
1.0

2.0

INTRODUCTION

The Microdata Reality BinarY Synchronous Communication

Process is an emulation of the IBM 2780 Data Transmission

Terminal. The Binary Synchronous Communications Process

(Bisync) can be used to transmit Reality file items and

files at line speed to another Reality or any other machine

following the IBM 2780 method of bisynchrouous comrnunicatiol

protocol. Supported special features include transparency,

mul tiple record blocks, EBCDIC transmission, ASCII transrniss:

in transparent text, extended retry feature, printer

horizontal format control, auto answer, and auto
'-

tlLrnaround.

OPERATOR'S HF-.NUAL

The Reality Bisynchrounous Con~unciation Process may be

assigned to any ;line (terminal) in the system and controlled

from any or alr~'the remaining terminals. When the bisync

process is assigned to a line, the terminal attached to

that line is dedicated to the process and may not be

used for any other purpose until the bisync process

has been deactivated. Data may be readied for transmission

either before or after the bisync process has been

activated. The data to be transmitted is stored in items

in Reality files. As many items as desired or a whole

file may be structured into a transmission message.

When activated, the current status of the bisync process

is displayed on terminal to which the process is attached.

Such things as whether or not the telephone line is

connected, or if a message is currently being transmitted

or received are displayed. The bisync process is controlled .
by several verbs which-- control the process' modes of

operation, the structuring of transmission messages,

and the filing of received messages.

2.1

\

2.1.1

2.1.2

There are ten verbs used to control the bisync process:

TRANSMIT, DTSPLAY-MSG-QUE, START-BSC, STOP-BSC,
• I •

. ,,/ DISPLAY-MESSAGE I SPOOL-MESSAGE, FI LE-i!!ES SAGE , D U It/,\t- MeS .9\-Cx:

(KILL-MESSAGE, ABORT-BSC, and vRESTART-BSC.

Following is a description of ~verbs and their options.

TRANSMIT

The TRANSMIT verb will structure a transmission message

from items wi"thin 'a Reality file. Each attribute within

an item will become a record in the message. Each record

is limited to 80 characters, therefore, i£ any attribute

is greater than 80 characters, the excess will be trlli,cated

and lost. The general verb format is:

TRANSMIT file-name item-list (options)

The item-list may consist of one or more items within

the file, separated by bianks, or all the items in the

file may be specified by using an asterisk (*). The

valid options are:

N ~transmit normal EBCDIC

The ASCII data within the specified items is converted

to EBCDIC and structured into a transmission message in

the normal text mode of bisync.

T - transmit transparent ASCII
ft

The unconverted ASCII data within the specified items is

structured into a transmission message in the transparent

2.1.3

2.1.4

2.1. 5

2.1.6

text mode of bisync. This option should also be used

whenever transmitting non-ASCII data such as Reality

obje~t code. Records are padded with ASCII blanks to

80 characters.

C - transmit transparent EBCDIC

The ASCII data within the specified items is converted

to EBCDIC and structured into a transmission message in

the transparent text mode of bisync. Short records are

padded with EBCDIC blanks to 80 characters.

fo:W - transmit short records

Records are limited to a maximum of 80 characters:

Attributes in items which have less than 80 characters

(0-79) have an EM character (hex 19) appended to them

anc are transmitted as less than eighty character

records. This mode is reco~mended when possible since

it will reduce transmission time.

F - transmit fixed length records

Records_are -SO characters long. Attributes shorter than

80 characters are padded with blanks until eighty characters

long. Attributes longer than eighty characters are

truncated.

x - transmit two records per block

Each transmission block, normal o-r transparent text,

will contain two, short or fixed length records •
•

2.1.7

2.1.8

2.1. 9

2.1.10

M - transmit mUltiple records per block (1-7)

Transmission blocks are limited to 400 characters including

line control characters. In this mode, records are placed

in transmission blocks until either seven records are

in the block or the block size exceeds 400 characters.

Because of the 400 character limitation, when fixed

length or transparent records are being tr~smitted,

only four records will fit in a block.

Default values for the options are (N,S,M). Therefore,

if the only option specified is (F), for example, the
"

transmission message will be structured in normal text

(~ option), fixed length records (F option), and with

multiple records per block (M option) •

Each message formed by the TRANSMIT verb will assign

a four digit identification number in the range 0000

to 9999. When activated the bisync proc.ess transmits

messages with the lowest identification number first.

After structuring a transmission-message the message:

MESSAGE' XXXX' ENTERED IN QUEUE,

where 'xxxx' is the identification number assigned to

the message, is returned to the operator.

An example of a TRANSMIT command would be:

:TRANSMIT ACCOUNTS 10985 21662 (C)

MESSAGE '0154' ENTERED IN QUEUE

Items 10985 and 21662 from the ACCOUNTS file are .
structured into a transparent text EBCDIC message

which has been assigned the identification number 0154.

