
ROYALE TROUBLESHOOTING MANUAL 3.0
PIN 11276

REV. B

JANUARY 1979

SECTION

1

2
2.1
2.2

3
3.1
3.2
3.3
3.4
3.5
3.6

4
4.1
4.2

5
5.1
5.2
5.2.1
5.2.2
5.3

6
6.1
6.2
6.3

TABLE OF CONTENTS

PAGE

INTRODUCTION • • • . • • • • • • • • • • • • • • • 1

PROCEDURES INVOLVING THE FRONT PANEL • • • • • •• 1
To read a File Register ••••••••••••. 1
To enter the monitor debugger • • • • • • • • •• 2

CHECKING I/O US ING FIRMWARE • • • • • • • • • •• 2
List of address stops • • • • • • • • • • • • •• 2
To check order codes to I/O devices ••••• •• 3
To check concurrent I/O address ••••••••• 3
To check disc status • • • • • • • • • • • • • •• 4
To find which channel a terminal is on • • • • •• 4
Another way to find a terminal's channel. • • •• 4

PROBLEMS AT LOGON • • • • • • • • • • • • • • •• 5
Assembler debugger at logon • . • • • • . • • •• 5
Restoring base of the system dictionary • • • .• 5

P ROG RAM ERRORS • • • • • • • • • • • • • • • • •• 6
List of error numbers • • • • • • • • • • • . •• 7
Finding the program FID with an error • • • • •• 8
Example 1 •• • • • • • • • • • • • • • • • • •• 8
Example 2 •• • • • • • • • • • • • • • • • • •• 9
Determining the cause of an abort • • • • • • •• 9

PROCESS IDENTIFICATION BLOCK (PIB)
PIB table • • • • • • • • • • • •
Typical PIB status values • • . •
To look at a PIB using the debugger

• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • • • • •

9
10
11
12

7 COLDSTART • . . • • • • . • . • • • • • • • • •• 13
7.1 Core map after coldstart • • • • • • • • • • • •• 13
7.2 What is loaded by the boot load process . • • •. 14

8 DISC PROBLEMS . • • • • • • • • • • • • • • • . • 15
8.1 Disc status •••• • • • • • • • • • • • • . •• 16
8.2 To fix certain permanent disc errors. • • • • •• 17
8.3 Key Locations • • . • • • • • • • • • • • • • •• 19
8.4 Frame Fault • • • • • • • • . . • • • • • • • •• 19
8.5 Disc Interrupts •••••••••••••••.• 20
8.6 Finding Lost Disc Interrupts. • • • • • . • • •. 20
8.7 Disc Controller Mod For Extended Core •• • • •• 20

9 TO CHECK SYSTEM CORESIZE . • • • • • • • • • • • • 21

10 LINE PRINTER I/O • . . • • • • . • • •• 21
10.1 To watch data going to the line printer .• . .. 21
10.2 Data in I/O buffer for line printer ..••••. 22

11
11.1
11.2

12

SYSTEM HALTS AND LOOPS .
System halts •••.••
Firmware loops • • • . •

• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •

ADDITIONAL TROUBLESHOOTING TECHNIQUES • • • • • •

22
22
23

23

12.1
12.2
12.3

13

14

15

MPCB Errors ••••• • • •
Tape Problems • • • • • • •
Core Dump To Printer • • • •

• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •

PROPER MEMORY HARDWARE MODIFICATION CHECK • • • •

CONFIGURATION CONTROL • • • • • • • • • • • • • •

CONCURRENT INTERRUPTS FOR DEVICE ZERO • • • • • •

23
23
24

24

24

25

16 SYSTEM PERFORMANCE AND OPERATION TOOLS • • • • •• 25
16.1 DISCIO verb • • • • • • • • • • • • • • • • • •• 25
16.2 BUFFERS verb. • • • • • • • • • • • • • • • • •• 26
16.3 WHERE verb • • • • • • • • • • • • • • • • • • •• 27

17

18

APPENDIX A. ASCII CODE CHART • • • • • • • • • •

APPENDIX B. MICROCOMMAND REFERENCE • • • • • • • •

30

35

19 APPENDIX C. MONITOR DEBUGGER • • • • • • • • • •• 37
19.1 Introduction • • • • • • • • • • • • • • • • • •• 37
19.2 Memory command (M) • • • • • • • • • • • • • • •• 38
19.3 Go command (G) • • • • • • • • • • • • • • • • •• 38
19.4 Trace modes ••••••••••••••••••• 38
19.5 Hexadecimal parameters. • • • • • • • • • • • •• 39

20
20.1
20.2

APPENDIX D. FIRMWARE LOCATIONS • • • • • • • •
Prom Chip Number ing System • • • • • • • • • •
F irmwar e Map • • • • • • • • • • • • • • • • •

• •
• • .. .

40
40
40

VERSION VIII

1 INTRODUCTION

This manual contains a variety of methods that can be used to
determine problems in the ROYALE system. The ROYALE system
contains many diagnostics already built into it that were not in
2.X systems. In no case should any system test or customer
engineering personnel attempt to troubleshoot ROYALE hardware
without exhausting all diagnostic aids (see Microdata PIN 11233
for a description of the diagnostic programs). Since the ROYALE
system is not designed to aid troubleshooting it can be very hard
to pinpoint any given problem using it. It will be up to the
customer engineer or system test technician to make a logical
guess as to what might be happening and then use some of the
techniques in this manual to isolate the problem. Some hints
will be given later in the manual on how to diagnose some of the
harder problems. The order of troubleshooting a system is based
on the problem and consequently this manual is not organized in
any particular useful order. Therefore the reader must determine
the _ sections most useful in solving his or her particular
problem.

When a problem shows up it is important to record all the
symptoms before. attempting to solve it. For example, if a
process aborts, write down what was printed on the terminal, the
WHERE return stack (see section 16.3,) and what the user was
doing. Did one terminal or several terminals abort? Were there
any other unusual circumstances? If the system halts, write down
all the front panel registers before attempting to restart it.
This information may mean nothing to you, but if you need help ln
solving the problem the people you call will want to know it.

2 PROCEDURES INVOLVING THE FRONT PANEL

2.1 To read a File Register

1. Put the PANEL switch down.
2. Select the 0 display.
3. Put CX00 in the console switches. X is the File Register

number.
4. Read the value from the eight rightmost lights.
5. Place all front panel switches back up.

1 Proprietary Trade Secrets Of Microdata
03 JAN 1979

2.2 To enter the monitor debugger

1. Put sense switch 2 (only) down.
2. Press STEP. The system should halt. If it does not halt,

press CLOCK, RESET, STEP.
3. Press RUN.
4. You will be in the monitor debugger on port zero.

3 CHECKING I/O USING FIRMWARE

There are various address stops that can be used to aid in the
troubleshooting of a ROYALE problem(see Microdata Handbook on
1600 Computers for address stop description). This section
includes first a list of address stops and some typical uses of
them. The reader should be able to find other uses for address
stops.

3.1 List of address stops

ADDRESS

0047

0057

0062

0329

1005
0E4B

0E52

061A

0623

06Al

0633

1056

l02F

MEANING

External interrupt for
other than 2614/2615 boards
Data and status input from
devices on a byte I/O basis
Data and functions ouput to
Devices on a byte I/O basis
Single-step ROYALE machine
instruction

Program error trap
Transfer of control from
monitor to virtual process

Same as 0E4B

External interrupt for 2614

Same as 61A

Concurrent I/O request

Terminal input only

First block of coldstart
read into core
Power fail restart executing

DATA DISPLAY

Twice the device address
of the interrupting device
Byte being input

Byte being output

Primary op code of the
next instruction to be
executed
Twice the error code
Low-order byte of PCB
fid of process being
activated
High-order byte of PCB fid
of process being activated
Device address of device
interrupting minus X'10'
Status byte of device
interrupting
Twice the device address
of the device requesting
concurrent I/O
Byte to be put in Termio
buffer from keyboard input

2 Proprietary Trade Secrets Of Microdata
03 JAN 19i9

3.2 To check order codes to I/O devices

The address stop at 0062 can be used to verify that the proper
order codes are being sent to the proper devices. When this
address stop 1S used, the data display contains the byte being
output and the T register contains the order code and device
address. To display the T register when the computer halts put
the panel switch down and set console command switches to B020.
To continue put the panel switch up and the console switches to
their original setting.

A typical sequence to the disc might be as follows: (Note that
in order to see this sequence, it might be necessary to 'push
through' about 50 address stops at 0062 to get past the terminal
I/O that is done before the disc I/O.)

T

14
94
D4
54
74
F4
B4
34
14

D

04
38
39
02
C0
FF
00
00
90

MEANING

Queue drive zero on device X'14'
Beginning memory address (upper byte)
Ending memory address (upper byte)
Disc address (upper byte)
Disc address (lower byte)
Ending memory address (lower byte)*
Beginning memory address (lower byte)
Action
Start queued seeks and arm interrupt

* Lower bit of ending memory address is used to select upper or
lower core bank (l=lower bank, 0=upper bank). All ending
address's are forced by hardware to be odd.

3.3 To check concurrent I/O address

Put an address stop at 06Al. The CPU will halt if a concurrent
I/O request occurs. Twice the device address of the requesting
controller will appear in the eight low-order display digits if
the 'D' button is depressed. File register 13 contains twice the
device address at this point. The high-order bit of file
register 13 indicates the direction of the I/O(0=input,
l=output).

For

D

12
12
0A
08

example

FILE 13

12
92
8A
08

MEANING

Reading mag tape (standard device address=9)
Writing mag tape (standard device address=9)
Printing (standard device address=5)
Reading cards (standard device address=4)

Except in the case of the line printer, the address stop will
cause block transfer operations to malfunction. Specifically

3 Proprietary Trade Secrets Of Microdata
03 JAN 1979 •

with the mag tape, the tape motion will automatically stop and no
data will be transferred. Indication to the software of this
failure is unpredictable.

3.4 To check disc status

1. Ensure no other I/O is in progress (i.e., mag tape, line
printer, communication boards, etc.)

2. Depress data display button on front panel
3. Set an address stop at 0047 (CPU will halt if disc I/O is

in progress)
4. Mentally shift the contents of the 8 low-order display lamps

right one bit to get the device address of the disc
controller.

