PROPRIETARY INFORMATION

The inforrnation contained herein is proprietary to and
considered a trade secret of Microdata Corporation
and shall not be reproduced in whole or part without
the written authorization of Microdata Corporation.

©1977 Microdata Corporation

All Rights Reserved

TM—Trademark of Microdata Corporation
Specifications Subject to Change Without Notice
Srinted in U.S.A.

Price: $10.00

L

REALITY

(3.0 SERIES)

Proc & Batch

Programming Manual

771044

* Microdata Corporation

17481 Red Hill Avenue, Irvine, California 92714
Post Office Box 19501, Irvine, California 92713
Telephone: 714/540-6730 - TWX: 910-595-1764

CONTENT'S

Title

INTRODUCTION

The PROC and BATCH Processors

How to Use This Manual

THE PROC PROCESSOR

An Introduction to PROC's .

Input/Output Buffer Operation

Buffer Delimiters . .

.

.

.

File Buffers and Select Registers.

Buffer Referencing, Direct and Indirect

An Overview of PROC Commands.
Selecting Buffers and Positioning Pointers:
and NBO Commands.
A or NA Command .

NS, F, NF, B, NB, BO,
Moving Parameters: The
Moving Parameters: The
Moving Parameters: The
Inputting Data:
Outputting Data:

and RO Commands . .
Transferring Control:

RSUB Commands . .« =
Transferring Control:
Relational Testing:
Pattern Testing:
Computed Branching:
File Commands:
File Commands :
File Commands :
File-Locks:
Mathematical Functions:

Formatted Line Printer Output:

Terminal Formatting:

.

MV Command

.

-

.

MVA and MVD Commands .

.

.

.

.

The F;

.

Calling Processors, Program Locks.

PROC Termination and User Exits:

Transfers and Subroutine Calls:

Commands
Special PROC Verbs:
Sample PROC:
Sample PROC:
Sample PROC:
Sample PROC:

THE BATCH PROCESSOR

An Introduction to BATCH

BATCH-strings
Input Lines.

BATCH-string File Defining Elements

.

.

.

.

.

.

.

.

.

and TR Commands

The IH, NIH, H,

.

The Simple IF Command .
The Relational IF Command
The Pattern Matching IF Command . . .
The Multi-valued IF Command . . .
The F-OPEN and F-CLEAR Commands. « .« .«
The F-READ, F-WRITE, and F-DELETE Commands
The FB Command .
The PFP-UREAD, FBU,

-

. 0 . .

The GO, GO F, GO B, M, GOSUB and

and F-FREE Commands - -
Command
The L Command.
The T Command,
The Plus (+), Minus (-), C,

. - . -

- - - .

The X and U Command .

The (), [], and RTN

GO and

BATCH-string Attribute Defining Elements.

PQ-COMPILE and PQ-SELECT.
File Update Via BATCH

File Update Via EDITOR
Using SSELECT and COPY Verbs .
Using Variable Testing,

D

The IN, IP, IT, NIN, NIP and NIT Commands
The 0 and D Commands.
Text Strings and Clearing Buffers:

NH, RI

.

Topic

Appendix A
Appendix B
Appendix C

CONTENTS Cont'd.
Title

THE BATCH PROCESSCR (Continued)

Additional BATCH-string Elements and Sub-elements .

BATCH-locks and the Continuation Character .

A Complete BATCH Example

Sample Usage of B/DEL Command with a J Sub-element
Sample Usage of BATCH with SELECT and SSELECT VERBS

PROC Command Summary . =« =« =« =+ =« =
List of ASCII Ccdes . . .« .+ =+ « =«
Assembly Interface for PROC User Exits

Topic

3.6
3.7
3.8
3.9
3.10

Al

Bl
Cl

vi

HOW TO USE THE REALITY® MANUALS

The Reality® manuals are written in modular format with each pair of facing
pages presenting a single topic.

This and other Reality manuals differ substantially from the typical reference
manual format. The left-hand page of each topic is devoted to text, while the
right-hand page presents figures referred to by the text. At the head of each
text page are a pair of titles, the first title naming the section, the second

the topic.

Immediately below these titles is a brief summary (boxed) of the

material covered in the topic.

The advantage of this format will become readily apparent to the reader as he
uses this manual. First, the figures referred to in the text are always con-
veniently right in front of the reader at the point where the reference is made.
Secondly, the reader knows that when he turns the page, he has completed one
idea and is ready to encounter a new one.

Documentation for the Reality system includes the following:

Reality
Reality
Reality
Reality
Reality
Reality
Reality

The examples
Figure A.

Programmer's Reference Manual, #1048
EDITOR Operator's Guide, #1052

ENGLISH™ programming Manual, #1038
DATA/BASICTM. Programming Manual, #1051
PROC and BATCH Programming Manual, #1044
Assembly Language Programming Manual, #1049
Bisync Operator's Guide, #1043

throughout this manual use certain conventions as defined in

TEXT

TEXT

CONVENTION MEANING

. Shaded text represents the user's input.

Standard text represents computer output
printed by the system.

Italicized text is used for comments and notes
which help explain or describe the example.

This symbol represents a carriage return,

This symbol represents a space (blank).

Figure A, Conventions Used Throughout This Manual

1 INTRQDUCTION

1.1 THE PROC AND BATCH PROCESSORS

This manual describes two processors which are implemented on Microdata's
Reality ® Computer System: the PROC (stored procedure) processor and the
BATCH update processor.

The PROC processor allows the user to prestore a complex sequence of Terminal Con-
trol Language (TCL) operations (and associated brocessor operations) which can
then be evoked by a single word command. Any sequence of operations which can be
executed at the TCL level can also be prestored via the PROC procassor. This pre-
stored sequence of operations (called PROC) is executed interpretively by the PEOC
processor and therefore requires no compilation phase.
The PROC processor has the following features:

Four variable length I/0 buffers

Parameter passing between buffers

Iinteractive terminal prompting

Extensive I/0 and buffer control commands

Conditional and unconditional branching to optional command labels

relational character testing and pattern matching

File accesses and updating

Free-field and fixed-field character manipulation

Formatted screens and printouts

PROC calculations

Inter-PROC linkage and subroutines
The BATCH processor provides a facility for inputting, updating, verifying, and
deleting items (or attributes) within Reality files. The BATCH processor oper-
ates via a predefined "BATCH-string" and a subsequent input line. The BATCH-
string provides the dictionary function for the file update. 1In other words, the
BATCH processor ignores the attribute defining items defined for the designated
files (i.e., attributes which are used by the ENGLISH® language processor) , and

instead relies on the BATCH-string to define the updating algorithm. This pro-
cessor is largely replaced by DATA/BASIC, but is maintained for compatibility.

The BATCH processor includes the following features:

It is

Simultaneous update of multiple files

Reversal of update function via same BATCH-string
Input prompting

Free-field and fixed-field character referencing

BATCH-lock capability protecting against concurrent BATCH-
string access

Interactive update capability when used in conjunction with
a PROC

assumed that the user has read and understood the document titled

"INTRODUCTION TO REALITY" prior to referencing this manual. A general
understanding of the material covered in the "REALITY PROGRAMMER's
REFERENCE MANUAL" will also prove useful in comprehending the finer
points of this manual.

1 INTRODUCTION

1.2 HOW TO USE THIS MANUAL

This manual is written in modular format with each pair of facing
pages presenting a single topic.

The approach in this and other Reality manuals differs substantially from
the typical reference manual format. Here each pair of facing pages
discusses an individual topic. Generally the left-hand page is devoted

to text, while the right-hand page presents figures referred to by the
text. At the head of each text page are a pair of titles, the first one
naming the section and the second one naming the topic. Immediately below
these titles is a brief summary of the material covered in the topic.

The advantage of this format will become readily apparent to the reader
as he begins tc use this marual. First of all, the figures referred to
in the text are always conveniently right in front of the reader at the
point where the reference i made. Secondly, there is a psychological

advantage to the reader in knowing that, whe he has completed reading a
topic and goes to turn the page, he is done with one idea and ready to

encounter a new one.

Subsequent sections of this manual describe various PROC and BATCH elements.
In presenting general formats and examples relating to these elements, cer-
tain conventions apply. Conventions used in presenting general formats

are listed in Figure A, while conventions used in examples are listed in
Figure B.

Marginal change bars are for the convenience of present Reality users and
indicate significant additions or changes from prior Reality publications.

CONVENTION

UPPER CASE

lower case

{}

{}...

MEANING

Characters or words printed in upper case are
required and must appear exactly as shown.

Characters or words printed in lower case arve
parameters to be supplied by the user (e.g.,
file name, columm number, data, ete.).

Braces surrounding a word and/or parameter
indicate that the word and/or parvameter is
optional and may be included or omitted at
the user's option.

If an elipses (i.e., three dots) follows the
terminating bracket, then the enclosed word
and/or parameter may be omitted or repeated
an arbitrary number of times.

Figure A. Conventions Used in General Formats

CONVENTION

TEXT

MEANING
Shaded text represents the user's input.

All other text represents output printed by
the system.

This symbol represents a carriage return.

Figure B. Conventions Used in Examples

(Significant texiual changes ave indicated by a vertical bar such as
the one at the right.)

Figure C, Change Bar Format

2 THE PROC PROCESSOR

2.1 AN INTRODUCTION TO PROC'S

An integral part of the Reality Computer System is the ability to define
stored procedures called PROC'S.

A PROC provides the applications programmer a means of cataloging a highly complex
sequence of operations which can then be evoked from the terminal by a one word
command. Any operation that can be executed by the Terminal Control Language can
be performed in a PROC. This usage of a PROC is quite similar to the use of a Job
Control Language (JCL) in some large-scale computer systems. The PROC language

in Reality, however, is more powerful since it has additional capabilities, and
can be used to interactively prompt the terminal user. Additionally, a PROC can
test and verify input data as they are entered from the terminal keyboard. Fur-
thermore, the ability to access and update files from PROC makes PROC an exceed-
ingly flexible tool.

A PROC is stored as an item in a dictionary or data file. The first attribute
(first line) of a PROC is always the code PQ. This specifies to the system that
what follows is to be executed by the PROC processor. All subsequent attribute
values contain PROC statements that serve to generate TCL commands or insert
parameters into a buffer for the interactive processors, such as the EDITOR or
the BATCH processor. PROC statements consist of an optional numeric label, a
one- or two-character command, and optional command arguments.

Typically, PROC's are created using the EDITOR. PROC's are executed interpre-
tively by the PROC processor and therefore require no compilation phase. (An
optional compilation can be used to speed up PROC's.) A PROC stored as an item
in the user's Master Dictionary (M/DICT) is executed in the TCL environment by
typing the item-ID of the PROC, any optional arguments, and a carriage return.
This is illustrated in Figure A where the sample PROC named LISTU is evoked. The
ability to pass arguments to a TCL level process via a PROC is illustrated in
Figure B. Here LISTDICTS is the name of the pre-stored PROC, while POLICY is the
argument being passed.

The ability to interactively prompt input data from the user (and subsequently
verify these data) is illustrated in Figure C. Here the PROC named ENTER-DATA

is evoked. The PROC then prompts the user for the required data. The PROC could
then, for example, store these data in a buffer which would then be passed to the
BASIC processor to update the file.

Once a PROC is evoked, it remains in control until it is exited. When the PROC
temporarily relinguishes control to a processor such as the EDITOR or a user-
supplied subroutine, it functionally remains in control since an exit from the
called processor returns control to the PROC. TCL only regains control when the
PROC is exited explicitly, or when all of the lines in the PROC have been ex-
hausted.

CHANNEL PCB-FID NAME...... DATE

THREE 0260 KARDEX 14 SEPT 1977 12:38
ELEVEN 0360 EARL 14 SEPT 1977 14:01
TWO 0240 EARL 14 SEPT 1977

ZERO 0200 SYSPROG 14 SEPT 1977

Figure A. Sample PROC Execution

POLICY...innecnnnnn D/CODE.. A/AMC.
AUDIT-PERIOD A 01
POLICY-PERIOD-FROM A 02
POLICY-PERIOD-TO A 03
EXPIRES A 03

V/TYP V/MAX

[B A A

4

10
11
12

Figure B. Sample PROC Execution (Argument Passing)

PART-NUMBER =
DESCRIPTION =
QUANTITY =
ERROR: NUMERIC DATA ONLY!!

QUANTITY =

Figure C. Sample PROC Execution (Interactive Prompting)

2 THE PROC PROCESSOR

2.2 INPUT/OUTPUT BUFFER OPERATION

Operations specified within a PROC involve the movement of data from either of
two input buffers to either of two output buffers.

PROC's utilize four input/output buffers: the primary input buffer, the secondary
input buffer, the primary output buffer, and the secondary output buffer (called
the stack). See Figure A. Essentially, the function of a PROC is to move data
from either input buffer to either output buffer,’ thus forming the desired TCL

and processor commands.

The primary input buffer contains the PROC name and any optional arguments, ex-
actly as they were entered when the PROC was evoked. The contents of this buffer
remain the same whenever processors are called. This buffer is typically used for
terminal input, and for storing parameters which control the sequence of PROC exe-
cution. Commands in DATA/BASIC allow this buffer to be altered.

The primary output buffer holds the command which ultimately is submitted at the
TCL level for processing. Any command which can be executed via the terminal at
the TCL level can also be constructed and executed via a PROC.

The secondary input buffer contains data input from the user in response to an IN
command. The data in this buffer are volatile and are overwritten by subsequent
IN commands. This buffer has fallen into disuse, but is maintained for compati-
bility.

When all desired data have been moved to the secondary output buffer, control is
passed to the primary output buffer via a P or PP command. The command which re-
sides in the primary output buffer is executed at the TCL level and the data in
the secondary output buffer (if any) is used to feed processors such as BATCH or
EDITOR. When the process is completed, control returns to the PROC, at which time
new data may be moved to the output buffers.

Data in the input and output buffers is in the form of a series of parameters
separated by blanks or attribute marks. References to a parameter in one of
these buffers is made via the sequential number of that parameter within the buf-
fer or by the starting character within the buffer. Thus we refer to the sixth
parameter in the primary output buffer or the data starting in column 16 of the
secondary input buffer (counting from "1" in both cases).

There are three pointers, one into the input buffers and two into the output
buffers. These are indicated by 4 in Figure A. The pointer into the input
buffers points into whichever is "active" (next paragraph). This pointer

may be moved back and forth without affecting the data in the buffer. Each out-
put buffer has its own pointer which always points to the end of data in those
buffers. If the pointer is moved backward, the data to the end of the buffer
will be cleared.

At any given time, one of the input buffers is specified as "currently active",
and one of the output buffers is specified as "currently active." The input
pointer always points into the input buffer which is active. When the PROC is

entered, or after the TCL process returns to the PROC, the primary input buffer
is active and the primary output buffer is active. Having the "stack on" or the
"stack off" is an alternate way of referring to the secondary output buffer being
active versus the primary output buffer being active. Buffers are selected as
"currently active" via certain PROC commands. When data is moved by the

A command, it is moved from the position of the input pointer to the position

of the output pointer in the buffer which is active,

As an illustration of this concept, consider Figure A. Here the PROC has been
evoked by the characters ABC XYZ, which are then automatically placed in the pri-
mary input buffer. PROC commands have then been processed which position the
input pointer of the primary input buffer to the second parameter (XYZ), and then
subsequently move that parameter to the primary output buffer as illustrated in
Figure A. 1In this example the currently active buffers are the primary input
buffer and the primary output buffer.

The user should note that each line of data placed in the secondary output buffer

must be terminated by a carriage return which is explicitly placed in the stack

as part of an H command (refer to the topic describing that command). This is not
the case with the primary output buffer; a carriage return is automatically placed
at the end of the TCL command in the primary output buffer upon execution of that

buffer via the P or PP command.

