
58180 DATA SHEET

Computer/Controller

DESCRIPTION
The MICROMINT SB180 computer packs a lot of compu­
ting power in a very small package. The SB180, only 4"
by TV.", offers a l-80 compatible CPU running at 6MHz,
256K bytes of RAM, up to 32K bytes of ROM, two
serial ports, a parallel port, expansion bus, and an industry
standard 765A-compatible disk controller for up to four
disk drives - any combination of 3W; 5%", or 8" drives.
Whether you use the SB 180 as the basis for a complete
disk based computer system or use its 32K of ROM space
for a battery-powered dedicated controller application pro­
gram, you will appreciate its ability'to run standard 8080/
8085 and l-80 software at up to twice the speed of a
4MHz l-80.

The SB180 uses the most powerful of the new generation 8 bit CPUs - the Hitachi HD64180. The HD64180 is based
on a microcoded execution unit and advanced CMOS manufacturing technology. It provides the benefits of high perfor­
mance, reduced system cost and low power operation while maintaining complete compatibility with the large base of
standard CP/M software. Performance of the HD64180 derives from its high clock speed, instruction pipelining, and an
integrated Memory Management Unit (MMU) with 512K bytes memory address space. The instruction set is a superset of
the l80 instruction set; twelve new instructions include hardware multiply and a SLEEP instruction for low power op­
eration, System costs are reduced because many key system functions have been included on-chip. Besides the MMU,
the HD64180 boasts a two channel Direct Memory Access Controller (DMAC), wait state generator, dynamic RAM
refresh, two channel Asynchronous Serial Communication Interface (ASCI), Clocked Serial I/O port (CSI/O), two
channel 16-bit Programmable Reload Timer (PRT), a versatile 12 source interrupt controller, and a "dual" (68xx
and 80xx families) bus interface. a ecause the SB180 uses the l80 instruction set, it can run CP/M 2.2, CP/M Plus, l-System, MP/Mn, TurboDOS,

, ,', nd Oasis operating systems. These operating systems can be custom configured to make use of the 256K bytes on
board memory for enhanced performance. And popular program development tools for these operating systems -
BASIC, FORTRAN, Pascal, PL/1, C, Forth, assembler, etc. - are widely available; thousands of proven application
programs will work, too.

TECHNICAL SPECI FICATIONS
PROCESSOR

* Hitachi HD64180, an 8·bit CPU on a 64 pin chip
* Superset of Z-80 instruction set, including

hardware multiply
* Integrated Memory Management Unit with 512K

bytes address space
* Dynamic RAM refresh
* Wait state generator
* Clocked serial I/O port
* 2 channel Direct Memory Access Controller
* 2 channel Asynchronous Serial Communication

Interface
* 2 channel lq-bit Programmable Reload Timer
* 12 interrupts
* Dual bus interface to 68xx and 80xx support chips
* 6.1 MHz system clock

MEMORY

* 256K bytes dynamic RAM on board
* Either an 8K 2764, 16K 27128, or 32K 27256

EPROM usable
* Optional full function 8K ROM monitor

ONPUT/OUTPUT '

Console I/O RS-232 serial port with auto-baud
rate select to 19,200 baud

* Peripheral RS-232 serial port, full handshaking,
150·19,200 baud

* Line printer parallel I/O port
* 19-bit address decoding, I/O port decoding,

and dual bus interface brought out to
expansion bus connector

FLOPPY DISK INTERFACE

* Uses Standard Microsystems 9266 disk controller chip
* Compatible with NEC 765A controller
* On-chip digital data separator
* Can control 3%", 5v..", and 8" drives - up to 4 in

any combination
* Handles both FM encoded (single density) and

M FM encoded (double density) data

POWER SUPPLY REQUIREMENTS

* +5 volts +/- 5% @ 300 mA (all CMOS); @500mA (TTL)
* +12 volts +/- 20% @ 40 mA (plus disk drive requirements)

DIMENSIONS AND CONNECTIONS

* 4" by 7%" board with mounting holes
* 20 pin DIP header for RS-232C serial console I/O
* 20 pin DI P header for RS·232C serial peripheral port
* 20 pin DIP header for parallel port line printer
* 34 pin header for 3%" or 5v.." floppy disk
* Layout for 40 pin and 8 pin headers (unpopulated)
for_ expansion bus

* LaY<mT"or 50 pin header (unpopulated) for 8" floppy disks

OPERATING CONDITIONS

* Temperature: 0-50 C (32-122 F)
* Relative humidity: 10·90% relative humidity, non-condensing

THE MICROMINT ROM MONITOR

The ROM monitor provided with the SB180 is a complete set of utilities and debugging aids in an 8K byte EPROM
which supports four I/O "devices":

CON: - Console RS-232 serial port
AUX: - Auxiliary RS-232 serial port

CEN: - Centronics parallel printer port
DSK: - Floppy disk storage device

Monitor Commands include:

I - I nput port S - Set memory A - ASCII table
B - Bank select
C - Copy disk

K - Klean disk (format)
M- Move memory

T - Test system
U- Upload hex file
V - Verify memory
W- Write disk

PART #

o - Display memory
E - Emulate terminal
F - Fill memory
G - Goto program
H - Hexmath

OESCRI PTION

N - New command
0- Output port
P - Printer select
Q- Query memory
R- Read Disk

PRICE

SB180-1 SB180 computer board w/256K $369.00
bytes RAM and ROM monitor.

SB180-10 SB180 Boot disk. Contains $ 49.00
Z-5ystem with limited utilities
and Super Bios source listing.
Provided on 5%" 5B180 format
DSDD diskette.

SB180-20 Z-System including ZR DOS, $190.00
ZCPR3, editor, utilities, ZAS
assembler, and ZOM debugger
on four 5%" DSDD disks.

All boards are complete with the exception of the 50 pin 8" drive header
44/8 pin expansion bus headers which are not populated and optionally
available. Printer, disk, and terminal cables available separately. Call for
pricing. OEM terms available.

CP/M and CP/M-80 are registered trademarks of Digital Research, Incorporated
MS· DOS is a registered trademark of Microsoft, Inc.
Z80 is a registered trademark of Zilog, Ine.
Z-System is a registered trademark of Echelon, Inc.
ZCPR3 Copyright (e) R.l. Conn

X- eXamine CPU registers
Y - Yank I/O registers
Z - Z-System boot

Order Toll Free
1-800-635-3355

In Connecticut call: 1-871-6170

•
To order or for more information,

call TOLL FREE or write:

MICROMINT, INC.
25 Terrace Drive, Vernon, CT 06066

COMM180 DATA SHEET

Modem/SCSI Peripheral Board

DESCRIPTION
The MICROMINT COMM180 expansion
board may be the only board you will
ever need for your SB180 computer, This
4" x 5" board adds two major functions
to your SB180:

1) Bell 1 03-212A compatible 300/1200
baud modem with Dual Tone Multi­
Frequency (DTMF) encode/decode
capability and voice synthesis_

2) SCSI hard disk controller interface.

The COMM180 board is available in
three versions:

1) Modem, DTM F encode/decode, and
voice synthesis alone.

2)Smal! Computer System Interface
(SCSI) hard disk controller inter­
face alone.

3) Both of the above.

And either the modem version or the
SCSI controller version may be upgraded
to the full version at any time.

The COMM180 does not use a serial port on the SB180, but instead addresses the bus directly. It is fully Bell 103 and a ll 212A compatible (including FCC registered Data Access Arrangement) for 300 and 1200 baud use, is 8251 A

. ftware compatible, features both DTMF and pulse dialing, call progress monitoring, DTMF reception and decoding,
nd a unique diagnostic capability which automatically compensates for common telephone line deficiencies. In

addition the COMM180 has voice synthesis capabilities which allow it to respond verbally to commands entered
via the standard touch tone telephone pad.

The SCSI allows the use of a wide variety of hard disks with the SB180 for fast, sophisticated mass storage whether
you need just 5 megabytes or 50 megabytes. Many manufacturers offer hard disk drives and controller cards which
mate with the SCSI interface. If you need more file space than floppies allow, the COMM180 board can help meet your
storage needs. In addition, many laboratory instruments support the SCSI standard, thus the COMM180 can allow
the SB 180 to be more easily used for data logging and data reduction.

Software for the COMM180-M includes TERM III, a complete modem communications system designed to run
under Z-System DOS available for the SB180. BIOS modifications are supplied in source code to allow integrations of
hard disk drivers into the Z-System DOS.

o

TECHNICAL SPECIFICATIONS
MODEM
* Plugs into the Expansion Bus on the SB180
* Only 4" x 5"
* Fully Bell-212A and Bell-l03 Compatible
* DTMF or Pulse Dialing
* Jack for External Speaker for Call

Progress Monitoring
* DTM F Reception and Decoding
* 8251A Software Compatibility
* Parity Generation/Checking
* Sync Byte Detection/Insertion
* Synchronous 1200 bps, Asynchronous

1200, 300, 110 bps

SCSI

* Provides a Device Independent Local 1/0 Bus
* Operates at DMA Data Rates Up to 1.5

Megabytes Per Second
* Supports Initiator and Target Roles
* Parity Generation with Optional Checking

* Software Controlled Audio Input and
Output Interface (2 Separate Jacks)
for Voice Communication or Acoustic
Coupling

* Voice Synthesis (LPC coded)
* ASCII Command and ErrorlStatus Codes
* Extensive Built in Diagnostics
* Phone Line Diagnostics
* FCC Registered Direct Connection.

Tip and Ring Input

* Supports Bus Arbitration
* Provides Direct Control of All Bus Signals
* XEBEC 1410 compatible
* ADAPTEC ACB4000 compatible

COMM180 SOFTWARE

The software which comes with the COMM180-M consists of TERM III and Z-MSG (optional).

TERM III is a sophisticated communications package which offers all the functions of standard
modem programs but goes far beyond them when used with COMM180's advanced features and
Z-System DOS (required for operation). TERM III was designed to be used as:

1) an originating communications system to allow the user to dial out, communicate with other
computers, and perform file transfer functions;

2) a remote access system to allow users to dial into the system, interact with it, and transfer
programs into and out of it; and,

3) a configuration system to allow the user to configure the attributes of the other two types
of systems.

TERM III offers multiple file transfer protocols: Christiansen's MODEM7 (with checksum and with
CRC), MODEM7 batch, XMODEM, KERMIT, CompuServe's CIS, and X-ON/X-OFF. Special attention
has been paid to making the remote access system completely secure from unauthorized use. You
may also patch subroutines into TE RM III to use a standard touch tone pad to give special
instructions, or run a program using the COMM 180's speech synthesis with verbal system access.

Z-MSG allows the COMM180, SB180, and TERM III to be custom configured as a "turnkey"
Remote Bulletin Board System - either as a public system allowing access to anyone or as a private
system restricting access to "members only". Z-MSG allows up to eight user "types" with varying
privileges associated with each. Messages may be public or private and may be over 100 lines long.
Extensive editing functions are provided and comprehensive on-line help is always available.

For those wishing to use the SCSI as a hard disk controller, source code is provided which allows
many types and sizes of Winchester disks to be used as mass storage for the SB180. Of course, the
SCSI may also be used to I ink other SB 180's or SCSI equipment together as well.

COMM180 PRICING

9/85

Item 1: COMM180-S SCSI board with BIOS upgrade.

Item 2: COMM180-M 1200 baud modem board with TERM

~c:;
III.~

Item 3: COMM180-M-S combination modem/SCSI board with TERM III

and BIOS upgrade.
1/

Item 4: Z-MSG turnkey bulletin board software for the COMM180-M. _\()O

Call Micromint for current price information

Order Toll Free
1-800-635-3355

In Connecticut call: 1-871-6170

We welcome the opportunity to offer quantity pricing and OEM proposals.

To order or for more information, call TOLL FREE or write:

MICROMINT, INC. 25 Terrace Drive, Vernon, CT 06066

~~-.--~.-~---~----------

INPUT:
115 or 230 V AC + or - 16%
0.85 Amp RMS max.

FUSE:
5 MF 2 A 125 V or
5 MF 1 A 250 V

PS-ASTEC
AA12110

OUTPUT:
+5 V + or - 5% 2.5 Amp' 50 mVp-p max. ripple
+12 V + or - 5% 2.0 Amp 150 mVp-p max. ripple
-12 V + or - 25% 0.1 Amp 150 mVp-p max. ripple

• 5.0 Amps if no load on +12 V

MAX. POWER OUTPUT:
38 watts

~ <j? <0 0 0
> Q c(0

.-12V

" " . +: :.;
It"==~ '. .' COl-:
Ir----+ +.;\'
Ir----+ "

•. -12V

B'e==i: ::::::"'+1 2V
r--+- co~

<=>- 0 ~=:::i: .••..... :::,
I I rFI ~I u -===I==t·,· ':' .. :.'.:~~V
o] lW \ _

120 VAC

I 14it:::..L L,.; NWM L NT I NC

8B1810-1
SB180 SINGLE BOARD COMPUTER SYSTEt

ASSEMBLED AND TESTED BOARD

SERIAL NUMBER ----------------

SB180

SINGLE BOARD COMPUTER

Users Manual

THE MICROMINT, INC. 25 Terrace Drive, Vernon, Connecticut 06066

Rev. 1.0

TIP SlIEET 10/23/85

First time users may find the following list of tips useful in
setting up and using their system:

1) The system provided must be booted on a double-sided-
double-density 48 tpi disk drive with the terminal set for 9600
baud. The system may later be configured by the user to boot
from 96 tpi drives and at a different baud rate. (Use CONFIG to
change the baud rate.)

2) ZCPR3 allows the use of up to 32 user areas on each disk.
(The system provided has been set up to use areas 0 through 15
only. Should the user need more areas than this, the system
source files on disk three must be modified and reassembled.)
The different areas may be accessed by typing the desired area
number followed by a colon and a return at the system prompt.
For example, to move from area 0 to area 15 type '15:' at the
'AO:BASE)' prompt.

3) A user area may also have a name associated with it.
When the 'System Master' disk is used to boot the system, user
area 0 is named 'BASE' while area 15 is named 'ROOT'. To move
between areas using their names, type the area name instead of
its number, followed by a colon and a return. Another way to
move to area 15 in the above example is to type 'ROOT:' at the
'AO:BASE)' prompt.

4) To see a list of currently defined named directories,
type '~ followed by a return. To get a list of all the files
on a disk in all the user areas, put the disk in drive B: and
type 'XDIR B: U' followed by a return. (SB180-20 software only.)

--.'t'"~."">I.'W'>.r .. ~. __ ... ,.........".,

5) All of the files on disks two, three, and four may be
found in user area O. (SBI80-20 software only.) However, most of
the files on disk one are in user area 15. This is so the user
doesn't have to see a list of system tools every time he does a
directory.

6) As provided, the system uses a disk head step rate of
lams. (If this means nothing to you, go on to the next para-
graph.) A gu icker step rate may be used wi th some dd yes to
increase the overall disk access rate. Check your disk drive's
manual to determine if a faster step rate can be used. (e.g.

~!~; t~~;5~~~~~;~_ .. 9XjX~~_S_c!I)_"_~<~~_._?_ .. «§.~.:;,.§.~~2_L~.t,~_~J Run CONFIG to

7) Besides the system tools on the 'System Master' disk,
there are also a number of built~in commands. These include
commands in the command processor (CP), which are GO, SAVE, GET,
JUMP, and NOTE, and commands in the resident command package
(RCP) such as TYPE and POKE. For a list of RCP commands, type H
at the system prompt. For more details, see the ZCPR3 book.

1

8) If you plan to mount your 58180 in an enclosure, be sure
to use nylon or plastic washers hetween any metal hardware and
the 5BIBO's circuit board. ~ny metal allowed to touch the board
my cause short circuits and prevent the board from operating
properly.

9) If you have a printer pluqged into your system, be sure
the power on the printer is turned on before booting the system.
If the printer is turned off when the computer is turned on, the
system may hang and refuse to boot until the printer is unplugged
or turned on.

10) The table in the manual describing the correct jumpering
for a TEAC 558 drive is for a TEAC FD-55B~20-U drive. We have
found at least two other 558 drives which need different jumpers
installed. Also, the TEAC 55F BO-track drive has its own set of
required jumpers. These are listed below:

TEAC FO-55B-20-U
install ML, UR, DSx, and terminators

TEAC FD~558-01-U

install HL, UR, Pt", , DSx, and terminators
TEAC FD"""S58 V"'OG--U

install HL_. RY, DSx, and terminators

TEAC FD-55F-03~U
install HL, UR, PM, DSx, and terminators

(Terminators should be installed only on the last
drive on your cable. The DSx designation above refers
to the OSO, DSl, DS2, or DS3 jumper, depending on
whether you are configuring drive A:, B:, C:, or D:.)

11) There are over 40 remote access systems (RAS), also
called bulletin board systems, across the country which run z­
System as their operating system. Called Z-Nodes, they
specialize in supporting Z--Systern with updates to existing tools,
developing new tools, distributing useful public domain software,
and in answering any and all questions dealing with Z-System.
The main Z--Node, supported by Echelon, is Z~Node Central. The
number there is L4l~) 489~900S. Located on that board is a list -... ,' .. , ""'" .. "".-,~,,~, "._"",'
of all the other Z-Nodes so you can find the one closest to you.

12) Micromint also has a RAS called the Circuit Cellar 88S.
Designed to support users of Micromint manufactured Circuit
Cellar projects, it runs on an S8180 and its primary support is
for the S8180. Call it anytime to obtain advise, ask questions,
download useful public domain utilities, and read advance
announcements of other Micromint products. The number is (l03)
871-19J?,,§. It uses 8 bits, 1 stop bit, no parity, and runs 300
ana-I-2 0 o--b,iu-d'~""''''-lE'''Ts''a vaTfi3bTe'2;r"hour's' aday"'ana~-' like Z --No d e
Central, makes the list of Z~Nodes across the country available
to users.

2

13) There is an S8180 users' qrour bein1 Eorme~ and is
actively recruiting new members. The North American One-Eighty
Croup (N.A.O.G.) publishes monthly newsletters and will be making
available to members disks full of useful utilities, programs,
and hints for the cost of the media anrl shipping. More
information plus a melnbership application is available on the
Circuit Cellar RBS or write or call:

North American One~Eighty Group
P.O. Box #2781
Warminster, PA 18974
(215) 443~9031

3

ERRA'rA

Current prouuction boards no lonyer have Jumpers supplied for
JPllcJ. Instead JJ:.lllJ is hardwired for simultaneolls 3.=>", 5.25"
and ~" operation as shown in the center drawing of ¥igure 2.7-2.
This option provides motor control for 5.25" and 3.5" drives, and
also allows selection between 3.5"/5.25" and ($" drives.

You can reconfigure JP10 if desired by removing the existing
wire (or, on some boards, cuttIng the existing trace) and in­
stalling your own jumpers.

J:.laoe 25, FiClure 2.7-'d
--~--------~---------

The figure at the bottom of the page is mis-labeled as
"Figure 2.7-~". It should be labeled as "Figure 2.7-6".

The figure in the center of the page is mis-labeled as
"Figure 2.7-8". It should be labeled as "Figure 2.7-7".

Addendum: To add an ~" Shugart ~5\c)/H6U US/DU drive to an
SB180 with two 5.25"/3.5" drives, the following Jumpers should be
in place:

Cl50
2S

Z

A
B
I
R

IW
S2
IT

C
RS

HLL
M

NF
OS3

There should be no terminator on the drive.

SB180 Technical Manual

Release 1.0

Copyright (C) 1985

The Micromint Inc.
25 Terrace Drive
Vernon, CT 06066

All rights reserved

Copyright Notice

Copyright (C) 1985 by The Micromint Inc. All rights reserved.
No part of this publication may be reproduced, transmitted, tran­
scribed, stored in any form or by any means, manual or otherwise,
without the prior written permission of The Micromint Inc., 25
Terrace Drive, Vernon, CT, 06066.

Disclaimer

The Micromint Inc. makes no representations or warranties with
respect to the contents hereof. Further, changes are periodical­
ly made to the information contained herein. The Micromint Inc.
reserves the right to incorporate these changes in new editions
of this publication without obligation to notify any person of
such revisions or changes. Mention in this document of specific
product(s) compatible with the SB180 does not constitute an en­
dorsement of the product(s); rather the information regarding
specific product(s) is given for illustrative purposes.

Trademarks

CP/M, CP/M-80 and MP/M are registered trademarks of Digital
Research, Inc. MS-DOS is a registered trademark of Microsoft,

. Inc. Z80 is a registered trademark of Zilog, Inc. IBM, IBM PC,
and IBM Personal Computer are trademarks of the International
Business Machines Corporation. Z-System is a registered trade­
mark of Eschelon, Inc. ZCPR is a copyright of R.L. Conn. SB180
and COMM180 are copyrights of The Micromint, Inc.

Date of this release: July, 1985

*

WARRANTY

The Micromint, Inc. extends the following warranty:

A factory manufactured circuit board or
it a one year warranty covering both parts
which is found to have a defect in materials
be repaired or replaced at the option of The

assembly caries
and labor. Any
or workmanship
Micromint, Inc.

with
unit
will

No credit will be given for units which show damage due to
user modification or neglect.

Units returned for repair" must have prior authorization from
The Micromint, Inc. A return authorization number may be obtain­
ed by phone or letter. Please retain a record of the the return
authorization number as most subsequent correspondence will refer
to that number. Under no circumstances is any product to be re­
turned to The Micromint, Inc. without prior authorization. The
Micromint, Inc. will assume no responsibility for unauthorized
returns.

All returns must be shipped prepaid. Insurance is recommend­
ed as losses by a shipping carrier are not the responsibility of
The Micromint, Inc. Repaired units will be rturned with postage
paid.

For repair of units which have expired their warranty, a
minimum inspection fee must be prepaid. Contact The Micromint,
Inc. for information on current minimum charges.

NO WARRANTY is extended on USER ASSEMBLED systems or kits.
However, assembled kits will be inspected and repaired with
charges based on the current minimum one hour charge. However,
in the event that repair charges would exceed a reasonable
amount, the user may be consulted for a determination. The
Micromint, Inc. retains the right to refuse to repair any USER
ASSEMBLED item. This right is at the sole discretion of The
Micromint, Inc.

Repairs on USER ASSEMBLED items must be prepaid.

Return authorization must be obtained prior to any return.

The Micromint, Inc. reserves the right to change any feature
or specification at any time.

*

SECTION

1.13
1.1

2.13
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.7.1
2.7.2
2.8
2.9
2. Hi
2.11
2.12

3.13
3.1
3.2
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.3.8

4.13
4.1
4.2
4.3
4.4
4.5
4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7
4.6.8
4.6.9

TABLE OF CONTENTS

DESCRIPTION

SBi813 System Overview
Notational Conventions

SB1813 Installation Instructions
Installation Overview
Connecting the Power Supply
Connecting the Main Console I/O Device
Turning On Power
Connecting An Auxillary Serial I/O Device
Connecting a Parallel Printer
Connecting Floppy Disk Drives

Installation of Teac 5.25-Inch Disk Drives
Installation of Shugart 8-Inch Disk Driv~s

The Expansion Bus
Installation of User EPROM
SB1813 Installation Checklist
Turning On Power with Disk Drives Attached
In Case of Difficulty

Hardware Technical Descriptions
The Hitachi HD641813
SB1813 Design Criteria
The SB180 Hardware

CPU
RS-232 Interface
Memory Interface
256K Bit Dynamic RAM
Centronics Printer Ititerface
Floppy Disk interface
Expansion Bu~
Power Supply

SB1813 Monitor
I/O Devices
Disk Format
RESET
Console Baud Rate
Conso1e I/O
Commands

ASCII Table
Bank Select
Copy Disk
Display Memory

. Emulate Terminal
Fill Memory
Goto Program
Hexmath
Input Port

PAGE

1
2

3
3
8

11
13
15
16
18
25
26
27
28
29
29
34

413
413
42
42
43
43
43
45
45

.46
48
48

49
49
49
49
513
513
51
52
52
52
52
52
53
53
53
53

4.6.10
4.6.11
4.6.12
4.6.13
4.6.14
4.6.15
4.6.16
4.6.17
4.6.18
4.6.19
4.6.20
4.6.21
4.6.22
4.6.23
4.6.24
4.7
4.7.1
4.7.2
4.7.3
4.7.4
4.7.5
4.7.6
4.7.7
4.7.8
4.7.9
4.7.10
4.7.11
4.7.12
4.8
4.9
4.10
4.10.1
4.10.2
4.10.3
4.10.4
4.10.5
4.10.6
4.10.7
4.10.8
4.10.9
4.10.1
4.10.1
4.11

5.0
5.1

K1ean (Format) Disk
Move Memory
New Command
Output Port
Printer Select
Query Memory
Read Disk
Set Memory
Test System
Upload Hex File
Verify Memory
write Disk
Examine CPU Registers
Yank I/O Registers
Z-System Boot

Error Messages
FDC Error
Disk R/W Error
Disk Seek Error
Disk Not Ready
Bad Command
Bad Parameter
Not Enough Parameters
Invalid Interrupt
Bad Opcode Trap
CTS0* HIGH
DCD0* HIGH
No ACK*

Disk Format
Monitor ROM Modification
Key Variable Block

STARTBYTE
CNTLA0
CNTLA1
CNTLB0
CNTLB1
STAT0
STATl
DCNTL
RCR
SPCF1
SPCF2

The "N" NEW Command

Schematics
Parts List

53
53
53
53
54
54
54
54
54
55
55
55
55
55
55
56
56
56
56
56
56
56
57
57
57
57
57
57
57
58
58
58
59
59
59
59
60
60
60
60
60
60
61

62
67

LIST OF FIGURES

NUMBER DESCRIPTION PAGE
.. -

1. 0-1

2.1-1
2.1-2

2.1-3
2.1-4
2.2-1
2.2-2
2.2-3
2.3-1
2.6-1
2.7-1
2.7-2
2.7-3
2.7-4
2.7-5
2.7-6
2.7-7
2.8-1
2.110-1
2.12-1

3.1-1
3.1-2
3.1-3

4.6-1

5.10-1
5.0-2
5.1-1

SB180 Functional Organization

SB180 Silkscreen
Recommended Mating Connectors

for the Sa180 System Board
Orientation of 20-pin Headers
SB180 Block Diagram
SB180 System Board Power Requirements
J7 Power Signal Specifications
Side View of Power Connector J7
J3 Serial Interface Signal Assignments
J2 Printer Signal Interface Specifications
Jumper Selection for Disk Drives
JP10 Jumper Setup
J9 5.25" Interface Signal Specifications
J8 8" Interface Signal Specifications
Disk Drive Connectors Specifications
Teac 55B Configuration Guide
Shugart SA850 Configuration Guide
Expansion Bus Signals
Installation Checklist
Troubleshooting Chart

Comparison of 8 Bit Processors
Block Diagram and Pin-Out of the HD64180
Block Diagram and Pin-Out of the 9266

Monitor Command Summary

SB1810 Schematic Diagram
Sample Cable Assemblies
Parts List for the Sa180

iii

2

4

6
6
7
8
9
9

11
16
19
21
21
22
24
25
26
28
30
35

40
44
47

51

62
66
67

1.9 SB189 System Overview

The Micromint SB180 is a single board computer featuring a
new generation 8-bit microprocessor which maintains software com­
patibility with the Zilog Z80 while incorporating advanced design
features in a single 64 pin chip. The SB189 uses just 29 chips
on a 4" by 7 1/2" printed circuit board to provide a powerful,
low cost processing system which is well suited for a wide range
of appliations from dedicated process control computers to
personal computer systems. Figure 1.9-1 shows the functional
organization of the SB189:

*

*

*

*
*
*

*
*
*

central processing unit
memory interface
RS-232 interface
Centronics parallel interface
floppy disk interface
XBUS expansion bus
power supply

The SB189 has the following features:

Hitachi HD64189 microprocessor running at 6.1 MHz.
Supports a superset of the z89 instruction set.
256K bytes on board RAM memory (can be partitioned as 64K
byte system memory and 192K byte RAM disk or as paged
system memory) •
Full 8K byte ROM monitor with disk support (format, read,
write, copy, and boot). Can support up to 32K byte ROM on
board.
2 RS-232 serial ports, one with auto-baud rate detect.
1 Centronics parallel printer port.
Single/double density programmable floppy disk controller.
capable of handling a mix of up to four 3 1/2", 5 1/4",
or 8" drives. Different size drives can run concurrently.
Supports 4 external and 8 internal interrupts.
Requires Just +5 V (and +12 V only for RS-232 operation).
Has an I/O expansion interface

The SB180's ROM monitor is designed to use the (optional)
Echelon Inc. Z-System disk operating system, an enhanced, com­
patible superset of Digital Research's CP/M 2.2 operating system.
However, the SB180 can also use the CP/M 2.2, CP/M Plus, MP/M II,
TurboDOS, or Oasis operating systems (if properly customized).

The SB180 is a virtually complete system on a single
board. You need only add a power supply, a serial terminal, and
one floppy disk drive (49 t%ack or 80 track DS/DD) to form a
complete functional system. To operate the system, simply turn
on the power, insert a Z-System disk, and start the bootstrap
operation.

Section 2 of this manual provides complete installation
instructions, and Section 3 gives a complete description of the
hardware logic components which comprise the SB180 board. The
ROM monitor is described in Section 4.

Page 1

1.1 Notational Conventions

Active low logic signals (those which are true when at a
logic low level of 0 volts) are indicated in this manual in two
ways. First, active low signals are denoted by the presence of a
"*"chara~ter following the signal name (e.g., SYSMEMRD*). These
signals are also shown with a bar over the signal name, particu­
larly on the logic diagrams. Both notations mean exactly the
same thing. On the other hand, active high logic signals (those
which are true when at a logic high level of 2.4 volts) are in­
dicated by just the signal name (e.g., READY).

CONSOLE SERIAL
PORT

RS -232C

AUXILIARY
SERIAL

PORT RS -232C

XTAL
12288MI1 l

r fi1

11064180

8-3ZK- BYTE
ROM

AOOR

CONTROL

DATA

FLOPPY -DISK
CONTROLLER

3112 in. + 5 114m 8 in.
DRIVES DRIVES

256K- BYTE
RAM

PARALLEL
PORT

CENTRONICS
PRIIHER

Figure 1.0-1 S8180 Functional Organization

Page 2

2.0 SB180 Installation Instructions

The intent of this section is to be a guide to the in­
stallation of an SB180 system. Section 2.1 provides an overview
of the installation process and should be read prior to the act­
ual installation. Information presented in sub-sections 2.1
through 2.11 should be used to initially install the SB180 system
including associated peripheral I/O devices. Section 2.4 pro­
vides a guide to follow when power is first applied if no disk
drives are connected to the SB1B0 board and just the ROM monitor
is being used. Section 2.11 assumes that a 40 track DS/DD 5.25"
disk drive is connected to the SB180 and that you have the z­
System boot disk.

2.1 Installation Overview

The S8180 is designed to be relatively simple to set up
and operate. A "bare bones" SB180 system consists of the fol-
lowing hardware components:

*
*
*

SB180 system board with 256K RAM and 8K ROM monitor
RS-232C compatible CRT terminal
Power supply

A more complete system (and a more typical one) would add:

*

*

one or more 5.25" 40 track (or 80 track) DS/DD
floppy disk drives (or equivalent 3.5" drives)
(Note: the SB180 monitor must have a 40 track double
sided drive for Z-System boot up.)

Centronics compatible parallel printer

Of course once the SB180 is operating in its minimum mode with at
least one disk drive, other drives may be added. Additional in­
formation in Section 2.7 will detail the addition of 3.5" and/or
double sided 8" drives.

tested
ation
may be

It is suggested that the S8180 be initially installed and
for proper operation without a disk drive. Once the oper­
of the ROM monitor has been verified, a floppy disk drive
added to boot the operating system.

Although the SB180 has been designed to be compatible with
"industry standard" peripheral interfaces, it is the responsibil­
ity of the user to ensure that any peripheral devices purchased
separately meet the S8180 interface specifications. These are
defined in the appropriate installation sections and by the act­
ual peripheral devices themselves. Of particular importance, the
interconnecting cables must match the interface at both ends.
Improper cables will be the cause of system malfunctions in al­
most every instance, so the time spent in verifying the cable
connections will be well worthwhile. The basic interface con­
nectors of the S8l80 were designed to use flat ribbon cable and
insulation displacement connectors to simplify cable preparation.

Page 3

...--------.~Ithl I
~--------------~I~ .II

Figure 2.1-1 Silkscreen of SB1b0 Board

- ~ - - - - - - - - -

Page 4

The information contained in each of the installation
sections in this manual is geared towards the novice computer
user. It is strongly suggested that all users,including those
experienced -in the installation of computer systems, should read
the installation procedures completely before applying power to
an SB180 system. Failure to follow the recommended procedures
may potentially result in damage to components on both the system
board and/or the peripheral devices. In particular, reversal of
1he __ +5v __ and __ +12v_~wer leads to the Eower connector results in
~ermanent dama3~to alJ-Eut on~IC_on the ~stem boardl Figure
2.1-1 shows the silkscreen legend which appears on the SB180
system board. This picture should be referred to for all of the
installation procedures as an aid in locating specified connect­
ors, jumpers, IC sockets, etc. Figure 2.1-2 contains part num­
bers for recommended mating connectors for those on the SB180
system board. Connectors for the peripheral ends of intercon­
necting cables are dependent on each particular peripheral, and
are specified in the manuals which should have come with them. A
block diagram of a typical SB180 system using 5.25" floppies, a
3.5" floppy, and an8" floppy is shown in figure 2.1-4

**
*
*
*
*
*

CAUTION - DO NOT apply power to the SB180 system until the
Installation Checklist (Section 2.10) has been
completed and you are instructed to do so !

*
*
*
*
*

**

Page 5

SB1810 MATING CONNECTOR
CONNECTOR DESCRIPTION PART NO. QTY.

J1
Ext reset

J2-J4
Ser/Par·

J5
Expan.

J6
Expan.

J7
Power

J8
8" drive

J9
3/5" drive

2 pin solder
pads

Hard wire norm.
open pushbutton

210 pin IDC flat
cable connector

40 pin header
receptacle

8 pin header
receptacle

4 pin right
angle pin header

510 pin IDC flat
cable connector

34 pin IDC flat
cable connector

6109-210100M

929975-101-210

929974-101-104

22-101-21041
108-510-10114

609-510101OM

6109-34100M

3

1

1

1
4

1

1

MFG.

