Assembly Language
'Programming Manual ¥

by Microdata

GERGRGGS ﬁﬁﬁﬂﬁﬁ.

A 4#4%414\4141«
-l-l-# A a2 -l-l-l» - -_-I,

PROPRIETARY INFORMATION

The information contained herein is propnetary to and
considered a trade secret of Microdata Corporation
and shall not be reproduced in whole or part without
the wntten authorization of Microdata Corporation.

©1977 Microdata Corporation

All Rights Reserved

TM —Trademark of Microdata Corporation
Specifications Subject to Change Without Notice
Printed in U S.A

Price: $20.00

REALITY

(3.0 SERIES)

Assembly Language

L

Programming Manual

771049

° Microdata Corporation

17481 Red Hill Avenue, Irvine, California 92714
Post Office Box 19501, Irvine, California 92713
Telephone: 714/540-6730 - TWX: 910-595-1764

SECTION

1

TITLE
INTRODUCTION
1.1 THE REALITY CPU AND HARDWARE
1.2 THE REALITY SYSTEM ARCHITECTURE
1.3 THE REALITY INSTRUCTION SET
1.4 RESTRICTIONS ON USE OF ASSEMBLY LANGUAGE
ON REALITY
1.5 MANUAL ORGANIZATION AND CONVENTIONS

TABLE OF CONTENTS

REALITY CPU REFERENCE INFORMATION

2.1

SYSTEM STRUCTURE
2.1.1 SYSTEM COMPONENTS
2.1.2 INFORMATION FORMATS
VIRTUAL STORAGE
2.2.1 VIRTUAL STORAGE ORGANIZATION
2.2.2 ADDRESSING VIRTUAL STORAGE
CORE STORAGE
2.3.1 CORE STORAGE ORGANIZATION
2.3.2 ADDRESSING CORE STORAGE
VIRTUAL STORAGE MANAGEMENT
2.4.1 FRAME FAULTS
2.4.2 AUTOMATIC FRAME WRITES
PROCESSES
2.5.1 PROCESS IDENTIFICATION BLOCK
2.5.2 PRIMARY CONTROL BLOCK
FRAME FORMATS AND LINKAGES
2.6.1 FRAME FORMATS
2.6.2 LINKED SETS OF FRAMES
ADDRESS REGISTERS

ADDRESS REGISTER ATTACHMENT

2.7.1
2.7.2 CAUTIONS INVOLVING REGISTER ATTACHME
2.7.3 ATTACHMENT AND DETACHMENT OF ADDRESS

REGISTERS
THE MONITOR
2.8.1 MONITOR FUNCTIONAL ELEMENTS
2.8.2 PROCESS SCHEDULING
PERIPHERAL I/O
PROGRAM TRAPS

REALITY ASSEMBLY LANGUAGE (REAL)

3.1

wwwww
. o e
NN wN

OURCE LANGUAGE

LABEL FIELD

OPERATION FIELD

OPERAND FIELD

OPERAND FIELD EXPRESSIONS
COMMENT FIELD
DOCUMENTATION CONVENTIONS
CALLING THE ASSEMBLER

LISTING OUTPUT

LOADING

VERIFYING A LOADED PROGRAM MODE
TCL-II CROSS REFERENCE CAPABILITY
3.6.1 CROSS-INDEX VERB

S
3.
3.
3.
3.
3.
3.

H h'h‘F'H H
O\U‘I-hwwo—‘

PAGE

RORN0
W e

[
U o
S w

|
HHEH 900 U0UUWwWwwWwNHPF B H -

)
e
N0 WWw

NNNNNNNNNI})NNNNNNNNNN

N
1

2-18

2-18
2-19
2-19
2-1¢

wWwwww w ? wWwWwwwww
DO UVTWWNNNFHHH B

w
[}

TABLE OF CONTENTS (Continued)

SECTION TITLE

3.6.2 X-REF VERB
3.6.3 XREF PROC

3.7 THE KEAL INSTRUCTION REPERTOIRE
3.7.1 CHARACTER INSTRUCTIONS (MOVES)
3.7.2 CHARACTER INSTRUCTIONS (TESTS)
3 7.3 BIT INSTRUCTIONS
3.7.4 DATA MOVEMENT AND ARITHMETIC INSTRUCTIONS
3.7.5 REGISTER INSTRUCTIONS
3.7.6 DATA COMPARISON INSTRUCTIONS
3.7.7 TRANSLATE INSTRUCTIONS
3.7.8 EXECUTION TRANSFER INSTRUCTIONS
3.7.9 I/0 AND CONTROL INSTRUCTION
3.7.10 ASSEMBLER DIRECTIVES
3.7.11 ADDRESS REGISTER USAGE
3.7.12 REAL INSTRUCTION SIDE EFFECTS

3.8 ASSEMBLER TABLES
3.8.1 TSYM/PSYM TABLE ENTRY FORMATS
3.8.2 OSYM TABLE-LOOKUP TECHNIQUE

3.8.3 TSYM TABLE ENTRY SETUP
3.9 ASSEMBLER OUTPUT
3.10 ASSEMBLER ERROR MESSAGES
3.11 REAL INSTRUCTION SUMMARY
3.12 PROGRAMMING CONSIDERATIONS AND CONVENTIONS

3.12.1 REENTRANCY
3.12.2 WORK-SPACES OR BUFFERS
3.12.3 DEFINING A SEPARATE BUFFER AREA
3.12.4 USAGE OF XMODE
3.12.5 INITIAL CONDITIONS
3.12.6 SPECIAL PSYM ELEMENTS
4 THE INTERACTIVE DEBUGGER (DEBUG)
4.1 ENTERING DEBUG

4.2 THE DEBUG CONTROL COMMANDS
4.2.1 CONTROL COMMAND SYNTAX

4.2.2 DEBUG CONTROL TABLES
4.2.3 CONTROL COMMANDS
4.3 THE DEBUG DATA DISPLAY COMMANDS
4.3.1 WINDOWS
4.3.2 DATA DISPLAY COMMANDS
4.3.3 DATA REPLACEMENT SPECIFICATIONS
4.3.4 SPECIAL CONTROL CHARACTERS
4.4 THE FORMATTED TRACE
4.5 SYMBOLIC REFERENCES
4.5.1 SYMBOLIC OPERATORS
4.5.2 DISPLAY FEATURES
4.5.3 SYMBOLIC WINDOWS
4.6 THE ADDRESS FUNCTION
4.7 THE LINKS FUNCTION

4.8 BIT DATA
4.8.1 SYMBOLIC BITS

ii

(o e]

|

N N N N N N N N N N N N N N N N N NN
|
HHFEFEREFROWOOOMNOU B D WNKFFHBH

o= e

SECTION

TABLE OF CONTENTS (Continued)

TITLE
4.8.2 BIT ADDRESSES
4.8.3 REPLACING BIT DATA
4.8.4 BIT WINDOWS

4.9 BREAK MESSAGES
4.10 EXAMPLES
4.10.1 SIMPLE EXAMPLE
4.10.2 EXTENDED EXAMPLE
SYSTEM S'JBROUTINES

CONVERSION FROM LEVEL 2.X TO 3.0

iii

PAGE

4-11
4-12
4-12
4-12
4-13
4-13
4-14

5-1

FIGURE NO.

1-1

|
O o 9o b w -

NN NN NDNDDNDNDNNDNDND
|]
-
(@]

]
e
N -

L»)L'A)(.-J
w N+

LIST OF FIGURES

TITLE
Hierarchy of System Architecture

Information Formats

Memory Management Tables

PIB General Format

PCB Elements Accessed by Firmware
Primary Control Block

Secondary Control Block

Unlinked Vs. Linked Frame Formats
Link Field Format

Examples of Linked Sets of Frames
Address Register Format

Attachment & Detachment of Address Registers

Order Codes

Sample Assembly Listing

Sample of CSYM File After CROSS-INDEX

Sample of XSYM File After X-REF

iv

HOW TO USE THE REALITY® MANUALS

The Reality® manuals are written in modular format with each pair of facing
pages presenting a single topic.

This and other Reality manuals differ substantially from the typical reference
manual format. The left-~hand page of each topic is devoted to text, while the
right-hand page presents figures referred to by the text. At the head of each
text page are a pair of titles, the first title naming the section, the second
the topic. Immediately below these titles is a brief summary (boxed) of the
material covered in the topic.

The advantage of this format will become readily apparent to the reader as he
uses this manual. First, the figures referred to in the text are always con-
veniently right in front of the reader at the point where the reference is made.
Secondly, the reader knows that when he turns the page, he has completed one
idea and is ready to encounter a new one.

Documentation for the Reality system includes the following:
Reality Programmer's Reference Manual, #1048
Reality EDITOR Operator's Guide, #1052
Reality ENGLISH'M Programming Manual, #1038
Reality DATA/BASICTM. programming Manual, #1051
Reality PROC and BATCH Programming Manual, #1044
Reality Assembly Language Programming Manual, #1049
Reality Bisync Operator's Guide, #1043

The examples throughout this manual use certain conventions as defined in
Figure A.

CONVENTION MEANING
EXT Shaded text represents the user's input.
TEXT Standard text represents computer output

printed by the system.

TEXT Ttalicized text 1s used for comments and notes
which help explain or describe the example.

This symbol represents a carriage return.

B This symbol represents a space (blank).

Figure A. Conventions Used Throughout This Manual

SECTION 1

INTRODUCTION

1.1 THE REALITY® CPU AND HARDWARE

The Reality system runs on a Microdata 1600 CPU. Although small in size, it has
the architecture of a medium scale computer. Its main memory is core, and is ex-
pandable to 131,072 bytes. The CPU cycle time is 200 nanoseconds, and the main
memory full cycle time is 1 microsecond. The CPU is microprogrammed, meaning that
the assembly language instructions are executed by many small micro-instructions
which are "close" to the machine. These micro-instructions (firmware) are in read-
only, fixed memory, as tais affords higher execution speeds. Taking this approach
permits proven hardware to be used for Reality systems while allowing the .flexibil-
ity of a custom instruction set.

The mass memory is disc, which is organized into 512 byte blocks called frames.

Over 300 megabytes of disc storage can be configured on a Reality system. There

is a large list of supporting hardware which can be interfaced to the 1600 Computer,
including tapes, communication devices, terminals, etc.

1.2 THE REALITY SYSTEM ARCHITECTURE

Figure 1-1 shows an overall view of the software on the Reality system. The firmware
is burned onto integrated circuit chips and placed on a firmware board. The monitor
serves to allocate disc activity and to schedule processes for activation. It uses
assembly language instructions which are executed by the firmware. There is a large
volume of available system software, also written in assembly language, with instruc-
tions executed by the firmware. This system software includes compilers, utilities,
the assembler, and a large number of subroutines to which the user may interface.

Reality will support up to 32 separate asynchronous processes (terminals plus the
work they are doing). Because Reality code is reentrant, each may be running the
same or different tasks.

Reality assembly language operates through its own set of registers, stacks, accu-
mulators, and other data structures. Each process is assigned a control block which
contains 16 addressing registers, an accumulator, a return stack which will hold 11
entries, an accumulator extension, and a large number of other registers, counters,
pointers, and flags which make the assembly language very powerful. The 16 address
registers in a control block can access any byte in disc space. Relative addressing
is also possible using an offset displacement plus one of the registers to any bit,
byte, word (16 bits), double word (32 bytes), or triple word (48 bits) in the entire
virtual memory.

Input and output to the terminals is handled automatically by the firmware, which
makes these operations fast. Input and output to the discs are handled automati-
cally by the monitor and firmware, a feature which greatly simplifies the program-
ming task.

HIGHER LEVEL
LANGUAGES (RPG,
ENGLISHT-M-, pata/BasicT-M.

SYSTEM SOFTWARE

MONITOR

FIRMWARE

CPU & CORE

Figure 1-1. Hierarchy of System Architecture

1.3 THE REALITY INSTRUCTION SET

The Reality Computer System has an extensive instruction set. The main features

include:

* Bit, byte, word, double-word, and triple-word operations.

* Memory-to-memory operation using relative addressing on bits, bytes, words,
double-words, and triple-words.

* Bit operations permitting the setting, resetting, and branching on condition
of a specific bit.

* Branch instructions which permit the comparison of two relative memory
operands and branching as a result of the compare.

* Addressing register operations for incrementing, decrementing, saving, and
restoring addressing registers.

* Byte string operations for the moving of arbitrarily long byte strings from
one place to another.

* Operations for the conversion of binary numbers to printable ASCII characters
and vice versa.

* Arithmetic instructions for loading, storing, adding, subtracting, multiplying,
and dividing the extended accumulator and a memory operand.

* Control instructions for branching, subroutine calls, and program linkage.

1.4 RESTRICTIONS ON USE OF ASSEMBLY LANGUAGE ON REALITY

While the use of assembly language on Reality is supported, certain restrictions

are placed on this usage to insure compatibility from one release to another, and to
insure that the systems are both hardware and software supportable. The following
are not supported.

1)

2)

3)

4)

5)

6)

Any change to the assembly code system software supplied by Microdata.

Any interface to routines not documented in the chapter SYSTEM SUBROUTINES
in this manual.

Any interface to P.I.B's or other data or code in non-virtual core.
Any code written in monitor mode.

Any modifications, deletions or additions to the tables PSYM and OSYM as
supplied on SYS-GEN tapes.

Any interface to a device or peripheral not supplied by Microdata.

1.5 MANUAL ORGANIZATION AND CONVENTIONS

This manual is organized as follows:

* Section 2 is essentially a "reference manual" for the Reality CPU. It des-
cribes the system structure and the machine instructions.

* Section 3 describes the Reality Assembly Language (REAL).

* Section
monitor

* Section

4 describes the Interactive Debugger (DEBUG), which may be used to
and control program execution.

5 documents Microdata-supplied system subroutines (and their inter-

faces) which users may call.

In presenting general command formats throughout this manual, the following conven-

tions apply.

Convention

UPPER CASE

lower case

{}

{}...

Meaning

Characters or words printed in upper case are required and must
appear exactly as shown.

Characters or words printed in lower case are parameters to be
supplied by the user (e.g., file name, item-ID, data, etc.).

Braces surrounding a word and/or parameter indicate that the word
and/or parameter is optional and may be included or omitted at
the user's option.

If an ellipsis (i.e., three dots) follows the terminating
bracket, then the enclosed word and/or parameter may be omitted
or repeated an arbitrary number of times.

In presenting examples, the following conventions apply:

Convention

TEXT

Meaning

Shaded ‘text represents the user's input.

Standard text represents output printed by the system.
This symbol represents a carriage return.

This symbol represents a line feed.

SECTION 2

REALITY CPU REFERENCE INFORMATION

This section is a "reference manual" for the Microdata Reality CPU. It provides a
description of the system structure; of the arithmetic, logical, branching, skipping,
and input/output operations; and of the interrupt and storage management system.
Input/output devices are discussed in separate documents.

2.1 SYSTEM STRUCTURE
2.1.1 SYSTEM COMPONENTS

The Reality system consists of a core storage unit, a tape drive, a printer, a disc
storage device used as a virtual storage unit, a central processing unit (CPU), and
from one to 32 input/output terminals. There is a one-to-one correspondence between
a terminal attached to the system and a process. Additional input/output devices
such as magnetic tape units, disc units, card readers, and printers may be attached
to the system. Input/output devices, other than a process's terminal, may be ac-
cessed by any process. The disc unit containing the virtual store, however, cannot
be accessed as an input/output unit, except by the monitor.

2.1.2 INFORMATION FORMATS

The system CPU processes information in units of 8 bits, or in multiples of 8 bits
at a time. Each 8-bit unit is called a byte.

Information may be a single byte, or may be grouped together in fields. Fields of
two, four, and six bytes are called words, double words, and triple words, respec-
tively. A field made up of an arbitrary number of bytes is called a string. The
location of any field is specified by the address of the leftmost byte of the field.
Addresses increase from left to right.

Within any information format, the bits making up the format are numbered from left
to right, starting with 0. Figure 2-1 shows the information formats.

2,2 VIRTUAL STORAGE

All information in the Reality system, other than the monitor program and certain
data used by the monitor, is stored in virtual space. "Virtual" means that the
physical location of this space moves from disc to core and from core to disc auto-
matically, without attention from the user.

2.,2.1 VIRTUAL STORAGE ORGANIZATION

Virtual storage is organized into blocks of 512 bytes each. Each block is called
a frame. Frames are numbered from one to some maximum number which depends on the
system configuration. When frames are needed for processing, they are moved into
core for access by the CPU. Frames which are not used often are moved into disc

storage to make room for other frames in core. This movement of frames is handled

BYTE

11000110

!

0 BITS 7

——

WORD

11110001{01001011

0 7 8 1
5

DOUBLE WORD

11100000|10001111 {00000000|10101011

3

0 7 8 2
4 1

11 2
56 3

TRIPLE WORD

00000001/00100111{0011111111110000|00001001 00000111

4
7

0 7 8 11 2 2 33 3 4
56 34 12 90

Figure 2-1. Information Formats

automatically by the Reality firmware and monitor, so as far as the user is con-
cerned, available space can be viewed as a linear set of frames. Whether data is
actually in core or on disc at any given time is of little importance, and is con-
sidered only when optimizing programs.

2.2.2 ADDRESSING VIRTUAL STORAGE

All program references to information are references to virtual storage. Fields
in virtual storage are referenced via a frame number (frame-ID, or FID) and a
displacement. If the field being referenced is a single byte or a string, the
displacement is the number of bytes relative to the first data byte of the frame.
If the reference is to a word, double word or triple word, the displacement is
the number of words relative to the first data byte of the frame. References to
instructions are via a 12-bit frame number. Therefore, programs must be located
in the first 4096 frames.

2.3 CORE STORAGE
2.3.1 CORE STORAGE ORGANIZATION

Core storage is also organized into 512-byte blocks, called buffers. A few buffers
are reserved for the monitor, tables, and status indicators which are required to
operate the Reality system. The remaining buffers are available for storing data
read in from disc; one buffer can hold exactly one frame of virtual storage.

Any core buffer can hold any frame, and at any given time the buffers in core will
have a scattering of frames. Frames are read into core as buffers become available,
without regard to which buffers they are. Frames are written back to disc as they
fall into disuse.

2.3.2 ADDRESSING CORE STORAGE

Byte locations in core storage are consecutively numbered starting with zero. A
group of bytes is addressed by the leftmost byte of the group. The number of bytes
in a group is either implied or explicitly defined by the particular Reality in-
struction. The addressing mechanism uses a one-bit bank select register and a
sixteen-bit binary address register, giving a maximum of 131,072 addressable bytes.

2.4 VIRTUAL STORAGE MANAGEMENT

The Reality monitor uses several tables to manage the movement of frames between
core and disc.

The Buffer Status Table contains the status of each buffer in core storage--whether
it is I/O-busy, corelocked (not to be read into) or, write-required (data in frame
changed) .

The Buffer Map (or FID Table) is a table containing the virtual storage addresses
of all frames currently in core buffers.

The Buffer Queue (or Links Table) is a linked list of buffer numbers used to schedule
buffers for disc I/O efficiently.

The Hash Address Table (HAT) and the Hash Link Table (HLT) are used to locate frames
in core storage. To detzrmine whether a given frame is in core or not, the frame
number is transformed ("hashed") into a HAT entry number, which points to a list of
HLT entries. This list contains the numbers of all frames in core which have the
same HAT entry number. If the given frame number is not in the list, the frame is
not in core, and a frame fault is then generated in order to read the frame in from
disc.

Figure 2-2 shows the interaction of the memory management tables.

START

START HERE TO SEE IF A FRAME
IS IN CORE & IF SO, WHERE

HASH TRANSFORMATION

] Cren 5 \ ,
LIST N
\\
\‘

HAT HLT e
ENTRIES POINT TO 1 BLoC COMPOSED OF SEVERAL TS~
LINKED LISTS PERLBuﬁFER INTERTWINED LINKED LISTS. >

IN copg COMNECTS BUFFERS HAVING FID's

WHICH HASH THE SAME.
/
/
/

/ /
/
/
/
/
/
4
/
/
4

/

/

L

’
/]
/
/
/
/
PY ’

BUFFER QUEUE (ORDERS BUFFERS BY

MOST RECENT USAGE)

BUFFER MAP (SHOWS FRAMES)

Figure 2-2.
2-4

Memory Management Tables

2.4.1 FRAME FAULTS

If a program (process) attempts to reference data which is not in core, it is de-
activated and marked disc-roadblocked by the firmware, and the monitor is activated
to search for an available buffer for the frame. If an available buffer exists and
the required disc drive is not busy, the monitor sets that buffer's status to I/0-
busy and corelocked, zeroes the frame number in the Buffer Map, and commands the
disc to read the requested frame into that buffer. Then the monitor selects another
process for activation. When the disc interrupt occurs, indicating completion of the
read, the monitor stores the requested frame number in the Buffer Map, clears the
I/0-busy and corelocked buffer status, and clears the process's disc-roadblocked
flag. The monitor then starts another disc read, if possible, for another process,
and selects another process for activation.

If a process needs a frame read into core and no buffer is available, the monitor
finds the least recently used buffer which is not corelocked, writes it out to disc
if its write-required flag is set, and marks it available. By the time a buffer is
written out, however, the disc drive required to read in the desired frame may be
busy, or another process may have already read this frame into core. But the buffer
freed by a write is always marked available in the Buffer Map (by zeroing the frame
number), and this table is always searched before using the available buffer.

2.4.2 AUTOMATIC FRAME WRITES

Whenever the monitor completes a search for disc roadblocks for an available disc
drive and fails to find any, it next looks for a buffer with write-required, non-
corelocked status. It searches the Buffer Map beginning with the least recently
used buffer and starts a write/verify operation for the first buffer found for an
available disc drive. The monitor sets the buffer's corelocked flag and clears the
write-required flag, but does not set the I/O-busy flag in this case. This means
that processes may read and write data into and out of the buffer after the write/
verify operation is initiated, but if the data in the buffer changes, the firmware
will set the write-required flag again. When the write/verify operation is complete,
the monitor clears the buffer's corelocked status and searches for another process
reguiring disc I/0. The monitor thus ensures system efficiency by continually pro-
viding available buffers.

2.5 PROCESSES

The Reality CPU is designed as an interactive system capable of communicating with
several users simultaneously. A user communicates with the system via a terminal,
and associated with each terminal is a process. A process can be defined as a con-
tinuing operation on a set of functional elements (areas of virtual space). The
number of processes in a Reality system is a function of its configuration. Each
process, except the monitor process, is associated with a Process Identification
Block (PIB) in core, and a Primary Control Block (PCB) and other elements in virtual
space.

2.5.1 PROCESS IDENTIFICATION BLOCK

Process Identification Blocks (PIBs) are used in handling the I/O operations asso-
ciated with each process, and in scheduling activation and deactivation of the

processes.

Each PIB is 64 bytes long and is formatted as shown in Figure 2-3.

NOTE

The information in Figure 2-3 is intended to give a better understanding
of the operation of Reality systems.
interface spectification.

It 1s not intended to be used as an

Byte

»w N o

31
32

e e o o o - —]
e
e e e e e s e e e

e e s e s e e e

Status
Bytes

Terminal
I/0 Buffer

w
[
+

0| ACTIVE

1| SLEEP

2| DIOBLK/

3| --

al|l --

5| OBYTEBLK/

6 | IBYTEBLK/

7| --
INDEBUG

Set when process may be activated
Zeroed to sleep until time in bytes 12-15
Zeroed by firmware on frame fault

Zero during terminal output
Zero during terminal input

Set to echo terminal input
Set when process is executing from TCB
Set by firmware on program trap

Trap number

yte address of last character in terminal I/0 buffer

umber of bytes in terminal I/O buffer minus one

Figure 2-3.

P

IB Format

2.5.2 PRIMARY CONTROL BLOCK

For each process there is a frame called the Primary Control Block (PCB). The

PCB contains the accumulator, address registers, subroutine return stack and string
scan control characters associated with the process. Figure 2-4 describes elements
of the PCB which are accessed by the firmware. Figure 2-5 shows the entire PCB
layout. Figure 2-6 shows the Secondary Control Block (SCB) layout.

BYTES DESCRIPTION
0] Reserved.
1 This byte contains the condition code resulting

from a previous arithmetic instruction execution.

3-5 These bytes are used for controlling the Move
and Scan through Delimiter instructions.

6-7 These bytes are used for controlling the DEBUG
trace mode of operation.

8-X'0OB' These bytes contain the double-word accumulator
extension. The accumulator extension contains
the most significant portion of a product

after a multiply operation. It contains the
remainder after a divide operation.

X'0C'-X'0F' These bytes contain the double-word accumulator.

X'100'-X'17F' These bytes contain the 16 address registers.
See the description of the address registers
below.

X'182'-X'183" These bytes contain the pointer to the current

top of the subroutine stack.

X'184'-X'1AF' These bytes contain the subroutine return
stack. Each entry is four bytes long: the
first two bytes contain the FID and the
last two contain the displacement of the
address one before that where program exe-
cution is to resume upon returning from the
subroutine.

Figure 2-4. PCB Elements Accessed by Firmware

PRIMARY CONTROL BLOCK

L d

Addressing register RO set to PCB. Areas bordered by hea
reserved for future system software use.

] 1 2 3 4 5 6 7

000 m ACF PRMPC SCO sc1 sC2 DEBUGBYTE | RNICTR
010 AFLG-ZFLG, SB0-SB35, DAF0-DAF9, MISC. BITS
020 CHO] CH1 4] CH2 I CH3 CHa | CH8 l CH9] ScP
030 D2 D3
040 RECORD FRMN

050 BASE MODULO SEPAR

060 MBASE MMOD MSEP

070 OVRFLW CMODE W
080 | INHIBITH bCFSAv RCDCTR MODEID2 WMODE

090 CTRO CTR1 CTR2 CTR3

0A0 CTR8 CTR9 CTR10 CTR11

0BO REJCTR REJO IBSIZE OBSIZE
0Co0 F HSEND ISBEG

0Do OSBEG AI

0E0 7 I TSEND

OF0 = UPDEND BMSBEG
100 ROWA J RODSP ROFLGS] ROFID

110 R2 (SCB)

120 R4 (1S)

130 R6 {IR)

140 R8 (BMS)

150 R10 (1B)

160 R12 (CS)

170 R14

180 RSCWA F”;«TN STACKl ENTRY #lsp

190 ENTRY #4 ENTRY #5

1A0 ENTRY #8 ENTRY #9

180 AFBEG ,

1C0 7 I CSEND

1D0 A IBEND 44] OBBEG
1E0 IRBEG I

1F0 7 l SYSR1 (FPY)

Figure 2-5. Primary Control Block

vy lines are accessed by hardware. Shaded areas are
8 1 9 1 | c | D 1 |
. D1 DO
TAPSTW l MISC. BITS
PR A 6 l 7
D4 D5
FRMP NNCF | NPCF SIZE
DBASE DMOD DSEP
EBASE EMOD ESEP
SBASE SMOD SSEP
RMODE MODEID3 XMODE USER
CTR4 CTR5 CTR6 CTR7
CTR12 CTR13 CTR14 CTR15
HSBEG ‘ ¥
ISEND
OSEND TSBEG =
UPDBEG *
BMSEND
R1
R3 (HS)
RS (OS)
R7 (UPD)
R9 (AF)
R11 (OB)
R13 (TS)
R15
ENTRY #2 ENTRY #3
ENTRY #6 ENTRY #7
ENTRY #10 ENTRY #11
AFEND CSBEG A
| IBBEG [¥
OBEND
IREND SYSRO (FPX) F
1 CHARGE — UNITS BYTECTR

SECONDARY CONTROL BLOCK

Addressing register R2 set to SCB. SCB = PCB+l.

0 1 2 | 3 4 . 5 6 . 7
000 |[(SCRATCH)| BSPCH ci c2 c3
010 ABIT-ZBIT, NUMFLG 1, NUMFLG 2, ACTBIT CTR16 CTR17
020 CTR22 CTR23 CTR24 CTR25
030 CTR30 CTR31 CTR32 CTR33
040 CTR38 CTR39 CTRA40 CTR41
050 PFILE NEXT FP1
060 FP3
070 T r D9 REJ1
080 SYSR2
090 7 l ST
0A0 7 S3 L sS4
0BO S6
0Co 7 L s9
0D0 F SR1 l SR2
0EO SR4
0F0 T | SR7
100 F SR9 W SR10
110 SR12
120 7 L SR15
130 7 SR17 T SR18
140 SR20
150 = L SR23
160 F SR25 7 SR26
170 SR28
180 T L PQCUR
190 STKEND l STKBEG
1A0 LOCKSR
1C0 ////////////////////% FOOTCTR PAGFOOT
100 PBUF
1E0 POBSIZE PPAGSIZE I PLINCTR PPAGNUM
1FO PAGNUM PAGHEAD

Figure 2-6. Secondary Control Block

A D
ca cs c6 c7
CTR18 CTR19 CTR20 CTR21
CTR26 CTR27 CTR28 CTR29
CTR34 CTR35 CTR36 CTR37
CTR42 FP5
FP2
% D7 [D8
| REJ2 FPa4
NXTITM J S0
| : |
I s5
s7 ’ s8
| SRO |
] SR3
SR5 I SR6
l SR8 l
| SR11
SR13 I SR14
T SR16 |
AJ SR19
SR21 I SR22
I SR24 |
l SR27
SR29 | PQBEG
J PQEND I
| SR35

>

PQ-REG

BDESCTBL

PBUFBEG
PBUFEND OVRFLCTR
TOBSIZE TPAGSIZE TLINCTR TPAGNUM
LINCTR PAGSIZE PAGSKIP LFDLY

2.6 FRAME FORMATS AND LINKAGES

2.6.1 FRAME FORMATS
The Reality system provides two types of frame formats: linked and unlinked.

Unlinked formats contain 512 data bytes (see Figure 2-7). For unlinked frames,
the displacement portion of an address is relative to byte 0 of the frame. Dis-
placements outside the range 0 through 511 are not valid for frames in the unlinked

format.

0 511
Jo UNLINKED 511

LOGICAL NUMBERING

PHYSICAL LOCATIONS
OF BYTES

OF BYTES

0 11 12 511

LINK
LINKED 50
AREA I:Ex

NOTE: FOR LINKED FRAMES, THE PHYSICAL BYTE
IS 11 PLUS THE LOGICAL BYTE NUMBER.

Figure 2-7. Unlinked Vs. Linked Frame Formats

Linked frames contain 500 data bytes, numbered 1 to 500. For linked frames, the
displacement of an address is relative to byte 11 of the frame. However, a dis-
placement of zero is a rz=ference to byte 511 of the frame previous to the current
frame. Displacements for linked frames may be positive or negative so long as the
displacement references a logically linked frame. The link field is described in

Figure 2-8.

2 3

4 5 6 7 8 9

FRMN

(Next FID) (previous FID)

FRMP

0 -
1 NNCF
2-5 FRMN
FORWARD
LINK
6-9 FRMP
BACKWARD
LINK
10 NPCF
11 --
12-511

DESCRIPTION

Unused and reserved.

This byte contains a count of the number of next contig-
uous frames which follow this frame. A zero in this
byte indicates that this frame is the last frame in a
contiguously linked set of frames.

This field contains the frame number of the frame that
logically follows this frame. If byte 1 contains other
than zero, this will be the next higher numbered frame.
If byte 1 contains a zero this may be any frame number.
A zero in this field indicates that this is the last
frame of a linked set.

This field is similar to bytes 2 through 5 except that
it contains the number of the frame preceding this
frame.

This byte is similar to byte 1 except that it contains
a count of the number of previous contiguous frames
preceding this frame.

Unused and reserved.

Data section.

fit in a single frame.

Figure 2-8. Linked Frame Format

2.5.2 LINKED SETS OF FRAMES

A series of frames may be linked together to hold data structures that will not
. Such a linked set may contain contigquous frames, singly
linked frames, or combinations. Figure 2-9 shows some examples.

A. A SERIES OF SINGLY LINKED FRAMES

NNCF = 26
FRMN = 1004
FRMP = 1002
1000| |[1001| |1002| [1003| ... 1029

B. A SET OF 30 CONTINGUOUSLY LINKED FRAMES
NOTE

If all NNCF and NPCF fields in these frames were zero, this would
be a singly linked list of frames which happened to have consec-
utive FID's,

1000| [1001| [1002] [1003]| [1004]| |1005 [20000] [29001] |
- / A J/
6 CONTIGUOUS FRAMES SINGLE 54
LINK CONTIGUOUS
FRAMES

C. TWO CONTIGUOUS LINKED SETS THEMSELVES LINKED WITH A SINGLE LINK.
TIIIS IS TYPTCAL OF 'LOGON WORKSPACE.'

PHYSICAL REGISTER POINTS TO PHYSICAL

#'s BYTE 61&

3 11 12 61 511 0 11 12 6 511 0 11 12 61 511
50 500 50 500 50 500

.]

FRAME 2000 FRAME 3070 FRAME 1296

LOGICAL

#'s

REG points to logical byte 50 of frame 3070.
REG minus 500 points to byte 50 of frame 2000.
REG plus 500 points to byte 50 of frame 1296.

D. DISPLACEMENTS OFF OF A REGISTER WHICH POINTS INTO A SET OF
LINKED FRAMES LOGICAT, —]

#'s

Figure 2-9. Examples of Linked Sets of Frames

2-15

2.7 ADDRESS REGISTERS

All references to data, except immediate data, are made indirectly through an
address register. There are 16 address registers in each PCB. Each address
register contain 8 bytes as described in Figure 2-10.

Address 0 1 2 3 4 5 6 7

Register CORE ADDRESS|DISPLACEMENT | LINK FID

Format

BYTES DESCRIPTION

0-1 These bytes contain the 16 bit main storage address of the

referenced data. If the address is less than X'800', the
address register is "detached."

2-3 These bytes contain the displacement of the referenced data
relative to the first data byte of the frame. The displace-
ment is a 16-bit signed number. Negative values are
represented in twos complement form. These bytes are
meaningful only when the register is detached. (See the
section ADDRESS REGISTER ATTACHMENT.)

4 Zero in bit zero of this byte indicates that the register
references data in linked format. If bit zero is a one,
the register references the data in unlinked format.

One in bit one indicates that frame attachment is in
progress. Bit one can only be set during the execution of
instructions that increment addresses with data movement.

Bit 7 is used as an extension of the word address to
indicate a main memory bank.

5-7 These bytes contain the virtual storage frame number of
the byte being referenced.

Figure 2-10. Address Register Format

ADDRESS REGISTER ZERO

Register zero is used in a special way. This register always points to the PCB.
Register zero is attached when the process is activated. The displacement field
of this register is always effectively zero.

ADDRESS REGISTER ONE

When a process is not active, address register one contains the FID and displacement

(minus one) for the next instruction to be executed. When the process is activated,
the buffer address of the program frame (as determined from the buffer map) is added

tote displacement from register one. This value is placed into a hardware instruc-
tion counter. The register is then converted to the attached form with the buffer

2-16

i

address set to byte zero of the program frame. This allows register one to be used
to reference data in the program frame. When the process is deactivated, the main
storage location from the instruction counter is converted to the corresponding FID
and displacement and the register is detached with these values placed into it.

2.7.1 ADDRESS REGISTER ATTACHMENT

When setting up an address register, the first two bytes of the register must

be set to zero. Bytes 2 through 7 are set to contain a virtual frame number and
displacement. A register in this format is said to be detached. When a subse-
quent instruction uses the detached register for a data reference, an attempt is
made to convert the address register to the attached format. The attaching attempt
is automatic and procedes as follows. The buffer map is searched to determine if
the referenced frame is located in main storage. If the frame is in main storage,
the location of the required byte is computed by adding the buffer address from the
map to the displacement from the address register. The address is then placed into
bytes 0 and 1 of the address register, thus forming the attached format. Once the
register is attached, instruction execution takes place.

If the referenced frame is not in main storage, the frame number is placed into
bytes 12 through 15 of the PIB. Byte 0, bit 2 of the PIB is set to 0, thus road-
blocking the process. Next, all of the address registers in the PCB are converted
to detached format and a fault interrupt to the monitor is taken.

Figure 2-11 summarizes the attachment/detachment process.

A/R is Attached A/R is Detached
when: when:
0 1 2 3 4 5 6 17
00 - DISP Flags|F I D
Word - - Flags|F I D
Address
(1) Any instruction (1) Process is deac-
that references tivated due to:
data via the A/R terminal 1/0;
is executed. disk I/O (frame

fault); peripheral
I/0; timer run-out;
monitor call.

(2) Execution of (2) A S/R is moved to
INC r the A/R.
DEC r
instructions.

(3) Execution of (3) Execution of
FAR r,n INC r,t
instruction. DEC r,t

if a frame bound-
ary is crossed.

Figure 2-11. Attachment & Detachment of Address Registers

2-17

2.7.2 CAUTIONS INVOLVING REGISTER ATTACHMENT

Address registers can be set up explicitly by setting their fields appropriately; a
more conventional way is to move a S/R into it. Consider the following:

FRM100 ADDR 0,X'100" DEFINE A LITERAL S/R
. REFERENCING FRAME X'100'

MoV FRM100,R15

and .

ZERO R15WA
ZERO R15DSP
MoV =DX'80000100"',R15FID

It is important to note that, in the first sequence, the address register is auto-

matically set to the "detached" format when the "MOV" instruction executes; in the

second sequence, the address register is explicitly set to the "detached" format by
the "ZERO RLS5WA" instruction. The word-address of an A/R must be zeroed before

other segments of the A/R are modified.

2.7.3 ATTACHMENT AND DETACHMENT OF ADDRESS REGISTERS

All instructions that reference data force "attachment" of the A/R(s) used in the
reference. Other instructions do not do this; for example, the "increment A/R by
tally" instruction will not cause a "detached" A/R to attach before execution.

This point may lead to programming errors; consider the following sequence:

L1 BCU AM,R6,NXT R6 "ATTACHED' AT THIS POINT
L2 INC R6, SIZE R6 MAY "DETACH" DUE TO THIS INSTRUCTION

L3 MOV R6, SR4 SAVE R6

The instruction at L2 may force R6 to "detach" (if the contents of SIZE are such
that the resultant address is beyond the limits of the current frame); storing R6
in SR4 will then cause SR4 to have a large positive displacement, and a FID equal
to that in R6 at the time of execution of the instruction at Ll. Subsequently, a

register comparison instruction of the form:

BE R15,SR4,L20

may execute incorrectly due to the fact that if the FID's of R15 and SR4 are unequal
at the time of execution, it is assumed that the two frames are continguously linked
(see Section 3.14). Therefore, it is best to force "attachement" of R6 before L3; a
convenient way of doing so is to execute the instruction:

L3A FAR R6,0

though any data reference instruction would serve as well.

2.8 THE MONITOR

The monitor is a program that is an integral part of the Reality system. Its
function is to initiate the transmission of information between core storage and
virtual storage and to schedule each of the processes.

2.8.1 MONITOR FUNCTIONAL ELEMENTS

The monitor process is the only one not associated with a PIB. The PCB for the
monitor is located in low core.

Besides the functional elements described in Section 2.5.2, the monitor PCB con-
tains such information as the system time and date, pointers for peripheral devices
zero through fifteen, and the bootstrap software.

When the system is operating in monitor mode, address registers are not checked for
attachment. Instead, all data references are assumed by the firmware to be refer-
ences to absolute core addresses.

2.8.2 PROCESS SCHEDULING

The monitor maintains a queue of processes currently in the system, arranged in
increasing order of expected total processing time. The position of a process in
the queue determines its priority for activation--the process at the head of the
queue has the highest priority. The process with the highest priority without
any roadblocks is always the next one to be activated.

Expected total processing time for a process, at any given instant, is based on the
amount of CPU processing and number of disc reads already done by that process.
Interactive processes are favored by increasing their priority. As a process out-
puts characters to the terminal, it migrates up the priority queue. When a process
receives terminal input, it is moved to the head of the queue, for immediate activa-
tion. As a process consumes system resources (CPU time and disc reads), it

migrates down the priority queue.

The effect of each system resource on a process's priority is controlled by a
weighting factor. When the number of units of a resource consumed reaches the
weighting factor, the process is moved up or down in the priority queue one posi-
tion and the resource unit count is reset to zero. See 'priority scheduling' in
The Programmer's Reference Manual.

One process in the Reality system may be designated the Super High Priority Process
(SHPP) in order to receive special handling in the process scheduling mechanism,
The SHPP has top priority to all system resources, allowing it to run without
interference from other process. This is implemented for BISYNC communictions.

The following rules are applied to the SHPP:

. The SHPP is reactivated when its CPU processing time quantum is used up.

. Frame faults for the SHPP are processed as soon as the necessary disc is
available.

. Disc interrupts which signal completion of a disc read for the SHPP cause
the SHPP to be activated immediately.

. Interrupts from devices with addresses in the range X'10'-X'13' which
are for the SHPP cause the SHPP to be activated immediately.

. Voluntary RQM's by the SHPP allow two other processes to run before the
SHPP is activated again.

2.9 PERIPHERAL I/0O

Communication between the CPU and peripheral devices .is made through controllers.
Each controller has a unique device address in the Reality system. Device
addresses 0 through 15 are used for non-virtual storage devices such as tape drives
and line printers, addresses 16 through 23 are used for virtual storage devices
(disc drives), and addresses 24 through 27 are used for the process terminals.

