L A N ®
le by Microdata

Introduction
to Reality

PROPRIETARY INFORMATION

This software, data. documentation or firmware related thereto,
and the information disclosed therein are confidential and pro-
prietary to Microdata Corporation. Neither the software, regard-
lass of the form in which it exists, nor firmwere, nos such data,
nor information, may be used by or disclosed to others for any
purposa except as specificaly authorized in writing by Microdata
Corporation. Recipient, by accepting this document or utilizing
this sottware agrees that neither this document, the software nor
the information disclosed therein nor any part thereof shal be
reproduced or transferred to other documents nor used of
disclosed to others for manufacturing or for any other purpose
except as specifically authorized in writing by Microcata
Corporation.

©Copyright 1983 an unpublished work by Microdata Corpora:
tion, all rights reserved.
Price: 5.00

Introduction to Reality

831076

Microdata Corporation
17481 Red Hill Avenue, Irvine, California 82714

Post Office Box 19501, Irvine, California 92713
Talephone: 714/250-1000 - TWX: 910-505-1764

®

WARNING: This equipment generates,
uses, and ean radiate, radio frequency
energy, and if not imstalled and used in
acceordance with the instructions manual,
may — cause interference to radio
eommunications. As temporarily
permitted by regulation, it has not been
tested for compliance with the limits
for Class A computing devices, persuant
to Subpart J of Part 15 of FCC Rules,
which are designed to provide reasonable
protection against such interference.
Operation of this equipment 1in a
residential area is 1likely to cause
interference, in which case the user, at
his own expense, will be required to
take whatever measures may be required
to correct the interference.

FOREWORD

Thie book was produced by one of our REALITY® computer
syetems using RUNOFF , Microdata's word processing program.
Printer output pages were used as printing masters.

RUNOFF™includes elements of the publishing style, e.g., page
size, justified wight and left margins, headings, italics,
pagination, centering, tabular. illustrations, etc. The
contents and index are automatically gemerated each time the
document is printed, reflecting any changes made. Line art
and photos have been added in spaces, or "windows", left for
this purpose by RUNOFF?

Because the complete book ie stored on disc, it is easy to
update the document. The stored text ig corrected using the
EDITOR, and a new printout is made of only the changed
pages. The corrected pages are then substituted for the old
pages in the printing masters.

TABLE OF CONTENTS

INTRODUCTION .« « ¢ ¢ o o « « s &
REALITY Computer System « « + .

The Flexible Family of Computer Systems . .

REALITY Software + « ¢ s o o o
How to Use the REALITY Manuals .

REALITY COMPUTER SYSTEM
Overview « « « o « o o ¢ o ¢ o o
Software Processors « « o« « o+ o
File Hierarchy . « « « « o « o &
File Structure « « « o « s + o &
Dictionaries « « ¢« + ¢ ¢ o o o

TERMINAL CONTROL LANGUAGE (TCL)
Logging On and Off the System .
Verbs and Processors . « e« o« o o

DATA BASE MANAGEMENT AND UTILITY
Data Base Management . « « « .+ &
Utilities + ¢ ¢« o o ¢« o o o o
REALITY Spooler « « « &+ o o o &

ENGLISH LANGUAGE PROCESSORS . .
Overview « « « o o o o o o o o .
ENGLISH Language Primer
ENGLISH Language Verbs . . + . .

DATA/BASIC LANGUAGE PROCESSOR .
Overview « ¢« ¢« o o ¢ o o o o o o
DATA/BASIC Language Definition .

Creating, Compiling, and Executing

SCREENPRO PROCESSOR . « « &+ « &
Overview « « o ¢ ¢« ¢« o o ¢ o o o
Screen Builder ¢« « « ¢« ¢ ¢« o o

PROCESSORS

« o o o L)
e o o @ * o

e ® & & s =

. e e s o
e e & & s s

L T S) . e

Screen Processor and the Dictionary Builder

EDITOR PROCESSOR « « ¢ ¢« & ¢ o &
OVETVIeWw « o + o o o o s o o o
EDITOR:-Language Definition . . .

PROC LANGUAGE PROCESSOR
Overview « « ¢ o« o o+ ¢ ¢ o o o
PROC Language Definition

¢« s & e+ s s

TERMINAL INDEPENDENT PROCESS HANDLER (TIPH)

OVerview « o« o ¢ « o o o & s s

RUNOFF TEXT PROCESSOR . « « + &

Overview « ¢« ¢ o ¢ o o o s 2 s .
Command Definition . « . « . . .

REALITY CPU AND INSTRUCTION SET
Overview « ¢« o« ¢ o« ¢ o o o s o W

0

.

DATA/BASIC Programs

PAGE

[« NN S SN oL

10
12
14
16

17
18
20

22
22
24
26

28
28
30
32

34
34
36

40
40
42
44

46
46
48

50
50
52

54
54

56
56
.58

60
60

iii

1 INTRODUCTION

1.1 REALITY® Computer System

The REALITY® computer system is a generalized system for data base management.
It 1is a complete system providing multiple users with the capablility to
instantly update and/or retrieve information stored in on-line data files.
Users communicate via local or remote terminals with computer files that may be
private, common, or security-controlled. Each wuser”s vocabulary can be
individually tailored to meet specific applications.

REALITY®systems are built of field-proven Microdata computers and peripherals,
using microprograms to provide you with unrivaled performance and reliability
in the medium-sized computer market.

The REALITY computer system includes the powerful, yet simple to use,
ENGLISH® retrieval language, DATA/BASIC™ and PROC high level languages, the
EDITOR processor, complete program development facilities and file maintenance
tools, and a host of other user amenities. REALITY systems run in an on-line,
multiuser environment with all system resources and data files efficiently
managed by a microprogrammed virtual-memory operating system.

REALITY has advantages from every angle: system capability, multiuser
performance, file management languages, ease of programming, data structure,
and architectural features. REALITY”s high performance and fast response time
are made possible by extensive use of high-speed microprocessors which greatly
reduce program execution time and system overhead. ‘The entire REALITY computer
system is unique -- one of a kind.

Microprogrammed firmware contains:

« Virtual memory manager

« Multiuser operating system

. Special data management instructions
. Input/output processors

System software includes:

. ENGLISH, DATA/BASIC, PROC, EDITOR and ASSEMBLY languages
Selectable/automatic report formatting

. Dynamic file/memory management

. RUNOFF™ text processing

. New SCREENPRO™ language =- an easy way to set up terminal displays

. Optional BISYNC communications

The file structure provides:

. Variable length files/records/fields

. Multivalues (and subvalues) in a field
. Efficient storage utilization

. Fast access to data items

. Selectable degrees of data security

. File size limited only by size of disc
. Item size up to 32,267 bytes

1076 1

1 INTRODUCTION

1.2 The Flexible Family of Computer Systems

The expandable REALITY family of high-performance data base management
processors ranges from an economical system for first-time users with limited
data processing requirements and/or experience, to the high capacity systems
used by some of the largest companies in the United States.

Besides superb performance, the entire REALITY computer line offers wunmatched
growth advantages. As your company grows, jyou can add REALITY equipment to
meet its increased data processing needs without the costly replacement and
conversion charges usually associated with updating computer facilities. All
REALITY systems are both hardware~ and software- compatible. Start with
REALITY. Grow with REALITY.

A typical basic system has:
. Central processing unit (CPU and cabinet)
. Mass storage §isc drive
. Magnetic tape drive

. PRISMPII cathode ray tube (CRT) data terminal (up to 32)
. System printer

All REALITY systems operate in Microdata®s easy~to-use ENGLISH retrieval
language, as well as the more advanced DATA/BASIC and PROC, and are fully
compatible with other REALITY data processing systems.

Microdata has designed a high performance REALITY system for the small to
medium-sized company just entering computerized data base management. This
system is a low-cost, efficient way to start. The computer and all peripherals
are totally compatible with Microdata®s complete REALITY line. This system has
a special extended performance feature for future expansion.

At the top of the REALITY line is Microdata”s most advanced microprocessing
technology. Greater 1load capacity. Still faster data processing. More
applications. All without overloading the central processing unit or degrading
the speed of terminal response. The advanced system’s exceptional power and
adaptability provides up to 48 separate users with fingertip access to
voluminous business, technical, and scientific applications that use data base
management techniques. '

2 1076

1 INTRODUCTION

Complete small business computer capabilities
Microprogrammed virtual memory operating system

Up to 48 users and 514 million characters of file storage
On-line file update/retrieval

ENGLISH retrieval language

Fast terminal response

Multiple printer spooling

Optional communications capabilities

Special data management processors

High-speed sort capability

Small computer price

Big computer performance

Top to bottom computer/peripheral compatibility within
family

the

REALITY

1076

Figure A. REALITY System Advantages

Figure B. Typical Microdata REALITY System

1 INTRODUCTION

1.3 REALITY Software

Processors available on the REALITY computer system comprise the most extensive
data base management software available on any minicomputer. Overviews of the
processors and their typical uses follow.

ENGLISH Language

ENGLISH is a generalized data retrieval/report generator language. A typical
ENGLISH inquiry consists of a relatively free-form sentence containing verbs,
file-names, data selection criteria, and control modifiers. An easy-to-use,
dictionary~based language that uses simplified prose statements, ENGLISH
permits you to produce original reports rapidly and efficiently.

ENGLISH applications are limitless because of the ease with which output can be
accessed from user files. Since nonprogrammers can master the process quickly,
ENGLISH 1s a valuable information management tool for many people in an
organization, from sales personnel to top-level executives. Its major uses are
report generation and inquiry/response applications. ENGLISH also 1s a
convenient method of producing output after file wupdates with DATA/BASIC or
PROC software, as well as for printing one-of-a-kind reports without writing a
program.

SCREENPRO

The SCREENPRO processor was developed to minimize the software gap between the
establishment of data files and the creation of reports. No longer must you
develop your own method of creating and processing screens to display text,
inputs, validations and updates.

Because SCREENPRO requires fewer program statements, it greatly simplifies
program maintenance while increasing operator and programmer efficiency. Data
throughput 1s accelerated. A screen can be designed, displayed, tested and
changed without affecting the program.

DATA/BASIC

BASIC (Beginners All-purpose Symbolic Instruction Code) is a simple, vyet
versatile, programming language suitable for expressing solutions to a wide
range of problems. DATA/BASIC, an extension of Dartmouth BASIC, is especially
easy for the beginning programmer to learn.

DATA/BASIC is the primary method of updating user files on a REALITY system.
Because of its flexibility, DATA/BASIC is used for a variety of business
applications including accounts payable/receivable, general ledger, inventory
control, payroll, sales forecasting/analysis, order processing, invoicing,
claims processing, data entry, and other projects.

With the addition of SCREENPRO, DATA/BASIC programs are even easier to write —-

and run faster -- since screen handling and data validation can be removed from
the program.

4 ‘ 1076

1- INTRODUCTION

PROC

The PROC processor enables you to prestore a complex sequence of operations
which can then be evoked by a single word command. Any sequence of operations
that can be executed from the terminal can be prestored in a PROC. Although
PROC 1is similar to the Job Control Language (JCL) wused 1in larger computer
systems, it 1is less cryptic and has far greater capabilities including
interactive (optionally formatted) terminal prompting, dinput validation,
printer formatting, and file input/output.

PROCs are typically used to create special user-defined functions by combining
execution of DATA/BASIC programs, ENGLISH data retrieval operationms, and PROC
argument passing.

TERMINAL INDEPENDENT PROCESS HANDLER

The Terminal Independent Process Handler (TIPH) initlates a process on a port
without an associated terminal, thus freeing the terminal for user interaction.
Any terminal output (such as error messages, logon/off messages) will be placed
in a spooler hold file. Although terminal 1/0 is not allowed, you may “"stack”
input in the command stream sent to the TIPH processor. This allows execution
of a program which requires operator input and such input is known in advance.

EDITOR

The EDITOR permits on-line interactive modification of any item in the data
base. Primarily, the EDITOR is used to create and/or modify DATA/BASIC or PROC
programs. The EDITOR enters and updates text processed by RUNOFF.
Particularly useful 1in word processing is the EDITOR”s global search and
replace capabilities. Performing one-of-a-kind modifications to items in user
files is another EDITOR function.

RUNOFF

RUNOFF is a text processing facility offering many special features. RUNOFF
processes text entered and modified with the EDITOR. RUNOFF numbers pages
automatically and can print text headings and footnotes.

Another RUNOFF feature is chapter and section numbering. New chapters and/or
sections may be added to a document, and the subsequent updated publication,
with changes and additions, will be completely renumbered automatically.
RUNOFF assembles and prints a table of contents covering all subjects,
including corrected/updated copy. RUNOFF also assembles a publication index,
based on specified words and phrases. RUNOFF supplies index page numbers. If
new pages are added, the index is automatically updated.

RUNOFF also performs tabulations, centering, selective left/right
justifications, underlining, and boldface printing.

This and all REALITY user manuals were produced by RUNOFF on a REALITY computer
system.

1076 5

1 INTRODUCTION

1.4 How to Use the REALITY Manuals

This manual 1is written in modular format with each pailr of facing pages
presenting a single topic.

The approach taken in this and other REALITY manuals differs substantially from
the typical reference manual format. Here, each pair of pages discusses an
individual topic. Generally the left-hand page is devoted to text, while the
right-hand page presents figures referred to by the text. A palr of titles,
the first naming the chapter and the second naming the topic, are at the top of
each text page. Immediately below these titles is a brief summary of the
material covered in the topic.

The advantage of this format will become readily apparent as you begin to use
this manual. First of all, the figures referred to in the text are always
conveniently in front of you at the point where the reference is made.
Secondly, there is a psychological advantage knowing that when a topic is
completed and the page is turned, you are done with one idea and are ready for
another.

