'
e
@5

i
v

il
o

e
Sy

3 kot

e
A
Gl
pils
p “’1’

e
.
iy

i
i

il
:
il
!
#
,,
"

"

!
i

Al

Ll

iy ‘“'%%Eegs
i

i
Jan

e

ms sy

s

copuemes

i

Gt
s
i
.
i e
o
!
!

:
Lol
e

S

i

it

e
i

Pl
it

o

i
e

i

i
i
il

o
i
i

il
)
i

ey

b
.
i,

e
5

e
i

"
b
i

#
T
i

e

s
i 9
ey

W

i

?
|

.

o

ik

;g%‘s@iy‘ 3
o

-

i
i

b

R

.
i, ot i
i hoorg
i
i
it

i

i
bl
el

@

i
e

.
e
i

@

Al
St

A,
| .
ol i
i

g
o vy
[hivran - S
i

s
Bt

S

e
v

g
ffsa‘g;m;..ma;;ﬁ,’wiw
i

i

i
il

il

e
cmnfm;:‘s,,s:;;;
i
u!«mmum

i
e
;

i

e
ol

e
M
v
-
i
gl
e
)
e
e
: -
.
Sk

Sl

L

.
e

%
i

s

it
G ¢
it il
M s o
Al e
i

dad@en) L
i g
Dl -
Sy iy 0

N
i
=!<iSsm;w;mésxmwwmw
e e
S

i

R it
x»;ﬂx&ix;,éxw i
e

it

i

4
i
A i
S

T
o
i

e
g

R o
P
i o
sy i
i
i
sl
il 2 i
S e i
e
. L
R
i
e
i

:
i
]

e

et
#

i

i

|
s
it

i

e

L
L
i

i i
‘“nny’ssmsmm!zi’(
it
iy
i 3

—
e

poti

i
ey
i

e

e

i
b
o
e
X
i
]
L
o
i

gl
i

oy

S

T
i
i

o
A
e
L G
e .

g
L
"

i
i
i

.

i
i

jr
for
e

i

i
Hem i
i

i

R

.
il
i
il

.
i
T

G
e
o
el
el

i

il
il

s .
SRR

.
W)
e

g
e
uw‘Ns;S‘
G
o

i
e
S

v

4
Gt
i

i

1
i

il

it

e
e
4

it
o

s
i

¥
i
e

aay
!

yEEses

S

e
.

5

=

o
-

it

98

e

it
i
i

.

-

=

o

i
e
g

it
G

i

i

i

i

;

-

e
.
E

5o

Gt

e
i
B

:

o

o

s

Sl
Niﬂ(xx;g%i i
R
G T
i o
G i
el
s

i

i
A
i

i

e b
e T !
w b i

!

il

ey
:

!gl!»‘(mnﬂi
At
e
G
R
sl
i
a8
v;vm»i((m i
o)
i
aswbss,;é:ssﬂiw
e
S

el
b

e
e

e

Sy
i
il

o
i
W

e
el

i i

it

i

e
o B
i i
il
e @
7!
i
i
st
i A
i
e
e,
sl i
S
i
o
e
i

Al
i
ot

il
e
s

.

et
wa
mgmr«ﬂwsi@sa
i
dea
R
il sx@‘ el
: i
St gl

e

-

mrogEeey
e

i

-

S

o
"

i
i i
jisfwsmxxxzﬁ!!é
o

e
s
s

ol

i
was
e

i
Sy
sl

nel
e
gt o
B!

Nl
e

:
p
e

i i
4
e

o
o

.

”

.

4 su‘ms’aﬁ

e
3l

.,

s
il
i

i

i
i

i,
:

-

g

i
S

>
i

0
it

)

i
it

i
sl
i

il

e

i

il
Wi
"

e
"
3
3

5

seepes

=

3
S
=k

I

i
-

s

4

g
o
e e
sl
i

i

o

i
i

i

i

sl
g

i

Tt

i
i
o

il
et
5

ot

e
e

i
3

¥

-
i
i

|

o
o

d
i

-

@

i it
=

i
bl

e

i
g
e
e

e
i
;

i

.

B
s’
i

i
i
)

L
a

i
i

skl

i
i
s

e
i

-
i

g
o

o
i
i)

%
i

it
i

i

i
i
|

i
o}

ne

P

y Microdata

In
troduction to Reality

&

PROPRIETARY INFORMATION

The information contained herein is proprietary to and
considered a trade secret of Microdata Corporation
and shall not be reproduced in whole or part without
the written authorization of Microdata Corporation.

©1977 Microdata Corporation

All Rights Reserved

TM—Trademark of Microdata Corporation
Specifications Subject to Change Without Notice
Printed in U.S.A.

Price: $5.00

REALITY

(3.0 SERIES)

Introduction to Reality

L

771050

® - .
Microdata Corporation
17481 Red Hill Avenue, Irvine, California 92714
Post Office Box 19501, irvine, California 92713
Telephone: 714/540-6730 - TWX: 910-595-1764

Section

Introduction
How to Use the Reality Manuals
What is Reality?

The Reality Computer System
An Overview
The Reality Software Processors
The Reality File Hierarchy
The Reality File Structures
The Reality Dictionaries

The Terminal Control Language (TCL)
Logging On and Off the System
Verbs and Processors

The Data Base Managment and Utility Processors
Data Base Management
Utilities

The ENGLISH Processors
An Overview
An ENGLISH Primer
The ENGLISH Verbs

The DATA/BASIC Processor
An Overview
DATA/BASIC Language Definition
Creating, Compiling, and Executing DATA/BASIC Programs

The EDITOR Processor
An Overview
EDITOR Language Definition

The PROC Processor
An Overview
PROC Language Definition

The Reality CPU and Instruction Set
An Overview

ToEic

(SN0, BT,]
w N

[O) IR I e)]
w N

~N N
.
[\

©

1 INTRODUCTION

1.1 HOW TO USE THE REALITY MANUALS

The Reality manuals are written in modular format with each pair of facing pages

presenting a single topic.

The approach taken in this and other Reality manuals differs substantially
from the typical reference manual format. The left-hand page of each topic
is devoted to text, while the right-hand page presents figures referred to
by the text. At the head of each text page are a pair of titles, the first
one naming the section and the second one naming the topic. Immediately

below these titles is a brief summary of the material covered in the topic.

The advantage of this format will become readily apparent to the reader as
he begins to use this manual. First of all, the figures referred to in the
text are always conveniently right in front of the reader at the point where
the fererence is made. Secondly, the reader knows that when he turns the
page, he is done with one idea and ready to encounter a new one.

Additional documentation for the Reality system includes the following:

) The Reality Programmer's Reference Manual

° The Reality EDITOR Reference Manual

) The Reality ENGLISH Reference Manual

° The Reality DATA/BASIC Reference Manual

° The Reality PROC and BATCH Reference Manual

e The Reality Assembly Language Reference Manual

In presenting examples throughout this manual, certain conventions apply;
these conventions are defined in Figure A.

CONVENTION MEANING

Shaded text represents the user's input.

TEXT Standard text represents computer output
printed by the system.

TEXT Ttalicized text ie used for comments and notes
which help explain or describe the example.

R This symbol represents a carriage return.

B This symbol represents a space (blank).

Figure A. Conventions Used in Examples Throughout
This Manual

1 INTRODUCTION

1.2 WHAT IS REALITY?

Reality is a generalized, data base management computer system. It is a complete
system that provides multiple users with the capability to instantly update
and/cr retrieve information stored in the con-line data files. Users communi-
cate with the svstem through local or remote terminals to access files that

may be private, common, or security-controlled. Each terminal user's voca-

bulary can be individually tailored to specific application jargon.

The Reality Computer System includes the powerful, yet simple to use ENGLISHT-M
inquiry language and the DATA/BASIC and PROC and BATCH high-level languages,
file maintenance tools, an EDITOR, complete programming development facilities,
and a host of other user amenities. Reality runs in an on-line, multi-user
environment with all system resources and data files being efficiently managed
by a microprogrammed Virtual Memory Operating System.