PRIMARY INPUT BUFFER PRIMARY OUTPUT BUFFER

[aBC xVZ B \ /nyz |
4 | 4

SECONDARY INPUT BUFFER . o SECONDARY OUTPUT BUFFER

C 1 \'x]

Figure A. Sample Inter-Buffer Transfer With Both Primary Buffers
Currently Active

2 THE PROC PROCESSOR

2.3 BUFFER DELIMITERS

PROC enhancements required a change in the buffer delimiter from blank
to attribute mark. The old commands use blank to maintain compatibility.

Recent enhancements to the PROC processor have required the capability

to delimit parameters with some character other than blank. The attribute
mark has now been implemented as the new buffer delimiter. The major
advantage is the ability to have null parameters, parameters which

contain imbedded blanks, and parameters which match the format of REALITY
file items.

In order to provide upward compatibility, the original PROC commands which
use the blank as the parameter delimiter have not been changed. New
commands (type 'N') have been added to take advantage of the attribute
mark as the parameter delimiter. Commands which cause the buffer pointer
to move leave the pointer pointed to an attribute mark. While
combinations of the original commands and the new commands are allowed,
the two sets are designed to work as two distinct alternatives.

See Figure A for some comparisons of the commands.

-

NA

NF .

NB

IP

NIP

IH

NIH

BO

NBO

Note:

Moves from the first non-blank to the first blank.

Moves from one attribute mark to the next ineluding imbedded
blarks.

Moves the pointer forward to the first character of the next
parameter.

Moves the pointer forward to the next attribute mark.

Moves the pointer backward to the firvst character of the
previous parameter.

Moves the pointer backward one attribute mavk.

Moves data into the current imput buffer location with imbedded
blanks preserved.

Moves data into the current input buffer location but replaces one
or multiple consecutive blanks with g single attribute mark.

Moves the character string which follows into the current pointer
position.

Moves the character string which follows into the curvent pointer
position, replacing each set of one or more blanks with a single
attribute mark.

Moves the output buffer pointer back to the first character of
the previous parameter.

Moves the output buffer pointer back to the previous attribute
mark.

All positions are relative to the applicable buffer pointers.

Figure A. Comparison of Original and New Commands

2 THE PROC PROCESSOR

2.4 FILE BUFFERS AND SELECT REGISTERS

The nine file buffers are used for reading and writing records. The five
select registers are used to hold the results of SELECTS or SORT SELECTS.

The data within a file buffer is divided into attributes separated by attribute
marks. Reference to an attribute beyond those already established will cause
automatic construction of the required number of additional attributes.

File buffers are referenced by using an ampersand (&) followed by the file buffer
number, a period (.) and a numeric value. The period is used as a separator and
the numeric value is the attribute number; O references the item-ID. File buffers
may not be used until opened. See the section on file commands.

The maximum size of a file buffer is 32,267 bytes.

Select registers are used when processing the results of a SELECT or SSELECT, or
for handling multi-valued attributes. Any of the five select registers may con-
tain only one attribute at any time. The attribute may be of any size and may
contain multi-values. See the topic SPECIAL VERBS FOR USE WITH PROC: THE PQ-
COMPILE AND PC-SELECT VERBS.

The select registers are referenced using an exclamation mark (!) followed by the
number of the register. Each reference to a select register obtains the next
value (item-ID) for processing. If a value is to be used more than once, it
should be moved to another buffer.

Any new values added to a select register cause all previously existing values to
be deleted.

Figure A presents some examples of the file buffer concept. Figure B presents an
example of the general form for select register reference.

PARAMETER # BUFFER #1 BUFFER #2 ... BUFFER #n
0 1234 100
1 SMITH 1234 e
2 1260 480 cee
3 487~30-7914 80
4 12 SEPT 44 3235
5 M 3242
N e .
&l.1 References the value "SMITH" in buffer #1.
&l.4 References the value "12 SEPT 44" in buffer #1.
&2.3 References the value "80" in buffer #2.
&2.0 References the value "100" in buffer #2.
&F.A & = File buffer reference.
F = File buffer number.
. = Separator.
A = Attribute number referenced.
Figure A. File Buffers Concept

= Select register reference.

Il

SELECT REGISTER CONTENTS

BLUE]BROWN] GREEN] YELLOW

Select register number.

Ist ref (In) obtains "BLUE"

BROWN] GREEN] YELLOW 2nd ref (In) obtains "BROWN'
GREEN] YELLOW rd ref (In) obtains "GREEN"
YELLOW

Figure B. General Form for Select Register Reference

2 THE PROC PROCESSER

2.5 BUFFER REFERENCING, DIRECT AND INDIRECT

Direct and indirect reference may be made to input, output and file buffers,
and to select registers.

Four characters are reserved to indicate the buffer referenced:

Reference the primary input buffer

Reference the currently active output buffer (see ST command)
Reference a file buffer

- Reference a select register.

— .
I

Direct referencing of the buffers is accomplished by following the appropriate
buffer character with literal(s). See Figure B.

An indirect reference can be made by following the buffer reference character(s)
with the input or output buffer symbol and literal. The indirect reference may
only be from the primary input buffer (%) or the current output buffer (#). If
the value referenced is non-numeric, then zero is used. See Figure C.

Buffer references may be used with many PROC commands. For a detailed descrip-
tion, see the descriptions of the individual commands.

PROC commands which use buffer references are:

F~OPEN NIP MV
F-READ NTIH F;
F~-WRITE T IFr
F-CLEAR L

F-DELETE NH

%n Obtain parameter '"m" from primary input buffer.
#n Obtain parameter "n" from "curvent" output buffer.
&F.n Obtain attribute "n'" from file buffer "F".

In Obtain the next value from select register 'n'.

Figure A. Buffer Reference Syntax

%23 Obtain the 23rd parameter from the primary input buffer.
#4 Obtain the 4th parameter from the current output buffer.
&4.19 Obtain attribute 19 from file buffer 4.

13 Obtain the next value from select register 3.

Figure B. Direct Reference

%55
T Obtain the actual parameter to be used from the value in
parameter 6 of the primary input buffer

Obtain parameter from primary input buffer.
83, #4
T btain the actual attribute to be used from the value in the 4th

parameter of the current output buffer.

——O0btain the attribute from the file buffer (&) number 3.

Figure C. Indirect Reference

2 THE PROC PROCESSOR

2.6 AN OVERVIEW OF PROC COMMANDS

A PROC consists of any number of PROC commands, one command per line.

The first line (attribute) of a PROC must contain the code PQ. This identifies
the item as a PROC. The remaining lines in the PROC may contain any valid PROC
commands. There is no limit to the number of lines in a PROC. However, each
line may contain only one command, and each command must begin in column posi-
tion one of the line. If a comment appears on the second line, it will be
printed by the LISTPROCS verb.

Many different PROC commands are provided. Typical commands are listed in
Figure A. A complete description of each command is presented in the remaining
topics within this section.

Any PROC command may optionally be preceded by a numeric label. Such a label
serves to uniquely identify its associated PROC command for purposes of branch-
ing or looping within the PROC. Labels may consist of any number of numeric
characters (e.g., 5, 999, 72, etc.). When a label is used, the PROC command must
begin exactly one blank beyond the label. For example:

1 GO 5

23 A

99 IF A = ABC GO 3
2 ST ON

As an introductory example to PROC commands, consider the following PROC stored
as item 'DISPLAY' in the user's M/DICT:

PQ
HLIST ONLY
A2

P

Assume that the user types in the following:
:DISPLAY INVENTORY ' CB

This input evokes the above PROC and places the words DISPLAY INVENTORY in the
primary input buffer. The second line of the above PROC is an H command which
causes the text LIST ONLY to be placed in the primary output buffer. The third
line is an A command which picks up the second word (parameter) in the primary
input buffer and places it in the primary output buffer. Thus the primary out-
put buffer contains the words LIST ONLY INVENTORY. The last line of the PROC

is a P command which submits the content of the primary output buffer to TCL

for processing (i.e., LIST ONLY INVENTORY is an ENGLISH sentence which causes
the item-ID's of the INVENTORY file to be listed; refer to the ENGLISH Reference
Manual) .

COMMAND
A, NA
B, NB
BO, NBO
C

D

F, NF
F;

G, GO
GOSUB, RSUB
H, NH
IF

IH, NIH
IN

IP, NIP
IT, NIT
L

o]

P

PP

RI

RO

RTN

S, NS

ST ON
ST OFF

TR

(), [1]

BRILEF DESCRIPTION
Moves data from input to output buffers.

Back up input pointer.

Backup up output pointer.

Specifies comment.

Outputs from either input buffer to terminal.
Moves input pointer forward.

Calculates a function.

Unconditionally transfers control.

Call local subroutine, return.

Moves text string to either output buffer.
Conditionally executes specified command.
Moves text string to either input buffer.
Inputs from terminal to secomdary input buffer.
Inputs from terminal to either input buffer.
Inputs from tape to primary input buffer.
Formats spooler output.

Outputs text string to terminal.

Causes execution of PROC.

Dieplays content of output buffers and executes PROC.
Clears (resets) input buffer.

Clears (resets) both output buffers.

Return from PROC subroutine.

Positione input pointer and optionally selects
primary input buffer.

Selects secondary output buffer (stack).

Selects primary output buffer.

Formats console output.

Turns PROC trace on.

Fxits to user-defined subroutine.

Exits back to TCIL level.

Adds decimal number to pavameter in input buffer.

Subtracte decimal number from parameter in input
buffer.
Links to another PROC.

Figure A. Summary of PROC Commands

2 THE PROC PROCESSOR

2.7 SELECTING BUFFERS AND POSITIONING POINTERS: THE ST, S, NS, F, NF, B, NB,
BO, AND NBO COMMANDS

The STON and STOFF commands turn the stack on or off, respectively. The S com-
mand positions the input pointer and/or selects the primary input buffer as the
currently active input buffer. The F and B commands move the input pointer for-
ward or backward one parameter, respectively. The BO command moves the output
backward one parameter.

The STON command selects the secondary output buffer (the stack) as the currently
active output buffer (i.e., turns the stack on). Its form is:

STON or ST ON

The STOFF command selects the primary output buffer as the currently active out-
put buffer (i.e., turns the stack off). Its form is:

STOFF or ST OFF

When the stack is on, all data picked up by the A command is moved to the secon-
dary output buffer. When the stack is off, these data are moved to the primary

output buffer. The stack may be turned on or off at any point within the PROC.

Upon initial entry to a PROC, the stack is off.

The S command positions the input pointer and/or selects the primary input buffer
as the currently active input buffer. This command may be used in either of the
following two general forms:

S(m) or NS(m)
Sp or NSp

The S(m) form selects the primary input buffer and moves the pointer to the m'th
column, with columns numbered starting at 1. The Sp form moves the input pointer
to the p'th parameter of the currently active input buffer.

The F command causes the input pointer for the currently active input buffer to
move forward one parameter. If the input buffer pointer is currently at the be-
ginning of the buffer, this command has no effect. The form of the F
command is as follows:

¥ or NF

The B command causes the input pointer for the currently active input buffer tc
move backward one parameter. If the input buffer pointer is currently at the
beginning of the buffer, this command has no effect. The form of the B
command is as follows:

B or NB

The BO command causes the output pointer for the current output buffer to move
backward one parameter. If the output buffer pointer is currently at the be-
ginning of the buffer, this command has no effect. Moving the pointer back
will cause data to be eliminated. The form of the BO command is as follows:

BO or NBO

Figure A summarizes the above commands. Figure B presents some examples.

STON or ST ON-e {turns secondary output buffer (stack) on |
STOFF or ST OFF-e—————turns secondary output buffer (stack) off |

S(m) or NS(m) — : - gelects primary input buffer
& moves pointer to m'th column

SP or NSp | moves input pointer to p'th parameter |
F or NF { moves Input pointer forward one parameter |
B or NB | moves input pointer backward one parameter]
BO or NBO —_ moves output pointer backward one parameter |

Figure A. General Form of ST, S, F, B, and BO Commands

PRIMARY INPUT BUFFER BEFORE COMMAND* PRIMARY INPUT BUFFER AFTER
|aBC123 xYZ7987 | S(9) [aBC123 xYZ987]
¥ 7
SECONDARY INPUT BUFFER BEFORE COMMAND** SECONDARY INPUT BUFFER AFTER
|pABC DE FGHIJ] s3 [pBC DE FGHIJ |
4 4
SECONDARY INPUT BUFFER BEFORE COMMAND** SECONDARY INPUT BUFFER AFTER
[ABC 123 DEF 456 | F |ABC 123 DEF 456 |

7 F
SECONDARY INPUT BUFFER BEFORE COMMAND** SECONDARY INPUT BUFFER AFTER
[ABC 123 DEF 456 | B |[ABC 123 DEF 456]

* 7

PRIMARY OUTPUT BUFFER COMMAND COMMAND* * * PRIMARY OUTPUT BUFFER AFTER

xxx YYY 227 | BO [xxx YYY 272 |
* *

ACTIVE BUFFER PRIOR TO COMMAND EXECUTION:

*primary or secondary input buffer
**secondary input buffer
***primary output buffer

Figure B. Sample Usage of S, F, B, and BO Commands

2 THE PROC PROCESSOR

2.8 MOVING PARAMETERS: THE A OR NA COMMAND

The A command is used to retrieve a parameter from the input buffer and move
it to the output buffer. Either the primary or secondary input buffer may
be used as the source, and either the primary or secondary output buffer may
be used as the destination; the buffers used depend on commands executed
prior to the A command. The NA form of this command uses an attribute mark
as the parameter separator; otherwise NA operates the same as A.

The A command may be used in any of the following general forms:

a{cHp} NA{c}{p}
alcH ({m}{,nhH} Na{cH ({m}{,n}}

If the parenthetical specification (i.e., m and/or n) <s not used, then the
parameter is obtained from the currently active input buffer, at the current
position of the input pointer. Leading blanks are deleted from the parameter.
The end of the parameter is designated by the first blank which is encountered.

If the parenthetical specification 78 used, then the parameter is always ob-

tained from the primary input buffer. If the secondary input buffer is cur-

rently active, use of this option causes a switch back to the primary input

buffer. If both m and n are specified (i.e., in the A(m,n) form), the input
buffer pointer is set to the m'th column, and the next n characters (including

any embedded blanks) 1s the parameter to be moved. The m specification may be

used by itself in the form A(m). In this case the parameter is obtained from

the m'th column and continues until the first delimiter after column m is encounter-
ed. The n specification may also be used by itself in the form A(,n). In this
case the next n characters are moved, starting at the current position of the input
pointer.

When the form Ap is used, the p'th parameter is moved, where parameters are
separated by blanks, or attribute marks for N2p.

When the form Ac is used (where ¢ is any non-numeric character except a left-
parenthesis character) and the primary output buffer is active (i.e., stack is
off), the character c surrounds the parameter. This feature is useful for picking
up item~ID's (which require single quotes) and values (which require double quotes)
for processing by the ENGLISH language processor. If not specified, the A command
uses a blank as the default surround character.

Multiple parameters may be moved to the primary output buffer via a single A com-
mand if these parameters are separated by semicolons in the input buffer. The
parameters will be moved to the primary output buffer with the semicolons re-
placed by blanks (or attribute marks). After the execution of an A command, the
input buffer pointer is pointing to the very next character after the move.

Figure A summarizes the general form of the A command. Figure B presents a num-—
ber of examples. Each example assumes that the output pointer is at the beginning
of the buffer prior to the illustrated operation.

