Programming Manual

5
m 5
L

S

(B N

PROPRIETARY INFORMATION

The information contained herein is proprietary to and
considered a trade secret of Microdata Corporation
and shall not be reproduced in whole or part without
the written authorization of Microdata Corporation.

© 1975, 1977, 1979 Microdata Corporation

Ali Rights Reserved

TM—Trademark of Microdata Corporation
Specifications Subject to Change Without Notice
Printed in U.S.A.

Price: 15.00

REALITY

ENGLISH®

Programming Manual

791073
Series 3.0
Release 3.2

July 1979

For all Series 3.0 Reality systems
thru Release 3.2

® d -
=1° Microdata Corporation
17481 Red Hill Avenue, Irvine, California 92714
Post Office Box 19501, Irvine, California 92713
Telephone: 714/540-6730 « TWX: 910-595-1764

FOREWORD

Thie book was produced by "Baby", one of our Reality®
computer systems using RUNOFF™, Microdata's word processing
program. Printer output pages were used as printing
masters.

RUNOFF includes elements of the publishing style, e.g., page
size, Jjustified right and left margins, headings, <italics,
pagination, centering, tabular <illustrations, etc. The
eontents and index are automatically generated each time the
document is printed, reflecting any changes made. Line art
and photos have been added in spaces, or "windows", left for
this purpose by RUNOFF.

Because the complete book is stored on dise, it is easy to
update the document. The stored text is corrected using the
EDITOR, and a new printout 1is made of only the changed
pages. The corrected pages are then substituted for the old
pages in the printing masters.

A NOTE REGARDING REALITY DOCUMENTATION

Because these Series 3.0, Level 3.2 publications represent a
new step for Mierodata, we are using a "fresh start"
approach. This document is considered as the starting point
for future updates. When necessary, supplemente to the
manuals will be available and will wusually coineide with
software releases. Supplements will be printed on different
colored stock to enable easy identification and use.

Users upgrading from a Series 2.0-2.5 software operating
system are advised to thoroughly reread the Reality manuals
since most sections have been updated in some way. This
reeducation becomes increasingly important as time goes by,
since future system enhancements will add capabilities and
features that differ eignificantly from Series 2.0 systems.
Mierodata is committed, however, to ensuring users of an
easy upgrade path that does not require major modifications
to application software.

SECTION

e e e
e o
Vs~ WN -

NN MNMNNNDDNNDNNDMDNNNN
L]
— = O o0~ WN -

2.12
2.13
2.14
2.15
2.16
2.17
2.18

WWWWWWWLWWWW WW
L]

= 00NNt WN =

- O

L]
b bt = e O 00NN WN

wNo—=O

AP PEAEEAEEPEPPRREAEEEEDSDS
.

791073

CONTENTS

INTRODUCTION o ¢« o o« o o o o o o o o o o s o o o o o o o
Reality Computer SyStem « o« « « o o o o o o o o o o o o
The Flexible Family of Computer Systems .« « ¢« o « ¢ o &
Reality SOftware « o« o « o ¢ o o ¢ o o o o o o o s o o o
How to Use the Reality Manuals . « « « o ¢ o o o o o o o
ENGLISH Language « « « o o « o o s o s o o o o o o o o o

ELEMENTS OF ENGLISH LAGUAGE =« &+ ¢ ¢ ¢ ¢ o o o o« s o o o
Forming ENCLISH Input Sentences .« « o« o o o o o o o & o
Overview of ENGLISH Verbs ¢ o« o o ¢ o o108 o o o o o o o
Using Relational Operators and Logical Connectives . . .
Forming Item—LisSts « « ¢ o o o o s ¢ o o o s s o o o o o
Forming Selection—-Criteria « o« « ¢ ¢ « o o o o o o o o« o
Selection-Criteria: String Searching and Item Size . .
Forming Output-Specifications: Columnar vs. Non-Columnar
Output-Criteria: Multivalue Print Limiting . . « « « &
Omission of Output-Specification . « ¢« ¢« ¢ ¢ ¢ ¢ ¢ « o &
Using Modifiers and Options .« « ¢ o o ¢ o o o o o o o« &
Using Throwaway Connectives .+ ¢ o ¢ ¢ o o o o o s & o o
Generating Headings and Footings « o« ¢« o o o o o o o o
Heading and Footing Options =« ¢ ¢ ¢ o o o o ¢ o o o o &
Generating Totals and Grand Totals « « ¢ « o ¢ ¢ ¢ o o o
Breaking on Attribute Values « « ¢« ¢ ¢ o o ¢ o o o o o &
Generating Subtotals Using Control-Breaks . « « « + « &
Output Options for Control Breaks .« ¢ ¢ ¢ o « ¢ ¢ o o &
Sublists: WITHIN Connective « « ¢« o« o o ¢ o ¢ o o o o &

ENGLISH VERBS . . o o ¢ ¢ 4 o o o o o o s s o o o o o o
LIST VErb o« o
SORT Verb & «v o o o o o o o o o o o o o s o o s o o o o
Exploding Sort: Multivalued Attributes .« ¢« « ¢ ¢ « o &
LIST-LABEL and SORT-LABEL Verbs « ¢ ¢ o ¢ s ¢ o o o o o
COUNT Verb « o o o ¢ o o o o o o o s o o o o o o o o o &
SUM and STAT Verbs « « « ¢ o o o o o o o o s s o o o o o
SELECT and SSELECT Verbs « o « o ¢ o o o o o o o o o o &
SAVE-LIST, GET-LIST, COPY-LIST, and DELETE-LIST Verbs .
EDIT-LIST and FORM-LIST Verbs =« ¢ ¢« ¢ ¢ o ¢ o ¢ o o o o
T-DUMP, ST-DUMP, I-DUMP, S-DUMP and T-LOAD Verbs . . « .
ISTAT and HASH-TEST Verbs « « o ¢ o o o o s ¢ o o o o o

CORRELATIVES AND CONVERSIONS ¢ o ¢ o o o o ¢ o o o o o o
Overview « o o o« o o o o o o o s o ¢ s o s o ¢ s o o o &
Defining Associative Attributes: Dl and D2
Defining Group Extraction: G .« o ¢ ¢ ¢ o o ¢ ¢ o o o o
Defining Concatenation: C . ¢ o ¢ ¢ ¢ ¢ ¢ o o o o o o o
Defining Text Extraction: T ¢« o o o o o ¢ ¢ o o o o o o
Converting and Scaling Numbers: MD . . . ¢« ¢ ¢« ¢« « o &
Defining Date Format: D ¢ o ¢ ¢ ¢ o ¢ o o ¢ ¢ ¢ o o o @
Defining Time Format: MT .« ¢ ¢ ¢ o ¢ ¢ o o o o o o o &
Defining File Translation: Tfile . .« « « ¢« « ¢ o o &
Defining ASCII, Packed Decimal, & User Conversion: MX,
Defining Mathematical Functions: F .« & ¢ ¢ o« ¢ o o o &
F Code Stack « o o o o o o o o o o o o o o o « o o o o o
F Code Special Operands =« « o« o o o ¢ ¢ o o o o o o o o

MP,

& U

86

iii

4.14 Summary of F Code Stack Operations « « « o o o« « o o s o o o o « 94

4.15 Defining Mathematical Functions: A Code Operands =« « « « ¢« « « 96

4,16 Defining Mathematical Functions: A Code Operators and Functions 98

4.17 Processing Conversions/Correlatives: Detail Lines & Sorting . . 100
4,18 Processing Conversions/Correlatives: Selection & Control-Breaks 102
4.19 Processing Conversions/Correlatives: Totals & Subtotals 104
APPENDIX A, ASCII CHARACTER SET. « o o o o o o o o o o o s o o o o o o o 107
APPENDIX B, ACCOUNT FILE USED IN EXAMPLES . « ¢ o o ¢ « o o o ¢ o o o « o 113
APPENDIX C. SUBLIST PROGRAM FOR EDIT-LIST AND FORM-LIST EXAMPLE . . « « « 115
INDEX. L] L] L] L] L] L] L] L] L] L] L] L] L] L L] L] L] . L] L] . * ® . o L] . L] L] L] L] L] L] L] iii

iv

791073

1 INTRODUCTION

1.1 Reality® Computer System

Reality® is a generalized, data base management computer system. It is a
complete system providing multiple wusers with the capability to instantly
update and/or retrieve information stored in on-line data files. Users
communicate via local or remote terminals with computer files that may be
private, common, or security-controlled. Each terminal user’s vocabulary can
be individually tailored to specific application jargon.

Reality is built of field-proven Microdata computers and peripherals, utilizing
microprograms to provide wusers with unrivaled performance and reliability in
the medium—-sized computer market.

The Reality computer system includes the powerful, yet simple to use,
ENGLISH® inquiry language and the DATA/BASICm™ and PROC high-level languages,
file maintenance tools, and EDITOR processor, complete programming development
facilities, and a host of other user amenities. Reality runs in an on-line,
multiuser environment with all system resources and data files efficiently
managed by a miroprogrammed virtual memory operating system.

Reality has advantages from every angle: system capability, multiuser
performance, file management languages, ease of programming, data structure,
and architectural features. Reality’s high performance and fast response time
are made possible by extensive use of high-speed microprocessors which greatly
reduce program execution time and system overhead. The entire Reality computer
system is unique -- one of a kind.

Microprogrammed firmware contains:

« Vitual memory manager

o+ Multiuser operating system

. Special data management instructions
. Input/output processors

System software includes:

. ENGLISH, DATA/BASIC, PROC, EDITOR, and Assembly languages

. Selectable/automatic report formatting

« Dynamic file/memory management

. RUNOFF™ word processing

. New SCREENPRO™ language —- an easy way to set up terminal displays
« Optional BISYNC communications

The file structure provides:

. Variable length files/records/fields

. Multivalues (and subvalues) in a field
. Efficient storage utilization

. Fast access to data items

. Selectable degrees of data security

. File size limited only by size of disc
. Record size up to 32,267 bytes

791073 1

1 INTRODUCTION

1.2 The Flexible Family of Computer Systems

The expanded Reality family of high-performance data base management processors
ranges from an economical system for first-time users with limited data
processing requirements and/or experience, to the high capacity systems used by
some of the largest companies in the United States.

Besides superb performance, the entire Reality line offers unmatched growth
advantages. As a user company grows, it can add Reality equipment to meet its
increased data processing needs without the costly replacement and conversion
charges wusually associated with updating. computer facilities. All Reality
systems are both hardware and software compatible. Start with Reality. Grow
with Reality.

A typical basic system has:
. Central processing unit (CPU and cabinet)
. Mass storage disc drive
« Magnetic tape drive
. PRISM™ cathode ray tube (CRT) data terminal (up to 32)
. System printer

All Reality systems operate in Microdata’s easy-to-use ENGLISH retrieval
language, as well as the more advanced DATA/BASIC and PROC, and are fully
compatible with other Reality data processing systems.

There is a high performance Reality system designed for the small to
medium-sized company just entering computerized data base management. This
system is a low-cost, efficient way to start. The computer and all peripherals
are totally compatible with Microdata’s complete Reality line. This system has
a special extended performance feature for future expansion.

At the top of the Reality line is Microdata’s most advanced microprocessing
technology. Greater load capacity. Still faster data processing. More
applications. All without overloading the central processing unit or degrading
the speed of terminal response. The advanced system’s exceptional power and
adaptability provides up to 32 separate users with fingertip access to
voluminous business data and any other business, technical, or scientific
applications that utilize data base management techniques.

2 791073

1 INTRODUCTION

Complete small business computer capabilities
Microprogrammed virtual memory operating system

Up to 32 users and 600 million characters of file storage
On—-line file update/retrieval

ENGLISH retrieval language

Fast terminal response

Printer spooling

Optional communication capabilities

Special data management processors

High—speed generalized sort capability

Small computer price

Big computer performance

Computer/peripheral compatibility from top to bottom
Reality family

of

the entire

791073

Figure A. Reality System Advantages

Figure B. Typical Microdata Reality System

1 INTRODUCTION

1.3 Reality Software

Processors available on the Reality computer system comprise the most extensive
data base management software available on any minicomputer. Overviews of the
software processors and their typical uses follow.

ENGLISH Language

ENGLISH is a generalized data retrieval/report generator language. A typical
ENGLISH inquiry consists of a relatively free-form sentence containing
appropriate verbs, file-names, data selection criteria, and control modifiers.
An easy-to-use, dictionary-based 1language that employs simplified prose
statements, ENGLISH permits the user to produce original reports rapidly and
efficiently.

ENGLISH applications are limitless because of the ease with which output can be
accessed from user files. Since nonprogrammers can master the process quickly,
ENGLISH is a valuable information management tool for many people in an
organization, from sales personnel to top-level executives. Its major uses are
report generation and inquiry/response applications. ENGLISH also 1is a
convenient method of producing output after file updates with DATA/BASIC or
PROC, as well as for printing one-of-a-kind reports without writing a program.

DATA/BASIC

BASIC (Beginners All-purpose Symbolic Instruction Code) 1is a simple, yet
versatile, programming language suitable for expressing solutions to a wide
range of problems. DATA/BASIC, an extension of Dartmouth BASIC, is especially
easy for the beginning programmer to learn.

DATA/BASIC is the primary method of updating user files on a Reality system.
Because of its flexibility, DATA/BASIC is wused for a variety of business
applications including accounts payable/receivable, general ledger, inventory
control, payroll, sales forecasting/analysis, order processing, invoicing,
claims processing, data entry, and other projects.

With the addition of the Screen Processor, DATA/BASIC programs are even easier
to write =- and run faster -—- since screen handling and data validation can be
removed from the program.

SCREENPRO

The SCREENPRO program was developed to minimize the software gap between the
establishment of data files and the creation of reports. No 1longer do wusers
have to develop their own methods of creating and processing screens to display
text, inputs, validations and updates.

Because SCREENPRO requires fewer program statements, it greatly simplifies
program maintenance while increasing operator and programmer efficiency. Data
throughput is accelerated. A screen can be designed, displayed, tested and
changed without affecting the program.

4 791073

1 INTRODUCTION

PROC

The PROC (stored procedure) processor enables the user to prestore a complex
sequence of operations which can then be invoked by a single word command. Any
sequence of operations that can be executed from the terminal can be prestored
in a PROC.

PROC is similar to the Job Control Language (JCL) used in larger computer
systems, but PROC is 1less cryptic and has far greater capabilities including
interactive (optionally formatted) terminal prompting, input wvalidation,
printer formatting, and file input/output.

PROCs are typically used to create special user—defined functions by combining
execution of DATA/BASIC programs, ENGLISH data retrieval operations, and PROC
argument passing.

EDITOR

The EDITOR permits on-line interactive modification of any item in the data
base.

Primarily, the EDITOR 1is wused to create and/or modify DATA/BASIC or PROC
programs. The EDITOR enters and wupdates text processed by RUNOFF,
Particularly useful in word processing is the EDITOR’s global search and
replace capabilities. Performing one-of-a~kind modifications to items in user
files is another EDITOR function.

RUNOFF

RUNOFF is a word processing facility offering many special features. RUNOFF
processes text entered and modified with the EDITOR. RUNOFF numbers pages
automatically and can print text headings and footnotes.

Another RUNOFF feature is chapter and section numbering. New chapters and/or
sections may be added to a document, and the subsequent updated publication,
with changes and additions, will be completely renumbered automatically.
RUNOFF assembles and prints a table of contents covering all subjects,
including corrected/updated copy.

RUNOFF also automatically assembles a publication index based on specified
words and phrases. RUNOFF supplies index page numbers. If new pages are
added, the index is automatically updated.

RUNOFF also performs tabulations, centering, selective left/right
justifications, underlining, and boldface printing.

This and all Reality user manuals were produced by RUNOFF on "BABY", a Reality
computer system.

791073 >

1 Introduction
1.4 How to Use the Reality Manuals

This manual is written in modular format with each pair of facing pages
presenting a single topic.

The approach taken in this and other Reality manuals differs substantially from
the typical reference manual format. Here, each pair of pages discusses an
individual topic. Generally the left-hand page is devoted to text, while the
right-hand page presents figures referred to by the text. A pair of titles,
the first naming the chapter and the second naming the topic, are at the head
of each text page. Immediately below these titles is a brief summary of the
material covered in the topic.

The advantage of this format will become readily apparent as the reader begins
to use this manual. First of all, the figures referred to in the text are
always conveniently right in front of the reader at the point where the
reference is made- Secondly, there is a psychological advantage to the reader
knowing that when he has completed reading a topic and turns the page he is
done with one idea and is ready for a new one-

Documentation for the Reality system includes the following manuals:

« Introduction to Reality

. Programmer’s Reference Manual

. EDITOR Programming Manual

» ENGLISH Programming Manual

. DATA/BASIC Programming Manual

. PROC Programming Manual

. SCREENPRO Programming Manual

» ASSEMBLY Language Programming Manual
. BISYNC Programming Manual

IMPORTANT NOTE: the user should thoroughly read the manual titled INTRODUCTION
TO REALITY prior to referencing this manual!

In presenting general command formats and examples throughout this and other
Reality manuals, certain conventions apply- Conventions wused in presenting
general command formats are listed in Figure A, while conventions used in
examples are listed in Figure B.

Marginal change bars will be wused in future manuals and supplements for the

convenience of present Reality users and will indicate significant additions or
changes from prior Reality publications.

6 791073

1 INTRODUCTION

Convention

UPPER CASE

lower case

{1}

{}...

item—-list*

Meaning

Characters or words printed in upper case are required
and must appear exactly as shown.

Characters or words printed in lower case are parameters
to be supplied by the user (e.g., file-name, item-id,
data, etc.).

Braces surrounding a word and/or a parameter indicates
that the word and/or parameter is optional and may be
ineluded or omitted at the user's option.

If an elipses (i.e., three dots) follows the terminating
bracket, then the enclosed word and/or parameter may be
omitted or repeated an arbitrary number of times.

An asterisk following an item-list indicatees that the list
of item-ids may be omitted if supplied by a previous SELECT,
SSELECT, GET-LIST, or FORM-LIST command.

Figure A. Conventions Used in General Command Formats

Convention

TEXT

Meaning

Shaded text represente the user's input.

All other text represents output printed by the system.

TEXT Italicized text is used for comments and notes which help
explain or deseribe the example.

<er> This symbol represents a carriage return.

<1£> This symbol representsa line feed.

<c> This symbol specifies that the following character is a
control character generated by depressing the <CTRL> key
while typing the character. Also depress the <SHIFT> key
if the character appears on the upper half of a key top.

_ This is the ASCII underline character represented as a
backarrow (-) on some terminals.

Figure B. Conventions Used in Examples
791073 7

1 INTRODUCTION

1.5 ENGLISH Language

ENGLISH is a user oriented data retrieval language for accessing files within
the Reality computer system.

ENGLISH is a generalized information management and data retrieval language. A
typical ENGLISH inquiry (called an ENGLISH 1input sentence) consists of a
relative free-form sentence containing appropriate verbs, file names, data
selection criteria, and control modifiers. Each -user’s vocabulary can be
individually tailored to his application jargon.

ENGLISH is a dictionary-driven 1language in that the vocabulary used in
composing an ENGLISH sentence 1is contained in dictionaries. Verbs and file
names are located in each wuser’s Master Dictionmary (M/DICT). User—files
consist of a data section and a dictionary section. The dictionary section
contains a structural definition of the data section. ENGLISH references the
dictionary section for data attribute descriptions. These descriptions specify
attribute fields, functional calculations, interfile retrieval operations,
display format, and more.

ENGLISH offers these advantages:

« Limited freedom of word order and syntax for inqiries

. Generation of user-specified formatted output

« Sorting capability on variable number of descending or ascending sort
keys

. Generation of statistical information concerning files
. Selection and sorting of items for use by subsequent TCL-II processors
. Relational and logical operations

. Sgaport of 48-bit signed arithmetic (number range is -247 through
-1)

Is is assumed that the user has read the INTRODUCTION TO REALITY manual prior
to referencing this publication.

As a general introduction to the ENGLISH language, Figure A illustrates a

typical user inquiry (shaded text), as well as the formatted output produced by
ENGLISH (nonshaded text).

8 791073

1 INTRODUCTION

PAGE 1 14:43:38 12 FEB 1979

ACCOUNT... NAME...eecoeeeecesooss ADDRESS.csceecens

11000 M H KEENER 100 ANCHOR PL
11015 L K HARMAN 118 ANCHOR PL
11020 J T O'BRIEN 124 ANCHOR PL
11025 P R BAGLEY 130 ANCHOR PL
11030 F E CARBON 101 BEGONIA
11035 R S MARCUS 107 BEGONIA
11040 E G MCCARTHY 113 BEGONIA
11045 F R DRESCH 119 BEGONIA
11050 J R MARSHECK 125 BEGONIA
11055 W H KOONS 131 BEGONIA
11060 F T NATORI 131 BAY STREET
11065 C V RANDALL 125 BAY STREET
11070 A A ALTHOFF 119 BAY STREET
11075 T F LINDSEY 113 BAY STREET
11080 E M AWAD 107 BAY STREET
11085 A B SEGUR 101 BAY STREET
11090 J W JENKINS 130 AVOCADO
11095 J B STEINER 124 AVOCADO
11100 E F CHALMERS 118 AVOCADO
11105 C C GREEN 112 AVOCADO
11110 D L WEISBROD 106 AVOCADO
11115 D R MASTERS 100 AVOCADO
21780 E W AWAD 107 BAY STREET
23000 H T LEE 200 BAY STREET
23005 W B THOMPSON 206 BAY STREET
23010 W E MCCOY 212 BAY STREET
23015 R M COOPER 218 BAY STREET

27 ITEMS LISTED.

Figure A. Sample ENGLISH Inquiry

791073

2 ELEMENTS OF ENGLISH LAGUAGE

2.1 Forming ENGLISH Input Sentences

The user forms ENGLISH input sentences which specify desired data retrieval
functions. The ENGLISH retrieval language is a limited form of natural
English. Formats for input sentences are simple yet very general. The ENGLISH
processors, used with dictionaries, permit inputs to be stated directly in the
technical terminology natural to each application area.

The ENGLISH language uses the lineal format natural to prose text. ENGLISH
accepts any number of variable length words and permits a limited freedom of
word order and syntax. The user constructs an ENGLISH input sentence
terminated by a carriage return. This sentence then directs the appropriate
ENGLISH processor to perform the specified data retrieval function. The
ENGLISH input sentence contains several elements as shown in Figure A.

A verb and a file-name are required; all other elements are optional. Thus,
the minimum ENGLISH sentence consists of a verb followed by a file-name. The
item—1list specifies items eligible for consideration (the absence of an
item—-list implies all items). An item—list consists of specifically enumerated
item-ids, each enclosed within single quotes, additionally constrained by
relational operators and logical connectives. Selection-criteria further limit
items for output to those meeting the specified conditions.
Output-specifications enumerate attributes (fields) desired for output. Figure
B illustrates a sample ENGLISH input sentence.

The following general rules apply to the use of ENGLISH input sentences:

1. ENGLISH input sentences are entered at the TCL level, i.e., when the
system prompts with a colon (:).

2. The first word of any ENGLISH input sentence must be an ENGLISH verb
defined in the Master Dictionary (M/DICT).

3. A sentence 1is terminated by a <er>. A sentence longer than 140
characters (roughly 1-3/4 lines on a Prism screen) may be continued to
a second line by ending the first 1line with a segment mark (Ke> ,
X’FF’) followed by a <cr>. -

4, Exactly one file-name must appear in each sentence. File—-names may
consist of any sequence of nonblank characters and must be unique
within the M/DICT and within all file dictionaries. The modifier
"DICT'" may be included anywhere in the sentence {(normally just
preceding the file-name) to specify operation on the file dictionary
rather than the data file.

5. Any number of attribute names may be used in a sentence. Attribute

names may consist of any sequence of nonblank characters and must be
contained in the dictionary of the referenced file.

10 791073

2 ELEMENTS OF ENGLISH LANGUAGE

6. Any number of modifiers, connectives, and relational operators may be
used which have been predefined in the M/DICT.

7. Verbs, file-names, attribute names, modifiers, connectives, and
relational operators must be immediately followed by a blank or
language delimiter (i.e., single quote, double quote, relational
operator or carriage return).