T&B ANSLEY

APTRONICS

APTRONICS

MOLEX

T&B ANSLEY

T&B ANSLEY

Figure 2.1-2 RECOMMENDED MATING CONNECTORS FOR· THE
SB1810 SYSTEM BOARD

Figure

•

- ...,; -

SIP2 MODEM

c=x::=)C20
TERMINAL CI9

~~~~~~~~I ~--~ 

R!S 
R4 

C) 
ell 

Orientation of 21O-Pin Headers 

Page 6 



J3 TERMINAL J4 MODEM 

INTERFACE INTERFACE 

1\ 1\ 
II II 
II II 
\1 \1 

SYSTEM RAM HD 64180 SYSTEM ROM 

41256 (4164) CPU 2764 (27128/27256) 

1\ 1\ 1\ 
II II II 
II II II 
\1 \1 \1 

1 \ 
1 \ 

< LOCAL BUS > 
\ 1 

\ 1 
1\ 1\ 1\ 
II II II 
II II II 
\1 \1 \1 

J6 BUS J2 PRINTER FDC 9266 

EXI'ANSION INTERFACE INTERFACE 

1\ 1\ 1\ 
II II II 
II II II 
\1 \1 \1 

1 \ 
I \ 

< LIMITED LOCAL BUS > J9 3 1/2" or 5 1/4" J8 8" DISK 
\ 1 

\ 1 DISK INTERFACE INTERFACE 

Figure 2.1-4 SB180 Block Diagram 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Page 7 



2.2 Connecting the Power Supply 

The information presented in this section is somewhat 
generalized since the actual installation of the power supply 
will be dependent upon several factors such as the number and 
type of disk drives, and the number of, and the power require­
ments of any expansion cards which will be installed. An example 
is given of a typical installation which uses a single power sup­
ply (available from Micromint) to power the SB189 system board 
and two 5.25" floppy disk drives. Recommended part numbers for 
mating power connectors are given in figure 2.1-2 for the SB189 
and in figure 2.7-6 for typical flexible disk drives. 

STEP 1 VERIFY THE POWER SUPPLY RATING 

Before connecting a power supply to an SB189 system, ver­
i fy that the supply is cap-able of providing enough current for 
all the devices which it will power. This is extremely import­
ant, since the SB189 system will probably not function correctly 
if the supply is operating at reduced output voltage due to over­
load. At a minimum, the power supply must be able to supply 
enough current for the SB189 system board. Figure 2.2~1 gives 
the power req~irements for the system board. In addition, if the 
main power supply is to be used to power any floppy disk drives, 
then it must be large enough to handle the disk drives as well as 
the system board. Thus, the first step prior to connecting the 
power supply is to total up the current requirements for all of 
the loads. If the total current requirements exceed the rating 
of the power supply, it will be necessary to replace it with 
another one that is capable of handling the required load. 

STEP 2 

SUPPLY 
VOLTAGE 

+ 5 VDC 
+ 12 VDC 

TYPICAL OPERATING 
CURRENT 

9.599 amperes 
9.949 amperes 

AL.LOWABLE VOLTAGE 
RANGE 

+4.75 to +5.25 
+11.4 to +12.6 

Figure 2.2-1 SB189 SYSTEM BOARD POWER REQUIREMENTS 

GET/MA~E UP A POWER CABLE 

The power supply cable attaches to the SB189 system board 
at the 4 pln connector, J7. Part numbers for components of a 
recommended mating connector are given in figure 2.1-2. Signal 
specifications for the power pins are listed in figure 2.2-2 
along with a suggested color coding scheme which will be helpful 
in avoiding the connection of a wire to an improper voltage 
level. WARNING! IF THE POWER CABLE IS CONNECTED BACKWARDS, IT 
WILL DESTROY ALL SYSTEM BOARD COMPONENTS! Figure 2.2-3 illus­
trates J7 from a side view with each pin identified with its 
corresponding voltage level. 

Page 8 



- - - - - - - - - - - - - - - - - - - - - - - - -
PIN NO. SIGNAL NAME COLOR NOTES 

1 +12 V YELLOW 40 rna power 
2 +12 V RETURN BLACK ground 
3 + 5 V RETURN BLACK ground 
4 + 5 V ORANGE 500 rna power 

Notes: 1. All wires should be 24 AWG minimum 
2. RETURN is the same as GROUND 
3. BLACK can be used for both GROUNDs 
4. Cable is available as Micromint PIN SB180-P 

Figure 2.2-2 

+ 12 VOLTS 

J7 POWER SIGNAL SPECIFICATIONS 

+ 5 VOLTS 

GROUND 

Figure 2.2-3 Side View of Power Connector J7 

Page 9 

- - -



The type of connector, if any, which attaches at the power 
supply end of the cable depends upon the particu.lar power. supply 
to be installed. In general, each manufacturer tends to use a 
di~ferent connector, and in most instances a mating connector is 
not included with the power.suply itself. If a mating connectot 
cannot be acquired, the wires can usually be soldered directly to 
the connector pins, although this is not a recommended practice. 
In addition, some power supplies use screw type connectors which 
attach to automotive style spade lugs. These spade lug~ would be 
soldered or crimped to the power leads, and can be used to form a 
good, reliable pOwer connection which can be ~asily disconnected 
if necessary. . 

If your power supply will operate with no load (some 
switching supplies require a minimum load), this would be a good 
point to verify its proper operation. Checking voltages at the 
connector for the system board insures proper pin outs. 

***************************************************************** 
* 
* 
* 

CAUTION: UNPLUG ALL AC POWER CORDS BEFORE PROCEEDING 
* 
* 
* 

***************************************************************** 

STEP 3 ATTACH THE POWER CABLE 

Refer to figures 2.1-1 and 2.2-3 for the location and 
orientation and attach the 4-pin connector to J7 being sure to 
orient pin number 1 correctly. Make sure that all the pins in 
the connector and J7 are aligned properly before making the 
connection. Ne~t, attach the opposite end of the cable to the 
power supply. Be sure that the correct wires are hooked up to 
the proper voltages. If a color coding scheme such as the one 
suggested was followed, this should not be a problem. 

*****************************i*********************************** 
* * * CAUTION- - M.AKESURE THAT THIS CONNECTOR IS' INSTALLED IN THE * 
* COaRECT ORIENTATION TO PREVENT DAMAGE TO THE * 
* SYSTEM BOARD." * 
* * 
***************************************************************** 

This completes the SB180 system board power supply in-
stallation. Note: DO NOT plug in the AC power cord toa line 
outlet at this time. 

Page .10 



2.3 Connecting the Main Console I/O Device 

The main console I/O port on the SB180 is designed to 
attach directly to a standard RS-232C compatible CRT data term­
inal, such as a Televideo 950. The console serial device is 
attached to the SB180 system board at the 20-pin, dual row head­
er, J3, which mates with standard 20-pin female flat cable con­
nectors, such as the one recommended in figure 2.1-2. Signal pin 
assignments for J3 are listed in figure 2.3-1. The connector at 
the terminal end of the cable is typically a 25-pin DB-25 "D" 
style connector, and can be either a male or a female connector 
depending upon the requirements of the particular serial I/O de­
vice that is being used for the console. 

The SB180 board as shipped is configured such that the 
console I/O port operates as Data Communications Equipment (DCE). 
In most instances where CRT (video display) data terminals are 
used, the serial device is set up to operate as Data Terminal 
Equipment (DTE), and no special configuration is needed. In this 
case, the pins on J3 tie directly to corresponding pins on the 
connector of the serial device. On the other hand, if the serial 
device is also operating as DCE, then the signal pins must be 
swapped in the cable assembly (reverse pin 2 with 3 at one end). 

PIN# 

2 
3 
7 

1,4-6,8-20 

EIA RS-232C SIGNAL NAME 

TRANSMITTED DATA (TXD) 
RECEIVED DATA (RXD) 
SIGNAL GROUND (GND) 
NOT USED 

I/O(DTE) 

o 
I 

Notes: 1. Signal direction at J3 is for DCE operation. 

I/O(DCE) 

I 
o 

2. If hardware handshake is required for the console, 
J3 may be configured to provide an interface gate for 
pin 5 (CTS) by changing jumpers JP4 and JP5. 
3. The console cable is available as Micromint PIN SB180-T 

Figure 2.3-1 J3 SERIAL INTERFACE SIGNAL ASSIGNMENTS 

Page 11 



In addition to the problem of matching the cable at each 
end to the correct interface signals, both the data terminal de­
vice and the SB180 system board must be set up to operate with 
the same set of parameters, such as number of data bits, number 
of stop bits, type of parity bit, baud rate, etc. This isac­
complished via DIP switch settings on the terminal, though some 
older terminals may use hard-wired jumpers. The SB180 features 
auto baud rate detect for 300, 1200, 9600, and 19,200 baud, so 
the terminal may be set for any of these baud rates. The default 
values for the SB180 are: 8 data bits, 1 stop bit, and no parity. 
This code configuration may be changed after the SB180 is 
operating but must be adhered to for initial operation. Keeping 
these things in mind, you are now ready to configure and install 
the main communications device. .. 

STEP 1 TURN OFF POWER 

Disconnect power to both the SB180 s¥stem board and to the 
serial device which is being installed as the main console de­
vice. Removing power is best accomplished by unplugging all AC 
power cords. 

STEP 2 CONFIGURE THE MAIN CONSOLE DEVICE 

The first step is to read the 
which should be included in the manual 
(or other serial device if applicable). 
given and set up the data terminal 
parameters: 

8 data bits 
1 stop bit 
no parity 

installation instructions 
for the CRT data terminal 
Follow the instructions 

for operation with these 

baud rate: 300, 1200, 9600, or 19,200 

If the serial device is configurable for either DCE or OTE opera­
tion, set it up as DTE according to the instructions given in the 

. manual for the device. Most CRT terminals are already configured 
for DTE operation. 

STEP 3 GET/MAKE UP THE CONSOLE CABLE 

If a cable was not purchased with the SB180 system board, 
one must be constructed. The connector which mates with the J3 
header should be a 20 pin (2x10) female flat cable oonnector on 
.100" centers. Refer to figures 2.1-1 and 2.1-4 for the location 
of J3 and the position of pin number 1. The connector which in­
terfaces with the serial device will be specified in the manual 
for the device, but it is usually a 25-pin "0" connector. The 
actual construction of the cable depends on both the type of 
connectors and cable being used. The entire flat cqble might be 
crimped at one time or individual pins may need to be crimped or 

Page 12 



soldered, and then inserted into a connector shell. Most serial 
terminals conform to the RS-232 DTE standards (i.e., they trans­
mit data on pin 2 and receive on pin 3). The SB180 mates as a 
DCE device (receives data on pin 2 and transmits on pin 3). If 
the serial device is not operating as DTE equipment as previously 
mentioned, reverse pin 2 with pin 3 on one end of the cable. 

STEP 4 ATTACH THE CONSOLE CABLE 

Refer to figures 2.1-1 and 2.1-4 and connect the RS-232C 
cable at the SB180 system board, J3, which is a 20 pin dual row 
header. Be sure that pin number 1 of the cable is oriented 
correctly with pin number 1 of J3. Now attach the cable to the 
serial device. If the connector is one of the the D style con­
nectors, it will only go on one way. If not, use the information 
given in the manual for the device to verify that the connector 
is properly installed. 

This completes the installation of the console device. 

2.4 Turning On Power 

This section describes the procedure for turnin~ on power 
to the SB180 system for the first time. The SB180 board",i f pur­
chased fully assembled, has been "burned in" and fully tested 
prior to shipment. If any problems occur during the initial 

'~power up procedure and operational tests, the source of the 
problem will almost always be due to either an improper cable 
connection to the terminal or an incorrect option configuration 
on the terminal. 

The information presented is intended to aid those users 
who have purchased a fully assembled and tested version of the 
SB180 system board. Due to the complexity of the circuitry on 
the board and the sophistication of some of the IC's, problems 
which are caused by errors in construction might require a full 
trouble-shooting effort with some sophisticated test equipment. 
Difficulties on this scale are beyond the scope of the text 
presented here. However Micromint does offer an inspection and 
repair service if needed. 

STEP 1 SET UP THE POWER SYSTEM 

The ideal arangement of the power system will have all AC 
power outlets associated with the SB180 system controlled by a 
single ON/OFF switch or circuit breaker. If this is the case, 
first turn off the main switch, and then turn on the power 
switches to the system power supply and the main console I/O 
device. Now the main switch can be used to turn the SB180 system 
on and off. Otherwise the individual components will have to be 
controlled independently of one another. This discussion assumes 
that this is the case. 

Page 13 



Position the ON/OFF switch on the power supply and on the 
main consola I/O device to the OFF position. Unplug any power 
supply or device which does not have an ON/OFF switch. Plug the 
AC power cords of all devices which are switched (e.g., have an 
ON/OFF switch) into a wall outlet. Do ~OT apply power to the 
system at this time. 

STEP 2 LAST MINUTE CHECKS! 

Recheck all cable connections to the SB180 system board 
and to the main console i/o device. This includes both I/O in­
terface connections, and power cable connections. Make sure that 
all connectors are installed correctly and are fully mated. 

It would be a good idea at this time to verify that all 
IC's on the system board are fully inserted in their sockets and 
are oriented in the proper direction. Sometimes during shipping 
or during rough handling, ICs may work themselves loose in their 
sockets. Use your finger to press them all the way down in the 
socket. If you position the SB180 system board so that the label 
"SB180" is on the bottom edge of the board facing you, the power 
supply connector will be at the top left side of the board. with 
the board in this orientation, most of the ICs are oriented vert­
ically with pin 1 being at the bottom right. The remaining ICs 
are oriented with pin 1 to the bottom left. The top of the IC is 
usually indicated either by a notch or by a small circular dot on 
the IC. 

STEP 3 READY TO APPLY POWER! 

Now you are ready to apply power to the system. This step 
is sometimes referred to as "smoke testing" the system, since 
components have been known to burn up due to improper install­
ations. If any smoke is observed during this step, turn off 
power immediately and investigate the cause before proceeding. 
Possibilities here include incorrect cable connections, and ICs 
which are installed upside down in their sockets. 

If you are at all unsure of the power supply connections, 
now is the time to check them for the proper voltages as listed 
in figure 2.2-2. First, read section 2.12, "Troubleshooting". 
Disconnect the power supply cable from J7, apply AC power to the 
system power supply only, and use a multimeter to ensure that the 
voltages are correct. If the voltages are correct, remove power 
to the power supply and reconnect the power supply cable to J7 on 
the SB180 system board. 

It is assumed that a video display terminal has been in­
stalled in the system as the console I/O device. When power is 
first appLied to the SB180 system, what is first seen on the main 
console I/O device depends upon a number of factors such as the 
type of terminal and baud rate. You may see a completely blank 
screen with a cursor in the upper Left corner, or you may see a 
few random characters or letters on the screen. 

Page 14 



Turn on power to the console I/O device first and then to 
the SB180. Normal responses will be: 

1) A cursor should appear on the screen in 4 to 5 seconds. 
2) As mentioned above, you may see one or more random 

characters on the terminal screen. 
3) Press the RETURN or ENTER key on the terminal keyboard. 

This tells the SB180 the baud rate at which the terminal 
is operating. 

4) On the screen will appear the message "Micromint ROM 
Monitor Version xx.xx" 

These responses indicate that the SB180 system board has success­
fully completed initialization, recognized that no disk drives 
were attached to it, waited until a key was pressed on the term­
inal, analyzed it to determine the baud rate, set the baud rate, 
and then turned control over to the ROM monitor. If the system 
responded correctly as indicated above, go on to the next step. 
Otherwise, first try pushing the reset button, PBl, on the system 
board. If there is still no response, turn off power to the 
system, wait a few seconds, and try again. If the system still 
does not respond, go to the "IN CASE OF DIFFICULTY" section. 

STEP 4 TESTING THE ROM MONITOR 

The SB180 system should now be waiting for you to enter a 
command. The monitor prompt is 110)" where "0" denotes the fact 
that you are currently using the first 64K bank of memory. If 
you enter a II?", you will see displayed a full page "help" screen 
showing all of the monitor commands. Since a disk drive is not 
connected at this time, some of the commands will return an error 
status code when used. Using the information in Section 4.6 as a 
guide, you can try these commands: 

A,B,D,F,H,M,Q,S,T,V,X, and Y 

In particular, the "T" command (without additional parameters) 
performs a continuous memory test until terminated by a Control-C 
or Control-X. The SB180 could test memory until you are ready to 
attach disk drives, a parallel line printer~ and an auxilIary 
serial device such as a modem, as detailed in the next section of 
this manual. 

-
2.5 Connecting an AuxilIary Serial I/O Device 

The auxilIary I/O port is very useful in adding an extern­
al modem or serial printer to the SB180 system. Most modems 
usually operate as Data Communications Equipment, and J4 is set 
up as Data Terminal Equipment, so a standard pin-to-pin cable 
assembly should work fine. If you do not own an external modem, 
Micromint has an expansion board (COMM180) for the SB180 which 
contains a 300/1200 baud modem connected directly to the system 
data bus, thus it does not use the auxilIary I/O port on the 
system board. 

Page 15 



Installing an auxilIary serial I/O device requires the 
same steps as the installation of the console serial device. The 
differences are that the interface connector is located in a 
different spot, has a different number, and that the pin numbers 
are oriented 180 degrees from the console serial interface con­
nector. As such, refer to the information given in section 2.3 
for installing the main console se~ial I/O device and follow 
those same procedures to install an auxilIary device. Substi­
tute J4 in place of J3 where evei it occurs. Figure 2.1-1 shows 
the location of J4. As you can see J3 and J4 are situated ad­
jacently on the SB180 system board. If you have already install­
ed the console device this step should be straight-forward. It 
is recommended that the entire procedure given in section 2.3 be 
read in its entirety prior to actually installing the auxilIary 
serial I/O device. 

2.6" Connecting a Parallel Printer 

The SB180 system board supports a standard Centronics com­
patible parallel printer interface. The printer interface cable 
attaches to the SB180 system board at the 20-pin dual row header, 
J2. Refer to figures 2.1-1 and 2.1-4 for the location and orien­
tation of J2. Figure 2.1-2 gives a part number for a mating con­
nector. The connector at the printer end of the cable varies be­
tween different printers. A typical connector which is compat­
ible with Centronics style printers is a 36-pin male Amphenol 
part number 57-40360. This connector is also designed to use 
flat ribbon cable with pin 1 connecting to pin 1 on J2; unused or 
open pins on the Centronics connector fall toward the pin 36 end 
of the connector. Many of the newer printers tend to use the 25-
pin "0" style connectors similar to the ones used by the serial 
I/O devices. Figure 2.6-1 below lists the signal specifications 
for J2. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - -
J2 SIGNAL NAME CENTRONICS I/O 

PIN NO. PIN NO. 

1 DATA STROBE* 1 0 
2 DATAl 2 0 
3 DATA2 3 0 
4 DATA3 4 0 
5 DATA4 5 0 
6 DATA5 6 0 
7 DATA6 7 0 
8 DATA7 8 0 
9 DATA8 9 0 

10 ACKNOWLEDGE* 10 I 
11-20 SIGNAL RETURNS 19-30 

Note: This cable available as Micromint PIN SB180-PR 

Figure 2.6-1 J2 PRINTER SIGNAL INTERFACE SPECIFICATIONS 

Page 16 



STEP 1 DISCONNECT POWER 

Check to make sure that power is not applied to either the 
SB180 system board, or to the printer device. Power should be 
removed by unplugging all AC power cords associated with the SB-
180 system, including those of all peripheral devices. 

STEP 2 VERIFY PRINTER INTERFACE SIGNALS 

First, read the manual which carne with the printer, par­
ticularly the section which discusses the installation of the 
printer in a computer system. Next, verify that the signals on 
each pin are the same as the signals available at J2 on the SB180 
system board. Write down those which are on a different pin so 
that a printer cable can be constructed in a later step. In most 
cases the only signals needed are the data lines, the data 
strobe, the data acknowledge, and a signal return path (ground). 

STEP 3 CONFIGURE THE PRINTER 

Follow the instructions in the installation section of the 
printer manual, and set it up for operation as desired. Choices 
here may include options such as page size, type style, page mar­
gins, automatic line feed, character set, etc. (The SB180 mon­
itor normally sends a line feed after each carriage reurn.) Also, 
if the printer can be configured for the polarity of the strobe 
and acknowledge signals, make them both active low. The polarity 
of the printer interface control signals can also be changed by­
writing a software routine if necessary. Source code for the ROM 
monitor is available on disk. 

STEP 4 GET/MAKE UP A PRINTER INTERFACE CABLE 

If a printer interface cable was not purchased with the 
SB180 system board, one must be constructed. If one is avail­
able, use the signal specifications listed in figure 2.6-1 and 
information from the printer manual to verify the wiring. Change 
any wires which are incorrect. You should have a list of these 
from Step 2 above. If a new cable must be constructed from 
scratch, first verify that the two connectors mate properly with 
both the 20 pin header at J2 and at the printer's interface con­
nector. Next, wire the two connectors together such that each 
signal connects to the proper pin number at both ends of the 
cable. The J2 header pin layout mates directly with insulation 
displacement connectors and flat ribbon cable. 

STEP 4 SELF-TEST THE PRINTER 

Many printers have a self-test function which continuously 
prints all the printable characters in a line across the paper. 
If the printer has this capability, follow the inst~uctions in 

Page 17 



the printer manual and run the self-test. Be sure to turn off 
power to the printer and to disconnect the AC line cord before 
proceeding. 

STEP 5 ATTACH THE CABLE 

Attach the cable to the appropriate connectors at each 
end. Be sure to align pin 1 on J2 correctly (see figures 2.1-1 
and 2.1-4). If the printer connector is a "D" style connector, 
it will only go on one way. If it is not, refer to the printer 
manual for the proper orientation of the mating connector. 

This completes the installation procedure for the parallel 
printer device. 

2.7 Connecting Floppy-Disk Drives. 

The SB180 system board has been designed to interface to 
the standard 5.25 inch flexible (usually called minifloppy) disk 
drive, to the 8 inch floppy disk drive, and to the newer 3.5 inch 
microfloppy disk drive. (Note: there are several different types 
of 3.5 inch floppy drives. The SB180 can use only the 40 or 80 
track drive that is pin compatible with the 5.25 inch miniflop­
py.) A thirty-four pin flat cable connecter is installed on the 
system board to allow for up to four drives of either 5.25 inch 
and/or 3.5 inch type to be attached in a daisy-chained fashion at 
a time. Space is provided for the fifty pin flat cable connector 
needed for 8 inch double sided disk drives, but it is not in­
stalled since most users will not be using this size drive. This 
connector is available from Micromint (PIN SB180-8X). Although 
instructions are given for using 8 inch drives, the Z-System disk 
operating system is delivered only on 5.25 inch diskettes and a 
5.25 inch double sided drive (40 track) MUST be connected to the 
SB180 initially to start up. Any 3.5 inch drives are considered 
equivalent to 5.25 inch drives and may be daisy chained along 
with them. Eight inch drives (double sided only) may be added 
simultaneously or later (but you must add the 8 inch connector 
(J8) as mentioned above). 

The interface connectors for both types of drives support 
the "industry standard" interface specifications for floppy disk 
drives, and thus can attach directly to many of the standard 8 
inch and minifloppy drives currently being used. It is the re­
sponsibility of the user to ensure that the particular drive to 
be installed adheres to the interface specifications of the SB180 
flexible-disk controller interface. In addition, there are sev­
eral jumpers on the system board which may be installed or re­
moved depending on the size of the disk drives used. Figure 2.1-
1 shows the location and orientation of connectors and jumpers 
associated with the floppy-disk interface. Refer to it as 
required during the installation procedures. 

Page 18 



The installation of floppy-disk drives to an SB180 system 
can be complex. If at all possible, an OEM manual for the drives 
which are being installed should be obtained. Since manuals are 
not always readily available, the discussions which follow detail 
the installation of the Teac 55B 5.25 inch and Shugart SA850 8 
inch disk drives as examples. The 3.5 inch drive is for this 
purpose the equivalent of a 5.25 inch drive. (Some manufacturers 
of 3.5 inch drives use a 34 pin header rather than the standard 
edge connector, but the pin assignments are identical.) 

Figure 2~7-1 lists the jumpers associated with the floppy­
disk drive interface section of the SB180 system board which are 
dependent on the drive size, 5.25 inch (or equivalent 3.5 inch) 
or 8 inch. The installation descriptions given are generalized 
for both types of floppy drives, and the user is directed to the 
appropriate figures and tables for each type of drive as needed. 

In the following discussion, references to signals at the 
SB180 system board interface refer to disk drjves as number .0, 1, 
2 or 3. The Z-System DOS, however, refers to these drives as A, 
B, C and 0, respectively. Sometimes disk 9rive manuals refer to 
the different drive selection options as drives 1, 2, 3 and 4. 

JUMPER PURPOSE 

JP6 Required for drives without READY line. Generally 
older drives do not provide this line. 

JP7 

JP8 

JP9 

JP10 

Hard wired on back of board for fixed write pre­
compensation. Cut on circuit side and install a wire 
jumper for controlled pre-compensation. Controlled 
pre-comp is applied only on inner tracks while fixed 
pre-comp is applied during write operations on all 
tracks. 8" drives may require write pre-compensation. 

Hard wired on back of board for NO write pre-compo 
See SMC 9266 manual for full specifications. 

Allows use of only single sided drives; in mixed sys­
tems, a single sided drive would have a jumper in­
stalled to enable use of this multiplexed status line. 
Z-System software does not support one side operation 

For mixed drive size operation. Allows the processor 
TXS line to control 5.25" drive motors or selection 
of 5.25"/8" data transfer rates to disk controller. 

Note: These jumpers are intended to implement all of the 
advanced features of the disk controller and for special 
configurations. No changes required for most standard drives. 

Figure 2.7-1 JUMPER SELECTION FOR DISK DRIVES. 

Page 19 



Frem one to four soft-sectored floppy-disk drives can be 
attached to one of the two SB180 system board flexib~e-disk 
interface connectors. J9, a 34-pin right angle flat cable 
connector, is used to attach 5.25 inch minifloppies (and 3.5 inch 
mictofloppies).J8, a 50-pin cable connector (optionally in­
stalled by the user), is used to attach standard 8 inch floppy 
disk drives. Both connectors mate with standard flat cable con­
nectors such as the ones recommended in figure 2.1-2. Interface 
signal definitions are shown below in figures 2.7-2 and 2.7-3 for 
5.25 inch and 8 inch drives, respectively. Although the signal 
pin-outs have been designed to directly interface with many of 
the drives commonly in use today, the SB180 system installer must 
v~rify that all signals match the interface requirements for the 
particular drive which is being installed. In some instanceS, it 
may be necessary to change some of the wires on the drive inter­
face cable in order to match up the interface signals between the 
drives and the SB180 system board. If the drives being installed 
are compatible with the Teac 55B minifloppy or the Shugart SA850 
8 inch drive interfaces, there should be no problems a$sociated 
with attaching the drives to the SB180 system board, and getting 
Z-System up and running. 

STEP 1 TURN OFF POWER 

Before doing anything else, ensure that all power is 
turned off to both the SB180 system board and to all of the flop­
py disk drives. The safest procedure to follo~ is to unplug all 
AC power cords associated with the SB180 system, including those 
of peripheral devices. 

STEP 2 CONFIGURE FOR 5.25-INCH (AND 8-INCH DISK DRIVES) 

Refer to figGre2.1-1 for a picture of the location of the 
SB180 system board jumpers associated with the flexible-disk 
drive interface, Next, use the table in figure 2.7-1 to select 
the appropriate jumpers for the -type of floppy-disk drives which 
are to be installed. A diagram of the flexible-disk interface 
area of the SB180 system board with jumpers installed at JP10 for 
5.25 inch, for 8 inch, and for mixed size drives is given in 
figure 2.7-4. Using the appropriate pictorial view as a refer­
ence, configure the SB180 system board .for the desired drive type 
by installing the jumpers as -indicated in the table. Note that 
these jumpers are configured based solely on the size of disk 
drive, and are the same regardless of which manufacturer's drive 
is used • 

.f2.9~_1~..l_'§J:~12-1_2EE_!j.9E.!~~..!1..:-~ 

Current production boards no longer have jumpers supplied for 
JP10. Instead JPl~ is hardwired for simultaneous 3.~", 5.~~",. 
and 8 II operation as shown in the center dr~~ing of ~'~.gur~. 2. 7-,-. _ 
This option provides motor control for ~.25. and 3:5 drlves, ana 
also allows selection between 3.5"/5.25" and (j" drlves. 

You can reconfigure JPl~ if desired by removing the existing 
wire (or, on some boaros, cutting the existing trace) and in­
stalling your own jumpers. 

Page 20 



3"/5" Operation 3"/5"/8" Operation 8" Only 

o 0 0 

I 
o 0---0 o 0---0---0 0 0 0---0 0 

I 
o 0 0 

Figure 2.7-2 JP10 Jumper Setup 

STEP 3 VERIFY DISK DRIVE INTERFACE SIGNALS 

The next, and perhaps the most important step to take, is 
to verify that all of the signals at the floppy-disk drive match 
those of the SB180 floppy-disk drive interface specifications as 
listed in figure 2.7-2 for 5.25 inch drives, or in figure 2.7-3 
for 8 inch drives. If such is not the case, the disk drive 
interface cable must be altered such that all signal names agree 
at both ends. Also noted are pins which are directly compatible 
with the Teac 55B or Shugart SA850·disk drives. Note that disk 
drives are generally connected with flat ribbon cable~ Due to 
the pinouts of the connectors, adjacent signal lines have an 
interposing ground line between them in the cable. Failure to 
provide this grounding virtually guarantees problems! 

PIN NO. SIGNAL NAME 

4 HEAD LOAD/IN USE* 
6 DRIVE SELECT 3* 
8 INDEX* 

10 DRIVE SELECT 0* 
12 DRIVE SELECT 1* 
14 DRIVE SELECT 2* 
16 MOTOR ON* 
18 DIRECTION 
20 STEP* 
22 WRITE DATA* 
24 WRITE GATE* 
26 TRACK 0* 
28 WRITE PROTECT* 
30 READ DATA* 
32 SIDE SELECT (0/-1) 
34 READY* 

ALL ODD PINS SIGNAL RETURNS (REQUIRED) 

Note: This cable is available as Micromint PiN SB180-DSK 

Figure 2.7-3 J9 - 5.25" INCH DRIVE INTERFACE SPECIFICATIONS. 

Page 21 



The head load function should be configured at the disk 
drive end of the interface cable according to instructions given 
in the drive manual. Use of this capability can greatly extend 
the useful life of the flexible diskettes. Not all drives sup­
port a head load option at the interface. 

It is quite likely that the floppy disk drive does support 
a READY* control function. In case your drive does not support a 
READY* line, jumper JP6 on the SB180 system board must be in­
stalled for the disk controller to function. Most newer 5.25 
inch drives do support a READY* control function. READY* gener­
ally indicates that a diskette is installed and seated in the 
drive. On some drives READY* only becomes active when index 
pulses indicate that the disk is up to speed. 

PIN NO. 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 

ALL ODD 
PINS 

SIGNAL NAME 

LOW CURRENT* 
FAULT RESET* 
FAULT* 
MOTOR ON 2* 
TWO SIDED* 
MOTOR ON 1* 
SIDE SELECT 
MOTOR ON 0* 
HEAD LOAD 0* 
INDEX* 
READY* 

(not used) 
(not used) 
(not used) 

(not used) 
(0/-1) 
(not used) 

HEAD LOAD 1* 
DRIVE SELECT 
DRIVE SELECT 
DRIVE SELECT 2* 

(not used) 
0* 
1* 

DRIVE SELECT 3* 
DIRECTION 
STEP* 
WRITE DATA* 
WRITE GATE* 
TRACK 0* 
WRITE PROTECT* 
READ DATA* 
HEAD LOAD 2* (not used) 
HEAD LOAD 3* (not used) 

SIGNAL RETURNS (REQUIRED) 

Figure 2.7-4 J8 - 8" DRIVE INTERFACE SPECIFICATIONS 

page 22 



STEP 4 CONFIGURE THE DISK DRIVES 

This step is highly dependent on the particular drive type 
to be installed. As an aid in configuring the disk drives, sec­
tion 2.7.1 describes a typical configuration for the installation 
of two Teac 55B minifloppy disk drives, and section 2.7.2 dis­
cusses typical option selections for installing Shugart SA850 
eight inch drives. Note that there are two main differences be­
tween the two drives in either case: each drive has a different 
drive select control line enabled (thus these are called "radial" 
lines), and only the drive which is physically locate~ at -the end 
of the interface cable has terminat.or networks (usually DIP re­
sistor networks) installed for the "multiplexed" signals (those 
which share a single cable wire). The· SB180 uses a 330 ohm term­
inator network allowing up to 1.5 meters of total cable length. 
For some of the newer low power (CMOS) drives, this termination 
may require a higher value terminator. Use of a lk terminator 
reduces allowable cable length to 1 meter. Where longer cables 
are required, a 150 ohm terminator may be installed to allow up 
to 3 meters of cable. If SIP4 (the terminator) must be changed, 
it must be desoldered from the SB180 board. 

STEP 5 CONFIGURE THE SB180 SYSTEM BOARD 

Configuring the SB180 system board for disk drives con­
sists of setting the appropriate jumpers. If only double sided 
5.25 inch (and 3.5 inch) drives are being used, then no changes 
are required. Note that the operating system software supplied 
initially requires the use of 5.25 inch double sided drives; you 
may then change jumpers, modify the BIOS and monitor EPROM to 
boot from 8 inch drives. No BIOS or EPROM changes are required 
to add 8 inch double sided drives to a system which has 5.25 inch 
drives as well. 

The connectors on the "T"-shaped block JP10 (upper right 
hand corner of the SB180 system board) must be set as shown in 
figure 2.7-4. Finally, if the disk drives do not support a 
multiplexed READY* control signal, then install a shorting jumper 
wire in JPb; this signal must be active before the floppy-disk 
controller will attempt to read a disk. Most 8 inch drives and 
newer 5.25 inch drives· tend to support this control signal while 
some older 5.25 inch drives do not. 

STEP 6 GET/MAKE UP DISK DRIVE CABLES 

Floppy-disk drives require both a power cable ·(in some~ 
cases two of these are needed) and an interface cable. The typ­
ical 5.25 inch (or 3.5 inch) minifloppy drive uses a 34-pin dual 
row card edge type of connector for the interface, and a 4-pin 
power connector for +5 and +12 VDC power. The typical 8 inch 
disk drive requires a 50-pin dual row card edge type of connector 
for the interface signals, a 6-pin~power cable for DC power, and 
a 3-pin cable for AC power. Figure 2.7-5 lists mating connector 
part numbers for the Teac 55B minifloppy and the Shugart S~850 8 

~ 

Page 23 



inch floppy-disk drives. For other manufacturers' drives consult 
the drive manual to verify mating connector part numbers as well 
as signal specifications. 

CONNECTOR 
TYPE 

INTERF~CE 

DC POWER 

AC POWER 

3.5 INCH 
MFG. . PART # 

ANSLEY· 609-3400M 
3M 
AMP 1-499566-9 

AMP 

AMP N/A 

5.25 INCH 
PART # 

609-3415M 
3463-001 
1-499560-2-

1-480424-0 

N/A 

8 INCH 
PART # 

609-5015M 
3415-00fdl 
1-499566-2 

11-480270-0 

1-480303-0 

Notes: 1. Pins for the AMP housings are AMP number 60619-1 
2. Part numbers given are typical, but may not 

match all drives. Consult the drive manual. 

Figure 2.7-5 DISK DRIVE CONNECTORS SPECIFICATIONS. 

If cables were not purchased with the SB180 system board, 
or are not already available, they will have to be constructed 
for the floppy-disk drives. When making the interface cable be 
sure that all of the signals are the same at the SB180 tlexible 
disk interface connector as at the disk drives. The number of 
connectors needed which mate with the disk drives obviously de­
pends on the number of drives which are being installed. Of 
course, a cable with connectors for all four drives can be made 
up even if all four drives will not be installed at this time. 
This would simplify later expansion of the system for additional 
drives. 

STEP 7 ATTACH THE DISK INTERFACE CABLE 

Attach the 34- or 50-pin flat cable connector, as appro­
priate, to the SB180 system board connector, J9 or J8, respec­
tively. Make sure that pin 1 of the cable connector matches up 
with pin 1 of the disk interface connector on the SB180 system 
board. If the SB180 system board is held such that J9 and J8 are 
located at the top of the board, pin number 1 is the upper right 
pin. Now connect the edge card connectors to the floppy disk 
drives. The order in which drive numbers are attached does not 
matter, except that the last drive located at the far end of the 
interface cable must be the one which has the terminators 
installed for the multiplexed signals a~ previou~ly described. 

Page 24 



STEP 8 ATTACH THE DISK DRIVE POWER CABLE(S) 

Depending on the requirements of the particular drive which 
is being installed, one or two power cables may be needed. Attach 
the DC power cables at both ends. These cables are usually con­
structed so that the wires are daisy-chained from one drive to 
the next. For small SB1810 systems, the end of the DC power cable 
which attaches to the power supply may be part of the power con­
nector for the system board, and may have already been installed 
from section 2.2. Next attach the AC power cable if one is re­
quired, but do not plug the AC source into a power outlet at this 
time. In most instances the power end of the AC line cord will 
probably tie into a terminal block and a single plug or power 
switch will be used to power the entire SB1810 system. 

2.7.1 Installation of Teac 55B 5.25 inch Disk Drives 

This section describes the installation of two Teac 55B 
5.25 inch flexible disk drives. These drives are double-sided, 
and can record in either single- or double-density formats. The 
two drives are set up for multiple drive operation. All inter­
face signals are TTL compatible with a logic-low of +0.4V maximum 
and a logic-high of +2.4V minimum. A logic-low indicates a 
"true" or active condition, while a logic-high indicates a 
"false" or inactive condition. The maximum length of the inter­
connecting cable, from the SB180 system board connector, J9, to 
the last drive on the cable is 4.5 feet. The recommended cable 
is standard flat ribbon cable with a characteristic impedance of 
1100 ohms, or equivalent twisted pairs. Figure 2.7-6 lists option 
selections on the 55B I s' in a typical two-dr i ve installation. 

------ - - - - - - - - - - - - - - - - - - - - - -
OPTION 55B DESCRIPTION DRIVE SOCKET 
DESIG. A B PINS 

TERMINATOR NETWORK R I (SOCKET J3) 
HS HEAD SOLENOID R R 1-16 
DS0 DRIVE SELECT 10 I R 2-15 
DS1 DRIVE SELECT 1 R I 3-14 
HM HEAD MOTOR CONTROL R R 4-13 
DS2 DRIVE SELECT 2 R R 5-12 
DS3 DRIVE SELECT 3 R R 6-11 
MX MULTIPLEX OPERATION R R 7-10 
UR LED OPTION 1 (SEL+RDY) I I 1-16 
ML MOTOR ON I I 2-15 
IU IN USE R R 3-14 
HL HEAD LOAD R R 4-13 
SM HM/HS ENABLE R R 5-12 
U0 LED OPTION 2 (IN USE) R R 6-11 
U1 LED OPTION 3 R R 7-10 
RE RECALIBRATE R R 8- 9 

Note: I=installed, R=removed 

e. " .. " Figure d.7 8 TEAC 55B CONFIGURATION GUIDE 

Page 25 



2.7.2 Installation of Shugart SA8Se 8 inch Drives 

This section illustrates the installation of two Shugart 
SA850 8 inch flexible-disk drives. Figure 2.7-7 lists the option 
selections which are typically installed on the disk drives. 
Note that jumper wires must be added at each drive to select the 
head load options since a common signal wire at pin number 18 on 
the interface cable is used for all drives. . 

TRACE 
DESIG. 

Tl 
T2 

T3-T6 
DSI 
DS2 
DS3 
DS4 
R,RR 

RI 
X 
A,B 
C 
WP 

NFO 
DDS 

DC 
HL 
DS 
NP 
Y 
Z 
TS 

Notes: 

SA850 DESCRIPTION 

HEAD LOAD TERMINATOR 
DRIVE SEL. TERMINATOR 
TERM. FOR MULTIPLEX INP. 
DRIVE 1 SELECT INPUT 
DRIVE 2 SELECT INPUT 
DRIVE 3 SELECT INPUT 
DRIVE 4 SELECT INPUT 
RADIAL READY OUTPUT 
RADIAL INDEX OUTPUT 
HEAD LOAD OPTION 
HEAD LOAD OPTIONS 
HEAD LOAD OPTION 
WRITE PROTECT 
STOP AT TRACK 0 
DRIVE DECODE OPTION 
DISK CHANGE OPTION 
STEPPER PWR-HEAD LOAD 
STEPPER PWR-DRIVE SEL. 
NO WRITE PROTECT 
IN-USE FROM HEAD LOAD 
IN-USE FROM DRIVE SEL. 
TRUE FM DATA SEPARATION 

DRIVE 
o 1 

I I 
I I 
R R 
I R 
R I 
R R 
R R 
I I 
I I 
R R 
I I 
I R 
I I 
I I 
R R 
R R 
R R 
R R 
R R 
R R 
I I 
E E 

R = jumper removed, I = jumper installed, 
E = rem6ved or installed, 

-"I 
Figure 2. 7~ SHUGART SA850 CONFIGURATION GUIDE. 

The SA850 8 inch drives are double-sided, and can record 
in either the MFM mode (double-density) or in the FM mode 
(single-density). All signal lines are TTL c6mpatible. Outputs 
are driven by open-collector drivers capable of sinking a maximum 
of 40 ma at a logic zero level (or true state) with a maximum 
voltage of 0.4V at the driving device. Collector current when 
the driver is at a logic one (or false state) and thus of~ is a 
maximum of 250 microamperes. These speci ficati_ons are typical of 
most drives as well as the devices in the SB180 system board 
flexible-disk interface area. 

Page 26 



~Secti2!l2.7.2 
Addendum: To add an B" Shugart H5~/~b~ DS/DU drive to an 

SBl8'"0 with bvo 5.25"/3.5" drives, the following Jumpers should be 
in place: 

ts!J0 

28 
Z 
A 
B 
I 
R 

IW 
S2 
IT 

C 
RS 

HLL 
M 

NF 
US3 

There should be no terminator on the drive. 



Installation of more than two drives is essentially the 
same as for two drives. Set up the drives for drive select num­
bers from 0 on up in ascending order, and install the resistor 
terminator jumpers. in the drive which is physically the last 
drive in the daisy-chain. On mixed size drive systems (both 34 
pin and 50 pin connector cables) install the drive terminator on 
the longer of the two cables. 

Installation of newer models of 8 inch drives is generally 
simpler than for the SA850. 

Power requirements for the SA850 disk drives are +24 VDC 
at l.3A, +5 VDC at 0.8A, -5 VDC at 0.05A (newer drives do not use 
this), and 115 VAC at 0.5 amperes. DC currents are typical 
values, while AC current is a maximum value. 

2.8 The Expansion Bus 

The SB180 system board can support. expansion cards through 
its I/O expansion bus which is accessed through the 40 pin con­
nector J5 and the 8-pin connector J6. Figure 2.8-1 illustrates 
the signal pin-out of these connectors. Because all of the major 
peripheral devices which are needed to support a high performance 
Z-System based microcomputer system are supported by on-board 
controllers, the expansion bus is only needed for expansion 
peripherals such as a hard disk controller, a "smart" modem, cus­
tom I/O interfaces such as data acquisition controllers, a local 
area network (LAN) interface, or graphics display controller •. 
The only factor which might limit the use of the expansion con­
nector is the rating of your system power supply, so be sure that 
your power supply capacity is adequate for continued reliable 
operation. 

When designing custom interfaces, serious consideration 
must be given to the fact that the busses on the SB180 are oper­
ating at 6-9 MHz. Long extensions to the busses and bus over­
loading must be avoided. 

As always, the first step to take prior to the insertion 
or removal of any expansion card(s) is to ensure that POWER HAS 
BEEN REMOVED from the SB180 system board. 

The next step is to thoroughly read the installation pro­
cedures which come with the expansion card. Follow the proced­
ures given and install the card using connector J5. If all goes 
well the card should now be up and running. 

Page 27 



- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
EXPANSION BUS 

DESCRIPTION PIN i DESCRIPTION 

+5V PWR 1 2 +5V PWR 
'GND 3 4 .GND 
-RD 5 6 PHI 
-WR 7 8 -RESET 

E 9 10 -LIR 
-NMI 11 12 -EXP SEL (E0-FF) 

-WAIT 13 14 NC 
-INT0 15 16 -HALT 

ST 17 18 NC 
A0 19 20 Al 

-TEND0 21 22 A2 
A3. 23 .24 A4 

-DREQ0 25 26 -I/O ENABLE 
8.0 MHZ 27 28 RESET 

07 29 30 D6 
05 31 32 03 
04 33 . 34 02 
01 35 36 . 00 

GND 37 38 GND 
NC 39 40 NC 

J5 

Notes: 1. Micromint expansion bus 40 pin header is PiN SB180-EX 
2. J6 and its driver IC are generally not populated on 
the SB180. Expansion boards which require the address 
decode function will supply the chip and connector. 

Figure 2.8-1 EXPANSION BUS SIGNALS 

2.9 Installation of User EPROM 

The SB180 contains a 28-pin socket fora capacity of up to 
32K bytes of JEDEC standard ROM or EPROM devices. The standard 
SB180 system board is shipped with a stand alone monitor 
installed in a Erasable Programmable Read Only Memory (EPROM) 
device. This consists of one 8Kx8 2764 or l6Kx8 27128 type 
EPROM. This EPROM contains the power-on jump vector. 

Page 28 



A single jumper is associated with the type of EPROM 
device which is installed on the system board. This is JP1. 
Refer to the silkscreen drawing of figure 2.1-1 for the location 
of this jumper. If the standard 2764 EPROM or a 27128 EPROM is 
used, the jumper should be in the factory wired position. If a 
32K 27256 EPROM is ever installed, the jumper must be cut on the 
circuit side of the board and a wire installed in the opposite 
position. 

2.19 SB189 Installation Checklist 

This section is intended to serve as an overall guide to 
the sequence of steps which "should be taken during the install­
ation of an SB180 system. Before commencing the actual install­
ation of the hardware components, sections 2.1 through 2.10 
should be read to get an idea. of the scope of the project about 
to be undertaken. Once this has been done, proceed to the check­
list given below in figure 2.10-1. After all steps in the check­
list have been completed, use section 2.11 to start up the SB180 
system and verify correct operation. 

2.11 Turning On Power With Disk Drives Attached 

This section describes the procedure for turning on power 
to the standard SB180 system after the completion of the system 
installation procedures given in section 2.4 of this manual and 
after installation of disk drives as detailed in section 2.7 of 
this manual. 

It is assumed in this section that the Z-System operating 
system has been purchased with the SB180 system board, and that 
the user is somewhat familiar with the terminology used by Z­
System. Users who are not already conversant with Z-System 
should read the operating system user's guide before trying to 
use the SB180 system. 

Page 29 



STEP DESCRIPTION 

1. Read sections 2.1 through 2.10. 

2. Unpack the SB180 system board and inspect it for 
damage. If damage is evident, return to vendo~. 

3. Using section 2.2 as a guide, install the system 
power supply(s). 

4. Using section 2.3 as a guide, install the system 
console RS-232C serial device. 

5. Using section 2.4 as a guide, check out the SB180 
ROM monitor with the console device connected. 

6. Using section 2.5 as a guide, install the system 
auxilIary R6-232C serial device if needed. 

7. Using section 2.6 as a guide, install the system 
listing device (parallel printer) if needed. 

8. Using section 2.7 as a guide, install the system 
flexible disk drive(s). 

9. Using the intormation in section 2.9, verify 
the jumper configuration for the EPROM devices. 

10. Use section 2 to verity correct functional 
operation ot the basic SB180 system. 

11. Using section 2.8 as a guide, install expansion 
cards as required. 

12. It expansion cards were added in step 11, repeat 
step 10. 

13. Now operate the SBl80 under Z-System!!! 

Figure 2.10-1 INSTALLATION CHECKLIST 

DONE 

- - - - - - - - - - ~ - - - - - - - - - - - - - - - - - - - - -

Page 30 



STEP 1 & STEP 2 SAME AS SECTION 2.4, STEPS 1 & 2 

Follow the instructions as given in section 2.4 of this 
manual, steps 1 and 2. 

Open the door(s) of the flexible disk drive(s) and remove 
the piece of cardboard which may be inserted in place of a disk­
ette for shipping, if not previously done. 

If this is the first time the SB180 system is being powered 
up, it is recommended that any expansion board be removed until 
the basic system is up and running. If cards are to be installed 
on the expansion connector· at this time, check them to ensure 
that they are seated properly into the 40 pin and (optionally 8 
pin) connector(s) with the component side(s) facing up. 

STEP 3: TURN ON POWER AND BACK UP THE Z-SYSTEM DISK 

The SB180 system should now be ready for you to make back 
up copies of the Z-System system diskette using drive number 0 
(or drive A as it is referred to by Z-System). Z-System is a 
disk operating system, or DOS as they are commonly referred to, 
which was designed by Echelon, Inc. to be fully compatible with 
CP/M 2.2. This is simply a collection of programs stored on the 
diskette wnich will enable you to create and execute (run) 
programs on the SB180 system. 

A FEW WORDS OF CAUTION 

Before proceeding any further, the flexible-diskettes 
which are used for program and data storage by the SB180 system 
will be discussed. Users familiar with the use and handling of 
diskettes should skip the next several paragraphs. 

While diskettes can handle a large amount of information, 
they are somewhat fragile and need to be treated with respect. 
Although they are flexible, they can be easily damaged if they 
are bent or scratched, or if any foreign matter such as dust, 
hair, or grease from fingerprints is allowed to touch the surface 
of the diskette itself. Diskettes should only be handled by the 
black plastic cover which protects them, and should be stored in 
the paper covers they come in when not in use. Don't leave them 
lying around where they will collect dust or be dropped on the 
floor. In addition, diskettes should be kept away from extremes 
in temperature and away from magnetic fields. Always use felt­
tip pens to write on the diskette labels to avoid damaging the 
surface of the diskette. 

To insert diskettes into a disk drive, first open the 
drive door (different drives have slightly different door 
mechanisms). This is usually done by pulling outward on the edge 
of the door, or in some cases, by pushing in on a door release 
mechanism. Diskettes can then be inserted into the slot in the 
drive with the end of the diskette which has the oval cutout 
leading the way. The side of the diskette which has the manu-

Page 31 



tacturer's label usually taces the drive door, and always enters 
the drive last. Diskettes should always be GENTLY p1:lsh~d into, 
the drive, taking caution not to bend them; this can result in 
permanent damage. Once the diskette is tully insert.ed into the 
drive, close the drive door by pushing it down. Removing disk­
ettes is accomplished by opening the drive door and caretully 
pulling the diskette out ot the drive, again taking 6aution not 
to bend the diskette in the process. Finally, it is never a good 
practice to remove a diskette when the drive is bein.g accessed 
since this can accidentally destroy the programs which are stored 
on it. Most drives have an "in-use" light which indicates that 
they are being accessed. 

Since you certainly don't want to accidentally erase any 
ot the Z-System operating system programs which were just pur­
chased, the Z-System master diskette should be "write protected". 
For the 5.25" disk on which the Z-System is supplied, this is 
done by installing a toil tab which is placed over a "write 
protect" notch in the upper- right hand side ot the diskette. 
When the toil tab is in place, the diskette is "write protected" 
and the diskette cannot be written on. Eight-inch drives, on the 
other hand, are write enabled when the toil tab is installed (on 
the lower right side ot the diskette), and write protected when 
it is removed. 

Since only one copy ot the Z-System operating system 
master diskette is provided, it is advisable to make a back-up 
copy ot the diskette to use when actually operating the SBlSS 
system. It is a standard practice to operate microcomputer 
systems trom back-up copies ot diskettes instead ot the orig­
inals, which are usually stored in a sate place. This is just a 
satety precaution in that a new copy can be made it the working 
diskette becomes damaged or worn out. 

START THE SYSTEM FROM THE MONITOR ROM 

Open the door ot the disk drive, insert a blank diskette 
(make sure it is not write-protected), but keep the door of the 
drive OPEN. The SB180 system monitor which is stored in the on­
board EPROM devices, will sense the baud rate ot your attached 
console device only when the monitor mode is entered, and the 
SBlB0 will power up in the monitor mode only it it senses that 
the disk drive is NOT ready. (It you close the disk drive door 
betore applying power, the system assumes a 96S0 baud rate for 
your console and will directly boot Z-System upon application of 
power.) You will now use the monitor's "K" and "c" commands to 
tormat two blank disks and make two back up copies of your Z­
System disk. You will then boot Z-System for the first time from 
one of the copies. 

Turn on power to the console I/O device, to the tlexible 
disk drive(s), to the printer if one is attached and to the SB1S0 
system board, in that order. As described in section 2.4, the 
ROM monitor will be waiting for you to enter a character trom the 
keyboard. Do so, and you will see the tamiliar monitor pro~pt, 
0>. Enter "K0 40 <CR>" to tormat the blank disk in drive 0. The 
monitor will ask for confirmation and then format the disk. 

Page 32 



After the first disk is formatted, remove it and repeat the oper­
ation with the second blank disk. Remove this disk and place the 
write protected Z-System disk in the drive and enter "C0 0" to 
tell the monitor to make a single drive copy. The monitor will 
prompt you to "swap" source (Z-System) and destination (the copy) 
disks as necessary. Repeat this operation so that you have two 
copies of the Z-System disk, one for back up and the other for a 
working master copy. Insert the working master copy into the 
drive. 

STEP 4 BOOT THE OPERATING SYSTEM 

see 
Now 
If 

the familiar monitor prompt. Close 
enter the IIZII command to boot the Z­
the Z-System operating system was 

You should still 
the disk drive door. 
System operating system. 
successfully read from the 
the following message will 

diskette and loaded into system RAM, 
be printed on ~he screen: 

SBl80 56K Z-System Ver x.x 

If the above message does not appear on the screen, open the door 
of the disk drive, turn power to the SBl80 system off, wait a few 
seconds, and try to start the system up again. Sometimes the 
diskette will not center completely in the drive when the drive 
door is closed. If the Z-System prompt still does not appear, go 
to the "IN CASE OF DIFFICULTY" section. The x.x shown above 
represents the version number of the operating system. You will 
also see information relating to the terminal configuration 
program which will make available terminal-specific information 
to the operating system for use by utility programs. 

You will be presented with a list of terminals. Use the 
+ and - keys to move among the pages of terminal names. When you 
find the name of your terminal, enter the letter displayed next 
to it. This will create the file MYTERM.Z3T which contains in­
formation about your terminal to be used later by various system 
utilities. If you did not find your terminal on any list, press 
ESC to abort and enter TCMAKE. This allows you to describe your 
terminal to the system in detail for later use. (You should have 
your terminal manual available for this step.) Note: if at any 
time you wish to change your terminal description, use the ERAse 
command to destroy the MYTERM.Z3T file. Reboot the system and 
you again will able to select a new terminal. 

After you have successfully configured Z-System to your 
terminal, you should then see IA0:BASE)"; this symbol is the Z­
System system prompt that tells you that Z-System is ready to 
receive a command from the console device keyboard, and that 
drive A, user area 0 is the system default drive. Unless Z­
System is told to do otherwise (with the PATH command), it will 
try to find all program and data files on drive A, user area 0. 

At this point the basic SBl80 system should be up and 
running. If it is not, run the SBl80 system from the monitor, 
make a new copy of the master Z-System disk, and try again. If 

Page 33 



the back-up copy still will not boot up the system, refer to the 
"IN CASE OF DIFFICUtTY" sebtion. You might want to try running 
some of the example programs in the Z-System operating system 
users guide in order to become familiar with your SB180 system. 

STEP 5 CHECK THE PARALLEL PRINTER DEVICE. 

If you~ system does not have a printer device skip this 
step. The Z-System operating system will now be used to test the 
installation and operation of.the printer device. We will use 
the printer toggle, CTRL-P (or A p ) to send all of the characters 
typed in at the console serial input device to the printer. To 
enter a CTRL-P, you use the key marked CTRL as if it were a Shift 
key, holding it down while pressing the UP" key next. From this 
point on, everything typed in at the keyboard will also appear on 
the printer. To "toggle" the printer off, enter another CTRL-P. 