Documentation for the REALITY system includes the following manuals:

. Introduction to REALITY

« Programmer”s Reference Manual

. EDITOR Programming Manual

. ENGLISH Programming Manual

. DATA/BASIC Programming Manual

. PROC Programming Manual

. SCREENPRO Programming Manual

. ASSEMBLY Language Programming Manual
. BISYNC Programming Manual

« 5750 Terminal Operator”s Guide

. 2870PLUS Communications Executive Manual

In presenting general command formats and examples throughout this and other
REALITY manuals, certain conventions apply. Conventions used in presenting
general command formats are listed in Figure A, while conventions used in the
examples are listed in Figure B.

Marginal change bars will be wused in future manuals and supplements for the

convenience of present REALITY users and will indicate significant additions or
changes from prior REALITY publications.

6 1076

1 INTRODUCTION

Convention

UPPER CASE

lower case

{1}

Meaning

Characters printed in upper case are required and must appear
exactly as shoum.)

Characters or worde printed in lower case are parameters to be
supplied by you (i.e., file-name, item-id, data, ete.).

Braces surrounding a word and/or parameter indicates that the
word and/or parameter is optional and may be included or
omitted at your option.

TEXT

TEXT

{er>
<1f>

<c>

{ Jouu If an ellipses (i.e., three dots) follows the terminating
bracket, then the enclosed word or parameter may be omitted or
repeated an arbitrary number of times.

item-list* An asterisk following an item-list indicates that the list of
item-ids may be omitted if supplied by a previous SELECT,
SSELECT, GET-LIST, or FORM-LIST statement.

Figure A. Conventions Used in General Command Formats

Convention Meaning

Shaded text represents your input.
Standard text represents output printed by the system.

Ttalicized text 4ie wused for commente and notes which help
explain or deseribe the example.

This symbol represents a carriage return.

This symbol represents a line feed.

This eymbol specifies that the following character is a eontrol
character generated by pressing the <CTRL> key while typing the
character. Also press the <SHIFT> key if the character appears
on the upper half of a key top.

This 1is the ASCII underline character represented as a
backarrow (<€) on some terminals.

1076

Figure B. Conventions Used in Examples

2 REALITY COMPUTER SYSTEM

2.1 Overview

REALITY is a complete system of computer hardware, software and firmware
specifically designed to implement cost-effective data base management.
REALITY data base management systems afford two major benefits: (1) accurate
and timely information access to significantly improve decision-making
processes, and (2) substantially reduced clerical and administration effort to
collect, store, and disseminate organizational information.

REALITY is an award-winning computer system that combines proprietary hardware
and software to create an effective tool for on-line data base management.
Through microprogramming, Microdata has dewveloped a truly revolutionary on-line
transaction processing system. Three major features of the high-speed
microprogrammed firmware are:

. Virtual memory operating system
. Software level architecture
. Terminal input/output routines

The virtual memory operating system, 1long used in larger computer systems, has
been impractical for minicomputers due to the extensive overhead time needed
for the operating system itself. In REALITY systems, the virtual memory
operating system is in firmware (high speed read-only memory) and executes many
times faster than would a comparable system implemented in software. Thus,
overhead time is significantly reduced.

With the operating system directly implemented in read-only memory, only a
small amount of main memory is needed to run REALITY. Slightly over 4,000
bytes of main memory are allocated for the operating system monitor.
Everything else (system software, user software and data) is transferred from
the disc into main memory automatically, when required.

The REALITY computer system 1is organized into 512-byte frames stored on the
disc. As a frame 1is needed for processing, the operating system determines if
it is already in main memory. If it is not, the frame 1is transferred from the
disc unit (virtual memory) to main memory -- all automatically. Frames are
written back into the disec on a "least-recently-used" basis (Figure A). The
virtual memory feature of REALITY allows you to have access to a programming
area not constrained by main memory, but as large as the entire available disc
storage on the system.

The second feature implemented directly in REALITY firmware is the software
level architecture of the machine itself, which has been expressly designed and
optimized for data base management. The architecture of REALITY includes high
speed instructions for character moves, searches, compares, and all supporting
operations relating to the management of variable length fields and records.

8 1076

2 REALITY COMPUTER SYSTEM

The third major microcode feature is the processing of input/output (I/0)
communications with on-line terminals. In most minicomputers, one of the main
problems is managing the I/0 from interactive terminals. As the number of
terminals increases in most systems, the load on the CPU becomes overwhelming,
greatly reducing response time at the terminals. However, REALITY systems
efficiently manage I/0 processing of on-line terminals through high-speed
microprogramming. This means that data processing can proceed without
interruption at each and every terminal. The firmware handles all these
transactions and only interrupts the software at the completion of a block.
Thus, a very large number of terminals may be connected to the Microdata
REALITY system without any significant degradation in response time.

MAIN MEMORY Microprogrammed Virtual VIRTUAL MEMORY
' Memory Operating System . (DISC)
(controls transfers)

< Frame Transfer (as needed)

-

A 4
Frame Transfer (least recently u9552:>

////é////

Figure A. REALITY Frame Transfers

1076 9

2 REALITY COMPUTER SYSTTX

2.2 Software Processors

Processors available on the REALITY computer system comprise the most extensive
data base management ' software available on any minicomputer. An overview of
some of the processors that may be used by any or all terminals follows. Each
processor presented here is described further in later chapters.

ENGLISH

ENGLISH is a generalized information management and data retrieval language.
It is a dictionary-driven language with the input vocabulary contained in
several dictionaries. ENGLISH offers these features:

Freedom of word order and syntax for user inputs

Automatic user-specified output formatting

Sorting capabilities plus generation of statistical information
Relational and logical operations

English language verbs such as LIST, SORT, -SELECT, COUNT, STAT, etc.

o e ® & o

DATA/BASIC

'BASIC (Beginners All-purpose Symbolic Instruction Code) 1is a‘,simple yet
versatile programming language suitable for solving a wide range of processing
needs. Microdata”s DATA/BASIC includes the following enhancements:

Flexibility in selecting meaningful variable names

Complex and multiline statements

Unlimited, variable length string handling capability

Integration with the data base file access facilities and update
capabilities

SCREENPRO

SCREENPRO 1s a system software tool which enables the building and processing
of terminal display screens. SCREENPRO’S features include:

Increased programmer and operator efficiency and data throughput
Simplification of program maintenance and modification

Independence from the DATA/BASIC program

A screen “painter” to facilitate design and construction of screens

TIPH

The TIPH processor initiates a process on a port without an associated
terminal. Features of the TIPH processor include the following:

. Increased system efficiency by freeing terminal for operator
interaction
A}l REALITY resources are available to TIPH process except terminal
1/0

. Programs requiring operator interaction may be executed by stacking

input in command stream
. All terminal output i1s passed to a spooler hold file
. New TIPH verbs and PROCs allow operator to control TIPH operations

10 1076

2 REALITY COMPUTER SYSTEM

PROC

The PROC processor allows you to prestore a complex sequence of operations
which can then be evoked by a single word command. The PROC processor
features:

. Argument passing

.- Interactive terminal prompting
. Conditional and unconditional branching
. Pattern matching
. Free-field and fixed field character moving
. File input and output
EDITOR

The EDITOR permits on-line interactive modification of any item 1in the data
base. The EDITOR uses the current line concept; that is, at any given time
the current 1line can be listed, altered, deleted, etc. EDITOR features
include:

. Absolute and relative current line positioning
. Merging of lines from within an item or from other file items
. Character string locate and replace

. Character, word, 1line or multiple line deletion, insertion, and
replacement
. Input/output formatting
RUNOFF
The RUNOFF processor has extensive text processing capabilities. RUNOFF uses

text prepared with the EDITOR and automatically formats the information.
Commands stored within the text instruct RUNOFF to perform special functions
which include:

. Automatic page numbering

. Automatic chapter and section numbering to five levels
. Automatic generation of table of contents and index

. Left and right flush tabbing (for statistical tables)
. Selectable right margin justification

Data Base Management Processors

The data base management processors generate, manage and manipulate files (or
portions of files) within the REALITY system. Data base management processors
include the CREATE-FILE, CLEAR-FILE, DELETE-FILE, and COPY processors.

1076 11

2 REALITY COMPUTER SYSTEM

2.3 File Hierarchy

REALITY files are organized in a hierarchial structure, with files at one level
pointing to multiple files at a lower level. The four distinct file levels
are: System Dictionary, User Master Dictionary, Dictionary Level File, and
Data File.

This hierarchial file structure is illustrated in Figure A. The term "file",
as used in the context of the REALITY system, refers to a mechanism for
maintaining a set of like items logically together. Data in a file is normally
accessed via the dictionary associated with it. Since the dictionary itself is
also a file, it contains items (records) just as a data file does. Items in a
dictionary serve to define lower level dictionaries or data files.

The REALITY system can contain any number of files. Files can contain any
number of records, and can automatically grow to any size. Records are
variable length, and can contain any number of fields and characters up to a
maximum of 32,267 bytes. :

System Dictionary (SYSTEM)

The highest level dictionary is called the System Dictionary (SYSTEM). A
REALITY system contains only one System Dictionary. Within the System
Dictionary are all legitimate user Logon names, passwords, security codes, and
system privileges. This dictionary contains a pointer to each user”s Master
Dictionary.

User Master Dictionary (M/DICT)

Master Dictionaries (M/DICT) comprise the next dictionary level. Each user”s
account may have a unique M/DICT associated with it; the M/DICT defines all
user vocabulary (verbs, PROCs, etc.) and accessible file names, and contains
attributes describing the structure of the information in 1lower 1level
dictionaries. The file name pointers can reference any file or dictionary in
the system.

Dictionary Level File

Dictionary Level Files describe the structure of the data in associated data
files. They are used by ENGLISH to define the type and format of data for
output. These definitions may also be wused by SCREENPRO to define the
allowable format of data during input.

Data Files

Data Files contain the actual data stored in variable record/field/length
format. In addition to the normal record/field data structure, a field (called
an attribute) can contain multiple values, and a value (in turn) can consist of
multiple subvalues. Thus, data may be stored in a three~dimensional variable
length format.

12 ' : 1076

2 REALITY COMPUTER SYSTEM

SYSTEM

USER MASTER
DICTIONARIES

DICTIONARY
LEVEL FILE

USER DATA
FILE

< SYSTEM >

Logon names:
Password
Security codes
Privileges

Utility files

Accounting files

v — -~

< M/DICT >

— Verbs

ENGLISH components
PROCs
Dictionary attributes

File names
File synonym names

S~

v oy v

OTHER
MASTER
DICTIONARIES

DICTIONARY FILE

File definition (DL/ID)
Attribute definitions
Attribute synonym definitions

DATA FILE

Data items (records)

OTHER FILES

1076

Figure A. Reality File Hierarchy

13

2 REALITY COMPUTER SYSTEM

2.4 Fiie Structure

The REALITY file access system is designed to efficiently access any specific
item (record) or all items in a file.

A REALITY file is a mechanism for maintaining a set of 1like items logically
together so they can be accessed for both retrieval and update. A file 1is
referenced by a file—-name.)

A record is called an item. Items may vary in length; the user need never
identify its size. The maximum size of any item is 32,267 bytes. There 1is no
1imit to the number of files in a REALITY system, or to the number of items in
a file. Each item is associated with an item—id. An item-id is a unique item
identifier (key) by which all data in the item are identified or referenced.

A computational hashing technique is automatically used by the system. This
technique operates on the item~id (using several variables unique to the file)
to produce the virtual memory address where the item is stored. This permits
direct access to any item regardless of the file size. This also frees you
from having to know where things are on disc, since all information is accessed
by name.

An item consists of one or more variable length attributes (also known as
fields) separated by attribute mark characters. An attribute, in turn, may
consist of any number of variable length values separated by value mark
characters. Finally, a value may consist of any number of variable length
subvalues (also known as secondary values) separated by subvalue mark
characters.)

Utility processors such as COPY and the EDITOR operate at the
file-item—attribute level. They make no logical distinction in definition
between various attributes in an item. ENGLISH, SCREENPRO, and DATA/BASIC
processors, however, add an additional dimension through the use of the
dictionary. The dictionary defines the nature of the information stored for
each of the attributes. It permits access by name (e.g., -DATA, PRICE,
QUANTITY-ON-HAND) and specifies Internal and external data formats.

The REALITY file structure is summarized in Figure A.

14 1076

2 REALITY COMPUTER SYSTEM

. The REALITY system contains on-line:
. Any number of files, which contain:
. Any number of items (records), which contain:

. Multiple attributes (fields), which may contain:

. Multiple values, which may contain:
. Multiple subvalues.

. All files, items, attributes, values, and subvalues are variable in
length and can contain any (or no) characters.

. Each item must be less than 32,267 characters long.

Figure A. REALITY File Structure Summary

1076 15

2 REALITY COMPUTER SYSTEM

2.5 Dictionaries

A “dictionary defines and describes data within its associated file.
Dictionaries exist at several levels within the REALITY system.

As shown in the file hierarchy, the following dictionary levels exist within
the REALITY system: ’

. System Dictionary (one per REALITY system)
. User Master Dictionary (one per user—account)
. Dictionary Level File (one per data file)

A dictionary defines the nature of data stored 1in its associated file. It
contains such information as:

. User-assigned name of the field (or attribute)
. Retrieval and update security codes
. Conversion specifications used to perform table look-ups, masking

functions, etc.
. Correlative specifications used to describe interfile and intrafile
data relationships

. Justification (left or right) for output purposes
. Maximum column width for printing the values

. Column headings

. Input editing and acceptance criteria

Since the dictionary itself is also a file, it contains items just as a data
file does. The items in a dictionary serve as the actual definitions for lower
level dictionaries or data files. Dictionaries contain four types of items:

. File definition items

. File synonym definition items
. Attribute definition items
. Attribute synonym definition items

The file definition items and file synonym definition items define files.
Attribute definition items and attribute synonym definition items define
attributes within data file items. Each dictionary item consists of attributes
(just as file items do).