Reality is built on field proven Microdata computers and peripherals, utilizing
microprograms to provide users with unrivaled performance and reliability in
the medium-sized computer market.

Reality is uniquely different when measured from any angle: system capability,
multi-user performance, file management languages, ease of programming, data
structure, and architectural features. The high performance and fast response
of Reality are possible only through the use of the high-speed microprocessor
which greatly reduces system overhead and program execution time. The unique
microprogrammed firmware contains the:

Virtual memory manager

Multi-user operating system

Special data management instructions
Input/output processors

The unique System Software includes:

ENGLISH, DATA/BASIC, PROC, TCL, and BATCH languages
Selectable/automatic report formatting

Dynamic file/memory management

Selectable levels of file/data security

Optional RPG II and BISYNC languages

The unique file structure provides:

Variable length files/records/fields
Multi-values (and subvalues) in a field
Efficient storage utilization

' Fast accessibility to data items
Selectable degrees of data security
File size limited only by size of disc
Record size up to 32K bytes

In summary, the Reality Computer System encompases the following ex-

traordinary features:

True data base management

Complete small business computer capabilities
Microprogrammed virtual memory operating system
Up to 32 users

On-line file update/retrieval

ENGLISH retrieval language

Variable file/record/field lengths

Dynamic file/memory management

Automatic report formatting

Total data/system security

Fast terminal response

Line printer spooling

Special data management processors

High-speed generalized sort

Small computer price

Big computer performance

Figure A. Typical Microdata Reality System

2 THE REALITY COMPUTER SYSTEM

2.1 AN OVERVIEW

Reality is a completely new system of computer hardware, software, and firm-
ware, specifically oriented to provide a vehicle for the implementation of
cost-effective data base management. Data base management systems imple-
mented in Reality afford two major benefits: 1) providing accurate and
timely information to form the basis for significantly improving the
decision-making process, and 2) substantially reducing the clerical and
administrative effort associated with the collection, the storage, and
dissemination of the information pertaining to an organization.

Reality is a completely new computer system combining both proprietary
hardware and proprietary software to create an effective tool for on-line
data base management. Through the use of microprogramming, Microdata has
implemented a truly revolutionary on-line transaction processing system.
Three major components of the system have been implemented directly in
high~speed microprogrammed firmware:

° The virtual memory operating system
° The software level architecture
° The terminal input/output routines

The virtual memory operating system which has long been used in larger com-
puter systems has been impractical for minicomputers due to the large amount
of overhead needed for the operating system itself. In Reality, the virtual
memory operating system has been directly implemented in firmware (i.e.,
highspeed read-only memory), which executes many times faster than would a
comparable system normally implemented in software. Thus, the overhead

time is reduced to negligible levels.

With the operating system directly implemented in read-only memory, only a
small amount of main memory (core) is needed to run Reality. Slightly over
4,000 bytes of core are allocated for the operating system monitor. Every-
thing else (system software, user software and data) is transferred auto-
matically into main memory from the disc drive by the virtual memory operating
system only when required.

Everything in the Reality Computer System is organized into 512-byte pages
(frames) which are stored on the disc. As a frame is needed for processing,
the operating system automatically determines if it is already in core memory.
If it is not, the frame is automatically transferred from the disc unit
(virtual memory) to core. Frames are written back onto the disc on a "least-
recently-used" basis. This concept is illustrated in Figure A. The virtual
memory feature of Reality allows the user to have access to a programming
area not constrained by core memory, but -as large as the entire available
disc storage on the system.

The second feature implemented directly in firmware by Reality is the software
level architecture of the machine itself. Through microprogramming, Microdata
has implemented a machine architecture expressly designed and optimized for
data base management. The architecture of Reality includes very powerful in-
structions expressly designed for character moves, searches, compares, and all
supporting operations germane to managing variable length fields and records.

The third major feature implemented in microcode is the handling of

Input/Output (I/O) communications with the on-line terminals.

In any

minicomputer on-line application, one of the main problems is that of

managing the I/O0 from on-line interactive terminals.

As these terminals

increase in number, the load on the CPU becomes overwhelming and con-

sequently the response to the terminals degrades dramatically.

Microdata

in Reality, has implemented the I/O processing of the on-line

terminals in high-speed microcode.

This means that other program execu-

tion need not be interrupted to handle characters coming or going to each
The firmware handles all these transactions and only

and every terminal.

interrupts the software at the completion of a block.

As a result, a

very large number of terminals may be connected to the Microdata Reality
System before any significant degradation in response time is detected.

CORE MEMORY

Microprogrammed Virtual
Memory Operating System
(controls transfers)

<

Frame Transfer (as needed)

v

Frame Transfer (least recently used)

>

VIRTUAL MEMORY
(DISC)

O

[
RN

s //

\\\

FRAMES

i

:

Wy

Figure A.

Reality Frame Transfers

2.1

2 THE REALITY COMPUTER SYSTEM

2.2 THE REALITY SOFTWARE PROCESSORS

The processors available on the Reality Computer System comprise the most
extensive data base management software available on any minicomputer.

An overview of some of the processors available to all terminal users is
presented in this topic.

The ENGLISH Processor

ENGLISH is a generalized information management and data retrieval language.

A typical ENGLISH inquiry consists of a relatively free-form sentence con-
taining appropriate verbs, file names, data selection criteria, and control
modifiers. ENGLISH is a dictionary-driven language. The vocabulary used in
composing an ENGLISH input sentence is contained in several dictionaries.

Each user's vocabulary, however, can be individually tailored to his parti-
cular application jargon. ENGLISH encompasses the following extended features:

Freedom of word order and syntax for user inputs

Automatic or user-specified output formatting

Sorting capabilities plus generation of statistical information
Relational and logical operations

Verbs such as: LIST, SORT, SELECT, COUNT, STATISTICS, etc

ENGLISH is further described in the section titled THE ENGLISH PROCESSORS.

The DATA/BASIC Processor

BASIC (Beginners All-Purpose Symbolic Instruction Code) is a simple yet
versatile programming language suitable for expressing a wide range of pro-
cessing capabilities. BASIC is a language especially easy for the beginning
programmer to master. DATA/BASIC is an extended version of BASIC which in-
cludes the following features:

Flexibility in selecting meaningful variable names

Complex and multi-line statements

String handling with unlimited, varying length strings
Integrated with Data Base file access and update capabilities

DATA/BASIC is described further in the section titled THE DATA/BASIC PROCESSOR.

The PROC Processor

The PROC processor allows the user to prestore a complex sequence of operations
which can then be evoked by a single word command. Any sequence of operations
which can be executed from the terminal can also be prestored via the PROC
processor. The PROC processor encompasses the following features.

Argument passing
Interactive terminal prompting

Conditional and unconditional branching

Pattern matching

. .

4

~

The PROC processor is described further in the section titled THE PROC
PROCESSOR.

The EDITOR Processor

The EDITOR permits on-line interactive modification of any item in the
data base. The EDITOR may be used to create and/or modify DATA/BASIC
programs, PROC's, assembly source, data files, and file dictionaries.
The EDITOR uses the current line concept; that is, at any given time
there is a current line that can be listed, altered, deleted, etc. The
EDITOR includes the following features:

Absolute and relative current line positioning.

Merging of lines from terminal or from other file items.
Character string locate and replace.

Input/Output formatting.

The EDITOR is described further in the section titled THE EDITOR PROCESSOR.

The Data Base Management Processors

The data base management processors provide the capabilities for genera-
ting, managing, and manipulating files (or portions of files) within the
Reality system. The data base management processors include the CREATE-
FILE processor, the CLEAR-FILE processor, the DELETE-FILE processor, and
the COPY processor. These processors are further described in the section
titled THE DATA BASE MANAGEMENT AND UTILITY PROCESSORS.

The Utility Processors

Numerous utility processors are also included which provide an extensive
complement of utility capabilities for the system. These processors are
discussed in the section titled THE DATA BASE MANAGEMENT AND UTILITY
PROCESSORS.

