Assembly Language
REFERENCE MANUAL



REALITY"

$20.00

SSEMBLY LANGUAGE
REFERENGE MANUAL

PROPRIETARY INFORMATION

The information contained herein is proprietary to and
considered a trade secret of Microdata Corporation
and shall not be reproduced in whole or part withcut
the written authorization of Microdata Corporaticn.

© 1975 Microdata Corporation
All Rights Reserved

® Registered Trademark of Microdata Corporation

Specifications Subject to Change Without Notice

Printed in USA

771009A
Preliminary 5/76

Microdata Corporation

17481 Red Hill Avenue, Irvine, California 92714
Post Office Box 19501, Irvine, California 92713
Telephone: 714/540-6730 ° TWX: 910-595-1764






SECTION

1

TABLE OF CONTENTS

TITLE

INTRODUCTION
1.1 THE REALITY CPU
1.2 THE REALITY INSTRUCTION SET

1.3 MANUAL ORGANIZATION AND CONVENTIONS

REALITY CPU REFERENCE INFORMATION
2.1 SYSTEM STRUCTURE
2.1.1 INFORMATION FORMATS
2.1.2 ADDRESSING
2.2 VIRTUAL MEMORY MANAGEMENT
2.2.1 BUFFER STATUS
2.2.2 BUFFER MAP
2.2.3 BUFFER QUEUE

2.3 PROCESS
2.3.1 PROCESS IDENTIFICATION BLOCK
2.3.2 PRIMARY CONTROL BLOCK
2.3.3 FRAME FORMATS

2.4 THE MONITOR
2.4.1 MONITOR PCB
2.4.2 INTERRUPTS AND MONITOR CALLS
2.4.3 MONITOR DISC SCHEDULING TABLES
2.4.4 DISC INTERRUPT HANDLING

2.5 MACHINE INSTRUCTIONS
2.5.1 ARITHMETIC OPERATIONS
2.5.2 DATA TRANSMISSION OPERATIONS
2.5.3 ADDRESS MODIFICATION

OPERATIONS

2.5.4 BIT MANIPULATING OPERATIONS
2.5.5 CONTROL OPERATIONS ’
2.5.6 LOGICAL OPERATIONS
2.5.7 SHIFT OPERATION
2.5.8 STRING OPERATIONS
2.5.9 CONVERSION OPERATIONS
2.5.10 INPUT OUTPUT OPERATIONS
2.5.11 MONITOR OPERATIONS

2.6 INSTRUCTION SUMMARY

2.7 CORE MAP

2.8 PERIPHERAL 1/0: DEVICE ORDERS

REALITY ASSEMBLY LANGUAGE (REAL)
3.1 SOURCE LANGUAGE

LABEL FIELD
OPERATION FIELD
OPERAND FIELD

COMMENT FIELD
"ARGUMENT'" FIELD

RISEC IR
- . . . .

dehdHhﬂh*
O\U'l-bLNNP—"

iii

OPERAND FIELD EXPRESSIONS

PAGE

et
t ] 1 1 1 ] ] 1 ] 1 [} 1
R O U BN = R e

NN NN N
1 1
ju—
[\

1
st
R

WA HNARNRANW
1
NN



SECTION

(AN RTA RN
(@2 F 4 B SN ON I OS]

w
o

.9

.10
11
.12
.13
.14

[ RN R RVAROA]

3.15

4.1
4.2

TABLE OF CONTENTS (Continued)

TITLE

CALLING THE ASSEMBLER

LISTING OUTPUT

LOADING

VERIFYING A LOADED PROGRAM MODE

TCL-II CROSS REFERENCE CAPABILITY

3.6.1 CROSS-INDEX VERB

3.6.2 XREF VERB

3.6.3 XREF PROC

THE REAL INSTRUCTION REPERTOIRE
CHARACTER INSTRUCTIONS (MOVES)
CHARACTER INSTRUCTIONS (TESTS)
BIT INSTRUCTIONS

DATA MOVEMENT AND ARITHMETIC
INSTRUCTIONS

R ENE
~2 =1 ~31 3
B

3.7.5 REGISTER INSTRUCTIONS

3.7.6 DATA COMPARISON INSTRUCTIONS

3.7.7 TRANSLATE INSTRUCTIONS

3.7.8 EXECUTION TRANSFER
INSTRUCTIONS

3.7.9 I/0 AND CONTROL INSTRUCTION

3.7.10 ASSEMBLER DIRECTIVES

3.7.11 ADDRESS REGISTER USAGE

3.7.12 REAL INSTRUCTION SIDE EFFECTS

3.7.13 EXAMPLES

ASSEMBLER TABLES

3.8.1 TSYM/PSYM TABLE ENTRY FORMATS

3.8.2 OSYM TABLE-LOOKUP TECHNIQUE

3.8.3 TSYM TABLE ENTRY SETUP

3.8.4 OSYM TABLE ENTRY FORMAT

3.8.5 MACRO DEFINITION FORMAT

3.8.6 "PRIMITIVE" DEFINITION FORMATS

ASSEMBLER OUTPUT

LITERAL GENERATION

REASSEMBLY IN PASS 11

ASSEMBLER ERROR MESSAGES

EXAMPLE OF REAL MACRO EXPANSION
CORRECT USE OF REGISTER TO STORAGE
REGISTER COMPARE OPERATIONS

REAL INSTRUCTION SUMMARY

THE INTERACTIVE DEBUGGER (DEBUG)

ENTERING DEBUG

THE DEBUG CONTROL COMMANDS
4.2.1 CONTROL COMMAND SYNTAX
4.2.2 DEBUG CONTROL TABLES
4.2.3 CONTROL COMMANDS

THE DEBUG DATA DISPLAY COMMANDS
4.3.1 WINDOWS

iv

PAGE

|

NN UWUHUWRWUW R NN W
[} 1 1 [} | ! |
R HEEONNOO TN

QNN

SN
] t
=
00 o

i i

ARADADEN
] t
R R RSl



TABLE OF CONTENTS (Continued)

SECTION TITLE PAGE
4.3.2 DATA DISPLAY COMMANDS 4-6
4.3.3 DATA REPLACEMENT
SPECIFICATIONS 4-6
4.3.4 SPECIAL CONTROL CHARACTERS 4-7
4.4 BREAK MESSAGES 4-7
4.5 EXAMPLES 4-9
4.5.1 SIMPLE EXAMPLE 4-9
4.5.2 EXTENDED EXAMPLE 4-10
4.6 HARDWARE TRAP CONDITIONS 4-11
5 SYSTEM SOFTWARE 5-1
5.1 INTRODUCTION 5-1
5.1.1 ADDRESS REGISTERS 5-1
5.1.2 ATTACHMENT AND DETACHMENT OF
ADDRESS REGISTERS 5-2
5.1.3 RE-ENTRANCY 5-3
5.1.4 WORK-SPACES OR BUFFERS 5-4
5.1.5 DEFINING A SEPARATE BUFFER
AREA 5-7
5.1.6 USAGE OF XMODE 5-8
5.1.7 INITIAL CONDITIONS 5-9
5.1.8 SPECIAL PSYM ELEMENTS 5-9
5.1.9 PROGRAM DOCUMENTATION
CONVENTIONS 5-11
5.1.10 OVERALL VIEW OF SYSTEM
SOFTWARE LINKAGE ' 5-12
5.1.11 PRIMARY CONTROL BLOCK 5-13
5.1.12 SECONDARY CONTROL BLOCK 5-14
5.1.13 DEBUG CONTROL BLOCK 5-15
5.1.14 PSYM 5-16
5.2 TCL PROCESSORS AND PROC INTERFACE 5-21
5.2.1 VERB FORMAT 5-21
5.2.2 TCL-1 5-22
5.2.3 TCL-1I 5-25
5.2.4 USER EXITS FROM PROC 5-28
5.5 WRAPUP PROCESSOR 5-30
5.3.1 WRAPUP-1I 5-30
5.3.2 UPDITM (WRAPUP-11) 5-33
5.3.3 PRTEER (WRAPUP-III) 5-33
5.3.4 FUNCTIONAL ELEMENT USAGE BY
ALL WRAPUP MODES 5-34
5.4 DISC FILE I/O 5-37
5.4.1 RETIX AND RETI 5-37
5.4.2 GETITM 5-39
5.4.3 UPDITM 5-41
5.4.4 GBMS 5-44
5.4.5 GDLID 5-46



SECTION

11

TABLE OF CONTENTS (Continued)

TITLE

MINAL I/0
1 GETIB AND GETIBX

2 GETBUF

3 WRTLIN AND WRITOB

4 PCRLF

5 PRNTHDR AND NEWPAGE
6 PRINT AND CRLFPRINT
UAL MEMORY I/0

.1 RDREC

2 RDLINK AND WTLINK

3 LINK

FLOW SPACE MANAGEMENT
5.7.1 GETOVF AND GETBLK
5.7.2 RELOVF, RELCHN AND RELBLK
5.7.3 ATTOVF

5.7.4 NESTIR AND NEXTOVF
WORK SPACE INITIALIZATION
5.8.1 WSINIT

5.8.2 TSINIT

5.8.3 ISINIT

TAPE CONTROL ROUTINES

5.9.1 INIT AND TPSTAT

5.9.2 WEOF

5.9.3 BCKSP

5.9.4 REWIND

5.9.5 FRWSP

TAPE I/0 ROUTINES

5.10.1 TPREAD AND TPWRITE
5.10.2 ITPIB, TPIB, OBTP, AND FOBTP
5.10.3  SEGMNT (3,TAPEIO-II)
LABELED TAPE I/0 ROUTINES

5.11.1 RDLABEL (2,TAPEIO-II)
5.11.2  RDLABELX (5,TAPEIO-IT)
5.11.3  WTLABEL (3,TAPEIO-III)
5.11.4  WTLABELX (4,TAPEIO-III)
FILE-INITIALIZATION

12, GETOPT (10,SYSTEM-SUBS-IT1)
12, GETUPD

.12.10 XI&OS

.12.11 PRIVTST1 (5,SYSTEM-SUBS-III)
.12.12 PRIVTSTZ (7,SYSTEM-SUBS-III)

.12.1 DLINIT (6,DLOAD)
.12.2  DLINIT1 (7,DLOAD)
.12.3  GPCBO (4,ABSL)
.12.4  SETPIB (4,LOGON)
.12.5  SETPIBF (3,ABSL)
.12.6  GMMBMS
.12.7  GACBMS (1,LOGOFF)
8
9

ottt uT oo oo

vi

PAGE

5-47
5-47
5-49
5-50
5-51
5-52
5-54
5-55
5-55
5-56
5-57
5-58
5-58
5-59
5-60
5-61
5-62
5-62
5-63
5-63
5-64
5-64
5-64
5-65
5-65
5-65
5-66
5-66
5-67
5-68

5-69
5-69
5-70
5-70
5-71
5-71
5-71
5-72
5-72
5-73
5-74
5-74
5-75
5-75
5-76
5-76
5-76



SECTION

.13

.14

TABLE OF CONTENTS (Continued)

TITLE

MISCELLANEOUS ROUTINES

5.
S.
5.

(9a

vttt o o

(G s Na

[Fa N Ty

.13

.13.
.13.

13

13.
13.
13.

1
2
3

.4

5
6
7

TIMDATE, TIME, AND DATE

ASCII TO BINARY CONVERSION
BINARY TO ASCII CONVERSION
(MBDSUB AND MBDNSUB)

EBCDIC TO ASCII CONVERSION
(ECONV, R.ETA.M, AND R.ATE.M)
CREAD

SORT

BLOCK-LETTERS

NGLiSH AND BATCH INTERFACES

.14,
.14.2

.3
.14.4

.14

.14,
.14,
.14.

.14,
.14.
.14,

1

~N oD

= O 0o

ENGLISH INTERFACE

GENERAL CONVENTIONS

THE SELECTION PROCESSOR
SPECIAL EXIT FROM THE LIST
PROCESSOR

FUNCTIONAL ELEMENT USAGE
BATCH PROCESSOR INTERFACE
CONVERSIONPPROCESSOR
INTERFACE

USER CONVERSION PROCESSING
FUNCTION PROCESSOR INTERFACE
SPECIAL U-CORRELATIVE EXIT

vii







SECTION 1

INTRODUCTION

1.1 THE REALITY CPU

The Reality CPU, althouth physically small in size, has the
architecture of a medium scale computer. Its main memory is
core, and is expandable from 8,192 bytes to 65,536 bytes in
increments of &,192 bytes. Its full cycle operation is 1
microsecond per byte.

The virtual memory is disc which is oriented into 512-byte
frames, expandable from 4,871 frames (2.5 million bytes) to
12,192,320 frames (6.4 billion bytes). This is the virtual
memory addressing range of the CPU itself. However, in stand-
ard configurations, the Reality Computer System is configured
from 5 million bytes to 80 million bytes of disc storage. The
CPU is capable of handling a large number of asynchronous pro-
cesses, each associated with an input/output device. The
Reality CPU will support in excess of 32 terminals (or asyn-
chronous processes).

The CPU has 16 addressing registers and one extended accumula- -
tor for each terminal. A variable return stack accommodating
up to 31 recursive subroutine calls for each terminal is also
provided; however, current software convention allows only 11
entries in the stack. By indirect addressing through any one
of the 16 registers, any byte in the virtual memory can be
accessed. Relative addressing is also possible using an off-
set displacement plus one of the 16 registers to any bit, byte,
word (16 bits), double word (32 bits), or triple word (48 bits)
in the entire virtual memory.

1.2 THE REALITY INSTRUCTION SET

The Reality Computer System has an extensive instruction set.
The main features include:

° Bit, byte, word, double-word, and triple-word opera-
tions.

° Memory-to-memory operation using relative addressing on
bytes, words, double-words, and triple-words.

° Bit operations permitting the setting, resetting, and
branching on condition of a specific bit.

° Branch instructions which permit the comparison of two

relative memory operands and branching as a result of
the compare.

1-1



° Addressing register operations for incrementing, decre-
menting, saving, and restoring addressing registers.

° Byte string operations for the moving of arbitrarily
long byte strings from one place to another.

° Operations for the conversion of binary numbers to print-
able ASCII characters and vice versa.

° Arithmetic instructions for loading, storing, adding,
subtracting, multiplying, and dividing the extended
accumulator and a memory operand.

° Control instructions for branching, subroutine calls,
and program linkage.

1.3 MANUAL ORGANIZATION AND CONVENTIONS
This manual is organized as follows:

° Section 2 is essentially a "reference manual' for the
Reality CPU. It describes the system structure and the
machine instructions.

° Section 3 describes the Reality Assembly Language (REAL).

° Section 4 describes the Interactive Debugger (DEBUG),
which may be used to monitor and control program execu-

tion.

° Section 5 describes the Reality System Software, which
may be used to facilitate assembly level programming.

In presenting general command formats throughout this manual,
the following conventions apply.

Convention Meaning

UPPER CASE Characters or words printed in upper case are
required and must appear exactly as shown.

lower case Characters or words printed in lower case are
parameters to be supplied by the user (e.g., file
name, item-id, data, etc.).

{} Braces surrounding a word and/or parameter.indi—
cate that the word and/or parameter is optional
and may be included or omitted at the user's option.

{}... If an elipses (i.e., three dots) follows the ter-
minating bracket, then the enclosed word an@/or
parameter may be omitted or repeated an arbitrary
number of times.

1-2



In presenting examples, the following conventions apply:

Convention Meaning

TEXT Shaded text represents the user's input.

TEXT Standard text represents output printed by the
system.

Qﬁ@ This symbol represents a carriage return.

QZD This symbol represents a line feed.






SECTION 2
REALITY CPU REFERENCE INFORMATION

This section is a"reference manual" for the Microdata Reality CPU. It
provides a description of the system structure; of the arithmetic, logical,
branching, skipping, and input/output operations; and of rhe interrupt

and storage maragement system. Input/output devieces are discussed in a
separate document.

2.1 SYSTEM STRUCTURE

The Reality system consists of a core storage unit, a disc storage device
used as a virtual storage unit, a central processing unit (CPU), and from
one to 64 input/output terminals. There is a one-to-one correspondence
between a terminal attached to the system and a process. Additionally,
input/output devices such as magnetic tape units, disc units, card
readers, and printers may be attached to the system. Input/output devices,
other than the process terminal, may be accessed by any process. It
should be noted that the dis¢ unit containing the virtual store cannot be
accessed as an input/output unit, except by the monitor.

2.1.1 INFORMATION FORMATS

The system transmits information between the CPU and core storage (and
between core storage and virtual storag@ in units of 8 bits,or in
multiples of 8 bits at a time. Each 8 bit unit is called a byte.

Information may be a single byte, or may be grouped together in fields.
Fields of two, four, and six bytes are called words, double words, and
triple wordsy respeccively. A field made up of an arbitrary number of
bytes 1s called a string. The location of any field is specified by the
address of the left most byte of the field. Addresses increase from
left to right. ‘

Within any information format, the bits making up the format are
numbered from left to right,starting with O. The figure below shows

the information formats:

BYTE

11000110
0 7




WORD

[11110001]01001011]

0 78 1
5

DOUBLE WORD

[11100000] 10001111{00000000{10101011

0 7 8 11 22 3
56 34 1

TRIPLE WORD

[00000001] 00100111 [ 00111111 11110000 00001001] 00000111

0 78 11 22 33 3 4 4
56 3 4 12 9 0 7

2.1.2 ADDRESSING

Byte locations in mein storage are consecutively numbered starting with
zero. Each number is the address of a byte. A group of bytes is
addressed by the leftmost byte of the group. The number of bytes in a
group is either implied or explicitly defined by the operation. The
addressing mechanism uses a 16-bit binary address giving a maximum of
65,536 addressable bytes. Main storage is available from 8,192 bytes to
65,536 bytes in 8,192 byte increments. Main storage is partitioned into
blocks of 512 bytes each. A main storage block is called a buffer.

Virtual storage is also partitioned into blocks of 512 bytes each. A
block of virtual storage is called a frame. Frames are numbered con-
secutively starting with zero. Each number 1is the address of a frame.

A frame address is also called a frame identification (FID). FID's are
24 bit binary numbers giving an addressing capacity of 16,777,216 frames
or 8,589,934,592 bytes. Virtual storage is available in 9,744 frame
(4,988,928 byte) increments.

All program references to information are references to virtual storage.
Fields in virtual storage are referenced via a frame number and a
displacement. If the field being referenced is a single byte or a string,
the displacement is the number of bytes relative to the first data byte
of the frame. If the reference is to a word, double word or triple wo=-d,
the displacement is the number of words relative to the first data byte
of the frame. References to instructions are via a 12-bit frame numbe:.
Therefore, programs must be located in the first 4,096 frames.



2.2. VIRTUAL MPEMORY MANAGEMENT

The CPU directly accesses information from buffers in main storage.
These buffers contain the contents of virtual storage frames. The
virtual frames are moved between the dis¢c and main storage as required
by processes in progress. Two of the main storage buffers, O and Z,
contain the monitor program that performs the actual operation of
swapping frames in and out of main storage. Main storage buffers

1 and 3 contain information about each of the main storage buffers

and a map of the frames currently contained in each main storage
buffer.

2.2.1 BUFFER STATUS

Main storage locations X'200' through X'27F' contain the status of
each of the main storage buffers. One byte is used for the status of
each buffer. Location X'200' contains the status of buffer 0; loca-
tion X'201' contains the status of buffer 1;and so forth. The
information contained in the buffer status byte is given below:

Buffer Status Byte

Bit
0 1/0 BUSY/
1 CORELOCK1/
2 'CORELOCK/
3 WRTREQD/
4
5
6
7
PSYM Name Bit Description
1/0 BUSY/ 0 Zeroed whenever an 1/0 (disc or peripheral)
is in progress for this buffer; set when I/0
completes. Firmware prevents "attachment'" by
a virtual process to a buffer with this bit
zero. *
CORELOCK1/ 1 This bit is zeroed during cold-start tape

generation, along with bit 2, if a buffer is
to remain core-locked.

2-3



PSYM Name Bit Description

CORELOCK/ 2 A zero indicates that this buffer may not be
selected for disc input.

WRTREQD/ 3 A zero indicates that data in this buffer has
changed since it has been read from disc, and
must therefore be written back to disc.

4 Unused

5-7 These bits are used by the 'FAR' instruction
which changes the buffer status.

2.2.2 BUFFER MAP

Main storage locations X'280' through X'2FF' and locations X'700'
through X'7FF' contain the addresses of the frames currently in the
main storage buffers. The map is divided into two sections. Loca-
tions X'280' through X'2FF' contain the least significant byte of
each of the frame addresses. Locations X'700' through X'7FF' contain
the most significant two bytes of each of the frame addresses. For
example, the virtual storage address of the frame in buffer 4 is
found by concatenating the contents of main storage bytes X'708',
X'709', and X'204°'.

2.2.3 BUFFER QUEUE

A buffer queue is maintained by the firmware in main storage locations
X'300' through X'3FF'. The buffer queue consists of a doubly linked
list of buffer aumbers ordered according to their time of attachment
by the firmware. Each time a register is attached to a buffer, the
firmware moves the attached buffer to the head of the buffer queue.

When the contents of a buffer must be replaced because of a frame
fault, the buffer queue is used to identify the least recently
attached buffer for replacement. The buffer used is then moved to
the head of the buffer queue.

Each entry in the buffer queue consists of two bytes. The word (two
bytes) displacement of the entry from main storage location X'300'
corresponds to the buffer number. The two bytes forming each entry
in the buffer queue are the two pointers forming the doubly linked
list.

The first byte of each entry points to the next more recently attached
buffer entry in the queue. The second byte of each entry points to
the next less recently attached buffer entry. The first byte of the
most recently attached entry (i.e., head of the queue) contains X'FF'.
The second byte of the least recently attached entry (i.e., tail of
the queue) contains zero.



Bytes at locations X'300' and X'301' contain pointers to the head and
tail of the buffer queue respectively. The head of the queue identi-
fies the most recently attached buffer number. The tail of the queue
identifies the least recently attached buffer number.

2.3 PROCESS

The Reality CPU is designed as an interactive system capable of com-
municating with several users simultaneously. A user communicates
with the system via a communication terminal such as a Teletype or
CRT terminal. Associated with each terminal is a process. A process
is not an element of the system but rather a continuing operation on
a set of functional elements. Refer to Section 2.8

for peripheral 1/0 details.

2.3.1 PROCESS IDENTIFICATION BLOCK

For each process attached to the system, there is a Process Identifi-
cation BLOCK (PIB). Each PIB is 32 bytes long. The PIB for terminal
zero is in maiu storage locations X'800' through X'81F'; locations
X'820' through X'83F' contain the PIB for terminal onej and so forth.
The PIB contains information about the status of the process with
which it is associated. The following is a description of the PIB
contents. Bytes 0 through 6 are determined by firmware.

PIB Status Bytes

Byte Bit
0 ™| ACTIVE 0
1 1
2 DIOBLK/ 2
3 PIBEND/ 3
4 DWAIT/ 4
5 OBYTEBLK/ 5
6 IBYTEBLX/ 6
7 PIB-I0Q CIOBLK/ 7
8 Charge-units
o counter DWRITE 0

10 CIOOUT 1
1 PCBFID LOPRIOBIT 2
L DELAY 3
13 :

PIBFID ERROR 5
14 CODE 6
15 7




PIB Status Bytes

Name

Byte

Bits

Meaning

ACTIVE

DIOBLK/

PIBEND/

DWAIT/

OBYTEBLK/

IBYTEBLK/

CIOBLK/

DWRITE

CIOOUT

LOPRIOBIT

DELAY

0

0

One indicates that process may be activated
(candidate for Select Next User process).

Unused

Zero (zeroed by firmware on a frame fault)
indicates that process is roadblocked waiting
for referenced frame to be input from virtual
storage. Set to one when monitor accepts
request by moving FID onto 10Q.

Zero indicates the end of the PIBs.

Zeroed by monitor when frame fault request is
accepted (FID moved to I0Q). Set to one when
disc transfer is complete.

Zeroed by firmware when process is roadblocked
waiting for terminal to complete output. Set
to one when output is complete.

Zeroed by firmware when process is roadblocked
waiting for terminal to complete input. Set
to one when input is complete.

Zeroed by monitor when process is roadblocked
waiting for concurrent I/0 block transfer to
complete. Set to one when block transfer is
complete.

One indicates read request is roadblocked
waiting for buffer to be written out to disc.
Zeroed when output is complete and read request
has been replaced in 10Q.

One indicates process is roadblocked waiting
for concurrent output to complete. Zeroed
when output is complete.

Set to one on a Release Quantum entry to
monitor, if the process does not have either a
byte input or byte output roadblock. Also set
to one during concurrent block output.

One indicates a one-cycle delay to the Select
Next User process, on a Release Quantum entry
to monitor.

2-6



Name Byte Bits Meaning
ERROR CODE 1 4-7 Software generated error trap codes:
08 - illegal FID
09 - disc error
0C - register zero detached
OE - charge-units counter overflow
- 2 0-7 Last byte address of PIB 1/0 buffer (bytes
16-31 of PIB).
- 3 0-7 Number of bytes in PIB I/0 buffer less one
(X'FF' = no bytes).
- 4 0-7 Mask byte used by Communications controller.
- 5 0-7 "Unusual status" of Commurniications Control-
ler line associated with this PIB.
- 6 0-7 Data byte received from Communications
controller line associated with this PIB.
PIB--I0Q 7 0-7 Pointer connecting PIB to I0Q entry.
Charge-units 8-9 0-15 Number of charge-units associated with
counter this process.
PCBFID 10-11 O0~15 Frame-id of the Primary Control Block (PCB)
for this process.
PIBFID 12-15 0-31 When a process is roadblocked because of a
frame fault, the frame-id is placed in these
bytes. When the monitor is entered as a
result of a call operation, these bytes
contain parameters:
Frame I/0 Request Monitor Call
- 12 0-7 Buffer number which High-order address of
contains PCB. PCE frame
- 13 0-7 High-order byte Mask byte from Call
of absent FID, instruction.
- 14 0-7 Middle byte of High-order byte of
absent FID, address of register
referenced in Call.
- 15 0-7 Low-order byte Low-order byte of
of absent FID., address of register
referenced in Call.
— 16-31 Input/output buffer for the terminal associ-

ated with this process.



2.3.2 PRIMARY CONTROL BLOCK

For each process there is a frame called the Primary Control Block
(PCB). The PCB contains the accumulator, address registers, subrou-
tine return stack and string scan control characters associated with
the process. The location of the PCB is contained in the PIB of the
process. The following paragraphs describe the contents of the PCB.
The bytes that are not described are not accessed by the Firmware.
However, the remaining bytes of the PCB contain information used by
the operating system.

Bytes Description

0 This byte is reserved for a lock code used for
storage protection.

1 This byte contains the condition code resulting
from a previous arithmetic instruction execution.

3-5 These bytes are used for controlling the Move and
Scan through Delimiter instructions.

6-7 These bytes are used for controlling the debug
trace mode of operation.

8-X'0B' These bytes contain the double word accumulator
extension. The accumulator extension contains
the most significant porticn of a product after
a multiply operation. It contains the remainder
after a divide operation.

X'oCc'-X'oF' These bytes contain the double word accumulator.

X'100'-X'17F' These bytes contain the 16 address registers.
See the description of the address registers
below.

X'180'-x'181" These bytes contain the address (relative to

byte zero of the PCB) of the limit of the sub-
routine stack.

X'182'-X'183" These bytes contain the pointer to the current
top of the subroutine stack.

X'184' and above The bytes contain the subroutine return stack.
The number of bytes allocated for the stack is
determined by the contents of bytes X'l180' and
X'181'.



Address FRegisters

All references to data, except immediate data, are made indirectly
through an address register. There are 16 address registers in each
PCB. Each address register contains 8 bytes:

Address 0 1 2 3 4 5 6 7
Register ADDRESS | DISPLACEMENT | LINK FID
Format

Bytes Description

0-1 These bytes contain the 16 bit main storage address of the

referenced data. If the address is less than X'800', the
frame containing the data may be absent from main storage.

2-3 These bytes contain the displacement of the referenced data
relative to the first data byte of the frame. The displace-
ment is a 16-bit signed number. Negative values are
represented in two's complement form. These bytes are
meaningful only when the register is detached. (See
Register Attachment below.)

4 Zero in bit zero of this byte indicates that the register
references data in the linked format. If bit zero is a
one, the register references the data in the unlinked
format.

One in bit one indicates that frame attachment is in
progress. Bit one can only be set during the execution
of instructions that increment addresses with data
movement.

5-7 These bytes contain the virtual storage frame number of
the byte being referenced.

Address Register Attachment

When a program loads ("restores'") an address register, the first two
bytes of the register are set to zero. Bytes 2 through 7 of the
address contain a virtual frame number and displacement. A register
in this format is said to be detached. When a subsequent instruction
uses the detached register for a data reference, an attempt is made
to convert the address register to the attached format. The attach-
ing attempt is automatic and performed as follows. The buffer map
is scanned to determine if the referenced frame is located in main
storage. I1f the frame is in main storage, the location of the
required byte is computed by adding the buffer address from the map
to the displacement from the address register. The address is then

2-9




REALITY 2.0 UPDATE

placed into bytes 0 and 1 of the address register, thus forming the
attached format. Once the register is.attached, instruction execution
takes place.

If the referenced frame is not in main storage, the frame number is
placed into bytes 12 through 15 of the PIB. Byte 0, bit 2 of the
PIB is set to 0, thus roadblocking the process. Next all of the
address registers in the PCB are converted to detached format and a
fault interrupt to the monitor is taken.

Address Register Zero

Register zero is used in a special way. This register always contains
the FID of the PCB. Register zero is attached when the process is
activated. The displacement field of this register is always assumed
to be zero.

Address Register One

When a process is not active, address register one contains the FID and
displacement (minus one) for the next instruction to be executed. When the
process is activated, the buffer address of the program frame (as
determined from the buffer map) is added to the displacement from
register one. This value is placed into a hardware instruction
counter. The register is then converted to the attached form with

the buffer address set to the base address (byte zero) of the program
frame. When the process is deactivated, the main storage location
from the instruction counter is converted to the corresponding FID

and displacement and the register is detached with these values placed
into it.

2.3.3 FRAME FORMATS

The Reality system recognizes two types of frame formats; linked and
unlinked. In both formats byte zero of the frame is reserved for a
frame lock.

Unlinked frames contain 511 data bytes. For unlinked frames the
displacement portion of an address is relative to byte 0 of the frame,
i.e., a displacement of 1 is a reference to the first data byte.
Displacements outside the range 0 through 511 are not valid for frames
in the unlinked format.

Linked frames contain 500 data bytes. For linked frames, the dis-
placement field in the address is relative to byte 11 of a frame.
However, a displacement of zero is a reference to byte 511 of the
frame to the left of the current frame. Displacements for linked



frames may be positive or negative so long as the displacement
references a logically linked item of data. The following paragraphs
describe the linked format.

o 1 2 3 4 5 6 7 8 9 10 11 12...
FRAME FRMN FRMP ]
Lock | WNCF (Next FID) (Previous FID) | FCF|Unused)
) Section
(500 bytes)

Linked Frame Format

Bytes Description
0 This byte is reserved for a frame lock.
1 This byte contains a count of the number of next contiguous

frames to the right of this frame (NNCF). A zero in this
byte indicates that this frame is the rightmost frame in
a contiguously linked set of frames.

2-5 This field contains the frame number of the frame that is
logically to the right of this frame. If byte 1 contains
other than zero, the frame to the right is the next
higher numbered frame. If byte 1 contains a zero the
frame to the right may be any frame number. A zero in
this field indicates that this is the rightmost frame of
a linked set.

6-9 This field is similar to bytes 2 through 5 except that it
contains the number of the frame to the left of this frame.

10 This byte is similar to byte 1 except that it contains a
count of the number of previous contiguous frames to the
left of this frame (NPCF).

11 Unused.

12-511 Data section.

2.4 THE MONITOR

The monitor is a program that is an integral part of the Reality
system. The monitor process is the only one not associated with a
PIB. The PCB for the monitor is defined as buffer 0 of main storage.

The function of the monitor is to initiate the transmission of informa-
tion between main storage buffers and virtual storage and to schedule
each of the processes.




When the system is operating in monitor mode, address registers are
not checked for attachment. Instead all data references are assumed
by the firmware to be references to absolute core addresses. The
system is in monitor mode whenever the location of the PCB is at
core-address zero.

The monitor gives control to another process by executing either a
Resume Virtual Process or a Start Virtual Process instruction.

The multi-disc monitor may be used with one or two drives per control-
ler, and with one through four disc controllers. In any multi-disc
configuration, the capacity of every drive in the system must be the
same; i.e., either 5 megabyte or 10 megabytes/drive; also all
controllers must have the same number of drives attached to them.

2.4.1 MONITOR PCB

The PCB associated with the monitor is at absolute core-address O
through X'1FF'. Beside the functional elements that are described

in Section 2.3.2, the following locations are used:

Bytes Description

2 Contains the Interrupt Address code on an External
interrupt fault trap to the monitor.

3 Contains monitor status flags (bits).
6 Contains the hardware clock counter; a fault is

generated when this is incremented (every one
millisecond) to zero.

7 ) Extension of clock counter used by the monitor.
X'10'-X'1F" Exclusively a hardware save area.

X'20'-X'FF' Contains the bootstrap software executable code.
X'1A0'-X'1A1" Contains the system date (days since 31 Dec 1967).
X'1A4'-X'1A7' Contains the system time (seconds since midnight).
X'1C0'-X'1DF' Contains PIB pointers for peripheral devices 0

through 15.

X'1EQ'-X'1FF' Contains address pointers for peripheral devices
0 through 15.

(S8

-12



Initial Condition of Monitor PCB Registers

LOC

100

108

110

118

120

128

130

138

140

148

150

158

160

168

170

178

180

RO

R1

R2

R3

R4

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

00l 00 03 A 05 BI%S
04 00 01 Co 01 EO | 02 7F
06 00 14 80 10 FO oc 84
0c 00 FF FF 20 AO 28 3F
PIBWA PIBSTART PIBSIZE PFID
- - 07 EO 00 20 -- -
01 - F6 - FE 64 06 3F
01 60 - - 00 01 51 81
IOQWAL | TOQSTART | I0QSIZE | IOQMAX | IOMAX | IPQ# | NUMCONT
06 - * 10 * * 00 *
DCTWAL FIDMAX
06  -- - 04 *
=H24
00 0B ocC 18 02 00
OE -- - - - -— - -
— 1 A0 - 84 FF FF  FF FF

Unused or scratch

Preset by MSETUP Program.




Monitor Register Assignment

Register PSYM

No. Name Address Description of Usage
0 None X'0000' Addresses Monitor PCB.
1 None X'0400' Addresses MMONITOR.
2 None X'0600' Addresses MMONITORX.
3 None X'0Co0' Addresses MMONITORY/Nx.
4 PIB Variable Current PIB pointer.
5 None X'0100' Addresses Monitor PCB, lower half.
6 None X'0160' Addresses WA of R12.
7 10Q X'06xx"' Current IOQ entry pointer.
8 DCT X'06xx' Current DCT entry pointer.
9 None X'000B' Addresses H4 in Monitor accumulator.
10 None - Scratch
11 None X'0E00' Addresses MMONITORZ.
12-15 None - Scratch

2.4.2 INTERRUPTS AND MONITOR CALLS

Once a virtual process gains control, it remains in control until the
occurrence of an interrupt or until the process executes a Monitor
Call instruction. The occurrence of a Monitor Call instruction will
cause all registers in the current PCB to be converted to the detached
form. ’

There are three types of interrupts to the monitor: external, internal,
and fault.

An external interrupt is generated when a device (including the virtual
storage device) completes an operation. When an external interrupt
(excluding the virtual storage device) occurs, the status of the active
process is saved in the hardware. The process that was interrupted must
be resumed by executing a Resume Virtual Process instruction. After the
occurrence of an external interrupt, further external interrupts will be
inhibited until a Resume Virtual Process instruction has been executed by
the monitor. Refer to Section 2.4.4 for an

explanation of external interrupts from the Virtual Storage Device.
Device addresses 0-X'F' are assumed to be non-virtual storage devices
and X'10' - X'17' are assumed to be virtual storage devices.

2-14



When an internal interrupt occurs with a dependent process active, all
registers in the PCB are converted to detached form and control passes

to the monitor. An internal interrupt can be recognized with the

monitor active at any time except in the case of a real time clock runout
which can only be recognized after the execution of a Test Interrupt instruc-
tion (X'0l').

A fault interrupt can occur only when a virtual process is active. A
fault interrupt causes all the registers in the PCB to be converted to
detached form.

The monitor must execute a Start Virtual Process instruction to start
a process that was interrupted by an internal or fault interrupt.

Interrupts cause entry to the monitor at predefined locations. The
table below shows the monitor entry point for each interrupt condition.

Entry Address Interrupt Condition
1 Reference to absent frame (fault)
3 Input/output operation complete (external)
5 Power fail console interrupt, or clock

runout (internal)

7 Terminal input/output with device not
ready, or attempt to attach a buffer
with input or output active in the buffer
(fault)

9 Attempt to attach register 0 when not in
the monitor (fault)

11 Power restored entry point (internal)

13 Hardware abnormal condition while in
Monitor mode

15 Not used

17 thru 31 Monitor Call instruction entry points

Traps

Certain operations can cause a trap condition to be signaled. The
occurrence of a trap causes a Branch and Stack location instruction



to be executed to a predefined location in virtual storage frame one.
The table below shows the entry point and the cause for each trap.

Entry
Address

Cause

1

3

11

13

15

17

19

21

23

31

Illegal operation code encountered.

The return stack is empty. This occurs when a
Return instruction is executed with the current
stack position pointing to the beginning of the
return stack.

The return stack is full. This occurs when a stack
location type of operation is executed and the
current stack position is equal to the end of stack
location. The current stack location is reset.

Attempt to reference frame 0 when not in monitor
mode. The number of the address register that
contained the reference is placed into the condition
code byte of the PCB.

Attempt to cross a frame boundary for an unlinked
frame or a word, double word, or triple word not
entirely in one frame. The register number con-
taining the reference is placed into the condition
code byte of the PCB.

Attempt to link across a frame with a forward link
of zero. The register number containing the refer-
ence is placed into the condition code byte of

the PCB.

Attempt to link across a frame with a backward link
of zero. The register number containing the reference

is placed into the condition code of the PCB.

Attempt to execute a privileged opcode when not in
moaitor mode.

Attempt to reference a non-existent frame.

Disc error.

Break key activated on the terminal.

Return stack format error. There are two conditions
that cause this error. Either the end of stack
lozation is less than the current stack position, or

the stack size is defined for less than 7 entries.

Debug trace mode. This is not an error conditicn.
Trace mode is controlled by bytes 6 and 7 of the PCB.

2-16



Trace Mode

The Reality CPU can operate in a special mode called trace mode. When
trace mode is in effect the hardware monitors the instruction execution
and traps to location 31 of frame 1 on the occurrence of certain condi-
tions. When a trap occurs, bits O through 3 of byte 6 of the PCB are
set to zero, inhibiting further traps. The conditions that can cause
the trap are defined in bytes 6 and 7 of the PCB. The following

1ist shows the conditions:?

Byte 6, Bit 1 - This bit indicates that a trace interrupt is to
occur on every BSL, ENT, BSL*, or ENT* instruction (modal trace).

Byte 6, Bit 3 - This bit indicates that trace traps can occur
on every instruction.

Byte 6, Bit 5 - This bit is set by firmware when an instruction
trace trap has occurred.

Byte 6, Bit 6 - This bit is set by firmware when a RTN trace trap
has occurred.

Byte 6, Bit 7 - This bit is set by firmware when a BSL, ENT,
ENT* or BSL* trace trap has occurred.

Byte 7 - When the system is in the instruction trace mode,
this byte is incremented for every instruction executed.

A trace trap will not occur until this byte has been
incremented to zero.

2.4.3 MONITOR NDISC SCHEDULING TABLES

There are two tables that control the disc 1/0 scheduling: the 1/0
Queue (I0Q) and the Device Control Table (DCT). The IOQ table may be
considered a subset of the Process Identification Block set (PIB); a
process that requires disc input must first be allotted a spot in the
10Q before its request can be honored. Since the I0Q can be set to
any size between two and eight entries, the IOQ acts as a funnel
between the disc input requests from the processes, and the actual
disc 1/0. By preventing the honoring of requests for too many
processes in rotation, the IOQ serves to control "thrashing".

The I/0 Queue (10Q)

Moving on and off the 10Q is controlled by the monitor in the following
manner: When a process requests disc input, and it is not on the IOQ,
it is moved on to an available I0Q entry if such an entry exists at

the time; if not, the process goes into a wait state until an entry



becomes availatle. A process moves off the I0Q (''deactivates") under
the following conditions:

1) The process executes a "Release Quantum", either explicitly
(via the RQM instruction) or implicitly due to:

® Real Time Clock Interrupt
® Terminal input or output roadblock
® Concurrent I/0 block transfer roadblock

2) The process executes the maximum number of disc input
requests, as specified by the monitor parameter IOMAX.

In any of the above cases, that process is taken off the I0Q; the
entire PIB table is then searched for other processes that are road-
blocked due to a disc input request, and one of them selected to be
moved to the ICQ, at which time the disc input request counter
(I0CTR) is set to the initial value specified in IOMAX.

I10Q Table Format

-

Disc
Address

Associated PIB Address
Status, etc.

Logical Unit Number
Input Request Counter
Variable, Command
Buffer Address, Upper
Variable

Action Code

Start Seek Command

Byte PSYM Name Description

0 None Logical unit number; consists of the controller
device address, with the high-order bit specifying
the drive number:

Controller Address - 14 15 16 17
Drive Number . 0 14 15 16 17
1 94 95 96 97



Byte PSYM Name Description
0 None This byte is set up when the disc address is
(Continued) computed from the FID; is set to zero when the disc
request has been processed.

1 IOCTR Disc input request counter; is set to value speci-
fied in IOMAX when a process is moved to the I0Q;
is decremented on every input request processed.
If zero specifies an available I0Q entry.

2-3 10Q--PIB Link from IOQ to PIB; is set up when a process is
moved to the I0Q; is never zeroed.