Type in several characters such as letters and numbers 
(try to avoid control keys which might be non~printing char­
acters) and verify that they are echoed onto the printer device. 
If they are not, or if they do not match those which you have 
typed in' go to the "IN CASE OF DIFFICULTY 'section. Characters 
will continue to be sent to th~ printer device until a second 
CTRL-P character is entered which tells Z~System that the printer 
should be toggled off. 

2.12 ,In Case of Difficulty 

If the SB180 system is not functioning correctly, this 
section may be useful in correcting the problem. The information 
given here is not intended to encompass full~fledged trouble­
shooting of the SB180 system board. That is best left to tech­
nicians who have the necessary test equipment required because of 
the complexity of the logic on the system board. This section is 
meant to help you isolate common installation mistakes to get 
your system up and running for the first time •. The information 
given in figure 2.12-1 should direct you to the appropriate step 
to go to for help. 

. Page' 34 



- - - -- - - - - - - - - - - - - - - - - - - - - - - - - -
SYMPTOMS 

System appears to be 
totally dead. 

Disk drive goes on but 
no characters appear on 
the display. 

POSSIBLE CAUSES 

1. Power problem. 
2. Console cable. 
3. Console configuration. 
4. Expansion cards. 
5. Defective console device. 

1. Console brightness adjust. 
2. Console cable. 
3. Console configuration. 
4. Defective console device. 

STEPS 

2 
1,3 
1,3 
1 
3 

3 
1,3 
3 
3 

Wrong/garbage characters l. Console configuration. 3 
appear on display. 2. Defective console device. 3 

Correct power-on message 1. Disk drive power problem. 2,4 
but no Z-System prompt; 2. Diskette inserted wrong. 4 
disk I/O error messages. 3. Disk interface cable. 1,4 

Printer types wrong 
characters or none at 
all. 

4. Disk configuration. 4 
5. Bad system diskette. 4 
6. Defective disk drivels). 4 
7. No termination resistor. 4 

1. Printer cable. 
2. Printer configuration. 
3. Defective printer device. 

1,5 
5 
5 

Figure 2.12-1 TROUBLESHOOTING CHART. 

STEP 1: CHECK CONNECTIONS. 

Most of the difficulties which will arise in the initial 
installation of an SB180 system can be traced to either an I/O 
interface cable with wires on the wrong pins, or to an improper 
configuration of the SB180 system board option jumpers or those 
of an external I/O device. In this step just check to see that 
all cables are properly attached to their mating connectors. 

Turn off power to the SB180 system and attached peripher­
als~ and check all cables for a good connection. Then repeat the 
procedure given in section 2 for starting up the system. 

Page 35 



STEP 2: VERIFY POWER SUPPLY VOLTAGES. 

It is always a good idea t6 verify th~t the system power 
supply voltages are in the required voltage range, usually plus 
or minus 5% of the nominal value. Sometimes systems will appear 
to work if the voltages are close to the required values, but 
will typically "crash" of ten, or act strangely during operation. 
A voltmeter or an oscilloscope will be neede~to measure the 
power supply voltages. 

Measure' all DC voltages for both the SBl80 s'ystem board 
and for the disk drives, and verify that the voltage levels are 
within the specified tolerances of the power supply. The 'volt­
ages on the SBl80 system board can be measured at the I/O ex­
pansion connectors. If vO'ltage readings are OK, the problem lies 
elsewhere. If the power supply readings aie incorrect~ but with- \ 
in a volt 6r two of the nominal'v~lue, adjust the voltage adjust­
ment potentiometer(s) on the power supply, if tnere is one, such 
that the output(s) is at the correct level.' On switching' type 
power supplies you may h~ve to add more load to the +l~ volt out­
put to bring the +5 volt output into regulation. If this adjust­
ment corrects the power supply readings, go back to section 2 and 
try to run the system again. 

If voltages under full load 
your power supply to insure that 
(normal) load as well as the peak 
ual) • ' 

are low, recheck the rating of 
it can handle both the average 
load (see y~ur disk drive man-

If the power supply reading is way off, for instance, +l2V 
instead of +5V, or 0V, the power supply cable, is probably wired 
'to the ~rong pins. If this is the case, you may have destroyed 
the components on the SBl80 system board.' Recheck the power 
supply cable pin-outs and correct any wiring errors if any are 
found. , Turn power back on 'and measure the'voltages again. If 
the readings are now OK, 'go back to se'ction 2 -and .try to run the 
system again. If the readings are still incorrect~ the likely 
cause is the power supply itself. Disconnect the power cable(s) 
from th~ supply and mea~ure, the voltages under ~ no-load con­
dition. If the suppl~ will' not regul~te without a load (this 
should be stated on the spec,i fication she,et for the power supply) 
a "dummy load" which is usually just a power resistor of suffi­
cient wattage must be placed across the output(s).If the volt­
age readings are stil~ not correct, replace th~power supply~ 

'" 

STEP 3: CHECK THE CONSOtE DEVICE. 

Problems associated with a serial device are almost always 
due to an inco'rrect cable or jumper configuration. The important 
thing to remember is'that the device at one end must be operating 
as Data Communi.cations Equipment (DCE), and, the device at the ,op­
posite end of the cable must be opera~ing as Data Terminal Equip­
ment (DTE), or the signals must be reversed in the cable assem­
bly. If there is no response at all then suspect either the 

Page 36 



cable, or the configuration of the operating mode, DCE or DTE. 
If characters are appearing but make no sense, suspect one of the 
configuration settings such as baudrate, parity or stop bits. 

Operation of the console serial device can be easily veri­
fied if it is placed into a local-echo mode of operation. In 
this mode, each keystroke is echoed back on the display screen as 
it typed. Turn off power to the terminal and put the terminal 
into a local-echo mode if it has one. Another way to accomplish 
this function is to make a test connector which has pin numbers 2 
and 3 shorted together, pin~ 4 and 5 shorted, and pins 6 and 20 
shorted. This test connector would be attached to the terminal 
instead of the console serial cable of the SB180 .system. 

First ensure that the terminal is plugged into ~~ AC·out­
let and that power is turned on. At this point, even if the 
SB180 system board was not connected to the terminal, a cursor 
should appear somewhere on the screen. The cursor is typically a 
blinking box. If no cursor appears, try to adjust any brightness 
or contrast controls (these may be located on the rear of the 
terminal) until the cursor becomes visible. If no cursor appears 
at all, the problem is probably in the terminal. In that case 
refer to the manual for the terminal for troubleshooting 
procedures. 

If a cursor is present on the display screen, and the 
terminal has been placed in a local-echo mode, try typing in some 
characters. These should be displayed somewhere on the terminal 
screen. If no characters appear, disconnect the serial cable 
attached to the SB180 console I/O connector if it is still at­
tached, and try typing in some more characters. If characters 
now appear, there is probably an incorrect connection in the 
cable. If there still aren't any characters displayed, it is 
likely that there is something wrong with the terminal, so refer 
to the manual for the device and follow the troubleshooting 
procedures given there. 

Now that characters are appearing on the display terminal 
in the local-echo mode, turn off power to the system and recon­
nect the console serial cable to the SB180 system board. Run the 

. system"again as described in section 2 of this manual. If the 
messages which should be displayed are a meaningless string of 
characteLs, or perhaps the terminal just does weird things in­
cluding a lot of beeping, there is probably a mismatch between 
the SB180 and the terminal in one of the operating parameters 
(such as baud rate, parity, etc.). Turn off power to the SB180 
system and check the switch/jumper settings on the display term­
inal device and ensure that the baudrate, parity and stop bits 
are cor~ect. Correct any which are in the wrong position or 
setting. 

Turn power back on and follow the start up procedure given 
in section 2. If the SB180 system is still not displaying the 
correct start-up messages at this point, there may be something 
wrong with the hardware, and the system board should be returned 
for repair. Call for a return authorization number prior to 
returning any equipment to Micromint. 

Page 37 



STEP 4: CHECKOUT THE DISK DRIVE(S). 

Problems in interfacing the SB180 sy.tem board with th~ 
flexible disk drives are usually attributed to four areas: a bad 
interfac,e cable/configuration; wrong jumper/swi tch configurations 
on the disk drive(s)', the SB18~ system board, or both; incorrect 
power supply voltages; or non~functioning, diskette (inserted 
wrong, or a damaged diskette). During initial installations, the 
first two areas will usually be the cause of the problem. 

The first thing to do is to verify the power supply con­
nections, and to measure the voltages to check that they are all 
within the ~rescribed tolerancesi usually plus or minus 5% of the 
nominal value. This should have been done in step 2 above., If it 
wasn't, refer to step 2 again and make, the voltage measurements 
and adjustments if needed. The actual voltages used depends on 
the type of disk drive as indicated in the disk installation sec­
tion (2.7). If any.adjustments were made, go back and repeat,the 
proc~dures given in steP 2. 

No matter what kind of problem occurs in the disk drive 
interfacing, about the only thing which can be done to 'find and 
correct the problem is to once again recheck the wiring of 'the 
cable and the position of configuration switches and jumpers. 
Both of these are described in section .2.7. There are no user 
adjustment~ in the disk controller logic circuitry ,of the SB180 

,system' board. 
.' .' 

Avoid attempts at disk drive "adju'stments"until you have 
a fully operational'SB180 system and the proper calibration and 
test equipment. 

Using the drive's manual o~ specification sh~et, and the 
signal pin-out for the appropriate interface connector on the 
SB180 system board, verify signal connections on the disk drive 
interface cable. If any errors are found, correct them and go' 
back and re-try the start-up procedures of section 2. 

Using the drive's manual if it is available, and the ex­
ample installation information of' section 2.7.1 'or 2.7.2 as a 
guide, verify that each disk drive is configured correctly. If a 
drive manual is not available, and, the drive type is not the same 
as the one used as an example in the installation section, write 
the manufacturer of the drive to find out how to configure the 
drive. In general, the disk drives should be ~et up in the 
following manner: 

1) Multiple drives attached in a "daisy-chain", 

2) Terminators installed on all "radial" signals, 

3) Terminators installed only on the diive at the end 
of the interf~ce cable for "multiplexed signals, 

4) Radial drive select signals, 
c 

Page 38' 



5) All other signals must be multiplexed, 

6) 8-inch drives must have stepper motor power on at 
all times unless a motor-on control function is 
available on the drive unit. 

Radial signals are those for which a separate signal exists for 
each drive. Multiplexed signals are those which are shared by 
all of the disk drives in the system. The drive currently 
selected must be the only one to activate the multiplexed signal 
lines. 

Now use the jumper configuration table for the SB180 sys­
tem board given in section 2.6 to verify the option selections on 
the system board. Most of the jumper options are associated with 
the drive type, 5.25 inch (and 3.5 inch), or 8 inch, and have 
mandatory positions for each type as listed in figure 2.7-1. The 
only jumpers which you have to decide whether to install or 
remove are those numbered JP6-10. These_ jumpers are totally 
dependent on configuration of the drive units, and-will vary from 
installation to installation. These jumpers are discussed in 
section 2.7. If any configuration errors were discovered, 
correct them and then retry the start-up procedures of section 
2.11. If the disk circuitry is still not functioning correctly, 
it is time to get help! 

STEP 5 CHECKOUT THE PRINTER DEVICE 

There isn't a whole lot which can go wrong in the install­
ation of a printer. Either the wiring of the interface cable is 
not correct, or the polarity of control signals is reversed. 

First check to see if the printer is plugged into an AC 
wall outlet, and that the power is turned on. Now use the print­
er manual and check that any operational switches such as the 
printer select switch is in the correct position. Of course, the 
printer must have paper in it! If you found anything wrong up to 
this point, make the indicated corrections and then go back to 
step 7 of section 2 and test the printer again. 

If the printer still does not work, use the printer manual 
and the installation notes of section 2.6 in this manual to ver­
ify printer cable wiring. If any errors are found, correct them 
and try the printer test procedure again. 

The last area to check is the logic signal polarity of the 
printer control signals. Of particular importance is the DATA 
STROBE* and DATA ACKNOWLEDGE* signals, both of which are init­
ialized by the SB180 as active low. If any corrections need to 
be made here, they must be done via a call to a software routine 
which must be written for that purpose. 

Page 39 



3.0 Hardware Technical Descriptions 

The information in this section provides technical de­
scriptions of the SB180 hardware components. Schematics for the 
SB180 board hardware are included in Section 5. Separate hard­
ware components such as disk drives, printers, or serial devices 
are not described in this manual. Refer to the technical or user 
manuals for other devices if technical data is required for them. 

3.1 The Hitachi HD64189 

The power of the SB180 is made possible by the Hitachi 
HD64180 a microcoded execution unit based on advanced CMOS 
manufacturing technology. It provides the benefits of high 
performance, reduced system cost and low power operation while 
maintaining complete compatibility with the large base of stan­
dard CP/M software. 

Performance is derived from a high clock speed (6 MHz 
now, 9 MHz in the near future), instruction pipelining, and an 
integrated Memory Management Unit (MMU) with 512K bytes memory 

"address space. The instruction set is a superset -of the Z80 
instruction set; twelve new instructions include hardware multi­
ply, DMA, arid a SLEEP instruction-for low power operation. 

Considered to the Z-80 what the 80188 is to the 8088, 
system costs are reduced because many key system- :functions have­
been included on-chip. Besides the MMU, the HD64180 boasts a two 
channel Direct Memory Access Controller (DMAC), wait state gener­
ator, dynamic RAM refresh, two channel Asynchronous Serial Com­
muni6ation Interface (ASCI), Clocked Serial I/O port (CSI/O), two 
channel l6-bit Programmable Reload Timer (PRT), a versatile 12 
source interrupt controller, and a "dual" (68xx and 80xx fam­
ilies) bus interface all on one 64 pin chip. _ Table 3.1-1 com­
pares the HD64180 with- other 8 bit processors • 

- - - .;. - - - - - - - - - - - - - - - - - - - - - - -
HD64180 8080/Z80 NSC800 Z800 80188 

Process CMOS NMOS CMOS NMOS NMOS 
Power l00mw lW 100mw 2W 2W 
Max. Clock 10 MHz 8 MHz 4 MHz 10 MHz 8 MHz 
Address Space 512 K 64 K 64 K 512 K 1 M 
UARTs 2 ch. no no 1 ch. no 
DMAC 2 ch. no no 4 ch. 2 ch. 
TIMERs 2 ch. no no 4 ch. 2 ch. 
Clocked SIO yes no no no no· 
CS/Wait Logic yes no no yes yes 
DRAM Refresh yes yes (Z 80) no yes no 

Note: The availability of the Zilog Z800 at this time is 
unknown and specifications on the Z800 are subject to change. 

Table 3.1-1 COMPARISON OF SOME 8-BIT PROCESSORS 
- - - - - -. """!' 

Page 40 



The HD64l80 CPU is comprised of five functional blocks: 

o Central Processing Unit The CPU is microcoded to imple­
ment an upward compatible superset of the z80 instruction set. 
Besides the twelve new instructions, many instructions require 
fewer clock cycles for execution than on a standard Z-80. 

o Clock Generator The clock generator generates the system 
clock from an external crystal or external clock input. The 
clock is programmably prescaled to generate timing for the on­
chip I/O and system support devices. 

o Bus State Controller The bus state controller performs 
all status/control bus activity. This includes external bus 
cycle wait state timing, RESET*, DRAM refresh, and master DMA bus 
exchange. It generates "dual-bus" control signals for compat­
ibility with both 68xx and 80xx family devices. 

o. Interrupt Controller The interrupt controller monitors 
and prioritizes the four external and eight internal interrupt 
sources. A variety of interrupt response modes are programmable. 

o Memory Management Unit The MMU maps the CPU's 64K byte 
logical memory address space into a Sl2K byte physical memory 
address space. The MMU organization preserves software object 
code compatibility while providing extended memory access and 
uses an efficient "common area - bank area" scheme. I/O accesses 
(64K bytes I/O address space) bypass the MMU. 

The integrated I/O resources comprise the remaining four 
functional blocks: 

o Direct Memory Access Controller The two channel DMAC 
provides high speed memory-to-memory, memory-to-I/O, and memory­
to-memory-mapped I/O transfer. The DMAC features edge or level 
sense request input, address increment/decrement/no-change, and 
(for memory-to-memory transfer) programmable burst or cycle steal 
transfer. In addition, the DMAC can directly access the full 
S12K bytes physical memory address space (the MMU is bypaseed 
during DMA) and transfers (up to 64K bytes in length) can cross 
64K byte boundaries. At 6 Mhz, DMA is 1 Mbytes per second. 

o Asynchronous Serial Communication Interface The ASCI 
provides two separate full duplex UARTs and includes programmable 
baud rate generator, modem control signals, and a multi-processor 
communication format. The ASCI can use the DMAC for high speed 
serial data transfer, reducing CPU overhead. 

o Clocked Serial I/O Port 
clocked serial transmitter 
simple, high-speed connection 
computer. 

The CSI/O provides a half duplex 
and receiver. This can be used for 
to another microprocessor or micro-

Page 41 



o Programmable Reload Timer The PRT contains two separate 
channels each consisting of 16-bit timer data and 16-bit timer 
reload registers. The time base is divided by 20 (non-program­
mable) from the system clock, and one PRT channel has an optional 
output allowing waveform generation. 

3.2 SB180 Design Criteria 

With all this functionality on one chip, only a few 
addi tional chips are needed to. implement a truly sophisticated 8-
bit single board computer in a small Space (less than 30 ~q. 
in.). In terms of the original Altair micro of less than 10 
years ago, the functionally equivalent machine would have taken 
about 35 S-100 boards for a total of 1750 sq. in. (using 8K 
memory boards!). 

In order to reduce chip count further, an enhanced flop­
py disk controller chip· from ~tandard Microsystems Corporation, 
the FDC 9266, was chosen. This 40-pin DIP chip is softwar~ com­
patible with the industry standard NEC 765A floppy con-troller and 
adds ari on~chip digital data separator to the functions of the 
FDC 9229 floppy disk interface chip as well. It is compatible 
with single and double sided 3 1/2", 5 1/4" (40 and 80·track), 
and 8" drives; the data separator handle. botb single density (FM' 
encoded) and double density (MFM encoded) data. This means· that 
it can be programmed to read. and wri tealmost all. so-ft-sectored 
CP/M. disk formats (and MS-DOS.disk ~ormat:s).· 

With the HD64180's two channel ASCI built in, two serial 
ports were included into the design automatically, and provision 
was made for. a Centronics pa~~llel ~rinter port ~s well. Since 
256K DRAM chips are now plentiful and inexpensive, 8 of ~hese 
wete used for memory (64K DRAMs may al.o be used). Because only 
64K bytes of this is usually used for the logical memory space, 
the user can optionally designate the other 192K bytes as a RAM 
disk in the operating system. Of course, it may also be used for 
other purposes (such as implementing banked memory for CP/M. 
Plus). 

3.3 The SB180 Hardware 

Figure 5.1 is the schematic of the SB180 computer. Its 
design is primarily characterized by the high performance, high 
density MOS devices including 256 Kbyte DRAMs. 

The SB180 system design implements the following function­
al blocks:· 

CPU 
Memory Interface 
RS-232 Interface 
Centronics Printer Interface 
Floppy Disk Interface 
XBUS Expansion Bus 
Power Supply . 

Page 42 



3.3.1 CPU 

The HD64180 is a high system integration device which 
combines a CPU execution unit with a number of basic system and 
peripheral functional blocks. These include: 

CPU 
MMU - Supports 5l2KB address space 
DMAC - 2 channels 
ASCI - 2 channel UART with baud rate generator 
CSI/O - 1 channel clocked serial I/O 
PRT - 2 channel, 16 bit programmable reload timer 
Wait State Generator 
DRAM Refresh Controller 
Interrupt Controller - 12 interrupt sources 

The HD64180 requires operation at specific frequencies 
in order to generate standard baud rates. Standard operating 
frequency for the SB180 is 6.144 MHz (12.288 MHz crystal). Other 
operating frequencies which maintain standard baud rates are 
3.072 MHz, 4.608 MHz and (later) 9.216 MHz. 

3.3.2 RS-232 Interface 

The HD64180 ASCI two channel UART is connected to 1488/ 
1489 RS-232 line drivers/receivers to provide two separate ports. 
ASCI channel 1 is used for the CONSOLE, while ASCI channel 0 is 
used for AUXILIARY RS-232 devices such as printers, plotters and 
modems. This distinction is made because modems require the 
extra handshakes which are available with ASCI channel 0, while 
terminals do not. All primary RS-232 parameters (baud rate, 
handshaking, data format, interrupts) are software programmable. 

3.3.3 Memory Interface 

The SB180 incorporates a 28 pin JEDEC boot ROM socket 
which can be jumpered to hold 8Kx8, l6Kx8 and 32Kx8 memory de­
vices. The boot ROM (contains disk boot and ROM monitor) occu­
pies the bottom 256K bytes of the HD64lB0 physical address space 
since it is selected whenever A18/TOUT (note: the TOUT timer 
output function is not used) is LOW. Thus, the boot ROM contents 
(whatever its size) is simply repeated in the lower 256KB. The 
boot ROM output (OE*) is enabled by the HD64180 ME* (memory en­
able) signal. (As configured, the maximum RAM memory on the 
SB180 is 256K. To support larger memories, additional address 
decoding would be required to designated RAM and ROM areas in the 
current 256K boot ROM space.) 

The critical ROM timing parameter is Tce (access time from 
CE*). 200ns (and marginally, 250ns) ROMs can operate with 1 wait 
state. 

At RESET*, the HD64l80 begins execution at physical 
address OOOOOH, the start of the boot ROM. 

Page 43 



TlMIHG 
GEHERiHOR 

16 -BIT 
TIMERS 

Ala/TOUT (2) 

TXS 

RXS/CTSI 
SERIAL 110 
PORT 

CKS 

MMU 

L 

AO -A18 00-01 

CPU 

OREQI 

OMAC, "f'E'Noi 
(2) 

TXAO 

CKAO/DREQQ 

ASYNCHRONO\lS RXAO 
SCI' 
(CHANNEL 0) ii'TSo 

eTSO 

DCDO 

TXAI 

ASYNCHRONOUS CKAl/ffiiiO 
SCI 
(CHANNEL 11 RXAI 

-Vee 

-Vss 

PIN ASSIGNMENT 

VSS • 
XTAL AD 

EXTAL WR 
WAiT UR 

iiUSiCi< E 

iiiiSii£o ME 

iiTIEf IDE 

NMi REF 

iNTo H'A'i:T 
iNTi TENDI 

iN'fZ 0iiEQ'i-

ST CKS 

AO RXS'crn 

Al TXS 
A2 CKAIITENOO 

Al RXAI 

AC TXAI 

AS CKAO/OREQO 

A6 RXAO 

A 7· TXAO 

A8 OCOO 

A"9 ClSO 

A10 RTsO 
All 07 

Al2 06 

All OS 

AU DC 

A1S OJ 

Al6 02 

An 01 

Ale/OUT DO 

Vee Vss 

Figure 3.1-2 BLOCK DIAGRAM AND PIN-OUT OF THE HD64180 

Page 44 



3.3.4 256K Bit Dynamic Ram 

Standard 256 Kbit 150 nsec DRAMs, requiring 256 refresh 
cycles (8 bit refresh address) every 4 ms are used. These RAMs 
occupy the top 256K bytes of the HD64180 5l2KB physical address 
space. 

The interface is quite straightforward. Complete DRAM 
refresh control is provided by the HD64180 in conjunction with 
control logic U16 and U18 and address muxes U12, U13 and U17. 

The HD64180 WR* output directly generates DRAM WE*. The 
HD64l80 ME* output directly generates RAS*. During normal read/ 
write cycles (A18 HIGH, REF* HIGH) CAS* goes LOW at the next ris­
ing edge of phi following the rising edge of E (Enable). This 
provides plenty of set-up time for the address muxes since the 
rising edge of E switches the address muxes from row to column 
addresses. 

RAS* only refresh is used. The HD64l80 generates the 
refresh addresses. During refresh cycles (REF* LOW), ME* gener­
ates RAS* while CAS* is suppressed at U16. 

The HD64180 can be programmed to generate refresh cycles 
every l~, 20, 40 or 80 phi cycles as well as selecting two or 
three clock refresh. Since the DRAM requires a refresh cycle 
every l5.625us (4ms/256), the HD64180 is programmed for 80 cycle 
refresh request since 80 x (1/6.144 MHz) = 13.02 us. Two cycle 
refresh is also programmed. Thus, refresh overhead is only 2.5% 
(2 cycles every 80 cycles). 

3.3.5 Centronics Printer Interface 

The Centronics printer 
latch U5 and F/F U15. The 
address 0C0H by U4. To write 
sequence is used: 

write data to port 0ClH. 

interface is comprised of 8 bit 
Centronics port is decoded at I/O 
to the printer, the following 

This sets-up the data to the printer and asserts STB* LOW. 

Write data to port 0C0He 

This de-asserts the printer STB* signal HIGH> 

When the printer has processed the data, it will return 
the ACK* signal which generates an external interrupt (INT 1*) to 
the HD64l80. The interrupt handler clears the interrupt by per­
forming a dummy output to port 0C0H. 

Write (dummy) data to port 0C0H 

This clears the INT 1* interrupt request. 

Page 45 



The printer interface is not buffered, so compatibility 
with all printer/cable setups cannot be guaranteed. However, in 
practice, problems should be rare since the software scheme· pro­
vides adequate data setup and hold times. Also, note that this 
printer interface is interrupt d~iven which allows high perfor- . 
mance operation. In a more primitive polling design, excessive 
overhead limits acceptable performance in such applications as 
background print spooling. 

3~3.6 Floppy Disk Interface 

The SMC9266 FDC manages almost' all details of the drive 
interface, includin~ data separation and twith external logic U20 
and . U2l) programmable write precompensation. The SMC9266 
actually combines a NEC 765/Intel 8272 FDC with SMC's popular 
9229 digital data separatorr Thus, from the host CRU' side, the 
SMC9266 looks just like' these popular'devices, including hardware 
and software compatibility. 

The" SMC9266 clock is generated by an 8 MHz oscillator 
comprised of a crystal and U20. Jumpers are provided to select 
write precomp and allow 8" floppy disk drives to be interfaced. 

On the CPU side, the key requirements are interfacing 
the SMC9266 with both prpgrammed I/O (CS*) for initialization, 
status check, etc. and 'with DMA (DRQ, DACK*) for data transfer. 

Programmed I/O is straightforward, with cS* generated 
for I/O address 80H and RD*and WR* directly generated by the 
HD64l80. This is the same scheme used to interface with other 
180 family peripherals. 

DMA is a little more involved. First, DMAC channell is 
used for the FDC since dedicated handshake lines (DREQl*, TENDl*) 
are provided on the HD64l80. Since DMAC channel 13 control lines 
are multiplexed (with ASCI clocks), ·DMAC channel 0 is used.for 
memory-memory DMA. This means the ASCI 'clock functions are 
available although they. are not currently used in this design. 

For disk DMA, the 9266 asserts DRQ which 'inturncauses 
HD64l80 DREQl* assertion. The HD64180 performs DMA read/writes 
to I/O address 0A0H, which causes the 9266 DACK* to beasserted~ 
completing the transfer cycle. . After the DMAC programmed number 
of reads/wri tes- has completed,· the' }-!D64l8f3 TENDl* output is 
asserted, and after inversion, causes thee 9266· TC (Terminal 
Count) input to be asserted, comple~ing the DMA operation. .~his 
is typically followed by the 9266 generating an HD64180 INT2* 
external interrupt. This interrupt service routine can read the 
9266 status to determine if errors oc.curred,.etc. 

However, there is one 'gotcha~, fixed by F/F U18 which 
.conditions "the 9266 DRQ output. It turns out that if 9266 DRQ 
directly generatesHD64l8f3 DREQl* the HD64l8f3 may respond too 
quickly. This- is because HD64i8f3 DREQ* input logic was de'signed 
to mInImIze latency, and. thus DREQ* dan be recognized at a 
machine cycle breakpoint.' Unfortunately, the 9266 requires that 

page 46 



I%j ..... 
\Q 

~ 
t1 
CD 

W DBo_, DATA-BUS REGISTERS 
FOC9U6 

BUFFER 
RESET 1 Vee 

~ Ro RWISEEK 
J 

W 
WR lCT 10lR 

CS FRISTP 

tll OSK DATA 
Ao HDl 

t'" TERMINAL 
OBo ROY 

0 WDOUT 
(J COUNT SERIAL- OBI wPtTS 

~ 
INTERFACE PO DB, FLT /TRo 

ORO CONTROllER 

0 
PI OBI PZ 

H bACK PZ DB, PI 
"0 :J::' INT READI DB, 
Ql Gl WRITE I 

wDOuT 

\0 :;0 DIU DB, USo 
CD :J::' Wii CONTROL READY DB, USI 

~ lOGIC ORO HD 
~ AO 

WRI TE PROTECT I 

-...J :J::' 
TWO SIDE om MFhI 

Z RESET- INDEX 
TC wE 

0 FAULT/TRACK 0 
lOX PO 

"0 cs-- MINI INT om 
H TEST 
Z 

ClK 

I ClK- DRIVE- UNIT SELECT 0 GND MINI 

0 INTERFACE UNIT SELECT 1 
C Vcc - CONTROllER 

t-3 GND_ hlFM MODE 

0 RW SEEK 
I%j 

HEAD lOAD 

t-3 HEAD SELECT ::c 
t>=:I LOW CURRENT IDIRECTION 

\0 FAULT RESET ISTEP 

N 
0'\ 
0'1 



at least 800n. elapse from the time,it asserts DRQ before the DMA 
transfer (DACK*) actually occurs. In other words, when the 9266 
'asks' for service, it really doesn't want it ••• yet! To prevent 
accessing the 9266 too quickly after DRQ, DRQ from the 9266 is 
delayed at U18 before issuing the DREQl* to the HD64180. DRQ is 
delayed by one REF* cycle time. 

Minifloppy double density (MFM) data transfers occur at 
a 250khz data rate. Thus, each byte must be read within 32us. 
The disk driver software reprograms the refresh request rate from 
every 80 phi cycles to every 40 phi cycles prior to disk DMA, and 
then reassigns it back to 80 phi'cycles after the disk DMA is 
completed. The 9266 DRQ is delayed from between 40 phi clocks to 
79 phi clocks.' This is about 6-14us. Therefore, the 800ns delay 
and 32us data transfer constraint are both met. Note that 8" 
fl<?ppy d~ble densi ty (M~'M) is twice as fast (500khz) and re­
quires service every 16us •. This may require refresh rate in­
crease to every 20 phi cycles to be safe. 

3.3.7 Expansion Bus 

The spare CS* from address decoder U4 (I/O addresses 
0E0H-0FFH), along with all major busses (address, data, control) 
are routed to the XBUS. This allows an I/O expansion board cap­
ability.The full complement of HD64180 control signals (IOE*, 
E*, RD*, WR*, etc.) allows easy interface to all standard periph­
eral 'LSI including 80XX, 68XX' and 65XX- devices •. Example ex pan­
s.ion boards could include a hard 'disk controller, 1200 baud 
modem, or a·LAN interface (SIO, SCC or other LAN chips). 

3.3.8 Power Supply 

The SB180 requires +5V and +12V power. A negative 
voltage is generated on board which is only used by the RS232 
driver. The negative voltage is obtaine~ by using a Zener diode 
to obtain .+~Y from +l~V, which is then. inverted. ustng an Intersil 
7660 converter." The "+12V power 'is also "onlY used for the RS232 
driver. Thus, the SB180 only usea significant pow~r from the +5V 
supply. Typically, this ril"ay be' from 0.8 to ,I. 5 A (depending on 
the proportion of the TTL and memory devices which are CMOS) -
about the same as a 5.25" floppy. 

Page 48 



4.0 SB1SI Monitor 

to assist the design 
and software. The 

vehicle for the 

The SB180 monitor provides commands 
and debugging of SB180 related hardware 
monitor also serves as a stand-alone training 
HD64180 high integration cpu. 

4.1 I/O Devices 

The monitor supports the following I/O 'devices': 

CON: - Console RS-232 serial port 
AUX: - AuxilIary RS-232 serial port 
CEN: - Centronics parallel printer port 
DSK: - Floppy disk storage devices 

4.2 Disk Format 

The monitor supports two disk drive types with the 
following specification: 

5 1/4", 48 TPI, 40 track, double sided, double density 
5 1/4", 96 TPI, 80 track, double sided, double density 

Note that equivalent double sided 3 1/2" drives can also be used. 

During initial system check-out, a 40 track DS/DD drive 
must be connected to verify operation of the disk interface. 
After check-out, different disk drives (as supported by the SB180 
Z-System DOS implementation) can be connected. 

The high capacity format provides 5K bytes per track (10K 
bytes per cylinder) resulting in a formatted capacity of 400K 
bytes and 800K bytes for 40 and 80 track drives respectively. 
Differences in sector sizes between 40 and 80 track formats pro­
vides a simple method of drive identification. 

4.3 RESET 

The RESET sequence (from power-up or a reset switch) is as 
follows. The monitor first initializes the system and performs 
some diagnostics. Normally (diagnostics OK), the monitor then 
enters a loop waiting for a disk to be loaded in drive #0 or a 
carriage return to be entered from the console. If a disk is 
loaded, the DOS boot routine (same as the 'z, command) is start­
ed. If a carriage return is sensed, the baud rate is determined 
(see the following section) and the monitor signs on. 

Two diagnostic failures cause the above sequence to be 
changed. First, if a RAM failure is detected, the monitor waits 
for a carriage return to be entered. In response, a string of 8 
bits will be displayed on the console (last displayed is LSB). 
Bit positions with a '1' represent bad RAM chips. After the 
display, the monitor HALTs and requires another RESET to restart. 

Page 49 



Second, if a problem with the SMC 9266 FDC is detected, 
the monitor will wait for a carriage return to be entered. In 
response, the monitor will sign on. However, instead of the 
normal sign-on message; pn error message will be printed. 

In either of the above 
boot a disk, eyen if the drive 

~ hoot when the system is RESEt. 
~~i.~~ost,i9S! ,.!,7~ul t~ ., 

4.4 Console Baud Rate 

cases .the monitor will not try to 
is ready. Thus, if a disk doesn't 
enter a carriage return to s~~ the~ 

'Of' .. ~ $4 __ ..., ••• J ._ ~ ._T. .. ''l., •••• ".~'''' .• ~~ 

The auto baud rate .selection described above requires the 
console baud rate to be either 1920~, 9600, 1200, or 300 baud. 
Note that the baud rate auto-sense routine requires a CPU clock 
rate of 6.144 MHz. 

The console should be con~igured for the following data 
format: 

a data bits, 1 stop bit, no parity 

Note that the console CTSl* modem control input to the 
HD64180 is grounded by a trace on the board. CTS1* can be 
connected to the console by cutting and jumpering JP4-JP5. If 
so, CTSl* must be asserted by the console, or the system will 
appear· inoperative' since th~ monitor will be unable to transmit 
to the console. 

4.5 Console I/O 

The monitor ~rompt is Un>" where Un" represents the 
currently selected memory bank (see the "B" command). 

Commands consist of a command code, followeg by 0 to 4 
parameters and terminated by a carriage return. Parameters are 
separated bi a " " or a "," ~nd leading blanks are ignored~ 

Numeric parameters are assumed to be in HEX (with the 
exception of the i-of-tracks parameter for the "K" disk format 
command and the baudrate specifier for the "E" terminal emulation 
command). Leading "0"'s are ignored. For commands which require 
16 bit parameters,· the last four hex digits are recognized~ For 
commands which require 8 bit parameters, the last two hex digits 
are recognized. 

Console entry may be upper or lower case~ 

Page 50 



For example, the following command lines have the same 
result. 

0)0 0 F ;Display memory from 0000 to 000F 

0)d 0 f 

0)DO,F 

0)012349999 5678999F 

0)0 9, F 

4.6 Commands 

The following table is a summary of the monitor commands; 
a complete description of each command follows. 

ASCII Table 
Bank Select 
CopyDisk 
Display Memory 
Emulate Terminal 
Fill Memory 
Goto Program 
Hexmath 
Input Port 
Klean Disk 
Move Memory 
New Command 
Output Port 
Printer Select 
Query Memory 
Read Disk 
Set Memory 
Test System 
Upload Hex File 
Verify Memory 
Write Disk 
Examine CPU Regs 
Yank I/O Regs 
Z-System Boot 

Figure 4.6-1 

A 
Bbanki (banki = 0 to 3) 
Csource-drivei destination-drivei 
o [start-addr] [end-addr] 
E[baudrate] 
Fstart-addr end-addr data8 
G[go-addr] or GB break-addr [go-addr] 
Hdata16 data16 
Iport-addr 
Kdrivei i-of-tracks (40 or 80) 
Mstart-addr end-addr destination-addr 
N[commandi] (commandi = 0-FF hex) 
Oport-addr data8 
p 

Odata8 [data8] [data8] [data8] 
Rdrivei,dest-addr,start-secti,i-of-sects 
Sstart-addr 
Tdevice 
U [C) 
Vstart-addr end-addr destination-addr 
Wdrivei,start-addr,start-sec,i-of-secs 
X 
Y 
Z[drivei] 

MONITOR COMMAND SUMMARY 

Page 51 



4.6.1 ASCII Table - >A 

Prints an ASCII code table. 

4.6.2 Bank Select - >Bbank. (bank' = 0 to 3) 

Selects a 64K memory bank. The currently selected bank is 
indicated in the command prompt. All commands. which reference 
memory operate on the currently selected bank. The bank offset 
is only applied to logical addresses between 2000hex and EFFFhex. 
Addresses 0-lFFFhex always refernce the monitor (based at phys­
ical address 00000hex), while addresses F000-FFFFhexalways ref­
erence the monitor data/stack area- (physical addresses 4F000-
4FFFFhex) This memory management scheme allows 56K of banked 
memory with a 4K common area at the bottom of ROM memory and a 4K 
common area at the top of RAM memory. 

4.6.3 CopyDisk - >Csource-drivet destination-drivel 

Source-drivej and destination-drive# can take the values 0 
to 3 and correspond to the physical drive address (the jumper on 
the drive). Systems with 256K bytes RAM can perform single drive 
copies (i.e., C0 0) ,in which case a "swap disk" prompt will be 
issued •. The Copy command requires that both disks be of the same 
type (i.e., 40 or 80 track). 

4.6.4 Display Memory - >D[start-addr] [end-addr] 

Displays memory in hex and ASCI I. If start-addr is 
omitted, the display will start with the address follo~ing the 
last invocation's end address (or address 0 if the first 
invocation). If end-addr is omitted, the display will end 80hex 
bytes following the start address. 

4.6.5 Emulate Terminal - >E[baudrate] 

Console keyboard input is echoed to the AUX: RS-2j2 
output, and AUX: RS-232 input is echoed on the console display. 
Baud rate is specified as 150, 300, 600, 1200, 2400, 4800, 9600, 
19200,. or 384010. Note - the baud rate option only works if the 
CPU is operating at the~taridard (6.144 MHz) clock rate. If you 
have a non-standard clock rate configuration, use the "0" Output 
Port command to directly reprogram the baud rate or modify your 
monitor (EP)ROM (see the monitor ROM modification section). The 
command prompts for'a key which will exit the terminal mode and 
return to the monitor. At system start up, the AUX: port is 
initialized to 19200 baud, 8 data bits, 1 stop bit and no parity. 

The AUX: port supports RTS0* modem control output and the 
DCD0* and CTS0* modem ccintrol iriputs (inputs and output are 
relative to the HD6·4l80). The RTS0* output is, always asserted. 
The CTS0* and DCD0* inputs - must be asserted by the connected 
device, or grounded rin the board~ 

Page 52 



4.6.6 Fill Memory - >Fstart-addr end-addr data8 

Memory from start-addr to end-addr is filled with data8 (8 
bit data, 0-ffhex). Care should be taken to avoid writing to the 
monitor program (0-lFFFhex) and stack/data (FF00-FFFFhex) areas. 

4.6.7 Goto Program - >G[go-addr] or GB break-addr [go-addr] 

CPU registers are initialized and program execution 
continues at go-addr. The GB format sets a breakpoint at break­
addr. If go-addr is omitted, program execution continues at the 
saved PC (see the "X" command). 

4.6.8 Hexmath - >Hdata16 data16 

Prints the 20 bit sum 
product of the two arguments. 

4.6.9 Input Port - >Iport-addr 

and difference, and 
(data16 is 0-FFFFhex) 

the 32 bit 

Prints the 8 bit data input from port-addr in hex and 
binary. 

4.~.10 Klean (Format) Disk - >Kdrivei i-ot-tracks (40 or 80) 

Asks for confirmation and then formats and verifies the 
specified disk. 

4.6.11 Move Memory - >Mstart-addr end-addr destination-addr 

Moves the memory block between start-addr and end-addr to 
destination-addr. Care should be taken to avoid writing to the 
monitor program (0-1FFFhex) and stack/data (FF00-FFFFhex) areas. 

4.6.12 New Command - >N[commandi] (command' = 0-FF hex) 

Loads the A register with the command# (0 if no command# 
specified). If an extended (EP)ROM is installed (16KB or 32KB), 
the extended ROM space (2000hex to 4000hex or 8000hex) is en­
abled. A CALL to address 2000hex is executed. To return to the 
monitor, the new command should terminate with a RET instruction. 
If extended (EP)ROM was enabled, it is disabled upon return. 

4.6.13 Output Port - >Oport-addr data8 

Data8 byte is output to port-addr. Note that most aspects 
of the HD64180 operation (baud rates, data format, wait states, 
etc.) can be configured by output to chip registers. 

Page 53 



4.6.14 Printer Select - >P 

Toggles the printer selection b~tween the Centronics par­
allel port and the AuxilIary serial (RS-232) port. The initial 
value is Centronics. 

4.6.15 Query (Search) Memory - >QdataS [dataS] [dataS] [dataS] 

Searches memory for the memory pa-tt,?rn comprised of one to 
four bytes and prints addresses at which the pattern is found. 

4.6.16 Read Disk - )Rdrivei,dest-addr,start-sectori,#-of-sectors 

Reads the specified sectors from drive# into memory at 
dest-addr. The first sector on the disk is "1" and the last sec­
tor on the disk is 190hex (400 decimal) and 320hex (800 decimal) 
for 40 and 80 track drives, respectively. 0 0 

40.6.17 Set Memory ... >Sstart-addr 

Displays the memory contents at start-addr and allows new 
data to be entered. Entering carriage return proceeds to the 
next address. Entering"" terminates the command. 0 

4.6.1S Test System- >Tdevice 

Tests various system devices. TA specifies the- AuxilIary 
serial (RS-232) port which prompts for input or output test. If 
input, serial input is echoed on the console. For input, the 
DCD0* AUX: modem control input mu~t either be asserted by the 
connected device or grounded with the jumper on the board -
otherwise an error message is printed. If outputl. a test pattern 
is t~ansmitted. For output, the CTS0* AUX: modem control input 
must either be asserted by the connected device or grounded with 
the jumper on the board - otherwise an error message is printed. 
TC specifies the Centronics parallel port to which a test pattern 
is transmitted. If the printer doesn't respond in a reasonable 
time (approx. 5 seconds) an error message is printed. TD speci­
fies a disk seek and read (non-destructive) test. If a bad sec~ 
tor is found, the disk test is aborted and the contents of the 
9266 status registers (identifying the type of error, track, 
head, sector, etc.) are displayed. If rio de~ice is specified, a 
memory test is performed. The memory test is non-destructive and 
~ill print a "." after each 256KB pass. 

All tests can be terminated with CTL-X or CTL-C. 

Page 54 



4.6.19 Upload Hex File - >U[C] 

An Intel format hex file is uploaded. If the [C] option 
is specified, the data is uploaded from the Console serial port, 
otherwise the data is uploaded from the AuxilIary serial port. 
Note that upload termination requires reception of a CTL-X (lA 
hex). Thus, if the PIP command were used to download a .HEX file 
for a CP/M system,· the [H] option should be specified. The 
command terminates by printing the address of the last byte 
loaded. 

4.6.20 Verify Memory - >Vstart-addr end-addr destination-addr 

The contents of the memory block from start-addr to end­
addr is compared with the block at destination-addr. When source 
and destination data differ,the addresses and data values are 
printed. 

4.6.21 Write Disk - >Wdrive',start-addr,start-sector,i-of-sectors 

writes the specified sectors to disk from memory at start­
addr. The first sector on the disk is "1" and the last sector on 
the disk is 190hex (400 decimal) and 320hex (800 decjmal) for 40 
and 80 track drives respectively. 

4.6.22 Examine CPU Registers - >X 

Displays the main and alternate CPU registers and prompts 
for modification of the main registers. Entering a carriage re­
turn proceeds to the next register while entering a "." termin­
ates the command. 

4.6.23 Yank I/O Registers - >Y 

Displays the HD64180 on-chip I/O register contents. 

4.6.24 Z-System Boot - >Z[drive'] 

Boots the Z-System DOS (or other suitably configured 
operating system) from the specified drive. 

Page 55 



4.7 Error Messages 

4.7.1 FDC Error 

Displayed at RESET if the Monitor cannot correctly init­
ialize the 9266 FDC. This indicates a hardware fault such as a 
bad FDC, bad address decoder ,. etc. Use .the I and 0 commands to 
verify FDC input/output operations. The FDC status port is ~0H, 
the data port is 81H. . 

4.7.2 Disk R/W Error 

Following this message, the contents of the 9266 FDC stat­
us registers are printed along with id information (track, head, 
sector) • Typically, this indicates the disk is not formatted 
correctly (i.e., non-"native" format), but may also result from 
faulty media or hardware. Corrective action includes retrying 
the operation, reformat·ting the disk, resetting the system., test­
ing memory, swapping disk drives, etc. 

4.7.3 Disk Seek Error 

Explanation and correction - see above. 

4.7.4' Disk Not Read-y 

The drive is not loaded with the door closed and the motor 
on. Check· to insure your drive provides a "READY" signal. If 
not, connect ~he "No Drive Ready" jumper on·the board. Check to 
insure your. drive responds to the "Motor On" signal. If not, 
either connect the "Motor (always) On" jumper on th~ board, or 
jumper your drive to achieve the same effect. Note that some 
drives are typically jumpered. to enable the stepper and spindle 
motor based on drive select. However, depending on the motor 
control circuit, these drives may not be able to tolerate the 
9266 FDC "Scan" function wh~ch toggles drive select at high speed 
when the drive is otherwise idle. In this case, the drive must 
be jumpered so that the motors are always on. 

4.7.5 Bad Command 

An invalid command has been entered. Use the "?" command 
to see a list of available commands and their syntax. 

4.7.6 Bad.Parameter 

An invalid parameter has been entered. 
commands require hex parameters. Use the "?" 

Page 56 

Remember that most 
command. 



4.7.7 Not Enough Parameters 

The command requires more parameters than were entered. 
Use the "?" command. 

4.7.8 Invalid Interrupt 

The HD64180 has received an internal or external interrupt 
for which no interrupt handler is provided. The only interrupts 
the HD64180 recognizes are external interrupts INTI* (Centronics 
interface) and INT2* (Disk interface). External interrupts INT0* 
and NMI* may be shorting to ground. Internal interrupts (DMAC, 
timers, etc.) may be inappropriately enable by a program crash or 
incorrect use of the "0" output port command. 

4.7.9 Bad Opcode Trap 

The HD64180 has encountered an invalid opcode. This may 
be the result of a user program crash - confirm your program. 
This may also occur due to slow or faulty memory perform a 
memory test. In this regard, note that the HD64180 has stricter 
access time requirements for opcode fetch than other read/write 
cycles and this is not checked by the memory test. Try repro­
gramming the on-chip wait state generator (DCNTL register, I/O 
address 32hex) or using faster memory chips. . 

4.7.19 CTS9* HIGH 

Displayed during the >TA (Test 
if the CTS0* modem control input 
Check the connected device and cable. 

4.7.11 DCD0* HIGH 

AUX: port) output command 
is not LOW at the HD64180. 

Displayed during the >TA (Test AUX: port) input'command if 
the DCD0* modem control input is not LOW at the HD64180. Check 
the connected device and cable. 

4.7.12 No ACK* 

Displayed during the >TC (Test CEN: port) command if the 
printer does not return ACK* within about 5 seconds after a byte 
is sent to the printer. Check the printer state (on line/off 
line, etc.) and cable. 

4.8 Disk Format 

The monitor "R"and "w" (Read and Write disk) commands 
treat the diskette as containing "virtual" lKB sectors. Actually 
the format for 40 and 80 track drives is defined as follows: 

Page 57 



40 Track Double Sided, Double Density 

The disk contains 40 cylinders, each consisting of two 
sides/tracks. Each track is made up of 10 sectors of 512 bytes. 
Thus, total formatted capacity is 512 bytes x 10 sectors x 2 
sides x 40 cylinders- ~ 400K bytes. Sector numbers start at 
llhex, with an interleave factor of two. Actual order on the 
track is (hex) 11, 16, 12, 17, 13, 18, 14, 19, 15, lA. During 

'formatting the 9266 FDC GPL (gap length) parameter is 24 decimal, 
while GPL is 14 decimal during normal read/writ~ operation. ' 

80. Track Double Sided, Double Density 

The disk contains 80 cylinders, each consisting of two 
sides/tracks. Each track is made up of 5 sectors of lK bytes. 
Thus, total form~tted capacity is lK bytes x 5 sectors x 2 sides 
x 80 cylinders = 800K bytes. Sector numbers start at llhex, with 
an interleave factor of two. Actual order on the track is (hex) 
11, 14, 12, 15, 13. During formatting the 9266 FDC.G~L (gap 
length) parameter is 99 decimal, while GPL is 14 decimal during 
normal read/write operation. 

4.9 Monitor ROM Modification 

The monitor is organized to allow easy m6dification to 
support non-standard CPU clock rates (standard is 6.144 MHz), 
unique ·console· and auxiliary po·rt. baud ·rates and data ·formats and 
optimized disk timing parameters. ~lso the mOnitor can be ex­
tended by using 27128 or 27256 devices in conj~ction with the "N" 
new command. Never reprogram or erase your original monitor 
EPROM! _Instead, read it on another system, save the object file, 
make a copy of the object file, modify that copy, and then burn a 
new (EP)ROM. 

4.10 Key Variable Block 

Nine bytes, located 
monitor allow changing a 
defined below. 

starting at address 
number of operating 

35hex, in the 
parameters as 

4.10.1 STARTBYTE - Address 35hex, default value = FFhex 

Normally FFhex, the upper and lower nybbles of STARTBYTE 
control two aspects of the monitor start sequence. 

Changing the upper nybble of STARTBYTE allows disabling 
the console baud rate autosense routine if either a non-standard 
baud rate (i. e., not 300, 1200, 9600 or 19,200) console baud rate 
is required or if a non-st~ndard (6.144 MHz is standard) CPU 
clock ·is used. In either cas~, change the upper riybble of START­
BYTE to 0. Note that STARTBYTE is related to CNTLBI byte (see 
below). If STARTBYTE is not ·changed (i.e., equals Fx hex to use 
autosense) then CTTLBI d~fault value ofl must also not be 

·changed. 

Page 58 



Changing the lower nybble of STARTBYTE to 0 allows dis­
abling the DOS autoboot function so that the monitor will always 
sign on independent of whether a disk is loaded. This is 
especially useful if the "No Drive Ready" jumper is installed on 
the board to prevent hanging in the DOS boot loop if a disk is 
not loaded. 

FFh Baud rate autosense, DOS autoboot (default value) 
0Fh Fixed baud rate (based on CNTLB1 value), 

DOS autoboot 
F0h Baud rate autosense, DOS autoboot disabled 
00h Fixed baud rate (based on CNTLBI value), 

DOS autoboot disabled 

4.10.2 CNTLA0 - Address 36hex, default value = 65hex 

Contains the value programmed into the HD64180 CNTLA0 reg­
ister which defines, among other things, the AUX: port data for­
mat (i.e., # data bits, stop bits, parity, etc.). The default 
value also asserts RTS0* low. 

4.10.3 CNTLAI - Address 37hex, default value = 75hex 

Contains the value programmed into the HD64180 CNTLAI reg­
ister which defines, among other things, the CON: port data for­
mat (i.e., # data bits, stop bits, parity, etc.). 

4.10.4 CNTLB0 - Address 38hex, default value = 1 

Contains the value programmed into the HD64180 CNTLB0 reg­
ister which defines, among other things, the AUX: port baud rate. 
Note that the "E" emulate terminal command allows the baud rate 
to be set from the console. However, the "E" baud rate function 
only works when the CPU operates at the standard (6.144 MHz) 
clock rate. 

4.10.5 CNTLBI - Address 39hex, default value = 1 

Contains the value programmed into the the HD64180 CNTLBl 
register which defines, among other things, the CON: port baud 
rate. If your console does not operate at the standard baud 
rates (300, 1200, 9600, 19,200 are standard) or the CPU clock is 
non-standard (6.144 MHz is standard) both STARTBYTE (see above) 
and ZCNTLB1 must be changed. STARTBYTE must be set to 0 (dis­
ables the baud rate autosense routine) and CNTLBI set to the 
appropriate value given your console baud rate and CPU clock 
rate. 

Page 59 



4.10.6 STAT0 - Address 3Bhex, default value = 0 

Contains the value programmed into the' HD64180 STAT0. reg­
ister which enable' or disables AUX: port int~rrupts, which are 
normally disabled. 

4.10~7 STAT1.- Address 3Chex, default value ='4 

Contains the value programmed into the HD64180 STAT0 reg­
ister which enable or disables CON: port interrupts as well as 
enabling or disabling the CON: port CTS1* .modem control input. 
CON: port interrupts should normally be disabled and the default 
value enables the CTS1* function. Thus, CTS1* must be grounded 
on the board (default case) or asserted by the console if con­
nected. 

4.10.8 DCNTL - Address 3Dhex, default value = 7Chex 

Contains the value programmed into the HD64180 DCNTL reg­
ister which defines, among other things, the number of m~mory and 
I/O wait states generated by the HD64180 on-chip wait state gen­
erator. Normally, the least significant four bits of this value 
should not change sinrie they define" DMA parameters associated 
with basic disk operation. Change the upper four bits to account 
for faster or slower CPU clock rate and/or memory-I/O devices. 

4.10.9 RCR - Address 3Ehei, default value = 82hex 

Contains the value programmed into the HD64180 RCNTL reg­
ister which defines the interval and duration of HD64180 gener­
ated DRAM refresh cycles. Normally, this value needs to be 
changed only if the CPU' clock rate is reduced below 3.1372 MHz. 

4.10.10 SPCFl - Address 3Fhex, default = 9Fhex 

Contains the valu.e used as the first parameter of the 9266 
FDC SPECIFY command which defines the step rate and head unload· 
time for the floppy disk drive. This can be changed if your disk 
has higher performance than the conservative default value. Note 
that a DOS BIOS can reSPECIFY in a "soft" manner, so it may be 
wise to leave the conservative default in the ROM to allow for 
easy connection of drives with poor or unknown performance char­
acteristics. 

4.10.11 SPCF2 - Address 40hex, default valu~ = 28hex 

Contains the value used as the second parameter of the 
926·6 FDC SPECIFY command which defines the head load time and 
data mode for the floppy disk dri~e. As above, this can be 
changed, but change may not be reqqired since the DOS BIOS can 
reSPECIFY. Note, the data mode must be "DMA". 

Page 60 



4.11 The liN" NEW Command 

The monitor, which requires 8K bytes of (EP)ROM can co­
reside with other system software in a larger 16K byte or 32K 
byte (EP)ROM. The extra 8K bytes or 24K bytes can contain 
additional software such as BASIC, Forth, a DOS, or ??? 

At RESET, the monitor determines how big the installed 
ROM is. The "N" NEW command can then "phantom" in an e~tended 
(EP)ROM. Also, an optional parameter on the "N" command line is 
loaded into the Accumulator (A) for passage to the extended rou­
tines. When the extended routine terminates with a RETurn in­
struction, the monitor regains control and "phantoms" out the 
extended (EP)ROM to allow access to overlayed RAM. Note that 
this return mechanism requires the extended routine to save the 
return address if it sets up a different stack. Also, the ex­
tended routine should avoid writing to the physical address area 
4FF00-4FFFFhex since this area contains monitor data structures. 

To implement an extended (EP)ROM simply requires assembl­
ing your routines to start at the "end" (address 2000hex) of the 
monitor. Developing the code is made easier by the fact that, 
with only the 8K byte monitor installed, the "Nil command will 
jump to address 2000hex without performing the IIphantom ll func­
tion. After the code is tested in RAM, burn it and the monitor 
in a new (EP)ROM, install it (remember to adjust the ROM size on 
the SB180 system board), and operation will be exactly the same 
as during debug. . 

For further information on the ROM monitor, consult the 
monitor source code on the appropriate system disk. 

Page 61 



~ 1 

4.71< ~ ~ 
SlP·· :. ~ : .<'.? 
6!34~78*O 

C) 

CO 

~F-~r-------------------------------------------------------~~~ 
~7F-·r-------------------------------------------------------~~~ ~FU~ __________________________________________ ~ ______ ~ __ ~M~'~ 

N!5~28 ~ ____ M5 ~4 J!l A13F-2'=-----I11 Ala: 'I 
~e3 
1\1IIt;:;;..----J 
1\,22 
AIel 

eo 117 19 

"18 ~D ~ 
x w 

M 16 ~ 14 A O~U!'-ttt--7,;<80-k:ii9f")~----.:;;;;;,,~ F1lCFm:~ 
A1i 15 A6 13 J lD':':U-+H--.F-:.~~~=· __ ~-"r..:.DC.::;...:;:: .uMPRT==:-i~ tq 
1.214 ~71 2 10 
At~------....J ~4C 32 OIl 3 15 G 3~'-+H--.=:<£D-Fn~t.I--~~=~::::-12 £:l;c <> 

. WJF13=---------J P 
a: ~ ~~ U21 I.e "1iZ6 t 
~~~---------r---4---------------------H+-----+-----------~, ~~ 1m'~ iHl !5 £X~ 
W~ V ., £X<>
~~~~----------rl--1_--------------~----H+----_+----------~U~W£X<> 

E 60 E 11' £X<> 
~~R~~19----------_rT_~--------------------_HT_----+_----~~~~~~~~ 
IItl ENAlIl£ 58 U'U Ull 2£ £X ~ 
mu~~~=_----------~------------------------H+----_+------~~~,~~ 
~~5----------~+_ __ --------------------_H+_----+_--------;T_Nnr 
~~4----------~+_ __ --------------------_H+_----+_--------~~~~ 
TIa~----------~+------------------------H+-----+-----------m~Rr 
~~------~--~+_----------------------_H+_----+_---------~~~ 
Dnf~----------~+_----------------------_H+_----+_---------·~·~~~~ 

SB180 COMPUTER PG 1 OF 4 (PROCESSOR) . COPYRIGHT 1985J CIARCIA'S CIRCUIT CELLAR 7/23/85 



I 
u BOOT-
: UTILITY 
~~ ~ ROM 
~~~~.r~------~~E 1;'1l UINII.J;; 