8. Specified item-ids are enclosed within single quotes (e.g., ‘XYZ’) and
may appear anywhere within the sentence.

9. Specified values are enclosed within doubl'e quotes (e.g., "ABC") and
apply to the previous attribute name.

10. An option specification may appear in parenthesis.

A set of verbs, modifiers, connectives, and relational operators have been
supplied. These special words are defined as items in the M/DICT and, to that
extent, are reserved words. However, a user may define any number of synonyms
for these words (and even remove the system defined entries) thereby creating
his own semantics for the language. Synonyms may be created by copying the
definition of the standard reserved word into an M/DICT item with the desired
synonym name as the item—-id (refer to the Reality Programmer’s Reference
Manual).

specifies specifies
specifies eligible attributes
dietionary | items for output

]
verb {DICT} file-name {item-list} {selection-criteria} {output-spec} {(options)}

specifies specifies limits items
operation file (one only) for output

Figure A. General Form of ENGLISH Input Sentence

file-name selection-eriteria option specification

¥ v
:LIST INVENTORY “ABC’ ‘DEF’ WITH PRICE > "50" PA?T PR%CE (&) <{cr>

verb item-list output-specification

Figure B. Sample ENGLISH Input Sentence

791073 11

2 ELEMENTS OF ENGLISH LANGUAGE

2.2 Overview of ENGLISH Verbs

Each ENGLISH sentence must begin with one (and only one) ENGLISH verb. A set
of ENGLISH verbs is provided.

ENGLISH verbs are action oriented words which invoke specific ENGLISH
processors. Common ENGLISH verbs are listed in Figure A and are briefly
discussed below. A separate chapter in this manual presents a complete
description of these ENGLISH verbs. Figure B illustrates sample usage of the
verbs.

LIST and SORT; LIST-LABEL and SORT-LABEL

The LIST and SORT verbs are used to generate formatted output. LIST simply
lists the selected output, while SORT orders the output in some specified
sorted order, either ascending or descending. It can also perform exploding
sorts on multivalued attributes. A sorted order will also be invoked without
the SORT verb if a BY clause is included. Generated output is formatted into a
columnar output if possible. LIST-LABEL and SORT-LABEL are analogous to LIST
and SORT but allow formatting for printing labels and other formatted output.

COUNT

The COUNT verb counts the number of items meeting the conditions specified by
the combination of item-list and selection-criteria. The output generated by
this verb is simply the number of items counted.

SUM and STAT

The SUM and STAT verbs provide a facility for summing one specified attribute.
The output generated by these verbs is the derived statistics.

SELECT and SSELECT

The SELECT verb provides a facility to select a set of items using the
item—list and selection-criteria. These selected items are then available one
at a time to TCL-II processors. The SSELECT verb combines the SORT capability
with the SELECT capability.

SAVE-LIST, GET-LIST, EDIT-LIST, COPY-LIST, and DELETE-LIST

The SAVE-LIST, GET-LIST, EDIT-LIST, COPY-LIST, and DELETE-LIST verbs are used
to save, retrieve, edit, copy and delete item—-lists created by SELECT and
SSELECT statements.

FORM-LIST

The FORM-LIST verb forms an item—list from a set of item—ids stored in a file
item that was created by the user.

12 791073

2 ELEMENTS OF ENGLISH LANGUAGE

T-DUMP, I-DUMP, and T-LOAD

The T-DUMP and I-DUMP verbs allow the user to selectively dump his dictionaries
and data files to magnetic tape or the terminal, respectively. The T-LOAD verb
allows a user to selectively load his dictionaries and data files from magnetic
tape.

ISTAT

The ISTAT verb provides a file hashing histogram.

COUNT I-DUMP SELECT SUM
DELETE-LIST ISTAT SORT T-DUMP
EDIT-LIST LIST SORT-LABEL T-LOAD
FORM-LIST LIST-LABEL SSELECT

GET-LIST SAVE-LIST STAT

Figure A. ENGLISH Verbs

This figure illustrates sample ENGLISH input sentences. Any dialogue
and gemerated output are not shown.

Figure B. Sample ENGLISH Input Sentences

791073 13

2 ELEMENTS OF ENGLISH LANGUAGE

2.3 Using Relational Operators and Logical Connectives

Relational operators and logical connectives may be used to form complex
item-lists and selection-criteria.

The relational operators are listed in Figure A. Relational operators may be
used in an item-list to constrain items eligible for processing (refer to the
topic FORMING ITEM-LISTS), or may be used in selection-criteria to limit items
to those whose attributes meet the specified conditions (refer to the topic
FORMING SELECTION-CRITERIA). Relational operators apply to the item—id or
value immediately following the operator. The absence of a relational operator
implies an equality operator.

To resolve a relational condition, every item—id (or attribute value) is
compared to the item-id (or wvalue) specified in the item-list (or
selection—criteria) of the ENGLISH input sentence. Character pairs (one from
the specified item—id or value and one from the item—id or attribute currently
being compared) are compared one at a time from leftmost characters to
rightmost. If no unequal character pairs are found, then the item—ids or
values are considered to be "equal". If an unequal pair of characters is
found, the characters are ranked according to their numeric ASCII code
equivalents (refer to the list of ASCII codes in the Appendix in this manual).
The item—id or value contributing the higher numeric ASCII code equivalent is
considered to be "greater" than the other. (If attributes are right-justified,
a numeric comparison is attempted first. If either or both of the item-ids
(values) are nonnumeric, the item—id (value) with more characters is considered
"oreater". If both item-ids (values) are of equal 1length, character pair
comparison, as for left-justified attributes, is used.)

Logical connectives are listed in Figure B. Logical connectives bind together
sets of item—ids into item-lists, sets of values into value-lists, and sets of
selection-criteria into selection-criterion 1lists. The AND connective
specifies that both connected parts must be true, while the OR connective
specifies that either (or both) connected parts must be true. 1In all cases
where neither AND nor OR are specified, OR will be assumed.

An ASCII up-arrow (") may be used as an ignore character in any left-justified
value. All comparisons made against the value then ignore the characters in
the corresponding positions. The ignore character may be used to compare
against item—ids if it is wused with an attribute that is synonymous with the
item-id (i.e., one whose A/AMC is zero).

Figure C exemplifies the use of relational operators and logical connectives.
The user should note that these are partial examples and therefore do not
illustrate complete ENGLISH sentences. They are presented at this point to
give the user a general feel for these operators. Complete ENGLISH sentences
using the above constructions are presented throughout the remainder of the
manual .

Note that the precedence of different operators ' is different for selection
criteria than for item—-list criteria.

14 791073

2 ELEMENTS OF ENGLISH LANGUAGE

Symbol

F

or EQ
or GT or AFTER
or LT or BEFORE
or GE
or NE or NOT or NO

IV ANV I

Operation

equal to

greater than

less than

greater than or equal to

not equal to or null attribute value

If a relational operator ie not given,
EQ is assumed.

Figure A,

Relational Operators

Symbol
AND

OR

gEeration

Both connected parts must be true.
Either connected part must be true.

If a logical comnective ig not given,
OR is assumed.

Figure B.

Logical Connectives

Example

= ‘ABC’ OR > ’‘DEF’

WITH A > "5" AND < "9"

WITH Al ="X" AND WITH A2 ="~Zz"

LT ‘100" GT ‘200’

WITH NO CURR-BLANC

Explanation

Item-list which selects item 'ABC'

as well as all items with item-ID's
greater than 'DEF'.

Selection~-eriterion which selects all
items having a value for attribute A
which 18 between 5 and 9 (exelusive).

Selection-eriteria which selects all
items having a value of "X" for attri-
bute A1, and a value for A2 which con-
sists of any character followed by a
IIZ n .

Item-1list which selects all items with
item-ID's either less than '100" or
greater than '200'.

Selection-criteria which selects items
having a null value for attribute
CURR-BALNC .

Figure C. Sample Usage of Relational Operators and Logical Connectives

791073

15

2 ELEMENTS OF ENGLISH LANGUAGE

2.4 Forming Item~Lists

An item-list specifies items eligible for consideration by the specified
operation, and consists of specifically enumerated item-ids optionally
constrained by relational operators and logical connectives.

An item-list defines items desired for processing. Absence of an item-list
implies all items on the file. A simple item~list consists of any number of
specified item-ids surrounded by single quotes (e.g., ‘XYZ’). These item-ids
may be interspersed at will throughout the ENGLISH input sentence. The general
form of a simple item-list is shown in Figure A.

Complex item—lists may be constructed using relational operators and logical
connectives. For example, consider the following item—list:

"ABC’ OR >= ‘DEF’ AND < ‘GHI’

This item—list selects item ‘ABC’ as well as all items with item—ids both
greater than or equal to ‘DEF’ and also less than ‘GHI’. The general form of a
complex item—list is shown in Figure B.

Use of the complex item—-list causes all items in the file to be accessed for
examination as does absence of an item-list. If a simple item-list is used,
only those items will be accessed, and processng will be faster.

The hierarchy (precedence) of the logical connectives in an item-list is left
to right. For example, consider this item-list:

< ‘A" OR > ‘B’ AND < ‘C’ OR > ‘D’ AND < ‘E’

This item—list selects all items wth item—-ids less than ‘A’, or with item-ids
greater then ‘B’ but less than ‘C’, or with item—ids greater than ‘D’ but less
than 'E’. Since the OR connective is always implied (and may therefore be
omitted), the above item-list may have been equivalently specified:

<A’ > B’ AND < ‘C’ > ‘D’ AND € ‘E’
Further examples of item—lists are illustrated in Figure C. Here the SORT verb
is used to select and sequence the item—ids in file TEST. (TEST contains 10

items, with item—ids “10° through “19°). The word ONLY used in these examples
specifies that only the item-ids are to be listed.

16 791073

2 ELEMENTS OF ENGLISH LANGUAGE

‘item—~id’ {’item—-id’}...

Figure A. General Form of Simple Item—-List

logical comnective

{{op}} ‘item—id’} {{cgn} {$p} ‘item—id’ }...

relational operator

Figure B. General Form of Complex Item-List

50
PAGE 1 15:32:19 12 FEB 1979
TESTeeeeses

15

16

3 ITEMS

i

LISTED.

PAGE 1 15:33:01 12 FEB 1979
TEST......

oo W

1
1
1
1
1
5

ITEMS LISTED.

PAGE 1 15:33:31 12 FEB 1979
TESTeeocee

10

ITEMS LISTED.

PAGE 1 15:34:24 12 FEB 1979
TEST....II

11

12

3 ITEMS LISTED.

Figure C. Sample Usage of Item-List

791073

17

2 ELEMENTS OF ENGLISH LANGUAGE

2,5 Forming Selection-Criteria

Selection-criteria specify a set of conditions which must be met by an item
before it is eligible for output. Selection~criteria are made up of one
criterion or several.

The general form of a selection is shown in Figure A. Each selection-criterion
must begin with the word WITH or IF followed by a single attribute name. (WITH
and IF are synonymous). The attribute name may then be followed by a
value-list. Rules for forming value-lists are identical to those for forming
item-lists (refer to the topic FORMING ITEM-LISTS), except that double quotes
must surround the actual values. For example, the following
selection-criterion is met by items which have at 1least one value for the
attribute DESC which is either equal to "ABC" or is both greater than "DEF" and
less than "GHI":

WITH DESC "ABC" OR > "DEF" AND < "GHI"

If a selection-criterion does not include a value~list, then it is true for all
items which have at least one value for the specified attribute name. The
selection-criterion may be further modified by using the modifier EVERY
immediately following the WITH. The modifier EVERY requires that every value
for the attribute meet the specified condition, i.e., if the attribute has
multivalues, then each value must meet the condition. (The modifier EACH is a
synonym for EVERY). The modifier NO may immediately follow the WITH and test
for the lack of an attribute value (or null value). In this case a value is
not included (e.g., with NO ZIP.CODE).

Several selection-criteria may be bound together by logical connectives to form
the complete selection-criteria. When used in this fashion, the AND connective
has a higher precedence than the OR connective. A selection-criterion may
consist of up to nine "AND clauses”". An AND clause is made up of any number of
selection-criteria bound by AND connectives. The AND clause is terminated when
an OR connective is found in the left to right scan. (Note: the absense of an
AND connective implies an OR connective.) For an item to pass the
selection-criteria, the conditions speciified by any one of the AND clauses
must be met. An example of the logical hierarchy of AND clauses is shown in
the selection-criteria below (the parentheses have been included for clarity
but do not appear in the actual ENGLISH sentence):

(WITH DESC '"ABC" AND WITH VALUE "1000") OR (WITH DESC "ABC" AND WITH NO
VALUE)

It is important to note that every attribute name must be preceded by the word
WITH (or IF) when combining multiple attributes with the AND or OR connectives.
For example, correct usage might be:

WITH QTY < "10" OR > "1000" OR WITH PRICE < "10.50"
whereas

WITH QTY < "10" OR > "1000" OR PRICE < "10.50"
would not produce the desired results. Since the ORs are optional (and
discarded) the phrase PRICE < "10.50" would be intrepreted as a multivalue
print limiter (refer to the topic OUTPUT CRITERIA: MULTIVALVE PRINT LIMITING).

Figure B illustrates further examples of selection-criteria.

18 791073

2 ELEMENTS OF ENGLISH LANGUAGE

WITH or IF {NO} {EXERY or EACH} attribute-name {op} {va%ue-list}
)

inverts | | specifies each multi-| | relational operator specifications
meaning | | value must comply for attribute

Figure A. GCeneral Form of ENGLISH Selection-Criteria

PACE 1 17:36:04 12 FEB 1979
ACCOUNT ... NAME.eceeessasoosses AVG-USAGE SEWER-ASMT... BILL-..
RATE
23100 G J PACE 30 10.30
35035 M J LANZENDORPHER 30 0.35
23080 J W YOUNG 20 1.50 8.40
11045 F R DRESCH 30 10.03

4 ITEMS LISTED.

7 ITEMS COUNTED.

PAGE 1 17:40:57 12 FEB 1979
ACCOUNT... TRNS-DATE...

11075 17 MAR 1978
17 MAR 1978
17 MAR 1978
13 MAR 1978
15 JAN 1978
14 JAN 1978
10 JAN 1978

END OF LIST

Figure B. Sample Usage of Selection-Criteria

791073 19

2 ELEMENTS OF ENGLISH LANGUAGE

2.6 Selection-Criteria: String Searching and Item Size

Selection-criteria may additionally be used to search an attribute for a string
of characters, and to use the size of an item as a criterion.

String Searching

ENGLISH has the ability to search an attribute value for any string of
characters. The left bracket ([) and the right bracket (]) may be used within
double quotes in a selection-criteria. A left bracket indicates that there may
be any (or no) characters to the left of the string. A right bracket indicates
that there may be any (or no) characters to the right of the string. Used
separately, the 1left bracket specifies that the value must end with the
character string, while a right bracket specifies that the value must begin
with the character string. If both brackets are used, the character string may
appear anywhere 1in the attribute value. Figure A illustrates the use of this
feature.

Note: String searching does not function on item—-ids unless an operator
precedes the item-list values (i.e. the equality operator is not assumed in
this case). If an operator is not specified, ENGLISH will look for item-ids
containing bracket(s).

Item Size

The size of items may be used as a selection-criterion. This will cause the
size of the item (as specified in the count-field of the item) to be retrieved.
Thus the user may LIST or SORT items conditionally on their size. To use this
feature, the user must create an attribute definition item in the dictionary of
the file with an A/AMC of 9999. For example:

SIZE
001 A
002 9999
003
004
005
006
007 MDO,
008
009 R
010 6

SIZE could then be used as a selection—-criterion as shown in Figure B.

20 791073

2 ELEMENTS OF ENGLISH LANGUAGE

PAGE 1 18:13:27 12 FEB 1979

ACCOUNT... NAME.:eosesocecccnns

23025 D C BINGAMAN
23055 S M NEWMAN
11015 L K HARMAN

3 ITEMS LISTED.

PAGE 1 18:14:09 12 FEB 1979

ACCOUNT ... NAME:coeosococsccnns

11070 A A ALTHOFF

END OF LIST

PAGE 1 18:16:56 12 FEB 1979
ACCOUNT... NAME:eeeesosoconcnsns

11095 J B STEINER
35065 L J RUFFINE

2 ITEMS LISTED.

Figure A. Sample Usage of String Searching Selection-Criteria

PAGE 1 18:20:52 12 FEB 1979

ACCOUNT... SIZE..

23060 596
23075 317
23080 318
35085 404

4 ITEMS LISTED.

Figure B. Sample Usage of SIZE Selection-Criteria

791073 21

2 ELEMENTS OF ENGLISH LANGUAGE

2.7 Forming Output—-Specifications: Columnar vs. Non-Columnar Output

Output-specifications enumerate attributes to be listed.

All attribute names in an ENGLISH sentence which are not part of a
selection-criterion (i.e., those not preceded by the modifiers WITH or IF or
not modified by certain control modifiers*) are considered as part of the
output-specification. These attribute names specify the attribute values which
are to be printed as a result of the specified operation. However, only those
attribute values from items which pass both the item-list and the
selection-criteria will be output. For example:

LIST INV > ‘500’ SIZE QUAN

This ENGLISH sentence causes attribute values for attributes SIZE and QUAN in
all items with item—ids greater than 500 (in file INV) to be listed.

Selected attributes will be displayed in an automatically generated system
format. This format will include a heading line displaying the date, time and
page number (unless suppressed*) at the beginning of each new page. The page
size is set through the use of the TERM command (refer to the Reality
Programmer’s Reference Manual). The LIST and SORT verbs will attempt to format
the output into a columnar format with each specified attribute name as a
column heading (using as a column width either the attribute max-size from the
dictionary, the attribute name, or the S/NAME heading, whichever is 1larger).
If the sum of the column widths (adding one blank separator for each specified
attribute name) does not exceed the page width as set by the TERM command, then
a columnar format will be generated. In a columnar format, the specified
attribute names (or S/NAME fields) are displayed as column headings across the
top of the page. The values for each of the items are then displayed in their
respective columns. The column headings are repeated at the top of each new

page.

If the requested output exceeds the page width, then the attribute names are
listed down the side of the output with their respective values immediately to
the right. A significant difference between the two formats is that for the
columnar format all headings are listed only once for each page, whether or not
values exist for the columns; while in the non—-columnar format, headings are
displayed for each item only if there are values for the associated attributes.

The general form of the output-specification is shown in Figure A. Examples of
the output-specification are illustrated in Figure B and C. Figure B shows a
columnar output format, while Figure C shows a noncolumnar output format.

*Refer to the topic USING MODIFIERS

22 791073

2 ELEMENTS OF ENGLISH LANGUAGE

attribute—-name {attribute-name}...

Figure A. General Form of Output-Specification

S

PAGE 1 09:09:19 12 FEB 1979

ACCOUNT... NAME.....v¢eueeees... ADDRESS.......c¢e.... CURR-BALANCE...

11020 J T 0’BRIEN 124 ANCHOR PL $ 306,755.54
11055 W H KOONS 131 BEGONIA $ 958,343.75
23040 P B SCIPMA 213 CARNATION $ 123,423.22
35080 G A BUCKLES 307 DOCK WAY $ 447,765.48

4 ITEMS LISTED.

Figure B. Columnar Output Format

PAGE 09:11:53 12 FEB 1979

ACCOUNT: 35060

NAME J A SCHWARTA
ADDRESS 331 DOCK WAY
CURR-BALNC $ 33,822.34
BILL-RATE 0.02

AVG-USAGE 31

END OF LIST

Figure C. Noncolumnar Output Format

791073 23

2 ELEMENTS OF ENGLISH LANGUAGE

2.8 Output—-Criteria: Multivalue Print Limiting

Selection-criteria may also be used to limit printing to specific values from
multivalued and sub-multivalued attributes.

Limiting output to specific values of multivalued and sub-multivalued
attributes can be accomplished by following the attribute name with a print
limiting clause using relational and logical operators and values enclosed in
double quotes. See Figure A for the general form. If the attribute is an
associative attribute (D1), then the corresponding values from the D2
attributes (if specified) will also be returned. However, all items will be
listed wunless a selection-criterion (WITH clause) is also used to select only
items with the desired value(s). For further information regarding associative
attributes, refer to the topic DEFINING ASSOCIATIVE ATTRIBUTES: D1 AND D2.

The example in Figure B lists all the items in the INV file. 1In the example in
Figure C, the TRAN-DATE < "12 FEB 78" portion of the ENGLISH sentence indicates
to the ENGLISH processor that detail will be listed only when the date is less
than '"12 FEB 78". Note that there is no WITH preceding the attribute name
TRAN-DATE, which invokes print limiting. Also note that all three items were
listed because there was no selection—criterion.

If print limiting on both multivalues and sub-multivalues at the same time,
then the positional relationship will be maintained by "blanking out" values
that do not match the print limiting clause.

The TOTAL modifier may be used to total print limited fields. Figure D
illustrates the use of both selection-criteria and print limiting on both
multivalued and sub-multivalued fields along with the TOTAL modifier.

attribute-name {op} "value" {AND/OR {op} "value'}...

Figure A. General Form of Print Limiting Clause

PAGE 1 11:39:47 12 FEB 1979

INVeeeesso TRAN-DATE TRAN-TYPE TRAN-QTY
* *

1242-22 11 FEB I 100
R 48

X 31

12 FEB I 144

] 43

1242-11 11 FEB I 19
X 122

13 FEB R 97

1242-33 16 FEB I 11
C 122

17 FEB C 68

R 71

Figure B. Display of the INV File

24 791073

2 ELEMENTS OF ENGLISH LANGUAGE

PAGE 1 11:41:17 12 FEB 1979
INV....... TRAN-DATE TRAN-TYPE TRAN-QTY
* *
1242-22 11 FEB I 100
R 48
X 31
1242-11 11 FEB I 19
X 122

1242-33

3 ITEMS LISTED.

Figure C. Sample Usage of Print Limiting

PAGE 1 11:42:52 12 FEB 1979
INVeeeooso TRAN-DATE TRAN-TYPE TRAN-QTY
% %
1242-22 11 FEB I
R 48
X 31
1242-11 11 FEB I 19
X
k% 98

2 ITEMS LISTED.

Figure D. Sample Usage of Selection-Criteria and Print Limiting Totals

791073

2 ELEMENTS OF ENGLISH LANGUAGE

2.9 Omission of Output—-Specification

If no output-specifications appear, attributes defined by default attribute
definition items are selected. This special feature 1is outlined below;
however, for a complete description of attribute definition items and their
use, refer to the Reality Programmer’s Reference Manual and the SCREENPRO
Programming Manual.

If all output-specifications are omitted, then default attributes defined in
the dictionary via attribute definition items (i.e., with D/CODEs of A, S or X)
will be assumed as the output specification. Default attribute definition
items are those with item~ids which are numeric and sequential (i.e., 1, 2, 3,
4yees)s Attributes with D/CODEs of A or S are listed; attributes with D/CODEs
of X are not 1listed (i.e., they are only used to maintain the required
sequential order). Attribute definition items have a special format (see
Figure A).

Item—ids are always included in the output listing wunless the modifier ID-SUPP
is used. For an output 1listing only the item-ids, the modifier ONLY must
precede the file-name to inhibit the 1listing of default attributes defined by
attribute definition items (item-ids 1,2,3...etc.).

Figure A summarizes the various dictionary attributes as they apply to the
formatting of output produced by an ENGLISH operation. For further details
regarding attribute definition items, refer to the Reality Programmer’s
Reference Manual. Figure B shows a sample statement with the output-
specifications omitted.

Name A/AMC Value Meaning
D/CODE 1 Aor S Attribute definition item.
X Special code to maintain order (but defined

attribute is not output by ENGLISH.)
A/ AMC 2 attr=-num Defines attribute number.

S/NAME 3 text-name For A-code and S-code attributes; defines
: attribute heading to be output by ENGLISH.

These names may be padded with blanks to

align noncolumnmar output. Multiple 1line

column headings may Dbe specified Dby

separating strings with a value mark (Kc>]).

S/ AMC 4 Not used--reserved.
V/TYP 9 L For columnar output only; specifies left

justification. If value size is greater than
column width, value is folded.

Figure A. Attribute Definition Item Summary

26 791073

2 ELEMENTS OF

ENGLISH LANGUAGE

Name A/AMC

Value Meaning

(cont.)
V/TYP 9

V/MAX 10

11-20

R For columnar
justification.

output
If value

only;

size 1is

column width, value overlays previous columns.

T For columnar output only;
justification of textual data.

at blanks.

U For columnar output only;
justification. If wvalue size is
column width, entire value is printed
ignoring column boundaries.
occur in other columns.

specifies
the

n For columnar output only;
characters to reserve for
Column width will be

Reserved for use by Screen Processor.