2.2

2.2.1

2.2.2

DISPLAY-MSG-QUE

The ~ISPLAY-MSG-QUE verb displays the identification

number and some other parameters of messages that are

waiting to be transmitted or that have been received.

The general verb format is:

DISPLAY-MSG-QUE (options)

P - print message queue on printer

This is the only valid option for the DISPLAY-MSG-QUE

verb.

The message queue is displayed in the following format:

name account channel time date status

name - the identification number assigned to the message

by the system. The identification number is in the

range 0000-9999.

account - the account onto which the operator who

initiated the message transmission was logged.

channel - the line number of the terminal from which

the message's transmission was initiated.

time - the time when the message was entered into the

queue, either the time the message was put into the

queue with the TRANSMIT verb or the time the message

was received.

date - the date on which the message was put into the queue.

2.2.3

status - the current status of the message which can be:

T - the message is waiting to be transmitted

T* - ~message is currently being transmitted

R the message has been received

R* - the message is currently being received

TH - the message was partially transmitted when a

condition requiring operator intervention arose

RH - the message was partially rece1ved when a

condition requiring operator intervention arose

An example of the DISPLAY-MSG-QUE verb is:

:DISPLAY-MSG-QUE

BSC MESSAGE QUEUE

NAME ACCOilliT CHANNEL

0154 SYSPROG 0

0155

0156 ALICE 5

END OF QUEUE

TH·1E

9:46:05

9:51:16

10:01:47

DATE STATUS

9 MAY 1975 T*

9 MAY 1975 R

9 MAY 1975 T

Message 0154 which was originated from the terminal

attached to 1ine'zero and logged-onto the SYSPROG

account at 9:46:05 on 9 MAY 1975 is currently being

transmitted. Message 0155 was received at 9:51:16 on

9 ~~Y 1975; there is no account name or channel number

associated with a received message. Message 01,56 was

entered in the queue by ALICE from line 5 at 10:01:47

on 9 MAY 1975 and is waiting to be transmitted.

2.3 DUMP-MESSAGE

2.3.1

2.3.2

The.DUMP-MESSAGE verb is used to display the structured

message in hex. The general verb format is:

DUMP-MESSAGE message-number (options)

The message number is the identification number assigned

to the message.

P - display message on the printer

The P option is the only valid option.

An example of the DUMP-MESSAGE verb is:

:DUMP-MESSAGE 0025

MESSAGE '0025 1

3232

02ClC2C3C419lF

3232

02C5C6C7C81~03

Message 0025 is dumped to the terminal in hex, including

all line control characters.

2.4 SPOOL-!~SSAGE

The SPOOL-MESSAGE verb is used to list a message on

the printer, one record to the ~.·l.:ine~ The general format

of the verb is:

SPOOL-MESSAGE message-number (options)

The message-number is the identification number assigned

to the message by the system. The valid options are:

2.4.1

2.4.2

2.4.3

2.4.4

S - suppress tabs and forms control, and allow automatic

paging.

This option should be used if the received message does

not contain imbedded forms control characters. The

message will then be automatically paged.

H - hold message in message queue

The message is printed, but is not subsequently deleted

from the message queue, otherwise the message is automatically

deleted. This option may be used for printing multiple
"

copies of the rressage' or for printing and filing the same

message.

C - convert EBCDIC to ASCII when printing a transparent

text message.

This option will normally be specified when printing

transparent text.

An ~xample of the SPOOL-MESSAGE verb is:

:SPOOL-MESSAGE 0256 (S,C)

MESSAGE '0256' DELETED

Message 0256 a transparent text message was printed after

converting the EBCDIC text to ASCII; the message was

automatically paged while printing; since ~he H option

was not specified, the message was deleted from the. queue

after printing.

2.5

2.5.1

2.5.2

FILE-MESSAGE

The FILE-MESSAGE verb is used to place a message in a

file. The normal mode of operation is for each record

in the message to become a different item in the file,

each record being assigned a sequential item-id starting

with 0001. The message may also be assembled into one

item, each record becoming an attribute of the item;

the filed message must not exceed 32K bytes, the maximum

item size. The general format of the verb is:

FILE-MESSAGE message-name (options)
"-

TO: file-name [item-name]

The message-name is the identification number assigned

to:th~.rressage. After typing in the first line, the

operator is prompted with TO:, to \vhich he replies with

the file-name of the file into which the message is to

be placed, and with the item-name which he wishes assigned

to the message if the~item option is specified. The

valid options for the.verb are~.

T ~ process horizontal tabs

If the message contains a tab format record as its

first record andthe·message records contain· horizontal

tab characters, tabbing will be done on the records as

they are filed by inserting an appropriate number of

blanks between fields in the record. If not specified,

the tab characters will be left in the records.