4 I0QCOoM1 Scratch location used to communicate with the disc
controller may store a RETURN command, a SELECT
and QUEUE SEEK command, or the major status.

5 I0QBUF Buffer address, (upper) to which disc I/0 is
being done; the low-order bit is first zeroed to
output the "buffer start, upper" command, to
the disc controller, then set to output the
"buffer end, upper" command.

6-7 TIOQLA Disc address computed from the FID.

8 None Used as a scratch location to output the "buffer
start, lower" and "buffer end, lower" bytes
(always X'00' and X'FF' respectively).

9 IOQACT Controller action code:

xX'00' -  Read
X'o1’ -  Verify
X'02' - Write

A  None Controller command--always X'90' (start queued
seek(s), arm interrupt).

B - Unused

C IO0QFIDO FID, uppermost byte is always X'80'.

D-F TIOQFID



Selection of a Process to be placed on the I0Q

The following rules are used to select a process to be placed on the
I0Q (if more than one process is roadblocked due to a disc input
request):

1 If the process had been taken off the I0Q due to a
terminal I/0 roadblock, it is selected to be placed
on the I0Q immediately. This is governed by bit
LOPRIOBIT being zero in the PIB.

2) If none of the processes are so roadblocked, the
first process with LOPRIOBIT set (therefore lower
priority) is selected to be placed on the 10Q.

The effect of this selection criterion is that processes that had
moved off the 10Q due to terminal I/0 will have a higher priority

than processes that do not do any I/0. In order that the latter type
of processes do not get into a state where they may never be selected
due to the existence of other processes that are in a heavy terminal
1/0 state, LOPRIOBIT is zeroed during the search described above.

Note that in the event that only one process requires disc input, a
full search of the PIB table is completed, before the deactivated
process is moved back to the I1IOQ.

10Q Setup

When a process is placed on the I0Q due to a disc input request, the
following sequaence of events occurs:

1) The disc input roadblock (DIOBLK/) in the PIB status
is se=t, thereby indicating that this process is on the
I0Q, and is no longer a candidate for I0Q selection.

2) The "waiting for disc" flag (DWAIT/) is zeroed, thereby
preventing the Select Next User routine from selecting
that process for execution.

3) The requested FID is moved from the PIB to the I0Q, and
the disc address is computed.

4) a) If the addressed disc is busy, nothing further can
be done.

b) If not, the 'SETUP' routine in the disc interrupt
handler is entered.



Disc Address Computation

Subroutine SETIOQ takes the FID specified in the IOQ entry; checks
against a maximum FID as specified in the literal FIDMAX; converts
the FID to a 16-bit disc address and stores the latter at IOQDA.

Disc Address Format

01 2 3|4 5 6 78 9 10 1112 13 14 15

HEAQ;::>

PLATTER # —>>

CYLINDER #
0-202 (5MB Disc)
0-405 (10MB Disc)

SECTOR #-—
0-22; even values only

The Device Control Table (DCT)

The DCT entry is uniquely associated with a disc drive; it contains a
flag indicating whether the device is busy or not, a link to the IOQ
associated with the drive, and in the case of two drives per control-
ler, a seek counter which keeps track of the number of seeks that
have been started on the controller.

The DCT location is mapped directly from the device address of the
controller, and the disk drive number; its main function is to pro-
vide an easy linkage from the interrupt address supplied by the CPU
at the time of an interrupt, to the IOQ.

DCT Table Entry

(Per Contrdller)

o9
i
[§S]
—

0 1 2 3 4 5 6 718 9 A B C D

%) 3

n O

& e

>

o | 5 o | B

< | 2 < | o

[ 1= S
%) S %) o o
jan] > jon] Lo =
= 1921 (=] 35} w ] B
< jom €3] <t jan] = %

|l [aa] 3] |3l m 3]
n < (%} < o
(22 I [ m | = | O

x| o | o | O | o
(&} 1= o (@} H O [N
= = wn Z = [} =
= | B | v = || v | |
= A < = a << wn

~— DRIVE ZERQ ~=}=— DRIVE ONE —=




Byte  PSYM Name Description

1 None Minor status from drive if an error has occurred;
is not reset if no errors.

2 DCTBSY High-order bit, if set, indicates drive is busy.
Reset on I/0 completion.

3 DCT--10Q Address link from DCT to associated I0Q Entry;
is setup when seek is started; is not reset.

2.4.4 DISC INTERRUPT HANDLING

On receiving an end-of-transfer interrupt, the firmware deactivates
the currently executing virtual process (if in virtual mode), and
traps to location X'403' in the monitor. The interrupt address of
interrupting device (device address times two) is stored at X'OF' -
the low-order byte of the monitor accumulator. A virtual process
cannot resume execution after completion of disc interrupt handling,

since its buffers may be replaced and attached registers may no longer
be valid.

The interrupt address is mapped into the DCT address, which leads to
the associated 1I0Q address, which in turn leads to the associated
buffer address, FID, and PIB address. The status of the drive is
obtained and, if there are no errors, the controller is re-—-armed

(if another seek is pending it is also re-started). If the completed
operation was a write, a verify is now started, and interrupt handling
terminates.

Selection and setup of next I/0

Since the drive is now ready, the IOQ table is searched for a matching
device/drive number, or logical unit number. If a match is found,
the setup phase is entered (also entered from frame fault).

1) The FID is picked up from the I0Q, and a FAR instruction
executed; this is the only monitor-level instruction
that causes the firmware to attach an A/R. If the
requested FID is core-resident, the disc read roadblock
is removed from the associated PIB, and the I0Q table
searched for the next I/0.

2) If the FID is not core-resident, the execution of the FAR
instruction has automatically caused an attachment to the
"oldest" buffer in core. If this is core-locked, the FAR
is repeated. If not, and if the buffer has no write-
required flag on its status, an available spot has been
found for the disc read, and the read parameters are set up.



3) If a write-required flag exists on the buffer status, that
data must be written out before the read request can be
processed; therefore, the IOQ entry is overwritten with
the FID to be written out, and the write parameters are
set up in the I0Q. Also, the flag DWRITE in the PIB status
is set, indicating that the read request from the process
is yet to be processed. Note that in this case a drive
other than the one that just completed a transfer may be
started.

Starting I1/0

In the case of two drives per controller, a RETURN instruction is
issued to rthe controller if another seek is pending completion
(DSCSEEKS non-zero); if the controller status indicates that it did
not return, the start I/0 sequence is aborted, and the associated
process arbitrarily reactivated by clearing its PIB roadblocks. This
is because the controller either:

® is transferring data at this time, in which case it
cannot be interrupted to queue another seek, or

@ it has completed a transfer, in which case an interrupt
is pending recognition and another seek cannot be queued.

When reading a frame, the buffer FID is set to zero till the read
completes; when writing a frame to the disc, the FID of the buffer
remains unchanged. 1In either case, the buffer status is set core-
locked and I/0 busy for the duration of the I/O.

Disc Errors

If a disc error is detected at the completion of the transfer, the
minor status from the drive is stored in the DCT; the buffer is set
non-core-locked, not-I/0-busy, the associated process PIB roadblock
is cleared just as if the I/0 had completed, and error #9 is set in
the PIB error byte. This causes a virtual software trap to the DEBUG
State, and an eventual re-stacking of the request. Note that the
buffer FID is maintained if the transfer was a write, and is left as
zero if the transfer was a read.

If an illegal FID is requested (as determined by comparing against

FIDMAX in the monitor PCB), as above, except that error #8 is flagged.
The DEBUGGER will abort the process in this case.

The Select Next User (SNU) Routine

The Select Next User routine (SNU) is entered whenever the monitor
has completed setting up a disc transfer; has completed processing
of a disc interrupt; or is in a '"wait' state due to all virtual

2-23



processes being quiescent. While the monitor is in the SNU routine,

it cycles through the PIB's to see if any of the processes require
activation. At this time also, the monitor executes the Test Interrupt
instruction, which is the only monitor-executed instruction that

allows recognition of external interrupts.

A process may be selected under the following conditions:

® All roadblocks clear; that is, if DIOBLK/, DWAIT/,
OBYTEBLK/, IBYTEBLK/, CIOBLK/ are set, and DELAY
and DWRITE are zero.

® External activation and disc roadblocks clear; that
is, if ACTIVE, CIOBLK/ and DWAIT/ are set. This
would happen if the process received a BREAK-key
interrupt, or if another process sent this one a
message via the MESSAGE processor.

In either case, the monitor sets up to activate the process by
loading the PCB-FID from the PIB into R4FID (of the monitor), and
executing a Start Virtual Process instruction.

If the process had been roadblocked due to a disc input request, and
the monitor had overwritten this request with a disc write, all status
bits are as in (1) above, except that DWRITE is set. In this case,
the monitor will cause the read request to be re-stacked, by
re-entering thz Frame Fault entry point.

Programming Notes

The current J0OQ entry is addressed by the address register '"I0Q"
(R7); the current DCT entry by the A/R "DCT" (R8); in the case of
two discs per controller, R12 addresses byte zero of the DCT block
for the current controller.

Registers DCT and I0Q always work in the same 256-byte block (X'600 -
X'6FF'); therefore, the upper bytes of their address words are preset

to X'06' (as an initial condition when cold-starting the system), and
only their low order address bytes are altered. Also, the I0Q table

starting address pointer (IOQSTART) is a half-tally.

The DCT location is from X'640' through X'67F' (see formats later);
sixteen bytes are allocated to each of four possible controllers,
(with device addresses X'14' through X'l7' respectively), with one or
two drives per controller.

The I0Q table has a fixed ending address--the last entry is X'6FO0'
through X'6FF'; the starting address is variable, depending on the

2-24



number of entries allowable. The table beginning pointer (IOQSTART)
is 16 bytes before the first I0Q entry:

IOQSTART=X'700' - 16% (IOQMAX+1)

where IOQMAX is in the range 2 through 8 inclusive.

2.5 MACHINE INSTRUCTIONS

This section lists all Reality machine instructions and describes their
execution. A diagram representing the format is given with each

instruction description. Preceding the diagram is the name of the

instruction. Enclosed in parentheses is the assembler code for

the instruction. It should be noted that the assembler codes are

not unique. That is,several of the instructions have the same code.

The assembler uses both the code and the operand attributes to

determine a particular operation (see Section 3). Below is an example
of an instruction description:

Branch Byte Equal to Immediate (BCE)

BT
0100 | Ra KRR A 10 S
4 4 8 4 2 10

The numerical operation code bits are shown as binary numbers. Note
that the operation code need not occupy consecutive bit positions of
an instruction. In the example above the operation code occupies the
first and fifth fields of the instruction. The numbers appearing
beneath the diagram indicate the number of bit positioans occupied by
the particular field. The symbols appearing in the diagram indicate
the type of information in the field. Shading indicates that the
field is not used in the instruction. The table below defines the
symbols used in the instruction diagrams:

Symbol Meaning
R The field contains an address register number.
D The field contains a displacement relative to

the contents of an address register or relative
to the beginning of a frame.

FID The field contains a frame identification number.
If the field is less than 24 bits wide, high
order zeroes are assumed.

S The field contains a signed magnitude skip
distance (in bytes) for conditional skipping.
A skip distance of zero means no bytes are to
be skipped.



Symbol Meaning

L The field contains an operand length.L = 0 is a
1 byte operand. L =1 is a 2 byte operand.
L =2 4is a 4 byte operand. L = 3 is a 6 byte
operand.

K The contents of the field itself is an operand.

Terms used in the instruction descriptions are defined as
follows:

@ Ra or Rb means the contents of the addressing register named by the Ra
or Rb field of an instruction.

® C(Ra) or C(Rb) means the contents of the location referenced by the
address contained in the named addressing register.

® C(Ra,la) or C(Rb,Db) means the contents of the storage frame location
referenced by adding the D field of the instruction to the contents
of the named storage register.

® When a register or part of a register is cleared, the cleared part
contains zero bits.

® When the word 'load' is used in a description it means the contents
‘ of some frame location replaces the contents of a special register
(address register or accumulator).

® When the word 'store' is used in a description it means the contents
of a special register or the contents of an instruction field replaces
the contents of some frame location.

® When the word 'move' is used in a description it means that the con-
tents of a frame location replaces the contents of another frame
location, or the contents of a register replaces another register.

Storage operands are always referenced through one of the 16 address-
ing registers. An addressing register contains the byte address of
the operand. For instructions with a D field, a displacement is

added to form an effective address. When the operand is a single byte
(L field = 0), the D field of the instruction is the displacement.
When the operend is a word, double word or triple word (L =1, 2 or 3)
the D field is doubled to form the displacement.

[N]
!
0o
(@)



2.5.1 ARITHMETIC OPERATIONS

The following operations perform arithmetic on binary integers.
Negative values are represented in two's complement form. The 'L'
field of the instruction specifies the length of the operand in
storage. For storage to accumulator operations, triple word operands
are not allowed (L field of 3); byte and word operands are sign
extended to form a double word value before the operation is performed.
The accumulator operand is always a double word. Storage operands
must lie entirely in a single frame. The condition codes resulting
from an arithmetic operation are placed in byte 1 of the PCB. The
condition codes are defined below.

Symbolic Name Bit Position Condition Indicated
ZROBIT 5 zero result
NEGBIT 6 negative result
OVFBIT 7 | arithmetic overflow

Test and Set Arithmetic Condition Flags (TST)

1010 Ra Da L 000010

The contents of (Ra,Da) is tested and the arithmetic condition flags
(i.e., ZROBIT and NEGBIT) are updated appropriately. The instruction
may be used with a half tally, a tally, or a double tally. L is '00',
'01', or '10' respectively depending upon the type of operand.

Add to Accumulator (ADD)

1010 Ra Da L 010011

4 4 8 2 6

The C(Ra,Da) are added algebraically to the accumulatcr. The sum is
placed in the accumulator. The C(Ra,Da) are unchangec.

Add to Storage (INC)

1111 Ra Da L 10 Rb Db

4 4 8 2 2 4 8

The C(rb,Db) are added algebraically to the C(Ra,Da). The sum is
placed in the C(Ra,Da). The C(Rb,Db) are unchanged.

2-27



Add a One to Storage (INC)

1010 Ra Da L 000011

4 4 8 2 6

The C(Ra,Da) are algebraically increased by 1.

Subtract from Accumulator (SUB)

1010 Ra Da L 010101

4 4 8 2 6

The C(Ra,Da) are algebraically subtracted from the accumulator. The
difference is placed into the accumulator. The C(Ra,Da) are not
changed.

Subtract from Storage (DEC)

1111 Ra Da | L 11 Rb Db

4 4 8 2 2 4 8

The C(Rb,Db) are algebraically subtracted from the C(Ra,Da). The
difference replaces the C(Ra,Da). The C(Rb,Db) are not changed.

Subtract One from Storage (DEC)

1010 Ra Da L 000101

4 4 8 2 6

The C(Ra,Da) are algebraically decreased by 1.

Multiply (MUL)

1010 Ra Da L 010000

4 4 8 2 6



The contents of the accumulator are multiplied by the C(Ra,Da). A 64 bit
product replaces the contents of the accumulator and accumulator extension.
The sign of the product is determined by the rules of algebra. The
C(Ra,Da) are not changed.

Divide (DIV)

1010 | Ra Da L[{010001
4 4 8 2 6

The sign of the accumulator is replicated into the accumulator extension
to form a 64 bit dividend. The C(Ra,Da) are divided into the dividend
to form a 32 bit quotient and a 32 bit remainder. The quotient replaces
the contents of the accumulator and the remainder replaces the contents
of the accumulatcr extension. The sign of the quotient is determined by
the rules of algebra. The sign of the remainder is the sign of the
dividend. The C(Ra,Da) are not changed.

Negate (NEG)

1010 | Ra Da L 1001000
4 4 8 2 6

The sign of the C(Ra,Da) is changed.

2.5.2 DATA TRANSMISSION OPERATIONS
The following operations are concerned with the transmission of data

between storage locations, between registers, and between registers and
storage locations.

For instructions in this group, operands in storage must be within a
single frame.

Exchange Address Registers (XRR)

00010111) Ra Rb
8 4 4

Ra and Rb are exchanged.

Move Address Register to Address Register (MOV)

00010110 Ra | Rb |
8 44

Ra replaces Rb. Ra is not changed.

2-29



Load Accumulator (LCAD)

1010} Ra De. L{ 011000
4 4 8 .2 6

The C(Ra,Da) replace the contents of the accumulator. The C(Ra,Da) are
not changed. The accumulator is sign extended to form a double word
value.

Store Accumulator (STORE)

10107 Ra Da 1.1 011001
4 4 8 2 6

The contents of the accumulator replaces the C(Ra,Da). The contents of
the accumulator is not changed.

Store a Zero (ZERO)

1010| Ra Da L{ 000000
4 4 8 2 6

The C(Ra,Da) are replaced with zeros.

Store a One (ONE)

1010} Ra Da L[ 000001
4 4 8 2 6

The C(Ra,Da) are replaced with a 1.

Move (MOV
1111]| Ra Da L|00} Rb Db
4 4 8 2 2 4 8

The C(Rb,Db) replace the C(Ra,Da). The C(Rb,Db) are not changed.

Store Address Register (MOV)

1110f Ra Da 1101| Rb
4 4 & 4 4

The detached form of Rb is stored into the C(Ra,Da). A triple word is
stored. Rb is not changed. Da 1s doubled to form the effective address.



Load Address Register (MOV)

1110 | Ra Da 1110 Rb
4 4 8 8 4

The C(Ra,Da) replace the 6 low order bytes (displacement and FID) of
Rb. The high order byte of Rb (buffer location) is set to zero. The
C(Ra,Da) are not changed. Da is doubled to form the effective address.

Move Immediate Character (MCC)

0100 | Ra K 0010 f
4 4 8 4 4

The byte, K, replaces the C(Ra).

Increment and Move Immediate Character (MCI)

0100 | Ra K
4 4 8 4 4

Ra is incremented by 1 and then the byte, K, replaces the C(Ra).

Exchange Characters (XCC)

0100| Ra | Rb | 0111
4 4 4 4

The single byte in C(Ra) is exchanged with the single byte in C(Rb).

Move Character (MCC)

0110 | Ra | Rb [1001
4 4 4 4

The single byte in C(Rb) replaces the byte in C(Ra). The C(Rb) are not
changed.

Move Character to Relative Character (MCC)

1101} Ra Da 0000 |Rb
4 4 8 4 4

The single byte at the C(Rb) replaces the byte at the C(Ra,Da). The
C(Rb) are not changed.



Move Relative Character to Character (MCC)

1101| Ra Da 0001 | Rb
4 4 8 4 4

The single byte at the C(Ra,Da) replaces the byte at the C(Rb). The
C(Ra,Da) are not changed.

Increment Source Register and Move Character (MIC)

0110| Ra | Rb | 0001
4 4 4 4

Ra is incremented by 1 and then the single byte in C(Ra) replaces the
C(Rb). The C(Ra) are not changed.

Increment Destination Register and Move Character (MCI)

011C| Ra{ Rb| 1010
4 4 4 4 !

Ra is incrementad by 1 and then the single byte at C(Rb). replaces the
C(Ra). The C(Rb) are not changed.

Increment Both Registers and Move Character (MII)

0110( Ra | Rb { 0010
4 4 4 4

Ra and Rb are each incremented by 1 and then thé single byte at C(Ra)
replaces the C(Rb). The C(Ra) are not changed.

2.5.3 ADDRESS MODIFICATION OPERATIONS

The following group of instructions are used to modify the displace-
ment portion of an addressing register.

Load Absolute Address Difference (LAD)

1110{ Ra Da 1100 Rb
4 4 8 4 4

This operation treats the triple word in the C(Ra,Da) as a storage
address, The absolute value of the difference between this address and



the address in Rb is computed. The result is a two byte integer. The
result replaces the contents of the low-order accumulator, '

NOTE: This instruction is valid for unlinked frames only if the frame
number in C(Ra,Da) is the same as the frame number in Rb. The
instruction is valid for unequal frame numbers only if both
are in the same group of contiguously linked frames and the
difference between the frame numbers is less than 32,

frames

Increment Address Register (INC)

0011} Ra
4 4

Attachment is forced on Ra and the word address portion of Ra is incre-
mented by one. 1If the resulting word address is not in the same buffer,then
either:
® A crossing frame limits error occurs if Ra is in unlinked
format, or

® An attempt is made to attach Ra to the first data byte of the
frame pointed to by the forward link of the current frame. In
this case, forward link zero and illegal frame id are errors
which can be detected if they occur.

Add to Address Register (INC)

1110} Ra } Da 0101| Rb

4 4 8 4 4

The two bvte integer at the C(Ra,Da) is added to the displacement portion
of Rb. The C(Ra,Da) are not changed. The Da field is doubled to form
the effective address. '

Decrement Address Register (DEC)

0010| Ra
4 4

Attachment is Zorced on Ra and the word address portion of Ra is
decremented by one. If Ra is in the unlinked format no error detection
is performed. In the linked format, if the resulting word address is
XYOB*:

o If the backward link of the current frame is zero, Ra remains
attached to data byte zero of the current frame.

® Otherwise, an attempt is made to attach Ra to the last data
byte of the frame pointed to by the backward link of the current
frame. 1Illegal frame id is an error which can be detected in
this case.

In the linked format, if the resulting word address is XYOA*, a backward
link zero error is detected.

% XY represents any even hex number(O < XY i_FE),

2-33



Subtract from Address Register (DEC)

1110| Ra Da 0100] Rb
4 4 8 4 4

The 16 bit integer at the C(Ra,Da) is subtracted from the address portion
of Rb. The C(Ra,Da) are not changed. The Da field is doubled to form
the effective address.

Load Effective Address (SRA)

1110| Ra Da L|11| Rb
4 4 8 2 2 4

An effective address is computed using the contents of Ra and the Da
field. The Da field is doubled if the L field is not zero. The resulting
effective address replaces Rb. Ra is not changed.

2.5.4 BIT MANIPULATING OPERATIONS

The following two instructions are used to manipulate individual bits.

Set Bit On (SB)

1000} Ra Da
4 4 8

Da is a bit displacement relative to the byte address in Ra. The most
significant bit of the byte has a bit number of zero. The least signifi-
cant bit of the addressed byte has a displacement of seven. The bit in
the C(Ra,Da) is set to 1.

Set Bit Off (ZB)

0111} Ra Da
4 4 3

Da is a bit displacement relative to the byte address in Ra. The most
significant bit cf the byte has a bit number of zero. The least signifi-
cant bit of the addressed byte has a displacement of seven. The bit in
the C(Ra,Da) is set to 0.

2.5.5 CONTROL OPERATIONS

Instructions that govern the flow of a program, and in particular cause
an alteration of the process of taking instructions from sequential loca-
tions, are callec control instructions.

Branch instructicns specify the frame and word displacement relative to

the start of the frame from which the computer is to take the next
instruction.

2-34



Skip instructions specify the number of bytes to be skipped in order to
reach the next instruction. The skip amount is relative to the first
byte of the instruction following the skip instruction. The skip amount
is a 10 bit field represented in sign magnitude form. For skip instruc-
tions, a skip out of the current frame causes a fault trap to location 9
of frame 16.

No Operation (NOP)

00000000
8

This instruction causes the computer to take the next instruction in
sequence.

External Branch (ENT)

00010000 D FID
8 4 12

This instruction causes the computer to take its next instruction from
the location specified by the FID and D fields. The D field is doubled
to determine the branch location relative to byte 1 of the frame. Only
the first 16 words of a frame can be specified as branch locations. The
first 16 words of a procedure frame normally contain entry vectors.

External Branch Indirect (ENTI)

00010010
3

This instruction is similar to the Branch instruction except that the D
and FID fields are contained in the two low order bytes of the
accumulator.

Branch and Stack Location (BSL)

00010001 D FID
8 4 12

The location following this instruction is stacked in the return stack.
The next instruction is taken from the location specified by the FID and
D fields. The D field is doubled to determine the location relative to
byte 1 of the frame. The location is stored as a two byte FID and a

two byte displacement.



Branch and Stack Location Indirect (BSLI)

00010011
8

This instruction is similar to Branch and Stack Locaticn except that the
D and FID fields are contained in the two low order bytes of the accumu-
lator. The location is stored as a two byte FID and a two byte
displacement.

Return (RTN)

00010100
8

The address stored in the top of the return stack replaces the instruction
counter and the return stack is popped. This causes the next instruction
executed to be the one following the most recently executed Branch and
Stack instruction.

Branch (B)
000111 S
6 10

The number of bytes specified by S are skipped.

Branch and Stack Location (BSL)

000110 S
6 10

I
|

The location following this instruction is stacked in the return stack.
Then the number of tytes specified by S are skipped. The location is
stored as a two byte zero field and a two byte displacement.

Branch Character Not Equal (BCU)

0101| Ra Rb {00 S
4 4 4 2 10

If the byte at the C(Ra) is not equal to the byte at the C(Rb), the
number of bytes specified by S are skipped. :



Branch Character Less Than (BCL)

0101| Ra Rb {01 S

4 4 4 2 10

The byte at C(Rb) 1is subtracted, using 2's complement arithmetic, from
the byte at C(Rq) in an internal 8-bit register. If the high order bit
of the result is set, the number of bytes specified by S are skipped.

Branch Character Equal (BCE)

0101{ Ra Rb }10 S
4 4 4 2 10

If the byte at the C(Ra) is equal to the byte at the C(Rb), the number of
bytes specified by S are skipped.

Branch Character Less Than or Equal (BCLE)

0101| Ra b |11 S

4 4 4 2 10
The byte at C(Rb) 1s subtracted, using 2's complement arithmetic, from
the byte at €(Ra) in an internal 8-bit register. If the result is zero

or if the high order bit is set, the number of bytes specified by S
are skipped.

Branch Character Not Equal to Immediate (BCU)

0100 Ra K 000000 S
4 4 8 6 10

If the byte, K, is not equal to the byte at the C(Ra), the number of bytes
specified by S are skipped.

Branch Character Less Than Immediate (BCL)

0100| Ra K 000001 S
4 4 8 6 10

The Byte at C{Ra) is subtracted, using 2's complement arithmetic, from
the byte K in an internal 8-bit register. If the high order bit of the
result is set, the number of bytes specified by S are skipped.



Branch Character Equal to Immediate (BCE)

0100| Ra K 000010 S
4 4 8 6 10

If the byte, K, is equal to the byte at the C(Ra), the number of bytes
specified by S are skipped.

Branch Character Less Than or Equal to Immediate (BCLE)

0100 Ra K 000011 "s
4 4 8 6 10

The byte at C(Ra) is subtracted, using 2's complement arithmetic, from
the byte K in an internal 8-bit register. If the result is zero or if
the high order bit is set, the number of bytes specified by S are skipped.

Branch Relative Character Not Equal (BCU)

1011| Ra Da Rb {00 S
4 4 & 4 2 10

If the byte at the C(Ra,Da) is not equal to the byte at the C(Rb), the
number of bytes specified by S are skipped.

Branch Relative Character Less Than (BCL)

1011} Ra La Rb | 01 S
4 4 & 4 2 10

The byte at C(Rb) is subtracted, using 2's complement arithmetic, from
the byte at C(Ra, Da) in an internal 8-bit register. If the high order
bit of the result is set, the number of bytes specified by S are skipped.

Branch Relative Character Equal (BCE)

1011} Ra Da Rb } 10 S
4 4 8 4 2 10

If the byte at the C(Ra,Da) is equal to the byte at the C(Rb), the
number of bytes specified by S are skipped.



Branch Relative Character Less Than or Equal (BCLE)

1011| Ra Da Rb |11 S

4 4 8 4 2 10

The byte at C(Rb) is subtracted, using 2's complement arithmetic, from
the byte at C(Ra, Da) in an internal 8-bit register. If the result is

zero or if the high order bit is set, the number of bytes specified by S
are skipped.

Compare and Branch Not Equal (BU)

1111} Ra *Da L{01| Ra Db 010100 S
4 4 8 2 2 4 8 6 10

If the C(Ra,Da) are not equal to the C(Rb,Db), the number of bytes
specified by S are skipped.

Compare and Branch Less Than (BL)

1111} Ra Da L101| Rb Db 010101 S

4 4 8 2 2 4 8 6 10
The value at €¢(Rb, Db) is subtracted, using 2's complement arithmetic,
from the byte at C(Ra, Da) in an internal register. If the high order
bit of the result is set, the number of bytes specified by S are skipped.
The OVFBIT will be set if overflow occurs on the subtraction; otherwise,

OVFBIT will be reset. If OVFBIT is set, the condition of the branch
should be reversed.

Compare and Branch Equal (BE)

1111| Ra Da L{O01| Rb Db 010110 S
4 4 8 2 2 4 8 6 10

If the C(Ra,Da) are equal to the C(Rb,Db), the number of bytes specified
by S are skipped.

Compare and Branch Less Than or Equal (BLE)

1111 Ra Da L]01} Rb Db 010111 S
4 4 8 2 2 4 8 6 10

The value at C(Rb, Db) is subtracted, using 2's complement arithmetic,
from the byte at C(Ra, Da) in an internal register. If the result is
zero or if the high order bit is set, the number of bytes specified by S
are skipped. The OVFBIT will be set if overflow occurs on the subtrac-
tion; otherwise, OVFBIT will be reset. If OVFBIT is set, the condition
of the branch should be reversed.



Subtract and Branch Not Equal (BDNZ)

1111]| Ra Da L[01] Rb Db 011100 S
4 4 ] 2 2 4 8 6 10

The C(Rb,Db) are sudtracted from the C(Ra,Da). The difference replaces
the C(Ra,Da). If the original C(Ra,Da) are not equal to the C(Rb,Db),
the number of bytes specified by S are skipped. The condition codes
are set.

Subtract and Branch Less Than or Equal (BDLEZ)

1111 Ra Da Li01l| Rb Db 011111
4 4 8 2 2 4 8 6 10

The C(Rb,Db) are sudtracted from the C(Ra,Da). The difference replaces
the C(Ra,Da). If tnae original C(Ra,Da) are less than or equal to the
C(Ra,Da) the number of bytes specified by S are skipped. The condition
codes are set.

Subtract and Branch Less Than (BDLZ)

1111 Ra Da Llo1! Rrb Db |011101 S
L4 8 2 2 4 8 6 10

The C(Rb,Db) are subtracted from the C(Ra,Da). The difference replaces
the C(Ra,Da). If the original C(Ra,Da) are less than the C(Rb,Db), the
number of bytes specified by S are skipped. The condition codes are set.

Subtract and Branch Equal (BDZ)

1111| Ra Da L|01l| Rb Db 011110 S
4 4 8 2 2 4 8 6 10

The C(Rb,Db) are subtracted from the C(Ra,Da). The difference replaces
the C(Ra,Da). If the original C(Ra,Da) are equal to the C(Rb,Db), the
number of bytes specified by S are skipped. The condition codes are set.



Branch Address Equal (BE)

1100 Ra Da Rb { 10 S
4 4 8 4 2 10

The 6 byte (C(Ra,Da) are compared with the address of Rb. If the
values are equal, the number of bytes specified by S are skipped. It
is possible for two addresses to compare not equal even though they
represent the same storage location. This can occur if the FID in the
C(Ra,Da) is not the same as the FID in Rb. See Note under LAD
instruction.

Branch Address Not Equal (BU)

1100 | Ra Da Rb | 00 S
4 4 8 4 2 10

The 6 byte C(Ra,Da) are compared with the address of Rb. If the
values are not equal, the number.of bytes specified by S are skipped.
It is possible for two addresses to compare not equal even though they
represent the same storage location. This can occur if the FID in the
C(Ra,Da) is not the same as the FID in Rb. See Note under LAD
instruction.

Branch Bit Set (BBS)

1001 | Ra Da
4 4 8 4 2 10

Da is a bit displacement relative to the byte address in Ra. The most
significant bit of the addressed byte has a displacement of zero. The
least significant bit of the addressed byte has a displacement of
seven. If the bit in the C(Ra,Da) is on (bit = 1), the number of
bytes specified by S are skipped.

Branch Bit Zero (BBZ)

1001 | Ra Da
4 4 8 4 2 10

Da is a bit displacement relative to the byte address in Ra. The most
significant bit of the addressed byte has a displacement of zero. The
least significant bit of the addressed byte has a displacement of
seven. If the bit in the C(Ra,Da) is off (bit = 0), the number of
bytes specified by S are skipped.

2-41



2.5.6 LOGICAL OPERATIONS

The following group of instructions perform logical operations between
a byte in storage and an immediate operand. The logical operations
are AND, OR (sometimes called "inclusive or") and XOR ("exclusivz or').

When two bytes are combined by an AND, they are matched bit for nit.
If the same bit position in each byte contains a 1, the result i; a 1.
If a position of either byte (or both bytes) contains a 0, the result
is 0.

The following is an example of a logical AND operation:

10110001
00110110
00110000 resulting AND

When two bytes are combined by an OR they are matched bit for bit. If
the same bit position in each byte contains a 0, the result is a 0. If
a position of either byte (or both bytes) contain a 1, the result 1is

a 1. The following is an example of logical OR: :

11011000
00010001
11011001 resulting OR

When two bytes are combined by an XOR they are matched bit for bit. If
the corresponding bit positions in each byte are the same (both O or
both 1) the result is 0. If the same bit position in each byte is

not the same (either contains a 1 while the other contains a () the
result is 1.

The following is an example of a logical XOR operation.
10011100

00011011
10000111 resulting XOR

AND Character (AND)

0100 | Ra K 1100
4 4 8 4 4

The byte in the C(Ra) and K are logically AND'ed. The result replaces
the C(Ra).

2-42



QR Character (OR)

0100| Ra K 1101
4 4 8 4 4

The byte in the C(Ra) and K are logically OR'ed. The result replaces
the C(Ra).

Exclusive OR Character (XOR)

0100 | Ra K 1110
4 4 8 4 4

The byte in the C(Ra) and K are logically exclusive OR'ed. The result
replaces the C(Ra).

2.5.7 SHIFT OPERATION

The following instruction allows a byte to be shifted one bit to the
right.

Shift Character Right (SHIFT)

0100 | Ra K 1111
4 4 8 4 4

K is shifted right one bit position. A zero bit is inserted on the
left and the bit shifted off the right is lost. The result replaces
the C(Ra). The value K in the instruction does not change.

2.5.8 STRING OPERATIONS

The following instructions operate on strings. A string is a logically
contiguous group of bytes. Strings may extend across frame boundaries
provided that the frames are linked.

‘Increment and Move String Under Count Control (MIIT)

0110} Ra | Rb | 0100
4 4 4 4

The contents of the lower half of the accumulator (TO) is read into
internal hardware registers. Ra and Rb are each incremented by one
and then the byte at c(Ra) replaces the byte at c(Rb). Next the
internal hardware registers are decremented. If the resulting value
is not zero the increment and move 1s repeated. If, during the



execution of the instruction, an internal interrupt occurs or if the
move crosses the frame boundary of a linked frame, the current con-
tents of the internal hardware registers are stored in TO. For this
reason the contents of TO at the conclusion of the move are indeter-
minable. If TO is initially zero no operation is performed.

Increment and Move String Under Address Control (MIIR)

0110{ Ra { Rb | 0011
4 4 4 4

Ra and Rb are each incremented by one and then the byte at C(Ra)
replaces the byte at C(Rb). Next Ra is compared with the contents of
address register 15. If the values are not equal the operation is
repeated. If Ra is initially equal to the contents of address register
no operation is performed.

Increment and Move String Under Match Control (MIID)

0110 | Ra | Rb | 0000 | Match
4 4 4 4 8

Ra and Rb are each incremented by one and then the byte at C(Ra)
replaces the byte at C(Rb). The byte that moved is then tested for a
match with one of 7 possible values as defined by the match field. 1If
the match is not successful, the operation is repeated.

The matching is performed as follows. For each of the bit positions
one through seven that is a 1, a match test is performed. If bit posi-
tion zero is a 1, the move stops on any equal match. If bit position
zero 1s a 0, the move stops 1f none of the bytes tested match. The
table below shows the test performed for each bit in the mask.

Bit in Match Field Test Performed

1 = Stop on equal 0 = Stop if unequal
Compare with Hexadecimal "FF"

Compare with Hexadecimal "FE"

Compare with Hexadecimal "FD"

Compare with Hexadecimal 'FC"

Compare with Byte at 003 in PCB
Compare with Byte at 004 in PCB
Compare with Byte at (005 in PCB

NOoOUnme~w NoHEO

Note: byte 003 of the PCB may not contain a hexadecimal 00 or 01.

2-44



Increment and Scan String Under Match Control (SCD)

11000 Match
4 4 4 4 8

Ra is incremented by one and then the byte at C(Ra) is tested for a match
as defined by the match field. If the match is not successful, the opera-
tion is repeated. See the description of the Increment and Move String
Under Match Control instruction for the matching rules.

2.5.9 CONVERSION OPERATIONS

Conversion operations are provided to convert decimal integers represented
by ASCII characters into binary values, and to convert hexadecimal integers
into binary values, and binary values to hexadecimal.

Decimal to Binary (MDB)

1101 Rra Da L{00| Rb
4 4 8 2 2 4

The C(Ra,Da) are multiplied by ten. The binary value of the ASCIT digit
in the C(Rb) is added to the product, and the result replaces the
C(Ra,Da). This instruction is not defined for a single byte at C(Ra,Da).
(A value of L = O represents a different operation.)

If the C(Ra,Da) are initially zero, repeated use of this instruction (with

incrementing of Rb) will convert an ASCII string representing a decimal
value into a binary integer.

Hexadecimal to Binary (MXB)

1101| Ra Da L|{10] Rb
4 4 8 2 2 4

The C(Ra,Da) are multiplied by sixteen. The binary value of the ASCII
hexadecimal digit in the C(Rb) is added to the product and the result
replaces the C(Ra,Da). If the C(Ra,Da) are initially set equal to zero,
repeated use of this instruction will convert an ASCII string representing
a hexadecimal value into a binary integer.



Binary to Hexadecimal (MBX)

1101} Ra LCa L{11| Rb
4 4 8 2 2 4

The binary integer at the C(Ra,Da) is converted into an ASCII string
starting at the C(Rb) +1. Bits 28 through 31 of the accumulator contain
a count of the maximum number of ASCII bytes to be generated. If bit 24
of the accumulator is a zero, the leading zeros of the hexadecimal string
are suppressed and the C(Rb) +l will contain the most significant non-
zero hexadecimal digit. If bit 24 of the accumulator is a 1, zero
suppression will nct take place. The contents of the accumulator is
unpredictable after this instruction is executed.

2.5.10 INPUT OUTPUT OPERATIONS

The input output operations provide for communication with the terminal
associated with a process and for input and output with peripheral
devices.

Input a Byte (IB)

0100| Ra K 1001}
b4 g 4 4

The K field specifies a 3 bit function code and a 5 bit device address.
The byte from the selected device replaces the C(Ra). This instruction
can be executed only in monitor mode.

Qutput a Byte (OB)

0100| Ra K 1000
4 4 & 4 4

The K field specifies a 3 bit function code and a 5 bit device address.
The single byte in the C(Ra) 1s transmitted to the selected device. This
instruction can be executed only in monitor mode.

Read Input Queue (READ)

0110| Ra
4 4

10101

2-46



The next character from the terminal input queue replaces the C(Ra).
If the input queue 1is empty the process is suspended until a character
is received from the terminal. Characters transmitted by the terminal
are automatically queued in the PIB for the terminal.

Write to Output Queue (WRITE)

0110 0110
4 4 4 4

The byte in the C(Ra) is placed into the terminal output queue. If the
queue is full, the process is suspended until the terminal has printed
all but four characters from the queue. If there are any characters in
the input queue before this instruction 18 executed, they are lost.

2.5.11 MONITOR OPERATIONS

The following operations are used to communicate with the monitor.

Monitor Call (MCAL)

0100 | Ra K 0111 | D
4 4 8 4 4

This operation generates an interrupt into the monitor. The four bits
of the D fieid are doubled to determine the location relative to byte 1
of the monitor frame for transfer of control.

The address contained in Ra, the address of the PCB of the current

process, and the K field from this instruction are all placed into the
PIB for the current process, and then control is passed to the monitor.

Resume Virtual Process (RVP)

00001010
8

This operation returns control to a process that has previously been
interrupted. The status of the interrupted process is restored and
execution of the process resumes from the point of the interrupt. This
instruction can be executed only in monitor mode.

2-47



Start Virtual Process (SVP)

00001001
8

The FID portion of register 4 (of the monitor) is treated as the
location of the PCB for a dependent process. The buffer map is
searched for the PCB frame. If the PCB is present, registers 0 and 1
of the PCB are attached and execution of the process begins. If the
frame is not present, the referenced FID is placed into the PIB and
the monitor is reentered at the absent frame entry point (location 1).
This instruction can be executed only in monitor mode. A

HALT

00001000
8

The CPU is halted; this instruction can be executed only in monitor
mode.

Test Interrupts

00000001
8

This instruction has meaning only in the monitor mode; it is a NOP in
the virtual mode. Internal and External Interrupts are tested for,
and, if any are pending, a fault trap to the appropriate monitor
location is taken.

Halt and Display (HLD)

0100| Ra f. -4 10104 00
4 4 8 4 2 2

Halts the CPU and gates the eight-bit literal addressed by register

RA to the A bus where it can be displayed in the eight least signifi-
cant indicator lamps of the system panel by depressing the Data select
switch. This instruction is restricted to Monitor level code.

Enter Console Command Switches (ECS)

0100| Ra 1010
4 4 8 4 2 2

The status of the eight low-order console command switches is placed
in the eight bit byte addressed by register RA. If the switch is on,
the corresponding bit in the byte addressed by register RA is set to

2-48



one. This instruction is restricted to Monitor level code. 1If a
switch is not set, the corresponding bit will be set to zero.

0100 1010f::
4 4 8 4 2 2

The status of the four console sense switches is placed in the four
most significant bits of the eight bit byte addressed by register RA.
The status of a switch is one when the switch is set. The four low
order bits are set to one. This instruction is restricted to Monitor
level code.

2.6 INSTRUCTION SUMMARY

The following diagrams show the formats for each of the instructions.
The diagrams are listed in order of increasing primary operation code
(first four bits). The operation code is shown as a binary value.
The second and third portions of the operation code (if they appear)
are labeled 02 and 03 respectively.

