is the same as the routine used in the MICRO 810 firmware
except for deletion of memory referencing, concurrent I/O servicing, and
linking to the 810 program. .

The basic algorithm for this routine consusts of testing the LSB of B, and
. adding X to A whenever LSB of B = 1; then shifting the accumulatlon
right one place, as well as shifting B right one place. Then the next LSB of
B is tested. This is repeated until all parts of A have been tested.

 ADD--=--—» SHIFT TEST LSB

A A B 4

To simplify programming, A is first transferred to B, then A is cleared.
The contents of A are not tested for sign until after it ‘has first been
transferred to B. This is only for convenience of programmmg If B is
negative, both numbers are 2's complemented, If X is negative, the,sign is
maintained by sign extension, during shifting.

257

TOP LEVEL FLOW:

 J

I TRANSFER A TO B AND SET SHIFT COUNT I

CONVERT BOTH [
B AND X TO 2's
COMPLIMENT

3

ADDXTOA DECREMENT

SHIFT
' COUNT

SET LINK = MSB

L]

| SHIFT A & B RIGHT ONE BIT,
o ENTERING LINK

§

file registers @ Link is set to provide for
AU, AL Multiplicand (1st) sign extension of the
BU, BL Multiplicand (2nd) partial accumulation.
XU, XL Multiplier

S Shift Count @) 11 there is overflow, link

is already set to the
correct sign value, which
may not = MSB of A,

AU, AL

BU. BL Product

This routine has 32 commands, and takes the following‘approximate time:
Max. 60 microseconds; Average 54 microseconds.

258

DETAILED FLOW
CHART

Y

10— S2

Y

AL—= AL, T
T — BL

Y

AU —» AU, T
T——BU

BU — BU
BU+L—=BU

XL —= XL
XL + 1-—=XL

XU— XU
XU + L—=XU

‘00'— AL
‘00' — AU

ASSEMBLY LANGUAGE
- NAME OPER OPERAND

COMMENTS

MUL LF 82, X10° Set shift count for
16 bits.

ML3

259

MT
c
MT
Cc

- TN

JP

LF
LF

AL

BL,T Move A register to
AU B register.

BU, T

BU, X‘80° Test MSB of BU for
) negative condition.

- ML3 Bypass complementing. .
. 3
BL,T,F
BL
BU, T, F 2's complement B and
BU, L X by exclusive ORing
> withall s using T,
T as operand and
XL. T, F adding 1 to B and X.
XL
XU, T, F
xu,L
AL, X00' Clear A after trans-

AU, X'00° ferring A to B.

DETAILED FLOW
CHART

XL—=XL, T

AL+ T-—» AL

Y

XU — XU, T
AU+T+L—=AU,C

N

SHIFT LEFT AU
TO SET LINK

(INHIBIT FILE WRITE)

¥

SHIFT RIGHT AU
ENTER LINK

SHIFT RIGHT AL
ENTER LINK

SHIFT RIGHT BU]
ENTER LINK

SHIFT RIGHT BL
ENTER LINK

DECREMENT
SHIFT COUNT (S2

ASSEMBLY LANGUAGE
NAME OPER OPERAND

ML1 TN

JP

MT

MT

TN

ML2 H*

TN

JP

260

BL, X071

ML2

XL
AL, T

XU
AU, T,L,C

0, X‘01

AU

~

AU, R, L

AL, R, L

BU,R, L

BL, R,LJ

S2,C
0, X'04’

ML1

COMMENTS

Test B for oddl.

Bypass additicn func-
tion if B even.

Add X to (A) and put
result in A. Set condition
flag for overflow test.

Test for overflow.

Set link for sign entry.

Shift A, B right one bit,
entering contents of link.

Decrement shift count
and set condition flag.

Test for zero condition.

More bits to be shifted.

MICROPROGRAM EXAMPLE NO. 22
Generate Cyclic Code for one 8 bit data byte.

This routine generates the CRC 16 cyclic redundancy code used in bi-
synchronous communication.

The byte operand in S1 is entered into the 16 bit cyclic code contained in
the A register. The polynomial used for generating the cyclic code is
X16 + X15 + X2 + 1.

The general algorithm is to shift the 16 bit code in A, and to exclusive
OR bits 15, 13, and 0 with the result of a comparison between the least
significant bits of the cyclic code in A and the least significant bit of S1
shifted once for each comparison.

This is a microprogram rendition of the feedback shift registers which are
used to implement polynomial divisions for generating cyclic codes.

At the beginning of a’character string, A should be cleared.

For each 8 bit data byte the top level flow is as follows:

SHIFT DATA BYTE

This routine takes 15 commands and

SHIET 16 BIT CRC takes the following approximate time:
t max. 30 microseconds
t avg. 28 microseconds

file registers

AU, AL CRC code

S1 Data byte
EXCLUSIVE OR BITS S2 Save Link
15,13,0 | Shift Counter
WITH 1's

This routine ‘is the same as that used in
the MICRO 820 except for the omission
of memory referencing and linking to the
main firmware.

. 8BITS
CHECKED

261

DETAILED FLOW
CHART

‘08— |

SHIFT S RIGHT

SHIFT LEFT S2
ENTER LINK

A

SHIFT RIGHT AU

'

SHIFT RIGHT AL
ENTER LINK, UPDATE
CONDITION FLAGS

S2 + L~ S2

LS BITS
EQUAL

‘AQT =T
AU AT —= AU
‘01 —T

AL A01 — AL

EXIT

Jump

ASSEMBLY LANGUAGE

NAME OPER OPERAND

SSR

NQL

262

LF

N

JP

COMMENTS
1, X‘08' Set bit count.
S1,R Save LSB of S1.
S2, L
AU, R
Shift right CRC word.
AL, LRC
Sz, L Add link to saved LSB
to compare.:
S2, X'01" Equal?
NQL Bypass exclusive OR
function.
X'AO’
AU, T Exclusive OR the poly-
X‘01" nomial function into A.
AL, T
I.C Decrement bit counter.
0, X'04' Last bit.
SSR Repeat.

MICROPROGRAM EXAMPLE NO. 23

Generate ASCI| Parity.

This routine will generate and attach an odd parity bit to bit 7 of a charac-
ter contained in file Sp. It will also generate a block longitudinal parity
LRC for this character, by exclusive ORing with an LRC being accumu-
lated in AL. This routine is the same as used in the 820 except for omission
of memory referencing and linking with the main 820 firmware. Parlty is
generated by shlftmg and testing the bits in S and toggling a bit in 32'

for each bit = 1 is Sq.

DETAILED FLOW ASSEMBLY LANGUAGE
CHART : NAME OPER OPERAND
$S1—T PAR MT S

‘80" —= S2

Y

e S10p — C

TEST FOR
1IN LSB

TOGGLE S2 BIT 7

ST —T =

Y

AL T— AL

CEXIT

263

LF

TZ

AF

™

JP

XT

S2, X'80°

S1.R,C

0, X‘01"

S2, X'80’

0, X'04’

PAR +1
82, T

AL, T

COMMENTS

Save character.
Set initial parity.

Shift out a bit.

Tést for bit=1.

Toggle parity bit.

Test for all bits
shifted out.

Repeat.

Attach odd parity.

Generate LRC.

PART IV

MICRO 810 FIRMWARE MANUAL

Semiconductor Read-Only Memory Expandable from 768 Words to
2,048 Words.

‘Diode Matrix 256-Word Read-Only Memory.

266

INTRODUCTION

The basic steps for development of a general purpose computer architec-
ture using a microprogrammed computer are as follows:

1.

N OO o bs

Functional Definition

® Input/Output Characteristics.

® QOperating Registers Assignments (Accumulator Index, Program
Counter, etc.).

Word Length (Fixed and Variable).
Core Memory Addressing Modes for Jumps and Operand Fetching.
Instruction Repertoire.

Instruction and Data Formats (Number of Bytes, Sign Extension, Op
Codes, etc.).

® [nterrupt System (External/lnternal).
® Desired Instruction Execution Times.
® Bootstrap Load Technique.

. Hardware Modification (if any).
" Modifications or additions may be required (particularly in the inter-

face) to achieve the desired specs. For example if a 16-bit 1/0O path were
required in the emulator, an 1/O expander would be required on the
MICRO 800. For the IVIICRO 810 emulation, no hardware changes are
required, since the byte 1/0 scheme is a dlrect mechanlsm of the
MICRO 800 byte 1/0O channel.

. Analysis and Selection Algorithms.

Definition of subroutines, organization of routine hierarchy and prepa-
ration of top level flow chart.

. Detailed derivation of each algorithm to be used.

. Preparation of detailed flow charts for each subroutine.

. Assembly language coding. -

. Assembly of program, diode map generation, and checkout.

To illustrate these steps, annotation flow charts and the assembly language
program for the *original version of the MICRO 810 except for compare,
multiply, and divide instructions are included, along with a summary of
the 810 processor.characteristics which affect the firmware.

The MICRO 810 is an example of an emulation. lts characteristics as re-
lated to the microprogram are described in the following paragraphs. The
first step in development is to define the basic funct:ons

MICRO 810 Functions

Six operational registers:

Accumulator (A) — 16 bits.
Auxiliary accumulator (B) — 16 bits.
Index register (X) — 16 bits.
Program counter (P) — 15 bits.
Overflow (O) — 1 bit.

Word length control (W) — 2 bits.

267

Extensive, powerful instruction set including 89 individual operations:

Multiply and divide (2).

Control {17).

Multi-bit arithmetic and logical shifts (12).

Conditional jumps (16).

Input/Output (8).

Inter-register (16).

Memory reference including jump, compare and variable word length
operations — (18).

Eight operand addressing modes including:

Direct to page 0 (first 256 bytes).
Direct relative to P (+128 bytes).
Indirect to page O (first 256 bytes).
Indirect relative to P (£128 bytes).
Indexed (to 32,768 bytes).

Indexed with bias (to 32,768 bytes).
Extended address (to 32,768 bytes).
Literal.

Multi-precision 1, 2, 3, or 4 byte load, store, and arithmetic operations.
Flexible I/O facilities including:

® programmed transfers to/from A and B registers and memory to byte
1/0.

® concurrent buffered 1/0.

@ serial 1/0 channel for local teletype.

Expandable priority interrupt system
Processor options which include:

® real-time clock.
® power-fail detect and automatic restart.
® memory parity detect and interrupt.

Built-in bootstrap loader in non-volatile read only store.

*(Later MICRO 810 versions have modified interrupt, concurrent 1/0 and
control firmware.)

To provide all of this capability only 710 micro instructions were required.
This leaves capability for addition of 314 additional microinstructions for
special functions.

FILE REGISTER ASSIGNMENTS

The MICRO 810 contains six operational registers which are accessible to
the programmer. These operational registers occupy nine of the 16 file
registers of the basic MICRO 800 hardware; the remaining seven hardware
registers are not accessible by the MICRO 810 instructions although
specially designed macros could make use of these at the micro-level.

268

A REGISTER (file registers 4 and 5)

The 16-bit A register is the accumulator with which most operations are
performed. The A register holds the upper portion of 24- or 32-bit data
words and all of 8- and 16-bit data words. The A register may be shifted by
itself or in conjunction with the B register.

B REGISTER (file registers 6 and 7)

The 16-bit B register is the auxiliary accumulator and is used mainly as an
extension of the accumulator to hold the lower 16 bits of 24- and 32-bit
data. The B register may be shifted by itself or in conjunction with the A
register. :

X REGISTER (file registers 2 and 3)
The 16-bit X register is an index register used in address modification. It

can communicate directly with memory, be incremented, and compared
with the A register.

P REGISTER (file registers A and B)

The 15-bit P register is the program counter which holds the address of
next memory instruction to be executed.

W REGISTER (bit 2 of file register F)

The 2-bit W register holds the word length mode. It is loaded by a control
instruction and sets the byte length of the operand for all variable word
length instructions.

O REGISTER (bits 1, 0 of file register F)

The one-bit O register holds the overflow flag. The overflow is set by
arithmetic instructions when an overflow occurs, by execution of a control
instruction, or by the compare instruction. It may be reset by execution
of a control instruction or by a conditional jump instruction that tests for
an overflow condition.

Files 8, 9 are for the operand address.

Files C, D, E are used for temporary storage.

File O is for condition flags. |

File 1 is the instruction register.

The file register assignments are completely accomplished by micré-
programming. There are no internal wiring modifications to convert a

MICRO 800 to a MICRO 810 other than the arrangement of matrix diodes
on the read only memory boards.

269

INFORMATION FORMATS

The basic element of information is an 8-bit byte in which the bit positions
are numbered from 7 through 0, left to right. Both instructions and data
occupy a variable number of bytes for maximum storage efficiency. A
word is a 16-bit element of information consisting of two bytes. The
accumulator and index register both hold a 16-bit word.

DATA FORMAT

Data in the MICRO 810 is variable precision of 8, 16, 24, or 32-bit length.
Negative numbers are represented in 2's complement.

8 Bits (1 Byte) — Range: +27—1to —27

Sign Extend * Magnitude (unused)

4. 4

151413121110 9 8 7 6 5 432 10151413121110 9 8 7 6 5 4 3 2 1 0
A Register B Register

16 Bits (2 Bytes} — Range: +215-1 t0 —215

+ Magnitude ’ {unused)

" (! : l b L
15 14 13 12I1‘| 10 9 87 65 432 1015141312 1110 9 8 7 6 5 4 3 2 1 0
A Register B Register

24 Bits (3 Bytes) — Range: +223—1 to —223

Sign Extend + Magnitude

1514131211109 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
A Register B Register
32 Bits (4 Bytes) — Range: +231-1 to —231

b4 Magnitude

. N N [
1514131271109876543210'15141312'1110987654321o
A Register B Register

To have variable word length operations, the microprogram must test the
instruction Op code, bit 3 to see if variable word length is spacified. It
must then test file register F, bit 2 for which word length is set. Then the
instruction is carried out by the microprogram according to the settings of
these two bits. Testing and variable word length execution are done in the
designated memory reference microprogram subroutine.

ADDRESS WORD FORMAT FOR MEMORY
REFERENCE INSTRUCTIONS

A 16-bit address word containing a 15-bit memory address and an index
flag as shown below. The address may be a direct or indirect address as
dictated by the instruction operation code. The value of the address word

270

is equal to the contents of bits 14-0 and is equal to the contents of bits
14-0 plus the contents of the x register if bit 15 is a 1-bit.

X Y z

151413121110 9 8 7 6 5 4 3 2 1 0

In the operand address subroutine, the address is determined by the micro-
program and placed into the operand address register.

INSTRUCTION FORMAT

Instruction formats are one to five bytes, but in all cases the first contains
an eight-bit operation code which defines the operation class, the sub-
operation code, and any modifiers. Succeeding byte(s) contain such infor-
mation as:

Single byte absolute or relative address.
Double byte address word.