The REALITY dictionary concept is illustrated in Figure A. For a detailed

discussion of dictionaries and the items they contain, refer to the REALITY
Programmer”s Reference Manual.

16 ‘ 1076

2 REALITY COMPUTER SYSTEM

USER REQUEST

(D-ICTIONARY FILE <DATA FILE)

! .Contains data items
.Relates ENGLISH and (records)
—'|> internal formats =~
ENGLISH .Defines data structure TRTERNAL, O

FORMAT +Defines output formats FORMAT \’\
.Relates data in other files

/
.Defines conversions, //
et et S— _

USER INFORMATION

Figure A. Representation of User Data Access
Through Reality Dictionary Structure

1076

3 TERMINAL CONTROL LANGUAGE (TICL)

3.1 Logging On and Off the System

The logon processor initiates each session by identifying valid users and their
associated passwords. The logoff processor is used to end the session. These
processors accumulate accounting statistics for billing purposes and also
associate the users with their privileges and security codes.

Logging On to the System

You may log on to the REALITY system when the following or similar message is
displayed:

LOGON PLEASE:

You then enter the name (identification) established for you in the system. If
a password has also been established, you may follow your identification with a
comma, and then the password. If the password is not entered as a response to
the LOGON PLEASE message, the system will display the message:

PASSWORD: (password is not displayed on terminal)

REALITY validates your identification against the entries in the System
Dictionary. If you have successfully logged on to the system (i.e.;, both the
identification and the password have been accepted), the following message is
displayed:

*%% YELCOME TO MICRODATA REALITY ***
*%% time RELEASE x.y date #**%

where "time" is the current time, "date" is the current date, and "x.y" is the
current REALITY software release level. A colon (:) is the Terminal Control
Language (TCL) prompt <character, which indicates that you may now enter any
valid command. Figure A illustrates a sample logon interaction.

Logging Off the System

Logoff is achieved by entering the word OFF. A message indicating the connect
time (i.e., number of minutes you were logged on) and the appropriate charge
units will be displayed. The system then displays the LOGON PLEASE message and
waits for the next session to be initiated. The general form of the logoff
message is: '

hkkkkdkhkhkhkhhhhhhhhhhhhhhkhhhkrkhhhhhhhhhhhhhhhhhkhhhihhrd =

Hkk CONNECT TIME AT time = n MINUTES fekk
kk CPU MS. = m DISC READS = d Kkk
Rk NUMBER OF ACTIVATIONS = a Kkk
AkkhkhkhhkkkhkhkhkhkAkrhkkhhhhhhhhkhhhhkhhhkhkhkhkhhhrhhkhhhhhhhhkhhx
Hkk LOGGED OFF AT time ON date Kk

18 1076

3 TERMINAL CONTROL LANGUAGE (TCL).

where “time" is the current time, “n" is the number of minutes of connect time,
"n" is the number of CPU milliséconds, "d" 1s the number of disc reads
initiated by you, "a" is the number of times your terminal communicated with
the CPU, and "date" is the current date. All of this information is stored in
a log used for system accounting.

LOGON PLEASE:

A

Valid indentification.

PASSWORD: Valid password (not displayed).
Fkk WELCOME TO MICRODATA REALITY Hkk
*kk 15:40:54 RELEASE 4.1 26 MAY 1981 kkk

A

TCL prompt character.

Figure A. Sample Logon Interaction

s e o e e e e e e s e v g e s ek o o s e s Tk e e e e e e v e e ke e e v vk e e ok e e e e e ok e e e ok e e e de e e

Hkk CONNECT TIME AT 22:30:53 = 10 MINUTES Kk
*%% CPU MS. = 5183 DISC READS = 123 Rk
ek NUMBER OF ACTIVATIONS = 597 Kk
AAKKIRKRKRARKR KRR A RRARA AR AR AR hkhkhhkhkhhhhkhhkhhhhhhhhhhhhhhhhihk
Kok LOGGED OFF AT 22:31:03 ON 26 MAY 1981 dedek

Figure B. Sample Logoff Interaction

1076 19

-3 TERMINAL CONTROL LANGUAGE (TCL)

3.2 Verbs and Processors

The Terminal Control Language (TCL) is the primary interface between the
terminal user and the various REALITY processors.

Most processors are evoked directly from TCL by a single input statement,.and
return control to TCL when processing is complete. TCL prompts you by
displaying a colon (:). This is referred to as the "TCL prompt character”.
Input statements are constructed by typing a character at a time from the
terminal until the carriage return or linefeed key is pressed, at which time
the entire line is processed by TCL.

The first word of an input statement must be a valid REALITY "verb”. The
statement may not contain any other verbs. Selected verbs are 1listed in
Figure A.

REALITY has the ability to customize your system vocabulary. Since verbs
reside in each Master Dictionary (M/DICT), your vocabulary may be changed
without affecting other users. In addition, an unlimited number of synonyms
may be created for each verb. This flexibility allows your capabilities to be
either expanded or limited, by adding or deleting verb entries from your Master
Dictionary.

REALITY operates in the full-duplex mode of communication with each terminal.
Full-duplex means that data may be simultaneously transmitted in both
directions between the terminal and the computer. Additionally, REALITY
operates .in what is known as an "Echo=Plex" environment. This means that each
data character input by the terminal is sent to the computer and echoed back to
the terminal before being displayed. Thus, you are assured that the data
character displayed on the terminal is the same data character stored in the
computer.

For a complete discussion of the Terminal Control Language, refer to the
REALITY Programmer”s Reference Manual.

20 1076

3 TERMINAL CONTROL LANGUAGE (TCL)

VERB

ACCOUNT-RESTORE

DESCRIPTION

Adde a new account (from tape) to .an existing system.

BASIC Compiles a DATA/BASIC program.
BLOCK=-PRINT Prints expanded text on the system printer.
CATALOG Catalogs a DATA/BASIC program.
CHARGES Displays current computer usage &ince logom.
CHARGE~TO Charges the current usage to a specific account.
CLEAR-FILE Removes all items from a file or dictionary.
COPY Copies data/dictionary files and items.
COUNT Counts number of items which meet specified conditions.
CREATE-FILE Creates a new file.
DELETE-FILE Deletes an entire file.
ED Evokee the EDITOR processor.
EDIT Evokes the EDITOR processor. ,
ENTER Evokes the Sereen Builder funetion of SCREENPRO.
ENTER-DICT Evokes the Dictionary Builder funetiom of SCREENPRO.
FORM-LIST Creates item-list from item-ide stored in an item.
GET-LIST Retrieves an item-list saved by a previous SAVE-LIST.
GROUP Provides file usage statistics om groups.
ISTAT Generates a file hashing histogram for a file.
ITEM Displays the FID to which the item haghes.
LIST Generates a formatted output of selected items.
LIST-LABEL Formats selected items and values into a mailing list.
LOGTO Allows the user to log from one account to another.
MESSAGE Provides for intrasystem communications.
OFF Evokes LOGOFF processor, ending the current session.
RUN Executes a DATA/BASIC program.
RUNOFF Evokes the RUNOFF text procesgor.
SAVE-LIST Saves an item-ligt created by a SELECT or SSELECT.
SEL-RESTORE Restores files or items from a file-save tape.
SELECT Selects items for use by a subsequent processor.
SET-DATE Sets the system date.
SET-TIME Sete the system time.
SORT Performe a sorted LIST.
SORT~LABEL Performs a sorted LIST-LABEL.
SP-ASSIGN Assigns options to a print job and/or job to a form
queue.
SP=EDIT Examines a closed print job.
SP=-STATUS Displaye the current spooler status.
SSELECT Performs a sorted SELECT.)
STAT Counts, averages, and sums a specified attribute.
T-DUMP Dumps specific items and files to tape.
T-LOAD Loads items and files from tape.
T-READ Dumps contents of tape to the output device.
TERM " Sets terminal characteristics.
TIME Displays time and date.
WHAT Digplays current system parameters.
WHO Prints the line number and aceount number to which the
terminal is logged on.
Figure A. Typical REALITY Verbs
21

1076

4 DATA BASE MANAGEMENT AND UTILITY PROCESSORS

4.1 Data Base Management

Data base management processors generate, manage, and manipulate files (or
portions of files) within the REALITY system. These processors include
CREATE-FILE, CLEAR-FILE, DELETE-FILE, and COPY processors.

CREATE-FILE Processor

The CREATE-FILE processor generates new dictionaries and/or data files. The
processor creates file pointer entries in your Master Dictionary (M/DICT), and
can also be used to reserve disc space for the data portion of the new file.
You need only specify the name of the file and values for the desired "modulo”
and "separation”. The "modulo" and "separation” parameters balance storage
efficiency, access speed (based on the number of items in the file), item size,
etc. Required file space is allocated from the available space pool. Files
may grow beyond their initial size by automatically attaching additional
“overflow" space from the available file space pool.

CLEAR~-FILE Processor

The CLEAR-FILE processor clears the data from a file. "Overflow" space that
may be linked to the primary file space will be released to the available file
space pool. Either the data section or the dictionary section of a file may be
cleared.

. DELETE-FILE Processor

The DELETE-FILE processor deletes a file. All allocated file space is returned
to the available file space pool. Either the data section or the dictionary
section (or both) of the file may be deleted.

COPY Processor

The COPY processor copies an entire file (or selected items from the file) to
the terminal, printer, magnetic tape unit, another file (either in the same
account or 1in some other user—account), or to the same file under a different
name (item—id).

Examples
Figure A presents a number of examples illustrating the wuse of the file

management processors. For further information, refer to the REALITY
Programmer”s Reference Manual.

22 : 1076

4 DATA BASE MANAGEMENT AND UTILITY PROCESSORS

EXAMPLE

EXPLANATION

Creates a file dictionary for the TEST
file, with a modulo of 5§ and a
separation of 1.

Reserves disc space for the data area of
the TEST file, with a modulo of 7 and a
separation of 2.

Creates a file dictionary for the FNA
file, with a modulo of 3 and a separa-
tion of 1. Also reserves diee space for
the data area of the FNA file, with a
modulo of 11 and a separation of 2.

Clears the data section of file XYZ.
Deletes dictionary section of INV file.

Deletes the data and dictiomary sections
of FAB file.

Copies data items I1, I2, and I3 back
into the same file (TEST) but givese them
item-id's of X1, X2, and X3.

Copies all dictionary items from file
SAMPLE to the diectionary of file
FLAVORS.

Copies all items in the TEST file to the
printer.

Copies all items in the TEST file to the
terminal.

1076

Figure A. Sample Usage of File Management Processors

23

4 DATA BASE MANAGEMENT AND UTILITY PROCESSORS

4.2 TUtilities

The REALITY Utility processors‘give the system extensive utility capabilities.

The REALITY computer system includes a large number of utility processors which
provide such capabilities as:

A few

24

Magnetic tape unit controls
Mathematical functions

Multiple printer spooling control
Formatted file save/restore.functions
Binary save/restore functions

File statistics

Creation of user-accounts

Setting of terminal characteristics
Block (enlarged) printing

Virtual memory dumping

Interuser message facilities
Bootstrapping and coldstart

System accounting

System status and usage information

examples of utility processor usage are shown in Figure A. For
information, refer to the REALITY Programmer”s Reference Manual.

further

1076

4 DATA BASE MANAGEMENT AND UTILITY PROCESSORS

EXAMPLE

MU
EEE11l1l

EXPLANATION

Attaches the magnetic tape unit to the
terminal iesuing command.

Moves magnetic tape forward 10 records.
Bypasses next 3 magnetic tape records;
dumps the 4th, 5th, and 6th records to
the terminal, and positions the tape at
the beginning of the 7th record.

Dumps to the magnetic tape all items in
the dictionary of the TEST-FILE file.

Rewinds the magnetic tape unit to the
Beginning Of Tape mark. :

Adde decimal 5§ to deecimal 1 (result is
deeimal 6).

Multiplies hex FFF to hex EEF (result is
hex EEE111).

Displays current spooler status.
Sets specific terminal characteristics.

Produces block-print of characters AB12
on line printer.

Transmite megssage "HELLO THERE" to user
ROD.

Produces a logical save of the system
files onto tape.

Produces a byte-for-byte disec transfer
onto tape.

Prints a file statistics report using
the statistics currently in the
STAT-FILE.

1076

Figure A. Sample Usage of Utility Processors

25

4 DATA BASE MANAGEMENT AND UTILITY PROCESSORS

4.3 REALITY Spooler

The REALITY computer system is a multiuser system which permits you to perform
processing operations with complete independence from other users. However,
output devices can only support one user at a time. The REALITY spooler is
sophisticated system software which resolves such conflicts by providing
simultaneous output to a maximum of four system printers, one tape drive, and
as many ports as each system configuration will allow.

The spooler allows multiple users to share REALITY”s system peripherals.
Output reports are "spooled” to the disc unit which frees the terminal to
initiate some other processing task. When the designated peripheral device and
the "despooling” processor become available, the report is automatically
“despooled” from the disc unit to either a magnetic tape, a system printer, or
a terminal port.

To fully understand the features and advantages of the REALITY spooler, the
terms "print job" and "form queue” must be defined.

Print Jobs

Individual reports to be spooled to an output device are called "print jobs".
A print job may be any item created by the EDITOR, a PROC, an ENGLISH
statement, or a DATA/BASIC program. Before a print job can be output, it must
be assigned to a form queue. ’

Form Queue

A form queue is a "list” of print jobs waiting to be spooled. Print jobs are
assigned to a form queue via the SP-ASSIGN verb. Once created, the form queue
may be assigned to an output device (a system printer, a tape unit, or a

terminal port).

Figure A lists the major spooler features and Figure B describes the advantages
of the 4.1 spooler.