Figure A.

Attribute Definition Item Summary (Continued)

PAGE 1 18:24:04 12 FEB 1979
ACCOUNT 35095
NEXT-ACCT 35100
CSTMR-NAME A W FEVERSTEIN
SERVC-ADDR 324 CARNATION
MAIL-ADDR 19401 DORAL
MAIL-CITY. ANOTHER CITY
MAIL-STATE CA
ZIP-CODE.. 19252
DEPOSIT~-= 10.00
START-DATE 0l JAN 1968
BILL-RATE. 0.35
AVG-USAGE. 32
CURR-BALNC 19.25
60-DAYS.. 9.80
END OF LIST
Figure B. Sample Omission of the Output-Specification

791073

specifies

specifies
If value size
greater than column width, string will be "folded"

specifies

on the line
Overprinting

column

increased if attribute name
or text-name heading is larger than V/MAX.

2 ELEMENTS OF ENGLISH LANGUAGE

2.10 Using Modifiers and Options

Modifiers and the

option specification may be used to further modify the

meaning of ENGLISH sentences.

Modifiers which may be used in an ENGLISH sentence are listed in alphabetical

order below.
Modifier

BREAK~-ON

BY

BY-DSND

BY-EXP

BY-EXP-DSND

COL-HDR-SUPP

DBL-SPC

DET-SUPP

DICT

EVERY or EACH

GRAND-TOTAL

HDR-SUPP or
SUPP

28

Description

Defines control-breaks (see the topic BREAKING ON
ATTRIBUTE VALUES.)

Designates the attribute name immediately following as a
sort key for the SORT operation. Sequencing 1is in
ascending order comparing ASCII values (see the topic THE
SORT VERB).

Like BY, except sort is in descending order.

Designates the attribute name immediately following as an
exploding sort key (on multivalues) for the SORT
operation. Sequencing is in ascending order comparing
ASCII values (see the topics EXPLODING SORT: MULTIVALUED
ATTRIBUTES, and THE SORT VERB).

Like BY-EXP, except sort is in descending order.

Suppress the output of the page number and time/date
heading, the column headings, and the "XX ITEMS LISTED"
message.

Causes output to be double-spaced.

Suppresses detail output when used with TOTAL or BREAK-ON
modifiers (see the topic GENERATING SUBTOTALS USING
CONTROL-BREAKS) .

Modifies the file-name so that the ENGLISH sentence

references the file dictionary instead of the file (see
the topic FORMING ENGLISH INPUT SENTENCES).

Modifies a selection-criterion so that every value for a
multivalued attribute must meet the specified condition
for the criterion to be true. This modifier must
immediately follow the modifier WITH (see the topic
FORMING SELECTION-CRITERIA).

Specifies a label for the grand-total line.

Suppresses the output of the page number and time/date
heading, and the "XX ITEMS LISTED" message.

791073

2 ELEMENTS OF ENGLISH LANGUAGE

Modifier Description

ID-SUPP Suppresses the display of item-ids for LIST and SORT operations.
LPTR Routes output to the printer.
NOPAGE When output is to the terminal, this modifier will suppress the

automatic paging of outputs; i.e., pages will be output to the
terminal one after the other without pausing for the user to enter
a carriage return.

ONLY Inhibits the appending of the special default synonym attributes
when a null output-specification is encountered (see the topic
OMISSION OF THE OUTPUT-SPECIFICATION); when used, must precede the
file-name.

PAGE (Optional) - When output is to the terminal, the PAGE mode halts
output at the end of each page; output of the next page resumes
when the user enters a carraige return. PAGE mode is automatically
in effect unless the NOPAGE modifier or ‘N’ option is in effect.

TAPE Indicates that retrieval is from the tape file positioned on the
tape drive rather than from a disc file. Attribute definitions
will be found in the dictionary of the file specified in the
sentence. If a dictionary file 1is specified, then attribute
definitions will be retrieved from the user’s M/DICT. The TAPE
modifier is only valid with LIST, SELECT, COUNT, SUM, STAT, I-STAT,
and LIST-LABEL verbs.

TOTAL Causes totals to be accumulated for the attribute which follows
(see the topic GENERATING TOTALS).

WITH or IF Designates selection-criteria (see the topic FORM ING
SELECTION-CRITERIA).

WITHIN Specifies that the file-name immediately following is a sublist
file (see the topic SUBLISTS: THE WITHIN CONNECTIVE).

The next topic, USING THROWAWAY CONNECTIVES, contains examples illustrating the
use of modifiers.

An option specification may be included in ENGLISH input sentences to modify
the meaning. Options consist of single 1letters separated by commas. The
option specification 1is surrounded by parentheses. For example, the option
specification (N) eliminates paging (NOPAGE).

Different verbs permit different options, but, in general, the following
options apply to most ENGLISH sentences:

I List item-ids numbered sequentially
N NOPAGE
P Route output to the spooler for printing

791073 29

2 ELEMENTS OF ENGLISH LANGUAGE

2,11 Using Throwaway Connectives

Throwaway connectives do not affect the meaning of ENGLISH sentences. They may
be used anywhere in the sentence and are included to provide a degree of
naturalness to the language.

Throwaway connectives which may be used in an ENGLISH sentence are listed in
alphabetical order below.

Throwaway

Connective Description

A Adjective, e.g., WITH A PRICE GT "500"

AN Adjective, e.g., WITH AN AMOUNT LT "1"

ARE Connector, e.g., ITEMS ARE GT "40"

ANY Adjective, e.g., LIST ANY NAME

FILE Noun, e.g., LIST THE INV FILE

FOR Connector, e.g., FOR ITEMS > ‘35000’

IN Connector, e.g., LIST ITEMS IN ACCOUNT FILE
ITEMS Noun, e.g., ITEMS NE "40"

OF Connector, e.g., NAMES OF DELEGATES

OR Logical connector, e.g., COUNT EQ "10" OR LT "20"
THE Adjective, e.g., LIST THE NAME

The user may create his own throwaway connectives by copying any of these items
into the desired item in the M/DICT.

Figure A illustrates the use of modifiers and throwaway connectives.

30 791073

2 ELEMENTS OF ENGLISH LANGUAGE

This sentence causes the ACCOUNT file to be listed. Listing will
be double-spaced, and the page number and time/date heading and
nYX ITEMS LISTED" messages will be suppressed.

This sentence causes items in the INVENTORY file with PRICE greater
than 500 to be sorted and listed. The output will be to the printer;
the time/date heading and the end-of-list message will not be
printed.

This sentence causes the values for NAME and ADDRESS (in items
with item-ID's greater than '35000' to be listed (item-ID's
will not be listed.

This sentence causes the tape file to be listed using the attribute
definitions QTY, INV.DATE, and DATE ORDERED found in the Dictionary
of the INVENTORY file. Only items with QTY less than "10" will be
listed.

This sentence causes the tape file to be listed on the printer
using the attribute definitions D/CODE, A/AMC/ S/NAME, V/TYP, and
V/MIN found in the user's M/DICT (since a DICT level file was
specified).

Figure A. Sample Usage of Modifiers and Throwaway Connectives

791073

31

2 ELEMENTS OF ENGLISH LANGUAGE

2.12 Generating Headings and Footings

LIST and SORT statements may optionally specify headings and footings. A
heading is any title appearing at the top of the page. A footing is any title
appearing at the bottom of the page.

HEADING

A user-generated heading can be specified in a LIST or SORT statement. The
specified heading will be printed at the top of every page of output. The
normal page number, time and date heading, and end-of-list message will not be
printed when a user—-generated heading is specified.

A HEADING specification may apper anywhere 1in the LIST or SORT statement. To
specify a heading, the user enters the word HEADING followed by a string of
characters enclosed in double quotes (" "). Special option characters may
appear, enclosed in single quotes (° ‘). This gives the HEADING specification
the following general form:

HEADING "{text} {‘options’}..."
For example:
HEADING "INVENTORY LIST"

This prints the title "INVENTORY LIST" at the top of each page. Options are
described in the topic HEADING AND FOOTING OPTIONS.

FOOTING

A user—generated footing can be specified in a LIST or SORT statement. The
specified footing will be printed at the bottom of every page of output.
FOOTING has the same general form as HEADING, i.e.:

FOOTING "{text} {’options’}..."

The FOOTING specification operates the same as described above for HEADING
except that the normal page number time and date heading are not suppressed.
The HDR~SUPP modifier may be used in sentences that specify FOOTINGS with dates
or page numbers so that this information is not repeated at the top.

Figure B illustrates sample usage of HEADING and FOOTING specifications.

Special option characters used in the examples are described in the topic
HEADING AND FOOTING OPTIONS.

32 791073

2 ELEMENTS OF ENGLISH LANGUAGE

HEADING "{text} {’opt%ons'}..."

See HEADING AND FOOTING OPTIONS
for option characters

FOOTING "{text} {’options’}..."

Figure A. General Form of HEADING and FOOTING Specifications

NAME LIST AT 10:29:39 12 FEB 1979
PAGE NO. 1

ACCOUNT.ss NAME.vceeeoacocssncs

11000 M H KEENER
11015 L K HARMAN
11020 J T O’BRIEN
11025 P R BAGLEY
11030 F E CABRON

INVENTORY. QTY.. DATE........ LOCATION

ROW. .BIN
1107 432 11/03/76 3 5
1011 17 11/05/76 2 11
1012 3 12/16/76 11 3
1003 115 01/09/77 9 6

INVENTORY REPORT FOR 12 FEB 1979
PAGE 1

Figure B. Sample Usage of HEADING and FOOTING Specifications

791073 33

2 ELEMENTS OF ENGLISH LANGUAGE

2.13 Heading and Footing Optionms

HEADING and FOOTING specifications allow special option characters to be
replaced by the current time, date, page number, etc. Expanded print titles
can be generated on some line printers.

Special option characters allow HEADING and FOOTING specifications to include
date, time, page number, and file-name, and to perform formatting such as
starting a new line. Options are specified by including any of the characters
listed in Figure A, enclosed in single quotes.

Examples:
HEADING '"STATUS REPORT ‘L’ PAGE: ‘P’"
FOOTING "INVENTORY REPORT FOR ‘D PAGE ‘P""

In the first example a heading has been specified which consists of the words
""STATUS REPORT", followed by a carriage return and a line feed (L option),
followed by the word "PAGE:," followed by the current page number (P option).
In the second example a footing is specified that will consist of the words
""INVENTORY REPORT FOR," followed by the system date (D option), followed by a
number of spaces and the word PAGE, followed by the current page number
(P option).

The special option characters to be enclosed in single quotes are listed in
Figure A. To actually print a single quote mark within the text, a sequence of

two single quotes (‘) may be used.

Expanded Print

An expanded print capability 1is available on the Microdata Matrix Printer and
some other matrix printers. Headings and footings may be printed in expanded
print by preceding the text string with the ASCII "SO" character (<cD>N, X'0E’)

"<ciNtext..."

Control N does not print on terminal.

The string that follows wup to a carriage return, line feed will print in
expanded type. Each character printed in expanded type requires two horizontal
spaces., Figure B presents an example.

34 791073

2 ELEMENTS OF ENGLISH LANGUAGE

Character

IBI

Meaning

BREAK. Inserts the value causing a control-break, if the
'B' option has been specified along with the control-
break field (see the section OUTPUT OPTIONS FOR CONTROL-
BREAKS). Thie option has no effect otherwise.

DATE. Inserts the current system data at this point in
the heading.

FILE-NAME. Inserts the file-name.

LINE. Specifies start of a new line (carriage return
and line feed insertion).

NOPAGE. Defeats automatic paging of output.
PAGE. Imserts the current page number.

PAGE JUSTIFY. Inserts the current page number right
Justified in a field of four Dlanks.

TIME. Inserts the current system time and date.

TWO successive single quotes are used to print a single
quote mark in heading text.

Figure A. Special HEADING and FOOTING Option Characters

FUIRCHOGSE OORDER= 17 FER 197
FAGE 1
F":ln 'TEREEERER] “DATE ——————— IZ!TY-"_'"'" "F.ART#"“’
20004 28 NOV 1978 25 1005
=0 1007
50001 0z DEC 1972 25 1001
=0 1011
50002 04 [DEC 1972 15 1002
S0005 12 DEC 1972 20 1010
20002 05 DEC 1978 25 1002
20004 12 DEC 1978 = 100z
Figure B. Sample Usage of Expanded Print Capability on Matrix Printer

791073

35

2 ELEMENTS OF ENGLISH LANGUAGE

2.14 Generating Totals and Grand Totals

LIST and SORT statements may optionally specify totals.

TOTAL

A LIST or SORT statement can be used to generate a total. A TOTAL
specification has this general form:

TOTAL attribute-name

The TOTAL modifier causes a total to be computed for the attribute whose name
immediately follows the word "TOTAL". For example:

LIST AFILE TOTAL A7

This sentence causes values for attribute A7 to be listed, followed by a total
(sum) of these values. On the output, the total is identified by three
asterisks (***) in the item~id column. This feature is 1illustrated in
Figure C.

The subject of totaling appears elsewhere in this manual in conjunction with
other ENGLISH capabilities. The TOTAL modifier is also used in conjunction
with the BREAK-ON modifier to output subtotals, as described in the topic
GENERATING SUBTOTALS USING CONTROL BREAKS. See the topic PROCESSING STAGES OF
CORRELATIVES AND CONVERSIONS: TOTALS AND SUBTOTALS for information regarding
totaling with function correlatives and function conversions.

GRAND-TOTAL
The GRAND-TOTAL modifier permits labeling the grand total field in place of the
default ‘*%*’ notation printed in the item-id field. The general form of the
GRAND-TOTAL modifier is:

GRAND-TOTAL "text {‘options’}..."
The options are the same as for control-breaks (see the topic OUTPUT OPTIONS

FOR CONTROL-BREAKS). Note that the grand total text may overwrite the actual
totals if the text is too long.

36 791073

2 ELEMENTS OF ENGLISH LANGUAGE

k%

TOTAL attribufijname

Sum of included attribute-values

output here
T—votal

Figure A. General Form of TOTAL Specification and Output Line
GRAND-TOTAL ''text {'options’}..."
Same as Control-
Break options
Figure B. General Form of GRAND-TOTAL Specification

PAGE 1

10:31:23 12 FEB 1979

ACCOUNT.oe NAME:4eeesossossesss ADDRESS.ceeeeessssss DEPOSIT.

35100 R W FORSTROM
35095 A W FEVERSTEIN
35110 H E KAPLOWITZ
35105 S J FRYCKI

dekk

4 ITEMS LISTED.

318 CARNATION 8.00
324 CARNATION 10.00
306 CARNATION 10.00
312 CARNATION 10.00

38.00

791073

Figure C.

Sample Usage of TOTAL Modifier

37

2 ELEMENTS OF ENGLISH LANGUAGE

2.15 Breaking on Attribute Values

The BREAK-ON modifier may be used to segregate portions of a listing according
to the value(s) of the BREAK-ON attribute—name(s) .

The BREAK-ON modifier, in its simplest form, has this format:
BREAK-ON attribute—-name

The "attribute name" indicates the attribute on which a break will occur.
During the LIST or SORT operation, a control-break occurs whenever there is a
change in the value of the specified attribute.

Up to 15 control-breaks are permitted in the sentence; the hierarchy of the
breaks is implicitly specified by the sequence of BREAK-ONs in the input line,
the first being the highest level.

A break occurs when there is a change in the value of the attribute associated
with the BREAK-ON modifier. Value comparison 1is made on a left-to-right,
character-by-character basis, with a maximum of the first 24 characters being
used in the comparison. In generating the value for comparison, correlatives
in the attribute definition are processed but conversions are not (see
applicable subtopics in the chapter titled CORRELATIVES AND CONVERSIONS).

When a control-break occurs, three asterisks (***) are displayed in the
BREAK-ON attribute column (i.e., the attribute whose value has changed, thus
causing the break).

For multiple control-breaks, output proceeds from lowest level BREAK to highest
level. Data associated wth the lowest level control-break is printed on the
current page (even if the end of the page has been reached). If multiple
control-breaks occur, normal pagination proceeds on the second and subsequent

data lines.

The BREAK-ON modifier may be used in conjunction with the TOTAL modifier to
generate subtotals (see next topic).

Figure B 1illustrates the use of the BREAK-ON modifier. Addidtional output
formatting capabilities are described in the topic OUTPUT OPTIONS FOR CONTROL

BREAKS.

38 791073

2 ELEMENTS OF ENGLISH LANGUAGE

BREAK-ON attribute—name

Figure A.

Minimum BREAK-ON Form

PAGE 09:34:01 12 FEB 1979
ACCOUNT. LN NAblE. 8 0 0 00000 080 0 STREET. 0 0 06 400 CURR—BAIANCE. e 0
35090 D U WILDE CARNATION $ 884.53
35095 A W FEVERSTEIN CARNATION $ 19.25
35100 R W FORSTROM CARNATION
35105 S J FRYCKI CARNATION $ 5,569.53
35110 H E KAPLOWITZ CARNATION $ 94,944 .55
kA%
35005 J S ROWE COVE S 464.72-
35010 S R KURTZ COVE $ 467 .33
35015 W F GRUNBAUM COVE $ 88.47
35025 J D GUETZINGER COVE $ 3.45
Kkk
35030 F M HUGO DAHLIA $ 123.48
35035 M J LANZENDORPHER DAHLTIA $ 445,89
35040 C E ESCOBAR DAHLIA S 38,822.12-
35050 P J WATT DAHLIA $ 337.18
35055 J W ROMEY DAHLIA $ 33,478.95
%k
35060 J A SCHWARTA DOCK $ 33,822.34
35065 L J RUFFINE DOCK $ 558.43
35070 F R SANBORN DOCK $ 22,144.67
35075 J L CUNNINGHAM DOCK $ 7.70
35080 G A BUCKLES DOCK $ 447,765.48
35085 J F SITAR DOCK $ 200.00
Kk
kKK
20 ITEMS LISTED.
Figure B. Sample Usage of BREAK-ON Modifier
791073 39

2 ELEMENTS OF ENGLISH LANGUAGE

2.16 Generating Subtotals Using Control-Breaks

The TOTAL modifier may be wused with the BREAK-ON modifier for the purpose of
generating subtotals in LIST and SORT statements when control-breaks occur.

The TOTAL modifier is used to generate and print subtotal values (in addition
to a total) when it appears in the same sentence as BREAK-ON. The form is the
same as for generating total, i.e.:

TOTAL attribute—-name

Values for the specified attribute are accumulated and printed as subtotals
whenever a control-break occurs. Multiple TOTAL modifiers may appear.

When a control-break occurs, a line of data is output, preceded and followed by
blank lines. Three asterisks (***) are displayed in the BREAK-ON attribute
column, and a subtotal is displayed in the appropriate column for each
attribute specified in a TOTAL modifier. Subtotals are the values accumulated
since the last control-break occurred.

At the end of the listing, a TOTAL line is generated for every BREAK specified,
and a grand TOTAL line -- as if the TOTAL modifier were used alone —- is also
printed. All end of listing sums are printed on the current page.

In computing the value for accumulation, correlatives are processed but
conversion specifications are not (see the applicable subtopics in the chapter
CORRELATIVES AND CONVERSIONS). Conversion is applied only when the value being

accumulated is actually printed.

Figure B illustrates the use of BREAK-ON and TOTAL modifiers. Additional
output formatting capabilities are described in the topic OUTPUT OPTIONS FOR
CONTROL BREAKS.

40 791073

2 ELEMENTS OF ENGLISH LANGUAGE

BREAK-ON attribute—name

TOTAL attribute—-name-

differing values of this
attribute

generate subtotals for this
attribute

Figure A.

Minimum BREAK-ON Form and TOTAL Form

PAGE 1

ACCOUNT...

35060
35085

11100
35075

*k%k

NAME.....-.o-ocooo.o BILL_¢.
RATE

J A SCHWARTA
J F SITAR

E F CHALMERS
J L CUNNINGHAM

4 ITEMS LISTED.

09:28:03 12 FEB 1979
CURR-BALANCE.. .
$ 33,822.34
$ 200.00

$ 34,022.34

$ 17.50
$ 7.70
$ 25.20
S 34,047.54

Figure B.

791073

Sample Usage of Control-Breaks to Generate Subtotals

2 ELEMENTS OF ENGLISH LANGUAGE

2.17 Output Options for Control Breaks

Labels and output control options may be specified for control-breaks.

A user—-generated label can be specified to be printed in place of the default
control-break label (***) by following the BREAK-ON attribute-name with the
desired 1label, enclosed in double quotes. Within the label, output control
options may be specified enclosed in single quotes. This gives the BREAK-ON
specification the following general form:

BREAK-ON attribute-name {" {text} {‘options’}..."}

The text, if specified, replaces the default "#**" field in the column in which
the control-break occurs. Options are used to modify some of the actions taken
at control-break time; options are specified as one or more characters as
follows:

BREAK-ON
Label
Option Meaning

‘B’ BREAK. Specifies this control-break attribute-name as the one whose
value is to be inserted in the ENGLISH page HEADING (or FOOTING) in
place of the ‘B’ option in the HEADING (or FOOTING) specification
(see the topic GENERATING HEADINGS AND FOOTINGS). Only the first 24
characters of the attribute are used. This may not be specified in
both a HEADING and FOOTING. It may not be meaningful to specify
this option in more than one BREAK-ON specification.

‘D’ DATA. Suppresses the break data line entirely if there was only one
detail line since the last control-break occurred.

‘L’ LINE. Suppresses the blank 1line preceding the break data line.
This option will override the ‘U’ option described below.

‘P’ PAGE. Causes a page eject after the data associated with this break
has been output.

‘R’ ROLLOVER. One or more control-break lines occuring at the end of a
page will be output on the same page. Without this option, page
rollover occurs after printing the first control-break line at the
end of a page.

‘v’ UNDERLINE. Causes underlining of all TOTAL fields.

‘v’ VALUE. Causes the value of the control-break to be inserted at this

point in the BREAK-ON label.

The first example in Figure B shows use of output options. If the modifier
DET-SUPP is used in the sequence with TOTAL and/or BREAK-ON, then all detail
will be suppressed and only the subtotal and total 1lines will be displayed.
This is shown in the second ENGLISH sentence in Figure B. Suppression of the
BREAK attribute data may be specified by using a V/MAX (Line 10) of zero for
the attribute used with a BREAK-ON modifier (refer to the Reality Programmer’s
Reference Manual).

42 791073

2 ELEMENTS OF ENGLISH LANGUAGE

BREAK-ON attribute-name {" {text} { options’}..."}

See facing page for
options characters

Figure A. General Form of BREAK-ON Specification

PAGE 1 09:32:04 12 FEB 1979
ACCOUNT... NA}'IE-O.............. BILL_.o CURR—BALANCEQIC
RATE
35060 J A SCHWARTA 0.02 § 33,822.34
35085 J F SITAR 0.02 $ 200.00

SUB-TOTAL FOR 0.02 § 34,022.34

11100 E F CHALMERS 0.40 § 17.50
J 1. CUNNINCHAM 0.40 $ 7.70

SUB-TOTAL FOR 0.40 $ 25.20

ok $ 34,047.54

4 ITEMS LISTED.

PAGE 1 09:39:20 12 FEB 1979

ACCOUNT... BILL-.. CURR-BALANCE...
RATE

SUB-TOTAL FOR 0.02 $ 34,022.34
SUB-TOTAL FOR 0.40 $ 25.20
* %k $ 34,047.54

4 ITEMS LISTED.

Figure B. Sample Usage of Control-Break Options

791073

43

2 ELEMENTS OF ENGLISH LANGUAGE

2.18 Sublists: WITHIN Connective

The WITHIN connective can be used in an ENGLISH sentence to 1l1list a sublist of
items belonging to an item.

ENGLISH has the capability to retrieve and list all items which are subitems of
a specified item using the WITHIN connective. This capability is useful for
bill-of-materials processing and for displaying tree-structured lists. The
list may proceed up to 20 sublevels.

One attribute in each item of the file is selected to be a multivalued sublist.
Each value is the item—id of a subitem which must also be in the file.

The DL/ID of the file must have V code on line 8. The form is:
V3 ;sub-1ist-AMC

(Note the double semicolon). "Sub-1ist-AMC" is the attribute number that
contains the sublist.

The WITHIN connective functions only with LIST and COUNT verbs. The WITHIN
connective must immediately precede the file-name. One, and only one, explicit
item—-id must be specified in the input line.