5. Set an address stop at 0057
6. Depress RUN once
7. Read the major status of the disc controller from the 8

lower-order display lamps
8. Depress RUN once
9. If the error bit was on in step 7, the minor status is now

displayed
10. Reset all command switches
11. Depress RUN to resume operations

3.5 To find which channel a terminal is on

1. Set a address stop at 61A
2. Depress the data display button
3. Depress a key on the terminal (the CPU should halt)
4. Add X'10' to the eight-bit display to get the device address

of the 2614 and 2615 board
5. Set the address stop at 0623
6. Depress RUN once (the CPU should halt again).
7. The eight bit display is the status from the 2614/15 board;
8. Reset all command switches
9. Depress RUN once to resume processing

3.6 Another way to find a terminal's channel

1. Set address stop at 635
2. Depress the M display button
3. Depress a key on the terminal (the CPU should halt).
4. The upper byte is the device address and the 3 high-order

bits of the lower byte are the channel number
5. Reset all command switches
6. Depress RUN once to resume processing

4 Proprietary Trade Secrets Of Microdata
03 JAN 1979

4 PROBLEMS AT LOGON

4.1 Assembler debugger at logon

The following procedure is for when you are at logon and want to
get into the assembler debugger because you are unable to logon.
Note that this procedure should only be used when the system is
not being used by anyone else.

1. Depress carriage return on terminal 0 until LOGON PLEASE:
message is repeated.

2. Depress sense switch 2 and press STEP and then RUN to enter
monitor-debugger.

3. Read core location 802. Mentally add one to it. If the
result of the addition is hex '20', change the result of the
addition to hex '00'.

4. Add the result of step 3 to hex '1800' and read the location
indicated.

5. Put a breakpoint on change of byte at the calculated
location. (M14=00, M15=18, M16=result of step 3, M17=byte
read in step 4).

6. Press linefeed.
7. Press carriage return. The system should break to the

monitor debugger.
8. Look at location 80C. The first seven bits indicate upper

byte location of PCB and lowest bit indicates which bank.
Reconstruct byte to indicate start of PCB and add 80. For
example if 80C contains a 7F then the start of the PCB is
10000 +7E00 = l7E00 and adding 80 results in an address of
17E80.

9. Look at the above calculated address with the
monitor-debugger and it should contain a one. Change the
one to a zero.

10. Put a breakpoint at change of that byte from X'00'. (M14=08
or 88 if upper core, M15=contents of 80C with low bit
zeroed, M16=80, M17=00).

11. Press linefeed.
12. When it breaks change that location from '01' back to '00'

and change location 14 back to '00'.
13. Press linefeed, put sense switch 2 up, and hit the break key

and you should be in the assembler debugger.
14. If you want to single step you have to change location .8E;2

to a .0005 (location of user in PCB)

4.2 Restoring base of the system dictionary

When you are unable to log on, the base of the system dictionary
may have been lost. If you can get into the assembly language
debugger and know where the system dictionary should be, you can
often restore it. The correct base, modulo, and separation for
the system dictionary may be found by looking on the 'SYSTEM'
page of a file-stat report. CR, below, means carriage return.

5 Proprietary Trade Secrets Of Microdata
03 JAN 1979

1. Get into the assembly language debugger.
2. Type I127.50;4CR. The current value of the base will be

displayed, followed by an equal sign (=). Replace it with
the correct value by typing the correct value and CR.

3. Type I127.54;2CR. The current value of the modulo will be
printed, followed by an equal sign. Replace it with the
correct value and type linefeed (not CR). The current value
of the separation will be printed on the same line. Correct
it and type CR.

4. Type END and CR. You should now be able to log on.

IMPORTANT

When the base of the system dictionary is lost, it is
that the system overflow table was clobbered, too.
check it out with the POVF verb and do a file-save
immediately, if necessary.

5 PROGRAM ERRORS

very likely
You should

and restore

The following method is to determine if a program error 1S
occurring. Errors automatically trap to the assembler debugger
through address 1005. Some so called errors are normal for the
system such as break key (Error A) and certain foward link zeros
(Error 5). Knowledge of the ROYALE assembly code might be
necessary to determine the cause of an error.

1. Set an address stop at 1005 (CPU will halt on program error)
2. Record the contents of file registers 1,2,3,4 and 7. They

will contain the following information:

FILE

1
2
3
4
7

CONTENTS

Upper byte
Upper byte
Lower byte
High order
Error code

of PCB's core memory address*
of program's core memory address (PCU)*
of program's core memory address (PCL)
byte of current instruction

(see below)

*Note that the memory bank is unknown at this point.

3. Display L register and select panel mode.
4. Place B10A on switches and press CLOCK switch and note most

significant bit of L register for which memory bank PCB is
located (0=10wer,1=upper)

5. Place B20A on switches and press CLOCK switch and note most
significant bit of L register for which memory bank PCU is
located (0=lower,1=upper)

6 Proprietary Trade Secrets Of Microdata
~3 JAN 1979

5.1 List of error numbers

ERROR NO. MESSAGE

~ Illegal opcode

1 Rtn stack empty

2 Rtn stack full

3 Referencing
frame zero

4 Crossing frame
limit

5 Forward link
zero

6 Backward link
zero

7 Privileged
opcode

8 Referencing
illegal frame

9 &

A Unusual comm
status

B Rtn stack
format err

C Terminal
overrun

D Mess processor

03 JAN 1979

DESCRIPTION

An illegal (undefined) operation
has been found
A Rtn (return) instruction was
executed when the return-stack
was empty (current pointer was
at X'~184')
A BSL or SSLI (subroutine calls)
instruction was executed when the
return-stack was full (current
pointer was at X'~IB0'); the
return-stack has been reset to an
"empty" condition before the trap.
An address register has an FID
of zero
An address register in the
"unlinked" format has been
incremented or decremented off
the boundary of a frame, or has
been used in a relative address
computation that causes the
generated relative address to
cross a frame boundary
An address register in the
"linked" format has been
incremented past the last
frame in the linked frame set
An address register in the
"linked" format has been
decremented prior to the
first frame in the linked
frame set
A privileged operation code
(one executable only in the
monitor mode of operation), has
been found while executing in the
virtual mode
An address register has an fid that
exceeds the maximum value allowable
in the current disc configuration
A disc error has occurred. The
operation will be retrieved later.
With the 2614/15 communication
controller this is equivalent
to a break key. (Framing error)
The return-stack pointers are
in an illegal format.
This is a parity or terminal
overrun and is presently
ignored by the software
Some process is sending a

7 Proprietary Trade Secrets Of Microdata

E

F

10

11

12

request

End process

Debug trace
mode

Divide overflow

Referencing
illegal device

Unnorm. sir

message to another. This is
not usually an error.
Terminate the primary process and
execute a go. Usually not an error.
When a trace mode is set, the
firmware causes traps to the
debugger using this error number.
A divide by zero has occurred.
The debugger sets the overflow
bit in users PCB.
An attempt to access a device
not authorized by the
configuration control chip.
Storage register not normalized
in branch register instruction.

5.2 Finding the program FlO with an error

To determine the FID of the program currently executing use the
following method:

1. Mark down contents of PCU(file register 2) and which core
bank it is in. (During 1005 address stop)

2. Enter monitor-debugger by putting sense switch 2 down and
pressing step then run.

3. Mentally shift PCU (file register 2) or the starting address
of any core buffer whose FlO you want to know, to the right
one bit.

4. Mentally add 280 to the result of 3.
5. Mentally add 10000 to the result of 4 if upper bank of core.
6. Read the contents of that memory address using the

monitor-debugger.
7. Mentally OR 700(low core) or 10700 (high core) to the PCU or

other core buffer starting address.
8. Read contents of that address and the one after it.
9. Using the results of 8 as the 2 high order bytes and 6 and

the low order byte, determine the FlO of the buffer.
10. If you are looking up the FID of the program currently

executing (file register 2), then look the program up in the
table of programs in your Reality Reference Manual.

The above method may be used to find the FlO of any core buffer.
You simply use the first byte of the core address instead of the
PCU.

5.2.1 Example 1

If file register 2 has a lD and it is ~n upper core.

A) Shift lD to the right one bit = 0E.
B} Add 10280 = 1028E.
C) Read contents of l028E.

8 Proprietary Trade Secrets Of Microdata
03 JAN 1979

D) OR 10700 to ID =1071D.
E) Read contents of 10710 and 1071E.
F) If the contents of 1071D = 0 and

1028E = 22, then the FID
would be hex 22 (decimal 34) and the program
executing would be OF1.

5.2.2 Example 2

If you want the FlO of the core buffer starting at FE00.

A) Shift FE to the right one bit = 7F.
B) Since it is lower core add 280 =2FF.
C) Read contents of 2FF.
D) Since it is lower core or 700=7FE.
E) Read contents of 7FE and 7FF.
F) If the contents of 7FE=1 7FF=69 and

2FF=50, then the FlO
associated with that buffer
would be 16950 in hex.

5.3 Determining the cause of an abort

You can find the cause of an abort to the assembly debugger even
if you are on another terminal than the one which aborted. Using
the 'WHERE' verb you can see which lines are in the debugger by
looking at the first location in the return stack and see if it
is in frame 2l(typically 21.034). If the process is in the
debugger, look at the number right after the line or port number
which will be the PCB of that line in hexadecimal. The first
byte (byte zero) of the PCB will give you the error number which
corresponds to the table of errors listed above. For example if
the process was line 2 and the PCB was indicated to be 0240 you
would type in .240.0;1. This would give you the first byte of
the PCB. If the first byte was .0A then the reason for entering
the debugger would be a break key or framing error on that line's
comm board.

6 PROCESS IDENTIFICATION BLOCK (PIB)

The ROYALE CPU is designed as an interactive system capable of
communicating with several users simultaneously. A user
communicates with the system via a communication terminal such as
a Teletype or a CRT terminal. Associated with each terminal is a
process. A process is not an element of the system but rather a
continuing operation on a set of functional elements. Refer to
ROYALE Reference Manual for peripheral I/O details. For each
process attached to the system, there is a Process Identification
Block (PIB). Each PIB is 32 bytes long. The PIB for terminal
zero is in main storage locations X'800'-X'BIF'i locations
X'820' through X'83F' contain the PIB for terminal one, and so
forth. Also associated with each PIB is a termio buffer of 32

9 Proprietary Trade Secrets Of Microdata
03 JAN 1979

bytes. The termio buffer is located 1000 hex bytes above the PIB
so that the termio buffer for terminal zero is
X'181F'. The PIB contains information about
process with which it is associated. The
description of the PIB contents.

from X'1800' to
the status of the

following is a

6.1 PIB table

BYTE BIT NAME MEANING
-- .. -- -- ---- -------------------------------------

1

2

3

4

5

6

o
1
2
3
4
5
6
7

o

Active
Sleep
Dioblk/
Not used/
Not used/
Obyteblk/
Ibyteblk/
Not used/

1 Indebug
2
3
4-7

0-7

0-7

0-7

0-7

0-7

Set when process may be activated.
Zeroed to sleep till time in PIBFID.
Zeroed by firmware on a frame fault.
Used to be PIBEND.
Used to be delay bit.
Zero during terminal output.
Zero during terminal input.
Used to be cioblk.