NA{cHp}

surrounds | a{c}p} parameter
parameter + 4 count
A{cH ({m}{,nh}
NA{cH ({m}{,n})}
starting number of
column characters
position
Figure A. General Form of A and NA Commands

PRIMARY INPUT BUFFER

|aB cp EF GHI gk |
/r

PRIMARY INPUT BUFFER

[aB o EF GHI ok |

PRIMARY INPUT BUFFER

[aan BBB CCC 1

PRIMARY INPUT BUFFER

]ABc DEF GHIJK |

SECONDARY INPUT BUFFER

[ABC; DEF; GHI JKL 1

SECONDARY INPUT BUFFER

[égAA BB CCC D |
T

ACTIVE BUFFERS PRIOR TO COMMAND EXECUTION :

COMMAND *

A

COMMAND* *

A(7,6)

COMMAND*

A(6)
COMMAND *
A'(,2)
COMMAND * * *
A"

COMMAND * * *

A2

*primary or secondary input; primary output
**primary or secondary input; secondary output
***secondary input; primary output

PRIMARY OUTPUT BUFFER

[eo |

T
SECONDARY OUTPUT BUFFER

[r c]

T
PRIMARY OUTPUT BUFFER

[3 |
T
PRIMARY OUTPUT BUFFER

['DE" j
3

PRIMARY OUTPUT BUFFER

IIIABC'" [1] DEF“ n GHI 1" —I
1

PRIMARY OUTPUT BUFFER

[e2 |
f

Figure B.

Sample Usage of A Command

2 THE PROC PROCESSOR

2.9 MOVING PARAMETERS: THE MV COMMAND

The MV command can be used to move data from any buffer or register to any
buffer or register.

The MV command always has two operands. The first is the object of the move or
the receiving field. The second is the source or the sending field. The re-
ceiving field may be any direct or indirect buffer reference. The sending field
may be any direct or indirect buffer reference, or a single value, a string of
values separated by commas, or a concatenation of values (see Figure A).

The simplest form is moving one value into the receiving field (Figure B).

A string of values may be moved into successive buffer locations by separating each
value with a comma. If the sending field contains multiple contiguous commas, the
effect is to not? modify that number of buffer locations in the receiving field
(Figure C). 1If an asterisk is used to separate values, then concatenation occurs.

An asterisk (*) as the last item in a string of values will move all remaining
values in the sending field to successive receiving buffer locations. If the form
n* is used, then n additional values will be moved.

The MV command will construct the required number of null attributes if the re-
ceiving field is beyond the current end of the buffer.

NOTE: The MV command recognizes an attribute mark as the separator for
buffer parameters.

MV OPERANDI1 OPERAND 2

receiving field

blank sending field
separator

Figure A.

General Form of the MV Command

MV

MV

MV

&3.1 &5.2

%4 "SMITH"

s
(2}

#1

13 &3.18

Move value from file buffer 5, parameter 2 to
file buffer 3, parameter 1.

Move the literal "SMITH" to the 4th parameter

of the primary input buffer.

Move value from primary input buffer parameter 5
to the Ist parameter of the current output buffer.

Move attribute 18 of file buffer 3 into select
register 3.

NOTE: The single value move (MV) is the only
valid form when a select register is
specified in operand 1.

Figure B.

Simple Forms of MV Command

MV

MV

MV

MV

&l.1 %3,%7

&2.1 %3,%7,"SAM",#8

%4 $2*37

&1.0 &2.0,%*

&9.4 "X",,’ ,"Y‘II

Move the 3rd and 7th parameters from the primary
input buffer into file buffer 1, parameter 1 and
parameter 2. (Consecutive receiving fields.)

Move the 3rd and 7th parameters from the primary
input buffer, the literal "SAM" and the 8th par-
ameter of the current output buffer into file
buffer 2, parameters 1,2,3, and 4 respectively.

Concatenate (*) the 2nd and 7th pavameters of the
primary input buffer and move into parameter 4 of
the primary input buffer (%).

Move from file buffer 2 all parameters (#*) into
file buffer 1 starting in parameter 0.

Move the literal "X" into file buffer 9, parameter
4. Skip (don't modify) parameters 5,6,7 then move
Literal "Y" into parameter 8.

Figure C.

Complex Forms of the MV Command

2 THE PROC PROCESSOR

2.10 MOVING PARAMETERS: THE MVA AND MVD COMMANDS

The MVA and MVD commands add and delete values in multi-valued attributes
within the file buffers.

The MVA and MVD commands always contain two operands separated by a blank (see
Figure A). Operand one must be a file buffer reference. Operand two may be any
single value (i.e., a direct or indirect reference or a literal).

The MVA command moves the value from the sending field into the receiving field
and stores it as a multi-value. The new value 1s stored in ascending ASCII se-
quence. If the value already exists, it will not be duplicated. If the sending
field is itself multi-valued, it is stored as one multi-valued set and may, there-
fore, create duplicate values and destroy the ascending sequence of the attribute.

The MVD command deletes the value specified in the sending field from the values
in the receiving field. 1If the receiving field is not in ascending ASCII sequence,

the MVD command will not function properly.

NOTE: The MVA and MVD commands use an attribute mark as the parameter separator.

MVA
MVD

receiving field

OPERAND1 OPERAND2
OPERAND1 OPERAND2

sending field

Figure A. General Format of the MVA and MVD Commands

BEFORE : &l.0 [ABCADEF] GHIAJIKLAFORM+
COMMAND : MVA &1.1 &l1.3

AFTER: &1.0 [ABCADEF] FOR] GHI4FIKLAFORM<-
BEFORE: &1.0 [ABC DEF]GHIAJIKLAMNOM

&3.0 [AAA BBB EXTRA]MONEY]WAGEAENDA <

COMMAND : MVA &1.1 &3.2

AFTER: &1.0 [ABCADEF] EXTRA] MONEY | WAGE] GHIAJKLAMNO+
BEFORE : &§2.0 [ABCADEF] GHI] JKLAMNOM«
COMMAND : MVD &2.1 GHI

AFTER: &§2.0 [ABCADEF] JKLAMNOA<

Figure B. Examples of MVA and MVD Commands

2 THE PROC PROCESSOR

2.11 INPUTTING DATA: THE IN, IP, IT, NIN, NIP AND NIT COMMANDS

The IN command selects the secondary input buffer and accepts input from the
terminal. The IP command accepts input from the terminal to the currently
active input buffer. The IT command accepts input from magnetic tape to the
primary input buffer. The commands NIN, NIP and NIT use attribute marks as
parameter delimiters but otherwise function identically to their counterparts.

The IN icommand selects the secondary input buffer as the currently active input
buffer and inputs data from the terminal into the buffer (the original contents
are lost). The general form of this command is:

N{r} or NIN{r}

If the r specification is used, then that character is a prompt character at the
terminal (r may be any character including a blank). The prompt character will
remain in effect until a new IN command with a new r specification is executed.
If r is omitted, then a colon (:) is used as a prompt. Data input by the user is
placed into the secondary input buffer and may be moved to an output buffer by
using the A command. However, when the primary input buffer is selected via the
"A" command, or if the S(m) command is used, then the data in the secondary input
buffer is lost.

The IP command inputs data from the terminal into the currently active input buf-
fer. The general form of this command is:

1p{B}{r} or NIP{r}

Data input at the terminal in response to an IP command replaces the current
parameter (i.e., as pointed to by the input pointer) of the currently active in-
put buffer. [f several parameters are input at the terminal, then they will all
replace the current parameter in the buffer. If the input pointer is at the end
of the data in the input buffer, then the new input data will be appended to the
end. The r specification is identical to the r specification for the IN command
(see above). If B is used in the command (i.e., IPB or IPBr), then all embedded
blanks in the data input at the terminal will be replaced by backslash characters
(\) - This feature is useful if a parameter is to include embedded blanks (i.e.,
since blanks denote the end of a parameter).

The IT command reads one record (maximum size 300 characters) from the magnetic
tape unit. The data are placed in the primary input buffer. (The original con-
tent of the primary input buffer is lost.) The general form of the IT command is:

1r{c}{a} or nNriT{c}{a}

If the C option is used, an EBCDIC to ASCII conversion is performed on the record.
If the A option is used, the 8-bit ASCII characters are masked to 7-bits (i.e.,
MSB=0). A null or all-blank record constitutes an end-of-file condition. (For
further information regarding magnetic tape operations, refer to the Reality Pro-
grammer's Reference Manual.)

The general forms of the above commands are summarized in Figure A. Figure B pre-
sents a number of examples.

input operation from
terminal to secondary
input buffer

input operation from
terminal to active
input buffer

-——————] character

input operation from
tape to primary
input buffer

by backslashes (\)
—l y

NIN{x}
IN{r}

prompt

NIP{BiEr%
IP{B}{r
A

replaces blanks

C
C
EBCDIC to ASCII conversion f t—— ——{Amasks 8th bit |

Figure A. General Form of IN, IP, and IT Commands

COMMAND

IN

IN=

IP?

IPB?

ITCA

EXPLANATION

Selects secondary input buffer and in-
puts data from terminal. Prompt charac-
ter is a colon (:).

Selects secondary input buffer and
inputs data from terminal. Prompt
character is an equal sign (=).

Replaces current parameter in currently
active input buffer with data from
terminal. Prompt character ig a
question mark (?).

Same as above, but embedded blanks in
input data are replaced by backslash
characters (\).

Inputs tape record to primary input
buffer. EBCDIC to ASCII conversion is
performed, with 8-bit ASCII masked
to 7-bits.

Figure B. Sample Usage of IN, IP, and IT Commands

2 THE PROC PROCESSOR

2.12 OUTPUTTING DATA: THE O AND D COMMANDS

The O command is used to output a specified text string to the terminal.
The D command is used to output parameters from either input buffer to
the terminal. ‘

The O command has the following general form:
oftext}{+}

The O command causes the text which immediately follows the O to be output
to the terminal. If the last character of the text is a plus sign (+),
then a carriage return will not be executed at the end of the text output.
This feature is useful when using the O command in conjunction with the IN
command. For example, consider the following commands:

OPART-NUMBER+
IN=

.These commands produce the following output on the terminal:
PART-NUMBER=

The specified prompt character (=) is displayed adjacent to the output text
since the O command ended with a plus sign (+). The user then enters the
input data right after the prompt character. For example:

PART-NUMBER=115020
Figure B illustrates further examples of the O command.

The D command is used to output parameters from either input buffer to the
terminal. The D command may be used in either of the following general forms:

D{p}{+}
D (m) {+} D(m,n) {+}

If the form Dp is used, then the p'th parameter of the currently active input
buffer is displayed on the terminal. If the form D is used, then the current
parameter (i.e., as pointed to by the input pointer) of the currently actiwve
input buffer is displayed on the terminal. If the form DY is used [i.e., p = 0
(zero) |, the complete currently active input buffer is displayed on the terminal.
If the form D(m,n) is used, then the characters starting at the m'th column for
n characters (including separators) are displayed. If the form D(m) is used,
then the characters starting at the m'th column (blanks are included in the
column count) of the primary buffer (up to the first blank character encountered)
are displayed.

A plus sign (+) may be appended to the end of the D command, thus specifying
the suppression of a carriage return (as for the 0 command described above.)

The D command does not affect the input pointer.

Figure C illustrates the use of the D command.

of{text}{+}

| text is output to terminal |} | suppresses carriage return |

Dip}{+}

p'th or current (if p omitted) | _suppresses carriage return |
parameter of active input buffer
18 output to terminal

D(m,n) {+}
A

D(m) | {+}
parameter starting at m'th —— suppresses carriage return |
column of primary input
buffer is output to terminal
—— number of characters]

Figure A. General Form of O and D Commands

1
COMMAND OUTPUT TO TERMINAL
OTHIS IS AN EXAMPLE THIS IS AN EXAMPLE
OTHIS IS AN EXAMPLE+ THIS IS AN EXAMPLE_
Figure B. Sample Usage of O Command (- = The Cursor)
PRIMARY INPUT BUFFER COMMAND* OUTPUT TO TERMINAL
[ra BBB CC DDD] D BBB
X
SECONDARY INPUT BUFFER COMMAND* * OUTPUT TO TERMINAL
a2 BBB CC DDD] D4+ DDD
/'\
PRIMARY INPUT BUFFER COMMAN@*** OUTPUT TO TERMINAL
[aBC xvz 123] D(6) Yz
4
ACTIVE BUFFER PRIOR TO COMMAND EXECUTION:
*primary input buffer
**secondary input buffer
***primary or secondary input buffer

Figure C. Sample Usage of D Command

2 THE PROC PROCESSOR

2.13 TEXT STRINGS AND CLEARING BUFFERS: THE IH,NIH,H,NH,RI AND RO COMMANDS

The IH or NIH and H or NH commands are used to place a specified text string in
the currently active input or output buffer, respectively. The RI and RO com-
mands are used to reset the input and output buffers (respectively) to the empty
(null) condition. :

The IH (input Hollerith) command causes the text (including any blanks) immediately
following the IH to replace the current parameter (as specified by the input
pointer) in the active input buffer. The input buffer pointer will remain pointing
to the beginning of this string.

The NIH command will input a string into the primary input buffer at the location
' specified by the current position of the input buffer pointer. The string will
replace the attribute immediately following the pointer. A space appearing within
the string being input will be converted to an attribute mark. Use of the NIH
command with only a backslash following (as NIH)) will be used to null an attri-
bute, and all appearances of a space-backslash-space sequence within the string
will establish a null attribute. Certain special characters may not appear in an
NIH literal string. These are the value mark (M[cs]) and the sub-value mark
(L[cs]). If any invalid characters do appear, the resultant values loaded intc
the buffer will be unpredictable.

The H command causes the text (including blanks) which follows the H to be placed
in the active output buffer at the position of the output pointer. When the last
parameter has been moved to the secondary output buffer (the stack), a carriage
return specification (<) must be placed in the stack. Two less than signs (<<)
appearing as the last two characters in an H command will be recognized as a con-
tinuation character and a carriage return. This is useful for stacked information
containing more than 140 characters.

The NH command uses an attribute mark as the parameter delimiter instead of a
blank as in the H command and is otherwise similar.

The RI (Reset Input Buffers) command has three forms. If the form RI is used, then
both input buffers are reset to the empty (null) condition. If the form RIp is
used, the primary input buffer from the p'th parameter to the end of the buffer

(as well as the entire secondary input buffer) is reset to the empty condition.

If the form RI(m) is used, then the primary input buffer from the m'th column to
the end of the buffer (as well as the entire secondary input buffer) is reset to
the: empty condition. The input buffer pointer remains at the end of the buffer.

The RO (Reset Output Buffers) command resets both output buffers to the empty (null)
condition. The RO command also selects the primary output buffers as though an
STOFF command had been executed.

TH{text]} or NIH{text}

of active input buffer

text replaces current parameter

H{text}{<} or NH{text}{<}

text 1s placed in
active output buffer

RI{p} P —

RI (m) -

RO +— |

carriage return
specification

primary input buffer (from p'th
parameter and on, 1f p 18 used) and
secondary input buffer are reset

primary input buffer (from m'th
columm and on) and secondary input
buffer are reset

both output buffers are reset]

Figure A.

General Form of IH,

H, RI, and RO Commands

PRIMARY INPUT BUFFER BEFORE COMMAND*
[aaA BBB cCC] THXX YY
/r\
SECONDARY OUTPUT BUFFER BEFORE COMMAND**
|xYz ABC | H DE<
/r\
PRIMARY INPUT BUFFER BEFORE COMMAND
|ABC + DEF 4+ GHI] NIH
+

PRIMARY INPUT BUFFER BEFORE COMMAND

|ABC DEF GHI JKL RI3

4

PRIMARY INPUT BUFFER BEFORE COMMAND
RI(7)

IABC DEF GHI |
4\

ACTIVE BUFFER PRIOR TO COMMAND EXECUTION:

*primary input buffer
**secondary output buffer

PRIMARY INPUT BUFFER AFTER

|la2aa xx vy ccc
/I\

SECONDARY OUTPUT BUFFER AFTER

[xyz ABC DE
ﬁ«

PRIMARY INPUT BUFFER AFTER

[pBC + DEF ¢1]

PRIMARY INPUT BUFFER AFTER

[aBC DEF
/r\

PRIMARY INPUT BUFFER AFTER

ABC DE |
/,\

Figure B.

Sample Usage of IH, H, and RI Commands

2 THE PROC PROCESSOR

2.14 TRANSFERRING CONTROL: THE GO,GO F,GO B,M,GOSUB AND RSUB COMMANDS

The GO commands provide unconditional branching within PROC's.

