
" .
I

REVIEW COPY OF

7.0 REALITY

ASSEMBLY LANGUAGE

INSTRUCTION SET

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 FRONT-l

.,..",i
I
I
I
I
I

~Ji

I
I
I
I
I
I

...,)i

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I
I
I
I

1
1.1
1.1.1
1.1. 2
1.1. 3
1.1. 4
1.1. 5
1.2
1. 2.1
1. 2.2
1. 2.3
2

TABLE OF CONTENTS

ABSTRACT' FRONT - 2
KEYWORDS FRONT- 2
FOREWORD FRONT-4
INTRODUCTION 1-1
INFORMATION COMMON TO SEVERAL INSTRUCTIONS 1-1
ARITHMETIC AND ACF ALTERATIVE INSTRUCTIONS 1-2
STRING MOVEMENT AND SCAN INSTRUCTIONS 1-3
SPECIAL ADDRESS REGISTERS " 1-6
STORAGE REGISTERS AND NORMALIZED ADDRESSES 1-7
INSTRUCTIONS WITH OFFSET 1-8
INSTRUCTION DESCRIPTION FORMAT 1-9
FORMAT OVERVIEW 1-9
OPERAND LENGTH INDICATOR 1-14
COMPARE CODE INDICATORS 1-15
INSTRUCTION SET REPERTOIRE 2-1

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 FRONT-3

o FOREWORD

This document describes the Reality assembly language instruction
repertoire for Release D.

Section 1 presents general information about classes and types of
instructions. It also explains the format used in describing the
instructions.

Section 2 describes each instruction. The instructions are
presented in alphabetical order according to their opcode
mnemonics combined with their operand types. For example, the
instruction MOV Wi,Wj would be in order according to the symbol
MOVWW.

The Index includes all of the instruction mnemonics and the
instruction opcodes.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 FRONT-4

L

INTRODUCTION

1 INTRODUCTION

The REALITY assembly language instruction set has been completely
revised with the release 7.0. Many new instructions have been
added to the repertoire and the object code has been radically
changed. This document describes the executable instructions. It
does not discuss assembler directives.

1.1 INFORMATION COMMON TO SEVERAL INSTRUCTIONS

This section discusses information that applies to different
classes of instructions, such as arithmetic instructions, string
instructions, and so forth.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 1-1

INTRODUCTION

1.1.1 ARITHMETIC AND ACF ALTERATIVE INSTRUCTIONS J!
The arithmetic instructions perform arithmetic operations on the
contents of accumulators or locations. These contents are
loosely referred to as binary integers since the bit
configurations represent a binary integer.

Some instructions perform their functions on the accumulators
(element-to-accumulator or accumulator-to-element operations).
Others perform their functions as element-to-element operations.

The high-order bit of a binary integer is the sign bit. Zero in
this bit means positive; one means negative. Negative values are
represented in two's complement form.

When an integer is loaded into the accumulator, the sign bit is
extended to the left to fill the accumulator (either DO or FPO -
depending on the operation or operands).

Each operand for an arithmetic instruction must lie entirely
within a single frame. That is, all of the bytes of the operand
must be in the same frame.

Many of the arithmetic instructions set the Arithmetic Condition
Flags (ACF). Whenever the ACF is updated, the entire byte is
overwritten and bits not related to the instruction are undefined:.),
after the update. The instruction descriptions specify whethe:
the ACF changed.

Element-to-element instructions do not
do they change the contents of the
they do not change the ACF.

use the accumulators, nor
accumulators. Furthermore,

The names of the individual flags, their bit pOSitions, and their
meanings are as follows:

Name Bit Description

NUMB IT 1 Used by the ASCII-number-conversion instructions
to indicate that a valid number was converted.

VAL8I~ 2 Set by ASCII-number-conversion instructions to
indicate that the maximum number of digits
specified has been converted.

EQUBI~ 5 Set by the COMP instruction.

LOWBIT 6 Set by the COMP instruction.

OVFBIT 7 Set when the accumulator overflows (Le., the
result would not fit in the accumulator).

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 1-2

INTRODUCTION

1.1.2 STRING MOVEMENT AND SCAN INSTRUCTIONS

The string instructions may be used to move or scan character
strings. A string is defined as a logically contiguous group of
bytes that may extend across linked frame boundaries. The
location of a string is indicated by an address register pointing
at either the byte before or the byte after the string. The
length of a string is controlled by either a count of the number
of bytes in the string (count in TO control), a set of
characters which terminate the string (delimiter control), or
another register pointing at the opposite end of the string
(register control). In a move instruction the string destination
is indicated by a register pOinting at the byte before or the
byte after the new location.

Count in TO Control. When count control is used in the string
instructions, TO (the lower half of DO) is presumed to contain a
count before the instruction is executed. The count is
decremented before the instruction is executed.

Delimiter Control. Delimiter control refers to the testing of
the contents of a byte for a match with one of seven possible
characters as defined by a match field (N) in the instruction.
For an unsuccessful match, instruction execution is repeated.

The set of characters tested in the match is defined by the match
field and the SCO, SCI, and SC2 bytes in the PCB. For each bit
position one through seven in the match field that is a 1, a
match test is done. If bit position zero in the match field is a
1, the instruction stops on the first equal match. If bit
position zero is a 0, the instruction stops when the contents of
a byte does not contain one of the characters specified in the
match set. The table below shows the test done for each bit
position in the match field. -

Bit Test Performed

0 I - stop on equal; o = stop on unequal
1 I = compare with X'FF', segment mark (SM)
2 1 = compare with X'FE', attribute mark (AM)
3 I = compare witd X'FO', value mark (VM)
4 I - compare with X'FC', subvalue mark (SVM)
5 I - compare with contents of SCO
6 1 = compare with contents of SCI
7 I - compare with contents of SC2

Register Control. Address register 15 (RI5) is used with
register control string instructions. Before these instruc­
tions are executed, RI5 must have been loaded with the address
of the last byte to be moved. The register pointing at the
source string is incremented or decremented each time a
character is moved. When the contents of the source register
equal the contents of RI5, execution ceases.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 1-3

INTRODUCTION

Cautions Regarding String Addressing. All the string
structions either increment or decrement the addresses of
source and destination bytes. Hence, it must be remembered
the address of a string must pOint to one byte before or one
after the string.

~u
that.
byte

The requirement that the address register point to one byte
before the string's first byte has some important ramifications
when the string's first byte is the first byte of the frame.
Three cases must be considered: the frame is the first frame in
a linked set; the frame is in a linked set, but it is not the
first frame; the frame is unlinked.

Recall that the first data byte of a frame in a linked set
requires a displacement of 1 in the address register. If the
frame is in a linked set, referencing the byte before the first
byte of the first frame requires an address with a displacement
of zero.

In the case of the frame being the first frame in a linked set,
when this address is attached during the execution of a string
instruction, the firmware takes into account that a string
instruction is executing and attaches the address register to
byte zero of the frame rather than causing a BACKWARD LINK ZERO
trap to the debugger. When the address is incremented, the first
data byte of the frame will be referenced. Thus, string
instructions may reference the "byte before" of the first fram: '\
of a linked set without difficulty. ~

A linked frame other than the first presents a similar situation,
but should be avoided. When an address register with a
displacement of 0 is attached in this situation, the firmware can
attach the register to point ~o the last byte of the previous
frame. This means that the previous frame must be read into
memory (if not already in memory) at the start of instruction
execution. When the register contents are incremented by the
string instruction, the frame containing the string must be read
into memory. Hence, when a string instruction references the
first data byte of a linked frame, other than the first frame,
the previous frame will always be read into memory just to
satisfy the attachment of zero displacement. For the sake of
efficiency, avoid this situation whenever possible.

When the string starts at byte zero of an unlinked frame (the
first data byte), it is impossible to reference the previous
byte. But byte zero can be referenced: therefore a string
instruction can be used to handle the string starting at byte
one. To move the contents of byte zero of an unlinked frame an
instruction such as MCC Ri,Rj must be used.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 1-4

INTRODUCTION

Cautions Regarding String Addressing (cont). When the
decrementing string instructions are used at the last data byte
of a frame, the results are analogous to the cases of the first
data byte. In the case of the last data byte of the last frame of
a ~inked set, the byte cannot be referenced. Attempting to do so
with a displacement of 501 will cause a FORWARD LINK ZERO trap to
the Debug state.

If the linked frame i~ not the last frame, referencing the last
data byte will cause the next frame to be read into memory to
satisfy the attachment of the register (just as the previous one
is read when the first byte is referenced).

For an unlinked frame, the last data byte cannot be referenced
with a decrementing string instruction.

Once a string instruction has started execution, if the specified
control does not stop execution properly, the addresses will be
incremented or decremented until they reach one beyond the
highest or one below the lowest allowed address. At that point
one of the following Debug state traps will occur:

FORWARD LINK ZERO linked set of frames when incrementing

BACKWARD LINK ZERO linked set of frames when decrementing

CROSSING FRAME LIMIT - nonlinked frame when either incrementing
or decrementing.

7.0 VIRTUAL ASSEMBLY LANGUAaE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 1-5

INTRODUCTION

1.1.3 SPECIAL ADDRESS REGISTERS ~

Address registers 0 and 1 are used in special ways in the system. .
When referenced in an instruction, they should be used with the
following information in mind.

Address Register O. Register 0 (RO) is used in a special way.
This register always points to the PCB (i.e., byte 0 of the PCB).

When a virtual process is not active, RO is in detached form and
contains the frame number of the PCB in its FlO field and 0 in
its displacement field.

Register 0 is attached when the process is activated. Thus, the
attached register (RO) points to the (beginning of the) buffer in
main memory where the PCB is being held.

Address Register 1. When a process is not active, detached
address register 1 (Rl) contains the virtual memory address minus
1 (i.e., the FlO and displacement (minus one) for the next
instruction to be executed. Thus, RI acts as a repository for the
program instruction counter for that process between activations.

When the process is started, the buffer address of the program
frame (as determined from the buffer map) is added to the
displacement from RI. This value (a main memory address) is
placed into a hardware instruction counter. The register is then ~
converted to the attached form with the buffer address set to~
byte zero of the program frame.

This allows RI to be used as a base register to reference data in
the program frame because, when the process is active, Rl points
to byte 0 of the program fram~ (mode) in main memory. Never use
Rl as a destination or to specify a destination.

When the process is deactivated, the main memory address in the
instruction counter is converted to the corresponding FlO and
displacement, and Rl is detached with these values in it.

NOTE

Never update data in an ASS frames using RI. The data
will not be written back to disk. It is best, never to
change ASS by software.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 1-6

INTRODUCTION

1.1.4 STORAGE REGISTERS AND NORMALIZED ADDRESSES

Storage Registers. A six-byte location used to contain a virtual
storage address is ~alled a storage register.

The Load Address Register instruction moves six bytes from memory
into bytes 2 through 7 of an address register after zeroing bytes
o and 1 of the register. Note that the address register is
detached. As usual, the address register will have to be
attached in order for the data referenced by the register to be
accessed by the CPU. Correspondingly, with the Store Address
Register instruction, the firmware takes the detached form of an
address register and stores hytes 2 through 7 in a six-byte
memory location (the contents of the address register do not
change). In summary the storage register is a virtual storage
location that contains a virtual storage address.

Normalized and Unnormalized Addresses. A normalized address is
one whose displacement is between 0 and 1023, inclusive, for an
unlinked frame and between 1 and 1000, inclusive, for a linked
frame. An address in an address register becomes unnormalized
when the memory address is incremented, or decremented, beyond
the buffer end. This causes the register to become detached with
a displacement greater than a frame size or less than zero. When
the register is attached, the address will be normalized by the
firmware.

If a detached address register is moved to a storage register,
the storage register may contain an unnormalized address. This
can cause errors if the storage register is used in a Compare
Address Register instruction. The Attach Register instruction can
be used to attach a register before its contents are moved to a
storage register.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 1-7

INTRODUCTION

1.1.5 INSTRUCTIONS WITH OFFSET

Some instructions reference data by means of a base address
register and an offset value within the instruction. When such an
instruction is executed, each address register referencing data
is attached. This means that the register's memory address field
points to a byte in a memory buffer. The instruction's offset
value and the contents of the memory address field are then added
together in a firmware register to yield the effective address.
Since the address register has been attached to a particular
buffer, the effective address must point to a byte in that same
buffer. Furthermore, the entire operand (either a bit or one,
two, four or six bytes) must lie entirely within the buffer.

Therefore, an instruction that references data by means of a
register and an offset within the instruction must reference data
that are entirely within the frame pOinted to by the address
register. Although it is possible to initialize a register to
point to a frame (say to the end of the frame), and it is
(conceptually) possible to use an instruction that references
data by means of this register plus some large offset which would
point to a byte in the next linked frame, the firmware cannot
accommodate such an arrangement because the address register is
attached to a buffer before the instruction offset value is added
to form the effective address. A "CROSSING FRAME LIMIT" trap t~.
the Debug state will result unless the instruction descripticJ
specifies otherwise.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 1-8

INTRODUCTION

1.2 INSTRUCTION DESCRIPTION FORMAT

1.2.1 FORMAT OVERVIEW

Each instruction is explained with a diagram and several specific
items. Figure A shows the instruction diagram and the
description items. Listed below are the explanations of the items
and legends for what may appear under the rubrics.

INSTRUCTION TITLE

This gives the name of the instruction as it is commonly referred
to in the text. The title is usually suggestive of the function
of the instruction.

MNEMONIC

The source code symbol that represents the machine instruction.
The mnemonic is the symbol that is used in the opcode field of
the assembly language instruction. All the mnemonics of the
assembly language instructions are contained in the OSYM table.

A lowercase c is used in a mnemonic to indicate a comparison code
such as E for equal, LE for less than or equal, NZ for non zero.
For example, BDc could be BDZ or BDNZ among other possibilities.
See section COMPARE CODE INDICATORS.

INSTRUCTION TITLE

MNEMONIC {OPERAND! {,OPERAND2 {,OPERAND3}}}

INSTRUCTION TYPE

xxxx xxxx xxx x xxxx xxxx xxxx

1 2 3 4 5 6

Detailed Description of Instruction Execution

Operand
Types

Example

Cautions and Notes

Object Code (in Hex)

LENGTH IN
BITS

Figure A. Instruction Diagram and Description Items.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 1-9

INTRODUCTION

-----------------------------J

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 1-10

INTRODUCTION

OPERANDS

The types of operands that are allowed in the operand field of
the assembly language instruction are represented by the
following codes:

A Absolute memory location

B Bit reference

C Character

D Double tally

F Triple tally (Full tally)

H Half tally

K Literal (represents a constant)

L Location local to the frame
(i.e., displacement within the program frame)

N Immediate data (constant)

R Address register

S Storage register

T Tally

V Three-byte value in the low-order bytes of a
four-byte field

W Representative symbol for any of the tally type
operands. That is, when W appears as an
operand, a half tally (H or C), tally (T),
double tally (D), three-byte value (V), or
triple tally (F or S) type operand may be valid
in the assembly language instruction.

The letters i and j are used to distinguish between two
operand •• In general the operand with the i is the source of data
(the "froa" field) and the j operand is the receiver of data (the
"to" field). For example, the instruction MOV Wi,Wj moves data
from the Wi operand to the Wj operand. On the other hand,
instruction AND Rj,Ri forms the logical AND of the two operands
and stores the result in the Rj operand.

INSTRUCTION TYPE

There are 13 instruction types. The instruction type is indicated
just above the object code format display. See the section
INSTRUCTION TYPES.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 1-11

INTRODUCTION

OBJECT CODE FORMAT

The object code format is displayed in a diagram.
breaks the format into four-bit fields (nibbles).

J,
The diagram

The operation code bits are shown in binary representation. Other
fields that have fixed numeric values are also shown in binary.

Where an instruction allows more than one of the tally type
operands, half-tally (H), character (C), tally (T), double tally
(D), triple tally (F), storage register (5), and three-byte value
(V), the operand is represented by a W. The symbols for these
types of operands are defined with three data: base address
register, offset from the address register, and size indicator.
The position of these data in the object format is indicated by
means of subcodes as follows:

Wir Base address register for operand Wi

Wid Offset from address register Wir

Wik Size indicator of operand Wi (See the section
OPERAND SIZE INDICATOR.)

Of course, Wj rather than Wi is used where approp.riate.

If an instruction requires a particular tally type) be used,
only the code for that type is used to explain the _.struction."""
For example, the instruction READ Rj,Hi requires that the second
operand be a half tally so H, not W, is used in the instruction
description.

Some other descriptor codes ar~ as follows:

f

e

c

FlO (Frame Identification number)

Entry point number

Compara code indicator. The indicator is used in
conditional branch instructons with meanings
such as: less than, non- zero, equal, etc. See
the section COMPARE CODE INDICATORS.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 1-12

INTRODUCTION

DETAILED DESCRIPTION OF INSTRUCTION EXECUTION •
This gives a full description of the instruction execution.
definitions of common terms are as follows:

The

Load - The contents of some location replaces the contents
of an address register or accumulator.

Store - The contents of an address register or accumulator
replaces the contents of some location.

Move - The contents of a location replaces the contents of
some other location, or the contents of a register replaces
the contents of another register.

Since most instructions change
register, or accumulator, the
often:

the contents of a location,
following symbols will be used

C(element) means the content of an element.

For example,

C(Ri) means the content of address register Ri. The content
of an address register is, of course, the address of some
byte.

C(C(Rj» means the content of the content of address
register Rj, that is, the content of a byte pointed to by
the content of Rj.

C(Wir) means the content of the base address register for
operand Wi, that is, the a9dress of a byte.

C(Wir)+Wid means the address of a byte offset by Wid from
the byte pointed to by address register Wire

C(C(Wjr)+Wjd) means the content of an element that is offset
by Wjd from the byte pointed to by address register Wjr.

The offset d is a byte offset for all tally-type elements.

The size of the element is determined by the k field of the
instruction for a tally type of operand.

-
7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 1-13

INTRODUCTION

LIST OF VALID OPERAND TYPES AND RESPECTIVE OBJECT CODE j
This is a cross reference to the object code listings of an
assembly language program. The value of k is listed when
appropriate, along with the associated valid operand types. The
object code is given in hexadecimal notation and the nibble
positions noted.

EXAMPLES

The operands are usually defined in the following artificial
manner: HTYPI or HTYPJ for half-tally operands, CTYPI or CTYPJ
for character type operands, TTYPI or TTYPJ for tally operands,
etc.

CAUTIONS AND NOTES

Peculiarities regarding the instruction execution or caveats on
instruction usage are noted.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 1-14

J

INTRODUCTION

1.2.2 OPERAND LENGTH INDICATOR

The operand length indicator (k) occupies four bits.

The length specifier indicates the following:

k

o
1
2
3
7
8'-F

Operand Size
will be:

byte
tally
double tally
triple tally
four bytes
bit

Associated
Operand Type

C,H
T
D
F,S
V
B

When k is 7, the operand size is four bytes but the data are the
contents of the three low-order bytes of the four.

When k is 8 or greater, the operand is a bit (8 type) and the
three low-order bits of k specify the offset of the bit in the
addressed byte.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 1-15

INTRODUCTION

1.2.3 COMPARE CODE INDICATORS

indicators are assembled into the c field of the~
c field indicates all possible conditions for

logical, and data type compares as follows:

The compare code
object code. The
both arithmetic,

Compare Type Mnemonic Meaning Object Code

Arithmetic ALWAYS 0000
L (LZ) LESS THAN 0001
E (Z) EQUAL 0010
H (HZ) HIGHER 0011

NEVER 0100
HE (HEZ) HIGHER THAN OR EQUAL 0101
U (NZ) UNEQUAL 0110
LE (LEZ) LESS THAN OR EQUAL 0111

Logical BS BIT SET/ODD 1000
L LESS THAN 1001
E EQUAL 1010
H HIGHER 1011
BZ BIT CLEAR/EVEN 1100
HE HIGHER THAN OR EQUAL 1101
U UNEQUAL 1110
LE LESS ,THAN OR EQUAL 1111

Data Type A ALPHABETIC 1000
N NUMERIC 1001
H HEXADECIMAL 1001
NA NON ALPHABE'r I C 1100
NN NON NUMERIC 1101
NH NON HEXADECIMAL 1101

The assembler's OSYM does not have mnemonics for ALWAYS and
NEVER. These combinations are for patching only.

The mnemonics shown in parentheses are used when comparing with
zero.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 1-16

~

· INSTRUCTIONS

2 INSTRUCTION SET REPERTOIRE

Each instruction in the repertoire is described on the following
pages.

7.0 VIRTUAL ASSEMBLY LANGUAG~ CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-1

INSTRUCTIONS

ADD TO ACCUMULATOR

ADD Wi

Type 5 Instruction

1010 0011 Wir 0000 Wik Wid

1 2 3 4 5 6 7

Detailed Description of Instruction Execution

The integer addressed by the operand is added to
accumulator (DO) with sign extension.
C(C(Wir)+Wid)+C(oO) replaces C(DO).

C(ACF) is updated to reflect overflow.

Operand Wik Object Code (Hex)
Types l.fl!~§'l~

Hi 0 A 3 i 0 Odd d
Ti 1 A 3 i 0 1 d d d
Di 2 A 3 i 0 2 d d d
Vi 7 A 3 i 0 7 d d d

Example

Label OpC
Field Field

Operand
Field

ADD HTYPI
ADD DTYPJ

Conunent
Field

8

J

32
BITS

the 32-bit
That is,

progr..-ing Note I The mnemonic ADD may be used with F type
operanda (six-byte elements), but the object code generated by
the as..-bler is the same as that generated for instruction ADDX.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-2

L

L

INSTRUCTIONS

ADD TO EXTENDED ACCUMULATOR

ADDX Wi

Type 5 Instruction

1010 0010 Wir 0000 Wik

1 2 3 4 5 6

Detailed Description of Instruction Execution

Wid

7 8

32
BITS

C(C(Wir)+Wid) is added algebraically to C(FPO) and this sum re­
places C(FPO). That is, C(C(Wir)+Wid)+C(FPO) replaces
C (FPO) .

C(ACF) is updated to reflect overflow.

Operand Wik Object Code (Hex)
Types .!11!~§'1~

Hi 0 A
Ti 1 A
Di 2 A
Fi 3 A
Vi 7 A

Example

Label Ope
Field Field

ADDX

2
2
2
2
2

i 0 0 d d d
i 0 1 d d d
i 0 2 d d d
i 0 3 d d d
i 0 7 d d d

Operand
Field

DTYPI

-

Conunent
Field

ADD DOUBLE WORD TO FPO

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-3

INSTRUCTIONS

AND WITH IMMEDIATE

AND Rj,N
AND N,Rj

Type 4 Instruction

1000 0001 Rj 0000 N 24
BITS

1 2 3 4 5 6

Detailed Description of Instruction Execution

C(C(Rj» are logically ANCed with N.
C(C(Rj».

The result replaces

Operand
Types

Rj,N
N,Rj

Example

Label Ope
Field Field

Object Code (Hex)
11l.!S§'

8 1 jOn n
8 1 jOn n

Operand
Field

AND R3,X'B'
AND X'C',RS

Comment
Field

Provided for compatibility. Preferred usage is
AND ww.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-4

J

L

INSTRUCTIONS

AND WITH STORAGE

AND Rj,Ri

Type 3 Instruction

1110 0001 Rj

1 2 3

Ri

4

16
BITS

Detailed Description of Instruction Execution

C(C(Rj» are logically ANDed with C(C(Ri».

The result replaces C(C(Rj».

Operand
Types

Rj,Ri

Example

Label

Field

Object Code (Hex)
1 2 3 4 - - --
E 1 j i

OpC Operand

Field Field
----- -------

AND R15,R14

Comment

Field

NOTE : Provided for compatibility. Preferred usage is
AND W.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-5

. INSTRUCTIONS

AND ELEMENT WITH ELEMENT

AND Wi,Wj

Type 6 Instruction

1111 1011 Wir Wjr Wik Wid

1 2 3 4 5 6 7

Wjk Wjd

9 10 11

Detailed Description of Instruction Execution

8

12

48
BITS

C(C(Wir)+Wid) is logically ANDed with C(C(Wjr)+Wjd). The result
replaces C(C(Wjr)+Wjd).