Set to echo input.
Set when executing from dcb.
Set by firmware on program error trap.
Bank number.
Error number.

Byte address of last character in
Terminal I/O buffer

Number of bytes in terminal I/O buffer
minus one.

Link to next PIB.

Link to previous PIB.

Disk error byte (major status).

7 0-7 PIB--dct Pointer to device control table entry.
0-3 Always zero.
4-5 Last two bits of device address.
6-7 Unit number.

8-9 0-15 Cylinder Disc cylinder address.

8 o Platter
1-7

Same value as head-bit(l)
First seven bits of cylinder.

9 0-1 Last two bits of cylinder.
2 Head bit 0.
3-7 All five bits of the sector address

A 0-7 Head-bits (4-1)

10 Proprietary Trade Secrets Of Microdata
03 JAN 1979

B

C

0-3
4-5
6-7

0-7 Pibbuf

C-F 0-31 Pibfid

10 0-7
0-3
4-7

11 0-7
0-3
4-7

12 0-7
0-3
4-7

13 0-7

14-17 0-31

18 0-7

Actual head bits 4-1
Always zero.
Action code. (Dscwrt and dscvfy)

Disk error byte (minor status)

Buffer number.

Fid which caused frame fault.
(After zeroing high byte)

Terminal I/O bubble up counter
Initial count
Counter
Frame fault bubble down counter
Initial count
Counter
Real time clock bubble down counter
Initial count
Counter

Termio input activate count

Deactivation counter

Lock number

19 Time slice

lA-lB 0-15 Disc unit queue link (not used at present)

lC-lF 0-31 Readctr Disc read counter

6.2 Typical PIB status values

The following table is a PIB status list. Some clues to why a
system is failing can be found from this list. If a process
continually disc roadblocked there might be a problem with the
disc. If a process is continually terminal output roadblocked
there might be a problem with the 2614 or 2615. More information
than the PIB status will be needed to prove these assumptions.

BYTE 0 BYTE

SF 00

3F 00
7D 00
7B 00
FB 00

03 JAN 1979

1 MEANING

Frame fault, waiting for frame to be
brought in core from disc.
Asleep until time in PIBFID or break key.
Terminal I/O input roadblocked
Terminal I/O output roadblocked
Can be activated or is active for
purpose of transferring more
characters to the terminal I/O buffer.

11 Proprietary Trade Secrets Of Microdata

7F
FD

7D
7B
7F

6.3 To

40
40
40

look at a

Can be activated or is active.
Can be activated or is active for
the purpose of removing characters
from the terminal I/O buffer.
Terminal I/O input roadblocked in debugger
Terminal I/O output roadblocked in debugger
Can be activated or is active in debugger.

PIB using the debugger

When in the assembler debugger the following commands may be used
to look at any PIB.

KEYIN LINE NO. CHANNEL DEVICE ADDRESS

X.FFFFFC.00;32 0 0 18
X.FFFFFC.20;32 1 1 18
X.FFFFFC.40;32 2 2 18
X.FFFFFC.60;32 3 3 18
X.FFFFFC.80;32 4 4 18
X.FFFFFC.A0i32 5 5 18
X.FFFFFC.C0i32 6 6 18
X.FFFFFC.E0;32 7 7 18
X.FFFFFC.100i32 8 0 19
X.FFFFFC.120;32 9 1 19
X.FFFFFC.140;32 10 2 19
X.FFFFFC.160;32 11 3 19
X.FFFFFC.180;32 12 4 19
X.FFFFFC.IA0i32 13 5 19
X.FFFFFC.IC0;32 14 6 19
X.FFFFFC.IE0;32 15 7 19

X.FFFFFB.00;32 16 0 lA
X.FFFFFB.20;32 17 1 lA
X.FFFFFB.40;32 18 2 lA
X.FFFFFB.60;32 19 3 lA
X.FFFFFB.80;32 20 4 lA
X.FFFFFB.A0;32 21 5 lA
X.FFFFFB.C0;32 22 6 lA
X.FFFFFB.E0;32 23 7 lA
X.FFFFFB.100i32 24 0 IB
X.FFFFFB.120;32 25 1 IB
X.FFFFFB.140i32 26 2 IB
X.FFFFFB.160;32 27 3 IB
X.FFFFFB.180;32 28 4 IB
X.FFFFFB.IA0i32 29 5 IB
X.FFFFFB.IC0;32 30 6 IB
X.FFFFFB.IE0i32 31 7 IB

The leading X and trailing ;32 are not needed after they have
been keyed ln once. To look up Termio Buffers change the leading
F to an E. For example, line 5's Termio Buf·fer can be displayed
by typing, "X.EFFFFC.A0;32CR".

12 Proprietary Trade Secrets Of Microdata
03 JAN 1979

7 COLDSTART

7.1 Core map after coldstart

This table describes the core map of the system as it is
initialized by the cold-start process. A minimum of 16K of core
is required. If there is extended core, certain buffers above
64K will be initialized as indicated. Status=80 means that the
program is core locked at cold start. Status=FF indicates the
program will be read in and out of core as needed.

CORE ADDRESS FID STATUS PROGRAM NAME COMMENTS

~Hla0-0lFF NONE 80 MPCB MONITORS PCB
0200-03FF NONE 80 MSCB STATUS AND FID TABLES
0400-0SFF NONE 80 MONITOR
0600-07FF NONE 80 MTCB FID TABLES
0800-09FF FFFFFC 80 PIB0 PROCESS'S 0-15
0A00-0BFF FFFFFB VARIES PIBI PROCESS'S 16-31 *
0C00-0DFF NA NA NOT ASSIGNED
0E00-0FFF NA NA NOT ASSIGNED
1000-llFF NONE 80 MQCB HASH TABLES
l200-l3FF VARIABLE FF PCB0 LINE 0 PCB
1400-1SFF VARIABLE FF DCB0 LINE 0 SCB
l600-17FF 47 FF ABSL1 ABS LOADER
1800 19FF EFFFFC 80 TERMIO 1 TERMINAL I/O BUFFER

LINES 0-15
lA00-1BFF EFFFFB VARIES TERMIO 2 TERMINAL I/O BUFFER

LINES 16-31 *
lC00-lDFF NONE 80 MONITORY DISC I/O ROUTINES
lE00-1FFF NONE 80 MONITORX MONITOR ROUTINES
2kHHl-2lFF NONE 80 MONITORZ MONITOR ROUTINES
2200-23FF 1 FF DBI DEBUGGER CODE
2400-2SFF 17 FF DB2 DEBUGGER CODE
2600-27FF 18 FF DB3 DEBUGGER CODE
2800-29FF 19 FF DB4 DEBUGGER CODE
2A00-2BFF 20 FF DBS DEBUGGER CODE
2C00-2DFF 21 FF DB6 DEBUGGER CODE
2E00-2FFF 161 FF DB7 DEBUGGER CODE
3000-31FF 210 FF ABSL2 ASS LOADER
32~Hl-33FF 6 FF TERMIO TERMINAL INPUT OUTPUT
3400-3SFF 4 FF TCL-INIT PROCESS INITIALIZATION
3600-37FF 7 FF DISKFIO-I FILE ROUTINES
3800-39FF 3S FF TAPEIO-II TAPE ROUTINES
31\.00-3BFF 36 FF TAPEIO-II TAPE ROUTINES
3C00-3DFF 285 FF TAPEIO-IV TAPE ROUTINES
3E00-3FFF 8 FF SYSTEM-SUBS-I SYSTEM ROUTINES
10200-103FF NONE 80 MSCBl UPPER CORE MSCB
11000-111FF NONE 80 MQCB UPPER CORE MQCB

Note * Assigned only if needed.

13 Proprietary Trade Secrets Of Microdata
03 JAN 1979

7 COLDSTART

7.1 Core map after coldstart

This table describes the core map of the system as it is
initialized by the cold-start process. A minimum of 16K of core
is required. If there is extended core, certain buffers above
64K will be initialized as indicated. Status=8~ means that the
program is core locked at cold start. Status=FF indicates the
program will be read in and out of core as needed.