Single byte shift count.

Single byte 1/0 function and device address.
1, 2, 3, or 4 byte literal data.

OPERAND ADDRESSING MODES

The memory reference instructions defined in the following section each
have eight possible modes of addressing an operand in memory. The num-
ber of bytes in the instruction format varies with the mode. The additional
bytes of the instruction contain addresses, partlal addresses, or data
(literals).

The basnc memory reference |nstruct|on is one byte containing two fields
as follows:

OP Code m

76543210

-

The 5-bit operation code defines the basic instructions; the 3-bit m field
specifies the. address mode. Additional bytes contain the address of an
operand, an indirect address, a base address, or a literal depending on the
addressing mode. The effective operand address is the memory location
specified after all -indirect and/or index modifications have been per-
formed.

For variable word length instructions, such as Load A versus Load Vari-
able, bit 3 is used to indicate whether variable word length is to be used.
The microprogram tests this bit. For fixed word length instructions, such
as multnply/dnvnde bit 3 indicates the instruction type,

271

When an indirect address mode is specified, the location of the indirect
address word is the first byte of a two-byte word having the format shown
below:

X Y z

151413121110 9 8 7 6 5 4 3 2 1 0
Indirect Address Word Format

For indirect addressing, the microprogram fetches the first referenced
word, which points it to the actual address word, to which may be added
the contents of the index register.

Bit 7 of the first byte (x) defines whether or not the indirect address word
will be modified by the contents of the index register:

If x = 0, the 15-bit number formed by y and z is the effecﬁve‘ operand
address.

If x = 1, the 15-bit number formed by y and z is a base address to which
is added the contents of the X register. The result is the effective
operand address.

The individual addressing modes and the memory reference instruction
format for that mode are defined below. The microprogram has a sub-
routine called operand addressing which examines the subsequent bytes
of memory reference instructions, and uses this information to deter-
mine the operand address.

DIRECT PAGE 0 (m=0)

OP Code 0 ' Yy

+

7665 4321076543210

The effective operand address is given by the contents of the second byte
of the instruction {y) with seven high order zero bits appended. This mode
provides direct addressing of operands in the first 266 memory locations.

The microprogram clears the upper byte of the operand address reg‘ister,
and places bytesy in the lower byte of the operand address register.

DIRECT RELATIVE (m=1)

OP Code 1 y

766 4321076543210

The effective operand address is given by the sum of the contents of the
second byte (y) with its high order sign bit (bit 7) extended and the con-
tents of the P register. The contents of the P register at the time the addi-
tion is performed is the address of the memory location following y. This

272

" mode provides for addressing from 127 locations ahead to 128 locations
behind -the memory location of the next instruction.

The microprogram sets the P register to the next instruction location, adds
the byte in y to p and places the result in the operand address register.

INDIRECT PAGE 0 (m=2)

OPCode | 2 y . |

7654321076543210

An indirect address word is specified by the contents of the second byte
(y) of the instruction with seven high order zero bits appended. The 2-byte
indirect address word addressed is located in the first 256 memory loca-
tions. The effective operand address is given by the contents of the indirect
address word if the index flag (bit 15) is a 0-bit, or by the sum of the con-
tents of the indirect address word and the X register if the index flag
(bit 15) is a 1-bit.

The microprogram fetches the two byte address from page 0 designated -
by byte Y. It adds the contents of the index register (if bit 15=1), and
places the result in the operand address register.

INDIRECT RELATIVE (m=3) .

OP Code 3 y

"

76643210765 43210

An indirect address. word is specified by the sum-of the contents of the
second byte (y) with its high order bit (bit 7) extended and the contents
of the P register. The contents of the P register at the time the addition is
performed is the address of the memory location following y. The effec-
tive operand address is given by the contents of indirect address word if
the index flag (bit 15) is a 0-bit or by the sum of the contents of the in-
direct address word and the X register if the index flag (bit 15) is a 1-bit.

The microprogram advances the P counter to the next instruction location,
adds the content of byte y, fetches the 2 byte address from the resultant
location, adds content of index (if bit 15=1) and placés the result in the
operand address register.

INDEXED (m=4)

OP Code 4

76643210

The effective operand address is given by the contents of the X register.

The microprogram loads the content of X into the operand address
register,

273

INDEXED WITH BIAS (m=5)

OP Code 5 y

76543210765 43210

The effective operand address is given by the sum of the contents of the
X register and the contents of the second byte (y) of the instruction.

The microprogram adds the content of X to byte Y, and places the result
in the operand address register.

EXTENDED ADDRESS (m=6)

OP Code 6 x| y z

7654 3210766432107656 43210

A 16-bit address word is located in the second and third byte of the
instruction. The effective operand address is given by the contents of the
address word if the index flag bit in bit 15 is an 0-bit, or by the sum of the
contents of the address word and the X register if the index flag is a 1-bit.

The microprogram takes bytes Y, and Z and adds the contents of index if
bit X=1 and places the result in the operand address register.

LITERAL (m=7)

OP Code 7 Operand 1-4 Byte Operand

7654 32107654'3210 766543210

The effective operand address is given by the contents of the P register.
The operand is located in from 1-4 bytes following the first byte of the
instruction, depending upon the operand precision. The P register is
incremented for each operand byte accessed. The Jump and Return Jump
memory referencing instructions do not have a literal mode. .

The microprogram places the contents of the P register into the operand
address register.

JUMP/RETURN JUMP INDIRECT EXTENDED ADDRESS (m=7)

OP Code 7 X Y z

7 65 4'321076654 3210760543210

A 16-bit direct address word is located in the second and third bytes of
the instruction. This word addresses an indirect address word located at

274

the address given by the contents of the second and third bytes if bit 15 of
the address word is a 0-bit or by the sum of the contents of the second and
third bytes and the X register if the index flag bit in bit 15 is a 1-bit.

The effective jump address is given by the contents of the indirect address
word if the index flag in bit 15 of the indirect address word is a 0-bit, or
by the sum of the contents of the indirect word and the X register if the
index flag bit in'bit 15 of the indirect address word is a 1-bit.

The microprogram tests to see if mode = 7, and the command is a jump or
return jump. If all of these conditions are so, the microprogram fetches
the bytes Y, Z (with index if bit X=1) and places them in the operand
address register. '

MICRO 810 INSTRUCTIONS

OPERATION) .
CODE MNEMONIC INSTRUCTION NAME
CONTROL (one byte)
00 HLT Halt
01 TRP Trap
02 ESW Enter Sense Switches
03 PMP Protect Memory Page
04 DIN Disable Interrupt System
05 EIN Enable Interrupt System
06 DRT Disable Real Time Clock
07 ERT Enable Real Time Clock
08 RO1 " Reset Overflow and Set Word Length to 1
09 - RO2 Reset Overflow and Set Word Length to 2
0A RO3 Reset Overflow and Set Word Length to 3
0B RO4 Reset Overflow and Set Word Length to 4
oc SO1 Set Overflow and Set Word Length to 1
oD S02 Set Overflow and Set Word Length to 2
OE SO3 Set Overflow and Set Word Length to 3
OF S04 Set Overflow and Set Word Length to 4

34 NOP No Operation

CONDITIONAL JUMP (2 bytes)

10 XX Jov Jump if Overflow Set

11 XX JAZ Jump if A Equal to Zero

12 XX JBZ Jump if B Equal to Zero

13 XX JXZ Jump if X Equal to Zero

14 XX JAN Jump if A Negative

15 XX JXN . Jump if X Negative

16 XX JAB Jump if A Equals B

17 XX JAX Jump if A Equals X

18 XX NOV Jump if Overflow not Set.
19 XX NAZ Jump if A not Equal to Zero
1A XX NBZ Jump if B not Equal to Zero
1B XX NXZ Jump if X not Equal to Zero
1C XX NAN Jump if A not Negative

1D XX NXN Jump if X not Negative

1E XX NAB Jump if A not Equal to B

1F XX NAX Jump if A not Equal to X

Where: = XX is a relative jJump address (plus or minus hex 7F from the first byte
after the jump instruction. .

275

OPERATION
CODE MNEMONIC - INSTRUCTION NAMI:

SHIFT (2 byte instruction)

20 XX LLA Logical Left A

21 XX LLB Logical Left B

22 XX LLL Logical Left Long

24 XX LRA Logical Right A

25 XX LRB Logical Right B

26 XX LRL Logical Right Long
28 XX ALA Arithmetic Left A

29 XX ALB Arithmetic Left B

2A XX ALL Arithmetic Left Long
2C XX ARA Arithmetic Right A
2D XX ARB Arithmetic Right B
2E XX ARL Arithmetic Right Long

Where: XX is shift count.

INPUT/OUTPUT (2 and 4 byte instruction)

30 00 1BS {nput Byte Serially

31 XX IBA Input Byte to A

32 XX. IBB Input Byteto B

33 XX AAAA IBM Input Byte to Memory

38 00 0BS Output Byte Serially

39 XX OBA Output Byte from A

3A XX oBB Output Byte from B

3B XX AAAA OBM Qutput Byte from Memory

Where: XX is a 3-bit function code and 5-bit device address. AAAA is a core
memory address.

REGISTER OPERATE (one byte)

Group 1
40 ORA OR B with A
41 XRA Exclusive — OR B with A
42 ORB OR A with B
43 XRB Exclusive — OR A with B
a4 INX increment X
45 DCX Decrement X
46 AWX Add Word Length to X
47 SWX Subtract Word Length from X
Group 2
48 INA Increment A
49 INB Increment B
4A OCA One’s Complement A
4B OCB One’s Complement B
4C TAX Transfer A to X
4D TBX Transfer B to X
4E TXA Transfer X to A

4F TXB Transfer X to B

276

OPERATION
CODE MNEMONIC INSTRUCTION NAME

MEMORY REFERENCE (1, 2, 3, 4, 5 byte)

60 JMP Jump
68 RTJ Return Jump
70 IWM Increment Word in Memory
78 DWM Decrement Word in Memory
80 LDX © Load X
88 STX Store X
920 MUL Multiply
98 DIv Divide
A0 ADA Add to A
A8 i ADV Add Variable
BO SBA Subtract from A
- B8 SBV Subtract Variable
co CAP Compare A
Cc8 CPV Compare Variable
DO ANA And
D8 ANV And Variable
EO : LDA Load A
E8 LDV Load Variable
FO STA Store A |
F8 . STV Store Variable
INTERRUPTS

The MICRO 810 has firmware to process both external and internal
interrupts. The firmware tests for interrupts, acknowledges them, and
executes a return jump to the designated software routine for each
interrupt channel.

CONCURRENT 1/0

The concurrent 1/0 allows for block transfers between the external device
on the Byte 1/O bus and memory at a maximum rate of 20,000 bytes per
second. The transfers are fully automatic, and once started proceed with-
out program intervention. Concurrent 1/O takes priority over instruction
execution and forces momentary sequence breaks during execution of long
instructions such as multiply, divide and shifts to insure that concurrent
1/0 displays are not excessive.

SERIAL INPUT/OUTPUT INSTRUCTIONS

Two instructions are provided for bit serial transfers of data between the
A register and a serial 1/0 device. In the MICRO 810, these instructions
are standardly timed to transfer bits at the rate of 110 bits/second for
interface with a serial teletype. However, the timing can be easily altered
by a simple change of firmware to handle another type of serial device.

IBS . INPUT BYTE SERIALLY

30 Unused

7654321076643 210

277 -

An eight-bit byte is assembled from the serial teletype interface and placed
in the eight low order bits of the A register. The eight high order bits of A
remain unchanged. The execution time of this instruction terminates when
a complete teletype character has been received. The instruction must be
accessed before the start of the teletype input for proper assembly of the
character. Sampling of the teletype line and assembly of bits is done by a
microprogram subroutine, which includes its own delay routine to time
out the bits as shown below.

oBS OUTPUT BYTE SERIALLY

38 unused

76543210766543210

The eight low order bits of the A register are disassembled and output
serially as a teletype character to the serial teletype interface. The eight
low order bits of A will be set to one. The eight high order bits remain
unchanged. The execution of this instruction terminates when a complete
byte has been transmitted.

Affected: A

BYTE INPUT/OUTPUT INSTRUCTIONS

Byte programmed input/output operations provide transfers of data, con-
trol and status over the Byte I/O channel. This multiplex channel permits
intermixed program and concurrent 1/O transfers. More than one device on
the bus may be operating in a concurrent block transfer mode at the same
time. A maximum of 32 devices may normally be addressed on the Byte
1/0 bus.

The second byte of the instruction is a control byte which provides a
three-bit device order and a five-bit device number as follows: The micro-
program causes the second byte to be placed on the output bus, and gener-
ates a control putput strobe called COXX. In the output mode, the data
is placed on the output bus and strobed out with DOXX. For input, data
on the input bus is strobed in by DIXX.

Device | Device
Order f| Number d

76543210

Byte input/output is basically a two-phase operation. First the control
byte is placed on the output bus before the actual transfer of data. All
devices examine the transmitted device number. The device whose assigned
number is the same as contained in the control word accepts the control
byte and sets for a subsequent data byte transfer. The second phase con-
sists of the input or output of a single byte. When a device order does not
require a data transfer, the second byte is disregarded by the device con-
troller. -

278

TOP LEVEL FLOW CHART

The purpose of the top level flow chart is to define the microprogram
subroutines, and their interrelationship. This flow chart shows all of
the basic paths that the microprogram can follow as it goes through its
repetitive looping operation.

The top level flow chart can be divided into six major areas for discussion
purposes. .

Instruction fetching

Interrupt and Concurrent 1/0 Processing
Operand Addressing :
Nonmemory Reference Instruction Execution
Memory Reference Instruction Execution
Bootstrap Load

Instruction Fetching

MICRO 810 instructions, stored in core, contain from 1 to 5 bytes,
depending on the instruction, During the instruction fetch routine, only .
the first byte is fetched from core. This byte contains the basic Op code of
the instruction, which identifies whether the instruction is memory refer-
ence or not, and what the specific instruction is. '

- First byte format.

OP Code Sub OP Code

Iy I
7654321076543210

The Op code identifies the class of instruction for nonmemory reference
instructions, and the type of instruction for memory references.™

The sub Op code identifies the type instruction for nonmemory reference,
and- the address mode, and fixed versus variable word length for the
memory reference instructions.

The Op codes are organized so that all memory reference instructions have
Op codes 6. The microprogram makes use of this fact when testing to see
if the instruction is memory reference, o ,

During the instruction fetch subroutine, the Op code is tested for memory
reference, and a jump table number is set up to jump into the subroutine
corresponding to the Op code. :

Other things done during instruction fetch are testing for interrupt, and
advancing the program counter. :

The instruction fetch routine contains a cold start portion which initializes
the program counter, tests for internal interrupts, and tests for bootstrap
load.