The GO command causes control to unconditionally transfer to the PROC command which
has the numeric label n. For example:

G 10 or GO 1¢

This command causes control to transfer to the PROC command which begins with the
label 10. The user should note that several PROC commands may begin with the
same label. If this is the case, the GO command transfers control to the first
PROC command which begins with the specified label (scanning from the top). This
is generally the slowest form of the branching instructions.

The GO F and GO B commands go forward and backward (respectively) to the appropri-
ate M (mark) command. The GO B command will branch to the instruction following
the last executed M (mark) command. The GO F command scans forward until it can
execute an M command and then continues processing of the command following the

M command.

The M (mark) command simply causes the PROC processor to remember or "mark" its
location. Only the last executed M command is remembered.

Note that GO F, GO B, and M are not necessary if the PROC is to be compiled (see
PQ-COMPILE verb) .

A GOSUR command causes execution control to be transferred to the specified label.
See Figure A for a summary of the instructions. An RSUB n command returns execu-
tion control n lines after the GOSUB. If n is missing, then n=1 is assumed. An
RSUB command will be ignored if no previous GOSUB was executed.

GO n Go to label n.

GOSUB n Go to subroutine at label n.

RSUB n Return to subroutine call. Begin executing
n lines after the call. If n is missing,
then n=1.

GO B Go back to previous mark command.

GO F Go forward to next mark command.

M Mark command.

Figure A. General Command Formats

This PROC will print the numbers 1 through 5 on the terminal.

001 PQ PROC identification.

002 GOSUB 200 Branch to subroutine 200.

003 M "Mark" location.

004 IF # A GO F Test for null parameter; if missing, go
forward to next "Mark'.

005 D+ Output current parameter.

006 F Move buffer pointer forward.

007 GO B Go back to previous "Mark".

008 M "Mark ",

009 X FINI!! Exit PROC and print FINI!!

010 200 IH 1 2 3 4 5 Subroutine 200, insert numbers into buffer.

011 RSUB Return to subroutine call (Line 200).

Figure B.

Example of Transferring Control

.14

2 THE PROC PROCESSOR

2.15 TRANSFERRING CONTROL: THE SIMPLE IF COMMAND

The IF command transfers control to another statement within the PROC.

The IF command provides for the conditional execution of a specified PROC command.
The IF command takes on three general forms. The simple form is as follows:

IF {#}a-cmnd proc-cmnd

where a-cmnd is any legal form of the A command (refer to the topic titled MOVING
PARAMETERS: THE A AND NA COMMAND) except for the form using the character surround
feature (i.e., Ac), and where proc-cmnd is any legal PROC command. If the optional
is not used, the IF command simply tests for the existence of a parameter in the
input buffer as specified by the A command. If a parameter exists, the specified
PROC command is executed; otherwise, control passes to the next sequential PROC
command. For example:

IF NAZ2 GO 15

This command tests for the existence of a second parameter in the currently active
input buffer. If a parameter exists, control passes to the PROC command beginning
with ‘label 15; otherwise, control passes to the next sequential PROC command. If
the # option is used, the test is reversed. For example:

IF # A2 GO 15

This command causes control to transfer to the command with label 15 if a second
parameter does not exist.

The user should note that when using an A command as a test condition of an If com-
mand, parameters are not moved to an output buffer as would be the case if the A
command were used along. Rather, the A command is used simply to specify which
parameter in the input buffer is to be tested. However, the input pointer will

be re-positioned as specified by the A command.

A number of examples illustrating the simple form of the IF command are presented
in Figure B. For a discussion of the two other forms of the IF command, refer to
the topic titled RELATIONAL TESTING: THE RELATIONAL IF COMMAND and topic titled
PATTERN TESTING: THE PATTERN MATCHING IF COMMAND.

any legal A command form except
character survound (Ac. or NAC)

IF {#}a-cmnd proc-cmnd

| reverses test | [any Tegal PROC command |

Figure A. Simple Form of IF Command

NOTE: The following examples assume that the primary input buffer
18 the currently active input buffer and contains the
following parameters:

| aBC ana xvz]
py
COMMAND EXPLANATION
IF A GO 27 Control is transferred to the command with label 27.
IF A3 OHELLO Message HELLO is output to terminal; control then

continues with next sequential command.

IF A4 OHELLO Message is not output; control continues with next
sequential command.

IF A(1l) GO 2 Control is transferred to the command with Label 2.

Figure B. Sample Usage of Simple IF Command

.15

2 THE PROC PROCESSOR

2.16 RELATIONAL TESTING: THE RELATIONAL IF COMMAND

The relational form of the IF command allows parameters in the input
buffers to be tested relationally.

The relational form of the IF command is an extended version of the simple
IF form (see topic titled TRANSFERRING CONTROL: THE GO AND SIMPLE IF
COMMANDS). The relational form is as follows:

If a-cmnd op string proc-cmnd

where a-cmnd and proc-cmnd are as defined for the simple IF form, where op
is one of the relational operators listed in Figure B, and where string is
a literal string of characters which the parameter is to be compared
against. For example:

IF A = YES GO 5

Here the PROC would transfer control to the command with label 5 if the
‘ current parameter in the currently active input buffer is the character
string YES.

To resolve a relational condition, character pairs (one from the selected

parameter and one from the literal string) are compared one at a time from
leftmost characters to rightmost. If no unequal character pairs are found,

the strings are considered to be equal. If an unequal pair of characters
are found, the characters are ranked according to their numeric ASCII

code equivalents (refer to the LIST OF ASCII CODES in the Appendix B

to this manual). The character string contributing the higher numeric

ASCII code equivalent is considered to be greater than the other string.

For example, AAB is considered greater than AAAA, and 02 is considered
greater than 005.

If the selected parameter and the literal string are not the same length,

‘ but the shorter of the two is otherwise identical to the beginning of the

longer one, then the longer string is considered greater than the shorter

string. For example, the string WXYZ is considered to be greater than the
string WXY.

Further examples illustrating the relational IF command are presented in
Figure C.

any legal A command form except any legal
| character surround (Ac or NAc) PROC command

IF a-cmnd op string proc-cmnd

| relational operator]L literal string |

Figure A.

Relational Form of IF Command

OPERATOR SYMBOL

OPERATION

test for equal

test for not equal

test 1f parameter less than literal string
test 1f parameter greater than literal string

test 1f parameter less than or equal to
literal string

test i1f parameter is greater than or equal
to literal string

Figure B. Relational Operators

NOTE: The following examples asswme that the primary input buffer
18 the currently active imput buffer and contains the fol-
lowing parameters:

| ABC AAA xvZ |
,T\

COMMAND

IF A = ABC GO 3

IF A3 > XYX HTEST

IF A2 > XYX HTEST

EXPLANATION

Control is transferred to the command with
label 3

The text string TEST is placed in the cur-
rently active output buffer; control then
continues with next sequential command.

Text string TEST in not placed in output
buffer; control continues with next sequential
command.

IF A(2,2) = BC GO 7 Control is transferred to the command with
label 7.
Figure C. Sample Usage of Relational IF Command

2 THE PROC PROCESSOR

2.17 PATTERN TESTING: THE PATTERN MATCHING IF COMMAND

The pattern matching form of the IF command allows parameters in the
input buffers to be tested for a specific pattern match.

The pattern matching form of the IF command is an extended version of the
simple IF form (see topic titled TRANSFERRING CONTROL: THE GO AND SIMPLE
IF COMMANDS). The pattern matching form is as follows:

TF a-cmnd op (pattern) proc-cmnd

where a-cmnd and proc-cmnd are as defined for the simple IF form, where op
is one of the relational operators described for the relational IF form,
and where pattern is a pre-defined format string enclosed in parentheses.

A pattern is used to test a parameter for a specified combination of numeric
characters, alpha characters, alpha-numeric characters, or literals. The
pattern specification in an IF statement consists of any combination of the
following:

® An integer number followed by the letter N (which tests for
that number of numeric characters).

e An integer number followed by the letter A (which tests for
that number of alpha characters).

° An integer number followed by the letter X (which tests for
that number of alpha-numeric characters).

° A literal string (which tests for that literal string of
characters).

As an example, consider the following command:

If A = (3NABC) G 3

This command causes a transfer of control to the command with label 3 when
the current parameter of the currently active input buffer consists of
three numerals followed by the characters ABC (e.g., 123ABC).

If the integer number used in the pattern is 0, the test is true only

if all the characters in the parameter conform to character type. The
following command, for example, outputs the message OK if the characters
of the current parameter are all alpha characters:

IF A = (OA) OCK

Further examples of the pattern matching form of the IF command are
illustrated in Figure B.

The user should note that for any of the three IF command forms, the
PROC statement which is conditionally executed may in turn be another
IF command (i.e., IF commands may be nested). The following command,
for example, transfers control to label 99 if the current parameter
congists of two numerals in the range 10 through 19 (inclusive):

IF A= (2N) IF A] 10 IF A [19 GO 99

The user may wish to visualize nested IF commands as though implied AND
operators were placed between them.

ony Label A command form any legal
except character surround (Ac) PROC command

IF a-cmnd op (pattern) proc-cmd

[relational operator | pattern match
specification

Figure A. Pattern Matching Form of IF Command

NOTE: The following examples assume that the primary input
buffer is the currently active inmput buffer and contains
the following parameters.

| _aBC 10/09/75 XYz B123C 33 |
/r\

COMMAND EXPLANATION

IF A = (31) G 7 Control is transferred to the com-
mand with Label 7.

IF A2 = (2N/2N/2N) G 5 Control is transferred to the com-

mand with label 5.

Control continues with next se-

IF Ad = (M) G 9 quential command.

IF A5 = (ON) GO 2 Control is transferred to the
command with label 2.

IF A4 = (1A3NC) OGOOD The message GOOD <is output to
the terminal; control continues
with the next sequential command.
Control is transferred to the

= > .
T Al (3%) IF Al > ABB G 9 command with label 9.
IF A(5,2) = (2N) @3 Control is transferred to the

command with label 3.

Figure B. Sample Usage of Pattern Matching IF Command

2

.17

2 THE PROC PROCESSOR

2.18 | COMPUTED BRANCHING: THE MULTI-VALUED IF COMMAND

The IF command can contain a multi-valued object and/or a multi-valued
destination.

When using the IF command with the equal (=) or not equal(#) operator, the object
and/or the destination may be multi-valued.

When using the equal operator, the multi-values are "OR'ed" together. This means
that each multi-value will be tested against the argument; if any value is true,
the Branch is taken.

When using the not equal operator, the multi-values are "AND'ed" together. ALl
values must match the argument for the branch to be taken.

I1f tHe object is multi-valued, then the destination may be a multi-valued GO or
GOSUB command. This means that the destination labels may be multi-valued (sepa-
rated by VM's). This is equivalent to an N-way branch. If there are more object
values than destination values, the last destination will be executed for object
values greater than the number of destinations.

IF A = OBJECT DESTINATION

OR T~
#
Argument Multi-valued

Figure A. General Command Format

If A2

If Ad

If A3

If A5

#

11213 Go 200 If A2 equals a 1 or 2 or 3, then go
to label 200.

RED]JWHITE]BLUE GO 500 If A4 is not equal to RED and not
equal to WHITE and not equal to BLUE,
then go to label 500.

1]12]3 GosuB 10]20]30 If A3 equals 1, then GOSUB label 10.
If A3 equals 2, then GOSUB 20. If
A3 equals 30, then GOSUB 30.

11]12]13 Go 10]20 If A6 equals 11, then GO TO 10. If A4S
equals 12 or 13, then GO TO 20.

Figure B. Example Usage of the Multi-valued IF Command

2 THE PROC PROCESSOR

2.19 FILE COMMANDS: THE F-OPEN AND F-CLEAR COMMANDS

Files may be manipulated with the use of the PROC file commands. Up to nine
files may be opened with the F-OPEN command. F-CLEAR clears the file buffer.

File manipulation is performed by the various file commands available from PROC.
Before the files can be worked on, they must be opened.

The F-OPEN command (see Figure A) opens file Y and assigns it to file buffer num-
ber X. X may be any digit 1 through 9. Y may be a literal file name or may be
an indirect reference to a file name. The dictionary of a file may be opened by
preceding the file parameter (Y) with the word DICT.

A file need only be opened once. Files remain open throughout the PROC execution,
including subroutine calls and PROC-to-PROC linkage. All files are closed upon
termination of the PROC. File buffer numbers can be re-used by executing another
F-OPEN command. The F-OPEN effectively closes the file previously opened to that
buffer number and assigns the buffer to the newly opened file. See examples in
Figure B.

The F-CLEAR command clears the file buffer number Y (see Figure A). An F-CLEAR is
required if new records are being built, or if the file buffer is being used as a

scratch area. It must be used before the first OPEN, READ, WRITE, or DELETE.

NOTE: The file commands use an attribute mark as the parameter delimiter.

File name

F-OPEN X {DICT}Y

F-CLEAR X . Option to open the dictionary

File buffer number

Figure A. General Command Format

F-OPEN 5 INVENTORY Opens the INVENTORY file to file
buffer 5
F-CLEAR 3 Clear file buffer number 3

Figure B. Examples of Opening Files and Clearing

2.19

2 THE PROC PROCESSOR

2.20 FILE COMMANDS: THE F-READ, F-WRITE, AND F-DELETE COMMANDS

The F-~-READ command loads an item into a file buffer. F-WRITE writes the con-
tents of a file buffer. F-DELETE deletes from the file the item specified in
the file buffer.

The F-READ command reads an item into a file buffer. The item is read from the
file which was previously opened to the file buffer number specified. The item-ID
may be a literal or an indirect reference to an item-ID.

If the item is found by the F-READ command, it is read into the file buffer and the
PROC continues execution on the second line following the F-READ command (normal
return). If the item is not found, the PROC executes the statement immediately
following the F-READ command (error return). See Figure B. F-READ does not lock
the group of the file containing the item.

The F-WRITE command writes the data contained in the file buffer number specified
to the file currently opened to that file buffer. The item-ID for the item is ob-
tained from the file buffer, attribute zero. No error condition exists for a write.

The F-DELETE deletes the item whose item-ID is found in attribute zero in the file
buffer number specified. The item is deleted from the file currently opened to
the file buffer. No errxor condition exists for a DELETE.

NOTE: These commands utilize an attribute mark as the separator parameter.

=

F-READ X Y

F-WRITE X

F-DELETE X

Item-ID (literal or indirect reference)

File buffer number

Figure A.

General Command Format

F-READ 1 1234
GO 140
GO 200

F-READ 3 %4

X READ ERROR
GO 500

F-WRITE 4

F-DELETE 7

Read item from the file opened to file
buffer 1 into file buffer 1 using item-ID
'1234'. If found, execute second command
(GO 200); 1f not found, execute first
command (GO 140).

Read from file buffer 3 using the value in
the 4th parameter in the primary input
buffer.

Error return after read
Normal return after read

Write the contents of file buffer 4 to the
file currently opened to file buffer 4.

Delete the item, whose item-ID is contained
as attribute zero in file buffer 7, from
the file currently opened to file buffer
number 7.

Figure B.

Examples of File Commands

.20

2 THE PROC PROCESSOR

2.21 FILE COMMANDS: THE FB COMMAND

The FB command combines an OPEN and a READ to load data into a "fast buffer”.

The FB command reads an item into an internal buffer from the file specified.
There is only one "fast buffer", so subsequent uses of the FB command destroy
previous data in the fast buffer. The FB command is preferable to an F-OPEN
and F-READ sequence if only one item from a file is to be processed. The fast
buffer is destroyed by a P command.

The FB command, like the F-READ, has two return points. The normal return (suc-
cessful read) is the second command following the FB command. The error return
(unsuccessful read) is the command immediately following the FB command.

Once the item is read into the fast buffer, it can be referenced using the &X
form of indirect reference. Note that the command is ampersand (&) X (attribute

number) .

If the item-ID is omitted from the FB command, then the value in the current loca-
tion of the primary input buffer is used as the item-ID.

