SB180

Computer/Controller

DESCRIPTION

The MICROMINT SB180 computer packs a lot of compu-
ting power in a very small package. The SB180, only 4"
by 7%"”, offers a Z-80 compatible CPU running at 6MHz,
256K bytes of RAM, up to 32K bytes of ROM, two
serial ports, a parallel port, expansion bus, and an industry
standard 765A-compatible disk controller for up to four
disk drives - any combination of 3%’/ 5%", or 8’ drives.
Whether you use the SB180 as the basis for a complete
disk based computer system or use its 32K of ROM space
for a battery-powered dedicated controller application pro-
gram, you will appreciate its ability to run standard 8080/
8085 and Z-80 software at up to twice the speed of a
4MHz Z-80.

The SB180 uses the most powerful of the new generation 8 bit CPUs — the Hitachi HD64180. The HD64180 is based
on a microcoded execution unit and advanced CMOS manufacturing technology. It provides the benefits of high perfor-
mance, reduced system cost and low power operation while maintaining complete compatibility with the large base of
standard CP/M software. Performance of the HD64180 derives from its high clock speed, instruction pipelining, and an
integrated Memory Management Unit (MMU) with 512K bytes memory address space. The instruction set is a superset of
the Z80 instruction set; twelve new instructions include hardware multiply and a SLEEP instruction for low power op-

eration. System costs are reduced because many key system functions have been included on-chip. Besides the MMU,
the HD64180 boasts a two channel Direct Memory Access Controller (DMAC), wait state generator, dynamic RAM
refresh, two channel Asynchronous Serial Communication Interface (ASCl), Clocked Serial |/O port (CSl/O), two
channel 16-bit Programmable Reload Timer (PRT), a versatile 12 source interrupt controller, and a “‘dual” (68xx

and 80xx families) bus interface.

and Oasis operating systems. These operating systems can be custom configured to make use of the 266K bytes on

OBecause the SB180 uses the Z80 instruction set, it can run CP/M 2.2, CP/M Plus, Z-System, MP/MII, TurboDOS,

»board memory for enhanced performance. And popular proegram development tools for these operating systems —
BASIC, FORTRAN, Pascal, PL/1, C, Forth, assembler, etc. — are widely available; thousands of proven application

programs will work, too.

TECHNICAL SPECIFICATIONS

PROCESSOR

* Hitachi HD64180, an 8-bit CPU on a 64 pin chip

* Superset of Z-80 instruction set, including
hardware multiply

* Integrated Memory Management Unit with 512K
bytes address space

* Dynamic RAM refresh

* Wait state generator

* Clocked serial 1/0 port

* 2 channel Direct Memory Access Controller

* 2 channel Asynchronous Serial Communication
Interface

* 2 channel 16-bit Programmable Reload Timer

* 12 interrupts

* Dual bus interface to 68xx and 80xx support chips

* 6.1 MHz system clock

MEMORY

* 256K bytes dynamic RAM on board

* Either an 8K 2764, 16K 27128, or 32K 27256
EPROM usable

* Optional full function 8K ROM monitor

INPUT/OQUTPUT ‘
@‘ Console 1/0 RS-232 serial port with auto-baud

rate select to 19,200 baud

* Peripheral RS-232 serial port, full handshaking,
150- 19,200 baud

* Line printer parallel 1/O port

* 19-bit address decoding, 1/0 port decoding,
and dual bus interface brought out to
expansion bus connector

FLOPPY DISK INTERFACE

* Uses Standard Microsystems 9266 disk controller chip
* Compatible with NEC 765A controller
* On-chip digital data separator
* Can control 3%”, 5%, and 8'* drives — up to 4in
any combination
* Handles both FM encoded (single density) and
MFM encoded (double density) data

POWER SUPPLY REQUIREMENTS

* +5 volts +/- 5% @ 300 mA (all CMOS); @ 500mA (TTL)
* +12 volts +/- 20% @ 40 mA (plus disk drive requirements)

DIMENSIONS AND CONNECTIONS

* 4" by 7" board with mounting holes

* 20 pin DIP header for RS-232C serial console 1/0

* 20 pin DIP header for RS-232C serial peripheral port
* 20 pin DIP header for parallel port line printer

* 34 pin header for 3% or 5% floppy disk

* Layout for 40 pin and 8 pin headers (unpopulated)

forq expansion bus
* Layout Tor 50 pin header (unpopulated) for 8" floppy disks

OPERATING CONDITIONS

* Temperature: 0-50 C (32-122 F)
* Relative humidity: 10-90% relative humidity, non-condensing

DATA SHEET

S3IM3S YITTIOULNOD/H43ILNdINOD

THE MICROMINT ROM MONITOR

The ROM monitor provided with the SB180 is a complete set of utilities and debugging aids in an 8K byte EPROM

which supports four |/O ““devices’’:

CON: — Console RS-232 serial port CEN: — Centronics parallel printer port

AUX: — Auxiliary RS-232 serial port DSK: — Floppy disk storage device
Monitor Commands include:

A — ASCII table I — Input port S — Set memory

B — Bank select K — Klean disk (format) T — Test system

C — Copy disk M— Move memory U— Upload hex file

D — Display memory N — New command V — Verify memory

E — Emulate terminal O — Output port W— Write disk

F — Fill memory P — Printer select X— eXamine CPU registers

G — Goto program Q— Query memory Y— Yank /O registers

H — Hexmath R — Read Disk Z — Z-System boot

PART # DESCRIPTION PRICE

SB180-1 SB180 computer board w/256K $369.00
bytes RAM and ROM monitor.

SB180-10 SB180 Boot disk. Contains $ 49.00
Z-System with limited utilities
and Super Bios source listing.
Provided on 5%’ SB180 format
DSDD diskette.

SB180-20 Z-System including ZR DOS, $190.00
ZCPR3, editor, utilities, ZAS
assembler, and ZDM debugger
on four 5%’ DSDD disks.

All boards are complete with the exception of the 50 pin 8" drive header
44/8 pin expansion bus headers which are not populated and optionally
available. Printer, disk, and terminal cables available separately. Call for
pricing. OEM terms available.

CP/M and CP/M-80 are registered trademarks of Digital Research, Incorporated
MS-DOS is a registered trademark of Microsoft, Inc.

280 is a registered trademark of Zilog, Inc.

Z-System is a registered trademark of Echelon, Inc.

2ZCPR3 Copyright (c) R.L. Conn

Order Toll Free

1-800-635-3355

In Connecticut call: 1-871-6170

[]
To order or for more information,
call TOLL FREE or write:

MICROMINT, INC.
25 Terrace Drive, Vernon, CT 06066

COMM180

Modem/SCSI Peripheral Board

DESCRIPTION

The MICROMINT COMM180 expansion
board may be the only board you will
ever need for your SB180 computer, This
4” x 5" board adds two major functions
to your SB180:

1) Bell 103-212A compatible 300/1200
baud modem with Dual Tone Multi-
Frequency (DTMF) encode/decode
capability and voice synthesis.

2)SCSI hard disk controller interface.

The COMM180 board is availabie in
three versions:

1)Modem, DTMF encode/decode, and
voice synthesis alone.

2)Smal! Computer System Interface
(SCSI) hard disk controller inter-
face alone.

3)Both of the above.

And either the modem version or the
SCSI controller version may be upgraded
to the full version at any time.

The COMM180 does not use a serial port on the SB180, but instead addresses the bus directly. It is fully Bell 103 and

C

ell 212A compatible (including FCC registered Data Access Arrangement) for 300 and 1200 baud use, is 8251A
ftware compatible, features both DTMF and pulse dialing, call progress monitoring, DTMF reception and decoding,
nd a unique diagnostic capability which automatically compensates for common telephone line deficiencies. In

addition the COMM180 has voice synthesis capabilities which allow it to respond verbally to commands entered
via the standard touch tone telephone pad.

The SCSI allows the use of a wide variety of hard disks with the SB180 for fast, sophisticated mass storage whether
you need just 5 megabytes or 50 megabytes. Many manufacturers offer hard disk drives and controller cards which
mate with the SCSI interface. If you need more file space than floppies allow, the COMM180 board can help meet your
storage needs. In addition, many laboratory instruments support the SCSI standard, thus the COMM180 can allow
the SB180 to be more easily used for data logging and data reduction.

Software for the COMM180-M includes TERM Ill, a complete modem communications system designed to run
under Z-System DOS available for the SB180. BIOS modifications are supplied in source code to allow integrations of
hard disk drivers into the Z-System DOS.

TECHNICAL SPECIFICATIONS

MODEM

* Plugs into the Expansion Bus on the SB180

* Only 47 x 5”

* Fully Bell-212A and Bell-103 Compatible

* DTMF or Pulse Dialing

* Jack for External Speaker for Call
Progress Monitoring

* DTMF Reception and Decoding

* 8251A Software Compatibility

* Parity Generation/Checking

* Sync Byte Detection/Insertion

* Synchronous 1200 bps, Asynchronous
1200, 300, 110 bps

*

Software Controlled Audio Input and
Output Interface (2 Separate Jacks)
for Voice Communication or Acoustic
Coupling

* Voice Synthesis (LPC coded)

* ok ok ok

ASCIl Command and Error/Status Codes
Extensive Built in Diagnostics

Phone Line Diagnostics

FCC Registered Direct Connection.

Tip and Ring Input

Scsi

* Provides a Device Independent Local 1/O Bus

* Operates at DMA Data Rates Up to 1.5
Megabytes Per Second

* Supports Initiator and Target Roles

* Parity Generation with Optional Checking

DATA SHEET

Y
}9\%‘

&
kS

SENYO©S[[NIOLSNNGINKE

* Supports Bus Arbitration

* Provides Direct Control of All Bus Signals
* XEBEC 1410 compatible

* ADAPTEC ACB4000 compatible

COMM180 SOFTWARE

The software which comes with the COMM180-M consists of TERM 111 and Z-MSG (optional).

TERM 1l is a sophisticated communications package which offers all the functions of standard
modem programs but goes far beyond them when used with COMM180’s advanced features and
2-System DOS (required for operation). TERM [ll was designed to be used as:

1) an originating communications system to allow the user to dial out, communicate with other
computers, and perform file transfer functions;

2) a remote access system to allow users to dial into the system, interact with it, and transfer
programs into and out of it; and,

3) a configuration system to allow the user to configure the attributes of the other two types
of systems.

TERM Il offers multiple file transfer protocols: Christiansen’'s MODEM7 (with checksum and with
CRC), MODEM7 batch, XMODEM, KERMIT, CompuServe’s CIS, and X-ON/X-OFF. Special attention
has been paid to making the remote access system completely secure from unauthorized use. You
may also patch subroutines into TERM Ill to use a standard touch tone pad to give special
instructions, or run a program using the COMM180’s speech synthesis with verbal system access.

Z-MSG allows the COMM180, SB180, and TERM Il to be custom configured as a ‘‘turnkey’
Remote Bulletin Board System - either as a public system allowing access to anyone or as a private
system restricting access to ““members only”. Z-MSG allows up to eight user “‘types’” with varying
privileges associated with each. Messages may be public or private and may be over 100 lines long.
Extensive editing functions are provided and comprehensive on-line help is always available.

For those wishing to use the SCSI as a hard disk controller, source code is provided which allows
many types and sizes of Winchester disks to be used as mass storage for the SB180. Of course, the
SCSI may also be used to link other SB180’s or SCSI equipment together as well.

COMM180 PRICING

Item 1: COMM180-S SCSI board with BIOS upgrade. g

Item 2: COMM180-M 1200 baud modem board with TERM IlI.

Item 3: COMM180-M-S combination modem/SCSI| board with TERM 1[Il
and BIOS upgrade.

Item 4: Z-MSG turnkey bulletin board software for the COMM180-M. -»\bo

Call Micromint for current price information

Order Toll Free, 4%
1-800-635-3355

In Connecticut call: 1-871-6170

O
«

We welcome the opportunity to offer quantity pricing and OEM proposals.

To order or for more information, call TOLL FREE or write:
MICROMINT, INC. 25 Terrace Drive, Vernon, CT 06066

\g.;»

Qé?@i&[[@@ﬂ INIOISSINANTAPREE]

INPUT:
115 0r 230 VAC + or - 16%
0.85 Amp RMS max.

FUSE:
SMF 2 A 125V or
5MF 1A 250V

PS-ASTEC
AA12110

OUTPUT:
+5V+or-5%25Amp® 50 mVp-p max. ripple
+12V+or-5%20Amp 150 mVp-p max. ripple
-12V +or-25%0.1 Amp 150 mVp-p max. ripple

* 5.0 Amps if no load on +12 V

MAX. POWER OUTPUT:
38 watts

L
O

=12V
ooy
et .Co¥

L.o-l2v
IV

coM

' BAE 324

D

RRRSFA
tcox
Casy

BoEiED O §VE L LS IR i T I i
N ER L S e L
SHI8Q SINGLE BOARD COMPUTER SYSTE
AGSEMBLED AND TESTED BROIARD

BERIAL NUMBER

SB180

SINGLE BOARD COMPUTER

Users Manual

QO
&

8

THE MICROMINT, INC. 25 Terrace Drive, Vernon, Connecticut 06066

Rev. 1.0

TIP SHEET 10/23/85

First time wusers may find the following list of tips useful in
setting up and using their system: '

1) The system provided must be booted on a double~sided-
double-density 48 tpi disk drive with the terminal set for 9600
baud. The system may later be configured by the user to boot

from 96 tpi drives and at a different baud rate. (Use CONFIG to
change the baud rate.)

2) ZCPR3 allows the use of up to 32 user areas on each disk.
(The system provided has been set up to use areas 0 thrcugh 15
only. Should the user need more areas than this, the system
source files on disk three must be modified and reassembled.)
The different areas may be accessed by typing the desired area
number followed by a colon and a return at the system prempt.
For example, to move from area 0 to area 15 type '15:' at the
'AQ0:BASE>' prompt.

3) A user area may also have a name associated with 1it.
When the 'System Master' disk is used to boot the system, wuser

area 0 is named 'BASE' while area 15 is named 'ROOT'. To move
between areas using their names, type the area name instead of
its number, followed by a colon and a return. Another way to

move to area 15 in the above example is to type 'ROOT:" at the
'A0:BASE>' prompt.

4) To see a list of currently defined named directories,
type 'PWD' followed by a return. To get a list of all the files
on a disk in all the user areas, put the disk in drive B: and
type 'XDIR B: U' followed by a return. (SB180-20 software only.})

5) All of the files on disks two, three, and four may be
found in user area 0. (SB180~-20 software only.) However, most of
the files on disk one are in user area 15. This is so the user
doesn't have to see a list of system tools every time he does a
directory.

6) As provided, the system uses a disk head step rate of

10ms. (If this means nothing to you, go on to the next para=
graph.) A quicker step rate may be used with some drives to
increase the overall disk access rate. Check your disk drive's
manual to determine if a faster step rate can be used. {e.g.

TEAC _FD-55B-20-U drives can use a 6ms step rate.) Run CONFIG to
make this change. e

7) Besides the system tools on the 'System Master® disk,
there are also a number of built=~in commands. These 1include
commands in the command processor (CP), which are GO, SAVE, GET,
JUMP, and NOTE, and commands in the resident command package
(RCP) such as TYPE and POKE. For a list of RCP commands, type H
at the system prompt. For more details, see the ZCPR3 book.

8) If you plan to mount your SB180 in an enclosure, be sure
to use nylon or plastic washers between any metal hardware and
the 5B180's circuit board. Any metal allowed to touch the board
my cause short circuits and prevent the board from operating
properly.

9) If you have a printer plugged into your system, be sure
the power on the printer is turned on before booting the system.
If the printer is turned off when the computer is turned on, the
system may hang and refuse to boot until the printer is unplugged
or turned on.

10) The table in the manual describing the correct jumpering
for a TEAC 55B drive is for a TEAC FD-55B-20-U drive. We have
found at least two other 55B drives which need different Jjumpers
installed. Also, the TEAC S5SF 80~track drive has its own set of
required jumpers. These are listed below:

TEAC FD-=55B=20-U
install ML, UR, DSx, and terminators
TEAC FD-55B=01-
install HL, UR, PM, DSx, and terminators
—— TEAC FD=55BV=06=U
installnﬁg, RY, DSx, and terminators

TEAC FD-5S5F-03=U
install HL, UR, PM, DSx, and terminators

(Terminators should be installed only on the last
drive on your cable. The DSx designation above refers
to the DSO, DS1, DS2, or DS3 Jjumper, depending on
whether you are configuring drive A:, B:, C:, or D:.)

11) There are over 40 remote access systems (RAS}), also
called bulletin board systems, across the country which run Z-
System as their operating system. Called Z7+Nodes, they
specialize in supporting Z=System with updates to existing tocls,
developina new tools, distributing useful public domain software,
and in answering any and all questions dealing with Z=System.
The main Z=Node, supported by Echelon, 1is Z=Node Central. The
number there is (415) 489~ 9005 Located on that board is a list
of all the other Z=Nodes so you can find the one closest to you.

12) Micromint also has a RAS called the Circuit Cellar BBS.
Designed to support users of Micromint manufactured Circuit
Cellar projects, it runs on an SB180 and its primary support is
for the SB180. Call it anytime to obtain advise, ask questions,
download wuseful public domain wutilities, and read advance
announcements of other Micromint products. The number is (203)
871-198¢. It uses 8 bits, 1 stop bit, no parzty, and runs 300
and 1200 baud. It is available 24 hours a day and, like Z-Node
Central, makes the list of Z=Nodes across the country available
to users.

13) There 1is an 5B180 users' groun being formed and is
actively recruiting new members. The North American One-Eighty
Croup (N.A.0.G.) publishes monthly newsletters and will be making
available to members disks full of useful wutilities, programs,
and hints for the cost of the media and shipping. More
information plus a membership application is available on the
Circuit Cellar BBS or write or call:

North American One=Eighty Group
P.O. Box #2781

Warminster, PA 18974

(215) 443=9031

ERRATA

Current proauction beoards no longyer have jumpers supplieﬂ for
JPlu. Instead JPl¥ is hardwired for simultaneous 3.5", 5.25",

and 8" operation as shown in the center drawing of Figure 2.7-2.
This option provides motor control for 5.25%" and 3.5" drives, and

also allows selection between 3.5"/5.25" and 8" drives.

You can reconfigure JPLy if desired by removing the existing

wire (or, on some boards, cutting the existing trace) and in-
stalling your own jumpers.

The figure at the bottom of the page is mis-labeled as
"Figure Z.7-8". It should be labeled as "Figure 2.7-b".

The figure in the center of the page is mis-labeled as
"Figure 2.7-8". It should be labeled as "Figure 2.7-7".

Page Zb, Section 2.7.2

Addendum: To add an 8" Shugart 850/86W US/DL drive to an
SB18¢Y with two 5.25"/3.5" drives, the following jumpers should be
in place:

350
25
Z

A

B

I

R
IW
S2
IT
c
RS
HLL
M
NF
DS3

There should be no terminator on the drive.

SB1l80 Technical Manual

Release 1.0

Copyright (C) 1985

The Micromint Inc.
25 Terrace Drive
Vernon, CT 06066

All rights reserved

Copyright Notice

Copyright (C) 1985 by The Micromint 1Inc. All rights reserved.
No part of this publication may be reproduced, transmitted, tran-
scribed, stored in any form or by any means, manual or otherwise,
without the prior written permission of The Micromint Inc., 25
Terrace Drive, Vernon, CT, 06066.

Disclaimer

The Micromint Inc. makes no representations or warranties with
respect to the contents hereof. Further, changes are periodical-
ly made to the information contained herein. The Micromint Inc.
reserves the right to incorporate these changes in new editions
of this publication without obligation to notify any person of
such revisions or changes. Mention in this document of specific
product(s) compatible with the SB180 does not constitute an en-
dorsement of the product(s); rather the information regarding
specific product(s) is given for illustrative purposes.

Trademarks

cP/M, CP/M-80 - and MP/M are registered trademarks of Digital
Research, Inc. MS-DOS is a registered trademark of Microsoft,
‘"Inc. 280 is a registered trademark of Zilog, Inc. IBM, IBM PC,
and IBM Personal Computer are trademarks of the International
Business Machines Corporation. Z-System is a registered trade-
mark of Eschelon, Inc. ZCPR is a copyright of R.L. Conn. SB180
and COMM18# are copyrights of The Micromint, Inc.

Date of this release: July, 1985

* * k * %k Kk Kk *k *x *x *k *k k *k *k *x * *k *k *x *k *k *k *k *k *k *k *x *k *x *x * %

WARRANTY
The Micromint, Inc. extends the following warranty:

A factory manufactured circuit board or assembly caries with
it a one year warranty covering both parts and labor. Any unit
which is found to have a defect in materials or workmanship will
be repaired or replaced at the option of The Micromint, Inc.

No credit will be given for wunits which show damage due to
user modification or neglect.

Units returned for repair must have prior authorization from
The Micromint, Inc. A return authorization number may be obtain-
ed by phone or letter. Please retain a record of the the return
authorization number as most subsequent correspondence will refer
to that number. Under no circumstances is any product to be re-
turned to The Micromint, Inc. without prior authorization. The
Micromint, Inc. will assume no responsibility for unauthorized
returns.

All returns must be shipped prepaid. Insurance is recommend-
ed as losses by a shipping carrier are not the responsibility of
The Micromint, Inc. Repaired units will be rturned with postage
paid.

For repair of wunits which have expired their warranty, a
minimum inspection fee must be prepaid. Contact The Micromint,
Inc. for information on current minimum charges.

NO WARRANTY is extended on USER ASSEMBLED systems or kits.
However, assembled kits will be inspected and repaired with
charges based on the current minimum one hour charge. However,
in the event that repair charges would exceed a reasonable
amount, the wuser may be consulted for a determination. The
Micromint, Inc. retains the right to refuse to repair any USER
ASSEMBLED item. This right 1is at the sole discretion of The
Micromint, Inc.

Repairs on USER ASSEMBLED items must be prepaid.
Return authorization must be obtained prior to any return.

The Micromint, Inc. reserves the right to change any feature
or specification at any time.

* % % % * % *x *x *x * *x *x *k *x *x *x * *x % * *k *k *k *x *x *x *x * *x *x *x * *x

TABLE OF CONTENTS

NNDNMNNNMNOMNNNONNNMNNONNNDN

SECTION DESCRIPTION PAGE
1.0 SB180 System Overview v 1
1.1 Notational Conventions ' 2
.0 SB186 Installation Instructions 3
.1 Installation Overview 3
.2 Connecting the Power Supply 8
.3 Connecting the Main Console I/0 Device 11
.4 Turning On Power 13
.5 Connecting An Auxillary Serial I/0 Device 15
.6 Connecting a Parallel Printer 16
.71 Connecting Floppy Disk Drives 18
7.1 Installation of Teac 5.25-Inch Disk Drives 25
7.2 Installation of Shugart 8-Inch Disk Drives 26
.8 The Expansion Bus 27
.9 Installation of User EPROM 28
L1060 SB180 Installation Checklist 29
.11 Turning On Power with Disk Drives Attached 29
.12 In Case of Difficulty ' : , 34
3.9 Hardware Technical Descriptions 40
3.1 The Hitachi HD6418¢ 49
3.2 SB180 Design Criteria ' 42
3.3 The SB18Y Hardware ‘ 42
3.3.1 CPU , 4 43
3.3.2 "RS-232 Interface : , 43
3.3.3 . Memory Interface 43
3.3.4 256K Bit Dynamic RAM : 45
3.3.5 Centronics Printer Interface 45
3.3.6 Floppy Disk interface .46
3.3.7 Expansion Bus , 48
3.3.8 " Power Supply , 48
4.0 SB18¢ Monitor : 49
4,1 1/0 Devices ’ 49
4.2 Disk Format 49
4.3 RESET , 49
4.4 Console Baud Rate . 5@
4.5 Console I/0 5¢
4.6 Commands ~ ' - : 51
4.6.1 ASCII Table , 52
4.6.2 " Bank Select , 52
4.6.3 Copy Disk ' _ 52
4.6.4 Display Memory 52
4.6.5 Emulate Terminal 52
4,.6.6 Fill Memory 53
- 4.6.7 Goto Program 53
4.6.8 Hexmath ' S 53
4.6.9 Input Port - o ' 53

L] L] [] [] (] (] e [} L] [L] L] (] L]

L[] . [] (] [] [® L] L[] L] . L]

I\ b e e e
I\ ©

L] L .

L] L] L] . L] °

L ° L] L] L] L]
L] L] .) * L] L] L] L] L]

HEFHFOO~IONUTIDWN NN

e o o o o o
o o
e« o o
NS

HFHRWOYWoOoONOAU b WN -

[] [L] [] [] L]
FHFRFFEFHEERERRRRERRRRFOONNSNSNSNSNNSNNNNNNO0OOOO0OR0O00 00 G0
HFESR YRS 8.

° L] [] *® o [] L]

[S A o L Rl B S T S o S e I i S S S ST SN T S St Y T ST St

(S0}

L] .

==

Klean (Format) Disk
Move Memory

New Command
Output Port
Printer Select
Query Memory
Read Disk

Set Memory
Test System
Upload Hex File
Verify Memory
Write Disk

Examine CPU Registers

Yank I/0 Registers

Z-System Boot
Error Messages

FDC Error

Disk R/W Error

Disk Seek Error

Disk Not Ready

Bad Command

Bad Parameter

Not Enough Parameters

Invalid Interrupt
Bad Opcode Trap
CTS@* HIGH
DCD@* HIGH
No ACK*

Disk Format

Monitor ROM Modification

Key Variable Block
STARTBYTE
CNTLA@
CNTLAl
CNTLB@
CNTLB1
STATO
STAT1
DCNTL
RCR
SPCF1
SPCF2
The "N" NEW Command

Schematics
Parts List

LIST OF FIGURES

NUMBER DESCRIPTION PAGE
1.0-1 SB18¢ Functional Organization : 2
2.1-1 SB18Y Silkscreen 4
2.1-2 Recommended Mating Connectors

for the SB18#U System Board 6
2,1-3 Orientation of 20-pin Headers 6
2.1-4 SB18¢ Block Diagram 7
2.2-1 SB18¢ System Board Power Requirements 8
2.2-2 J7 Power Signal Specifications 9
2.2-3 Side View of Power Connector J7 9
2.3-1 J3 Serial Interface Signal Assignments 11
2.6-1 J2 Printer Signal Interface Specifications 16
2.7-1 Jumper Selection for Disk Drives ‘ 19
2.7-2 JP1l¥ Jumper Setup 21
2.7-3 J9 5.25" Interface Signal Specifications 21
2.7-4 J8 8" Interface Signal Specifications 22
2.7-5 Disk Drive Connectors Specifications 24
2.7-6 Teac 55B Configuration Guide 25
2.7-7 Shugart SA85# Configuration Guide 26
2.8-1 Expansion Bus Signals . 28
2.1p-1 Installation Checklist 39
2.12-1 Troubleshooting Chart 35
3.1-1 Comparison of 8 Bit Processors 40
3.1-2 Block Diagram and Pin-Out of the HD64180 44
3.1-3 Block Diagram and Pin-Out of the 9266 47
4.6-1 Monitor Command Summary 51
5.0-1 SB18U Schematic Diagram 62
5.0-2 Sample Cable Assemblies 66
5.1-1 Parts List for the SB18¢ 67

iii

1.0 SB180 System Overview

The Micromint SBl8# is a single board computer featuring a
new generation 8-bit microprocessor which maintains software com-
patibility with the Zilog Z80 while incorporating advanced design
features in a single 64 pin chip. The SB18# uses just 29 chips
on a 4" by 7 1/2" printed circuit board to provide a powerful,
low cost processing system which is well suited for a wide range
of appliations - from dedicated process control computers to
personal computer systems. Figure 1.0-1 shows the functional
organization of the SB18#:

central processing unit
memory interface

RS-232 interface

Centronics parallel interface
floppy disk interface

XBUS expansion bus

power supply

The SB18#¥ has the following features:

* Hitachi HD64180 microprocessor running at 6.1 MHz.
Supports a superset of the Z86 instruction set.

* 256K bytes on board RAM memory (can be partitioned as 64K
byte system memory and 192K byte RAM disk or as paged
system memory) .

* Full 8K byte ROM monitor with disk support (format, read,
write, copy, and boot). Can support up to 32K byte ROM on
board.

* 2 RS-232 serial ports, one with auto-baud rate detect.

* 1 Centronics parallel printer port.

* Single/double density programmable floppy disk controller.
capable of handling a mix of up to four 3 1/2%", 5 1/4",
or 8" drives. Different size drives can run concurrently.

* Supports 4 external and 8 internal interrupts.

* Requires just +5 V (and +12 V only for RS-232 operation).

* Has an I/0 expansion interface

The SB18¢'s ROM monitor is designed to use the (optional)
Echelon 1Inc. Z-System disk operating system, an enhanced, com-
patible superset of Digital Research's CP/M 2.2 operating system.
However, the SB186Y can also use the CP/M 2.2, CP/M Plus, MP/M II,
TurboDOS, or Oasis operating systems (if properly customized).

The SB1l8¢ 1is a virtually complete system on a single
board. You need only add a power supply, a serial terminal, and
one floppy disk drive (49 track or 80 track DS/DD) to form a
complete functional system. To operate the system, simply turn
on the power, insert a Z-System disk, and start the bootstrap
operation. .

Section 2 of this manual provides complete installation
instructions, and Section 3 gives a complete description of the
hardware logic components which comprise the SB180 board. The
ROM monitor is described in Section 4.

Page 1

1.1 Notational Conventions

Active low logic signals (those which are true when at a
logic 1low level of ¥ volts) are indicated in this manual in two
ways. First, active low signals are denoted by the presence of a
"x" character following the signal name (e.g., SYSMEMRD*). These
signals are also shown with a bar over the signal name, particu-
larly on the logic diagrams. Both notations mean exactly the
same thing. On the other hand, active high logic signals (those
which are true when at a logic high level of 2.4 volts) are in-
dicated by just the signal name (e.g., READY).

XTAL
12. 288 MH
l il I 8-32K-BYTE 256K-BYTE
ROM . RAM
CONSOLE SERIAL
PORT <——ao ADDR
RS-232C
HD64180 | CONTROL
DATA
AUXILIARY
SERIAL @]
PORT RS~
ORT RS-232¢C FLOPPY —DISK PARALLEL
CONTROLLER PORT
31/72in +51/41n 8in. CENTRONICS
DRIVES DRIVES PRINTER

Figure 1.0-1 SB180 Functional Organization

Page 2

2.0 SB1l80 Installation Instructions

The intent of this section is to be a guide to the in-
stallation of an SB18#U system. Section 2.1 provides an overview
of the installation process and should be read prior to the act-
ual installation. Information presented in sub-sections 2.1
through 2.11 should be used to initially install the SB18# system
including associated peripheral 1/0 devices. Section 2.4 pro-
vides a guide to follow when power is first applied if no disk
drives are connected to the SB18# board and just the ROM monitor
is being used. Section 2.11 assumes that a 40 track DS/DD 5.25"
disk drive is connected to the SB18¥ and that you have the 2z-
System boot disk. _ ’

2.1 Installation Overviéw

The SB180U is designed to be relatively simple to set up
and operate. A "bare bones" SB1l80 system consists of the fol-
lowing hardware components:

* SB180 system board with 256K RAM and 8K ROM monitor
* RS-232C compatible CRT terminal
* Power supply

A more complete system (and a more typical one) would add:

* one or more 5.25" 40 track (or 80 track) DS/DD
floppy disk drives (or equivalent 3.5" drives)
(Note: the SB180 monitor must have a 46 track double
sided drive for Z-System boot up.)

* Centronics compatible parallel printer

Of course once the SB180 is operating in its minimum mode with at
least one disk drive, other drives may be added. Additional in-
formation in Section 2.7 will detail the addition of 3.5" and/or
double sided 8" drives.

It is suggested that the SB180# be initially installed and
tested for proper operation without a disk drive. Once the oper-
ation of the ROM monitor has been verified, a floppy disk drive
may be added to boot the operating system.

Although the SB180 has been designed to be compatible with
"industry standard" peripheral interfaces, it is the responsibil-
ity of the user to ensure that any peripheral devices purchased
separately meet the SB1l80 interface specifications. These are
defined in the appropriate installation sections and by the act-
ual peripheral devices themselves. Of particular importance, the
interconnecting cables must match the interface at both ends.
Improper cables will be the cause of system malfunctions in al-
most every instance, so the time spent in verifying the cable
connections will be well worthwhile. The basic interface con-
nectors of the SB1l8# were designed to use flat ribbon cable and
insulation displacement connectors to simplify cable preparation.

Page 3

J7
+5V
]
{4
, ;; cart
3
N_
/3 4PI0
~ -

3
280

81P4
|
uzs
use
ver
]
uzs
uze

o~ - Fal
wpo
33

uas

. —B N

o T -

\ 8
TS L1
veexe

a:q::::tq_s N CLDA R
] 39? @ e O
g uis [;]5 ' 3 EXPANSION *

) I

urr

C—_—3 P

® SIP2 yopem

o

' TERMINAL cht)m'— "3 uis
J3| l;‘l)

0 S

© RS e ue 208,0RAM o0
_tg v - stunHelInE
ok = lE [g

L —— L2

|:]O:l =i

TEP . s 2 %s @O0
sﬁ] N [:l

[:[1

N oreol ol el ol o o) ol
SBIBO (©) 1985 MICROMINT INC.

Figure 2.1-1 Silkscreen of SB180 Board

Page 4

The information contained in each of the installation
sections in this manual 1is geared towards the novice computer
user. It is strongly suggested that all users, including those
experienced -in the installation of computer systems, should read
the installation procedures completely before applying power to
an SB1l80 system. Failure to follow the recommended procedures
may potentially result in damage to components on both the system

board and/or the peripheral devices. In particular, reversal of
the +5v and +12v power leads to the power connector results in
permanent damage to all but one IC on the system board! Figure

2.1-1 shows the silkscreen legend which appears on the SB180
system board. This picture should be referred to for all of the
installation procedures as an aid in locating specified connect-
ors, Jjumpers, IC sockets, etc. Figure 2.1-2 contains part num-
bers for recommended mating connectors for those on the SB180
system board. Connectors for the peripheral ends of intercon-
necting cables are dependent on each particular peripheral, and
are specified in the manuals which should have come with them. A
block diagram of a typical SB180 system using 5.25" floppies, a
3.5" floppy, and an 8" floppy is shown in figure 2.1-4

khkkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhhhkhkhkkkhkkhkkhkkhhhkhhhhkhkhhhkhkhhkhkhkhkhkhkhkhkhkhkkkkkkkhxk

* *
* CAUTION - DO NOT apply power to the SB1l80 system until the *
*) Installation Checklist (Section 2.10) has been *
* completed and you are instructed to do so ! ! ! *
* *
khkkkkkhkhkhkkkhkhkhkhkhkkhkhkhkkhhkhkhkdhhkhkhhkhkhhkhkhhkhkhohhkkhkhkhkhhhhkhkkhkhhkhkhkhkkhkhkhkhkhkkhkhkhkkkxk

Page 5

SB18¢ MATING CONNECTOR

CONNECTOR DESCRIPTION PART NO. QTY. MFG.
Jl 2 pin solder Hard wire norm. - -
Ext reset pads open pushbutton '
J2-J4 20 pin IDC flat 609-2000M 3 T&B ANSLEY
Ser/Par- cable connector
J5 40 pin header 929975-01-2¢ 1 APTRONICS
Expan. receptacle ' :
Jé 8 pin header 929974-01-04 1 APTRONICS
Expan. receptacle ' ‘
J7 4 pin right 22-01-2041 1 MOLEX
Power - angle pin header 08-50-0114 4
J8 50 pin IDC flat 609-5000M 1 T&B ANSLEY
8" drive cable connector
J9 34 pin IDC flat ~ 609-3406M 1 T&B ANSLEY

3/5" drive cable connector

Figure 2.1-2 RECOMMENDED MATING CONNECTORS FOR THE
SB18@# SYSTEM BOARD

J4 [I+his|ieliThs]ief20]21 2223
112345678910 Q:)CZO
TERMINAL 0'91 1
43 PREEERRERED
RBANERRNREL R
o
‘’_ x
oO>
RS - O
R4 -)
L vl CI6
=0 R2 4 R3
ag J2 [0]9]a]7]e[5[4 22 1] &
-_ 28| 27]26]25]24]23]22]2) |20]1a | o
Smll]
ya Y
= J0p -
5—Fo cil
26”9
3

Figure 2.1-3 Orientation of 20-Pin Headers

| Il I
| J3 TERMINAL | | J4 MODEM |
I || I
| INTERFACE | | INTERFACE |
I Il I
\ /\
I Il
I I
\/
I bl I I
| SYSTEM RAM | | HD 64180 | | SYSTEM ROM |
I I . |
| 41256 (4164) | | CPU | | 2764 (27128/27256) |
I (. I I
/\ /\
I Il Il
I I
\/
/ \
/ \
< LOCAL - BUS >
\ /
\ /
/\ /\ /\
| I Il
I Il I
\/ \/ \/
I I I b l
| J6 BUS | | J2 PRINTER | | FDC 9266 |
I I I o I
| EXITANSION | | INTERFACE | | INTERFACE |
I [! I |
/\ /\ /\
I I
I I
\/ \/
/ \
/ \ | I I
< LIMITED LOCAL BUS > | J9 3 1/2" or 5 1/4" | | J8 8" DISK |
\ /| o I
\ / | DISK INTERFACE | | INTERFACE |
I I I I

Figure 2.1-4 SB180 Block Diagram

Page 7

2,2 Connecting the Power Supply

The information presented in this section 1is somewhat
generalized since the actual installation of the power supply
will be dependent upon several factors such as the number and
type of disk drives, and the number of, and the power require-
ments of any expansion cards which will be installed. An example
is given of a typical installation which uses a single power sup-
ply (available from Micromint) to power the SB1l8# system board
and two 5.25" floppy disk drives. Recommended part numbers for
mating power connectors are given in figure 2.1-2 for the SB18#
and in figure 2.7-6 for typical flexible disk drives.

STEP 1 VERIFY THE POWER SUPPLY RATING

Before connecting a power supply to an SB1l8# system, ver-
ify that the supply is capable of providing enough current for
all the devices which it will power. This is extremely import-
ant, since the SB18# system will probably not function correctly
if the supply is operating at reduced output voltage due to over-
load. At a minimum, the power supply must be able to supply
enough current for the SB1l80 system board. Figure 2.2-1 gives
the power requirements for the system board. In addition, if the
main power supply is to be used to power any floppy disk drives,
then it must be large enough to handle the disk drives as well as
the system board. Thus, the first step prior to connecting the
power supply is to total up the current requirements for all of
the loads. If the total current requirements exceed the rating
of the power supply, it will be necessary to replace it with
another one that is capable of handling the required load.

SUPPLY TYPICAL OPERATING " ALLOWABLE VOLTAGE

VOLTAGE CURRENT : RANGE

+ 5 VDC U.500 amperes +4.75 to +5.25

+ 12 VDC ¥.040 amperes +11.4 to +12.6

Figure 2.2-1 SB18@ SYSTEM BOARD POWER REQUIREMENTS
STEP 2 GET/MAKE UP A POWER CABLE

The power supply cable attaches to the SB18# system board
at the 4 pin connector, J7. Part numbers for components of a
recommended mating connector are given in figure 2.1-2. Signal
specifications for the power pins are 1listed in figure 2.2-2
along with a suggested color coding scheme which will be helpful
in avoiding the connection of a wire to an improper voltage
level. WARNING! IF THE POWER CABLE IS CONNECTED BACKWARDS, IT
~WILL DESTROY ALL SYSTEM BOARD COMPONENTS! Figure 2.2-3 illus-
trates J7 from a side view with each pin identified with 1its
corresponding voltage level. '

Page 8

PIN NO. SIGNAL NAME COLOR NOTES

+12 V YELLOW 44 ma power

1

2 +12 V RETURN BLACK ground

3 + 5 V RETURN BLACK ground

4 + 5V ORANGE 500 ma power
Notes: 1. All wires should be 24 AWG minimum

2. RETURN is the same as GROUND

3. BLACK can be used for both GROUNDs

4. Cable is available as Micromint P/N SB180¢-P

Figure 2.2-2 J7 POWER SIGNAL SPECIFICATIONS

/4

GROUND

+ 5 VOLTS

Figure 2.2-3 Side View of Power Connector J7

Page 9

The type of connector, if any, which attaches at the power
supply end of the cable depends upon the particular power supply
to be installed. In general, each manufacturer tends to use a
different connector, and in most instances a mating connector is
not included with the power suply itself. If a mating connector
cannot be acquired, the wires can usually be soldered directly to
the connector pins, although this is not a recommended practice.
In addition, some power supplies use screw type connectors which
attach to automotive style spade lugs. These spade lugs$s would be
soldered or crimped to the power leads, and can be used to form a
good, reliable power connection which can be ‘easily disconnected
if necessary.

If your power supply will operate with no load (some
switching supplies require a minimum load), this would be a good
point to verify its proper operation. Checking voltages at the
connector for the system board insures proper pin outs.

kkhkhhkhkhdhhhkhkdhhhkhhhhhhkhkhhhkrhkhkhhhhhhhhhhhhkhhhkhkkhkrkkhhhkkkkkkk

* ' A ‘ _ *
* CAUTION: UNPLUG ALL AC POWER CORDS BEFORE PROCEEDING *
* *

khkkkhkhkhkkhkhkhkhkhkhkhkkhkhkhkkhkhkkhkhhkhhhhhhhhhkhhkkhkhhkhkhkhkhkhkhkhkkhkhhhkkkhbhkhkhhkkhkkx

¥

STEP 3 , ATTACH THE POWER CABLE

Refer to figures 2.1-1 and 2.2-3 for the location and
orientation and attach ' the 4-pin connector to J7 being sure to
orient pin number 1 correctly. Make sure that all the pins in
the connector and J7 are aligned properly before making the
connection. Next, attach the opposite end of the cable to the
power supply. Be sure that the correct wires are hooked up to
the proper voltages. If a color <coding scheme such as the one
suggested was followed, this should not be a problem.

* *
* CAUTION - MAKE SURE THAT THIS CONNECTOR IS INSTALLED IN THE *
* ~ CORRECT ORIENTATION TO PREVENT DAMAGE TO THE *
* SYSTEM BOARD. ‘ *
* . *
#********************

This completes the SB18¢ system board power supply in-
stallation. Note: DO NOT plug in the AC power cord to a line
outlet at this time. ~

Page 10

2.3 Connecting the Main Console I/0 Device

The main console I/0 port on the SB180 is designed to
attach directly to a standard RS5-232C compatible CRT data term-
inal, such as a Televideo 954. The console serial device is
attached to the SB1l8#U system board at the 20-pin, dual row head-
er, J3, which mates with standard 20-pin female flat cable con-
nectors, such as the one recommended in figure 2.1-2., Signal pin
assignments for J3 are listed in figure 2.3-1. The connector at
the terminal end of the «cable 1is typically a 25-pin DB-25 "D"
style connector, and can be either a male or a female connector
depending upon the requirements of the particular serial I/0 de-
vice that is being used for the console.

The SB18Y board as shipped 1is configured such that the
console I/0 port operates as Data Communications Equipment (DCE).
In most instances where CRT (video display) data terminals are
used, the serial device is set up to operate as Data Terminal
Equipment (DTE), and no special configuration is needed. 1In this
case, the pins on J3 tie directly to corresponding pins on the
connector of the serial device. On the other hand, if the serial
device 1is also operating as DCE, then the signal pins must be
swapped in the cable assembly (reverse pin 2 with 3 at one end).