F - process vertical forms control

If the records i~ the message begin wi~~ forms control

characters, the appropriate form and line feedsare inserted

in the filed message, if the F option is specified. If

2.5.3

2.5.4

2.5.5

not specified, the forms control characters are left at

the beginning of the filed records.

I - file into one item

When the I option is specified, the message is placed

in one item in the file, each record of the message

becoming an attribute of the item. The records of the

message must not exceed a total of 32K bytes, the

maximum item size, If the message is too long, an error

message is given to the operator, the item being built

is deleted fron the file, and the message remains in the

message queue. This option will be used when filing

received Reality object code. If this option is not

specified the records in the message will be filed one

to· an item within the file. The records will be·.given

a numeric item-id as they are filed, the first record

becoming item 0001, t".'1.e second record item 0002, and so

on.

R - format Reality object code into file item

The R option is used when a frame of-Reality object

code has been received as a message. The I option

(file ~~ssage into one item) is set whenever the R

option is specified. The Reality object code will be

properly formatted into an item so that it may be loaded

into the system.

C - convert EBCDIC to ASCII when filing transparent text

The EBCDIC data in the received message is converted

to ASCII before the data is filed. This option should

normally be specified unless it is known that t".'1.e message

consists of ASCII data from another Reality system or

hexadecimal data.

2.5.6

2.6

2.6.1

Two examples of the FILE-~~SSAGE verb are:

:FILE-MESSAGE 1846 (T,F,C)

TO: INVOICES

The message 1846 is placed into the file INVOICES.

Tabbing, forms control, and EBCDIC to ASCII conversion

are specified as options.

:FILE-MESSAGE 0006 (I)

TO: ADDRESS-LIST BOSTO~

The message 0006 is placed in the item BOSTON in the

ADDRESS-LIST file.

START-BSC

The START-BSC verb is used to activate the bis~~c

process. ~ne ,process is assigned to a line by the verb

other than the line from which the verb is entered.

The bisync process may not be active on more than one

line at a time~ The line and terminal connected to

that line become dedicated to the bisync process and

may be used for no other purpose while the process is

activated. The general format of ~,e verb is:

START-BSC line-number (options)

The line number is the line to which the bisync process

will be assigned. The valid options are:

P - primary station

The Reality system in which the bisync process is operating.

is designated the primary station in a communication

link.

2.6.2

2.6.3

2.6.4

S - secondary station

The Reality system in which the bisync process is operating

is designated the secondary station in a communications

link.

A - attended mode

The attended option is set when operator intervention

is desired during an abnormal condition that occurs

while receiveing or transmitting a message. The normal

mode of operation for ~he bisync process is that if
,

an abort condition (such as line failure) occurs while

receiving, ~~e partially received message is deleted

from the message queue and that if an abort condition

occurs while transmitting, the retransmission of the

message is from the beginning of the message. In the

attended mode, when an abort condition .is encountered,

the operator must restart the bisync process, at which -
item, he may select to either restart the transmission _---0,-
or reception of a message from where the message was

interrupted, or restart the reception or transmission

from the beginni~g. Operator intervention is required,

therefore, this option should not be specified when

using the process in an unattended, autoanswer mode.

The RESTART verb is used for restarting the bisync

process.

An example of the START-BS:C verb is.:

: START-BSC 5 (S)

BISYNC PROCESSOR INITIATED

2.7

The bisync process is activated on line five as a

secondary station. The terminal attached to line five

will also display the message:

BISYNC PROCESSOR INITIATED

If the bisync process has been previously started, the

message:

BISYNC PROCESSOR ALRL~Y ACTIVE

is returned to the opeJ;:"ator •

STOP-BSC

The STOP-BSC verb isused to inactivate the bisync

process after reception of an inc?ming message is

finished, or the transmission of all outstanding messages

in the message queue is finished. There are no options

for the verb. An example of the· verb is:

:STOP-BSC

BISYNC PROCESSOR TEN~INATED

The bisync process is stopped after completion of the

present operation and the termination message is

returned to the operator. If bisync is already inactive,

the message:

BISYNC PROCESSOR INACTIVE

is returned to the operator.

2.8

2.9

ABORT-BSC

The ABORT-BSC verb is used to immediately deactivate

the bisync process. If the process is currently receiving

a message, further reception is stopped, and the already

r~ceived portion of the message is deleted. If the

process is currently transmitting a message, the

transmission is stopped, and the message is returned

to the message queue. An example of the verb is:

:ABORT-BSC

BISYNC PROCESSOR TE&~NATED

The bisync process is immediately stopped and the termination

message is returned to the operator. If the bisync

process is already inactive, the message:

BISYNC PROCESS INACTIVE

is returned to the operator.