*On some of the memory reference instructions the sub Op code is also
® required to indicate type of instruction.

279

The instruction fetch routine has many different entry points, which are a
function of the state of the P register as determined by the previous sub-
routine that the microprogram executed.

Interrupt Processing

If there is an internal or external interrupt, the microprogram services it
immediately. Servicing consists of acknowledging the interrupt, inputting
the device address (if external), and jumping to the interrupt routine, or
transferring a data byte if concurrent 1/O. When this is done, the micro-
program returns to the instruction fetch cycle. At this time, the interrupt
routine address will be in the program counter. ‘

Operand Addressing

This microprogram subroutine prepares the absolute address of the oper-
and of a memory reference instruction, and places it in the operand address
register. The address modes are identified in the sub Op code. Address
information is contained in the 2nd and 3rd bytes of the instruction.

The addressing modes are as follows:

1. Direct Page 0 (1st 256 bytes)
The second byte is placed directly in the operand address register by
the microprogram. .

2. Direct Relative .
The second byte is added to the P counter, and the result is placed in
the operand address register.

3. Indirect Page O (1st 256 bytes)

The address indicated by the second byte is fetched from Page 0 and
added with the contents of the index register (if bit 15 is set), and
placed in the operand address register. If bit 15 is not set, the address
is placed directly in the operand address register.

4. Indirect Relative

The second byte is added to the P counter. This address is used to
fetch the indirect address, which is added to the content of the index
register (if bit 15 is set), and placed in the operand address register. |f
bit 15 is not set, the indirect address is placed directly in the operand
address register.

5. Indexed

The address in the index register is transferred to the operand address
register.

6. Indexed With Bias

The 2nd byte is added to the index register and placed in the operand
address register.

280

7. Extended Address (Absolute Address)

The 2nd and 3rd bytes of the instruction are added to the index register .
(if bit 15 is set) and placed in the operand address register. If bit 15 is
not set, the 2nd and 3rd bytes are placed directly in the operand address
register.

8. Literal

The P counter is incremented and placed in the c;perand address
register.

)

Non-memory Reference Instruction
The non-memory reference instructions consist of the following:

® Conditional Jumps

® [nput/Output a byte of data (Parallel or Serial)
® Control Operations ‘

® Register Shifts

® Register Operations

Since none of these involve an operand. to be fetched from memory, the
operand addressing function is bypassed by the microprogram.

Memory Reference Instructions
The memory reference instructions are grouped as follows:

® Load, Add, And, Subtract
® Store

® Unconditional Jump
® Return Jump
® |ncrement or Decrement Word in Memory
® Compare

® Multiply, Divide

The operand for each of these operations is fetched from the address
location contained in the operand address register.

Bootstrap Load

This microprogram is entered from the cold start part of the instruction
fetch routine. It loads a program load routine which is on paper tape.

Detailed Flow Charts

The next step after preparing the top level flow chart is to prepare the de-
tailed flow charts for the individual subroutines. At this time it is neces-
sary to have a detailed definition of the procedures, equations, and algor-
ithms to be executed in each subroutine. The basic microprogramming
approaches must be identified, such as use of the U register, combining
multiple functions into the same routine, a definition of microprogram
jump and return jump procedures.

281

There is no set rule for the detail level of symbology to be used in micro-
program flow charts. The general considerations for detail level are as
follows:

1. Ease of identifying and defining\procedures.
2. Ability to communicate program organization and steps to others.
3. Ease of coding program from flow charts.

To provide a detailed description of the MICRO 810 firmware selected,
detailed flow charts, comments, and functional grouping indications are
included in the following pages, along with a table of symbol definitions
to facilitate reading the charts. Microcode addresses are included on the
flow charts to facilitate relating the steps in the flow chart to the instruc-
tions in the assembly listing.

Glossary of Flow Chart Symbols for MICRO 810 Firmware

A. File Registers

Fo File O Flag Register.

| File 1 Instruction Register {for first byte of instruc-
tion).)

XL File 2 .

XU File 3 Upper and Lower Bytes of Index Register.

AL File 4 .

AU File 5 Upper and Lower Bytes of A Register.

BL File 6 .

BU File 7 Upper and Lower Bytes of B Register.

oL File 8 Upper and Lower Bytes of Operand Address

ou File 9 Register. :

PL File A Upper and Lower Bytes of Program Counter

PU File B Register.

S1 FileC Temporary, Always Used for Subroutine Re-
turn Address.

S2 File D

S3 Eile E Temporary.

OV/W FileF Overflow and Word Length.

F1 File 1 Used for execute command reference Register
for selecting odd file. This does not actually
select file 1 because of the U register modifi-
cation.

UL, Uy Designates a command selecting U register

modification with File O reference, and modi-
fied by U register.

282

B. Other Registers

T T Register
U U Register
L L Register (also referred to as K in assembly language)

m,M M Register Upper Memory Address Register

n,N N Register Lower Memory Address Register

L,LK Also defined as LINK

C Update condition Flags.

C. Miscellaneous Mnemonics

SS4
RN1
opP

D. Symbols for Constants

1. Constants to go into U Register for Instruction Modification

LDAL
ANAL
SBAL
ADAL
LDXL

" STAL
STXL
STBL

Loading A using ‘B4’ op code which is COPY. T to A.
AND A using ‘C4’ op code which is AND to A,
Subtract A using ‘94’ op code which is Subtract from A.
Add A using ‘84’ op code which is ADD to A.

Load X using ‘B2’ op code which is Copy T to X.

Store A using ‘A4" op code which is Memory op code.
Store X using ‘A2’ op code which is Memory op code.
Store B using ‘A6’ which is memory op code.

2. Jump Table Constants

OTAB=‘10" - Main table jump 7reference to location 100. The

10" is used to clear the upper 4 ones in the op
code which has been shifted right 4 places.

JTBL = ‘4E’ Jump base reference constant used in condi-

tional Jump routine, to go to the selected con-
ditional jump subroutine.

CTBL =15 Jump base reference constant used in control

routine for jumping to selected control func-
tion, -

283

E. Miscellaneous Symbols

SR4 Shift Right 4

S54 Sense Switch 4

CTL Control Subroutine

CcJ Conditional Jump Subroutine
SH Shift Routine

10 Input Output Routine
REG “ Register Operate Routine
SP Spare

RNI - Read Next I nstruction
JMP Jump

RTJ Return Jump

IND 1 INDX Entry points to perform indexing
ADDR, ADRO Entry points in operand addressing routine

oP Op Code

SOF Set Overflow

SET Set Mask

OCK Test for Overflow set

LDA _ Load A

ANA And A

SBA Subtract A

ADA Add to A

MR1 Memory Reference Entry from L.DX
LDX Load X

STA Store A

WM Increment Word in Memory

M Address Mode (sometimes M Register)
@ Shift

\ OR Logic Symbol

N And Logic Symbol

¥ Exclusive OR Logic Symbol

284

‘00— 0V, m
Pu— Pu, m
PL—P1,n
(READ)

1SR4 —T
PL+1—PL, n
WA T—>T

UL(F) T—=U_,C

NOP N
JP*+1
L,u_—> T

(Write)

BL(F}T—=BL

S1@+1— 5S¢, U
U+1—= U,

CTBL— S|
U—u_
IVT, T—= LK

v

BL@+LK <— BL
Uy@+LK—= Uy,

S1—=L
1@ =T

F. Microprogram Command Symbols

Load OV and m registers with ‘00’ to clear
them.

Move content of Pu to m (back to Pu is
immaterial but saves a diode).

Initiate a read memory cycle and also move con-

tent of PL to n Register.

Shift right file 4 and put result in T.
Increment (PL) and put result in n and PL.
‘AND’ (W) with (T) and put result in T.

General Purpose Command,

UL Selectable file by U register,

F Selectable command by U register.
T Operand, Up date condition flags.

No Operation. -
Jump to next location (2 clock delay).

Execute command with memory op code in U
register, T destination and write blt set in C
field. ,

Execute command selecting B register, with
variable op code in U register. T register
operand.

Shift file Sq right, enter 1 into vacated bit,
place result in S and U.

Incrementing selected register with file address

modified by content of U Register.

Load file S1 with constant identified as CTBL.
Complement selected file.

Exclusive OR (I) with T and T .thus comple-
menting (l).

Shift (BL) left, enter (LINK).

Shift selected file right, enter link. File de5|g
nated by contents of U. B :

Move (S1) to L (a jump command).
Shift (1) left, result to T.
285

On the flow charts, the machine code address of each instruction is placed
next to the box containing the instruction, as close as possible. Since jump
instructions are not shown in the boxes, a dot is placed in the flow line
having the jump and identified with the machine code address for the jump

instruction. When the jump destination is indicated Wlﬂ'\ (INL)<——, the
machine code address of the jump destination is placed by the circle as

follows 1F8 6@‘— -

The flow charts are shown in Figures 23 through 39.

286

BOOTSTRAP
LOAD NON MEMORY REFERENCE

} ~ INSTRUCTIONS
T T T T

INTERRUPT AND
CONCURRENT 1/0

FETCH NEXT
INSTAUCTION

ARITHMET(C
OPERATION

[}
I UNASSIGNED |
| oPERATION |
| CODES H
[i

PERFOAM A
REGISTER
OPERATION

INPUT

GET ADDRESS gETERMING
nsuussnms ADDRESS °

anFoRM A TEST mn RESET
CONTROL £,{F CONDITION REGISTEﬁ
I GPERATION

FERFO M
PERFORM PERFORM
REUAN S UNEONDITIONAL STA, STV, STX mn ADV a WM, it} SEE‘SI‘J‘ 'MetrL' o'
ANV, SBA, /SBV
e I I

|
|
@ F @ @
|
| UNASSIGNED
| OPERATION
| CODES

|
|
I
I
[
I
I
ul
|
I
|
||
|
|
E
I
[
I

t
1
I
!
t
1
i
1
[N

MEMORY
REFERENCE

Figure 23. 810 Top Level Flow Chart
287

START FROM
MASTER RESET

READ NEXT INSTRUCTION

CLEAR OVERELOW,
M REGISTER AND
F COUNTE

-
L

Fe

TEST FOR
S00TSTRAP |
4080

CLEAN OVERFLOW
EROM STARTING
FROM FRONT PAtEL, | 008

|

|

!

|

SETW & N REGISTERS |
FROM PROGAAM COUNTER

AND SKIP INTERRUPT |

DONE

|

|

1

!

MPS & BKt!
AND DTHER INTERRUPT
EXEMPT INSTRUCTIONS

TABLE OF
ANIENTRYPOINTS
AN10 COLD START
' RN1Y MANUAL ENTRY
FROM FRONT
| PA
o= g | | iz AETER UNPS
A’gn CONCURRENT
\

I
‘ R13 AFTEER SKIP
d UPDATE Pu, P
I AND FETCH l‘flﬂ'
YTE OF NEXT
{ insTRUCTION

STRAPLOAD

FAIL N

POINT WHERE
C

w03

|
|
|
|
|
|
|
|
!
|
|
e

1 ppenwne i "o 1
JUME |
VALUE

|
————— SHIFT I
|
I
|
_ NPT |
o™ — Ster
1ot i I
GO DIRECTLY TO
| GPERANS ADDRESSING |]
ROUTINE J REGISTER
-— -_— operate |
' SPARE '
! arw |
| MICRO 810}
[

GO DIRECTLY TQ JUMP
TABLE AT 100 FOR

NON MEMORY REFERENCE
INBTRUCTIONS

Figure 24. Read Next Instruction

288

WITHIN A PAGE
M4 AFTZRRETURN
e

R16 AFTIRABOOT

Ri6 FROMPOWER

RANT NOFMAL ENTRY

CNTER
STES TO NEXT
IN§TRUCTION

ADDRESSING
FOR FIRST
FOUR MODES

(OPEMAND ADDRESSING

CLEAR UPPER HALL OF
\ND ADD!

oIRFGG | EACH HAS
DIAREL | A1BYTE

INOPGO f ADDRESS
INDREL | WORD

X MODE

GET 2ND BYTE OF

INSTRUCTION FROM
CORE .

2] T—s0
043 M, | moverTO omuuo
ADDRESS REG!
FOR ADDI!BING
| 2NDBYTE AS LITERAL
INDIRECT

GET 2NO BYTE FOR

EXTENDED ADDRESS o - ———q

MODE

ADVANCE F COUNTER
ﬁ{e”é’.? e FOR NEXT INSTRUCTION

VARIASLE LENGTH
LITERALS
= -——=-q
! 7)o ! aopimpexro
[l 0 + V
Sy — L X ,(m‘ ¢ | OPERAND ADDRESS
Eryerasta™] '
TO TABLE L._.-__—_—J
dume
~

Figure 25. Operand Addressing
289

TABLE
JUMP

AT THIS POINT.
ADDRESS IS TREATED
LIKE EXTENDED
ADDRESS

ABSOLUTE
AQDRESS

OPERAND ADDRESSING

0% § b et —emp,n

PG+ L e PG m
(READ)

o01a

BLeteT—— T

T e O 1

LI ape——

T e Ou

0 ———em 00
Reass L

ou oum
(READ)

O+ ——mem O
Ot L e O

ot}

—_—_—d

| move 2np avre oF
INBTRUCTION TO

L 6
GPERAND ADDRESS
REGISTER

PU-1oL g T

o028 I
FETCH INDIRECT
027 | AODRESS

L 02A

~

TTTTTTTA

| carcurare
| ADDRESS

.

Figurg 26. Operand Addrgssing (Continued) .,

290

MEMORY REFERENCE

SET U REGISTER

—_————l

MICRO 810 1
INSTRUCTION OP CODE

FETCH I1ST BYTE
OF OPERAND

Joc o0c TESTEOR sELECTION
RNI SOF SET RNI LENGTH IN OF CODE
ose
[Ry R, ara]no TEST FOR 10R
070 97¢ 078 s 078 Javres
SET o
OVERFLOW | OV y T-»0v| ‘04— T ; OVERFLOW o0
————— e d
" == ocK -
FIAST BYTE ' gl\‘%sﬂ;!!‘yc:l IN
===a— TORORK 1T + Losmtuuic] e} Fratgdds
I {
t

BIGN EXTENSION
FOR VARIABLE |
WORD LENGTH
OPERATIONS

(e

SECOND BYTE 18
STILL N T AT
THIS TIME

INDBYTETOAOR X

2ND BYTE TO

AORB

ol |

o

O0BA | £ETCH ADDITIONAL

FIRST & SECOND
evTesToA ore |
|07I

L —h

Outl — p,m o088 | BYTESFORIOR 4
|ﬂ7° I‘ (READ} | BYTE WORD LENGTHS,
oo 06 Fanodave
Y \TH
LT | LOCATIONS

—_————— e e d

TABLE OF
TEMPORARY STORAGES
FIXEO W-0 Wel We2 w=3
R

RPN w_ AR
al v T T | & | 2 o T
8u 83 | s 1 2
[T [T 2 3
3 4

Figure 27. Memory Reference

291 \

SET | FOR 2 BYTES.
THE 2ND TIME

MEMORY REFERENCE

1| woxy

(STX() —- U

08A

N LOOKS LS

FIxeD hoRp L LENGTH

008 15
ENTERED ONLY ONCE.