Software Processor Usage

These and any other software processors may be used by any or all terminals
simultaneously. Processing is invoked thru appropriate verbs contained in
each terminal user's Master Dictionary. User accessability to these capa-
bilities may be limited by controlling the verb selection available in
specific user's Master Dictionaries.

2 THE REALITY COMPUTER SYSTEM

2.3 THE REALITY FILE HIERARCHY

The REALITY files are organized in a hierarchial structure, with files

at one level pointing to multiple files at a lower level. Four distinct
file levels exist: System Dictionary, User Master Dictionary, File Level
Dictionary, and Data File.

The hierarchial Reality file structure is illustrated in Figure A. The term
file as used in the context of the Reality system refers to a mechanism for
maintaining a set of like items logically together. The data in a file is
normally accessed via the dictionary associated with it. Since the dictionary
itself is also a file, it contains.items (records) just as a data file does.
The items in a dictionary serve to define lower level dictionaries or data
files.

The Reality system can contain any number of files. Files can contain any
number of records, and can automatically grow to any size. Records are
variable length, and can contain any number of fields and characters up

to a maximum of 32,267 bytes.

System Dictionary (SYSTEM)

The highest level dictionary is called the System Dictionary (SYSTEM). A
Reality system contains only one System Dictionary. It contains all legiti-
mate user Logon names, passwords, security codes, and system privileges.
This dictionary contains a pointer to each user's Master Dictionary.

User Master Dictionaries (M/DICT's)

The Master Dictionaries (M/DICT's) comprise the next dictionary level. Each
user's account may have a unique M/DICT associated with it; the M/DICT de-
fines all user vocabulary (verbs, PROC's, etc.) and accessible file names,
and contains attributes describing the structure of the information in

lower level dictionaries. The file name pointers can reference any file

or dictionary in the system.

File Level Dictionaries

The File Level Dictionaries describe the structure of the data in the assoc-
iated data files.

Data Files

The Data files contain the actual data stored in variable record/field length
format. 1In addition to the normal record/field data structure, a field
(called an attribute) can contain multiple values, and a value (in turn) can
consist of multiple sub-values. Thus, data may be stored in a three-
dimensional variable length format.

SYSTEM

USER MASTER
DICTIONARIES

FILE LEVEL
DICTIONARIES

USER DATA
FILE

— T
S i

/ Logon Names:
Password

Security Code

Privileges
Utility Files
Accounting Files

V\ .

M/DICT
< /) OTHER
\’ Verbs MASTER

ENGLISH Components DICTIONARTES
PROC's
Dictionary Attributes P P

File Names
File Synonym Names

\‘/

FILE DICTIONARY

OTHER
File Definition (DL/ID) FILES
Attribute Definitions
Attribute Synonym Definition
°® °

DATA FILE

Data items (records)

MR

v vy

Figure A. The Reality File Hierarchy

2.3

2 THE REALITY COMPUTER SYSTEM

2.4 THE REALITY FILE STRUCTURE

The Reality file access system is designed to very efficiently access any
specific item (record) or all items in a file.

A Reality file is a mechanism for maintaining a set of like items logically
together so that they can be accessed for both retrieval and update purposes.
A file is referenced by a file-name.

A record is called an item. Items are individually variable in

length. The maximum size of any item is 32,267 bytes. There is no limit
to the number of files in a Reality system, or to the number of items in a
file. Each item is associated with an item-id. An item-id is a unique
item identifier (key) by which all of the data in the item are identified
or referenced.

A computational hashing technique is automatically used by the system;
this technique operates on the item-id (using several variables unique to
the file) to produce the virtual memory address where the item is stored.
This permits direct access to any item regardless of the file size.

An item consists of one or more variable length attributes (also known as
fields) separated by attribute mark characters. An attribute, in turn,
may consist of any number of variable length values separated by value
mark characters. Finally, a value may consist of any number of wvariable
length secondary values (also known as sub-values) separated by sub-value
mark characters.

Utility processors like COPY and the EDITOR deal at the file - item -
attribute level. They make no logical distinction in definition between
various attributes in an item. ENGLISH processors, however, add an
additional dimension through the use of the dictionary. The dictionary
defines the nature of the information stored for each of the attributes.
It permits access by name (e.g., DATA, PRICE, QUANTITY-ON-HAND) and speci-
fies internal and external data formats.

The Reality file structure is summarized in Figure A.

REALITY SYSTEM CONTAINS ON-LINE:

ANY NUMBER OF FILES, WHICH CONTAIN:

ANY NUMBER OF ITEMS (RECORDS), WHICH CONTAIN :

MULTIPLE ATTRIBUTES (FIELDS), WHICH MAY CONTAIN :

MULTIPLE VALUES, WHICH MAY CONTAIN:

MULTIPLE SUB-VALUES.

ALL FILES, ITEMS, ATTRIBUTES, VALUES, AND SUB-VALUES ARE
VARTABLE IN LENGTH.

EACH ITEM MUST BE LESS THAN 32,268 CHARACTERS LONG

Figure A. Reality File Structure Summary

2 THE REALITY COMPUTER SYSTEM

2.5 THE REALITY DICTIONARIES

A dictionary defines and describes data within its associated file.
Dictionaries exist at several levels within the Reality system.

As introduced in the topic titled THE REALITY FILE HIERARCHY, the following
dictionary levels exist within the Reality system:

° System Dictionary (one per Reality system).
° User Master Dictionary (one per user-account).
° File Level Dictionary (one per data file).

A dictionary defines the nature of the data stored in its associated file.
It contains such information as:

) The user-assigned name of the file (or attribute).
e Retrieval and update security codes.
° Conversion specifications which are used to perform table look-

ups, masking functions, etc.

° Correlative specifications which are used to describe inter-file
and intra-file data relationships.

° Type (alphabetic or numeric) and justification (left or right)
for output purposes.

® Maximum and minimum lengths for stored value.

° Pattern editing masks.
Since the dictionary itself is also a file, it contains items just as a data
file does. The items in a dictionary serve as the actual definitions for

lower level dictionaries or data files. Four types of items are used in
dictionaries:

® file definition items

e file synonym definition items

e attribute definition items

) attribute synonym definition items

The file definition items and the file synonym definition items are used to
define files. The attribute definition items and the attribute synonym defini-
tion items are used to define attributes within data file items. Each dictionary
item consists of attributes (just as file items do).

The Reality dictionary concept is graphically illustrated in Figure A. For
a detailed discussion of dictionaries and the items they contain, refer to
the Reality Programmer's Reference Manual.

USER REQUEST

k_r>.

ENGLISH FORMAT

—

GCTIONARY FILE

Relates ENGLISH &
Internal formats

Defines data structure
Defines output formats
Relates data in other file

Defines conversions,
functions, etc.

Contains ,Data Items

<<:1

records
- {recoras)
NN
INTERNAL D
FORMAT I)
’y
=
— -
' L\-___,_______——”

‘\‘___‘___‘

_/

N

USER INFORMATION

Figure A.

Generalized Representation of User Data Access
through Reality Dictionary Structure

3 THE TERMINAL CONTROL LANGUAGE (TCL)

3.1 LOGGING ON AND OFF THE SYSTEM

The Logon processor provides a facility for initiating a user's session by
identifying valid users and their associated passwords. The Logoff pro-
cessor is used to terminate the session. These processors accumulate account-
ing statistics for billing purposes and also associate the user with his
privileges and security codes.

Logging On to the System

The user may log on to the Reality System when the following message is
displayed:

LOGON PLEASE:

The user then enters the name (identification) established for him in the
system. If a password has also been established, he may follow his identi-
fication with a comma, and then the password. If the password is not entered
as a response to the LOGON PLEASE message, the system will display the message:

PASSWORD :

Reality validates the user's identification against the entries in the System
Dictionary. If the user has successfully logged on to the system (i.e., both
the identification and the password have been accepted), the following message
is displayed:

* ok WELCOME TO MICRODATA REAL I TY *kk
k% time RELEASE x.y date * k%

-

where "time" is the current time, "date" is the current date, and "x.y" is
the current Reality software release level. A colon (:) is the Terminal
Control Language (TCL) prompt character, which indicates that the user may
now enter any valid command. Figure A illustrates a sample logon interaction.