RESTART-BSC

The RESTART-BSC verb is used to restart the bisync

process after an abort condition has occurred while

receiving or transmitting a message when the A, attended,

option has been specified in the START-BSC verb. If

the bisync process is restarted transmitting a message,

the clock of data that was last attempted to be transmitted

is sent as the first block of the new transmisston.

If the bisync process is restarted re7eiving a message,

the first block of data received is appended to the end

of the aborted partially received message. This procedure

may lead to duplication of several lines of data at the

(",f'point that the message interruption occurred, but

.; .:-U A {, ! '~~L usually not. The general format for the verb is:

RESTART-BSC (options)

2.9.1

2.9.2

The only option for the verb is:

N - new start

If the N option is specified the partially received

message is deleted and the next reception starts a new

message, or the partially transmitted message is restarted

from the beginning on the next transmission. If the

option is not specified, the transmission or reception

of the aborted message is restarted as outlined above.

An example of the verb is:

:RESTART-BSC

BISYNC PROCESS RESTARTED

The bisync process is restarted with the message that

was being processed when the abort occurred, and the

restart message is returned to the operator. If the

bisync process was inactive the message:

BISYNC PROCESS INACTIVE

is returned to the operator.

3.0 GENERAL CONSIDERATIONS ON BINARY SYNCHRONOUS CO~~UNICATIONS

The general principles of binary synchronous communications

as implemented in the Reality bisync process will be

considered. A more ~etailed discussion may be obtained

in the IBM publications "General Information - Binary

Synchronous Communications" (GA27-3004) and "Component

Description: IBM 2780 Data Transmission Terminal"

(GA27-300S) •

3.1 DATA LINK CONTROL CHAHACTERS

3.1.1

3.1.2

3.1.3

,
Following is a list of the data link control characters,

their hex equivalent in EBCDIC, and their function.

SYN (32) - Synchronous Idle

The SYN character is used to establish and maintain

synchronization on the data link. Each transmission

must be preceded by at least two SYN characters.

SOH (01) - Start of Heading
,

The SOH character precedes a block of heading characters.

The Reality bisync process will treat an SOH character

as an STX character.

STX (02) - Start of Text

The STX character precedes a block of data characters.

3.1.4

3.1. 5

3.1.6

3.1.7

3.1.8

ETB (26) - End of Transmission Block

The ETB character indicates the end of a block of _

characters started with an STX. ETB indicates that

more data is to follow after the block is acknowledged

by the receiving terminal.

ITB (IF) - End of Intermediate Transmission Block

The ITB character ends a portion of a block of data.

Imen more than one record is sent in a block, the first

record starts with an STX and ends with an ITB; each
,

subsequent record ends with an ITB, except the last

which ends with an ETB or ETX.

ETX (03) - End of Text

The ETX character ends the last block of data in a

message. It indicates that the records in the first

block of data through the block ended by the ETX

form one complete message. Unless this character is

sent before an EDT character, the Reality bisync

process will assume the message was interrupted ~~d

indicate an error condition~

EDT (37) - End of Transmission

The EDT character is sent by a terminal to indicate

that it has no more messages to transmit.

ENQ (2D) - Enquiry

The ENQ character is used in biddin'g for t~e line when

the terminal has data to transmit, or is used to request

a retransmission of the last acknowledgement to a

transmitted block of data.

3.1. 9

3.1.10

3.1.11

"

3.1.12

3.1.13

ACKO/ACKI (1070/1061) - Positive Acknowledgement

The ACK characters, ACKO or ACKI, are used to indicate

that the last block of data was correctly rece1ved.

The responses ACKO and ACKI are alternated for each

block of data; ACKO is used as a response to a line

bid (ENQ).

WACK -(106B) - Wait Before Tr~~smit Positive Acknowledgement

,
The WACK character is used as a positive acknowledgement

to a block of data, but indicates that the receiving

station is not yet ready for another block of data.

The Reality bisync process will accept, but not transmit

t.~e WACK character.

NAK (3D) - Negative Acknowledgement

The NAK character is used to indicate that an error

,was detected while receiving the last block of data

and requests a retransmission of that block.

DLE (10) - Data Link Escape

The DLE character is used as a supplimentary data link

control character as in ACKO or WACK, or in conjunction

with the block delimiting character; for example,

STX and ITB, to indicate the transparent mode of operation.

RVI (106B) - Reverse Interrupt

The RVI character is used as a positive acknowlegement

to a block of data and requests the ,transmitting station

to stop furt.~er transmission and go into the receive

mode. The Reality bisync process will accept, but

not transmit the RVI character.

3.1.14

3.2

3.3

DLE EaT" (1037) - Disconnect

The DLE EaT character is sent"by a terminal on a

switched (dial-up) line to indicate that it is "hanging­

up" the line.