On a columnar listing, a field five characters in width, with a heading of
"LEVEL" will be used to print the level number. On noncolumnar listings, the
level number will precede each item.

Figure B describes the dictionary of the ASSEMBLIES file. Note the ‘V’ code on
Line 8 of the DL/ID item. Figure C illustrates the use of the WITHIN

connective.

44 791073

2 ELEMENTS OF ENGLISH LANGUAGE

WITHIN {DICT} file—name

Figure A.

General Form of the WITHIN Connective

PAGE 1

ASSEMBLIES D/CODE A/AMC

08:39:17

12 FEB 1979

S/NAME.eeeevees V/CONVeues V/CORRuwuwveooss V/TYP V/MAX

PART# S 0 PART # L 10

DESC S 1 DESCRIPTION L 20

QOH S 2 ON-HAND R 4

VALUE S 3 VALUE MD2 L 6

REC.DATE S 4 REC.DATE D L 9

SUB.ASSEM S 5 SUB.ASSEM L 10

LOCATION S 6 LOCATION L 11

DL/ID D 30099 1 V535 L 10

8 ITEMS LISTED.

Figure B. Dictionary of ASSEMBLIES File

PAGE 1 08:41:06 12 FEB 1979

LEVEL PART#..... DESCRIPTION.::+..... VALUE. LOCATION... SUB.ASSEM. ON-HAND

1 A2000-1234 SERVOS 0.73 R-123-8888 A2001-7811 73
A2001-8900
A2001-9112

2 A2001-7811 D.C.MOTOR 0.55 R-17-1001 A2002-1000 55
A2002-1023

3 A2002-1000 D.C.MOTOR PLATFORM 0.73 R-123-8888 73

3 A2002-1023 D.C.MOTOR POWER UNIT 0.73 R-123-1002 73

2 A2001-8900 SERVO BOARD 0.12 L-44-1001 12

2 A2001-9112 SERVO HOUSING 1.07 L-17-189 A2002-1032 107
A2002-1566

3 A2002-1032 HOUSING SEALS 1.02 L-09-1889 102

3 A2002-1566 HOUSING PLATES 1.03 L-1-3309 A2004-1111 103

4 A2004-1111 HOUSING PACKAGE 12.00 R-12-1212 1200

9 ITEMS LISTED.

Figure C. Sample Usage of WITHIN Connective
791073 45

3 ENGLISH VERBS

3.1 LIST Verb

LIST is an ENGLISH verb used to generate a formatted output of selected items
and attributes from a specified file.

An ENGLISH sentence using the LIST verb is constructed as illustrated in Figure
A. The selected items (and their associated selected attributes) will be
listed at the terminal (or on the printer if the modifier LPTR or the ‘P’
option is used). The sequence of the output listing will be the order in which
the item—ids have been enumerated in the ENGLISH sentence. If no item—-ids have
been specified in the ENGLISH sentence, then all item-ids are implied and LIST
will present these items in the hash sequence in which they are stored in the
file.

Generated output will be formatted into a columnar output (if possible) taking
into account the maximum defined size of the specified attributes and their
associated names, along with the width of the terminal page as defined by the
-TCL TERM verb (refer to the Reality Programmer’s Reference Manual). If more
attributes have been specified than will fit across the page, a noncolumnar
output will be generated with the attribute names down the side and the
associated attribute values to the right. For further details regarding the
output format, refer to the topic FORMING OUTPUT-SPECIFICATIONS and the topic
OMISSION OF THE OUTPUT- SPECIFICATION.

Consider the followng example:

LIST ACCOUNT ‘35000° “35050° NAME ADDRESS
This sentence specifies that the attribute values for attributes NAME and
ADDRESS in items 35000 and 35050 (in ACCOUNT file) are to be listed. In this

case a columnar output will be produced.

Further examples of the LIST verb are shown in Figure B.

46 791073

3 ENGLISH VERBS

LIST {DICT} file;Pame {item;list} {selection-criteria} {outpu?—spec} {(options)}

specifies specifies limits items specifies
file eligible for output attributes
1teme for output

Figure A. General Form of ENGLISH Sentence Using LIST Verb

PAGE 1 11:08:37 12 FEB 1979
ACCOUNT ... NAMEeeeesoosaeesoses ADDRESSivieeesessses BILL-..
RATE
11115 D R MASTERS 100 AVOCADO 0.30
11085 A B SEGUR 101 BAY STREET 0.30
11040 E G MCCARTHY 113 BEGONIA 0.30
11050 J R MARSHECK 125 BEGONIA 0.30
11020 J T O’BRIEN 124 ANCHOR PL 0.30
11095 J B STEINER 124 AVOCADO 0.30
11110 D L WEISBROD 106 AVOCADO 0.30
11015 L K HARMAN 118 ANCHOR PL 0.30
11105 C C GREEN 112 AVOCADO 0.30
11090 J W JENKINS 130 AVOCADO 0.30
23030 L J DEVOS 201 CARNATION 0.30

11 ITEMS LISTED.

PAGE 1 11:19:58 12 FEB 1979

ACCOUNT : 23095

NAME W E ZUMSTEIN
ADDRESS 224 BEGONIA
START-DATE 01 JAN 1968
DEPOSIT 11.00

ACCOUNT : 23090

NAME W J HIRSCHFIELD
ADDRESS 230 BEGONIA
START-DATE 01 JAN 1968
CURR-BALNC $ 20.45
DEPOSIT 10.00

3 ITEMS LISTED.

Figure B. Sample Usage of List Verb

791073 47

3 ENGLISH VERBS

3.2 SORT Verb

SORT is an ENGLISH verb used to generate a sorted and formatted output of
selected items and attributes from a specified file.

An ENGLISH sentence using the SORT verb is constructed as illustrated in Figure
A. The output produced by a SORT operation is identical to the output produced
by a LIST operation (refer to topic LIST VERB), except that a SORT operation
orders the output in a specified sorted order. If no BY-type modifier is used,
then the SORT will sequence on the item—ids (in ascending order). If the BY
modifier 1is wused, then the SORT will sequence on the attribute whose name
immediately follows BY (in ascending order). If the BY-DSND modifier is used,
then the sort will sequence on the attribute whose name immediately follows
BY-DSND (in descending order). The modifier BY-EXP specifies an ascending
exploding sort on the attribute whose name immediately follows. BY-EXP-DSND
specifies a descending exploding sort. A sort will be performed whenever a BY
clause is specified, regardless of the verb used.

Multiple BY and BY-DSND sort keys may be intermixed at will, with the leftmost
sort key being most significant. If a descendng sort is required on the
item—-id alone, then a BY-DSND modifier must be used followed by an attribute
synonymous to the item-id (i.e., one whose A/AMC is zero).

The modifiers BY-EXP and BY-EXP-DSND specify exploding sorts on multivalued
attributes. Individual multivalues are treated as independent single values.
Each is associated with its item~id. The expanded list is then sorted. If
necessary, items are printed more than once to maintain sequential order. For
more details, see the topic EXPLODING SORT: MULTIVALUED ATTRIBUTES.

Sequencing via a SORT operation is accomplished by comparing the ASCII values
of the characters from left to right. If attributes are right—justified, then
the leftmost empty character postions are considered as blanks when compared.
For further information regarding character comparison, refer to the topic
USING RELATIONAL OPERATORS AND LOGICAL CONNECTIVES. Consider the following
example:

SORT INV BY QUAN BY PRICE

This sentence specifies an ascending sort of file INV, with primary sequencing
performed on the attribute QUAN and secondary sequencing performed on attribute
PRICE. Further examples are shown in Figure B.

The SORT verb may call on the correlative processor and the conversion
processor. All correlative codes are processed in forming sort keys (refer to
the appropriate topic in the chapter CORRELATIVES AND CONVERSIONS). Note that
several codes (MD, MT, D) do not affect the results of sorting, and should be
used as conversion codes only, in order to save processing time.

The default sort on the item—-id may be left-justified string or right-

justified numeric depending on Attribute 9 - of the D-pointer (or DL/ID) defining
the file.

48 791073

3 ENGLISH VERBS

specifies file specifies eligible items | | limits items for output

\

SORT {beT} file-name {itemllist} {selection-criteria}

{output-spec} {BY attribute}...e——lspecifice ascending sort-key

{BY-DSND attributel<—_gpecifies descending sort-key

specifies attributes
for output

{BY_EXP attribute}oooﬂ———
{BY_EXP_DSND attribute}coo

specifies ascending
exploding sort-key

specifies descending

exploding sort-key

Figure A.

General Form of ENGLISH Sentence Using SORT Verb

PAGE 1

ACCOUNT... NAME................

14:11:02

START_DATE o0

23000 H T LEE 0l JAN 1968
23005 W B THOMPSON 29 DEC 1969
23010 W E MCCOY 01 JAN 1968
23015 R M COOPER 01 JAN 1968
23020 S L UNGERLEIDER 23 APR 1972

5 ITEMS LISTED.

12 FEB 1979

PAGE

14:13:37 12 FEB 1979
ACCOUNT... NAME.e:eeeeossessees CURR-BALANCE...
11055 W H KOONS 958,343.75
35080 G A BUCKLES 447,765.48
11020 J T O’BRIEN 306,755.54
23040 P B SCIPMA 123,423.22
23045 P F KUGEL 99,422.34
5 ITEMS LISTED.
PAGE 1 14:15:47 12 FEB 1979
ACCOUNT... NAME.::sssssoeseesss DEPOSIT. BILL-..
RATE
35090 D U WILDE 3.17
35100 R W FORSTROM 8.00 10.03
35080 G A BUCKLES 10.00 0.35
35095 A W FEVERSTEIN 10.00 0.35
35105 S J FRYCKI 10.00 0.35
35075 J L CUNNINGHAM 10.00 0.40
35110 H E KAPLOWITZ 10.00 10.03
35085 J F SITAR 12.00 0.02
8 ITEMS LISTED.
Figure B. Sample Usage of SORT Verb
791073 49

3 ENGLISH VERBS

3.3 Exploding Sort: Multivalued Attributes

The exploding sort allows a sort to be performed on a multivalued attribute.
An exploding sort is specified by a BY-EXP or BY-EXP-DSND modifier.

The exploding sort will generate a separate sort key for each value for each
item. The number of detail lines in a listing will thus be the total number of
values in the specified attribute including all items.

When a listing is made using the exploding sort, a given item will appear on as
many detail 1lines as it has values. Only one value of each multivalued
attribute will be printed on that detail line. That will be the value which
corresponds to the value in the sort key.

The modifiers BY-EXP and BY-EXP-DSND can be used to specify the attribute on
which the exploding sort is applied. BY-EXP is for ascending sort, and
BY-EXP-DSND is for descending sorts.

Figure A shows a patient file as it might be used in a clinic. The attributes
DATE’, ‘TEST’, and ‘CHARGE’ describe tests which were charged to a patient.
These are multivalued because the patients returned for tests on more than one
occasion. The exploding sort by charge in Figure B is a report showing how
frequently patients have expensive (or inexpensive) tests. Figure C shows the
dictionary elements used in the report.

The exploding sort capability can also be used with the SSELECT verb.

NOTE: DATA/BASIC has been expanded to use the exploding sort capability. The
READNEXT statement will now allow the form ‘READNEXT variable, variable
ELSE statement(s)’ in which value numbers are entered into the second
variable, indicating the positional relationship of the multivalve
within the attribute.

50 791073

3 ENGLISH VERBS

PATIENT... NAME........ DATE........ TEST CHARGE
1003 GEORGE WONG 16 MAR 1976 BLD 30.00

23 JUN 1973 BID 30.00

21 MAR 1976 EKG 70.00

06 OCT 1976 ECP 85.90
1022 ALICE DETT 21 APR 1974 ERG 70.00

28 MAR 1976 ECP 85.90

30 MAR 1976 BID 18.00-
2011 TOM GEREAU 13 MAR 1976 BID 30.00

17 APR 1976 BID 30.00-
3003 RAY MANO 07 APR 1976 ECP 85.90

16 JUL 1976 BLD 30.30

25 AUG 1976 EKG 70.00

06 OCT 1976 EKG 70.00
4001 WALT WAXLER 29 DEC 1975 EKG 70.00

18 JAN 1976 EKG 70.00

25 JAN 1976 EKG 70.00

01 FEB 1976 EKG 70.00

Figure A, Listing of PATIENT File
PATIENT... NAME........ DATE........ TEST CHARGE
1003 CEORGE WONG 06 OCT 1976 ECP 85.90
1022 ALICE DETT 28 MAR 1976 ECP 85.90
3003 RAY MANO 07 APR 1976 ECP 85.90
1003 GEORGE WONG 21 MAR 1976 EKG 70.00 . 1003
1022 ALICE DETT 21 APR 1974 EKG 70.00 Patient
M BYmE S ARG E @ e o
0 K . .
4001 WALT WAXLER 29 DEC 1975 EKG 70.00 fo; each ZuZt;
4001 WALT WAXLER 18 JAN 1976 EKG 70.00 value of CHARGE
4001 WALT WAXLER 25 JAN 1976 EKG 70.00
4001 WALT WAXLER Ol FEB 1976 EKG 70.00
3003 RAY MANO 16 JUL 1976 BILD 30.30
1003 CEORCE WONG 16 MAR 1976 BLD 30.00
1003 GEORCE WONG 23 JUN 1973 BLD 30.00
2011 TOM GEREAU 13 MAR 1976 BLD 30.00
1022 ALICE DETT 30 MAR 1976 BLD 18.00-
2001 TOM GEREAU 17 APR 1976 BID 30.00-
Figure B. Exploded Sort by Descending CHARGE
PATIENT... D/CODE A/AMC S/NAME..eseeees V/CONVeuus. V/CORReuosaeo.o V/TYP V/MAX
NAME s 1 T 12
DATE S 2 D D1;3;4 L 12
TEST S 3 D2; 2 L 4
CHARGE S 4 MD2- D2; R 6
Figure C. Dictionary of PATIENT File
51

791073

3 ENGLISH VERBS

3.4 LIST~LABEL and SORT-LABEL Verbs

LIST-LABEL and SORT-LABEL are ENGLISH verbs that may be used to generate data
to print mailing labels or to produce other special purpose listings.

LIST-LABEL is equivalent to the LIST verb. SORT-LABEL is equivalent to the
SORT verb, performing a sort on the data, as specified by any sort key
specifications in the statement. The sequence of attributes specified in the
statement will determine the sequence of data generated. All correlatives and
conversion specifications will be operative (see the chapter CORRELATIVES AND
CONVERSIONS) .

The data generated will consist of the item—id (unless the ID-SUPP modifier is
used), followed by the data corresponding to each attribute specification in
the statement. Multivalues for an attribute will be treated as if they were
separate value fields; thus, for most applications, multivalued attributes
should not be specified.

The normal noncolumnar list heading (page number, time and date) will print on
the top of each page unless suppressed by using the COL-HDR-SUPP modifier. If
COL-HDR-SUPP is used, pagination and all top-of-forms will be suppressed, which
essentialy produces a continuous format without page breaks.

Before starting the data output, one or more lines of parametric information
will be requested. The first line is used to specify the format of the labels.

Six numeric parameters are required, as follows:

?cols,rows ,skip,indent,size,space{,C}

where: cols is the number of items across the page (repeat count)
TOWS is the number of print lines per label
skip is the number of lines to skip between labels
indent is the number of spaces to indent the data on the left
size is the maximum width of each label value (truncation factor)
space is the number of horizontal spaces between labels
c is optional; if present, specifies that null or missing

attribute data are to be ignored, thereby compressing the data
structure. If not specified, null or missing values will be
treated as all blanks.

The "rows" count must be a minimum number of one for each attribute specified,
plus one for the item—id if ID-SUPP is not used.

Values must conform to the range:
cols * (size + space) + indent = current page width
If "indent" is non-zero, a set of "row header" data lines will be requested,

these are printed to the left of each line, in the "indent" area. Null headers
may be specified by entering null lines to the header data requests.

52 791073

3 ENGLISH VERBS

NAME
ADDRESS
CITY-ST

NAME
ADDRESS
CITY-ST

NAME
ADDRESS
CITY-ST

NAME
ADDRESS
CITY-ST

NAME
ADDRESS
CITY-ST

NAME
ADDRESS
CITY-ST

CALIFORNIA MAGNETICS
2451 W. CHAPMAN AVE.
ANAHEIM, CA 92802

PLEXI-PLASTICS
39200 YORBA LINDA BLVD.
PLACENTIA, CA 92670

ABC PRODUCTS
2453 E. BAY STREET
BREA, CA 92601

POWER ELECTRONICS
7298 S. BROOKHURST STREET
GARDEN GROVE, CA 92644

LIGHTNING ELECTRONICS
4390 ORANGETHORPE AVE.
FULLERTON, CA 92631

PNP TRANSISTORS
2432 E. 17TH STREET
TUSTIN, CA 92680

PRECIS ION METAL PRODUCTS
30288 JAMBOREE ROAD
NEWPORT BEACH, CA 92660

SURF RENTALS
3451 S. BEACH BLVD.
HUNTINGTON BEACH, CA

QUALITY OFFICE SUPPLY
3952 LA PAIMA AVE,
BUENA PARK, CA 90620

CONTACT SWITCHES
39122 PACIFIC COAST HWY.
CORONA DEL MAR, CA 92625

C & S PAPER SUPPLIES
3509 S. HARBOR BLVD.
COSTA MESA, CA 92627

ZIP DELIVERY SERVICE
2458 S. EUCLID STREET
LA HABRA, CA 90631

791073

Figure A. Sample Usage of LIST-LABEL

3 ENGLISH VERBS

3.5 COUNT Verb

COUNT is an ENGLISH verb which counts the number of items meeting the
conditions specified by the combination of item—list and selection-criteria.

An ENGLISH sentence using the COUNT verb is illustrated in Figure A. The COUNT
operation will count the number of items which meet conditions specified by the
item-list and selection-criteria. The COUNT produces the following output:

xxx ITEMS COUNTED

where "xxx" is the number of items counted. The maximum number of items which
can be counted is 2,147,483,647,

Consider the following example:
COUNT AFILE > ‘533’ WITH A3 = "ABC"

This sentence counts the items which have item—ids greater than 533 and which
have values of ABC for Attribute A3.

Further examples of the COUNT operation are presented in Figure B.

54 791073

3 ENGLISH VERBS

COUNT {DICT} file-name {item-list} {selection-criteria} {(options)}

specifies specifies limits
file eligible eligible
items items

Figure A. General Form of ENGLISH Sentence Using COUNT Verb

2 ITEMS COUNTED.

57 ITEMS COUNTED.

Figure B. Sample Usage of COUNT Verb

791073

55

3 ENGLISH VERBS

3.6 SUM and STAT Verbs

SUM is an ENGLISH verb which generates a total sum for one specified attribute.
STAT is an ENGLISH verb which generates a total sum, an average, and a count
for one specified attribute.

ENGLISH sentences using the SUM and STAT verbs are illustrated in Figure A.
SUM

The SUM operation generates a total sum for the specified attribute. The
output produced by a SUM operation has the following general form:

TOTAL OF aaaa IS : xxxx

where '"aaaa" is the attribute name and "xxxx" is the computed total. Figure B
illustrates the use of this verb.

STAT

The STAT operation generates a total sum, an average, and a count for the
specified attribute. The output produced by a STAT operation has the following
general form:

STATISTICS OF aaaa :
TOTAL = xxxx AVERAGE = yyyy COUNT = 2zzzz

where "aaaa" is the attribute name, "xxxx" 1is the total sum, "yyyy" is the
average, and "zzzz" is the count. Figure C illustrates the use of this verb.

56 791073

3 ENGLISH VERBS

SUM {DICT} file-name {item—list} attribute-name {selection—criteria}

}
specifies specifies specifies limits
file eligible attribute eligible
{ { items ! items

)

STAT {DICT} file-name {item—list} attribute-name {selection-criteria}

Figure A. General Form of ENGLISH Sentence Using SUM or STAT Verbs

TOTAL O $2,405,129.91

TOTAL OF CURR-BAINC IS

 BUAEOOY ‘
TOTAL OF CURR-BALNC IS

s1,836,287.99

. $605,916.48

TOTAL OF V/MAX IS

5

TOTAL OF DEPOSIT IS 499.00

Figure B. Sample Usage of SUM Verb

STATISTICS OF ACCaUNT :

TOTAL = 16199 AVERAGE = 241.77 COUNT = 67

A R b e

STATISTICS OF TRASH-CHGS
TOTAL = 990.94 AVERAGE = 13.4468 COUNT = 67

STATISTICS OF CURR-BALNC :
TOTAL = $1,199,466.82 AVERACE = § 57,117.4676 COUNT = 21

STATISTICS OF BILL-RATE :
TOTAL = 20.43 AVERAGE = 5.1075 COUNT

i
£~

STATISTICS OF DEPOSIT
TOTAL = 39.00 AVERAGE = 9.7500 COUNT

[}
~

Figure C. Sample Usage of STAT Verb

791073 57

3 ENGLISH VERBS

3.7 SELECT and SSELECT Verbs

SELECT is an ENGLISH verb which provides the facility to select a set of items
using the item—list and selection-criteria. The SSELECT verb combines the SORT
capability with the SELECT capability.

SELECT and SSELECT provide a facility to select a set of items, using the full
ENGLISH selection-criteria. These selected items (item—1list) are available,
one at a time, to other processors such as DATA/BASIC, TCL-II EDITOR, PROC, and
the ENGLISH processors. In all cases, one can select from one file and use the
item—-ids to access another file.

SELECT is analogous to the LIST verb in that there is no sequencing of the
items. SSELECT is analogous to the SORT verb, and a sort will be performed as
specified by any sort key specifications in the statement. The output from
either statement will be a message indicating the number of items selected, in
the form:

xxx ITEMS SELECTED

The selected items are now available to other processors, as follows:

BASIC program Selected items are available to the DATA/BASIC program via
the READNEXT statement (refer to the DATA/BASIC Programming
Manual).

.ENGLISH process The statement is entered without an item-list (for instance,

"1IST PARCEL-FILE NAME ADDRESS'); the selected item-list is
used. The regular ENGLISH attribute selection criteria is
applicable; however, selection on the item—-ids is not. A
number of verbs are provided to manipulate selected 1lists
(refer to the following topic).

TCL-II process The statement is entered without an item-list (for instance
"COPY DICT PARCEL-FILE (P)"). (Refer to the Reality
Programmer’s Reference Manual).

PROC process The SELECT (or SSELECT) may be processed within a PROC which
can invoke another processor such as DATA/BASIC, the EDITOR
or the COPY processor, for example. In the new PQN-type
PROCs, the selected list of item—ids may be accessed with a
variety of PROC commands for special processing. The
possibilities are virtually unlimited here.

The statement that uses the selected item—list must immediately follow the
SELECT or SSELECT statement; any other statement will result in the 1loss of
the item-list. If the SELECT or SSELECT is generated by a PROC, the statement
that uses the item list must be "stacked" by the PROC (using "STON") (refer to
the PROC Programming Manual). Commands that can utilize a selected item-list
have an asterisk next to the item-list parameter in the general form.

Note that some of the available disc space will be used to store the selected

list of item-ids. This space will be made available once again after the list
has been processed.

58 791073

3 ENGLISH VERBS

SELECT {DICT} file-name {item-list} {selection-criteria}

specifies specifies limits
file eligible eligible
items items

SSELECT {DICT} file-name {item-list} {seléction-criteria}
{BY attribute-name}... {BY-DSND attribute-name}...e—
{BY-EXP attribute-name}... {BY-EXP-DSND attribute-name}.. .

specifies ascending specifies descending
sort-key sort-key

specifies ascending specifies descending
exploding sort-key exploding sort-key

Figure A. General Form of ENGLISH Sentence Using SELECT or SSELECT Verb

11 ITEMS_?ELECTED

» 3¢
'%

3 ITEMS SELECTED.
:COPY ACCOUNT (P) <cr>

Figure B. Sample Usage of Select Verb

11 ITEMS SELECTED.

o ANEISR SR

Figure C. Sample Usage of SSELECT Verb

791073 59

3 ENGLISH VERBS

3.8 SAVE-LIST, GET-LIST, COPY-LIST, and DELETE-LIST Verbs

The verbs SAVE-LIST, GET-LIST, COPY-LIST, and DELETE-LIST are used to save,
retrieve, copy, and delete selected item—id lists.

These verbs are useful if several passes are to be made on an item—list. These
verbs bypass the time consuming retrieve and sort phase of the SSELECT verb.
Pointers to the saved list are stored in the file called POINTER-FILE. These
pointers are saved and restored by the save/restore processors.