0000 02
4 4
02 INSTRUCTION
0000 No Operation
0001 Test Interrupts
1000 Halt the CPU
1010 Resume Virtual Process
1011 Start Virtual Process
1100 Branch to Absolute Address
1101 Branch and Stack Location, to Absolute Address
0001 02
4 4
02 INSTRUCTION
0010 Branch Indirect (External)
0011 Branch and Stack Location Indirect (External)
0100 Return
0101 Return without Trace

0001| 02 { D{ FID
4 4 4 12

02 INSTRUCTION
0000 Branch (External)

0001 Branch and Stack Location (External)

2-49



02
0110
0111

02
000000
000001
000010
000011

02
0010
0100
0110
0000
1001
1100
1101
1110
1111

[0001] 02 [Ra | Ro |
4 4 b 4

INSTRUCTION
Move Address Register to Address Register
Exchange Address Registers

0001 02 S
4 2 10
INSTRUCTION

Branch and Stack Location (Internal)
Branch (Internal)

0010 | Ra
4 4

INSTRUCTION
Decrement Address Register

10011 Ra

INSTRUCTION
Increment Address Register

0100 Ra K 02 S
4 4 8 6 10

INSTRUCTION

Branch Character Not Equal to Immediate

Branch Character Less Than Immediate

Branch Character Equal to Immediate

Branch Character Less Than or Equal to Immediate

0100 | Ra K
4 4 8 4 4
INSTRUCTION

Move Immediate Character

Increment and Store Immediate Character
Flag the Address Register

Output Byte

Input Byte

Or

Exclusive Or

And

Shift



0100 | Ra K 02| D

4 4 4
02 INSTRUCTION
0111 Monitor Call
0101]| Ra Rb |02 S
4 4 4 2 10
02 INSTRUCTION
00 Branch Character Not Equal
01 Branch Character Less Than
10 Branch Character Equal
11 Branch Character Less Than or Equal

0110 Ra Rb 02

4 4 4 4

02 INSTRUCTION

0001 Increment Source Register and Move Character

0010 Increment Both Registers and Move Character

0011 Increment and Move String Under Address Control
0100 Increment and Move String Under Count Control
0101 Read Terminal Queue .

0111 Exchange Bytes

1001 Move Byte

1010 Increment Destination Register and Move Character
1101 Write Terminal Queue

0110} Ra Rb 02 Match

4 4 4 4 8
02 INSTRUCTION
0000 Increment and Move String Under Match Control
1000 Increment and Scan String Under Match Control

0111} Ra Da

INSTRUCTION
Set Bit Off



1000] Ra | Da |

4 4 8
INSTRUCTION
Set Bit On
1001} Ra Da S
4 4 8 10
gg INSTRUCTION
00 Branch Bit On
01 Branch Bit Off
1010| Ra Da L 02
4 4 8 6
02 INSTRUCTION

000000 Store a Zero

000001 Store a One

000011 Add One to Storage

000101 Subtract One from Storage
001000 Negate Storage

010000 Multiply

010001 Divide

010011 Add to Accumulator

010101 Subtract from Accumulator
011000 Load Accumulator

011001 Store Accumulator

1011| Ra Da Rb {02 S
4 4 8 4 2 10
02 INSTRUCTION
00 Braach Relative Character Not Equal
01 Braach Relative Character Less Than
10 Branch Relative Character Equal
11 Branch Relative Character Less Than or Equal



1100| Ra Da Rb |02 S

4 4 8 4 2 10
02 INSTRUCTION
00 Branch Addresses Equal
10 Branch Addresses Not Equal
1101} Ra Da L{02| Rb
4 4 8 2 2 4
02 INSTRUCTTON
00 Move Byte to Relative Byte (L equal to zero)
00 Decimal to Binary (L not equal to zero)
01 Move Offset Byte to Byte
10 Hexadecimal to Binary
11 Binary to Hexadecimal
1110 Ra Da 02 Rb
4 4 8 4 4
02 INSTRUCT ION
0011 Load Effective Address (half word)
0100 Subtract from Address Register
0101 Add to Address Register
0111 Load Effective Address (full word)
1011 Load Effective Address (double word)
1100 Load Absolute Address Difference
1101 Store Address Register
1110 Load Address Register
1111 Load Effective Address (triple word)
1111| Ra Da L{02] Rb Db
4 4 8 2 2 4 8
02 INSTRUCTION
00 Move Storage to Storage
10 Add Storage to Storage
11 Subtract Storage from Storage



1111 | Ra pa | L|o2| rb Da 03 s
4 4 8 2 2 4 8 6 10

02 03 INSTRUCTION

01 010100 Compare and Branch Not Equal

01 010101 Compare and Branch Less Than

01 010110 Compare and Branch Equal

01 010111 Compare and Branch Less Than or Equal

01 011100 Subtract and Branch Not Equal

01 011111 Subtract and Branch Less Than Equal or Equal

01 0l1101 Subtract and Branch Less Than Equal

01 011110 Subtract and Branch Equal



2.7 CORE MAP

Core Address

0000 Monitor PCB

0100 Bootstrap software

Monitor address registers and
Return stack area

0200 t«——— Buffer Status table

Buffer Fid (low-order) table

0300
«—— Buffer Links (Queue)

0400 ‘////'Monitor Software

0600
0700
re—— Buffer Fid (high-order) table
0800 T Hardware memory-protect to this
point
l¢——— PIB's (communication device
addresses X'18' and X'19')
0A00
}j«——— PIB's (communication device
addresses X'lA' and X'1B')
0Co0

}j@¢——— Monitor Software extension

0EOO J#‘::::' Software memory-protect to this point

Start of available core area

2-55



2.8 PERIPHERAL L1/0: DEVICE ORDERS

Order
Number

Operation

Description

0

Data Transfer

Status/Function

Block Input/INT

Arm Interrupt

Disconnect

Disarm Interrupt

Block Output/INT

Unassigrned

A data byte will be transferred between
the addressed device and the processcr.
Direction of the transfer will depend on
whether the instruction is an input or an
output,

A status byte will be input from the
addressed device or a function byte will be
output to the addressed device, depending
on whether the instruction is an input or
an output.

The addressed device will start a concur-
rent block input to memory and wiil

generate an external interrupt at the con-
clusion of the transfer unless the interrupt
has been subsequently disarmed, This order
should be sent by an output instruction.

Permits the addressed device to make an
external interrupt request upon the satig-
faction of an interrupt condition. This
order should be sent by an output instruction.

The block transfer in progress by the addres-
sed device i1s stop ed and end of block
interrupt will occur unless the interrupt

has been disarmed. This order should be

sent by an output instruction.

Inhibits the addressed device from marking
an external interrupt request under any
condition., This order should be sent by
an output instruction.

The addressed device will start a concur-
rent block output from memory and will
generate an external interrupt at the con-
clusion of the transfer unless the interrupt
has been subsequently disarmed, This order
should be sent by an output instruction.

This order, if assigned, may perform any
required function as interpreted by the
individual interface. If a byte transfer
is desired the order may be sent by an
input or an output instruction.



SECTION 3
REALITY ASSEMBLY LANGUAGE (REAL)

The Reality Assembler (REAL) translates source statements into Reality CPU

machine language equivalents, The source file, or "mode'" is an item in any

file defined on the database. The mode is assembled in place; that is, at

the conclusion of the assembly process, the item contains both the original
source statements, as well as the generated object code. The same mode can
then be used to generate a formatted listing (using the MLIST verb) or can

be loaded for execution (using the MLOAD verb).

3.1 SOURCE LANGUAGE

The source language accepted by the REAL assembler is a sequence of
symbolic statements, one statement per source-item line. Each statement
consists of a label field, an operation (or op-code) field, an operand
field, and a comment field.

3.1.1 LABEL FIELD

The label field begins in column one of the source statement, and is termi-
nated by the first blank or comma; there is no limit on its length. If the
character "*'" appears in the first column, the entire statement is treated
as a comment, and is ignored by the assembler. The reserved characters

* + - ' = are the only ones that may not appear in the label field. An
entry in this field is optional for all except a few opcodes. A label may
not begin with a numeric character.

3.1.2 OPERATION FIELD

The operation field begins following the label field and consists of a legal
REAL op-code. Op-codes are pre-defined in the permanent op-code symbol file
OSYM and consist of one or more alpha characters. Op-codes may be mnemonics
for Reality machine language instruction (eg., B for BRANCH) macros, which
may assemble into several Reality machine language instructions (eg., MBD

for MOVE BINARY to DECIMAL), or assembler pseudo-ops (eg, ORG for ORIGIN).
Additionally, users may define new mnemonics or '"macros' which expand into
several Reality machine instructions. This may be done by creating new
entries in the OSYM file.



3.1.3 OPERAND FIELD

Operand field entries are optional, and vary in number according to the
needs of the associated REAL op-code. Entries are separated by commas and
cannot contain embedded blanks (except for character string literals
enclosed by single quotes). The operand field is terminated by the first
blank encountered. The characters + - ' * have specia! meaning in this
field.

3.1.4 OPERAND FIELD EXPRESSIONS

Entries in the operand field may be a symbol, or a constant. A symbol is

a string of characters that is either defined by a single label-field entry
in the mode, or is an entry in the pre-defined permanent symbol file (PSYM).
A constant may be one of the following forms:

* - Der’ines current value of the assembler location counter.
n - {n decimal) - A decimal constant.

X'h' - (h hexadecimal) - A hexadecimal constant.

C'text' - Character string; any characters, including blanks and

commas, may appear as part of '"text"; a sequence of two
single quotes ('') is used to represent cne single quote
in the text.

Arithmetic operators (+,-) may be used to combine two or more constants.

3.1.5 COMMENT FIELD

Any commentary information preceded by a blank may follow the operand field
entries.

3.1.6 '"ARGUMENT" FIELD
For the purposes of the remainder of this documentation, the label field

entry, op-code field entry, and operand fileld entries will be referred to
as "argument field" (AF) 0, 1, 2, etc.

[ O3]
1
[N



3.2 CALLING THE ASSEMBLER

The assembler 18 called by the statement:
AS file-name item-name {(Q)}
which will assemble the item in the file specified. The optional specifi-

cation "(Q)" specifies that error lines are not to be listed at the end
of the assembly.

As the assembler processes, it will output an asterisk (*) as every ten
source statements are assembled. At the end of pass-1 a new line is
started and an asterisk is printed for each ten statements reassembled.

3.3 LISTING OUTPUT

The listing processor may be called by the statement:
MLIST file-name item-name {(options)}

Options are separated by commas:

P Routes output to the line-printer.
M Prints macro-expansions of source statements.
E Prints error lines only; also suppresses the pagination, and

enters EDIT at the end of the listing.

Z Inhibits EDIT entry when E option is specified.

n-m Restricts listing to line numbers n through m inclusive.
The listing is output with a statement number, location counter, object
code and source code,with the label, op-code, operand and comment fields
aligned. A page heading 1s output at the top of each new page.
Errors, if any, appear in the location counter/object code area; macro
expansions appear as source code 1if not suppressed, with the operation

codes prefixed by a plus sign (+).

A sample listing output is shown on the next page.



:MLIST SYSGEN-FILE ABSL (1-25,M) (CB)

MODE: ABSL PAGE 1 17:26 26 OCT 1973
001 FRAME 047
001 7FFO002F +FRM: 047
: +ORG 1
002 *SYSTEM MODE
003 B !ABSD 0
001 1CO4 +B: 'ABSD
004 B 'ABSL 1
003 1C3C +B: YABSL
ons R 'SEGMNT 2
005 1D80 +B: ISEGMNT
006 DETACH DEFM 14,TAPEIO
007 GETWS DEFM  3,WSPACES
008 *
009 007 100031 !ABSD ENT  ABSD
010 OO0A 0O0O00GO2F ABSLFID  DTLY 47 FID OF THIS PROGRAMME
011 OCE 00000022 OF1F1ID DTLY 34 FID OF OF1 PROGRAMME
012 XUSER DEFT 15,USER TALLY USER RELATIVE TO REGISTER 15
013 012 0000 PIBADDR  ADDR 0,X”80FFFFFC”
014 80FFFFC
01k *
015 . * ERROR ENTRY POINT *
016 018 EO062EH TPERR MOV JSBAG, IS
017 01B 111006 BSL  CRLFPRINT
018 J1E 07 TEXT »7077,C°TAPE FORMAT ERROR”.X7FDFF~
OlF 54515045
023 2046LF52
27 4D415520
(2B L557524F
C2F 52
030 FDFF
019 MIT i5,08,M3517E COPY TAPT DATA & PRINT
J32 AD5SBS5% +LOADT OBSI1ZE
335 pLBL HMITTRE 15,08
s 037 11Z00% sSL wRTLIN
03A 08 TEXT X7087 BLOW-UP HERE
022 peC RSCWA, Y SACKUP UTACK
03B FOC171E7 +DEC  RSCWA,=Th4
023 B NXTAB CONTINUE TO MEXT TAPE SEGMENT
03F 1CAC +B: NXTAB
024 *
025 FERKRARRA KSR A AR AR A AN AR R A AR AR R RRRAR KR AR AR A A AR

EC



3.4 LOADING

The assembled mode may be loaded into the frame specified by the FRAME
op-code by using the statement:

MLOAD file-name item—name
If the load is successful, the message:

[216] 'item-name' LOADED ON FRAME # n
size = m (DEC), h (HEX)

is returned.
The mode will not load correctly if its size exceeds 512 bytes, or if a
FRAME statement is not the first statement assembled in the mode. In

either case, a message will be returned indicating the error.

Note: MLDAD can not load itself, It must be loaded by the XLOAD verb by
the following message:

XLOAD SYSTEM-MODES LOADER

3.5 VERIFYING A LOADED PROGRAM MODE

After assembling and loading a program, the TCL-II verb MVERIFY is used
to check the assembled program against the loaded program.

Examples:

[217] MODE 'EXAMPL1' VERIFIED FRAME = 34 SIZE = 477

014 OC 18

[218] MODE 'EXAMPL2' HAS 1 BYTES OBJECT CODE MIS-MATCHES

The first example verifies, but the second does not, In example two,
the system informs the user that one byte at byte address 14 should have
a value of 0C, not 18.

An "A'" option is available, and will cause a columnar listing of all bytes
which mismatch. Each value in the source file which mismatches will be
listed, followed by the value in the executable frame.



Example:

LOC XX YY LOC XX YY LOC XX YY LOC XX YY
014 OC 18 015 13 17 016 OE 0D 017 3A 3C

[218] MODE 'EXAMPL3' HAS 78 BYTES OBJECT CODE MIS-MATCHES

3.6 TCL-II CROSS REFERENCE CAPABILITY
3.6.1 CROSS-INDEX VERB
The TCL-II CROSS-INDEX Verb first clears the CSYM file then updates it by

item with the external references of that item. The CROSS-INDEX Verb
requires the following format:

CROSS-INDEX file-name item-list {{options)}

Example:

Would cross index all items of the modes file. An example of what a por-
tion of the CSYM file might look like after using the CROSS-INDEX Verb
follows. Notice that the item called DLOAD has one external reference to
LISTFLAG, two external references to RMBIT, etc.

DLOAD

gP1 LISTFLAG f1 RMBIT @2

pp2 CH8 @1

B3 NNCF p2

gp4 CTR1 @2 CTR2 f#1 MODULO @7 OBSIZE B1 RSCWA P1 SEPAR 1f T@ P1 ThL 23

g@5 BASE §8 DP Pl OVRFLW #1 RISFID A1 RECORD @5

#P6 BMSBEG @1 CSBEG Pl ISBEG p2 OBBEG f1 S2 #2

pp7 CS 96 IS 21 OB @5 R14 P3 R15 g6 TS P1

P8 ABSL @2 CRLFPRINT #1 CVDR15 @3 CVINIS P2 GETBLK @1 LINK #1 MBDNSUB £3
UPDITM @1 WRTLIN P2

pe9 AM P2
g1p
WRAPUP-111
91 INHIBIT P4 RMBIT f4 SB6bP B3 SB61 26
pp2
p83

gp4 CTRP 13 CTR1 Pp3 EMOD f#1 MMOD @1 MODULO B1 OBSIZE 92 T@ #2 T6 #3 USER ph
PS5 BASE @3 EBASE @3 MBASE f1

6 BMSBEG P3 OBBEG P2 OBEND P6b SRL4 P2 SYSR1 82

gp7 AF @8 BMS g4 IR 25 OB 3¢ R14 P4 R15 P3 TS 14

P8 DATE @1 GBMS #1 RETIX @2 TIME B#1 WRITOB #1 WRTLIN #8

P9 AM g5 MMOD Pl SM P4

p1o



DUMP-1

g1 GBIT #6

p@2

@93 NNCF g1 NPCF #1

go4 C1 #8 C2 P2 C6 @7 C7 P#6 REJCTR A1 TP A1 T4 f1

g35 D3 g7 D4 P5 FRMP @1 LINQUE #7 RECORD #7

g#p6 IREND #6 S1 §3 S3 #8

g7 1R 18 IS 15 08 17 R15 14 IS P5

g#8 CVINIS p4 DUMP-T1 #1 MBDNSUB @1 MBDSUB p7 MD99 @1 MD999 @1 RDREC @4
WRTLIN 85

gag LF g2

g1g

PROC-1

gp1 PQFLG A4 SB1 P2 SB2 @1 SBIT A7 STKFLG 91

pp2 PRMPC #1

po3

peu C1 91 TP g2

pas

gp6 BMSBEG @1 IBBEG @1 IBEND @1 ISBEG @1 OSBEG #1 PBUFBEG @4 PQBEG @2
PQCUR @2 PQEND #3 SR35 #1 SR4 @1 §2

gp7 CS p2 TB P7 IR 81 IS 11 OB §5 OS P1 R14 12 TS g4 UPD 12

P8 CVTHIR §1 GETIBX #1 MD18 @1 MD995 #1 MDY99 @1 PROC-11 p4 PROC-IT1 P4
WRAPUP-1 #1 WRITOB 1 WRTLIN

PSS AM 12 CR #1 SM §2 VM p1

g1

3.6.2 XREF VERB
The TCL-II XREF Verb uses the CSYM file as updated by the Cross-Index
Verb for input. XREF then updates the XSYM file in the opposite order of

the CSYM file. The XREF Verb requires the following format:

XREF file-name item-list {(options)}

Example:

Would cross reference all items of the CSYM file. An example of what a
portion of the XSYM file might look like after using the XREF Verb fol-
lows. Notice that the item called T4 was externally referenced by
DLOAD, DUMP-I, and SYSTEM-SUBS-II.

MBIT
@1 ASTAT

GEN
PPl ASTAT

CVDR15
81 DLOAD



LFDLY
PPl SYSTEM-SUBS-I1

PAGSIZE
PPl SYSTEM-SUBS~I1I

Tl
pP1 DLOAD DUMP-1 SYSTEM-SUBS-II

D5
gP1 SYSTEM-SUBS-II

CTR2
#81 DLOAD AID1

UPDITM
pp1 XREF ILOAD T-LOAD DLOAD EDIT-IV/PEA

Cl
pp1 XREF ILOAD ASTAT T-LOAD DUMP-1 PROC-I EDIT-IV/P&A EDIT-I

SR13
pp1 EDIT-I

SR7
pP1 EDIT~I

MBASE
PPl XREF WRAPUP--ITI TI WII

DB1
pe1 WII

B15
gp1 MONITOR/295§, 18MB

R7WA
@1 DISK-DIAGNOSTIC/2314

T5

The sort verb may be used after performing X-REF to produce a sorted out-
put.

Example:

Would produce an alphabetical non-columnar listing on the line printer.
References and noncol are attribute definitions in the XSYM dictionary.

The following is an example of a partial listing.

(92}
[
oo



PAGE 1

XSYM © ABIT

REFERENCES

XSYM © ABSL
REFERENCES

XSYM | ACF
REFERENCES

EDIT-I

DLOAD

WI1I

16:41 2 DEC 1973

XSYM : ADDLAB
REFERENCES  ASTAT

XSYM @ AF

REFERENCES  ASTAT WRAP-TT11 EDIT-I

XSYM © AFBEG

REFERENCES  ASTAT ‘ EDIT-I

XSYM | AFEND

REFERENCES  ASTAT

XSYM © ALIGN

REFERENCES  ASTAT

XSYM | AM

REFERENCES XREF ASTAT T-LOAD
DLOAD WRAPUP-T111 PROC-1
AID1 TI WI1

3.6.3 XFEF PROC

The XREF Proc will perform the following functions:
1. Clear the XSYM file.
2. Use the XREF verb to update the XSYM file.

3. Alphabetically sort the XSYM file and output the results to
either the user's terminal or to the system line printer.

The XREF Proc requires the following format:
XREF file-name item-list {(options)}

Example:

would cross reference all items of the CSYM file and would list the
results in alphabetical order on the line printer.

3-9



The following is an example of a partial listing.

XSYM. ...

ABIT

ABSL

ACF

ADDLAB

AF

AFBEG

AFEND

ALIGN

ATTOVF

B15

Bb4

BASE

« REFERENCES.se0eeae

EDIT-1I
DLOAD
WII
ASTAT

ASTAT
WRAPUP-1T11
EDIT-]

ASTAT
EDIT-C

ASTAT
ASTAT

XREF
ASTAT
T-LOAD
DLOAD
WRAPUP-TT11
PROC~1
AID1

TI

WII

WII
MONITOR/ 2958, 18MB
MOINITOR/ 2958, 18MB

XREF

ILOAD
ASTAT
T-LOAD
DLOAD
WRAPUP-1TI
TI

WII

11:2¢ 2P DEC 1973



3.7 THE REAL INSTRUCTION REPERTOIRE

In defining the REAL op-codes the following set of symbolic operands are

used.

SYMBOL OPERAND

a ABS

b BIT

c CHARACTER

d DOUBLE-WORD

h HALF-WORD

1 LABEL

m MODE ID

n LITERAL

b ADDRESS-REGISTER
s STORAGE-REGISTER
t WORD

DESCRIPTION

An absolute core-address reference

A bit addressed relatively via a base address
register and a bit displacement.

A byte addressed relatively via a base address
register and an 8-bit byte displacement.

A 4-byte field aldressed relatively via a base
register and a 16-bit word displacement.

A 1-byte field addressed relatively via a base
register and an 8-bit byte displacement.

A label definition local to the current
program frame.

A 16-bit modal identification, comprised of a
4-bit entry point and a 12-bit frame number.
The implied location is in the frame defined
by the low-order 12-bits of "m", offset from
the frame-beginning by twice the entry-point

value.

A literal or immediate value. The size of the
assembled literal or value is dependent on

"ot

the instruction in which the '"n" is used.

One of the sixteen Reality address registers
(A/R'S) .

A 6-byte field (usually a storage-register,
or S/R) relatively addressed via a base
register and a 16~bit word displacement.

A 2-byte field relatively addressed via a
base register and a 16-bit word displacement.



Note: The parenthesized footnotes in the following sub-sections are de-
fined in Section 3.7.12.

3.7.1 CHARACTER INSTRUCTIONS (MOVES)

MCC n,c (1) Move Character to Character; the byte
n,r (character) defined or addressed by
n,s (1) operand-1 is moved to the lccation addressed
c,c by operand-2.
c,r
c,s (1)
r,c
r,r
r,s (1)
s,cC (2)
S,T (3)
5,8 (2)
MCI n,r Move Character to Incrementing character;
n,s (1) the byte (character) pointer operand-2 is
c,r incremented by one and the byte defined
c,s (1) or addressed by operand-1 is moved to the
r,r location then addressed by operand-2.
r,s
S,¥ (3)
S,S (2)
MCI n,r,n (4) Move Character Incrementing; the byte
n,r,h (4) (character) poilnter operand-2 is
n,r,t (4) incremented by one and the byte defined
n,r,d (4) by operand-1 is moved to the location
then addressed by operand-2. This
process continues until the number of
bytes specified by operand-3 have been
moved. At least one byte is always
moved and if initially operand-3 = O,
65,536 bytes will be moved.
MIC r,c Move Incrementing character to Character;
r,T the byte (character) pointer operand-1 is
r,s (1) incremented by one and the byte then
s,cC (2) addressed by operand-1l is moved to the
S,Tr (3) location addressed by operand-2.
s,s (2)



MII

MII

MII

MIID

r,r,n

(1)
(3)
(2)

(5)
(5)
(5)
(5)

(3)
(3)

Move Incrementing character to Incrementing
character; both byte pointers are incremented
by one and the byte then addressed by
operand-1 is moved to the location addressed
by operand-2.

Move Incrementing character to Incrementing
character; both byte pointers are incremented
by one and the byte addressed by operand-1

is moved to the location addressed by
operand-2. This process is repeated until
the number of bytes specified by n,h,t or d
have been moved. h,t or d are not destroyed
and 1if initially zero, no bytes are moved.

Move Incrementing character to Incrementing
character; both addressing~registers
operand-1 and operand-2 are incremented by
one and the byte then addressed by operand-1
is moved to the location addressed by
operand-2. This process is repeated until
the first addressing-register operand-1
matches the byte-pointer operand-3. If
operand-l = operand-3 on entry no movement
takes place.

Both addressing-registers are incremented by
one, and the byte addressed by addressing-
register-1 is moved to the location

addressed by addressing-register-2, The byte
moved is then tested under the following
masking condition where 'n'" is an 8-bit

mask field:

Bit Meaning
0 True/False
1 Match on: X'FF'
2 X'FE'
3 X'FD'
4 X'FC'
5 SCO
6 SC1
7 SC2

Bit O i1s a true/false flag; is set, the

move stops on a "match" condition (as
defined by bits 1 through 7); if zero, the
move stops on a ''mon-match'", Bits 1 through
7 represent one character each; if any bit
is set, the byte moved is compared to the

3-13



SCD

MIIT

MIIR

r,r

r,r

character represented by the bit for a
match. Bits 1 through 4 represent the
speclal system delimiters SM (X'FF),

AM (X'FE'), VM (X'FD'), and SVM (X'FC')
respectively. Bits 5, 6, and 7 represent
the contents of the scan character-registers
SCO0, SCl, and SC2 respectively. (Thus only
three of the delimiters are variable.

NOTE: Character-register SC(O may not con-
tain the hex patterns X'00' or X'01'.

Scan characters to delimiter(s). The
addressing-register is incremented till

a "match" condition (see MIID instruction)
as defined by the 8-bit mask field '"n"

is found.

This 1Instruction assumes that the lower
half of the accumulator (T0) has an absolute
byte count (up to 65535) defining the
number of bytes to be moved (see MII op-
code). If TO is zero when the instruction
is executed, no operation is performed.
Otherwise, the addressing-registers are
incremented by one, and the byte addressed
by addressing-register-1 is moved to the
location addressed by addressing-register-2,
and TO is decremented by one. This

sequence 1is repeated till TO reaches zero.

This instruction assumes that address register
R15 is setup to a location equal to or greater
than that of addressing-register-1. (See MII
op-code). If the addresses of addressing-
register-1 and register R15 are equal, no
operation 1is performed. Otherwise, the
addressing~registers are incremented by one,
and the byte addressed by addressing-register-1
is moved to the location addressed by
addressing~register-2, This sequence is
repeated till the addresses of addressing-
register-1 and register R15 are equal.



XCC

OR

XOR

AND

3.7.

BCE

BCU

BCL

BCLE

BCH

BCHE

n n 3000
. v e
n OO OO

v e e e

-

v e
H O30 3R0
-

. e e e

. e

Rt 0N 0O 33
“ e e e

o S b 2 e e

v

(see BCE)

(see BCE)

(see BCE)

(2)
(3)
(2)
(1)
(1)
(2)
(3)
(2)
(3
(3)
(3)
(3)
(3)

(3)

(1)
(3)

(refer to BCE)

(refer to BCE)

Exchange Character with Character; the byte
(addressed) by operand-1 1s interchanged
with the byte defined by operand-2.

OR character; the byte (character) addressed
by operand-1 is logically or'd with the
8-bit immediate operand-2.

Exclusive OR character; the byte (character)
addressed by operand-1 is exclusively or'd
with the 8-bit immediate operand-2.

AND character; the byte (character)
addressed by operand-1 is logically and'd
with the 8-bit immediate operand-2.

CHARACTER INSTRUCTIONS (TESTS)

Branch Character Equal; the byte (character) -
defined or addressed by operand-1 is compared
to the byte defined or addressed by operand-2.
If the two bytes are equal, instruction
execution branches to the location as defined
by operand-3. Neither operand-1 nor
operand-2 are altered. The arithmetic
condition flag (ACF) is set on c,c,l only.

Branch Character Unequal; branch 1f
characters are not equal.

Branch Character Low; branch if operand-1
is less than operand-2.

Branch Character Less than or Equal; branch
if operand-1 is less than or equal to
operand-2.

Branch Character High; branch if
operand-1 is greater than operand-2,

Branch Character High or Equal; branch if
operand-1 is greater than or equal to
operand-2.



BCN r,l

BCX r,l

BCA r,l

3.7.3 BIT INSTRUCTIONS
SB b

ZB b

BBS b,1

BBZ b,1

3.7.4

All arithmetic is done on two's complement binary integers.

DATA MOVEMENT AND ARITHMETIC

Branch 1if Character is tiumeric; branch
if the character addresszed by thre first
operand 1s in the range 0-9, inclusive.

Branch if Character is hexadecimal;
branch if the character addressed hy
the first operand is in the range (-9
or A-F, inclusive.

Branch if Character is Alphatetic;
branch if the character addresscd by
the first operand is im the range A-Z,
inclusive.

Set Bit; the bit addressed by the
operand is set to an on condition (one).

Zero Bit; the bit addressed bty the
operand is set to an off concition
(zero).

Branch Bit Set; ithe bi: addressed by

operand-1 is tested and if set (one)

instruction execution branches to the
location defined by operand-I.

Branch Bit Zero; the bit addressed by
operand-1l is tested and if not set

(zero) instruction execution branches
to the location defined by operand-2.

INSTRUCTTONS

AXl

instructions in this section except the MOV set the arithmetic condi-

tion flag (ACF).

MOV n,h (6)
n,t
n,d
h,h
h,t (6)
h,d (6)
t,h (6)
t,t
t,d (6)
d,h (6)
d,t (6)
d,d
b,b

MOVe word to word; integer defined or
addressed by integer-1 is moved to the
location addressed by operand-2.



TST h Test the contents of the operand and
t set the arithmetic condition flags.
d

INC h INCrement by one; the integer defined
t by the operand is incremented by one
d
h,n (6) INCrement word by word; the integer
h,h defined or addressed by operand-2 is
h,t (6) added to the integer stored in the
h,d (6) location addressed by operand-1 and
t,n the result is stored in the latter
t,h (6) location.
t,t
t,d (6)
d,n
d,h (6)
d,t (6)
d,d

DEC h DECrement by one; the integer defined
t by the operand is decremented by one.
d
h,n (6) DECrement word by word; the integer
h,h defined or addressed by operand-2 is
h,t (6) subtracted from the integer stored in
h,d (6) the location addressed by operand-1
t,n and the result is stored in the latter
t,h (6) location.
t,t
t,d (6,
d,n
d,h (6)
d,t (6)
d,d

ZERO h ZERO word; a zero is moved to the
t operand location defined by operand-1.
d

ONE h Set word ONE; an integer value of one
t is moved to the operand location defined
d by operand-l.

NEG h NEGate word; the integer defined by
t operand-1 is negated (two's complement).
d

LOAD n LOAD to accumulator; the integer
h addressed by operand-1 is loaded into
t the 32-bit accumulator (DO). For half-
d word and word operands, the sign bit is

extended.

3-17



STORE

ADD

SUB

DIV

3.7.5

MOV

XRR

INC

INC

ot TS [« W o e e ot

et oD

h

n R

e o nH R
- - - - - - - ~
Qe O3 At T8

(1)
(2)
(1)

~

STORE from accumulator; the contents of
the 32-bit accumulator (DO) are stored
into the location defined by operand-1l.
For half-word and word operands, the
high order bits are lost.

ADD to accumulator; the integer addressed
by operand-1 1is added to the 32-bit
accumulator (DO) with sign extension.

SUB from accumulator; the integer addressed
by operand-1 is subtracted from the 32-bit
accumulator (DO) with sign extension.

MULtiply to accumulator; the integer
addressed by operand-1 is multiplied by the
contents of the 32-bit accumulator (DO).
The resulting product is stored in the
64-bit accumulator extension (D1,D0),

as a 63 bit number and a duplicated

sign bit.

DIVide into the accumulator; the integer
addressed by operand-1 is divided into
the 32-bit accumulator (DO). The answer
is stored in DO and the integer
remainder is stored into the accumulator
extension (D1l).

REGISTER INSTRUCTIONS

MOVe register to register; the address or
storage register operand-l1 is moved into
the address or storage register operand-2.

eXchange Register with Register; the
address or storage register operand-l is
exchanged with the address or storage
register operand-2.

INCrement register; the address or storage
register operand-1 is incremented by one.

INCrement register by count; the address

or storage register operand-l is incremented
by the integer stored at the location
addressed by operand-2.

318



DEC

DEC

LAD

SRA

FAR

1]

n o n uo R "R
At 8 A>3

-

-

n n o
-
nh " 0=

-

-

(7)

(1)

DECrement register; the address or storage
reglster operand-1 is decremented by one.

DECrement register by count; the address or
storage register operand-1 is decremented by
the integer stored at the location addressed
by operand-2.

Load Absolute Difference; the absolute
difference in bytes (characters) between
the byte pointer operand-1 and the byte
pointer operand-2 is computed and stored
into the lower half of the accumulator (TO).
Please see special note following Branch
Register Equal/Unequal instructions.

Set Register to Address; the byte pointer
operand-1 is set pointing to the first
byte of the functional element at the
location addressed by operand-2.

Flag and Attach Register; the address-
register operand-l is attached and
secondary processing as defined by the
8-bit literal n is performed:

0 - I/0 busy for buffer

not used

0 - buffer core-locked

write-required

not used

Set-up R15 to lst byte unlinked;

old buffer status in R15DSP

Change buffer FID

7 0O - OR n with status, 1 - AND n
with status

Vs W= O
(@]
I

o))

In normal execution only n2 is effective;
the remainder of the functions can only be
evoked in the "monitor mode."



BE
BU

BE
BU

3.7.

BE

BU

BL

BLE

nw "X
™
" 0 X

-
. v v e e

[ N =l ol e el il ol

P R )

oAttt >3 33
[V = S di o SN = V' S = ik = BN o Wl o S i o T o P o Qe

- W W e e e e

w w v e

(see BE)

(see BE)

(7) (10) Branch Register Equal/Unequal; the address

(6)

(6)

(6)
(6)

(6)
(6)

(6)
(6)

of the byte pointer cperand-1 is compared
to the address of the byte pointer
operand-2. The branch is taken appro-
priately. 1If the FID's of the registers are
unequal, it is assumed that the affected
frames are contiguously linked and the
address computation is made on that basis;
further, the difference in the FID's is
assumed to be less than or equal to
thirty-two (32); therefore the instruction
execution may prove incorrect if 1) The
FID's are unequal and not contiguously
linked or 2) One of the registers is in an
unlinked format, and the other 1s not.

(For special information regarding
the BE and BU instructions, refer to
Section 3.14.)

Branch Register Equal/Unequal; the 6-byte
storage register operand-1 is arithmetically
compared to the storage register operand-2
and the branch is made accordingly.

DATA COMPARISON INSTRUCTIONS

Branch word Equal; the integer stored in the
word addressed by operand-1 is compared
arithmetically (2's complement) to the
integer stored in the word addressed by
operand-2. If an equal comparison is

made, instruction branches to the location
defined by operand-3.

Branch word Unequal; branch if words are
unequal.

Branch word Low; branch if operand-1 is
less than operand-2.

Branch word Low or Equal; branch if
operand-1 1s less than or equal to
operand-2.



BH (see BE) Branch word High; branch 1if operand-1 is
greater than operand-2.

BHE (see BE) Branch word High Equal; branch if operand-l
is greater than or equal to operand-2.

BDZ h,h,1 Branch on Decrementing word Zero; the word
t,n,l at the location addressed by operand-1 is
t,t,1 decremented by the integer at the location
d,n,1 addressed by operand-2. If the result is
d,d,1 zero, instruction branches to the location
defined by operand-3.
BDNZ (see BDZ) Branch on Decrementing word not Zero; same
as BDZ but branch on result not zero.
BDLZ (see BDZ) Branch on Decrementing word Less than Zero:
same as BDZ but branch on result less than
zZero. :
BDLEZ (see BDZ) Branch on Decrementing word Less than or
Equal to Zero; same as BDZ but branch on
result less than or equal to zero.
BDZ t,1 Branch on Decrementing word Zero; same as
d,1 BDZ above but decrement by one.

BDNZ t,1 Branch on Decrementing word not Zero; same
d,1 as BDNZ above but decrement by one.

BDLZ t,1 Branch on Decrementing word Less than Zero;
d,1 same as BDLZ above but decrement by one.

BDLEZ t,1 Branch on Decrementing word Less than or
d,1 Equal to Zero; same as BDLEZ abowve but

decrement by one.
All of the above data comparison instructions set the arithmetic condi-
tion flags.

3.7.7 TRANSLATE INSTRUCTIONS

MBD
MBDN

Move Binary word to Decimal characters;
This macro generates a call to the sub--
routine MBDSUB (MBD) or MBDNSUB (MBDN) ,
which converts from a binary integer arx
the location addressed by operand-1 to 2
string of decimal ASCII characters, stoica
beginning from the location addressed by
the byte-pointer operand-2 plus one.

v e
R R



MDB r,t
r,d
MBX h,r
t,r
d,r
MBX n,h
MBXN n,t
n,d

[ e o |

The following elements are used by the sub-
routine and macro DO; D1; D2; T4; T5; Rl4:
R15. A minus sign will precede the con-
verted value if it was negative; at the
conclusion of the instruction, the byte
pointer operand-2 addresses the last
converted byte. MBD deletes leading zeros,
but converts at least one character; MBDN
converts at least 'n" characters, padded

with leading zeros if necessary.

Move Decimal character to Binary word;
ASCII decimal to binary conversion. The
word at the location addressed by operand-2
is multiplied by 10, and a value (as
defined above for the MXT instruction)

from the byte addressed by the addressing
register is added to it. The arithmetic
condition flags are not reset, and arithme-
tic overflow cannot be detected.

Move Binary word to heXadecimal characters;
Binary to ASCII hex conversion.

This instruction assumes that the least
significant byte of the accumulator (HOQ)
has a parameter (see MBX/MBXN macro). Bits
3-0 contain a digit count, specifying the
maximum number of ASCII digits to be
converted. As each digit is converted, the
addressing register is incremented by one,
and the converted ASCII character is stored
in the location addressed by the addressing
register. The format of HO at the con-
clusion of this instruction 1s unpredictable.
If the digit count in HO exceeds the field
defined by operand-1l, no operation is
performed.

Move Binary word to heXadecimal characters;
This macro expands as a LOAD of the first
operand (MBX) or the first operand +X'S80'
(MBXN), and an primitive. The MEX macro,
therefore, causes conversion from binary

to ASCII hex, with only significant digits
(to a maximum of "n'") converted. The MBXN
macro causes conversion as above, but always
converts ''n'" digits, with leading zeros if
necessary. The addressing register defined
by the third operand 1s incremented before
each byte converted.



Move heXadecimal characters to Binary word;
ASCII hex to binary conversion

The field defined by operand-2 is shifted
left 4 bits, and the value defined below,
from the byte addressed by the addressing
register, is added to the field: The

4-bit value from bits 3-0 of the byte (bits
numbered right to left), plus nine times
bit 5. The arithmetic condition flags are
not reset by this instruction, and arithme-
tic overflow cannot be detected.

[ S S |
oot 7

3.7.8 EXECUTION TRANSFER INSTRUCTIONS

N
Y

B 1 Branch;

a branch to location defined, in the current
frame, defined by label "1'", or the absolute
core address "a'". The branch to an absolute
core-address is a privileged instruction

executable cnly at the monitor-level.

BSL 1 Branch and Stack location;
m Subroutine call to mode defined by mode-1ID
a "m'", local label "1", or absolute core-
address "a'". (The BSL to an absolute

core-address is a privileged instruction
executable at the monitor-level only).
The location-1 of the instruction follow-
ing the BSL is saved in the return stack,
and the next instruction executed 1s that
defined by the operand. The return stack
level is increased by one; if the call
causes the return stack level to exceed
its maximum value, the stack pointers are
reset to the beginning and a trap to the
DEBUG mode 1s executed.

BSLI Branch and Stack Location Indirect;
Subroutine call indirect; this instruction
assumes that the lower half of the
accumulator, TO contains a mode-ID (see
BSL* macro). The 16-bit mode-ID contained
in TO defines the location of the next
instruction that is to be executed, after
the location-1 of the instruction follow-
ing the TCI is saved in the return stack.



RTN ReTurN;
Return to subroutine called. The last
entry in the return stack defines the
location of the next instruction to be
executed; the return stack level is
decremented by one. If the return
stack is empty, a trap to the DEBUG
mode is executed. A return instruction
from a subroutine called via a local
call, or an absolute core-address call,
will return within the current 512-byte
frame only.

ENT m ExterNal Transfer;
Branch to location defined by mode-ID"m'".

ENTI ExterNal Transfer Indirect;
Enter mode indirect: this instruction
assumes that TO contains a 16-bit
mode-ID (see ENT* macro), which defines
the next instruction to be executed.

BSL* h (8) Branch and Stack Location indirect;
t subroutine call to mode defined by the
d mode-ID contained in the word addressed

by operand-1. The 16 bit mode-ID is
loaded into the accumulator, and a BSLI
instruction is executed.

ENT* h (8) ExterNal Transfer indirect; branch to
t external location defined by the mode-ID
d contained in the word addressed by

operand-1. The 16 bit mode-~ID is loaded
into the accumulator, and an ENTI
instruction is executed.