PRI}L~Y &~D SECONDARY STATIONS

~men a bisync station is initiated, it is designated

as either a primary or secondary station. ~fuen a

primary station is bidding for a line, it will send out

ENQ characters every second,waiting one second for the

other terminal to reply. ~~en a secondary station is

bidding for a line, it will send out ENQ characters

every three seconds, waiting three seconds for the

other terminal to reply. This has a net effect of

giving the primary station priority over secondary

stations on the line when it has a message to transmit.

BLOCK CHECK CHARACTER (BCC)

Binary synchronous "communications use a cyclic

redundancy checking as a means of detecting transmission

errors in data. The message block that is to be

transmitted is considered as one long binary number

which is divided by a known 16 bit binary number. This

division produces a 16 bit remainder which is appended

to the transmission block. The receiving station also

divides the received block by the known 16 bit number.

If the remainder it generates is the same "as the remainder

it received, the block is assumed to have been received

correctly. The polynomial used as divisor is:

1 6 1 5 2

X +x +x +1

which corresponds to the binary number

1100000000000101

3.4 BLOCK STRUCTURE

3.4.1

3.4.2

Blocks will have two basic formats depending upon

whether they are normal text blocks or transparent

text blocks.

Normal Text Blocks

Normal text blocks have 'four basic formats:

a) SYN SYN ·STX text ETX BCe

b) SYN SYN STX text ETB Bce

c) SYN SYN ·STX text ITB BCC SYN SYN STX text ETX Bce

d) SYN SYN STX text ITB BCC text ETX Bee

Block c or d are used for multiple records per block.

Transparent Text Blocks

a) SYN SYN OLE-STX text OLE-ETX Bee

b) SYN SYN OLE-STX text OLE-ETB Bee

c) SYN SYN OLE-STX text OLE-ITB Bee SYN SYN OLE-STX text

OLE-ETB Bee

Transparent text mode is used when the data may contain

o~~er than the normal ASCII character set, such as

when transmitting Reality object code, or when transmitting

packed data. Transparent mode is initiated by a

DLE-STX and is terminated by OLE-ITB,. DLE-ETB or DLE-ETX.

If a OLE character appears in ~~e data, it is preceded

by a second DLE character, indicating that the first

OLE is data which is stripped out on the receiving end.

3.5

3.5.1

3.5.2

This precludes data such as DLE-ETX being recognized

as a control character instead of data.

EXP~PLES OF TRANSMISSION PROCEDURES

Bidding For The Line

CPU 1 CPU 2

ENQ -+ +- ENQ

1 sec

ENQ -+

+- ACKO

CPU 1 is the primary station and CPU 2 is the secondary

station. Both CPU's simultaneously bid for the line.

Since CPU 1 is the primary station, it sent a second

ENQ character after one second. CPU 2, waiting three

seconds for L~e reply to its ENQ, receives CPU lIs

ENQ, replies with an ACKO, and goes into the receive

mode.

Message Transmission

CPU 1 CPU 2

ENQ -+
+- ACKO

STX text ETB -+
+- ACKI

STX.text ETX -+
+- ACKO

EOT -+

21 Sec Timeout

DLE-EOT -+

3.5.3

CPU 1 bids for the line and receives an acknowledgement

from CPU 2. CPU 1 sends two blocks of data to CPU 2,

receiving the correct positive acknowledgements from

CPU 2. CPU 1 has nothing else to send, so it sends an

end of transmission character, and goes into the

receive mode, waiting for CPU 2 to send any data it

may have. CPU 2 has nothing to send, so CPU 1 waits

·21 seconds and sends a disconnect, DLE EOT, and hangs

up the line.

Retrru!smission Examples

CPU 1 CPU 2

1
ENQ -+

+ ACKO
ENQ -+

2 + ACKO
STX text ETB -+

+ NAK
STX text ETB -+

3 + ACKl
STX text ETB -+

3 Sec Timeout

ENQ -+

+ ACKI
STX text ETB -+

.. + ACKO
STX text ETX -+

+ ACKl

3.5.4

1
CPU 1, bidding for the line, missed CPU 2's

acknowledgement, so after timing out; it repeats
2

its linebid. After receiving CPU 2's acknowledgement,

CPU 1 sends the first block of.data. CPU 2 detected

an error in the block and sends back a NAK to which

CPU 1 replies with a retransmission of the block.
s
After receiving CPU 2's acknowledgement, CPU 1

sends the second block of data. CPU 1, after waiting

three seconds without receiving a response, sends an

ENQi requesting CPU 2 to repeat its last response.

CPU 2's response of an out of sequence ACK indicates

that CPU 2 did not receive the last block so CPU 1
~

retransmits the block. After receiving L~e correct

response, CPU 1 sends the final block of data.

Use of RVI

CPU 1 CPU 2

ENQ +
+ ACKO

STX text ETX +
+ RVI

EOT +
+ ENQ

ACKO +
+ STX text ETX

Acrl +
+ EOT

DLE EOT +

CPO 1 wins the line bid and sends.one block.ofdata.