i&J!Rl!R

iHii

+5V~Vpp

2764
(27128)
(27256)

~'If1~~~~li~~~~i9 IIi' 'L.:::g D6

ill~:
DO III ~:

'I 12 D1
'--_--=ill DO

....---- -

t---­
t-­
t-­
I-­
I--

Illl

'-.01-
Lnf­

C\J
C) f-

ID 1-_

f- -
-

-

I-

I-

- I-

- r- r-

-
- r- r-

-
- r-

US I- U4 I- U3 I- U2 I- Ul I- US I- U7 I- U6
I-

I- r­
t-

l­
t-

I-

l­
I-

SB180 COMPUTER PG 2 OF 4 (tv!EMDRY) COPYRIGHT 1985, CIARCIA'S CIRCUIT CELLAR 6/6/85

R7 11< +5V U24

t.18 C3e~XTAL2
L FDC 9266 1 +5V

#.17 >

~ SIP4 ~. ~ ~ >- ~ ~
"'" ~~ • NIl DRIVE 1511 • ~. .

,~aoo'Ka REAllY lliHa 7 6 e .0\ e :I
It1:I ~ TEST READY 35 9 U ~ DRIVE ~ - U21 LS240 - £. 14 lrel LSf40 IUl DATIli 23 7 13 12_ 8 READ ~TA -

8 ~40 U!!1
lA 17 3 22 INDX 17 re.. ~CTDR/lNllEX - .U23 LS240

RB 1K I tI25 - Hf"M ~NIC . ~11 8.1100 MHZ £Jc<>1!9 TRK 0
33 9 10 TIW!In'

AD 5 AO VPRDT
34 ~ 14 FILE ~I<L t.1,;1

13 AD DISK SEC 4.t!S' ..F9 2 SD

I [~ ~1 SIDE
0 0

DMA iliCK 15. DHA LCT/DIR 38 3 4- U[9P10 DlRECTltlN

rn::M ACR 37 ~ 7 71'".8 STEP fllC. ~ IUl a. STEP
6

~ lIe7 'IUl --!=" s li

;

PRT~i

I
~:mr :t V'R R7'i1 39 1 1!5

1SEE!< 15. .!5 LSE40 16 TC ":-EXPANSDI !Er
lJe3 ~ Hr!\ l3240 13~1.e t:DV

. :! D7 13 D7 .J6 :I 00 6 £. -14
~ D6 12 D6

ue3 LSE40 UJ\{ IJRITE CURR£NT I ClIRR£NT
D5 U DS

::::m D4 10 D4- uee
£ - D3 9 D3 e5 31'. 4- W'imE GATE VE In iJWILE D2 8 D2 30 ~8 ~~~A fib tiWU D1 7 m YlIATA

36 sr, 6 m lJSF "HEA 'llAD &iitli1 DO 6 DO HIJI..IW)
17 It:-,. 2 f!.7 !£All S£L. 'rEND[SIDE 1:'" 1JREIII{ SYS RESET VARIABLE FIXED R9 +5V

lJe6 TXS RESET
>f..7 U27

IR'T2" 4:'K ~ ~~
3"'- ~ I

JP7 2 II 4- lIRIV£ 0 lRTr ell~
29PR£COHP

»SO 3 A 1:5 -]? 5t--... 6 1lRNrI I DS1
28

B 6 If''- f> I?' JJ7 ! I I DIUVE I;:

~u e !? 131'::,..12 I i -:- 3 7 DRIVE: ~

II ' I
JP8 r-- Ue3 I?'
~P2 LSE40

L. ___

18 11 '7 ~.10 HDTIlR []FI
INT 110 t--~Pl +SV ~1.>

"'-J

ue8
14 ~~~ ·t--~PO 1lFIRa

-~ 12 ~ 9

·~6 IJRITE TDI r=~ U14 :';.
REFRESH iU~ '~LS7. DHA REm
INTE

III
R" ,

R[]; ! 131 I
I 'RaET I RESET DRIVE SIZE !

?,:mCESSOR TXS

MINI 8'

34 22
30 46
8 20

26 42
28 44
- 10
18 34
20 36

- 2

24 40
22 38
4 18

32 14

10 26
12 28
14 30
6 32

16 -

SB180 COMPUTER PG 3 OF 4 COPYRIGHT 1985, CIARCIA'S CIRCUIT CELLAR 6/6/85

J2
PRINTER

SB180 PG 4 OF 4 (PRINTER & PS) COPYRIGHT 1985} CIARCIA'S CIRCUIT CELLAR 6/6/85

STROBE
DO
01
OZ
03
04
05
06
07

m

25

DSR 20

14

TxD 2

RxD 3
RTS

GND 7

13

19

18 36

36 Pin CENTRONICS

Female Connector

Your Printer

0
Eo 13
00
o 0
00
00
0

0 8 DCO
0

0
0

0
0 0 RTS
0 .0 4 CTS
0 0 3 TxD
0 0 RxD

~
0

08-255 RS-232

r •• a1e Connector

Your Modelll

.0
~

o 0
0 0
0

0
0 0

14

0
0

0

0
0

0
0

0
00
00
0

~
25

0
D8-25S RS-232

Feliale Connector

'Your Termlnal

0

0 0 D 0 Stripe
0
0 0
0 0

0 0 0 20 Conductor Ribbon Cable
0 0 0 0 0 0 0 0 0 a 0 a 0 0 0 0 -
0 0 0 a 0 D a 0

0

36 Pin CENTRONICS

Male Connector

-
0° 00
00
00
00
00
00 . 20 C·ondllCto~ Ribbon Cable
00
00
00
00 Stripe 00

0
......:..

D8-25' RS-232

Male Connector

r-

OD
DO Stripe
DO
DO
DO
DO 20 Conductor Ribbon Cable

00
DO
DO
00
DO
DO

0
'--

D8-25P RS-232

Male Connector

:Figure. 5.1 Samp1e·Cabi Ea Assemblies

Page 66

BoLd·
~

o 0
o 0 o 0
a 0
a 0
a'n
a 0
o a
o 0
a a

GND
DO
Dl
D2
D3

D4
D5
D6
D7

m 20

L--- .. .,
20 Pin 20 pin

reaale He.d er M,.l. Header

S8180 Parallal Printer Port

-
o 0
a 0
o 0

e a 0
·0·0
'0 a 0
o a
o n
o 0 a

L---

20 'in

Fe .. al. He.

r-
n n n
o 0
a n
o 0
o 0
o 0
o 0
o 0
n a

0
'---

20 Pin

23e 10

" ."
0
E 8 DCD

DTR 20

5 CTS
4 RTS
3 Rxd
2 TxD

14,
20 Pin

der Male Header

SB180 Serlal Mode.
DTE

'" .,

Port

re.ale Hea der

20 Pin

Male Header

S8180 Serial Ter.ina! Port

DCE

\

CAPACITORS

C1-C8
C9
CHI-C1S
C16
C17,C18
C19,C20
C21-C31
C32
C33
C34
C35
C36,C37

DIODES

CR1
CR2
CR3

COMPONENT LIST

SB18111 SINGLE BOARD 64180

.1 MFD 50V MONOLITHIC
1 MFD 25V ELECTROLYTIC

.1 MFD 50V MONOLITHIC
1500 PFD 51N MONOLITHIC

.1 MFD 50V MONOLITHIC
27 PFD 50V MONOLITYIC
.1 MFD 50V MONOLITHIC

.01 MFD 50V MONOLITHIC
.1 MFD 50V MONOLITHIC
lfd MFD 25V ELECTROLYTIC

100 MFD 25V ELJ::CTROLYTIC
10 MFD 25V ELECTROLYTIC

1N4148A, SIL, FAST SWITCH
1N4001, SIL, BLOCKING
1N473!1A, SIL, ZENER, 9.1V~ 1W

SYSTEM

INTEGRATEO CIRCUITS

IC1-IC8
IC9
U10
U11-U13
U14,U15
U16

U17
U18
U19

.-112'" (OPTION)
U21
U22
U23
U24
U25
U26
U27
U28
U2!1

41256, DRAM, 256K, (150NS OR 9"0NS)
74LS374, OCTAL LATCH, TRISTATE
74LS74, DLATCH, DUAL
74LS157, MUX, QUAD, NONINVERT
74LS74, DLATCH, DUAL
ROM, (8K STANDARD)

2764 8K X 8 OR
27128 16K X 8 OR
27256 32K X 8
1488, TRANSMITTER, LEVEL SHIFT
64180, MICROCOMPUTER
1489, RECEIVER, LEVEL SHIFT
74LS156, OCTAL DECODE (DUAL 1 OF 4)
74LS240, HEX INVERT
74LS0"', QUAD NAND
74LS240, HEX INVERT
FDC9~ob, FLOPPY DISK CONTROLLER
74LS158, QUAD MUX, INVERT
74LS139, 1 OF 4 DECODE, DUAL
7407, HEX BUFFER, NONINVERT
7400, HEX BUFFER, INVERT
ICL7660, VOLTAGE INVERTER

Page 67

RESISTORS

Rl
R2
R3
R4
R5
R6
R7,a8
R9
RUJ
SIPI-SIP3
SIP4

MISCELLANEOUS

J1
J2-J4
J5
J6 (OPTION)
J7
J8 (OPTION)
J9
JP1-JP3 (OPT)
JP4 (OP'l'ION)
JP5 (OPTION)
JP6 (OPTION)
JP7 (OPTION)
JP8 (OPTION)
JP9 (OPTION)
JP110
JUMPER (2)
PBl
XTAL1
XTAL~

SOCKETS

1
8
14
3
1
1
1

110 K, 1/4 W, 5%
4.7 K, 1/4 W, 5%
1"'0 OHM, 1/4 W, 5%
4.7 K, 1/4 W, 5%
470 K, 1/4 W, 5%
4.7 K, 1/4 W, 5%
1.'" K, 1/4 W, 5%
4.7 K, 1/4 W, 5%
1210 OHM, 1/2 W, 5%
4.7K, 9 ELEMENT, PIN 1 COMMON
330 OHM, 7 ELEMENT, PIN 1 COMMON

1 X 2 , .1 CTR, (HARDWIRE)
2 X 113, .1 CTR. ST, .230 L
2 X 20, .1 CTR, ST, .320 L
1 X 8, .1 CTR, ST, .230 L
1 X 4, .1 CTR, RT, .320 L
2 X 25, .1 CTR, SHROUDED, ST
2 X 17, .1 CTR, SHROUDED, RIGHT
1 X 3, .1 CTR, ST, .23'" L
1 X 5, .1 CTR, ST, .230 L
1 X 3, .1 CTR, ST, .230 L
1 X 2, .1 CTR, ST, .230 L
1 X 3, .i CTR, ST, .230 L
2 X b, .1 CTR, ST, .230 L
1 X 3, .1 CTR, ST, .230 L
1 X 3 (2) , liT", .1 CTR, ST, .230
1 X 2 HEADER JUMPER
PUSHBUTTON, (RESET)
CRYSTAL, 12.2880 MHZ
CRYSTAL, 8.0"'''0 MHZ

8 PIN
14 PIN
16 PIN
20 PIN
28 PIN
40 PIN
64 PIN (SHRINK DIP)

L

*
* *
*
*
*
*
*
*
*
*

ZRDOS

Version 1.0

Echelon Z-System Disk Operating System

PROGRAMMER'S GUIDE

*
*
*
*
*
*
*
*

*

by

Dennis L. Wright

1 January 1985

ZRDDS, its utilities, and documentation files are Copyright 1984
and 1985 by Dennis L. Wright and Echelon, Inc. ZCPR3 is
Copyright 1984 by Richard Conn and Echelon, Inc. CP/M and MP/M
are registered trademarks of Digital Research. No part of this
guide may be reproduced in any way or by any means without prior
written permission from Echelon, Inc.

ZRDOS is a z80 coded CP/M 2.2 compatible
Disk Operating System. Use of Z80 code allows
addition of many new features. This document
explains these features and differences between
ZRDOS Version 1.0 and CP/M 2.2.

ZROOS Plus

ZRDOS PLUS

ADDENDUM

TO ZRDOS VERSION 1.0 PROGRAMMER'S GUIDE

ZRDOS plus is the re-entrant version of ZRDOS Version 1.0.
All features and function calls are identical to those outlined
in the ZRDOS Version 1.0 Programmer's Guide with the following
addition.