3.7.9 1/0 AND CONTROL INSTRUCTION

10T r,n,,0, I/0 Instruction Input; this instruction
is used to control input from peripheral
devices whose device addresses are in
the range O through X'F' (15). This
instruction causes an MCAL instruction
to entry point 8 in the Monitor.
Register r points to the start of the
input buffer; nj is a 3-bit order
code; n, is a 4-bit device address.
Refer to Reality CPU, peripheral I/0
for details.



100

READ

WRITE

MCAL

RQM

IB
0B

r,ny,0y

T,04,0,

I/0 instruction Output; as above this
instruction output tc peripheral devices.

A byte from the byte-T/0 buffer in the
PIB is stored at the joucation addressed
by the addressing register. T1f the
buffer is empty, or if there is data in
the byte 1/0) buffer vet to be output

to the byte 1/0 device, the process
executing the READ instruction will enter
a quiescent state till data from the

byte input device causes a re-activation.

The byte addressed by the addressing
register is moved into the byte 1/0
buffer of the PIB. If the buffer is
empty, the byte 1is also output immedi-
ately to the byte I/0 device. 1{ the
buffer is full, the process executing
the write will enter a quiescent state
till the byte output device has accepted
the data from the bufter, and causes a
re-activation. Execution of this
instruction causes a loss of any input
data in the byte I1/0 buffer, and
inhibits any further data input from

the byte 1/0 device.

Monitor call to entry point '"n,"

(7 < np < 16). The word address of the
addressing register; the 8-bit address
of the addressing register; the 8-bit
mask nj; and the location of the PCB

are passed, as parameters to the moni-
tor, in the PIB. MCAL r,5,11 scts
CORELOCK and CORELOCK1 bits in the
buffer status byte indicated by
register "r". MCAL r,6,11 resets
these same bits.

Process releases the remainder of its
time quantum to the monitor. Equivalent
to: MCAL 0,0,9.

Input/Output byte instruction. KRefer to
Reality CPU, peripheral 1/0 for details.
The byte defined by the mask "n" {is
output as a control byte, and a data
byte is input (IB) and stored at the
location addressed by the addressing
register, or output (OB) from the loca~
tion addressed by the addressing regio-
ter. These instructions are allowable
in monitor mode only.

3-25



NOP "o OPeration is performed by this
instruction.

HALT This instruction halts the CPU and is
executable in the Monitor mode only.

HLD r Halts the CPU and gates the cight-bit
literal addressed by register r to the
A bus, where it can be displayed in the
least significant indicator lamps of the
system panel by depressing the Data
select switch. Executable in monitor
mode only.

TEXT X'01' Tests internal and external interrupts
and traps to the appropriate monitor
location 1if any interrupt:. are pending.
Executable in monitor mode only.

ECS r The status of the eight low-order
console command switches is placed in
the byte addressed by register r.
Executable in monitcr mode only.

ESS r The status of the four console sense
switches is placed in the four most
significant bits of the byte addressed
by register r.

SVP Start virtual Process (Monitor level
only) The 2-byte FID located at abso-
lute core address X'127', X'128'
(R4=FID of monitor) is treated as a
PCB-FID, and the buffer-pool searched
for a match. If found, register zero
in the PCB is setup in an "attached"
format, and the attachment process for
register one (user program-mode regis-
ter) is started. If not found, a frame
fault request on the PCB-FID is stacked,
and the monitor is re-entered.

RVP Return to Virtual Process (monitor
level only) should be executed when a
trap to the monitor due to an external
interrupt by devices 0-X'l5' has caused
a monitor trap. Selects primary file
registers of the 1600 computer and
resumes execution of the virtual
Process. If this instruction is exe-
cuted when the system is not in an
interrupt-handling mode, no operation
takes place.

3-26



7.

10

ADDR

AR

CHR
HTLY
TLY
DTLY
SR

CMNT

DEFA

DEFM

DEFk

ASSEMBLER DIRECTIVES

n,n
1
r
n
1
n
a
r,1
r,n
n,l
n,n
r,l
r,n
n,l
n,n

r,*[{string]
n,*[string]

Defines the local symbol "1" as a storage
register in unlinked format. The displacement
is defined by the first operand. The FID is
defined by the second operand.

Defines the local symbol "1" as an address
register with a value defined by the operand.

Defines the local symbol "1" (if present) as

a character (CHR) half-word (HTLY), word (TLY),
double-word (DTLY) or S/R (SR) respectively;
object code of the appropriate length and
value defined by the operand is assembled,
except for the SR op code, which ignores the
operand field.

Comment; the contents of this statement are
treated as commentary, and ignored by the
assembler. Note: A label field entry is
allowable.

Defines the local symbol "1" to be of type a.

Defines the local symbol "1" to be of type m;
a mode-1ID with entry point defined by the
first operand and FID defined by the second
operand.

Defines the local symbol "1" to be of type "k"
(where k=b,c,d,h,1,s,t), with base register
defined by the first operand and displacement
defined by the second operand.

When the assembler location counter "*" ig
used as the second operand, an optional string
can be used, with the following format:

= + =
string nz[-nB] or string tn3

If ny is specified after the *, instructions
referencing 1 will obtain a displacement (D
field) appropriate for an operand length of

ny bits. Values of nyp = 1,8, and 16 are valid,
with a default of ny = 8,

If +n3 is specified after the *n, the effective
displacement will be adjusted nj bits, bytes

or double-bytes, depending on whether ny = 1,8
or 16.



Example:

ORG 10
LABEL1  DEFT 1,*16
STORE LABEL1
produces the object code Al0559
corresponding to the instruction:

opcode-1  register D L opcode-2

T
1010 0001 ' 00000101} 01 011001

with a displacement (D field) of 5 words
relative to the byte addressed by
register 1.

Example:
ORG 1
LABEL?2 DEFB 1,*1+7
SB LABEL2
produces the object code 810F correspond-
ing to the instruction.
opcode register D
1000 0001 00001111
with a displacement of 15 bits relative
to the byte addressed by register 1.
1 EQU c Equates the local label "1" to the symbol
h or literal value of the operand.
t
d
s
1
n
FRAME n Must be the first assembled statement 1in
a mode that is to be loaded; "n'" defines
the frame on which the object code is to
be loaded.
ORG 1 Resets the location counter to value
n defined by the operand. This statement
may have a label field entry.
SETAR r Causes all literals encountered from this

point in the assembly to be defined as a
displacement relative to register r. If no
SETAR occurs, SETAR 1 is assumed.




TEXT X'..."' Assembles binary equivalent of character
c'...! strings (enclosed in quotes and preceded
by a 'C') or hexadecimal values. Any
number and combination of C and X literals
separated by commas is permitted.

3.7.11 ADDRESS REGISTER USAGE

A storage operand is always referenced through an address register
containing the byte address of the operand. For instructions with a

D field, a displacement is added to the contents of the address
register to form an effective address. The length of the operand is
encoded in the L field of the instruction. (Refer to Section 2.5.)

For REAL instructions allowing an address register r in the operand
field, the displacement relative to the register and the operand length
can be specified using the following formats:

‘Displacement Relative Operand
Format to Address Register n Lengthi
Rn 0 byvtes 1 byte
Rn;Bm m bits 1 bit
Rn; Cm m bytes 1 byze
Rn;Hm m bvtes
Rn;Tm 2*m bytes 2 bytes
Rn;Dm 4*m bytes 4 byres
Rn;Sm 6*m bytes 6 bytes
Example:
MCC RO;C15,R15 Move low order byte of the Accumulator
to the byte addressed by R15.
Lxanple:
SB R5;B0 Set bit 0 of the byte addressed by R5.
Example:
MOV MBASE,R10;D4 Move double-word MBASE to the double-word
starting 16 bytes past the byte addressed
by R10.

N
'
g8}
0O



3.7.12

REAL INSTRUCTION SIDE EFEFECTS

Many of the REAL op-codes use functional elements not specified as
operands for execution. Those instructions are so footnoted in the
previous listing; the following explanation of the various footnotes
describes the state of these implied elements at the conclusion of
instruction execution:

(1)
(2)

(3)
(4)

(5)
(6)
(7
(8)
(9)

R15 points to byte addressed by operand-2.

R14 points to byte addressed by operand-1l, R15 points to
byte addressed by operand-2.

R15 points to byte addressed by operand-1.

R15 points one prior to last byte moved and TO contains
number of bytes moved into last frame.

Contents of TO are unpredictable.

DO contains the integer moved or compared.

SYSRO contains the byte pointer operand-1.

TO contains the 16-bit mode-ID; Tl is zero.

HO zontains the number of digits converted into the last

frame, if its high order bit (BO) is set; otherwise original
value.

(10) See Appendix A.

3.7.13

EXAMPLES

The following listing presents examples of the REAL instruc-

tions.



1¢-¢

MODE: REAL-INSTRUCTIONS PAGE 1 14:04:81 g5 AUG 1974

g1
pa2
pa3
paL
#a5
#a6
pa7
#88
#9g9
g19
g11
g12
g13
14
#15
#16
417
g18
g19
g2g
g21
922
#23
324
825
726
827
g28
g2

asd

- P31

832
233
@3
@35

B L T T P T T T T

*

* REAL INSTRUCTION REPERTOIRE

*
kkikkkkkkkkkkkkhhhkkhkhhkhkhkhhkhhdkkhhkkhkhhhkhhkxkhhkkkkhkkkhhkkkkkhkkkkkkkk &k
*

* DEFINE SYMBOLIC OPERANDS USED IN DEFINITIONS

*

B1 DEFB 1,11
B2 DEFB 2,22
1 DEFC 1,11
c2 DEFC 2,22
H1 DEFH 1,11
H2 DEFH 2,22
T1 DEFT 1,11
T2 DEFT 2,22
D1 DEFD 1,11
D2 DEFD 2,22
S1 DEFS 1,11
S2 DEFS 2,22
*

* DEFINE FUNCTIONAL ELEMENTS USED IN MACRO EXPANSIONS
X

70 DEFT 8,7
D@ DEFD 8,6
Al DEFA  X'1234'
M1 DEFM 1,2
*

*

*

2 S T e L T T T T T T e T T P e T LT Ty
*

* CHARACTER OPERATIONS

*

Kk d kot kI AARAA KT AR AR IR AT AR hRKKE AAR IR IR AR RAR TR R ARARKARRAT LKA T hh Rk kk



(93
[

MODE: REAL-INSTRUCTIONS

§36
£37
g38

39
Aug

aut
L2
pu3
Ll

pus
gL6
pu7
pusg

pu9
gs¢
#51
852
#53
B5h

#55
856

p57
p58

pol
goL
ga7
geA
gpD

g1g
g1k
817
p1A

g1D
g20
g22
$25

g27
B2A
#2D
p2F
#32
g34
p37
g3A

g3C
p3F
pu2
gus

pug
pu9

E2163F
LFL12p
424129
E216EF
LrLt120

F216@148
D1¢B12
E216EF
DipB1F

D21641
6219
E216EF
6F19

E2163E
E1PBEF
6EF9
E10BEF
62F9
E10BEE
E216EF
6F39

42L14p
A21643
E216EF
LFL12g

32
D1#B12

PAGE 2

* MOVE CHARACTER TO CHARACTER
LAg EQU

%

MCC
MCC
McC

MCC
MCC
MCC

MCC
MCC
MCC

MCC

MCC

*

C'A',C2
C'A',R2
C'A',S2

C1,C2
Cl,R2
C1,s2

R1,C2
R1,R2
R1,S2

S1,C2

S1,R2

S1,S2

MOVE CHARACTER TO CHARACTER,

MCI
MCI

MC1

C'A',R2
C'A',S2

Cl,R2

19:94:93 @5 AUG 1974

OMNE CHARACTER MOVED

INCREMENTING DESTINATICN
ONE CHARACTER MOVED



£¢-%

MODE: REAL-INSTRUCTIONS

859

p69
#61
P62

g63
pol

#65

g66
g67
g56

#69

p79

g/1

puC E216EF
PUF 3F

@50 D1PB1F
#53 E216DF

#56 621A
#58 E216EF
#58 6F1A
#5D0 E216DF

@68 E1@BEF
#63 62FA
#6, E10BEE
#68 E216EE
#68 BFEA
#6D E216DF

#78 162F
#72 424148
@75 A72E58
#78 6F24L
B7A A19B18
#70 ABP685
p8@ 162F
#82 424144
#85 6F24
@87 A1@B58
P8A APB685
#8D 162F
B8F L2L14p
$92 6F24
g9l A18B98
#97 APP685
B9A 162F

MCI

MCI
MCI

MCI

MCI

MCI

PAGE 3
1,52

R1,R2

R1,52

S1,R2

S1,52
C'A',R2,7
C'A',R2,H1
C'A',R2,T1

19:84:804  p5 AUG 1974

MOVE 4 CHARACTERS IN OPERAND 3



ve-¢

MODE: REAL-INSTRUCTIONS PAGE 4 19:84 84 g5 AUG 1974

#9C 4241448
fAoF b6F24
72 *
p73 * MOVE CHARACTER TO CHARACTER TNCREMENTING SOURCE
p74 BAL1 31 MIC  R1,C2 MOVE 1 CHARACTER
pA2 D21681
#75 @AS 6121 MIC R1,R2
p76 BA7 =21bEF MIC R1,57
BAA olF1
g77 *
378 PAC Al@BL3 MIC  S1,C2
PAF E2163E
#B2 E1@BEF
#B5 BEF9
#79 #B7 E1@BEF MIC  S1,R2
#BA 6F21
#BC E1@BDF
#8p @BF E1fBEF MIC S51,S2
$#C2 E216EE
fC5 BFEL
#C7 E108DF
$81 *
$82 * MOVE CHARACTER TO CHARACTER, INC SOURCE AND DESTINATION
83 ACA 6122 MI1 R1,R2 MOVE 1 CHARACTER
g8k PCC E216EF MIT  R1,S?
fCF 61F2
pD1 E216DF

g86 @#DL E1@BEF MII
gD7 6F22
fD9 E1@BDF

p87 PDC E1PBEE MI1 51,52
@DF E216EF
PE2 BEF2
PEL E1@BDE

[92]
e
o)
[N}



S¢-¢

MODE: REAL-INSTRUCTIONS

p8s
#89

gag
#91
#92

#93
gk

108

149

1ig

pE7

gEA
gED
PEF
#F2
grL
aF7
gF9
gFC

gFE
168

> 102

185

187
18A
14D

19F

111
114
117
119
ilC
11E
121
124

E216DF

A72F58
6124
A19818
6124
Al1pB58
6124
A1PB98
6124

163F
6123
E24FEF
6123

612¢E9
6188A8
6124

6123

E16B3E
E2163F
6EF7
E18B3F
6F27
E18B3E
E216EF
6EF7

PAGE 5 16:64:85 @5 AUG 1974

MIT  R1,R2,88 MOVE # CHARACTERS IN OPERAND 3

MIT  R1,R2,H1

MIT  R1,R2,T1

MIT  R1,R2,D1
*

MIT  R1,R2,R3 MOVE UNTIL 2ND OPERAND = 3RD OPERAND

MIT  R1,R2,S3
*
* INSTRUCTIONS INCREMENTING SOURCE & DESTINATION REPEATEDLY

MIID R1,R2,X'ER' MOVE CHAR TO CHAR THRCUGH DELIMITER
’ SCD  R1,X'Ag' SCAN CHARACTERS TO DELIMETER
* MIIT R1,R2 MOVE NUMBER OF CHARS. IN ACCUMULATOR
" MIIR Ri,R2 MOVE UNTIL Ri AND R15 ARE EQUAL
:EXCHANGE CHARACTER WITH CHARACTER

Xcc  C1,c2

XCC  C1,R2

XcC  Cl1,S2



9¢

MODE: REAL-INSTRUCTIONS

111

112
113

114
115

116

117

118
119
129

121
122

123
124
125

126
127

128
129
139

131
132

126
129
128
12D
139

132
135
138
13A
13D
13F
142
145

147
14A
14D
158
153

156
159
15C
15F
162

165
168
168
16E
171

E2163F
6F17
6127
E216EF
61F7

E10BEE
F2163F
BEF7
E1@BEF
6F27
E1@BEE
E216EF
bEF7

E18B3F
LFABCH
41ABCH
E1#BEF
LFABCH

E10B3F
LFABDS
41ABD@
E1@BEF
LFABD®

E18B3F
4FABE®
41ABES
E1@BEF
LFABE#

XCC

XCC

XCcC

XCC

XCC

XcC

*

R1,C2
R1,R2
R1,S2

S1,C2

S1,R2

51,52

PAGE 6 17 :84:96 #5 AUG 1974

* L OGICAL OR CHARACTER WITH MASK

OR

OR
OR

*

Cl,X'AB'

R1,X'AB'
S1,X"AB!

*EXCLUSIVE OR WITH MASK

XOR

XOR
XOR

C1,X'AB'

R1,X'AB'
S1,X'AB!

*LOGICAL AND CHARACTER WITH MASK

AND

AND
AND

C1,X'AB'

R1,X'AB'
S1,X'AB!



MODE: REAL-INSTRUCTIONS

133
134
135

136

137
138
139
146
141
142
143
144
145
146
147
148

149
159
151

152

153
154
155
156
157
158
159

168

161
162

174

177
17A
17€E

182
185
189
18D
18F

193
197
198

19E
1Al
1A5
1A9
1AC

L1FEF@

E2163F
4FL1P8L7
42419843

E18B3F
4FL41P83C
F1#B1216
5836
B1#B2832

4141882E
B216182A
512827

E2163F
LFL19828
L4241@81C
E1#B3F
LFL1p@15

*

PAGE 7

SHIFT X'FE',R1

* % * ¥

16:04:47

Akhkkkhkkkkkhkkkkkkkkkhkkkkhkhkkhkkkhhkkhkkkhkk

X

* CHARACTER INSTRUCTIONS (TESTS)

*

kkkhkkhkkhkkhhkAkkkkAkkkhkkhkhhhkhkkkkkkhkkikhkkkk

*
*

*BRANCH CHARACTER EQUAL

BCE C'A',C2,L1
BCE C'A',R2,L1

*
BCE C1,C2,Ll
BCE Cl,R2,L1

*
BCE  41,C'A',Ll
BCE R1,C2,L1
BCE  R1,R2,L1

*

*BRANCH CHARACTER UNEQUAL
BCU C'A',C2,L1
BCU C'A',R2,L1
BCU C1,C'A',Ll

5 AUG 1974



MODE: REAL-INSTRUCTIONS

163
164

165
166
167
168
169
179
171
172
173

174
175
176

177
178

179

189
181
182
183

8 s
8

4
5

(S —y

[
0>
(o}

189
1B4
186

1BA
1BE
1C2

105
1C8
1CC
104
1D3
1D7
109
1DD
1DF
1E3
1E7
1E9
1ED
1EF

1F2
1F5
1Fg
1FD
209
284
296
20A

F16B1216
5¢8F
B19B24¢8B

414100807
B2161¢93
512089

E2163F
LFL1p6@7
42414608
E1@B3F
LFL1PCB2
1E14
F1#B1216
561A
B1#B261E
41419CA2
1E24
B2161C19
1E2A
51262D

E2163F
LFL1gE3L
4241PE38
E18B3F
LFL1PLP2
1E4]
F18B1216

5247

*
BCU

BCU

BCU
BCU

BCU
*

PAGE 8

c1,c2,L1
C1,R2,L1
R1,C'A',L1

R1,C2,L1
R1,R2,L1

*BRANCH CHARACTER LOW

L1 EQU
BCL

BCL
BCL
BCL

BCL
BCL

BCL

BCL
*

*
C'A',C2,L1

C'A',R2,L1
C1,C'A",L1
c1,C2,L1

C1,R2,L1
R1,C'A', L1

R1,C2,L1

R1,R2,L1

*BRANCH CHARACTER LOW OR EQUAL

BCLE

mm

CL
CL

@ @

BCLE

C'A',C2,L1

~T At

oot e
C'A',RZ,L1

C1,C'A', L1

(@]
-
~
(@]
N
~
r
—

14:84:97

@5 AUG 1974



6¢-¢

MODE : REAL-INSTRUCTIONS

187
188

189
199
191
192
193
194
195
196
197
198
199
208
281
2p2
283
2p4
2¢5
2086

287

2¢C
219
214
216
21A
21C

21F
222
226
228
22C
22E
231
235
239
238
23F
241
245
249

24¢
24F
253
255
259
258
25E
262
266
268
26C

B1@#B2ELB
L141p492
1E51
B21614p2
1E57
512E5A

E2163F
LFL1pCa2
1E63
L241pCh2
1E69
31¢B3F
LF410679
F2161148
5676
B1#B2C16
1E7C
41419680
B2161684
521687

E2163F
LFL1pL@2
1E99
L241p4@2
1E96
E1PB3F
LF418EID
F2161148
S5EA3
B1@#B24A2
1EA9

BCLE
BCLE

BCLE

BCLE
*

PAGE 9

C1,R2,L1
R1,C'A',L1

R1,C2,L1

R1,R2,L1

*BRANCH CHARACTER GREATER

BCH

BCH
BCH
BCH
BCH
BCH

BCH

BCH
*

C'A',C2,L1

C'A',R2,L1
C1,C'A',L1
c1,c2,L1
C1,R2,L1
R1,C'A",L1

R1,C2,L1
R1,R2,L1

*BRANCH CHARACTER GREATER OR EQUAL

BCHE

BCHE

‘BCHE

BCHE

BCHE

C'A',C2,L1

C'A',R2,L1
C1,C'A', L1
c1,C2,L1

C1,R2,L1

19:84:088

g5 AUG 1974



Ov-¢

MODE: REAL-INSTRUCTIONS

208
269
218
211
212

213

214

215
216
217
218
219
229
221
222
223
224
225
226
227
228
229
239
231
232
233
234
235
236
237

26E
272
276

279
27D
281

norc

285
289
28D
291
295

299
298
29D
2A1

L141PEAD
B2161EB1
521EBL

L13ApCHL
4L1308EBC
L147@4C@aC
4141PECH
413A8CHL
L13pPECC
L1sBpCoY
L141PEDL

8148
71¢8
91482400
919BZARL

BCHE
BCHE
BCHE
*CHARACTER TYPE
BCN

BCX

BCA

*
*

PAGE 18

R1,C'A",L1
R1,C2,L1
R1,R2,L1
TESTS
R1,L1

R1,L1

R1,L1

18:84:89 @5 AUG 1974

BRANCH CHARACTER NUMERIC

BRANCH CHARACTER HEXADECIMAL

BRANCH CHARACTER ALPHABETIC

dkhkkkhkhkkAhkkkhkkhkhkkthkhhkkhhkhkhkhkhhkhhkkikhkhhkkhkkhkhk

*

* BIT INSTRUCTIONS

*

RAKAAKkAhkkhkhhkhhkhkhAkhhkhhkhhhhhkhhhkhkhkrkhkkhhhkhkkhkk

*

*
*
*
SB
78
BBS
LY BBZ
*
CMNT

B1
B1

B1,Lk4
B1, L4

*

SET BIT
ZERO BIT
BRANCH BIT SET

BRANCH BIT ZERO

SEE MOV BIT TO BIT BELOW

kkkhkkkkhhkhkkhkhhhkhhhkhhkhkhkhkihhhhhhkkkhkrxhkhkrxhkhkhihkkk

*
* DA
*

-
!

AT Y T IRAT T T~

INSTRUC

o

ION

T

FhkkhkhkkhkhhhhkdhkkAhhkA kA X hAhhhkhk ik khdrAxhhhhkkikkhk

*



Iv-¢

MODE: REAL-INSTRUCTIONS

238
239

244
241
242
243
2L4

245

246
247

248
249

259
251

252

253
254
255

256
257
258
259
268
261
262
263

2A5
2A8
2AB
2AF

2B3
2B7
2BA
28D
2CP

2C3
2C6
2C9
2CD
2048

2D3
206
2D9
2DC
2DF

2E3
2E5
2EQ

2EB
2EE
2F1

A73858
A21619
F2164738
F2168744

F216#108
A19B18
A21659
A18B18
A21699

A19B58
A21619
F2164168
A19B58
A21699

A10B98
A21619
A18B98
A21659
F216818B

7216
91080802
8216

A18B82
A1pBL2
A1pB82

*MOVE DATA TO
MOV

MOV
MOV

MOV
MOV

MOV

MOV

MOV
MOV

MOV

MOV

MOV

MOV

* B

*TEST AND SET
TST
TST

TST
*

*

PAGE 11

DATA BY AREA
32,H2

32,72
32,D2

H1, H2
H1, T2

H1,D2

T1,H2
T1,T2
T1,D2
D1,H2
D1,T2
D1,D2

B1,B2

ARITHMETIC FLAGS
H1
T1
D1

* INCREMENT INSTRUCTIONS

19:94:18 95 AUG 1974

MOVE BIT TO BIT



MODE: REAL~-INSTRUCTIONS PAGE 12 1§:84:11 @5 AUG 1974

264 2FL4 A1@B@3 INC  HI1 INCREMENT DATA BY 1

265 2F7 AlgBU43 INC  TI

266 2FA A1pB83 INC DI

267 *

268 2FD A19B18 INC  H1,32 INCREMENT DATA AREA BY DATA
3¢9 A73853
3p3 A1@B19

269 3§f F1BB2216 INC  HI,HZ

276 38A A19B18 INC  HI1,T2
3¢D A21653
31¢ AlPBIG

271 313 AlgB818 INC  H1,D2
316 A21693
319 AlPB19

272 *

273 31C F1¢B6738 INC T1,32

274 328 A21618 INC  T1,H2
323 F19B6EG7

275 327 F1#B6216 INC  T1,T2

276 32B A21698 INC  T1,D2
32E F14B6@H7

277 *

278 332 F1@BA7LU INC  DI1,32

279 336 A21618 INC  DI,H?2
339 F1@BAPA6

283 33D A2A658 INC  DI,T2
3L4¢ F19BABAE

281 344 F1#BA216 INC  D1,D2

282 *

283 *DECREMENT INSTRUCTIONS

284 348 A1PBAS DEC  Hl DECREMENT DATA AREA BY 1

285 348 A1@BLS DEC Tl

986 ILE AI@RSS DEC DI

287

288 351 Al¢B18 DEC H1, 32 DECREMENT DATA AREA BY DATA



¢v-¢

MODE: REAL-INSTRUCTIONS

289
299

291

292
293
294

295
296

297
298
299

388

381
382
383
384
385
386
387
388
389
319
311
312
313

354
357
35A
35E
361
364
367
36A
36D

378
374
377
378
37F
382

386
38A
38D
391
394
398

39C
39F
3A2

3A5
3A8
3AB

3AE
3B1

A73855
A18B19
F1§B3216
A1pB18
A21655
A18819
Al1¢B18
A21695
Al1#B19

F1087738
A21618
F19B7887
B1#B7216
A21698
F1987887

F18BB7L44
A21618
F19BBAE6
A21658
F1#BBAG6
F1#BB216

Al19B¢@4
Alp#BuLS
A19B86

Al@B@1
A19B4L1
A19B81

A19B@8
A19B48

*
*ZERO OUT

*REPLACE DATA AREA WITH NUMBER 1

*NEGATE DATA AREA

DEC  H1,H2
DEC H1,T2
DEC  H1,D2
DEC  T1,32
DEC  T1,H2
DEC  T1,T2
DEC  T1,D2
DEC D1,32
DEC  DI,H2
DEC DI1,T2
DEC  D1,D2
DATA AREA
ZERO H1
ZERO T1
ZERO D1
ONE H1
ONE TI1
ONE DI
NEG H1
NEG T1

PAGE 13

18:84:12

g5 AUG 1974



Py-¢

MODE : REAL-INSTRUCTIONS PAGE 14 18:84:12

314
315
316
317
318
319
328

Z21

PPy

322
323
324
325
326
327
328
329
338
331
332
333
334
335
336
337
338
339
348
341
342
343
344
345
346
347
348

3BL4

387
3BA
3BD
3C¢

3C?
3Co
3C9

32C
3CF
302
3D5

3D8
308
3DE
3E1

3EL
387
3EA
3ED

3FP
3F3
3F6
3F9

A1¢B88

A73C58
A1¢B18
A1pBS8
A1¢B98

Alg819
A1$B59
A1¢B99

A74653
A14813
A1§B53
A18893

A74L755
AlPB15
A18B55
A19B95

A73A5P
Al14B14
A14B58
A19B9P

A73151
Al¢B11
A1¢B51
A1¢B91

NEG D1
*|.OAD DATA INTO ACCUMULATOR
LOAD 876
LOAD H1
LOAD T1
LOAD D1
*STORE ACCUMULATOR INTO DATA AREA

cCTNADE W1
DbuviNG L

STORE T1
STORE D1
*ADD DATA TO ACCUMULATOR
ADD 6547
ADD  HI1
ADD T1
ADD D1
*SUBTRACT DATA FROM ACCUMULATOR
SUB 643
SUB H1
SuB T1
SUB D1
*MILTIPLY ACCUMULATOR BY DATA
MUL 23
MJL H1
MUL T1
MUL D1
*DIVIDE ACCUMULATOR BY DATA
DIV 23
DIV HI1
DIv Tl
DIV Dl

.........

35 AUG 1974



Sv-¢

MODE: REAL-INSTRUCTIONS

349
358
351
352
353
354
355
356
357
358

359

368

361
362
363
36k
365

366
367

368
369
379

371
372

373

3FC
3FE
ug1
LgL

ug8
LA
4@D
419
412
L1k
417
L41A
41D
421

42l
R25
428
428
42F
431
434
437

L3A.

43E
441
445
449
NNy

1612
E216D1
E10BE2
F216C18B

1712
E1PBEF
E1#BD1
16F1
161F
E1PBE1
E1@BDF
E216EF

-F216C1¢8B

E1#BDF

31

A1¢843
E73251
A1@B18
EBB751
E10B51
A1¢B98
EA@751

F18B6732
A19B18
F18B6887
F1886108
A198B98
F1#B60887

PAGE 15 14:94:13 @5 AUG 1974

AhkAkhkkRKkAAAARAAkkAkAkAhkkkkArkAkAhk A hkkkhkhkhhkk

*

*MOV REGISTER TO REGISTER

*EXCHANGE

MOV R1,R2
MOV R1,S2
MOV S1,R2
MOV S1,S2
REGISTER CONTENTS
XRR  R1,R2
XRR  R1,S1
XRR  S1,R1
XRR  S1,S2

* INCREMENT REGISTER

INC
INC
INC
INC

INC
INC
INC
INC

INC
INC

R1
s1

R1, 28
R1,H1

R1,T1
R1,D1
51,28
S1,H1

s1,T1
s1,D1

*DECREMENT REGISTER

BY 1

BY 2ND OPERAND



or-¢

MODE: REAL-INSTRUCTIONS

374
375
376
377
378

379
584

381
382

383
384

385
386
387
388

389
39¢
391

L5
451

454
457
L5A
L4sD
Loy
463
466
LBA
LeD
471
475
478

47¢
L7F
482
L85
488
488

LBE

+ 491

Loy
497
49A
49D

Lag

21
A19B45

E74841
A10B18
EAP7L1
E14841
ALBBYR
EPB741
F18B7749
AlpB18
F1¢8B87087
F1¢B7148
A1pB98
F1eB7987

EAFGD1
EQF6C2
E216C1
E1P#BC2
E216EF
E10BCF

E21631
E21631
E21671
E216R1
E216F1
E19131

L23uL6g

*

*LOAD ABSOLUTE ADDRESS DIFFERENCE

L2 EQU
LAD

LAD
LAD
LAD

*SET REGISTER
SRA
SRA
SRA
SRA
SRA
SRA

*FLAG AND ATTACH ADDRESS REGISTER

FAR

*BRANCH REGISTER EQUAL (UMEQUAL)

L3 EQU

*
R1,R2

R1,S?2
S1,R2
S1,S2

TO ADDRESS
R1,C2
R1,H?2
R1,T2
R1,D?2
R1,S2
R1, LPO

R?, X' 34!

*

PAGE 16

14:84: 14 @5 AUG 1974

BY 1

BY 2ND OPERAND



LY-¢

MODE: REAL-INSTRUCTIONS

Lp3

Lgl
T

L#6

Lg7
Lp8
Lg9
410

L1
412
413
L1g
415
416
417
418
419
L2p
421

422
423
424
425
426

L27

LA3
L4AG
LAA
LAE
4B2
L4BYL
LB7
LBB
L4BF
4C3
4C7
LCB

4CD
LD#
LDk
4D8
4DA
L4DE

LED
423
LE7
LE9
LED
LEF

EBFID1
CAF92AB7
C2161APB
F216D1@B
5Al11
E@F9D1
C#F92218
C216121C
C18B2229
C1@¢B2A2Y4
F216D1#B
522A

E16B3F
4LF198949
F7335168
5943
F73491¢8
593D

A1pB18
FB@75736
5934
F1681168
592E
A1#B18

BE

BE
BE

BU

BU
BU
BE
BU

*
*
*

R1,R2,L3

R1,52,L3
S1,S2,L3

R1,R2,L3

R1,52,L3
S1,R2,L3
S1,R2,L3
S1,52,L3

PAGE 17 19:84: 14 #5 AUG 1974

khkkhkhkkhkhkhkkhkhrhkhkdhkhhixkhkhkhhhkkhkhkhkkhhhkkhkkhkhkhk

*

* DATA COMPARISON INSTRUCTIONS

*

Khkhkhkkhkhkhkkhkhkhhkhkhkhkkhkhhkhkhkhhhhkkhkkhhkbhhkkkrhrkkkkkkk

*

*BRANCH 1ST OPERAND = 2N

BE

BE

BE

BE

BE

BE

25,H1,L6
26,T1,L6

27,D1,L6

D OPERAND

H1,X"'25',L6

H1,H1,L6

H1,71,L6



v -¢

MODE: REAL-INSTRUCTIONS

43g

431

432

433

434
435

436

437

LF2
LF6
e
LFB
LFF

541

c@Ac

SR

587
58A
5PE
51¢
514
516
518
51D

51F
523
525
528
52C
52E
531
535
537
538

53D
544
544
548
5LA
SLE

Fp75188
5925
Al¢B18
FA@e91¢8
591C

F19B8573D
5916
Al@B18
F1g85pd7
594D
F1#B5216
5987
Al10B58
Fp691e8
58FE

F18B974A
58F8
A1§B18
F1¢B9#36
58EF
A19B58
F19B9AP6
58EbD
F18B9216
58ED

E18B3F
LF19p809
F73351p8
58D3
F734910B
50CD

BE

BE

BE

BE

BE

*

PAGE 18

T1,12345,L6

DI,X'1234',L6

14:84:15

*BRANCH 1ST OPERAND NOT EQUAL SECOND OPERAND

BU

R
|52

BU

g5 AUG 1974



N

6V -

MODE: REAL-INSTRUCTIONS

Ll
L5

446

447

448

449

458

451

452

453

45t
455

456

L57

458

459

550
553
557
559
55D
55F
562
566
568
568
56F

571
575
577
57A
57E
580
584
586
589
58D

58F
593
595
598
59C
59E
5A1
5A5
5A7
5AB

A14B18
FB@75736
5@ChL
F1481148
5#BE
A1pB18
FBp75188
50B5
A198B18
FAB691@8
5AAC

F1¢B573D
58A6
A1¢B18
F18B5887
549D
F1#B5216
5897
A14B58
58069188
588E

F18B974LA
5888
A198B18
F1pB99@6
587F
A19B58
F19B3#@6
5876
F1#B9216
5879

*

BU

BU

BU

BU

BU

BU

BU

BU

BU

BU

BU

BU

H1,X'25"'

H1,H1,Lb6

H1,T1,L6

H1,D1,L6

T1,12345

T1,H1,L6

T1,T2,L6

T1,D1,L6

D1,X'123

D1,H1,L6

D1,T1,L6

D1,D2,L6

PAGE 19

,Lb

,Lb

L',L6

14:94:16 B85 AUG 1974



0§

MODE: REAL-INSTRUCTIONS

L6p
461 5AD
589
584

588

E19B3F
LF198469
F7335188
5463

5BA F73491#8B
LBE 545D

Lok *
465 5CP A14B18
5C3 Fp@75736
5C7 5454

5C9 F1¢4B11¢8B
SCD 54LE

5CF A1¢B18
502 F@@751¢8
5D6 S4h45

508 A1pB18
5D8 Fpp6914B
5DF 543C

469 *
47¢ SE1 F18B573D
5E5 5436

5E7 AlpB18
SEA F1@BSp@7
5EE 542D

72 5F8 F1#B5216
5F4 5427

5F6 Al#BS58
5F9 FPP69168

5FD SH1E

462

463

466

L67

Lo8

L71

SFF
693
695
603

F18B974A
5418
AlpB18

F1pBS¢86

*BRANCH

187

BL

BL

BL

BL

BL

BL

BL

BL

BL

[ sie

i : 124+
e o2 OPERSND
25,
20,
27,0716

H1,%'75', L6

H1,TL,L6

H1,D1,L6

T1,12345,L6

T1,H1,L6

T1,7T2,L6

T1,01,L6

D1,X'1234",L6

[}

DRI R
Ll,ita,

17

45 AUG

1974



I6-¢

MODE: REAL-INSTRUCTIONS

477

478
479
43
481
482
483
L8Y
485
486
487

488

489

499

491

492

493

6pC
bPE
611
615
617
618B

61D
629
624
628
62A
62E

639
633
637
639
63D
63F
642
646
648
648
b4F

651
655
657
65A
05E
650
obL

SLpF
A1pB58
F1PB9PPO
5496
F1pB9216
5499

319B3F
L4F19pED7
F73351P8B
S5EPD
F7349198
5E13

Al19B18
FBP75736
5E1C
F19B1108
5E22
A1PB18
FPP75108
5E2B
Al1pB18
FPp691p8
5E34

F1@B573D
5E3A
A19B18
F19B5897
S5E43
F1PB5216
5EL49

BL

BL

*
L6 EQU

D1,T1,L6

D1,D2,L6

*

*BRANCH 1ST OPERAND LESS

BLE

BLE

BLE

BLE

BLE

BLE

BLE

BLE

BLE

BLE

25,H1,L6
26,T1,L6

27,01,L6

H1,X'25"

H1,H1,L6

H1,T1,L6

H1,D1,L6

T1,12345

51,HL,L6

T1,T2,L6

PAGE 21

19:94:18 @5 AUG 1974

OR EQUAL 2ND OPERAND

,L6

,Lb



<s

MODE: REAL-INSTRUCTIONS

Lg4 666
669
66D

496 66F
673
44/ b/5
678
67¢C
498 67E
681
685
499 687
688
509
501
502 68D
699
694
583 697
69A
5p4 69C
bAp
505
506 6A2
6AS
507 6A9
6AD
58 6AF

oy e

596 688

519

A1pB58
FApo9108
5E52

F1pBY7LA
5E58
ALPBLS
F18B90AP0
5E61
A1PBS8
F1pBSPP6
S5EBA
F1pBS216
5E78

A10B18
FPR75748
5679
F1pB5733
567F
F1pB9734L
5685

E1PB3F
LF25p68C
F19B11¢8B
5692
A19B18
F10B85007
Al1¢B18
F19B29¢06
56A4

BLE

BLE

BLE

BLE

*

pr,. 22 10:04:19

T1,D1,L6

D1,X'1234',L6

DI,HL,LE

D1,7T1,L6

D1,D02,L0

*BRANCH 1ST OPERAND GREATER THAN 21D OPERAND

BH

BH

BH

BH

BG

BH

BH

25,H1,Lb

26,T1,L6

27,01,L6

H1,X'25',L6
H1,H1,L6

H1,T1,L6

H1,D1,L6

A5 AUG 1974



MODE: REAL-INSTRUCTIONS

511

512

513
514
515
516

517

518

519
528
521
522
523
524

525
526

527

6C1
6C5
6C7
6CA
6CE
60p
OD4
6D6
6D9
60D

6DF
bE3
bES
bES
bEC
6EE
6F1
6F5
6F7
6FB

6FD
708
74
786
7PA
78C
718

712
715
7L9
71D

F73D5188
566AA
A1pB18
FOP75108
56B3
F2165188
56V9
A1pB58
F19B9pp6
56C2

F74A91p8
56C8
A1pB18
Fpp691pB
56D1
Al1pBS58
Fpp6s108B
56DA
F21691p8
56EP

A1pB18
FpB75748
SEEQ
F1PB5733
SEEF
F1PB9734
5EF5

E1PB3F
LF258EFC
F1pB11¢B
5FP2

BH

BH

BH

BH

BH

BH

BH

BH

*

PAGE 23 18:84:28 A5 AUG 1974
R1,12345,L06

T1,H1,Lb

T1,72,L6

R1,D1,L6

D1,X"1234",L6

D1,H1,L6

D1,T1,L6

D1,D2,L6

*BRANCH 1ST OPERAND GREATER OR EQUAL 2ND OPERAND

BHE

BHE

BHE

BHE

BHE

25,H1,L6

26,T1,L6

27,D1,L6

H1,Xx'25',L6

H1,H1,L6



vS-¢

MODE: REAL-INSTRUCTIONS PAGE 24 1p:p4:21  B5 AUG L974

528 71F A1pB18 BHE  H1,T1,L6
722 F1PBSPQ7
726 SFPB
529 728 A1pB18 BHE  H1,D1,L6
72B F1pBI9pO6
72F S5F14
530 *
531 731 F73D5198 BHE  T1,12345,L6
735 5F1A
532 737 A1pB18 BHE  T1,H1,L6
73A Fpp751P8B
73E 5F23
533 740 F2165198 BHE  T1,T2,L6
744 5F29
534 746 A1PBSS BHE  T1,D1,L6
749 F2pBI9PP6
74D 5F32
535 *
536 74F F74AQLPB BHE  DI1,X'1234',L6
753 5F38
537 755 AQ@B18 BHE  DI1,H1,L6
758 Fpp691PB
75C S5F.4]
538 75E A1PBSS8 BHE  DI1,T1,L6
761 Fpp691PB
765 SFLA
539 767 F2169108 BHE D1,02,L6
76B 5F5p
549 *
541 %

542 76D F1pB1216 Bl
771 7872

543 773 F1@#B5737 BDZ T1,5,L7
777 786C

544 779 F1PB5216 BDZ  T1,T2,L7



SG-¢

MODE: REAL-INSTRUCTIONS

545
546

547
548

549
559
551
552

553
554

555
556
557
558

559
568

561
562

563

77D
77F
783
785
789

788
78F
781
795
797
798
79D
7A1
7A3
7A7

7A9
7AD
7AF
/B3
7B5
789
7BB
7BF
7C1
7C5

7C7
7CB
7CD
7D1
/D3
7D7
7D9

7866
F19B973E
7860
F1pB9216
785A

F1p#B1216
7054
F1PB5737
7PLE
F1#B5216
7848
F10B973E
7842

F1$#B9216

783C

F1£B1216
7436
F1PB5738
7438
F10B5216
742A
F1PB973E
7424
F18B9216
741E

F18B1216
7C18
F1P8B5737
7C12
F1£B5216
7C8C
F18B973E

BDZ

BDZ

*DECREMENT OPERAND 1 BY OPERAND 2 AND BRANCH RESULT NOT ZERO

BDNZ

BDNZ

BONZ

BONZ

BDNZ

*DECREMENT OPERAND 1 BY OPERAND 2 AND BRANCH RESULT NEGATIVE

BDLZ

80LZ

BDLZ

BDLZ

BDLZ

*DECREMENT OPERAND 1 BY OPERAND 2 AND BRANCH RESULT ZERO OR NEGATIVE

b1,10,L7

D1,D2,L7

H1,H2,L7
T1,5,L7

T1,T2,L7
D1,18,L7

D1,D2,L7

H1,H2,L7
T1,5,L7

T1,T2,L7
D1,18,L7

D1,D2,L6

BDLEZ H1,H2,L7

BDLEZ T1,5,L7

BODLEZ T11,72,L7

BDLEZ D1,18,L7

PAGE 25

10:04:22

5 AUG 1974



9§-¢

MODE: REAL-INSTRUCTIONS PAGE 26 19:04:23  $5 AUG 1974

564

565
566
567

568

569
578

571

572
573

574

575
576

577

578

L7Q
272

588
581
582

cQ7

200

584
585
586

70D
7DF
7E3

bES
7F9
7EB
7EF

7F1
7F5
7F7
7FB

7FD
8p1
8p3
8p7

ep9
84D
8PF
813

7CH6
F1689216
7CeD

F18B574C
7AD6
F1p#B8974P
7TABC

F1pB8574C
7212
F1989749
72A8

F188574C
761E
F19B9748
7624

F18B8574C
7E2A
F19B9740
7E30

587 815 Al1@B18

818

162F

BOLEZ D1,D2,L7

*DECREMENT OPERAMD 1 BY ONE AND BRANCH RESULT ZERO
L7 EQU
BDZ T1,L7

BDZ  D1,L7

*DECREMENT OPERAND 1 BY ONE AND BRANCH RESULT NOT ZERO
BDNZ T1,L7

BONZ D1,L7

*DECREMENT OPERAND 1 BY ONE AND BRANCH RESULT NEGATIVE
BDLZ T1,L7

BOLZ D1,L7

*DECREMENT OPERAND 1 BY ONE AND BRANCH IF RESULT NEGATIVE OR ZERO
BDLEZ T1,L7

BOLEZ D1,L7

*
*
KA A AAXAAAAAKAA A KA AR AR AKX AA LA AR A A XA A XA AL ARAKAX
*

* CONVERSION INSTRUCTIONS

KARA AR AR A AR AR A A A A A A A AR A AR Ak ki kA kA Ak A A Ak A Ak kkhk%k
*

AMOVE BINARY TO DECIMAL

RADYTY il n
mow lll,f\L



(&

LS-

MODE: REAL-INSTRUCTIONS

588

589

81A
81D
81F
822
824
827
829
82C

- 82E

59p

501

592

593
594
595
596
597
598
599
699
6p1

831
833
837
83A
83C
83F
841
845
848
8LA
84D
84F
853
856
858
858

85D
869

863
866
869

86C
86F

1199908
16F2
A1pB58
162F
11ppP8
16F2
1ApB98
162F
119998
16F2
FA1L4L739 »
A19B18
162F
111998
16F2
FA144739
A1pB58
162F
111908
16F2
FA144739
A1P9B98
162F
111pp8
16F2

D21641
D21681

D1pB32
D1§B72
D1pBB2

A73A58
D1PB32

MBD  T1,R2

MBD  D1,R2

MBD 8,H1,R2

MBD 8,T1,R2

MBD 4,D1,R2

MOVE DECIMAL TO BINARY

MDB  R1,T2
MDB  R1,D2
MOVE BINARY TO HEX
MBX  H1,R2
MBX  T1,R2
MBX  DI1,R2

MBX  2,HI1,R2

PAGE 27

19:94:24 PS5 AUG 1974

MAXIMUM DIGITS CONVERTED = OPERAND 1



85-¢

MODE: REAL-INSTRUCTIONS

662
6p3

6oL
605

6p6
697

6p8
699
61p
611
612
613
614
615
616
617
618
619
629
621
622
623
624

625
626

CLe

627
628
629
63p
631

872
875
878
878

87E
881
884
887
88A
88D

899
893
896

899
898

89E
8AP
8A3

8A6

8A7
8A8

A74D58
D1pB72
A73958
D1pBB2

A74258
D1pB32
A73B58
D1pB72
A74358
D1pBB2

D21621
D21661
D216A1

1Cp3
pC1234

1AP2
111992

LiLom

13

14
15

*
*

MBX

MBX

MBXN

MBXN

MBXN

MXB
MXB
MXB

4,T1,R2

8,D1,R2

2,H1,R2
4,T1,R2
8,01,R2
R1,H2

R1.T2
R1,D2

PAGE 28

19:94:25 P5 AUG 1974

DIGITS CONVERTED = OPERAND 1

MOVE HEX TO BINARY

hhkhkhkkhkkkkhhhkhkhhkhkhhhhhkhhhkkhhhkkhkhdhkkahAkkikx

*

* EXECUTION TRANSFER -INSTRUCTIONS

*

RhAAARAAA A A AKX ARhAhkkhhhhhkh Ak hkhkkhk kA khkkkkkk

*

BSL

BSL
BS!