I/0 instructions other than those for terminal I/0 must specify a device address
and an order code. The meaning of each of the eight possible order codes is ex-
plained in Figure 2-12. External interrupts cause the monitor to perform certain
processing; during this time, further external interrupts are inhibited.

2.10 PROGRAM TRAPS

Certain error conditions cause the CPU to execute a trap to the DEBUG state;
processing of the current program will be aborted, and a message indicating the
nature of the trap, and the location at which it occurred, will be displayed. The
table below shows these error conditions:

Message Description
ILLEGAL OPCOLE An illegal (undefined) operation code
has been executed.
RTN STACK EMPTY A RTN (return) instruction was executed

when the return-stack was empty
(RSCWA equals X'0184').

RTN STACK FULL A BSL or BSLI (subroutine call)
instruction was executed when the
return-stack was full (RSCWS equals
X'01B0') ; the return-stack has been
reset to an "empty" condition before

the trap.
REFERENCING FRAME ZERO An address register has a FID of zero.
CROSSING FRAME LIMIT An address register in the "unlinked"

format 1) has been incremented or
decremented off the boundary of a frame,
or 2) has been used in a relative address
computation that causes the generated
relative address to cross a frame
boundary.

Message

FORWARD LINK ZERO

BACKWARD LINK ZERO

PRIVILEGED OPCODE

REFERENCING ILLEGAL FRAME

RTN STACK FORMAT ERR

DIVIDE OVERFLOW
REFERENCING ILLEGAL DEVICE

UNNORMALIZED

Description

An address register in the "linked"
format has henn incremented past the
last frame in the linked frame set.
An address register in the "linked"
format has been decremented prior to
the first frame in the linked frame
set.

A Privileged operation code (one
executable only in the Monitor mode
of operation), has been found while
executing in the Virtual mode.

An address register has a FID outside
the allowable disc configuration.
The Return-stack pointer is illegal
either less than X'01l84', or greater
than X'01BO'. The return-stack has
been reset to an "empty" condition.
An overflow condition occurred on a
divide operation.

A device has been referenced outside
the allowable system configuration.
A storage register with an unnormalized
displacement was referenced.

*A register number will be printed out.

2-21

ORDER NUMBER

OPERATION

DESCRIPTION

0]

Data Transfer

Status/Function

Block Input/INT

Arm Interrupt

Disconnect

Disarm Interrupt

Block Output/INT

Unassigned

A data byte will be transferred between the
addressed device and the processor. Direc-
tion of the transfer will depend on
whether the instruction is an input or an
output.

A status byte will be input from the
addressed device or a function byte will be
output to the addressed device, depending

on whether the instruction is an input or an
output.

The addressed device will start a concur-
rent block input to memory and will generate
an external interrupt at the conclusion of
the transfer unless the interrupt has been
subsequently disarmed. This order should
be sent by an output instruction.

Permits the addressed device to make an
external interrupt request upon the satis-
faction of an interrupt condition. This
order should be sent by an output instruc-
tion.

The block transfer in progress by the
addressed device is stopped and an end
of block interrupt will occur unless the
interrupt has been disarmed. This order
should be sent by an output instruction.

Inhibits the addressed device from marking
an external interrupt request under any
condition. This order should be sent by
an output instruction.

The addressed device will start a concurrent
block output from memory and will generate
an external interrupt at the conclusion

of the transfer unless the interrupt has
been subsequently disarmed. This order
should be sent by an output instruction.

This order, if assigned, may perform any
required function as interpreted by the
individual interface. If a byte transfer
is desired the order may be sent by an
input or an output instruction.

Figure 2-12. Order Codes

SECTION 3

REALITY ASSEMBLY LANGUAGE (REAL)

The Reality Assembler Language (REAL) translates source statements into Reality

CPU machine language equivalents. The source program, or "mode", is an item in any
file defined on the data base. The mode is assembled in place; that is, at the con-
clusion of the assembly process, the item contains both the original source state-
ments as well as the generated object code. The same mode can then be used to
generate a formatted listing (using the MLIST verb) or can be loaded for execution
(using the MLOAD verb).

3.1 SOURCE LANGUAGE

The source language accepted by the REAL assembler is a sequence of symbolic state-
ments, one statement per source-item line. Each statement consists of a label
field, an operation (or opcode) field, an operand field, and a comment field.

3.1.1 LABEL FIELD

The label field begins in column one of the source statement, and is terminated

by the first blank or comma; there is no limit on its length. If the character

"*" appears in the first column, the entire statement is treated as a comment, and
is ignored by the assembler. The reserved characters * + - ' = are the only ones
that may not appear in the label field. An entry in this field is optional for all
except a few opcodes. A label may not begin with a numeric character.

3.1.2 OPERATION FIELD

The operation field begins following the label field and consists of a legal REAL
opcode. Opcodes are pre-defined in the permanent opcode symbol file OSYM and con-
sist of one or more alpha characters. Opcodes may be mnemonics for Reality machine
language instructions (e.g., B for BRANCH) ; macros, which may assemble into sever-
al Reality machine language instructions (e.g., MBD for MOVE BINARY to DECIMAL) ;

or assembler pseudo-ops (e.g., ORG for ORIGIN).

3.1.3 OPERAND FIELD

Operand field entries are optional, and vary in number according to the needs of
the associated REAL opcode. Entries are separated by commas and cannot contain
embedded blanks (except for character string literals enclosed by single quotes).
The operand field is terminated by the first blank encountered. The characters
+ - ' * have special meaning in this field.

3.1.4 OPERAND FIELD EXPRESSIONS

Entries in the operand field may be a symbol or a constant. A symbol is a string
of characters that is either defined by a single label-field entry in the mode, or

¥-¢€

FEAME S0} l=e——FRAME STATEMENT
+FRMI G501
+0ORG

-

i

4
T -
-n

*
O 4 -y

O W ein
*T-¢ @anbtg

*

LABEL FIELD

*SMITH

[
L 4 F.
E SIS a
+E3 tLIE 5
& LR Q
o’ L BRCS AR 9
P LERA

ATquassy atdures

Q10 M Z ZC

g1t T AT 2

C1z o AD 2

0t

141]

- COMMENT FIELD

£

1
et i ' Ty o2 T W
7 PIT i Y S. il

o g

- .
I S T N U W WA R A T
4

= e
019
- - - =g == - sttt st Sht e
[I Bl PeciR R} B It S o f ol
-t T =
oo aidL D
ZTO INIT 2172
CLE ERIF IE IS
FOl75014 +ET 3
SO0 \om-:mo FIELDS

Q25 QZ0 FOI17014 DEC CTRY

OZb G244 AUD14Z DEC CTRS

027 027 A03040 ZERZ LCTRE INGICATE THAT FPOINTER IS NOT IN &, ILE
0B o SO0300

D MACRO EXPANSION OF ABOVE LINE

+F 50500

20300 ERD CTR® INDICATE NO POINMTER IN =0 1.E.

FUIZOB0Z ety BEZ SFLG, $1000 IF STACK ACTIVE, EXCHANGE IS, UFL.
IS AND UFD WILL BE EXCHANGED AGAIN LATER

1747
EO&ZC4H
D EDT

EZCACT

Sy LUFPD

EEG, IS CALCULATE FPOSITION CF FOINTER INTO F.O.E.
Rid

FEEG, URD DITTS FOR “F. 0L E.

The mode will not load correctly if its size exceeds 512 bytes, or if a FRAME
statement is not the first statement assembled in the mode. In either case, a
message will be returned indicating the error.

The "N" option may be used with the MLOAD verb to load code into the TS workspace
but suppress the normal copy from there to the specified frame. This may be help-
ful in checking the size or checksum.

3.5 VERIFYING A LOADED PROGRAM MODE

After assembling and loading a program, the TCL-II verb MVERIFY is used to check
the assembled program against the loaded program.

Examples:

[217] MODE 'EXAMPL1' VERIFIED FRAME = 34 SIZE = 477 CHECKSUM = C3A2

014 oC 18

[218] MODE 'EXAMPL2' FRAME = 35 HAS 1 MIS-MATCHES

The first example verifies, but the second does not. In example two, the system
informs the user that one byte at byte address 14 should have a value of 0C, not 18.

An "A" option is available, and will cause a columnar listing of all bytes which
mismatch. Each value in the source program which mismatches will be listed,

followed by the value in the executable frame.

Example:

LOCE SB AB LOC SB AB IOC SB AB 10C SB AB
014 OC 18 015 13 17 0l6 OE OD 017 3A 3C

[218] MODE 'EXAMPLE3' PRAME = 35 HAS 78 MIS-MATCHES

The "E" option, useful when verifying several programs (items) with the same
MVERIFY command, causes a message to be printed only if a program does not verify,
and suppresses output otherwise.

The "P" option causes all messages from MVERIFY to be routed to the line printer
(spooler).

3-5

3.6 TCL-II CROSS REFERENCE CAPABILITY

|
/3.6.1 CROSS-INDEX VERB

| The TCL-II CROSS-INDEX verb first clears the CSYM file then updates it item by

item with the external references of each item. Each attribute in the CSYM item
‘records references of a particular type, such as bit, character, half-tally, etc.
| The CROSS-INDEX verb requires the following format:

CROSS-INDEX file-name item-list { (options)}

Example:

Would cross index all items of the MODES file.

An example of what a portion of the CSYM file might look like after using the
CROSS-INDEX wverb is shown in Figure 3-2. Notice that the item called SYSTEM-SUBS-1
has one external reference to Bl4, two external references to BKBIT, etc.

3.6.2 X-REF VERB

The TCL-II X-REF verb uses the CSYM file as updated by the CROSS-INDEX verb for
input. X-REF then updates the XSYM file in the opposite order of the CSYM file.
The X-REF verb requires the following format:

| X-REF file-name item-list {(options)}

Example:

Would cross reference all items of the CSYM file. An example of what a portion of
the XSYM file might look like after using the X-REF verb is shown in Figure 3-3.
Notice that the item called T5 was externally referenced by WP3, WRAPUP-II, etc.

The SORT verb may be used after performing X-REF to produce a sorted output.

Zxample:

| Would produce an alphabetical non-columnar listing on the line printer. REFERENCES
and NONCOL are attribute definitions in the XSYM dictionary.

3-6

Figure 3-2, Figure 3-3.

mple of CSYM File After CROSS- Sample of XSYM File After X-REF

DEX

5
Y11 PRIVTST? C1JRDLINK ND1RDREC O1)RELCHN O01IRETIXU 0}

[4¥]
(=2 '
<
o
- T4l
o &} -
>3 —
[+ 4 0n
— (=] <
vt -t
< S 4
- o
(A Y) ~— [0 4
(L] - <
-J < o
'S T3]
b3 (=4 na
= [Ll ont
< L) i
— -t weo
-— [=] o
(= C=
< =
« (8] n -
- o [4 ¥ nN> cC
18 2 4 cC [
2 - w — = -
- - - e -0 []
< (= [+4 -C cC C ~
- - - [W} - o
[4 ¥ L - o Tl p-odf [F5) z
C = - (=25 = o =
wn L - b o
| o - I Ia —— - c
- a - = [Tex o] - -
o - o - -C B - (L4
= - N - Ura -3 -t C
= ccCc [4 N [=X = re C o -
< (=] - [& [+ o <
~— ac 0nne x= -— < [o
nN o -— - — —iss L4 - L
< (=] T8 or -l cl =z L (&)
[o -t -— —ti—t -— (8]] (4 V]
Lol [« 412 4 (=2 ~— Tt Lanl [« ¥ |
o — (=) o - Lol = o
< - < -C Y [] a o
T 7] ccC [+ 8 — Comm (723 < L4
< - 0 £z -t a x ~—
— al L =~ -3 JOoX - z -
[4 9 = < a o 2 w - L
< T = uih erd] z |
-—C o > Ne= —Xo = C a
- [1 4 4 C - -— Lol VAN o P 1 Y] ' (L) =2
[l ——— - N C -mCc cae [(=) a
o - [l < e T - (/] | -t
x <©OCC < . - - O e > - [+ 4
- 9 b3 > I Zoxc o - =z
- Uain o > [T R TR -— - —
e IWCe— = 0 x =N e - - -
1C —CmO - - O deT Z«d Lol] | o
. (AR~ K M~ o =Q et] w =
g~ CeaC> < C > T M e a [+ 4 u
=~ a a — SO e = = (43}
b T v-Cm HOW 1IN e -~ W a >0 >
WO «= NC NNl DO CccC e < T w 21
- CeC n_c oo L S VO » SR o X)] - Ak
s ax < a <C<U WU I - VMoo 20
P> whell OCCIT XCIOLS TIP3 o >> oC
oo OCoOCoC — COCOCCOCO— < < o
o [

3.6.3 XREF PROC

The XREF Proc will perform the following functions:

Clear the XSYM file.

Use the X-REF verb to update the XSYM file.

Alphabetically sort the XSYM file and output the results to either
the user's terminal or to the system line printer.

The XREF Proc requires the following format:

Example:

XREF file-name item-list {(options)}

would cross reference a.l items of the CSYM file and would list the results in

alphabetical order on tke line printer.

3.7 THE REAL INSTRUCTION REPERTOIRE

In defining the REAL opcodes, the following set of symbolic operands are used.

Symbol

b

Operand

BIT

CHARACTER

DOUBLE-WORD

HALF-WORD

LABEL

MODE ID

Description

A bit addressed relatively via a base
address register and a bit displacement.

A byte addressed relatively via a base
address register and an 8-bit byte dis-
placement.

A 4-byte field addressed relatively via
a base register and a 16-bit word dis-
placement.

A l1-byte field addressed relatively via a
base register and an 8-bit byte dis-
placement.

A label definition local to the current
program frame.

A 16-bit modal identification, comprised
of a 4-bit entry point and a 12-bit frame
number. The implied location is in the
frame defined by the low-order 12 bits of
"m", offset from the frame-beginning by
twice the entry-point value.

n LITERAL A literal or immediate value. The size of
the assembled literal or value is
dependent on the instruction in which
the "n" is used.

r ADDRESS-REGISTER One of the sixteen Reality address
registers (A/R's).

s STORAGE-REGISTER A 6-byte field (usually a storage-register,
or S/R) relatively addressed via a base
register and a 16-bit word displacement.

t WORD A 2-byte field relatively addressed via a
base register and a 16-bit word displace-
ment.

In the following subsections, the first number in the comment field of each
instruction is the length in bytes of that instruction. The parenthesized foot-
notes are defined in Section 3.7.12.

3.7.1 CHARACTER INSTRUCTIONS (MOVES)

MCC n,c 6 (1) Move Character to Character; the byte
n,r 3 (character) defined or addressed by
n,s 6 (1) operand-1 is moved to the location addressed
c,cC 4 by operand-2.
c,r 3
c,s 6 (1)
r,c 3
r,r 2
r,s 5 (1)
s,C 8 (2)
s,r 5 (3)
s,s 8 (2)

MCI n,r 3 Move Character to Incrementing character;
n,s 9 (1) The byte (character) pointer operand-2 is
c,r 4 incremented by one and the byte defined
c,s 10 (1) or addressed by operand-1l is moved to the
r,r 2 location then addressed by operand-2.
r,s 8
s,r 5 (3)
s,s 11 (2)

MCI

MII

MIID

n,r,n
n,r,h
n,r,t
n,r,d

r,r,r
r,r,s

r,r,n

10
13
13
13

(SN0, BNC, IS,]

(4)
(4)
(4)
(4)

(1)
(2)
(3)
(2)

(1)
(3)
(2)

(5)
(5)
(5)
(5)

(3)
(3)

Move Character Incrementing; the byte
(character) pointer operand-2 is incre-
mented by one and the byte defined by
operand-1l is moved to the location then
addressed by operand-2. This process
continues until the number of bytes
specified by operand-3 have been moved.

At least one byte is always moved and if
initially operand-3 = 0, 65,536 bytes will
be moved.

Move Incrementing character to Character;
the byte (character) pointer operand-l is
incremented by one and the byte then
addressed by operand-1l is moved to the
location addressed by operand-2.

Move Incrementing character to Incrementing
character; both byte pointers are incre-
mented by one and the byte then addressed
by operand-1l is moved to the location
addressed by operand-2.

Move Incrementing character to Incrementing
character; both byte pointers are incre-
mented by one and the byte addressed by
operand-1l is moved to the location addressed
by operand-2. This process is repeated
until the number of bytes specified by

n,h,t or d have been moved. h,t or d are
not destroyed and if initially zero, no
bytes are moved.

Move Incrementing character to Incrementing
character; both addressing-registers
operand-l and operand-2 are incremented by
one and the byte then addressed by
operand-1 is moved to the location
addressed by operand-2. This process is
repeated until the first addressing-
register operand-l matches the byte-pointer
operand-3. If operand-l = operand-3 on
entry no movement takes place.

Both addressing-registers are incremented
by one, and the byte addressed by address-
ing register-1l is moved to the location
addressed by addressing-register-2. The
byte moved is then tested under the follow-
ing masking condition where "n" is an 8-bit
mask field:

SCD

MIIT

MIIR

MEANING BIT 0 1 2 3 4 5 o6 7
LI T T T 1T 11

True/False w-——J
Match on: X'FF'-e——m————
X'FE '-——————
X'FD'
X'FC'=-
SCO
SCl
SC2

Bit 0 is a true/false flag; if set, the
move stops on a "match" condition (as de-
fined by bits 1 through 7); if zero, the
move stops on a "non-match". Bits 1 through
7 represent one character each; if any bit
is set, the byte moved is compared to the
character represented by the bit for a
match. Bits 1 through 4 represent the
special system delimiters SM (X'FF'), AM
(X'FE'), VM (X'FD'), and SVM (X'FC')
respectively. Bits 5, 6, and 7 represent
the contents of the scan character-registers
SCO, SCl, and SC2 respectively. (Thus only
three of the delimiters are variable.)

NOTE: Character-register SCO may not con-
tain the hex patterns X'00' or X'0Ol'. None
of the scan characters may contain a system
delimiter.

Scan characters to delimiter(s). The
addressing-register is incremented until a
"match" condition (see MIID instruction) as
defined by the 8-bit mask field "n" is
found.

This instruction assumes that the lower half
of the accumulator (TO) has an absolute byte
count (up to 65535) defining the number of
bytes to be moved (see MII opcode). If TO
is zero when the instruction is executed, no
operation is performed. Otherwise, the
addressing-registers are incremented by

one, and the byte addressed by addressing-
register-1 is moved to the location addressed
by addressing-register-2, and TO is decre-
mented by one. This sequence is repeated
till TO reaches zero.

This instruction assumes that address
register R15 is set up to a location equal
to or greater than that of addressing-
register-1. (See MII opcode). If the
addresses of addressing-register-1 and

3-11

XCC

OR

XOR

3.7.2 CHARACTER INSTRUCTIONS (TESTS)

BCE

BCU

BCL

BCLE

nnnHxKRKOQOOQOO
- - - ~- - - -
KR onhROQ®OKAQO

-

-

S 8 S N N
S N S 8N

T T =

~

R3S KQOaBRAO

KRR OQOQOQS33

-
-

(see BCE)

(see BCE)

(see BCE)

o wULoownNuvlo v o

o w o

w

w

Wb D DO D

(2)
(3)
(2)
(1)
(1)
(2)
(3)
(2)
(3)
(3)
(3)
(3)
(3)

(3)

(1)

(3)

register R15 are equal, no operation is
performed. Otherwise, the addressing-
registers are incremented by one, and the
byte addressed by addressing-register-1 is
moved to the location addressed by address-
ing-register-2. This sequence is repeated
till the addresses of addressing-register-1
and register R15 are equal.

Exchange Character with Character; the byte
(addressed) by operand-1 is interchanged
with the byte defined by operand-2.

OR character; the byte (character) addressed
by operand-1 is logically or'd with the
8-bit immediate operand-2.

Exclusive OR character; the byte (character)
addressed by operand-1l is exclusively or'd
with the 8-bit immediate operand-2.

AND character; the byte (character)
addressed by operand-1l is logically and'd
with the 8-bit immediate operand-2.

Branch Character Equal; the byte (character)
defined or addressed by operand-1l is com-
pared to the byte defined or addressed by
operand-2. If the two bytes are equal,
instruction execution branches to the loca-
tion as defined by operand-3. Neither
operand-1 nor operand-2 are altered. The
arithmetic condition flag (ACF) is set on
c,c,1l only.

Branch Character Unequal; branch if
characters are not equal.

Branch Character low; branch if operand-1
is less than operand-2.

Branch Character lLess than or Equal; branch

if operand-1l is less than or equal to
operand-2.

3-12

BCH (refer to BCE)
BCHE (refer to BCE)
BCN r,l 5
BCX r,l 5
BCA r,l 5

3.7.3 BIT INSTRUCTIONS

SB b 2
ZB b 2
BBS b,1 4
BBZ b,l 4

Branch Character High; branch if operand-l
is greater than operand-2.

Branch Character High or Equal; branch if
operand-1 is greater than or equal to
operand-2.

Branch if Character is Numeric; branch if
the character addressed by the first
operand is in the range 0-9, inclusive.

Branch if Character is hexadecimal; branch
if the character addressed by the first
operand is in the range 0-9 or A-F,
inclusive.

Branch if Character is Alphabetic; branch
if the character addressed by the first
operand is in the range A-Z, inclusive.

Set Bit; the bit addressed by the operand is
set to an on condition (one).

Zero Bit; the bit addressed by the operand
is set to an off condition (zero).

Branch Bit Set; the bit addressed by
operand-1l is tested and if set (one)
instruction execution branches to the
location defined by operand-2.

Branch Bit Zero; the bit addressed by
operand-1 is tested and if not set (zero)
instruction execution branches to the
location defined by operand-2.

3.7.4 DATA MOVEMENT AND ARITHMETIC INSTRUCTIONS

All arithmetic is done on two's complement binary integers. All instructions in
this section except the MOV set the arithmetic condition flag (ACF).

MOV n,h 6
n,t 4
n,d 4
h,h 4
h,t 6
h,d 6
t,h 6
t,t 4
t,d 6
d,h 6

-~

(6)

(6)
(6)
(6)

(6)
(6)

MOVe word to word; integer defined or
addressed by integer-1 is moved to the
location addressed by operand-2.

3-13

TST

INC

DEC

ZERO

ONE

NEG

LOAD

[o i e P o)
Ot

jop

Q ot

~ 0~

~ ~

ptbbadbsanbs

[o TR e TR o T o Ml o i o g o = il o St = Bio BN o P o o

~

.~ N 0~

~ ~

~

~

At oS Ao S ar s

~

-

[oTRN o PR o T o i o o Ml n i o = i} o S« e B TR = 3

-

ot T

ot o

Q5

[oMi s Jile g}

[y

w W

DI DRI OO DYOWWW

DI IRRIPDPOO DO WWW

w w

w

w ww

W www

(6)

(6)

(6)
(6)

(6)
(6)

(6)
(6)

(6)

(6)
(6)

(6)
(6)

(6)
(6)

Test the contents of the operand and set
the arithmetic condition flags.

INCrement by one; the integer defined by
the operand is incremented by one.

INCrement word by word; the integer de-
fined or addressed by operand-2 is added
to the integer stored in the location
addressed by operand-l and the result is
stored in the latter location.

DECrement by one; the integer defined by
the operand is decremented by one.

DECrement word by word; the integer
defined or addressed by operand-2 is
subtracted from the integer stored in
the location addressed by operand-1l and
the result is stored in the latter loca-
tion.

ZERO word; a zero is moved to the operand
location defined by operand-1.

Set word ONE; an integer value of one is
moved to the operand location defined by
operand-1.

NEGate word; the integer defined by
operand-1l is negated (two's complement).

LOAD to accumulator; the integer addressed
by operand-1l is loaded into the 32-bit
accumulator (DO). For half-word and word
operands, the sign bit is extended.

3-14

STORE

SUB

MUL

DIV

XRR

INC

INC

(allt=2 [oTRN o it = i o]

QDB [o T o = i~ fo1]

(oI it o i =

(o T o e i

r,r
r,s
s,r
s,s

(20}

(I)H:GHH
=R T o = =]

wwww

w w

wwww wWwwww

wwww

wwww

REGISTER INSTRUCTIONS

SwwN

@ 0o N

1

o

& oOwow

(1)
(2)
(1)

LOAD to accumulator; the integer addressed
by operand-1 is loaded into the 48-bit
accumulator (FPO), and the sign bit is
extended.

STORE from accumulator; the contents of the
32-bit accumulator (DO) are stored into the
location defined by operand-l. For half-
word and word operands, the high order bits
are lost.

ADD to accumulator; the integer addressed
by operand-1 is added to the 32-bit accumu-
lator (DO) with sign extension.

SUB from accumulator; the integer addressed
by operand-1l is subtracted from the 32-bit
accumulator (DO) with sign extension.

MULtiply to accumulator; the integer
addressed by operand-1 is multiplied by the
contents of the 32-bit accumulator (DO).
The resulting product is stored in the 64-
bit accumulator extension (D1,D0), as a
63-bit number and a duplicated sign bit.

DIVide into the accumulator; the integer
addressed by operand-1 is divided into the
32-bit accumulator (DO). The answer is
stored in DO and the integer remainder is
stored into the accumulator extension (D1).

MOVe register to register; the address or
storage register operand-1l is moved into
the address or storage register operand-2.

eXchange Register with Register; the
address or storage register operand-1l is
exchanged with the address or storage
register operand-2.

INCrement register; the address or storage
register operand-1l is incremented by one.

INCrement register by count; the address or
storage register operand-l is incremented
by the integer stored at the location
addressed by operand-2.

3-15

s,h 7
s,t 4
s,d 7
DEC r 1 DECrement register; the address or storage
s 3 register operand-1l is decremented by one.
DEC r,n 3 DECrement register by count; the address or
r,h 6 storage register operand-1l is decremented by
t,t 3 the integer stored at the location addressed
r,d 6 by operand-2.
s,n 4
s,h 7
s,t 4
s,d 7
LAD r,r 6 (7) Load Absolute Difference; the absolute
r,s 3 difference in bytes (characters) between
S,r 3 the byte pointer operand-1l and the byte
s,s 6 (1) pointer operand-2 is computed and stored
into the lower half of the accumulator (TO).
Please see special note following Branch
Register Equal/Unequal instructions.
SRA r,c 3 Set Register to Address; the byte pointer
r,h 3 operand-1l is set pointing to the first
r,t 3 byte of the functional element at the
r,d 3 location addressed by operand-2.
r,s 3
r,l 3
FAR r,n 3 Flag and Attach Register; the address-
register operand-1l is attached. Normally
n=0. If n=4 (or any value with bit 5 set),
R15 is set to the first byte (unlinked
format) of the frame.
BE r,r,1l 7 (7) Branch Register Equal/Unequal; the address
BU r,s,1 4 of the byte pointer operand-l is compared
s,r,l 4 to the address of the byte pointer, operand-

2. The branch is taken appropriately.
NOTE: if the FID's of the registers are
unequal, it is assumed that the affected
frames are contiguously linked and the
address computation is made on that basis;
therefore the instruction execution may
prove incorrect if one of the registers is
in an unlinked format, and the other is
not. An abort will occur displacement if
a linked format SR is greater than 500.
(This can be remedied by moving it to a
register, forcing attachment, and moving
it back.) This is unnecessary if the SR
and register point into the same contiguous
block.

3-16

BE
BU

3.7.6 DATA COMPARISON INSTRUCTIONS

BE

BU

BL

BLE

BE3
BU3
BL3
BLE3

BH

BHE

BDZ

-
-

HFHEHEHFRRPRRRRRRRRRRB

-
-

pppaAddr DTS 5D
At AdDDp
DOV OWOOWMOWOHWOOYWOoO O

-~
-

oo
oo n o
PN
oo oo

as 3o
e e
OO0

Qo S

-~ =~

(6)

(6)

(6)
(6)

(6)
(6)

(6)
(6)

Branch Register Equal/Unequal; the 6-byte
storage register operand-1l is arithmetically
compared to the storage register operand-2
and the branch is made accordingly. If the
displacement fields are not normalized, this
may fail. See the forms above.

Branch word Equal; the integer stored in
the word addressed by operand-1l is compared
arithmetically (2's complement) to the
integer stored in the word addressed by
operand-2. If an equal comparison is made,
instruction branches to the location defined
by operand-3.

Branch word Unequal; branch if words are
unequal.

Branch word Low; branch if operand-l is
less than operand-2.

Branch word Low or Equal; branch if operand-
1 is less than or equal to operand-2.

These forms of the compare instructions
compare 3 byte fields starting 1 byte after
each register. These allow register FIDS
to be compared without including the flag
byte in the compare.

Branch word High; branch if operand-1 is
greater than operand-2.

Branch word High Equal; branch if operand-1
is greater than or equal to operand-2.

Branch on Decrementing word Zero; the word
at the location addressed by operand-l is
decremented by the integer at the location
addressed by operand-2. If the result is
zero, instruction branches to the location
defined by operand-3.

BDNZ (see BD2Z) Branch on Decrementing word Not Zero; same
as BDZ but branch on result not zero.

BDLZ (see BDZ) Branch on Decrementing word Less than Zero;
same as BDZ but branch on result less than
zero.

BDLEZ (see BDZ) Branch on Decrementing word Less than or

Equal to Zero; same as BDZ but branch on
result less than or equal to zero.

BDZ t,1 6 Branch on Decrementing word Zero; same as
d,1 6 BDZ above but decrement by one.

BDNZ t,1 6 Branch on Decrementing word not Zero; same
d,1 6 as BDNZ above but decrement by one.

BDLZ t,1 6 Branch on Decrementing word Less than Zero;
d,1 6 same as BDLZ above but decrement by one.

BDLEZ t,1 6 Branch on Decrementing word Less than or
d,1 6 Equal to Zero; same as BDLEZ above but

decrement by one.

All of the above data comparison instructions set the arithmetic condition flags.

3.7.7 TRANSLATE INSTRUCTIONS

MBD 10 Move Binary word to Decimal characters;

10 This macro generates a call to the sub-

10 routine MBDSUB (if "n"™ is not specified) or

r 14 MBDNSUB (if "n" is specified), which con-

' r 14 verts from a binary integer at the location

r 14 addressed by operand-1l to a string of deci-
mal ASCII characters, stored beginning from
the location addressed by the byte-pointer
operand-2 plus one.

The following elements are used by the sub-
routine and macro: DO; Dl; D2; T4; T5; Rl4;
R15. A minus sign will precede the con-
verted value if it was negative; at the
conclusion of the instruction, the byte
pointer operand-2 addresses the last convert-
ed byte. MBDSUB deletes leading zeros, but
converts at least one character; MBDNSUB
converts at least "n" characters, padded
with leading zeros if necessary.

w

t Move Decimal character to Binary word;

,d 3 ASCII decimal to binary conversion. The
word at the location addressed by operand-2
is multiplied by 10, and a value (as defined
for the MXB instruction) from the byte

s

MBXN

ot o
R R K

888
Q5
R KK

H:iH
Qo

EXECUTION TRANSFER INSTRUCTIONS

1

w

w W

2

(9)

addressed by the addressing register is
added to it. The arithmetic condition flags
are not reset, and arithmetic overflow
cannot be detected.

Move Binary word to heXadecimal characters;
Binary to ASCII hex conversion.

This instruction assumes that the least
significant byte of the accumulator (HO) has
a parameter (see MBX/MBXN macro). The four
low order bits contain a digit count,
specifying the maximum number of ASCIT
digits to be converted. As each digit is
converted, the addressing register is incre-
mented by one, and the converted ASCII
character is stored in the location address-
ed by the addressing register. The format
of HO at the conclusion of this instruction
is unpredictable. If the digit count in

HO exceeds the field defined by operand-1,
no operation is performed.

Move Binary word to heXadecimal characters;
This macro expands as a LOAD of the first
operand (MBX) or the first operand +X'80'
(MBXN) , and a primitive. The MBX macro,
therefore, causes conversion from binary to
ASCIT hex, with only significant digits (to
a maximum of "n") converted. The MBXN macro
causes conversion as above, but always
converts "n" digits, with leading zeros if
necessary. The addressing register defined
by the third operand is incremented before
each byte converted.

Move heXadecimal characters to Binary word;
ASCII hex to binary conversion.

The field defined by operand-2 is shifted
left 4 bits, and the value defined below,
from the byte addressed by the addressing
register, is added to the field: The 4-bit
value from bits 3-0 of the byte (bits
numbered right to left), plus nine times
bit 6. The arithmetic condition flags are
not reset by this instruction, and arithme-
tic overflow cannot be detected.

Branch;
branch to location defined, in the current
frame, defined by label "1".

BSL 1 2 Branch and Stack Location;
m 3 Subroutine call to mode defined by mode-ID

"m" or to local label "1".
The location of the instruction following
the BSL, minus one, is saved in the retumm
stack, and the next instruction executed is
that defined by the operand. The return
stack level is increased by one; if the call
causes the return stack level to exceed
its maximum value, the stack pointers are
reset to the beginning and a trap to the
DEBUG mode is executed.

BSLI 1 Branch and Stack Location Indirect;
Subroutine call indirect; this instruction
assumes that the lower half of the accumu-
lator, TO contains a mode-ID (see BSL¥*
macro). The 1l6-bit mode-ID contained in
TO defines the location of the next instruc-
tion that is to be executed, after the
location-1 of the instruction following the
TCI is saved in the return stack.

RTN 1 ReTurN;
Return to subroutine called. The last entry
in the return stack defines the location of
the next instruction to be executed; the
return stack level is decremented by one.
If the return stack is empty, a trap to the
DEBUG mode is executed.

ENT m 3 ExterNal Transfer;
Branch to location defined by mode-ID"m".

ENTI 1 ExterNal Transfer Indirect;
Enter mode indirect: this instruction
assumes that TO contains a 16-bit mode-ID
(see ENT* macro), which defines the next
instruction to be executed.

BSL* h 4 (8) Branch and Stack Location indirect;
t 4 subroutine call to mode defined by the
d 4 mode-ID contained in the word addressed by
operand-1l. The 16 bit mode-ID is loaded
into the accumulator, and a BSLI instruc-
tion is executed.
ENT * h 4 (8) ExterNal Transfer indirect; branch to
t 4 external location defined by the mode-ID
d 4 contained in the word addressed by operand-1l.

The 16 bit mode-ID is loaded into the
accumulator, and an ENTI instruction is
executed.

3.7.9 I/0O AND CONTROL INSTRUCTION

m, 3 I/0 Instruction Input; this instruction
is used to set up block transfer starting
and ending addresses and start input for
peripheral devices whose device addresses
are in the range 0 through X'F' (15). This
instruction causes an MCAL instruction to
entry point 8 in the Monitor. Register r
points to the start of the input buffer;
n. is a 3-bit order code; n, is a 4-bit
device address. Refer to Section 2.7 for
details.

I0
T r,nl

100 r,nl,n2 3 I/0 instruction Output; as above this
instruction controls output to peripheral
devices.

READ r 2 A byte from the byte-I/O buffer in the PIB
is stored at the location addressed by the
addressing register. If the buffer is empty,
or if there is data in the byte I/0 buffer
yet to be output to the byte I/0 device, the
process executing the READ instruction will
enter a quiescent state till data from the
byte input device causes a re-activation.

WRITE r 2 The byte addressed by the addressing register
is moved into the byte I/O buffer of the PIB.
If the buffer is empty, the byte is also
output immediately to the byte I/O device.
If the buffer is full, the process executing
the write will enter a quiescent state till
the byte output device has accepted the
data from the buffer, and causes a re-
activation. Execution of this instruction
causes a loss of any input data in the byte
I/0 buffer, and inhibits any further data
input from the byte I/O device.

,n 3 Some standard calls are provided for
functions which can only be performed in
monitor code. These include:

MCAL r,5,11 (corelock)

MCAL r,6,11 (unlock)

MCAL r,nl

ROM 3 Process releases the remainder of its time
quantum to the monitor. Equivalent to:
McaL 0,0,9.

3-21

NOP

3.7.10 ASSEMBLER DIRECTIVES

1

ADDR

AR

HTLY
TLY
DTLY
SR

CMNT

DEFM

DEFk

n,n

r,*[string]
n,*[string]

register, or output (OB) from the location
addressed by the addressing register. I/O
pointers must be set up initially with an
I00 instruction.

No OPeration is performed by this instruc-
tion.

Defines the local symbol "1" as a storage
register in unlinked format. The displace-
ment is defined by the first operand. The
FID is defined by the second operand.

Defines the local symbol "1" as an address
register with a value defined by the oper-
and.

Defines the local symbol "1" (if present) as
a character (CHR) half-word (HTLY), word
(TLY) , double-word (DTLY) or S/R (SR)
respectively; object code of the appropriate
length and value defined by the operand is
assembled, except for the SR opcode, which
ignores the operand field.

Comment; the contents of this statement are
treated as commentary, and ignored by the
assembler. Note: A label field entry is
allowable.

Defines the local symbol "1" to be of type
m; a mode-ID with entry point defined by
the first operand and FID defined by the
second operand.

Defines the local symbol "1" to be of type
"k" (where k=b,c,d,h,1l,s,t), with base
register defined by the first operand and
displacement defined by the second operand.

When the assembler location counter "*" is
used as the second operand, an optional
string can be used, with the following
format:

1 4 + i =
string nz[_n3] or string = #n,
If n. is specified after the *, instructions
referencing 1 will obtain a displacement (D
field) appropriate for an operand length of
n_, bits. Values of n_, = 1,8, and 16 are

valid, with a default of n2 = 8.

If +n, is specified after the *n, the
effecgive displacement will be adjusted

n_, bits, bytes or double-bytes, depending
on whether n2 = 1,8 or 16.

Example:
ORG 10
LABEL1 DEFT 1,*16
STORE LABEL1
produces the object code Al0559 correspond-
ing to the instruction:
opcode-1 register D L opcode-2
[1010 | ooo1 | oooooiol] o1 | o11o001]
with a displacement (D field) of 5 words
relative to the byte addressed by register 1.
Example:
ORG 1
LABEL2 DEFB 1,*1+7
SB LABEL2
produces the object code 810F corresponding
to the instruction.
opcode register D
[1000 | 0001 | 00001111]
with a displacement of 15 bits relative to
the byte addressed by register 1.

1 DEFk 1 Defines local symbol "1" to be of type "k"
(where k=b,c,d,h,1,s,t) with base register
and displacement defined by the operand.

1 DEFTU d Defines local symbol "1" to be of type "t"

s with base register and displacement defined
by the upper (left-most) tally of the
operand.

1 DEFTL d Defines local symbol "1" to be of type "t"

s with base register and displacement defined
by the lower (right-most) tally of the
operand.

1 DEFDL s Defines local symbol "1" to be of type "t"

with base register and displacement defined
by the lower double tally of the operand.

3.7.11 ADDRESS REGISTER USAGE

EQU

FRAME

ORG

TEXT

S H0 Qo Do

Equates the local label "1" to the symbol or
literal value of the operand.

Must be the first assembled statement in a
mode that is to be loaded; "n" defines the
frame on which the object code is to be
loaded.

Resets the location counter to value defined
by the operand. This statement may have a
label field entry.

Assembles binary equivalent of character
strings (enclosed in quotes and preceded by
a 'C') or hexadecimal values. Any number
and combination of C and X literals sepa-
rated by commas is permitted.

In some, a displacement is added to the contents of the address register to form an

effective address.

The length of the operand(s) is (are) encoded in the instruction.

For REAL instructions allowing an address register r in the operand field, the
displacement relative to the register and the operand length can be specified

using the following formats:

Displacement Relative Operand
Format to Address Register n Length
Rn 0 bytes 1 byte
Rn;Bm m bits 1 bit
Rn;Cm m bytes 1 byte
Rn ,Hm m bytes
Rn;Tm 2*m bytes 2 bytes
Rn;Dm 4*m bytes 4 bytes
Rm;Sm 6*m bytes 6 bytes

Example:

MCC RO;C15,R15 Move low order byte of the Accumulator to the
byte addressed by R15.

Example:
SB R5;B0O Set bit 0 of the byte addressed by R5.
Example:
MOV MBASE, R10;D4 Move double-word MBASE to the double-word
starting 16 bytes past the byte addressed
by R10.

3.7.12 REAL INSTRUCTION SIDE EFFECTS

Many of the REAL opcodes use functional elements not specified as operands for
execution. Those instructions are so footnoted in the previous listing; the fol-
lowing explanation of the various footnotes describes the state of these implied
elements at the conclusion of instruction execution:

(1) R15 points to byte addressed by operand-2.

(2) Rl4 points to byte addressed by operand-1l, RL5 points to byte addressed by
operand-2.

(3) RL15 points to byte addressed by operand-1l.

(4) R15 points one prior to last byte moved and TO contains number of bytes
moved into last frame.

(5) Contents of TO are unpredictable.

(6) DO contains the integer moved or compared.
(7) SYSRO contains the byte pointer operand-1.
(8) TO contains the 16-bit mode-ID; Tl is zero.

(9) HO contains the number of digits converted into the last frame, if its high
order bit (BO) is set; otherwise original value.

3.8 ASSEMBLER TABLES

The REAL Assembler is completely table-driven and is therefore both powerful and
flexible in its definition of mnemonics. In addition, the assembler accesses a
permanent symbol table. which allows the predefinition of a set of symbols used by
all assemblies. Symbols defined in the source mode are placed in a temporary
(local) symbol table, and such entries override corresponding entries in the perma-
nent symbol file. It should be noted that forward references to local symbols that
match entries in the permanent symbol table will, in general, cause assembly errors.
Therefore, such overriding symbol definitions must precede the first reference to

them.