THaLE CYGLE REAC/
WRITES AR

CORRECT,

i TELY GOING TO BE
VODIFIED 8EFORE
RESTORING T

-

Oy ¢ L ——a- Og M

Qi = ouN

UL -1 ——e U}
(HALF WRITE)
O~ 0 N

) e T
WRITE!

ONE OR
28YTES
STORED

NO

I 1§78) ——e U GAI
+—{ o0+ —= oL |08 |
t

| 04+ L —a Oy wcl
D |

i |

NEXT

18T STORE FIRST
3 BYTE Al

ADDRE!
NEXT

VANCE OPERAND

SORES e Wess,

| 8Ty neqimTEn
| WATH CORRECT P
CODE

78 COMPLEMENT
FOR DECREMENT

SETS) AND U =1
Tor INEREMENT
—=
oAz |
oa3
0A4 I
{
P eFETCH
o | mcnmsn
nscnsmmrs:ucuu
1
| EohmANE s WODIFIED
0AB | BY U AN
CONDIT FLAG FOR
| oven
|

E AND
ADVAN&E OPERAND

Figure 28. Memory Reference {Continued)

292

THIS PATH (8 TAKEN
L MODES

0 A
RGP INDIRECT
EXTENDED ADDRESS

JUMP AND RETUAN JUMP

one
CWPI.IMENT'A(:I

. 0AB -l- — CODE, TO FACILITATE
TESTING FOR M
TEST ADDRESS MODE,
™, FOR INDIRECT

OAC EXTENDED ADDRESS
NO
0AD
YES

FETCH INDIRECT JUMP
ADDRE!

INDIRECT EXTENDED
ADDRESS MODE

ADD (INDEX) IF
BITS 18=1

TEST OP CODE IN |

INCREMENT PROGRAM
COUNTER TO NEXT
INSTAUCTION ADDRESS
ENTRY POINT FROM
INTERRUPT ROUTING
Putl — Pu.
ou —= 0u,m] ops
Ll
MR STORE RETURN
ADDRESS AT
00A BEGINNING OF
Ex sy P SUBROUTINE
Og+L—ar 088
WRITE)
P Pu.T] oac
I 0c3 08F +
| oct 1 INCREMENT ADDRESS
00, T o 0BD WD IN OPERAND
[N oniy A N O P
-Pu, ¢
| oc2 TP] ou+t-=oum | ose 0 BE EXECUTED IN
h | SORoUTINE
4

b -

LOAD P WITH JUMP
ADDRESS

Figure 29. Jump and Return Jump
293

¥6C
a1es9dQ 1015168y "OE 24nbI4

]
INSTRUCTIONS
OR EXOR, GAOLP 2
X, DECX INSTRUCTIONS.
ADD WOL TO X INA, iR, OCA, OCB.
SUB WOL FROM X TAX, TXA, TOX, TXB

REGISTER OPERATE

CLEART,SET
AU BT

S
BY SHIETING IN
ABITUAKING Sase

OF 2| TRANSFER X TO
3. A OR 8 USING

OF4| U REGISTER AS.
OF6) MODIFIER
————— —_—
' E o0c
OEF)
o\
]
LOAD TWTH
VARIABLE WD T0 FY IAND
LENGTH PARAMETERS |
=
ADD OR SUBTRACT | onol
&'&k‘e’.ﬁ? % | Sl:ﬂog&‘l;m‘swm
T e SNG [utes + 1wt C JooC) UOCEIER " CREMENTAOR .
OOIFIER - AS MODIFIER FORMAT FOR REGISTER
\TE 1! TONS.
7 6 5 32 18
o7 SUB OR
0P CODE = 4 Exom N
GROUP 1
INDEX CONTROL
IN GROUP 1
* 0=GROUP |

S6¢

1043109 *| € a.nBi4

JUMP TO SET
QVERFLOW ROUTINE
WORD LENGTH AND

r
|

-nl TO SELECTE

.
D ROUTINE
EINT

GROUP 1

HLT, TRP, ESSW,
PMP. DINT, EINT
DRTC, ERTC

ERTC

117

[

1

r
|

I e
- 11

3
1

ll!E

DRTC
M} 110 I
DISABLE ENABLE DiSABLE ENABLE
INTERRUPT INTERRUPT REAL TIME reaLTiMe [123
SYSTEM SYSTEM cLocK CcLocx
j:m R ‘121

SET MEMORY
PAGE NUMBER IN M
REGISTER

CONDITIONAL JUMPS

TEST FOR OVERFLOW TESTFORAOAB =0

v Tooaientay 2 1
145§ POINT WITH NGF [T

1
seLcT
NOP H 9 S]Am"
) NEGATIVE COND TEST |

T
t UBING MOVE INST WITH
UMODIFIER !
o | L,

[MovE INSTRUCTION
SELECTING U ReaisTen |
MOD WITH A . l_

Ll
1

. —w AL, T]158

W T - clie

Ay Ygm Au,T e

Wl T —em € |20
5

TN 1
139 * o — W), ¢l

1

1

|

HIE

| Jovis T—wovfisa \ J 30 fugl + Lo~ iU, C
178 \

REGISTERS
SELECTED CONDITION FLAG JUMP TABLE
"\ UPDATED FOR 2ERO TEST VALVE FUNCTION
[OVERFLOW
1 A = ZERO
2 8= 2660
3 X = 2€R0
COMPLIMENT |] : B Ngg

L] A-B

SET FOR CONDITION MET | 7 A=X

L OR NOT MET

140
ADVANCE P COUNT TO |
REFERENCE POINT | 141

NO, SKIP L

—— ,
TEST FOR SKIP “

e gk __J
ADD RELATIVE'Jump TEST FOR IN PAGE
ADDRESS TG #

Figure 32. Conditional Jumps
296

SMIFTE

opnoaOang 18A SH
ol - 8 RETURN
—— MovE or COPY OF OP CODE
END AROUND CARRY we]t w0, | cODETOOU f,\{ SHIFY COUNT
OO elseumoes
| " set nerunn ron
CONCURRENT 1/ SECAUSE
SHIET ROUTINE CAN 8E
AEAD SHIKT Pt i—e PLA op INTERRUPTED FOR
counTeRoMcore Lhpe s o pu m] 152 CONE - 110
(READ)
AL ——a- u | 167
1 BETUFOR A
REGSHIFT
©, 180
sETUFON S re
REGEHIFT | g -0 REGISTER
0
1620 T ———= 0 |1 wove siey count 10
] [p—ry OL, AND COMPLIMENT
== ———-= -._‘u_
! < ONCURREN: INTERRUPT FOR
| ¢ | CONCURRENT
| fos W0 REGUES | 10 PROCESSING
1 w© o
L il kTl
INCREMENT
O+ 1~—= 0, | SHIFT COUNT AND
- RESET LINK
aoc 167
N,
COUNT TEST FOR LAST
AN e N\ NEOATIVE SHIFT VALUE
es
160
188 07, .
<& ves
LOGICAL LEFT LOGICAL
SHIFT BHIFT 164 SHIFT
<4 o
18C
[SETLINKWITH goo
A OR B REGISTER SET LINK WITH
Wul @ a— LK Ms8 We] @ e LK AOR 8 REGISTER
MSB
Fe——F==3
1079 Ry @ + Limiuun | e———1-sHirT 4 08 & OEPENDING
m lorafuiio s cemwp] | ON COMMAND
188
————rd—g
i

i
172 hyur @ « Lk tUu)
11gy Jiowi @ e kS0

SHIFT ro?nnzﬁn?uﬁuq

ON COMMANI

SHIFT B LEFT
ON LONG SHIFT

Figure 33.
297

Shifts

SHIFT 8 ON LONG
I~ RIGHT SHIFT

BOOTSTRAP LOADER

e toac)
T T
FEREIEL, m|ime—r | T
wﬁs O S SET 10 (BIZE) ——- PL | FORSERIAL O FLAG

%EFT'FOR STATUS BIT
. ARALLE!
w—-T INTERFACE ~
| sTaNDARD BYTE
INPUT ROUTINE
170
L. TEST"
STATUS BIT
SET DEVICE &
FUNCTION CODE FOR
00— T PARALLEL TELETYPE
INTERFACE
TEST FOR SERIAL V3
PARALLEL AND INPUT 188
USING EITHER SERIAL
TELETYPE INPUT 18C
IOUTINE OR PARALLEL
TELETYPE INPUT 1METC
ROUTINE
AL-———m AT J 181 STORE A BYTE AND
Pe -Vt PLin DECREMENT # COUNTER
92 AND N REGIS]
AWRITE}

184

TEST FOR LAST
BYTE LOADED

m

RETURAN T0 ANIS
WHICH BYPASSES
INTERRUPY TEST AND
INCREMEN

P COUN'

Figure 34. Bootstrap Loader
298

MICRO 810
INPUT/OUTPUT OP CODE
FORMAT

48IT5 1 8IT 3BITS -

INPUT - QUTPUT

MvALUES N\ INPUT -0 188
e —
2-
. 3 THE NOP CODE USES
3= MEMORY ANHIF NO O THE NOP CODE USES
CODE (3X) AS THE
171 ROUTINES
“ READ 2ND BYTE OF
THE INTERCACE DEVICE
THI
& FUNCTION CODE AND 1
SET AETURN ADDRESS 1
NG .
MODE 0 = SERIAL
INPUT/OUTPUT
Ser COXX
118 CONTROL OUT NO O
P NEXT I
BAONS ! i
CONTROL PULSE |
1
| 18F —— 2 CLOCK DELAY
COXX RESET
DIXX
DELAY
§ 1Ap 030 1
INPUT |
RESET DIXX !
2 !
—————— ey 247 | GET QUTPUT BYTE
r TAQ H r | FROM MEMORY
| or—e oo, mian)
INPUTTO A | [——) (READ
| (ANH —- 81 i
i ey
| Ep———
L- TAD| ~ -
r — GETOUTPYT SET OUTEUT
| 1ae| Byt FROMA BYTEFROME
invuTTOB | raft
{880 NS
DOXX PULSE
| CLEAR ANDEXIT
1g0 | BY LOADING L
e WITH ST
b | i
Roavre lL.___....._._J
INMUT BYTE |
TO MEMORY| 9o
| '
i 00 E e
] 1Y Syempenymqueguepnd 1}
e e e o e o STORESVIE

Figure 35. Input-Output
299

P } DELAY COUNT

O

0, 81T COUNT

57 EXIT FROM DELAYS
51 EXITFAOMSIO

SAMPLE INPUT LINE TO TEST
FON SPACE CONDITION. KEEF
SAMPLING UNTIL SPACE

A CHARACTER

DELAY 1 AND

L
ARE MECHANIZED BY THE SAME

DELAY ROUTINE NAVING
ENTRY POINTS AS SHOWN ON
THE NEXT PAGE.

occy
SIGNIFYING THE BEGINNING OF

SERIAL TELETYPE ——————g = —
ur
count!
| 103
No
uTeuT
SPACE
SETBIT (RETURN) S7
OUNT = 9
c8

1

| se7 71M& DELAY TO CENTER
1 OF START BiT FOR
IIC| SYNCHRONISM (1/2 BIT TIME}

I
| NESTED DELAY LOOP TO
CENTER OF START 81T

LNABLT
SFRIAIL

s BAMPLE INPUT LINE

SETS M58 IN AL REGISTER
REPRESENTING THE VALUE OF
THE TTV LINE WHEN SAMPLED
THE MSB I5 PRESET TO 1IN
ROUTINE,

e —

Figure 36. Serial Teletype

300

SER
AOUT

AL

N

oUTPUT
E

SERIAL TELETYPE DELAYS

90— |

T OUTER

00P GOUNT
(o)

SET INNER

LOOP COUNT

1cA

DECREMENT INNER
LOOP. SET COND
FLAGS,

DECREMENT OUTER
LOOP COUNTER

——

. oL

O t—mO.C

[—— 1,C

DELAY COUNTER
ol
0, 8IT COUNT
52 EXIT FROM DELAYS
1ce 81 EXITFROMSIO
107
DELAY IS ACHIEVED
&Y NESTEO LOOP
108
INNER LODP
DONE?
1c8
10
JUMP REPEAT
RETURN TO BOOTSTRAP

LOAD, OR ANI VIA
INPUT/QUTPUT ROUTINE

0y-1
ALOHT —- A._

1

1/0 CLEAR
87 —e L)

DEI:I\!MEM' SHer
COUNT AND
WABTTON

CLEAR 170 BIT AND
RETURN TO SAMPLING

VO CLEAR 15 USED

FOR OUTPUTTING

SORIRE DATA

Figure 37. Serial Teletype Delays

301

BASED ON TEST OF FOQ IN ANI

INTERNAL INTEARUPT ! R
TEST IN COLD START INTERRUPTS
)
IWER

THIS RESETS INTEANAL INTERRUPTS

PO ND YES,
<FAIL N cior) 123
PROGRESS ()

1F8

QUTPUT 10AK WHICH CAUSES
ExveanAL DEVICE TO INPUT
175 ADDI

I

|

| El 1 POINTERS

| 1

L0AD POINTER FOR |
SET UP TO RECEIV E EXTERNAL

POWER ON ROUTINE | DC INTERRUPT POINTERS

TS
10 CLEAR
INT1) 108

|
|
1
1
1

N ODE

r LOAD IN"ERRW"FOINTER N
| AND FETCH INTERRUP!
o FIOUTINE POINTER

1€l
1

-
GO BACK AND) READ SAME
INSTRUCTION QVER AGAIN
USE RETURN W MICHOFROGIAM
SUSROUTINE T
INTERRUPT IW‘NNE

| EFFECTIVE PRIORITY
| LADDER FETCHING

RTC SOFTWARE INTERRUPT ~ I mTERNAL INTERRUPT

|
] IF TWO INTERNALS
COME AT ONCE. IT
LOOKS LIKE ONE

20€

l [}
mALﬁ WhiTE)
2004y T,

(208 THALF HEAD)