Operand Wik Wjk Object Code (Hex)
Types .!11!~§'1~lQ.!1

Ci,Cj 0 0 F B r r 0 d d d 0 d d d
Hi,Hj 0 0 F B r r 0 d d d 0 d d d
Ti,Tj 1 1 F B r r 1 d d d 1 d d d
Di,Dj 2 2 F B r r 2 d d d 2 d d d
Fi,Fj 3 3 F B r r 3 d d d 3 d d d
Si,5j 3 3 F B r r 3 d d d 3 d d d
Vi,Vj 7 7 F B r r 7,. d d d 7 d d d

Example

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

AND HTYPI,HTYPJ
AND CTYPI,HTYPJ
AND TTYPI,TTYPJ
AND DTYPI,DTYPJ
AND FTYP I , FTYPJ
AND STYPI,STYPJ

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-6

J

J

INSTRUCTIONS

ATTACH REGISTER

ATT Rj

Type 3 Instruction

0011 1101 Rj

1 2 3

0000

4

16
BITS

Detailed Description of Instruction Execution

If Rj is detached, it is attached.

Operand Object Code (Hex)
Types 1 2 3 4

Rj 3 0 j 0

Example

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

ATT R12 ATTACH

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-7

REG

· INSTRUCTIONS

ATTACH REGISTER AND SET REGISTER

ATT Ri,Rj

Type 3 Instruction

0011 1110 Ri Rj

1 2 3 4

16
BITS

J

Detailed Description of Instruction Execution

This instruction attaches Ri if it is detached. It then sets the
C(Rj) to point in unlinked format to byte zero of the buffer that
the C(Ri) addresses.

Operand
Types

Ri,Rj

Example

Label OpC
Field Field

ATT

Object Code (Hex)
1 2 3 4 - --
3 E i j

Operand
Field

R12,R14

Comment
Field

POINT R14 AT R12 t S BUFFER

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-8

(.

· INSTRUCTIONS

BRANCH TO LOCAL LOCATION

B L

Type 12 Instruction

0011 0101 0000 L-1

1 2 3 4 5 6

Detailed Description of Instruction Execution

24
BITS

Control is transferred to the location in th& current buffer
defined by the local address of the label L. The local address is
a byte displacement into the executing frame.

Operand Object Code (Hex)
Types 1 2 3 4 "S6

L 3 5 0 1 1 1

Example

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

B LOCLAB

Programming Note: For entry points into a mode OSYM has the
mnemonic instruction EP L, which assembles to the same object
code as this instruction.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 2aSEP88 2-9

INSTRUCTIONS

BRANCH ON BIT CONDITION (SET OR ZERO)

BBc Bi,L

Type 9 Instruction

1011 0101 Bir 0000 Bik Bid

1 2 3 4 5 6 7

r-
I
I C I L-1
I
I

9 10 11

Detailed Description of Instruction Execution

The code c can take on the following values:

Z
S

Complete
MnemoniC

BBZ
BBS

In the
Instruction

0010
0110

Compare
Relation

(BIT) ZERO
(BIT) SET

C(C(Bir) + Bid) is tested for set (one) or zero.

8

12

48
BITS

If the relation corresponds to the comparison code c, control
transfers to L.

Operand
Types

Bi,L

Example

Wik

b

Object Code (Hex)
.!1.14~!1!!.Q..!2

B 5 i 0 b d d d c 1 1 1

Label Ope
Pield Field

Operand
Pield

Comment
Field

B8Z BTYPI,LOCLAB
885 BTYPJ,LOCLAB

7.0 VIRTUAL ASSEMBLY LANGUAGB CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-10

INSTRUCTIONS

BRANCH ON BIT CONDITION (SET OR ZERO) WITH RELATIVE OFFSET

BBc Ri,Hj,L

Type 9 Instruction

I
I
I 1101 0010 Hjr Ri I Hjk Hjd
I
I

1 2 3 4 5 6 7 8

c L-1

9 10 11 12

Detailed Description of Instruction Execution

The code C can take on the following values:

Complete In the Compare
Mnemonic Instruction Relation

Z BBZ 0010 (BIT) ZERO
S BBS 0110 (BIT) SET

C(C(Ri)+C(C(Hjr)+Hjd» is tested for set (one) or zero.

48
BITS

If the relation corresponds to the comparison code c, control
transfers to L.

Note: The bit offset, that is, C(C(Hjr)+Hjd», must be zero or
positive.

Operand
Types

Object Code (Hex)
1£~!~§'18!Ql£

Ri,Hj,L 0

Example

Label Ope
Field Field

BBZ
BBS

o 2 j i Odd d c 111

Operand
Field

R1S,HTYPI,LOCLAB
R6,HTYPJ,LOCLAB

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-11

INSTRUCTIONS

BRANCH ON CHARACTER ALPHABETIC

BCcA Ri,L

Type 8 Instruction

1000 1000 Ri 0000 c

1 2 3 4 5

Detailed DescriEtion of Instruction

The code c can take on the following

Complete In the
Mnemonic Instruction

BCA 1000
N BCNA 1100

L-1

6 7

Execution

values:

Compare
Relation

ALPHABETIC
NON ALPHABETIC

8

J

32
BITS

C(C(Ri» is tested as to whether or not it is alphabetic by using
a bit map in the PCB at location X '3EO'.

If the relation corresponds to the comparison code c, the in-
struction causes a branch to L. ~

Operand
Types

Ri,L

Example

Label
Field

Object Code (Hex)
1 2 3 4 5 6 7 .8 - - - - - - _ .. -
8 8 i 0 c 1 1 -1

Ope Operand
Field Field
----- ------- ,

BCA R6,LOCLAB
BCNA RS,LOCLAB

Conunent
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-12

INSTRUCTIONS

BRANCH ON RELATIVE CHARACTER COMPARE

BCc Ci,Rj,L

Type 9 Instruction

1101 0111 Cir Rj Cik Cid

1 2 3 4 5 6 7

.--
I ,

C I L-1
I
I

9 10 11

Detailed Description of Instruction Execution

The code c can take on the following values:

Complete In the Compare
Mnemonic Instruction Relation

L BCL 1001 LESS THAN
E BCE 1010 EQUAL
H BCH 1011 HIGHER THAN
HE BCHE 1101 HIGHER THAN
U BCU 1110 UNEQUAL
LE BCLE 1111 LESS THAN OR

C(C(Cir)+Cid) is compared logically with C(C(Rj».

8

12

OR EQUAL

EQUAL

48
BITS

If the relation corresponds to the comparison code c, the instruc­
tion causes a branch to L to occur.

Operand
Types

Ci,Rj,L 0

Example

Label Ope
Field Field

BCE
BCLE

Object ~ (Hex)
!ll!~§'l!!Q!l

o 7 i j 0 d d d c 1 1 1

Operand
Field

CTYPI,R7,LLB
CTYPJ,R13,LOCB

Conunent
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-13

· INSTRUCTIONS

BRANCH IMMEDIATE COMPARED TO CHARACTER

BCc N,Ri,L

Type 10 Instruction

1000 0111 Ri 0000 N c

1 2 3 4 5 6 7

L-l 40
BITS

8 9 10

Detailed Descrietion of Instruction Execution

The code c can take on the following values:

Complete In the Compare
Mnemonic Instruction Relation

L BCL 1001 LESS THAN
E BCE 1010 EQUAL
H BCH 1011 HIGHER THAN
HE BCHE 1101 HIGHER THAN OR EQUAL
U BCU 1110 UNEQUAL
LE BCLE 1111 LESS THAN OR EQUAL

N is compared logically with C(C(Ri»; the instruction causes a
branch to L if the relation corresponds to the comparison code
c.

Oeerand
Types

Ri,N,L

Example

Label Ope
Field Field

Object Code (Hex)
.!11!~61!lQ

.,.4..-(;.i 0 nnc III
%,

Operand
Field

Comment
Field

BCU C'O',R14,LOCLAB
BCLE C'J',R9,LOCABS

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-14

L

INSTRUCTIONS

BRANCH ON CHARACTER NUMERIC

BCcN Ri,L

Type 8 Instruction

1000 1001 Ri 0000 c

1 2 3 4 5

Detailed DescriEtion of Instruction

The code c can take on the following

Complete In the
Mnemonic Instruction

BCN 1001
N BCNN 1101

L-l

6 7

Execution

values:

Compare
Relation

NUMERIC
NON NUMERIC

8

32
BITS

C(C(Ri)) is tested as to whether or not it is numeric, that is,
ASCII a to 9.

If the relation corresponds to the comparison code c, the
instruction causes a branch to L.

Ol2erand Object Code (Hex)
TYl2es 1 2 3 4 ~§'1.!!

Ri,L 8 9 i a c 1 1 -1

Examl2le

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

BCN R6,LOCLAB
BCNN RS,LOCLAB

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 2eSEP88 2-15

INSTRUCTIONS

BRANCH ON CHARACTER COMPARE

BCc Ri,Rj,L

Type 8 Instruction

1110 0111 Ri Rj c L-1 32
BITS

1 2 3 4 5 6 7 8

Detailed Description of Instruction Execution

The code c can take on the following values:

Complete In the Compare
Mnemonic Instruction Relation

L BCL 1001 LESS THAN
E BCE 1010 EQUAL
H BCH 1011 HIGHER THAN
HE BCHE 1101 HIGHER THAN OR EQUAL J U BCU 1110 UNEQUAL
LE BCLE 1111 LESS THAN OR EQUAL

C(C(Ri» are compared logically with C(C(Rj»; the instruction
causes a branch to L if the relation corresponds to the
comparison code c.

Operand
Types

Object Code (Hex)
1 2 3 4 5 6 7 8

Ri,Rj

Example

Label Ope
Field Field

E 7 i j c 1 1 1

Operand
Field

BCE R14,RlS,LOCLAB
BCLE R7,R9,LOCABS

Conunent
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-16

INSTRUCTIONS

BRANCH ON CHARACTER HEXADECIMAL

BCcX Ri,L

Type 8 Instruction

1000 1010 Ri 0000 c

1 2 3 4 5

Detailed DescriEtion of Instruction

The code c can take on the following

Complete In the
Mnemonic Instruction

BCX 1001
N BCNX 1101

C(C(Ri» is tested as to whether or
is, ASCII o to 9 or A to F.

L-1

6 7 8

Execution

values:

Compare
Relation

HEXADECIMAL
NON HEXADECIMAL

not it is hexadecimal,

32
BITS

that

If the relation corresponds to the comparison code c, the
instruction causes a branch to L.

O12erand Object Code (Hex)
TY12es 1 2 3 4 567 8 - - --

Ri,L 8 A i 0 c 1 1 1

ExarnEle

Label ope Operand Comment
Field Field Field Field
----- ----- ------- -------

BCX R6,LOCLAB
BCNX R5,LOCLAB

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-17

· INSTRUCTIONS

BRANCH ON REGISTER TO REGISTER COMPARE

Bc Ri,Rj,L

Type 8 Instruction

0101 0100 Ri Rj c L-1

1 2 3 4 5 6 7

Detailed Description of Instruction Execution

The code c can take on the following values:

E
U

Complete
Mnemonic

BE
BU

In. the
Instruction

t ,,,fIO 1 0
L110

Compare
Relation

EQUAL
UNEQUAL

8

32
BITS

Ri and Rj are normalized and attached. The FlO fields of the two
registers are compared. If they are equal, the displacement fields
are compared. The instruction causes a branch to L if the result
of the compares corresponds to the comparison code c. C(Ri) and
C(Rj) are not changed other than being normalized and attached. ~

Operand
Types

Ri,Rj,L

Object Code (Hex)
1.f.J.!~~1!

.'
5 4 i j c I I I

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-18

~

INSTRUCTIONS

BRANCH ON ADDRESS REGISTER COMPARE

Bc Si,Rj,L
Bc Rj,Si,L

Type 9 Instruction

1101 0100 Sir

1 2 3

Rj Sik

4 5

c

9

Detailed DescriEtion of Instruction

The code c can take on the following

Complete In the
Mnemonic Instruction

E BE /1 1010 ~ ~ ''''
U BU 1110 ' , :>

~-

Sid

6 7

L-1

10 11

Execution

values:

Compare
Relation

EQUAL
UNEQUAL

8

12

48
BITS

This instruction is always executed as Si compared to Rj. If the
second form is used, the c field conditions are inverted.

If Rj is attached, the detached form is calculated. If Rj is
detached, the register is attaChed and then the detached form is
calculated.

In either case, the virtual storage address in Rj is normalized
(displacement between 0 and 511 for unlinked frames and displace­
ment between 0 and 500 for linked frames).

After Rj is
fields of the
corresponds to
branch to L.

normalized, the displacement fields and the FlO
two operands are compared. If the relation

the comparison code c, the instruction causes a

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-19

INSTRUCTIONS

BRANCH ON ADDRESS REGISTER COMPARE (cont)

Operand
Types

Wik

Si,Rj,L 3

Example

Label OpC
Field Field

Object Code (Hex)
1 2 3 4 5 6 7 890 1 2 ------------
B 4 i j 3 d d d c 1 1 1

Operand
Field

Comment
Field

BE R14,STYPI,LOCLAB
BU STYPJ,RS,LOCLAB

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-20

J.

INSTRUCTIONS

BRANCH ON ZERO CONDITION

Bc Wi, L

Type 9 Instruction

1011 0100 Wir 0000 Wik Wid

1 2 3 4 5 6 7 8

c L-1

9 10 11 12
The code c can take on the following values:

complete In the Compare
Mnemonic Instruction Relation

LZ BLZ 0001 LESS THAN
Z BZ 0010 EQUAL
HZ BHZ 0011 HIGHER THAN
HEZ BHEZ 0101 HIGHER THAN OR EQUAL
NZ BNZ 0110 UNEQUAL
LEZ BLEZ 0111 LESS THAN OR EQUAL

48
BITS

C(C(Wir)+Wid) is compared arithmetically with zero; the
instruction causes a branch to L if the relation corresponds to
the comparison code c.

C(ACF) is not changed.

Ol2erand Wik Object Code (Hex)
TYl2es 111!~§'1!2.Ql1

Hi,L 0 B 4 i 0 0 d d d c 1 1 1
Ti,L 1 B 4 i 0 1 d d d c 1 1 1
Di,L 2 B 4 i 0 2 d d d c 1 1 1
Fi,L 3 B 4 i 0 3 d d d c 1 1 1
Vi,L 7 B 4 i 0 7 d d d c 1 1 1

Example

Label Ope
Field Field

Operand
Field

Comment
Field

BNZ HTYPI,LOCLAB
BLEZ FTYPI,LOCLAB

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-21

· I NSTRUCT IONS

BRANCH ON ELEMENT COMPARE

Bc Wi,Wj ,L

Type 11 Instruction

1111 0100 Wir Wjr Wik Wid

1 2 3 4 5 6 7 8

Wjk Wjd c L-1

9 10 11 12 13 14 15 16

Detailed Description of Instruction Execution

The code c can take on the following values:

Complete In the Compare
Mnemonic Instruction Relation

L BL 0001 LESS THAN
E BE 0010 EQUAL
H BH 0011 HIGHER THAN
HE BHE 0101 HIGHER THAN OR EQUAL
U BU 0110 UNEQUAL
LE BLE 0111 LESS THAN OR EQUAL

C(C(Wir)+Wid) is compared arit~etically with C(C(Wjr)+Wjd).

64
BITS

J

If the relation corresponds to the comparison code c, the
instruction causes a branch to L.

Note: Storage registers (element type S) can only be used with
mnemonics BE and BU.

Operand ~ Wjk Object Code (Hex)
Types .!~~!i!l!!O!~~!i!

Hi,Hj,L 0 0 F 4 i j 0 d d dOd d d c 1 1 1
Ti,Tj,L 1 1 F 4 i j 1 d d dId d d c 1 1 1
Di,Dj,L 2 2 F 4 i j 2 d d d 2 d d d c 1 1 1
Fi,Fj,L 3 3 F 4 i j 3 d d d 3 d d d c 1 1 1
Si,Sj,L 3 3 F 4 i j 3 d d d 3 d d d c 1 1 1
Vi,Vj,L 7 7 F 4 i j 7 d d d 7 d d d c 1 1 1

.J.

7.0 VIRTUAL ASSEMBLY LANGUAGB CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-22

INSTRUCTIONS

BRANCH ON STORAGE COMPARE (cont)

Example

Label OpC
Field Field

Operand
Field

BE HTYPI,HSTYPJ,LLB
BLE FTYPI,FTYPJ,LOCB

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-23

INSTRUCTIONS

BASIC DECODE

BDCD

Type 3 Instruction

0100 1000 0110

1 2 3

0011

4

16
BITS

Detailed Description of Instruction Execution

J

This instruction assumes that R6 is pointing one byte before a
compiler object code (COC) instruction. The instruction pointer
R6 is incremented by one so that it points at the cac instruction
operation code byte. The operation code may be followed by an
operand. In any case, R6 will be incremented subsequently by the
amount necessary to make it point one before the next coc
instruction.

The one-byte operation code of the-COC instruction is read. If
the code is implemented in microcode, the firmware uses the code
as an index into the branch table to get the address of a
software routine to execute the operation. The firmware branchesJ .. to that routine. If the code is implemented in microcode, th .
microcode branches to one of its own routines to execute it.

Refer to the Basic Runtime System for the codes that are
implemented in microcode.

Object Code (Hex)
1 2 3 4

Operand
Types - - --

Example

Label Ope
Field Field

4 8 i j

Operand
Field

BDCD *

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-24

INSTRUCTIONS

BRANCH DECREMENTING BY ONE COMPARE

BDc Wj,L

Type _ 9 Instruction
, -

1011 1100 Wjr 0000 Wjk Wjd

1 2 3 4 5 6 7 8 ,

r ;.

I
I c L-1 I
I
I

9 10 11 12

Detailed Description of Instruction Execution

The code c can take on the following values:

Complete In the Compare
Mnemonic Instruction Relation

LZ BDLZ 0001 LESS THAN
Z BOZ 0010 EQUAL
HZ BOHZ 0011 HIGHER THAN
HEZ BDHEZ 0101 HIGHER THAN OR EQUAL
NZ BDNZ 0110 UNEQUAL
LEZ BDLEZ 0111 LESS THAN OR EQUAL

48
BITS

One is subtracted from C(C(Wjr)+Wjd) and this result replaces
C(C(Wjr)+Wjd). Then C(C(Wjr)+Wj~) is tested for its relation to
zero.

If the relation corresponds to the comparison code c, the instruc­
tion causes a branch to L to occur.

C(ACF) is NOT changed.

Operand Wjk Object Code (Hex)
Types 1~~4.2§'1!!.Q.l~

Hj,L 0 B C j 0 a d d d c 1 1 1
Tj,L 1 B C j 0 1 d d d c 1 1 1
OJ,L 2 B C j 0 2 d d d c 1 1 1
Fj ,L 3 B C j 0 3 d d d c 1 1 1
Vj,L 7 B C j 0 7 d d d c 1 1 1

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-25

INSTRUCTIONS

BRANCH DECREMENTING BY ONE COMPARE (cont)

Example

Label ope
Field Field

BDZ
BDLEZ

Operand
Field

TTYPJ,LLB
DTYPJ,LOCB

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-26

INSTRUCTIONS

BRANCH DECREMENTING ON ELEMENT COMPARE

BOc Wj,Wi,L

Type 11 Instruction

1111 0010 Wjr Wir Wjk Wjd

1 2 3 4 5 6 7

Wik Wid c L-1

9 10 11 12 13 14 15

Detailed DescriEtion of Instruction Execution

The code c can take on the following values:

Complete In the Compare
Mnemonic Instruction Relation

LZ BDLZ 0001 LESS THAN
Z BDZ 0010 EQUAL
HZ BDHZ 0011 HIGHER THAN
HEZ BDHEZ 0101 HIGHER THAN
NZ BDNZ 0110 UNEQUAL

8

16

OR EQUAL

64
BITS

LEZ BDLEZ 0111 LESS THAN OR EQUAL

C(C(Wir)+Wid) is subtracted from C(C(Wjr)+Wjd) and this result
replaces C(C(Wjr)+Wjd). Then C(C(Wjr)+Wjd) is tested for its
relation to zero.

If the relation corresponds to the comparison code c, the instruc-
tion causes a branch to L to occur.

C(ACF) is NOT changed.

°Eerand Wjk Wik Object Code {Hex}
TyJ?e8 1 2 3 4 5 6 789 0 1 2 3 4 5 6 ------ - - - -- - - - --

Hj,Hi,L 0 0 F 2 j i 0 d d d 0 d d d c 1 1 1
Tj ,Ti,L 1 1 F 2 j i 1 d d d 1 d d d c 1 1 1
Dj,Di,L 2 2 F 2 j i 2 d d d 2 d d d c 1 1 1
Fj,Fi,L 3 3 F 2 j i 3 d d d 3 d d d c 1 1 1
Vj,Vi,L 7 7 F 2 j i 7 d d d 7 d d d c 1 1 1

-
7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-27

INSTRUCTIONS

BRANCH DECREMENTING ON STORAGE COMPARE (cont)

Example

Label OpC
Field Field

BDZ
BDLEZ

Operand
Field

TTYPJ,TSTYPI,LLB
DTYPJ,DTYPI,LOCB

Comment
Field

Programming Note: If the first operand (Wj) is being decremented
by one, use the BOc Wj,L instruction, which decrements by one
implicitly.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-28

INSTRUCTIONS

BRANCH ON LOGICAL COMPARE

BL.c Wi,Wj,L

Type 11 Instruction

1111 0001 Wir Wjr Wik Wid

1 2 3 4 5 6 7 8

Wjk Wjd c L-1 64

9 10 11 12 13 14 15 16

Detailed Description of Instruction Execution

The code c can take on the following values:

Complete
Mnemonic

L BL.L
E BL.E
H BL.H
HE BL.HE
U BL.U
LE BL.LE

In the
Instruction

1001
1010
1011
1101
1110
1111

Compare
Relation

LESS THAN
EQUAL
HIGHER THAN
HIGHER THAN OR EQUAL
UNEQUAL
LESS THAN OR EQUAL

BITS

C(C(Wir)+Wid) is compared logically with C(C(Wjr)+Wjd). If the
relationship matches the compa~ison code c, control transfers to
L.

C(ACF) is NOT changed.

Operand
Types

Ci,Cj,~
Hi,Hj,L
Ti,Tj ,L
Di,Dj,L
Fi,Fj,L
Vi,Vj,L

0
0
1
2
3
7

0
0
1
2
3
7

Object Code (Hex)
1£1!~il!!'?'Q!21!~i

F 1 i j 0 d d d 0 d d d c 1 1 1
F 1 i j 0 d d d 0 d d d c 1 1 1
F 1 i j 1 d d d 1 d d d c 1 1 1
F 1 i j 2 d d d 2 d d d c 1 1 1
F 1 i j 3 d d d 3 d d d c 1 1 1
F 1 i j 7 d d d 7 d d d c 1 1 1

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-29

INSTRUCTIONS

BRANCH ON LOGICAL COMPARE (cont)

Example

Label OpC
Field Field

Operand
Field

BL.E TTYPI,TSTYPJ,LLB
BL.L DTYPI,DTYPJ,LOCB

Conunent
Field

Progranuning Note: The mnemonic form BCc Ci,Cj,L results in the
same object code as BL.c Ci,Cj,L.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-30

INSTRUCTIONS

BRANCH AND STACK INDIRECT TO A MODAL ENTRY

BSLI

Type 1 Instruction

i
I

: 0000
I
I

0101

1 2

8
BITS

Detailed Description of Instruction Execution

The address of the instruction following this instruction is
pushed onto the return stack.

C(TO) is assumed to be a mode-id with the entry point number
(Me) in bits 0-3 and the FID (Mf) in bits 4-15.

Control is transferred to frame Mf at location 1+(2*Me).

When this instruction is executed, register one is updated to
point to byte zero of the ASS frame being entered.