PIN# EIA RS-232C SIGNAL NAME 1/0 (DTE) I,/0 (DCE)
2 TRANSMITTED DATA (TXD) 0 I
3 ~ RECEIVED DATA (RXD) I 0
7 SIGNAL GROUND (GND) - -
1,4-6,8-20 NOT USED

Notes: 1. Signal direction at J3 is for DCE operation.
2. If hardware handshake is required for the console,
J3 may be configured to provide an interface gate for
pin 5 (CTS) by changing jumpers JP4 and JP5.
3. The console cable is available as Micromint P/N SB18¢-T

Figure 2.3-1 J3 SERIAL INTERFACE SIGNAL ASSIGNMENTS

Page 11

In addition to the problem of matching the cable at each
end to the correct interface signals, both the data terminal de-
vice and the SB18# system board must be set up to operate with
the same set of parameters, such as number of data bits, number
of stop bits, type of parity bit, baud rate, etc. This is ac-
complished via DIP switch settings on the terminal, though some
older terminals may use hard-wired Jjumpers. The SB18# features
auto baud rate detect for 300, 1200, 9660, and 19,20# baud, so
the terminal may be set for any of these baud rates. The default
values for the SB1l80@ are: 8 data bits, 1 stop bit, and no parity.
This code configuration may be changed after the SB1l8# is
operating but must be adhered to for initial operation. Keeping
these things in mind, you are now ready to configure and install
the main communications device. ' ‘

STEP 1 TURN OFF POWER

Disconnect power to both the SB18U system board and to the
serial device which is being installed as the main console de-
vice. Removing power is best accomplished by unplugging all AC
power cords. ' ' .

STEP 2 CONFIGURE THE MAIN CONSOLE DEVICE

The first step 1is to read the installation instructions
which should be included in the manual for the CRT data terminal
(or other serial device if applicable). Follow the instructions
given and set up the data terminal for operation with these
parameters:

8 data bits

1l stop bit

no parity

baud rate: 300, 12006, 9600, or 19,200

If the serial device is configurable for either DCE or DTE opera-
tion, set it up as DTE according to the instructions given in the
-manual for the device. Most CRT terminals are already configured
for DTE operation.

STEP 3 GET/MAKE UP THE CONSOLE CABLE

If a cable was not purchased with the SB18# system board,
one must be constructed. The connector which mates with the J3
header should be a 20 pin (2x10) female flat cable connector on
.100" centers. Refer tco figures 2.1-1 and 2.1-4 for the location
of J3 and the position of pin number 1. The connector which in-
terfaces with the serial device will be specified in the manual
for the device, but it is usually a 25-pin "D" connector. The
actual construction of the cable depends on both the type of
connectors and cable being used. The entire flat cable might be
crimped at one time or individual pins may need to be crimped or

Page 12

soldered, and then inserted into a connector shell. Most serial
terminals conform to the RS-232 DTE standards (i.e., they trans-
mit data on pin 2 and receive on pin 3). The SBl80 mates as a
DCE device (receives data on pin 2 and transmits on pin 3). If
the serial device is not operating as DTE equipment as previously
mentioned, reverse pin 2 with pin 3 on one end of the cable.

STEP 4 ATTACH THE CONSOLE CABLE

Refer to figures 2.1-1 and 2.1-4 and connect the RS-232C
cable at the SB1l8U system board, J3, which is a 20 pin dual row
header. Be sure that pin number 1 of the cable 1is oriented
correctly with pin number 1 of J3. Now attach the cable to the
serial device. If the connector is one of the the D style con-
nectors, it will only go on one way. If not, use the information
given in the manual for the device to verify that the connector
is properly installed.

This completes the installation of the console device.

2.4 Turning On Power

This section describes the procedure for turning on power
to the SB18¢ system for the first time. The SB180 board, if pur-
chased fully assembled, has been "burned in" and fully tested
prior to shipment. If any problems occur during the initial

' power up procedure and operational tests, the source of the

problem will almost always be due to either an improper cable
connection to the terminal or an incorrect option configuration
on the terminal.

The information presented is intended to aid those users
who have purchased a fully assembled and tested version of the
SBl8U system board. Due to the complexity of the circuitry on
the board and the sophistication of some of the IC's, problems
which are caused by errors in construction might require a €full
trouble-shooting effort with some sophisticated test equipment.
Difficulties on this scale are beyond the scope of the text
presented here. However Micromint does offer an inspection and
repair service if needed. :

STEP 1 SET UP THE POWER SYSTEM

The ideal arangement of the power system will have all AC
power outlets associated with the SB18# system controlled by a
single ON/OFF switch or circuit breaker. If this 1is the case,
first turn off the main switch, and then turn on the power
switches to the system power . supply and the main console I/0
device. Now the main switch can be used to turn the SB18¢J system
on and off. Otherwise the individual components will have to be
controlled independently of one another. This discussion assumes
that this is the case.

Page 13

Position the ON/OFF switch on the power supply and on the
main console 1I/0 device to the OFF position. Unplug any power
supply or device which does not have an ON/OFF switch. Plug the
AC power cords of all devices which are switched (e.g., have an
ON/OFF switch) into a wall outlet. Do NOT apply power to the
system at this time. '

STEP 2 LAST MINUTE CHECKS!

Recheck all cable connections to the SB18# system board
and to the main console I/0 device. This includes both I/O0 in-
terface connections, and power cable connections. Make sure that
all connectors are installed correctly and are fully mated.

It would be a good 1idea at this time to verify that all
IC's on the system board are fully inserted in their sockets and
are oriented in the proper direction. Sometimes during shipping
or during rough handling, ICs may work themselves loose in their
sockets. Use your finger to press them all the way down in the
socket. If you position the SB18#J system board so that the label
"SB18@" is on the bottom edge of the board facing you, the power
supply connector will be at the top left side of the board. With
the board in this orientation, most of the ICs are oriented vert-
ically with pin 1 being at the bottom right. The remaining ICs
are oriented with pin 1 to the bottom left. The top of the IC is
usually indicated either by a notch or by a small circular dot on
the IC.

STEP 3 READY TO APPLY POWER!

Now you are ready to apply power to the system. This step
is sometimes referred to as “smoke testing" the system, since
components have been known to burn up due to improper install-
ations. If any smoke is observed during this step, turn off
power immediately and investigate the cause before proceeding.
Possibilities here include incorrect cable connectlons, and ICs
which are installed upside down in their sockets.

If you are at all unsure of the power supply connections,
now 1is the time to check them for the proper voltages as listed
in figure 2.2-2, First, read section 2.12, "Troubleshooting".
Disconnect the power supply cable from J7, apply AC power to the
system power supply only, and use a multimeter to ensure that the
voltages are correct. 1If the voltages are correct, remove power
to the power supply and reconnect the power supply cable to J7 on
the SB18¢ system board.

It is assumed that a video display terminal has been in-
stalled in the system as the console 1I/0 device. When power is
first applied to the SB180 system, what is first seen on the main
console I/0 device depends upon a number of factors such as the
type of terminal and baud rate. You may see a completely blank
screen with a cursor in the upper left corner, or you may see a
few random characters or letters on the screen.

Page 14

Turn on power to the console 1I/0 device first and then to
the SB18@. Normal responses will be:

1) A cursor should appear on the screen in 4 to 5 seconds.

2) As mentioned above, you may see one or more random
characters on the terminal screen.

3) Press the RETURN or ENTER key on the terminal keyboard.
This tells the SB1l8@ the baud rate at which the terminal
is operating.

4) On the screen will appear the message "Micromint ROM
Monitor Version xx.xx"

These responses indicate that the SB18# system board has success-
fully completed initialization, recognized that no disk drives
were attached to it, waited until a key was pressed on the term-
inal, analyzed it to determine the baud rate, set the baud rate,
and then turned control over to the ROM monitor. If the system
responded correctly as indicated above, go on to the next step.
Otherwise, first try pushing the reset button, PBl, on the system
board. If there is still no response, turn off power to the
system, wait a few seconds, and try again. If the system still
does not respond, go to the "IN CASE OF DIFFICULTY" section.

STEP 4 TESTING THE ROM MONITOR

The SB18¢ system should now be waiting for you to enter a
command . The monitor prompt is "0>" where "0" denotes the fact
that you are currently using the first 64K bank of memory. It
you enter a "?", you will see displayed a full page "help" screen
showing all of the monitor commands. Since a disk drive is not
connected at this time, some of the commands will return an error
status code when used. Using the information in Section 4.6 as a
guide, you can try these commands:

A,B,D,F,H,M,Q,S,T,V,X, and Y

In particular, the "T" command (without additional parameters)
- performs a continuous memory test until terminated by a Control-C
or Control-X. The SB1l8# could test memory until you are ready to
attach disk drives, a parallel line printer, and an auxillary
serial device such as a modem, as detailed in the next section of
this manual. C

2.5 Connecting an Auxillary Serial 1/0 Device

The auxillary I/0 port is very useful in adding an extern-
al modem or serial printer to the SB1l8# system. Most modems
usually operate as Data Communications Equipment, and J4 is set
up as Data Terminal Equipment, so a standard pin-to-pin cable
assembly should work fine. If you do not own an external modem,
Micromint has an expansion board (COMM18¢) for the SB1l8U which
contains a 300/12¢00 baud modem connected directly to the system
data bus, thus it does not use the auxillary I/0 port on the
system board.

Page 15

Installing an auxillary serial 1I/0 device requires the
same steps as the installation of the console serial device. The
differences are that the interface connector is located in a
different spot, has a different number, and that the pin numbers
are oriented 180 degrees from the console serial interface con-
nector. As such, refer to the information given in section 2.3
for installing the main console serial I/0 device and follow
those same procedures to install an auxillary device. Substi-
tute J4 in place of J3 where ever it occurs. Figure 2.1-1 shows
the location of J4. As you can see J3 and J4 are situated ad-
jacently on the SB18# system board. If you have already install-
ed the console device this step should be straight-forward. It
is recommended that the entire procedure given in section 2.3 be
read in its entirety prior to actually installing the auxillary
serial I/0 device.

2.6 Connecting a Parallel Printer -

The SB180 system board supports a standard Centronics com-
patible parallel printer interface. The printer interface cable
attaches to the SB18#U system board at the 20-pin dual row header,
J2. Refer to figures 2.1-1 and 2.1-4 for the location and orien-
tation of J2. Figure 2.1-2 gives a part number for a mating con-
nector. The connector at the printer end of the cable varies be-
tween different printers. A typical connector which is compat-
ible with Centronics style printers is a 36-pin male Amphenol
part number 57-40364, This connector 1is also designed to use
flat ribbon cable with pin 1 connecting to pin 1 on J2; unused or
open pins on the Centronics connector fall toward the pin 36 end
of the connector. Many of the newer printers tend to use the 25-
pin "D" style connectors similar to the ones used by the serial
1/0 devices. Figure 2.6-1 below lists the signal specifications
for J2. _

J2 SIGNAL NAME CENTRONICS 1/0
PIN NO. PIN NO.
1 DATA STROBE¥* 1 o
2 DATAl 2 o
3 DATAZ2 3 o
- 4 DATA3 4 (0]
5 DATA4 5 0
6 DATAS 6 0]
7 DATAG6 7 0
8 DATA7 8 o
9 DATAS8 9 o
19 ACKNOWLEDGE¥* 1¢ I
11-20 SIGNAL RETURNS 19-30 -

Note: This cable available as Micromint P/N SB18@-PR

Figure 2.6-1 J2 PRINTER SIGNAL INTERFACE SPECIFICATIONS

STEP 1 DISCONNECT POWER

Check to make sure that power is not applied to either the
SB18¢ system board, or to the printer device. Power should be
removed by unplugging all AC power cords associated with the SB-
180 system, including those of all peripheral devices.

STEP 2 VERIFY PRINTER INTERFACE SIGNALS

First, read the manual which came with the printer, par-
ticularly the section which discusses the installation of the
printer in a computer system. Next, verify that the signals on
each pin are the same as the signals available at J2 on the SB18¢
system board. Write down those which are on a different pin so
that a printer cable can be constructed in a later step. In most
cases the only signals needed are the data lines, the data
strobe, the data acknowledge, and a signal return path (ground).

STEP 3 CONFIGURE THE PRINTER

Follow the instructions in the installation section of the
printer manual, and set it up for operation as desired. Choices
here may include options such as page size, type style, page mar-
gins, automatic 1line feed, character set, etc. (The SB180 mon-
itor normally sends a line feed after each carriage reurn.) Also,
if the printer can be configured for the polarity of the strobe
and acknowledge signals, make them both active low. The polarity
of the printer interface control signals can also be changed by’
writing a software routine if necessary. Source code for the ROM
monitor is available on disk.

STEP 4 GET/MAKE UP A PRINTER INTERFACE CABLE

If a printer interface cable was not purchased with the
SB186 system board, one must be constructed. 1If one is avail-
able, use the signal specifications listed in figure 2.6-1 and
information from the printer manual to verify the wiring. Change
any wires which are incorrect. You should have a list of these
from Step 2 above. If a new cable must be constructed from
scratch, first verify that the two connectors mate properly with
beoth the 20 pin header at J2 and at the printer's interface con-
nector. Next, wire the two connectors together such that each
signal connects to the proper pin number at both ends of the
cable. The J2 header pin layout mates directly with insulation
displacement connectors and flat ribbon cable.

STEP 4 SELF-TEST THE PRINTER

Many printers have a self-test function which continuously
prints all the printable characters in a line across the paper.
If the printer has this capability, follow the instructions in

Page 17

the printer manual and run the self-test. Be sure to turn off
power to the printer and to disconnect the AC line cord before
proceeding.

STEP 5 ATTACH THE CABLE

Attach the cable to the appropriate connectors at each
end. Be sure to align pin 1 on J2 correctly (see figures 2.1-1
and 2.1-4). If the printer connector is a "D" style connector,
it will only go on one way. If it is not, refer to the printer
manual for the proper orientation of the mating connector.

This completes the installation procedure for the parallel
printer device. :

2.7 Connecting Floppy-Disk Drives.

The SB1l8#U system board has been designed to interface to
the standard 5.25 inch flexible (usually called minifloppy) disk
drive, to the 8 inch floppy disk drive, and to the newer 3.5 inch
microfloppy disk drive. (Note: there are several different types
of 3.5 inch floppy drives. The SB180 can use only the 40 or 8¢
track drive that is pin compatible with the 5.25 inch miniflop-
pPy.) A thirty-four pin flat cable connecter is installed on the
system board to allow for up to four drives of either 5.25 inch
and/or ‘3.5 inch type to be attached in a daisy-chained fashion at
a time. Space is provided for the fifty pin flat cable connector
needed for 8 inch double sided disk drives, but it is not in-
stalled since most users will not be using this size drive. This
connector is available from Micromint (P/N SB18#-8X). Although
instructions are given for using 8 inch drives, the Z-System disk
operating system is delivered only on 5.25 inch diskettes and a
5.25 inch double sided drive (40 track) MUST be connected to the
SB180 initially to start up. Any 3.5 inch drives are considered
equivalent to 5.25 inch drives and may be daisy chained along
with them. Eight inch drives (double sided only) may be added
simultaneously or later (but you must add the 8 inch connector
(J8) as mentioned above). :

The interface connectors for both types of drives support
the "industry standard" interface specifications for floppy disk
drives, and thus can attach directly to many of the standard 8
inch and minifloppy drives currently being used. It is the re-
sponsibility of the user to ensure that the particular drive to
be installed adheres to the interface specifications of the SB180
flexible-disk controller interface. 1In addition, there are sev-
eral jumpers on the system board which may be installed or re-
moved depending on the size of the disk drives used. Figure 2.1-
1 shows the 1location and orientation of connectors and jumpers
associated with the floppy-disk interface. Refer to it as
required during the installation procedures.

Page 18

The installation of floppy-disk drives to an SB18# system
can be complex. If at all possible, an OEM manual for the drives
which are being installed should be obtained. Since manuals are
not always readily available, the discussions which follow detail
the installation of the Teac 55B 5.25 inch and Shugart SA850 8
inch disk drives as examples. The 3.5 1inch drive is for this
purpose the equivalent of a 5.25 inch drive. (Some manufacturers
ot 3.5 inch drives use a 34 pin header rather than the standard
edge connector, but the pin assignments are identical.)

Figure 2.7-1 lists the jumpers associated with the floppy-
disk drive interface section of the SB18¢ system board which are
dependent on the drive size, 5.25 inch (or equivalent 3.5 inch)
or 8 inch. The installation descriptions given are deneralized
for both types of floppy drives, and the user is directed to the
appropriate figures and tables for each type of drive as needed.

In the following discussion, references to signals at the
SB18@ system board interface refer to disk drives as number ¢, 1, .
2 or 3. The Z-System DOS, however, refers to these drives as A,
B, C and D, respectively. Sometimes disk drive manuals refer to
the different drive selection options as drives 1, 2, 3 and 4.

JUMPER PURPOSE

JP6 Required for drives without READY line. Generally
older drives do not provide this line.

Jp7 Hard wired on back of board for fixed write pre-
compensation. Cut on circuit side and install a wire
jumper for controlled pre-compensation. Controlled
pre-comp is applied only on inner tracks while fixed
pre-comp is applied during write operations on all
tracks. 8" drives may require write pre-compensation.

JP8 Hard wired on back of board for NO write pre-comp.
See SMC 9266 manual for full specifications.

JP9 Allows use of only single sided drives; in mixed sys-
tems, a single sided drive would have a jumper in-
stalled to enable use of this multiplexed status line.
Z-System software does not support one side operation

JPl0 For mixed drive size operation. Allows the processor
TXS line to control 5.25" drive motors or selection
of 5.25"/8" data transfer rates to disk controller.
Note: These jumpers are intended to implement all of the
advanced features of the disk controller and for special
configurations. No changes required for most standard drives.

Figure 2.7-1 JUMPER SELECTION FOR DISK DRIVES.

Frcm one to four soft~sectored floppy~-disk drives can be
attached to one of the two SB1l8# system board flexible-disk
interface connectors. J9, a 34-pin right angle flat cable
connector, is used to attach 5.25 inch minifloppies (and 3.5 inch
microfloppies). J8, a 50-pin cable connector (optionally in-
stalled by the wuser), is used to attach standard 8 inch floppy
disk drives. Both connectors mate with standard flat cable con-
nectors such as the ones recommended in figure 2.1-2. Interface
signal definitions are shown below in figures 2.7-2 and 2.7-3 for
5.25 1inch and 8 inch drives, respectively. Although the signal
pin-outs have been designed to directly interface with many of
the drives commonly in use today, the SB18#¢ system installer must
verify that all signals match the interface requirements for the
particular drive which is being installed. In some instances, it
may be necessary to change some of the wires on the drive inter-
face cable in order to match up the interface signals between the
"drives and the SB180 system board. If the drives being installed
are compatible with the Teac 55B minifloppy or the Shugart SA850
8 inch drive interfaces, there should be no problems associated
with attaching the drives to the SB180 system board, and getting
Z~-System up and running.

STEP 1 TURN OFF POWER

Before doing anything else, ensure that all power is
turned off to both the SB180 system board and to all of the flop-
py disk drives. The safest procedure to follow is to unplug all
AC power cords associated with the SB18# system, including those
of peripheral devices. ‘

STEP 2 CONFIGURE FOR 5.25-INCH (AND 8-INCH DISK DRIVES)

Refer to figure 2.1-1 for a picture of the location of the
SB180 system board jumpers associated with the flexible-disk
drive interface, Next, use the table in figure 2.7-1 to select
the appropriate jumpers for the type of floppy-disk drives which
are to be installed. A diagram of the flexible-disk interface
area of the S5B18#U system board with jumpers installed at JPl0 for
5.25 inch, for 8 inch, and for mixed size drives is given in
figure 2.7-4. Using the appropriate pictorial view as a refer-
ence, configure the SB18# system board for the desired drive type
by installing the jumpers as -indicated in the table. Note that
these Jjumpers are configured based solely on the size of disk
drive, and are the same regardless of which manufacturer's drive
is used.

Page 2#4, Step 2 and Figure 2.7-2

Current production boards no longer have jumpers suppl}gﬁ for
JPly. Instead JPlu is hardwired for simultaneous 3.?", 5.%3 '
and 8" operation as shown in the center drgwing of Eigqrg Z.?—f.‘
This option provides motor control for 5.25" and 375 drives, and
also allows selection between 3.5"/5.25" and 8" drives.

You can reconfigure JPl¥ if desired by removing the §xist1ng
wire (or, on some boards, cutting the existing trace) and 1n-
stalling your own jumpers. ’

Page 20

3"/5" Operation 3"/5"/8" Operation 8" Only

[¢) (e] o
o O0--=0 (o] O===0—--0 (o] (o] Oo=-—=0 (o]
o (o] o

Figure 2.7-2 JPl@# Jumper Setup

STEP 3 VERIFY DISK DRIVE INTERFACE SIGNALS

The next, and perhaps the most important step to take, is
to verify that all of the signals at the floppy-disk drive match
those of the SB18¢Y floppy-disk drive interface specifications as
listed in figure 2.7-2 for 5.25 inch drives, or in figure 2.7-3
for 8 inch drives. If such is not the case, the disk drive
interface cable must be altered such that all signal names agree
at both ends. Also noted are pins which are directly compatible
with the Teac 55B or Shugart SA850.disk drives. Note that disk
drives are generally connected with flat ribbon cable. Due to
the pinouts of the connectors, adjacent signal 1lines have an
interposing ground 1line between them in the cable. Failure to
provide this grounding virtually guarantees problems!

PIN NO. SIGNAL NAME

4 HEAD LOAD/IN USE¥*
6 DRIVE SELECT 3%*
8 INDEX*

10 DRIVE SELECT @%*

12 DRIVE SELECT 1%

14 DRIVE SELECT 2%

16 MOTOR ON¥*

18 DIRECTION

20 STEP*

22 WRITE DATA¥*

24 WRITE GATE¥*

26 TRACK @*

28 WRITE PROTECT¥*

3¢ READ DATA¥*

32 SIDE SELECT (@/-1)

34 READY *

ALL ODD PINS SIGNAL RETURNS (REQUIRED)

Note: This cable is available as Micromint P/N SB1l80-DSK

Fighre 2,7-3 J9 - 5.25" INCH DRIVE INTERFACE SPECIFICATIONS.

The head load function should be configured at the disk
drive end of the interface cable according to instructions given
in the drive manual. Use of this capability can greatly extend
the useful life of the flexible diskettes. Not all drives sup-
port a head load option at the interface.

It is quite likely that the floppy disk drive does support
a READY* control function. 1In case your drive does not support a
READY* line, jumper JP6 on the SB1l8# system board must be in-
stalled for the disk controller to function. Most newer 5.25
inch drives do support a READY* control function. READY* gener-
ally indicates that a diskette 1is installed and seated in the
drive. On some drives READY* only becomes active when index
pulses indicate that the disk is up to speed.

PIN NO. SIGNAL NAME
2 LOW CURRENT*
4 FAULT RESET* (not used)
6 FAULT* (not used)
8 MOTOR ON 2* (not used)
10 TWO SIDED¥*
12 MOTOR ON 1l* (not used)
14 SIDE SELECT (6/-1)
16 - MOTOR ON 6* (not used)
18 HEAD LOAD @*
20 INDEX*
22 READY*
24 HEAD LOAD 1* (not used)
26 DRIVE SELECT @*
28 DRIVE SELECT 1%*
30 DRIVE SELECT 2%
32 DRIVE SELECT 3*
34 DIRECTION
36 STEP*
38 WRITE DATA*
40 WRITE GATE*)
42 TRACK 0%
44 WRITE PROTECT*
46 READ DATA*
48 HEAD LOAD 2* (not used)
50 HEAD LOAD 3* (not used)

ALL ODD SIGNAL RETURNS (REQUIRED)
PINS .

Figure 2.7-4 J8 - 8" DRIVE INTERFACE SPECIFICATIONS

Page 22

STEP 4 CONFIGURE THE DISK DRIVES

This step is highly dependent on the particular drive type
to be installed. As an aid in configuring the disk drives, sec-
tion 2.7.1 describes a typical configuration for the installation
of two Teac 55B minifloppy disk drives, and section 2.7.2 dis-
cusses typical option selections for installing Shugart SA850
eight inch drives. Note that there are two main differences be-
tween the two drives in either case: each drive has a different
drive select control line enabled (thus these are called "radial"
lines), and only the drive which is physically located at the end
of the interface cable has terminator networks (usually DIP re-
sistor networks) installed for the "multiplexed" signals (those
which share a single cable wire). The SB1l80 uses a 330 ohm term-
inator network allowing up to 1.5 meters of total cable length.
For some of the newer low power (CMOS) drives, this termination
may require a higher value terminator. Use of a lk terminator
reduces allowable cable length to 1 meter. Where longer cables
are required, a 150 ohm terminator may be installed to allow up
to 3 meters of cable. If SIP4 (the terminator) must be changed,
it must be desoldered from the SB1l8# board.

STEP 5 CONFIGURE THE SBl180 SYSTEM BOARD ‘

Configuring the SB184 system board for disk drives con-
sists of setting the appropriate jumpers. If only double sided
5.25 inch (and 3.5 inch) drives are being used, then no changes
are required. Note that the operating system software supplied
initially requires the use of 5.25 inch double sided drives; you
may then change jumpers, modify the BIOS and monitor EPROM to
boot from 8 inch drives. No BIOS or EPROM changes are required
to add 8 inch double sided drives to a system which has 5.25 inch
drives as well.

The connectors on the "T"-shaped block JP1l# (upper right
hand corner of the SB180 system board) must be set as shown in
figure 2.7-4. Finally, if the disk drives do not support a
multiplexed READY* control signal, then install a shorting jumper
wire in JPob; this signal must be active before the floppy-disk
controller will attempt to read a disk. Most 8 inch drives and
newer 5.25 inch drives tend to support this control signal while
some older 5.25 inch drives do not.

STEP 6 GET/MAKE UP DISK DRIVE CABLES

Floppy-disk drives require both a power cable (in some”
cases two of these are needed) and an interface cable. The typ-
ical 5.25 inch (or 3.5 inch) minifloppy drive uses a 34-pin dual
row card edge type of «connector for the interface, and a 4-pin
power connector for +5 and +12 VDC power. The typical 8 inch
disk drive requires a 50-pin dual row card edge type of connector
for the interface signals, a 6-pin-.power cable for DC power, and
a 3-pin cable for AC power. Figure 2.7-5 lists mating connector
part numbers for the Teac 55B minifloppy and the Shugart SA850 8

Page 23

inch floppy-disk drives. For other manufacturers' drives consult
the drive manual to verify mating connector part numbers as well
as signal specifications.

CONNECTOR 3.5 INCH 5.25 INCH 8 INCH

TYPE MFG. . PART # PART # PART #
INTERFACE ANSLEY. 609-3400M 609-3415M 609~5015M
3M - 3463-001 3415-00¥1
AMP 1-499566-9 1-499560-2- 1-499566-2
DC POWER AMP - 1-480424-0 11-480270-0
AC POWER AMP N/A N/A 1-480303-0

Notes: 1. Pins for the AMP housings are AMP number 60619-1
2. Part numbers given are typical, but may not
match all drives. Consult the drive manual.

Figure 2.7-5 DISK DRIVE CONNECTORS SPECIFICATIONS.

I1f cables were not purchased with the SB18# system board,
or are not already available, they will have to be constructed
for the floppy-disk drives. When making the interface cable be
sure that all of the signals are the same at the SB18# flexible
disk interface connector as at the disk drives. The number of
connectors needed which mate with the disk drives obviously de-
pends on the number of drives which are being installed. Of
course, a cable with connectors for all four drives can be made
up even if all four drives will not be installed at this time.
This would simplify later expansion of the system for additional
drives. N

STEP 7 ' ATTACH THE DISK INTERFACE CABLE

Attach the 34- or 50-pin flat cable connector, as appro-
priate, to the ©SB18# system board connector, J9 or J8, respec-
tively. Make sure that pin 1 of the cable connector matches up
with pin 1 of the disk interface connector on the SB18# system
board. If the SB18# system board is held such that J9 and J8 are
located at the top of the board, pin number 1 is the upper right
pin. Now connect the edge card connectors to the floppy disk
drives. The order in which drive numbers are attached does not
matter, except that the last drive located at the far end of the
interface cable must be the one which has the terminators
installed for the multiplexed signals as previously described.

- Page 24

STEP 8 ATTACH THE DISK DRIVE POWER CABLE (S)

Depending on the requirements of the particular drive which
is being installed, one or two power cables may be needed. Attach
the DC power cables at both ends. These cables are usually con-
structed so that the wires are daisy-chained from one drive to
the next. For small SB180 systems, the end of the DC power cable
which attaches to the power supply may be part of the power con-
nector for the system board, and may have already been installed
from section 2.2. Next attach the AC power cable if one is re-
quired, but do not plug the AC source into a power outlet at this
time. In most instances the power end of the AC line cord will
probably tie into a terminal block and a single plug or power
switch will be used to power the entire SB180 system.

2.7.1 1Installation of Teac 55B 5.25 inch Disk Drives

This section describes the installation of two Teac 55B
5.25 inch flexible disk drives. These drives are double-sided,
and can record in either single- or double-density formats. The
two drives are set up for multiple drive operation. All inter-
face signals are TTL compatible with a logic-low of +0.4V maximum
and a logic-high of +2.,4V minimum. A logic-low indicates a
"true" or active <condition, while a logic-high indicates a
"false" or inactive condition. The maximum length of the inter-
connecting cable, from the SB18¢ system board connector, J9, to
the 1last drive on the cable is 4.5 feet. The recommended cable
is standard flat ribbon cable with a characteristic impedance of
140 ohms, or equivalent twisted pairs. Figure 2.7-6 lists option
selections on the 55B's in a typical two-drive installation.

OPTION 55B DESCRIPTION DRIVE SOCKET

DESIG. A B PINS
- TERMINATOR NETWORK R I (SOCKET J3)
HS HEAD SOLENOID R R 1-16
DS@ DRIVE SELECT ¢ I R 2-15
DS1 DRIVE SELECT 1 R I 3-14
HM HEAD MOTOR CONTROL R R 4-13
DS2 DRIVE SELECT 2 R R 5-12
DS3 DRIVE SELECT 3 R R 6-11
MX MULTIPLEX OPERATION R R 7-10
UR LED OPTION 1 (SEL+RDY) I I 1-16
ML MOTOR ON I I 2-15
IU IN USE R R 3-14
HL HEAD LOAD R R 4-13
SM HM/HS ENABLE R R 5-12
Uy LED OPTION 2 (IN USE) R R 6-11
Ul LED OPTION 3 R R 7-10
RE RECALIBRATE R R 8- 9

Note: I=installed, R=removed

2.6
Figure Z+#=8~ TEAC 55B CONFIGURATION GUIDE

2.7.2 1Installation of Shugart SA850 8 inch Drives

This section illustrates the installation of two Shugart
SA850 8 inch flexible-disk drives. Figure 2.7-7 lists the option
selections which are typically installed on the disk drives.
Note that jumper wires must be added at each drive to select the _
head load options since a common signal wire at pin number 18 on
the interface cable is used for all drives. '

TRACE SA850 DESCRIPTION DRIVE
DESIG. g 1
Tl HEAD LOAD TERMINATOR I I
T2 DRIVE SEL. TERMINATOR I I
T3-T6 TERM. FOR MULTIPLEX INP,. R R
DS1 DRIVE 1 SELECT INPUT I R
DS2 DRIVE 2 SELECT INPUT R I
DS3 DRIVE 3 SELECT INPUT R R
DS4 DRIVE 4 SELECT INPUT R R
R,RR RADIAL READY OUTPUT I I
RI RADIAL INDEX OUTPUT I I
X HEAD LOAD OPTION R R
A,B HEAD LOAD OPTIONS I I
C HEAD LOAD OPTION I R
WP “WRITE PROTECT I I
NFO STOP AT TRACK @ I I
DDS DRIVE DECODE OPTION R R
DC DISK CHANGE OPTION R R
HL STEPPER PWR-HEAD LOAD R R
DS STEPPER PWR-DRIVE SEL. R R
NP NO WRITE PROTECT R R
Y IN-USE FROM HEAD LOAD R R
Z IN-USE FROM DRIVE SEL. I I
TS TRUE FM DATA SEPARATION E E
Notes: R jumper removed, I = jumper installed,

E = removed or installed,

-
Figure 2.7>8% SHUGART SA85¢ CONFIGURATION GUIDE.

The SA850 8 inch drives are double~sided, and can record
in either the MFM mode (double-density) or in the FM mode
(single-density). All signal lines are TTL compatible. Outputs
are driven by open-collector drivers capable of sinking a maximum
of 40 ma at a logic =zero level (or true state) with a maximum
voltage of @.4V at the driving device. Collector current when
the driver is at a logic one (or false state) and thus off is a
maximum of 250 microamperes. These specifications are typical of
most drives as well as the devices in the SB180 system board
flexible-disk interface area.

Page 26

Page'Zél)Section 2.7.2

Addendum: To add an 8" Shugart 856/8ow DS/DD drive to an
SB1806 with two 5.25"/3.5" drives, the following jumpers snould be
in place:

"NF
DS3

There should be nd terminator on the drive.

" Installation of more than two drives is essentially the
same as for two drives. Set up the drives for drive select num-
bers from 0 on up in ascending order, and install the resistor
terminator jumpers in the drive which is physically the last
drive in the daisy-chain. On mixed size drive systems (both 34
pin and 50 pin connector cables) install the drive terminator on
the longer of the two cables.

Installation of newer models of 8 inch drives is generally
simpler than for the SA850.

Power requirements for the SA850 disk drives are +24 VDC
at 1.3A, +5 VDC at ¢.8a, -5 VDC at 9.05A (newer drives do not use
this), and 115 VAC at ©.5 amperes. DC currents are typical
values, while AC current is a maximum value.

2.8 The Expansion Bus

The SB1l8# system board can support expansion cards through
its I/0 expansion bus which 1is accessed through the 40 pin con-
nector J5 and the 8-pin connector J6. Figure 2.8-1 illustrates
the signal pin-out of these connectors. Because all of the major
peripheral devices which are needed to support a high performance
Z-System based microcomputer system are supported by on-board
controllers, the expansion bus 1is only needed for expansion
peripherals such as a hard disk controller, a "smart" modem, cus-
tom I/0 interfaces such as data acquisition controllers, a local
area network (LAN) interface, or graphics display controller.
The only factor which might 1limit the use of the expansion con-
nector is the rating of your system power supply, so be sure that
your power supply capacity 1is adequate for continued reliable
operation.

When designing custom interfaces, serious consideration
must be given to the fact that the busses on the SB1l8# are oper-
ating at 6-9 MHz. Long extensions to the busses and bus over-
loading must be avoided.

As always, the first step to take prior to the insertion
or removal of any expansion card(s) is to ensure that POWER HAS
BEEN REMOVED from the SB1l80 system board.

The next step is to thoroughly read the installation pro-
cedures which come with the expansion card. Follow the proced-
ures given and install the card using connector J5. If all goes
well the card should now be up and running.

Page 27

EXPANSION BUS

DESCRIPTION PIN # DESCRIPTION
+5V PWR 1 2 +5V PWR
‘GND 3 4 GND
-RD 5 6 PHI
-WR 7 8 -RESET
E 9 14 -LIR :
_ -NMI 11 .12 -EXP SEL (E@-FF)
-WAIT 13 14 NC

-INT@# 15 16 -HALT
ST 17 18 NC
A0 19 2¢ Al
-TENDY 21 22 A2
A3, 23 24 A4 .
-DREQ@ 25 26 -I/0 ENABLE
8.0 MHZ 27 28 RESET
D7 29 30 D6
D5 31 32 D3
D4 33 34 D2
D1 35 36. DU
GND 37 38 GND
NC 39 490 NC

J5

Notes: 1. Micromint expansion bus 40 pin header is P/N SB1l80¢-EX
2. J6 and its driver IC are generally not populated on
the SB18#. Expansion boards which require the address
decode function will supply the chip and connector.

Figure 2.8-1 EXPANSION BUS SIGNALS

- em wm e em e em amm e s e s e em am mm s es mm em s e em e me wms e em e ee es e

2.9 Installation of User EPROM

The SB180 contains a 28-pin socket for a capacity of up to
32K bytes of JEDEC standard ROM or EPROM devices. The standard
SB1l80U system board 1is shipped with a stand alone monitor
installed in a Erasable Programmable Read Only Memory (EPROM)
device. This consists of one 8Kx8 2764 or 16Kx8 27128 type
EPROM. This EPROM contains the power-on jump vector.

Page 28

A single Jjumper 1is associated with the type of EPROM
device which 1is installed on the system board. This is JPl.
Refer to the silkscreen drawing of figure 2.1-1 for the location
of this jumper. If the standard 2764 EPROM or a 27128 EPROM is
used, the jumper should be in the factory wired position. If a
32K 27256 EPROM is ever installed, the jumper must be cut on the
circuit side of the board and a wire installed in the opposite
position.

2.10 SB18¢ Installatioq Checklist

This section is intended to serve as an overall guide to
the sequence of steps which should be taken during the install-
ation of an SB18Y system. Before commencing the actual install-
ation of the hardware components, sections 2.1 through 2.10
should be read to get an idea of the scope of the project about
to be undertaken. Once this has been done, proceed to the check-
list given below in figure 2.1¢-1. After all steps in the check-
list have been completed, use section 2.11 to start up the SB180
system and verify correct operation.

2.11 Turning On Power With Disk Drives Attached

This section describes the procedure for turning on power
to the standard SB18#U system after the completion of the system
installation procedures given in section 2.4 of this manual and
after installation of disk drives as detailed in section 2.7 of
this manual.

It is assumed in this section that the Z-System operating
system has been purchased with the SB18# system board, and that
the user is somewhat familiar with the terminology wused by Z-
System. Users who are not already conversant with Z-System
should read the operating system user's guide before trying to
use the SB180 system.

Page 29

STEP DESCRIPTION o DONE
1. Read sections 2.1 through 2.10. «)

2. Unpack the SB180U system board and inspect it for (')
damage. If damage is evident, return to vendor.

3. Using section 2.2 as a guide, install the system ()
power supply(s). -

4., Using section 2.3 as a guide, install the system ()
console RS-232C serial device.

5. Using section 2.4 as a gﬁide,‘check out the SB180 ()
ROM monitor with the console device connected.

6. Using section 2.5 as a guide, install the system ()
auxillary RS-232C serial device if needed.

7. Using section 2.6 as a guide, install the system ()
listing device (parallel printer) if needed.

8. Using section 2.7 as a guide, install the system ()
flexible disk drive(s).

9. Using the information in section 2.9, verify «()
the jumper configuration for the EPROM devices.

1l9. Use section 2 to verify correct functional ()
operation of the basic SB18¢ system.

11. Using section 2.8 as a guide, install expansion ()
cards as required.

12, 1If expansion cards were added in step 11, repeat ()
step 1l0. ‘ '

13. Now operate the SB18Y under Z-System!!!

Figure 2,10-1 INSTALLATION CHECKLIST

Page 30

STEP 1 & STEP 2 SAME AS SECTION 2.4, STEPS 1 & 2

Follow the instructions as given in section 2.4 of this
manual, steps 1 and 2.

Open the door(s) of the flexible disk drive(s) and remove
the piece of cardboard which may be inserted in place of a disk-
ette for shipping, if not previously done.

If this is the first time the SB18U system is being powered
up, 1t 1is recommended that any expansion board be removed until
the basic system is up and running. If cards are to be installed
on the expansion connector - at this time, check them to ensure
that they are seated properly into the 4¥ pin and (optionally 8
pin) connector(s) with the component side(s) facing up.

STEP 3: TURN ON POWER AND BACK UP THE Z-SYSTEM DISK

The SB1l8U system should now be ready for you to make back
up copies of the Z-System system diskette using drive number ¢
(or drive A as it is referred to by Z-System). Z-System is a
disk operating system, or DOS as they are commonly referred to,
which was designed by Echelon, Inc. to be fully compatible with
CP/M 2.2. This is simply a collection of programs stored on the
diskette which will enable you to create and execute (run)
programs on the SB18# system.

A FEW WORDS OF CAUTION

Before proceeding any further, the flexible-diskettes
which are used for program and data storage by the SB1l8v system
will be discussed. Users familiar with the use and handling of
diskettes should skip the next several paragraphs.

While diskettes can handle a large amount of information,
they are somewhat fragile and need to be treated with respect.
Although they are flexible, they can be easily damaged if they
are bent or scratched, or if any foreign matter such as dust,
hair, or grease from fingerprints is allowed to touch the surface
of the diskette itself. Diskettes should only be handled by the
black plastic cover which protects them, and should be stored in
the paper covers they come in when not in use. Don't leave them
lying around where they will collect dust or be dropped on the
floor. 1In addition, diskettes should be kept away from extremes
in temperature and away from magnetic fields. Always use felt-
tip pens to write on the diskette labels to avoid damaging the
surface of the diskette.

To insert diskettes into a disk drive, first open the
drive door (different drives have slightly different door
mechanisms). This is usually done by pulling outward on the edge
of the door, or in some cases, by pushing in on a door release
mechanism., Diskettes can then be inserted into the slot in the
drive with the end of the diskette which has the oval cutout
leading the way. The side of the diskette which has the manu-

Page 31

facturer's label usually faces the drive door, and always enters
the drive last. Diskettes should always be GENTLY pushed into
the drive, taking caution not to bend them; this can result in
permanent damage. Once the diskette is fully inserted into the
drive, c¢lose the drive door by pushing it down. Removing disk-
ettes is accomplished by opening the drive door and carefully
pulling the diskette out of the drive, again taking caution not
to bend the diskette in the process. Finally, it is never a good
practice to remove a diskette when the drive is being accessed
since this can accidentally destroy the programs which are stored
on it. Most drives have an "in-use" light which indicates that
they are being accessed.

Since you certainly don't want to accidentally erase any
of the Z-System operating system programs which were just pur-
chased, the Z-System master diskette should be "write protected".
For the 5.25" disk on which the Z-System is supplied, this is
done by installing a foil tab which 1is placed over a "write
protect” notch in the upper right hand side of the diskette.
When the foil tab is in place, the diskette is "write protected"
and the diskette cannot be written on. Eight-inch drives, on the
other hand, are write enabled when the foil tab is installed (on
the 1lower right side of the diskette), and write protected when
it is removed.

Since only one copy of the Z-System operating system
master diskette 1is provided, it is advisable to make a back-up
copy of the diskette to use when actually operating the SB180
system, It is a standard practice to operate microcomputer
systems from back-up copies of diskettes instead of the orig-
inals, which are usually stored in a safe place. This is Jjust a
safety precaution in that a new copy can be made if the working
diskette becomes damaged or worn out.

START THE SYSTEM FROM THE MONITOR ROM

Open the door of the disk drive, insert a blank diskette
(make sure it is not write-protected), but keep the door of the
drive OPEN. The SB18#J system monitor which is stored in the on-
board EPROM devices, will sense the baud rate of your attached
console device only when the monitor mode is entered, and the
SBl80 will power up in the monitor mode only if it senses that
the disk drive is NOT ready. (If you close the disk drive door
before applying power, the system assumes a 9600 baud rate for
your console and will directly boot Z-System upon application of
power.) You will now use the monitor's "K" and "C" commands to
format two blank disks and make two back up copies of your Z-
System disk. You will then boot Z-System for the first time from
one of the copies.

Turn on power to the console I/0 device, to the flexible
disk drive(s), to the printer if one is attached and to the SB18#
system board, in that order. As described in section 2.4, the
ROM monitor will be waiting for you to enter a character from the
keyboard. Do so, and you will see the familiar monitor prompt,
@>. Enter "“KO 40 <CR>" to format the blank disk in drive ¢. The
monitor will ask for confirmation and then format the disk.

Page 32

After the first disk is formatted, remove it and repeat the oper-
ation with the second blank disk. Remove this disk and place the
write protected Z-System disk in the drive and enter "CO 0" to
tell the monitor to make a single drive copy. The monitor will
prompt you to "swap" source (Z-System) and destination (the copy)
disks as necessary. Repeat this operation so that you have two
copies of the Z-System disk, one for back up and the other for a

working master copy. Insert the working master copy into the
drive.
STEP 4 BOOT THE OPERATING SYSTEM

You should still see the familiar monitor prompt. Close
the disk drive door. Now enter the "Z" command to boot the Z-
System operating system. If the Z-System operating system was
successfully read from the diskette and loaded into system RAM,
the following message will be printed on the screen:

SB18Y 56K Z-System Ver x.x

If the above message does not appear on the screen, open the door
of the disk drive, turn power to the SB1l8# system off, wait a few
seconds, and try to start the system up again. Sometimes the
diskette will not center completely in the drive when the drive
door is closed. 1If the Z-System prompt still does not appear, go
to the "IN CASE OF DIFFICULTY" section. The x.x shown above
represents the version number of the operating system. You will
also see information relating to the terminal configuration
program which will make available terminal-specific information
to the operating system for use by utility programs.