UPDATE
COUNTER REGIST! LE

| 208

[~ BET POWER FORE FLAG
IN OV GET PWR FAIL
POINTER

ATC POINTER

N ANY OF INTERRUFTS
IN THE VERTICAL LINE

Figure 38. Interrupts
302

CONCURRENT INPUT/QUTPUT

ENTRY POINT FROM NORMAL INTERINSTRUCTION
CONCURRENT 1/0 TEST SUBROUTINE

ENTRY POINT FROM MULTIPLY,
DIVIDE OR SHIFT SUBROUTINE SET INDIRECT RETURN TO GO BACK.
TO RNI SUBROUTINE

SET DEVICE
ACKNOWLEDGE.
NOP

ACKNOWLEDGE AND INPUT
DEVICE ADDRESS
SET FOR PAGE 0

SHIFT DEVICE ADDRESS LEFT TO
MULTIPLY BY TWO AND GET CURRENT

1/0 CORE MEMO!
DATA INPUT CYCLE
T
V238 [sevpara RETUAN TO ANI
Posc | WNeUTUNE feb SUBROUTINE
NOP
|
1 I
I — I=n
230 3-S5, N FETCH DATA] u P, 230)
! WRITE) PL =L
OUTRUT BYTE_- L >PL.
|23 TeT ! 1 2% |

| I —— p————

SET DO)()(———‘—'I|

222 ENTRY FROM OTHER

INTERRUPT OPTIONS 180 | S e ANAL BRVIC

TO EXTERNAL DEVICE

INCHEMENT DATA ADDRESS
CLEAR I/0 CONTROL CODES CLEAR

RETURN TO MICROPROGRAM ADDRESS
PRIOR TO ENTERING CONE 1/0 ROUTINE
|
FETCH AND ADJUST CURRENT.
UPPER ADDRESS

1. 1) N
WRITEY

uesmne CURRENT UPPER, GET ENDING S3 T
OWER AND COMPARE CURRENT TO END I 22A {HALF WRITE) 11N GET END UPPER
121N (READ Aoty COMPARE CURRENT
] 223 53 - Te! C 1. AND END UPPERS
22€ J
ADJUSTING C\)RRENT ADDRESS AND COMPAR!NG

TO END ADDI

STORE CURRENT LOWER
GET CURRENT UPPER

Figure 39. Concurrent Input/Output
303

MICRO 810 ASSEMBLY LISTINGS

The assembly language program with machine code and comments is in-
cluded for reference from the flow charts. To illustrate the flow of micro
commands for 810 operations, the dotted line flow is for a load A register
direct relative address mode instruction.

Load A Direct Relative Address Mode
For this example, the op code in MICRO 810 machine language is:

0200 E1
0201 18

The E signifies ioad,
The 1 in binary is 0001
|

Fixed Word Length Direct Relative

The 18 specifies a relative address 18 hex from the P count of the next
instruction, which is 0202 + 18 = 021A,

in the RNI loop the op code, E1 is fetched and tested for memory refer-
ence. E 5 means memory reference. Therefore the operand address
mode is entered. The 1 says direct relative, so the relative address 18 is
fetched from core and added to 0202 and the resuit, 021A, is placed in the
operand address register.

Then the microcommand jumps, via the jump table at 100, to the memory
reference routine, entering at LDA. The 1 in the Op code signifies fixed
word length (two bytes) so two bytes are fetched from core, starting at
the location in the operand address register (021A) and placed in the A
register. Then the microprogram returns to RNI to advance the P counter
and fetch the next instruction.

The sequence of both of these examples can be seen by following the solid
or dotted flow lines on the listing.

FUNCTION FLOW EXAMPLES OF A MICRO 810 INSTRUCTION

Load A direct relative .
Machine Code of MICRO 810 Instruction Stored in Memory:

01FF 34 No op
0200 E1 Load A Dir. Rel.
0201 18 Rel. Address

304

The instruction is located at P=0200 in core memory. For the example it
is assumed that the previous instruction was a no Op, and there were no
interrupts, or concurrent /O requests. Therefore, the read next instruc-
tion routine will be entered at RNI. '

The MICRO 810 instruction bit configuration is as follows:

E 1
1110 0 001
[1 ('
““Load” Fixed Mode 1
Op Word Direct
Code Length Relative

The relative address ‘18’ is a positive displacement. This instruction will
cause a 16-bit number located at 021A to be loaded into the A register
(files 4 and 5).

The basic functions (omitting tests and skips) for implementation of this
instruction within the MICRO 800 are shown in the following flow chart:

Enter

RNI

® Get instruction Op code (E1) from memory.
® Calculate and save Op code Jump Address.
® Jump to operand addressing routine.

OPERAND ADDRESSING

® Get address byte.

® Calculate effective address (021A) of operand.
® Save in operand address register (files 8 & 9).
® Jump to Op code jump table,

!

OP CODE JUMP TABLE

® Jump to ‘‘Load A" part of memory
reference routine.

!

MEMORY REFERENCE ROUTINE

® Set U register for copy T to file 4.
® Read data byte #1 from memory
(Loc 021A) using address calculated in
operand addressing routine.
® Read data byte 2 from memory (Loc 021B).
@ Transfer data to A register (f4, f5).

Return to RNI

The sequence of micro instructions is traced out in the following coding
which was lifted from the MICRO 810 Firmware reference manual.

306

EXAMPLE

LOAD A
DIRECT -~
RELATIVE

IDENT Maio0

.
« MICRO 810 SYSTEM
.
* FILE ALLOCATION
Fo EQU 0
1 EQU 1
XL EQU 2
Xu EQU 3
AL EOU 4
AU EQU 35
BL E0U 6
By ECU 7
oL ECU ¢
oy €Qu 9
PL EQU 10
Py €ou 14
S1 EOU 12
Sz £oU 13
53 EQU 14
oy €0y 13
fi g 1
S12E EOU 0
ORQ [
»
a READ NEXT [NSTRUCTION
RNID CM v
LF PU, X100’
LF !L.x'nn'
1z ‘10
P
K
T
-JP]
RNIL LF ov.X180"
RNIS MM Py
RNI4 RN PL
JP RNIS
RN N PL
RNI3 RM PULL
RNI2 Tz Foxres
Je INY
RNIG [1,7
LF 84,0TAB+16
KTe 1,2
A 84,7
cP 1,X040¢
X s

M
® YES, GEY OPERAND ADDRESS
.
. gPE!AND ADDRESSINO
1)

ADD

ADRY
ADR2

ADR3I
ADR4
INDX

ADRS

INDL

ADRS

ADRY
[S34

1,X'04!

ou,x'80°"
h
ou,x'80°
X

CONDITION FLAGS
INSTRUCY.ION REGISTER
INDEX REGISTER

ACCUMULATOR

EXTENDED ACCUMULATOR
OPERAND ADDRESS
PROGRAM COUNTER
TEMPORARY STORAGE

OVERFLOW AND WORD LENGTH
USED WITH EXECUTE FOR ODD FILE
SIZE OF BASIC LOADER

BOARD 1

CLEAR OV/W AND W REGISTERS

CLEAR P COUNTER UPPER

CLEAR P COUNTER LOWER

INTERNAL INTERRUPT

YES, JUMP TO INTERRUPT ROUTINE

ENTER SENSE SWITCHES

SWITCH 4 ON

YES, LOAD 8007 STRAP PROGRAM

CLEAR OV/W REBISTER

MOVE P UPPER TO M REQISTER

GET 0P CODE (FJRST BYTE OF INSTRUCTIOM)
IGNORE INTERRUPTS (FOR SOHE INSTRUCTIANS)
UPDATE P BY INCREMENTING 1T

FETCH INSTRUCTION BYTE

TESY FOR INTERRUPTS

SERVICE REQUEST BY JUMP TO INT, ROUTINE
SAVE OP CODE STILL INT AFTER FETCH

BASE ADDRoié T0 CLEAR ONES IN SHIFTED 0f
SHIFT RIGHT 4

ADD BASE ADDRESS TOQ SWIFTED QP

MEMORY REFERENCE IF 0P .GT, 5F

NO, GO DIRECTLY TQ JUMP TABLE

CLEAR OU AND T

MoLT, 4 (FIRST 4 ADDAESSING MODES)

NO, MODE .GT,

GET ADDRESS BVTE FQR PAGE 2ERO OR RELATIVE

$ET CONDITION CODE FOR S1GN OF DISPLACEMENT
PAGE ZERQ ADDRESS MODF

YES, JUMP TO INDIRECT TEST

ADD RELATIVE VALUE

TRANSFER RELATIVE VALUE TO OL AND N
DISPLACEMENT NEGATIVE (C SET AT 018)

YES, JUMP TO NEG, DISPLACEMENT CACCULATION
ADD CARRY FOR PAGE BOUNDARY

TRANSFER RESULT To oU

[NDIRECT ADDRESS MODE

NG, EXIT TO JUMP TABL

READ UPPER BYTE OF lNDlﬁECT ANDRESS
ADVANCE POINYER TO LOWER RYTE

GET UPPER ADDRESS BYYS (READ AT 026)
READ LOWER BYTE OF INDIRECT ADDRESS
GO CHECK FOR POST INDEXING

BORROW FROM UPPER ADDRESS

GO YO INDIRECT ADDRESS ROUTINE

M ,EG, 4 [INDEX MODE

YES, 6O 10 INDEX ruNcY!on

ADVANCE P COUNT

GET 2ND BYTE OF INS1RJCT10N FROM CORE
" 'EQ. 5 INDEXED WiTH BIAS

" EO. 6 EXTENDED ADDRESS

GET UPPER ADDRESS BYTE (READ AT 031)
ADVANCE P COUNTER

GET 3RD BYTE FROM CORE

TRANSFER 3RD BYTE T0 1L

INDEXED (RIT §5 .EQ. 1)

NO,» EXIT

REMOVF BIY BY CARRY QuT, LEAVING A ZERQ
ADD X TO ADDRESS FOR INDEXIN

MOVE X INTD OPERAND ANDRESS REGISTER

EXIT TO JUMP TARLE
GET BUAS (T ,EQ., 0, WHEN ® .EO, 4)
JHMP,RTJ,IRM, OR 0BM (TEST NON LITERAL MODF)
YES
LITERAL MADE .
MOVE P T0 OPERAND
ADDRESS RFGISTER
FIXED WORD LENGTH INSTRUCTION

YES
VARTABLE WORD LENGTH MODE

04E 1103 LY X103+ SET MASK TO SELECT WORD LENGTH

04F EF29 NTs OV,T WORD LENGTH TO T REGISTER
050 8A20 ADRB A PL,T ADJUST P FOR NEXT INSTRUCTION
051 8880 . A PUSL .
052 CCo% MK s{ EXIT TO JUMP TABLE
053 1101 ADR9 LT Xvoet 1 TO T FOR ADDING 1 Y0 P
054 1450 N ADRS WITH FIXED WORD LENGTH TYPE
.
< « MEMORY REFERENCE
| 055 1684 LDA Ly x1Ba* SET U WITH LOAD (COPY) OP CODE
=056 145C JP MR GO Y0 READ OPERANDS
057 16E4 ANA w XVE4Y S$ET U WITH LOGICAL AND OP CODE
058 145C JP HRY GO TO READ OPERANDS
059 1694 584 w X194 SET Y WITH SUBTRACT OP CODE
054 145C JP MRY GD T0 READ OPERANDS :
038 1684 ADA LU X184° T U WITH ADD OP CODE
—~08C A902 MR1 /M oy READ BYTE FROM MEMORY
—=05D 5108 ™ 1. X108 VARIABLE WORD LENGTH
L =—05E 1461 JP MR2 NO, (FIXED LENGTH OPERANDS)
05F BFo1 . ™ ov,X101! W (EQ 0 OR 1 {2 BYTES HMAXIHUM)
060 1464 JP MR ES
=061 BC20 HR2 ¢ 84,7 GET AN OPERAND
=062 8843 N oL ADVANCE OPERAND ADDRESS mn
=063 A982 RM UL READ NEXT BYTE FROM MEMO
|-~064 8000 MR3 A Fo RESET LINK FOR COPY u.om) FUNCTION
063 5108 ™ L.X'08° VARIABLE WORD LENGTH
066 1480 JP MRS NO
D) 067 5F02 ™ ov.xta2 W LT, 2 t2 BYTES MAXIMUM)
068 147 JP MR7 YES -
069 BD2¢ c S2,7 GET AN OPERAND
06A 8843 IN oL FETCH 2MD AND 3RD
068 A982 RM ouL OR 3RD AND 4TH
06C BE20 . c s8,7 GET AN OPERAND OPERANDS NEPENDING
06D BBA3 N oL - . ON WORD LENGTH
06E A9B2 RM ou.l. i
06F 6000 A RESET LINK FOR COPY (LOAD) FUNCTION,
070 0620 E m..z OPERATE ON AL (ruucnm« wwn
. 071 CE01 MT s3 MOVE OPERAND T0 T
072 07A0 E 8U,10 QPERATE ON BU (FUNCTMN N
073 C0O1 MT s# MOVE OPERAND TO
074 0080 E Fo,11 OPERATE ON AL
07% SFo1 MR4 TN OV,X101" u .Eo. 8 OR 2 (1 OR 2 BYTES)
- 076 1482 Je HRY
077 CCo1 MRS M 81 novE OPERAND TO T
78 0180 € Fi,11 QPERATE ON AU OR XU (FUNCTION IN 1)
079 5001 ocx ™ Fo.x'01' OVERFLOW SET
RETURN 074" 140C P RN . NO
TO RNI 078 1104 SET LT X104t SET MAS
07C CF20 SoF 0 ov,T SET HH N ov
070 140C JP RNI
076 0030 MR?7 E F0.3 OPERATE ON AL (FUNCTION IN U)
©® o7r 1475 JP MR4)
080 0020 LLT] E F0,2 OPERATE ON AL OR XL (FUNCTION IN W)
081 1477 JP MRS
082 2500 MR9 LF AusX'00* CLEAR AU : SIGN EXTENSION
083 4480 12 AL X80 RESULT POSITIVE }ron VARIARLE
084 €560 0 AT, F FF T0 AU WORD LENGTH TYPE
085 1479 JP 0EK
086 1682 LDX L x182* SET U WITH LOAD X (COPY) 0P CHDE
087 5108 ™ 1.X008¢ STORE :
088 145C JP MRY NO, GO READ OPERANDS
089 16A2 4] X1A2! SET U WITW STORE X OP CODE
08A 2100 ST LF 1.X100°" CLEAR 1 FOR STORE OPERATION
088 1480 P ST1 G0 STORE OPERANDS
08C 1644 ST Ly X4t SET U WITH STORE A OP CODF
08Dp ceo2 ST1 L1 ou .
08 3108 ™ IeX'08" VARTABLE
08f 1492 e sv2 .]
090 S5FO1 ™ OV, X*01¢ W (EQ. O OR 2
091 1495 JP ST3
097 0111 sT2 (34 Fieg STORE UPPFR BYTE USING EXFCUTE WITH U MAD.
093 8843 N oL INCREMENT OPERAND ADDWESS REGISTER T0 2np
094 8982 AN oU.L OPERAND BYTE
099 0011 sT3 ET Fo.1 STORE LOWER HYTE
096 5108 ™ 1,X108" VARTARLE
097 140C JP RN NO
098 3F02 ™ ovextoz W .En. 0 0R 1
099 140C P RN ¥
094 1646 L XVA6" SE 1 U WITH STORF H OP GODE
098 8843 IN oL INCREMENT OPERANU ADDRESS REG1STER
o9cr 880 A oUsL
090 1484 4P ST4 Go svnm: R REGISTER
09€ 1600 IWH LU X1e0* CLEAR U
09F CL60 [S2,T.F SET FOR DECREMENT
0AD 5108 ™ T,X1QA* TEST FOR INCREMENT
0A1 BD46" ey s2,1 SET FNR INCREMENT
042 8848 INe OL
0A3 ASAA RM# . OU,L,H MALF READ OPERAND 10 T RERISTIR
0A4 BC29 ATe S2,T ¢1 OR =1 FOR INCREMENT OR DECREMENT
0AS AC?77 WS S1,0.H WRITE AND DECR $2 IF aN [NCREMENT WaS DONT
0A6 €803 MN oL
0A7 A922 RM 0UH HALF READ UPPER HYTE TO T
0A8 BCAL AT 82,L,T\C ADD CARRY TO UPPER BYTE AND SFT COND, FLG.
0AS 4030 W FO,H HALF WRITF
0AA 1479 e ock CHECK FOR OVERFLOW
.
« JUMP AND RETURN JUMP
0AR D160 JHP X 1,T,F COMPLEMENT INSTRUCTIO'N REGISTER
OAG 4107 12 1,X197¢ M LEQ. 7 EXTENDED INDIRECT
0AD 1485 JP JHL NO
OAE A9D2 RM ou READ UPPER RYTE OF INPIRECT ANDRESS
0AF 8840 1 oL INCREMENT OPERAND
080 8982 AM ousL ADDRESS RFGISTER
081 R920 C.. ouY GET HIGH RYTE WHICH 15 IN
082 A803 RN oL READ LOWER BYTE OF mnlﬁerr ANDRESS
083 2C18 LF §1,PTR3. SET INDIRECT RETURN
ogs 1439 JP INpL CHECK FOR POST INDEXIMG