Operand
Types

Example

Label OpC
Field Field

BSLI

Object Code (Hex)
1 2

o 5

Operand
Field

Comment
Field

Cautionl This instruction generates a RETURN STACK FULL abort if
RSCWA ia incremented beyond the end of the stack.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 ' 2-31

INSTRUCTIONS

BRANCH AND STACK TO LOCAL LOCATION

BSL L

Type 12 Instruction
::. I

0011 0001 0000 L-1

1 2 3 4 5 6

Detailed Description of Instruction Execution

24
BITS

The address of the instruction following this instruction is
pushed onto the return stack. Control is transferred to the
instruction at L.

Operand
Types

L

Example

Label OpC
Field Field

Object Code (Hex)
111!~§'

3 1 all 1

Operand
Field

BSL LOCLAB

Comment
Field

Caution: This instruction generates a RETURN STACK FULL abort if
RSCWA is incremented beyond the end of the stack.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-32

L

INSTRUCTIONS

BRANCH AND STACK TO A MODAL ENTRY

BSL M
BSL N,M

Type 12 Instruction
~ ;7 .:i) (

0011 0000 Me Mf 24
BITS

1 2 3 4 5 6

Detailed Description of Instruction Execution

The address of the instruction following this instruction is
pushed onto the return stack.

M is a mode-id made up of an entry point number (Me) and a FlD
(Mf). Control transfers to frame Mf at location 1+(2*Me).

When this instruction is executed, register one is updated to
point to byte zero of the ASS frame being entered.

Operand
Types

M
N,M

Example

Label Ope
Field Field
----- -----
M'l'YPJ DEFM

SSL
BSL

Object Code (Hex)
1 2 3 4 5 6 - --
3 0 e f f f
3 o n f f f

Where e,n are entry point numbers and fff are
the 3 nibbles (12 bits) of the FlO (Mf). When N
is given, n overrides e.

Operand Comment
Field Field ------- -------
12,128
MTYPJ
6,MTYPJ

Caution: This instruction generates a RETURN STACK FULL abort if
RSCWA is incremented beyond the end of the stack.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-33

INSTRUCTIONS

BRANCH ON STRING COMPARE

BSTc Ri,Rj,N,L

Type 10 Instruction

0100 1100 Ri Rj

1 2 3 4 5

8

Detailed Description of Instruction

The code c can take on the following

Complete In the
Mnemonic Instruction

E BCE 1010
U BCU 1110

N c

6 7

L-1

9 10

Execution

values:

Compare
Relation

EQUAL
UNEQUAL

40
BITS

J

This instruction may be used to compare two strings. Each strin~
must end with a delimiter.

C(Ri) and C(Rj) are incremented by 1.

If C(C(Ri» and C(C(Rj» are equal and less than N (delimiter
character), the instruction increments the registers and compares
again.

If the contents of both bytes are greater than or equal to N, the
strings are considered equal and the instruction branches or not
depending on the comparison code c.

If the contents of both bytes are less than N but unequal to each
other, the strings are considered unequal and the instruction
branch •• or not depending on the comparison code c.

Operand
Types

Ri,Rj,N,L

Ob1ectCode (Hex)
.!~l!~§'l~!Q

4 C i j n n c I I I

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-34

INSTRUCTIONS

BRANCH ON STRING EQUAL (cont)

Example

Label OpC
Field Field

Operand
Field

Comment
Field

BSTE R3,R5,X'FC',LOCLAB

Programming Note: This instruction can be used in conjunction
with the BRANCH CHARACTER LOW instruction to compare two strings:

BSTE R14,R15,M,EQUAL

BCL R14,R15,LOW

B HIGH

where M is a delimiter value that is defined
elsewhere. EQUAL, LOW, and HIGH are local labels.

The first instruction compares strings.
encountered, the strings are equal.

If the delimiter is

The second instruction compares the two bytes that were found
unequal by the first instruction.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-35

INSTRUCTIONS

COMPARE STRINGS

COMP Ri,Rj,L

Type 8 Instruction

0100 1101 Ri Rj 0000 L-1 32
BITS

1 2 3 4 5 6 7 8

Detailed Description of Instruction Execution

This instruction compares two strings until it finds two unequal
characters or until it finds a delimiter in one or both strings.

Before instruction execution C(Ri) and C(Rj) must point one byte
before their respective strings. C(Ri) and C(Rj) are each
incremented by one. If C(C(Ri» and C(C(Rj» are equal and not
delimiters, the registers are again incremented and the next
characters compared. This process continues until the characters
are unequal or until a delimiter is found in one or both strings.

The instruction recognizes three classes of delimiters. The first
class comprises all the values in the range X'FB'-X'FF'. Any of
these values signal the end of the string.

The next delimiter class is the value X'F9'. This delimiter tell~
the firmware two things: Numeric characters follow, and they are
being sorted in ascending sequence.

The third class of delimiter~is the value X'FA'. It tells the
firmware that numeric characters follow but they are being sorted
in descending sequence.

If the corresponding characters from each string are both numeric
delimiters (X'F9' or X'FA'), the instruction branches to
location L. If only one of the characters is a numeric delimiter,
the branch is not taken. The instruction does not convert the
numeric characters following an X'F9' or X'FA' delimiter. Also,
the in.truction does not look at a character to see if it is
numeric. The X'F9' or X'FA' delimiter must be inserted in the
string by the software before the COMP instruction is executed.

When the branch is taken, the software knows that both delimiters
are numeric. Otherwise, the instruction does not inform the
software that a numeric delimiter was encountered .

When the branch is taken, the
instruction falls through, ACF
undefined, and EQUBIT and LOWBIT
A.

ACF is not changed. When the
OVFBIT is zeroed, NUMBIT is

are set as summarized in Figure

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-36

INSTRUCTIONS

COMPARE STRINGS (cont)

~ If AND Then it means that and it sets
String 1 String 2 EQUBIT LOWBIT
C (C (Ri)) C(C(Rj»
is is

F9-FA F9-FA Both are numerics. N/C N/C
Branch is taken.

FB-FF FB-FF String 1 = String 2 1 0

<F9 and <F9 String 1 > String 2 0 0
>C (C (Rj))

<F9 and <F9 String 1 < String 2 0 1
<C(C(Rj»

F9-FA FB-FF String 1 > String 2 0 0
String 1 is longer.

FB-FF F9-FA String 1 < String 2 0 1
String 2 is longer.

FB-FF <F9 String 1 < String 2 0 1
String 2 is longer.

<F9 FB-FF String 1 > String 2 0 0
String 1 is longer.

F9 <30 String 1 > String 2 0 0
Numeric is greater, ascending.

F9 <F9 and String 1 < String 2 0 1
>=30 Numeric is less, ascending.

FA <DO String 1 > String 2 0 0
Numeric is greater, descending.

FA <F9 and String 1 < String 2 0 1
>=00 Numeric is less, descending.

<30 F9 String 1 < String 2 0 1
Numeric is greater, ascending

<F9 and F9 String 1 > String 2 0 0
>=30 Numeric is less, ascending

<DO FA String 1 < String 2 0 1
Numeric is greater, descending

<F9 and FA String 1 > String 2 0 0
>=00 Numeric is less, descending

7.0 VIRTUAL ASSEMBLY LANGUAqE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-37

INSTRUCTIONS

Figure A. Summary of COMP Instruction Results

J
7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-38

INSTRUCTIONS

COMPARE STRINGS

Operand
Types

Ri,Rj,L

Example

Label OpC
Field Field

COMP
BBS
BBS

(cont)

Object Code (Hex)
1 2 3 4 5 6 7 8

4 0 i j 0 1 1 1

Operand
Field

R14,R15,NUMST
EQUBIT,EQST
LOWBIT,LEST

Comment
Field

COMPARE STRINGS
BRANCH I F EQUAL
BRANCH IF STRING 1 LESS

Programming Note: This instruction was designed to speed up the
ENGLISH SORT verb. For an ascending, left-justified sort, the
verb software puts an X'FF' after each string but does not change
it otherwise. Specifically, the X'F9' delimiter is not used. For
an ascending, right-justified sort, the software puts X'F9'
before each string of numeric characters. When this delimiter is
found in both strings, the software converts the numerics to
binary and sorts then by value. At this writing, the SORT verb
does not use the X'FA' delimiter.

For a descending sort the software uses the two's complement of
each character value for the sort. Since the software does not
use the X'FA' delimiter, a descending, right-justified sort of
numerics is not the reverse of an ascending, right-justified
sort.

7.0 VIRTUAL ASSEMBLY LANGUAGE cprr INSTRUCTIONS
PRELIMINARY 20SEP88 2-39

INSTRUCTIONS

DISABLE BASIC DEBUGGER

DBDB

Type 1 Instruction

0010 0110

1 2

8
BITS

Detailed Description of Instruction Execution

This instruction resets the bits set by EBDB to disable traps to
the Basic Debugger when the BDCD instruction encounters one of
the following compiler object code instrucions:

01

06

Operand
Types

Example

EOL

BRANCH

Label OpC
Field Field

DBDB

Object Code (Hex)
1 2

2 6

Operand
Field

Comment
Field

DISABLE D/B DEBUGGER TRAPS

Programming Note: This instruction along with EBDB replaces
the use of bit DFLG to indicate a trap to the Basic Debugger.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-40

INSTRUCTIONS

DECODE

DCDRR Ri,Rj
DCD (The assembler's aSYM uses R6 for Ri and R3 for Rj)

Type 3 Instruction

0100 0011 Ri

1 2 3

Rj

4

16
BITS

Detailed Description of Instruction Execution

This instruction assumes that Ri is pointing one byte before a
compiler object code (CaC) instruction. The instruction pointer
Ri is incremented by one so that it points at the cac instruction
operation code byte. The operation code may be followed by an
operand. In any case, Ri will be incremented subsequently by the
amount necessary to make it point one before the next COC
instruction.

The one-byte operation code of the cac instruction is read. The
firmware uses the code as an index into the branch table to get
the address of a software routine to execute the operation. The
firmware branches to that routine. The table address is in double
tally DCDFIO in the PCB.

°Eerand Object Code (Hex)
TYEes 1 2 3 4

Ri,Rj 4 3 i j

Example

Label Ope Operand Conunent
Field Field Field Field
----- ----- ------- -------

OCD
OCDR R12,R1S

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-41

INSTRUCTIONS

DECREMENT ADDRESS REGISTER BY ONE

DEC Rj

Type 3 Instruction

0000 0110 Rj 0000

1 2 3 4

16
BITS

Detailed Description of Instruction Execution

If Rj is attached, C(Rj) is decremented by one. If Rj
detached, the displacement field of Rj is decremented by
then the register is attached.

Operand Object Code (Hex)
Types 1 2 3 4

Rj 0 6 j 0

Example

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

DEC R14
"

is
one;

In the linked format, if the resulting memory address is XY17 (XY
represents any even hexadecimal number), that is, if the address
points to byte 23 of a buffer:

1. If the backward link of the current frame is zero, C(R)
remains attached to data byte zero of the current frame;

2. Otherwise, an attempt is made to attach C(R) to the last
data byte of the frame pointed to by the backward link of
the current frame. The "REFERENCING ILLEGAL FRAME" debug
trap could occur in this case.

3. If C(Rj) is decremented again so that the resulting memory
address is XY16, a "BACKWARD LINK ZERO" debug trap will
occur.

Programming Note: Rj is always attached when this instruction
completes execution.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-42

L

INSTRUCTIONS

DECREMENT ADDRESS REGISTER

DEC Rj ,Wi

Type 5 Instruction

1011 0110 Wir Rj Wik

1 2 3 4 5 6

Detailed Description of Instruction Execution

Wid

7 8

32
BITS

If Rj is attached, the memory address field of Rj is decremented
by C(C(Wir)+Wid). If the resulting address crosses the frame
boundary, the register is detached. If Rj is initially detached,
the displacement portion of Rj is decremented by C(C(Wir)+Wid).

Operand Wik
Types

Rj,Hi 1
Rj,Ti 1
Rj,Di 1
Rj,Fi 1

Example

Label Ope
Field Field

Object Code (Hex)
1 2

B 6
B 6
B 6
B 6

3 4 567 8 ------
i j 0 d d d
i j 1 d d d
i j 2 d d d
i j 3 d d d

Operand
Field

DEC R14,TTYPJ

Comment
Field

Progra..ing Note:
register to detach.
attach.

This instruction may cause an attached
It will never cause a detached register to

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 ' 2-43

INSTRUCTIONS

SUBTRACT ONE FROM ELEMENT

DEC Wj

Type 5 Instruction

1010 0110 Wjr 0000 Wjk

1 2 3 4 5 6

Detailed Description of Instruction Execution

C(C(Wjr)+Wjd) is decreased by one.

C(ACF) is NOT changed.

Operand
Types

Hj
Tj
OJ
Fj
Vj

Example

Wjik

0
1
2
3
7

Label OpC
Field Field

Object Code (Hex)
123456 7 8

A 6
A 6
A 6
A 6
A 6

- --
r 0 0 d d d
r 0 1 d d d
r 0 2 d d d
r 0 3 d d d
r 0 7 d d d

Operand
Field

Comment
Field

Wjd

7 8

DEC DTYPJ DECREMENT DTYPJ BY 1

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-44

32
BITS

J

L

INSTRUCTIONS

SUBTRACT ELEMENT FROM ELEMENT

DEC Wj,Wi

Type 6 Instruction

1111 0110 Wjr Wir Wjk Wjd

1 2 3 4 5 6 7

Wik Wid

9 10 11

Detailed Description of Instruction Execution

8

12

48
BITS

C(C(Wir)+Wid) is subtracted from C(C(Wjr)+Wjd). The difference
replaces C(C(Wjr)+Wjd).

C(ACF) is NOT changed.

Operand Wjk Wik Object Code (Hex)
Types 111!~§'I~~Q 1 2

Hj,Hi 0 0
Tj,Ti 1 1
Dj,Di 2 2
Fj,Fi 3 3
Vj,Vi 7 7

Example

Label 0pC
Field Field

F 6 j
F 6 j
F 6 j
F 6 j
F 6 j

Operand
Field

i Odd d
i 1 d d d
i 2 d d d
i 3- d d d
i 7 d d d

DEC HTYPJ,HTYPI
DEC STYPJ,STYPI

0 d d d
1 d d d
2 d d d
3 d d d
7 d d d

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-45

INSTRUCTIONS

DIVIDE

DIV Wi

Type 5 Instruction

1010 1001 Wir 0000 Wik

1 2 3 4 5 6

Detailed Description of Instruction Execution

Wid

7 8

32
BITS

C(DO) is divided by C(C(Wir)+Wid). A 4-byte quotient replaces
C(DO); a 4-byte remainder replaces C(Dl).

The sign of the quotient is determined by the rules of algebra.
The sign of the remainder is the sign of the dividend.

C(ACF) is changed: OVFBIT is set only when a divide by zero is
attempted. It is not set for any other overflow condition.

Operand Wik
Types

Hi 0
Ti 1
Di 2
Vi 7

Example

Label OpC
Field Field

DIV
DIV

Object Code {Hex}
1 2 3 4 5 6 7 8

A 9
A 9
A 9
A 9

- -
i 0 0 d d d
i 0 1 d d d
i 0 2 d d d
i 0 7 d d d

Operand
Field

TTYPJ
FTYPI

Comment
Field

DO/TTYPJ
FPO/FTYPI

Progra..ing Note: Oata can be moved out of FPY using a Move
Storage to Storage instruction.

Programming Note: The mnemonic OIV may be used with F type
operands (six-byte elements), but the object code generated by
the assembler is the same as that generated for instruction DIVX.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-46

(.

INSTRUCTIONS

DIVIDE EXTENDED

DIVX Wi

Type 5 Instruction

1010 1000 Wir 0000 Wik

1 2 3 4 5 6

Detailed Description of Instruction Execution

Wid

7 8

32
BITS

C(FPO) is divided by C(C(Wir)+Wid). A 6-byte quotient replaces
C(FPO): a 6-byte remainder replaces C(FPY).

The sign of the quotient is determined by the rules of algebra.
The sign of the remainder is the sign of the dividend.

C(ACF) is changed: OVFBIT is set only when a divide by zero is
attempted. It is not set for any other overflow condition.

Operand Wik Object Code (Hex)
Types .!11!~§'2.!

Hi 0 A 8 i 0 Odd d
Ti 1 A 8 i 0 1 d d d
Di 2 A 8 i 0 2 d d d
Fi 3 A 8 i 0 3 d d d
Vi 7 A 8 i 0 7 d d-d

Programming Note: Data can be moved out of FPY by using a Move
Storage to Storage instruction.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20~EP88 2-47

.. ,.. ". ~ -.

INSTRUCTIONS

DIVIDE DOUBLE-EXTENDED

DIVXX Fi

Type 5 Instruction

1010 1100 Fir 0000 Fik

1 2 3 4 5 6

Detailed Description of Instruction Execution

Fid

7 8

32
BITS

This instruction divides a ten-byte binary number by
C(C(Fir)+Fid). The most significant four bytes of the number must
be in the four low-order bytes of FPY; the least significant six
bytes must be in FPO. After the division the quotient is placed
in FPO and the remainder in FPY.

The sign of the quotient is determined by the rules of algebra.
The sign of the remainder is the sign of the dividend.

C(ACF) is changed: OVFBIT is set only when a divide by zero is
attempted. It is not set for any other overflow condition.

Operand
Types

Fik Object Code (Hex)
l£l!~il!

Fi 3 A C i 0 3 d d:'d

Example

Label Ope
Field Field

DIVXX

Operand
Field

FTYPJ

Conunent
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-48

INSTRUCTIONS

DEQUEUE I/O REQUEST

DQIO Rj,N

Type 4 Instruction

0101 1111 Rj

1 2 3

0000 N

4 5 6

Detailed Description of Instruction Execution

24
BITS ~:: ;-i C /'

, 0 '1 '

This instruction retrieves a completed task descriptor (TD) from
its Completions Queue, returning the virtual storage address of
the TO in Rj.

N is an eight-bit literal defining the dequeue criteria as
follows:

Bit Meaning

0-3 Undefined;

4 o = Don't wait if request is not satisfied (No-Wait
option) ;

1 = Wait for completion (Wait option);

5-6 Undefined;

7 0 = Dequeue first TO on queue (Dequeue option);
1 = Search queue for matching Stream number (Stream

option) .

No-Wait Option

When executed with the No-Wait option, the instruction always
completes immediately with the status code in HO indicating
whether or not a TO was actually dequeued as follows:

Code Meaning
(Hex)

00 TD successfully dequeued;

01 Completions Queue empty;

11 No TD on queue with requested Stream number.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 . 2-49

INSTRUCTIONS

DEQUEUE 1/0 REQUEST (cont)
"(

Wait Option

With the Wait option this instruction completes immediately if
there is a suitable TO on the Completions Queue. If there is no
suitable TO on the queue, the instruction roadblocks the process
by setting the IOWAIT! roadblock (removing the process from the
Priority Queue) until a completed TO is queued onto the process's
Completions Queue. The effect of this will be that the process
will be re-activated executing the same OQIO instruction.

A process can be roadblocked indefinitely if the instruction is
executed with the Wait option in the following situations:

N specifies the Dequeue option, but the queue is empty and
there are no outstanding TDs;

N specifies the Search option, but there are no TOs with the
specified Stream number in the queue or outstanding.

Dequeue Option

The Dequeue option dequeues the first TO on the Completions
Queue.

Stream Option

When the Stream option is specified, the Stream number to search
for must be specified in HO.

O12erand
TyJ?es

Rj,N

EXanl121e

Label
Field

Object Code
111!~§'

5 F j 0 n n

Ope Operand
Field Field
----- -------
DQIO R3,X'O'

{Hex}

Comment
Field

GET NEXT TO

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-50

J

INSTRUCTIONS

ENABLE BASIC DEBUGGER

EBDB

Type 1 Instruction

0010 0101

1 2

8
BITS

Detailed Description of Instruction Execution

This instruction sets a bit in the PIB and a hardware bit
directly testable by microcode to cause a trap to the Basic
Debugger when the BDCD instruction encounters one of the
following compiler object code instrucions:

01

06

Operand
Types

Example

EOL

BRANCH

Label OpC
Field Field

EBDB

Object Code (Hex)
1 2

2 5

Operand
Field

Conunent
Field

ENABLE DIB DEBUGGER TRAPS

Programming Note: This instruction along with DBDB replaces
the us. of bit DFLG to indicate a trap to the Basic Debugger.

7.0 VIRTUAL ASSEMBLY LANGUAGE CpU INSTRUCTIONS
PRELIMINARY 20SEP88 2-51

INSTRUCTIONS

EXTERNAL BRANCH INDIRECT TO A MODAL ENTRY

ENTI

Type 1 Instruction

0000 0100

1 2

8
BITS

Detailed Description of Instruction Execution

C(TO) is assumed to be a Mode-ID with the entry point number (Me)
in bits 0-3 and the FlO (Mf) in bits 4-15.

Control is transferred to the specified frame (Mf) at location
1+(2*Me) .

Operand
Types

Example

Label ope
Field Field

ENTI

Object Code (Hex)
1 2

a 4

Operand
Field

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-52

L

INSTRUCTIONS

EXTERNAL BRANCH TO A MODAL ENTRY

ENT M

Type 12 Instruction

0011 0100 Me Mf

1 2 3 4 5 6

Detailed Description of Instruction Execution

24
BITS

Control is transferred to the mode with FID Mf at location
1+ (2 *Me) .

Operand
Types

M

Example

Label
Field

MTYPJ

OpC
Field

DEFH

ENT

Object Code (Hex)
111!.2§.

3 4 e f f f

Where e is the entry point number and fff are
the 3 nibbles (12 bits) of the FlO (Mf).

Operand Comment
Field Field
------- -------
12,128

MTYPJ

Programming Note: The assembler also recognizes the mnemonic
format

EIft' N,H 1 0 n f f f

where N overrides the He for M. The opcode and Mf are the same,
however. Execution of the object code instruction is also the
same.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 205EP88 2-53

. INSTRUCTIONS

HALT

HALT

Type 1 Instruction

0000 1000

1 2

8
BITS

Detailed Description of Instruction Execution

This instruction causes a trap to a debugger.

The instruction traps to the Software Debugger, which displays
the message "HALT INSTRUCTION."

Operand
Types

Example

Label OpC
Field Field

HALT

Object Code (Hex)
1 2

o 8

Operand
Field

Conunent
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-54

INSTRUCTIONS

INCREMENT ADDRESS REGISTER BY ONE

INC Rj

Type 3 Instruction

0000 0111 Rj 0000

1 2 3 4

16
BITS

Detailed Description of Instruction Execution

If Rj is attached, C(Rj) is incremented
detached, the displacement field of Rj is
then the register is attached.

by one. If Rj is
incremented by one;

Operand Object Code (Hex)
Types 1 2 3 4

Rj 0 7 j 0

Example

Label OpC Operand Conunent
Field Field Field Field
----- ----- ------- -------

INC R15

Caution: If the resulting memory address is not in the same
buffer, then either:

1. A "CROSSING FRAME LIMIT" debug trap occurs if C(Rj) is in
unlinked format; or

2. An attempt is made to a.ttach C(Rj) to the first data byte
of the frame pointed to by the forward link of the
current frame. In this case, "FORWARD LINK ZERO" and
"REFERENCING ILLEGAL FRAME" are debug traps that could
occur.

Programainq Note: Rj is always attached when this instruction
completes execution.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 ' 2-55

INSTRUCTIONS

INCREMENT ADDRESS REGISTER

INC Rj ,Wi

Type 5 Instruction

1011 0111 Wir Rj Wik

1 2 3 4 5 6

Detailed Description of Instruction Execution

Wid

7 8

32
BITS

If R is attached, the memory address field of Rj is incremented
by C(C(Wir)+Wid). If the resulting address crosses the frame
boundary, the register is detached. If Rj is initially detached,
the displacement portion of Rj is incremented by C(C(Wir)+Wid).

