
,;;.,~~ • -. _ I' ~',t J ~;::~. -~ •

I~ .~f· M;cr:osof'
.'":,, ~~. .'':'' 'i ... ,£\;i. . -~

•

SECOND EDITION

I

Microsoft's

80386/80486
Progra ing Guide

Microsoft's

80386/80486
Progralllllling Guide

®

Ross P. Nelson

PUBLISHED BY

Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1991 by Ross P. Nelson

All rights reserved. No part of the contents of this book may
be reproduced or transmitted in any form or by any means without
the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data

Nelson, Ross P., 1957-
Microsoft's 80386/80486 programming guide / Ross P. Nelson. -- 2nd

ed.
p. cm.

Second ed. of : 8086. c1988.
Includes bibliographical references and index.
ISBN 1-55615-343-0
1. Intel 80386 (Microprocessor)--Programming. 2. Intel 80486

(Microprocessor)--Programming. 3. Assembler language (Computer
program language) I. Nelson, Ross P., 1957- 80386. II. Title.
QA76.8.12684N45 1991
005. 265--dc20 90-26294

Printed and bound in the United States of America.

3456789 AGAG 432

Distributed to the book trade in Canada by Macmillan of Canada,
a division of Canada Publishing Corporation.

CIP

Distributed to the book trade outside the United States and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N. Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging-in-Publication Data available.

IBM® is a registered trademark of International Business Machines Corporation. All
mnemonics copyright Intel Corporation 1986, 1987. Intel® is a registered trademark of Intel
Corporation. Microsoft® and MS-DOS® are registered trademarks of Microsoft Corporation.
OS/2® is a registered trademark licensed to Microsoft Corporation.

Acquisitions Editor: Michael Halvorson
Project Editor: Jack Litewka
Technical Editor: Jim Johnson

To Robert and Ardell Nelson

CONTENTS

Acknowledgments ix

Introduction xi

1 Evolution of the 80x86-Family 1
Architecture

2 The CPU Architecture 13

3 Memory Architecture: Segmentation 47

4 The Basic Instruction Set 67

5 The Protection Mechanism 101

6 Memory Architecture: Paging and 135
Cache Management

7 Three in One 149

8 Reference Section 161

Appendix A Powers of Two 401

AppendixB ASCII Character Set 403

AppendixC Opcode Tables 405

AppendixD Instruction Format and Timing 417

AppendixE Instruction Disassembly Table 455

Appendix F 8086-Family Processor Differences 463

Index 467

ACKNOWLEDGMENTS

A number of people deserve credit for helping make this book a reality. Some
I have spoken with and worked with directly; others have worked behind the
scenes, doing a wonderful job nonetheless. Working with the people at Microsoft
Press was a positive experience, and I sincerely thank them all for their support and
encouragement. In addition, my thanks to Ray Duncan for getting the ball rolling, to
Intel Corporation for its cooperation, to Matt Trask and Jim Johnson for their techni­
cal reviews, to my coworkers at Answer Software for their support, and especially
to Pam for believing in me.

This is a book about microprocessor technology, so of course it was written with
the assistance of microprocessor technology; I completed a large portion of the
first-edition manuscript using a Toshiba nooo portable computer while riding Santa
Clara County Transit. I used Word for Windows to create this edition, with great
appreciation of its revision-marking features.

Ross Nelson

ix

INTRODUCTION

The Intel 80386 microprocessor was probably the most widely discussed central
processing unit (CPU) chip since the introduction of the 8080 in the early days of
personal computing. The first edition of this book explored the capabilities of the
80386. Since then, Intel Corporation has introduced three additional processors with
the same basic architecture. The 80386 family of processors now includes the origi­
na180386, the 80386sx, the 80376, and the newest and fastest member of the fam-
ily, the 80486. I have expanded the book to describe the differences among the
processors.

Chapter 1 presents a history of the x86 microprocessor family. Each subsequent chap­
ter discusses a portion of the 80386/80486 processor architecture. The organization
of the CPU is presented in Chapter 2. The basic memory architecture is discussed in
Chapter 3. Chapter 4 introduces the basic instruction set and the floating-point
instruction set. Chapter 5 explains protected-mode operation. Chapter 6 tells how
paging extends the memory system and how the cache works in the 80486. Com­
patibility with previous processors via real mode, virtual 8086 mode, and protected
mode for the 80286 is covered in Chapter 7. Finally, Chapter 8 provides a full instruc­
tion set reference.

This book focuses entirely on programming. It does not discuss the hardware fea­
tures of the processor unless those features relate to specific instructions. If you are
interested in the hardware characteristics of any of these processors, you can obtain
the appropriate data sheets and reference manuals from Intel.

To get the most from this book, you should be familiar with computer systems. In
particular,·an understanding of binary and hexadecimal arithmetic and machine­
language programming for some other processorCs) will be helpful.

A large portion of the book is devoted to protected mode. Although you do not
need to understand this feature to program applications, it is important to under­
stand protected mode to grasp why system designers made the choices they did
in implementing the OS/2, Microsoft Windows, PC-MOS/386, and UNIX oper­
ating environments.

xi

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

The conventions used throughout this book are summarized on the following pages.
If you are familiar with other Intel microprocessors, you are probably already famil­
iar with these concepts.

Number Formats
I use numbers in three bases: binary (base 2), decimal (base 10), and hexadecimal
(base 16). You can assume that all numbers are base 10 unless they are followed by
the suffix "B" (for binary) or "H" (for hexadecimal). For example:

1AH = 26 = 00011010B

Data Types
The most commonly used data types are 8-bit, 16-bit, and 32-bit quantities. In this
book, an 8-bit quantity is called a byte, a 16-bit quantity is called a word, and a 32-
bit quantity is called a doubleword, or dword. This nomenclature is unusual because
the standard data item size of a computer is commonly called a word. In the Digital
Equipment VAX computers, for example, a 32-bit quantity is a word, and a 16-bit
quantity is a halfword. The same is true for the Motorola 68000 family and the IBM
370 and 390 mainframes.

Although the standard 80386/80486 operand size is 32 bits, Intel retained the nam­
ing conventions of its earlier processors because the 32-bit processors are de­
scendants of the 8086 and the 80286, which were 16-bit processors. This simplifies
running software from the 8086 or the 80286 and lets you use the same assembler to
generate code for any of the four processors.

The smallest addressable data item in the x86 family is the byte. All other data items
can be broken down into bytes. The processor stores larger data items in memory
low-order byte first, as the follOwing diagram shows:

Bits 7 0

I I
1 byte

Bits 7 0 15 8
I low byte ! high byte I

16-bitword

Bits 7 0 15 8 23 1631 24
low byte ! ! ! high byte I

32-bit dword

Assume that the 32-bit value 100F755DH is stored in memory, beginning at location
10. The individual memory bytes are:

Address 10

Contents 5DH

xii

11

75H

12

OFH
13

10H

Introduction

It is unnecessarily complex, however, to show words and doublewords broken down
in byte order, and illustrations in this book treat the quantity as a unit. For example,
the book would present the previous value as:

31 o
100F755DH

When performing operations on items smaller than a single byte-for example, on
a single bit or bit field-the processor always fetches at least 1 byte from memory.

Assembler Notation
An executable instruction is a binary pattern that is decoded by the logic inside the
cpu. An instruction can be from 8 to 128 bits in length. Because coding a program
using binary patterns would be tedious, programmers use a type of program called
an assembler. The simplest type of assembler takes a set of keywords and symbols
and translates them into an instruction. The set of keywords and symbols is called
the assembly language. Typically, there is a one-to-one mapping between an in­
struction in assembly language and an actual machine instruction. The assembler
would take an instruction such as:

ADD EBX. 5

meaning, "Add 5 to the value in register EBX and store the result in EBX," and
would translate it into the bit pattern:

100000001100001100000101B

The names of the instructions, called mnemonics, usually occupy the first field in
an instruction line. The subsequent fields are the operands of the instruction and
can take a number of forms. The simplest is a numeric value, such as the 5 in the
example above. A register name is another form of operand. An expression within
brackets, such as [EBP+21, signifies an operand that is a memory reference.

Throughout the book, I use standard Intel mnemonics. Notice, however, that a
mnemonic does not necessarily specify the exact encoding of an instruction. For
example, the "increment" instruction has a general form in which any operand may
be encoded, and the instruction INC EAX would be encoded as FFH OOH. A single­
byte instruction also exists for incrementing a general register. In this form, the INC
EAX instruction is encoded 40H. An assembler will generally choose the most com­
pact form of instruction for any given mnemonic, but the effect of executing either
form is the same.

I also use a common convention in discussions about setting bits. I use the term
"set" when assigning the value 1 to a bit, and the term "reset" when assigning the
value 0 to a bit.

xiii

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Syntax
This book uses the following syntax:

Operator Meaning Operator Meaning

+ Addition & Boolean AND

Subtraction > Greater than

x Multiplication < Less than

1 Division » Shift right

Not « Shift left

Equal to ::;; Less than or equal to

!= Not equal to ~ Greater than or equal to

Or +- Assignment
/\ Exclusive OR

32·Bit Instruction Set
The 80386, 80386sx, and 80486 support several modes that are compatible with
previous Intel processors (the 16-bit 8086 and 80286). However, this book focuses
on new features and does not discuss the 16-bit architectures of the 8086 and the
80286, even though they are a subset of the 80386/80486 processors capabilities.
Programmers using either the 80386 or 80486 as a replacement for previous pro­
cessors can simply continue to use reference materials for the 8086 or the 80286.

Operating System Services
The 80386 family architecture is quite complex, and it is not reasonable to expect a
stand-alone program to take advantage of all the CPU's capabilities. At various times,
I make statements such as "The operating system will ... " or "At this point, the oper­
ating system " In these cases I am not referring to any particular operating sys­
tem; instead, I am highlighting a feature that will be implemented by the operating
system software and not by an application.

xiv

1

EVOLUTION
OF THE

BOxBS-FAMILY
ARCHITEe lURE

Although I have spent more than a decade working with microcomputers, the
phrase "computer system" still brings to mind images of the installation in the base­
ment of the campus library at Montana State University. There, in air-conditioned
comfort, behind glass walls, lived Siggie, the university computer system (a Xerox
Sigma 7). Housed in several refrigerator-size units, Siggie served the computing
needs of the entire university.

By 1986, the 80386 microprocessor, born of a technology that was first realized
while Siggie was still considered state-of-the-art, could serve as the heart of a desk­
top microcomputer that had greater computing power than Siggie. And now the
even faster 80486 is merely one more member of a processor family that Intel claims
will be continuously improved through the year 2000.

The First Components
The 80486 is the latest member of a line of microprocessors built by Intel Corpora­
tion. Intel claims to have invented the microprocessor in 1971, as a result of having
been approached by a (now defunct) Japanese corporation to build a custom circuit
to serve as the "brains" for a new calculator. Intel deSigner Ted Hoff proposed that a
programmable, general-purpose computing circuit be built instead, and the 4004
chip became a reality. The 4040 and 8008 chips soon followed; however, these
chips lacked many characteristics of microprocessors as we know them today.

1

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

The 8080
The chip that, by most accounts, led to the birth of the microcomputer industry
was the SOSO, which Intel introduced in 1974. An article in the September 1975 issue
of Popular Electronics brought the idea of a "personal" computer to the mass mar­
ket, and, as they say, the rest is history. The SOSO was the CPU (central processing
unit) in such pioneering systems as the Altair and the IMSAI. Intel did not enjoy a
monopoly on the market for long, however; Motorola Corporation introduced the
6S00, MOS Technology responded with the 6502, and two designers of the SOSO left
Intel for Zilog Corporation, which soon produced the ZSO. Unlike the 6soo and the
6502, whose architectures were completely different from those of Intel processors,
the ZSO was compatible with the SOSO but had an expanded instruction set and ran
twice as fast. The battle for CPU supremacy was on.

The SOSO was an S-bit machine-that is, it processed data S bits at a time. It had a
single accumulator (the A register) and six secondary registers (B, C, D, E, H, and L,
shown in Figure 1-1). These six registers could be used in S-bit arithmetic operations
or combined as pairs (BC, HL) to hold 16-bit memory addresses. A 16-bit address
allowed the 8080 to access 216 bits, or 64 kilobytes (KB), of memory.

Intel also developed a refinement of the SOSO called the 80S5, an SOSO-compatible
processor that featured better performance and a simpler hardware interface.

BC
DE
HL

B

D

H

SP

PC

PSW

A
C
E
L

Figure 1-1. The 8080 register set.

The 8086
In 1975, under pressure from other manufacturers' faster, more powerful micropro­
cessors, Intel moved to a 16-bit architecture. The sos6 was touted as the successor
to the SOSO microprocessor, and, although the instruction set was new, it retained
compatibility with the SOSO's instruction set. Figure 1-2 shows how the new registers
of the SOS6 could be mapped into the set of SOSO registers.

Programs that were written for the 80S0 could not be run on the SoS6; however,
almost every sos6 instruction corresponded to an S080 instruction. At worst, an
S080 instruction could be simulated by two or three sos6 operations. An Intel
translator program could convert SOSO assembler programs into sos6 assembler

2

1: Evolution of the 80x86-Famlly Architecture

programs, and the first versions of Microsoft Corporation's BASIC and MicroPro In­
ternational Corporation's WordStar for the sos6 were ported from S080 systems via
the Intel translator. This concern for compatibility has characterized Intel's presence
in the microcomputer market. Every new generation of microprocessor has been
able to run software written for the previous generation.

AX

BX
CX
DX

AH

BH
CH
DH

8086

Flags

Dr

SI
BP
SP
IP

AL
BL
CL
DL

rl
rl

r-
t---

Figure 1-2. The 8080-8086 register set map.

8080

PSW
A

B C
D E
H L

SP I
PC I

In addition to providing software compatibility, Intel was interested in supporting
high-level languages. At Intel, almost all programming was done in an Algol-like
language called PL/M. Intel believed that a language such as PL/M or Pascal would
become the dominant microcomputer development language, so Intel dedicated
many sos6 registers to specific purposes, as shown in Figure 1-3.

AX

BX
CX
DX

Flags
AH
BH
CH
DH

AL
BL
CL
DL

Accumulator
Base pointer
Count register
Data register

Dl Destination index register
~--------------~

SI Source index register
~--------------~

BP Stack frame base pointer
~--------------~

SP Stack pointer
~------------~

IP Instruction pointer L-______________ ~

CS Code segment
~--------------~

DS Data segment
~----~~----~

SS Stack segment
~----~~----~

ES Extra segment L-____________ ~

Figure 1-3. The 8086 register set.

3

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

The next two examples show dedicated registers in use. Figure 1-4 shows how high­
level languages such as Pascal use the stack pointer (SP) and base pointer (BP)
registers.

Pascal code
procedure procl (a. b int)
i nt i:
rea 1 j:
begin

end
BP

SP

Figure 1-4. Subroutine context.

----.

----.

Stack frame

BP

';/

(parameters)
OldIP
OldBP
(locals)

Variable Addressing mode

+--

a
[BP - offset]

b

-
i

[BP + offset]
j

In a Pascal program, the context of the currently executing subroutine is maintained
on the stack. The values (parameters) provided to the subroutine by the calling rou­
tine are first on the stack, the saved IP of the calling routine are second, and the
saved BP of the calling routine are third. The context also contains stack space for
any temporary or local variables that the subroutine uses. Access to either the pa­
rameters or local variables is relative to the current value of BP.

Consider the Pascal assignment statement in Figure 1-5. Because an entire record
must be copied, the compiler generates a block move instruction that uses the SI,
DI, and ex registers.

The advantage of dedicated registers is that it allowed Intel to encode the instruc­
tions in a compact, memory-efficient manner. The opcode specifies exactly what is
to take place; for example, in the MOVSB instruction, specifying the three operands
(source, destination, and count) is unnecessary. As a result, the MOVSB opcode is
only 1 byte. The disadvantage of dedicated registers is that if you are using SI or DI
and want to do a MOVSB instruction, you can't use another register.

The 8086 also introduced segm~ntation to the microprocessor world. A segment is a
block of memory beginning at a fixed address that is determined by the value in the I
appropriate segment register. This concept, probably the most despised feature of
the 8086 because of the restrictions it imposes, was incorporated for compatibility
with the 8080; each segment was 64 KB, equivalent to one 8080 address space.
Using segmentation, software can maintain the 16-bit addressing used in the 8080
while expanding (through the use of multiple segments) the memory that the chip

4

1: Evolution of the 80x8S-Famlly Architecture

Pascal code

va r
i. j : employee_ree;

begin

j;

end.

Assembly code

lea di.
1 ea 5 i. j
mov ex. SIZEOF(ree)
rep movsb

Memory.

DI--,: '
- - - I

Source Destination

Figure 1-5. Block move.

can address. The 8086 provides four segment registers that can point anywhere in
the I-megabyte (MB) address space. They are defined as follows:

CS-The code segment register: All calls and jumps refer to locations within the
code segment.

DS-The data segment register: Most memory-reference instructions refer to an
offset within the data segment.

SS-The stack segment register: All PUSH and POP instructions acCess data in
the stack segment. Additionally, any memory reference done relative to the BP
register is also directed to the stack segment.

ES-The extra segment register: This segment specifies the destination seg­
ment in certain string processing instructions.

The wayan application manages memory (the memory model) is usually consistent
throughout a program. When Intel introduced the 8086, three memory models were
postulated, which are shown in Figure 1-6 on the following page.

The tiny model mimicked the 8080 address space. The code segment and data seg­
ment were in the same area of memory, and the program was limited to 64 KB. The
small model was expected to be prevalent because it allowed programs to double in
size. By having separate code and data segments, programs could expand to 128 KB
and still retain 16-bit addressing. The large memory model allowed the use of mul­
tiple code and data segments. In this model, the entire I-MB address space of the
processor could be used.

5

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Tiny

Ws
DS
SS
ES

Code
+

Data
+

Stack

Figure 1-6. Memory models.

Small

[J
[ID SS

Code ES

Data
+

Stack

Large

rL~SSU

[]] DS
ES

When the 8086 was introduced in 1978, most microcomputers were limited to 64
KBj almost no one realized how quickly the 64-KB segment limitation would
become a serious problem. Although the large model allowed programs to fill the
entire 1 MB of 8086 address space, using the large model meant using 32-bit point­
ers. On a 16-bit machine, 32-bit pointers exacted a size and performance penalty
that most programmers were unwilling to pay. By the early 1980s, even the 1-MB
limitation became confining.' Additional memory models with names such as "com­
pact" and "medium" were introduced to optimize performance for special program­
mingneeds.

Other processors in the 8086 family were the 8088, the 80186, and the 80188. The
8088, introduced a year after the 8086, had the same 16-bit internal architecture but
a restricted 8-bit external bus. The 8088 could run the same programs as the 8086
but typically ran them 30 percent slower. The 8088 became wildly successful when
IBM chose it for the PC and the PC/XT. The 80186 and 80188 were announced much
later, in 1982. These processors kept the same base architecture but included fea­
tures such as direct memory access (DMA) controllers, on-chip counter/timers, and
a simplified hardware interface. They also operated more quickly than did the
8086/8088 and became popular in controller applications.

The 8087
An innovative part of the 8086 family of CPUs is the coprocessor. The ESC or
coprocessor escape class of instructions generated only a memory address on the
8086. Additional, special-purpose CPUs could be created to monitor the instruction
stream and watch for ESC sequences, as shown in Figure 1-7. Whenever an ESC was
detected, the coprocessor could decode the escape as an instruction for itself and
perform a function that the 8086 was incapable of doing efficiently on its own.

6

1: Evolution of the 8Ox86-Famlly Architecture

Instruction path

ESC 7 = FMUL ST(2

8087

Figure 1-7. 8086 coprocessor interface.

The only coprocessor developed for the 8086 was the 8087. The 8087 implemented
a floating-point instruction set, capable of as much as 80 bits of precision. Intel
worked closely with the Institute of Electrical and Electronics Engineers (IEEE) and
professors at the University of California, Berkeley, to create a floating-point repre­
sentation that was flexible and accurate. This representation and its numeric prop­
erties have since been formalized as Standard IEEE-7S4.

The 8087 contributed to the popularity of the 8086. A desktop computer that con­
tained both an 8086 and an 8087 could do more substantial scientific work than the
8086 alone. Implementing floating-point functions in hardware improved the per­
formance of mathematical calculations over existing software routines. However,
the 8087 exemplified the problems of the 64-KB segment size. As soon as scientists
and engineers had the computing power to handle real-world problems, they often
needed to deal with large arrays of numbers. The 64-KB segment limit restricted a
vector of double-precision floating-point numbers to no more than 1024 elements.
Software capable of getting around the restriction was soon available, but the large
memory model was difficult to program in and was slow.

The 80286
The next major introduction from Intel, the 80286, came in 1982. The 80286 is com­
patible with the 8086 family, but it also provides a Significant performance improve­
ment. It boasts two operating modes: real mode and protected mode. Real mode,
which emulates the 8086, is the default mode. The new mode is called protected
mode. In protected mode, the 80286 supports the 8086 instruction set but places a
new interpretation on the contents of the segment registers that control how
memory is accessed.

Although operating systems that are implemented under protected mode are differ­
ent from those that are designed for real mode, applications can be developed that
run in either mode. The design of these dual-mode applications requires that the
application observe certain memory restrictions.

7

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Unfortunately, MS-DOS, which is the dominant operating system for 8086-based
machines, places no restrictions on how an application addresses memory, and pro­
tected mode proved incompatible with a majority of MS-DOS applications. As a
result, for a number of years the 80286 was generally treated as a fast 8086 because
no one knew how to use the beneficial new feature-protected mode. This was
unfortunate because protected mode expands the amount of physically addressable
memory from 1 MB to 16 MB, allows the implementation of virtual memory, and
provides for the separation of tasks in a multitasking or multiuser environment.

Versions of UNIX run in protected mode, but UNIX has not been successful on the
80286 because competitive products usually run on more powerful 32-bit com­
puters. Subsequently, Microsoft introduced OS/2, which uses almost all protected­
mode features, and more recently introduced Windows 3, which also runs applica­
tions in protected mode.

The 80286 is the first Intel microprocessor designed for "serious" computing. Provi­
sions were made for multitasking, data integrity, and security. The designers ex­
amined the architecture of minicomputers and mainframes as they developed the
80286. In addition, two of the main influences on the 80286 designers were the
Multics project and a continued belief that Pascal would become the preeminent
application-development language.

Reading the conference papers about the Multics project will enlighten anyone who
thinks that protected mode is the product of some Intel designer's fevered imagina­
tion. Multics began in the mid-1960s as a joint research project among MIT, Bell
Laboratories, and General Electric. The project combined hardware and software
and was based on the GE 645 mainframe. The following is a partial list of architec­
tural features that the Multics group "pioneered":

• Virtual memory"

• Protection rings

• Segmented addressing'

• Descriptor access rights

• Call gates

• Conforming code segments

Some features of Multics also made their way into existing 80286-based software
systems. Microsoft's OS/2, for example, uses dynamic linking, another Multics
innovation.

The influence of Pascal on the design of the 80286 is shown by the addition of the
ENTER instruction to the 80286 instruction set. The ENTER instruction simplifies

• The Muitics group. did not invent these features, but it made them an integral part of the system.

8

1: Evolution of the aox88-Famlly Architecture

creating a stack frame such as the one shown in the subroutine context illustration
in Figure 1-4. ENTER can also copy the context or stack frame of the previous sub­
routine. This ability is not necessary in languages such as FORTRAN or C but is use­
ful in languages such as Pascal and Ada that allow nested procedure declarations.

The 80287
Intel also introduced a new coprocessor for the 80286, but the 80287 was a bit of a
disappointment. Although the 80286 executes programs two to three times faster
than the 8086, the performance of the 80287 is about the same as that of the 8087.
Intel did not really modify the computational engine of the 8087 in creating the
80287, so the new coprocessor does not run any faster. Intel did change the inter­
face between the CPU and the coprocessor, however, eliminating the need for the
coprocessor to monitor the instruction stream of the main cpu.

In this new interface method, illustrated in Figure 1-8, the main CPU decodes the
ESC instructions and then passes the information to the coprocessor via the I/O
channel. Because addressing is treated differently in real mode than it is in pro­
tected mode, the coprocessor would have had to operate in different modes as well,
using the old interface method. Instead, the new interface requires the 80286 to vali­
date all addresses before signaling the 80287. This interface allows the coprocessor
to run at a clock rate different from that of the main CPU, and it also allows the
80287 to be used with CPUs other than the 80286.

Instruction path

Figure I-S. 80286 coprocessor interface.

Competitive Pressures
Between the introduction of the 8086 and the 80286, Motorola developed what
became the strongest competition to Intel's dominance of the microprocessor
market, the 68000 family. Several features of the Motorola microprocessors were at­
tractive to the development community. The 68000 family incorporates a 32-bit in­
ternal register file for data and addressing. This allows a large application address
space without the limitation of 64-KB segments. This 32-bit capability also makes it
easy to port operating systems (such as UNIX) and minicomputer applications to
the 68000-family processors.

9

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Motorola also boasted about the "orthogonality" of the 68000 instruction set.
Unlike the 8086 and the 80286, with their special-purpose registers, the 68000
allowed programmers to specify any register for a given instruction. Although all
68000 microprocessors had 32-bit register files, the first two CPUs (68000 and 68010)
were limited to 24-bit addresses and a 16-bit memory interface. In 1985, however,
Motorola began sampling the 68020, which had a full 32-bit address bus and a 32-bit
data bus. Although Intel had most of the business microcomputer market, makers of
scientific and engineering workstations almost unanimously chose Motorola CPUs
for their products.

Intel's 32·Bit Microprocessor
Intel's design engineers faced two problems: compatibility and performance. They
needed to maintain compatibility with the previous generation of processors to re­
tain their share of the PC business market; Intel's marketing force frequently referred
to the "billions and billions" of bytes of code (applications) that the 80386 had to
be able to run. At the same time, they needed a product that would address the
shortcomings of the 8086-family architecture, which gave Motorola an edge in
scientific and engineering markets. The resulting product, the 80386, addressed
these issues by operating in a number of modes. At boot time, it operates in real
mode like the 80286 and is nothing more than a very fast 8086. It uses 16-bit regis­
ters and the 8086 segmentation scheme, and it is subject to the I-MB memory
limitation.

But the 80386 can also be switched to protected mode. In protected mode, each
segment is marked by a bit that deSignates whether the segment is a protected­
mode segment containing 16-bit 80286 code or a 32-bit protected-mode segment.
Programs residing in 32-bit segments can use the extended address space (segments
larger than 64 KB) and additional features, including array indexing, orthogonal use
of the register set, and special debugging capabilities not found in previous
processors.

A protected-mode operating system can also create a task that runs in virtual 8086
mode. An application running in this mode believes that it is running in real mode
or on an 8086. However, the operating system can designate certain classes of in­
put/ output (I/O) operations that it will not allow. If the application attempts to vio­
late any operating system rules, an interrupt is generated that transfers control from
the application to the operating system. By examining the instruction that the appli­
cation was trying to execute, the operating system can choose to block the applica­
tion from running, simulate the operation, or ignore it and let the application
continue. The operating system also maps the I-MB 8086 address space that the ap­
plication believes it is running under to the actual memory space that the operating
system wants the application to use. A protected-mode operating system can estab­
lish multiple virtual 8086 tasks.

10

1: Evolution of the 8Ox86.Famll, Architecture

The 80386 also extends the similarities between the Intel architecture and the
Multics system. Like Multics, the 80386 integrates the ability to perform demand
paging (a virtual-memory technique used in minicomputers and mainframes) with
segmentation.

Intel also continued a tradition it began with the 8088: It offered a low-cost version
of the processor. The 80386sx is identical internally to the 80386. However, it has
only a 16-bit external data bus and a 24-bit address bus, and it is generally available
at slower clock speeds than the full 32-bit version (sometimes called the 80386DX).

Another variant on the 80386 is the 80376. This chip is identical to the 80386sx
except that it operates only in 32-bit protected mode and does not support paging.
It cannot run real-mode programs and has no virtual 8086 mode capability.
It is designed for embedded process control applications.

The 80387
The 80386 microprocessor line from Intel also boasts new coprocessors, the 80387
and the 80387SX. The interface between the 80386 CPU and the coprocessor is the
same as that defined for the 80286 and the 80287. The 80386 can also be coupled
with the slower 80287 to provide a lower-cost floating-point environment. If the sys­
tem board has the appropriate socket, the 80387 provides a significant performance
improvement over its predecessor, executing floating-point benchmarks about five
times faster.

The 80486
In 1989, the newest kid on the block was the 80486. Its basic architecture is identical
to that of the 80386, but the following advances are part of its design: single-clock
execution for the most basic instructions, an 8-KB cache to speed access to fre­
quently referenced memory locations, and an on-board numeric coprocessor. Be­
cause all the floating-point logic has been incorporated directly into the 80486, an
80487 will never be needed. Additionally, the chip was redesigned to make it easier
to build computers with multiple 80486 CPUs.

Intel has indicated that the 8Ox86 product line will continue to evolve. The next­
generation processor will be called the 80586 and will include capabilities beyond
those of the 80486. However, Intel has committed to broadening the microprocessor
line as well as lengthening it. The CPUs are also available in a wide range of clock
speeds, from 16 through 33 megahertz, with even faster models promised for the
future.

11

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Summary
The first processor of the line to feature 32-bit computing was the 80386, so I will
refer to the 80386, 80386Sx, 80376, and 80486 as the "80386 family," As you can see
from the following table, the technology has advanced significantly beyond that of
its predecessors; however, the road to 32-bit computing was not necessarily straight
and narrow. Processor design has been shaped by a number of forces: the ideals of
the designers, the limits of compatibility (some stemming from the early days of the
8080), threats from the competition (both real and perceived), and other factors
such as Pascal, Multics, and UNIX. Now that I've shown the origins of the 80386
family, the remainder of the book will show how it works.

Integer
Floating point

8086/87

1.0
1.0.

Relative Performance

80286/287

2.7
1.7

80386/387

9.0
10.0

80486

20.0
40.0

For example, the 80486 is approximately 20 times faster than the 8086/87 perform­
ing integer calculations and approximately 40 times faster performing floating-point
calculations. (Measurements refer to the clock rate of the chip when first introduced.
Faster versions of all the processors have subsequently been made available.)

12

2

THE CPU
ARCHITEe lURE

Back in 1837, when Charles Babbage was musing over the idea of computation
automata, he referred to his grandest scheme as an "analytical engine." At that time,
especially considering the mechanical aspects of Babbage's idea, an engine was an
apt metaphor for a computing device: fuel, combustion, and power became input,
computation, and output.

A Data-Processing Factory
In recent years, the machinelike cycle led to limitations on the amount of work that
could be accomplished. A modern microprocessor is more analogous to a factory
than to an engine. At the heart of this data-processing factory, the computational
engine remains, but it is surrounded by a bevy of supporting departments.

Figure 2-1 on the following page illustrates our imaginary widget factory. It is com­
posed of three departments: Shipping and Receiving, Materials, and Manufacturing.
The Shipping and Receiving department deals with the world outside the factory. It
orders truckloads of raw materials from suppliers and passes them to the Materials
department. The goods are sorted here and warehoused until needed. The Manufac­
turing department, the "engine" of the factory, forges the finished widgets from the
raw materials and routes them to Shipping and Receiving, where they are sent to the
outside world.

The efficiency of this model lies in the parallel nature of the different activities. At
the same time as the Materials department requests the raw goods necessary to
build widgets, Manufacturing builds the current supply of widgets, and Shipping and
Receiving deals with the outside world, buys unfinished goods, and ships the newly
finished widgets.

Conventional microprocessors, or CPUs, receive two classes of data: instructions
and operands. The instructions tell the computer which operations to perform on
the operands.

13

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Manufacturing
Shipping

& Widgets

T Receiving

Raw materials
Materials

Figure 2-L Widgetfactory.

Like our imaginary factory, the 80386 and 80486 can work on more than one instruc­
tion simultaneously. In the jargon of the computer industry, this is called pipelintng.

In Figure 2-2, I recast the widget factory as a data-processing factory analogous to
the operation of a microprocessor. The Shipping and Receiving department pulls
in bytes of data from memory. Instructions then move to the Materials department,
where they are decoded and stored. When requested, the new instructions and
any necessary operands pass to the Manufacturing department, the computational
engine. The results of an operation pass back to Shipping and Receiving, which
stores the results outside the CPU, in memory.

Results

Manufacturing Operands

lInstructions

Materials
Operations

Figure 2-2. Data-processingfactory.

Shipping
&

Receiving

Results

Raw
data

M
E
M
o
R
y

Although simple, this picture of the flow of information through the processor is
fairly accurate. The three departments in the example correspond to six logical units
in the 80386, as shown in Figure 2-3. The 80486 is somewhat more complex, adding
an additional execution unit for floating-point operation and a cache unit that sits be­
tween the rest of the processor and main memory. Each unit operates in parallel with
the other units. Later sections of this chapter describe the operation of each unit.

14

Manufacturing

Execution unit

Materials

Instruction
Decode

prefetch unit
unit

Figure 2-3. 80386 factory.

Keeping the factory moving

Shipping & Receiving

Segmentation

I unit

I
Paging

I unit

Bus
interface

unit

2: The CPU Architecture

Results

Raw data

M
E
M
o
R
y

The heartbeat of a microprocessor is the clock signal. This regular electronic pulse
keeps all units of the processor synchronized. The clock signal is a square wave os­
cillating at a specific frequency, as shown in Figure 2-4. Instruction timings, mem­
ory access times, and operational delays are measured in terms of clocks, or one
complete square-wave cycle. The 80386sx is available in versions that run at either
16 or 20 megahertz (MHz). The DX or standard 80386 is available in models that run
at a variety of speeds, from 16 through 33 MHz. The 80486 is available in 25-MHz or
33-MHz versions. The figure below shows a system running with a 25-MHz clock.
At 25 MHz, each cycle lasts 40 nanoseconds.

CPU

Clock*

* Actual hardware signal on the 80386 only is two-phase;
'--___ ---' that is, it oscillates twice for every processor clock.

Figure 2-4. A square-wave cycle.

You can compute the time it takes a single instruction to execute using the tables
provided in Appendix D. Figure the time for a single cycle and multiply it by the
clock count given for the instruction. You figure the cycle time by dividing the
clock speed (in MHz) into 1000. For example, the cycle time for a 16-MHz 80386 is
1000/16, or 62.5 nanoseconds. Notice that in the 80386 (SX and DX), the actual hard­
ware clock device oscillates at twice the chip's clock frequency; this is called a two­
phase clock. The 80486, however, does not use a two-phase clock.

15

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Performance advantages of parallelism
The pipelined operation of the 80386 and the 80486 "hides" portions of instruction
execution time. Some operations necessary to execute an instruction occur during
the previous instruction. The table that follows illustrates the difference between
executing a typical instruction (ADD ECX, [EBP+8]) on the 80386 and executing it
on a similar but imaginary processor without pipelining.

operation With Pipelining Without Pipelining

Instruction fetch o clocks 2-4 clocks

Instruction decode o clocks 1 clock

Operand address xlate 0-6 clocks 2-8 clocks

Operand read 3 clocks 3 clocks
Execute 2 clocks 2 clocks

Total: 5-11 clocks 10-18 clocks

Pipelining lets the 80386 execute an instruction about twice as quickly as a similar
processor that performs each step of the instruction sequentially. Some instructions
that have no operands appear to execute in "zero" time because of the parallel na­
ture of 80386 operating units. The 80486 has an even greater advantage. First of all,
the basic processor is faster. The execute time for many instructions on the 80486 is
a single clock, and the operand read time is only 2 clocks. In addition, the 80486
contains an on-chip cache that holds 8 KB of the most frequently referenced infor­
mation. If the operand address references a value that is stored in the cache, the
operand read time is 0, meaning that the entire instruction could execute in as little
as 1 clock cycle.

CPU Microarchitecture
Figure 2-5 shows a block diagram of the internal operating units of the 80386.
Although the programmer sees the 80386 as a single entity, it is instructive to see
how the 80386 achieves the division of labor that contributes to its speed.

Bus, interface unit (BIU)
The bus interface unit (BIU) is the 80386's gateway to the external world. Any other
unit that needs data from the outside asks the BIU to perform the operation. Simi­
larly, when an instruction needs to write data to memory or to the I/O channel, the
BID is presented with the data and address and is asked to place it on the bus. The
BID deals with physical (hardware) addresses only, so operand addresses must first
pass through the segmentation unit and the paging unit, if necessary.

16

2: The CPU Architecture

80386 overview:
Full 32-bit architecture

Execution unit Segment unit Paging unit

32-bit Segment Page
register descriptor descriptor

file cache cache

Barrel shifter Segment Page
-+ ALU ~ + unit - + unit

I Instruction l J Bus

I queue 1 'I unit
'---

I
Prefetch I Prefe.tch I Lj Imtruruon ~

umt t- queue umt J
Instruction decode unit Code prefetch unit Bus interface unit

Flexible on-chip memory management
• 32-bit registers • 32-bit bus
• 32-bit instruction set • 32-bit addressing modes

f---+

1+---+

32-bit
address bus
(24-bit on SX)

32-bit
data bus
06-bit on SX)

Figure 2-5. 80386 microarchitecture, (Reprinted ~ permission o/Intel Corporation,
copyright © 1986)

Instruction prefetch unit
The job of the prefetch unit is relatively simple. The instruction decode unit ex­
tracts from a 16-byte queue, and the prefetch unit tries to keep the queue full. The
prefetch unit continually asks the BIU to fetch the contents of memory at the next
instruction address: As soon as the prefetch unit receives the data, it places it in the
queue and, if the queue is not full, requests another 32-bit piece of memory. The
BIU treats requests from the prefetch unit as slightly less important than requests
from other units. In this way, currently executing instructions requesting operands
receive the highest priority and are not slowed down, but prefetches still occur as
frequently as possible. The prefetch unit is notified whenever the execution unit
processes a CALL, a JMP, or an interrupt so that it can begin fetching instructions
from the new address. The queue is flushed whenever a CALL, a JMP, or an inter­
rupt occurs, thus preventing the execution unit from receiving out~of-sequence
instructions.

17

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Instruction decode unit
The instruction decode unit has a job similar to that of the prefetch unit. It takes in­
dividual bytes from the prefetch queue and determines the number of bytes needed
to complete the next instruction. A single instruction in the 80386 can be anywhere
from 1 through 16 bytes. After pulling the entire instruction from the prefetch queue,
the instruction decode unit reformats the opcode into an internal instruction format
and places the decoded instruction into the instruction queue, which is three opera­
tions deep. The instruction decode unit also signals the BID if the instruction just
decoded will cause a memory reference. This allows the operands of the instruc­
tions to be obtained prior to the execution of the instructions.

Execution unit
The execution unit is the part of the CPU that does computations. It performs any
shifts, additions, multiplications, and so on that are necessary to accomplish an in­
struction. The register set is contained inside the execution unit. The unit also con­
tains a logic component called a barrel shifter, which can perform multiple-bit shifts
in a single clock cycle. The execution unit uses this capability not only in shift in­
structions but in accelerating multiplications and in generating indexed addresses.
The execution unit also tells the BIU when it has data that needs to be sent to the
memory or I/O bus.

Segmentation unit
The segmentation unit translates segmented addresses into linear addresses. Seg­
ment translation time is almost entirely hidden by the parallelism of the 80386. At
most, 1 clock is required to complete the address translation. The typical case is 0
clocks. The segmentation unit contains a cache that holds descriptor table informa­
tion for each of the six segment registers. The segmentation unit is described further
in Chapter 3.

Paging unit
The paging unit takes the linear addresses generated by the segmentation unit and
converts them to physical addresses. If paging is disabled, the linear addresses of
the segmentation unit become the physical addresses. When paging is enabled, the
linear address space of the 80386 is divided into 4096-byte blocks called pages.
Each page can be mapped to an entirely different physical address. Chapter 6
discusses the paging process in detail.

The 80386 microprocessor uses a page table to translate every linear address to a
physical address. The paging unit contains an associative cache called the transla­
tion lookaside buffer (TLB), which contains the entries (new addresses) for the 32
most recently used pages. If a page table entry is not found in the TLB, a 32-bit
memory read cycle fetches the entry from RAM. Under typical operating conditions,
less than 2 percent of all memory references require the 80386 to look outside the
TLB for a page table entry.

18

2: The CPU Architecture

The time required to perform the translation varies between 0 and 5 clocks. Thanks
to the TLB, the typical delay is only Yz clock.

The 80486 Microarchitecture
Figure 2-6 contains a block diagram of the 80486 microarchitecture. It is quite simi­
lar to that of the 80386. The differences include an additional execution unit, which
handles floating-point processing, and the cache unit, which is located where the
BID is in the 80386. A BID is present in the 80486, but it will not be activated if a re­
quest for data can be satisfied by the cache.

The floating-point execution unit of the 80486 can operate in parallel with the stan­
dard execution unit, with floating-point and standard operations occurring simulta­
neously. The floating-paint capabilities of the 80486 are covered later in this chapter.

Floating- Segmentation Paging

point unit unit
t-- execution

unit
f- + +

Cache
+- Bus

unit ---.. interface
unit

Basic
'-- execution ~

I unit Instruction Code
- decode ..- prefetch

unit unit

Figure 2-6. 80486 microarchitecture.

The cache connection
With a cache enabled, the 80486 obtains significant performance advantages over
the 80386. This cache provides a general-purpose scratchpad for frequently used
memory references. (Other processing units contain special-purpose caches, such
as the TLB; these special-purpose caches exist in both the 80386 and the 80486.)

The slowest 80486 has an instruction cycle time of 40 nanoseconds. External RAM
that can respond to the requests of a processor that fast is prohibitively expensive.
As a result, system designers use slower RAM and induce wait states. A wait state
gets its name because the CPU must wait for external RAM to read or write the re­
quested information. The cache holds duplicate copies of data in external memory.
Reading the cached copy allows the 80486 to eliminate wait states.

19

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

The size of the cache is only 8 KB, so the processor tries to use the space intelli­
gently and only cache the most frequently used memory values. By reading the
cached copy, the 80486 can get its operands immediately, without memory refer­
ence times (at least 2 clocks) or wait states (system dependent).

The cache is described in detail in Chapter 6.

Instruction Set Architecture
The execution unit presents the programmer with the model for instruction execu­
tion. It contains the logic to process instructions, to operate on various data types,
and to interpret control information.

Because the 80386, 80386sx, and 80486 are 32-bit processors, the typical size of
an operand is a 32-bit quantity. Also, because these chips process data 32 bits at a
time, it is customary to say that they have a word size of 32 bits. Unfortunately, the
term word is ambiguous when referring to Intel processors.

For simplicity, word refers to a 16-bit quantity, as it did in the 8086 and 80286 envi­
ronments. The term dword, or doubleword, refers to a 32-bit quantity. The term
32-bit word is also used.

Bits and bit strings
Although the basic (default) operand size on the 80386 family of processors is 32
bits, these processors can manipulate quantities of various sizes. The most elemen­
tary is the bit. A bit is a single binary digit, and the 80386 family implements a num­
ber of instructions that test and modify individual bits. Bits are addressed as an
offset from a register or memory location. The low-order bit of the operand is desig­
nated as bit 0, the high-order bit in the low-order byte is bit 7, and the low-order bit
of the next byte is bit 8. Figure 2-7 shows the bits in a register and in memory. If the
operand resides in memory, negative bit offsets can also be used. Bit -1 is the high­
order bit of the byte immediately preceding the memory address.

Bit n Bit Bit Bit Bit Bit Bit-n

6 16 8 0 -8 -16 1 7 07 07 07 07 0 7 0

1 1 1 1 1 1 .1 1

Address
a+2 a+1 a a-I a-2

31 0

1
EAX

1

Figure 2-7. Bit strings.

20

2: The CPU Architecture

Bytes
The byte is the basic unit of addressability in the 80386 family; that is, address 2
refers to the third byte in memory, not the third dword. A byte is an 8-bit quantity
that can be interpreted as either a signed or an unsigned value. Figure 2-8 shows the
layout of a byte and the range of values that it can specify.

I I Signed value -128 ~ x ~ 127
L.... -----'. Unsigned value 0 ~ x ~ 255

7 0

Address
a

Figure 2-8. Byte value range.

When a byte is interpreted as an unsigned number, it can take on a value ranging
from 0 through 255. If a byte is interpreted as a signed number, it is assumed to be
in two s complement notation. This notation allows a single byte to store values
ranging from -128 through +127. To determine the value of a two's complement
number, follow these steps:

1. Examine the most significant bit (MSB) of the value. If the MSB is 0, the number
is positive and can be read as if it were an unsigned value. If the MSB is 1, the
value is negative.

2. You can find the absolute value of the number by taking the complement of the
number (inverting the value of each bit) and adding 1.

For example, consider the binary value 10111100B. The most significant bit, 1, indi­
cates that the number is negative. To find the absolute value, take the complement
(01000011B) and add 1. The result, 01000100B, is 68 decimal, so 10111100B represents
the value -68.

Words
Words, as previously defineq, are 16-bit quantities. Figure 2-9 shows the range of
values that can be stored in a word. When a word is written to memory, it is stored
in two bytes. The low-order byte is written to the specified address, and the high­
order byte is written to the next consecutive memory location.

Word values are interpreted as signed or unsigned in the same way as are byte
values. The only differences are that bit 15 is the MSB and that there is a greater
range of possible values.

I : I Signed value -32768 ~ x ~ 32767
L. __ ~.L-__ -'. UnSigned value 0 ~ x ~ 65535

15 87 0

Address
a + 1 a

Figure 2-9. Word value range.

21

MICROSOFT'S 80388180486 PROGRAMMING GUIDE

Dwords
Dwords are 32-bit quantities. Like bytes and words, they can be signed or unsigned.
The extra bits allow representation of integral values greater than 2 billion. Figure
2-10 illustrates the range of values for dwords and the way they are stored in mem­
ory. As with words, dwords are stored in memory low-order byte first. If the low­
order byte is stored at address m, the high-order byte is stored at address m + 3.

31 2423 1615 87 0

: I
Address

a+3 a+2 a+1 a

Figure 2-10. Dword value range.

Signed value -2147483648:S; x:s; 2147483647
Unsigned value 0 :s; x :s; 4294967295

The computer industry does not agree on the proper method of breaking up large
values into bytes for memory storage. Computers like the DEC VAX use the same
technique as the 80386. Others, such as the IBM 370 and the Motorola 68020, store
the high-order byte first. In homage to Jonathan Swift, the two formats are known
as "big-endian" (Motorola) and "little-endian" (Intel). New to the 80486 are two in­
structions for swapping dwords from one form to the other. Data format must be a
consideration when porting programs from one computer to another.

Quadwords
Quadwords are 64-bit numeric quantities. Only floating-point instructions reference
quadword memory operands, with two exceptions: The 32-bit Multiply instruction
generates a 64-bit value, with the high-order 32 bits in register EDX and the low­
order 32 bits in registerEAX, and the 32-bit Divide instruction accepts a 64-bit divi­
dend stored in the same register format.

ASCII and BCD
In the previous examples, the values discussed represent numbers. For ASCII and
BCD, the binary patterns represent encodings of information. (ASCII stands for
American Standard Code for Information Interchange.) ASCII values are 7 bits of in­
formation stored in a single 8-bit byte. The most significant bit is O. A particular bit
pattern represents a predefined value. For example, the binary pattern 0101011B
represents the plus character (+). 1010011B represents the letter S, and 0110101 repre­
sents the digit 5. Appendix B contains a table of all ASCII characters.

Similarly, BCD, which stands for binary coded decimal, encodes representations of
decimal numbers in binary format. Encoding a decimal digit requires 4 bits. Be­
cause using only 4 bits of a byte is inefficient, two BCD digits are often stored in a
single byte. This representation is called packed BCD. Figure 2-11 shows how values
are stored in BCD notation.

22

2: The CPU Architecture

BCD Decimal 7 9 3 2
0001 0111 1001 0011 0010 I BCD

0000 0
Address 0001 1

0010 2 a+4 a+3 a+2 a+1 a

0011 3
0100 4
0101 5 1 7 9 3 2
0110 6 10000 00011 0111 10011 0011 0010 I Packed
0111 7 BCD

1000 8
Address

1001 9
a+2 a+1 a

101O} : Invalid
1111

Figure 2-11. BCD storage.

Because ASCII and BCD provide ways to encode numeric values and do not have a
fixed length for such encoding, they can be used to implement variable-precision
numbers. The 80386 and 80486 chips support ASCII and BCD arithmetic via the
Decimal Adjust and ASCII Adjust instructions. ASCII and BCD arithmetic are dis­
cussed in Chapter 4.

The Register Set
In addition to implementing the logic to execute instructions, the 80386 and the
80486 have storage locations on the chip, called registers. Because they are inside
the CPU, registers can be accessed as operands much more rapidly than can exter­
nal memory. The general registers are used to store frequently accessed operands.
Other registers contain special values that control specific aspects of the processor's
operation.

The register set is partitioned into five classes: the general registers, which applica­
tions use for data storage and computation; segment registers, which affect memory
addressing; protection registers, which help support the operating system; control
registers, which modify the behavior of the processor; and debug and test registers,
which are used as their name implies.

General registers
The general registers are named EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP, as
shown in Figure 2-12 on the following page. As a rule, any instruction can use any
general register except ESP, either as an operand or as a pointer to an operand in
memory. Exceptions are noted in Chapter 4 in the discussion of the instruction set.

23

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

31
General registers

1615 8 7
EAX AX

I AH I AL

EBX BX
I BH I BL

ECX CX
JCHJCL

EDX DX
I DH I DL

EBP

I BP

ESI

I 51

ED!

I D!

ESP

I SP

Figure 2-12_ Base register set.

Segment registers

o 15 0
CS

SS

DS

ES

FS

GS

31
Status registers

16115
EFLAGS

1 FLAGS

EIP
1 IP

o

In the 80386 family, you can address selected portions of these registers. The part of
the register accessed depends on whether you are performing an 8-bit, a 16-bit, or a
32-bit operation. Each division of a register has a separate name. For example, EAX
is the name of one of the 32-bit registers. The lower 16 bits are addressable as AX,
and that half of the register is accessible as AL (the low-order 8 bits) or AH (the
high-order 8 bits). These names are left over from the previous generation of micro­
processors, the 8080 and 8086, as discussed in Chapter 1. The 80386 extended the
80286 register set to 32 bits, similar to the way in which the 8086 and 80286 ex­
tended the 8-bit registers of the 8080 to 16 bits. The 80486 did not introduce any
changes in the register set. Figure 2-13 shows a map of the register extensions.

Two additional registers hold status information about the current instruction stream.
The EIP register contains the address of the currently executing instruction, and the
EFLAGS register contains a number of fields relevant to different instructions.

Like the other registers, EIP and EFLAGS have 16-bit components-IP and FLAGS.
The 16-bit forms of these registers are used in virtual 8086 mode and in running
code written for the 80286.

24

2: The CPU Architecture

31

General registers

1615 8 7
EAX AX
IAHIAL

EBX BX
I BH I BL

ECX CX
I CH I CL

EDX DX
I DH I DL

EBP
I BP

ESI
I SI

EDI
I DI

ESP
I SP

D 80286 registers

Segment registers

o 15 0
CS
SS
DS
ES
FS
GS

Status registers

31 16115 0

EFLAr GS
FLAGS

EIP
I IP

D 80386/80486 registers extensions

Figure 2-13. 80386/80486 vs. 80286 registers.

EFLAGS register
A breakdown of the EFLAGS register looks like this:

31 1615 8 7 . 0

IIIIIIIIIIIIII~I~I~II~I ~~ I~I~I~I~I~I~II~II~II~I
• 80486 only

AC-AUgnment check: This bit exists only in the 80486. When AC is set to 1, the
80486 will expect all memory references to be aligned, so only the minimum pos­
sible number of memory accesses are required to reference an operand. Because of
the way the hardware memory interface works, a 32-bit oper::md must begin at a
memory address divisible by 4, or it will require two memory cycles to read the
operand. When AC=O, the 80486 will simply issue the necessary read cycles, despite
the performance penalty. This is the standard behavior for the 80386. When AC=l,
however, the 80486 assumes that the software is designed to run in the most effi­
cient way possible and will issue an alignment fault (INT 17H) if it finds this condi­
tion to be untrue. Both 16-bit objects and 80286-compatible selector:offset pairs

25

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

need only be aligned on even-address boundaries. Double and extended precision
floating-point numbers must be aligned on memory addresses divisible by 8. (Note:
The AC bit applies only to code running at privilege level 3, application programs.)

VM - Virtual 8086 mode: When this bit is set, it indicates that the currently exe­
cuting instruction stream is 8086 code. The implications of virtual 8086 mode are
covered in Chapter 7. Applications cannot change the VM (virtual mode) bit, and in­
structions that modify EFLAGS leave the VM bit unchanged. Only the task switch
operation or an interrupt/interrupt return can alter the VM bit.

RF-Resumejlag: This bit controls whether a debug fault can be generated dur­
ing the execution of an instruction. When an exception occurs during program exe­
cution, the processor pushes the current CS, EIP, and EFLAGS registers onto the
stack and transfers control to the proper exception handler. The stack image of the
EFLAGS register has the RF bit set to 1. When the exception handler returns to the
interrupted instruction, the RF bit is on, which prevents a recursive debug fault
from being generated. Any other faults (such as page faults or protection faults) oc­
cur as usual. The debug exception has the highest priority of all 80386/80486 excep­
tions; if, therefore, an instruction causes multiple faults, the first one processed is
the debug exception. When control returns to the interrupted instruction, the RF bit
is set, and the instruction is completed without retriggering the debug fault. The
processor clears the RF bit upon completion of the interrupted instruction. Chapter
5 contains a discussion of exceptions and support for debugging.

NT-Nested taskjlag: Whenever a CALL, an interrupt, a trap, or an exception
causes a task switch, this bit gets set. The bit is set in the EFLAGS register of the
new task and indicates that a reverse task switch (IRET) is valid. Task switching in
the 80386 and 80486 is discussed further in Chapter 5.

IOPL-I/O privilege level: This 2-bit field holds a value of 0-3 that indicates
the privilege level required to perform I/O instructions. Although 10PL is in the
EFLAGS re~ister, no procedure can modify it unless the procedure is running at
privilege level 0, and then only by using the POPF or POPFD instruction.

A procedure's current privilege level (CPL) must be equal to or more privileged than
the 10PL to execute any of the following instructions: IN, INS, OUT, OUTS, CLI, or
STI. A procedure that can execute these instructions is said to have I/O privikge.

OF -Ovetjlow jlag: When an arithmetic integer instruction is executed, the OF
bit is set if the result is too large or too small to fit in the destination register or
memory address. Because the OF flag.is set relative to integer instructions, the CPU
presumes that the destination register is one bit smaller in size to allow for the sign
bit. The following instructions illustrate some examples.

26

2: The CPU Architecture

MOV AL. 127

ADD AL. 2

MOV ex. -35000
SUB ex. 7002

AL - 7FH. largest 8 -bit
signed integer OF - 0
result. AL -- 81H (-127)
should be AX -- 0081 (129). OF - 1

ex - 7748H. OF - 0
result. ex -- 5BEEH (42002)
should be EeX -- FFFF5BEEH (- 42002).
OF = 1

Notice that the OF bit is ignored if unsigned arithmetic is intended. For example,
adding 127 and 2 in register AL generates the valid unsigned result of 129.

DF-Directionjlag: The direction flag bit modifies the behavior of the string
instructions: MOVS, STOS, LODS, CMPS, SCAS, INS, and OUTS. When DF is 0, the
string instructions operate on incrementally higher addresses. When DF is 1, the
memory addresses are decremented, and the operand addresses become progres­
sively lower. The STD instruction sets the direction flag bit, and the CLD instruction
clears the bit.

IF-Interrupt enablejlag: When this bit is set, the processor responds to exter­
nal hardware interrupts. When the bit is reset, interrupts are disabled-that is,
hardware interrupts are ignored. Notice that this bit does not affect the NMI inter­
rupt. The processor always responds to faults (exceptions) and software interrupts
regardless of the setting of the IF bit. When IF is 0, interrupts are said to be masked.

The STI instruction sets IF to 1, and the CLI instruction clears IF to 0. The interrupt
enable flag is also modified when an IRET is executed. POPF and POPFD instruc­
tions modify the interrupt enable flag only if the procedure executing the instruc­
tion has I/O privilege.

TF-Trapjlag: The trap flag bit assists in application debugging. When the TF bit
is set, an interrupt occurs immediately after the next instruction executes. The trap
flag is usually set by a debugger; the debugging capabilities of the 80386 family are
covered in Chapter 5.

SF-Signjlag: The sign flag bit changes when arithmetic or logical instructions
are executed. The sign flag bit receives the value of the high-order bit of the result
and, when set to 1, indicates that the result of the instruction is negative.

MOV EDX, -1
ADD EDX. 3
NEG EDX

sign flag unchanged by MOV
; EDX == 2. SF now 0
; EDX == -2. SF now 1

ZF-Zerojlag: The zero flag bit is set when arithmetic instructions generate a °
result.

MOV AL. 0
OR AL. AL

zero flag unchanged by MOV
AL unchanged. ZF now 1

27

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

AF -Auxiliary carry .flag: The auxiliary carry flag bit indicates that a carry out of
the low-order nibble of the AL register occurred in an arithmetic instruction. This
bit is used by the ASCII and BCD instructions. It allows implementation of multiple­
digit precision decimal arithmetic. The following example assumes an ASCII encod­
ing of the characters 4 and 7.

MOV AL. '4'
ADD AL. '7'
AAA

AL = 34H. AF unchanged by MOV
AL == 6BH. AF now 1
ASCII Adjust. AL = 1. AH = AH + 1

PF -Parity .flag: The parity flag bit is set to 1 when an arithmetic instruction
results in a value with an even number of 1 bits. For example, if you issued the fol­
lowing instructions, the resulting parity flag bit would be O.

MOV AH. 91H
ADD AH. 05H

; AH = 10010001B. PF unchanged by MOV
; AH == 10010110B. PF now 1

CF-Carry .flag: The carry flag bit is set when the result of an arithmetic opera­
tion is too large or too small for the destination register or memory address. It is
similar in operation to the OF bit but indicates an unsigned overflow of the
destination.

MOV AL. 127
ADD AL. 2
ADD AL. AL

MOV AL. 3
SUB AL. 4

Segment registers

AL = 7FH. CF unchanged by MOV
AL == 81H. CF now 0
AL == 02H. CF now 1 (the
mathematical result is 102H. but no
value is "carried" into the AH register)

CF unchanged by MOV
AL == FFH. CF now 1 (borrow bit)

The segment registers hoid the values that affect which portions of memory a pro­
gram uses. Four segment registers are used under specific conditions, and two are
available as pointers to frequently used areas of memory. The CS, DS, SS, and ES
registers were inherited from the 80286 and perform the same functions as they did
in that cpu. Two additional registers, FS and GS, were introduced in the 80386 and
are also found in the 80486.

Associated with the segment registers is a descriptor cache, which holds the starting
address of the memory segment and other related information. Chapter 3 details the
relationship between segments and memory addresses. The descriptor cache for the
segment registers is not accessible to the programmer; only the 16-bit register por­
tion can be accessed directly. Figure 2-14 illustrates the segment registers and the
internal descriptor cache.

28

Visible portion "Invisible" descriptor cache Access
15 0 Base Limit rights

CS
SS
DS
ES
FS
GS

Figure 2-14. Segment registers.

Protection model registers

2: The CPU Architecture

Segment registers

D Programmer-accessible

D Not accessible

Four registers support the protection model of the 80386 family. (See Figure 2-15.)

Protection registers Access
Base Limit rights o Programmer-accessible

o Not accessible ~~~~~I ---------------+------~I ~

Visible portion "Invisible" descriptor cache

I L~~R 11...----..----.,.----,11
Figure 2-15. Protection model registers.

The protection model registers are:

GDTR-Global Descriptor Table Register

IDTR- Interrupt Descriptor Table Register

WTR-Local Descriptor Table Register

TR-Task Register

The GDTR and IDTR contain linear base addresses that point to the start of the
GDT and the IDT descriptor tables. They also contain limit fields that describe the
size of the GDT and IDT tables.

The LDTR and TR hold 16-bit selector values, similar to the segment registers. As
with the segment registers, an inaccessible descriptor cache exists for both the LDTR
and TR. The LDTR holds a selector for an LDT descriptor, and the TR holds a selec­
tor for the TSS (task state segment) descriptor of the currently executing process.
Chapter 5 discusses how these registers work.

29

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Control registers
The control registers regulate the paging and numeric coprocessor operation of the
80386 and additionally control cache operations in the 80486. A general description
of the registers follows; refer to the specific chapters on paging and coprocessors for
more detailed information. A programmer can read or modify control registers only
by using instructions of the form MOV CRx, reg, where reg stands for one of the
general registers. A procedure must be running at privilege level 0 to execute these
instructions.

CRO-Control register 0
The folloWing illustration shows the contents of control register O. The LMSW and
SMSW instructions allow access to the low-order 16 bits of CRO as the machine
status word.

18 1615 8 7 543 2 1 0

PG-Paging: Paging is enabled by setting the PG bit to 1. Typically, the operating
system does this once, at initialiZation. Chapter 6 discusses the paging mechanism.

CD-Cache disable: The cache disable bit is present in the 80486 only. When it is
set to 1, cache filling is disabled, and a reference to a memory address outside the
cache will not cause new values to be read into the cache. Clearing the CD bit to 0
enables cache fills. Notice that operands will continue to be read from the cache
even when CD=l. To completely turn off the cache, you must set CD and NW to 1
and then flush the cache using the INVD instruction.

NW-No write-through: The NW bit is also 80486 specific and is normally set to
the same value as CD: NW=l when caching is disabled, and NW=O for normal cache
operation. The state CD=l, NW=O is useful, however, to temporarily disable cache
fills while leaving write-through enabled.

AM-Alignment mask: The AM bit is present only in the 80486. When set to 1, it
enables the AC (alignment check) bit in the EFLAGS register. When AM=O, the AC
bit is ignored.

WP- Write protect: The write protect bit is present only in the 80486. It affects
the behavior of the paging unit. When WP is cleared to 0, the operation of the
80486 is compatible with that of the 80386. When WP is 1, a supervisor-mode write
to a read-only page will cause a page fault. See Chapter 6 for more information on
paging.

NE-Numerics exception: The NE bit is present only in the 80486. When it is set
to 1, unmasked floating-point exceptions vector through interrupt 16H. Clearing NE
through 0 puts the 80486 into a DOS compatibility mode, and floating-point excep­
tions vector through interrupt 13H.

30

2: The CPU Architecture

ET -Extension type: In the 80486, this bit is always 1 because the floating-point
coprocessor extension is always present in the 80486. The 80386 sets the ET bit to 1
at boot time if the processor determines that an 80387 is present. If this bit is 0, the
coprocessor either is an 80287 or is not present at all. When ET is 1, the 80386 uses a
32-bit protocol to communicate with the coprocessor; otherwise, it uses a 16-bit
protocol.

TS-Task switched" The CPU sets the TS bit when a task switch operation oc­
curs. When the TS bit is on, the next coprocessor instruction causes a trap to the
operating system. This feature lets the operating system implement multitasking
without requiring the operating system to save the state of the math coprocessor ev­
ery time a task switch occurs. The context of the floating-point unit is more than 100
bytes, so saving the coprocessor state at every task switch would waste valuable
CPU time.

EM-Emulate math coprocessor: When this bit is set, floating-point instruc­
tions that would normally control coprocessor operation trap to the operating sys­
tem instead. This bit is most useful in the 80386, where the numerics processor
might be missing. Proper use of this bit allows programmers to write applications as
if a coprocessor were present. If an 80287 or 80387 is present, the operating system
initializes the EM bit to 0, and the application's floating-point instructions will be
executed by the coprocessor. If an 80287 or 80387 is not present, the operating sys­
tem sets the EM bit to 1. Then, when an application executes a floating-point in­
struction, the 80386 will trap back to the operating system, which either emulates
the instruction in software or passes the operands to other floating-point hardware
in the system.

MP-Monitor coprocessor: The MP bit affects the operation of the WAIT in­
struction, as described in Chapter 8.

PE-Protect enable: Setting the PE bit places the processor into protected mode.
Typically, this is done once, at initialization. In the 80386 and 80486, it is possible to
switch the CPU back into real mode after entering protected mode. (This was not
possible in the 80286.) Some implementations of the OS/2 operating system use this
technique to allow real-mode MS-DOS programs to run concurrently with pro­
tected-mode OS/2 applications.

CR1-Control register 1
Control register 1 is not used in the 80386 or 80486 and is reserved for future Intel
processors.

CR2-Control register 2
When a page fault occurs, CR2 is loaded with the linear address that caused the ex­
ception. Refer to Chapter 6 for more details on paging.

31

MICROSOFT'S 80386/80488 PROGRAMMING GUIDE

CR3-Control register 3
The paging hardware also uses this register. The CR3 contains the twenty high­
order bits of the linear address of the starting point of the page directory. In the
80386, the twelve low-order bits should always be zero; in the 80486, bits 3 and 4
of the twelve low-order bits are used only in the 80486. Bit 3 controls page write­
through (PWT), and bit 4 controls page cache disable (PCD). The implementation
of paging is covered fully in Chapter 6.

Debug and test registers
The 80386 contains eight debug registers and two test registers. The 80486 adds
three test registers. The test registers TR3-TR5 control testing of the cache; registers
TR6 and TR7 allow diagnostic software to test the translation lookaside buffer (TLB).

The debug registers, labeled DRO-DR7, allow the 80386 and 80486 to implement a
hardware breakpoint capability that previously required an external in-circuit emula­
tor. By setting the address registers (DRO-DR3) and the control register (DR7), the
programmer can halt the CPU when a particular memory location is read from, writ­
ten to, or executed. The breakpoints are noninvasive (they don't require modification
of the program under debug), and they are also real-time (they don't degrade the
performance of the program). The debugging techniques using the debug registers
are described in Chapter 5.

Floating.Point Support
Originally, the 8086 family of microprocessors did not support floating-point arith­
metic directly. Instead, separate chips, optimized for numeric processing, were
offered as options. The 80486 is the first chip to support floating-point arithmetic on
the main cpu. Its floating-point instruction set is completely compatible with the
80387 coprocessor that was designed to support the 80386. Actually, the 80386 will
work with either the 80387 or the 80287. The 80287 is a slower chip with a 16-bit
interface, originally designed for use with the 80286. Floating-point performance
of the 80287 is approximately 320,000 whetstones when running at 10 MHz. (A
whetstone is a relative performance value that is used to compare the throughput
of floating-point processors.) The 32-bit 80387 offers higher performance. This
processor is software compatible with the 80287 and can execute about 1,800,000
whetstones when running at 16 MHz. A 80486 operating at 25 MHz can run the
same benchmark at approximately 4,000,000 whetstones. Appendix F notes the dif­
ferences between the 80287 and the 80387. In the following text, I will use the term
NDP (numeric data processor) to refer to the 80287, the 80387, or the floating-point
capabilities of the 80486. Exceptions will be noted by an explicit processor
reference.

32

2: The CPU Architecture

The NOP is another source of parallelism in the system. As soon as the execution
unit sees a floating-point instruction, it passes the instruction to the NOP. The exe­
cution unit begins executing subsequent instructions regardless of how long the
NOP takes to complete its operation. Of course, if the execution unit encounters
another floating-point instruction, it must wait for the NOP to complete the current
operation before it can begin a new one, and the main processor might be forced
to wait.

To use a value computed by the 80387 and written to memory, you must ensure that
the 80387 has completed the write operation. The FWAIT instruction ensures syn­
chronization between the 80386 and the 80387. (FWAIT is a synonym for the WAIT
instruction. FWAIT is commonly used to indicate waiting for the NOP.) Because the
NOP is not a physically separate processor in the 80486, use of FWAIT is not neces­
sary. However, if you are writing code that might be executed on an 80386, you
must use the FWAIT instruction.

If a coprocessor is absent, the 80386 allows an operating system to emulate one and
remain invisible to the application. For additional details on coprocessor emulation,
see the discussion of the EM bit In control register 0 earlier in this chapter.

Additional data formats
The NOP adds direct hardware support for three floating-point number formats and
one BCO integer format. The NOP also supports three integer formats in common
with the basic execution unit. These are the 16-bit, 32-bit, and 64-bit two's comple­
ment (signed) integers previously mentioned. Figure 2-16 on the following page
shows the additional numeric formats.

Floating-point numbers
The NOP supports three floating-point formats. This allows a programmer to make
compromises between the amount of memory required and the precision of the
results. The short real format lets programmers specify numbers of about seven
decimal digits of accuracy. This format is also known as Single-precision because a
short real number fits into a single 32-bit machine word. The long real format, also
known as double-precision, represents a floating-point number of up to 15 decimal
digits of accuracy. Holding a long real number requires a double machine word (64
bits). The third format is called temp (temporary) real or extended-precision. Temp
real numbers are 80 bits and represent about 19 decimal ,digits of precision.

Just as scientific notation represents floating-point quantities in decimal notation
(for example, 4.74 x 103), the Intel floating-point format is a type of binary scientific
notation. The general format of a floating-point number is ±fx 2e, where f repre­
sents a binary fraction and e is an exponential power of 2. Three fields are required
to make up a floating-point number: the sign, the exponent, and the fraction, or
significand.

33

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

15 0

1'-_--' __ 1 Word integer

31 0

1'--_________ 1 Short integer

~ 0

IL--____ ...J.... ____ -..L. _____ ..L-____ ...JI Long integer

79 78 BCD digits o

Sign Exponent Fraction

31 30 23 22 0

Sign
IL-S-LI __ ...L..: ___ ---JI Short real

63 62 52 51 0

I'--S I_E_x_p_on_e_n_t-L.. _______ F_r_a_ct_io_n ______ -'1 Long real

7978 64 63 0

I,-s--,-I E_x..:;.p_o_n_e_nt.....l: __ F_ra_C_ti_o_n_-'--____ -'-_____ .l..-___ ----'1 Temp real

Address
n+9 n+3 n+2 n+l n

Figure 2-16. Floating-pointformats.

The sign field is a single bit that is set to 1 to indicate a negative number and reset
to 0 for a positive value. No value manipulation is necessary to change the number
from positive to negative (or vice versa) other than toggling the sign bit. (Such ma­
nipulation is necessary when dealing with the two's complement notation of the
integers.) This notational format allows the representation of +0.0 and -0.0, which is
useful in certain circumstances.