The general form of the SAVE-LIST verb is:
SAVE-LIST {name}

This is entered immediately after a SELECT, SSELECT, or FORM-LIST statement
(must be "stacked" if the sequence is generated by a PROC;see the PROC
Programming Manual). The optional parameter ''name" is any string of nonblank
characters the user may specify to identify this selected list. An item with
an 1item—id "account-name*L*name' will be created in the POINTER-FILE; any
previously existing item—list with the same name is overlaid, and the disc
space it represents will be returned to the system. '"Account-name" is the name
of the account the user is logged onto at the time of issuing this command.

The general form of the GET-LIST verb is:
GET-LIST {name {account-name}}

This statement retrieves a previously saved item—list, just as if the wuser
entered a SELECT or SSELECT statement again. A message indicating the number
of items in the item—1list will be printed, and the item—~ids are available one
at a time to other processors. If the GET-LIST is generated by a PROC, the
statement that wuses the item—list must be '"stacked" (refer to the PROC
Programming Manual). The optional "account-name" allows one user to access an
item—-list generated and saved by another user.

The general form of the COPY-LIST verb is:
COPY-LIST {name {account-name}} {(options)}

This statement allows a prestored item—list to be copied to another name
(and/or account-name) or to place the item-ids into a file item. Like the COPY
processor (refer to the Reality Programmer’s Reference Manual), when this
command is entered the system will respond with:

TO:

at which point the user may specify a new name for the list and a different
account-name, if desired. The form of this response should be
{name {account-name}}. The item—-list may be directed to a file item by
responding ({DICT} file-name) {item—id} as for the COPY verb. The same options
that apply to the COPY verb apply to the COPY-LIST verb.

60 791073

3 ENGLISH VERBS

The general form of the DELETE-LIST verb is:
DELETE-LIST {name {account-name}}

This statement deletes a previously saved item-list. The frames used for the
storage of the item—list are returned to the system over flow space. Users with
SYS2 privileges can optionally specify "account-name'" to delete an item—list
that was saved by another user.

SAVE-LIST {name}
GET-LIST {name {account—-name}}
COPY-LIST {name {account-name}} {(options)}

DELETE-LIST {name {account-name}}

Figure A. General Form of SAVE-LIST, GET-LIST, COPY-LIST, and DELETE-LIST Verbs

24 ITEMS SELECTED.

[241] ‘OVER.35’ CATALOGED; 1 FRAMES USED.

24 ITEMS SELECTED.

1 ITEM COPIED.

[242] ‘OBSOLETE.PARTS® DELETED.

Figure B. Sample Usage of SAVE-LIST, GET-LIST, COPY-LIST, and DELETE-LIST Verbs

791073 61

3 ENGLISH VERBS

3.9 EDIT-LIST and FORM-LIST Verbs

The EDIT-LIST verb permits editing an item—-list saved by the SAVE-LIST verb.
The FORM-LIST verb allows users to retrieve item-lists stored as items in
Reality user files rather than the system POINTER-FILE.

EDIT-LIST allows selected 1lists to be changed, merged, and deleted via the
Reality EDITOR. FORM-LIST allows a properly constructed item in a user file to
be the source of selected item—ids. Their use is restricted to cases in which
the item—id lengths add up to less than the maximum item size (32,267 bytes).

EDIT-LIST

The verb EDIT-LIST can be used to create, modify, merge, and delete item—-lists
saved via a SAVE-LIST statement. Its general form is:

EDIT-LIST {name {account-name}} {(options)}

where '"name" is the name of the saved 1list, and the optional "account-name"
specifies the account under which the list was saved.

The normal system EDITOR is used to edit item—lists. All commands are the
same. The only difference is that these item~lists are stored in the system
POINTER-FILE instead of individual user files. Within the EDITOR, each line
will correspond to a separate item—id. For exploded sorts, each line will have
a second value which is the value number within the item. The line number
corresponds to the order in which the list will be processed.

Note that an item—list cannot be edited if its size exceeds that of the wuser’s
work space. The same options available to the EDITOR apply here also.

Figure B shows an example of the use of the EDIT-LIST verb.
FORM-LIST

The verb FORM-LIST functions like the GET-LIST verb except that an item in a
Reality file 1is the source of the item—list instead of a 1list saved by
SAVE-LIST. These lists may be formed with the EDITOR, DATA/BASIC, PROC, or by
the COPY-LIST verb. Its general form is:

FORM-LIST file-name item—-id {(n)}

Each line of the item will specify an item—-id in the 1list. A second value may
appear on each line to specify a value number if the list is to correspond to
an exploded sort. The optional "n'" specifies that the list of item—ids formed
should start with attribute (line) "n" instead of the entire item.

An example of the use of this capability is shown in Figure C. A DATA/BASIC
program (see the appendix) derives sublists from a master SSELECT saved list,
and files the sublists as unique items in a file. The FORM-LIST verb is then
used to retrieve any sublist.

62 791073

3 ENGLISH VERBS

EDIT-LIST list-name {account-name}

FORM-LIST file-name item—-id

Figure A. General Form of EDIT-LIST and FORM-LIST Verbs

‘PP’ CATALOGED; 1 FRAMES USED.

B~ Lo

002 1003}
003 1003

5 1003
6 1022
7

F

— N~

3003
17

CATALOGED; 1 FRAMES USED.

18 ITEMS SELECTED

Figure B. Sample Usage of EDIT-LIST Verb

5%00 ITEMS SELECTED

[241] PARTS-BY-ID CATALOGED; 54 FRAMES USED.

5400 ITEMS SELECTED

13 SUBLISTS CENE
“FORM-LIST SLIST SUBLISTI <cr>

1633 ITEMS SELECTED.
:LIST PARTS HEADING '"THIS REPORT INCLUDES PARTS IN SUBLIST1" <cr>

Figure C. Sample Usage of FORM-LIST Verb

791073

63

3 ENGLISH VERBS

3.10 T-DUMP, ST-DUMP, I-DUMP, S-DUMP and T-LOAD Verbs

T-DUMP and I-DUMP are ENGLISH verbs which allow the wuser to selectively dump
his dictionaries and data files to the magnetic tape or to the terminal
respectively. The T-LOAD verb allows the user to load files from magnetic
tape.

T-DUMP, ST-DUMP, I-DUMP and S-DUMP

An ENGLISH sentence using the T-DUMP or I-DUMP verb is illustrated in Figure A.
The T-DUMP verb dumps the selected items (from the selected file) to the
magnetic tape. The DICT modifier causes dictionary data to be dumped, in which
case file definition items (D/CODE=D) will not be dumped. An EOF mark is
written to the tape after the dump. For detailed information regarding
magnetic tape operations, refer to the Reality Programmer’s Reference
Manual. The following option, enclosed in parentheses, may appear in the
T-DUMP statement:

T-DUMP
option Meaning
I Specifies that item—ids will be listed as they are dumped
T Inhibits tape label (see Reality Programmer’s Reference Manual)

The I-DUMP operation is identical to the T-DUMP operation, except that the dump
is made to the terminal. No options are used with I-DUMP. ST-DUMP and S-DUMP
correspond to T-DUMP and I-DUMP except that sorting is done.

Figure B illustrates the use of the T-DUMP and I-DUMP verbs.
T-LOAD

An ENGLISH sentence usng the T-LOAD verb is illustrated in Figure A. The
T~LOAD verb loads the specified file from magnetic tape. If selection-criteria
are specified, attribute definitions will be retrieved from the dictionary of
the file if loading a data file, or from the M/DICT if loading a dictionary
(i.e., DICT was specified). The following options may appear in the T~LOAD
statement :

T-LOAD
option Meaning
0 Overlay - The ‘0’ option will cause overlay of existing items
with those from the tape if they have corresponding item—ids.
S Suppress — Item—ids will be listed as they are loaded unless the

‘S’ option is used.

Multiple options are separated by commas. Figure C illustrates the use of the
T-LOAD verb.

64 791073

3 ENGLISH VERBS

T-DUMP {DICT} file-name {item-1list} {selection-criteria} {(options)}
ST-DUMP {DICT} file-name {item—list} {selection-criteria} {(options)}

specifies specifies limits options - see
file eligible eligible faeing page
items items
Y

I-DUMP {DICT} file-name {item-list} {selection-criteria}
S-DUMP {DICT} file-name {item-list} {selection-criteria}
T-LOAD {DICT} file-name {item—1list} {selection-criteria} {(options)}

Figure A. General Form of T-DUMP, ST-DUMP, I-DUMP, S-DUMP AND T-LOAD Verbs

29 ITEMS DUMPED.

This sentence dumps to the magnetic tape all items in the ACCOUNT
file which have items with item-ID's greater than '23060' as well
as those with values for attribute CURR-BALNC.

T R

17 ITEMS DUMPED.

This sentence dumps the entire TEST-FILE file to the magnetic tape.

14~THIS*IS"ITEM~14~111 222 333~AAA BBB CCC DDD"123456789"
15~ THIS " IS"ITEM"~15~ABCDEFGHIJK".].].].].].”
16~THIS IS ITEM"16°1234 5678 9012 3456 7890 "XXXXXX"

3 ITEMS DUMPED.

Figure B. Sample Usage of T-DUMP and I-DUMP Verbs

This sentence loads the INV file from the file positioned on the
tape drive. The definition of QTY is found in the dictionary of
the INV file.

This sentence loads the dietionary section of the ACCOUNT file with
items 'PAYMENTS' 'BILL-PAGE' 'NAME' if their D/CODE's are "A". The
definition of D/Code is found in the M/DICT since DICT is specified.

Figure C. Sample Usage of T-LOAD Verb

791073 65

3 ENGLISH VERBS

3.11 TISTAT and HASH-TEST Verbs

The ISTAT verb provides a file hashing histogram showing item distribution with
groups. HASH-TEST produces the same displays as ISTAT, but allows the user to
select a different test modulo. HASH-TEST is useful in determining proper

parameters for reallocating files.

An ENGLISH sentence usng the ISTAT verb is illustrated in Figure A. The ISTAT
verb provides a file hashing histogram showing the distribution of items within
groups in the file. For further information regarding file hashing, refer to
the Reality Programmer’s Reference Manual.

66 791073

3 ENGLISH VERBS

ISTAT {D{CT} fi%e—name {item-1list} {selectiﬁn—criteria}

specifies specifies limits
file eligible eligible
items items

Figure A. General Form of ENGLISH Sentence Using ISTAT Verb

FILE= ACCT MODULO= 3 SEPAR= 1 11:48:05 12 FEB 1979
BYTES ITMS

05358 022 *>>D55O5D5D55555550555>

05373 022 *>>5D555555555555005055

05468 023 *DODD3555505555555055050

ITEM COUNT= 67, BYTE COUNT= 16199, AVG. BYTES/ITEM= 241.7
AVG. ITEMS/GROUP= 22.3, STD. DEVIATION= .5, AVG. BYTES/GROUP= 5399.7.

FILE= ACCT MODULO= 3 SEPAR= 1 11:48:31 12 FEB 1979
BYTES ITMS

03089 012 #*>3>555555>>>

02745 011 #335555555>5>
02710 011 *>>>555>55>>

ITEM COUNT= 34, BYTE COUNT= 8544, AVG, BYTES/ITEM= 251.2
AVG. ITEM/GROUP= 11.3, STD. DEVIATION= .5, AVG. BYTES/GROUP= 2848.

Figure B. Sample Usage of ISTAT Verb

791073

67

4 CORRELATIVES AND CONVERSIONS

4.1 Overview

Two types of special processing fields are available when using the ENGLISH
pProcessors. CORRELATIVE codes are used to define special processing
interrelationships applied to attribute values as the values are retrieved from
the file (prior to being sorted or used in a selection-criterion). CONVERSION
codes are defined for attribute value just prior to output. The same
conversions are also applied to values in the input line. Conversion codes are
specified in Line 7 of attribute defining elements in the dictionary;
correlative codes are specified in Line 8. This is exemplified in Figure C.
In both cases, multiple codes may be specified, separated by a value mark
(<c>], X’FD’); multiple codes are processed on a left-to-right basis.

In general, conversions are applied only prior to generating a value that is to
be output. Values used for testing or other system purposes have only
correlatives applied. This is defined in Figure A and may be illustrated:

stored correlatives ———> intermediate conversions ——=> external
format format format

Processing codes are listed in Figure B. The same code may be specified either
in Line 7 or Line 8 (i.e., as either a correlative or conversion) with the
exception of D1 and D2 codes, which must be specified as correlatives. Since a
correlative implies additional processing on sorts, selection, and 1in the
determination of a control-break, processing codes for output should be
specified as conversions wherever possible. Special processing can be effected
by specifying correlative output processing. For example, a translate code 1is
normally specified as a conversion, since it is used to convert internally
stored vaues to an external format wusing a translation file. If an attribute
with a T-conversion is used in a sort-key, or as a selection-criterion, the
translation will not be applied. However, the T-code can be specified as a
correlative to sort or select, using the translated value.

Correlatives Conversions

Processing Stage Processed? Processed?

1. Output value, detail line of listing yes yes
2. Output value, BREAK or TOTAL data line no + yves
3. Value used for accumulation of a TOTAL yes no
4., Value generated to check for a control-break

or to test against print-limiters yes no
5. Value generated for use in a sort-key yes no
6. Value generated to test against for selection yes no
7. Value specified by user in selection criteria no yes *

+ Break data line consists of totals, break field labels, and previously
correlated break data values.

* In this case "input" conversion is done; in all other cases, "output"
conversion is applied.

Figure A. Processing Code Effectivity

68 791073

4 CORRELATIVES AND CO VERSIONS

Name

Description

A
C
D

D1

D2

MD
MP

MT

Tfile

ALGEBRAIC. Used to compute mathematical funetion.

CONCATENATE. Used to concatenate values.
DATE. Used to convert dates.

DEFINE PRIMARY. Used to define a primary associative attribute which
is }o ically grouped with a set of secondary associative attributes
(D2°s). May be used as a correlative code only.

DEFINE SECONDARY. Used to define a secondary associative attribute.
May be secondary associative attribute.

FUNCTION. Used to compute a mathematical function.om a defined set
of attributes.

GROUP. Used to extract one or more contiguous segments from an
attribute value.

MASK DECIMAL. Used to convert and scale numbers.
MASK PACKED. Used to convert packed decimal numbers.
MASK TIME. Used to convert time.

MASK HEXADECIMAL. Used to convert character strings to hexadecimal
ASCII equivalents.

TEXT EXTRACTION. Used to extract a fized number of characters
from an attribute value.

FI?EZTRANSLATION. Used to convert values by translating through
a Jiile.

USER-DEFINED. Used to evoke user-defined conversion.

SUBLIST CODE. Applies to DL/ID Line 8 only (see the topic SUBLIST:
THE WITHIN CONNECTIVE),

Figure B. Processing Code Summary

item ‘INV.TIME’ in DICT INV

001 A= Attribute Definition Item.

002 25« AMC (25th attribute).

003

004

005

006

007 MTHS-=— Output specification (MT Conversion).
008 G2*]w— Internal specification (G correlative).
009 R Right justified attribute.

010 10 Maximum Length.

Figure C. Sample Attribute Definition Item Containing Processing Codes

791073

69

4 CORRELATIVES AND CONVERSIONS

4.2 Defining Associative Attributes: DIl and D2

The D1 and D2 codes are used to identify primary and secondary associative
attributes within the same item. D1 and D2 are specified as correlatives only.

The purpose of D1, D2 correlatives is to provide a facility whereby a set of
attributes (the secondary D2s) can be logically grouped with a single master
attribute (the primary D1). This type of relationship is useful in describing,
for example, a list of purchase order numbers in a parts—file where the
purchase order number is the Dl and the set of related attribute values (e.g.,
quantity-on-order, quantity-received, etc.) are D2s, with each D2 relating back
to (and grouped with) the primary D1 value.

The general form of the DIl correlative is:
Dl;amc{;amc}...
where:
D1 is the correlative code identifying a primary associative attribute.
amc is the numeric attribute mark count of each of the defined secondary
associative attributes in the file; each amc specified in the DI
correlative must be numerically greater than the amc of the primary
attribute itself.
H is a separator.
The general form of the D2 correlative is:
D2;amc
where:

D2 is the correlative code identifying a secondary associative attribute.

amc 1is a numeric attribute mark count of the defined primary associative
attribute in the file.

H is the separator.

Any D1 or D2 correlative must occur first in the correlative field.

The example in Figure C shows an ENGLISH output for a DIl attribute (DATE) and
three associated D2 attributes (CODE, UNITS, and DOLLARS). The second ENGLISH
output in this figure shows attribute definition items for these attributes.
For further examples illustrating the use of Dl and D2 correlatives via
ENGLISH, see the topic OUTPUT CRITERIA: MULTIVAUED ATTRIBUTE PRINT LIMITING.

The Dl attribute may have multivalues, each separated by a value mark (<c>],
X'FD’). Fach D2 attribute should have a corresponding number of multivalues;
however, each of these multivalues may have multiple (secondary) value
themselves. Fach sub-multivalue (called a secondary value or subvalue) 1is
separated by a secondary value mark (<c>\, X'FC’).

D1 correlatives defined for attributes which also have F correlatives will be
ignored. A print-limiter on the DIl attribute causes all corresponding D2
values to be suppressed.

70 791073

4 CORRELATIVES AND CONVERSIONS

Correlative. code identi-
fying a primary
associative attribute

al;aTc{;amc}...

numeric attribute mark count
of each of the defined
secondary assoctative attri-
butes in the file

Figure A. General Form of D1 Correlative

Correlative code identi-
fying a secondary
agsociative attribute

D2;amc

numeric attribute mark count
of the defined primary
associative attribute in the

file

Figure B. General Form

of D2 Correlative

PAGE 1

18:15:24 12 FEB 1979

TEST-FILE. DATE...s+.. CODE..... UNITS..... DOLLARS...

* *

5330 07 APR 1978
18 MAR 1978
17 MAR 1978
13 MAR 1978
05 FEB 1978
15 JAN 1978
14 JAN 1978
10 JAN 1978

TH WY ™ 3w d

END OF LIST

2721

2696

*

9.50
9.50
2.00
7.50
9.20
9.20
2.00
7.20

PAGE 1

TEST-FILE. D/CODE A/AMC S/NAME......... V/CONV....

18:15:39 12 FEB 1979

V/CORReesesseos V/TYP V/MAX

DATE S 20 DATE D D1;213;22;23 R 11
CODE S 21 CODE D2;20 R 9
UNITS S 22 UNITS D2; 20 R 10
DOLLARS S 23 DOLLARS MD2 D2;20 R 10
END OF LIST

Figure C. Sample Use of DI, D2 Correlatives
791073 71

4 CORRELATIVES AND CONVERSIONS

4.3 Defining Group Extraction: G

The G code is used to select one or more contiguous segments of an attribute
value for output.

One or more contiguous segments of an attribute value may be retrieved for
output via wuse of the G code. The attribute value whose contiguous segment(s)
is to be retrieved may consist of any number of segments, each separated by a
nonnumeric character (except the minus sign or a system delimiter). This code
functions somewhat like the FIELD function in DATA/BASIC.

The general form of the G code is:

G{m}*n
where :
G is the code name
m is the number of segments to skip; if omitted, zero is assumed and

retrieval begins with the first segment.

* is the nonnumeric character which is the segment separator (delimiter)
in the attribute value (a system delimiter may not be used).

n is the number of segments to be retrieved.

Figure A summarizes the general form of the G code. Figure B shows examples of
the use of this code.

72 791073

4 CORRELATIVES AND CONVERSIONS

G{m}L*n
4 \
J——
number of segment number of segments
segments separator to retrieve
to skip

Figure A. General Form of G Code

Code Attribute Value Value Output
Gs$1 ABC $DEF $GHI $JKL ABC

G182 ABCSDEF $GHISJKL DEF $GH1

G281 ABC$DEF GHIJKL GHI

G181 ABCSDEFSGHISJIKL DEF

G$2 ABCSDEF $GHISJIKL ABCSDEF

GlAal 123A55555A22 55555

G2Al 123A55555A22 22

Figure B. Sample Usage of G Code

791073

4 CORRELATIVES AND CONVERSIONS

4.4 Defining Concatenation: C

The C code provides the facility to concatenate attributes and/or literal
values prior to output.

The general form of the C code is:

C{;}In{*n}...

where:

C is the code name.

H is optional and ignored.

* is the character to be inserted between the concatenated attributes
and/or 1literals. A semicolon (;) is a reserved character that means
no separation character is to be used. Any nonnumeric (except a minus
sign or system delimiter) is valid, including blank.

n is any attribute mark count (AMC), or any literal enclosed in single

quotes.

If the A/AMC (line two) of the attribute definition item containing the C code
is non-zero, then a null value will be returned if that attribute contains a
null (i.e., the concatenate code will be ignored) . If the A/MMC is zero, then
the concatenate will always be performed.

Figure A summarizes the general form of this code. Figure B gives an example
(note the C conversion in item ‘CAT’ of file TEST).

74 791073

4 CORRELATIVES AND CONVERSIONS

C{;}n{fn}... |

AMC or coneatenation
Literal in eharacter

single quotes

Figure A. General Form of C Code

Item "CAT1’ Item ‘CAT2’
001 A 001 A

002 0 002 99

003 003

004 004

005 005

006 006

007 C2;°55’=1/4 007 C2;°55'=1/4
008 008

009 L 009L

010 20 010 20
Item "123° Item "456°
001 ABC 001 AAAA
002 DEF 002

003 003 BBBB
004 XZY 004 cccce

PAGE 1 12:05:33
TEST.eeues CATl.eeieneennnnn ceee CAT2. iiiinninnnennss
123 DEF55=ABC/XYZ DEF55=ABC/XYZ

456 55=AAAA/CCCC

2 ITEMS LISTED.

12 FEB 1979

Figure B. Sample Usage of C Code

75

4 CORRELATIVES AND CONVERSIONS

4,5 Defining Text Extraction: T

The T code is used to extract a fixed number of characters from an attribute
value.

A contiguous string of characters may be extracted from an attribute value
using a T code. The general form of the T code is:

T{m,}n
where:
T is the code name.
m is the optional starting column number.
s is the separator (if omitted, the form Tn is assumed).
n is the number of characters to be retrieved.

If the form 'Tm,n’ is used, then "n" characters starting from character "m"
will be extracted. If the form ‘Tn’ is used, then '"n" characters will be
extracted beginning with the first character from left-to-right or
right-to-left, depending upon whether type L or R (respectively) is specified

in the dictionary attribute V/TYP (see the Reality Programmer’s Reference
Manual).

This code can be used to save space in file items by allowing an attribute (or
item—id) to contain different fixed length values. For example, the two
character state abbreviation and zip code can be concatenated together in one
attribute in the form "ssnnnnn" rather than occupying two attributes. This
example saves one byte per item and could result in significant space savings
for large files (and decreased processing time due to smaller items).

Figure A summarizes the general form of the T code. Several examples are shown
in Figure B (where V/TYP=L is assumed).

76 791073

4 CORRELATIVES AND CONVERSIONS

T{m,}n

starting
colum
number

number
of characters

Figure A. General Form of T Code

Conversion Attribute Value Value Output
T3,2 ABCDEFG CD
T3,5 ABCDEFG CDEFG
T2 CA92631 CA
T3,5 CA92531 92631
T9 ABCDEFG ABCDEFG
T8, 1 65432%XYZ Z
T3,3 65432XYZ 432
T2,2 0123456789 12
Figure B. Sample Usage of T Code
791073 77

4 CORRELATIVES AND CONVERSIONS

4,6 Converting and Scaling Numbers: MD

The MD (mask decimal) code provides a facility for converting and scaling
numbers to or from an internal format.

Numbers which contain decimal points, commas, and/or dollar signs may be
converted and scaled to or from an internal signed integer format. Typically,
numeric values are stored without decimal points, commas, or dollar signs to
save space. The MD code allows values for the appropriate attribute to be
entered in any form (with or without decimal point, commas, dollar signs, etc.)
during input and it will convert them to the proper internal form. The MD code
is almost always specified as a conversion (Line 7). The general form of the
MD code is:

MDn{m}{Z}{,} {$}{i*}{c}
where:
MD is the code name.

n is a single numeric digit defining the number of digits to print
following the decimal point. If n=0, the decimal point will not be
output following the value.

m is an optioral single numeric digit defining the "scaling factor" (as
a power of 10), i.e., the number of implied decimal digits for the
number on the file. If n{m, then the last digit will be rounded. If
this parameter is omitted, m=n is assumed. However, if the "i*"
option is used and "Z" or "," or "$" options are omitted, then "m" is

required.