Operand Wik Object Code {Hex}
Types

Rj,Hi 1
Rj,Ti 1
Rj,Di 1
Rj,Fi 1

Example

Label OpC
Field Field

INC

1 2

B 7
B 7
B 7
B 7

Programming Note:
register to detach.
attach.

3 4 5 6 7 8

i j 0 d d d
i j 1 d d d
i j 2 d d d
i j 3 d d d

Operand
Field

R13,TTYPI

Comment
Field

This instruction may cause an attached
It will never cause a detached register to

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-56

INSTRUCTIONS

ADD ONE TO ELEMENT

INC Wj

Type 5 Instruction

1010 0111 Wjr 0000 Wjk

1 2 3 4 5 6

Detailed Description of Instruction Execution

C(C(Wjr)+Wjd) is increased by one.

Operand Wik
Types

Hj a
Tj 1
OJ 2
Fj 3
Vj 7

Example

Label OpC
Field Field

Object Code {Hex}
1 2

A 7
A 7
A 7
A 7
A 7

3 4 5 6 7 8 - --
j a a d d d
j a 1 d d d
j a 2 d d d
j a 3 d d d
j a 7 d d d

Operand
Field

Comment
Field

Wjd

7

INC DTYPJ BUMP DTYPJ BY 1

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-57

8

32
BITS

INSTRUCTIONS

ADD ELEMENT TO ELEMENT

INC Wj,Wi

Type 6 Instruction

1111 0111 Wjr Wir Wjk

1 2 3 4 5 6

Wik

9 10

Detailed Description of Instruction Execution

C(C(Wir)+Wid) is added to C(C(Wjr)+Wjd) .
C(C(Wjr)+Wjd) .

Operand Wjk Wik Object Code {Hex}
Types 1 23456 7 8 9 0 1 2 - - - --

Hj,Hi 0 0 F 7 j i Odd d Odd d
Tj ,Ti 1 1
Dj,Di 2 2
Fj,Fi 3 3
Sj,Si 3 3
Vj,Vi 7 7

Example

Label OpC
Field Field

F 7 j
F 7 j
F 7 j
F 7 j
F 7 j

Operand
Field

i 1 d
i 2 d
i 3 d
i 3 d
i 7 d

INC HTYPJ,HTYPI
INC STYPJ,STYPI

d d
d d
d d
d d
d d

1 d d d
2 d d d
3 d d d
3 d d d
7 d d d

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-58

Wjd

7

Wid

11

The

8

12

sum

48
BITS

replaces

..)

INSTRUCTIONS

LOAD ADDRESS DIFFERENCE

LAD Si,Rj
LAD Rj,Si

Type 5 Instruction

1011 1110 Sir

1 2 3

Rj Sik

4 5 6

Detailed Description of Instruction Execution

Sid

7 8

32
BITS

This instruction subtracts C(C(Sir)+Sid) from C(Rj), and the
difference replaces C(TO). The subtraction is done in the
following manner. The detached form of C(Rj) is calculated. The
C(C(Sir)+Sid) is treated as a storage address (2 bytes of
displacement, 1 link byte, 3-byte FlO). For unlinked frames both
operands must reference the same FlO: The difference between the
displacements is the result in this case. The instruction is
valid for unequal frame numbers only if both frames are in the
same group of contiguously linked frames, and the difference
between the FIOs is equal to or less than 32. For contiguously
linked frames the result is calculated by multiplying the
difference between the FIOs by 1000 and adding to that product
the difference between the displacements.

Operand
Types

Si,Rj
Rj,Si

Example

Wik

3
3

Label Ope
Field Field

Object Code (Hex)
1 2 3 4 5 6 7 8 - - --
B E i j 3 d dod
B E i j 3 d d d

Operand
Field

LAD STYPJ,R14

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-59

INSTRUCTIONS

LOAD ABSOLUTE

LOADA A

Type 13a Instruction

0011 1111 Ak A

1 2 3 4 5 6 7

Detailed Description of Instruction Execution

C(A) replaces C(OO) for a 1, 2 or 4-byte operand.

For a 6-byte operand, C(FPO) is replaced by C(A).

Operand Aik
Types

Hi 0
Ti 1
Di 2
Fi 3

Example

Label OpC
Field Field

Object Code (Hex)
.1 2 3 45678 - -- - - - --
3 F 0 a a a a a
3 F 1 a a a a a
3 F 2 a a a a a
3 F 3 a a a a a

Operand
Field

Comment
Field

8

32
BITS

LOADA @ALOC LOAD FROM ABSOLUTE

Caution:
accumulator
accumulator.

Remember that a 6-byte
FPO. Shorter operands

operand affects
affect only DO,

the 6-byte
the 4-byte

Note: Only items defined in PSYM as '@' types can be used as
operand ••

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-60

INSTRUCTIONS

LOAD ACCUMULATOR

LOAD Wi

Type 5 Instruction

1010 1111 Wir 0000 Wik

1 2 3 4 5 6

Detailed Description of Instruction Execution

Wid

7 8

32
BITS

The integer addressed by the operand is loaded into the 32-bit
accumulator (DO). That is, C(C(Wir)+Wid) replaces C(DO). For
half tally and tally operands, the sign bit is extended.

Operand wik Object Code (Hex}
TYEes

Hi 0
Ti 1
Di 2
Vi 7

ExamEle

Label OpC
Field Field

TTYPJ DEFT
LOAD

1

A
A
A
A

Programming Note:
operand. (six-byte
the a •• embler is
LOADX.

2

F
F
F
F

3 4 5 6 7 8

i 0 0 d d d
i 0 1 d d d
i 0 2 d d d
i 0 7 d d d

Operand
Field

14,8
TTYPJ

Comment
Field

TALLY TYPE J
LOAD DO

The mnemonic LOAD may be used with F type
elements), but the object code generated by
the same as that generated for instruction

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 ' 2-61

INSTRUCTIONS

LOAD EXTENDED ACCUMULATOR

LOADX Wi

Type 5 Instruction

1010 1110 Wir 0000 Wik Wid

1 2 3 4 5 6 7

Detailed Description of Instruction Execution

The integer addressed by the operand is loaded into
accumulator (FPO), and the sign bit is extended.
C(C(Wir)+Wid) replaces C(FPO).

Operand Wik
Types

Hi 0
Ti 1
Di 2
Fi 3
Vi 7

Example

Label OpC
Field Field

Object Code (Hex)
1 2 3 4 5 6 7 8

A E i 0 0 d d d
A E i Old d d
A E i 0 2 d d d
A E i 0 3 d d d
A E i 0 7 d d d

Operand
Field

Comment
Field

8

HTYPI DEFH
LOADX

15,5
HTYPI

HALF TALLY TYPE I
MOVE VALUE TO FPO

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-62

32
BITS

the 48-bit
That is,

INSTRUCTIONS

LOCK PROCESSESSAND INCREMENT INHIBITH

LOCKINH N

Type 2 Instruction

0001 0011 N 16
BITS

1 2 3 4

Detailed Description of Instruction Execution

This instruction performs the same actions as the LOCK N
instruction with the addition that if the lock is locked
successfully, INHIBITH is incremented by one.

Operand Object Code (Hex)
Types 1 2 3 4

N 1 3 n n

Example

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

LOCKINH OVRFLW*

7.0 VIRTUAL ASSEMBLY LANGUAGE CPlf INSTRUCTIONS
PRELIMINARY 2eSEP88 2-63

INSTRUCTIONS

LOCK COMPETING PROCESSES FOR SYSTEM RESOURCE

LOCK N

Type 2 Instruction

0001 0010 N 16
SITS

1 2 3 4

Detailed Description of Instruction Execution

This instruction enables processes to compete for a system
resource by means of a lock. The first process to set the lock
may use the resource. Other processes that attempt to set the
lock will be roadblocked until the first process opens the lock
with the UNLOCK N instruction. UNLOCK N removes the roadblock
from the first process in the priority queue that is waiting on
the lock.

N is the lock number.

There are three conditions handled by this instruction.

If lock N contains the unlocked value, the firmware stores th~
executing process's number in lock N, and instruction execution
ends: The process has control of the resource.

If lock N already contains the process number of the executing
process, instruction execution ends: The process retains control
of the resource. -

If lock N contains the process number of another process, the
instruction deposits the value N in the executing process's PIS
and enters the Monitor. The process is roadblocked until the lock
is opened by the UNLOCK N instruction.

Operand
Types

N

Example

Label Ope
Field Field

LOCK

Object Code (Hex)
1 2 3 4 - -
1 2 n n

Operand
Field

OVRFLW*

Conunent
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-64

INSTRUCTIONS

LOCK COMPETING PROCESSES (cont)

Programming Note: This instruction does not know the resources
that are being locked. The correlation of a lock with a resource
is a software convention. In fact there is nothing in the system
to prevent a process from using a resource without using this
instruction.

If more than one lock must be locked at one time, there should
also be a software convention that specifies the order in which
the locks should be locked. This avoids the problem of two
processes roadblocking each other by locking two locks in
different order.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20~EP88 2-65

'-

INSTRUCTIONS

LOCK COMPETING PROCESS FOR SOFTWARE RESOURCE

LOCK Tj

Type 5 Instruction

1011 1000 Tjr 0000 Tjk

1 2 3 4 5 6

Detailed Description of Instruction Execution

Tjd

7 8

32
BITS

This instruction enables processes to compete for a software
resource by means of a lock. The first process to close the lock
may use the resource; other processes that attempt to set the
lock are deactivated.

The instruction sets C(C(Tjr)+Tjd) with a value that indicates
that the lock is closed.

You unlock the lock by means of the SET instruction, that is,

SET Tj

Operand
Types

Object Code (Hex)
!£l!1§.78

Tj 1 @j Old d.d

Example

Label OpC
Field Field

LOCK

SET

'-,.:: ,

Operand
Field

TTYPJ

TTYPJ

Comment
Field

LOCK A SOFTWARE RESOURCE

UNLOCK IT

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-66

INSTRUCTIONS

LOAD PIB ADDRESS TO REGISTER

LPIB Rj

Type 3 Instruction

0011 1010 Rj 0000

1 2 3 4

16
BITS

Detailed Description of Instruction Execution

This instruction assumes that
instruction replaces C(Rj) with
instruction also returns the PIB
of the following codes in HO:

Code Meaning

o Successful
1 No PIB pointer
2 Invalid process number

C(TO) is a process number. The
that process's PIB address. The
software flag byte in HI and one

3 No FlO allocated to PIB

Operand Object Code (Hex)
Types 1 2 3 4 - - --

Rj 3 A j 0

Example

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

LPIB R1S

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 . 2-67

INSTRUCTIONS

MOVE BINARY TO DECIMAL

MBD Ti,Rj

Type 5 Instruction

1101 1011 Tir Rj Tik

1 2 3 4 5 6

Detailed Description of Instruction Execution

Tid

7 8

J

32
BITS

This instruction assumes that the low-order byte of C(C(Tir)+Tid)
contains a binary number with a value in the range 0 to 9. The
instruction converts the binary number to an ASCII character,
which replaces the C(C(Rj». C(C(Tir)+Tid) is not changed.

Operand
Types

Ti,Rj

Example

Tik

1

Label OpC
Field Field

Object Code (Hex)
1 2 3 4 5 6 7 8 - --
D B i j 1 d d d

Operand
Field

MBD TTYPI,R14

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-68

INSTRUCTIONS

MOVE BINARY TO HEXADECIMAL STRING

MBX Wi,Rj

Type 5 Instruction

1011 1111 Wir Rj Wik

1 2 3 4 5 6

Detailed Description of Instruction Execution

Wid

7 8

32
BITS

The binary integer which is C(C(Wir)+Wid) is converted into an
ASCII string of hexadecimal numbers starting at C(Rj)+l. Bits 4-7
of HO (the low-order byte of DO) contain a count of the maximum
number of ASCII bytes to be generated. If bit zero of HO is a
zero, the leading zeros of the hexadecimal string are suppressed;
that is, they are not moved to the output string. if bit zero of
HO is a one, zero suppression will not take place. C(Rj) is
incremented before each hexadecimal character is stored. C(HO) is
unpredictable after this instruction is executed. If the digit
count in HO exceeds the size allowed, no operation is performed.

The maximum digit count is twice the size of the first operand:
12 for S, 8 for 0, 4 for T, etc. A count of zero is not allowed.

Operand Wik
Types

Ci,Rj 0
Hi,Rj 0
Ti,Rj 1
Di,Rj 2
Fi,Rj 3

Example

Label Ope
Field Field

=H6 HTLY
MOV
MBX

Object Code (Hex)
1 2 3 4 567 8

B F
B F
B F
B F
B F

i j Odd d
i j o d dod
i j 1 d d d
i j 2 d d d
i j 3 d d d

Operand
Field

6
==H6,HO
FTYPI,R15

Comment
Field

Programming Note: At the conclusion of instruction execution Rj
points to the last character converted.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-69

INSTRUCTIONS

MOVE RELATIVE CHARACTER TO CHARACTER

MCC Ci,Rj

Type 5 Instruction

1101 0110 Cir Rj Cik Cid

1 2 3 4 5 6 7

Detailed Description of Instruction Execution

C(C(Cir)+Cid) replaces C(C(Rj».

Operand Cik Object Code (Hex}
Types 1 2 3 4 56 7 8

Ci,Rj 0 D 6 i j 0 d d d

Example

Label OpC Operand Comment
Field Field Field Field
----- ----- -------- -------

MCC CTYPI,R15

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-70

8

32
BITS

INSTRUCTIONS

MOVE IMMEDIATE CHARACTER

MCC N,Rj

Type 4 Instruction

0101 0110 Rj 0000 N 24

1 2 3 4 5 6

Detailed Description of Instruction Execution

N replaces C(C(Rj)).

Operand
Types

N,Rj

Example

Label OpC
Field Field

Object Code (Hex)
1 2 3 4 5 6 - --
5 6 jOn n

Operand
Field

MCC 6,Rl3

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-71

BITS

INSTRUCTIONS

MOVE CHARACTER TO RELATIVE CHARACTER

MCC Ri ,Cj

Type 5 Instruction

1100 0110 Cjr Ri Cjk

1 2 3 4 5 6

Detailed Description of Instruction Execution

C(C(Ri)) replaces C(C(Cjr)+Cjd).

Operand Cik Object Code (Hex)
Types .!lli.?§'l~

Ri,Cj 0 C 6 j i 0 d d d

Example

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

MCC R14,HTYPJ

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-72

Cjd

7 8

J

32
BITS

INSTRUCTIONS

MOVE CHARACTER TO CHARACTER

MCC Ri,Rj

Type 3 Instruction

1110 0000 Ri Rj

1 2 3 4

16
BITS

Detailed Description of Instruction Execution

C(C(Ri» replaces C(C(Rj)).

Operand Object Code (Hex)
Types 1 2 3 4

Ri,Rj E 0 i j

Example

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

MCC R7 , R14

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 ' 2-73

... NSTRUCTIONS

INCREMENT DESTINATION REGISTER AND MOVE IMMEDIATE CHARACTER

MC! N,Rj

Type 4 Instruction

0100 0110 Rj 0000 N 24
BITS

1 2 3 4 S 6

Detailed Description of Instruction Execution

C(Rj) is incremented by one. Then N replaces C(C(Rj)).

Operand Object Code (Hex)
Types 1 2 3 4 56

N,Ri 4 6 j 0 n n

Example

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

MCI C'K' ,R1S

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-74

INSTRUCTIONS

MOVE IMMEDIATE CHARACTER UNDER REGISTER CONTROL

MCI N,Ri,Rj

Type 4 Instruction

0101 0101 Ri Rj N 24
BITS

1 2 3 4 5 6

Detailed Description of Instruction Execution

C(Ri) and C(Rj) are compared. If C(Ri) and C(Rj) are equal,
instruction execution is finished. If not, C(Ri) is incremented
by one and N replaces C(C(Ri». The process repeats until
C(Ri) equals C(Rj).

Operand
Types

N,Ri,Rj

Example

Label OpC
Field Field

Object Code (Hex)
1 2 3 4 5 6 ------
5 5 i j n n

Operand
Field

MCI 0,R14,R15
MCl C' " R14 ,RIS

Comment
Field

Programming Note: This instructions compares the addresses
contained in the two registers before incrementing and moving the
data. This is different from the string instructions, which
increment before comparing.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 2eSEP88 2-75

INSTRUCTIONS

INCREMENT DESTINATION REGISTER AND MOVE CHARACTER

Mel Ri,Rj

Type 3 Instruction

1000 0101 Ri

1 2 3

Rj

4

16
BITS

Detailed Description of Instruction Execution

C(Rj) is incremented by one. C(C(Ri)) replaces C(C(Rj)).

Operand
Types

Ri,Rj

Example

Label OpC
Field Field

Object Code (Hex)
1 2 3 4

8 5 i j

Operand
Field

MCl R5,R14

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-76

INSTRUCTIONS

MOVE DECIMAL CHARACTER TO BINARY

MOB Ri,Wj

Type 5 Instruction

1101 1010 Wjr Ri Wjk Wjd

1 2 3 4 5 6 7 8

Detailed Description of Instruction Execution

C(C(Wjr)+Wjd) is multiplied by ten.
ASCII digit in C(C(Ri)) is added to
replaces C(C(Wjr)+Wjd).

Operand Wik
Types

Ri,Hj 0
Ri,Tj 1
Ri,Dj 2
Ri,Fj 3

Example

Label OpC
Field Field

Object Code (Hex}
1 2

D A
D A
D A
D A

3 4 5 6 7 8

j i 0 d d d
j i 1 d d d
j i 2 d d d
j i 3 d d d

Operand
Field

MDB Rll,STYPI

The binary value of
the product, and the

Comment
Field

32
BITS

the
sum

Programming Note: If C(C(Wjr)+Wjd) is zero initially, repeated
use of this instruction with incrementing of C(Ri) will convert
an ASCII string representing a decimal value into a binary
integer.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20S.EP88 2-77

INSTRUCTIONS

DECREMENT, MOVE STRING UNDER DELIMITER CONTROL WHILE COUNTING ~
MODOC Ri,Rj,N

Type 4 Instruction

0110 0010 Ri Rj N 24
BITS

1 2 3 4 5 6

Detailed Description of Instruction Execution

C(Ri) and C(Rj) are each decremented by one. The character which
is C(C(Ri)) replaces C(C(Rj)). C(TO) is decremented by one.
The character that was moved is then matched with the characters
specified by N. If the match is not successful, the operation is
repeated.

Operand
Types

Ri,Rj,N

Example

Label OpC
Field Field

MODOC

Object Code (Hex)
1 2 3 4 5 6

6 2 i j n n

Operand
Field

R4,RS,X' lS~

Comment
Field

Programming Note: Assuming that TO contains zero before this
instruction is executed, when execution is completed, the number
of characters moved will be recorded in TO as a negative number.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-78

J

INSTRUCTIONS

DECREMENT AND MOVE STRING UNDER DELIMITER CONTROL

MODO Ri,Rj,N

Type 4 Instruction

0110 0001 Ri Rj N 24
BITS

1 2 3 4 5 6

Detailed Description of Instruction Execution

C(Ri) and C(Rj) are each decremented by one, The character which
is C(C(Ri)) replaces C(C(Rj)). The character that was moved is
then matched with the characters specified by N. If the match is
not successful, the operation is repeated.

Operand
Types

Ri,Rj,N

Example

Label OpC
Field Field

MDDD

Object Code (Hex)
1 2 3 4 5 6 - --
6 1 i j n n

Operand
Field

Rll ,R7 ,X • 8'4 •

Comment
Field

Programming Note: At least one character is always moved by the
instruction since the match test is made after the move.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 ' 2-79

INSTRUCTIONS

DECREMENT BOTH REGISTERS AND MOVE CHARACTER

MOD Ri,Rj

Type 3 Instruction

0110 0000 Ri

1 2 3

Rj

4

16
BITS

Detailed Description of Instruction Execution

C(Rj) and C(Rj) are each decremented by one.

Then C(C(Ri» replaces C(C(Rj».

Operand
Types

Ri,Rj

Example

Label OpC
Field Field

MOD

Object Code (Hex)
1 2 3 4

6 a i j

Operand
Field

R6,R11

Comment
Field

DEC R6 AND Rll, MOVE BYTE

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-80

INSTRUCTIONS

DECREMENT AND MOVE STRING UNDER REGISTER CONTROL

MOOR Ri,Rj

Type 3 Instruction

0101 1000 Ri

1 2 3

Rj

4

16
BITS

Detailed Description of Instruction Execution

C(Ri) and C(Rj) are each decremented by one. The character which
is C(C(Ri» replaces C(C(Rj». C(Ri) is compared with C(RlS).
If the addresses are not equal, the operation is repeated. If
C(Ri) is equal to C(R15) initially, no operation is performed.

Operand Object Code (Hex)
Types 1 2 3 4

Ri,Rj 5 8 i j

Example

Label OpC Operand Comment
Field F'ield Field Field
----- ----- ------- ---------

MDOR R4,R7

Proqramminq Note: This instruction assumes that R15 contains an
address equal to or less than C(Ri).

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 2~SEP88 2-81

INSTRUCTIONS

DECREMENT AND MOVE STRING UNDER TO AND DELIMITER CONTROL

MDDTD Ri,Rj,N

Type 4 Instruction C I 0/ ~J
I JF G

I . I

0101 : (010]' : Ri Rj N
I I
I I

1 2 3 4 5 6

Detailed Description of Instruction Execution

24
BITS

C(Ri) and C(Rj) are each decremented by one. The character which
is C(C(Ri» replaces C(C(Rj». C(TO) is decremented by one. If
C{TO) is zero or if the character moved matches one of the
characters specified by N, execution ceases; otherwise, the
operation is repeated. If C(TO) equals zero initially, no
operation is performed.

Operand
Types

Ri,Rj,N

Example

Label OpC
Field Field

MODTD

Object Code (Hex)
1 2 3 4 5 6 ------
5 d) i j n n

\,..

A
Operand
Field

R5,R11,X'C'

Comment
Field

Programming Note: This instruction may be used to limit the
maximum number of characters moved. TO can be initialized with a
maximum count before this instruction is executed. After
execution the number of characters moved may be computed by
subtracting the final count in TO from the initial count.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-82

L

INSTRUCTIONS

DECREMENT AND MOVE STRING UNDER TO CONTROL

MOOT Ri,Rj

Type J Instruction

0101 1001 Ri

1 2 3

Rj

4

16
BITS

Detailed Description of Instruction Execution

C(Ri) and C(Rj) are each decremented by one. The character which
is C(C(Ri» replaces C(C(Rj». C(TO) is decremented by one. If
C(TO) is non-zero, the operation is repeated. If C(TO) equals
zero initially, no operation is performed.

OQerand Object Code (Hex)
Types .!l.l!

Ri,Rj 5 9 i j

ExamQle

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

MDDT R4,R7

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20~EP88 2-83

INSTRUCTIONS

MOVE FLOATING DECIMAL STRING TO BINARY

MFBN Ri

Type 3 Instruction

0100 1111 Ri

1 2 3

0000

4

16
BITS

Detailed Description of Instruction Execution

J

This instruction converts a floating decimal string, pointed to
by Ri, to a six byte binary number in FPO. A floating decimal
string 1S a string of ASCII decimal digits that includes an
optional period (decimal point). The digits that precede the
period are called integer digits. Digits that follow the period
are called fraction digits. The first character of the string
may be a plus sign, a minus sign, a period, or a decimal digit.
The string must include at least one digit and must be terminated
by a system delimiter or a period.

Several PCB elements must be initialized before the instruction
executes. FPO, which will receive the converted number, must
contain zero, H6 must contain a maximum count of integer digits.
Bits 0-3 of H7 must be zero because they will be used for
indicators by the firmware. Bits 4-7 of H7 must contain tr ~
maximum count of fraction digits. Ri must point to the by~
preceding the first character in the string. Note that a zero in
H6 specifies a maximum count of 256 integer digits whereas a zero
in H7 specifies that there are no fraction digits. Hence, the
lowest integer digit count is one, and the highest fraction digit
count is 15.

This instruction sets C(ACF). If a number was converted and a
proper terminator was found, NUMBIT is set to one. FPO contains
the Six-byte result, and Ri points to the terminator.