The exponent field represents a multiplier of 2n. This field ranges from 8 bits in the
short real format to 11 bits in the long real format to 15 bits in the temp real format.
To accommodate negative exponents (such as 2-6), the value in the exponent field
is biased-that is, the actual exponent is determined by subtracting the appropriate
bias value from the value in the exponent field. For example, the bias for short reals
is 127. If the value in the exponent field is 130, the exponent represents a value of
2130-127, or 23. The bias for long reals is 1023, and the bias for temp reals is 16383.
The values 0 and alII's (binary) are reserved for representing special values and
cannot be used to represent floating-point numbers.

34

2: The CPU Architecture

The significand field contains the fractional part of the floating-point number. The
significand occupies 23 bits in short reals, 52 bits in long reals, and 64 bits in temp
reals. Figure 2-17 shows how to interpret floating-point fractions. The significand is
encoded in two ways. In temp real format, the significand field holds the binary
fraction in the form SO.SlS2 ... s63' where sn is bit n of the significand.

The authors of the IEEE-754 format took advantage of a representational trick to
squeeze out an extra bit of precision in short real format and in long real format.
A review of scientific notation shows that the values 40.103 x 107,4.0103 x lOS, and
0.040103 x 1010 all represent the same number. A binary notation has the same
property.

Shifting the fraction by one position can be compensated for by incrementing or
decrementing the value of the exponent. Because a binary number consists of only
O's and 1's, the designers of the floating-point format decided that the fractional por­
tion of the short and long reals would be shifted left until the most significant bit
was 1. Because this bit was now defined as 1, there was no point in storing it, and
it was assumed to exist. The fraction for a short or long real, therefore, has the value
1.S0S1S2 ... Sn' where n is 22 for short reals and 51 for long reals.

Decimal fraction Binary fraction

, f
I

I I

3 7 • 2 1 oj' 1 1 o • 1 0 0

10° :10-1 0-2

I
I

101 10- 10-4 22 21 2° : 2-1 2-2 2-3
I
I

Decimal point Binary point
37.2101 decimal 6.5625 decimal

Normalized fraction

0·· 11........1...-._ .. -L......J.I
Single digit before J
the "binary point"

1

2-4

Short real} 1.1 Significand
Long real

= Fraction (MSB implied)

Significand

Temp real L.I --,-,I .:......0...1 ---'-1 ___ ---'--'1 Fraction directly represented

Figure 2-17. Floating-pointfractions.

35

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Short real:

31 2322 0

1_+1 1 1 Single Exp Significand
L....L ______ .J. _________________l prec1s10n

Ab I I - 1 2(exp-127) so ute va ue - .so Sl ... S22 x

The bias for the short real exponent is 127. The significand includes the "implied 1"
bit and allows a precision of about seven decimal digits. Representative values
range from ±1.18 x 10-38 through ±3.40 x 1038.

Long real:

6362 5251 0

1_+1 1 1 Double
L... • ...L. ___ E_X_p __ ---L. _______ s_ig_n_if_ic_a_n_d ______ ----' preClslOn

Absolute value = 1.so 8.t •.. S51 x zCexp -1023)

The bias for the long real exponent is 1023. The significand includes the "implied 1"
bit and allows a precision of about 15 decimal digits. Representative values range
from ±2.23 x 10-308 through ±l.79 x 10308.

Temp real:

7978 6463 0

1_+ 1 1 1 Extended
L.. ___ EX_p __ --' _______ s_ig_n_i_fi_ca_n_d ______ ---' prec1s10n

Absolute value = So .8.t ... 8(;3 x 2(exp -16383)

The bias for the temp real exponent is 16383. The significand represents the frac­
tional portion of the value (with no implied bits) and allows a precision of about 19
decimal digits. Representative values range from ±3.37 x 1Q-4932 through ±1.18 x
104932.

Specialjloating-point values: In addition to intuitive values such as 3.14159 and
6.03 x 1023, the NOP represents values that arise under unusual conditions. These
values are called infinities, denormals, and NaN's. (NaN stands for "not a number.")

Infinity, positive or negative, is represented by a value whose exponent field is all1's
and whose fraction is 1.0B. Notice that in short and long real numbers, l.OB is repre­
sented by a significand of all O's, whereas in temp real numbers, the significand is a
bin~ry 10000000 ... OB.

36

2: The CPU Architecture

Oenormals are values that are too small to be represented in the standard (or nor­
malized) fashion. Oenormals are represented by a value with an exponent field of 0
and any nonzero value in the significand. A floating-point number with both an ex­
ponent of 0 and a significand of 0 represents 0.0.

NaN's are invalid representations of floating-point numbers. They are identified by
an exponent field of alll's and a significand other than the one representing infinity.
The two kinds of NaN's are the signaling NaN and the quiet NaN. A signaling NaN
has a fraction of the form 1.0xxx ... xB, where x represents any bit value. Notice that
the binary value represented by the x cannot be zeros, as that value is reserved for
infinities. The NOP generates an exception whenever a signaling NaN is used. The
NOP never creates a signaling NaN, but a programmer can use one to indicate some
error condition such as an uninitialized floating-point variable. The quiet NaN has a
fractional format of 1.lxxxxxB. Recall that the leading 1 is implied in the significand
of short and long reals but must be present in temp reals. The 80387 generates a
quiet NaN instead of a numeric result whenever a floating-point instruction causes
an invalid operation. Any instruction that receives either type of NaN as an operand
generates a NaN as a result. The following table lists special values used by the NOP.

Sign Exponent Fraction Value

x 11 ... lIB 1.1xx ... xxB Quiet NaN

x 11 ... lIB 1.0xx ... xxB Signaling NaN

x 11 ... 11B 1.00 ... OB Infinity

x OO ... OOB O.xxxxxxB Denormals

x OO ... OOB 0.00 ... OB Zero

Except for the signalling NAN (in which at least one of the xs must be a 1), the x in­
dicates that it makes no difference whether the bit is 0 or 1. The 1 before the decimal
in the fraction is physically present only in temporary real format. It is implied in
the short real and long real formats. Denormals are recognized in the short and long
formats by the 0 exponent value.

BCD integer
The other new data type that the NDP supports is a packed decimal integer of 18
digits stored in 10 consecutive bytes of memory. The high-order bit of the high­
order byte is interpreted as a sign bit. A 0 indicates a positive number, and a 1 indi­
cates a negative number. The rest of the high-order byte is unused. The remaining
bytes each contain two BCD digits.

79 72 71 6463 5655 4847 4039 3231 2423 1615 8 7 0

lsi 0 I dd I dd I dd I dd I dd I dd I dd I dd I dd I

37

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

The value range of the BCD integer is 0 through ±999,999,999,999,999,999. Program­
mers who work with BCD numbers might want to run the NDP with the precision
exception unmasked (PM bit and bit 5, in the control word register). Because BCD
formats often represent monetary values, it is important to avoid losses due to
rounding or truncation.

NDP register set
The NDP contains a register file of eight 80-bit floating-point registers and a num­
ber of status registers. Floating-point instructions refer to these registers rather than
to the general registers EAX, ESI, and so on. (See Figure 2-18.)

Floating-point registers

Sign Exponent Fraction

75 78 6463 0

01--1-------t-----------1
11--1------1-----------1
21--1------1-----------1
3~~----~-------___t
41--1-------+------------i
5~~----~-------___t
61--1--____ +-________ --1

7L..-L..-____ ...l...-________ --'

Figure 2-18. 80387 register file.

15
I

I

31

0
Control word I
Status word I
Tag word

Error pointers
1615 0
FIP

I FCS
Faa

I FOS

Unlike the general registers of the 80386 and 80486, however, the NDP's floating­
point registers are addressed as a stack. The current top-of-stack (the value most re­
cently pushed) is indicated by a field in the status word register and is addressed as
ST or ST(O). The next register (the previous value pushed) is ST(1), and so on. This
is best illustrated by the following example.

Assume that the configuration in Figure 2-19 shows the initial state of the NDP.
Register 2 is designated as the current top-of-stack, but nothing is stored in the
registers. The TW (tag word) register holds a 2-bit field for each register, marking it
as valid, 0, special, or unused. To evaluate the polynomial y = 3X2 - 7 x + 4, we will
use the following code fragment. (Figure 2-19 shows how the function evaluation
progresses on the floating-point stack.)

x DO
y DO
const OW

38

?
?
?

short real variable "x"
result of computation
memory word for integer constants

FLO x
FLO ST{O)
FMUL ST{O)
MOV const.
FIMUL const
MOV const.
FILO const
FMULP ST(2).
FSUBRP ST{ 1).

MOV const.
FIAOO const
FSTP y

(a) Initial state

0
1

SW
I

I 121 I

2

3
4
5

Top 6 ..
7

(c)

x 0

x 1

2

3

SW I 101 I
4
5

Top 6
7

(e)

3X2 0

X 1

2

3

SW I 101 I
4
5

Top 6
7

3

7

2: The CPU Architecture

load x to top of stack
duplicate copy of x
square copy of x at top of stack
integer multiplier
multiply top of stack by 3
integer constant

ST
load 7 to top of stack
ST(2) - x * 7. pop ST
ST(I) - ST - STell. pop ST
integer constant

ST
4

• 3x2 - 7x + 4
store result and pop. clearing stack

(b)

0

x 1 ST(O)
FLDx

SW I 11 I I

2

3 FID ST(O) I
4
5

Top 6
7

(d)

ST(O) X 2 0 ST(O)

ST(1) X 1 ST(1)

I FMUL ST(O) I
SW I 101 I

2

3
MOVconst, 3

4
FIMULconst

5
Top 6

7

(0 ..

ST(O) 3X2 0 ST(1)

ST(1) X 1 ST(2)

MOVconst, 7

FIID canst ,--
I 171 I SW

2

3
4 I FMULP ST(2), ST I
5

Top 6
4 7 7 ST(O)

Figure 2-19. Evaluating a polynomial. (continued)

39

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

Figure 2-19_ continued
(g)

3X2

7x

SW I 101 I
Top

3i-7x-4

SW I 11 I I
Top

0 ST(O)

1 ST(1)

2

FSUBRP ST(1), ST I 3
4
5 SW

6
7

0
1 ST(O)

2

3 FSTPY I
4

5 SW

6
7

(h)

3i-7x

I 11 II
Top

I
I 121 I

Top

o
1 ST(O)

2
3 MOV canst, 4

4 FIADD canst

5
6
7

o
1

2

3
4
5
6
7

The NDP register addressed by ST(n) varies according to the value of the TOP field
in the status word register. The following section describes the other fields in the
status word register.

Status word register
The status word register can be illustrated as follows:

870

B-Busy: This bit is 1 when the NDP is executing an instruction or when an un­
masked exception (bits 0-5) is indicated. Execute the instruction FNSTSW AX,
which copies the status word register to the AX register, to examine this bit avail­
able for testing.

C3, C2, Cl, CO-Condition codes: The NDP sets these bits when a floating-point
,compare, test, examine, or math instruction is executed. The various combinations
that occur are discussed under the relevant instructions in Chapter 8.

1OP-Top-of-stack: This field indicates which of the floating-point registers is
currently identified as the top-of-stack. When a new value is pushed onto the

40

2: The CPU Architecture

register stack, the value of TOP is decremented by 1. When a value is popped from
the stack, TOP is incremented by 1. The results of the increment or decrement are
truncated to three bits to allow addressing of eight floating-point registers.

ES-Error summary: The NDP sets this bit to 1 whenever a floating-point in­
struction generates an unmasked exception. Indication of such an exception is
found in bits 0-5 of this register. The exception masks themselves are located in
the control word register.

SF-Stackfault: The NOP sets this bit to 1 if an instruction causes a stack
overflow by pushing too many operands or a stack underflow by popping the stack
when there are no more values. This field does not exist in the 80287, so floating­
point code that must run on any possible 80386 configuration should not rely on
having the bit. A stack fault also results in an invalid operation exception.

Before discussing each field, let's note a couple of things about bits 0-5 of the status
word register. These bits correspond to exceptional conditions that can occur while
floating-point instructions are being executed.

Whenever a condition represented by an exception bit occurs, the NOP first sets
the appropriate bit in the status word register. Next, it checks the corresponding
mask bit in the control word register. If the mask bit is 0 (unmasked), the NDP trig­
gers the numeric exception. If the mask bit is 1 (masked), the NOP continues by
executing the next instruction.

Additionally, the exception bits are "sticky." Once set, they remain set until the pro­
grammer loads the status word register with a new value. This lets the programmer
write a series of numeric instructions .and place a test for errors at the end of the in­
struction stream rather than after each instruction.

PE-Precision exception: This exception occurs when the NDP cannot repre­
sent the exact result of a floating-point instruction. For example, the fraction 1'3 can­
not be represented exactly as a decimal fraction because it produces an infinitely
repeating result. Any finite representation, such as 0.3, 0.333333333, or even
0.333333333333333333333333333333, is only an approximation. Similarly, the NOP
cannot represent this fraction exactly in binary format. Dividing 1 by 3 results in the
infinite binary fraction O.OlB.

This exception also occurs when a temp real number is converted to a lower preci­
sion and bits are lost in the conversion.

The precision exception is almost always masked because a rounded or truncated
result will suffice in most cases.

UE-Under.flowexception: The underflow exception is triggered when the
result of an operand is too small for the NDP to represent. For example, the smallest
value that can be represented in the 80-bit extended-precision format is 3.37 x
10-4932. Attempting to square a number such as 10-3000 results in an underflow
exception.

41

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

OE-Ovetjlow exception: This exception is the converse of the underflow ex­
ception. It occurs when the result of a floating-point operation is too large for the
NDP to represent. Like the precision exception, UE and OE can be generated when
a normally representable number is converted to a format in which it is not
representable.

ZE-Zero divide exception: Whenever division by zero is attempted, the ZE eX­
ception occurs. This exception can be caused by floating-point operations other
than the divide instruction, such as sine, cosine, remainder, and so on.

DE-Denormal exception: This exception occurs whenever an operand of a
floating-point instruction is a denormal. Denormal numbers are discussed earlier in
this chapter.

IE-InvaHd operation exception: This exception traps all error conditions not
handled by the previously discussed exceptions. These can include arithmetic faults
(such as an attempt to take the square root of a negative num.ber) or programmer
faults (such as specifying a register that contains no value as an instruction
operand) ..

Control word register
A programmer modifies the CW (control word) register of the NDP to alter its
behavior. The format of the control word register and the definition of each field
follows:

15 12

Bit 12 = 0 (infinity control on 80287): Bit 12 is ignored on the 80387 and 80486.
On the 80287, this bit selects either affine (bit is on) or projective closure (bit is off).
Affine closure allows the use of both positive and negative infinity. In projective
closure, very large or very small numbers overflow to a single unsigned infinity.
Only affine closure is supported by 80387 and 80486 NDP's.

RC-Rounding control: This field specifies how the NDP handles values that it
cannot represent exactly. The RC field can be set to one of the following modes:

00-Round toward nearest (choose even number if equidistant)

Ol-Round up (toward negative infinity)

10-Round down (toward positive infinity)

11-Round toward zero (truncate)

Node 00 (round nearest) is the default.

To see how the rounding control affects the results of a computation, assume that
the NDP can represent only the integers -5 through +5. Figure 2-20 shows the
results of rounding the values 2Y3, 1%, -1Y3, and -2Y3 in each rounding mode.

42

2: The CPU Architecture

I , I I
I I I I Round toward: :---+~

I I
I I I I
I I I I Nearest (even)
I I I I

-3 I -2 I -1 0 I 2 I 3 I I I I
I I I I
I I I I
I I I I
I I I I
I I I I :---+ +--t +--t
I I I Zero (truncate) I I I I

-3 I -2 I
-1 0 1 I 2 I 3 I I I I

I I I I
I I I I
I I I I
I I I I
I I I I
I I +-l +-l +--t
I I I I -00 I I I I

-3 I -2 I -1 0 1 I 2 I 3
I I I I
I I I I
I I I I
I I I I
I I I I

:.---. I :.---. :.---.
I I I I
I I +00

-3 I -2 -1 0 1 I 2 3 I I
I I
I I , ,

_2113 -1213 1213 2113

Figure 2-20. Rounding control.

PC-Precision contro/: The PC field tells the NDP which floating-point format to
use when generating the results of add, subtract, multiply, divide, and square-root
operations. This field can hold one of the following values:

00-Singl~-precision (24-bit significand)

01-Reserved for future coprocessors

10-Double-precision (53-bit significand)

11-Extended-precision (64-bit significand)

Node 11 is the default.

Instructions other than those affected by the PC field generate extended-precision
results or have a precision specified by the operand.

PM, UM, OM, ZM, DM, 1M-Mask bits: The remaining bits in the control word
register are the mask bits for the exception conditions and correspond to bits 0-5 of
the status word register. The mask bits are:

. PM - Precision mask

UM-Underflow mask

OM-Overflow mask

ZM - Zero divide mask

DM-Denormal operand mask

1M - Invalid operation mask

43

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Tag word register
The remaining status register on the NDP is the 16-bit tag word register. This regis­
ter consists of eight 2-bit fields, each corresponding to a floating-point register. TO is
the field for register 0 (not STO), T1 is associated with register 1, and so on. Each tag
field holds one of the following values, which give additional information about the
contents of the corresponding register:

00-The register contains a valid floating-point number.

01-The register contains the value 0.0.

10-The register contains the value infinity, a denormal, or an invalid number.

11-The register is empty (unused).

The tag word register is normally not used by the programmer. A debugger that dis­
plays the contents of the floating-point stack must examine the contents of the tag
word register to properly interpret the contents of the floating-point registers.

Error pointer registers
The only other registers on the NDP are the error pointer registers. These registers
are updated each time a new floating-point instruction is executed. Whenever a
floating-point instruction causes an exception, these registers can be queried to de­
termine which instruction is at fault. Note that no instructions directly address these
registers. The store environment operation (FSTENV) copies the contents of all
NDP status and error-pointer registers to memory, where the data can be examined.

The error pointer registers are necessary because of the parallel operation of the ,
main execution unit and the NDP. The main execution unit, which is executing
simpler, faster instructions, might be executing code in a different segment when
the NDP generates an exception. The error pointer registers make it much easier to
determine what went wrong when a floating-point exception occurs.

31 1615 o
F~P

I

:
I

00000 FOP I FCS
I I

I
Faa

I

0 : FOS
I

FIP-Floating-point instruction pointer: This register is loaded with the con­
tents of EIP when a coprocessor instruction is executed.

FCS-Floating-point code segment: This register is loaded with the value of the
CS register when a floating-point instruction is executed.

44

2: The CPU Architecture

FOP-Floating-point opcode: This register is loaded with 11 bits of opcode infor­
mation. A coprocessor instruction always has the following format:

First byte Second byte
7 0 7 0

1111 H 1111 ? I? I? I I? I ? I ? I ? I? I ? I? I? I (Optional bytes)

The second byte of the instruction is concatenated with the 3 low-order bits of the
first byte to form the contents of the FOP register. Early versions of the 80386 did
not generate this information for the 80387, nor is it available when the 80386 is
used in protected mode. It might be simpler to use the FCS and FIP values to deter­
mine the opcode at fault, unless you know your code is running on an 804~6.

FOS-Fioating-point operand segment: This register contains the segment
register of the memory operand (if any) referred to by the most recent floating-point
instruction.

FOO-Fioating-point operand offset: This register holds the offset (within the
segment pointed to by FOS) of the memory operand (if any) referred to by the most
recent coprocessor instruction.

45

3

MEMORY
ARCHITECTURE:
SEGMENTATION

)

A segmented memory architecture is a hallmark of the Intel 8086 family of pro­
cessors. The 80386 was the first of these processors in which segmentation was not
considered an impediment to the programmer.

Linear vs. Segmented Memory
The hardware interface between the CPU and memory is virtually the same in
almost every computer. A set of address lines goes out from the processor to
memory. The CPU places an address on the bus, and memory responds by return­
ing the value stored at that location or by accepting a new value. Figure 3-1 shows
the hardware relationship between the CPU and memory.

A

~ < Address bus
Clock r----- CPU ./ Memory

"
system

Control signals

/ ~ Data bus
~

Coprore"", J
.,/

4 '\r--

Figure 3-1. CPU-memory interface.

47

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Because of the binary nature of the digital computer, a system with n address lines
allows the system to reference 2n elements of memory. The hardware behaves in a
linear fashion-that is, for each of the 2n possible combinations of address lines,
a separate memory element responds.

Most computers also have a linear memory model. They allow programmatic access
to memory, beginning with address 0 and continuing through address 2n -1.
Theoretically, an application could read the byte at location 0, then read the next
byte, and so on until it reads the last byte of memory in the system. This model par­
allels the hardware interface.

However, the 8086, 80286, 80386, and 80486 have a programmatic memory model
different from the hardware memory model. These processors have a segmented
memory model. To a program, the address space is divided into segments, and the
program can access only data contained in those segments. Within each segment,
addressing is linear, and the program can access byte 0, byte 1, byte 2, and so on.
The addressing is relative to the start of the segment, however, and the hardware
address associated with software address 0 is hidden from the programmer.

This approach to memory management is natural. Programs are typically divided
into segments of code and data. A program can be made up of a single code seg­
ment and a single data segment, or of many code and data segments. In a multitask­
ing environment, segmentation also isolates processes from one another. If my
program can look at only my code and my data, it cannot illicitly modify your pro­
gram's code or data. Figure 3-2 shows a multiprocessing system with many seg­
ments coexisting in memory.

HW
addresses

n

o

Memory
Unused

Prog 1 code

Prog 2 code
Prog 2 data

Prog 1 data

Segment
addresses

ml

o
m2

m3
o

m4

o

Figure 3-2. Memory divided into segments.

48

3: Memory Architecture

The 80386 and 80486 have six segment registers. The values in these registers deter­
mine the memory segments that a program can access. The CS register points to the
segment that contains the program's code. CALL andJMP instructions implicitly
refer to the current code segment. The DS register points to the program's main
data area. For example, the instruction:

MOV AL. [0]

copies the first byte (byte 0) of the data segment into register AL.

The stack segment (pointed to by register SS) is commonly (but not necessarily) the
same segment as the data segment. The PUSH and POP instructions store data into
or read data from the stack segment.

Three additional registers (ES, FS, and GS) point to auxiliary data that the program
needs to access less frequently, such as COMMON variables in a FORTRAN pro­
gram. You can apply a special prefix to an instruction that accesses the data seg­
ment register. The prefix causes the instruction to act on one of the additional
segments instead. For example, the previous instruction might be written as:

MOV AL. ES:[O]

to fetch the first byte from one of the alternate data segments, or even as:

MOV AL. CS:[O]

to fetch the first byte from the code segment.

Previous generations of the 8086 family also dealt with segmented memory; how­
ever, these processors limited the size of a segment to 64 KB, which was often much
too small. A single segment in the 80386 and in the 80486 can be as large as 4
gigabytes (GB).

An operating system designer can choose to simulate a linear memory model (also
called a flat model) on the 80386 and 80486 by creating one very large code seg­
ment and one very large data segment and having all programs use the same values
for CS and DS. This is a common technique when porting systems that have run on
linear address machines. The UNIX operating system-with its VAX heritage-is
typically implemented on linear memory machines.

Virtual Addressing
Except when operating in real mode, the 80386 and 80486 are virtual memory pro­
cessors. When an instruction requests the contents of a memory location, the in­
struction refers to the location not by an actual hardware memory address but by a
virtual address. The virtual address is really a name for a memory location. The
processor translates the location name into an appropriate physical location. The
operating system must maintain the proper mapping between virtual and physical
memory.

49

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

This concept is not as convoluted as it might sound. For example, suppose someone
says to me, "Put this report on the boss's desk." In my particular department, that
might mean, "Put this report on Simon Legree's desk." If, however, I transfer to a
new department, I might be placing my report on Ebenezer Scrooge's desk. "The
boss's desk" is a virtual location, and I can carry out the instruction to turn in my
report even though the desk on which I place the report varies according to the
circumstances.

A virtual address on the 80386 family is specified by two numbers, a selector and an
offset. The selector is a 16-bit value that serves as a virtual name for a memory seg­
ment. It is the selector that is loaded into the segment registers (CS, DS, and so on).
The offset is the distance from the beginning of the segment, and it is a 32-bit value.
Examples of virtual addresses include:

Virtual Address

3Fll:OOOOOOOO

OlA9:0001FFOO

EC2C:31887004

Interpreted VirtualAddress

Offset OH from selector 3FllH

Offset IFFOOH from selector OlA9H

Offset 31887004H from selector EC2CH

The CPU translates a virtual address to a single 32-bit number called a linear ad­
dress. Figure 3-3 shows an example of address translation. This linear address goes
out on the system bus unless the paging feature is enabled. Paging is another level
of address translation and is discussed fully in Chapter 6.

4GB Memory

Selector I Offset I

Offset from start
of segment

Segment base address

irtual address v
translation

0

Figure 3-3. Linear address translation.

50

3: Memory Architecture

Virtual-ta-linear address translation
The CPU uses the selector as an index to a set of system tables called descriptor
tables. A descriptor is a block of memory that describes the characteristics of a
given element of the system. In the case of a memory segment, the characteristics
include the segment's linear base address, limit, access rights, and privilege level.

The base address is the starting point in the segment's linear address space. The off­
set portion of a virtual address is added to the base address to generate the linear
address of the desired memory element. Figure 3-4 illustrates an example. The vir­
tual address 13A7:00l0F405H is broken down into its segment and offset compo­
nents. The system uses the selector 13A7H as an index into its descriptor tables. It
pulls out a descriptor that says, for example, that the segment has a base address in
the linear address space of 0032DDOOOH. The virtual address offset is combined
with the base, and the resulting value, 33EC405H, is the translated linear address.

The linear address is a full 32-bit value in all members of the 80386 family; however,
the 80386SX hardware supports only a 24-bit physical address. The 80386DX and
80486 hardware supports the full 32-bit linear address space (232, or 4 GB). The
base address of a segment will always fall within this range. In the same way that
the base address defines the starting point of a segment, the limit field defines the
end point. The limit specifies the segment's last addressable byte. The processor
checks every instruction that addresses memory to determine whether the instruc­
tion is attempting to read into or to write from memory within the boundaries of

Virtual address

Selector

Base address is added to offset
yielding linear address.

4GB Memory

Linear address
+--+-- 33EC405H

-+-+-+-+-i} Descriptor
table

0'---------'

Figure 3-4. Virtual-to-linear address translation.

51

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

the segment's descriptor. An out-of-bounds reference causes an interrupt called a
general protection fault to occur. Faults are discussed in the section on interrupts
and exceptions in Chapter 5. The access rights field defines the type of segment and
the privilege level required to access it.

Segment descriptors
At this point, you probably visualize a descriptor as something like the item in
Figure 3-5. Indeed, all the data in this figure is in the descriptor; however, because
of space and compatibility constraints, the real thing is not quite so pretty. Figure
3-6 shows the actual format of a segment descriptor.

' .. ,
Base address I-
Segment limit

Access rights I
Privilege level I L-)II

.

Figure 3-5. Visualized descriptor.

80386/80486

63

Base
address GiD
24 .. 31

A
OV

L

4847 4443 4039
I S Limit

P DPL 16 .. 19 = Type

I 1

Access
rights

0

32 31 16 15
I

Base address Limit
I 0 .. 23 0 .. 15

o

Figure 3-6: Actual 80286180386180486 descriptors. (continued)

52

Figure 3-6. continued

80286

63 4847 4443 4039
I

3: Memory Architecture

32 31 16 15 o
I s

0 P OPL = Type
Base address Limit

15

80286 descriptor
as stored in memory

Limit
o .. 15

Base address
O .. 15

I 1

Access
rights

o

Access Base address
rights 16 .. 23

0

80386/80486 descriptor
as stored in memory

0

Low
addresses

High
addresses

O .. 23 O .. 15
I

Lr_1 _______ B_a_se __ ad_d_r_~_ss_._.1_5 ________ 1_6Lr_5 ___________ L_im_o_it_ .. _1_5 ________ ~1 'd~~,e,
Base address A Limit Access Base address

GO o V 24 .. 31
L

16 .. 19 rights 16 .. 23 High
addresses

Base address: The base address portion of the descriptor is the address of offset 0
in the segment. This field is 32 bits and is constructed from bytes 2, 3, 4, and 7 of
the descriptor. In the 80286, the base address is only 24 contiguous bits. However,
Intel specified that bytes 6 and 7 of the 80286 descriptor were to be set to 0 to en­
sure that 80286 code would run properly on an 80386/80486.

53

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Limit: The limit field determines the last addressable unit of the segment. The limit
field is 20 bits, comprising bytes 0 and 1 of the descriptor and the low-order four bits
of byte 6. Again, the split occurs because of the differen.ce in the limit field sizes be­
tween the 80286 and the 80386/80486. Those of you handy with binary arithmetic
might note that a 20-bit limit field allows the addressing of only 220, or approxi­
mately 1 million, items.

At first glance, this seems to mean that an 80386/80486 segment is limited to 1
megabyte. This is not the case, although the segment is limited to 1 million items.
The G bit in byte 6 of the descriptor stands for granularity, and 80386/80486 seg­
ments come in two forms, byte granular (G = 0) and page granular (G = 1).

The terms granularity and-resolution are similar in meaning. A high-resolution im­
age is made of very tiny items, and a lower-resolution image is made of larger items.
The limit of a byte granular segment is measured in bytes; a page granular segment
is measured in larger pieces called pages.

A page is 212, or 4096, bytes. This makes the limit on the size of a segment 220 pages
of 212 bytes, for a total of 232 bytes (4 GB). Again, a segment of code ported from the
80286 is always a byte granular segment because the seventh and eighth descriptor
bytes are required to be O.

For example, assume that the DS register points to a byte granular segment with a
limit of OOlFH. The size of the segment is 20H (32 decimal) bytes, and the last ad­
dressable byte of that segment is byte OOlPH.

lUegallnstnlction

Mav EAX, [1234H]

Mav EAX, [OOlDH)

Mav AL, [0020H)

Mav [OOlFH], AX

Legallnstnlction

Mav EAX, [OOOOH)

MaV EAX, [OOlCH]

Mav AL, [OOlFH]

Mav [OOlEH], AX

Reason

Memory address beyond limit

Size of item read extends beyond limit

Memory address beyond limit

Size of item written beyond limit

Reason

Last byte read is 3H

Last byte read is lFH

Last byte read is lFH

Last byte written is lFH

Now imagine a page granular segment with a limit of OOOOH. The size of the seg­
ment is one page, and page 0 is the last addressable page. A page has 1000H (4096
decimal) bytes in it, so the last addressable byte is OFFFH.

54

lUegallnstruction

MOV EAX, [1234H)

MOV EAX, [OFFDH)

MOV AL, [1020H)

MOV [OFFFH), AX

Legallnstructton

MOV EAX, [OOOOH)

MOV EAX, [OFFCH)

MOV AL, [OFFFH)

MOV [OFFEH), AX

Reason

Memory address beyond limit

Size of item read extends beyond limit

Memory address beyond limit

Size of item written beyond limit

Reason

Last byte read is 3H

Last byte read is OFFFH

Last byte read is OFFFH

Last byte written is OFFFH

3: Memory Architecture

Access rights: The access rights portion of the descriptor has the following format:

7 6 5 4 3 2 1 0
I p I DrL I S I ~E I A I

The P bit stands for "present." It is set to 1 when the segment indicated by the selec­
tor is present in physical memory. In a virtual memory system, the operating system
can move the contents of some segments to disk if physical memory is full. It then
marks the descriptor as not present by resetting the P bit to O. If an application loads
a selector into a segment register and the descriptor associated with the selector has
P = 0, the not-present interrupt (11 decimal) is generated. The operating system
then looks for a free area of physical memory, copies the contents of the segment
from disk back into memory, updates the descriptor with the new base address, sets
P to 1, and restarts the interrupted instruction.

The DPL field contains the privilege level of the descriptor. The privilege level
ranges from 0 (most privileged) through 3 (least privileged). A task can access seg­
ments of equal or lesser privilege. A task can only read data from or store data into
segments of equal or lesser privilege. A task can call only code segments of the same
privilege; however, access to segments of higher privilege can be granted indirectly
via the gate, a feature of the protection mechanism. A task can never invoke a code
segment of lesser privilege.

The privilege level of a task, called the current privilege level (CPL), is the privilege
level of the currently executing code segment. Typically, the most secure portions
of the operating system run at level O. Other system software might run at a less
privileged level, and applications typically run at level 3. (See Chapter 5 for a de­
scription of the protection mechanism.)

55

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

The S (segment) bit is always set to 1 for a memory segment. When S is equal to 0, a
descriptor describes an object other than a memory segment. These objects are de­
scribed in Chapter 5.

The TYPE field indicates the types of operations allowed on the segment. Valid
values for TYPE are:

o Read-only data segment

1 Read/write data segment

2 Unused

3 Read/write expand-down data segment

4 Execute-only code segment

5 Execute/readable code segment

6 Execute-only "conforming" code segment

7 Execute/readable "conforming" code segment

The type indicator defines the access rules applied to a segment. The CS register
cannot be loaded with a selector of a segment of type data (0-3). No program can
modify a segment that cannot be written. Segments that are not readable can be
executed but not read as data. An attempt to violate any of these rules results in a
protection fault. Conforming segments are discussed in Chapter 5. Expand-down
segments are covered later in this chapter.

The processor sets the A (accessed) bit when the selector for the deSCriptor is loaded
into a segment register. The operating system can use this bit to find out which seg­
ments are not frequently used and can therefore be swapped to disk if necessary.

Additionalfrelds: Four additional fields in the segment descriptor are located in
the high-order nibble of byte 6.

The G bit, described previously, regulates the granularity of the segment.

Bit 6 is referred to as the D bit if the descriptor is for an executable segment or as the
B bit if the descriptor type is a data segment. The D bit is set to 1 to indicate the
default, or native mode, instruction set. When D is equal to 0, the code segment is
presumed to be an 80286 code segment, and it runs with 16-bit offsets and the
80286-compatible instruction set.

The B bit is set to 1 in any data segment whose size is greater than 64 KB.

Bit 5 must be set to 0. It is reserved for use in a future Intel microprocessor.

Bit 4 (AVL) is available for use by system programmers. possible uses include mark­
ing segments for garbage collection or indicating segments whose base addresses
should not be modified.

Expand-down segments, indicated by TYPE = 2 or TYPE = 3, are a special kind of
data segment designed for use with the stack. Figure 3-7 shows a stack that resides
in its own segment.

56

3: Memor, Architecture

Limit

ESP'-++------t

ss,-+'-------' 0

Figure 3-7. Stack residing in its own segment.

As more data is pushed onto the stack, the stack pointer (ESP) nears 0. If too much
data is pushed onto the stack, the program attempts to decrement ESP beyond 0,
resulting in a stack fault. At this point, the operating system has no choice but to ter­
minate the program.

Placing the stack in an expand-down segment rather than in a normal data segment,
however, will change the way memory is addressed inside the segment.

Although normal segments are addressed beginning at ° and extending to limit,
expand-down segments begin at limit + 1 and extend to FFFFFFFFH. Figure 3-8
illustrates the difference.

2048

Normal data segment

2047

ss 'JOL-___ -' o

2048

Expand-down segment

fFFFFFFFH

~ESP

SS ___ --' limit+ 1

Figure 3-8. Normal data segments and expand-down segments.

The advantage of this approach is that when the stack pointer is decremented past
the limit and triggers a stack fault, the operating system can extend the size of the
segment and decrement the limit. The faulting instruction is then restarted, allow­
ing the program to run with a larger stack segment. Figure 3-9 on the follOwing
page shows how this is accomplished.

Notice that when a descriptor for an expand-down segment is created, the base ad­
dress must be set to the linear address of the first byte after the end of the segment
rather than to the address of the start of the segment. Because addressing arithmetic
is limited to 32 bits, large offset values can be viewed as if they were negative num­
bers. For example:

base + FFFFFFFFH == base + -1 == base -1

57

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

r-r-------, FFFFFFFFH

2048-

3096

Old limit

I+-ESP

'---___ -' New limit

Figure 3-9. Extending the size of the segment.

Descriptor tables
All the descriptors are grouped together in descriptor tables. The two system de­
scriptor tables are the Global Descriptor Table (GDT) and the Interrupt Descriptor
Table (IDT). The IDT contains no segment descriptors, so it is not discussed here.

A full description of the IDT and other facets of the protection mechanism is given
in Chapter 5.

An operating system can also implement various Local Descriptor Tables (LDTs).
Segment descriptors are found either in the GDT or in the currently active LDT. The
selector used to identify the deSCriptor determines which table to use. The location
of the tables in memory is determined by the GDTR, IDTR, and LDTR registers.

Selectors
A segment, as we have seen, is described by a descriptor that has been selected by
a selector. A selector is made of three components, as shown in the following
illustration:

15 321 0

I INDEX

The INDEX and TI (table indicator bit) fields tell the CPU where to find the descrip­
tor. When the TI bit is set to 0, the descriptor is in the GDT. When TI is set to 1, the
processor uses the current LDT instead. The INDEX field identifies which entry in
the descriptor table to use. Be aware that the RPL (requested privilege level) can
differ from the actual descriptor privilege level. The reason for this is discussed in
detail in Chapter 5.

58

3: Memory Architecture

As an example of how the selection mechanism works, assume that the value
1A3BH is a valid selector. The selector is divided as follows:

Selector = 1A3BH

0OOl101000111011B

INDEX = 0347H (839 decimal)

TI = 0

RPL = 3

(GOT)

(lowest)

To use a selector, hardware must first break it into three fields: INDEX, TI, and RPL.

Figure 3-10 illustrates how hardware separates a selector into its components.

I Index n

Descriptors

n TI 0 TI

GDT

I TI I RPL I

Descriptors

1 n

LDTs

I

(Current)

Figure 3-10. Hardware's separation of selector components.

Games Segments Play
By making use of the virtual addressing capabilities, an operating system designer
can provide a number of interesting features. One such feature is virtual memory.
Virtual memory.gives the appearance of physical memory where none exists.

To illustrate how this can be accomplished, imagine an environment such as the
one pictured in Figure 3-11 on the following page. The figure represents a multitask­
ing system in which four tasks are to be run. One MB of memory is available for
running the four applications. Application A requires 400 KB, application B requires
100 KB, application C requires 400 KB, and application 0 requires 200 KB. Also
assume that half of the application space is dedicated to code and that the other half
is required for data.

Because the combined memory requirement of the four applications exceeds 1 MB,
they cannot all be in memory simultaneously. After A, B, and C are loaded, not
enough room remains for all of task D. (See Figure 3-12 on the following page.) The
operating system loads the code portion of task 0 but not the data segment. It does,
however, create descriptors for both the code and the data segments of task 0,
marking the data segment descriptor as not present.

59

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

System memory Applications

as 100K~1 B

T
1MB

lL-----J
Figure 3-11. Initial state of a multitasking system.

as
A

B

c
100 KB I'--__ -'
Figure 3-12. Initial tasks loaded into memory.

This is a multitasking system, so the starting address (CS:EIP) of each task is passed
to the scheduler portion of the operating system, and execution begins. Task A
starts and is allowed to execute for a few milliseconds. The scheduler then takes
control and allows task B to run for a few milliseconds. However, part way through
its allotted time slice, task B reads the keyboard for input from the operator. Be­
cause no keys have yet been pressed, the operating system takes control and marks
task B as suspended.

The scheduler then gives control to task C, which runs through its allotted execu­
tion time. Control now passes to task D. It begins to execute, but as soon as it tries to
refer to the data segment, the processor generates the not-present interrupt.

The operating system determines which task was executing when the interrupt oc­
curred and' what caused the interrupt. It determines that task D needs access to its
data segment, so it evaluates the status of the other tasks. Task B is suspended, so
the operating system decides to temporarily remove it from memory to make room
for the data segment of task D.

The memory image of B is written to disk, and the descriptors for B are marked as
not present. Task B is said to have been swapped out, and operating systems that
implement virtual memory in a similar manner are implementing swapping.

60

3: Memory Archlt_ture

The data segment for D is copied into memory at the physical location just vacated
by B, and the descriptor for D is updated to reflect the new base address and to
show that the segment is now present in memory. Figure 3-13 reflects the new state
of the system.

Descriptor table

OS

A code t...
A data

L -A-
Bcode ~NP
B data r---+NP

Disk m
Ccode Ir Dcode
Cdata
Dcode I

D data
_ C_

I Ddata

Figure 3-13. Swapping tasks Band D.

The scheduler now rotates execution time among tasks A, C, and D. At some point
the computer operator sees the prompt for input from task B and in response
presses a key on the keyboard. This action causes a hardware interrupt, and the
operating system realizes that it must now schedule task B. However, because none
of the other tasks are suspended, the system might choose to suspend task A
temporarily.

Because task B is small, it displaces only part of task A. The code segment of task A
is marked as not -present, task B is swapped in, and the descriptors for tasks A and B
are updated as shown in Figure 3-14 on the following page. Notice that task B is now
running at a different physical address than when it began. This is invisible to the
application, however, because the selectors loaded into the segment registers do not
change and because the memory offsets used by the instructions in the code seg­
ment are relative to the starting point of the segment, regardless of the physical
origin of the segment.

The system will continue to operate as previously described, with occasional swap­
ping and shifting of segments. If no external condition exists that causes a segment
to swap, the operating system might swap segments, based either on which tasks
have run the longest or on another system of priority.

61

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

D escriptor table
~NP as

-B-
A code -

A data
Bcode - r--

A data -
B data -

Ccode
C data Dcode

=cJ L Dcode
D data -C-

~ D data

F.igure 3-14. Swapping tasks A and B.

Performance considerations
As the previous example shows, virtual memory doesn't create RAM out of thin air;
it uses secondary storage, usually disk, to supplement the primary (RAM) storage
and give the appearance of more primary storage than exists in the system. The
cost of keeping up appearances is the amount of time it takes to move data between
primary and secondary storage. The more time the system has to spend swapping,
the less time it can spend executing the applications. In extreme cases, a system can
be so overextended that it spends all its time swapping segments in and out. This
pathological situation is called thrashing.

An operating system designer can improve the performance of a virtual memory
system. For example, in the Intel protection mechanism, code segments are immu­
table. Because the contents of a code segment do not change, it doesn't have to be
written to disk when swapped out. You can re-create the contents from the original
executable image of the program. Only swapping in requires access to secondary
memory. The operating system, therefore, can swap code segments twice as fast as
it can swap data segments. Actually, if you recall the contents of a descriptor, you
will remember that certain kinds of data segments can be marked as read-only. As
with code segments, read-only data segments do not have to be written to second­
ary storage when swapped out.

Another trick that designers can use also relies on knowledge about code segments.
The technique of segment sharing lets two or more tasks share the same code. This
is primarily effective in multiuser systems. In the previous example, assume that
tasks A, B, C, and D represent users running applications. Suppose that users A and
C are running the same application, perhaps a spreadsheet. Now users A and Care
operating on different data and require separate data segments. They are, however,
executing the same code. Figure 3-15 shows how all four applications can fit in

62

3: Memor, Architecture

physical memory in this situation. The users maintain separate descriptors for their
code and data, but the base addresses for the code segments of A and C point to the
same location.

Descriptor table

A code OS

~
A data
Bcode AlC code

'II Bdata A data

Ccode Bcode

C data ~
Bdata

Dcode ~
C data
Dcode Ddata ~ Ddata

Figure 3-15. Tasks A, E, C, and D in physical memory.

Finally, a segment-oriented virtual memory system can provide a way to compact
memory. Compacting memory helps solve a problem called fragmentation. Frag­
mentation occurs when memory that is not contiguous is available to run additional
applications. To put it another way, the pieces of available memory are small and
scattered throughout physical memory, and to be useful they need to be next to one
another. Figure 3-16 illustrates this problem. Because applications deal with virtual
addresses, they are not affected by a change in location. The process does take up
CPU time, however.

D ~egment
muse

DFree
memory

Memory

100KB

~====:::j 5KB
f------I 20 KB

80KB

300KB

l5KB

100 KB free memory

Figure 3-16. Memory fragmentation.

Newseg-
ment to be 100 KB
swapped in

Memory after
compaction

100KB

20KB
1-------;

New
segment

300KB

100KB

63

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Why bother?
Because virtual memory is plagued with potential performance problems and adds
to the complexity of operating systems by forcing them to deal with fragmentation
and with identifying shareable segments, you might be tempted to ask, "Is it worth
the effort?" In most cases, the answer is "Yes."

One clear advantage of virtual memory is that a user doesn't have to spend money
for extra memory simply to get an application to run. Any application will run in
existing memory; it will simply run more slowly if it has to be swapped out. Let's say
that I have a system with 2 MB of physical memory and that 90 percent of my appli­
cations fit into physical memory. However, 10 percent of the time I run an applica­
tion that requires 5 MB of memory. Without virtual memory, I can't run the large
application unless I spend the extra money to buy 3 MB of memory that will remain
unused 90 percent of the time. With virtual memory, I can at least run the applica­
tion and decide whether I want to spend money to improve its performance.

Virtual memory also makes life easier for the application designer. What if you are
writing a program that manipulates a large array? If virtual memory is not available,
you have to worry about how much memory your typical user will have and how to
make your program fit into a system of that size. As a designer, you can no longer
worry about simply solving the problem at hand (the array manipulation). You must
also be concerned about breaking your program into pieces that will fit on the typi­
cal system. The complexity of your application increases, and the application is thus
more likely to contain bugs.

This situation might be likened to giving a speech simultaneously in two different
languages. By letting someone else handle the translation, you can concentrate on
your job-presenting your information.

The dark side of the force
So far, only the advantages of segmentation have been discussed. Let's take another
look at segments and see if we can uncover some problem areas. One advantage of
segmentation is virtual addressing. The application deals with selectors, whereas
the linear memory address for the segment is in the descriptor. Thus, every time a
selector is loaded into a segment register, the contents of the descriptor must be
fetched as well. Every instruction that causes a segment register to be loaded also
causes the 8-byte descriptor for the segment to load. In addition, the descriptor is
marked as accessed when it is loaded, so a memory write is required to set the bit in
the descriptor.

At a minimum, therefore, a segment register load has an overhead of two memory
read cycles and one memory write cycle in addition to any memory cycles required
to fetch the operand of the load instruction. Because of this and the protection
checking that the CPU does based on the type qf segment, size of descriptor table,
and privilege level, loading a segment register can take as long as 22 clocks as op­
posed to the typical 2 clocks that it takes to load a general-purpose register.

64

3: Memory Architecture

Another advantage of segmentation is the limit checking that the processor per­
forms. If a data object such as an array is placed in its own segment, the CPU moni­
tors all references to the object and triggers an interrupt if any instruction refers to a
point beyond the bounds of the object. Limit checking is an excellent tool for help­
ing programmers discover flaws in their programs. Unfortunately, using this tool
means having many data segments. Having many data segments implies many seg­
ment register load operations, which slow down the program. You must also deal
with 48-bit pointers-16 bits of selector and 32 bits of offset.

The 80386 and 80486 do not provide many instructions for handling these ir­
regularly sized items, nor do many programming languages. Consequently, they are
awkward to manipulate, and they cause more work for the programmer.

Finally, you must deal with the problem of fragmentation. Because segments come
in odd sizes, the operating system must work harder to arrange physical memory
space in which to load applications.

Summary
As you have seen, segmentation is a mixed blessing. On the one hand, it provides a
method for implementing virtual memory and a mechanism for implementing a
secure operating system via privilege levels, and the segment limits assist program­
mers in tracking bugs that arise from invalid pointers or array boundary errors. On
the other hand, segmentation gives rise to unwieldy 48-bit pointers, extracts a per­
formance penalty, and can cause fragmentation when used to implement virtual
memory.

The flexibility of the 80386 family offers system designers three choices. You can
ignore segmentation completely by creating only one code segment and one data
segment that encompass the entire address space. You can use a limited form of
segmentation in which only two segments, code and data, exist for every user or
task on the system. In this instance, the application sees a uniform address space,
and only the operating system needs to deal with segments. Or you can implement
a fully segmented system in which each large data object and each module of code
is in a separate segment.

Each implementation has advantages. The first method gives you an architecture
similar to the M68000 or VAX. Although it might seem that you lose the capability to
implement virtual memory with this method, you can implement a form of virtual
memory other than the one described here by using paging, which is discussed in
Chapter 6. A system of this design, however, loses the privilege-level protection fea­
tures provided by segmentation.

The second method strikes a balance between the other two. Protection is provided
on a task-by-task basis, and virtual memory can be implemented through segmenta­
tion, paging, or both.

65

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

The third method is the most similar to that provided by OS/2 on the 80286 and to
programming in the large memory model. This type of system can provide a very
secure environment, but the system will run somewhat slower.

One beauty of the 80386 family is that it supports these divergent environments and
allows designers to build systems that meet their needs, whether those needs be for
high security or for high performance.

66

4

THE BASIC
INSTRUC liON

SET

The 80386 family of processors are classic stored program, or von Neumann, pro­
cessors-that is, the memory attached to the CPU stores not only data to be oper­
ated on but the instructions that specify the operations. The term von Neumann
is used in honor of the mathematician John von Neumann, who wrote a series of
papers in the mid-1940s outlining the design of stored program computers. Almost
all commercially available computers have designs based on the von Neumann
model, and those using the 80386 and the 80486 microprocessors are no exception.

Built into every stored program computer is a set of commands that cause the CPU
to read from a location in memory, interpret the contents as an instruction (that is,
as a command to perform some function), execute the function, and start the cycle
over again. Because this sequence is often implemented in microcode, it is com­
monly referred to as the microcycle.

In one of the earliest stored program computers, the EDVAC, each machine instruc­
tion was broken down into five fields: A bit pattern in one field designated the
operation to be performed, two fields designated input operands, one field speci­
fied where the result was to be stored, and the final field specified the location of
the next instruction. Computer designers soon learned that if they placed one in­
struction after another, they could eliminate the field that specified the address of
the next instruction. A register called the program counter or instruction pointer
was used to point to the next instruction and was incremented to point to the next
one as soon as each instruction was fetched.

67

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

This method has never been modified, and the typical microcycle can now be
expressed algorithmically like this:

top:

fetch the instruction at ElP

increment EIP by the size (in bytes) of the instruction

execute the instruction

goto top

This is, of course, a simple view of the microcycle. In actuality, it is much more
complex because of the parallelism built into the 80386 family (see Chapter 1) and
because of the necessity of saving the state of the processor if an instruction faults
and has to be restarted. However, the basic algorithm is all that is necessary to un­
derstand the process.

Instruction Format
Instructions are stored in memory in the same way that characters, floating-point
numbers, integers, or any other type of data is stored in memory. The value OF5H,
for example, is the encoding for the CMC (complement carry flag) instruction. An
instruction can range from 1 byte to 16 bytes in length.

In general, the format of an 80386 or 80486 instruction looks like this:

I opcode I I mod rIm I s-i-b I displ data

The opcode is 1 or 2 bytes. The mod rim and s-i-b bytes specify the operands and
memory addressing modes. The displ (displacement) field is part of the memory
address and can be 1, 2, or 4 bytes. The data field specifies an immediate operand
value and can also be 1, 2, or 4 bytes. As many as four prefix-bytes can precede the
opcode field.

Not all fields are present in all instructions. The CMC instruction, as shown pre­
viously, consists of only a single opcode byte. The instruction:

XCHG EAX. EBX

consists of only the opcode and mod rim fields. All fields are present in the
instruction:

ADD [EBP+8][ESI*4]. 17

Appendix 0 specifies the bit patterns used to encode instructions, and Appendix E
contains a table that lets you decode bit patterns into the original assembly language
mnemonics.

68

4: The a.slc Instruction Set

Instruction Operands
The instructions stored in memory command the CPU to manipulate one or more
operands. Instruction operands can be specified in one of five ways: They can be
implicit, register, immediate, I/O, or memory reference operands.

Implicit operands
An operand is implicit if the instruction itself specifies it. The CLI instruction, for
example, operates on the IF bit in the EFLAGS register. The programmer does not
have to specify anything beyond the instruction. The stack is an implicit operand in
a number of instructions-for example, PUSH, POP, CALL, and IRET. However, be­
cause the stack resides in memory, I will discuss stack operands in the section on
memory reference operands. The following are examples of instructions that have
implicit operands.

Instruction

AAA

CMC
CLD

Explanation

Adjust register AL after ASCII add
Complement the value of the carry flag
Clear direction flag to 0

Register operands
An instruction with a register operand performs an action on the value that is stored
in one of the internal registers (shown in Figure 4-1 on the following page). Specify
register operands by using the name of the register in the operand field of the in­
struction. Notice that not all registers are legal operands for all instructions. The
general registers (EAX, CL, and so on) are most commonly used in data manipula­
tion instructions. You cannot, for example, increment the contents of a segment
register or use a control or debug register to store a memory address.

The following examples illustrate typical instructions using register operands.

Instruction

INC ESI
SUB ECX, ECX
MOV AL,DL
MOV EAX,CRO
CALL ED!

Explanation

Add 1 to contents of ESI
Subtract ECX from itself, leaving 0

Copy contents of DL into AL
Copy CRO contents into EAX
Invoke subroutine whose address is in EDI

69

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

General registers Segment registers
31 1615 87 ° 15 °

EAX AX
TAH,AL

CS
SS

ElIX BX
BH, BL

DS
ES

ECX ex
I CHi CL

FS
GS

Elrx DX
DH, DL

Er BP
Status registers

31 °
Ell SI EFLAGS

EIP

Ell D!

Er SP

Figure 4-1. 80386/80486 register set.

Immediate operands
An immediate operand is specified when a value is part of the instruction itself.
Consider the instruction ADD EAX, 3. In addition to the register operand EAX, the
numeric value 3 is coded in the instruction and is stored in the code segment with
the bit pattern that represents ADD. Other examples of instructions that use im­
mediate operands include:

lnstntction

MOV EAX,7

AND CL,OFOH
BT ED!,3
]C 3ClH

1/0 operands

Expklnatron

Store the value 7 in register EAX
Mask off the low-order bits of CL
Copy bit 3 of ED! to carry flag
Branch to offset 3CIH if CF is set

External devices that transfer data from the computer to another environment are
called I/O (input/output) devices. Typically, a processor communicates with these
devices via a speciat address. The most straightforward way is for the device to have
its own address (or set of addresses) called I/O ports. I/O addressing is similar to
memory addressing, but different hardware control lines are activated. In addition,
the processor sensibly refrains from attempting to cache values read from or written
to I/O ports. The 80386 and 80486 each support a total of 65,536 separate I/O
addresses.

70

4: The a.slc Instruction Set

I/O communication is done in 8-bit, 16-bit, or 32-bit quantities. I/O addresses must
be aligned on even boundaries for word I/O and mod 4 boundaries for doubleword
I/O. The accumulator is always the source or the destination for the I/O instruction,
and the I/O port is specified with an immediate operand or by the contents of the
DX register. Notice that I/O ports expressed as immediate operands cannot exceed
8 bits, or a value of OFFH. Examples of instructions that use I/O operands include:

Instnu:tlon

IN AL,04H

OUT lCH,AX

IN AX,DX

IN EAX,DX

Explanation

Input a byte from port 04H

Output a word to port 1 CH

Input a word from port specified by DX

Input a doubleword from port specified by DX

Memory reference operands
To operate on the contents of memory, you must specify the address of the data
value you want to use. The 80386 family provides a number of addressing modes.
There is rarely a performance penalty for using a complex addressing mode, so use
the addressing mode that is most appropriate to your program's needs.

When you specify a memory address, you specify the offset from the beginning of
the appropriate segment. Address 0 is the first byte of the memory segment, address
1 is the second byte, and so on, regardless of the segment's physical starting address.
Chapter 3 contains a detailed description of how segmentation is used to generate
memory addresses.

By default, the segment used in most instructions is the one pointed to by the DS
register. Forcing an instruction to operate on values in other segments is possible,
however, by programming a segment prefix opcode immediately before the instruc­
tion. Normally, the instruction MOV AL, [0] reads the first byte of the data segment
into register AL. By applying a segment prefix, you can force the data to be fetched
from another segment. The instructions:

55:
MOV AL. [0]

load the AL register with the first byte of the stack segment. Although the segment
prefix byte comes before the instruction in the code stream, for readability the pre­
fix is usually written as part of the memory operand. The previous example is nor­
mally written:

MOV AL. 55:[0]

Direct addressing
The simplest form of memory reference is called direct addressing, where the in­
struction itself includes the location of the operand. The location is specified as
a 16-bit or 32-bit offset in the current segment. This offset is also known as the

71

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

displacement. The table below shows three examples of direct addressing. The
brackets differentiate data values (no brackets) and memory addresses (brackets).

Instnu:tion

INC DWORD PTR [17H]
MOV AL, [1A33D4H]
SHL BYTE PTR [IFFH], 3

Explanation

Add 1 to the 32-bit value at offset 17
Copy the memory byte to register AL
Shift the memory byte left 3 bits

In the examples in this chapter, I generally use numeric memory addresses to illus­
trate where the address values are used in an instruction. You might never need to
use numeric memory addresses. Your programming environment will provide as­
semblers and compilers that name locations in memory, and you will use these
names in your program. This technique is called symbolic addressing.

Symbolic addressing has a number of advantages over absolute numeric addressing.
You are much less likely to make a mistake if you can refer to a variable by. a mne­
monic name, such as queue_top, rather than by a number, such as 3208IA3H. Also, if
you use symbolic names, the assembler keeps track of the type of the data item. For
. example, the opcade for the increment instruction is INC, but the same opcode can
apply to 8-bit, 16-bit, or 32-bit operands. If you define a symbolic variable, the cor­
rect instruction encoding is chosen for you. Without symbolic addressing, you must
specify both the size and the location of the operand. For example, notice the differ­
ence between these two operations:

INC DWORD PTR [15F2H] : 32-bit operand

and

COUNT DO
INC

?
COUNT

: allocate 32 bits with name COUNT
: increment variable

Here are some additional examples of instructions that use symbolic addressing.

Instruction

COUNT DD 10
FLAG DW?·
NAME DB 20 DUP (?)

DEC COUNT
MOV AL,NAME
MOV AL, NAME[I]
OR FLAG,4000H

72

Explanation

Reserve 32-bit value, initial value 10
Reserve a single word
Reserve 20 consecutive bytes
Subtract 1 from the value at COUNT
Copy first byte of NAME
Copy second byte of NAME to AL
Set one bit in the specified word

4: The a.slc Instruction Set

Based addressing
In based addressing, a register holds the address of an operand. The register con­
taining the memory address is called the base register, and you can use any of the
seven general registers as a base register. When you use ESP or EBP as a base regis­
ter, the address is assumed to be an offset from the stack segment (SS) rather than
from the data segment (DS). You specify based addressing by placing the register
name in brackets, as the following examples illustrate.

MOV
DEC
XCHG
CALL

AL. [ECX]
WORD PTR [ESI]
EBX. [EBX]
[EAX]

copy byte of memory at ECX into AL
decrement 16-bit word at ESI
swap contents of EBX with dword at EBX
EAX holds pointer to
address of subroutine

Base plus displacement addressing
Base plus displacement addressing is a variant of based addressing that uses a base
register to specify a nearby location. An integer offset then modifies the base ad­
dress to form the final destination. Base plus displacement addressing is commonly
used in addressing components of data structures and in stack-relative addressing.
For example, if ESI points to a record of type point, where point is a structure whose
first element is the x coordinate and whose second element is the y coordinate, then
you could use the instruction MOV EAX, [ESI+4] to fetch the y coordinate.

Similarly, because the base pointer EBP commonly points to the current stack frame,
any values pushed onto the stack can be addressed by an offset from EBP. Offsets can
be positive or negative and are interpreted as signed 32-bit integers. The assembler
provides a construct called a struc that makes keeping track of offsets within data
structures simple. Here is the above "point" data type example redone symbolically:

POINT struc
X DO
y DO

POINT ends
CORNER POINTO

LEA
MOV
INC

?
?

ESI. CORNER
EAX. [ESI].X
[ESI]. Y

; define record layout

reserve memory
get address of variable
fetch the x component
increment the y component

Index plus displacement addressing
IndeXing is implemented by using the contents of a register as a component of an
address. Any of the seven general registers (except ESP) is a legal index register. In­
dex plus displacement addressing is most useful in dealing with arrays. A direct ad­
dress points to the starting address of the array, and the index specifies the element
of the array. Here are three examples of index plus displacement addressing:

MOV
IMUL
SUB

AL. lACH[ESI]
VECTOR[ECX]
ARRAy[EAX]. 2

get byte of array based at lAC w/index
multiply EAX by element indexed by ECX
subtract 2 from element of array

73

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

It might appear that index plus displacement is the same as base plus displacement.
However, indexing offers a capability that based addressing does not have.

The C language code fragment in the following example computes the sum of the
squares of an array.

int V[LMAX]:
regi ster i nt i:

sum - 0:
for (i - 0: i < V_MAX: i++)
sum +- v[i] * v[i]:

Assuming that the size of an integer is 32 bits, two separate values are required to
progress through the array: the index variable i and the offset in memory ofV[i]. For
example, when i is 3, the address of V[3] is the address of V plus 12 (4 x 3) bytes. Ev­
ery time i is used as an index into the array, it must be multiplied by the size of the
array element. The assembly code to execute the above loop might look like this:

XOR ECX. ECX clear ECX (counter) to 0
MOV SUM. ECX copy 0 to SUM

Ll: CMP ECX. V_MAX > or - V_MAX?

DONE:

JGE DONE

··,.::.',:.V.~ .. <, .. ·,:,'.··,m:;/~~~::;::,'.
z;,;V':," .. . ,., ";;.~,~.,~,;:~,;:~.'~,'.'.'~,':,., .. "YJ:At'.'>:V,[~AX'T':; ,,, ,
IMUL EAX square the array
ADD SUM. EAX compute the sum
INC ECX bump the counter
JMP Ll loop back to the top

The highlighted code shows the conversion from array index to memory offset and
the addressing of the selected item.

The 80386 and the 80486 provide a special optimization for arrays whose elements
are 1, 2, 4, or 8 bytes. The processor adjusts the, index to produce a memory offset.
This adjustment is called scaling and is indicated in assembly language by placing a
multiply operation in the brackets that enclose the index register. The above ex­
ample becomes:

XOR ECX. ECX clear ECX (counter) to 0
MOV SUM. ECX copy 0 to SUM

L1: CMP ECX. V_MAX is counter> or - V_MAX?
JGE DONE yes - go on
MOY 'tAX:, ,~[ECh4] ;'i lo~d'c~t~~t~;~f::~r,r.iii~t*,::~~4;
IMUL EAX square the array element
ADD SUM. EAX compute the sum
INC ECX bump the counter
JMP Ll loop back to the top

DONE:

74

4: The Basic Instruction Set

The second version of the program does not require the index value to be copied
and multiplied, so the program runs faster. Also, the instruction:

MOV EAX. V[ECX*4]

takes no longer to execute than the instruction:

MOV EAX. V[EAX]

When EBP is used as a scaled index register, it does not force the memory reference
relative to the stack segment as it does when used as a base register. When an in­
struction specifies both a base register and an index register and one of them is
EBP, EBP is assumed to be the base register unless a scale factor is present. If a scale
factor exists, EBP is assumed to be the index register. The following table shows four
examples:

Instruction

ADD [ECX)[EBPl, 7

MOV AX, ARRAY[EBP]

MOV EAX, [ECX][EBP*4]

INC BYTE PTR [ECX*S][EBP].X

Explanation

EBP is base, 55 segment used

EBP is base, 55 segment used

ECX is base, D5 segment used

EBP is base, 55 segment used

Unlike the 8086 and the 8088, which require anywhere from 5 through 17 clocks to
compute the operand address (depending on the complexity of the operands), the
80386 requires no additional time to compute the effective address unless both a
base register and an index register are used to select the operand. When both
registers select the operand, execution time increases by only one clock cycle. In
the 80486, an additional clock might or might not be required, depending on how
the instructions have been pipelined. However, in the 80486, 1 clock must be added
to the execution times of instructions that use based addressing if the base register
was loaded by the instruction immediately preceding the instruction that uses it.

Base plus displacement plus index addressing
Base plus displacement plus index addressing is the most complex addressing
mode. This addressing form is used to address data structures stored on the stack or
to address arrays whose base address is contained in a register. When these arrays
are being addressed, the displacement value is 0 and the programmer need not
specify it, although the assembler encodes a 0 displacement into the instruction.
The index register can contain a scale value, as it does in index plus displacement
addressing mode. Following are examples of base plus displacement plus index
addressing:

75

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Instruction

MOV EAX; [EBP+8][ESI]

INC WORD PTR [EBX+EAX.2]

MOV EDX, PT[EAX*8][ESIl.Y

Explanation

Array is on stack beginning at EBP + 8

16-bit vector based at EBX, with index

Array of "point" data structures

The final example above appears to contain two displacement values: the initial
displacement that specifies the start of the array, and the displacement of structure
element Y in the indexed array element. The assembler simply offers these values
for clarity. In the machine instruction, the displacement field contains the sum of
the two values, as calculated by the assembler.

Stack-based addressing
A stack is a data structure in which the value most recently stored is the first value
retriev:ed. The acronym LIFO (last in, first out) describes the action of a stack and
contrasts with the FIFO (first in, first out) structure. Figure 4-2 illustrates the LIFO
and FIFO structures.

4,'1""~
J,., "'.

1 1

Stack -last in, first out (LIFO)

,.,........".,.,........". .' . 3 2 ~
~>~ •. ' 3 2-.~

tfD.~
Queue - first in, first out (FIFO)

Figure 4-2. LIFO, FIFO.

1
,.,........". ..

Stack instructions typically refer to only a single operand. The other operand, the
stack, is implicit in the instruction. The processor assumes that all memory in the
stack segment (that is, the segment pointed to by the SS register) belongs to the
stack, but this is not always true. Often, DS and SS point to the same segment; part
of the segment contains program data, and part is reserved for the stack. In this
situation, the programmer might need to write code to check for stack overflow,
which occurs if too many items are pushed onto the stack and it runs over into the
data area.

76

4: The a.alc Instruction Set

When a value is stored on the stack, or pushed, the ESP register is tested to see
whether it is greater than or equal to 4. If it is not, a stack fault (interrupt 12) is gen­
erated; otherwise, ESP is decremented by 4, and the operand is stored at SS:[ESP].
The most recently pushed value, to which register ESP always points, is called the
top-of -stack.

The POP operation retrieves the most recently pushed value from the stack. First,
ESP is compared with the limit of the stack segment. If the memory reference is out­
side the limit, a stack fault is generated; otherwise, the value at SS:[ESP] is read, and
ESP is incremented by 4.

The PUSH and POP instructions cause immediate values, register values, or the con­
tents of a memory location to be stored to and retrieved from the stack. Also, some
instructions that cause a transfer of control (change the EIP register) push the old
execution address onto the stack. This allows the subroutine to return to the pre­
vious point of execution.

The most commonly used instruction that changes the EIP register is CALL. The
CALL instruction has one operand, the address of a routine to be executed. The
value of EIP (which points to the instruction immediately follOWing the CALL) is
pushed onto the stack, and EIP is set to the address specified by the CALL operand.
The RET (or return) instruction pops the current top-of-stack into the EIP register,
returning control to the instruction after the initial CALL.

A routine passes information to another routine by storing values on the stack before
executing a CALL instruction. The standard way this information is structured is
called the frame of the called routine or the call stack. Figure 4-3 on the following
page illustrates a subroutine call and shows how the stack frame is structured.

Programs can push and pop 16-bit values by specifying registers AX, BX, SI, and so
on or by specifying 16-bit memory references. It is more efficient, however, to push
the contents of the 32-bit register (for example, EAX for AX) and to disregard the
high-order bits. Use the MOVSX or MOVZX instruction to copy memory operands to
a register and extend them to 32 bits before they are pushed onto the stack. The
reason for doing this relates to how the 80386 and the 80486 interface with memory.
If the physical memory address is a multiple of 4 (that is, if the address is on a dword
boundary), then a single memory reference cycle can fetch as many as 4 bytes. If
the physical memory address is offset from the dword boundary, then at least two
additional clock cycles are required to read or to write a 32-bit value.

Therefore, after executing a 16-bit push, all subsequent 32-bit stack references
degrade in performance by at least 30 percent. In addition, if a 32-bit program with
16-bit pushes is ever run on the 80486 with alignment checking enabled, the pro­
gram will generate an alignment fault. In protected mode, 80386 and 80486 gener­
ate 32-bit references when the 16-bit segment registers (CS, SS, DS, ES, FS, and GS)
are pushed or popped, so performance degradation is not an issue in this case.

77

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

Initial stack

EBP

~
.. .

I 38 .. .

ESP

I 34 I-

Stack after
CALL subr

subr: ENTER 8
EBP

ESP

D Stack frame for subr

• Local variable space in frame

Figure 4-3. Use of the stack.

38
34
30
2C
28
24
20
lC
18

38
34
30
2C
28
24
20
lC
18

I

I

Instruction Categories

EBP

38

ESP

30

r
~

Stack after
PUSH x

" .
" .
x

Stack after
LEAVE
RET 4

38
34
30
2C
28
24
20
lC
18

38
34
30
2C
28
24
20
lC
18

The operations that can be performed vary widely, reflecting both the wide range of
the CPU's capabilities and its compatibility with previous processors. In this section,
I divide the instruction set into a number of related categories and identify the most
important instructions of each category.

Arithmetic
Arithmetic instructions perform signed and unsigned integer operations on oper­
ands of 8, 16, and 32 bits. With few exceptions, these instructions have the form:

OPCODE dest. src

78

4: The •• slc Instruction Set

Generally, arithmetic instructions operate on source and destination operands and
store the result in the location specified by the destination operand. The destination
operand can be a memory reference or a register, and the source operand can be
memory, a register, or an immediate data value. Both the source and the destination
operands cannot be memory references, however. The instructions that fit this for­
mat are:

Instruction

ADD

ADC

SUB

SBB

CMP

Explanation

Integer addition

Add with carry

Subtract

Subtract with borrow

Compare integers

These instructions affect the AF, CF, OF, PF, SF, and ZF bits of the EFLAGS register,
depending on the results of the operation.