You will be presented with a 1list of terminals. Use the
+ and - keys to move among the pages of terminal names. When you
find the name of your terminal, enter the letter displayed next
to it. This will create the file MYTERM.Z3T which contains in-
formation about your terminal to be used later by various system
utilities. If you did not find your terminal on any list, press
ESC to abort and enter TCMAKE. This allows you to describe your
terminal to the system in detail for later use. (You should have
your terminal manual available for this step.) Note: if at any
time you wish to change your terminal description, use the ERAse
command to destroy the MYTERM.Z3T file. Reboot the system and
you again will able to select a new terminal.

After you have successfully configured Z-System to your
terminal, you should then see "A@:BASE>"; this symbol is the Z-
System system prompt that tells you that Z-System is ready to
receive a command from the console device keyboard, and that
drive A, user area 0 is the system default drive. Unless Z-
System is told to do otherwise (with the PATH command), it will
try to find all program and data files on drive A, user area .

At this point the basic SB1l80 system should be up and

running. If it is not, run the SB18¢¥ system from the monitor,
make a new copy of the master Z-System disk, and try again. If

Page 33

the back-up copy still will not boot up the system, refer to the
"IN CASE OF DIFFICULTY" section. You might want to try running
some of the example programs in the Z-System operating system
users guide in order to become familiar with your SB18# system.

STEP 5 CHECK THE PARALLEL PRINTER DEVICE.

If your system does not have a printer device skip this
step. The Z-System operating system will now be used to test the
installation and operation of the printer device. We will use
the printer toggle, CTRL-P (or "P) to send all of the characters
.typed in at the console serial input device to the printer. To
-enter a CTRL-P, you use the key marked CTRL as if it were a Shift
key, holding it down while pressing the "P" key next. From this
point on, everything typed in at the keyboard will also appear on
the printer. To "toggle" the printer off, enter another CTRL-P.

Type in several characters such as letters and numbers
(try to avoid control keys which might be non-printing char-
acters) and verify that they are echoed onto the printer device.
If they are not, or if . they do not match those which you have
typed in go to the "IN CASE OF DIFFICULTY section. Characters
will continue to be sent to the printer device until a second
CTRL-P character is entered which tells Z-System that the printer
should be toggled off.

2.12 In Case of Difficulty

If the SB180J system 1is not functioning correctly, this
section may be useful in correcting the problem. The information
given here is not intended to encompass full-fledged trouble-
shooting of the SB180 system board. That is best left to tech-
nicians who have the necessary test equipment required because of
the complexity of the logic on the system board. This section is
meant to help you 1isolate common installation mistakes to get
your system up and running for the first time.. The information
given in figure 2.12-1 should direct you to the appropriate step
to go to for help. '

" Page 34

SYMPTOMS POSSIBLE CAUSES STEPS

System appears to be 1. Power problem. 2
totally dead. 2. Console cable. 1,3
3. Console configuration. 1,3
4. Expansion cards. 1
5. Defective console device. 3
Disk drive goes on but l. Console brightness adjust. 3
no characters appear on 2. Console cable. 1,3
the display. 3. Console configuration. 3
4, Defective console device. 3

Wrong/garbage characters

1l. Console configuration. 3
appear on display. 2. Defective console device. 3
Correct power-on message l. Disk drive power problem. 2,4
but no Z-System prompt; 2. Diskette inserted wrong. 4
disk I/0 error messages. 3. Disk interface cable. 1,4
4. Disk configuration. 4
5. Bad system diskette. 4
6. Defective disk drive(s). 4
7. No termination resistor. 4
Printer types wrong 1. Printer cable. 1,5
characters or none at 2. Printer configuration. 5
all. 3. Defective printer device. 5

Figure 2.12-1 TROUBLESHOOTING CHART.

STEP 1l: CHECK CONNECTIONS.

Most of the difficulties which will arise in the initial
installation of an SB180 system can be traced to either an I/0
interface cable with wires on the wrong pins, or to an improper
configuration of the SB18¥ system board option jumpers or those
of an external I/0 device. 1In this step just check to see that
all cables are properly attached to their mating connectors.

Turn off power to the SB18# system and attached peripher-

als, and check all cables for a good connection. Then repeat the
procedure given in section 2 for starting up the system.

Page 35

STEP -2: VERIFY POWER SUPPLY VOLTAGES.

It is always a good idea to verify that the system power
supply voltages are in the required voltage range, usually plus
or minus 5% of the nominal value. Sometimes systems will appear
to work if the voltages are c¢lose to the required values, but
will typically “crash" often, or act strangely during operation.
A Voltmeter or an oscilloscope will be needed to measure the
power supply voltages. ' :

Measure all DC voltages for both the SB18# system board
and for the disk drives, and verify that the voltage levels are
within the specified tolerances of the power supply. The volt-
ages on the SB180 system board can be measured at the I/0 ex-
pansion connectors. If voltage readings are OK, the problem lies
- elsewhere. If the power supply readings are incorrect, but with-
in a volt or two of the nominal value, adjust the voltage adjust-
ment potentiometer(s) on the power supply, if there is one, such
that the output(s) is at the correct level. On switching- type
power supplies you may have to add more load to the +12 volt out-
put to bring the +5 volt output into regulation. If this adjust-
ment corrects the power supply readings, go back to section 2 and
try to run the system again. ~

If voltages under full load are low, recheck the rating of
your power supply to insure that it can handle both the average
(normal) 1load as well as the peak load (see your disk drive man-
ual). - : T '

If the power supply readiﬁg is way off, for instance, +12V
instead of +5V, or ¢V, the power supply cable is probably wired
to the wrong pins. 1If this is the case, you may have destroyed

the components on the SB18# system board.’ Recheck the power
supply cable pin-outs and correct any wiring errors if any are
found. Turn power back on ‘and measure the voltages again. If

the readings are now OK, ‘go back to section 2 and try to run the
system again. If the readings are still incorrect; the likely
cause 1is the power supply itself. Disconnect the power cable(s)
from theée supply and measure. the voltages under a no-load con-
dition. If the supply will not regulate without a load (this
should be stated on the specification sheet for the power supply)
a "dummy load" which is usually just a power resistor of suffi-
cient wattage must be placed across the output(s). If the volt-
age readings are still not correct, replace the power supply.

STEP 3: CHECK THE CONSOLE DEVICE. -

Problems associated with a serial device are almost always
~due to an incorrect cable or jumper configuration. The important
thing to remember is that the device at one end must be operating
as Data Communications Equipment (DCE), and the device at the op-
posite end of the cable must be operating as Data Terminal Equip-
ment (DTE), or the signals must be reversed in the cable assem-
bly. If there 1is no response at all then suspect either the

Page 36

cable, or the configuration of the operating mode, DCE or DTE.
If characters are appearing but make no sense, suspect one of the
configuration settings such as baudrate, parity or stop bits.

Operation of the console serial device can be easily veri-
fied if it is placed into a 1local-echo mode of operation. 1In
this mode, each keystroke is echoed back on the display screen as
it typed. Turn off power to the terminal and put the terminal
into a local-echo mode if it has one. Another way to accomplish
this function is to make a test connector which has pin numbers 2
and 3 shorted together, pins 4 and 5 shorted, and pins 6 and 20
shorted. This test connector would be attached to the terminal
instead of the console serial cable of the SB1l8# .system.

First ensure that the terminal is plugged into an AC out-
let and that power is turned on. At this point, even if the
SB180 system board was not connected to the terminal, a cursor
should appear somewhere on the screen. The cursor is typically a
blinking box. 1If no cursor appears, try to adjust any brightness
or contrast controls (these may be 1located on the rear of the
terminal) until the cursor becomes visible. If no cursor appears
at all, the problem is probably in the terminal. In that case
refer to the manual for the terminal for troubleshooting
procedures.

If a cursor is present on the display screen, and the
terminal has been placed in a local-echo mode, try typing in some
characters. These should be displayed somewhere on the terminal
screen. If no characters appear, disconnect the serial cable
attached to the SB18#J console 1I/0 connector if it is still at-
tached, and try typing in some more characters. If characters
now appear, there is probably an incorrect connection in the
cable. If there still aren't any characters displayed, it is
likely that there is something wrong with the terminal, so refer
to the manual for the device and follow the troubleshooting
procedures given there.

Now that characters are appearing on the display terminal
in the local-echo mode, turn off power to the system and recon-
nect the console serial cable to the SB180 system board. Run the
"system again as described in section 2 of this manual. If the
messages which should be displayed are a meaningless string of
characters, or perhaps the terminal just does weird things in-
cluding a lot of beeping, there is probably a mismatch between
the SB18¢ and the terminal in one of the operating parameters
(such as baud rate, parity, etc.). Turn off power to the SB18@
system and check the switch/jumper settings on the display term-
inal device and ensure that the baudrate, parity and stop bits
are correct. Correct any which are in the wrong position or
setting.

Turn power back on and follow the start up procedure given
in section 2. If the SB180 system is still not displaying the
correct start-up messages at this point, there may be something
wrong with the hardware, and the system board should be returned
for repair. Call for a return authorization number prior to
returning any equipment to Micromint.

Page 37

STEP 4: CHECKOUT THE DISK DRIVE(S).

Problems in interfacing the SB1l8W system board with the
flexible disk drives are usually attributed to four areas: a bad
interface cable/configuration; wrong jumper/switch configurations
on the disk drive(s), the SB180U system board, or both; incorrect
power supply voltages; or non-functioning- diskette (inserted
wrong, or a damaged diskette). During initial installations, the
first two areas will usually be the cause of the problem.

The first thing to do is to verify the power supply con-
nections, and to measure the voltages to check that they are all
within the prescribed tolerances, usually plus or minus 5% of the
nominal value. This should have been done in step 2 above. If it
wasn't, refer to step 2 again and make the voltage measurements
and adjustments if needed. The actual voltages used depends on
the type of disk drive as indicated in the disk installation sec-
“tion (2.7). If any adjustments were made, go back and repeat the
procedures given in step 2.

No matter what kind of problem occurs in the disk drive
interfacing, about the only thing which can be done to -find and
correct the problem is to once again recheck the wiring of ‘the
cable and the position of configuration switches and jumpers.
Both of these are described in section 2.7. There are no user
adjustments in the disk controller logic circuitry of the SB18d
-system board.

Avoid attempts at disk drive "adjustments" until you have
a fully operational SB1l8# system and the proper calibration and
test equipment. ‘ , -

Using the drive's manual or specification sheet, and the
signal pin-out for the appropriate interface connector on the
SB18U system board, verify signal connections on the disk drive
interface cable. If any errors are found, correct them and go
back and re-try the start-up procedures of section 2.

Using the drive's manual if it 1is available, and the ex-
ample installation information of' section 2.7.1 or 2.7.2 as a
guide, verify that each disk drive is configured correctly. 1If a
drive manual is not available, and. the drive type is not the same
as the one used as an example in the installation section, write
the manufacturer of the drive to find out how to configure the
drive. In general, the disk drives should be set up in the
following manner:

1) Multiple drives attached in a "daisy-chain",
2) Terminators installed on all "radial" signals,

3) Terminators installed only on the drive at the end
of the interface cable for "multiplexed signals,

4) Radial drive select signals,

-
b

Page 38

5) All other signals must be multiplexed,

6) 8-inch drives must have stepper motor power on at
all times unless a motor-on control function is
available on the drive unit.

Radial signals are those for which a separate signal exists for
each drive. Multiplexed signals are those which are shared by
all of the disk drives in the system. The drive currently
selected must be the only one to activate the multiplexed signal
lines.

Now use the jumper configuration table for the SB18# sys-
tem board given in section 2.6 to verify the option selections on
the system board. Most of the jumper options are associated with
the drive type, 5.25 inch {and 3.5 inch), or 8 inch, and have
mandatory positions for each type as listed in figure 2.7-1. The
only jumpers which you have to decide whether @ to install or
remove are those numbered JP6-10. These. jumpers are totally
dependent on configuration of the drive units, and will vary from
installation to installation. These jumpers are discussed in
section 2.7. If any configuration errors were discovered,
correct them and then retry the start-up procedures of section
2.11. If the disk circuitry is still not functioning correctly,
it is time to get help!

STEP 5 CHECKOUT THE PRINTER DEVICE

There isn't a whole lot which can go wrong in the install-
ation of a printer. Either the wiring of the interface cable is
not correct, or the polarity of control signals is reversed.

First check to see if the printer is plugged into an AC
wall outlet, and that the power is turned on. Now use the print-
er manual and check that any operational switches such as the
printer select switch is in the correct position. Of course, the
printer must have paper in it! If you found anything wrong up to
this point, make the indicated corrections and then go back to
step 7 of section 2 and test the printer again.

If the printer still does not work, use the printer manual
and the installation notes of section 2.6 in this manual to ver-
ify printer cable wiring. If any errors are found, correct them
and try the printer test procedure again.

The last area to check is the logic signal polarity of the
printer control signals. Of particular importance is the DATA
STROBE* and DATA ACKNOWLEDGE* signals, both of which are init-
ialized by the SB1l8# as active low. If any corrections need to
be made here, they must be done via a call to a software routine
which must be written for that purpose.

Page 39

3.0 Hardware Technical Descriptions

The information in this section provides technical de-
scriptions of the SB18¢U hardware components. Schematics for the
SB180 board hardware are included in Section 5. Separate hard-
ware components such as disk drives, printers, or serial devices
are not described in this manual. Refer to the technical or user
manuals for other devices if technical data is required for them.

3.1 The Hitachi HD64180

The power of the SB180 1is made possible by the Hitachi
HD6418% - a microcoded execution unit based on advanced CMOS
manufacturing technology. It provides the benefits of high
performance, reduced system cost and low power operation while
maintaining complete compatibility with the large base of stan-
dard CP/M software.

' Performance is derived from a high c¢lock speed (6 MHz
now, 9 MHz in the near future), instruction pipelining, and an
integrated Memory Management Unit (MMU) with 512K bytes memory

"address space. The instruction set is a superset of the Z80
instruction set; twelve new instructions include hardware multi-
ply, DMA, and a SLEEP instruction for low power operation.

Considered to the Z-80 what the 806188 is to the 8088,
system costs are reduced because many key system functions have-
been included on-chip. Besides the MMU, the HD64180 boasts a two
channel Direct Memory Access Controller (DMAC), wait state gener-
ator, dynamic RAM refresh, two channel Asynchronous Serial Com-
munication Interface (ASCI), Clocked Serial I/0 port (CSI/0), two
channel 16-bit Programmable Reload Timer (PRT), a versatile 12
source interrupt controller, and a "dual" (68xx and 80xx fam-
ilies) bus interface all on one 64 pin chip. . Table 3.1-1 com-
pares the HD64180 with other 8 bit processors.

HD64180 8080/Z80 NSC800 Z800 80188
Process CMOS NMOS CMOS NMOS NMOS
Power 100mw 1w 100w 2W 2W
Max. Clock 190 MHz 8 MHz 4 MHz 10 MHz 8 MHz
Address Space 512 K 64 K 64 K 512 K 1M
UARTs 2 ch. no no 1 ch. no
DMAC 2 ch. no no 4 ch. 2 ch.
TIMERs 2 ch. no no 4 ch. 2 ch.
Clocked SIO yes no no no no -
CS/Wait Logic yes no no yes yes
DRAM Refresh yes yes (Z80) no yes no

Note: The availability of the 2Zilog 2809 at this time is
unknown and specifications on the Z800 are subject to change.

Table 3.1-1 COMPARISON OF SOME 8-BIT PROCESSORS

The HD641890 CPU is comprised of five functional blocks:

o Central Processing Unit - The CPU is microcoded to imple-
ment an upward compatible superset of the Z80 instruction set.
Besides the twelve new instructions, many instructions require
fewer clock cycles for execution than on a standard zZ-80.

o Clock Generator - The clock generator generates the system
clock from an external crystal or external clock input. The
clock is programmably prescaled to generate timing for the on-
chip I/0 and system support devices.

o Bus State Controller - The bus state controller performs
all status/control bus activity. This includes external bus
cycle wait state timing, RESET*, DRAM refresh, and master DMA bus
exchange. It generates "dual-bus" control signals €for compat-
ibility with both 68xx and 80xx family devices.

o. Interrupt Controller - The interrupt controller monitors
and prioritizes the four external and eight internal interrupt
sources., A variety of interrupt response modes are programmable.

o Memory Management Unit - The MMU maps the CPU's 64K byte
logical memory address space into a 512K byte physical memory
address space. The MMU organization preserves software object
code compatibility while providing extended memory access and
uses an efficient "common area - bank area" scheme. I/0 accesses
(64K bytes I/0 address space) bypass the MMU.

The integrated I/0 resources comprise the remaining four
functional blocks: :

o Direct Memory Access Controller - The two channel DMAC
provides high speed memory-to-memory, memory-to-I/0, and memory-
to-memory-mapped I/0 transfer. The DMAC features edge or level
sense request input, address increment/decrement/no-change, and
(for memory-to-memory transfer) programmable burst or cycle steal
transfer. In addition, the DMAC can directly access the full
512K bytes physical memory address space (the MMU is bypaseed
during DMA) and transfers (up to 64K bytes in length) can cross
64K byte boundaries. At 6 Mhz, DMA is 1 Mbytes per second.

o Asynchronous Serial Communication Interface - The ASCI
provides two separate full duplex UARTs and includes programmable
baud rate generator, modem control signals, and a multi-processor
communication format. The ASCI can use the DMAC for high speed
serial data transfer, reducing CPU overhead.

o Clocked Serial I/0 Port - The CSI/O provides a half duplex
clocked serial transmitter and receiver. This can be used for
simple, high-speed connection to another microprocessor or micro-
computer.

Page 41

o Programmable Reload Timer - The PRT contains two separate
channels each consisting of 16-bit timer data and 16-bit timer
reload registers. The time base is divided by 20 (non-program-
mable) from the system clock, and one PRT channel has an optlonal
output allowing waveform generation.

3.2 SB180 Design Criteria

With all this functionality on one chip, only a few
additional chips are needed to implement a truly sophisticated 8-
bit single board computer in a small space (less than 30 sqg.
in.). In terms of the original Altair micro of 1less than 10
years ago, the functionally equivalent machine would have taken
about 35 S-10# boards for a total of 1750 sqg. in. (using 8K
-memory boards!). : .

In order to reduce chip count further, an enhanced flop-
py disk controller chip from Standard Microsystems Corporation,
the FDC 9266, was chosen. This 40-pin DIP chip is software com-
patible with the industry standard NEC 765A floppy controller and
adds an on-chip digital data separator to the functions of the
FDC 9229 floppy disk interface <chip as well. It is compatible
with single and double sided 3 1/2", 5 1/4" (46 and 80 track),
and 8" drives; the data separator handles both single density (FM’
encoded) and double density (MFM encoded) data. This means - that
it can be programmed to read and write almost all soft sectored
CP/M disk formats (and MS-DOS disk formats).- :

With the HD64180's two channel ASCI built in, two serial
ports were included into the design automatically, and provision
was made for a Centronics parallel prlnter port as well., Since
256K DRAM chips are now plentiful and inexpensive, 8 of these
were used for memory (64K DRAMs may also be used). Because only
64K bytes of this is usually used for the logical memory space,
the user can optionally designate the other 192K bytes as a RAM
disk in the operating system. Of course, it may also be used for
other purposes (such as implementing banked memory for CP/M
Plus). .

3.3 The SB1l8¢ Hardware : -

. Figure 5.1 is the schematic of the SB180 computer. Its
design is primarily characterized by the high performance, high
density MOS devices including 256 Kbyte DRAMs.

. The SB180 system design implements the following function-
al blocks:: :

CPU

Memory Interface

RS-232 Interface _ ,
Centronics Printer Interface
Floppy Disk Interface

XBUS Expansion Bus

Power Supply

Page 42

3.3.1 CPU

The HD6418¢ is a high system integration device which
combines a CPU execution unit with a number of basic system and
peripheral functional blocks. These include:

CPU

MMU - Supports 512KB address space

DMAC - 2 channels

ASCI = 2 channel UART with baud rate generator
CS1I/0 - 1 channel clocked serial 1/0

PRT - 2 channel, 16 bit programmable reload timer

Wait State Generator ,
DRAM Refresh Controller -
Interrupt Controller - 12 interrupt sources

The HD6418# requires operation at specific frequencies
in order to generate standard baud rates. Standard operating
frequency for the SB18¢ is 6.144 MHz (12.288 MHz crystal). Other
operating frequencies which maintain standard baud rates are
3.672 MHz, 4.608 MHz and (later) 9.216 MHz.

3.3.2 RS-232 Interface

The HD641806 ASCI two channel UART is connected to 1488/
1489 RS-232 line drivers/receivers to provide two separate ports.
ASCI channel 1 is used for the CONSOLE, while ASCI channel 0 is
used for AUXILIARY RS-232 devices such as printers, plotters and
modems. This distinction 1is made because modems require the
extra handshakes which are available with ASCI channel ¢, while
terminals do not. All primary RS-232 parameters (baud rate,
handshaking, data format, interrupts) are software programmable.

3.3.3 Memory Interface

The SB18U incorporates a 28 pin JEDEC boot ROM socket
which can be jumpered to hold 8Kx8, 16Kx8 and 32Kx8 memory de-
vices. The boot ROM (contains disk boot and ROM monitor) occu-
pies the bottom 256K bytes of the HD64180 physical address space
since 1t 1is selected whenever Al8/TOUT (note: the TOUT timer
output function is not used) is LOW. Thus, the boot ROM contents

(whatever its size) is simply repeated in the lower 256KB. The
boot ROM output (OE*) is enabled by the HD64180 ME* (memory en-
able) signal. (As configured, the maximum RAM memory on the

SB180 is 256K. To support larger memories, additional address
decoding would be required to designated RAM and ROM areas in the
current 256K boot ROM space.)

The critical ROM timing parameter is Tce (access time from
CE*). 200ns (and marginally, 250ns) ROMs can operate with 1 wait
state.

At RESET*, the HD64180 begins execution at physical
address O0OOOOH, the start of the boot ROM.

Page 43

O I
- — [Wh [*] ~
2 & s HH: ':. o |:'
«
£k Bl sEEBER EEE
11 II[[HHHHIH PIN ASSIGNMENT
BUS-STATE CONTROL NTERﬂUPT T\
' HO6¢180
¢ o IM(NQ v
GENERATOR cPu ss) 4D
xTaL 2 s3[) RO
exTaL 3 62{ WR
walt (]« §1 [IR
BUSACK (]S 60 €
BUSREQ (6 59 [ME
RESET (7 s8 [J10E
NMi REF
_ le——— DREQL _(: s 57 3 ReF
16-81T INTO (]9 s6 [HALT
TIMERS OMACs —— TENO1 INT1 Q10 §S [TENO1
A18/TOUT -— (2) (2) - iNT2 CI11 s4 [DREQT
— . sT (12 $3] cks
a0 C}13 s2 [Rxs/CTs1
TXA0 1Y Jam pY sl [Txs
TXS -——f , PPy S az(q1s 50 [cxal/TENDD
RXS/CTS1 gg:'{“‘ 170 a3je 49 [Rxa1
cxs ASYNCHRONOUS RXA0 as(]1? 48 [TxAl
sct - . . JE—
(CHANNEL 0) RTS0 as(Jis 47) CKAO0/DREQO
5o A6 (119 46 [RXAO
A1 20 45 [Txa0
pcoo asCja 44 [OCDO
a9 (] 22 43 CTs0
alo(] 23 4«2 [RTSO
_ Txa1 a1y 2 ‘apor
ASYNCHRONOUS CKA1/TENDO a12(] 25 0 [o6
MMU SCi
(CHANNEL 1) fe——— RXAl a13C] 26 39] 05
auc]2? 38{3 o¢
! a1s] 28 377 o3
[a6 29 3602
a3 3s[J o1l
) alg/sout (] 3t 3¢« oo
*— V¢¢ VCCC 32 130 Vss
ADORESS DATA - Vss
BUFFER BUFFER
A0 -al8 00-07

Figure 3.1-2

Page

44

BLOCK DIAGRAM AND PIN-OUT OF THE HD6418@

3.3.4 256K Bit Dynamic Ram

Standard 256 Kbit 150 nsec DRAMs, requiring 256 refresh
cycles (8 bit refresh address) every 4 ms are used. These RAMs
occupy the top 256K bytes of the HD6418#¢ 512KB phys1cal address
space.

The interface is quite straightforward. Complete DRAM
refresh control is provided by the HD641806 in conjunction with
control logic Ul6é and Ul8 and address muxes Ul2, Ul3 and Ul7.

The HD6418¢ WR* output directly generates DRAM WE*, The
HD6418¥W ME* output directly generates RAS*. During normal read/
write cycles (Al1l8 HIGH, REF* HIGH) CAS* goes LOW at the next ris-
ing edge of phi following the rising edge of E (Enable). This
provides plenty of set-up time for the address muxes since the
rising edge of E switches the address muxes from row to column
addresses.

RAS* only refresh is used. The HD64180 generates the
refresh addresses. Durlng refresh cycles (REF* LOW), ME* gener-
ates RAS* while CAS* is suppressed at Ulé6.

The HD6418¢ can be programmed to generate refresh cycles
every 19, 20, 4Y or 88U phi cycles as well as selecting two or

three «c¢lock refresh. Since the DRAM requires a refresh cycle
every 15.625us (4ms/256), the HD6418¢ is programmed for 80 cycle
refresh request since 80 x (1/6.144 MHz) = 13.02 us. Two cycle

refresh 1is also programmed. Thus, refresh overhead is only 2.5%
(2 cycles every 8¢ cycles).
3.3.5 Centronics Printer Interface
The Centronics printer interface is comprised of 8 bit
latch U5 and F/F Ul5. The Centronics port is decoded at I/0
address @CUH by U4. To write to the printer, the following
sequence is used:
Write data to port @C1lH.
This sets-up the data to the printer and asserts STB* LOW.
Write data to port YCUH.
This de-asserts the printer STB* signal HIGH>
When the printer has processed the data, it will return
the ACK* signal which generates an external interrupt (INT 1%*) to
the HD6418@¢. The interrupt handler clears the interrupt by per-
forming a dummy output to port @CUH.
Write (dummy) data to port WCOH

This clears the INT 1* interrupt request.

Page 45

The printer interface is not buffered, so compatibility
with all printer/cable setups cannot be guaranteed. However, in
practice, problems should be rare since the software scheme pro-
vides adequate data setup and hold times. Also, note that this
printer interface 1is interrupt driven which allows high perfor-
mance operation. In a more primitive polling design, excessive
overhead limits acceptable performance in such applications as
background print spooling. .

3.3.6 Floppy Disk Interface

The SMC9266 FDC manages almost all details of the drive
interface, including data separation and (with external logic U286
and '~ U21) programmable write precompensation. The SMC9266
actually combines a NEC 765/Intel 8272 FDC with SMC's popular
9229 digital data separator.. Thus, from the host CPU side, the
SMC9266 looks just like these popular devices, including hardware
and software compatibility. '

The SMC9266 clock is generated by an 8 MHz oscillator
comprised of a crystal and U20. Jumpers are provided to select
write precomp and allow 8" floppy disk drives to be interfaced.

o On the CPU side, the key requirements are interfacing
the SMC9266 with both programmed I1/0 (CS*) for initialization,
status check, etc. and with DMA (DRQ, DACK*) for data transfer.

Programmed I/0 is straightforward, with CS* generated
for I/0 address 80H and RD* and WR* directly génerated by the-
HD64180. This is the same scheme used to interface with other
'89 famlly peripherals.

DMA is a little more involved. First, DMAC channel 1 is
used for the FDC since dedicated handshake lines (DREQl*, TEND1l*)
are provided on the HD64184. Since DMAC channel @ control lines
are multiplexed (with ASCI clocks), -DMAC channel 0 is used for
memory-memory DMA. This means the ASCI 'clock functions are
available although they. are not currently used in this design.

For disk DMA, the 9266 asserts DRQ which in turn causes
HD64180 DREQl* assertion. The HD64180 performs DMA read/writes
to I/0 address @A@H, which causes the 9266 DACK* to be asserted,
completing the transfer cycle. - After the DMAC programmed number
of reads/writes -has completed, ~ the HD6418¢ TENDl* output is
asserted, and after inversion, causes the 9266- TC (Terminal
Count) input to be asserted, completing the DMA operation. This
is typically followed by the 9266 generating an HD64180 INT 2%
external interrupt. This interrupt service routine can read the
9266 status to determine if errors occurred, etc.

However, there is one 'gotcha', fixed by F/F Ul8 which
.conditions the 9266 DRQ output. It turns out that if 9266 DRQ
directly generates HD6418¢ DREQl* the HD64180 may respond too
quickly. This is because HD64180 DREQ* input logic was designed
to minimize latency, and. thus DREQ* can be recognized at a
machine cycle breakpoint. Unfortunately, the 9266 requires that

Page 46

Ly obeq

€-1°¢ @anb1g

9976 HHIL J0 LNO-NId ANV WYYDYId MD01d

08o.) “- 0ATA-BUS

BUFFER

TERMINAL ——
COUNT

ORQ *——rd
DACK ——ef
INT *—
RD ——|
WR ———e]
Ag =

RESETY s

READ/
WRITE/
OMA
CONTROL
LOGIC

al

CLK ~——s
Vee —=

GND e

\J
FDC9266
REGISTERS RESET]2 0P vee
RD Q2 39 [J RW/SEEK
wWR(]3 383 LeT/0R
im]] 32 [FR/STP
'Y= 36 [y HOL
- " OSK DATA Y= 35 3 ROY
SERIAL - ‘, gepunoa - woouT 08, 37 3 [wP/TS
INTERFACE AND le—P0O 08, 8 33JFLTI/TRe
CONTROLLER Y R S 08,] 9 e
le—p2 08,] 10 npoel
o8 I N1 30 [0 woouT
08¢ C]12 29 [us,
fe— READY ' 08 CJ 13 28 [us,
e— WRITE PROTECT/ ORQ CJ 14 17 Wo
INPUT TWO SIDE Dack (15 26 [MFM
PORT |*=—INDEX e s 25 |5 we
le— FAULT/TRACK 0 wox 17 208 ro
< MINI INT T8 23 P 53%0
resrg 19 22 [cLx
ORIVE - & UNIT SELECT O GNO (] 20 21 [MINI
INTERFACE = UNIT SELECT |

CONTROLLER

—> MFM MODE

OUTPUT ——
PORT —e RW SEEK

}—e HEAD LOAD

— HEAD SELECT

—> LOW CURRENT/DIRECTION
— FAULT RESET/STEP

at least 800ns elapse from the time it asserts DRQ before the DMA
transfer (DACK*) actually occurs. ' In other words, when the 9266
'asks' for service, it really doesn't want it...yet! To prevent
accessing the 9266 too quickly after DRQ, DRQ from the 9266 is
delayed at Ul8 before issuing the DREQl* to the HD6418Y. DRQ is
delayed by one REF* cycle time.

Minifloppy double density (MFM) data transfers occur at
a 250khz data rate. Thus, each byte must be read within 3Z2us.
The disk driver software reprograms the refresh request rate from
every 80 phi cycles to every 40U phi cycles prior to disk DMA, and
then reassigns it back to 80 phi cycles after the disk DMA is
completed. The 9266 DRQ is delayed from between 46 phi clocks to
79 phi clocks. This is about 6-l4us. Therefore, the 8#0Uns delay
and 32us data transfer constraint are both met. Note that 8"
floppy dquble density (MFM) 1is twice as fast (500khz) and re-
quires service every lé6éus. This may require refresh rate in-
crease to every 20 phi cycles to be safe.

3.3.7 Expanéion Bus

: The spare CS* from address decoder U4 (I/0 addresses

PJEQOH-OFFH), along with all major busses (address, data, control)
are routed to the XBUS. This allows an I/0 expansion board cap-
ability. The full complement of HD64186 control signals (IOE*,
E*, RD*, WR*, etc.) allows easy interface to all standard periph-
eral LSI including 80XX, 68XX and 65XX devices. Example expan-
. sion boards could include a hard disk controller, 12008 baud
modem, or a LAN interface (SI10, SCC or other LAN chips).

3.3.8 - Power Supply

The SB18¢ requires +5V and +12V power. A negative
voltage 1is generated on board which is only used by the RS232
driver. The negative voltage is obtained by using a Zener diode
to obtain +9V from +12V, which is then inverted using an Intersil
76646 converter. The +12V power 'is also only used for the RS232
driver. Thus, the SB18Y only uses significant power from the +5V
supply. Typically, this may be from 6.8 to 1.5 A (depending on
the proportion of the TTL and memory devices which are CMOS) -
about the same as a 5.25" floppy.

Page 48

4.0 SB186 Monitor

The SB18¢J monitor provides commands to assist the design
and debugging of SB180 related hardware and software. The
monitor also serves as a stand-alone training vehicle for the
HD64180 high integration CPU. .
4.1 1/0 Devices

The monitor supports the following I/0 'devices':

CON: - Console RS-232 serial port

AUX: - Auxillary RS-232 serial port
CEN: - Centronics parallel printer port
DSK: - Floppy disk storage devices

4,2 Disk Format

The monitor supports two disk drive types with the
following specification:

5 1/4", 48 TPI, 40 track, double sided, double density
5 1/4", 96 TPI, 80 track, double sided, double density

Note that equivalent double sided 3 1/2" drives can also be used.

During initial system check-out, a 40 track DS/DD drive
must be connected to verify operation of the disk interface.
After check-out, different disk drives (as supported by the SB180
Z-System DOS implementation) can be connected.

The high capacity format provides 5K bytes per track (10K
bytes per «cylinder) resulting in a formatted capacity of 400K
bytes and 800K bytes for 40 and 80 track drives respectively.
Differences in sector sizes between 40 and 80 track formats pro-
vides a simple method of drive identification.

4.3 RESET

The RESET sequence (from power-up or a reset switch) is as
follows. The monitor first initializes the system and performs
some diagnostics. Normally (diagnostics OK), the monitor then
enters a loop waiting for a disk to be loaded in drive #0 or a
carriage return to be entered from the console. If a disk is
loaded, the DOS boot routine (same as the 'Z' command) is start-
ed. If a carriage return is sensed, the baud rate is determined
(see the following section) and the monitor signs on. '

Two diagnostic failures cause the above sequence to be
changed. First, if a RAM failure is detected, the monitor waits
for a carriage return to be entered. 1In response, a string of 8
bits will be displayed on the «console (last displayed is LSB).
Bit positions with a 'l' represent bad RAM chips. After the
display, the monitor HALTs and requires another RESET to restart.

Page 49

Second, if a problem with the SMC 9266 FDC is detected,
the monitor will wait for a carriage return to be entered. 1In
response, the monitor will sign on. However, instead of the
normal sign-on message, an error message will be printed.

In either of the above cases the monitor will not try to
boot a disk, even if the drive is ready. _Thus, if a disk doesn't

~..boot _when the system is RESET, enter a carriage return to &€& the”
diagnostics results. ' '
s B B RS SNl

e o,

4.4 Console Baud Rate

- The auto baud rate .selection described above requires the
console baud rate to be either 19200, 9600, 1200, or 300 baud.
Note that the baud rate auto-sense routine requires a CPU clock
rate of 6.144 MHz. :

The console should be configured for the following data
format:

8 data'bits, 1l stop bit, no paiity

Note that the console CTS1* modem control input to the
HD64180 is grounded by a trace on the board. CTS1l* can be
connected to the console by cutting and jumpering JP4-JP5. It
so, CTS1* must be asserted by the console, or the system will
appear- inoperative since the monitor will be unable to transmit
to the console. ' '

4.5 Console 1/0

‘ The monitor prompt is "n>" where "n" represents the
currently selected memory bank (see the "B" command).

Commands consist of a command code, followedlby @ to 4
parameters and terminated by a carriage return. Parameters are
separated by a " " or a "," and leading blanks are ignored.

Numeric parameters are assumed to be in HEX (with the
exception of the #-of-tracks parameter for the "K" disk format
command and the baudrate specifier for the "E" terminal emulation
command). Leading "¢"'s are ignored. For commands which require
16 bit parameters, - the last four hex digits are recognized. For
commands which require 8 bit parameters, the last two hex digits
are recognized.

Console entry may be upper or lower case.

Page 50

For example,

result.
O>D ¥ F
0>d 0 €

¥4>DO,F

the following command 1lines have the same

;Display memory from 0000 to UOOF

¥>D12340000 5678000F

¢>p @,

4.6 Commands

F

The following table is a summary of the monitor commands;
a complete description of each command follows.

ASCII Table
Bank Select
CopyDisk
Display Memory
Emulate Terminal
Fill Memory
Goto Program
Hexmath

Input Port
Klean Disk

Move Memory

New Command
Output Port
Printer Select
Query Memory
Read Disk

Set Memory
Test System
Upload Hex File
Verify Memory
Write Disk
Examine CPU Regs
Yank I/0 Regs
Z-System Boot

Bbank# (bank# = 06 to 3)
Csource-drive# destination-drive#
D[start-addr] [end-addr]

E[baudrate]

Fstart—-addr end-addr data8

G[go-addr] or GB break-addr [go-addr]
Hdatal6 datalé

Iport-addr

Kdrive# #-of-tracks (40 or 840)
Mstart-addr end-addr destination-addr
N [command#] (command# = @6-FF hex)
Oport-addr data$8

P

Qdata8 [data8] [data8] [data8]
Rdrive#,dest-addr,start-sect#, #-of-sects
Sstart-addr

Tdevice

UlcCl]

Vstart-addr end-addr destination-addr
Wdrive#,start-addr,start-sec, #-of-secs
X

Y

Z[drive#]

Figure 4.6-1 MONITOR COMMAND SUMMARY

Page 51

4.6.1 ASCII Table - >A

Prints an ASCII code table.

4.6.2 Bank Select - >Bbank# (bank# = 0 to 3)

Selects a 64K memory bank. The currently selected bank is
indicated in the command prompt. All commands.which reference
memory operate on the currently selected bank. The bank offset
is only applied to logical addresses between 2000hex and EFFFhex.
Addresses @-1FFFhex always refernce the monitor (based at phys-
ical address 00000hex), while addresses FO@@-FFFFhex always ref-
erence the monitor data/stack area (physical addresses 4F000-
4FFFFhex) This memory management scheme allows 56K of banked
memory with a 4K common area at the bottom of ROM memory and a 4K
common area at the top of RAM memory.

4,6.3 CopyDisk - >Csource-drive# destination-drive#

Source-drive# and destination-drive# can take the values 0
to 3 and correspond to the physical drive address (the jumper on
the drive). Systems with 256K bytes RAM can perform single drive
copies (i.e., C@ @), in which case a "swap disk" prompt will be
issued. ' The Copy command requires that both disks be of the same
type (i. e., 40 or 84U track)

4,6.4 Display Memory - >D[start-addr] [end-addr]

Displays memory in hex and ASCII. If start-addr is
omitted, the display will start with the address following the
last invocation's end address (or address @ if the first
invocation). If end-addr is omitted, the display will end 80hex
- bytes following the start address.

4.6.5 Emulate Terminal - >E[baudrate]

Console keyboard input 1is echoed to the AUX: RS-232
output, and AUX: RS-232 input is echoed on the console display.
Baud rate is specified as 150, 300, 660, 1200, 2400, 4800, 9604,
19260, or 384¥6. Note - the baud rate option only works if the
CPU 1is operating at the standard (6.144 MHz) clock rate. If you
have a non-standard clock rate configuration, use the "O" Output
Port command to directly reprogram the baud rate or modify your
monitor (EP)ROM (see the monitor ROM modification section). The
command prompts for -a key which will exit the terminal mode and
return to the monitor. At system start up, the AUX: port is
initialized to 19200 baud, 8 data bits, 1 stop bit and no parity.

The AUX: port supports RTSU* modem control output and the
DCDY* and CTS@* modem control inputs (inputs and output are
relative to the HD6418¥U). The RTSU* output is always asserted.
The CTSU* and DCD@* inputs - must be assérted by the connected
device, or grounded on the board: ' o

Page 52

4,6.,6 Fill Memory - >Fstart-addr end-addr data8

Memory from start-addr to end-addr is filled with data8 (8
bit data, @-ffhex). Care should be taken to avoid writing to the
monitor program (@-1FFFhex) and stack/data (FFUO-FFFFhex) areas.

4,6.7 Goto Program - >G[go-addr] or GB break-addr [go-addr]

CPU registers are initialized and program execution
continues at go-addr. The GB format sets a breakpoint at break-
addr. If go-addr is omitted, program execution continues at the
saved PC (see the "X" command).

4,6.8 Hexmath - >Hdatal6 datalé6

Prints the 20 bit sum and difference, and the 32 bit
product of the two arguments. (datal6é is @-FFFFhex)
4,6.9 Input Port - >Iport-addr

Prints the 8 bit data input from port-addr in hex and
binary.

4,6.10 Klean (Format) Disk - >Kdrive# #-of-tracks (40 or 80)

Asks for confirmation and then formats and verifies the
specified disk.

4,6.11 Move Memory - >Mstart-addr end-addr destination-addr

Moves the memory block between start-addr and end-addr to
destination-addr. Care should be taken to avoid writing to the
monitor program (@-1FFFhex) and stack/data (FF@U-FFFFhex) areas.
4,6.12 New Command -~ >N[command$#] (command# = 0~FF hex)

Loads the A register with the command# (0 if no command#
specified). If an extended (EP)ROM is installed (l6KB or 32KB),
the extended ROM space (2000hex to 40U00hex or 8@UGhex) 1is en-
abled. A CALL to address 2000hex is executed. To return to the
monitor, the new command should terminate with a RET instruction.
If extended (EP)ROM was enabled, it is disabled upon return.
4,6.13 Output Port - >Oport-addr data$8

Data8 byte is output to port-addr. Note that most aspects

of the HD64180 operation (baud rates, data format, wait states,
etc.) can be configured by output to chip registers.

Page 53

4,6.14 Printer Select -~ >P

Toggles the printer selection between the Centronics par-
allel port and the Auxillary serial (RS-232) port. The initial
value is Centronics,.

4.6.15 Query (Search) Memory - >Qdata8 [data8] [data8] [data8]

Searches memory for the memory pattern comprised of one to
tour bytes and prints addresses at which the pattern is found.

4,6.16 Read Disk =~ >Rdrive#,dest-addr,start-sector#, #-of-sectors

Reads the specified sectors from drive# into memory at
dest-addr. The first sector on the disk is "1" and the last sec-
tor on the disk is 1906hex (40¢ decimal) and 320hex (80ﬂ decimal)
for 40 and 80 track drives, respectively.

4,6.17 Set Memory - >Sstart-addr

Displays the memory contents at start-addr and allows new
data to be entered. Entering carriage return proceeds to the
next address. Entering "." termlnates the command.

4.6.18 Test System - >TdeViée

Tests various system devices. TA specifies the Auxillary
serial (RS-232) port which prompts for input or output test. If
input, serial input is echoed on the console. ‘For input, the
DCD@* AUX: modem control input must either be asserted by the
connected device or grounded with the jumper on the board -
otherwise an error message is printed. If output, a test pattern
is transmitted. For output, the CTS¢U* AUX: modem control input
must either be asserted by the connected device or grounded with
the Jjumper on the board - otherwise an error message is printed.
TC specifies the Centronics parallel port to which a test pattern
is transmitted. If the printer doesn't respond in a reasonable
time (approx. 5 seconds) an error message is printed. TD speci-
fies a disk seek and read (non-destructive) test. If a bad sec-
tor is found, the disk test is aborted and the contents of the
9266 status registers (identifying the type of error, track,
head, sector, etc.) are displayed. If no device is specified, a
memory test is performed. The memory test is non-destructive and
vill print a "." after each 256KB pass.