Z is an optional parameter specifying the suppression of leading =zeros.
A zero is always output preceeding the decimal point for values less
than 1 and greater than -1.

, is an optional parameter for output which causes commas to be inserted
between every thousandths position of the value.

$ is an optional parameter for output which causes a dollar sign to be
appended preceding the converted output value.

i* is an optional parameter that causes the value to be overlaid on a
field of "i" characters, "*" specifies the filler character and may be
any nonnumeric (is typically an asterisk or a blank to cause dollar
signs to align).

c is an optional parameter that is a credit indicator and may be one of
the following:

- causes a minus sign to follow negative values; a blank to follow
positive or zero values

c causes the letters "CR’ to follow negative values; two blanks to
follow positive or zero values

< causes negative values to be enclosed with a "<...>" sequence; a
blank follows positive or zero values

78 791073

4 CORRELATIVES

AND CONVERS IONS

MDn{m}{Z}{,} {$ Hi*}{c}

see text on faecing
page for meaning of

parameters

Figure A.

General Form of MD Code

MD Code

MD2

MD2

MD2, $

MD2, $12%
MD2, $12%
MD2, §12%
MD23,

MD2, $12%
MD2, $12%-
MD2, $12*C
MD2Z $<
MD2Z $<
MD2Z , $12*C
MD2Z, $12*C
MD2Z, $12*C
MD2, $12 -
MD2, $12-
MD24, -
MD2, $124#
MDO,

Stored Value

1234567
1234567
1234567
1234567
0

null
1234567
-1234567
-1234567
-1234567
99999
-99999
1234567
0

null
1234567
~1234
-1234567
1234567
1234567

Converted Value

12,345.67
12,345.67
$12,345.67
$*%%12,345.67
$r*k XX XX, 00

1,234.57
$*-12, 345,67
$*12, 345, 67~
$12,345.67CR

$999.99b

$<999.99>
$12,345.67bb

$12,345.67b
$12 .34~
$123.46~
$##12,345.67
1,234,567

791073

Figure B.

Sample Usage of MD Code

79

4 CORRELATIVES AND CONVERSIONS

4.7 Defining Date Format: D

The D code provides the facility for converting dates to or from a compact
internal format suitable for arithmetic processing.

The general form of the D code is:
D{n}{*m}{s}

where:
D is the code name.

n is an optional single digit that specifies the number of digits to be
printed in the year field on output conversion only ("n" must be 0, 1,
2, 3, or 4). If omitted, &4 1is assumed, see the note below regarding
dates in ENGLISH input sentences.

* Is an optional nonnumeric delimiter that specifies the delimiter of
concatenated segments that will be skipped before the date portion of
an attribute is retrieved. "*" Cannot be a system delimiter or ";".

m is a single digit that must accompany "*" (if "&" = '"x's specified).
Parameter ‘m’ is the number of concatenated segments to be skipped
before the date portion of an attribute is retieved.

s is an optional nonnumeric character that is to be used as the separator
between month, day, and year on output (the format being
mm s dd s yyyy). A European date format will be printed as:
dd s mm s yyyy, if the date format has been set to international style
with t?e DATE-FORMAT verb (refer to the Reality Programmer’s Reference
Manual).

The internal date is defined as the number of days (plus or minus) from
December 31, 1967. The following list illustrates the internal format:

Date Internal Format
22 SEP 1967 -100
21 DEC 1967 -10
30 DEC 1967 -1
31 DEC 1967 0
01 JAN 1968 1
10 JAN 1968 10
09 APR 1968 100
26 SEP 1970 1000

The user should note that on input, if the year is not specified, then the
current year as defined by the system will be used. If the year is input as
two digits only (e.g., 29 or 73), then the twentieth century is used if the
year is in the range 30 through 99 (inclusive), and the twenty-first century is
used if the year is in the range O through 29 (inclusive). Also note that
current date conversion routines handle dates between May 1, 1878 through
September 30, 2057. Like the MD code, attributes defined by a D code may have
the date specified in any format in the input sentence and it will be conver ted
into internal form for comparison.

80 791073

4 CORRELATIVES AND CONVERSIONS

v \
D{n}{*m}{s}
[JL =
number of year eoncatenation| | number of concatenation| | date separator
digits on output| |character segments to skip on output

Figure A. General Form of D Code

D Code Internal Value OQutput Value

D 2704 27 MAY 1975

D/ 2704 05/27/1975

D- 2707 05-27-1975

DO 2704 27 MAY

DO/ 2704 05/27

D2* 2704 05%27%75

D -13732 27 MAY 1930

D/ -13732 05/27/1930

D- -13732 05-27-1930

DO/ 19141 05/27

D2* 19141 05%27%30

D71 ABC%2704 ABCZ27 MAY 1975
D%1/ ABCZ2704 ABC%05/27/1975
DZ1- ABC72704 ABC%05-27-1975
DO%1 ABC72704 ABC727 MAY

DO ABC72704 ABC72704

Figure B. Sample Usage of D Code

791073 81

4 CORRELATIVES AND CONVERSIONS

4.8 Defining Time Format: MT

The MT code provides a facility for converting an external time to or from an
internal format suitable for arithmetic processing.

The internal time format is the number of seconds from midnight. The external
time 1is 24~hour military format (e.g., 23:25:59) or 12-hour format (e.g.,
11:25:59PM). The general form of the MT code is:

MT{H} {S}
where:
MT is the code name.

H is optional and specifies 12-hour external format. If omitted,
24-hour military format is assumed.

S is optional and specifies the appending of seconds. If omitted,
seconds are not used.

When codes MTH or MTHS are used, l12-hour external format is specified. For
input conversion, then, the time is entered with AM or PM immediately following
the numeric time (AM is optional); on output, AM or PM is always printed
immediately following the numeric time.

The user should note that 12:00AM is considered midnight, and 12:00PM 1is
considered mnoon. AM and PM will be ignored on input 1if code MT or MIS is
specified. Illegal values are converted to null on input. Negative values
will be output as a null value, while other illegal values will convert to
"00:00",

Figure B illustrates use of the MT conversion.

82 791073

4 CORRELATIVES AND CONVERSIONS

MT{H} {S}
specifies specifies
12 hour seconds

format

Figure A. General Form of MT Code

MT
MTH
MTS
MTHS
MT
MTH
MT
MTH
MT
MTH
MT
MTH
MT
MTH
MT

MT Code

Input Value

12

12

12

12

12:15AM *
12:15AM

1

1

6AM *
6AM

1PM *
1PM

13

13

XYZ

Stored Value

Output Value

43200
0
43200
0
44100
900
3600
3600
21600
21600
3600
46800
46800
46800
null
ZY7Z

* = AM or PM notation on input is ignored by the system

12:
12:
12:
12:
12:
12:

01
01

00

00AM
00:00
00: 00AM
15

15AM

:00

: 00AM
06:
06:
Ol:
Ol:
13:
Ol:

00
00AM
00
00PM
00
00PM

blank

00:

00

791073

Figure B. Sample Usage of MT Code

83

4 CORRELATIVES AND CONVERSIONS

4,9 Defining File Translation: Tfile

The Tfile code provides a facility to convert a value by translating through a
file. This facility allows ENGLISH to access more than one file at a time.

The value to be translated, specified by the A/AMC (Line 2), is used as an

item—id for retrieving an item from the defined translation file. The input

value is then converted by replacing it with a defined attribute-value from the

translation item. The format for the Tfile code is:
T{*}file;c;input—amc;joutput—amc

where:

T is the code name.

file is the file-name through which the translation takes place. It may be
preceded by a single asterisk character (*) to indicate a dictionary.

is the separator.

we

c is the translate subcode, which must be one of the following:

V - Conversion item must exist on file, and specified attribute must
have value for conversion.

C - If conversion item does not exist, or if specified attribute has
no value, then use original value; otherwise perform conversion.

I - Input verify only; functions as a V for input and a C for output.

0 - Output verify only; functions as a V for output and a C for
input.

X - If conversion item does not exist, or if specified attribute has
no value, then use the null value; otherwise perform conversion.

input- is the attribute mark count in the translation file for input

amc translation. After locating the translation item usng the input
value as the item-id, the attribute-value for this attribute, if
any, will replace (convert) the original value. If this parameter
is null, no input translation takes place.

output- is the attribute mark count in the translation file for output

amc translation. Functions similarly to input—amc but is invoked for
output translation. If this parameter is null, no output
translation takes place.

Figure A summarizes the general form of the Tfile code. An example is shown in

Figure B (note the Tfile conversion in item ‘NAME’ in the dictionary of the
DETAIL file).

84 791073

4 CORRELATIVES AND CONVERSIONS

T{?}file;c"nput£amc;out%ut-amc
DA

indicates | | file-name | |translate| | for input for output
DICT sub-code translation translation

Figure A. General Form of Tfile Code

Dictionary Section of DETAIL file:

Item 'NAME’

001 A

002 3

004 Specifies that the third attribute of each item
005 will be used as the item-ID for translation

006

007 TMASTER;C;l;1 Specifies comparison against and retrieval

008 from first attribute in translation file

009 1 '"MASTER' .

010 10

Data Section of DETAIL file:

Item "I1° Item "I12° Item "1I3°
001 400 001 480 001 350
002 ABC 002 80 002 XYZ
003 1234 003 1235 003 1237

Data Section of MASTER FILE:

" Ttem ‘12347 Ttem *1235° Item ’1237°
001 SMITH 001 BROWN 001 JONES
002 JOHN 002 JOE 002 MARY
003 XYZ 003 ABC 003 1234

ENGLISH sentence:

PAGE 1 11:08:37 12 FEB 1979

DETAIL.... NAME...owo

I1 SMITH
I2 BROWN
I3 JONES

3 ITEMS LISTED.

Figure B. Sample Usage of Tfile Code

791073

85

4 CORRELATIVES AND CONVERSIONS

4,10 Defining ASCII, Packed Decimal, & User Conversion: MX, MP, & U

The MX code is used to convert any string of characters stored on file to or
from its corresponding hexadecimal ASCII equivalent. The MP code is used to
convert a value to or from its packed decimal representation. The U code
permits a user defined special purpose subroutine to be invoked for special
conversion.

MX Code

Usiné the MX code, any character string on file ma¥ be converted to or from its
hexadecimal ASCII equivalent. One byte on the file will be converted to two
hexadecimal digits. The general form of the MX code is:

MX
Figure C illustrates the use of the MX code.
MP Code

The MP code allows decimal numbers to be packed for storing. Packed decimal
numbers occupy apgﬁoximatel{ half the disc storage space required by unpacked
decimal numbers. e general form of the MP code is:

MP

On ingut the MP conversion combines pairs of 8-bit ASCII digits into single
packed 8-bit digits by stripping off the high-order four bits of each ASCII
digit and storing the low-order four bits into successive halves of the stored
bytes. Leading 4+’ gigns are ignored. Leading ‘-’ signs cause a 4-bit code,
‘D’ expressed In hexadecimal, to be stored as the upper half of the first
internal digit. If there are an odd number of packed halves, a leading four
bits of ‘0‘ are added. The range of data bytes in internal format (expressed
in hexadecimal) is ‘00’ through “99’ and ‘D0’ through ‘D9’. Only valid decimal
digits (0-9) and sign (+,-) should be input; other characters cause no
conversion to take place.

Packed decimal digits should always be unpacked for output, i.e., the MP code
should be specified for both input and output of the data. Packed values that
are output unconverted do not display on terminals in a recognizable format.
A%so, many of these characters are recognized by terminals as control
characters.

Figure D presents examples of MP code conversion.
U Code

A user—defined special purpose subroutine (in assembly code) may be invoked for
special conversion via the U code. The general form of the U code is:

Unxxx

where:
U is the code name.
n is the entry point.

xxx 1is the Mode-id (refer to the Reality Assembly Language Programming
Manual) .

At the point where conversion normally occurs for both input and output, the
user-program is entered with the value to be converted in a work area. For the
exact nature of the programming interface, consult the conversion subroutine in
the Reality Assembly Language Programming Manual.

86 791073

4 CORRELATIVES AND CONVERSIONS

MX
MP

Unxxx

Figure A.

General Form of MX, MP, and U Codes

MX Code

Stored Value

Converted Value

ABC 414243
ABC# 41424323
T 54
ZT 2554
XYz 58595A
ceas 2E2E2E2E
Figure B. Sample Usage of MX Code
MP Code
Decimal Byte Packed Value Byte
Value Length (Hexad ecimal) Length
99 (2) 99 (1)
-3 (2) D3 (1)
98762 (5) 098762 (3)
+723 (4) 0723 (2)
Figure C. Sample Usage of MP Code
791073 87

4 CORRELATIVES AND CONVERSIONS

4,11 Defining Mathematical Functions: F

The F code is used to compute a value by performing indicated mathematic and
logic operations on one or more operands. The operands may be constants,
attribute values, or codes for certain system parameters such as date and time.
Operand values are stored in a seven—entry pushdown stack designated STACK1
(top of stack), STACK2, ..., STACK 7.

The general form of the F code is:
F{n};element{;element}...
An "element" may be of any of the following:

1. A numeric AMC specifying an attribute value to be pushed onto the
stack, optionally followed by an "R" (Repeat code), optionally
followed by any conversion specification(s) enclosed in parentheses

2. A constant of the form Cn where "n" is a numeric or string constant to
be pushed onto the stack

3. A D which specifies the current date is to be pushed onto the stack
4, A T which specifies the current time is to be pushed onto the stack

5. A special two-character operand designating a particular system
counter

6. An operator which specifies an operation to be performed on the top
two entries in the stack

The operands (items 1 through 5 above) always cause a single push onto the
stack, with existing values (if any) moved down one position in the stack. The
operands are listed in Figure A. Operand specification is further described in
the topics F CODE STACK and F CODE SPECIAL OPERANDS. The operators are listed
in Figure B. The relational operators compare STACK2 to STACKl; after the
operation, STACKI will contain either a 1 or 0, depending upon whether the
result is true or false, respectively (e.g., if the F code were F;C3;C3;= then
STACK1 would contain a 1).

The optional precision specification "n" is described in the topic F CODE
SPECIAL OPERANDS.

Since the F code does not rely on the A/AMC (Line 2), Line 2 is usually
specified as a dummy attribute (99, for example) .

The F code has been largely replaced by the easier to use and more flexible
algebraic function code “A’ described later in this chapter.

88 791073

4 CORRELATIVES AND CONVERSIONS

Cn
D
T
Nx

amc{R}{(conversion)}

Numeric AMC, optional repeat code, optional
eonversion specification(s).

Numeric or string constant.

Code for system S&te.

Code for system time.

Two-letter codes for system counters.

Figure A. F Code Operands

Qge rator

%

/

Operation

Multiplication of the top two entries in the stack.

Division of STACK1 by STACK2.

Addition of the top two entries in the stack
Subtraction of STACK2 from STACKI1.

A total sum of all STACKI1 multi-values ie placed
at the top of the stack.

Duplication of STACK1 pushed onto the stack.
Exchanges top two positions in stack.

Pop stack.

Concatenation of STACKI with STACKZ2.

Substring of STACK3. STACK2 specifiee starting
ecolurm, and STACK1 specifies number of characters.
"Equal" relational operator.

"Less than" relational operator.

"Greater than" relational operator.

"Not equal" relational operator.

"Equal to or less than" relational operator.

"Equal to or greater than'" relational operator.

791073

Figure B. F Code Operators

89

4 CORRELATIVES AND CONVERSIONS

4,12 F Code Stack

A pushdown stack is used to perform F code operations.

Arithmetic operations specified by an F code operate on the top two entries in
a pushdown stack. This pushdown stack has a maximum capacity of seven entries,
and may be visualized as follows:

STACK1 —»
STACK2 —»
STACK3 —
STACK4 —
STACKS5 —=
STACK6 —=
STACK7 —=

STACK] is the top position in the stack, STACK2 is the next position, etc. As
a value is pushed onto the stack, it is pushed into position STACKI; the
original value of STACKl is pushed down to STACK2 and so on. As a value 1is
fetched off the stack, it is popped from position STACKl; the original value
of STACK2 moves up to STACKI; and so on. No more than seven consecutive
pushes or pops can occur.

The F code comprises any number of operands or operators in reverse Polish
format, separated by semicolons. When the function processor encounters an
operand specification (e.g., a numeric attribute mark count or constant), it
"pushes" the corresponding value onto the top of the stack (STACKl). When the
function processor encounters an arithmetic operator, it performs the
corresponding operation on the top two entries in the stack (STACK1l and
STACK2). When the entire F code has been computed, the top entry in the stack
(STACK1) will be the value retrieved.

As a notation sample, the operation "(1+2)*4=12" would be done with an F code
thus:

F;f4;CZ;Cl+;i
[-
STACK1 4 STACK1 2 STACK1 1 STACK1 3 STACK1 12
STACK2 STACK2 4 STACK2 2 STACK2 4 STACK2
STACK3 STACK3 STACK3 4 STACK3 STACK3
STACK4 STACK4 STACK4 STACK4 STACK4
STACKS5 STACK5 STACKS5 STACK5 STACK5
STACK6 STACK6 STACK6 STACK6 STACK6
STACK7 STACK7 STACK7 STACK7 STACK7

Figure A exemplifies an F code. This figure shows contents of the stack as
each element is processed.

90 791073

~J
O
§ item '1137' in PARTS file item 'CODE' in DICT PARTS file
w 001 S*6327-19 001 a
002 32 00222
003 21 :
008 F;2;3;%;C*;:;1;C3;C4;[];:
009 L
010 10
011 1
F code: I-f' °.;l:C3;C|4;[];I
STACK1 32 21 672 re32719] [3 a 6327 6372%67
STACK2 32 672 *672 *6327-19 3 *672
STACK3 *672 5*6327-19)
STACK4 %672
STACKS
STACKE
STACK?
:LIST PARTS '1137' CODE
PAGE 1 08:31:41 03 MAR 1977
PARTS..... CODE......
1137 6327%672
1 ITEM LISTED.
O
ot

Figure A. Sample F Code and Associated Operations on Stack

SNOI SYJANOD ANV SHAILVIZNE0D ¥

4 CORRELATIVES AND CONVERSIONS

4,13 F Code Special Operands

F code operands may be multivalued, may contain conversion specification(s), or
may be a special two-character operand specifying one of several counters.

Attribute operands may be multivalued. When arithmetic operations are
performed on two multivalued 1lists (vectors), the answer will also be
multivalued and will have as many values as the longer of the two lists. Zeros
will be substituted for the null values in the shorter 1list. For example,
suppose the attribute with AMC=10 had a value of "5]10]15" and Attribute 15 had
values "20]30]40]50". If the F correlative F;10;15;+ were processed, the
result in STACKI would be "25]40]155]150". If a single valued attribute is to be
repetitively added (or subtracted, etc.) with a multivalued attribute, then the
single letter R should immediately follow the AMC in the F code (e.g.,
F:10;25R;+).

Any conversion may be specified in the body of a function correlative. The
conversion specification(s) must immediately follow the "operand" specification
in the F correlative, and must be enclosed by parentheses. Multiple
conversions may be specified by separating the individual conversion
specifications by value marks (<c>], X’FD’). Examples are given in Figure B.

Special two—character operands may be used as F code elements for various
system counters, as listed in Figure C. For example:

F;ND;3;/

On every detail line, this returns the value from the third attribute; on
every break line (including the grand-total line), the average value of data in
Attribute 3 is returned.

The optional parameter "n" following ‘F’ may be wused to specify the number of
fractional digits (0 to 4) to be retained during calculations when using a
mixture of whole numbers and numbers with implied fractional digits when an MD
conversion is specified in the body of a function. For example, suppose
Attribute 1 contains 15934 (which is normally interpreted as 1.5934 using an
MD4 code) and Attribute 2 contains 37. The function code F;1(MD4);2;+ yields
38 (fractional digits are dropped). This can be overcome by coding the
function as F4;1(MD4);2;+ which returns 38.5934. Alternately, the function
could be written as F;1;2;Cl0000;*;+]MD4 to scale the whole number 37 to
370000, adding 15934, then converting to 38.5934 using the MD4 code. The
latter method was required before the precision specification was available.

92 791073

4 CORRELATIVES AND CONVERSIONS

F{n};element{;element}...

Specifies operand or operator

Specifies precision

Figure A. General Form of F Code

F;10;11(T*SALES;X;3;3);* Placee the data from attribute #10 into the
stack; picks up ID from attribute #11,
translates it from dietionary of file 'SALES'
and places it into the stack; and multiplies
the two values to give the result.

F;1(UL1F0);2(U21F0);+ Calls user conversion routines to operate on
data from attribute #1 & #2, then adds values.

F;D(D2/1G2/1);3(D2]G2/]);~ Computes the difference in the "year" fields
of the system date and the date stored in
attribute #3. The "D2/" converts the date
from internal format to "MM/DD/YYYY'"; the
"G2/1" then isolates the '"year" section of
the date. The " " is actually a value-mark
(shift-control-M).

Figure A. Sample Usage of F Correlatives with Conversions

Operand Description
NI Current item ecounter.
ND Number of detail lines since last BREAK on a

Break data line; has a value of 1 on any
detail lines, and ie equal to the item
counter (i.e., total items) on a grand-total
line. This operand is used to get averages,
ete., within the control-break structure.

NV Current multi-value counter (colummar
listing only).

NS Current sub-multi-value counter (colummar
listing only).

Figure B. F Code Counter Operands

791073 93

4 CORRELATIVES AND CONVERSIONS

4.14 Summary of F Code Stack Operations

This topic
means

summarizes F code stack operations.
that the contents of STACKl (the top of
position STACK2.

The notation STACKI
the stack)

—> STACK2
is pushed down to

Element

amc

{(conversion)}

Cn

[l

94

Description Action

attribute Push corresponding attribute value, after optional

(with conversion, onto pushdown stack (maximum seven

conversion) levels):
attribute value => STACKl -> STACK2 -> STACK3 ->
STACK4 => STACK5 -> STACK6 -> STACK7 -> lost

constant Push numeric or string constant 'n'" onto stack:
"n" -=> STACK1 =-> STACK2 -> STACK3 -> STACK4 ->
STACK5 =-> STACK6 -> STACK7 -> lost

date Push numeric value representing current system
date (internal form) onto stack: date -> STACK1
-> STACK2 -> STACK3 -> STACK4 -> STACK5 -> STACK6
-> STACK7 lost

add STACKl + STACK2 -> STACKl, STACK7 -> STACK6 ->
STACK5 -> STACK4 -> STACK3 -> STACK2

subtract STACKl1 - STACK2 =-> STACKl, STACK7 => STACK6 =>
STACK5 —-> STACK4 => STACK3 -> STACK2

multiply STACKl * STACK2 -> STACKl, STACK7 -> STACK6 ->
STACK5 -> STACK4 -> STACK3 -> STACK2

divide STACK1 / STACK2 -> STACKl, STACK7 -> STACK6 ->
STACK5 -> STACK4 -> STACK3 -> STACK2

remainder remainder (STACK1/STACK2) =-> STACKl, STACK7 ->
STACK6 —> STACK5 => STACK4 —> STACK3 -> STACK2

sum summat ion(STACK1) -> STACK1
Prior to this operation, STACK1 may be
multivalued; this operator sums all those
multivalues into a single value

duplicate STACK1 -> STACK2 -> STACK3 -> STACK4 -> STACKS5 ->
STACK6 -> STACK7 -> lost

exchange STACK1 <—> STACK2

POP STACK7 -> STACK6 -> STACKS5 => STACK4 -> STACK3 ->
STACK2 -> STACKl -> lost

concatenate STACK1:STACK2 -> STACKl, STACK7 =-> STACK6 ->
STACK5 => STACK4 -> STACK3 -»> STACK2

extraction STACK3[STACK2, STACK1] -> STACKl (STACK2 = starting

position, STACKl = length), STACK4 -> STACK2,
STACK5 -> STACK3, STACK6 -> STACK4, STACK7 ->
STACK5

791073

4 CORRELATIVES AND CONVERSIONS

Element

T

NI

NV

NS

#

Description

Action

time

item counter

detail line

counter

multivalue
counter

sub-
multivalue
counter

equal

not equal

less than

greater than

less than

or equal to

greater than
or equal to

[1) 1f stacki

Push numeric value representing current system
time (internal format) onto stack:
time —-> STACKl -> STACK2 -> STACK3 -> STACK4 ->
STACK5 -> STACK6 -> STACK7 -> lost

Push numeric value representing current item
counter onto stack:

counter - STACK1 -> STACK2 -> STACK3 -> STACK4
=> STACK5 -> STACK6 -> STACK7 -> lost

Push numeric value representing number of detail
lines since the last control-break onto stack:
counter => STACK1l -> STACK2 -> STACK3 -> STACK4
=> STACK5 -> STACK6 -> STACK7 ~> lost

Push numeric value representing current multi-
value counter onto stack:

counter => STACKl -> STACK2 ~-> STACK3 -> STACK4
—-> STACK5 -> STACK6 =-> STACK7 -> lost

Push numeric value representing current sub-
multivalue counter onto stack:

counter -> STACKl -> STACK2 -> STACK3 -> STACK4
=> STACK5 -> STACK6 -> STACK7 -> lost

]

STACK2 then 1 -> STACKI
2) If STACKl1 # STACK2 then 0 -> STACKIL

1) If STACK1 # STACK2 then 1 -> STACKI
2) If STACKL STACK2 then 0 ~-> STACKI1

1) If STACKl < STACK2 then 1 => STACKI
2) If STACKI1 not < STACK2 then O -> STACKIL

F-l) If STACKl > STACK2 then 1 -> STACKI

2) If STACKI1 not > STACK2 then O -> STACKI

1) If STACKl1 <= STACK2 then 1 -> STACKI
2) If STACKI not <= STACK2 then O -> STACKI

1) If STACK1 >= STACK2 then 1 -> STACK1

2) If STACK1 not >= STACK2 then 0 -> STACK1

—=3) In each case STACK7 -> STACK6 -> STACK5 ->

STACK4 -> STACK3 ~> STACK2

F{n};element{;element}...