Logging OFF of the System

Logoff is achieved by entering the word OFF. A message indicating the connect
time (i.e., number of minutes that the user was logged on) and the appropriate
charge units will be displayed. The system then displays the LOGON PLEASE
message and waits for the next user session to be initiated. The general form
of the logoff message is as follows:

ke CONNECT TIME = n MINS.; CHARGE UNITS = m alaldd
*xk LOGGED OFF AT time ON date kel

LOGON PLEASE:

where "n" is the number of minutes of connect time, "m" is the number of
charge units, "time" is the current time, and "date" is the current date.
The charge-units represent usage of the CPU; it is normally in tenths of a
CPU second. Figure B illustrates a sample lofoff interaction.

LOGON PLEASE:
PASSWORD:
| R -

Valid identification.

Valid password (blacked-out).

kkk WELCOME TO MICRODATA R EA LI TY bl

k% 15:40:54 RELEASE 2.4 4 JUL 1976 *kh*x

TCL prompt character.

Figure A. Sample Logon Interaction

*xx CONNECT TIME = 5 MINS.; CHARGE-UNITS = 6 Fxk

ek LOGGED OFF AT 15:52:59 ON 4 JUL 1976 *xk

LOGON PLEASE:

Figure B. Sample Logoff Interaction

3 THE TERMINAL CONTROL LANGUAGE (TCL)

3.2 VERBS AND PROCESSORS

The Terminal Control Language (TCL) is the primary interface between the
terminal user and the various Reality processors.

Most processors are evoked directly from the Terminal Control Language by a
single input statment, and return to TCL after completion of processing.

TCL prompts the user by displaying a colon (:). This is referred to as the
"TCL prompt character". Input statements are constructed by typing a charac-
ter at a time from the terminal until the carriage return or line feed key is
depressed, at which time the entire line is processed by TCL.

The first word of an input statement must be a valid Reality "verb." (The
statement must not contain any other verbs.) Selected verbs are listed in
Figure A.

One of the powerful features of Reality is the ability to customize the
vocabulary for each user. Since verbs reside in the individual user's
Master Dictionary (M/DICT), the vocabulary may be added to or deleted from
without affecting the other users. In addition, an unlimited number of
synonyms may be created for each verb.

Reality operates in the full-duplex mode of communication with each user's
terminal. Full-duplex means that data may be transmitted in both directions
simultaneously between the terminal and the computer. Additionally, Reality
operates in what is known as an "Echo-Plex" environment. This means that
each data character input by the terminal is sent to the computer and echoed
back to the terminal before being displayed. The user is thus assured that
if the data character displayed on the terminal is correct, the data charac-
ter stored in the computer is correct.

For a complete discussion of the Terminal Control Language, the user should
refer to the Reality Programmer's Reference Manual.

VERB

ASSEM (or AS)
BASIC
CATALOG
CLEAR-FILE

COPY

COUNT

CREATE-FILE
DELETE-FILE
EDIT (or ED)
GROUP
ISTAT
ITEM

LIST

RUN
SELECT

SORT

SSELECT

STAT
TERM
TIME

WHAT

DESCRIPTION

Assembles source code.

Compiles a DATA/BASIC progran.

Catalogs a DATA/BASIC program.

Removes all items from a file or dictionary.
Copies data/dictionary files and items.

Counts number of items which meet specified
conditions.

Creates a new file.

Deletes an entire file.

Evokes the EDITOR processor.

Provides file usage statistics on groups.
Generates a file hashing histogram for a file.
Provides usage statistics on file items.

Generates a formatted output of selected items
and attributes.

Executes a DATA/BASIC progranm.
Selects items for use by subsequent processor.

Generates a sorted and formatted output of
selected items and attributes.

Selects and sorts items for use by subsequent
processor.

Counts, averages, and sums a specified attribute.

Sets terminal characteristics.
Prints time and date.

Displays current system parameters.

Prints the line number and account number to which

the terminal ig logged on.

Figure A.

Typical Reality Verbs

3.2

4 THE DATA BASE MANAGEMENT AND UTILITY PROCESSORS

4.1 DATA BASE MANAGEMENT

The data base management processors provide the capabilities for generating,
managing, and manipulating files (or portions of files) within the Reality
system. The data base management processors include the CREATE-FILE pro-
cessor, the CLEAR-FILE processor, the DELETE-FILE grocessor, and the COPY
processor.

The CREATE-FILE Processor

The CREATE-FILE processor 1s used to generate new dictionaries and/or data
files. The processor creates file dictionary entries in the user's Master
Dictionary (M/DICT), and can also be used to reserve disc space for the data
portion of the new file. The user need only specify the name of the file
and values for the desired "modulo" and "separation." The "module"” and
"separation" parameters are selected to balance storage efficiency and acces-
sing speed, based on the number of items in the file, the average item size,
etc. The required file space is allocated from the available file space
pool. Files may automatically grow beyond their initial size by attaching
additional "overflow" space from the available file space pool.

The CLEAR-FILE Processor

The CLEAR-FILE processor clears the data from a file. "Overflow" space that
may be linked to the primary file space will be released to the available
file space pool. Either the data section or the dictionary section of a file
may be cleared.

The DELETE-FILE Processor

The DELETE-FILE processor allows for the deletion of a file. All allocated
file space is returned to the available file space pool. Either the data sec-
tion or the dictionary section (or both) of the file may be deleted.

The COPY Processor

The COPY processor allows the user to copy an entire file (or selected items
from the file) to the terminal, to the line printer, to the magnetic tape
unit, to another file (either in the same account or in some other user-
account), or to the same file under a different name (item-id).

Examples

As a general introduction, Figure A presents a number of examples illustrating
the use of the file management processors. For further information regard-
ing these processors, refer to the Reality Programmer's Reference Manual.

EXAMPLE EXPLANATION

Creates a file dictionary for the
TEST file, with a modulo of 5 and
a separation of 1.

Reserves disc space for the data area
of the TEST file, with a modulo of
7 and a separation of 2.

Creates a file dictionary for the FNA
file, with a modulo of 3 and a separa-
tion of 1. Also reserves disc space
for the data area of the FNA file,
with a modulo of 11 and a separation

of 2.
Clears data section of XYz file.

Deletes dictionary section of INV file.

Deletes data and dictiomary sections
of FAB file.

Copies data items I1, 12, and I3 back
into the same file (TEST) but gives
them item~-id's of X1, X2, and X3.

Coptes all dictionary items from file
SAMPLE to the dictionary of file
FLAVORS.

Copies all items in the TEST file to
the line printer.

Copies all items in the TEST file to
the user's terminal.

Figure A. Sample Usage of File Management Processors

4 THE DATA BASE MANAGEMENT AND UTILITY PROCESSORS

4.2 UTILITIES

The Reality Utility processors provide an extensive complement of utility
capabilities for the system.

The Reality Computer System includes a very large number of utility processors.
These processors provide such capabilities as:

° Magnetic tape unit functions

° Mathematical functions

° Line printer spooling control

e File save/restore functions

° File statistics

° Creation of user-accounts

° Setting of terminal charactersitics
° Block printing

® Virtual memory dumping

° Inter-user message communications
) Bootstrapping and cold-start

® Systems accounting

A few examples of utility processor usage is shown in Figure A. For further
information regarding the Reality utility processors, the reader is referenced
to the Reality Programmer's Reference Manual.

EXAMPLE

EXPLANATION

Spaces magnetic tape forward 10
records.

Bypasses next 3 magnetic tape records;
dumps 4th 5th, and 6th records at
terminal, and positions tape at
beginning of 7th record.

Dumps to the magnetic tape all items
in the dictionary of the TEST-FILE
file.

Rewinds magnetic tape unit to BOT.

Adds decimal 5 to decimal 1 (result
18 deeimal 6).

Multiplies hex FFF to hex EEF
(result is hex EFEI111).

Displays current spooler status.