3-25

At the start of the assembly process, the assembler searches the user's Master Dic-
tionary (M/DICT) for the following file definitions:

PSYM - Permanent symbol table.
TSYM - Temporary symbol table.
osym - Operation-code symbol table.

The assembly will abort if any of these file-definitions are missing, with a mes-
sage indicating the one that was not found. The temporary symbol table is initial-
ized before the assembly starts. TSYM is a permanently defined file on a user's
account. It can be examined at the conclusion of the assembly. Although TSYM has
a lock to limit its use to one person on an account during an assembly, entries
fromone assembly disappear when another starts. TSYM is also used by the FIX-FILE-
ERRORS verb.

3.8.1 TSYM/PSYM TABLE ENTRY FORMATS

The item format of the entries in the PSYM and TSYM files is as follows (entries
are in character form):

Item-ID: Symbol-name

Line 1 : Symbol-code (single character - see below)
Line 2 : Symbol-value (hexadecimal location or displacement)
Line 3 : Base-register value (single hexadecimal digit)

SYMBOL-CODES

The symbol-code is a single character code that defines the type of the symbol, it
is used in the operation code lookup to determine legal operands, and to flag un-
defined or multi-defined labels, etc.

Symbol-Code Description - Symbol Type Unit of Displacement
B Bit Bits
C Character Register Bytes
D Double-Word (4-byte) Words
H Half-Word (l-byte) Bytes
L Local Symbol, Defined Bytes
M Mode-ID Undefined
N Literal value Bytes
R Address Register Undefined
S Storage Register (6 bytes) Words
T Word (2 bytes) Words
U Local Symbol, Undefined Value=0

3-26

3.8.2 OSYM TABLE-LOOKUP TECHNIQUE

All REAL mnemonic operation codes are stored in the OSYM file. BAn entry in this
table may be either (1) the REAL mnemonic for the instruction (basic opcode), or
(2) the REAL mnemonic suffixed by the symbol type-codes of all the operand field
entries. The purpose of the suffixing is (1) to provide for the separate handling
of REAL mnemonics with variable operand field entries; (2) to provide for a check
on the number and type'of operand field entries. As an example, the basic REAL
mnemonic for "move register to register" is MOV, but it has four different object
code expansions, depending on whether the registers involved are address (R) or
storage-type (S). To allow for all cases, there are four entries in the OSYM file:
MOVRR, MOVRS, MOVSR and MOVSS. The assembler will attempt to look up the basic
opcode first, and, if it is not found, a second attempt will be made with the
basic opcode suffixed as described above.

3.8.3 TSYM TABLE ENTRY SETUP

As the assembler goes through the "suffixing" technique described above, it neces-
sarily looks up each non-literal operand in the TSYM and PSYM files, in that order.
If found, the type-code can be suffixed to the basic opcode. 1If no entry is found
in the TSYM and PSYM files, the assembler then sets up an entry in the TSYM file
with type "U" (undefined), and location zero. This has an important ramification
with regard to literal generation.

3.9 ASSEMBLER OUTPUT

The assembler output consists of (1) macro statement expansions; (2) error messages
and (3) generated object code, all appended to the original source statement.

A user-input source statement is of the format:
Source Statement (AM)

On output, the format is as follows:
Source Statement (SVM) location object-code (AM)

where 'location' is a 3-digit hexadecimal field, and the 'object code' is in hexa-
decimal.

Error messages are appended to the source statement as the assembler encounters
errors; the messages are appended in the format:

.. (VM) * message....
Messages may precede or follow the object code.

Macro expansions resemble source statements in terms of source statement, errors
and object code, and are of the format:

Source Statement (VM) macro statement (SVM) location object-code (VM)... (AM).

Note that regardless of what the assembler appends to the original source statement,

3-27

the delimiters surrounding the entire statement remain, unchanged; this ensures
proper source statement input on subsequent assemblies.

3.10 ASSEMBLER ERROR MESSAGES

*UNDEF: Symbol, Symbol

l 200..

*MULT-IDEF
*REF: UNDEF
LBL REQD
*OPCD?
*OPRWD REQD

*TLGL OPCD:opcode

*OPRWD RNG

*TRUNC.

*OPRND DEF

Undefined symbols at end of pass 1 (Message
at end-of-mode).

Label-field entry was previously defined.
Reference to undefined symbol.

Required label-field missing.
Opcode-field entry missing.

Required operand-field entry missing.

Either the opcode was illegal, or the
operand types were illegal for the opcode.

The range of the operand-field entry is
illegal.

Object code truncation may be due to: branch
out-of-range; TSYM/PSYM table entry error;
specification error in the GEN primitive.

The operand-field entry is improperly
defined e.g.: non-hexadecimal character
in a hexadecimal string.

The following are errors in the OSYM-table entry specifications.

*FRMT. A-FIELD
*FRMT. B-FIELD

*OPCD TYP!

*MACRO DEF!

Error in A- or B-field specification.
Opcode type not a P/Q/M, or primitive type
was illegal.

Error in the macro specification.

3-28

3.11 REAL INSTRUCTION SUMMARY PAGE

ADDR defines address 3-22
ADD add to accumulator 3-15
AND and variables 3-12
AR defines address register 3-22
B branch unconditional 3-19
BBS branch on bit set 3-13
BBZ branch on bit zero 3-13
BCA branch on character alphabetic 3-13
BCE branch on character equal 3-12
BCH (E) branch character high (or equal) 3-13
BCL (E) branch character low (or equal) 3-12
BCN branch on character numeric 3-13
BCU branch on character unequal 3-12
BCX branch on hexadecimal character 3-13
BDLEZ branch decrementing word < = zero 3-18
BDLZ branch decrementing word < zero 3-18
BNDZ branch decrementing word not zero 3-18
BDZ branch decrementing word zero 3-17, 3-18
BE(3) branch, register/word equal 3-16, 3-17
BL(E) (3) branch word < (or=) 3-17
BH(F) branch word < (or=) 3-17
BSL branch and stack location 3-20
BSLIT branch and stack location indirect 3-20
BU(3) branch, register/word unequal 3-16, 3-17
CHR define character 3-33
CMNT comment 3-22

3-29

DEC
DEFDL
DEFk
DEFM
DEFTL
DEFTU
DIV
DTLY
ENT (I)
EQU
FAR
FRAME
HTLY
1B
INC
101

I00

MBX(N)
MCAL
MCC

MCI

decrement

define as lower double tally
define as b,c,d,h,1l,s, or t
define as m

define as lower tally
define as upper tally
divide accumulator

define as doubleword
external transfer (indirect)
equate

flag and attach register
define frame

define as halfword

input byte

increment

I/0 instruction input

I/0 instruction output

load absolute difference

load accumulator

move binary to decimal (n char)

move binary to hex (n char)
monitor call

move character to character

move character to incrementing char

move decimal to binary

PAGE

3-14,
3-23

3-22,

3-23
3-15
3-22
3-20
3-24
3-16
3-24
3-22

3-21

3-14, 3-15,

3-14,
3-18
3-19
3-21

3-9

3-16

3-23

3-15

3-9, 3-10

3

18

3-16

MIC
MII
MIID
MIIR
MIIT
MOV

MUL

NEG
NOP
OB
ONE
OR
ORG
READ
ROM
RTN
SB
ScD
SR
SRA
STORE
SUB

TEXT

move incrementing char to char
move inc char to inc char

move inc char to inc char (delimiter)
move inc char to inc char (register)
move inc char to inc char (word)
move word to word

multiply accumulator

move hex to binary

negate

no op

output byte

set word equal to one

logical or

origin

read

return time quantum

return

set bit

scan characters to delimiter
define as storage register

set register to address

store accumulator

subtract from accumulator

message

PAGE

3-13,

3-15

3-14
3-22

3-21

3-14,

3-15

PAGE

TLY define as word 3-22
TST test (set condition flags) 3-14
WRITE write 3-21
XCC exchange character with character 3-12
XOR logical exclusive or 3-12
XRR exchange register with register 3-15
ZB zero bit 3-13
ZERO zero word 3-14

3.12 PROGRAMMING CONSIDERATIONS AND CONVENTIONS
3.12.1 REENTRANCY

In practically all cases, the system software is reentrant, that is, the same copy
of the object code may by used simultaneously by more than one process. For this
reason, no storage internal to the program is utilized; instead the storage space
direttly associated with a process is used; this is part of the process' Primary,
Secondary, Debug (or Tertiary) and Quaternary Control blocks. The Primary Control
Block (PCB) is addressed via address register zero, the SCB via register two. The
Debug Control Block is used solely by the DEBUG processor and should not be used
by any other programs. The Quaternary Control Block has no register addressing it;
it is used by some system software (magnetic tape routines, for example, which
temporarily set up a register pointing to it); its used is reserved for future
software extensions.

A user program may utilize storage internal to the program if it is to be non-
reentrant. Often it will be found that the functional elements defined in the PSYM
will be sufficient.

In some cases it may be required to set up a program to be executable by only one
process at a time; that is, the code is "locked" while a process is using it, and
any other process attempting to execute the same code waits for the first process
to "unlock" it. The following sequence is typical:

ORG O
TEXT X'O1!' INITIAL CONDITION FOR LOCK BYTE (NOTE USAGE
CMNT OF STORAGE INTERNAL TO PROGRAM)
LOCK MCC X'00',R2 SET "LOCKED" CODE AT R2

XCC R2,Rl EXCHANGE BYTES AT R2 AND Rl
BCE R2,X'01',CONTINUE OK TO CONTINUE; PROGRAM LOCKED
ROM WAIT (RELEASE QUANTUM)
B LOCK TRY AGAIN
. §

UNLOCK MCC X'0l',Rl UNLOCK PROGRAM

3-32

3.12.2 WORK-SPACES OR BUFFERS

There is a set of work-spaces, or buffer areas, that is predefined and available
to each process. 1f the system conventions with regard to these buffers are
maintained, they should prove adequate for the majority of assembly programming.
There are three "linked" buffers, or work-spaces, of equal size, symbolically
called the IS, the 0S, and the HS. These are at least 3000 bytes in length each;
more space for each area can be assigned to a process at LOGON time. There are
five other work-spaces, the BMS, CS, AF, IB and the OB, which may vary between 50
and 140 bytes in length and are all in one frame. There is the TS, a one-frame
unlinked work-space of 512 bytes, and the PROC work-space, 2000 bytes in length,
which is used normally by the PROC processor alone; finally, there are four addi-
tional frames (CPB+28 through PCB+3l) that are unused by the system, subroutines,
through they are used by some of the processors. '

Each work-space is defined by a beginning pointer and an ending pointer, both of
which are storage registers (S/R's). When the process is at the TCL level, all
these pointers have been set to an initial condition. At other levels of process-
ing, the beginning pointers should normally be maintained; the ending pointers may
be moved by system or user routines. The address registers (A/R's) that are named
after these work-spaces (IS,0S,AF,etc.) need not necessarily be maintained within
their associated work-spaces; however, specific system routines may reset the

A/R to its associated work-space. The table below discusses these points for each
work-space. Note that, conventionally, a buffer beginning pointer addresses one
byte before the actual location where the data starts. This is because data is
usually moved into a buffer using one of the "moving incrementing" type of instruc-
tions, which increment the A/R before the data movement.

Location
Work- (Offset
Space From PCB Size Linked? Remarks
BMS 4 50 No Normally contains an item-ID when
(disp.=0) communicating with the disc file I/0
routines. Typically, the item-ID is
copied to the BMS area, starting at
BMSBEG+1. BMSBEG may be moved to
point within any scratch area. BMSEND
normally points to the last byte of the
item-ID. BMS (A/R) is freely usable
except when explicitly or implicitly
calling a disc file I/0 routine.
AF 4 50 No This work-space is not used by any
(disp.=50) system subroutine, although the AF
A/R is used as a scratch register.
Cs 4 100 No As above.
(disp.=100)
IB 4 <140 No Is used by the terminal input routines
(disp.=200) to read data. IBBEG may be moved to

point within any scratch area before
use. IBEND conventionally points to
the logical end of data. 1IB A/R is

3-33

Location

Work- (Offset .
Space From PCB) Size Linked?
OB 4 140 No
(disp.=201
+ IBSIZE)
TS 5 511 No
PROC 6-9 2000 Yes
HS 10-15 3000+ Yes
IS l6-21 3000+ Yes
0s 22-27

Remarks

freely usable except when explicitly
or implicitly calling a terminal input
routine.

Is used by the terminal output routines
to write data. OBBEG & OBEND should
not be altered; they always point to
the beginning and end of the OB area.
OB A/R conventionally points one
before the next available location in
the OB buffer.

Used for conversions.

Used exclusively by the PROC
processor for working storage. User-
exits from Proc's may change pointers
in this area.

Used as a means of passing messages to
the WRAPUP processor at the conclusion
of a TCL statement. May be used as a
scratch area if there is no conflict
with the WRAPUP history-string formats.
HSBEG should not be altered;

HSEND conventionally points one byte
before the next available location

in the buffer (initial condition is
HSBEG=HSEND) .

These work-spaces are used inter-
changeably by some system routines
since they are of the same size (and
are equal in size to the HS). Specific
usage is noted under the various

system routines.

ISBEG and OSBEG should not be altered,
but may be interchanged if necessary.

Initial condition is that ISEND and
OSEND point 3000 bytes past ISBEG and
OSBEG respectively (not at the true
end if additional work-space is assign-
ed at LOGON time).

IS and 0OS A/R's are freely usable
except when calling system subroutines
that use them.

Location

Work- (Offset
Space From PCB) Size Linked? Remarks
28-31 Used for compilation and execution

of the RPG programs, and by the
DATA/BASIC Debugger.

3.12.3 DEFINING A SEPARATE BUFFER AREA

If it is required to define a buffer area that is unique to a process, the unused

frames PCB+28 through PCB+31 may be used. The following sequence of instructions
is one way of setting up an A/R to a scratch buffer:

MOV RO,R15

ZERO R3WA SET R3 "DETACHED"
ZERO R3DSP INITIALIZE DISPLACEMENT FIELD
INC R3FID,29 SET R15 to PCB+29

Register 3 can now be used to reference buffer areas, or functional elements that
are addressed relative to R3. None of the system subroutines use R3, so that a
program has to set up R3 only once in the above manner. However, exit to TCL via
WRAPUP will reset R3 to PCB+3.

3.12.4 USAGE OF XMODE

In several cases, the multiple-byte move instructions can be used (say, when
building a table) even when it is not known whether there is enough room in the
current linked frame set to hold the data. Normally, if the end of a linked frame
set is reached, DEBUG is entered with a "forward link zero" abort condition.
However, the tally XMODE may be set up to contain a mode-ID of a user-written sub-
routine that will gain control under such a condition. This subroutine can then
process the end-of-frame condition, and, by executing a 'RTN' instruction, normal
processing will continue. Instructions that can be handled by this scheme are:
INC register; MCI; MIC; MII; MIID; MIIT; SCD; MIIR. Care should be taken in the
case of MIIR to save register R15 in the subroutine.

Example:
MoV XXX, XMODE SET UP XMODE FOR NEXT INSTRUCTION
MII R12,R13,SR4 COPY FROM R12 TO R13, TILL Rl12=SR4

ZERO XMODE

3-35

Example: (continued)

IXXX EQU * ENTRY POINT FOR SUBROUTINE
MOV R15, SR20 SAVE R15
SRA R15, ACF SET TO SAVE REGISTER NUMBER
BCE X'0D',R15,0K ENSURE TRAP WAS DUE TO R13
MOV 0, XMODE PREVENT DEBUG RE-ENTRY
ENT 5,DB1 NO! : REENTER DEBUG TO PRINT
CMNT "FORWARD LINK ZERO" MESSAGE
*
OK MOV 500, R13DSP RESET DISPLACEMENT FIELD OF R13, SINCE
CMNT FIRMWARE HAS LEFT IT IN A STRANGE STATE.
* HANDLE END-OF-FRAME CONDITION HERE
MOV R13FID, RECORD SET UP INTERFACE FOR ATTOVF
BSL ATTOVF GET ANOTHER FRAME FROM OVERFLOW
MOV SR20,R15 RESTORE R15
RTN RETURN TO CONTINUE EXECUTION OF MIT
INSTRUCTION.

3.12.5 INITIAL CONDITIONS

At any level in the system, the following elements are assumed to be set up; they
should not be altered by any programs:

MBASE D Contain base-FID, modulo and separation of
MMOD T the M/DICT associated with the process.
MSEP T

3.12.6 SPECIAL PSYM EILEMENTS

Certain elements have a "global" significance to the system in addition to those
described above; they are:

Functional Element Description
Arithmetic condition These are altered by any arithmetic instruction,
flags: as well as the branch instructions that compare

two relatively addressed fields.

ZROBIT Set if result of operation is zero (equal).

NEGBIT Set if result of operation is negative.

OVFBIT Set if arithmetic overflow resulted.

HO through H7 Overlays accumulator and extension; H7 is
high-order byte of Dl; HO is low-order byte
of DO.

Functional Element Description

INHIBIT If set, the "BREAK" key on the terminal is
inhibited; used by processes that should not
be interrupted.

OVRFLCTR See WRAPUP for usage.

RSCWA Return-stack current word address; contains
address one byte past current entry in stack;
stack is null if RSCWA=X'184"'.

SYSPRIV1 If set indicates system privileges, level one.

SYSPRIV2 If set in addition to SYSPRIV1, indicates
system privileges, level two.

TO through T3 Overlays accumulator and extension.

XMODE This tally may be set up to a mode-ID of a
subroutine that is to gain control when a
"forward link zero" condition occurs.

WMODE If WMODE is non-zero on any entry to WRAPUP,
a BSL* through WMODE will be executed at the
termination of history-string processing,
before 1) the print-spool-files are closed,
and 2) the overflow chain is released. The
BSL* instruction will be executed whether
RMODE is zero or not. This feature may be
used by processors that require special
WRAPUP processing.

USER Tally 'USER' in the PCB has global significance:
Tally=0 Indicates not logged on.
Tally=-1 Indicates the spooler
process.
Tally=1 Indicates the file restore
process.
Tally=2 Indicates a process which

must go to LOGOFF after
WRAPUP processing.

Other values indicate normal logged
on processes.

SECTION 4

THE INTERACTIVE DEBUGGER (DEBUG)

The Interactive Debugger (DEBUG) provides a means for monitoring and controlling
program execution. For all Reality users, DEBUG has the ability to turn the print
off at the terminal, and to terminate program execution.

The use of the extended facilities of DEBUG (other than turning the terminal print-
ing on and off, and terminating program execution) require system privileges level
two. If the user has such privileges, he may control program execution by the in-
sertion of break-points in the program, and by executing specific DEBUG commands.
The user may also trace execution by displaying data at specific locations. DEBUG
additionally allows the user to display data throughout the virtual memory of the

system.

Thus (for users with system privileges level two) DEBUG is ideally suited for the
checkout phase of assembly language programming.

4.1 ENTERING DEBUG

DEBUG is entered voluntarily by depressing the BREAK key on the terminal (INT key
on some terminals). DEBUG will then display the location of the execution inter-
ruption point, followed by the DEBUG prompt character; the DEBUG prompt character
is the exclamation mark (!).

DEBUG is entered involuntarily when a hardware trap condition occurs. In this case,
DEBUG will display a message indicating the nature of the error causing the trap
(see Section 4.6), followed by the location at which the trap occurred, followed

by the DEBUG prompt character (!).

When the DEBUG prompt character is displayed, the user enters an appropriate DEBUG
Control Command or DEBUG Data Display Command.

4.2 THE DEBUG CONTROL CCMMANDS
4.2.1 CONTROL COMMAND SYNTAX

Prior to describing the actual DEBUG Control Commands, it is necessary to define
the terms "address" and "indirect-address".

ADDRESS

An "address" references a byte in virtual memory. An "address" consists of a frame-
ID (FID) and an offset byte displacement within the frame. The FID and/or displace-
ment may be either in decimal or hexadecimal. The general forms of an "address"

are shown below ("f" represents the FID value, and "d" represents the displacement

value) .

Address Description
f£,d FID in decimal; displacement in decimal.

Address Descrigtion

f.d FID in decimal; displacement in hexadicimal.
.f£,4 FID in hexadecimal; displacement in decimal.
.£.4 FID in hexadecimal; displacement in hexadecimal.
.d Displacement in hexadecimal.

,d Displacement in decimal.

If the FID value is omitted, then the PCB FID is used as a default value. The dis-
placement must be in the range 0 < d < 512.

As a general example, the following "addresses" are equivalent:
12.3C
12,60

.C.3C
.C,60

INDIRECT-ADDRESS

An "indirect-address" references a byte in the virtual memory by specifying an
Address Register which therefore indirectly references a particular byte. Address
Registers zero and one cannot be used in this manner. The "indirect-address" spec-
ification takes the following forms.

Indirect Address Description
Rr Specifies Address Register "r" (where "r" is a

decimal value in the range 0 < r < 15).

R.Tr Specifies Address Register "r" (where "r" is a
hexadecimal value in the range 0 < r < F).

Note that "indirect-addresses" have an implied displacement within the FID that
the Address Register is pointing to; this displacement depends on whether the re-
gister is in the "linked" or the "unlinked" format (see Section 2).

4.2.2 DEBUG CONTROL TABLES

DEBUG maintains three tables which may be manipulated by the DEBUG commands: the
Break Table, the Trace Table, and the Indirect Trace Table. If there are entries
in the Break Table, the address of every instruction is compared with the address
in the Break Table and a break occurs if there is a match. If there are entries
in the Trace or Indirect Trace Tables, then the data pointed at by the entries are
printed whenever a break message is printed (see Section 4.4). Up to four entries
can be placed in each of these tables.

{.2.3 COONTROL COMMANDS

e following is a list of the DEBUG Control Commands. Users without system pri-
vileges level two may only use the P, G, END, and OFF commands.

General Form

A address
B address
D
En

END

G
or
line-feed

G address

H

K address

Nn

OFF

Description

Displays the address of an element.
This command adds the "address" to the Break Table.
This command displays the Break Table and Trace Table.

This command sets the Execution Counter to "n",
where "n" is a positive integer < 250. Setting
the Execution Counter causes a break to occur
after the execution of every "n" instruction.
The command "E 0" or simply "E" turns off the
Execution Counter.

This command terminates execution and returns
to TCL. "END (carriage-return)" re-initializes
the break and trace tables, whereas "END (line-
feed)" preserves the tables.

This command causes resumption of process execu-
tion from the point of interruption. G cannot
be used if a process ABORT condition caused the
entry to DEBUG.

This command causes resumption of execution at
the specified "address".

"HUSHES" terminal output (this is an on/off toggle).

This command "kills" the break-point (i.e., de-
letes "address" from Break Table). "K" alone
kills all break-points.,

Display frame links.

Each entry of an M command switches (toggles)
"Modal-Break" status ON and OFF. When "Modal-
Break" status is ON, a break in execution will
occur upon all intermodal transfers (i.e., BSL
or ENT instructions; see Section 3.7.8). The
message "ON" is displayed when the M command
switches "Model-Break" on; the message "OFF"

is displayed when "Modal-Break" is switched off.

This command sets the Break-Point Counter to
"n" (i.e., inhibits traps until "n" breaks have
occurred). "N" is equivalent to "N 0".

This command logs the user off of the system.

Each entry of a P command switches (toggles)
from print suppression to print non-suppression.
The message OFF is displayed if output is cur-
rently suppressed. The message ON is displayed
if output is resumed.

General Form Description

T Each entry of a T command switches (toggles)
suppression of display of entries in the trace
tables.

T format address; window This command adds the "address" to the Trace
Table with the given display format and window,
if present. Default display is hexadecimal, 4
bytes. No negative displacement for windows is
allowed.

T format/symbol; window This command adds the address referenced by the
"symbol" to the Trace Table with the specified
or default format and window. Default format and
window depends on "symbol" type.

T format indirect-address; This command adds the "indirect-address" to the
window Indirect Trace Table with the specified or de-
fault format and window.

T format * symbol; window This command adds the address referenced in-
directly by the "symbol" (A/R or S/R) to the In-
direct Trace Table with the specified or default
format and window.

U address This command deletes the "address" from the Trace
Table.
U indirect-address This command deletes the "indirect-address"

from the Indirect Trace Table.

U This commands deletes all addresses and indirect-
addresses from the trace tables.

/€ Symbolic displays of elements.

4.3 THE DEBUG DATA DISPLAY COMMANDS
4.3.1 WINDOWS

Before describing the Data Display commands, it is necessary to define the concept
known as a "window."

A "window" specifies the number of bytes to display (m), and optionally the nega-
tive displacement (n) from the "address" or "indirect-address" from which to start
the display. If n is not specified, it is assumed to be zero. The general forms
of the "window" are shown below.

Window Description
;m Number of bytes in decimal.

Window Description

;.m Number of bytes in hexadecimal.

;n,m Displacement in decimal; number of bytes in decimal.

;n.m Displacement in decimal; number of bytes in hexadecimal.
;.n,m Displacement in hexadecimal; number of bytes in decimal.
;.n.m Displacement in hexadecimal; number of bytes in hexadecimal.

The default "window" is 0,4 (no neg9tive displacement, display four bytes).

4.3.2 DATA DISPLAY COMMANDS

The following is a list of the DEBUG Data Display commands.

General Form

Caddress ;window

Cindirect-address;window

Xaddress ;window

Xindirect-address;window

Iaddress;window

Iindirect-address;window

Format/symbol ; window

Format*symbol ;window

A/symbol

A*symbol

L fid

Description

These commands display specified data in
character format.

These commands display specified data
in hexadecimal format.

These commands display specified data
in integer format. ("window" must be <6)

This command displays data referenced by
"symbol" in given or default format and
window size.

This command displays data referenced
indirectly by "symbol" in given or de-

fault format and window size.

This command displays the address at
which program execution was interrupted.

This command displays the address refe-
renced by "symbol".

This command displays the address refe-
renced indirectly by "symbol".

This command displays the link fields of
frame "fid".

4-5

General Form Description

L*symbol This command displays the link fields
of the frame referenced indirectly by

"symbol".
Immediately after the data at the specified address has been displayed, DEBUG

prompts with an equal sign (=). The user then enters either a Data Replacement
Specification or a Special Control Character.

4.3.3 DATA REPLACEMENT SPECIFICATIONS

Displayed data may be altered (replaced) by entering the new data in one of the
following forms (after DEBUG prompts with an equal sign).

General Form Description
« XXXXXX. .. Replaces data with hexadecimal string "xxxxxx". The

string should contain an even number of hexadecimal
digits, and may be up to 80 digits in length.

'cceccce. .. Replaces data with character string "cccccc". The
string may be up to 80 characters in length.

n Replaces data with integer value "n".

In the case of a hexadecimal or character string replacement, the data actually
replaced may extend beyond the currently defined "window".

A Special Control Character (see Section 4.3.4) must be entered immediately fol-
lowing a Data Replacement Specification.

4.3.4 SPECIAL CONTROL CHARACTERS

The user may enter a Special Control Character in response to the DEBUG equal sign
prompt character. In addition, the user must terminate a Data Replacement Speci-

fication (see Section 4.3.3) with a Special Control Character.

The Special Control Characters are listed below.

Control Character Description
Carriage Return Terminates display mode; DEBUG will prompt with an

exclamation mark (!).

Line Feed Displays data in the next "window" (i.e., the pre-
viously specified "address" or "indirect-address"
is updated according to the currently specified
"window"”). The data is displayed on the same line.

Control-N Displays data in the next "window", preceded by the

address being displayed (in the format "f.d", where
f is in decimal and 4 is in hexadecimal).

4-6

Control Character Description

Control-P Displays data in the previous "window" preceded
by the address being displayed (in the format
llf‘dll) .

On a display using the "indirect-address" specification, the Line Feed or Control-N
will cause an automatic crossing of linked frame boundaries if the register being
used in the display is in the "linked" format.

Generally speaking, Control-N displays the set of bytes the same size as and imme-
diately following the current display, and Control-P displays the immediately pre-
ceding set, with each skipping first to the next line and preceding the display of
these bytes with their address (Line-Feed functions the same as Control-N, without
skipping a line or displaying an address). Exceptions occur only in the case of
the specification in the initial display of a negative displacement window, i.e.,
a window of the form:

:Windowl, Window2
Where windowl is positive.

In these cases, the address of the beginning of the next byte-set display is deter-
mined by the formulas:

For Control-N and Line-Feed:

ADDR OF DISPLAY ADDR OF CURRENT DISPLAY + SIZE WINDOW - DSPLC WINDOW

For Control-P:

ADDR OF DISPLAY ADDR OF CURRENT DISPLAY - SIZE WINDOW - DSPLC WINDOW

The user may describe a sequence by careful specification of size and displacement
windows. A few examples follow.

Display a data list of DTLYS from right to left, i.e., by diminishing addresses,
first displaying the DTLY at address 200.100. The easiest way is to simply use
Control-P with a non-negative displacement window:

!1X200.100; DO .ClF1043F= (Control-P)
200.FC .07510254= (Control-P)
200.F8 .Al10551F0= (etc.)

Another way of reading right to left, using Control-N, is accomplished by specify-
ing the value of the displacement window (:window) to be twice that of the value
of the size window (.window2 (= 4 |for DTLYS)):

1200.108;8.4 .ClF1043F= (Control-N) (display DTLY at 200.100)
200.FC .07510254= (Control-N)
200.F8 .Al0551F0= (etc.)

To display an address over and over, as when monitoring changes at a certain ad-
ress, the Line-Feed function may be used, specifying a displacement window equal
in value to the size window. For example:

!1510.102;2,2 5000= 5000= 5000= 5001= 5001= 5002=
(Line-Feed display of tally at 510.100)

A somewhat more tricky example: suppose one has sorted a list of five-letter words
beginning at the 100th data byte of linked frame 510 and wishes to check it for
correct order by comparing items O and 1, 1 and 2, 2 and 3, and so forth. This may
be done, using Control-N, by specifying a size window twice the value of the dis-
placement window:

'C510.106;6,12 APPLECHAIR= (Control-N)
+510.111 CHAIRCHOIR= (Control-N)
+510.117 CHOIRFUNNY= (Control-N)
+510.11D FUNNYHELLO= (etc.)

4.4 THE FORMATTED TRACE

The TRACE facility also allows formatting. This enables the user to specify a for-
mat and one window only (the size window) for each item traced. The display of each
item will then reflect its specified format and byte size. Forward or backward dis-
placements will be ignored. Note, however, that the default format and window of
an indirect trace is hex display of 4 bytes, not the preceding window.

Examples:

!TX200.100;4+ (Will trace location 200.100 with 4 bytes displayed in
hex - the '+' prompt from DEBUG indicates entry into
the table.)

!T/CH1+ 736.21 (Trace of symbol CH1 - format = C, display size =1
character - prompt 736.21 = display address of CHl.)

!T*R15; TO+ (Indirect trace R15 - format = I, window size = 2 bytes.)

!T*SR4+ 737.EO (Indirect trace SR4 - format = X, display size = 4 bytes -
default trace format and window is hex with 4 bytes,
not previous format and window.)

D

BRK TBL: 0. 0. 0. O.

TRC TBL: 200.100 736.21 0. O.

*TRC TBL: R 15. * 737.E0 0. O.
(Display of above entries in trace tables - 736.21 =
display address of CH1l, * 737.E0 means the address
pointed to by the S/R at 737.E0 (i.e., SR4) will be
displayed.)

4.5 SYMBOLIC REFERENCES

Symbolic reference to system-defined or user-defined data items is possible with

the use of the SET-SYM and SET-SYM2 verbs. These TCL-II verbs are issued to specify
tables for symbolic operands to be referenced by DEBUG. Entries in these tables

must be in the format ucsed in the Assembler PSYM and TSYM files.

SET-SYM assigns one symbol table; SET-SYM2 assigns another. Typically, SET-SYM is

4-8

x4

used to reference standard system-defined elements, and SET-SYM2 is used to reference
user-defined elements. For example:

DEBUG always looks for a symbolic operand first in the table set up by SET-SYM2.
If this table in not assigned, or if the symbol is not found, it then looks in the
table set up by SET-SYM.

4.5.1 SYMBOLIC OPERATORS

The symbolic operators '/' and '*' respectively indicate that a symbolic or indirect
symbolic operand is to follow. They may be preceded by any format specification
(X.I.C) or followed by a window specification (:windowl.window2 or :symbolic window)
which will override the listed default display values. DEBUG will display only
those symbols from the Symbol Table which would be accepted by the Assembler as
legal in a normal assembly.

4.5.2 DISPLAY FEATURES

Symbolic operands for display may be any properly defined bit, character, half-word,
word, double-word, triple-word, storage register, or address register within the
assigned Symbol Table. Normal display features are as follows:

Type of Symbol Format of Display # Bytesg Dj ed
HTLY Integer (I) 1
TLY Integer 2
CHR Character (C) 1
DTLY Integer 4
FTLY Hex (X) 6
S/R Hex 6
A/R Hex 8
S/R (INDIRECT) Previous format Previous window
A/R (INDIRECT) Previous format Previous window

These values are default values and are superceded whenever a specific format or
window size is entered as part of a command.

Examples:

{/CTR5 3l= (Symbol = CTR5, format = I, display
size = 2 bytes.)

!/R15 708.CA .000000CA800002C4=
(708.CA is the address pointed to by R15-
see 'the address function' - format = X,
window size = 8 bytes. These are the con-
tents of R15.)

1X/D0 008C008C= (Actual stored contents of accumulator -
format = X (as specified), display size = 4
bytes.)

Examples: (Continued)

1*R15 708.CA . 2D2F2A2F= (Indirect display - contents at 708.CA -
format = X (prev. format). Window size =
4 bytes (prev. window).)

IC*R15;0,4 708.CA ~-/*/- ({Format = C, window = 4 bytes with no
negative displacement)

A '+' indicates an address of a symbolic operand defined within a linked frame
where 11 (hex 'B') has been added to the displacement to produce a display address
starting from byte 1 of the frame.

4.5.3 SYMBOLIC WINDOWS

The symbolic window provides a useful means of referencing data pointed to by an
A/R or S/R. It also enables the user to specify a forward reference from the
address pointed to and carries an implicit default format specification.

Examples:
!*R9,D0 708.32 17301644= (Specifies the double-tally pointed to
by R9)
1*R3,T2 705.4 12593= (Specifies second tally after the tally
pointed to by R3)
I *SR6;Cl +32075.13A ,= (Gives the character HTLY immediately after
the one pointed to by SR6 - implicit format = (C)
IX/SR4;T0 .0l12F= (Gives the displacement (in hex) of SR4)
!/CTR4;S2 .009900010035= (Implicit format = X, size = 6 bytes)

4.6 THE ADDRESS FUNCTION

The address function is evoked by preceding a symbolic operator by the command 'A'.
An indirect symbolic operator preceded by the command 'A' yields the address
pointed to by the specified A/R or S/R.

The command 'A' alone, not followed by any operators, will yield the interrupt
address from which execution was halted when the DEBUGGER was invoked. 1If the
DEBUGGER was not entered due to an error trap condition, this address is also the
address from which execution will continue if a 'G' command without a specified
address is given. Some examples of the use of the 'A' function follow:

1A/CTR5 512.9A (Display address of symbol CTR5)

!A*SR1 +534.2F (Adjusted byte address on linked frame pointed
to by S/R SR1)

'A*SR1;4.0 +534.2B (Address of DTLY preceding address pointed to
by S/R SR1)

4-10

!A 6.94 (Address from which execution interrupted
when DEBUG entered. Execution will continue
from this address also.)

4.7 THE LINKS FUNCTION

This facility enables the user to display the forward and backward links of a
specified frame as well as the number of next contiguous frames (NNCF) and number
of previous contiguous frames (NPCF). The links of a frame pointed to be an A/R or
S/R may also be obtained by an indirect symbolic links specification. The format

of display is:

NNCF : FORWARD LINK BACKWARD LINK : NPCF
Examples:
'L,727 4 : 728 726 : 1 (Links for frame 727 - 4 contiguous linked

frames follow beginning at frame 728.
1 contiguous linked frame precedes frame 726.)

IL*IRBEG 14891. O : 14893 0 :0
(S/R IRBEG points to frame 14891 -

frame 14891 has no immediately contiguous
links. Forward link is 14891. No backward

link.)

'L.1F 28 : 68944000 -179407469 : -112
(These are the 'links' of frame 31 which is

not a linked frame. No test is made to de-
termine if a frame is linked or not before
play. If NNCF = 28 or 29 then the frame is
probably not linked.)

4.8 BIT DATA

4.8.1 SYMBOLIC BITS

Symbolically defined bits may also be displayed, providing they are defined within
a 32-byte displacement range of their reference base register. Among the display

functions are:

Control-N Skip to next line, display bit address and value of next bit.

Line-Feed Display bit value on same line.

Control-P Skip to next line, display bit address and value of previous
bit.

4.8.2 BIT ADDRESSES

The address function may also be used for bit operands. A bit address has the
form:

4-11

(+) FID. DSP:BIT

where BIT is the bit displacement of the byte display address.

Examples:
!/ABIT O= (ABIT is not set.)
! /RMBIT 1= (Control-N) (RMBIT is set.)
512.13:7 O= (Control-P)
512.13:6 1= (Display RMBIT again.)
'A/LPBIT 512.19:5 (LPBIT is the 5th bit off address .19 of the

PCB.)

4.8.3 REPLACING BIT DATA

Bit data values are changed by placing the desired value for the bit (0 or 1)
after the '=' prompt. Up to 10 values in succession may be altered by placing a
string of 1's and 0's after the prompt.

Examples:
1 /OVFBIT 1=0 (Reset Overflow flag.)
! /OVFBIT O= (Display of new OVFBIT value.)
{/DBIT 0=111111 (Set bits DBIT = IBIT.)
!/DBIT 1= 1= 1= 1= 1= 1= (Display new values of DBIT - IBIT using

Line-Feed function.)

4.8.4 BIT WINDOWS

An alternative means of bit display and modification is the bit window. This is
a symbolic window using the character 'B', followed by a decimal bit displacement,
as follows:

1 *R15;B6 516.CA:6 1= (6th bit off address pointed to by 15)
1200.100; BO 200.100:0 1= (Leading bit of address 200.100)

!A*R15;B100 516.D6:4

4.9 BREAK MESSAGES

DEBUG causes an execution break to occur when the BREAK key on the terminal is
depressed. DEBUG also has the facility to break on intermodal transfers (i.e.,

BSL or ENT instructions; see Section 3.7.8); the M command acts as an alternate
action switch, to change this feature from ON to OFF. A break can also be initiat=-
ed with the E command, causing a break after the execution of a specified number
of instructions. The following messages are output when a break in execution
occurs.

4-12

Message Condition

B f.d Break-point address encountered. (Break Table
match.)
E f.d Execution runout (specified number of instructions

have been executed).
I f.d4 Interrupt (Break key depressed).

Mf.d Modal break (Inter-frame branch; ENT or BSL
instruction encountered).

R f.d Return (RTN) instruction encountered.

where "f" is the decimal FID and "d" the hexadecimal displacement, repre-
senting the location of the execution interruption point.

The Execution Break and Address Break facilities are mutually exclusive. When the

Execution Counter is positive, Break Table entries are ignored. However, the Break
Table of the Execution Break facility can be used with the Modal Break facility.

4.10 EXAMPLES

4.10.1 SIMPLE EXAMPLE

The following example illustrates a simple DEBUG interaction. The features
illustrated here may be used by all Reality users.

ENGLISH LIST statement

SYSTEM-MODES..... ee.. FRAME.........

WSPACES FRAME 172 Listing output from

EDIT-I FRAME 013 system.

PQUEUE/1200 FRAME 164

WRAPUP-II BREAK key depressed.

I 6.1A3 Interrupt message.

!P CR OFF Turns Print off.

!G CR Go (resumes execution without
printing).
BREAK key depressed.

I 3.FB Interrupt message.

!P CR ON Turn Print back on.

IG CR Go (resumes execution with
printing).

DB3 FRAME 018

DB4 FRAME 019 Listing output resumes.

TAPEIO-II FRAME 036

DB5 BREAK key depressed.

I 6.137 Interrupt message.

!END CR Terminates LIST execution.

: TCL prompt.

4-13

4.10.2 EXTENDED EXAMPLE

The following example illustrates use of the extended DEBUG facilities. These
facilities can be used only by users with system privileges level two.

BREAK key depressed.

—~—Display and change data.
Display next window
(no change).
Aj\\‘Change data in
character form.
Set Modal Trace on.
Set delay counter.
Trace location .40 in PCB.

Trace Register four.
Go.

§ .1E1327101881=}F
200.18 .CDEF34567890=
200.1E .012C00000064
.CDEF34567890

.0004000A0000=

.4B4A4D4E0064=

TCL statement.

R 5.49 RTN instruction encountered.
512.40 = .000002060000 Data from direct trace.
R 4. : 528. = .004154545249 Data from indirect trace.

M 7.3 Modal break.

512.40 = .000002060000
R 4. : 528. = .004154545249

R 5.78
512.40 = .000020920000
R 4. : 528. = .004154545249

M 10.1
512.40 = .000020920000
R 4. : 528. = .004154545249

M 8.1
512.40 = .000020920000
R 4. : 528. = .004154545249

R 10.32
512.40 = .000020920000
R 4. : 528. = .004154545249
: % Display Break and Trace Table
BRK TBL: 0. O. O. O. entries.