CPU 2 sends back an RVI as a positive acknowledgement,

indicating that it has a message to send. CPU 1

sends back an EOT and acknowledges CPU 2 r s line bid.

Transmission then continues in the normal manner.

4.1 TRANSMITTING A P£ALITY FILE

:START-BSC 1

01 NOV 1975 13:49:09 BISYNC PROCESSOR INITIATED

3

:TRANSMIT ACCOUNTS *
1267

54862

7914

7902

980002

MESSAGE '0001' ENTERED IN QUEUE

7

:STOP-BSC

01 NOV 1975 14:02:15 BISYNC PROCESSOR TER~NATED

lThe bisync processor was started on line one in the

unattended ~ode of operation. 2The initiation message

was returned on the terminal connected to line one.

3All the items (five of them) in the ACCOUNTS file were

structured into a message and entered in the message

queue as message 0001. ~The operator called the computer

which will re~eive the message and placed the data phone

in DATA after the connection had been made. The

communications line enabled message was returned to

the bisync terminal.

2

:01 NOV 1975 13:49:09 BISYNC PROCESSOR INITIATED

01 NOV 1975 14:01:54 BISYNC COMMUNICATIONS LINE ENABLED

5

01 NOV 1975 14:02:04 0001 SYSPROG 00 13:50:05 01 NOV 1975 T*

6

01 NOV 1975 14:03:21 11 BLOCKS TRANSMITTED

01 NOV 1975 14:03:21 11 BLOCKS RECEIVED

01 NOV 1975 14:03:21 o TRANSMISSION ERRORS

01 NOV 1975 14:03:22 MESSAGE TRANSMISSION COMPLETE

01 NOV 1975 14:03:23 MESSAGE '0001 1 DELETED

B

01 NOV 1975 14:03:23 BISYNC COMMUNICATIONS LINE DISCONNECTED

BISYNC PROCESSOR" INACTIVE

LOGON PLEASE:

5 After transmission of message 0001 had begun,. the- .

transmission message was returned-to the bisync terminal.

'After completion of the message transmission,. the

transmission statistics were returned to the bisync

terminal. The number of blocks transmitted and received,

and the number of retransmissions were listed. Message

0001 was then deleted from the message queue. 7Whi1e L~e

message was being transmitted, the operator errtered the

STOP-BSC verb, terminating ~~e bisync process at the

end of the job. sThe bisync process, seeing that the

STOP-BSC verb had been executed, disconnected the line

and deactivated itself after transmitting message 0001.

4.2 RECEIVING A REALITY FILE

1

:START-BSC 1

01 NOV 1975 14:55:02 BISYNC PROCESSOR INITIATED

6

:STOP-BSC

01 NOV 1975 15:16:23 BISYNC PROCESSOR TERMINATED

e

:FILE-MESSAGE 0002

TO: P~CEIVED-INVOICES

~ffiSSAGE '0002' DELETED

IThe bisync process was started on line one in the

unattended mode. 2The initiation message was returned

on the bisync process' terminal. 3Assuming that

the data phone was in AUTO, several minutes-later a

call was received and the communication line enabled.

~Message 0002 was received. There were 113 blocks

received with two .retransmissions 0_ SAfter wai ting- 21

seconds without receiving anything else; the bisync

process disconnected the line. 6The operator disconnected

the line using the STOP-BSC verb. 7The STOP-BSC

verb cleared wait for a call state in the bisync

process. The process saw that the line was disconnected

and that the stop command had been issued, so the

process deactivated itself, and returned to logon.

2 C/.
:01 NOV 1975 14:55:02 BISYNC PROCESSOR INITIATED

3

01 NOV 1975 15:01:36 BISYNC COt-1..'1UNICATIONS LINE ENABLED

Ito

01 NOV 1975 15:01:42 0002 15:01:42 01 NOV 1975 R*

01 NOV 1975 15:07:16 112 BLOCKS TR&'1SMITTED

01 NOV 1975 ·15:07:16 113 BLOCKS RECEIVED

01 NOV 19.75 15:07:16 2 TRANSMISSION EP~ORS

01 NOV 1975 15:07:17 MESSAGE T~ESMISSION COMPLETE
-'.

5

01 NOV 1975 15:07:38 BISYNC COMMUNICATIONS LINE DISCONNECTED

7

01 NOV 1975 15:16:23 BISYNC COl-1MUNICATIONS LINE ENABLED

01 NOV 1975 15:16:23 BISYNC COMMUNICATIONS LINE DI SCONNECTED

BISYNC PROCESSOR INACTIVE

LOGON PLEASE:

8The operator then filed the received message in the

RECEIv~D-n{VOICES file.