Cou

BSLI

RTN
TEXT

LS
Al

LS

M1
Al

*

X'15?

BRANCH LOCAL

BRANCH
BRANCH

BRANCH

BRANCH

RETURN

RETURN

AND STACK LOCATION LOCAL
AND STACK LOCATION EXTERNAL

ANDY CTACK I NCATINN ADCNHIHITE
IaY DAL LULAT TUIN ADDUL U C

AND STACK LOCATION INDIRECT THROUGH ACCUMULAT

WITHOUT TRACE



69-¢

MODE: REAL-INSTRUCTIONS PAGE 29 18:p4:26 P95 AUG 1974

632 *

633 8A9 1p1pP2 ENT M1 BRANCH EXTERNAL

634 *

635 8AC 12 ENTI * BRANCH EXTERNAL INDIRECT THROUGH ACCUMULATOR

636 *

637 8AD Al1pB18 BSL* Hl1 BRANCH AND STACK LOCATION THROUGH HALF TALLY
8BS 13

638 8B1 AlpBSS8 BSL* T1 BRANCH AND STACK LOCATION INDIRECT THROUGH TALLY
8B4 13 ' :

639 8B5 Al1PB98 BSL* Dl BRANCH AND STACK LOCATION INDIRECT THROUGH DOUBLE TA
8B8 13

64p 889 Al1pB18 ENT* H1 BRANCH EXTERNAL INDIRECT THROUGH HALF TALLY/TALLY/D
8BC 12

641 8BD Al1$B58 ENTX* T1
8CPp 12

642 8C1 A1pB9S8 ENT* D1
8C4 12

643 *

Y *

645 hhkkkhkhkkhkhkhkAARAAkkAAAAAAAAAkA KA kAR KA AAAA ARk Ak kkkkk

646 *

647 * [/0 AND CONTROL INSTRUCTIONS

648 *

6!;9 AhkARKEAKAAKRARXAARKKAARRA KA AA Ak ARAAARAA ARk kkkhkkk

658 *

651 k-

652 8C5 426778 I0I R2,3,7 CALL MONITOR TO INPUT A BYTE

653 8C8 413578 : I00 R1,1,5 CALL MONITOR TO OUTPUT A BYTE

654 *

655 8CB 6115 READ RI1 READ ONE BYTE FROM TERMINAL BUFFER

656 8CD 622D WRITE R2 WRITE ONE BYTE TO TERMINAL BUFFER

657 *

653 8CF L41@274 MCAL  R1,2,4 MONITOR CALL

659 *

6P 802 LiPP79 RivU % FELEAST QUANTUM



09-¢

MODE: REAL-INSTRUCTIONS

661
662
663
ook
665
666
667
668
669
679
671
672
673
674
675
676
677
678
679
689
681
682
683
684
685
686
687
688
689

feY.)
LIP

691
692
693
694
695

8D5
8D8

8DB

8DC
8DC

830

8E1
8EL

8E7
8E8

8ES

41129p
413430

(1§

p8
L1ppAD

g1

L1ppAs

L1ppAl

2B
PA

JFFRAp6L

*

*
*

IB
OB

NOP

HALT
HLD

TEXT

ECS
ESS

SVP
RVP

“E O3

i

19:p4:27  P5S AUG 1974

1/0 INSTRUCT TONS

NO CPERATION

HALT
HALT AND DISPLATY

TEST INTERRUPTS

ENTER CONSOLE COMMAND SWITCHES
CNTER SENSE SWITCHES

START VIRTUAL PROCESS
RETURN TG VIRTUAL PROCESS

AhkkkhkkhhkkhhkkhkhkkhkhkhkhhkkAhhkdhhhkhkhhkahkhkhhkrhkhkhkhkhkhkhkhhkhkhkkhkkikk

*

* ASSEMBLER DIRECTIVES

*

AhkkkrAkkhkkhhkAhkhkhkkkhhkrAhhhkrhhhkkhkhhkhhkkhkhkkhkhkkhhkhkhhkkrhkhhk

*

*

LABEL1
LABELZ
LABEL3

|ADC|4
LAOC L

LABELS
LABELGE
LABEL7Y
LABELS
LABELSY

FRAME 189
EQU  *

EQU  Cl

EQU  HI1

EQU Tl

EQU D1

EQU Sl

EQU RI

EQU  LABEL]

EQU

X'6pp!

EQUATES



19-¢

MODE: REAL-INSTRUCTIONS

696
697
698

699
708
701
702
703
784
785
706
707
798

799
718
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726

pp1
995
pp9

pp1

poL
206
pRA

ppc

3

Pl

P18

*

LABEL10
534FLDLS
20U3UF LY
45
*
ABS
*
A74358
X
SPEC1
SPEC?2
7128
91279892
8128
*
SPEC3
SPECY
F117910F
*
SPECS
SPEC6
F11BA113
*
SPEC7
SPECS
F115410D
*
SPECY
SPEC18
F117819F

ORG
TEXT

ORG

DEFA

SETAR
LOAD

DEFB
DEFB
MOV

DEFC
DEFC
MCC

DEFH
DEFH
MOV

DEFT
DEFT
MOV

DEFD
DEFD
MOV

DEFS

PAGE 31

LpD
C'SOME CODE'

1
X'980D"

7
1234

R1,*1+7
1,*1+11
SPEC1,SPEC2

R1,*+3
1,*+11
SPEC3,SPECH

b1, *+3
1,*+11
SPEC5, SPECH

R1,*16+3
1,*%16+11
SPEC7,SPECS

R1,*16+3
1,*16+11
SPECY,SPEC1P

R1,*16+3

1§:04:28 05 AUG 1974

ORG'S

DEFINE ABSOLUTE ADDRESS

SET PROGRAM ADDRESS REGISTER

SPECIAL DEF(K) FORMS



Z9-¢

MODE: REAL-INSTRUCTIONS

727
728
729
73P
731
732
733
734
735
736

737
738
739
74P
741
742
743
744
745
746
747

748
749

p1C

P29
p21
p2°
P24
p28
p2C

p2E
p31

p3L
p38
p3C
4%
ALy
pu48
pLA
PLE

AL

M

£56
P5A
#58

psC

F119C111

41

19

p2p9
pRPLIE2LY
poopRLYe
ppRge

119p4D
11184D

54484953
29495328
41205445
58542940
45535341
4745
54484953
20495320
53LENDLE
2B4DUF52
45

FF

ppo6

SPEC12

*

DEFS

MOV

PAGE 32

1,*16+11
SPEC11,SPEC12

* PLEASE SEE ABOVE FOR DEF(K)

*
LABEL12

*

REG1
REG?2
REG3

*
LABEL13
LABEL1G

CHR
HTLY
TLY
DTLY
SR

DEFM
DEFM
BSL
BSL

TEXT

C'A"
25
xXrz2pg!

123456
p

R1
2
HS

B,77
1,LABEL13
LABEL13
LABEL1Y

C'THIS IS A TEXT MESSAGE',C'THIS IS SOME MORE',X'FF'

19:04:28 PS5 AUG 1974

DEFINE TYPE ADDRESS REGISTER

DEFINE MODAL ENTRY

IN THE COMMENTS



EOF:

o589
go2g
> Pp17
pR1Y
POIA
poPOPP1LR
pp25
pBaS
ppos
ppps8
pog2
PB4
2368
\ 3939
a/C BogRgn-
AAE ARHALD!

$28 24p9202 5
¢ 1393

E p23%

PAI9

P3F8

v PE0DLL3h

20p1

B9A POPL

pLD2

CORESL- [ TR

f

CTICHNS



3.8 ASSEMBLER TABLES

The REAL Assembler is completely table-driven and is therefore both
powerful and flexible in its definition of mnemonics. In addition,
the assembler accesses a permanent symbol table, which allcws the
predefinition of a set of symbols used by all assemblies. Symbols
defined in the source mode are placed in a temporary (local) symbol
table, and such entries override corresponding entries in the perma-
nent symbol file. It should be noted that forward references to
local symbols that match entries in the permanent symbol table will,
in general, cause assembly errors. Therefore, such overriding symbol
definitions must precede the first reference to them,

At the start of the assembly process, the assembler searches the
Master Dictionary (M/DICT) of the data-base for the following file
definitions:

PSYM - Permanent symbol table.
TSYM - Temporary symbol table.
0OSYM - Operation-code symbol table.

The assembly will abort if any of these file-definitions are missing,
with a message indicating the one that was not found. The *emporary
symbol table is inititalized before the assembly starts. Since the
TSYM is actually a permanently defined file on a user's account
(M/DICT) it must be pre-defined and can be examined at the conclusion
of the assembly. Furthermore, only one person may be using the REAL
assembler per account.

3.8.1  TSYM/PSYM TARLY FNTRY FORMATS

The item format of the entries in the PSYM & TSYM files 1is as follows:
(Entries are in character form):

Item - id: Symbol-name

Line 1 : Symbol-code (single character - see below).

Line 2 : Symbol-value (hexadecimal location or displacement)
Line 3 : Base-register value (single hexadecimal digit)

Symbol-Codes

The symbol code is a single character code that defines the type of the
symbol, it is used in the operation code lookup to determine legal
operands, and to flag undefined or multi-defined labels, etc.

3-64



Code Description - Svmbol Type Unit of Displacement

B Bit Bits

C Character Register Bytes

D Double-Word (4-byte) Words

H Half-Word (]-byte) Bytes

L Local Symbol, defined Bytes

M Mode - id Undefined
N Literal Value Bytes

R Address Register Undefined
S Storage Register (6 Bytes) Words

T Word (2 Bytes) Words

8] Local Symbol, Undefined Value=0

3.8.2 OSYM TABLE-LOOKUP TECHNIQUE

All REAL mnemonic operation codes are stored in the OSYM file. An entry
in this table may be either (1) the REAL mnemonic for the instruction
(basic op-code), or (2) the REAL mnemonic suffixed by the symbol type-
codes of all the operand field entries. The purpose of the suffixing is
(1) to provide for the separate handling of REAL mnemonics with variable
operand field entries; (2) to provide for a check on the number and type
of operand field entries. As an example, the basic REAL mnemonic for
"move register to register' is MOV, but it has four different object

code expansions, depending on whether the registers involved are address (R),
or storage-type (S) . To allow for all cases, there are four entries in
the OSYM file: MOVRR, MOVRS, MOVSR and MOVSS. The assembler will attempt
to look up the basic op-code first, and, if it 1s not found, a second
attempt will be made with the basic op-code suffixed as described above.

3.8.3 TSYM TABLE ENTRY SETUP

As the assembler goes through the "suffixing' technique described above, 1t
necessarily looks up each non-literal operand in the TSYM and PSYM files,
in that order. If found, the type-code can be suffixed to the basic
op-code. If no entry is found in the TSYM & PSYM files, the assembler

then sets up an entry in the TSYM file with type "U" (undefined), and
location zero. This has an important ramification with regard to literal
generation.



3.8.4 OSYM TABLE ENTRY FORMAT

Line one of the OSYM table entry may be one of the following:

M - Defines a macro; all further lines are macro substitution
lines.
P - Defines "primitive" which calls one of the lower-level

assem—-ler functions.

Q - Equates this entry to another OSYM table entry specified
in the next line.

3.8.5 MACRO DEFINITION FORMAT

Each substitution line in a macro definition will generate a new source
statement, to which parameters may be passed from the original source state-
ment. This newly generated source statement will, in turn, be assembled as
any other source statement. Thus a macro may cause the original statement
to expand into an unlinited set of new statements; however, if any gener-
ated statement calls another macro, control 1is passed immediately to the
new macro, and the previous one cannot regain control.

Data in a macro substitution line 1is transferred, as it is, to generate the
new source statement, except for the substitution codes, which cause a
specific parameter to be substituted. Substitution codes are enclosed by
parentheses:

CODE ACTTON
AF Substitution: (n) (n decimal) causes insertion of the n-th Argument-
field entry of the original source statement; if
such an entry 1s non-existene, no substitution
takes place.

Label Substitution: (The 4+n 1is optional). Causes insertion of label
(L + n) internal to the macro; the label 1s created using
- the macro label counter (MLC), which is initial-
ized by the assembler at the start of an assembly.

If the label substitution is in the label-field
of the generated source statement, it is replaced
with a label of the form "=Lm'" where m=MLC + 1,
and the MLC is incremented by one.

If the label substitution code 1s in the operand
field, it 1s replaced with a symbol of the form

"=Lm" where m=MLC + n, the MLC being unaltered.

(See Section 3.13.)



3.8.6 "PRIMITIVE" DEFINITION FORMATS

Each line in a primitive is an assembler-directive that calls a specific
assembler process. The first character in each line is a code defining
the process:

CODE PROCESS
A Align location counter on word boundary.
E Exit to explicitly defined process.
G Generate object-code (GEN)
R Reset entry in TSYM file (RESET)

Exit Format
E:mode-1ID

Where '""mode-ID" is the hexadecimal mode-ID of the processor which is to
be entered.

GCen Format

a b b

G, a gree 1

(A & B-fields separated

grreee
by one blank)

l’
A-field B-field

The G-primitive causes the actual generation of object code. There should
be a one-to-one correspondence between entries in the A- & B~ fields. Each
A-field entry is a decimal number, and specifies the number of bits of code
to be generated using the corresponding B-field entry. The sum of the
A-field values must be a multiple of 8, and must be less than or equal to
32.

ENTRY VALUE RETURNED
® Current location counter value, in bytes.
%7 As above, modulo '"n'" bits (n decimal)
B Current base register value.
n Decimal literal.
X'h' Hexadecimal literal.



ENTRY VALUE RETURNED

C'k? Character literal (one character only).

An;m Value returned is:
(1) AFn if AFn 1s a literal; or
(2) From line "m" of AFn if AFn is a symbol.
(Zero i1s symbol undefined).

Jn;k Used to compute relative displacement from
current location (*), to the location defined
by AFn. Value returned is signed magnitude,

10-bits:
+k 1f backward reference
Val AFn)-*)=k
(Value (AFn)-*) -k 1f forward reference
Reset Format
R,n bl’b2""'bm

Resets values in TSYM entry for AFn. B-fileld entries refer to lines 1
through m, and entriles are as above. This 1s used to re-define TSYM table
entries: when the asserbler finds a label-definition, 1t inserts the
entry in the TSYM as type 'L', location as current location in bytes,

and base register field from the current base register. To redefine the
entry, a R-primitive is used. For example, the opcode 'TLY' 1is used to
define a local tally, as in:

LABEL TLY 123

The OSYM entry for 'TLY' is:

Line 1 (type) : P

Line 2 : R,0 C'T',*16,B Redefines type as T;
location module 16.

Line 3 : G,16 A2;2 Generates 2-byte object-code

value

3.9 ASSEMBLER OUTPUT

The assembler output consists of (1) macro statement expansions; (2) error
messages and (3) generated object code, all appended to the original
source statement.

A user-input source statement is of the format:

Source Statement (AM)



On output, the format is as follows:
Source Statement (SVM) location object-code (AM)

where 'location' is a 3-digit hexadecimal field, and the 'object code' is
in hexadecimal.

Error messages are appended to the source statement as the assembler
encounters errors; the messages are appended in the format:

(VM) * message;...
Messages may precede or follow the object code.

Macro expansions resemble source statements in terms of source statement,
errors and object code, and are of the format:

Source Statement (VM) macro statement (SVM) loc. obj. code (VM)...
(AM).

Note that regardless of what the assembler appends to the original source
statement, the delimiters surrounding the entire statement remain
unchanged; this ensures proper source statement input on subsequent
assemblies.

3.10 LITERAL GENERATION

REAL statements that require assembly of literal should setup entries in
the TSYM of the following format:

Item-1ID : =k value S storage register
Symbol-type : U k={D double word
Location : 0 T word

This will be done simply by the reference of the symbol as an operand
in a source statement. However, the OSYM table entry that the source
statement references must be of the "suffixed" type rather than being
the basic op-code. For example, the statement:

MOV =T23,CTRI

which references the OSYM table entry 'MOVIT', and, in so doing, sets up
the TSYM entry '=T23' as type U to be assembled as a literal.



At the end of pass I, the assembler searches the TSYM file for undefined
entries; if they are of the format shown above, a dummy source statement
of the form:

LABEL OPCODE OPERAND
=k value 1k value
is generated and assembled. Thus the entries ":S", ":D", ":T" in the

OSYM are reserved and cause generation of 6-byte (storage register, type S),
4-byte (double-word, type D) and 2-byte (word, type T) literals, respectively.

3.11 REASSEMBLY IN PASS TII

During the assembly process, statements which have a forward reference are
flagged for re-assembly by prefixing the character "X" to the location
counter and object code data that are appended to the source statement.

The REAL assembler is not a true two-pass assembler; pass II consists of
scanning the mode for statements that have been flagged for re-assembly,

and re-assembling those statements exclusively. If they contain references
to undefined symbols, the object code output will still have the "reassemble"
flag stored with 1it, after pass II.

3.12 ASSEMBLER ERROR MESSAGES

Message Explanation

*UNDEF: Symboll Symbolz.... Undefined symbols at end of pass I
(Message at end-of-mode).

*LABEL TYPE Label-field format error.

*MULTIDEF Label-field entry was previously defined.

*REF-UNDEF Reference to undefined symbol.

*LABEL ? Required label-field missing.

*OPCODE ? Op-code-field entry missing.

*#QPERAND ? Required operand-field entry missing.

*0OPCD ILLGL:opcode Either the opcode was illegal, or the
operand types were illegal for the
opcode.

-70

[#3]



*OPRND TYPE

*RANGE ERR

*TRUNCATION

The operand-field entry was an illegal

type; eg:

ORG statement with undefined

symbol, SETAR with non-numeric operand,

etc.

The range of the operand-field entry

is illegal; eg:

SETAR with n neot O0<n<lé6.

Object code truncation may be due to:
branch out-of-range; TSYM/PSYM table entry
error; specification error in the GEN

primitive.

The following are errors in the OSYM-table entry specifications.

*A-FIELD ?
*B-FIELD ?
*OPCODE-TYPE ERR

*MACRO-SPEC ERR

3.13

Location Counter

MLC 0

Source Statement
(Branch if character

addressed by R4 is
numeric)

PSYM table entry
TSYM table entry
OSYM table lookup
Line 1 (type)
Line 2
Line 3

Line 4

X'012'

Error in A- or B-field specification.

Opcode type not a P/Q/M, or primitive

type was illegal.

Error in the macro specification

EXAMPLE OF REAL MACRO EXPANSION

BCN R4, LABX
Symbol Iype
R4 R

" LABX L
BCNRL
M

BCL (2),X'30',(L + 1)
BCLE (2),X'39',(3)

(L) EQU *

Displacement

0004

0024

If 0, skip next
Branch is <9

Define Internal
label



Generated Source Statements

From Line 1 : BCL R4,X'30',=L01
From Line 2 : BCLE R4,X'39',LABX
From Line 3 : =L01 EQU *
OSYM table lookup : BCLERNL
Line 1 (type) : P
Line 2 : G,4,4,8,4,2,10 4,A2;2,A3;2,0,3,344
3
¢=:fIZ;:§wi;lue
"4" from PSYM
item 'R4'
Pickup value —
X'30"' (ASCIT 0)
from AF2
Pickup relative dis--
placement from * to
LABX: adjust by
4 bytes
R I

>~
e
Fal
w
o
o
Q
(@]
1

Object Code



3.14 CORRECT USE OF REGISTER TO STORAGE REGISTER COMPARE OPERATION

The BE and BU instructions with R and S type operands (see Section
3.7.5) operate by multiplying the FID's of the registers by 500,
adding the displacements, and then comparing the low order n bits
of the result. This allows a register and storage register to
compare equal in certain cases when they are in fact not equal.
This will happen when the registers are in the linked format
pointing to frames whose FID's are a multiple of 128 apart (e.g.,
12340 and 12468) with the storage register containing the lower
FID, and the relative displacements of the registers are equal
within their respective frames.

To correctly perform a register to storage register compare opera-
tion, one of the three forms discussed below must be used. Forms
2 and 3 use the BRE and BRU macros; these macros expand into a
comparison of the double tallies which are the FID's of the regis-
ters, followed by the comparison of the registers in the normal
manner.

FORM 1

Form 1 uses the BE and BU instructions. Form 1 may be used when
one of the following occur:

° The R and SR are in linked format and are known to point
within the same frame. (This is a rare circumstance.)

° The R and SR are in unlinked format. (For example, 1B
and IBEND.)

° The R and SR are in linked format and are known to point
within the same contiguously linked block of frames, and
point to frames which are less than 32 frames apart.

° The R and SR are in linked format, the displacement of
each is less than 500, and the difference between the
registers is less than 500 bytes.

The following illustrates an example of this form:

L0 EQU *
001 COE7AAO04 BE IB,IBEND,LO
005 COE7AA08 BE IB,IBEND,LO
009 COE7A20C BU IB,IBEND,LO
00D COE7A210 BU IBEND,IB,LO

3-73



FORM 2

Form 2 uses the BRE and BRU macros. This form must be used when
the R and SR are in linked format, the displacement of each is
less than 500, and nothing else is known about the registers
(typically in the case of IR and SR4). The following illustrates
an example of this form:

011
015
017

01B

01F
021

FORM 3

LO EQU *
F271909A BRE IR,SR4,LO
5004
C2706A1A
F271909A BRU IR,SR4,LO
5220
C2706224

The FAR instruction must be used in conjunction with BRE and BRU
macros under the following circumstances: When the R and SR are
in linked format, the displacement of the SR is less than 500, and
nothing else is known about the registers. The following illus-
trates the use of this form:

025
028
02C
02E

032
035
038

NOTE

LO EQU *
440060 FAR IS,0 FORCES DISPLACEMENT OF REGISTER
F0669092 BRE IS,ISEND,LO TO BE LESS THAN 500
5004
C0654A31

440060 FAR IS,0 FORCES DISPLACEMENT OF REGISTER
F0669092 BRU IS,ISEND,LO TO BE LESS THAN 500
C065423E

None of the forms will work when either of the following is true:

Both registers are not in the same format (linked or un-
linked).

The displacement of the SR is greater than 499 (unless the
R and SR are in linked format and are known to point within
the same contiguously linked block of frames and point to
frames which are less than 32 frames apart). If this oc-
curs, the SR must be moved to a scratch register; the dis-
placement of the register must be forced to be less than
500 (i.e., by a FAR instruction); and the register must

be moved back to the storage register for the compare.



3.15
ADDR
ADD

AND

BCE
BCH(E)
BCL (E)
BCN
BCU
BCX
BDLEZ
BDLZ
BDNZ
BDZ
BEL
BL(E)
BH(E)
BSL
BSLI

BU

REAL INSTRUCTION SUMMARY

defines address

add to

accumulator

and variables

defines address register

branch

branch

branch

branch

branch

branch

branch

branch

branch

branch

branch

branch

branch

branch

branch

branch

branch

branch

branch

branch

unconditional

on bit set

on bit zero

on character alphabetic

on character equal
character high (or equal)
character low (or equal)
on character numeric

on character unequal

on hexadecimal character
decrementing word < = zero
decrementing word < zero
decrementing word not zero
decrementing word zero
word equal

word < (or=)

word > (or=)

and stack location

and stack location indirect

word unequal

3-75




CHR
DEC
DEFA
DEF
DEFM

DIV

HALT
HLD
HTLY
IB
INC
I0L

100

LOAD
MBD
MBX (N)
MCAL
MCC

MCI

define character

decrement

def-ne as absolute address
def:ne as b,c,d,h,1l,s, or t
def:ne as m

divide accumulator

define as doubleword

enter console switches
external transfer (indirect)
enter sense switches

flag and attach register
halts CPU

halt cpu and display address-
define as halfword

input byte

increment

1/0 instruction input

1/0 instruction output

load absolute difference
load accumulator

move binary to decimal (n char)
move binary to hex (n char)
monitor call

move character to character

move character to incrementing char




MIC
MII
MIID
MIIR
MIIT

MOV

MXB
NEG
NOP
OB
ONE
OR
READ
RQM
RTN
RVP
SB
SCD
SR
SRA
STORE
SUB

Svp

move decimal to binary

move incrementing char to char

move inc char to inc char

move inc char to inc char (delimiter)
move inc char to inc char (register)

move inc char to inc char (word)

move word to word
multiply accumulator

move hex to binary

negate

no op

output byte

set word equal to one
logocal or

read

return time quantum
return

resume virtual process

set bit

scan characters to delimiter
define as storvage register
set register to address
store accunulator

subtract from accumulator

start virtual process



TEXT

TLY

TST

WRITE

XCC

XOR

XRR

ZB

ZERO

mescage

define as word

test (set condition flags)

write

exchange character with character
logical exclusive or

exchange register with register
zero bit

zero word

PAGE
5-26

5-27



SECTION 4
THE INTERACTIVE DEBUGGER (DEBUG)

The Interactive Debugger (DEBUG) provides a means for monitoring
and controlling program execution. For all Reality users, DEBUG
has the ability to turn the print off at the terminal, and to
terminate program execution.

The use of the extended facilities of DEBUG (other than turning
the terminal printing on and off, and terminating program execu-
tion) require system privileges level two. If the user has such
privileges, he may control program execution by the insertion of
break-points in the program, and by executing specific DEBUG
commands. The user may also trace execution by displaying data
at specific locations. DEBUG additionally allows the user to
display data throughout the virtual memory of the system.

Thus (for users with system privileges level two) DEBUG is ideally
suited for the check-out phase of assembly language programming.

4.1 ENTERING DEBUG

DEBUG is entered voluntarily by depressing the BREAK key on the
terminal (INT key on some terminals). DEBUG will then display the
location of the execution interruption point, followed by the

DEBUG prompt character; the DEBUG prompt character 1s the exclama-
tion mark (!).

DEBUG is entered involuntarily when a hardware trap condition oc-
curs. In this case, DEBUG will display a message indicating the
nature of the error causing the trap (see Section 4.6), followed
by the location at which the trap occurred, followed by the DEBUG
prompt character (!).

When the DEBUG prompt character is displayed, the user enters an
appropriate DEBUG Control Command or DEBUG Data Display Command.

4.2 THE DEBUG CONTROL COMMANDS

4.2.1 CONTROL COMMAND SYNTAX

Prior to describing the actual DEBUG Control Commands, it 1is
necessary to define the terms "address'" and "indirect-address'.



Address

An "address'" references a byte in virtual memory. An 'address'"
consists of a frame-id (FID) and an offset byte displacement
within the frame. The FID and/or displacement may be either in
decimal or hexadecimal. The general forms of an '"address'" are
shown below ("f" represents the FID value, and '"d" represents the
displacement value).

Address Jescription
f,d FID in decimai; displacement in decimal.
f.d FID in decimal; displacement in hexadecimal.
.f,d FID in hexadecimal; displacement in decimal.
.f.d FID in hexadecimal; displacement in hexadecimal.
.d Displacement in hexadecimal.
,d Displacement in decimal.

If the FID value is omitted, then the PCB FID is used as a default
value. The displacement must be in the range 0 < d < 512.

As a general example, the following '"addresses'" are equivalent:

12.3C
12,60
.C.3C
.C,60

Indirect-Address

An "indirect-address" references a byte in the virtual memory by
specifying an Address Register which therefore indirectly refer-
ences a particular byte. Address Registers zero and one cannot
be used in this manner. The "indirect-address' specification
takes the following forms.

Indirect-Address Description
Rr Specifies Address Register ''r'' (where
"r'" is a decimal value in the range
2 < r < 15).
R.T Specifies Address Register ''r' (where
"r'" is a hexadecimal value in the range
2 <r £F).

4-2



Note that "indirect-addresses'" have an implied displacement within
the FID that the Address Register is pointing to; this displacement
depends on whether the register is in the '"linked" or the "unlinked"
format (see Section 2).

4.2.2 DEBUG CONTROL TABLES

DEBUG maintains three tables which may be manipulated by the DEBUG
commands: the Break Table, the Trace Table, and the Indirect Trace
Table. If there are entries in the Break Table, the address of
every instruction is compared with the address in the Break Table
and a break occurs if there is a match. If there are entries in
the Trace or Indirect Trace Tables, then the data pointed at by the
entries are printed whenever a break message is printed (see Sec-
tion 4.4). Up to four entries can be placed in each of these ta-
bles. '

4.2.3 CONTROL COMMANDS
The following is a list of the DEBUG Control Commands. Users

without system privileges level two may only use the P, G, END,
and OFF commands.

General Form Description

B address This command adds the '"address' to
the Break Table.

D This command displays the Break
Table and Trace Table.

E n This command sets the Execution
Counter to '"n'", where 'n" 1is a posi-
tive integer < 250. Setting the
Execution Counter causes a break to
occur after the execution of every
"n'" instruction. The command "E 0"
turns off the Execution Counter.

END This command terminates execution
and returns to TCL.

G This command causes resumption of
process execution from the point of
interruption. G cannot be used if a
process ABORT condition caused the
entry to DEBUG.

G address This command causes resumption of
execution at the specified '"address'.

4-3



General Form Description

K address This command "kills'" the break-point
(i.e., deletes '"address" from Break
Table).

M Each entry of an M command switches

(toggles) '"Modal-Break' status ON

and OFF. When 'Modal-Break" status
is ON, a break in execution will oc-
cur upon all intermodal transfers
(i.e., BSL or ENT instructions; see
Section 3.7.8). The message "ON" is
displayed when the M command switches
"Modal-Break' on; the message "OFF"
is displayed when '"Modal-Break' is
switched off.

N n This command sets the Break-Point
Counter to '"n" (i.e., inhibits traps
until "n" breaks have occurred).

OFF This command logs the user off of the
system.

P Each entry of a P command switches
(toggles) from print suppression to
print non-suppression. The message
OFF 1is displayed if output is currently
suppressed. The message ON is dis-
played if output is resumed.

T address This command adds the "address' to the
Trace Table.

T indirect-address This command adds the "indirect-address"
to the Indirect Trace Table.

U address This command deletes the "address'" from
the Trace Table.

U indirect-address This command deletes the "indirect-

address" from the Indirect Trace Table.

Examples of these commands are provided in Section 4.5.

4-4



4.3 THE DEBUG DATA DISPLAY COMMANDS

4.3.1 WINDOWS

Before descriging the Data Display commands, it is necessary to
define the concept known as a "'window'".

A "window'" specifies the number of bytes to display (m), and
optionally the negative displacement (n) from the 'address' or

"indirect-address'" from which to

start the display. If n is not

specified, it is assumed to be zero. The general forms of the

"window'" are shown below.

Window Description

;m Number of bytes

;.M Number of bytes

;N,Mm Displacement in
decimal.

;n.m Displacement in
hexadecimal.

;.N,m Displacement in
decimal.

;.n.m Displacement in

hexadecimal.

in decimal.
in hexadecimal.

decimal; number of bytes in

decimal; number of bytes in

hexadecimal; number of bytes in

hexadecimal; number of bytes in

The default "window' is 0,4 (no negative displacement, display

four bytes).



4.3.2 DATA DISPLAY COMMANDS

The following is a list of the DEBUG Data Display commands.

General Form Description

Caddress;window These commands display speci-

Cindirect-address;window fied data in character format.

Xaddress;window These commands display speci-

Xindirect-address;window fied data in hexadecimal format.

These commands display speci-
fied data in integer format.
(If "window" is not 1, 2 or 4,
only one byte of data will be
displayed.)

Taddress;window

Iindirect-address;window

Immediately after the data at the specified address has been dis-
played, DEBUG prompts with an equal sign (=). The user then
enters either a Data Replacement Specification or a Special Con-
trol Character.

4.3.3 DATA REPLACEMENT SPECIFICATIONS

Displayed data may be altered (replaced) by entering the new data
in one of the following forms (after DEBUG prompts with an equal
sign).

General Fcrm Description
CXXXXXX . .. Replaces data with hexadecimal string
"xxxxxx". The string should contain an

even number of hexadecimal digits, and
may be up to 80 digits in length.

'cceccecc. .. Replaces data with character string '"cccccc'.
The string may be up to 80 characters in
length.

n Replaces data with integer value '"n". 1In
this case, the window must have been 1, 2
or 4.



In the case of a hexadecimal or character string replacement, the
data actually replaced may extend beyond the currently defined
"window'.

A Special Control Character (see Section 4.3.4) must be entered
immediately following a Data Replacement Specification.

4.3.4 SPECIAL CONTROL CHARACTERS

The user may enter a Special Control Character in response to the
DEBUG equal sign prompt character. In addition, the user must
terminate a Data Replacement Specification (see Section 4.3.3)
with a Special Control Character.

The Special Control Characters are listed below.

Control Character Description

Carriage Return Terminates display mode; DEBUG will
prompt with an exclamation mark (!).

Line Feed Displays data in the next "window"
(i.e., the previously specified "ad-
dress" or "indirect-address'" is updated
according to the currently specified
"window'"). The data is displayed on
the same line.

Control-N Displays data in the next "window',
preceded by the address being displayed
(in the format "f.d", where f is in
decimal and d is in hexadecimal).

Control-P Displays data in the previous "window'",
preceded by the address being displayed
(in the format "f.d").

On a display using the "indirect-address' specification, the Line
Feed or Control-N will cause an automatic crossing of linked frame
boundaries if the register being used in the display is in the
"linked" format.

4.4 BREAK MESSAGES

DEGUG causes an execution break to occur when the BREAK key on the
terminal is depressed. DERUG also has the facility to break on
intermodal transfers (i.e., BSL or ENT instructions; see Section
3.7.8); the M command acts as an alternate action switch, to change

4-7



this feature from ON to OFF. A break can also be initiated with
the E command, causing a break after the execution of a specified
number of instructions. The following messages are output when

a break in execution occurs.

Message Condition

B f.d Break-point address encountered. (Break Table
match.)

E f.d Execution runout (specified number of instruc-

tions have been executed).
I f£.d Interrupt (Break key depressed).

M f.d Modal break (Inter-frame branch; ENT or BSL
instruction encountered).

R f.d Return (RTN) instruction encountered.

where "f'" is the decimal FID and "d" the hexadecimal displace-
ment, representing the location of the execution interruption
point.

The Execution Break and Address Break facilities are mutually ex-
clusive. When the Execution Counter is positive, Break Table en-
tries are ignored. However, the Break Table of the Execution Break
facility can be used with the Modal Break facility.



4.5 EXAMPLES

4.5.1 SIMPLE EXAMPLE

The following example illustrates a simple DEBUG interaction. The
features illustrated here may be used by all Reality users.

YSTEM-MODES FRAME HDR-SUPP (CR)~— ENGLISH LIST statement
SYSTEM-MODES......... FRAME. .......>

WSPACES FRAME 172 -—— Listing output from
EDIT-I FRAME 013 system.

PQUEUE/1200 FRAME 164

WRAPUP-II BREAK key depressed.
I 6.1A3 Interrupt message.

Turns Print off.

Go (resumes execution
without printing).
BREAK key depressed.
Interrupt message.
Turn Print back on.
Go (resumes execution
with printing).

DB3 FRAME 018

DB4 FRAME 019 -—— Listing output resumes.
TAPEIO-II FRAME 036

DBS - BREAK key depressed.

Interrupt message.
Terminates LIST execution.

TCL prompt.



4.5.2 EXTENDED EXAMPLE

The following example illustrates use of the extended DEBUG facili-
ties. These facilities can be used only by users with system
privileges level two.

(-
I 6.87

BREAK key depressed.

1X200.12;6 CR) -1E1327101881=.0123456789ABCDEF N“ @Display and change data.

200.18

.CDEF34567890=N"=

Display next window

200.1F  .012C00000064="KJMN P- = (no change) .
200.18 .CDEF34567890= (!B AR4A4DAE0N64=NC “S(Change data in
200.24 .0004000A0000=(CR) character form.

Set Modal Trace on.

Set delay counter.

Trace location .40 in

PCB.

Trace Register four.
Go .

TCL statement.

R 5.40= RTN instruction
512.40 = .00000206000(0 - encountered.

R 0.4 : 528. = .00415454524%0= NData from direct trace.

M 7.3 Data from indirect
512.40 = .000002060000 \\\\trace.

R 0.4 528. = ,004154545249 Modal break.

R 5.78
512.40 = .000020920000

R 0.4 §528. = ,004154545249

M 10.1
§512.40 = .000020922000

R 0.4 528. = .004154545249

M 8.1
512.40 = .000020920000

R 0.4 : 528. = .004154545249

R 10.32
512.40 = .000020920000

R 0.4 528. = ,004154545249

D (CR)-- Display Break and
BRK TBL: 0. 0. 0. 0.-= Trace Table entries.
TRC TBL: 512.40 0. 0. 0.-=- Break Table entries.