TRC TBL: 512.40 0. 0. O. N\Break Table entries.

*TRC TBL: R 4. 0. O. O. ‘\\Trace Table entries.

Indirect Trace Table entries.
\\\Terminate Execution.
Back to TCL.

SECTION 5
SYSTEM SUBROUTINES

The following subroutines are from a computer printout. The subroutines are listed
alphabetically.

DOCUMENTATION CONVENTIONS

IN THE SYSTEM SOFTWARE DOCUMENTATION, EACH ROUTINE IS LISTED
ALONG WITH ITS ENTRY POINT (AS WOULD BE USED 1IN A DEFM
STATEMENT)3 IF THE ENTRY POINY IS INCLUDED IN THE STANDARD
PSYM FILE, IT IS FOLLOWED RY AN ASTERISK (w), UNLESS
OTHERWISE SPECIFIED, ROUTINES ARE MEANT TO BE CALLED AS
SUBROUTINES, USING A RSL INSTRUCTION, AND THEY RETURN TO THE
CALLING PROGRAM VIA A RTN INSTRUCTION,

THE FUNCTIONAL OESCRIPTION SECTION FOR EACH ROUTINE BRIEFLY
DESCRIBES THE ACTION TAKEN., THE INPUT INTERFACE. OUTPUT
INTERFACE, AND ELEMENT USAGE SECTIONS DESCRIBE THE
FUNCTIONAL ELEMENTS USED BY THE ROUTINE, THE SINGLE LETTER
FOLLOWING AN ELEMENT NAME DESCRIBES 1ITS TYPE: B=BIT,
C=CHARACTER, H=zHALF TALLY, T=TALLY (WORD), DaDOUBLE TALLY,
FESTRIPLE TALLY., SADDRESS REGISTER, SzSTORAGE REGISTER,
EVEN IF NOT SPECIFIED, THE FOLLOWING ELEMENTS MAY BE
DESTROYED BY ANY ROUTINE? THE ONLY WAY TO BE SURE IS T0O
INSPECT THE CODE:

BITS $ ARITHMETIC CONDITION FLAGS,
SB60, SB61

TALLIES : T4, T5

DOUBLE TALLIES s ACCUMULATOR AND EXTENSION (DO,
01). D2

REGISTERS : R14, R1S

STORAGE REGISTERS L SYSRO, SYSR1, SYSR?

IF NO DESCRIPTION FOLLOWS AN ELEMENT NAME, IT INDICATES THAY
THE ELEMENT IS USED A8 A SCRATCH ELEMENT,

THE SYSTEM DELIMITERS ARE SYMOLICALLY REFERRED TO AS
FOLLOWS:

HEX, VALUE NAME AND DESCRIPTION
FF SM SEGMENT MARK
FE AM ATTRIBUTE MARK

DOCUMENTATION CONVENTIONS

FD VM VALUE MARK
FC SVM SECONDARY VALUE MARK
FB SB STARY BUFFER

5-1

BCKSP

BCKSP (10, TAPEIO=I)

FUNCTIONAL DESCRIPTION

THIS ROUTINE BACK=SPACES THE TAPE BY ONE RECORD. 1IT CALLS
INTT AND TPSTAT, AND REQUIRES FOUR ADDITIONAL LEVELS OF

SUBROUTINE LINKAGE.

BLOCK=SUB

BLOCKeSUB (2,BLOCK=LETTERS)
FUNCTIONAL DESCRIPTION

THIS ROUTINE PRINTS BLOCK LETTERS ON THE TERMINAL OR LINE
PRINTER, IT IS USED., FOR INSTANCE, BY THE TCL VERBS
"BLOCK=TERM" AND "BLOCK«PRINT"; FOR MORE INFORMATION, SEE
THE DISCUSSION OF THESE VERBS 1IN THE SYSTEM COMMANDS
DOCUMENTATION,

INPUT INTERFACE

IS R POINTS ONF BEFORE THE FIRST CHARACTER TO
BE OUTPUTs THE END OF DATA IS MARKED BY
THE CHARACTER PAIR SM Z (NO SPACE AFTER
THE SM): IF ANY ELEMENT IN THE DATA
STRING CONTAINS A SM, IT MUST BE
TERMINATED BY A SB (SEE MD1B
DOCUMENTATION, "EDITING FEATURES")

IFLG 8 IF SET, OUTPUT IS DIRECTED TO THE
TERMINAL, OTHERWISE OUTPUT IS PASSED TO
THE SPOOLER FOR LINE PRINTER LISTING OR
OTHER USE

OBSIZE T CONTAINS THE MAXIMUM NUMBER OF
CHARACTERS ON EACH OUTPUT LINE

0B R =0BBEG

SBO 8 IF SET, NO TEST FOR TERMINAL OR PRINTER
OUTPUT IS MADE, TERMINAL OR PRINTER
CHARACTERISTICS ARE NOT INITIALIZED, THE
OUTPUT DEVICE IS NOT ADVANCED TO
TOP«0OF«FORM, AND THE HEADING IS NOT SET
NULL?J ALL THESE ACTIONS TAKE PLACE IF
SBO IS RESET

AFBEG S
BMSBEG S «+ POINT TO SCRATCH AREAS
HSEND S =+
LISTFLAG B +

FRMTFLG B <+

NOBLNK B <+
LFDLY T + AS REGUIRED BY WRTLIN
PAGSIZE T ¢
PAGSKIP T +
PAGFRMT B +

OUTPUT INTERFACE
1] R s0BREG

PAGINATE B L3

PAGHEAD 8 POINTS TO A NULL PAGE HEADING (SM) AT
HSEND IF SBO=0

ELEMENT USAGE

BITS
8Co
§C1
8Ce
REJCTR
C1
CTR16
CTR17
CTR18
CTR19
Do

b}
BASE
MODULO
SEPAR
IR
UupPD
BMS
AF

0B

cs

TS
R1S
SRa

UTILITY

MBODVOXVDIVVDA1O00 T4~ 44 400000
LK K IR 2R AR B R SR R IR AR BE AR B BE R R SK I K K K K

w
*

SRee
CTR1 T USED BY CVDIR
R14 R USED BY RETIX

17 USED BY WRTLIN

SYSR1

w -
+ 4

SUBROUTINE USAGE

RETIXs GBMS IF THE SYSTEM FILE "BLOCK=CONVERT" IS
FOUND? CVDIR} WRTLINJ NEWPAGE IF REQUIRED: PRNTHDR
IF SB0=0j PCLOSEALL AND SETLPTR IF SB0=0 AND ZFLG=0?
SETTERM IF SBO=1 OR ZFLG=1

SIX ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED IF
"BLOCK=CONVERT™ IS A ®Q"«CODE ITEM 1IN THE MASTER
DICTIONARY, OTHERWISE FIVE LEVELS REQUIRED

ERROR CONDITIONS

BLOCK=SUB EXITS TO WRAPUP (MDS9S OR MD99) UNDER THE
FOLLOWING CONDITIONS:

ERROR NUMBER ERROR TYPE

520 NULL INPUT DATA

521 700 MANY CHARACTERS (MORE THAN NINE) IN
A WORD TO BLOCK

52e BLOCK=CONVERT FILE MISSING OR IMPROPERLY
DEFINED IN THE MASTER DICTIONARY

523 BLOCK OUTPUT WOULD EXCEED PAGE WIDTH

Se4a AN INPUT CHARACTER I8 NOT 1IN THE

BLOCK=CONVERT FILE

525 AN INPUT CHARACTER 18 IMPROPERLY
FORMATTFN IN THE BLOCK=CONVERT FILE

CONV (0,CONV)w
CONVEXIT (1,CONV)

FUNCTIONAL DESCRIPTION

THESE ENTRY POINTS ARE USED TO CALL THE ENTIRE CONVERSION
PROCESSOR AS A SUBROUTINE, WHICH WILL PERFORM ANY AND ALL
VALID CONVERSIONS SPECIFIED IN THE CONVERSION STRING. OTHER
ENTRY POINTS MAY BE USED TO PERFORM CERTAIN SPECIFIC
CONVERSIONS, MULTILPLE CONVERSION CODES ARE SEPARATED B8Y
VM'S IN THE CONVERSION STRING. CONVERSION IS CALLED BY THE
ENGLISH PRE=PROCESSOR TO PERFORM CONVERSIONS ON "INPUT®" DATA
(IN SELECTION CRITERIA), AND BY THE LIST/SORT PROCESSOR TO
PERFORM "OUTPUT"™ CONVERSION,

CONV IS THE USUAL MODE~ID USED TO INVOKE CONVERSION
PROCESSING., CONVEXIT IS THE ENTRY POINT TQ WHICH ANY PART
OF THE CONVERSION PROCESSOR RETURNS IN ORDER TO CHECK IF
MORE CONVERSION IS REQUIRED (FURTHER VM!S AND CONVERSION
CODES IN THE CGNVERSION STRING).

INPUT INTERFACE
TSBEG

IS

MFLG

CONV, CONVEXIT

DFLG
DAF1

XFLG

OUTPUT INTERFAC
TSBEG

78
TSEND

I8

8

E
S

R
8

POINTS ONE BEFORE THE VALUE TO BE
CONVERTEDS THE VALUE IS CONVERTED "IN
PLACE®, AND THE BUFFER IS USED FOR
SCRATCH SPACE3 THEREFORE IT MUST BE
LARGE ENOUGHTO CONTAIN THE CONVERTED
VALUEs THE VALUE TO BE CONVERTED IS
TERMINATED BY ANY OF THE STANDARD SYSTEM
DELIMITERS (SM, AM, VM, OR SVM)

POINTS TO THE FIRST CHARACTER OF THE
CONVERSION CODE SPECIFICATION STRING FOR
CONVJ FOR CONVEXIT, POINTS AT LEAST ONE
BEFORE THE NEXT CONVERSION CODE (AFTER A
VM) OR AM AT THE END OF THE STRING, OR
TO THE AMj3 THE CODE STRING MUST END WITH
AN AM3 INITIAL SEMICOLONS (3) ARE
IGNORED

SET IF “INPUT"™ CONVERSION IS8 TO BE
PERFORMEDs RESET FOR "OUTPUT"™ CONVERSION

AS REQUIRED BY TRANSLATE (SEE TRANSLATE
DOCUMENTATION)

AS REQUIRED BY CFUNC (SEE CFUNC
DOCUMENTATION)

POINTS ONE BEFORE THE CONVERTED VALUE

POINT TO THE LAST CHARACTER OF THE
CONVERTED VALUEJ A SM IS ALSO PLACED ONE
PAST THIS LOCATIONS TSaTSEND=TSBEG IF A
NULL VALUE I8 RETURNED

POINTS T0 THE AM TERMINATING THE
CONVERSION CODE(S)

ELEMENT USAGE

ELEMENT CONVERSIONS WHERE USED
DFLG B8 FoT

XFLG 8 F

GMBIT 8 F

WMBIT 8 F

$B10O B ALL

S§B12 8 ALL

DAF1 B T

DAF9 B T

sce c CoDsF,T
T3 T F +MD

T4 T DsF,sMD,MT
TS T D.F.MD,MT
Té) D.FoM

T7 T F.,MD

CTR1Y T CoFsBaT
CTR12 T F

CTR13 T F

CTR20 T ALL

CTR21 T D,MD,T

CONV, CONVEXIT

CTR22
CTR23
CTR28
D1
De
D3

-
mm™m =
o

XX
-
L]
-4

0. MT

-4 e ®
T
v Bw e

-
K 4
o
-
-

FPX
(8YSR0)
FPY
BASE
MODULO
SEPAR
RECORD
S12E
NNCF
FRMN
FRMP
NPCF

A4 A AA A A4 MVAMANMNVNAMNNZIOD 4O O
-
x
o

-n
O
s

TOOUIXI 10440 ™M MM MMM N NO OO0 T OO 4 -4 4

5-6

CeFoMT,T
T

T :
NsFsMD,MP,MT,MX,T
ALL

XMODE
IR
BMS
R14
R1S
SYSR1
SYSRe
84

85

86

§7
SRO
SR1
SR4

DBWOLWLUDNLBLBLWLWWLWODODDD V-
e e
nr -

OMO B> O T~~~

-
-

SUBROUTINE USAGE

CONV,

USER

CONVEXIT

CVXIS FOR "U"™ CONVERSIONS; GCORR FOR "G* CONVERSIONS)
TRANSLATE FOR "T* CONVERSIONS: PACKUN FOR “Mp "
CONVERSIONS? CONCATENATE FOR wee CONVERSIONS?
ADDITIONAL SUBROUTINES AS USED BY ROUTINES LISTED UNDER
WEXITS™ BELOW, AND BY USER-WRITTEN ROUTINES

THE NUMBER OF ADDITONAL LEVELS OF SUBROUTINE LINKAGE
REQUIRED DEPENDS ON THE CONVERSIONS PERFORMED = SEE THE
DOCUMENTATION FOR THE VARIOUS CONVERSION ROUTINES FOR
MORE SPECIFIC INFORMATION? NOTE THAT FOR bl
CONVERSIONS, CFUNC MAY CALL CONV RECURSIVELY

CONVERSION PROCESSING

THE CONVERSION PROCESSOR WILL PASS CONTROL TO A
USER®WRITTEN ROUTINE IF A "UXXXX"™ CODE IS FOUND IN THE
CONVERSION STRING, WHERE "XXXX" IS THE MHEXADECIMAL
MODE=ID OF THE USER ROUTINE. THIS ROUTINE CAN THEN
PERFORM SPECIAL CONVERSION BEFORE RETURNING, THE INPUT
INTERFACE FOR THE USER ROUTINE WILL BE IDENTICAL TO
THAT DESCRIBED 1IN THE PRECEDING SECTIONJ AFTER
PERFORMING THE CONVERSION THE USER ROUTINE SHOULD SET
UP THE OUTPUT INTERFACE ELEMENTS TO BE COMPATIBLE WITH
CONVEXIT, AND THEN EXIT VIA AN EXTERNAL BRANCH TO THAT
POINT TO CONTINUE THME CONVERSION PROCESS IF MULTIPLE
CONVERSIONS ARE SPECIFIED. ALTERNATELY, A RTN MAY BE
EXECUTED IF THIS IS NOT NEEDED, OR TO PREVENT FURTHER
CONVERSIONS FROM BEING PERFORMED, ELEMENTS USED BY THE
REGULAR CONVERSION ROUTINES MAY SAFELY BE USED BY USER
ROUTINES? HOWEVER, IF ADDITIONAL ELEMENTS ARE NEEDED,
A COMPLETE KNOWLEDGE OF THE PROCESSOR THAT CALLED CONV
(LIST, SELECTION, ETC.) WILL BE NECESSARY,

5-7

EXITS

YO IDATE FOR "D" CONVERSIONS ON INPUT (MFLG=1)? TO
ODATE FOR "D" CONVERSIONS ON QUTPUT? TO ICONVMD OR
OCONVMD FOR "MD" CONVERSION ON INPUT OR OQUTPUT? TO

CFUNC FOR “F" CONVERSIONS? TO TIMECONV

FOR "MT"

CONVERSIOMS TO HEXCONV FOR "Mx" CONVERSIONS; ALL

THESE ROUTINES, HOWEVER, RETURN TO CONVEXIT

FOR OUTPUT CONVERSION, A NULL VALUE RETURNED CAUSES AN

CONV, CONVEXIT

IMMEDIATE END OF CONVERSION PROCESSING,

ERROR CONDITIONS

CONV EXITS TO WRAPUP AFTER SETTING RMODE TO ZERO UNDER

THE FOLLOWING CONDITIONS:

705 ILLEGAL CONVERSION CODE

706 ILLEGAL B CONVERSIONS FORMAT
INCORRECT, FILENAME CANNOT BE FOUND,
ETC.

107 DL/ID CANNOT BE FOUND FOR A "T®

CONVERSION FILE

WRAPUP I8 ALSO ENTERED WITHOUT SETTING RMODE TO ZERO

UNDER THE FOLLOWING ERROR CONDITIONSS

708 VALUE CANNOT BE CONVERTED
CONVERSION
339 INVALID FORMAT FOR INPUT DATA
CREAD

CREAD (2,CARDIO)

FUNCTIONAL DESCRIPTION

BY A "T"

CONVERSION

THIS ROUTINE EITHER READS A CARD AND RETURNS THE CARD READER
STATUS AFTER THE READ OR IT JUST RETURNS THE STATUS IF IT

CANNOT READ A CARD. CARDS ARE READ IN EBCDIC
CONVERTED BY THIS ROUTINE.

AND ARE NOT

INPUT INTERFACE

R2 R

OBBEG S

OUTPUT INTERFACE

CFLG B
Re R
R1S R

ELEMENT USAGE
T3 T

SUBROUTINE USAGE
NONE
ERROR CONDITIONS

POINTS TO A SCRATCH BYTEs NORMALLY R2
ALWAYS POINTS TO BYTE ZERO OF THE
PROCESS'S SCB

POINTS ANYWHERE WITHIN THE FRAME THAT
THE CARD IS TO BE READ INTO, NORMALLY
PCR+4

SET IF AN ATTEMPT WAS MADE TO READ A
CARB$ RESET IF NO CARD WAS READ

UNCHANGED, BUT THE BYTE ADDRESSED
CONTAINS THE STATUS OF THE CARD READER

POINTS TO THE FIRST BYTE OF THE CARD
READ, 80 BYTES FROM THE END OF THE FRAME
POINTED TO BY OBREG

USED AS A COUNTER FOR STATUS TIMEOUT
AFTER A READ

NONE, EXCEPYT CARD READER ERRORS RETURNED AS STATUS»

CREAD

THE MEANING OF THE STATUS BITS IS AS FOLLOWS?

BIT
0=2

EXPLANATION OF SET CONDITION

UNUSED BY THE CONTROLLER, AND ALWAYS
ZERO

CARD READER MECHANICAL ERROR (PICK
FAILURE, CARD MOTION ERROR, ETC.)

EBCDIC ERROR DETECTED (E.G., AN INVALID
PUNCH COMBINATION)J THIS IS NOT AN ERROR
IF CFLG IS ZERO, HOWEVER

INPUT HOPPER EMPTY

5-9

6 (ALWAYS RESET BY CREAD, AND USED ONLY
FOR BYTE 1/0)
7 CARD READER READY

3,5.,7 IF THESE BITS ARE ALL SET, CARD READER

POWER I8 OFF

cvsuBs

STRING TO SIXeBYTE RINARY CONVERSION

FUNCTIONAL DESCRIPTION

THESE ROUTINES CONVERT A STRING OF ASCII DECIMAL OR
HEXADECIMAL CHARACTERS TO THEIR BINARY EQUIVALENT}
CONVERSION CONTINUES UNTIL AN IJLLEGAL (NONeDECIMAL OR

NON«HEXADECIMAL) CHARACTER IS ENCOUNTERED.

ON ENTRY, THE APPROPRIATE REGISTER (SEE TABLE) POINTS ONE
PRIOR TO THE FIRST CHARACTER OF THE STRINGs THIS CHARACTER
MUST BE A PLUS SIGN, MINUS SIGN, OR NUMERIC (0~9 FOR DECIMAL
ROUTINES, 0~=9 AND A=F FOR HEXADECIMAL ROUTINES), ON RETURN,
THE CONVERTED BINARY NUMBER IS IN THE ACCUMULATOR (AND IN
SOME CASES, IN CTR1)s THE REGISTER POINTS TO THE ILLEGAL
CHARACTER CAUSING THE CONVERSION TO TERMINATE. NOTE THAT
THE REGISTER WILL ALWAYS BE INCREMENTED BY ONE EVEN IN THE
CASE OF A NULL STRING (NO LEGAL CHARACTERS) . ALSO,
ARITHMETIC OVERFLOW DUE TO TOO MANY DIGITS IN THE CHARACTER
STRING CANNOT BE DETECTED.

INPUT INTERFACE

ENTRY POINT REGISTER CONVERSION
CVDR1S (4,SYSTEM«SUBS=I)« R1S NECIMAL
CVDIS (S,SYSTEM=SUBS=I)» IS (R4) DECIMAL
CVD0OS (6,SYSTEM=SUBS=I)w 0S (RS) DECIMAL
CVDIR (9,SYSTEM=SUBSeI)» IR (R6) DECIMAL
CVvDIB (11,SYSTEM«SUBS~I)* IB (R10) DECIMAL
CVXR1S (3,SYSTEMeSUBS=I)® R1S HEXADECIMAL
CVXIS (7,SYSTEM«SUBS=I)x IS (R4) HEXADECIMAL
CVX08 (B8,SYSTEMeSUBSeI)» 08 (RS) HEXADECIMAL
CVXIR (10,SYSTEM«SUBSeI)# IR (R6) HEXADECIMAL
CVXIB (12,SYSTEM=SUBS=I)w I8 (R10) HEXADECIMAL
NUTPUT INTERFACE
FPO F CONTAINS THE CONVERTED VALUE OF THE
STRING IF LEGAL CHARACTERS ARE FOUND,
OTHERWISE ZERO
CTR1 T aD0 (EXCEPT FOR CVDR1S AND CVXR1S5, WHICH

5-10

cvsuBs

DO NOT USE THIS ELEMENT)

NUMBIT B SET IF CONVERSION COMPLETED AND THE
STRING IS TERMINATED BY A SYSTEM
DELIMITER

ELEMENT USAGE
T3 T
SUBROUTINE USAGE
CVDR1S OR CVXR15 USED BY THE OTHER ROUTINES

ONE ADDITIONAL LEVEL OF SUBROUTINE LINKAGE REQGUIRED,
EXCEPT FOR CVDR1S AND CVXR1S

DLINIT

DLINIT (2,WSPACES=II)«

FUNCTIONAL DESCRIPTION

OLINIT IS USED TO OBTAIN A BLOCK OF CONTIGUOUS OVERFLOW
SPACE FOR A FILE. AFTER CHECKING THE INPUT PARAMETERS AND
OBTAINING THE NECESSARY NUMBER OF FRAMES, IF AVAILABLE, 1IT
ENTERS DLINITY TO INITIALIZE THE FRAMES (SEE DLINITH
DOCUMENTATION). 1IF NOT ENOUGH SPACE IS AVAILABLE FQR THE
FILE, DLINIT CALLS NOSPACE TO FIND OUT IF PROCESSING SHOULD
BE ABORTED (SEE NOSPACE DOCUMENTATION),

INPUT INTERFACE

MODULO T + CONTAIN THE MODULO AND SEPARATION

SEPAR T <+ PARAMETERS FOR THE FILEs IF MODULO IS
INITIALLY LESS THAN OR EQUAL TO ZERO, IT
IS SET TO ELEVENS IF SEPAR IS INITIALLY
LESS THAN OR EQUAL TO ZERO, IT IS SET 7O
ONE, AND IF INITIALLY GREATER THAN 127
IT IS SET TO 127

OUTPUT INTERFACE

BASE D CONTAINS THE BEGINNING FID oF A
CONTIGUOUS BLOCK OF SIZE MODULO®SEPAR IF
THE SPACE IS8 AVAILABLE, OTHERWISE
UNCHANGED

5-11

OVRFLW 0 =BASE IF THE REQUESTED SPACE I8
AVAILABLE., OTHERWISE =0

RMBIT B SET IF THE REQGUESTED SPACE IS OBTAINED,
OTHERWISE UNCHANGED

ELEMENT USAGE
Ri4 R
R1S R + USED BY GETBLKX
Do 0

SUBROUTINE USAGE

DLINIT

GETBLK? NOSPACE IF THE REQUESTED SPACE IS UNAVAILABLE

THREE ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED
EXITS

TO DLINITY IF THE REGUESTED SPACE IS OBTAINED; TO

NSPCQ (WRAPUP) FROM NOSPACE IF THE SPACE IS UNAVAILABLE
AND PROCESSING IS ABORTED B8Y THE USER

DLINITY

DLINITY (0,WSPACESe=I1l)
FUNCTIONAL DESCRIPTION
DLINITY INITIALIZES THE LINK FIELDS OF A FILE AS SPECIFIED
BY ITS BASE, MODULO, AND SEPARATION PARAMETERS, AND SETS
EACH GROUP EMPTY BY ADDING AN AM AT THE BEGINNING (IN THE
FIRST DATA BYTE).

INPUT INTERFACE

BASE D + CONTAIN THE BASE, MODULO, AND SEPARATIO

MODULO T ¢ OF THE FILE? NOTE = ONE FRAME I8 LINKED

SEPAR T + EVEN IF MODULO IS LESS THAN OR EQUAL TO
ZERO

5-12

OUTPUT INTERFACE

R POINTS TO THE FIRST DATA BYTE 1IN THE
R FIRST FRAME OF THE LAST GROUP IN THE

FILE (SET BY LINK]

T

R R POINTS TO THE LAST BYTE OF THE LAS

t FRAME OF THE LAST GROUP IN THE FILE (SET
BY LINK)

AST
RECORD 0 =ONE GREATER THAN THE FID OF THE L
‘ FRAME OF THE LAST GROUP 1IN THE FILE

NNCF H =SEPAR={
FRAMES ARE INITIALIZED AS DESCRIRED ABOVE

ELEMENT USAGE

CTR1 T UTILITY

FRMN D ¢

FRMP D + USED BY LINK
NPCF H ¢

SUBROUTINE USAGE

DLINITH

L INK
ONE ADDITIONAL LEVEL OF SUBROUTINE LINKAGE REQUIRED

ECONV, ACONV

ECONV (0.EBCDIC)»
ACONV (2,EBCDIC)

FUNCTIONAL DESCRIPTION

THESE ROUTINES TRANSLATE A CHARACTER FROM EBCDIC OR ASCII TO
ASCII OR ERCPIC. ECONV OPERATES ON EBCDIC INPUT, AND DOES
NOT TRANSLATE CHARACTERS WITHOUT ASCII EQUIVALENTS e THESE
CHARACTERS ARE RETURNED UNTRANSLATED, ACONV OPERATES ON
ASCII INPUT, AND ALWAYS ZEROFS THE HIGH=ORDER BIT OF THE
CHARACTER BEFORE TRANSLATION,

5-13

INPUT INTERFACE
IB R POINTS TO THE CHARACTER TO BE TRANSLATED

AUTPUT TNTERFACE

IR R UNCHANGED, BUT POINTS TO THE TRANSLATED
VALUE

ELEMENT USAGE

DO N + UTILITY
R1S R

SUBROUTINE USAGE

NONE

ENGLISH INTERFACE

ENGLISH INTFRFACE
SUMMARY

IT IS POSSIBLE TO INTERFACE WTTH THE ENGLISH PROCESSOR AT
SEVERAL LEVELS. A TYPICAL LIST OR SORT STATEMENT PASSES
THROUGH THE PREPROCESSOR AND SFELECTION PROCESSOR BEFORE
ENTERING THE LIST PROCESSOR. ALL STATEMENTS MUST PASS
THROUGH THE FIRST TWO STAGES, BUT CONTROL CAN BE TRANSFERRED
7O USER=-WRITTEN PROGRAMS FROM THAT POINT ONWARD,

GENERAL CONVENTIONS

THE ENGLISH PROCESSORS USE A COMPILED STRING THAT IS STORED
IN THE IS WORK SPACE, STRING ELEMENTS ARE SEPARATED BY
SM'S, THERE IS ONE FILE-DEFINING ELEMENT IN EACH STRING,
ONE ELEMENT FOR EACH ATTRIBUTE SPECIFIED IN THE ORIGINAL
STATEMENT, AND SPECIAL ELEMENTS PERTAINING TO SELECTION
CRITERIA, SORTeKEYS, ETC. THE FORMATS OF VARIOUS STRING
ELEMENTS ARE AS FOLLOWS:

FILE DEFINING ELEMENT, AT ISBEG+i:

SM D FILE=NAME AM BASE VM MODULO VM SEPAR AM CONV AM
CORREL AM TYPE AM JUST AM SM

ATTRIBUTE DEFINING ELEMENT:

SM C ATTRIBUTE«NAME AM AMC AM CONV AM CORREL AM
TYPE AM JUST AM 8M

5-14

C = A = REGULAR OR D2 ATTRIBUTE

@ = D1 ATTRIBUTE
BXe SORT=RY, SORT=BY=DSND, ETC,s "X" IS FROM
ATTRIBUTE ONE OF THE CONNECTIVE

EXPLICIT ITEM=ID'S:
SM I ITEM=ID SM
END=OF=STRING ELEMENT?

Sm Z
ENGLISH INTERFACE

THE SELECTION PROCESSOR

THIS PERFORMS THE ACTUAL RETRIEVAL OF ITEMS WHICH PASS THE
SELECTION CRITERTA, IF SPECIFIED. EVERY TIME AN ITEM IS
RETRIEVED, THE PROCESSOR AT THE NEXT LEVEL IS ENTERED WITH
BIT RMBIT SET; A FINAL ENTRY WITH RMBIT ZERO IS ALSO MADE
AFTER ALL ITEMS HAVE BEEN RETRIEVED. IF A SORTED RETRIEVAL
1S REQUIRED, THE SELECTION PROCESSOR PASSES ITEMS TO THE
GOSORT MODE, WHICH BUILNS UP THF SORTeKEYS PREPARATORY TO
SORTING THEM, AFTER SORTING, GOSORT THEN RETRIEVES THE
ITEMS AGAIN, IN THE REGUESTED SORTED SEQUENCE.

A USER PROGRAM MAY GET CONTROL DIRECTLY FROM THE SELECTION
PROCESSOR (OR GOSORT IF A SORTED RETRIEVAL IS REQUIRED):
THE FORMATS OF THE VERBS ARE:

LINE NUMBER NON=SORTED SORTED
1 PA PA
- 35 35
3 XXXX 76
4 XXXX

WHERE "XXXX" REPRESENTS THE MODE=ID OF THE USER PROGRAM,
NOTE THAT IN THIS METHOD OF INTERFACE, ONLY IYTEM RETRIEVAL
HAS TAKEN PLACE? NONE OF THE CONVERSION AND CORRELATIVE
PROCESSING HAS BEEN DONE, FOR FUNCTIONAL ELEMENT INTERFACE,
THE COLUMN HEADED "SELECTION PROCESSOR" IN THE TABLE SHOWN
LATER MUST BE USED.

EXIT CONVENTIONS ON ALL BUT THE LAST ENTRY, THE USER
ROUTINE SHOULD EXIT INDIRECTLY VIA RMODE (USING AN ENTe
RMODE INSTRUCTION)s ON THE LAST ENTRY, THE ROUTINE SHOULD
EXIT TO ONE OF THE WRAPUP ENTRY POINTS, PROCESSING MAY BE
ABORTED AT ANY TIME BY SETTING RMODE TO ZERO AND ENTERING
WRAPUP, BIT 8BO0 MUST ALSO BE SET ON THE FIRST ENTRY,

5-15

SPECIAL EXIT FROM THE LIST PROCESSOR

A USER PROGRAM MAY ALSO GAIN CONTROL IN PLACE OF THE NORMAL
LIST FORMATTER, T0 PERFORM SPECJAL FORMATTING. THE
ADVANTAGE HERE IS THAT ALL CONVERSTONS, CORRELATIVES, ETC.,
HAVE BEEN PROCESSED, AND THE RESULTANT OUTPUY DATA HAS BEEN

ENGLISH INTERFACE

STORED IN THE HISTORY STRING (HS AREA). THE FORMATS OF THE
VERBS THEN ARE?

LINE NUMBER NON«SORTED SORTED
1 PaA PA
2 35 35
3 ap 4k
4 XXXX XXXX

WHERE "XXXX" IS THE MODE=ID OF THE USER PROGRAM,

OUTPUT DATA IS STOREND 1IN THE HS AREA; DATA FROM EACH
ATTRIBUTE IS STORED IN THE STRING, DELIMITED BY AM'S}
MULTIPLE VALUES AND SUBeMULTIPLE=VALUES ARE DELIMITED WITHIN
AN ELEMENT BY VM'S AND SVM'S, RESPECTIVELY. SINCE THE HS
MAY CONTAIN DATA OTHER THAN THE RETRIEVED ITEM, THE USER
PROGRAM SHOULD SCAN FROM HSBEG, LOOKING FOR A SEGMENT
PRECEDED BY AN "X"j ALL SEGMENTS EXCEPT THE FIRST ARE
PRECEDED BY A SM, THE FORMAT I8t

X ITEMeID AM VALUE ONE AM ,,, AM VALUE N AM SM Z

THE PRNOGRAM MUST RESET THE HISTORY STRING POINTER HSEND AS
ITEMS ARE TAKEN OUT OF THE STRING. 1IN SPECIAL CASES, DATA
MAY NOT BRE USED UNTIL, SAY, FOUR ITEMS ARE RETRIEVED, IN
WHICH CASE HSEND I8 RESET ON EVERY FOURTH ENTRY ONLY. HSEND
MUST BE RESET TO POINT ONE BYTE BEFORE THE NEXT AVAILABLE
SPOT IN THE HS WORK SPACE, NORMALLY ONE BEFORE THE FIRST "x*
CODE FOUND,

THE EXIT CONVENTION FOR THE LIST PROCESSOR IS8 THE SAME AS
FOR THE SELECTION PROCESSOR (SEE ABOVE).

EXAMPLE: THE FOLLOWING PROGRAM IS AN EXAMPLE OF ONE WHICH
PRINTS ITEMeIND'S (ONLY) FOUR AT A TIME ACROSS THE PAGE.

001 FRAME S04

002 I8 $B30 INTERNAL FLAG
003 888 SB1,NOTF NOT FIRST TIME
004 » FIRST TIME SETUP !

005 MOV 4,CTR32

006 S8 SR1

5-16

ENGLISH INTERFACE

007 =

008 NOTF BR2Z2 RMBIT,PRINTIT LAST ENTRY

009 B8DNZ CTR32,RETURN NOY YET 4 ITEMS OBTAINED
010 MOV 4,CTR3? RESET

011 PRINTITY MOV HSBEG,R14

012 LOOP INC R14

013 BCE C'X',R14,STOREIT FOUND AN ITEM

014d #CE C'2',R14,ENDHS END OF HS STRING

015 SCANSM SCD R14,X'CO? SCAN TO NEXT SM

016 B L.OOP

017 STOREIT BBRS SB30,COPYIT NO FIRST ID FOUND
018 S8 S§B30 FLAG FIRST 10 FOUND
019 MOV R14,SR28 SAVE LOCATION OF FIRST
020 CMNT * nxn

021 COPYIT MIID R14,0B,X'A0! COPY ITEMeID TO OB
022 MCC c' ',08 OVERWRITE AM

023 INC 0B, S INDEX

024 B SCANSM

025 ENDHKS BSL WRTLIN PRINY A LINE

026 MOV SR28,HSEND RESTORE HS TO FIRSTY
027 CMNT ' "x" CODE

028 DEC HSEND BACK UP ONE BYTE

029 BBZ RMBIT,QUIT

030 RETURN ENT» RMODE RETURN TO SELECTION
031 CMNT »* PROCESSOR

n32 QUIY ENT MD999 TERMINATE PROCESSING
033 END

ELEMENT USAGE

THE FOLLOWING TABLE SUMMARTIZES THE FUNCTIONAL ELEMENT USAGE
RY THE SELECTION AND LIST PROCESSORS. ONLY THE MOST
IMPORTANT USAGE I8 NDESCRIBEDs ELEMENTS THAT HAVE VARIOUS
USAGES ARE LABELED "SCRATCH." A " " (BLANK) INDICATES THAT
THE PROCESSOR DOES NOT USE THE ELEMENT, SINCE THE LIST
PROCESSOR IS CALLED BY THE SELECTION PROCESSOR, ANY ELEMENT
USED FOR "MEMORY" PURPOSES (NOT TO BE USED BY OTHERS) IN THE
FORMER 1S INDICATED BY A BLANK USAGE IN THE LATTER COLUMN,

IN GENERAL, USER ROUTINES MAY FREELY USE THE FOLLOWING
ELEMENTS®

BITS : 8820 UPWARDS
TALLIES ¢ CTR30 UPWARDS
DOUBLE TALLIES: D3=D8

S/R'S t SR20 UPWARDS

5-17

SBO AND SB1 HAVE A SPECIAL CONNOTATION: THEY ARE ZEROED BY
THE SELECTION PROCESSOR WHEN IT IS FIRST ENTERED, AND NOT
ALTERED THEREAFTER, THEY ARE CONVENTIONALLY USED AS
FIRST=TIME SWITCHES FOR THE NEXT TWO LEVELS OF PROCESSING.
SB0 IS SET BY THE LIST PROCESSOR WHEN IT IS FIRST ENTERED,
AND USER PROGRAMS THAT GAIN CONTROL DIRECTLY FROM SELECTION
SHOULD DO THE SAME, SB1 MAY BE USED AS A FIRSTeENTRY SWITCH
BY USER PROGRAMS THAT GAIN CONTROL FROM THE LIST PROCESSOR.

BITS SELECTION PROCESSOR LIST PROCESSOR
AFLG SCRATCH NON«COLUMNAR LIST FLAG
BFLG FIRST ENTRY FLAG
CFLG SCRATCH SCRATCH
NFLG SCRATCH DUMMY CONTROLe=BREAK
EFLG RESERVED CONTROL®BREAK FLAG
FFLG RESERVED SCRATCH
GFLG RESERVED RESERVED
HFLG RESERVED RESERVED
IFLG EXPLICIT IVTEM=ID'S
SPECIFIED
JFLG RESERVED D2 ATTRIBUTE IN
PROCESS
KFLG BY=EXP FLAG BY=EXP FLAG
LFLG SCRATCH LEFT-JUSTIFIED FIELD
MFLG CONV INTERFACE? ZERO
ZERO
NFLG SCRATCH SCRATCH
0FLG SELECTION TEST ON
ITEM=ID
PFLG SCRATCH SCRATCH
QFLG SCRATCH SCRATCH
RFLG FULL-FILE=RETRIEVAL
FLAG
SFLG SELECTION ON VALUES
(WITH)
TFLG SCRATCH PRINT LIMITER FLAG
UFLG SCRATCH RESERVED
VFLG RESERVED SCRATCH

ENGLISH INTERFACE

WFLG SCRATCH RESERVED

XFLG SCRATCH RESERVED

YFLG RESERVED RESERVED

ZFLG LEFT=JUSTIFIED

ITEM=ID

SBO UNAVAILABLE FIRST ENTRY FLAG,
LEVEL ONE

SB1 UNAVATILABLE FIRST ENTRY FLAG,
LEVEL TwO

5-18

SBe
THROUGH
SB17
vOBITY

COLHDRSUPP
DBLSPC
HDRSUPP
IDSUPP
DETSUPP
LPBIT
TAPEFLG
CBBIT
PAGFRMT
RMBIT

WMBIT
GMBIT
BKBIT
DAF1
DAF8

TALLIES

C11C3=C7
ce
CTR1=CTR4
CTRS

CTRé
CTR7

CTR8
CTR9
CTR10
CTR11
CTR12

CTR13
CTR14
CTR15
CTR16
CTR17
CTR18
CTR19

CTR20«CTR23

CTR24
CTRe25
CTR26
CTR27
CTR28
CTR29

SCRATCH OR RESERVED

SET FOR WRAPUP
INTERFACE

SET IF THE CORRE=
SPONDING CONNECTIVE
WAS FOUND IN THE
INPUT STATEMENT

SET ON EXIT IF AN
ITEM WAS RFETRIEVED;
ZERO ON FINAL EXIT
FUNEC INTERFACE

FUNC INTERFACE
SCRATCH

RESERVED

SET IF ACCESSING A
DICTIONARY

SELECTION PROCESSOR

SCRATCH
CONTENTS OF MODEID?
SCRATCH
SCRATCH

RESERVED
RESERVED

RESERVED
RESERVED
RESERVED
RESERVED
FUNC INTERFACE

FUNC INTERFACE
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
CONV INTERFACE
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED

5-19

SCRATCH OR RESEVED

FUNC INTERFACE
FUNC INTERFACE
SCRATCH

LIST PROCESSOR
SCRATCH

SCRATCH

AMC OF THE CURRENT
ELEMENT IN THE IS
SCRATCH

AMC CORRESPONDING
TO IR

SCRATCH

SCRATCH

SCRATCH

SCRATCH

CURRENT SUBeVALUE
COUNT

CURRENT VALUE COUNT
SCRATCH

ITEM SIZE

SCRATCH

RESERVED

SCRATCH

SEQUENCE NO FOR BY=EXP
CONV INTERFACE
SCRATCH

SCRATCH

SCRATCH

CURRENT MAXeLENGTH
SCRATCH

RESERVED

OTHER STORAGE
D9

D7
FP1=FPS
RMODE
SIZE
SBASE
SMOD
SSEP
DBASE
DMOD
NSEP
S/R'S
81
82-89
SRO

ENGLISH INTERFACE

SR1

SR2

SR3

SR4

SRS

SRé

SR7
SR8=SR12
SR13
SR14-8R19
PAGHEAD

PAGFOOT

A/R'S

AF
BMS

SELECTION PROCESSOR

COUNT OF RETRIEVED
ITEMS

FUNC INTERFACE
FUNC INTERFACE
RETURN MODE=ID
(MD3)

ITEM=SIZE

FILE BASE, MODULO,
AND SEPARATION

DICTIONARY BASE,
MODULO, AND
SEPARATION

SELECTION PROCESSOR

POINTS TO THE NEXY
EXPLICIT ITEMeID
SCRATCH

POINTS ONE BEFORE

THE ITEM COUNT FIELD

POINTS TO THE
CORRELATIVE FIELD
SCRATCH

RESERVED

POINTS TO THE LAST
AM OF THE ITEM
RESERVED

POINTS TO THE
CONVERSION FIELD
RESERVED

RESERVED

GOSORT ONLYS NEXT
SORT=KEY

RESERVED

HEADING IN THE HS
IF HEADING WAS
SPECIFIED

FOOTING IN THE HS
IF FOOTING WAS
SPECIFIED
SELECTION PROCESSOR
SCRATCH

WITHIN THE BMS

AREA

5-20

LIST PROCESSOR

FUNC INTERFACE
FUNC INTERFACE

SCRATCH

LIST PROCESSOR

SCRATCH

CURRENT CORRELATIVE
FIELD

SCRATCH

SCRATCH

POINTS TO THE NEXT
SEGMENT IN THE IS
CURRENT CONVERSION
FIELD

SCRATCH

RESERVED

RESERVED

RESERVED

GENERATED HEADING IN
THE M8

GENERATEC FOOTING IN
THE HS, IF PRESENT
LIST PROCESSOR

SCRATCH
SCRATCH

cS SCRATCH

I8 SCRATCH

08 QUTPUT DATA LINE
I8 COMPILED STRING COMPILED STRING

08 SCRATCH

T8 WITHIN THE TS AREA WITHIN THE T8 AREA
upPD WITHIN THE HS AREA
IR WITHIN THE ITEM WITHIN THE ITEM
WORK SPACE

USAGE SELECTION PROCESSOR LIST PROCESSOR

AF SCRATCH

RMS CONTAINS THE TTEM=ID

cS

IB

08 OUTPUT LINE

I8 COMPILED STRING

08 SCRATCH

HS HEADING DATA HEADING DATA}

ATTRIBUTE DATA FOR
SPECIAL EXITS

T8 SCRATCH CURRENT VALUE IN
PROCESS

ADDITIONAL NOTES

1. IF A FULLFILE=RETRIEVAL IS SPECIFIED, THE
ADDITIONAL INTERNAL ELEMENTS AS USED BY GETITM
WILL BE USED. IF EXPLICIT ITEM=ID'S ARE
SPECIFIED, RETIX IS USED FOR RETRIEVAL OF EACH

ITEM.