Programs that intercept BIOS calls from ZRDOS Plus can be
written to make calls to ZRDOS without destroying the original
DOS callers pointers and parameters.

Re-entrance can be accomplished by first saving the current
ZRDOS Plus buffers. This is done by copying the ZRDOS Plus
buffers to a user assigned save buffer area of 147 bytes. Once
the DOS data has been saved the user program is free to make any
DOS calls necessary. Before returning to the original DOS
caller, the ZRDOS Plus buffers must be restored. The beginning
of the ZRDOS Plus parameter-Buffer area is located at ZRDOS Plus
base + 5 (ZRDOS plus base is the address specified in system page
zero, hex location 06) and is 147 bytes in length.

The main purpose of making ZRDOS re-entrant is to allow the
efficient programming of ZCPR3 I/O Packages, packages (modules of
1.5k-bytes length) that redirect Device Record (Console, List,
Reader and Punch) input and output to and from disk files.
Echelon, Inc. offers several lOPs that make use of this feature.

ZROOS Plus

EXAMPLE METHOD OF SAVING AND RESTORING ZRDOS PLUS BUFFERS

The following routines demonstrate a method that can be used to
save and restore the ZRDOS Plus buffers to allow re-entrant calls to
ZRDOS Plus.

DOS EQU
BUFOFF EQU

. ,

5
5 Offset from beginning of ZROOS Plus to

internal dos buffers •

This routine gets the address of the ZROOS Plus parameter buffer.
;
GETBUF: LHLD

LXI
DAD
SHLD
RET

This routine

SAVDOS: LHLD
LXI
CALL
MVI
CALL
SHLD
RET

This routine

RSTooS: LDED
MVI
CALL
LXI
LDED

MOVIT: LXI
LDIR
RET

CUROMA: OW
DOSBUF: OW
OOSSAV: OS
;

06
D,BUFOFF
o
DOSBOF

saves ZROOS

DOSBUF
D,DOSSAV
MOVIT
C,47
OOS
CORDMA

Get dos address.
Add offset to ZRooS plus internal buffer.

Save as dosbuf pointer.

Plus parameters to allow re-entry.

Save ZRooS Plus parameter buffer.

Function 47, get current dma address.

Save it.

restores origina.l ZRDOS Plus parameters.

CURDMA
c,26
OOS
H,DOSSAV
OOSBUF
B,147

o
o
147

Restore drna address
Function 26, set dma address.

Restore ZRDOS plus parm buffer.

Move 147 bytes.

Save area for current DMA address.
Save area for pointer to ZRDOS PIlls parms.
Save area for ZRDOS plus parm buffer.

*
*
*
*
*
*
*
*
*
*

ZRDOS

Version 1.0

Echelon Z-System Disk Operating System

PROGRAMMER'S GUIDE

*
*
*
*
*
*
*
*
*

*

by

Dennis L. Wright

ZRDOS Version 1.0 - Programmer's Guide

TABLE o F CONTENTS

1. DIFFERENCES FROM THE STANDARD CP 1M CCP................... 1
1.1. ZCPR3 utilities and Features........................ 2

2. DIFFERENCES FROM CPIM 2.2 BOOS........................... 3 2.1. Disk Change... 3
2.2. Read Only Disk Status............................... 3
2.3. Read Console Buffer................................. 4
2.4. File Archiving.......................... .••• ••••••.• 4
2.5. Wheel Protection •••••••••••••••••••••• 9

•••••••••••••• 4
2 . 6. Error Messages...................................... 5

3. ZRDOS EXTENDED FUNCTION CALLS............................ 6
3.1. Function 47: Get Current DMA Address................ 6
3.2. Function 48: Return ZRDOS Version Number............ 6
3.3. Function 50: Set Warm Boot Trap..................... 6
3.4. Function 52: Reset Warm Boot Trap................... 6

4. ZRDOS VERSION 1.0
4.1. FUNCTION 0:
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION

4.8. FUNCTION
4.9. FUNCTION

FUNCTION
FUNCTION
FUNCTION
FUN€TION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION

1:
2:
3:
4:
5:
6:
7:
8:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:

4.10.
4.11.
4.12.
4.13.
4.14.
4.15.
4.16.
4.17.
4.18.
4.19.
4.20.
4.21.
4.22.
4.23.
4.24.
4.25.
4.26.

FUNCTION 19:
FUNCTION 20:
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION

4.27. FUNCTION
4.28.
4.29.
4.30.
4.31.
4.32.

FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION

4.33. FUNCTION

21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

FUN~ION CALLS •••••••••••••••••••••••••
SYSTEM RESET ••••••••••••••••••••••••••
CONSOLE INPUT ••••••••••••••• -••••••••••
CONSOLE OUTPUT ••••••••••••••••••••••••
READER INPUT ••••••••••••••••••••••••••
PUNCH OUTPUT ••••••••••••••••••••••••••
LI ST OUTPUT •••••••••••••••••••••••••••
DIRECT CONSOLE I/O ••••••••••••••••••••
GET I/O ByTE ••••••••••••••••••••••••••
SET I/O ByTE ••••••••••••••••••••••••••

PRINT STRING •••••••••••••••••••••••••
READ CONSOLE BUFFER ••••••••••••••••••
GET CONSOLE STATUS •••••••••••••••••••
RETURN VERSION NUMBER ••••••••••••••••
RESET DISK SySTEM ••••••••••••••••••••
SELECT DISK •• o ••••••••••••••••••••••••

OPEN FILE ••••••••••••••••••••••••••••
CLOSE FILE •••••••••••••••••••••••••••
SEARCH FOR FIRST •••••••••••••••••••••
SEARCH FOR NEXT ••••••••••••••••••••••
DELETE FIT AE ••••••••••••••••••••••••••
READ SEQUENTIAL ••••••••••••••••••••••
WRITE SEQUENTIAL •••••••••.•• -•••••••••
MAKE FILE ••••••••••••••••••••••••••••
RENAME FILE ••••••••••••••••••••••••••
RETURN LOGIN VECTOR ••• · •••••••••••••••
RETURN CURRENT DISK ••••••••••••••••••
SET DMA ADDRESS ••••••••••••••••••••••
GET ADDR (ALLOC) ••••••••••••••••••••••
WRITE PROTECT DISK •••••••••••••••••••
GET READ ONLY VECTOR •••••••••••••••••
SET FILE ATTRIBUTES ••••••••••••••••••
GET ADDR(DISK PARMS) •••••••••••••••••
SET/GET USER CODE ••••••••••••••••••••

7
8
8
8
9
9

10
10
11
11
12
12
13
13
13
14
14
15
15
16
16
17
17
18
18
19
19
19
20
20
20
21
22
22

ZRDOS Version 1.0 - Programmer's Guide

4.34. FUNCTION 33: READ RAN[X)M..... • 23
4.35. FUNCTION 34: WR.ITE RANIX>M ••••••••••••••••••••••••• 24
4.36. FUNCTION 35: COMPUTE FILE SIZE •••••••••••••••••••• 25
4.37. FUNCTION 36: SET RANDOM RECORD •••••••••••••••••••• 25
4.38. FUNCTION 37: RESET DRIVE ••••••••••••••••••••••.••• 26
4.39. FUNCTION 40: WRITE RANDOM WITH ZERO FILL •••••••••• 27
4.40. FUNCTION 47: RETURN CURRENT DMA ADDRESS ••••••••••• 27
4.41. FUNCTION 48: RETURN ZRDOS VERSION NUMBER •••••••••• 27
4.42. FUNCTION 50: SET WARM BOOT TRAP ••••••••••••••••••• 28
4.43. FUNCTION 52: RESET WARM BOOT TRAP ••••••••••••••••• 28

5. DIRECTORY CODES.. 29

A. INDEX ••••••••• eo.. 30

LIS T o F FIGURES

4-1: Console Buffer Format.................................. 12
4-2: FeB forrna.t... 17
4-3: Login Vector Bit Map................................... 19
4-4: Read Only Vector Bit Map ••••••••••••••••••••••••••••••• 20
4-5: File Attribute Format.................................. 21
4-6: Use of FCB bytes 'rO','r1' and 'r2' •••••••••••••••••••• 24
4-7: Active Drive Vector Bit Map •••••••••••••••••••••••••••• 26

5-1: Example Directory Sector ••••••••••••••••••••••••••••••• 29

LIS T o F TABLES

4-1: ZRDOS Version 1.0 Function Calls....................... 7
4-2: ·IOBYTE Format.. 11

ZROOS Version 1.0 Programmer's Guide

1. DIFFERENCES FR<»t THE STANDARD CP/M CCP

ZRDOS is a Z80 coded, CP/M 2.2 compatible disk operating
system designed to be used with Echelon Z80/HD64180 Command
Processor ZCPR3 written by Richard Conn and auto-install Z3-Dot­
Com by Joseph Wright.

Page 1

ZRDOS Version 1.0 Programmer's Guide

1.1. ZCPR3 utilities and Features·

ZRDOS is compatible with all of the ZCPR3 utilities. Named
Directories, Redirectable I/O, and all other ZCPR3 features can
be used with ZRDOS. For installation of these additional
features please refer to original ZCPR3 documentation package.

Page 2·

ZRDOS Version 1.0 Programmer's Guide

2. DIFFERENCES FR<M CP/M 2.2 BOOS

2.1. Disk Change

ZRDOS allows the changing of disks without the need of a
warm boot. CHANGED DISKS WILL BE AUTOMATICALLY LOGGED IN.

NOTE: The above mentioned auto login will not occur if a file
was open when the disk was changed and a write
operation is attempted to that file on the new diskette
instead the following error message will be printed:

Disk Changed Error On Drive B:

It should also be noted that the automatic logon mayor may
not be able to handle changes in density or number of sides.
This depends on how your bios handles deblocking and double sided
disks. However if the disk is of the same density and number of
sides as the disk it is being swapped with there will be no
problems.

2.2. Read Only Disk Status

Under ZRDOS a disk can only be set to RIO status by
executing function call 28 (Protect Drive).

ZRDOS function call 37 (Reset Drive) is different in that it
will only reset the Read Only bits for the drive(s) specified in
the user passed drive map in the register pair (DE). With CPIM
function 37 will also reset the bits for any drive not currently
active.

Function call 13 (Reset Disk System) is different in that it
will not reset drives that are set to Read Only but will instead
reset the disk changed vector.

Page 3

ZRDOS Version 1.0 Programmer's Guide

2.3. Read Console Buffer

The Read console buffer routine (Function 10) for ZRDOS is
different in the following ways:

o Rubout (DEL) is treated the same as a backspace.
o The Control-R edit function is not implemented.

NOTE: In CP/M these are teletype oriented edit commands and were
felt not to be desired in ZRDOS.

2.4. File Archiving

ZRDOS supports the use of the file archive attribute. The
support of this feature is compatible with both CP/M 3.0 and
MP/M. This bit when set indicates an archived file. That is a
file which has not been al teredo The bit can be set by using a
Function 30 (Set File Attributes) function call. Any update to
this file once the bit has been set will cause the bit to be
reset. This can then be used by a copy utility to indicate the
need to backup the file. The utility that backs up the file
should then set the archive bit to indicate the file has been
backed up.

2.5. Wheel Protection

ZRDOS uses the ZCPR3 wheel byte and a new file attribute bit
to protect files from non-wheel users. This bit when set will
write protect the file as long as the wheel byte is off. If the
wheel byte is set the file is treated as a normal file.

If a non-wheel user attempts to change a wheel protected
file the following error message will be displayed:

AO>File W/P Error on A:

Page 4

ZROOS Version 1.0 Programmer's Guide

2.6. Error Messages

ZROOS CP/M
Error
Number

1 Read Error On A:
2 Drive Select Error On A:
3 Disk R/O Error On A:
4 File R/O Error On A:
5 Disk Changed Error On A:
6 File W/P Error On A:

Bdos Err On
Bdos Err On
Bdos Err On
Bdos Err On
n/a
n/a

A:Bad Sector
A:Select
A:R/O
A:File R/O

With ZRDPS all non-retryable errors jump directly to warm
boot after the error message has been printed. Read Errors allow
the user the option of retrying the operation by pressing any key
but control-c or aborting by pressing control-c. Error numbers
shown above are returned in the (A) register. The selected drive
number is returned in register (E).

NOTE: If the warm boot trap (see FUNCTION 50) is set ZROOS jumps
directly to the warm boot vector and no error messages
are displayed. (User program stack pointer not returned.)

CP/M handles the errors in the same manner except a key
must be pressed before CP/M will return from any type of error
and CP/M doesn't return an error or drive number. Nor does CP/M
have a warm boot trap function.

Page 5

ZROOS Version 1.0 Progranl'lle!'s Guide

3. ZROOS EXTENDED FUNCTION CALLS

3.1. Function 47: Get CUrrent DMA Address

This function will return the currently assigned DMA address
in the register pair (HL).

3.2. Function 48: Return ZROOS Version Number

This function works the same as CP/M function call 12 except
the ZROOS Version number is returned instead of the CP/M version
number. To maintain CP/M compatibility ZROOS will return version
number 2.2 on a function 12 call. As with function 12 function 48
uses the register pair (HL) to return the version number. If user
programs that use the extended ZRDOS functions are written this
function should first be used to determine if the program is
being run under ZROOS.

3.3. Function 50: Set Warm Boot Trap

A new function call is provided that allows the user to set
a trap on warm boot to a user specified address. The trap is set
by executing a function 50 call with the trap address in the
register pair (DE). The Warm boot jump address at location 001H
is replaced with the user supplied trap address. Warm boots
executed after the trap is set will cause a jump to the trap
address. ZROOS error messages are suppressed allowing the user to
print his own error messages. As noted in the ZRDOS error section
above errors detected by ZRDOS return an error number and the
active drive number which the user can then use to determine how
best to handle the error.

WARNING: Caution should be exercised when using this function as
the results will be unpredictable if a program that has
set the trap terminates without first resetting the
trap. See FUNCTION 52 below.

3.4. Function 52: Reset Warm Boot Trap

This new function call will reset the warm boot trap set by
function call 50. The trap is reset by executing a function call
52. The Real bios warm boot address is restored to location
0001H. If function call 50 is used in a user program a function
call 52 should be executed before control is returned to the
operating system.

Page 6

ZRDOS Version 1.0 Programmer's Guide

4. ZROOS VERSION 1.0 FUNCTION CALLS

FUNCTION : DESCRIPTION OF ZRDOS
OPERATION PERFORMED NUMBER

o
1
2
3
4
5
6
7
8
9

System Reset
Console Input
Console output
Reader Input
Punch Output
List Output
Direct Console 1/0
Get 1/0 Byte
Set 1/0 Byte
Print String
Read console Buffer
Get Console Status

I Return Version Number (CP/M)
Reset Disk System
Select Disk
Open File
Close File
Search For First
Search For Next
Delete File
Read Sequential
Write Sequential
Make File
Rename File
Return Login Vector
Return Current Disk
Set DMA Address
Get Allocation Vector Address
Write Protect Disk
Get ReadlOnly Vector
Set File Attributes
Get Disk Parameter Block Address
SetlGet User Code
Read Random

I Write Random
Compute File Size
Set Random Record
Reset Drive
Write Random With Zero Fill
Return Current DMA Address
Return Version number (ZRDOS1)
Set Warm Boot trap I

I

I

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
40
47
48
50
52 Reset Warm Boot trap • I

Table 4-1: ZRDOS version 1.0 Function calls

Page 7

ZRDOS Version 1.0 Programmer's Guide

4.1. FUNCTION 0: SYSTEM RESET

Entry Parameters I
I Returned Value

:------------------------------:--------------------------------:
: Register (C): OOH I

I None

Function to terminate program and reset the system. Same
results as performing a jump to location OOOOH. The disk system
is reset; that is disks marked as changed are cleared and the
directory check information is discarded.

4.2. FUNCTION 1: CONSOLE INPUT

Entry Parameters Returned Value
:------------------------------:---------7----------------------;
: Register (C): 01H : Register (A): ASCII Character:

Function to get character from console device. A byte from
the device currently assigned to CON: is returned in register
(A). The byte is echoed to the terminal. If no byte is ready at
the time the call is made, the calling program is suspended until
a byte becomes available.

4.3. FUNCTION 2: CONSOLE OUTPUT

Entry Parameters Returned Value
:--------------------------------:------------------------------:
: Register (C): 01H None
: Register (E): ASCII Character:

Function to output character in regist~r (E)
currently assigned to CON: and expand tabs if
control-S (pause) and control-P (echo to printer)
test is also performed.

Page 8

to the dev ice
necessary. A
console input

ZRDOS Version 1.0 Programmer's Guide

4.4. FUNCTION 3: READER INPUT

Entry Parameters Returned Value
:------------------------------:--------------------------------:
: Register (C): 03H : Register (A): ASCII Character:

Function to get character from the reader device. The next
byte from the device currently assigned to RDR: is returned in
register (A). All 8 bits are returned. The calling program is
suspended until a byte is ready.

4.5. FUNCTION 4: PUNCH OUTPUT

I
I Entry Parameters Returned Value
:--------------------------------;------------------------------:
: Register
: Register

(C): 04H
(E): ASCII Character:

None

Function to output a character to the punch device. The byte
in register (E) is sent to the device currently assigned to PUN:.
The program is suspended until the device is ready to accept the
byte.

Page 9

ZRDOS Version 1.0 Programmer's Guide

4.6. FUNCTION 5: LIST OUTPUT

: Entry Parameters : Returned Value
:--------------------------------:------------------------------:
: Register
: Register

(C): 05H I
I

(E): ASCII Character:
None

Function to output a character to the list device. The byte
in ·register (E) is sent· to the device currently assigned to LST:.
The program is suspended until the device is ready to accept the
byte.

4.7. FUNCTION 6: DIRECT CONSOLE 1/0

Entry Parameters

Register (C) :
Register (E):

06H
OFFH
OFEH
ASCII

(input)
(status)

Char (output)

Returned Value

Register (A): ASCII Char
or

status

Function to perform direct console i/o. If register (E)
contains (FF) then this is an input request. If register (E)
contains (FE) then this is a status request. Otherwise the
character in register (E) will be sent to the device currently
assigned to CON:. This request bypasses all control character
checks.

Page 10

ZRDOS Version 1.0 Programmer's Guide

4.8. FUNCTION 7: GET 1/0 BYTE

Entry Parameters Returned Value
:------------------------------!--------------------------------:
: Register (C): 07H : Register (A): 1-/0 Byte Value

Function to return the ilo byte. The current value of the
IOBYTE (memory location 0003H) is returned in register (A).

4.9. FUNCTION 8: SET 1/0 BYTE.

Entry Parameters , , Returned Value
:--------------------------------:------------------------------:
: Register
: Register

(C): 08H
(E): 1/0 Byte Value

None

Function to set the ilo byte. The value in (E) is set as the
current IOBYTE (memory location 0003H). It changes control of the
output direction immediately.

The 1/0 byte located at memory location 0003H is made up of
the four fields shown in the following table:

IOBYTE: : 7

bit value

6

list
(LST:)

, .
I , ,

5 4

punch
(PUN:)

.,
I

3 2

reader
(RDR:)

1 o

console
(CON:)

------------- --:
00
01
10
11

TTY: TTY: TTY:
CRT: PTP: PTR:
LPT: UP1: UR1:
UL1: UP2: UR2:

Table 4-2: IOBYTE Format

TTY:
CRT:
BAT:
Ue1:

Page 11

ZRDOS Version 1.0 Programmer's Guide

4.10. FUNCTION 9: PRINT STRING

Entry Parameters Returned Value
:--------------------------------:------------------------------:
: Register (C): 09H
: Register (DE): String address

None I
I

Function to send the character string pointed to by (DE) to
the device currently assigned to CON:. The printing of the string
to the console device will continue until a '$' is encountered in
the string. Console input control character checks are made and
tabs are expande~.

4.11. FUNCTION 10: READ CONSOLE BUFFER

Entry Parameters I
I Returned Value

:--------------------------------:------------------------------:
: Register (C): OAH : Console Characters in Buffer:
: Register (DE): Buffer address

Function to execute a buffered read. ZRDOS notes the current
cursor position as it knows it, then reads characters from the
console device until a CR or LF is received, or until the maximum
number of characters have been received.

ZRDOS unlike standard bdos treats the rubout (del) key the
same as a backspace. Also the control-R function has been
eliminated.

The form of the read buffer is as follows:

BASE = Address in (DE)

BASE BASE + 1 BASE +2 to end of buffer
--»-----

: Max # of chars : char cnt : characters
--»-----

Fig. 4-1: Console Buffer Format

Page 12

ZRDOS Version 1.0 Programmer's Guide

4.12. FUNCTION 11: GET CONSOLE STATUS

Entry Parameters Returned Value
:------------------------------:--------------------------------:
: Register (C): OBH : Register (A): Console status :

Function to interrogate the console device. The device
currently assigned to CON: is polled. If a byte is ready for
input, a nonzero value is returned in register (A), otherwise OOH
is returned.

4.13. FUNCTION 12: RETURN VERSION NUMBER

I
I Entry Parameters Returned Value
:------------------------------:--------------------------------:
: Register <C): OCH : Register (HL): Version Number

Function to return the current version number. Version
number 2.2 is returned to maintain CP/M compatibility. Function
48 should be used to get the ZRDOS version number.

4.14. FUNCTION 13: RESET DISK SYSTEM

Entry Parameters Returned Value
:------------------------------ --------------------------------

Register (C): ODH Register (A): OFFH if the
current default drive contains
a file name beginning with a $
OOH if not.

Function to reset the disk system. All active drives are
reset to an unknown condition. Drive A is relogged in and the DMA
address is reset to 80H. Unlike CP/M ZRDOS does not reset the
read only vect,or of drives that have been set to read only status
but instead resets the ZRDOS disk changed vector for any drives
that are marked as changed.

Page 13

ZROOS Version 1.0 Programmer's Guide

4.15. FUNCTION 14: SELECT DISK

Entry Parameters Returned Value
:---------------------------~--:--------------------------------:
: Register (C): OEH : None
: Register (E): Selected Disk:

Function to set the active disk number. Register (E)
contains a number in the range 0 - 15, signifying disk A - P
respectively. If the selected drive is not the current default
drive, it is made the default drive. If it has not been selected
since the last warm start or disk reset, its directory is scanned
and new allocation and check vectors are built.

4.16. FUNCTION 15: OPEN FILE

I
I Entry Parameters Returned Value
:--------------------------------:------------------------------:
: Register (C): OFH : Register (A): Directory Code:
: Register (DE): FCB Address

Function to open a specified file. The drive code, if not
zero, is used to select a drive. The directory is scanned for the
first match to the filename and extent number in the fcb pointed
to by the register pair (DE). The filename may contain wildcards.
A matching directory entry is then copied into the specified fcb
and register (A) is return with the directory sector location
code 0 - 3 (See section on Directory Codes). If no match is found
register (A) will contain OFFH.

Page 14

ZRDOS Version 1.0 Programmer's Guide

4.17. FUNCTION 16: CLOSE FILE

-------------~---
Entry Parameters Returned Value

:--------------------------------:------------------------------:
: Register (C): 10H : Register (A): Directory Code:
: Register (DE): FCB Address

Function to close a specified file. The filename and extent
number in the fcb pointed to by the register pair (DE) are
located in the directory. The file name may contain wildcards. If
they are found, the record count and data map from the specified
fcb are copied into the directory entry and the directory
location code 0 - 3 is returned in register (A). If the filename
can not be found OFFH is returned in register (A).

4.18. FUNCTION 17: SEARCH FOR FIRST

Entry Parameters Returned Value
:--------------------------------:------------------------------:
: Register (C): 11H : Register (A): Directory Code:
: Register (DE): FCB Address

Function to return the first occurrence of a specified file
name. The directory of the default drive is scanned for an entry
that matches the filename and extent number in the fcb pointed to
by the register pair (DE). The filename may contain wildcards. If
a match is found, the directory location code 0 - 3 is returned
in register (A). If no match is found OFFH is returned in
register (A). If the extent number contains OOH, only the firat
extent for a file can be matched. If the extent number contains a
question mark, the first entry found is returned. If the drive
number of the specified fcb contains a question mark, all
directory entries of any user code, and entries of any type
including those not in use, are compared.

Page 15

ZROOS Version 1.0 Progranmer's Guide

4.19. FUNCTION 18: SEARCH FOR NEXT

Entry Parameters Returned Value
:--------------------------------:------------------------------:
: Register (C): 12H : Register (A): Directory Code:
: Register (DE): FCB Address

Function to return the next occurrence of a file name. This
function performs the same as function 17 except that tbe search
begins with the entry following the one returned by the last
search (function 17 or 16). For this function to work correctly
it must be proceeded by a search function.

4.20. FUNCTION 19: DELETE FILE

Entry Parameters Returned Value
:--------------------------------:------------------------------:
: Register (C): 13H : Register (A): Directory Code:
: Register (DE): FCB Address

Function to delete a file by name. The drive code, if not
zero, is used to select a drive. The directory is scanned for all
entries that match the given filename (which may contain
wildcards). Only files in the active user area are considered.

Page. 16

ZRDOS Version 1.0 Programmer's Guide

4.21. FUNCTION 20: READ SEQUENTIAL

: Entry Parameters : Returned Value
:--------------------------------:------------------------------:
: Register (C): 14H : Register (A): Directory Code:
: Register (DE): FCB Address

Function to execute a sequential read of the specified
record number. The drive code, if not zero, is used to select a
drive. The 128-byte record referenced to by the (cr) byte is read
and placed into the current file buffer. The (cr) byte is
incremented. If it then equals the (rc) byte, the entire extent
has bee read; the directory entry describing the next extent of
the file is copied into the FCB and (cr(is zeroed. If there are
no further extents the extent map in the referenced fcb is set to
zero. If the record is successfully read, register (A) is
returned containing OOH. If an end of file occurs, register (A)
is returned containing OFFH. The format of the referenced fcb is
shown below:

o 1 8 9 B C D E F

: dr : filename : filetype : ex : sl : s2 : rc :
:--:
: extent map
:--
: cr :

Fig. 4-2: FeB format

4.22. FUNCTION 21: WRITE SEQUENTIAL

Entry Parameters Returned Value
:--------------------------------:------------------------------:
: Register (C): 1SH : Register (A): Directory Code:
: Register (DE): FCB Address

Function to write the next sequential record. The drive code
if not zero, is used to select a drive. If no block has been
allocated to the record referenced by (cr) of this extent, one is
allocated and entered in the bit map. The record in the current
file buffer is written into the position referenced by (cr). The
FCB bytes (cr) and (rc) are then incremented. If the extent is
then full, the FCB is copied into the matching directory entry
and a new entry is made for the next extent, the (cr) and (rc)
bytes are reset to zero as is the data map area of the FCB. If
the write was successful, OOH is returned in register (A)
otherwise a none zero value is returned.

Page 17

ZROOS Version 1.0 Programmer's Guide

4.23. FUNCTION 22: MAKE FILE

Entry Parameters - I

I - Returned Value
:--------------------------------:------------------------------:
: Register (C): 16H : Register (A): Directory Code:
: Register (DE): FCB Address

Function to create a file. A directory entry is created for

the filename specified by the fcb pointed to by register pair
(DE). The newly created entry will contain a pointer to the first
extent but with no space allocated to it. Upon return register
(A) will contain the Directory Code for the new fcb if the
operation was successful or OFFH if no more directory space is
available. A successfully created file can be treated as open.

4.24. FUNCTION 23: RENAME FILE

Entry Parameters Returned Value
:--------------------------------:------------------------------:
: Register (C): 17H : Register (A): Directory Code:
: Register (DE): FCB Address

Function to rename a file. The drive code if not zero, is
used to select a drive. The directory is scanned and all entries
for the explicit filename in bytes 01H - OBH of the fcb are
changed to that in bytes 11H - 1BH. If no such directory entry is
found, OFFH is returned in register (A) else the Directory Code
is returned in register (A).

Page 18

ZRDOS Version 1.0 Programmer's Guide

4.25. FUNCTION 24: RETURN LOGIN VECTOR

Entry Parameters Returned Value
:--------------------------------:------------------------------:
: Register (C): 18H : Register (HL): Login Vector

Function to return the login vector. A bit map of the drives
that are currently active is returned in the (HL). The bits of
the map stand for drives as follows:

Register (H) Register (L)

Bit numbers: 7654321 0 7 6 5 4 3 210

Drive 10: P 0 N M L K J I HGFEDCBA

Fig. 4-3: Login Vector Bit Map

4.26. FUNCTION 25: RETURN CURRENT DISK

Entry Parameters I
I Returned Value

:------------------------------:--------------------------------:
: Register (C): 19H : Register (A): CUrrent Disk I

I

Function to return the current disk assignment. The disk
number of the currently logged in drive is returned in register
(A). The number returned ranges from 0 to 15 and corresponds to
drives A through P respectively.

4.27. FUNCTION 26: SET DMA ADDRESS

Entry Parameters Returned Value
:--------------------------------:------------------------------:
: Register (C): 1AH : Register (DE): DMA Address

Function to set the dma address to the address supplied in
the register pair (DE). The Direct Memory Address used to address
a 128 byte file buffer for disk read/write transfers is set to
the address specified in .the register pair (DE). The default DMA
address used by ZRDOS is 0080H.

Page 19

ZRDOS Version 1.0 Programmer's Guide

4.28. FUNCTION- 27: GET ADDR (ALLOC)

: Entry Parameters : Returned Value
:--------------------------------:------------------------------!
: Register (C): lBH : Register (HL): ALLOC Address:
--~------------------

Function to return the allocation vector. The address of the­
allocation vector for the currently logged in drive is returned
in the register pair (HL).

4.29. FUNCTION 28: WRITE PROTECT DISK

Entry Parameters Returned Value
:--------------------------------:------------------------------:
: Register (C): lCH None I

I

Function to write protect the current disk. The default
drive is set to read-only status. Under ZRDOSI unlike CP/M the
protected drive will retain this status until it is reset with a
function call 37 or cold boot.

4.30. FUNCTION 29: GET READ ONLY VECTOR

Entry Parameters Returned Value
:-----------------------------:---------------------------------:
: Register (C): lDH : Register (HL): RIO Vector Value:

Function to return the read-only status vector. A bit map of
the drives that are currently marked read-only is returned in the
(HL). The bits of the map stand for drives as follows:

Page 20

Bit numbers:

Drive 1D:

Register (H) Register (L)

7 6 5 4 321 0

PONMLKJ1

76543 210
I I
I I

HGFEDCBA

Fig. 4-4: Read Only Vector Bit Map

ZRDOS version 1.0 Programmer's Guide

4.31. FUNCTION 30: SET FILE ATTRIBUTES

Entry Parameters Returned Value I
I

:--------------------------------:------------------------------:
: Register (C): 1EH : Register (A): Directory Code:
: Register (DE): FCB Address

Function to set the file attributes. The attributes f1-f4
can be used by the user for any purpose. The next three are
reserved for future use. Attribute t1 is the File Read Only
attribute and is used to prevent a file from being written to.
The t2 attribute is the system attribute it alerts the ZCPR3 DIR
command that this file is not to be displayed. The t3 attribute
is the file archive attribute and is used to indicate whether a
file has been updated. Attributes are set by turning on the high
order bit of the specified byte and reset by turning it off. The
f8 attribute is the Wheel Protect attribute. If this bit is set
and the ZCPR3 Wheel byte is off the file can not be written to
nor can the file's attributes be changed. If the Wheel byte is
set the file is treated as any other file.

Attribute

Attribute

FCB Byte No.

User Defined Reserved W/P RIO SYS ARChive
..,--__ --,- - - I I I I

I I I I
f1 f2 f3 f4 f5 f6 f7 f8 t1 t2 t3

: 0 : 1 2 3 4 5 6 7 8 : 9 10 11 :
:---:------------------------:-----------:
:drv: filename : extension

Fig. 4-5: File Attribute Format."

Page 21

ZRDOS Version 1.0 Programmer's Guide

4.32. FUNCTION 31: GET ADDR (DISK PARMS)

I
I Entry Parameters Returned Value
:--------------------------------:------------------~-----------!
: Register (C): 1FH : Register (HL): DPB Address

Function to return the address of the disk parameter block
for the current drive. The address of the Disk Parameter Block is
returned in the register pair (HL).

4.33. FUNCTION 32: SET/GET USER CODE

Entry Parameters Returned Value
:-------------------------------_.:------------------------------:

Register (C): 20H
: Register (DE): OFFH (get) or

User Code (set)

Register (A): Current Code
or no value

---, .

Function to get or set the user number. If (E) was OFFH then
this is a request to return the current user number. Else set the
user number from (E).

Page 22

ZRDOS Version 1.0 Programmer's Guide

4.34. FUNCTION 33: READ RANDOM

I
I Entry Parameters Returned Value
:-------------------_._-----------:------------------------------:
: Register (C): 21H : Register (A): Return Code I

I

: Register (DE): FCB Address

Function to read a random record from a file. The 'rO', 'rl'
and 'r2' bytes used to construct the fcb pointer to the specified
record number (see fig.4-6 on next page). unlike a sequential
read operation, the record number is not advanced. Thus, if the
calling program does not increment the record number subsequent
random read operations will continue to read the same record.

As each random read operation automatically sets the extent
and record values into the specified fcb the file can then be
sequentially read or written, starting from the currently
accessed position.

Upon return from a random read operation register (A)
contains OOH if the operation was a success or one of the
following error codes:

01 - Reading unwritten data
03 - Cannot close current extent
04 - Seek to unwritten extent
06 - Seek past physical end of disk

Page 23

ZRDOS Version 1.0 Programmer's Guide

4.35. FUNCTION 34: WRITE RANDOM

Entry Parameters Returned Value
:--------------------------------:------------------------------:
: Register (C): 21B
: Register (DE): FCB Address

: Register (A): Return Code
. I

I

Function to write a random record to a file. This operation
is similar to the Read Random operation, except that data is
written to the specified record from the currently defined DMA
address~ If the addressed extent or record has not yet been
allocated, an aut()matic allocation will be performed before the
data is written. .

Upon return register (A) contains OOB if the operation was
successful or an error code if not. The error codes are the same
as those returned for a Random Read operation with the addition
of the following code:

05 - Directory·overflow

For random R/W, the fcb for the desired record number is set
per the 'rO,rl,r2' bytes. These bytes in the fcb are used as
follows:

Byte

Bit #

Page 24

fcb+35 fcb+34 fcb+33

r2 rl rO
'-----------------:-----------------:-----------------

7 6 5 4 321 0 7 6 5 4 3 2 1 0 : 7 6 5 4 3 210

overflow
extra
extent

land 's2':
extent
number

record
number

Fig. 4-6: Use of FCB bytes 'rO'~'r1' and'r2'.

ZRDOS Version 1.0 Programmer's Guide

4.36. FUNCTION 35: COMPUTE FILE SIZE

Entry Parameters Returned Value
:--------------------------------:------------------------------:
: Register (C): 23H : Random Record Field Set
: Register (DE): FCB Address

Function to compute the size of a random file. The directory
is scanned to find the highest numbered extent of the filename
in the fcb specified by register pair (DE). The direct address of
the specified file's last record, plus one, is set in the record
address field of the specified fcb.

4.37. FUNCTION 36: SET RANDOM RECORD

Entry Parameters Returned Value
:--------------------------------:------------------------------:
: Register (C): 24H : Random Record Field Set
: Register (DE): FCB Address

Function to return the random record position of a given
file which has been read in sequential mode up to now. The extent
number and current record number of the fcb specified by register
pair (DE) are used to calculate the direct address of the record
returned by the last sequential read operation.

Page 25

ZRDOS Version 1.0 Programmer's Guide

4.38. FUNCTION 37: RESET DRIVE

Entry Parameters Returned Value
:-------------------------~------:------------------------------!
: Register (C): 25H : Register (A): OOH
: Register (DE): Drive Vector

Function to allow a program to log off any drives. On entry,
set (DE) to contain a word with bits set for those drives that
are to be logged off. The log-in vector and the wr.ite protect
vector will be updated. Drives to be ·reset are specified in the
register" pair (DE) as follo·ws:

Register (D) Register (E)

Bit numbers: 76543 2 1 0 7 6 5 4 3 210

Drive 10: PONMLKJI HGFEDCBA

Fig. 4-1: ktive Drive Vector Bit Map.

NOTE: This function differs from CP/M in that only those drives
specified in the (DE) will be unprotected and not drives
which are not currently active as is done in CP/M.

Page 26

ZROOS Version 1.0 Programmer's Guide

4.39. FUNCTION 40: WRITE RANDOM WITH ZERO FILL

Entry Parameters Returned Value
:--------------------------------:------------------------------:
: Register (C): 28H : Register (A): Return Code
: Register (DE): FCB Address

Function to write random records with zero fill. When Direct
Access Write (Function 34) is used to build a file, unwritten
records within an allocation block contain unpredictable garbage.
This request fills the unwritten records of each new block with
binary zeros. .

4 • 40 • FUNCTION 47: RETURN CURRENT DMA ADDRESS

Entry Parameters Returned Value
:-------------------------------:-------------------------------:
: Register (C): 2FH : Register (HL): DMA Address

Function to return the current DMA Address.

4.41. FUNCTION 48: RETURN ZRDOS VERSION NUMBER

Entry Parameters Returned value

I
I

I
I

:-------------------------------:-------------------------------:
: Register <C): 30H : Register (HL): Version number:
--------------------------~------------------------------------

Function to return the current ZRDOS version number.

Page 27

ZRDOS Version 1.0 Programmer's Guide

4.42. FUNCTION 50: SET WARM BOOT TRAP

Entry Parameters Returned Value
:--------------------------------:------------------------------:
: Register (C): 32H None
: Register (DE): Trap address

This function replaces the warm boot jump address at OOOlH
with a trap address. Warm boots will then be diverted to the trap
address.

4.43. FUNCTION 52: RESET WARM BOOT TRAP

Entry Parameters Returned Value

:----------~------------------~--:-----------------------~------:
: Register (C): 34H None
----------~--

Function to reset the warm boot trap. The real warm boot
address is stored at OOOlH. Warm boots will now be directed to
the real warm boot. This function will take affect only if the
warm bOot trap was previously set by function 50. .

Page 28

ZRDOS Version 1.0 Programmer's Guide

5. DIRECTORY CODES

Many of the ZRDOS functions return a directory code as a return
parameter. The Directory Code is actually a multiplier to be used
in determining the directory entry location in the default file
buffer. The default buffer (location 80H) contains 128 bytes (one
sector) of the directory entries read off of the specified disk.
There are four 32 byte directory entries to a sector of directory
information. The returned Directory Code points to one of these
entries. The specified entry can be found by multiplying the
Directory Code times 32 and adding this offset to the beginning
address of the default buffer (80H). Below is shown a hex ASCII
image of a typical directQry sector loaded into the defatilt
buffer:

DEFAULT
I

I
I

_I
I \
0080
0090
OOAO
OOBO
OOCO
0000
OOEO
OOFO

BUFFER ADDRESS

HEX IMAGE

I
00444454 20202020
07000000 00000000
00454449 54202020
OAOBOOOO 00000000
00474F54 4F202020
91000000 00000000
0048454C 4C4F2020
30000000 00000000

,
20434F4D 00000026
00000000 00000000
20434F4D 0000004C
00000000 00000000
20434F4D 00000006
00000000 00000000
20202020 00000009
00000000 00000000

ASCII IMAGE

I ,
• DDT COM ••• &

.EDIT COM ••• L
• GOTO COM ••••
• HELLO
= •••••••••••••••

Fig. 5-1: Exaq:»le Directory Sector.

The Directory code for the directory entry EDIT.COM is 1. So
multiplying the directory code by 32 gives us 32 decimal. 32
decimal is 20 hex. Adding 20 hex to 80 hex gives us AO hex.