791073

Figure A. General Form of F Code

95

4 CORRELATIVES AND CONVERSIONS

4,15 Defining Mathematical Functions: A Code Operands

The A code is designed to function similarly to the F code and replaces it with
a simpler—-to-write and easier-to—understand format.

The algebraic function code, unlike the F code, uses an algebraic mnotation
rather than Reverse Polish Notation. It allows the use of dictionary names and
is recursive in that it will apply functions stored in other attribute
definitions. Parentheses may be used to indicate the order of operations.

The general form of the A code is:
A{n};expression

where "expression' is made up of operators, operands, and special functions as
described below and in the following topic. Expressions are formed exactly
like DATA/BASIC expressions. The precision specification "n" functions
identically to that in the F code and i1s described in the topic F CODE SPECIAL
OPERANDS. Note: The A/AMC (Line 2) of attribute definitions containing A or F

codes should be zero (not a dummy number) if they will be be referenced by name
in other functionms.

Operands
AMC Numbers

An attribute mark count (AMC) is specified by putting the number in the A code,
just as in F codes. An AMC of zero indicates the item—id 9999 is the item
size, and 9998 supplies a sequential item count. A conversion may be specified
following the AMC enclosed in parentheses as in the F code.

Attribute Names

An attribute name may be used instead of an AMC. The dictionary name is used
as an argument to the N function whose format is:

N(attribute-name)

The operation of the N function is as follows. The name is looked up in the
dictionary and an error message 1is printed if it is not found. The A/AMC
(Attribute 2) is used as an AMC in the A code. Any correlatives existing in
Attribute 8 of that dictionary item will be applied to the value obtained
(including other A or F codes; A/AMC (Line 2) must be zero in such referenced
attributes). This allows the A code to use functions defined in other
dictionary items which may in turn be derived from other functions in other
dictionary items, etc. This recursive capability is a major advancement over
the now obsolete F code.

Literals
Any 1literal string or a numeric constant may be specified by enclosing the

value in double quotes. The most common mistake in writing A codes is to omit
the quotes around constants which would then imply an AMC as described above.

96 791073

4 CORRELATIVES AND CONVERSIONS

Special Operands

The A code also supports the special operands NI, NV, NS, ND, D, and T
available for the F code as described in previous topics.

Any operand (AMC, N(attribute-name), or special operand) may be followed by "R"
to specify that a single value should be repeated so that there will be the
same number of values as a multivalued attribute used elsewhere in the
calculation. They may also be preceded by a minus sign to change the sign of
the value, if desired.

A{n};expression

Figure A. General Form of the A Code

A;N(COST) Retrieves the value defined in the attribute
definition item COST in the dictionary of the
file being used. If any correlatives are
present on line 8 of COST, these will be
applied before returning the value. If an
A Code on line 8 of COST references other
dictionary items, the recursive feature will
be applied.

A;5 References attribute five.

A;"HELLO" Forms the string "HELLO".

A;"365" Specifies the numeric constant 365.

ANV Accesses the multivalue counter.

AT Accesses the current system time (internal
form).

Figure B. Sample Usage of A Code Operators

791073 97

4 CORRELATIVES AND CONVERSIONS

4,16 Defining Mathematical Functions: A Code Operators and Functions

The A code is designed to function similarly to the F code and replaces it with
a simpler to write and easier to understand format.

Operators
Arithmetic Operators

The operators +, —, *, and / are available and take two operands (see previous
topic) and return the sum, difference, product or quotient. It is important to
note that division returns an integer result just as in F codes.

String Operators
The : operator specifies concatenation of the results of two expressions.
Relational Operators

The operators <, >, >=, <=, =, and # denote logical relational operations and
take two expressions as operands and evaluates to 1 (true) or 0 (false) as in
the F code.

Precedence

The precedence of operators is important to keep in mind when writing A codes.
Infinite levels of parenthesis are allowed in A codes to specify the order of
operations. In the absence of parenthesis, multiplication and division have
greater precedence over addition and subtraction, which in turn have greater
precedence than the relational operators. If two operators have the same
precedence, they are applied from left to right. For example, 1*2+43<4 will
evaluate as ((1*2)43)<4 and 4/5%6 will evaluate as (4/5)%6.

Special Functions

Remainder Function: R

The remainder function takes two expressions as operands and returns the
remainder of the first divided by the second. The format of the R function is:

R(expression,expression)
For example A;R(N(COST),"5") returns the remainder when COST is divided by 5.
Summation Function: S
The summation function takes one expression as an operand and works the same
way as in the F code. The sum of all multivalues will be returned. The ng"

function format is:

S(expression)

98 791073

4 CORRELATIVES AND CONVERSIONS

Substring Function: [n,n]

A substring may be specified by using square brackets just as in DATA/BASIC and
may be specified after any expression or function. For example:
N(NAME)["2","5"] will return a string of five characters starting at Position
2. The most common mistake here is the use of AMCs in the starting position
and length specifications instead of the intended literals in double quotes.
N(NAME)[2,5] would retrieve a substring from NAME where the starting position
is found in Attribute 2 and a length found in Attribute 5.

Ajexpression

Figure A. General Form of A Code

A;N(PRICE)*N(QTY) Multiplies the value of the attribute defined
by PRICE by the value QTY.

A;N(COST)/("10"*N(DISCOUNT)) Divides the value of COST by 10 times the
value of DISCOUNT.

A;N(AMTDUE)-S(N(PAYMENTS)) Subtracts the sum of the multivalued
payments from AMTDUE.

A;5[M1","2"]:" ":N(ZIP) Concatenates the first two characters of
attribute five with a blank followed by the
value from the attribute defined by ZIP.

A"S"HN(AMT) /10 Divides AMT by attribute 10 (not the value
"10") and then adds five.

A;S(N(RATE)R*N(HOURS)) Multiplies multivalued HOURS by single valued
RATE (repeating), then sums the multivalued
results.

Figure B. Sample Usage of A Code

791073 99

4 CORRELATIVES AND CONVERSIONS

4,17 Processing Conversions/Correlatives: Detail Lines & Sorting

Attribute values may be modified through the use of correlatives and
conversions applied at various stages of processing. The use of correlatives
and conversions for detail line output and sorting is detailed in this topic.

Detail Lines

Each line of output that is not a total or subtotal line is called a detail
line. Output on detail lines is printed after applying both the correlative
and conversion fields. The arrangement below illustrates the application of
correlatives and conversions to attribute values.

Internal Correlative Intermediate Conversion Detail
format processing format processing line
(if present) (if present) value

Figure A presents three attribute definition items which show how detail 1line
output is derived. Attribute definition item 'INTERNAL’ is used to list the
value of Attribute 1 as it is sorted in the ‘TEST’ file. ‘INTERMEDIATE’ 1lists
the attribute after the correlative field has been processed. ‘CITY’ continues
the processng by applying a translate conversion to the intermediate result.
The translate items for this conversion reside in the dictionary of the ‘TEST’
file. Figure B is the output listing of the ‘TEST’ file showing all three
attribute definition items being applied to Attribute 1 of the file.

Sorting

Sorts are performed on the intermediate attribute values. Figure C shows a
sort by the translated field ‘CITY’. Note that the listing is not in order by
the printed value of 'CITY’ but rather is in order by the intermediate values
listed under ‘INTERMEDIATE’.

If a sort by city instead of by the intermediate code were necessary, then the
translate code could be combined with the correlative '"T3". The correlative
field would then be "T3]T*TEST;V;2;1". The conversion field would be null.
However, this organization should be avoided when possible because performing
the translate at this point will slow many common file operations which do not
use the conversion field and which thus would not otherwise require the
translation to be performed. Codes such as D, MT, and MD should wusually be
specified as conversions (Line 7) since the outcome of a sort would be the same
as specifing as a correlative.

100 791073

4 CORRELATIVES AND CONVERSIONS

TESTeseeeeses D/CODE.... A/AMC V/CONV.svseeowss V/CORR... V/TYP V/MAX

INTERNAL A 1 L 10
INTERMEDIATE A 1 L 10
CITY A 1 T*TEST;V;2;1 L 10
ABC COVINA

POI COVINA

POP SOUTHBROCK

SDF SOUTHBROCK

WER SOUTHBROCK

727 COVINA

Figure A. Dictionary of TEST File

PAGE 1

TEST...... INTERNAL..

JAN ABC123 ABC
FEB ABC789 ABC
MAR WER77 WER
APR SDF765 SDF
JUN ZZ2765 YN
JUL POP333 POP
AUG WER772 WER
SEP ABC133 ABC
OCT ABC122 ABC
NOV POI331 POI
DEC WER733 WER
MAY WER 89 WER

INTERMEDIATE CITYeseauo

COVINA
COVINA
SOUTHBROCK
SOUTHBROCK
COVINA
SOUTHBROCK
SOUTHBROCK
COVINA
COVINA
COVINA
SOUTHBROCK
SOUTHBROCK

11:57:46 12 FEB 1979

After T3
correlative

After T3
correlative

and T*TEST;
V;2;1 conversion

Figure B.

Detail line Output with Correlatives and Conversions

PACE 1

TESTeeeses INTERNAL..

NTERNA

INTERMEDIATE CITYssu s

12:03:34 12 FEB 1979

FEB ABC789 ABC COVINA
JAN ABC123 ABC COVINA
OCT ABC122 ABC COVINA
SEP ABC133 ABC COVINA
Sor POP333 POP SOUTHBROCK Note that the sort
P . -
APR SDF765 SDF SOUTHBROCK is applied to the
AUG WER772 WER SOUTHBROCK intermediate values.
DEC WER733 WER SOUTHBROCK
MAR WER77 WER SOUTHBROCK
MAY WER89 WER SOUTHBROCK
JUN 7727765 777 COVINA
Figure C. A SORT Using Correlativ . and Conversions

791073

101

4 CORRELATIVES AND CONVERSIONS

4,18 Processing Conversions/Correlatives: Selection & Control-Breaks

This topic details the use of correlatives and conversions for selection
processing and for control-breaks.

Selection Processing

Selection processing compares the file values (with correlatives applied), to
the values entered in the input 1line after input conversions have been
processed.

When a selection value is specified in an input 1line, an input conversion (if
applicable) is performed on that value before it is compared with the
intermediate values extracted from the file. Note that this input conversion
may be different from the output conversion (as in a translate code). Figure A
shows additional translate items in the dictionary of the TEST file which allow
the input conversion for the listing shown in Figure B. The input translation
conversion is applied to the value "SOUTHBROCK" to yield selection value '"POP".
(Note that the input-AMC in the translate code is wused). The selection value
"POP" is compared, in turn, against each of the intermediate values (as listed
under column INTERMEDIATE).

In Figure B, not all detail lines with value '"SOUTHBROCK'" are selected. This
is because of the lack of symmetry between the input—-AMC and the output-AMC in
the translate code. On output, values "POP", "SDF", and "WER" convert into
"SOUTHBROCK", but on input, "SOUTHBROCK" converts into "POP" only.

To select all items which print as ''SOUTHBROCK", it will be necessary to
perform the ‘translate as a correlative instead of as a conversion. This will
cost processing time, however, since the translation will be applied to all
items in the file.

Control-Breaks

Control-breaks apply to the intermediate values generated by processing all
correlative codes. Control-breaks are signalled by changes in these
intermediate values. Figure A shows the dictionary used for the 1listing in
Figure C. Note that in Figure C, the control-breaks apply to the intermediate
value.

To break on the printed wvalues of CITY, the translate code would have to be
specified as a correlative instead of as a conversion. As with selection
processing, this will cost processing time, since the translation will be
applied to all items in the file.

102 791073

4 CORRELATIVES AND CONVERSIONS

TESTeeeeess D/CODE.... A/AMC V/CONVeeooooaoncna V/CORR.... V/TYP V/MAX
INTERNAL A 1 L 10
INTERMEDIATE A T3 L 10
CITY A 1 TATEST;V;2;1 T3 L 10
ABC COVINA
POI COVINA
POP SOUTHBROCK
SDF SOUTHBROCK
WER SOUTHBROCK
777 COVINA
SOUTHBROCK POP
COVINA ABC

Figure A. Dictionary of TEST File (Extended)

TESTe« ... INTERNAL.. INTERMEDIATE CITY......
JUL POP333 POP SOUTHBROCK
Figure B. Selection Processing with Correlatives and Conversions
TEST+e+ee.. INTERNAL.. INTERMEDIATE CITY......
FEB ABC789 ABC COVINA
JAN ABC123 ABC COVINA
OCT ABC122 ABC COVINA
SEP ABC133 ABC COVINA
*kk
NOV POI331 POI COVINA
kkk
JUL POP333 POP SOUTHBROCK
*kk
APR SDF765 SDF SOUTHBROCK
*ekk
AUG WER772 WER SOUTHBROCK
DEC WER733 WER SOUTHBROCK
MAR WER77 WER SOUTHBROCK
MAY WER 89 WER SOUTHBROCK
Kk
JUN ZZ7765 777 COVINA
Figure C. Control-Break Processing with Correlatives and Conversions

791073

103

4 CORRELATIVES AND CONVERSIONS

4,19 Processing Conversions/Correlatives: Totals & Subtotals

This section details the use of correlatives and conversions for totals and
subtotals.

TOTALS AND SUBTOTALS

Correlatives, if present, are applied to attribute values before they are used
to accumulate totals and subtotals. Before the total or subtotal is printed,
however, it is converted using the conversion field (such as with an MD
conversion to position the decimal point). The method of processing totals for
attributes with function (F or A) codes is detailed below.

The function code operates in two different fashions on an attribute with a
TOTAL modifier, depending on whether it is specified as a correlative (line 8)

or as a conversion (line 7).

Function Correlatives

As a correlative (the usual method), the function is applied to the detail
lines printed (along with conversions) and these functioned values are
accumulated for the subtotal and total. Therefore, a total of the functioned
values displayed on the detail lines is computed. At total time, conversions
are applied to this total of functioned values (such as an MD conversion) and
the results are printed.

Function Conversions

As a conversion, the function is applied to the detail lines printed (along
with conversions); however, these functioned values are not accumulated for
the subtotal or total. Instead, at total time, the function will be applied to
the totals that have been calculated for the attributes whose AMC’s (or names
in A codes) appear in the Function code. Therefore, the function of other
totaled values is obtained. This is particularly useful in calculating
averages (one of the values might be the special ‘ND’ operand).

The user must total (with the TOTAL modifier) those attributes whose AMC’s
appear in the Function code; otherwise an unpredictable total will result.
Since the total displayed in this manner is not a total of the values listed on
the detail lines above it, but is instead a function of other total values, the
user may wish to suppress the detail listing for this attribute. This can be
accomplished by assigning this attribute a dummy AMC (99, for example) .

Figure A presents an example of the processing difference between function
correlatives and function conversions.

104 791073

4 CORRELATIVES AND CONVERSIONS

VALUE
001 S
002 1 INVeesooeo QTY.. PRICE.. VALUE.....
003
004 1001 12 $3.54 $42.48
005 1007 34 $1.23 $41,82
006 1004 113 $0.23 $25.99
007 MD2S$ 1002 15 $1.00 $15.00
008 F;l;2;%
009 R *kk $125.29 -~ Total of above
010 10 "func tioned" values
VALUE
001 S
002 1 INVeesoeeo QTY.. PRICE.. VAIUE.....
003
004 1001 12 $3.54 $42.48
005 1007 34 $1.23 $41.82
006 1004 113 $0.23 $25.99
007 F;1;2;*%]1MD2S 1002 15 $1.00 $15.00
008
009 R *kk $1.74 —= Unpredictable
010 10 result since
QTY (AMC=1) and
PRICE (AMC=2) were
not totaled
VALUE
001 S
002 1 INV.eeooss QTY.. PRICE.. VALUE.....
003
004 1001 12 $3.54 $42.48
005 1007 34 $1.23 $41.82
006 1004 113 $0.23 $25.99
007 F;1;2;*%]MD2$ 1002 15 $1.00 $15.00
008
009 R Rk 174 $6.00 $1044.00 —— Function of
010 10 totaled values
QTY and PRICE.
Not total of VALUE
figures above
AVERAGE
001 S
002 99 INVeeeoesss QTY.. PRICE.. AVERAGE...
003 AVERAGE]PRICE PRICE
004 1001 12 $3.54
005 1007 34 $1.23 Detail suppressed with
006 1004 113 $0.23 non—existant AMC=99
007 F;ND;2;/]MD2s 1002 15 $1.00
008
009 R Fokk $6.00 $1.50 — Function of
010 10 totaled value
of PRICE
Figure A. Sample Uses of TOTAL with Function Correlatives and Function Conversions
791073 105

APPENDIX A.

ASCII CHARACTER SET

EBCDIC ASCII Prism Prism
Decimal Hex 'Equivalent Character Display Key Special Use in Reality
0 00 00 NUL None <e>@ Delay char, sort key
delimiter
1 01 01 SOH None <c>A Prism home command
2 02 02 STX None <ec>B
3 03 03 ETX None <e>C End of text
4 04 37 EOT None <c>D
5 05 2D ENQ None <c>E
6 06 2E ACK None <c>F Cursor forward on Prism
7 07 2F BEL None <e>G Bell of Prism
8 08 16 BS None <c>H Backspace on Prism
9 09 05 HT None <c>I Tab
10 0A 25 LF None <e>J Cursor down on Prism
11 OB OB VT None <{c>K Vertical address on Prism
12 ocC oC FF None <c>l Screen erase on Prism
13 0D 0D CR None <c>M Carriage return
14 OE OE SO None <c>N
15 OF OF SI None <e>0
16 10 10 DLE None <c>P Horizontal address on Prism
blank compression character
17 11 11 DC1 None <c>Q
18 12 12 DC2 None <c>R Retype entire line. Enable
slave printer
19 13 3A DC3 None <c>S Dump Prism screen to slave
printer (option)
20 14 3C DC4 None <c>T Disable slave printer
21 15 3D NAK None <c>U Cursor back on Prism
22 16 32 SYN None <c>V
23 17 26 ETB None <cOW
24 18 18 CAN None <c>X Cancel line
25 19 19 EM None <c>Y
26 1A 3F SUB None <c>Z Cursor up on Prism
27 1B 27 ESC [ESC, <c>[EDITOR command delimiter.
Invokes SCREEN PROCESSOR
command-mode
28 1C 1C FS None
29 1D 1D GS None
30 1E 1E RS None
31 1F 1F us None
32 20 40 blank space
33 21 5A ! ! {cs>A, !
34 22 7F " " <cs>B, " String delimiter in
ENGLISH and BASIC
35 23 7B # # <es>C, #
36 24 5B $ $ <cs>D, §
37 25 6C % % <cs>E, 7
38 26 50 & & <cs>F, &
39 27 7D ‘ ’ <cs>G, '’ String delimiter in
ENGLISH and BASIC
40 28 4D ((<cs>H, (

791073

107

APPENDIX A.

ASCII CHARACTER SET (Continued)

EBCDIC ASCII Prism Prism
Decimal Hex Equivalent Character Display Key Special Use in Reality
41 29 5D)) <esdI,)
42 2A 5C * * <cs>J, *
43 2B 4E + + +
44 2C 6B s s ,
45 2D 60 - - -
46 2E 4B . . .
47 2F 61 / / /s
48 30 FO 0 0 0
49 31 F1 1 1 <es>Q, 1
50 32 F2 2 2 <cs>R, 2
51 33 F3 3 3 <cs>S, 3
52 34 F4 4 4 {es>T, 4
53 35 F5 5 5 <cs>U, 5
54 36 Fé 6 6 <ecsdV, 6
55 37 F7 7 7 {cs>W, 7
56 38 F8 8 8 <cs>X, 8
57 39 F9 9 9 <cs>Y, 9
58 3A 7A : : {cs>Z, :
59 3B 5E H H H
60 3C 4C < < <
61 3D 7E = = =
62 3E 6E > > >
63 3F 6F ? ? ?
64 40 7C @ @ @
65 41 Cl A A A
66 42 C2 B B B
67 43 C3 C C C
68 44 C4 D D D
69 45 C5 E E E
70 46 Ccé F F F
71 47 c7 G G G
72 48 c8 H H H
73 49 Cc9 I I I
74 4A Dl J J J
75 4B D2 K K K
76 4C D3 L L L
77 4D D4 M M M
78 4E D5 N N N
79 4F D6 0 0 0
80 50 D7 P P P
81 51 D8 Q Q Q
82 52 D9 R R R
83 53 E2 S S S
84 54 E3 T T T
85 55 E4 U U U
86 56 E5 \Y \Y v
87 57 E6 W W W
88 58 E7 X X X
89 59 E8 Y Y Y
108 791073

APPENDIX A. ASCII CHARACTER SET (Continued)

EBCDIC ASCII Prism Prism
Decimal Hex Equivalent Character Display Key Special Use in Reality
90 5A E9 Z Z Z
91 5B 80 { [[String search delimiter
92 5C EO \ \ \ RUNOFF control character
93 5D 90]]] ENGLISH string search
delimiter
94 SE 5F - - - ENGLISH string search
delimiter
95 5F 6D _ RUNOFF control character
96 60 79 ~ @ <cs>0
97 61 81 a A <c>!, <sdA
98 62 82 b B <c>", <s>B
99 63 83 c C <cott, <s>C
100 64 84 d D <c>$, <s>D
101 65 85 e E <c>%, <s>E
102 66 86 f F <c>&, <8DF
103 67 87 g G <e>’, <8>G
104 68 88 h H <c>(, <s>H
105 69 89 i I <ec>), <s>I
106 6A 91 3 J <c>*, <s>J
107 6B 92 k K <co+
108 6C 93 1 L <c>,
109 6D 94 m M <c>-
110 6E 95 n N <c>.
111 6F 96 o 0 <c>/
112 70 97 P p <c>0
113 71 98 q Q <c>1l, <s>Q
114 72 99 r R <e>2, <s>R
115 73 A2 s S <c>3, <s>S
116 74 A3 t T <e>d, <s>T
117 75 A4 u U <e>5, <s>U
118 76 A5 v \Y <c>6, <s>V
119 77 A6 w W <e>7, <sdW
120 78 A7 X X <c>8, <s>X
121 79 A8 y Y <ec>9, <s>Y
122 7A A9 z A <e>:, <8dZ
123 7B Cco { [<e>;
124 7C 6A | \ <e><
125 7D DO }] <c>=
126 7E Al - ~ <e>> Sort key delimiter
127 7F 07 DEL None
128 80 04 None
129 81 06 None
130 82 08 None
131 83 09 None
132 84 0A None
133 85 13 None

791073 109

APPENDIX A. ASCII CHARACTER SET (Continued)