2. MOST ELEMENTS USED BY THE CONV AND FUNC PROCESSORS
HAVE BEEN SHOWN IN THE TABLE; BOTH MAY BE CALLED
EITHER BY THE SELECTION PROCESSOR OR THE LIST
PROCESSOR.

3. SINCE THE ISTAT AND SUM/STAT PROCESSORS ARE
INDEPENDENTLY DRIVEN BY THE SELECTION PROCESSOR,
THE ELEMENT USAGE OF THESE PROCESSORS IS NOT
SHOWN,

4, THE SECTION OF THE IS AND O0S USED BY THE SELECTION
AND LIST PROCESSORS IS DELIMITED BY 1ISEND AND
OSEND RESPECTIVELY. THE BUFFER SPACE BEYOND THESE
POINTERS IS AVAILABLE FOR USE BY OTHER PROGRAMS,

BATCH PROCESSOR INTERFACE

THE BATCH PROCESSOR USES A BATCH=STRING WHICH DEFINES THE
METHOD OF UPDATING ONE OR MORE ITEMS IN ONE OR MORE FILES
USING A SINGLE LINE OF INPUT DATA, THE UPDATED ITEMS ARE
BUILT AS DISC=UPDATE STRINGS IN THE HISTORY STRING AREA (SEE
WRAPUP DOCUMENTATION FOR FORMAT),

5-21

A USER ROUTINE CAN BE DEFINED IN THE BATCHeSTRING} THE
FUNCTIONAL ELEMENTS USED BY BATCH ARE DESCRIBED IN THE

ENGLISH INTERFACE

FOLLOWING TABLES? THE COLUMN HEADED “LEVEL" HAS THE
FOLLOWING ENTRIES?
0 THE ELEMENT 1S USED IN THE DESCRIBED FASHION
THROUGHOUT THE BATCH PROCESSING
F THE ELEMENT 1S REDEFINED EVERY TIME A
FILE-DEFINING ELEMENT 18 FOUND
A THE ELEMENT IS REDEFINED FOR EVERY ATTRIBUTE
BL ANK THE ELEMENT I8 USED AS SCRATCH, OR I8

RESERVED FOR FUTURE USAGE

AS FAR AS USER PROGRAMS ARE CONCERNED, THEREFORE., ALL
ELEMENTS DEFINED AT THE "A" LEVEL CAN ALSO BE CONSIDERED
SCRATCH,

EXIT CONVENTION: THE USER ROUTINE MUST RETURN TO THE BATCH
PROCESSOR VIA A BRANCH INSTRUCTION TO 0,BATCHS,

BITS LEVEL DESCRIPTTON

AFLG 0 FIRST=TIME SWITCH FOR BATCH

RFLG RESERVED

CFLG SCRATCH

DFLG A P2 ATTRIBUTE IN PROCESS

EFLG F UPDATES TO BE MERGED WITH THE ITEM

FFLG 0 SET WHEN A BV OR BC SUB=ELEMENT
IS FOUND

GFLG RESERVED

HFLG A D1 ATTRIBUTE IN PROCESS

IFLG 0 SET WHEN A "SECONDARY" FILE

JFLG RESERVED

KFLG F ITEM I8 TO BE VERIFIED AS EXISTING

LFLG F ITEM 18 TO BE VERIFIED AS NOT
EXISTING

MFLG A SETs CONV INTERFACE

NFLG RESERVED

OFLG RESERVED

PFLG F A RV OR RC SUBELEMENT REFERENCES
A MULTIeVALUED FIELD

QAFLG RESERVED

5-22

RFLG RESERVED

SFLG SCRATCH

TFLG SCRATCH

UFLG ‘ 0 ITEM IS TO BE ODELETED (X ELEMENT
IN THE FILE=DEFINITION)

VFLG SCRATCH

WFLG SCRATCH

XFLG RESERVED

YFLG 0 PRIMARY ITEM BEING DELETED

IFLG SCRATCH

SB1=8B9 SCRATCH

DAF10 0 SET IF SELECT/SSELECT IS DRIVING
AATCH

TALLIES LEVEL DESCRIPTION

Ci SCRATCH

ce SCRATCH

C3=C9 RESERVED

CTR1=CTR3 SCRATCH

CTR4 A DieD2 SET NUMBER (FOLLOWS THE D1
OR D2 ELEMENT)

CTRS RESERVED

CTRé RESERVED

CTRY? SCRATCH

CTRS8 F CURRENT AMC IN PROCESS

CTRS RESERVED

CTR10 RESERVED :

CTR11 F VALUE NO. OF "Dis1"™ ATTRIBUTE!}
0 IF UNSPECIFIED

CTR12 F VALUE NO, OF “D1j2" ATTRIBUTE}
0 IF UNSPECIFIED

CTR13 F VALUE NO, OF "D133" ATTRIBUTE}
0 IF UNSPECIFIED

CTR14~CTR19 RESERVED

OTHER

STORAGE LEVEL DESCRIPTION

FP1«FP3 SCRATCH

RASE SCRATCH

MODULO SCRATCH

SEPAR SCRATCH

SBASE SCRATCH

sMOD SCRATCH

SSEP SCRATCH

07 SCRATCH

D9 SCRATCH

RMODE 0 RETURN MODE«~ID FOR WRAPUP

CHARACTERS LEVEL DESCRIPTION

SCP 0 CONTAINS A “D" FOR B/DEL, "A"
FOR B/ADD

8Co 0 CONTAINS A BLANK

SC1 0 SCRATCH

8Ce 0 CONTAINS A COMMA

5-23

A/R'S AND

WORK SPACES LEVEL
BMS A

cS

AF

I8 0

0B

T8 0

I8 0

08

uPD 0
S/R'S LEVEL
8$1=89

SRO 0

SR1Y 0

SRe

SR3

SRd4 F

SRS

ENGLISH INTERFACE

SR6

SR7 0
SR8

SR9 A
SR10 F
SR11 0
SRi2 0
SR13

§R14 F
SR15 F
SR16=8R19

DESCRIPTION

WORK SPACE CONTAINS THE CURRENT
VALUE

SCRATCHI WORK SPACE RESERVED
UNUSED

INPUT DATA LINE

UNUSED

USED FOR READING INPUT LINES
CONTAINS THE BATCH STRINGS IS
POINTS TO THE AM BEFORE THE
NEXT ELEMENT

SCRATCH WORK SPACE

POINTS TO THE WISTORY STRING

DESCRIPTION:

SCRATCH

POINTS ONE BEFORE THE COUNT FIELD
OF THE PRIMARY ITEM ON FILE
POINTS YO THE END OF THE PRIMARY
ITEM ON FILE

SCRATCH

RESERVED

POINTS TO THE END OF THE CURRENT
ITEM ON FILE

RESERVED

RESERVED

POINTS TO THE END OF THE 0S8
DELETION TABLE

RESERVED

POINTS TO THE LAST BYTE OF VALUE
IN THE BMS AREA

TO THE END OF THE PRIMARY
UPDATE STRING IF FFLG IS SET
POINTS ONE BEFORE "DU"™ IN THE
HISTORY STRING FOR PRIMARY ITEM
UPDATE

RESERVED

POINTS TO THE LOCATION OF THE FILEe
DEFINING ELEMENT IN IS

POINTS TO THE LOCATION OF IB WHEN
THE CURRENT FILE«DEFINING ELEMENT
WAS FOUND

RESERVED

POINTS

ALSO NOTE ELEMENTS USED BY THE CONVERSTION PROCESSOR
CONVERSION PROCESSOR AND FUNCTION PROCESSOR INTERFACES

THESE PROCESSORS ARE CALLED AS SUBROUTINES, AND MAY BE
USED BY USER=WRITTEN ROUTINES. FOR MORE INFORMATION,
SEE THE CONV AND FUNC DOCUMENTATION,

FRWSP

FRWSP (9,TAPEIQO=I)»

FUNCTIONAL DESCRIPTION

THIS ROUTINE IS USED TO FORWARD=SPACE THE TAPE BY ONE
RECORD, IT DOES THIS BRY SETTING R15 TO LOCATION X'iFF' IN
THE PCB AND ENTERING TPREAD3; FOR MORE INFORMATION, SEE THE
TPREAD DOCUMENTATION,

FUNC

FUNC (0,FUNC1)»

FUNCTIONAL DESCRIPTION

THIS ROUTINE IS USED TO PROCESS "F" CONVERSIONS AND
CORRELATIVES, AND IS CALLED MAINLY BY THE ENGLISH LIST AND
SORT PROCESSORS, EACH CALL TO FUNC RETURNS ONE VALUE. ON
THE FIRST CALL, TALLIES CTR12 AND CTR13 ARE BOTH SET TO ONE3
WHEN FUNC RETURNS A VALUE, THE TERMINAL DELIMITER OF THE
RETURNED STRING DETERMINES WHAT ACTION TO TAKE ON SUBSEQUENT
CALLS = A VM INDICATES INCREMFENYT OF CTR13 BEFORE THE NEXT
CALL? A SVM INDICATES INCREMENT OF CTR123 AN AM INDICATES
END OF PROCESSING. FOLLOWING IS A PROGRAMMING EXAMPLE
ILLUSTRATING USE OF THIS ROUTINE?

‘ONE CTR13 SET VALUE # TO ONE
FC1 ONE CTR12 SET SUBeVALUE # TO ONE
FCe BSL FUNC

STORE VALUE FROM IR

DEC R15 \
BCE AM,R15,END END OF PROCESSING
INC CTR12 INCREMENT SUBeVALUE COUNT
BCE SVM,R15,FC2 GET NEXT SUBeVALUE
INC CTR13 INCREMENT VALUE COUNT
B FC1 GET NEXT VALUE AND
CMNT » RESET SUB=VALUE COUNT
END EQU CONTINUE

5-25

INPUT INTERFACE

SR1

SRO

SR4

FUNC

TSBEG

Do

CTR13

CTR12

DFLG
XFLG

OUTPUT INTERFAC

IR

R1S

I8

MFLG
ELEMENT USAGE

GMBIT
WMBIT

S

8
B

E

R

POINTS TO THE FIRST CHARACTER IN THE
FUNCTION CODE STRING (NORMALLY "F")

POINTS ONE BEFORE THE COUNT FIELD OF THE
ITEM BREING PROCESSED

POINTS TO THE LAST AM OF THE ITEM BEING

PROCESSED

POINTS 350 BYTES PRIOR TO THE AREA WHERE
THE RETURNEN VALUE IS TO BE STORED

CONTAINS THE M“ITEM NUMBER" CURRENTLY
BEING PROCESSED; REQUIRED ONLY FOR "NI"®
ELEMENTS IN THE FUNCTION CODE STRING

CONTAINS THE "VALUE NUMBER" CURRENTLY
BEING PROCESSED, =1 ON INITIAL ENTRY

CONTAINS THE “"SUBeVALUE NUMBER" (D2
SUBeVALUE) CURRENTLY BEING PROCESSED, =1
ON INITIAL ENTRY

=0 (USED BY LIST AND SORT PROCESSORS)

POINTS ONE BEFORE THE VALUE RETURNED, AT
TSBEG+3503 THE VALUE IS DELIMITED BY AN
AM IF NONE OF THE REFERENCED FIELDS
CONTAINED MULTIPLE OR SUB=MULTIPLE
VALUES, BY A VM IF AT LEAST ONE OF THE
REFERENCED FIELDS CONTAINED A VM ON THIS
ENTRY, AND BY A SVM IF AT LEAST ONE OF
THE REFERENCED FIELDS CONTAINED A SVM ON
THIS ENTRY

POINTS TO A BLANK FOLLOWING THE TERMINAL
DELIMITER OF THE VALUE

POINTS TO THE AM, OR ONE PAST A VM,
TERMINATING THE FUNCTION STRING

20 IF CONV IS CALLED

5-26

FIUNC

sce
CTR1
T3
Ta
5
D7
DA
D9
FPO
FP1
Fp2
FP3
FPu
FPS
FPX
FPY

UTILTTY

MAMOI M INNIOTAA O
+ + L L+ PP IELIELEL S

D1 USED RY MBDSUB

De

[» Rw
+

OTHER ELEMENTS AS USED BY CONV FOR SPECIFIED
CONVERSIONS

SUBROUTINE USAGE

EXITS

GBMS

MBDSUB: CVDR15; CVDIS: CONMV FOR EXPLICITLY SPECIFIED
CONVERSIONS IN THE FUNCTION STRING: TWO INTERNAL
SUBROUTINES

AT LEAST FOUR ADDITIONAL LEVELS OF SUBROUTINE LINKAGE
REQUIRED: FOR EXPLICITLY SPECIFIED CONVERSIONS, ONE
LEVEL REQUIRED FOR CONV, WITH ADDITIONAL LEVELS AS
REQUIRED BY THE INDIVIDUAL CONVERSIONS

TO MD994 WITH MESSAGE 701 (VALUE IN C1) AND RMODE ZERO
IF A FORMAT ERROR IS FOUND IN THE FUNCTION STRING

GBMS (3,DISKFIO=II)w

FUNCTIONAL DESCRIPTION

GBMS
OF A

SETS UP THE BASE FID, MODULO, AND SEPARATION PARAMETERS
FILE FROM ITS FILE DEFINITION ITEM, TYPICALLY THIS

ROUTINE IS CALLED AFTER A CALL TO RETIX WHICH RETRIEVES THE
FILE-DEFINITION ITEM FROM THE MASTER DICTIONARY,

5=27

THE ROUTINE HANDLES BOTH 'D' AND 'G' CODE ITEMSy A 'D' CODE
ITEM (OR 'DX' QR 'DY') IS A DIRECT FILE~POINTER, AND HAS THE
BASE FID, MODULO, AND SEPARATION OF THE FILE IN ATTRIBUTES
2, 3, AND 4, A 'Q' CODE ITEM TS A SYNONYM POINTER TO A FILE
NEFINED 1IN ANY ACCOUNT IN THE SYSTEM DICYIONARY, CODES
OTHER THAN 'D', 'DX', 'DY', OR 'R' ARE NOT CONSIOERED VALID
FOR FILE=DEFINITION ITEMS, AND GBMS WILL EXIT WITH RMBITY
ZERO IN THESE CASES.

THIS SUBROUTINE ALSO PERFORMS THF FILE ACCESS*PROTECTION
CHECKS, IT I8 ASSUMED THAY REGISTER LOCKSR POINTS TO THE
USER'S LOCK CODES (IN HIS LOGON ENTRY 1IN THE SYSTEM
NICTIONARY)s IF THE FILE HAS A LOCK CODE, A MATCHING LOCK
CODE IS REGUIRED FOR GRMS TO RETURN SUCCESSFULLY. A
NON=MATCH CAUSES AN EXIT TO WRAPUP WITH MESSAGE 210.

INPUT INTERFACE

DAF B IF ZERO, RETRIEVAL LOCK~CODES 1IN THE
LOGON ENTRY ARE USED FOR LOCK=CODE
COMPARISON; IF SET, UPDATE LOCK CODES
ARE USED

IR R POINTS TO, OR ONE PRIOR TO THE 'D' OR
'or CODE IN ATTRIBUTE 1 OF THE
FILE«DEFINITION ITEM

SR4 S POINTS TO THE AM AT THE END OF THE
FILE«DEFINITION ITEM

LOCKSR S POINTS OME PRIOR TO THE USER'S LOCK=CODE
FIELD IN HIS SYSTEM DICTIONARY ENTRY

OUTPUT INTERFACE

GRMS

RMBIT 8 SET IF RASE, MODULO, AND SEPARATION ARE
SUCCESSFULLY CONVERTED} ZEROED IF THE
FILE DEFINITION ITEM IS IN BAD FORMAT OR
A 'Q' ITEM I8 NOT FOUND

BASE D ¢ CONTAIN THE BASE, MODULO, AND SEPARATION

MODULO T + OF THE FILE (IF RMBIT IS SET)

SEPAR T +

IR R POINTS TO THE AM FOLLOWING ATTRIBUTE 4
OF THE FILE=-DEFINITION ITEM (IF

ATTRIBUTE 1 IS 'D', 'DX', 'DY', OR 'Q')

THE FOLLOWING ELEMENTS ARE ALTERED ONLY IF THE FILE
ACCESS=PROTECTION TEST FAILS (FILE ACCESS8 IS DENIED):

C1 H £210

RMODE 0 =0

5=28

POFLG B =0
HSEND S =HSREG

ELEMENT USAGE

R14 S USED IF LOCK CODES ARE PRESENT IN THE
FILE~DEFINITION ITEM

SYSRO S +

SYSRY 8 + USED WITH 'Q' CODE ITEMS

SYSR2 § +

SURROUTINE USAGE
CVDR1S; GMMBMS AND RETIX FOR 'Q' CODE ITEMS
FIVE ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED
FOR 'Q' CCDE ITEMS3; TWwO ADDTITIONAL LEVELS REQUIRED FOR
'D' CODE ITEMS

EXITS

GRMS

TO MD99S IF LOCK CODE COMPARTSON TEST FAILS

GDLID

GOLID (13,SYSTEM=SUBS=II)»

FUNCTIONAL DESCRIPTION

THIS ROUTINE GETS THE BASE, MODULO, AND SEPARATION
PARAMETERS FROM THE DL/ID ITEM TN A DICTIONARY, TYPICALLY
GOLID IS CALILED IMMEDIATELY AFTER THF DICTIONARY BASE,
MODULO, AND SEPARATION HAVE BEEN OBTAINED BY GBMS,

GOLID RETRIEVES THE DL/ID ITEM FROM THE CICTIONARY, AND THEN
ENTERS GBMS TO PICK UP ITS BASE, MODULO, AND SEPARATION,

INPUT INTERFACE

BRASE D <+ CONTAIN THE BASE, MODULO, AND SEPARATION
MODULO T ¢+ OF THE FILE WHOSE OL/ID ITEM IS TO BE
SEPAR T + OBTAINED

NUTPUT INTERFACE

RMBIT 8 SET IF THE DL/ID ITEM IS SUCCESSFULLY
RETRIEVEDs ZEROED BY RETIX IF NO DL/ID
ITEM IS FOUND, OR BY GBMS IF THE ITEM IS
IN BAD FORMAT OR A "@" ITEM IS NOT FOUND

5-29

BMSEND S ¢
RECORD D +
NNCF H +
FRMN n +
FRMP D «+ AS SET BY RETIX
NPCF H <+
XMODE T +
DAF9 B +
SIZE T «+
SRd4 S «+
IR R + AS SET RY GBMS IF THE DL/ID ITEM
Ri4 R + FOUND, OTHERWISE AS SET BY RETIX
RASE D + AS SET RY GBMS IF THE OL/ID 1ITEM
MODULO T + FOUND, OTHERWISE UNCHANGED
SEPAR T +
GDLID
BMS R + =BMSBEG
SYSR1 S

ELEMENT UJSAGE
ELEMENTS USED BY GBMS, IF THE DL/ID ITEM IS FOUND
SUBROUTINE USAGE

RETIX AND ROUTINES CALLED RY ITs ROUTINES CALLE
GBMS IF THE DL/ID ITEM IS FOUND

FIVE ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQU

IF THE DL/ID ITEM IS A "Q" POINTER, OTHERWISE
ADDITIONAL LEVELS REQUIRED

GETACBMS

GETACBMS (1,LOGOFF)«
FUNCTIONAL DESCRIPTION

THIS ROUTINE RETRIEVES THE RASE, MODULO, AND SEPARATION
THE SYSTFM ACCOUNT FILE.

INPUT INTERFACE

NONE

I8

I8

D BY

IRED
FOUR

OF

OUTPUT INTERFACE

BASE D <+ CONTAIM THE BRASE, MODULO, AND SEPARATION
MODULD T + OF THE ACCOUNT FILE, IF FOUND

SEPAR T +

RMBIT B SET IF THE ACCOUNT FILE IS FOUND (FROM

RETIX AND GBMS)

REJ1 T =331 IF THE ACCOUNT FILE I8 NOT FOUND,
OR IF THE FILE=DEFINITION ITEM IN THE
SYSTEM MASTER DICTYIONARY IS IN BAD
FORMAT, OTHERWISE UNCHANGED

IR R POINTS TO THE AM AFTER ATTRIBUTE 4 OF
THE ACCOUNT FILE~DEFINITION [TEM (FROM
GRMS)

ELEMENT USAGE

SR1 S USED TO SAVE BMSBEG
T6 T USED TO SAVE USER
BMS R USEN IN CALLING RETIX

SUBROUTINE USAGE
GMMBMS, RETIX, GBMS

FOUR ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED

GETYBUF

GETBUF (5,TERMIO)

FUNCTIONAL DESCRIPTION

THIS ROUTINE ACCEPTS INPUT DATA FROM THE TERMINAL AND
PERFORMS SOME EDITING ON THE CHARACTERS OBTAINED. IT ALSO
PRINTS AN INITIAL PROMPT CHARACTER AT THE TERMINAL BEFORE
READING INPUT, CONTROL IS RETURNED WHEN A NONSEDITING
CONTROL CHARACTER IS INPUT, OR WHEN THE NUMBER OF CHARACTERS
SPECIFIED IN TO HAS BEEN INPUT AND BIT TITFLG IS ZERO (SEE

BELOW),
EDITING FEATURES

CONTROLwH LOGICALLY BACKSPACES THE BUFFER
POINTERs ECHOES THE CHARACTER IN
BSPCH

CONTROL =X LOGICALLY DELETES THE ENTIRE INPUT

BUFFERs ECHOES A CR/LF, AND PRINTS
THE PROMPT CHARACTER IF BIT FRMTFLG
IS ZERO

CONTROL=R

RUBOUTY

CONTROL=SHIFTe=K
CONTROL=SHIFT=L
CONTROL=SHIFTeM
CONTROL=SHIFT=N
CONTROL=SHIFT=0

NOTE: EXCEPT F
ORDER BIT OF EA

INPUT INTERFACE

FRMTFLG B
GETRUF

TITFLG B

BSPCH C

PRMPC c

To T

R14 R

OUTPUT INTERFACE

R1S R

ELEMENT USAGE

R23CO C +
DO n ¢

RETYPES THE INPUT LINE IF 817
FRMTFLG TS ZERO

IGNORED? THE CHARACTER IS ECHOED,
RUT IS NOT STORED IN THE BUFFER

THESE CHARACTERS ARE CONVERTED TO
THE INTERNAL DELIMITERS SB, SVM,
VM, AM, AND SM, RESPECTIVELYs THEY
ECHO AS THE CHARACTERS [, /, 1, T,
AND €

* 4+ + I+

OR SYSTEM DELIMITER CONVERSION, THE MIGH
CH CHARACTER INPUT IS ZEROED.

IF SET, CONTROL=X CAUSES BACKSPACES TO
THE BEGINNING OF THE INPUT AREA INSTEAD
OF CR/LF TO A NEw INPUT LINE?P? ALSO,

CONTROLeR IS IGNORED

IF SET, CONTROL WILL NOT BE RETURNED
WHEN THE NUMBER OF CHARACYERS SPECIFIED
IN TO HAS BEEN INPUT UNLESS A
NON=EDITING CONTROL CHARACTER IS ENTERED

CONTAINS THE CHARACTER TO BE ECHOED TO
THE TERMINAL WHEN THE BACK SPACE KEY I8

PRESSED

CHARACTFR OUTPUT AS A "PROMPT"™ WHEN
INPUT IS FIRST REQUESTED, AND AFTER
CERTAIN EDITING OPERATIONS

CONTAINS THE MAXIMUM NUMBER OF
CHARACTERS TO BE ACCEPTED

POINTS ONE BYTE BEFORE THE BEGINNING OF
THE INPUT RUFFER AREA

POINTS TO THE CONTROL CHARACTER CAUSING
RETURN TO THE CALLING ROUTINE

SCRATCH

SUBROUTINE USAGE
NONE

GETITM

GETITM (0,DISKFIOeII)w

FUNCTIONAL DESCRIPTION

THIS ROUTINE SEQUENTIALLY RETRIEVES ALL ITEMS IN A FILE. 1IT
IS CALLED REPETITIVELY TO OBTAIN ITEMS ONE AT A TIME UNTIL
ALL ITEMS HAVE BEEN RETRIEVED. THE ORDER IN WHICH THE ITEMS
ARE RETURNED IS THE SAME AS THE STORAGE SEQUENCE,

IF THE ITEMS RETRIEVED ARE TO BE UPDATED BY THE CALLING
ROUTINE (USING ROUTINE UPDITM), THIS SHOULD BE FLAGGED TO
GETITm BY SETTING BIT DAF1, FOR UPDATING, GETITM PERFORMS A
TWO-STAGE RETRIEVAL PROCESS BY FIRST STORING ALL ITEMeIDS
(PER GROUP) IN A TABLE, AND THEN USING THIS TABLE TO
ACTUALLY RETRIEVE THE ITEMS ON EACH CALL. THIS IS NECESSARY
BECAUSE, IF THE CALLING ROUTINE UPDATES AN ITEM, THE DATA
WITHIN THIS GROUP SHIFTS AROUND? GETITM CANNOT SIMPLY
MAINTAIN A POINTER TO THE NEXT ITEM IN THE GROUP. AS IT DOES
IF THE "UPODATE®™ OPTION IS NOT FLAGGED,

AN INITIAL ENTRY CONDITION MUST ALSO BE FLAGGED TO GETITM BY
ZEROING BIT DAF?7 BEFORE THE FIRST CALL, GETITM THEN SETS uP
AND MAINTAINS CERTAIN POINTERS WHICH SHOULD NOT BE ALTERED
BY CALLING ROUTINES UNTIL ALL THE ITEMS IN THE FILE HAVE
BEEN RETRIEVED (OR DAF7 IS ZEROED AGAIN),

NOTE THE FUNCTIONAL EQUIVALENCE OF THE OUTPUT INTERFACE
ELEMENTS WITH THOSE OF RETIX,

INPUT INTERFACE

DAF? B INITIAL ENTRY FLAGJ} MUST BE ZEROED ON
THE FIRST CALL TO GETITM

DAF1 B IF SET, THE "UPDATE®"™ OPTION IS IN EFFECT

DBASE D <+ CONTAIN THE BASE, MODULO, AND SEPARATION

DMOD T ¢ OF THE FILE

DSEP T

BMSBEG R POINTS ONE PRIOR TO AN AREA WHERE THE

ITEMeID OF THE ITEM RETRIEVED ON EACH

5-33

GETITM

CALL MAY BRE COPIED

OVRFLCTR D MEANINGFUL ONLY IF DAF1 IS SET; IF
NONeZERO, THE VALUE IS USED AS THE
STARTING FID OF THE OVERFLOW SPACE TABLE
WHERE THE LIST OF ITEMeIDS 1S STOREDs IF
2ERO, GETSPC IS CALLED TO OBTAIN SPACE
FOR THE TABLE

OUTPUT INTERFACE

RMBIT B +

SIZE T +

Ri4 R ¢+ (SEE RETIX DOCUMENTATION)

IR R ¢

SR4 S <

XMODE T ¢

SRO 8 2R14 IF DAF1 IS SET, OTHERWISE AS SET BY

GNSER?Y
BMS R AS SET BY RETIX IF DAF1 I8 SET,

OTHERWISE AS SET BY GNSEQI
BMSEND 8 =BMS IF DAF1 1S SET, OTHERWISE UNCHANGED

DAF9 B8 0
ELEMENT USAGE

BASE
MODULO
SEPAR
RECORD
NNCF
FRMN
FRMP
NPCF

USED BY GETITM AND OTHER SUBROUTINES FOR
ACCESSING FILE DATA

XTOCIIXTO-—-CT
LK B B JE B B BE

USED BY GEYSPC IF DAF1 IS SET AND
OVRFLCTR 1S INITIALLY ZERO

OVRFLW

&)

GETITM

THE FOLLOWING ELEMENTS SHOULD NOT BE ALTERED BY ANY
OTHER ROUTINE WHILE GETITM IS USED?

DAF1 B ¢ (SEE INPUT INTERFACE)
DAF? 8 +
DBASE D CONTAINS THE BEGINNING FID OF THE

CURRENT GROUP BEING PROCESSED

5-34

DMOD T CONTAINS THE NUMBER OF GROUPS LEFT TO BE
PROCESSED

DSEP T (UNCHANGED)

SBASE D + CONTAIN THE SAVED VALUES OF DBASE, DMOD,

SMOD T + AND DSEP WHEN THE ROUTINE WAS FIRST

SSEP T ¢ CALLED

NXTITM 8 POINTS ONE BEFORE THE NEXT ITEMeID IN
THE PRE=STORED TABLE IF DAF3 IS SET,
OTHERWISE POINTS TO THE LAST AM OF THE
ITEM PREVIOUSLY RETURNED

OVRFLCTR D CONTAINS THE STARTING FID OF THE
OVERFLOW SPACE TABLE IF DAF1 IS SET,
OTHERWISE UNCHANGED

SUBROUTINE USAGE

RCREC, GNSEQIJ GNTBLI (LOCAL), RETIX, AND GETSPC (IF
OVRFLCTR =0) IF DAF{ IS SET

BMSOVF USED WITH XMODE
FOUR ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REGUIRED

ERROR CONDITIONS

SEE RETIX DOCUMENTATION ("EXITS")3s GETITM, HOWEVER,
CONTINUES RETRIEVING TITEMS UNTIL NO MORE ARE PRESENT
EVEN AFTER THE OCCURANCE OF ERRORY.

GETOPT

GETOPT (15,8YSTEM=SUBS=I)*

FUNCTIONAL DESCRIPTION

THIS ROUTINE PROCESSES AN OPTION STRING CONSISTING OF SINGLE
ALPHABETIC CHARACTERS AND/OR A NUMERIC OPTION, SEPARATED BY

COMMAS,

A NUMERIC OPTION CONSISTS OF A STRING OF NUMERIC CHARACTERS
OR A PAIR OF SUCH STRINGS SEPARATED BY A HYPHEN OR PERIOD.
IF A NUMERIC STRING IS IMMEOIATELY PRECEDED @8Y A PERIOD, 1IT
I8 TREATED AS HEXADECIMAL, IF THE OPTION STRING CONTAINS
MORE THAN ONE NUMERIC OPTION, THE LAST ONE WILL BE USED.

ALPHABETIC OPTIONS SET THE CORRESPONDING BITS (%a" SETS
ABIT, ETC.), BUT THESE BITS ARE NOTY ZEROED UPON ENTRY.

THE OPTION STRING BEGINS ONE PAST THE ADDRESS POINTED TO BY
REGISTER IB, AND MUST END WITH A RIGHT PARENTHESIS (")") OR

SM,

INPUT INTERFACE
18 R POINTS ONE BEFORE THE OPTION STRING

OUTPUT INTERFACE

ABIT 8 ¢

. ¢

. + SEY AS DESCRIBED ABOVE

N *

81T B ¢

NUMFLG1 8 SET IF 1 NUMERIC OPTION IS FOUND

NUMFLG2 8 SET IF 2ND NUMERIC OPTION IS FOUND

RMBIT 8 SET IF N0 ERRORS ARE FOUND IN THE OPTION
FORMAT, OTHERWISE UNCHANGED

D4 N sVALUE OF THE FIRST NUMBER IN A NUMERIC
OPTION, IF FOUND, OTHERWISE UNCHANGED

GETOPT

Ds D sVALUE OF THE SECOND NUMBER IN A NUMERIC
OPTION, IF FOUND? =D4 IF A NUMERIC
OPTION CONSISTS OF A SINGLE NUMBER?
OTHERWISE UNCHANGED

18 R POINTS TO THE LAST CHARACTER PROCESSED

(=")" OR SM FOR A VALID OPTION STRING)
ELEMENT USAGE
NONE (EXCEPT DO AND D1)
SUBROUTINE USAGE

CVDIB IF A DECIMAL NUMERIC OPTION IS FOUNDs CVXIB IF A
HEXADECIMAL NUMERIC OPTION IS FOUND

TWO ADDITINNAL LEVELS OF SUBROUTINE LINKAGE REQUIRED
GETOVF, GETSPC, ATTOVF, ATTSPC, GETBLK

GETOVF (1,0F1)«»
GETSPC (9,0F1)«
ATTOVF (0,0F1)«*
ATTSPC (10,0F1)»
GETBLK (S,0F1)=

FUNCTIONAL DESCRIPTION

THESE ROUTINES OBTAIN OVERFLOW FRAMES FROM THE OVERFLOW
SPACE POOL MAINTAINED BY THE SYSTEM, GETBLK IS USED TO
OBTAIN A BLOCK OF CONTIGUOUS SPACE (USED MAINLY BY THE
CREATE«FILE PROCESSOR)? THE OTHER ROUTINES OBTAIN A SINGLE

FRAME,

GETOVF AND GETSPC Z2EROQO ALL THE LINK FIELDS OF THE FRAME THEY
RETURN, ATTOVF AND ATTSPC LINK THE FRAME YO THE FRAME
SPECIFIED IN OOUBLE TALLY RECORD: THE FORWARD LINK FIELD OF
THE FRAME SPECIFIED 1IN RECORD IS SET TO POINT TO THE
OVERFLOW FRAME OBTAINED, THE BACKWARD LINK OF THAT FRAME IS
SET TO THE VALUE OF RECORD, AND THE OTHER LINK FIELDS OF THE
OVERFLOW FRAME ARE ZEROED. THE LINK FIELDS OF THE FRAME(S)
OBTAINED BY GETBLK ARE NOT RESET OR INITIALIZED IN ANY WAY
THIS IS A FUNCTION OF THE CALLING PROGRAM,

THESE ROUTINES CANNOT BE INTERRUPTED UNTIL PROCESSING I8
COMPLETE. :

INPUT INTERFACE

Do D CONTAINS THE NUMBER OF FRAMES NEEDED
(BLOCK SIZE), FOR GETBLK ONLY

RECORD D CONTAINS THE FID OF THE FRAME TO WHICH
AN OVERFLOW FRAME IS TO BE LINKED (FOR

ATTOVF AND ATTSPC ONLY)

OUTPUT INTERFACE

OVRFLW D IF THE NEEDED SPACE IS OBTAINED, THIS
ELEMENT CONTAINS THE FID OF THE FRAME
RETURNED (FOR GETOVF, GETSPC, ATTOVF,
AND ATTSPC) OR THE FID OF THE FIRST
FRAME IN THE BLOCK RETURNED (FOR

GETOVF, GETSPC, ATTOVF, ATTSPC, GETBLK

GETBLK)® IF THE SPACE IS UNAVAILABLE,
OVRFLWEO

ELEMENT USAGE
FRMN 0 USED BY ATTOVF AND ATTSPC ONLY

oo

01
R14
R1S
SYSRO

UTILITY

LK 2K B B 3

USED BY SYSGET

®wo WBOVWOO

¢+

SYSRY

SUBROUTINE USAGE

SYSGET (BUT NOT USED BY THE SINGLE«FRAME ROUTINES IF A
FRAME IS OBTAINED FROM A MULTIPLE«FRAME BLOCK IN THE
SYSTEM OVERFLOW TABLE)} THREE INTERNAL SUBROUTINES}
NOSPACE CALLED BY GETSPC AND ATTSPC IF NO FRAMES ARE

AVAILABLE

TWO ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED 8Y
GETOVF, ATTOVF, AND GETRLKJ THREE LEVELS REQUIRED B8Y

GETSPC AND ATTSPC

EXITS

FOR GETSPC AND ATTSPC: TO NSPCQ IF
AVAILABLE AND PROCESSING IS ABORTED BY THE USERY

I8 A FUNCTION OF NOSPACE

NO MORE FRAMES ARE
THIS

GETUPD

GETUPD (7,DISKFIO=I)w

FUNCTIONAL DESCRIPTION

GETUPD INITIALIZES THE UPD REGISTER TRIAD TO POINT TO THE
UPD WORK SPACE (FRAME PCB+28).

INPUT INTERFACE
NONE

OUTPUT INTERFACE

upPD R + POINT TO THE FIRST DATA BYTE OF THE
UPDBEG 8 <+ FRAME 28 FRAMES AFTER THE PROCESS'S PCB

UPDEND S POINTS TO THE LAST BYTE OF THE ABOVE
FRAME

ELEMENT USAGE
NONE

SUBROUTINE USAGE
NONE

GETUPD

GROUP LOCKS

A TABLE OF FILE GROUPS WHICH ARE LOCKED FOR UPDATE 1S KEPT
IN THE SYSTEM, A GROUP IS UNLOCKED WHEN AN ITEM IS UPDATED
IN THAT GROUP BY THE SUBROUTINE UPDITM, THE FILE=SAVE
PROCESSOR LOCKS EACH GROUP WHILE SAVING IT, BASIC AND PROC
'READ FOR UPDATE' COMMANDS USE THESE LOCKS,

GLOCK 0.,GLOCK LOCK THE GROUP WHOSE STARTING FID
IS IN 'RECORD',
GUNLOCK 1.,GLOCK UNLOCK THE GROUP WMOSE STARTING

FID IS IN 'RECORD',
GUNLOCK.LINE 2,6GLOCK UNLOCK ALL GROUPS LOCKED BY
THE CALLING PROCESS,

GMMBMS

GMMBMS (4,0F1)*
FUNCTIONAL DESCRIPTION
GMMBMS SETS UP POINTERS TO THE SYSTEM DICTIONARY,
INPUT INTERFACE
NONE
OUTPUT INTERFACE
BASE D + CONTAIN THE BASE, MODULO, AND SEPARATION
MODULO T + OF THE SYSTEM DICTIONARY
SEPAR T +
ELEMENT USAGE
NONE
SUBROUTINE USAGE
NONE

GPCBO

GPCBO (4,ABSL1)w

FUNCTIONAL DESCRIPTION

GPCBO RETURNS THE FID OF THE PCB FOR LINE ZERO IN THE
ACCUMULATOR, DO, THE 16 HIGH=-ORDER BITS OF DO ARE SET TO
ZERO. NO OTHER INTERFACE OR ELEMENT USAGE IS ASSOCIATED
WITH THIS ROUTINE.

5-39

ISINIT

ISINIT (2,TCL=INIT)»

FUNCTIONAL DESCRIPTION

ISINIT SIMPLY INVOKES WSINIT AND HSISOS TO INITIALIZE ALL
THE PROCESS WORK SPACE POINTERS.

INPUT AND OUTPUT INTERFACES
SEE WSINIT AND HSISOS DOCUMENTATION,
ELEMENT USAGE
NONE (EXCEPT DO)
SUBROUTINE USAGE
WSINIT, HSISOS
THREE ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REGUIRED

ITPIB, TPIB, OBTP, FOBTP

ITPIB (2,TAPEIQOwI)»
TPIB (3,TAPETOel)n
0BTP (1,TAPEIQe]I)w

FOBTP (0,TAPEIOw=I)«

FUNCTIONAL DESCRIPTION

THESE ROUTINES ALLOW READING AND WRITING VARIABLE LENGTH
RECORDS, BLOCKED IN FIXED=LENGHTH RECORDS WHOSE SIZE IS
DETERMINED BY THE "TeATT (N)"™ VERB. THE UNBLOCKED DATA IS
PASSED TO THE WRITE ROUTINE (0OBTP) IN THE OBs IT IS PASSED
FROM THE READ ROUTINE (IBTP) IN THE IB,

READING A BLOCKED TAPE: AN INITIAL CALL MUST BE MADE TO
ITPIB TO INITIALIZE THE DE=BLOCKING POINTERS) SUBSEQUENTLY,
EACH CALL TO TPIB WILL RETURN ONE TAPE RECORD.