Sets specific terminal characteristics.

Produced block-print of characters
AB12 on line printer.

Transmits message ""HELLO THERE"
to user ROD.

Figure A.

Sample Usage of Utility Processors

.2

5 THE ENGLISH PROCESSORS

5.1 AN OVERVIEW

ENGLISH is a user-oriented data retrieval language used for accessing
files within the Reality Computer System.

ENGLISH is a generalized information management and data retrieval language.
A typical ENGLISH inquiry consists of a relatively free-form sentence con-
taining appropriate verbs, file names, data selection criteria, and control
modifiers. Each user's vocabulary can be individually tailored to his
particular application jargon.

ENGLISH is a dictionary-driven language to the extent that the vocabulary
used in composing an ENGLISH sentence is contained in several dictionaries.
Verbs and file names are located in each user's Master Dictionary (M/DICT).
User-files consist of a data section and a dictionary section; the dictionary
section contains a structural definition of the data section. ENGLISH
references the dictionary section for data attribute descriptions. These
descriptions specify attribute fields, functional calculations, inter-file
retrieval operations, display format, and more.

Not only does ENGLISH provide an ability to selectively or conditionally
retrieve information, it also provides an automatic report generation capa-
bility. Output reports (which normally appear on the terminal but option-
ally may be transmitted to the line printer) are automatically formatted
for the user by the Reality system. The output may be sorted into any
sequence defined by the user, and attributes may be totaled based on user-
specified control breaks.

ENGLISH encompases the following extended features:

° Relatively free-form input of word ordér and syntax

° Automatic or user-specified output report formats

® Generalized data selection using logical and arithmetic relationships

e Sorting capability on variable number of descending or ascending
sort-keys

e Generation of statistical information concerning files

° Selection and sorting of items for use by subsequent processors

° Support of 11 digit signed arithmetic

Figure A through C illustrates some typical ENGLISH inquiries.

PAGE 1 11:08:37 16 JAN 1976

ACCOUNT... NAME. ..ivttireeerennnnans ADDRESS......c.vv... BILL~-RATE
11115 D R MASTERS 100 AVACADO 30
11085 A B SEGUR 101 BAY STREET 30
11040 E G MCCARTHY 113 BEGONIA 30
11050 J R MARSHECK 125 BEGONIA 30
11020 J T O'BRIEN 124 ANCHOR PL 30
11095 J B STEINER 124 AVACADO 30
11110 D L WEISBROD 106 AVACADO 30
11015 L K HARMAN 118 ANCHOR PL 30
11105 C C GREEN 112 AVACADO 30
11090 J W JENKINS 130 AVACADO 30
23030 L J DEVOS 201 CARNATION 30

11 ITEMS LISTED

Figure A. Sample ENGLISH Inquiry Using LIST Verb

STATISTICS OF DEPOSIT
TOTAL = 39.00 AVERAGE = 7.800 COUNT = 5

Figure B. Sample ENGLISH Inquiry Using STAT Verb

PAGE 1 14:15:47 16 JAN 1976
ACCOUNT... NAME. ..iiverennnncnsnnns DEPOSIT
35090 D U WILDE 3.17
35100 R W FORSTROM 8.00
35110 H E KAPLOWITZ 10.00
35080 G A BUCKLES 10.50
35095 A W FEVERSTEIN 10.75
35105 S J FRYCKI 10.80
35075 J L CUNNINGEHAM 10.90
35085 J F SITAR 12.00

8 ITEMS LISTED.

Figure C. Sample ENGLISH Inquiry Using SORT Verb

5 THE ENGLISH PROCESSORS

5.2 AN ENGLISH PRIMER

The user forms ENGLISH sentences which specify the desired data retrieval
functions. The ENGLISH retrieval language is limited natural English;
formats for sentences arxe simple yet very general. The ENGLISH processors,
together with the use of dictionaries, permit inputs to be stated directly
in the technical terminology natural to each application area.

ENGLISH accepts any number of variable length words and permits a general
freedom of word order and syntax. An ENGLISH sentence is entered at the TCL
level, i.e., when the system prompts with a colon (:). The sentence then
directs the appropriate ENGLISH processor to perform the specified data
retrieval function. The general form of the ENGLISH sentence contains
several grammatical structures which can be represented as shown in Figure A.

The verdb must be the first word in the ENGLISH sentence, while the other
words may generally be in any order. ENGLISH verbs are action-oriented words
which evoke specific ENGLISH processors. The file-name specification permits
the access of either the data section or the dictionary section of a file.

A verb and a file-name are required; all other elements are optional. Thus,
the minimum ENGLISH sentence consists of a verb followed by a file-name.

The attribute list specifies those attributes desired for output. The attri-
bute list may be explicity stated using attribute names found in the file
dictionary. If none are specified in sentence, the implicit attribute syn-
onym list in the file dictionary will be used to specify the displayed fields.

The selection criteria determine which items in the file will be operated
upon. If nothing is specified, then all items will be used. One or more
direct references may be made by specifying the item-id in single quotes.

A conditional retrieval may be specified by using a WITH clause. All items
in the file will be interrogated, but only those meeting the specified cri-
teria will be accepted. The WITH clause may be a simple or complex combina-
tion of attribute names, relational operators (=, >, LT, AFTER, etc.), logical
operators (AND, OR), and explicit data values ("100", "12/2/76", "RESISTOR",
etc.).

The miscellaneous connectives may be used to modify the effect of the verb,
or to alter the display format.

Figure A illustrates a number of sample ENGLISH sentences.

Verb File-Name Attributes Selection

Miscellaneous
(Noun) (Nouns) Criteria Connectives
LIST LPTR
SORT name implicit all DBL-SPC
COUNT DICT name explicit "item-id" SUPP
etc. WITH... SORT-BY
etc.

Required > |- Optional<s >
|

Figure A. Generalized Grammatical Structure of an ENGLISH Sentence

File-Name

_l Selection Criteria
L’erb A 7‘:7’:1f=7lbu75e;S

Fz'Ze-Name—l r Selection Criteria

T—i/erb

v

FiZe—!‘]ame—l Sort Keys

tVelﬂb /At;ﬂibutes

Output to Line Printer-

Figure B. Sample ENGLISH Sentences

5.2

5 THE ENGLISH PROCESSORS

5.3 THE ENGLISH VERBS

Each ENGLISH sentence must begin with one (and only one) ENGLISH verb.
ENGLISH verbs are action-oriented words which evoke specific ENGLISH
processors. Some of the major ENGLISH verbs are briefly discussed below.

LIST and SORT

The LIST and SORT verbs are used to generate formatted output. LIST simply lists
the selected output, while SORT orders the output in some specified sorted
order. Generated output will be formatted into a columnar output if possible,
taking into account the maximum defined size of the specified attributes

and their associated names, along with the width of the terminal page. If
more attributes have been specified than will fit across the page, a non-
columnar output will be generated with the attribute names down the side

and the associated attribute values to the right. LIST and SORT will auto-
matically format multivalued attributes and sub-values. They provide sub-
totalling via the BREAK-ON and TOTAL modifiers, as well as other format
controls. Sample use of the LIST verb with noncolumnar output is shown

in Figure A. SORT can handle any number of ascending or descending sort keye.

COUNT

The COUNT verb counts the number of items meeting the conditions specified.
The output generated by this verb is simply the number of items counted.
Figure B illustrates the use of the COUNT verb.

SUM and STAT

The SUM and STAT verbs provide a facility for summing one specified attribute.
The STAT verb additionally provides a count and average for the specified
attribute. The output generated by these verbs are the derived statistics.

Figure C illustrates the use of the SUM verb.

SELECT and SSELECT

The SELECT verb provides a facility to select a set of items. These selected
items are then available one at a time to certain Reality processors. The
output from the SELECT verb is a message signaling the number of items extracted
or selected. The SSELECT verb combines the SORT capability with the SELECT
capability.