All tests can be terminated with CTL-X or CTL-C.

Page 54

4.6.19 Upload Hex File - >U|[C]

An Intel format hex file is uploaded. 1If the [C] option
is specified, the data is uploaded from the Console serial port,
otherwise the data is uploaded from the Auxillary serial port.
Note that upload termination requires reception of a CTL-X (1A
hex). Thus, if the PIP command were used to download a .HEX file
for a CP/M system, the [H] option should be specified. The
command terminates by printing the address of the 1last byte
loaded.

4.6.20 Verify Memory - >Vstart-addr end-addr destination-addr

The contents of the memory block from start—-addr to end-
addr is compared with the block at destination-addr. When source
and destination data differ, the addresses and data values are
printed. ’
4,6.21 Write Disk - >Wdrive#,start-addr,start-sector,#-of~-sectors

Writes the specified sectors to disk from memory at start-
addr. The first sector on the disk is "1" and the last sector on
the disk is 190hex (400 decimal) and 320hex (800 decimal) for 490
and 8¢ track drives respectively.
4,6.22 Examine CPU Registers - >X

Displays the main and alternate CPU registers and prompts
for modification of the main registers. Entering a carriage re-
turn proceeds to the next register while entering a "." termin-
ates the command.

4.6.23 Yank I/0 Registers - >Y

Displays the HD64180 on-chip I/0 register contents.
4,6.24 Z-System Boot - >Z[drive#]

Boots the Z-System DOS (or other suitably configured
operating system) from the specified drive.

Page 55

4.7 Error Messages

4,7.1 FDC Errox

Displayed at RESET if the Monitor cannot correctly init-
ialize the 9266 FDC. This indicates a hardware fault such as a
bad FDC, bad address decoder, etc. Use the I and O commands to
verify FDC input/output operations. The FDC status port is 80H,
the data port is 81H. '

4,7.2 Disk R/W Error

Following this message, the contents of the 9266 FDC stat-
us registers are printed along with id information (track, head,

sector). Typically, this indicates the disk is not formatted
correctly (i.e., non-"native" format), but may also result from
faulty media or hardware. Corrective action includes retrying

the operation, reformatting the disk, resetting the system, test-
ing memory, swapping disk drives, etc.

4.7.3 Disk Seek Error

Explanation and correction - see above.

' 4.7.4 Disk Not Ready

The drive is not loaded with the door closed and the motor
on. Check to insure. your drive provides a "READY" signal. It
not, connect the "No Drive Ready" jumper on the board. Check to
insure your drive responds to the "Motor On" signal. If not,
either connect the "Motor (always) On" Jjumper on the board, or
jumper your drive to achieve the same effect. Note that some
drives are typically jumpered to enable the stepper and spindle
motor based on drive select. However, depending on the motor
control «circuit, these drives may not be able to tolerate the
9266 FDC "Scan" function which toggles drive select at high speed
when the drive is otherwise idle. 1In this case, the drive must
be jumpered so that the motors are always on.

4,7.5 Bad Command

An invalid command has been entered. Use the "?" command
to see a list of available commands and their syntax.

4.7.6 Bad Parameter

An invalid parameter has been entered. Remember that most
commands require hex parameters. Use the "?2" command. -

Page 56

4.7.7 Not Enough Parameters

The command requires more parameters than were entered.
Use the "?" command.

4,7.8 1Invalid Interrupt

The HD64180 has received an internal or external interrupt
for which no interrupt handler is provided. The only interrupts
the HD64180U recognizes are external interrupts INT1l* (Centronics
interface) and INT2* (Disk interface). External interrupts INTO*
and NMI* may be shorting to ground. Internal interrupts (DMAC,
timers, etc.) may be inappropriately enable by a program crash or
incorrect use of the "O" output port command.

4.7.9 Bad Opcode Trap

The HD64180 has encountered an invalid opcode. This may
be the result of a user program crash - confirm your program.
This may also occur due to slow or faulty memory - perform a
memory test. In this regard, note that the HD64180 has stricter
access time requirements for opcode fetch than other read/write
cycles and this is not checked by the memory test. Try repro-
gramming the on-chip wait state generator (DCNTL register, I1/0
address 32hex) or using faster memory chips. '

4,.7.10 CTS@* HIGH

Displayed during the >TA (Test AUX: port) output command
if the CTS¢* modem control input is not LOW at the HD64180.
Check the connected device and cable.
4.7.11 DCDUY* HIGH

Displayed during the >TA (Test AUX: port) input command if

the DCDY* modem control input is not LOW at the HD6418d. Check
the connected device and cable.

4.7.12 No ACK*

Displayed during the >TC (Test CEN: port) command if the
printer does not return ACK* within about 5 seconds after a byte
is sent to the printer. Check the printer state (on 1line/off
line, etc.) and cable.

4.8 Disk Format
The monitor "R" ‘and "W" (Read and Write disk) commands

treat the diskette as containing "virtual" 1lKB sectors. Actually
the format for 40 and 80 track drives is defined as follows:

Page 57

40 Track Double Sided, Double Density

The disk contains 40 cylinders, each consisting of two

sides/tracks. Each track is made up of 10 sectors of 512 bytes.
Thus, total formatted capacity is 512 bytes x 10 sectors x 2
sides x 40 cylinders = 400K bytes. . Sector numbers start at

llhex, with an interleave factor of two. Actual order on the
track is (hex) 11, 16, 12, 17, 13, 18, 14, 19, 15, 1A, During
‘formatting the 9266 FDC GPL (gap length) parameter is 24 decimal,
while GPL is 14 decimal during normal read/write operation.

80 Track Double Sided, Double Density

The disk contains 80 «cylinders, each consisting of two
sides/tracks. Each track is made up of 5 sectors of 1K bytes.
Thus, total formatted capacity is 1K bytes x 5 sectors x 2 sides
X 80 cylinders = BUUK bytes. Sector numbers start at llhex, with
an interleave factor of two. Actual order on the track is (hex)
11, 14, 12, 15, 13. During formatting the 9266 FDC GPL (gap
length) parameter is 99 decimal, while GPL is l4 decimal during
normal read/write operation. '

4.9 Monitor ROM Modification

_ The monitor is organized to allow easy modification to
support non-standard CPU clock rates (standard is 6.144 MHz),
- unique console and auxillary port baud rates and data -formats and
optimized disk timing parameters. Also the monitor can be ex-
tended by using 27128 or 27256 devices in conjuction with the "N"
new command., Never reprogram or erase your original monitor
EPROM! Instead, read it on another system, save the object file,
make a copy of the object file, modify that copy, and then burn a
new (EP)ROM.

4.10 Key Variable Block

Nine bytes, 1located starting at address 35hex, in the
monitor allow <changing a number of operating parameters as
defined below. ' ‘

4,19.1 STARTBYTE - Address 35hex, default value = FFhex

Normally FFhex, the upper and lower nybbles of STARTBYTE
control two aspects of the monitor start sequence. .

Changing the upper nybble of STARTBYTE allows disabling
the console baud rate autosense routine if either a non-standard
baud rate (i.e., not 300, 1206, 9600 or 19,200) console baud rate
is requlred or if a non—standard (6.144 MHz 1is standard) CPU
clock is used. In either case, change the upper nybble of START-
BYTE to 4., Note that STARTBYTE 1is related to CNTLBl byte (see
below) . If STARTBYTE is not changed (i.e., equals Fx hex to use
autosense) then CTTLBl default value of 1 must also not be
‘changed.

Page 58

Changing the lower nybble of STARTBYTE to @ allows dis-
abling the DOS autoboot function so that the monitor will always
sign on independent of whether a disk is 1loaded. This is
especially useful if the "No Drive Ready" jumper is installed on
the board to prevent hanging in the DOS boot loop if a disk is
not loaded.

STARTBYTE Meaning

FFh Baud rate autosense, DOS autoboot (default value)
UFh Fixed baud rate (based on CNTLBl value),
DOS autoboot
Foh Baud rate autosense, DOS autoboot disabled
@dh Fixed baud rate (based on CNTLBl value),

DOS autoboot disabled

4,10.2 CNTLAU - Address 36hex, default value = 65hex

Contains the value programmed into the HD64180 CNTLA®@ reg-
ister which defines, among other things, the AUX: port data for-
mat (i.e., # data bits, stop bits, parity, etc.). The default
value also asserts RTSU* low.

4,16.3 CNTLAl - Address 37hex, default value = 75hex

Contains the value programmed into the HD64180 CNTLAl reg-
ister which defines, among other things, the CON: port data for-
mat (i.e., # data bits, stop bits, parity, etc.).

4,16.4 CNTLBY - Address 38hex, default value =1

Contains the value programmed into the HD6418¢ CNTLB@ reg-
ister which defines, among other things, the AUX: port baud rate.
Note that the "E" emulate terminal command allows the baud rate
to be set from the console. However, the "E" baud rate function
only works when the CPU operates at the standard (6.144 MHz)
clock rate.

4,10.5 CNTLBl - Address 39hex, default value = 1

Contains the value programmed into the the HD6418@ CNTLB1
register which defines, among other things, the CON: port baud
rate. 1If your console does not operate at the standard baud
rates (300, 1200, 9600, 19,200 are standard) or the CPU clock is
non-standard (6.144 MHz is standard) both STARTBYTE (see above)
and ZCNTLB1l must be changed. STARTBYTE must be set to @ (dis-
ables the baud rate autosense routine) and CNTLBl set to the
appropriate value given your console baud rate and CPU clock
rate.

Page 59

4,16.6 STATO - Address 3Bhex, default value = 0

- Contains the value programmed into the HD6418#¢ STATO reg-
ister which enable or disables AUX: port interrupts, which are
normally disabled. '

4.10.7 STATi_- Address 3Chex, default value = 4

Contains the value programmed into the HD64180 STATU reg-
ister which enable or disables CON: port interrupts as well as
enabling or disabling the CON: port CTS1l* modem control input.
CON: port interrupts should normally be disabled and the default
value enables the CTS1* function. Thus, CTS1* must be grounded
on the board (default case) or asserted by the console if con-
nected. ’ ’

4,10.8 DCNTL - Address 3Dhex, default value = 7Chex

Contains the value programmed into the HD64180 DCNTL reg-
ister which defines, among other things, the number of memory and
I/0 wait states generated by the HD6418¢ on-chip wait state gen-
erator. Normally, the least significant four bits of this value
should not change since they define DMA parameters associated
- with basic disk operation. Change the upper four bits to account
for faster or slower CPU clock rate and/or memory-I1/0 devices. .

4,16.9 RCR - Address 3Ehex, default value~¥ 82hex

Contains the value programmed into the HD64180 RCNTL reg-
ister which defines the interval and duration of HD6418¢ gener-
- ated DRAM refresh cycles. Normally, this value needs to be
changed only if the CPU clock rate is reduced below 3.072 MHz.

4,10.10 SPCFl - Address 3Fhex, default = 9Fhex

Contains the value used as the first parameter of the 9266
FDC SPECIFY command which defines the step rate and head unload’
time for the floppy disk drive. This can be changed if your disk
has higher performance than the conservative default value. Note
that a DOS BIOS can reSPECIFY in a "soft" manner, so it may be
wise to leave the conservative default in the ROM to allow for
easy connection of drives with poor or unknown performance char-
acteristics.

4.16.11 SPCF2 - Address 40hex, default value = 28hex

Contains the value used as the second parameter of the
9266 FDC SPECIFY command which defines the head load time and
data mode for the floppy disk drive. As above, this can be
changed, but change may not be required since the DOS BIOS can
reSPECIFY,. Note, the data mode must be "DMA".

Page 60

4,11 The "N" NEW Command

The monitor, which requires 8K bytes of (EP)ROM can co-
reside with other system software in a larger 16K byte or 32K
byte (EP)ROM. The extra 8K bytes or 24K bytes can contain
additional software such as BASIC, Forth, a DOS, or ?2?2?

At RESET, the monitor determines how big the installed
ROM is. The "N" NEW command can then "phantom" in an extended
(EP)ROM. Also, an optional parameter on the "N" command line is
loaded into the Accumulator (A) for passage to the extended rou-
tines. When the extended routine terminates with a RETurn in-
struction, the monitor regains control and "phantoms" out the
extended (EP)ROM to allow access to overlayed RAM. Note that
this return mechanism requires the extended routine to save the
return address if it sets up a different stack. Also, the ex-
tended routine should avoid writing to the physical address area
4FFP0P-4FFFFhex since this area contains monitor data structures.

To implement an extended (EP)ROM simply requires assembl-
ing your routines to start at the "end" (address 2000hex) of the
monitor. Developing the code is made easier by the fact that,
with only the 8K byte monitor installed, the "N" command will
jump to address 2000hex without performing the "phantom" func-
tion. After the code is tested in RAM, burn it and the monitor
in a new (EP)ROM, install it (remember to adjust the ROM size on
the SBl80 system board), and operation will be exactly the same
as during debug. o

For further information on the ROM monitor, consult the
monitor source code on the appropriate system disk.

Page 61

§ooxaer § O35EEE : s 53335353 53
mﬂ\%J . -] ,657w£9 & , _‘m:m'mmwww BrRONEO U -8
galel 2 il mw_% FEEHRERREEE S lella] |
N mm B & mm_
R : W Ei...:....EE
1F | H XY
sase -
B2l z&ﬂ..w
a3
aie! B
M «em B m m}
el 9 L - X
o o) e
8 m -
By mm
28 ool | e
g L BT
ww w_s -
i P! A
m -
L= =
_asial sipiainisiiel slslelsle sla| RS ARARANR A <gBi8inllnls|
959 9393979322 mﬁxmnmum “REEY mmm [B8BIREAE
Fgg mmmw mmmmmm
S
T2
VAN
A @
; b ey
3 s &m
a AN W[a
ot A
e 31N <><..18
35, | || S8 %
[WAﬂ AN
O oo Slole o F
£ 8 28 4 A 24\ & EE
NRRAE 1 1L} a

SB180 COMPUTER PG 1 OF 4 (PQDCESSDR)

7/23/835

- COPYRIGHT 1985, CIARCIA'S CIRCUIT‘CELLAR

€9 obeg

g A7 W0 - JPE“K R v
9 256K
e £ e ™ S G
20 3 2
a5 32;5 B 47K sy Ut6 s £118 ayp?
1K LB7las als < uu
- 4
L Elas 14303
Ll 10 = |2A
E4LA9 ISEL &
PN 1 is
) 3.) Has + H H H O H O H K
4 : LSI157 yy :
A6
565 ALS 1033 '}____
5 a4 als |13l 3 u 1T
Zla3 AL 1B g2 19, . 0 R O I I
1AE AlE 633 ' z B B
0% 87| Ligu s 10, &
‘ o] E“A v 1 — - — —] — -
21 BOOT- a4 5|14 ey At (M
- , 2a
24 UTILITY ELT BV g -
£ 1]S Ve | 1 W]]]
ee| ROM * 6, D
o e Mg DB O EOE
LS1S7 yga -
“YPTOr wv"‘—g‘VPP All 10|45 19 1P qu
.- - 2764 a0 1 ™ 2000 0NN
sz \ As 313 13 6 Yo4 LD b4 — — — o
wre (27128> 8 625 *" A] B
biipp! A3 - .
(@7256> s Ao US [JU4usu2[uLTus U7 [ue
n — i:m : 210 glﬁe\" A . | - - - M 1 -
5{D 1 s pea iy T i w = = = O = =
% 558 ‘ it ey &8} —
o - T U oo Uoor
um E .
a8 9 ARt
REFRESH 10} 00
§ 3w B ugs
al x [LS74
FERENABLE__*3V<——VA—1
L
RESET
RESET

SB180 COMPUTER PG 2 OF 4 (MEMORY> COPYRIGHT 19835, CIARCIA’S CIRCUIT CELLAR 6/6/85

$9 obed

.2

R7 1K +5V
ne m 5 FDC 9266 (59 5sy
Al7 .3 AR é é
A6 E L = XTAL2 e © NODRIVE| 150 é 233
800 iz AN REFEFEE
: ur 19 TRIVE READY
AS TEST peapy®S S Pl :
———— N U2 LS240N" 5 413 128 READ TATA
- oldy v Lsew 7 g <lis~z4o umaa\f j
o ———— 2 1 - ; SECTORZINDEX
—_— — A 1703 oK INDX= 55 Tsan<P s
e —— Wz ‘ Wm%%“‘ E glsweu
T——————— gxogy—20 TRK 0 EX 0 TRAR T
——— FICE PRIOTECT
— A 5! a0 weroT 24 By
~ A DISK_SEC K oo s 5 o,gg 2 sD
s 38 3 4 =1 SIE 141 10 DIRECTION
DHA ACK__ 15/DMA LCT/DIR 5 .
Ff';c; SEC - ACR 37 < . [g 7&8 STEP
~—Fc BT RD STE) = {$
___EELEHL_S WR %vm R7V |39 1] P15 ve?
mm TENDL 3 L$840A 16 TC /SEEK uep = LS240 ues
ues 6 64 1N 12 mv
b7] s| oo
‘ D6 2] 7 { CURRENT
. VR DS Wins UB3 LS4 10w WRITE CURRENT .
e D4 10ins] Ugﬁ
3 b3] velEs 3{9&4 WRITE GATE.
HRBRE D2 8 3p N 8 VRITE DATA
_UERARE N iy IATA 5l 6 YN USEZREAD TTAD
e D0 3 HOLOAD D LHAD
——ﬂ—m—-————-—-——" Do SIDE 27 : IM HEAD SEL
mﬂ& SYS RESET d. o VARIABLE| FIXED gO Y3V e -
] (Lp———JVW—-D .
— INTE 47K LS133 . —
— YT 29 PRECOMP | JP7 e oa————%i IF
B1{MINI D30 A 5 3.6 IRIVET
' 4 e8) I E>f
m o iy ept—IpE IRIVE £
L Ty 131\, 18 IRIVE S
JPg8 - ues = 3p- [}
R p2 LS240
—d“g;— it HN,.9 u ROTIR N
b 'ﬂﬁr‘” 5V R4 Ues ‘
' 24 14
_;}{r—-Po DRRT D~ 47K
T RITE PRECOMPENSATIN
REFRESH
THA REQ
WTE
RESET
RESET DRIVE_SIZE
PROCESSOR_TXS
SB180 COMPUTER PG 3 0OF 4

COPYRIGHT 1985, CIARCIA’S CIRCUIT CELLAR

80
34 2p
30 46
8 20
26 42
58 | | 44
- 10
18 34
20 36
- 2
24 40
22 38
4 18
3 | | 14
10 26
12 28
14 | | 30
6 32
16 || -
J9 Js

6/6/83

G9 abeg

ol HEV HEV_
A18
J7 O — a0
A6 gj““"“‘ +5V) +5V
w| ot 10 | Q-<Cs
A1S r ALY AN wF_* W C10-C18017,048
s P2 S
ca% | cee e | GND
&7 a8 o b & [c=t
ox 3
wvev
- A, INA739A 14
™) v \ 8 _ ues
®RD
47K Is
100_|
uF A m«mikam
ue
104 L574
b4 0 L
12 ICL7660 uF ZC34
1 L VOLTAGE
_ INVERTER
PRINTER STROEE
47K
WY Re
AKX]
| a6
TS us *5V¢ 1 . 100<R3 15&,9 a
LS374 47K L L | orM
ol P3IS333S3S
cK i. p3 > b m’ 10
7 3p7 @])
1_18lp, gelid 1 D6 o8
l 4 s oS 3 m07
L e oallé D4 ¢ J2
7 6 I3
) 53 @ 2205 @ PRINTER
2 e 04
LI 1IN
By ok 0 5p
Tm’ +5V 47K RO STRIBE o
= LS74
A eh S g -
PRIRTER STRIE al, @
R |
JEST !

> A
SB180 PG 4 OF 4 (PRINTER & PS> COPYRIGHT 1985, CIARCIA’S CIRCUIT CELLAR 6/6/85

J——]
STROBE 1 19 0] 0 g
DO . 0 Stripe 0 i
Dl 0 u u
D2]] 0
D3 0 u-n
D4 0 20 Conductor Ribbon Cable 0
D5 0 0 g
D6 0 0 i}
D7 0 0 0
ACR H]
g 20 Pin
] g Female Header Male Header
1]
0 SB180 Parallel Printer Port
0
C/JG :
36 Pin CENTRONICS 36 Pin CENTRONICS
Female Connector Male Connector
Your Printer
X 13
25 {g\ 0 8
(o] o [m} o
o 0 O 0 10
o 0
o gg 0
0o ° g 0 8 DCD
o 8 DcD gB : . g8
DSR 20 ° 4 [m] . - : . - nl
- o] D D . 20 Conductor Ribbon Cable . e <) B ﬂ .
o o g O 0 0 5 CTS
o 5 RTS apg Qg 4 RTS
oo | e Bp 0g 3 rxa
%5 3 TxD a o Stripe 0 i 2 ™D
“ g o 2 RxD 0gf 0 g
o 1
] 20 Pin
(:) Female Header Male Header
DB-25S RS~232 DB-25P RS-232
Female Connector Male Connector ’ $B180 Seré;é Modem Port
Your Modem
O |
1 fo\ -
14
™D 2 o g DB 3 0
RxD 3 o] O stripe 0
(o] O I
RTS 4 o a 0
0o ? DCD:' g 0
(o)
%5 SD 20 Conductor Ribbon Cable 0 E
GND 7 o g O) 0
g 0
(o]] 0
o ° g O 0 0
o [e] DD 0 0
o [} 0 O 0
09 = a
e] 25 O0g
13 G/ . 20 Pin 20 Pin
<:) T Female Header Male Header
DB-255 RS-232 DB-25P RS-232 SB180 Serial Terminal Port
Female Connector Male Connector . P DCE

N

‘Your Terminal

“Figure 5.1 Sample Cable Assémbliesh

Page 66

CAPACITORS

cl-cs8
c9
cly-cl5
cl6
c17,cls
Cc19,Cc20
c21-c31
c32

c33

c34

c35
C36,C37

DIODES
CR1

CR2
CR3

COMPONENT LIST

SB186¢ -~ SINGLE BOARD 64180 SYSTEM

MFD 5@V MONOLITHIC
MFD 25V ELECTROLYTIC
MFD 506V MONOLITHIC

e

1500 PFD 56V MONOLITHIC

.1 MFD 50V MONOLITHIC
27 PFD 506V MONOLITYIC
.1 MFD 56V MONOLITHIC
.61 MFD 56V MONOLITHIC
.1 MFD 50V MONOLITHIC
14 MFD 25V ELECTROLYTIC
166 MFD 25V ELECTROLYTIC
14 MFD 25V ELECTROLYTIC

1N4148A, SIL, FAST SWITCH
1N40@1l, SIL, BLOCKING

1N4739A, SIL, ZENER, 9.1V, 1w

INTEGRATED CIRCUITS

IC1-1C8
1Cc9
ule
Ul1l-U13
Ul4,uls
Ulé

ul7
uls
Ul19
2y
U2l
U22
u23
U24
u25
U26
u27
u28
u29

(OPTION)

41256, DRAM, 256K,
74LS374, OCTAL LATCH, TRISTATE
74L574, DLATCH, DUAL
74LS157, MUX, QUAD, NONINVERT
74L.S74, DLATCH, DUAL
ROM, (8K STANDARD)

2764 8K X 8 OR

27128 16K X 8 OR

27256 32K X 8

1488, TRANSMITTER, LEVEL SHIFT
64188, MICROCOMPUTER

1489, RECEIVER, LEVEL SHIFT

74LS156, OCTAL DECODE (DUAL 1 OF 4)

74LS240, HEX INVERT

74LS06b, QUAD NAND

74LS240, HEX INVERT

FDCY9266, FLOPPY DISK CONTROLLER
74LS158, QUAD MUX, INVERT
74LS139, 1 OF 4 DECODE, DUAL
74067, HEX BUFFER, NONINVERT
74060, HEX BUFFER, INVERT
ICL7660, VOLTAGE INVERTER

Page 67

(1L50NS OR 9@NS)

RESISTORS

R1

R2

R3

R4

R5

R6
R7,R8
R9
R10
SIP1-SIP3
SIP4

MISCELLANEOUS

Jl

J2-J4

J5

J6 (OPTION)
J7

J8 (OPTION)
J9

JP1-JP3 (OPT)
JP4 (OPTION)
JP5 (OPTION)
JP6 (OPTION)
JP7 (OPTION)
JP8 (OPTION)
JP9 (OPTION)
JP10

JUMPER (2)
PB1

XTALL

XTALZ

SOCKETS

W

10 K, 1/4 W, 5%
4.7 K, 1/4 W, 5%
140 OHM, 1/4 W, 5%
4.7 K, 1/4 W, 5%
470 K, 1/4 W, 5%
4.7 K, 1/4 W, 5%
1.0 K, 1/4 W, 5%
4.7 K, 1/4 W, 5%
120 OHM, 1/2 W, 5%
4.7K,

330 OHM, 7 ELEMENT,

.1 CTR,
.1 CTR, ST,
.1 CTR, ST,

.1 CTR, ST,

.1 CTR, RT,
.1 CTR,
.1 CTR,

CTR, ST,

CTR, ST,

CTR, ST,

CTR, ST,

CTR, ST,

CTR, ST, .230

CTR, ‘ST, .239
“p", .1 CTR, S

X 2 HEADER JUMPER

PUSHBUTTON, (RESET)

CRYSTAL, 12.288¢ MHZ

CRYSTAL, 8.0000 MHZ

(HARDWIRE)

s s~
~ =~

.230 L
.320 L
SHROUDED,
SHROUDED,
.230 L
.230 L
.230 L
.230 L
.230 L

L

L

T,

WO WNWUWHFN®EQNRN
et el e

S s s s s s s NS S
~ S

DD PP KK X X X XX XX

>

w
—~

N
-~
-

8 PIN
14 PIN
16 PIN
20 PIN
28 PIN
4¢ PIN
64 PIN (SHRINK DIP)

.230 L
.320 L

9 ELEMENT, PIN 1 COMMON
PIN 1 COMMON

ST
RIGHT

.230 L

X k kx Kk Kk k Kk Kk Kk Kk Xk k *x Kk Xk Xk Kk k k %k Xk Xk Xk X *x *x X

ZRDOS
Version 1.0
Echelon Z-System Disk Operating System

PROGRAMMER'S GUIDE

¥ % % % % X X X % X ¥
¥ % % % % % X * % %

kX Xk Kk Kk Kk Kk Kk k Kk Kk k Kk k Kk *x Kk Kk Xk *k Xk Xk Kk Xk *k X %X

by
Dennis L. Wright

1 January 1985

ZRDOS, its utilities, and documentation files are Copyright 1984
and 1985 by Dennis L. Wright and Echelon, Inc. ZCPR3 is
Copyright 1984 by Richard Conn and Echelon, Inc. CP/M and MP/M
are registered trademarks of Digital Research. No part of this
guide may be reproduced in any way or by any means without prior
written permission from Echelon, Inc.

ZRDOS is a 280 coded CP/M 2.2 compatible
Disk Operating System. Use of 280 code allows
addition of many new features. This document
explains these features and differences between
ZRDOS Version 1.0 and CP/M 2.2.

ZRDOS Plus

ZRDOS PLUS

ADDENDUM

TO ZRDOS VERSION 1.0 PROGRAMMER'S GUIDE

ZRDOS Plus 1is the re-entrant version of ZRDOS Version 1.0.
All features and function calls are identical to those outlined
in the ZRDOS Version 1.0 Programmer's Guide with the following
addition.

Programs that intercept BIOS calls from ZRDOS Plus can be
written to make calls to ZRDOS without destroying the original
DOS callers pointers and parameters.

Re-entrance can be accomplished by first saving the current
ZRDOS Plus buffers. This is done by copying the ZRDOS Plus
buffers to a user assigned save buffer area of 147 bytes. Once
the DOS data has been saved the user program is free to make any
DOS calls necessary. Before returning to the original DOS
caller, the ZRDOS Plus buffers must be restored. The beginning
of the ZRDOS Plus parameter-Buffer area is located at ZRDOS Plus
base + 5 (ZRDOS Plus base is the address specified in system page
zero, hex location 06) and is 147 bytes in length.

The main purpose of making ZRDOS re-entrant is to allow the
efficient programming of ZCPR3 I/0O Packages, packages (modules of
1.5k-bytes length) that redirect Device Record {(Console, List,
Reader and Punch) input and output to and from disk files.
Echelon, Inc. offers several IOPs that make use of this feature.

ZRDOS Plus

EXAMPLE METHOD OF SAVING AND RESTORING ZRDOS PLUS BUFFERS

The following routines demonstrate a method that can be used to
save and restore the ZRDOS Plus buffers to allow re-entrant calls to
ZRDOS Plus.

H
DOS EQU 5
BUFOFF EQU 5 ; Offset from beginning of ZRDOS Plus to
; internal dos buffers.
; This routine gets the address of the ZRDOS Plus parameter buffer.
GETBUF: LHLD 06 ; Get dos address.
LXI D,BUFOFF ; Add offset to ZRDOS Plus internal buffer.
DAD D
SHLD DOSBUF ; Save as dosbuf pointer.
RET

; This routine saves ZRDOS Plus parameters to allow re-entry.

SAVDOS: LHLD DOSBUF ; Save ZRDOS Plus parameter buffer.

LXI D, DOSSAV

CALL MOVIT

MVI c,47 ; Function 47, get current dma address.
CALL DOS

SHLD CURDMA ; Save 1it.

RET

.
I

; This routine restores original ZRDOS Plus parameters.

RSTDOS: LDED CURDMA ; Restore dma address
MVI C,26 ; Function 26, set dma address.
CALL DOS
LXI H,DOSSAV ; Restore ZRDOS Plus parm buffer.
LDED DOSBUF
MOVIT: LXI B,147 ; Move 147 bytes.
LDIR
RET
CURDMA: DW 0 ; Save area for current DMA address.
DOSBUF: DW 0 ; Save area for pointer to ZRDOS Plus parms.

DOSSAV: DS 147 ; Save area for ZRDOS Plus parm buffer.

1

% % % % % % % X % ¥ X

* %k Kk Kk Kk Kk Kk K Xk Kk Xk k k Xk *x Xk Xx Xk k Xk Xk k X*x *k X %

ZRDOS
Version 1.0
Echelon Z-System Disk Operating System

PROGRAMMER'S GUIDE

X k Xk Xk %k Xk Kk %k Xk Kk Kk Xk Xk Xk kX k Kk Kk k k X*x k *x *x *x %

by

Dennis L. Wright

¥ % %k % ¥ % % X ¥ X ¥

1.

2. DIFFERENCES FRm CP/M 2.2 Bms.................I..-......

DIFFERENCES FROM THE STANDARD CP/M CCP..cccccccccccaccnce

ZRDOS Version 1.0 - Programmer's Guide

TABLE OF CONTENTS

l.l. ZCPR3 Utilities and Features'.....0'..0.............

2.1. Disk ChAngE@.seeeseesseescsssccocsossssasssasssosssosnss
Read Only Disk StatuUS.ceeescececssssssccoscssscncsssnss
Read Console Buffer.i.cccescsecssescscsassssssosscecsses
File Archiving..ceceeseesscessccscscosscscssssscssosscces

2.2,
2.3.
2.4.
2.5,
2.6.

szs EXTENDED FUNCTION CAIILS..-.c...a.o.'o.oooco-oo...lo

3.1.
3.2.
3.3.
3.4.

ZRmS VERSION]. 0 FUNC.[‘ION CAI‘I‘S..--....no--.....c.c....o

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.
4.11.
4.12.
4.13.
4.14.
4.15.
4.16.
4.17.
4.18.
4.19.
4.20,
4.21.
4.22.
4.23.
4.24.
4.25.
4.26.
4.27.
4.28.
4.29.
4.30.
4.31.
4.32.
4.33.

Wheel Protectionoooooooooonon.oocoo.o.ooocl.onooo.ol

El"rOr MessageSOUOQOOOQO.a.onooocc‘ob.ooo000.‘000..0‘

Function
Function
Function
Function

FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNETION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION

47: Get Current DMA AddreSS.ceecescsscccscss
48: Return ZRDOS Version Number....eececees
50: Set Warm BoOt Trap.sccescscscsscssccssascs
52: Reset Warm Boot Trap.ccccecccccecscscces

ee oe

e

ee ss oo oo

OO WNEO

=
N OO e o

=
W

15

16:
17:
18:
19-

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

SYSTEM RESET:eceeceecesososcccsscccccncs
CONSOLE INPUT.cccceetcecensccessncennss
CONSOLE OUTPUT v ceeseeoocccccccscacacce
READER INPUT:.cccececccossscsasssscsasse
PUNCH OUTPUT:ceseecssecsscccccsccoscnsse
LIST OUTPUT et eesececeosacssascssssannecse
DIRECT CONSOLE I/O¢eccccccccocccosccss
GET I/0 BYTE::eooeosocosscosscacocsnsns
SET I/0 BYTEeceeeoeoesosccocsosscssscas
PRINT STRING:sceeeeescsocsscsososscsccnsns
READ CONSOLE BUFFER¢:cecsssessacssccs
GET CONSOLE STATUS:¢seccessscecsaccscs
RETURN VERSION NUMBER:.:cccececeoacccnse
RESET DISK SYSTEMecceeccecccscsacccnsns
SELECT DISK:veseooeoesesssncsncssccnsns
OPEN FILE:tceeseocosccsacsescsssncsansse
CLOSE FILE:esooosososesoscccososacaccanse
SEARCH FOR FIRST:ssescescoccsccccscnse
SEARCH FOR NEXTeeeoseassossesoscsncanse
DELETE FTITE. ..ot ecisecsscarsocosccnnsnse
READ SEQUENTIAL:.:eeveoccesscssascsscsns
WRITE SEQUENTIAL.:seeesceccstossscnas
MAKE FILE. .ot ceeeetsocconcsccccccaccacanse
RENAME FILE.eieoecesocoeccscscsscsascscs
RETURN LOGIN VECTOR:.:etcceccccccccccse
RETURN CURRENT DISKeeeteeoosoocesononsse
SET DMA ADDRESS .t ccesoceastococcceans
GET ADDR(ALLOC) ¢ eecseesaessscsasosscs
WRITE PROTECT DISKececeeoecsecaccsans
GET READ ONLY VECTOR:eecsescosvccssasns
SET FILE ATTRIBUTES:ccceocscscoccssns
GET ADDR(DISK PARMS) cestececesansoases
SET/GET USER CODE.csccossccccccsonese

(o)l W Ne 0 -) bbb www N =

OO oo

ZRDOS Version 1.0 - Programmer's Guide

4.34. FUNCTION 33: READ RANDOMe¢cessocoosoosonssossocsaes 23
4.35. FUNCTION 34: WRITE RANDOM.::ceescoososoccoossseeses 24
4.36. FUNCTION 35: COMPUTE FILE SIZE..ccceccccecssnseass 25
4.37. FUNCTION 36: SET RANDOM RECORD.:ceccesscocssscases 25
4.38. FUNCTION 37: RESET DRIVE::eeeeeeecsecsocsceasccsass 26
4.39. FUNCTION 40: WRITE RANDOM WITH ZERO FILL:ceseoeese 27
4.40. FUNCTION 47: RETURN CURRENT DMA ADDRESS.¢ecceesees 27
4.41. FUNCTION 48: RETURN ZRDOS VERSION NUMBER.::seeeses 27
4.42. FUNCTION 50: SET WARM BOOT TRAP:c.ceceeeccccssocases 28
4.43. FUNCTION 52: RESET WARM BOOT TRAP.:...ccececcccesss. 28

5. DIREmRY mDES.....'..0....'ooo..t.lo.-.-.'.o.o-."...l. 29

A. INDEX........oo‘oo--........o..o..ol..o.o‘.ooo-oooo..o.... 30

LIST OF FIGURES

: Console Buffer FOrmat.ceseescesscessooscscosssosssccssocnses 12
: FCB format.ceeececsecceccsccoesoccsoosossocsassnansansnss 17
¢ Login Vector Bit MAPeccscsescoscccsoessessssosssossaecsss 19
¢ Read Only Vector Bit MapPesececcccecsccocsccccscscssasces 20
File Attribute Format...eceeeeececessccssscsssossccssass 21
Use of FCB bytes "'r0','rl' and 'r2'.c.ccececcecceccesees 24
¢ Active Drive Vector Bit Map.icecsscesecssscesscoccscesscease 26

|

-b-h-h-'hnh-h-b
NO O s WN =

T
-

Example Directory SectOr.i.csesesscsssssscsscacssccsscss 29

LIST OF TABLES

: ZRDOS Version 1.0 Function CallSeeececccscscosssscccanss 7
.IOBYTE Format.‘...'.‘.'..‘....‘.......0‘.........'..'.0 ll

-ll;-b
N .

ZRDOS Version 1.0 Programmer's Guide

1. DIFFERENCES FROM THE STANDARD CP/M CCP

ZRDOS is a Z80 coded, CP/M 2.2 compatible disk operating
system designed to be used with Echelon Z80/HD64180 Command
Processor ZCPR3 written by Richard Conn and auto-install Z3-Dot-
Com by Joseph Wright.

Page 1

ZRDOS Version 1.0 Programmer's Guide

l.1. ZCPR3 Utilities and Features

ZRDOS is compatible with all of the ZCPR3 utilities. Named
Directories, Redirectable I/0, and all other ZCPR3 features can
be used with ZRDOS. For installation of these additional
features please refer to original ZCPR3 documentation package.

Page 2

ZRDOS Version 1.0 Programmer's Guide
2. DIFFERENCES FROM CP/M 2.2 BDOS

2.1. Disk Change

ZRDOS allows the changing of disks without the need of a
warm boot. CHANGED DISKS WILL BE AUTOMATICALLY LOGGED IN.

NOTE: The above mentioned auto login will not occur if a file
was open when the disk was changed and a write
operation is attempted to that file on the new diskette
instead the following error message will be printed:

Disk Changed Error On Drive B:

It should also be noted that the automatic logon may or may
not be able to handle changes in density or number of sides.
This depends on how your bios handles deblocking and double sided
disks. However if the disk is of the same density and number of
sides as the disk it is being swapped with there will be no
problems.

2.2. Read Only Disk Status

Under ZRDOS a disk can only be set to R/0 status by
executing function call 28 (Protect Drive).

ZRDOS function call 37 (Reset Drive) is different in that it
will only reset the Read Only bits for the drive(s) specified in
the user passed drive map in the register pair (DE). With CP/M
function 37 will also reset the bits for any drive not currently
active.

Function call 13 (Reset Disk System) is different in that it

will not reset drives that are set to Read Only but will instead
reset the disk changed vector.

Page 3

ZRDOS Version 1.0 Programmer's Guide

2.3. Read Console Buffer

The Read console buffer routine (Function 10) for ZRDOS is
different in the following ways:

o Rubout (DEL) is treated the same as a backspace.
o The Control-R edit function is not implemented.

NOTE: 1In CP/M these are teletype oriented edit commands and were
felt not to be desired in ZRDOS.

2.4. File Archiving

ZRDOS supports the use of the file archive attribute. The
support of this feature is compatible with both CP/M 3.0 and
MP/M. This bit when set indicates an archived file. That is a
file which has not been altered. The bit can be set by using a
Function 30 (Set File Attributes) function call. Any update to
this file once the bit has been set will cause the bit to be
reset. This can then be used by a copy utility to indicate the
need to backup the file. The utility that backs up the file
should then set the archive bit to indicate the file has been
backed up.

2.5. Wheel Protection
ZRDOS uses the ZCPR3 wheel byte and a new file attribute bit
to protect files from non-wheel users. This bit when set will
write protect the file as long as the wheel byte is off. If the
wheel byte is set the file is treated as a normal file.

If a non-wheel user attempts to change a wheel protected
file the following error message will be displayed:

A0>File W/P Error on A:

Page 4

ZRDOS Version 1.0 Programmer's Guide

2.6. Error Messages

ZRDOS CP/M
Error
Number
1 Read Error On A: Bdos Err On A:Bad Sector
2 Drive Select Error On A: Bdos Err On A:Select
3 Disk R/0 Error On A: Bdos Err On A:R/O
4 File R/0O Error On A: Bdos Err On A:File R/O
5 Disk Changed Error On A: n/a
6 File W/P Error On A: n/a

With ZRDOS all non-retryable errors jump directly to warm
boot after the error message has been printed. Read Errors allow
the user the option of retrying the operation by pressing any key
but control-c or aborting by pressing control-c. Error numbers
shown above are returned in the (A) register. The selected drive
number is returned in register (E).

NOTE: If the warm boot trap (see FUNCTION 50) is set ZRDOS jumps
directly to the warm boot vector and no error messages
are displayed. (User program stack pointer not returned.)

CP/M handles the errors in the same manner except a key
must be pressed before CP/M will return from any type of error
and CP/M doesn't return an error or drive number. Nor does CP/M
have a warm boot trap function.

Page 5

ZRDOS Version 1.0 Programmer's Guide

3. ZRDOS EXTENDED FUNCTION CALLS

3.1. Function 47: Get Current DMA Address

This function will return the currently assigned DMA address
in the register pair (HL).

3.2. Function 48: Return ZRDOS Version Number

This function works the same as CP/M function call 12 except
the ZRDOS Version number is returned instead of the CP/M version
number. To maintain CP/M compatibility ZRDOS will return version
number 2.2 on a function 12 call. As with function 12 function 48
uses the register pair (HL) to return the version number. If user
programs that use the extended ZRDOS functions are written this
function should first be used to determine if the program is
being run under ZRDOS.

3.3. Function 50: Set Warm Boot Trap

A new function call is provided that allows the user to set
a trap on warm boot to a user specified address. The trap is set
by executing a function 50 call with the trap address in the
register pair (DE). The Warm boot jump address at location 001H
is replaced with the user supplied trap address. Warm boots
executed after the trap is set will cause a jump to the trap
address. ZRDOS error messages are suppressed allowing the user to
print his own error messages. As noted in the ZRDOS error section
above errors detected by ZRDOS return an error number and the
active drive number which the user can then use to determine how
best to handle the error.

WARNING: Caution should be exercised when using this function as
the results will be unpredictable if a program that has
set the trap terminates without first resetting the
trap. See FUNCTION 52 below.

3.4. Function 52: Reset Warm Boot Trap

This new function call will reset the warm boot trap set by
function call 50. The trap is reset by executing a function call
52. The Real bios warm boot address is restored to location
0001H. If function call 50 is used in a user program a function
call 52 should be executed before control is returned to the
operating system.

Page 6

ZRDOS Version 1.0 Programmer's Guide

4. ZRDOS VERSION 1.0 FUNCTION CALLS

——————— ————— — ——t— o ——— — 1 —— — o~ ——— . T " (o T — o -

FUNCTION | DESCRIPTION OF ZRDOS H
NUMBER | OPERATION PERFORMED '
0 System Reset)
1 Console Input H
2 Console Output :
3 Reader Input i
4 Punch Output i
5 List Output i
6 Direct Console I/0 '
7 Get I/0 Byte H
8 Set I/0 Byte '
9 Print String i
10 Read console Buffer '
11 Get Console Status ;
12 Return Version Number (CP/M) i
13 Reset Disk System '
14 Select Disk '
15 Open File '
16 Close File ,
17 Search For First '
18 Search For Next :
19 Delete File i
20 Read Sequential ,
21 Write Sequential :

1
1
1
]
]
]
1
]
]
)
1
1
'
]
)
]
1
1
1
1
1
1
!
1
1
1
1
1
1
1
]
1
[}
i
1
1
1
1
i
1
]
)
'
22 i Make File
'
)
i
1
]
1
1
1
1
1
1
1
1
1}
1
i
1
1
]
1
1
1
1
[}
1]
]
]
1
i
1
1
1
1
i
]
1
1
1
)

23 Rename File

24 Return Login Vector

25 Return Current Disk

26 Set DMA Address

27 Get Allocation Vector Address

28 Write Protect Disk

29 Get Read/Only Vector

30 Set File Attributes

31 Get Disk Parameter Block Address
32 Set/Get User Code

33 Read Random

34 Write Random

35 Compute File Size

36 Set Random Record :
37 Reset Drive :
40 Write Random With Zero Fill '
47 Return Current DMA Address i
48 Return Version number (ZRDOS1) H
50 Set Warm Boot trap H
52 Reset Warm Boot trap -

Table 4-1: ZRDOS Version 1.0 Function Calls

Page 7

ZRDOS Version 1.0 Programmer's Guide

4.1. FUNCTION 0: SYSTEM RESET

- o T ——— T — " - ——— ————— " S S . S - S G o - ——— — — ————— T — -~ ——

Function to terminate program and reset the system. Same
results as performing a jump to location 0000H. The disk system
is reset; that is disks marked as changed are cleared and the
directory check information is discarded.