WRITING A BLOCKED TAPE: THE DATA TO BE WRITTEN TO THE TAPE
IS PLACED IN TWE OB, AND OBTP IS CALLED TO STORE IT 1IN THE
BLOCKING AREA, THE INITIAL CALL MUST SET REGISTER 0S8 70
BYTE ZERO OF THE TAPE BUFFER (FRAME FFFF10), AND SET TALLY
T4 TO THE RECORD SIZE. WHEN THE OUTPUT IS 7O BE TERMINATED,
ONE CALL TO FOBYP MUST BE MADE TO CLEAR THE BLOCKING AREA
AND FORCE THE DATA TO BE WRITTEN TO THE TAPE.

THESE ROUTINES USE THE DELIMITER SB (X'FB') AS THE BLOCK

DELIMITER) THEREFORE, 8B'S IN THE DATA TO BE WRITTEN TO
TAPE ARE CONVERTED TO BLANKS BEFORE BEING OUTPUT,

5-40

INPUT INTERFACE

IBBEG S
OBBEG)
08 R
]-] R

ITPIB, TPIB, OBTP,

T4 T

OUTPUT INTERFACE

IB R
IBEND S
08 R

ELEMENT USAGE

CMODE T
R14 R
R1S R
Do D
D1 n
ResCO T
CTR1 T
BYTESRD T
8YSRO S
SYSR1 8
Sco c

+ &

* * 4+

*

POINTS ONE PRIOR TO THE BUFFER AREA
WHERE DERLOCKED DATA 18 TO BE COPIED,
FOR TPIB

POINTS ONE PRIOR TO THE BUFFER AREA
CONTAINING DATA TO BE BLOCKED, FOR OBTP

POINTS TO THE FIRST BYTE OF THE TAPE
BUFFER AREA (FRAME FFFF10), FOR OBTP

POINTS TO THE LAST BYTE OF DATA, FOR
OBTP3 A 8B IS PLACED ONE PAST THIS

FOBTP

LOCATION BY THE ROUTINE

CONTAINS THE TAPE BUFFER SIZE 1IN BYTES,
FOR OBTP

=IBBEG, FOR TPIB

POINTS TO A SM OVERWRITING THE SB AT THE
END OF THME INPUT BLOCK, FOR TPIB

s0BBEG, FOR OBTP

UTILITY

AS USED BY TPREAD AND TPWRITE

USED TO HOLD POSITION IN BLOCKING

USEN BY ORTP

USED BY TPIB AND OBTP (CONTAINS A SB ON
EXIT)

ELEMENTS USED BY RDPARITY AND FRMDMP IF RDPARITY IS
CALLED BY TPREAD

5=41

SUBROUTINE USAGE

TPREAD (FOR ITPIB AND TPIB) OR TPWRITE (FOR OBTP AND
FORTP): TWO INTERNAL SUBROUTINE CALLS FOR 0BTP, FOBTP,

AND TPIB
UP TO TFN ADDITIONAL LEVELS OF SUBROUTINE LINKAGE

TTPIE, TPIB, OBTP, FOBRTP

REQUIRED FOR ITPIB AND TPIB (SEE TPREAD DOCUMENTATION):
FIVE LEVELS REQUIRED BY OBTP AND FOBTP

LINK

LINK (9,DISKFIQ=I)w
FUNCTIONAL DESCRIPTION

THIS ROUTINE CREATES A LINKED GROUP FROM A BLOCK OF
CONTIGUOUS FRAMES., UP T0 127 FRAMES CAN BE SO LINKED., FOR
EACH FRAME IN THE GROUP, THE ROUTINE SETS UP THE FIELDS
SPECIFYING THE NUMBER OF NEXT CONTIGUOUS FRAMES, THE NEXT OR
FORWARD LINK, THE PREVIOUS OR BACKWARD LINK, AND THE NUMBER
OF PREVIOUS FRAMES,

INPUT INTERFACE

RECORD D CONTAINS THE FIRST FID OF THE GROUP TO
BE LINKED

NNCF N CONTAINS ONE LESS THAN THE NUMBER OF
FRAMES IN THE GROUP (MAY BE ZERO, BUT IS
ALWAYS LESS THAN 127)

OUTPUT INTERFACE

R14 R POINTS ONE PRTOR TO THE FIRST DATA BYTE
OF THE FIRST FRAME IN THE GROUP

R1S R POINTS TO THE LAST BYTE OF THE LAST
FRAME IN THE GROUP

RECORD D CONTAINS THE FID OF THE LAST FRAME IN
THE GROUP

NNCF H <+

FRMN D ¢ CONTAIN THE VALUES OF THE LINK FIELDS OF

FRMP DO + THE LAST FRAME IN THE GROUP

NPCF H o+

5-42

ELEMENT USAGE
NONE (BESIDES R14, R1S, AND DO)
SUBROUTINE USAGE

NONE

LINK

SIX=BYTE BINARY TO STRING CONVERSION

MBDSUB (0,SYSTEMeSUBSeI)»
MBDNSUB (1,SYSTEMeSUBS=1)»

FUNCTIONAL DESCRIPTION

THESE ROUTINES CONVERT A BINARY NUMBER TO THE EQUIVALENT
STRING OF OECIMAL ASCII CHARACTERS. MBDSUB RETURNS ONLY AS
MANY CHARACTERS AS ARE NEEDED TO REPRESENT THE NUMBER,
WHEREAS MBDNSUB ALWAYS RETURNS A SPECIFIED MINIMUM NUMBER OF
CHARACTERS (PADDING WITH LEADING ZEROES OR BLANKS WHENEVER
NECESSARY)., A MINUS PRECEDES THE NUMERIC STRING IF THE
NUMBER TO BE CONVERTED IS NEGATIVE,

THESE SUBROUTINES ARE IMPLICITLY CALLED BY THE ASSEMBLER
INSTRUCTIONS MBD (MOVE BINARY TO DECIMAL) AND MBDN,

FPO IS DESTROYED BY THE CONVERSION PROCESS,
INPUT INTERFACE
FPO F CONTAINS THE NUMBER YO BE CONVERTED

T4 T CONTAINS THE MINIMUM NUMBER OF
CHARACTERS TO BE RETURNED (MBDNSUB ONLY)

BKBIT B8 SET IF LEADING BLANKS WISHED FOR FILL?
ZERD IF ZEROS

R1S R POINTS ONE PRIOR TO THE AREA WHERE THE
CONVERTED STRING IS TO BE STORED (UP TO
9 BYTES REGUIRED)
OUTPUT INTERFACE
R1S R POINTS TO THE LAST CONVERTED CHARACTER
T4 T 1 FOR MBDSUB, OTHERWISE UNCHANGED
ELEMENT USAGE

TS T

5-43

MBDSUBS

FPY F
R14 R

SUBROUTINE USAGE
NONE

NEWPAGE

NEWPAGE (1,SYSTEMeSUBSwIJ)»
FUNCTIONAL DESCRIPTION
THIS ROUTINE IS USED TO - SKIP TO A NEW PAGE ON THE TERMINAL
OR LINE PRINTER AND PRINT A HEADING. NO ACTION I8
PERFORMED, HOWEVER, IF BIT PAGINATE OR TALLY PAGSIZE IS
ZERO.
INPUT INTERFACE

AS FOR WRTLIN, EXCEPT 0B IS FIRST SET EQUAL TO OBBEG BY
THIS ROUTINE

OUTPUT INTERFACE

SAME AS FOR WRTLIN
ELEMENT USAGE

SAME AS FOR WRTLIN
SUBROUTINE USAGE

WRTLIN AND ROUTINES CALLED BY IT, IF PAGINATE IS SET
AND PAGSIZE IS GREATER THAN ZERO

ADDITIONAL SUBROUTINE LINKAGE REQUIRED ONLY IF WRTLIN
IS CALLED? SEE WRTLIN DOCUMENTATION FOR THE NUMBER OF
ADDITIONAL LEVELS OF LINKAGE REQUIRED, AND ADD 1

NEXTIR, NEXTOVF

NEXTIR (1,WRAPUP=II)w
NEXTOVF (3,WRAPUP=II)

5-44

FUNCTIONAL DESCRIPTION

NEXTIR OBTAINS THE FORWARD LINKED FRAME OF THE FRAME TO
WHICH REGISTER IR (R6) CURRENTLY POINTS) IF THE FORWARD
LINK IS ZERO, THE ROUTINE ATTEMPTS TO OBTAIN AN AVAILABLE
FRAME FROM THE SYSTEM OVERFLOW SPACE POOL AND LINK IT UP
APPROPRIATELY (SEE ATTOVF DOCUMENTATION). IN ADDITION, IF A
FRAME IS OBTAINED, THE JR REGISTER TRIAD IS SET UP BEFORE
RETURN, USING ROUTINE RODREC.

NEXTOVF MAY BE USED IN A SPECIAL WAY TO HANDLE
END=OF =L INKED=FRAME CONDITIONS AUTOMATICALLY WHEN USING
REGISTER IR WITH SINGLE~ OR MULTIPLE=BYTE MOVE OR SCAN
INSTRUCTIONS (MIID, MII, OR MCI). TALLY XMODE SHOULD BE SET
TO THE MODE=ID OF NEXTOVF BEFORE THE INSTRUCTION IS
EXECUTED? IF THE INSTRUCTION CAUSES IR TO REACH AN
END=OF =L INKED=FRAME CONDITION (FORWARD LINK ZERO), THE
SYSTEM WILL GENERATE A SUBROUTINE CALL TO NEXTOVF, WHICH
WILL ATTEMPT TO OBTAIN AND LINK UP AN AVAILABLE FRAME, AND
THEN RESUME EXECUTION OF THE INTERRUPTED INSTRUCTION
(ASSUMING A FRAME WAS GOTTEN). 1IF THERE ARE NO MORE FRAMES
IN THE OVERFLOW SPACE POOL, NOSPACE IS CALLED, NOTE THATY
THE “INCREMENT REGISTER BY TALLY" INSTRUCTION CANNOT BE
HANDLED IN THIS MANNER.

NEXTOVF IS ALSO USED BY UPDITM WITH REGISTER T8 (R13). IF
NEXTOVF IS ENTERED WITH TS AT AN ENDeOF«LINKED=FRAMES
CONDITION, A BRANCH IS TAKEN TO A POINT INSIDE UPDITM,
UNDER ANY OTHER CONDITION (OTHER THAN IR OR TS
ENDeOF =L INKED=FRAME), NEXTOVF IMMEDIATELY ENTERS THE

DEBUGGER.
INPUT INTERFACE
IR R POINTS INTO THE FRAME WHOSE
FORWARDeL INKED FRAME IS T0 BE OBTAINED
(DISPLACEMENT UNIMPORTANT)

ACF H FOR NEXTOVF ONLY, MUST CONTAIN X'06' FOR
IR ENDeOF=L INKED®FRAME HANDLING (SET

NEXTIR, NEXTOVF

AUTOMATICALLY BY MIID, MII, AND MCI

INSTRUCTIONS)
OUTPUT INTERFACE
IR R ¢ POINT TO THE FIRST DATA BYTE OF THE
IRBEG 8 + FORWARD LINKED FRAME
IREND 8 POINTS TO THE LAST BYTE OF THE FORWARD

LINKED FRAME

RECORD D CONTAINS THE FID OF THE FRAME TO WHICH

IR POINTS

RIS R+

NNCF H o«

FRMN D <+ AS SET BY RDLINK FOR THE FID IN RECORD

FRMP D <

NPCF W e

OVRFLW n =RECORD 1IF ATTOVF CALLED, OTHERWISE
UNCHANGED

ELEMENT USAGE
R14 R USED BY RDL INK

ELEMENTS USED BY ATTOVF IF A FRAME IS OBTAINED FROM THE
OVERFLOW SPACE POOL

SUBROUTINE USAGE
RDLINK?} ATTOVF IF A FRAME MUST BE OBTAINED FROM THE
OVERFLOW SPACE POOLs NOSPACE IF ATTOVF CANNOT FIND ANY
MORE FRAMES
THREE ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REGQUIRED
EXITS
NORMALLY PETURNS VIA RDREC? POSSIBLY TO NSPCQ@ IF

NOSPACE USED (SEE NOSPACE DOCUMENTATION); TO S,DBY IF
ACF NOT Xx'06" OR X'0D' (NEXTOVF ONLY)

NEXTIR, NEXTOVF

PCRLF (7.,TERMIO)»
FFOLY (9,TERMIO)»

FUNCTIONAL DESCRIPTION

PCRLF PRINTS A CARRIAGE RETURN AND LINE FEED ON THE TERMINAL
AND ENTERS FFDLY, WHICH PRINTS A SPECIFIED NUMBER OF DELAY
CHARACTERS (x'00').

INPUT INTERFACE

LFDLY T CONTAINS THE DELAY COUNT (FOR PCRLF
ONLY)
T0 T CONTAINS TME DELAY COUNT (FOR FFDLY

ONLY)
OUTPUT INTERFACE

NONE

5=-46

ELEMENT USAGE
R14 R

SUBROUTINE USAGE
NONE

PCRLF., FFOLY

PR=INSERT

PO=INSERT 1S A SUBROUTINE WHICH WILL INSERT SINGLE OR
MULTIPLE FIELDS INTO ANY OF THE PROC BUFFERS,

INPUT INTERFACE:

PBUF POINTS TO FIRST BYTE OF RECEIVING FIELD, SENDING FIEL
MUST BE TERMINATED BY AN ATTRIBUTE MARK, MULTIPLE
FIELD INSERTS CAN BE ACCOMPLISHED BY SEPARATING
THE SENDING FIELDS WITH BLANKS,

I8 POINTS TO ONE BYTE BEFORE SENDING FIELD,

8B2 0 = CAUSES BLANKS IN SENDING FIELD TO BE REPLACED
BY ATTRIBUTE MARKS IN THE RECEIVING FIELD,
1 = BLANKS ARE LEFT AS BLANKS,

R9 POINTS TO PROC CONTROL FRAME (MOV PQeREG,R9).

OUTPUT INTERFACE?!
PBUF POINT TO FIRST BYTE OF RECEIVING FIELD
AND IB 882 = 1,
POINY ONE BYTE BEFORE RECEIVING FIELD IF SB2 = 0
INTERNAL USAGE:
BMS

R14
R1S

PRINT, CRLFPRINT

PRINT (11,SYSTEM=SUBS~IV)#
CRLFPRINT (12,SYSTEM=SUBS=IV)x

FUNCTIONAL DESCRIPTION

THESE ROUTINES SEND A MESSAGE TO THE TERMINAL FROM TEXTUAL
DATA IN THE CALLING PROGRAM} CRLFPRINT FIRST PRINTS A
CARRIAGE RETURN AND LINE FEED, THESE ROUTINES ARE NOT
COMPATIBLE WITH CONVENTIONS REGARNDING THE LINE PRINTER, AND
WITH THE PAGINATION ROUTINES, THE MESSAGE SENT IS A STRING
OF CHARACTERS ASSEMBLED IMMEDIATELY FOLLOWING THE SUBROUTINE
CALL IN THE CALLING PROGRAM, THE STRING MUST BE TERMINATED
BY ONE OF THE FOUR DELIMITERS SM, AM, VM, OR SVM, CONTROL
IS RETURNED TO THE INSTRUCTION AR THE LOCATION IMMEDIATELY
FOLLOWING THE TERMINAL DELIMITER.

DELIMITER ACTION

SM (X'FF") ¢+ END OF MESSAGE} CR/LF PRINTED, AND
AM (X'FE") ¢ RETURN

VM (X'FD') CR/LF PRINTED, BUT MESSAGE PROCESSING
CONTINUED
SVM (X'FC!') END OF MESSAGES RETURN WITHOUT PRINTING
CR/LF
INPUT INTERFACE
LFDLY T CONTAINS (IN THE LOW=ORDER BYTE) THE

NUMBER OF "FILL" CHARACTERS (NULLS) TO
BE ISSUED AFTER A CR/LF ECHO TO THE
TERMINAL? REQUIRED BY PCRLF
TEXT FOLLOWING SUBROUTINE CALL IN CALLING PROGRAM
OUTPUT INTERFACE
NONE

ELEMENT USAGE

PRINT, CRLFPRINT
R14 R ¢ SCRATCHM
R1S R +
SUBROUTINE USAGE
PCRLF
ONE ADDITIONAL LEVEL OF SUBROUTINE LINKAGE REQUIRED

5-48

PRIVTST1, PRIVTST2, PRIVTSTS

PRIVTST! (7,SYSTEMeSUBS=III)=*
PRIVTST2 (S5,SYSTEMeSUBSeIII)w
PRIVYSTS (4,SYSTEMeSUBSeII1I)

FUNCTIONAL DESCRIPTION

THESE ROUTINES CHECK TO SEE IF THE CALLING PROCESS HAS
APPROPRIATE SYSTEM PRIVILEGE LEVELS. IF NOT, BITS PQFLG AND
LISTFLAG AND TALLY RMODE ARE SET TO ZERO, THE HISTORY STRING
IS SET NULL (HSEND=HSBEG), TALLY REJCTR IS SET TO 82 (AN
ERROR MESSAGE NUMBER), AND AN EXIT IS TAKEN TO MDS9.
OTHERWISE THE ROUTINES RETURN NORMALLY,

ENTRY BIT TESTED (ERROR IF NOT S8ET)
PRIVTSTY SYSPRIV1
PRIVTST? SYSPRIV2
PRIVTSTS ROIB24S

PRNTHDR, NPAGE

PRNTHDR (7,SYSTEM=SUBS=II)~
NPAGE (B,SYSTEM=SUBS=II)

FUNCTIONAL DESCRIPTION

THESE ARE ENTRY POINTS INTO THE SYSTEM ROUTINE FOR
PAGINATYION AND HEADING CONTROL OF OUTPUT (ALSO USED 8Y
WRTLIN, WT2, AND WRITOB WHEN PAGINATION IS SPECIFIED).
PRNTHDR IS USED TO INITIALIZE BIT PAGINATE 7O 1, AND TALLIES
LINCTR AND PAGNUM TO 2ERO AND ONE, RESPECTIVELY. PRNTHOR
THEN FALLS IMMEDIATELY INTO NPAGE, WHICH OUTPUTS A HEADER

MESSAGE.

A PAGE HEADING, IF PRESENT, MUST BE STORED 1IN A BUFFER
DEFINED BY REGISTER PAGHEAD, THE MEADER MESSAGE IS A STRING
OF DATA TERMINATED BY A SMy SYSTEM DELIMITERS 1IN THE
MESSAGE INVOKE SPECIAL PROCESSING AS FOLLOWS:

SM (X'FF') TERMINATES THE HEADER LINE WITH A CR/LF

AM (X'FE') INSERTS THE CURRENT PAGE NUMBER INTO THE
HEADING

VM (X'FD') PRINTS ONE LINE OF THE MHEADING AND

STARTS A NEW LINE
SVM (X'FC') SINGLY, INSERTS THME CURRENT TIME AND

DATE INTO THE HEADING, BUT TWO SVM'S IN
SUCCESSION INSERT THE DATE ONLY

5-49

SB (X'FB') INSERTS DATA FROM ONE OF VARIOUS BUFFERS
INTO THE HEADINGS IF THE CHARACTER
FOLLOWING THE SR IS 'I', DATA IS COPIED
FROM THE AREA BEGINNING ONE BYTE PAST
THE ADDRESS SPECIFIED 8Y REGISTER
BMSBEG? IF THE CHARACTER IS 'A',
REGISTER AFREG IS USEDs FOR ANY OTHER
CHARACTER, DATA IS COPIED FROM THE AREA
BEGINNING THREE BYTES PAST THE ADDRESS
SPECIFIED BY REGISTER ISBEGs DATA TO BE
COPTED CAN BE TERMINATED BY ANY SYSTEM
DELIMITER

PRNTHDR, NPAGE

CARRIAGE RETURNS, LINE FEEDS, AND FORM FEEDS SHOULD NOT
BE INCLUDED IN HEADER MESSAGES, OR THE AUTOMATIC
PAGINATION WILL NOT WORK PROPERLY,

INPUT INTERFACE

PAGINATE B =1 (NPAGE ONLY3 SET AUTOMATICALLY B8Y
PRNTHDR)

LINCTR T CONTAINS THE NUMBER OF THE LINE TO BE

PRINTED ON THE CURRENT PAGE (NPAGE ONLY3
SET TO 2ERO AUTOMATICALLY BY PRNTHDR)

PAGNUM T CONTAINS THE CURRENT PAGE NUMBER (NPAGE
ONLY?s SET T0 ONE AUTOMATICALLY BY
PRNTHDR)
OTHER PARAMETERS AS FOR WT2 (SEE WRTLIN DOCUMENTATION),
EXCEPT FOR PAGINATE AND PAGNUM (SEE ABOVE) AND 08
(INITIALIZED TO OBBEG BY NPAGE)s NOTE THAT THE OUTPUT
BUFFER WHERE THE TRANSLATED HEADING MESSAGE IS BUILT
(SPECIFIED BY REGISTER OBBEG) MUST BE AT LEAST TWO
BYTES GREATER THAN THE LONGEST LINE OUTPUT IN THE

TRANSLATED HEADING (NOT NECESSARILY THE TOTAL HEADING
SI2E, IF THE ORIGINAL HEADING STRING CONTAINS ANY VMS)

OUTPUT INTERFACE
SAME A3 FOR WTZ2
ELEMENT USAGE
SAME AS FOR WT2
SUBROUTINE USAGE
SAME AS FOR WT2
EXITS

TC WT2

5-50

PROC USER EXITS

PROC USER EXITS

SUMMARY

A USER=WRITTEN PROGRAM CAN GAIN CONTROL DURING EXECUTION OF
A PROC BY USING THE UXXXX OR PXXXxX COMMAND 1IN THE PROC,
WHERE "XXXX" IS8 THE HEXADECIMAL MODE=ID OF THE USER ROUTINE,
THE ROUTINE CAN PERFORM SPECIAL PROCESSING, AND THEN RETURN
CONTROL TO THE PROC PROCESSNOR. NECESSARILY, CERTAIN
ELEMENTS USED BY THE PROC PROCESSOR MUST BE MAINTAINED BY
THE USER PROGRAM3 THESE ELEMENTS ARE MARKED WITH AN
ASTERISK IN THE TABLE RELOW,

INPUT INTERFACE

PRFLG B SET, INDICATING THAT A PROC IS BEING
EXECUTED
*BASE D + CONTAIN THF BASE, MODULO, AND SEPARATION

*MODULO T + OF THE MASTER DICTIONARY
*SEPAR T +

“POREG S POINTS ONE PRIOR TO THE FIRST PROC
STATEMENTS THIS WILL BE WITHIN THE FILE
IN WHICH THE PROC RESIDES

*PGEND S POINTS TO THE TERMINAL AM OF THE PROC

PGCUR S + POINT TO THE AM FOLLOWING THE UXXXX OR
IR R + PXXXX STATEMENT

*PBUFBEG S POINTS TO A BUFFER CONTAINING THE
PRIMARY AND SECONDARY INPUT BUFFERS;
FORMAT I8 S8 ... PRIMARY INPUT ... SM
88 ... SECONDARY INPUT ,.. SM3 LOGON
SETS THIS AREA TO ONE FRAME IN LENGTH,
WITH ADDITIONAL FRAMES ADDED BY
SUBROUTINE PONEXTOVF AS THEY ARE
REQUIREDS ADNDITIONAL FRAMES ARE RELEASED
BY LOGOFF

»ISBEG S POINTS ONE PRIOR TO THE FIRST CHARACTER
OF THE PRIMARY OUTPUT BUFFER (IN THE

PROC USER EXITS

PROCESS'S 1S WORKeSPACE)s THIS BUFFER
SHOULD ALWAYS BE TERMINATED WITH A SM

5-51

POINTS ONE PRIOR TO THE FIRST CHARACTER
OF THE SECONDARY OUTPUY BUFFER (STACK);
THIS IS INITIALLY TwO LINKED FRAMES,
THOUGH MORE FRAMES MAY BE LINKED TO IT
AUTOMATICALLY BE SUBROUTINE PGNEXTOVF;
ADDITIONAL FRAMES ARE RELEASED BY
LOGOFFs THIS BUFFER SHOULD ALWAYS BE
TERMINATED WITH A SM

*STKBEG S

IS THE CURRENT INPUT BUFFER POINTER (MAY
POINT WITHIN EITHER THE PRIMARY OR
SECONDARY INPUT BUFFERS)

IB R

POINT TO THE PROC CONTROL BLOCK (PCB+6)3
USER PROGRAMS MAY CHANGE R9, WITH THE
CONSIDERATION THAT ELEMENTS DEFINED
RELATIVE TO IT (SUCH AS PQeCUR=IB) WILL
NOT BE AVAILABLE

RO R ¢
PO=REG s +

INTO THE SECONDARY
INPUT BUFFER, RESET OTHERWISE3 THIS BIT
IS DEFINED RELATIVE 70 R9, SO R9 MUST BE
SET TO THE PROC CONTROL BLOCK (PCB+6) IN
ORDER TO REFERENCE THIS BIT

PReCUR<IB B SET 1IF 18 POINTS

*SFLG B SET IF A ST ON COMMAND I8 IN EFFECTY
*2FLG B RESET TO IDENTIFY THE PROC PROCESSOR IN
CERTAIN SYSTFM SUBROUTINES

»SC2 c CONTAINS A BLANK
SFLG ON SFLG OFF

18 R POINTS TO THE LAST POINTS TO THE LAST
BYTE MOVED INTO BYTE MOVED INTO
THE SECONDARY THE PRIMARY OUTPUT
OUTPUT BUFFER BUFFER

UPD R POINTS TO THE LAST POINTS TO THE LAST

PROC USER EXITS

OUTPUT INTERFACE

BYTE MOVED INTO
THE PRIMARY OUTPUT
BUFFER

BYTE MOVED INTO
THE SECONDARY
OUTPUT BUFFER

IR R POINTS YO THE AM PRECEDING THE NEXT PROC
STATEMENT TO BE EXECUTEDJ) MAY BE ALTERED
TO CHANGE PROC EXECUTION

18 R + MAY BE ALTERED AS NEEDED TO ALTER DATA

UPD R ¢ WITHIN THE INPUT AND OUTPUT BUFFERS, BUT

I8 R ¢ THE FORMATS DESCRIBED MUST BE MAINTAINED

5-52

PROC BUFFERS EACH MUST BF TERMINATED WITH A SMJ AM!S
MAY SEPARATE PARAMETERS

SFLG B SET IF “STACK ON" IS IN EFFECT, RESET
OTHERWISE

PQeCUR=IB B SET IF SECONDARY INPUT BUFFER IS ACTIVE,
RESET OTHERWISE

POFLG B SET IF PROC EXECUTION IS TO CONTINUE,
RESET OTHERWISE

ABIT«ZBIT B ZERO

BASE D »

MODULO T o

SEPAR T «+

sco C +

SC1t C «+

Sc2 C ¢ SET TO VALUE OM ENTRY

PQBEG S ¢

PQEND § «

PBUFBEG S <

ISBEG S ¢

STKBEG S ¢

EXIT CONVENTION
THE NORMAL METHOD OF RETURNING CONTROL TO THE PROC PROCESSOR

PROC USER EXITS

IS TO EXECUTE AN EXTERNAL BRANCH INSTRUCTION (ENT) TO
2,PROC»I., IF IT IS NECESSARY TO ABORT PROC CONTROL AND EXIT
TO WRAPUP, BIT PQFLG SHOULD BE RESET BEFORE BRANCHING TO ANY
OF THE WRAPUP ENTRY POINTS (SEE WRAPUP DOCUMENTATION).

NOTE THAT WHEN A PROC EVENTUALLY TRANSFERS CONTROL TO TCL
(VIA THE "P" OPERATOR), CERTAIN ELEMENTS ARE EXPECTED TO BE
IN AN INITIAL CONDITION. THEREFORE, IF A USER ROUTINE USES
THESE ELEMENTS, THEY SHOULD BE RESET BEFORE RETURNING TO THE
PROC, UNLESS THE ELEMENTS ARE DELIBERATELY SET UP AS A MEANS
OF PASSING PARAMETERS Y0 OTHER PROCESSORS, SPECIFICALLY,
THE BITS AFLG THROUGH ZFLG ARE EXPECTED TO BE ZERO BY THE
TCL=II AND ENGLISH PROCESSORS, IT IS BEST TO AVOID USAGE OF
THESE BITS 1IN PROC USER EXITS., ALSO, THE SCAN CHARACTER
REGISTERS 8SCO, SCi, AND SC2 MUST CONTAIN A 8B, A BLANK, AND
A BLANK, RESPECTIVELY.

5-53

PONEXTOVF

SUBROUTINE PQNEXTOVF MAY BE USED BY USEReWRITTEN PROGRAMS
WHEN ADDING PARAMETERS TO THE PRIMARY OR SECONDARY INPUT
RUFFERS OR THE SECONDARY OUTPUT BUFFER. THIS ROUTINE WILL
AUTOMATICALLY ATTACH ADDITIONAL FRAMES TO THESE BUFFERS AS
REQUIRED. IT SHOULD BE USED BY SETTING XMODE TO ITS
MODE=ID, AND WILL THEN BE ENTERED ON A "FORWARD LINK ZERO"
CONDITION ON REGISTER 8 OR 15,

PANEXTOVF INPUT INTERFACE

R8 OR R1S R POINTS TO THE END OF THE FRAME ON WHICH
THE FORWARD LINK ZERO TRAP OCCURS

R9 R POINTS TO THE PROC CONTROL BLOCK
PANEXTOVF OUTPUT INTERFACE
R8 OR RIS R UNCHANGED

OTHER ELEMENTS AS FROM ATTOVF# 1IN PARTICULAR, OVRFLW=0
IF NO FRAME IS AVAILABLE

PRTERR

PRTERR (0,WRAPUP«III)«x

FUNCTIONAL DESCRIPTION

PRTERR IS8 USED TO RETRIEVE AND PRINT A MESSAGE FROM THE
SYSTEM FILE ERRMSG. A PARAMETER STRING MAY BE PASSED TO THE
ROUTINE, IN WHICH CASE THE PARAMETERS ARE FORMATTED AND
INSERTED ACCORDING TO THE CODES IN THE MESSAGE ITEM,

ITEMS IN THE ERRMSG FILE CONSIST OF AN ARBITRARY NUMBER OF
LINES (WHERE A LINE IS DELIMITED BY AN AM), WITH EACH LINE
CONTAINING A CODE LETTER IN COLUMN ONE, POSSIBLY FOLLOWED 8Y
A STKING OR NUMERIC PARAMETER (NUMERIC PARAMETERS ENCLOSED
IN PARENTHESES). THE POSSIBLE CODES AND THEIR MEANINGS ARE
LISTED BELOW. (BRACKETS INDICATE OPTIONAL PARAMETERS.)

A [(DEC. #¥)] PARAMETER INSERTION CUDE’ THE NEXT
PARAMETER FROM THE PARAMETER STRING, IF
ANY, IS PLACED INTO THE OUPUT BUFFER}: IF
"DEC, #" 1S SPECIFIED, THE PARAMETER IS
LEFT=JUSTIFIED IN A BLANK FIELD OF THAT
LENGTH

D THE SYSTEM DATE IN DD MMM YYYY FORMAT IS
ADDED TO THE OUTPUT BUFFER

E [STRING) THE MESSAGE ITEMeID, SURROUNDED BY

BRACKETS, IS PLACED INTO THE OUTPUT
BUFFER, FOLLOWED BY "STRING" IF PRESENT

5-54

H STRING

L [(DEC. #))

R [(DEC. #))

PRTERR

S [(DEC. #)}

X
INPUT INTERFACE
TS

EBASE
EMCD
ESEP

MBASE
MMOD
MSEP

0BSIZE

R

-0

-~ O

*

THE CHARACTER STRING IS PLACED IN THE
OUTPUT BUFFER (NO BLANK IS NECESSARY
BETWEEN THE CODE LETTER AND THE
BEGINNING OF THE STRING)

THE OUTPUT BUFFER IS PRINTED, AND THE
SPECTIFIED NUMRFR OF LINE FEEDS IS OUTPUT
(ONE IF "DEC. #" IS NOT SPECIFIED)

LIKE A, ONLY THE PARAMETER I8
RIGHT=JUSTIFIED, IN A FIELD OF "DEC. #"
BLANKS IF “DEC. #" I8 SPECIFIED

THE POINTER TO THE CURRENY POSITION IN
THE OUTPUT BUFFER IS REPOSITIONED TO THE
SPECIFIED COLUMN (COLUMN ONE IF
"DEC. #" IS NOT PRESENT)

THE SYSTEM TIME IN HH$MM:SS IS ADDED TO
THE OUTPUT BUFFER

THE NEXT PARAMETER IS SKIPPED

POINTS ONE PRIOR TO THE MESSAGE ITEMeID,
WHICH MUST BE TERMINATED B8Y AN AM;
PARAMETERS OPTIONALLY FOLLOW, BEING
DELIMITED BY AM'S} THE PARAMETER STRING
MUST END WITH A SM

USEN AS THE BASE, MODULO, AND SEPARATION
FOR THE MESSAGE FILE IF EBASE IS
NON=ZEROs3 IF EBASE IS ZERO, PRTERR
ATTEMPTS TO SET EBASE, EMOD, AND ESEP TO
THE PARAMETERS FOR THE SYSTEM FILE
ERRMSG, AND EXITS ABNORMALLY IF UNABLE
TO0 DO SO

USED A8 THE PARAMETERS FOR THE MASTER
DICTIONARY IF NECESSARY TO SET UP EBASE,
EMOD, AND ESEP, BUT PRTERR EXITS
ABNORMALLY IF MBASE IS ZEROD

CONTAINS THE MAXIMUM NUMBER OF
CHARACTERS TO BE OUTPUTY ON A LINE
(NORMALLY SET AT LOGON TIME)

OBBEG 8 <+ POINT TO THE BEGINNING AND END OF THE
OBEND S <+ OUTPUT BUFFER (NORMALLY SET AT LOGON
TIME)

OTHER ELEMENTS AS REQUIRED BY WRTLIN (SEE WRTLIN
DOCUMENTATION)

OUTPUT INTERFACE

PRTERR

K] R POINTS TO THE AM AFTER THE MESSAGE
ITEM=ID IF NO PARAMETERS ARE PROCESSED,
OTHERWISE TO THE AM OR SM AFTER THE LAST
PARAMETER PROCESSED

EBASE D <+ CONTAIN THE BASE, MODULO, AND SEPARATION
EMOD T <+ PARAMETERS FOR THE SYSTEM FILE ERRMSG IF
ESEP T <+ EBASE WAS ORIGINALLY ZERO (AND THE FILE
WAS SUCCESSFULLY RETRIEVED)

LINCTR T <+ UPDATED IF BIT PAGINATE IS SET
PAGNUM T

+

ELEMENT USAGE

SB60
SB61
CTRO
Té
BASE
MODULO
SEPAR
AF

IR

BMS
BMSBEG
0B

R14
SRa

UTILITY

DVDODIVAAT 44D ®
2 IR I I U S P O S Y

-

CTR1 USED WITH "R"™ CODE MESSAGES

SYSR1 S USED WITH "S" CODE MESSAGES

INHIBITH H INCREMENTED DURING RETRIEVAL OF FILE
ERRMSG IF EBASE IS ORIGINALLY ZERO, AND
DECREMENTED AFTERWARDS

ALL ELEMENTS USED BY RETIX, AND BY WRTLIN (UNLESS

PRTERR EXITS ABNORMALLY), AND ELEMENTS USED BY GBMS IF
PRTERR ATTEMPTS RETRIEVAL OF THE SYSTEM FILE ERRMSG

5-56

PRTERR

SUBROUTINE USAGE

RETIX, WRTLIN, DECINHIB, DATE (FOR "D" CODE MESSAGES),
TIME (FOR "T" CODE MESSAGES), GBMS (FOR RETRIEVING

ERRMSG)

SIX ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED IF
GBMS ATTEMPTS RETRIEVAL OF AN ERRMSG FILE WHICH IS8 A
Q" CODE ITEM, OTHERWISE FOUR LEVELS REGUIRED

EXITS \
TO 2,ABSL IF EBASE AND MBASE ARE BOTH ZERO

R‘ETAO R.ETA.M' R.ATE' R.ET‘.M

R.ETA (1,R.FI0=VI)n
R.ETA.M (2,R.FI0O=VI)w
R.ATE (3,RFIOwIV)w
R.ATE.M t“iR.FIO’IV)*

FUNCTIONAL DESCRIPTION

THESE ROUTINES PERFORM TRANSLAYION OF CHARACTER STRINGS FROM
EBCDIC OR ASCII TO ASCII OR EBCDIC., EBCDIC CHARACTERS WITH
NO ASCII EQUIVALENT ARE TREATED AS BINARY OR PACKED DATA:
R.ETA AND R,ETA,M TRANSLATE THESE CHARACTERS TO VALUES
HAVING THE HIGH=ORDER BIT SETs, AND RLATE AND R.ATEM
TRANSLATE THESE VALUES TO THE APPROPRIATE EBCDIC CHARACTERS,
R.ETA AND RL.ATE OVERLAY THE INPUT STRING WITH THE TRANSLATED
STRING, WHILE THE OTHER TWO ROUTINES STORE THE TRANSLATED
STRING IN A SPECIFIED BUFFER AREA,

INPUT INTERFACE

CTRY T CONTAINS THE NUMBER OF CHARACTERS TO BE
TRANSLATED
R8 R POINTS TO THE FIRST CHARACTER OF THE

ASCII STRING BUFFER, FOR "MOVE" ROUTINES
ONLY (R.ETA.M AND R,ATE M)

R1S R POINTS TO THE FIRST CHARACTER OF THE

‘ EBCDIC STRING BUFFER) FOR NONe"MOVE"
ROUTINES, THIS IS ALSO THE ASCII STRING
BUFFER

5=57

OUTPUT INTERFACE

CTR1 T =0
R8 R ¢ POINT TO THE LAST CHARACTERS IN THEIR
R1S R + RESPECTIVE BUFFERS? FOR NONe"MOVE"

ROUTINES, RB8zR1S

ELEMENT USAGE

T0
R13

0 -

UTILITY

*

R.ETA, R.ETA.M: R.,ATE, R.ETA.M

R14 R ¢
SURROUTINE USAGE
NONE
ROLABEL, ROLABELY
RDOLABEL (2, TAPEIO=II)w
RDLABELY (8, TAPEIO»II)
FUNCTIONAL DESCRIPTION
THESE ROUTINES READ MAGNETIC TAPE LABELS AND STORE THEM IN
THE QUATERNARY CONTROL BLOCK (PCB+3), TAPE LABELS HAVE THE
FOLLOWING FORMAT:
SM L ... LABEL DATA ... VM TIME DATE AM REEL # AM SM
DATA IS STORED IN PCB+3 AS FOLLOWS?