26 ' 1076

4 DATA BASE MANAGEMENT AND UTILITY PROCESSORS

FEATURES
. Spooler supports simultaneous output to a maximum of four system
printers, one magnetic tape unit and as many ports as the system

configuration will allow.

. You may restart a print job on another device 1if the printer
malfunctions.

. You may create as many form queues as needed.

. You may movei one or more print jobs from one form queue to another.

. You may specify number of copies to be printed.

. You may examine a closed print job prior to printing.

. SP-STATUS display shows current status of all form queues.

. SP-JOBS display shows current status of all print jobs, open and closed.
. SP-STATUS display alerts you when spoolef has aborted.

. System may be restarted without loss of closed hold files.

Figure A. Features of REALITY Spooler

ADVANTAGES
. You control spooling activities by creating form queues, assigning print
jobs to selected queues and outputting those jobs on the desired output
device.
. SP=STATUS and SP-LISTQ displays inform you of current spooler status.
. You may “"prioritize" print jobs within a form queue.
. Edit feature allows you to selectively print individual print jobs.

. Print jobs may be listed on the terminal screen prior to printing.

. Multiple output devices are now ‘supported to evenly distribute work
load.

. Remote printers need no operator intervention.

Figure B. Advantages of REALITY Spooler

1076 27

5 ENGLISH LANGUAGE PROCESSORS

5.1 Overview

ENGLISH is a user-oriented data retrieval language used to access files within
the REALITY computer system.

ENGLISH is a generalized information management and data retrieval language. A
typical ENGLISH inquiry consists of a relatively free-form sentence containing
appropriate verbs, file names, data selection criteria, and control modifiers.
System vocabulary can be individually tailored to your particular application
jargon.

ENGLISH is a dictionary-driven language to the extent that the vocabulary used
in composing an ENGLISH sentence is contained in several dictionaries. Verbs
and file names are located in each user”s Master Dictionary (M/DICT).
User-files consist of a data section and a dictionary section. The dictionary
section contains a structural definition of the .data section. ENGLISH
references the dictionary section for data attribute descriptions. These
descriptions specify attribute fields, functional calculations, interfile
retrieval operations, display format, and more.

ENGLISH selectively retrieves information and generates reports automatically.
Output reports (which normally appear on the terminal but may optiomally be
transmitted to the printer) are automatically formatted for you by the REALITY
‘system. You may sort the output into any defined sequence, and total
attributes by using control breaks.

ENGLISH features include:

. Relatively free-=form input of word order and syntax

. Automatic or user—specified output report formats

. Generalized data selection using logical and arithmetic relationships

. Sorting capability on a variable number of descending or ascending
sort-keys

. Generation of statistical information concerning files

. Selection and sorting of items for use by subsequent processors

. Support of 1l=-digit signed arithmetic

Figures A through C illustrate typical ENGLISH inquiries.

28 1076

5 ENGLISH LANGUAGE PROCESSORS

PAGE 1 11:08:37 12 FEB 1980
ACCOUNT .o NAME.oeoevsosesseoso ADDRESSsscscrenn ¢ees BILL-..
RATE

11115 D R MASTERS 100 AVOCADO 0.30
11085 A B SEGUR 101 BAY STREET 0.30
11040 E G MCCARTHY 113 BEGONIA 0.30
11050 J R MARSHECK 125 BEGONIA 0.30
11020 J T O°BRIEN 124 ANCHOR PL 0.30
11095 J B STEINER 124 AVOCADO 0.30
11110 D L WEISBROD 106 AVOCADO 0.30
11015 L K HARMAN 118 ANCHOR PL 0.30
11105 C C GREEN 112 AVOCADO 0.30
11090 J W JENKINS 130 AVOCADO 0.30
23030 L J DEVOS 201 CARNATION 0.30
11 ITEMS LISTED.

Figure A. Sample ENGLISH Inquiry Using LIST Verb

STATISTICS OF DEPOSIT:
TOTAL = 39.00 AVERAGE = 7.800 COUNT = 5

Figure B. Sample ENGLISH Inquiry Using STAT Verb

PAGE 1 11:15:47 12 FEB 1980
ACCOUNT.«s NAME.v:ceseoonnnenns DEPOSIT.
35090 D U WILDE 3.17
35100 R W FORSTROM 8.00
35110 H E KAPLOWITZ 10.00
35080 G A BUCKLES 10.50
35095 A W FEVERSTEIN 10.75
35105 S J FRYCKI 10.80
35075 J L CUNNINGHAM 10.90
35085 J F SITAR 12.00
8 ITEMS LISTED.

Figure C. Sample ENGLISH Inquiry Using SORT Verb

1076 29

5 ENGLISH LANGUAGE PROCESSORS

5.2 ENGLISH Language Primer

You may form ENGLISH sentences which specify desired data retrieval functions.
The ENGLISH retrieval language is modified natural English; formats for
sentences are simple, yet very general. The ENGLISH processors, together with
the use of dictionaries, permit inputs to be stated in the terminology natural
to each applicatiomn.

ENGLISH accepts any number of variable length words and permits a general
freedom of word order and syntax. An ENGLISH sentence is entered at the TCL
level, i.e., when the system prompts with a colon (:). The sentence then
directs the appropriate ENGLISH processor to perform the specified data
retrieval function. The general form of the ENGLISH sentence contains several
grammatical structures as shown in Figure A.

The verb must be the first word in the ENGLISH sentence, while the other words
may, generally, be in any order. ENGLISH verbs are action-oriented words which
evoke specific ENGLISH processors. The file-name specification permits the
access of either the data section or dictionary section of a file. A verb and
a file-name are required; all other elements are optional. Thus, the minimum
ENGLISH sentence consists of a verb followed by a file-name.

The attribute 1list specifies those attributes desired for output. The
attribute list may be explicitly stated using attribute names found in the file
dictionary. If none are specified in the sentence, the implicit attribute
synonym list in the file dictionary will be used to specify displayed fields.

Selection-criteria determine which items in the file will be wused. If nothing
is specified, then all items will be used. One or more direct references may
be made by specifiying the item—id in single quotes. A conditional retrieval
may be specified by using a WITH or IF clause. All items in the file will be
examined, but only those meeting the specified criteria will be accepted. The
WITH clause may be a simple or complex combination of attribute names,
relational operators (=, >, LT, AFTER, etc.), logical operators (AND, OR), and
explicit data values ("100", "12/2/76", "RESISTOR", etc.).

Miscellaneous connectives may be used to modify the effect of the verb or to
alter the display format.

Figure B illustrates ENGLISH sentences.

30 1076

5 ENGLISH LANGUAGE PROCESSORS

Verb File-name Attributes Selection Miscellaneous
(Noun) (Nouns) Criteria Connectives
B : LPTR |
LIST all DBL-SPC
SORT name implicit ‘item=-id’ SUPP
COUNT DICT name explicit WITH... SORT~-BY
etc. etc .

l«————— Required Optional — —

|
l

Figure A. Generalized Grammatical Structure of an ENGLISH Sentence

File-name-l : Selection Criteria

|

Verb Attributes

File-name 1 if—— Selection Criteria

pr— ~

Verb

File-name Sort Keys

Verb Attributes

Output to Printer.

Figure B. Sample ENGLISH Sentences

1076

5 ENGLISH LANGUAGE PROCESSORS

5.3 ENGLISH Language Verbs

Each ENGLISH sentence ﬁust begin with one (and only one) ENGLISH verb. ENGLISH
verbs are action-oriented words which activate specific ENGLISH processors.
Some of the major ENGLISH verbs are briefly discussed below.

LIST and SORT; LIST-LABEL and SORT-LABEL

THE LIST and SORT verbs are used to generate formatted output. LIST simply
lists the selected output, while SORT orders the output in a specified sorted
order. Generated output will be formatted into a columnar output, if possible,
taking into account the maximum size of specified attributes and their
associated names, along with the width of the terminal page. If more
attributes have been specified than will fit across the page, a noncolumnar
output will be generated with the attribute names down the side and associated
attribute values to the right. LIST and SORT will automatically format
multivalued attributes and subvalues. Subtotalling is possible via the
BREAK-ON and TOTAL modifiers, as well as other format controls. Sample use of
‘the LIST verb with noncolumnar output is shown in Figure A. SORT can handle
any number of ascending or descending sort keys. LIST-LABEL and SORT-LABEL may
be used to generate formatted mailing labels, index cards, etc.

COUNT

The COUNT verb counts the number of items meeting the conditions specified.
The output generated by this verb is simply the number of items counted.
Figure B illustrates the use of the COUNT verb.

SUM and STAT

The SUM and STAT verbs generate a sum for a specified attribute. Additionally,
the STAT verb provides a count and average for the specified attribute. The
vutputs generated by these verbs are the derived statistics. Figure C
illustrates the use of the SUM verb.

SELECT and SSELECT

The SELECT verb chooses a set of items. These selected items are then made
available, one at a time, to certain REALITY processors. For example, you can
select items meeting certain criteria and pass them to a DATA/BASIC program for
updating. The output from the SELECT verb is a message signaling the number of
items extracted or selected. The SSELECT verb combines the SORT capability
with the SELECT capability.

T-DUMP, T-LOAD, I-DUMP, ISTAT, HASH-TEST, and CHECK-SUM

T-DUMP and I-DUMP verbs allow you to selectively dump your dictionaries and
data files to the magnetic tape or to the terminal. The T-LOAD verb loads
files from tape. ISTAT and HASH-TEST verbs provide file hashing histograms.
The CHECK=-SUM verb determines if the data in a file has been changed.

32 1076

5 ENGLISH LANGUAGE PROCESSORS

PAGE 1 11:19:58 12 FEB 1980
ACCOUNT : 23080 ‘

NAME J W YOUNG

ADDRESS 207 COVE STREET

START-DATE 27 MAR 1970

CURR-BALNC $ 89.32

ACCOUNT : 23090

NAME W J HIRSCHFIELD
ADDRESS 230 BEGONIA
START-DATE 01 JAN 1968
CURR-BALNC § 20.45

2 ITEMS LISTED.

Figure A. Sample ENGLISH Inquiry Using LIST Verb (Noncolumnar Output)

2 ITEMS COUNTED.

57 ITEMS COUNTED-

10 ITEMS COUNTED.

55 ITEMS COUNTED.

Figure B. Sample ENGLISH Inquiries Using COUNT Verb

TOTAL OF CURR-BALNC IS: §$2,405,118.10

TOTAL OF CURR-BALNC IS: $1,836,287.99

Figure C. Sample ENGLISH Inquiries Using SUM Verb

1076

6 DATA/BASIC LANGUAGE PROCESSOR

6.1 Overview

Microdata”s DATA/BASIC language 1s an extended version of Dartmouth 'BASIC
specifically designed for data base management processing on REALITY.

BASIC (Beginners All-purpose Symbolic Imstruction Code) 1s a simple yet
versatile programming language suitable for solving a wide range of problems.
Developed at Dartmouth College in 1963, BASIC is a language especially easy for
the beginning programmer to master. DATA/BASIC is an extended version of BASIC
with the following features:

. Optional statement labels (statement numbers)

. Statement labels of any length

. Alphanumeric variable names up to 32,267 characters
. Multiple statements on one line

. Complex IF statements

. Multiline IF statements

. Formatting and terminal cursor control

. String handling with unlimited, varying length strings

. One and two dimensional arrays

. Magnetic tape input and output

. Floating point arithmetic with up to 1ll-digit precision

. ENGLISH data conversion capabilities

. REALITY file access and update capabillities

. Pattern matching

. Dynamic file arrays

. Internal and external subroutines

. Math functions

. DATA/BASIC symbolic debugger
Sample DATA/BASIC programs are presented in Figures A and B. The program in
Figure A 1lists (prints) the numbers from 1 to 10. The program .in Figure B

queries an inventory file as further described by the program”s comment
statements, i.e., program statements which begin with an asterisk (*).

34 1076

6 DATA/BASIC LANGUAGE PROCESSOR

I=1
5 PRINT I
IF I=10 THEN STOP
I=I+1
GOTO 5
END

Fi

gure A. Sample DATA/BASIC Program Which Prints the Numbers from 1 to 10

Rkekdokkddkkdhkik ki ik kkhhkhhhhkhkhkkhhhhhkhhhhkhhkhkhhihhhihkhhhkhhhkhhhhhhhhhhhkkkir

* *
* This program queries an Inventory file. *
* It uses the “INPUT USING” statement (Lines 10 & 20) which *
* evokes “SCREENPRO”. All input validation (such as part number *
* format, etc.) are controlled by the previously created screen. *
* The first “INPUT USING” brings up the screen display and prompts *
* for the part number which is the item-id of an item in the “INV” *
* file. Next, the program attempts to read that part from the file. *
* The attributes “DESC” and “QTY” (if present) are then displayed *
* when the screen 1s re-entered with the second “INPUT USING~ *
* (Line 20). The location and format of these attributes were *
* automatically derived when the names “DESC” and “QTY” were used *
* when the screen was created with the “painter”. Finally, the item *
* (possibly modified) is written to the file and the program repeats. *
* *
Jedede ek desk de ek ek ek dede ke ek kkkhk kAR hkkhhkhhhhhhhkhkkikkkhhhhkhhhhhkhrkkrkhkhhkhdk
*
kkk --Open the “SCREENS” file that contains the desired screen.

OPEN “SCREENS” ELSE PRINT "CANNOT OPEN “SCREENS” FILE"; STOP
kkk --Read the compiled screen definition item.

READ SCREEN FROM "#INV.UPDATE" ELSE PRINT "SCREEN NOT ON FILE"; STOP
ke -—Open the data section of the Inventory file.

OPEN “INV” ELSE PRINT "CANNOT OPEN “INV” FILE"; STOP
kkk --Prompt for part number
10 INPUT PART.NUMBER USING SCREEN SETTING STEPNO ELSE STOP
ke --1f just a carriage return, then clear screen and stop

IF PART.NUMBERK1> = "“" THEN PRINT CHAR(12); STOP
kkk --Attempt to read that item from the “INV” file.