Page 29

ZRooS Version 1.0 Programmer's Guide

A

Allocation Vector, 20
Archive, 4
Automatic logon, 3

B

BAT:, 11

c

CON:, 8, 10, 11, 12, 13
CP/M BOOS Errors, 5
CRT:, 11
Close File, 15
Compute File Size, 25
Console Input, 8
Console Output, 8
Control-C

~C, 5
Control-P

~P, 8
Control-R

~R, 4, 12
Control-S

~S, 8
Current Disk, 19

Page 30

A. INDEX

o

DMA, 13
DMA Address, 19, 27
DPB Address, 22
Delete File, 16
Direct Console I/O,
Directory Code, 15,
Disk Change, 3
Disk Changed Error,
Disk R/O Error, 5
Drive Select Error,
Drive Vector, 26

E

Echo to printer
-P, 8

10
16,

3,

5

Error messages, 5, 6
Error numbers, 5

ZRDOS Version 1.0 Programmer's Guide

17, 18, 21, 29

5

Page 31

ZRDOS Version 1.0 Programmer's Guide

F

FCB, 14, 15, 16, 17, 18, 21, 23, 24, 25, 27
File Archiving, 4
File RIO Error, 5
File W/P Error, 5
Function 0: , 8·
Function 1: , 8
Function 2: , 8
Function 3: , 9
Function 4: , 9
Function 5: , 10
Function 6: , 10
Function 7: , 11
Function 8: , 11
Function 9: , 12
Function 10: , 4, 12
Function 11: , 13
Function 12: , 6, 13
Function 13: , 3, 13
Function 1"4: , 14
Function 15: , 14
Function 16: , 15
Function 17: , 15
Function 18: , 16
Function 19: , 16
Function 20: , 17
Function 21: , 17
Function 23:, 18
Function 24: , 19
Function 25:, 19
Function 26: , 19
Function 27: , 20
Function 28: , - 3, 20
Function 29: , 20
Function 30: , 4, 21
Function 31: , 22
Function 32: , 22
Function 33:, 23
Function 34: , 24
Function 35: , 25
Function 36: , 25
Function 37: , 3, 26
Function 40: , 27
Function 47: , 27
Function 48: , 6, 13, 27
Function 50: , 6, 28
Function 52: , 6, 28

Page 32

G

Get ALLOC Address, 20
Get Address (Disk P~rams),
Get console Status,
Get DMA, 27
Get 1/0 Byte,
Get Read Only

I

IOBYTE, 11

L

11
LPT:, 11
LST:, 10,
List output,
Login Vector,

N

11
Vector,

10
19

13

20

Named Directories, 2
Non-retryable errors, 5

0

Open File, 14

p

PTP: , 11
PTR: , 11
PUN: , 9, 11
Pause

~S, 8
Print String, 12
Punch output, 9

ZRDOS Version 1.0 Programmer's Guide

22

Page 33

ZRDOS Version 1.0 Programmer's Guide

R

RDR: , 9, 11
Read Console Buffer, 4, 12
Read Error, 5
Read Only Disk status, 3
Read Random, 23
Read Sequential, 17
Reader Input, 9
Redirectable 1/0, 2
Rename File, 18
Reset Disk System, 3, 13
Reset Drive, 3, 26
Reset Warm Boot Trap, 6, 28
Return Code, 23, 24, 27
Return Current DMA Address, 27
Return Current Disk, 19
Return Login Vector, 19
Return Version Number, 6, 13
Return ZRDOS Version Number, 6, 27
Rubout (DEL), 4, 12

s

Search for First, 15
Search for Next, 16
Select Disk, 14
Set DMA Address, 19
Set File Attributes, 4, 21
Set 1/0 Byte, 11
Set Random Record, 25
Set Warm Boot Trap, 5, 6, 28
SetlGet User Code, 22
System Reset, 8

T

TTY:, 11

u

UC1:, 11
UL1:, 11
UPl:, 11
UP2:, 11
URI:, 11
UR2:, 11
User Code, 22

Page 34

ZRDOS Version 1.0 Programmer's Guide

Warm Boot Trap, 5, 28
Warm boot, 5, 6
Warm boot trap, 6
Wheel Protection, 4
Wheel Protection Error, 4
Wheel byte, 1
Wildcards, 14, 15, 16
Write Protect Disk, 3, 20
Write Random, 24
Write Random with zero fill, 27
Write Sequential, 17

ZCPR3, 1, 2, 4
ZROOS Errors, 5

Page 35

ZlMIzmtZ/ZIMI -- Z-System Tools

Z80/HD64180 DEBUGGER and MONITOR

USER'S GUIDE

by

Robert Doolittle

ZDM/ZDMZ/ZDMH is Copyright 1985 RD SOFTWARE. No part of this
document may be reproduced in any way or by any means without
prior written permission of publisher. Address requests to
Echelon, Inc., 101 First Street, Los Altos, CA 94022.

TABLE OF CONTENTS

Section

Author's Note ii

I. INTRODUCTION ••.•••••••••.•••.••••••••.•••••.•• 1

II. ZDM OOMMANDS •••••••••••••••••••••••••••••••••• 3
1. The D (Display) Command •••••••.•••••••••• 3
2. The DI (Disable Interrupt) Command ••••••• 3
3. The EI (Enable Interrupt) Command •••••••• 3
4 • The F (F ill) Command •• ,. • • • • • • • • • • • • • • • • •• 3
5 • The G (Go) Command •••••.••••••••••••••••• 4
6. The H (Hex Math) Command ••••••••••••••••• 4
7. The I (Input) Command ••.•••••.••••••.•••• 4
8. The L (List) Command .•••••••••••••••••••• 5
9 • The M (Move) Command •••.••••• '. • • • • • • • • • •• 5

10. The QI (Query Input) Command ••••••••••••• 5
11. The QO (Query Output) Command •••••••••••• 5
12 • The R (Read) Command ••••••••••••••••••••• 6
13. The S (Set) Command ••...•••.••••••••••••• 6
14. The T (Trace) Command •••••••••••••••••••• 7
15. The U (Untrace) Command •.•••••••••••••••• 7
16. The X (Examine) Command •••••••••••••••••• 7
17. The & (Alternate Register) Command ••••••• 8
18. The B (Block Search) Command ••••••••••••• 8
19. The V (Verify) Command ••••••••••••••••••• 9
20. The P (Print) Command •••••••••••••••••••• 9
21. The J (Jump) Command ••••••••.•••••••••.•• 9

III. INSTALLATION PROCEDURES 11

APPENDIX A PATCHING NOTE 13

APPENDIX B ZDM MNEHlNICS 15

APPENDIX C HITACHI BD64180 MNEMONICS ••••••••••••• 17

APPENDIX D ZDM!ZI»tZ!ZDMH COMMAND SUMMARY ••••••••• 19

-i-

Author's Note

These programs have been thoroughly tested
and are believed to be correct. If you find
something not to your liking let us know. We
welcome your comments, criticisms or quest­
ions. Please call or write if you experience
any problems.

Robert Doolittle
Echelon Z-Team Member

Telephone 213/454-8270
1290 Monument Street

Pacific Palisades. CA 90272

-ii-

ZDM User's Guide

I. INTRODUCTION

ZDM, ZDMZ and ZDMH are Z80 and HD64180 machine langua~e debuggers
and monitors designed to run under Z-System(and CP/M) operating
system environment. They recognize and debug 8080, z80 or
HD64180 code although they only run on Z80 and HD64180 machines.
The command types and command structure are nearly identical to
those of the DDT module provided by Digital Research as part of
their CP/M operating system. The major difference is that
Z80/HD64180 cod~ can be debugged and ten new commands with
variations have been added. ZDM/ZDMZ/ZDMH supports all the DDT
commands except the in-line assembly command A. Also, only one
breakpoint is implemented.

ZDMZ/ZDMH support Zilog z80 mnemonics whenever instruction
mnemonics are displayed. Additionally, ZDMH supports the
enhanced Hitachi instruction set of the HD64180. ZDM uses
extended Intel 8080 mnemonics similar to TDL (Xitan) which
retains all standard 8080 mnemonics. please refer to the
Appendices for a definition of the mnemonics used by ZDM. Refer
also to Section III Installation Procedures before attempting to
run ZDM, ZDMZ or ZDMH~

Throughout the remainder of this manual all references to
ZDM apply equally to ZDMZ/ZDMH except where otherwise explicitly
noted.

ZDM is invoked by typing one of the following three forms at
the console:

ZDM
ZDM filename
ZDM filename.filetype

where "filename" is the name of the file to be loaded. ZDM will
then sign-on and relocate itself to overlay the CCP and reside
directly below ZRDOS (or BDOS). The jump to ZRDOS at location 5
is altered to address the base location of ZDM which, in turn,
contains a jump to ZRDOS or BDOS. Note that ZDM provides arl
additional page of available transient memory compared to DDT for
a given size Z or CP/M system. Like DDT, transient programs
loaded for debugging can overwrite the disassembler module. In
this case the L command is disabled and the instruction field for
the X and T commands is replaced by the corresponding hexadecimal
bytes of the instruction.

ZDM has an additional feature to prevent overlaying the ZDM
nucleus itself. If this is about to happen, ZDM aborts the load
and print an "OUT OF MEMORY" message. It then returns to command
level so that those portions which were loaded may be examined.

*CP/M is registered trademark of Digital Research. Z-System is
trademark of Echelon.

Page 1

ZOM User's Guide

The second and third forms of the console command line
result in the named file being loaded after ZDM is entered.

After the sign-on message a~d program loading, if specified
in the command line, ZDM will respond with the prompt character
"_If and wait for input commands. Each command consists of either
one or two characters, as defined in Section II, which determines
the command type. These characters may also be followed by
additional parameters. No delimiter should be used between the
command type characters and the first parameter except as
described for the G command. Subsequent parameters are delimited
by a comma or a single space. In all cases, if the command
expects a final parameter and this parameter is omitted, ZDM will
assume it is zero.

All command lines are terminated by a carriage return. All
keyboard input to ZDM and output from ZDM is in hexadecimal. ZDM
will accept either upper or lower case letters. A single
character (?) is printed if an error occurs. To exit ZDM and
return to ZCPR3 or CP/M command level either a Control-C or a GO
(jump to loation 0) may be executed.

Page 2

ZDM User's Guide

II. zmt c:xawms

Details of each command are given in this Section.

1. The D (Display) Command. The D command permits the
operator to view the contents of memory in hexadecimal and ASCII
formats. The forms are:

D
Ds
Ds,f

In the first case, memory is displayed from the current
display address (initially 100H) and continues for the number of
lines specified at initialization. Subsequent display addresses
are initialized to the value of the program counter following an
X, T, U, or G command.

The second form of the D command is similar to the first
except that the display address is first set to address s. The
third form displays from address s through f. In all cases a
subsequent issue of the first form will start with the display
address following the last address displayed, resulting in a
continuing display. Long typeouts can be aborted with the rubout
key.

2. The DI (Disable Interrupt) Command. This command takes
the single form:

DI

The default condition, whenever the target program is entered via
the G, T, or U command, is that interrupts are enabled. (Inter­
rupts are always disabled when returning to ZDM). The DI command
overrides this default condition. The DI command will remain in
effect until a subsequent EI is issued.

3. The EI (Enable Interrupt) Command. This command res­
tores the default interrupt condition. See the DI command des­
cription. It takes the single form:

EI

4. The F (Fill) Command. The F command takes the form:

Fs,f,c

where s is the starting address, f is the final address, and c is
a hexadecimal byte constant. If c is omitted then it is assumed
to be zero. This command fills the block of memory from s to f

Page 3

ZDMUser's Guide

inclusive with the constant c. If f is less than s an error
message (?) will occur.

5. The G (Go) Commands. Program execution is started using
the G command with one optional breakpoint address. The G
command takes four possible forms:

G
Gs
Gs,b
G,b

The first form starts execution of the target program at the
current value of the program counter and in the current machine
state with no breakpoints set. The only way for ZDM to regain
control is through a RST 7 execution. The second form is similar
to the first except that the program counter is first set to s
before execution begins. Third form is the same as the second
except that ~. breakpoint is set at address b. Program execution
is stopped and control is returned to ZDM. The instruction at
address b is not executed when the breakpoint is encountered.
The fourth form starts execution from the current program counter
and machine state and sets breakpoint at address b.

Upon entering a breakpoint, ZDM types *d where d is the stop
address. The machine state can be examined at this point using
the X or &X command.

6. The H (Hex Math) Command. The H command takes the form:

Ha,b

where a and b are hexadecimal constants from 1 to 4 digits. The
sum a +b and the difference· a-b are displayed in hexadecimal in
the form:

a+b a-b

7. The I (Input) Command. The I command allows the
operator to insert a file name into the Z-System default file
control block at 5CH. The default FCB can be used by the program
under test as if it had been passed by the Console Command
Processor. This command must also be used prior to the R command
when reading additional HEX or COM files. The forms of the I
command are:

Ifilenarne
Ifilenarne.filetype

If the filetype is anything except HEX then ZDM will assume
it is a COM file and the R command will read it into memory
starting at 100H. (See the R command for further details) •.

Page 4

ZDM User's Guide

8. The L (List) Command. The L command is used to list
assembly language mnemonics. The three forms of the command are:

L
Ls
Ls,f

The first form lists the number of lines specified in the
initialization and starting at the current address of the program
counter. The second form lists the same number of lines but
starts at the address s. The third form starts at the address s
and continues for f lines. All three forms can be continued with
a subsequent L command similar to the 0 command. Also, like the
o command, the starting address if not specified is always
initialized to the program counter following an X, T, U or G
command. Long typeouts can be aborted with the rubout key.

9. The M (Move) Command. The M command will move a block
of memory from one location to another. The form of the M
command is:

Ms,f,d

where s is the start address of the move, f is the final address
and d is the destination address. If f is less than s, an error
(?) will occur.

10. The QI (Query Input) Command. The QI command allows
the operator to read an input port and display the value at the
port address. The form of this command is:

QIa

where a is a one byte port address in hexadecimal. The value is
printed immediately following execution of this command. Note
that if a is omitted, it is assumed to be zero.

11. The QO (Query Output) Command. The QO command allows
the operator to output a specified byte to a specified port
address. The form of this command is:

QOa,b

where a is the port address and b is the byte to be output. If
either a or b is omitted, it is assumed to be zero.

Page 5

ZDM User's Guide

12. The R (Read) Command. The R command is used in con­
junction with the I command to read COM and HEX files from disk
into memory. There are two forms of this command:

R
Rb

where. b is an optional offset address which is added to each
program or data address as it is loaded. If b is omitted then it
is assumed to be zero. Note that if the file name in the FCB
from a previous I command is not a HEX type then ZDM assumes it
is COM and will .load it at 100H or 100H+b if the parameter b is
included. If the file cannot be opened or an error occurs in
reading, ZDM responds with the error indicator (?). Otherwise at
completion of the load a message is issued:

NEXT PC
nnnn pppp

where nnnn is the next address following the program just loaded
and pppp is the first address of the program just loaded. For
HEX files pppp is taken from the last record of the HEX file and
will be zero unless an END statement followed by the start
address has been included in the source program prior to
assembly.

13. The S (Set) Command. The S command allows memory
locations to be examined and optionally altered. The form of the
command is:

Ss

where s is the hexadecimal starting address for examination or
alteration of memory. ZDM will print the address followed by the
byte stored at that address. A carriage return will advance to
the next address, displaying the next a4dress and the next byte.
If a new byte value is typed followed by a carriage return, this
new value will be stored at that address and ZDM will advance
a.utomatically to the next address. To terminate the command a
period is typed rather than a byte value. The command will also
terminate if an invalid hexadecimal value is entered.

Page 6

ZDM User's Guide

14. The T (Trace) Command. The T command permits single
step instruction tracing of program execution for 1 to 65535
steps. The forms of this command are:

T
Tn

where n is an optional step number. The first form assumes an
implied n equal one. The CPU state is displayed and the next
program step is executed. The termination address is displayed
as *hhhh where hhhh is the next address to be executed. The
format for the CPU state display is otherwise identical to that
of the X command.

Program tracing is discontinued at the interface to Z-System
and resumes again after return from Z-System to the target
program. Long tracing with the Tn command can be stopped with
the rubout key. ZDM will continue tracing from this break if
another T or Tn command is issued.

15. The U Wntrace) Command. The U command is identical to
the T command except that the CPU state is not displayed. The
forms of the command are:

U
Un

All conditions of the T command apply to the U command. The last
CPU state is displayed following the execution of a U or Un
command.

16. The X (Examine) Command. (See also the & Command).
The X command permits selective display and alteration of the
current CPU state at any time. The forms are:

X
Xr

where r is any of the z80 registers or flags.

C Carry Flag (0/1>
Z Zero Flag (0/1>
M Minus Flag (0/1)
E Even Parity Flag (O/U
I Interdigit Carry (0/1>
A Accumulator (O-FF)
B BC register pair (O-FFFF)
D DE register pair (O-FFFF)
H HL register pair (O-FFFF)
S Stack Pointer (O-FFFF)
P Program Counter (O-FFFF)
X X-index register (O-FFFF)
Y Y-index register (O-FFFF)

Page 7

ZDM User's Guide

In the first case the CPU register state is displayed in the
format

cfZfMfEflf A=bb B=dddd D=dddd H=dddd p=dddd S=dddd
X=dddd Y=dddd instruction

where f is a 0 or 1 flag value, bb is a byte value and dddd is a
double byte corresponding to a register pair. The instruction
field contains the disassembled instruction at the location
addressed by the program counter.

The second form of the X command permits display and
optional alteration of register or flag values specified by r. If
a carriage return is typed following an Xr command then the

command is terminated with no changes taking place. Otherwise
ZDM accepts input for register or flag changes. If a hexadecimal
number in the proper range is typed then that flag or register is
correspondingly altered.

17. The & (Alternate Register) ~ommand. The & command
takes one of three forms:

&
&X
&Xr

The first form unconditionally exchanges all CPU registers and
flags to the z80 alternate register set.

The second and third forms of this command are identical to
the X and Xr commands except that the operations take place on
the alternate register or f lag set. Upon termination of these
latter two forms the CPU state prior to command execution is
restored. The display associated with the &X command replaces the
X and Y registers by the vector interrupt register value V. This
register value may also be altered by an &XV command followed by
the byte value to be ~tored in the vector interrupt register.
The A, B, D and H registers and register pairs are labeled by
prime (') 'symbols whenever theal ternat~"s~t. is being displayed
or altexed.Note thatpr;:i.:mes 'at~~<notU$ed; for the flag register
except during alteration. .

18. The B (Block Search) Command. The Bcommand permits
the user to search memol:'y,fol:' all :occurrences of a byte string.
Strings are limited to ten bytes. A second form of this, command
is initiated by BT rather than B. This second form wi 11 accept
an ASCII or text string. The form of this command is:

Bs,f or BTs,f

where s is the start address and f is the final address of the
memory block to be searched. Following the carriage return you
will be prompted to enter the string. The B form expects the
string as a series of HEX bytes. The delimiter may be a space or
a comma. The BT form expects a single ASCII string. The input

Page 8

ZDM User's Guide

string is terminated by a carriage return following the last
entry. The start address of each occurrence of the string from s
to f will be displayed.

19. The V (Verify) command.
two blocks of memory are identical.

Vs,f,b

The V command will verify if
The form of this command is:

where s is the start address and f is the final address of one
block and b is the start address of the other block. If the

match fails, the address is printed out followed by the byte at
the corresponding address in the second block.

20. The P (Print) Command. The P command is a toggle which
does not expect any arguments. The effect is to send all output
to the LIST device as well as to the console. It is turned off
by a subsequent P command. Whenever the P toggle is on, a 'Pi
will be displayed as part of the X or T display.

21. The J (Jump) Command. The J command is a toggle which
does not expect any arguments. It only affects subsequent T or U
commands. If J has been executed then the T command will display
only conditional and unconditional CALLS, JUMPS, RETURNS,
RESTARTS, PCHL (IX or IY) and relative JUMPS. The Tn form of the
T command is usually used where n represents the actual number of
instructions to be traced. As usual this command can be aborted
with the rubout key. Whenever the J toggle is on, a 'J' will be
displayed as part of the X or T display.

Page 9

ZDM User's Guide

(THIS PAGE INTENTIONALLY BLANK)

Page 10

ZDM User's Guide

III. INSTALlATION PROCEDURES

The user should first make a copy of ZDM and keep the
original master as a back-up. Do not write on the master. Using
the copy type "ZDM". ZDM will respond with the question "What is
your terminal width (in hex)". A carriage return in response to
this question will default to a width of 80(SOH). Otherwise, type
in the character width of your terminal in hex followed by a
carriage return. Next, the number of lines desired for the D and
L command displays are requested. A carriage return at this
point defaults to 21(1SH) lines. (This is the recommended size
for 24 line terminals.) Otherwise, type in the number of lines
desired, in hex, followed by a carriage return.

Finally, ZDM will ask the question "Is this correct? (Y or
N)". Do not respond with "Y" at this time. Following an "N"
response ZDM will sign-on, print the prompt character "-", and
await a command. You should now test the D and L commands to
determine if these displays are sized properly for your terminal.
If not, return to Z-System command level by typing GO or Control­
C and repeat the above procedure. When you are satisfied that
the displays are properly sized, then respond with "Y" when asked
"Is this correct? (Y or N)". After a "Y" response ZDM will
automatically create your custom installed file. If you are
using ZDM then the installed file name will be ZDI.COM. If you
are using ZDMZ or ZDMH then the installed file name is either
ZDIZ.COM or ZDIH.COM. You may rename these to whatever names you
desire.

ZDM is now properly configured for your terminal.
Subsequent invocations of ZDM will proceed directly to the si.gn­
on message. If, at some later time, you wish to change these
display parameters you will have to start once again with a copy
of the master uninstalled file.

Page 11

ZDM User's Guide

(THIS PAGE INTENTIONALLY BLANK)

Page 12

ZDM User's Guide

APPENDIX A

Some users have experienced difficulties with ZDM/ZDMZ when
used with interrupt driven systems. (ZDMH has interrupts enabled
as default condition. You can still disable interrupts with the
D1 command when entering the target program but they will be
enabled again when ZDMH regains control.) The following patches
are recommended when running ZDM/ZDMZ on such systems.

Using ZDMH or other debugger, load an image of ZDM/ZDMZ into
memory starting at 100h and change the following bytes (addresses
apply to version 3.2):

ZDM
ADDRESS

OC61H
OC7AH
OOC1H

ZDMZ
ADDRESS

OC31H
OC4AH
OD91H

FROM

OF3H
OF3H
OF3H

TO

OOH
OOH
OOH

Return to 2i-System or CP/M without disturbing the memory image
and save 22 (or 16h) pages with the SAVE command.

o Another frequent user request has been to change the ZDM
RESTART address, curently RST 7 at 38h, to a different RESTART.
The following patches will accomodate this change. (RST 0 cannot
be used under Z operating system or under CP/M.)

ZOO
ADDRESS

OD9DH
ODA5H
1007H

ZOOZ
ADDRESS

006DH
0075H
OF07H

ZDMH
ADDRESS

ODEOH
00F5H
1057H

FROM

38H
39H

OFFH

TO

new RESTART address
new RESTART address + 1
new RESTART opcode

Page 13

- ZDM User's Guide

(THIS PAGE INTENTIONALLY BLANK)

Page 14

ZDM User's Guide

APPENDIX B

The disassembler module of ZDM uses a mnemonic set which is
similar to the Technical Design Laboratories (TDL) mnemonics.
All Intel 8080 mnemonics are preserved. The z80 peculiar
instructions differ from the Zilog mnemonics as shown in the
accompanying table. The ZDM mnemonic set is nearly identical to
that released by Digital Research as Z80.LIB to be used with
their CP/M Macro Assembler "MAC". The following conventions are
used in the table.

r - any register or memory
rr - any register pair or stack pointer
nn - 8 bit immediate data (0 to 255)

d - 8 bit signed displacement (-128 to 127)
nnnn - 16 bit address or immediate data (0 to 65535)

b - bit number (0 to 7, 7 is most significant)
addr - 16 bit address within PC+127 through PC-128

In cases involving a displacemen"t, d, this parameter is al ways
last one in operand field.

ZI»f ZILOG ZI»f ZILOG

LDX r,d LD r, (IX+d) LDIR LDIR
LDY r,d LD r, (IY+d) LDD LDD
STX r,d LD nX+d), r LDDR LDDR
STY r,d LD (IY+d),r CCI CPI
MVIX nn,d LD (Ix+d) ,nn CCIR CPIR
MVIY nn,d LD (IY+d),nn CCD CPD
LDAI LD A,I CCDR CPDR
LDAR LD A,R ADDX d ADD <rX+d)
STAI LD I,A ADDY d ADD (IY+d)
STAR LD R,A ADCX d ADC <IX+d)
LXIX nnnn LD IX,nnnn ADCY d ADC (IY+d)
LXIY nnnn LD IY,nnnn SUBX d SUB <IX+d)
LBCD nnnn LD BC, (nnnn) SUBY d SUB <IY+d)
LDED nnnn LD DE, (nnnn) SBBX d SBC <rX+d)
LSPD nnnn LD SP: (nnnn) SBBY d SBC <IY+d)
LIXD nnnn LD IX, (nnnn) ANAX d AND <rX+d)
LIYD nnnn LD IY, (nnnn) ANAY d AND (IY+d)
SBCD nnnn LD (nnnn) ,BC XRAX d XOR <rX+d)
SDED nnnn LD (nnnn) ,DE XRAY d XOR (IY+d)
SSPD nnnn LD (nnnn) , SP ORAX d OR <IX+d)
SIXD nnnn LD (nnnn) , IX ORAY d OR <IY+d)
SIYD nnnn LD (nnnn) ,IY CMPX d CP (IX+d)
SPIX LD SP, IX CMPY d CP (IY+d)
SPIY LD SP,IY INRX d INC nX+d)
PUSHIX PUSH IX INRY d INC (IY+d)
PUSHIY PUSH IY DCRX d DEC <IX+d)
POPIX POP IX DCRY d DEC (IY+d)
POPIY POP IY NEG NEG

Page 15

ZDM User's Guide

ZlM ZILOG ZlM ZILOG

EXAF EX AF,AF' IMO 1M 0
EXX EXX 1M! 1M 1
XTIX EX (SP) ,IX 1M2 1M 2
XTIY . EX (SP) , IY . . DADe rr ADC HL,rr
LDI LDI DSBC rr SBC HL,rr
DADX rr ADD IX,rr OUTI OUTI
DADY rr ADD IY,rr OUTIR OTIR
INXIX INC IX IND IND
INXIY INC IY INDR INDR
DCXIX DEC IX OUTD OUTD
DCXIY DEC IY OUTDR OTDR
BIT b,r BIT b,r RLCR r RLC r
SET b,r SET b,r RLCX d RLC (IX+d)
RES b,r RES b,r RLCY d RLC (IY+d)
BITX b,d BIT b,'(IX+d) RALR r RLr
BITY b,d BIT b, (IY+d) RALX d RL (IX+d)
SETX b,d SET b, (IX+d) RALY d RL (IY+d)
SETY b,d SET b, (IY+d) RRCR r 'RRC r
RESX b,d RES b, (IX+d) RRCX d RRC (IX+d)
RESY b,d RES b, (IY+d) RRCY d RRC (IY+d).
JR addr JR addr RARR r RRr
JRC addr JR C,addr RARX d RR nX+d)
JRNC addr -JR NC,addr RARY d RR (IY+d)
JRZ addr JR Z,addr SLAR r SLA r
JRNZ addr. JR NZ,addr SLAX d SLA (IX+d)
DJNZ addr DJNZ,addr SLAY d SLA (IY+d)
PCIX JP (IX) SRAR r SRAr
PCIY JP (Iy) SRAX d SRA (IX+d)
RETI RETI SRAY d SRA (IY+d)
RETN RETN SRLR r SRL r
INP r IN r, (e) SRLX d SRL (IX+d)
OUTP r OUT (C),r SRLY d SRL (IY+d)
INI INI RLD RLD
INIR INIR RRD RRD

*
*
*

Page 16

ZDM User's Guide

APPENDIX C

HITACHI BD64180 MNEMONICS

Object
Code

Source
statement

ED3805 INO A,(nn)
ED0005 INO B,(nn)
ED0805 INO C,(nn)
EDI005 INO D,(nn)
EDI805 INO E,(nn)
ED2005 INO H,(nn)
ED2805 INO L,(nn)

Operation

Load register with input from
port (nn).

**
ED4c
ED5c
ED6c
ED7C

MLT
MLT
MLT
MLT

BC
DE
HL
,SP

Unsigned multiplication of
each half of the specified
register pair with the 'i6-bit
result going to the specified
register pair.

**
ED8B OTOM Load output port (e) with

location (HL), decrement HL,
B, and C.

**********************~***
ED9B OTDMR Load output port (e) with

location (HL), decrement HL,
B, and C. Repeat until B=O.

**
ED83 OTIM Load output port (C) with

location (HL), increment HL
and e. Decrement B.

**
ED93 OTIMR Load output port (e) with

location (HL), increment HL
and e. Decrement B. Repeat
until B=O.

**
ED3905 aUTO (nn),A
EDOI05 OUTO (nn),B
ED0905 aUTO (nn),C
EDII05 OUTO (nn),D
ED1905 aUTO (nn),E
ED2105 OUTO (nn),H
ED2905 OUTO (nn),L

Load output port (nn) from
register.

**
ED76 SLP Enter sleep mode.
**
ED3c
ED04
EDoe
ED14
EDIC
ED24
ED2e
ED6405
ED34

TST
TST
TST
TST
TST
TST
TST
TST
TST

A
B
C
D
E
H
L
nn
(HL)

Non-destructive AND with
accumulator and specified
operand.

**
ED7405 TSTIO nn Non-destructive AND of nn and

the contents of port (C).

Page 17

ZDM User's Guide

(THIS PAGE INTENTIONALLY BLANK)

Function
Display

Disable Interrupt
Enable Interrupt

Fill

Go

Hex Math

Input

List

Move

Query Input

Query Output
Read

Set
Trace

Untrace

Examine
Alternate Register
Block Search

Verify

Print
Jump

ZDM User's Guide

APPENDIX D

ZDM/ZDMZ/ZDMH COMMAND SUMMARY

Form
D(s,f]

DI
EI

Fs,f,c

G[s,b]

Ha,b

Ifilename

L[s,f]

Ms,f,d

QIa

QOa,b
R[b]

Ss
T[n]

Urn]

X[r]
&[X][r]
B[T]s,f

Vs,f,b

P
J

Definition
display screen of memory in hex
and ASCII
disable interrupts, normal default
enable interrupts, default if
entering from G, T, and U
fill range of memory with declared
byte value
execute program with optional
breakpoint
obtain sum and difference of two
hex numbers
set up file control block to
receive file name
list to screen assembly
language mnemonics
move data from one area of memory
to another
display input.byte from indicated
port a
output byte b to indicated port a
read in file set up with I command,
optional offset
examine and optionally alter memory
single step program execution, up
to 65535 steps
similar to T, but CPU state
not displayed
examine CPU register values
examine Z8D alternate register values
find ASCII or hex string in
declared memory range
verify if two blocks of memory are
identical
send all screen output also to printer
display only branch statements:
calls, jumps, returns, etc.

Legend: items in []'s are optional; s=start address; f=final
address; c=hex byte value; a=hex value or port address; b=hex
value or offset, breakpoint or block start address; d=destination
address; n=step number; r=register letter, a for accumulator, b
for bc pair, s for sp, etc.

Page 19

RELOCATING MACRO ASSEMBLER

AND LINKER

for

Z 8 0 A.N D B D 6 4 1 8 0

by

Patrick O'Connell

Zas, Zlink, Zlib, Zcon, Zref are Copyright 1984/85 by Mitek. No
part of this document may be reproduced in any way or by any
means without prior written permission of the publisher. Address
requests to Echelon, Inc., l()! First street, . Los Altos, CA
94022. Rev. 6/25/85

Copyright 1984/85 Mitek
All Rights Reserved

WARNING

THIS SOFTWARE AND MANUAL ARE BOTH PROTECTED BY U.S. COPYRIGHT LAW
(TITLE 17 UNITED STATES CODE). UNAUTHORIZED REPRODUCTION AND/OR
SALES MAY RESULT IN IMPRISONMENT OF UP TO ONE YEAR AND FINES OF
UP TO $10,000 (17 USC 506). COPYRIGHT INFRINGERS MAY ALSO BE
SUBJECT TO CIVIL LIABILITY.

LIMITED WARRANTY

THIS PROGRAM AND INSTRUCTION MANUAL ARE SOLD "AS IS," WITHOUT
WARRANTY AS TO THEIR PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR
ANY PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE RESULTS AND
PERFORMANCE OF THIS PROGRAM IS ASSUMED BY YOU.

HOWEVER, TO THE ORIGINAL PURCHASER ONLY, ECHELON WARRANTS THE
MAGNETC DISKETTE ON WHICH THE PROGRAM IS RECORDED TO BE FREE FROM
DEFECTS IN MATERIALS AND FAULTY WORKMANSHIP UNDER NORMAL USE FOR
A PERIOD OF THIRTY DAYS FROM THE DATE OF SHIPMENT. IF DURING
THIS THIRTY-DAY PERIOD THE DISKETTE SHOULD BECOME DEFECTIVE, IT
MAY BE RETURNED TO ECHELON FOR A REPLACEMENT WITHOUT CHARGE.

YOUR SOLE AND EXCLUSIVE REMEDY IN THE EVENT OF A DEFECT IS
EXPRESSLY LIMITED TO REPLACEMENT OF THE DISKETTE AS PROVIDED
ABOVE. IF FAILURE OF A DISKETTE HAS RESULTED FROM ACCIDENT OR
ABUSE ECHELON SHALL HAVE NO RESPONSIBILITY TO REPLACE THE
DISKETTE UNDER THE TERMS OF THIS LIMITED WARRANTY.

ANY IMPLIED WARRANTIES RELATING TO THE DISKETTE, INCLUDING ANY
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU­
LAR PURPOSE, ARE LIMITED TO A PERIOD OF THIRTY DAYS FROM DATE OF
SHIPMENT. ECHELON SHALL NOT BE LIABLE FOR INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OF THIS PRODUCT.
SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDEN­
TIAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATIONS MIGHT NOT
APPLY TO YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND
YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY FROM STATE TO STATE.

Trademarks: Zas, Zlink, Zlib, Zcon, Zref, Mitek; ZDM, RD
Software; DSD, Soft solutions; Z-System~ Echelon, Inc.; Z80,
Zilog, Inc.; HD64180, Hitachi; CP/M, DDT, SID, ZSID, Digital
Research, Inc.

Chapter 1
1.1
1.2
1.3
1.4

Chapter 2
2.1

. 2.2
2.3

Chapter 3
3.1
3.2
3.3
3.4

Chapter 4
4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9
4.10

Chapter 5
5.1
5.2
5.3

5.4··
5.5
5.6
5.7

Chapter 6
6.1
6.2
6.3
6.4
6.5
6.6

TABLE OF C'ONTENTS

INTRODUCTION ••••••••••••••••••••••
OVerview
Distribution Files
Installation
Software Updates

ZAS INVOCATION •••••••••••••••••••
ZAS Operation
ZAS Options
Assembly Statistics

PROGRNK ~T •••••••••••••••••••
Label Field
Operation Field
Operand Field
Conunent Field

EXPRESSIONS ••••••••••••••••••••••
Numeric Constants
String Constants
Character Constants
Labels
4.4.1 Label Characteristics
4.4.2 Relocation Bases
Relocation Counter Reference
Registers
Operators
Precedence of Operators
Parentheses Versus Brackets
Expression Restrictions

PSEUDO~PS •••••••••••••••••••••••
·General Pseudo-ops
Listing Control Pseudo-ops
Conditional Assembly Pseudo-ops
5.3.1 IF Pseudo-ops Evaluation
5.3.2 Conditional Assembly Forms
~inkage Pseudo-ops
Relocation Base Pseudo-ops
Macro Pseudo-ops
Special Function Pseudo-ops

MACRO FACILITY •••••••••••••••••••
Repeat Macros
Stored Macros
Exiting Macros
Local ~ymbols
Macro Invocation
Parameter Evaluation

1
1
1
1
2

3
3
3
4

5
5
5
5
6

7
7
7
7
8
8
8
9
9

10
11
12
12

13
13
16
16
16
17
19
20
22
22

23
23
25
25
25
26
26

Chapter 7
7.1
7.2

CHAPTER 8
8.1
8.2
8.3

CHAPTER 9
9.1
9.2
9.3

CHAPTER 10
10.1
10.2
10.3
10.4
10.5

CHAPTER 11
11.1
11.2
11.3
11.4
11.5

Appendix A:

Appendix B:

Appendix C:

Appendix D:

TABLE OF CONTENTS (continued)

ZAS ERROR MESSAGES............... 29
Non-Fatal Errors 29
Fatal Errors 30
7.2.1 General Fatal Error Messages 30
7.2.2 Macro Fatal Error Messages 30

CROSS-REFERENCE GENERATION •••••••
Overview
ZREF Operation
Reserved Symbols

CODE CONVERTER •••••••••••••••••••
Code Converter Operation
Convertible TDL Pseudo-ops
Error Messages

LINKER •••••••••••••••••••••••••••
OVerview
ZLINK Operation
ZLINK Options
Define Next Free Memory Location
ZLINK Error Messages

LIBRARY ~ ••••••••••••••••••
OVerview
ZLIB Operation
ZLIB Options
ZLIB Messages
ZLIB Error Messages

Z80 Mnemonic Machine Instruction Codes

Software Update Form

Pseudo-op Summary

Hitachi HD64180 Mode

31
31
31
31

33
33
33
34

35
35
35
35
36
37

39
39
39
39
39
40

1.1 OVERVIEII

CHAPTER 1
INTRODUCTION

ZAS (Z80 and HD64180 Relocating Macro Assembler) reads assembly
language statements from a disk file and produces either an Intel
compatible HEX file or a Microsoft compatible REL file. These
files can then be loaded using Echelon supplied MLOAD, or CP/M
LOAD, command or any Microsoft object compatible linker. A
symbol table file (SYM) is optionally produced that can be used
with Echelon DSD or Digital Research SID and ZSID debuggers.

The minimum Z or CP/M system configuration in which to use ZAS is
48k-bytes of RAM with one disk drive.

As soon as you receive ZAS, make backup copies! Then go through
the installation process using a copy.

1.2 DISTRIBUTION FILES

You will find the following files on your distribution disk:

File Function

ZAS.COM Assembler

ZLINK.COM Linker

ZLIB.COM Library Manager

ZCON.COM 8080 to Z80 Code Converter

ZREF.COM Cross-reference Generator

TEST.Z80 Test Assembly File

INSTZAS.COM Installation Program

1.3 INSTALlATION

The installation program was designed to set assembler output op­
tions. Type in INSTZAS to invoke the installation program. The
options described on the next page will appear on the screen.

Page 1

CHAPTER 1: INTRODUCTION

INSTZAS<cr>

ZAS installation options:

1. Listing to terminal - off

2. Listing to disk file - off

3. Listing to printer - off

4. Generate object file - on

5. Generate symbol file - off

6. Object file type - reI

7. IF trueness based on - least significant bit

99. Changes complete

Enter option number to change:

The preset values for different options is indicated to right of
option. To change (toggle) an option value (Le., on to off, reI
to hex, or least significant bit to all sixteen bits), simply
enter option number (1 to 7) followed by carriage return <CR>.
When desired option changes have been made, type in 99 to end
installation program and have ZAS.COM automatically updated.

1.4 SOFTWARE UPDATES

You can assist in refining ZAS by recommending enhancements and
reporting any software problems on a copy of the Software Update
Form, a sample of which is in Appendix B. Software updates will
be provided at regular intervals for a nominal fee. You will be
notified by Echelon when software updates are available.

Page 2

2.1 ZAS OPERATION

ZAS is invoked by typing:

CHAPTER 2
ZAS INVOCATION

ZAS filename.filetype

where filename is the name of ·the source file to be assembled.
If no filetype is specified, then Z80 is assumed. Typing ~c will
cancel ZAS operation.

2'.2 ZAS OPl"IONS

A variety of options are available to provide control over the
execution parameters of ZAS. They are used once at the end of a
command line and spaces are not allowed between options:

ZAS filename {$}options

There are two types of options: non-disk reference options and
disk reference options. Using the non-disk reference options
reverses the settings supplied by the Install Program and in­
cludes the C, H, and Loptions.

C: CRT Option. Setting the C option will page the output of
ZAS, at 23 lines per page. Pressing any key allows you to
continue to scroll through the output page by page. However, it
should be noted that a -C will abort the assembly.

H: Hex Option. When this option is set it will generate Intel
compatible hex files instead of Microsoft compatible REL files.
Note: When using HEX files, you must have an ORG statement of
100H or higher to prevent an inverted. address error from MLOAD or
LOAD. COM.

L: Listing to Printer Option. Setting the L option sends a
formatted assembly listing to Z or CP/M LST: device.

The disk reference options require twodharacters. The first
character is the P, 0, or S option characters. The second charac­
ter indicates the output disk drive for the specified option.
The second character must be A-P or Z, where Z (for zero or null)
suppresses the output altogether.