The complete ACF byte,
is a non-decimal digit
where one is expected.
character processed.

including NUMBIT, is set to zero if there
in the string or if there is no terminator
If NUMBIT is zero, Ri points to the last

The ASCII string is converted to a binary number in the six byte
accumulator FPO. All of the digits, both integer and fraction,
are converted into one magnitude. if a period is encountered
before the specified number of integer digits have been
processed, the succeeding fraction digits will be converted up to
the number specified in H7. if C(H7) are greater than the number
of fraction digits, the results in FPO will be multiplied by 10
for each missing digit. If C(H7) are zero, integer digits only
will be converted; that is, processing will stop at the first .
period or system delimiter. '...)

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-84

INSTRUCTIONS

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 . 2-85

INSTRUCTIONS

MOVE FLOATING DECIMAL STRING TO BINARY (cont)

The following situations should be kept in mind:

1.

2.

3.

4.

Operand
Types

Ri

Example

If the first character is a period, there must be some
fraction digits or NUMBIT will be set to zero.
If the number of integer digits equals C(H6), the
instruction terminates after converting the integer
digits. At the conclusion of execution C(Ri) points
to the last digit converted, not at the terminator.
NUMBIT is set to zero.
If C(H7) is not zero, processing will terminate at a
system delimiter. If the number of fraction digits
equals C(H7), the terminator may be a second period
rather than a system delimiter.
The instruction does not indicate that a magnitude was
too large for the accumulator.

Object Code (Hex)
1 2 3 4 - - - -
4 F i 0

Label OpC Operand Commerlt
Field Field Field Field
----- ----- ------- -------
=H4 HTLY 4
=H8 HTLY 8

ZERO DO ZERO FPO AND
ZERO 01 H6 AND H7
MOV =H4,H6 SET INTEGER SIZE
MOV =H8,H7 SET FRACTION SIZE
MFBN R15

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-86

INSTRUCTIONS

-

MOVE HEXADECIMAL STRING TO BINARY

MXBN Ri

Type 3 Instruction '-_ C

0100

1 2 3 4

16
BITS

Detailed Description of Instruction Execution

This instruction converts a hexadecimal string, pointed to by Ri,
to a six-byte binary number in FPO. A hexadecimal string is a
sequence of ASCII characters that represent hexadecimal digits.
The first character of the string may be a plus sign, a minus
sign, or a hexadecimal digit. The string must include at least
one digit and must be terminated by a system delimiter.

Several PCB elements must be initialized before the instruction
executes. FPO, which will receive the converted number, must
contain zero. H6 must contain a maximum count of hexadecimal
digits. Bits 0-3 of H7 must be zero because they will be used for
indicators by the firmware. Ri must point to the byte preceding
the first character in the string. Note that a zero in H6
specifies a maximum count of 256 hexadecimal digits. Hence, the
lowest digit count is one.

This instruction sets C(ACF). In particular, NUMBIT is set to one
if a number was converted and a proper terminator was found.
FPO contains the six-byte . result, and Ri points to the
terminator.

NUMBIT is set to zero if there is a non-hexadecimal digit in the
string or if there is no terminator where one is expected. If
NUMBIT is zero, Ri points to the last character processed.

The ASCII string is converted to a binary number in the six-byte
accumulator FPO. All of the digits are converted into one
magnitude. Processing will stop at the first ????? period or
syst.. delimiter. The following situations should be kept in
minda

1. If the number of hexadecimal digits equals C(H6), the
instruction terminates after converting the digits.
At the conclusion of execution C(Ri) points to the
last digit converted, not at the terminator. NUMBIT is
set to zero.

2. The instruction does not indicate that a magnitude was
too large for the accumulator.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPO INSTRUCTIONS
PRELIMINARY 2~SEP88 2-87

INSTRUCTIONS

Operand
Types

Ri

Example

Label
Field

KlO

OpC
Field

HTLY
ZERO
ZERO
MOV
MXBN

Object Code (Hex)
1 2 3 4 - - - -
4 F i 0

Operand
Field

10
DO
01
K10,H6
R14

Comment
Field

ZERO FPO AND
H6 AND H7
SET INTEGER COUNT

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-88

INSTRUCTIONS

INCREMENT SOURCE REGISTER AND MOVE CHARACTER

MIC Ri,Rj

Type 3 Instruction

0100 0111 Ri

1 2 3

Rj

4

16
BITS

Detailed Description of Instruction Execution

C(Ri) is incremented by one. C(C(Ri)) replaces C(C(Rj».

Operand
Types

Ri,Rj

Example

Label OpC
Field Field

Ob j ec"t Code (Hex)
1 2 3 4 - - --
4 7 i j

Operand
Field

MIC RS,R14

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-89

INSTRUCTIONS

INCREMENT, MOVE STRING UNDER DELIMITER CONTROL WHILE COUNTING

MIIDC Ri,Rj,N

Type 4 Instruction

0100 0010 Ri Rj N 24
BITS

1 2 3 4 5 6

Detailed Description of Instruction Execution

C(Ri) C(Rj) are each incremented by one. The character which is
C(C(Ri)) replaces (C(C(Rj)). C(TO) is decremented by one. the
character that was moved is then matched with the characters
specified by N. If the match is not successful, the operation is
repeated.

Operand
Types

Ri,Rj,N

Example

Label OpC
Field Field

HIIDC

Object Code (Hex)
.!~li1&'

4 2 i j n n

Operand
Field

R14,R8,X'84'

Comment
Field

Programming Note: Assuming that TO contains zero before this
instruction is executed, when execution is completed, the number
of characters moved will be recorded in TO as a negative number.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-90

INSTRUCTIONS

INCREMENT AND MOVE STRING UNDER DELIMITER CONTROL

MIlD Ri,Rj,N

Type 4 Instruction

0100 0001 Ri Rj N 24
BITS

1 2 3 4 5 6

Detailed Description of Instruction Execution

C(Ri) and C(Rj) are incremented by one. The character which is
C(C(Ri» replaces C(C(Rj». The character that was moved is then
matched with the characters specified by N. If the match is not
successful, the operation is repeated.

Object Code (Hex)
1 2 3 4 5 6

Operand
Types - --

Ri,Rj,N

Example

Label OpC
Field Field

MIlD

4 1 i j n n

Operand
Field

R7,Rll,X'DO'

Comment
Field

Programming Note: At least one character is always moved by this
instruction since the match ~est is made after the move.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 ' 2-91

INSTRUCTIONS

INCREMENT BOTH REGISTERS AND MOVE CHARACTER

MIl Ri,Rj

Type 3 Instruction

0100 0000 Ri

1 2 3

Rj

4

16
BITS

Detailed Description of Instruction Execution

(J

C(Ri) and C(Rj) are each incremented by one. Then C(C(Ri))
replaces C(C(Rj»).

OEerand Object Code (Hex)
Types 1 2 3 4 - - --

Ri,Rj 4 a i j

ExarnEle

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

MIl R14,R15

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-92

~

INSTRUCTIONS

INCREMENT AND MOVE STRING UNDER REGISTER CONTROL

MIIR Ri,Rj

Type 3 Instruction

0101 0000 Ri

1 2 3

Rj

4

16
BITS

Detailed Description of Instruction Execution

C(Ri) and C(Rj) are each incremented by one. The character which
is C(C(Ri» replaces C(C(Rj». C(Ri) is compared with C(R1S).
If the addresses are not equal, the operation is repeated. If
C(Ri) is initially equal to C(R15), no operation is performed.

Operand Object Code (Hex)
Types 1 2 3 4

Ri,Rj 5 a i j

Example

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

MIIR R6,R3

Programming Note: This instruction assumes that R15 contains an
address equal to or greater than C(Ri).

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-93

INSTRUCTIONS

INCREMENT AND MOVE STRING UNDER TO AND DELIMITER CONTROL

MIrTD Ri,Rj,N

Type 4 Instruction

0101 0010 Ri Rj N 24
BITS

1 2 3 4 5 6

Detailed Description of Instruction Execution

C(Ri) and C(Rj) are each incremented by one. The character which
is C(C(Ri» replaces C(C(Rj). C(TO) is decremented by one. If
C(TO) is zero or if the character moved matches one of the
characters specified by N, execution ceases; otherwise, the
operation is repeated. if C(TO) equals zero initially, no
operation is performed.

Operand Object Code (Hex)
Types 1 2 3 4 56

Ri,Rj,N 5 2 i j n n

Example

Label OpC Operand Conunent
Field Field Field Field
----- ----- ------- -------

MIITO R9,RIO,5

progranuning Note: This instruction may be used to limit the
maximum number of characters moved. TO can be initialized with a
maximum count before this instruction is executed. After
execution the number of characters moved may be computed by
subtracting the final count in TO from the initial count.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-94

INSTRUCTIONS

INCREMENT AND MOVE STRING UNDER TO CONTROL

MIlT Ri,Rj

Type 3 Instruction

0101 0001 Ri

1 2 3

Rj

4

16
BITS

Detailed Description of Instruction Execution

C(Ri) and C(Rj) are each incremented by one. The character which
is C(C(Ri» replaces C(C(Rj». C(TO) is decremented by one. If
C(TO) is non-zero, the operation is repeated. If C(TO) equals
zero initially, no operation is performed.

Operand Object Code (Hex)
Types 1 2 3 4

Ri,Rj 5 1 i j

Example

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

MIlT R7,R4

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-95

INSTRUCTIONS

MOVE, ATTACH~D, STORAGE REGISTER TO REGISTER

MOVA Si,Rj

Type 5 Instruction

1011 1001 Sir Rj Sik

1 2 3 4 5 6

Detailed Description of Instruction Execution

Sid

7 8

32
BITS

This instruction moves C(C(Sir)+Sid) to Rj. When the instruction
has finished execution, Rj will be attached if three conditions
hold: 1) Rj was already attached, 2) Si's FlO field contains the
same value as Rj's FlO field, and 3) Si contains a normalized
displacement. If all three conditions are not met, the
instruction works just like the MOV Si,Rj inst~uction.

Rj's linked/unlinked flag is set to ~gree with 5i's flag byte.

Operand
Types

5i,Rj

Example

Wik

Label ope
Field Field

MOVA

Object Code (Hex)
1 2 3 4 567 8 --- ---
B 9 i j 3 d d d

Operand
Field

STYPI,R12

Comment
Field

Progra..ing Note I Functionally, this instruction is the same as
MOV Si,Rj, but it may leave the register in an attached [:;ate.
This only affects code that depends on MOV Si,Rj to detach a
register. The instruction is intended to speed up software when
data are being manipulated within one frame. If the register
cannot remain attached, this instruction is slightly slower than
MOV Si,Rj; otherwise, it is several times faster.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-96

INSTRUCTIONS

MOVE BIT TO BIT

MOV Bi,Bj

Type 6 Instruction

1111 0101 Bir Bjr io

1 2 3 4 5 6

jo

9 10

Detailed Description of Instruction Execution

C(C(Bir)+Bid) is moved to C(C(Bjr)+Bjd).

Operand
Types

Bi,Bj

Object Code (Hex)
1 2 3 4 5 6 1 ! ~ 0 1 2

F 5 i j 0 d d dod d d

Bid

7 8

Bjd

11 12

o is 8 plus the bit offset in the byte.

Example

Label OpC
Field Field

Operand
Field

MOV BTYPI,BTYPJ

comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 - 2-97

48
BITS

INSTRUCTIONS

MOVE ADDRESS REGISTER TO ADDRESS REGISTER

MOV Ri,Rj

Type 3 Instruction

0000 0011 Ri

1 2 3

Rj

4

16
BITS

Detailed Description of Instruction Execution

J

C(Ri) replaces C(Rj). C(Ri) is not changed. If Ri was attached,
Rj becomes attached; otherwise, Rj is detached.

Operand Object Code (Hex)
Types 1 2 3 4

Ri,Rj 0 3 i j

Example

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

MOV R7,R15

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-98

INSTRUCTIONS

STORE ADDRESS REGISTER

MOV Ri,Sj

Type 5 Instruction

1100 1010 Sjr Ri Sjk

1 2 3 4 5 6

Detailed Description of Instruction Execution

Sjd

7 8

32
BITS

The detached form of C(Ri), that is, displacement, link and FlO,
replaces C(C(Sjr)+Sjd). C(Ri) is not changed, not even detached.

Operand
Types

Ri,Sj

Example

Wik

3

Label OpC
Field Field

Object Code (Hex)
1 2 3 4 567 8

C A j i 3 d d d

Operand
Field

MOV R2,STYPJ -

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-99

INSTRUCTIONS

LOAD ADDRESS REGISTER

MOV Si,Rj

Type 5 Instruction

1011 1010 Sir Rj Sik

1 2 J 4 5 6

Detailed Description of Instruction Execution

Sid

7 8

J

32
BITS

Rj is detached and then C(C(Sir)+Sid) replaces the six low-order
bytes (displacement, link and FID) of Rj. The high-order two
bytes of Rj are set to zero.

Operand
Types

Si,Rj

Example

Wik

3

Label OpC
Field Field

Object Code (Hex)
1 2 J 4 5 6 7 8 ------
B A i j 3 d d d

Operand
Field

MOV STYPI,R15

Comment
Field

Programming Note: Since the address registers can be addressed
as storage locations, they can be changed by using other move
instructions. However, this may lead to problems in the future if
the address register philosophy changes. For simplicity use only
the Load Address Register instruction to move an address into an
address register.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-100

INSTRUCTIONS

MOVE ELEMENT TO ELEMENT

MOV Wi,Wj

Type 6 Instruction

1111 0011 Wir Wjr Wik Wid

1 2 3 4 5 6 7

Wjk Wjd

9 10

Detailed Description of Instruction Execution

C(C(Wir)+Wid) replaces C(C(Wjr)+Wjd).

Operand
Types

Ci,Cj
Hi,Hj
Ti,Tj
Di,Dj
Fi,Fj
Si,Sj
Vi,Vj

Example

Wik Wjk

o
o
1
2
3
3
7

o
o
1
2
3
3
7

Object Code (Hex)
.!.11!2.§. 7 !!1Q 12

F 3 r rOd d dOd d d
F 3 r rOd d dOd d d
F 3 r r 1 d d d 1 d d d
F 3 r r 2 d d d 2 d d d
F 3 r r 3 d d d 3 d d d
F 3 r r 3 d d d 3 d d d
F 3 r r 7 d d d 7 d d d

Label OpC
Field Field

Operand
Field

Comment
Field

MOV HTYPI,HTYPJ
MOV CTYPI,CTYPJ
MOV TTYPI,TTYPJ
MOV DTYPI,DTYPJ
MOV FTYPI,FTYPJ
MOV STYPI,STYPJ

11

8

12

48
BITS

Progra..ing notel The assembler allows the mnemonic format MCC
C,C as well as MOV C,C.

Although this is the only instruction that moves tallies, double
tallies or triple tallies, there are other instructions that move
single characters or character strings from storage to storage.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-101

INSTRUCTIONS

MULTIPLY BY 10

MULIO Wj

Type 5 Instruction

1011 0001 Wjr

1 2 3

0000 Wjk

4 5 6

Detailed Description of Instruction Execution

C(C(Wjr)+Wjd) is multiplied by 10.

Operand Wjk
Types

Hj a
Tj 1
OJ 2
Fj 3

Example

Label OpC
Field Field

MULlO
MULlO

Object Code (Hex)
1 2 3 4 5 6 7 8

B 1
B 1
B 1
B 1

- - - --
j 0 a d d d
j 0 1 d d d
j a 2 d d d
j a 3 d d d

Operand
Field

HTYPI
FTYPJ

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-102

- ... --.- :-

Wjd

7 8

J

32
BITS

INSTRUCTIONS

MULTIPLY BY SCALE

MULS Wi

Type 5 Instruction

1011 0000 Wir 0000 wik

1 2 3 4 5 6

Detailed Description of Instruction Execution

wid

7 8

32
BITS

The six-byte accumulator (FPO) is multiplied by 10 the number of
times specified by the low-order byte of C(C(Wir)+Wid). A 12-byte
number is the result. The high-order six bytes of the result are
placed in FPY, and the low-order six bytes are placed in FPO.

?????Maybe this will set OVFBIT?????

Operand Wik Object Code (Hex)
Types 1'£1!~§'1~

Hi a B a i a Odd d
Ti 1 B a i 0 1 d d d
Di 2 B a i 0 2 d d d
Fi 3 B a i a 3 d d d

Example

Label Ope
Field Field

Operand
Field

MULS
MULS

. TTYPI
FTYPJ

Conunent
Field

Progr ... ing Notel Although large operands can be addressed, only
the low-order byte of wi is used so the largest scale value is
255.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-103

INSTRUCTIONS

MULTIPLY

MUL Wi

Type 5 Instruction

1011 COlI Wir 0000 Wik

1 2 3 4 5 6

Detailed Description of Instruction Execution

Wid

7 8

.
J

32
BITS

C(DO) is multiplied by C(C(Wir)+Wid). An a-byte product replaces
C(Ol) and C(OO).

The sign of the product is determined by the rules of algebra.

C(ACF) is updated to reflect overflow.

Operand Wik
Types

Hi 0
Ti 1
Oi 2
Vi 7

Example

Label OpC
Field Field

MUL
MUL

Object Code (Hex)
1

B
B
8
8

.fli~§'l 8

3
3
3
3

i 0 0 d d d
i 0 1 d d d
i 0 2 d d d
i 0 7 d d d

Operand
Field

DTYPI
FTYPJ

Conunent
Field

DTYPI * DO
FTYPJ * FPO

J

progr ... ing Note: The mnemonic MUL may be used with F type
operand. (six-byte elements), but the object code generated by
the as.e.bler is the same as that generated for instruction MULX.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-104

INSTRUCTIONS

MULTIPLY EXTENDED

MULX Wi

Type 5 Instruction

1011 0010 Wir 0000 Wik Wid 32
BITS

1 2 3 4 5 6

Detailed Description of Instruction Execution

C(FPO) is multiplied by C(C(Wir)+Wid).
replaces C(FPY) and C(FPO). The sign
determined by the rules of algebra.

Operand Wik Object Code {Hex}
Types 1 2 3 4 5 6 7 8

Hi 0 B 2 i 0 0 d d d
Ti 1 B 2 i 0 1 d d d
Di 2 B 2 i 0 2 d d d
Fi 3 B 2 i 0 3 d d d
Vi 7 B 2 i 0 7 d d d

Example

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- --- .. ---

7 8

A 12-byte product
of the product is

MULX HTYPI MULTIPLY FPO

Progra..ing Note: The mnemonic MUL may be used with F type
operanda (six-byte elements), but the object code generated by
the a.saabler is the same as that generated for instruction MULX.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPO INSTRUCTIONS
PRELIMINARY 20SEP88 2-105

INSTRUCTIONS

MOVE HEXADECIMAL CHARACTER TO BINARY

MXB Ri,Wj

Type 5 Instruction

1101 1110 Wjr Ri Wjk

1 2 3 4 5 6

Detailed Description of Instruction Execution

Wjd

7 8

32
BITS

C(C(Wjr)+Wjd) is multiplied by sixteen (that is, shifted left
four bits). The binary value of the ASCII hexadecimal digit in
C(C(Ri) is added to the product, and the result replaces
C(C(Wjr)+Wjd) .

Operand Wik
Types

Ri,Cj 0
Ri,Hj 0
Ri,Tj 1
Ri,Dj 2
Ri,Fj 3

Example

Label OpC
Field Field

Object Code {Hex}
1 2

o E
o E
o E
o E
o E

3 4 5 678 - --
j i 0 d d d
j i 0 d d d
j i 1 d d d
j i 2 d d d
j i 3 d d d

Operand
Field

MXB R14,FTYPJ

Comment
Field

Programming Note: If C(C(Wjr)+Wjd) is initially set to zero,
repeated use of this instruction with incrementing of C(R) will
convert an ASCII string representing a hexadecimal value into a
binary integer.

J
7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-106

INSTRUCTIONS

NEGATE

NEG Wj

Type 5 Instruction

1010 1010 Wjr 0000 Wjk Wjd

1 2 3 4 5 6 7 8

Detailed Description of Instruction Execution

C(C(Wjr)+Wjd) is replaced with its two's complement form.

Operand Wjk
Types

Hj 0
Tj 1
Dj 2
Fj 3
Vj 7

Exatnple

Label OpC
Field Field

Object Code (Hex}
1 2 3 4 5 6 7 8 - --
AA
A A
A A
AA
A A

j 0 0 d d d
j 0 1 d d d
j 0 2 d d d
j 0 3 d d d
j a 7 d d d

Operand
Field

NEG TTYPJ

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-107

32
BITS

INSTRUCTIONS

NO OPERATION

NOP

Type 1 Instruction

0000 1111

1 2

8
BITS

Detailed Description of Instruction Execution

J

This instruction causes the CPU to take the next instruction in
sequence.

Operand
Types

Example

Label OpC
Field Field

NOP

Object Code (Hex)
1 2

o F

Operand
Field

Conunent
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-108

J

J

INSTRUCTIONS

STORE A ONE

ONE Wj

Type 5 Instruction

1100 0001 Wjr 0000 Wjk Wjd

1 2 3 4 5 6 7 8

Detailed Description of Instruction Execution

C(C(Wjr)+Wjd) is replaced by a binary one with leading zeros.

Operand Wjk Object Code (Hex}
Types 1 2 3 4 5 6 7 8 - -- - --

Hj 0 C 1 j 0 0 d d d
Tj 1 C 1 j 0 1 d d d
OJ 2 C 1 j 0 2 d d d
Fj 3 C 1 j 0 3 d d d
Vj 7 C 1 j 0 7 d d d

Example

Label OpC Operand Comment
Field Field Field Field
----- ------ ------- -------

ONE FTYPJ SET TO 1

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 ' 2-109

32
BITS

INSTRUCTIONS

OR WITH IMMEDIATE

OR Rj,N
OR N,Rj

Type 4 Instruction

1000 0010 Rj 0000 N 24
BITS

1 2 3 4 5 6

Detailed Description of Instruction Execution

C(C(Rj)) is logically ORed with N. The result replaces C(C(Rj)).

Operand
Types

Rj,N
N,Rj

Example

Label OpC
Field Field

Object Code (Hex)
1 2 3 4 S 6 ------
8 2 jan n
8 2 jOn n

Operand
Field

OR R6,X'C'
OR X'O',RS

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-110

.J

INSTRUCTIONS

OR WITH STORAGE

OR Rj,Ri

Type 3 Instruction

1110 0010 Rj

1 2 3

Ri

4

16
BITS

Detailed Description of Instruction Execution

C(C(Rj)) is logically ORed with C(C(Ri)).

The result replaces C(C(Rj)).

Operand
Types

Rj,Ri

Example

Label ope
Field Field

Object Code (Hex)
1 2 3 4

E 2 j i

Operand
Field

OR R15,R14

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY &OSEP88 2-111

INSTRUCTIONS

OR ELEMENT WITH ELEMENT

OR Wi,Wj

Type 6 Instruction

1111 1100 Wir Wjr Wik

1 2 3 4 5 6

Wjk

9 10

Detailed Description of Instruction Execution

Wid

7

Wjd

11

8

12

J

48
BITS

C(C(Wir)+Wid) is logically ORed with C(C(Wjr)+Wjd). The result
replaces C(C(Wjr)+Wjd).

Operand Wik Wjk Object Code (Hex)
Types lll!~§'l~~ 0 1 2 - --
Ci,Cj 0 0 F B r r 0 d d d Odd d
Hi,Hj 0 0 F B r r 0 d d d Odd d
Ti,Tj 1 1 F B r r 1 d d d 1 d d d
Di,Dj 2 2 F B r r 2 d d d 2 d d d
Fi,Fj 3 3 F B r r 3 d d d 3 d d d
Vi,Vj 7 7 F B r r 7 d d d 7 d d d

Example

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

OR HTYPI,HTYPJ
OR CTYPI,CTYPJ
OR TTYP I , TTYP J
OR DTYPI,DTYPJ
OR FTYPI,FTYPJ

J
7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-112

INSTRUCTIONS

POP NUMBER

POPNR Ri
POPN (The assembler's OSYM uses R3 for Ri)

Type 3 Instruction

1001 1111 Ri

1 2 3

0000

4

16
BITS

Detailed Description of Instruction Execution

The purpose of this instruction is to pop a number off the stack
and store it in the extended accumulator.