JHL Tz 1,x108"
JP M2
1 PL
Ryr AT PUL
WM au
N oL
NM oust
MY PL
1 oL
AM ou.L
JH2 HT ou
[4.] PU, T
MT oL
c PL,T
JP RNI4
*
4 REGISTER OPERATE
RES cr L1
HU $1,1,m
1z 1,x'08¢
JP REGS
Tz 1,X'08¢
Lv xX110¢
Tz L.X'04"
JP 2
Tz 1.X'02"
JP ReG1
L4 BL
o0s AL.T
L34 BU
0s AULY
JP RNI
REGL MY AL
0s BL.T
MT AU
0s BU.T
P ANI
RES2 12 l.xvo2
LT X103*
NTs OV, T
AS XL, 1,7
AS XU,L.C
JP 14
REGS Tz 1.x'04!
AF l;.x'nz'
ny
3] l.K’G"
P RuQS
T2 1,X102
JP (] 1-1]
E ALod
E AU,
P (.13
REQ4 xS AL Y. F
Xs AUeToF
JP 1
RESS T2 1,%102"
Jr REGs
EY AL
[. ?
ET AU
c Xte?
JP Rw1
REGe MT XL
cs AL, T
L) Xu
cs AU, Y
P LLT}
-
- lXGHV SHIFTE
SR ou.x'8
NI-
HS FL LR
HS Fo.L.N
AL] ou.xte2t
P SHL
H BU,L,R
H BL./L.R
+P Sui
.
ORg 2%
.
e OP CODE JUMP TARLE
0TAB JP crL
Je
JP
JP
JP
JP
JP
JP
JP
JP
JP
JP
JP
N
N4
JP
-
* CONTROL
cTL 1z 1,x'08'
JP 1
HTe
LF S1,0T8L
AK S1.7
CYRL 1 PL

RETURN JumP

NO
ADJUST P FOR NEXT INSTRUCTION
AFTER RTJ INSTRUCTION

STORE PU STORE PROGRAM COUNTER
AT FIRST THO LOCATIONS
STORE PL OF ROUTINF CALLED BY

RTJ, TRP, OR (NTERRUPT
SET OPERAND ADDRESS T0
FIRST INSTRUCTIOM IN
CALLED SUBROUTINE AND
PLACE THE VALUE INTO THE
PROGRAM COUNTER TO BEGIN
EXECUTION OF THE SUBROUT:NE
RETURN TQ ANI

CLEAR T AND §2

LOAD U WITH AND 0P CODE (80)
GROUPL

NO

SUB OR XOR INSTRUCTIONS

YES

INDEX CONTROL INSTRUCTION

YES

A REG DESTINATION INSTRUCTION
N

B OR A4 TO A, USING U REG, MOD

OR
9 XOR A TO A, USING U REG, MOD

A DR BRYO B, USING U REG. MOD
ol
A XOR B TO B, USING U REG, MOD

WORD LENGTH CONTROL

YES, SET MASK FOR WORD LENGTH BITH

WITH AND COMMAND

ADD OR SUGTRACT WORD LENGTH, "NCREMENT
OR DECRENENY X (DEPENDING ON U REGISTER)
CHECK FOR OVERFLOW

B REOISTER YO BE MOVED OR MOD:FIED

357 U WITH BASIC OP CODE
INTER REGISTER TRANSFERS

YES

Cg:PLEHENT A OR B REGISTER
Y

ADD 1 TO INCREMENT 4 OR 6
ADD CARRY T8 urren BYTE

CHECK FOR OVERFLOW
411§ COMPLEMENT A OR B REGISTEM

X REGISTER SQURCE FUR TRANSFER
es

Y

AORBTOT

TT0X TRANSFER 1 OR

AOR D TOT DEPENDING ON U REG]SVER
T T0X

X707

TI0OAORS TRANSFER » T0 A OR
XT0T DEPENDING ON U REEISTGR
TTOAORS

LOGICAL SWIrY

NO, SET LINK WITH SI1GN

RIGHT 1 SHIFT RIGHT SHLECTED
RI1GHT 3 REGISTER (A OR W)
LONG SHIFTY

w0

RIGHT 1 SHIFT RIGHT

RIGHT 1 B REGISTER

REPEAT SHIFTS

BOARD 2

CONTROL

CONDITIONAL JUMPS

SHIFTS

INPUT/0UTPUT

REGISTER OPERATE

SPARE INSTRUCTION 0P CODE
JUMP AND RETURN JuMP
INCREMENT AND BEC“ENENY MEMORY
LOAD AND STORE
KULTIPLV/BIVIDE

ADD

SUBTRACY
COMPARE
AND

LOAD 4
STORE A

TEST FOR GROUP 1 OR 2
OVERFLOW. AND WORD LENGTH EXIT
SET UP JUMP TABLE VALUE

ADD WITH BASE ADDRESS

TABLE JUMP

HALT C(INCREMENT P COUNTER)

JP HLT
JP TRP
PTR3 JP JML
K AULL
JP RNI
MM AL
Jp PuP
LS X'04!
P EC:
LS X'08'
JP ECl
Ls xt1g'
JP Ec1
Ls X120
ECt IN PL
RM PO,L
P RN1S
(1 NT 8y
LS X400
JP RNT
HLT A PULL
HLTL LS X180°
JP RNIS
P2 LT XtFor
N ov,T
LA 1
N SOF

.
CONDITIONAL JUMPS
cJ Ly xXro7!

NT» 1,7
LF s4,JTBL
LU x102¢
[52,17
AKX S1,T
Jo TN OV,X'040
JP Ul
LT Xxto4' "
X ov,T
o g2
J3 NS Fo,C
MS FiuL,C
Cdt TZ Fo.X'04r
cJ2 X 1,7,F
€43 IN PL
RM PU,L
™ 1,08
JP RNI
AN PL,ILT
c FO.T.C
TN FO,X'A2°
JP RNI3
RN PU,D
JP RNI2
Js5 MS F1,C
TZ Fo.X'02°
P Cu2
WP CJ3

-
* CONDITIONAL JUMP TARLE
JIBL JUP e

L X100"
HU $2
JP Js
L X104t
JP J5
- LY X106¢
J7 MT AL
XSe Fa,T,C
“NT AU
XSe Fi,L.T.C
JP ¢4
.
* SHIFTS
SH MT 1
[oy, T
LF 51,8H2
IN PL
RM PUsL
Lu X104°
Tz ou,XtpLe
Ly Xto6'
c oL, T
X OL,T.F
SHy Tz Fo.x'08"
JP cio
SH2 1 oL
™ OL.X’OO'
JP
\£4 OU,Y 04’
JP
™ ou.x~ne'
HS#
™ ou.x'nz'
JP St
H HLL
H BU,L
SLt HS FouL
L FLoL
JP SH1

.

s BOOTSYRAP LOADER

LOAD K L.2

AF 1,x%08°
LF PL,S12E

Lom TN [,X'01"

JP
Lons LY xt20°

JHP TO KALT ROUTINE

TRAP INSTRUCTION (SAME AS CONSOLE INT.)

[ND FROM ADDR TO JUMP (NOT PART OF CONTROI)
ENTER SENSE SWITCHES

PROTECT MEMORY PAGE

DISABLE INTERRUPT SYSTEM

ENABLF INTERRUPT SYSTEM

DISABLE REAL TIME CLOCK

ENABLE REAL TIME CLOCK

SET P TO NEXT lNSTRUCYlON ADDRESS
AND FETCH INSTRUCTION @Y

BY PASS INTERRUPT CHECK

SELECTED PROTECY BITS TO T,

SET PROTECT STATUS

ADD CARRY TO ADJUST P UPPER FOR NEXT (NSTR,

‘stop cLOCK

SET MASK (TO SAVE UPPFR HALF OF OV/W)
CLEAR OV/W STATUS

PUT OV/W SETTING INTO T

GO SET NEW STATUS FOR OV/w

MASK FOR CONDITION

REMOVE OP CODE

BASE TABLE ADDRESS

SET FOR X REGISTER

SET TN SELECT A, OR B ON 7ERQ TEST
DO A TABLE Jump

QVERFLOW TEST

NO

OVERFLOW RESET BIT 7O T
RESET OVERFLOW RY TOGALING

" TEST LOW BYTE TEST A OR B WITH

TEST HIGH BYTE LINKED ZERQ TFST
RESULY ZERO

YES, FLIP TEST BIT BY COMPLFMENT

GET DISPLACEMENT WHICH IS 28D

BYTE OF INSTRUCTION

CONDITIDN HET

ADD DISPLACEMENT

LOOK AT T

T NEGATIVE

NO .

ADJUST PAGE IF BOUNDARY CROSSED

LOOK AT AU OR XU FOR SIGN TFST
NEGATIVE

NO

UVERFLDH
SET FOR A OR B

SET FOR A

SET FOR 8

COMPARE LOWER TEST FOR A=B OR A=X
DEPENDING ON U REA,

COMPARE

TEST aESULT OF COMPARISON

SAVE NP CODE IN OPERAND

ADDRESS REGISTER

SET ADDR FOR CONCURRENT 1,0 TEST

GET -SHIFT COUNT (2ND AYTE IN INSTRUCTION)

SET U FOR SHIFTING A “EGlEYER
TEST FOR 4 OR B SHIF

SET U FOR SHIFTING B REBISYER

MOVE SHIFT COUNT TO OL

AND COMPLEMENY IT FOR LOOP CONTROL,
CONCURRENT 1/0 REQUEST

YES (SERVICF CONC 1/0 DURING SHIFT)
ADD 1 TO COUNT AND RESET LINK

CgUN1 NEGATIVE

N

LEFT SHIFT

NO, JUUMP TO RIGHT SHIFT ROUTINE
LOGICAL SHIFY

YES, SET LINK WITH LOW ORDER RIY

LONG SHIFT

NO

LEFT 1 SHIFT B LFFT FOR
LEFT 1 LONG SHIFT .

LEFT ¢ SHIFT A, OR B LEFT,

LEFT 1 DFPENDING ON U
REPEAT SHIFTS

SHIFT RIGHT (RIGHTY JUSTIFY OP CODF)

REMOVE BITS BY CAUSING CARRY ON UPPER BITS
SET LNADER S]7€ ,EQ. 256

SER[AL MONE

SEI FOR STATUS IN

LF 5!-L002
P UN
Lope2 ™ lL-l'ﬂZ‘
JP LoD5
LT Xv00*
Lony LF 51,L004
JP INA
LOD4 MT AL
WN PL,D
12 PL,X'FF?
JF LoDy
JP RNIS
.
® INPUT-QUTPUT
10 £ 1,X'04'
JP RNI
IN PL
RM PUSL
LF S$1.10K5
INA ™ 1,x003"
JP sto
FUN K Fo.9
L xrpo*
JP jo1
101 K Fo.8
T2 1,x108°
JP uT
K Fo,14
JP 102
102 cv 52,7
K Fo.8
™ 1.x'02"
JP 10
™ 1.X'01°
JP 109
LF S1,103
JP INDX
103 ol oy
NT 82
JP ANI
104 [At,T
1044 MK St
10% c. BL.T
1oK5 i d RNI
our ™ 1.x'02"
JP 10
™ [,x001"
N3 010
LF 81,106
i INDX
106 RM oy
LF $1,104-1
JP 108
107 NT AL
108 K Fo.10
L Xego*r
Jp 109
109 KK 81,8
1010 M7 BL
JP 108
.
s SERIAL TELEYYPE
sio LF QU,X"0A"
T2 1,X708°
JP sout
D ou
s[04 LS X*0L?
™ FO, 140"
JP S$101
LF T.X'48*
\F 52,8101
JP DLY1
sie} LS Xroa'
Tz Fa,X'40"
AF AL,X'80°
JP DLY2
s100 " S2.L
™ $2,X'01°
SouT X Fo.11
WP $2,8100
LYz LF FeX'90"
oLYL LF VL X146"
DLt] oL,C
™ Fo,X104"
JP L1
0 1,C
™w Fo,x'04t
i oLYs
™ QU,X'OF"
HK S1
) ou
H AL, D,m
KK $2.8
.
® INTERRUPTS
INY Tz ov,X'80"
P RNT6
12 Fo,X'10°
JP INTO
1z Fn,xra8¢
P c10t
EXT K F0,13
LF oL/XTAD?
LM X101t
c 51,7
X En,8
[NTY RN $1
c QU