*TRC TBL: 0.4 0. 0. 0.-=- Trace Table entries.

IENDQ Indirect Trace

Table entries.
T - Terminate T'xecution.

Back to TCL.



4,6 HARDWARE TRAP CONDITIONS

Certain error conditions cause the CPU to execute a trap to the
DEBUG state; processing of the current program will be aborted,
and a message indicating the nature of the trap (and the location

at which it occurred) will be displayed.

these error conditions.

Error No.

Message

0

3%

4%

5%

6%

ILLGL OPCODE

RTN STK EMPTY

RTN STK FULL

FRM-ID ZERO

CROSSING FRM LIMIT

FORW LNK ZERO

BACKW LNK ZERO

The following list shows

Description

An illegal (undefined)
operation code has been
found.

An RTN (return) instruction
was executed when the
return-stack was empty
(current pointer was at
X'0184").

A BSL or BSLI (subroutine
call) instruction was exe-
cuted when the return-stack
was full (current pointer
was at X'01lBO'); the return-
stack has been reset to an
"empty' condition before the
trap.

An address register has an
FID of zero.

An address register in the
"unlinked'" format has been
incremented or decremented
off the boundary of a frame,
or has been used in a rela-
tive address computation
that causes the generated
relative address to cross a
frame boundary.

An address register in the
"linked" format has been
incremented past the last
frame in the linked frame
set.

An address register in the
"linked" format has been
decremented prior to the
first frame in the linked
frame set.



Error No. Message Description

7 PRIV OPCODE A Privileged operation code
(one executable only in the
Monitor mode of operation),
has been found while execut-
ing in the Virtual mode.

8 ILLGL. FRAME-ID An address register has an
FID that exceeds the maximum
value allowable in the cur-
rent disc configuration.

11 STK FRMT ERR The Return-stack pointers
are in an illegal format.
Either the ending address
is less than X'0184', or the
current address is less than
X'0184'. The pointers have
been reset to an initial
condition of X'01BO' and
X'0184', respectively.

12 REGISTER ZERO Register zero has been de-
DETACHED tached by a user-program.

In the case of the traps marked with an asterisk (*) in the list
above, the following message will also be returned:

REG = 0.x

where "x" is the hexadecimal Address Register number of the register
causing the trap condition.

In all cases, the following message will also be returned:

ABORT e f.d
where "f" is the decimal FID of the frame and "d" is the hexadeci-
mal displacement within it (of the location where the trap occurred).
This corresponds to the location counter in the assembly listing of

the corresponding program.

Note that the G command, without an address specification, cannot
be used after a trap to the DEBUG state.



SECTION 5

SYSTEM SOFTWARE

5.1 INTRODUCTION

Assembly level programming in the Reality system is facilitated
by a set of system subroutines that allow easy interaction with the
disc file structure, terminal I/0, and other routines. These sub-
routines work with a standard set of addressing registers, storage
registers, tallys, character registers, bits, and buffer pointers,
collectively called functional elements. In order to use any of these
routines, therefore, it is essential that the calling routine set up
the appropriate functional elements as required by the called routine's
Input Interface.

The standard set of functional elements is pre-defined in the
permanent symbol file (PSYM), and is therefore always available to the
programmer. Included in the PSYM are all the mode-id's (program entry
points) for the standard system subroutines. There is no reason that
a symbol internal to an assembly program cannot have the same name
as a PSYM-file symbol, if the PSYM-file symbol is not also referenced
in that program; such symbolic usage cannot be a "forward" reference
in the assembly program. To avoid confusion, however, it is best to
treat the entire set of PSYM symbols as reserved symbols.

5.1.1 ADDRESS REGISTERS

All data reference in the system is made indirectly through one
of the sixteen address registers (A/R). Registers zero and one have
special, firmware-defined meaning; the other fourteen may be considered
general-purpose registers, with the limitation that system software
conventions determine the usage of most A/Rfs. Registers zero and one
should never be changed in any way by assembly programs. Register two
always points to the SCB after the debugger has been entered.

Reglster zero always addresses byte zero of the process' PCB;
register one always addresses byte zero of the frame in which the
process is currently executing. Thus all elements in the PCB may be
relatively addressed using register zero as a base register; this
includes the individual segments of the address registers themselves
(e.g., R15WA, referencing the word-address segment of R15). Address
registers can thus be setup explicitly by setting up their segments
appropriately; the more conventional way of setting up an A/R is to
move a S/R into it. For example, the sequences below are functionally
identical.



FRM100 ADDR 0,x'100' DEFINE A LITERAL S/R
REFERENCING FRAME X'100"

MOV FRM100,R15
and

ZERO R1I5WA
ZERO R15DSP
MOV =DX'80000100" R15FID

It is important to note that, in the first sequence, the address
register is autoratically set to the "detached" format when the ''MOV"
instruction executes; in the second sequence, the address register is
explicitly set tc the "detached" format by the '"ZERO R15WA" instruction.
The word=address of an A/R must be zeroed before other segments of the
A/R are modified.

5.1.2 ATTACHM:ENT AND DETACHMENT OF ADDRESS REGISTERS

All instructions that reference data force "attachment" of the
A/R(s) used in thre reference. Not all instructions do the same; for
example, the "increment A/R by tally" instruction will not cause a
"detached'" A/R to attach before execution.

This point may lead to programming errors; consider the following
sequence:

L1 BCU AM,R6,NXT  R6 "ATTACHED' AT THIS POINT"
L2 INC R6, SIZE R6 MAY '"DETACH" DUE TO THIS INSTRUCTION
L3 MOV  R6, SRu SAVE R6

The instruction at L2 may force R6 to 'detach" (if the contents
of SIZE are such that the resultant address is beyond the limits of
the current frame); storing R6 in SR4 will then cause SR4 to have a
large positive displacement, and a FID equal to that in R6 at the
time of execution of the instruction at L1. Subsequently, a register
comparison instruction of the form:

BE R15,SR4,L20



may execute incorrectly due to the fact that if the FID's of R15 and
SR4 are unequal at the time of execution, it is assumed that the two
frames are contiguouslv linked (See Section 3.14). Therefore,
it is best to force "attachment'" of R6 before L3;, a conven-
ient way of doing so is to execute the instruction:

L3A  FAR R6,0

though any data reference instruction would serve as well.

The following table summarizes the attachment/detachment process:

ATTACHMENT & DETACHMENT OF ADDRESS REGISTERS

A/R is Attached A/R is Detached
when: when:
0 1 2 3 4 5 6 7
DI SP F 1 D
00 |- Flag
Word | _ |pjag| F L D
Address
(1) Any instruction (1) Process is
that references deactivated due
data via the A/R to: terminal
is executed. I/0; disk 1/0;

peripheral 1/0;
timer run-out;
monitor call.

(2) Execution of ' (2) A S/R is moved
INC r to the A/R.
DEC r
instructions.

(3) Execution of (3) Execution of
FAR r,n INC r,t
instruction. DEC r,t

if a frame
boundary 1is
crossed.

5.1.3 RE-ENTRANCY

In practically all cases, the system software is re-entrant, that
is, the same cody of the object code may be used simultaneously by more
than one process. For this reason, no storage internal to the program

(o)
|
(O]




is utilized; instead the storage space directly associated with a
process is used; :this is part of the process' Primary, Secondary,

Debug (or Tertiary) and Quadrenary Control blocks. The Primary Control
Block (PCB) is addressed via address register zero; the SCB via
register two. The Debug Control Block is used solely by the Debug
Processor as a scratch area, and should not be used by any other
programs. The Quadrenary Control Block has no register addressing it;
it is used by some system software (magnetic tape routines, for example)
which temporarily setup a register pointing to it; its use is reserved
for future software extensions.

A user program may utilize storage internal to the program if it
is to be used in a non-re-entrant fashion; however in most cases it
will be found thai the functional elements defined in the PSYM will
be sufficient.

In some cases it may be required to setup a program to be
executable by onlv one process at a time; that is, the code is '"locked"
while a process is using it, and any other process attempting to execute
the same code waits for the first process to "unlock" it. The following
sequence is typical:

ORG 0
TEXT  X'01' INITIAL CONDITION FOR LOCK BYTE
CMNT (NOTE USAGE OF STORAGE INTERNAL TO
. PROGRAM)

LOCK MCC X'00',R2 SET '"'LOCKED'" CODE AT R2
XCC R2,R1 EXCHANGE BYTES AT R2 AND R1
BCE R2, X'01', CONTINUE  OK TO CONTINUE; PROGRAM LOCKED
RQM WAIT (RELEASE QUANTUM)
B LCCK TRY AGAIN

UNLOCK MCC X'01',R1 UNLOCK PROGRAM

5.1.4 WORK-SPACES OR BUFFERS

There is a set of work-spaces, or buffer areas, that is pre-defined
and available to each process. If the system conventions with regard
to these buffers are maintained, they should prove adequate for the
majority of assembly programming. There are three 'linked" buffers,
or work-spaces, of equal size, symbolically called the IS, the 0S, and
the HS. These are at least 3000 bytes in length each; more space for
each area can be assigned to a process at LOGON time. There are five
other work-spaces, the BMS, CS, AF, IB and the OB which may vary between
50 and 140 bytes in length, and are all in one frame. There is the TS,
a one-frame unlinked work-space of 512 bytes, and the PROC work-space,
2000 bytes in length which is used normally by the PROC processor alone;



finally there are four additional frames (PCB+28 through PCB+31) that
are unused by the system, and are freely available. PCB+28 is used
internally by the RPG processor.

Each work-space is defined by a beginning pointer and an ending
pointer, both of which are storage registers (S/R's). When the process
is at the TCL level, all these pointers have been set to an initial
condition. At other levels of processing, the beginning pcinters
should normally be maintained; the ending pointers may be moved by
system or user routines. The address registers (A/R's) that are named
after these work-spaces (IS,0S,AF,etc.) need not necessarilv be main-
tained within their associated work-spaces; however, specific system
routines may reset the A/R to its associated work-space. The table
below discusses these points for each work space. Note that, conven-
tionally, a buffer beginning pointer addresses one byte before the
actual location where the data starts. This is because data is usually
moved into a buffer using one of the '"move incrementing' type of
instructions, which increment the A/R before the data movement.

Location
Work- (offset
space  from PCB) Size Linked? Remarks
BMS 4 50 No Normally contains an item-id
(disp.=0) when communicating with the
disc file i/o routines. Typi-
cally, the item-id is copied to
the BMS area, starting at
BMSBEG+1. BMSBEG may be moved
to point within any scratch
area. BMSEND normally points
to the last byte of the item-id.
BMS (A/R) is freely usable
except when explicitly or
implicitly calling a disc file
i/o routine.
AF 4 50 No This work—-space is not used by
(disp.=50) any system subroutine, though
the AF A/R is used as a scratch
register.
CS 4 100 No As above.
(disp.=100)
IB 4 <140 No Is used by the terminal input
(disp.=200) routines to read data. IBBEG

may be moved to point within

any scratch area before use.
IBEND conventionally points to
the logical end of data.

IB A/R is freely usable except
when explicitly or implicitly
calling a terminal input routine.



Location
Work~ (offset
space from PCB) Size Linked? Remarks

OB 4 140 No Is used by the terminal output

(disp.=201 routines to write data.

+ IBSIZE) OBBEG & OBEND should not be
altered; they always point to
the beginning and end of the
OB area. OB A/R conventionally
points one before the next
available location in the
OB buffer.

TS 5 511 No This work-space is used
by the RPG compiler.

PROC 6-9 2000 Yes Used exclusively by the PROC
Processor for working storage.
User-exits from Proc's may
change pointers in this area.

HS 10-15 3000+ Yes Used as a means of passing
messages to the WRAPUP processor
at the conclusion of a TCL
statement. May be used as a
scratch area if there is no
conflict with the WRAPUP
history-string formats.

HSBEG should not be altered;
HSEND conventionally points one
byte before the next available
location in the buffer (initial
condition is HSBEG=HSEND).

5-6



Location
Work- (offset
space from PCB)

Size

Linked?

Remarks

IS 16-21
0Ss 22-27

28-31

3000+

Yes

These work-spaces are used
interchangeably by some system
routines since they are of the
same size (and are equal in

size to the HS). Specific

usage is noted under the various
system routines.

ISBEG and OSBEG should not be
altered, but may be inter-
changed if necessary.

Initial condition is that ISEND
and OSEND point 3000 bytes past
ISBEG & OSBEG respectively (not
at the true end if additional
work-space is assigned at

LOGON time).

IS & 0S A/R's are freely usable
except when calling system sub-
routines that use them.

Used for compilation and exe-
cution of RPG programs, but
are otherwise available.

5.1.5 DEFINING A SEPARATE BUFFER AREA

If it is required to define a buffer area that is unique to a
process, the unused frames PCB+28 through PCB+31 may be used. The
following sequence of instructions is one way of setting
up an A/R to a scratch buffer:

MOV RO,R15

ZERO R3WA

ZERO R3DSP
INC R3FID, 29

SET R3 "DETACHED"
INITIALIZE DISPLACEMENT FIELD
SET R15 TO PCB+29

Register 3 can now be used to reference buffer areas, or functional
elements that are addressed relative to R3. None of the system
subroutines use R3, so that a program has to setup R3 only once in

the above manner.
to PCB+3.

However, exit to TCL via WRAPUP will reset R3



5.1.6 USAGE CF XMODE

In several cases, the multiple~byte move instructions can be
used (say, when building a table) even when it is not known whether
there is enough room in the current linked frame set to hold the data.
Normally, if the end of a linked frame set is reached, DEBUG is
entered with a "forward link zero" abort condition. However, the tally
XMODE may be setup to contain a mode-id of a user-written subroutine
that will gain control under such a condition. This subroutine can
then process the end-of-frame condition, and, by executing a 'RTN'’
instruction, normal processing will continue. Instructions then can
be handled by this scheme are: INC register; MCI; MIC; MII; MIID;
SCD; MIIR. Care should be taken in the case of MIIR to save register
R15 in the subroutine. MIIT cannot be handled because DEBUG destroys
the accumulator in the process of transferring control via XMODE.

For example:

MOV XXX, XMODE SETUP XMODE FOR NEXT INSTRUCTION

MIT R12,R13,SR4 COPY FROM R12 TO R13, TILL R12=SR4i
ZERO XMODE

XXX EQU -~ ENTRY POINT FOR SUBROUTINE
MOV R15, SR1 SAVE R15
SRA R15, ACF SET TO SAVE REGISTER NUMBER
BCE X'0D',R15,0K ENSURE TRAP WAS DUE TO R13
MOV 0, XMODE PREVENT DEBUG RE-ENTRY
ENT 5,081 NO! : REENTER DEBUG TO PRINT
CMNT "FORWARD LINK ZERO' MESSAGE
oK MOV 500,R13DSP RESET DISPLACEMENT FIELD OF R13, SINCE
CMNT FIRMWARE HAS LEFT IT IN A STRANGE STATE.

® HANDLE END-OF-FRAME CONDITION HERE

MOV R13F1D,RECORD SETUP INTERFACE FOR ATTOVE

BSL ATTOVF GET ANOTHER FRAME FROM OVERFLOW
MOV SR1,R15 RESTORE R15
RTN RETURN TO CONTINUE EXECUTION OF

MIT INSTRUCTION.



5.1.7 INITIAL CONDITIONS

At any level in the system, the following elements are assumed
to be setup; they should not be altered by any programs:

MBASE Contain base-FID, modulo and separation

D
MMOD T of the M/DICT associated with the process.
MSEP T,

T

USER Contains the low-order 16 bits ot the base-FID

of the M/DICT.

5.1.8 SPECIAL PSYM ELEMENTS

Certain elements have a ''global" significance to the system;
in addition to those described above they are:

Functional Element Description

Arithmetic condition These are altered by any arithmetic instruction,
flags: as well as the branch instructions that compare
two relatively addressed fields.

ZROBIT Set if result of operation is zero (equal).
NEGBIT Set if result of operation is negative.
OVFBIT Set if arithmetic overflow resulted.

HO through H7 Overlays accumulator and extension; H7 is
high-order byte of D1; HO is low-order byte
of DO.

INHIBIT If set, the "BREAK" key on the terminal is

inhibited; used by processes that should not
be interrupted.

OVRFLCTR See WRAPUP for usage.

RSCWA Return-stack current word address; contains
address one byte past current entry in stack;
stack is null if RSCWA=X'184'.

RSEND Return-stack ending address; contains address
one byte past last allowable entry in stack;
for a stack depth of 11 entries, RSEND=X'1BO'.

SYSPRIV1 If set indicates system privileges, level one.

SYSPRIV2 If set in addition to SYSPRIV1, indicates
system privileges, level two.



Functional Element

Description

TO through T3

XMODE

WMODE

USER

Overlays accumulator and extension.

This tally may be setup to a mode-id of a
subroutine that is to gain control when a
"forward link zero" condition occurs.

If WMODE is non-zero on any entry to
WRAPUP, a BSL* thorugh WMODE will be
executed at the termination of history-
string processing, before 1) the print-
spool-files are closed, and 2) the

overflow chain is released. The BSL*
instruction will be executed whether
RMODE is zero or not. This feature

may be used hy processors that require
special wrapup processing.

Tally 'USER' in the PCB has global
significance:
Tally=0 Indicates not loged on.

Tally=-1 Indicates the spooler
process.

Tally=1 Indicates the file
restore process.

Tally=2 Indicates a process
which must go to LOGOFF
after WRAPUP processing.

Other values indicate normal
logged on processes.



5.1.9 PROGRAM DOCUMENTATION CONVENTIONS

In the following documentation, the functional description briefly
describes the action taken by the routine. Unless otherwise specified,
the program described is called as a subroutine, using the BSL
instruction, and it returns to the calling program via a RTN (return)
instruction.

The Input Interface, Internal Usage, and Output Interface sections
describe the elements used by the subroutine. The single letter
following the element name describes its type (C=character, D=double
word, H=half word, R=address register, S=storage register, T=word).
Unless otherwise specified, it should be assumed that the following
elements may be internally destroyed by the routine:

Registers ¢+ R1l4 and RI15.

Storage Registers :  SYSRO, SYSR1, SYSR2.

Tallies : Accumulator (DO, D1), D2, T4, T5.

Bits : Arithmetic condition flags, SB60, SB61.

If no description follows the element name, it indicates that the
element is used as a scratch element.

The system delimiters are symbolically referred to as:

Hex. value Name and description

FF SM Segment Mark.

FE AM Attribute Mark.

FD M Value Mark.

FC SVM Secondary ‘Value Mark.
FB SB Start Buffer.



5.1.10 OVERALL VIEW OF SYSTEM SOFTWARE LINKAGE
FROM
COLD-START
PROC l
PROCESSOR LOGOFF
OFF PROCESSOR [ I
VERB
PROCESS ]
INITIALIZATION [
TCL
PROCESSOR *
LOGON
PROCESSOR
TCU-1 VERBS A
(TIME, DUMP, ETC.)
LOGON
{’ TCL-1l VERBS
(EDIT, COPY, ETC))
% e 7’%
Y
OFF
ENGLISH VERBS FROM ANY
(LIST, SORT, ETC) TCL-Il BEE- PROCESSOR
1 - PROCESSOR —_——— DEBUG
| PROCESSOR
G ———
GO
ENGLISH END
PRE-PROCESSOR
l A it X%
ENGLISH \4
SELECTION [P
PROCESSOR
ﬁ — pYe—
FEF oo oo | HXK
—— WRAPUP PROCESSOR =
*TCL-T processors

#ETCL-T1
**FENGLISI

processors
processors



000

010

030

040

050

060

070

090

0AQ

0BO

0co

0Do

0OEO

OF0

100

110

120

130

140

150

160

170

180

190

1A

1B0O

1¢Co

1D0

1E0

1F0

5.1.11

Addressing register RO set to PCB.
are accessed by hardware.

PRIMARY

CONTROL BLOCK

system software use.

1 2 3

4 5 6 7

Areas bordered by heavy lines

Shaded areas are reserved for future

0 | - N T T © v L
ACF PRMPC SCO [ SC1 SC2 { DEBU([; USE ! Dll T I Dé) !
ABIT ETC e BITS TAP STW] JOBITS DACF
CHO { CH1 ] CH2 —l\ CH3 CHb ]7 CH8 1 CH9 l SCP T4 TS T6 l T7
D2 D3 D& D5
RECORD FRMN/LINQUE FRMP NNCF ! NPCF SIZE
BASE MODULO SEPAR DBASE DMOD DSEP
MBASE MMOD EBASE EMOD ESEP
OVRFLW SBASE SMOD SSEP
IE(I);: MODEID2 WMODE RMODE MODEID3 XMODE USER
CTRU CTR1 CTR2 CTR3 CTR4 CTRS CTRE& CTR7
CTR8 CTR9 CTR10 CTR11 CTR12 CTR173 CTR14 CTRILS
REJCTR ‘ REJO IBSIZE OBSLZE HSBEG
HSEND ISBEG { ISEND }
OSBEG OSEND TSBEC B
. TSEND UPDBEG o
F T
UPDEND BMSBEG E BMSEND
ROWA RODSP ROFID REGISTER ONE
REGISTER "0 R2=5(:B REGISTER THREE R3=HS
REGI S‘Tli}( “OUR I{A=IS REGISTER FIVE K5=OS
REGISTER S1X Rf):]l( REGISTER SEVEN R7=UPD
REGISTER ];_\;HT RS:BNS REGISTER NINE R9=I\F
REGISTER "EN R[(]’IH REGISTER ELEVEN R1=OB
REGISTER "WELVE Rjp=CS REGISTER THIRTEEN Rj4=TS
REGISTER );UR'H:HN Ri4 REGISTER FIFTEEN Rls
RSEND RSCWA (F1D) l (DISP)
AFBEG { AFEND CSBEG ,
} CSEND IBLEG }
IBEND OBBEG OBEND
{ TRBEG [ IREND I SYSRO
1 SYSRI R3SAVE

ADDRESS INt
REGISTERS

RETURN
STACK
ENTRIES



000

010

030

040

050

060

070

080

090

0AD

0Bn

0co

anpn

QE0

OFQ

1nn

110

120

130

140

150

160

170

180

190

1AQ

180

100

100

1EO

1F0

5.1.12

SECONDARY CONTROL BLOCK

Addressing register R2 set to SCB.

SCB =

PCB +1.

0 1 2 4 6 7 9 A B c D E F
BSP c1 c2 c3 [ c5 o c7
c8 cy CTR16 CTRL? CTRB CTR19 CTR20 CTR21
CTR22 CTR23 CTR24 CTR25 CTR26 CTR27 CTR28 CTR29
CTR30 crr3l CTR32 CTR3Y CTR4 CTR35 CTR36 CTR37
CTR38 CTR39 CTR4D CTRA) CTR42
NEXT FP1 P2
FP3 D6 b7 Db
b9 REJ1 ] RCJ2 ]
i
‘ SYSR2 NXTITM ‘ S0
S1 l s2
'
t
S3 } A ! s5
I $6 I s7 l 6
%
59 I SRO
|
T
SR1 [ 5R2 ] SR3 —I
1
1 SR4 l SRS I SRb
—4
SR7 ‘ SR8
F B
SRY ’ SR10 [ SR11 .1
L SR12 ] SR1Y I SK1G
1
SR1S SR16
} I
SR17 \ “R18 } SR19 [
SR20 \ SKI1 [ SRI2
—_— m
SR23 SR24
—
SR25 I SR26 1 SR27 §I
[ SR8 [ SRZ9 [ PQBEG
.
1
1 PUEUR [ PQEND
b
}
STKINP STEBEG [ SR3S W
[ LOCKSR l ASKEG I ASIRD
|
ASTR l 1
} B )
TIBEG 1 TLEND { PBUFBLG
PBUF l PBUFEND OVFLCTR
l CHARIN GHAROUT LINESOUT
PAGNUY PAGHEAD LINCTR ] PAGSIZE PAGSKIP LFCTR




5.1.13 DEBUG CONTROL BLOCK

PCB save areas. DCB = PCB + 2

T T T
000 SC. F’RMPC[

010 R2 [ R3

020 R& l RS l RE

030 R7 l R8

040 J R10 I R11

b
050 R12 R13 l R14

060 R15 I

070

080 D1 i

0390

0A0

0BO DO l

oco

0Do

0EQ

OF0

100

110

120

130

140

150

160

170

180

190

1A0

1BO

1co

1D0

1E0 SYSRO SYSR1

1F0 Té T5 D2

5-15



5.1.14 PSYM

PSYM...... D/CCDE.. LINE 2 LINE 3 PSYM...... D/CODE.. LINE 2 LINE 3
ABIT B 080 0 CS R 00C c
ACF H 001 0 CSBEG S ODE 0
AF R 009 9 CSDSP T 0B1 0
AFBEG S 0D8 0 CSEND S 0FE1 0
AFDSP T 0A5 0 CSFID D 0B2 0
AFEND S 008 0 CSWA T 0B0O 0
AFFID D 0Ab 0 CTR T o048 0
AM N OFE 0 CTRO T 048 0
ASBEG S 0D3 2 CTR1 T 049 0
ASEND S 0D6 2 CTR10 T 052 0
ASTR S 009 2 CTR11 T 053 0
ATTACH B 0F2 0 CTR12 T 054 0
BO B 07F 0 CTR13 T 055 0
B13 B 072 0 CTR1k4 T 056 0
B15 B 070 0 CTR15 T 057 0
B30 B 061 0 CTR16 T 00A 2
B31 B 060 0 CTR17 T 00B 2
BY B 078 0 CTR18 T 00C 2
BASE D 028 0 CTR19 T 00D 2
BBIT B 081 0 CTR2 T 0LA 0
BITS C 010 0 CTR20 T 00E 2
BKBIT B 098 0 CTR21 T 00F 2
BMS R 008 8 CTR22 T 010 2
BMSBEG S 07A 0 CTR23 T 011 2
BMSDSP T 0A3 0 CTR2Y4 T 012 2
BMSEND S 07D 0 CTR2S T 013 2
BMSFID D 0A2 0 CTR26 T 014 2
BMSWA T 0A0 0 CTR27 T 015 2
BSPCH C 001 2 CTR28 T 016 2
Cl T 001 2 CTR29 T 017 2
C2 T 002 2 CTR3 T 04B 0
C3 T 003 2 CTR30 T 018 2
Ch T 004 2 CTR31 T 019 2
C5 T 005 2 CTR32 T 01A 2
Cb T 006 2 CTR33 T 018 2
Cc7 T 007 2 CTR34 T 01C 2
C8 T 008 2 CTR35 T 01D 2
c9 T 009 2 CTR36 T 01E 2
CBBIT B 0Do 0 CTR37 T 01F 2
CBIT B 082 0 CTR38 T 020 2
CCDEL B 0EB 0 CTR39 T 021 2
CHO C 020 0 CTRY T o4cC 0
CH1 C 021 0 CTRL0 T 022 2
CH2 C 022 0 CTR41 T 023 2
CH3 C 023 0 CTRL2 T 024 2
CHL C 024 0 CTR5 T 04D 0
CH8 C 025 0 CTRb T O4E 0
CH9 C 026 0 CTR7 T 04F 0
COLHDRSUPP B 0cB 0 CTRS8 T 050 0
CR N 00D 0 CTR9 T 051 0

(CURRENT LISTING TO BE SUPPLIED)

5-16



DO

D1

D2

D3

Dk

D5

D6

D7

D8

D9
DACF
DAF1
DAF10
DAF2
DAF3
DAFL4
DAF5
DAF6
DAF7
DAF8
DAF9
DATEQ
DBASE
DBIT
DBLSPC
DEBUG5
DEBUGH
DEBUG7
DEBUGBYTE
DISKERR
DMOD
DSEP
EBASE
EBIT
ECONVBIT
EMOD
ENDBIT
EOFBIT
EOTBIT
ESEP
FBIT
FP1
FP2
FP3
FRMN
FRMP
GBIT
GMBIT
HO

H1

(CURRENT LISTING TO BE SUPPLIED)

D/CODE. .

T T WO OU0UDOOU0OW A0 A0 41 4TI TITRDOIOADTTODITDIOITRDIOOTOOITOTTCTOO

LINE 2 LINE 3

006
ook
018
01A
01C
OlE
033
035
037
039
01F
0D1
oy
0D2
0D3
0D4
0D5
0D6
0D7
0D8
0D9
040
02C
083
0CA
035
036
037
006
0Fb
02F
02F
034
084
OCF
036
0SA
03A
OE1l
037
085
02A
02D
030
022
024
086
09C
00F
00E

COOOOQONNNODOOOOOODODOODOODOOOODODODODOOODOOO0OODOOODOOOONNNNOOODOODODO O

H5

H6

H7

HBIT
HDRSUPP
HS
HSBEG
HSEND
H7

iB
IBBEG
IBEND
IBFID
IBIT
IBSIZE
IBWA
IDSUPP
II
IIBEG
ITEND
INDEBUG
INHIBIT
INHIBITSV1
INHIBITSV2
I0BIT14
IOBIT?2
IOBITYH
IR
IRBEG
IRDSP
IREND
IRFID
IRWA

IS
ISBEG
ISDSP
ISEND
ISFID
ITAPEBIT
JBIT
KBIT
LBIT

LF
LFCTR
LFDLY
LINCTR
LINESOUT

5-17

OA4A4Z2 0000 00NANA 00V {NAAT IR ITONODNDAATOVONVDAIAIVVNOII®ITIIII

00D
00cC
00B
00A
009
008
087
0C9
003
05C
05F
009
00A
0EL
0E7
0AA
088
05A
0A8
0C6
0DC
0DF
0E2
OF3
O0Fu
0DA
0DB
0Fb
0EA
0EC
006
0F0
099
0F3
09A
098
004
062
091
065
092
OCE
089
08A
088
00A
OFF
OFF
0FC
0F6

. LINE 2 LINE 3

NMNNNODOD O ODODODODOD FOOOOODOODOOOOOONNNOOOOOOOWOOOWOOOOOOOO



PSYM...... D/CODE.. LINE 2 LINE 3 PSYM...... D/CODE.. LINE 2 LINE 3

L INQUE D 022 0 PBUFEND S OEB 2
LISTFLAG B 0F1 0 PQBEG S OBE 2
LOCK H 000 0 PQCUR S oc1 2
LOCKSR S 0Do 2 PQEND S och 2
LPBIT B 0CD 0 PQFLG B 0DE 0
MBASE D 030 0 PRMPC C 002 0
MBIT B 08¢ 0 PROTECT B 0EQ 0
MMOD T 032 0 PTIME T 025 2
MODEID?2 T 042 0 QBIT B 090 0
MODEID3 T 045 0 QSTR S 0E8 2
MODULO T 02A 0 RO R 000 0
MSEP T 033 0 RODSP T 081 0
NBIT B 08D B ROFID D 082 0
NEGBIT B 00E 0 ROWA T 080 0
NEXT T 029 2 R1 R 001 1
NNCF H 0LC 0 R10 R 00A A
NOBIT B 09A 0 R10FID D 0AA 0
NOBLNK B 0EE 0 RI0WA T 0A8 0
NPCF H 04D 0 R11 R 008 B
NREC D 020 2 R11DSP T 0AD 0
NXTITM 2 043 ) R11FID D 0A3 0
08B R 008 B R11WA T 0AC 0
OBBEG S 0EA 0 R12 R 00C C
OBDSP T 0AD 0 R12DSP T 0B1 0
OBEND S OED 0 R12FID D 0B2 0
OBFID D 0AE 0 R12WA T 08B0 0
OBIT B 08E 0 R13 R 00D D
OBSIZE T 058 0 R13DSP T 0BS 0
OBWA T 0AC 0 R13FID D 0B6 0
0S R 005 5 R13WA T 0BY 0
OSBEG S 068 0 R14 R 00E 3
OSBEGF D 069 0 R14DSP T 0B9 0
osDbsP T 095 0 RILFID D 0BA 0
OSEND S 068 0 R14WA T 0BC 0
OSFID D 096 0 R15 R 00F F
OSWA T 094 0 R15DSP T 0BD 0
OVFBIT B 00F 0 R1SFID D 0BE 0
OVRFLCTR D 0FE 2 R15WA T 0BC 0
OVRFLW D 038 0 R2 R 002 2
OVRFLWO yA 006 E R2DSP T 089 0
PAGFRMT B 0cc 0 R2FID D 08A 0
PAGHEAD S 0F9 2 R2WA T 088 0
PAGINATE B 0F7 0 R3 R 003 3
PAGNUM T 0F8 2 R3DSP T 08D 0
PAGSIZE T 0FD 2 R3FID D 08E 0
PAGSKIP T OFE 2 R3SAVE S 0FC 0
PARITY B 0EY 0 R3WA T 08C 0
PBIT B 08F 0 R4 R 004 4
PBUF S 0ES8 2 R4DSP T 091 0
PBUFBEG S 0ES 2 R4FID D 092 0

(CURRENT LISTING TO BE SUPPLIED)

5-18



PSYM...... D/CODE.. LINE 2 LINE 3 PSYM...... D/CODE.. LINE 2 LINE 3

RUWA T 090 0 SB11 B 0AB 0
RS R 005 4 SB12 B 0AC 0
R5DSP T 095 0 SB13 B 0AD 0
R5FID D 096 0 SB14 B 0AE 0
RSWA T 094 0 SB15 B OAF 0
R R 006 6 SB16 B 080 0
R6DSP T 099 0 SB17 B 081 0
R6FID D 09A 0 SB18 B 082 0
REWA T 098 0 SB19 B 083 0
R7 R 007 0 SB2 B 0A2 0
R7DSP T 09D 0 SB20 B 0B4 0
R7FID D 09E 0 SB21 B 0B5 0
R7WA T 09C 0 5822 B 0B6 0
R8 R 008 8 SB23 B 087 0
R8DSP T 0A1 0 SB24 B 088 0
R8FID D 0A2 0 SB25 B 0B9 0
RBWA T 0AD 0 SB26 B 0BA 0
R9Y R 009 9 s827 B 0BB 0
R9DSP T 0AS5 0 SB28 B 0BC 0
RYFID D 0A6 0 SB29 B 0BD 0
RIWA T 0AL 0 SB3 B 0AE 0
RBIT B 091 0 SB30 B 0BE 0
RECORD D 020 0 SB31 B 0BF 0
REJO T 059 0 SB32 B 0CO 0
REJ1 T 038 2 SBU B 0AL 0
REJ3 T 03D 2 SBS B 0A5 0
REJY4 T 03E 2 SB6 B 0A6 0
REJS T 03F 2 SB60 B 0DC 0
REJCTR T 058 0 SB61 B 0DD 0
RMBIT B 09E 0 SB7 B 0A7 0
RMODE T oLl 0 SB8 B 0A8 0
RNIBIT B 033 0 $B9 B 0A9 0
RNICTR H 007 0 SBASE D 03C 0
RSCWA T 0C1 0 SBIT B 092 0
RSEND T 0Co 0 SCo C 003 0
RTNSTK T 0C2 0 scl C 004 0
S0 S 046 2 SC2 C 005 0
S1 S 049 2 SCP C 027 0
Y. S 04C 2 SEPAR T 028 0
S% S 04F 2 SIZE T 027 0
Sk S 052 2 SM N OFF 0
S5 S 055 2 SMBIT B 09F 0
S6 S 058 2 SMCONV B 0ED 0
s7 S 058 2 SMOD T 03E 0
S8 S 05E 2 SRO S 064 2
59 S 061 2 SR1 S 067 2
sB N OFB 0 SR10 S 082 2
SBO B 0AO 0 SR11 S 085 2
SB1 B 0Al 0 SR12 S 088 2
SB10 B 0AA 0 SR13 S 08B 2

(CURRENT LISTING TO BE SUPPLIED)

5-19



PSYM...... D/CODE.. LINE 2 LINE 3 PSYM,..... D/CODE.. LINE 2 LINE 3

SR14 S 08E 2 TSEND S 071 0
SR15 S 091 2 TSWA T 0B4 0
SR16 S 094 2 TTLY T 003 0
SR17 S 097 2 TYMO T 022 2
SR18 S 09A 2 UBIT B 094 0
SR19 S 09D 2 UPD R 007 7
SR2 S 06A 2 UPDBEG S 074 0
SR20 S 0A0 2 UPDDSP T 09D 0
SR21 S 0A0 2 UPDEND S 077 0
SR22 S 0A6 2 UPDF 1D D 09E 0
SR23 S 0A9 2 UPDWA T 09C 0
SR2U S 0AC 2 USER T 047 0
SR25 S 0AF 2 VBIT B 095 0
SR26 S 0B2 2 WM N 0FD 0
SR27 S 0B5 2 VOBIT B 0DF 0
SR28 S 0B8 2 VT N 008 0
SR29 S 08B 2 WBIT B 096 0
SR3 S 06D 2 WMBTY B 09D 0
SR35 S 0ch 2 WMODE T 043 0
SRY S 070 2 XBIT B 097 0
SR5 S 073 2 XMODE T 046 0
SR6 S 076 2 XNFID D 001 F
SR7 S 079 2 XNLOCK H 000 F
SR8 S 07¢C 2 XNNCF H 001 F
SR9 S 07F 2 XNPCF H 00A F
SSEP T 03F 0 XNRES H 00B F
STKBEG S 0CA 2 XPFID D 003 F
STKFLG B 0E8 0 YBIT B 098 0
STKFLGX B 0E9 0 ZBIT B 099 0
STKINP S 0c7 2 ZEROBIT B 00D 0
SVM N 0FC 0
SYSPRIVI B OFL c
SYSPRIV2 B OEF 0
SYSRO S 0F6 0
SYSR1 S 0F9 0
SYSR2 S 040 2
TO T 007 0
T1 T 006 0
T2 T 005 0
T3 T 00k 0
Th T 014 0
T5 T 015 0
T6 T 016 0
T7 T 017 0
TAPSTW C 01C 0
TBIT B 093 0
TPRDY B 0E7 0
TS R 00D D
TSBEG S 06E 0
TSDSP T 085 0

(CURRENT LISTING TO BE SUPPLIED)

5-20



5.2 TCL PROCESSORS AND PROC INTERFACE
5.2.1 VERB FORMAT

A verb is an entry in the master dictionary whose D/CODE begins with

the character "P'". The special sequence "PQ" is reserved, and defines

a PROC; otherwise the format of the verb is as defined below. The

verb contains three mode-id's - hexadecimal character fields that

specify the transfer of control from one processor to another. The

first mode-id is mandatory and specifies the location to which TCL-I
transfers control after editing the input statement; the second mode-id
is also mandatcry for TCL-II and ENGLISH verbs, and specifies a secondary
processor exit. The third mode-id is usually optional. 1In addition, an
option string may be present for TCL-II verbs.

Verb Format:

Attribute
Number Description Examples

1 "Px"; x is a single character LIST verb: PA
(not "Q") stored in the COUNT verb: PB
character register SCP.
X may be null.

2 Primary mode-id, to which ALL ENGLISH verbs: 35
TCL~I transfers control. ALL TCL-1I verbs: 2

3 Secondary mode-id; stored EDIT verb: D
in the tally MODEID2 ASSEMBLE verb: 17

4 Tertiary mode-id; stored
in the tally MODEID3

5 Option string, for TCL-II
verbs (see TCL-II
documentation)



5.2.2

TCL-1I

Functional Description

TCL-I is the basic entry point (not a subroutine) for the terminal
control language process. It is entered solely from the WRAPUP
processor after WRAPUP has completed processing of the previous TCL

statement.

The primary functions of the TCL-I processor are as follows:

1)

2)

3)

4)

5)

Determine if a PROC is in control, and if it is, exit to
the PROC processor for continuation of the PROC.

If not, obtain a line of input from the terminal.

Attempt to retrieve the verb (first set of contiguous

non-blank data in the input buffer) from the master dictionary
and validate it as such.

Set up the parameters from the verb; edit and copy the

remainder of the data in the input buffer to the work-space
IS.

Exit. to the processor specified in the primary mode-id
parameter of the verb.

Editing Features

1)

2)

3)

4)

5)

All control characters, and system delimiters (SB, SM, AM,
VM, SVM) in the input buffer are ignored.

Redundant blanks (sequence of two or more blanks) are not
copied, except in strings enclosed by single or double

quote signs.

Strings enclosed in single quote signs are copied as:
(SM) I string (SB)

Strings enclosed in double quote signs are copied as:
(SM) V string (SB)

End of data is marked with a: (SM) 2

Qutput Interface

ISBEG

S Defines start of work space where edited
input data has been copied.

5-22



IS R =ISBEG

IR R Points to AM following attribute 4 of the verb,
or to end-of-data AM of verb.

SR4 S Points to AM at end-of-data of verb.

IBBEG S Points to start of last input line from terminal.

IB R Points to SM terminating input line.

IBEND S As above.

SCP C Contains character following "P" in verb

attribute one; blank if none specified.

SCO c Contains a blank

SC1 C Contains a blank

SC2 C Contains a SB

MODEID2 T Contains secondary mode-id from verb; zero if

none specified.

MODEID3 T Contains tertiary mode-id from verb; zero if none
specified.
IBIT B Set if any string enclosed by single-quote signs

has been found.

VBIT B Set if any string enclosed by double-quote signs
has been found.

PQFLG B Set if a PROC is in control.

BASE Contains base-FID, modulo and separation of
MODULO of master dictiomary.

SEPAR

All other bits are zero (A through Z bit and SBO through SB32. All
other process work-space pointers are set to their initial condition.
(See Section 5.8.1.)

Subroutines Used

RETIX: CVTHIR



Error Conditicns

The following cause an exit to the WRAPUP processor with the message

indicated:

271:

3:

30:

One PROC cannot call another
Verb cannot be identified in the M/DICT.

Verb format error. (Premature end-of-data, non-hex
chzracter in mode-id's)

Uneven number of single or double quote signs in input
data.