T-DUMP, I-DUMP, ISTAT, HASH-TEST, and CHECK-SUM

The T-DUMP and I-DUMP verbs allow the user to selectively dump his dictionaries
and data files to the magnetic tape or to the terminal, respectively. The
ISTAT and HASH-TEST verbs provide file hashing histograms. The CHECK-SUM verb
is used to determine if data in a file have been changed.

PAGE 1 11:19:58 16 JAN 1976

ACCOUNT : 23080

NAME J W YOUNG

ADDRESS 207 COVE STREET
START-DATE 27 MAR 1970
CURR-BALNC § 89.32

ACCOUNT : 23090

NAME W J HIRSCHFIELD
ADDRESS 230 BEGONIA
START-DATE 01 JAN 1968
CURR-BALNC § 20.45

2 ITEMS LISTED

Figure A. Sample ENGLISH Inquiry Using LIST Verb
(Non-Columnar Output)

2 ITEMS COUNTED.

57 ITEMS COUNTED

55 ITEMS COUNTED.

Figure B. Sample ENGLISH Inquiries Using COUNT Verb

TOTAL OF CURR-BALNC IS: $2,405,118.10

TOTAL OF CURR-BALNC IS : $1,836,287.99

Figure C. Sample ENGLISH Inguiries Using SUM Verb

6 THE DATA/BASIC PROCESSOR

6.1 AN OVERVIEW

The DATA/BASIC Language is an extended version of Dartmouth BASIC,
specifically designed for data base management processing on Reality.

BASIC (Beginners All-Purpose Symbolic Instruction Code)} is a simple yet
versatile programming language suitable for expressing a wide range of
problems. Developed at Dartmouth College in 1963, BASIC is a language
especially easy for the beginning programmer to master. DATA/BASIC

is an extended version of BASIC with the following features:

° Optional statement labels (statement numbers)

° Statement labels of any length

° Alphanumeric variable names of any length

° Multiple statements on one line

° Complex IF statements

) Multiline IF statements

) Formatting and terminal cursor control

) String handling with unlimited, varying length strings
) One and two dimensional arrays

. Magnetic tape input and output

® Floating point arithmetic with up to 11 digit precision
° ENGLISH data conversion capabilities

o Reality file access and update capabilities

) Pattern matching

o Dynamic file arrays

o External subroutines

Sample DATA/BASIC programs are presented in Figures A and B. The program in
Figure A lists (prints) the numbers from 1 to 10. The program in Figure B
queries an inventory file as further described by the program's comment
statements, i.e., program statements which begin with an asterisk (*) are
considered comment (remark) statements.

Figure A. Sample DATA/BASIC Program which Prints the

Numbers from 1 to 10

* *
* THIS PROGRAM QUERIES AN INVENTORY FILE. *
* IT READS THE DICTIONARY OF FILE 'INV' TO GET THE ATTRIBUTE *
* NUMBERS OF 'DESC' (DESCRIPTION) AND 'QOH' (QUANTITY-ON-HAND) . *
* THE PROGRAM THEN PROMPTS THE USER FOR A PART-NUMBER WHICH *
* IS THE ITEM-ID OF AN ITEM IN 'INV' AND USES THE ATTRIBUTE *
* NUMBERS TO READ AND DISPLAY THE PART DESCRIPTION AND *
* QUANTITY ON HAND. THE PROGRAM LOOPS UNTIL A NULL PART *
* NUMBER IS ENTERED. *

*
* GET ATTRIBUTE DEFINITIONS FROM DICTIONARY OF INVENTORY FILE

OPEN 'DICT', 'INV' ELSE PRINT 'CANNOT OPEN "DICT INV"'; STOP

READV DESC.AMC FROM "DESC',2 ELSE PRINT 'CANT READ "DESC" ATTR'; STOP

READV QOH.AMC FROM 'QOH',2 ELSE PRINT 'CANT READ "QOH" ATTR'; STOP
* OPEN DATA PORTION OF INVENTORY FILE

OPEN '', 'INV' ELSE PRINT 'CANNOT OPEN "INV"'; STOP
* PROMPT FOR PART NUMBER
100 PRINT

PRINT 'PART-NUMBER ':

INPUT PN

IF PN = '' THEN PRINT '--DONE--'; STOP .

READV DESC FROM PN,DESC.AMC ELSE PRINT 'CANT FIND THAT PART'; GOTO 100

READV QOH FROM PN,DESC.AMC ELSE PRINT QOH=0
* PRINT DESCRIPTION AND QUANTITY-ON-HAND

PRINT 'DESCRIPTION - ': DESC

PRINT 'QTY-ON-HAND - ': QOH

PRINT

GOTO 100

END
Figure B. Sample DATA/BASIC Program which Queries

an Inventory File

) THE DATA/BASIC PROCESSOR

6.2 DATA/BASIC LANGUAGE DEFINITION

A DATA/BASIC program is comprised of DATA/BASIC statements. DATA/BASIC
statements may contain variables, constants, expressions, and DATA/BASIC
Intrinsic Functions.

A DATA/BASIC program consists of a sequence of DATA/BASIC statements terminated
by an END statement. More than one statement may appear on the same program
line, separated by semicolons. Any DATA/BASIC statement may begin with an
optional statement label. A statement label is used so that the statement

may be referenced from other parts of the program.

DATA/BASIC statements may contain arithmetic, relational, and logical expres-
sions. These expressions are formed by combining specific operators with
variables, constants, or DATA/BASIC Intrinsic Functions. The value of a
variable may change dynamically throughout the execution of the program.

A constant, as its name implies, has the same value throughout the execution
of the program. An Intrinsic Function performs a predefined operation

upon the parameter (s) supplied.

The DATA/BASIC Intrinsic Functions are listed in Figure A. Figure B lists
the DATA/BASIC statements.

The reader should note that a DATA/BASIC program, when stored, constitutes a
file item, and is referenced by its item-id (i.e., the name it is given when
it is created via the EDITOR). An individual line within the DATA/BASIC pro-
gram constitutes an attribute.

FUNCTION BRIEF DESCRIPTION

ABS Returns an absolute value.

ASCII Converts string from EBCDIC to ASCIT.

CHAR Converts numeric value to ASCII character.

CcoLl Returns column position preceding FIELD-selected sub-string.
COL2 Returns column position following FIELD-selected sub-string.
DATE Returns current internal date.

DELETE Deletes attribute, value, or sub-value from dynamic array.
EBCDIC Converts string from ASCII to EBCDIC.

EXTRACT Returns attribute, value, or sub-value from dynamic array.
FIELD Returns a delimited sub-string.

ICONV Provides for Reality imput conversion.

INDEX Returns column position of sub-string.

INSERT Inserts attribute, value, or sub-value into dyanmic array.
INT Return an integer value.

LEN Returns length of string.

NOT Returns logical inverse.

NUM Tests for numeric value.

OCONV Provides for Reality output conversion

REPLACE Replaces attribute, value, or sub-value in dynamic array.
RND Generates random number.

SPACE Generates string containing blanks.

STR Generates specified string.

TIME Returns internal time of day.

TIMEDATE Returns external time and date.

@ Controls terminal cursor.

Figure A. Summary of DATA/BASIC Intrinsic Functions

STATEMENT

CLEARFILE
DELETE
DIM

END

FOR
GOSUB
GOTO
HEADING
IF

INPUT
LOCK
LOOP
MAT
NEXT
NULL
OPEN
PAGE
PRINT
PRINTER

PROMPT
READ
READNEXT

RETURN
REWIND
ROM
STOP
STORAGE
UNLOCK
WEOF
WRITE
WRITET
WRITEV

BRIEF DESCRIPTION

Passes control to another DATA/BASIC pr

Initializes all variables to zero.

Clears data section of specified file.

Deletes specified file item.

Reserves storage for arrays.

Designates the physical end of the program.

Specifies the beginning of a program loop.

Transfers control to a subroutine.

Transfers control to another statement.

Prints a page heading.

Provides for conditional execution of specified
statements.

Inputs data from the terminal.

Sets an execution lock.

Provides for structured program Loops.

Assigns value to each element of an array.

Specifies the ending of a program loop.

Specifies a non-operation.