HEX BYTE
DISPLACEMENT TYPE DESCRIPTION

197 (BIT 0) B "UNLABELED TAPES IN USE" FLAG

198 T REEL NUMBER

19A T RECORD SIZE SAVE ARER

19C - LABEL SAVE BUFFER (44 BYTES)

1CE - LABEL READ/WRITE BUFFER (44 BYTES)

5-58

SINCE THE TAPE 1I/0 ROUTINES ARE NONeREENTRANT, INTERNAL
STORAGE IS UTILIZED WHEN AN EOT CONDITION IS HANDLED BY THE
TAPE READ OR WRITE SUBROUTINES, THESE ROUTINES SAVE
REGISTERS R13, R14, AND R1S IN INTERNAL SAVE AREAS (DEFINED
IN TAPEIO=II), AND SET UP R13 TO DISPLACEMENT Xx'196' IN THE
QUATERNARY CONTROL BLOCK IN ORDER TO ADDRESS ELEMENTS 1IN
THAT BLOCK. R13, R14, AND R1S ARE RESTORED ON EXIT,

ROLABEL MAY BE CALLED ONCE BY ANY PROGRAM TO READ THE LABEL
FROM REEL #13 IF THE TAPE IS LABELED, THE LABEL IS STORED
IN THE SAVE AREA3 IF NOT, THE "UNLABELED TAPES IN USE®™ FLAG
IS SET. RDLABELY I8 SIMILAR TO ROLABEL, EXCEPT THAT THE
REEL NUMBER I8 SPECIFIED IN TALLY CTRY,

INPUT INTERFACE
CTR1Y T CONTAINS THE REEL NUMBER, FOR ROLABELY

ROLABEL, RDLABELY

ONLY
OUTPUT INTERFACE
THE LABEL SAVE AREA IS SET UP AS DESCRIBED
ELEMENT USAGE

R13 +
R14

R15S

UTILITY

A TV 0
+

+

Do
D1
ResCo
T4

+
+ AS USED BY TPREAD
*
+

-0 00

SUBROUTINE USAGE
TPREAD? BCKSP (FOR UNLABELED TAPES)}) CVDR1S (FOR
LABELED TAPES)? CRLFPRINT (FOR ERROR MESSAGES)?’ ONE
INTERNAL SUBROUTINE

MAXIMUM TEN ADDITIONAL LEVELS OF SUBROUTINE LINKAGE
REQUIRED (SEE TPREAD DOCUMENTATION)

ERROR CONDITIONS
SEE TPREAD DOCUMENTATION

ROLINK, WTLINK

RDLINK (4,DISKFIQOeI)»
WTLINK (6,DISKFIOeI)n

- 5=59

FUNCTIONAL DESCRIPTION

THESE ROUTINES READ OR WRITE THE LINK FIELDS FROM OR TO A
FRAME, TO OR FROM THE TALLIES NNCF, FRMN, FRMP, AND NPCF,
THE FID OF THE FRAME 18 SPECIFIED IN RECORD,

INPUT/OUTPUT INTERFACE

RECORD 0 CONTAINS THE FID OF THE FRAME WHOSE
LINKS ARE TO READ OR WRITTEN

NNCF H CONTAINS THE NUMBER OF NEXT CONTIGUOUS
FRAMES
FRMN D CONTAINS THE FID OF THE NEXT OR FORWARD

LINKED FRAME

FRMP D CONTAINS THE FID OF THE PREVIOUS OR
BACKWARD LINKED FRAME

NPCF H CONTAINS THE NUMBER OF PREVIOUS
CONTIGUOUS FRAMES

R1S R POINTS TO BYTE ZERO OF THE FRAME
ELEMENT USAGE

R14 R SCRATCH
SUBROUTINE USAGE

NONE

RDREC

RDREC (3,DISKFIQO=I)#
FUNCTIONAL DESCRIPTION

RDREC IS USED TO SET UP THE REGISTERS IR, IRBEG, AND IREND
TO THE BEGINNING AND ENDING OF THE FRAME AS DEFINED BY THE
TALLY RECORD., THE SUBROUTINE ASSUMES THE FRAME HAS THE
LINKED FORMAT AND THEREFORE, IR AND IRBEG ARE SET POINTING
TO THE ELEVENTH BYTE OF THE FRAME, THAT 18, ONE PRIOR TO THE
FIRST DATA BYTE OF THE FRAME, IREND IS SET UP POINTING TO
THE LAST OR Si11TH BYTE OF THE FRAME, ADDITIONALLY THE
SUBROUTINE ROLINK IS8 ENTERED TO SET UP R1S POINTING TO THE
LINK PORTION OF THE FRAME AND TO SET UP THE LINK ELEMENTS
NNCF, NPCF. FRMN, AND FRMP,

INPUT INTERFACE
RECORD D CONTAINS THE FID REQUIRED

5-60

|

OUTPUT INTERFACE

IR R + POINY ONE PRIOR TO THE FIRST DATA BYTE

IRBEG S « 0OF THE FRAME

IREND 8 POINTS TO THE LAST DATA BYTE OF TME
FRAME

R15S R +

NNCF H ¢

FRMN D + (SEE RDLINK/WTLINK DOCUMENTATION)

FRMP D «

NPCF H o+

ELEMENT USAGE
NONE

SUBROUTINE USAGE
NONE

READLIN, READLINX, READIB

READLIN (0,TERMIO)»
READLINX (6,TERMIO)«
READIB (8,TERMIO)«

FUNCTIONAL DESCRIPTION

THESE ARE THE STANDARD TERMINAL JINPUT ROUTINES, REGISTER
IBBEG POINTS TO A BUFFER AREA WHERE THE ROUTINE WILL INPUT
THE DATA, INPUT CONTINUES TO THIS AREA UNTIL EITHER A
CARRIAGE RETURN OR LINE FEED I8 ENCOUNTERED, OR UNTIL A
NUMBER OF CHARACTERS EQUAL TO THE COUNT STORED IN IBSIZE
HAVE BEEN INPUT, THE CARRIAGE RETURN OR LINE FEED
TERMINATING THE INPUT LINE IS OVERWRITTEN WITH A SEGMENT
MARK (SM), AND REGISTER IBEND POINTS TO THIS CHARACTER ON
RETURN, IF THE INPUT IS TERMINATED BECAUSE THE MAXIMUM
NUMBER OF CHARACTERS HAS BEEN INPUT, A SM WILL BE AODED AT

THE END OF THE LINE.

THESE ROUTINES CALL GETBUF TO READ INPUT DATA FROM THE
TERMINAL, AND THEN DOETERMINE IF THE LAST CHARACTER WAS A
CARRIAGE RETURN OR LINE FEED. IF THE LAST CHARACTER WAS A
CONTROL CHARACTER (SEE GETBUF DOCUMENTATION), THESE ROUTINES
EITHER ACCEPT OR DELETE THE CHARACTER, DEPENDING ON THE
VALUE OF BIT CCDEL, AND CALL GETBUF AGAIN, READLIN AND
READLINX ALSO ECHO A CR/LF AT THE END OF THE INPUT LINE,

5-61

THE ENTRIES READLIN AND READTIB ALSO PROVIDE THE FACILITY FOR
TAKING INPUT FROM A STACK INSTEAD OF DIRECTLY FROM THE
TERMINAL (SEE BELOW). THIS FEATURE IS USED, FOR EXAMPLE, BY
THE PROC PROCESSOR TO STORE INPUT LINES WHICH ARE RETURNED
TO REQUESTING PROCESSORS AS IF THEY ORIGINATED AT THE
TERMINAL, IF THE LAST CHARACTER IN A STACKED LINE IS A "<®,
IT IS REPLACED WITH A SM, TERMINAL INPUT RESUMES WHEN THE
STACKED INPUT IS EXHAUSTED. READLINX DOES NOT TEST FOR
STACKED INPUT.

TAB CHARACTERS (CONTROL=I, X'09') WILL BE PROCESSED IF BIT
ITABFLG IS SET. THE INPUT TAB TABLE IS 1IN THE QUADRENARY
CONTROL BLOCK, STARTING AT BYTE 64, UP TO ELEVEN VALUES MAY
RE STORED IN TALLIES BEGINNING AT THIS LOCATION, WITH VALUES
IN INCREASING ORDER OF COLUMN POSITION., VALID TAB VALUES
CAUSE AN APPORPRIATE NUMBER OF BLANKS TO BE OUTPUT TO THE
TERMINAL IN ORDER TO POSITION THE CURSOR.

READLIN, READLINX, READISB

INPUT INTERFACE
ITABFLG B8 IF SET, TAB CHARACTERS ARE PROCESSED

CCDEL B IF SET, CONTROL CHARACTERS ARE DELETED
FROM TERMINAL INPUT

IBBEG 8 POINTS ONE BYTE BEFORE THE BUFFER AREA
WHERE INPUT 1S TO BE STORED:; THE BUFFER
MUST BE TWO BYTES GREATER THAN IBSIZE

IBSIZE T CONTAINS THE MAXIMUM NUMBER OF
CHARACTERS ACCEPTED FOR INPUT

LFDLY T CONTAINS (IN THE LOW«ORDER BYTE) THE
NUMBER OF "FILL®" CHARACTERS (NULLS)Y TO
BE ISSUED AFTER A CR/LF ECHO TO THE
TERMINAL (FOR READLIN AND READLINX ONLY)

FRMTFLG B IF SET, CONTROL=X CAUSES BACKSPACES TO
THE BEGINNING OF THE INPUT AREA INSTEAD
OF CR/LF TO A NEW INPUT LINEs ALSO,
CONTROL~R IS IGNORED? REQUIRED BY GETBUF

TITFLG B IF SET, CONTROL WILL NOT BE RETURNED IF
THE MAXIMUM NUMBER OF CHARACTERS IS
INPUT UNLESS A NONeEDITING CONTROL
CHARACTER IS ENTERED (E.G. CARRIAGE
RETURN)s REQUIRED BY GETBUF

PRMPC c TERMINAL PROMPT CHARACTER; REGUIRED BY
GETBUF
BSPCH c CONTAINS THE CHARACTER TO BE ECHOED TO

THE TERMINAL WHEN THE BACK SPACE KEY IS
PRESSEDs REQUYRED BY GETBUF

5-62

; STKFLG B IF SET, GETIB TESTS FOR "STACKED"™ INPUT}
| TERMINAL INPUT WILL NOT BE REQUESTED
UNTIL STACKED INPUT IS EXHAUSTED

] STKINP S POINTS TO THE NEXT "STACKED" INPUT LINE?}
| LINES ARE DELIMINATED BY AM'S, WITH A SM
READLIN, READLINX, READIB
|
|
| INDICATING THF END OF THE STACK
j OUTPUT INTERFACE
18 R zIBBEG
| IBEND s POINTS TO A SM ONE BYTE PAST TME END
OF INPUT DATA (OVERWRITES THE CR OR LF)
|
STKFLG B ZEROED 1F THE END OF STACKED INPUT WAS
J REACHEDJ NOT CHANGED IF INITIALLY ZERO
| STKINP s POINTS YO THE NEXT LINE OF STACKED INPUT
(OR END OF STACK) IF STACKED INPUT IS
| BEING PROCESSED
| ELEMENT USAGE
> R23CO c
| DO D + UTILITY
| R14 R 4+
| R15 R +
f SYSRO 8 USED IF ITABFLG SET AND TAB CHARACTERS
PROCESSED

SUBROUTINE USAGE

| IF NO STACKED INPUT: GETBUF, PCRLF (EXCEPT FOR
| READL INX)

TWO ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED IF
TAB CHARACTERS PROCESSED, OTHERWISE ONE LEVEL REGUIRED

ERROR CONDITIONS

IF A STACKED INPUT LINE EXCEEDS IBSIZE, THE LINE 18
TRUNCATED AT IBSIZE; THE REMAINDER OF THE LINE IS

LOST,

RELOVF, RELBLK, RELCHN

_ RELOVF (2,0F1)«
RELBLK (6,0F1)*
RELCHN (3,0F1)w

- . 5253

FUNCTIONAL DESCRIPTION

THESE ROUTINES ARE USED TO RELEASE FRAMES TO THE OVERFLOW
SPACE POOL. RELOVF IS USED TO RELEASE A SINGLE FRAME,
RELBLK IS USED TO RELEASE A BLOCK OF CONTIGUOUS FRAMES, AND
RELCHN IS USED TO RELEASE A CHAIN OF LINKED FRAMES (WHICH
MAY OR MAY NOT BE CONTIGUOUS), A CALL TO RELCHN SPECIFIES
THE FIRST FID OF A LINKED SET OF FRAMES) THE ROUTINE WILL
RELEASE ALL FRAMES IN THE CHAIN UNTIL A ZERO FORWARD LINK IS
ENCOUNTERED.

INPUT INTERFACE
OVRFLW 0 CONTAINS THE FID OF THE FRAME TO BE
RELEASED (FOR RELOVF), OR THE FIRST FID
OF THE BLOCK OR CHAIN TO BE RELEASED
(FOR RELBLK AND RELCHN, RESPECTIVELY)

Do D CONTAINS THE NUMBER OF FRAMES (BLOCK
SIZE) TO BE RFLEASED, FOR RELBLK ONLY

OUTPUT INTERFACE
NONE
ELEMENT USAGE

OVRFLW D +

R14 R ¢ UTILITY

R1% R +

Do D +

Di D <+ USED BY SYSREL
De D ¢

SUBROUTINE USAGE
SYSRELs TWO INTERNAL SUBROUTINES

RETIX, RETI, RETIXX, RETIXU

RETIX (1,DISKFIO=I)w
RETI (0,DISKFIQOeI)®
RETIXX (12,0I8KFIO=I)»
RETIXU (11,DISKFIOe]I)w

RELOVF, RELBLK, RELCHN

TWO ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED

5-64

FUNCTIONAL DESCRIPTION

THESE ARE THE ENTRY POINTS TO THE STANDARD SYSTEM ROUTINE
FOR RETRIEVING AN ITEM FROM A FILE, THE ITEMeID IS
EXPLICITLY SPECIFIED TO THE ROUTINE, A8 ARE THE FILE
PARAMETERS BASE, MODULO, AND SEPARATION, ADDITIONALLY, THE
NUMBER OF THE FIRST FRAME IN THE GROUP IN WHICH THE ITEM MAY
BE STORED MUST BE SPECIFIED IF THE ENTRY RETIXX IS USED.
THE OTHER ENTRIES PERFORM A "HASHTNG" ALGORITHM TO DETERMINE
THE GROUP (SEE HASH DOCUMENTATION)., THE GROUP IS SEARCHED
SEQUENTIALLY FOR A MATCHING ITEM«ID, IF THE ROUTINE FINDS A
MATCH, IT RETURNS POINTERS TO THE BEGINNING AND END OF THE
ITEM, AND THE ITEM SIZE (FROM THE ITEM COUNT FIELD). IF
ENTRY RETIXU IS USED, THE GROUP 1S LOCKED DURING PROCESSING,
PREVENTING OTHER PROGRAMS FROM ACCESSING (AND POSSIBLY

CHANGING) THE DATA.

THE ITEMeID IS8 SPECIFIED IN A BUFFER DEFINED BY REGISTER
BMSBEGs IF ENTRY RETI I8 USED, REGISTER BMS MUST POINT TO
THE LAST BYTE OF THE ITEM~ID, AND AN AM WILL BE APPENDED TO
IT BY THE ROUTINE. FOR ALL OTHER ENTRY POINTS, THE 1ITEMeID
MUST ALREADY BE TERMINATED BY AN AM,

INPUT INTERFACE
BMSBEG S POINTS ONE BYTE BEFORE THE ITEM=ID

BMS R POINTS TO THE LAST CHARACTER OF THE
ITEM«ID, FOR RETI AND RETIXX ONLY

BASE D <+ CONTAIN THE BASE, MODULO, AND SEPARATION
MODULO T + OF THE FILE TO BE SEARCHED

SEPAR T <

RECORD D CONTAINS THE BEGINNING FID OF THE GROUP

TO BE SEARCHED, FOR RETIXX ONLY

OUTPUT INTERFACE

RETIX, RETI, RETIXX, RETIXU

+ POINT T0 THE LAST CHARACTER OF THE
¢ ITEMeID

BMS
BMSEND

w

RECORD D CONTAINS THE BEGINNING FID OF THE GROUP
TO WHICH THE ITEM=ID HMASHES (SET IF HASH

IS CALLED)
NNCF H ¢
FRMN D + CONTAIN THE LINK FIELDS OF THE FRAME
FRMP D + SPECIFYED IN RECORD: SET BY RDREC
NPCF H ¢

XMODE T =20

ITEM FOUND3 . ITEM NOT FOUND3S
RMBIT B =i a0
SIZE T =VALUE OF IVEM =0
COUNT FIELD
R14 R POINTS ONE PRIOR POINTS TO THE LAST
TO THE ITEM COUNT AM OF THE LAST ITEM
FIELD IN THE GROUP
IR R POINTS TO THE POINTS TO THE AM
FIRST AM OF THE INDICATING END OF
ITEM GROUP DATA (=R14+1)
SR4 8 POINTS 70 THE =R14
LAST AM OF THE
ITEM

ELEMENT USAGE
NONE (EXCEPT DO, D1, AND R15)

SUBROUTINE USAGE

RDREC (LOCAL), HASH (EXCEPT FOR RETIXXj LOCAL). GLOCK
(RETIXU ONLY), IROVF (FOR IR OVERFLOW SPACE HANDL ING
AND ERROR CONDITIONS)

RETIX, RETI, RETIXX, RETIXU

THREE ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED
(FOR IROVF AND GLOCKs RDREC AND HASH REQUIRE ONE

LEVEL)

EXITS

IF THE DATA IN THE GROUP IS BAD « PREMATURE END OF
LINKED FRAMES, OR NONeHEXADECIMAL CHARACTER ENCOUNTERED
IN THE COUNT FIELD = THE MESSAGE

GROUP FORMAT ERROR XXXXXX
IS RETURNED (WHERE XXXXXX I8 THE FID INDICATING WHERE
THE ERROR WAS FOUND), AND THE ROUTINE RETURNS WITH AN

"ITEM NOT FOUND"™ CONDITION. DATA IS NOT DESTROYED, AND
THE GROUP FORMAT ERROR WILL REMAIN,

5-66

REWIND

REWIND (8,TAPEIOeI)w

FUNCTIONAL DESCRIPTION

THIS ROUTINE REWINDS THE TAPE UNIT. IT CALLS INIT AND
REQUIRES FOUR ADDITIONAL LEVELS OF SUBROUTINE LINKAGE.

SETPIB

SETPIB (3,LO0GON)*
FUNCTIONAL DESCRIPTION
SETPIB SETS R14 POINTING TO THE PIB OF THE CALLING PROCESS,
INPUT INTERFACE
NONE

OUTPUT INTERFACE

R14 R POINTS TO THE FIRST BYTE OF THE
PROCESS'S PIB

ELEMENT USAGE
NONE
SUBROUTINE USAGE

NONE

SETPIBF

SETPIBF (3,ABSL1)«

FUNCTIONAL DESCRIPTION

SETPIBF SETS R1S POINTING TO THE PIB ASSOCIATED WITH LINE
ZERO. NO OTHER INTERFACE OR ELEMENT USAGE IS REQUIRED BY
THIS ROUTINE.

SORT

SORT (1,80RT)w

5-67

FUNCTIONAL DESCRIPTION

THIS ROUTINE SORTS AN ARBITRARILY LONG STRING OF KEYS IN
ASCENDING SEQUENCE ONLY? THE CALLING PROGRAM MUST
COMPLEMENT THE KEYS IF A DESCENNING SORT IS REQUIRED. THE
KEYS ARE SEPARATED BY SM'S WHEN PRESENTED TO SORT: THEY ARE
RETURNED SEPARATED BY SB'S, ANY CHARACTER, INCLUDING SYSTEM
DELIMITERS OTHER THAN THE SM AND SB MAY BE PRESENT WITHIN
THE KEVYS,

AN NeWAY POLYPHASE SORT«MERGE SORTING ALGORITHM IS USED.
THE ORIGINAL UNSORTED KEY STRING MAY "GROW" BY A FACTOR OF
10X, AND A SEPARATE BUFFER IS REQUIRED FOR THF SORTED KEY
STRING, WHICH IS ABOUT THE SAME LENGTH AS THE UNSORTED KEY
STRING, THE "GROWTH"™ SPACE IS CONTIGUOUS TO THE END OF THE
ORIGINAL KEY STRING: THE SECOND BUFFER MAY BE SPECIFIED
ANYWHERE . SORT AUTOMATICALLY OBTAINS AND LINKS OVERFLOW
SPACE WHENEVER NEEDED., OUE TO THIS, ONE CAN FOLLOW STANDARD
SYSTEM CONVENTION AND BUILD THE ENTIRE UNSORTED STRING IN AN
NVERFLOW TABLE WITH OVRFLCTR CONTAINING THE BEGINNING FIDJ
THE SETUP IS THEN?

START OF END OF "GROWTH" START OF
UNSORTED KEYS UNSORTED KEYS SPACE SECOND BUFFER

moeesoanenn /e w/ meevevenewd CronnunmoorssedINCnnanenosnee/w

THE SECOND BUFFER POINTER THEN IS MERELY SET AT THE END OF
THE "GROWTH" SPACE, AND SORT IS ALLOWED TO OBTAIN ADDITIONAL
SPACE AS REAQUIRED.

ALTERNATELY, THE ENTIRE SET OF BUFFERS MAY BE 1IN THE IS OR
NS WORKSPACE IF THEY ARE LARGE ENOUGH,

INPUT INTERFACE

SR1 8 POINTS TO THE SM PRECEDING THE FIRST KEY
SRe 8 POINTS TO THE SM TERMINATING THE LAST
KEY
SORT
SR3 S POINTS TO THE BEGINNING OF THE SECOND
BUFFER

OUTPUT INTERFACE

SR1 S POINTS BEFORE THE SB PRECEDING THE FIRST
SORTED KEY (THE EXACT OFFSET VARIES FROM
CASE TO CASE)’ THE END OF THE SORTED
KEYS (SEPARATED BY SB'S) IS MARKED BY A
SM

5-68

ELEMENT USAGE

SB1
8c2
XMODE
FPO
FP1
18
08
BMS
T8
cs
R14
R1S
S1
s2
83
85
87
s8
89

UTILITY

DBLLBLDLLOLIVVDTIDONNN 4O
L B IR K JBD L BR B BE IR IR IR B 2K JE B B e

SUBROUTINE USAGE
COMP (0,80RT)
GWS USED WITH XMODE
FOUR ADDITIONAL LEVELS OF SURROUTINE LINKAGE REGUIRED

TCL=I

MD1 (0,TCL=I)%
MD1B (2,TCL=I)~

FUNCTIONAL DESCRIPTION (MD{)

MDY IS THE BASIC ENTRY POINT (NOT A SUBROUTINE) FOR THE
TERMINAL CONTROL LANGUAGE (TCL) PROCESSOR, WHEN THIS ENTRY
POINT IS USEN, TCL CHECKS FOR PROC CONTROL, AND IF 80,
ENTERS THE PROC PROCESSOR, IF A PROC IS NOT IN CONTROL (AND
BIT CHAINFLG IS ZERO), AN INPUT LINE IS OBTAINED FROM THE
TERMINAL, AND CONTROL PASSES IMMEDIATELY TO MDiB,

INPUT INTERFACE (MD1)
 CHAINFLG B IF SET, TERMINAL INPUT IS NOT OBTAINED
: (A8 WHEN CHAINING FROM ONE DATA/BASIC
PROGRAM TO ANOTHER)

PGFLG B SET TO INDICATE PROC CONTROL

. 5-69

QUTPLUT INTERFACE (MD1)

AFLG B ¢
“ +
. +
. + =0
AFLG+87 B8 +
DAF9 B +
ABTT R ¢
. +
- + 20
o *
ZRIT+6 B <
EMODE T 20
PRMPC C CONTAINS A CO._ON (VeV)
SCO c CONTAINS A 38 (X'FB')
8C1t C + CONTAIN A BLAWK
SCe C +«
TCL=]
HSEND S IHSBEG
18 R =ISBES
N3 R =) SREG

GTHER ELEMENTS AS SET RY MD15, IF ERTERED
FLEMENT USAGE (MD1)
RYa R
SUBROUTINE USAGE (MD1)
IF PAQFLG=0 AND CHAINFLG:OS
WRTLIN, READLIN
FOUR ADDIYIONAL LEVELS 0OF SUBRCUTINE LINKAGE USED
EXITS (MDY

70 &,FR~00 IF PQFLG=1, GTHERJIISE TC MDiB

3=70

TCLe=I

FUNCTIONAL DESCRIPTION (MDiR)

MD1A IS THE POINT WHERE TCL ATTEMPTS TO

(FIRST SET UOF CONTIGUOUS NONeBL/NK DATA

FROM A USER'S MASTER OICTIOYARY. AND Vval
1F NO ERRORS ARE FOUND, THE RFS: O0OF THE

BUFFER IS EDITED AND COFIED INTr THE I5

PASSES TO THE PROCESSOR SPECIFIED IN TH:
OF THE VERR, OR TO THE PROC PROCFSSOR 1IF
PROC (ATTRIBUTE 1='PR%),

OPTION STRINGS, ENCLOSED IN PARFNTHESES,
AT THIS POINT, IUJNMLESS CHARAZTER SCP='07,
FOR FURTHER INFORMATION ABQUT OFTIONS,

INPUT INTERFACE (MDIB)

I8 R POINTS ONE CHARACT
PDAT i

BMSBEG S POINTS TO THE REGINV
SPALE

QUTPUT INTERFACE (MDIR)

CHAINFILLG B + =0

RETRIEVE A VERB

IN THE INPUT BUFFER)

IDATE JT AS SUCH,

DATA IN THE INPUT

WORK SPACE, AND CONTROL
PRIMARY«MCDE=~ID ATTRIBUTE
THE DATA DEFINES 4

ARE ALSO PROCESSED BY TCL

SEE GETOPT DOCUMENTATION

ER BEFORE THE INPUT

ING OF THE BMS WORK

HE END OF THE

HARACTER IN THE VERE

OLLOWING ATTRIBUTE 4
TO THE ENMD=OF«DATA
OR TO THE "Q" 1IN
ITEM DEFINMES A PROC

THE END OF THE VERB
ICTIONARY, IF FOUND

DAFS8 R+

RASE D+

MODULO T + =MBASE, MMONULQ, MSEPAR

SEPAR T +*

1R R + POINT TO THI St AT T

IREND S + INPUT LINF

BMS R ¢ POINT TO THE LAST =

BMSEND S + NAMF (FOR RETIX)

IR R POINTS TQ THE AM *
OF YHE VEPB ITEM, 0OX
AM IN THE TTEM,
ATTRIBUTE OYE IF TH=

TCL=1

SRu4 S POINTS TO THE AM AT
ITEM IN THE MASTER D

RECORD D «

NNCF H ¢

FRMN D

FRMP D + (SEE RETIX OCUMENTATION)

NPCF H +

SIZF T +

THE FOLLOWING SPECIFICATIONS ARE MEANINGFUL ONLY IF THE
FIRST TWO INPUT CHARACTERS ARE NOT 'PQ':

SCP

CTRO

MODETD?

MODEID3

BKBIT
IFLG
VFLG
08

I8
ISBEG

TCLeI

ELEMENTY USAGE (MD1B)

R14

R1S

o

w x

R

R

CONTAINS THE CHARACTER IMMEDIATELY
FOLLOWING 'P' IN THE VERB DEFINITION, IF
PRESENT, OTHERWISE CONTAINS A BLANK

CONTAINS THE PRIMARY MODEe«ID SPECIFIED
IN THE VERB DEFINITION

CONTAINS THE SECONDARY MODE«ID FROM THE
VERB, IF PRESENT, OTHERWISE 0

CONTAINS THE TERTIARY MODE«ID FROM THE
VERB, IF PRESENT, OTHERWISE 0

=0, IF NO ERRORS ENCOUNTERED (SEE BELOW)

=08REG

PNINT ONE CHARACTER REFORE THE BEGINNING
OF THE EDITED INPUT LINE, CHARACTERS
ARE COPIED FROM THE IB, SURJECT TO0 THE
FOLLOWING RULES?

1) ALL CONTROL CHARACTERS AND SYSTEM
NELIMITERS (SR, 8M, AM, VM, SVM) IN THE
INPUT BUFFER ARE IGNORED EXCEPT WHEN
WITHIN DOUBLE QUOTES ("). CONTROL
CHARACTERS (<X'20') ARE ALSO IGNORED
WHEN WITHIN SINGLE QUOTES (").

2) REDUNDANT RLANKS (TwO OR MORE BLANKS
IN SEMUENCE) ARE NOT COPIED, EXCEPT IN
STRINGS ENCLOSED BY SINGLE OR DOUBLE
AUOTE SIGNS., '

3) STRINGS ENCLOSED IN SINGLE QUOTE
SIGNS ARE COPIED AS: SM I STRING SB.

4) STRINGS ENCLOSED 1IN DOUBLE QUOTE
SIGNS ARE COPYED A8t SM V STRING 88,

S)Y END OF DATA I8 MARKED AS: SM Z.

XMODE T

REJCTR T (USED ON ERROR CONDITIONS)
Do N+ USED BY GETOPT
D1 D <+

SURROUTINE USAGE (MDiR)

RETIXS CVXIR IF FJIRS™ INPUT CHARACTERS NOT 'PG'}
GETOPT IF A LEFT PARENYHESIS IS ENCOUNTERED OUTSIDE
QUOTE MARKS

FOUR ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED

EXITS (MD1B)

TO 0,PQ«00 IF FIRST INPUT CHARACTERS ARE 'PG' AND PGFLG
1S ZERO, OR TO 7,PR«00 IF FIRST INPUT CHARACTERS ARE
'PR' AND POQFLG IS S8ET, OTHEREWISE TO THE ENTRY POINT
SET UP IN CTRO, IF THE VERB IS NOT FOUND IN THE MASTER
DICTIONARY, OR HAS A BAD FORMAT, CONTROL PASSES TO MD99
IN THE WRAPUP PROCESSOR, WHICH PRINTS AN ERROR MESSAGE.

TCLeI

ERROR NUMBER ERROR TYPE
(IN REJCTR)

2 UNEVEN NUMBER OF SINGLE OR DOUBLE QUOTE
MARKS IN THE INPUT DATA

3 VERB CANNOT BE IDZNTIFIED IN THE M/DICT

30 VERR FORMAT ERROR (PREMATURE END OF DATA

OR A NON<HEXADECIMAL CHARACTER PRESENT
IN THE MODE~1D)

TCL~II

MD200 (0,TCL=II)
MD201 (31,TCL=1I)

FUNCTIONAL DESCRIPTION

THESE ARE THE ENTRY POINTS (NOT SUBROUTINES) INTO THE TCLeII
PROCESSOR, USED WHENEVER A VERB REQUIRES ACCESS TO A FILE,
OR TO ALL OR EXPLICITLY SPECIFIED ITEMS WITHIN A FILE.
MD200 I8 ENTERED FROM THE TCL-I PROCESSOR AFTER DECODING THE
VERB (PRIMARY MODE-ID = 2). MD201 IS USED BY TCLeII ITSELF
TO REGAIN CONTROE FROM WRAPUP UNDER CERTAIN CONDITIONS (SEE
BELOW), TCL=IY EXITS TO THE PROCESSOR WHOSE MODE=ID IS
SPECIFIED IN MODEIDZ2: TYPICALLY PROCESSORS SUCH AS THE
EDITOR, ASSEMBLER, LOADER, ETC. USE TCL«II TO FEED THEM THE
SET OF ITEMS WICH WAS SPECIFIFD IN THE INPUY DATA,

ON ENTRY, TCLeIl CHECKS THE VERB DIFINITION FOR A SET OF
OPTION CHARACTERS IN ATTRIBUTE SJ) VERB OPTIONS ARE SINGLE
CHARACTERS IN ANY SERUENCE AND COMBINATION, AND ARE LISTED
BELOW (ALL OTHER CHARACTERS ARE IGNORED).

OPTION MEANING

c COPY & ITEMS RETRIEVED ARE COPIED TO THE
IS WORKSPACE

E EXPAND = ITEMS RETRIEVED ARE EXPANDED
AND COPIED TO THE IS WORK SPACE (SEE
EXPAND DOCUMENTATION)» IGNORED IF THE
"C"™ OPTION IS NOT PRESENT

F FILE ACCESS ONLY = FILE PARAMETERS ARE
SET UP BUT ANY ITEMeLIST IS IGNORED BY
TCL=ITy IF THIS OPTION IS PRESENT, ANY
OTHERS ARE IGNORED

N NEW ITEM ACCEPTABLE = IF THE 1ITEM
SPECIFIED IS NOT ON GILE, THE SECONDARY
PROCESSOR STILL GETS CONTROL (THE
EPITOR, FOR EXAMPLE, CAN PROCESS A NEW

ITEM)

P PRINT « ON A FULL FILE RETRIEVAL (ALL

TCLeII

ITEMS), THE ITEMeID OF EACH ITEM IS
PRINTED AS IT IS RFTRIEVED

u UPDATING SEQUENCE FLAGGED = IF ITEMS ARE
TO UPDATED AS RETRIEVED, THIS OPTION IS
MANDATORY

Z FINAL ENTRY REQUIRED « THE SECONDARY

PROCESSOR WILL BE ENTERED ONCE MORE
AFTER ALL ITEMS HAVE BEEN RETRIEVED (THE
COPY PROCESSOR, FOR INSTANCE, USES THIS
OPTION TO PRINT A MESSAGE)

THE INPUT DATA STRING TO TCL=II CONSISTS OF THE FILEeNAME
(OPTIONALLY PRECEDED RY THE MODIFIER "DICT", WHICH SPECIFIES
ACCESS TO THE DICTIONARY OF THE FILE), FOLLOWED BY A LIST OF
ITEMS, OR AN ASTERISK ("«") SPECIFYING RETRIEVAL OF ALL
ITEMS IN THE FILE.

INPUT INTERFACE

IR R POINTS TO THE AM BEFORE ATTRIBUTE S OF
THE VERB

SR4 S POINTS TO THE AM AT THE END OF THE VERB

5-74

MODEID2

BMSBEG

ISBEG

T

S

]

CONTAINS THF MODE=ID OF THE PROCESSOR TO
WHICH TCL=IT TRANSFERS CONTROL (ASSUMING
NO ERROR CONDITIONS ARE ENCOUNTERED)

POINTS ONE PRIOR TO AN AREA WHERE THE
FILE NAME IS8 TO BE COPIED, IF THE "F"
OPTION IS PRESENT, OTHERWISE ONE PRIOR
TO AN AREA WHERE ITEMeIDS ARE 70 BE
COPIED

POINTS ONE PRIOR TO AN AREA WHERE ITEM3
ARE TO BE COPIED, IF THE "C" OPTION IS
PRESENT

ELEMENTS AS REQUIRED BY GETFILE

OUTPUT INTERFACE

TCL=1I

DAF 1
DAF2
DAF3
DAF4
DAFS

DAF6

DAF10
DAF11
NOTE?s

DAF8

DAF9
I8

B

SET IF THE "U" OPTION IS SPECIFIED
SET IF THE "C" OPTION 1S SPECIFIED

SET IF THE "P" OPTION IS SPECIFIED

SET IF THE "N" OPTION 1S SPECIFIED

SET IF THE "Z" OPTION IS SPECIFIED

SET IF THE "F" OPTION 18 SPECIFIED, OR
IF A FULL FILE RETRIEVAL IS SPECIFIED
(NO "F" OPTION)

SET IF MORE THAN ONE ITEM 1S SPECIFIED
IN THE INPUT DATA, BUT NOT A FULL FILE
RETRIEVAL ("#")

SET IF THE "E"™ OPTION IS SPECIFIED

THE ABOVE BITS ARE NOT INITIALIZED YO ZERO

B

SET IF A« FILE DICTIONARY 1S BEING
ACCESSED, OTHERWISE RESET (FROM GETFILE)

s0

POINTS ONE PAST THE END OF THE FILE NAME
IN THE INPUT STRING IF THE "F" OPTION IS
PRESENT? POINTS TC THE LAST AM IN THE
COPIED ITEM IF THE "c" OPTION IS
PRESENT, OTHERWISE TO THE END OF THE
INPUT STRING

5=75

ISBEG
BMSBEG

RMBIT

SBASE

TCL=11

§MOD
SSEP

BASE
MODULO
SEPAR

DBASE
DMOD
DSEP

8CO

UNCHANGED
SET IF THE FILE 1S SUCCESSFULLY
RETRIEVED IF THE "F" OPTION IS PRESENT

CONTAIN THE BASE, MODULO, AND SEPARATION

OF THE FILE BEING ACCESSED

s3BASE, SMOD, SSEP ON THE FIRST EXIT
ONLY (FROM MD200)

CONTAIN THE BASE, MODULO, AND SEPARATION
OF THE DICTIONARY OF THE FILE BEING
ACCESSED IF THE "F" OPTION IS PRESENT

CONTAINS A SB IF THE LAST ITEMeID IN THE
INPUT STRING I8 ENCLOSED IN QUOTE MARKS,
OTHERWISE CONTAINS A BLANK

THE FOLLOWING SPECIFICATIONS ARE MEANINGFUL ONLY WHEN

THE "F*
8RO

SIZE

SR4

ISEND

IR

RMODE

XMODE
VOBIT
ELEMENT USAGE

8

OPTION IS NOT PRESENT?

POINTS ONE PRTOR TO THE COUNT FIELD OF
THE RETRIEVED ITEM

CONTAINS THE VALUE OF THE COUNT FIELD OF
THE RETRIEVED ITEM

POINTS TO THE LAST AM OF THE RETRIEVED
ITEM

=18 IF THE "C" OPTION IS PRESENT

POINTS TO THE LAST AM OF THE RETRIEVED
ITEM TO BE COPIED, IF THE "C" OPTION IS
PRESENT, OTHERWISE POINTS TO THE AM
FOLLOWING THE ITEMeID

=MD201 IF ITEMS ARE LEFT TO BE
PROCESSED, OTHERWISE=0

0

=0 (MD201 ONLY)

5-76

TCL=II

Ci T USEN FOR ERROR MESSAGES
ELEMENTS USED BY THE VARIOUS SUBROUTINES BELOW

SUBROUTINE USAGE

GETFILEs IF NO 'F' OPTION: GETIT™M FOR FULL FILE
RETRIEVAL, RETIX AND ONE INTERNAL SUBROUTINE IF NOT
FULL FILE RETRIEVAL, GETSPC IF MORE THAN ONE ITEM (BUT
NOT "=x") SPECIFIED, EXPAND 1IF THE "gE" OPTION IS
PRESENT, WRTLIN IF THE "P" OPTION IS PRESENT

MD201 ONLY: WSINIT; GNTBLI IF MORE THAN ONE ITEM (BUT
NOT "=") SPECIFIED

MD995 AND BMSOVF USED WITH XMODE
SEVEN ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED

BY MD200s FIVE ADDITIONAL LEVELS REQUIRED BY MD201 FOR
FULL FILE RETRIEVAL, OTHERWISE THREE LEVELS REQUIRED

ERROR CONDITIONS

THE FOLLOWING CONDITIONS CAUSE AN EXIT TO THE WRAPUP
PROCESSOR WITH THE ERROR NUMBER INDICATED!

ERROR CONDITION

13 DL/ID ITEM NOT FOUND, OR IN BAD FORMAT

199 IS WORK SPACE NOT BIG ENOUGH WHEN THE
"C* OPTION IS SPECIFIED

200 NO FILE NAMFKSPECIFIED

201 FILE NAME ILLEGAL OR INCORRECTLY DEFINED

IN THE M/DICT
e20e ITEM NOT ON FILE; ALL MESSAGES OF THIS
TYPE ARE STORED UNTIL ALL ITEMS HAVE

BEEN PROCESSED? ITEMS WHICH ARE ON FILE
ARE STILL PROCESSED

TCL=IT

203 NO ITEM LIST SPECIFIED

TIME, DATE, TIMDATE

TIME (S,SYSTEMeS5URSwI]1)«
DATE (6,SYSTEM=SURS«II)#
TIMDATE (4,SYSTEM-SUBSeII)n

FUNCTIONAL DESCRIPTION
THESE ROUTINES RETURN THE SYSTFM TIME AND/OR THE SYSTEM

DATE, AND STORE IT IN THE BUFFER AREA SPECIFIED BY PEGISTER
R1S., THE TIME IS RETURNED AS ON A 24eMOUR CLOCK,

ENTRY BUFFER SIZE FORMAT
REQUIRED (BYTFS)
TIME 9 HHIMM$8S
DATE 12 DD MMM YYYY
TIMDATE 22 HH$MMESS DD MMM YYYY

INPUT INTERFACE
R1S R POINTS ONE PRIOR TO THE BUFFER AREA
OUTPUT INTERFACE
R1S R POINTS TO0 THE LAST BYTE OF THE DATA
STOREDs THE BYTE IMMEDIATELY FOLLOWING
CONTAINS A BLANK
R14FID D =0 (DATE AND TIMDATE ONLY)

ELEMENT USAGE

DO D ¢
D1 O ¢ USED BY TIME AND TIMCATE ONLY
D2 0D «
D3 D +

SUBROUTINE USAGE
TIME USED BY TIMDATEs MBDSUB USED FY TIME

TWO ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED BY

TIME, DATE, TIMDATE

TIMDATE, ONE LEVEL REQUIRED BY TIME, NONE BY DATE

5-78

TPREAD, TPWRIYE

TPREAD (6, TAPHIO=I)w
TPWRITE (7,TAPHEIO=I)»

FUNCTIONAL DESCRIPTION

TPREAD READS ONE RECORD FROM THE TAPE INTO THE TAPE BUFFER
(FRAME FFFF10)3 THE READ STOPS ETTHER WHEN THE INTER~RECORD
GAP IN THE TAPE IS DETECTED, OR AT THE END OF THE BUFFER,

TPWRITE WRITES ONE RECORD FROM THE TAPE BUFFER TO MAGNETIC
TAPEs THE NUMBER OF BYTES WRITTEN IS SET UP BY THE "TeATT"

VERB.
INPUT INTERFACE

ATTACH B MUST KE SET, INDICATING THAT THE TAPE
UNIT I8 ATTACHED

OUTPUY INTERFACE

R1S R FOR TPREAD, POINTS TO THE LASTY BYTE
READ

BYTESRD T 8ET T THE NUMBER OF BYTES READ IN 8Y
TPREAD) SET TO THE TAPE RECORD SI2E BY

TPWRITE
PUFLB 8 <
VOBIT B + SET T ZERO ON ERROR EXITS (SEE BELOW)
RMODE T +

THE TAPZ STATUS BIYS ARE RESET APPROPRIATELY (SEE
TPSTAT DOCUMENTATION)

ELEMENT USAGE

0o D ¢

D1 D + UTILIVY

T4 T +

Rig R ¢

Re2sCo c USED YO IDENTIiFY EITHER A READ OPERATION

(BIT ZERO SET) OR WRITE OPERATION (BIT

TPREAD, TPWRITE

ZERO RESEYT) IN PROGRESS, FOR USE BY
COMMOMN ROUTINES

CTR1 T USED IF TPWRITE ENCOUNTERS AN
END«OF=TAPE CONDITION

ALL ELEMENTS USED BY FRMDMP IF THAT ROUTINE IS CALLED
BY RDPARITY (SEE ROPARITY AND FRMDMP DOCUMENTATION)

SUBROUTINE USAGE

INIT? TPSTAT: REWIND, CRLFPRINT, PCRLF, PRINT (FOR
UNLABELED TAPES), AND THREE INTERNAL SUBROUTINES ON
END=QOF=TAPE CONDITIONS, AND TPREAD, CVDR1S, BCKSP, AND
ANOTHER INTERNAL SUBROUTINE ON TPREAD END~OF«TAPE
CONDITIONS ONLY3 BCKSP ON PARITY ERRORS, AND RODPARITY
ON TPREAD PARITY ERRORS ONLY AFTER THE NORMAL NUMBER OF
RETRIES (SEE BELOW)

MAXIMUM NINE ADDITIONAL LEVELS OF SUBROUTINE LINKAGE
REGUIRED BY TPREAD (FOR PARITY ERRORS ON READING LABELS
OF TAPE REELS AFTER THE FIRST)s FOUR LEVELS REQUIRED
BY TPWRITE

ERROR CONDITIONS

READ PARITY ERROR: THE READ IS REPEATED TWENTY TIMES)
IF THE PARITY ERROR PERSISTS, RDPARITY IS CALLED

WRITE PARITY ERROR? THE SEQUENCE "BACKSPACE / WRITE
END»OF=FILE MARK / BACKSPACE AND REPEAT WRITE" IS
REPEATED TWENTY TIMESs 1IF THE PARITY ERROR PERSISTS,
AN EXIT IS TAKEN TO MD99 WITH MESSAGE 98

END OF FILES AN EXIT IS TAKEN TO MD99 WITH MESSAGE 94
ON A READ

TAPE NOT ATTACHED: AN EXIT IS TAKEN TO MD99 WITH
MESSAGE 93

TPSTAT, TPINIT

TPSTAT (1S, TAPEIQe=I)»
TPINIT (12, TAPEIQeI)®

FUNCTIONAL DESCRIPTION

THESE TAPE CONTROL SUBROUTINES ARE USED BY ALL OTHER SYSTEM
TAPE I/0 ROUTINES. TPINIT OUTPUTS A FUNCTION=CODE OF "1" TO
THE TAPE CONTROLLER, THERERY SETTING IT TO AN INITIAL
CONDITION, AND THEN FALLS INTO TPSTAT TO GET THE TAPE STATUS
FROM THE CONTROLLER. IT RETURNS IF THE TAPE IS IN A "READY"
STATE. 1IF THE TAPE IS REWINDING, THE SUBROUTINE WAITS UNTIL
IT IS FINISHED. OTHERWISE, THE STATUS IS TESTED UP TO ONE
HUNDRED TIMESs IF THE TAPE IS STILL NOT READY, NOTREADY IS

CALLED.