CORE ADDRESS FID STATUS PROGRAM NAME COMMENTS

~~~~-~lFF NONE 80 MPCB MONITORS PCB 
~2~0-03FF NONE 8~ MSCB STATUS AND FID TABLES 
0400-05FF NONE 80 MONITOR 
0600-07FF NONE 80 MTCB FID TABLES 
0800-09FF FFFFFC 80 PIB0 PROCESS'S 0-15 
0A00-0BFF FFFFFB VARIES PIBl PROCESS'S 16-31 * 
0C0~-0DFF NA NA NOT ASSIGNED 
0E~~-0FFF NA NA NOT ASSIGNED 
1000-11FF NONE 80 MQCB HASH TABLES 
1200-13FF VARIABLE FF PCB0 LINE 0 PCB 
l400-l5FF VARIABLE FF DCS0 LINE 0 SCS 
1600-l7FF 47 FF ABSLI ASS LOADER 
1800 19FF EFFFFC 80 TERMIO 1 TERMINAL I/O BUFFER 

LINES 0-15 
lA00-1BFF EFFFFB VARIES TERMIO 2 TERMINAL I/O BUFFER 

LINES 16-31 * 
lC00-lDFF NONE 80 MONITORY DISC I/O ROUTINES 
lE00-1FFF NONE 80 MONITORX MONITOR ROUTINES 
2fH}0-21FF NONE 80 MONITORZ MONITOR ROUTINES 
2200-23FF 1 FF OBI DEBUGGER CODE 
2400-2SFF 17 FF DB2 DEBUGGER CODE 
2600-27FF 18 FF DB3 DEBUGGER CODE 
28~HJ-29FF 19 FF DB4 DEBUGGER CODE 
2A00-2BFF 20 FF DBS DEBUGGER CODE 
2C00-2DFF 21 FF DB6 DEBUGGER CODE 
2E~0-2FFF 161 FF DB7 DEBUGGER CODE 
3000-31FF 210 FF ABSL2 ABS LOADER 
320~-33FF 6 FF TERMIO TERMINAL INPUT OUTPUT 
3400-35FF 4 FF TCL-INIT PROCESS INITIALIZATION 
3600-37FF 7 FF DISKFIO-I FILE ROUTINES 
3800-39FF 3S FF TAPEIO-II TAPE ROUTINES 
3} .. 00-3BFF 36 FF TAPEIO-II TAPE ROUTINES 
3C00-3DFF 285 FF TAPEIO-IV TAPE ROUTINES 
3E00-3FFF 8 FF SYSTEM-SUBS-I SYSTEM ROUTINES 
10200-103FF NONE 80 MSCBl UPPER CORE MSCB 
11000-1l1FF NONE 80 MQCB UPPER CORE MQCB 

Note * Assigned only if needed. 

13 Proprietary Trade Secrets Of Microdata 
03 JAN 1979 



7.2 What is loaded by the boot load process 

To understand what the bootstrap process does it is necessary to 
know a little about the bootstrap section of FILE-SAVE and 
SYS-GEN tapes. When the FILE-SAVE proc is run it executes the 
FORM-LIST verb with the cold-list item in SYSTEM-OBJECT. This 
selects 31 modes (items in SYSTEM-OBJECT) to be dumped to tape. 
The COLDDUMP verb reads them from SYSTEM-OBJECT and writes them, 
in order, to tape in 512 byte blocks, forming the bootstrap 
section. (This implies that, in order to do a boot load from a 
FILE-SAVE, cold-list and the 31 items it refers to must be 
present in SYSTEM-OBJECT.) Then the SAVE verb creates the ASS and 
files sections. 

When y'ou start a boot load from the front panel, one block is 
read from tape into the first 512 bytes of core. Control is then 
transfered to the instruction at core location 20. (On DMA 
systems this doesn't happen until you hit INTERRUPT or RUN on the 
front panel.) That instruction starts a transfer of the second 
block on tape into core. Next the OPTIONS message is printed. 
Then several more blocks are read into core. After MSETUP3 is 
loaded (see next page) the configurator or disc formatter is run, 
depending on the option selected. Finally the remainder of the 
31 blocks of the bootstrap are loaded and control passes to ASS. 

The configurator goes through the following steps when it is run: 

1. Read the maximum system configuration from the configuration 
prom. 

2. Print the 'options' message. 
3. Print the 'spooler on phantom port' message. 
4. Print the 'n is the spooler's line' message. 
S. Print number of ASS frames. 
6. Sense and print amount of core. 
7. Setup the buffer tables and if an upper bank is present move 

MSCBl to upper core. This step is not done when 
warmstarting. 

8. Initialize the PIBs if not a warmstart. 
9. Sense the disc configuration and print a message for each 

drive found. A drive is not considered found if its address 
is not in the configuration prom. 

10. Print the 'configuration correct?' message. If you answer 
'N' to this question the system will halt. 

The table on the next page shows which modes are loaded for each 
one of the bootstrap options. A 'Y' entry indicates that the 
mode is loaded when that particular option is selected. The 
table is in order by location in the bootstrap tape. Note that 
when a mode name begins with the letters ISM' it is a ABS frame. 
The ABS frames in this list may be loaded into core by a boot 
load. They are not loaded onto disc by the boot load. 

14 Proprietary Trade Secrets Of Microdata 
03 JAN 1979 



MODE -----OPTION SELECTED------
W X A AF F D 

MPCB Y Y Y Y Y Y 
MBOOT Y y Y Y Y v ... 

*** OPTIONS MESSAGE DISPLAYED HERE *** 

MSCB N Y Y Y Y Y 
PCB0 N Y Y Y Y Y 
DCB0 N Y Y Y Y Y 
SM-47 N Y Y Y Y Y 
MSCBI N Y Y Y Y Y 
FORMATI N Y Y Y Y Y 
FORMAT 2 N Y Y Y Y Y 
MSETUPI Y Y Y Y Y Y 
MSETUP2 Y Y Y Y Y Y 
MSETUP3 Y Y Y Y Y Y 

*** CONFIGURA TOR RUN HERE *** 

MONITORY Y Y Y Y Y NO MORE TAPE IS READ 
t40NITORX Y Y Y Y Y WHEN D IS SELECTED 
MONITORZ Y Y Y Y Y 
SM-I N Y Y Y Y 
SM-17 N Y Y Y Y 
SM-IS N Y Y Y Y 
SM-19 N Y Y Y Y 
SM-20 N Y Y Y Y 
SM-21 N Y Y Y Y 
SM-16I N Y Y Y Y 
SM-2I0 N Y Y Y Y 
SM-6 N Y Y Y Y 
SM-4 N Y Y Y Y 
SM-7 N Y Y Y Y 
SM-35 N Y Y y y 
SM-36 N Y Y Y Y 
SM-285 N Y Y Y Y 
SM-8 N Y Y Y Y 
MONITOR v Y Y Y Y • 

Note that the X, A, AF, and F restores load in the entire 
bootstrap section while the Wand D options do not. 

8 DISC PROBLEMS 

To get a history of disc errors see Royale Programmer's Reference 
Manual. Be sure you have the updated version which explains the 
DE-RESET, DE-START, DE-STOP, and DE-COPY verbs. Note that the 
SYSTEM-SETUP proc automatically performs a DE-RESET and DE-START. 

15 Proprietary Trade Secrets Of Microdata 
03 JAN 1979 



8.1 Disc status 

The following procedure is how to trap on a disc error and get 
minor and major status using monitor-debugger. 

1. Set up monitor-debugger by pressing STEP then RUN on the 
front panel with sense switch 2 down. 

2. Set a break point at location lE05 (14=02 15=lE 16=05) 
3. Press line feed on terminal 0 and system will continue until 

a disc error occurs. 
4. When system breaks into monitor debugger check location lC00 

for minor status and location 0000 for major status. 

Major status table (bits numbered from right-to-left) 

Status Bits 
0-1 
2 
3 

Service drive (unit) number 0,1,2,3 
Error consult minor status 
Controller ready 

4 
5 
6 
7 

Seek error 
Ten platter disc 
Not used 
Returned 

Minor status table (bits numbered from right-to-left) 

Bit Status 

o Disc not ready 
1 Sector not found 
2 Platter format protected 
3 Dma channel overrun 
4 Address (header) check code error 
5 Data check code error 
6 Sector write protected 
7 Disc address non-compare 

See disc controller spec for further information on meaning of 
disc status. 

Next you can find out the controller address of the disc with the 
error. 

1. Read memory locations 120 and 121. They give you the address 
of the PIB of the process using the disc. 

2. Mentally change the last character of the address to 7. 
3. Read that byte of the PIB. The fifth and sixth bits from the 

left are the last two bits of the device address. 

16 Proprietary Trade Secrets Of Microdata 
03 JAN 1979 



FOR EXAMPLE: 

Step 1: M120 is 08. 
M12l is 00. 
The core address of the PIB is 0800. 

Step 2: 0807. 

Step 3: M0807 is 04. 
The bit pattern of 04 is 0000 0100. 
The fifth and sixth bits from the left are 01, so the 
disc is on device 15 (disc controllers are numbered from 
hex '14' or 0001 0100 to hex '17' or 0001 0111.) 

8.2 To. fix certain permanent disc errors 

When a series of ampersands, '&', appear on a terminal and 
continue to appear without stopping, this indicates a permanent 
a~sc error. By using the monitor-debugger this problem can often 
be remedied within a few minutes. The following procedure allows 
you to fix data check code disc errors. 

On releases 3.1 and 3.1B, once ten ampersands have been printed, 
a percent sign (%) will be printed and the disc read retries will 
be stopped. At that point the terminal operator has the option 
of letting the disc read try ten more times by hitting linefeed 
or stopping the operation by hitting break and typing end. 

1. Enter the monitor-debugger on line 0 by putting sense switch 
2 down and pressing STEP then RUN. Put a breakpoint at 
location lE05 (14=2 15=lE 16=05). Press linefeed and the 
system should break at that address on the next detected disc 
error. On 3.1 systems you probably will have to press 
linefeed one more time on the terminal that reported the 
error so that it will retry the read. 

2. When the debugger breaks at lE05 look at locations 120 and 
121 for th e 10 cat ion 0 f the PI B • ' 0 R ' in a X' 0A' to th a t 
location and look up the contents of that location. If the 
lower nibble (bits 4-7) is a zero you may proceed, if not, 
the error cannot be corrected by this means. Next look up 
locations 000 and lC00 and if the values in them indicate a 
bad check code you may proceed. The byte at location zero 
(major status) should have the error bit turned on. Possible 
values include X'04' and X'2e'. The byte at location lC00 
(minor status) should be X'20', indicating a data check code 
error. If these bytes do not have the proper bits on, the 
problem may be dirty heads or a dirty or scratched surface 
and cannot be fixed by this procedure. 

3. If everything was OK in step 2, then 'OR' in a X'0C' to 
locations 120 and 121 and read the contents of the next four 
locations indicated by the address formed. The first 
location is the address that the disc just read data into 
with the core address always even and the odd bit indicating 

17 Proprietary Trade Secrets Of Microdata 
03 JAN 1979 



which core bank. The second, third, and fourth bytes form 