4.2. FUNCTION 1: CONSOLE INPUT

Returned Value :

Function to get character from console device. A byte from
the device currently assigned to CON: is returned in register
(A). The byte is echoed to the terminal. If no byte is ready at
the time the call is made, the calling program is suspended until
a byte becomes available.

4.3. FUNCTION 2: CONSOLE OUTPUT

- o o — o — ——————— T —— "t — T — — " ——— " ————— —— —— " o ———— T — - —— 22 o0 G- -

X
1)
#
e
[a]
=
0
[«
<
V)]
ot
c
1]

i Register (C): O01lH
i Register (E): ASCII Character

z
¢)
=]
o

Function to output character in register (E) to the device
currently assigned to CON: and expand tabs if necessary. A
Control-S (pause) and Control-P (echo to prlnter) console input
test is also performed.

Page 8

ZRDOS Version 1.0 Programmer's Guide

4.4. FUNCTION 3: READER INPUT

Register (A): ASCII Character |

———— ———— ————— — ————— — o —— ————— o~ —————— ——— — — ———— ————— — ————— - —— —————

Function to get character from the reader device. The next
byte from the device currently assigned to RDR: is returned in

register (A). All 8 bits are returned. The calling program is
suspended until a byte is ready.

4.5. FUNCTION 4: PUNCH OUTPUT

- ——— o — —— —————— o ————— —— — o —— o ——— —— ———— — ———— — —— _————————— — {—— ——{— o —— o — o=

o
0
t
e
a]
o]
o
Q
<
V]
[
=}
o

» Register (C): 04H : None
i Register (E): ASCII Character |

Function to output a character to the punch device. The byte
in register (E) is sent to the device currently assigned to PUN:.

The program is suspended until the device is ready to accept the
byte.

Page 9

* ZRDOS Version 1.0 Programmer's Guide

4.6. FUNCTION 5: LIST OUTPUT

—————————— ——— — —— - " — ———_ —— ——— —— - - — o ——————— — - — - - W~ —————— — —_ W — —— - —— -

o)
0
‘-r
o]
=
3
1]
[oN)
<
V]
et
]
0]

————— - — ———— — T — T — — — —————— - ——— ——

Register (C): 05H i None
Register (E): ASCII Character |

— o — — — o —— o — ——— ——~ ——— _—— 1 — ———— {——— - " ——————_———— - ——— {7

Function to output a character to the list device. The byte
in register (E) is sent to the device currently assigned to LST:.

The program is suspended until the device is ready to accept the
byte.

4.7. FUNCTION 6: DIRECT CONSOLE I/O

—— o — — ——— —— —— ———— -~ —————————————_ ———— — T —— — ("~ ———— >~ — -

———— ———— —— —————————— ——— v ——

Register (C): 06H ; Register (A): ASCII Char

» Register (E): OFFH {(input) . or '
i OFEH (status) status H

ASCII Char (output)

Function to perform direct console i/o. If register (E)
contains (FF) then this is an input request. If register (E)
contains (FE) then this is a status request. Otherwise the
character in register (E) will be sent to the device currently
assigned to CON:. This request bypasses all control character
checks.

Page 10

ZRDOS Version 1.0 Programmer's Guide

4.8. FUNCTION 7: GET I/0 BYTE

——— o ———— - ————————— ————————— T ———— o {— —— ————— o~ ——— T {— T —— —t—— — -~ -

2]
0
ﬁ
=]
laf
=]
0
o)
<
"))
[
vl
1]

—— ————— —— (" ——— i ———— — — —— | — o —— 4~ — — — 1 ————— — —— o —— — ——— — i ——

Register (A): I/0 Byte Value |

Function to return the i/o byte. The current value of the
IOBYTE (memory location 0003H) is returned in register (A).

4.9. FUNCTION 8: SET I/0O BYTE.

——— —— ——— ——— o~ ——— ——— o — —— T ———— —— —t——— ——— —— o — T~ —————_—— — — o————

X
0
ot
o]
2
=]
1]
o}
<
)]
[
ot
0]

o — — ————— ———— — T — o — . 4 T o

Register (C): 08H
Register (E): I/O Byte Value

———— v — ————— — —————— ————— — — . — T~ ——— —— — ———— ——————— — T~ — —————— —— S —

Function to set the i/0 byte. The value in (E) is set as the
current IOBYTE (memory location 0003H). It changes control of the
output direction immediately.

The I/0 byte located at memory location 0003H is made up of
the four fields shown in the following table:

e o o - —— —————— ———— —— T — —— — o —— - o ——— T — ——— o —— O T — —— —

) IOBYTE: V7 6 | 5 4 | 3 2 1 0o
' : list i punch i reader i console |
i bit value | (LST:) | (PUN:) | (RDR:) | (CON:) |
i 00 i TTY ' TTY: ' TTY: ‘ TTY: '
H 01 : CRT: H PTP i PTR 1 CRT: |
H 10 : LPT: | UP1 ' UR1 : BAT: :
H 11 | UL1 ' UpP2: X UR2: i UCl: i

Page 11

ZRDOS Version 1.0 Programmer's Guide

4.10. FUNCTION 9: PRINT STRING

—— v — o ——— " ———————— —— —— S — - —— ————— ——_ — —— ————— — - T T —— - — ——— " - — - o, S — -

o)
0
g
e
la
=4
0
Q
<
)
g
1

Register (C): 09H | None
Register (DE): String address |

- —— ot —— ——— — ——— —— T - ————] — T~ {— o — —— o — " ——— — —— T ——— — Tt ————— — —_ o

Function to send the character string pointed to by (DE) to
the device currently assigned to CON:. The printing of the string
to the console device will continue until a '$' is encountered in

the string. Console input control character checks are made and
tabs are expanded.

4.11. FUNCTION 10: READ CONSOLE BUFFER

o
0
ﬁ
=}
at
3
o
Q
<
p
ot
e
o

egister (C): OAH
egister (DE): Buffer address

——— o —— ————— —— —— ——— T —— i — — o ——— — T ————— . " —— ————— —— - S — o —— ——

1
m:n}
1

1

|

|

1

I

{

1

i

l

1

1

|

i

{

!

i

!

|

|

i

i

|

|

|

I

1

1

i

{
Qi
O i
5o
w1
01
— |
®
QO
=l
D
"o
L
Qi
& |
o 1
N
n 1
1
e
> |
W
£ |
o
o
o 1
"

Function to execute a buffered read. ZRDOS notes the current
cursor position as it knows it, then reads characters from the
console device until a CR or LF is received, or until the maximum
number of characters have been received.

ZRDOS unlike standard bdos treats the rubout (del) key the

same as a backspace. Also the control-R function has been
eliminated.

The form of the read buffer is as follows:

BASE = Address in (DE)

BASE BASE + 1 BASE +2 to end of buffer
__ Y T
i Max # of chars | char cnt | characters H
__) Fr——

Fig. 4-1: Console Buffer Format

Page 12

ZRDOS Version 1.0 Programmer's Guide

4.12. FUNCTION 11: GET CONSOLE STATUS

———— ——— — — ——— ——— — o ——— T~ — - ———t— —— " —— — Y~ —— ——— — —- S T — — " —————— — —— -

Returned Value

-—— -——— o ————————— —— ——

Register (A): Console Status |

Function to interrogate the console device. The device
currently assigned to CON: is polled. If a byte is ready for
input, a nonzero value is returned in register (A), otherwise 0OH
is returned.

4.13. FUNCTION 12: RETURN VERSION NUMBER

o}
1]
(-f
c
[ai
o}
1]
[oF
<
)
—
c
1]

—————— — —————— — o — — — — —] ——————— — —— —— T ———_— ——— G T _—~ — o —— Tt o v—

Function to return the current version number. Version
number 2.2 is returned to maintain CP/M compatibility. Function
48 should be used to get the ZRDOS version number.

4.14. FUNCTION 13: RESET DISK SYSTEM

Register (A): OFFH if the ;
current default drive contains |
a file name beginning with a $ |
00H if not. :

Function to reset the disk system. All active drives are
reset to an unknown condition. Drive A is relogged in and the DMA
address ig reset to 80H. Unlike CP/M ZRDOS does not reset the
read only vector of drives that have been set to read only status
but instead resets the ZRDOS disk changed vector for any drives
that are marked as changed.

Page 13

ZRDOS Version 1.0 Programmer's Guide

4.15. FUNCTION 14: SELECT DISK

o
0
”
=}
o
3
o
Qu
<
)
3
[t

i Register (C): OEH H None
i Register (E): Selected Disk |

———— o —— — ——— " ————— —— — ——— - — = — ——— —— o — " —————— — {_—— T~ — " {_— - — —t——

Function to set the active disk number. Register (E)
contains a number in the range 0 - 15, signifying disk A - P
respectively. If the selected drive is not the current default
drive, it is made the default drive. If it has not been selected
since the last warm start or disk reset, its directory is scanned
and new allocation and check vectors are built.

4.16. FUNCTION 15: OPEN FILE

—— ———— ————— o 1 — T —— — ——— — —————

egister (C): OFH i Register (A): Directory Code
egister (DE): FCB Address ‘

- ——— o o ———————————— —————— o —— o —— —— i ———— ————— f——— - — . ————o—

ol

Function to open a specified file. The drive code, if not
zero, is used to select a drive. The directory is scanned for the
first match to the filename and extent number in the fcb pointed
to by the register pair (DE). The filename may contain wildcards.
A matching directory entry is then copied into the specified fcb
and register (A) is return with the directory sector location
code 0 - 3 (See section on Directory Codes). If no match is found
register (A) will contain OFFH.

Page 14

ZRDOS Version 1.0 Programmer's Guide

4.17. FUNCTION 16: CLOSE FILE

———— ——————————— i ————— ———— o —— T —— — —————— ————— — — o —— —— —————— — — —— —— ——

. Register (C): 10H i Register (A): Directory Code
i Register (DE): FCB Address \

Function to close a specified file. The filename and extent
number in the fcb pointed to by the register pair (DE) are
located in the directory. The file name may contain wildcards. If
they are found, the record count and data map from the specified
fcb are copied into the directory entry and the directory
location code 0 - 3 is returned in register (A). If the filename
can not be found OFFH is returned in register (A).

4.18. FUNCTION 17: SEARCH FOR FIRST

Register (C): 11H i Register (A): Directory Code
Register (DE): FCB Address |

Function to return the first occurrence of a specified file
name. The directory of the default drive is scanned for an entry
that matches the filename and extent number in the fcb pointed to
by the register pair (DE). The filename may contain wildcards. If
a match is found, the directory location code 0 - 3 is returned
in register (A). If no match is found OFFH is returned in
register (A). If the extent number contains 00H, only the firast
extent for a file can be matched. If the extent number contains a
question mark, the first entry found is returned. If the drive
number of the specified fcb contains a question mark, all
directory entries of any user code, and entries of any type
including those not in use, are compared.

Page 15

ZRDOS Version 1.0 Programmer's Guide

4.19. FUNCTION 18: SEARCH FOR NEXT

]
i Register (C): 12H i Register (A): Directory Code
i Register (DE): FCB Address) '

—— s —— — o ———— —— — ——— T — — — —— —— o —— T~ ———— -

Function to return the next occurrence of a file name. This
function performs the same as function 17 except that the search
begins with the entry following the one returned by the last
search (function 17 or 18). For this function to work correctly
it must be proceeded by a search function.

4.20. FUNCTION 19: DELETE FILE

—————— —— — T — — ————_ - - G W —— — — —— . — — T ——— T — —— ———— ————— — —— — — - — ———————

Register (C): 13H
Register (DE): FCB Address

Register (A): Directory Code

Function to delete a file by name. The drive code, if not
zero, 1is used to select a drive. The directory is scanned for all
entries that match the given filename (which may contain
wildcards). Only files in the active user area are considered.

Page. 16

ZRDOS Version 1.0 Programmer's Guide

4.21. FUNCTION 20: READ SEQUENTIAL

o o ——— ——————— —— — —————— — — — — T — — —— — ———— —— - —— — — — —— ———— — ——— — - —

, Register (C): 14H
i Register (DE): FCB Address

o)
0
t
[+
lai
o]
V)
[N
<
V)
(-
e
o

Function to execute a sequential read of the specified
record number. The drive code, if not zero, is used to select a
drive. The 128-byte record referenced to by the (cr) byte is read
and placed into the current file buffer. The (cr) byte is
incremented. If it then equals the (rc¢) byte, the entire extent
has bee read; the directory entry describing the next extent of
the file is copied into the FCB and (cr(is zeroed. If there are
no further extents the extent map in the referenced fcb is set to
zero. If the record is successfully read, register (A) is
returned containing O00H. If an end of file occurs, register (A)
is returned containing OFFH. The format of the referenced fcb is
shown below:

2,
2]
Hh
-
[
0]
o}
5
1]
Fh
[N
[
1]
(e
3
V]
>
[0
[y
0
N
2]
Q

]
»
H-
o
o]
ﬁ
B
T

- - —— — ——————————— —— — ———— ————————— — — — - - —— —— o~ " - ——

——— —————— o — —

Fig. 4-2: FCB format

4.22. FUNCTION 21: WRITE SEQUENTIAL

—— . — o —— ———— ————— — ——— —— — — S (. —— —— — —

i Register (C): 15H
i Register (DE): FCB Address

Function to write the next sequential record. The drive code
if not zero, is used to select a drive. If no block has been
allocated to the record referenced by (cr) of this extent, one is
allocated and entered in the bit map. The record in the current
file buffer is written into the position referenced by (cr). The
FCB bytes (cr) and (rc) are then incremented. If the extent is
then full, the FCB is copied into the matching directory entry
and a new entry is made for the next extent, the (cr) and (rc)
bytes are reset to zero as is the data map area of the FCB. If
the write was successful, O00H is returned in register (A)
otherwise a none zero value is returned.

Page 17

ZRDOS Version 1.0 Programmer's Guide

4.23. FUNCTION 22: MAKE FILE

———————————— ——— —— — — — — ——— ——

i Register (C): 16H i Register (A): Directory Code
. Register (DE): FCB Address)

————— ———— — o ——— > 1 ————t—— ————— — ——————— ———————— —— —_ { - T - ———————— - — - -

Function to create a file. A directory entry is created for
the filename specified by the fcb pointed to by register pair -
(DE). The newly created entry will contain a pointer to the first
extent but with no space allocated to it. Upon return register
(A) will contain the Directory Code for the new fcb if the
operation was successful or 0FFH if no more directory space is
available. A successfully created file can be treated as open.

4.24. FUNCTION 23: RENAME FILE

o o o T —————— - —" — o — Y S ———— " " ——— (S S~

egister (C): 17H \ Register (A): Directory Code
egister (DE): FCB Address)

—— o —————— — - o——— — ——— — ———— o ————————————— . 1t ——- o ——— T ——

Lol

Function to rename a file. The drive code if not zero, is
used to select a drive. The directory is scanned and all entries
for the explicit filename in bytes 01H - OBH of the fcb are
changed to that in bytes 11H - 1BH. If no such directory entry is
found, OFFH is returned in register (A) else the Directory Code
is returned in register (A). ‘

Page 18

ZRDOS Version 1.0 Programmer's Guide

4.25. FUNCTION 24: RETURN LOGIN VECTOR

—— o ——— — — ———— —— ——— —————— —— " —— "~ ———— T — — _——— — _— " " — — (— T —— S - — - —

)
0
(ns
=]
2t
=]
0
Q
<
[
[
ol
o

i Register (C): 18H Register (HL): Login Vector |

Function to return the login vector. A bit map of the drives
that are currently active is returned in the (HL). The bits of

the map stand for drives as follows:

Register (H) Register (L)
Bit numbers: 76543210 76543210
Drive ID: PONMLKJI HGFEDCBA

Fig. 4-3: Login Vector Bit Map

4.26. FUNCTION 25: RETURN CURRENT DISK

- - —— — — ———— ————— i —————— T — T ————————— —— — — — > — o — ——— — — ———— . " -~ — o~ > T s

2y
0]
g
=}
a}
R
5
£
]

o ——— —— ———— — — — ——— — —— —— ———— ——

. Register (C): 19H Register (A): Current Disk '

—————————— — O— T~ _— ———— ——— o S~~~ {———— - - - (— — ————— - —— - - — - —————t—

Function to return the current disk assignment. The disk
number of the currently logged in drive is returned in register
(A). The number returned ranges from 0 to 15 and corresponds to

drives A through P respectively.

4.27. FUNCTION 26: SET DMA ADDRESS

—— ——————— ——t— — — ——— — - —— - > o S o

i Register (C): 1AH Register (DE): DMA Address i

Function to set the dma address to the address supplied in
the register pair (DE). The Direct Memory Address used to address
a 128 byte file buffer for disk read/write transfers is set to
the address specified in .the register pair (DE). The default DMA
address used by ZRDOS is 0080H.

Page 19

ZRDOS Version 1.0 Programmer's Guide

4.28. FUNCTION 27: GET ADDR(ALLOC)

——— —— o ——— ———— - Tt — S — T~ t— — ———— — - b - _— o4 " S G U - —— V— — - —— —— o —

————— — - — —— ——— o —— - S ot — " T ——— — | —— t— " 2 —. o —— —— —— " — - " " T~ — -t — -

Register (HL): ALLOC Address !

i — ———— 1"~ 1~ — T {— _—— { S~ o ——— " W~ T~ _— — —— — —_— — t— —— — ——— " — = —— — -~ - — - —

Function to return the allocation vector. The address of the
allocation vector for the currently logged in drlve is returned
in the register pair (HL).

4.29. FUNCTION 28: WRITE PROTECT DISK

- —— ——— —— - — " S — — T T~ —— o — o — — - — — . . —— — A — —— = ——— —— " &

——— ————— — —~ o - " ——— — — = ———— —— ——— ——— - wo" >

! Register (C): 1CH

Function to write protect the current disk. The default
drive is set to read-only status. Under ZRDOS1 unlike CP/M the
protected drive will retain this status until it is reset with a
function call 37 or cold boot.

4.30. FUNCTION 29: GET READ ONLY VECTOR

)
0
[ug
=i
a]
3
1]
Q
<
'Y
[
s
1]

Function to return the read-only status vector. A bit map of
the drives that are currently marked read-only is returned in the
(HL). The bits of the map stand for drives as follows:

Register (H) Register (L)
Bit numbers: 76543210 76543210
Drive ID: PONMLKJTI HGFEDCBA

Fig. 4-4: Read Only Vector Bit Map

Page 20

ZRDOS Version 1.0 Programmer's Guide

4.31. FUNCTION 30: SET FILE ATTRIBUTES

————————— t— — —— — —— - ——— — — — o ——— —— {—{— — {——— — T~ - —— —— — - T T —t——— o — o

Register (C): 1EH
Register (DE): FCB Address

—————— — — — — ——— — ——~ —— — — T —— o —— v —

Function to set the file attributes. The attributes f1-f4
can be used by the user for any purpose. The next three are
reserved for future use. Attribute tl is the File Read Only
attribute and is used to prevent a file from being written to.
The t2 attribute is the system attribute it alerts the ZCPR3 DIR
command that this file is not to be displayed. The t3 attribute
is the file archive attribute and is used to indicate whether a
file has been updated. Attributes are set by turning on the high
order bit of the specified byte and reset by turning it off. The
f8 attribute is the Wheel Protect attribute. If this bit is set
and the ZCPR3 Wheel byte is off the file can not be written to
nor can the file's attributes be changed. If the Wheel byte is
set the file is treated as any other file.

Attribute User Defined Reserved W/P R/O SYS ARChive
H i / / /
: P] / / /7
Attribute f1 £2 £3 f4 £f5 f6 £f7 £8 t1 t2 t3
FCB Byte No. {011 2 3 4 5 6 7 819 10 11 |
ydrv. filename | extension |

Fig. 4-5: File Attribute Format.

Page 21

ZRDOS Version 1.0 Programmer's Guide

4.32. FUNCTION 31: GET ADDR(DISK PARMS)

j&]
=]
o
a1
v

o
o

:

V)

ﬂ
o

H

w

- — o ——— - — - — -~ —— -~ - — o — —— —— — - | - o——— -~ —— T S T~ — " S T T~ — -~ ————

. Register (C): 1FH

Function to return the address of the disk parameter block
for the current drive. The address of the Disk Parameter Block is

returned in the register pair (HL).
4.33. FUNCTION 32: SET/GET USER CODE

—— — ———— —— — — 1 ———————— o ——— ————— — | o ——————_—— — —— " ——— — -~ — o —————— o

Register (C): 20H + Register (A): Current Code

Register (DE): OFFH (get) or or no value
User Code (set)

———— . ———— — ——— ——— T — - - — — —— — — ——— — — T ———— S — o — " — —— — ——— ——— — ——

Function to get or set the user number. If (E) was OFFH then
this is a request to return the current user number. Else set the

user number from (E).

Page 22

ZRDOS Version 1.0 Programmer's Guide

4.34. FUNCTION 33: READ RANDOM

- — o ——— — ———— - — — — — ——— — - T ———————— — —— — - T ——— — — — — S — — - T — " — -

—— s . e . o o (o S " — 4 - - — — —— — ————— | = — - _—— — — ——————— ———— — ——— — — ——— — - ——

Register (C): 21H ! Register (A): Return Code
Register (DE): FCB Address :

Function to read a random record from a file. The 'r0', 'ri1’
and 'r2' bytes used to construct the fcb pointer to the specified
record number (see fig.4-6 on next page). Unlike a sequential
read operation, the record number is not advanced. Thus, if the
calling program does not increment the record number subsequent
random read operations will continue to read the same record.

As each random read operation automatically sets the extent
and record values into the specified fcb the file can then be

sequentially read or written, starting from the currently
accessed position.

Upon return from a random read operation register (A)
contains 00H if the operation was a success or one of the
following error codes:

01 - Reading unwritten data

03 - Cannot close current extent

04 - Seek to unwritten extent

06 - Seek past physical end of disk

Page 23

ZRDOS Version 1.0 Programmer's Guide

4.35. FUNCTION 34: WRITE RANDOM

———— ——— ——— - - ——— - —— " - —— — -~ — — | — - — - — " "~ —— -~ —— f— T — -~ ————— —— -~ — =

i Register (C): 21H
. Register (DE): FCB Address

el
1]
Q
e
n
t
o
a1
»
o
0
”
[
Bl
o]
Q
o}
Qu
-0

Function to write a random record to a file. This operation
is similar to the Read Random operation, except that data is
written to the specified record from the currently defined DMA
address. If the addressed extent or record has not yet been
allocated, an automatic allocation will be performed before the
data is written. ' '

Upon return register (A) contains O00H if the operation was
successful or an error code if not. The error codes are the same
as those returned for a Random Read operation with the addition
of the following code: '

05 - Directory Overflow
For random R/W, the fcb for the desired record number is set
per the 'r0,rl,r2' bytes. These bytes in the fcb are used as
follows: . -

fcb+35 fcb+34 fcb+33

Byte g . r2 : rl i ro0 :
Bit 4 | 76543210 :76543210:7654321°0:
H) extra | H ' H
: overflow i extent | extent ' record '
' jand 's2'! number H number H

Fig. 4-6: Use of FCB bjtes 'r0','rl" aﬁd ‘r2'.

Page 24

ZRDOS Version 1.0 Programmer's Guide

4.36. FUNCTION 35: COMPUTE FILE SIZE

Entry Parameters

(C): 23H i Random Record Field Set

5
o
a]
2
5
ot
[l
1]

ol
1]
Q
'.l.
1]
ﬂ
®
n1

- -

Function to compute the size of a random file. The directory
is scanned to find the highest numbered extent of the filename
in the fcb specified by register pair (DE). The direct address of
the specified file's last record, plus one, is set in the record
address field of the specified fcb.

4.37. FUNCTION 36: SET RANDOM RECORD

Register (C): 24H
Register (DE): FCB Address

Function to return the random record position of a given
file which has been read in sequential mode up to now. The extent
number and current record number of the fcb specified by register
pair (DE) are used to calculate the direct address of the record
returned by the last sequential read operation.

Page 25

ZRDOS Version 1.0 Programmer's Guide

4.38. FUNCTION 37: RESET DRIVE

——— — —— —— —— - o—— - - - - ——— o — — - — — — - - - — — — — — ———— —— —— -

Register (C): 25H : Register (A): OOH
Register (DE): Drive Vector ' '

o ——— —— — ——— o T — ————— T~ —— T - - S —— — -~ - — - —— — — — ———

Function to allow a program to log off any drives. On entry,
set (DE) to contain a word with bits set for those drives that
are to be logged off. The log-in vector and the write protect
vector will be updated. Drives to be reset are specified in the
register pair (DE) as follows:

Register (D) . Régister (E)
Bit numbers: 76543210 76543210
'Drive ID: PONMLKUJI HGFEDCBA
Fig. 4-7: Active Drive Vector Bit Map.

NOTE: This function differs from CP/M in that only those drives
specified in the (DE) will be unprotected and not drives
which are not currently active as is done in CP/M.

Page 26

ZRDOS Version 1.0 Programmer's Guide

4.39. FUNCTION 40: WRITE RANDOM WITH ZERO FILL

——— o — —— ———— ——— — ——————— ————— — ——————

Register (C): 28H i Register (A): Return Code
Register (DE): FCB Address H

————— — i~ ——— o — ————— - —— — . — o~ o o

o)
1)
t
=}
a
3
o
jol}
<
")
&
o

Function to write random records with zero fill. When Direct
Access Write (Function 34) is used to build a file, unwritten
records within an allocation block contain unpredictable garbage.
This request fills the unwritten records of each new block with
binary zeros.

4.40. FUNCTION 47: RETURN CURRENT DMA ADDRESS

—— - ———— —————— —— — ——— o ———— -~ ——— T —— —— " ——— " — ——— o~ -~~~ - —— {_—{———

]
M
ﬁ
-
[ai
3
1]
[oN)
<
)}
("
[+
1]

————— o o ——— - —— o —— ————— — ————— | —————————— — — —— T~ — 1 o T T ———— —t—— —

Function to return the current DMA Address.

4.41. FUNCTION 48: RETURN ZRDOS VERSION NUMBER

s o — —— ——————— . —— — —t—— i ——— — — - ———————— —— T~ —— —— — ———— T —— o ——— o —
———— - ————————————————— ——— -~

Function to return the current ZRDOS version number.

Page 27

ZRDOS Version 1.0 Programmer's Guide

4.42. FUNCTION 50: SET WARM BOOT TRAP

Entry Parameters

Register (C): 32H
Register (DE): Trap address

This function replaces the warm boot jump address at 0001H
with a trap address. Warm boots will then be diverted to the trap
address. : o

4.43. FUNCTION 52: RESET WARM BOOT TRAP

- ————————— —— {—— T — - ———]~ - -~ - ——— - — -~ - — - — — - — . — ——— - —— - —— ——— - - - -~ -

Function to reset the warm boot trap. The real warm boot
address is stored at 0001H. Warm boots will now be directed to
the real warm boot. This function will take affect only if the
warm boot trap was previously set by function 50.

Page 28

ZRDOS Version 1.0 Programmer's Guide

5. DIRECTORY CODES

Many of the ZRDOS functions return a directory code as a return
parameter. The Directory Code is actually a multiplier to be used
in determining the directory entry location in the default file
buffer. The default buffer (location 80H) contains 128 bytes (one
sector) of the directory entries read off of the specified disk.
There are four 32 byte directory entries to a sector of directory
information. The returned Directory Code points to one of these
entries. The specified entry can be found by multiplying the
Directory Code times 32 and adding this offset to the beginning
address of the default buffer (80H). Below is shown a hex ASCII
image of a typical directory sector loaded into the default
buffer:

DEFAULT BUFFER ADDRESS

/
/ HEX IMAGE ASCII IMAGE
/ : !

/ ! !
SN ' \ \
0080 00444454 20202020 20434F4D 00000026 .DDT COM...&
0090 07000000 00000000 00000000 00000000 «eeeeennennoeans
00A0 00454449 54202020 20434F4D 0000004C .EDIT COM...L
00BO 0AOBO0OOO 00000000 00000000 00000000 +.eeeeeveesoeens
00CO0 00474F54 4F202020 20434F4D 00000006 .GOTO COM....
00D0 91000000 00000000 00000000 00000000 +.eeveeeoeononns
00E0 0048454C 4C4F2020 20202020 00000009 .HELLO cees
00F0 3D000000 00000000 00000000 00000000 =ueeeeeeusoeoenns

Fig. 5-1: Example Directory Sector.

The Directory code for the directory entry EDIT.COM is 1. So
multiplying the directory code by 32 gives us 32 decimal. 32
decimal is 20 hex. Adding 20 hex to 80 hex gives us A0 hex.

Page 29

ZRDOS Version 1.0 Programmer's Guide

A.

A

Allocation Vector, 20
Archive, 4 :
Automatic logon, 3

B

BAT:, 11

<

CON:, 8, 10, 11, 12, 13
CP/M BDOS Errors, 5
CRT:, 11 -
Close File, 15
Compute File Size, 25
Console Input, 8
Console Output, 8
Control-C

“c, 5
Control-P

“P, 8
Control-R

“R, 4, 12
Control-S

~sS, 8
Current Disk, 19

Page 30

INDEX

ZRDOS Version 1.0 Programmer's Guide

D

pDMA, 13

DMA Address, 19, 27

DPB Address, 22

Delete File, 16

Direct Console I/0, 10
Directory Code, 15, 16, 17, 18, 21, 29
Disk Change, 3

Disk Changed Error, 3, 5
Disk R/0O Error, 5

Drive Select Error, 5
Drive Vector, 26

E

Echo to printer

“P, 8
Error messages, 5, 6
Error numbers, 5

Page 31

ZRDOS Version 1.0 Programmer's Guide

Page 32

GOl O

F
FCB, 14, 15, 1
File Archiving,
File R/O Error,
File W/P Error,
Function 0:, 8-
Function 1:, 8
Function 2:, 8

. Function 3:, 9
Function 4:, 9
Function 5:, 10
Function 6:, 10
Function 7:, 11
Function 8:, 11
Function 9:, 12
Function 10:, 4,
Function 11:, 13
Function 12:, 6,
Function 13:, 3,
Function 14:, 14
Function 15:, 14
Function 16:, 15
Function 17:, 15
Function 18:, 16
Function 19:, 16
Function 20:, 17
Function 21:, 17
Function 23:, 18
Function 24:, 19
Function 25:, 19
Function 26:, 19
Function 27:, 20
Function 28:,- 3,
Function 29:, 20
Function 30:, 4,
Function 31:, 22

" Function 32:, 22
Function 33:, 23
Function 34:, 24
Function 35:, 25
Function 36:, 25
Function 37:, 3,
Function 40:, 27
Function 47:, 27
Function 48:, 6,
Function 50:, 6,
Function 52:,

6,

I’

17,

12

13
13

20

21

26

13,
28
28

27

18,

21,

24,

25’

27

ZRDOS Version 1.0 Programmer's Guide

Q

Get ALLOC Address, 20

Get Address (Disk Params), 22
Get Console Status, 13

Get DMA, 27

Get I/0 Byte, 11

Get Read Only Vector, 20

I

IOBYTE, 11

L

LPT:, 11

LST:, 10, 11

List Output, 10

Login Vector, 19

N

Named Directories, 2
Non-retryable errors, 5
o

Open File, 14

P

PTP:, 11
PTR:, 11
PUN:, 9, 11
Pause

~s, 8
Print String, 12
Punch Output, §$

Page 33

ZRDOS Version 1.0 Programmer's Guide

R

RDR:, 9, 11

Read Console Buffer, 4, 12
Read Error, 5

Read Only Disk Status, 3

Read Random, 23

Read Sequential, 17

Reader Input, 9

Redirectable 1/0, 2

Rename File, 18

Reset Disk System, 3, 13
Reset Drive, 3, 26

Reset Warm Boot Trap, 6, 28
Return Code, 23, 24, 27
Return Current DMA Address, 27
Return Current Disk, 19 :
Return Login Vector, 19

Return Version Number, 6, 13
Return ZRDOS Version Number, 6, 27
Rubout (DEL), 4, 12

S

Search for First, 15

Search for Next, 16

‘Select Disk, 14

Set DMA Address, 19

Set File Attributes, 4, 21
Set I/0 Byte, 11

Set Random Record, 25

Set Warm Boot Trap, 5, 6, 28
Set/Get User Code, 22

System Reset, 8

T
TTY:, 11
]

ucl:, 11
uLl:, 11
UoPl:, 11
op2:, 11
UR1l:, 11
UR2:, 11

User Code, 22

Page 34

ZRDOS Versgion 1.0 Programmer's Guide

Warm Boot Trap, 5, 28
Warm boot, 5, 6

Warm boot trap, 6

Wheel Protection, 4

Wheel Protection Error, ¢
Wheel byte, 1

Wildcards, 14, 15, 16
Write Protect Disk, 3, 20
Write Random, 24

Write Random with zero fill, 27
Write Sequential, 17

Z

ZCPR3, 1, 2, 4
ZRDOS Errors, 5

Page 35

ZDM/ZDMZ/ZDMH -~ Z~System Tools
Zz80/HD64180 DEBUGGER and MONITOR

USER'S GUIDE
by

Robert Doolittle

ZDM/ZDMZ/ZDMH is Copyright 1985 RD SOFTWARE. No part of this
document may be reproduced in any way or by any means without
prior written permission of publisher. Address requests to
Echelon, Inc., 101 First Street, Los Altos, CA 94022.

Section

TABLE OF CONTENTS

Page

Author's NOte ® 0 5 0 0 8000000000000 0000000000000 ii

I. INTRODU(’.'.‘ION u."..;.cn-.-oo-n.....oo.-....;-.. 1

ITI. ZDM COMMANDS ..ccccecccvcocccccnssvssscacrvcccce
The D (Display) Command ..cceeecesscsccoss
DI (Disable Interrupt) Command
EI (Enable Interrupt) Command .e.eceees

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The

REHZOQ™

QI (Query Input) Command .c.cesveoeees
Q0 (Query Output) Command .seeeceecses

Gro<ggxacHuno

(F1ll) Command .ecseecesccccsscconss
{(Go) Command .ececeeeccveossccscssaca
(Hex Math) Command «.vececececcsnces
(Input) Command «eieeeeoecsocesscssan
(List) Command ..ccocececsccscccccocsas
{Move) Command eceseececccsccacssocsss

(Read) Command ..c.ccceeeesesccscssss
(Set) Command ceasecssesecananns
{(Trace) Command «.seeeesceccsssssssnse
{Untrace) Command ..ceescecccscsacss
(Examine) Command .cccesecececccoccccs
(Alternate Register) Command ..ceo..
(Block Search) Command «..ccececeoses
(Verify) Command eeeeceesscccsccsses
(Print) Command seceeccecsscccccsancas
(Jump) Command «ceeseessocscccssssss 9

QOO NNNOTONTTOOUIUe R, WWWWW

IIT. INSTALLATION PROCEDURES ..ccccccevecccsccscesss 11

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

PATCHINGNOTE ® ® & 5 OO OO0 00600 O SESe SO e e 13
ZDM MNEMONICS ..cccccceccccccccsccseaces 15
HITACHI H])64180 MNEM)NICS ® @ @ o9 e 000 00 o0 17

ZDM/ZDMZ/ZDMH COMMAND SUMMARY ...ccc.... 19

-G

Author's Note

These programs have been thoroughly tested
and are believed to be correct. If you find
something not to your liking let us know. We
welcome your comments, criticisms or quest-
ions. Please call or write if you experience
any problens.

Robert Doolittle

Echelon Z-Team Member
Telephone 213/454-8270

1290 Monument Street

Pacific Palisades, CA 90272

-iji-

ZDM User's Guide

I. INTRODUCTION

ZDM, ZDMZ and ZDMH are Z80 and HD64180 machine language debuggers
and monitors designed to run under Z-System (and CP/M) operating
system environment. They recognize and debug 8080, ZzZ80 or
HD64180 code although they only run on 280 and HD64180 machines.
The command types and command structure are nearly identical to
those of the DDT module provided by Digital Research as part of
their CP/M operating system. The major difference is that
Z80/HD64180 code can be debugged and ten new commands with
variations have been added. ZDM/ZDMZ/ZDMH supports all the DDT
commands except the in-line assembly command A. Also, only one
breakpoint is implemented.

ZDMZ/ZDMH support Zilog Z80 mnemonics whenever instruction
mnemonics are displayed. Additionally, ZDMH supports the
enhanced Hitachi instruction set of the HD64180. ZDM uses
extended Intel 8080 mnemonics similar to TDL (Xitan) which
retains all standard 8080 mnemonics. Please refer to the
Appendices for a definition of the mnemonics used by ZDM. Refer
also to Section III Installation Procedures before attempting to
run ZDbM, ZDMZ or ZDMH.

Throughout the remainder of this manual all references to
ZDM apply equally to ZDMZ/ZDMH except where otherwise explicitly
noted.

ZDM is invoked by typing one of the following three forms at
the console: .

ZDM
'ZDM filename
ZDM filename.filetype

where "filename" is the name of the file to be loaded. ZDM will
then sign-on and relocate itself to overlay the CCP and reside
directly below ZRDOS (or BDOS). The jump to ZRDOS at location 5
is altered to address the base location of ZDM which, in turn,
contains a jump to ZRDOS or BDOS. Note that ZDM provides an
additional page of available transient memory compared to DDT for
a given size Z or CP/M system. Like DDT, transient programs
loaded for debugging can overwrite the disassembler module. 1In
this case the L command is disabled and the instruction field for
the ¥ and T commands is replaced by the corresponding hexadecimal
bytes of the instruction.

ZDM has an additional feature to prevent overlaying the ZDM
nucleus itself. If this is about to happen, ZDM aborts the load
and print an "OUT OF MEMORY" message. It then returns to command
level so that those portions which were loaded may be examined.

— o — — o — —

*CP/M is registered trademark of Digital Research. Z-System is
trademark of Echelon.

Page 1

ZDM User's Guide

The second and third forms of the console command line
result in the named file being loaded after ZDM is entered.

After the sign-on message and program loading, if specified
in the command line, ZDM will respond with the prompt character
"-" and wait for input commands. Each command consists of either
one or two characters, as defined in Section II, which determines
the command type. These characters may also be followed by
additional parameters. No delimiter should be used between the
command type characters and the first parameter except as
described for the G command. Subsequent parameters are delimited
by a comma or a single space. 1In all cases, if the command
expects a final parameter and this parameter is omitted, ZDM will
assume it is zero. :

All command lines are terminated by a carriage return. All
keyboard input to ZDM and output from ZDM is in hexadecimal. ZDM
will accept either upper or lower case letters. A single
character (?) is printed if an error occurs. To exit ZDM and
return to ZCPR3 or CP/M command level either a Control-C or a GO
(jump to loation 0) may be executed.

Page 2

ZDM User's Guide

II. ZDM COMMANDS
Details of each command are given in this Section.

1. The D (Display) Command. The D command permits the
operator to view the contents of memory in hexadecimal and ASCII
formats. The forms are:

D
Ds
Ds,f

In the first case, memory is displayed from the current
display address (initially 100H) and continues for the number of
lines specified at initialization. Subsequent display addresses
are initialized to the value of the program counter following an
X, T, U, or G command.

The second form of the D command is similar to the first
except that the display address is first set to address s. The
third form displays from address s through f. 1In all cases a
subsequent issue of the first form will start with the display
address following the last address displayed, resulting in a
continuing display. Long typeouts can be aborted with the rubout
key.

2. The DI (Disable Interrupt) Command. This command takes
the single form:

DI

The default condition, whenever the target program is entered via
the G, T, or U command, is that interrupts are enabled. (Inter-
rupts are always disabled when returning to ZDM). The DI command
overrides this default condition. The DI command will remain in
effect until a subsequent EI is issued.

3. The EI (Enable Interrupt) Command. This command res-
tores the default interrupt condition. See the DI command des-
cription. It takes the single form:

EI

4., The F (Fill) Command. The F command takes the form:
Fs,f,c
where s is the starting address, £ is the final address, and c is

a hexadecimal byte constant. If ¢ is omitted then it is assumed
to be zero. This command fills the block of memory from s to £

Page 3

ZDM User's Guide

inclusive with the constant c¢. If f is less than s an error
message (?) will occur.

5. The G (Go) Commands. Program execution is started using
the G command with one optional breakpoint address. The G
conmand takes four possible forms:

G
Gs
Gs,b
G,b

The first form starts execution of the target program at the
current value of the program counter and in the current machine
state with no breakpoints set. The only way for ZDM to regain
control is through a RST 7 execution. The second form is similar
to the first except that the program counter is first set to s
before execution begins. Third form is the same as the second
except that a breakpoint is set at address b. Program execution
is stopped and control is returned to ZDM. The instruction at
address b is not executed when the breakpoint is encountered.
The fourth form starts execution from the current program counter
and machine state and sets breakpoint at address b.

Upon entering a breakpoint, ZDM types *d where d is the stop
address. The machine state can be examined at this point using
the X or &X command.

6. The H (Hex Math) Command. The H command takes the form:
Ha,b

where a and b are hexadecimal constants from 1 to 4 digits. The
sum a+b and the difference a-b are displayed in hexadecimal in
the form:

a+b a-b

7. The I (Input) Command. The I command allows the
operator to insert a file name into the Z-System default file
control block at 5CH. The default FCB can be used by the program
under test as if it had been passed by the Console Command
Processor. This command must also be used prior to the R command
when reading additional HEX or COM files. The forms of the I
command are: - '

Ifilename
Ifilename.filetype

If the filetype is anything except HEX then ZDM will assume

it is a COM file and the R command will read it into memory
starting at 100H. (See the R command for further details).

Page 4

ZDM User's Guide

8. The L (List) Command. The L command is used to list
assembly language mnemonics. The three forms of the command are:

L
Ls
Ls,f

The first form lists the number of lines specified in the
initialization and starting at the current address of the program
counter. The second form lists the same number of lines but
starts at the address s. The third form starts at the address s
and continues for f lines. All three forms can be continued with
a subsequent L command similar to the D command. Also, like the
D command, the starting address if not specified is always
initialized to the program counter following an X, T, U or G
command. Long typeouts can be aborted with the rubout key.

9. The M (Move) Command. The M command will move a block
of memory from one location to another. The form of the M
command is:

Ms,f,d

where s is the start address of the move, f is the final address
and d is the destination address. If f is less than s, an error
(?) will occur.

10. The QI (Query Input) Command. The QI command allows
the operator to read an input port and display the value at the
port address. The form of this command is:

QIa
where a is a one byte port address in hexadecimal. The value is

printed immediately following execution of this command. Note
that if a is omitted, it is assumed to be zero.

11. The QO {Query Output) Command. The QO command allows
the operator to output a specified byte to a specified port
address. The form of this command is:

QOa,b

where a is the port address and b is the byte to be output. 1If
either a or b is omitted, it is assumed to be zero.

Page 5

ZDM User's Guide

12. The R (Read) Command. The R command is used in con-
junction with the I command to read COM and HEX files from disk
into memory. There are two forms of this command:

R
Rb

where b is an optional offset address which is added to each
. program or data address as it is loaded. If b is omitted then it
is assumed to be zero. Note that if the file name in the FCB
from a previous I command is not a HEX type then ZDM assumes it
is COM and will load it at 100H or 100H+b if the parameter b is
included. If the file cannot be opened or an error occurs in
reading, ZDM responds with the error indicator (?). Otherwise at
completion of the load a message is issued:

NEXT PC
nnnn pppp

where nnnn is the next address following the program just loaded
and pppp is the first address of the program just loaded. For
HEX files pppp is taken from the last record of the HEX file and
will be zero unless an END statement followed by the start
address has been included in the source program prior to
assembly.