5-80

INPUT INTERFACE

ATTACH B

Ri4 R

QUTPUT INTERFACE

REJCTR T

POFLG B +
VOBITY B8 <+
RMODE T

=1) CONVENTIONALLY, THE TCL VERB T=ATT
1S USED TO SET THIS RIT

POINTS TO HALFeTALLY TAPSTWp TPINIT SETS

THIS REGISTER AS PART OF THE
INITIALIZATION PROCESS

SET TO ZERO BY INIT, AND BY TPSTAT AFTER
A "NOTeREAODY" CONDITION

SET TO ZERO TF ATTACH IS8 ZERO

TAPE STATUS BITS:

EOFBIT 8
EOTBIT B
NORING B

TPSTAT, TPINIT

PARITY B

TPROY B
ELEMENT USAGE

Té T

R1S R

SUBROUTINE USAGE

SET IF AN END=OF~FILE MARK IS REACHED

S8ET IF THE TAPE IS AT LOAD POINY, OR AT
THE END«OFe«TAPE MARKER

SET, ON A WRITE OPERATION, IF THE WRITE
RING IN THE TAPE IS NOT PRESENT

S8ET IF A PARITY ERROR IS DETECTED

SET IF THE TAPE I8 READY

USED AS A DELAY COUNTER

UTILITY

NOTREADY IF THE TAPE IS NOT READY

THREE ADDITIONAL LEVFLS OF SUBROUTINE LINKAGE REQUIRED

(FOR NOTREADY)
EXITS

T0O MD99 WITH
ATTACH=0

MESSAGE 93 ("ATTACH THE TAPE UNIT") IF

5-81

TSINIT

TSINIT (3,TCL=INIT)w
FUNCTIONAL DESCRIPTION

THIS ROUTINE INITIALIZES THE REGISTER TRIAD ASSOCIATED WITH
THE TS WORK SPACE.

INPUT INTERFACE
NONE

OUTPUT INTERFACE

TS R ¢ POINT TO THE BEGINNING OF THE TS WORK
TSBEG S ¢ SPACE (PCRe¢S)

(R14 R) +

TYSEND 8 + POINT TO THE LAST BYTE OF THE TS WORK
(R1S R) + SPACE (S11 BYTES PAST TSBEG)® NOTE THIS

IS AN UNLINKED WORK SPACE
THE FIRST BYTE OF THE WORK SPACE IS SET 7O x'00'.
ELEMENT USAGE
NONE C(EXCEPT DO)
SUBROUTINE USAGE
ONE INTERNAL SUBROUTINME
ONE ADDITIONAL LEVEL OF SUBROUTINE LINKAGE REQUIRED

UPDITM

UPDITM (0,WRAPUPeII)®

FUNCTIONAL DESCRIPTION

UPDITM PERFORMS UPDATES TO A DISC FILE DEFINED BY ITS BASE
FID, MODULO, AND SEPARATION. 1IF THE ITEM IS TO BE DELETED.,
THE ROUTINE COMPRESSES THE REMAINDER OF THE DATA IN THE
GROUP IN WHICH THE ITEM RESIDES? IF THE ITEM I8 TO BE
ADDED, IT IS ADDED AT THE END OF THE CURRENT DATA IN THE
GROUPs IF THE ITEM IS TO BE REPLACED, IT IS REPLACED IN
PLACE, SLIDING THE REMAINING ITEMS IN THE GROUP TO THE LEFT
DR RIGHT AS NECESSARY,

5-82

IF THE UPDATE CAUSES THE DATA IN THE GROUP TO REACH THE END
OF THE LINKED FRAMES, NEXTOVF IS ENTERED TO OBTAIN ANOTHER
FRAME FROM THE OVERFLOW SPACE POOL AND LINK IT TO THE
PREVIOUS LINKED SET} AS MANY FRAMES AS REQUIRED ARE ADDED.
IF THE DELETION OR REPLACEMENT OF AN ITEM CAUSES AN EMPTY
FRAME AT THE END OF THE LINKED FRAME SET., AND THAT FRAME IS
NOT IN THE "PRIMARY®™ AREA OF THE GROUP, IT IS RELEASED 70
THE OVERFLOW SPACE POOL.

RETIXU IS USED TO RETRIEVE THE ITEM TO RE UPDATED, LOCKING
THE GROUP.

ONCE THE ITEM IS RETRIEVED, PROCESSING CANNOT BE INTERRUPTED
UNTIL COMPLETED.

INPUT INTERFACE

BMSBEG S POINTS ONE PRIOR TO THE ITEMeID OF THE
ITEM TO BE UPDATED3 THE ITEMeID MUST BE
TERMINATED BY AN AM

T8 R POINTS ONE PRIOR TO THE ITEM BODY TO BE
ADDED OR REPLACED (NO ITEMeID OR COUNT
FIELD)s NOT MNEEDED FOR DOELETIONS? THE
ITEM BODY MUST BE TERMINATED BY A SM

CH8 c CONTAINS THE CHARACTER 'D' FOR ITEM
DELETIONS 'U' FOR ITEM ADDITION OR
REPLACEMENT
UPDITM
BASE D ¢ CONTAIN THE BASE, MODULO, AND SEPARATION
MODULO T ¢ OF THE FILE BEING UPDATED
SEPAR T ¢+

OUTPUT INTERFACE
NONE
ELEMENT USAGE

DAF9

UTILITY

o

o
XOOITOOOOUO 4444
L K IR BE BE B BE K K BE B B R

5-83

IR R ¢
uPD R ¢
BMS R <
CS R +
R14 R ¢
R1S R +
SR4 S ¢

ELEMENTS USED BY THE VARIOUS SUBROUTINES BELOW

SUBROUTINE USAGE

RDLINK3 RDREC? RETIXU} DECINHIB} GUNLOCK3 RELCHN
IF OVERFLOW FRAMES RETURNED; ATTSPC IF MORE OVERFLOW
FRAMES NEEDED? TWO INTERNAL SUBROUTINES

NEXTOFV AND ONE LOCAL SUBROUTINE USED WITH XMODE
FOUR ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED

UPDITM

ERROR CONDITIONS

{. IF THE GROUP DATA IS BAD (PREMATURE END OF LINKED
FRAMES, OR NON=HEXADECIMAL CHARACTER FOUND IN AN ITEM
COUNT FIELD), IRNVF IS ENTERED 7TO PRINT A WARNING
MESSAGE, AND THE GROUP DATA 1S TERMINATED AT THE END OF
THE LAST GOOD ITEM BEFORE PROCESSING CONTINUES

2. IF THE FILE BEING UPDATE IS THE M/DICT
(BASE=MBASE), AND BIT SYSPRIVY IS ZERO, PRIVTSTZ IS
ENTERED AND NO UPDATE IS PERFORMED

3. IF THE ITEMeID CONTAINS MORE THAN 50 CHARACTERS, IT
IS TRUNCATED WITHOUT ANY INOICATION

4., IF THE JTEM EXCEEDS THE MAXIMUM SIZE (32267 BYTES,

X'7E0B'), THE ITEM I8 TRUNCATED TO THE MAXIMUM SIZE,
AND NO INDICATION IS GIVEN

WEOF

WEOF (11,TAPEIO=I)»
FUNCTIONAL DESCRIPTION

WEOF WRITES AN END«OF«FILE MARK ON THE TAPE, 1IF BIT PROTECT
IS SET, IT CALLS NORING REPEATEDLY UNTIL IT IS RESET (OR BIT
ATTACH IS RESET) BEFORE ATTEMPTING A WRITE, WEOF ALSO CALLS
INIT AND TPSTAT, AND REQUIRES FOUR ADDITIONAL LEVELS OF
SUBROUTINE LINKAGE.

5-84

WRAPUP

WRAPUP PROCESSOR

MND992 (6,WRAPLP=I)*
MD993 (2,WRAPUPe])*
MD99Y (4,WRAPUP=I)w
MD99S (3,WRAPUP=I)x
MD99 (0,WRAPUP«I)x*
MD999 (1,WRAPUP=])»

FUNCTIONAL DESCRIPTION

THESE ARE THE ENTRY POINTS INTO THE SYSTEM ROUTINE WHICH
"WRAPS UP®"™ THE PROCESSING INITTATED BY A TCL STATEMENT,
PERFORMS DISK UPDATES AND PRINTS MESSAGES AS REQUIRED, AND
REINITIALIZES FUNCTIONAL ELEMENTS FOR PROCESSING ANOTHER TCL
STATEMENT. WRAPUP MAY ALSO BE TREATED AS A SUBROUTINE BY
SETTING TALLY RMODE TO THE MODE«ID OF THE ROUTINE TO WHICH
WRAPUP SHOULD RETURN CONTROL AFTER IT IS DONE. NOTE,
HOWEVER, THAT WRAPUP ALWAYS SET THE RETURN STACK TO A NULL
OR EMPTY CONDITION BEFORE EXITING,

THE VARIOUS ENTRY POINTS ARE PROVIDFD TO SIMPLIFY THE
INTERFACE REQUIREMENTS WHEN WRAPUP IS USED TO STORE OR PRINT
MESSAGES FROM THE ERRMSG FILE THE FEATURES OF EACH CAN BE
SEEN IN THE FOLLOWING TABLE:

MD992 C1 CONTAINS A MESSAGE NUMBER? D9
CONTAINS A NUMERIC PARAMETER? THE VALUE
IN C1, CONVERTED TO AN ASCII STRING, IS
USED AS THE ITEM=ID OF AN ITEM TO BE
RETRIEVED FROM THE MESSAGE FILE
(NORMALLY ERRMS8G)s THE MESSAGE IS SET UP
IN THE HISTORY STRING (SEE BELOW), AND
CONTROL PASSES TO MD99

MD993 Ct CONTAINS A MESSAGE NUMBER3 ce
CONTAINS A NUMERIC PARAMETER? THE VALUE
IN C1, CONVERTED TO AN ASCII STRING, IS
USED AS THE ITEM=~ID OF AN ITEM TO BE
RETRIEVED FROM THE MESSAGE FILE
(NORMALLY ERRMSG)? THE MESSAGE IS SET UP
IN THE HISTORY STRING (SEE BELOW), AND
CONTROL PASSES TO MD99

WRAPUP

MD994 €1 CONTAINS A MESSAGE NUMBER; IS POINTS
ONE BEFORE THE BEGINNING OF A STRING
PARAMETER, WHICH IS TERMINATED BY AN AM
OR 8M3 THE MESSAGE IS SET UP IN THE
HISTORY STRING AND CONTROL PASSES TO
MD99

5-85

MD99S LIKE MD994, FXCEPT THE STRING PARAMETER
IS STORED AT BMSBEG+1 THROUGH AN AM OR
SM

MD99 MESSAGE NUMBERS (WITHOUT ANY PARAMETERS)
MAY BE STORED IN REJCTR, REJO, AND REJ!
(NO ACTION IS TAKEN IF Z2ER0)? 1IF RMODE
IS ZERO, MESSAGES ARE PRINTED REGARDLESS
OF THE VALUE OF VOBIT (SEE BELOW)s THE
MESSAGES ARE SET UP IN THE HISTORY
STRING AND CONTROL PASSES TO MD999

MD999 THE HISTORY STRING IS PROCESSED, AND
PROCESS WORK SPACES ARE REINITIALIZED:
CONTROL PASSES TO TCL IF RMODE IS ZERO,
OTHERWISE TO THE ROUTINE SPECIFIED B8Y

RMODE
INPUT INTERFACE
HSBEG S <+ POINT ONE BEFORE THE BEGINNING AND TO
HSEND 8§ <+ THE END, RESPECTIVELY, OF THE HISTORY
STRINGs IF HSBEG=HSEND, THE STRING IS
NULL

THREE TYPES OF HISTORY STRING ELEMENTS ARE RECOGNIZED
BY WRAPUP} ALL OTHERS ARE 1IGNORED, THE TYPE OF
PROCESSING DONE FOR EACH ELEMENT DEPENDS ON THE SECOND,
AND POSSIBLY THIRD CHARACTER OF THE ELEMENT STRING.
(THE QUOTE MARKS IN THE FOLLOWING EXAMPLES ARE NOT PART
OF THE STRINGS.)

1. OUTPUT MESSAGE
SM "0" AM MESSAGE=ID AM (PARAMETER AM,,,) SM

WRAPUP
WNHERE "MESSAGE~ID" IS THE ITEMeID (NORMALLY A
DECIMAL NUMERIC) OF AN ITEM IN THE MESSAGE FILE

THE PARAMETER STRING TS PASSED TO PRTERR FOR
MESSAGE FORMATTING (SEE PRTERR DOCUMENTATION)

2. DISK UPDATE/DELETE

8M "DU"™ AM BASE VM MODULO VM SEPARATION AM ITEMeID
AM ITEMeBODY AM SM

SM "DD" AM BASE VM MODULO VM SEPARATION AM ITEMeID
AM SM

WHERE "DU"™ CAUSES THE ITEM IN THE FILE SPECIFIED

BY "BASE", "MOoDULO"™, AND "SEPARATION® TO BE
REPLACE, AND "DD" DELETES IT

5-86

3. (END OF HISTORY STRING)

SM

CONVENTIONALLY,

nzn

A PROCESS WISHING TO ADD DATA TO THE

HISTORY STRING BEGINS AT HSEND+13 AFTER THE ADDITIONAL

ELEMENTS HAVE REEN ADDED, THE STRING IS TERMINATED

(ONCE AGAIN) BY A SM AND "Z", AND HSEND IS SET POINTING

TO THIS SM,

WMODE T IF NON=ZERO, THE VALUE IS USED AS THE
MONDE=ID FOR AN INDIRECT SUBROUTINE CALL
(RSLI *) EXECUTED IMMEDIATELY AFTER THE
HISTORY STRING HAS BEEN 'PROCESSED, AND
REFORE WORK SPACE AND PRINTER
CHARACTERISTICS ARE RESETs THIS ALLOWS
SPECIAL PROCFSSING YO BE DONE ON ANY
ENTRY INTO WRAPUP

RMODE T IF NONeZERO, WRAPUP EXITS T0 THE
SPECIFIED MODE=ID INSTEAD OF TO TCL

VOBIT B IF SET, AND RMODE 1S NONeZERO, MESSAGES
ARE STORED IN THE HISTORY STRING, FOR
OUTPUT ON A LATER ENTRY INTO WRAPUP WITH

WRAPUP

RMODE ZERO

REJCTR T ¢ MAY CONTAIN MESSAGE NUMBERS WHICH DO NOT

REJO T + REQUIRE PARAMETERS? REJCTR IS ALWAYS

REJ1{ T + TESTED FIRST, THEN REJO, AND THEN REJ1?
NO ACTION IS TAKEN ON A ZERO VALUE? A
VALUE OF 9999 IS USED INTERNALLY BY
WRAPUP TO JIDENTIFY WHICH MESSAGES HAVE
BEEN PROCESSED, AND SHOULD NOT NORMALLY
BE USED AS AN INPUT VALUE FOR REJO OR
REJ1

(o) | T ¢ (SEE MD992, MD993, MD994, AND MD995

ce T « ABOVE)

D9 D ¢

LPBIT 8 IF SET, ALL OPEN SPOOL FILES ARE CLOSED

OVRFLCTR D IF NON=ZERO, USED AS THE STARTING FID OF

" A LINKED SET OF OVERFLOW FRAMES WHICH IS

RELEASED TO THE SYSTEM OVERFLOW SPACE
POOL? USED BY SORT, FOR INSTANCE, TO
STORE THE BEGINNING FID OF A SORTED
TABLE, IN WHICH CASE THE OVERFLOW SPACE
USED BY SORT IS ALWAYS RELEASEN, EVEN IF
PROCESSING IS ABORTED BY AN "END™

COMMAND FROM DEBUG

5-87

USER T USED TO CONTROL THE FINAL EXIT FROM
WRAPUP WHEN RMODE=03 SEE "“EXITS"

OUTPUT INTERFACE

HSEND S sHSREG EXCEPT WHEN MESSAGES ARE STORED
INSTEAD OF PRINTED

VOBIT B <

LPBRIT B ¢

WMODE T ¢ =0

REJCTR T

REJO T o

REJ1 T ¢
WRAPUP

RETURN STACK NULLS RSEND=X'01B0', RSCWA=X'0184', AND
THE REST OF THE RETURN STACK IS FILLED
WITH X'FF!

RMODE T SET TO ZERO BY TCLXIT AND NSPCO

INHIBITH H =20

ELEMENTS AS INITIALIZED BY WSINIT (AND ISINIT IF
RMODE=0)

THE FOLLOWING ELEMENTS ARE SET UP ONLY IF RMODE=03

XMODE T ¢ =0
OVRFLCTR T «

IBSIZE T 2140
ELEMENT USAGE

UPD R

BASE D ¢

MODULO T <+ USED IN DISK UPDATES
SEPAR T «

CHS8 C +

ELEMENTS USED BY THE S8UBRROUTINES BELOW
SUBROUTINE USAGE

WSINITs MBDSUB FOR MESSAGE NUMBERS?S PRTERR TO PRINT
MESSAGES? cCvDls AND UPDITM TO DO DISK UPDATES:
CRLFPRINT IF A FORMAT ERROR IS FQUND IN A "“DD" OR "DU"
HISTORY STRING ELEMENT} PCLOSEALL IF LPBIT=13 IF
RMODE=0s ISINIT, RESETTERM, RELSP (IF USER=2), RELCHN
(IF OVRFLCTR IS NON<ZERO)

5-88

MAXIMUM OF SEVEN ADDITIONAL LEVELS OF SUBROUTINE
LINKAGE REQUIRED IF RELCHN MUST PRINT AN ERROR MESSAGE}
MAXIMUM OF SIX LEVELS REGUIRED FOR PRTERR; FOUR LEVELS
REGUIRED FOR UPDITMp THREE LEVELS REQUIRED FOR ISINIT)
TWO LEVELS ALWAYS NEEDED FOR WSINIT

WRAPUP

EXITS

TO THE ENTRY POINT SPECIFIED IN RMODE IF NONeZERO? TO
LOGOFF IF USER=3 (8S8ET, FOR INSTANCE, BY THE DEBUG "OFF"
COMMAND) 3 TO MDO IF USER=z2 (SET BY THE LOGOFF
PROCESSOR)s OTHERWISE TO MDt

ERROR CONDITIONS

IF A FORMAT ERROR IS8 FOUND IN A “"DD®" OR %“pDU" HISTORY
STRING ELEMENT, THME MESSAGE

DISK«UPD STRING ERR

IS DISPLAYED, AND PROCESSING CONTINUES WITH THE NEXT
ELEMENT

WRTLIN, WT2, WRITOB

WRTLIN (2,TERMIO) »
WT2 (10,TERMIO)
WRITOB (3,TERMIO)«

FUNCTIONAL DESCRIPTION

THESE ARE THE STANDARD ROUTINES FOR OUTPUTTING DATYA TO THE
TERMINAL OR LINE PRINTER, ENTRY WRTLIN DELETES TRAILING
BLANKS FROM THE DATA AND THEN ENTERS T2, WT2 ADDS A
TRAILING CARRIAGE RETURN AND LINE FEED, INCREMENTS LINCTR,
AND ENTERS WRITOB, WHICH QUTPUTS THE DATA,

THE DATA TO BE OUTPUY IS POINTED YO BY OBBEG, AND CONTINUES
THROUGH THE ADDRESS POINTED TO 8Y OB, OUTPUY IS ROUTED TO
THE TERMINAL IF BIT LPBIT IS OFF, OTHERWISE IT IS STORED IN
THE PRINTER SPOOLING AREA, PAGINATION AND PAGE=HEADING
ROUTINES ARE INVOKED AUTOMATICALLY IF BIT PAGINATE IS SET.
IF IT IS SET, THEN WHEN THE NUMBER OF LINES OUTPUT IN THE
CURRENT PAGE (IN LINCTR) EXCEEDS THE PAGE SIZE (IN PAGSIZE),
THE FOLLOWING ACTIONS TAKE PLACE: 1) THE NUMBER OF LINES
SPECIFIED IN PAGSKIP ARE SKIPPED, 2) THE PAGE NUMBER IN
PAGNUM I8 INCREMENTED, AND 3) A NEW HEADING IS PRINTED (SEE
PRNTHDR DOCUMENTATION). A VALUE OF ZERO 1IN PAGSIZE
SUPPRESSES PAGINATIqNa HOWEVER, REGARDLESS OF THE SETING OF
PAGINATE.

5-89

INPUT INTERFACE
OBBEG s
0B R
LPBIT B
LISTFLAG B

WRTLIN, WT2, WRITOB
NOBLNK 8
LFDLY T
PAGINATE 8
PFILE T

POINTS ONE BYTE PRIOR TO THE OUTPUT DATA
BUFFER

POINTS TO THE LAST CHARACTER IN THE
BUFFER) THE BUFFER MUST EXTEND AT LEAST
ONE CHARACTER BEYOND THIS LOCATION

IF SET, OUTPUT IS ROUTED TO THE SPOOLER
(NOTE$ ROUTINE SETLPTR SHOULD BE USED TO
SET THIS BIT SO PRINTER CHARACTERISTICS
ARE SET UP CORRECTLY)

IF SET, ALL OUTPUT YO THE TERMINAL IS
SUPPRESSED

IF SET, BLANKING OF THE OUTPUT BUFFER IS
SUPPRESSED

LOWER BYTE CONTAINS THE NUMBER OF “FILL"
CHARACTERS TO BE OUTPUT AFTER A CR/LF

IF SET, PAGINATION AND PAGE<HEADINGS ARE
INVOKED

CONTAINS THE PRINT FILE NUMBER FOR PPUT}
MEANINGFUL ONLY IF LPBIT IS SET

THE FOLLOWING SPECIFICATIONS ARE MEANINGFUL ONLY IF
PAGINATE IS SETs

PAGHEAD

PAGSIZE

PAGSKIP

PAGNUM
PAGFRMT

POINTS ONE BYTE BEFORE THE BEGINNING OF
THE PAGE*HEADING MESSAGEs IF THE FRAME
FIELO OF THIS REGISTER IS ZERO, NO
HEADING IS PRINTED

CONTAINS THE NUMBER OF PRINTABLE LINES
PER PAGE

CONTAINS THE NUMBER OF LINES TO BE
SKIPPED AT THE BOTTOM OF EACH PAGE

CONTAINS THE CURRENT PAGE NUMBER
IF SET, THE PROCESS PAUSES AT THE END OF
EACH PAGE OF OUTPUT UNTIL SOME TERMINAL

INPUT (EVEN JUST A CARRIAGE RETURN) IS
ENTERED

5-90

LFOLY T IF THE UPPER BYTE IS GREATER THAN ONE,
AND OUTPUT IS TO THE TERMINAL, A
FORMeFEED (X'0C') IS OUTPUT AT THE TOP
EACH PAGE, AND THE NUMBER 1IN THE UPPER
AYTE IS USED AS THE NUMBER OF "FILL"
CHARACTERS OUTPUT AFTER THE FORM«FEED

OUTPUT INTERFACE

WRTLIN, WT2, WRITOB

08 R a0BBEG

THE FOLLOWING SPECIFICATIONS ARE MEANINGFUL ONLY IF
PAGINATE IS SET:

LINCTR T ¢ RESET APPROPRIATELY
PAGNUM T <
17 T CONTAINS THE ORIGINAL VALUE OF PAGNUM

ELEMENT USAGE

R14 R +

R1S R ¢+ SCRATCH

SYSR1 S <+

R8 R +

RECORD T <+ USED BY PPUT (WHEN LPBIT IS8 SET)

OVRFLW T +

SYSR2 S USED IF PAGINATE IS SET AND THE HEADER
MESSAGE CONTAINS A VM

T4 T «

T8 T ¢ USED IF PAGINATE I8 SET AND THE HEADER

D2 D ¢ MESSAGE CONTAINS A SVM

D3 D +

ALL ELEMENTS USED BY ATTOVF (CALLED BY PPUT IF MORE
DISK SPACE NEEDED)

SUBROUTINE USAGE

FFOLY, PPUT (IF LPBIT SET), WT2 (IF PAGINATE SET AND
THE HEADER MESSAGE CONTAINS A VM), TIMDATE (IF PAGINATE
SET AND THE HEADER MESSAGE CONTAINS A 8VM), DATE (IF
PAGINATE SEY AND THE HEADER MESSAGE CONTAINS TWO SVMS
IN SUCCESSION)

FOUR ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED

IF LPBIT IS S8SETs THREE LEVELS REGUIRED FOR TIMDATE;
ONE LEVEL ALWAYS REQUIRED FOR LFDLY

5-91

WSINIT

WSINIT (1,TCL=INIT)»
FUNCTIONAL DESCRIPTION

THIS ROUTINE INITIALIZES THE FOLLOWING PROCESS WORK SPACE
POINTER TRIADS: BMS, BMSBEG, BMSEND} €S, CSBEG, CSEND3
AF, AFBEG, AFENDs TS, TSBEG, TSEND3 IB, IBBEG, IBEND3 08,
ORBEG, OBEND3 ALSO PBUFBEG AND PBUFEND, 1IN EACH CASE, THE
"REGINNING" STORAGE REGISTER (AND ASSOCIATED ADDRESS
REGISTER, IF PRESENT) IS SET POINTING TO THE FIRST BYTE OF
THE WORK SPACE, AND THE "ENDING" STORAGE REGISTER IS SET
POINTING TO THE LAST DATA BYTE, ALL WORK SPACES EXCERPT THE
LAST (PROC) ARE CONTAINED IN ONE FRAME:; PBUFBEG AND PBUFEND
DEFINE A 4«-FRAME LINKED WORK SPACE,

WORK SPACE SIZE (RYTES)

BMSBEG=BMSEND S0

AFBEG=AFEND S0
CSBEG=CSEND 100
IBBEG=IBEND CONTENTS OF IBSIZEs MAX, 140
OBBEG=0BEND CONTENTS OF OBSIZEjs MAX, 140
TSBEG=TSEND S11

PBUFBEG=PBUFEND 20000 (4 LINKED FRAMES)
INPUT INTERFACE
IBSIZE T SIZE OF IB BUFFER
OBSIZE T SIZE OF 0B BUFFER
OUTPUT INTERFACE
REGISTERS ARE SET UP AS DESCRIBED ABOVE. THE FIRST
BYTE OF EACH WORK SPACE, EXCEPT THE 0B, I8 SET TO

Xtoo', THE OB WORK SPACE IS FILLED WITH BLANKS
(x'20')., 1IBSIZE AND OBSIZE ARE SET TO 140 IF INITIALLY

NSINIT

GREATER.

ELEMENT USAGE
ki1d R
R1S R
SUBROUTINE USAGE
TSININIT (LOCAL), AND ONE INTERNAL SUBROUTINE

TWO ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED

WTLABEL

WTLABEL (2,TAPEIOeIII)»

FUNCTIONAL DESCRIPTION

THIS ROUTINE MAY BE CALLED ONCE BY ANY ROUTINE TO WRITE A
LAREL AT THE BEGINNING OF A MAGNETIC TAPE FILE., THE LABEL
PASSED AS AN INPUT PARAMETER IS WRITTEN TO THE TAPE, ALONG
WITH THE CURRENT TIME AND DATE, REEL NUMBER (ONE), AND THE
TAPE RECORD SIZE. THE LABEL INFORMATION IS ALSO STORED IN
THE LABEL SAVE BUFFER IN THE QUATERNARY CONTROL BLOCK
(PCB+3), FOR THE FORMAT OF THE LABEL DATYA ON THE TAPE AND
IN THE SAVE BUFFER., SEE THE RDLABEL DOCUMENTATION.

INPUT INTERFACE

I8 R POINTS ONE BEFORE THE LABEL DATA, WHICH
MUST BE TERMINATED BY A STANDARD SYSTEM
DELIMITER (SM, AM, VM, SVM, OR 8B):; IF
THE LAREL DATA IS GREATER THAN SIXTEEN
CHARACTERS LONG, IT WILL BE TRUNCATED TO
SIXTEEN CHARACTERS

OUTPUT INTERFACE
18 R POINTS TO THE DELIMITER TERMINATING THE

LAREL, QR TO SIXTEEN BYTES PAST THE
INPUT POSITION IF NONE I8 FOUND

THE LABEL SAVE AREA IS INITIALIZED AS DESCRIBED, AND
THE REEL NUMBER IS8 SET TO ONE

ELEMENT USAGE

R13 R

R14 R & UTILITY

RIS R +

D2 D ¢+ USED BY TIMDATE
D3 D ¢

5-93

SUBROUTINE USAGE
INIT; TIMDATE; TPWRITEs TwO INTERNAL SUBROUTINES

ATLABEL

FIVE ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED

WTREC

WTREC (S5,DISKFI0el)
FUNCTIONAL DESCRIPTION
THIS ROUTINE COPIES THE CONTENTS OF THE UPD WORKSPACE (1
FRAME) INTO THE FRAME SPECIFIED BY TALLY RECORD.,
ADDITIONALLY THE SUBROUTINE WTLINK IS ENTERED 7O SET UP R1S
POINTING TO THE LINK PORTION OF THE FRAME, AND TO SET UP THE
LINK ELEMENTS NNCF, NPCF, FRMN, AND FRMP,
INPUT INTERFACE

RECORD D CONTAINS THE FID OF THE FRAME INTO WHICH
DATA 1S TO BE COPIED

UPDBEG S POINTS ONE PRIOR TO THE FIRST DATA B8YTE

OF THE UPD WORK SPACE (OR ANY FRAME FROM
WHICH DATA IS TO BE COPIED)

OUTPUT INTERFACE
UPD R =UPDBEG+500

R14 R POINTS TO THE LAST BYTE OF THE FRAME
SPECIFIED BY RECORD

RS R +

NNCF H ¢

FRMN D ¢ (SEE ROLINK/WTLINK DOCUMENTATION)
FRMP D +

NPCF H ¢+

ELEMENT USAGE
NONE (BESIDES UPD AND R14)
SUBROUTINE USAGE

NONE

5-94

XI180S

XI1808 (14,DISKFIQel)w
FUNCTIONAL DESCRIPTION
X1S0S SIMPLY EXCHANGES THE CONTENTS OF THE IS/ISBEG/ISEND

AND 0S/0SBEG/OSEND REGISTER TRIADS., REGISTER R14 IS USED
FOR SCRATCH PURPOSES,

5=95

SECTION 6
CHANGES AFFECTING ASSEMBLY CODE

THIS CHAPTER IS CONCERNED WITH THE ASSEMARLY LANGUAGE
CHANGES RELEVANT TO0 2.X LEVEL UPGRADES TO RELEASE 3.0.

OVERVIEW

1) ALL ROUTINES MUST BRE REASSEMBLED TO INSURE CORRECT
OPCODES AND REFERENCES TO PSYM ELEMENTS

2) THE FIRST 6 LINES OF ALL ASSEMBLY MODES SHOULD BE OF
THE FORMAT DOCUMENTED BELOW,

3) SYSTEM ROUTINES SHOULD BE REFERENCED RY 3,0 NAMES,
THESE NAMES HAVE BEENM CHANGED TO MORE ACCURATELY REFLECT THME
FUNCTIONS OF THE SUBROUTINES OR ELEMENTS. IF THIS IS NOT
DESIREABLE, THE USER MAY RECREATE THE QLD NAMES,

4) CALLS TO THE ROUTINF CVDR1S (AND OTHER CVD..
ROUTINES) ALWAYS ASSUME THAT THE INPUT REGISTER POINYS ONE
BREFORE THE INPUT DATA. THIS WAS DONE TO DECREASE THE
CHANCES OF PROGRAM BUGS. ‘

5) THE RESTRICTIONS ON THE USE QOF THE 'BE' AND 'gU!
INSTRUCTIONS HAVE BEEN GREATLY RFNUCED., THE FORMS 'BRE' AND
'BRU' ARE OBSOLETE,

6) CALLS TO 'MADSUB CONVERT A 6«BYTE NUMBER (D0+T2)
INSTEAD OF A FOUR BYTE NUMBER (DO), 6 BYTE LOAD
INSTRUCTIONS (I.E. LOADX _.,) ARE PROVIDED TO MAKE THIS
EASIER,

7) OPTION STRINGS IN INPUT LINES SET BITS ABITeZBIT.
BITS AFLG TO 2ZFLG ARE PROVIDED FOR USE OTHER THAN AS
OPTIONS, OPTION PARSING CAN BE INHIBITED IN VERBS BY
SETTING SCP = 0. SEE SUBROUTINE 'GETOPT', TEXT CONTAINING
'(' WHICH DOES NOT LOOK LIKE AN OPTION STRING WILL NOT BE
TREATED AS AN OPTION STRING, AND THE MESSAGE 'INVALID OPTION
STRING' HAS BEEN ELIMINATED,

8) PROCESSORS SUCH AS BASIC AND ENGLISH HAVE BEEN
MODIFIED TO AVOID USING THE FOLLOWING ELEMENTS WHICH ARE NOW
AVAILABRLE FOR USER CODE:

A) SR20 TO SR29
B) CTR30 TO CTR4?2
C) 8820 TO 8RK3I?

9) BECAUSE OF UPDATES IN PLACE, THE QUTPUT INTERFACE OF
UPDITM HAS8 BEEN REDUCED.

10) THE INTERFACE FOR USER EXITS FROM PROC HAS BEEN
EXPAMDED., SEE THE SECTION CONCERNING PROC IN CHAPTER S,

11) LOCAL 'BSL' INSTRUCTIONS NOW PLACE A FID 1IN THE
RETURN STACK. THE FIRST 2 BYTES OF THE RETURN STACK ARE
ASSUMED BY THE FIRMWARE AS X'01B0',

4

12) THE RIGHTMOST BIT OF THE LINK FIELD OF REGISTERS IS
USED AS AN EXTENSION OF THE WA FIELD, COMPARES OF FID'S
WHICH WERE WRITTEN WITH THE ASSUMPTION THAT THE FLAG FIELD
COULD BE INCLUDED IN THE COMPARE ARE NO LONGER VALID. (E.G.
BE R6FID,RECORD,LABEL). A NEW FORM OF INSTRUCTION (BES3,
BU3, BL3, BH3) HAS BEEN INTRODUCED TO COMPARE ONLY THE LAST
3 BYTES OF A 4 BYTE FIELD (DOUBLE TALLY).

(E.G. BE3 R6FID,RECORD,LABEL).

13) THE INTERFACE TO THE TAPE ROUTINES HAS CHANGED TO
ALLOW LARGE TAPE BLOCKS. SEE THE DOCUMENTATION ON 'TPREAD!
AND 'TPWRITE',

14) THE ASSEMBLER OUTPUT LISTING INCLUDES A FIELD FOR
DEFINITION LINES THAT SHOWS THE VALUES GENERATED IN THE TSYM
ENTRY FOR THAT DEFINITION.

15) THE LOGICAL COMPARE INSTRUCTIONS NOW ORDER THE
VALUES OF BYTES AS:3

00’01002...7F.Bo.al.O..FE"F
FORMERLY, THESE WERE ORDERED AS!

60'81lo-.FFOOOIOID-oo7El7F
THIS AFFECTS THE BCL AND BCH INSTRUCTIONS ONLY,

16) THE BASIC DEBUGGER USES PCB+28,

PSYM ELEMENTS WITH NEW NAMES

OLD NAME NEW NAME
CVTNIB CVDIB
CVTINIR CVDIR
CVTNIS CVDIS
CVTNOS CVDOS
CVTHIB CVXIB
CVTHIR CVXIR
CVTHIS CVXIS
CTHOS CVXO0Ss
TILD DECINHIB
GETIB READLIN
GETIBX READLINX
ASEND BDESCTBL
STKEND STKINP
CARRIER BREAKKEY
CVDR15X CVDR15
CVTHISX CVXIS
CVTNISX CVDIS
CVXR15X CVXR15
IOBIT14 OTABFLG
IOBIT2 PATTACH
IOBIT4 ITABFLG
SMCONV FRMTFLG

DELETED PSYM ENTRIES

ABSD
BDIV
CARRIER
CTR

D2L
DFREE
DOODAH
FP1(HO)
FPe(L)
FPX(T0)
FPY(TO0)
GETIB
I
108172
LOCX
MD11
MD9
NREC
PTRPAG
REG
35D8P
SETPIB
T=LOAD
TCLXITY
TPBIT

NEW PSYM ENTRIES

AFLG

B8

CFLG
cvDOs
cvx0s
EFLG
GACBMS
GLOCKFLG
IFLG
MFLG
NUMFLG?2
R2WADSP
READLIN
SFLG
SYSTEMeSUBS=IV
UFLG
YFLG

DELETED OSYM ENTRIES

CHAIN
DEFDX
DEFTH
FTLY
RVP

ASBEG
BMUL
CHARGE=UNITS=EXT
CVDR1SX
o2V
DISKERR
ENDBIT
FP1(L)
FP2(W)
FPX(TOT1)
FPY(TOTY)
GETIBX
11BEG
I0BITa
LOGUNLOCK
MD16
MULFF
0CONVMD
BSTR

REJS

SB36
SMCONV
T3T2TH
TFREE
TYMO

ATTSPC
B9

cvDIB
CVXIR
DAFO
FFLG
GETFILE
H8

JFLG
NFLG
OFLG
R7WADSP
READLINX
SLEEPSUB
TFLG
VFLG
ZFLG

BrA
DECF
DEFDY
DEFTY
INCF
SVP

ASEND
ce
CHKSUM
CVFR1S
DATER
DISP

FPOCTOTY)
FPI(T1T2)

FP3(L)
FPX(T1)

FPY(T1T2)

HEADING
IIEND
ITAPEBIT
MD10
MD18
NEGFPO
OVRFLWQ
R3SAVE
REJY
SB4O
SMODSEP
T4T7576
TIL
TYPE

B14
BCKSP
CVDIR
CVXIR
DFLG
FLAGS
GETLSPC
H9

KFLG
NUMBIT
PFLG
RBWADSP
RETIXU
SMODSSEP
TPINIY
WFLG

BITNN
DEFA
DEFF
EQU
MBDFR

ASTR

co
CONFIG6
CVXR1SX
DDOUMP
DIVFF
FPO(T2)
FP1(U)
FP3(U)
FPX(T2)
FPY(T2)
ICONVMD
I0BIT14
LOCKBITS
MD1OFL
Mp23
NOBIT
PSYM
ROUMP
REJS
SB43
STKINP
TSTeT?
TILD
WSINT

B29
BFLG
cvDIS
CVXIS
DMODDSEP
FRMTFLE
GFLG
HFLG
LFLG
NUMFLG1
BFLG
READIB
RFLG
STKEND
TPSTAT
XFLG

BSLA
DEFBY
DEFHY
ESSR
MBDNFR

Microdata Corporation

17481 Red Hill Avenue, Irvine, California 92714
Post Office Box 19501, Irvine, California 92713
Telephone: 714/540-6730 - TWX: 910-595-1764