EBCDIC ASCII Prism Prism
Decimal Hex Equivalent Character Display Key Special Use in Reality
134 86 14 None
135 87 15 None
136 88 17 None
137 89 1A None
138 8A 1B None
139 8B 20 None
140 8C 21 None
141 8D 22 None
142 8E 23 None
143 8F 24 None
144 90 28 None
145 91 29 None
146 92 2A None
147 93 2B None
148 94 2C None
149 95 30 None
150 96 31 - None
151 97 33 None
152 98 34 None
153 99 35 None
154 9A 36 None
155 9B 38 None
156 9C 39 None
157 9D 3B None
158 9E 3E None
159 9F 41 None
160 AO 42 None
161 Al 43 None
162 A2 44 None
163 A3 45 None
164 A4 46 None
165 A5 47 None
166 A6 48 None
167 A7 49 None
168 A8 4A None
169 A9 4F None
170 AA 51 None
171 AB 52 None
172 AC 53 None
173 AD 54 None
174 AE 55 None
175 AF 56 None

110 791073

APPENDIX A. ASCII CHARACTER SET (Continued)

EBCDIC ASCII Prism Prism
Decimal Hex Equivalent Character Display Key Special Use in Reality
176 BO 57 None
177 Bl 58 None
178 B2 59 None
179 B3 62 None
180 B4 63 None
181 BS5 64 None
182 B6 65 None
183 B7 66 None
184 B8 67 None
185 B9 68 None
186 BA 69 None
187 BB 70 None
188 BC 71 None
189 BD 72 None
190 BE 73 None
191 BF 74 blank None
192 co 75 @ @
193 Ccl 76 A A
194 Cc2 77 B B
195 Cc3 78 c c
196 C4 8A D D
197 C5 8B E E
198 Cé6 8C F F
199 c7 8D G G
200 c8 8E H H
201 co9 8F I I
202 CA 9A J J
203 CB 9B K K
204 CcC 9C L L
205 CD 9D M M
206 CE 9E N N
207 CF 9F 0 0
208 DO AQ P P
209 D1 AA Q Q
210 D2 AB R R
211 D3 AC S S
212 D4 AD T T
213 D5 AE U U
214 D6 AF \Y A
215 D7 BO W %)
216 D8 Bl X X
217 D9 B2 Y Y
218 DA B3 Z Z

791073 111

APPENDIX A. ASCII CHARACTER SET (Continued)

EBCDIC ASCII Prism Prism

Decimal Hex Equivalent Character Display Key Special Use in Reality

219 DB B4 [[

220 DC B5 \ \

221 DD B6 1]

222 DE B7 ~ ~

223 DF B8 _ _

224 EO B9 @ @

225 El BA A A

226 E2 BB B B

227 E3 BC C C

228 E4 BD D D

229 E5 BE E E

230 E6 BF F F

231 E7 CA G G

232 E8 CB H H

233 E9 CcC I I

234 EA CcD J J

235 EB CE K K

236 EC CF L L

237 ED DA M M

238 EE DB N N

239 EF DC o] 0

240 FO DD P P

241 F1 DE Q Q

242 F2 DF R R

243 F3 El S S

244 F4 EA T T

245 F5 EB U U

246 F6 EC ' '

247 F7 ED 1Y) 1)

248 F8 EE X X

249 F9 EF Y Y

250 FA FA Z Z System Delimiters:

251 FB FB [[Start Buffer (SB)

252 FC FC \ \ <ed\ Subvalue Mark (SVM)

253 FD FD]] <c>] Value Mark (VM)

254 FE FE - ~ {e>" Attribute Mark (AM)

255 FF FF _ _ <c>_ Segment Mark (SM)
NOTE: The <SHIFT> key may have to be depressed on some terminals if the

112

desired character appears on the top half of a key top. For example, to
generate an attribute mark (X'FE’) on some terminals, it is necessary to
depress and hold the <SHIFT> key to generate the """ character, while
depressing the <CTRL> key to cause the character to be a control
character.

791073

APPENDIX B.

As an aid
file named
the values

to understanding the numerous examples in this manual of the

ACCOUNT, the following SORT output is

ACCOUNT FILE USED IN EXAMPLES

provided.

of key attributes for all the items in the ACCOUNT file.

PAGE 1

ACCOUNT...

11000
11015
11020
11025
11030
11035
11040
11045
11050
11055
11060
11065
11070
11075
11080
11085
11090
11095
11100
11105
11110
11115
21780
23000
23005
23010
23015
23030

23025
23030
23035
23040
23045
23050
23055
23060
23065
23070
23075
23080

791073

NAME.o eeeeesns

M
L
J
P
F
R
E
F
J
W
F
C
A
T
E
A
J
J
E
C
D
D
E
H
W
W
R
S
UN
D
L
G
P
P
E
S
S
J
L
M
J

REHuwHES"raoMmes s 2Harradgn@OOond @A R T

ToHEraaor

sG> H

KEENER
HARMAN
0‘BRIEN
BAGLEY
CABRON
MARCUS
MCCARTHY
DRE SCH
MARSHECK
KOONS
NATORI
RANDALL
ALTHOFF
LINDSEY
AWAD
SEGUR
JENKINS
STEINER
CHALMERS
GREEN
WEISBROD
MASTERS
AWAD

LEE
THOMPSON
MCCOY
COOPER

ERLEIDER

BINGAMAN
DEVOS
BORDEN
SCIPMA
KUGEL
MCCARTHYJR
NEWMAN
SZABO
WOSK
MARCHANT
SADOSKI
YOUNG

ADDRESS..eeeess

100
118
124
130
101
107
113
119
125
131
131
125
119
113
107
101
130
124
118
112
106
100
107
200
206
212
218
224

230
201
207
213
219
225
231
231
225
219
213
207

ANCHOR
ANCHOR
ANCHOL
ANCHOL
BEGONTA
BEGONTIA
BEGONIA
BEGONIA
BEGONIA
BEGONTA
BAY STREET
BAY STREET
BAY STREET
BAY STREET
BAY STREET
BAY STREET
AVOCADO
AVOCADO
AVOCADO
AVOCADO
AVOCADO
AVOCADO
BAY STREET
BAY STREET
BAY STREET
BAY STREET
BAY STREET
BAY STREET

PL
PL
PL
PL

BAY STREET
CARNATION
CARNATION
CARNATION
CARNATION
CARNATION
CARNATION
COVE STREET
COVE STREET
COVE STREET
COVE STREET
COVE STREET

13:55:30

eeess BILL-..
RATE

10.03
0.03
0.30

10.03

10.03

10.03
0.30

10.03
0.30

10.03

33.33

10.03

10.03

10.03

10.03
0.30
0.30
0.30
0.40
0.30
0.30
0.30

10.03
0.35

10.03
0.35
0.35

10.03

0.08
0.30
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.01
0.35
10.03

12 FEB 1979

CURR-BALANCE...

oy > Uy Yy Ay Uy U Uy O Uy Uy A > U A D Uy Uy LW U Uy A

2,246.78
8.60
306,755. 54
82.045.33
20. 50
23,911. 14
334.56
1,119.46

958, 343.75
34.86
552.13
22.60
13.10
2,937.35
224 .55-
2,224, 84
3.83
17.50

484, 84
9.20
9,932.22
12,332.11
11,265.21
28, 464 .64
385.56
983.34

18.70
484 .94
9,663.72
123,423.22
99,422,34
44,88
7,452.92
54,668.13
8, 563. 36
345.12
1,124.75
89.32

sample
This output lists

113

APPENDIX B. ACCOUNT FILE USED IN EXAMPLES (Continued)

PAGE 2 13:55:59 12 FEB 1979
ACCOUNT... NAME.veeveeeesoeeoes ADDRESSeue.eeseesess BILL-.. CURR-BALANCE...
' RATE
23090 WJ 230 BEGONIA 0.35 20.45
HIRSCHFIELD

23095 W E ZUMSTEIN 224 BEGONIA 0.0l

23100 G J PACE 218 BEGONIA 10.03 § 9,562 .24
23105 B C PAUL 212 BEGONIA 0.23 $ 1,123.47
23110 J L VANGOTHEN 206 BEGONIA 0.35 $ 47,452.93
23115 T F PIATKOSKI 200 BEGONIA 0.35 § 45,678.22
35000 J L DIESEM 300 COVE STREET 0.35 § 112.37
35005 J S ROWE 306 COVE STREET 0.35 $ 464 .72
35010 S R KURTZ 312 COVE STREET 10.03 $ 467.33
35015 W F GRUNBAUM 318 COVE STREET 0.35 $ 88.47
35025 J D GOETZ INGER 330 COVE STREET 0.35 $ 3.45
35030 F M HUGO 301 DAHLIA 0.35 $ 123.48
35035 M J 307 DAHLIA 0.35 $ 445,89

LANZENDORPHER

35040 C E ESCOBAR 313 DAHLIA 0.35 ¢ 88,822.12-
35050 P J WATT 325 DAHLIA 10.03 § 337.18
35055 J W ROMEY 331 DAHLIA 0.35 § 33,478.95
35060 J A SCHWARTA 331 DOCK WAY 0.02 ¢ 33,822.34
35065 L J RUFFINE 325 DOCK WAY 10.03 § 558.43
35070 F R SANBORN 319 DOCK WAY 0.35 § 22,144.67
35075 J L CUNNINGHAM 313 DOCK WAY 0.40 $ 7.70
35080 G A BUCKLES 307 DOCK WAY 0.35 $ 447,765.48
35085 J F SITAR 301 DOCK WAY 0.02 $ 200. 00
35090 D U WILDE 330 CARNATION $ 884 . 54
35095 A W FEVERSTEIN 324 CARNATION 0.35 $ 19.25
35100 R W FORSTROM 318 CARNATION 10.03

35105 S J FRYCKI 312 CARNATION 0.35 § 5,569.53
35110 H E KAPLOWITZ 306 CARNATION 10.03 § 94,944.55

67 ITEMS LISTED.

114 791073

APPENDIX C. SUBLIST PROGRAM FOR EDIT~LIST AND FORM-LIST EXAMPLE

SUBLIST
001 *
002 *
003 *THIS PROGRAM TAKES A SELECT LIST ON A FILE WITH ID’S OF THE
004 *
005 *FORM SSSS*NNNNNN...(WHERE SSSS IS A MAJOR DIVISION OF ID’S)
006 *
007 *AND GENERATES A SEPARATE SUBLIST FOR EACH VAUE OF SSSS.
008 *
009 *TO RUN THIS PROGRAM, ENTER :GET-LIST XXXX
010 * :RUN BASIC-PROGRAMS SUBLIST
011 *
012 *
013 *
014 OPEN ‘’, ‘SLIST’ TO SLIST ELSE PRINT ‘ NO SLIST FILE’;STOP
015 EQU AM TO CHAR(254)
016 LISTNO=0;* THIS IS THE NUMBER OF THE CURRENT SUBLIST
017 FIRSTIME=1;* IDENTIFY FIRST PASS THROUGH LOOP
018 CURRENTLIST='"
019 DONEFLAG=0;* THIS FLAG INDICATES THE EXHAUSTION OF THE SELECTED STRING

020 *

021 * LOOP THROUGH THE SELECTED LIST AND BUILD THE NEXT SUBLIST
022 *

023 * LISTID IS THE PART OF THE ID WHICH IDENTIFIES THE SUBLIST
024 * TO WHICH A VARIABLE BELONGS.

025 *

026 * CURRENTLIST IS THE ID IDENTIFYING THE CURRENT SUBLIST.
027 *

028 2 READNEXT ID ELSE DONEFLAG=1;GOTO 5
029 LISTID=FIELD(ID, *’,1)
030 IF FIRSTIME=1 OR CURRENTLIST # LISTID THEN

031 CURRENTLIST=LISTID

032 =*

033 *

034 *THE END OF 1 SUBLIST HAS BEEN FOUND. WRITE THE ITEM OUT TO
035 *

036 *ITEM ‘SUBLIST*N’ IN FILE SLIST. THIS ITEM WILL BE ACCESSABLE
037 *

038 *VIA THE VERB FORM-LIST. THEN INITIALIZE FOR THE NEXT SUBLIST.
039 *

040 5 IF FIRSTIME = 1 THEN FIRSTIME=0;GOTO 6

041 WRITE SUBLIST ON SLIST, SUBLIST’:LISTNO

042 IF DONEFLAG THEN STOP

043 6 LISTNO=LISTNO+l1

044 SUBLIST=""

045 END

046 SUBLIST=SUBLIST:ID:AM

047 GOTO 2

048 END

791073 115

APPENDIX C. SUBLIST PROGRAM FOR EDIT-LIST AND FORM-LIST EXAMPLE (Continued)

(THIS PAGE LEFT BLANK INTENTIONALLY)

116 791073

A code 69,96,98
A code operands 96
A code operators 98
A connective 30
A/ AMC 26
AN connective 30
AND clause 16,18,18
AND clause limit 18
AND connective 14,18
ANY connective 30
ARE connective 30
ASCII conversions 86
ASCII equivalents 107
Addition 89,94,98
Algebraic functions 96,98
Arithmetic functions 88,96,98
Associative attributes 70
Attribute 10
Attribute definition items 26
Attribute descriptions 8
Attributes 22
Averages 92
Averges 56
B option (BREAK-ON) 42
B option (HEADING/FOOTING) 35
BREAK-ON modifier 28, 36,38, 40
BY modifier 28,48
BY-DSND modifier 28,48
BY-EXP modifier 28,48
BY-EXP-DSND modifier 28,48
Bill-of-materials processing 44
Bold face printing 34
C code 69,74
COL-HDR-SUPP modifier 28
COPY-LIST verb 12,60
COUNT Verb 54
Calculating averages 92
Character conversion 86
Character set 107
Column headings, suppression of 28
Columnar formmat 22
Columnar output 46
Comparison 14
Complex item—list 16
Concatenation 74,94,98
Connectives 11,14
Constants 88,89, 94
Control options (BREAK-ON) 42
Control-break label 42
Control-break, conv/corr effect 102
Control-breaks 28,38,40,42
Conventions 7
791073

INDEX

Conversions within F codes 92
Conversions, overview 68
Conversions, processing stages 68
Converting ASCII values 86
Converting characters 86
Converting dates 80
Converting numbers 78
Converting packed decimal numbers 86
Converting time 82
Copying item—-lists 60
Correlative codes 68
Correlatives, overview 68
Correlatives, processing stages 68
Count verb 12
Counters 88,89, 92
Creating item—lists 60, 62
D code 69,80
D option (BREAK-ON) 42
D option (HEADING/FOOTING) 35
D/CODE 26
D1 code 69,70
D2 code 69,70
DATA/BASIC processor 4
DATE-FORMAT verb 80
DBL-SPC modifier 28
DELETE-LIST verb 12,61
DET-SUPP modifier 28
DICT modifier 28
Date conversion 80
Date function 88,89,94, 97
Decimal conversion 78
Decimal equivalents 107
Default attibutes, suppression 29
Default attribute listings 26
Deleting item—lists 62
Deleting, item-lists 61
Delimited strings 72
Delimiters 11
Detail line counter 95,97

Detail lines, effect of conv/corr 100

Detail output 28
Detail output, suppression of 28
Dictionary 8
Displayiing item distribution 66

Distribution of items, display of 66

Division 89,94,98
Documention, Reality 6
Double-spaced output 28
Dumping files to tape 64
Dumping files to terminal 64
Duplication 89,94
EACH modifier 18,28

117

EDIT-LIST verb

EDITOR processor

ENGLISH

ENGLISH features

ENGLISH processor

ENGLISH sentence formation
ENGLISH, introduction

EVERY modifier 18,

Edit code

Editing item-lists

European date format

Exchange function

Expanded print

Exploding sort

Exploding sort key

External Format

Extracting delimited strings
Extracting fixed length strings

Extracting substrings 89,

code

code operands

code operations, summary
code operators

code special operands
code stack

option (HEADING/FOOTING)
FILE connective

FOOTING specification

FOR connective

FORM-LIST wverb

Features of ENGLISH

Field extraction

File names

File translation

File-name

Files, dumpiing to tape
Files, dumping to terminal
Files, loading from tape
Footings :
Format of page

Formatting labels

Forming ENGLISH input sentences
Forming item-lists

Forming selection-criteria
Fractional digits

R I e B |

Function calculation 88,

Function precision

G code

GET-LIST verb

GRAND-TOTAL modifier
Generating averages
Generating control breaks
CGenerating footings
Generating grand total labels
Generating headings
Generating statistics

118

10
8
18,28
78

62

80
89,94
34
48,50
28

68

72

76
94,99
69, 88
89

94

89

92

90

35

30

32

30
12,62
8

72

8

84

10

64

64

64

32

22

52

10

16

18

92
9,98
92
69,72
12,60
28,36
56

38

32

36

32

56

Generating subtotals 36, 38,40
Cenerating totals 29, 36,56
Grand total label 36
Group extraction 72
Groups, item distribution 66
HASH-TEST verb 66
HDB-SUPP modifier 28
HEADING specification 32
Headings 32
Hexadecimal equivalents 107
Hierarchy of operators 14,16,18
How to use the manual 6
I option (ENGLISH sentence) 29
I option (T-DUMP) 64
I-DUMP VERB 13
I-DUMP verb 64
ID-SUPP modifier 26,29
IF clause 18
IF modifier 29
IN connective 30
ISTAT verb 13,66
ITEMS LISTED message, suppressing 28
ITEMS connective 30
Ignore character 14
Inhibiting tape labels 64
Input sentences, formation 10
Intermediate Format 68
International date format 80
Introduction 1,8
Item counter 95,97
Item distribution, display of 66
Item size 20
Item-id listing, suppression of 29
Item—-id lists 60,62
Item—ids 11
Item-list, complex 16
Item—list, formation 16
Item—-list, simple 16
Item-1lists 10,14,20,58,60,62
Item-lists, copying 60
Item-lists, creating 60
Item—-lists, deleting 61,62
Item—-lists, editing 62,62
Item—-lists, merging 62
Item-lists, modifying 62
Item-lists, retrieving 60,62
Item—lists, saving 60
Items, dumping to tape 64
Items, dumping to terminal 64
Items, loading from tape 64
L option (BREAK-ON) 42
L option (HEADING/FOOTING) 35
LIST verb 12,46
LIST-LABEL verb 12,52
LPTR modifier 29
Label for grand total line 36

791073

Label, BREAK-ON 42
Label, suppressing tape 64
Labels, printing 52
Limit on AND clauses 18
Limiting printing 24
Listing tape file 29
Lists of item-ids 60, 62
Loading files from tape 64
Logic operations 88
Logical connectives 14,16
M/DICT 8,10
MD code 69,78
MP code 69,86
MT code 69, 82
MX code 69,86

Magnetic tape labels, suppressing 64
Magnetic tape, dumping files to 64
Magnetic tape, loading files from 64

Mailing label 52
Manual usage 6
Manuals for Reality 6
Mask decimal code 78
Master Dictionary 8,10
Mathematic functiions 88
Mathematical functions 96,98
Merging item—lists 62
Modifiers 11
Modifying item—lists 62
Modulo, testing selected 66
Multiplication 89,94,98
Multivalue counter 95,97
Multivalue summation 89,94,98
Multivalued sublist 44
Multivalues, sorting 28, 48,50
Multivalve print limiting 24
N option (ENGLISH sentence) 29
N option (HEADING/FOOTING) 35
ND counter 95, 97
NI counter 95,97
NO modifier 18
NOPAGE modifier 29
NS counter 95,97
NV counter 95,97
Noncolumnar output 22,46
Numeric conversion 78
0 option (T-LOAD) 64
OF connective 30
ONLY modifier 16,26, 29
OR clause 16,18
OR connective 14,18,30

Omission of output—-specification 26

Operands 89, 96
Operator precedence 14,16,18,98
Operators 89,95,98
Option characters (FOOTING) 32,34
Option characters (HEADING) 32,34
791073

Option specification 11,29
Output control options (BREAK-ON) 42

Output-criteria 24
Output-specification, omission of 26
Output-specifications 10,22
Overview of Reality 1
Overview of conversions 68
Overview of correlatives 68
P option (BREAK-ON) 42
P option (ENGLISH sentence) 29
P option (HEADING/FOOTING) 35
PAGE modifier 29
POINTER-F ILE 60, 62
PP option (HEADING/FOOTING) 35
PROC processor 5
Packed decimal conversion 86
Page format 22
Page number, suppression of 28
Paging, suppression of 29
Pop stack function 94
Precedence 98
Precedence of operators 14,16,18
Precision 92
Primary associative attribute 70
Print-limiting 24
Printer output 29,29
Prism character codes 107
Processing control-breaks 102

Processing conversions
Processing correlatives

100, 102, 104
100,102, 104

Processing detail lines 100
Processing selection criteria 102
Processing sorts 100

Processing stages of conversions 68
Processing stages of correlatives 68

Processing subtotals 104
Processing totals 104
Processors, overview 4
Pushdown stack 88, 90
R option (BREAK-ON) 42
READNEXT statement, exploding sort 50
RUNOFF processor 5
Reality computer system 1
Reality documentation 6
Reality processors 4

Relational operatorsll,l4,16,89,95, 98

Remainder function 89,94,98
Repeat code 92,97
Retrieving item-lists 60, 62
Rounding numbers 78
S option (T-~LOAD) 64
S-DUMP verb 64
S/ AMC 26
S/NAME 26
SAVE-LIST verb 12,60
SCREENPRO 4

119

SELECT verb 58
SORT verb 48
SORT-LABEL verb 12,52
SSELECT verb 58
ST-DUMP verb 64
STAT verb 12,56
StM 12
SUM verbd 56
SUPP modifier 28
Saving item-lists 60
Sealing numbers 78
Searching for a string 20
Secondary associative attribute 70
Select verb 12,12
Selecting precision 92
Selection, effect of conv/corr 102
Selection—criteria 10, 14,20,24,29
Selection-criteria, formation 18
Sentence formation 10
Simple item-list 16
Single quote in heading text 34
Size of items 20
Sort keys 28,48
Sort verb 12
Sort-key, exploding 28
Sor ting multivalues 48,50
Sorting multivalves 28
Sorting, effect of conv/corr 100
Special formmatting 52
Special operands 92
Stack 88,90
Standards 7
Stored Format 68
Storing item-lists 60
String searching 20
Subitems 44
Sublist file 29
Sublists 44
Substring searching 20
Substrings, extracting 72,76,89, 94,99
Subtotals 36, 38,40
Subtotals, effect of conv/corr 104
Subtraction 89,94, 98
Subvalue counter 95,97
Summary of F code operations 94
Summat ion 89,94,98

Suppressing ITEMS LISTED message 28
Suppressing attribute listing 29
Suppressing automatic paging 29
Suppressing column headings 28
Suppressing default attributes 29
Suppressing item—id listing 29
Suppressing page number 28

120

Suppressing tape labels 64
Suppressing time/date 28
Synonyms , 11
System counters 88,89,92,95,97
T File code 69
T code 69,76
T option (HEADING/FOOTING) 35
T option (T-DUMP) 64
T-DUMP verb 13, 64
T-LOAD 13
T-LOAD verb 64, 64
TAPE modifier 29
TCL 10
THE connective 30
TOTAL modifier 29,36, 40
Table translation 84
Tape file, listing of 29
Tape labels, suppressing 64
Tape, dumping files to 64
Tape, loading files from 64
Terminal, dumping files to 64
Test modulo 66
Text extraction 76
Tfile code 84
Throwaway connectives 30
Time conversion 82
Time function 88,89,95,97
Time/date heading, suppression 28
Total line label 28
Total modifier 24
Totaling 36
Totals 56
Totals, effect of conv/corr 104
Tree-structured lists 44
U code 69,86
U option (BREAK-ON) 42
Up-arrow 14
Usage of manual 6
User exits 86
User manuals for Reality 6
User vocabulary 8
V code (WITHIN) 44,69
V option (BREAK-ON) 42
V/TYP 27
V/TYPE 26
Values 11
Valve comparison 14
Verbs 8,10,12,13
Vocabulary 1,8
WITH clause 18
WITH modifier 29
WITHIN connective 29,44
xx ITEMS LISTED msg, suppressing 28

791073

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 1972 SANTA ANA, CA

POSTAGE WILL BE PAID BY ADDRESSEE:

MICRODATA CORPORATION
Attn: Marketing Services

P.O. Box 19501

Irvine, CA 92713

I

Microdata Corporation

17481 Red Hill Avenue, Irvine, California 92714
Post Office Box 19501, Irvine, California 92713
Telephone: 714/540-6730 - TWX: 910-595-1764