NOTE: The FB command uses an attribute mark as the parameter delimiter.

B ({p1cT} file-name{item-ID})
ERROR RETURN

NORMAL RETURN

Figure A. General Form of the FB Command

FB (INVENTORY AB-4158) Read into the fast buffer the item whose

ERROR RETURN ID is AB-4158 from the inventory file.

NORMAL RETURN

FB (DICT INVENTORY DL/ID) Read the DL/ID from the dictionary of the

ERROR RETURN inventory file into the fast buffer.

NORMAL RETURN :

FB (INVENTORY) Read from the inventory file the item

ERROR RETURN whose ID 18 contained at the curvent

NORMAL RETURN pointer position in the primary input
buffer.

Figure B. Using the FB Command

.21

2 THE PROC PROCESSOR

2.22 FILE-LOCKS: THE F-UREAD, FBU, AND F-FREE COMMANDS

The Read for Update commands lock out file items against other users. They
use the Reality group lock facility.

The F-UREAD and FBU commands function identically to the F-READ and FB commands
except that they lock the group of the referenced file to which the item-ID hashes.
This serves to protect against simultaneous item retrieval by one line and item
update by another. It also gives a logical lock capability.

The group will be locked by the F-UREAD and FBU even if the item is not found.
The F-FREE command will free all groups locked by the process. The form F-FREE

X Y will unlock the group in the file X to which the item Y hashes. It will be
unlocked only if the process has it locked.

FBU ({DIcCT} File-name {Item-ID})
F-UREAD X Y

F-FREE {x v}
Item-ID

File buffer
number

Figure A. General Form of the File-Lock Commands

F-UREAD 1 1234

F-FREE 1

F-FREE

1234

Locks the group in the file opened to file buffer
1. Locks the group to which '1234' hashes, even

tf 1'1234" is not on file, then proceeds as 'F-READ
1 1234"',

Unlocks the group locked in the above example, but
only if locked by this line.

Unlocks all group locks locked by this 1line.

Figure B. Examples

.22

2 THE PROC PROCESSOR

2.23 MATHEMATICAL FUNCTIONS: THE Fj COMMAND

The F; command provides the PROC processor with arithmetic functions.

The F; command performs all functions in fixed point, integer arithmetic. This
command operates like the function correlative in dictionaires. Elements in an

F; command are separated by semi-colons (;). An element may be an operand or an
operator. The command is processed from left to right. Each element encountered
is placed on the top of a push-down/pop-up stack. Each operator performs its
function on the top of two entries in the stack, deletes them and places the result
on the top of the stack.

The result of the function can be moved into any of the PROC buffers.

The stack concept can be visualized as follows:

STACK 1
STACK 2
STACK 3
STACK 4
STACK 5

F;elementl; element2;...;element n

Figure A.

General Format of the F; Command

OPERANDS

#n,%n,&n,&F.n

Cn

OPERATORS

Indirect references to numeric values to be
placed on the top of the stack.

Constant "m" to be placed on the stack.

Add top two entries in the stack.
Subtract STACKZ from STACKI.

Multiply top two entries in the stack.
Divide STACKI by STACK2.

Divide STACKI by STACKZ, but rveturn remainder to STACK1.

Bxchange STACK1 and STACKZ.

Store STACKI at current primary input buffer pointer
location.

Store STACK1 at buffer location specified by D.
an indirect buffer reference.

D is

Figure B. F; Command Elements

F;C20;%4;*;?p

AN A

SMITH 400778

El E2
STACKL 20 8
STACK2 - 20
SMITH 4007160787

F; command
Primary input buffer (pointer at parameter 3)

E3 E4
160 160

Primary input buffer after execution of the F; command

Figure C. Sample of F; Command Usage

.23

2 THE PROC PROCESSOR

2.24 TFORMATTED LINE PRINTER OUTPUT: THE L COMMAND

The L command causes the PROC processor to enter a line printer formatting
routine.

The I command is followed by one blank and any number of elements separated with
commas. Each L command formats a line of output. TIf more elements are required
than will fit on one PROC line, then the L command line should be terminated with
a comma. Figure A shows the general format.

Page headings are generated through the use of the HDR element. Any element may
be used in a line containing a HDR; however, the elements shown in Figure B fol-
lowing "HDR" may be used only following the HDR element. The E and n elements
cannot be used in a HDR line.

When a "HDR" line is encountered, any direct or indirect references are resolved
and stored in a heading buffer. Therefore, it is not necessary to maintain the
indirect reference values. After the first execution of a HDR line, the PROC will
maintain a line counter and print a heading each time the counter exceeds the page
depth set by the last TERM command .

I. elementl, element2,...,...,element n,

causes continuation

Figure A. General Form of L Command

"text" Output any text between the quotes.
(n) | Set to column position n.

%, 4,8 ALl forms of indirect referencing.
E Eject to top of form.

n Skip n lines before printing.

C Close the print file.

HDR Generates the page heading line.

P Print current page number.

T Print current time and date.

Z Zero the page counter.

Figure B. L Command Elements

001 PQ
002 NIP
003 L HDR,T, (40) ,"PAGE",P
004 L 1,(10),%1,(15),%2,(20),%3,(25),"PARAMETERS 1 THRU 3"
005 L 1,(10),%4,(15),%5,(20),%6,(25),"PARAMETERS 4 THRU 6"
IF INPUT: 100 200 300 400 500 600 CR

will print:
10:09:25 1 SEPT 1979 PAGE 1

100 200 300 PARAMETERS 1 THRU 3

400 500 600 PARAMETERS 4 THRU 6

Figure C. Sample PROC and Output

.24

2 THE PROC PROCESSOR

2.25 TERMINAL FORMATTING: THE T COMMAND

The T command causes the PROC command to enter a terminal formatting routine.

The T command is followed by one blank and any number of elements which are sepa-
rated by commas (Figure A). If a T command line ends with a comma, then the com-
mand is continued on the next line.

If the last element of a T command line is "+", the automatic carriage return-line
feed is suppressed.

The %, #, and & elements are used to display the PROC buffers. These elements may
be followed by any Reality conversion code enclosed in (:) colons. An example
would be %2:D2,:.

NOTE: The T command assumes an attribute mark as the parameter delimiter.

T

(elementl,element2,...,element n),

causes command continuation

Figure A. The T Command Format

"text" Output data between quotes
(X,Y) Set cursor position: X-column, Y-row
B Ring bell
C Clear Screen
In Output character with ASCII integer value n
Xn Output character with ASCII hex value n
Sn Output n spaces
U Move cursor up one line
%n Output nth parameter of primary input buffer
#n Output nth parameter of currvent output buffer
&n Output nth parameter of internal fast buffer
Tag
Delay
Loop
Figure B. T Command Elements
001 PQ
002 T C
003 M

004 T (10,10,),"DATE AND TIME",S5,+

005 HTIME

006 T (10,10),830,+

007 GO B

Prints the date and time continuously at the 10th column and 10th row on

the screen.

Figure C.

Sample PROC with T Command Usage

.25

2 THE PROC PROCESSOR

2.26 THE PLUS (+), MINUS (-), C, AND TR COMMANDS

The Plus and Minus commands are used to add or subtract (respectively) a spe-
cified decimal number to/from the current parameter of the currently active

input buffer. The C command is used to place comments within the body of the
PROC. The TR (TRace) command is used to print PROC commands as they are executed.

The Plus (+) command has the following general form:
+n

This command causes the decimal number n to be added to the current parameter (as
pointed to by the input pointer) of the currently active input buffer. The cur-
rent parameter must be numeric.

The Minus (-) command has the following general form:
-n

This command causes the decimal number n to be subtracted from the current param-
eter (as pointed to by the input pointer) of the currently active input buffer.
The current parameter must be numeric.

The Plus or Minus commands will have no effect if the input pointer is currently
at the end of the buffer. Also, the user must take care that the updated value
of the parameter is the same length as the original value of the parameter, since
no automatic check for this is made. Sample usage of the Plus and Minus commands
are shown in Figure B.

The C command is used to place comments within the body of the PROC. The general
form of this command is as follows:

c{text}
All text following the C will be ignored by the PROC processor. For example:
C THIS IS A COMMENT

The C command may be used freely throughout the PROC for purposes of clarity and
documentation.

The TR (Trace) command is a debugging tool designed to assist the programmer

with a debugging problem. Once executed, all PROC commands print on the terminal
prior to executing. The "IF" commands will print a second time if the evaluation
was true. The Trace command remains in effect until return to TCL.

+n

decimal number is added to current
parameter of active input buffer

-n

decimal number ig subtracted from
current parameter of active input

buffer.
C{tert}
[comment <s_ignored by PROC processor |
TR
{ turn on PROC trace |

Figure A. General Form of Plus (+), Minus (-), and C Commands

PRIMARY INPUT BUFFER BEFORE COMMAND* PRIMARY INPUT BUFFER AFTER
ABC 001 XYZ +99 ABC 100 XYZ
4 4
SECONDARY INPUT BUFFER BEFORE COMMAND** SECONDARY INPUT BUFFER AFTER
[xxxx YY 39 | -5 [xxxx YY 34 |
* }
PRIMARY INPUT BUFFER BEFORE COMMAND* PRIMARY INPUT BUFFER AFTER
ABC 001 XYZ +99 | aBc 001 xvZ
4 4

ACTIVE BUFFER PRIOR TO COMMAND EXECUTION:

*primary input buffer
**gecondary input buffer

Figure B. Sample Usage of Plus (+) and Minus (-) Commands

2 THE PROC PROCESSOR

2.27 CALLING PROCESSORS, PROGRAM LOCKS

The PROC processor has a Process command which may take several forms.

The P (Process) command is used by the PROC processor to execute the command which
has been built in the primary output buffer. Functionally, temporary control is
passed to TCL and upon completion returned to the PROC.

The Process command with a single P (see Figure A) simply passes control to TCL.
Variations to the P command allow additional processing to occur. The PH command
"hushes" or suppresses system messages during execution. The PL command locks
the PROC execution. This means that if more than one user is executing this PEOC,
the first user to reach this command "roadblocks" the other users until execution
is complete. The PHL combines the PH and PL forms. These locks are shared with
the BASIC and BATCH locks of the same number (0 to 63).

The double P (PP) version of the Process command also causes transfer to TCL;
however, prior to processing, the contents of both output buffers are displayed
and the user is prompted with a (?) question mark. If execution is not desired,
a response of N is required and the PROC is ended. If execution is not desired
but the PROC should be continued, respond with an S. This will cause the output
buffers to be cleared. The PP command is usually used as a debugging tool.

WARNING: A PROC may fail if 1t is unsituated from its location in its file while
it 18 being executed. For this and other reasons, it 18 good practice
to put PROC's into dictionary level files dedicated to PROC's.

{r} p
{p} pH
{p} PIn
{pP} PHIn

n = Resource Lo

Process the output buffer
Process and suppress messages
Procese and lock execution

Process, suppress, and lock

ck number (0 to 63)

Option to display output buffers

Figure A. General Command Format

END-OF-MONTH

001 PQ
002 H LIST INV LPTR
003 P

004 H SELECT MASTER WITH
005 H QTY > "500"

006 STON
007 H RUN BP UPDATE
008 PP

Load the output buffer.
Process the output buffer.
Load the primary output buffer.

Select the "stack!'.
Load the stack.
Print output buffers prior to processing.

Figure B. Sample

Usage of the Process Command

SELECT MASTER WITH QTY > "500"
RUN BP UPDATE*
iy

1200 ITEMS SELECTED

NOTE: No indication of the first
process command.

Primary output buffer.
Secondary output buffer (stack).
Carriage return to continue.

Result of SELECT; would not have
printed with the PPH form.

Back to TCL.

Figure C. Execution of the PROC in Figure B

2 THE PROC PROCESSOR

2.28 PROC TERMINATION AND USER EXITS: THE X AND U COMMAND

The X command causes an immediate return to TCL. The U command allows an exit
from PROC to an assembly coded subroutine.

The X command is used to leave a PROC and return to TCL. When the X command is
executed, the return to TCL is immediate and no processing of the output buffers
takes place. Any text following the X command will be output to the users ter-
minal.

The U command is used to exit from the PROC to a user written assembly coded sub-
routine. The interface to PROC's is described in the appendix of this manual.
Strict adherence to this interface will ensure compatability to future software
releases.

X text

Unnnn
"

Exit from PROC, no processing; output optional

message to terminal.

executable frame ID

entry point

Figure A. General Command Format

001 PO

002 TH 000

002 10 + 1
: 003 IF A = 100 X FINI!! Zxit from PROC and print FINI!!
7 .
004 UD1A6 Execute user subroutine. Entry point
"0 of frame 1A67g
005 GO 10
Figure B. Sample Usage of X and U Commands
2.28

2 THE PROC PROCESSOR

2.29 TRANSFERS AND SUBROUTINE CALLS: THE (), [], AND RTN COMMANDS

The Link commands, denoted as () or [|, allow other PROC's to be evoked.

A Link command in one PROC causes control to transfer to the first command of
arother PROC, which may reside in any dictionary or data file. This allows the
storage of PROC's (except for the LOGON PROC) outside of the M/DICT. Also, large
PROC's can be broken into smaller PROC's to minimize processing time.

If the item-ID (Figure A) is omitted, the current parameter (as specified by the
input pointer) of the currently active input buffer is retrieved and used as the
item-ID. The optional DICT specifies the dictionary portion of the file.

The user should note that the PROC buffers remain unchanged when a linkage occurs.
Also, the first line of the linked-to item is always skipped, since it is assumed
that this line contains the PQ code.

The parentheses {() form of the Link command causes a one-way transfer.

The bracket [] form of the Link command allows the external subroutine capability
for PROC's. Using this form, transfer is made to the indicated PROC, but a return
to the "calling" PROC is made if a RTN command is executed. One PROC may call
another PROC, which may call another PROC, etc., indefinitely.

The RTN command is ignored if no previous Link command was executed. An optionalr
value may be placed after the RTN command, which indicates that the return should
be made n lines after the Link command.

({pICT} file-name {item-name}
[{pICcT} file-name {item-name}]

RTN{x}

Figure A. General Link Command Formats and Return

ITEM-LISTFILES
001 PQ
002 (DICT PROCLIB) Item-name is missing; transfer to item-

name whose value is in the currvent
position of the primary input buffer.

Figure B. Permanent Transfer

ITEM - FILE-SAVE

001 PQ

002 [DICT MD VERIFY-SYSTEM] The three PROC's must have «
RTN command.

003 [DICT SYSPROG-PL]

004 [DICT SYSPROG-PL FILE-STATS]

005 HOFF

006 O FILE SAVE COMPLETE

007 P

Figure C. PROC's as Subroutines

2.29

2 THE PROC PROCESSOR

2.30 SPECIAL PROC VERBS: PQ-COMPILE AND PQ-SELECT

The PQ-COMPILE verb compiles PROC source programs into smaller and faster
executing "object" programs. The PQ-SELECT verb loads the designated select
register with item-ID's.

The PQ-COMPILE verb (Figure A) compiles the PROC into "object”" form. BRANCHES
and GOSUB commands, in particular, will be speeded up. The PROC compiler will not
allow the original PROC to be overlayed. Prior to compilation, the user will be
prompted for the destination file. The compiled code is readable, but many com-
mends take an altered form. Also, all comments are deleted from the "object”

or compiled version of the PROC.

WARNING: Changing a compiled PROC with other than another PQ-COMPILE may cause
the PROC to abort or fail when run.

See Figure B for a sample compilation.

The PQ-SELECT verb is used to place item-ID's into a select register (see Figure
A). Note that PQ-SELECT is a system verb and must be placed in an output buffer
and passed to the TCL processors for execution. The PQ-SELECT verb is designed to
function following a SELECT, GET-LIST, SSELECT or FORM~LIST verb. The items
selected are then placed in the designated select register. The item-ID's in

the select register may be referenced using the (!n) form of the indirect buffer
reference described elsewhere in this manual (see Figure D for an example).