13. The S (Set) Command. The S command allows memory
locations to be examined and optionally altered. The form of the
command is:

Ss

where s is the hexadecimal starting address for examination or
alteration of memory. 2ZDM will print the address followed by the
byte stored at that address. A carriage return will advance to
the next address, displaying the next address and the next byte.
If a new byte value is typed followed by a carriage return, this
new value will be stored at that address and ZDM will advance
automatically to the next address. To terminate the command a
period is typed rather than a byte value. The command will also
terminate if an invalid hexadecimal value is entered.

Page 6

ZDM User's Guide

14. The T (Trace) Command. The T command permits single
step instruction tracing of program execution for 1 to 65535
steps. The forms of this command are:

T
Tn

where n is an optional step number. The first form assumes an
implied n equal one. The CPU state is displayed and the next
program step is executed. The termination address is displayed
as *hhhh where hhhh is the next address to be executed. The
format for the CPU state display is otherwise identical to that
of the X command.

Program tracing is discontinued at the interface to Z-System
and resumes again after return from Z-System to the target
program. Long tracing with the Tn command can be stopped with
the rubout key. ZDM will continue tracing from this break if
another T or Tn command is issued.

15. The U (Untrace) Command. The U command is identical to
the T command except that the CPU state is not displayed. The
forms of the command are:

U
Un

All conditions of the T command apply to the U command. The last
CPU state is displayed following the execution of a U or Un
command.

16. The X (Examine) Command. (See also the & Command).
The X command permits selective display and alteration of the
current CPU state at any time. The forms are:

X
Xr

where r 1s any of the Z80 registers or flags.

C Carry Flag (0/1)

Z Zero Flag (0/1)

M Minus Flag (0/1)

E Even Parity Flag (0/1)

I Interdigit Carry (0/1)

A Accumulator (0-FF)

B BC register pair (0-FFFF)
D DE register pair (0-FFFF)
H HL register pair (0-FFFF)
S Stack Pointer (O-FFFF)
P Program Counter (0-FFFF)
X X-index register (O-FFFF)
Y Y-index register (0O-FFFF)

Page 7

ZDM User's Guide

In the first case the CPU register state is displayed in the
format

CEfZfMfEfIf A=bb B=dddd D=dddd H=dddd P=dddd S=dddd
X=dddd Y=dddd instruction

where f is a 0 or 1 flag value, bb is a byte value and dddd is a
double byte corresponding to a register pair. The instruction
field contains the disassembled instruction at the location
addressed by the program counter.

The second form of the X command permits display and
optional alteration of register or flag values specified by r. If
a carriage return is typed following an Xr command then the

command is terminated with no changes taking place. Otherwise
ZDM accepts input for register or flag changes. If a hexadecimal
number in the proper range is typed then that flag or register is
correspondingly altered.

17. The & (Alternate Register) Command. The & command
takes one of three forms: '

&
&X
&Xr

The first form unconditionally exchanges all CPU registers and
flags to the Z80 alternate register set.

The second and third forms of this command are identical to
the X and Xr commands except that the operations take place on
the alternate register or flag set. Upon termination of these
latter two forms the CPU state prior to command execution is
restored. The display associated with the &X command replaces the
X and Y registers by the vector interrupt register value V. This
register value may also be altered by an &XV command followed by
the byte value to be stored in the vector interrupt register.
The A, B, D and H registers and register pairs are labeled by
prime (') symbols whenever the alternate set is being displayed
or altered. Note that primes are not used for the flag reglster
except during alteratlon.,

18. The B (Block Search) Command. The B command permits
the user to search memory for all occurrences of a byte string.
Strings are limited to ten bytes. A second form of this command
is initiated by BT rather than B. This second form will accept
an ASCII or text string. The form of this command is:

Bs,f or BTs,f

where s is the start address and f is the final address of the
memory block to be searched. Following the carriage return you
will be prompted to enter the string. The B form expects the
string as a series of HEX bytes. The delimiter may be a space or
a comma. The BT form expects a single ASCII string. The input

Page 8

ZDM User's Guide

string is terminated by a carriage return following the last
entry. The start address of each occurrence of the string from s
to £ will be displayed.

19. The V (Verify) Command. The V command will verify if
two blocks of memory are identical. The form of this command is:

Vs,f,b

where s is the start address and f is the final address of one
block and b is the start address of the other block. If the

match fails, the address is printed out followed by the byte at
the corresponding address in the second block.

20. The P (Print) Command. The P command is a toggle which
does not expect any arguments. The effect is to send all output
to the LIST device as well as to the console. It is turned off
by a subsequent P command. Whenever the P toggle is on, a 'P'
will be displayed as part of the X or T display.

21. The J (Jump) Command. The J command is a toggle which
does not expect any arguments. It only affects subsequent T or U
comnmands. If J has been executed then the T command will display
only conditional and unconditional CALLS, JUMPS, RETURNS,
RESTARTS, PCHL (IX or IY) and relative JUMPS. The Tn form of the
T command is usually used where n represents the actual number of
instructions to be traced. As usual this command can be aborted
with the rubout key. Whenever the J toggle is on, a 'J' will be
displayed as part of the X or T display.

Page 9

ZDM User's Guide

(THIS PAGE INTENTIONALLY BLANK)

Page 10

ZDM User's Guide

ITII. INSTALLATION PROCEDURES

The user should first make a copy of ZDM and keep the
original master as a back-up. Do not write on the master. Using
the copy type "ZDM". ZDM will respond with the question "What is
your terminal width (in hex)". A carriage return in response to
this question will default to a width of 80(50H). Otherwise, type
in the character width of your terminal in hex followed by a
carriage return. Next, the number of lines desired for the D and
L command displays are requested. A carriage return at this
point defaults to 21(15H) lines. (This is the recommended size
for 24 line terminals.) Otherwise, type in the number of lines
desired, in hex, followed by a carriage return.

Finally, ZDM will ask the question "Is this correct? (Y or
N)". Do not respond with "Y" at this time. Following an "N"
response ZDM will sign-on, print the prompt character "-", and
await a command. You should now test the D and L commands to
determine if these displays are sized properly for your terminal.
If not, return to Z-System command level by typing GO0 or Control-
C and repeat the above procedure. When you are satisfied that
the displays are properly sized, then respond with "Y" when asked
"Is this correct? (Y or N)". After a "Y" response ZDM will
automatically create your custom installed file. If you are
using ZDM then the installed file name will be Z2DI.COM. If you
are using ZDMZ or ZDMH then the installed file name is either
ZDIZ.COM or ZDIH.COM. You may rename these to whatever names you
desire.

ZDM is now properly configured for your terminal.
Subsequent invocations of ZDM will proceed directly to the sign-
on message. If, at some later time, you wish to change these
display parameters you will have to start once again with a copy
of the master uninstalled file.

Page 11

ZDM User's Guide

(THIS PAGE INTENTIONALLY BLANK) '

Page 12

ZDM User's Guide

APPENDIX A

Some users have experienced difficulties with ZDM/ZDMZ when
used with interrupt driven systems. (ZDMH has interrupts enabled
as default condition. You can still disable interrupts with the
DI command when entering the target program but they will be
enabled again when ZDMH regains control.) The following patches
are recommended when running ZDM/ZDMZ on such systems.

Using ZDMH or other debugger, load an image of ZDM/ZDMZ into
memory starting at 100h and change the following bytes (addresses
apply to version 3.2):

ZDM ZDMZ

ADDRESS ADDRESS FROM TO
0c61H OC31H OF3H 00H
0C7AH 0C4AH 0F3H 00H
ODC1H OD91H OF3H 00H

Return to Z-System or CP/M without disturbing the memory image
and save 22 (or 16h) pages with the SAVE command.

" Another frequent user request has been to change the ZDM
RESTART address, curently RST 7 at 38h, to a different RESTART.
The following patches will accomodate this change. (RST 0 cannot
be used under Z operating system or under CP/M.)

ZDM ZDMZ ZDMH

ADDRESS ADDRESS ADDRESS FROM TO
0OD9DH 0D6DH ODEDH 38H new RESTART address
ODASH 0D75H ODF5H 39H new RESTART address + 1
1007H OFD7H 1057H OFFH new RESTART opcode

Page 13

- ZDM User's Guide

(THIS PAGE INTENTIONALLY BLANK) -

Page 14

ZDM User's Guide

APPENDIX B

The disassembler module of ZDM uses a mnemonic set which is
similar to the Technical Design Laboratories (TDL) mnemonics.
All Intel 8080 mnemonics are preserved. The 280 peculiar
instructions differ from the Zilog mnemonics as shown in the
accompanying table. The ZDM mnemonic set is nearly identical to
that released by Digital Research as Z80.LIB to be used with
their CP/M Macro Assembler "MAC". The following conventions are
used in the table.

r - any redgister or memory
rr - any register pair or stack pointer
nn - 8 bit immediate data (0 to 255)
d - 8 bit signed displacement (-128 to 127)
nnnn - 16 bit address or immediate data (0 to 65535)
b - bit number (0 to 7, 7 is most significant)
addr - 16 bit address within PC+127 through PC-128

In cases involving a displacement, d, this parameter is always
last one in operand field.

ZDM Z1LOG ZDM ZILOG

LDX r,d LD r, (IX+d) LDIR LDIR

DY r,d LD r,(IY+d) LDD LDD

STX r,d LD (IX+d),r LDDR LDDR

STY r,d LD (IY+d),r CCI1 CPI

MVIX nn,d LD (IX+d),nn CCIR CPIR

MVIY nn,d LD (IY+d),nn CCD CPD

LDAI LD A,I CCDR CPDR

LDAR LD A,R ADDX d ADD (IX+d)
STAI LD I,A ADDY d ADD (IY+d)
STAR LD R,A ADCX d ADC (IX+d)
LXIX nnnn LD IX,nnnn ADCY d ADC (IY+d)
LXIY nnnn LD IY,nnnn SUBX d SUB (IX+d)
LBCD nnnn LD BC, (nnnn) SUBY d SUB (Iy+d)
LDED nnnn LD DE, (nnnn) SBBX d SBC (IX+d)
LSPD nnnn LD SP. (nnnn) SBBY d SBC (IY+d)
LIXD nnnn LD IX, (nnnn) ANAX d AND (IX+d)
LIYD nnnn LD IY,(nnnn) ANAY d AND (IY+d)
SBCD nnnn LD (nnnn),BC XRAX d XOR (IX+d)
SDED nnnn LD (nnnn),DE XRAY d XOR (IY+d)
SSPD nnnn LD {(nnnn),SP ORAX 4 OR (IX+d)
SIXD nnnn LD (nnnn),IX ORAY d OR (IY+d)
SIYD nnnn LD (nnnn),IY CMPX d CP (IX+d)
SPIX LD SP,IX CMPY d CP (IY+d)
SPIY LD SP,TIY INRX d INC (IX+d)
PUSHIX PUSH IX INRY d INC (IY+d)
PUSHIY PUSH 1Y DCRX d DEC (IX+d)
POPIX POP IX DCRY d DEC (IY+d)
POPIY POP 1Y NEG NEG

Page 15

ZDM User's Guide

ZDM ZILOG
EXAF EX AF,AF'
EXX EXX
XTIX EX (SP),IX
XTIY "EX (SspP),IY
LDI LDI
DADX rr ADD IX,rr
DADY rr ADD IY,rr
INXIX INC IX
INXTIY INC IY
DCXIX DEC IX
DCXIY DEC IY
BIT b,r BIT b,r
SET b,r SET b,r
RES b,r RES b,r
BITX b,d BIT b, (IX+d)
BITY b,d BIT b, (IY+d)
SETX b,d SET b, (IX+d)
SETY b,d SET b, (1Y+d)
- RESX b,d RES b, (IX+d)
RESY b,d RES b, (IY+d)
JR addr JR addr
JRC addr JR C,addr
JRNC addr JR NC,addr
JRZ addr JR Z,addr
JRNZ addr . JR NZ,addr
DJNZ addr DJINZ,addr
PCIX JP (IX)
PCIY JP (IY)
RETI " RETI
RETN RETN
INP r IN r,(C)
OUTP r our (¢),r
INI INI
INIR INIR
X KX X X k Xk X kx Xk Xk *x %X

k X % X Xk X X Xk *x % Xx %

Page 16

% ¥ %

» % %

* ¥

ZDM

M0

- IML

* ¥ *

* % *

M2

DADC rr
DSBC rr

OUTI

OUTIR

IND
INDR
ouTD

OUTDR

RLCR
RLCX
RLCY
RALR
RALX
RALY
RRCR
RRCX
RRCY
RARR
RARX
RARY
SLAR
SLAX
SLAY
SRAR
SRAX
SRAY
SRLR
SRLX
SRLY
RLD

RRD

* % %
* % %

L R A R AU QWU QR

R % %

% % %

* % %

* % *

¥ % %

Z11.0G

'IM O

M1
M 2
ADC HL,rr
SBC HL,rr
OUTI
OTIR
IND
INDR

~ OUTD

OTDR
RLC r

‘RLC (IX+d)

* % *

RLC (IY+d)
RL r ‘
RL (IX+d)
RL (IY+d)
RRC r

RRC (IX+d)

" RRC (IY+d)

RR r

RR (IX+d)
RR (IY+d)
SIA r

SLA (IX+d)
SLA (IY+d)
SRA r

SRA (IX+d)
SRA (IY+d)
SRL r

SRL (IX+d)
SRL (1Y+d)
RLD '
RRD

* % %
% % *

ZDM User's Guide

APPENDIX C
HITACHI HD64180 MNEMONICS

Object Source

Code Statement Operation

ED3805 INO A, (nn) Load register with input from
ED00O5 INO B, (nn) port (nn).

ED0805 INO C, (nn) -

ED1005 INO D, (nn)

ED1805 INO E, (nn)

ED2005 INO H,(nn)

ED2805 INO L, (nn)

sk % %k Kk %k Kk J ok Kk K ok %k ok ok k dk dk k kK Yk Kk k sk dk Kk ok Kk %k Kk ek ok Kk %k sk Kk %k ke sk ok dk koK %k ok % ok ok ki ok ok ok ke ok %k ok %k ok ok ok
EDAC MLT BC Unsigned multiplication of
ED5C MLT DE each half of the specified
ED6C MLT HL register pair with the 16-bit
ED7C MLT SP result going to the specified

register pair.
%k %k %k % dk sk ok ok Kk k kK kK ke Kk Kk sk %k dk ok k Kk dk sk sk sk ok dk Kk Kk Kk k Kk k dk Kk Kk sk %k sk Kk % ok k k Kk Kk Kk %k Kk Kk Kk Kk Kk Kk Kk Kk k k k Kk

EDSB OTDM Load output port (C) with
location (HL), decrement HL,
B, and C.

%k %k kK %k sk ok ke kK K Kk ok ok ok ok %k ok sk %k sk ok ok ok ok ok ok ok ok 5k ok % ok sk ok ke ok ok ok ke ok ok ke ok sk ok ok ok ok Sk ok ke ok ok ok ok ok ke k ok ok K

ED9B OTDMR Load output port (C) with

location (HL), decrement HL,
B, and C. Repeat until B=0.
**
ED83 OTIM Load output port (C) with
location (HL), increment HL
and C. Decrement B.
K Kk Kk %k kK Kk ke kK dk ok ok ks ok ke ke ok %k % ok ok ok ok sk ok ke ok ok ke ok ok ke kb Kk ok ok ok kK ke ke %k ke ok kK ok %k ke k% dk %k ok %k ok Kk
ED93 OTIMR Load output port (C) with
location (HL), increment HL
and C. Decrement B. Repeat

until B=0.
ek % d ok kK %k ek K ek ok Kk sk ok %k ok %k ok %k ok %k ok ok 3k dk ok ke ok Sk sk ok ok ok ke ok ok ok kv sk ok k ok Kk sk vk %k %k ok ok dk ok ok Xk %k %k K %k Kk %k
ED3905 OUTO0 (nn),A Load output port (nn) from
ED0105 ouT0 (nn),B register.
ED0905 ouT0 (nn),C
ED1105 ouT0 (nn),D
ED1905 OouT0 (nn),E
ED2105 ouT0 (nn),H
ED2905 ouT0 (nn),L v
%k Kk Kk e K ok ke k kK Kk ok K Kk Kk %k sk ok ok sk ok ok %k sk ok Kk ok Kk ok ok ks ok ok sk ok ke ok ok sk ok sk ok ke ok ke k ok ok ok %k ok ok ok ok ok ok b ok ok ke ok ok
ED76 SLP Enter sleep mode.
s e sk ek kK ok ok ok ke ko sk ok %k ke ok ok ok ke ok sk 3k ok sk sk ok ok ok %k kKt ok sk ok ok ok ke sk ok ok ok sk sk ok ok sk ok ke ok ok ok sk ok ok ok ok ok ok ke ok
ED3C TST A Non-destructive AND with
EDO4 TST B accumulator and specified
EDOC TST C operand.
ED14 TST D
ED1C TST E
ED24 TST H
ED2C TST L
ED6405 TST nn
ED34 TST {HL)
s % 3k ok Kk Kk Kk ok kK sk vk ke kK %k sk sk ok ke ok dk sk ok ok sk ok ok ok ok ok ok okt sk ok vk sk ok ke vk ok ok gk ok ok ok ok ke ok ki ok ok ke ki ok ok ok ok ok ok k&
ED7405 TSTIO nn Non-destructive AND of nn and

the contents of port (C).

Page 17

ZDM User's Guide

(THIS PAGE INTENTIONALLY BLANK)

Page 18

Function
Display

Disable Interrupt
Enable Interrupt

Fill

Go

Hex Math
Input

List

Move

Query Input

Query Output
Read

Set
Trace

Untrace

Examine

Alternate Register
Block Search
Verify

Print

Legend:

ZDM User's Guide

" APPENDIX D

Form
Dis,fl

DI
EI

Fs,f,c
Gls,bl
Ha,b
Ifileﬁame
Lis,f]

Ms,f,d

QIla

Q0a,b
Rib]l

Ss
Tinl

Ulnl
Xlrl
&[X1[r]
BlTls,f
Vvs,f,b

P
J

ZDM/ZDMZ/ZDMH COMMAND SUMMARY

Definition

display screen of memory in hex
and ASCII

disable interrupts, normal default
enable interrupts, default if

‘entering from G, T, and U

fill range of memory with declared
byte value ‘ '

execute program with optional
breakpoint

obtain sum and difference of two
hex numbers

set up file control block to
receive file name

list to screen assembly

language mnemonics

move data from one area of memory
to another

display input byte from indicated
port a ' ‘
output byte b to indicated port a
read in file set up with I command,
optional offset

examine and optionally alter memory
single step program execution, up
to 65535 steps

similar to T, but CPU state

not displayed

examine CPU register values

examine Z80 alternate register values

find ASCII or hex string in
declared memory range

verify if two blocks of memory are
identical

send all screen output also to printer

display only branch statements:
calls, jumps, returns, etc.

items in [1's are optional; s=start address; f=final

address; c=hex byte value; azhex value or port address; b=hex
value or offset, breakpoint or block start address; d=destination

address;

n=step number;

for bc pair, s for sp, etc.

r=register letter,

a for accumulator, b

Page 19

RELOCATING MACRO ASSEMBLER
AND LINKER
for
Z80 AND HDG64180
by

Patrick O'Connell

Zas, Zlink, Zlib, Zcon, Zref are Copyright 1984/85 by Mitek. No
part of this document may be reproduced in any way or by any
means without prior written permission of the publisher. Address
~requests to Echelon, Inc., 101 First Street, 'Los Altos, CA
94022. : Rev. 6/25/85

Copyright 1984/85 Mitek
All Rights Reserved

WARNING

THIS SOFTWARE AND MANUAL ARE BOTH PROTECTED BY U.S. COPYRIGHT LAW
(TITLE 17 UNITED STATES CODE). UNAUTHORIZED REPRODUCTION AND/OR
SALES MAY RESULT IN IMPRISONMENT OF UP TO ONE YEAR AND FINES OF
UP TO $10,000 (17 USC 506). COPYRIGHT INFRINGERS MAY ALSO BE
SUBJECT TO CIVIL LIABILITY.

LIMITED WARRANTY

THIS PROGRAM AND INSTRUCTION MANUAL ARE SOLD "AS IS," WITHOUT
WARRANTY AS TO THEIR PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR
ANY PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE RESULTS AND
PERFORMANCE OF THIS PROGRAM IS ASSUMED BY YOU.

HOWEVER, TO THE ORIGINAL PURCHASER ONLY, ECHELON WARRANTS THE
MAGNETC DISKETTE ON WHICH THE PROGRAM IS RECORDED TO BE FREE FROM
DEFECTS IN MATERIALS AND FAULTY WORKMANSHIP UNDER NORMAL USE FOR
A PERIOD OF THIRTY DAYS FROM THE DATE OF SHIPMENT. IF DURING
THIS THIRTY-DAY PERIOD THE DISKETTE SHOULD BECOME DEFECTIVE, IT
MAY BE RETURNED TO ECHELON FOR A REPLACEMENT WITHOUT CHARGE.

YOUR SOLE AND EXCLUSIVE REMEDY IN THE EVENT OF A DEFECT IS
EXPRESSLY LIMITED TO REPLACEMENT OF THE DISKETTE AS PROVIDED
ABOVE. IF FAILURE OF A DISKETTE HAS RESULTED FROM ACCIDENT OR
ABUSE ECHELON SHALL HAVE NO RESPONSIBILITY TO REPLACE THE
DISKETTE UNDER THE TERMS OF THIS LIMITED WARRANTY.

ANY IMPLIED WARRANTIES RELATING TO THE DISKETTE, INCLUDING ANY
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE, ARE LIMITED TO A PERIOD OF THIRTY DAYS FROM DATE OF
SHIPMENT. ECHELON SHALL NOT BE LIABLE FOR INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OF THIS PRODUCT.
SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDEN-
TIAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATIONS MIGHT NCT
APPLY TO YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND
YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY FROM STATE TO STATE.

Trademarks: Zas, Zlink, 2Z1lib, Zcon, 2Zref, Mitek; ZDM, RD
Software; DSD, Soft Solutions; Z-System, Echelon, Inc.; 2Z80,
Zilog, Inc.; HD64180, Hitachi; CP/M, DDT, SID, 2ZSID, Digital
Research, Inc.

TABLE OF CONTENTS

cmpter IM'RODU(:'.'I()NQOoo-ooooo.ooo.o..oo.o
1 Overview '

2 Distribution Files

3 Installation
4

Software Updates

ZAS INVOCATION:.cccsccccvccccsscece
.1 ZAS Operation
o2 ZAS Options
.3 Assembly Statistics

2

2

2

2
cmpter3 Pmml‘.o.oo.o-o-oo..ooooo
3.1 Label Field

3.2 Operation Field
3.3 Operand Field

3.4 Comment Field
4
4
4
4
4

EXPRESSIONS:ccsccscscsccsccccccose
1 Numeric Constants
2 String Constants
3 Character Constants
4 Labels
4.4.1 Label Characteristics
4.4.2 Relocation Bases
5 Relocation Counter Reference
.6 Registers
o7 Operators
.8 Precedence of Operators
.9 Parentheses Versus Brackets
.10 Expression Restrictions

PSEUDO-OPS.ccceccsscccccscccccccss
.1 "General Pseudo-ops _

.2 Listing Control Pseudo-ops

.3 Conditional Assembly Pseudo-ops
5.3.1 IF Pseudo-ops Evaluation
5.3.2 Conditional Assembly Forms
.4 Linkage Pseudo-ops

.5 Relocation Base Pseudo-ops

.6 Macro Pseudo-ops

.7 Special Function Pseudo-ops
Chapter MACRO FACILITY:.ccocoecccccccccccce
.1 Repeat Macros

.2 Stored Macros

.3 Exiting Macros:

.4 Local Symbols

) Macro Invocation

.6 Parameter Evaluation

Y RSP Tay e

= wWwww

O OOOONNNN (< RS NS NS NS,

Chapter

CHAPTER

CHAPTER

Appendix A:

Appendix B:

Appendix C:

Appendix D:

TABLE OF CONTENTS (continued)

ZAS ERROR MESSAGES.ccccccccecccscs
Non-Fatal Errors

Fatal Errors

7.2.1 General Fatal Error Messages
7.2.2 Macro Fatal Error Messages

CROSS-REFERENCE GENERATION..cosse
Overview

ZREF Operation

Reserved Symbols

CODE CONVERTER.:ccccccccccccccces
Code Converter Operation
Convertible TDL Pseudo-ops

Error Messages

LINKER:cccecocoscossccoscccnccsasnse
Overview

ZLINK Operation

ZLINK Options :

Define Next Free Memory Location
ZLINK Error Messages

LIBRARY MANAGER::cccccccccsccccss
Overview

ZLIB Operation

ZLIB Options

ZLIB Messages

ZLIB Error Messages

Z80 Mnemonic Machine Instruction Codes

Software Update Form

Pseudo-op Summary

Hitachi HD64180 Mode

29
29
30
30
30

31
31
31
31

33
33
33
34

35
35
35
35
36
37

39
39
39
39
39
40

CHAPTER 1
INTRODUCTION

1.1 OVERVIEW

ZAS (Z80 and HD64180 Relocating Macro Assembler) reads assembly
language statements from a disk file and produces either an Intel
compatible HEX file or a Microsoft compatible REL file. These
files can then be loaded using Echelon supplied MLOAD, or CP/M
LOAD, command or any Microsoft object compatible linker. A
symbol table file (SYM) is optionally produced that can be used
with Echelon DSD or Digital Research SID and ZSID debuggers.

The minimum Z or CP/M system configuration in which to use ZAS is
48k-bytes of RAM with one disk drive.

As soon as you receive ZAS, make backup copies! Then go through
the installation process using a copy. '

1.2 DISTRIBUTION FILES

You will find the followihg files on your distribution disk:

E;;g Function

ZAS.COM - Assembler

ZLINK.COM Linker

ZLIB.COM Library Manager

ZCON.COM 8080 to Z80 Code Converter
ZREF .COM Cross-reference Generator
TEST.Z80 Test Assembly File
INSTZAS.COM Installation Program

1.3 INSTALLATION.
The installation program was designed to set assembler output op-

tions. Type in INSTZAS to invoke the installation program. The
options described on the next page will appear on the screen.

Page 1

CHAPTER 1: INTRODUCTION
INSTZAS<cr>

ZAS installation options:

1. Listing to terminal -~ off

2. Listing to disk file - off

3. Listing to printer - off

4. Generate object file - on

5. Generate syﬁbol file - off

6. Object file type - rel

7. 1IF trueness based on - least significant bit

99. Changes complete

Enter option number to change:
The preset values for different options is indicated to right of
option. To change (toggle) an option value (i.e., on to off, rel
to hex, or least significant bit to all sixteen bits), simply
enter option number (1 to 7) followed by carriage return <CR>.
When desired option changes have been made, type in 99 to end
installation program and have ZAS.COM automatically updated.
1.4 SOFTWARE UPDATES
You can assist in refining ZAS by recommending enhancements and
reporting any software problems on a copy of the Software Update
Form, a sample of which is in Appendix B. Software updates will

be provided at regular intervals for a nominal fee. You will be
notified by Echelon when software updates are available.

Page 2

CHAPTER 2
ZAS TINVOCATION

2.1 ZAS OPERATION
ZAS is invoked by typing:
ZAS filename.filetype

where filename is the name of the source file to be assembled.
If no filetype is specified, then Z80 is assumed. Typing “C will
cancel ZAS operation. '

2.2 ZAS OPTIONS

A variety of options are available to provide control over the
execution parameters of ZAS. They are used once at the end of a
command line and spaces are not allowed between options:

ZAS filename {Sl}options

There are two types of options: non-disk reference options and
disk reference options. Using the non-disk reference options
reverses the settings supplied by the Install Program and in-
cludes the C, H, and L options.

C: CRT Option. Setting the C option will page the output of
ZAS, at 23 lines per page. Pressing any key allows you to
continue to scroll through the output page by page. However, it
should be noted that a “C will abort the assembly.

H: Hex Option. When this option is set it will generate Intel
compatible hex files instead of Microsoft compatible REL files.
Note: When using HEX files, you must have an ORG statement of
100H or higher to prevent an inverted address error from MLOAD or
LOAD.COM. ’

L: Listing to Printer Option. Setting the L option sends a
formatted assembly listing to Z or CP/M LST: device.

The disk reference options require two characters. The first
character is the P, O, or S option characters. The second charac-
ter indicates the cutput disk drive for the specified option.
The second character must be A-P or Z, where Z (for zero or null)
suppresses the output altogether.

O: Object File Generation (filename.REL or filename.HEX). The O
option specifies the disk for object file output. Depending on
_the H option, the object file will be a Microsoft compatible REL
file or an Intel compatible HEX file.

P: - Listing to a PRN File (filename.PRN). The P option will send
a formatted assembly listing to the specified disk.

S: Symbol File Generation (filename.SYM). The S option speci-
fies output disk for Echelon or DRI compatible SYM file.

Page 3

CHAPTER 2: ZAS INVOCATION

2.3 ASSEMBLY STATISTICS

At the completion of an assembly, ZAS provides several statistics
on the program assembled. The output is as follows:

Assembly statistics:

nnnn lines

nnnn labels

nnnn macros read
nnnn macro expansions
nnnn errors

nnnn free bytes

where nnnn is a decimal number.

Page 4

CHAPTER 3
PROGRAM FORMAT

Acceptable program input consists of a sequence of statements in
the form: ‘

label operation operand comment

where each field is separated by one or more spaces and/or tabs.
All fields are optional and may begin in any column except for
the label field which must begin in column one. The statement is
terminated by a carriage return and a line feed is allowed but
not necessary. You may also insert blank lines into the program.

The statement may be either upper or lower-case except for macro
parameters. For macro parameters, the actual and formal parameters
must be in the same case for substitution to take place.

3.1 LABEL FIELD
Labels take the form:
label) or label:

and are optional except for the SET, EQU, and MACRO assembler
directives. The label consists of alphanumeric characters, a ?,
an @, or a $ and the first character must not be numeric. If the
label exceeds 15 characters then the label is truncated to the
right. Labels can be either upper-case or lower-case. The ":"
following a label is optional. Examples of labels include the
following:

al23 ?al23 @al23
aLL: ?ALL: update_file
All? INDEX UPDATESFILE

3.2 OPERATION FIELD

The operation field contains one of the following three: a mne-
monic machine instruction code, a pseudo operation code which
directs the assembly process, or a macrc. The Z80 mnemonic
machine instruction codes are listed in Appendix A and Hitachi
HD64180 instruction codes are listed in Appendix D. The
assembler pseudo-op codes are discussed in Chapter 5, with a
summary of the pseudo-ops listed Appendix C. And the macro
instructions are discussed in Chapter 6.

3.3 OPERAND FIELD

The operand field may contain numeric constants, character con-
stants, ASCII strings, relocation counter references, labels,
register references, operators, or expressions containing any
combination of the previously mentioned items. Expressions are
further described in Chapter 4.

Page 5

CHAPTER 3: PROGRAM FORMAT

3.4 COMMENT FIELD
A comment field is always preéeded by a semicolon (;). Comments

are ignored by the assembler but are useful for programmer docu-
mentation, and later, debugglng. :

Page 6

CHAPTER 4
EXPRESSIONS

Before the pseudo operations and macros can be described, it is
necessary to discuss expressions because of their complexity.
Expressions consist of simple operands combined into properly
formed sub-expressions by operators. Blanks and tabs are ignored
between operators and operands of the expression. Each expres-
sion produces a 16-bit value during the assembly. If only 8 bits
are needed, the least significant half of the 16-bit value is
used.

4.1 NUMERIC CONSTANTS

A numeric constant is a 16-bit value in one of several number
bases. The base, called the radix of the constant, is denoted by
a trailing radix indicator. Any numeric constant which does not
terminate with a radix indicator uses the default radix which has
been initially set to decimal. The radix indicators are:

B binary constant base 2
0 octal constant base 8
Q octal constant base 8
D decimal constant base 10
H hexadecimal constant base 16

A constant is a sequence of digits, followed by an optional radix
indicator, where the digits are appropriate for the radix, i.e.,
binary constants must be composed of 0 and 1 digits etc. For
hexadecimal constants, the leading digit must be a decimal digit
in order to avoid confusing the hexadecimal constant with an
identifier (a leading 0 will work). A numeric constant must
produce a binary number which can be contained within a 16-bit
value.

4.2 ASCII STRINGS

String constants represent sequences of ASCIT characters, and are
represented by enclosing the characters within apostrophe symbols
(). All strings must be fully contained within the current
physical line. The apostrophe character itself can be included
within a string by representing it as a double apostrophe (''),
which becomes a single apostrophe when read by the assembler.

4.3 CHARACTER CONSTANTS

Like strings, character constants are composed of 0, 1, or 2
ASCII characters, delimited by an apostrophe (') or quotation (")
symbol. One difference between strings and character constants
is strings are used only with DB, DC, DEFB, and all macro pseudo-

Page 7

CHAPTER 4: EXPRESSIONS

ops. In all other cases, a character constant is assumed.
Another difference is that the value of a character constant is
calculated and the result is stored with the low byte in the
first address and the high byte in the second address. For
example, in the character constant:

'DW 'AB'

the value of A is stored in the second memory location and B is
stored in the first memory location. In the string:

DB 'AB'

the value of A is stored in the first memory location and B is
stored in the second memory location.

4.4 LABELS

A label is given a value determined by the type of statement it
precedes. If the label precedes a macro definition, the label is
given a text value, which is the body of the macro definition.
If the label precedes an EQU or SET pseudo operation, then the
label is given the value of the operand field. If a label
precedes any other type of statement, it is given the value of
the current relocation counter.

The value of a label is not allowed to change unless the label
precedes a SET pseudo-op. In which case, there is no limit to
the number of times the label's value may change.

4.4.1 LABEL CHARACTERISTICS

Labels fall into one of three categories: public, external, or
local. Public labels are labels defined in the current program
module and can be referenced in other program modules External
labels are labels which have been defined as public in some other
program module and are being referenced in the module declaring
them external. 1If a label has not been declared external or
public then it is local and cannot be referenced by any other
program module.

- 4.4.2 RELOCATION BASES

The symbolic names for independently located memory areas are
called relocation bases. These relocation bases may represent
ROM, shared COMMON areas, special memory areas such as video
refresh, memory mapped I/0, etc. Within each sub-program, each of
these memory areas is referenced by a unique name. The actual
allocation and mapping of the name to physical addresses is
deferred to the link edit and load process. All label references
within the assembled program are relative to one of these reloca-
tion bases. The four relocatlon bases and their typical uses are
summarized as follows:

Page 8

CHAPTER 4: EXPRESSIONS

Absolute: Absolute assembles non-relocatable code. A programmer
selects Absolute mode when a block of program code is to be
loaded each time into specific addresses, regardless of what else
is located at the same time.

Data Relative: Data Relative assembles code for a section of a
program that may change and therefore must be loaded into RAM.
This applies especially to program data areas. Symbols in Data
Relative are relocatable.

Code Relative: Code (program) Relative assembles code for
sections of programs that will not be. changed and therefore can
be loaded into ROM/PROM. Symbols in Code Relative are
relocatable.

COMMON: COMMON assembles code that is loaded into a defined
common data area. This allows program modules to share a block
of memory and common values.

To change the relocation base, use one of the following pseudo-
ops in a statement line:

ASEG Absolute

DSEG Data Relative

CSEG Code Relative--default
COMMON COMMON

4.5 RELOCATION COUNTER REFERENCE

The current relocation counter may be referenced as a 16-bit
value by use of the symbol $. The value represented by $ is
always the relocation counter value at the start of the current
statement. For example,

JP S

will endlessly jump to itself.

4.6 REGISTERS

When ZAS encounters a one or two character symbol, it will look
up the symbol in the corresponding 8 or 16-bit register table
(see the next page). If the symbol is found, then the operand is
assumed to be a register reference. Because these single and
double character symbols are reserved words, do not use them as
labels.

Page 9

CHAPTER 4: EXPRESSIONS

8-Bit Registers 16-Bit Registers
(Reserved Words) (Reserved Words)

A BC

B DE

C HL

D IX

E IY

H SP

L AF

M

I

R

4.7 OPERATORS

The operands prev1ously described can be combined in normal
algebraic expression using any combination of properly formed
operands, operators, and parenthesized expressions. All arlthme—
tic operators (+,-,*,/,MOD,SHL, and SHR) produce a 16-bit un-
signed arithmetic result. The relational operators (EQ, LT, LE,
GT, GE, and NE) produce a true (OFFFFH) or false (0000H) 16-bit
result. And the logical operators (NOT, AND, OR, and XOR) operate
bit-by-bit on their operand(s) producing a 16-bit result of 16
individual bit operations. The HIGH and LOW operators always
produce a 16-bit result with a high order byte which is zero.
The NUL operator produces a true or false result.

The operators for the operand field are given below. In general,
the letters x and y represent operands which are treated as 16-
bit unsigned quantities in the range 0-65535. - '

Arithmetic
Operators Result
x+y arithmetic sum of x and y
X-y arithmetic difference between x and y
X * vy unsigned multiplication of x by y
x / y unsigned division of x by y
X MOD y remainder after division of x by y
X SHL y shift left by y, with zero right fill
x SHR y shift right by y, with zero left fill
Relational
Operators Result
x EQ y, x=y true if x equals y, false otherw1se
X LT y, xy = true if x is less than y, false otherwise
x LE y, x<{=y true if x is less or equal to y, else false
x GT y, x>y - true if x is greater than y, false otherwise
x GE y, x>=y true if x is greater or equal to y, else false
x NE y, x>y true if x is not equal to y, false otherwise

Page 10

CHAPTER 4: EXPRESSIONS

Logical
Operators Result
NOT y bit-by-bit logical inverse of y
X AND y bitwise logical AND of x and y
x OR vy, xly bitwise logical OR of x and y
X XOR vy logical exclusive OR of x and y
Special
Operators Result
HIGH y identical to y SHR 8 (high order byte of y)
LOW vy identical to y AND OFFH (low order byte of y)
NUL line true if the remainder of the current line is null

or contains only space and/or tab characters. Be-
cause the NUL operator uses the rest of the
current source line as an operand, it must be the
last operator on a line.

4.8 PRECEDENCE OF OPERATORS

Without parentheses or brackets operators have an order of appli-
cation as if they were parenthesized or bracketed. As described
below, the operators listed first have highest precedence, and
the operators listed last have lowest precedence. Operators
listed on the same line have equal priority and are applied from
left to right in the expression

highest precedence * / MOD SHL SHR
+ -
EQ LT LE GT GE NE
NOT
AND
OR XOR
HIGH LOW
lowest precedence NUL

The expressions shown below are equivalent:

X +y *z = x + [y * z]
XORYy *aSHR b = x OR [y * [a SHR bll
Balanced parenthesized or bracketed sub-expressions can always be
used to override the order of precedence described above. The
last expression could be rewritten to force application of opera-
tors in a different order:

[x OR y] * [a SHR bl

Page 11

CHAPTER 4: EXPRESSIONS

4.9 PARENTHESES VERSUS BRACKETS

Parentheses and brackets are not interchangeable. They serve
different purposes. Parentheses are used in expressions that
have indirect addresging modes. For example,

LD HL, (5+1)

will load the register pair HL from the contents of memory
location six (5+1) and seven.

Brackets are used for all other expressions where the addressing
mode is not indirect. Using the above example with brackets,

LD HL, [5+1]

will load the register pair HL with the immediate value six.

4.10 EXPRESSION RESTRICTIONS

The operand field of a statement may consist of a complex arith-
metic expression with the following restrictions:

(1) An external may only have an absolute quantify added or
subtracted from it. The result will be external.

(2) A relocatable value may have an absolute or another relocat-
able value (in the same relocation base) added to or sub-
tracted from it. The result will relocatable.

(3) If two relocatable vélues are subtracted then the result will
be absolute. .

(4) In all other arithmetic and logical operatlons, both operands
must be absolute. The result will be absolute.

An expression .error will be generated if an expression does not
follow the above restrictions.

Page 12

CHAPTER 5
PSEUDO-OPS

5.1 GENERAL PSEUDO-OPS

DB: The Define Byte pseudo-op is used to enter one or more one-
byte data values into the program. The statement form is:

DB n {,n...}

where n is any expression with a valid 8-bit value. More than one
byte can be defined at a time by separating it from the preceding
value with a comma. All of the bytes defined in a single DB
statement are assigned consecutive memory locations. The Zilog
mnemonic DEFB can be used instead of DB.

DC: The Define Character pseudo-op stores the characters in a
string in successive memory locations beginning with the current
relocation counter. The most significant bit of the last charac-
ter will be set to one. The form for the DC pseudo-op is:

DC 'string'

DS: The Define Space pseudo-op reserves an area of memory. The
form is:
DS expression {,expression}

where the value of the first expression gives the number of bytes
to be reserved. The Zilog mnemonic DEFS can be used instead of
DS.

To initialize the reserved space, set the optional second expres-
sion to the value desired. If the second expression is omitted,
the reserved space is left as is (uninitialized). The reserved
block of memory is not automatically initialized to zeros. To
initialize to zeros give the second expression the value 0.

All names used in the first expression must be previously defined
on pass 1. Otherwise, a U error (undefined symbol) is generated
during pass 1, and a P error (phase error) will probably be
generated during pass 2 because the DS pseudo-op generated no
code on pass 1.

DW: The Define Word directive is used to enter a 16-bit value
into the program. This directive takes the form:

DW nn {,nn...}

Where nn is any expression with a valid 16-bit value. Multiple
16-bit values may be defined with one DW statement by separating
the values with a comma. All 16-bit values defined by the. DW
pseudo-op are stored in standard Z80 word format with the least
significant byte first. The Zilog mnemonic DEFW can be used
instead of DW.

Page 13

CHAPTER 5: PSEUDO-OPS

END: The END statement is optional. All statements following the
END are ignored. The form is:

END {expression}

The optional expression is the program starting address. If an
Intel compatible hex file is being generated, then this starting
address will be included in the last record of the hex file. If
a REL file is being generated, then ZLINK will place a JUMP
instruction at 100H to the specified starting address.

EQU: The EQUate statement is used to name synonyms for particu-
lar numeric values. The form is:

label EQU expression

The label must be present and cannot label any other statement.
The assembler evaluates the expression and assigns this value to
the label. The label is usually a name which describes the value
of the expression. Also, this name can be used throughout the
program as a parameter or operand.

.IN: The INsert (or MACLIB) pseudo-op allows the programmer to
use the same section of assembler source code in a number of
different assemblies. The format is:

.IN {d:}filename or MACLIB {d:}filename'

where d is the optional Z or CP/M disk specifier (defaulting to
the logged disk) and filename is the file on disk with the
assumed filetype LIB. .

This directive causes the specified file to be copied into the
assembly in its entirety, and to be treated exactly as if it were
part of the original source file. All inserted source lines are
flagged with a "+" on the listing. Only one level of insert is
allowed, they cannot be nested.

.LIST: This pseudo-op resumes a listing which has been suppressed'
by the .XLIST directive. See the next page.

PAGE: The pége pseudo%op gives control over the output fdrmatting
which is sent to the PRN file and/or directly to Z or CP/M LST:
device. The form for the PAGE statement is:

PAGE {expression}

If the PAGE statement is used without the optional expression
then a form feed is sent to the output file and/or Z or CP/M LST:
device. The form feed is sent before the statement with PAGE has
been printed. Consequently, the PAGE command is often issued
directly ahead of major sections of an assembly language program,
such as a group of subroutines, to cause the next statement to
appear at the top of the following printer page.