SEY RFTURM

GET STATUS
CHARACTER RFADY
NO

SET FOR DATA N
SET RETURN

GET DATA

SET DATA IN T
STQRE BYTE

DONE LOADING

NO

YES

NOP

YES

GET DEVICE ADDRESS WHICH 15§
SECOND BYTE OF INSTRUCTION
RETURN TO RNI

SERIAL MORNE

YES
CONTROL OuT
NOP COXX CONTROL
STROBE
CLEAR
INPUT
DATA 1IN
DIXX INPUT
GET DATA STROBE
CLEAR
ML EQ. 1 ‘1est FoR lNPUT T0 A
YES 03 INPUT TO
M .EQ, 2 OR INPUT TO nrnonv
GET STORE ADDRESS | SFT ADDF FOP INPUT TO
MEMORY 4NN STORF ayTe
STORE BYTE

PUT BYTE IN 4
PUT BYTE IN B

M LEQ. 1 TEST FOF QUTPUT §ROM
YES A, R, OF MEMORY

u LEQ, 2

YES

GET OUTPUT ADDRESS { FETCH QUIPUT
BYTE FRNHM MEMORY
SET RETURN

ATO Y
QUTPUT
NOP pOXX QUTPUT
STROBE
CLEAR AND EXIT

g0

SET BIT COUNT
INPUT

NO

ADJUST RIT COUNT FOR INPUT SAMPLING
ENABLE senlAL TTY C(INSUT & SAMPLE)Y
START BIT

NO, REPEAT SAMPLE

SET DELAY COUMT (220 M$)

SET DELAY RETURN

ENABLF SERIAL TTY
c

$PA

YES, REMOVE 81T

60, DELAY

GET LINK RIT

CURRENT 81T, A ZERD

YES, SPA

SET nsLAv,nEVUa

SET DELAY COUNT (220 “S)

REQUCE LOV COUNTER
CUUNTER ZFRO

REDUCF UPPER COUNTER
COUNTER ZER

BlT COUNTER ZERO

YES, EXIT

REDUCE BIT COUNTER
SHIFT LOW BIYT TO LINK
CLEAR AND EXIT (MARK)

POWER FAIL IN PROARESS

Y

INTERNAL

YES

CONCURRENT 1/0

Y

ACKNOWLEDGE

CLEAR OL 17AK INTERRUPY
SET FNR PAGE 3 ACKNOWLEDGE
GET ANDRESS STROBF
CLEAR

GET UPPER ADNUPESS

INTO
INT3

-INT2

2
1,X'04"
S1,%00"
1,x008¢
S1,X'88°
1,X010¢
S1.X'AA*
[.x120°
St.X'8C*

INTS

L,
1.X*80°
TRP

.
INDIRECT PQINTERS
PTR4 JP c102

(LT
PTR2 JP
B
oR6
.
& SECONDARY
sP, LS
MUL, JP
CPA, JP
.
- INTERRUPT
PHRF AF
LF
JP
INT4 LF
AN
ATe
[
RNe
cT
W
T2
P
Je
INYS LF
LF
P

cle

cio3

clo2

cl1o4

x

azrxacrx

HMUL3
oIvV3

512

OP CODE TABLE
X'80°*

MU
CPA

OPTIONS

oV !'.0‘

si,

83.,%190"

INTY

.
® CONCURRENT INPUT-QUTPUT
104 LF S{,PTR4

GET LOWER ADDRESS AND RESFT LINK
DO A RETURN JuMP

GET INTEHNAL SYATUS

CLEAR OL AND M

CONSOLE INTERRUPT OR TRAP
YES

SPARE

YES .

REAL TIME CLOCK

YES

MEMORY PROTFCT

YES

MEMORY PAR]TY

YES

nFnonv ROUNDARY

Pﬁusw FAIL

CONSOLE HaLT

Y

REAL TIME CLOCK

NO

GET INTERNAL STATUS
POWER RESTARTY
NO

INDIRFCT FROM C10 OR [0 Th cin2
INDIRECT FROM CI0 TO “ULVIPLY
INDIREGCT FROM CIQ TO PIVIRE

BOARD 5
SPECIAL (ERROR HALT)

MULTIPLY/NIVIDE
COMPARE

(PWFI/RESTART aND RT()

SET FLAG FOR POWER FAIL

SET COUNTER ADDRESS

GET LOWER HALF OF COUNTER
ADD L AND SEY COND CODE

PUT BACK

GET UPPER HALF OF COUNTER
ADD CANNV AND SET COND COOE

PUT BAC

COUNTER ZERO

YES, GO T0 SERVICE ROUTINE
NO, GO RE-FETCH INSTRUCTION
CLEAR OL

SET ADDRESS

INDIRECT RETURN ADDRESS FROM
CONCURRENT 1/0, ENTERE

FROM NO‘HAL INVER"UPT/CONC 10
TESY ROUTIN

ACKNONLEDGS REQUEST

NoP
SEY FOR PAGE ZERQ
GEY ADD

ABJUSY AND REMOVE 1/0 FLAG BY SHIFTING
GET CURRENT ADDRESS LOWER

GET CURRENT ADDRESS UPPER
lNPUY (TEST OVERFLOW COND. FLAG.)

CONCURRENT
170 ACKNOWLEDGE
STROBE

READ OUTPUT BYTE FROM MEMORY
WAIT FOR DATA {DELAY)

QuTPYT

DELAY DOXX STROBE FOR
ADJUST CURRENT LOWER CONCURRENT QuTPUT
CLEAR

SET FOR PAGE ZERO ICONC XIO POINTER)
GET CURRENT ADDRESS UPP|

ADJUST (ADD CARRY)

PUT BACK

GET ENDING LOWER

COMPARE LOW BYTES

STORE CURRENT LOWER

GET CURRENT UPPER
GET ENDING UPPER

RESULT .LT. 0 (LINKED ZERO TEsT)
GET YO SECOND PAGE TO E
ADJUST DEVICE ADDRESS
PUT IN FUNCTION CODE
OUTPUT FROM 1A' COMMAND
DISCONNECT DEVICE

END OF BLOCK
DISCONNECT

GET CURRENT INSTRUCTION

INPUT

NO CONCURRENT DATA
STORE INPUT DATA INPUT STROBE
GET [NPUT BYTE

PART V

SYSTEM DESIGN PROCEDURES USING
‘ MICROPROGRAMMING

314

INTRODUCTION

Computer system design is greatly simplified by adherence to a basic
sequence of activities. Each step is essential to the overall success as
thoroughly as possible to simplify subsequent steps and to reduce the
amount of revision to previous steps. Many of the procedures listed below
appear to be removed from the computer considerations because they
deal with the system as a whole. However, it turns out that to obtain full
advantage of the cost savings and system enhancement capabilities of
a microprogrammable processor it is absolutely necessary to start consid-
ering the computer characteristics right at the beginning during the pre-
liminary system functional definition phase.

Outline of System Definition Procedures

1. System Functional Definition:

Operations

Inputs and Outputs

Control Functions

Basic Functional Units/Tasks

2. System Configuration Definitions:

System Block Diagram
Basic Data Flow Definition
Subunit Functional Definitions

3. Detailed System Performance Specification:

Data Rates

Accuracies .

Data Processing Functions

Data Formats

Number of Channels :
Characteristics of Peripheral Devices

4. Interface Specifications:

Number of Lines
Data Rates

Interface Procedures
Status Lines ’
Control Lines
Control Codes
Device Addresses

5. Program Specifications:

Processing Functions

Data Rates

Data Characteristics

General Subroutine Definition

Mathematical Function Definition
Nonmathematical Process Definition

Input and Output Data Content and Formats

3156

6. Tradeoff Analysis:
Software
Firmware
Hardware
7. Processor and Interface Hardware Specifications:
Architecture
Number of Lines
8. Software/Firmware Program Specifications.

9. Detailed Program Functions, Analysis and Definition:

Top Level flow of System Program
Algorithm Selection and Definition
Memory Allocations

Interface Address and Functions Assignments
Subroutine Hierarchy Definition
Determination of Data Tables, Pointers, etc.
Coding, Assembly

Preparation of Diode Map

Prepare Read Only Memory

Prepare Software Programs (if any)

System Checkout

These steps are considered only in their relation to the programming re-
quirements. There are many other steps related to hardware design and
component selection that are not covered here.

To illustrate the preceding points a generalized example of a computer
system has been selected. This system would typically be used in a moni-
tor and control system. It has the following functions:

Multichannel Analog Input

Dual Channel DAC Output

High Speed Paper Tape Reader for Entering Programs Locally
Communications Channel for Remote Status Reports
High Speed Printer for Local Status and Data Printout
Status Switch Closure Monitor

Control Relay Output

Operating Mode Control and Status Display Panel
Core Memory for Data and Storage Instruction

Real Time Clock and Power Fail Detect Option
Computer

Read Only Memory -
" 316

1. System Functional Definition

In this section the following functions are defmed for the example
system:

a. Operational characteristics of system to be controlled:

Block Diagrams

Graphs

Transfer Functions for Control equations
Timing Diagrams for Response Time
Sequence Diagrams for Control Algorithms

b. Function of each Analog Input Channel:

Range

Rates

Accuracy

Relation of Data to System Operation
Signal Profile

¢. Function of each Analog Control Channel:

Range

Rates

Accuracy

Signal Profile

Effect of Data on System Operatlon

d. Definition of Status Switches:

Functions
. Rates to be Monitored
Meaning
e. Control Relay Functional Definition

Latch vs. Non Latch
Effect of Each Relay on System Operation
f. Communications Requirements

Message Characteristics
Data Rates

Hand Shaking Procedure
Formats

g. Panel Control and Display Functions:
Number and Meaning of Control Switches
Quantity, Type and Meaning of Status Displays
h. Printer

Messa'ge Formats
Printout rate
Message Line Size

317

2. System Configuration Definition

The System Block Diagram for the controller is as shown in Figure 40
with basic data flow indicated on the block diagram as well as subunit
functional definitions.

3. Detailed System Performance Specifications
Typical factors which affect the programming are as follows:

ADC Conversion Accuracy (Number of Bits)
ADC Sample Rate, and Conversion Time
DAC Update Rate
Code Conversions
Scaling Requirements
Curve Fitting Characteristics
Transéfer Function Calculations
Averaging
Communication Link Requirements

Rates

Formats

Controllers

Handshaking

Polling Procedures
Printout Message Requirements
Processing Variations Relative to Status and Control Panel Inputs
Control Point OQutput Requirements
Initialization of Cold Start Requirements

_____ CONVERSION
Mux ADC COMMAND

CHANNEL PRINTER I I
DATA k CORE MEMORY

READ
ONLY
MEMORY

1/O INTERFACES COMPUTER

— PAPER
TAPE

READER

STATUS SWITCH CLOSURE

COMMUNICATION REAL TIME CLOCK
LINK POWER FAIL DETECT

RELAY CONTROLS -

«

Figure 40. System Example Block Diagram
318

4. Interface Performance Specifications

After the peripheral hardware has been selected and defined in detail,
the specifications for the interface to the computer can be defined.
This_consists of identifying data, status, and control lines from each
peripheral device. Line groupings for each category are established, so
they can be most efficiently organized to match the byte 1/O charac-
teristics of the computer control and data transfer. Timing and sequence
requirements for each interface are also defined. This information is
used to help determine the degree of hardware vs. microprogramming
to be used for the interface.

5. Program Specifications

The program specs define all processing functions. They include a list
of all functional subroutines, data processing rates, organization of the
executive routine, tables or lists of input and output data categories,
and definition of the mathematical, logical, and algorithmic processes
to take place, and the order in which these processes occur.

A typical list of routines might be as follows:

Application Routines

Cold Start

Main Loop

Determine Next Processing State
Output Analog Control Parameters to DAC's
Linear Interpolation

Calculate Basic Control Parameters
Sample Console Settings

Sample Analog Parameters and Convert to System Umts
Compute System RPM

Update System Status Display
Process Interrupts
Communications Routine

Status Message Printout Routine
Paper Tape Reader Input Routine
Code Conversion Routine

System Status Monitor Routine
Relay Control Update Routine
Utility Routines (1f Microprogram Is Used)
Multiply

Store X

Load X

Divide

BCD to B in Any

B in any to BCD

Shift Left N bits

Shift Right N bits

Square Root

Input/Output

Printout

Integrate

Data Average

319

The general organization of these routines is defined at this stage of
analysis, along with an estimate and definition of core memory re-
quirements for flags, buffers, partially processed data, console and
status switch memory maps, and system status information.

Also, the processing time for the various routines are estimated and
defined along with an estimate of micro instruction requirements.

. Tradeoffs

Before the detailed hardware and program specifications are tied down
it is necessary to conduct a tradeoff analysis to assure that the cost/
performance requirements for the system are being met. Here the
tradeoff is related to application of hardware, firmware, and software
to the various internal and interface functions of the computer. The
areas of cost reduction to be considered are as follows:

Interface Hardware Complexity
New hardware Design Requirements
Microprogram Size

Core Memory Requirements
Complexity of Peripheral Devices
Availability of Existing Programs
Program Development Times

A large number of factors must be included in the tradeoff analysis.
The most important ones related to program development are listed .
below: :

® Qverall data throughput requirements including peak and average
data loads.

® Variability of program functions, including operating modes, data
formats, status combinations, processing states, number of 1/O
channels, operating ranges, etc.

® Permanence of program structure, once defined, and need to avoid
having to load program on site.

° Spéed and complexity of peripheral devices and procesésing functions.

® Existing standard interfaces, and the extent of microprogramming
required for these interfaces.

® Number of systems to be developed and available development time
(affecting nonrecurring costs ratio, and development staffing re-
quirements).

® Special processing requirements with high speed or complexity in

the fields of arithmetic, logic data manipulation, character assembly,
control functions, hand shaking, etc.

® QOverall program size.

320

Existing standard firmware and software routines which are appli-
cable to the system.

Operating complexity, maintenance and training requirements.

System reliaBiIity, including failure rates, and equipment redun-

dancy requirements, which may dictate the requirement for self con-
tained hardware functions.

The result of the tradeoff study wiil be the following:

Use of sophisticated interfaces not requiring firmware, or use of
extremely simple interfaces which do require firmware. (Tradeoff
factors: Read only memory capacity for interface functions, speed
of data transfer, interface control sequences, available process time.)

Use of software program for entire operation.

Use of software program with special 1/O or processing routines
added to microprogram.