PQ-COMPILE file—name item-name

proc name

source file name

PQ-SELECT n

A digit (1 through 5)
representing the desired
select register.

Figure A. General Verb Formats

:PQ-COMPILE PROC-SOURCE LI
DESTINATION: PROC-LIBRARY (

Figure B. Sample PROC Compilation

2020
9021
9022
9025

COMPILATION ABORTED

FORMAT ERROR IN LABEL
DUPLICATE LABEL _

FORMAT ERROR IN 'GO' STATEMENT

. \

Figure C. PROC Compiler Messages

001
002
003
004
005
006
007
008

NHSELECT SYSTEM-OBJECT

STON

NH PQ-SELECT 1

10 P

NHMVERIFY SYSTEM-OBJECT

Select items from file.

Turn on stack.

Save item-ID's.

Process output buffers.

Move verb and file name to buffer.

NH !1 Move item-ID to buffer.
IF # #3 GO 10 If not complete, branch.
X DONE! ! Exit and print DONE! !

Figure D. Sample Use of PQ-SELECT

2.30

2 THE PROC PROCESSOR

2.31 SAMPLE PROC: FILE UPDATE VIA BATCH

This topic presents a sample PROC which updates a file via the BATCH
processor.

The left-hand column of Figure A shows the sample dialog used to evoke the
PROC named NEW-PART. Note that the PROC prompts the user for the required
data. Figure A also shows the respective content of both input buffers

as the data are input.

The left-hand column of Figure B shows the actual PROC listing. (The PROC
is stored as item NEW-PART in the user's M/DICT.) Figure B also shows the
content of both output buffers as they are affected by each PROC statement
(and by the input data shown in Figure A).

Note that the TCL command to evoke the BATCH processor is being built in
the primary output buffer, while the input lines used to feed the BATCH
processor are being built in the secondary output buffer. The second
carriage return in the secondary output buffer specifies a second input
line for BATCH (i.e., a null input line). For further information re-
garding BATCH, refer to the section in this manual titled THE BATCH
PROCESSOR.

INTERACTIVE DIALOG PRIMARY INPUT BUFFER SECONDARY INPUT BUFFER
[NEw-PART | | |
T ¥
PART-NO.
@® [NEW-PART | [334 |
¥ ¥
VENDOR
[NEW-PART | |SMITH |
+ 4
BIN LOCATION
B [NEwW-PART] a2777]
7 F
BAD BIN NUMBER
BIN LOCATION
G NEW-PART | an27
4 ¥

Figure A. Interactive Dialog and Input Buffers

NEW-PART PROC

PRIMARY OUTPUT BUFFER

SECONDARY OUTPUT BUFFER

PO i | |
+ 1
OPART-NO. | |] j
0 1
IN? L | |
* 0
IF A= (3N) GO 21 |] [|
0 1
X-BAD PART NUMBER - |] [1
A 1
21 STON | | | |
+ T
A | i 1334 |
0 4
HY |] [334 |
B 4
22 OVENDOR [B [334 |
7 B
IN? | i [334— 1
+ 4
IF A GO 23 [] [334 |
B $
GO 22 |] [334]
3 +
23 A | | [334 sMITH |
* t
Hp I | B34 swiTH |
1 1
24 OBIN LOCATION | | [334 sMITH |
B A
IN? | | [334 SMITH 1
3 1
IF A = (2A2N) GO 25 | | 334 SMITH |
+ 4
OBAD BIN NUMBER | [334 SMITH]
£ 4
GO 24 [| 334 smITH |
1 B
25 A | | [334 SMITH AA27 |
B 4
H< [] (334 SMITH AA27 1
x 4
H< [| [334 SMITH AA27 |
x 4
STOFF [| [334 SMITH AA27 CRY(CR) |
B 4
HB/ADD MD :ENT | HB/ADD MD :ENT | [334 sMITH AA27 R |
B £
P | HB/ADD MD :ENT (CR)| B34 suith An27 (CR) B |
4 T
Figure B. PROC Listing and Output Buffers

2 THE PROC PROCESSOR

2.32 SAMPLE PROC: FILE UPDATE VIA EDITOR

This topic presents a sample PROC which changes a specified attribute
value via the EDITOR.

Figure A shows a sample EDITOR operation which changes attribute 3 of item
11115 of file ACCOUNT to the value ABC. Figure B shows a PROC named CHANGE
which will perform the exact same operation. Note that the PROC has been
written in such a manner that it updates any specified attribute in any
specified item in any specified file. The format used to evoke this PROC
is as follows:

CHANGE file item attribute-no new-value

1f, for example, the user wishes to perform the same operation shown in
Figure A, the PROC must be evoked as follows:

:CHANGE ACCOUNT 11115 3 ABC

The user should note that the normal messages output by the EDITOR
(e.g., TOP, '11115' FILED, etc.) are output when the PROC in Figure B

is executed. These messages may be suppressed, however, by using the Z
option when calling the EDITOR, and by preceding each EDITOR command by
a period (.); for further information regarding these features, refer to
the EDITOR Reference Manual.

.
0]

03

'11115' FILED.

Figure A.

Sample EDITOR Operation

item 'CHANGE'

in M/DICT

001
002
003
004
005
006
007
008
009
010
011
012
013

PQ
HEDIT
A2

A3
STON
HG

A4

H<
HR<
A5

H<
HFI<
P

Figure B.

Generalized PROC Stored As Item
Perform Identical Operation

' CHANGE'

Which wWill

.32

2 THE PROC PROCESSOR

2.33 SAMPLE PROC: USING SSELECT AND COPY VERBS

This topic presents a sample PROC which uses the SSELECT and COPY
verbs.

Figure A shows a sample operation at the TCL level using the SSELECT verb
and then the COPY verb. This identical operation is performed by the
PROC named TEST shown in Figure B. Upon execution of the TEST PROC, the
output buffers contain the data shown in Figure C. Note that the SSELECT
sentence is contained in the primary output buffer, while the secondary
output buffer contains both input elements of the COPY operation, each
terminated by a carriage return.

For further information regarding the SSELECT verb, refer to the ENGLISH
Reference Manual. For further information regarding the COPY verb, refer
to the Reality Programmer's Reference Manual.

ol @B

19 ITEMS COPIED

Figure A. SSELECT and COPY Operation at TCL Level

item 'TEST' in M/DICT

001 PQ

002 HSSELECT INVENTORY WITH QOH > "900" BY-DSND QOH
003 STON

004 HCOPY INVENTORY<X

005 H(HOLD-FILE)<

006 P

Figure B. PROC Stored as Item 'TEST' Which Performs Identical
SSELECT and COPY Operations

PRIMARY OUTPUT BUFFER

| SSELECT INVENTORY WITH QOH > "900" BY-DSND QOH]

SECONDARY OUTPUT BUFFER

[COPY INVENTORY CR (HOLD-FILE) |

Figure C. Output Buffers Upon Execution of TEST PROC

2 THE PROC PROCESSOR

2.34 SAMPLE PROC: USING VARIABLE TESTING, GO AND D COMMANDS

This topic presents a sample PROC which uses variable testing, GO and
D commands.

Figure A shows a sample tape positioning PROC. It differs from previous
examples in that it uses the arithmetic command. It has practical value
in that the user does not have to enter T-FWD at the TCL level for every
file that is positioned over.

001
002
003
004
005
006
007
008
009
010
0l1
012
013
014
015
016
D17
018
019
020
021

SPACE

PQ

C--THIS PROC WILL T-
05 0

FWD A TAPE OF (NN) FILES

OSPECIFY NUMBER OF TAPE FILES TO T-FWD

OMUST BE TWO DIGITS+
S(1)

Ip=

IF A = (2N) GO 10
GO 05

10 IF A = 00 GO 30
HT-ATT

P

HT-REW

P

20D

HT-FWD

P

S(1)

-1

IF A # 00 GO 20

30 X...YOU ARE SPACED OUT...

Figure A.

Sample Tape Positioning PROC

.34

3 THE BATCH PROCESSOR

3.1 AN INTRODUCTION TO BATCH

The BATCH processor provides a facility for inputting, updating, and
deleting items (or attributes) within Reality files.

BATCH operates via a predefined "BATCH-string" and an input line, used to
update one or more items in multiple files simultaneously. The BATCH-string
is stored as an item in a file and provides the dictionary function for the
subsequent update. In other words, the BATCH processor ignores the attri-
bute defining items defined for the designated files (i.e., which are used
by the ENGLISH language processor), and instead relies on the BATCH-string
to define the updating algorithm.

BATCH is evoked by issuing one of the following commands at the TCL level:

B/ADD file-name item-id
B/DEL file-name item-id

The file-name and item-id define the location of the specified BATCH-string.
B/ADD in general defines an updating function (but may be used to delete
items). B/DEL provides a reversing update function, in that using B/DEL

on the identical BATCH-string and input line will in general negate or
reverse the effects of a previous B/ADD operation. The exact nature of a
B/DEL operation as opposed to a B/ADD operation will become clearer as the
user reads the remaining topics within this section.

Once a valid B/ADD or B/DEL command has been entered, and the BATCH pro-
cessor has gained control, the user is prompted for input lines at the
terminal via the prompt character ">". Each input line entered by the
user is processed separately by BATCH and generates a separate file
update. BATCH continues to prompt for more input lines until the user
exists by entering a null line (i.e., a carriage return only) following
the BATCH prompt character.

Many users store BATCH-strings in the Master Dictionary (M/DICT), but this
is not required. In fact, the recommended procedure is to define a separate
file (or files) used exclusively to store BATCH-strings. These files should
be single-level (i.e., Dictionaries) to save an additional file access in
retrieving the BATCH-string. Also, the most common usage Of the BATCH pro-
cessor is from a PROC, where the B/ADD or B/DEL command has been constructed
in the PROC's primary output buffer and the input lines to BATCH have been
constructed in the PROC's secondary output buffer. For this reason, one
must examine both the BATCH-string and its associated PROC to fully compre-
hend the resulting processing. (For a specific example illustrating the
usage of BATCH in conjunction with a PROC, refer to the topic in this

marual titled SAMPLE PROC: FILE UPDATE VIA BATCH.)

Figure A summarizes the general forms of the B/ADD and B/DEL commands.
Figure B presents a number of examples.

B/ADD file-name

item-id

specifies location where
desired BATCH-string is stored

B/DEL file-name

item-id

Figure A. General Form of BATCH Commands

EXAMPLE

BL BATCH-STRINGS UPDATE(ER

EXPLANATION

Evokes the BATCH processor using

the predefined BATCH-string

stored as item CHANGE in file
BATCHFILE. The operation per-
formed is a B/ADD operation further
defined by the input line entered

by the user immediately after the """
prompt character,

Evokes the BATCH processor using
the predefined BATCH-string
stored as item UPDATE in file
BATCH-STRINGS. The operation
performed is a B/DEL operation
defined by the input line entered
by the user immediately after the
">" prompt character.

Figure B. Sample Usage of BATCH Commands

3 THE BATCH PROCESSOR

3.2 BATCH-STRINGS

A BATCH-string is a definition of the updating algorithm to be performed.
BATCH-strings are stored as Reality file items.

A BATCH-string consists of a set of "elements", one "element" per line
(attribute). In general, a BATCH-string consists of the following elements
for each file item to be updated: a file defining element, followed by one
attribute defining element for each attribute, followed by a Z element.
This sequence is repeated for each file item to be updated by the BATCH-
string. (The Z elements separate the file item update sequences.)

Each element in the BATCH-string begins with a mnemonic identifying the
element type (the sole exception being the file defining element which has
no mnemonic and appears as the first element in the BATCH-string and as
the first element following each F element). The mnemonic is optionally
followed by modifiers and sub-elements delimited by commas. These modi-
fiers and sub-elements are defined in subsequent topics which discuss each
element type in detail.

The entire update resulting from a BATCH-string is accumulated and processes
in a single step. Any errors encountered during the processing of the BATCH-
string aborts the process and thus none of the updates occur. Additionally,
multiple updates to the same file item cannot be performed by the same
BATCH-string; the last file item update will override any previously genera-
ted updates by the BATCH-string to the same file item.

There is a one-to-one correspondence between atrribute defining elements in
the BATCH-string and the defined attribute values themselves. In other
words, the Attribute Mark Count (AMC) is not explicitly specified in the
element, but is implied by the sequence of attribute defining elements.
This principle is illustrated by the example shown in Figures A through D.

Figure A shows item 123 in file XYZ before the update takes place. The
BATCH-string i1s stored as item UPDATE in file BATCH, as illustrated in
Figure B. Figure C shows the B/ADD command and associated input line
entered by the user. Finally, Figure D shows item 123 after the update
has been performed. The user should note that the 123 in the input line
(see Figure C) "feeds" the BATCH-string and provides the item-id to accom-
pany file defining element XYZ,I (see Figure B), thus specifying that

item 123 of file XYZ is to be updated. The two N elements in the BATCH-
string (see Figure B) direct the BATCH processor to ignore (nop) the first
two attribute values (ABC and DEF). The JKLM in the input line (see
Figure C) "feeds" attribute defining element A,Y21 (see Figure B) and
directs the BATCH processor to replace the old attribute value (GHI) with
the new value (JKLM) from the input line, thus producing the updated item
shown in Figure C. (Note that the BATCH-string in Figure B does not in-
clude a Z element since an update is being defined for one file item only.)

item 123 in file XYZ

001 ABC
002 DEF
003 GHI
Figure A. TItem 123 Before Update

item UPDATE in file BATCH

001 Xyz,I-e

file defining element

002 Nw=

attribute defining element

003 N-=

attribute defining element

004 A,Y21l-=

attribute defining element

Figure B. BATCH-String Stored As Item UPDATE in File BATCH

BATCH command

input line

terminates BATCH

Figure C. BATCH Command and Associated Input Line

item 123 - in file XYZ

001
002
003

ABC
DEF
JKIM

Figure D. Item 123 After Update

3 THE BATCH PROCESSOR

3.3 INPUT LINES

BATCH-string elements reference fields in input lines. The user enters
input lines in response to the ">" prompt character.

Once the BATCH processor has been evoked via a B/ADD or B/DEL command,
the user is prompted for input lines at the terminal. Each input line
entered by the user is used to generate a separate file item update.
The BATCH processor continued to prompt for input lines until the user
enters a null input line (carriage return only) at which point control
returns to TCL.

Values from an input line may be referenced by a BATCH-string element in
either a free-field or fixed-field format. BATCH uses an input line pointer
to keep track of data in the input line. Each file defining or attribute
defining BATCH-string element uses one value from the input line; at the
conclusion of this usage the input line pointer is advanced to the charac-
ter immediately following the previously used value. Special BATCH-string
elements are available which permit movement of this pointer so that the
same value from the input~line may be used repetitively (refer to the

topic titled ADDITIONAL BATCH-STRING ELEMENTS AND SUB-ELEMENTS) .

An input line value referenced by a BATCH-string element in the free-field
format is considered as starting with the first non-blank character at or
after the current position of the input pointer, and continuing up to (but
not including) the next blank. Values with imbedded blanks may be created
in the input line by surrounding the entire value with single quotes (e.g.,
'"ABC DEF'), or by replacing the imbedded blank with a backslash (e.g.,
ABC\DEF). A backslash surrounded by blanks represents a null (missing)
value.

Fixed-field input line values may be referenced by BATCH-string elements
by specifying a starting column number and a field width. Fixed-field
values always contain the number of characters specified and may contain
embedded blanks. All leading and trailing blanks are deleted. Two or
more contiguous blanks are considered to only one blank.

Rather than using explicit input line values, the first input line entered
may optionally be one of special input line formats listed in Figure A.
These special input line formats specify that the actual input values are
to be obtained from a prestored file item, or from the attached magnetic
tape unit.

Sample input lines are depicted in Figure B.

value value value .

.-g__————___lactual values are used I

({DICT} file-name item-id)eg—0o-—-

(Tape{c})

Instructs BATCH to use the speci-
fied item as the input data
stream. Each attribute value
(line) in the item is treated as
a separate input line (each line
may be up to 511 bytes in length).
The DICT option specifies the
dictionary section of the file.