The stack pointer (Ri) is decremented by 10.

If the descriptor type code at Ri;CO has the low-order bit set,
the number in bytes Ri;C2 through Ri;C7 is copied to the
extended accumulator (FPO).

If the stack pointer would be decremented past the beginning of
the buffer, or if the low-order bit of the type code is zero, the
pointer is not decremented. A BSL using the second entry of the
branch table is executed instead.

Operand
Types

Ri

Example

Label
Field

Object Code
1 2 3 4 - - --
9 F i a

Ope Operand
Field Field
----- -------
POPNR R4
POPN

(Hex}

Comment
Field

Cautionl The software that is invoked by the BSL may assume that
R3 is the stack" pointer.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-113

INSTRUCTIONS

POP STRING

POPSRR Ri,Rj
POPS (The assembler's OSYM uses R3 for Ri and R10 for Rj)

Type 3 Instruction

1110 1111 Ri

1 2 3

Rj

4

16
BITS

Detailed Description of Instruction Execution

J

The purpose of this instruction is to pop a string off the stack.

The stack pointer (Ri) is decremented by 10.

If the descriptor type code at byte Ri;CO is the direct string
type code (i.e., X'02'), the stack pointer (Ri) is moved to the
string pointer (Rj). That is, C(Ri) replaces C(Rj).

If the descriptor type code at byte Ri;CO has the high order bit
set, the contents of the storage register at bytes Ri;C2 through
Ri~C7 are moved to the string pointer (Rj). That is, the si
by~es starting at the location C(Ri)+2 replace C(Rj). ~

If the stack pOinter would be decremented past the beginning of
the buffer, or if the descriptor type does not have the high­
order bit set and is not equal to X'02', the pointer is not
decremented. A BSL using the fQurth entry in the branch table is
executed instead.

Operand
Types

Ri,Rj

Example

Label
Field

Caution:
R3 is the

Object Code (Hex)
1 2 3 4 - - --
E F i j

Ope Operand
Field Field ----- -------
POPSRR R4, RS
POPSR R4
POPS

Conunent
Field

The software that is
stack pointer.

invoked by the BSL may assume tha~. J

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-114

. INSTRUCTIONS

PUSH DESCRIPTOR

PUSHD Ri,Rj
PUSHD Ri (The assembler's OSYM uses R3 for Rj)

Type 3 Instruction

1110 1100 Ri

1 2 3

Rj

4

16
BITS

Detailed Description of Instruction Execution

This instruction pushes a descriptor onto the stack. It copies
the 10 bytes referenced by Ri;CO through Ri;C9 (the descriptor)
to the stack referenced by Rj;CO through Rj;C9. Rj is then
incremented by 10.

If the descriptor type code is zero (that is, if the byte
referenced by Ri;CO contains X'OO'), a BSL is executed using the
third entry of the branch table.

Operand Object Code (Hex)
Types 123 4 - --

Ri,Rj E C i j

Example

Label Ope Operand Comment
Field Field Field Field
----- ----- ------- -------

PUSHDRR R4, RS
PUSHD R4

Caution. If the 10 bytes referenced by Rj cross a frame limit, a
CROSSIBG FRAME LIMIT abort will result.

Cautionz If the 10 bytes referenced by Ri cross a frame limit a
CROSSING FRAME LIMIT abort will result.

Caution: The software that is invoked by the BSL may assume that
R3 is the stack pointer.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-115

INSTRUCTIONS

PUSH NUMBER

PUSHNR Ri
PUSHN (The assembler's OSYM uses R3 for Ri)

Type 3 Instruction

1001 1011 Ri

1 2 3

0000

4

16
BITS

Detailed Description of Instruction Execution

This instruction pushes a numeric descriptor onto the stack. It
writes the numeric code X'Ol' into the byte referenced by Ri;CO
and copies the number from the extended accumulator (FPO) to
bytes Ri;C2 through Ri;C7. The stack pointer (Ri) is then
incremented by 10.

Operand
Types

Ri

Example

Label
Field

OpC
Field

Object Code (Hex)
1 2 3 4

9 B i 0

Operand
Field

PUSHNR R4
PUSHN

Comment
Field

Caution: If the 10 bytes referenced by Ri cross a frame limit, a
CROSSING FRAME LIMIT abort will result.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-116

INSTRUCTIONS

PUSH INDIRECT STRING

PUSHS Ri,Rj
PUSHS Ri (The assembler's OSYM uses R3 for Rj)

Type 3 Instruction

1110 1101 Ri

1 2 3

Rj

4

16
BITS

Detailed Description of Instruction Execution

This instruction pushes an indirect string descriptor onto the
stack. It writes the indirect string type code X'82' into the
byte referenced by Rj;CO and moves the contents of Ri ~o the
storage register at bytes Rj;C2 through Rj;C7. The stack printer
(Rj) is then incremented by 10.

Operand Object Code (Hex)
Types 1 2 3 4

Ri,Rj E D i j

Example

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

PUSHSRR R4,R5
PUSHS R4

Caution: If the 10 bytes referenced by Rj cross a frame limit, a
CROSSING FRAME LIMIT abort will result.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-117

INSTRUCTIONS

PUSH TEMPORARY STRING

PUSHTS Ri,Rj
PUSHTS Ri (The assembler's OSYM uses R3 for Ri)

Type 3 Instruction

1110 1110 Ri

1 2 3

Rj

4

16
BITS

Detailed Description of Instruction Execution

This instruction pushes a temporary string descriptor onto the
stack. It writes the temporary string type code X'C2' into the
byte referenced by Rj;CO and moves the contents of Ri to the
storage register at bytes Rj;C2 through Rj;C7. The stack pointer
(Rj) is then incremented by 10.

Ol2erand
Types

Ri,Rj

Example

Label
Field

Object Code
1 2 3 4

E E i j

OpC Operand
Field Field
----- -------
PUSHTSRR R4,RS
PUSHTS R4

(Hex)

Comment
Field

Caution: If the 10 bytes referenced by Rj cross a frame limit, a
CROSSING FRAME LIMIT abort will result.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-118

INSTRUCTIONS

QUEUE COMMAND

QCMD N

Type 2 Instruction

0110 0110 N 16
BITS

1 2 3 4

Detailed Description of Instruction Execution

This instruction queues a command for the input/output processor.
The command is the value N.

Note that there are several mnemonics in OSYM that generate this
instruction with different values for N, for example, IORESET and
IOKILL. The mnemonic QCMe would not ordinarily be used in a mode.

The following input interface is required :

Element

HO
HI
H2

Operand
Types

N

Example

Description

Channel number
Controller number
IOP2 address

Object Code (Hex)
1 2 3 4 - - --
6 6 n n

Label Ope
Field Field

Operand
Field

IORESUME *

Comment
Field

CONTINUE I/O

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-119

INSTRUCTIONS

QUEUE I/O REQUEST

QI0 Ri,N

Type 4 Instruction

0110 1000 Ri 0000 N 24
BITS

1 2 3 4 5 6

Detailed Description of Instruction Execution

This instruction initiates the transfer of a task descriptor (TD)
to the input/output processor. C(Ri) points to the task
descriptor defining an I/O operation. The TO contains the number
of the controller for which action is desired.

N defines the service request with one of the following values:

Value
(Hex)

01

02

03

Meaning

Queue the TO to the tail of the queue of TOs for this
controller (normal data flow):

Queue the TO to the head of the queue of TOs for thi~ \
controller (expedited data flow); ~

Execute this TO without regard to the queue of TOs for
this controller (error recovery).

If the controller number spe~ified in the TO indicates that the
transfer is to another process in the same computer, the TO will
be transferred to the other process provided the intended
recipient process has initiated a receive TO. Otherwise, the
effect of this instruction is that the queue command and TO are
queued to the IO-Circular-Queue of an lOP. The specific lOP is
specified in the body of the TO.

On completion of the instruction, HO will contain the result of
the operation with one of the following codes:

tode
(Hex)

Meaning

00 I/O issued:

00

OE

OF

I/O queue full;

Invalid lOP address in TO:

Invalid type field in TO (completion handler invalid~~

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-120

INSTRUCTIONS

QUEUE I/O REQUEST (cont)

HO containing X'OO~ indicates that the transfer was issued, not
that the transfer completed without error. When a TO is dequeued
by means of the 0010 Rj,N instruction, it's status bytes must be
checked to determine the outcome of the request.

Code X'OO' can only be returned in monitor mode. In virtual mode
the process is roadblocked until there is room in the queue. The
Monitor should loop on the 010 instruction while counting to some
number that indicates remedial action should be taken.

Codes X'OE' and X'OF' mean that the I/O request was rejected.

Operand
Types

Ri,N

Example

Label
Field

Object Code (Hex)
1 2 3 4 5 6 ------
6 8 iOn n

OpC Operand
Field Field
----- -------
010 R3,X'01'

Conunent
Field

OUEUE UP

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-121

TO

INSTRUCTIONS

REGISTER DETACH AND SET DISPLACEMENT TO ONE

RDETO Rj

Type 3 Instruction

I
1

0001 0111 Rj -I 0000 16 1
1 BITS I

1 2 3 4

Detailed Description of Instruction Execution

If Rj is attached, it is detached, and its displacement field is
set to one.

If Rj is detached, its displacement field is set to one.

Operand Object Code (Hex)
Types 1 2 3 4

Rj 1 7 j a
.~

Example

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

ROE TO R12

Programming Note: This instruction replaces the use of the ONE W
instruction to detach a register and set its displacement field
to one.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-122

L

INSTRUCTIONS

REGISTER DETACH AND.SET DISPLACEMENT TO ZERO

RDETZ Rj

Type 3 Instruction

0001 0110 Rj

1 2 3

0000

4

16
BITS

Detailed Description of Instruction Execution

If Rj is attached, it is detached, and its displacement field is
set to zero.

If Rj is detached, its displacement field is set to zero.

Operand Object Code (Hex)
Types 1 2 3 4

Rj 1 6 j 0

Example

Label Ope Operand Comment
Field Field Field Field
----- ----- ------- -------

RDETZ R12

Programming Note: This instruction replaces the use of the ZERO W
instruction to detach a register and set its displacement field
to zero.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SBP88 2-123

INSTRUCTIONS

READ INDIRECT

READ! Di,Rj

Type 5 Instruction

1010 1011 Dir Rj Dik

1 2 3 4 5 6

General Description of Instruction Execution

Did

7 8

32
BITS

Because this instruction is quite complex, a general description
useful to assembly language programmers is given here and further
details are provided below.

This instruction commands the I/O processor to accept characters
from a process's I/O device and transfer them to main memory.

The C(C(Dir)+Did) is as follows:

tally

byte

byte

timeout count in tenths of a second

read command

mask of active delimiters

Rj points to the input buffer.

The mask specifies which characters are
terminators. Some read commands do not use
cases it will be ignored.

to be treated as
this mask, in which

Before the instruction is executed, TO must contain the maximum
number of characters to be read. The maximum number of characters
that may be specified in TO is 256. A value less than one will
result in no operation.

It is not valid to use this instruction to request a read that
may cross a frame boundary. Hence, Rj must point to a byte in a
frame that will allow the number of characters specified in TO to
be read.

There are several read commands described in the I/O processor
firmware specification which can be used in Di. However, assembly
language programmers are encouraged to use macros defined in
OSYM. These macros are READ, READW, READX, and READL.

The I/O processor uses the mask for the active delimiters if the
read command specifies its use. Each mask bit that is equal to 1
tells the I/O processor that it should terminate the inpu. t if thrJ,
corresponding character is entered:

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-124

INSTRUCTIONS

READ I (cont)

Bits
(L to R) Meaning

o Unassigned
1 Stop input on control-I (TAB)
2 Stop input on ESCape
3 Stop input on control-P
4 Stop input on control-N
5 Stop input on either carriage return or linefeed
6 Stop input on the character in Terminal I/O Workspace

byte TSC3
7 Stop input on the character in Terminal I/O Workspace

byte TSC2

If the variable delimiters specified in the two low-order bits of
the mask are to be used, they must be loaded into Terminal I/O
Workspace bytes TSC2 and/or TSC3 prior to executing the
instruction. The delimiter character will not be echoed to the
I/O device but will be included in the transfer to main memory.

Instruction execution ends when either the number of characters
specified in TO has been read or the specified terminator is
entered. TO contains the original count less the number of
characters read. Tl contains the the number of characters read.

If the virtual process is a TIPH process, that is, if the PIB
PHANTOM bit is a 1, the instruction traps to the Software
Debugger and does not perform any I/O.

Operand
Types

Di,Rj

Example

Wik

1

Object Code (Rex)
1£1!~§'18

A B i j 1 d d d

Label Ope
PiAtlcl Field

Operand
Field

Conunent
Field

MOV
READt

TIMOUTREAD,DTYPI GET COUNT, COMMAND, MASK
DTYPI,RI3

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-125

INSTRUCTIONS

READ (cont)

Detailed Description of Instruction Execution

When the firmware executes this instruction, it first checks
COPY.FLG in the Terminal I/O Workspace. If COPY.FLG ~S not set,
the firmware sets up the Read task descriptor. This includes
moving the two bytes in TSC2 and TSC3 from the Terminal I/O
Workspace to IOADDR1 and IOADDR2, respectively, and storing Nm in
the 10ADDRO field of the READ task descriptor. The firmware
issues a QIO command to the I/O processor. The Read task
descriptor points to the corelocked input buffer pointed to by
the INPUT.BUF field in the Terminal I/O Workspace. The firmware
next sets input roadblock, sets READ.IN.PROGRESS to 1, removes
the PIB from the Priority Queue, and backs up the program counter
to point to the READ instruction.

Since the PIB has been removed from the Priority Queue, the
process will not run. When the I/O processor has completed the
read, it interrupts the CPU. The CPU firmware clears the input
roadblock, sets COPY.FLG to 1, and puts the PIB at the top of the
Priority Queue. When the process runs again, the READ instruction
will be re-executed. This time COPY.FLG will be set. The firmware
checks the validity of the virtual data address, copies the data
from the corelocked input buffer to the virtual process's buffer,
sets that buffer's status to write required, and resets COPY.FLG \
It subtracts the contents of LENGTH. TRANSFERRED (in the Rea~
task descriptor) from the contents of TO, putting the difference
back into TO, and copies the contents of LENGTH. TRANSFERRED into
Tl. The firmware then goes to RNI to execute the next
instruction.

Terminal I/O error~ are reported by the I/O processor to the
firmware via the Status task descriptor and never by the Read
task descriptor itself. Therefore, when a terminal error is
reported, the Read task descriptor remains active and the process
enters the Software Debugger. The firmware transfers to Software
Debugger entry-point 10 for the BREAK key and to entry-point 12
for other terminal errors. If one or more of PRGERR (PIB byte 1,
bit 2) or INDEBUG (PIB byte 1, bit 1) or INCCB (PIB byte X'10',
bit 0) or PHANTOM (PIB byte 0, bit 7) is set to 1, BREAK key is
ignored.

Handshaking errors between the controllers and the CPU may occur
during I/O operations. These errors may be reported using the
Read task descriptor as well as the Status task descriptor.
Whenever the firmware detects a handshake error, it aborts to
entry point 20 of the Software Debugger.

The Monitor may not use the READ instruction for terminal inFut;
it must issue terminal I/O task descriptors in the same manner
that it does for other I/O devices. If this instruction iJ
executed in monitor mode, the Firmware Debugger will be entered.'

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-126

INSTRUCTIONS

READ (cont)

If the corelocked circular output buffer in the Sequel memory
(the buffer pointed to by the OUTPUT.BUF field in the Terminal
I/O Workspace) is not empty when this instruction is encountered,
the output roadblock is set (OBYTEBLK/ is zeroed), the
READ. PENDING bit is set, a firmware release quantum entry to the
Monitor is taken, and the instruction is not executed. When the
output buffer becomes empty, the output roadblock will be cleared
so that the READ instruction will be re-executed.

Generally, the I/O processor will terminate input when either the
maximum byte count runs out or a terminator character is
entered. The actual method of termination is determined by the
definition of the specific read command in Nc.

The read commands are defined
Specification", FS20032441.

in the "IOP2 Firmware

If the process is a TIPH process, that is, if PIB PHANTOM bit is
a 1, the READ instruction will trap to the Software Debugger and
not perform any I/O. First, all the error checks are made. The
virtual storage address of the terminal I/O buffer will be stored
in the PIB at field PH.WRITER2. The Software Debugger is then
entered at entry point 17.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-127

INSTRUCTIONS

READ PROM

RPROM Rj

Type 3 Instruction

1001 0101 Rj

1 2 3

0000

4

16
BITS

Detailed Description of Instruction Execution

After attaching Rj, this instruction performs a PROM read and
stores the data in the bytes pointed at by C(Rj).

The following information is stored:

Byte

o
1
2
3
4
5
6-9

Information

Reserved
Reserved
Reserved
Reserved
PROM microcode version
WCS microdoce version
4-byte system serial number

The system serial number is read from a system configuration PROM
which includes a checksum byte. If the checksum is correct, ACF
bit NUMBIT is set: if the checksum is not correct, NUMBIT is
cleared.

Operand
Types

Rj

Example

Label Ope
Field Field

Object Code (Hex)
1 2 3 4 - - --
9 5 j 0

Operand
Field

RPROM R14

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-128

INSTRUCTIONS

RETURN

RTN

Type 1 Instruction

0000 0001

1 2

8
BITS

Detailed Description of Instruction Execution

Control is transferred to the location saved in the topmost entry
of the return stack.

The return stack pointer is decremented.

If the return stack is empty when instruction execution begins,
control traps to the Debug state with an error code of 1. The
stack is empty when C{RSCWA) is less than or equal to the
displacement of the first stack entry.

Operand
Types

Example

Label OpC
Field Field

RTN

Object Code (Hex)
1 2

o 1

Operand
Field

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-129

INSTRUCTIONS

SET BIT

SB Bj

Type 5 Instruction

1101 1000 Bjr 0000 o

1 2 3 4 5 6

Detailed Description of Instruction Execution

C(C(Bjr)+Bjd)

Operand
Types

Bj

is set to one.

Object Code (Hex)
1 2 3 4 5 6 7 8 - - --
D 8 j 0 0 d d d

Bjd

7 8

o is 8 plus the bit offset within the byte.

Example

Label OpC
Field Field

Operand
Field

SB BTYPJ

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-130

J

32
BITS

J

INSTRUCTIONS

SET BIT WITH RELATIVE OFFSET

SB Rj,Wi

Type 5 Instruction

1101 0001 Wir Rj Wik Wid

1 2 3 4 5 6

Detailed Description of Instruction Execution

C(C(Rj)+C(C(Wir)+Wid)) is set to one.

Operand Wik
Types

Rj,Hi
Rj,Ti
Rj,Di
Rj,Fi

Example

o
o
o
o

Label OpC
Field Field

Object Code (Hex}
1 2

D 1
D 1
D 1
D 1

3 4 5 6 7 8

i j 0 d d d
i j 1 d d d
i j 2 d d d
i j 3 d d d

Operand
Field

SB R7,HTYPEJ

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-131

7 8

32
BITS

INSTRUCTIONS

SCAN STRING DECREMENTING UNDER DELIMITER CONTROL WITH COUNT J
SDDC Ri,N

Type 4 Instruction

0110 1010 Ri 0000 N 24
BITS

1 2 3 4 5 6

Detailed Description of Instruction Execution

C(Ri) is decremented by one.
C(C(Ri») is tested for a match
specified by N. If the match is
is repeated.

C(TO) is decremented by one.
with one of the characters
not successful, the operation

Operand Object Code (Hex)
Types 1 2 3 4 56

Ri,N 6 A i a n n

Example

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

SDOC R9,X'B'

Programming Note: Assuming that TO contains zero before the
instruction is executed, when execution is completed, the number
of characters scanned will be represented in TO as a negative
number.

Progra..ing Note: The older mnemonic form SCOOC Ri,N produces the
same object code.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-132

INSTRUCTIONS

SCAN STRING DECREMENTING UNDER DELIMITER CONTROL

SOD Ri,N

Type 4 Instruction

0110 1001 Ri 0000 N 24
BITS

1 2 3 4 5 6

Detailed Description of Instruction Execution

C(Ri) is decremented by one. C(C(Ri)) is tested for a match with
one of the characters specified by N. If the match is not
successful, the operation is repeated.

OEerand Object Code (Hex)
TYEes 1 2 3 4 56

Ri,N 6 9 i a n n

ExamEle

Label OpC Operand Conunent
Field Field Field Field
----- ----- ------- -------

SOD R6,X'C'

Programming Note: The older mnemonic form SCDD Ri,N produces the
same object code.

7,n VIRTUAL ASS~MBLY LANGUAGE CPU INSTRUCTIONS
" ... ",
~-)..:

INSTRUCTIONS

SET TO ALL ONES

SET Wj

Type 5 Instruction

1100 0011 Wjr 0000 Wjk

1 2 3 4 5 6

Detailed Description of Instruction Execution

Wjd

7 8

32
BITS

Each bit of C(C(Wjr)+Wjd) is set to a one, that is C(C(Wjr)+Wjd)
is set to negative one.

Operand Wjk
Types

Hj 0
Tj 1
OJ 2
Fj 3
Vj 7

Example

Label OpC
Field Field

SET

Object Code (Hex)
1 2 3 4 567 8 --------
C 3
C 3
C 3
C 3
C 3

j 0 0 d d d
j 0 1 d d d
j 0 2 d d d
j 0 3 d d d
j 0 7 d d d

Operand
Field

FTYPJ

Comment
Field

SET TO -1

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-134

J

INSTRUCTIONS

SHIFT FROM STORAGE

SHIFT Rj,Ri

Type 3 Instruction

1110 0101 Rj

1 2 3

Ri

4

16
BITS

Detailed Description of Instruction Execution

C(C(Ri» is shifted right one bit with zero entering the high­
order bit position.

The result replaces C(C(Rj».

C(C(Ri» is not changed.

Operand
Types

Rj ,Ri

Example

Label OpC
Field Field

SHIFT

Object Code (Hex)
1 2 3 4

E 5 j i

Operand
Field

R9,RS

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-135

INSTRUCTIONS

SCAN STRING INCREMENTING, COUNTING DELIMITERS

SlCD Ri,Tj,N

Type 7 Instruction

1101 1111 Ri Tjr Tjk

1 2 3 4 5 6

Detailed Description of Instruction Execution

Tjd

7 8

N

9 10

J

40
BITS

This instruction searches a string for a specified character. Ri
points at the string, and SCI contains the character. If the
character is found, the tally Tj is decremented. The search
continues until either Tj is decremented to zero or a specified
system delimiter is found. The mask N must specify the search
character in SCI, and it specifies any system delimiters to stop
execution. sca and SC2 are not used by this instruction.

..."
Operand Wjk Object Code (Hex)
Types 1 2 3 4 5 6 7 8 9 0

Ri,Tj,N 1 o F i j 1 d d d n n

Example

Label ope Operand Conunent
Field Field Field Field

SICD R14,T3,X'42'

Progrm.ing Note: The older mnemonic forms SeCD Ri,Tj,N and
SeD Ri,Tj,N each produce the same object code.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY {~SF?8E 2-!~S

INSTRUCTIONS

SCAN STRING INCREMENTING UNDER DELIMITER CONTROL WITH COUNT

SIDC Ri,N

Type 4 Instruction

0100 1010 Ri 0000 N 24
BITS

1 2 3 4 5 6

Detailed Description of Instruction Execution

C (Ri) is
C(C(Ri))
specified
repeated.

incremented by one. C(TO) is decremented by one.
is tested for a match with one of the characters
by N. If the match is not successful, the operation is

Operand
Types

Ri,N

Example

Label OpC
Field Field

Object Code (Hex)
1 2 3 4 5 6

5 2 iOn n

Operand
Field

SIDC RS,9

Comment
Field

Programming Note: Assuming that TO contains zero before the
instruction is executed, when execution is completed, the number
of characters scanned will be represented in TO as a negative
number.