0: Object File Generation (filename.REL or filename.HEX). The 0
option specifies the disk for object file output. Depending on

.the.H option, the object file will be a Microsoft compatible REL
file or an Intel compatible HEX file.

P: : Listing to . a J:>RN File (filename.PRN). The P option. will send
a formatted assembly listing to the specified disk.

S: Symbol File Generation (filename.SYM). The S option speci­
fies output disk for Echelon or DR! compatible SYM file.

Page 3

CHAPTER 2: ZAS INVOCATION

2.3 ASSDmLY STATISTICS

At the completion of an assembly, ZAS provides several statistics
on the program assembled. The output is as follows:

Assembly statistics:

nnnn lines
nnnn labels
nnnn macros read
nnnn macro expansions
nnnn errors
nnnn free bytes

where nnnn is a decimal number.

Page 4

CBAPTER 3
PROGRAM FORMAT

Acceptable program input consists of a sequence of statements in
the form:

label operation operand comment

where each field is separated by one or more spaces and/or tabs.
All fields are optional and may begin in any column except for
the label field which must begin in column one. The statement is
terminated by.a carriage return and a line feed is allowed but
not necessary. You may also insert blank lines into the program.

The statement may be either upper or lower-case except for macro
parameters. For macro parameters, the actual and formal parameters
must be in the same case for substitution to take place.

3.1 LABEL FIELD

Labels take the form:

label or label:

and are optional except for the SET, EQU, and MACRO assembler
directives. The label consists of alphanumeric characters, a ?,
an @, or a $ and the first character must not be numeric. If the
label exceeds 15 characters then the label is truncated to the
right. Labels can be either upper-case or lower-case. The ":"
following a label is optional. Examples of labels include the
following:

a123
aLL:
All?

3.2 OPERATION FIELD

?a123
?ALL:
INDEX

@a123
update_file
UPDATE$FILE

The operation field contains one of the following three: a mne­
monic machine instruction code, a pseudo operation code which
directs the assembly process, or a macro. The Z80 mnemonic
machine instruction codes are listed in Appendix A and Hitachi
HD64180 instruction codes are listed in Appendix D. The
assembler pseudo-op codes are discussed in Chapter 5, with a
summary of the pseudo-ops listed Appendix C. And the macro
instructions are discussed in Chapter 6.

3.3 OPERAND FIELD

The operand field may contain numeric constants, character con­
stants, ASCII strings, relocation counter references, labels,
register references, operators, or expressions containing any
combination of the previously mentioned items. Expressions are
further described in Chapter 4.

Page 5

CHAPTER 3: PROGRAM FORMAT

3.4 COMMENT FIElD

A comment field is always preceded by a semicolon (;). Comments
are ignored by the assembler but are useful for programmer docu­
mentation, and later, debugging.

Page 6

CHAPTER " EXPRESSIONS

Before the pseudo operations and macros can be described, it is
necessary to discuss expressions because of their complexity.
Expressions consist of simple operands combined into properly
formed sub-expressions by operators. Blanks and tabs are ignored
between operators and operands of the expression. Each expres­
sion produces a 16-bit value during the assembly. If only 8 bits
are needed, the least significant half of the 16-bit value is
used.

4.1 NUMERIC CONSTANTS

A numeric constant is a 16-bit value. in one of several number
bases. The base, called the radix of the constant, is denoted by
a trailing radix indicator. Any numeric constant which does not
terminate with a radix indicator uses the default radix which has
been initially set to decimal. The radix indicators are:

B binary constant base 2
0 octal constant base 8
Q octal constant base 8
D decimal constant base 10
H hexadecimal constant base 16

A constant is a sequence of digits, followed by an optional radix
indicator, where the digits are appropriate for the radix, Le.,
binary constants must be composed of 0 and 1 digits etc. For
hexadecimal constants, the leading digit must be a decimal digit
in order to avoid confusing the hexadecimal constant with an
identifier (a leading 0 will work). A numeric constant must
produce a binary number which can be contained within a 16-bit
value.

4.2 ASCII STRINGS

String constants represent sequences of ASCII characters, and are
represented by enclosing the characters within apostrophe symbols
('). All strings must be fully contained within the current
physical line. The apostrophe character itself can be included
within a string by representing it as a double apostrophe ("),
which becomes a single apostrophe when read by the assembler.

".3 CHARACTER CONSTANTS

Like strings, character constants are composed of 0, 1, or 2
ASCII characters, delimited by an apostrophe (') or quotation (")
symbol. One difference between strings and character constants
is strings are used only with DB, DC, DEFB, and all macro pseudo-

Page 7

CHAPTER 4: EXPRESSIONS

ops. In all other cases, a character constant is assumed.
Another difference is that the value of a character constant is
calculated and the result is stored with the low byte in the
first address· and the high byte in the second address. For
example, in the character constant:

ow 'AB'

the value of A is stored in the second memory location and B is
stored in the first memory location. In the string:

.DB 'AB'

the value of A is stored in the first memory location and B is
stored in the second memory location.

4.4 LABELS

A label is given a value determined by the type of statement it
precedes. If the label precedes a macro definition, the label is
given a text value, which is the body of the macro definition.
If the label precedes an EQU or SET pseudo operation, then the
label is given the value of the operand field.. If a label
precedes any other type of statement, it is given the value of
the current relocation counter.

The value of a label is not allowed to change unless the label
precedes a SET pseudo-oPe In which case, there is no limit to
the number of times the label's value may change.

4.4.1 LABEL CHARACTERISTICS

Labels fall into on.e of three categories: public, external, or
local. Public labels are labels defined in the current program
module and can be referenced in other program modules External
labels are labels which have been defined as public in some other
program module and are being referenced in the module declaring
them external. If a label has not been declared external or
public then it is local and cannot be referenced by any other
program module.

4.4.2 RELOCATION BASES

The symbolic names for independently located memory areas are
called relocation bases. These relocation.bases may represent
ROM, shared COMMON areas, special memory areas such as video
refresh, memory mapped I/O, etc. Within each sub-program, each of
these memory areas is referenced by a unique name. The actual
allocation and mapping of~the name ·to physical addresses is
deferred to the link edit and load process. All label references
within the assembled program are relative to one of these reloca­
tion bases. The four relocation bases and· their typical uses are
summarized as follows:

Page 8

CHAPTER 4: EXPRESSIONS

Absolute: Absolute assembles non-relocatable code. A programmer
selects Absolute mode when a block of program code is to be
loaded each time into specific addresses, regardless of what else
is located at the same time.

Data Relative: Data Relative assembles code for a section of a
program that may change and therefore must be loaded into RAM.
This applies especially to program data areas. Symbols in Data
Relative are relocatable.

Code Relative: Code (program) Relative assembles code for
sections of programs that will not be. changed and therefore can
be loaded into ROM/PROM. Symbols in Code Relative are
relocatable.

COMMON: COMMON assembles code that is loaded into a defined
common data area. This allows program modules to share a block
of memory and common values.

To change the relocation base, use one of the following pseudo­
ops in a statement line:

ASEG
DSEG
CSEG
COMMON

Absolute
Data Relative
Code Relative--default
COMMON

4.5 RELOCATION CDON'l'ER REFERENCE

The current relocation counter may be referenced as a 16-bit
value by use of the symbol $. The value represented by $ is
always the relocation counter value at the start of the current
statement. For example,

JP $

will endlessly jump to itself.

".6 RmIS'l'ERS

When ZAS encounters a one or two character symbol, it will look
up the symbol in the corresponding 8 or 16-bit register table
(see the next page). If the symbol is found, then the operand is
assumed to be a register reference. Because these single and
double character symbols are reserved words, do not use them as
labels.

Page 9

CHAPTER 4: EXPRESSIONS

a-Bit Registers
(Reserved Words)

16-Bit Registers
(Reserved Words)

A
B
C
D
E
H
L
M
I
R

4.7 OPERATORS

BC
DE
HL
IX
IY
SP
AF

The operands previously described can be combined in normal
algebraic expression using any combination of properly formed
operands, operators, and parenthesized expressions. All arithme­
tic operators (+,-,*,/,MOD,SHL, and SHR) produce a 16~bit un­
signed arithmetic result. The relational operators (EQ, LT, LE,
GT, GE, and NE) produce a true (OFFFFH) or false (OOOOH) 16~bit
result. And the logical operators (NOT, AND, OR, and XOR) operate
bit-by-bit on their operand(s) producing a 16-bit result of 16
individual bit operations. The HIGH and LOW operators always
produce a 16-bit result with a high order byte which is zero.
The NUL operator produces a true or false result.

The operators for the operand field are given below. In general,
the letters x and y represent operands which are treated as 16-
bit unsigned quantities in the range 0-65535~ -

A.rithmetic
Operators

x+y
x-y

x * y
x / y
x MOD Y
x SHL Y
x SHR Y

Relational
Operators

x EQ y, x=y
x LT y, x<y
x LE y, x<=y
x GT y, x>y
x GE y, x>=y
x NE y, x<>y

Page 10

Result

arithmetic sum of x and y
arithmetic difference between x and y
unsigned multiplication of x by y
unsigned division of x by y
remainde~ after division -of x by y
shift left by y, with zero right fill
shift right by y, with zero left fill

Result

true if x equals y., false otherwise
true if x is less than y, false otherwise
true if x is· less or equal to y, else false
true if x is greater than y, false otherwise
true if· x is greater or equal to y, else false
true if x is not equal to y, false otherwise

Logical
Operators

NOT Y
x AND Y
x OR y, xly
x XOR Y

Special
Operators

HIGH Y
LOW Y
NUL line

CHAPTER 4: EXPRESSIONS

Result

bit-by-bit logical inverse of y
bitwise logical AND of x and y
bitwise logical OR of x and y
logical exclusive OR of x and y

Result

identical to y SHR 8 (high order byte of y)
identical to y AND OFFH (low order byte of y)
true if the remainder of the current line is null
or contains only space and/or tab characters. Be­
cause the NUL operator uses the rest of the
current source line as an operand, it must be the
last operator on a line.

4.8 PRECEDENCE OF OPERATORS

Without parentheses or brackets operators have an order of appli­
cation as if they were parenthesized or bracketed. As described
below, the operators listed first have highest precedence, and
the operators listed last have lowest precedence. Operators
listed on the same line have equal priority and are applied from
left to right in the expression

highest precedence * / MOD SHL SHR
+

EQ LT LE GT GE NE
NOT
AND

OR XOR
HIGH LOW

lowest precedence NUL

The expressions shown below are equivalent:

x + y * z
x OR Y * a SHR b

= x + [y * z 1
= x OR [y * [a SHR bll

Balanced parenthesized or bracketed sub-expressions can always be
used to override the order of precedence described above. The
last expression could be rewritten to force application of opera­
tors in a different order:

[x OR yl * [a SHR bl

Page 11

CHAfTER 4: EXPRESSIONS

4; 9 PARENTBESES VERSOS BRACKETS

Parentheses and brackets are not interchangeable. They serve
different purposes. Parentheses are used in expressions that
have indirect addressing modes. For example,

LD HL, (5+1)

will load the register pair HL from the contents of memory
location six (5+1) and seven.

Brackets are used for all other expressions where the.addressing
mode is not indirect. Using the above example with brackets,

LD HL, [5+11

will load the register pair HL with the immediate value six.

4.10 EXPRESSION RESTRICTIONS

The oPerand fieid of a statement may consist of a complex arith­
m~ti~ expression with the following restrictions:

(1) An external may only have an absolute quantity added or
subtracted from it. The result will be external.

(2) Arelocatable value may have an absolute or another relocat­
able value (in the sa~e relocation base) added to or sub­
tracted from it. The result will relocatable.

(3) If two relocatable values are subtracted then the result will
be absolute.

(4) In all other arithmetic and logical operations, both operands
must be absolute. The result· will be absolute.

An expression .error will be generated if an expression !ioes not
follow the above restrictions.

Page 12

5.1 GENERAL PSEUIX>-OPS

CHAPTER 5
PSEUOO-oPS

DB: The Qefine ~te pseudo-op is used to enter one or more one­
byte data values into the program. The statement form is:

DB n Ln ••• }

where n is any expression with a valid 8-bit value. More than one
byte can be defined at a time by separating it from the preceding
value with a comma. All of the bytes defined in a single DB
statement are assigned consecutive memory locations. The Zilog
mnemonic DEFB can be used instead of DB.

DC: The Qefine £haracter pseudo-op stores the characters in a
string in successive memory locations beginning with the current
relocation counter. The most significant bit of the last charac­
ter will be set to one. The form for the DC pseudo-op is:

DC 'string'

DS: The Qefine §pace pseudo-op reserves an area of memory. The
form is:

DS expression {,expression}

where the value of the first expression gives the number of bytes
to be reserved. The Zilog mnemonic DEFS can be used instead of
DS.

To initialize the reserved space, set the optional second expres­
sion to the value desired. If the second expression is omitted,
the reserved space is left as is (uninitialized). The reserved
block of memory is not automatically initialized to zeros. To
initialize to zeros give the second expression the value O.

All names used in the first expression must be previously defined
on pass 1. Otherwise, a U error (undefined symbol) is generated
during pass 1, and a P error (phase error) will probably be
generated during pass 2 because the DS pseudo-op generated no
code on pass 1.

DW: The Define Word directive is used to enter a 16-bit value - -
into the program. This directive takes the form:

ow nn {,nn ••• }

Where nn is any expression with a valid 16-bit value. Multiple
16-bit values may be defined with one DW statement by separating
the values with a comma. All 16-bit values defined by the OW
pseudo-op are stored in standard z80 word format with the least
significant byte first. The Zilog mnemonic DEFW can be used
instead of OW.

Page 13

CHAPTER 5: PSEUDO-OPS

END:. The END statement is optional. All statements following the
END are ignored. The form is:

END { exp~ession}

The optional expression is the program starting address. If an
Intel compatible hex file is being generated, then this starting
address will be included .in the last record of the hex file. If
a REL file is being generated, then ZLINK will place a.JUMP
instruction at 100H to the specified starting address.

EQU:. The EQUate statement is used to name synonyms for particu­
lar numeric values. The form is:

label EQU expression

The label must be present and cannot label any other statement.
The assembler evaluates the expression and assigns this value to
the label. The label is .usually a name which describes the value
of the expression. Also, this name can be used throughout the
program as a parameter or operand •

• IN: The INsert (orMACLIB) pseudo-op allows the programmer to
use the same section of assembler source code in a number of
different assemblies. The format is:

.IN {d:lfilename or MACLIB {d:}filename·

where d is the optional Z or CP/M disk specifier (defaulting to
the logged disk) and filename is the file on disk with the
assumed filetype LIB. .

This directive causes the specified file to be copied into the
assembly in its entirety, and to be treated exactly as if it were
part of the original Source file. All inserted source lines are
flagged with a "+" on the listing. Only one level of insert is
allowed, they cannot be nested •

• LIST:. This pseudo-op resumes a listing which has been suppressed
by the .XLISTdirective. See the next page. .

. ~

PAGE:.The page pseudo~op gives control over the output formatting
which is sent to the PRN file and/or directly to Z or CP/M LST:
device. The form for the PAGE statement is:

PAGE {expression}

If the PAGE statement is used without the optional expression
then a form feed is sent to the output file and/or Z or CP/M LST:
device. The form feed is sent before the statement with PAGE haes
been printed. Consequently, the PAGE command is often issued
direCtly ahead of major sections of an assembly language program,
such as a group of subroutines ,to cause the next statement to
appear at the top of the following printer page.

The second form of the PAGE command is used to specify the output

Page 14

CHAPTER 5: PSEUOO-OPS

page size. In this case, the expression which follows the PAGE
pseudo-op determines the number of output lines to be printed on
each page. If the expression equates to a value between 40 and
90, then the page size is set to the value of the expression.
When this value is reached for each page, a form feed is issued
to cause a page eject. The assembler initially assumes a 56 line
page size and produces a page eject at the beginning of the

listing. Usually, no more than one PAGE statement with the
expression option is included in a particular program •

• RADIX: The statement form is:

.RADIX n

where n is 2, 8, 10, or 16. This pseudo-op sets the radix to n
for all numbers which follow, unless another .RADIX statement is
encountered, or the radix is overridden by a suffix radix modi­
fier. Initially, the default radix is set to 10 (decimal).

SET: The SET statement is used to name synonyms for particular
numeric values. The form is:

label SET expression

The label must be present and cannot label any other statement,
except for another SET. The assembler evaluates the expression
and assigns this value to the label. The label is usually a name
which describes the value of the expression. Also, this name can
be used throughout the program as a parameter or operand. The
Zilog mnemonic DEFL can be used instead of SET •

• TITLE and .SBTTL: The title and subtitle pseudo-ops take the
form:

.TITLE 'string-constant l'

.SBTTL 'string-constant 2'

where the string-constants are an ASCII string, enclosed in
apostrophes, which do not exceed 64 characters. If a .TITLE
and/or .SBTTL is encountered during the assembly, then each page
of the listing is prefixed with the title and/or subtitle string­
constant. The titie line will be preceded by a standard ZAS
header as follows:

MITEK Relocating Macro Assembler vers n.n
string-constant 1
string-constant 2

page nnn

where n.n is the ZAS version number, nnn is the current page
number and string-constant 1 and/or 2 is the string given in the
corresponding pseudo-oPe ZAS initially assumes that these
pseudo-ops are not in effect. When specified, the title line,
along with the subtitle line are not included in the line count
for the page. Usually, no more than one .TITLE statement is
included in a particular program.

Page 15

CHAPTER 5: PSEUDO-OPS

5.2 LISTING CONTROL PSEUDO-oPS

.LALL: List ALL macro lines, including lines that do not
generate code •

• LIST: This pseudo-op resumes a listing which has been
suppressed by the .XLIST directive •

• LFCOND: The List Kalse CONDitionals pseudo-op assures the list­
ing of conditional expressions that evaluate false •

• PRINT: The print on console pseudo-op takes the form:

• PRINT pass,text

This pseudo-op _ will output text to the console during the
specified pass. The pass can be one of three values:

0 - print text during both passes

1 - print text during pass one

2 - print text during pass two

.SALL: §.uppress ALL of the macro -listing, including all text and
object code produced by macros •

• SFCOND: The §.uppress Kalse CONDitionals, pseudo-op suppresses
the portion of the listing that contains conditional expressions
that evaluate false •

• XALL: The EKclude ALL non-code macro lines pseudo-op will list
source and object code produced by a macro, but source lines
which do not generate code are not listed •

• XLIST: This pseudo-op suppresses all list outpu-t until a .LIST
pseudo-op is encountered. -

5.300NDITIONAL ASSEMBLY PSEUDO-OPS

The next two sections describe the ZAS conditional assembly
facility.

5.3.1 IF PSEUDO-oP EVALUATION

ZAS has two different methods for evaluating the trueness of an
IF expression. One method bases the trueness on the least signi­
ficant bit of the IF expression, which is compatible with Digital
Research's AS~, MAC, and RMAC assemblers. The second method
bases the trueness of the expression on the full 16-bit expres­
sion value. This method is compatible with the Microsoft M80
assembler. -

Page 16

CHAPTER 5: PSEUOO-oPS

The default evaluation is set by the installation program
(section 1.3). The evaluation method may also be explicitly set
by the following two pseudo-ops:

.IF1 - will cause IF expressions to evaluate to true if
the least significant bit of the IF expression
evaluates to 1.

.IF16

OR

will cause IF expressions to evaluate to true when
the IF expression evaluates to non-zero.

5.3.2 CONDITIONAL ASSmmLY FORMS

The IF, ELSE, and ENDIF pseudo-ops define a range of assembly
language statements which are to be included or excluded during
the assembly process. The IF and ENDIF statements alone can be
used to bound a group of statements to be conditionally
assembled thus:

IF expression
statement #1
statement #2

statement #n
ENDIF

Upon encountering the IF statement, the assembler evaluates the
expression following the IF (all operands in the expression must
be defined ahead of the IF statement). Depending on the condi­
tional assembly option in effect, if the expression evaluates to
a non-zero value or the least significant bit evaluates to a 1,
then statement #1 through statement #n are assembled. If the
expression evaluates to a zero, then the statements are listed
but not assembled.

The ELSE statement can be used as an alternative to an IF
statement, and must occur between the IF and ENDIF statements.
The form is:

IF expression
statement #1
statement #2

statement #n
ELSE
statement #n+1
statement #n+2

statement #m
ENDIF

Page 17

CHAPTER 5: PSEUOO-oPS

If the expression produces a non-zero (true) value, then
statements 1 through n are assembled. However, statements n+1
through m are skipPed in the assembly process. When the expres­
sion produces· a zero value (false), statements 1 through n are
skipped, while statements n+1 through m are assembled. As an
example, the conditional assembly shown in Listing A could be
rewritten as shown in Listing B.

Listing A

TTY EQU 1
CRT EQU 2
DEVICE EQU TTY
TTYOUT EQU OFOO3H
CRTOUT EQU OF100H

IF· DEVICE EQ TTY
CALL TTYOUT
ENDIF
IF DEVICE EQ CRT
CALL CRTOUT
ENDIF

Listing B

TTY EQU 1
. CRT EQU 2
DEVICE EQU TTY
TTYOOT EQU OFOO3H
CRTOUT EQU OF100H

IF DEVICE EQ TTY
CALL TTYOUT
ELSE
CALL CRTOUT
ENDIF

Properly balanced IF's, ELSE's, and ENDIF's can be completely
contained within the boundaries of outer encompassing conditional
assembly groups. The structure outlined below shows prqperly
nested IF, ELS~, and ENDIF statements:

Page 18

IF exp#l
group #1
IF exp#2
group#2
ELSE
group#3
ENDIF
group#4
ELSE
group#5
IF exp#3
group#6
ENDIF
group#7
ENDIF

CHAPTER 5: PSEUDO-OPS

where group 1 through 7 are sequences of statements to be
conditionally assembled, and exp#l through exp#3 are expressions
which control the conditional assembly. If exp#l is true, then
group#l and group#4 are always assembled, and group 5,6, and 7
will be skipped. Further, if exp#l and exp#2 are both true, then
group#2 will also be included in the assembly, otherwise group#3
will be included. If exp#l produced a false value, groups 1, 2,
3, and 4 will be skipped, and group 5 and 7 will always be
assembled. If under these circumstances, exp#3 is true then
group#6 will also be included with 5 and 7, otherwise it will be
skipped in the assembly.

Conditional assembly of this sort can be nested up to eight
levels <Le., there can be up to eight pending IFs or ELSEs with
unresolved ENDIFs at any point in the assembly), but usually
becomes unreadable after two or three levels of nesting. The
nesting level restriction also holds for pending IFs and ELSEs
during macro evaluation. Nesting level overflow will produce an
error during assembly.

5.4 LINKAGE PS~PS

EXTRN: The EXTeRNal pseudo-op identifies symbols which are de­
fined in some other program but are used in the current program.
The form is:

EXTRN symbol {,symbol ••• }

where symbol is the symbol being declared as external. Multiple
symbols may be declared in the same statement by separating them
with commas. Also, if a symbol in an expression is suffixed with
one or two # signs, then the symbol is treated as an external.
EXT is a synonym for EXTRN.

NAME: The NAME pseudo-op takes the form:

NAME symbol

where symbol is the relocatable module name. This name is used
by the linking loader and library manager to identify the module
for selective loading or manipulation. Only the first six
characters are significant in the module name. In the absence of
the NAME pseudo-op, up to the first six characters of the program
name are used.

PUBLIC: The PUBLIC pseudo-op identifies those symbols within the
current program which are to be made accessible to other programs
as external symbols. This directive has no effect on the
assembly process for the current program, but merely records the
name and value of the identified symbols on the object file for
later use by the linking loader. A public symbol must be defined
within the current program as a label.

Page 19

CHAPTER 5: PSEUDO-OPS

.REQUEST: Request a library search. The form is:

• REQUEST filename {,filename ••• }

This pseudo-op sends a request to ZLINK or any Microsoft
compatible loader to search the filenames in the list for
undefined external symbols. The filename in the list should not
include filetyp~s or device designation. ZLINK assumes the
default extension .REL and the currently logged disk drive.

5.5 RELOCATION BASE· PSEUDO-OPS

ASEG: The ~solute SEGment pseudo-op never has operands. ASEG
generates non-relocatable code.

ASEG sets the location counter to an absolute segment <actual
address) of memory. The ASEG will default to 0, which could
cause the module to write over part of the operating system. It
is recommended that each ASEG be followed with an ORG statement
se~.at 100H or higher.

COMMON: COMMON statements are non-executable, storage allocating
statements. COMMON assigns variables, arrays, and data to a
storage area called COMMON storage. This allows various program
modules tQ share the same- storage area. -The length of a COMMON
area is the-number of bytes required to contain the variables,
arrays, and data declared in the COMMON block, which ends when

·another,·rel6cation· base pseudo~op is encountered. .

CSEG: The Code SEGment dire.ctive never has an operand. Code
assembled in Code Relative mode can be loaded into ROM/PROM.

CSEG resets the location counter to the code relative segment of
memory. The location will be that of the last CSEG <default to
0), unless an ORG is done after the CSEG.to change the location.

However theORG statement does not set a hard· absolute address
under CSEG mode. An ORG statement under CSEGcauses the assem­
bler to add the number of bytes specified by the expression
argum~nt in the- ORG statement to the last CSEG address loaded.
For example, if ORG 25 is given, 25 bytes will be added to the
current CSEG location. Then CSEG will be loaded. The clearing
effect of the ORG statement following CSEG <and DSEG) can be used
to give the module an offset. Rationale for not allowing ORGto
set an absolute address for CSEG is to keep theCSEG relocatable.

CSEG is the default mode of the assembler. Assembly begins with
a CSEG automatically executed, and the location counter in the
Code Relative mode, pointing to location 0 in the Code Relative
segment of memory. All subsequent instructions will be assembled
into the Code Relative segment of memory until ASEG, DSEG, or
COMMON is executed. CSEG is then entered to return the assembler
to Code Relative mode, at which point the location counter
returns to the next free location in the Code Relative segment.

Page 20

CHAPTER 5: PSEUDO-OPS

DSEG: The Data SEGment pseudo-op never has operands. DSEG
specifies segments of assembled relocatable code that will later
be loaded into RAM only.

DSEG sets the location counter to the Data Relative segment of
memory. The location of the data relative counter will be that
of the last DSEG (default is 0), unless an ORG is done after the
DSEG to change the location. However, the ORG statement does not
set a hard absolute address under DSEG mode. An ORG statement
under DSEG causes the assembler to add the number of bytes
specified by the expression in the ORG statement to the last DSEG
address loaded. For example, if ORG 25 is given, 25 bytes will
be added to the last DSEG address loaded. Then the DSEG will be
loaded. The clearing effect of the ORG statement following DSEG
(and CSEG) can be used to give the module an offset. Rational
for not allowing ORG to set an absolute address for DSEG is to
keep the DSEG relocatable.

ORG: The Set ORGin pseudo-op allows the value of a location
counter to be changed at any time. The form is:

ORG expression

Under the ASEG program counter mode, the relocation counter is
set to the value of the expression, and the assembler assigns
generated code starting with that value. Under CSEG, DSEG, and
COMMON relocation bases, the location counter for that base is
incremented by the value of the expression. All names used in
the expression must be known on pass 1, and the value must either
be absolute or in the same relocation base as the current
location counter •

• PHASE/ .DEPBASE: The form is:

• PHASE expression
•

•
• DEPHASE

where expression is an absolute value. .PHASE allows code to be
located in one area, but executed at a different area with a
start address specified by expression. .DPHASE is used to
indicate the end of the relocated block of code.

The relocation base within a .PHASE block is absolute, the same
as the mode of the expression in the .PHASE statement. The code,
however, is loaded in the area in effect when the .PHASE state­
ment is encountered. The code within the block is later moved to
the address specified by expression for execution.

Page 21

CHAPTER 5: PSEUno-oPS

This example,

DUMMY:

ENTRY:

assembles to:

0300
0300 CD0630
0303 C30700
0306 C9 DUMMY:
0007
0007 C30000 ENTRY:

5.6 ~CRO PSEODO-OPS

• PHASE
CALL
JP
RET
.DEPHASE
JP

• PHASE
CALL
JP
RET
.DEPHASE
JP

300H
DUMMY
ENTRY

o

300H
DUMMY
ENTRY

o

Provided here is only a brief description of the macro pseudo­
ops. For a more complete description, see the next chapter.

Pseudo-op

ENDM
, EXITM
IRP

'IRPC
LOCAL
REPT
MACRO

'5.7 SPECIAL FUNCTION PSElJlXJ-OPS

Description

End Macro
Exit Macro ,
I~definite Repeat
Indefinite Repeat Character
Local Symbol Generation
Repeat
Macro Definition

.BD64: This pseudo-op enables ZAS to assemble the ten extended
instructions of the Hitachi HD64180 microprocessor, upward Z80 ,
compatible. The ten instructions and their forms are listed in
Appendix D.

Page 22

CBAP'1'ER 6
MACRO FACILITY

A common characteristic of assembly language programs is that
many coding sequences are repeated over and over with only one or
two of the operands changing. Macros provide a mechanism for
generating the repeated sequences with a single statement. The
repeated sequences are written with dummy values for the changing
operands. A single statement, referring to the macro by name and
providing values for the dummy operands, can then generate the
repeated sequence.

The coding sequence begins with either the macro definition
pseudo-op or one of the repeat pseudo-ops and ends with the ENDM
pseudo-oPe All of the macro pseudo-ops may be used inside a
macro sequence. The one exception is a stored macro which,
cannot be defined inside a repeat type macro. Macro nesting is
allowed up to 15 levels deep.

The macro facility includes pseudo-ops for.:

macro definition:
MACRO (macro definition)

repetitions
REPT (repeat)
IRP (indefinite repeat)
IRPC (indefinite repeat character)

terminations:
ENDM (end macro)
EXITM (exit macro)

unique symbols within macro sequences:
LOCAL

operators:
&
, ,

%
<>

6.1 REPEAT (OR INLINE) MACROS

The simplest macro facilities involve the REPT, IRPC, and IRP
macro groups. All these forms cause the assembler to repetitive­
ly re-read portions of the source program under control of a
counter or list of textual substitutions. These groups are
listed in increasing order of complexity.

Page 23

REPT-ENDM GROUP: The REPT-ENDM group is written as a sequence of
assembly language statements starting with the REPT pseudo-op and
terminated by an ENDM pseudo-oPe The form is:

label: REPT expression
•
•

label: ENDM

where the labels are optional, and the expression indicates the
number of times the sequence of statements between REPT and ENDM
will be repeated. The expression is evaluated as a 16-bit
unsigned number. If the expression contains an external symbol
or undefined operands, an error is generated.

In general, if a label appears on the REPT statement, its value
is the first machine code address which follows. This REPT label
is not re-read on each repetition of the loop. The optional
label on the ENDM is re-read on each iteration and thus constant
labels (not generated through concatenation or with LOCAL pseudo­
ops) will generate phase error~ if the repetition count is
greater than 1.

IRPC-ENDM GROUP: Similar to the REPT group, the IRPC-ENDM group
causes the assembler to re-read a bounded set of statements. The
torm .;is:

. label: IRPC identifier,string
•

label: ENDM

where the optional labels follow the same conventions as in the
REPT-ENDM group. The identifier is any valid symbol and string
denotes a string of characters, terminated by a delimiter (space,
tab, end-of-line, or comment).

The 'sequence of statements between IRPC and ENDM-are repeated
on6e for each character in the string. Each repetition
substitutes the next character in the string for every occurrence
of identifier in the sequence.

IRP-ENDM GROUP: The IRP is similar in function to the IRPC,
except that the controlling identifier can take on a multiple
string value. The form is:

label: IRP identifier, string {,string ••• }

label: ENDM

where the optional labels follow the conventions of the REPT and
IRPC groups. The sequence of statements between IRP and ENDM is
repeated for each string. 'On the first iteration, the string is

Page 24

CHAPTER 6: MACRO FACILITY

substituted for the identifier wherever.the identifier occurs in
the sequence of statements. On the second iteration, the second
string becomes the value of the controlling identifier and so on
until the last string is encountered and processed.

6.2 STORED MACROS

MACRO DEFINITION: The form for the macro definition is:

macname MACRO dummy { , dummy ••• }

ENDM

The sequence of statements from the MACRO statement line to the
ENDM statement line comprises the body of the macro, or the
macro's definition. The macname is any non-conflicting assembly
language label. Dummy parameter is a place holder that is re­
placed by an actual parameter in a one for one text substitution
when the MACRO sequence is used.

The prototype statements are read and stored in the assembler's
internal tables under the name given by nmacname", but are not
processed until the macro is expanded.

A comment preceded by two semicolons is not saved as part of the
macro definition. But a comment preceded by only one semicolon
is preserved and will appear in the expansion.

6.3 EXITING MACROS

The EXITM pseudo-op is used inside a MACRO or Repeat block to
terminate an expansion when some condition makes the remaining
expansion unnecessary or undesirable. Usually, EXITM is used in
conjunction with a conditional pseudo-oPe

The expansion is exited immediately when an EXITM is assembled.
Any remaining expansion or repetition is not generated. If the
block containing the EXITM is nested within another block, the
outer level continues to be expanded.

6.4 LOCAL SYMBOLS

The LOCAL pseudo-op is allowed only inside a MACRO definition.
The form for the LOCAL directive is:

LOCAL identifier {,identifier ••• }

When LOCAL is executed, ZAS creates a unique symbol for each
identifier and substitutes that symbol for each occurrence of the
identifier in the expansion. These unique symbols are usually
used to define a label within a macro. This eliminates multiple-

Page 25

CHAPTER 6: MACRO FACILITY

defined labels on successive expansions of the macro. The
symbols created by ZAS range from 1?0001 to ??9999. Users should
avoid the form ??nnnn for their own symbols. A LOCAL statement
must precede all other types of statements in the macro
definition.

6.5 MACRO INVOCATION

The form for the macro invocation cis:

macname parameter{,parameter ••• l

Upon recognition of the macname, ZAS "pairs-off" each dummy
parameter in the MACRO definition with the actual parameter text,
i.e., the first dummy parameter is associated with the first

-actual parameter, the second dummy is associated with the second
actual, and so on until the li"st is completed. If more actuals
are provided than dummy parameters then the extras are ignored.
If fewer actuals are provided, then the extra dummy parameter are
associated with the empty string, i.e., a text string of zero
length. It is important to realize at this -point that the value
of dummy parameter is not a numeric value, but is instead a
textual value consisting of a sequence of zero or more ASCII
characters.

6.6 pARAMETER "EVALUATIoN

There are several options available in the construction of actual
parameters, -as well as in the specification of character lists
for the IRP group. Although an actual parameter is simply a
sequence of characters placed between parameter delimiters, these
options allow overrides where delimiter characters themselves
become a part of the text. In general, a parameter x occurs in
the context:

label: macname ••• ,x, •••

where the label is optional and the macname is the name of a­
previously defined macro. The ell ipses (•••) represent optional
surrounding actual parameters in the invocation of macname. In
the case of an IRP group, the occurrence of a character list x
would be:

label: IRP id, ••• ,x, •••

where the label is optional, .and the ellipses represent optional
surrounding character lists for substitution within the IRP group
where the controlling identifier "id" is found. In either case,
-the statements could be contained within the scope of a sur­
rounding macro expansion.- Therefore, dummy parameter substitu­
tion could take place for the encompassing macro while the actual
parameter is being scanned.

ZAS follows these steps in forming an actual parameter or
character list:

Page 26

CHAPTER 6: MACRO FACILITY

(1) Leading blanks and tabs are removed when they occur in front
of x.

(2) The leading character of x is examined to determine the type
of scan operation which is to take place.

(3) If the leading character is a string quote, then x becomes
the text up through and including the balancing string quote,
using the normal string scanning rules: double apostrophes
within the string are reduced to a single apostrophe, and
upper case dummy parameters adjacent to the ampersand symbol
are substituted by their actual parameter values. Note that
the string quotes on either end of the string are included in
the actual parameter text.

(4) If instead the first character is the left caret «) then the
bracket is removed, and the value of x becomes the sequence
of characters up to , but not including, the balancing right
caret (» which does not become part of x. In this case, left
and right carets may be nested to any level within x, and
only the outer carets are removed in the evaluation. Quoted
strings within the carets are allowed, and substitution
within these strings follows the rules stated in (3) above.
Note that left and right carets within quoted strings become
a part of the string, and are not counted in the caret
nesting within x. Further, the delimiter characters comma,
blank, semicolon, and tab, become a part of x when they occur
within the caret nesting.

(5) If the leading character is a %, then the sequence of
characters which follows is taken as an expression which is
evaluated immediately as a 16-bit value. The resulting value
is converted to a decimal number and treated as an ASCII
sequence of digits, with left zero suppression (0-65535).

(6) If the leading character is none of the above (quote, left
bracket, or percent), the sequence of characters which
follow, up to the next comma, blank, tab, or semicolon,
becomes the value of x.

There is one important exception to the above rule: the single
character escape, denoted by an up-arrow, causes ZAS to read the
character immediately following as a part of x without treating
the character as significant. However, the character which fol­
lows the up-arrow, must be a blank, tab, or visible ASCII charac­
ter. The up-arrow itself can be represented by two up-arrows in
succession. If the up-arrow directly precedes a dummy parameter,
then the up-arrow is removed and the dummy parameter is not
replaced by its actual parameter value. Thus, the up-arrow can
be used to prevent evaluation of dummy parameters within the
macro body. Note that the up-arrow has no special significance
within string quotes, and is simply included as a part of the
string.

Evaluation of dummy parameters in macro expansions must also be
considered, although this topic has been presented throughout the

Page 27

CHAPTER 6: MACRO FACILITY

previous sections. Generally the macro assembler evaluated dummy
parameters as follows:

(1) If a dummy parameter is either preceded or followed by the
concatenation operator (&), then the preceding and/or
following "&" operator is removed, the actual parameter is
substituted for the dummy parameter, ~nd the implied
delimiter is removed at the position(s) the ampersand occurs.

(2) Dummy parameters are replaced only once at each occurrence as
the encompassing macro expands. This prevents· the "infinite
substitution" which would occur if a dummy parameter eval­
uated itself.

In summary, parameter evaluation follows these rules:

- leading and trailing tabs and blanks are removed
- quoted strings are passed with their string quotes intact
- nested carets enclose arbitrary characters with delimiters
- a leading % causes innediate numeric evaluation
- an up-arrow passes a special character as a literal value
- an up-arrow prevents evaluation of a dummy parameter
- the "&" operator is removed next to a dummy parameter
- dummy parameters are replaced only once at each occurrence

Page 28.

CHAPTER 7
ZAS ERROR MESSAGES

There are two types of error messages: Non-fatal errors and fatal
errors. Non-fatal errors are indicated by a single letter code
to the left of the statement line with the error. Fatal errors
kill the assembly and give messages as to why the error may have
occurred. statement lines with errors will not generate object
code.

7.1 NON-FATAL ERRORS

Error Code

A

B

C

o

E

I

M

o

p

S

U

v

Explanation

Argument error. One of the arguments for the op­
code is invalid.

Balance error. An ELSE or an ENDIF pseudo'-'op does
not have a preceding IF statement. Or an END
macro statement has no preceding macro call and/or
macro definition.

Character is invalid. ZAS has found an inval id
character and it is probably a control character.
The inval id character will be replaced by a II~"

Duplicate error. A label has been defined more
than once.

Expression error. The expression is ill-formed
and cannot be computed.

Insert error. The specified insert fi Ie cannot be
found or an insert is already in progress.

Mode error. The statement contains an addressing
mode error.

Opcode error. The stat.ement contains an illegal
opcode.

Phase error. A label has a different value on
Pass 2 than it did on Pass 1.

Syntax error. The assembly statement is ill­
formed and cannot be processed. This error may
be due to invalid characters or delimiters which
are out of place.

Undefined symbol. A labe 1 argument has not. been
defined in the program.

Value error. The operand (argument) is out of its
allowable range.

Page 29

CHAPTER 7: ZAS ERROR MESSAGES

1.2 FATAL ERRORS

Fatal error messages have been classified into two categories:
errors caused by macros and general errors (or errors not caused
by macros).

1.2.1 GENERAL FATAL ERROR MESSAGES

(1) -Filename.filetype not found.-
The specified source file cannot be found on the disk.

(2) -Invalid option specification.-
One or more of the assembler options specified in the command
line is invalid.