(TAPE{Al)

Instructs BATCH to read data from
the tape unit. FEach fixed length
unblocked tape record (maximum of
511 bytes) is treated as one in-
put line. The C option specifies
EBCDIC to ASCII comversion. The
A option specifies masking to
7-bit ASCII.

Figure A.

General Form of Input Line

(CR)e———-BATCH command
) -———— Ist input line

2nd input line
terminates BATCH

,::<

BATCH command

3 @B -———— single input line

terminates BATCH

BATCH command

Specifies that input lines are to
be obtained from item T7 in file FILEX

;<+————————mBATCH command

Specifies that input lines are

to read from tape.

Figure B.

Sample Input Lines

3 THE BATCH PROCESSOR

3.4 BATCH-STRING FILE DEFINING ELEMENTS

The BATCH-string file defining element generates a specific item-id in
a file to be updated.

The first element in a BATCH-string is a file defining element. A BATCH-
string may contain additional file-defining elements immediately following
a.Z element. The first file specified is called the primary file; other
files are called secondary files. The general form of the file defining
element is as follows:

{pICcT} file,code{(loc)}{,Cc(loc)}...{,conv}...{,bridge}...{,other}...

The "file" specification names the file containing the time to be updated.
If the DICT option is used, then a dictionary item is updated.

The "code" specification may be any one of the following:

- Update existing item or create new one.

- Overwrite existing item.

Verify that item exists; abort otherwise.

- Delete existing item.

- Verify item does not exist; abort otherwise

o< 2 H
1

The "(loc)" option immediately following the "code" specifies the location
(in the input line) of the value used as the item-id. (If the "(loc)" option
is not used, then free-field format is assumed, with the field used as the
item-id beginning at the next nonblank input line character and continuing

to the next blank.) The "(loc)" option may be any one of the following:
(m,n) - Use n characters starting at column m.
(m) - Use characters from column m up to first blank encountered.
(,n) - Use n characters starting at current pointer position.
o) - Use p'th field of input line.

The "C(loc)" option specifies that another value is to be concatenated onto
the end of the value specified by "(loc)", thus forming the desired item-id.
Multiple "C(loc)" specifications are permitted. The "C(loc)" option may

be any one of the following:

C(m,n) - Concatenate n characters starting at column n.

C(m) - Concatenate characters from column m up to first blank
encountered.

C(,n) - Concatenate n characters starting at current pointer
position.

Cp - Concatenate p'th field.

The "conv" option specifies input data conversions. Any conversion code
defined in the CONVERSIONS section of the Reality ENGLISH Reference
Manual may be used here (except for the Concatenate Code).

The "bridge" option may be either BC(n) or BV(n), and may be used for
secondary files only. This option specifies that item-id is created

(BC) or verified (BV) from the attribute value with Attribute-Mark-Count
(AMC) "n", in the primary file item (in new item image). Multiple "bridge"
specifications may be repeated to specify concatenated item-id's, or may
be combined with I, J, K, or C sub-elements as needed. (Note: If the

attribute is multi-valued, it is the first element of a concatenated "bridge"
specification; D2 attributes should not be used with a "bridge" specification).

The "other" options may be any of the additional sub-elements described in
the topic titled ADDITIONAI BATCH-STRING ELEMENTS AND SUB-ELEMENTS.

{p1CT} file,code{(lﬁc)}{,c(loc)}...{,conv}...{,bridge}...{,other}...
A

additional
sub-elements

conversion BC(n) or
code BV (n)

[COm,n) _or C(m) or C(,n) or Cp (see note)]

[(myn) or (m) or (,n) or p (see note) |

- update item

- overwrite item
verify existence

- delete item

- verify non-existence

NOTE: m is column number
n 18 number of characters
p specifies p'th field

DN =N
1

Figure A. General Form of BATCH-String File Defining Element

The examples below assume the following imput line:
1234 ABC XY7 987

FILE DEFINING ELEMENT EXPLANATION

FNA, I Item with item-id 1234 in file FNA is
updated.

INVENTORY,X(6,2) Item with item-id AB in file INVENTORY
18 deleted.

FILEX,I(3,2),C2 Item with item-id 34ABC in file FILEX
18 updated.

FNB,N,C(6,1),C(13,3) Item with item-id 12344987 in file
FNB 18 overwritten.

FNB,N,C(6,1),C(13,3) ,MT Same as above, but Time Conversion is
specified (see ENGLISH Reference
Manual) .

Figure B. Sample Usage of BATCH-String File Defining Elements

3 THE BATCH PROCESSOR

3.5 BATCH-STRING ATTRIBUTE DEFINING ELEMENTS

The BATCH-string attribute defining elements define the operation
performed on the corresponding attribute value.

Following the file defining element in a BATCH-string there must be one and
only one) attribute defining element for each attribute to be updated. The
attribute defining element and the actual attribute in the file have a one-
to-one positional relationship. Attributes not updated beyond the last
updated attribute need not be represented in the BATCH-string. There

are five types of attribute defining elements: A, D, N, T, and X. The

A type has the following general form:

a{(loc) }H,c(loc)k ..{,conv}...{,other}... ,code

The "(loc)" and "C(loc)" options define the value used from the input
string; these specifications (as well as the "conv" and "other™ options)
are identical to the forms described for the BATCH-string file defining
elements (refer to that topic). The "code" specification, which defines
the operation performed, may be any one of the following:

Y1l - Store unique multiple values (i.e., won't store if value
already present).

Y12 - Store non-unique multiple values.

Y21 - Replace a single value.

Y22 - Abort BATCH-string if any value already present; insert
value if sttribute is null.

Y23 - Ignore if any value already present; insert value if
attribute is null.

Y31 - Add value to attribute (subtract for B/DEL).

Y32 - Subtract value from attribute (add for B/DEL).

v33 - Add 1 to attribute (subtract for B/DEL).

Y41 - Store multiple unique values in ascending ASCII collating
sequence; not used with associative attributes.

Y42 - Same as Y41, but redundant values are also stored.

Additionally, a 4 may be suffixed to the "code" to place a "negative
balance not permitted" restriction on the result (e.g., Y324).

If the attribute to be modified is an assoclative attribute (refer to
the ENGLISH Reference Manual), then the D type is used. The D type
takes on the following general forms:

D1;x{ (loc) }{,c(loc)}...{,conv}...{,other}... ,code
D2;x{ (loc) }{,c(loc) }...{,conv}...{,other}... ,code

The primary associative attribute is identified by Dl;x. Subsequent secondary
associative attributes are identified by D2;x. Three sets of associative
attributes may be processed by BATCH (x is 1, 2, or 3, thus identifying the
set). The remaining specifications of the D type attribute defining element
are the same as defined for the A type above.

The N, T, and X type attribute defining elements are as follows:

N - Ignore corresponding attribute

nN - Ignore next n attributes

T - Add 1 to corresponding attribute (for both B/ADD and B/DEL).
X - Delete corresponding attribute

A complete BATCH example illustrating the use of the attribute defining
elements is presented in the topic titled A COMPLETE BATCH EXAMPLE.

A{(loc) M ,c(loc) }...{,conv}...{,other}... ,code

} 4 $

define value to be used Y11 - store non-redundantly
(same as described for Y12 - store redundantly
file defining element) Y21 - replace single value

Y22 - reject if any value present

Y83 - ignore if any value present

Y31 - add to existent value

Y32 - subtract from existent value

Y38 - add 1 to existent value

Y41 - sequence unique values
(ascending)

Y42 - sequence all values
(ascending)

Figure A. General Form of BATCH-String Attribute Defining Element (A Type)

[identifies primary associates attribute |

D1;x{ (loc) }H{,c(loc) }...{,conv}...{,other}... ,code

i

same_as defined in Figure A above

[z <5 1, 2, or 3 (providing for 3 sets)]

same as_defined in Figqure A above

T

p2;x{ (1oc) H,c(10c) }...{,conv}...{,other}... ,cdde

|identifies secondary associative attribute |

Figure B. General Form of BATCH-String Attribute Defining Element (D Type)

N ignore corresponding atiribute |

nNe——o Zgnore n attributes]

T «—— add 1 to corresponding attribute |

X delete corresponding attribute |

Figure C. General Forms of BATCH-String Attribute Defining Elements (N,
T, and X Types)

3 THE BATCH PROCESSOR

3.6 ADDITIONAL BATCH-STRING ELEMENTS AND SUB-ELEMENTS

" In addition to file defining and attribute defining elements, four addi-

tional BATCH-string elements are provided. Additional sub-elements

which may be used in both file defining and attribute defining BATCH-
string elements are also provided.

:Additional Elements

‘The following elements may be used in a BATCH-string.

F - Move the pointer forward to the next field in input line.
B - Move pointer backward one field in input line.

S(m) - Set pointer to m'th column in input line.

Z - Terminate a file item update section (must be immediately

followed by another file item update section).
These elements are exemplified in the topic titled A COMPLETE BATCH EXAMPLE.
:Additional Sub-Elements

The additional sub-elements described below may be used (unless otherwise
specified) in both file defining and attribute defining BATCH-string elements.

‘The F sub-element specifies arithmetic operations on the input line data.
Its general form is: {,Fop{(locl}}...

The "op" specification specifies the operation to be performed, as listed
in Figure C. The "loc" specification specifies the second operand of the
‘arithmetic operation; the first operand of the operation is the value which
has previously been extracted (generated) by the BATCH-string element. The
"loc" specification takes on the same general form as described for the
attribute definition element (refer to that topic). For example, assuming
‘an input line of "123 456" and an attribute defining element of
"A2,F-(2,2),Y21" the resultant value stored would be "433".

‘ The U sub-element exists to a user-defined subroutine. It's general
form is: {,Uxxxx}

where xxx is the hexadecimal mode-id of the subroutine.

The SH and SD sub-elements store the system time and system date, repectively.
The general forms are as follows: {,SH} {,sD}

'No input data is necessary for either of these sub-elements if they immediately
follow the A, D1, or D2.

' The J sub-element has the following general form: {,0m)}

' This sub-element should only occur for secondary file attributes. It is

- ignored if the update is a B/ADD or if the update is a B/DEL with some
specific data input to the field used by this element. If no data are input
(meaning delete the entire value in the attribute), then the n'th primary
file attribute is referenced, and the value that was deleted there is also
deleted from the secondary file attribute. Only the first value used in the
delete processing is used. Consequently, multi-valued primary attributes
are in general processed incorrectly. The sub-element must be specified

if the primary item itself is to be deleted. An example illustrating the
use of the J sub-element is presented in the topic titled: SAMPLE USAGE OF
B/DEL COMMAND WITH J SUB-ELEMENT.

{ moves pointer forward one field |

—{ moves pointer backward one field]

S (m)--

L

sets pointer to m'th column |

|
a

terminates file item update section |

Figure A.

General Form of F, B, S(m), and Z BATCH-String Elements

{,Fop{ (loc}}... @«———] specifies arithmetic operation (see Fig. C)]

{,Uxxxx} -

]
L

specifies exit to user-subroutine |

stores system date |

{,sp} == {
{,sH} - —]
{,7(n) } = -

stores system time |

see text for description |

Figure B. General Form of F, U, SD, SH, and J BATCH-String Sub-Elements

SYMBOL OPERATIOM

+ Addition

- Subtraction

/ Division

* Multiplication (if the n option is used,
1t must be a positive number and will be
used as a scaling factor, i.e., the product
will be divided by 10")

Figure C. F Sub-Element "op" Specification Symbols

3.

3 THE BATCH PROCESSOR

3.7 BATCH-LOCKS AND THE CONTINUATION CHARACTER

A BATCH-lock is a "gate" which restricts concurrent access to a BATCH-
string. The continuation character feature overcomes the 140-character
restriction which normally applies to a BATCH input line.

Eéggg—Locks

A BATCH-lock is a BATCH-string element which denies or permits access to
the associated BATCH-string. If a potential user is denied access, he

is put in a wait loop until access is permitted. The purpose of a BATCH-
lock is to protect the current user until he has concluded execution of a
BATCH-string (i.e., protects against concurrent access).

A BATCH-string is locked by a code upon entering, and unlocked automatically
upon exiting. The format for the BATCH-lock is:

L (code)
where "code is a number from 1 through 8 (inclusive).

A1l BATCH-strings using the same code are locked when any one of them

is in use. Typically all BATCH-strings of an application system (e.g.,
payroll, inventory, etc.) share the same lock code, by user convention.

A lock code should be the first line (element) of a BATCH-string, but may
precede any file-definition element. Figure C illustrates a sample BATCH-
string with lock code 5.

In the event that the execution of a BATCH-string is interrupted by an
abnormal abort or by the BREAK key, an automatic unlock will not occur.
A TCL verb to unlock all codes is provided. Its general form is:

B/UNLOCK {d}

where the "d" option is the decimal equivalent of an ASCII character to be
used as the user's "lock-character". The lock character is displayed when-
ever the user's lock code is set into the lock state. For example, con-
gider the following command issued at the TCL level:

:B/UNLOCK 96 (CR

This example displays a pound sign (#) whenever the lock code was set
via execution of a BATCH-string. Note that the lock character option need
only be established once.

Continuation Character

The continuation character feature is useful when using BATCH in conjunction
with a PROC. The PROC output buffers are infinitely long; however, BATCH
only accepts a maximum of 140 characters as an input line. To overcome

this restriction, the user may place a second carriage return specifica~
tion (<) in the PROC stack (refer to the topic describing the H command in
the PROC section of this manual). A carriage return specification appear-
ing as the next-to-last character in the stack is interpreted as a
continuation character. For example:

1234 ABC DEF <<
GHI JKL <<

The next-to-last "<" symbol is the continuation character and the last "<"
symbol is the carriage return. The two lines in the example are processed
as one.

L(code)

[a number 1 through 10)

Figure A. General Form of BATCH-Lock Element

B/UNLOCK {a}

[Zock character |

Figure B. General Form of B/UNLOCK TCL Verb

001 L(5)

002 ACCOUNT, I
003 A,v21

004 11N

005 Aa,v21

Figure C. Sample BATCH-String Using BATCH-Lock Element

3 THE BATCH PROCESSOR

3.8 A COMPLETE BATCH EXAMPLE

This topic presents a graphic example of a complete BATCH update
operation.

The example in Figure A illustrates the update of item 99-A in the PO-
NUMBER file. The update is accomplished via the BATCH-string stored

as item UPD-PO in the BS file. The arrows illustrate the interrelation-
ship among the input line, the BATCH-string elements, and the updated
item. The reader should follow each arrow carefully, taking notice of
how each BATCH-string element interacts with its specified input line
‘field, thus producing the associated updates to item 99-A.

?In addition, the reader should note than an item with item-id 12 in the
‘'TRANS FILE (a secondary file) is also created by this sample operation.

item 1 n file PO-NUMBER before update

001 ABC

002 10

003 11

004 22

005 29 OCT 1974
006 § 0.33

007 -44

008 1

009 9

010 33*44

011 44

012 31 ocCT 1974

BATCH-string execution

—»item UPD-PO in file BS

—» 001

002

003
——————» 004
——————» 005
————» 006
———» 007
—» 008
—»009

010

011

012
013
014

1 015

—»016
017
018

019
I__:020

Figure A.

PO-NUMBER, I

a3

N

———» 002
—» 003
—» 004
F—DOOS
006
007
008
009
010
011
012

T

A,Y11

A,Y12

A,D,Y21

em 99-A in file PO-NUMBER after uX
3

> 001 ARC

11

11 12

34 22

02 NOV 1974

$ 0.8%94¢—

-122<4—

24—

10«

56%78 4—
7 84—

31 OCT 1974«

A,Y31

A,Y32

A,Y33
Al,TPO-NUMBER;V;2;2,Y21

F
F
F

A,C,Y21
B
A,Y21

A,SD,Y21
Z

—-»item 12 in

TRANS, I2

A2,F+,Y21 —1¥

file TRANS

—»001 46

Sample BATCH-String Update

3 THE BATCH PROCESSOR

3.9 SAMPLE USAGE OF B/DEL COMMAND WITH J SUB-ELEMENT

The B/DEL command allows the user to delete specific values from attributes
in an item.