READ ITEM FROM PART.NUMBER<1> ELSE ITEM=""; * If not there, set to null
k% --Display and update item.
20 INPUT ITEM USING SCREEN,ITEM AT STEPNO ELSE GOTO 10
k&% ~-Write the item to the file and repeat

WRITE ITEM ON PART.NUMBERK1>

GOTO 10

END

1076

Figure B. Sample DATA/BASIC Program Which Queries an Inventory File
using SCREENPRO

3

5

6 DATA/BASIC LANGUAGE PROCESSOR

6.2 DATA/BASIC Language Definition

A DATA/BASIC program consists of DATA/BASIC statements, which may contain
wvariables, constants, expressions, and intrinsic functions.

A DATA/BASIC program is a sequence of DATA/BASIC statements terminated by an
END statement. More than one statement may appear on the same rogram line
separated b{ semicolons. Any DATA/BASIC statement may begin with an optiona
statement abel. A statement label is used so that the statement may be
referenced from other parts of the program. .

DATA/BASIC statements may contain arithmetic, relational, and logical
expressions. These expressions are formed by combining specific operators with
variables, constants, or DATA/BASIC intrinsic functions. The value of a
variable may change dynamicallﬁ throughout the execution of the program. A
constant, as its name implies, has the same value throughout the execution of
the program. An intrinsic function performs a predefined operation upon the
parameter(s) supplied.

The DATA/BASIC intrinsic functions are listed in Figure A. Figure B 1lists
thqse statements unique to the DATA/BASIC language.

Note that a DATA/BASIC program, when stored, constitutes a file item, and is
referenced by its item=-id (I.e., the name it is given when it is created via
the EDITOR). An individual line within the DATA%BASIC program constitutes an

attribute.
FUNCTION DESCRIPTION
ABS Returns an absglute value.
ASCII Converts a string from EBCDIC to ASEII.
CHAR Converts a_ numeric value to an ASCII character. .
COL1 Returms columm position preceding FIELD-selected substring.
COL2 Returms columm position following FIELD-selected substring.
1 COS Returms the cosine of an angle. .
COUNT Returng the number of occurrences of a substring.
DATE Returns the current internal date. .
DELETE Deletes an attribute, value, or subvalue from a dynamic array.
EBCDIC Converts a string from ASCII to EBCDIC.
EXP Returms 'e' raised to a power. .
EXTRACT Returne an attribute, value, or subvalue from a dynamic array.
FIELD Returms a delimited substring. .
ICONV Provides Zor REALITY zngqt eonversion,
INDEX Returns the columm position of substring. .
INSERT Inserts an attribute, value, or subvalue into a dynamic array.
INT Returms an integer value.
LEN Returms the length of a string.)
LN Returms the natural o%c‘z)mthm (base 'e') of ,a numerical value.
MOD Returns the modulo of two numerical expressions.
NOT Returms logical inverse.
NUM Test§d£or numeric value. -
OCONV Provides for REALITY output conversion.
PWR Returms a variable ratsed_to a power. . .
REPLACE Replaces an attribute, value, or subvalue in a dynamic array.
RND : Generates a random number. - .
SE Converts an ASCII character to a numerical value.
SI Returms the sine of an angle.
SPACE ‘Generates a string containing blanks.]
SQRT Returns the_ square root of qa numerical expression.
STR Generates_ the speeified strmng. ,
TAN Returns the tangent of an angle.
TIME Returns intermal time of dgg.
TIMEDATE Returng external time_and date. , .
TRIM Removes trailing blanks from a string expression.
d Controls terminal cursor. ‘

Figure A. Summary of DATA/BASIC Intrinsic Functions

36 1076

6 'DATA/BASIC LANGUAGE PROCESSOR

1076

STATEMENT DESCRIPTION
BEGIN CASE - Allows conditional selection of statements.
CALL Passes control to an extermal DATA/BASIC subroutine.
CHAIN Passes control to another DATA/BASIC program.
CLEAR Initializes all variables to zero.
CLEARFILE Clears the specified file.
COMMON Allowe variable data to be passed between programs.
DEBUG Causes the DATA/BASIC debugger to be entered.
DELETE Deletes a specified file item.
EQUATE Declares a symbol equal to a vartable or literal.
FOOTING Causes the specified string to be printed at the
bottom of each page.
HEADING Printe a page heading.
LOCATE Returns the position of an attribute, value or
subvalue within a dynamic array.
LOCK Sets an execution lock.
LOOP Provides for struetured program loops.
NULL Specifies a non-operation.
OPEN Seleets a file for subsequent I/0.
PAGE Pages output device and prints heading.
PRECISION Selects the precision of caleulations.
PRINTER Selects the printer or terminal foy program output.
PROMPT Selects a prompt character for the terminal.
READ Reads a file item.
READNEXT Reads next item-id.
READT Reads next magnetic tape record.
READV - Reads an attribute value.
REWIND Rewinds magnetic tape.
SELECT Builds a list of item-ids for use by READNEXT.
UNLOCK Resets an execution lock.
WEOF Writes-an EOF on magnetic tape.
WRITE Updates a file item.
WRITET Writes a magnetic tape record.
WRITEV Updates an attribute value.
Figure B. Summary of Unique DATA/BASIC Statements

37

6 DATA/BASIC LANGUAGE PROCESSOR

6.3 Creating, Compiling, and Executing DATA/BASIC Programs

A DATA/BASIC program, created via the EDITOR, is compiled by issuing the BASIC
verb, and is executed by issuing the RUN verb.

DATA/BASIC programs are created via the REALITY EDITOR. To enter the EDITOR,
you issue the EDIT verb. The general command format is:

EDIT file-name item-id

You may then begin entering your DATA/BASIC program. The program will have the
name specified by "item-id".

Once the DATA/BASIC program has been created, it may be compiled by issuing the
BASIC verb. The general command format is:

BASIC file=-name item=-id

The "fille-name" and "item—-id" specify the DATA/BASIC program to be compiled.
If the program is incorrectly formed, compilation errors will result. Error
messages are printed as the program is compiled.

RUN is the verb issued to execute a compiled DATA/BASIC program. This command
locates the compiled DATA/BASIC program, which 1s then loaded and executed.
The general command format is:

RUN file-name item-id

The "file-name" and "item—id" specify the compiled DATA/BASIC program to be
executed. If run-time errors occur, appropriate warning and/or fatal error
messages will be printed. Fatal run-time errors will cause the program to
abort.

A DATA/BASIC program may be cataloged by issuing the CATALOG verb. This makes
the program "reentrant”, enabling all wusers to share a single copy in memory.
The general command format is:

CATALOG file-name item-id

The cataloged program can then be executed by simply entering the program name
(item-id) as a verb.

The DATA/BASIC debugger is entered when (1) fatal errors are produced (such as
an attempt to divide by zero), (2) the <BREAK> key 1is pressed, or (3) a DEBUG
statement 1s executed. At this time, you may display and change the value of
any variable or array, suppress printing, set single-step execution, set break
conditions, trace variables, and modify program flow of control.

38 1076

6 DATA/BASIC LANGUAGE PROCESSOR

NEW ITEM
TOP

“TESTING” FILED.

Rkk

A TEST

LINE 003 [BO] COMPILATION COMPLETED

Figure A. Creation, Compilation, and Execution of Sample DATA/BASIC Program

*B1

*E10

. Display value of CITY. Change to TUSTIN.

Run program with 'D' option to break
before the first line is executed.
Execution halted before line 1.

Break when "CITY" equals "IRVINE".
Continue execution ("GO").

Break condition satisfied.

Display line about to be executed.
Continue execution.

Execution break due to a DEBUG command in
the program.

Set trace variable TAX.RATE.

Set for single step execution.

Continue execution.

Execution break due to EI1;

value of TAX.RATE is displayed.

End execution.

TCL prompt character.

Figure B. Sample DATA/BASIC Symbolic Debugger Session

1076

39

7 SCREENPRO PROCESSOR

7.1 Overview

SCREENPRO is a system software tool which builds and processes screens.

Until recently, a major software gap existed between the creation of a file and
the generation of reports via the dictionary based ENGLISH processor. End
users had to develop their own methods to create and process screens
(displaying text, inputting, validating, and updating data). These methods
generally resulted in a cumbersome program; program development and
documentation time could be extensive. Modifications required major program
changes. SCREENPRO uses a dynamic technique to design and construct screens;
it 1s written in ASSEMBLY language to increase data processing speed. With
SCREENPRO, you may change the screen display without modifying the program.

SCREENPRO consists of three major sections: a Screen Builder, a Dictionary
Builder, and a Screen Processor. The Screen Builder allows you to dynamically
construct and test screens. 1Its output is a screen definition item which will
be used by a DATA/BASIC program to display, input, validate, and update data.
Documentation 1s easier because the information can be listed on the printer
along with a “snapshot” of the screen display. Program maintenance 1is
simplified because most of the information is stored in dicticnaries and screen
definition items.

The Dictionary Builder prompts you to create the necessary Attribute Definition
Items. To further define the data, the dictionary item format has been
expanded to contain SCREENPRO input and ENGLISH output controls.

The Screen Processor is the interface to DATA/BASIC which uses the screen
definition item to display the current data, and to prompt for, validate, and
update the data to be passed back to the DATA/BASIC program. Instead of
interpreting a lengthy series of compiled DATA/BASIC statements (as with most
end~user programs), the Screen Processor works directly in ASSEMBLY language.
The output of the processor is the data, formatted per your specifications, in
a dynamic or dimensioned array accessible to the DATA/BASIC program.

40 1076

7 SCREENPRO PROCESSOR

SCREENPRO includes these features:

Requires fewer program statements

Increases programmer efficiency

Increases operator efficiency

Simplifies program maintenance and modification

Allows independence from the DATA/BASIC program

Increases data throughput

A screen “painter” to facilitate the design and construction of screens
A step display to more completely define the step parameters

A screen tester with a dummy data buffer

Screen branching, which controls the prompting sequence

Reentry facility, to combine SCREENPRO and DATA/BASIC operations
Data validation

User error message fécility'

Associated steps facility

Automatic literal input

Global input conditional facility

Fixed input location facility

Completed screen printout on the printer

1076

Figure A. Features of SCREENPRO

41

7 SCREENPRO PROCESSOR

7.2 Screen Builder

The Screen Builder designs and constructs screens. Its output is a ~ screen
definition item.

The Screen Builder is used to easily design and construct screens for entering
and/or updating data. Using the Screen Processor function, the Builder
displays a variety of menus and prompt messages to guide you. The Screen
Builder is entered at the TCL level via the ENTER verb. The Builder will then
display the main menu, enabling you to select one of the six functions: Screen
Definitions, Screen Painter, Steps Display, Screen Compiler, Screen Tester, and
Screen Printout. The Screen Definitions consist of three global parameters
which can be used by every step in the screen definition item. The three
parameters are: Dictionary Filename(s), Fixed Input Location, and Global Input
Conditional. Dictionary Filename(s) 1lists the files which contain the
attribute definition items for the data items to be updated. The Builder can
use the information in the attribute definition items to specify some of the
parameters in the Steps Display. Fixed Input Location and Global Input
Conditionals are inserted into each step automatically, saving you time.

The Screen Painter allows you to type text and indicate 1I/0 positions directly
on the terminal, thereby deriving the screen coordinates automatically. The
information is inserted into the Steps Display.

The Steps Display shows the 35 parameters which define each step of the display
and allow them to be modified. The information here will be condensed by the
Builder into values of the corresponding attributes 1in the source screen
definition item.

The Screen Compiler condenses the source screen definition item into an object
screen definition item. This object screen definition item 1is used by the
Screen Processor to display the screen and update the data passed from the
DATA/BASIC program. If there is an error in the source screen definition item,
the compiler will generate default data for the object screen definition item
that will be passed to the Screen Tester. The default data is not accessible
to you outside the Screen Builder.

The Screen Tester uses a temporary data buffer to test the compiled screen
definition item without the use of a DATA/BASIC program. The processed test
data is passed to the temporary buffer which can be displayed on the terminal.

The Screen Printout function prints a condensed listing of the Step parameters,

divided by steps. It also prints a “snapshot” of the painted screen. The
printout reduces the need for, and simplifies the creation of documentation.

42 1076

7 SCREENPRO PROCESSOR

* % * MICRODATA REALITY SCREEN BUILER * #* *

1) SCREEN DEFINITIONS
2) PAINT SCREEN

3) ENTER STEPS

4) COMPILE SCREEN

5) TEST SCREEN

6) PRINT SCREEN ON LPTR

ENTER FUNCTION DESIRED (OR END):

Figure A. Primary Menu for the Screen Builder

INVENTORY UPDATE
1) PART NUMBER ;1,PART
2) DESCRIPTION - ;2,DESC
3) QUANTITY :3,QTY
4) COST :4,COST
IS ALL DATA CORRECT (FI/EX/#) ;0K

1076

Figure B. Sample Painted Screen for Inventory Update

43

7 .SCREENPRO PROCESSOR

7.3 Screen Processor and the Dictionary Builder

The Screen Processor is the interface to DATA/BASIC which uses the screen
definition item to display the screen and current data (if any) on the
terminal, and to prompt for, validate, and update the data passed back to the
DATA/BASIC program. The Dictionary Builder creates and wupdates attribute
definition items.

The Screen Processor uses the compiled object screen definition item produced
by the Screen Builder to format the screen display(s), and to enter and process
data. It is a system software processor, written in ASSEMBLY language, and is
evoked by either the INPUT USING or the MATINPUT USING DATA/BASIC statement.