In addition to the double-operand (or dyadic) instructions, there are single-operand
(or monadic) instructions:

Instruction

INC

DEC

Explanation

Increment by 1

Decrement by 1

Each of these instructions takes a single operand, either a register or a memory ref­
erence. These instructions also affect the same EFLAG bits, except that they do not
modify the carry flag (en

Finally, there are the irregular integer arithmetic instructions:

Instruction

DIV

IDIV

MUL

IMUL

Explanation

Unsigned divide

Signed divide

Unsigned multiply

Signed multiply

The DIV, IDIV, and MUL instructions take a single source operand. The destination
operand is implicitly the accumulator and depends on the size of the operands.
Destination operands are defined as follows:

79

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

operand Size Register

8 bits AL

16 bits AX

32 bits EAX

64 bits EDX,EAX

Because of its usefulness in computing array and structure element offsets, the
IMUL instruction has three different forms:

Instruction Explanation

IMUL src

IMUL dest, src

IMUL dest, src, data

accum = accum x src

dest = dest x src

dest = src x data

The DIV and IDlV instructions leave the status flags in undefined states. The MUL
and IMUL instructions modify CF and OF, leaving SF, ZF, AF, and PF undefined.

Decimal arithmetic
Six instructions help implement decimal math routines. The standard integer in­
structions perform computations, and the following instructions adjust the result
because the operands are not integers but BCD encodings. The following instruc­
tions have either the AL or the AX accumulator as an implicit operand:

Instruction

AAA

AAD

AAM

AAS

DAA

DAS

Logical

Explanation

ASCII adjust after addition

ASCII adjust before division

ASCII adjust after multiply

ASCII adjust after subtraction

Decimal adjust after addition

Decimal adjust after subtraction

The following instructions are called logical because they make no semantic
assumptions about their operands-that is, they do not regard the operands as in­
tegers, BCD digits, character strings, or so on. The instructions are strictly Boolean,
or bit-by-bit, operations. First is a set of dyadic functions similar to the arithmetic
instructions:

80

4: The a •• lc Instruction Set

Instruction

AND
OR

XOR

TEST

Explanation

Boolean AND
Boolean OR

Exclusive OR

Performs an AND but modifies only the EFLAGS register

A single monadic instruction, NOT, performs a logical complement of the operand.
With the exception of NOT, the logical instructions modify each of the OF, SF, ZF,
PF, and CF flags according to the outcome of the operation. The AF flag is left
undefined.

A series of instructions operates on bit strings. These instructions have the form:

OPCODE dest. index

where dest selects a bit string, either in memory or in a register, and index identifies
the particular bit in the bit string that is the subject of the operation. The index
value is either contained in a register or specified as an immediate value. If dest is a
memory location, index is treated as a signed integer and can take on any value
from _231 through +231. Instructions that operate on bit strings are BT, BTC, BTR,
and BTS.

Instruction Explanation

Bit test (save the value of the selected bit in CF) BT
BTC
BTR
BTS

Bit test and complement (save bit, then complement dest bit)
Bit test and reset (save bit, then clear dest bit to 0)
Bit test and set (save bit, then set dest bit to 1)

Figure 4-4 shows bit indexing in these instructions.

Index= -26

I -24 -16 -8 -1 7 0 15 8 23 16
CF 17 017 017 01

2A8H 2A9H 2AAH 2ABH 2ACH
dest

address

Figure 4-4. Bit indexing in BT instructions.

Two instructions search bit strings. These instructions have the form:

1

81

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Instruction

BSF dest, src

BSR dest, src

Explanation

Bit scan forward

Bit scan reverse

where src indicates the location of a bit string. The dest operand must be a register
that receives the index of the first nonzero bit. The dest operand can be only a 16-
bit or 32-bit register and indicates whether the src operand is a 16-bit or 32-bit quan­
tity. Figure 4-5 shows how these instructions work.

BSFEAX, EAX
31 EAX 0

1 0 1 0 0 1 0 0 1 1 1. . . 0 0 1 0 0 1 0 0 0 1 Bit scan forward

EAX L Start

Result: 1 '-_______;3 _______ --'

BSREAX, EAX EAX

'I -0-1-. -. -. -.-.----0-0-1-0-0-1-0-0-0--,1 Bit scan reverse

Start ---.! EAX

Result: L-I _______ ..:;.3_0 ______ ---'

Figure 4-5_ Bit scanning.

The final logical instructions are shift and rotate instructions. Figure 4-6 illustrates
what shift and rotate instructions do.

Cy SHL

Cy SAL

6 9P ... 91

&11111
CY SAR

9 ... 99 0
[]+---1 1 1 1 1 ~

1

I I
CY

Figure 4-6. Shift and rotate instructions.

82

4: The B.slc Instruction Set

Most of these instructions have the form:

OPCODE dest. COUNT

The destination is either a memory reference or a register. The COUNT is either an
immediate value or the CL register. The following instructions fit this format:

Instruction Expkmation

SHL Shift left logical

SHR Shift right logical

SAL Shift arithmetic left

SAR Shift arithmetic right

ROL Rotate left

ROR Rotate right

RCL Rotate through carry left

RCR Rotate through carry right

The following double shift instructions are also provided:

Instruction

SHLD dest, src, COUNT

SHRD dest, src, COUNT

Expkmation

Shift left double

Shift right double

In the above instructions, the source and the destination are concatenated and
shifted, and the result is truncated and stored in the destination operand. Figure 4-7
illustrates double shift instructions.

dest src dest

o 0

Figure 4-7. Double shifts.

83

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Data transfer
Probably the most frequently used instructions are in the data transfer category. To
the assembly programmer, a single instruction appears to do almost all the work.
Actually, the MOV mnemonic is encoded into one of several opcodes, depending on
the operands involved. The general form of the MOV instruction is:

MOV dest, src

Either the dest or the src operand can be a memory reference, but not both. Both
operands can be registers, and the src operand can be an immediate value for most
choices of dest. This instruction is not restricted to operating on the general regis­
ters. The MOV instruction is the only instruction you can use to read or modify the
control registers (CRO-CR3) and the debug and test registers (DRO-DR7, TR6-TR7).
You can also use the MOV instruction to load and store the segment registers DS, SS,
ES, FS, and GS.

Not all possible combinations of src and dest are legal instructions. The restrictions
are covered in Chapter 8.

Here are five additional data transfer instructions:

Instruction

XCHG dest, src

BSWAP reg

MOVSX dest, src

MOVZX dest, src

SETcc dest

Explanation

Exchange the contents of the two operands

Convert to other-endian (80486 only)

Move src into dest sign-extending src

Move src into dest zero-extending src

Set dest to 0 or 1 depending on condition codes

The XCHG instruction takes two operands and swaps their contents. One operand
must be a register; the other can be a register or a memory reference. Because this
instruction is frequently used to implement semaphores, the hardware bus LOCK
signal is asserted whenever one of the operands is a memory reference.

The BSWAP instruction operates on a 32-bit register and swaps byte 0 with byte 3
and byte 2 with byte 1. This will convert a "big-endian" number to "little-endian"
format, and vice versa.

The MOVSX and MOVZX instructions are similar to MOV, but they take a src operand
of a single byte and either sign-extend it (MOVSX) or zero-extend it (MOVZX) into a
16-bit or 32-bit integer at the dest location. If src is a word, it is extended appropriately
to a doubleword.

SET cc instructions move a 0 or a 1 into the destination, depending on the value of
the condition codes in the EFLAGS register. The conditions supported are:

84

4: The Basic. Instruction Set

Instruction Explanation

SETA dest Set to 1 if above (unsigned x > y) / CF = 0 & ZF = 0

SETAE dest Set to 1 if above or equal / CF = 0

SETB dest Set to 1 if below (unsigned x < y) / CF = 1

SETBE dest Set to 1 if below or equal / CF = 1 I ZF = 1

SETC dest Set to 1 if carry / CF = 1

SETE dest Set to 1 if equal / ZF = 1

SETG dest Set to 1 if greater (signed x > y) / SF = OF & ZF = 0

SETGE dest Set to 1 if greater or equal/SF = OF

SETL dest Set to 1 if less (signed x < y) / SF != OF

SETLE dest Set to 1 if less or equal) SF != OF or ZF = 1

SETNA dest Set to 1 if not above (SETBE)

SETNAE dest Set to 1 if not above or equal (SETB)

SETNB dest Set to 1 if not below (SETAE)

SETNBE dest Set to 1 if not below or equal (SETA)

SETNC dest Set to 1 if no carry / CF = 0

SETNE dest Set to 1 if not equal / ZF = 0

SETNG dest Set to 1 if not greater (SETLE)

SETNGE dest Set to 1 if not greater or equal (SETL)

SETNL dest Set to 1 if not less (SETGE)

SETNLE dest Set to 1 if not less or equal/SF = OF & ZF = 0 (Set G)

SETNO dest Set to 1 if no overflow / OF = 0

SETNP dest Set to 1 if no parity / PF = 0

SETNS dest Setto 1 if no sign / SF = 0

SETNZ dest Set to 1 if not 0 / ZF = 0

SETO dest Set to 1 if overflow / OF = 1

SETP dest Set to 1 if parity / PF = 1

SETPE dest Set to 1 if parity even / PF = 1

SETPO dest Set to 1 if parity odd / PF = 0

SETS dest Set to 1 if sign / SF = 1

SETZ dest Set to 1 if 0 / ZF = 1

Stack
The stack instructions store and retrieve data from the stack. The PUSH instruction
writes its operand to the stack, and the POP instruction removes the top-of-stack
element and stores it in the location specified by its operand.

The PUSHAD and POPAD instructions require no operands and save or restore all
the general registers to the stack. Figure 4-8 on the following page shows the stack

85

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

after a PUSHAD has been executed. Although PUSHAD stores the value of the ESP
register, POPAD does not reload ESP from the saved image. The new ESP value is al­
ways the old ESP value plus the number of bytes required to store the general regis­
ter context.

Before PUSHAD

High memory
1------1

ESP-+
f------I

Low memory '--___I

Figure 4-8. PUSHAD context.

Control transfer

old ESP

ESP

After PUSHAD

-+
EAX

ECX

EDX
EBX

old ESP
EBP

ESI
-+ ED!

After POPAD

ESP-+
f------I

Control transfer instructions affect the flow of execution. Normally, an instruction is
fetched from the address held in the EIP register, and then EIP is incremented by
the size of the instruction so that it points to the next instruction. The new opcode
is fetched, and the cycle continues.

The 80386 supports branch instructions, which alter EIP, and subroutine call in­
structions, which save the old EIP and then modify the EIP register. The software
interrupt instruction is similar to the subroutine call except that an interrupt number
is specified rather than an address. The address of the destination routine is then
determined by a gate in the !DT. Figure 4-9 shows how JMP and CALL instructions
affect the flow of execution.

Branch instructions exist in both conditional and unconditional forms. Uncondi­
tional jumps occur immediately when the appropriate instruction is encountered.
All calls and software interrupts are unconditional.

Conditional branches test certain bits in the EFLAGS register to determine whether
to branch or not. These bits are usually set as the result of a compare instruction
(CMP) or as the result of an arithmetic or a logical operation. These branches are to
relative addresses; the offset is a ± displacement from the current EIP. The following
list shows the conditions that can be tested for and the mnemonic for each
instruction.

86

4: The B.slc Instruction Set

Flow of instructions

RET

JMP CALURET

Figure 4-9. IMP and CALL instructions.

Instnlction Explanation

JA offset Jump above (unsigned x> y) / CF = 0 & ZF = 0

JAE offset Jump above or equal / CF = 0

JB offset Jump below (unsigqed x < y) / CF = 1

JBE offset Jump below or equal / CF = 11 ZF = 1

JC offset Jump if carry / CF = 1

JCXZ offset Jump ifCX= 0

JECXZ offset Jump if ECX = 0

JE offset Jump equal / ZF = 1

JG offset Jump greater (signed x > y) / SF = OF & ZF = 0

JGE offset Jump greater or equal/SF = OF

JL offset Jump less (signed x < y) / SF != OF

JLE offset Jump less or equal/SF != OF or ZF = 1

JNA offset Jump not above OBE)

JNAE offset Jump not above or equal OB)

JNB offset Jump not below OAE)

JNBE offset Jump not below or equal OA)

JNC offset Jump no carry / CF = 0

JNE offset Jump not equal / ZF = 0

JNG offset Jump not greater SF != OF or ZF = 1

JNGE offset Jump not greater or equal OL)

(continued)

87

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

continued

Instruction Expklnation

JNL offset Jump not less C]GE)

JNLE offset Jump not less or equal C]G)

JNO offset Jump no overflow / OF = 0

JNP offset Jump no parity / PF = 0

JNS offset Jump no sign / SF = 0

]NZ offset Jump not 0 / ZF = 0

JO offset Jump if overflow / OF = 1

JP offset Jump if parity / PF = 1

JPE offset Jump parity even / PF = 1

JPO offset Jump parity odd / PF = 0

JS offset Jump if sign / SF = 1

JZ offset Jump if 0 / ZF = 1

Three other conditional branch instructions are the loop instructions. Loop instruc­
tions decrement the ECX register and branch if the conditions outlined in the fol­
lowing list are met.

Instruction

LOOP offset

LOOPZ offset

LOOPNZ offset

Expklnation

Decrement, branch if ECX != 0

Decrement, branch if ECX != 0 and ZF = 1

Decrement, branch if ECX != 0 and ZF = 0

LOOPE and LOOPNE are synonyms for LOOPZ and LOOPNZ.

String
String instructions handle large blocks of memory with ease. A string instruction
can move a block from one location in memory to another, compare one block with
another, or search a string for a specific value. String instructions use specific regis­
ters for storing operands. DS and ESI always point to the source memory block. ES
and EDI point to the destination. These pointers are incremented (or decremented)
by the size of the operand (1, 2, or 4 bytes) every time the string instruction
executes.

The direction flag (DF) determines whether the source and the destination pointers
are incremented or decremented. When the direction flag is 0, the addresses are in­
cremented. When the flag is 1, addresses are decremented. The string instructions
provide the following capabilities:

88

4: The a.slc Instruction Set

Instruction

MOVS

CMPS

STOS

LODS

SCAS

Explanation

Move string-copy string at DS:ESI to ES:EDI

Compare string-compare DS:ESI to ES:EDI

Store the accumulator at ES:EDI

Load the accumulator with DS:ESI

Scan string, compare ES:EDI with accumulator

You can execute any of these instructions repeatedly by placing a count value in the
ECX register and preceding the string instruction with the REP prefix. The compare
and scan instructions, which modify the flag bits, can also be prefixed by the REPE
(repeat while equal) and REPNE (repeat while not equal) instructions, allowing fast
compare and search operations.

Pointer manipulation
Pointer manipulation instructions load a 48-bit pointer into any pair of the segment
and general registers. The format of these instructions is:

Lxx reg. mem

where xx stands for the segment register (SS, DS, ES, FS, or GS), reg is any general
register, and mem is a memory operand.

The LEA (load effective address) instruction computes 32-bit addresses. LEA loads a
32-bit register with the address defined by the memory operand, which is unusual
because other instructions operate on the value stored at the memory operand loca­
tion. The following example shows how to use the LEA instruction to compute a
pointer:

VECTOR 00 20 OUP (7) array of 20 elements
MOV EAX. 9 array index
LEA EAX. VECTOR[EAX*4] get pointer to 9th array element
PUSH EAX push pointer on stack
CALL MYSUBR invoke subroutine

Because the LEA instruction essentially performs only additions and shifts on the
values of the displacement and the base and index registers, it can perform simple
multiplications faster than the hardware multiply instructions can. For a value stored
in a general register (such as EAX in the sample operations), the following opera­
tions can be performed:

89

MICROSOFT'S 80386180486 PROGRAMMING GUIDE

Instruction Explanation

LEA EAX, [EAX* 2] Multiply by 2 (index)

LEA EAX, [EAX+EAX*2] Multiply by 3 (base + index)

LEA EAX, [EAX*4] Multiply by 4 (index)

LEA EAX, [EAX+EAX*4] Multiply by 5 (base + index)

LEA EAX, [EAX*8] Multiply by 8 (index)

LEA EAX, [EAX+EAX*8] Multiply by 9 (base + index)

Using the LEA instruction in this way does not affect the flags. You cannot tell when
arithmetic overflow has occurred, when the result is 0, and so on. Use LEA only to
compute addresses such as array or structure indexes where overflow is not likely
to occur. You can also view the LEA instruction as an addition instruction with four
operands instead of two. The content of the index register is added to the base
register and the displacement. By treating the displacement simply as a constant,
the follOWing formula expresses the action of LEA:

dest reg <- index reg + base reg + const

For example, the result of the LEA ECX, [EAX] [ESI] [3] instruction is equivalent to the
following operations:

MOV ECX, EAX
ADD ECX, ESI
ADD ECX, 3

Input/Output
Because I/O ports are usually connected to system devices, it is important to protect
against indiscriminate access to them. Secure system routines that run with I/O
privilege (CP~IOPL) can execute any I/O instruction. A less privileged task can
execute an I/O instruction; however, a general protection fault (interrupt 13) will
occur unless the operating system has granted the task permission to access the
specific port(s). The operating system grants permission by setting the appropriate
bits in the I/O permission bitmap of the task's TSS (task state segment).

Both the input and output instructions have three forms. The simplest form is:

IN ace, port
OUT port, ace

where ace is one of the accumulator registers (AL, AX, or EAX) and port is a value
from 0 to OFFH. These instructions can be used to address only the first 256 I/O ad­
dresses, and the 80386 supports as many as 65,536 I/O ports. To access the entire
range, use the following form of the instructions:

IN ace, DX
OUT DX, ace

In the above instructions, the I/O address is contained in the DX register.

90

4: Tha •• slc Instruction Sat

String instructions are the third type of I/O instructions. INS (input string) takes in­
put from the port specified by DX and stores the result at ES:EDI, adjusting EDI ac­
cording to the direction flag bit. OUTS (output string) reads the value at DS:ESI and
writes it to the port specified by DX. INS and OUTS can be prefixed by the REP in­
struction, which causes the I/O instruction to repeat until ECX is decremented to O.

Prefix
Prefix instructions precede other 80386 instructions. Prefixes modify the action of
the instructions they precede. You can apply more than one prefix to an instruction.

The most commonly used prefixes are the repeat prefixes, discussed previously
with the string instructions. If a repeat prefix is applied to any instruction other
than a string instruction, an undefined opcode fault (interrupt 6) occurs. The follow­
ing table lists the repeat prefix instructions:

lnstnlction

REP
REPE/REPZ
REPNE / REPNZ

Explanation

Repeat until ECX = 0

Repeat until ECX = 0 or ZF = 0

Repeat until ECX = 0 or ZF = 1

You can apply a segment override prefix to almost any memory reference instruc­
tion. Each of the six segment registers has a prefix instruction. The override forces
the memory reference of the modified instruction to the segment specified by the
prefix rather than to the default segment. The following table lists segment override
prefixes:

Prefix

CS:
SS:
DS:
ES:
FS:
GS:

Refer to the code segment
Refer to the stack segment
Refer to the data segment
Refer to the segment pOinted to by ES
Refer to the segment pointed to by FS
Refer to the segment pointed to by GS

For example, the instruction MOV EAX, [42H] copies the dword at offset 42H of the
data segment into EAX. When the instruction is prefixed with SS:, the dword is read
from the stack segment. Most assemblers let you specify the prefix before the in­
struction or as part of the instruction. For example:

ss:
MOV EAX. [42H]

91

MICROSOFT'S 80386/80488 PROGRAMMING GUIDE

or

MOV EAX. SS:[42H]

The only memory reference instructions that cannot be prefixed by a segment over­
ride are SCAS, STOS, and INS. These are string instructions that operate on memory
at ES:[EDIl. When a prefix instruction is applied to any other string instruction, it
overrides the DS:[ESI] pointer only. The MOVS and CMPS string instructions have
both a source (ESI) and a destination (EDI) pointer and are allowed a single prefix
instruction that overrides the DS:[ESI] pointer.

You can apply the LOCK prefix to any of the following instructions when reading or
modifying a memory location:

ADC. ADD. AND. BT. BTC. BTR. BTS. DEC. INC. NEG. NOT. OR.
SBB. SUB. XCHG. XOR

Notice that the XADD instruction is available only on the 80486. The LOCK prefix
asserts the hardware signal LOCK\, which ensures exclusive access to a memory
location in a multiprocessor environment. The assembler usually inserts two addi­
tional prefix instructions, but Intel does not give them mnemonics. I call them OP­
SIZ (operand size prefix) and ADRSIZ (address size prefix). OPSIZ toggles the
operand word size of the processor for the next instruction. Normally, the machine
word size is 32 bits. Prefixing a 32-bit instruction with OPSIZ converts it to a 16-bit
instruction. Similarly, when code is run in 8086-compatible or 80286-compatible
mode, the default machine word size is 16 bits; applying the OPSIZ prefix converts
a 16-bit instruction to a 32-bit instruction.

In real mode, virtual 8086 mode, and 80286-compatible mode, the byte 40H is inter­
preted as INC AX, but in native C32-biO mode, it is interpreted as INC EAX. To incre­
ment the AX register in native mode, you must prefix the instruction byte with the
OPSIZ instruction. The assembler does all the work, however. If you enter the in­
struction INC AX in a native-mode code segment, the assembler generates the bytes
66H and 40H. The following table illustrates the bytes that the assembler generates.

Native Mode

INC AX ~ 66H, 40H

INCEAX~40H

Opcode Generation in Different Modes

Real, Virtual, or 80286-Compatible Mode

INCAX~40H

INC EAX ~ 66H, 40H

Similarly, the ADRSIZ prefix toggles between 16-bit addressing and 32-bit address­
ing. This prefix is useful for programmers writing 80386 code that will run under a
16-bit operating system. In 16-bit mode Creal, virtual, or 80286-compatible), memory
offsets are limited to 16 bits, and more rules restrict which registers you can use as
base and index values in generating addresses. These restrictions are listed in Ap­
pendix D. The ADRSIZ toggle allows you to use the full addressing capabilities of
the 80386 and 80486.

92

4: The a.slc Instruction Set

If you use 32-bit addressing under a 16-bit operating system, be consistent about
register usage. For example, a programmer who wants to use the scaled index fea­
ture in a program that runs under MS-DOS might code the following instruction
sequence:

: Increment each member
MOV CX. count

L1: INC array-2[ECX*2]
LOOP L1

of an array of 16-bit integers
get size of array

: increment array element
: decrement index. branch if not 0

These instructions would probably not work because the scaled address feature re­
quires the full 32-bit Eex register and the programmer has loaded only the 16-bit ex
register. The value of the high-order 16 bits in ECX is unknown. The correct ap­
proach is:

L1:

System

; increment each member
MOVZX ECX. count
INC array-2[ECX*2]
LOOP L1

of an array of 16-bit integers
get array size. zero-extend into
increment array element
decrement index. branch if not 0

ECX

Application programs do not execute system instructions. In some cases, system
instructions cannot be executed unless the process has a high privilege level. The
following table lists system instructions. More detailed information about these in­
structions is given in Chapter 8.

Instruction

LGDT mem

SGDT mem
LIDT mem

SIDT mem

LTR src

STR dest

LLDT src

SLDT dest

VERR dest

VERW dest

LAR reg, dest

LSL reg, dest

ARPL dest, src

HLT

INVD

WBINVD

INVLPG mem

Explanation

Load GDT base address and limit

Store GDT base and limit

Load IDT base address and limit

Store IDT base and limit

Load a selector into the task register

Store the TR selector

Load a selector into the LDT register

Store the LDT selector

Verify read access for dest selector

Verify write access for dest selector

Load access rights for dest selector

Load limit for dest segment

Adjust privilege level for dest

Halt the C\U until reset or interrupt

Invalidate internal cache (80486 only)

Write back and in~a1idate internal cache (80486 only)

Invalidate the TLB (translation lookaside buffer) entry, which maps
mem (80486 only)

93

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Miscellaneous
A few instructions don't fit into any category. For example, the NOP instruction per­
forms no operation.

On the 80386, the WAIT instruction tests the hardware pin READY\. If the READY\
pin is not active, the CPU waits until it becomes active. If the 80386 is waiting, it
continues to respond to hardware interrupts; however, it returns to the WAIT after
the interrupt completes. The 80287 and 80387 coprocessors hold READY\ inactive
while they perform floating-point operations. If your program might execute on the
80386 or 80386SX, you should execute a WAIT instruction before you use the result
of a floating-point computation to ensure that the coprocessor has finished execu­
don. The 80486 has no READY\ pin, and a WAIT is essentially a NOP. The WAIT
does, however, cause the floating-point unit to check for unmasked exceptions that
can result in a math interrupt.

Floating.Point Extensions
As discussed in Chapter 2, the 80387 NDP extends the instruction set of the 80386
by providing hardware support for floating-point operations. In the 80486, the
floating-point execution unit is contained on the same chip as the basic execution
unit. The floating-point programming model is a stack-oriented model rather than
the two-operand register/memory model of the basic execution unit. Most arith­
metic instructions can be specified in three ways: with no operands, with a single
operand, or with two operands. Following are some examples that illustrate the
floating-point addition instructions.

Instruction Explanation

FADD No operands

FADD ST(3) Single-stack operand

FADD [EBP+6] Single-memory operand

FADD ST(2), ST Two operands

When no operands are specified, the operands are implicit. The following
pseudocode illustrates what happens when no operand is specified:

temp <- pop()
ST <- ST <function> temp

When a single operand is specified, the top-of-stack is implicitly the first operand,
so the instruction becomes:

ST <- ST <function> op

When two operands are specified, both operands must be floating-point registers,
and one must be the top-of-stack. You can store the result of the operation in either
register, which you designate by making it the first operand.

opl <- opl <function> op2

94

4: The Basic Instruction Set

Several instructions have a form that discards the current top-of-stack after the func­
tion is performed. A suffix of P (for pop) is added to the instruction mnemonic. For
example, the instruction:

FMULP ST(3). ST

causes the top-of-stack and ST(3) to be multiplied and stores the result in ST(3).
Then the top-of-stack is discarded, leaving the newly created value at ST(2).

Load and store
The load instructions push a new value onto the top of the floating-point stack, but
the store instructions do not pop a value off unless explicitly indicated. Following
are the relevant instructions:

Instruction

FBLD mem
FILD mem
FLD ST(n)

FLD mem
FLDl

FLDL2E

FLDL2T

FLDLG2

FLDLN2

FLDPI

FLDZ

FBSTP mem
FIST mem
FISTP mem
FST STen)

FST mem
FSTP mem

Explanation

Push an SO-bit BCD integer

Push a 16-, 32-, or 64-bit integer

Push a copy of a value already loaded

Push a 32-, 64-, or SO-bit real

Push 1.0

Push log2 e

Push log2 10

Push loglO 2

Push loge 2

Push pi
Push 0.0

Store ST in an SO-bit packed BCD integer and pop (discard from stack)

Store ST in a 16- or 32-bit integer

Store ST in a 16-, 32-, or 64-bit integer and pop

Store a copy of ST in STen)

Store ST in a 32- or 64-bit real

Store ST in a 32-, 64-, or SO-bit real and pop

Because the floating-point execution unit operates in parallel with the basic execu­
tion unit (via coprocessing on the 80386/80387 and internally in the 80486) and be­
cause integer instructions generally execute more rapidly than floating-point oper­
ations, issue a WAIT (or FWAIT) instruction before using the result of a floating­
point store operation. This ensures that the value has been written to memory and
that the 80386 code can access the value.

95

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Arithmetic
The following table lists the arithmetic operations that the FPU performs. See Chap­
ter 8 for a description of the types of operands that each instruction supports.

Instruction Explanation

F2XM1 Compute 2SL 1 where -1 ::; ST ::; 1

FABS Take absolute value of ST

FADD [opes)} Add two floating-point numbers

FADDP oPi,op2 Add opi and op2, pop stack

FIADD mem Add 16- or 32-bit integer to ST

FCHS Change the sign of ST

FCOM op Compare ST with op (register or memory)

FCOMP op Compare ST with op and pop

FCOMPP Compare ST with ST(1), pop both

FICOM mem Compare ST with 16- or 32-bit integer

FICOMP mem 'Compare with integer and pop

FUCOM op Compare allowing quiet NaNs

FUCOMP op Like FCOMP

FUCOMPP op Like FCOMPP

FCOS Cosine ofST

FDIV [opes)} Floating-point divide

FDIVP oPi,op2 Divide opi by op2, pop

FIDIV mem Divide ST by 16- or 32-bit integer

FDIVR [opes)} Reverse divide (op2 by opl)
FDIVRP opi,op2 Reverse divide (op2 by opl) and pop

FIDIVR mem Divide integer by ST

FMUL [opes)} Floating-point multiply

FMULP oPi,op2 Multiply opi by op2 and pop stack

FIMUL mem Multiply ST by 16- or 32-bit integer

FPATAN Arctangent of ST(1)/ST, pop

FPREM Partial remainder of ST/ST(1)

FPREM1 Compute partial remainder to IEEE spec

FPTAN Compute tangent of ST, push(1.0)

FRNDINT Round ST to integer

FSCALE Multiply ST by 2ST(1)

FSIN Compute sine of ST

FSINCOS temp = ST, ST = sin(temp), push(cos(temp))

(continued)

96

4: The a.slc Instruction Set

continued

Instnlction

FSQRT

FSUB [opes)}

FSUBP oPi,op2

FISUB mem
FSUBR [opes)}

FSUBRP oPi,op2

FISUBR mem
FTST

FXAM

Explanation

Take the square root of ST

Floating-point subtraction

Subtract op2 from op i and pop

Subtract 16- or 32-bit integer from ST

Reverse subtraction

Subtract opi from op2 and pop stack

Subtract ST from 16- or 32-bit integer

Compare ST with 0.0

Examine ST and set condition codes

FXTRACT Decompose ST to exponent and significand, ST = exponent, push
significand

FYL2X

FYL2XP1

Control

STU) = ST(1) x login2ST, pop stack

ST(1) = ST(1) x login2(ST + 1), pop stack

Control instructions save or alter the state of the NDP. Some have a special "no
wait" form, indicated by the letter N as the second character of the mnemonic. The
"no wait" instructions execute without the implicit WAIT that occurs between two
floating-point instructions.

Normally a WAIT instruction is implied before every coprocessor operation. The
following two instruction streams are equivalent.

FADD
FMUL

ST(3). ST
ST(l)

WAIT
FADD ST(3). ST
WAIT
FMUL ST(1)

WAIT causes the CPU to check whether unmasked exceptions have occurred. I~ the
80387,this is done via the ERROR\ signal. In the 80486, the error state is maintained
internal to the cpu. If a coprocessor error is signaled, a floating-point exception (in­
terrupt 16) occurs. "No wait" instructions allow you to save the NDP state without
worrying about processing any floating-point exceptions.

The processor state of the FPU is held in th~ registers discussed in Chapter 3. Some
of these registers are addressable individually, but others, such as the tag wor? and
error pointer registers, are not. The combination of the control word, status word,
and error pointers is called the environment. The environment layout is shown in
Figure 4-10 on the following page.

97

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

Low

High "'
memory

31
0
0
0

0

0

16 15

FIP

Faa

CW
SW
1W

FCS

FCS

Address
o offset

o
4
8

12
16
20
24

Figure 4-10. Environment layout.

The following table lists the floating-point control instructions and their functions.

Instruction Explanation

F[N]CLEX Clear all exception flags

FDECSTP Decrement the TOP field in the CW

FFREE ST(n) Mark ST(n) as unused

FINCSTP Increment the control word TOP field

F[NlINIT Initialize the NDP

FLDCW mem Load the control word register

FLDENV mem Load the floating-point environment

FNOP No operation

FRSTOR mem Reload the entire FPU machine state

F[NlSAVE mem Store the entire FPU state in memory

F[NlSTCW mem Store the control word in memory

F[NlSTENV mem Store the floating-point environment

F[N]STSW mem Store the status word

F[NlSTSWAX Copy the status word to register AX

The entire state, including all registers, tags, and pointers, must be saved and
restored when multitasking between two or more programs that rely on the FPD.
The FSAVE and FRSTOR instructions load and save the memory image shown in
Figure 4-11.

The memory images described in Figure 4-11 are slightly different in a 80386 system
using the 80287. See Appendix F for information pertaining to the 80287.

98

31
0 CW

0 SW

0 TW
FIP

0 FCS

FOO

0 FCS

ST(O)O .. 31

ST(0)32 .. 63

ST(1)O .. 15 ST(O)64 .. 79

ST(1) 16 . .47

ST(t) 48 .. 79

ST(2)O .. 31

ST(2) 32 .. 63

ST(3) o .. 15 ST(2)64 .. 79

ST(3) 16 . .47

ST(3) 48 .. 79

ST(4)o .. 31

ST(4) 32 .. 63

ST(5)o .. 15 ST(4) 64 .. 79

ST(5) 16 . .47

ST(5) 48 .. 79

ST(6)o .. 31

ST(6) 32 .. 63

ST(7) o .. 15 ST(6)64 .. 79

ST(7) 16 . .47

ST(7) 48 .. 79

Address
o offset

o
4
8

12
16
20

24

28
32

36

40

44
48
52

56

60

64

68
72
76
80
84
88
92
96

100
104

Figure 4-11. FSAVE and FRSTOR memory layout.

4: The .. sic Instruction Set

99

5

THE
PROTECTION
MECHANISM

The role of computers in society is becoming more and more significant. Computers
process our financial transactions, count our votes at election time, control medical
equipment, and more. As our dependency on computers grows, we need systems
that can process multiple tasks and maintain reliability at the same time.

In support of these goals, Intel designers implemented the protected virtual address
mode (commonly, protected mode) on the 80286. Protected mode allows multiple
applications to run concurrently but isolates them from one another so that failures
in one application do not affect any other application. Although it was possible to
implement multitasking on previous Intel microprocessors, every application had
access to all portions of the system. A flaw in one application could easily crash the
entire system or corrupt data associated with another task.

The 80386 was the second Intel processor to support protected mode, and the 80486
is the third. However, the basic mechanism is essentially unchanged from the 80286,
except that it has been extended by use of 32-bit addressing. There is no difference
between the 80386 and 80486 in regard to protection. This chapter discusses how
the protection mechanism works, including privilege levels, task separation, and
how virtual addressing is used to support the protection model.

Selectors
The central feature of the protection mechanism is the selector. Rather than directly
accessing any part of the system, a program deals with a selector, which grants ac­
cess to a system object. Associated with each object is information about it-for ex­
ample, the object's location, size, and type, and any restrictions on its use.

101

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

This information is not stored in the selector for two reasons. The selector would be
very large, and passing it from routine to routine would take a lot of computer time.
More importantly, keeping the object information in a separate location prevents an
unscrupulously designed or errant program from corrupting the information.

A selector is like a sealed envelope. Inside the envelope is important data that must
be kept secure. Like a messenger permitted only to see envelopes and pass them to
other messengers, a program can store and retrieve selectors and pass them to other
routines. Only the operating system has access to the data inside the envelope,
which is called a descriptor.

Descriptors
Aptly named, descriptors describe a system object in detail. Memory segments, as
illustrated in Chapter 3, are one kind of system object. Other system objects include
tables that support the protection mechanism, special segments that store the pro­
cessor state, and access control objects called gates.

Descriptors are grouped in descriptor tables. By examining a selector, the CPU de­
termines which descriptor is associated with the selector and with the object to
which the descriptor points. One item that the descriptor indicates is the privilege
level of the object. This value is stored in the DPL field of the descriptor. When a
program requests access to a system object with a selector, one of the follOwing
happens:

• Access is denied. If the request violates a rule of the protection mechanism (more
on this later), control passes from the program to a designated routine in the
operating system. The operating system usually terminates the process.

• Access is permitted but impossible to grant. For example, if the object is not cur­
rently in memory, an operating system routine is called that swaps the object into
memory and returns control to the program. The program is then permitted to
retry access to the object.

• Access is granted at the requested privilege level.

Privilege
The protection mechanism supports four levels of increasing privilege, numbered 3,
2, 1, and o. Privilege level 0 is the most privileged level.

The privilege level of the selector in the CS register identifies the precedence of the
currently executing routine and is called the current privilege level (CPL). For reli­
ability, only the most trustworthy and crash-resistant code in the operating system
should run at the most privileged level (CPL = 0). Applications that might fail or
compromise the integrity of the system should run at the least privileged level
(CPL = 3).

102

5: The Protection Mechanism

Because the number of programs that can run at high privilege levels diminishes
near level 0 and because level 0 code is likely to exist only in the core of the
operating system, the classic illustration of the privilege system is one of concentric
rings, as shown in Figure 5-1.

Least secure

Most secure

Applications

Figure 5-1. Privilege rings.

The concentric ring image is so well integrated into the understanding of privilege
that programmers often speak of code that runs "in ring 0" or "in ring 3" -another
way of saying that the CPL of the procedure is 0 or 3. Every system object (that is,
everything referred to by a descriptor) is associated with a privilege level and
"resides" in a particular ring.

The word privilege connotes rights or advantages not normally granted. On the
80386 family, procedures running in the innermost rings can access data objects in
the outer rings (which have less privilege), but outer-ring procedures cannot access
objects with greater privilege. In addition, to prevent the operating system from
crashing due to bad code, procedures cannot call other procedures that might be
less reliable (procedures in outer rings).

For example, a procedure running in ring 1 may access a data segment residing in
ring 2 or ring 3 but is prevented from accessing a segment whose privilege level is O.
A ring 1 procedure, however, cannot invoke a subroutine residing in ring 2 orring 3,
nor can it call one in ring O. Figure 5-2 on the following page illustrates this concept.

An operating system does not need to support all four privilege levels. UNIX sys­
tems, for example, typically implement only two levels, 0 and 3. OS/2 supports three
levels: The operating system code runs in ring 0, applications run in ring 3, and spe­
cial routines that need access to I/O devices run in ring 2.

103

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

3

.... Data

D Code (programs)

------+ Legal access

0 -----. Illegal access

Figure 5-2. ACCe5S between rings.

Interlevel communication
As a security measure, concentric tings of privilege work well, but the possibility
exists that an application running in ring 3 might need service from the operating
system. The operating system, however, omnipotent in ring 0, is not accessible to
the application. The application, in effect, might say, "Oh most great and worthy of
operating systems, please grant me, thy humble and obedient servant, additional
RAM for my stack," but because of the access restrictions, it has no way of calling on
the operating system.

Vario\ls cultures have established a priesthood whose job is to act as intermediator,
but the Intel design engineers apparently despaired of fitting something that compli­
cated into only a few hundred thousand transistors, so they resorted to something
simpler. It's called a gate.

Gates
A gate is a system object (that is, it has its own descriptor) that points to a procedure
in a code segment, but the gate has a privilege level separate from that of the code
segment. Figure 5-3 shows how this changes the legal subroutine call path.

A gate allows execute-only access to a routine in an inner ring from a less privileged
procedure. The restriction on outward calls, however, remains in force. The protec­
tion mechanism supports four types of gates: call, interrupt, trap, and task. Call
gates are invoked via the standard subroutine call instruction. Interrupt gates and
trap gates are invoked by the INT instruction or by hardware interrupts. Task gates
are invoked by JMP, CALL, or INT instructions or by hardware interrupts.

104

Figure 5-3. Call paths through gates.

5: The Protection Mechanism

• Gate

D Code (programs)

-----. Legal access

-----• Illegal access

In a standard subroutine call, the return address and any parameters are stored on
the stack, and execution continues at the start of the subroutine. When invoking a
subroutine through a gate, the privilege level of the executing routine changes to
the level of the code segment to which the gate points. When the subroutine
returns, the privilege level is set back to that of the calling procedure. For example,
an application executing in ring 3 might call the operating system to allocate some
memory. The operating system code runs in ring 0, and a call gate in ring 3 points
to the allocation routine.

This approach solves the communication problem but introduces another one. Be­
cause the return address (and possibly some system call parameters) is on the stack
and the stack is a ring 3 (application) data segment, the address and parameters are
no longer secure. The application could corrupt them while the operating system is
processing the request. To solve this problem, part of the stack is copied to a more
privileged stack segment as it moves through the gate, as shown in Figure 5-4 on the
following page. Each call gate descriptor contains a field called the dword count,
which indicates the number of 32-bit stack words to copy from the outer-ring stack
to the inner-ring stack.

Every application must have as many stack segments as there are privilege levels in
the operating environment under which it is running. If this seems excessive, re­
member that you can use the virtual memory capability to your advantage. An appli­
cation can have descriptors for more than one stack segment, but stack segments
can be marked as not present .and never take up any physical memory if they are
not used.

105

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Application stack
(Ring 3)

Ring 0 stack after
call through gate with

dword count of 3.

param 3
param 2
param 1
o I CS

SSO:ESPO

EIP

param 3
param 2

SS:ESP

param 1

Figure 5-4. Stack privilege increase.

If the idea of four stack segments has you flipping back to the register diagram look­
ing for additional registers, you won't find them. The active stack pointer is held in
the SS and ESP registers. The others are stored in a system object called the task
state segment, or TSS.

Task state segments
A TSS is a special memory segment that the processor uses to support multitasking.
Its format is outlined in Figure 5-5, and it contains a copy of all the registers that
must be saved to preserve the state of a task. It also contains values that are associ­
ated with the task but that are not stored in CPU registers.

The TSS contains three additional stack segment selectors (SSO, SSl, and SS2) and
three stack pointers (ESPO, ESPl, and ESP2), as shown in Figure 5-5. When a call or
interrupt through a gate causes a change in privilege, the new SS and ESP are loaded
from the TSS. The task register (TR) contains the selector of the currently active TSS.

When a task switch occurs, all the executing task's registers are saved in the active
TSS. The task register is then loaded with the selector of a new TSS, and each gen­
eral register is loaded with the values from the new TSS. Other fields in the TSS and
multitasking are discussed later in this chapter.

Descriptor tables
As mentioned earlier, the descriptors for the memory segments, TSSs, gates, and
other system objects are grouped into descriptor tables. The three types of descrip­
tor tables are the interrupt descriptor table (IDT), the global descriptor table (GDT),
and the local descriptor tables (LDTs).

The IDT contains descriptors that relate to hardware and software interrupts. A spe­
cial register, IDTR, contains the linear base address and size (limit) of the IDT. The
IDT is discussed in detail later in this chapter in the section "Interrupts and
Exceptions. "

106

31 16 15
0 Back link

ESPO
0 SSO

ESP1
0 SS1

ESP2
0 SS2

CR3
EIP

EFLAGS
EAX
ECX
EDX
EBX
ESP
EBP
ESI
ED!

0 ES
0 CS
0 SS
0 DS
0 FS
0 GS
0 LD1R

!lOP bitmap base 0 IT

(System dependent)

Address
o offset

o
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96

100
104

l~~ I ________ ---'f
Figure 5-5. Task state segment (TSS).

s: The Protection Mechanism

The GDT is the primary descriptor table. The GDT register (GDTR) contains the
linear base address and limit of the GDT. Important descriptors that the operating
system uses reside in the GDT. An operating system can be built using only the
GDT and the IDT. The LDTs, however, provide an additional layer of protection and
are helpful in building reliable systems.

The following illustration shows the mechanism used to identify a descriptor given
a 16-bit selector. The selector is composed of three fields: the index, the table in­
dicator (TO, and the requested privilege level (RPL).

107

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

15 3 2 1 0

Index

The RPL can be used to request access to an object at a less privileged level than is
normally granted. If you're a canny operating system designer, you don't necessarily
want access at the most privileged level available to you. Using the RPL in this man­
ner guards against misuse of highly privileged routines that can subvert the system.

Consider a programmer who tries to snoop in a "secure" system. This programmer
knows that an application program that attempts to access the operating system's
code will fail. Therefore, the programmer tries another tactic. The snooping applica­
tion calls the operating system's disk write routine and passes it a pointer to the sys­
tem segment to which it wants access. The operating system routine has enough
privilege to gain access to the segment, so no protection violation occurs, and the
clever programmer has a disk file that contains the desired segment. Figure 5-6 il­
lustrates this scenario.

A secure operating system can foil attempts such as this by ensuring that the
RPL field of any selector is set to the CPL of the calling routine. The ARPL (adjust

----+ Legal access

----~ Illegal access 3

..... Segment

0

Application

Application passes the ring 0 selector (which is illegal for it to use) to the ring Q routine.
The ring 0 routine gains access to the ring segment and writes it to disk.

Figure 5-6. Access to an operating system segment.

108

requested privilege level) instruction performs this function. When this is done, the
system can detect that the requested privilege level (RPL) of the selector is less than
(numerically higher than) the DPL of the desired segment and can refuse to com­
plete the operation. Figure 5-7 shows the behavior of a secure operating system in
this situation.

The TI bit of a selector identifies the table from which the descriptor is selected.
When TI is set to 0, the selector refers to the indexth descriptor in the GDT. A selec­
tor value of 0033H, for example, points to the GDT descriptor number 6. The first
slot in the global descriptor table, GDT(O), is never used. A selector value of 0 is used
as a null selector .• The null selector can be loaded into a data segment register
without triggering a protection fault.

When TI is set to 1, the index refers to a descriptor in the current LDT. LDT(O) can
be used to hold a valid descriptor. LDTs are usually created on a per task basis and
serve two purposes. First, because a selector is 16 bits and the index field is only 13
bits, you can address a maximum of 8192 descriptors. Multiple LDTs allow you to
store more descriptors. If there were only one LDT as there is only one GDT, an
operating system might run out of space to store descriptors.

--. Legal access

- - - - • Illegal access 3

... Segment

o

selector

Figure 5-7. Secure operating system using ARPL.

ARPL adjusts selector
to same privilege as
application.

• The RPL portion of the' null selector is ignored, so any of the values 0, 1, 2, or 3 are valid null
selectors.

109

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Second, the LDT also gives you increased security. Figure 5-8 represents an operat­
ing system that uses only the GDT to store descriptors. The descriptors below 100
point to various operating system objects and are all ring 0 objects. GDT(100) is a
ring 3 descriptor for the code segment of application A, and GDT(101) is the data
segment descriptor, also in ring 3. Descriptors 102 and 103 are the descriptors for the
code and the data of application B.

Any attempt by application A to access outside its code and data segments results in
a protection violation. However, what if application A attempts to forge a selector?
That is, what if the application tries to create an otherwise valid selector for a seg­
ment that doesn't belong to it? Creating a selector for any of the first 100 GDT slots
results in a protection violation because the operating system descriptors are ring 0
objects. If application A creates a selector for GDT(103), however, it can potentially
access (or destroy) data for application B. The 80386 family prevents access be­
tween rings but not inside the same ring.

Figure 5-9 shows the solution to the problem. If each application is given its own
LDT, the GDT can be reserved for system use. All descriptors in the GDT point to
objects in rings 0,1, or 2. The LDT for each task contains the ring 3 (application)
code and data segments. Each application has a separate LDT, so a forged selector
can refer to objects only in the GDT, which are more privileged and therefore inac­
cessible, or to objects in its own LDT. Thus, the LDT defines a virtual address space
for the application, and each task has a separate, nonoverlapping address space.

1

2

100

101

102

103

DPL=O

DPL=O

DPL=O

DPL=3

DPL=3

DPL=3

DPL=3

Address space A
and

Address space B

Code

Figure 5-8. Operating system using only the GDT.

110

5: The Protection Mechanism

--------

/,/~ Address space A "'" /'/~~~~ddress space B ""'"
I '., \ / 1 '" I"' \

/ DPL=3 Code" / DPL=3 '.

: DPL=3 A " / DPL=3 '.
J 't: \
I I \ I
I I \ I
I I \ I

I I \ I
\ I \ I
\ I \ ,
\ I \ I

'. LDTA " '. " \ I \ I

'. " '. LDTB " \ I \ I
, I \ I
\ I \ I
\ I \ I
\ I \ I

\ I, I
\ I \ I

\ I \ /

" " DPL=O '. / \ I \ I

" : DPL=O " / , ' \ I \ I

\ ' \ I
,I \ I

',: I"
',I ,,'

" , 'I ,

", I DPL=O ;/
"" '. DPL=O //

" \ / ",,/
" " I "

' ::.'... GDT ... ",; .. /
........ '_ ... _--=--:.::.::::. "

Figure 5-9. Operating system using a GDT and WTs.

As Figure 5-9 indicates, an LOT is also a system object with its own descriptor. The
next section illustrates the general format of descriptors.

Descriptor Formats
Figure 5-10 on the following page illustrates the formats for three types of descrip­
tors. The following are the descriptor types: program memory segments, system seg­
ments, and gates. Program memory segment descriptors were introduced in Chapter
3. System segment descriptors describe LOTs and TSSs. Like program memory seg­
ment descriptors, system segment descriptors describe regions of memory and have
a base and a limit. However, you cannot load a descriptor for an LOT or a TSS into a
segment register and read or write the contents as data. For an operating system to
update an LOT or a TSS, it must create a memory segment descriptor with the same
base address and limit, called an alias. Programs such as debuggers, which let you
modify your program's code segments, must also create aliases because code seg­
ments are not writable under the 80386-family protection rules.

111

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

32 31 16 15

Base address Limit
o .. 23 O .. 15

32 31 16 15

Base address Limit
o .. 23 O .. 15

63 4847 32 31 16 15

Selector Offset
o .. 15

Offset
16 .. 31

Figure 5-10. General descriptor format: system, memory, and gate descriptors.

System segments are differentiated from memory segments by a value of 0 in the S
bit of the descriptor. The TYPE field of a system descriptor can hold any of the fol­
lowing values:

0-Unused (invalid descriptor)

1-80286TSS

2-LDT

3-Busy 80286 TSS .

9-80386/80486 TSS

11-Busy 80386/80486 TSS

0

0

0

A gate descriptor does not delineate a memory region and therefore has no base ad­
dress or limit fields. Instead, a gate points to another descriptor via a selector. Call,
interrupt, and trap gates must contain the selector for a code segment and an offset
into the segment. Task gates hold a selector for a TSS, and the offset portion of the
deSCriptor is unused.

Gate descriptors, like system segment descriptors, have the S bit set to 0 and can
contain one of the following values in the TYPE field:

4-80286 call gate

5-Taskgate

6-80286 interrupt gate

7 -80286 trap gate

12-80386/80486 call gate

14-80386/80486 interrupt gate

15-80386/80486 trap gate

112

5: The Protection Mechanl.m

TYPE field values of 8, 10, and 13 are reserved for future Intel processors.

Descriptor types 1, 3, 4, 6, and 7 are used on the 80286. Operating systems designed
for the 80286 (such as OS/2 Vl.x) run without modification on the 80386, so these
descriptor types are fully supported. A native mode system (such as OS/2 V2.x),
however, or one that supports both 16-bit and 32-bit programs, uses full 32-bit de­
scriptors. You can use 16-bit code and data descriptors in a 32-bit system, but using
16-bit system descriptors (such as task state segments) can lead to difficulties.

Multitasking
I have previously shown how the processor uses call gates to implement interlevel
subroutine calls. Interrupt and trap gates are discussed later in this chapter. The fol­
lowing sections show how the remaining system objects (TSSs, LDTs, and task
gates) are used to implement robust multitasking operating systems.

Simply defined, a task is "a sequence of related actions leading to the accomplish­
ment of some goal." In a computer, the resources required to accomplish the goal
are usually included in the definition of a task-that is, the amount of memory, CPU
time, disk space, and so on.

The term multitasking refers to the ability of a computer to execute more than one
task simultaneously. The basic execution unit cannot execute more than one in­
struction stream at once, but it can execute one instruction stream, switch to an­
other, execute it, switch to a third, execute it, switch back to the original, and so on.
Because the CPU executes so rapidly, all tasks appear to execute simultaneously.
Concurrency and multiprogramming are synonyms for multitasking.

An executing task is called a process. Thus, some people refer to multitasking as
multiprocessing. Others, however, use the word multiprocessing to refer to systems
in which multiple CPUs or processors are running simultaneously. To avoid confu­
sion, I do not use the term multiprocessing, and I refer to computers with more than
one CPU as multiprocessor systems.

Assume that each task in a computer is implemented by a single program; therefore,
multiple programs must share the cpu. Various strategies exist for sharing the CPU,
but to discuss and compare these strategies is beyond the scope of this book. At
some level, each system must turn over control of the CPU from one task to another.

The first task might be in the middle of a computation when control is wrested from
it and passed to another task; when the first task resumes, it must be able to con­
tinue processing as though nothing had happened. All the registers that the task was
using must be restored to their original values when that task regains control.

The 80386/80486 hardware supports this kind of task switching via the TSS. Figure
5-11 on the following page depicts the memory layout of the TSS. Each TSS has only
one descriptor, which defines its base memory address and limit. Figure 5-11 shows
the TSS descriptor format immediately above the TSS. To allow access to the TSS by
different privilege levels or via interrupts, you must use task gates.

113

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

31 16 15
0 Back link

ESPO
0 SSO

ESP1
0 SS1

ESP2
0 . SS2

CR3
EIP

EFLAGS

EAX
ECX
EDX

EBX

ESP

EBP

ESI

ED!

0 ES

0 CS

0 SS

0 DS

0 FS

0 GS

0 LDTR
IIOP bitmap base 0 IT

(System dependent)

Address
o offset

o
4
8

I.-

12
16
20
24
28

32
36
40
44
48
52
56
60
64
68
72

76
80
84
88
92
96

100
104

l~~ LL...-_______ ---.Jf

Figure 5-11. Task state segment and descriptor.

32 31

Base address
o .. 23

16 15 o
Limit

o .. 15

The TSS descriptor is similar to that of a typical memory segment; however, the S bit
is 0, indicating that the TSS is a system segment. The TYPE field for a TSS contains
either a binary 100lB or lonB (decimal 9 or 11). The variable bit is called the busy
bit. This bit is set to 1 in the currently executing task and in any tasks that have
called the current task, establishing a chain of nested tasks. Any attempt to invoke a
task that is marked as busy triggers an exception.

114

5: The Protection Mechanism

The selector in the task register (TR) identifies the current task. Usually, this register
is loaded once at initialization time and then is managed by the task switch opera­
tion. Loading TR does not cause a task switch; it does identify the active TSS,
however.

When a task switch occurs, the state of the currently executing task is saved in its
TSS, and the CPU registers are loaded from the image of the new or destination TSS.
The task register contains a selector for the currently active TSS. TSS descriptors can
be located only in the GDT.

Part of the TSS in Figure 5-11 is gray. The gray portion indicates values that are not
stored in the outgoing TSS during a task switch, although new values are loaded
from the destination TSS. If any gray value changes during execution of the task, the
operating system must ensure that the TSS is kept current. The application cannot
change these values; they require kernel support (privilege level 0) to be modified.

The bulk of the TSS holds copies of the general register set: EAX-EDI, the segment
registers, EFLAGS, and EIP. In addition, the TSS contains these fields:

Back link-The selector of the TSS that was previously executing.

SSn, ESPn-The stack pointers for ring n execution, as discussed in the section on
call gates.

CR3-Control register 3, which defines the physical memory address of the page
tables for the task.

LDTR - The selector of the LDT for the task.

T - The "trap on task switch" bit. A debug fault (interrupt 1) occurs when this bit is
set to 1 in the incoming TSS.

I/OP bitmap base-A 16-bit offset into the TSS that indicates the start of the I/O
permission bitmap. If this field is set to 0, no I/O permission bitmap exists.

System dependent-The portion of the TSS that the operating system can use to
store any operating system-specific information about the task.

I/O permission bitmap-The field that starts at the offset indicated by the I/OP
bitmap base and continues to the end of the TSS or to the base plus 8192.

Task switching
Four events can cause a task switch:

• The current task executes a FAR CALL or JMP instruction in which the selector
points to a TSS descriptor.

• The current task executes a FAR CALL or JMP instruction, and the selector points
to a task gate.

115

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

• The current task executes an IRET instruction to return to the previous task. An
IRET causes a task switch only if the NT (nested task) bit of the EFLAGS register
is set to 1.

• An interrupt or exception occurs, and the IDT entry for the vector is a task gate.

For any task switch, the following events take place:

1. If the task switch is not caused by a hardware interrupt, an exception, or an
IRET, the descriptor privilege rules are checked. The DPL of the descriptor (TSS
or task gate) must be numerically less than the current task's CPL and the selec­
tor's RPL.

2. The present bit and limit of the descriptor for the current (outgoing) TSS is
checked to ensure that the TSS is present and can hold at least 104 bytes of state
information. If so, the current machine state is saved; otherwise, an exception
occurs.

3. The present bit and limit of the descriptor for the new (incoming) TSS is
checked. If the TSS is not present or is too small, an exception occurs; other­
wise, all the register images are loaded. If the value of CR3 has changed, the
TLB cache (see Chapter 7) is flushed.
At this point, all the general and segment registers are loaded, but the shadow
registers are not. CS might have a value of 217FH, but the descriptor for selector
217FH has not been loaded. The state of the outgoing task has been saved, how­
ever, and any exceptions that occur are in the context of the new state, even if
the CS descriptor is not present or is invalid.

4. The linkage to the outgoing task is established. What happens next depends on
what caused the task switch.

a. If the task switch was caused by a]MP instruction, the TSS descriptor of the
outgoing task is marked as not busy, and the incoming task descriptor is
identified as a busy TSS.

b. If the task switch was caused by an interrupt or a CALL instruction, the
outgoing task remains busy, and the incoming task is also marked as a busy
TSS. Additionally, the NT bit of the EFLAGS register is set to 1, and the back
link field of the incoming TSS is set to the selector of the outgoing TSS.

c. If the task switch was caused by an IRET instruction, the outgoing task is
set to not busy.

5. The task switched (TS) bit in CRO is set to 1, and the current privilege level for
the incoming task is taken from the RPL field of the CS selector in the TSS.

6. The LDTR shadow registers are loaded if the LDTR contains a valid selector. If
the LDTR value is 0 (the null selector), no action is taken. If the selector is in­
valid or if the new LDT is not present, an exception occurs.

116

5: The Protection Mechanism

7. The descriptors for CS, SS, DS, ES, FS, and GS are loaded into the shadow regis­
ters in that order. All descriptors are tested for privilege violations (CPL has
already been established) and must be marked present; otherwise an exception
occurs.

8. The local enable bits in DR7 are cleared to 0.

9. If the T bit of the incoming TSS is set to 1, a debug fault (interrupt 1) occurs.

10. The new task begins executing by fetching the instruction at CS:EIP.

1/0 permission bitmap
Two conditions determine whether a task is allowed to perform I/O: the I/O privi­
lege level and the I/O permission bitmap. The 10PL bits in the EFLAGS register de­
termine the I/O privilege level. The 10PL defines the least privileged level that can
perform an I/O instruction without restriction. For example, if 10PL = 2, I/O instruc­
tions can be performed by procedures executing at levels 0, 1, or 2. An attempt to
execute an instruction by a ring 3 application must be further validated by the I/O
permission bitmap.

If the CPL of the current task is greater than 10PL (that is, if I/O is restricted for that
task), the I/O permission bitmap is checked. This protects the I/O address space on
an individual I/O port basis. The TSS stores an I/O permission bitmap for every
task. The bitmap begins at the offset in the TSS specified by the 16-bit I/O map base
value. The I/O map base value must be greater than or equal to 68H.

The I/O permission bitmap is a maximum of 8192 bytes, with one bit for each of the
possible 65,536 I/O ports. If the bit in the bitmap corresponding to the I/O port is
set to 1, then the task does not have access to the port, and a general protection fault
will occur if the task attempts to execute an I/O instruction at that port.

The I/O permission bitmap is not required to be 8192 bytes. The limit field of the.
TSS deSCriptor specifies the end of the bitmap. If the I/O map base value is greater
than or equal to the limit value, the TSS contains no I/O permission bitmap. All
ports that do not have a bitmap position in the TSS are protected from access.

Figure 5-12 on the following page shows a sample bitmap. The task with this TSS
can access ports 8, 9, 10, 11, and 12. A subroutine in this task can access byte ports 8,
9,10,11, and 12, word ports 8 and 10, or dword port 8.

117

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

I/OP
bitmap

base

--+

-

31
FFFFFFFF
FFFFFFFF
FFFFEOFF

140 I

o
Limit

140

100

o

Figure 5-12. I/O permission bitmap in TSS.

Interrupts and Exceptions
Interrupt is a term that refers to a variety of similar control transfers. The specific
items implied by this term are true interrupts (hardware interrupts) and exceptions,
which are further subdivided into traps, faults, and aborts.

All interrupts and exceptions share a common feature: The current execution loca­
tion (CS:EIP) and flags register (EFLAGS) are saved on the stack, and control trans­
fers to a software routine called an interrupt handler via a gate in the interrupt
descriptor table (IDT). The processor supports a maximum of 256 descriptors in the
IDT. Every interrupt or exception is associated with one of these interrupt numbers.
Interrupt numbers 0 through 31 are reserved for specific purposes assigned by Intel;
the operating system can assign numbers 32 through 255.

The kinds of interrupts and exceptions are:

Interrupts-True interrupts are caused by hardware signals that originate outside
the cpu. Two pins on the 80386 or 80486, NMI and INTR, signal interrupts. Pulling
the NMI pin low activates a nonmaskable interrupt. The NMI interrupt always in­
vokes the routine associated with interrupt vector (IDT entry) 2.

An active signal on the INTR line causes a maskable interrupt. The cpu does not re­
spond to a maskable interrupt unless the IF bit of the EFLAGS register is set to 1.
When the IF bit is 0, interrupts are not recognized and are said to be masked. If the
processor responds, it issues an interrupt -acknowledge bus cycle, and the interrupt­
ing device must respond with an interrupt number. Use only values 32-255 for
maskable interrupts.

Traps-These are conditions that the processor regards as errors and detects after
the execution of a software instruction. The saved instruction pointer (CS:EIP) on
the stack points to the instruction immediately after an instruction that has trapped.

A classic example of a trap is the INTO instruction. When INTO is executed, the
processor checks the value of the overflow flag (OF). If OF = 1, the CPU vectors
through IDT descriptor 4.

118

5: The Protection Mechanism

All software interrupt (INT) instructions are handled as traps. To issue one of these
instructions, however, a procedure must have access privilege to the lOT descriptor
for the interrupt number. For example, if a ring 3 application executes an INT 47 in­
struction, the descriptor at IOT(47) must have OPL = 3; otherwise, a protection fault
occurs. This mechanism prevents applications from issuing INT instructions for
vectors associated with hardware interrupts because the gates for these vectors
point to operating system code that runs at high privilege levels, usually ring O.

Faults-When the execution unit detects an error during the processing of an in­
struction (for example, when the instruction's operand is stored in a page frame
marked not present), a fault occurs. A specific interrupt number is associated with
each fault condition. The instruction pointer saved on the stack after a fault occurs
points to the instruction that caused the fault. Thus, the operating system can cor­
rect the condition and resume executing the instruction.

Aborts-When an error is so severe that some context is lost, the result is an abort.
It might be impossible to determine the cause of an abort, or it might be that the in­
struction causing the abort is not able to be restarted.

The following table lists all of the exceptions handled by the processor:

80386/80486 Exceptions

Interrupt Number

o
1

2
3
4
5
6
7

8

9

10

11

12

13
14

15
16
17

18-31

32-255

Fault

Fault or trap

Interrupt

Trap

Trap

Fault

Fault

Fault

Abort

Abort

Fault

Fault

Fault

Fault

Fault

Reserved

Fault

Fault

Reserved

Interrupt or trap

Description

Divide error

Debugger interrupt

Nonmaskable interrupt

Breakpoint

Interrupt on overflow (INTO)

Array boundary violation (BOUND)

Invalid opcode

Coprocessor not available

Double fault

Coprocessor segment overrun (reserved,
on 80486)

Invalid TSS

Segment not present

Stack exception

General protection violation

Page fault

Coprocessor error

Alignment check (80486 only)

System dependent

119

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

One class of error is more severe than an abort. If the processor is unable to con­
tinue processing an exception, it shuts down. In a protected-mode environment, the
system should shut down only if a hardware failure occurs. To prevent shutdown,
the vectors that handle the double fault (interrupt 8) and invalid TSS (interrupt 10)
conditions should be separate tasks, and IDT entries 8 and 10 should be task gates.
This approach allows the CPU to load a new machine state from which to handle
the exceptions. If this is not done, the exception handler might be running in the
same environment that caused the failures and might not be able to continue
processing.

Interrupt gates, trap gates, and task gates
The only types of descriptors that can reside in the IDT are interrupt gates, trap
gates, and task gates. Task gates in the IDT are identical to those in the GDT and op­
erate in the same manner.

When a task gate is invoked with an interrupt or with an exception, the machine
state is saved in the existing TSS, and a new state is loaded from the TSS associated
with the task gate. Thus, an interrupt can have its own address space, including its
own page tables and LDT. In addition, the interrupt handler is prevented from using
too much of the interrupted application's stack and from corrupting any registers. A
task switch takes longer to execute than a gate transfer, however, and the advantages
of invoking a task gate must be weighed against performance considerations.

The most common entries in the IDT are interrupt gates and trap gates. These de­
scriptors have identical formats-only the type code is different. Figure 5-13 illus­
trates the deSCriptor format for interrupt gates. The only difference in behavior
between the two gates is that when an interrupt gate is activated, the IF bit of the
EFLAGS register is cleared to O. Hardware interrupts are masked until the interrupt
handler deems it safe to reenable them. Transferring control through a trap gate
does not modify the interrupt flag.

63 4847 16 15
Offset

16 . .31 Selector Offset
o .. 15

Figure 5-13. Interrupt gate and trap gate descriptor format.

The behavior of interrupt gates and trap gates is similar to that of call gates.
Although interrupt gates and trap gates do not contain a word count field, they can
point to code segments of specific privilege levels or to conforming segments.
Figure 5-14 shows the layout of the stack when an interrupt handler is invoked.

o

An interrupt handler must return to the calling routine via an IRET instruction. The
IRET restores the original instruction pointer, flags, and stack segment. If the NT
(nested task) bit was set in the EFLAGS register, a task switch to the original TSS
also occurs. The programmer should remove any error code (generated by the fault)
from the stack before returning from the interrupt handler.

120

5: The Protection Mechanism

Interrupt or exception with
no privilege transition.

ESP at time of
intitialization

ESP

-+

-+

local
local

EFLAGS

0 I CS
EIP

Error code (If exception)

Interrupt or exception with transition
to new stack segment.

n ESP at initializatio
pointed to other sta ck

ESP -+

0
EFLAGS

I CS
EIP

Error code (If exception)

Figure 5-14. Interrupt stack without and with privilege transition.

80386-family processor exceptions
The following sections explain the faults, traps, and aborts that can occur during
program execution. Some exceptions cause a control transfer via the lOT; others
cause an error code to be pushed onto the stack as well. If an error code is pushed,
it is pushed onto the stack of the interrupt handler; that is, it is pushed after any priv­
ilege level or task transition. Exceptions that cause error codes to be pushed onto
the stack are indicated in the following sections with the symbol [eel. The value of
the error code is either ° or as defined in the following illustration:

31 16 15 2 1 0

Undefined Selector index

The selector index and TI fields are taken from the selector of the segment associ­
ated with the exception. Instead of an RPL field, however, the error code has an I bit
and an EX bit. The I bit is set to 1 when the index refers to an lOT index, and the TI
bit is ignored. When I = 0, the TI bit indicates whether the selector is from the GOT
eTI = 0) or from the current LOT eTI = 1). If the EX bit is set to 1, the fault was caused
by an event outside the executing program.

121

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Interrupt O-Divide (fault)
A divide fault occurs if division by zero is attempted or if the result of a divide opera­
tion does not fit into the destination operand. (This applies only to division by DIV
or DIY, not to floating-point division.)

Int.rrupt i-Debugg.r (fault or trap)
This exception is triggered by one of the following conditions:

Debug register breakpoint

Single step trap

Task switch trap

The "Debugging" section later in this chapter covers the triggering and handling of
debug traps in detail.

Int.rrupt 2-NMI (int.rrupt)
IDT vector 2 is reserved for the hardware NMI condition. No exceptions trap
through vector 2.

Int.rrupt 3-Br.akpoint (trap)
Debuggers use the breakpoint interrupt (INT 3), which is covered in the "Debug­
ging" section later in this chapter.

Int.rrupt 4,......Ov.rflow (trap)
The overflow trap occurs after an INTO instruction has executed if the OF bit is set
to 1. The INTO instruction is useful in languages such as Ada that require arithmetic
instructions either to produce a valid result or to raise an exception.

Int.rrupt 5-Bounds check (fault)
Like interrupt 4, the bounds check trap occurs as the result of a software instruc­
tion. The BOUND instruction compares an array index with an upper bound and a
lower bound. If the index is out of range, the processor traps to vector 5.

Int.rrupt 6-lnvalid opcod. (fault)
An interrupt 6 fault occurs if:

• The processor tries to decode a bit pattern that does not correspond to any legal
machine instruction.

• The processor tries to execute an instruction that contains invalid operands.

• The processor tries to execute a protected-mode instruction while running in
real mode or in virtual 8086 mode.

• The processor tries to execute a LOCK prefix with an instruction that cannot be
locked.

122

5: The Protection Mechanism

Opcodes that are illegal on the 8086 or cause an invalid opcode fault on the 80286
do not always cause an exception when the 80386/80486 executes in real mode.
The opcodes might correspond to new instructions that are valid in any
80386/80486 operating mode.

Interrupt 7 -Coprocessor not available (fault)
When a computer does not contain an 80287 or 80387 coprocessor, the operating
system can set the EM bit of register CRO to indicate NDP software emulation. If the
EM bit of register CRO is set, an interrupt 7 fault occurs each time a floating-point in­
struction is encountered.

This fault also occurs if the MP bit of CRO is set and the 80386 executes a WAIT or
floating-point instruction after a task switch. The task switch sets the TS bit to l.
The operating system can clear TS after a task switch to prevent the fault from oc­
curring. The 80386 uses this method to signal that the state of the math coprocessor
needs to be saved so that it can be used by another task.

Interrupt a-Double fault (abort) [ec]
Processing an exception sometimes triggers a second exception. For example, sup­
pose that a divide fault occurs during the processing of an application and that the
trap gate for interrupt 0 points to a conforming segment so that the privilege level
does not change. Now suppose that the user stack does not have room for the CS,
EIP, and EFLAGS pushed by the divide fault. The condition of being unable to pro­
cess the divide exception correctly would result in a double fault.

Not all exception pairs result in double faults. In some cases, most notably when
getting access to the fault handler causes a page fault, the second fault is processed
first, and then control transfers to the initial exception handler. The following table
shows the exception pairs that trigger a double fault:

Initial Exception

° (Divide fault)
9" (NDP segment overrun)

10 (Invalid TSS)

11 (Not present)

12 (Stack fault)

13 (General protection)

14 (Page fault)

'Does not apply to the 80486.