the FID address. Mark both these down for future reference. 

4. Put a breakpoint at lD3C (14=2 lS=lD l6=3C) and go to 1022 
(GlD22). On 3.0F systems, the breakpoint should be at lD32 
and you should go to lD18. 

5. The debugger should break at lD3C. Shift the contents of the 
first of the four locations found in step 3 (core buffer 
address) right one bit and add X'200' to the result. If that 
location contained an odd number add an additional 10000 to 
the result. Look up the contents of that address and there 
should be an X'FY' where Y is anything. Change the X'FY' to 
X'EY', change location 14 to a zero, and exit with X return. 

6. The ampersands should go away. The FID that was found in 
step three might have a error in it since it had a bad data 
check code. It should be checked with the dump verb and 
corrected if necessary and possible. Next flush core and try 
dumping the FID again. If the error comes back then the 
sector on disk is bad. If it is bad and cannot be fixed 
immediately and the sector must be used there is a temporary 
solution in step 7. 

7. If the sector found in step 6 is bad you can core lock that 
frame so that the disc is not used for that FlO. Then follow 
the same procedure as above but in step five instead of 
changing X'FY' to X'EY' change it to X'8Y'. 

For example 

Assume the following data after the break at lE0S: 

LOCATION 
120 
121 
82A 
82C 
82D 
82E 
82F 
lC00 
000 
10234 

DATA 
08 
20 
00 
69 
00 
06 
40 
20 
04 
F3 

After the debugger breaks at location lE0S we find that locations 
120 and 121 have 820 in them. ORing in an A results in location 
82A. (step 2) Since 82A contains a zero we can proceed to step 3. 
We then or in a C to locations 120 and 121, get 82C, and record 
the data in 82C, 82D, 82E, and 82F. We put a breakpoint at lD3C 
and go to 1022. When it breaks in step 5, calculate the core 
buffer address by shifting 69 to the right one bit which changes 
it to a 34. Then OR in 200 to give 234. Since the 69 is odd, OR 
in 10000 also to give a final result of 10234. Looking at that 
location we find an X'F3' which should be changed to X'E3'. Then 
type X carriage return and the ampersands hopefully will go away. 

18 Proprietary Trade Secrets Of Microdata 
03 JAN 1979 



8.3 Key Locations 

ADDRESS USE 

120-121 PIB address of process that is active when 
in virtual mode. This location must either 
contain the start of a PIB (800, 820, 840, 
etc.) or the monitor's PIB (6F0). 

621 
622 
623 
624 
625 
626 
627 
628 
629 
62A 
62B 
62C 
62D 
62E 
62F 
630 
631 
632 
633 
634 

Disc controller 14* 
Disc controller 15* 
Disc controller 16* 
Disc controller 17* 
Device 14 unit ~** 
Device 14 unit 1** 
Device 14 unit 2** 
Device 14 unit 3** 
Device 15 unit 0** 
Device 15 unit 1** 
Device 15 unit 2** 
Device 15 unit 3** 
Device 16 unit 0** 
Device 16 unit 1** 
Device 16 unit 2** 
Device 16 unit 3** 
Device 17 unit 0** 
Device 17 unit 1** 
Device 17 unit 2** 
Device 17 unit 3** 

*These locations will contain numbers in the range 
depending on how many disc controllers are active. 
controllers active, 1=1 controller active, etc.) 

of 0-4 
(0=No 

**These locations have the process associated with the disk unit 
if the unit is active. The byte will contain the PIB address 
divided by 16 (shifted right four). For example process 2 PIS 
=840, the byte will contain a 84. If the disc is not active it 
will contain a zero. If the disc is active the frame to be read 
in will be in locations D,E,and F of the PIB and the upper byte 
of the core location to be read in will be byte C. For example 
in line 2 the FID will be in locations 84D, 84E, and 84F and the 
upper byte of the core address will be in location 84C. 

8.4 Frame Fault 

To watch frame faults in the monitor put a breakpoint at 401 
(M14=02, M15=04, M16=01) using the monitor debugger. The FID of 
the frame that caused the frame fault can be found as follows: 

1. Look at core locations 120 and 121. They contain the address 
of the process frame faulting. 

2. Add D to the contents of that location 
3. The next three bytes will be the FID 

19 Proprietary Trade Secrets Of Microdata 
03 JAN 1979 



For example if 12~ and 121 contained a 84~, then 
locations 840,84E,84F. These locations contain the FIO 
process frame faulting would be line 2. 

8.5 Disc Interrupts 

look at 
and the 

To monitor disc interrupts put a breakpoint at location 4~3 using 
the monitor-debugger(M14=~2,M15=~4,M16=~3). When the system 
breaks look at location F and that will be twice the device i of 
the disc controller interrupting. 

8.6 Finding Lost Disc Interrupts 

When a system hangs with all terminals beeping there are several 
possible causes. You can determine if a lost disc interrupt is 
the cause by using the following procedure which utilizes the 
information in the above sections: 

1. While the system is hung break into the monitor debugger. 
2. Look in core locations 621-624 for active disc seeks. (The 

use of these core locations was described in the section Key 
Locations, above). If they are all zero, the problem is not 
a lost disc interrupt. 

3. If one or more is not zero, look in core locations 625-634 
to determine which units are being used. Active units will 
have non-zero values. 

4. Place a breakpoint at the disc interrupt entry to the 
monitor (M14=~1, M15=~4, M16=~3). 

5. Press linefeed. The system should break immediately at 
location 4~3. If it does not, you have "lost a disc 
interrupt" for one of the devices indicated in step 3. 
(There will probably only be one non-zero number from step 
3) • 

6. You may now do an INTERRUPT RESET INTERRUPT to "find the 
interrupt" and resume normal operation. 

8.7 Disc Controller Mod For Extended Core 

The following method can be used to verify the disc controller 
modification for extended core. The system must have more than 
64K to use this procedure. Cold start the system and when the 
option message prints out press STEP then RUN to enter the 
monitor-debugger. Put a break point at 4~1 (M14=~2, MI5=~4, 
M16=~1) and press linefeed to continue. Press return and the 
option message will appear again. Answer the messages until the 
break occurs into the monitor-debugger. Determine the amount of 
core in the system and using the table below look at the 
following two buffers. Mark down a few locations in each. Put a 
break point at 403(change Ml6 to 03) and press linefeed to 
continue. When the system breaks check the same locations as 
before to determine whether the lower or upper bank of core 

2~ Proprietary Trade Secrets Of Microdata 
~3 JAN 1979 



changed. If the upper bank changed the modification is probably 
ok. 

Size of Core Lower Bank Buffer Upper Bank Buffer 

80K 
96K 
112K 
128K 

3E00 
7E00 
BE00 
FE00 

13E00 
17E00 
IBE00 
IFE00 

9 TO CHECK SYSTEM CORESIZE 

Using the monitor debugger, look at locations E4 and E5. E4 
should always be a zero. ES should have the core size indicated 
in the following table. If either of these are not true than 
something is wrong with the system. 

LOCATION E5 MEMORY SIZE 

10 16K 
18 24K 
20 32K 
28 40K 
30 48K 
38 56K 
40 64K 
50 80K 
60 96K 
70 112K 
80 128K 

10 LINE PRINTER I/O 

10.1 To watch data going to the line printer 

When strange characters appear on the listings or strange 
formattings occurs such as top of form when one was not expected, 
it is advantageous to find out what the data bytes look like as 
they are sent to the controller. 

1. 
2. 
3. 

4. 

5. 
6. 
7 . 

8. 

Make sure no one else is using the system. 
Do an SP-ASSIGN N so the soooler will not be used • .. 
Output the data to the line printer. l.e. COpy file-name 
item-name (P) or run the FROC or the BASIC or the RPG 
program which generates the output. 
When the printer output gets close to the print line in 
question, hit break on the terminal to interrupt the output. 
Set an address stop at 0FFC. 
Key in a linefeed on the terminal to start printing again. 
Depress run every time the CPU halts until the line prior to 
the one in question has been printed. 
Change the address stop to 06CE. One data byte will now be 

21 Proprietary Trade Secrets Of Microdata 
03 JAN 1979 



transferred every time RUN is depressed. 
9. Read the data byte from the eight low order data display 

lamps with the data display button depressed. 
10. Press RUN to continue 

10.2 Data in I/O buffer. for line printer 

Another interesting piece of information is the data as it sits 
in the work buffer. If the data bytes being sent to the 
controller are correct, software can be eliminated as the 
problem. If they are not correct, you should look in the 08 work 
area, using the assembler debugger at the time the line in 
question is in the OB work area. This can be done by hitting the 
break key instead of doing step 10 above. Put the address stop 
switch up and when RUN is depressed the debugger will be entered 
and you can look at the 08 work area as follows: (CR means 
carriage return) 

1. Key in X.lD4;2CR. This will display the displacement in 
hex, .0hhh= 

2. Note the displacement and key in CR. 
3. Key in I.ID7i3CR. This will display the frame number in 

decimal, yyyy= 
4. Note the frame number and key in CR. 
5. Key in Cyyyy.hhh;140CR where yyyy and hhh are the frame 

number and displacement from steps 3 and 1, respectively. 