Development of spécial instruction set for the application.
Combined use of special firmware, special hardware interfaces, and

special hardware processing functions such as hardware multiply/
divide. - v

Typical functions which may be completely or partially done by two or
three of the following: Software, firmware or hardware, depending on
data processing rates, hardware complexity, system throughput re-
quirements, read only memory capacity, thus must have tradeoff
analysis applied for selection. :

Serial data character assembly/disassembly -
Card reader control and data transfer
Binary to BCD or ASCii conversion
BCD to binary Conversion

Multiply or divide

Digital filtering

Magnetic tape controller functions
High-speed line printer control

ADC control and data input

Message Switching

Remote monitor functions
Synchronous modem control

Image scanning

Disc controller

Error detection, and code generation
Table lookup

Communications line polling/handshaking
Console parameter input/scaling

321

Tradeoff Examples:
Example 1

Firmware can be used to interface with a card reader having minimum
readout electronics. However if the firmware must monitor the high-
speed stroke pulses from the card reader to synchronize with the
reader data lines, the firmware becomes too tied down to service other
peripherals. Therefore the card reader interface should have some
character 'synch. even with firmware if multiple peripheral devices
must operate simultaneously.

Example 2

Display lamps could be scanned by firmware to avoid_using latches to
hold display parameters. In a system of any size this will tie up the
computer considerably, and the cost of the firmware may be as much
as the latches.

Example 3

Firmware can be used to control a disk without using DMA except for
character shifting for transfer to and from the track. However if there
is a requirement to simultaneously interface with the disk and another
peripheral device, even firmware may not be fast enough.

. Hardware Specs

The hardware specs of interest here are for the interfaces and special
processing functions and relate to the programming requirements. They
include the following: -

e Definition of standard interfaces, including complete identification
of data input and output channels, control line functions, status
lines, device and function codes, and timing requirements for
dynamic data or control lines.

® Definition of special interfaces including all of the factors for
standard interfaces plus special control sequences and special data
input/output sequences which must be microprogrammed. These
definitions must be in terms of the standard control and byte trans-
fer functions of the computer.

® Definition of special processing hardware units, such as hardware
multiply/divide, buffers, fast fourier processor, digital filter, etc.
Again, the basic interest for this document is the programring re-
quired to transfer data and initiate the special processor operation.

. Software or Firmware Program Specifications

These include a detailed functional description of all subroutines, execu-
tive routine, data, control, status words, memory requirements, data
tables, flags, pointers, etc.

322

9. Detailed Program Functions Analysis Definitions and Programmi-ng

The general steps to be followed in the programming phase should be
adhered to simplify the entire task and to assure the best program
results.

Top level flow chart

Detailed algorithm definition

Memory allocations (data, flags, pointers, etc.)

Interface address and function tabulation , '

Definition of subroutine, hierarchy (looping, branching, nesting).

Preparation of tables and formats for data, status, flags, pointers,
scale factors, address pointers. .

-Top level flow charts for subroutines.
File register assignments,
Detail subroutine subcharts.

Coding, assembly, checkout, etc.

These steps are illustrated in the emulator example which follows and
in the microprogram subroutine examples in the microprogrammers
manual.

The last step consists of converting the flow chart functions into
routines that are ready for implementation in hardware to yeild the
system firmware. These steps include translating the MICRO 800 in-
structions selected for each routing into the mnemonic or machine
language code, loading them into an operating system, and eliminating
any errors that may have been made during the previous steps. Micro-
data Corporation furnishes a software program (Simulator Operating
System) for use on one of the 800 series computers which simulates
the user’s microprogram and provides operator control for debugging
and evaluation procedures. The completed program is printed in the
form of a diode map to simplify the placement of diodes on the read
only memory circuit boards which contain the complete microprogram.

Microprogramming Aids

The software aids for microprogramming, furnished by Microdata
Corporation are briefly described in Figure 41. Several methods are
available to convert the microprogram source statements to the final
diode map for hardware implementation. These methods incorporate
different programs according to the processing equipment available to
the user. For instance, the MAP800 program is used with a MICRO 811
computer to enter source statements and assemble the listings. The
APB00 program is used on a large-scale computer to produce an
object program. Variations in methods also permit selection of media
for recording and communicating the program information including
punched cards, paper tape, printed documents, etc.

323

MAPBOO

MICROPROGRAM GENERATION

TAPE EDITOR
PROGRAM

ICRO 800
SOURCE
STATEMENTS

MICRO 811

"MICRO
URCE
PROGRAM

MAP800
ASSEMBLER

MICRO 811

SIMULATION

S0S/SIM800
PROGRAM

MAPB00
ASSEMBLY
LISTING

CRO
800 OBJECT
PROGRAM

“RoS AP |

ROS MAP
GENERATOR
PROGRAM

.

MICRO 811

SIMULATION
LISTING

PUNCHED
CARD

PUNCHED
PAPER TAPE

DOCUMENT

Figure 41. Microprogramming Generation

AP800
MICRO 800
SOURCE A800
PROGRAM ASSEMBLER
LARGE SCALE
COMPUTER
MICRO 800 APBLO
OBJECT ASSEMBLY
1 PROGRAM LISTING
JJ—
SOS/$IMB00 L. —
PROGRAM ROS
MEMORY
MAF
PRINTED KEYBOARD

ENTRY

The final step in the process is the implementation of the micropro-
gram by loading the signal diodes on the ROM circuit boards. This
process consists of inserting diodes in the board at locations designated
by the diode map and corresponding to the logical 1’s in the machine
language code. The absence of a diode indicates a logical 0. When the
complete microprogram has been implemented in diodes on the ROM
boards, the “‘new’’ computer is assembled by inserting these boards into
the standard MICRO 800 enclosure which houses the hardware compo-
nents furnished by Microdata Corporation.

324

PART Vi

PRODUCT CATALOG

MICRO 400 COMPUTER

The MICRO 400 is a programmable, high-speed, general-purpose computer
designed for the large-volume user or original equipment manufacturer.
Although small and low-priced, the MICRO 400 is remarkably powerful.

Architectural simplicity is fundamental in the MICRO 400 and hardware
packaging allows the user to easily incorporate basic equipment modules
for his application. A comprehensive set of interfaces is available for
peripheral, communications and utility devices.

The input/output structure uses a standard programmable data channel and
MICRObus, a single bus organization which provides direct access for all
memory and system control devices and for the central processing unit.

Extensive standard support software is provided, including a symbolic
assembler for preparation of source programs in symbolic notation.

The MICRO 400 features 1.6 microsecond cycle time, 400 nanosecond
access time, basic memory module sizes ranging from 1024 to 8,192 words
of core memory direct addressing to 4,096 words and operates up to 32
1/0O devices. The machine weighs 23 pounds complete and uses 3.5 inches
of rack space.

327 .

MICRO 800 COMPUTER

The MICRO 800 is a high-speed microprogrammed computer whose flexi-
bility, functional modularity and system-oriented packaging make it ideally
suited for dedicated volume applications.

The MICRO 800’s flexibility permits the computer system: to be expanded
or reduced to the exact configuration needed for any application. For
example, the computer can be used without a core memory as an inexpen-
sive controller or data concentrator. When memory is required for storage
of variable parameters, tables or data high-speed core memory may be
added to the system.

The MICRO 800 also can be microprogrammed to emulate other general
or special-purpose computers enabling the software of these machines to
be compatible with the MICRO 800. In such a case, additional interface
hardware can be furnished to provide plug-to-plug compatibility with
other computers.

In addit‘ion to low unit cost, the MICRO 800 system also can reduce over-
all system cost. The high-speed execution of firmware routines allows the

processor logic to be time-shared to minimize input/output interface
hardware.

DiseL AT

GORTEGE

328

.Microprogramming also provides exceptionally high performance with an
unusually small amount of internal hardware. The basic computer consists
of two identical data boards, each of which is a 4-bit slice of the com-
puter’s data paths and registers, and a single control board which provides. -
command decoding and timing.

Main frame options including mémory parity, power fail/automatic restart,
real-time clock and input/output interfaces are implemented on card -
modules which plug into the basic MICRO 800 enclosure. -

With its 1.1 microsecond core memory cycle time and 220 nanosecond
command execution time, the MICRO 800 is the fastest machine in its
class, Core memory is expandable from 0 to 32,768 bytes in 4,096 byte
or 8192 byte increments. A 1,024 byte core memory also is available for
small, inexpensive systems. Weight is 75 pounds.

MICRO 810 COMPUTER

The MICRO 810 is a general purpose computer which is a micropro-
grammed adaptation of the MICRO 8Q0. Microprogrammed subroutines,
configured in the read only memory, interpret macro instructions of pro-
grams stored in the core memory.) o

A powerful macro lével computer, the MICRO 810 also retdins all the
~ modular and functional advantages of the MICRO 800.

The MICRO 810 has available considerably larger programs than most
machines in its class, combined with ease of programming and program-
ming flexibility. Some of the advantages of the MICRO 800 can be ob:
tained by adding problem-oriented instructions or firmware subroutines
to the MICRO 810. Multiply/divide instructions are standard.

The MICRO 810 features 1.1 microsecond cycle time and 220 nanosecond
execution time in the ROM. Core memory ‘is field-expandable to 32,768
Bytes (8, 9 or 10 bits). Extra memory bits may be used for memory parity
and special applications. A 1024-byte by 9-bit core memory also is avail-
able. Weight is 75 pounds.

320 2

MICRO 820 COMPUTER

Featuring a comprehensive instruction repertoire and powerful input/
output facility, the MICRO 820 is a high-speed, microprogrammed general
purpose computer capable of handling a wide variety of applications.

Use of high-speed read-only memories for macro control greatly reduces
the number of CPU circuits which otherwise would be required to provide
the powerful instructions of the MICRO 820. :

A superior price/performance ratio is achieved in the MICRO 820 by
efficient core memory usage and ease of programming.

The MICRO 820 system is designed to accommodate additional standard
and special firmware inexpensively, permitting the user to specify aug-
mented capabilities such as multiply/divide instructions, BCD arithmetic,
floating point arithmetic, trigonometric and transcendental functions and
fully buffered communications multiplexers.

Among features of the MICRO 820 are variable precision operation,
character/string manipulation and stack processing. A complete line of
peripheral options is available to achieve almost unlimited flexibility in
application of the MICRO 820.

Core memory is expandable to 32,768 bytes in the basic 8%-inch cabinet

using 4,096 and 8,192 plug-in memory modules. Cycle time is 1.1 micro-
second in core memory and 220 nanosecond execution time in the ROM.

330

331 .

MICRO 1600 COMPUTER

Newest and ‘most advanced of Microdata Corporation’s families of com-
puters is the MICRO 1600, a companion product line to the MICRO 800
which provides significant performance improvements in both speed and

function, ‘

Both the 1600 and 800 are functionally compatible, enabling established
MICRO 800 users to use the 1600 directly without redevelopment of
firmware, software or system peripherals or interfaces.

However, new and revised firmware can achieve significant performance
improvements at both the micro and macro levels of programming.

The MICRO 1600 is an economical machine with unequalled flexibility
which can be tailored to fit almost any application. Modular design of
core memory, processor, microprogram control memory and input/output
modules provides easy, economical expansion of all functional areas of the
computer.

Extra space and power in the basic enclosure permits growth from a mini-
mum to a fully expanded configuration without the need for special or
expansion enclosures. User-designed interfaces can be installed in the com-
puter cabinet.

The widest range of hardware, firmware and software optlons in the
industry is available to augment the MICRO 1600

Improved features of the MICRO 1600 are higher speed, processor options
which are part of the CPU, additional general-purpose registers, control
memory expansion to 16,384 words, core memory expansion to 65,000
words, dual processor capability, memory data buffer, data output buffer,
memory address link bit and expanded control panel facilities. This is
accomplished through maximum use of the most advanced MSI and LSI
technology.

Control memory cycle time is 1 microsecond, 200 nanosecond command
execution rate..

332

333

FIRMWARE TRAINING SYSTEM

The firmware irainer is a valuable tool for classroom teaching of micro-
programming techniques. Small firmware routines can be quickly set up
and checked out with the aid of the comprehension switch pariel layout
and the built-in visual display. Firmware alterations and corrections are
rnade quickly and efficiently, permitting the student to concentrate on
the problem rather than the hardware.

The system consists of a MICRO 800 computer with a utility read-only
rmemory, a switch matrix read-only memory, a 4096 byte magnetic core
rnemory, a TTY/display controller and an 1/O display panel.

The MICRO 800 computer includes a special interface wired to a panel
with 512 switches. Each switch connects a diode to the computer to
designate a logical 1 for binary values of the microprogram command
sequence. A maximum of 32 commands may be used at one time on the
panel.

As an aid in demonstration and training activities, the preprogrammed
utility ROM is included to facilitate input/output functions without ex-
pending instructions on the ROM switch panel. Six utility routines are
included to permit display and recording of data obtained during execution
of microprograms.

A 30-page operations manual and 50 copies of the microprogramming

handbook are included with the firmware trainer system. Price for the
system is $10,000.

334

335

ALTERABLE READ-ONLY MEMORY SYSTEM

Designed for use with the MICRO 800 series of computers, Microdata
Corporation’s Alterable Read-Only Memory System for test and debugging
of microprograms in a real-time environment permits implementation of -
firmware on a level comparable to software and gives the user a wide
range of application flexibility. ‘

Using the concept of dynamic microprogramming, the sys.tem operates at
full control memory speed of 220 nanoseconds command execution time.
The basic capacity of the system is 1K by 16, but can be expanded to 2K
by 16. ' ’

A supporting software package called the Alterable Read-Only Memory
Operating System is included, and a card reader is optional. The software
package permits loading of the machine from a variety peripheral devices
and permits the operator to examine and alter the contents at will.

336

337

June 1971
MICRODATA CORPORATION

COMMENT AND EVALUATION SHEET
Microprogramming Handbook

YOUR . EVALUATION OF THIS HANDBOOK WiLL BE WELCOMED BY
MICRODATA CORPORATION. ANY ERRORS, SUGGESTED ADDITIONS
OR DELETIONS OR GENERAL COMMENTS MAY BE MADE BELOW.
PLEASE INCLUDE PAGE NUMBER REFERENCE.

FROM

NAME:

BUSINESS
ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINE AND STAPLE

TRIM HERE
e P

D ITAFLL

| Permit No. 1972

First Class

Santa Ana
California 92711

BUSINESS REPLY MAIL

NO POSTAGE NECESSARY IF MAILED IN THE U.S.A.

Postage Will Be Paid By

MICRODATA CORPORATION
644 East Young Street
Santa Ana, California 92705

STAPLE

	00001
	00002
	00003
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003_Part1
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049_Part2
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069_Part3
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265_Part4
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313_Part5
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325_Part6
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	replyA
	replyB