Double Fault {f Follnwed ~

0, 9", 10, 11, 12, 13

0, 9', 10, 11, 12, 13

0, 9', 10, 11, 12, 13

0, 9', 10, 11, 12, 13

0, 9", 10, 11, 12, 13

0, 9", 10, 11, 12, 13

0,9', 10, 11, 12, 13, 14

A task gate can best handle the double fault vector, although a secure ring 0 segment
usually works. You should use the method best suited for placing the system in a
known state, because the processor shuts down if a third fault occurs while the pro­
cessor is trying to start the interrupt 8 exception handler.

123

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

The shutdown state is similar to the halt state. Only a processor reset or NMI (if the
NMI vector is valid) can bring the processor out of shutdown. A special shutdown
signal is placed on the bus so that external hardware can detect the shutdown. An
error code of 0 is pushed onto the stack when a double fault exception occurs.

Interrupt 9-Coproeessor segment overrun (abort)
The coprocessor segment overrun exception is signaled when a floating-point in­
struction causes a memory access that runs beyond the end of a segment. If the
starting address of a floating-point operand is outside the segment limit, a general
protection fault (interrupt 13) occurs rather than an interrupt 9.

The segment overrun exception is classified as an abort because the instruction
cannot be restarted. You must use the FNINIT instruction to reinitialize the 80387
coprocessor. The CS:EIP saved on the stack will point to the offending instruction.
(Note: This interrupt is not generated by 80486 systems.)

Interrupt 10-lnvalid task state segment (fault) [eel
Because the TSS contains a number of descriptors, a variety of causes can trigger an
interrupt 10. The processor pushes an error code onto the stack to aid in diagnosing
the error condition. The following table lists invalid TSS fault conditions and the
value of the error code pushed onto the stack for each condition. The items are
listed in the order in which they are checked by the cpu.

Condition

Outgoing TSS limit < 103

Incoming TSS limit < 103

IDT selector has TI = 1

IDT descriptor has S = 1

IDT descriptor TYPE != 2

LDT descriptor not present

CS selector is null

CS descriptor has S = 0

CS descriptor not executable

CS conforming, DPL > CPL

CS not conforming, DPL != CPL or DPL < RPL

SS selector is null

SS selector RPL !;., CPL

SS descriptor has S = 0

SS descriptor not writable

The following checks are made for all other selectors
in the order DS, ES, FS, and GS:

Descriptor has S = 0

Descriptor is execute only

Descriptor not conforming, DPL < CPL or DPL < RPL

124

Error Code Value

TSS index: TI : EXT

TSS index: TI : EXT

IDT index: TI : EXT

IDT index: TI : EXT

IDT index: TI : EXT

IDT index: TI : EXT

CSindex

CSindex

CSindex

CSindex

CSindex

SSindex

SSindex

SSindex

SSindex

DS, ES, FS, or GS index

DS, ES, FS, or GS index

DS, ES, FS, or GS index

5: The Protection Mechanl

The CPL value is taken from the RPL of the incoming CS selector. If one of the
memory segment descriptors is marked not present, a not present fault or stack fault
occurs rather than the invalid TSS fault. The TSS load stops at the point of the fault,
and the other exception handler must ensure that the remaining segment registers
get loaded.

Interrupt ii-Not present (fault) [eel
The not present interrupt lets you implement virtual memory via the segmentation
mechanism. An operating system can mark a memory segment as not present and
swap its contents out to disk. The interrupt 11 fault is triggered when an application
needs to access the segment.

This fault occurs when the processor tries to gain access to a descriptor that is not
present (P = 0). Loading DS, ES, FS, or GS triggers the fault, as does a FAR CALL or
]MP that either loads CS with a segment marked not present or accesses a gate
whose descriptor is marked not present. In addition, the LLDT and LTR instructions
cause descriptors to be loaded and can trigger the fault.

A segment fault that occurs when loading the SS register results in a stack fault (in­
terrupt 12) rather than in a not present fault. Additionally, when the LDTR is loaded
during a task switch rather than by the LLDT instruction, an invalid TSS exception
occurs if the descriptor has P = 0.

The CS and EIP that are pushed onto the stack as a result of the exception usually
point to the offending instruction. Also pushed is an error code that identifies the
selector involved in the fault. The only time that CS:EIP does not point to the of­
fending instruction is when a task switch occurs and a selector in the new task im­
age causes the not present exception.

In this case, the CS:EIP points to the first instruction of the new task. The selectors
are loaded in the order SS, DS, ES, FS, and GS, and the task switch terminates at the
point of the fault. The interrupt 11 fault handler must handle the fault and validate
the remaining selectors. If the interrupt 11 fault handler is invoked via a task gate,
this happens on the IRET that ends interrupt 11. If a trap gate invokes the interrupt,
however, the fault handler must test each selector with the LAR instruction.

Interrupt i2-Staek (fault) [eel
A task gate should handle this exception because the state of the stack is unknown
when a stack fault occurs. You can use a level 0 trap gate, but if a stack fault occurs
at ring 0, the trap to the interrupt 12 handler results in an immediate double fault.

A stack fault with an error code of 0 occurs if a normal instruction refers to memory
beyond the limits of the· stack segment. This includes instructions such as PUSH
and POp, and instructions that use an SS: segment override or use EBP as a base
register. In addition, the ENTER instruction causes the same fault if it causes ESP to
be decremented beyond the lower bound of the segment. Instructions such as SUB
ESP, 10 do not cause stack faults.

125

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

If the stack fault is triggered by loading SS with a not present selector or if the fault
occurs during gated transition between privilege rings, an error code indicating the
offending selector is pushed onto the stack. Loading SS with invalid descriptors (out
of range, segment not writable, and so on) results in a general protection fault rather
than a stack fault.

When the error code is 0, this usually means that a given stack segment is too small.
If the operating system supports expand-down segments, it can expand the stack of
the faulting application. The saved CS:EIP points to the faulting instruction, which
can always be restarted; however, the same caveat that applies to task switches and
not present exceptions also applies to stack faults. See the final paragraph of "Inter­
rupt 11-Not present (fault)[ec]" for more details.

Interrupt 13-General protection (fault) [eel
Any condition not covered by some other exception triggers a general protection
fault. This fault usually indicates that the program has been corrupted and should be
"terminated with prejudice," as the old UNIX phrase goes.

The exception to this rule is that vs6 mode tasks trigger general protection faults
when the system needs to be "virtualized." For example, a V86 task that tries to dis­
able interrupts or issue a software interrupt instruction triggers a general protection
fault when IOPL < 3. In such a case, the interrupt handler must determine the
proper behavior and return control to the faulting task.

The operating system can restart any instruction that triggers a general protection
fault, although doing so is often inappropriate. An error code is always pushed onto
the stack as part of the exception; in many cases, however, the value is 0. When the
value is not 0, the value indicates the selector that caused the exception.

Interrupt 14-Page (fault) [eel
The page fault interrupt lets you implement virtual memory on a demand-paged
basis. An interrupt 14 occurs whenever an access to a page directory entry or page
table entry refers to an entry with the present bit set to 0. The operating system
makes the page present, updates the table entry, and restarts the faulting instruc­
tion. A page fault also occurs when a paging protection rule is violated. In this case,
the operating system needs to take other appropriate action.

When a page fault occurs, the CR2 register is loaded with the linear address that
caused the fault, and an error code is pushed onto the stack. The page fault error
code is different from that of the other exceptions and has this format:

31 3 2 1 0

Undefined

The three low-order bits of the error code provide more information about why the
address in CR2 caused the fault. The P bit is set to 1 if the fault was a page protection

126

5: The Protection Mechanism

fault rather than a page not present fault. The W /R bit is set to 1 if the faulting in­
struction was attempting to write to memory. The bit is cleared to 0 if the fault oc­
curred during a read. Finally, the U/S bit is set to 1 if the faulting instruction was
executing in user mode and is cleared to 0 if the instruction was a supervisor in­
struction. (User mode and supervisor mode are discussed in Chapter 7.)

Because of the large number of divergent memory accesses that occur during a task
switch, operating system designers should ensure that important task tables (the
GDT, application TSS, and application LDT) are resident in memory before execut­
ing the task switch. The situations that arise if page faults occur during a task switch
are not impossible to deal with; system design is simpler if you avoid them.

Interrupt 15
This vector is reserved for future Intel processors.

Interrupt 16-Coprocessor error (fault)
This interrupt occurs at the start of an ESC (coprocessor) instruction when an un­
masked floating-point exception has been Signaled by a previous instruction. (Be­
cause the 80386 does not have direct access to the FPU, it checks the ERROR\ pin to
test this condition.)

The interrupt is also triggered by a WAIT instruction if the EM bit at CRO is set.

Either of these conditions will automatically trigger the interrupt in the 80386. In the
80486, however, you must also set the NE bit in CRO to enable the interrupt. If NE is
0, the processor will halt until an external hardware interrupt occurs.

Note: The NE bit is new in the 80486; this requirement does not apply to 80386
systems.

Interrupt 17 -Alignment check (fault) [ecl
This interrupt occurs only on the 80486. Interrupt 17 is reserved on the 80386. It
occurs when code executing at the application level (privilege level 3) attempts to
access a word operand that is not on an even-address boundary, a doubleword
operand whose address is not divisible by four, or a long real or temp real whose
address is not divisible by eight. Alignment checking is disabled when the processor
is first powered up. It is enabled by setting the AC bit in the EFLAGS register and the
AM bit in CRO.

Interrupts 18-31
These vectors are reserved for future Intel processors.

Interrupts 32-255
These vectors are available for use by an operating system. The system can install
interrupt, trap, or task gates in any IDT slot corresponding to one of these interrupts.
The interrupt handlers can be invoked by software INT n instructions or by hard­
ware that signals the CPU via the INTR pin.

127

MICROSOFT'S 80386/80488 PROGRAMMING GUIDE

Interrupt masking and priority
The only programming mechanisms for masking interrupts are the CLI/STI instruc­
tions, which affect the hardware INTR line. However, other situations prevent cer­
tain types of interrupts, either by design or because a more important interrupt is
pending. Interrupts have the following priority ranking:

1. Nondebug faults

2. Trap instructions (software interrupts INT 0, INT 3, INT n)

3. Debug traps for the current instruction

4. Debug faults for the pending instruction

5. Hardware NMI

6. Hardware INTR interrupt

For example, if a page fault and a debug fault are triggered on the same instruction,
the page fault takes priority, and the debug fault is masked. However, when the page
fault handler completes its operation and restarts the faulting instruction, the debug
fault is retriggered.

Other interrupt masking conditions occur when:

• An NMI is triggered. Further NMIs are masked until the next IRET instruction
occurs.

• A debug fault occurs. Debug faults cause the RF bit in the EFLAGS register to be
set, masking additional debug interrupts. The processor clears RF upon suc­
cessfully completing an instruction.

• The SS register is loaded. Hardware interrupts (both NMI and INTR) and debug
exceptions (including single-step) are masked for the duration of one instruction
after SS is loaded. Thus, the ESP register can load without risk of invoking an in­
terrupt handler with an invalid stack pointer. The instruction that loads ESP can,
however, receive a page fault, and the interrupt 14 routine will be invoked with
an invalid stack pointer, possibly leading to a double fault. You can avoid this by
loading both SS and ESP using a single instruction, LSS.

Debugging
Traditionally, microprocessors have never contributed much to solving the problem
of debugging. Debugging on microprocessors has been accomplished with break­
point instructions and with the ability to single-step (execute one instruction at a
time); but for difficult problems, programmers have had to turn to in-circuit emula­
tors or hardware-assisted debuggers.

As microcomputer systems become more sophisticated, hardware's ability to deter­
mine what is going on inside the CPU diminishes. For example, assume that a pro­
grammer wants to be notified that a particular data structure has been modified.

128

Because of paging, the structure might not be in contiguous memory. The operat­
ing system's virtual memory capability allows it to move the program out from
under the eye of the debugging hardware, and thus the program's linear and sym­
bolic addresses bear no relation to the generated hardware addresses.

Fortunately, the chip designers at Intel recognized these problems and added fea­
tures to their processors that system software can use to aid in debugging. Four
mechanisms trigger debug interrupts under different conditions: trap flag, task
switch trap, breakpoint registers, and software breakpoint.

Trap flag
Setting the TF bit in the EFLAGS register causes a single-step fault (interrupt 1) to
occur before the next instruction. The CPU clears the TF bit before invoking the
handler pointed to by IDT(1), although the saved image of EFLAGS on the stack has
the trap flag set.

When a software interrupt instruction (INT, INTO) is executed, the TF bit is
cleared. A debugger should not attempt to Single-step an INT instruction but should
place a breakpoint either at the destination of the gate pointed to by INT or imme­
diately after the INT instruction.

A call gate does not clear the trap flag, so a debugger should check all FAR CALls
and]MPs to see whether they cause a change in privilege level. If so, programmers
should not be allowed to Single-step into code more privileged than their
applications.

Task switch trap
When the T bit of a TSS is set to 1, switching to the TSS's task invokes the debugger
fault (interrupt 1). The fault does not occur until after the contents of the TSS are
loaded and before the first instruction of the task is executed.

Breakpoint registers
The debug registers (DRO-DR7) implement four address breakpoints. When the
debug address registers arc: correctly initialized, each identifies a linear address. If
the processor accesses that address, then a debugger fault (interrupt 1) occurs. The
debug registers are described in detail in "Programming the debug registers" in
this chapter.

Software breakpoint
The Single-byte INT 3 (OCCH) instruction triggers this interrupt. By replacing the
first byte of an instruction with an INT 3, a debugger can cause a breakpoint to oc­
cur when the execution stream reaches the INT 3. Because the software interrupts
are classified as traps, the saved CS and EIP on the stack point to the byte immedi­
ately after INT 3. To restart the program, the debugger must replace the OCCH value
with the first byte of the original instruction, decrement EIP so that it points to the
start of the instruction, and execute an IRET to return from the interrupt handler.

129

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

This method of implementing breakpoints is much clumsier than using the debug
registers because it requires creating a writable alias for a code segment, saving the
original instruction byte, replacing the instruction with an INT 3, and undoing the
above when the breakpoint has been triggered. However, because the debug regis­
ters allow only four active breakpoints at once, a reasonable trade-off is to use
debug registers for data space breakpoints and INT 3 for code space breakpoints.

Programming the debug registers
Figure 5-15 shows the layout of the debug registers. To load a value into one of the
registers, use a MOV DRx, reg instruction. Similarly, using MOV reg, DRx reads the
contents of a debug register into one of the 32-bit general registers.

The first four registers (DRO-DR3) are address registers. The linear address of a
desired breakpoint must be loaded into one of these registers. The debug registers
are not affected by paging. Only the linear address (from the descriptors) is used to
match a breakpoint address. Debug registers DR4 and DR5 are reserved for future
Intel microprocessors.

31 o

Breakpoint address 0 DRO

Breakpoint address 1 DRI

Breakpoint address 2 DR2

Breakpoint address 3 DR3

RESERVED DR4

RESERVED DR5
0 ~I~I~I 0

BB BB
3 2 1 0 DR6

LEN IRIWI LENIRIWI LEN IRIWI LEN I RIW 0 1~lil~I~I~I; G L G L
3 3 221 100 1 100 DR7

31 16 15 87 o

Figure 5-15. Debug registers.

Register DR6 is the status register. It indicates the conditions that lead to the inter­
rupt. A bit is set to 1 in DR6 if the condition associated with the bit has been met.
The following table identifies the bits and the reasons for the interrupt.

130

5: The Protection Mechanism

Bit Reason

BO Breakpoint register 0 triggered

Bl Breakpoint register 1 triggered

B2 Breakpoint register 2 triggered

B3 Breakpoint register 3 triggered

BD Intel ICE hardware active

BS Single step (TF set to 1)

BT Task with switch occurred; new task's
TSS T bit set to 1

Bits BO-B3 are set to 1 if the breakpoint in DRO-DR3 was matched during execu­
tion, even if the breakpOint was not enabled and did not cause the debug fault.

When Intel ICE hardware is used, the debug registers are reserved for the in-circuit
emulator. The BD bit is set to 1, and any attempt to place (MOV) a value into one of
the debug registers triggers an interrupt 1.

The debug interrupt handler must clear the contents of register DR6. The CPU sets
bits, but bits can be cleared only programmatically.

DR7 is the debug control register. Merely placing an address in DRO-DR3 will not
enable a breakpOint. The enable bites) in DR7 must be set, as must the breakpoint
length and condition.

The LEN n fields let you specify the length of breakpoint n. The length values are
encoded as follows:

OO-Byte / breakpoint legal at any address

01-Word (2 bytes) / breakpOint must be on even address

10-Reserved for future use

11-Dword (4 bytes) / breakpoint address must be on dword boundary

The R/Wn field allows you to specify the type of memory access that triggers break­
point n. This field is encoded as follows:

OO-Execution breakpOint

Ol-Memory write breakpoint

10-Reserved for future use

11-Memory read or write breakpoint

.When R/W is set to OOB, an execution breakpOint, the corresponding LEN field also
must be set to OOB. An execution breakpoint is triggered only if the breakpoint ad­
dress is set to the first byte of the instruction. If any prefix bytes are part of the in­
struction, the breakpOint must be set to the address at the first prefix byte.

131

MICROSOFT'S 80386180486 PROGRAMMING GUIDE

The Ln and Gn bits allow breakpoints to be locally or globally enabled. If neither
the L nor the G bit is set, the breakpoint is disabled and does not trigger an inter­
rupt, although the corresponding bit in DR6 is set if the breakpoint condition is met.

If only the L bit is set, the breakpoint is locally enabled. A task switch clears the L
bits. The system should mark the T bit in the TSS of the task using locally enabled
breakpoints so that an interrupt 1 occurs when the task is reactivated. Then the L
bits can be reset.

If the G bit is set, the breakpoint is globally enabled and can be disabled only by
clearing G to O. (Setting both the Land G bits equals setting the G bit.)

Register DR7 contains two other bits, LE and GE. When either bit is set, it enables
the exact match condition. When exact match is enabled, the processor slows to en­
sure that the interrupt 1 fault reports the instruction that triggered the breakpoint. If
LE and GE are 0, the execution unit might get ahead of the debug unit because of
the internal parallelism in the processor, and the CS and EIP on the interrupt han­
dler stack might point one or two instructions beyond the one that triggered the
fault. The performance loss is not significant, and LE and GE should be enabled. The
difference between the two bits is that LE is cleared after a task switch, as are the
Ln bits.

Triggering the debug interrupt
The following table shows how the address and control fields define a breakpoint
condition and gives examples of instructions that do or do not trigger the break­
point. The table assumes a base address of CS = 0003AOOOH and DS = 0004COOOH
and that GO = O.

Debug Register
Seuings

DRO: 0004C020H

DR7: 10 = 1, R/WO = OOB
LENO = OOB

DRO: 0004C020H

DR7: 10 = 1, R/WO = llB
LENO = OOB

DRO: 0004C020H

DR7: 10 = 1, R/WO = OlB
LENO = OOB

DRO: 0004C020H

DR7: 10 = 1, R/WO = llB
LENO = llB

DRO: 0004C020H

DR7: 10 = 1, R/WO = llB
LENO = llB

132

Break-
Instruction point Reason

MOVAL, [20] N

MOVAL, [20] y

MOVAL, [20] N

MOVAL, [23] y

INC DWORD PTR [OlE] Y

Execution breakpoint

Byte 4C020H read

Breakpoint on write
access only

Breakpoint covers
4 bytes

Dword extends into
breakpoint area

(continued)

continued

Debug Register
Settings

DRO: 0004C020H

DR7: 10 = 0, R/WO = lIB
LEND = lIB

DRO: 0003AOOOH

DR7: 10 = 1, R/WO = OOB
LEND = OOB

DRO: 0003AOOIH

DR7: 10 = 1, R/WO = OOB
LEND = OOB

Instrwction

INC DWORD PTR [OlE]

CS:OOOO MOV AL, 37H

CS:OOOO MOV AL, 37H

5: The Protection Mechanism

Break-
point Reason

N Breakpoint not
enabled

y Execution breakpoint

N Execution breakpoint
not at first byte of in-
struction

133

6

MEMORY
ARCHITECTURE:

PAGING AND
CACHE

MANAGEMENT

This chapter covers the paging mechanism, which is nearly id~ntical in both the
80386 and 80486, and the internal cache, which is present only in the 80486. Many
computer systems built with 80386s have caches, but the cache is implemented in
external hardware. In some 80486 machines, there will be two caches: the 8-KB in­
ternal cache and a system cache similar to those in advanced 80386 systems. This
chapter's descriptions refer only to the 80486 internal cache, but 80386 users may
still be interested in it, as the general concepts apply to any caching system.

Paging
Paging is used to implement virtual memory based on fixed-size blocks called
pages. Paging is probably the most widely used virtual memory technique on to­
day's minicomputers and mainframes.

Like segmentation, paging translates virtual addresses into physical addresses.
Addresses are translated by mapping fixed-size blocks of memory into physical
memory locations called page frames. Consider a physical memory system com­
posed of page frames 0, 1, 2, and 3, each having 10 bytes of memory. A virtual ad­
dress consists of a frame name and an offset, so assume that the frames have the
names A, B, C, and D. The memory system also contains a page table for converting

135

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

the virtual address into a physical address. Figure 6-1 shows how virtual address C7
is mapped into physical address 17. The arrows indicate the page mapping.

Virtual frames Physical memory page frame

Figure 6-1. Translating a virtual address to a pbysical address.

Physical
address

Segmentation and paging are similar: A name and an offset are translated to an ad­
dress. This mapping is the essence of virtual memory. However, segmentation and
mapping are also different. Assume that any virtual address from the previous ex­
ample consists of a two-digit number and that the digit in the lO's place is the frame
name; rather than it letter, as in Figure 6-1. A virtual memory translation would re­
semble Figure 6-2. In this example, virtual address 27 is translated to physical ad­
dress 17.

Because pages have a fixed size, a virtual address can be easily separated into a
name and an offset. A page table lookup converts every virtual address into a physi­
cal address.

Virtual frames Physical memory page frames

Figure 6-2. Virtual address translation affixed-size elements.

Advantages and disadvantages

Physical
address

A fixed page size is the key to the advantages of paging over segmentation. Because
a disk is usually the secondary storage for a virtual memory system, you can choose
page sizes that map well into the sector size of the disk. Paging also avoids the frag­
mentation problem of segmentation. Every time a page is swapped out, another
page fits exactly into the freed page frame.

Another advantage of paging is that allocation for a large object (for example, a
memory segment) does not have to be contiguous. An object that was contained in
virtual pages 1 and 2 in Figure 6-2 would not be stored in consecutive physical
memory locations.

Finally, paging is invisible to the programmer. Unlike segmentation, which requires
you to know the virtual name (segment) and offset of an object in memory, paging

136

8: Memory Architecture

requires you to know only one address. The virtual address is broken down into its
components by the virtual memory mechanism in the hardware.

Paging isn't perfect. Using paging means losing the protection rings implemented
with segmentation. Paging is also subject to a different kind offragmentation, called
internaljragmentation, which occurs when you store objects that do not fit into a
page or a sequence of pages. For example, if the page size is 10 bytes, an ll-byte ob­
ject requires two pages, which wastes memory.

Additionally, paging incurs more overhead than does segmentation. In a segmented
system, the table lookups that are needed to convert a virtual address to a physical
one occur only when a new segment is loaded. In a paged system, a virtual-to­
physical translation must be performed for every memory access. This would not be
an issue if the entire page table could be stored in the CPU, but processors with
gigabyte address spaces require very large page tables.

These problems are not insurmountable, however. You can implement a simple pro­
tection scheme with paging alone; you can also use segmentation and paging to­
gether. Internal fragmentation is not usually as serious as segment fragmentation,
and the CPU's internal parallelism and a special cache called the translation look­
aside buffer (TLB) are used to help alleviate the page translation overhead. The TLB
is a special-purpose cache used only by the paging unit. It exists in all members of
the 80386 family and is not to be confused with the internal cache of the 80486.

The Intel paging implementation
The size of a page frame on the 80386 family is 4096, or 212, bytes. Paging is
enabled when the PG bit of CRO is set to 1. (Once paging is enabled, usually by
operating system software, it will probably not be disabled.) Translation treats the
linear address generated by the segmentation unit as a virtual address and performs
page mapping on it. Thus, memory re(erences on the 80386 family go through the
following stages:

Segment:offset ~ linear address ~ physical address

A linear address is a 32-bit value. To interpret it as a virtual address, take the high­
order 20 bits as a frame name, and use the low-order 12 bits as an offset into the
4096-byte page. To generate a 32-bit physical address, each entry in the page table
must translate the frame name to a frame address. Frame address 0 corresponds to
physical addresses 0-4095, frame address 1 identifies physical addresses 4096-8191,
and so on. A page table entry must also provide additional page status bits for a pro­
tection model and for swapping. Thus, a page table entry has this format:

12

Page frame address 31. .. 12

• 80486 only

137

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

The bits marked 0 are reserved for use by future Intel processors. The field marked
Avail can be used by system programmers to mark pages that are shared among
tasks, to hold usage information, or to store other paging data. The page frame ad­
dress becomes the high-order bits of the physical address. The CPU sets the D
(dirty) bit to 1 when a write operation occurs within the specified page. The CPU
sets the A (accessed) bit to 1 when any memory access (read, write, or fetch) occurs
within the page.

The PCD (page cache disable) and PWT (page write-through) bits are the page­
level equivalent of the CD and WT bits in control register O. PCD is used to disable
caching or cache write-through on a page-by-page basis. PWT is a "policy" bit only
for external cache hardware; it has no effect on the processor. Setting PWT = 1
defines a "write through" cache policy: PWT = 0 stands for "write back." Because
the 80386 has no internal cache, these bits should always be set to 0 in 80386
software.

The UIS and R!W bits are part of paging's protection mechanism. They are dis­
cussed in this chapter's "Page Protection" section.

When the P (present) bit is set to 1, the page is present in memory. If P = 0, the page
is assumed to be swapped to disk, and any attempt to access the page results in a
page fault (interrupt 14). When P = 0, all other bits in the page table (31-1) are irrele­
vant and can be used by the system programmer. Frequently, a swapped page's loca­
tion on disk is stored in those bits when the page is not present.

Page tables and page directories
Each page is 212 bytes, and physical address space is 232 bytes, so 220 (more than 1
million) page table entries are required to implement a virtual-to-physical transla­
tion table. Because each entry takes up 4 bytes, a page table requires 4 MB of
memory. If a frame address alone indicated the page table entry, the page table
would require 4 MB of contiguous memory. In a multitasking system that provides
a separate virtual address space for each task, each task requires a 4-MB block of
memory in addition to its code and data.

The solution to this space problem, swapping out the page table, cannot be imple­
mented with a simple, one-level page table. For example, if a program tries to access
address x, the page table entry (PTE) for x must be brought into memory. Because
the page table is itself paged, the PTE for PTE(x) must be brought into memory first.
Swapping continues until the initial page of the page table is swapped in.

A better solution, the one implemented by the 80386 family, is a two-level page
table. In this scheme, the virtual name component of the virtual address (the high­
order 20 bits) is split into two parts. The high-order 10 bits are used as an index into
a page directory. A page directory entry (PDE) points to a scaled-down page table
that contains 1024 entries. The 10 bits left over in the virtual address select the page
table entries from the page table. Figure 6-3 illustrates the two-level page structure.

138

Linear 31 2221 12 11 0
address I I I

1023

Index
r-

~

0 r.~ge directory

~

Figure 6-3. Page table/directory structure.

6: Memor, Architecture

ff o set
Page tables

[]J
1023

Page frame

0

x

Physical
memory

4G

0

B

Physical
address

This structure solves the problem of swapping out the page table because the initial
lookup goes through the page directory. The page directory, with 1024 32-bit en­
tries, takes up only 4 KB and is permanently stored in memory. Each page table also
takes up 4 KB (fits right into a page!) and has 1024 page table entries.

Register CR3 contains the physical address of the page directory for a task. CR3 is
the only register that contains a physical (as distinct from virtual) memory address.
A page directory entry has the same format as a page table entry except that the D
bit is unused and the A bit is set to 1 whenever one of the page tables pointed to by
the page directory is used.

A detailed example
Figure 6-4 onthe following page shows a linear address that is translated to a physi­
cal address via paging. Assume that an instruction refers to the linear address
13A49FOlH. The frame name C13A49H) is split into a directory index (04EH) and a
page table index (249H). The page directory is at the address specified by register
CR3, location 1COOOH. The page directory element number 04EH is selected. It con­
tains the value 3A7A2xxxH, where xxx represents the page status bits. If the pre­
sent bit is set, the page table begins at location 3A7A2000H, and page table entry
number 249H is selected. In the example, this entry contains the value 2C115xxxH,
where xxx represents the contents of the status bits. The offset of the linear address
is appended to the page frame to yield a physical address of 2C115FOlH.

139

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Linear address 13A49FOlH = 00010011101001001001111100000001 B
I II II I

I I I
04EH (7810) 249H (58510) F01H

I
I I

1023 1CFFFH 1023 3A7A2FFFH

78 3A7A2xxxH 58~ 2C115xxxH

2 2
1 1
0

r~H
0 3A7A2000H

I Page Page table 1 2C11 directory 5FOlH
CR3 11COOOH I Physica I address

Figure 6-4. Page translation process.

As the example shows, referring to a single memory location when paging is
enabled requires three references: a memory read of the page directory, a read of
the page table, and the target memory access.

The translation lookaside buffer
To eliminate the extra bus cycles that paging imposes on memory references, the
paging unit contains the TLB, a content-addressable cache memory. The TLB stores
the 32 most frequently used page table entries and page directory entries on the
processor chip. Whenever a page table request occurs, the TLB is checked first. If
the table entry is found (a "cache hit"), the processor translates the address with no
additional memory overhead. More than 98 percent of all references result in a
cache hit, leaving less than 2 percent of all memory references degraded by addi­
tional cycles.

The TLB is flushed whenever register CR3 is loaded with a new base address. Be­
cause the table entries are cached on chip, maintaining page table consistency in
multiprocessor environments is important. When one processor modifies a page
tablt. (that may be in another processor's cache) or a page directory, the processor
must signal the other processors and force them to flush their TLBs. The other pro­
cessors must then load the modified tables. The LOCK prefix should precede any
accesses to the page tables to eliminate simultaneous access.

140

6: Memory Architecture

The references to the page tables and page directories are no different from stan­
dard memory read cycles; as such, they will go through the 8-KB internal cache of
the 80486. Because page table hits are relatively infrequent (around 2 percent of
references), you may wish to keep page table information out of the internal cache,
saving cache space for application code and data. To do this, set the CD bit to 1 in
CRO and the PCD bit to 1 in the page directory entries (but not in the page table en­
tries). The page tables themselves will not be cached; however, the data in each
page can be.

Page faults
If a page descriptor is marked not present (P = 0), a page fault (interrupt 14) occurs.
When this happens, register CR2 stores the linear address that caused the fault, and
an error code is pushed onto the stack. Page faults can also be caused by violations
of the page protection rules, described in the next section. Chapter 5 contains addi­
tional information about page faults in the "Interrupts and Exceptions" section.

Page protection
The format of a page directory entry and of a page table entry includes bits marked
U/S and R/w. The U/S bit specifies whether a page is a user page (U/S = 1) or a
supervisor page (U/S = 0). A supervisor page cannot be used by any procedure run­
ning with a CPL of 3. However, a procedure with a CPL of 0, 1, or 2 can access a
supervisor page. User pages are accessible regardless of the CPL. If a page directory
entry is marked with U/S =0, only a supervisor procedure can access pages in the
page table pointed to by that directory entry, regardless of the U/S setting in the in­
dividual page table entries.

You can control the type of memory accesses allowed by setting the RIW bit. The
effect of the RIW bit is modified by the WP (write protect) bit in the CRO. The 80386
does not have the WP bit, so its operation is equivalent to an 80486 operating with
WP = O. In this mode, a user level program (CPL = 3) can read or execute from any
page where U/S = 0 and can write to any page with U/S = 0 and RIW = 1. A super­
visor level program (CPL <= 2) can read from, write to, or execute from all pages.

In the 80486, when the WP bit is set to 1, access to pages by user level programs is
identical to the operation described above. Supervisor level programs, however, are
restricted to writing only to those pages with the RIW bit set to 1, regardless of the
U/S bit setting. The rules are summarized by the following formulas:

User programs (CPL = 3)

read_access(addr) = PDE(U/S) = 1 & PTECU/S) = 1

write_access(addr) = read_access(addr) & PDE(RIW) = 1 & PTE(RIW) = 1

Supervisor programs (CPL <= 2)

read_access(addr) = TRUE

write_access(addr) = (WP = 0) I PDE(RIW) = 1 & PTE(RIW) = 1

141

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

When a user level process loads a selector, issues a software interrupt, or generates
an access to the GDT, LDT, TSS, or IDT to load a descriptor, system table reads and
writes are treated as supervisor level accesses. Pushing values onto an inner-ring
stack segment is also treated as a supervisor level access. If the system tables had to
be stored in user level pages, they would be less secure than if stored in supervisor
level pages.

Combined paging and segmentation
Although Simulating a pure flat address space is possible in the 80386 family, most
operating systems will probably use some segmentation. No special restrictions ap­
ply when combining segmentation and paging, although observing certain rules can
make life easier for the operating system designer.

For example, segments do not need to fit into a single page or into a multiple of n
pages; a page can contain portions of more than one segment, or vice versa. How­
ever, memory management is easier if all segments are multiples of 4096 bytes. You
can mark all segment limits as page granular (G = 1 in the segment descriptor), and
each segment limit field will contain the number of pages required to hold the seg­
ment, less one.

To support page protection, an operating system should implement at least level 0
and level 3 segment protection rings. This is not a problem, even in systems simulat­
ing a flat memory architecture. All user level programs can share the same level 3
code segment and level 3 data segment, and the operating system can use two level
o segments. Both sets of segments can map into the same linear address space, so
the use of different selectors will be invisible except for the privilege level.

Multitasking
Operating system designers can choose to support either a single memory map (one
for each task) or multiple memory maps (one for the system and one for each appli­
cation). A single virtual memory space is the simplest approach; however, any sys­
tem that supports multiple virtual8086-mode tasks needs a different set of page
tables for each v86 task. In v86 mode, each task accesses linear addresses 0 to 1 MB.
A separate physical address space must exist for each linear address space. Figure
6-5 shows how v86 tasks can be mapped to physical memory.

The CPU architecture supports different page tables for each task by saving and
restoring the CR3 register in the task state segment. To save itself from having one
4-MB page table per task, an operating system can limit the linear address space of
an application to a subset of paging's 32-bit, 4-GB virtual memory size.

For example, if an operating system limits each application to 8 MB of linear ad­
dress space, it needs to manage only two page tables and the page directory. Each
unused page directory entry is marked not present (P = 0). Trying to access an ille­
gal memory address results in a page fault, and the operating system can tell
whether the fault represents a swapped-out page or an illegal memory reference.
Figure 6-6 illustrates such a system.

142

v86 task 3
1 MB

640KB

0

v86 task 2
1MB

640KB

0
Linear address

V86 task 1
1MB

o
Linear address

Physical memory

Shared ROM 4MB
segment

Task 1 3MB

Task 3 2MB

Task 2 1 MB

o

Each pair of arrows indicates
a set of page mappings.

Figure 6-5. Mapping V86 tasks to physical memory.

1023

1

o

Page directory

Not present

Not present
r-

Illegal addresses
fault here

1023

-1

0
Page table

1023 I--

1

0

Page table 0

Swapped pages
fault here

8-MB virtual
address space

Figure 6-6. Page tables required to support 8 MB of memory.

007FFOOOH

00400000H

003FFOOOH

00002000H

0000 1 OOOH

OOOOOOOOH

143

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Application designers should understand address space restrictions. Some operating
systems might have a way to request a larger virtual address space with a system
call, but others might not.

Performance is another concern for application designers in a demand-paged sys­
tem. A key to system performance is the size of the application's working set. The
working set is the number of application pages that the operating system tries to
keep in physical memory at one time.

For example, assume that an application is computing the sum of two arrays into a
third array, as represented by the following program fragment:

int a[1024], b[1024]. c[1024];

for (i = 0; i < 1024; i++)
a[i] = b[i] + c[i];

The code for the program resides in one page, and each array Ca, b, and c) resides
in a separate page. If the operating system provided a working set of three pages
per application, this program would run slowly because two pages would have to
be swapped to disk for every for loop iteration. Figure 6-7 illustrates the swap.

r- ,------------___ --0
i i I ~O;:: I -I-----~---r:
I I I

- -0_- --------~ ~ ~ ~: - - - - - - - - - -T -------T -i-'
---____ c :

'" I
-_.... I

- I
I __ I

.... -.... ~

Figure 6-7. Swapping a working set.

Working set allows
only 3 pages in memory
simultaneously. A must
be swapped out and C
swapped in, then C swapped
out and A swapped back in.
This cycle will repeat 1024
times.

Most operating systems provide working sets much larger than three pages per
application, but applications with large memory requirements might see similar
results. If you write an application that requires a large amount of memory, you
might improve its performance by changing the program's locality of reference.

The previous program fragment needs access to many pages for every cycle through
the loop. If this program were running under the operating system described pre­
viously, you could increase its performance by changing the data structure so that
a[i], b[i], and c[i] reside in the same page.

144

8: Memory Archltectur.

struct {
int a, b, C;

} bl ock[1024] ;

for (i - 0; i < 1024; i++)
block[i].a - block[i].b + block[i].c;

The program now runs with only two page swaps, as shown in Figure 6-8.

---- ---- -----

Initial working set allows
67% of the loop to execute
without any swapping; then
first block is swapped out
and last block is swapped in
to complete the loop.

Figure 6-8. Reducing swapping via locality of reference.

Application designers should consider how paging affects their programs. Although
many designers will see no impact on their programs, others might need to modify
code. A classic example is a program such as a LISP interpreter, which manipulates
a large number of linked-list data structures. Unless a mechanism forces locality of
reference on the lists, a user could end up with lists that have pointers to cells scat­
tered throughout the address space, resulting in excessive swapping overhead.

The Internal Cache
The 80486 introduced an 8-KB internal cache to the processor architecture. While
the cache can be looked at strictly as a performance aid (as distinct from a true
architectural change), it is the cache that allows the 80486 to achieve RISe-like
speeds. A number of instructions execute in a single clock cycle when assisted by
the cache.

The purpose of the cache
The memory requirements of computers have always outweighed the processing
requirements. The ratio of storage locations to processor is several million to one,
even in multiprocessor systems. This means that storage costs must be kept low, or
the price of a complete system would be forbiddingly high. To keep memory cheap,
it is usually implemented on devices that are much slower than the main processor.

145

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Disk storage is a typical example. Unfortunately, using only such slow devices
negates the value of having a fast processor, because the CPU spends all its time
waiting for data to be read from or written to memory.

One solution to this problem is to provide more than one kind of memory: A very
fast memory for the most important stuff, and a slower memory for the stuff that's
not currently in use. We are all familiar with this setup. The familiar CPU/RAM/disk
triad exemplifies this model. Current RAM technology, however, still lags CPU per­
formance, at least at reasonable data densities. The cache is simply another variant
of this model; the initial accesses are to the fastest memory and the cache; then sys­
tem RAM is used, and then disk storage.

To make effective use of very fast memory in the cache, it is necessary to reduce the
problem of data density; the 80486 cache is only 8 KB. Because we can't have a lot
of cache memory, we'll make that memory smarter.

An intelligent RAM
In a standard memory system, the CPU presents an address, and the memory system
returns the data stored at that address. Because a cache is small (and can't store all
the data we'd like it to), its behavior is a little different. The cache can be looked
upon as storing a set of ordered pairs, in the form (address, value). The CPU pre­
sents the cache with a memory address. The cache looks through all its ordered
pairs. If it finds an address match, it returns the associated value; otherwise, it
passes the address to the standard memory system on the bus. When the value
comes back from memory, the cache will store it in case the processor requests the
value again. This process is illustrated in Figure 6-9. Finding a match in the cache is
called a cache "hit," and it eliminates the need to access the slower system RAM.

80486 System RAM
--. , , ,

Execution
, , ,

unit Cache , , ,
IF cacheMiss

(a,val[a])
, ,

Address x ,
Address (b, val[b]) , ,

x : (x, val[x])

IF ca~heHit
(i, val(j]) f-- , , , ,

r
, , , ,

val[x] , Value ,
, , , ,

--

Figure 6-9. Memory Jetch with cache.

146

8: Memory Architecture

Memory writes are handled in a somewhat different manner. Writes always go to
system RAM because system memory must contain the correct values if the cache is
ever disabled. First, however, the cache is checked for an address match. If a match
occurs, then the cache value is updated. If no match occurs, the cache remains
unchanged and only system RAM is updated.

When new data is brought into the cache by a read or fetch cycle, it usually means
that some other data must be disposed of. The cache checks to see which addresses
have been accessed least frequently and replaces the least recently used ordered
pair with the address and data just read from system RAM. This assures that tight
program loops and frequently referenced variables will be accessed as quickly as
possible.

Cache lines and associativity
Because of the way that a cache works (using a lookup-by-association technique),
caches are sometimes referred to as associative memories. The amount of memory
required to store the address portion of an ordered pair is not taken into account
when determining the size of the cache. Thus, the 8-KB cache of the 80486 means
that there is room for 8 KB of data values.

In fact, to speed operation of the cache, reduce the amount of memory required for
the address portion; and to decrease chip complexity, the full 32 bits of the memory
address is not stored. Instead, the cache is organized into sets and lines.

A cache line in the 80486 is simply 16 bytes of data. Whenever a cache miss occurs,
the cache loads the entire 16 bytes, beginning at .address AND FFFFFFOH, from sys­
tem memory. The 80486 bus supports a special "burst mode" expressly for this pur­
pose. This means that the cache need not store the low-order four bits of memory
addresses, because the entire 16 bytes is present in the cache. Loading an entire line
also has the advantage of "prefilling" the cache, on the assumption that memory ad­
dresses are frequently localized and often sequential.

Notice that the 80486 will always fill an entire line. If, for instance, you accessed the
byte at location 3A75H, and there was a cache miss, the processor would start a
burst read at 3A70H and cache the 16 bytes through 3A7FH.

Cache control
A number of factors influence whether or not a line of data will be cached. Initially,
there is simply the question "Is the cache enabled?" to contend with. Bits 29 and 30
of control register 0 control the cache on a global basis. After the cache has been
enabled by setting bits 29 and 30 to 0, it can be flushed by a hardware signal,
disabled on a page-by-page basis in software, or disabled on a line-by-line basis in
hardware.

The hardware signal FLUSH\ is asserted when external hardware wants the 80486
to invalidate all current cache lines. Caching remains enabled, but all current data is
marked invalid. This is useful in multiprocessor systems with shared memory ..

147

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

When one processor writes to shared memory, it can force the other processor to
flush their caches, ensuring that they read the fresh data.

The page table entries contain mask bits for the CD and NW bits in CRO. By masking
these values, individual memory pages can be marked as never cacheable. In IBM
PC-compatible systems, for example, the video memory locations are almost never
read, and it is more efficient to prevent them from being cached altogether.

Finally, external hardware can detect that certain addresses should not be cached.
Addresses of memory-mapped I/O devices, for example, should not be cached. Ex­
ternal hardware can use the KEN\ line to enable caching or to ensure that data at a
particular address ~s not cached.

148

7

THREE IN ONE

In earlier chapters I alluded to the capability of Intel microprocessors to run soft­
ware written for previous processor generations. This chapter explores this capa­
bility in the 80386 and the 80486 and discusses how to make the most of it.

The 80386 and the 80486 provide an almost ideal upgrade path from the 8086 and
80286 families of Intel processors. In real mode, the new 32-bit machines can run
8086-family programs. They can switch into protected mode and execute 80286
software. The native mode of the 80386 and the 80486 expands the protected-mode
capabilities with 32-bitoperations and eliminates the 64-KB segment restrictions of
the 80286. Virtual 8086 mode lets you run real-mode programs in protected mode;
this is advantageous because many more real-mode applications are currently avail­
able than protected-mode applications. With the release of Windows 3.0 and OS/2
V2.0, however, this situation is almost certain to change in the 199Os.

Real Mode
When the 80386 or the 80486 is powered up or reinitialized via the hardware
RESET\ line, the CPU is in real Creal-address) mode. In real mode, all of the CPU's
protection features are disabled, paging is not supported, and program addresses
correspond to physical memory addresses. The address space is limited to 1 MB of
physical memory. Real mode is compatible with the 8086, the 8088, the 80186, the
80188, and real mode of the 80286. Minor differences in real mode among the
various processors are listed in Appendix F.

When the processor is reset, the registers are initialized to the values shown in the
table on the following page:

149

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Register Value

1 30r4

DL <id>

EFLAGS 2

IDTR (see "Interrupt o (base), 3FFH (limit)
Processing," below)

CS FOOOH

IP FFFOH

SS 0

ESP

DS 0

ES 0

FS 0

GS 0

CRO(80486) 60000000H

CRO(80386) OOOOOOxOH

Memory addressing

Expklnation

3 for 80386, 4 for 80486

Identifies revision number of CPU

Descriptor base set to FFFFOOOOH

First instruction at FFFFFFFOH

Base address 0

Undefined, load SS:ESP before using
stack

Base address 0

Base address 0

Base address 0

Base address 0

Cache disabled

Bit 4 = 1 if 80387 present, 0 otherwise.
Bits 5-31 are undefined

Shadow registers (segment descriptor caches) provide a key to understanding real­
mode memory addressing. Each segment register that holds a selector has an in­
visible component called a shadow register. In protected mode, every time a selec­
tor is loaded into a segment register, the contents of the descriptor indicated by the
selector are loaded into the shadow portion. In real mode, the shadow register is
loaded with a computed value rather than with a value extracted from a descriptor.
Figure 7-1 illustrates the shadow registers.

When the processoris reset, the shadow registers for segments other than CS are
loaded with a base address value of 0 and a limit of OFFFFH, with attributes set to
16-bit addressing; 16-bit instruction set; read, write, and execute ability; and privi­
lege level O. The CS shadow registers are set with the same limit and access bits as

Visible portion "Invisible" descriptor cache

Access

15 o Base Limit rights

CS
SS
DS
ES
FS

GS

Figure 7-1. Shadow registers.

150

Segment registers

D Programmer accessible

D Not accessible

7: Three In One

the other shadow registers but have a base address of FFFFOOOOH. Except for the
registers listed in the above table, 80386-family registers are undefined. There is
one exception to this in the 80486. If the chip's built-in self test (BIST) has been
enabled at reset time (by activating pin AHOLD during the falling edge of the
RESET signa!), register EAX will be set to zero if the BIST completed successfully.

At reset, the limit portions of the shadow registers are set to OFFFFH, which indi­
cates a 64-KB segment. The access rights portion is set to a value indicating that the
segment is readable, writable, and executable and that 16-bit addressing and
operand modes are enabled. These values remain constant while the processor is in
real mode, and only the base address value is altered. Each time a segment register
is loaded, the base address portion of the shadow register is set to 16 times the value
of the selector. For example, loading DS with the value of OOlAH sets the base ad­
dress of the DS segment to OlAOH. Because all the segments in real mode are 64 KB,
the segment addressable via DS extends from OlAOH to 1019FH. Figure 7-2 illustrates
physical address generation in real mode.

The highest segment base address that can be generated in real mode is OFFFFOH,
16 bytes short of 1 MB. Because that segment extends for 64 KB, memory beyond 1
MB can be addressed. Thus, 32-bit real-mode addressing is somewhat incompatible
with that of the 8086, which hardware address lines limit to 1 MB. Generally, this
limitation can be ignored because 8086 programs do not use it. If needed, external
hardware can be added to limit system address space in 80386 systems to 20 bits
while the system is operating in real mode; in 80486 systems, activating pin A20M\
forces address-space wraparound of 1MB.

The reset state of the CS shadow register does not follow the "selector times 16"
rule. Because the initial base address for the code segment is set to FFFFOOOOH,
ROMs that handle processor reset can be placed at the end of the address space.
The first CALL or]MP instruction that loads CS after reset forces the base address
into the first megabyte of address space.

15 o

Selector

01AO

00001AOO

Base address

Figure 7-2. Real-mode addressing.

Physical memory
o

1MB
IMB+64KB

64KB
_s_e~~:.r:t_

r

Real
address
space

151

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

is-bit instruction set
The predefined shadow register values cause another side effect. The D bit in the
access rights field is always set to 0 in real mode. Thus, an 80386 or an 80486 is
forced to operate in 16-bit mode unless it encounters an OPSIZ or ADRSIZ prefix.

To understand how the D bit works, examine the 8086 instruction set. Most 8086 in­
structions execute with either a byte operand or a word operand. The byte/word
indicator is encoded in one bit in the instruction. For example, the opcode for negat­
ing a byte operand is 11110110B, and the opcode for negating a word operand is
11110111B.

Rather than invent new opcodes for 32-bit (dword) operands, Intel's designers
changed the meaning of the opcode bit that signifies a word operand. When exe­
cuting in a native-mode (32-bit) segment, where the D bit in the segment descriptor
is set to 1, executing opcode 11110110B means negate byte and 11110111B means
negate dword. The instructions refer to bytes and dwords rather than to bytes and
words. When the D bit of a descriptor is set to 0, however, the opcodes retain their
original meanings.

The D bit also affects address computation for memory operands and the stack.
When D = 0, corresponding to the 8086, the 16-bit registers are used in calculating
segment offsets, as in MOV AL, [SI+8]. When D = 1, corresponding to the 32-bit na­
tive mode, the same opcode bits cause the memory address to be calculated using
the 32-bit registers, and the instruction becomes MOV AL, [ESI+8]. When D = 0 in
stack segment descriptors, PUSH and POP instructions access 16-bit operands.
When D = 1, 32-bit pushes and pops are executed.

The OPSIZ and ADRSIZ prefixes can override the current D-bit setting for an
instruction. Thus, 32-bit native-mode instructions can be prefixed to use 16-bit
operands, and 16-bit code can be prefixed to access 32-bit operands and 32-bit ad­
dressing modes. The extended addressing features (such as indexing) are not avail­
able in segments that have the D bit set to 0 unless the ADRSIZ prefix is used. Note:
You need not explicitly specify the prefix instructions; use extended-addressing
mode, and the assembler will insert the prefix.

When using extended addressing in real mode, observe the 64-KB segment size
limitation. In real mode, address offsets greater than 65535 return an interrupt 13.

Interrupt processing
Interrupt handling is different in real mode than in protected mode. As in protected
mode, the IDTR contains the base address and limit of the interrupt table. For 8086
compatibility, the base is initialized to physical address 0 with a limit of 3FFH. In
real mode, however, the interrupt table does not hold descriptors; each interrupt has
a 32-bit selector:offset address that points to the routine to be invoked when an in­
terrupt occurs. Thus, each entry is 4 bytes rather than 8 bytes. Figure 7-3 illustrates
the real-mode interrupt vector table.

152

Vector 0
Vector 1

Vector 255

31

Physical memory

16 15 o
Selector I Offset

I

I

Figure 7-3. Real-mode interrupt vector table.

7: Thr_ln One

The processing of an interrupt in real mode is similar to that in protected mode except
for the use of vectors instead of descriptors. A software or hardware interrupt causes
the 16-bit FLAGS register to be pushed onto the stack, followed by the current CS and
IP. The IF and TF flags are cleared to 0, disabling interrupts and single-stepping.

The pointer from the interrupt table is loaded into CS and IP, and processing continues
at the new location. Automatic task switching and interrupt gates are not present be­
cause no descriptor tables exist in real mode. The vector in the interrupt table specifies
a new execution address only.

Real-mode restrictions
You can use all the instructions added to the architecture since the introduction of
the 8086, with the exception of:

INVD*

INVLPG*

LAR
LIDT

*S04s6only

LSL
LTR
SIDT
STR

VERR

VERW

WBINVD*

Real mode does not support the ways that these instructions access protected-mode
selectors, descriptors, or tables. Executing one of these instructions causes an un-
defined opcode fault (interrupt 6). .

You can execute all other 16-bit and 32-bit instructions. Real-mode programs can
access any register, including the control, debug, and test registers.

Real mode does not support paging. Setting the PG bit in register CRO to enable pag­
ing causes a protection fault.

Appendix F outlines the differences among the operations of the 8086, the 80286 in
real mode, the 80386, and the 80486.

153

MICROSOFT'S 80386/80488 PROGRAMMING GUIDE

Protected Mode
Setting the low-order bit of CRO to 1 switches the processor into protected mode.
The processor will run in protected mode even if no setup is done-that is, it will
run until the first interrupt, FAR program transfer, or segment register load. At this
point, the processor needs to access a descriptor table. Because the protection
mechanism depends on descriptor tables, the system will shut down if the descriptor
tables have not been initialized.

Protected-mode initialization requires you to set up a global descriptor table and
interrupt descriptor tables and to create a task state segment for the first process.
The initial descriptor tables can be stored in ROM, but they must be copied to RAM
before you set the GOTR and IOTR to point to them because the CPU needs to write
to the descriptors as well as read from them.

Figure 7-4 shows a simple initial GDT. This GOT would be sufficient to run addi­
tional startup code. You could also build the operating system image in real mode
and then switch into protected mode. An advantage of switching into protected
mode as soon as possible after reset is that the hardware can help trap startup bugs
early in the code development cycle.

In Figure 7-4, GOT(O) is unused because a selector value of 0 is treated as a special
case, a NULL pointer. Thus, any descriptor at GOT(O) will never be used. GOT(1)
points to the GOT as a writable data segment, allowing the operating system to add,
delete, and change descriptors as needed. GOT(2) points to the IDT as a writable

o
11----

2

Physical memory

o

3J-~~----~----~J
4~~~~-----------r--~~
5~~~----------tI

GDT
Startup ROM

4 GB '-----------'

Figure 7-4. A simple CDT.

154

7: Th In On.

data segment for the same reason. GDT(3) defines the TSS for the startup task,
GDT(4) defines the task's data segment, and GDT(5) defines the task's code seg­
ments, which are in ROM.

Before you enable protected mode by setting the PE bit, the GDTR must be loaded
with the address and limit of the GDT. The IDT should contain gates that point to
code and that trap any faults that occur during startup. The IDTR is initialized to
point to the IDT, and TR is loaded with the selector of GDT(3). The PE bit is then set
in the CRO register to enable protected mode. Next, a FAR jump instruction loads
the CS register with a valid protected-mode descriptor. Finally, the stack segment,
stack pointer, and data segment registers are loaded. The initialization will build the
rest of the operating system, enable paging, and start application programs.

80286 compatibility
Protected-mode 80286 code executes on the 80386 or the 80486 if the fourth word
of each descriptor is initialized to O. Descriptors are 64 bits on all three processors,
but the high-order 16 bits are unused on the 80286. On the 80386 and the 80486, the
extra bits specify the high order of the base address and the limit fields and contain
the G and D control bits. These new fields should be set to 0, restricting segment
limits to 64 KB and activating the 16-bit instruction set (which is compatible with
the 80286).

The 80286, the 80386, and the 80486 operate similarly; the few differences in opera­
tion concern performance and newly implemented features and instructions. The
80386 and the 80486 allow the LOCK prefix to precede the following instructions
only when they modify memory:

ADC
ADD
AND
BT

BTC
BTR
BTS
DEC

INC
NEG
NOT
OR

SBB
SUB
XCHG
XOR

Illegal use of the LOCK prefix results in a protection fault on the 80386 or the 80486.
Additionally, the 80286 locks all of physical memory during the instruction; on the
80386 and the 80486, the locked area is the memory region with the same starting
address and length as the operand of the locked instruction. '

The machine status word (MSW) is the low-order 16 bits of register CRO. The MSW
is initialized to OFFFOH on the 80286, but it is initialized to 0 on the 80386 and the
80486. Registers that are specified as undefined at reset might have different values
than they do on the 80286.

At reset, the base address of the CS register is different on the 80386 and the 80486
than on the 80286. The CS register is set to the same lbgicallocation-that is, to the
last 16 bytes of the address space-but the 80286 supports only 24-bit addresses,
whereas the 80386 and the 80486 support 32-bit addresses.

155 .

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Returning to real mode
In general, an operating system should not switch to real mode after running in pro­
tected mode. Returning to real mode compromises operating system security be­
cause real mode is more vulnerable to crashes. To run real-mode programs while in
protected mode, create special tasks that run in virtual 8086 (V86) mode. The next
section discusses this process.

If you must return to real mode, follow this procedure: If paging is enabled, turn it
off by branching to a routine whose linear and physical addresses are the same,
clearing the PG bit in CRO, and moving 0 into CR3 to clear the PDBR (page directory
base register), which will also flush the TLB.

The attribute bits in each segment descriptor must be set to values compatible with
real-mode operation-that is, they must be byte granular segments with a limit of
OFFFFH, and the Band D bits must be O. CS must be marked "executable," and SS,
DS, ES, FS, and GS should be writable segments. (Change the CS selector by issuing
a FAR jump or call instruction.)

Disable interrupts, and load the IDTR with a base address of 0 and a limit of 3FFH.
Clear the PE bit of the CRO register to return to real mode, and execute a FAR jump
to flush the instruction queue and initialize CS to a valid real-mode base address.

After you load the stack pointer (SS:SP) and the other segment registers, programs
can continue processing in real mode.

Virtual 8086 Mode
Just as virtual memory allows the processor to create the impression of memory that
isn't really there, virtual 8086 mode allows the 80386 and the 80486 to create the il­
lusion of multiple 8086 processors. This illusion is so nearly complete that multiple
8086-based operating systems can run under a supervisory protected-mode operat­
ing system. For example, assume that the native-mode operating system for an
80386 computer is UNIX and that support for v86 mode is built in. In addition to
running multiple UNIX tasks, the user can run a copy of MS-DOS and a word pro­
cessor in a v86 window. The user can also invoke another virtual 8086 session run­
ning a spreadsheet under Windows. Each v86 task believes that it is running on a
separate 8086 machine but actually runs concurrently with host operating system
tasks.

V86 mode was designed in response to the negative reaction to 80286 protected
mode. Application designers developed a large software base for the 8086 family
under MS-DOS. The 8086 and 8088 processors support only real-mode program­
ming, and MS-DOS is sensitive to the mapping between selector values and physical
addresses. When Intel introduced the 80286, developers found that MS-DOS pro­
grams had problems running in protected mode.

If MS-DOS were less sensitive to physical addressing, most applications could be
easily ported to 80286 protected mode. Operating systems such as Concurrent CP 1M

156

7: Three In One

and Microsoft Windows created environments that relied less on the idiosyncrasies
of real mode, but because of DOS's wide popularity the marketplace demanded
support of real mode.

v86 mode was Intel's response. v86 mode is available in the 80386, the 80386SX,
and the 80486. The paging and multitasking capabilities of these processors enabled
designers to implement v86 mode, which overcomes the I-MB nonprotected limita­
tions of real mode. Because a TSS contains an image of all the general registers, it is
the basis of a register image for a virtual machine (in this case, an 8086). Addition­
ally, the TSS contains the extra information needed for protected mode: the inner­
ring stack pointers and the page directory base register (CR3). The operating system
creates a v86 task by setting the VM bit in the EFLAGS image of the task's TSS.

When a task is invoked and the EFLAGS register is loaded (setting the processor's
VM bit), the task's code portion behaves as if it were running in real mode. The task
does not use descriptors; base addresses are generated by multiplying the selector
value by 16. The difference between real mode and V86 mode is that real-mode ad­
dresses are physical addresses and v86 mode addresses are linear addresses that
can be mapped via paging hardware.

Thus, the executing program makes the same assumptions about selectors and ad­
dresses that a real-mode program does, but the paging hardware, under control of
the native-mode supervisor, controls which physical addresses are used by the v86
task. The entire 4-GB address space is available for remapping the v86 task's ad­
dresses. The other issue that Intel's designers had to face was the integration of real­
mode programs into a secure, protected-mode environment.

Memory references were not a problem. The paging hardware can isolate the v86-
mode program address space from protected-mode programs, preventing data cor­
ruption. Besides memory, the only external interfaces to the CPU are I/O ports and
interrupts.

1/0 in Va6 mode
In protected mode, the I/O privilege level (IOPL) determines whether a procedure
can perform I/O instructions. In v86 mode, 10PL protects the interrupt flag (IF),
and I/O port protection is performed through the I/O permission bits in the TSS.
v86 mode programs run in ring 3; thus, they cannot alter the value of 10PL.

The CPL of a v86 mode task is always 3. If the system 10PL is less than 3, the in­
structions below return a general protection fault (interrupt 13) with an error code
of O. I/O instructions are not 10PL sensitive in v86 mode.

CLI POPF

INT PUSHF

IRET STI

LOCK

157

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

If the system runs with an IOPL of 3, the v86 mode task will execute the instruc­
tions above without triggering the general protection fault. This creates a problem
because these instructions modify the interrupt flag. Although performance might
be higher when lOPL = 3, this operating mode is not recommended. Allowing a
V86-mode task to disable interrupts could result in data loss or a system shutdown.
For example, the following two-line assembly program locks the system and re­
quires a complete power cycle to bring the system back on line:

11:
eli
jmp 11

Designing a reliable system that runs V86-mode tasks with IOPL = 3 requires hard­
ware support and cannot be implemented with software alone. For example, a
watchdog timer can be connected to the NMI interrupt, forcing control back to the
operating system if an application appears to have crashed the system.

The I/O permission bitmap of the v86 task state segment determines whether the
I/O instruction executes or causes an exception. Figure 7-5 illustrates a typical I/O
permission bitmap in a v86 task state segment.

FFFFFFFF
FFFFFFFF

---+ ... OOOOIFOO ...

- !/OP bitmap base I 100

o

Figure 7-5. I/O permission bitmap.

A trade-off exists between performance and protection. If you allow all tasks to
issue I/O instructions, more than one task might access a device simultaneously.
However, if you trap all I/O instructions, programs might run slowly. A compromise
is to mark I/O address space as inaccessible until the first fault occurs. By trapping
the first I/O instruction to a given port, the operating system can determine
whether another task is using the device. If not, the permission bits for the faulting
task can be modified to grant access to the specific device, and the task can resume
processing at full speed. If some other task is accessing the device, the faulting task
can be suspended or terminated.

Memory-mapped devices must be controlled through paging hardware. Pages that
correspond to device addresses can be marked "not present" to cause a fault, or

158

7: Three In One

they can be mapped to other devices or memory locations for subsequent process­
ing. (The latter is effective for display devices.)

Interrupt handling in V86 mode
Because v86 mode is part of the protected-mode environment, interrupts are
handled through the standard protected-mode IDT. The interrupt causes the pro­
cessor to switch to an inner-ring stack segment. The stack segment's selector is
taken from the TSS and is a standard protected-mode selector, as opposed to the
value of SS that the v86 mode task is using. Hardware interrupts are fielded by the
routines or tasks designated by the gates in the IDT. Software interrupt instructions
in the v86 task usually refer to routines in the virtual machine operating system;
they are unlikely to correspond to the vectors implemented by the supervisory
operating system. Therefore, any operating system that supports v86 tasks must be
aware of two possible outcomes of a software INT instruction executed by a v86
mode program.

The more likely outcome is a general protection fault (interrupt 13). Because v86
tasks execute at privilege level 3, accessing a more privileged ring's descriptor
causes a general protection fault. The interrupt 13 fault handler must detect when it
has been invoked due to a software interrupt instruction from a v86 task.

The error code on the stack indicates the vector that caused the general protection
fault. The handler can fetch the contents of the v86 interrupt vector from the v86
task image and branch back to the v86 routine.

A less likely outcome occurs only when IOPL = 3 and when the gate in the IDT has
a level 3 descriptor. In this case, the software interrupt causes a branch to the rou­
tine pointed to by the gate. This routine must be in ring 0 to prevent a general pro­
tection fault. Any interrupt routine that can be invoked by a level 3 gate in the IDT
must examine the VM bit in the EFLAGS image on the stack to determine whether
the interrupt handler was invoked by a standard protected-mode routine or by a
v86 task.

Whenever an interrupt occurs while the processor is executing a v86 mode task,
control moves to a ring 0 code segment. Control may transfer directly to ring 0, or it
may transfer to the general protection fault handler (which must be in ring 0). The
ring 0 stack is slightly different when control comes from a v86 task than when it
comes from a protected-mode procedure. All segment registers are pushed onto the
ring 0 stack when an interrupt or a trap occurs in a V86 task. Figure 7-6 on the fol­
lowing page illustrates the differences in the stacks. Notice that an error code will
also be pushed for certain exception interrupts.

In addition to the extra values pushed onto the stack, all segment registers are
reloaded during the transition through the gate. DS, ES, FS, and GS are loaded with
a null selector (0), SS is loaded from the ring 0 stack selector in the TSS for the v86
task, and CS is loaded with the descriptor from the interrupt or task gate.

159

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

SS:ESP
from TSS

ESP

31

/'

-+

0 I Task SS
ESP

EFLAGS
0 I CS

EIP

Interrupt stack after
transition to ring 0
in protected mode

o
SS:ESP

from TSS

ESP

31

/'

--+

0 I GS
0 I FS
0 I DS
0 I ES
0 I SS

ESP
EFLAGS

0 I CS
EIP

Interrupt stack after
transition to ring 0

inV86 mode

Figure 7-6. Ring 0 interrupt stacks: protected mode vs. V86 mode.

o

\:-m~ J ~~~~tors

The segment registers must be loaded with new values if the executing task is a
vs6 task. Before an interrupt, the segment registers contain real-mode style segment
addresses, which are not valid selectors for the protected-mode interrupt handler.
When the interrupt handler returns via the IRET instruction, the CPU checks the
saved EFLAGS image in the level 0 stack. If the saved VM bit is set, the CPU recog­
nizes that it is returning to a vs6 mode task and reloads the segment registers with
the saved values on the stack.

160

8

REFERENCE
SECTION

This chapter of Microsoft's 80386180486 Programming Guide provides a reference
for the instruction sets. The instructions are in alphabetic order, with floating-point
instructions following the basic instructions.

The experienced user can find information with a quick glance at the first part of an
instruction; a less experienced user can refer to the detailed descriptions and
examples.

Operators
The following reference pages use these operators:

Operator Meaning Operator Meaning

+ Addition & Boolean AND

Subtraction > Greater than

Multiplication < Less than

Division » Shift right

Not « Shift left

Equal to ::; Less than or equal to

!= Not equal to ~ Greater than or equal to

Or f- Assignment
1\ Exclusive OR

161

MICROSOFT'S 80386/80488 PROGRAMMING GUIDE

MNEMONIC.
Used try the assembler to
represent the instruction.

NAME.
Name of instruction

PROCESSOR TYPE.
Processors that support
the instruction. Note that
earlier processors
supported only 8-bit or
16-bitforms.

.. _-
SYNTAX.
Generic
instruction
format.

Near Procedure can
'-----8086/80186/80:186180386/80486

(16P/32)

syntax
CAll dest

Operation
push(EIP)
ElP of- dest OPERATION.~---­

Pseudocode
operation

...... F_ ---------..:.--------.J_
dest

description.
CAll offset; EIP of- ElP + offset
CAll lie.. : EIP of- (IIM!_]

CAll reg : EIP ... [reg]

Deocrlptlon DESCRIPTION. ____
Description of ____
the instruction.

This instruction pushes the address dthe next bl!ltrlK.1km (EIP) onco the litack. The
instruction pointer is then set 10 the v.llue specified by the opemnd.

FAULTS. ------

If the operand is an immediate value, the new instruction palmer is relative to the
current position. If the operand is a memory address or a register, the :rubroutine
address is taken indirectly from the operand.

F Faults that may
be triggered try
the instruction.

OFOFIFTPSFZF AF Pf' CF

1-1-1'1-1-1-1-1-1-1-1-1-1

The abbreviations F_

used include: _:..:PM=--_---'RM=-__ -:-===--__
INTI3 #UD (undefined opcodeJ !~ =~)

#NP (not present) ~~ ~~
#TS (task switch) E_le.

#GP (general protection) CAll SORT

#SS (stackfault) ~~: :::: ~uAalE
#PF (page faUlt) CAll [Eax+]

#AC (alignment check); 80486 only
A value in parentheses
indicates that an

. error code is pushed
onto the stack.

162

EXAMPLE.
Code that
illustrates
use of the
instruction.

Call direct
Get pointer to address table
Select third function
Call it

188

OPERAND SIZES.
When many different
operands may be used,
thisfield indicates legal
sizes. If the instruction
requires more than one
operand, they are
assumed to be the same
size. Unless otherwise
stated, 8 = 8-bit
operands; 16 = 16-bit
operands; 32 = 32-bit
operands; 16p = The
instruction accepts 16-bit
operands ~ using the
32-bit forin and the
OPSIZ instruction prefix.

LEGAL FORMS.
Legal forms of the
instruction. reg = one of
the general registers
EAX, ESI, EX, DL, BP,
DX, etc. mem = a
memory operand
f021AHl, fEBP + EAX * 3],
fECX+ 71, etc. idata = an
immediate data value
(32, 17A3H, etc.)sreg =
a segment register. offset
= an offset from the
current CS:lP.

FLAGS.
OF = Overflow flag.
DF = Direction flag.
IF = Interrupt enable flag.
TF= Trapflag.
SF = Sign flag.
ZF = Zero flag.
AF = Auxiliary flag.
PF = Parity flag.
CF = Carry flag.
An ':X" in a box indicates
that the specified bit is
modified try the instruc­
tion. An "-" in a box
means that the specified
bit value remains
unchanged. A "?" means
that the instruction sets the
flag to an unknown value.
If a "0" or "1" is in a box,
the instruction sets the
specified bit to that value.

AAA
ASCII Adjust After Addition

Syntax

AAA

Operation
if (AF I «AL & OFH) > 9» then

AL f- (AL + 6) & OFH
AH f- AH + 1
CF, AF f- 1

else
CF, AF f- 0

endif

Legal Form
AAA

Description

8: Reference Section

8086/80186/80286/80386/80486

(8)

This instruction ensures that an ASCII or BCD addition results in a valid BCD digit.
After executing an ADD or ADC instruction that leaves a single BCD or ASCII digit
in register AL, execute AAA to produce a valid BCD result.

If the value in AL produces a decimal overflow, the BCD digit is forced into the legal
range (0-9), and AH is incremented. The high-order nibble is zeroed so that AL
contains only the resulting single BCD digit, and the AF and CF flags are set to 1.

If no overflow occurs, the AF and CF flags are reset to O.

Flags

OF DF IF TF SF ZF

Faults
None.