The processor uses two buffers: 1) a scratch buffer to receive the data passed
to it by the DATA/BASIC program and entered by the user, and 2) a data buffer
into which the processed data is placed. When the processor 1is evoked, it
saves the data passed to it in the scratch buffer and initializes the data
buffer to include null attributes for fields defined in the screen definition
item but not included in data passed to it. When the processor returns control
to the DATA/BASIC program, it passes back the data stored in the data buffer.

The Dictionary Builder 1is a software processor which creates attribute
definition items. The Dictionary Builder is accessed by the ENTER-DICT verb.
The Dictionary Builder will display the 16 currently used attributes which may
be defined in a dictionary item, and will prompt for the information which may
be included in an attribute definition item. The Dictionary Builder will then
expand the information into the actual attribute definition item format, which
consists of 20 attributes (four of which are reserved for future expansion).

For further information regarding the REALITY SCREENPRO processor, refer to the
SCREENPRO Programming Manual.

44 1076

7 SCREENPRO PROCESSOR

CUSTOMERS DICTIONARY BUILDER

DICTIONARY ITEM-ID ?

1. D/CODE - S
2. A/AMC 3
3. S/NAME CUSTOMER NAME
4., S/AMC

5. L/RET

6. L/UPD

7. V/CONV

8. V/CORR

9. V/TYPE T
10. V/MAX 20
11. V/MIN

12. I/LENGTH

13. F/REALLOC

14. I/CONV

15. I/VALIDATE (OA)
16. I/ERROR

ENTER COMMAND:

Figure A. Dictionary Builder Format for the Item NAME in DICT CUSTOMERS

1076

8 EDITOR PROCESSOR

8.1 Overview

The EDITOR is a REALITY processof which permits on-line interactive
modification of any item in the data base.

The EDITOR may be used to create and/or modify DATA/BASIC programs, PROCs,
ASSEMBLY programs, data files, and file dictionaries. The EDITOR wuses the
current line concept; that is, at any given time there 1s a current line
(i.e., attribute) that can be 1listed, altered, deleted, etc. The REALITY
EDITOR includes the following features:

. Two variable length temporary buffers

. Absolute and relative current line poéitioning
. Line number prompting on input

. Merging of lines from the same or other items
. Character string locate and replace

. Conditional and unconditional line deletion

. Input/output formatting

. Prestoring of commands

Figure A i1llustrates a sample EDITOR session.

46 1076

8 EDITOR PROCESSOR

001 ABCD
002 ZXZXZX

003 1234567 (€
004 ABABAB

001 ABCD
002 NEW-LINE |

003 ZXZXZX
004 1234567

Evokes EDITOR.

L command (lists 4 1ines).
Thie 18 what TEST-ITEM Zqoks like.

¢ command (transfere to Line 3).
Line 3 ie listed.

G command (transfers to Line 1).
Line 1 is listed.

I command (inserts new line).

F command (files changes in temporary buffer)

L command.

Here is TEST-ITEM with new line.

G eommand.

R command (replaces data).
Data in Line 3 ig meplaced.

F command. .
L command.
Here is TEST-ITEM with new data in Line 3.
G eommand.
I command (inserts lines).
New data being inserted.
Input terminated.
F command.
L command.
002 NEW=-LINE
003 TEST1
004 TEST2 - Here is TEST-ITEM with new lines
005 TEST3 inserted.
006 QQQQQ
007 1234567
. SEY - FI command (files, terminates EDITOR,
“TEST-ITEM” FILED. and returng to TCL).
Figure A. Sample EDITOR Session
1076 47

8 EDITOR PROCESSOR

8.2 EDITOR Language Definition

The EDIT verb evokes the EDITOR processor. EDITOR commands are then issued to
update the item on a “"line-at-a-time" basis.

The EDITOR is entered by issuing the EDIT verb. The general command format is:
EDIT file-name item=-id

The item specified by "file-name"” and “"item-id" will be edited. If the
specified item does not already exist on file, a new item will be created.

The EDITOR wuses two variable length, temporary buffers to create or update an
item. When the EDITOR is entered, the item to be edited is copied into one
buffer. Each line (i.e., attribute) of the item is assoclated with a line
number; a “"current line pointer” indicates the current line of the item.
EDITOR operations are performed on one line at a time (the current line) in an
ascending line number sequence. As an EDITOR operation is performed on a line,
the modified line and all previous lines are copied to the second buffer.

EDITOR commands are one or two letter mnemonics. Command parameters follow the
command mnemonic. EDITOR commands are summarized in Figure A.

For further information regarding the REALITY EDITOR, refer to the EDITOR
Programming Manual.

48 ' ' 1076

8 EDITOR PROCESSOR-

COMMAND DESCRIPTION
A Executes last Locate (L) command again.
B Moves current line pointer to bottom of item.
C Displays the line columm positions.
DE Deletes (a) line(s) from the item.
EX Returns to TCL without filing the updatéd item.
F Files updates in a temporary buffer.
FD Deletes item and returms control to ICL.
FI Files the item and returns to ICL.
FS Files item and returme control to EDITOR.
G Moves the current line pointer to the specified line.
I Used to imput new linese.
L Lists lines; or Locates strings.
ME Merges lines from within the item or from another item.
N Skips current line pointer over the specified number of lines.
P Prestores EDITOR commands.
R Replaces text on the specified lines.
S Suppresses printing of line numbers.
T Moves the current line pointer to the first line.
TB Sets EDITOR tab markings.
U Moves current line pointer up.
W Displays the specified line plus the 21 lines that proceed it.
X Deletes the effect of the last update command.
Z Sets print colzltmn limits.
? Displays the position of the current line pointer.
71 Displays the file-name and item-id of the item.
7P Displays the prestored command without executing it.
78 Displaye the size of the item in bytes.
Figure A. Summary of EDITOR Commands
1076 49

9 PROC LANGUAGE PROCESSOR

9.1 Overview

An integral part of the REALITY computer system is the ability to define stored
procedures called PROCs.

The PROC processor allows you to prestore a complex sequence of Terminal
Control Language (TCL) operations (and associated processor operations) which
can be then be evoked by a single command. Any sequence of operations which
can be performed from a terminal can also be prestored via the PROC processor.
This prestored sequence of operations (called a PROC) 1is executed
interpretively by the PROC processor and, therefore, requires no compilation
phase.

PROC features:

. Four variable length I/0 buffers

. Argument passing
. Interactive terminal prompting
. Extended I/O and buffer control commands

. Conditional and unconditional branching
. Relational character testing

. Pattern matching

. Free-field and fixed-field character moving
. File access and updating

. Optional command labels

. PROC calculations

. User-defined subroutine linkage
. Formatted terminal displays and printouts
. Inter-PROC linkage

Figure A shows a sample EDITOR operation which changes Attribute 3 of Item
11115 of file ACCOUNT to the value ABC. Figure B shows a PROC named CHANGE
which will perform exactly the same operation. Note that the PROC has been
written in such a manner that it will update any specified attribute in any
specified item in any specified file. For example, if you wish to perform the
same operation shown in Figure A, then the PROC named CHANGE can be evoked as
shown in Figure C.

50 1076

9 PROC LANGUAGE PROCESSOR

AVOCADO

11115 FILED.

Figure A. Sample EDITOR Operation

Item ‘CHANGE’ in M/DICT

001 PQN
002 HEDIT
003 A2
004 A3
005 STON
006 HG
007 A4
008 H<
009 HR<
010 A5
011 H<
012 HFIK
013 P

Figure B. Generalized PROC Stored As Item "CHANGE® Which
Will Perform Identical Operation

Figure C. Sample Execution of the PROC *CHANGE”

1076

9 PROC LANGUAGE PROCESSOR

9.2 PROC Language Defini;ion

A PROC prestores a highly complex sequence of operations which can then be
evoked from the terminal by a single command.

Using the PROC processor is quite similar to the use of a Job Control Language
(JCL) in some large-scale computer systems. The PROC language in REALITY,
however, is more powerful since it has conditional capabilities and can be used
to interactively prompt the terminal user. Additionally, a PROC can test and
verify input data as they are entered from the terminal keyboard.

A PROC 1is stored as an item in a dictionmary or data file. The first attribute
value (first 1line) of a PROC is always the code PQN. This specifies to the
system that what follows 1is to be executed by the PROC processor. All
subsequent attribute values contain PROC statements that serve to generate TCL
commands or insert parameters into a buffer for interactive processors (such as
the EDITOR). PROC statements consist of an optional numeric label, a one- or
two-character command, and optional command arguments. Some PROC commands are
listed in Figure A.

PROCs operate on four buffers: the primary input buffer, secondary input
buffer, primary output buffer, and the secondary output buffer (called the
stack). Essentially, the function of a PROC is to move data from either input
buffer to either output buffer, thus forming the desired TCL and processor
commands. At any given tiem, one of the input buffers is specified as the
"currently active” input buffer, while one of the output buffers is specified
as the "currently active" output buffer. Buffers are selected as '“currently
active"” via certain PROC commands. Thus, when moving data between the buffers,
the source of the transfer will be the currently active input buffer, while the
destination of the transfer will be the currently active output buffer.

The primary input buffer contains the PROC name and any optional arguments,
exactly as they were entered when the PROC was activated. The primary output
buffer is used to build the command which will ultimately be submitted at the
TCL level for processing. '

The secondary input buffer contains the data entered in response to an IN
command. Usually the data in this buffer will be tested for correctness and
then moved to an output buffer. When all desired data have been moved to the
output buffers, control will be passed to the primary output buffer via a P or
PP command. The command which resides 1in the primary output buffer will be
executed at the TCL level, and the data in the secondary output buffer (if any)
will be wused to feed interactive processors such as DATA/BASIC or the EDITOR.
When the process is completed, control returns to the PROC, at which time new
data may be moved to the output buffers.

Once a PROC is activated, it remains in control until it is exited. When the
PROC temporarily relinquishes control to another processor (such as the
EDITOR), it functionally remains in control since an exit from the called
processor returns control to the PROC. TCL only regains control when the PROC
is exited explicitly, or when all commands have been processed.

52 1076

9

PROC LANGUAGE PROCESSOR

COMMAND

g 0w W

F-CLEAR
F-DELETE
F-OPEN
F~READ
F-WRITE
GO
GOSUB

H

IF

IH

IN

IP

IT

L

MV

O .
P
PP

RI
RO
RSUB
RTN

ST ON
ST OFF

TR ON
TR OFF
X
<+

(file-name item=-id)

[file-name item=id]

DESCRIPTION

Moves data argument from input to output buffers.
Backs up imput pointer.

Backs up output pointer

Specifies comment.

Displaye either input buffer to terminal.
Moves input pointer forward.

Specifies an arithemetic calculation.
Clears the specified file buffer.

Deletes an item from the specified file.
Opens the specified file to a file buffer.
Reads an item from the specified file.
Writes an item to the specified file.
Uneonditionally transfers control.
Transfers control to a local subroutine.
Moves text string to either output buffer.

- Conditionally executes specified command.

Moves text string to either input buffer.

Inputs from terminal to secondary input buffer.
Inputs from terminal to either input buffer.

Inputs from tape to primary input buffer.

Produces formatted printer output.

Copies data from buffer to buffer, or from buffer to
register.

Outputs text string to terminal.

Causes execution of TCL commands in output buffer.
Displaye content of output buffers and executes ICL
commands in output buffer.

Clears (resets) input buffers.

Clears (resets) output buffers.

Retums control from an intermal subroutine.

Returng control from an external PROC subroutine.
Positions 1input pointer; selects primary input
buffer.

Selects secondary output buffer (stack on).

Selects primary output buffer (stack off).

Produces terminal output; displays buffer values.
Activates the PROC trace funetion.

Deactivates the PROC trace function.

Exits back to TCL level.

Adde decimal number to parameter in input buffer.
Subtracts a number from a value in input buffer.
Transfers control to another PROC. Control does not
return to the initiating PROC.

Transfer control to another PROC. Control returms to
the initiating PROC. '

Figure A. Summary of PROC Commands

1076

33

10 TERMINAL INDEPENDENT PROCESS HANDLER (TIPH)

10.1 Overview

A "process" on a REALITY system is defined as the session which occurs between
logging on and logging off. Each process i1s associated with a line (or port),
and (normally) each 1line 1is associated with a terminal. The Terminal
Independent Process Handler (TIPH) initiates a process on a port without an
associated terminal. Any terminal output (such as error messages, logon/logoff
messages, etc.) will be placed in a spooler hold file, the hold file number
being assigned by the spooler processor. TIPH may be used for those tasks
which do not require operator responses, such as file-saves, massive updates,
etc.

TIPH provides a kind of foreground/background capability that allows processes
to run without the need of a terminal. "Resident” programs, such as a task
scheduler or a transaction logger may use TIPH. TIPH will increase the
efficiency of the system by freeing the terminals for their intended purpose,
which is user interaction.

A TIPH process is like any other process, except that it is not associated with
a terminal. It has its own workspace, and has available to it all of the
resources of the REALITY system, with the exception of terminal I/0. You
cannot access the system through a terminal after the line associated with it
has been logged on by a TIPH process.

Although terminal I/0 is not allowed, you may “"stack” input in the command
stream sent to the TIPH processor. This allows programs to be run which
require operator input, where the input responses are known .in advance. The
processor will pass one command string to each input required by the program.

Certain 1lines may be designated as TIPH-only 1lines by the system hardware.
Normal lines (those normally associated with a terminal) may be designated as
being available for use by TIPH by using the PH-ALLOCATE verb. If a TIPH
process is activated without specifying a line number, TIPH will automatically
select any available line (either TIPH-only or designated via PH-ALLOCATE).

A PH-HISTORY file exists in the SYSTEM dictionary, which contains all of the
information concerning each TIPH process. This information is updated as the
process continues, relating information concerning the status of the TIPH
process(es).

The verbs and PROCs listed in Figure A are used to communicate with the TIPH
processor.