This will print the actual data in character format. Type 
CR. If you wish to look at the same data in hex, type 
Xyyyy.hhh;140CR, followed by another CR when it prints the 
equal sign. 

6. Type linefeed. 

11 SYSTEM HALTS AND LOOPS 

11.1 System halts 

L REGISTER M/N REGISTER 

1019 address 
of error 

006F 01EC 

006F 0437 

006F 04BF 

D REGISTER MEANING 

errori monitor error 

NA parity error on coldstart 
(X,W,A,AF,D) 

NA configuration prom missing 
on colds tart 

NA memory error 1st 16k block 
X,A,AF) 

Note: Press RUN after error and the system will go into the 
monitor-debugger. Further troubleshooting can now be performed. 

22 Proprietary Trade Secrets Of Microdata 
03 JAN 1979 



11.2 Firmware loops 

L register 

103A-103B 

0E12-aE46 

04FC-0510 

Meaning 

Concurrent tape error on reading 1st 
block of coldstart. M and N registers 
contain how many bytes were read in. 
Bytes should have equaled 200 hex. 

Select next user error 
PIB links messed up. 
Interrupt reset interrupt 
will fix links. 

Hash links messed up 
Must coldstart 

12 ADDITIONAL TROUBLESHOOTING TECHNIQUES 

12.1 MPCB Errors 

Probable cause 

Bad tape 

1st 16k memory 
bad 

1st 16k memory 
in either bankl 

The following key locations are loaded by tape into the first 512 
(Hex 200) locations in core. They are never changed by the 
ROYALE system. The monitor-debugger should be used to examine 
these locations and if any of them have changed the most probably 
cause of failure would be a bad memory board (1st 16K board) 

ADDRESS 

020 
100 
101 . 
104 
108 
109 
110 
III 
118 
119 

CONTENTS 

90 
00 
00 
00 
04 
00 
06 
00 
lC 
00 

12.2 Tape Problems 

If there is a DMA or concurrent tape problem, the location of the 
tape pointers are as follows: 

lE4,lES 
lE6,lE7 

starting core address of tape I/O buffer 
ending core address of tape I/O buffer 

At the end of a normal tape transfer the starting address will be 
one greater than the ending address. Remember that in concurrent 
tape the firmware updates the starting address and in DMA the 
hardware updates the address. 

23 Proprietary Trade Secrets Of Microdata 
03 JAN 1979 



12.3 Core Dump To Printer 

A core dump will be very useful if either you want to look at a 
large number of locations, or for analysis at a higher level when 
in the field. If you decide to do a core dump, do not do any 
other operations before hand, to avoid destroying useful data. 

The core dump will not damage any part of the system. The 
procedure for coredumps is as follows: 

1. Press INTERRUPT or CLOCK to halt system 
2. Press RESET 
3. Put sense switch 3 down 
4. Ready printer 
5. Press RUN 

For the most meaningful dumps allow all existing core to be 
dumped. The core dump program is in firmware and will dump 128K 
of core if not stopped. The core dump can be stopped by putting 
sense switch 3 up. Note that the address will cycle through 64K 
for both the upper and lower core banks. 

13 PROPER MEMORY HARDWARE MODIFICATION CHECK 

The first 16K of the lower core bank must be modified to at least 
rev 'N' electronics. All other 16K boards must be modified only 
if using extended core. To check proper modification, use the 
monitor debugger to zero the lower core location of the module 
modified and place all ones in the corresponding upper bank 
location. Then read the lower core location and check for zero. 
Read the upper core location and check for all ones. If both 
banks read the same there 1S something wrong with the 
modification. 

For example set location 0 to a 0 and location 10000 to X'FP' and 
read both back. 

14 CONFIGURATION CONTROL 

Configuration control prevents a system from using devices or 
disk frames not assigned to that system. A prom on the 8K ROM 
board defines ~e configuration of the system. The verb "LIMITS" 
will print out the configuration of the system. The following 
table shows what happens when the configuration control is 
violated. 

Violation 

Core 

Devices 

In monitor mode In virtual mode 

Monitor error halt with Same as monitor mode 
X'13' in D register 
I/O instruction nop'ed Abort into assembler debugger 

24 Proprietary Trade Secrets Of Microdata 
03 JAN 1979 



Frame id's Monitor error halt with 
X'08' in D register 

with illegal device address 
Abort into assembler debugger 
with referencing illegal 
frame message 

15 CONCURRENT INTERRUPTS FOR DEVICE ZERO 

The Royale system only uses device zero for bisync. If bisync is 
not present in the system the address pointers for device zero 
should never change. Some problems have been experienced using 
the GPIO board as a printer output device. Concurrent interrupts 
for device zero have appeared due to a malfunction in the 
printer-GPIO interface. This problem can easily be verified by 
looking at the pointers for device zero which are at locations 
lC0 and lCl in core. With the monitor-debugger look at the two 
addresses and record them. After using the printer extensively 
or when the system hangs up look at the addresses again. If they 
have changed you most likely have a "printer-device zero" 
problem. The problem is usually noise on the printer ready line 
from the GPIO. 

16 SYSTEM PERFORMANCE AND OPERATION TOOLS 

16.1 DISCIO verb 

The DISCIO verb displays the amount of system disc I/O activity 
and provides a measurement of system disc performance. This 
display aides in locating causes of system performance problems. 
DISCIO generates two reports depending on the specified options. 
The first report (Report 1) consists of disc unit I/O's per 
second, disc I/O's per second, disc reads per second, disc writes 
and verifies per second, cummulative disc unit I/O's, cummulative 
disc I/O's, cummulative disc reads, and cummulative disc writes 
and verifies. The cummulative values are zero at the DISCIO 
operation's start. The second report (Report 2) consists of disc 
unit I/O totals. The general verb form is : 

DISCIO (options) 

To ensure accurate results during Report 1 displays, no ports may 
be logged off. 

Three options exist for the DISCIO verb. The "Tn option 
indicates the report type. When this option is specified, Report 
2 is generated. Without this option, Report 1 is generated. The 
"n" option indicates the number of display iterations with fInn 
being any decimal number. This option only effects Report 1 
displays. If this option isn't specified, one display iteration 
is performed. Report 2 always performs one display iteration. 
The "P" option indicates the output device. When this option is 
specified, the report is output to the printer. Without this 
option, the report is output to the terminal. 

25 Proprietary Trade Secrets Of Microdata 
03 JAN 1979 



DISCIO reveals system performance problems. A low number of disc 
I/O's per second and a high number of active processes may 
indicate a system disc I/O bottleneck. This problem may be 
caused by an inadequate number of disc units or controllers, a 
slow disc seeking mechanism, or inefficient MONITOR disc handling 
code. A high number of reads per second and a high proportion of 
I/O's on one disc unit may imply a permanent disc error. To 
correct this error, see DISC ERRORS section of REALITY 
TROUBLESHOOTING MANUAL. 

16.2 BUFFERS verb 

The BUFFERS verb displays the core memory contents and provides a 
measurement of core buffer I/O activity. This verb displays two 
reports depending on the specified options. The first report 
(Report 1) contains core buffer memory locations, and FIDs and 
status of frames in core buffer memory locations. The core 
buffer status consists of I/O busy, temporary CORELOCK, permanent 
CORELOCK, and write required indicators. The second report 
(Report 2) contains the number of core buffers occupied by ABS 
frames, work space frames, and user program and data frames. 
This report includes the number of read-active core buffers. The 
general verb form is : 

BUFFERS (options) 

Four options exist for the BUFFERS verb. The "T" option 
indicates the report type. If this option is specified, Report 2 
is generated. Without this option, Report 1 is generated. The 
"S" option indicates a sorted report. This option only effects 
Report 1 displays and creates a sorted listing by core buffer 
frame FlO. Without this option, Report lis display is in core 
buffer memory location order. The "P" option indicates the 
output device. If this option is specified, the report is output 
to the printer. Without this option, the report is output to the 
terminal. The "N" option inhibits automatic paging of terminal 
output. Without this option, the terminal display pauses at the 
page end until some terminal input is entered. With this option, 
no pausing occurs. 

The BUFFERS verb aides in system operation. Before coldstart 
operations, no write required frames may be core resident to 
reduce the possibility of GROUP FORMAT ERRORS. The MONITOR 
automatically flushes core when no active processes exist. 
Because Report 1 displays all core resident, write required 
frames, BUFFERS may be used to determine if a coldstart operation 
may be safely performed. 

26 Proprietary Trade Secrets Of Microdata 
03 JAN 1979 



16.3 WHERE verb 

WHERE prints one line for every process logged on (including the 
spooler). It is more accurate for telling which ports are logged 
on than LISTU because LISTU depends on the ACC (accounting) file 