Selects a file for subsequent I/0.

Pages output device and prints heading.

Causes specified data to be printed.

Controls selection of printer or terminal for
program output.

Selects a prompt character for the terminal.

Reads a file item.

Reads next item-id.

Reads next magnetic tape record.

Reads an attribute.

Specifies a remark (command) statement.

Returns control from a subroutine.

Rewinds magnetic tape.

Terminates programs current time quantum.

Designates a logical end of the program.

Controls dynamic storage allocation.

Resets an execution lock.

Writes an EOF on magnetic tape.

Updates a file item.

Writes a magnetic tape record.

Updates an attribute value.

Assigns value to variable.

Figure B.

Summary of DATA/BASIC Statements

.2

6 THE DATA/BASIC PROCESSOR

6.3 CREATING, COMPILING, AND EXECUTING DATA/BASIC PROGRAMS

The DATA/BASIC program is created via the EDITOR, is compiled by issuing
the BASIC verb, and is executed by issuing the RUN verb.

DATA/BASIC programs are created via the Reality EDITOR. To enter the EDITOR,
the user issues the EDIT verb. The general command format is:

EDIT file-name item-id
The EDITOR will be entered, and the user may begin entering his DATA/BASIC
program. The program will have the name specified by "item-id".
Once the DATA/BASIC program has been created, it may be compiled by issuing
the BASIC verb. The general command format is:

BASIC file-name item-id

The "file-name" and "item-id" specify the DATA/BASIC program to be compiled.
If the program is incorrectly formed, compilation errors will result.
Error messages are printed as the program is compiled.

RUN is the verb issued to execute a compiled DATA/BASIC program. This command
locates the assembly code version of the compiled DATA/BASIC program, which
is then loaded and executed. The general command format is:

RUN file-name item-id

The "file name" and "item-id" specify the compiled DATA/BASIC program to be
executed. If run-time errors occur, appropriate warning and/or fatal error
messages will be printed. Fatal run-time errors will cause the program to
abort.

A DATA/BASIC program may be cataloged by issuing the CATALOG verb. The general
command format is:

CATALOG file-name item-id

The cataloged program can then be executed by simply entering the program name
(item-id) as a verb.

Figure A illustrates the creation, compilation, and execution of the following
DATA/BASIC program:

PRINT "THIS IS"
PRINT "A TEST"
END

The program is stored in the file named PROGRAMS and in the item named TESTING.

For further information regarding the DATA/BASIC processor, refer to the
DATA/BASIC Programming Manual.

NEW ITEM
TOP

0
'TESTING' FILED.

TESTING
LTS

LINE 003 BO COMPILATION COMPLETED

THIS IS
A TEST

Figure A. Creation, Compilation, and Execution of Sample
DATA/BASIC Program

7 THE EDITOR PROCESSOR

7.1 AN OVERVIEW

The EDITOR is a Reality processor which permits on-line interactive modi-
fication of any item in the data base.

The Reality EDITOR may be used to create and/or modify DATA/BASIC programs,
PROC's, assembly source, data files, and file dictionaries. The EDITOR uses
the current line concept; that is, at any given time there is a current

line (i.e., attribute) that can be listed, altered, deleted, etc. The
Reality EDITOR includes the following features:

Two variable léngth temporary buffers
Absolute and relative current line positioning
Line number prompting on input

Merging of lines from the same or other items
Character string locate and replace
Conditional and unconditional line deletion
Input/Output formatting

Prestoring of commands

Figure A illustrates a sample EDITOR session.

{CR)e— Fvokes EDITOR.

TOP
1 - I command (lists 4 lines)
001 ABCD
002 ZXZXZX < This is what TEST-ITEM looks like.
003 1234567

004 ABABAB

G command (transfers to line 3).

003 1234567 Line 3 is listed.

' 3 G command (transfers to line 1).

Line 1 18 listed.

I command (inserts new line).

F command (files changes in temporary buffer)

TOP
E 2) L command.
001 ABRCD
002 NEW-LINE
003 ZXZXZX - Here is TEST-ITEM with new line.
004 1234567
) - G command.

003

R command (replaces data).
Data in line 3 is replaced.
F command.

L command.

002 NEW-LINE { Here is TEST-ITEM with new data
003 QQQQQ in line 3.
004 1234567

G commard.

I command (inserts lines).

A

New data being inserted.

Input terminated.

F command.

. ; L command.
001 ABCD 3
002 NEW-LINE
003 TEST1
004 TEST2 > Here ig TEST-ITEM with new lines
005 TEST3 inserted.
006 QQQQ0Q

1234567 |
: - FI command (files item and terminates EDITOR
'"TEST-ITEM' FILED and returns to TCL).
: - TCL prompt character.

Figure A. Sample EDITOR Session

7 THE EDITOR PROCESSOR

7.2 EDITOR LANGUAGE DEFINITION

The EDIT verb is used to evoke the EDITOR. EDITOR commands are then issued
to update the item on a "line-at-a-time" basis.

The EDITOR is entered by issuing the EDIT verb. The general command format
is as follows:

EDIT file-name item-id

The item specified by "file-name" and "item-id" will be edited. If the
specified item does not already exist on file, a new item will be created.

The EDITOR uses two variable length temporary buffers to create or update an
item. When the EDITOR is entered, the item to be edited is copied into one
buffer. Each line (i.e., attribute) of the item is associated with a line
number; a "current line pointer" points to the current line of the item.
EDITOR operations are performed on one line at a time (the current line) in
an ascending line number sequence. As an EDITOR operation is performed on

a line, the modified line and all previous lines are copies to the second
buffer.

EDITOR commands are one or two letter mnemonics. Command parameters follow
the command mnemonic. The EDITOR commands are summarized in Figure A.

For further information regarding the Reality EDITOR, the reader should refer
to the EDITOR Operator's Guide.

COMMAND

(n';U'dZE

N X o A3

V]

BRIEF DESCRIPTION

Executes last Locate (L) command again.
Moves current line pointer to bottom of item.
Used to delete lines from the item.

Exits from the EDITOR.

Deletes item from file.

Files item and returns to TCL.

Saves item in file and returns to EDITOR.
Files updates with previously existing item.
Directs current line pointer to go to specified line.
Used to inmput new lines.

Used to list a specified number of lines; or
used to locate a specified string.

Used to merge lines from another item.

Skips current line pointer over next N lines.
Used to prestore an EDITOR command.

Used to replace a number of lines.

Suppresses printing of line numbers.

Used to set tabs.

Moves current line pointer to top line.

Moves current line pointer up.

Deletes effect of last update command.

Sets print column limits.

Interrogates the position of the current
line pointer.

Figure A.

Summary of EDITOR Commands

8 THE PROC PROCESSOR

8.1 AN OVERVIEW

An integral part of the Reality Computer System is the ability to define
stored procedures called PROC's. '

The PROC processor allows the user to prestore a complex sequence of TCL
operations (and associated processor operations) which can then be evoked
by a single command. Any sequence of operations which can be executed by
the Terminal Control Language (TCL) can also be prestored via the PROC
processor. This prestored sequence of operations (called a PROC) is execu-
ted interpretively by the PROC processor and therefore requires no compila-
tion phase.

The PROC processor encompasses the following features:
) Four variable length I/0 buffers

® Argument passing

e Interactive terminal prompting

°® Extended I/0 and buffer control commands

) Conditional and unconditional branching

° Relational character testing

. Pattern matching

) Free-field and fixed-field character moving
[Optional command labels

° User-defined subroutine linkage

° Inter-Proc linkage

Figure A shows a sample EDITOR operation which changes attribute 3 of item
11115 of file ACCOUNT to the value ABC. Figure B shows a PROC named CHANGE
which will perform the exact same operation. (Note that the PROC has been
written in such a manner that it will update any specified attribute in any
specified item in any specified file). If, for example, the user wishes

to perform the same operation shown in Figure A, then the PROC named CHANGE
must be evoked as shown in Figure C.

003 100 AVACADO

ST
R

'11115" FILED.