5.2.3 TCL-II

Functional Description

TCL-II is entered from TCL-I by those verbs requiring access to a file,
and to all, or explicitly specified items, from the file. TCL-II exits
to the processcr whose mode-id is specified in MODEID2; typically
processors sucl as the EDITOR, ASSEMBLER, LOADER, etc. use TCL-II to
feed them the set of items which was specified in the input data

On entry, TCL-11 checks the verb definition for a set of option
characters (in attribute 5 of the verb); verb options are single
characters as below; any combination may be specified.

Option Chsracter Meaning
C Copy - the item retrieved is copied to

the workspace IS.

F File access only - the item-list is
ignored; only the file parameters are set
up by TCL-II. 1If this option is present,
any others are ignored.

N New item acceptable ~ if the item specified
is not on file, the secondary processor
still gets control (example: the EDITOR
can process a new item).

P Prints item-id on a full-file retrieval,
as each item is retrieved.

U Updating sequence flagged - if items are
to be updated as retrieved, this option is
mandatory.

Z Final entry - the secondary processor will

be entered once more after all items have
been retrieved (example: COPY processor,
to print a message).

The input data string to TCL-II consists of the file-name (optiocnally
preceded by the modifier DICT, which specifies access to the dictionary
of the file), followed by a list of items, or an asterisk (*) specify-
ing retrieval of all items on the file. The item-list may be followed
by an option list (options to the secondary processor) which must be
enclosed in parentheses. These options must consist of a sequence of
single characters, or « decimal number, or two decimal numbers separ-
ated by a minus sign (specifying a range of numbers). Multiple

options are separcted by commas. The option characters A through Z set
the corresponding bits ABIT through ZBIT (A sets ABIT, etc.); the
numbers are stored in tallies D4 and D5, and the bit NOBIT set if the
numerical option is found.

5-25



Output Interface

DAF1 B Set if update option was found.
DAF?2 B Set if "C" otpion was found.
DAF3 B Set if "P" option was found.
DAF4 B Set if "N" option was found.
DAF5 B Set if "Z" option was found.
DAF6 B Set if "F" option was found.
DAF8 B Set if accessing a dictionary-file (DICT
in input).
RMBIT B Set if item found and retrieved.
BASE D First exit only: base FID, modulo and separation
MODULO T of file being accessed
SEPAR T & :
SﬁggE 2 Base FID, modulo and separation of file being
SSEP T accessed.
1S R Points to non-blank following file-name if "F"
option specified.
DBASE D Contains base-FID, modulo and separation of
DMOD T dictionary of file being accessed if "F'" option
DSEP T is specified.

Following specifications meaningful only if "F" option is not present:

BMSBEG S Points one prior to area containing the item-id,
which is terminated by a AM.

ABIT B Set according to option list (see

through description above).

ZBIT

NOBIT B Set if numerical option found.

D4 D . . .

D5 D Contains numerical option value(s).

SRO S Points one prior to count field of item
on file.

SIZE T Contains count field of item.

SR4 S Points to last AM of item on file.



MODEID3 T Contains tertiary mode-id from verb.

"C" Option in Verb No "C'" Option in Verb

ISBEG S Points one prior to
beginning of copied
item (including
item-id, not
including count
field)

IS R Points to last AM Points to end of string.
of copied item.

ISEND S =18
IR R Points to last AM Points to AM following
of item on file. item-id on file.

Internal Usage

RMODE T Contains mode-id of entry-point within TCL-II
that WRAPUP processor exits to; must be maintained
by lower-level processors.

All elements as used by GETITM (q.v.)

Subroutines Used

RETIX, GBMS, GDLID, GETITM, GETOPT, GETFILE.

Error Conditions

The following conditions cause an exit to the WRAPUP processor with
the error number indicated:

200 File-name not specified

201 File name illegal or incorrectly defined in the M/DICT.
202 Item not on file (will not abort processing).

203 Item list missing.

204 Error in format of option list.

13 DL/ID item not found in dictionary-file.

5-27



5.2.4 USER EXITS FROM PROC

A user— program can gain control during execution of a PROC, by using
the Uxxxx command in the Proc, (where xxxx is the hex. mode-id of the
user—program). The user-program can perform special processing, and
then return control to the PROC processor. Necessarily, certain
elements used by PROC must be maintained by the user-program. These
elements are marked with an asterisk in the table below:

Input Interface

*BASE D Contains FID, modulo and separation of
*MODULO T M/DICT.

*SEPAR T

*PQBEG S Points one prior to the first PROC statement.

*PQEND S Points to terminal AM of the PROC.

PQCUR S Points to AM following the Uxxxx element.

IR R =PQCUR

*PBUFBEG S Points to buffer containing primary and secondary
(if any) input buffers. Format:
(SB) ... primary input ... (SM) (SB) ... secondary
input ... (SM)

*ISBEG S Points to buffer containing primary output line.

*#STKBEG S Points to buffer containing "stacked input"

(secondary output)
*SBIT B Set if ST ON command is in effect.

IB R Current input buffer pointer (may be within
primary or secondary input buffers).

*SC2 C Contains a blank.
SBIT on SBIT off

IS R Last byte moved into Last byte moved into
secondary output primary output buffer.
buffer.

UPD R Last byte moved Last byte moved into
into primary secondary output
output buffer. buffer.



Qutput Interface

IR R Points to AM preceding next PROC statement to

be executed; may be altered to change location of
continued PROC execution.

IS R May be altered as needed to alter data within
UPD R input and output buffers; but formats described
IB R above must be maintained.

Exit Convention

The normal method of returning control to the PROC processor is to
execute an external branch to 2, PROC-I. If it is necessary to abort
PROC control and exit to WRAPUP, set PQFLG off, and execute an
external branch to one of the WRAPUP entry points.

Note that, when the PROC eventually transfers control to TCL, (via

the P operator), certain elements are expected to be in an initial
condition. Therefore, if the user-program uses these elements, they
should be reset before returning to PROC, unless the elemen:s are
deliberately set up as a means of passing parameters to other processors.
Specifically, tae bits ABIT through ZBIT are expected to be zero by

the TCL-II and ENGLISH Processors. It is best to avoid usage of

these bits in PROC user-exits. The scan character registers SCO,

SC1 and SC2 must also contain an SB, a blank and a blank respectively.

5-20



5.3 WRAPUP PROCESSOR

The WRAPUP Processor is entered under the following conditions:

1) Termination of a TCL statement, when it is required to
"wrap-up" processing and to return to the TCL level.

2) Intermediate stage in processing a statement, when it is
rejuired to print messages from the ERRMSG file, or to
perform disc updates, and then return to the calling
processor.

3) Usar-initiated termination of processing, via the 'END'
command in DEBUG.

The WRAPUP Processor has several entry points, depending on the type
of action required; several of these entry points are provided to
simplify the interface requirements when an error messaze is required
(Note, for instance, that MD995 may be entered immediately after
return from a call to, say, RETIX, if the item is not found on file,
by setting up Cl to the error message numbér).

WRAPUP also performs the following functions before returning to
TCL:

1) Closes all open spool files, if LPBIT is set.

2) Releases linked overflow space if OVRFLCTR # 0.

5.3.1 WRAPUP-I

Functional Description

1. Prints, or sets up for printing, messages that are stored
in the file "ERRMSG" (must be catalogued in the process
M/DICT.

2. Performs disk updates as specified in the history
string.

3. Terminates processing of a TCL statement; re-initializes
elements.

Interface Requirements

History String. The history string is from HSBEG through HSEND. If
HSBEG=HSEND, the string is null; this is the initial condition on




entry to TCL. TIf HSBEG # HSEND, elements in the string are processed

by WRAPUP. There are three types of elements; all other element types
are ignored.

1. Output message.
(SM) 0 (AM) Message-Id (AM) (Parameter (AM) ...) (SM)

where Message-I1d is the item-id of an item in the ERRMSG
file. (Normally a decimal numeric).

Parameters are character string that is to be passed to
the message formatter (PRTERR, WRAPUP-III).

2. Disk Update/Delete string.

(SM) DU (AM) base (VM) modulo (VM) separ (AM) item-id
(AM) .. (item-body) (AM) (SM)

(SM) DD (AM) base (VM) modulo (VM) separ (AM) item-id
(AM) (SM)

DU - Disk update; replaces entire item in the file
specified by the decimal parameters base, modulo and separ.

DD - Disk delete; deletes item from the file.
3. End-of~-string element
(sM)z

Conventionally, a process wishing to add data to the history string
begins at HSEND+1; when the entire additional element(s) has been
added, the string is terminated with a (ZM) Z, and HSEND reset to the
(SM).

If WMODE is non-zero on any entry to WRAPUP, an indirect subroutine
call (3SL*) via WMODE will be executed. This allows special processing
to be done on every WRAPUP entry.

WRAPUP may be called as if it is a subroutine by setting RMODE to the
Mode-ID of the program to which WRAPUP returns control to; note how-
ever, that the return-stack is alwavs set to a null or empty condition
by WRAPUP. On the error-message setup entry points (MD99/MD993/
MD994/MD995), if VOBIT is set and RMODE non-zeroc, the appropriate
messages are stored in the history string, for printing on a final
entry with RMODE zero.

If OVRFLCTR is non-zero, it is assumed that it contains the starting
FID of a linked set of overflow frames that is to be released to the
system overflow pool. This tally is used, for instance, by the SORT
processor to store the beginning FID of the sorted table; the overflow
space used by the Sort is thus always released to the system even if
the sort is aborted by the debug 'END' command.

5-31



Entry Points

MD993

MD994

MD995

MD99

MD999

TCL

A message number is stored in Cl; a numeric
parameter is stored in C2. Sets up the message in
the history string and exits to MD99.

A message number is stored in Cl; a character string
parameter is stored for IS+1 through an AM or SM.
Sets up the message and exits to MD99.

As above, except that the parameter is from BMSBEG+1
through an AM or SM.

Message numbers (without any parameters) may be stored
in REJCTR, REJO and REJ1 (no action is taken if zero.)
After setting up the messages in the history string,
exits to MD999 (If VOBIT set, skips history string
processing in MD999).

Processes all elements in the history string.
Reinitializes process work spaces; exits to TCL
if RMODE = 0; to calling program via RMODE if non-zero.

Kills history string; PROC control; exits to TCL
(Entry point of "END" command for DEBUG).

Subroutines Called

PRTEER

UPDITM

ISINIT

WSINIT

CVINIS

(WRAPUP-II1) to print error messages.
(WRAPUP-TII) to perform disk updates.
To re~initialize ISBEG/ISEND/OSBEG/OSEND.

To re-initialize process work areas. (BMS/CS/AF/IB/
0B/TS)

To convert a decimal character string, from the IS,
to binary.

External Branches

LOGOFF

Error Messages

If USER = 0

"DISK UPDATE STRING ERROR"; self explanatory.



5.3.2 UPDITM (WRAPUP-II)

This subroutine performs updates to the disc files in the system. 1t
is described in Section 5.4.3.

5.3.3 PRTEER (WRAPUP-III)

Functional Description

This subroutine is used primarily by the WRAPUP processor to retrieve
and print error messages from the system file ERRMSG. A parameter
string may be passed to the subroutine, which will format and insert
the parameters as specified by the codes in the message item. System
message item—ics are numeric; however, any item~id can be specified.
See description of error messages for format of the codes.

Input Interface

TS R Points one prior to the message item-id, which
must be terminated by an AM. Parameters optionally
follow, being delimited by AM's. The parameter
string must terminate with a SM.

Output Interface

TS R Points to AM following message-id, or AM or SM
following last parameter output.

Internal Usage

EBASE D Set up by PRTERR to ERRMSG file, if EBASE = 0
EMOD T on entry; otherwise these elements are assumed
ESEP T to be already initialized.

All elements are used by WRTLIN and RETIX.

Error Message Formats

A (dec-number) Parameter insertion code; the next parameter
from the history string, if any, is placed
in the output buffer. If "dec-number" is
specified, the parameter is left-justified in
a blank field of the specified length.

5-33



R (dec-nunber) As above; the parameter is right-justified in

the blank field of the specified length.

E (char-string) The message ID, surrounded by brackets, is

placed in the OB, followed by the optional
character string.

H (char-string) The character string is placed in the OB.

L (dec-nunber) The output buffer is printed, and the specified

number of line feeds are output (one if
""dec-number'" not specified).

X (dec-nunber) The OB is incremented by the number of spaces

specified. TIf the end of the line is reached,
the output buffer is printed and a new line is
started.

Adds system time in the format HH:MM:SS to
the output buffer.

Adds system date in the format DD MMM YYYY to
the output buffer.

On exit from this subroutine, the output buffer is printec and a new
line started, unless the last character in the OB is an "+'", which
causes printing of the buffer only.

5.3.4 FUNCTIONAL ELEMENT USAGE BY ALI. WRAPUP MODES

Bits

VOBIT

SB60
SB61

RMBIT

Tallys
REJCTR
REJO
REJ1

Cl

C2

Description of Use Mode
Store/Print Flag; Store Messages ALL
if set
Scratch Wrapup-IIT
Scratch Wrapup~11I
As used by RETIX I1, I11
Input error messages I (MD99)
Input error messages I (MD993/994/
995)
Input error messages I (MD993)

5-34



Bits
C3
D2
D3
SIZE
NEXT

RECORD,
LINK(S)

OVRFLW
D4

T4
BASE
MODULO
SEPAR
EBASE
EMOD
ESEP
RMODE

WMODE

Description of Use

Scratch
Scratch
Scratch
Scratch
Scratch

As used by disc-I/0 subroutines

Scratch
Scratch
Scratch

Various

Base~FID, modulo and separation
of the ERRMSG file.

Return mode-ID

Special processing exit mode-ID

Mode
1T

II

IT

IT

IT

II

IT
II

II
I, I1I, III

ITI



Registers

HSBEG Beginning and end of history I
HSEND string

BMSBEG |
BMSEND

CSBEG
CSEND

ISBEG
ISEND

822§g > Reinitialized on exit from MD999
1BBEG
IBEND

OBBEG
OBEND

AFBEG
AFEND J

UPD Scratch I, 1II
IR Scratch
TS Scratch I, 11, III

AF Scratch I1I

Return Reset to null condition on exit
Stack from MD999



5.4 DISC FILE 1I/0
5.4.1 RETIX AND RETI

Functional Description

Retrieves an item stored in a file. The item-id is explicitly
specified to this routine, as are the file parameters base, modulo and
separation. The subroutine performs a "hashing' algorithm (see HASH
documentation) to determine the group within which the item may be
present, and then searches sequentially down the data in the group for
a matching item-id. If found, the subroutine returns pointers to the

beginning and end of the item, and the item size (from the item count-
field).

The item-id is specified in a buffer defined by the register BMSBEG;
if the entry RETIX is used, the item-id must be terminated by an AM;
if RETI is used, the register BMS must point to the last byte of the
item-id. An AM will be appended to the item-id by RETI.

Input Interface

BMSBEG S Points one prior to the item-id required.

BMS R RETIX: not an input interface requirement.
RETI: points to the last byte of the item-id.

BASE D Contains the base FID of the file.

MODULO T Contains the modulo (number of groups) of the
file.

SEPAR T Contains the separation (number of frames per

group) of the file.

Internal Usage

XMODE T Used to exit to subroutine IROVF if a group
format error occurs.

Output Interface

BMS R . ' .
- -id.
BMSEND S} Points to last character of item-i
RECORD Contains the beginning FID of the group to which

the item-id hashes.

5-37



NNCF

T
FRMN D . . . .
FRMP D Contain the link fields of the frame abcve.
NPCF T
XMODE T Zero
Item Found Item Not Found
RMBIT B Set. Zero.
SIZE T Item count-field. Zero.
R14 R One prior to item Points to last AM of last
count field. item in group.
IR R Points to first Points to AM indicating
AM of item end of group data
(=R14 +1).
SR4 S Points to last =R14
AM of item
Subroutine Usage
RDREC, Requires one additional level of subroutine
HASH, linkage; three if a group format error
IROVF occurs.

Error Conditions

I1f the data in the group is bad -~ premature end of linked frames, or
non-hexadecimal character encountered in the count field-the
message:

**%**GROUP FORMAT ERROR AT: CXXXKXXX

is returned (xxxxxx is six character hexadecimal FID indicating where
the error was found), and the routine returns with an "item not
found" conditicn. Data is not destroyed, and the group format error
will remain.



5.4.2 GETITM

Functional Description

Sequentially retrieves all items in a file. This routine is called
repetitively to obtain items from a file one at a time until all items
have been retrieved. The order in which the items are returned is the
same as the pseudo-random storage sequence.

If the items retrieved are to be updated by the calling routine (using
The routine UPDITM), this should be flagged to GETITM, which will then
perform a two-stage retrieval process by first storing all item-id's
(per group) in a table, then will use this table to actually retrieve
the items on each call. This is necessary because, if the calling
routine updates an item, the data within this group shifts around;
GETITM cannot simply maintain a pointer to next item in the group, as
it does if the "update' option is not flagged.

An initial entry condition has also to be flagged to GETITM; it then
sets up and maintains certain pointers which should not be altered by
the calling routines until all the items in the file have been
retrieved.

Note the functional equivalence of the output interface elements with
those of RETIX.

Input Interface

DAF7 B Initial entry flag; must be zeroed on first
call to GETITM.

DAF1 B If set, "update" option is in effect.

ESSSE 2 Contains base FID, modulo and separation of

DSEP T the file

BMSBEG S Points one prior to an area where the item-id
of items retrieved may be copied. Must be at
least 50 bytes in length.

Internal Usage

RECCRD D

NNCF,

FRMN,

TRMD, .

1ly.

NPCF, Used internally

XMODE,

EOFBIT

5-39



These elements should not be altered by any other routine while

GETITM is used.

DAF7
DAF1

DBASE
DMOD
DSEP
SBASE
SMOD
SSEP

NXTITM

OVRFLCTR

Output Interface

RMBIT

SIZE

R14

SRO

IR

SR4

XMODE

Subroutines Used

B
B

e Bl

H 3o

B

]

See above

Current group beginning FID.
Number of groups left to be processed.
Separation parameter of file (unchanged).

Saved values of original base FID, modulo
and separation.

If DAF1 set: Points one before next item-id
in prestcred table.

If DAF1 zero: Points to last AM of item
previously returned.

Overflow space table starting FID; used if
DAF1 set.

Set if item found; zeroed if all items exhausted.
Contains item count-field.

Points one prior to count-field.

=R14

Points to first AM of item.

Points to last AM of item.

Zero

RDREC, GNSEQI, GNTBLI (last two local); requires one additional level
of subroutine linkage.

Error Conditioas

As for RETIX (g.v.); except that the routine will continue retrieving
items, if any more exist, after the error condition is reported.

5-40



5.4.3 UPDITM

Functional Description

This routine performs updates to a disc file defined by its base FID,
modulo and separation. If the item is to be deleted, the routine will
compress the remainder of the data in the group in which the item
resided; if the item is to be added, it will be added at the end of the
current data in the group; if the item is to be replaced, functionally
a deletion and then an addition takes place. UPDITM does not perform

a merge into an already existent item.

If the change of data in the group reaches an end of the linked frames,
UPDITM will obtain another frame from the overflow space pool and link
it to the previous linked set; as many frames as required will be added.
If the deletion or replacement of an item causes an empty frame at the
end of the linked frame set, and that frame is not in the "primary"
area of the group, it will he released to the overflow space

pool.

Once this routine is entered, the processing cannot be interrupted
until completed.

Input Interface

BMSBEG S Points one prior to the item-id to be updated;
the item-id must be terminated by an AM.

TS R Points one prior to the item body; the data must
be terminated by a SM. This is not an input
interface element for item-deletes.

CH8 C Contains the character 'U' for an item-addition
or replacement; 'D' for an item-delete.

BASE D Contains the base FID, modulo and separation of
MODULO — T% he file being updated
SEPAR T & up '

Internal Usage

RMBIT B Various

INHIBITSV1 B Saves condition of INHIBIT

CTRO T

CTR1 T

5-41



D2 D
D3 D

XMODE T

Output Interface

TS R Points to SM terminating item-body for item-add
or replace.

IR R Points to AM terminating group data

UPD R Points to last byte of last frame in group

CSs R Points one prior to item-id on item-add or
replace

BMS R Points to AM following item-id

SIZE T Contains new item size on add or replace

Subroutine Usage

RETIX, RDREC, RDLINK, WTLINK, IROVF, BMSOVF, ATTOVF, RELOVF. Uses two
additional levels of subroutine linkage.

A subroutine called LOCK is used by UPDITM. UPDITM is the
subroutine called to most file updates, and locking this
mode prevents simultaneous updates to files. This will
eliminate the generation by UPDITM of group format errors,
which can result if two processes attempt to update the
same file simultaneously.

Note that no retrieval lock feature is used. This means
that a 'TEMPORARY' group format error can appear on ac-
cesses to a file which is being updated. On a subsequent
access, this group format error will not appear.

DATA/BASIC, which uses its own code for some updates, also
uses LOCK.



Error Conditions

1.

If the group data is bad, premature end of linked data set,
or non-hexadecimal character found in a count field, the
group data is terminated at the last good item, and the
message:

*%*% GROUP FORMAT ERROR AT: . XXXXXX

is returned (xxxxxx is a six digit hexadecimal FFD indicating
the location of the error), before the process continues.

If the file being updated is the M/DICT (as indicated by
BASE being equal to MBASE), and the system privilege level

one flag is not set, the routine aborts with the message:

YOUR SYSTEM PRIVILEGE LEVEL IS NOT SUFFICIENT FOR THIS
STATEMENT

The update is not performed.

If the item-id is greater than 50 characters, the update is
not performed; no indication is returned.

If the item exceeds the maximum size (32767 bytes, X'7FFF'),
the item is truncated to 32767 bytes; no indication is
returned.

5-43



5.4.4 GBMS

Functional Description

Sets up the base FID, modulo and separation parameters of a file from
the file definition item that has been retrieved. Typically this rou-
tine will be called after a call to RETIX which retrieves the file-
name from the master dictionary.

The routine handles both 'D' and 'Q' code items; a 'D' code item is a
direct file-pointer, and has the base FID, modulo and separation of the
file in attributes 2, 3 and 4. A 'Q' code item is a synonym pointer to
a file defined in any account in the SYSTEM dictionary. This subroutine
also performs the file access-protection checks. It is assumed that
register LOCKSR points to the user's lock codes (in his logon entry in
the SYSTEM dictionary; if the file has a lock code, a matching lock

code is required for GBMS to return successfully. A non-match causes

an exit to WRAPUP with message 210.

Input Interface

DAF1 B If zero, uses retrieval lock-codes in LOGON
entry for lock-code comparison; if set uses update
lock~codes.

IR R Points to, or one prior, 'D' or 'Q' code in
attribute one of file-definition item.

SR4 S Points to AM at end of file-definition item.
LOCKSR S Points one prior to the user's lock-code field in

his SYSTEM dictionary entry.

Output Interface

RMBIT B Set if base, modulo, separation successfully
converted; zero if error in format, 'Q' item not
found, etc.

BASE P Contain base FID, modulo and separation of the
MODULO "1 file (if RMBIT set)

SEPAR T

IR R Points to AM following attribute four of the

file~definition item.

Subroutine Usagz

CVDR15; recursive call to GBMS and RETIX if "Q' code item; two further
levels of subroatine linkage if 'D' Code; three if 'Q' code item.



Errors

On failing the lock code comparison test, an exit is taken to WRAPUP
with message 210 (FILE IS ACCESS PROTECTED); to ensure termination of
the curent process, RMODE is zeroed, PQFLG is set off and the history
string set null before the exit.

5-45



5.4.5 GDLID

Functional Description

This subroutine gets the base, modulo and separation parameters from
the DL/ID item in a dictionary. Typically this routine is called
immediately after the dictionary base, modulo and separation have
been obtained by GBMS.

GDLID retrieves the DL/ID item from the dictionary, and then enters
GBMS to pick up its base modulo and separation.

Input Interface

A D N
BASE o Contains b, m, s of a file,
MODULO L containi the DL/ID item
SEPAR - aining i .

Output Interface

RMBIT B Set if DL/ID found; zero otherwise.

BASE b Contains base FID, modulo and separation of
MODULO I the data-file (if RMBIT is set)

SEPAR T ’

Other elements as from GBMS and RETIX except that BMS/BMSBEG/BMSEND
do not contain the DL/ID item-id.



5.5 TERMINAL I/0

5.5.1 GETIB AND GETIBX

Functional Description

GETIB and GETIBX are the standard terminal input routines. Register
IBBEG points o a buffer area where the routine will input the data.
Input continues to this area until either a carriage return or line .
feed is encountered, or until a number of characters equal to the
count stored in IBSIZE have been input. The carriage return or line
feed terminating the input line is overwritten with a segment mark
(SM) and register IBEND points to this character on return. If the
input is terminated because the maximum number of characters have

been input, a SM will be added at the end of the line. This sub-
routine calls the subroutine GETBUF to read input data from the ter-
minal.  On return, GETIB then determines if the last character was

a carriage return or a line feed which terminates the line, and causes
a CR/LF echo :o the terminal; if not, it either accepts or deletes the
control character, depending upon the setting of the bit CCDEL, and
calls GETBUF again.

The entry GETIB also provides the facility for taking the input from a
stack instead of directly from the terminal. The bit STKFLG, if set,
indicates tha: stacked input is present and register STKINP points to
the area where the stacked input is stored. Input is copied from the
stack area to the buffer, through the delimiter AM. The delimiter SM
is used to signal the end of stack input. When this is encountered,
STKFLG is turned off to indicate no more stacked input, and the routine
then goes to the terminal for further input. The entry GETIBX does not
test for stacked input. The stacked input feature is used primarily

by the processor PROC to store input lines, which are returned to
requesting processors as if they originated the terminal.

The stacked input routine in GETIB tests the last character
of a stacked line for a '"<"; if found, that character is
overwritten with an SM. This allows the user to pass a
line-continuation character to processors which recognize 1it.

Input Interface

IBBEG S Points one prior to buffer area where input is to
be stored. Size of the buffer must be two
characters greater than the value in IBSIZE.

IBSIZE T Contains maximum number of input characters to be
accepted.
STKFLG B If set, indicates that "stacked'" input may exist;

if it does, terminal input will not be requested
until the stack is exhausted.

STKINP S Points to next '"stacked" input line; lines are
delimited by AM's; a SM indicates end of stack.

PRMPC C Terminal "prompt'" character; output before data
is requested from the terminal.

5-47



LFDLY T Low~order byte contains the number of "fill"
characters (nulls) to be issued after a carriage-
return/line feed is output to the terminal.

CCDEL B If set, control characters are deleted from
terminal input.

Qutput Interface

IB R Set to IBBEG.

IBEND S Points to SM one past last character input.
(Overwrites CR or LF character).

STKFLG B Zeroed if end of stacked input reached.

STKINP S Points to next line of stacked input.

Subroutines Usage

GETBUF, PCRLF (both local); uses one additional level of subroutine
linkage.

Error Conditions and Abnormal Exits

If the '"stacked'" input line exceeds IBSIZE, the line is truncated at
IBSIZE; the remainder of the line is lost.

5-48



5.5.2  GETBUF

Functional Description

Inputs data from the terminal, and performs line editing functions.
Returns control when a non-editing control character is input, or
when the number of characters specified in TO has been input.

Line editing features:

Character TInput Action

Control-H Logically backspaces buffer pointer; echoes
character defined at BSPCH.

Control-X Logically deletes (or cancels) entire input
buffer; echoes a carriage return, line feed,
re—-issues prompt character.

Control-R Re-types input line.

Rubout Ignored; the character is echoed, but is not
stored in the buffer.

Control-shift-K

Control-shift-L These characters are converted to the internal
Control-shift-M delimiters SB, SVM, VM, AM, and SM respectively;
Control-shift-N they echo as the characters [,/,], ,

Control-shitt-0

Note: The high-order bit of all characters input is zeroed.

Input Interface

R14 R Points one prior to input buffer area.
TO T Maximum number of characters to be accepted.
PRMPC C Character output as a '"prompt' when input is

first requested.

BSPCH C Character echoed when a control-H is input.

Qutput Interface

R15 R Points to control character causing return to
caller.



5.5.3 WRTLIN AND WRITOR

Functional Description

Standard terminal output routines. Outputs data to the terminal or
line-printer; controls pagination and page-heading routines. Entry
WRTLIN adds 2 carriage-return/line-feed to the data; WRITOB does not.

The data to se output starts at OBBEG, and continues through to the
location addressed by OB.

The data is output to the terminal if LPBIT is off; it is stored in
the printer spooling area if it is set. Pagination and page-heading
are controlled by PAGINATE, if set. In this case, when the number of
lines output in the current page (in LINCTR) exceeds the page size
(in PAGSIZE), the following actions take place: 1) The number of
lines specified in PAGSKIP are skipped; 2) the page number in PAGNUM
is incremented, and 3) A new page heading is printed (sge Section

5.5.5). A zero value in PAGSIZE suppresses pagination
regardless o the setting of PAGINATE.

The "delav" character that is output at the end of a line
1s X'00".

Editing Features

The internal delimiters SM, AM, VM, SVM, SB, are converted to the
characters _, ,]|,/,|, respectively, if SMCONV is off; the output
buffer area -s blanked if NOBLNK is off. Trailing blanks are always
deleted by the entry WRTLIN.

Carriage returns and line-feeds should not occur in the buffer if
pagination is to be usecd.

Input Interface

OBBEG S Points one prior to the output data buffer.

0B K Points to the last character in the buffer; the
buf fer must extend two characters beyond this
location.

LPBIT B If set, routes output to the spooler.

LISTFLAG B If set, suppresses all output to the terminal.

SMCONV B If set, suppresses conversion of internal delimiters.
NOBLNK B If set, suppresses blanking of output buffer.
PAGINATE B If set, pagination and page-headings are invoked.

PAGHEAD S Location of page-heading message.



LINCTR T Number of lincs printed in current page.
PAGSIZE T Number of printable lines per page.
PAGSKIP T Number of lines to be skipped at bottcm of page.

(Above four elements used only if PAGINATE IS

set.)
LINESOUT T Incremented on every entry.
LFDLY T Lower bvte contains number of "fill" characters to

be output after CR/LF.

Internal Usage

If LPBIT is sat, the spooler routine PPUT will be callec, and elements
R8, T4, T5, DO, D1, RECORD D2, R14, R15, OVRFLW, SYSRO may be destroyed.

Output Interface

OB R Reset to OBBEG

LINCTR, PAGNUM, LINESOUT: reset appropriately.

Subroutines Used

PPUT (printer spooler); PCRLF: NPAGE. Requires two additional levels
of subroutine linkage.

Errors and Abncrmal Exits

None

5.5.4  PCRLF

This subroutine may be used to output a CR/LF, with appropriate delays
if necessary. Its use is not compatible with pagination.

Input Interface

LFDLY See above.



5.5.5 PRNTHDR AND NEWPAGE

Page-heading control routine; PRNTHDR is used to initialize the
pagination control elements; NEWPAGE is used to cause a skip to a new
page, and to output a new page heading.

PRNTHDR sets the page number to one, the line counter to zero; sets
the pagination flag, and outputs the first page heading. The page
heading must be stored in a buffer defined by PAGHEAD; the header
message is a string of data terminated by an SM; other system
delimiters are used as below:

Delimith
SM,X'FF'
AM,X'FE'
VM,X'FD'

SVM,X'FC!

Carriage~returns,
the header message.

Input Interface

LPBIT

PAGHEAD

LINCIR
PAGNUM

LFDLY

OBBEG

Internal Usage

0B

Action
Terminates header line with a CR/LF.
The current page-number is inserted in the heading.
Prints header line, starts a new header line.

The current time and date are inserted in the
heading.

line feeds and form-feeds should not be included in

If set, output is routed to the print spooler.

Peoints one prior to the beginning of the header
message, which must be terminated by an SM.

Line number in current page.
Current page number.

Lower byte contains number of '"fill" characters

to be output to terminal after a CR/LF. Upper
byte: if non-zero, a form-feed (X'OC') character
will be output before the start of a new page, and
that number of '"fill" characters will be output.

Points one prior to a buffer when the translated
header message is built; this buffer area must be
16 bytes greater than the longest header line.
(Not total header message size.)

Used to build the header message and to output it.



Output Interface

LINCTR, PAGNUM Reset appropriately.

Subroutine Usage

WRITOB, TIMDATE Uses two additional levels of subroutine

linkage (three if time and date are inserted
in header)

Errors

None



5.5.6 PRINT AND CRLFPRINT

Functional Description

Sends a message to the terminal from textual data in the calling
program; used primarily for printing error messages. These subroutines
are not compatible with output conventions to the lineprinter, and

with the pagination routines. The message is a string of characters
assembled immediately following the subroutine call in the calling
program. The message must be terminated by one of the four delimiters
SM, AM, VM, or SVM. Control is returned to the instruction at the
location immediately following the terminal delimiter.

Delimiter Action

SM,X'FF' End of message; print carriage-return/line-feed
8

AM,X'FE' before return.

VM, X'FD' Print carriage-return/line-feed, continue.

SVM,X'FC' End of message, no carriage return/line-feed.

Input Interface

Message follows the call to this routine.

LFDLY T Low-order byte contains number of "fill"
characters after CR/LF is output.

Subroutine Usggg

PCRLF; one additional level of subroutine linkage.

Errors

None



5.6 VIRTUAL MEMORY T1/0

5.6.1 RDREC

Functional Dezcription

RDREC is used to set up the registers IR, IRBEG, and IREND to the
beginning and ending of the frame as defined by the tally RECORD. The
subroutine assumes the {rame has the linked format and therefore, IR
and IRBEG are set pointing to the eleventh byte of the frame, that is,
one prior to the first data byte of the frame. IREND is set up
pointing to the last or 511lth byte of the frame. Additionally the
subroutine RD.INK is entered to set up R15 pointing to the link portion
of the frame, and to set up the link elements NNCF, NPCF, FRMN, FRMP.

Input Interface

RECORD D Contains FID required.

Output Interface

IR R Points one prior to first data byte of frame.
IRBEG S As above.

IREND S Points to last data byte of frame.

R15 R Points to zero-th byte of frame.

NNCF H Contains "nncf" field of frame.

FRMN D Contains forward link FID of frame.

FRMP D Contains backward link FID of frame.

NPCF H Contains 'npcf" field of frame.

Subroutines Usage and Error Condition

None



5.6.2 RDLINK AND WTLINY

Functional Description

These routines read or write the link fields from or to a frame, to
or from the tallies NNCF, FRMN, FRMP and NPCF. The FID of the frame
is specified in RECORD.

Input/Output Interface

RECORD D FID of frame whose links are to be written or
read.

NNCF H Number of next contiguous frames.

FRMN D Next or forward link FID,.

FRMP D Previous or backward link FID.

NPCF H Number of previous contiguous frames.

R15 R Points to zero-th byte of frame.

Subroutines Used and Error Conditions

None



5.6.3 LINK

Functional Description

Sets up the link fields of a group of unlinked contiguous frames. Up
to 127 frames can be so linked. 1In each frame of the linked set, this
subroutine sets up the number of next contiguous frames field, the
next or forward link field, the previous or backward link field, and
the number of previous contiguous frames field.

Input Interface

RECORD D Contains first FID of the group to be linked.

NNCF H Contains one less than the number of frames in
the group (NNCF <127).

Output Interface

R14 R Points one prior to the first data byte of first
frame of linked set.

R15 R Points to the last data byte of the last frame

of linked set.

Subroutines Called and Error Conditions

None



5.7 OVERFLOW SPACE MANAGEMENT

§.7.1 GETOVF AND GETBLK

Functional Description

These routines obtain overflow frames from the overflow space pool
maintained by the system. GETOVF is used to obtain a single frame;
GETBLK is used to obtain a block of contiguous space (used mainly
by the CREATEFILE processor). Note that the link fields of the
frame(s) obta:ned by a call to GETBLK are not reset or initialized
in any way; this is a function of the calling routine (also see
Sections 5.7.3 and 5.7.4):; GETOVF zeroes all the link
fields of the frame it returns.

Input Interface

DO D (Accumulator) contains number of frames needed
(block size), for GETBLK only.

Qutput Interface

OVRFLW D Contains FID of the frame obtained (GETOVF) or
first FID of the block obtained (GETBLK).

Subroutines Used

SYSGET One additional level of subroutine linkage
required.

Error Conditions

Zero returned in OVRFLW if system overflow space is exhausted.



5.7.2 RELOVE, RELCHN AND RELDLK

Functional Description

These routines are used to release frame(s) to the overflow space
pool. RELOVF is used to relcase a single frame; RELCHN 1is used to
release a chain of linked frames (which mayv or way not be contipuous);
RELBLK is used to release a block of continguous frames. A call to
RELCHN specities the first FID of o linked set of {rames; the routine
will release all frames in the chain until a zcro forward link is
cencountered.

Input Interrace

OVRFLW D Contains the FID of the frame to be released
(RELOVE), or the first FID of the chain or
plock to be released.

DO D (Accumulator) contains the number of frames in

the bluck to be released (block-size), for
RELBLK only.

Output Intertace

None

Subroutines Called

SYSREL (RELBLK oniy); one additional level of subroutine linkage
required.

Errors

Noune



5.7.3 ATTOVF

Functional Description

ATTOVF is used to obtain a frame from the overflow space pool and to
link it to the frame specified in RECORD. The forward link field of
the frame specified in RECORD is set to point to the overflow frame
obtained; the backward link field of the overflow frame is set to
point to that in RECORD, and the other link fields of this frame are
zeroed.

Input Interface

RECORD D Contains FID of the frame to which an overflow
frame is to be linked.

Output Interface

OVRFLW D Contains FID of the frame obtained from
overflow space.

Subroutines Used

GETOVF Requires two additional levels of subroutine
linkage.

Error Conditions

Zero returned in OVRFLW if system overflow space is exhausted.

5-60



5.7.4  NESTIR AND NEXNTOVI

Functional Description

These routines obtain the foward linked frame of the
register IR currently points; if the forward link is
frame from the system overflow space pool is obtained

frame ro which the
zero, an available
and linked
appropriately (sce Scction 5.7.3). In addition, the IR register
triad is then set up before return, using the subroutine RDREC.

NEXTOVE may be used in g special way to automatical o
linked-Trame conditions, on register six (1R),

handle end-oi-
on siagle or multiple
byte move on scan instructions. Set tally XMODE to

the mode-1id of cae
subroutine NEXTOVE before the move or scan

instruction is executoed: if
the instruction causes repister IR to reach an end-ot-linked-frame
condition (forward link zera), the system will pencrate

5

4 subrout ine
call to NEXTOVE, which in turn obtains and links up an available trame,
and then resumes execution of the interrupted instruction. Noce that
the dnstruction "increment register by tally” cannot be so hand!led.

Instructions compatible with NEXTOVE are: MITD, MLl and MCI.

Input Interface

1R R On last data byte of frame.

Output Interiace

R R . o . . _
I . . Points to lirst data byte of forward linked frame.
IRBEG S
IREND S Points to last data byte of Irame.
RECORD D Contains FID ot frame to which IR points.
FRMN, As sct up by RDREC.
NNCEF,
FRMP,

NPCE, R15

Subroutine Used

RDREC; ATTOVF; uses two additional levels of subroutine linkage.

Frror Conditions

None



5.8 WORK SPACE INITIALIZATION

5.8.1 WSINIT

Functional Descriprtion

Initializes the process work-space pointer dyads: BMSBEG, BMSEND;
CSBEG, CSEND; AFBEG, AFEND; IBBEG, IBEND; OBBEG, OBEND; PBUFEND,
PBUFBEG. All work-spaces except the last are contained on one frame;
PBUFBEG and PBUFEND define a 4-frame linked work-space.

Work-Space Size (Bytes)

BMSBEG-BMSEND 50

AFBEG-AFEND 50
CSBEG-CSEND 100
IBBEG-1BEND Contents of IBSIZE; max. 140
OBBEG-OBEND Contents of OBSIZE; max. 140

PBUFBEG-PBUFEND 2000 (4 linked frames)

Input Interface

VOBIT B Set if linking of PBUF-space required.
I1BSIZE T Size of 1B buffer.
OBS1ZE T Size of OB buffer.

Output Interface

Storage reygisters set up as in above table; associated address
registers BMS, AF, C5, 1B, OB, set at beginnings of respective buffers.

Subroutine Usage

LINK; one additional level of subroutine linkage is used.



5.8.2 TS NIT

This routine sets up the pointers to a one-frame scratch space;
the pointers set up are TSBEG, TSEND, by TSINT. The associated
address register, TS, is set at the beginning of the buffer.

5.8.3 ISINIT

Functional Description

This routine initializes all the system work-space pointers. The
link-fields of linked work-spaces (IS, 0S, HS, PBUF) are not
initialized unless VOBIT is set. As the IS, 0S and HS may have addi-
tional work--space assigned to them, calling ISINIT with VOBIT set
will cause a loss of the additional work-space and a loss of system
overflow space.

Qutput Interface

As for TSIN.T and WSINIT above;

ISBEG, IS Point to PCB + 16
ISEND = ISBEG + 3000
0OSBEG, OS Point to PCB + 22
OSEND =0SBEG + 3000
HSBEG Points to PCB + 10
HSEND =HSBEG



5.9 TAPE CONTROL ROUTINES

These routines provide for passing control commands to the magnetic
tape unit. As in all tape commands, it is assumed that the tape
unit is "attached" to the process executing these routines; this is
flagged by the bit ATTACH being set. Conventionally, ATTACH should
only be set by executing the verb T-ATT from the TCL level.

5.9.1 INIT AND TPSTAT

All tape /0O routines use the INIT and TPSTAT subroutines. INIT
outputs a function-code of "1" to the tape controller, thereby setting
it to an initial condition, and then falls through into the tape
status from the controller. It will return only if the tape is in a
"ready" state. If the tape is rewinding, the subroutine will wait
till it finishes. Otherwise, the status is tested up to one hundred
times; if the tape unit is still not ready, an exit is taken to MD99
with error message 95 (NOT ON-LINE).

Input Interface

None

Internal Usage

T6 T Used as a delay counter

Output Intertface

REJCTR T Zero
Tape status bits are as below:
EOFBIT B Set if an end-of-file mark is reached.

EOTBIT B Set if the tape is at load point, or at the
end-of-tape marker.

PARITY B Set if a parity error is detected.

NORING B Set, on a write operation, if the write ring
in the tape is not present.