being correct. 

The output of WHERE shows you port number, PCB for that port (in 
hex), PIB status byte, and the software return stack. 

EXAMPLE: 

:WHERE CR> 
PORT PS RTN STACK •• 

02 0320 7F 121.000 121.070 
04 0360 7D 6.08A 6.040 5.064 
10 0420 70 21.034 6.0SA 6.040 5.064 
31 06C0 3F 165.080 164.052 

The return stack is particularly 
precisely what a process is doing 
locations in ASS of the instructions 
stack entry is part of a subroutine 
return stack entry. 

valuable. It 
at any time by 
being executed. 
that was called 

tells you 
showing the 
Each return 

by the next 

Consider the return stack for port 4 in the previous example: 

6.08A 6.04" 5.064 

This says that the port is executing an instruction in frame 6 at 
a displacement of 'SA' bytes into the frame. That instruction is 
part of a subroutine which, when it is finished executing, will 
return to another instruction in frame 6 at displacement '40' 
bytes. That, in turn, is part of a subroutine which will return 
to an instruction in frame 5 at displacement '64' bytes into the 
frame. This port, by the way, is at TCL. 

If you know what parts of the operating system reside in which 
frames, you can get a good idea of what the system is doing at 
any time by looking at the WHERE output. On 2.4 and 2.5 level 
systems this was easy. Appendix 0 of the Programmer's Reference 
Manual told you what each frame does. In the above example, 
frame 6 is called "TERMIO" and frame 5, "TCL-I". The 
instructions in frame 6 are waiting for terminal input and have 
been called by the TeL processor. 

Port 2 is executing in frame 121, which is called "WHERESUBS". 
That is the port that is actually doing this WHERE command. 

Port 31, the spooler, is executing frames 165 and 164, which are 
called "SPOOLADO" and "SPOOLOUT". 

27 Proprietary Trade Secrets Of Micrcdata 
03 JAN 1979 



Whenever the first entry in the return stack is in frame 
process is in the assembly language debugger, either 
someone hit the break key or the process aborted. Port 
the debugger and was waiting for terminal input 
immediately before the debugger was entered. In 
someone simply hit break while the process was at TCL. 

21, that 
because 

10 is in 
at TCL 

this case 

On 3.0 and 3.1 systems there is no appendix telling what each 
frame does. The following list shows the function of some of the 
more commonly used frames. 

FRAMES FUNCTION 
-------... -----------~-----.------ ... ---------.. ---------

5 
6 
13-16 
21 
34 
35,36 
122 
127 
154,155 
163-171 
175,180-188 
20~-206 
210-219 
380-399 

TCL 
TERMINAL I/O 
EDITOR 
DEBUGGER 
OVERFLOW TABLE 
TAPE I/O 
SLEEP 
OVERFLOW TABLE 
BASIC 
SPOOLER 
BASIC 
FILE-SAVE 
FILE RESTORE 
BISYNC 

Here are a few sample return stacks from a 3.1B system and 
descriptions of what the processes were doing: 

122.1DB 122.181 
Asleep. You often see this in ATP. 

6.08A 6.040 156.0DC 13.050 
Waiting for terminal input in the editor. 

6.08A 6.040 lSl.lA7 
Waiting for terminal input in BASIC. 

394.130 393.103 387.04B 
Bisync. 

165.080 164.052 
The spooler. 

203.051 203.1DE 202.180 201.158 
Doing a file save. 

28 Proprietary Trade Secrets Of Microdata 
03 JAN 1979 



One other note ••• You get a return stack when you run the 
MONITOR proc in ATP. The return stack addresses will be one byte 
less than" the ones WHERE gives you. MONITOR shows the address of 
the last byte of the last instruction executed (the subroutine 
call) while WHERE shows the address of the first byte of the next 
instruction. That is, MONITIOR prints where an instruction was 
called from and WHERE prints where it will return to. 

EXAMPLES: 

The MONITOR return stack for TeL is 
6.089 6.03F 5.063 

The MONITOR return stack for the spooler is 
l65.07F 164.051 

29 Proprietary Trade Secrets Of Microdata 
03 JAN 1979 



17 APPENDIX A. ASCII CODE CHART 

DECIMAL HEX EBCIDIC ASCII PRISM SPECIAL USE IN ROYALE 
EQUIVALENT CHARACTER DISPLAY 

rl rlfl flfl NUL NONE P cs DELAY CHAR. SORT 
KEY DELIMITER 

1 01 01 SOH NONE A c PRISM HOME CHARACTER . 
2 rl2 02 STX NONE B c 
3 rl3 rl3 ETX NONE C c END OF TEXT 
4 rl4 37 EOT NONE D c 
5 05 2D ENQ NONE E c 
6 06 2E ACK NONE F c CURSOR FOWARD ON PRISM 
7 rl7 2F BEL NONE G c BELL ON PRISM 
8 08 16 as NONE H c BACKSPACE ON PRISM 
9 09 05 HT NONE I c TAB 
lrl 0A 25 LF NONE J c CURSOR DOWN ON PRISM 
11 OB OB VT NONE K c VERTICAL ADDRESS 

ON PRISM 
12 OC OC FF NONE L c SCREEN ERASE ON PRISM 
13 0D 0D CR NONE M c CARRIAGE RETURN 
14 0E rlE SO NONE N c 
15 0F 0F SI NONE o c 
16 lrl 10 DLE NONE P c HORIZONTAL ADDRESS 

ON PRISM, 
BLANK COMPRESSION 
CHARACTER 

17 11 11 DC1 NONE Q c 
18 12 12 DC2 NONE R c RETYPE ENTIRE LINE. 

ENABLE SLAVE PRINTER 
19 13 3A DC3 NONE S c DUMP PRISM SCREEN 

TO SLAVE PRINTER 
20 14 3C DC4 NONE T c DISABLE SLAVE PRINTER 
21 15 3D NAK NONE U c CURSOR BACK ON PRISM 
22 16 32 SYN NONE V c 
23 17 26 ETB NONE W c 
24 18 18 CAN NONE X c CANCEL LINE 
25 19 19 EM NONE Y c 
26 1A 3F SUB NONE Z c CURSOR UP ON PRISM 
27 IB 27 ESC NONE 
28 lC lC FS NONE 
29 ID ID GS NONE 
30 IE IE RS 
31 IF IF US NONE 
32 20 4rl SPACE b SPACE 
33 21 SA ! , A cs . 
34 22 7F n " B cs STRING DELIMITER IN 

ENGLISH AND BASIC 
35 23 7B * * C cs 
36 24 5B $ $ D cs 
37 25 6C % % E cs 
38 26 50 & & l4' cs ... 

30 Proprietary Trade Secrets Of Microdata 
03 JAN 1979 



39 27 7D G cs STRING DELIMITER IN 
ENGLISH AND BASIC 

40 28 4D ( ( H cs 
41 29 5D ) ) I cs 
42 2A 5C * * J cs 
43 2B 4E + + K cs 
44 2C 6B , , L cs 
45 2D 60 M cs 
46 2E 4B • • N cs 
47 2F 61 / , 0 cs 
48 30 F0 0 0 P cs 
49 31 F1 1 1 Q cs 
50 32 F2 2 2 R cs 
51 33 F3 3 3 S cs 
52 34 F4 4 4 T cs 
53 35 F5 5 5 U cs 
54 36 F6 6 6 V cs 
55 37 F7 7 7 W cs 
56 38 F8 8 8 X cs 
57 39 F9 9 9 y cs 
58 3A 7A · • Z cs • · 59 3B 5E • • , I 

60 3C 4C < < 
61 3D 7E - = 
62 3E 6E > > 
63 3F 6F ? ? · · 64 40 7C @ @ 
65 41 Cl A A 
66 42 C2 B B 
67 43 C3 C C 
68 44 C4 0 0 
69 45 C5 E E 
70 46 C6 F F 
71 47 C7 G G 
72 48 C8 H H 
73 49 C9 I I 
74 4A D1 J J 
75 4B D2 K K 
76 4C 03 L L 
77 4D D4 M M 
78 4E 05 N N 
79 4F D6 0 0 
80 50 07 p p 
81 51 D8 Q Q 
82 52 D9 R R 
83 53 E2 S S 
84 54 E3 T T 
85 55 E4 U U 
86 56 E5 V V 
87 57 E6 W W 
88 58 E7 X X 
89 59 E8 Y Y 
90 SA E9 Z Z 
91 5B 80 [ [ STRING SEARCH DELIMITER 
92 5C E0 / / 

31 Proprietary Trade Secrets Of Microdata 
~3 JAN 1979 



93 50 90 ] [ ENGLISH STRING SEARCH 
DELIMITER 

94 5E SF A A 

ENGLISH STRING SEARCH 
DELIMITER 

95 SF 60 
96 60 79 NONE 0 cs 
97 61 81 NONE 1 cs 
98 62 82 NONE 2 cs 
99 63 83 NONE 3 cs 
100 64 84 NONE 4 cs 
101 65 85 NONE 5 cs 
102 66 86 NONE 6 cs 
103 67 87 NONE 7 cs 
104 68 88 NONE 8 cs 
105 69 89 NONE 9 cs 
106 6A 91 NONE 
107 6B 92 NONE 
108 6C 93 NONE 
109 6D 94 NONE 
110 6E 95 NONE 
III 6F 96 NONE 
112 70 97 NONE o c 
113 71 98 NONE 1 c 
114 72 99 NONE 2 c 
115 73 A2 NONE 3 c 
116 74 A3 NONE 4 c 
117 75 A4 NONE 5 c 
118 76 A5 NONE 6 c 
119 77 A6 NONE 7 c 
120 78 A7 NONE 8 c 
121 79 A8 NONE 9 c 
122 7A A9 NONE 
123 7B C0 NONE 
124 7C 6A NONE 
125 7D D0 NONE 
126 7E Al NONE SORT KEY DELIMITER 
127 7F 07 DEL NONE 
128 80 04 NONE 
129 81 06 NONE 
130 82 08 NONE 
131 83 09 NONE 
132 84 0A NONE 
133 85 13 NONE 
134 86 14 NONE 
135 87 15 NONE 
136 88 17 NONE 
137 89 1A NONE 
138 8A 1B NONE 
139 8B 20 NONE 
140 8C 21 NONE 
141 8D 22 NONE 
142 8E 23 NONE 
143 8F 24 NONE 
144 90 28 NONE 
145 91 29 NONE 

32 Proprietary Trade Secrets Of Microdata 
03 JAN 1979 



146 92 2A NONE 
147 93 2B NONE 
148 94 2C NONE 
149 95 30 NONE 
150 96 31 NONE 
151 97 33 NONE 
152 98 34 NONE 
153 99 35 NONE 
154 9A 36 NONE 
155 9B 38 NONE 
156 9C 39 NONE 
157 90 3B NONE 
158 9E 3E NONE 
159 9F 41 NONE 
160 A0 42 NONE 
161 Al 43 NONE 
162 A2 44 NONE 
163 A3 45 NONE 
164 A4 46 NONE 
165 AS 47 NONE 
166 A6 48 NONE 
167 A7 49 NONE 
168 A8 4A NONE 
169 A9 4F NONE 
170 AA 51 NONE 
171 AB 52 NONE 
172 AC 53 NONE 
173 AD 54 NONE 
174 AE 55 NONE 
175 AF 56 NONE 
176 B0 57 NONE 
177 B1 58 NONE 
178 B2 59 NONE 
179 B3 62 NONE 
180 B4 63 NONE 
181 B5 64 NONE 
182 B6 65 NONE 
183 B7 66 NONE 
184 B8 67 NONE 
185 B9 68 NONE 
186 BA 69 NONE 
187 BB 70 NONE 
188 Be 71 NONE 
189 BD 72 NONE 
190 BE 73 NONE 
191 BF 74 b NONE 
192 C0 75 @ @ 
193 Cl 76 A A 
194 C2 77 B B 
195 C3 78 C C 
196 C4 8A D 0 
197 C5 8B E E 
198 C6 8e F F 
199 C7 8e G G 
200 C8 8E H H 

33 Proprietary Trade Secrets Of Microdata 
03 JAN 1979 



2al C9 8F I I 
2a2 CA 9A J J 
2a3 CB 9B K K 
2a4 CC 9C L L 
205 CD 9D M M 
2a6 CE 9E N N 
2k]7 CF 9F 0 0 
288 DO Afj P P 
2a9 Dl AA Q Q 
21k] D2 AB R R 
211 D3 AC 5 5 
212 D4 AD T T 
213 D5 AE U U 
214 D6 AF V V 
215 D7 Bk] W W 
216 D8 Bl X X 
217 D9 B2 y y 
218 DA B3 Z Z 
219 DB B4 [ [ 
22k] DC B5 / / 
221 DO B6 ] ] 
222 DE B7 .. .. 
223 DF B8 
224 E~ B9 @ @ 
225 El BA a A 
226 E2 BB b B 
227 E3 BC c C 
228 E4 BD d D 
229 E5 BE e E 
23~ E6 CA f F 
231 E7 CA 9 G 
232 E8 CB h H 
233 E9 CC i I 
234 EA CD j J 
235 EB CE k K 
236 EC CF 1 L 
237 ED DA m M 
238 EE DB n N 
239 EF DC 0 0 
240 F~ DD P P 
241 Fl DE q Q 
242 F2 DF r R 
243 F3 E1 s 5 
244 F4 EA t T 
245 F5 EB u U 
246 F6 EC v V 
247 F7 ED w W 
248 F8 EE x X 
249 F9 EF Y y 
250 FA FA z Z 
251 FB FB 5B [ K cs START BUFFER 
252 FC FC SVM / L cs SUBVALUE MARK 
253 FD FD VM ] M cs VALUE MARK 
254 FE FE AM 

.. 
N ATTRIBUTE MARK cs 

255 FF FF SM 0 cs SEGMENT MARK 

34 Proprietary Trade Secrets Of Microdata 
03 JAN 1979 



18 APPENDIX B. MICROCOMMAND REFERENCE 
TABLE (NUMERICAL ORDER) 

OBJECT BASE 