(3)-More than eight IF levels are pending at line nnnnn
Where line nnnn is the line with the ninth IF. A maximum of
eight IF levels can be nested.

(4) -Unterminated IF 1 n
The end of file has been reached with no terminating ENDIF.

(5) WMemory full at line nnnnn
The assembler's internal tables have run out of memory.

1.2.2 MACRO FATAL ERROR MESSAGES

(1) "Unterminated macro starting at line nnnnw
Where line nnnn is the line with the error. This error is
caused by a macro definition that has no terminating END
macro statement.

(2) nLoCaI label limit exceeded!"
. The maximum of 9,999 local symbols has been exceeded.

(3) wMacro nested past 16 levels at line nnnnw
A maximum of 16 levels of nested macros are allowed.

(4) -Local table exceeds 121 bytes at line nnnnw
The total length of all local symbols cannot exceed 127 bytes
for a particular macro definition.

(5) "Macro definition inside an inline macro at line nnnn"
This message indicates that a macro definition has been
placed inside a repeat type macro and that is not allowed.

Page 30

8.1 OVERVIEW

CHAPTER 8
CROSS-REFERENCE GENERATION

The cross-reference generator (ZREF) is used to provide a summary
of symbol usage throughout a program. ZREF reads the file speci­
fied line by line, attaches a line number prefix to each line,
and writes each prefixed line to the file filename.XRF. After
completing this operation, ZREF appends to the file filename.XRF,
a cross-reference report that lists all the line-numbers where
each symbol in the file appears. It also flags with an *, each
line number where the referenced symbol is defined.

8.2 ZREF OPERATION

ZREF is invoked by typing

ZREF filename.filetype {$}option

where filename.filetype is the name of the file to be cross­
referenced with the assumed filetype .zeo, and option is the
letter L, if the output is to the list device instead of a file.

8.3 RESERVED SYMBOLS

The following symbols will not be part of the cross reference:

A HI NUL
AF HL NOT
AND I NZ
B IX OR
BC IY P
C L PE
D LE PO
DE WW R
E LT SHL
EQ M SHR
GE MOD SP
GT NC XOR
H NE Z

Page 31

(THIS PAGE INTENTIONALLY LEFT BLANK.)

Page 32

CHAPTER 9
CODE CONVERTER

9.1 CODE CONVERTER OPERATION

The code converter (ZCON) converts aoao source statements, all of
the TDL machine instruction statements, and most of the common
TDL pseudo-ops to zao source statements (see the next section for
a listing of the convertible TDL pseudo-ops). In addition,
except for character-constants, ASCII strings, and comments,
parentheses are converted to brackets. Also, parity bit (bit 7)
is zeroed.

To invoke the code converter, type:

ZCON filename.filetype {$}u

where filename is the name of the source file to be converted.
If no filetype is specified, then ASM is assumed. When the "u"
option is specified, only upper-case conversion is done. This is
useful if you already have a zao source file in lower case. When
the conversion is completed, the output will be in a file called
filename.ZaO and one of two messages will be displayed.

Message 1:
"nnnn lines converted, with no errors detected. II
Where nnnn is the number of lines converted.

OR

Message 2:
"nnnn lines converted, with eee errors logged in filename.ERR"
.Where nnnn is the number of lines converted and eee is the
number of errors detected.

9.2 CONVERTIBLE TDL PSEUOO-oPS

The code converter will convert the most common TDL pseudo-ops.
They include the following:

.ASCII

.BLKB

.BLKW
• BYTE
• EXTERN

• I DENT
• INTERN
.LIST
• WORD
.XLIST

Page 33

CHAPTER 9: CODE CONVERTER

9.3 ERROR MESSAGES

If the code converter detects an error in a statement line, it
leaves the line unchanged. There are two types of error messages.

(1) w*** Syntax error at line nnn, line follows ***w
error line

Where nnn is the statement line number, and error line is the
statement line with the syntax error. Normally, this error
should not o~cur because it indicates that the operand for
this particular op-code is syntactically incorrect.

(2) w*** IF/ENOIF unbalanced ***"

.This error message appears if the IFs and ENDIFs ~re not
. paired. For every IF, there should be an ENDIF, and vice
versa.

Page 34

10.1 OVERVIEW

CHAPTER 10
LINKER

The zao Linker (ZLINK) is used to combine Microsoft relocatable
object modules into an absolute file ready for execution under Z
or CP/M. When completed, ZLINK lists the sorted symbol table,
any unresolved or duplicate symbols, and a load map which shows
the number of free bytes left and the size and locations of the
different segments:

LOAD MAP FOR FILENAME.COM

SEGMENT SIZE
ABSOLUTE
CODE
DATA
COMMON
FREE

START STOP

ZLINK writes the sorted symbol table to a .SYM file suitable for
use with Echelon Dynamic Screen Debugger (DSD) and Digital
Research Symbol ic Instruction Debuggers (SID and ZSID) as
described in the S option (see next page). ZLINK also creates a
COM file for direct execution under Z or CP/M. If errors are
detected, the P option (see next page) will be set automatically.

10.2 ZLINK OPERATION

ZLINK is invoked by typing

ZLINK filenamel{,filename2, ••• ,filenameNl

where filename is the name of the object module(s) to be linked.
If no filetype is specified, then REL is assumed. If some other
filename is desired for the COM and SYM files, it may be
specified as follows:

ZLINK newfilename=filenamel {,filename2, ••• filenameNl

If ZLINK encounters a starting address which is caused by sup­
plying an optional program starting address to the assembler END
pseudo-op then ZLINK will place a JUMP instruction at lOOH to the
program starting address.

10.3 ZLINK OPTIONS

A variety of options are available to provide control over the
execution parameters of ZLINK. Except for the / option (library

Page 35

CHAPTER !O: LINKER

search option) all of the options are link control options. They.
are used once at the end of a command line:

filenaine! {,filename2, ••• filenameN} $Cnnnn,Dnnnn,P,Rnnnn

Where nnnn is a hexadecimal number.

ZLINK options include:

C: Code Segment O~igin Option. The C. option is used to specify
the load address of the code segment. If it is not used, then
ZLINK will put the code segment at the address (lOOH). Unless
the R option indicates otherwise, the relocation value of the
code segment will be set to its load address. The syntax for the
Coption is Cnnnn, wherennnn if the desired code origin in hex.

D: Data Origin Option. TheD option indicates the load address
of the data and common segments. If the D option is used, the
address specified must be higher than the load address for the
code segment. If it is not used, ZLINK will put the data and
common segments immediately after the program segment. The syn­
tax for the D option is Dnnnn, where nnnn is the desired data
origin in hex.

P: Paging Option. The P option will page the output of ZLINK,
at 23 lines per page to the terminal. Pres.sing any key allows
you to continue to output one page at a time.

R: Relocate Origin Option. The R option specifies the re­
location value for the code segment. If not used, then ZLINK
will set the relocation value of the code segment to its load
address.

S: .SYM File Option. If this option is set, ZLINK will write
the sorted symbol table to a .SYM file suitable for use with the
Echelon DSD or Digital Research SID and ZSID debuggers.

/: Search Option. This option is used to indicate that the pre­
ceding file should be treated as a library. ZLINK will search
the file and include only those modules containing symbols which
are referenced but not defined in the modules already linked.
Unlike the link control options which" can be used once at the end
of a command line, the I option must be used after each filename
to be searched:

filename!/,filename2/, ••• filenameNI

10.4 DEFINE NEXT FREE Ml!H)RYLOCATION

If the public symbol $MEMRY is encountered during the link pro­
cess, then the two bytes addressed by the value $MEMRY and $MEMRY
+ 1 are filled in with the address of the next free memory
location. The statement labeled $MEMRY must be a DS statement.

Page 36

For example:

FREBEG:

$MEMRY:

PUBLIC
LD
RET
DS

10.5 ZLINK ERROR MESSAGES

FREBEG,$MEMRY
HL, ($MEMRY)

2

(1) "can't find filename.filetype"

CHAPTER 10: LINKER

;This routine returns
ithe first free byte
;of memory

Specified file cannot be found on the disk.

(2) "Filename.filetype is an invalid REL file!"

One of the files specified is no~ a Microsoft compatible REL
file.

(3) "Invalid option specification!"

One of the options specified is invalid.

(4) "Memory full!"

There is insufficient memory to complete the linking process.

(5) "Undefined symbols:"

The symbol name(s) following this heading are referenced but
not defined in any of the modules being linked.

(6) "DUplicate symbols:"

The symbol name(s) following this heading are defined as a
PUBLIC symbol in more than one of the modules being linked.

(7) "***Overlapping segments***"

ZLINK attempted to write a segment into memory already used
by another segment. This error is probably caused by incor­
rect use of the C and/or 0 options.

(8) "Read errorl"

A file cannot be read properly.

(9) "Syntax error in command line!"

The command line is ill formed.

(10) "Multiple main modules!"
Two or more modules contain a program starting address.

(11) "Library search limit exceeded!"
A maximum of ten libraries can be specified from assembler
.REQUEST statements.

Page 37

(THIS PAGE INTENTIONALLY LEFT BLANK.)

Page 38

11.1 OVERVIEW

CHAPTER 11
LIBRARY MANAGER

The Library Manager (ZLIB) is used to combine Microsoft relocat­
able object modules into a library. Libraries are files consis­
ting of any number of relocatable object modules. ZLIB can
delete modules from a library, concatenate REL files into a
library, re-place modules in a library, and print module names
and public symbols from a library.

11.2 ZLIB OPERATION

ZLIB is invoked by typing:

ZLIB libname=filenamef,filename, ••• } $option

where libname is the name of the library with filetype REL and
filename is the name of the object module<s). If no filetype is
specified, then REL is assumed.

An alternate form of invoking ZLIB when using the M or P option
(as described below) is:

ZLIB libname $listoption

where listoption is the M or P option.

11.3 ZLIB OPTIONS

If no option is specified, then the specified modules will be
appended to the library. The options include:

D: Delete the specified modules.

M: Print the module names in the library.

P: Print the module names and public symbols in the library.

R: Replace the specified modules.

11.4 ZLIB MESSAGES

Under the following circumstances ZLIB will produce messages.

(1) When a module is being appended to the library:

"Appending filename.filetype"

Page 39

CHAPTER 11: LIBRARY MANAGER

(2) If the specified library does not exist on disk and the spec­
ified option is append:

"Creating library"

(3) If a module is being deleted:

"Deleting JDOdulename"

(4) If a module is being replaced:

"Deleting modulename
Appending filename.filetype"

11.5 ZLIB ERROR MESSAGES

(1) "can't find filename.filetypeft

Specified file cannot be found on the disk.

(2) "Filename.filetype is an invalid BEL file!"

One of the files specified is not a Microsoft compatible REL
file. .

(3) "Invalid option specification!"

The option specified is invalid.

(4) "Syntax error in COIIIIIaIld line!"
The command line is ill formed.

Page 40

APPENDIX A
Z80 MNEKlNIC MACHINE INSTRUCTION CODES

Object Source
Code Statement Operation Notes

8E ADC A, (HL) Add with Carry Oper- Leading A Oper-
DD8E05 ADC A, nX+d) and to Ace. and is Optional
FD8E05 ADC A,(IY+d)
8F ADC A,A If d is Omitted
88 ADC A,B o is Assumed
89 ADC A,C
8A ADC A,D
8B ADC A,E
8C ADC A,H
8D ADC A,L
CE20 ADC A,n

ED4A
ED5A
ED6A
ED7A

ADC
ADC
ADC
ADC

HL,BC
HL,DE
HL,HL
HL,SP

Add with Carry Reg.
Pair to HL

86 ADD A, (HL) Add Operand to Acc. Leading A Oper-
DD8605 ADD A, nX+d) and is Optional
FD8605 ADD A, nY+d)
87 ADD A,A If d is Omitted
80 ADD A,B o is Assumed
81 ADD A,C
82 ADD A,D
83 ADD A,E
84 ADD A,B
85 ADD A,L
c620 ADD A,n

09
19
29
39

ADD
ADD
ADD
ADD

BL,BC
HL,DE
HL,HL
HL,SP

Add Reg. Pair to HL

DD09
DD19
DD29
DD39

ADD
ADD
ADD
ADD

IX,BC
IX,DE
IX, IX
IX,SP

Add Reg. Pair to IX

FD09
FD19
FD29
FD39

ADD
ADD
ADD
ADD

IY,BC
IY,DE
IY,IY
IY,SP

Add Reg. Pair to IY

A6
DDA605
FDA605

AND
AND
AND

A, (HL)
A, nX+d)
A, (IY+d)

Logical 'AND' of
Operand and Ace.

A1

Leading A Oper­
and is Optional

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

Object Source
Code Statement Operation Notes

A7 AND A,A Logial 'AND' of Leading A Oper-
AO AND A,B Operand and Acc. and is Optional
A1 AND A,C
A2 AND· A,D If d is Omitted
A3 AND A,E o is Assumed
A4 AND A,H
A5 AND A,L
E620 AND A,n

CB46 BIT 0, (HL) Test Bit of Location If d is Omitted
DDCB0546 BIT 0, (IX+d) or Reg. o is Assumed
FDCB0546 BIT O,(IY+d)
CB47 BIT O,A
CB40 BIT O,B
CB41 BIT O,C
CB42 BIT 0,0
CB43 BIT O,E
CB44 BIT O,H
CB45 BIT O,L
CB4E BIT 1, (HL)
DDCB054E BIT 1, (IX+d)
FDCB054E BIT 1, (IY+d)
CB4F BIT l,A
CB48 BIT l,B
CB49 BIT l,C
CB4A BIT 1,0
CB4B BIT l,E
CB4C BIT l,H
CB4D BIT l,L
CB56 BIT 2,(HL)
DDCB0556 BIT 2, (IX+d)
FDCB0556 BIT 2, (IX+d)
CB57 BIT 2,A
CB50 BIT 2,B
CB51 BIT 2,C
CB52 BIT 2,0
CB53 BIT 2,E
CB54 BIT 2,H
CB55 BIT 2,L
CB5E BIT 3, (HL)
DDCB055E BIT 3, (IX+d)
DFCB055E BIT 3,(IY+d)
CB5F BIT 3,A
CB58 BIT 3,B
CB59 BIT 3,C
CB5A BIT 3,0
CB5B BIT 3,E
CB5c BIT 3,H
CB5D BIT 3,L
CB66 BIT 4, (HL)
DDCB0566 BIT 4, (IX+d)
FDCB0566 BIT 4, (IY+d)

A2

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

Object Source
Code Statement Operation Notes

CB67 BIT 4,A Test Bit of Location If d is Omitted
CB60 BIT 4,B or Reg. o is Assumed
CB61 BIT 4,c
CB62 BIT 4,D
CB63 BIT 4,E
CB64 BIT 4,H
CB65 BIT 4,L
CB6E BIT 5,(HL)
DDCB056E BIT 5, <IX+d)
FDCB056E BIT" 5, <IY+d)
CB6F BIT 5,A
CB68 BIT 5,B
CB69 BIT 5,C
CB6A BIT 5,D
CB6B BIT 5,E
CB6C BIT 5,H
CB6D BIT 5,L
CB76 BIT 6,(HL)
DDCB0576 BIT 6, <IX+d)
FDCB0576 BIT 6, <IY+d)
CB77 BIT 6,A
CB70 BIT 6,B
CB71 BIT 6,C
CB72 BIT 6,D
CB73 BIT 6,E
CB74 BIT 6,H
CB75 BIT 6,L
CB7E BIT 7,(HL)
DDCB057E BIT 7, nX+d)
FDCB057E BIT 7, <IY+d)
CB7F BIT 7,A
CB78 BIT 7,B
CB79 BIT 7,C
CB7A BIT 7,D
CB7B BIT 7,E
CB7c BIT 7,H
CB7D BIT 7,L

DC8405 CALL C,nn Call Subroutine at
FC8405 CALL M,nn Location nn if Condi-
D48405 CALL NC,nn tion True
c48405 CALL NZ,nn
F48405 CALL P,nn
EC8405 CALL PE,nn
E48405 CALL PO,nn
CC8405 CALL Z,nn

CD8405 CALL nn Unconditional Call to

Subroutine at nn

3F CCF Complement Carry Flag

A3

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

Object Source
Code statement Operation Notes

BE CP (HL) ComJ?ar Operand Leading A Oper-
DDBE05 CP (IX+d) with Acc. .and is Optional
FDBE05 CP - (IY+d)
BF CP A If d is Omitted
B8 CP B o is Assumed
B9 CP C
BA CP 0
BB CP E
BC CP H
BD CP L
FE20 CP n

EDA9 CPO Compare Location

(HL) and Acc.
Decrement HL and BC

EDB9 CPDR Compare .Location

(HL) and Acc.; Dec.re­
ment HL·and BC,
Repeat until BC=O

***************************~*******************.***********************
EDA1. CPI Compare Location

(HL) and Acc~, Incre­
ment HL and Decrement
Be

EDB1 CPIR Compare Location

(HL) and Acc., Incre-
ment HL, Decrement BC,

. Repeat until BC=O

2F CPL Complement Acc. (1' s

Complement),
********************~**
27 OM Decimal Adjust Acc.
**************************~********************.*********~*************
35
DD3505
FD3505
3D
05
OB
00
15
1B
10
25
2B
DD2B
FD2B
20
3B

DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
D.EC
DEC
DEC
DEC

. DEC
DEC
DEC
DEC

(HL)
(IX+d)'
(IY+<i)
A
B
BC
C
o ,
DE
E
H
HL
IX
l:Y
L
SP

Decrement Operand ' If .. d· is Omitted
o is Assumed

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

Object
Code

F3 DI

Source
Statement Operation Notes

Disable Interrupts

102E DJNZ e Decrement Band

Jump Relative if B=O

FB EI Enable Interrupts

E3
DDE3
FDE3

EX
EX
EX

(SP) ,HL
(SP) , IX
(SP) ,IY

Exchange Location
and (SP)

08 EX AF,AF' Exchange the Con-

tents of AF and AF'

EB EX DE,HL Exchange the Con-

tents of DE and HL

D9 EXX Exchange the Con­

tents of BC,DE,HL
with Contents of
BC',DE',HL'Respec­
tively

76 HALT HALT (wait for Inter-

rupt or Reset)

ED46
ED56
ED5E

1M
1M
1M

o
1
2

Set Interrupt Mode

ED78 IN A, (C) Load Reg. with Input
ED40 IN B, (C) from Device (C)
ED48 IN C, (C)
ED50 IN D, (C)
ED58 IN E, (C)
ED60 IN H, (C)
ED68 IN L, (C)

34 INC (HL) Increment Operand If d is Omitted
DD3405 INC (IX+d) o is Assumed
FD3405 INC <IY+d)
3c INC A
04 INC B
03 INC BC
OC INC C
14 INC D
13 INC DE
lC INC E
24 INC H
23 INC HL
DD23 INC IX
FD23 INC IY

A5

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

Object
Code

2C
33

INC
INC

Source
statement

L
SP

Operation

Increment Operand

Notes

DB20 IN A,(n) LOad Acc. with

. Input from Device n

EDAA IND Load Location (HL)

with Input from Port
(C), Decrement HL
and B

EDBA INDR Load Location (aL)

with Input from Port
(C), Decrement HL
and Decrement B,
Repeat until B=O

EDA2 INI Load Location (HL)

with Input from Port
(C)i Increment HL
and Decrement B

EDB2 INIR Load Location (HL)

with Input from Port
(Cl, Increment HL
and Decrement B,
Repeat until B=O

C38405
E9
DOE 9
FDE9

JP
JP
JP
JP

nn
(HL)
(IX)
(Iy)

Unconditional Jump
to· Location

DA8405 JP C,nn Jump to Location if
FA8405 JP M,nn Condtion True
028405 JP NC,nn
C28405 JP NZ,nn
F28405 JP ·P,nn
EA8405 JP PE,nn
E28405 JP PO,nn
CA8405 JP Z,nn

382E JR e,e
302E JR NC,e
202E JR NZ,e
282E JR Z,e

Jump Relative to
PC+e if Condition
True

~**
182E JR e . Uncondtional Jump

Relative to PC+e

02
12

LD
LD

(BC) ,A
(DE) ,A

Load Source to
Destination

A6

APPENDIX A: Z80 MNEH>NIC MACHINE INSTRUCTION COOES

Object Source
Code Statement Operation Notes

77 LD (HL) ,A Load Source to If d is Omitted
70 LD (HL) ,B Destination o is Asswned
71 LD (HL) ,e
72 LD (HL) ,0
73 LD (HL),E
74 LD (HL) ,H
75 LD (HL) ,L
3620 LD (HL) ,n
007705 LD UX+d) ,A
007005 LO UX+d) ,B
007105 LD UX+d) ,C
007205 LD UX+d) ,0
007305 LD UX+d) ,E
007405 LO UX+d) ,H
007505 LD UX+d) ,L
00360520 LO UX+d) ,n
F07705 LD UY+d) ,A
F07005 LO UY+d) ,B
F07105 LD UY+d) ,C
FD7205 LD UY+d) ,0
F07305 LD UY+d) ,E
FD7405 LD UY+d) ,H
FD7505 LD UY+d) ,L
FD360520 LD UY+d) ,n
328405 LD (nn) ,A
E0438405 LD (nn) ,BC
E0538405 LD (nn) ,DE
228405 LD (nn) ,HL
DD228405 LD (nn) ,IX
FD228405 LD (nn) ,IY
ED738405 LD (nn) ,SP
OA LD A, (BC)
1A LD A,(OE~
7E LD . A, (HLt: ..
DD7E05 LD A, UX+d)
FD7E05 LD A, UY+d)
3A8405 LD A, (nn)
7F LD A,A
78 LD A,B
79 LD A,C
7A LD A,O
7B LD A,E
7C LD A,H
ED57 LD A,I
7D LD A,L
3E20 LD A,n
ED5F LO A,R
46 LD B,(HL)
DD4605 LD B, UX+d)
FD4605 LD B, UY+d)
47 LD B.,A
40 LD B,B

A7

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

Object . Source
Code statement Operation Notes

41 LD B,C Load Source to If d is Omitted
42 LD B,D Destination o is Assumed
43 LD B,E
44 LD B,H
45 LD B,L
0620 LD B,n
ED4B8405 LD BC, (nn)
018405 LD BC,nn
4E LD C, (HL)
DD4E05 LD C, (IX+d)
FD4E05 LD C, (IY.+d)
4F LD C,A
48 LD C,B
49 LD C,C
4A LD C,D
4B LD C,E
4C LD C,H
4D LD C,L
OE20 LD C,n
56 LD D, (HL)
DD5605 LD D, (IX+d)
FD5605 LD D, (IY+d)
57 LD D,A
50 LD D,B
51 LD D,C
52 LD D,D
53 LD D,E
54 LD D,H
55 LD D,L
1620 LD D,n
ED5B8405 LD DE, (nn)
118405 LD DE,nn
5E LD E, (HL)
DD5E05 LD E,·(IX+d)
FD5E05 LD E,(IY+d)
5F LD E,A
58 LD· E,B
59 LD E,C
5A LD E,D
5B LD E,E
5C LD E,H
5D LD E,L
1E20 LD E,n
66 LD H, (HL)
DD6605 LD H, (IX+d)
FD6605 LD H, (IY+d)
67 LD H,A
60 LD H,B
61 LD H,C
62 LD H,D
63 LD H,E
64 LD H,H

A8

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

Object Source
Code Statement Operation Notes

65 LD HtL Load Source to If d is Omitted
2620 LD B,n Destination o is Assumed
2A8405 LD BL,(nn)
218405 LD BL,nn
ED47 LD I,A
DD2A8405 LD IX, (nn)
DD218405 LD IX,nn
FD2A8405 LD IY, (nn)
FD218405 LD IY,nn
6E LD L, (BL)
DD6E05 LD L, (IX+d)
FD6E05 LD L, CIY+d)
6F LD L,A
68 LD L,B
69 LD L,C
6A LD L,D
6B LD L,E
6C LD L,H
6D LD L,L
2E20 LD L,n
ED4F LD R,A
ED7B8405 LD SP, (nn)
F9 LD SP,HL
DDF9 LD SP,IX
FDF9 LD SP,IY
318405 LD SP,nn

EDA8 LDD Load Location(DE)

with Location(BL),
Decrement DE, HL
and BC

EDB8 LDDR Load Location (DE)

with Location (HL).
Repeat until BC=O

EDAO LDI Load Location (DE)

with Location (HL),
Increment DE, HL,
Decrement Be

EDBO LDIR Load Location (DE)

with Location (HL),
Increment DE, HL,
Decrement BC and
Repeat until BC=O

ED44 NEG Negate Acc. (2'8

Complement)

00 NOP No Operation

A9

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

Object
Code

Source
Statement

B6 OR A, (HL)
DDB605 OR A,(IX+d)
FDB605 OR A, (IY+d)
B7 OR A,A
BO OR A,B
B1 OR A,C
B20R A,D
B3 OR A,E
B4 OR A,H
B5 OR A,L
F620 OR A,n

Operation

Logical "OR" of
Operand and Acc.

Notes

Leading A Oper­
and is Optional

If d is Omitted
o is Assumed

ED8B OTDR Load output Port (C)

with Location (HL),
Decrement HL and B,
Repeat until B=O

EDB3 OTIR Load output Port (C)

with Location (HL),
Increment HL, Decre­
ment B, Repeat until
B=O

ED79 OUT (C) ,A Load output Port (C)
ED41 OUT (C) ,B with Reg.
ED49 OUT (C) ,C
ED51 OUT (C) ,D
ED59 OUT (C) ,E
ED61 OUT (C) ,H
ED69 OUT (C) ,L

D320 OUT (n) ,A Load output Port (n)

with Acc.
*********~***
EDAB OUTD Load output Port (C)

with Location (HL),
Decrement HL and B

EDA3 OUTI Load output Port (C)

with Location (HL),
Increment HL and
Decrement B

F1 POP AF Load Destination
C1 POP BC with Top of Stack
D5 POP DE
E1 POP HL
DDEl POP IX
FDEl POP IY

A10

APPENDIX A: ZSO MNEMONIC MACHINE INSTRUCTION CODES

Object Source
Code Statement Operation Notes

F5 PUSH AF Load Source to Stack
C5 PUSH BC
D5 PUSH DE
E5 PUSH HL
DDE5 PUSH IX
FDE5 PUSH IY
**************************************~********************************
CB86 RES 0, (HL) Reset Bit b of If d is Omitted
DDCB05S6 RES 0, (IX+d) Operand o is Assumed
FDCB05S6 RES 0, (IY+d)
CBS7 RES O,A
CBSO RES O,B
CBSI RES O,C
CBS 2 RES O,D
CBS 3 RES O,E
CBS4 RES O,H
CBS5 RES O,L
CBSE RES 1, (HL)
DDCB058E RES 1, (IX+d)
FDCB05SE RES 1, (IY+d)
CBSF RES 1,A
CBSS RES 1,B
CBS9 RES 1,C
CB8A RES 1,D
CB8B RES 1,E
CBSC RES 1,H
CBSD RES 1,L
CB96 RES 2, (HL)
DDCB0596 RES 2, (IX+d)
FDCB0596 RES 2, (IY+d)
CB97 RES 2,A
CB90 RES 2,B
CB91 RES 2,C
CB92 RES 2,D
CB93 RES 2,E
CB94 RES 2,H
CB95 RES 2,L
CB9E RES 3,(HL)
DDCB059E RES 3, (IX+d)
FDCB059E RES 3, (IY+d
CB9F RES 3,A
CB9S RES 3,B
CB9A RES 3,D
CB9B RES 3,E
CB9C RES 3,H
CB9D RES 3,L
CBA6 RES 4, (HL)
DDCB05A6 RES 4, (IX+d)
FDCB05A6 RES 4, (IY+d)
CBA7 RES 4,A
CBAO RES 4,B
CBAI RES 4,C

All

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

Object
Code

CBA2
CBA3
CBA4
CBA5
CBAE
DDCB0 5AE
FDCB05AE
CBAF
CBA8
CBA9
CBAA
CBAB
CBAC
CBB6
DDCB05B6
FDCB05B6
CBB7
CBBO
CBB!
CBB2
CBB3
CBB4
CBB5
CBBE
DDCB05BE
FDCB05BE
CBBF
CBB8
CBB9
CBBA
CBBB
CBBC
CBBD

RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

Source
Statement

4,D
4,E
4,H
4,L
5,(HL)
5, (IX+d)
5, (IY+d)
5,A
5,B
5,C
5,D
5,E
5,L
6, (HL)
6,UX+d)
6, UY+d)
6,A
6,B
6,c
6,D
6,E
6,H
6,L
7, (HL)
7, (IX+d)
7,(IY+d)
7,A
7,B
7,C
7,D
7,E
7,H
7,L

Operation

Reset Bit b of
Operation

Notes

If d is Omitted
o is Assumed

C9 RET Ret.urn from

Subroutine

D8 RET C Return from
F8 RET M Subroutine if Condi-
DO RET NC tion True
CO RET NZ
FO RET P
E8 RET PE
EO RET PO
C8 RET Z

ED4D RETI Return from Interrupt

ED45 RETN Return from Non-

Maskable Interrupt

A12

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

Object Source
Code Statement Operation Notes

CB16 RL (HL) Rotate Left Through If d is Omitted
DDCB05l6 RL (IX+d) Carry o is Assumed
FDCB05l6 RL (IY+d)
CB17 RL A
CB10 RL B
CBll RL C
CB12 RL D
CB13 RL E
CB14 RL H
CB15 RL L

17 RLA Rotate Left Acc.

Through carry

CB06
DDCa0506
FDCB0506
CB07
CBOO
CBOl
CB02
CB03
CB04
CB05

RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC

(HL)
(IX+d)
(IY+d)
A
B
C
o
E
H
L

Rotate Left Circular If d is Omitted
o i Assumed

07 RLCA Rotate Left Circ. Acc.

ED6F RLD Rotate Digit Left and

Right between Acc. and
Location (HL)

CB1E RR (HL) Rotate Right Through If d is Omitted
DDCB051E RR (IX+d) Carry o is Assumed
FDCB051E RR (IY+d)
CB1F RR A
CB18 RR B
CB19 RR C
CB1A RR D
CB1B RR E
CB1C RR H
CB1D RR L

lF RRA Rotate Right Acc.

Through Carry

CBOE
DDCB050E
FDCB050E
CBOF
CB08
CB09
CBOA

RRC
RRC
RRC
RRC
RRC
RRC
RRC

(HL)
(IX+d)
(IY+d)
A
B
C
D

Rotate Right Circular

A13

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

Object
Code

CBOB
CBOC
CBOD

RRC
RRC
RRC

Source
statement

E
H
L

Operation

Rotate Right Circular

Notes

OF RRCA Rotate Right Circular

Acc.

ED67 RRD Rotate Digit Right and

Left Between Acc. and
. Location (BL)

*** : ~ ..
C7 RST OOH Restart to Location
CF RST 08H
D7 RST 10H
DF RST 18H
E7 RST 20H
EF RST 28H
F7 RST 30H
FF RST 38H
*********~***
DE20
9E
DD9E05
FD9E05
9F
98
99
9A
9B
9C
9D
ED42
ED52
ED62
ED72

SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC

A,n
A, (HL)
A, (IX+d)
A,(IY+d)
A,A
A,B
A,C
A,D
A,E
A,H
A,L
HL,BC
HL,DE
HL,HL
HL,SP

Subtract Operand
from Acc. with Carry

Leading A Oper­
and is Optional

If d is Omitted
o is Assumed

37 SCF Set Carry Flag (C=l)

CBC6
DDCB05C6
FDCB05C6
CBC7
CBCO
CBC1
CBC2
caC3
CBC4
CBC5
CBCE
DDCB05CE
FDCB05CE
CBCF

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

O,(HL)
0, (IX+d)
0, (IY+d)
O,A
O,B
O,C
O,D
O,E
O,H
O,L
1, CHL)
1, (Ix+d)
1, (IY+d)
1,A

Set Bit b of Location

A14

If d is Omitted
o is Assumed

Object
Code

CBC8
CBC9
CBCA
CBCB
CBCC
CBCD
CBD6
DDCB05D6
FDCB05D6
CBD7
CBDO
CBD1
CBD2
CBD3
CBD4
CBD5
CBD8
CBDE
DDCB05DE
FDCB05DE
CBDF
CBD8
CBD9
CBDA
CBDB
CBDC
CBDD
CBE6
DDCB05E6
FDCB05E6
CBE7
CBEO
CBE1
CBE2
CBE3
CBE4
CBE5
CBEE
DDCB05EE
FDCB05EE
CBEF
CBE8
CBE9
CBEA
CBEB
CBEC
CBED
CBF6
DDCB05F6
FDCB05F6
CBF7
CBFO

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET·
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

Source
Statement

1,B
1,C
1,1)
1,E
1,H
1,L
2,(HL)
2, (IX+d)
2, (IY+d)
2,A
2,B
2,C
2,D
2,E
2,H
2,L
3,B
3, (HL)
3, (IX+d)
3, (IY+d)
3,A
3,B
3,C
3,D
3,E
3,H
3,L
4, (HL)
4,(IX+d)
4, (IY+d)
4,A
4,B
4,C
4,D
4,E
4,H
4,L
5,(HL)
5, (IX+d)
5, \IY+d)
5,A
5,B
5,C
5,D
5,E
5,H
5,L
6, (HL)
6, <IX+d)
6, <IY+d)
6,A
6,B

-Operation

Set Bit b of Location

A15

Notes

If d is Omitted
o is Assumed

APPENDIX A: Z80 MNEMONIC MACHINE· INSTRUCTION CODES

Object
Code

CBF!
CBF2
CBF3
CBF4
CBF5
DBFE
DDCB05FE
FDCB05FE
CBFF
CBF8
CBF9
CBFA

. CBFB
CBFC
CBFD

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

Source
Statement

6,c
6,0
6,E
6,H
6,L
7, (HL)
7, (IX+d)
7, (IY+d)
7,A
7,B
7,C
7,0
7,E
7,H
7;L

Operation

Set Bit b of
Location

Notes

If d is Omitted
o is Assumed

CB26
DDCB0526
FDCB0526
CB27
CB20
CB2!
CB22
CB23
CB24
CB25

SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA

(HL)
(IX+d)
(IY+d)
A
B
C
D
E
H
L

Shift Operand Left
Arithmetic

If d is Omitted
o is Assumed

CB2E SRA (HL) Shift Operand Right If d is Omitted
DDCB052E SRA (IX+d) Arithmetic o is· Assumed
FDCB052E SRA (IY+d)
CB2F SRA A
CB28 SRA B
CB29 SRA C
CB2A SRA D
CB2B SRA E
CB2C. SRA H
CB2D SRA L

CB3E
DDCB053E
FDCB053E
DB3F
DB38
CB39
CB3A
CB3B
CB3C
CB3D

SRL
SRL
SRL
SRL
SRL
SRL
SRL
SRL
SRL
SRL

(HL)
(IX+d)
(IY+d)
A
B
C
o
E
H
L

Shift Operand Right
Logical

If d is Omitted
o is Assumed

96
DD9605

SUB
SUB

(HL)
(IX+d)

Subtract Operand
from Ace.

Al6

Leading A Oper­
and is Optional

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

Object Source
Code Statement Operation Notes

FD9605 SUB CIY+d) Subtract Operand If d is Omitted
97 SUB A from Acc. o is Assumed
90 SUB B
91 SUB C
92 SUB D
93 SUB E
94 SUB H
95 SUB L
0620 SUB n

AE XOR A, (HL) Exclusive "OR" Leading A Oper-
DDAE05 XOR A, CIX+d) Operand and Acc. and is Optional
FDAE05 XOR A, CIY+d)
AF XOR A,A If d is Omitted
A8 XOR A,B o is Assumed
A9 XOR A,C
AA XOR A,D
AB XOR A,E
AC XOR A,H
AD XOR A,L
EE20 XOR A,n

A17

APPENDIX A: zao MNEMONIC MACHINE INSTRUCTION CODES

(THIS PAGE INTENTIONALLY LEFT BLANK.)

APPENDIX B
ECRRJ'.QN SOP'J.'IIARE OPImTE FORM

1. PRODUCT NAME & VERSION __ ___

2. USER NAME __________________________________ DATE ________________ _

3. USER' S IIAlUMARE & SOFTWARE SYSTDt:

4. REPORT TYPE: 5. PERPORMANCE IMPACT:

Problem/Possible Error shuts Down System

Suggested Enhancement Impairs System Performance

Document Suggestion Causes Inconvenience
.

other Needs Suggested Enhancement

other ---------------------
6. PROBLEM DESCRIPTION: Please describe the problem concisely and how it

can be reproduced. If possible, provide your diagnosis and your cure.
Attach a listing if available.

7. RETURN FORM TO: Echelon, Inc.
101 First Street
Los Altos, CA 94022

YOUR INTEREST IN Z-TOOLS IS APPRECIATED!

B1

(THIS PAGE INTENTIONALLY LEFT BLANK.)

APPENDIX C

Pseudo=op Form

ASEG

C(M()N

CSEG

DB(DEFB) n {,n ••• }

DC 'string'

.DEPHASE

DS(DEFS)

DSEG

DW(DEFW)

ELSE

END

ENDIF
ENII{

expression {,expression}

nn {,nn ••• }

{expression}

LABEL EQU expression

EXI'IM

EXTRN(EXT) symbol {,symbol •••)

.HD64

IF

.IFl

.IFl6

expression

.IN(MACLIB) {d:}filename

Def:iJJ:ition

set absolute segment

set cammon segment

set code segment

define byte

define character

end .phase

define space

set data segment

define word

conditional assembly

specifies program starting address

end conditional assembly

end macro

equate label to a value

exit macro

define external symbols

assemble HD64180 instructions

conditional assembly

conditional trueness based on Isb

conditional trueness based on 16-bits

include file

IRP

IRPC

identifier, string {,string ••• } indefinite repeat macro

.LALL

.LFCOND

.LIST

LOCAL

LABEL MACRO

NAME

identifier, string indefinite repeat character macro

list all macro lines

identifier {,identifier ••• }

dummy {,dummy ••• }

modulename

Cl

list all false conditionals

resume listing

define local macro labels

stored macro definition

define module name

ZAS PSI!lJID-OP SIIIMRY (con' t)

P.seudo-op Fora DefiDition

ORG expression change value of relocation cmmter

PAGE {expression} page definition or eject

• PHASE expression relocate block of code

• PRINT pass,text print text during assembly

PUBLIC symbol {,symbol ••• } define public symbols

• RADIX n set radix default

REPT expression repeat macro

• REQUEST filename {,filename ••• } request library search

• SAIL suppress macro. listing

.S8m. 'string' define subtitle

LABEL SET(DEFL) expression set label to a value

.SFCOND suppress listing of false conditionals

• TITLE 'string' define title

.XALL exclude non-code macro lines

.XLIST suppress listings

Legead: items in ()' s are aliases; in { }' s. optional.

C2

APPENDIX D

HITACHI BD64180 MODE

Object
Code

Source
Statement

ED3805 INO A,(nn)
ED0005 INO B,(nn)
ED0805 INO C,(nn)
EDI005 INO D,(nn)
ED1805 INO E,(nn)
ED2005 INO H,(nn)
ED2805 INO L,(nn)

Operation

Load register with input from
port (nn).

**
ED4C
ED5C
ED6C
ED7C

MLT
MLT
MLT
MLT

BC
DE
HL
SP

Unsigned multiplication of
each half of the specified
register pair with the I6-bit
result going to the specified
register pair.

**
ED8B OTDM Load output port <e) with

location (HL), decrement HI.,
B, and C.

************~***
ED9B OTDMR Load output port (C) with

location (HL), decrement HL,
B, and C. Repeat until B=O.

**
ED83 OTIM Load output port (C) with

location (HL), increment HI.
and C. Decrement B.

**
ED93 OTIMR Load output port (C) with

location (HL), increment HL
and C. Decrement B. Repeat
until B=O.

**
ED3905 OUTO (nn),A
EDOI05 OUTO (nn),B
ED0905 aUTO (nn),C
EDII05 aUTO (nn),D
ED1905 aUTO (nn),E
ED2I05 aUTO (nn),H
ED2905 aUTO (nn),L

Load output port (nn) from
register.

**
ED76 SLP Enter sleep mode.
**
ED3C TST " Non-destructive AND with H.

ED04 TST B accumulator and specified
EDOC TST C operand.
EDI4 TS'I' D
ED1C TST E
ED24 TST H
ED2c TST L
ED6405 TST nn
ED34 TST (HL)
**
ED7405 TSTIO nn

D1

Non-destructive AND of nn and
the contents of port (C).