54 1076

10 TERMINAL INDEPENDENT PROCESS HANDLER

Command
PH-ALLOCATE

PH-DELETE

PH-KILL

PH-LINES

PH-RESUME
PH-START

PH-STATUS

PH-SUSPEND

Explanation

Designates a port as available for use by TIPH.

Removes the specified port from the list of porte available
to the TIPH processor.

Aborts the designated TIPH process.

Liste the lines currently available on which to activate a
TIPH process.

Reactivates a temporarily halted TIPH process.
Initiates a TIPH process.

Displays the current status of all TIPH processes listed in
the PH-HISTORY file.

Temporarily halts a TIPH procese.

1076

Figure A. Summary of TIPH Verbs and PROCs

55

11 RUNOFF TEXT PROCESSOR

11.1 Overview

RUNOFF is a text processor used to create a wide variety of textual material.

RUNOFF prepares such written correspondence as memos, manuals, proposals, etc.
RUNOFF formats and prints text previously entered with the EDITOR (although the
information may be placed in a file by a program, such as in an automated
documentation system). Interspersed within the text are RUNOFF commands that
instruct the text processor to perform various functions such as centering,
line spacing, etc. Formatted output may be directed to the terminal, printer,

or other output device.

Textual material may be easily edited and corrected using the EDITOR and then
reprinted with RUNOFF. Material may be inserted or deleted without
restriction. Unchanged text need not be retyped. RUNOFF can combine separate
copy into a single document and insert duplicate material into different
reports.

The camera-ready masters for this manual and other REALITY documentation were
prepared by a REALITY system using RUNOFF.

RUNOFF includes these features:
. Easy updating of existing documents
. Automatic/selectable formatting
. User-specified headings and footings
. Autométic page numbering (if desired)
. Automatic chapter and section number assignment (to 5 levels)

. Automatic table of contents generation based on section and chapter
numbers :

« Automatic index generation based on user-specified words and phrases
. Automatic margin justification (if desired)

. Left or right flush tabbing (invaluable for statistical tables)

. Ab%lity to read additional text and/or commands from other file items

. Upper and lowercase capability on either upper/lowercase or uppercase
only terminals

+ Accepts terminal input for entry of variable information

. Overprint (boldface) printing, text underlining, and centering

56 1076

11 RUNOFF TEXT PROCESSOR

The facing page shows text that is left and right justified. This can be
defeated by changing one command. Margin and tab settings can also be changed
without affecting the material already typed. For example:

Textual material may be easily edited and corrected using the
EDITOR and then reprinted with RUNOFF. Material may be
inserted or deleted without restriction. Unchanged text need
not be retyped.

Another important feature incorporated in RUNOFF is automatic tabbing of
subsequent lines when printing indented blocks. For example:

1) This block of material has a tab control character before the
“1)" which right Jjustifies it at position 5. Another tab
control appears before the word "This". The remainder of the
text is entered free-form without tabbing. RUNOFF
automatically lines up the subsequent lines.

a. This makes adding or deleting text very easy since you

do not have to retype part of a paragraph in order to
maintain the indented block format.

1076 ' ‘ 57

11 RUNOFF TEXT PROCESSOR

11.2 Command Definition

RUNOFF processes

information stored in a REALITY file item.

This information

consists of both text and RUNOFF commands.

All RUNOFF commands

may be placed on a line.

RUNOFF processes information in one of two ways.
a word at a time until no more words can fit
justify option is chosen, RUNOFF adds
This mode
are reading now was processed /in the "f1i1ll1 and
Using this mode, text may be entered free-form without concern for line

In the "nofill"™ mode, RUNOFF processes one line from the
primarily used for tables and figures (Figures
processed in the "no-fill" mode).

prints

a right justified margin.
form (the text you
mode).

endings.
time. This 1is

Figure A presents a brief summary of RUNOFF commands.

begin with a period
themselves (i.e., the commands do not appear on text lines).

(.), and are always on a line by
Multiple commands

In the "f111" mode, RUNOFF
on the line. If the
spaces at random between words to create
is typically used for text in sentence
justify”

item at a
A and B were

Figure B shows a portion

of the item that produced this page.

.BEGIN PAGE .(.BP)
.BREAK (-B)

.CAPITALIZE SENTENCES (.CS)
.CENTER (.C)

+CHAIN ({DICT} file-name item=-id)

.CHAPTER title
. CONTENTS

.CRT
.FILL (.F)

.FOOTING

.HEADING

.INDENT n (.I n)

.INDENT MARGIN n (.IM n)
.INDEX text

.INPUT

.JUSTIFY (.J)

.LEFT MARGIN n

.LINE LENGTH n

.LOWER CASE (.LC)

.LPTR
.NOCAPITALIZE SENTENCES (.NCS)
.NOFILL (.NF)

Causes a BREAK and a page advance.

Outpute any partially filled Lline before
processing the next line.

Capitalizes the first word of each sentence.
Centers the following text line.

Chains to the specified text file.

Numbere and formatse chapter headings.

Prints the table of contents accumulated by
preceding CHAPTER and SECTION commands.
Directs output to the user's terminal.

Fills a line without overflowing it.

Prints the next line on bottom of each page.
Prints the next line at the top of each page.
Indents the next line by 'm' spaces.
Positions the left margin.

Stores 'text'! in an index list.

Reads next line from the terminal.

Justifies the right margin.

Sets the left margin.

Sets the line length.

Causes all letters (except those speczfzed)
to be output in lower case.

Directs output to the system printer.

Resets the CAPITALIZE SENTENCES mode.

Resets the FILL mode.

Figure A. Summary of RUNOFF Commands

58

1076

11 RUNOFF TEXT PROCESSOR

.NOJUSTIFY (.NJ)
.PAGE NUMBER n
«PARAGRAPH n (.P n)

+PRINT INDEX
«PRINT

.READ ({DICT} file-name item—id)
.SECTION level title

.SET TABS n{,n}...

.SKIP n (.SK n)

+SPACING n

« STANDARD

.UPPER CASE (.UC)

Resets the JUSTIFY mode.

Sets the current page number.

Formats text into paragraphs (with the firet
line indented).

Prints the sorted index of words generated by
the INDEX command.

Displays the next Lline on the user's
terminal.

Reads and processes the text item indicated.
Numbers the next section at depth 'n'.

Sets tab positions.

Outputs 'm' blank lines.

Sets the line spacing.

Resets the default parameters.

Prints characters as they are (lower or upper
case) .

Figure A. Summary of RUNOFF Commands (continued)

001 .BP.J
002 .READ FOOTING.L

003 .INDEX “RUNOFF command definition”
004 .SECTION 2 Command Definition

005 .SK 2

006 RUNOFF processes information stored in a REALITY file item.
007 This information consists of both text and RUNOFF commands.

008 .SK 2

009 All RUNOFF commands begin with a period (.), and are always
010 on a line by themselves (i.e., the commands do not

011 appear on text lines).

012 Multiple commands may be placed on a line.

013 .SK

014 RUNOFF processes information in one of two ways.

015 In the "fill" mode, RUNOFF prints a word at a time until
016 no more words can fit on the line.

017 If the justify option is present, RUNOFF adds spaces at
018 random between words to create a right justified margin.
019 This mode is typically used for text in sentence form
020 (the text you are reading now was processed in the "fill

021 and justify"” mode).

022 Using this mode, text may be entered free—form without concern for

023 line endings.

024 In the "nofill” mode, RUNOFF processes one line from the
025 item at a time. This is used primarily for tables
026 and figures (Figures A and B were processed in the "no-£f1i11l" mode).

Figure B..

1076

Sample RUNOFF Source Ltem

59

.12 REALITY CPU AND INSTRUCTION SET

12.1 Overview

Although you need never be concerned with the architecture and instruction set
of the REALITY computer, the following section is provided for those interested
in REALITY”s unique structure.

REALITY CPU

The REALITY Central Processing Unit (CPU) incorporates an architecture
comparable to a medium scale computer. The REALITY instruction set has been
specifically designed for character moves, searches, compares, and all
supporting operations pertinent to managing variable length fields and records.

The REALITY CPU, although physically small and priced in the minicomputer
range, has the architecture of a medium scale computer. The main memory is
expandable from 16,384 bytes to 524,288 bytes (depending on model). Its full
cycle operation is 1 microsecond per byte for core memory equipped machines and
800 nanoseconds for MOS memory systems.

The virtual memory is disc and is oriented into 512-byte frames, expandable
from 19,487 frames (10 million bytes) to 1,029,600 frames (514.8 million
bytes). The CPU is capable: of handling a large number of asynchronous
processes, each associated with an input/output device. The advanced REALITY
CPU will support up to 48 terminals (or asynchronous processes).

The CPU has 16 addressing registers and one extended accumulator for each
terminal. Also provided is a wvariable return stack accommodating up to 1l
recursive subroutine calls for each terminal. By indirect addressing through
any one of the 16 registers, any byte in the virtual memory can be accessed.
Relative addressing is also possible using an offset- displacement plus one of
the 16 registers to any bit, byte, word (16 bits), double word (32 bits), or
triple word (48 bits) in the entire virtual memory.

The microprogrammed firmware contains the nucleus of the virtual memory
operating system, input/output processors, and the software instruction
emulator. Complete 16-bit microinstructions are executed every 200 nanoseconds
(i.e., 5,000 instructions per second). This very fast speed ensures that the
complex overhead functions occur without interrupting user processing. This
means fast response time and high system throughput.

The REALITY CPU also provides automatic power-fail/restart capability which
allows the system to continue with the last instruction executed after power is
restored. MOS memory machines are provided with a battery backup feature to
retain memory contents in the event of a power failure.

60 1076

12 REALITY CPU AND INSTRUCTION SET

The REALITY Insturction Set

The REALITY computer system has an extensive instruction set. The main
features include: '

Bit, byte, word, double-word and triple=-word operations

Memory-to memory operation using relative addressing on bytes, words,
double words, and triple words

Bit operations which permit setting, resetting, and branching on the
condition of a specific bit

Addressing register operations for iﬁcrementing, decrementing, saving,
and restoring the addressing register

Byte string operations for moving arbitrarily long byte strings from one
place to another

Byte string search instructions
Buffered terminal input/output instructions

All data and program address references, handled by the firmware virtual

_ memory operating system

Operations for the conversion of binary numbers to printable ASCII
characters and vice versa

Arithmetic instructions for loading, storing, adding, subtracting,
multiplying, and dividing the extended accumulator and a memory operand

Control instructions for branching, subroutine calls, and program
linkage

For further details regarding the REALITY instruction set, refer to the REALITY
ASSEMBLY Language Programming Manual.

1076

61

12 REALITY CPU AND INSTRUCTION SET

(THIS PAGE INTENTIONALLY LEFT BLANKi

62

1076

INDEX

() command (PROC) " 53 CLEARFILE statement (DATA/BASIC) 37
+ command (PROC) 53 COLl function (DATA/BASIC) 36
- command (PROC) 53 COL2 function (DATA/BASIC) 36
? Command (EDITOR) 49 COMMON statement (DATA/BASIC) 37
?I command (EDITOR) 49 CONTENTS command (RUNOFF) 58
7P command (EDITOR) 49 COPY processor 22
?S command (EDITOR) : 49 COPY verb 21
A command (EDITOR) 49 COS function (DATA/BASIC) 36
A command (PROC) 53 COUNT function (DATA/BASIC) 36
ABS function (DATA/BASIC) 36 COUNT verb 21,32
ACCOUNT-RESTORE verb 21 CREATE-FILE processor 22
ASCII function (DATA/BASIC) 36 CREATE-FILE verb 21
Accessing data 14 CRT command (RUNOFF) 58
Accessing files 28 CS command (RUNOFF) 58
Accessing records : 14 Cataloged program 38
Accounting statistics 18 Columnar output - 32
Architecture 9 Comment statements 34
Arithmetic expressions 36 Compiling DATA/BASIC program 38
Attribute 12,14,30 Connectives 30
Attribute definition items 16,40,44 Constants 36
Attribute mark 14 Constructing screens 40
Attribute synonym definition items 16 Construction of input statements 20
Available space pool 22 Control breaks 4 28
B command (EDITOR) 49 Conventions : 7
B command (PROC) 53 Copying files 22
B command (RUNOFF) 58 Copying items 22
BASIC 10,34 Copying records 22
BASIC verb 21,38 Creating DATA/BASIC program 38
BEGIN CASE statement (DATA/BASIC) 37 Currently active buffer 52
BEGIN PAGE Command (RUNOFF) 58 D command (PROC) 53
BLOCK~PRINT verb 21 DATA/BASIC debugger 38
BO command (PROC) 53 DATA/BASIC language definition 36
BP command (RUNOFF) 58 DATA/BASIC processor 4,36
BREAK command (RUNOFF) 58 DATA/BASIC processor, overview 10,34
BREAK~ON modifer 32 DATA/BASIC program, example 35,39
C command (EDITOR) 49 DATA/BASIC statements 36
C command (PROC) 53 DATA/BASIC statements, summary 37
C command (RUNOFF) 58 DATE function (DATA/BASIC) 36
CALL statement (DATA/BASIC) 37 DE command (EDITOR) 49
CAPITALIZE command (RUNOFF) 58 DEBUG statement (DATA/BASIC) 37
CATALOG verb 21,38 DELETE function (DATA/BASIC) 36
CENTER command (RUNOFF) 58 DELETE statement (DATA/BASIC) 37
CHAIN command (RUNOFF) 58 DELETE-FILE processor 22
CHAIN statement (DATA/BASIC) 37 DELETE-FILE verb 21
CHAPTER command (RUNOFF) 58 Data access 12,14,28
CHAR function (DATA/BASIC)) 36 Data base management 22,34
CHARGE-TO verb 21 Data base management procsr 11,22
CHARGES verb 21 Data base management software 10
CHECK=-SUM verb 32 Data base size 12,14
CLEAR statement (DATA/BASIC) 37 Data base structure 12,13,14
CLEAR-FILE processor 22 Data base structure summary 15
CLEAR~-FILE verb 21 Data file 12