The sécond form of the PAGE command is used to specify the outpﬁt

Page 14

CHAPTER 5: PSEUDO-OPS

page size. In this case, the expression which follows the PAGE
pseudo-op determines the number of output lines to be printed on
each page. If the expression equates to a value between 40 and
90, then the page size is set to the value of the expression.
When this value is reached for each page, a form feed is issued
to cause a page eject. The assembler initially assumes a 56 line
page size and produces a page eject at the beginning of the

listing. Usually, no more than one PAGE statement with the
expression option is included in a particular program.

.RADIX: The statement form is:
«RADIX n

where n is 2, 8, 10, or 16. This pseudo-op sets the radix to n
for all numbers which follow, unless another .RADIX statement is
encountered, or the radix is overridden by a suffix radix modi-
fier. 1Initially, the default radix is set to 10 (decimal).

SET: The SET statement is used to name synonyms for particular
numeric values. The form is:

label SET expression

The label must be present and cannot label any other statement,
except for another SET. The assembler evaluates the expression
and assigns this value to the label. The label is usually a name
which describes the value of the expression. Also, this name can
be used throughout the program as a parameter or operand. The
Zilog mnemonic DEFL can be used instead of SET.

.TITLE and .SBTTL: The title and subtitle pseudo-ops take the
form:

.TITLE 'string-constant 1'
.SBTTL 'string-constant 2°'

where the string-constants are an ASCII string, enclosed in
apostrophes, which do not exceed 64 characters. If a .TITLE
and/or .SBTTL is encountered during the assembly, then each page
of the listing is prefixed with the title and/or subtitle string-
constant. The title line will be preceded by a standard ZAS
header as follows:

MITEK Relocating Macro Assembler vers n.n page nnn
string-constant 1
- string-constant 2

where n.n is the 2ZAS version number, nnn is the current page
number and string-constant 1 and/or 2 is the string given in the
corresponding pseudo-op. ZAS initially assumes that these
pseudo-ops are not in effect. When specified, the title line,
along with the subtitle line are not included in the line count
for the page. Usually, no more than one .TITLE statement 1is
included in a particular program.

Page 15

CHAPTER 5: PSEUDO-OPS

5.2 LISTING CONTROL PSEUDO-OPS

.LALL: List ALL macro lines, including lines that do not
generate code. .

.LIST: This pseudo-op resumes a listing which has been
suppressed by the .XLIST directive.

.LFCOND: The List False CONDitionals pseudo-op assures the list-
ing of conditional expressions that evaluate false.

.PRINT: The print on console pseudo-op takes the form:
«PRINT pass,text

This pseudo-op will output text to the console during the
specified pass. The pass can be one of three values:

0 - print text during both passes
1 - print text during pass one
2 - print text during pass two

«SALL: Suppress ALL of the macro listing, including all text and
object code produced by macros.

.SFCOND. The Suppress False CONDltlonals pseudo—op suppresses
the portion of the llstlng that contains conditional expressions
that evaluate false.

.XALL: The EXclude ALL non-code macro lines pseudo-op will list
source and object code produced by a macro, but source lines
which do not generate code are not listed.

XLIST: This pseudo-op suppresses all list output until a .LIST
pseudo-op is encountered.

5.3 CONDITIONAL ASSEMBLY PSEUDO-OPS

The next two sections describe the ZAS conditional assembly
-facility.

5.3.1 IF PSEUDO-OP EVALUATION

ZAS has two different methods for evaluating the trueness of an
IF expression. One method bases the trueness on the least signi-
ficant bit of the IF expression, which is compatible with Digital
Research's ASM, MAC, and RMAC assemblers. The second method
bases the trueness of the expression on the full 16-bit expres-
sion value. This method is compatible with the Microsoft M80
assembler. ' ' ')

Page 16

CHAPTER 5: PSEUDO-OPS

The default evaluation is set by the installation program
(section 1.3). The evaluation method may also be explicitly set
by the following two pseudo-ops:

.IF1 - will cause IF expressions to evaluate to true if
the least significant bit of the IF expression
evaluates to 1.

OR

.IF16 - will cause IF expressions to evaluate to true when
the IF expression evaluates to non-zero.

5.3.2 CONDITIONAL ASSEMBLY FORMS

The IF, ELSE, and ENDIF pseudo-ops define a range of assembly
language statements which are to be included or excluded during
the assembly process. The IF and ENDIF statements alone can be
used to bound a group of statements to be conditionally
assembled thus:

IF expression

statement #1

statement #2

statement #n
ENDIF

Upon encountering the IF statement, the assembler evaluates the
expression following the IF (all operands in the expression must
be defined ahead of the IF statement). Depending on the condi-
tional assembly option in effect, if the expression evaluates to
a non-zero value or the least significant bit evaluates toa 1,
then statement #1 through statement #n are assembled. If the
expression evaluates to a zero, then the statements are listed
but not assembled.

The ELSE statement can be used as an alternative to an IF
statement, and must occur between the IF and ENDIF statements.
The form is:

IF expression

statement #1

statement #2

statement #n

ELSE

statement #n+1

statement #n+2

statement #m
ENDIF

Page 17

CHAPTER 5: PSEUDO-OPS

If the expression produces a non-zero (true) value, then
statements 1 through n are assembled. However, statements n+l
through m are skipped in the assembly process. When the expres-
sion produces a zero value (false), statements 1 through n are
skipped, while statements n+1l through m are assembled. As an
example, the conditional assembly shown in Listing A could be
rewritten as shown in Listing B.

Listing A
TTY EQU 1
CRT EQU 2
DEVICE EQU TTY
TTYOUT EQU OF003H
CRTOUT EQU OF100H
’ IF - DEVICE EQ TTY
CALL TTYOUT
ENDIF)
IF DEVICE EQ CRT
CALL CRTOUT
ENDIF -
Listing B
TTY EQU 1
. CRT EQU 2
" DEVICE EQU TTY
TTYOUT EQU OF003H
CRTOUT EQU OF100H »
IF DEVICE EQ TTY
'CALL TTYOUT
ELSE . '
CALL CRTOUT
ENDIF

Properly balanced IF's, ELSE's, and ENDIF's can be completely
contained within the boundaries of outer encompassing conditional
assembly groups. The structure outlined below shows properly
nested IF, ELSE, and ENDIF statements: :

IF exp#l
group #1

IF exp#2
group#2
ELSE
group#3
ENDIF
group#4
ELSE
group#5

IF exp#3
group#6
ENDIF
group#7
ENDIF

Page 18

CHAPTER 5: PSEUDO-OPS

where group 1 through 7 are sequences of statements to be
conditionally assembled, and exp#l through exp#3 are expressions
which control the conditional assembly. If exp#l is true, then
group#l and group#4 are always assembled, and group 5,6, and 7
will be skipped. Further, if exp#l and exp#2 are both true, then
group#2 will also be included in the assembly, otherwise group#3
will be included. If exp#l produced a false value, groups 1, 2,
3, and 4 will be skipped, and group 5 and 7 will always be
assembled. If under these circumstances, exp#3 is true then
group#6 will also be included with 5 and 7, otherwise it will be
skipped in the assembly.

Conditional assembly of this sort can be nested up to eight
levels (i.e., there can be up to eight pending IFs or ELSEs with
unresolved ENDIFs at any point in the assembly), but usually
becomes unreadable after two or three levels of nesting. The
nesting level restriction also holds for pending IFs and ELSEs
during macro evaluation. Nesting level overflow will produce an
error during assembly. :

5.4 LINKAGE PSEUDO-OPS

EXTRN: The EXTeRNal pseudo-op identifies symbols which are de-
fined in some other program but are used in the current program.
The form is: '

EXTRN symbol {,symbol...}

where symbol is the symbol being declared as external. Multiple
symbols may be declared in the same statement by separating them
with commas. Also, if a symbol in an expression is suffixed with
one or two # signs, then the symbol is treated as an external.
EXT is a synonym for EXTRN.

NAME: The NAME pseudo-op takes the form:

NAME symbol

where symbol is the relocatable module name. This name is used
by the linking loader and library manager to identify the module
for selective loading or manipulation. Only the first six
characters are significant in the module name. In the absence of
the NAME pseudo-op, up to the first six characters of the program
name are used.

PUBLIC: The PUBLIC pseudo-op identifies those symbols within the
current program which are to be made accessible to other programs
as external symbols. This directive has no effect on the
assembly process for the current program, but merely records the
name and value of the identified symbols on the object file for
later use by the linking loader. A public symbol must be defined
within the current program as a label.

Page 19

CHAPTER 5: PSEUDO-OPS

.REQUEST: Request a library search. The form is:
.REQUEST filename {,filename...}

This pseudo-op sends a request to ZLINK or any Microsoft
compatible loader to search the filenames in the list for
undefined external symbols. The filename in the list should not
include filetypes or device designation. ZLINK assumes the
default extension .REL and the currently logged disk drive.

5.5 RELOCATION BASE PSEUDO-OPS

ASEG: The ébsoluté SEGment péeudo-op never has operands. ASEG
generates non-relocatable code.

ASEG sets the location counter to an absolute segment (actual
address) of memory. The ASEG will default to 0, which could
cause the module to write over part of the operating system. It
is recommended that each ASEG be followed with an ORG statement
set at 100H or higher.

COMMON: COMMON statements are non-executable, storage allocating
statements. COMMON assigns variables, arrays, and data to a
storage area called COMMON storage. This allows various program
modules to share the same storage area. The length of a COMMON
area is the number of bytes required to contain the variables,
arrays, and data declared in the COMMON block, which ends when
—another relocation base pseudo-op is encountered. '

CSEG: The Code SEGment directive never has an operand. Code
assembled in Code Relative mode can be loaded into ROM/PROM.

CSEG resets the location counter to the code relative segment of
memory. The location will be that of the last CSEG (default to
0), unless an ORG is done after the CSEG to change the location.

However the ORG statement does not set a hard-absolute address
under CSEG mode. An ORG statement under CSEG causes the assem-
bler to add the number of bytes specified by the expression
argument in the ORG statement to the last CSEG address loaded.
For example, if ORG 25 is given, 25 bytes will be added to the
current CSEG location. Then CSEG will be loaded. The clearing
effect of the ORG statement following CSEG (and DSEG) can be used
to give the module an offset. Rationale for not allowing ORG to
set an absolute address for CSEG is to keep the CSEG relocatable.

CSEG is the default mode of the assembler. Assembly begins with
a CSEG automatically executed, and the location counter in the
Code Relative mode, pointing to location 0 in the Code Relative
segment of memory. All subsequent instructions will be assembled
into the Code Relative segment of memory until ASEG, DSEG, or
COMMON is executed. CSEG is then entered to return the assembler
to Code Relative mode, at which point the location counter
returns to the next free location in the Code Relative segment.

Page 20

CHAPTER 5: PSEUDO-OPS

DSEG: The Data SEGment pseudo-op never has operands. DSEG
specifies segments of assembled relocatable code that will later
be loaded into RAM only.

DSEG sets the location counter to the Data Relative segment of
memory. The location of the data relative counter will be that
of the last DSEG (default is 0), unless an ORG is done after the
DSEG to change the location. However, the ORG statement does not
set a hard absolute address under DSEG mode. An ORG statement
under DSEG causes the assembler to add the number of bytes
specified by the expression in the ORG statement to the last DSEG
address loaded. For example, if ORG 25 is given, 25 bytes will
be added to the last DSEG address loaded. Then the DSEG will be
loaded. The clearing effect of the ORG statement following DSEG
(and CSEG) can be used to give the module an offset. Rational
for not allowing ORG to set an absolute address for DSEG is to
keep the DSEG relocatable.

ORG: The Set ORGin pseudo-op allows the value of a location
counter to be changed at any time. The form is:

ORG expression

Under the ASEG program counter mode, the relocation counter is
set to the value of the expression, and the assembler assigns
generated code starting with that value. Under CSEG, DSEG, and
COMMON relocation bases, the location counter for that base is
incremented by the value of the expression. All names used in
the expression must be known on pass 1, and the value must either
be absolute or in the same relocation base as the current
location counter.

+PHASE/ .DEPHASE: The form is:

.PHASE expression

.DEPHASE

where expression is an absolute value. .PHASE allows code to be
located in one area, but executed at a different area with a
start address specified by expression. .DPHASE is used to
indicate the end of the relocated block of code.

The relocation base within a .PHASE block is absolute, the same
as the mode of the expression in the .PHASE statement. The code,
however, is loaded in the area in effect when the .PHASE state-
ment is encountered. The code within the block is later moved to
the address specified by expression for execution.

Page 21

CHAPTER 5: PSEUDO-OPS

This example,

- - DUMMY:

ENTRY:

assembles to:

0300

0300 - CD0630

0303 C30700

0306 c9 DUMMY :
0007

0007 C30000 ENTRY:

- 5.6 MACRO PSEUDO-OPS

Provided here is only a brief desdription of the macro pseudo-
ops. For a more complete description, see the next chapter.

Pseudo-op

ENDM
. EXITM
IRP
“IRPC
LOCAL
REPT
MACRO

«PHASE 300H
CALL DUMMY
JP ENTRY
RET '
.DEPHASE

JP 0
«PHASE 300H
CALL DUMMY
JpP ENTRY
RET

-DEPHASE

JP 0

 Description

End Macro
Exit Macro

Indefinite Repeat
Indefinite Repeat Character
Local Symbol Generation

Repeat

Macro Definition

5.7 SPECIAL FUNCTION PSEUDO-OPS

.HD64: This pseudo-op enables ZAS to assemble the ten extended
instructions of the Hitachi HD64180 microprocessor,
compatible. The ten instructions and their forms are listed in

Appendix D.

Pagé 22

upward Z80 .

CHAPTER 6
MACRO FACILITY

A common characteristic of assembly language programs is that
many coding sequences are repeated over and over with only one or
two of the operands changing. Macros provide a mechanism for
generating the repeated sequences with a single statement. The
repeated sequences are written with dummy values for the changing
operands. A single statement, referring to the macro by name and
providing values for the dummy operands, can then generate the
repeated sequence.

The coding sequence begins with either the macro definition
pseudo-op or one of the repeat pseudo-ops and ends with the ENDM
pseudo-op. All of the macro pseudo-ops may be used inside a
macro sequence. The one exception is a stored macro which,
cannot be defined inside a repeat type macro. Macro nesting is
allowed up to 15 levels deep.

The macro facility includes pseudo-ops for:

macro definition:
MACRO {(macro definition)

repetitions
REPT (repeat)
IRP (indefinite repeat)
IRPC (indefinite repeat character)

terminations:
ENDM (end macro)
EXITM (exit macro)

unique symbols within macro sequences:
LOCAL

operators:
&

i

) =

0P

6.1 REPEAT (OR INLINE) MACROS

The simplest macro facilities involve the REPT, IRPC, and IRP
macro groups. All these forms cause the assembler to repetitive-
ly re-read portions of the source program under control of a
counter or list of textual substitutions. These groups are
listed in increasing order of complexity.

Page 23

REPT-ENDM GROUP: The REPT-ENDM group is written as a sequence of
assembly language statements starting with the REPT pseudo—op and
terminated by an ENDM pseudo-op. The form is:

label: REPT expression

label: ENDM

where the labels are optional, and the expression indicates the
number of times the sequence of statements between REPT and ENDM
will be repeated. The expression is evaluated as a 16-bit
unsigned number. If the expre331on contains an external symbol
or undefined operands, an error is dgenerated.

In general, if a label appears on the REPT statement, its value
is the first machine code address which follows. This REPT label
is not re-read on each repetition of the loop. The optional
label on the ENDM is re-read on each iteration and thus constant
labels (not generated through concatenation or with LOCAL pseudo-
ops) will generate phase errors if the repetltlon count 1is
greater than 1.

IRPC-ENDM GROUP: Similar to the REPT group, the IRPC-ENDM group
causes the assembler to re—read a bounded set of statements. The
form is: _

'labelz IRPC identifier,string

. label: ENDM

where the optional labels follow the same conventions as in the
REPT-ENDM group. The identifier is any valid symbol and string
‘denotes a string of characters, terminated by a delimiter (space,
tab, end-of-line, or comment).

The sequence of statements between IRPC and ENDM are repeated
once for each character in the string. Each repetition
substitutes the next character in the string for every occurrence
of identifier in the sequence. .

IRP-ENDM GROUP: The IRP is similar in function to the IRPC,
except that the controlllng identifier can take on a multiple
string value. The form is:

label: IRP identifier, string {,string...}

label: ENDM
where the optional labels follow the conventions of the REPT and

IRPC groups. The sequence of statements between IRP and ENDM is
- repeated for each string. On the first iteration, the string is

Page 24

CHAPTER 6: MACRO FACILITY

substituted for the identifier wherever the identifier occurs in
the sequence of statements. On the second iteration, the second
string becomes the value of the controlling identifier and so on
until the last string is encountered and processed.

6.2 STORED MACROS

MACRO DEFINITION: The form for the macro definition is:

macname MACRO dummy{,durmmy...}

ENDM

The sequence of statements from the MACRO statement line to the
ENDM statement line comprises the body of the macro, or the
macro's definition. The macname is any non-conflicting assembly
language label. Dummy parameter is a place holder that is re-
placed by an actual parameter in a one for one text substitution
when the MACRO sequence is used.

The prototype statements are read and stored in the assembler's
internal tables under the name given by "macname", but are not
processed until the macro is expanded.

A comment preceded by two semicolons is not saved as part of the
macro definition. But a comment preceded by only one semicolon
is preserved and will appear in the expansion.

6.3 EXITING MACROS

The EXITM pseudo-op is used inside a MACRO or Repeat block to
terminate an expansion when some condition makes the remaining
expansion unnecessary or undesirable. Usually, EXITM is used in
conjunction with a conditional pseudo-op.

The expansion is exited immediately when an EXITM is assembled.
Any remaining expansion or repetition is not generated. If the
block containing the EXITM is nested within ancther block; the
outer level continues to be expanded.

6.4 LOCAL SYMBOLS

The LOCAL pseudo-op is allowed only inside a MACRO definition.
The form for the LOCAL directive is:

LOCAL identifier {,identifier...!}
When LOCAL is executed, ZAS creates a unique symbol for each
identifier and substitutes that symbol for each occurrence of the

identifier in the expansion. These unique symbols are usually
used to define a label within a macro. This eliminates multiple-

Page 25

CHAPTER 6: MACRO FACILITY

defined labels on successive expansions of the macro. The

symbols created by ZAS range from 7?0001 to ?29999. Users should

avoid the form ??nnnn for their own symbols. A LOCAL statement

must precede all other types of statements in the macro
definition.

6;5 MACRO INVOCATION
The form for the macro invocation -is:
macname parameter{,parameter...}

Upon recognition of the macname, ZAS "pairs-off" each dummy
parameter in the MACRO definition with the actual parameter text,
i.e., the first dummy parameter is associated with the first
-actual parameter, the second dummy is associated with the second
actual, and so on until the list is completed. If more actuals
are provided than dummy parameters then the extras are ignored.
If fewer actuals are provided, then the extra dummy parameter are
associated with the empty string, i.e., a text string of zero
length. It is important to realize at this point that the value
of dummy parameter is not a numeric value, but is instead a
textual value consisting of a sequence of zero or more ASCII
characters.

6.6 PARAMETER EVALUATION

There are several options available in the construction of actual
parameters, as well as in the specification of character lists
for the IRP group. Although an actual parameter is simply a
sequence of characters placed between parameter delimiters, these
options allow overrides where delimiter characters themselves
become a part of the text. 1In dgeneral, a parameter x occurs in
the context: _ : '
label: macname «.e,X 00

where the label is optional and the macname is the name of a-
previously defined macro. The ellipses (...) represent optional
surrounding actual parameters in the invocation of macname. In
the case of an IRP group, the occurrence of a character llst X
would be

label: IRP id, «ee,X,e0.

where the label is optional, and the ellipses represent optional
surrounding character lists for substitution within the IRP group
where the controlling identifier "id" is found. In either case,
the statements could be contained within the scope of a sur-
rounding macro expansion. Therefore, dummy parameter substitu-
tion could take place for the encompassing macro while the actual
parameter is being scanned.

ZAS follows these steps in formlng an actual parameter or
_character list:

Page 26

CHAPTER 6: MACRO FACILITY

(1) Leading blanks and tabs are removed when they occur in front
of x.

{(2) The leading character of x is examined to determine the type
of scan operation which is to take place.

(3) If the leading character is a string quote, then x becomes
the text up through and including the balancing string quote,
using the normal string scanning rules: double apostrophes
within the string are reduced to a single apostrophe, and
upper case dummy parameters adjacent to the ampersand symbol
are substituted by their actual parameter values. Note that
the string quotes on either end of the string are included in
the actual parameter text.

(4) If instead the first character is the left caret (<) then the
bracket is removed, and the value of x becomes the sequence
of characters up to , but not including, the balancing right
caret (>) which does not become part of x. In this case, left
and right carets may be nested to any level within x, and
only the outer carets are removed in the evaluation. Quoted
strings within the carets are allowed, and substitution
within these strings follows the rules stated in (3) above.
Note that left and right carets within quoted strings become
a part of the string, and are not counted in the caret
nesting within x. Further, the delimiter characters comma,
blank, semicolon, and tab, become a part of x when they occur
within the caret nesting.

(5) If the leading character is a %, then the sequence of
characters which follows is taken as an expression which is
evaluated immediately as a 16-bit value. The resulting value
is converted to a decimal number and treated as an ASCII
sequence of digits, with left zero suppression (0-65535).

(6) If the leading character is none of the above (quote, left
bracket, or percent), the sequence of characters which
follow, up to the next comma, blank, tab, or semicolon,
becomes the value of x.

There is one important exception to the above rule: the single
character escape, denoted by an up-arrow, causes ZAS to read the
character immediately foilowing as a part of x without treating
the character as significant. However, the character which fol-
lows the up-arrow, must be a blank, tab, or visible ASCII charac-
ter. The up-arrow itself can be represented by two up-arrows in
succession. If the up-arrow directly precedes a dummy parameter,
then the up-arrow is removed and the dummy parameter is not
replaced by its actual parameter value. Thus, the up-arrow can
be used to prevent evaluation of dummy parameters within the
macro body. Note that the up-arrow has no special significance
within string quotes, and is simply included as a part of the
string.

Evaluation of dummy parameters in macro expansions must also be
considered, although this topic has been presented throughout the

Page 27

CHAPTER 6: MACRO FACILITY

previous sections. Generally the macro assembler evaluated dummy
parameters as follows:

(1)

(2)

If a dummy parameter is either preceded or followed by the
concatenation operator (&), then the preceding and/or
following "&" operator is removed, the actual parameter is
substituted for the dummy parameter, and the implied
delimiter is removed at the position(s) the ampersand occurs.

Dummy parameters are replaced only once at each occurrence as
the encompassing macro expands. This prevents the "infinite
substitution” which would occur if a dummy parameter eval-
uated itself.

In summary, parameter evaluation follows these rules:

- leading and trailing tabs and blanks are removed

- quoted strings are passed with their string quotes intact
- nested carets enclose arbitrary characters with delimiters
- a leading % causes immediate numeric evaluation

- an up-arrow passes a special character as a literal value
- an up-arrow prevents evaluation of a dummy parameter

- the "&" operator is removed next to a dummy parameter

- dummy parameters are replaced only once at each occurrence

' Page 28

CHAPTER 7
ZAS ERROR MESSAGES

There are two types of error messages: Non-fatal errors and fatal
errors. Non-fatal errors are indicated by a single letter code
to the left of the statement line with the error. Fatal errors
kill the assembly and give messages as to why the error may have
occurred. Statement lines with errors will not generate object
code.

7.1 NON-FATAL ERRORS

Error Code Explanation

A Argument error. One of the arguments for the op-
code is invalid.

B Balance error. An ELSE or an ENDIF pseudo-op does
not have a preceding IF statement. Or an END
macro statement has no preceding macro call and/or
macro definition.

C Character is invalid. ZAS has found an invalid
character and it is probably a control character.
The invalid character will be replaced by a "™

D Duplicate error. A label has been defined more
than once.

E Expression error. The expression is ill-formed
and cannot be computed.

I Insert error. The specified insert file cannot be
found or an insert is already in progress.

M Mode error. The statement contains an addressing
mode error.

o Opcode error. The statement contains an illegal
opcode.
P Phase errvor. label has different wvalue on

A > a
Pass 2 than it did on Pass 1.

S Syntax error. The assembly statement is 111~
formed and cannot be processed. This error may
be due to invalid characters or delimiters which
are out of place.

U Undefined symbol. A label argument has not been
defined in the program.

v Value error. The operand (argument) is out of its
allowable range.

Page 29

CHAPTER 7: ZAS ERROR MESSAGES

7.2 FATAL ERROURS

Fatal error messages have been classified into two categories:
- errors caused by macros and general errors {(or errors not caused
by macros).

7.2.1 GENERAL FATAL ERROR MESSAGES

(1) "Filename.filetype not found."
The spe01f1ed source file cannot be found on the disk.

(2) "Invalid option specification.” :
One or more of the assembler options spe01fled in the command
line is invalid.

(3) "More than eight IF levels are pending at line nnnn™
Where line nnnn is the line with the ninth IF. A maximum of
‘eight IF levels can be nested.

(4) "Unterminated IF!”
The end of file has been reached with no terminating ENDIF.

(5) "Memory full at line nnnn"
The assembler's internal tables have run out of memory.

7.2.2 MACRO FATAL ERROR MESSAGES

(1) "Unterminated macro starting at line nnnn"
Where line nnnn is the line with the error. This error is
caused by a macro definition that has no terminating END
macro statement.

(2) "Local label limit exceeded!"
_The maximum of 9,999 local symbols has been exceeded.

(3) "Macro nested past 16 levels at line nnnn"
A maximum of 16 levels of nested macros are allowed.

(4) "Local table exceeds 127 bytes at line nnnn"
The total length of all local symbols cannot exceed 127 bytes
for a particular macro definition.

(5) "Macro definition inside an inline macro at line nnnn”

This message indicates that a macro definition has been
placed inside a repeat type macro and that is not allowed.

Page 30

CHAPTER 8
CROSS-REFERENCE GENERATION

8.1 OVERVIEW

The cross-reference generator (ZREF) is used to provide a summary
of symbol usage throughout a program. ZREF reads the file speci-
fied line by line, attaches a line number prefix to each line,
and writes each prefixed line to the file filename.XRF. After
completing this operation, ZREF appends to the file filename.XRF,
a cross~-reference report that lists all the line numbers where
each symbol in the file appears. It also flags with an *, each
line number where the referenced symbol is defined.

8.2 ZREF OPERATION
ZREF is invoked by typing

ZREF filename.filetype {$S}option
where filename.filetype is the name of the file to be cross-
referenced with the assumed filetype .Z80, and option is the
letter L, if the output is to the list device instead of a file.

8.3 RESERVED SYMBOLS

The following symbols will not be part of the cross reference:

A HI NUL
AF HL NOT
AND I NZ
B IX OR
BC 1Y P

c L PE
D LE PO
DE LOW R

E LT SHL
EQ M SHR
GE MOD Sp
GT NC XOR
H NE yA

Page 31

(THIS PAGE INTENTIONALLY LEFT BLANK.)

Page 32

CHAPTER 9
CODE CONVERTER

9.1 CODE CONVERTER OPERATION

The code converter (ZCON) converts 8080 source statements, all of
the TDL machine instruction statements, and most of the common
TDL pseudo-ops to Z80 source statements (see the next section for
a listing of the convertible TDL pseudo-ops). In addition,
except for character-constants, ASCII strings, and comments,
parentheses are converted to brackets. Also, parity bit (bit 7)
is zeroed.

To invoke the code converter, type:
ZCON filename.filetype {Stu

where filename is the name of the source file to be converted.
If no filetype is specified, then ASM is assumed. When the "u"
option is specified, only upper-case conversion is done. This is
useful if you already have a 7Z80 source file in lower case. When
the conversion is completed, the output will be in a file called
filename.Z80 and one of two messages will be displayed.

Message 1:
"nnnn lines converted, with no errors detected.”
Where nnnn is the number of lines converted.

OR

Message 2:
"nnnn lines converted, with eee errors logged in filename.ERR"
Where nnnn is the number of lines converted and eee is the
number of errors detected.

9.2 CONVERTIBLE TDL PSEUDO-OPS

The code converter will convert the most common TDL pseudo-ops.
They include the following:

.ASCII « IDENT
.BLKB - INTERN
«BLKW +LIST
.BYTE «WORD
.EXTERN «XLIST

Page 33

CHAPTER 9: CODE CONVERTER

9.3 ERROR MESSAGES

If the code converter detects an error in a statement line, it
leaves the line unchanged. There are two types of error messages.

(1) "*** gyntax error at line nnn, line follows ***"
. error line

Where nnn is the statement line number, and error line is the
statement line with the syntax error. Normally, this error
should not occur because it indicates that the operand for
this particular op-code is syntactically incorrect.

(2) "*** TF/ENDIF unbalanced ***"
~This error message appears if the IFs and ENDIFs are not

paired. For every IF, there should be an ENDIF, and vice
versa.

Page 34

CHAPTER 10
LINKER

10.1 OVERVIEW

The 780 Linker (ZLINK) is used to combine Microsoft relocatable
object modules into an absolute file ready for execution under 7%
or CP/M. When completed, ZLINK lists the sorted symbol table,
any unresolved or duplicate symbols, and a load map which shows
the number of free bytes left and the size and locations of the
different segments:

LOAD MAP FOR FILENAME.COM

SEGMENT SIZE START STOP
ABSOLUTE

CODE

DATA

COMMON

FREE

ZLINK writes the sorted symbol table to a .SYM file suitable for
use with Echelon Dynamic Screen Debugger (DSD) and Digital
Research Symbolic Instruction Debuggers (SID and ZSID) as
described in the S option (see next page). ZLINK also creates a
COM file for direct execution under Z or CP/M. 1If errors are
detected, the P option (see next page) will be set automatically.

10.2 ZLINK OPERATION
ZLINK is invoked by typing
ZLINK filenamel{,filename2,...,filenameN}

where filename is the name of the object module(s) to be linked.
If no filetype is specified, then REL is assumed. If some other
filename is desired for the COM and SYM files, it may be
specified as follows:

ZLINK newfilename=filenamel {,filename2,...filenameN}
If ZLINK encounters a starting address which is caused by sup-
plying an optional program starting address to the assembler END
pseudo-op then ZLINK will place a JUMP instruction at 100H to the
program starting address.

10.3 ZLINK OPTIONS

A variety of options are available to provide control over the
execution parameters of ZLINK. Except for the / option (library

Page 35

CHAPTER 10: LINKER

search option) all of the options are link control options. They
are used once at the end of a command line:

filenamel{,filename2,...filenameN} $Cnnnn,Dnnnn,P,Rnnnn

Where nnnn is a hexadecimal number.

ZLINK options include:

C: Code Segment Origin Option. The C option is used to specify
the load address of the code segment. If it is not used, then
ZLINK will put the code segment at the address (100H). Unless
the R option indicates otherwise, the relocation value of the
code segment will be set to its load address. The syntax for the
C option is Cnnnn, where nnnn if the desired code origin in hex.

D: Data Origin Option. The D option indicates the load address
of the data and common segments. If the D option is used, the
- address specified must be higher than the load address for the
code segment. If it is not used, ZLINK will put the data and
common segments immediately after the program segment. The syn-
tax for the D option is Dnnnn, where nnnn is the desired data
origin in hex.

P: Paging Option. The P option will page the output of ZLINK,
at 23 lines per page to the terminal. Pressing any key allows
you to continue to output one page at a time.

R: Relocate Origin Option. The R option specifies the re-
location value for the code segment. If not used, then ZLINK
will set the relocation value of the code segment to its load
address.

S: .SYM File Option. If this option is set, ZLINK will write
the sorted symbol table to a .SYM file suitable for use with the
Echelon DSD or Digital Research SID and ZSID debuggers.

/: Search Option. This option is used to indicate that the pre-
ceding file should be treated as a library. ZLINK will search
the file and include only those modules containing symbols which
are referenced but not defined in the modules already linked.
Unlike the link control options which can be used once at the end
of a command line, the / option must be used after each filename
to be searched:

filenamel/,filename2/,...filenameN/

10.4 DEFINE NEXT FREE MEMORY LOCATION

If the public symbol SMEMRY is encountered during the link pro-
cess, then the two bytes addressed by the value SMEMRY and SMEMRY
+ 1 are filled in with the address of the next free memory
location. The statement labeled SMEMRY must be a DS statement.

Page 36

For

CHAPTER 10: LINKER

example:
PUBLIC FREBEG , SMEMRY
FREBEG: LD HL, (SMEMRY) ;This routine returns
' RET ;the first free byte
SMEMRY : DS 2 ;of memory

10.5 ZLINK ERROR MESSAGES

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

"Can't find filename.filetype”
Specified file cannot be found on the disk.
"Filename.filetype is an invalid REL file!"

One of the files specified is not a Microsoft compatible REL
file.

"Invalid option specification!"

One of the options specified is invalid.

"Memory full!"”

There is insufficient memory to complete the linking process.
"Undef%ned symbols:”

The symbol name(s) following this heading are referenced but
not defined in any of the modules being linked.

"Duplicate symbols:"

The symbol name(s) following this heading are defined as a
PUBLIC symbol in more than one of the modules being linked.

"kxkOQverlapping segments***"

ZLINK attempted to write a segment into memory already used
by another segment. This error is probably caused by incor-
rect use of the C and/or D options.

"Read errori”

A file cannot be read properly.

"Syntax error in command line!”

The command line is 111 formed.

"Multiple main modules!”
Two or more modules contain a program starting address.

"Library search limit exceeded!"

A maximum of ten libraries can be specified from assembler
+REQUEST statements.

Page 37

(THIS PAGE INTENTIONALLY LEFT BLANK.)

Page 38

CHAPTER 11
LIBRARY MANAGER
11.1 OVERVIEW
The Library Manager (ZLIB) is used to combine Microsoft relocat-
able object modules into a library. Libraries are files consis-
ting of any number of relocatable object modules. ZLIB can
delete modules from a library, concatenate REL files into a
library, re-place modules in a library, and print module names
and public symbols from a library.
11.2 ZLIB OPERATION
ZLIB 1is invoked by typing:
ZLIB libname=filename{,filename,...} Soption
where libname is the name of the library with filetype REL and
filename is the name of the object module(s). If no filetype is

specified, then REL is assumed.

An alternate form of invoking ZLIB when using the M or P option
(as described below) is:

‘ZLIB libname $listoption

where listoption is the M or P option.

11.3 ZLIB OPTIONS

If no option is specified, then the specified modules will be
appended to the library. The options include:

D: Delete the specified modules.
M: Print the module names in the library.
P: Print the module names and public symbols in the library.

R: Replace the specified modules.

11.4 7ZLIB MESSAGES
Under the following circumstances ZLIB will produce messages.
(1) When a module is being appended to the library:

"Appending filename.filetype”

Page 39

CHAPTER 11: LIBRARY MANAGER
(2) If the specified library does not exist on disk and the spec-
ified option is append:
"Creating library”
(3) If a module is being deleted:
"Deleting modulename”™
(4) If a module is being replaced:

"Deleting modulename
Appending filename.filetype"”

11.5 ZLIB ERROR MESSAGES
(1) "Canft find filename.filetype"

Specified file cannot be found on the disk.
(2) "Filename.filetype is an invalid REL éile!'

One of the files specified is not a Microsoft compatible REL
file. '

(3) "Invalid option specification!"”
The option specified is invalid.

(4) "Syntax error in command line!"™
The command line is ill formed.

Page 40

APPENDIX A
Z80 MNEMONIC MACHINE INSTRUCTION CODES

Object Source
Code Statement Operation Notes
8E ADC A, (HL) Add with Carry Oper- Leading A Oper-
DD8EO5 ADC A, (IX+d) and to Acc. and is Optional
FD8EOS5 ADC A,(1IY+d)
8F ADC A,A If d is Omitted
88 ADC A,B 0 is Assumed
89 ADC A,C
8A ADC A,D
8B ADC A,E
8c ADC A,H
8D ADC A,L
CE20 ADC A,n
ok Kk Kk Kk k ok Kk ok sk ok ok ok ok sk ok ok sk ok ok ke ok ok ok ok ok sk ok ok ok ok 3k ko ok sk ok Sk gk ok ok ki 3k sk ok %k sk ok %k kR %k Sk ok ok ok ok sk ok ok ok ok ok ok kK %k ok k %k
ED4A ADC HL,BC Add with Carry Regq.
ED5A ADC HL,DE Pair to HL
ED6A ADC HL ,HL
ED7A ADC HL,SP :
% K Je ek ok Kk sk Kk Kk ok K sk ok sk ok K ok ok de ok sk kK kK Kk Kk sk Kk sk ok sk sk sk ok sk sk ok sk sk ok Ak sk ok sk ok ok ok sk sk Sk Sk ok sk ok ok sk ok ok %k ok k ke ke ke
86 ADD A, (HL) Add Operand to Acc. Leading A Oper-
DD8605 ADD A, (IX+d) and is Optional
FD8605 ADD A, (IY+d)
87 ADD A,A If d is Omitted
80 ADD A,B 0 is Assumed
81 ADD A,C
82 ADD A,D
83 ADD AE
84 ADD A,H
85 ADD AL
C620 ADD A,n
% %k d Kk Kk Kk Kk Kk dk Kk Kk %k Kk %k %k sk %k %k 5k ok %k sk %k %k %k sk 5k sk ok %k sk ok 3k sk dk de ke sk ok ok ok ok ko sk %k sk sk dk sk ok ok k ok ok ok sk b K sk ok dk ok ok %k Kk Kk %k Kk Kk
09 ADD HL,BC Add Reg. Pair to HL
19 ADD HL,DE
29 ADD HL,HL
39 ADD HL, SP
s sk sk %k sk ok ok kK ok kK dk ke sk sk v sk ok ok ok sk ok ok ok sk sk ke gk ok sk ok ke vk sk ok ok ok ok sk ke ok ok ok Sk ke dk ok ke ok ok sk kK ke ok Kk ke ki k Kk ok Kk ok ok ke ok %k ok k
DD09 ADD IX,BC Add Reg. Pair to IX
DD19 ADD 1X,DE
DD29 ADD IX,IX
DD39 ADD IX,SP _
% %k %K e %k sk Sk e ok gk k ke ko Kk ok Kk ok ok Kk sk ke ke ok ok ok ok ok kok ok ok ok sk ok ke ok ke ke sk ki ok k ke ok ok ok ok %k %k sk ok dk ok ok %k sk sk ok ok ok ok ok k k ok ok ke ke ko
FDO09 ADD 1Y,BC Add Reg. Pair to IY
FD19 ADD IY,DE
FD29 ADD IY,1Y
FD39 ADD 1Y,SP
s de ok Kk Kk g ok Kk %k %k %k k sk %k ok sk sk %k sk ok ok ok ok ok sk ok ok sk ke dk ok dk sk ok ok sk sk ok ok ok sk ke ok k sk sk sk ok ok ok ok ok ok ok ok ok %k Sk ok sk ok %k ok ok ok %k ok ko
A6 AND A, (HL) Logical 'AND' of Leading A Oper-
DDA605 AND A, (IX+d) Operand and Acc. and is Optional
FDA605 AND A, (IY+d)

Al

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

a2

Notes

Leading A Oper-
and is Optional

If d is Omitted
0 is Assumed

If d is Omitted
0 is Assumed

Object Source
Code Statement Operation
a7 AND A,A Logial 'AND' of
AQ AND A,B Operand and Acc.
Al AND A,C
A2 AND A,D
A3 AND A,E
A4 AND A,H
A5 AND A,L
E620 AND - A,n .
% %k K de 3k d %k sk %k dk ke ok ok ok ks ok %k dk k ok ok ok Kk ok %k ok %k ok sk ok K ok %k %k %k %k %k %k %k %k % Kk K %k % %k K Y ok %k e k k k 3k ok Kk %k %k Kk %k k ok Kk Kk Kk %k Kk Kk
CB46 BIT 0, (HL) Test Bit of Location
DDCB0546 BIT 0,(1IX+d) or Reg.
FDCB0546 BIT 0,(1Y+d)
CB47 BIT 0,A
CB40 BIT 0,B
CB41 BIT 0,c
CB42 BIT 0,D
CB43 BIT 0,E
CB44 BIT 0,H
CB45 BIT 0,L
" CB4E BIT 1, (HL)
DDCBO54E BIT 1, (IX+d)
FDCBO54E BIT 1,(1Y+d)
CB4F BIT 1,A
CB48 BIT 1,B
CB49 BIT 1,cC
CB4A BIT 1,D
CB4B BIT 1,E
CBA4C BIT 1,H
CB4D BIT 1,L
CB56 . BIT 2, (HL)
DDCB0556 BIT 2,{(IX+d)
FDCB0556 BIT 2,{(1X+d)
CB57 BIT 2,A
CB50 BIT 2,B
CB51 BIT 2,C
CB52 BIT 2,D
CB53 BIT 2,E
CB54 BIT 2,H
CB55 BIT 2,L
CB5E BIT 3, (HL)
DDCBO55E BIT 3, (IX+d)
DFCBO55E BIT 3,(1Y+d)
CB5F BIT 3,A
CB58 BIT 3,B
CB59 BIT 3.C
CB5A BIT 3,D
CB5B BIT 3,E
CB5C BIT 3,H
CB5D BIT 3,L
CB66 BIT 4, (HL)
DDCB0566 BIT 4, (IX+d)
FDCBO566 BIT 4,{(1Y+d)

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

Object Source
Code Statement Operation Notes
CB67 BIT 4,A Test Bit of Location If d is Omitted
CB60 BIT 4,B or Reg. 0 is Assumed
CB61 BIT 4,cC
CB62 BIT 4,D
CB63 BIT 4,E
CB64 BIT 4,H
CB65 BIT 4,1
CB6E BIT 5, (HL)
DDCBO56E BIT 5,(1IX+d)
FDCBO56E BIT’ 5,(1Y+d)
CB6F BIT 5,A
CB68 BIT 5,B
CB69 BIT 5,C
CB6A BIT 5,D
CB6B BIT 5,E
CB6C BIT 5,H
CB6D BIT 5,L
CB76 BIT 6, (HL)
DDCB0576 BIT 6, (IX+d)
FDCBO0576 BIT 6, (1Y+d)
CcB77 BIT 6,A
CB70 BIT 6,B
CB71 BIT 6,C
CB72 BIT 6,D
CB73 BIT 6,E
CB74 - BIT 6,H
CB75 BIT 6,L
CB7E BIT 7, (HL)
DDCBO57E BIT 7, (IX+d)
FDCBO57E BIT 7,(1Y+d)
CB7F BIT 7,A
CB78 BIT 7,B
CB79 BIT 7.C
CB7A BIT 7,D
CB7B BIT 7,E
CB7C BIT 7,H
CB7D BIT 7,L
% K de ok K ok Kk Kk kK ok Kk Kk ok kK sk %k ok ok ok sk kK ok ke Kk ok ok dk sk ok ok ok gk sk ok ok ki ko ok ok ok Sk ok ok %k R ok %k Kk ok ok ok ok ok ok ok Kk ok Kk ok %k
DC8405 CALL C,nn Call Subroutine at
FC8405 CALL M,nn Location nn if Condi-
D48405 CALL NC,nn tion True
C48405 CALL NZ,nn
F48405 CALL P,nn
EC8405 CALL PE,nn
E48405 CALL PO, nn
CC8405 CALL Z,nn
% K K K kK ok gk ok ok ok sk Kk ek gk ok ok Kk ke ok ok ke ok ok ok sk 3k ke %k ok ok Kk ok ok ke sk ok oK ok ok ok ok 3k ok ke ok ok dk ok sk ok ok ok k ok ok ke k k ok ok ok ok kK ke ok Kk

CD8405 CALL nn Unconditional Call to

Subroutine at nn
K K F K Kk ok sk %k Kk Kk Kk Kk ko Kk kK Kk Kk %k Kk Kk ok g Kk ok ok ok kK %k dk ok ok ok ok ok ok ok ok kK 3k ke ok ok s ok gk dk ok ok k ok ok sk Kk sk Kk ok sk ok ok ok ok ok