Example

MOV
ADD
AAA
OR

AL, '5'
AL, '7'

AL, 30H

AF PF CF

I - I x I -

Binary 35H
Add binary 37H yielding 6CH
AL f- 02H, AH f- AH + 1. decimal carry set
Convert resulting digit to ASCII '2'

163

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

AAD
ASCII Adjust Before Division

Syntax

AAD

Operation

AL ~ AH * 10 + AL
AH ~ 0

Legal Form

AAD

Description

8086/80186/80286/80386/80486

(16)

This instruction supports BCD division. Before execution, the AL register should
contain a single, unpacked BCD digit. The AH register should hold the next higher­
order BCD digit. After executing the AAD instruction, AX contains the binary
equivalent of the two BCD digits. You can then issue the divide instruction, which
leaves a binary result.

Flags
OF DF IF TF SF ZF

Faults

None.

Example
MOV AH.
MOV AL.
AND AX.
AAD
MOV BL.
DIV BL
OR AL.

164

'4'
' 2'
OFOFH

6

30H

AF PF CF

High-order digit
Low-order digit (AX = ASCII 42)
Convert to unpacked BCD
AX ~ 2AH (42 decimal)
Divisor for 42/6
AL ~ 7(quotient). AH ~ O(remainder)
Convert result to ASCII '7 '

AAM
ASCII Adjust After Multiplication

Syntax
AAM

Operation
AH ~ AL di v 10
AL ~ AL mod 10

Legal Form
AAM

Description

8: Reference Section

8086/80186/80286/80386/80486

(8)

The AAM instruction converts the result of a single-digit BCD multiplication (a
value 0-81) in the AX register to two unpacked BCD digits, the high-order digit in
AH and the low-order digit in AL.

Flags

OF DF IF TF SF ZF AF PF CF

Faults

None.

Example

MOV AL. 4 Multipland
MOV AH. 8 Multiplier
MUL AH AX ~ 20H. 32 decimal
AAM AH ~ 3. AL ~ 2
OR AX. 3030H Convert to ASCII '32'

165

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

AAS
ASCII Adjust After Subtraction

Syntax
AAS

Operation
if (AF I (AL & OFH) > 9) then

AL ~ (AL - 6) & OFH
AH ~ AH - 1
CF.AF~l

else
CF. AF ~ 0

endif

Legal Form
AAS

Description

8086180186/80286/80386/80486

(8)

This instruction ensures that an ASCII or BCD subtraction results in a valid BCD
digit. After executing a SUB or SBB instruction that leaves a single BCD or ASCII
digit in register AL, execute AAS to produce a valid BCD result.

If the value in AL produces a decimal borrow, the BCD digit is forced into the legal
range (0-9) and AH is decremented. The high-order nibble is zeroed so that AL
contains only the resulting single BCD digit, and the AF and CF flags are set to 1.

If no borrow occurs, the AF and CF flags are reset to O.

Flags
OF DF IF TF SF ZF AF

Faults
None.

Example
MOV AL. • 5'

SUB AL. • 7'

AAS
OR AL. 30H

166

PF CF

35H
Subtract 37H yielding OFEH
AL ~ 08H. carry set indicating "borrow"
Convert result back to ASCII '8'

ADC
Add with Carry

Syntax

ADC dest. src

Operation
dest f- dest + src + CF

Legal Forms
dest src

ADC reg. idata
ADC memo idata
ADC reg. reg
ADC reg. mem
ADC memo reg

Description

8: R nce Section

8086/80186/80286/80386/80486
(8/16p/32)

This instruction adds the contents of the dest and src operands, increments the
result by 1 if the carry flag is set, and stores the result in the location specified by
dest. The operands must be of the same size. If the operands are signed integers, the
OF flag indicates an invalid result. If the operands are unsigned, the CF flag indi­
cates a carry out of the destination.

Flags
OF DF IF TF SF ZF AF PF CF

Ixl-I-I-Ixlxl-Ixl-Ixl-Ixl
Faults

PM RM

12 #$5(0)
13 #GP(O) INT13
14 #PF(ec)
17 #AC(O)

Example
: Subroutine to add two
ENTER 0, 0
MOV EAX, [EBP+8]
MOV EDX, [EBP+12]
ADD EAX, [EBP+16]
ADC EDX, [EBP+20]
LEAVE
RET

V8086

#GP(O)
#PF(ec)
#AC(O)

64-bit integers
Create stack frame
Get low-order of first value
Get high-order of first value
Add low-order bits, generating carry
Add high-order bits with previous carry
Undo stack frame
Return with value in EDX:EAX

167

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

ADD
Integer Addition

Syntax

ADD dest. src

Operation
dest f- dest + src

Legal Forms

dest src

ADD reg. idata
ADD memo idata
ADD reg. reg
ADD reg. mem
ADD memo reg

Description

8086/80186/80286/80386/80486

(8/16p/32)

This instruction adds the contents of the dest and src operands and stores the result
in the location specified by dest. The operands must be of the same size. If the
operands are signed integers, the OF flag indicates an invalid result. If the operands
are unsigned, the CF flag indicates a carry out of the destination. If the operands are
unpacked BCD digits, the AF flag indicates a decimal carry.

Flags
OF DF IF TF SF ZF

Faults
PM RM

12 #55(0)
13 #GP(O) INT13
14 #PF(ec)
17 #AC(O)

Examples

ADD AL. [421lA]
ADD AX. 34
ADD ESI. [EBP+8]

168

AF PF

V8086

#GP(O)
#PF(ec)
#AC(O)

CF

8-bit addition
16-bit immediate value addition
32-bit memory addition to register

AND
Boolean AND

Syntax
AND dest. src

Operation
dest f- dest & src
CF f- 0
OF f- 0

Legal Forms
dest src

AND reg. idata
AND memo idata
AND reg. reg
AND reg. mem
AND memo reg

Description

8: Reference Section

8086/80186/80286/80386/80486

(8/16p/32)

This instruction performs a bit-by-bit AND operation on the dest and src operands
and stores the result in the dest operand. The AND operation is defined as follows:

0&0=0

0&1=0

1&0=0

1& 1 = 1

Flags·

OF DF IF TF SF ZF

Faults
PM

12 #SS(O)
13 #GP(O)
14 #PF(ec)
17 #AC(O)

Examples
AL. OFH
EBX. ECX

RM

INT 13

AF PF CF

o

V8086

#GP(O)
#PF(ec)
#AC(O)

Zero high-order nibble of AL
Compute EBX f- EBX & ECX

AND
AND
AND BYTE PTR[EBP+6]. 7FH Mask off high-order bit of memory operand

169

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

ARPL
Adjust RPL Field of Selector

Syntax
ARPL dest. src

Operation
if (dest.RPL < src.RPL) then

dest.RPL ~ src.RPL
ZF ~ 1

else
ZF ~ 0

endif

Legal Forms
dest src

ARPL
ARPL

reg.
memo

Description

reg
reg

80286/80386/80486

(16)

System software uses this instruction to modify a selector's requested privilege level
(RPL) field. Both the dest and src operands must be valid selectors.

If the RPL of the dest operand is numerically less than the RPL of the src, that is, if
the dest selector is more privileged, the dest selector's RPL is changed to match that
of the src, and the ZF flag is set to 1. If the dest selector is less privileged (numeri­
cally higher) than the src, the ZF flag is cleared to 0, and the dest operand is not
modified.

Operating system routines that are passed selectors from applications should use
ARPL to ensure that the calling routine has not passed a selector with a higher privi­
lege than the application is allowed. Use the calling routine's CS register as the src
operand.

Flags
OF DF IF TF SF ZF AF PF CF

I-I-I-I-I-Ixl-I-I-I-I-I-I

170

Faults
PM RM

6 INT6
12 #SS(O)
13 #GP(O)
14 #PF(ec)
17 #AC(O)

Example
MOV AX, [EBP+12]
ARPL AX, [EBP+2]

JNZ baLparam

8: Reference Section

VS086

#UDO

#AC(O)

Get parameter off the stack
Adjust to caller's RPL (previous CPL) by
using CS of return address on stack
Branch if caller passed a bad selector

171

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

BOUND
Check Array Boundaries

Syntax
BOUND dest. src

Operation
if ((dest < src[O]) I (dest > src[l]» then

INT 5
endif

Legal Forms
dest src

BOUND reg. mem

Description

80186/80286/80386/80486

(16p/32)

This instruction compares the dest operand, which must be a register containing a
signed integer, with two values, a lower bound stored at the address specified by src,
and an upper bound stored in the following location. The bounds can be 16-bit or
32-bit values.

If the dest value is less than the lower bound or greater than the upper bound, an in­
terrupt 5 occurs. The return address pushed onto the stack by the exception is the
starting address of the BOUND instruction that caused the interrupt.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-

Faults
PM RM V8086

5 INT5 INT5 INT5
6· #UDO INT6 #UDO

12 #SS(O)
13 #GP(O) INT 13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

"The undefined opcode fault occurs only if the instruction
encoding of the BOUND instruction specifies an src operand
that is a register.

172

Example
VLLIMITS:

DD 1. 20
VC DD 20 DUP (7)

MOV EAX. [EBP-6]
BOUND EAX. VC_LIMITS

8: Reference Section

Bounds for 20-element array
Array storage area

Get array index
Check against limits

173

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

BSF
Bit Scan Forward

Syntax

BSF dest. src

Operation
if (src = 0) then

ZF ~ 1

else
dest ~ ???

ZF ~ 0
temp ~ 0
while (bit(src. temp) - 0)

temp ~ temp + 1
dest ~ temp

endif

Legal Forms

dest src

BSF
BSF

reg.
reg.

Description

reg
mem

80386/80486
(16p/32)

This instruction scans the src operand and writes the bit position of the first I-bit in
src to the dest register. If the src operand is 0, the ZF flag is set to 1, and the instruc­
tion ends with the dest register in an undefined state.

If the src operand is not 0, each bit is examined, beginning with bit 0, until a I-bit is
found. The bit position of the first I-bit (index) is stored in the dest register.

Flags
OF DF IF TF SF ZF AF PF CF

I ? I - I - I - I I x I - I - I -

Faults

PM RM VS086

12 #SS(O)
13 #GP(O) INT13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

174

Example
XOR

L1: BSF
JNZ
INC
CMP
JL
JMP

GOLONE:

ECX. ECX
EAX. SECTORS[ECX*4]
GOLONE
ECX
ECX. TABLE_SIZE
Ll
NO_SECTORS

8: Reterence Section

Index into sector map
Scan a dword
Branch if any bits set
Go on to next dword
Done searching?
No. scan next table entry
No bits set in entire table

175

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

BSR
Bit Scan Reverse

Syntax
BSR dest. src

Operation
if (dest in [AX. BX. ex. OX. SI. 01. BP. SP]) then

startbit +- 15
else

sta rtbi t +- 31
endif
if (src = 0) then

ZF +- 1

else
dest +- 111

ZF +- 0
temp +- startbit
while (bit(src. temp) = 0)

temp +- temp - 1
dest +- temp

endif

Legal Fqrms

dest src
BSR
BSR

reg.
reg.

Description

reg
mem

80386/80486
(16p/32)

This instruction scans the src operand in reverse, searching for a I-bit beginning at
the high order of the src operand. If the src operand is 0, the ZF flag is set to 1, and
the instruction ends with the dest register in an undefined state.

If the src operand is not 0, each bit is examined, beginning with the high~order bit
(either 15 for word operands or 31 for doubleword operands), until a I-bit is found.
The bit position (index) of the first I-bit is stored in the dest register.

Flags
OF DF IF TF SF ZF AF PF CF

11-1-1- lxi-I 1- ?I-

176

Faults
PM

12 #SS(O)
13 #GP(O)
14 #PF(ec)
17 #AC(O)

Example
MOV

L1: BSR
JNZ
LOOP

RM

INT 13

ECX. SEM_MAX-1

V8086

#GP(O)
#PF(ec)
#AC(O)

EAX. SEMAPHORE[ECX*4]
founLit
L1

8: Reference Section

Index of last entry in
semaphore table
Scan for non-zero bits
Branch if valid index
Decrement CX. loop back
if not zero
Get here
if entire table is zero

177

MICROSOFT'S 80386/80488 PROGRAMMING GUIDE

BSWAP
Byte Swap

Syntax
BSWAP reg

Operation
temp ~ dest
dest[O .. 7] ~ temp[2.4 .. 31]
dest[8 .. 15] ~ temp[16 .. 23]
dest[16 .. 23] ~ temp[8 .. 15]
dest[24 .. 31] ~ temp[O .. 7]

Legal Form
dest

BSWAP reg32

Description

80486

(32)

The order of the four bytes in the 32-bit register operand are swapped. This con­
verts between "big-endian" and "little-endian" storage formats. This instruction is
useful when exchanging data between processors with different architectures.

Flags
None.

Faults
None.

Example
CALL getdata
BSWAP EAX
STOSD
LOOP getmore

178

Read 32 bits from the network into EAX
Convert to local format
Write to buffer

BT
Bit Test

Syntax
BT dest, index

Operation
CF ~ BIT(dest, index)

Legal Forms
dest index

BT reg, idata
BT mem, idata
BT reg, reg
BT mem, reg

Description

8: Reference Section

80386/80486
(16p/32)

This instruction tests the bit specified by the operands and places the value of the
bit into the carry flag.

The index operand holds a bit index into the bit string specified by dest, which can
be a 16-bit or 32-bit register or a memory location. The state of the bit is copied into
the carry flag.

If the index operand is an immediate data value, it can range from 0 through 31. If
the index is held in a register, it can take on any integral value. Some assemblers
might let you specify immediate index values greater than 31. If so, they modify the
effective address by an appropriate value so that the index can be scaled back to
between 0 and 31.

BT does not accept byte operands, so do not use it with memory-mapped I/O de­
vices because the instruction causes either the 16-bit word or the 32-bit word con­
taining the selected bit to be read. This could affect more than one I/O device
register. You should use a single-byte MOV instruction to read the I/O register and
then test the contents of the register.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1- ? ?I- 1 - 1 - x 1

179

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

Faults
PM RM V8086

12 #5S(0)
13 #GP(O) INT13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

Example
MOV EAX. 192 Bit index
BT SEMAPHORES. EAX Test semaphore number 192
JC selTLset Branch if the bit was set

180

BTC/80486
Bit Test and Complement

Syntax
BTC dest, index

Operation
CF +-- BIT(dest, index)
BIT(dest, index) +-- -BIT(dest, index)

Legal Forms
dest index

BTC reg, idata
BTC mem, idata
BTC reg, reg
BTC mem, reg

Description

8: Reference Section

80386/80486
(16p/32)

This instruction copies the bit specified by the operands into CF, then complements
the original value of the bit in the dest operand.

The index operand holds a bit index into the bit string specified by dest, which can
be a 16-bit or 32-bit register or a memory location. The state of the bit is copied into
the carry flag, and the bit of the dest operand is complemented.

If the index operand is an immediate data value, it can range from 0 through 31. If
the index is held in a register, it can take on any integral value. Some assemblers
might let you specify immediate index values greater than 31. If so, they modify the
effective address by an appropriate value so that the index can be scaled back to

between 0 and 31.

BTC does not accept byte operands, so do not use it with memory-mapped I/O de­
vices because the instruction causes either the 16-bit word or the 32-bit word con­
taining the selected bit to be read. This could affect more than one I/O device
register. You should use a single-byte MOV instruction to read the I/O register and
then test the contents of the register.

Flags
OF DF IF TF SF ZF AF PF CF

I 1-1-1- ? ?I- ? -I 1- xl

181

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Faults
PM RM

12 #SS(O)
13 #GP(O) INT13
14 #PF(ec)
17 #AC(O)

Example
MOVZX
BTC
MOV
JC

EAX. BYTE PTR [04A2H]
EAX. 2
[04A2H]. AL
bitset

182

V8086

#GP(O)
#PF(ec)
#AC(O)

Read memory byte into 32-bit register
Test and complement bit number 2
Write modified byte back to memory
Branch if the bit was set

BTR
Bit Test and Reset

Syntax
BTR dest. index

Operation
CF f- BIT(dest. index)
BIT(dest. index) f- 0

Legal Forms
dest index

BTR reg. idata
BTR memo i data
BTR reg. reg
BTR memo reg

Description

8: Reference Section

80386/80486
(16p/32)

This instruction copies the bit specified by the operands into CF, then clears the
original bit in dest to O.

The index operand holds a bit index into the bit string specified by dest, which can
be a 16-bit or 32-bit register or a memory location. The state of the bit is copied into
the carry flag, and the bit of the dest operand is cleared to O.

If the index operand is an immediate data value, it can range from 0 through 31. If
the index is held in a register, it can be any integer. Some assemblers might let you
specify immediate index values greater than 31. If so, they modify the effective ad­
dress by an appropriate value so that the index can be scaled back to between 0
and 31.

BTR does not accept byte operands, so do not use it with memory-mapped I/O de­
vices because the instruction causes either the 16-bit word or the 32-bit word con­
taining the selected bit to be read. This could affect more than one I/O device
register. You should use a Single-byte MOV instruction to read the I/O register and
then test the contents of the register.

When using a BTR instruction to implement a signaling function in a multiprocessor
environment, the LOCK instruction prefix should immediately precede any BTR in­
struction that modifies shared memory.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1- 1- 1- I-Ix

183

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Faults
PM

12 #SS(O)
13 #GP(O)
14 #PF(ec)
17 #AC(O)

Example
BTR MY_FLAG.
JNC NOLSET

184

RM

INT 13

7

V8086

#GP(O)
#PF(ec)
#AC(O)

Zero the high-order bit of byte MY_FLAG
Bit was already reset

8: Reference Section

BTS
Bit Test and Set

80386/80486
(16p/32)

Syntax

BTS des t. index

Operation
CF f- BIT(dest. index)
BIT(dest. index) f- 1

Legal Forms
dest index

BTS reg. idata
BTS memo idata
BTS reg. reg
BTS memo reg

Description
This instruction copies the specified bit into CF, then sets the original bit in
dest to 1.

The index operand holds a bit index into the bit string specified by dest, which can
be a 16-bit or 32-bit register or a memory location. The state of the bit is copied into
the carry flag, and the bit of the dest operand is set to 1.

, If the index operand is an immediate data value, it can range from 0 through 31. If
the index is held in a register, it can be any integer. Some assemblers might let you
specify immediate index values greater than 31. If so, they modify the effective ad­
dress by an appropriate value so that the index can be scaled back to between 0
and 31.

BTS does not accept byte operands, so do not use it with memory-mapped I/O de­
vices because the instruction causes either the 16-bit word or the 32-bit word con­
taining the selected bit to be read. This could affect more than one I/O device
register. You should use a single-byte MOV instruction to read the I/O register and
then test the contents of the register.

When using a BTS instruction to implement a semaphore function.in a
multiprocessor environment, the LOCK instruction prefix should immediately
precede any BTS instruction that modifies shared memory.

Flags
OF DF IF TF SF ZF AF PF Cf

1 1-1-1- ?I- 1- 1 - I x 1

185

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Faults
PM

12 #SS(O)
13 #GP(O)
14 #PF(ec)
17 #AC(O)

Example
BTS MLFLAG.
JC WAS_SET

186

RM

INT 13

7

V8086

#GP(O)
#PF(ec)
#AC(O)

Set the high-order bit of byte MY_FLAG
Bit was already set

CALL
Far Procedure call

Syntax
CALL dest

Operation
push(CS)
push(EIP)
CS:EIP f- dest

Legal Forms
dest

CALL
CALL

idata
mem

Description

CS: EIP f- idata
CS:EIP f- [mem]

8: Reference Section

8086/80186/80286/80386/80486

(32p/48)

The far procedure call saves the current code segment selector and the address of
the next instruction (EIP) on the stack. Control then transfers to the destination
specified by the operand. The operand can be an immediate selector:offset value or
the address of a 48-bit FAR pointer in memory.

The selector can point to another code segment, a call gate, a task gate, or a task
state segment. If the selector points to a gate or TSS, the offset portion of the CALL
is ignored. If the selector points to a code segment, control transfers to the speCified
offset within that segment.

All flags are affected by a task switch.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-1

Faults
PM

10 #TS(O)
10 #TS(sel)
11 #NP(sel)
12 #SS(O)
12 #SS(SS)
13 #GP(O)

#GP(CS)
14 #PF(ec)
17 #AC(O)

RM

INT 13
INT 13

V8086

#TS(sel)
#NP(sel)

#GP(O)
#GP(O)
#PF(EC)
#AC(O)

187

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Examples
CALL
CALL

188

16A3:0000
FWORD PTR [005AH]

Di rect call
Indirect call

CALL
Near Procedure Call

Syntax
CALL dest

Operation
push(EIP)
EIP ~ dest

Legal Forms
dest

8: Reference Section

8086/80186/80286/80386/80486

(16p/32)

CALL
CALL
CALL

offset
mem
reg

EIP ~ EIP + offset
EIP ~ [mem]
EIP ~ [reg]

Description
This instruction pushes the address of the next instruction (EIP) onto the stack. The
instruction pointer is then set to the value specified by the operand.

If the operand is an immediate value, the new instruction pointer is relative to the
current position. If the operand is a memory address or a register, the subroutine
address is taken indirectly from the operand.

Flags
OF DF IF TF SF ZF

I - I - I - I - I - I - I -

Faults
PM RM

12 #SS(O)
13 #GP(O) INT 13
14 #PF(ec)
17 #AC(O)

Examples
CALL
LEA
MOV
CALL

SORT
EBX, FN_TABLE
EAX, 3
[EBX+EAX*4]

AF

I -
PF CF

I - I - I - - I

V8086

#GP(O)
#PF(ec)
#AC(O)

Call di rect
Get pointer to address table
Select third function
Ca 11 it

189

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

caw
Convert Byte to Word

Syntax

CBW

Operation
if BIT(AL. 7) then

AH f- aFFH
else

AH f- a
endif

Legal Form
CBW

Description

8086/80186/80286/80386/80486

(8)

This instruction sign-extends the byte in AL to AX.

Flags

OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-

Faults
None.

Example
Mav
CBW
ADD

190

AL. TINY

BX. AX

Read a byte into AL
Convert to 16-bit signed integer

CDQ
Convert Doubleword to Quadword

Syntax

COO

Operation
if (BIT(EAX, 31) = 1) then

EOX <- OFFFFFFFFH
else

EOX <- 0
endif

Legal Form

coo

Description

8: Reference Section

80386/80486

(32)

This instruction sign-extends the 32-bit EAX register to a 64-bit dword. It is most
frequently used before the integer divide instruction, which operates on a 64-bit
dividend.

Flags

OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1- -I

Faults

None.

Example
MOV
COO
IOIV

EAX, [400H]

OWORO PTR [20H]

Copy dividend to EAX
Extend to 64 bits
Oivide

191

MICROSOFT'S 80386/80488 PROGRAMMING GUIDE

CLC
Clear Carry Flag

Syntax
CLC

Operation
CF f- 0

Legal Form
CLC

Description

8086/80186/80286/80386/80486

o

This instruction clears the carry flag in the EFLAGS register to O.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1 0 1

Faults
None.

Example
NO_ERROR:

192

CLC
RET

Clear carry
Return from subroutine with success
indicated by CF

CLD
Clear Direction Flag

'Syntax

CLD

Operation
DF f- 0

Legal Form

CLD

Description

8: Reference Section

8086/80186/80286/80386/80486

o

This instruction clears the direction flag in the EFLAGS register to O. When DF is 0,
any string instructions increment the index registers (ESI or ED!).

Flags

OF DF IF TF SF ZF AF PF CF

1-1 0 1-1-1-1-1-1-1-1-1- -I

Faults

None.

Example
MOV ECX, STR_LEN
CLD
REP MOVSB

String move count
Clear direction flag
Copy the string

193

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

eLI
Clear Interrupt Flag

Syntax

eLI

Operation
IF ~ 0

Legal Form
eLI

Description

8086/80186/80286/80386/80486

o

This instruction clears the interrupt bit in the EFLAGS register to 0, disabling hard­
ware interrupts (except NMI). The procedure executing the CLI instruction must be
of equal or higher privilege than the current IOPL, that is, CPL :s; IOPL, or a general
protection fault occurs.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1 0 1-1-1-1-1-1-1-1- -I

Faults
PM

13 #GP(O)

Example
eLI

RM

MOV AL, SEMAPHORE
DEe AL
JZ done
MOV SEMAPHORE, AL

DONE:
STI

194

V8086

#GP(O)

Disable interrupts
Get memory value
Decrement counter
Skip if value was 0
Update

Enable interrupt

CLTS
Clear Task Switched Bit

Syntax
CLTS

Operation
BIT(CRO. 3) r 0

Legal Form
CLTS

Description

8: Ref_nce Section

80286/80386/80486

o

This instruction clears the task switched (TS) bit in the eRO register to O. The TS bit
allows the 80386 to efficiently manage the floating-point unit, Whenever a task
switch occurs, the CPU sets the TS bit to 1. If the TS bit is 1 when a coprocessor
escape (ESC) executes, a coprocessor not available fault (int 7) occurs. A WAIT in­
struction will also trigger INT 7 if both the TS and MP bits on CRO are 1.

The fault handler can clear the TS bit, save the NDP state, load the NDP state for the
current task, and return to the instruction'that faulted. Switching between tasks that
do not use floating point will not cause the fault, and you avoid the overhead of sav­
ing and restoring the NDP state.

Only procedures running at a CPL of 0 can execute CLTS without causing a general
protection fault.

CLTS is valid in real mode to allow initialization for protected mode.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1- -I

Faults
PM

13 #GP(O)

Example
CLTS

RM

CALL SWAP_NOP_STATE

V8086

#GP(O)

Clear task switched bit
Save/restore math coprocessor state

195

MICROSOFT'S 80386/80488 PROGRAMMING GUIDE

CMC
Complement the Carry Flag

Syntax
CMC

Operation
CF ~ -CF

Legal Form
CMC

Description

8086/80186/80286/80386/80486

o

The carry bit of the EFLAGS register is complemented; that is, if the initial value of
the carry bit is 0, it is set to 1. If the initial value is 1, the flag is cleared to ° as a
result of the instruction.

Flags

OF DF IF TF SF ZF AF PF CF

I - 1"- I - I - I - I - I - I - I - I - I - I x I

Faults
None.

Example
BT

EXIT:

196

JC
JMP

CMC
RET

EAX, 1
EXIT
TRLAGAIN

Test a bit, save in CF
Bit was set--we're done
Not ready yet

Return, CF clear

CMP
Compare Integers

Syntax

CMP opl, op2

Operation
NULL f- opl - op2

Legal Forms

opl op2
CMP reg, idata
CMP mem, idata
CMP reg, reg
CMP reg, mem
CMP mem, reg

Description

8: Reference Section

8086/80186/80286/80386/80486

(8/16p/32)

This instruction subtracts the contents of op2 from opl and discards the result. Only
the EFLAGS register is affected. The following table illustrates how the flags are set
based on the operand values.

Condition

opl > op2
opl ~ op2
opl = op2
opl:O; op2
opl < op2

Signed Compare

ZF = 0 and SF = OF
SF=OF
ZF= 1
ZF = 1 and SF != OF
SF!= OF

Unsigned Compare

CF = 0 and ZF = 0
CF=O
ZF= 1
CF=lorZF=l
CF= 1

If opl is a 16-bit or 32-bit operand and op2 is an 8-bit immediate value, op2 is sign­
extended to match the size of opl.

Flags

OF DF IF TF SF ZF AF PF CF

I x I - I - I - Ix I x I - I x - I x I - I x I

Faults
PM RM VS086

12 #SS(O)
13 #GP(O) INT 13 #GP(O)
14 #PF(ec) #PF(ec)

197

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Examples
CMP
CMP
CMP
CMP

198

AL. [4211A]
AX. [BX+3]
CX. [EBP+8][EAX*2]
ESI. 7

8-bit compare
16-bit real/virtual mode
16-bit protected mode
32-bit compare with sign-extended

op2 operand

CMPS
Compare String

Syntax
CMPS

Operation

8: Reference Section

8086/80186/80286/80386/80486

(8/16p/32)

when opcode is (CMPSB, CMPSW, CMPSD) set opsize f- (I, 2, 4)
NULL f- DS:[ESI] - ES:[EDI]
if (DF - 0) then

ESI f- ESI + opsize
EDI f- EDI + opsize

else
ESI-opsize
EDI-opsize

endif

Legal Forms
CMPSB
CMPSW
CMPSD

Description

Compare string byte
Compare string word
Compare string doubleword

This instruction subtracts the memory operand pointed to by DS:ESI from the
operand at ES:EDI and discards the result, as in the CMP instruction. The size of
the operand is either a byte, word, or doubleword, depending on the opcode used.
The flags are set as the comparison dictates, and the contents of ESI and ED! are
modified, either incremented by the size of the operand, or decremented, depend­
ing on the setting of the DF bit in the EFLAGS register. ESI and EDI are incremented
whenDF=O.

You can precede the CMPS instruction with either the REPE or REPNE prefix to re­
peatedly compare operands while the ZF bit remains 1 (REPE) or 0 (REPNE). Regis­
ter ECX holds the maximum compare count.

You can also apply a segment override prefix to the CMPS instruction to override
the DS segment of the DS:[ESI] operand. You cannot override the ES segment
assumption for the EDI operand.

Flags
OF DF IF TF SF ZF AF PF CF

199

MICROSOFT'S 80386/80488 PROGRAMMING GUIDE

Faults
PM RM

12 #55(0)
13 #GP(O) INT13
14 #PF(ec)
17 #AC(O)

Example
LEA
LES
MOV
CLD

ESI. standard
EDI. [EBP+12]
ECX. 31

REPE CMPSB
JNE noLeq

200

V8086

#GP(O)
#PF(ec)
#AC(O)

DS:ESI points to default
ES:EDI loaded from stack frame
Count is a constant
Ensure direction flag set correctly
Compare byte string
Branch if strings not equal

8: Reference Section

CMPXCHG
Compare and Exchange

Syntax
CMPXCHG dest, src

Operation
if aee - dest then

ZF ~ 1
dest ~ src

else
ZF ~ 0
ace ~ dest

Legal Forms
dest src

CMPXCHG
CMPXCHG

Description

reg,
mem,

reg
reg

80486

(8/16p/32)

The value of dest is read and compared with the accumulator (AL, AX, or EAX). If
the values are equal, the value of src is written to location dest; otherwise, the ac­
cumulator value is replaced by dest. The flags are set as if a CMP acc,dest instruc­
tion had been executed.

When preceded by the LOCK prefix, this instruction is very useful for
multiprocessor semaphore operations.

Notice that this instruction always generates both a read and a write cycle. If the
compare succeeds, src is written to location dest; otherwise, the original value of
dest is written back.

Flags
OF DF IF TF SF ZF AF PF CF

201

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Faults
PM

12 #SS(O)
13 #GP(O)
14 #PF(ec)
17 #AC(O)

Example
XOR AL.CL
MOV BL.1
CMPXCHG sema.BL
JNE failed

202

RM 1'86

INT 13 #GP(O)
#PF(ec)
#AC(O)

AL f- O. semaphore available value
Semaphore hold value
Compare
Semaphore already held

CWD
Convert Word to Doubleword

Syntax
cwo

Operation
if (BIT(AX, 15 - 1» then

OX ~ OFFFFH
else

OX ~ 0
endif

Legal Form
CWO

Description

8: Reference Section

8086/80186/80286/80386/80486

(16)

This instruction sign-extends the word in AX to the DX:AX register pair. The
preferred 16-bit to 32-bit conversion instruction is CWDE. CWD is used by the 8086
and 80286, which do not have 32-bit registers.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1- -I

Faults
None.

Example
MOV
CWO
OIV

AX, divisor

CX

Get 16-bit divisor
Extend to OX:AX
16-bit division

203

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

CWDE
Convert Word to Doubleword Extended

Syntax

CWOE

Operation
if (BIT(EAX, 15) = 1) then

EAX ~ EAX FFFFOOOOH
else

EAX ~ EAX & OOOOFFFFH
endif

Legal Form
CWOE

Description

80386/80486

(16)

This instruction sign-extends the 16-bit value in AX to a full 32 bits in the EAX
register.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-

Faults
None.

Example
MOV
NEG
CWOE

204

AX, shorLint
AX,

Get 16-bit signed value
Convert to negative number
Return 32-bit result

DAA
Decimal Adjust AL After Addition

Syntax
DAA

Operation
if CAF I CAL & OFH) > 9) then

AL +-- AL + 6
AF +-- 1

else
AF +-- 0

endif
if CCF I CAL> 9FH» then

AL +-- AL + 60H
CF +-- 1

else
CF +-- 0

endif

Legal Form
DAA

Description

8: Reference Section

8086/80186/80286/80386/80486

(8)

This instruction ensures that AL contains a valid decimal result after an addition of
two packed BCD values.

Flags
OF DF IF TF SF ZF AF. PF CF

I?I-I-I-Ixlxl-Ixl-Ixl-Ixl
Faults
None.

Example
MOV
ADD
DAA

AL. 72H
AL. 19H

72 in packed decimal
Yields 88H in AL
Adjusts AL to 91H

205

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

DAS
Decimal Adjust AL After Subtraction

8086/80186/80286/80386/80486

(8)

Syntax
DAS

Operation
if (AF I «AL & OFH» > 9) then

AL .- AL - 6
AF .- 1

else
AF .- 0

endif
if (CF I (AL > 9FH» then

AL .- AL - 60H
CF .- 1

else
CF .- 0

end if

Legal Form
DAS

Description
This instruction ensures that AL contains a valid decimal result after a subtraction of
two packed BCD values.

Flags
OF DF IF TF SF ZF AF PF CF

I?I-I-I-Ixlxl-Ixl-Ixl-Ixl
Faults
None.

Example
MOV
SUB
DAS

206

AL. 42H
AL. 13H

42 in packed decimal
Yields 2FH in AL
Adjusts AL to 29H

DEC
Decrement

Syntax
DEC opl

Operation
opl f- opl - 1

Legal Forms

opl

DEC reg
DEC mem

Description

8: Reference Section

8086/80186/80286/80386/80486

(8/16p/32)

This instruction subtracts the value 1 from opl. DEC is frequently used to decrement
indexes and therefore does not affect the carry flag (CF). In other respects, it is
equivalent to the instruction:

SUB opl, 1

Flags

OF DF IF TF

I x I - I - I -

Faults

PM

12 #55(0)
13 #GP(O)
14 #PF(ec)
17 #AC(O)

Example
DEC ESl

SF ZF AF

Ix Ix I - Ix

RM

INT13

PF

I - Ix

va086

#55(0)
#GP(O)
#PF(ec)
#AC(O)

CF

I - - I

Decrement contents of ESl

207

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

DIY
Unsigned Division

Syntax
DIV opl

Operation
1 ow(ace) f- ace I opl
high(acc) f- ace modulo opl

Legal Forms

opl

DIV reg
DIV mem

Description

8086/80186/80286/80386/80486

(8/16p/32)

This instruction divides the value in the accumulator register or register pair by opl,
storing the quotient in the low-order portion of the accumulator and the remainder
in the high-order portion. The following table illustrates the registers used as ac­
cumulators, depending on the size of opl.

Sizeofopl

Byte
Word
Dword

Dividend

AX
DX,:AX
EDX,EAX

Quotient

AL
AX
EAX

Remainder

AH
DX
EDX

If the dividend is 0 or if the quotient is too large to fit in the result accumulator, a di­
vide error fault (interrupt 0) occurs.

Flags
OF DF IF TF SF ZF AF PF CF

Faults
PM RM V8086

0 INTO INTO INTO
12 #5S(O)
13 #GP(O) INT13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

208

Example
MOV EAX, dividend
CWDE
DIV EBX
MOV quotient, EAX
MOV remainder, EDX

8: Reference Section

Convert 32-bit operand to 64 bits
32-bit divide
Save result

209

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

ENTER
Enter New Stack Frame

Syntax

ENTER locals, nesting

Operation
nesting ~ max (nesting, 31)
push (EBP)
temp ~ ESP
if (nesting> 0) then

nesting ~ nesting - 1
while (nesting> 0)

EBP ~ EBP - 4
push (SS:[EBP])
nesting ~ nesting - 1

endwhile
push (temp)

endif
EBP ~ temp
ESP ~ ESP - locals

Legal Forms

locals nesting

ENTER idata, idata

Description

80186/80286/80386/80486

o

This instruction sets up the stack frame used by high-level languages. The form
ENTER n,O is equivalent to the instructions:

PUSH EBP
MOV EBP, ESP
SUB ESP, n

This saves the previous frame pointer (EBP), sets the frame to the current stack top
(ESP), and allocates space for local variables. Parameters passed to the procedure
are addressed as positive offsets from EBP, and local variables are addressed as
negative offsets from EBP.

When the second operand is greater than ° (which happens only in languages that
allow nesting of procedure definitions), the pointers to previous stack frames are
pushed onto the stack to allow addressing of stack-resident variables whose scopes
are outside the current stack frame.

210

8: Reference Section

Languages such as FORTRAN and C do not allow lexical procedure nesting, so they
always use ENTER with a nesting operand of O. Pascal, Modula-II, and Ada allow
procedure nesting, and compilers for those languages generate the more complex
form of ENTER.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1- -I

Faults
PM

12 #88(0)
14 #PF(ec)

Example
ENTER 4. 0

RM V8086

#PF(ec)

Create stack frame with
space for a'dword local

211

MICROSOFT'S 8Q86/80488 PROGRAMMING GUIDE

HLT
Halt

Syntax
HLT

Legal Form
HLT

Description

8086/80186/80286/80386/80486

o

This instruction stops all further processing. No other instructions will execute until
the processor is reset or an interrupt occurs. An NMI interrupt always brings the
processor out of the halt state. The IF flag must be 1 for any other hardware inter­
rupt to be acknowledged. After processing the interrupt, execution continues with
the instruction immediately following HLT.

You must execute at a CPL of 0 to issue a HLT instruction; otherwise, a general pro­
tection fault occurs.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-1

Faults
PM RM V8086

13 #GP(O) #GP(O)

Example
STI

L1: HLT Idle. processing only interrupts
JMP L1

212

IDlY
Integer (Signed) Division

Syntax
IDIV opl

Operation
low(acc) +- ace I opl
high(acc) +- ace modulo opl

Legal Forms
opl

IDIV reg
IDIV mem

Description

8: Reference Section

8086/80186/80286/80386/80486

(8/16p/32)

This instruction divides the value in the accumulator register or register pair by opi,
storing the quotient in the low-order portion of the accumulator and the remainder
in the high-order portion. The following table illustrates the registers used as ac­
cumulators, depending on the size of opl.

Sizeofopl

Byte
Word
Dword

Dividend

AX
DX,AX
EDX,EAX

Quotient

AL
AX
EAX

Remainder

AH
DX
EDX

If the dividend is 0 or if the quotient is too large to fit in the result accumulator, a di­
vide error fault (interrupt 0) occurs.

Flags
OF DF IF TF SF ZF AF PF CF

I ? I - I - I - ? I - I - I - I I
Faults

PM RM V8086

0 INTO INTO INTO
12 #SS(O)
13 #GP(O) INT13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

213

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

Example
MOV EAX. [ESP+14] Get dividend
CDa Convert to 64 bits
IDIV ECX

214

8: Reference Section

IMUL
Integer (Signed) Multiplication

8086/80186/80286/80386/80486

(8/16p/32)

Syntax
IMUL opl. [op2. [op3]]

Operation
dest ~ multiplier * multiplicand

Legal Forms

oel oe2 oe3

IMUL reg acc ~ acc * reg
IMUL mem acc ~ acc * mem
IMUL reg. reg opl ~ opl * op2
IMUL reg. mem opl ~ opl * op2
IMUL reg. idata opl ~ opl * op2
IMUL reg. reg. idata opl ~ op2 * op3
IMUL reg. memo idata opl ~ op2 * op3

Description
This instruction multiplies signed, two's complement integers. The flags are left in
an unknown state except for OF and CF, which are cleared to 0 if the result of the
multiplication is the same size (byte, word, or dword) as the multiplicand.

In the single operand form of the instruction, the result is placed in AX if oPJ is a
byte, DX:AX if oPJ is a word, and EDX:EAX if oPJ is a dword.

In the forms of IMUL that use 2 or 3 operands, the operands must all be the same
size.

Flags
OF DF IF TF SF ZF AF PF CF

Ixl-I-I-? 1- ?I- ?I-IXI

Faults
PM RM

12 #5S(O)
13 #GP(O) INT13
14 #PF(ec)
17 #AC(O)

Examples
ECX IMUL

IMUL AL. CH. 7

V8086

#GP(O)
#PF(ec)
#AC(O)

EDX:EAX ~ EAX * ECX
AL = CH * 7

215

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

IN
Input from I/O Port

8086/80186/80286/80386/80486

(8/16p/32)

Syntax
IN acc, port

Operation
ACC +- (port)

Legal Forms
acc port

IN
IN

ace,
ace,

Description

idata
DX

This instruction reads a byte, word, or dword into the specified accumulator from
the designated I/O port. If you use an immediate data value in the instruction,
you can address only the first 256 ports. If the port is specified in the DX register,
you can access any of the 65536 ports.

IN is a privileged instruction. A procedure that attempts to execute an input instruc­
tion must satisfy one of two conditions to avoid a general protection fault.

If the procedure that executes an IN instruction has I/O privilege (that is, if its CPL
is numerically less than or equal to the 10PL field in the EFLAGS register), the input
instruction executes immediately.

If the procedure does not have I/O privilege, the I/O permission bitmap for the cur­
rent task is checked. If the bites) corresponding to the I/O port(s) is cleared to 0, the
input instruction executes. If the bites) is set to 1, or the port(s) is outside the range
of the bitmap, a general protection fault occurs. See Chapter 5 for more details on
this feature.

If the IN instruction is encountered while in v86 mode, only the I/O permission bit­
map is tested. The 10PL value is not a factor in validating access to the port.

Flags
OF DF IF TF SF ZF AF PF CF

I - I - I - I - I - I - I - I - I - I - I - - I

Faults
PM RM V8086

13 #GP(O) #GP(O)

216

8: Reference Section

Examples
IN AX. 72H Input a 16-bit value

from ports 72H and 73H
MOV OX. crLport
IN AL. OX Input a byte value

217

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

INC
Increment

Syntax
INC opl

Operation
opl ~ opl + 1

Legal Forms

opl
I NC reg
INC mem

Description

8086/80186/80286/80386/80486

(8/16p/32)

This instruction adds the value 1 to opl. This instruction is often used to increment
indexes and therefore does not affect the carry flag (CF). In other respects, it is
equivalent to the instruction:

ADD opl. 1

Flags
OF DF IF TF SF ZF

I x I - I

Faults
PM

12 #SS(O)
13 ttGP(O)
14 #PF(ec)
17 #AC(O)

Example
INC ESI

218

x x

RM

INT 13

AF

x

PF

V8086

ttGP(O)
#PF(ec)
#AC(O)

CF

Increment contents of ESI

INS
Input String from I/O Port

Syntax
INS

Operation

8: Ref.renc. Section

80186/80286/80386/80486

(8/16p/32)

when opcode is (INSB. INSW. INSD). set opsize f- (1. 2. 4)
ES:[EDI] f- port(DX)
if (DF - 0) then

EDI f- EDI + opsize
else

EDI f- EDI - opsize
endif

Legal Forms
INSB
INSW
INSD

Description

Input string byte
Input string word
Input string doubleword

This instruction allows the location specified by ES:[EDI] to receive data input from
the I/O port contained in the DX register. An 8-bit operation (INSB) adjusts the ad­
dress in EDI by 1, a 16-bit operation (INSW) adjusts EDI by 2, and a 32-bit operation
(INSD) adjusts EDI by 4. The memory offset in EDI is incremented if the DF bit is 0
or is decremented if DF is 1.

Like the IN instruction, the INS instruction is privileged. The executing procedure
must have a CPL equal to or numerically less than the 10PL, or access to the port
specified in DX must be granted by the I/O permission bitmap in the TSS.

You can use the REP prefix with the INS instruction. Using the prefix causes register
ECX to be interpreted as an instruction count.

A segment override prefix does not affect the INS instruction. The destination seg­
ment is always ES.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1- -I

219

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Faults
PM

13 #GP(O)
14 #PF(ec)
17 #AC(O)

Examples

RM

INT 13

LEA
MOV
CLD
INSD
INSD

EDI. new_val
DX. 370H

220

V8086

#GP(O)
#PF(ec)
#AC(O)

Set up destination pointer
Set up port address

Input 32-bit value to new_val
Input value to new_val + 4

8: Reference Section

INT
Software Interrupt

8086/80186/80286/80386/80486

o
Syntax

INT vector

Operation
push(EFLAGS)
push(CS)
push(EIP)
TF +- 0
if (IDT(vector).TVPE = INTERRUPT_GATE) then

IF+- 0
endif
CS:EIP +- destination(IDT(vector»

Legal Form

vector
INT i data

Description
This instruction saves the current flags and execution location on the stack, and the
vector operand indicates the IDT entry that is selected. The gate from the IDT de­
termines the new execution location.

If the processor encounters the INT instruction while in v86 mode, the 80386
switches to the ring 0 stack (SSO:ESPO) taken from the v86 task state segment before
processing the interrupt. Because the processor is running in ring 0, the IDT entry
must have a DPL of 0; otherwise, a general protection fault occurs.

The INT 3 instruction is usually encoded as a single byte (OCCH) and used as a
breakpoint instruction for debuggers.

Flags

OF DF IF TF SF ZF AF PF CF

I - I - I x 0 I - I - I - I - I - I - I - - I

221

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Faults
PM

10 #T5(sel)
11 #NP(sel)
12 #55(0)
13 #GP(O)
14 #PF(ec)

Example
INT 42

222

RM

INT 13

V8086

#GP(O)
#PF(ec)

Make a system-dependent OS call

8: Reference Section

INTO
Interrupt on Overflow

8086/80186/80286/80386/80486

o

Syntax

INTO

Operation
if (OF) then

INT 4
endif

Legal Form

INTO

Description
This instruction executes an INT 4 instruction if the overflow bit (OF) in the
EFLAGS register is 1. See the INT instruction for further details.

Flags

OF DF IF TF SF ZF AF PF CF

I - I - I x I 0 I - I - I - I - I - I - I - - I

Faults
PM RM V8086

10 #TS(sel)
11 #NP(sel)
12 #SS(O)
13 #GP(O) INT 13 #GP(O)
14 #PF(ec) #PF(ec)

Example
ADD ECX, VECTOR[EDI*4] Arithmetic operation
INTO Check for overflow

223

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

INVD
Invalidate Cache

Syntax

INVD

Operation
The internal cache is invalidated.

Legal Form

INVD

Description

80486

o

The internal cache is invalidated. A special hardware bus cycle is also initiated,
which can be used to invalidate external cache hardware.

Flags

OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1- -I

Faults

None.

Example
INVD
MOV EAX,CRO
AND EAX,060000000h
MOV CRO,EAX

224

Invalidate old cache
Get CRO
Enable cache
Rewrite CRO

INVLPG
Invalidate TLB Entry

Syntax
INVLPG mem

Operation
if PTE(mem) is in TLB(i) then

invalidate TLB(i)

Legal Form
INVLPG mem

Description

8: Reference Section

80486

(32)

If the page table entry for the page containing address mem is in the TLB, then that
TLB entry is invalidated.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1- -1-1

Fault

PM RM V8086

6' #UDO INT 6

'The undefined opcode fault occurs only when the operand is
encoded as a register.

Example

INVLPG [ESI+4] Invalidate PTE for this address

225

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

IRET
Interrupt Return

Syntax
IRET

Operation
if (NT = 1) then

else
task_return (TSS.back_link)

pop (EIP)
pop (CS)
pop (EFLAGS)

endif

Legal Form
IRET

Description

8086/80186/80286/80386/80486

o

This instruction signals a return from an interrupt or, if the NT (nested task) bit is
set to 1, a task switch from the current task to the one that invoked it.

When the new value of EFLAGS is popped from the stack, the IOPL bits are modi­
fied only if the CPL is O.

Chapter 5 discusses transitions across protection rings and task switching.

If the IRET instruction executes while the processor is in v86 mode, a general pro­
tection fault occurs. It is the responsibility of the fault handler to emulate the real­
mode IRET for the v86 task.

Flags
OF DF IF TF SF ZF AF PF CF

Ixlxlxlxlxlxl-Ixl-Ixl-Ixl

Faults
PM

11
12 #SS(O)
13 #GP(O)
14 #PF(ec)

Example
IRET

226

RM

INT13

V8086

#GP(O)
#PF(ec)

Jee
Jump if Condition

Syntax
Jcc offset

Operation
if (cc) then

8: Reference Section

8086/80186/80286/80386/80486

o

EIP +- EIP + sign_extend(offset)
endif

Legal Forms
JA offset
JAE offset
JB offset
JBE offset
JC offset
JCXZ offset
JECXZ offset
JE offset
JG offset
JGE offset
JL offset
JLE offset
JNA offset
JNAE offset
JNB offset
JNBE offset
JNC offset
JNE offset
JNG offset
JNGE offset
JNL offset
JNLE offset
JNO offset
JNP offset
JNS offset
JNZ offset
JO offset
JP offset
JPE offset
JPO offset
JS offset
JZ offset

Jump above (unsigned x > y) / CF = 0 & ZF = 0
Jump above or equal / CF - 0
Jump below (unsigned x < y) / CF - 1
Jump below or equal / CF = 1 I ZF - 1
Jump if carry / CF = 1
Jump if CX = 0
Jump if ECX == 0
Jump equal / ZF = 1
Jump greater (signed x > y) / SF = OF & ZF = 0
Jump greater or equal/SF = OF
Jump less (signed x < y) / SF != OF & ZF - 0
Jump less or equal/SF !- OF
Jump not above (JBE)
Jump not above or equal (JB)
Jump not below (JAE)
Jump not below or equal (JA)
Jump no carry / CF = 0
Jump not equal / ZF = 0
Jump not greater / SF != OF & ZF - 1
Jump not greater or equal (JL)
Jump not less (JGE)
Jump not less or equal (JG)
Jump no overflow / OF = 0
Jump no parity / PF = 0
Jump no sign / SF - 0
Jump not 0 / ZF = 0
Jump if overflow / OF - 1
Jump if parity / PF = 1
Jump parity even / PF = 1
Jump parity odd / PF = 0
Jump if sign / SF = 1
Jump if 0 / ZF = 1

227

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Description
TheJcc instructions test the conditions described for each mnemonic. If the condi­
tion holds true, the processor branches to the specified location. If the condition is
false, execution continues with the instruction following the jump.

More than one mnemonic exists for the same condition. This lets you write the test
in a manner most appropriate for the condition. For example, after OR EAX, EAX
you would use JZ, and after eMP EAX,ESI you would use JE; both mnemonics test
for ZF = 1.

Flags

OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1- -I

Fault
PM RM

13 #GP(O)

Example
DEC
JZ

228

AL
reached_zero

V8086

Decrement AL
Branch if zero

8: Reference Section

JMP
Near Jump

8086/80186/80286/80386/80486

o
Syntax
JMP dest

Operation
EI P f- dest

Legal Forms
dest

JMP
JMP
JMP

offset
reg
mem

Description

EIP f- EIP + offset
EIP f- reg
EIP f- [mem]

This instruction loads a new value into the instruction pointer (EIP). Subsequent in­
structions are fetched beginning at the new location.

When you use the immediate form of the instruction, the data value is an offset
from the current EIP. The other forms are indirect branches, that is, the new value
of EIP is taken from the operand register or memory location.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-

Faults
PM

12 #SS(O)
13 #GP(O)
14 #PF(ec)
17 #AC(O)

Examples
new_label
EeX

RM

INT13

JMP
JMP
JMP DWORD PTR [EBP+12]

V8086

#GP(O)
#PF(ec)
#AC(O)

Direct. relative branch
Branch indirect
Branch to routine whose
address is on stack

229

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

JMP
Far Jump

Syntax
JMP dest

Operation
CS:EIP f- dest

Legal Forms
dest

JMP
JMP

idata

mem

Description

CS:EIP f- data

CS:EIP f- [mem]

8086/80186/80286/80386/80486

o

A far jump instruction modifies both CS and EIP. In the immediate form of the in­
struction, a new 48-bit pointer is specified. In the indirect form, the mem operand
points to a 48-bit selector:offset pointer.

The new CS selector can be a code segment selector (where the branch is to the
specified offset within the code segment), or the selector can be a call gate, task
gate, or task state segment. In this case, the offset portion of the JMP is ignored, and
the new value of EIP is taken from the gate or the incoming TSS. If the jump causes
a task switch, all flags are subject to change as EFLAGS reloads from the new task's
TSS. Chapter 5 discusses the task switch operation and the use of gates.

Flags
OF DF IF TF SF ZF AF PF CF

I - I - I - I - I - I - I - I - I - I - - I - I

Faults
PM RM V8086

10 #T5(sel)
11 #NP(sel)
12 #55(0)

13 #GP(O) INT 13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

Examples
JMP 21A7: 000211 F3H Direct branch

JMP FWORD PTR new_task Branch indirect

230

LAHF
Load AH with Flags

Syntax
LAHF

Operation
AH ~ EFLAGS & OFFH

Legal Form
LAHF

Description

8: Reference Section

8086/80186/80286/80386/80486

(8)

This instruction copies the low-order byte of the EFLAGS register into AH. After the
instruction executes, the AH register has the following contents:

7 0

ISFlzFI ? !AFI ? IPFI ? ICFI

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-

Faults
None.

Example
LAHF
SHR
AND

AH. 6
AH. 1 AH now contains the ZF flag

231

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

LAR
Load Access Rights

Syntax
LAR dest. select

Operation
if (check_access(select» then

ZF f- 1

80286/80386/80486

(16p/32)

dest f- access_rights(descriptor(select» & OOF?FFOOH
else

ZF f- 0
endif

Legal Forms

dest select
LAR
LAR

reg.
reg.

Description

reg
mem

This instruction allows a program to determine whether a given selector is acces­
sible to it without causing a protection fault.

If the select operand contains a valid 80386 selector that is accessible to the execut­
ing procedure and the selector type is one defined below, the zero flag (ZF) is set to
1, and the access rights field of the descriptor indicated by the selector is loaded into
the destination register.

If the destination register is a 16-bit register, the high-order 8 bits of the register
contain the access rights field of the descriptor.

15 8 7 0

I A I DPL I s I TYPE I I
If the destination is a 32-bit register, bits 8-15 contain the access rights, and bits 20-
23 contain the access extension bits found in byte 6 of the descriptor.

31 23 20 16 15 8 7 0

I IGIBlolAI IAI DPLI sl TYPE I I
If the selector references a nonmemory segment with an invalid type (Type = 0, 8,
OAH, ODH), ZF is reset and the dest register is not modified.

232

8: Ref_nee Section

Flags
OF DF IF TF SF ZF AF PF CF

I-I-I-I-I-IX 1-1-1-1-1-1-

Faults
PM RM V8086

6 INT6 #UD()
12 #SS(O)
13 #GP(O) INT 13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

Example
; Verify that variable X contains the selector of a call gate
; that can be legally invoked by the executing routine.
LAR AX, X Load access rights
JNZ no_access Branch if can't access
SHR AX, 8 Move access rights to low order
AND AX, 1FH Save only S bit and TYPE
CMP AX, OCH Test for 386 call gate
JE iLgate Branch if accessible gate

233

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

LEA
Load Effective Address

Syntax
LEA dest. src

Operation
dest ~ address{src)

Legal Forms
dest src

LEA reg. mem

Description

8086/80186/80286/80386/80486

(16p/32)

This instruction loads the address specified by the memory operand into the desti­
nation register. No memory access cycle takes place.

You can also use LEA to perform simple multiplication or addition as discussed in
Chapter 4.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1- -I

Faults
PM

6· #UD()

RM V8086

INT6 #UD()

·The undefined opcode fault occurs only when the src
operand is encoded as a register.

Examples
LEA
LEA

234

ESI. VECTOR[EBX*4]
EDI. [EAX][ECX]

Load address of array element
Add contents of EAX and ECX. store in EDI

LEAVE
Leave Current Stack Frame

Syntax
LEAVE

Operation
MOV ESP. EBP
POP EBP

Legal Form
LEAVE

Description

8: Reference Section

80186/80286/80386/80486

o

LEAVE is the counterpart of the ENTER instruction. ENTER is executed immedi­
ately after a procedure call to set up a new stack frame. LEAVE is executed before a
RET instruction to release the returning procedure's stack frame.

Flags
OF DF IF TF SF ZF AF PF CF

/-/-/-/-/-/-/-/- -/-/- -/

Faults
PM

12 #SS(O)
13

Example
ENTER

LEAVE
RET

4.0

RM

13

V8086

#GO(O)

First instruction of procedure

Procedure contents

Clean up stack frame
And return to caller

235

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

LGDT
Load GDT Register

Syntax

LGDT op

Operation
GDTR.limit f- [op]
GDTR.base f- [op + 2]

Legal Form

op
LGDT mem

Description

80286/80386/80486

o

This instruction loads the GDTR register specifying the address and limit of the
global descriptor table (GDT). The operand must point to a data structure in
memory whose first 16 bits contain the limit of the global descriptor table and
whose next 32 bits contain the linear base address of the GDT.

Loading the GDTR does not invalidate the currently active descriptors; however,
subsequent references to selectors load descriptors from the new GDT.

A procedure must have a CPL of 0 to issue the LGDT instruction.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1- -I

Faults

PM RM V8086

6' #UD() INT6 #UD()
12 #55(0)

13 #GP(O) INT 13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

-The undefined opcode fault only occurs when the instruction
is encoded with a register value for op.

Example
LGDT initial_table

236

LIDT
Load IDT Register

Syntax

LIOT op

Operation

10TR.limit ~ [op]
10TR.base ~ [op + 2]

Legal Form

op
LIOT mem

Description

8: Reference Section

80286/80386/80486

o

This instruction loads the IDTR register and specifies the address and limit of the
interrupt descriptor table (IDT). The operand must point to a data structure in
memory whose first 16 bits contain the limit of the interrupt descriptor table and
whose next 32 bits contain the linear base address of the IDT.

After loading the IDTR, any software or hardware interrupts, faults, or traps will
cause an access to the new IDT.

A procedure must have a CPL of 0 to issue the LIDT instruction.

Flags

OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1- -I

Faults

PM RM V8086

6' #UD() INT6 #UD()
12 #SS(O)

13 #GP(O) INT 13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

"The undefined opcode fault only occurs when the op
operand is encoded as a register.

Example

LIOT Load lOT register

237

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

LLDT
Load LDT Register

Syntax

LLDT op

Operation
LDTR f- op

Legal Forms

op

LLDT reg
LLDT mem

Description

80286/80386/80486

(16)

This instruction loads a selector into the LDTR register and specifies a new local de­
scriptor table (LDT). The operand to LLDT must contain a valid local descriptor table
selector or the value 0.

Active descriptors that refer to the previous LDT are not invalidated; however, subse­
quent selector references load descriptors from the new LDT.

If the LDTR is loaded with the value 0, all LDT selector references that cause a
memory reference result in a general protection fault.

The executing procedure must have a CPL of ° to issue the LLDT instruction.

Flags

OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1- -I

Faults

PM

6
11 #NP(sel)
12 #SS(O)
13 #GP(O)
13 #GP(sel)
14 #PF(ec)
17 #AC(O)

Example

LLDT

238

RM

INT6

V8086

#UD()

#PF(ec)
#AC(O)

Get access to LDT for task B

LMSW
Load Machine Status Word

Syntax
LMSW op

Operation
CRO ~ (CRO & FFFFOOOOH) I op

Legal Forms
op

LMSW reg
LMSW mem

Description

8: Reference Section

80286/80386/80486

(16)

This instruction loads the low-order 16 bits of the eRO register. Use it only when
running 80286 operating system code. On 32-bit systems, use the instruction MOV
eRO, reg. Note that you can use LMSW to enter protected mode but not to leave it
and that you can use MOV eRO, reg to both enter and leave protected mode.

A procedure must be running in ring ° to execute LMSW.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1- -I

Faults
PM RM

12 #5S(O)
13 #GP(O) INT13
14 #PF(ec)
17 #AC(O)

Example
LMSW init_state

V8086

#GP(O)
#PF(ec)
#AC(O)

239

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

LOCK
Assert Hardware LOCK\ Signal Prefix

8086180186/80286/80386/80486

o

Syntax

LOCK

Legal Form
LOCK

Description

The LOCK instruction prefix supports multiprocessor hardware configurations.
You can use the hardware LOCK\ signal to ensure exclusive access to a particular
memory byte, word, or dword. The LOCK instruction is valid only if it precedes an
instruction in the list below. If you use it in combination with another instruction or
in an unsupported form of one of the listed instructions, an undefined opcode fault
occurs.

Locked Form Locked Form
Instruction of Instruction Instruction of Instruction

BT mem,op OR mem,op
BTS mem,op SBB mem,op
BTR mem,op SUB mem,op
BTC mem,op XOR mem,op
XCHG mem, reg DEC mem
XCHG reg, mem INC mem
ADD mem,op NEG mem
ADC mem,op NOT mem
AND mem,op

The LOCK\ signal is asserted for the duration of the instruction, including the time
required for a read-modify-write cycle. The XCHG instruction does not require the
LOCK prefix because the LOCK\ signal is always asserted during a memory XCHG.

When writing software for multiprocessor systems, ensure that locked access for
particular memory addresses always occurs to operands of the same size. In other
words, if you use the dword at physical address 100, always get access to it as a
dword and never as a byte or word. Locking is not guaranteed to operate correctly
unless you observe this restriction.

Flags

OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-

240

Faults
PM

6 #UDO

Example
LOCK

RM

INT6

BTS semaphore. 3

8: Reference Section

V8086

#UDO

241

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

LODS
LoadStrlng

Syntax

LODS

Operation

8086/80186/80286/80386/80486

(8/16p/32)

when opcode is (LODSB. LODSW. LODSD) set opsize f- (1.2.4)
ace f- DS: [ES1]
if (DF = 0) then

ES1 f- ES1 + opsize
else

ES1 f- ES1 - opsize
endif

Legal Forms
LODSB Load string byte
LODSW Load string word
LODSD Load string doubleword

Description
This instruction loads the byte, word, or dword at DS:ESI into the accumulator. If the
DF bit in the EFLAGS register is 0, ESI is incremented by the size of the operand
(1, 2, or 4 bytes). If DF is 1, ESI is decremented.

Because LODS is one of the 80386 string instructions, you can precede it with the
REP prefix; however, the resulting instruction is useless, as it continuously over­
writes the contents of the accumulator.

You can precede the LODS instruction with a segment override prefix. In such a
case, the operand is taken from the specified segment.

Flags

OF DF IF TF SF ZF AF PF CF

I - I - I - I - I - I - I - I - I - I - I - I -

Faults

PM RM V8086

12 #8S(O)
13 #GP(O) INT 13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

242

8: Reference Section

Example
LEA EBX. A_to_E Address of translation table
MOV ESI. [EBP+12] Source address
LES EDI. [EBP+16] Destination

L1: LODSB Fetch byte from source
OR AL. AL Test byte for zero
JZ DONE Branch if zero
XLATB Translate the byte
STOSB Save translated version
JMP Ll

DONE:

243

MICROSOFT'S 80386/80488 PROGRAMMING GUIDE

LOOPcc
Decrement ECX and Branch

Syntax
LOOPcc offset

Operation
ECX f- ECX - 1
if (cc & (ECX 1= 0» then

EI P f- EI P + offset
endif

Legal Forms
LOOP offset
LOOPZ offset
LOOPNZ offset
LOOPE offset
LOOPNE offset

Description

8086/80186/80286/80386/80486

O·

These instructions support a decrement and branch operation. For all variants other
than LOOP, the decrement and branch is combined with a test on the ZF bit. A loop
counter is assumed in register ECX. The instruction decrements the register, and if
the value of ECX is 0, no branch is taken. No flags are set as a result of the decre­
ment operation.

If the value of ECX is not 0, the branch is taken unless the condition in the LOOPcc
forms is not true.

Flags
OF DF IF TF SF ZF AF PF CF

I - I - I - I - I - I - I - I - I - I - I - - I

Faults
PM RM V8086

13 #GP(O) INT 13 #GP(O)

244

8: Reference Section

Example

: Initialize array of temp reals to 1.0
FLD1 Push 1.0 onto NDP stack
LEA ESI, array Starting address of array
MOV ECX, size Load loop counter

11: FLD ST(1), ST Duplicate 1.0 value on NDP stack
FSTP [ESI] Store 1.0, pop NDP stack
LOOP 11 Continue while ECX not 0
FSTP ST(O) , ST Done--pop last 1.0 constant off

NDP stack

245

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Lseg
Load Segment Register

8086/80186/80286/80386/80486

(16p/32)

Syntax
Lseg dest, src

Operation
dest ~ [src]
seg ~ [src + 4]

Legal Forms

dest src

LDS reg, mem
LES reg, mem
LFS reg, mem
LGS reg, mem
LSS reg, mem

Description
The src address specifies a 48-bit pointer C32-bit in real mode or vs6 mode) con­
sisting of a 32-bit offset followed by a 16-bit selector. The 32-bit offset is loaded into
the dest register and the selector is loaded into the segment register specified by the
instruction mnemonic. The S0386 protection mechanism validates the descriptor
associated with the selector.

Use only the ESP register with the Lseg instruction.

Flags

OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1- -I

Faults
PM RM V8086

12 #SS(O)
13 #GP(O) INT 13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

Example
LES ESI. BIGPTR ,. Load address of array element [EBX]
LSS ESP, OLD_STACK Load a new stack pointer

246

LSL
Load Segment Limit

Syntax:

LSL dest. select

Operation
if (access_OK(select» then

dest f- descript(select).limit
ZF f- 1

else
ZF f- 0

endif

Legal Forms

dest select
LSL
LSL

reg.
reg.

Description

reg
mem

8: Reference Section

80286/80386/80486

(16p/32)

If the select operand is accessible to the executing program as a valid selector under
the protection rules, this instruction loads the dest register with the segment limit
from the descriptor indicated by select and sets ZF to 1.

If the operand is not accessible or the descriptor associated with select does not con­
tain a limit field, ZF is set to o.
The value stored in the dest register is always the offset of the last addressable byte
in the segment (page granular limits are converted to byte granular limits). There­
fore, do not use a 16-bit register as the dest operand because the resulting value
might be too large.

Flags
OF DF IF TF SF ZF AF PF CF

I - I - I - I - I - Ix I - I - I - I - I - - I

Faults

PM RM V8086

6 INT6 #UDO
12 #5S(O)
13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

247

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

Example
LSL EAX. [BP+12] Get limit of selector on stack

248

LTR
Load Task Register

Syntax
. LTR select

Operation
TR ~ select

Legal Forms

select
L TR reg
LTR mem

Description

8: Reference Section

80286/80386/80486

(16)

This instruction loads the task register with the selector specified by the operand.
The TSS descriptor for the selector is marked "busy." Loading the task register does
not cause a task switch.

If the procedure that executes the LTR instruction is not running with a CPL of 0, a
general protection fault occurs.

Flags

OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-

Faults

PM RM V8086

6 INT6 #UDO
10 #NP(sel)
12 #SS(O)
13 #GP(O)
13 #GP(sel)
14 #PF(ec)
17 #AC(O) #AC(O)

Example

LTR AX Load task reg; ster

249

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

MOY
Move Data

Syntax
MOV dest. src

Operation
dest E- src

Legal Forms
dest src

MOV reg.
MOV memo
MOV reg.
MOV reg.
MOV memo

Description

idata
idata
reg
mem
reg

8086/80186/80286/80386/80486

(8/16p/32)

This instruction copies the contents of the src operand into dest.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-1

Faults
PM RM

12 #SS(O)
13 #GP(O)
14 #PF(ec)
17 #AC(O)

Examples
MOV
MOV
MOV
MOV

250

AL. [ECX]
ESI. 182H
BX. OX
AH. 7FH

INT 13

V8086

#GP(O)
#PF(ec)
#AC(O)

Get byte from memory
Load ESI with data value
16-bit move
Load AH with 8-bit data

MOY
Move Selector

Syntax
MOV dest, src

Operation
dest f- src

Legal Forms
dest src

MOV
MOV
MOV
MOV

sreg,
sreg,
reg,
mem,

Description

reg
mem
sreg
sreg

8: Reference Section

8086/80186/80286/80386/80486

(16)

This instruction copies the contents of the src operand into the dest operand. If the
dest operand is a segment register, the instruction loads the descriptor associated
with the selector into the 80386/80486 shadow registers. Privilege checks and tests
for descriptor legality are made unless the selector value is O. A protection fault oc­
curs if 0 is loaded into the SS register.

When the SS register is loaded, all hardware interrupts (including NMI) are masked
until after the next instruction executes, to allow loading of the ESP register.

Flags
OF DF IF TF SF ZF

I - I - I - I - I - I - I -

Faults
PM RM

10 #NP(sel)
12 #55(0)
13 #GP(O) INT13
14 #PF(ec)
17 #AC(O)

Examples
MOV
MOV
MOV

DS, AX
ES, heap_seg
save_55, SS

AF

I -
PF CF

I - I - I - - I

VS086

#GP(O)
#PF(ec)
#AC(O)

Load new data segment
Load ES register
Store copy of SS register

251

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

MOV
Move Special

Syntax
MOV dest. src

Operation
dest f- src

Legal Forms
dest src

MOV reg. reg

Description

80386/80486

(32)

This instruction copies or loads a special CPU register to or from an 80386/80486
general register. The special registers are CRO, CR2, CR3, DRO, DRl, DR2, DR3, DR6,
DR7, TR6, and TR7.

A procepure must be running at a CPL of 0 to execute this instruction.

Flags
OF DF IF TF SF ZF AF PF CF

I?I-I-I- 1- ?I-I?I-I 1

Faults
PM RM V8086

13 #GP(O) #GP(O)
17 #AC(O) #AC(O)

Examples
MOV EAX. CRO Save CRO in EAX
MOV TR7. ECX Load test register 7

252

8: Reference Section

MOYS
Move String

8086/80186/80286/80386/80486

(8/16p/32)

Syntax
MOV5

Operation
when opcode is (MOV5B. MOV5W. MOV50) set opsize f- (1. 2. 4)
E5:[E01] f- 05:[E51]
if (OF - 0) then

E51 f- E51 + opsize
EDl f- EDl + opsize

else
E51 f- E51 - opsize
E51 f- E51 - opsize

endif

Legal Forms
MOV5B Move string byte
MOV5W Move string word
MOV5D Move string doubleword

Description
This instruction copies the memory operand pointed to by DS:ESI to the destination
address specified by ES:EDI. The operand is a byte, word, or doubleword, depend­
ing on the opcode specified. The ED! and ESI registers are incremented by the size
of the operand if the DF bit is 0 or decremented if the DF bit is 1.