Progra..ing Note: The older mnemonic form SCDC Ri,N produces the
same object code.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-137

INSTRUCTIONS

SCAN STRING INCREMENTING UNDER DELIMITER CONTROL

SID Ri,N

Type 4 Instruction

0100 1001 Ri 0000 N 24
BITS

1 2 3 4 5 6

Detailed Description of Instruction Execution

C(Ri) is incremented by one. C(C(Ri)) is tested for a match with
one of the characters specified by N. If the match is not
successful, the operation is repeated.

Operand Object Code (Hex)
Types 1 2 3 4 56

Ri,N 4 9 i a n n

Example

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

SID R15,3

Programming Note: The older mnemonic form SCD Ri,N produces the
same object code.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-138

INSTRUCTIONS

SCAN STRING UNDER DELIMITER CONTROL ACCUMULATING CHECK SUM

SIDX Ri,N

Type 4 Instruction

0100 1011 Ri 0000 N 24
BITS

1 2 3 4 5 6

Detailed Description of Instruction Execution

C(Ri) is incremented by one. C(C(Ri)) is tested for a match with
one of the characters specified by N. If the match is
unsuccessful, C(C(Ri)) is added to C(TO) and the operation is
repeated; otherwise, instruction execution terminates. Hence, the
terminating character is not added to the check sum.

OEerand Object Code (Hex)
TYEes 1 2 3 4 56 - - --

Ri,N 4 B i a n n

ExamEle

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

SIDX RIO,X'A'

Programming Note: If TO contains zero before instruction
execution begins, a two-byte check sum of all characters scanned
will be accumulated in TO.

Programming Notel The older mnemonic form SCDX Ri,N produces the
same object code.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-139

INSTRUCTIONS

INCREMENT AND SCAN STRING UNDER TO AND DELIMITER CONTROL

SITD Ri,N

Type 4 Instruction

0101 0011 Ri 0000 N 24
BITS

1 2 3 4 5 6

Detailed Description of Instruction Execution

If C(TO) equals zero initially, no operation is performed.

C(Ri) is incremented by one. C(TO) is decremented by one. If
C(TO) is zero or if C(C(Ri» matches one of the characters
specified by N, execution ceases. If the match is not
successful, the operation is repeated.

Operand
Types

Ri,N

Example

Label
Field

Object Code
1 2 3 456 ------
5 3 i 0 n n

OpC Operand
Field Field
----- -------
SITD R15,3

{Hex}

Comment
Field

Programming Note: This instruction may be used to limit the
maximum number of characters scanned. TO can be initialized with
a maximum count before the instruction is executed. After
execution the number of characters scanned may be computed by
subtracting the final count in TO from the initial count.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-140

INSTRUCTIONS

SET PCB ADDRESS LINKED

SPCBL Rj, N

Type 3 Instruction

0011 1001 Rj

1 2 3

N

4

16
BITS

Detailed Description of Instruction Execution

This instruction sets a register pointing to a linked workspace
that starts in one of the process's primary workspace frames. The
instruction

adds N to the FlO that RO points to and

sets the C(Rj):

linked,

displacement points one byte before data byte one of a
linked frame,

FlO-field contains the calculated FlO.

Operand
Types

Rj,N

Example

Label Ope
Pield Pield

SPCBL

Object Code (Hex)
1 2 3 4 - --
3 9 j n

Operand
Field

R7,39

Comment
Field

GET DATA STACK READ

Programming Note: This instruction presumes a knowledge of the
format of a process's primary workspace.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-141

INSTRUCTIONS

SET PCB ADDRESS UNLINKED

SPCBU Rj,N

Type 3 Instruction

0011 1000 Rj

1 2 3

N

4

16
BITS

Detailed Description of Instruction Execution

J

This instruction sets a registers to point to an unlinked block
in one of the process's primary workspace frames. The instruction

adds N to the FlO that RO points to and

sets the C(Rj):

unlinked,

displacement points to byte zero of the unlink ~
frame,

FlO-field contains the calculated FlO.

Object Code (Hex) Operand
Types ll.l!

Rj,N

Example

Label Ope
Field Field

SPCBU

3 8 j n

Operand
Field

Rll,28

Conunent
Field

GET USER CONTROL BLOCK

Programming Notel This instruction presumes a knowledge of the
format of a process's primary workspace.

J

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-142

INSTRUCTIONS

SET PIB ADDRESS

SP Rj

Type 3 Instruction

0010 0111 Rj

1 2 3

0000

4

16
BITS

Detailed Description of Instruction Execution

The special FlO of the PIB is placed into Rj's FlO field. The
displacement of the PIB in the buffer is placed into Rj's
displacement field. The flag field is set to X'80' to indicate
an unlinked frame, and the register is attached.

Operand Object Code (Hex)
Types 1 2 3 4

Rj 2 7 j 0

Example

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

SP Rll

Programming Note: Unlike most of the data associated with a
virtual process, PIBs do not reside on disc; they reside only in
main memory. In order to allow a virtual process to reference a
PIB through the address registers with the usual fields, the
Confiqurator program puts special FIDs into the Buffer Map for
the buffers that hold PIBs. These special FIDs have the format:

X'BPnnnn'

where nnnn is the process number.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-143

INSTRUCTIONS

SET REGISTER TO ADDRESS

SRA Rj ,Wi

Type 5 Instruction

1100 1000 Wir Rj Wik

1 2 3 4 5 6

Detailed Description of Instruction Execution

Wid

7 8

J

32
BITS

The effective address, C(Wir)+Wid, is computed. The resulting
effective address replaces C(Rj).

Operand Wik Object Code (Hex}
Types .!.11!2~ 7 8

Rj,Ci 0
Rj,Hi 0
Rj,Ti 1
Rj,Di 2
Rj,Fi 3
Rj,Si 3

Example

Label ope
Field Field

SRA

C
C
C
C
C
C

8
8
8
8
8
8

i j 0 d d d
i j 0 d d d
i j 1 d d d
i j 2 d d d
i j 3 d d d
i j 3 d d d

Operand
Field

RlS,STYPJ

Comment
Field

PUT ADR OF STYPJ IN R1S

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-144

J

INSTRUCTIONS

STORE ACCUMULATOR

STORE Wj

Type 5 Instruction

1100 0010 Wjr 0000 Wjk

1 2 3 4 5 6

Detailed Description of Instruction Execution

Wjd

7 8

32
BITS

The contents of the 32-bit accumulator (DO) are stored into the
location defined by the operand if the word type of the operand
is H,T, or D. That is, C(DO) replaces C(C(Wjr)+Wjd) for operands
of four bytes or less. For half tally and tally operands, the
high order bits are lost.

For a six-byte operand, C(FPO) replaces C(C(Wjr)+Wjd).

Operand Wjk
Types

Hj 0
Tj 1
OJ 2
Fj 3
Vj 7

Example

Label Ope
Field Field

STORE
STORE

Object Code (Hex)
.!.fl!~§'2~

C 2
C 2
C 2
C 2
C 2

j 0 Odd d
j 0 1 d d d
j 0 2 d d d
j 0 3 d d d
j 0 7 d dod

Operand
Field

FTYPEJ
TTYPI

Comment
Field

STORE INTO FPO
STORE INTO (LOW ORDER WORD)

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-145

INSTRUCTIONS

J
SUBTRACT FROM ACCUMULATOR

SUB Wi

Type 5 Instruction

1010 0101 Wir 0000 Wik

1 2 3 4 5 6

Detailed Description of Instruction Execution

Wid

7 8

32
BITS

The integer addressed by the operand is subtracted from the 32-
bit accumulator (DO) with sign extension. That is, C(DO)
C(C(Wir)+Wid) replaces C(DO).

C(ACF) is updated to reflect overflow.

Operand Wik
Types

Hi 0
Ti 1
Di 2
Vi 7

Example

Label OpC
Field Field

SUB

Object Code (Hex)
1 2

A 5
A 5
A 5
A 5

3 4 5 6 7 8

i 0 0 d d d
i 0 1 d d d
i 0 2 d d d
i 0 7 d d d

Operand
Field

HTYPI

Comment
Field

SUBTRACT FROM DO

Progra.aing Note: The mnemonic SUB may be used with F type
operand. (Six-byte elements), but the object code generated by
the a •• e.bler i8 the same as that generated for instruction SUBX.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-146

J

INSTRUCTIONS

SUBTRACT FROM EXTENDED ACCUMULATOR

SUBX Wi

Type 5 Instruction

1010 0100 Wir 0000 Wik Wid 32
BITS

1 2 3 4 5 6 7

Detailed Description of Instruction Execution

C(C(Wir)+Wid) is subtracted algebraically from
difference replaces C(FPO). That is, C(FPO)
replaces C(FPO).

C(ACF) is updated to reflect overflow.

Operand Wik Object Code (Hex)
Types .!£1!~§'1~

Hi 0 A 4 i 0 0 d d d
Ti 1 A 4 i 0 1 d d d
Di 2 A 4 i 0 2 d d d
Fi 3 A 4 i 0 3 d d d
Vi 7 A 4 i 0 7 d d d

Example

Label Ope Operand Comment
Field Field Field Field
----- ----- ------- -------

SUBX DTYPI SUBTRACT
SUBX HTYPI SUBTRACT

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-147

8

C(FPO) and this
C(C(Wir)+Wid)

FROM FPO
(BYTE) FROM FPO

INSTRUCTIONS

SWAP STORAGE ELEMENTS

SWAP Wi,Wj

Type 6 Instruction

1111 1010 Wir Wjr Wik Wid

1 2 3 4 5 6 7

Wjk Wjd

9 10 11

Detailed Description of Instruction Execution

C(C(Wir)+Wid) and C(C(Wjr)+Wjd) are swapped.

°Eerand Wik Wjk Object Code (Hex)
TYEes l~l!.2.§'I~iQl~

Ci,Cj 0 0 F A i j 0 d d d 0 d d d
Hi,Hj 0 0 F A i j 0 d d d 0 d d d
Ti,Tj 1 1 F A i j 1 d d d 1 d d d
Di,Dj 2 2 F A i j 2 d d d 2 d d d
Fi,Fj 3 3 F A i j 3 d d d 3 d d d
Si,Sj 3 3 F A i j 3 d d d 3 d d d
Vi,Vj 7 7 F A i j -7 d d d 7 d d d

ExamEle

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

SWAP HTYPI,HTYPJ
SWAP CTYPI,CTYPJ
SWAP TTYPI,TTYPJ
SWAP DTYPI,DTYPJ
SWAP FTYPI,FTYPJ
SWAP STYPI,STYPJ

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-148

8

12

48
BITS

INSTRUCTIONS

UNLOCK COMPETING PROCESSES

UNLOCK N

Type 2 Instruction

0000 0010 N 16
BITS

1 2 3 4

Detailed Description of Instruction Execution

This instruction opens locks set by the LOCK N instruction.

N is the lock number.

The instruction handles two conditions.

If lock N contains the unlocked value or the process number of
another process, this instruction falls through to the next
instruction in sequence.

If lock N contains the process number of the executing process,
the firmware puts the unlocked value into lock N and searches the
Priority Queue for all PIBs with the value N in the PIB lock
number hold byte. For each PIB with N the firmware removes the
lock roadblock.

OEerand
TYEes

N

ExamEle

Label
Field

Object Code
1 2 3 4 - - --
0 2 n n

Ope Operand
Field Field
----- -------
UNLOCK OVRFLW*

{Hex}

Comment
Field

7.0 VIRTUAL A$SEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-149

INSTRUCTIONS

WRITE FILLER CHARACTERS

WRITEF

Type 1 Instruction

0010 1110

1 2

8
BITS

Detailed Description of Instruction Execution

(.

'~

This instruction causes the CPU firmware to send nulls to the
process's terminal.

The characters are transmitted in a manner similar to writing
data to the terminal using the WRITE instruction, except that no
registers are involved.

The following input interface is required

Element Description

TO Number of nulls to send

C(TO) is undefined after execution of this instruction.

If the process is a TIPH process, this instruction is a NOP.

Operand
Types

Example

Label
Field -----

Ope
Field

LOAD

Object Code (Hex)
1 2

2 E

Operand
Field

20

WRITEF •

Comment
Field

SEND 20 NULLS
TO TERMINAL

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-150

L

INSTRUCTIONS

WRITE NEW LINE

WRITEOL

Type 1 Instruction

0010 1111

1 2

8
BITS

General Description of Instruction Execution

Because this instruction is quite complex, a general description
useful to assembly language programmers is presented here, and
further details are provided below.

This instruction outputs a carriage return, line feed and nulls
to the process's terminal.

The CPU uses the DELYCNT field in the PIB for the null character
count. The maximum count that may be specified in DELYCNT is 127.
Anything larger will cause the instruction to abort into the
Software Debugger.

If the process is a TIPH process, that is, if the PIB TRAP.WRITES
bit is set to 1, this instruction traps to the Software Debugger
and does not perform any I/O.

Object Code (Hex) Operand
Types 1~

Example

Label OpC
Field Field

2 F

Operand
Field

WRITEOL *

Comment
Field

WRITE NEW LINE

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-151

INSTRUCTIONS

WRITE NEW LINE (cont)

Detailed Description of Instruction Execution

This instruction uses the same firmware logic as the WRITE
instruction for putting characters into the output buffer.

The firmware will first check to see if the corelocked output
buffer has enough free space for the two end-ot-line and DELYCNT
null characters. It there is not enough room, the output
roadblock is set, the program counter is set to the WRITEOL
instruction, the process is deactivated, and the firmware enters
the Monitor to release the process's time quantum. When the
output buffer has enough room, the output roadblock will be
cleared and the WRITEOL instruction will be executed.

If there is enough room for the characters, the firmware puts
them into the output buffer. If the buffer is empty when the
instruction is executed, the firmware sets up the Write task
descriptor and issues it to the IOP2 to write the characters.
The firmware then goes to RNI to execute the next instruction.

For a TIPH process, this instruction sets two PCB fields before
entering the Software Debugger.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-152

INSTRUCTIONS

WRITE

WRITE Ri,Rj

Type 3 Instruction

0101 1100 Ri

1 2 3

Rj

4

16
BITS

General Description of Instruction Execution

Because this instruction is quite complex, a general description
useful to assembly language programmers is presented here, and
further details are provided below.

This instruction commands the IOP2 to transfer characters to a
process's terminal. Ri points to the first byte of a character
string, and Rj points to the last character of the string.

If Ri points to a byte in an unlinked frame, Rj must point to the
same or a subsequent byte in the same frame. If Ri points to a
byte in a linked frame, Rj must point to the same or a subsequent
byte in the same linked set. If either of these rules is broken,
a CROSSING FRAME LIMIT abort is generated.

This instruction is restricted to virtual mode. If it is executed
in monitor mode, the Firmware Debugger is entered.

If the virtual process is a TIPH process, that is, if the PIB
PHANTOM bit is set to 1, th~ WRITE instruction traps to the
Software Debugger and does not perform any I/O.

Operand
Types

Object Code (Hex)
111!

Ri,Rj

Example

~l O~
Field Field

WRITE

5 C i j

Operand
Field

Rl4,R15

Comment
Field

Programming notes: As much as possible, output characters in
strings, not individually. Use the instruction WRITEOL to output
carriage return, line feed, and nulls. Use WRITEF to output
nulls.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-153

INSTRUCTIONS

WRITE (cont)

Detailed Description of Instruction Execution

This instruction commands the IOP2 to transfer data from main
memory to a terminal. If the corelocked output buffer is full
(the buffer pointed to by the OUTPUT.BUF field in the Termi~al
I/O Workspace), the output roadblock is set (OBYTEBLK/ is zeroed)
and a firmware release quantum entry to the Monitor is taken.
When the output buffer becomes at least half-empty the output
roadblock will be cleared. When the process is re-activated, the
WRITE instruction will be re-executed.

The bytes from Ri to Rj, inclusive, are displayed on the terminal
of the process executing the WRITE. The details of the WRITE
instruction's function are governed by the relationship between
the two registers, the number of characters to output, and the
amount of free space in the output buffer. These are the
possible cases:

1 . The first register points
buffer has room for all
registers are not pointing
be linked.

before the second and the output
the bytes to transmit. If the
at the same frame, the frames must

The CPU firmware moves the data from the virtual process'r .
buffer to the corelocked output buffer and advances th~ .~
buffer's producer pOinter (the TO.PROD field in the Terminal~
I/O Workspace) by the number of bytes moved. If the output
buffer is empty when the instruction is executed, the Write
task descriptor is set up and the firmware commands the IOP2
to write the data to the terminal. The first register (Ri) is
set pointing to the last byte to be output. The firmware
returns to RNI to execute the next instruction.

2. The first register points before the second register and
there are more characters to transmit than there is free
space in the output buffer. If the registers are not pointing
at the same frame, the frames must be linked.

The firmware moves data from the process's buffer into the
corelocked output buffer until it is full. If the buffer is
empty when this instruction is executed, the firmware issues
a write command to the IOP2. Output roadblock is set. The
program counter is set pointing at the WRITE instruction. Ri
is left pointing at the next data to be transmitted, and the
process is deactivated. The firmware enters the Monitor to
release the process's time quantum.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-154

INSTRUCTIONS

WRITE (cont)

When the interrupt signaling completion is received, the
firmware will advance the output buffer's consumer pointer
(the TO.CONS field in the Terminal I/O Workspace) by the
number of bytes written. If there are more data in the
buffer, the task descriptor is re-issued to write them. If
that makes the buffer at least half-empty, the output
roadblock is cleared; otherwise, the process is not
reactivated until the next interrupt is received. When the
process is reactivated, the WRITE instruction is re-executed
so that output may continue from where it left off. This
continues until the data are reduced to fewer bytes than the
free space in the output buffer, at which time case 1
applies.

Use of the WRITE instruction in this way enables a process to
output an unlimited number of characters with one command.

3. The registers point to different frames, and the first
register is in unlinked format; or they point to the same
frame, and the second register is before the first.

A CROSSING FRAME LIMIT abort is generated.

Terminal I/O errors are reported by the IOP2 to the firmware via
the Status task descriptor and never by the Write task descriptor
itself. Therefore, when a terminal error is reported, the Write
task descriptor remains active and the process enters the
Software Debugger. The firmware transfers to Software Debugger
entry-point 10 for the BREAK key and to entry-point 12 for other
terminal errors. If one or more of PRGERR (PIB byte 1, bit 2) or
INDEBUG (PIB byte 1, bit 1) or INCCB (PIB byte X'10', bit 0) or
PHANTOM (PIB byte 0, bit 7) is set to 1, BREAK key is ignored.

Handshaking errors between the controllers and the CPU may occur
during I/O operations. These errors may be reported using the
Write task descriptor as well as the Status task descriptor.
Whenever the firmware detects a handshake error, it aborts to
entry point 20 of the Software Debugger.

The Monitor
output, it
manner that
is executed
entered.

may not use the WRITE instruction for terminal
must issue terminal I/O task descriptors in the same
it does for other I/O devices. If this instruction
in monitor mode, the Firmware Debugger will be

If the process is a TIPH process, that is, if the PIB PHANTOM bit
is set to 1, the WRITE instruction with one exception traps to
the Software Debugger and does not perform any I/O. The exception
is when TIPH.OPT is 1. This means the TIPH process is using the T
option to write to a terminal instead of to a Spooler file. The
firmware transfers the data to the terminal and does not enter
the debugger.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-155

INSTRUCTIONS

WRITE (cont)

For all other TIPH cases the firmware enters the debugger. First,
all the error checks are made. PIB field PH.WRITERl will be set
pointing to the first byte of the string to be written.
PH.WRITER2 will be set pointing to the last byte of the string.
Ri will be updated to point to the last byte of the string and
the Software Debugger entered at entry point 19.

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-156

INSTRUCTIONS

EXCHANGE CHARACTERS

XCC Ri,Rj

Type 3 Instruction

1110 1010 Ri

1 2 3

Rj

4

16
BITS

Detailed Description of Instruction Execution

C(C(Ri)) and C(C(Rj)) are exchanged.

Operand
Types

Ri,Rj

Example

Label OpC
Field Field

Object Code (Hex)
1 2 3 4

E A i j

Operand
Field

XCC R8,R9

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-157

INSTRUCTIONS

XOR WITH IMMEDIATE

XOR Rj,N
XOR N,Rj

Type 4 Instruction

1000 0011 Rj 0000 N 24

1 2 3 4 5 6

Detailed Description of Instruction Execution

C(C(Rj» are logically exclusive ORed with N.

The result replaces C(C(Rj».

Operand
Types

Rj,N
N,Rj

Example

Label OpC
Field Field

Object Code (Hex)
111!2.§.

8 3 jOn n
8 3 jOn n

Operand
Field

XOR R8,7
XOR X 'c' ,RS

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-158

BITS

INSTRUCTIONS

XOR WITH STORAGE

XOR Rj,Ri

Type 3 Instruction

1110 0011 Rj

1 2 3

Ri

4

16
BITS

Detailed Description of Instruction Execution

C(C(Rj)) are logically exclusive ORed with C(C(Ri)).

The result replaces C(C(Rj».

Operand
Types

Rj,Ri

Example

Label OpC
Field Field

Object Code (Hex)
1 2 3 4

E 3 j i

Operand
Field

XOR R10,R4

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUA~E CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-159

INSTRUCTIONS

XOR ELEMENT WITH ELEMENT

XOR Wi,Wj

Type 6 Instruction

1111 1101 Wir Wjr Wik

1 2 3 4 5 6

Wjk

9 10

Detailed Description of Instruction Execution

Wid

7

Wjd

11

8

12

48
BITS

C(C(Wir)+Wid) is eXclusively ORed with C(C(Wjr)+Wjd). The result
replaces C(C(Wjr)+Wjd).

Operand Wik Wjk Object Code (Hex)
Types 1 2 3 4 5 6 7 8 9 0 1 2 --------
Ci,Cj 0 0 F Orr 0 d d d 0 d d d
Hi,Hj 0 0 F o r r 0 d d d a d d d
Ti,Tj 1 1 F 0 r r 1 d d d 1 d d d
Di,Dj 2 2 F 0 r r 2 d d d 2 d d d
Fi,Fj 3 3 F Orr 3 d d d 3 d d d
Vi,Vj 7 7 F 0 r r 7 d d d 7 d d d

Example

Label OpC Operand Comment
Field Field Field Field
----- ----- ------- -------

XOR HTYPI,HTYPJ
XOR CTYPI,CTYPJ
XOR TTYPI,TTYPJ
XOR DTYPI,DTYPJ
XOR FTYPI,FTYPJ

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-160

L
INSTRUCTIONS

EXCHANGE ADDRESS REGISTERS

XRR Ri,Rj

Type 3 Instruction

0000 1010 Ri Rj

1 2 3 4

16
BITS

Detailed Description of Instruction Execution

C(Ri) and C(Rj) are exchanged. All eight
are exchanged. hence, if Ri was attached,

bytes of each register
Rj becomes attached;
attached, Ri becomes otherwise it is detached. If Rj was

attached; otherwise, it is detached.

Operand Object Code (Hex)
Types 1 2 3 4

Ri,Rj 0 A i j

Example

Label OpC Operand Conunent
Field Field Field Field
----- ----- ------- -------

XRR RS,R6

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-161

INSTRUCTIONS

ZERO BIT

ZB Bj

Type 5 Instruction

1101 0000 Bjr 0000 o

1 2 3 4 5 6

Detailed Description of Instruction Execution

C(C(Bjr)+Bjd)

Operand
Types

Bj

is set to zero.

Object Code (Hex)
1 2 3 4 5 6 7 8 - - --
D 0 j 0 0 d d d

Bjd

7 8

o is 8 plus the bit offset within the byte.