3F CCF Complement Carry Flag

A3

APPENDIX A: 780 MNEMONIC MACHINE INSTRUCTION CODES

Object Source

Code Statement Operation Notes

BE CP (HL) Compar Operand Leading A Oper-
'DDBEO05 CP (IX+d) with Acc. and is Optional
FDBEO5 CP T A{IY+d) : ,
BF CP A If d is Omitted
B8 CP B 0 is' Assumed

B9 cp C

BA Ccp D

BB Ccp E

BC Cp H

BD cp L

FE20 CP n

%k J K ok K kK Kk Kk Kk kK Kk ok %k ok d vk k %k Kk kK Kk Kk ok Kk Kk Kk k Kk K Kk Kk ok Kk sk Kk Kk ok dk Kk k K Kk Kk kK Kk Kk %k Kk Kk d ok k K Kk k kK Kk Xk ok k k ok k
EDA9 CPD Compare Location

(HL) and Acc. .
Decrement HL and BC

© %k Kk Kk ok ok ke ok sk ok ok sk %k ok k ke sk ok %k ok ok %k ok ok ok ok dk ok ke ke k ok Kk ok ok 3k ok ok K ok ok ok ok ke ke ok sk ok kK ok ok Ok 3k ok ok ok ok kR ok ke ok ok ok ok ok

EDBY CPDR Compare Location ,
(HL) and Acc., Decre-
ment HL -and BC,
’ ‘ Repeat until BC=0
Kk Kk ok kK ok ok ok kK kK ek kK K ok ok kX kK Kk ke Kk ke dk ok ke ok ko ok ok ke dke gk ok ok e ok ke o dk Xk ke sk K kK Kk ok kK Kk ok kK %k ok k.
EDAl CPI . Compare Location
(HL) and Acc., Incre-
ment HL and Decrement

K K Kk K K Kk Kk ok Kk Kk %k sk Kk K Kk %k vk ok % gk K %k Kk J 3k Rk ok ok kK ok 3k Kk ok b ok %k ok Kk 3k K ok ok ke ok ok ok ok vk %k 5k sk gk 3k ok 3k k kK ok vk ke ok ok k k&

EDB1 CPIR Compare Location
» : ~ (HL) and Acc., Incre-
ment HL, Decrement BC,

. Repeat until BC=0

% ek ok K Kk ok dk ke dk ko k% Kk %k ok ke ke vk e sk ek vk ke ke ke ok ok ok e ke dk dk sk ke ok ok Kk ke ko sk ok gk ko ko ok ok ok ok ok kg ok ke Kk 3k ke k ke ke ke ke ok ok ok

2F CPL Complement Acc. (1's
- ' Complement) -

27 DAA - : Decimal Adjust Acc.
%k K X % Kk K gk %k Kk Kk Kk Kk sk ok ok ok k% k k% k Kk kK de sk ok gk ke Kk ok vk ok ok ok ok ok sk ok Sk K ok ok %k %k 3k Sk ok ok ok ok kR ok Kk sk ke %k ok ok Kk Kk
35 -DEC (HL) Decrement Operand - =@ If d is Omitted
DD3505 DEC - - (IX+d) s : 0 is Assumed
FD3505 DEC (I1Y+d) ' '
3D DEC A
05 DEC B
0B DEC BC
0D ‘ DEC C
15. DEC D .
1B DEC DE
1D . DEC E
25 _ DEC H
2B DEC HL
DD2B 'DEC IX
FD2B DEC 1Y
2D " DEC L
3B DEC SP

‘A4

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

Object Source
Code Statement Operation Notes
F3 DI Disable Interrupts
% %k %k % gk kK sk ok ke k dk dke vk sk ke sk gk ke ok Kk sk kK %k kg ki ko ok ke %k Sk ok ok sk sk sk ok gk ok ok ok ok o ok ok ok ok ok ok dk Sk ok ok ok ok ok ok ok k ok ok k ok ok ok
102E DINZ e Decrement B and

Jump Relative if B=0

% Je e K % sk ok ke vk sk ok ok ke ok ke Kk ok Kk ke dk kg 3k ok ok ok koK ke kA ok ke ok ok ok 3k ok ke kK Kk ok ke 3k e ke ok ke ok sk ok gk ok ok Kk ok ok K ok ok ok ok ke ko

FB EI Enable Interrupts

% %k ok ke %k ok ok gk gk ke ke kg ke ok ok e Kk 3k Kk K Kk 3k kK kK ok ok ke kK ok ok ok sk ke de sk ok sk ke sk sk sk ke ok vk ok ok sk sk ok dk ok ok gk 3k sk ok ok ke ok ok ke ok ke

E3 EX (SP) ,HL Exchange Location

DDE3 EX (sp),IX and (SP)

FDE3 EX (sp),1Y

% sk sk %k d %k dk k k sk 3k Kk ok dk ok Kk dk %k Kk sk Kk dk Kk Kk %k %k Kk Kk %k dk dk dk ok Kk Kk %k Kk %k %k sk K Je %k % sk dk ok J Kk Kk % kK 3k K dk ok sk ok kK %k k Kk kA k kX
. 08 EX AF ,AF' Exchange the Con-

tents of AF and AF'
% % %k e Kk k ok Kk %k Kk Kk K dk ok d dk Kk K 5k k sk ke ok ke %k Kk %k %k ok Sk %k ok %k ok Kk K ok Kk F ok 3k k %k ok ok %k %k ok %k ok Kk sk Kk %k dk %k % dk Kk % % Kk Kk %k Xk Kk Kk Xk
EB EX DE, HL Exchange the Con-

tents of DE and HL
%k ok sk Kk Kk Kk k Kk ok K K Kk ok %k k Kk Kk Kk ok k Kk ok ok Kk %k Kk Kk K Kk Kk %k k %k Kk ok %k %k 3k Kk %k 3k sk Kk %k Kk e %k 3k Kk sk k J k Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk k k k %k
D9 EXX Exchange the Con-

tents of BC,DE,HL

with Contents of

BC',DE',HL' Respec-

tively
% %k Kk Kk K sk dk kK Kk Kk Kk Kk %k 3k ok %k Kk ok %k %k Kk %k %k K Kk Kk Kk Kk K Kk kK kK K Kk dk kR sk ok K %k kK sk ok bk sk ok ok ok ok sk ok kX sk Kk Xk Kk Kk k ok kK

76 HALT HALT (wait for Inter-

rupt or Reset)
e % Je 3k Kk ke kK dk ke ok ok Kk %k ok Kk Kk Kk %k %k Ak %k Tk %k %k e ok dk ok ok ek ke ke ok 3 0k ok ok ok dk Yk ke ke e ok Kk ok Kk Kk dk sk)k ki ke ok ke ok ok ok %k ok ok

ED46 M 0 Set Interrupt Mode

ED56 M 1

ED5SE IM 2

%k e ke ke ok sk sk dk ok dk ke dk ok ke Kk Kk Kk Kk dk Kk %k Kk k Kk %k Kk %k k % dk Kk %k %k dk Kk Kk %k %k %k %k Kk % Kk %k Kk Kk %k %k Kk %k %k %k % %k %k Kk Kk %k K sk %k 5k J k k k k k k %k
ED78 IN A,(C) Load Reg. with Input

ED40 IN B, (C) from Device (C)

ED48 IN C,(C)

ED50 IN D, (C)

ED58 IN E, (C)

ED60 IN H, (C)

ED68 IN L,(C)

sk % Kk K Kk % Kk Kk d dk Kk Kk % Kk %k %k K %k Kk %k ke sk %k %k %k Kk %k %k %k %k %k ok ok sk ok ok sk dk dk ok ok sk ok Kk e Kk K ke K K Kk sk sk ok ok dk Kk k k k k dk ok k ok Kk ok ok k ok
34 INC (HL) Increment Operand If d is Omitted
DD3405 INC {IX+d} 0 is Assumed
FD3405 INC (I1Y+d)

3c INC A

04 INC B

03 INC BC

oc INC C

14 INC D

13 INC DE

1cC INC E

24 INC H

23 INC HL

DD23 INC IX

FD23 INC 1Y

A5

APPENDIX A: 7z80 MNEMONIC MACHINE INSTRUCTION CODES

Object Source
Code , Statement Operation Notes
2C INC L Increment Operand
33 INC Sp
% % s ok sk o Kk ek ok d d d Kk %k %k %k %k K %k k Kk Kk sk Kk ek %k sk de ke %k sk %k %k %k %k sk %k sk k% dk ok bk dk 3k sk ok ok vk ok ok Kk %k Kk Kk K k k Kk %k Kk ok Kk Kk Kk Kk Xk
DB20 IN A,(n) Load Acc. with

Input from Device n
***********************************ﬁ***********************************
EDAA IND Load Location (HL)

with Input from Port

(C), Decrement HL

and B

EDBA INDR - Load Location (HL)
‘ with Input from Port
(C), Decrement HL
and Decrement B,
Repeat until B=0
% % kK Kk Kk Kk Kk K Kk Kk Kk Kk Kk %k K %k %k Kk Kk sk ke k ok ok k k k k% sk %k %k %k %k %k %k Kk k %k %k e ek ke ok sk Jk ok dk Kk Kk Kk Kk ok sk ok dk ok dk sk ok Kk Kk %k ok
EDA2 INI ‘ Load Location (HL)
" with Input from Port
(C); Increment HL
and Decrement B
***~
EDB2 INIR Load Location (HL)
with Input from Port
(C), Increment HL
and Decrement B,
Réepeat until B=0

KAEKKKEAKKKTAKAKAKRKAAAAKAKAKAKRKRAAKRKAKRKRRIKRA AR AKKRK AR AR KRRk Rk khkkkkk

C38405 JP nn Unconditional Jump

E9 JP (HL) to Location

DDE9 JpP : (IX)

FDE9 JP (1Y) .

%k %k sk e Kk ok Kk k ke Kk kK K %k ke k% %k %k ok d Xk Kk k ok Kk %k ok dk %k dk %k %k %k %k %k %k dk dk %k %k %k %k %k K Kk Kk k K dk ok ok dk ok Kk Kk sk Kk Kk ok dk sk Kk Kk Kk Kk
DA8405 Jp C,nn Jump to Location if

FA8405 Jp M, nn Condtion True

D28405 JP NC,nn

Cc28405 JpP NZ,nn

F28405 Jp - -P,nn

EA8405 JP PE,nn

E28405 Jp PO, nn

CA8405. JpP Z,nn

382E JR C,e Jump Relative to

302E JR NC, e PC+e if Condition

202E. JR NZ,e True

282E JR Z,e ,

-k K Kk Kk Kk gk K sk kK ke ke ok sk Kk ok ok ok ok kK ok 3k ke ok sk ke sk ok ok ke ke ke ke ke 3k sk ok sk ok gk sk ok ok ok ok ok ok ok ok ok sk ok 3k ok ok %k %k ok ok ok ok Kk Kk ok
182E JR e " Uncondtional Jump

Relative to PC+e

' % K e g Kk Kk Kk k ko ok A vk ok vk vk gk ke sk ok ok ke vk sk ok ke 3k ok Sk ok ok k ok gk ke ok ok ok ok ok ke ok ok gk ke ok ok Sk ek e 3k ke ke ok ok ok ok ok kK ok kK ok K

02 . LD (BC),A Load Source to
12 LD (DE) ,A Destination

A6

Object
Code

77

70

71

72

73

74

75

3620
DD7705
DD7005
DD7105
DD7205
DD7305
DD7405
DD7505
DD360520
FD7705
FD7005
FD7105
FD7205
FD7305
FD7405
FD7505
FD360520
328405
ED438405
ED538405
228405
DD228405
FD228405
ED738405
0A

1A

7E
DD7E05
FD7EQ5
3A8405
7F

78

79

7A

7B

7C

ED57

7D

3E20
ED5F

46
DD4605
FD4605
47

40

EEEBEEEEEEEE

EEBEEEE

muwmm»»?»vw»w»v

APPENDIX A:

Source
Statement

(HL) ,A
(HL) ,B
(HL),C
(HL) ,D
(HL) ,E
(HL) ,H
{HL) ,L
(HL) ,n
(IX+d) ,A
({I1X+d4d),B
(IxX+d),C
(IX+d),D
(IX+d) ,E
(I1x+d),H
(1x+d),L
(IX+d),n
(1Y+d) ,A
(IY+d),B
(1Y+d),C
(1y+d),D
(1y+d) ,E
(I1Y+d) ,H
(IY+d) ,L
(IY+d),n
(nn) ,A
{nn),BC
(nn) ,DE
{(nn) ,HL
(nn),IX
(nn),IY
(nn) ,SP
A, (BC)

- A, (HL)Y,
"A,(IX+d)

A, (IY+d)
A,(nn)

WP~~~ HMHIHOD QW

-

-

(HL)
IX+d)
IY+d)

14

-

-

Operation

Load Source to
Destination

A7

280 MNEMONIC MACHINE INSTRUCTION CODES

Notes

If d is Omitted
0 is Assumed

APPENDIX A: 780 MNEMONIC MACHINE INSTRUCTION CODES

Object
Code

41

42

43

44

45

0620

ED4B8405

018405

4E

DD4EG5

FD4EO5

4F

48

49

4A

4B

4cC

4D

0E20

56
DD5605

FD5605

57

50

51

52

53

54

55

1620
ED5B8405

118405

5E
DD5EO05
FD5EQ5

5F

58

59

5A

5B

5C

5D

1E20

66
DD6605
FD6605
67

60

61

62

63

64

LD
LD
LD
LD
LD
LD

LD
LD

LD
LD
LD
LD
LD

LD
LD

LD

LD

LD

LD
LD
LD
LD
LD
LD
LD

LD -

LD
LD
LD
LD
LD
LD
LD
LD

LD

LD

LD
LD
LD

forliolie B clle v lle B e e lle e B s e M S B SR B R e B |

Source
Statement

C, (IY+d)

~

~

-

-

-

-

~

~

HL)
IX+d)
IY+d)

. W N N

~-

UUOUUUOUUPOQOOOOOO
TP~~~ 0D mOQ WY

-

D,n

E,(IY+d)

~~brmmoowy

~

IX+d)
IY+d)

14

EImODowD~

-

Operation

Load Source to
Destination

A8

Notes

If 4 is Omitted
0 is Assumed

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

Object Source
Code Statement Operation Notes
65 LD H,L Load Source to If 4 is Omitted
2620 LD H,n Destination 0 is Assumed
278405 LD HL, (nn)
218405 LD HL,nn
ED47 LD I,A
DD2A8405 LD IX, (nn)
DD218405 LD IX,nn
FD2A8405 LD 1Y, {(nn)
FD218405 LD IY,nn
6E LD L, (HL)
DD6EO5 LD L, (IX+d)
FD6EO5 LD L,(1Y+d)
6F LD L,A
68 LD L,B
69 LD L,C
6A LD L,D
6B LD L,E
6C LD L,H
6D LD L,L
2E20 LD L,n
ED4F LD R,A
ED7B8405 LD SP, (nn)
F9 LD SP,HL
DDF9 LD SP,IX
FDF9 LD SP,1Y
318405 LD SP,nn
% %k %k J Kk Kk Kk Kk Kk Kk Kk d ok %k gk ok %k Rk dk ok ke k k% dk %k %k %k Kk %k %k Kk kK %k Kk %k % Kk %k % % %k %k %k %k %k %k %k k Kk %k dk %k Kk %k %k k % sk %k Kk Kk Kk %k Kk Kk Kk k %k
EDAS8 LDD Load Location(DE)
with Location(HL),
Decrement DE, HL
and BC
*********************************t*************************************
EDB8 LDDR Load Location (DE)

with Location (HL).

Repeat until BC=0
K K ok Kk Kk % K K Kk Kk e K K Xk ok Kk ok ke k% ok 3k Kk Kk ok k% ok %k Kk Kk Kk d % ok ok ke 3k ok sk ok sk e e ke dk dk ke ke ke %k dk dk Xk k %k %k ok Kk Kk kX
EDAO LDI Load Location (DE)

with Location (HL),

Increment DE, HL,

Decrement BC
% %k K % Kk Kk Kk Kk k K %k Kk K ok %k %k ok %k sk ke k k dk Tk ok sk gk ke okt vk ok ok k% ok ok sk ok %k ok sk ok ok sk ok %k ok ok sk %k sk ok %k ok ok sk ke %k ok ok %k ok ok ok ke kX
EDBO LDIR Load Location (DE)

with Location (HL),

Increment DE, HL,

Decrement BC and

Repeat until BC=0

ARKKKKKAAKARALKA AL RAKRAK KRR RARKRARRRAKA AR AR AR KR KA AR Ak kkkhkhkhkkhkhkikkkkkhkkk

ED44 NEG Negate Acc. (2's

Complement)
% ek kK de Kk Kk K K K Kk kK Kk Kk K d kK Kk kK Kk kK Kk ok ok gk Kk kK ke Kk e %k ke ok dk vk Kk %k k sk sk %k ok k¢ %k e sk Jk ok %k ok Xk dk e ok Kk Kk ok Kk ok k
00 NOP No Operation

A9

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

Object Source
Code Statement Operation Notes
B6 OR A, (HL) Logical "OR" of Leading A Oper-
DDB605 OR A, (IX+d) Operand and Acc. and is Optional
FDB605 OR A,(IY+d)
B7 OR A,A If d is Omitted
BO OR A,B 0 is Assumed
Bl OR A,C
B2 ‘OR A,D
B3 OR A,E
B4 OR A,H
B5 OR A,L
F620 OR A,n v
% e K g Kk Kk ok K K Kk K Kk K Kk Kk dk Kk K Kk Kk Kk dk Kk %k Kk %k %k %k %k %k K %k %k %k %k Kk % %k %k d Kk sk %k %k k Jk %k %k 3k %k sk %k sk Kk vk %k sk %k %k %k % 3%k % %k dk % %k Kk %k

ED8B OTDR Load Output Port (C)

with Location (HL),

Decrement HL and B,

. Repeat until B=0

Je 3k K %k Kk ok Kk k ok sk %k K ok K Kk ke Kk K ke ko ke k Je ek ok ok sk ok ke 3k ok ok ok ok ok K ok Sk ke ok ok ok Xk vk ok ok ok ok ok ok ke ke ke ok gk ok k dk dk dk k %k k ke ki ok
EDB3 OTIR : Load Output Port (C)

with Location (HL),

Increment HL, Decre-

ment B, Repeat until

*******************************f*g*************************************
ED79 ouT (C),A Load Output Port (C)

ED41 ouT (C),B with Reg.

ED49 ouT (c),c

ED51 ouT (c),D

ED59 ouT (C),E

ED61 ouT (C),H

ED69 ouT (C),L

% % %k Kk ke dk d % Kk kK kK Kk Kk Kk %k Kk Kk %k Kk Kk Kk & de ke ok %k %k %k %k %k %k %k %k K %k Kk K Kk Kk Kk Kk %k %k Kk Kk d ok Kk vk sk sk sk ok sk sk K K % K ok Kk K Kk Kk kK
D320 ouT (n),A Load Output Port (n)

7 _ with Acc.
% K % 3k s ook %k ok dk gk kK ke dk de ok ke ok sk 3k ke ok %k gk ok %k ok ke ok ok ke sk sk 3k 3k ok ok ok dk ok gk ok ok ok sk 3k dk sk Sk ke ok e 3k ok ok o ok ok ok ok ok ok ke ke
EDAB OouUTD Load Output Port (C)
with Location (HL),
Decrement HL and B
K Kk Je Kk kK Tk Kk Kk Kk sk ok kK Kk kK K Kk ek ok ke gk sk ok % dk vk ke sk ke e sk ok ok ok ok ok e ok sk vk ok vk ok gk sk ke ok e ke k gk ok vk R ok ok ok ok ok ok ok ok ok ke ok
EDA3 OUTI Load Output Port (C)
with Location (HL),
Increment HL and

Decrement B
%k K Kk % ke ok kg Tk ke ke ko ke sk ok Kk ok kK %k sk 3k ok ok sk sk ok vk ok gk ok ok gk sk ok ke ok e gk ok ke ok ok ok ok ok sk ok ok sk & ok ok ok ok ok ok ok ok ok ok ok ok ok ok

Fl POP AF Load Destination
cl POP BC with Top of Stack
D5 POP DE
El POP HL
DDE1 POP IX
FDE1 POP IY

Alo0

Object
Code

F5
Cc5
D5
E5
DDE5
FDES

APPENDIX A: 780 MNEMONIC MACHINE INSTRUCTION CODES

Source

Statement Operation Notes

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH

AF Load Source to Stack
BC
DE
HL
IX
1Y

% Kk K Kk Kk de K Kk Kk %k sk Kk 3k Kk J %k K ok Kk ok Kk Kk Kk %k K Kk K 5k Kk Kk Kk Kk Kk Kk Kk dk Kk %k sk ok sk kS sk %k sk e ok %k dk %k Kk %k 5k %k sk ok %k ok Kk ok ok ok Kk k Kk Kk

CB86
DDCB0586
FDCB0586
CB87
CB80
CB81
CB82
CB83
CB84
CB85
CB8E
DDCBO58E
FDCBOS58E
CBS8F
CB88
CB89
CB8A
CB8B
CB8C
CB8D
CB96
DDCB0596
FDCB0596
CB97
CB90
CB91
CB92
CB93
CB9%4
CB95
CBYE
DDCBO59E
FDCBO0O59E
CBIF
CB98
CB9A
CB9B
CBO9C
CB9D
CBAb6
DDCB05A6
FDCBO5A6
CBA7
CBAO
CBAl

RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

0, (HL) Reset Bit b of If d is Omitted
0, (IX+d) Operand 0 is Assumed
0,(1Y+d) .

4

A
B
Cc
D
E
H
L

BB ERERRREWWWWWWWWWNDNNIOONNNNONNNNNNNREREPREREEBERRERBRRREREOOOCOOOOO

All

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

Object Source

Code Statement Operation Notes
CBA2 RES 4,D Reset Bit b of If d is Omitted
CBA3 RES 4,E Operation - 0 is Assumed
CBA4 RES 4,H

CBA5 RES 4,L

CBAE RES 5, (HL)

DDCBO5AE RES 5,(IX+d)

FDCBO5AE RES 5,(1¥+d)

CBAF RES 5,A

CBAS8 - RES 5,B

CBAY9 RES 5,C
CBAA RES 5,D

CBAB RES 5,E

CBAC RES 5,L

CBB6 RES 6, (HL)
DDCBO05B6 RES 6,(IX+d)

FDCB05B6 RES 6,(IY+4d)
CBB7 RES 6,A

CBBO RES 6,B

CBB1 RES 6,C

CBB2 RES 6,D

CBB3 RES 6,F

CBB4 RES 6,H

CBB5 RES 6,L

CBBE RES 7, (HL)
DDCBO5BE RES 7, (IX+4d)

FDCBOS5BE RES 7,(1Y+d)
CBBF RES 7,A
CBBS8 RES 7,B
CBB9 RES 7,C
CBBA RES 7,D
CBBB RES 7,E
CBBC RES 7,H
CBBD RES 7,L
ok g s ok kg ok sk %k Kk Kk %k Kk F Kk Kk K%k % Kk %k e Kk de d e 3k ke sk ok 3k ok dk gk dk d ok ok Kk kK %k K K Kk ok Kk k Kk Kk Kk J K Kk K Kk K k K 5k Kk Kk Kk Kk Kk Kk Kk Kk
c9 RET Return from
Subroutine

Je % K K J %k Kk Ak ok K d ok K Kk Je gk ok K K Kk ke ke %k Kk Rk k sk Sk Sk ok k% ok ok dk 3k k gk ok sk ok %k ok ok vk dk kK %k k% dk ek ok e %k ke k ok K ok %k ok Kk
D8 RET C Return from

F8 RET M Subroutine if Condi-

13]0] RET NC tion True
co RET NZ

FO RET P

E8 RET PE

EO RET PO

Cc8 RET Z

ED4D RETI Return from Interrupt

K ek ok e ke e o ol ok ok ok Sk Bk sk ok X K R R K K T 3 R e ok ok 3k gk ok 3k ok ke ok ok kK ok sk sk ok ok ok gk sk sk ok ok ok ke ko ke vk ok ok Sk ke kK k ke ke ok kK
ED45 RETN Return from Non-

Maskable Interrupt
% %k % Kk kK Je dk Kk Kk gk Kk Kk K %k %k K K dk sk ok %k K % %k Kk %k %k %k %k %k Kk dk %k %k K Kk ¥ d sk dk Kk dk K Jk %k J 7 Rk kK Kk %k & %k Kk k K d ok %k %k %k % Kk %k K Xk Kk Kk

aAl2

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

Object Source
Code Statement Operation Notes
CB16 RL (HL) Rotate Left Through If d is Omitted
DDCB0516 RL (IX+d) Carry 0 is Assumed
FDCB0516 RL (IY+d)
CB17 RL A
CB10 RL B
CB11 RL C
CB12 RL D
CB13 RL E
CB14 RL H
CB15 RL L
% J %k %k Kk ok % sk d dk dk d¢ kK Kk K e dk Kk Kk % %k Kk %k %k %k %k %k Kk ke v Kk Kk Kk Kk %k dk dk Kk d %k dk e sk J ke % %k K %k Kk %k Kk Kk Kk Kk Kk Kk Kk Kk k k Kk k k k kX
17 RLA Rotate Left Acc.

Through Carry

Y e ke kK Kk ok ok dk % ok ok Kk Kk ke ke ke dk ke k %k dk Kk dk ko ke vk ke 3k 3k ke %k ok ke ok ok dk ok Ik 3k ke sk ke dk ek vk ke dk Kk ke ke kK ke ke dk k k ke ok ek

CB06 RLC (HL) Rotate Left Circular If d is Omitted
DDCB0506 RLC (IX+d) 0 i Assumed
FDCB0506 RLC (IY+d).

CBO07 RLC A

CBOO RLC B

CBO1 RLC C

CB02 RLC D

CB0O3 RLC E

CB04 RLC H

CB05 RLC L

e %k K ok Kk K %k k vk e Kk kK %k Kk Kk Kk Kk %k sk 3k %k sk ok ok ks ok sk %k k sk e ke ke %k k kK k Kk K sk %k K %k %k ok Kk %k Kk dk k %k %k Kk de ok kK ok de dk ok k ok kX
07 RLCA Rotate Left Circ. Acc.

% % K Kk %k K Kk %k Kk %k % Kk Kk %k ok % %k 3k Kk Kk ok %k sk Kk ok sk ke ke gk %k 3k kK ok %k vk ok %k ok 3k %k sk ok Kk sk R ok sk ok ke ok dk Kk 5k ok vk sk vk ok k% Kk
ED6F RLD Rotate Digit Left and

Right between Acc. and

Location (HL)
%k %k % %k %k sk de Kk Kk kK Kk kK g gk Kk ok ok %k vk K ok ok K sk ke Tk sk ok ok %k ok gk Sk ok g Tk ok ek sk ok Sk ok ok K gk ok ok ok ok vk ke ok ok %k sk vk %k %k ok ok ok %k ok ke k ok

CBlE RR (HL) Rotate Right Through If d is Omitted
DDCBO51E RR (IX+d) Carry 0 is Assumed
FDCBO51E RR (IY+d)

CB1F RR A

CB18 RR B

CB19 RR C

CBlAa RR D

CB1B RR E

CB1C RR H

CB1D RR L

% % % %k sk Kk % sk ok 3k sk Kk dk k sk K Kk Kk Kk %k %k %k %k %k % 3 %k %k % %k Kk %k %k % %k %k %k %k %k % %k %k % %k %k %k %k % dk %k %k k %k %k sk %k % %k % %k sk Kk %k Kk Kk k k k %k k %k
1F RRA ' Rotate Right Acc.

Through Carry ,
% % Kk % de Kk Kk Kk Kk k Kk K Kk Kk Kk dk Kk %k Kk %k %k d 5k sk 3k sk sk dk ok %k %k sk %k %k % %k Kk %k % K % sk %k %k %k sk 3k sk ok sk dk ok e ok sk dk kK Kk e gk Je % K Xk Kk Kk Kk k

CBOE RRC (HL) Rotate Right Circular
DDCBOS0E RRC (1X+d)

FDCBO50E RRC (IY+d)

CBOF RRC A

CBO08 RRC B

CB09 RRC C

CB0OA RRC D

Al3

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

Object Source
Code Statement Operation Notes
CBOB RRC E Rotate Right Circular
CcBOC RRC H '
CBOD RRC L)

OF RRCA , Rotate Right Circular

_ Acc.
K % ok 3k ok %k ok Kk sk kS gk ok ok gk 3k ke ok e ok ke dke e g g ke Sk ke ke gk ok ok K ok Kk K kK Kk K Tk 3k Ik e ko vk ok ke 3k gk ok gk ok ke ke ke ke ok ok ok
ED67 - RRD Rotate Digit Right and

Left Between Acc. and

- -Location (HL)
************************************&***********************t**********

c? RST 00H Restart to Location

CF RST 08H

D7 RST 10H

DF RST 18H

E7 RST 20H

EF RST 28H

F7 ' RST 30H

FF RST 38H
AEKKAKKAKKAKRAKAKRRAEKARAKAK KKK AR AR KAKAKAEKKAKKRRKARAKRKRARA AR R ARk KkAkkkk
DE20 SBC A,n Subtract Operand Leading A Oper-
9E SBC - A, (HL) from Acc. with Carry and is Optional
DD9EO5 SBC A, (IX+d)

FD9EO5 SBC A,(IY+d) - If 4 is Omitted
9F SBC A,A 0 is Assumed

98 SBC A,B i

99 SBC A,C

9A SBC A,D

9B SBC A,E

9C SBC A,H

9D SBC A,L

ED42 SBC HL,BC

ED52 SBC HL,DE

ED62 SBC HL,HL

ED72 SBC HL, SP

o ok % ok %k %k ok ok ok ke ok kK dk ok Rk ke ok Sk ok ok ok sk ok ok ok Sk ok ke ok ok e vk ke Ik %k 3k ok ok Kk ok sk ok ok e dk ok ok ok ok ek ok ok sk ke ok ok ok Rk ki ok kX
37 SCF Set Carry Flag (C=1)

% g Jo 3k ok kK ok ok ok kK ke ok R ok ok %k ok sk ok ke ke ke kS ke 3k ok dk ok ok 3k ok ok ke ok ok ok ok ok k ok R ok 3k ok ok 3k Ok sk ok ke ok ok vk ok Kk e Rk ke k ke k ok k Kk
CBC6 SET 0, (HL) Set Bit b of Location If d is Omitted
DDCB05C6 SET 0, (IX+d) 0 is Assumed
FDCB0O5C6 SET 0, (Iy+d)

CBC7 SET 0,A

CBCO SET 0,B

CBC1 SET 0,C

CBC2 SET 0,D

CBC3 SET 0,E

CBC4 SET 0,H

CBC5 SET 0,L

CBCE SET 1, (HL)

DDCBO5CE SET 1,(1X+d)

FDCBO5CE SET 1,(1Y+d)

CBCF SET 1.,A

Al4

APPENDIX A: 280 MNEMONIC MACHINE INSTRUCTION CODES

Object Source
Code Statement ~Operation Notes

CBC8 SET 1,B Set Bit b of Location If d is Omitted
CBC9 SET 1,cC 0 is Assumed
CBCA SET 1,D
CBCB SET 1,E
CBCC SET 1,H
CBCD SET 1,L
CBD6 SET 2,(HL)
DDCB05D6 SET 2,(1X+d)
FDCB05D6 SET 2,(1Y+d)
CBD7 SET 2,A
CBDO SET 2,B
CBD1 SET 2,C

* CBD2 SET 2,D
CBD3 SET 2,E
CBD4 SET 2,H
CBD5 SET 2,L
CBD8 SET 3,B
CBDE SET 3, (HL)
DDCBO5SDE SET 3,(1IX+4d)
FDCBOSDE SET 3,(1Y+d)
CBDF SET 3,A
CBD8 SET 3,B
CBD9 SET 3,C
CBDA SET 3,D
CBDB SET 3,E
CBDC SET 3,H
CBDD SET 3,L
CBE6 SET 4, (HL)
DDCBO5E6 SET 4,(1X+d)
FDCBO5E6 SET 4,(1Y+d)
CBE7 SET 4,A
CBEO SET . 4,B
CBE1 SET 4,C
CBE2 SET 4,D
CBE3 SET 4,E
CBE4 SET 4,H
CBES SET 4,L
CBEE SET 5, (HL)
DDCBO5SEE SET 5,{1X+d)
FDCBO5SEE SET 5,11I¥+d)
CBEF SET 5,A
CBES8 SET 5,B
CBE9 SET 5,C
CBEA SET 5,D
CBEB SET 5,E
CBEC SET 5,H
CBED SET 5,L
CBF6 SET 6, (HL)
DDCBO5F6 SET 6, (IX+d)
FDCBO5F6 SET 6, (IY+d)
CBF7 SET 6,A
CBF0 SET 6,B

Al5

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

Object Source

Code Statement Operation : Notes

CBF1 SET 6,C Set Bit b of If d is Omitted
CBF2 SET 6,D . Location 0 is Assumed
CBF3 SET 6,E

CBF4 SET 6,H

CBF5 SET 6,L

DBFE SET 7, (HL)

DDCBOS5FE SET 7,(IX+d)

FDCBO5SFE SET 7,(1Y+d)

CBFF - SET 7,A

CBF8 SET 7,B

CBF9 SET 7.,C

CBFA SET 7,D
- CBFB SET 7,E

CBFC SET 7,H

CBFD SET 7:L

% % d K ok Kk gk K ok Kk Kk Kk Kk Kk K Kk Kk Kk Kk e gk ok ok ke sk ke ok sk sk Kk ok sk ok ok ok ok ok Rk ok ok ok K ok 3k %k 3k ok sk vk sk vk %k ok ok ok ok dk %k Kk sk ke Kk
CB26 SLA (HL) Shift Operand Left If d is Omitted
DDCB0526 SLA (IX+d) Arithnetic 0 is Assumed
FDCB0526 SLA - (IY+d)

CB27 SLA A

CB20 SLA B

CB21 SLA C

CB22 SLA D

CB23 SLA E

CB24 SLA H

CB25 SLA L

% % %k %k Kk ok K Kk %k & % %k % % %k % % J % K %k e %k de dk Kk Kk g % ok 5k K Kk %k %k K %k %k %k %k K Kk & Kk Kk %k % %k Kk %k Kk %k Kk %k %k sk Kk %k Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk kX
CB2E SRA - (HL) Shift Operand Right If d is Omitted
DDCB052E SRA (IX+d) Arithmetic 0 is Assumed
FDCBO52E SRA (1Y+d)

CB2F SRA A

CB28 SRA B

CB29 SRA C

CB2A SRA D
_ CB2B SRA E

CB2C . SRA H

CB2D SRA L

% %k Je %k kT Kk Kk sk kK Kk K %k ok kK ok %k ok gk ke k% gk Kk %k kK ok ke sk ke kK vk ok ke ok sk ok ok ok ke ok ke ok ok ko Sk 3k ok ok ok ok ok ok ok %k kK k.
CB3E SRL (HL) Shift Operand Right If d is Omitted
DDCBO53E SRL (IX+d) Logical 0 is Assumed
FDCBO53E SRL (IY+d)

DB3F SRL A

DB38 SRL B

CB39 SRL C

CB3A SRL D

CB3B SRL E

CB3C SRL H

CB3D SRL L

K K K K Kk K Kk Kk k ok Kk Kk kK ok Kk Kk k ok k ko gk sk Rk kK Kk kK sk Kk Kk %k Kk g ok Kk ok ok Bk ke ko ok ok ok K sk ok sk Kk ok ko ok sk K ok k& ok ok ok
96 SUB (HL) Subtract Operand Leading A Oper-
DD9605 SUB (IX+d) from Acc. and is Optional

Al6

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

Object Source
Code Statement Operation Notes
FD9605 SUB (IY+d) Subtract Operand If d is Omitted
97 SUB A from Acc. 0 is Assumed
90 SUB B
91 SUB C
92 SUB D
93 SUB E
94 SUB H
95 SUB L
D620 SUB n
% %k dk ok ok dk Kk %k Kk J %k Kk Kk Kk Kk %k %k %k %k Kk Kk %k %k %k %k %k %k %k %k %k %k %k %k %k K %k 5k %k %k %k % J %k %k %k de %k dk dk ok %k %k %k %k %k % %k %k % % 3%k %k %k % %k %k % % %k %k %k
AE XOR A, (HL) Exclusive "OR" Leading A Oper-
DDAEQ05 XOR A, (IX+d) Operand and Acc. and is Optional
FDAEO5 XOR A, (IY+d)
AF XOR AL,A If d is Omitted
A8 XOR A,B 0 is Assumed
A9 XOR A,C
AA XOR A,D
AB XOR AE
AC XOR A,H
AD XOR A,L
A,n

EE20 XOR

Al7

APPENDIX A: zZ80 MNEMONIC MACHINE INSTRUCTION CODES

(THIS PAGE INTENTIONALLY LEFT BLANK.)

1.

2.

7.

APPENDIX B
ECHELON SOFTWARE UPDATE FORM

PRODUCT NAME & VERSION

USER NAME DATE

USER'S HARDWARE & SOFTWARE SYSTEM:

REPORT TYPE: 5. PERFORMANCE IMPACT:
Problem/Possible Error ____ Shuts Down System
_____ Suggested Enhancement ___ Impairs System Performance
___ Document Suggestion ___ Causes Inconvenience
o ‘Other ___ Needs Suggeéted Enhancement
____ Other '
PROBLEM DESCRIPTION: Please describe the problem concisely and how it

can be reproduced. 1If possible, provide your diagnosis and your cure.
Attach a listing if available.

RETURN FORM TO: Echelon, Inc.
- 101 First Street
Los Altos, CA 94022

YOUR INTEREST IN Z-TOOLS IS APPRECIATED!

Bl

(THIS PAGE INTENTIONALLY LEFT BLANK.)

APPENDIX C

ZAS PSEUDO-OP SUMMARY

Pseudo-op Form Definition
ASEG set absolute segment
COMMON set common segment
CSEG set code segment
DB(DEFB) n {,n...} define byte
DC 'string’ define character
.DEPHASE end .phase
DS (DEFS) expression {,expression} define space
DSEG set data segment
DW(DEFW) m {,m...} define word
ELSE conditional assembly
END {expression} specifies program starting address
ENDIF . . end conditional assembly
ENDM end macro
LABEL EQU expression : ‘ equate label to a value
EXIT™ exit macro
EXTRN(EXT) symbol {,symbol...) define external symbols
.HD64 assemble HD64180 instructions
IF expression conditional assembly
IF1 A conditional trueness based on lsb
JIF16 conditional trueness based on 16-bits
JIN(MACLIB) {d:}filename include file
IRP identifier, string {,string...} dindefinite repeat macro
IRPC identifier, string indefinite repeat character macro
.LALL list all macro lines
.LFCOND list all false conditionals
JLIST resume listing
LOCAL identifier {,identifier...} define local macro labels
LABEL. MACRO dummy {,dummy. ..} stored macro definition
NAME modulename define module name

Cl

LABEL

Legend

ZAS PSFEUIDO-OP SUMMARY (con't)

Pseudo—op Form

ORG expression

PAGE {expression}

.PHASE expresSion

«PRINT pass, text

PUBLIC symbol {,symbol...}
.RADIX n

REPT expression
+REQUEST filename {,filename...}
+SALL

+SBTTL 'string'

SET(DEFL) expression

.SFCOND

LTITLE 'string’'

XALL

LXLIST

Definition

change value of relocation counter

page definition or eject

relocate block of code

print text during assembly

define public symbols
set radix default
repeat macro

request library search
suppress macro listing
define subtitle

set label to a value

suppress listing of false conditionals

define title

exclude non-code macro lines

suppress listings

items in ()'s are aliases; in { }'s, optional.

APPENDIX D
HITACHI HD64180 MODE

Object Source

Code Statement Operation
ED3805 INO A, (nn) Load register with input from
ED0O005 INO B, (nn) port (nn).
ED0805 INO C,(nn)

ED1005 INO D, (nn)
ED1805 INO E, (nn)

ED2005 INO H, (nn)

ED2805 INO L, (nn)

% J sk kK Kk Kk ok ok k kK sk Kk Kk ok dk ke sk dk ki ok k ok ok ke e Y ok sk ok ok e ke ke gk ke ok gk ok sk sk Kk ok ok ok ke ke ok ok ok ok sk sk ok ok sk ok ok ok ke ok
ED4C MLT BC Unsigned multiplication of
ED5C MLT DE each half of the specified
ED6C MLT HL register pair with the 16-bit
ED7C MLT SP result going to the specified

register pair.
% %k kK Kk Kk Kk ok sk ok Kk %k ok kK ok Kk %k sk sk kK %k Kk ok sk sk ke sk ok ok kK ko ok sk k ke ke kK ok sk ok kK ke sk ke ok ok ke sk ke ki ok ke ke k ok ok

ED8B OTDM } Load output port (C) with
location (HL), decrement HL,
. B, and C.
%k Kk Kk Kk Kk Kk Kk K Kk sk Kk ok sk Kk ok ok de ok dk Kk Kk ks ke ko ok ok ok ok ok ok k kK ke ke ok ok ke ok sk K sk ok ok ok ok ok ok ok dk ok ok ok ok ok ok ok ok Kk
ED9B OTDMR Load output port (C) with

location (HL), decrement HL,
B, and C. Repeat until B=0.
K K KK K K kK Kk K Kk dkk ke kR Kk ok ok kK Yk Kk %k %k 3k Kk ko ki kK ok ke ke ke ke e ok ok ok ok ok ok ke ke %k kR ok ki ke ok ok Kk ok ok ok ok %k
ED83 OTIM Load output port (C) with
location (HL), increment HL
and C. Decrement B.
% Kk K Je Kk %k ke ok sk K vk ok ok sk kK ok ke ke sk ok ke ok ok ok ok kK sk ok ok ok ok ok ok ke kR K K Rk ok ok kR ke ko ok sk ok ok sk ok ok ok ke ke ok ok ok
ED93 OTIMR Load output port (C) with
location (HL), increment HL
and C. Decrement B. Repeat

until B=0.
% J K Kk K Kk Kk Kk Kk K K Kk Kk ok k Kk k Kk k k Kk sk ok %k sk sk sk sk e ok sk k dk k ke ok kK ok ok %k 3k ok %k 3k 3k sk dk ok ok ke ok Kk dk k ok %k ok kK
ED3905 ouTo0 (nn),A Load output port (nn) from
ED0105 ouT0 (nn),B register.
ED0905 ouT0 (nn),C
ED1105 ouTd (nn),D
ED1905 ouT0 (nn),E
ED2105 ouT0 (nn).,H
ED2905 ouT0 (nn),L
% %k sk d Kk ok Kk sk sk ok Kk k ok sk ok ok ok dk kK vk Kk ok %k ok ok dk vk ok ok ok gk ke ke sk ok dke sk ok ke gk ke ok ok ke ke ok ok ke ke gk ok ke ok ok ke ok ok ke ok ok ok
ED76 SLP Enter sleep mode.

K K ek kg ok ok e e ok sk Kk ok ok ok sk ok ok ok ok kA ke sk ok ke ok ok ok ok ok ok ok ke ok ok sk ok ke ke sk ok ok sk sk ok ok ok ok sk ok ke sk ok ok ok ok ok ok ok ok

ED3C TST A Non-destructive AND with

EDO4 TST B accumulator and specified
EDOC TST C operand.

ED14 TST D

ED1C TST E

ED24 TST H

ED2C TST L

ED6405 TST nn

ED34 TST (HL)

%k K ke ok %k Kk Kk K Kk %k sk sk ok sk ok ke sk sk %k ke sk k ok sk %k ok ok ok ok sk Sk ok ok sk sk ok sk ok ok ok sk ok ok %k ks ok ok ok sk ok %k ok sk %k ok ke ke ok ok ok ok ok
ED7405 TSTIO nn Non-destructive AND of nn and

the contents of port (C).

D1