1076 IN-1

Data modification 11,46 FI command (EDITOR)) 49

Data retrieval 30 FIELD function (DATA/BASIC) 36
Data retrieval language 10,28 FILL command (RUNOFF) 58
Debugger, DATA/BASIC 38 FOOTING command (RUNOFF) 58
Designing screens 40 FOOTING statement (DATA/BASIC) 37
Dictionary 14,28,30 FORM-LIST verb 21
Dictionary Builder 40,44 FS command (EDITOR) 49
Dictionary files 14 Features of DATA/BASIC 34
Dictionary level file 12 Features of EDITOR 46
Display processing 40 Features of ENGLISH 28
Documentation, REALITY 6 Features of RUNOFF 56
EBCDIC function (DATA/BASIC) 36 Features of SCREENPRO 41
ED verb 21 Field 14
EDIT verb 21,38,48 . Field, variable length 12,14
EDITOR 38 File access 12,14,28
EDITOR command summary . 49 File hashing histogram 32
EDITOR features 46 File hierarchy) 12,13
EDITOR language definition 48 File management processors 11,22
EDITOR processor 5 File manipulation 11
EDITOR processor, overview 11,46 File mgmt processors, examples 23
EDITOR, sample usage 47 File names 14,28
ENGLISH features 28 File size 12,14
ENGLISH language primer 30 File structure 12,13,14
ENGLISH language verbs 32 File structure summary 15
ENGLISH processor 4,14,30,32 File, definition of 12
ENGLISH processor, overview 10,28 Files, clearing of 22
ENGLISH sentence, examples 29,31,33 Files, copying 22
ENTER verb 21,42 Files, creation of 22
ENTER-DICT verb 21,44 Files, deleting of - 22.
EQUATE statement (DATA/BASIC) 37 Form queue, definition of 26
EX command (EDITOR) 49 Format of variable length data 14
EXP function (DATA/BASIC) " 36 Formatted output 56
EXTRACT function (DATA/BASIC) 36 Frame transfers 9
Echo-Plex 20 Full=duplex mode 20
Entering DATA/BASIC program 38 G command (EDITOR) 49
Example of DATA/BASIC program 35,39 GET-LIST verb 21
Example of EDITOR usage 47 GO command (PROC) 53
Example of PROC 51 GOSUB command (PROC) 53
Example of RUNOFF 57,59 GROUP verb 21
Example of log off 19 Generating totals (ENGLISH) 28
Example of log omn 19 H command (PROC) 53
Examples of ENGLISH sentences29,31,33 HASH-TEST verb 32
Examples of file mgmt processors 23 HEADING command (RUNOFF) 58
Examples of utilities 25 HEADING statement (DATA/BASIC) 37
Executing DATA/BASIC program 38 Hashing technique 14
Expressions 36 Hierarchy of files 12,13
F command (EDITOR) 49 How to use this manual 6
F command (PROC) 53 I command (EDITOR) 49
F command (RUNOFF) . 58 I command (RUNOFF) 58
F-CLEAR command (PROC) 53 I-DUMP verb 32
F-DELETE command (PROC) 53 ICONV function (DATA/BASIC) 36
F=-OPEN command (PROC) 53 IF command (PROC) 53
F-READ command (PROC) 53 IH command (PROC) 53
F=-WRITE command (PROC) 53 IM command (RUNOFF) 58
F; command (PROC) : 53 IN command (PROC) " 52,53
FD command (EDITOR) 49 INDENT MARGIN command (RUNOFF) 58

IN-2 1076

INDENT command (RUNOFF) 58 Logical operators 30

INDEX command (RUNOFF) 58 =~ Logoff processor 18
INDEX function (DATA/BASIC) 36 Logon names 12
INPUT command (RUNOFF) 58 Logon processor 18
INPUT statement (DATA/BASIC) 44 M/DICT 12,20,28
INSERT function (DATA/BASIC) 36 MATINPUT statement (DATA/BASIC) 44
INT function (DATA/BASIC) 36 ME command (EDITOR) 49
IP command (PROC) 53 MESSAGE verb 21
ISTAT verb 21,32 MOD function (DATA/BASIC) 36
IT command (PROC) 53 MV command (PROC) 53
ITEM verb 21 Machine architecture 9
Identifying valid users 18 Magnetic tape, dumping file to 32
Implicit attribute 30 Manipulating files 22
Information management 28 Manual usage 6
Information management language 10 Manuals for REALITY 6
Initiating user session 18 Master Dictionary 12,20,28
Input statements, construction 20 Maximum size of record 12,14
Input/output buffers 52 Microcode 9
Input/output communications 9 Miscellaneous connectives 30
. Input/output processing 9 Modification of data 11,46
Instruction set 61 . Modifiers ' 30
Interactive terminals 9 Multiple subvalues 12
Intrinsic function summary 36 Multiple values 12,14
Intrinsic functions 36 N command (EDITOR) 49
Introduction 1 NJ command (RUNOFF) 59
Item 12,14 NOCAPITALIZE command (RUNOFF) 58
Item structure 14 NOFILL command (RUNOFF) 58
Item, maximum size : 14 NOJUSTIFY command (RUNOFF) 59
Item-id , 14 NOT function (DATA/BASIC) 36
Items, copying 22 NULL statement (DATA/BASIC) 37
J command (RUNOFF) 58 NUM function (DATA/BASIC) 36
JCL 52 Non=columnar output 32
JUSTIFY command (RUNOFF) 58 0 command (PROC) 53
Job Control Language 52 OCONV function (DATA/BASIC) 36
L command (EDITOR) 49 OFF verb ' 18,21
L command (PROC) 53 OPEN statement (DATA/BASIC) 37
LEFT MARGIN command (RUNOQFF) 58 Operators 36
LEN function (DATA/BASIC) 36 Output devices 26
LINE LENGTH command (RUNOFF) 58 Output reports 26
LIST verb 21,29,32 Output, formatted 56
LIST-LABEL verb 21,32 Overview of DATA/BASIC processor 10
LN function (DATA/BASIC) 36 Overview of EDITOR processor 11
LOCATE statement (DATA/BASIC) 37 Overview of ENGLISH processor 10
LOCK statement (DATA/BASIC) 37 Overview of PROC processor 11
LOGON PLEASE message 18 Overview of REALITY 1
LOGTO verb 21 Overview of RUNOFF 56
LOOP statement (DATA/BASIC) 37 Overview of SCREENPRO processor 10
LOWER CASE command (RUNOFF) 58 Overview of TIPH 54
LPTR command (RUNOFF) 58 Overview of software 10
Limit of record size 12,14 P command (EDITOR) 49
- Limiting user capabilities 20 P command (PROC) 52,53
Log off, example 19 P command (RUNOFF) 59
Log on, example 19 PAGE NUMBER command (RUNOFF) 59
Logging off of the system 18 PAGE statement (DATA/BASIC) 37
Logging on to the system 18 PARAGRAPH command (RUNOFF) 59
Logical expressions 36 PASSWORD message 18

1076 IN-3

PP command (PROC)

PRECISION statement (DATA/BASIC)
PRINT INDEX command (RUNOFF)
PRINT command (RUNOFF)

PRINTER statement (DATA/BASIC)
PROC command summary

PROC example

PROC features

PROC language definition

PROC
PROC processor, overview
PROMPT statement (DATA/BASIC)
PWR function (DATA/BASIC)
Passwords

Prestored operations

Primary input buffer

Primary output buffer

Print job, definition of
Privilege levels

Privileges

Process, definition of
Processor usage

Processors

Processors, overview

Program, example

Programming language

R command (EDITOR)

READ command (RUNOFF)

READ statement (DATA/BASIC)
READNEXT statement (DATA/BASIC)
READT statement (DATA/BASIC)
READV statement (DATA/BASIC)
REALITY computer system
REALITY documentation

REALITY frame transfers

REALITY processors

REPLACE function (DATA/BASIC)
REWIND statement (DATA/BASIC)
RI command (PROC)

RND function (DATA/BASIC)

RO command (PROC)

RSUB command (PROC)

RTN command (PROC)

RUN verb

RUNOFF Command Definition
RUNOFF example

RUNOFF features

RUNOFF output, example

RUNOFF processor

RUNOFF processor overview
RUNOFF verb

Record
Record
Record size limit
Record structure
Record, maximum size

access

IN-4

52,

processor 5,
11,

12,
10,

10,

35,

21,

57,

12,

12,

53
37
59
59
37
53
51
50
52
52
50
37
36
18
50
52
52
26
12
18
54
10
20

4
39
34
49
59
37
37
37
37

1

6

9

4
36
37
53
36
53
53
53
38
58
59
56
57

5
56
21
14
14
14
14
14

Record, variable length 12
Records, copying

Relational expressions

Relational operators

Report generation 10
Response of terminals

Restricting user capabilities

S command (EDITOR)

S command (PROC)

SAVE-LIST verb

SCREENPRO

SCREENPRO features

SCREENPRO processor, overview
SECTION command (RUNOFF)
SEL-RESTORE verb

SELECT statement (DATA/BASIC)
SELECT verb 21
SEQ function (DATA/BASIC)

SET TABS command (RUNOFF)

SET-DATE verb

SET-TIME verb

SIN function (DATA/BASIC)

SK command (RUNOFF)

SKIP command (RUNOFF)
SORT verb 21,29
SORT-LABEL verb 21

SP-ASSIGN verb

SP=EDIT verb

SP=STATUS verb

SPACE function (DATA/BASIC)
SPACING command (RUNOFF)

SQRT function (DATA/BASIC)

SSELECT verb 21
ST OFF command (PROC)

ST ON command (PROC)
STANDARD command (RUNOFF)
STAT verb

STR function (DATA/BASIC)
SUBROUTINE statement (DATA/BASIC)
SUM verb

SYSTEM
Sample
Sample
Sample
Sample
Sample
Sample

21,29

DATA/BASIC program 35
EDITOR session
ENGLISH sentences
PROC program
RUNOFF output

of log off
Sample-of log on

Sample usage of utilities
Samples of file mgmt processors
Screen Builder 40
Screen Compiler

Screen Painter

Screen Processor 40
Screen Tester

Screen definition item

29,31

,14
22
36
30

,28

9
20
49
53
21
40
41
10
59
21
37

,32
36
59
21
21
36
59
59

,32

,32
21
21
21
36
59
36

,32
53
53
59

,32
36
37
32
12

,39
47

,33
51
57
19
19
25
23

42
42
42

4
42
40

1076

Screen definitions

1076

42

" Screen printout 42
Secondary input buffer 52
Secondary output buffer 52
Secondary values 14
Security codes 12,18
Selection criteria 30
Sharing System Peripherals 26
Single word command 10,50
Software level architecture 9
Software processor usage 11
Software processors 10
Software supplied with system 10
Sort keys 31,32
Sorting 28
Spooler, Overview 26
Stack 52
Standards 7
Statement label 36
Statistics 32
Steps display 42
Stored procedures 50
Structure of data base 12,13,14
Structure of items 14
Structure of records 14
Subtotalling 32
Subvalue mark 14
Subvalues 14
Subvalues, multiple 12,14
Summary of EDITOR commands 49
Summary of PROC commands 53
Summary of RUNOFF Commands 58
Summary of RUNOFF commands 59
Summary of file structure 15
Summary of intrinsic functions 36
Synonym attribute definition items 16
Synonym file definition items 16
Synonyms 20
System Dictionary 12,18
System privileges 12
T command (EDITOR) 49
T command (PROC) 53
T-DUMP verb 21,32
T-LOAD verb 21,32
T-READ verb 21
TAN function (DATA/BASIC) 36
TB command (EDITOR) 49
TCL 18,20,52
TCL prompt character 18,20
TERM verb 21
TIME function (DATA/BASIC) 36
TIME verb 21
TIMEDATE function (DATA/BASIC) 36
TIPH processor 10

TIPH verbs 55
TIPH, overview 54
TOTAL modifier 32
TR OFF command (PROC) 53
TR ON command (PROC) 53
TRIM function (DATA/BASIC) 36
Tape, dumping file to 32
Terminal Control Language 18,20
Terminal I/0 processing 9
Terminal display processing 40
Terminal interface 20
Terminal response : 9
Terminating user session 18
Text processor 56
Textual material, producing 56
Totals (ENGLISH) 28
U command (EDITOR) 49
U command (PROC) 53
UC command (RUNOFF) 59
UNLOCK statement (DATA/BASIC) 37
UPPER CASE command (RUNOFF) 59
Usage of manual 6
User Master Dictionary 12
User capabilities, restriction of 20
User identification 18
User manuals for REALITY 6
User names 12
User privileges 18
User vocabulary 10,12,20,28
Utilities, examples 25
Utility processors 11,14,22,24
Value mark 14
Values 14
Values, multiple 12,14
Variable length fields 12,14
Variable length formats 12,14
Variable length records 12,14
Variable length secondary values 14
Variable length values 14
Variables 36
Verbs 20,28,30,32
Virtual memory address 14
Vocabulary 1,10,20,28
WEOF statement (DATA/BASIC) 37
WHAT verb 21
WHO verb 21
WITH clause 30
WRITE statement (DATA/BASIC) 37
WRITET statement (DATA/BASIC) 37
WRITEV statement (DATA/BASIC) 37
X command (EDITOR) 49
X command (PROC) 53
Z command (EDITOR) 49
[] command (PROC) 53

IN-5

A

Microdata Corporation

17481 Red Hill Avenue, Irvine, California 92714
Post Office Box 19501, Irvine, California 92713
Telephone: 714/250-1000 - TWX: 910-595-1764

	000
	001
	001a
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	xBack