Example

Label OpC
Field Field

Operand
Field

ZB BTYPJ

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-162

32
BITS

J

L

INSTRUCTIONS

ZERO BIT WITH RELATIVE OFFSET

ZB Rj,Hi

Type 5 Instruction

1101 0000 Hir j Hik

1 2 3 4 5 6

Detailed Description of Instruction Execution

C(C(Rj)+C(C(Hir)+Hid» is set to zero.

Operand
Types

Rj,Hi

Example

Hik

o

Label OpC
Field Field

Object Code (Hex)
1 2 3 4 567 8 ------
D 0 i j 0 d d d

Operand
Field

ZB R9,HTYPEJ

Comment
Field

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 2-163

Hid

7 8

32
BITS

INSTRUCTIONS

STORE A ZERO

ZERO Wj

Type 5 Instruction

1100 0000 Wjr 0000 Wjk

1 2 3 4 5 6

Detailed Description of Instruction Execution

C(C(Wjr)+Wjd) is replaced by binary zeros.

C(ACF) is NOT changed.

Operand Wjk
Types

Cj a
Hj a
Tj 1
OJ 2
Fj 3
Sj 3
Vj 7

Example

Label OpC
Field Field

Object Code (Hex)
1 2 3 4 567 8

C
C
C
C
C
C
C

- -----
a
a
a
a
a
a
0

j a a d d d
j a a d d d
j a 1 d d d
j a 2 d d d
j a 3 d d d
j a 3 d d d
j a 7 d d:' d

Operand
Field

Comment
Field

Wjd

7 8

32
BITS

ZERO CTYPJ ZERO THE CONTENTS OF CTYPJ

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS

INDEX
\..;,

01, ope ode 2-126 58, ope ode 2-80
02, ope ode 2-146 59, ope ode 2-82
03, ope ode 2-95 5C, ope ode 2-150
04, ope ode 2-51 5F, ope ode 2-48
05, opeode 2-31 60, ope ode 2-79
06, ope ode 2-41 61, ope ode 2-78
07, ope ode 2-54 62, ope ode 2-77
08, ope ode 2-53 66, ope ode 2-116
OA, ope ode 2-158 68, ope ode 2-117
OF, ope ode 2-105 69, ope ode 2-130
12, ope ode 2-63 6A, ope ode 2-129
13, ope ode 2-62 81, ope ode 2-4
16, ope ode 2-120 82, opeode 2-107
17, ope ode 2-119 83, ope ode 2-155
25, ope ode 2-50 85, ope ode 2-75
26, ope ode 2-39 87, ope ode 2-14
27, opeode 2-140 88, ope ode 2-12
2E, ope ode 2-147 89, ope ode 2-15
2F, ope ode 2-148 8A, ope ode 2-17
30, ope ode 2-33 95, ope ode 2-125
31, ope ode 2-32 98, ope ode 2-113
34, ope ode 2-52 9F, ope ode 2-110
35, ope ode 2-9 A2, ope ode 2-3
38, ope ode 2-139 A3, ope ode 2-2
39, opeode 2-138 A4, ope ode 2-144
3A, ope ode 2-66 A5, ope ode 2-143
3D, opeode 2-7 A6, ope ode 2-43
3E, ope ode 2-8 A7, ope ode 2-56
3F, ope ode 2-59 A8, ope ode 2-46
40, opeode 2-89 A9, ope ode 2-45
41, ope ode 2-88 AA, ope ode 2-104
42, ope ode 2-87 AB, ope ode 2-121
43, ope ode 2-40 AC, ope ode 2-47
46, opcode 2-73 ACF 1-2
47, ope ode 2-86 ADD Di 2-2
48, ope ode 2-24 ADD Fi 2-2
49, ope ode 2-135 ADD Hi 2-2
4A, opcode 2-134 ADD Ti 2-2
48, opcode 2-136 ADD Vi 2-2
4C, opcocle 2-34 ADD Wi 2-2
40, opcocle 2-36 ADDX Di 2-3
4E, opcode 2-85 ADDX Fi 2-3
4F, opcoda 2-83 ADDX Hi 2-3
50, opcocla 2-90 ADDX Ti 2-3
51, opcode 2-92 ADDX Vi 2-3
52, opcode 2-91 ADDX Wi 2-3
53, opcode 2-137 AE, opcode 2-61
54, opcode 2-18,2-81 AF, opcode 2-60
55, opcode 2-74 AND Ci,Cj 2-6
56, opcode 2-70 AND Di,Oj 2-6

L~

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 INDEX-1

INDEX

2-6
2-6
2-4
2-4
2-5
2-6
2-6
2-6

2-4,2-5,2-6
2-8
2-7

AND Fi,Fj
AND Hi,Hj
AND N,Rj
AND Rj,N
AND Rj,Ri
AND Si,Sj
AND Ti,Tj
AND Vi,Vj
AND Wi,Wj
ATT Ri,Rj
ATT Rj
Address
Address
Address

register 0 1-6
register 1 1-6
register instructions

Arithmetic Condition Flags

Arithmetic instructions
B L
BO, opcode
B1, opcode
B2, opcode
B3, opcode
B4, opcode
B5, opcode
B6, opcode
B7, opcode
B8, opcode
B9, opcode
BA, opcode
BASIC DECODE
BBS Bi,L
BBS Ri,Hj,L
BBZ Bi,L
BBZ Ri,Hj,L
BBc Bi,L
BBc Ri,Hj,L
BC, opcode
BCA Ri, L
BCA Ri,L
BCE Ci,Rj,L
BCE N,Ri,L
BCE Ri,Rj,L
BCL Ci,Rj,L
BCL N,Ri,L
BCL Ri,Rj,L
BCLE Ci,Rj,L
BCLE N,Ri,L
BCLE Ri,Rj,L
BCN Ri,L

2-97

1-2
1-2
2-9

2-100
2-99

2-102
2-101

2-21
2-10
2-42
2-55
2-65
2-93
2-97
2-24
2-10-
2-11
2-10
2-11
2-10
2-11
2-25
2-12
2-12
2-13
2-14
2-16
2-13
2-14
2-16
2-13
2-14
2-16
2-15

BCNA Ri,L
BCNE Ci,Rj,L
BCNN Ri,L
BCNX Ri,L
BCU N,Ri,L
BCU Ri,Rj,L
BCX Ri,L
BCc Ci,Rj,L
BCc N,Ri,L
BCc Ri,Rj,L
BCcA Ri,L
BCcN Ri,L
BCcX Ri,L
BDCD
BDLEZ Wj,L
BDLEZ Wj, Wi, L
BDLZ Wj, L
BDLZ Wj,Wi,L
BDNZ Wj,L
BDNZ Wj,Wi,L
BDZ Wj,L
BDZ Wj,Wi,L
BDc Wj,L
BDc Wj ,Wi,L
BE Ri,Rj,L
BE Rj,Si,L
BE Si,Rj,L
BE Wi,Wj,L
BE, opcode
SF, opcode
BL Wi, Wj, L
BL.E Wi,Wj,L
BL . L Wi, W j , L
BL.LE Wi,Wj,L
BL . NE Wi, W j , L
BL . c Wi, W j , L
BLE Wi, Wj,L
BLEZ Wi,L
BLZ Wi,L
BNZ Wi,L
BSL L
BSL M
BSL N,M
BSLI
BSTE Ri,Rj,N,L
BSTU Ri,Rj,N,L
BSTc Ri,Rj,N,~
BU Ri,Rj,L
BU Rj,Si,L
BU Si,Rj,L

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS

2-12..)
2-13
2-15
2-17
2-14
2-16
2-17
2-13
2-14
2-16
2-12
2-15
2-17
2-24
2-25
2-27
2-25
2-27
2-25
2-27
2-25
2-27
2-25
2-27
2-18
2-19
2-19 ~
2-22
2-58
2-68
2-22
2-29
2-29
2-29
2-29
2-29
2-22
2-21
2-21
2-21
2-32
2-33
2-33
2-31
2-34
2-34
2-34
2-18
2-19
2-19

INDEX

BU Wi,Wj,L
BZ Wi,L
Basic Debugger, disable
Basic Debugger, enable
Bc Ri,Rj,L
Bc Rj, Si, L
Bc 5i,Rj,L
Bc Wi,L
Bc Wi, Wj, L
Branch and stack
C (C (Ri))
C(C(Wir)+Wid)
C(Ri)
C(Wir)
C(Wir)+Wid
CO, opcode
C1, opcode
C2, opcode
C3, opcode
C6, opcode
C8, opcode
CA, opcode
COMP Ri,Rj,L
Character movement

instructions
Codes for operand types
Compare code indicators
Conditional branch
Conversion instructions

2-22
2-21
2-39
2-50
2-18
2-19
2-19
2-21
2-22
2-32
1-12
1-12
1-12
1-12
1-12

2-161
2-106
2-142
2-131

2-71
2-141

2-96
2-36

2-72
1-10
1-15
2-16
2-76

Count in TO control
DO, opcode

1-3
2-159,2-160

01, opcode
02, opcode
04, opcode
06, opcode
07, opcode
08, opcode
DA, opcode
DATA/BASIC Debugger,

2-129
2-11
2-19
2-69
2-13

2-127
2-76

disable
2-39

DATA/BASIC Debugger, enable

DB, opcocle
DBDB
DeD
DeDRR Ri,Rj
DE, opcode
DEC OJ
DEC Dj,Di
DEC Fj

2-50
2-67
2-39
2-40
2-40

2-103
2-43
2-44
2-43

DEC Hj
DEC Hj,Hi
DEC Rj
DEC Rj,Wi
DEC Sj, 5i
DEC Tj
DEC Tj,Ti
DEC Vj
DEC Vj,Vi
DEC Wj
DEC Wj,Wi
DECODE
OF, opcode
DIV Di
DIV Fi
DIV Hi
DIV Ti
DIV Vi
DIV Wi
DIVX Di
DIVX Fi
DIVX Hi
DIVX Ti
DIVX Vi
DIVX Wi
DIVXX Fi
DQIO Rj,N
Decrement register
Delimiter control
Disable Basic Debugger
EO, opcode
E1, opcode
E2, opcode
E3, opcode
E5, opcode
E7, opcode
EA, opcode
EBDS
EC, opcode
ED, opcode
EE, opcode
EF, opcode
ENT M
ENTI
EQUBIT

2-43
2-44
2-41
2-42
2-44
2-43
2-44
2-43
2-44
2-43
2-44
2-40

2-133
2-45
2-45
2-45
2-45
2-45
2-45
2-46
2-46
2-46
2-46
2-46
2-46
2-47
2-48

2-41,2-42
1-3

2-39
2-72

2-5
2-108
2-156
2-132

2-16
2-154

2-50
2-112
2-114
2-115
2-111

Element AND instructions
Element Or instructions
Element exclusive OR

2-52
2-51

1-2
2-6

2-109

instructions 2-157
Element movement instructions

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 INDEX-3

INDEX

2-98
Element size 1-12
Enable Basic Debugger 2-50
Exchange registers 2-158
FI, opcode 2-29
F2, opcode 2-27
F3, opcode 2-98
F4, opcode 2-22
F5, opcode 2-94
F6, opcode 2-44
F7, opcode 2-57
FA, opcode 2-145
FB, opcode 2-6
FC, opcode 2-109
FD, opcode 2-157
HALT 2-53
Hexadecimal to binary 2-85
INC OJ 2-56
INC OJ,Oi 2-57
INC Fj,Fi 2-57
INC Hj 2-56
INC Hj,Hi 2-57
INC Rj 2-54
INC Rj,Wi 2-55
INC Sj,Si 2-57
INC Tj 2-56
INC Tj,Ti 2-57
INC Vj 2-56
INC Vj,Vi 2-57
INC Wj 2-56
INC Wj,Wi 2-57
INHIBITH 2-62
Increment register 2-54,2-55
Instruction description

format 1-9
Instruction set repertoire

2-1
Instructions with offset 1-8
LAD Rj,Si 2-58
LAD Si,Rj 2-58
LOAD Oi 2-60
LOAD Fi 2-60
LOAD Hi 2-60
LOAD Ti 2-60
LOAD Vi 2-60
LOAD Wi 2-60
LOAOA A 2-59
LOADA Oi 2-59
LOADA Fi 2-59
LOADA Hi 2-59

LOADA Ti
LOADX Oi
LOADX Fi
LOADX Hi
LOADX Ti
LOADX Vi
LOADX Wi
LOCK N
LOCK Tj
LOCKINH N
LOWBIT
LPIB Rj
Length of operand
Load address difference
Lock competing processes

MBD Ti,Rj
MBX Ci,Rj
MBX Di,Rj
MBX Fi,Rj
MBX Hi,Rj
MBX Ti,Rj
MBX Wi,Rj
MCC Ci,Rj
MCC N,Rj
MCC Ri,Cj
MCC Ri,Rj
MCI N,Ri,Rj
MCI N,Rj
MCI Ri,Rj
MOB Ri,Oj
MOB Ri,Fj
MOB Ri,Tj
MOB Ri,Wj
MOD Ri,Rj
MODO Ri,Rj,N
MODOC Ri,Rj,N
MOOR Ri,Rj
MOOT Ri,Rj
MDOTO Ri,Rj,N
MFBN Ri
MIC Ri,Rj
MIl Ri,Rj
MIlD Ri,Rj,N
MIIOC Ri,Rj,N
MIIR Ri,Rj
MIlT Ri,Rj
MIITO Ri,Rj,N
MOV Bi,Bj
MOV Ci,Cj

2-5S
2-61
2-61
2-61
2-61
2-61
2-61
2-63
2-65
2-62

1-2
2-66
1-14
2-58

2-62,
2-63
2-67
2-68
2-68
2-68
2-68
2-68
2-68
2-69·
2-7(1
2-7~ ...,
2-72
2-74
2-73
2-75
2-76
2-76
2-76
2-76
2-79
2-78
2-77
2-80
2-82
2-81
2-83
2-86
2-89
2-88
2-87
2-90
2-92
2-91
2-94
2-98" J

INDEX

~. MOV Di,Dj 2-98 ONE Wj 2-106
MOV Fi,Fj 2-98 OR Ci,Cj 2-109
MOV Hi,Hj 2-98 OR Di,Dj 2-109
MOV Ri,Rj 2-95 OR Fi,Fj 2-109
MOV Ri,Sj 2-96 OR Hi,Hj 2-109
MOV Si,Rj 2-97 OR N,Rj 2-107
MOV Si,Sj 2-98 OR Rj,N 2-107
MOV Ti,Tj 2-98 OR Rj,Ri 2-108
MOV Vi,Vj 2-98 OR Ti,Tj 2-109
MOV Wi ,Wj 2-98 OR Vi,Vj 2-109
MOVA Si,Rj 2-93 OR Wi,Wj 2-109
MUL Di 2-101 OVFBIT 1-2
MUL Fi 2-101 Offset 1-12
MUL Hi 2-101 Ope ode 01 2-126
MUL Ti 2-101 Ope ode 02 2-146
MUL Vi 2-101 Ope ode 03 2-95
MUL Wi 2-101 Ope ode 04 2-51
MUL10 Wj 2-99 Ope ode 05 2-31
MULS Wi 2-100 Ope ode 06 2-41
MULX Di 2-102 Ope ode 07 2-54
MULX Fi 2-102 Ope ode 08 2-53
MULX Hi 2-102 Ope ode OA 2-158
MULX Ti 2-102 Ope ode OF 2-105
MULX vi 2-102 Ope ode 12 2-63
MULX Wi 2-102 Ope ode 13 2-62

\..). MXB Ri,Cj 2-103 Ope ode 16 2-120
MXB Ri,Oj 2-103 Ope ode 17 2-119
MXB Ri,Fj 2-103 Ope ode 25 2-50
MXB Ri,Hj 2-103 Ope ode 26 2-39
MXB Ri,Tj 2-103 Opcode 27 2-140
MXB Ri,Wj 2-103 Opcode 2E 2-147
MXBN Ri 2-85 Ope ode 2F 2-148
Move bit to bit 2-94 Ope ode 30 2-33
Move register to register Opeode 31 2-32

2-95 Opcode 34 2-52
Move string .-' 2-92 Opcode 35 2-9
NEG OJ 2-104 Ope ode 38 2-139
NEG Fj 2-104 Ope ode 39 2-138
NEG Hj 2-104 Ope ode 3A 2-66
NEG Tj 2-104 Opcode 30 2-7
NEG Vj 2-104 Opcode 3£ 2-8
NEG Wj 2-104 Opcode 3F 2-59
NOP 2-105 Opcode 40 2-89
NUMB IT 1-2 Opcode 41 2-88
Normalized address 1-7 Opcode 42 2-87
ONE OJ 2-106 Opcode 43 2-40
ONE Fj 2-106 Opcode 46 2-73
ONE Hj 2-106 Opcode 47 2-86
ONE Tj 2-106 Opcode 48 2-24
ONE Vj 2-106 Opcode 49 2-135

~ ..

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 INOEX-5

INDEX

Ope ode 4A
Ope ode 4B
Ope ode 4C
Opeode 40
Opeode 4E
Ope ode 4F
Ope ode 50
Ope ode 51
Ope ode 52
Opeode 53
Ope ode 54
Ope ode 55
Ope ode 56
Ope ode 58
Opeode 59
Ope ode 5C
Opeode 5F
Ope ode 60
Opeode 61
Ope ode 62
Opeode 66
Opeode 68
Ope ode 69
Ope ode 6A
Opeode 81
Opeode 82
Ope ode 83
Opeode 85
Opeode 87
Ope ode 88
Opeode 89
Ope ode 8A
Opeode 95
Ope ode 9B
Opeode 9F
Ope ode A2
Opcode A3
Ope ode A4
Opcode AS
Ope ode 1.6
Opcode 1.7
Opcode 1.8
Opcode 1.9
Opcode AA
Opcode AS
Opcode I.e
Opcode I.E
Opcode AF
Opcode BO
Opcode B1

2-134
2-136

2-34
2-36
2-85
2-83
2-90
2-92
2-91

2-137
2-18,2-81

2-74
2-70
2-80
2-82

2-150
2-48
2-79
2-78
2-77

2-116
2-117
2-130
2-129

2-4
2-107
2-155
2-75
2-14
2-12
2-15
2-17:

2-125
2-113
2-110

2-3
2-2

2-144
2-143

2-43
2-56
2-46
2-45

2-104
2-121

2-47
2-61
2-60

2-100
2-99

Ope ode B2
Ope ode B3
Ope ode B4
Ope ode B5
Ope ode 86
Ope ode 87
Ope ode 88
Ope ode 89
Ope ode 8A
Ope ode BC
Ope ode BE
Ope ode BF
Opeode CO
Ope ode Cl
Ope ode C2
Ope ode C3
Ope ode C6
Ope ode C8
Ope ode CA
Ope ode DO
Ope ode 01
Ope ode 02
Ope ode 04
Ope ode 06
Opeode 07
Ope ode 08
Ope ode 01.
Ope ode DB
Ope ode DE
Ope ode OF
Opeode EO
Ope ode E1
Opcode E2
Opcode E3
Opeode E5
Opeode E7
Ope ode EA
Ope ode EC
Opeode ED
Opcode EE
Opcode EF
Opcode F1
Opcode F2
Opcode F3
Opcode F4
Opcode FS
Opcode F6
Opcode F7
Opcode FA
Ope ode FB

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS

2-102J
2-101

2-21
2-10
2-42
2-55
2-65
2-93
2-97
2-25
2-58
2-68

2-161
2-106
2-142
2-131

2-71
2-141

2-96
2-159,2-160

2-128
2-11
2-19
2-69
2-1:1 \

2-125..."
2-76
2-67

2-103
2-133

2-72
2-5

2-108
2-156
2-132

2-16
2-154
2-112
2-114
2-115
2-111

2-29
2-27
2-98
2-22
2-94
2-44
2-57

2-145
2-6

'J

INDEX

L Opcode FC 2-109 SHIFT Rj,Ri 2 -132
Opcode FO 2-157 SICD Ri,Tj,N 2 -133
Operand length indicator 1-14 SID Ri,N 2-135
Operand type codes 1-10 SIDC Ri,N 2-134
PCB address 2-138,2-139 SIDX Ri,N 2-136
PIB address 2-140 SITD Ri,N 2-137
POPN 2-110 SP Rj 2-140
POPNR Ri 2-110 SPCBL Rj,N 2-138
POPS 2-111 SPCBU Rj,N 2-139
POPSRR Ri,Rj 2-111 SRA Rj,Ci 2-141
PUSHD Ri,Rj 2-112 SRA Rj,Di 2 -141
PUSHDR Ri 2-112 SRA Rj,Fi 2-141
PUSHN 2-113 SRA Rj,Hi 2-141
PUSHNR Ri 2-113 SRA Rj ,Si 2-141
PUSHS Ri 2-114 SRA Rj,Ti 2-141
PUSHS Ri,Rj 2-114 SRA Rj,Wi 2-141
PUSHTS Ri,Rj 2-115 STORE Dj 2-142
PUSTSR Ri 2-115 STORE Fj 2-142
QCMD N 2-116 STORE Hj 2-142
QIO Ri,N 2-117 STORE Tj 2-142
RDETO Rj 2-119 STORE Vj 2-142
RDETZ Rj 2-120 STORE Wj 2-142
READI Di,Rj 2-121 SUB Di 2-143
RPROM Rj 2-125 SUB Fi 2-143
RTN 2-126 SUB Hi 2-143
Register control 1-3 SUB Ti 2-143

\ SB Bj 2-127 SUB Vi 2-143 'III""/' SB Rj,Di 2-128 SUB Wi 2-143
SB Rj,Fi 2-128 SUBX Di 2-144
SB Rj ,Hi 2-128 SUBX Fi 2-144
SB Rj,Ti 2-128 SUBX Hi 2-144
SB Rj ,Wi 2-128 SUBX Ti 2-144
SCO 1-3 SUBX Vi 2-144
SCI 1-3 SUBX Wi 2-144
SC2 1-3 SWAP Ci,Cj 2-145
SCCD Ri,Tj,N 2-133 SWAP Di,Dj 2-145
SCD Ri,N 2-135 SWAP Fi,Fj 2-145
SCD Ri,Tj,N 2-133 SWAP Hi,Hj 2-145
SCDC Ri,N 2-134 SWAP Si,Sj 2-145
SCDD Ri,H 2-130 SWAP Ti,Tj 2-145
SCOOC Ri,. 2-129 SWAP Vi,Vj 2-145
SCOX Ri,. 2-136 SWAP Wi,Wj 2-145
SOD Ri,. 2-130 Scan instructions 1-3
SDOC Ri,. 2-129 Scan string 2-137
SET OJ 2-131 Set bit 2-127
SET Fj 2-131 Set register to address 2-141
SET Hj 2-131 Size of an element 1-12
SET Tj 2-131 Storage AND instructions 2-6
SET Vj 2-131 Storage OR instructions 2-109
SET Wj 2-131 Storage exclusive OR

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS
PRELIMINARY 20SEP88 INDEX-7

INDEX ~
instructions 2-157

Storage movement instructions
2-98

Storage register 1-7
Store address register 2-96
String movement 1-3,2-92
String scanning 2-137
UNLOCK N 2-146
Unconditional branch 2-9
Unlock processes 2-146
Unnormalized address 1-7
VALBIT 1-2
WRITE Ri,Rj 2-150
WRITEF' 2-147
WRITEOL 2-148
XCC Ri,Rj 2-154
XOR Ci,Cj 2-157

.", XOR Di,Dj 2-157
XOR Fi,Fj 2-157
XOR Hi,Hj 2-157
XOR N,Rj 2-155
XOR Rj,N 2-155
XOR Rj,Ri 2-156
XOR Ti,Tj 2-157

.j XOR Vi,Vj 2-157
XOR Wi,Wj 2-157
XRR Ri,Rj 2-158
ZB Bj 2-159
ZB Rj,Hi 2-160
ZERO Cj 2-161
ZERO Dj 2-161
ZE:RO Fj 2-16~
ZERO Hj 2-161
ZERO Sj 2-161
ZERO Tj 2-161
ZERO Vj 2-161
ZERO Wj 2-161
Zero bit 2-159

7.0 VIRTUAL ASSEMBLY LANGUAGE CPU INSTRUCTIONS