4.3 TRANSMITTING REALITY OBJECT CODE

1

:STRIP SYSTEM-MODES DBI

DESTINATION: HOLD

2

TRANSMIT HOLD DBI (T)

MESSAGE '0003' ENTERED IN QUEUE

3

:START-BSC 1

01 NOV 1975 15:30:00 BISYNC PROCESSOR INITIATED

lThe STRIP verb was used to strip off the source code

from the frame of code/DBI. When transmitting Reality

code, the operator should insure that the first

five lines of the frame are comments to preclude the

possibili ty of source code being lost when the" .. lines

of code are truncated to 80 characters, since the

STRIP verb does not affect the first five lines of

code in the frame. 2The stripped frame of code was

then structured into a transparent text transmission

message. 3The operator then started the bisync process

with the START-BSC verb.

..
:01 NOV 1975 15:30:00 BISYNC PROCESSOR INITIATED

5

01 NOV 1975 15:32:56 BISYNC COMMUNICATION LINE ENABLED

01 NOV 1975 15:33:01 0003 SYNPROG 00 15:25:13 01 NOV 1975 T*

01 NOV 1975 15:36:50 52 BLOCKS TRANSMITTED

01 NOV 1975 15:36:50 52 BLOCKS RECEIVED

01 NOV 1975 15:36:50 o TRANSMISSION ERRORS

01 NOV 1975 15:36:51 MESSAGE TRk'iSi-1.ISS I ON COMPLETE

6

01 NOV 1975 15:37:12 BISYNC CO~~UNICATIONS LINE DISCONNECTED

"The initialization message was returned to the bisync

p'rocess terminal. 5 After the line connection was ma¢e,

the frame of code was transmitted. 6After transmitting

its message, the bisync process went into the receive

state. Since nothing was received within 21 seconds,

the process disconnected the line.

4.4 RECEIVING REALITY OBJECT CODE

1

:START-BSC 1

01 NOV 1975 15:52:26 BISYNC PROCESSOR INITIATED

4

:ED SYSTEM-MODE OBI

.TOP

.FD

DBI DELETED

5

:FILE-MESSAGE 0004(R)

TO: SYSTEM-MODES OBI

IThe bisync process was started on line one by the

operator. 2The initialization message was returned

to the bisync process I. terminal. 3 After the line

connection was made, message 0004 was received.

4Since the operator knew the frame DBI was recieved~

he first deletes the old DBI from the SYSTEM~MODES ..

file using the EDITOR. sThe message was then filed

into SYSTEM-MODESDBI using the R option (file Reality

obj ect code) ·of the FILE-MESSAGE verb.

2

:01 NOV 1975 15:56:26 BISYNC PROCESSOR INITIATED

3

01 NOV 1975 15:59:30 BISYNC COMMUNICATIONS LINE ENABLED

01 NOV 1975 15:59:45 0004 15:59:45 01 NOV 1875 R*
'.

01 NOV 1975 16:05:02 52 BLOCKS T~~SMITTED

01 NOV 1975 16:05:02 53 BLOCKS RECEIVED

01 NOV 1975 16:05:03 o TRANSMISSION ERRORS

01 NOV 1975 16:05:03 MESSAGE TRru~SMISSION COMPLETE

01 NOV 1975 16:05:25 BISYNC COMMUNICATIONS LINE DISCONNECTED

4.5 TRANSMITTING A DITTO JOB TO AN IBM 360 OPERATING UNDER

DOS Ipm'lER .

Assume there is a file called JOB-CONTROL and this file

contains two items LOGON and LOGOFF.

LOGON

001 * RJSTART MICRO

002 * LOGON MICRO

003 * $$ JOB DITTO

004 * $$ PRT H

005 * $$ PUN H

006 II JOB DITTO

007 II UPSI 1

008 II EXEC DITTO

009 $$DITTO CPU

LOGOFF

001 1*
002 $$DITTO EOJ

003 * $$ EOJ

004 * LOGOFF

005 * RJEND

1

:START-BSC 1

01 NOV 1975 16:20:02 BISYNC PROCESSOR INITIATED

3

:TRANSMIT JOB-CONTROL LOGON (F)

ME$SAGE '0005' ENTERED IN QUEUE

:TRANSMIT DATA * (F)

1034

92685

28

4678

MESSAGE '0006' ENTERED IN QUEUE

5

:T~~SMIT JOB-CONTROL LOGOFF (F)

l~SSAGE '0007' ENTERED IN QUEUE

IThe operator started the bisync process on line one

and 2the initialization message was returned on the

bisync process' terminal. 3The logon job control cards

were entered in the message queue. ~All. the items

in the DATA file, the data which is to be dittoed,

was entered in the mess~ge queue. sThe logoff job

control cards were entered in the message queue.

6The job ~as sent,to the IBM360. The operator disconnected

the line, waiting for the job to be run.