You can apply the REP prefix to the MOVS instruction to repeat the instruction. You
must place the value specifying the repeat count in the ECX register.

A segment override prefix may be applied to the MOVS instruction. It will override
the DS segment of the DS:[ESI] operand. You cannot override the ES segment
assumption for the EDI operand.

For dword-aligned strings, a REP MOVSD transfers data quicker than does the
equivalent REP MOVSB or REP MOVSW. However, if the source and destination
strings overlap, only the REP MOVSB operation works correctly.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1- -I

253

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Faults
PM RM

12 #55(0)
13 #GP(O) INT 13
14 #PF(ec)
17 #AC(O)

Example
LEA ESI, copyright_msg
LES EDI, [EBP+12]
MOV ECX, 31
CLD
REP MOVSB

254

VS086

#GP(O)
#PF(ec)
#AC(O)

Get source string
ES:EDI loaded from stack frame
Size of source string
Ensure direction flag set correctly
Copy byte string

MOVSX
Move with Sign Extension

Syntax
MOVSX dest. src

Operation
dest f- sign_extend(src)

Legal Forms
dest src

MOVSX reg. reg
MOVSX reg. mem

Description

8: Reference Section

80386/80486

(8/16p/32)

This instruction copies an 8-bit operand to a 16-bit or 32-bit destination or a 16-bit
operand to a 32-bit destination and sign-extends the source operand to fit. Sign ex­
tension is performed by duplicating the high-order bit of the src throughout the up­
per bits of the dest operand.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1- -I

Faults
PM RM

12 #SS(O)
13 #GP(O) INT 13
14 #PF(ec)
17 #AC(O)

Examples
MOVSX EAX. AL
MOVSX ED!. WORD PTR [ESI]
MOVSX ex. DL

V8086

#GP(O)
#PF(ec)
#AC(O)

Extend byte to dword
Extend word to dword
Extend byte to word

255

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

MOYZX
Move with Zero Extension

Syntax
MOVZX dest. src

. Operation
dest +- src

Legal Forms
dest src

MOVZX reg. reg
MOVZX reg. mem

Description

80386/80486

(8/16p/32)

This instruction copies an 8-bit operand to a 16-bit or 32-bit destination or a 16-bit
operand to a 32-bit destination and zero-extends the source operand to fit. Sign ex­
tension is performed by filling the upper bits of the dest operand with O.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-1

Faults
PM RM

12 #$5(0)

13 #GP(O) INT13
14 #PF(ec)
17 #AC(O)

Examples
MOVZX EAX. AL
MOVZX EDI. WORD PTR [ESI]
MOVZX ex. DL

256

V8086

#GP(O)
#PF(ec)
#AC(O)

Extend byte to dword
Extend word to dword
Extend byte to word

MUL
Unsigned Multiplication

Syntax
MUL src

Operation
ace race * src

Legal Forms
src

MUL reg
MUL mem

Description

8: Ref_nee Section

8086/80186/80286/80386/80486

(8/16p/32)

This instruction performs unsigned integer multiplication andrequires only one
operand, the multiplier. The multiplicand is the accumulator, and the product is also
stored in the accumulator. The size of the src operand determines which registers
will be used, as illustrated in the following table:

MuitipUer (src)

byte
word
dword

Multiplicand

AL
AX
EAX

Product

AX
DX:AX
EDX:EAX

The flags are left in an undetermined state except for OF and CF, which are cleared
to 0 if the high-order byte; word, or dword of the product is O.

Flags
OF DF IF TF SF ZF AF PF CF

I x I - I - I - ? ? I - I ? I - I ? I - I x I
Faults

PM RM V8086

12 #5S(O)
13 #GP(O) INT13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

257

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Example
MOV
MUL
JC
MOV

258

EAX. 3
DWORD PTR [ES1]
reL64
reL32. EAX

Multiplicand
Multiplier
Branch if result requires 64 bits
Else store product

NEG
Negate Integer

Syntax

NEG op

Operation
op f--- - (op)

Legal Forms

op
NEG reg
NEG mem

Description

8: Reference Section

8086/80186/80286/80386/80486

(8/16p/32)

This instruction subtracts its operand from 0, which results in a two's complement
(integer) negation of the operand.

Flags

OF DF IF TF SF ZF AF PF CF

Ixl-I-I-Ixlxl-Ixl-Ixl-Ixl
Faults

PM RM

12 #55(0)
13 #GP(O) INT 13
14 #PF(ec)
17 #AC(O)

Example

; Compute absolute value
OR EAX. EAX
JNS SKIP
NEG EAX
SKIP:

V8086

#GP(O)
#PF(ec)
#AC(O)

Test for +/-
Jump if not signed (positive)
Negate negative number

259

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

NOP
No Operation

Syntax
NOP

Legal Form
NOP

Description

8086180186/80286/80386/80486

o

This instruction performs no function other than taking up space in the code
segment.

Flags

OF DF IF TF SF

1-1-1-1-1-

Faults

None.

Example
NOP

260

ZF

I -
AF PF CF

I - I - I - I - I - I -

Nothing occurs

NOT
Boolean Complement

Syntax
NOT op

Operation

op +- -op

Legal Forms

op

NOT reg
NOT mem

Description

8: Reference Section

8086/80186/80286/80386/80486

(8/16p/32)

This instruction inverts the state of each bit in the operand.

Flags

OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1- -I

Faults
PM

12 #SS(O)
13 #GP(O)
14 #PF(ec)
17 #AC(O)

Example
NOT ECX

RM

INT 13

VS086

#GP(O)
#PF(ec)
#AC(O)

Insert ECX

261

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

OR
Boolean OR

Syntax
OR dest, src

Operation

dest ~ dest I src

Legal Forms

dest src
OR reg, idata
OR mem, idata
OR reg, reg
OR reg, mem
OR mem, reg

Description

8086/80186/80286/80386/80486

(8/16p/32)

This instruction performs a Boolean OR operation between each bit of the src
operand and the dest operand. The result is stored in dest. The truth table defining
the OR operation is as follows:

01 0=0

01 1 = 1

11 0=1

11 1 = 1

Flags

OF DF IF TF SF ZF AF PF CF

lol-I-I-Ixlxl-Ixl-Ixl-Iol
Faults

PM

12
13 #GP(O)
14 #PF(ec)
17 #AC(O)

Example

OR AL, BOH

262

RM

INT 13

V8086

#GP(O)
#PF(ec)
#AC(O)

Set high bit of AL

OUT
Output to Port

Syntax
OUT port. acc

Operation
port f- acc

Legal Forms

port
OUT
OUT

data.
DX.

Description

acc
acc
acc

8: Reference Section

8086/80186/80286/80386/80486

(8/16p/32)

This instruction outputs the value in the accumulator to the specified data port.
Placing an immediate value in the port operand field lets you address ports 0-255.
You can address port addresses 0-65,535 by storing the port number in the DX
register.

OUT is a privileged instruction. A procedure executing an output instruction must
satisfy one of two conditions; otherwise, a general protection fault occurs.

If the procedure that executes an OUT instruction has I/O privilege (if its CPL is
numerically less than or equal to the 10PL field in the EFLAGS register), the output
instruction executes immediately.

If the procedure does not have I/O privilege, the I/O permission bitmap for the cur­
rent task is checked. If the bites) corresponding to the I/O port(s) is cleared to 0, the
output instruction executes. If the bites) is set to 1, or the port(s) is outside the range
of the bitmap, a general protection fault occurs. See Chapter 5 for more details on
this feature.

If the OUT instruction is encountered while in vs6 mode, only the I/O permission
bitmap is tested. The 10PL value is not a factor.

Flags

OF DF IF TF SF ZF AF PF CF

I - I - I - I - I - I - I - I - I - I - I - - I

Faults
PM RM V8086

13 #GP(O) #GP(O)

263

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Example
MOV
OUT

264

DX. 378H
DX. AX

Set port address
Write to ports 378 and 379

8: Reference Section

OUTS
Output String

80186/80286/80386/80486

(8/16p/32)

Syntax

OUTS

Operation
when opcode is (OUTSB, OUTSW, OUTSO) set opsize f- (1,2,4)
port (OX) f- OS:[ESI]
if (OF = 0) then

ESI f- ESI + opsize
else

ESI f- ESI - ops; ze
endif

Legal Forms
OUTSB
OUTSW
OUTSO

Description

Out string byte
Out string word
Out string doubleword

This instruction outputs the byte, word, or doubleword at offset ESI to the port
specified in register DX. The ESI register is adjusted by the size of the memory
operand-incremented if the DF bit is 0 or decremented if DF is 1.

You can precede the OUTS instruction with the REP instruction; however, register
ECX must contain a count of the number of times the OUTS instruction is to be
executed.

You can apply one of the segment override prefixes to the OUTS instruction, caus­
ing the operand to be taken from the specified segment rather than the segment
pointed to by DS.

Output instructions are privileged instructions. The protection checks for the OUTS
instructions are the same as those for the OUT instruction.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-

265

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Faults
PM RM

12 #55(0)
13 #GP(O) INT 13
14 #PF(ec)
17 #AC(O)

Example
LEA
MOV
MOV
REP

266

Esr. IO_CHNL_CMO
OX. CONTROLLER
ECX. 8
OUTSO

V8086

#55(0)
#GP(O)
#PF(ec)
#AC(O)

Get pointer to string
Get 1/0 port number
Size of 1/0 string
Output 8 doublewords

pop
Pop Segment Register

Syntax
POP seg

Operation
seg +- SS: [ESP]
ESP +- ESP + 4

Legal Form
seg

POP sreg

Description

8: Reference Section

8086/80186/80286/80386/80486

(16)

This instr~ction pops a 32-bit value off the stack and stores the low-order 16 bits in
the specified segment register. Register CS is not a valid destination operand, but
the other segment registers (OS, ES, SS, FS, and GS) are valid.

The value stored in the segment register must be a valid selector or 0; otherwise, a
protection fault occurs. (Register SS cannot be loaded with a 0.) Note also that a
POP SS instruction has limited usefulness because SS and ESP are required to imple­
ment a stack. However, if you execute a POP SS, the 80386 inhibits all hardware in­
terrupts to enable the loading of ESP and the guarding against interrupts while the
stack pointer is invalid.

If the POP instruction is executed by a v86 mode task, only 16 bits are popped off
the stack.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-1

Faults
PM

10 #NP(sel)
12 #5S(O)
13 #GP(O)
14 #PF(ec)

Examples
POP GS
POP OS

RM

INT13

V8086

#5S(O)
#GP(O)
#PF(ec)

267

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

pop
Pop Value off Stack

Syntax
POP dest

Operation
dest f- SS: [ESP]
if (sizeof (dest) 16) then

ESP f- ESP + 2
else

ESP f- ESP + 4
endif

Legal Forms
dest

POP reg
POP mem

Description

8086/80186/80286/80386/80486

(16p/32)

This instruction pops the current value at the top-of-stack, stores it in the dest
operand, and adjusts the stack pointer.

For optimum performance, keep the stack on a doubleword boundary. Pushing and
popping 16-bit values might alter this alignment. For this reason, it is preferable to
sign-extend or zero-extend a 16-bit operand to 32 bits before pushing or popping it.

When you execute POP in v86 mode, the stack will generally be used only for 16-
bit values. This does not degrade system performance. Pushing and popping 16-bit
values leads to problems only when both 32-bit and 16-bit pushes and pops are
mixed in the same code.

Flags
OF DF IF TF SF ZF AF PF CF

1 -I - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - - 1

Faults
PM

12 #55(0)
13 #GP(O)
14 #PF(ec)

Example
POP Eex

268

RM

INT 13

V8086

#GP(O)
#PF(ec)

POPA
Pop All General Registers

Syntax
POPA

Operation
POP DI
POP SI
POP BP
ADD ESP.
POP BX
POP DX
POP ex
POP AX

Legal Form
POPA

Description

2

8: Reterence Section

80186/80286/80386/80486
(16)

This instruction pops all 16-bit general registers except SP from the stack. Because
the registers are stored as a 16-byte block of data, the paPA instruction does not
affect doubleword alignment of the stack.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-1

Faults
PM RM V8086

12 #55(0)
13 INT13 #GP(O)
14 #PF(ec) #PF(ec)

Example
POPA

269

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

POPAD
Pop All General Registers

Syntax
POPAD

Operation
POP EDI
POP ESI
POP EBP
ADD ESP,
POP EBX
POP EDX
POP ECX
POP EAX

Legal Form
POPAD

Description

4

80386/80486

(32)

This instruction pops all 32-bit general registers except ESP from the stack.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-

Faults
PM RM V8086

12 #SS(O)
13 INT 13 #GP(O)
14 #PF(ec) #PF(ec)

Example
POPAD

270

POPF
Pop Stack into FLAGS

Syntax
POPF

Operation
FLAGS +- SS:[ESP]
ESP +- ESP + 2

Legal Form
POPF

Description

8: Reference Section

8086/80186/80286/80386/80486

(16)

This instruction pops the low-order word of the EFLAGS register from the stack.
POPF provides compatibility with previous Intel microprocessors. Use the POPFD
instruction in native-mode programming.

Flags
OF DF IF TF SF ZF AF PF CF

Ixlxlxlxlxlxlxlxlxlxlxlxl
Faults

PM RM V8086

12 #SS(O)
13 INT13 #GP(O)
14 #PF(ec) #PF(ec)

Example
POPF

271

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

POPFD
Pop Stack into EFLAGS

Syntax

POPFO

Operation
EFLAGS ~ SS:[ESP]
ESP ~ ESP + 4

Legal Form

POPFO

Description

80386/80486

(32)

This instruction pops the top-of-stack into the EFLAGS register. The VM and RF bits
initially present in EFLAGS are not modified. The interrupt flag is modified only if
CPL:5: lOPL before the POPFD, that is, if the executing procedure has I/O privilege.
The lOPL field is altered only if CPL = O.

Flags

OF DF IF TF SF ZF AF PF CF

I x I x I x I x I x Ix Ix Ixlx I x I

Faults
·PM RM V8086

12 #55(0)
13 INT 13 #GP(O)
14 #PF(ec) #PF(ec)

Example

POPFO

272

PUSH
Push Value onto Stack

Syntax
PUSH op

Operation
if (sizeof(op) = 16)

ESP f- ESP - 2
else

ESP f- ESP - 4
endif
SS: [ESP] f- op

Legal Forms
op

PUSH i data
PUSH reg
PUSH sreg
PUSH mem

Description

8: R ___ • Section

8086/80186/80286/80386/80486

(8/16p/32)

This instruction pushes the operand onto the stack. The stack pointer is decre­
mented before the value· is pushed. If the operand is the ESP register, the value
stored on the stack is the value that ESP had before the instruction was executed.
(This instruction is different from the 8086 instruction, which pushes the new
value.)

Note that pushing 16-bit registers and memory operands onto the stack changes the
stack's memory alignment. It js more efficient to sign-extend or zero-extend the
operand to 32 bits and push the dword. The 80386 uses segment registers to push an
instruction value onto the stack.

When you execute the PUSH instruction in v86 mode, segment registers are pushed
as 16-bit values. The stack will generally be used only for 16-bit values in v86 mode.
This does not affect system performance because stack misalignment only occurs
when both 16-bit and 32-bit values are pushed onto the stack.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-1

273

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Faults
PM

12 #5S(O)
13 #GP(O)
14 #PF(ec)

Examples
7
EAX. AX

RM

PUSH
MOVSX
PUSH
PUSH

EAX
array[ESI*4]

274

V8086

#PF(ec)

Push data value
Sign extend AX
Then push
Push memory value

PUSHA
Push 16-Bit General Registers

Syntax
PUSHA

Operation
temp f- SP
PUSH AX
PUSH ex
PUSH DX
PUSH BX
PUSH temp
PUSH BP
PUSH SI
PUSH DI

Legal Form
PUSHA

Description

8: Ref_nee Section

80186/80286/80386/80486

(16)

This instruction stores a copy of all eight 16-bit registers on the stack. This instruc­
tion provides compatibility with 80186 and 80286 software. Use the PUSHAD in­
struction in native-mode environments.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-1

Faults

PM RM V8086

12 #5S(O)
13 INT13 #GP(O)
14 #PF(ec) #PF(ec)

Example
PUSHA

275

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

PUSHAD
Push 32-Bit General Registers

Syntax
PUSHAD

Operation
temp f- ESP
PUSH EAX
PUSH ECX
PUSH EDX
PUSH EBX
PUSH temp
PUSH EBP
PUSH ESI
PUSH EDI

Legal Form
PUSHAD

Description

80386/80486

(32)

This instruction stores a copy of all eight general registers on the stack. The value
of ESP that is saved to the stack is the ESP value before execution of the PUSH AD
instruction.

Flags
OF DF IF TF SF ZF AF PF CF

1 - 1- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

Faults
PM RM V8086

12 #SS(O) #GP(O)
13 INT13
14 #PF(ec) #PF(ec)

Example
PUSHAD

276

PUSHF
Push 16-Bit EFLAGS Register

Syntax
PUSHF

Operation
ESP = ESP - 2
SS:[ESP] ~ FLAGS

Legal Form

PUSHF

Description

8: Reference Section

8086/80186/80286/80386/80486

(16)

This instruction pushes the low-order 16 bits of the EFLAGS register onto the stack.
PUSHF provides compatibility with 16-bit processors and causes misalignment of
the stack if used in native mode. Only 32-bit programs should use PUSHFD.

PUSHF causes a general protection fault in vs6 mode if the executing procedure's
lOPL is numerically less than 3.

Flags

OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-

Faults

PM

12 #SS(O)
13
14 #PF(ec)

Example
PUSHF

RM VS086

#GP(O)
#PF(ec)

277

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

PUSHFD
Push EFLAGS Register

Syntax
PUSHFD

Operation
ESP - ESP - 4
SS:[ESP] ~ EFLAGS

Legal Form
PUSHFD

Description

80386/80486
(32)

This instruction pushes the contents of the EFLAGS register onto the stack. PUSHF
will cause a general protection fault in v86 mode if IOPL is less than 3.

Flags
OF OF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-1

Faults
PM

12 #5S(O)
13
14 #PF(ec)

Example
PUSHFD

278

RM V8086

#GP(O)
#PF(ec)

RCL
Rotate Through Carry Left

Syntax
RCL dest, count

Operation
temp ~ max (count, 31)
if (temp = 1) then

OF ~ (highbit(dest) != CF)
else

OF ~ ?
endif
value ~ concatenate (CF, dest)
while (temp != 0)

x ~ highbit (val ue)
value ~ (value « 1) + x
temp ~ temp - 1
endwhile

CF ~ highbit (value)
dest ~ val ue

Legal Forms
dest count

RCL reg, idata
RCL mem, idata
RCL reg, CL
RCL mem, CL

Description

8: Reference Section

8086/80186/80286/80386/80486

(8/16p/32)

This instruction concatenates the carry flag (CF) with the dest operand and'rotates
the value the specified number of times, A rotation is implemented by shifting the
value once and transferring the bit shifted off the high end to the low-order position
of the value,

The OF bit is defined only if the rotate count is 1. The 80386 and 80486 never rotate
a pattern more than 31 times, Counts greater than 31 are masked by the bit pattern
OOOOOOlFH.

Flags
OF DF IF TF SF ZF AF PF CF

Ixl-I-I-I-I-I-I-I-I-I-Ixl

279

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

Faults
PM

12 #5S(O)
13 #GP(O)
14 #PF(ec)
17 #AC(O)

Example
RCL EAX. 3

280

RM

INT 13

V8086

#GP(O)
#PF(ec)
#AC(O)

Rotate EAX 3 bits left

8: "".renc. SectIon

RCR
Rotate Through Carry Right

8086/80186/80286/80386/80486
(8/16p/32)

Syntax
RCR dest. count

Operation
temp +- max (count. 31)
if (temp - 1) then

OF +- (highbit(dest) 1- highbit(dest « 1»
else

OF +- ?
endif
value +- concatenate (dest. CF)
while (temp 1- 0)

x +- value & 1
value +- (value » 1)
highbit (value) +- x
temp +- temp - 1
endwhile

CF +- highbit (value)
dest +- value

Legal Forms
dest count

RCR reg. idata
RCR memo idata
RCR reg. CL
RCR memo CL

Description
This instruction concatenates the carry flag (CF) with the dest operand and rotates
the value the specified number of times. A rotation is implemented by shifting the
value once and transferring the bit shifted off the low end to the high-order position
of the value.

The OF bit is defined only if the rotate count is 1. The 80386 and 80486 never rotate
a pattern more than 31 times. Counts greater than 31 are masked by the bit pattern
OOOOOOlFH.

Flags
OF DF IF TF SF ZF AF PF CF

Ix I-I-I-I-I-I-I-I-I-I-Ixl

281

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

Faults
PM

12 #5S(O)
13 #GP(O)
14 #PF(ec)
17 #AC(O)

Example
RCR EAX. 3

282

RM.

INT13

V8086

#GP(O)
#PF(ec)
#AC(O)

Rotate EAX 3 bits right

REP
Repeat String Prefix

Syntax
REP

Legal Forms
REP
REPE
REPZ
REPNE
REPNZ

Description

8: Reference Section'

8086/80186/80286/80386/80486
()

The repeat prefix may be applied to any string instruction (CMPS, INS, LaDS,
MOVS, OUTS, SCAS, STOS). When the prefix is present, the string instruction exe­
cutes repeatedly based on the count value in the ECX register. The ZF flag is also
tested when executing CMPS or SCAS.

If ECX is 0 when a repeated string instruction is encountered, the string instruction
will not be executed.

Refer to the individual string instructions in this chapter for additional information.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-1

Faults
PM

6 #UDO

Example
EAX. a

RM

INT6

Mav
Mav
REP

ECX. 1024/4
STaSD

V8086

#UDO

initialize 1 KB of memory to a

283

MICROSOFT'S 80386/80488 PROGRAMMING GU_DE

RET
Near Return from Subroutine

Syntax
RET count

Operation
EIP +- pop ();
ESP +- ESP + count

Legal Forms
count

RET
RET idata

Description

8086/80186/80286/80386/80486

o

This instruction restores the instruction pointer to the value it held before the
previous CALL instruction. The value of EIP that had been saved on the stack is
popped. If the count operand is present, the count value is added to ESP, removing
any operands that were pushed onto the stack for the subroutine call.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1- -I

Faults
PM

12 #SS(O)
13 #GP(O)
14 #PF(ec)

Example
RET 4

284

RM

INT13

V8086

#GP(O)
#PF(ec)

Return and pop one dword

RETF
Far Return from Subroutine

Syntax
RETF count

Operation
EIP +- pop()
cs +- pop()
ESP +- ESP + count

Legal Forms
count

RETF
RETF idata

Description

8: R nc. Section

8086/80186/80286/80386/80486

o

This variation of the RET instruction pops both a new CS and EIP from the stack.
The instruction assumes that the CS value is stored as the low-order 16 bits of a
dword on the stack.

If this instruction causes a privilege-level transition, the protection checks de­
scribed in Chapter 5 take place.

Flags
OF DF IF TF SF ZF AF PF CF

I - I - I - I - I - I - I - I - I - I - I - - I

Faults
PM RM V8086

10 #NP(sel)
12 #SS(O)
13 #GP(O) INT13 #GP(O)
14 #PF(ec) #PF(ec)

Example
RETF Far return

285

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

ROL
Rotate Left

Syntax
ROL dest. count

Operation
temp ~ max (count. 31)
if (temp - 1) then

OF ~ (highbit(dest) 1= CF)
else

OF ~ ?
endif
while (temp 1= 0)

x ~ highbit (dest)
des t ~ (des t « 1) + x
temp ~ temp - 1
endwhile

CF ~ highbit (dest)

Legal Forms
dest count

ROL reg. idata
ROL memo idata
ROL reg. CL
ROL memo CL

Description

8086/80186/80286/80386/80486

(8/16p/32)

This instruction rotates the dest operand the specified number of times. A rotation
is· implemented by shifting the value once and transferring the bit shifted off the
high end to the low-order position of the value.

The OF bit is defined only if the rotate count is 1. The 80386 and 80486 never rotate
a pattern more than 31 times. Counts greater than 31 are masked by the bit pattern
OOOOOOlFH.

Flags
OF DF IF TF SF ZF AF PF CF

I x I - I - I - I - I - I - I - I - I - I - I x I

286

Faults
PM

12 #5S(O)
13 #GP(O)
14 #PF(ec)
17 #AC(O)

Example
ROL EAX. 3

RM

INT13

V8086

#GP(O)
#PF(ec)
#AC(O)

Rotate EAX 3 bits left

8: no. Section

287

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

ROR
Rotate Right

Syntax

ROR dest, count

Operation
temp ~ max (count, 31)
if (temp - 1) then

8086/80186/80286/80386/80486

(8/16p/32)

OF ~ (highbit(dest) 1= highbit(dest « 1)

else
OF ~ ?

endif
while (temp 1= 0)

x~value&1

value ~ (value » 1)
highbit(value) ~ x
temp ~ temp - 1
endwhile

CF ~ highbit (value)
dest ~ value

Legal Forms

dest count
ROR reg, idata
ROR mem, idata
ROR reg, CL
ROR mem, CL

Description

This instruction rotates the dest operand the specified number of times. A rotation
is implemented by shifting the value once and transferring the bit shifted off the low
end to the high-order position of the value.

The OF bit is defined only if the rotate count is 1. The 80386 never rotates a pattern
more than 31 times. Counts greater than 31 are masked by the bit pattern
OOOOOOlFH.

Flags

OF DF IF TF SF ZF AF PF CF

Ixl-I-I-I-I-I-I-I-I-I- xl

288

Faults
PM

12 #$S(O)
13 #GP(O)
14 #PF(ec)
17 #AC(O)

Example
ROR EAX. 3

RM

INT13

V8086

#GP(O)
#PF(ec)
#AC(O)

Rotate EAX 3 bits right

8: Reference Section

289

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

SAHF
Store AH in EFLAGS

Syntax
SAHF

Operation
EFLAGS ~ EFLAGS I (AH & OD5H)

Legal Form
SAHF

Description

8086/80186/80286/80386/80486

(8)

This instruction loads the contents of the AH register into bits 7, 6, 4, 2, and 0 of the
EFLAGS register.

Fla~s

OF DF IF TF SF ZF AF PF CF

I-I-I-I-Ixlxl-Ixl-Ixl-Ixl
Faults
None.

Example
SAHF

290

SAL
Shift Left Arithmetic

Syntax
SAL dest, count

Operation
temp +- count & OOlFH
while (temp 1- 0)

CF +- hi ghorder (dest)
dest +- dest « 1
temp +- temp - 1
end

if count - 1 then
OF +- hi ghorder (dest) 1= CF

else
OF +- ?

Legal Forms
dest count

SAL reg, idata
SAL mem, idata
SAL reg, CL
SAL mem, CL

Description

8: R nc. SectIon

8086/80186/80286/80386/80486

(8/16p/32)

This instruction shifts the dest operand count bits to the left. The arithmetic shift
left (SAL) and logical shift left (SHL) are equivalent instructions.

The count operand must either be an immediate data value or be stored in register
CL. The 80386 and 80486 mask the count operand with 1FH so that the count value
is never greater than 31.

If the count operand is 1, the overflow flag is reset to 0 when the high-order bit and
the carry flag have the same value after the shift. If the high-order bit and CF have
different values, OF is set to 1. If count is greater than 1, OF is undefined.

A left shift is equivalent to multiplying the dest operand by 2count.

Flags
OF DF IF TF SF ZF AF PF CF

Ixl-I-I-Ixlxl-I-I-Ixl-Ixl

291

MICROSOFT'S 80386/80488 PROGRAMMING GUIDE

Faults
PM RM V8086

12 #SS(O)
13 #GP(O) INT13 #GP(O)
14 #PF(ec'} #PF(ec)
17 #AC(O) #AC(O)

Examples
SAL ECX. 7

SAL WORD PTR [EBP+8]. CL

292

SAR
Shift Right Arithmetic

Syntax

SAR dest. count

Operation
temp +- count & OOlFH
while (temp 1- 0)

save +- highorder (dest)
CF - dest & 1
dest +- dest » 1
highorder (dest) = save
temp +- temp - 1
end

if count - 1 then
OF +- 0

else
OF +- ?

Legal Forms
dest count

SAR reg. idata
SAR memo idata
SAR reg. CL
SAR memo CL

Description

8086/80186/80286/80386/80486

(8/16p/32)

This instruction shifts the dest operand count bits to the right. The shift is called
arithmetic because it preserves the sign bit of the dest operand.

The count operand must be an immediate data value or it must be stored in register
CL. The 80386 and 80486 mask the count operand with IFH so that the count value
is never greater than 3l.

If count is 1, the overflow is reset to o. If count is greater than 1, OF is undefined.

The arithmetic right shift is similar to dividing dest by 2count except that negative
values are rounded toward negative infinity, rather than toward 0 (that is, -3 shifted
left 1 rounds to -2, whereas -3 divided by 21 rounds to -1).

Flags
OF DF IF TF SF ZF AF PF CF

Ixl-I-I-Ixlxl-I-I-Ixl-Ixl

293

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

Faults
PM RM

12 #SS(O)
13 #GP(O) INT13
14 #PF(ec)
17 #AC(O)

Examples
SAR ECX. 7
SAR WORD PTR [EBP+8J. CL

294

V8086

#GP(O)
#PF(ec)
#AC(O)

8: Reference Section

SBB
Subtraction with Borrow

8086/80186/80286/80386/80486

(8/16p/32)

Syntax
SBB dest. src

Operation
dest f- dest - src - CF

Legal Forms
dest src

SBB reg. idata
SBB memo idata
SBB reg. reg
SBB reg. mem
SBB memo reg

Description

This instruction subtracts the src operand from the dest operand and decrements
the dest operand by 1 if the CF flag is set. The result is stored in dest.

Flags
OF DF IF TF SF ZF AF PF CF

Ixl-I-I-Ixlxl-Ixl-Ixl-Ixl
Faults

PM RM V8086

12 #SS(O)
13 #GP(O) INT13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

Example
; 64-bit subtraction operation EDX:EAX - EBX:ECX
SUB EAX. ECX Low-order bits
SBB EDX. EBX High-order bits

295

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

seAS
Scan String

Syntax

SCAS

Operation

8086/80186/80286/80386/80486

(8/16p/32)

when opcode is (SCASB. SCASW. SCASD) set opsize f- (1. 2. 4)
NULL f- acc - ES:[EDI]
if (OF = 0) then

EDI f- EDI + opsize
else

EDI f- EDI - opsi ze
endif

Legal Forms
SCASB
SCASW
SCASD

Scan string byte
Scan string word
Scan string doubleword

Description

This instruction compares the value in the accumulator (AL, AX, or EAX) with the
operand at ES:[EDI]. The flags are set according to the compare operation, and the
Em register is adjusted by the size of the operand. If the direction flag (DF) is 0,
EDI is incremented; otherwise, it is decremented.

You can apply the REPE or REPNE prefix to the SCAS instruction. The ECX register
contains a repeat count, indicating the maximum number of times the instruction
should be repeated. The instruction will repeat only while the repeat condition is
true, that is, when ZF = 1 for REPE (REPZ) or ZF = ° for REPNE (REPNZ).

You cannot use a segment override prefix with SCAS. The ES register is always the
destination of the string to be scanned.

Flags
OF DF IF TF SF ZF AF PF CF

Ixl-I-I-Ixlxl-Ixl-Ixl-Ixl

296

8: Reference Section

Faults
PM RM V8086

12 #5S(O)
13 #GP(O) INT13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

Example
: Search for an asterisk in a string
LES EDI, [EBP+12] String pOinter on stack
MOV ECX, [EBP+20] String size on stack
CLD
MOV AL, '* • Character to search for
REPNE SCASB Scan
JE MATCH Branch if found

297

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

seg
Segment Override Prefix

Legal Forms

CS:
DS:
SS:
ES:
FS:
GS:

Description

8086/80186/80286/80386/80486

o

The instruction that follows these prefixes takes its memory operand from the
specified segment rather than from the default segment.

You cannot override the following string instructions:

INS

SeAS

STOS

Flags

OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1- -I

Faults

None.

Example

MOV
ADD

298

EAX. FS: [ESI]
DS:[EBP). 7

Read from FS rather than DS
Write to DS rather than SS

SETcc
Set Byte on Condition

Syntax
SETee dest

Operation
if (ee) then

dest ~ 1
else

dest ~ 0
endif

Legal Forms
SETA dest
SETAE dest
SETB dest
SETBE dest
SETC dest
SETE dest
SETG dest
SETGE dest
SETL dest
SETlE dest
SETNA dest
SETNAE dest
SETNB dest
SETNBE dest
SETNC dest
SETNE dest
SETNG dest
SETNGE dest
SETNl dest
SETNlE dest
SETNO dest
SETNP dest
SETNS dest
SETNZ dest
SETO dest
SETP dest
SETPE dest
SETPO dest
SETS dest
SETZ dest

Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set

8: Reference Section

80386/80486

(8)

if above (unsigned x > y) / CF - 0 & ZF - 0
if above or equal / CF = 0
if below (unsigned x < y) / CF = 1
if below or equal / CF - 1 I ZF - 1
if carry / CF - 1
if equal / ZF = 1
if greater (signed x > y) / SF = OF & ZF - 0
if greater or equal/SF - OF
if less (signed x < y) / SF !- OF
if less or equal/SF I-OF & ZF - 1
if not above (SETBE)
if not above or equal (SETB)
if not below (SETAE)
if not below or equal (SETA)
if no carry / CF = 0
if not equal / ZF - 0
if not greater (SETlE)
if not greater or equal (SETl)
if not less (SETGE)
if not less or equal/SF - OF & ZF - 0
if no overflow / OF - 0
if no parity / PF = 0
if no sign / SF = 0
if not 0 / ZF - 0
if overflow / OF = 1
if parity / PF = 1
if parity even / PF - 1
if parity odd / PF - 0
if sign / SF - 1
if 0 / ZF = 1

299

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

Description
This instruction sets the dest byte to 1 if the condition described by the opcode is
met; otherwise, the instruction clears the byte to O.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-1

Faults
PM

12 #SS(O)
13 #GP(O)
14 #PF(ec)

Example
SETNZ
MOVZX

300

AL
EAX. AL

RM

INT13

V8086

#SS(O)
#GP(O)
#PF(ec)

SGDT
Store GDT Register

Syntax
SGDT dest

Operation
dest f- GDTR.LIMIT
dest + 2 f- GDTR.BASE

Legal Form
dest

SGDT mem

Description

8: Reference Section

80286/80386/80486

o

This instruction writes the limit portion of the GDTR to the dest memory address
and writes the linear base address of the GDT to the dword at dest + 2.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1- -I

Faults
PM RM V8086

6' #UDO INT6 #UD()
12 #55(0)
13 #GP(O) INT 13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

• The undefined opcode fault occurs only when the dest
operand is encoded as a register.

Example
SGDT [300H] Save GDTR

301

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

SHL
Shift Left Logical

Syntax

SHL dest. count

Operation
temp f- count & OOlFH
while (temp !- 0)

CF f- highorder (dest)
dest f- dest « 1
temp f- temp - 1
end

if count - 1 then
OF f- highorder (dest) !- CF

else
OF f- ?

Legal Forms
dest count

SHL reg. idata
SHL memo idata
SHL reg. CL
SHL memo CL

Description

8086/80186/80286/80386/80486

(8/16p/32)

This instruction shifts the dest operand count bits to the left. The arithmetic left
shift (SAL) and logical left shift (SHL) are equivalent instructions.

The count operand must either be an immediate data value or be stored in register
CL. The 80386 and 80486 mask the count operand with lFH so that the count value
is never greater than 31.

If the count operand is 1, the overflow flag is reset to 0 when the high-order bit and
the carry flag have the same value after the shift. If the high-order bit and CF have
different values, OF is set to 1. If count is greater than 1, OF is undefined.

A left shift is equivalent to mUltiplying the dest operand by 2count.

Flags
OF DF IF TF SF ZF AF PF CF

I x I - I - I - I xl x I - I - I - Ix I - I x I

302

8: Reference Section

Faults
PM RM V8086

12 #SS(O)
13 #GP(O) INT 13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

Examples
SHL ECX. 7
SHL WORD PTR [EBP+8], CL

303

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

SHLD
Shift Left Double

Syntax
SHLD dest. src. count

Operation
temp f- max (count. 31)
value f- concatenate (dest. src)
value f- value « temp
dest f- va 1 ue

Legal Forms
dest src

SHLD reg. reg.
SHLD memo reg.
SHLD reg. reg.
SHLD memo reg.

Description

count
idata
idata
CL
CL

80386/80486
(16p/32)

This instruction concatenates the src operand to the dest operand and shifts the
resulting double-size value left. The low-order bits are stored in dest.

The count operand is masked with 1FH so that no shift counts greater than 31 are
used.

Flags
OF DF IF TF SF ZF

Faults
PM

12 #SS(O)
13 #GP(O)
14 #PF(ec)
17 #AC(O)

Example

RM

1NT 13

MOV
SHLD

EAX. [ES1]
EAX. [ES1+4]. 7

304

AF PF CF

V8086

#GP(O)
#PF(ec)
#AC(O)

Get low-order dword
64-bit shift

SHR
Shift Right Logical

Syntax
SHR dest. count

Operation
temp f- count & OOlFH
while (temp 1= 9)

CF = dest & 1
dest f- dest » 1
temp f- temp - 1
end

if count = 1 then
OF f- highorder (dest)

else
OF f- ?

Legal Forms

dest count
SHR reg. idata
SHR memo idata
SHR reg. CL
SHR memo CL

Description

8: Reference Section

8086/80186/80286/80386/80486

(8/16p/32)

This instruction shifts the dest operand count bits to the right. The high-order bits
are cleared to 0 as the low-order bits are shifted.

The count operand must either be an immediate data value or be stored in register
CL. The 80386 and 80486 mask the count operand with 1FH so that the count value
is never greater than 31.

If the count operand is 1, the overflow flag is set to the high-order bit of the dest
operand. If count is greater than 1, OF is undefined.

Flags

OF DF IF TF SF ZF AF PF CF

305

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Faults
PM RM V8086

12 #SS(O)
13 #GP(O) INT 13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

Examples
SHR ECX, 7
SHR WORD PTR [EBP+8], CL

306

SHRD
Shift Right Double

Syntax

SHRD dest, src, count

Operation
temp f- max (count, 31)
value f- cat (src, dest)
value f- value » temp
dest f- value

Legal Forms

dest src

SHRD reg, reg,
SHRD mem, reg,
SHRD reg, reg,
SHRD mem, reg,

Description

count

idata
idata
CL
CL

8: Reference Section

80386/80486

(16p/32)

This instruction concatenates the src operand to the dest operand and shifts the
resulting double-size value right. The low-order bits are stored in dest.

The count operand is masked with 1FH so that no shift counts greater than 31 are
used.

Flags

OF DF IF TF SF ZF AF PF CF

I ? I - I - I - Ix Ix I - I - Ix I - xl

Faults
PM RM V8086

12 #SS(O)
13 #GP(O) INT 13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

Example
MOV EAX, [OO2AH] Get low-order dword
SHRD EAX, [OO2EH] 64-bit shift

307

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

SIDT
Store IDT Register

Syntax
SlOT dest

Operation
dest f- IOTR.LIMIT
dest + 2 f- IOTR.BASE

Legal Form
dest

SlOT mem

Description

80286/80386/80486

o

This instruction writes the limit portion of the IOTR to the dest memory address
and the linear base address of the lOT to the dword at dest + 2.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1- -I

Faults
PM RM V8086

6· #UDO INT6 #UDO
12 #55(0)
13 #GP(O) INT13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

• The undefined opcode fault occurs only when the dest
operand is encoded as a register.

Example
SlOT inLtab Get address and limit of lOT

308

SLDT
Store LDT Register

Syntax
SLOT dest

Operation
dest f- LOTR

Legal Forms
dest

SLOT reg
SLOT mem

Description

8: Reference Section

80286/80386/80486

(16)

This instruction stores the selector in the LDTR in the destination location.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-1

Faults
PM RM V8086

6 INT6 #UDO
12 #55(0)
13 #GP(O)
14 #PF(ec)
17 #AC(O) #AC(O)

Example
SLOT OX Put LOT selector into OX

309

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

SMSW
Store Machine Status Word

Syntax
SMSW dest

Operation
dest f- MSW

Legal Forms
dest

SMSW reg
SMSW mem

Description

80286/80386/80486

(16)

This instruction stores the low-order 16 bits of register CRO (the 80286 machine
status word) in the dest operand.

This instruction is provided for compatibility only. Use the MOV CRO instruction in
native mode programming.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1- -I

Faults
PM RM VS086

6
12 #55(0)
13 #GP(O) INT13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

Example
SMSW [DI]

310

STC
Set Carry Flag

Syntax
STC

Operation
CF ~ 1

Legal Form
STC

Description

8: Reference Section

8086/80186/80286/80386/80486

o

This instruction sets the carry flag (CF) in the EFLAGS register to 1.

Flags
OF DF IF TF SF ZF AF PF CF

I - I - I - I - I - - I - I - I - I - 1-1

Faults
None.

Example
STC Carry flag set to 1

311

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

STD
Set Direction Flag

Syntax
STO

Operation
OF f- 1

Legal Form
STO

Description

8086/80186/80286/80386/80486

o

This instruction sets the direction flag (DF) in the EFLAGS register to 1. This in­
struction indicates reverse direction in the string instructions to decrement the in­
dex registers when DF = 1.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-1

Faults
None.

Example
STO

312

Prepare for reverse string operation

ST.
Set Interrupt Flag

Syntax
STI

Operation
IF ~ 1

Legal Form
STI

Description

8: Ref.rence Section

8086/80186/80286/80386/80486

o

This instruction sets the interrupt flag (IF) in the EFLAGS register to 1, enabling
hardware interrupts.

The executing program must have a high enough privilege (CPL :s; IOPL) to issue the
STI command to avoid a general protection fault.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-

Fault
PM

13 #GP(O)

Example
CLI
MOV
DEC
J2
MOV

DONE:
STI

RM

Al. semaphore
Al
DONE
semaphore. Al

V8086

Disable interrupts
Get memory value
Decrement counter
Skip if value was a
Update

Reenable interrupts

313

MICROSOFT'S 80386/80488 PROGRAMMING GUIDE

STOS
Store String

Syntax:
STOS

Operation

8086/80186/80286/80386/80486

(8/16p/32)

when opcode is (STOSB, STOSW, STOSD), set opsize ~ (I, 2, 4)
ES:[EDI] ~ accum
if (OF - 0) then

EDI ~ EDI + opsize
else

EDI ~ EDI - opsize
endif

Legal Forms
STOSB Store string byte
STOSW Store string word
STOSD Store string doubleword

Description
This instruction writes the current contents of the accumulator (AL, AX, or EAX,
depending on the opcode used) to the memory location pointed to by ES:EDI. It
then increments or decrements EDI by the size of the operand, according to the DF
bit in the EFLAGS register.

If you precede the STOS instruction with the REP prefix, register ECX must contain
a count of the number of times STOS is to be executed. This fills memory with the
value in the accumulator.

You cannot use a segment override prefix with the STOS instruction. The destina­
tion segment will always be selected by ES.

Flags
OF DF IF TF SF ZF AF PF CF

I - I - I - I - I - I - I - I - I - I - I - I -

Faults
PM RM V8086

12 #SS(O)
13 #GP(O) INT 13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

314

8: Reference Section

Example
: Clear 100 bytes of memory beginning at location 0
MOV ED!. 0 Base address
MOV ECX. 100 I 4 Count (in dwords)
XOR EAX. EAX Clear accumulator to 0
CLD
REP STOSD Zero memory

315

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

STR
Store Task Register

Syntax
STR dest

Operation
dest ~ TR

Legal Forms
dest

STR reg
STR mem

Description
This instruction stores the task register selector in dest:

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-

Faults
PM

6
12 #SS(O)
13 #GP(O)
14 #PF(ec)
17 #AC(O)

Example
STR ex

316

RM V8086

INT6 #UDO

#AC(O)

Store current task's selector

80286/80386/80486

(16)

8: Reference Section

SUB
Subtraction

8086/80186/80286/80386/80486

(8/16p/32)

Syntax
SUB dest, src

Operation
dest ~ dest - src

Legal Forms
dest src

SUB reg, idata
SUB mem, idata
SUB reg, reg
SUB reg, mem
SUB mem, reg

Description
This instruction subtracts the src operand from the dest operand and stores the
result in dest.

Flags
OF DF IF TF SF ZF AF PF CF

Faults
PM RM V8086

12 #55(0)
13 #GP(O) INT 13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

Example
; 64-bit subtraction operation EDX:EAX - EBX:ECX
SUB EAX, ECX Low-order bits
SBB EDX, EBX High-order bits with possible borrow

317

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

TEST
Test Bits

Syntax
TEST dest. src

Operation
NULL f-- dest & src

Legal Forms
dest src

TEST reg. idata
TEST memo idata
TEST reg. reg
TEST reg. mem
TEST memo reg

Description

8086/80186/80286/80386/80486

(8/16p/32)

This instruction performs a bit-by-bit AND operation on the src and dest operands
and discards the result. The flag bits, however, are set as they would be after an
AND instruction.

Flags
OF DF IF TF SF ZF AF PF CF

lol-I-I-Ixlxl- I-Ixl- 0

Faults
PM RM V8086

12 #SS(O)
13 #GP(O) INT 13 #GP(O)
14 #PF(ec) #PF(ec)
17 #AC(O) #AC(O)

Examples
TEST AL. OFH Check if any bits set in

low nibble of At:
TEST EBX. ECX Test EBX under mask in ECX
TEST WORD PTR[EBP+6]. 8000H Check whether

16-bit integer is negative

318

VERR
Verify Read Access

Syntax
VERR select

Operation
if (accessible(select» & read_access(select» then

ZF ~ 1
else

ZF ~ 0
endif

Legal Forms
select

VERR reg
VERR mem

Description

8: Reference Section

80286/80386/80486

(16)

This instruction sets the ZF bit in EFLAGS to 1 if the current procedure can load the
select operand into DS, ES, FS, or GS and can read a value from the memory seg­
ment without causing a privilege violation.

If the selector is for a descriptor that is not a memory segment, if the memory segment
is not readable, or if the current procedure does not have a high enough privilege
level to gain access to the segment, VERR clears ZF to o. The VERR instruction does
not generate a fault for referring to a selector that is invalid; however, a fault occurs if
the instruction operand is a memory operand and the operand address is invalid.

Note that this instruction does not check the "present" bit of the deSCriptor, nor does
it check access at the page protection level (D/S and R/W bits of page table entries).

Flags
OF DF IF TF SF ZF AF PF CF

I-I-I-I-I-Ix 1-1-1-1-1-1-1

Faults
PM RM V8086

6 INT6 #UDO
12 #55(0)
13 #GP(O)
14 #PF(ec)
17 #AC(O) #AC(O)

319

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Example
VERR
JZ
STC
LEAVE
RETF

CONTINUE:

320

WORO PTR [EBP+8]
CONTINUE

Check selector on stack
Branch if OK
Set carry flag
And return if selector is invalid

VERW
Verify Write Access

Syntax
VERW select

Operation
if CaccessibleCselect» & write_accessCselect» then

ZF f- 1
else

ZF f- 0
endif

Legal Forms

select
VERW reg
VERW mem

Description

8: Reference Section

80286/80386/80486

(16)

This instruction sets the ZF bit in EFLAGS to 1 if the current procedure can load the
select operand into DS, SS, ES, FS, or GS and can write a value to the memory seg­
ment without causing a privilege violation.

If the selector is for a descriptor that is not a memory segment, if the memory seg­
ment is not writable, or if the current procedure does not have a high enough privi­
lege level to gain access to the segment, VERW clears ZF to O. The VERW
instruction does not generate a fault for referring to a selector that is invalid; how­
ever, a fault occurs if the instruction operand is a memory operand and the operand
address is invalid. ..

Note that this instruction does not check the 'present' bit of the descriptor, nor does
it check access at the page protection level (U/S and R/W bits of page table entries).

Flags

OF DF IF TF SF ZF AF PF CF

I-I-I-I-I-Ixl-I-I-I-I- -I
Faults

PM RM V8086

6 INT6 #UDO
12 #SS(O)
13 #GP(O)
14 #PF(ec)
17 #AC(O) #AC(O)

321

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Example
VERW
JZ
STC
LEAVE
RET

CONTINUE:

322

WORD PTR [EBP+8]
CONTINUE

Check selector on stack
Branch if OK
Set carry flag
And return if selector is invalid

WAIT
Wait Until Not Busy

Syntax
WAIT

Legal Form
WAIT

Description

8086/80186/80286/80386/80486

o

This instruction places the 80386 into an idle state until the BUSY\ pin is inactive. If
the BUSY\ pin is inactive when the instruction executes, no idle occurs. The BUSY\
pin is usually connected to a numeric coprocessor. You should execute this instruc­
tion before any 80386 instruction that will access a value stored by the coprocessor.

If both the TS (task switched) bit in register CRO and the MP (monitor coprocessor)
bit are set, a coprocessor fault occurs. If the ERROR\ pin of the 80386 is active, indi­
cating an unmasked exception on the coprocessor, a math fault occurs.

The 80486 has no BUSY\ pin because the numeric processor is integrated into the
cpu. In the 80486, the WAIT instruction is used to force the floating-point unit to
check for unmasked exceptions, the existence of which will cause a math fault.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-1

Faults
PM

7 #NMO
16 #MFO

Example
FST
WAIT
PUSH
CALL

result

result
fp_print

RM

INT7
INT16

V8086

#NMO
#MFO

Store floating-point result
Wait for coprocessor to finish
Push the result onto the stack
Print the value

323

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

WBINVD
Write-Back and Invalidate Cache

Syntax
WBINVD

Operation
Invalidate cache

Legal Form
WBINVD

Description

80486

o

Internal to the 80486, this instruction is indentical to INVD. However, it causes a
special "write-back" bus cycle to be issued before the external-cache-flush bus
cycle. This allows an external cache to write back its contents to main memory.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-

Faults
None.

Example
WBINVD

324

Invalidate and signal external write-back

8: Reference Section

XADD
Exchange and Add

Syntax

XADD dest, src

Operation

temp f- dest
dest f- temp + src
src f- temp

Legal Forms
dest src

XADD
reg,
reg
XADD mem,

Description

reg

80486

(8/16p/32)

The sum of dest and src is computed and stored into dest. The original value of dest
is stored into src. The flags are set according to the standard rules for an ADD
instruction.

When preceded by th.e LOCK prefix, this instruction is very useful for
multiprocessor semaphore operations.

Flags

OF DF IF TF SF ZF AF PF CF

Faults

PM

12 #SS(O)
13 #GP(O)
14 #PF(ec)
17 #AC(O)

Example
MOV AL,l
XADD sema,AL
JB fail ed

RM

INT 13

VS086

#GP(O)
#PF(ec)
#AC(O)

Semaphore increment value
Increment
Semaphore < 0

325

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

XCHG
Exchange

Syntax
XCHG opl. op2

Operation
temp ~ opl
opl ~ op2
op2 ~ temp

Legal Forms
opl op2

XCHG
XCHG
XCHG

reg.
reg.
memo

Description

reg
mem
reg

8086/80186/80286/80386/80486

(8/16p/32)

This instruction swaps the contents of two operands. If either operand is a memory
operand, the bus LOCK\ signal is held active during the read and write memory
cycles.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-1

Faults
PM

12 #SS(O)
13 #GP(O)
14 #PF(ec)
17 #AC(O)

Examples
EAX. ECX

RM

INT13

XCHG
XCHG AL, [ESI+I0]

326

V8086

#GP(O)
#PF(ec)
#AC(O)

Swap EAX and ECX
Exchange AL with memory

XLATB
Translate Byte

Syntax

XLATB

Operation
AL f- DS:[EBX+AL]

Legal Form
XLATB

Description

8: Reference Section

8086/80186/80286/80386/80486

o

This instruction uses the value of AL as a positive index into a table located at
DS:EBX. It then stores the indexed table byte in AL, replacing the original value.

You can apply a segment override prefix to XLATB so that the table access location
will be at EBX + AL in the specified segment.

Flags
OF DF IF TF SF ZF AF PF CF

1-1-1-1-1-1-1-1-1-1-1-1-

Faults
PM

12 #SS(O)
13 #GP(O)
14 #PF(ec)

Example

LEA
LDS
LES
CLD

L1: LODSB
CS:
XLATB
STOSB
OR
JNZ

RM

INT 13

EBX. A2E_TAB
ESI. SRC
EDI. DESLBUFF

AL. AL
L1

V8086

#GP(O)
#PF(ec)

Load offset of ASCII to EBCDIC table
Load source string pointer
Load destination string pointer
Set DF = 0
Get byte of source string
Assume translate table resides in CS
Translate byte
Store resulting character
Test for NUL character
Loop if not NUL

327

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

XOR
Boolean Exclusive OR

Syntax
XOR dest, src

Operation
dest f- dest " src

Legal Forms

dest src
XOR reg, idata
XOR mem, idata
XOR reg, reg
XOR reg, mem
XOR mem, reg

Description

8086/80186/80286/80386/80486

(8/16p/32)

This instruction performs a bit-by-bit exclusive OR operation on the src and dest
operands, storing the result in the dest operand. The XOR operation is defined as
follows:

0/\0=0
0/\1=1
1/\0=1
1/\1=0
Flags

OF DF IF TF SF ZF AF PF CF

101-1-1-IXIXI-I?I-IXI-lol

Faults
PM

12 #SS(O)
13 #GP(O)
14 #PF(ec)
17 #AC(O)

Examples

XOR
XOR

328

AL. OFFH
EBX, ECX

RM

INT 13

V8086

#GP(O)
#PF(ec)
#AC(O)

Change Os to Is and vice versa in AL
Compute EBX f- EBX " ECX

8: Reference Section

Floating.Point Instruction Set
The floating-point instruction set adds support for arithmetic functions using real
numbers. The 80386 cannot directly execute floating-point instructions. However,
when coupled with the 80387 numeric coprocessor, the instruction set is extended
to include the instructions that are described on the following pages. The 80486
requires no coprocessor, and it can directly execute any instruction marked for
the 80387.

PROCE~RTYPE----+-----------------------------------,
Processors that support
the instruction.

MNEMONIC -------+--.../
Used ~ the assembler to
represent the instruction.

NAME
Name of instruction.

LEGAL FORMS ______ -+-__ ..J

Legal forms of the
instruction.

D~IpnON-----r-..J
Description of the
instruction. mem =

memory operand.

EXCEPTIONS -----------1I---...J

An 'x" in a box
indicates that the
specified exception may
be generated for the
instruction. A "-" in a
box indicates that the
specified exception is not
possible. SF = Stackfault.
PE = Precision exception.
UE = Underflow
exception. OE =

Overflow exception. ZE =

Zero divide exception.
DE = Denormal
exception. IE = Invalid
operation exception.

.. _-
8087/80287/80387

..... IF
fICOM _16 : cOlIIPare (ST •• _16)
f1COM l18li32 ; cOlllpare (ST. 1lell32)
FICOMP _16 ; co.pare (ST 16): pop():
FltCHP ._32 ; cOIIpare CST, IIflm32): pop():

~
The two's complement integer is converted 10 temp real formal: and compared wil:h
the top of stack. Irtbe opcode is FICOMp, the stack is popped after the comparison.

The condkion codes are set in the same manner as those for FCOM.

Exceptions
SF PE VII OE ZE DE IE

Jxi-I-I-I-Ixlxl

.......

~~
~ro~

PICOMPWOIOPl'RIOFO!Hl t't'ti'i
1 0 - 0

EXAMPLE
Each example shows the
80387 stack before and
after execution of the
instruction.

M7

329

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

FABS
Absolute Value

Legal Form
FABS

Description

If (ST < 0) then ST ~ ST * -1

8087/80287/80387

This instruction replaces the original value of the element at the top of stack with its
absolute value.

Exceptions
SF PE UE OE ZE DE IE

I x I - I - I - I - I - - I

Example

Before After

ST -3.71 ST 3.71

FABS

330

FADD
Addition

Legal Forms

FADD
FADD mem32
FADD mem64
FADD ST(n)
FADD ST. ST(n)
FADD ST(n). ST
FADDP ST. ST(n)
FADDP ST(n) . ST

Description

ST(1) ~ ST + ST(1); pop();
ST ~ ST + mem32
ST ~ ST + mem64
ST ~ ST + ST(n)
ST ~ ST + ST(n)
ST(n) ~ ST(n) + ST
ST ~ ST + ST(n); pop();
ST(n) ~ ST(n) + ST; pop();

8: Reference Section

8087/80287/80387

This instruction adds the specified floating-point operands and optionally pops the
top of stack.

If you specify a memory operand, it is converted to temp real (SO-bit) format before
it is added to the top of stack.

If you add a floating-point value to infinity, the result is the original infinity. If you
add two infinities, they must have the same sign, and the result is the same infinity.

Exceptions

SF PE VE OE ZE DE IE

Ixlxlxlxl - Ix xl

Examples

ST
ST (1)

ST(2)

Before

4.66
0.21

13.00

After

ST 4.87

ST (1) 13.00

FADD

331

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

ST
ST(1)

ST(2)

332

Before

4.66
0.21

13.00

ST
ST(1)
ST(2)

FADD ST (2), ST

After

4.66
0.21

17.66

8: Reference Section

FBLD 8087/80287/80387
BeDLoad

Legal Form
FBLD mem80 push(float(mem80»

Description
This instruction converts an 80-hit, 19-digit BCD integer to a temp real and pushes it
onto the stack. If the memory operand is not a valid BCD integer, an undefined
value is pushed onto the stack.

Exceptions
SF PE UE OE ZE DE IE

Ixl-I-I-I-I-I-I
Example

Before After

ST 17.00
102.08 ST ST (1) 102.08

r-----~~----~

FBLD [ESI]

ESI points to 17 BCD.

333

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

FBSTP
BCD Store and Pop

Legal Form
FBSTP mem80

Description

memBO f- BCD(ST); pope);

8087/80287/80387

This instruction rounds the top of stack to an integer, stores in memory in BCD for­
mat, and then pops the stack.

Unlike most arithmetic operations, FBSTP signals the invalid (I) exception if either
operand is a quiet NaN.

Exceptions
SF PE UE OE ZE DE IE

Ixl-I-I-I-I-Ixl
Example

Before After

ST 3.09
ST (1) 1--__ -7.:...;:1"-'.6:.....-_----1 ST -71.6

FBSTP [OA2H]

BCD 3 is stored in memory.

334

FCHS
Change Sign

Legal Form
FCHS

Description

8: Reference Section

8087/80287/80387

ST ~ ST * -1

This instruction complements the sign bit of the top of stack.

Exceptions
SF PE UE OE ZE DE IE

I x I - I - I - I - I - - I

Example

Before After

ST 1023.99 ST -1023.99
ST (l)1--__ -'6=.2:.:,00.:..:;1:.....----i ST (1) 6.2001

~----~~~--~

FCHS

335

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

FCLEX
Clear Exceptions

Legal Forms

FCLEX
FNCLEX

Description

sw ~ SW & 07FOOH
SW ~ SW & 07FOOH

8087/80287/80387

This instruction clears the exception flags in the status word and the busy bit to O.
The FCLEX form of the instruction checks for unmasked exceptions from previous
operations before clearing the status word. The FNCLEX form clears the SW bit
without checking.

Exceptions

SF PE UE OE ZE DE IE

1-1-1-1-1-1- -I

336

8: Reference Section

FCOM 8087/80287/80387

Compare

Legal Forms
FCOM compare ST, ST(1)

FCOM mem32 compare (ST, mem32)
FCOM mem64 compare (ST, mem64)
FCOM ST(n) compare (ST, ST(n))
FCOMP mem32 compare (ST, mem32) ; pop () ;
FCOMP mem64 compare (ST, mem64) ; pop () ;
FCOMP ST(n) compare (ST, ST(n»; pop () ;
FCOMPP compare (ST, ST(1); pop () ; pop();

Description
This instruction performs the function compare (opl, op2) and sets the numeric
condition code according to the result of the comparison. The floating-point stack
is optionally popped once or twice.

The following table shows the condition code settings that result from the compare
function. FCOM considers +0.0 and -0.0 to be equal.

Condition C3 C2 Cl CO

opl > op2 0 0 0
opl < op2 0 0 1
opl = op2 1 0 0
either op is a NaN 1 1 1

The numeric condition codes are arranged in the st.atus word so that C3, C2, and CO
map into the same bit positions as the ZF, PF, and CF bits of the EFLAGS register.
Thus, issuing the following instructions sets the EFLAGS register as if the compare
had been performed on the integer values.

FCOM
FSTSW
SAHF

op
AX

Floating point compare
Store status word to AX
Store AH into flags

You can then use any conditional jump instruction (jE, JNE, JA, JAE, JB, or JBE)
to branch on the result of the compare. You can use JP to test for NaN operands.

Unlike most arithmetic operations, FCOM signals the invalid (1) exception if either
operand is a quiet NaN.

Exceptions
SF PE UE OE ZE DE IE

Ixl-I-I-I-Ixlx

337

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Examples

ST
ST(1)

ST(2)

ST
ST (1)

ST(2)

338

Before

21.0

6.0
0.1114

Before

-21.0

6.0

0.1114

ST
ST(1)

ST(2)

FCOM ST(2)

ST

FCOMPP

After

-21.0

6.0
0.1114

After

0.1114

FCOS
Cosine

Legal Form
FCOS

Description

8: Reference Section

80387

ST ~ cos(ST)

This instruction computes the cosine of the value in radians at the top of stack and
replaces ST with cosine.

The operand processed by FCOS must be a value between ± 263 or the instruction
does not execute and condition code C2 is set to 1. C2 is cleared to 0 if the instruc­
tion is executed.

Exceptions
SF PE UE OE ZE DE IE

Ixlxlxl-I-Ix xl

Example

Before After

ST 0.785399 ST 0.7071...

ST (1) 1--__:-6..:..:.1'---_---1 ST 0) 1--___ -6.:..;.._1 __ ---1

FCOS

339

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

FDECSTP
Decrement Stack Pointer

Legal Form
FDECSTP

Description

TOP +- (TOP - 1) & 07H

8087/80287/80387

This instruction allows you to manipulate the floating-point stack pointer. Issuing
FDECSTP is equivalent to pushing a new value onto the stack, but no value is sup­
plied. The tag registers are not modified.

Exceptions
SF PE UE OE ZE DE IE

1-1-1-1-1-1-1-1

Example

Before After

ST

ST 8.201

ST (1) 1--_~99:..;.9.;.:;..9 __ --I

ST (1) 8.201
~----~~----~

ST (2) 999.9
~--~~~----~

FDECSTP

340

8: Reference Section

FDIV 8087/80287/80387

Division

Legal Forms
FDIV ST(1) ~ ST(1) / ST; pop();

FDIV mem32 ST ~ ST / mem32
FDIV mem64 ST ~ ST / mem64
FDIV ST(n) ST ~ ST / ST(n)

FDIV ST. ST(n) ST ~ ST / ST(n)

FDIV ST(n). ST ST(n) ~ ST(n) / ST
FDIVP ST. ST(n) ST ~ ST / ST(n); pop();

FDIVP ST(n). ST ST(n) ~ ST(n) / ST; pop () ;

Description
This instruction executes a divide operation with the above operands. If you
specify a memory operand, it is converted to temp real (SO-bit) format before the
division is performed. A stack pop operation is performed if specified by the
opcode.

Division by infinity results in O. Infinity divided by a real number results in infinity.
Infinity divided by infinity is not a valid operation.

Exceptions
SF PE UE OE ZE DE IE

Ixlxlxlxlxlxlxl

Examples

ST
ST (1)

ST(2)

Before

4.0
0.4
5.0

FDIV

ST
ST(l)

After

0.1
5.0

341

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

ST
ST(1)
ST(2)

342

Before

4.0
0.4
5.0

ST
ST (1)

ST (2)

FDIV ST(2), ST

After

4.0
0.4
1.25

8: ReleNnce Section

FDIVR 8087/80287/80387

Division Reversed

Legal Forms
FDIVR ST(ll ~ ST / ST(ll: pope):
FDIVR mem32 ST ~ mem32 / ST
FDIVR mem64 ST ~ mem64 / ST
FDIVR ST(n) ST ~ ST(n) / ST
FDIVR ST. ST(n) ST ~ ST(n) / ST
FDIVR ST(n). ST ST(n) ~ ST / ST(n)
FDIVRP ST. ST(n) ST ~ ST(n) / ST: pop():
FDIVRP ST(n). ST ST(n) ~ ST / ST(n): pop ():

Description
This instruction executes a divide operation with the above operands. This instruc­
tion is equivalent to FDIV, but the divisor and dividend operands are exchanged. If
you specify a memory operand, it is converted to temp real (80-bit) format before
the division is performed. A stack pop operation is performed if specified by the
opcode.

Division by infinity results in O. Infinity divided by a real number results in infinity.
Infinity divided by infinity is not a valid operation.

Exceptions
SF PE UE OE ZE DE IE

Ixlxlxlxlxlxlxl

Examples

ST
ST(1)

ST(2)

Before

4.0
0.4
5.0

After

ST 10.0
ST (1) 5.0

FDIVR

343

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

ST

ST (1)

ST (2)

344

Before

4.0
0.4
5.0

ST

ST (1)

ST (2)

FDIVR ST(2), ST

After

4.0
0.4
0.8

FFREE
Free NDP Register

Legal Form
FFREE ST(n)

Description

8087/80287/80387

TW(n) t- UNUSED

This instruction marks the specified stack element as unused by setting the tag
word for the corresponding floating-point register. The stack pointer is not modi­
fied, nor is the actual content of the NDP register.

Exceptions
SF PE UE OE ZE DE IE

1-1-1-1-1-1-1-

Example

ST
ST(1)

ST(2)

Before

190000.3

-7.7
0.001

ST
ST(1)

ST (2)

FFREE ST(1)

After

190000.3
<unused>

0.001

345

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

FIADD
Integer Addition

Legal Forms
FIADD mem16
FIADD mem32

Description

ST f- ST + float(mem16)
ST f- ST + float(mem32)

8087/80287/80387

This instruction converts the two's complement integer at the specified address to
temp real format and adds it to the top of stack. Other than the difference in
operand type, this instruction is equivalent to FADD.

Exceptions

SF PE UE OE ZE DE IE

Ixlxlxlxl-Ixlxl
Example

Before After

ST 17.6 ST -35.2
ST (1) 0.333

r---------~--~
ST (1) 0.333

r-------~~--~

FIADD WORD PTR [ECX]

ECX points to integer -2.

346

FICOM
Integer Compare

Legal Forms
FICOM mem16
FICOM mem32
FI COMP mem16
FICOMP mem32

Description

compare (ST, mem16)
compare (ST, mem32)
compare (ST, mem16); popel;
compare (ST, mem32); popel;

8: Reference Section

8087/80287/80387

The two's complementinteger is converted to temp real format and compared with
the top of stack. If the opcode is FICOMP, the stack is popped after the comparison.

The condition codes are set in the same manner as those for FCOM.

Exceptions
SF PE UE OE ZE DE IE

Ixl-I-I-I-Ixlxl
Example

Before After

ST 6.0

ST (1) f-----=1:..::::3~79:..=2.:..::.2"-'97...::.3=_1 _ ___1 ST 13792.29731

FICOMP WORD PTR [OFC6H]
C 3 C 2 C 1 Co

11 I 0 I -10 I
Memory pointer is integer 6.

347

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

FIDIV
Integer Division

Legal Forms
FIDIV mem16
FIDIV mem32

Descri.,tion

ST +- ST / real(memI6)
ST +- ST / real(mem32)

8087/80287/80387

This instruction fetches the two's complement integer from memory, converts it to
temp real format, and uses it as a divisor of the top of stack. The results generated
by this instruction are the same as those generated by the FDIV instruction.

Exceptions
SF PE UE OE ZE DE IE

Ixlxlxlxlxlxlxl

Example

Before After

ST 1.0 ST -0.25
ST (1) 1--___ 2_.2 ___ -1 ST (1) 1--__;2=.;..=-2 __ ---I

FIDIV DWORD PTR [EBP+ 16]

Memory pointer is integer -4.

348

FIDIVR
Integer Division Reversed

Legal Forms
FIDIVR mem16
FIDIVR mem32

Description

5T f- real (mem16) / 5T
5T f- real (mem32) / 5T

8: Reference Section

8087/80287/80387

This instruction converts the two's complement integer at the specified memory
location to temp real format and divides it by the top of stack. The results generated
by this instruction are the same as those generated by the FDIVR instruction.

Exceptions
SF FE UE OE ZE DE IE

Ixlxlxlxlxlxlxl

Example

Before After

ST 1.0 ST -4.0

ST (1) 1-__ --'2::.;..2::..-__ --; ST (1) 2.2
~-~-==---~

FIDIVR DWORD PTR [EBP+16)

Memory pointer is integer -4.

349

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

FILD
Integer Load

Legal Forms
FILD
FILD
FILD

mem16
mem32
mem64

Description

push (float (mem16»
push (float (mem32»
push (float (mem64»

8087/80287/80387

This instruction converts a two's complement integer to temp real format and
pushes the value onto the 80387 stack.

Exceptions
SF PE UE OE ZE DE IE

Ixl-I-I-I-I-I-
Example

Before After

ST 666.0
ST 1.209 ST (1) f--__ ..::.:1..=.:20::.::::9 __ -l

FILD QWORD PTR [EAX]

Memory pointer is integer 666.

350

FIMUL
Integer Multiplication

Legal Forms
FIMUL mem16
FIMUL mem32

Description

ST ~ ST * real(mem16)
ST ~ ST * real(mem32)

8: Reference Section

8087/80287/80387

This instruction converts the two's complement integer at the specified memory
location to temp real format and multiplies it by the top of stack. The results of this
instruction are identical to those obtained by FMUL.

Exceptions
SF PE DE OE ZE DE IE

Ixlxlxlxl - Ixlxl

Example

Before

ST -0.04

ST (1) f--___ 1-'-7 . ..:....9 __ ---I

After

ST 0.16
17.9 ST(l)

f--------------~

FlMUL WORD PTR [ESI+EAX]

Memory pointer is integer -4.