5.9.2 WEOF

Writes and end-of-file mark on the tape.



5.9.3 BCKSF

Back spaces the tape by one record.

5.9.4 REWIND

Rewinds the tape unit.

5.9.5 T'RWSP

Forward spaces the tape by one record; this subroutine destroys
location X'1FF' in the PCB.



5.10 TAPZ I/0 ROUTINES

5.10.1 TPREAD AND TPWRITE

TPREAD reads one record from the tape to a buffer defined by R15;
the read stops either when the inter-record gap in the tape is
detected, or at the end of the frame to which R15 points.

TPWRITE writes one record from the buffer defined by R15 to the
magnetic tape; the write will always continue until the end of the

frame to which R15 points.

A maximum of 512 bytes may be transferred by these routines.

Input Interface

ATTACH B Must be set, indicating tape unit is attached.

R15 R Points to first byte of buffer area.

Qutput Interface

R15 R Points to last byte read (TPREAD). In the case
of a read where the tape record is shorter than
the buffer, R15 points one byte past the last
data byte.

Tape status bits set appropriately.

Subroutines Used

INIT, TPSTAT (local); uses two additional levels of subroutines
linkage.

Error Conditions

Read parity error: the read is repeated ten times; if the parity
error persists, an exit is taken to MD99 with error number 98.

Write pavity error: the write is re-tried once; then the sequence -
backspace / write end-of-file mark / backspace and repeat write - is
tried nine times; if the parity error persists, an exit is taken to

MD99 with error number 98.

Also see INIT and TPSTAT.



5.10.2 ITPIDL, TPIZ, OBRTP, AND FORTP

The routines ITPIB, TPIB, OBTP and FOBTP allow reading and writing
variable length records, blocked in fixed-length 500-byte records.
These routines use¢ the first two frames of the 0S workspace to blcck
and. de-block; the unblocked data is passed to the write routine (OBTP)
in the OB; it is passed from the read routine (IBTP) in the IB.

Reading a blocked tape: An initial call must be made to ITPIB to
initialize the de-blocking pointers; subsequently, each call to TFIB
will return one tape record.

Writing a blocked tape: The data to be written to the tape is placed
in the 0B, and OBTP is called to store it in the blocking area. When
the output is to be terminated, one call to FOBTP must be made rto

clear the blocking area and force the data to be written to the tape.

These routines use the delimiter SB (X'FB') as the block delimiter;
therefore, SB's in the data to be written to tape are converted to

blanks before Leing output.

Note interface equivalence of these routines with the corresponding

terminal [/0 routinc.

Input Interface

ITPIB : OSBEG S Points are prior to deblocking buffer.
TPIB : IBBtG S Points one prior to bufier area where
deblocked data is to be copied.
OBTP : OBBEG S Points one prior to buffer area containing
data to be blocked.
OB R Points to last byte of data.
FOBTP : NONE

Internal Usage (All Routines)

OSBEG S Points to a linked work-space used by the
blocking and de-blocking routines. Must be
at least 3 frames.

0S R Current pointer in blocked data area; must be
maintained.

SC2 C Scratch (OBTP, FOBTP only).



Output Interface

ITPIB : OS R Points to OSBEG; first two tape records have
been read into the 0S frames.

TPIBR : IB R Points to IBBEG, one prior to de-blocked data.
IBEND S Points to a SM following last byte of data.
OBTP : OB R Reset to OBBEG

FOBTP : NONE

Subroutines Called

TPREAD or TPWRITE; three additional levels of subroutine linkage.

Errors

See precediig documentation.

5.10.3 SEGMNT (3,TAPETO-TL)

This subrouzine is used by the File-Restore, Sel-Restore, and Ace-
Restore processors to de-block data from a File-Save tape. The
built-up "scgment'" (data between segment marks on the tape) is stored
in the IS.

Input Interiace

Sl S Points to location, within 1B, of the last SM
found. On initial entry, this is setup by the
calling mode; it must be maintainced between
calls to SEGMNT.

Qutput Interface

ISBEG S Buffer where the segment has been copied.
IS R =ISBEG
XMODE T Zero

Subroutines Used

TP1B



5.11 LABELED TAPE 1/0 ROUTINLS

Label format:
(SM)L...label data... (VM) time date (AM) reel # (AM) (SM)

The label is stored in the quadrenary control block (FCB + 3);
displacements to various elements are as below:

EZES_PjéP}EEFm(“t Type Description
1A5 (Bit ) B "unlabeled tapes in use" flag
1A6 T Reel number
1A8 L Label save buffer (46 bytes)
1D6 L Label write/read buffer (30 bytes)

Since the L:pe—I/O routines are non-reentrant, internal storage is
utilized when an EOT condition is handled by the tape write or read
subroutines.

These routires save R13, R14, R15 in internal save areas (defined in
TAPEIO-11), and set up R13 to displacement X'1A6' in the quadrenary
control block in order to address elements in that block.

R13, R14 and R15 are restored on exit.

5.11.1 RDLAREL (2,TAPLTOQ-TT)

May be called once by nny program to read the label from reel #l; if
the tape is labeled, the label is stored in the save area; if rnot, the
"unlabeled tapes in use' flap is set. If the tape is not at the load
point, no action is taken. No input interface. On output, the label
save area is set up.

5.11.2 RDLARELX (5,TAPEFTO-T1D)

As for RDLAZEL, except that no check is made to see if the tape is

at the load point. This routine is used by the FILE-RESTORE

processor (aBSL), to read a label even though the tape may be positioned
past the load point. May be used by user-programs, though the
implications of doing so should be kept in mind.

5-69



5.11.3 WTLABEL (3,TAPEIO-III)

May be called once by any processor to write a label on reel #1; no
action is taken if the tape is not at load point. The label (if any)
passed as an input parameter is written to the tape, with the current

time and date, and reel number one, added. The label is also stored
in the label save buffer.

Input Interface:

IS R Points one before the label data, which must be

terminated by any standard system delimiter. The
label cannot be greater than 16 characters; it will
be truncated to 16 if it is. If a null label is
submitted, no label is written to the tape, and

the "unlabeled tapes in use" flag is set.

Output Interface

IS R Points to delimiter terminating label, or to
16 bytes beyond the input position if none is
found.

Label save area initialized.

5.11.4 WTLABELX (4,TAPETO-TI1T)

As for WTLABEL, except that no check is made to see if the tape is not
set to load point. This routine is used by the FILE-SAVE processor
(ABSD), to write a label at the current position of the tape. May be

used by user-programs, though the implications of doing so should be
kept in mind.



5.12 FILE-INITIALIZATION

5.12.1 DLINIT (6,DLOAD)

Functional Description

Obtains a block of contiguous overflow space for a file; links the
frames and sets up initial conditionsusing the routine DLINIT1
(described below)

Input Interface

MODULO T Contains the modulo required for the file.

SEPAR T Contains the separation rcquired for the file; if
SEPAR 1is greater than 127, it will be resct to
one.

Output Interface
BASE D Contains the beginning FID of a contiguous block

of size MODULO*SEPAR. If BASE=0, the system docs
not have sufficient overflow space.

Note: This subroutine automatically enters DLINIT1 if the overflow
space is obtained.

SubroutiggiuUscd

GETBLK; two additional levels of subroutine linkage.

5.12.2 DLINIT1 (7,DLOAD)

Functional Description
Initializes link fields of a file as specified by its base, modulo
and scparation parameters; sets each group empty by adding an AM at
the beginning.

Input Intertace

BASE b Contains base-FID, modulo and separation of
MODULO T .

file.
SEPAR T

5-71



Internal Usage

CTR1 T

RECORD D

Output Interface

R14 R As returned by subroutine LINK

R15 R

Subroutines Used

LINK; RDREC; two additional levels of linkage required.

System Accessing Routines

These subroutines may be used to setup pointers to system~files
(SYSTEM,ACC), to the PIB's, etc.

5.12.3 GPCRO (4,ABRSL)

Functional Description

Returns the PCB-FID for channel zero in the accumulator.

Input Interfaces

None

Output Interfaces

DO D Contains FID of PCB for channel zero. High
order 16 bits are zero.

5.12.4 SETPIR (4,LOGON)

Functional Description

Sets up R14 to point to the first byte of the PIB associated with the
process. No input interface.

5-72



Internal Usage

SR5 S Scratch

Output Interface

R14 R As described.

5.12.5 SETPIBF (3,ABSL)

Functional Description

Sets up R1l4 to point to the first byte of the PIB associated with
channel zero. No input interface.

Output Interface

R14 R As described.



5.12.6 GMMRMS

Functional Description

Sets up pointers to the SYSTEM dictionary (formerly called MM/DICT).

No Input Interface.

Output Interface

BASE D

MODULO T v A

SEPAR T SYSTEM dictionary.
5.12.7 GACBMS (1,LOGOFF)

Functional Description

Sets up pointers to the ACC dictionary.

Internal Usage

SR1 S Scratch
T6 T Scratch
All elements as used by GBMS
Output Interface
BASE D
MODULO T
SEPAR T
ACCOUNT)
REJ1 T

missing.

Subroutines Called

Contains base-FID, modulo and separation of

No Input Interface.

Contains base-FID, modulo and separation of the
ACC dictionary (actually a file, since ACC as
defined in SYSTEM is a Q-entry to the DL/ID of

Contains the value 331 if the ACC file is

GMMBMS; GBMS; two additional levels of linkage required.



5.12.8 GETOPT (10,SYSTEM-SUBS-11)

Functional Description

This program converts an option string consisting of single alphabetic

characters or a numeric specification. Alphabets set the corresponding
bit (A sets ABIT, etc.). Multiple options are separated by commas,

and the string must be terminated by a ")". ABIT through ZBIT are not

zeroed on entry.

Input Interface

IS R Points one before the option string.

Output Intertace

ABIT through ZBIT Set as described above.

NOBIT B Set if numeric option is found;
zero otherwise.

RMBIT B Set

D4 D Contains numeric values if numeric options is
found; unchanged otherwise. D& contains
first numeric, D5 second if found, otherwise
the same value as D4.

Error Conditions

Exits to MD99 with error 209 after setting RMODE zero if a format error
is encounterec.

5.12.9 GETUPD

Functional Description

Sets up the register triad UPDBEG,UPD and UPDEND, in unlinked format,
to PCB+28. A convenient way to setup a register to a buffer (also
used by RPG). Note that the UPD registers are treated as a scratch
register by some system subroutines. No Input Interface.



Qutput Interface

UPBEG S Points to byte zero of PCB+28
UPD R =UPDBEG
UPDEND S Points to last byte of PCB+28.

5.12.10 XI&0S

Exchanges the register triads [SBEG/IS/ISEND and OSBEG/OS/OSEND.

5.12.11 PRIVTSTI (5,8YSTEM-SUBS-1TT)

Tests if the process has system privileges, level one; exits to MD99
with error 82 after setting RMODE zero, clearing PQFLG and LISTFLAG,
and setting tte history string null if not.

5.12.12 PRIVTSTZ2 (7,SYSTUM-SUBS-TII)

As above, for system privileges, level two.



5.13 MISCELLANEOUS ROUTINLUS

Some of these subroutines are primarily used by system processors, and,
therefore may use elements other than the minimum set used by the
general-purpose system subroutines.

5.13.1 T_MDATE, TIME, AND DATE

Functional Description

These routianes obtain the system time and/or the system date, and
store it in the buffer area specified by R15. The time is returned
as on a 24-nour clock.

Entry Buffepw§ize Required ~£2£Ti£

TIME 8 HH:MM:SS

DATE 11 DD MMM YYYY

TIMDATE 21 HH:MM:SS DD MMM YYY

Input Interface

R15 R Points one prior to the buffer area.

Output Inte:cface

R15 R Points to last byte of data stored.

Subroutines_pscd

Entry TIMDATE uses TIME; requires two additional levels of subroutine
linkage; other entries require one level.

Errors

None



5.13.2 ASCIT TO BINARY CONVERSION

Functional Description

The routines described below will convert a string of ASCII decimal or
hexadecimal characters to their binary equivalent; the conversion

continues until an illegal (non-decimal or non-hexadecimal) character
is encountered.

On entry, the appropriate register (see table) points either to a
non-numeric character, one prior, or to the first character of the
string, which must be a plus sign, a minus sign or an appropriate
numeric (0-9 for the decimal routines, 0-9 and A-F for the hexadecimal
routines). Cn return, the converted binary number is in the accumulator
(and in some cases, in CTR1); the register points to the illegal
character causing the conversion to terminate. Note that the register
will always ke incremented by one even in the case of a null string

(no legal characters). Arithmetic overflow due to too many digits in
the character string cannot be detected.

The routines CVDR15 and CVXR1S5 will test for a '"+", a "-'"
or an appropriate numeric character at R15 on entry; if
none of these, R15 1s incremented and the tests repeated.
Thus, 1t is not necessary to call either of these two rou-
tines with R15 pointing to a minus sign.

’

Entry Register Conversion From: Value Returned IN:
Name Used Dec. Hex. Accumulator CTRI
CVDR15 R15 X X

CVXR15 R15 X X

CVTNIS IS (R4) X X X
CVTHIS IS (R4) X X X
CVTNOS 0S (R5) X X X
CVTHOS 0S (R5) X X X
CVINIR IR (R6) X X X
CVTHIR IR (R6) X X X
CVTNIB 1B (R10) X X X
CVTHIB IB (R10) X X X

Subroutine Used

CVDR15 or CVXRIS are called by the other routines; onc additional level
of linkage is required.



5.13.3 BINARY TO ASCIT CONVERSION (MBDSUB AND MBDNSUB)

Functional Description

These routines will convert a binary number to the equivalent string

of decimal ASCII characters. The conversion will store a minimum
number of characters (that is, leading zeroes will be padded if needed)
if the entry MBDNSUB is used; if MBDSUB is used, only as many
characters as are needed to represent the number will be stored. A
minus sign will precede the character string if the number to be
converted is negative.

These subroutines are implicitly called by the assembler instructions
MBD (move binary to decimal) and MBDN.

Input Intcerface

DO D (Accumulator) Contains number to be converted.

RIS R Points one prior to buffer where converted
characters are to be stored (maximum 9 characters).

T4 T (MBDNSUB entry only) <Contains minimum number of
characters to be stored.

Output Iaterface

R15 R Points to last converted character.

Subroutines Used and Error Conditions:

None.



5.13.4 EBCDIC TO ASCI1 CONVERSION (ECONV, R.ETA.M, AND R.ATE.M)

EBCDIC to ASCII conversion - ECONV

The register IB points to the EBCDIC character; a call tc ECONV
converts it to ASCII; characters that cannot be converted are returned
as a question mark (7).

String EBCDIC to ASCII with move - R.ETA.M

The registers R15 and R8 point to the first character of the source
and destination strings, respectively. CTR1 contains the character
count. R13, R14, and TO are destroyed. All characters are converted.
CTR1 should be zero on return. R15 and R8 point to the last

character of their respective strings on return.

String ASCII to EBCDIC with move = R.ATE.M

Same as R.ETA.M except ASCII to EBCDIC translation.



5.13.5 CREAD

Functional Description

The subroutine either reads a card and returns the card reader status
after the read or it just returns the status if it cannot read a card.
Cards are read in EBCDIC and are not converted by this routine.

Input Interface

R2 R Must point to a scratch byte. (Typically R2
will always point to byte zero of the SCBE.)

OBBEG S Points anywhere within the frame that the card

is to be read into. (Typically OBBEG will always
point within PCB+4).

Internal Usage

T3 T Used as a counter for status timeout after a read.

Output Interface

R2 R Unchanged. The byte that R2 points to contains
the status of the card reader.

CBIT B Zero if no card was read. Set if an attempt to
read a card was made.

R15 R Points to first byte of card read, 80 bytes from
the end of the frame that OBBEG points to.

Errors

None, except card reader errors returned as status. The status bits
are as follows:

Bit Explanation of the set condition.
0-2 Unused by the controller. Will be zero.
3 Card reader mechanical error (e.g., pick failure,

card motion error, etc.)

4 EBCDIC error detected. (e.g., an invalid punch
combination was detected.) Not an error if CBIT is
Zero.



Input hopper empty. Not an error if CBIT is set.

This bit is always zeroed by the routine. It is cnly
used for byte 1/0.

Card reader ready.

If bits 3,

5, and 7 are all set, this indicates that

power is off on the card reader.



5.13.6 SORT

Functional Description

Sorts an arbitrarily long string of keys in ascending sequence only;
the calling program must complement the keys if a descending sort is
required. 'The keys are separated by SM's when presented to SORT; they
are returned separated by SB's. Any character, including system
delimiters other than the SM and SB may be present within the keys.

An n-way po_yphase sort-merge sorting algorithm is used. The original
unsorted kev string may "grow' by a factor of 10%; and a separate buffer
is required for the sorted key string, which is about the same length

as the unsorted key string. The '"growth" space is contiguous to the

end of the original key string; the second buffer may be specified
anywhere. The SORT subroutine will automatically obtain additional
overflow space and link it if needed.

Due to this, one can follow standard system convention and build the
entire unscrted string in an overflow table with OVRFLCTR containing
the beginning FID; the setup is then:

beginning of end of "growth" beginning of
unsorted kevs unsorted keys ' space t second buffer
| A N | | = A

The second buffer pointer then is merely set at the end of the
"orowth'" space, and SORT allowed to obtain additional space as
required.

Alternately , the entire set of buffers may be in the IS or 0S work-
space if they are large enough.

Input Interface

SR1 S Points to SM preceeding first key.
SR2 S Points to SM terminating last key.
SR3 S Points to beginning of second buffer area.

Internal Usage

Entire BMS work area.

S1 through $9: Scratch



BMS R

CS R
IS R
0S R
TS R
HBIT B
LBIT B
SB1 B

Output Interface

SR1 S Points ftwo bytes before SB preceding first
sorted key. The sorted keys are delimited by
SB's, and the entire string terminated by an
SM.

Subroutine Usage

Internal call to COMP; ATTOVF if end of second buffer is reachec.
One additional level of linkage required.



5.13.7 BLOCK-LETTERS

Functional Description

This program provides the block letter capability, 1In addition to
its use at the verb level, it may be called as a subroutine
(DEFM 2,290). It will format a string of words on the ter-
minal or the printer and return to the caller.

Input Interface

ZBIT If set,direct output to the terminal; if not set,
direct output to the printer

IS Points one character prior to the {irst character to
be output; end of data is indicated by the character
pair SM,Z, if a segment mark is present in the
string not followed by a "Z" the string must be
terminated by a start buffer (SB) X'FB' (see
TCL-1 interface).

PAGSIZE Maximum number of lines per page.

OBSIZE Maximum number of characters on each output line.

Internal Usage

The followirg functional elements are used and not restored.

SC2, SCL REJCTR, Cl, PAGINATE, BASE, MODULO, SEPAR,
CTR16, CTR17, CTR18, SR4, SRS, SR&, SR7, SR8, SRY, SR10,
SR11, SR12, SR13, SR1L, SR15, SR16, SR17, SR18, SR19,
SR20, SR21, SR22, AFEND, LPBIT, ZBIT

Subroutines Called:

RETIX, GBMS, NEWPAGE, CVTNIR, WRTLIN

Error Conditions:

1f a BLOCK-TERM or BLOCK-PRINT error is detected, the program exits to
WRAPUP without resetting RMODE or VOBIT. See verb write-up on
BLOCK-TERM and BLOCK-PRINT in Reality Programmer's Reference

Manual.



5.14 ENGLISH AND BATCH INTERFACES

5.14.1 ENGLISH INTERFACE

It is possibcle to interface with the ENGLISH processor at several
levels. A typical LIST on SORT statement passes through the Pre-
processor aad Selection Processor before entering the LIST processor.
All statements must pass through the first two stages; but control
can be transferred to user-programs from that point onward.

5.14.2 GENERAL CONVENTIONS

The ENGLISH processors use a compiled string that is stored in the
IS work-space. String elements are separated by segment marks; there
is one element for each attribute specified in the original statement;

one file-defining element, and special elements pertaining to selection
criteria, sort-keys, e¢tc.

Formats:

File-Defining Element; at ISBEG+1

(SM)D file-name (AM) base (VM) modulo (VM) separ (AM) conv. (AM) correl.
(AM) type (AM) just. (AM) (SM).

Attribute-Defining Elcment

(SM) ¢ attribute-name (AM) amc (AM) conv. (AM) correl. (AM) type (AM)
just. (AM) (SM)
¢ = A - regular or D2 attribute.
Q - D1 attribute.
BX - SORT-BY, SORT-BY-DSND, etc. "X" is from attribute one

of the connective.

End-of-String Element

(SM)Z

Explicit Item-id's

(SM)1 item—id (SM)

5.14.3 THE SELECTION PROCESSOR

This performs the actual retrieval of items which pass the selection
criteria, if specified. Every time‘ an item is retrieved, the processor



at the next level is entered with ¢MBIT set; a final entry with RMBIT
zero is also made after all items have been retrieved. If a sorted
retrieval is required, the Selection processor passes items to the
GOSORT mode, which builds up the sort-keys preparatory to sorting rhem.
After sorting, GOSORT then retrieves the items again, in the requested
sorted sequence.

A user-program may get control directly from the selection processor
(or GOSORT if a sorted retrieval is required); the formats of the
verbs are:

Line Number Non-Sorted Sorted
001 PA PA
602 35 35
003 XXXX 76
004 XKXX

where "xxxx" represents the mode-id of the user-program. DMNote that,
in this method of interface, only item retrieval has taken place;
none of the conversion and correlative processing has been done. For
functional element interface, the column headed "Selection Processor'
in the table shown later must be used.

Exit convention: On all but the last entry, exit indirectly via RMODE
(using ENT* RMODE); on the last entry, exit to one of the WRAPUP entry
points. Processing may be aborted at any time by setting RMODE zero
and entering WRAPUP. SBO must be set on first entry.

5.14.4 SPECIAL EXIT FROM THE LIST PROCESSOR

A user-program may alsc gain control in the piace of the ncormal LIST
formatter, to perform special formatting. The advantage here is that
all conversions, correlatives, etc. have been processed, and the

resultant output data hkas been stored in the history string (HS area).
The formats of the verbs that are:

Line Number Non-Sorted Sorted
001 PA PA
002 35 35
003 41 4E
004 XXXX XXXX

Where "xxxx' is the mode-id of the user-program.

5-87



History-String Format: The oulput data is stored in HS area; data from
each attribute specified is stored in the string, delimited by AM's;
multiple values and sub-multiple values are delimited within by VM's
and SVM's respectively. Since the HS may contain data other than the
retrieved item, the user—program should scan from HSBEG, looking for a
segment preceded by an "X"; all segments except the first are

preceded by an SM.

X item~id (AM) value one (AM)...(AM) value n(AM) (SM)Z

The program must reset the history string pointer HSEND, as items are
taken out of the string. In special cases, data may not be used till,
say, four izems are retrieved, in which case HSEND is reset on every
fourth entry only. HSEND must be reset to point one byte before the
next available spot in the HS; normally one before the first "X" code
found.

Exit convention: see preceding section.

Example: The following program is an example of one which

prints item id's (only) four-at-a-time across the page.

001 FRAME 504 INTERNAL FLAG

002 ZB SB30 INTERNAL FLAG

003 BBS SBO,NOTF NOT FIRST TIME

004 % FIRST TIME SETUP

005 MOV 4,CTR32

006 sB SBO

go7 =

008 NOTF BBZ RMBIT,PRINTIT LAST ENTRY

009 BDNZ  CTR32,RETURN NOT YET 4 ITEMS OBTAINED
010 MOV 4,CTR32 RESET

011 PRINTIT MOV HSBEG,R 14

012 LOOP INC R14

013 BCE C'X',R14,STOREIT FOUND AN ITEM

014 BCE C'Z',R14,ENDHS END OF HS STRING

015 SCANSM SCD R14,X'CO! SCAN TO NEXT (SM)

016 B LOOP

017 STOREIT BBS SB30,COPYIT NO FIRST ID FOUND

018 SB SB30 FLAG FIRST ID FOUND

019 MoV R14,SR28 SAVE LOCATION OF FIRST "X"
020 COPYIT MIID  R14,0B,X'AQ" COPY [TEM-ID TO OB

021 MCC cC' ',0B OVERWRITE (AM)

022 INC 0B, 5 INDEX

023 B SCANSM

024  ENDHS BSL WRTLIN PRINT A LINE

025 MOV SR28, HSEND RESTORE HSEND TO FIRST "X'' CODE
026 DEC HSEND BACKUP ONE BYTE

027 BBZ RMBIT,QUIT

028 RETURN ENT*  RMODE RETURN TO SELECTION PROCESSCR
029 QUIT ENT MD999 TERMINATE PROCESS NG

030 END



5.14.5 FUNCTIONAL ELEMENT USAGE

The following table summarizes the functional element usage by the
Selection and LIST processors. Only the most important usage is
described; elements that have various usages are labeled "scratch".
A" " indicates that the processor does not use the element. Since
the LIST processor is called by the Selection processor, any element
used for "memory'" purposes (not to be used by others) in the former
is indicated by a blank usage in the latter column.

In general, user-programs may freely use the following elements:

Bits : SB20 upwards
Tallys : CRT30 upwards ; D3-D8
S/R's SR20 upwards

SBO and SBl have a special connotation; they are zeroed by the
Selection processor when it is first entered, and not altered there-
after. They are conventionally used as first-time switches for the
next two levels of processing. SBO is set by the LIST processor when
it is first entered. and user-programs that gain control directly from
Selection should do the same. SBO may be used as a first-entry switch
by user-programs that gain control from the LIST processor.

An ENGLISH verb is considered an 'update" type of verb of the SCP
character (from line one of the verb definition) is A, B, C, D, E, G,
H, I or J. SCP characters of B, C, D and E are reserved for future
ENGLISH update verbs.

BITS Selection Processor L1IST Processor

ABIT unused non-columnar list
BBIT first entry flag

CBIT scratch scratch

DBIT scratch dummy control-break
EBIT reserved control-break flag
FBIT reserved scratch

GBIT reserved scratch

HBIT reserved scratch

IBIT explicit item-~ids specified

JBIT reserved D2 attribute in process
KBIT scratch scratch

LBIT scratch left-justified field
MBIT conversion interface; zero Zero

NBIT scratch scratch

OBIT selection test on item-id

PBIT scratch scratch

QBIT scratch scratch

RBIT full-file retrieval flag

SBIT selection on values (WITH)

TBIT scratch print limiter flag



BITS
UBIT
VBIT
WBIT
XBIT
YBIT

ZBIT
SBO

SB1

SB2

SB4
through
SB16

VOBIT

COLHDRSUPP
DBLSPC
HDRSUPP
IDSUPP
LPBIT
CBBIT
PAGINATE

RMBIT

SMBIT
GMBIT
BKBIT

DAF1

DAF8

Tallys

C1;C3-C9
Cc2
CTR1-CTR4
CTR5S

CTR6
CTR7
CTR8
CTR9
CTR10

Sclection Processur LIST Processor

scratch reserved

reserved scratch

scratch reserved

scratch reserved

left-justified value being left-justified

tested print-limiter test

left-justified item-id

Unavailable first entry flag,
level one

Unavailable first entry flag,

level two
reserved; zero

scratch or reserved scratch or reserved

set for WRAPUP interface

set if corresponding connective

was found in input statement

set on exit if{ an item was
retrieved; zero on final

exit.

FUNC interface FUNC interface
FUNC intcrface FUNC interface
scratch scratch

set if SCP = B,C,D,E,G,
H,L or J
set if accessing a dictionary

Selection Processor LIST Processor

Scratch Scratch

contents of MODEID2

Scratch Scratch

Scratch AMC of current element
in IS

reserved Scratch

reserved AMC corresponding to IR

reserved Scratch

reserved Scratch

reserved Scratch



Tallys

CTR11
CTR12
CTR13
CTR14
CTR15
CTR16
CTR17
CTR18
CTR19
CTR20
CTR21
CTR22
CTR23
CTR24
CTR25
CTR26
CTR27
CTR28

D9
FP1-FP3,D7
RMODE

SIZE

SBASE

SMOD

SSEP
DBASE

DMOD
DSEP

S/R's

S1

52-89

SRO

SR1
SR2
SR3
SR4
SR5
SR6
SR7

Selection Processor

reserved
FUNC interface
FUNC interface
reserved
reserved
reserved
reserved
reserved
reserved
CONV interface
CONV interface
CONV interface
CONV interface
reserved
reserved
reserved
reserved
reserved

count of retrieved items
FUNC interface

return mode-id (MD30)
item-size

b,m,s of file

b,m,s of dictionary

Selection Processor

Points to next explicit
item—1id
Scratch

Points one before count
field of item

Points to correlative field
Scratch

reserved

Points to last AM of item
reserved

Points to conversion field
reserved

LIST Processor

Scratch
current-sub-value count
current value count
Scratch

Scratch

Contents of item count file
reserved

Scratch

Scratch

CONV interface

CONV interface

CONV interface

CONV interface

Scratch

Scratch

Scratch

current max-length
Scratch

FUNC interface

Scratch

LIST Processor

Scratch

Current correlative field
Scratch
Scratch

Next segment in IS
Current conversion field
Scratch



S/R's
SR8
SR9
SR10
SR11
SR12
SR13
SR14
SR15
SR16
SR17
SR18
SR19

PAGHLEAD

Workspace
pointers

A/R's
AF
BMS
Cs
[B
OB
IS
0s
TS
urp
IR

Work-Space

Selection Processor

reserved
reserved
reserved
reserved
reserved

GOSORT only: next sort-key

reserved
reserved
reserved
reserved
reserved
reserved

Heading in HS if HEADING
was specified

See sectlion on work—
space usage

Selection Processor

Scratch
within BMS area

compiled string
within 15 area

within item

Usage Selection Processor

AF Scratch

BMS Contains item~id

Cs

13

OB

1S Compiled string

0S

LIST Processor

reserved
reserved
Scratch

reservec
reservec
reserved
reserved
reserved
reserved
reserved
reserved
reserved

generated heading in HS

LIST Processor

Scratch

Scratch

Scratch

Scratch

Qutput data line
compiled string
Scratch

within TS area
within HS area
within item

LIST Processor

Output line.

Scratch



Work~Space

Usage Selection Processor LIST Processor
HS Heading data Heading data, attribute
data for special exits.
TS Scratch Current value in
process.

Additional Notes

1. If a full-file retrieval is specified, the additional internal
elements as used by GETITM will be used. If explicit item—id's
are specified, RETIX is used for retrieval of each item.

2. Elements as used by the FUNC and CONV processors have been

showm in the table; both mav be called either by the Selection
processor or the LIST processor.

3. Since the ISTAT and SUM/STAT processors are independently driven
by the Selection processor, the element usage of these processors
are not shown.

4. The section of the 1S and DS used by the Selection and LIST
processors is delimited by ISEND and OSEND respectively. The
buffer spece beyond trhese pointers is available for use by
other programs.

5.14.6 BATCY1 PROCESSOR INTERFACE

The BATCH processor uses a BATCH- string which defines the method of
updating one or more items in one or more files using a single line

of input data. The updated item(s) is(are) built as disc-update
string(s) in the history string area (see WRAPUP for format).

A user-exit can be defined in the BATCH-string; the functional
elements used by BATCH are described in the following tables; the

column headed 'Level" has the following entries:

0] - Element is used in the described fashion throughout
the BATCH processing.

F - Element is redefined every time a file-defining
element is found.

A - The element is redefined for every attribute.

blank

]

Scratch element, on reserved for future usage.

As far as user-cxvit programs are concerned, therefore, all elements
defined at the A" level can also be considered scratch.



Exit Convention: The user-exit must return to the BATCH processor by
executing the external transfer to the mode BATCH5 (DEFM 0,84).

Bits Level Description

ABIT 0 First-time switch for BATCH process.

BBIT reserved

CBIT Scratch

DBIT A D2 attribute in process.

EBIT F Updates to be merged with item on file.

FBIT 0 Set when a BV or BC Arb-element is found.

GBIT reserved

HBIT A D1 attribute in process.

IBIT 0 Set when a '"secondary'" file.

JBIT reserved

KBLT F Item to be verified as existing on file.

LBIT F Item to be verified as not existing on file.

MB1T A Set; CONV interface.

NBIT reserved

OBIT reserved

PBIT F Flag indicating that a multi-valued field
referenced by BC/BV element.

OBIT reserved

RBIT reserved

SBIT scratch

TBIT scratch

UBIT 0 Ttem is being deleted (X element in file-definition)

VBIT scratch

WRIT scratch

XBIT reserved

YBIT 0 Primary item being deleted.

ZB1T scratch

SB1 scratch

through

SB9

DAF10 0 Set if SELECT/SSELECT is driving BATCH.



Tallys Level Description

Cl scratch

C2 scratch

C3-C9 reserved

CTR1 scratch

CTR2 scratch

CTR3 scratch

CTR4 A D1-D2 set number (follows D1 or D2 element)

CTRS reserved

CTR6 reserved

CTR7 scratch

CTRS8 F Current amc in process.

CTRS reserved

CTR10 reserved

CTR11 F Value no. of '"D1;1" attribute;
0 if unspecified.

CTR12 F Value no. of '"D1;2" attribute;
0 if unspecified.

CTR13 F Value no. of '"'D1;3" attribute;
0 of unspecified.

CTR14-CTR19 reserved

FP1-FP3 scratch

BASE

MODULO scratch

SEPAR scratch

SBASE scratch

SMOD scratch

SSEP scratch

D7 scratch

D9 scratch

RMODE 0 Return mode-id for WRAPUP

5-95



/

Work-Spaces

& A/R's Level Description

BMS A Work-space contains current value

CS Scratch; work-space reserved.

AF Unused

IB 0 Input data line

0B Unused

TS 0 Used for reading input lines.

IS 0 Contains BATCH string; IS points to AM
before next element.

0Ss Scratch work-space

UupPD 0 Points to history-string

S/R's Level Description

S1-S9 Scratch

SRO 0 One before count field of primary item on file.

SR1 0 End of primary item on file

SR2 scratch

SR3 reserved

SR4 F End of current item on file.

SRS reserved

SR6 reserved

SR7 0 End of OS deletion table

SR8 reserved

SR9 A Last byte of value in BMS area.

SR10 F

SR11 0 End of primary update string if FBIT set.

SR12 0 Points one before "DU" of history string
for primary item update.

SR13 reserved

SR14 F Location of file-defining element in IS

SR15 F Location of IB when current file-defining
element was found.

SR16-SR19 reserved.



Characters Level Descripticen

SCP 0 Contains a "D" for B/DEL; "A" for B/ADD
SCO 0 Contains a blank.

SC1 0 Scratch

SC2 0 Contains a comma.

Also note elements used by CONV processor.

5.14.7 CONVERSTION PROCESSOR INTERFACE

The Conversion processor is called as a subroutine (CONV DEFM 0, 90)
and may be used to perform the Translate, Date, or Mask Conversions.
More than one conversion can be performed at once if the conversion
string is set up to do so; multiple conversion codes are separated by
VM's. Conversion is called by the ENGLISH pre-processor to perform
conversions on "input" data (in selection criteria), and by the LIST/
SORT processor to perform "output' conversion.

Input Interface

MBIT B Set if an "in th" conversion is to be performed'
>
zero for an "output" conversion.

TSBEG S Points one before the value to he converted; the
value is converted "in place', and the buffer is
used for scratch spare; therefore it must be
large enough to contain the converted value. The
value to be converted is terminated by any of the
standard system delimiters: SM, AM, VM, SVM.

IS K Points to the first character of the conversion
code specification string; the code(s) must be
terminated by an AM.

BMSBEG S Used for item—id copy on Translate conversions.

Internal Usage

SB10 B
SB11 B
SB12 B
SC2 C
CTR20 T
CTR21 T
CTR22 T
CTR23 T

5-97



S4 S Scratch; usud to save and restore various elements.
S5 S
S6 S
S7 S

Output Interface

IS R Points to AM terminating the conversion code(s).
TSBEG S Points one before converted value.

TS R Points to the last character of the converted
TSEND S value; a SM is also placed one past the value.

If a null value is returned, TS=TSEND=TSBEG.

If a Translate conversion is used, subroutines GBMS, GDLID, and RETIX
are used. Thus all elements used by those subroutines will be
destroyed, with the exception of IR, SR4 and SIZE, which are restored
before exit to their values or entry.

Subroutines Used: GBMS, GDLID, RETIX (T-conversion only); MBDSUB,
CVDR15

Error Exits:

CONV will exit tc WRAPUP after setting RMODE zero under the following
conditions:

705 Illegal conversion code

706 Illegal T-conversion: format incorrect, filename
cannot be found, etc.

707 DL/ID cannot be found for T-conversion file.

WRAPUP is also entered, without setting RMODE zero, under the following
error conditioas:

708 Value cannot be converted by the T-conversion.

339 Invalid format for input data conversion.

5.14.8 USER CONVERSION PROCESSING

The Conversion Processor will pass control to a user-written routine if
a "Uxxxx" code is found in the conversion string, where "xxxx' is the
hexadecimal mode-ID of the user-routine. This routine can then perform
special conversion before returning. The input interface at the user-
routine will be identical to that described in the preceding section;
after performing the conversion the user-routine should setup the



output interface elements (sec LNGLISH manual), and exit via an
external branch to 1,CONV, which will continue the conversion process

if multiple conversions are specified; a RTN may be executed if this is
not needed, or to prevent further conversions being performed. FEicments
used by the regular conversion processors may be safely used by user-
routines; however, if additional elements are needed, a complete know-
ledge of the processor that called CONVERSION (LiST, SELECTION, etc.)
will be necessary.

5.14.9 FUNCTION PROCESSOR INTERFACE
The FUNCTION processor is used by the ENGLISH LIST/SORT processors to
compute values which have an "F'" correlative specified. 1t may also

be called, as a subroutine, by user routines. Each call to FUNC
(DEFM 0,101) returns one value.

Input Interface

SR1 S Points to the "F" of the Function string.

SRO S Points one before the count-field of the item.
SR4 S Points to the last AM of the item.

CTR13 T Contains the "value number' currently being

processed (one on initial entry).

CTR12 T Contains the '"sub-value number" (D2 sub-value)
currently being processed.

TSBEG S Points to a buffer area-350 where the value is to
be stored on exit.

Internal Usage

SMBIT B
GMBIT B
CTR1 T
CTR12 T
CTR20 T
CTR21 T
IR R
IS R
D7 D
FP1-FP3 D



Output Interface

IR R
R15 R
1S R
DO, FP1 D

Programming Note

Points one before the value copied (TSBEG+350); the
value is delimited by an AM if none of the
referenced fields contained multiple or sub-
multiple values; by a VM if at least one of the
referenced fields contained a VM on this entry

by A SVM if at least one of the referenced fields
contained a SVM on this entry.

Points to a blank following the terminal delimiter
of the value.

Points to the AM or one past a VM, terminating the
Function string.

Contains final computed result.

On the first call to FUNC, CTR12 and CTR13 are both set to one; when

FUNC returns a value,

the terminal delimiter determines what action to

take or subsequent calls--a VM indicates increment of CTR13 before the
next call; a SVM indicates increment of CTR12; an AM indicates end of

processing:

ONE

FC1 ONE
FC2 BSL

CTR13 SET VALUE NUMBER TO ONE
CTR12 SET SUB-VALUE NUMBER TO ONE
FUNC

store value from IR

DEC
BCE
INC
BCE
INC
B
END EQU

R15

AM,R15,END END OF PROCESSING

CTR12 INCREMENT SUB-VALUE COUNT

SVN,R15,FC2 GET NEXT SUB-VALUE

CTR13 INCREMENT VALUE COUNT

FC1 GET NEXT VALUE; RESET SUB~-VALUE COUNT
* CONTINUE

5-100



5.11.10 SPECIAL U-CORRELATIVE EXIT

Format: 'U5S08E'

This may be used in a dictionary attribute to generate an output listing via
the ENGLISH LIST or SORT statements that is identical in format to the COPY ...
(T) output. This is mainly useful to list BASIC programs and other textual

data in the COPY format, but where the ENGLISH feature such as pagination,
headings, selection, etc. are to be used.

Example:

The dictiomary of the BP (Basic Programs) file contains an attribute

'UCOPY"':
ucory
001 A
002
003
004
005
006
007
008 U508E
009 R
010 1

A formatted listing of items in the BP file can be generated by the statement:

:LIST Bf UCOPY 'PROGL''PROGZ' 1D-SUPP COL~HDR-SUPP(CR)
S 1Y LPTR @

(HEADING'BASTC PROGRAMS

The "ID-SUPP" is needed to prevent the item-id being duplicated on the output;
the "COL-HDR-SUPP" suppresses the normal ENGLISH time/date heading and the

attribute heading.

Notes:

1. Line numbers will appear on the output if the attribute with the
U-correlative is right-justified (as in the example above); by using
an "L" in line 9 of the attribute, line numbers will be suppressed.

2. The attritute with the "US5S08E'" correlative should be the only
attribute specified.

5-101






	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	3-78
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-001
	5-002
	5-003
	5-004
	5-005
	5-006
	5-007
	5-008
	5-009
	5-010
	5-011
	5-012
	5-013
	5-014
	5-015
	5-016
	5-017
	5-018
	5-019
	5-020
	5-021
	5-022
	5-023
	5-024
	5-025
	5-026
	5-027
	5-028
	5-029
	5-030
	5-031
	5-032
	5-033
	5-034
	5-035
	5-036
	5-037
	5-038
	5-039
	5-040
	5-041
	5-042
	5-043
	5-044
	5-045
	5-046
	5-047
	5-048
	5-049
	5-050
	5-051
	5-052
	5-053
	5-054
	5-055
	5-056
	5-057
	5-058
	5-059
	5-060
	5-061
	5-062
	5-063
	5-064
	5-065
	5-066
	5-067
	5-068
	5-069
	5-070
	5-071
	5-072
	5-073
	5-074
	5-075
	5-076
	5-077
	5-078
	5-079
	5-080
	5-081
	5-082
	5-083
	5-084
	5-085
	5-086
	5-087
	5-088
	5-089
	5-090
	5-091
	5-092
	5-093
	5-094
	5-095
	5-096
	5-097
	5-098
	5-099
	5-100
	5-101
	5-102