~~~~ 
~~~~ 
~0~~ 
1~0a 
100~ 
1~01 
1002 
1020 
1~4~ 
1~6a 
1~80 
1~A0 
11~0 
12~~ 
13a0 
1400 
15~0 
160~ 
1700 
1704 
1708 
171~ 
1720 
1780 
18~a 
1900 
1A00 
1B00 
IB08 
1B09 
1C0a 
ID00 
2fHJ 0 
300a 
4000 
5000 
6000 
7010 
7020 
7rJ4rJ 
7rJ7rJ 
7080 
7rJ90 
7rJA0 
70C0 
7rJD0 
7rJErJ 
8rJ0 a 

COMMAND 

EXECUTE, LITERAL TYPE 
EXECUTE, OPERATE TYPE 
JUMP EXTENDED 
LOAD ZERO CONTROL 
NO OPERATION 
SET FILE a BIT 6 
RESET FILE 0 BIT 6 
RETURN 
SELECT PRIMARY FILE 
RETURN,SELECT PRIMARY FILE 
SELECT SECONDARY FILE 
RETURN, SELECT SECONDARY FILE 
LOAD T 
LOAD M 
LOAD N 
JUMP IN 1K 
JUMP IN lK 
LOADU 
LOAD SEVEN CONTROL 
DISABLE EXTERNAL INTERRUPTS 
ENABLE EXTERNAL INTERRUPTS 
DISABLE R.T. CLOCK 
ENABLE R.T. CLOCK 
HALT 
LOAD EIGHT CONTROL 
RETURN, LOAD T 
MODIFY LOWER COMMAND 
INHIBIT L SAVE 
BANK SELECT LOWER 
BANK SELECT UPPER 
JP IN lK 
JP IN lK 
LOAD FILE WITH LITERAL 
ADD FILE WITH LITERAL 
TEST IF ZERO 
TEST NOT ZERO 
COMPARE FILE 
ENTER SENSE SWITCHES 
SHIFT FILE RIGHT 4 
ENTER INTERNAL STATUS 
ENTER CONSOLE SWITCHES 
CLEAR I/O MODE 
CONTROL OUTPUT 
DATA OUTPUT 
CONCURRENT ACKNOWLEDGE 
INTERRUPT ACKNOWLEDGE 
DATA INPUT 
ADD FILE 

MNENOMIC 

ELT 
EOT 
JE 
LZ 
NOP 
LZ 1 
LZ 2 
RTN 
SPF 
RSP 
SSF 
RSS 
LT 
LM 
LN 
JP 
JP 
LU 
LS 
DEI 
EEl 
DRT 
ERT 
HLT 
LE 
RLT 
MLC 
ILS 
BSL 
BSL 
JP 
JP 
LF 
AF 
TZ 
TN 
CP 
ESS 
SRF 
EIS 
ECS 
CIO 
COX 
DOX 
CAK 
IAK 
DIX 
ADD 

CLASS 

2 
1 
5 
3 
4 
4 
4 
4 
4 
4 
4 
4 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
3 
3 
4 
4 
3 
3 
3 
3 
2 
2 
2 
2 
2 
1 
1 
1 
4 
1 
1 
1 
1 
1 
1 
1 

35 Proprietary Trade Secrets Of Microdata 
03 JAN 1979 



9000 SUB FILE,TWOS COMPLEMENT SBT 1 
9040 SUBTRACT FILE ONES COMPLEMENT SBO 1 
9040 DECREMENT FILE DEC 1 
A000 READ MEMORY,FULL CYCLE RMF 1 
A010 WRITE MEMORY,FULE CYCLE WMF 1 
A020 READ MEMORY,HALF CYCLE RMH 1 
A030 WRITE MEMORY, HALF CYCLE WMH 1 
B000 COpy Cpy 1 
8040 +1 TO FILE/REG. POF 1 
C000 LOGICAL OR WITH FILE LOR 1 
C000 MOVE FILE MOV 1 
Da00 EXCLUSIVE OR WITH FILE XOR 1 
E000 AND WITH FILE AND 1 
F000 SHIFT FILE LEFT SFL 1 
F020 SHIFT FILE RIGHT SFR 1 
F040 SHIFT FILE LEFT AND INSERT SLI 1 
F060 SHIFT FILE RIGHT AND INSERT SRI 1 

36 Proprietary Trade Secrets Of Microdata 
03 JAN 1979 



19 APPENDIX C. MONITOR DEBUGGER 

19.1 Introduction 

The Monitor Debugger is an extension to the Royale firmware set, 
permanently included in 3.0 firmware. When not active it does 
not affect the execution time of the Royale instruction set. It 
is used in conjunction with the line 0 terminal and is activated 
with the front panel STEP switch. When activated, the Monitor 
Debugger can access and change any location in core and can be 
used with one of four trace modes for troubleshooting. 

The Monitor Debugger is entered for the first time by placing 
sense switch 2 down, pressing STEP, which should halt the 
computer, and then pressing RUN, which should cause terminal zero 
to break into the Monitor Debugger with the address and primary 
opcode of the next instruction to be executed displayed. Since 
this is a monitor control debugger, the whole Royale system is 
stopped with the exception of concurrent processing and DMA. DMA 
and concurrent processing, if in progress, finish the current 
operation. 

Starting with version IX firmware boards, any time 
Debugger is entered the M and N registers will 
following values: 

M - Upper byte of current PCB's word address 

N - PIB Link of current active PIB 

the Monitor 
contain the 

For example, if M = 6C and N - 28, then the PCB of the process 
that was executing starts at core location 6C00 and its PIB is at 
core location 820. (To convert PIB links to core locations you 
reverse the digits and add a zero.) If M is zero, then the 
monitor was in control and N would be meaningless. Note that 
execution of any Monitor Debugger commands that affect memory 
locations will change the M and N registers. 

The Monitor Debugger remains in control until the operator 
intervenes as follows: 

1. Type X <CR> on the CRT. This forces control back to the 
ROYALE system and shuts off the debugger. 

2. INTERRUPT-RESET-INTERROPT on the CPU front panel likewise 
resets the debugger and performs its normal operation. 

To exit with the Monitor Debugger still in control press either a 
linefeed or a G return. This will cause a return to the Royale 
operating system. Onder these conditions the debugger may be 
entered again by pressing the break key as long as sense switch 2 
remains down. If sense switch 2 is up then the break key will 
act normally and force entrance into the assembler debugger. The 

37 Proprietary Trade Secrets Of Mic:odata 
03 JAN 1979 



Monitor Debugger will also be entered again if a break condition 
is met regardless of the position of sense switch 2. 

19.2 Memory command (M) 

The memory command is of the form Mxxxxx where the XiS are a core 
memory location in hexadecimal. See section titled 'Hexadecimal 
parameters' for the conventions on entering hex values. Blank 
terminates the address and causes the hex value of the byte 
stored at that location to be printed followed by an = sign. The 
value at that location can be changed simply by keying in a new 
hex value followed by one of the allowable delimiters. If the 
byte is not to be changed, simply key in one of the delimiters 
without keying in a hex value. The allowable delimiters and 
their meanings are: 

Blank Display the value at the next consecutive core memory 
location on the current line. 

Control N Display on the next line the address of the next 
consecutive core memory location followed by the value 
at that location. 

Control P Display on the next line the address of the preVlOUS 
core memory location followed by the value at that 
location. 

All other characters return control to the main debugger loop so 
a different command may be entered. 

19.3 Go command (G) 

The go command is of the form Gxxxxx where the XiS represent an 
execution address in hexadecimal. See section titled hexadecimal 
parameters for the conventions of entering hex values. If no 
execution address is entered, the Royale firmware will begin 
execution where it left off. Otherwise execution will begin at 
the address specified. 

19.4 Trace modes 

There are four trace modes which are controlled by the bytes at 
core locations X'14' X'17'. The byte at location X'14' 
controls which trace mode is currrently in effect and upper or 
lower core bank. The following table shows the values of this 
byte and the corresponding trace mode evoked. 

00 No trace 
01 Single instruction trace 
02 Break point trace, low core 
04 Break on change of a byte to a particular value, low core 
08 Break on change of a byte from a particular value, low 

core 
14 Break on change of byte to a particular value, low core 

38 Proprietary Trade Secrets Of Microdata 
a3 JAN 1979 



18 

82 
84 

and address match 
Break on change of 
and address match 
Break point trace, 
Break on change of 
core 

byte from a particular value, low core 

high core 
a byte to a particular value, high 

88 Break on change of a byte from a particular value, high 

A4 

A8 

core 
Break on 
core and 
Break on 
core and 

change of a byte to a particular value, high 
address match 
change of a byte from a particular value, high 
address match 

The single instruction trace breaks to the Monitor Debugger after 
execution of every Royale instruction. Some Reality 
instructions, because of there internal nature, will break more 
than once for every RNI cycle. No other bytes besides the one at 
X'14' are used to control the trace mode. 

The break point trace uses the bytes at locations X'IS' and 
X'16'. These bytes contain the execution address which will 
cause a break to the monitor debugger when Royale tries to 
execute at that location. Remember that upper or lower core is 
selected by the highest bit of the byte at location X'14'. 

The break on change uses all four bytes. The bytes at location 
X'IS' and X'16' contain the core memory location of the byte 
which is being watched with the upper bit of location X'14' 
telling which bank. The byte at X'17' contains the value used 
for comparison when breaking on the change of a byte. 

There are three bytes at address X'88' thru X'SA' which are used 
for an address match when checking for both byte change and 
address match. The reason for three bytes is to allow for l28k 
of core. 

19.5 Hexadecimal parameters 

Hex parameters include core memory addresses on memory commands, 
hex values to change core memory, and execution addresses on go 
commands. For values which are expected to be five hex digits, 
if fewer than five hex digits are keyed in, high order zeroes are 
assumed. If more than five hex digits are keyed in, only the 
last five are used. For values which are expected to be two hex 
digits, if only one is keyed in, a high order zero is assumed. 
If more than two hex digits are keyed in, only the last two are 
used. Non hex characters (except blank and control characters) 
are converted to some hex digit. Blank and control characters 
terminate a hex parameter. 

39 Proprietary Trade Secrets Of Microdata 
03 JAN 1979 



20 APPENDIX D. FIRMWARE LOCATIONS 

20.1 Prom Chip Numbering System 

NEW SYSTEM OLD SYSTEM HEX 
LOWER UPPER SEGMENT ADDRESS 

BYTE BYTE ~=LOWER BYTE 
l=UPPER BYTE 

1 2 SEG 0/1 0000-01FF 
3 4 SEG 2/3 0200-03FF 
5 6 SEG 4/5 0400-05FF 
7 8 SEG 6/7 06tJ0-07FF 
9 10 SEG 8/9 0800-09FF 
11 12 SEG 10/11 0A00-08FF 
13 14 SEG 12/13 eJC00-0DFF 
15 16 SEG 14/15 eJE00-0FFF 
17 18 SEG 16/17 1000-11FF 
19 20 SEG 18/19 1200-13FF 
21 22 SEG 20/21 1400-15FF 
23 24 SEG 22/23 160eJ-17FF 
25 26 SEG 24/25 1800-19FF 
27 28 SEG 26/27 1A00-1BFF 
29 30 SEG 28/29 lC00-lDFF 
31 32 SEG 30/31 1E00-1FFF 

20.2 Firmware Map 

LOCATION 

0000-01F1 
01F2-01FF 
0200-02EF 
02F0-02FF 
0300-03FB 
~3FC-03FF 
0400-07A6 
07A7-07A9 
07AA-07DB 
07DC-07FF 
0800-0CEF 
0CF0-0CFF 
0D00-eJDFF 
0E00-0EFF 
0F00-YJFFC 
0FFD-0FFF 
1000-11El 
1':E2-1IEC 
IlED-1IFF 
1200-1275 

03 JAN 1979 

USE 

ROYALE INSTRUCTIONS 
FREE 
ROYALE INSTRUCTIONS 
ROYALE INSTRUCTIONS 
ROYALE INSTRUCTIONS 
ROYALE INSTRUCTIONS 
ROYALE INSTRUCTIONS 
FREE 
8K DIAGNOSTIC 
ROYALE INSTRUCTIONS 
ROYALE INSTRUCTIONS 
ROYALE INSTRUCTIONS 
ROYALE INSTRUCTIONS 
ROYALE INSTRUCTIONS 
ROYALE INSTRUCTIONS 
FREE 
ROYALE INSTRUCTIONS 
FREE 
RDF RETURN AND EXTENDED CORE 
CORE DUMP 

40 Proprietary Trade Secrets Of Microdata 



1276-127F 
1280-12F2 
12F3-12FF 
1300-13FF 
1400-1400 
1401-1472 
1473-14DA 
14DB-14FF 
lS00-1S0A 
lS0B-1S0F 
1510-1519 
lS1A-1SAD 
15AE-17FF 
1800-19FD 
19FE-19FF 
1A00-1B35 
1B36-1BFF 
1C00-1FD3 
1FD4-1FFF 

03 JAN 1979 

FREE 
MONITOR-DEBUGGER 
FREE 
MONITOR-DEBUGGER 
8K DIAGNOSTIC 
MEMORY DIAGNOSTIC 
RD00 
FREE 
RD00 
FREE 
TAPE DIAGNOSTIC 
FREE 
8K DIAGNOSTIC 
RDF 
FREE 
TAPE DIAGNOSTIC 
RD00 
RD00 
FREE 

41 Proprietary Trade Secrets Of Microdata 