2

:01 NOV 1975 16:20:02 BISYNC PROCESSOR INITIATED

6

01 NOV 1975 16:27:15 BISYNC COMMUNICATIONS LINE ENABLED

01 NOV 1975 16:27:20 0005 SYSPROG 00 16:20:56 01 NOV 1975 T*-

01 NOV 1975 16:28:32 3 BLOCKS TRru~S~UTTED

01 NOV 1975 16:28:32 3 BLOCKS RECEIVED

01 NOV 1975 16:28:32 0 TRANSMISSION E~~ORS

01 NOV 1975 16:28:33 MESSAGE TRANSMISSION COMPLETE

01 NOV 1975 16:28:35 MESSAGE r0005' DELETED

01 NOV 1975 16:28:40 0006 SYSPROG 00 16:23:10 01 NOV 1975 T*

01 NOV 1975 16:40:16 24i BLOCKS TR&~SMITTED

01 NOV 1975 16:40:16 243 BLOCKS RECEIVED

01 NOV 1975 16: 40: 16 12 TRA.1>iSMISSIONERRORS

01 NOV 1975 16:40:17 MESSAGE TRANSMISSION COMPLETE

01 NOV 1975 16:40 :26 MESSAGE r0006" DELETED

01 NOV 1975 16:40:31 0007 SYSPROG 00 16:28:14 01 NOV 1975 T*

01 NOV 1975 16:41:02 2 BLOCKS TR&~SMITTED

01 NOV 197516:41:02 2 BLOCKS RECEIVED

01 NOV 1975 16:41:02 0 TRANSMISSION ERRORS

01 NOV 1975 16:41:03 MESSAGE T~~~SMISSION COMPLETE

01 NOV 1975 16:4~:05 MESSAGE 10007' DELETED

01 NOV 1975 16:41:26 BISYNC COMMUNICATION LINE DISCONNECTED

1

:START-BSC 1

01 NOV 1975 17:35:53 BISYNC PROCESSOR INITIATED

3

:TRANSMIT JOB-CONTROL OUTPUT (F)

r~SSAGE 10008' ENTERED IN QUEUE

6

:TR&~SMIT JOB-CONTROL LOGOFF (F)

MESSAGE 'bOlO' ENTERED IN QUEUE

8

:FILE-MESSAGE 0009

TO: ACCOUNTS

lThe operator started the bisync process on line one,

and 2the initialization message-was returned on the bisync

process'terrninal. 3The operator there entered the_

output job control cards in the message queue.- I+The

line connection-was-then made-and the output-cards· ~

sent to the 360. sUpon receiving the output,cards,

the 360 transmitted the results of. the previous ditto

job. 6~-rnile receiving the ditto job, the operator

entered the logoff cards in the message queue. This

must be done while receiving the output, otherwise,

if the logoff is placed in t~e queue at the same time

as the logon, the logoff cards would be transmitted

before receiving the output, .aborting the job on the 360.

2

:01 NOV 1975 17:35:53 BISYNC PROCESSOR INITIATED

01 NOV 1975 17:38:10 BISYNC CO~MUNICATIONS LINE ENABLED

01 NOV 1975 17:38;15 0008 SYSPROG 00 17:36:15 01 NOV 1975 T*

01 NOV 1975 17:38:58 1 BLOCKS TRANSMITTED

01 NOV 1975 17:38:58 1 BLOCKS RECEIVED

01 NOV 1975 0 TRANSMISSION ERRORS

01 NOV 1975 17:38:58 MESSAGE TRANSMISSION COMPLETE

01 NOV 1975 17:39:00 ~{ESSAGE '0008 1 DELETED

5

01 NOV 1975 17:39:07 0009 17:39:07 01 NOV 1975 R*

01 NOV 1975 17:51:36 236 BLOCKS TR&~SMITTED

01 NOV 1975 17:51:36 237 BLOCKS RECEIVED

01 NOV L(&% 17:51:37 6 TRANSMISSION ERRORS

01 NOV 1975 17:51:38 MESSAGE TRANSMISSION COMPLETE

7

01 NOV 1975 17:51:42 0010 SYSPROG 00 17:42:26 01 NOV 1975 T*

01 NOV 1975 17:52:03 1 BLOCKS TRANSMITTED

01 NOV 1975 17:52:03 1 BLOCKS RECEIVED

01 NOV 1975 17:52:03 0 TruL~SMISSION ERRORS

01 NOV 1975 17:52:03 MESSAGE TRk~SMISSION COMPLETE

01 NOV 1975 17:52:05 MESSAGE '0010' DELETED

01 NOV 1975 17:52:26 BISYNC CO~~~u~ICATIONS LINE DISCONNECTED

7The logoff cards were then transmitted after rece~v~ng

the output. 8The operator then filed the received

message in the ACCOUNTS file.