In general, the B/DEL command is used to delete specified values from one
or more single of multi-valued attributes, or to delete implied values
(not specified) in single-valued attributes. In addition, such implied
values may also be accessed by the "secondary file" section(s) of the
BATCH-string. Thus it is possible to delete a value from an attribute

in the primary file without knowing what the value on file is, and to use
this same value as implied inputs to attribute defining elements in secon-
dary files.

As a specific example, suppose that attribute 5 of the file ACCOUNT contains
a value that is to be zeroed at the end of a month, and that this value is
to be added in to attribute 6 of the file HISTORY. A representative BATCH-
string is illustrated in Figure A.

If the value to be deleted is known (e.g., 99), then the input for this
BATCH-string is as shown in Figure B (assuming an item-id of '123'").
This input causes the value 99 to be subtracted from attribute 5 of the
ACCOUNT file (see line 003), and causes the same value to be added to
attribute 6 of the HISTORY file (see line 007). Note the reversal of
the Y31 and Y32 specifications. 1In this case the "J(5)" sub-element in
line 007 is not used.

If, however, the value to be deleted is not known (or if the user does not
wish to enter the value, then the input is as shown in Figure C, or
optionally as shown in Figure D. 1In this case the element in line 003
causes the deletion of the value in attribute 5 of ACCOUNT (as before); the
"J(5)" sub-element is used to "link" back to the primary file (ACCOUNT) and
to add in the value to the HISTORY file.

Note that the same effect could have been achieved (at significantly greater
processing cost) by a suitable BATCH-string employing Translate Conversions
to pick up the values to be deleted (refer to the ENGLISH Reference Manual) .
However, if the primary attribute is multi-valued and one of the values is
deleted, the "J" sub-element must be used to delete the corresponding value
in a secondary file.

If the primary item itself is deleted (using the ",X" option in the file
defining element), the "J" sub-elements can add or delete values into
secondary file attributes.

item CHANGE in file BATCH-FILE

001 ACCOUNT, I
002 4N

003 A,¥31

004 z .

005 HISTORY, Il
006 5N

007 A2,J(5),Y32

Figure A. BATCH-String Stored as Item CHANGE
In File BATCH-FILE

Figure B. Sample Input When Value Known

Figure C. Sample Input When Value Not Known

Figure D. Optional Input When Value Not Known
(Produces Same Results as Figure C)

3 THE BATCH PROCESSOR

3.10 SAMPLE USAGE OF BATCH WITH SELECT AND SSELECT VERB

This topic presents two examples of illustrating the use of BATCH in
conjunction with the SELECT and SSELECT verbs. (For further information
regarding these verbs, refer to the ENGLISH Reference Manual.)

When evoking the BATCH processor immediately after performing a SELECT

or SSELECT operation, at least one "item-id substitution code" (i.e.,

an asterisk (*) character) must be in the BATCH input line in place

of the normally explicit item-id. More than one asterisk is permitted,
with each automatically being replaced by the item-id currently being
processed. Only one BATCH input line is allowed after a SELECT or SSELECT
operation.

Figure A illustrates a SELECT operation on the PAYROLL file. The BATCH-
string stored as item DELETE in the dictionary of the PAYROLL file is

then executed. The asterisk entered as the input line essentially causes
each selected item—-id to in turn be "picked up" and processed by the BATCH-
string (i.e., all 5 selected items are deleted).

Figure B illustrates a SELECT operation on the PAYROLL file. The BATCH-
string stored as item DELETE in the dictionary of the PAYROLL file is
then executed. The asterisk entered as the input line essentially causes
each selected item—id to in turn be "picked up" and processed by the
BATCH-string (i.e., all 5 selected items are deleted).

Figure B illustrates an SSELECT operation on the ACCOUNT file. The BATCH-
string stored as item UPDATE-ACCOUNT in the BATCHS file is then executed.

The user should note that the following error message will be displayed
if at least one asterisk is not used in input line:

DATA INPUT LINE TO BATCH AFTER A SELECT MUST CONTAIN
AT LEAST ONE ITEM-ID SUBSTITUTION CODE (ASTERISK¥)

'578A' UPDATED
'592A" UPDATED
'522A"' UPDATED
'599A' UPDATED
'621A' UPDATED
Figure A. Sample Usage of BATCH With SELECT Verb

3 ITEMS SELECTED.

'23070' UPDATED
'25025' UPDATED
'25050"' UPDATED
Figure B. Sample Usage of BATCH With SSELECT Verb.

.10

APPENDIX A

PROC COMMAND SUMMARY

This appendix presents the general form for each PROC command. The commands
are listed in alphabetical order. For further information regarding a par-
ticular command, refer to the topic reference.

COMMAND FORMAT TOPIC
AlcH ({m}{,nhx 2.8

a{cH{pkx 2.8

B 2.7

BO 2.7

c{text} 2.26
D(m) {+} 2.12

p{p}{+} 2.12
({p1cT} file-name {item-id}) 2.29
F 2.7

F;EL;E2;En 2.23
F-CLEAR n{file} 2.19
F-DELETE X 2.20
F-FREE{XY} 2.22
F-OPEN n{file} 2.19
F-READ{XY} 2.20
F-UREAD{XY} 2.22
F-WRITE{xY} 2.20
FB(file) 2.21
FBU(file) 2.22
G n 2.14
GO n 2.14
GOSUB n 2.14
H{text}{<} 2.13
1F {#}a-cmnd proc-cmd 2.15
TF a-cmnd op (pattern) proc-cmnd 2.17
IF a-cmnd op string proc-cmnd 2.16
1H{text} 2.13
IN{r} 2.11
1p{B}{r} 2.11
rr{c}{a} 2.11
. E1,E2,En 2.24
MV operand operand 2.9

MVA operand operand 2.10
MVD operand operand 2.10
+n 2.26
-n 2.26
na{cHplx 2.8

NB 2.7

NBO 2.7

NF 2.7

nH{text}{<} 2.13

COMMAND FORMAT

NIH{text}
NIN{r}
NIP{B}{r}
NIT{c}{a}
NS (m)
O{text}{+}
P{mode-ia}
PP
PQ-COMPILE,
PQ-SELECT
RI (m)
RI{p}

RO

RSUB n
RTN{x}

S (m)

SP

ST OFF

ST ON

T E1,E2,En
TR
Umode-id
X{text}

TOPIC

NN NN DN

N
.

NN
e e s .

NN O
. .

NN

N NN NDNDNDND

APPENDIX B

LIST OF ASCII CODES

This appendix presents a list of ASCII codes used in the Reality system.

DECIMAL HEX CHARACTER

0 0 NUL

1 1 soH AA
2 2 STX A
3 3 ETX Ap
4 4 EOT 4 p
5 5 ENQ 4 E
6 6 ACK 4L
7 7 BEL 4 &
8 8 BS AFH
9 9 HT AL
10 A LF A
11 B VT AK
12 C FF ~ L
13 D CR a M
14 E SO AN
15 F SI 1 ()
16 10 DLE AP

17 11 DC1 1(2
18 12 DC2 AK
19 13 DC3 &~ =

20 14 pcs Al

21 15 NAK Al

22 16 SYN AV

23 17 ETB Ay

24 18 CAN 4 X

25 19 EM Ay

26 1A sUp 7
27 1B ESC

28 1C FS

29 1D GS

30 1E RS

31 1F US

32 20 SPACE

33 21 !

34 22 "

35 23 #

36 24 $

37 25 %

38 26 &

39 27 !

40 28 (

41 29)

42 2A *

43 2B +

A 2C R

45 2D -

46 2E

47 2F /

48 30 0

SPECIAL USE IN REALITY

Null prompt character
Cursor home on CRT Terminal

Cursor forward on CRT Terminal

Bell on CRT Terminal

Cursor down on CRT Terminal
Vertical address on CRT Terminal
Screen erase on CRT Terminal
Carriage return on CRT Terminal

Horizontal address on CRT Terminal

Cursor back on CRT Terminal

Cursor up on CRT Terminal

DECIMAL HEX CHARACTER SPECIAL USE IN REALITY

49 31 1
50 32 2
51 33 3
52 34 4
53 35 5
54 36 6
55 37 7
56 38 8
57 39 9
58 3A :
59 3B ;
60 3C <
61 3D =
62 3E >
63 3F ?
64 40 @
65 41 A
66 42 B
67 43 C
68 44 D
69 45 E
70 46 F
71 47 G
72 48 H
73 49 I
74 4A J
75 4B K
76 4C L
77 4D M
78 4E N
79 4F 0
80 50 P
81 51 q
82 52 R
83 53 S
84 54 T
85 55 U
86 56 v
87 57 W
88 58 X
89 59 Y
90 5A Z
91 5B [
92 5C \
93 5D]
94 5E M
95 5F _
123 7B {
124 7C !
125 7D }
126 7E v
127 7F DEL
251 FB SB Start Buffer
252 FC SVM Secondary Value Mark
253 FD VM Value Mark
254 FE AM Attribute Mark

255 FF 5M Segment Mark

AFPENDIX C

ASSEMBLY INTERFACE FOR PROC USER EXITS

User exits from PROC may be used to reach special purpose assembly code.

A user program can gain control during execution of a PROC by using the UXXXX com-
mand where XXXX is the hex mode-id of the user program.
perform special processing, and then return control to the PROC processor.
material reproduces what is contained in the ASSY Language Manual.

1

An * notes a change from previous conventions.
places SBIT, that attribute marks may separate parameters, and that a (SM) termi-
nates each PROC buffer.

INPUT INTERFACE

PQOFLG
BASE
MODULO
SEPAR
POBEG
PQEND
PQCUR

*R9

*PO-REG
IR
PBUFBEG

*ISBEG

*STKBEG

*SFLG
IB

*PQ-CUR-IB

sC2
Is

UPD

B

nHAaAdo0

n n

R

R

The assembly program can
This

Set, indicating that a PROC is being executed.
Base of the M/DICT.

Modulo of the M/DICT.

Separation of the M/DICT.

Points one prior to the first PROC statement. This will be
within the file in which the PROC resides.

Points to the terminal AM of the PROC.

Points to the AM following the UXXXX statement.

Points to the PROC control block. R2 may be altered within

the code, with the consideration that elements defined relative

to R9 (see PQ-CUR-IB) will not be available.

Points to the PROC control block.

Same as PQCUR.

Points to a buffer containing the primary and secondary input
buffers. Format:

(SB) ...primary input...(SM) (SB).
LOGON sets this to one frame.
needed by subroutine PQONEXTOVEF.
at LOGOFF.

Points one before the 1lst character of the primary output
buffer. This is the processor's "IS" work area. This buffer
is and must always be terminated with a (SM).

Points one before the lst character of the secondary output
buffer (STACK). This is initially 2 linked frames, though
more frames may be linked to it automatically by the sub-
routine PONEXTOVF. Additional frames are released at LOGOFF.
This buffer is and must be terminated by a (SM).

Set if 'STACK ON'. Zero otherwise.

Input buffer pointer. Points to the current location in which-
ever is active: the primary or secondary input buffer.

Set if IB points into the secondary input buffer. Zero other-
wise. This bit is defined relative to register 9, which must
be set to the PROC control block in order to reference this
bit.

Contains a blank.

SFLG OFF

The last byte of the
primary output buffer.
The last byte of the
secondary output buffer.

. .secondary input...(SM).
Additional frames are added as
Additional frames are released

SFLG ON

The last byte of the
secondary output buffer.
The last byte of the
primary output buffer.

Note in particular that SFLG re-

ﬂbTPUT INTERFACE

IR R Points to the (AM) preceding the next PROC statement to be
executed; may be altered to change the location of PROC
execution.

IS R May be altered to reflect a changed output buffer, but the

UPD R formats described above must be maintained. For example,
SFLG must be kept accurate.

IB R May be altered to reflect a changed output buffer, but the

R formats described above must be maintained. For example,
PQ-CUR-BUF must be maintained.
SFLG Set if "STACK ON" condition, otherwise zero.
PQ-CUR-IB B Set if secondary input buffer is active. Zero otherwise.
PROC BUFFERS Must be maintained in the formats described in the input
section. Note that a (SM) must terminate each buffer.

o

ABIT-ZBIT B Zero.
BASE D As at entry.
MOD T As at entry.
SEPAR T As at entry.
SCO C As at entry.
SCl C As at entry.
sc2 C As at entry.
POBEG S As at entry.
PQEND S As at entry.
PBUFBEG S As at entry.
ISBEG - S As at entry.
TKBEG S As at entry.
WOFLG B Set if PROC execution is to continue.

The normal method of returning control to PROC is to execute an external
branch to 2,PROC-I. If it is necessary to abort PROC control and exit to WRAPUP,
set PQFLG off, and execute an external branch to the appropriate WRAPUP entry
point. \

1 PQNEXTOVF

A subroutine called PONEXTOVF is provided so that user written code may add
parameters to the PROC buffers without concern about exceeding the buffers.

This is applicable to the primary and secondary input buffers, and the secondary
output buffer. Additional frames will be added to these buffers as needed.

This subroutine handles a forward link zero trap on registers 15 or 8. It is
called automatically when XMODE contains the mode-id 'PQNEXTOVF'. Note that

R15 and R8 are not destroyed by this routine.

2 INPUT INTERFACE
R15 or R8 R Points to the end of the frame on which the forward link
zero trap occurs.
R9 R Set to PROC control block.

3 OUTPUT INTERFACE
"15 or R8 R As at entry.

‘.—Jﬁe output convention for ATTOVE is applicable. Note in particular that
OVRFIW is 0 if no frame was available.

PO-INSERT is a subroutine which will insert single or multiple fields into
any of the PROC buffers.

INPUT INTERFACE:

PBUF Points to first byte of receiving field. Sending field(s) must be
terminated by an attribute mark. Multiple field inserts can be
accomplished by separating the sending fields by blanks.

IB Points to one byte before sending field

SB2 0 - Causes blanks in sending field to be replaced by attribute marks

in the receiving field.
1 - Blanks are left as blanks
R9 Points to PROC control frame (MOV PQ-REG,R9)

OUTPUT INTERFACE:
PBUF and IB Point to first byte of receiving field if SB2 =1
Point one byte before receiving field if SB2 = 0

INTERNAL USAGE:
BMS:
R14
R15

	001
	005
	006
	007
	1-01a
	1-01b
	1-02a
	1-02b
	2-01a
	2-01b
	2-02a
	2-02b
	2-03a
	2-03b
	2-04a
	2-04b
	2-05a
	2-05b
	2-06a
	2-06b
	2-07a
	2-07b
	2-08a
	2-08b
	2-09a
	2-09b
	2-10a
	2-10b
	2-11a
	2-11b
	2-12a
	2-12b
	2-13a
	2-13b
	2-14a
	2-14b
	2-15a
	2-15b
	2-16a
	2-16b
	2-17a
	2-17b
	2-18a
	2-18b
	2-19a
	2-19b
	2-20a
	2-20b
	2-21a
	2-21b
	2-22a
	2-22b
	2-23a
	2-23b
	2-24a
	2-24b
	2-25a
	2-25b
	2-26a
	2-26b
	2-27a
	2-27b
	2-28a
	2-28b
	2-29a
	2-29b
	2-30a
	2-30b
	2-31a
	2-31b
	2-32a
	2-32b
	2-33a
	2-33b
	2-34a
	2-34b
	3-01a
	3-01b
	3-02a
	3-02b
	3-03a
	3-03b
	3-04a
	3-04b
	3-05a
	3-05b
	3-06a
	3-06b
	3-07a
	3-07b
	3-08a
	3-08b
	3-09a
	3-09b
	3-10a
	3-10b
	A-01a
	A-01b
	B-01a
	B-01b
	C-01a
	C-01b
	C-02b