351

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

FINCSTP 8087/80287/80387

Increment Stack Pointer

Legal Forms
FINCSTP TOP f- (TOP + 1) & 07H

Description
This instruction increments the TOP field in the floating-point status word. The
contents of the floating-point register previously at the top of stack and the regis­
ter's associated tag word are not affected.

Exceptions
SF PE DE OE ZE DE IE

1-1-1-1-1-1-1-

Example

Before After

ST 72.32 ST (7) 1--____ .:....:72=.:,.3:::..:2=--__ ---l
ST (1) 32.72

~----~------~
ST 32.72

FINCSTP

352

8: Reference s.cUon

FINIT 8087/80287/80387

Initiallze NDP

Legal Forms
FINIT
FNINIT

Description

CW f- 037FH; SW f- SW & 4700H; TW f- OFFFFH
CW f- 037FH; SW f- SW & 4700H; TW f- OFFFFH

This instruction sets the FPU state to its default value. All registers are marked
unused, all exceptions are masked, rounding control is set to nearest, and the
operating mode is set to double-precision.

The FINIT instruction tests for any unmasked exception before clearing the NDP
state, unlike FNINIT, which does not. Consequently, the first floating-point instruc­
tion of an application should be FNINIT.

Exceptions

SF PEUE OE ZE DE IE

I - I - I - I - I - I - - I

353

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

FIST 8087/80287/80387

Integer Store

Legal Forms

FIST mem16 mem16 ~ int(ST)

FIST mem32 mem32 ~ int(ST)
FISTP mem16 mem16 ~ int(ST); pop() ;

FISTP mem32 mem32 ~ int(ST); pope);

FISTP mem64 mem64 ~ int(ST); pop () ;

Description
This instruction rounds the current top of stack to an integer according to the con­
trol bits and stores the value in the specified operand. If the opcode is FISTP, the
stack is popped after the store operation. Note that the sign of a floating-point 0 is
lost upon conversion to the two's complement integer format.

Two differences exist between FIST and FISTP. The FISTP instruction, which pops
the stack after the store operation, can store a 64-bit integer; FIST cannot. The FIST
instruction generates an invalid operation exception if the top of stack is a quiet
NaN; FISTP does not.

Exceptions
SF PE UE OE ZE DE IE

Ixlxl-I-I-I-Ix

Example

Before After

ST 32.1 ST 32.1
ST (1) 456.78

~----~~~----~ ST (1) f--_---.:4"'-5.:;.:6 . ..:..;78"---_---l

FIST DWORD PTR [EBP+42]

Integer 32 stored into memory.

354

FISUB
Integer Subtraction

Legal Forms
FrSUB mem16
FrSUB mem32

Description

ST t- ST - real(mem16)
ST t- ST - real(mem32)

8: Reference Section

8087/80287/80387

This instruction converts the two's complement integer at the specified memory
location to temp real format and subtracts it from the top of stack. The results of this
instruction are identical to those obtained by FSUB.

Exceptions
SF PE DE OE ZE DE IE

Ixlxlxlxl-Ix xl
Example

Before After

ST 36.99 ST 33.99
ST (1) 0.6

r-------~------~
ST (1) 0.6

r-------~------~

FISUB WORD PTR [A72H)

Memory pointer is integer 3.

355

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

FISUBR
Integer Subtraction Reversed

Legal Forms

FISUBR mem16
FISUBR mem32

Description

ST f- real(mem16) - ST
ST f- real(mem32) - ST

8087/80287/80387

This instruction converts the two's complement integer at the specified memory
location to temp real format and subtracts the top of stack from it. The results of this
instruction are identical to those obtained by FSUBR.

Exceptions

SF PE DE OE ZE DE IE

Ixlxlxlxl - Ix xl

Example

Before After

ST 36.99 ST -33.99
ST (1) 1--___ 0._6 __ ---1 ST (1) 1---___ O:::.;..6:::...-__ -t

FISUBR WORD PTR [A72H]

Memory pointer is integer 3.

356

8: Ref_. Section

FLD 8087/80287/80387

Load Real

Legal Forms
FLO
FLO
FLO
FLO

mem32
mem64
mem80
ST(n)

Description

push(mem32)
push(mem64)
push(mem80)
push(ST(n))

This instruction pushes a copy of the specified operand onto the floating-point
stack. If you specify a 32-bit or 64-bit floating-point memory operand, it is con­
verted to temp real format before being stored.

If the operand is a single- or double-precision value, the FPU might generate a
denormal exception. A denormal exception is not generated by a value already in
temp real format.

Exceptions
SF PE UE OE ZE DE IE

Ixl-I-I-I-Ixlxl

Example

Before After

ST 6.1

ST 19362.0

ST (1) 1--__ --'-7._11 __ ---1

ST (1) 1--_1"'"'9::..36=2:.:.;:.0 __ --;
ST (2) 7.11

I----~~--~

FLD DWORD PTR [EDX]

Memory pointer is short real 6.1.

357

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

FLDconsf
Load Constant

Legal Forms
FL01
FLOL2E
FLOL2T
FLOLG2
FLOLN2
FLOPI
FLOZ

Description

push(1.0)
push(l og2(e»
push(log2(10»
push(log10(2)}
push(ln(2»
push(PI)
push(+O.O)

8087/80287/80387

This instruction pushes the constant value specified by the opcode onto the stack.
The function In stands for log base e.

Exceptions
SF PE UE OE ZE DE IE

Ixl-I-I-I-I-I-
Example

Before After

ST 3.141596 ...
ST 4.0 ST (1) f--__ -'4c:..::.O'--_--i

FLDPI

358

FLDCW
Load Control Word

Legal Form
FLDCW mem16

Description

8: Reference Section

8087/80287/80387

CW f- mem16

This instruction loads a new value for the control word from memory. FLDCW can
unmask previously masked exceptions, triggering an unmasked exception.

Exceptions
SF PE VE OE ZE DE IE

JxJxJxJxJxJx xJ

359

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

FLDENV
Load Environment

Legal Form

FLDENV memp

Description

NDP +- memp

8087/80287/80387

This instruction loads the 28-byte block pointed to by memp into the environment
registers of the FPU. The memory operand contains a new control word, status
word, tag word, and error block. The memory format for the environment is shown
in Figure 8-1.

31 16 15
Reserved Control word
Reserved Status word
Reserved Tag word

Error offset (ElP)
Reserved Error selector (CS)

Data operand offset
Reserved Data selector

32-bit format

15

Control word
Status word
Tag word

Instruction pointer o .

IP 16191

o Byte offset

o
4
8

12
16
20
24

o Byte offset

o
2

4

. 15 6
8

Operand pointero. 15 10

OP16191 12

16-bit format

Figure 8-1. Floating-paint environment.

Loading a new status word and control word can cause an unmasked exception.

Exceptions
SF PE UE OE ZE DE IE

Ixlxlxlxlxlx x

360

FMUL
Multiplication

Legal Forms
FMUL
FMUL mem32
FMUL mem64
FMUL ST(n)
FMUL ST. ST(n)
FMUL ST(n). ST
FMULP ST. ST(n)
FMULP ST(n). ST

Description

ST(l) f- ST(l) * ST; pop();
ST f- ST * mem32
ST f- ST * mem64
ST f- ST * ST(n)
ST f- ST * ST(n)
ST(n) f- ST(n) * ST
ST f- ST * ST(n); pop();
ST(n) f- ST(n) * ST; pop();

8: Reference Section

8087/80287/80387

This instruction multiplies the specified operands and stores them as indicated
above. If you specify 32-bit or 64-bit memory operands, they are converted to temp
real format before the multiplication takes place. If the opcode specifies, the stack is
popped after the operation.

Multiplying any value other than 0 by infinity results in infinity. Multiplying 0 by in­
finity is an invalid operation.

Exceptions
SF PE UE OE ZE DE IE

IxlxlxJxl-lx xl
Examples

ST
ST(1)

ST (2)

Before

2.0

0.01

7.6

After

ST 0.02
ST (1) 7.6

FMUL

361

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

ST

ST (1)

ST (2)

362

Before

2.0

0.01

7.6

FMUL ST(1)

ST
ST (1)

ST (2)

After

0.02

0.Q1

7.6

FNOP
No Operation

Legal Form
FNOP

Description

8087/80287/80387

FNOP is an alias for the FST ST, ST instruction. It does nothing.

Exceptions
SF PE DE OE ZE DE IE

1-1-1-1-1-1- -I

Example

Before After

ST 3.3 ST 3.3
ST (1) 19.6

r-----~~----~
ST (1) 19.6

r-----~------~

FNOP

363

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

FPATAN 8087/80287/80387

Partial Arctangent

Legal Form
FPATAN ST(l) f- atan(ST(l) / ST); pop();

Description
This instruction computes the arctangent in radians of ST(1) + ST. The mnemonic
"partial arctangent" is inherited from earlier NDPs, which placed restrictions on the
values of ST and ST(1). These values are not restricted on the 80387 or 80486.

Exceptions
SF PE UE OE ZE DE IE

Ixlxlxl-I-Ixlxl
Example

Before After

ST 2.0 ST 0.4636 ...
ST (1) 1--__ ...:.1.=0 __ ---1 ST (1) 1--__::;1=.0 __ ---1

FPATAN

364

FPREM
Partial Remainder

Legal Form
FPREM

Description

8: Reference Section

8087/80287/80387

ST ~ remainder (ST / 5T(I»

This instruction uses repeated subtractions to compute the remainder of ST divided
by ST(l). Because this operation could require a large number of iterations (during
which time the NOP would be inaccessible), the instruction halts after producing
a partial remainder. The value in ST is reduced by a factor of up to 264 in a Single
iteration.

If the remainder is a partial value (that is, the operation does not complete), the C2
status bit is set to 1. If the remainder is less than the value of ST(1), the operation is
complete and bit C2 is cleared to O. By testing the value of C2, the FPREM instruc­
tion may be executed repeatedly until the remainder operation yields an exact
result. Additionally, when the instruction is complete (C2 = 0), the three least signifi­
cant bits of the quotient of ST + ST(l) can be computed by the following formula:

Q = co X 4 + C3 X 2 + C1

where CO, C1, and C3 are the remaining status bits.

The FPREM instruction reduces operands for the transcendental functions to legal
values. For example, the operand to F2XM1 must be -1 ~ ST ~ 1. FPREM produces an
exact result, and the precision control and rounding control bits are ignored during
execution.

The FPREM1 instruction produces the IEEE-754 standard partial remainder value,
which may be different from FPREM when there are two integers equally close to
ST + ST(1). FPREM rounds toward 0, and FPREM1 chooses the even value.

Exceptions
SF PE UE OE ZE DE IE

1-1-1-1-1-1- -I

365

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Example

Before After

ST 6 ST 2
ST (1) 1--___ 4-=---__ ---l ST (1) 1--__ ---=-4 __ -I

FPREM C2=O

366

FPREM1
IEEE Partial Remainder

Legal Form
FPREMI

Description

ST f- remainder (ST + ST(l»

8: Reference Section

80387

This instruction uses repeated subtractions to compute the remainder of ST divided
by STO). Because this operation could require a large number of iterations (during
which time the NDP would be inaccessible), the instruction halts after producing
a partial remainder. The value in ST is reduced by a factor of up to 264 in a single
iteration.

If the remainder is a partial value (that is, the operation is not complete), th6 C2
status bit is set to 1. If the remainder is less than the value of STO), the operation is
complete and bit C2 is cleared to 0. By testing the value of C2, the FPREM1 instruc­
tion may be executed repeatedly until the remainder operations yield an exact
result. Additionally, when the instruction is complete (C2 = 0), the three least signifi­
cant bits of the quotient of ST + STO) can be computed by the following formula:

Q = co x 4 + C3 x 2 + C1

where CO, C1, and C3 are the remaining status bits.

The FPREM1 instruction reduces operands for the transcendental functions of the
80387 to legal values. For example, the operand to F2XM1 must be -1 ::; ST ::; 1.
FPREM1 always produces an exact result, and the precision control and rounding
control bits are ignored during execution.

The FPREM1 instruction produces the IEEE-754 standard partial remainder value,
which may be different from FPREM when there are two integers equally close to
ST + ST(1). FPREM always rounds toward 0, and FPREM1 always chooses the even
value.

Exceptions
SF PE UE OE ZE DE IE

xl - xl - I - Ix xl

367

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

Example

Before After

ST 6.0 ST 2.0

ST (1) 1----.....:4;.:..::.°'------1 ST (1) 1--__:;4:..:;:..0 __ ---1

FPREMI C2=0

368

8: Reference Section

FPTAN 8087/80287/80387

Partial Tangent

Legal Form
FPTAN

Description

5T f--- tan(5T); push(l.O);

This instruction computes the tangent of the top of stack and arranges the NDP
stack such that:

ST(1) = tan (original ST)
ST

The denominator is always 1.0 after the FPTAN instruction.

The operand value must be a positive number that is expressed in radians less than
PI x 262 , or no operation takes place and the C2 condition code bit is set to 1. If the
input operand is legal, C2 is cleared to O.

Exceptions
SF PE UE OE ZE DE IE

Ixlxlxl-I-Ix xl

Example

Before After

ST 1.0

ST 0.78539 ...
ST (1) t--__ ---'-6_.2 ___ -i

ST (1) 1--__ ----':..:1..0:..° __ --1
ST (2) 6.2

~------~------~

FPTAN

369

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

FRNDINT
Round to Integer

Legal Form
FRNDINT

Description

ST ~ int(ST)

8087/80287/80387

This instruction rounds the value at the top of stack to an integer based on the set­
tings of the round control (RC) field in the control word. See Chapter 2 for a discus­
sion of the NDP rounding modes.

Exceptions
SF PE DE OE ZE DE IE

Ixlxl-I-I-lxJxl
Example

Before After

ST 1.06 ST 1.0
ST (1) 1--__ ..::..60;;.;...1=--__ -1 ST (1) 1--__ ..;;..60;;.;...1"'--__ -1

FRNDINT

370

FRSTOR
Restore NDP State

Legal Form
FRSTOR memp

Description

8: Reference Section

8087/80287/80387

NDP f- memp

This instruction loads the entire floating-point processor state from the 108-byte
block of data beginning at memp. Use the FSAVE instruction to store the NDP state.
Figure 8-2 shows the format of the state block.

Environment
portion

Register
portion

31

ST(l)o .. 15

ST(3)o .. 15

ST(S)o .. 15

ST(7)o .. 15

IS

Control word

Status word

Tag word

Instruction pointer o .. 15

IP I 6 .. 19 1

Operand pointero .. 15

OPI 6 .. 191

ST(O)o . .31

ST(0)32 .. 63

ST(O)64 .. 79

ST(1)16 . .47

ST(I)48 .. 79

ST(2)o .. 31

ST(2)32 .. 63

ST(2)64 .. 79

ST(3)16 .. 47

ST(3)48 .. 79

ST(4)o .. 31

ST(4)32 .. 63

ST(4)64 .. 79

. ST(S)16 . .47

ST(S)48 .. 79

ST(6)o .. 31

ST(6)32 .. 63

ST(6)64 .. 79

ST(7)16 . .47

ST(7)48 .. 79

16-bit format (real & V86 modes)

Figure 8-2. NDP state.

o Byte offset

0

2

4

6

8

10

12

14

18

22

26

30

34

38

42

46

50

54

58

62

66

70

74

78

82

86

90

(continued)

371

MICROSOFT'~ 80388/80488 PROGRAMMING GUIDI

FIGURE 8-2. continued
31

Environment
portion

Reserved

Reserved

Reserved

16 15
Control word

Status word

Tag word

Error offset (EIP)

Register
portion

Reserved Error selector (CS)

Data operand offset

Reserved Data selector

ST(O)o .. 31

ST(0)32 .. 63

ST(1)o .. 15 ST(O)64 .. 79

ST(1)16 . .47

ST(1)48 .. 79

ST(2)0 . .31

ST(2)32 .. 63

ST(3)0 .. 15 ST(2)64 .. 79

ST(3)16 . .47

ST(3)48 .. 79

ST(4) 0 .. 31

ST(4)32 .. 63

ST(5)0 .. 15 ST(4)64 .. 79

ST(5)16 . .47

ST(5)48 .. 79

ST(6)0 . .31

ST(6)32 .. 63

ST(7)o .. 15 ST(6)64 .. 79

ST(7)16 . .47

ST(7)48 .. 79

32-bit format

o Byte offset

o
4
8

12
16
20

24

28
32

36

40

44

48
52

56
60

64

68
72
76
80
84
88
92
96

100
104

New unmasked exceptions might be triggered because a new status word and con­
trol word are loaded.

Exceptions
SF PE UE OE ZE DE IE

Ixlxlxlxlxlxlxl

372

FSAVE
Save NDP State

Legal Forms
FSAVE memp
FNSAVE memp

Description

memp f- NDP
memp f- NDP

8: Reference Section

8087/80287/80387

This instruction stores the complete processor state of the floating-point unit in
memory beginning at location memp. Figure 8-3 shows the format of the state block.

Environment
portion

Register
portion

31

ST(1)O.15

ST(3)O.15

ST(5)OI5

ST(7)o .. 15

15 o
Control word

Status word

Tag word

Instruction pointer o .. 15

IP 16 .. 191
Operand pointer o .. 15

OP16 .. 191

ST(0)O.31

ST(0)32 .. 63

ST(0)6479

ST(1)16.47

ST(1)48 .. 79

ST(2) O .. 31

ST(2)32 .. 63

ST(2)64 .. 79

ST(3)16.47

ST(3)48 .. 79

ST(4) 0 31

ST(4)32 .. 63

ST(4)6479

ST(5)16.47

ST(5)48.79

ST(6) 0 31

ST(6)32.63

ST(6)6479

ST(7)16.47

ST(7)48.79

16-bit format (real & v86 modes)

Figure 8-3. NDP state.

Byte offset

0

2

4

6

8

10

12

14

18

22

26

30

34

38

42

46

50

54

58

62

66

70

74

78

82

86

90

(continued)

373

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Figure 8-3. continued

31

Environment
portion

Reserved

Reserved

Reserved

16 15
Control word

Status word

Tag word

Error offset (EIP)

Register
portion

Reserved Error selector (CS)

Data operand offset

Reserved Data selector

ST(O) 0 31

ST(0)32 .. 63

ST(l)o .15 ST(0)64.79

ST(1\6.47

ST(1)48 .. 79

ST(2) 0.31

ST(2)32 .. 63

ST(3)0.15 ST(2)64 .79

ST(3)16 .47

ST(3)48 .79

ST(4) 0 .31

ST(4)3263

ST(5)015 ST(4)6479

ST(S)16 . .47

ST(5)48 .. 79
ST(6) 0 31

ST(6)32 .63

ST(7)015 ST(6)6479

ST(7)16 . .47

ST(7)48 .. 79

32-bit format

o Byte offset

o
4
8

12
16
20

24

28

32

36
40

44
48
52

56
60

64

68
72
76
80
84
88
92
96

100

104

After the FSAVE is completed, the NDP state is set to the initialized state, as if an
FNINIT instruction had been executed.

The FSAVE form of the instruction tests for any unmasked exceptions before exe­
cuting the save, while FSAVE does not. If you use FSAVE, pendi'ng exceptions are re­
instated when the state block is loaded by an FRSTOR instruction. FSAVE is not
executed until previous floating-point instructions complete.

Exceptions
SF PE UE OE ZE DE IE

1-1-1-1-1-1- -I

374

FSCALE
Scale by 2 n

Legal Form
FSCALE

Description

8: Reterence Section

8087/80287/80387

ST f- ST * 2int (ST(l))

This instruction scales the top of stack value by the power of 2 in ST(l). If the value
in ST(1) is not an integer, it is "chopped" before being used as an exponent. Chop­
ping generates the nearest integer smaller than the original value.

The NDP does not perform a multiply operation, but it uses the identity (x x 2n) (1.0
x 2m) = X X 2n+m and adds the integral portion of ST(1) to the exponent of ST.

Exceptions
SF PE UE OE ZE DE IE

Ixlxlxlxl - Ix xl

Example

ST
ST (1)

ST (2)

Before

1.0

3.01

92.6

FSCALE

ST
ST (1)

ST(2)

After

8.0

3.01

92.6

375

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

FSETPM
Set Protected Mode

Legal Form
FSETPM

Description

80287/80387

This instruction performs no operation on the 80387 or 80486. It is required on the
80287 to signal that the CPU is entering protected mode and is supported for com­
patibility only.

Exceptions
SF PE UE OE ZE DE IE

1-1- -1-1-1- -I

376

FSIN
Sine

Legal Form
FSIN

Description

8: Ref.renc. SectIon

80387

ST f- sin(ST>;

This instruction computes the sine of the top of stack and stores the result in ST.
The value in ST is assumed to be in radians.

The input operand to FSIN must be a value such that I ST I < 263, or no operation
takes place and the C2 condition code is set to 1. If the operand is a legal value, C2
is cleared to O.

Exceptions
SF PE UE OE ZE DE IE

Ixlxlxl-I-Ixlxl
Example

Before After

ST 3.14159 ... ST 0.0

ST (1) 1--__ 8_8_.6 __ ---1 ST (1) 1--_----'8:...:8"'"".6 __ ---1

FSIN

377

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

FSINCOS
Sine and Cosine

Legal Form
FSINCOS

Description

temp +- ST; ST +- sin(temp)
push(cos(temp»

80387

This instruction computes both the sine and ·cosine of the top of stack, although the
values might be less precise than those generated by FSIN and Fcas. The value in
ST is assumed to be in radians.

The input operand to FSINCaS must be a value such that I ST I < 263 or no opera­
tion takes place and the C2 condition code is set to 1. If the operand is a legal value,
C2 is cleared to 0, the top of stack is the cosine value, and ST(1) contains the sine.

Exceptions
SF PE UE OE ZE DE IE

Ixlxlxl-I-Ixlxl
Example

Before After

ST -1.0

ST 3.14159 ...

ST (1) 1--_---'8;:.::8"".6'-_--i

ST (1) 1--___ 0_.°-'--__ --1

ST (2) 1--_---.:8=8.:..:;.6 __ --i

FSINCOS

378

FSQRT
Square Root

Legal Form
FSQRT

Description

8: Reference Section

8087/80287/80387

ST +- sqrt(ST)

This instruction replaces the top of stack with the square root of the original value.
Taking the square root of a negative value results in an invalid operation, except
that the square root of negative zero (-0.0) is defined as -0.0. The square root of
infinity (positive) is defined to be infinity.

Exceptions
SF PE DE OE ZE DE IE

I x I x I x I - I - I x I x I
Example

Before After

ST 2.0 ST 1.4142 ...

ST (1)f--__ ..;..2....;1..:::..3 -----I ST (1) 21.3
f-----~----~

FSQRT

379

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

FST 8087/80287/80387

Store Floating Point

Legal Forms

FST mem32 mem32 f- ST
FST mem64 mem64 f- ST
FST ST(n) ST(n) f- ST
FSTP mem32 mem32 f- ST; pope) ;
FSTP mem64 mem64 f- ST; pop () ;
FSTP mem80 mem80 f- ST; pope);
FSTP ST(n) ST(n) f- ST; pope);

Description
This instruction stores the top of stack in the designated destination. If the opcode
is FSTP, the stack top is popped (discarded) after the store operation. If the destina­
tion is a 32-bit or 64-bit real memory operand, the top of stack is rounded according
to the rounding control (Re) bits of the control word.

Note that the FSTP form of this instruction can store a temp real (SO-bit) value,
while the FST form cannot.

Exceptions
SF PE UE OE ZE DE IE

Ixlxlxlxl - Ixlxl

Example

Before After

ST 69.0 ST 69.0

ST (1) f--_---'9c.::;8.:.:;:.6 __ ---I ST (1) 98.6
~----~~----~

FST QWORD PTR [ESI]

Memory pointer is long real 69.0.

380

FSTCW
Store Control Word

Legal Forms
FSTCW mem16
FNSTCW mem16

Description

mem16 f- CW
mem16 f- CW

8: Reference Section

8087/80287/80387

This instruction stores the contents of the control word (CW) register in memory.
The FSTCW form of the instruction checks for unmasked exceptions before the
control word is stored, while FNSTCW does not.

Exceptions
SF PE UE OE ZE DE IE

1-1-1-1-1-1- -I

381

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

FSTENV
Store Environment

Legal Forms
FSTENV memp
FNSTENV memp

Description

memp f- env(NDP)
memp f- env(NDP)

8087/80287/80387

This instruction stores the contents of the floating-point environment registers (CW,
SW, TW, and error pointers) in memory beginning at memp. Figure 8-4 outlines the
format of the 28-byte environment block.

31 16 15
ReselVed Control word
ReselVed Status word
ReselVed Tag word

Error offset (EIP)
ReselVed Error selector (CS)

Data operand offset
ReselVed Data selector

32-bit format

15

Control word
Status word
Tag word

o Byte offset

o
4
8

12
16
20
24

o Byte offset

o
2

4
Instruction pointero .. 15 6

IP I 6 .. 191 8

Operand pointero .. 15 10

OPI 6 .. 191 12

16-bit format

Figure 8-4. NDP environment.

The FSTENV form of the instruction checks for unmasked exceptions before the
environment is stored, while FNSTENV does not. If unmasked exceptions are pend­
ing before FNSTENV is executed, they are reactivated if the environment block is
loaded with FLDENV.

Exceptions
SF PE UE OE ZE DE IE

-1-1-1-1-1- -I

382

FSTSW 8087/80287/80387

Store Status Word

Legal Forms
FSTSW AX AX t- SW
FSTSW mem16 mem16 t- SW
FNSTSW AX AX t- SW
FNSTSW mem16 mem16 t- SW

Description
This instruction stores the contents of the NDP status word in memory or in the AX
register. The FSTSW form of the instruction checks for unmasked exceptions before
the control word is stored, while FNSTSW does not.

Exceptions
SF PE DE OE ZE DE IE

I - I - I - I - I - I - - I

383

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

FSUB
Subtraction

Legal Forms
FSUB
FSUB
FSUB
FSUB
FSUB
FSUB
FSUBP
FSUBP

mem32
mem64
ST(n)
ST. ST(n)
ST(n). ST
ST. ST(n)
ST(n). ST

Description

ST(l) f- ST - ST(l): pope):
ST f- ST - mem32
ST f- ST - mem64
ST f- ST - 5T(n)
ST f- ST - ST(n)
ST(n) f- ST(n) - ST
ST f- 5T - ST(n): pope):
ST(n) f- ST(n) - ST: pop():

8087/80287/80387

This instruction subtracts the specified operands and stores the result on the stack
as shown above. Optionally, the top-of-stack is also popped.

If you specify a 32-bit or 64-bit real memory operand, it is converted to temp real
format before it is subtracted from ST.

If any real value is subtracted from infinity or infinity is subtracted from any real
value, the result is infinity. Subtracting two infinities of the same sign is an invalid
operation.

Exceptions
SF PE UE OE ZE DE IE

Ixlxlxlxl-Ixlxl
Examples

ST
ST(1)

ST(2)

384

Before

9.81
6.3

72.0

FSUB

ST
ST(1)

After

3.51
72.0

ST

ST (1)

ST (2)

Before

9.81
6.3

72.0

ST
ST(1)

ST(2)

FSUB DWORD PTR [ESI+4)

Memory pointer is short real 2.2.

8: Reference Section

After

7.61
6.3

72.0

385

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

FSUBR
Subtraction Reversed

Legal Forms
FSUBR
FSUBR mem32
FSUBR mem64
FSUBR ST(n)
FSUBR ST. ST(n)
FSUBR ST(n). ST
FSUBRP ST. ST(n)
FSUBRP ST(n). ST

Description

ST(U +- ST(U - ST: pop():
ST +- mem32 - ST
ST +- mem64 - ST
ST +- ST(n) - ST
ST +- ST(n) - ST
ST(n) +- ST - ST(n)
ST +- ST(n) - ST: pop():
ST(n) +- ST - ST(n): pope):

8087/80287/80387

This instruction subtracts the specified operands and stores the result on the stack
as shown above. This instruction is equivalent to FSUB except that the subtrahend
and minuend are exchanged. Optionally, the top of stack is also popped .

. If you specify a 32-bit or 64-bit real memory operand, it is converted to temp real
format before it is subtracted from ST.

If any real value is subtracted from infinity or infinity is subtracted from any real
value, the result is infinity. Subtracting two infinities of the same sign is an invalid
operation.

Exceptions
SF PE UE OE ZE DE IE

I x I x I x I x I - I x I x I

Examples

ST
ST(1)

ST(2)

386

Before

9.81

6.3
72.0

FSUBR

ST
ST(1)

After

-3.51
72.0

ST
ST(1)
ST(2)

Before

9.81
6.3

72.0

ST
ST(1)
ST(2)

FSUBR DWORD PTR [ESI+4)

Memory pointer is short real 2.2.

8: Reference Section

After

-7.61
6.3

72.0

387

MiCROSOFT'S 80388/80486 PROGRAMMING GUIDE

FTST
Test for Zero

Legal Form
FTST

Description

8087/80287/80387

compare (ST. 0.0)

This instruction compares the top of stack with 0.0 and sets the floating-point con­
dition codes according to the results of the comparison.

The following table shows the condition code settings that result from the com­
parison function. FTST considers +0.0 and -0.0 to be equal.

ConditUm C3 C2 Cl CO

ST>O.O 0 0 0
ST< 0.0 0 0 1
ST= 0.0 1 0 0
STis a NaN 1 1 1

The condition codes are arranged in the status word so that C3, C2, and CO map into
the same bit positions as the ZF, PF, and CF bits of the EFLAGS register. Thus, issu­
ing the following instructions sets the EFLAGS register as if the comparison had
been performed on integer values:

FTST
FSTSW
SAHF

AX
Floating-paint compare
Store status word to AX
Store AH into flags

You can then use any conditional jump instruction ClE,]NE,]A,]AE,]B, or]BE) to
branch on the result of the comparison. Use]P to test whether ST is a NaN.

Unlike most arithmetic operations, FTST will signal the Invalid (IE) exception if ST
is a quiet NaN.

Exceptions
SF PE UE OE ZE DE IE

Ixl-I-I-I-Ixlxl

388

8: Reference Section

Example

Before After

ST -37.37 ST -37.37
ST (1) 1.0

r-----~~----~
ST (1) 1--____ --:c1...:,.0 __ ----!

FTST
C3 C2 C1 Co

I ° I 01 - 11 I

389

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

FUCOM 80387

Unordered Compare

Legal Forms
FUCOM compare (ST. ST(1)

FUCOM mem32 compare (ST. mem32)
FUCOM mem64 compare (ST. mem64)
FUCOM ST(n) compare (ST. ST(n))
FUCOMP compare (ST. ST(1»; pop()
FUCOMP mem32 compare (ST. mem32) ; pop() ;
FUCOMP mem64 compare (ST. mem64) ; pop();
FUCOMP ST(n) compare (ST. ST(n» ; pop() ;
FUCOMPP compare (ST. ST(1»; pop () ; pop();

Description
This instruction is identical to FCOM except that no exceptions are signaled if either
operand in the compare function is a quiet NaN, (the comparison is unordered).
FUCOM executes the function compare (apI, op2) and sets the floating-point con­
dition code according to the results of the comparison. The stack is optionally
popped once or twice.

The following table shows the condition code settings that result from the compare
function. FUCOM considers +0.0 and -0.0 to be equal.

Condition C3 C2 Cl CO

opl > op2 0 0 0
opl < op2 0 0 1
opl = op2 1 0 0
unordered 1 1 1

(NaN compared)

The condition codes are arranged in the status word so that C3, C2, and CO map into
the same bit positions as the ZF, PF, and CF bits of the EFLAGS register. Thus, the
following instructions set the EFLAGS register flags as if the comparison had been
performed on integer values:

FUCOM
FSTSW
SAHF

op
AX

Floating-point compare
Store status word to AX
Store AH into flags

You can then use any conditional jump instruction (JE,]NE, lA, lAE, lB, or lBE) to
branch on the result of the comparison. Use lP to test for unordered comparison.

390

8: Reterence Section

Exceptions
SF PE UE OE ZE DE IE

IXI-I-I-I-IXIXI

Example

Before After

ST -6.3
ST (1) 7210.0 ST 7210.0

0.1 ST (1) 0.1

FUCOMP ST(2)
C3 C2 C1 Co

10 I 0 I - 11 I

391

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

FWAIT
Wait Until Not Busy

Legal Form
FWAIT

Description

8087/80287/80387

This is an alternative mnemonic for the WAIT instruction, but many assemblers
allow you to encode it as FWAIT because it relates to the NDP. (See "WAIT" earlier
in this chapter.)

Exceptions
SF PE UE OE ZE DE IE

1-1-1-1-1-1- -I

392

FXAM
Examine Top of Stack

Legal Form
FXAM

Description

8: Ref nc. Section

8087/80287/80387

cc ~ examine (ST)

This instruction sets the condition code bits in the floating-point status word (SW)
according to the value of the top of stack. The following table indicates the settings
that can arise based on different values of ST.

ST C3 C2 Cl CO

Unsupported· 0 0 s 0
NaN 0 0 s 1
Valid (normal) 0 1 s 0
Infinity 0 1 s 1
Zero 1 0 s 0
Unused (TW = empty) 1 0 s 1
Denormal 1 1 s 0
Unused (TW = empty) 1 1 s 1

• Unsupported values are special bit patterns that were valid
for the 8087 or 80287 but are no longer supported. These
include pseudo-NaN, pseudo-zero, pseudo-infinity,
and unnormals.

The s bit in Cl is set to the sign of the value of ST, with 0 indicating a positive value
and 1 indicating a negative.

Exceptions
SF PE DE OE ZE DE IE

1-1-1-1-1-1- -I

393

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Example

Before After

ST -00 ST -00

ST (1)1--__ 4.:.,:6.:..:.0 __ --1 ST (1) 1--__ 4.:..:;6::..::.°'-_--1

EXAM
C3 Cz C1 Co

101 01 - 11 I

394

FXCH
Exchange Stack Elements

Legal Forms
FXCH
FXCH STCn)

Description

temp f- ST; ST f- ST(l); ST(l) f- temp
temp f- ST; ST f- ST(n); ST(n) f- temp

8: Reference Section

8087/80287/80387

This instruction swaps the contents of the specified stack registers. This allows
values to move to the top of stack, which is the standard operand location for many
floating-point instructions.

Exceptions

SF PE DE \OE ZE DE IE

I x I - I - I - I - I - I -

Example

ST
ST (1)

ST (2)

Before

3.0
2.0
1.0

FXCH

ST
ST(1)

ST(2)

After

1.0
2.0
3.0

395

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

FXTRACT
Extract Floating-Point Components

Legal Form
FXTRACT

Description

temp f- ST; ST f- exponent(temp)
push(fraction(temp»

8087/80287/80387

This instruction breaks the top of stack into its constituent parts, the significand and
the exponent. The exponent is stored as a true, unbiased value, not as just the bit
pattern in the exponent field of the floating-point representation. This operation
leaves the fraction or significand on the top of stack and the exponent at ST(1). The
original value is destroyed.

If the original top of stack is 0, the exponent portion is set to negative infinity.

Exceptions
SF PE UE OE ZE DE IE

Ixl-I-I-Ixlx xl

Example

Before After

ST 1.59
ST 1.59 X 24 ST (1) 4.0

r---------------~

FXTRACT

396

8: Reference Section

FYL2X 8087/80287/80387

Compute Y x logz X

Legal Form
FYL2X temp ~ 1092(5T); pop(); 5T ~ 5T * temp

Description
This instruction pops the top of stack, takes the base 2 logarithm, and multiplies the
result by the new top of stack. Another way of expressing the function is:

ST(1) X 10g2 ST

The initial top of stack must be a positive value, 0 through infinity. If it is not, the
results of the operation are undefined.

You can also use this instruction to compute logarithms with a base other than 2,
relying on the identity:

logn x = (1og2 x) / (10g2 n)

The following code fragment illustrates this computation.

FL01
FLO n
FYL2X
FL01
FOIVP 5T(1). 5T
FLO x
FYL2X

Exceptions
SF PE UE OE ZE DE IE

Ixlxlxlxlxlx xl

Example

ST
ST (1)

ST (2)

Before

8.0

0.01

0.333

1.0
n. 1. 0
1092 n
1.0. 1092 n
111092 n
X. 1/1092 n
1092 x * 1/1092 n

ST
ST (1)

FYL2X

After

0.03

0.333

397

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

FYL2XP1 8087/80287/80387

Compute Y x log2 (X + 1)

Legal Form

FYL2XPI temp ~ l092(ST+l.O); pop(); ST ~ ST * temp

Description
This instruction pops the top of stack, adds 1.0 to the value, takes the base 2
logarithm, and multiplies the result by the new top of stack. Another way of ex­
pressing the instruction is:

ST(1) X log2 CST + 1.0)

The initial top of stack must be within the range -1 + --,jZ /2:=; X:=; 1- --,jZ 12, or the
result of the instruction is undefined.

This instruction is provided so that adding 1.0 to the top of stack and executing
FYL2X does not result in a precision loss. Because the FYL2XP1 function is com­
puted differently from the FYL2X instruction, a special range restriction exists.
FYL2XP1 is also useful in computing the arcsinh, arccosh, and arctanh inverse
hyperbolic trigonometric functions.

Exceptions
SF PE UE OE ZE DE IE

Ixlxlxl-I-Ixlx

Example

ST
ST (1)

ST(2)

398

Before

15.0

10.0

7.7

After

ST 40.0
ST (1) 7.7

FYL2XP1

F2XM1
Compute 2x - 1

Legal Form
F2XM1

Description

8: Reference Section

8087/80287/80387

ST ~ 2ST - 1

This instruction replaces the current top of stack (ST) with the value of the function
2ST - 1. However, the initial operand value must be within the range -0.5 $; x $; +0.5
or the result of the operation is undefined.

The function 2X - 1, rather than the simpler 2x, is provided to ensure precision when
x is near 0 (for example, when computing hyperbolic trigonometric functions).

Because the range of the F2XMl instruction is narrow, subroutines to compute 2n

must use FRNDINT and FSCALE to bring the instruction into a legal range and scale
the result to a proper value.

You can compute the general function x Y by using the identity:

xY = 2yx log2 x

and using the FYL2X and F2XMl instructions.

Exceptions
SF PE DE OE ZE DE IE

I x I x I x I - I - I x x I
Example

Before After

ST 0.01 ST 0.0069

ST (1) 1--__:;3.....;..0 __ ---i ST (l)1--__ ..::.3.....;..0 __ ---i

F2XMl

399

Exponent

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

20

31
32

DecImal Value

1
2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

1048576

2147483648
4294967296

Appendix A

POWERS
OF TWO

Hex Value

1
2
4
8

10
20
40
80

100
200
400
BOO

1000
2000
4000
8000

10000

100000

80000000
100000000

401

Low-Order
Bits

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

AppendixB

ASCII
CHARACTER

SET

Higb-Order Bits
(J()()(J 0001 0010 0011 0100 0101 0110 0111

NUL DLE space 0 @ p P
SOH DCl ! 1 A Q a q
STX DC2 2 B R b r
ETX DC3 # 3 C S c s
EOT DC4 $ 4 D T d t
ENQ NAK % 5 E U e u
ACK SYN & 6 F V f v
BEL ETB 7 G W g w
BS CAN (8 H X h x
HT EM) 9 I Y Y
LF SUB J Z j z
VT ESC + K [k {

FF FS < L \ 1 I
CR GS M 1 m }

SO RS > N 1\ n
SI US / 0 0 DEL

403

AppendixC

OPCODE
TABLES*

The following opcode tables aid in interpreting 80386/80486 object code. Use the
high-order 4 bits of the opcode as an index to a row of the opcode table; use the
low-order 4 bits as an index to a column of the table. If the opcade is OFH, refer to
the 2-byte opcode table, and use the second byte of the opcode to index the rows
and columns of that table.

Key to Abbreviations
Operands are identified by a two-character code of the form Zz. The first character,
an uppercase letter, specifies the addressing method; the second character, a lower­
case letter, specifies the type of operand.

Codes for Addressing Method
A Direct address. The instruction has no mod rim byte; the address of the operand
is encoded in the instruction; no base register, index register, or scaling factor can
be applied-for example, far]MP (EA).

C The reg field of the mod rim byte selects a control register-for example, MOV
(OFH 20H, OFH 22H).

D The reg field of the mod rim byte selects a debug register-for example, MOV
(OFH 21H, OFH 23H).

E A mod rim byte follows the opcode and specifies the operand. The operand is
either a general register or a memory address. If it is a memory address, the address
is computed from a segment register and any of the following values: a base register,
an index register, a scaling factor, or a displacement.

• Adapted and reprinted by permission of Intel Corporation, copyright © 1986.

405

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

F Flags register.

G The reg field of the mod rim byte selects a general register-for example,
ADD (OOH).

I Immediate data. The value of the operand is encoded in subsequent bytes of the
instruction.

J The instruction contains a relative offset to be added to the instruction pointer
register-for example, JMP short, LOOP.

M The mode rim byte may refer only to memory-for example, BOUND, LES,
LDS, LSS, LFS, LGS.

o The instruction has no mod rim byte; the offset of the operand is coded as a
word or doubleword (depending on address size attribute) in the instruction. No
base register, index register, or scaling factor can be applied-for example, MOV
(AOH-A3H).

R The mod field of the mod rim byte may refer only to a general register-for
example, MOV (OFH 20H, OFH 26H).

S The reg field of the mod rim byte selects a segment register-for example,
MOV (SCH, SEH).

T The reg field of the mod rim byte selects a test register-for example,
MOV (OFH 24H).

X Memory addressed by DS:SI-for example, MOVS, COMPS, OUTS, LODS, SCAS.

Y Memory addressed by ES:DI -for example, MOVS, CMPS, INS, STOS.

Codes for Operand Type
a Two single-word operands in memory or two double-word operands in memory,
depending on operand size attribute (used only by BOUND).

b Byte (regardless of operand size attribute).

c Byte or word, depending on operand size attribute.

d Doubleword (regardless of operand size attribute).

p 32-bit or 4S-bit pointer, depending on operand size attribute.

s 6-byte pseudodescriptor.

v Word or doubleword, depending on operand size attribute.

w Word (regardless of operand size attribute).

406

Appendix C: Opcode Table.

Register Codes
When an operand is a register encoded in the opcode, the register is identified by
its name, for example, AX, eL, or ESI. The name of the register indicates whether
the register is 32 bits, 16 bits, or 8 bits. A register identifier of the form eXX is used
when the width of the register depends on the operand size attribute. For example,
eAX indicates that the AX register is used when the operand size attribute is 16 and
that the EAX register is used when the operand size attribute is 32.

407

MICROSOFT'S 80386/80488 PROGRAMMING GUIDE

One-Byte Opcode Table

o 1 2 3 4 5 6 7

o ADD ADD ADD ADD ADD ADD PUSH POP
Eb,Gb EV,Gv Gb,Eb GV,Ev AL,Ib eAX,Iv ES ES

ADC ADC ADC ADC ADC ADC PUSH POP
Eb,Gb EV,Gv Gb,Eb GV,Ev AL,Ib eAX,Iv SS SS

1

AND AND AND AND AND AND
ES:

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,Ib eAX,Iv
DAA 2

XOR XOR XOR XOR XOR XOR
SS:

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,Ib eAX,Iv
AAA 3

INC INC INC INC INC INC INC INC
eAX eCX eDX eBX eSP eBP eSI eDI

4

PUSH PUSH PUSH PUSH PUSH PUSH PUSH PUSH
eAX eCX eDX eBX eSP eBP eSI eDI

5

PUSH AD POPAD
BOUND ARPL

GS: OPSIZE: ADRSIZE:
GV,Ma EW,Rw

FS: 6

]0]NO]B]NB]Z]NZ]BE]NBE
]b]b]b]b]b]b]b]b

7

Group 1 Group 1 Group 1 TEST TEST XCHG XCHG
Eb,Ib EV,Iv EV,Ib Eb,Gb EV,Gv Eb,Gb EV,Gv

8

XCHG XCHG XCHG XCHG XCHG XCHG XCHG
NOP

eCX,eAX eDX,eAX eBX,eAX eSP,eAX eBP,eAX eSI,eAX eDI,eAX
9

MOV MOV MOV MOV
~OVSW/D CMPSW/D

AL,Ob eAX,Ov Ob,AL OV,eAX
MOVSB CMPSB A

MOV MOV MOV MOV MOV MOV MOV MOV
AL,Ib CL,Ib DL,Ib BL,Ib AH,Ib CH,lli DH,Ib BH,Ib

B

Group 2 Group 2 RET(near)
RET(near)

LES IDS MOV MOV
Eb,Ib EV,Ib Iw GV,Mp Gv,Mp Eb,Ib EV,Iv

C

Group 2 Group 2 Group 2 Group 2
AAM AAD XLAT

Eb,l EV,l Eb,CL EV,CL
D

LOOPNE LOOPE LOOP]CXZ IN IN OUT OUT
]b]b]b]b AL,Ib eAX,Ib Ib,AL Ib,eAX

E

LOCK
REP

HLT CMC
Group 3 Group 3

REPNE
REPE Eb Ev

F

NOTE: All numbers are in hex. (continued)

408

Appendix C: Opcode Table.

One-Byte Opcode Table. continued

8 9 A B C D E F

o OR OR OR OR OR OR PUSH 2-byte
Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv CS escape

SBB SBB SBB SBB SBB SBB PUSH POP
Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv DS DS

1

SUB SUB SUB SUB SUB SUB
Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv

CS: DAS 2

CMP CMP CMP CMP CMP CMP
Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv

DS: AAS 3

4 DEC DEC DEC DEC DEC DEC DEC DEC
eAX eCX eDX eBX eSP eBP eSI eDI

POP POP POP POP ROP POP POP POP
eAX eCX eDX eBX eSP eBP eSI eDI

5

PUSH IMUL PUSH IMUL INSB INSW/D OUTSB OUTSW/D
Iv Gv,Ev,Iv Ib Gv,Ev,Ib Yb,DX Yv,DX DX,Xb DX,Xv

6

JS JNS JP JNP JL JNL JLE JNLE

Jb Jb Jb Jb Jb Jb Jb Jb
7

MOV MOV MOV MOV MOV LEA MOV POP
Eb,Gb Ev,Gv Gb,Eb Gv,Ev Ew,Sw Gv,M Sw,Ew Ev

8

CALL PUSHF .. POPF
CBW CWD

Ap
WAIT

Fv Fv
SAHF LAHF 9

TEST TEST
STOSW/D LODSW/D SCASW/D

AL,Ib eAX,Iv
STOSB LODSB SCASB A

B
MOV MOV MOV MOV MOV MOV MOV MOV

eAX,Iv eCX,Iv eDX,Iv eBX,Iv eSP,Iv eBP,Iv eSI,Iv eDI,Iv

ENTER RET far INT INT
Iw,Ib

LEAVE
Iw 3 Ib

INTO IRET C

ESC ESC ESC ESC ESC ESC ESC ESC
0 1 2 3 4 5 6 7

D

CALL JMP JMP JMP IN IN OUT OUT
Av Jv Ap Jb AL,DX eAX,DX DX,AL DX,eAX

E

F CLC STC CLI STI CLD STD Group 4 Group 5

409

MICROSOFT'S 80386/80488 PROGRAMMING GUIDE

Two-Byte Opcode Table (first byte is OFH)

o 1 2 3 4 5 6 7

o Group 6 Group 7
LAR LSL

CLTS
GV,Ew GV,Ew

1 INVLPG
Ea

MOY MOY MOY MOY MOY MOY
Cd,Rd Dd,Rd Rd,Cd Rd,Dd Td,Rd Rd,Td

2

3

4

5

6

7

JO ']NO JB JNB JZ]NZ JBE]NBE

Jv Jv Jv Jv Jv Jv Jv Jv
8

SETO SE1NO SETB SE1NB SETZ SE1NZ SETBE SE1NBE
Eb Eb Eb Eb Eb Eb Eb Eb

9

PUSH POP BT SHLD SHLD ~MPXCHG CMPXCHG
FS FS EV,Gv Ev,Gv,Ib Ev,Gv,CL Eb,Rb EV,Rv

A

A6 A7
LSS BTR LFS LGS MOYZX MOYZX
Mp EV,Gv Mp Mp GV,Eb Gv;Ew

B

XADD XADD
Eb,Rb EV,Rv

C

D

E

F

(continued)

410

Appendix C: Opeocl. Tabl ••

Two-Byte Opcode Table. continued

8 9 A B C D E F

o INVD WBINVD

1

2

3

4

5

6

7

JS JNS JP JNP JL JNL JLE JNLE
Jv Jv Jv Jv Jv Jv Jv Jv

8

SETS SETNS SETP SETNP SETL SETNL SETLE SETNLE
Eb Eb Eb Eb Eb Eb Eb Eb

9

PUSH POP BTS SHRD SHRD IMUL
GS GS EV,Gv EV,Gv,Ib EV,Gv,CL GV,Ev

A

Group 8 BTC BSF BSR MOVSX MOVSX
EV,Ib EV,Gv GV,Ev GV,Ev GV,Eb GV,Ew

B

BSWAP BSWAP BSWAP BSWAP BSWAP BSWAP BSWAP BSWAP
EAX ECX EDX EBX ESP EBP ESI ED!

C

D

E

F

411

MICROSOFT'S 80386/80488 PROGRAMMING GUIDE

Opcodes Determined by Bits 5, 4,
and 3 of mod rim Byte: mod nnn rim

G 1
R
o
U 2
p

3

4

5

6

7

8

000

ADD

ROL

TEST
Ib/Iv
INC
Eb

INC
Ev

SLDT
Ew

SGDT
Ms

001 010

OR ADC

ROR RCL

NOT

DEC
Eb

DEC CALL
Ev Ev

STR LLDT
Ew Ew

SmT LGDT
Ms Ms

011 100 101

SBB AND SUB

RCR SHL SHR

NEG MUL IMUL
AL!eAX AL!eAX

CALL]MP]MP
Ep Ev Ep

LTR YERR YERW
Ew Ew Ew

LIDT SMSW
Ms Ew

BT BTS

110

XOR

DIY
AL!eAX

PUSH
Ev

LMSW
Ew

BTR

Numeric Data Processor Extensions

111

CMP

SAR

IDlY
AL!eAX

BTC

The following tables show the opcode map to the 80386/80486 instruction set for
the numeric data processor (NDP) extensions. The operand abbreviations for these
tables are:

Es Effective address, short real (32-bit)

El Effective address, long real (64-bit)

Et Effective address, temp real (80-bit)

Ew Effective address, word C16-bit)

Ed Effective address, doubleword (32-bit)

Eq Effective address, quadword (64-bit)

Eb Effective address, BCD (80-bit)

Ea Effective address (no operand size)

ST(i) Stack element i

ST Stack top

412

00
mod=Ol

10

mod=l1

00
mod=Ol

10

mod=l1

rim
000

001

010

011

100

101

110

111

7 6 5

Format: I mod I

000 001 010

FAOO FMUL FCOM
Es Es Es

FAOO FMUL FCOM
ST,STO) ST,ST(i) ST,STO)

i=r/m

000 001 010

FLO FST
Es Es

FLO FXCH
ST(O) ST(O)

FNOP

FLO FXCH
ST(1) ST(1)

FLO FXCH
ST(2) ST(2)

FLD FXCH
ST(3) (3)

FLO FXCH
ST(4) ST(4)

FLO FXCH
ST(S) ST(S)

FLO FXCH
ST(6) ST(6)

FLO FXCH
ST(7) ST(7)

4 3 2

nnn
I

rim

ESC 0
nnn

011 100

FCOMP FSUB
Es Es

FCOMP FSUB
ST,ST(i) ST,ST(i)

ESC 1
nnn

011 100

FSTP FLOENV
Es Ea

FCHS

FABS

FTST

FXAM

0

Appendix C: Opcod. Tabl ••

I

101 110 111

FSUBR FDIV FDIVR
Es Es Es

FSUBR FDIV FDIVR
ST,STO) ST,ST(i) ST,STO)

101 110 111

FLDCW FSTENV FSTCW
Ew Ea Ew

FLDl F2XM1 FPREM

FLOL2T FYL2X FYL2XPl

FLOL2E FPTAN FSQRT

FLOPI FPATAN FSINCOS

FLOLG2 FXIRACT FRNDINT

FLDLN2 FPREMI FSCALE

FLOZ FDECS1P FSIN

FINCSTP FCOS

413

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

00
mod=Ol

10

mod=l1

00
mod=Ol

10

mod=ll

rim

00
mod=Ol

10

mod=l1

414

000

FIADD
Ew

·r/m=5

000

FILD
Ew

000

(FENI)

000

FADD
El

FADD
STO),ST

l=r/m

001

FIMUL
Ew

FUCDMPP·

001

001

(FDISI) I

001

FMUL
El

FMUL
STO),ST

010

FICOM
Ew

010

FIST
Ew

ESC 2
nnn

011 100

FICOMP FISUB
Ew Ew

ESC 3

nnn
011 100

FISTP FLD
Ew Et

Girup51

Group 3a: mod=ll, nnn=100

010 011 100

FCLEX FINIT I (FSETPM) I

ESC 4

nnn
010 011 100

FCOM FCOMP FSUB
El El El

FCOM FCOMP FSUB
ST(i),ST ST(i),ST STO),ST

101 110 111

FISUBR FIDIV FIDIVR
Ew Ew Ew

101 110 111

FSTP
Et

101 110 111

101 110 111
FSUBR FDIV FDIVR

El El El

FSUBR FDIV FDIVR
ST(i),ST STO),ST STO),ST

00
mod=Ol

10

mod=l1

000

FLD
El

FFREE
ST(i)

i=r/m

000

FIADD
Ed

FADDP
ST(i),ST

*r/m=OOl

000

FILD
Ed

FSTSW*
AX

*r/m=OOO

001 010

FST
El

FST
ST(i)

001 010

FIMUL FICOM
Ed Ed

FMULP
ST(i),ST

001 010

FIST
Ed

Appendix C: Opcode Table.

ESC 5

nnn
011 100 101 110 111

FSTP FRSTOR FSAVE FSTSW
El Ea Ea Ew

FSTP FUCOM FUCOMP
ST(i) STO) ST(i)

ESC 6
nnn

011 100 101 110 111

FICOMP FISUB FISUBR FIDIV FIDIVR
Ed Ed Ed Ed Ed

FCOMPP' FSUBP FSUBRP FDIVP FDIVRP
STO),ST ST(i),ST ST(i),ST ST(i),ST

ESC 7
nnn

011 100 101 110 111

FISTP FBLD FILD FBSTP FISTP
Ed Eb Eq Eb Eq

415

AppendixD

INSTRUCTION
FORMAT AND

TIMING*

This appendix describes the 80386-family instruction set. A table lists all instruc­
tions with instruction encoding diagrams and clock counts. Details of the instruc­
tion encoding are provided in the following sections, which describe the encoding
structure and the definition of fields occurring within the instructions.

80386/80486 Instruction Encoding
and Clock Count Summary

To calculate elapsed time for an instruction, multiply the instruction clock count by
the processor clock period (for example, 40 ns for a processor operating at 25 MHz).

For more information on the encodings of instructions, refer to "Instruction Encod­
ing" (later in this appendix), which explains the structure of instruction encodings
and defines the encodings of instruction fields.

Instruction clock count assumptions
1. The instruction has been prefetched and decoded and is ready for execution.

2. Bus cycles do not require wait states.

3. There are no local bus HOLD requests delaying processor access to the bus.

4. No exceptions are detected during instruction execution.

5. If an effective address is calculated, it does not use two general-register com­
ponents. One register scaling and displacement can be used within the clock

• Adapted and reprinted by permission of Intel Corporation, 1986.

417

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

counts shown. However, if the effective address calculation uses two general­
register components, add one clock to the clock count shown on the 80386; one
clock may be added on the 80486.

6. Accesses are aligned. Misaligned accesses require another memory read cycle.

7. On the 80486, one additional clock may be added under the following
conditions:

• The base register used as an effective address in one instruction is the desti­
nation register of the immediately preceding instruction.

• Displacement mode addressing and immediate addressing are used in the
same instruction.

8. A page translation hits the TLB.

9. The cache on the 80486 is enabled and the following conditions are true:

• Cache fills complete before the next access to the same cache line.

•]MP targets hit the cache.

• No invalidate cycles occur.

• Instructions that read consecutive memory words start on a 16-byte
boundary.

10. In the 80386sx, add one read cycle for every 16 bits over the initial 16 bits
accessed by the instruction.

Instruction clock count notation
1. If two clock counts are given, the smaller one refers to a register operand, and

the larger one refers to a memory operand.

2. n = number of times repeated.

3. m = number of components in the next instruction executed, where any
displacement counts as one component, any immediate data counts as one
component, and each of the other bytes of the instruction and prefix(es) counts
as one component.

Instruction notes for table
The following are instruction notes for the "General Notes" column of the table
titled "80386/80486 Instruction Set Clock Summary," which begins on page 421.
The instruction notes for the "Cache Notes" column are found on page 438 as table
footnotes.

Notes a through c apply to real address mode only:

a. This is a protected-mode instruction. Trying to execute in real mode results in
exception 6 (invalid opcode).

418

Appendix D: Instruction Format and Timing

b. Exception 13 fault (general protection) occurs in real mode if an operand refer­
ence is made that partially or fully extends beyond the maximum CS, DS, ES,
FS, or GS limit, FFFFH. Exception 12 fault (stack segment limit violation or not
present) occurs in real mode if an operand reference is made that partially or
fully extends beyond the maximum SS limit.

e. This instruction may be executed in real mode where it initializes the CPU for
protected mode.

Notes d through g apply to real address mode and protected virtual address mode:

d. The 80386 and 80486 use an early-out multiply algorithm. The number of
clocks depends on the position of the most significant bit in the operand
(multiplier).

Clock counts are minimum to maximum. To calculate actual clocks, use the
following formula:

Actual Clock = if m < > 0 then max ([log2 I m I], 3) + 6 clocks

if m = 0 then 9 clocks (where m is the multiplier)

e. An exception might occur, depending on the value of the operand.

f. LOCK is asserted, regardless of the presence or absence of the LOCK prefix.

g. LOCK is asserted during descriptor table accesses.

Notes h through r apply to protected virtual address mode only:

h. Exception 13 fault (general protection violation) occurs if the memory operand
in CS, DS, ES, FS, or GS cannot be used because of a segment limit violation or
because of an access rights violation. If a stack limit is violated, an exception 12
(stack segment limit violation or not present) occurs.

i. For segment load operations, the CPL, RPL, and DPL must agree with the privi­
lege rules to avoid an exception 13 fault (general protection violation). The seg­
ment's descriptor must indicate "present" or exception 11 (CS, DS, ES, FS, or GS
not present). If the SS register is loaded and a stack segment not present is
detected, an exception 12 (stack segment limit violation or not present) occurs.

j. All segment descriptor accesses in the GDT or LDT made by this instruction
assert LOCK to maintain descriptor integrity in multiprocessor environments.

k.]MP, CALL, INT, RET, and IRET instructions referring to another code segment
cause an exception 13 (general protection violation) if an applicable privilege
rule is violated.

1. An exception 13 fault occurs if CPL is greater than O. (0 is the most privileged
level.)

m. An exception 13 fault occurs if CPL is greater than IOPL.

419

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The
IOPL and VM fields of the flag register ;Ire updated only if CPL is equal to O.

o. The PE bit of the MSW (CRO) cannot be reset by this instruction. Use MOV into
CRO to reset the PE bit.

p. Any violation of privilege rules as applied to the selector operand does not
cause a protection exception; rather, the zero flag is cleared.

q. If the coprocessor's memory operand violates a segment limit or segment access
rights, an exception 13 fault (general protection exception) occurs before the
ESC instruction executes. An exception 12 fault (stack segment limit violation
or not present) occurs if the stack limit is violated by the operand's starting
address.

r. The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit
of a code segment, or an exception 13 fault (general protection violation)
occurs.

420

• N ...

Instruction

GeneralData Trantifer
MOV=Move

Register to register

Register to memory

Memory to register

Immediate to register / short form

/longform

Immediate to memory

Memory to accumulator

Accumulator to memory

Register to segment register (RM)

(protected mode)

Memory to segment register (RM)

(protected mode)

Segment register to register/memory

MOVZX!MOVSX = Move zero/sign extension

(z = 0 MOVZX!z = 1 MOVSX)

Register to register

Memory to register

PUSH = Push

Register / short form

/longform

Memory

Segment register / short form

/longform

Immediate

PUSH A = Push all

80386/80486 Instruction Set Clock Summary

80486
Format Clocks

1000100w mod reg rIm I 1

1000100w mod reg rIm I 1

1000101w mod reg rIm I 1

1011w reg immediate data 1

1100011w mod 000 rim I immediate data 1

1100011w mod 000 rim I immedi ate data 1

1010000w full displacement 1

1010001w full di spl acement 1

10001110 mod s reg 3r Iml 3

9

110001110 1 mod sreg 3r/ml 3

9

1 10001100 1 mod sreg 3r/ml 3

1 00001111 1 1011z11w 1 mod reg rim 1 3

1 00001111 1 1011zl1w 1 mod reg rim 1 3

01010 reg 1 I

11111111 1 mod 110 rim 1 4

11111111 1 mod 110 rim 1 4

000 sreg 21101 3

00001111 1 10 sreg 3000 1 3

011010s0 1 i mmedi ate data 1

01100000 1 11
--

Cache
Miss Cache 80386 General

Penalty Notes Clocks Notes

2 b,h

2 b,h

2 4 b,h

2 b,h

2 b,h

2 b,h

2 4 b,h

2 b,h

2 b

3 I 18 h,i,j

2 5 b

5 I 19 h,i,j

2 b,h

3 b,h

2 6 b,h

2 b,h

5 b,h

1 A 5 b,h

2 b,h

2 b,h

2 b,h

18 b,h

(continued)

80386/80486 Instruction Set Clock Summary. continued

Cache
80486 Miss Cache 80386 General

Instruction Format Clocks Penalty Notes Clocks Notes

pOP-Pop
Register I short form 1 01011 reg 1 1 2 4 b,h

olio

=
I long form 110001111 1 mod 000 rIm 1 4 1 5 b,h

Memory 110001111 1 mod 000 rIm 1 5 2 A 5 b,h

Segment register I short (RM) 1 000sreg2111 I 3 2 7 b

Ilong(RM) 1 00001111 110 sreg 3001 I 3 2 7 b

Protected mode I short 9 5 I 21 h,i,j

Iiong 9 5 I 21 h,i,j

paPA = Pop all 1 01100001 1 9 15 I 24 b,h

XCHG = Exchange

Register with register I 1000011w 1 mod reg rIm I 3 B 3

Memory with register 1 1OOOO11W I mod reg rIm I 3 B 5 b,f,h

Register with accumulator 110010 reg 1 5 B 3

LEA - Load EA to register I 10001101 1 mod reg rIm 1 1 2

Segment Control

IDS = Load pointer to OS 111000101 I mod reg rIm I 6 7 I 7 b

(protected mode) 12 10 I 22 h,i,j

LES = Load pointer to ES I 11000100 I mod reg rIm I 6 7 I 7 b

(protected mode) 12 10 I 22 h,i,j

LFS = Load pointer to FS 1 00001111 I 10110100 I mod reg rIm I 6 7 I 7 b

(protected mode) 12 10 I 25 h,i,j

LGS = Load pointer to GS 1 00001111 110110101 1 mod reg rIm 1 6 7 I 7 b

(protected mode) 12 10 I 25 h,i,j

LSS = Load pointer to SS 1 00001111 I 10110010 I mod reg rIm 1 6 7 I 7 b

(protected mode) 12 10 I 25 h,i,j

Flag COIItrol

CLC = Clear carry flag 111111000 1 2 2

CID = Clear direction flag 111111100 I 2 2

Cache
80486 Miss Cache 80386 General

Instruction Format Clocks Penalty Notes Clocks Notes

CLI ~ Clear interrupt enable flag 111111010 1 5 3 m

CMC ~ Complement carry flag 111110101 1 2 2

LAHF ~ Load AH with flags 110011111 1 3 2

POPF ~ Pop flags 110011101 1 9 5 b

(protected mode) 6 5 h,n

PUSHF ~ Push flags 110011100 1 4 4 b

(protected mode) 3 4 h

SAHF ~ Store AH from flags 110011110 1 2 3

STC ~ Set carry flag 111111001 1 2 2

SID ~ Set direction flag 111111001 1 2 2

STI ~ Set interrupt enable flag 111111011 1 5 3 m

Arithmetic

TTT~OI ADD~Add

TTT~ I IOR~LogicaIOR

TTT ~ 2 I ADC ~ Add with carry

TTT ~ 3 I SBB ~ Subtract with borrow

TTT~41 AND~LogicaIAND

TTT ~ 5 I SUB ~ Subtract

TTT ~ 6 I XOR ~ Logical exclusive OR

Register to register 1 OOTTTOdw mod reg rim 1 1 2

Memory to register 1 OOTTTOlw mod reg rim 1 2 2 6 b,h

Register to memory 1 OOTTTOOw mod reg rim 1 3 6 7 b.h

Immediate to register 110000SW mod TTT rim 1 immediate data I 2

Immediate to accumulator 1 00TTTI0w immediate data I 2

Immediate to memory 110000SW mod TTT rim 1 immediate data 3 6 7 b,h

~

~
INC ~ Increment

Register I short form 1 01000 reg I I 2

liang form I l111111w I mod 000 rim 1 I 2
--

(continued)

80386/80486 Instruction Set Clock Summary. continued

Cache
80486 Miss Cache 80386 General

Instruction Format Clocks Penalty Notes Clocks Notes

Memory I 1111111w I mod 000 rIm I 3 6 6 b,h .. DEC = Decrement

I Register I sbort form I 01001 reg I I 2

I long form I 1111111w I reg 001 rIm I immedi ate data I 2

Memory I 1111111w I reg 001 rIm I immedi ate data 3 6 6 b,h

NOT = Logical NOT I 1111011w I mod 010 rIm I
Register I 2

Memory 3 6 6 b,h

NEG = Negate I 1111011w I mod 011 rIm I
Register I 2

Memory 3 6 6 b,h

CMP = Compare

Registerwith register 001110dw I mod reg rIm I 2

Memory with register 0011100w I mod reg rIm 2 2 5 b,h

Register with memory 0011101w I mod reg rIm 2 2 6 b,h

Immediate with register 100000sw I mod 111 rIm immediate data I 2

Immediate with memory 100000sw I mod 111 rIm i mmedi ate data 2 2 5 b,h

Immediate with accwnulator 0011110w I immediate data I 2

TEST ~ Logical AND with no result but flags

Register with register 1000010w I mod reg rIm I I 2

Memory with register 1000010w I mod reg rIm I 2 2 5 b,h

Immediate with register 1111011w I mod 000 rIm I immedi ate data I 2

Immediate with memory 1111011w I mod 000 rIm I i mmedi ate data 2 2 5 b,h

Immediate with accwnulator 1010100w I i mmedi ate data I 2

AAA = ASCII <!djust for add 00110111 I 3 4

AAS = ASCII adjust for subtract 00111111 I 3 4

Cache
80486 Miss Cache 80386 General

Instruction Format Clocks Penalty Notes Clocks Notes

DAA = Decimal adjust for add I 00100111 I 2 4

DAS = Decimal adjust for subtract I 00101111 I 2 4

MUL - Unsigned multiply

Accumulatorwith register I 1111011w I mod 100 rIm I
-byte 13-18 C 9-14 d

-word 13-26 C 9-22 d

-dword 13-42 C 9-38 d

I 1111011w I mod 100 rIm I "
Accumulatorwithmemory

-byte 13-18 1 C 12-17 b,d,h

-word 13-26 1 C 12-25 b,d,h

-dword 13-42 1 C 12-41 b,d,h

IMUL = Integer mUltiply (signed)

Accumulator with register I 1111011w I mod 100 rIm I
-byte 13-18 C 9-14 d

-word 13-26 C 9-22 d

-dword 13-42 C 9-38 d

Accumulatorwithmernory I 1111011w I mod 100 rIm I
-byte 13-18 C 12-17 b,d,h

-word 13-26 C 12-25 b,d,h

-dword 13-42 C 12-41 b,d,h

Registerwith register I 00001111 I 10101111 I mod reg rIm I
-byte 13-18 C 9-14 d

-word 13-26 C 9-22 d

-dword 13-42 C 9-38 d

Register with memory I 00001111 I 10101111 I mod reg rIm I ..
tl

-byte 13-18 1 C 12-17 b,d,h

-word 13-26 1 c 12-25 b,d,h

-dword 13-42 1 C 12-41 b,d,h

(continued)

80386/80486 Instruction Set Clock Summary. continued

Cache
80486 Miss Cache 80386 General

Instruction Format Clocks Penalty Notes Clocks Notes

Register with immediate to register I 011010s1 I mod reg rIm I Immediate data .. -byte 13-18 C 9-14 d

=
-word 13-26 C 9-22 d

-dword 13-42 C 9-38 d

Memorywith immediate to register I 011010s1 I mod reg rIm I I mmedi ate data

-byte 13-18 2 C 12-17 b,d,h

-word 13-26 2 C 12-25 b,d,h

-dword 13-42 2 C 12-41 b,d,h

DIV - Divide (unsigned)

Accumulator by register I 11 11 011w I mod 110 rIm I
-byte 16 14 e

-word 24 22 e

-dword 40 38 e

Accumulator by memory I 1111011w I mod 110 rIm I
-byte 16 17 b,e,h

-word 24 25 b,e,h

-dword 40 41 b,e,h

IDlY - Integer divide (signed)

Accumulator by register I 1111011w I mod 111 rIm I
'-byte 19 19 e

-word 27 27 e

-dword 43 43 e

Accumulator by memory I 1111011w I mod 111 rIm I
-byte 20 22 b,e,h

-word 28 30 b,e,h

-dword 44 46 b,e,h

Cache
80486 Miss Cache 80386 General

Instruction Format Clocks Pena1sy Notes Clocks Notes

AAD = ASCII adjust for divide 111010101 1 00001010 1 14 19

AAM = ASCII adjust for multiply 111010100 1 00001010 1 15 17

CBW = Convert byte roword 110011000 1 3 3

CWO = Convert word to dword 110011001 1 3 2

Logic

Shift/Rotate

TTT = 0 /ROL = Rotate left

TTT = 1 /ROR = Rotate right

TTT - 2 /RCL - Rotate through carry left

TTT = 3 / RCR = Rotate through carry right

TTT = 4 / SHL/SAL = Shift left

TTT = 5/ SHR = Shift right

TTT = 7 / SAR = Shift arithmetic right

Rotate through carry (RCLlRCR)

Register by 1 1101000w mod TTl rIm 3 9

Memorybyl 1101000w mod TTl rIm 4 6 10 b,h

Register by CL 1101001w mod TTl rIm 8--30 D 9

Memory by CL 1101001w mod TTl rIm 9-31 E 10 b,h

Register immediate 1100000w mod TTl rIm immed a-bit data 8-30 D 9

Memory immediate 1100000w mod TTl rIm immed a-bit data 9-31 E 10 b,h

All others (ROLIROR/SHL/SHR/SAL/SAR

Register by 1 1101000w mod lTT rIm 3 3

Memory by 1 1101000w mod lTT rIm 4 6 7 b,h

Register by CL 1101001w mod TTl rIm 3 3 ..
~

Memory by CL 1101001w mod lTT rIm 4 6 7 b,h

Register immediate 1100000w mod TTl rIm immed a-bit data 2 3

Memory immediate 1100000w mod TTl rIm 1mmed a-bit data 4 6 7 b,h

(continued)

80386/80486 Instruction Set Clock Summary. continued

Cache
80486 Miss Cache 80386 General

Instruction Format Clocks Penalty Notes Clocks Notes

SHRD/SHLD - Shift rightlleft double .. r-O/SHLD - r-lISHRD

I Register by immediate 00001111 1010rl00 mod reg rIm I 1mmed 8-bit data 2 3

Memory by immediate 00001111 1010rl00 mod reg rIm I immed 8-bit data 3 6 7

Register by CL 00001111 1010rl0l mod reg rIm I 3 3

Memory by CL 00001111 1010rl0l mod reg rIm I 4 5 7

BSWAP - Byte swap 00001111 11001 reg 1 N/A

XADD - Exchange and add

Register to register I 00001111 I 1100000w I mod reg rIm I 3 N/A

Memory to register I 00001111 I 1100000w I mod reg rIm I 4 6 N/A

CMPXCHG - Compare and Exchange

Register to register I 00001111 I 1011000w I mod reg rIm I 6 N/A

Memory to register I 00001111 I 1011000w I mod reg rIm I 7-10 2 F N/A

String Instructions

CMPS - Compare byte/word/dword 1010011w 8 6 P 10 b,h

LODS = Load byte/word/dword 1010110w 5 2 5 b,h

MOVS - Move byte/word/dword 1010010w 7 2 P 7 b,h

SCAS - Scan byte/word/dword 1010111w 6 2 7 b,h

STOS - Store byte/word/dword 1010101w 5 4 b,h

REPE!REPNE CMPS - Repeated compare

ECX-O 5 5 b,h

ECX>O 7+7c P,Q 5+9c b,h

REP LODS - Repeated load

ECX-O 5 5 b,h

ECX>O 7+4c P,R 5+& b,h

REP MOVS = Repeated move

ECX-O 5 7 b,h

Cache
80486 Miss Cache 80386 General

InstnlctWn Format Clocks Penalty Notes Clocks Notes

ECX-1 13 1 P 11 b,h

ECX>l 12+3c P,S 7+4c b,h

REPE/REPNE SCAS - Repeated scan

ECX=O 5 5 b,h

ECX>O 7+5c T 5+8c b,h

REP STOS = Repeated store

ECX=O 5 5 b,h

ECX>O 7+5c T 5+5c b,h

XLAT =]fanslate byte 111010111 1 4 2 5 h

ilIllnstruct10ns

BSF = Bit scanforward

Register, register 10000llll 110111100 ·1 mod reg rIm 1 6-42 L 1O+3b

Memory; register 10000llll 110111100 1 mod reg rIm 1 7-43 2 M 1O+3b b,h

BSR = Bit scan reverse

Register, register 10000llll 1 10111101 1 mod reg rIm 1 6-103 N 10+3b

Memory; register 100001111 1 IOll1101 1 mod reg rIm 1 7-104 0 1O+3b b,h

BT = Bit test

Register, immediate 10000llll 1 10111010 1 mod 100 rIm 1 immed 8-blt data 3 3

Memory, immediate 10000llll 110111010 1 mod 100 rIm 1 immed 8-blt data 3 1 6 b,h

Register, register 10000llll 1 101000ll 1 mod reg rIm 1 3 3

Memory; register 10000llll 1 10100011 1 mod reg rIm 1 8 2 12 b,h

Bit modify

TTT - 5 I BTS - Bit test and set

TTT - 6 IBTR - Bit test and reset ..
fa

TTT -7 IBTC = Bit test and complement

Register, immediate 100001111 I IOll1010 1 mod TTT rIm 11mmed 8-blt data 6 6

I
Memory, immediate 100001111 1 10111010 1 mod TTT rIm 1 immed 8-bit data 8 2 8 b,h

(continued)

80386/80486 Instruction Set Clock Summary. continued

Cache
80486 Miss Cache 80386 Genera'

Instruction Format Clocks Penalty Notes Clocks Notes

Register, register 1 00001111 110111011 1 mod TTl rIm 1 6 6

&
Memory, register 1 00001111 110111011 1 mod TTl rIm 1 13 3 13 b,h

SETeee = Set byte on condition 1 00001111 1 1001cccc 1 mod 000 rIm 1

ecce = 001 SEW = Set if overflow

ecce = 011 SE1NO = Set if no overflow

ecce = 02 1 SETB/SE1NAE = Setifbelow/Set if not above or equal

eeee = 03 1 SE1NB/SETAE = Set if not below/Set if above or equal

ecce = 04 1 SETE/SETZ = Set if equal/Set if zero

ecce = 05 1 SE1NE/SE1NZ = Set if not equal/Set if not zero

ecce = 06 1 SETBE/SE1NA = Set if below or equal/Set if not above

eeee = 07 1 SE1NBE/SETA = Set if not below or equal/Set if above

eeee - 08 1 SETS - Set if signed

eeee = 09 1 SE1NS = Set if not signed

eeee = 101 SETP ISETPE = Set if parity lSetif parity even

eeee = 11 1 SElNP ISETPO = Set if not parity lSet if parity odd

eeee = 121 SETVSE1NGE = Set ifless/Set if not greater or equal

eeee = 13 1 SE1NVSETGE = Set if not less/Set if greater or equal

eeee = 141 SETLE/SE1NG = Set ifless or equal/Set if not greater

eeee = 151 SE1NLE/SETG = Set if not less or equal/Set if greater

Register (condition true) 4 4 h

Register (condition false) 3 4 h

Memory (condition true) 3 5 h

Memory (eondition false) 4 5 h

CondItionalBrtmch

Jee = Jump byte on condition

8-bit displaceruen1 1 0111cccc 1 a-bit displ acement

Full displacement 1 00001111 11000cccc 1 full d1 spl acement

eeee = 00 IJO = Jump if overflow

eeee = 01 IINO - Tumo if no overflow

Cache !