Figure A. Sample EDITOR Operation

item 'CHANGE' in M/DICT

001 PQ
002 HEDIT
003 A2
004 A3
005 STON
006 HG
007 A4
008 H<
009 HR<
010 A5
011 H<
012 HFI<
013 P

Figure B. Generalized PROC Stored As Item 'CHANGE' Which
Will Perform Identical Operation

Figure C. Sample Execution of the PROC 'CHANGE'

8 THE PROC PROCESSOR

8.2 PROC LANGUAGE DEFINITION

A PROC provides a means to prestore a highly complex sequence of operations
which can then be evoked from the terminal by a single command.

The usage of the PROC processor is quite similar to the use of a Job Control
Language (JCL) in some large-scale computer systems. The PROC language in
Reality, however, is more powerful since it has conditional capabilities,
and can be used to interactively prompt the terminal user. Additionally,

a PROC can test and verify input data as they are entered from the terminal
keyboard.

A PROC is stored as an item in a dictionary or data file. The first attri-
bute value (first line) of a PROC is always the code PQ. This specifies

to the system that what follows is to be executed by the PROC processor.

All subsequent attribute values contain PROC statements that serve to gen-
erate TCL commands or insert parameters into a buffer for interactive proces-
sors (such as the EDITOR). PROC statements consist of an optional numeric
label, a one- or two-character command, and optional command arguments.

Some PROC commands are listed in Figure A.

PROC's operate on four input/output buffers: the primary input buffer,

the secondary input buffer, the primary output buffer, and the secondary
output buffer (called the stack). Essentially, the function of a PROC is

to move data from either input buffer to either output buffer, thus forming
the desired TCL and processor commands. At any given time, one of the input
buffers is specified as the "currently active" input buffer, while one of the
output buffers is specified as the "currently active" output buffer. Buffers
are selected as '"currently active" via certain PROC commands. Thus, when
moving data between the buffers, the source of the transfer will be the
currently active input buffer, while the destination of the transfer will

be the currently active output buffer.

The primary input buffer contains the PROC name and any optional arguments,
exactly as they were entered when the PROC was evoked. The primary output
buffer is used to build the command which will ultimately be submitted

at the TCL level for processing.

The secondary input buffer contains data subsequently input by the user in
response to an IN command. Usually the data in this buffer will be tested
for correctness and then moved to the secondary output buffer (the stack).
When all desired data have been moved to the secondary output buffer, control
will be passed to the primary output buffer via a P or PP command. The com-
mand which resides in the primary output buffer will be executed at the TCL
level and the data in the secondary output buffer (if any) will be used to
feed processors such as ENGLISH or EDITOR. When the process is completed,
control returns to the PROC at which time new data may be moved to the output
buffers.

Once a PROC is evoked, it remains in control until it is exited. When the
PROC temporarily relinquishes control to a processor such as the EDITOR or
a user-supplied subroutine, it functionally remains in control since an exit

frem the called processor returns control to the PROC. TCL only regains
control when the PROC is exited explicitly, or when all of the lines in the
PROC have been exhausted.

For further information regarding the PROC processor, refer to the PROC
and BATCH Programming Manual.

COMMAND BRIEF DESCRIPTION

A Moves data argument from input to output buffers.

B Backs up input pointer.

BO Backs up output pointer.

C Specifies comment.

D Display either input buffer to terminal.

F Moves input pointer forward.

GO Unconditionally transfers control.

H Moves text string to either output buffer.

IF Conditionally executes specified command.

IH Moves text string to either input buffer.

IN Inputs from terminal to secondary input buffer.

1P Inputs from terminal to either inmput buffer.

IT Inputs from tape to primary input buffer,

o] Outputs text string to terminal.

P Causes - execution of PROC.

PP Displays content of output buffers and executes PROC.

RI Clears (resets) input buffers.

RO Clears (resets) output buffers.

S Sets position of imput pointer and optionally selects
primary input buffer.

ST ON Selects secondary output buffer (stack on).

ST OFF Selects primary output buffer (stack off).

U Exits to user-defined subroutine.

X Exits back to TCL level.

+ Adds decimal number to a parameter in input buffer.

- Subtracts decimal number from a parameter in input
buffer.

0 Transfers control to another PROC.

Figure A. Some PROC Commands

9 THE REALITY CPU AND INSTRUCTION SET

9.1 AN OVERVIEW

Although the user need never be concerned with the architecture and
instruction set of the Reality computer, the following section is pro-
vided for those readers who would like some information on Reality's
unique structure.

The Reality CPU

The Reality Central Processing Unit (CPU) incorporates an architecture
comparable to a medium scale computer. The Reality instruction set
has been specifically designed for character moves, searches, compares,
and all supporting operations pertinent to managing variable length
fields and records.

The Reality CPU, although physically small in size and priced in the mini-
computer category, has the architecture of a medium scale computer. Its
main memory is core, and is expandable from 16,384 bytes to 131,072 bytes.
Its full cycle operation is 1 micresecond per byte.

The virtual memory is disc which is oriented into 512-byte frames, expand-
able from 4,871 frames (2.5 million bytes) to 292,000 frames (300 million
bytes). The CPU is capable of handling a large number of asynchronous proces-
ses, each associated with an input/output device. The Reality CPU will
support up to 32 terminals (or asynchronous processes).

The CPU has 16 addressing registers and one extended accumulator for each
terminal. A variable return stack accommodating up to 11 recursive sub-
routine calls for each terminal is also provided. By indirect addressing
through any one of the 16 registers, any byte in the virtual memory can

be accessed. Relative addressing is also possible using an off-set
displacement plus one of the 16 registers to any bit, byte, word (16 bits),
double word (32 bits), or triple word (48 bits) in the entire virtual memory.

The microprogrammed firmware contains the nucleus of Virtual Memory Operating
System, the Input/Output processors, and the software instruction emulator.
Complete 16-bit microinstructions are executed every 200 nanoseconds (i.e.,

5 thousand instructions per second). This very fast speed ensures that the
complex overhead functions take very little time away from user processing.
This means fast response time and very high system throughput.

The Reality Instruction Set

The Reality Computer System has an extensive instruction set. The main
features include:

e Bit, Byte, word, double-word, and triple-word operations

e Memory to memory operation using relative addressing on bytes,

PR P AmaalaT A—rr~rA o armA +rinla-unrde
WOLWUD UL T WWLWUD p QAlivA Ca L e VYA AT
° Bit operations permitting the setting, resetting, and branching

on condition of a specific bit

o Branch instructions which permit the comparison of two relative
memory operands and branching as a result of the compare

° Addressing register operations for incrementing, decrementing,
saving, and restoring addressing registers

° Byte string operations for the moving of arbitrarily long byte
strings from one place to another

° Byte string search instructions
e Buffered terminal Input/Output instructions
o All data and program address references are handled by the

firmware virtual memory operating system

° Operations for the conversion of binary numbers to printable
ASCII characters and vice versa

e Arithmetic instructions for loading, storing, adding, sub-
tracting, multiplying, and dividing the extended accumulator
and a memory operand

° Control instructions for branching, subroutine calls, and
program linkage

For further details regarding the Reality instruction set, refer to the
Reality Assembly Language Programming Manual.

Microdata Corporation

17481 Red Hill Avenue, Irvine, California 92714
Post Office Box 19501, Irvine, California 92713
Telephone: 714/540-6730 - TWX: 910-595-1764

	001
	002
	003
	1-01a
	1-01b
	1-02a
	1-02b
	2-01a
	2-01b
	2-02a
	2-02b
	2-03a
	2-03b
	2-04a
	2-04b
	2-05a
	2-05b
	3-01a
	3-01b
	3-02a
	3-02b
	4-01a
	4-01b
	4-02a
	4-02b
	5-01a
	5-01b
	5-02a
	5-02b
	5-03a
	5-03b
	6-01a
	6-01b
	6-02a
	6-02b
	6-03a
	6-03b
	7-01a
	7-01b
	7-02a
	7-02b
	8-01a
	8-01b
	8-02a
	8-02b
	9-01a
	9-01b
	xBack