80486 Miss Cache 80386 General
lnstnlction Format Clocks Penalty Notes Clocks Notes I

eeee = 02 / JB,JNAE -Jump ifbelow,Jump if not above or equal

eeee = 03 / JNB,JAE = Jump if not below/Jump if above or equal

eece - 04 / JE/JZ -Jump if equal/Jump if zero

cccc = 05 / JNE,JNZ - Jump if not equal/Jump if not zero

cecc = 06 / JBElJNA = Jump if below or equal,Jump if not above

eecc = 07 / JNBEIA = Jump if not below or equal/Jump if above

ccce = 08 / JS = Jump if signed

ccee - 09 / JNS = Jump if not signed

eccc = 10 /JP,JPE = Jump ifparity/Jump if parity even

eecc = 11 / JNP,JPO = Jump if not parity,Jump if parity odd

eecc - 12/ JIJJNGE = Jump ifless/Jump if not greater or equal

eccc = 13 / JNLjGE = Jump if not less,Jump if greater or equal

cccc = 14/)LE/JNG = Jump ifless or equal/Jump if not greater

eecc - 15/ JNLElJG = Jump if not less or equal,Jump if greater

Braneh taken 3 w 7+m r

Branch not taken 1 W 3

JCXZIJECXZ -Jump if CX/ECX is zero 111100011 1 a-bit displacement

Braneh taken 8 W 9+m r

Branch not taken 5 W 5

WOP = Loop ECX times 111100010 1 a-bit di spl acement

Branch taken 7 W l1+m r

Branch not taken 6 W 11

LOOPE/WOPZ - Loop if equallLoop if zero 111100001 1 a-bit displacement

Branch taken 9 W l1+m r

Branch not taken 6 W 11

fa LOOPNEILOOPNZ = Loop if not equallLoop if not zero 111100000 1 a-bit displacement

.... Branch taken 9 w l1+m r

Branch not taken 6 W 11

(continued)

• w
~

80386/80486 Instruction Set Clock Summary. continued

Instruction Format

Control Transfer

JMP ~ Unconditional branch

Short 11101001 8-bit displacement

Direct within segment 11101001 full displacement

Register indirect within segment 11111111 mod 100 rim I
Memory indirect within segment 11111111 mod 100 rim I
Direct intersegment (real mode) 11101010 unsigned full offset. selector

Direct intersegment (protected mode)

Via call gate, same privilege

Via task gate

ViaTSS

Indirect intersegment (real mode) 111111111 1 mod 101 rim 1

Indirect intersegment (protected mode)

Via call gate, same privilege

Via task gate

ViaTSS

CALL~Call

Direct within segment 111101000 1 full di splacement

Register indirect within segment 111111111 1 mod 010 rim 1

Memory indirect within segment 111111111 1 mod 010 rim 1

Direct intersegment (real mode) 110011010 1 unsigned full offset, selector

Direct intersegment (protected mode)

Via call gate, same privilege

Via call gate, different privilege, no parameters

Via call gate, different privilege, x parameters

Via task gate

80486
Clocks

3

3

5

5

17

19

32

43+task
switch

42+task
switch

13

18

31

41+task
switch

42+task
switch

3

5

5

18

20

35

69

77+4x

38+task
switch

Cache
Miss Cache 80386 General

Penalty Notes Clocks Notes

G,W 7+m r

G,W 7+m r

G,W 7+m r

5 G lO+m b,h,r

2 G,V 12+m r

3 I 27+m j,k,r

6 I 45+m h,j,k,r

3 I,] 44+task
switch

3 IJ 44+task
switch

9 G,I 17+m b

10 I 31+m h,j,k,r

13 I 49+m

10 IJ 49+task
switch

10 I,] 49+task
switch

G,W 7+m b,r

G,W 7+m b,r

5 G lO+m b,h,r

2 G,V 17+m b,h,r

3 I 34+m b,j,k,r

6 I 52+m h,j,k,r

17 I 86+m h,j,k,r

17+x I,K 94+4x+m h,j,k,r

3 IJ 45+task
switch

Cache
80486 Miss Cache 80386 General

Instruction Format Clocks Penalty Notes Clocks Notes

ViaTSS 37+task 3 IJ 45+task
switch switch

Jpdirect intersegment (real mode) 111111111 1 mod 011 rim 1 17 8 G 22+m

Indirect intersegment (protected mode) 20 10 I 38+m h,j.k,r

Via call gate, same privilege 35 13 I 52+m h,j,k,r

Via call gate, different privilege, no parameters 69 24 I 86+m h,j,k,r

Via call gate, different privilege, x parameters 77+4x 24+x I,K 94+4x+m h,j,k,r

Via task gate 38+task 10 IJ 49+task
switch switch

ViaTSS 37+task 10 IJ 49+task
switch switch

RET = Return from call

Within segment 111000011 1 5 5 lO+m b,g,h.r

Within segment adjusting ESP 111000010 1 16-bit displacement 5 5 lO+m b,g,h,r

Intersegment (real mode) 111001011 1 13 8 G 18+m b

Intersegment adjusting ESP (real mode) 111001010 1 16-bit displacement 14 8 G 18+m b

Intersegment (protected mode) 17 9 I 32+m g,h,j,k.r

Intersegment adjusting ESP (protected mode) 18 9 I 32+m g,h,j,k.r

Intersegment to different privilege level 35 12 I 68 h,j,k,r

Intersegment to different privilege level adjusting ESP 36 12 I 68 h,j,k,r

ENTER = Enter procedure 111001000 1 16-bit displacement, 8-bit level

Level=O 14 10 b,h

Level = 1 17 12 b,h

Level (1) > 1 17+31 H 15+41 b,h

LEAVE = Leave procedure 111001001 1 5 1 4 b,h

Software J1fIertupt

INT3 = Debug interrupt 111001100 1 int U int b

a INTO = Interrupt on overflow 111001110 1

Interrupt taken 2+int U 2+int b,e

Interrupt not taken 3 3

(continued)

80386/80486 Instruction Set Clock Summary. continued

Cache
80486 Miss Cache 80386 General

Instruction Format Clocks Penalty Notes Clocks Notes

INT = Interruptn 111001101 I type I 4+int U 4+int b,e

i
BOUND = Interrupt if out of range I 01100010 I mod reg rIm I

rnterrupttaken 24+int 7 U ll+int b,e

Interrupt not taken 7 7 U 10

IRET - Interruptretum 111001111 I
Real mode1V86 mode 15 8 22

Protected mode, same privilege 20 11 I 38 g,h,j,k,r

Protected mode, different privilege 36 19 I 82 g,h,j,k,r

Protected mode, nested task 32+task 4 IJ 16+task
switch switch

Basic interrupt times (INT)

Real mode 26 2 33

Protected mode via gate, same privilege 44 6 I 59

Protected mode via gate, different privilege 71 17 I 99

Protected mode via task gate 37+task 3 IJ 5O+task
switch switch

V86 mode via gate 82 17

V86 mode via task gate 37+task 3 J 50+task
switch switch

Basic task switch time (task switch)

To286TSS 143 31 232-237

To 386/486TSS 162 55 259-266

To V86 TSS 140 37 178

Processor Control

HLT=Hait 111110100 I 4 5 I

MOV = Move to/from control or debug register

Register to CRO I 00001111 I 00100010 I 11eeereg I 17 2 10 I

Register to CR2-3 I 00001111 I 00100010 I lleeereg I 4 4-5 I

CRx to register I 00001111 I 00100000 I lleeereg I 4 6 I

Cache
80486 Miss Cache 80386 General

Instruction Format Clocks Penalty Notes Clocks Notes

DRO-3 to register 00001111 00100001 lleeereg 9 22 I

DR6-7 to register 00001111 00100001 lleeereg 9 16 I

Register to DRO-3 00001111 00100011 l1eeereg 10 22 I

Registerto DR6-7 00001111 00100011 11eeereg 10 14 I

TRx to register 00001111 00100100 lleeereg 4 12 I

Register to TRx 00001111 00100110 Ileeereg 4 12 I

CLTS ~ Clear task switched bit 00001111 00000110 7 2 5 c,1

INVD ~ Invalidate cache 00001111 00001000 4 N/A

WBINVLD ~ Write back and invalidate cache 00001111 00001001 5 N/A

INVLPG ~ Invalidate TLB entry 00001111 00000001 mod 111 rim I 12 N/A

NOP ~ No operation 10010000 1 3

Prefix J¥es

ADRSIZ ~ Address size override 01100111 1 0 !

OPSIZ ~ Operand size override 01100110 1 0

LOCK ~ Bus lock 11110000 1 0

CS ~ Code segment override 00101110 1 0

OS ~ Data segment override 00111110 1 0

ES ~ Extra segment override 00100110 1 0

FS ~ FS segment override 01100100 1 0

GS ~ GS segment override 01100101 1 0

SS = Stack segment override 00110110 1 0
!

Protection Control

ARPL ~ Adjust requested privilege level I 01100011 I mod reg rim I

From register 9 20 a

From memory 9 21 a,h

t LAR ~ Load access rights I 00001111 I 00000010 I mod reg rim I
en From register 11 3 15 a

From memory 11 5 16 a,g,h,j,p
"------ -----

(continued)

80386/80486 Instruction Set Clock Summary. continued

Cache
80486 Miss Cache 80386 General

Instruction Format Clocks PenaUy Notes Clocks Notes

LGOT = Load GOT register I 00001111 I 00000001 I mod 010 rim I 12 5 11 b,c,h,1

t
G)

LlOT = Load IDT register I 00001111 I 00000001 I mod 011 rim I 12 5 11 b,c,h,1

LLDT = Load LOT register I 00001111 I 00000000 I mod 010 rim I
From register 11 3 20 a

From memory 11 6 24 a,g,h,j,1

LMSW = Load machine status word I 00001111 I 00000001 I mod 110 rim I
From register 13 10 b,c,h,1

From memory 13 1 13 b,c,h,!

LSL = Load segment limit I 00001111 I 00000011 I mod reg rim I
From register 10 3 20-25 a,g,h,j,p

From memory 10 6 21-26 a,g,h,j,p

LTR = Load task register I 00001111 I 00000000 I mod 001 rim I
From register 20 23 a,g,h,j,1

From memory 20 27 a,g,h,j,1

SGOT = Store GOT register I 00001111 I 00000001 I mod 000 rim I 10 9 b,c,h

SlOT = Store lOT register I 00001111 I 00000001 I mod 001 rim I 10 9 b,c,h

SLDT = Store SOT register I 00001111 I 00000000 I mod 000 rim I
To register 2 2 a,h

To memory 3 2 a,h

SMSW = Store machine status word I 00001111 I 00000001 I mod 100 rim I
To register 2 10 b,c,h,1

To memory 3 13 b,c,h,1

STR = Store task register I 00001111 I 00000000 I mod 001 rim I
To register 2 2 a,h

To memory 3 2 a,h

VERR = Verify read access I 00001111 I 00000000 I mod 100 rim I
Register 11 3 10 a,g,h,j,p

Memory 11 7 11 a,g,h,j,p

ClkCount Cache
Virtual 80486 Miss Cache 80386 General

InstnicUon ,Format 8086 Mode Clocks Penalty Notes Clocks Notes

~VERW - Verify write access I 00001111 I 00000000 I mod 101 rIm I
Register 11 3 15 a,g,h,j,p

Memory 11 7 16 a.g.h,j,p

I/OlnstrucUons

IN - Input from port

Fixed port/ 1110010w port number I 26

I Variable port I 1110110w I I 27

Real mode 14 12/13

Protected mode (CPL <- IOPL) 9/8 6/7

'Protect mode (CPL>IOPL) 29/28 26127

V86mode 27 26/27

OUT-Outputtoport

Fixed port/ I 1110011w I port number I 24

I I Variable port Ill10111w I 25

Real mode 16 10/11

Protected mode (CP <-IOPL) 10/11 415

Protect mode (CPL>IOPL) 31/30 24125

V86mode 29 24125

INS = Input string I 0110110w I I 29 I
Real mode 17 15

Protected mode (CPL<-IOPL) 10 9

Protect mode (CPL>IOPL) 32 29

V86mode 30 29

OUTS = Output string I 0110111w I I 28 I
Real mode 17 14

t Protected mode (CPL<=IOPL) 10 8 I

... Protect mode (CPL>IOPL) 32 28

I

V86mode 30 28

(continued)

&

80386/80486 Ins! tion Set Oock Summary. continued

Instruction Format

REP INS = Repeated input string 111110010 I 0110110w

Real mode

Protected mode (CPL<=IOPL)

Protect mode (CPl>IOPL)

V86mode

REP OUTS - Repeated output string 111110010 I 0110111w

Real mode

Protected mode (CPL<-IOPL)

Protect mode (CPl>IOPL)

V86mode

Cache Notes:

A., Assuming that the operand address and stack address fall in
different cache sets.

B. Always locked, no cache hit case.
C. Clocks = 10 + max(logA mI),n)

m = multiplier value (min clocks for m = 0)
n = 3/5 for±m

D. Clocks = {quotient(countloperand length)}*7+9
= 8 if count ~ operand length (8/16/32)

E. Clocks = {quotient(countloperand length)}*7+9
= 9 if count ~ operand length (8/16/32)

F. Equal/not equal cases (penalty is the same regardless of lock).

I

I

G. Assuming that addresses for memory read (for indirection), stack
push/pop, and branch fall in different cache sets.

H. Penalty for cache miss: add 6 clocks for every 16 bytes copied to
new stack frame.

1. Add 11 clocks for every unaccessed deSCriptor load.
J. Refer to task switch clock counts table for value of TS.
K. Add 4 extra clocks to the cache miss penalty for each 16 bytes.
For notes L-M: (b = 0--3, nonzero byte number);

o = 0-1, nonzero nibble number);
(n = 0-3, nonbit number in nibble);

ClkCount Cache
Virtual 80486 Miss Cache 80386 General

8086Mode Clocks Penally Notes Clocks Notes

27+6n

26+5n

I
16+&

10+&

30+&

29+&

I
17+5c

1l+5c

31+5c

30+5c

L. Clocks = 8+4(b+1) + 30+1) + 3(n+1)
= 6 if second operand = 0

M. Clocks = 9+4(b+1) + 30+1) + 3(n+1)
= 7 if second operand = 0

For notes N-O: (n = bit position 0-31)

N. Clocks = 7 + 3C32-n)
6 if second operand = 0

o. Clocks = 8 + 3C32-n)
7 if second operand = 0

13+6c

7+6c

27+6c

27+6c

12+5c

6+5c

26+5c

26+5c

P. Assuming that the two string addresses fall in different cache sets.
Q. Cache miss penalty: add 6 clocks for every 16 bytes compared. Entire

penalty on first compare.
R Cache miss penalty: add 2 clocks for every 16 bytes of data. Entire

penalty on first load.
S. Cache miss penalty: add 4 clocks for every 16 bytes moved. (1 clock for

the first operation and 3 for the second)
T. Cache miss penalty: add 4 clocks for every 16 bytes scanned. (2 clocks

each for first and second operations)
U. Refer to interrupt clock counts table for value of INT.
V. Clock count includes one clock for using both displacement and immediate.
w. Refer to assumption 6 in the case of a cache miss.

I

Appendix D: Instruction Format and Timing

Instruction Encoding
All instruction encodings are subsets of the general instruction format shown in
Figure D-l. Instructions consist of one or two primary opcode bytes, possibly an ad­
dress specifier consisting of the mod rim byte and scaled index byte, a displace­
ment if required, and an immediate data field if required.

Within the primary opcode or opcodes, smaller encoding fields can be defined.
These fields vary according to the class of operation. The fields define information
such as direction of the operation, size of the displacements, register encoding, and
sign extension.

Almost all instructions that refer to an operand in memory have an addressing mode
byte following the primary opcode byte(s). This byte, the mod rim byte, specifies
the address mode to be used. Certain encodings of the mod rim byte indicate a
second addressing byte, the scale-index-base byte, which fully specifies the
addressing mode.

Addressing modes can include a displacement immediately following the mod rim
byte or the scaled index byte. If a displacement is present, the possible sizes are 8,
16, and 32 bits.

If the instruction specifies an immediate operand, the immediate operand follows
any displacement bytes. The immediate operand is always the last field of the
instruction.

Figure D-1 illustrates some of the fields that can appear in an instruction, such as
the mod field and the rim field. Several smaller fields also appear in certain instruc­
tions, sometimes within the opcode bytes. The table on the following page is a
complete list of all fields appearing in the 80386-family instruction set. Detailed
tables for each field appear later in this appendix.

I TI 111111 I TI 111111 Imod TIT r/ml ssindexbase I d321161s1 none data32 I 161s1 none

7 0 7 0 76 53 2 0 76 5 3 2 0
\ J\ J\)\.,~_-, __ -,)\,--__ --,-__ -,)

I I I
opcode "mod rim" "s-i-b" address immediate

(one or two bytes) \ byte byte) displacement data
(T represents an I (4,2,1 bytes (4,2,1 bytes

opcode bit) register and address or none) or none)
mode specifier

Figure D-l. General instruction format.

439

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Field
Name

w

d
s

reg
modr/m

ss
index
base
sreg2
sreg3
cccc

Fields within 80386 Instructions

Description

Specifies whether data is byte size or full size (full size
is either 16 or 32 bits)

Specifies direction of data operation
Specifies whether an immediate data field must be

sign-extended
General register specifier
Address mode specifier (effective address can be a

general register)
Scale factor for scaled index address mode
General register to be used as index register
General register to be used as base register
Segment register specifier for CS, SS, DS, ES
Segment register specifier for CS, SS, DS, ES, FS, GS
For conditional instructions, specifies a condition

asserted or a condition negated

NOTE: Figure D-l shows encoding of individual instructions.

32·bit extensions of the instruction set

Number
of Bits

1

1
1

3
2 for mod;

2
3
3
2

3
4

3 for rim

With the 80386, the 8086/80186/80286 instruction set is extended in two orthogonal
directions: 32-bit forms of all 16-bit instructions support the 32-bit data types, and
32-bit addressing modes are available for all instructions referring to memory. This
orthogonal instruction set extension is accomplished by having a default (D) bit in
the code segment descriptor and by having two prefixes to the instruction set.

Whether the instruction defaults to operations of 16 bits or 32 bits depends on the
setting of the D bit in the code segment descriptor. The D bit specifies the default
length (either 16 bits or 32 bits) for both operands and effective addresses when
executing that code segment. Real address mode and virtual 8086 mode use no
code segment descriptors, but the 80386 internally assumes a D value of 0 when
operating in those modes (for 16-bit default sizes compatible with the
8086/80186/80286).

Two prefixes, the operand size prefix and the effective address size prefix, allow
overriding the default selection of operand size and effective address size. These
prefixes can precede any opcode bytes and affect only the instruction they pre­
cede. If necessary, one or both prefixes can be placed before the opcode bytes. The
presence of the operand size prefix and the effective address size prefix toggles the
operand size or the effective address size to the value opposite that of the default
setting. For example, if the default operand size is for 32-bit data operations, the
presence of the operand size prefix toggles the instruction to 16-bit data operations.
If the default effective address size is 16 bits, the presence of the effective address
size prefix toggles the instruction to use 32-bit effective address computations.

440

Appendix D: Instruction Format end Timing

These 32-bit extensions are available in all 80386/80486 modes, including real ad­
dress mode or virtual 8086 mode. In these two modes the default is always 16 bits,
so prefixes are needed to specify 32-bit operands or addresses.

Unless specified, instructions with 8-bit and 16-bit operands do not affect the con­
tents of the high-order bits of the extended registers.

Encoding of instruction fields
Several fields indicate register selection, addressing mode, and so on within the
instruction. The encodings of these fields are defined in the following tables.

Encoding of the operand length (w) field
For any given instruction performing a data operation, the instruction executes as
a 32-bit operation or a 16-bit operation. Within the constraints of the operation size,
the w field encodes the operand size as either 1 byte or the full operation size, as
shown in the table below.

wField

o
1

Operand Length Encoding

Operand Size During
16-Bit Data operations

8 bits
16 bits

operand Size During
32-Bit Data Operations

8 bits
32 bits

Encoding of the general register (reg) field
The general register is specified by the reg field, which can appear in the primary
opcode bytes or as the reg field of the mod rim byte, or as the rim field of the mod
rim byte. The following tables illustrate reg field encoding.

Encoding of reg Field When w Field Is Not Present in Instruction

reg Field

000
.001

010
011
100
101
101
101

Register Selected During
16-Btt Data operations

AX
CX
DX
BX
SP
BP
SI
D!

Register Selected During
32-Bit Data Operations

EAX
ECX
EDX
EBX
ESP
EBP
ESI
ED!

441

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

Encoding of reg Field When w Field Is Present in Instruction

reg Field

000
001
010
011
100
101
110
111

Register Specified by reg Field During 16-BU Data operations

Function ofw Field
Wbenw-O

AL
CL
DL
BL
AH
CH
DH
BH

Function ofw Field
Wbenw-l

AX
CX
DX
BX
SP
BP
SI
DI

Encoding of reg Field When w Field Is Present in Instruction

Register Specified by reg Field During 32-Bit Data operations

reg Field

000
001
010
011
100
101
110
111

Function of w Field
Wbenw-Q

AL
CL
DL
BL
AH
CH
DH
BH

Function ofw Field
Wbenw-l

EAX
ECX
EDX
EBX
ESP
EBP
ESI
EDI

Encoding of the seg..-ent register (sreg) field
The sreg field in certain instructions is a 2-bit field that allows one of the four 80286
segment registers to be specified. The sreg field in other instructions is a 3-bit field
that allows the FS and GS segment registers to be specified. The following two
tables show the selected segment registers.

2-Bit sreg2 Field

00
01
10
11

442

2-Bit sreg2 Field

Segment Register Selected

ES
CS
SS
DS

3-Btt sreg3 Field

000
001
010
all
100
101
110
111

Appendix D: Instruction Format and Timing

3-Bit sreg3 Field

Segment Register Selected

ES
CS
SS
DS
FS
GS
Do not use
Do not use

Encoding of address mode
Except for special instructions such as PUSH and POP, where the addressing mode
is predetermined, the addressing mode for the current instruction is specified by
addressing bytes following the primary opcode. The primary addressing byte is the
mod rim byte, and a second byte of addressing information, the s-i-b (scale-index­
base) byte, can be specified.

The s-i-b byte is specified when using 32-bit addressing mode and the mod rim
byte has rim = 100 and mod = 00, 01, or 10. When the s-i-b byte is present, the 32-bit
addressing mode is a function of the mod, ss, index, and base fields.

The primary addressing byte, the mod rim byte, also contains 3 bits (shown as TTT
in Figure D-1) sometimes used as an extension of the primary opcode. The 3 bits,
however, can also be used as a register field (reg).

When calculating an effective address, either 16-bit addressing or 32-bit addressing
is used. To calculate the effective address, 16-bit addressing uses 16-bit address com­
ponents, whereas 32-bit addressing uses 32-bit address components. When 16-bit
addressing is used, the mod rim byte is interpreted as a 16-bit addressing mode
specifier. When 32-bit addressing is used, the mod rim byte is interpreted as a 32-
bit addressing mode specifier.

The following tables define all encodings of all 16-bit addressing modes and 32-bit
addressing modes.

443

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

mod rim

00000
00001
00010
00011
00100
00101
00110
00111

01000
01001
01010
01011
01100
01101
01110
01111

10000
10001
10010
10011
10100
10 101
10110
10111

11 000
11 001
11010
11011
11100
11101
11110
11111

mod rim

11 000
11 001
11 010
11011
11100
11101
11110
11111

444

Encoding of 32-Bit Address Mode with mod rim Byte
(no s-i-b Byte Present)

Effective Address

DS:[EAX)
DS:[Eex]
DS:[EDX]
DS:[EBX]
s-i-b is present
DS:d32
DS:[ESI)
DS:[EDI)
DS:[EAX+d8)

DS:[ECX+d8)
DS:[EDX +d8)
DS:[EBX +d8)
s-i-b is present
SS:[EBP+d8)
DS:[ESI+d8)
DS:[EDI+d8)

DS:[EAX +d32)
DS:[ECX +d32)
DS:[EDX+d32)
DS:[EBX+d32)
s-i-b is present
SS:[EBP+d32)
DS:[ESI+d32)
DS:[EDI+d32)

register-see below
register-see below
register-see below
register-see below
register-see below
register-see below
register-see below
register-see below

Register Specified by reg or rim During 16-Bit Data operations
Function ofw Field
Wbenw=O

AL
CL
DL
BL
AH
CH
DH
BH

Function ofw Field
Wbenw-l

AX
ex
DX
BX
SP
BP
SI
DI

modr/m

11 000
11 001
11 010
11011
11100
11101
11110
11111

Appendix D: Instruction Format and Timing

Encoding of 32-Bit Address Mode with mod rim Byte
(no s-i-b Byte Present)

Register Specified by reg or r/m During 32-Bit Data operations

Function ofw Field
Wbenw=O

AL
CL
DL
BL
AH
CH
DH
BH

Function of w Field
Wbenw .. J

EAX
ECX
EDX
EBX
ESP
EBP
ESI
EDI

Encoding of 32-Bit Address Mode (mod rim Byte and s-i-b Byte Present)

Mod Base

00000
00001
00010
00011
00100
00101
00110
00111

01000
01001
01010
01011
01100
01101
01110
01111

10000
10001
10 010
10011
10100
10101
10110
10111

Effective Address

DS:[EAX+(scaled index)]
DS:[ECX+(scaled index)]
DS:[EDX+(scaied index)]
DS:[EBX+(scaied index)]
DS:[ESP+(scaled index)]
DS:[d32+(scaied index)]
DS:[ESI+(scaied index)]
DS:[EDI+(scaied index)]

DS:[EAX +(scaled index)+d8]
DS:[ECX +(scaled index)+d8]
DS:[EDX +(scaied index)+d8]
DS:[EBX +(scaied index)+d8]
SS:[ESP+(scaled index)+d8]
SS:[EBP+(scaied index)+d8]
DS:[ESI +(scaied index)+d8]
DS:[EDI+(scaled index)+d8]

DS:[EAX +(scaied index)+d32]
DS:[ECX +(scaled index)+d32]
DS:[EDX +(scaled index)+d32]
DS:[EBX +(scaled index)+d32]
SS:[ESP+(scaied index)+d32]
SS:[EBP+(scaied index)+d32]
DS:[ESI +(scaied index)+d32]
DS:[EDI+(scaied index)+d32]

NOTE: Mod field in mod rim byte; ss, index, base fields in s-i-b byte.

ss Scale Factor

00 xl
01 x2
10 x4
11 x8

445

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Index Index Register

000 EAX
001 ECX
010 EDX
011 EBX
100 no index reg"
101 EBP
110 ESI
111 EDI

• When index field is 100, indicating no index register, ss field must equal 00. If index is 100 and ss does
not equal 00, the effective address is undefined.

modr/m

00000
00001
00010
00011
00100
00101
00110
00111

01000
01001
01010
01011
01100
01101
01110
01111

10000
10001
10010
10011
10 100
10 101
10 110
10111

11 000
11 001
11 010
11011
11100
11101
11110
11111

446

Encoding of 16-Bit Address Mode with mod rim Byte

Effective Address

DS:[BX+SI]
DS:[BX+DI]
SS:[BP+SI]
SS:[BP+DI]
DS:[SI]
DS:[DI]
DS:[d16]
DS:[BX]
DS:[BX +SI+d8]

DS:[BX+DI+d8]
SS:[BP+SI +d8]
SS:[BP+DI +d8]
DS:[SI+d8]
DS:[DI+d8]
SS:[BP+d8]
DS:[BX+d8]

DS:[BX+SI+d16]
DS:[BX+DI+d16]
SS:[BP+SI+d16]
SS:[BP+DI+d16]
DS:[SI+d16]
DS:[DI+d16]
SS:[BP+dl6]
DS:[BX+dl6]

register-see page 447
register-see page 447
register-see page 447
register-see page 447
register-see page 447
register-see page 447
register-see page 447
register-see page 447

Appendix D: Instruction Format and Timing

mod rim

11 000
11 001
11 010
11 011
11100
11101
11110
11 111

mod rim

11 000
11 001
11 010
11011
11100
11 101
11110
11111

Encoding of16-Bit Address Mode with mod rim Byte

Register Specljied by rim During 16-Bit Data operations

Function ofw Field Function of w Field
Wbenw - 0 Wbenw -1

AL AX
CL CX
DL DX
BL BX
AH SP
CH BP
DH SI
BH DI

Encoding of16-Bit Address Mode with mod rim Byte

Register Specified by rim During 32-Bit Data operations

Function of w Field
Wbenw '" 0

AL
CL
DL
BL
AH
CH
DH
BH

Function ofw Field
Wbenw=1

EAX
ECX
EDX
EBX
ESP
EBP
ESI
EDI

Encoding of operation direction (d) field
In many 2-operand instructions, the d field indicates which operand is the source
and which is the destination, as shown in the following table.

d

o

1

Operation Direction Encoding

Direction of operation

Register/Memory f- Register
reg field indicates source operand; mod rim or mod ss index base

indicates destination operand
Register f- Register/Memory
reg field indicates destination operand; mod rim or mod ss index

base indicates source operand

Encoding of sign extend (s) field
The s field occurs in instructions with immediate data fields. The s field has an
effect only if the size of the immediate data is 8 bits and is being placed in a 16-bit
or 32-bit destination. The table on the following page shows s field encoding.

447

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Sign Extend Encoding

s Effect on Immediate Data 8 Effect on Immediate Data 16/32

o
1

None
Sign extend data 8 to fill

16-bit or 32-bit destination

None
None

Encoding of conditional test (cccc) field
For the conditional instructions (conditional jumps and set on condition), cccc is
encoded with the condition to test. The following table shows encoding of the
cccc field.

Mnemonic

o
NO
B/NAE
NB/AE
E/Z
NE/NZ
BE/NA
NBE/A
S
NS
PIPE
NP/PO
L/NGE
NL/GE
LE/NG
NLE/G

Conditional Test Encoding

Condition

Overflow
No overflow
Below/not above or equal
Not below/above or equal
Equal/zero
Not equal/not zero
Below or equal/not above
Not below or equal/above
Sign
Not sign
Parity/parity even
Not parity/parity odd
Less than/not greater or equal
Not less than/greater or equal
Less than or equal/greater than
Not less or equal/greater than

cccc

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Encoding of control, debug, and test registers (eee) field
The eee field loads and stores the control, debug, and test registers.

Encoding of eee When Interpreted as Control Register Field

eeeCode

000
010
011

Reg Name

CRO
CR2
CR3

Do not use any other encoding.

448

Appendix D: Instruction Format and Timing

Encoding of eee When Interpreted as Debug Register Field

eeeCode Reg Name

000 DRO
001 DR1
010 DR2
011 DR3
110 DR6
111 DR7

Do not use any other encoding.

eeeCode

011
100
101
110
111

Encoding of eee When Interpreted as Test Register Field

Reg Name

TR3
TR4
TR5
TR6
TR7

Do not use any other encoding.

Floating·Point Extensions
The table beginning on the following page shows NDP extensions to the basic
instruction set. In the 80486, these instructions are implemented on-chip. An 80387
is required to implement these instructions on 80386-based systems.

449

Instruction Encoding/Timing

CLOCKCOUNTRANGE

ENCODING 80387 80486
INSTRUCTION

Byte I Byte I Opdonal 32-Blt I 32-Blt I 64-Bit I 16-Blt 32-Blt I 32-Blt I 64-Bit I 16-Blt
0 1 Bytes 2-6 Real Integer Real Integer Real Integer Real Integer

I
Data Transfer

FLD=Loa(/a

Integer/real memoCyto ST(O) ESC MF 1 MOO 000 RIM SI B/OISP I 20 45-52 25 61-65 3(2) 3(3) 3(3) 1}-16 (2)

Long integer memory to ST(O) ESC III MOD 101 RIM SIB/DISP I 56-67 10-18(3)

Extended real memory to ST(O) ESC 011 MOD 101 RIM SIB/DISP I 44 6(4)

BCD memory to ST(O) ESC 111 MOD 100 RIM SIB/DISP I 266-275 70-103(4)

ST(i) to ST(O) ESC 001 11000 ST(1) 14 4

FST-Store

ST(O) to integer/real memory I ESC MF 1 I MOD 010 RIM I SIB/DISP I 44 79-93 45 82-95 7 28-34 8 29--34

ST(O) to ST(i) I ESC 101 111010 ST(1) I 11 3

FSTP = Store and pop

ST(O) to integer/real memorY I ESC MF 1 MOD 011 RIM SIB/DISP I 44 79-93 45 82-95 7 28-34 8 29-34

ST(O) to long integer memory I ESC III MOD 111 RIM SIB/DISP I 80-97 29-34

ST(O) to extended real I ESC 011 MOD 111 RIM SIB/DISP I 53 6

ST(O) to BCD memory I ESC 111 MOD 110 RIM SIB/DISP I 512-534 172-176

ST(O) to ST(i) I ESC 101 11001 ST (il 12 3

FXCH = Exchange

ST(i) andST(O) I ESC 001 111001 ST (il I 18 4

Comparison

FCOM = Compare

Integer/real memory to ST(O) I ESC MF 0 I MOD 010 RIM I SIB/DISP I 26 56-63 31 71-75 4(2) 15-17(2) 4(3) 16-20(2)

ST(i)toST(O) I ESC 000 111010 ST (1) I 24 4

FCOMP = Compare and pop

Integer/real memory to ST I ESC MF 0 I MOD 011 RIM I SIB/DISP I 26 56-63 31 71-75 4(2) 15-17(2) 4(3) 16-20(2)

ST(i)toST(O) I ESC 000 111011 ST(il I 26 4

CLOCKCOUNTKANGE

ENCODING 80387 80486
INSTRUCTION

Byte I Byte I Optional :U:Bit I 32-Bit I 64-Bit I 16-Bit 32-Bit I 32-Bit I 64-Bit I 16-Bit
0 1 Bytes 2--6 Real Integer Real Integer Real Integer Real Integer

FCOMPP = Compare and pop twice

ST(i) to ST(O) I ESC 110 I 11011001 I 26 5

FTST=TestST(O) I ESC 001 111100100 I 28 4

FUCOM = Unordered compare I ESC 101 111100 STU) I 24 4

FUCOMP = Unordered compare I ESC 101 111101 SHU I
and pop 26 4

FUCOMPP = Unordered
compare and pop tWice I ESC 010 111101001 I 26 5

FXAM - Examine ST(O) I ESC 001 111100101 I 30-38 8

Constants

FLOZ = Load + 0.0 into ST(O) ESC 001 11101110 20 4

FL01 = Load + 1.0intoST(0) ESC 001 11101000 24 4

FLOP 1= Load pi into ST(O) ESC 001 11101011 40 8

FLOL2T= Loadlog2(10) into ST(O) ESC 001 11101001 40 8

FLOL2E a Load logz<e) into ST(O) ESC 001 11101010 40 8

FLOLG2 = Load 10glO(2) into ST(O) ESC 001 11101100 I 41 8

FLDIN2 = Load 10&,(2) ESC 001 ll10ll01 I 41 8

Arithmetic

FAOO=Add

Integer/real memorywith ST(O) I ESC MF 0 I MOD 000 RIM I SIB/DISP I 24-32 57-72 29-37 71-85 8-20(2) 19-32(2) 8-20(3) 20-35(2)

ST(O and ST(O) I ESC d P 0 IllOOO ST (1) I 23-31h 8-20

: FSUB = Subtract ~

...
Integer/real memory with ST(O) I ESC MF 0 I MOD 10 RIM I SIB/DISP I 24-32 57-82 28-36 71-83c 8-20(2) 18-32(2) 8-20(3) 20-35(2)

ST(i) and ST(O) I ESC d P 0 11110 R RIM I 26-34d 8-20

(continued)

Instruction Encoding/Timing. continued

CLOCK COUNT KANGE

ENCODING 80387 80486
INSTRUCTION

Byte I Byte I optional 32-Bit I 32-Bit 1 64-Bit I 16-Bit 32-Bit I 32-Bit I 64-Bit I 16-Bit
0 1 Bytes 2-6 Real Integer Real Integer Real Integer Real Integer

~
N

FMUL - Multiply

Integer/real memory with ST(O) 1 ESC MF 0 1 MOD 001 RIM 1 SIB/DISP 1 27-35 61-82 32-57 76-87 11 (2) 22-24(2) 14(3) 23-27(2)

ST(i) and ST(O) 1 ESC d P 0 1 11001RIM 1 29-57" 16

FDIV - Divide

Integer/real memory with ST(O) ESC MF 0 MOD 11R RIM 1 SIB/DISP 1 89 120-127' 94 136-140s 73(2) 84-86(2) 73(2) 85-89(2)

ST(i) and ST(O) ESC d P 0 1111 R RIM I SSh 73

FSQ RT' - Square root ESC Q01 11111010 122-129 83-87

FSCALE = Scale ST(O) by ST(1) ESC 001 11111101 67-86 30-32

FPREM = Partial remainder ESC 001 11111000 74-155 70-138

FPREM 1 = Partial remainder (IEEE) ESC 001 11110101 95-185 72-167

FRNDINT = Round ST(O) to integer ESC 001 11111100 66-80 21-30

FXTRACT = Extract components ESC 001 11110100 70-76 16-20
ofST(O)

FABS = Absolute value ofST(O) 1 ESC 001 111100001 1 22 3

FCHS-ChangesignofST(O) 1 ESC 001 111100000 1 24 25 6 I
I

Transcendental

FCOSk-CosineofST(O) ESC 001 11111111 123-7721 193-279

FPTANk = Partial tangentofST(O) ESC 001 1110010 191-497; 200-273

FPATAN = Partial arctangent ESC 001 11110011 314-487 218-303

FSINk = Sine of ST(O) ESC 001 11111110 122-771; 193-279

FSINCOSk = Sine and cosine ofST(O) ESC 001 11111011 194-809' 243-392

F2XM 11 = 2S11O)-1 1 ESC 001 111110000 1 211-476 140-279

FYL2xm = ST(l). klg,(ST(O)) 1 ESC 001 111110001 1 120-538 196-329

FYL2XP1 n = ST(1) 1 ESC 001 111111001 1

• IDg,(ST(O) + 1.0) 257-547 171-326

~
W

ENCODING
INSTRUCTION

Byte I Byte I Optional
0 1 Bytes 2-6

ProcessorControl

FINIT - Initialize NPX ESC 011 11100011

FSTSW AX - Store status word ESC 111 11100000

FLDCW - Load control word ESC 001 MOD 101 RIM SIB/DISP

FSTCW - Store control word ESC 101 MOD 111 RIM SIB/DISP

FSTSW - Store status word ESC 101 MOD 111 RIM SIB/DISP

FCLEX - Clear exceptions ESC 011 11100010

FSTENV - Store environment ESC 001 MOD 110 RIM SIB/DISP ,
FLDENV - Load environment ESC 001 MOD 100 RIM SIB/DISP

FSA VE = Save state ESC 101 MOD 110 RIM SIB/DISP

FRSTOR - Restore state ESC 101 MOD 100 RIM SIB/DISP

FINCSTP = Increment stack pointer ESC 001 11110111

FDECSTP - Decrement stack pointer ESC 001 11110110

FFREE - Free ST(i) ESC 101 1100 ST(1)

FNOP - No operation ESC 001 11010000

NOTES:

a. When loading single-precision or double-precision 0 from memory,
add 5 clocks.

b. Add 3 clocks to the range when d - 1.

c. Add 1 clock to each range when R - 1.

d. Add 3 clocks to the range when d = o.
e. Typical = 52. (When d = 0, 46-54, typical = 49.)

f. Add 1 clock to the range when R = 1.

g. 135-141 when R = 1.

h. Add 3 clocks to the range when d = 1.

CLOCK COUNT RANGE

80387 80486

32-Bit I 32-Bit I 64-Bit I 16-Bit
Real Integer Real Integer

32-Bit I 32-Bit I 64-Bit I 16-Bit
Real Integer Real Integer

33 17

13 3

I 19 4(2)

I 15 3

I 15 3

11 7

I 103-104 56-{57

I 71 34-44

I 375-376 143-154

I 308 120--131 (23-27)

21 3

22 3

18 3

12 3

i. -0 ~ ST(O) ~ + 00.

j. These timings hold for operands in the range I x I < 1tI4. For operands not in
this range, up to 76 additional clocks might be needed to reduce the operand.

k.0~1 ST(O) I <263.

I. -1.0 ~ ST(O) ~ 1.0.

m. 0 ~ ST(O) < 00, -00 < STet) < + 00.

n. 0 ~ I ST(O) I < (2 - SQRT(2))I2, -00 < ST(1) < + 00.

Appendix E

INSTRUCTION
DISASSEMBLY

TABLE

The table in this appendix allows you to decode 80386 instructions. It presents the
same information as the opcode table in Appendix C but is easier to use.

The table has the following format:

[required byte(s)] [operand byte(s)] [instruction]

At least one of the required bytes is an 8-bit hexadecimal value, and additional
bytes may follow. The operand bytes have one of the following forms:

ea The source and destination operands are encoded in the standard mod reg rim
format described in Appendix D.

ea/N The destination operand is encoded in the mod rim portion of the ea field,
and the reg bits are set to IN.

dataN N bytes of immediate data follow the instruction.

-In/reg The standard mod reg rim encoding is interpreted so that the mod bits
are ignored, the reg bits specify register n of a group (such as CR3), and the rim bits
select a general 32-bit register.

dispN A signed displacement (N bits in length) from the current instruction
pointer (ElP) follows the instruction.

The abbreviations Ea, Eb, Ew, and Ed stand for the effective address, byte, word,
and doubleword indicated by the ea bits in the instruction.

Instructions preceded by an asterisk (0) are 32-bit instructions that operate on 16-bit
quantities when preceded with the OPSIZ: instruction prefix. For real mode, v86
mode, and 286-compatible code segments, the behavior is reversed; that is, the in­
structions operate on 16-bit operands unless preceded with the OPSIZ: prefix.

455

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

Instruction Disassembly Table

Instnlction Instnlction
Bytes operation Bytes operation

OOea ADDEb, reg8 .OF 88 disp32 JS disp32
.01 ea ADD Ed, reg32 • OF 89 disp32 JNS disp32
02 ea ADDreg8, Eb .OF 8A disp32 JP disp32 OP IJPE)

.03 ea ADD reg32, Ed .OF 8B disp32]NP disp32 (]NPIJPO)
04 data8 ADD AL, data8 .OF 8C disp32 JL disp32 (JLI]NGE)

.05 data32 ADD EAX, data32 .OF 8D disp32 JNL disp32 (JNL/JGE)

.06 PUSHES .OF 8E disp32 JLE disp32 (JLE/JNG)
·07 POPES .OF 8F disp32 JNLE disp32 ONLE/JG)
OBea OREb,reg8 OF 90ea SETOEb

.0gea OR Ed, reg32 OF 91 ea SETNOEb
OAea ORreg8, Eb OF 92 ea SETB Eb (SETB/SETNAE/

.OB ea ORreg32, Ed SETC)
OC data8 ORAL, data8 OF 93 ea SETNB Eb (SETNB/SETAE/

.OD data32 OR EAX, data32 SETNC)
·OE PUSHCS OF 94 ea SETZ Eb (SETZ/SETE)
OFOOea/O SLDTEw OF 95 ea SETNZ Eb (SETNZ/SETNE)
OF 00 ea/1 STREw OF 96 ea SETBE Eb (SETBE/SETNA)
OF 00 ea/2 LLDTEw OF 97 ea SETNBE Eb (SETNBE/SETA)
OF 00 ea/3 LTREw OF 98 ea SETSEb
OF 00 ea/4 VERREw OF 99 ea SETNSEb
OFOOea/5 VERWEw OF 9Aea SETP Eb (SETP/SETPE)
OF 01 ea/O SGDTEa OF 9B ea SETNP Eb (SETNP/SETPO)
OF 01 ea/1 SIDTEa OF9C ea SETL Eb (SETL/SETNGE)
OF 01 ea/2 LGDTEa OF9D ea SETNL Eb (SETNL/SETGE)
OF 01 ea/3 LIDTEa OF 9E ea SETLE Eb (SETLE/SETNG)
OF 01 ea/4 SMSWEw OF 9F ea SETNLE Eb (SETNLE/SETG)
OF 01 ea/6 LMSWEw ·OFAO PUSHFS

.OF02 ea LAR reg32, Ew ·OFA1 POPFS

.OF 03 ea LSL reg32, Ew ·OF A3 ea BTEd, reg32
OF 06 CLTS .OF A4 ea data8 SHLD Ed, reg32, data8
OF 08 INVD .OFA5 ea SHLD Ed, reg32, CL
OF 09 WBINVD OFA6 CMPXCHG Eb, reg8
OF 10 ea INVLPG, ea OFA7 CMPXCHG Ed, reg32
OF 20 -In/reg MOV CRn, reg32 ·OFA8 PUSHGS
OF 21 -In/reg MOV DRn, reg32 .OFA9 POPGS
OF 22 -In/reg MOV reg32, CRn .OFAB ea BTS Ed, reg32
OF 23 -In/reg MOV reg32, DRn .OF AC ea data8 SHRD Ed, reg32, data8
OF 24 -In/reg MOV TRn, reg32 ·OFADea SHRD Ed, reg32, CL
OF 26 -In/reg MOV reg32, TRn ·OFAFea IMUL reg32, Ed

.OF 80 disp32 JO disp32 .OFB2 ea LSS reg32, Ea

.OF 81 disp32]NO disp32 ·OFB3 ea BTR Ed, reg32

.OF 82 disp32 JE disp32 (JEI]NAE) .0FB4 ea LFS reg32, Ea
·OF 83 disp32]NB disp32 (]NB/JAE) ·OF B5 ea LGS reg32, Ea
.OF 84 disp32 JZ disp32 OZ/JE) .OFB6 ea MOVZX reg32, Eb
.OF 85 disp32]NZ disp32 (]NZI]NE) ·OF B7 ea MOVZX reg32, Ew
.OF 86 disp32 JEE disp32 OBEI]NA) .OF BA ea/4 data8 BTEd, data8
.OF 87 disp32]NBE disp32 (]NBEI .OF BA ea/S data8 BTS Ed, data8

JA) .OF BA ea/6 data8 BTR Ed, data8

(continued)

456

Appendix E: Instruction DI mbly Tabl.

Instruction Disassembly Table. continued

Instruction Instruction
Bytes operation Bytes operation

.OF BA eal7 data8 BTC Ed, data8 30ea XOREb, reg8
-OFBB ea BTC Ed, reg32 -31 ea XOR Ed, reg32
-OFBC ea BSF reg32, Ed 32 ea XORreg8, Eb
-OFBD ea BSR reg32, Ed -33ea XOR reg32, Ed
-OF BE ea MOVSX reg32, Eb 34 data8 XOR AL, data8
.OF BF ea MOVSX reg32, Ew -35 data32 XOR EAX, data32

OF CO XADD Eb, reg8 36 SS:
OFC1 XADD Eb, reg32 37 AAA
OFC8 BSWAPEAX 38 ea CMPEb, reg8
OFC9 BSWAPECX '3gea CMP Ed, reg32
OFCA BSWAPEDX 3Aea CMPreg8, Eb
OFCB BSWAPEBX -3Bea CMP reg32, Ed
OFCC BSWAPESP 3C data8 CMP AL, data8
OF CD BSWAPEBP -3D data32 CMP EAX, data32
OFCE BSWAPESI 3E os:
OFCF BSWAPEDI 3F AAS
10ea ADCEb, reg8 ·40 INCEAX

-11 ea ADC Ed, reg32 .41 INCECX
12 ea ADCreg8,Eb -42 INCEDX

-13 ea ADC reg32, Ed .43 INCEBX
14 data8 ADC At; data8 .44 INC ESP

.15 data32 ADC EAX, data32 -45 INCEBP

.16 PUSHSS -46 INCESI
·17 POPSS -47 INCEDI
18 ea SBB Eb, reg8 .48 DECEAX

.19 ea SBB Ed, reg32 -49 DECECX
1Aea SBB reg8, Eb .4A DECEDX

.1B ea SBB reg32, Ed -4B DECEBX
1C data8 SBB AL, data8 -4C DEC ESP

-10 data32 SBB EAX, data32 -40 DECEBP
-IE PUSHDS -4E DECESI
·IF POP OS -4F DECEDI
20ea ANDEb, reg8 ·50 PUSHEAX

.21 ea AND Ed, reg32 -51 PUSHECX
22 ea ANDreg8, Eb -52 PUSHEDX

-23 ea AND reg32, Ed ·53 PUSHEBX
24 data8 AND AL, data8 ·54 PUSH ESP

-25 data32 AND EAX, data32 -55 PUSHEBP
26 ES: ·56 PUSHESI
27 DAA ·57 PUSHEDI
28ea SUB Eb, reg8 -58 POPEAX

-2gea SUB Ed, reg32 -59 POPECX
2Aea SUB reg8, Eb -SA POPEDX

-2Bea SUB reg32, Ed ·5B POPEBX
2C data8 SUB AL, data8 -5C POP ESP

*2D data32 SUB EAX, data32 ·50 POPEBP
2E CS: -5E POPESI
2F DAS .-5F POPEDI

(continued)

457

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

Instruction Disassembly Table. continued

Instruction Instruction
Bytes operation Bytes operation

-60 PUSH AD -S3 ea/O dataS ADD Ed, dataS
.61 POPAD -S3 ea/l dataS OR Ed, dataS
·62ea BOUND reg32, Ea -S3 ea/2 dataS ADC Ed, dataS
63 ea ARPL Ew, reg16 -S3 ea/3 dataS SBB Ed, dataS
64 FS: ,S3 ea/4 dataS AND Ed,dataS
65 GS: .S3 ea/5 dataS SUB Ed, dataS
66 OPSIZ: -S3 ea/6 dataS XOR Ed, dataS
67 ADRSIZ: -S3 ean dataS CMP Ed, dataS

-68 data 32 PUSH data32 84ea TEST Eb, regS
.69 ea data32 lMUL reg32, Ed, data32*S5 ea TEST Ed, reg32
6AdataS PUSH dataS 86ea XCHG Eb, regS

.6B ea dataS lMUL reg32, Ed, dataS -S7 ea XCHG Ed, reg32
6c INSB 88ea MOVEb, regS

-6D INSD .Sgea MOV Ed, reg32
6E OUTSB SAea MOVregS, Eb

·6F OUTSD ·SBea MOV reg32, Ed
70dispS JOdispS se ea/s MOVEw, sreg
71 dispS)NO dispB -SDea LEA reg32, Ea
72 dispS)B dispS ()B/JNAE) SE ea/s MOVsreg,Ew
73 dispB)NB dispS ONB/JAE) -SFea POP Ed
74 dispB JZ dispS OZlJE) 90 NOP
75 dispB JNZ dispB ONZlJNE) ·91 XCHG EAX, ECX
76 dispB JBE dispB ()BE/JNA) '92 XCHG EAX, EDX
77 dispB JNBE dispB ()NBE/JA) '93 XCHG EAX, EBX
7S dispB JS dispB -94 XCHG EAX, ESP
79 dispS JNS dispS '95 XCHG EAX, EBP
7AdispS JP dispB OP /JPE) -96 XCHG EAX, ESI
7BdispS JNP dispB ()NP/JPO) ·97 XCHG EAX, EDI
7CdispS JL dispB (JL/JNGE) *9S CBW/CWDE
7D dispB JNL dispS ONL/JGE) 99 CWD
7EdispS JLE dispB OLE/)NG) 9A offset32 CALL offset32
7F dispB JNLE dispB (JNLE/JG) 9B WAIT
80 ea/O dataS ADD Eb, dataS ·9C PUSHFD
80 ea/l dataB OREb, dataS ·9D POPFD
80 ea/2 dataS ADC Eb, dataS 9E SAHF
SO ea/3 dataS SBB Eb, dataS 9F LAHF
80 ea/4 dataS AND Eb, dataS AOdisp MOV AL, [displ
80 ea/5 dataS SUB Eb, dataS -AI disp MOV EAX, [displ
SO ea/6 dataS XOR Eb, dataS A2 disp MOV [displ, AL
SOean dataS CMP Eb, dataS -A3 disp MOV [displ, EAX

*SI ea/O data32 ADD Ed, data32 A4 MOVSB
.SI ea/l data32 OR Ed, data32 .A5 MOVSD
-SI ea/2 data32 ADC Ed, data32 A6 CMPSB
·SI ea/3 data32 SBB Ed, data32 -A7 CMPSD
-SI ea/4 data32 AND Ed, data32 AS datas' TEST AL, dataS
-SI ea/5 data32 SUB Ed, data32 *A9 data32 TEST EAX, data32
-SI ea/6 data32 XOR Ed, data32 AA STOSB
-SI ean data32 CMP Ed, data32 -AB STOSD

(continued)

458

Appendix E: In.tructlon DI mbly Table

Instruction Disassembly Table. continued

lnstnlction lnstnlction
Bytes operation Bytes operation

AC LOOSB OOea/O ROLEb,l
·AO LOOSO OOea/1 ROREb,l
AE SCASB OOea/2 RCLEb,l

·AF SCASO OOea/3 RCREb,l
BOdata8 MOV AL, data8 OOea/4 SHLEb,l
B1 data8 MOV CL, data8 OOea/5 SHREb,l
B2 data8 MOV OL, data8 OOea/7 SAREb,l
B3 data8 MOV BL, data8 .01 ea/O ROLEd,l
B4data8 MOV AH, data8 .01 ea/1 ROREd,l
B5 data8 MOV CH, data8 .01 ea/2 RCLEd,l
B6data8 MOV OH, data8 .01 ea/3 RCREd,l
B7data8 MOV BH, data8 .01 ea/4 SHLEd,l

.B8 data32 MOV EAX, data32 -01 ea/5 SHREd,l

.B9 data32 MOV ECX, data32 -01 ea/7 SAREd,l

.BAdata32 MOV EOX, data32 02 ea/O ROLEb, CL

.BB data32 MOV EBX, data32 02 ea/1 ROREb,CL

.BC data32 MOV ESP, data32 02 ea/2 RCLEb, CL

.BO data32 MOV EBP, data32 02 ea/3 RCREb, CL

.BE data32 MOV ESI, data32 02 ea/4 SHLEb, CL
·BF data32 MOV EDI, data32 02 ea/5 SHREb, CL

CO ea/O data8 ROL Eb, data8 02 ea/7 SAREb, CL
CO ea/1 data8 ROR Eb, data8 -03 ea/O ROLEd, CL
CO ea/2 data8 RCL Eb, data8 -03 ea/1 ROREd,CL
CO ea/3 data8 RCR Eb, data8 -03 ea/2 RCLEd, CL
COea/4 data8 SHL Eb, data8 -03 ea/3 RCREd, CL
CO ea/5 data8 SHR Eb, data8 .03 ea/4 SHLEd, CL
CO ea/7 data8 SAR Eb, data8 .03 ea/5 SHREd, CL

.Cl ea/O data8 ROL Ed, data8 .03 ea/7
,

SAREd, CL
.Cl ea/1 data8 ROR Ed, data8 04 AAM
.C1 ea/2 data8 RCL Ed, data8 05 AAO
.C1 ea/3 data8 RCR Ed, data8 07 XLAT
.C1 ea/4 data8 SHL Ed, data8 08 ESC 0 (NOP)
- C1 ea/5 data8 SHR Ed, data8 09 ESC 1 (NOP)
-C1 ea/7 data8 SAR Ed, data8 OA ESC 2 (NOP)
C2 data16 RETdata16 DB ESC 3 (NOP)

. C3 RET DC ESC 4 (NOP)
.C4ea LES reg32, Ed DO ESC 5 (NOP)
.C5 ea LOS reg32, Ed DE ESC 6 (NOP)
c6ea data8 MOV reg8, data8 OF ESC 7 (NOP)

-C7 ea data32 MOV reg32, data32 EOdispB LOOPNE disp8
C8 data16 data8 ENTER data16; data8 (LOOPNE!LOOPNZ)
C9 LEAVE E1 disp8 LOOPEdisp8
CAdata16 RETFdata16 (LOOPE!LOOPZ)
CB RETF E2 dispB LOOPdisp8
CC INT3 E3 disp8]CXZdisp8
COdata8 INTdata8 E4data8 IN AL, data8
CE INTO .E5 data8 IN EAX, data8
CF IRET E6 data8 OUT data8, AL

(continued)

459

MICROSOFT'S ao386i804e6 PROGRAMMING GUIDE

Instruction Disassembly Table. continued

lnstnlction lnstnlction
Bytes operation Bytes operation

-E7 data8 OUT data8, EAX -F7 ea/2 NOTEd
-E8 ea32 CALLea32 -F7 ea/3 NEG Ed
E9 disp32]MP disp32 -F7 ea/4 MULEAX,Ed

-EAea48]MPFARea48 -F7 ea/5 IMULEAX,Ed
EBdispB]MP dispB *F7 ea/6 DIVEAX, Ed
EC INAL,DX *F7 ea/7 IDIVEAX, Ed

-ED INEAX,DX F8 CLC
EE OUTDX,AL F9 STC

-EF OUTDX,EAX FA CLI
FO LOCK FB STI
F2 REPNE/REPNZ FC CLD
F3 REP/REPE/REPZ FD SID
F4 HLT FE ea/O INCEb
F5 CMC FE ea/l DECEb
F6 ea/O data8 TEST Eb, data8 .FF ea/O INC Ed
F6 ea/2 NOTEb .FF ea/l DEC Ed
F6 ea/3 NEGEb -FF ea/2 CALLEd
F6ea/4 MULAL,Eb -FF ea/3 CALLFARea
F6 ea/5 IMULAL, Eb FFea/4]MPEd
F6 ea/6 DIVAL, Eb ·FF ea/5]MPFARea
F6ea/7 IDIVAL, Eb .FF ea/6 PUSHEd

• F7 ea/O data32 TEST Ed, data32

80387/80486-NDP Extensions (NDP Escapes)

lnstnlction lnstnlction
Bytes operation Bytes operation

D8ea/O FADDRea132 Dgea/4 FLDENVEa
D8ea/l FMULRea132 Dgea/5 FLDCWEw
D8ea/2 FCOMReai32 Dgea/6 FSTENVEa
D8ea/3 FCOMP Real32 Dgea/7 FSTCWEw
D8ea/4 FSUBRea132 D9CO+i FLD ST(i)
D8ea/5 FSUBR Reai32 D9C8+i FXCH ST(i)
D8ea/6 FDIVRea132 D9DO FNOP
D8ea/7 PDIVR Real32 D9EO FCHS
D8CO+i FADD ST, ST(i) D9El PABS
D8 C8+i FMUL ST, ST(i) D9E4 FTST
D8DO+i FCOM, ST(i) D9E5 FXAM
D8D8+i FCOMp, ST(i) D9E8 FLDI
D8EO+i FSUB ST, ST(i) D9E9 FLDL2T
D8E8+i FSUBR ST, ST(i) D9EA FLDL2E
D8FO+i FDIV ST, ST(i) D9EB FLDPI
D8F8+i FDIVR ST, ST(i) D9EC FLDLG2
Dgea/O FLD Real32 D9ED .. FLDLN2
Dgea/2 FSTReai32 D9EE FLDZ
Dgea/3 FSTP Rea132 D9FO F2XMl

(continued)

460

App.ndlx E: In.tructlon DI mbly Tabl.

80387/80486 -NDP Extensions (NDP Escapes). continued

Instruction Instruction
Bytes Operation Bytes operation

D9Fl FYL2X DCCS+i FMUL STO), ST
D9F2 FPTAN DC EO+i FSUBR ST(i), ST
D9F3 FPATAN DC ES+i FSUB ST(i), ST
D9F4 FXTRACT DC FO+i FDIVR ST(i), ST
D9F5 FPREMI DCF8+i FDIV STO), ST
D9F6 FDECSTP DD ea/O FLD Real64
D9F7 FINCSTP DD ea/2 FSTReal64
D9FS FPREM DDea/3 FSTP Real64
D9F9 FYL2XPI DDea/4 FRSTOREa
D9FA FSQRT DDea/6 FSAVEEa
D9FB FSINCOS DD ea/7 FSTSWEw
D9FC FRNDINT DD CO+i FFREE ST(i)
D9FD FSCALE DD DO+i FST ST(i)
D9FE FSIN . DDDS+i FSTP ST(j)
D9FF FCOS DD EO+i FUCOM STO)
DAea/O FIADD Int32 DD ES+i FUCOMP ST(i)
DA ea/l FIMUL Int32 DE ea/O FIADD Int16
DAea/2 FICOM Int32 DE ea/l FIMUL Int16
DA ea/3 FICOMP Int32 DE ea/2 FICOM Int16
DA ea/4 FISUB Int32 DE ea/3 FICOMP Int16
DAea/5 FISUBR Int32 DE ea/4 FISUB Int16
DAea/6 FIDIV Int32 DE ea/5 FISUBR Int16
DAea/7 FIDIVR Int32 DE ea/6 FIDIV Int16
DAE9 FUCOMPP DE ea/7 FIDIVR Int16
DB ea/O FILD Int32 DE CO+i FADDP ST(i), ST
DB ea/2 FIST Int32 DECS+i FMULP ST(i), ST
DB ea/3 FISTP Int32 DED9 FCOMPP
DB ea/5 FLD RealSO DE EO+i FSUBRP STO), ST
DB ea/7 FSTP RealSO DE ES+i FSUBP ST(i), ST
DBE2 FCLEX DE FO+i FDIVRP STO), ST
DBE3 FINIT DE FS+i FDIVP ST(i), ST
DC ea/O FADDReal64 DFea/O FILD Int16
DC ea/l FMULReal64 DF ea/2 FIST Int16
DC ea/2 FCOMReal64 DFea/3 FISTP Int16
DC ea/3 FCOMP Real64 DF ea/4 FBLDBcdSO
DC ea/4 FSUB Real64 DF ea/5 FILD Int64
DC ea/5 FSUBR Real64 DF ea/6 FBSTP BcdSO
DC ea/6 FDIVReal64 DFea/7 FISTP Int64
DC ea/7 FDIVR Real64 DFEO FSTSWAX
DC CO+i FADD ST(i), ST

461

AppendixF

BOB&-FAMILY
PROCESSOR

DIFFERENCES

Although the 8086, 80286, 80386, and 80486 are object-code compatible, minor dif­
ferences among them have arisen during the evolution of this microprocessor
family. This appendix describes these differences.

Real-Mode Differences Between the 8086 and
the 80386/80486

The 8086 processor does not generate exceptions 6, 8-13, 16, or the 80486-unique
exception 17.

Instructions execute more rapidly.

On the 80386/80486, the divide fault (INT 0) leaves the saved CS:EIP pointing to the
faulting instruction. On the 8086, the value of CS:IP on the stack points to the in­
struction after the one that caused the fault.

Opcodes that were not explicitly defined on the 8086 are interpreted as new in­
structions or cause the undefined opcode fault (INT 6) when executed on the 80386
or 80486.

When the PUSH SP instruction is executed, the value on the stack of the 80386 or
80486 is the predecremented value, where the value pushed on the 8086 is the post­
decremented value of SP. If it is necessary to re-create the same stack value, use the
following sequence of instructions in place of PUSH SP:

PUSH BP
MOV BP, SP
XCHG BP, [BP]

463

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

The count value for shift and rotate instructions is taken modulo 32 in the 80386 and
80486. The full value (up to 255) is used on the 8086, which can result in long in­
struction execution times.

An instruction (including prefixes) cannot exceed 15 bytes. If it does, a general pro­
tection fault occurs. This does not occur under normal circumstances but might oc­
cur if you use multiple redundant prefixes. The 8086 has no such restrictions.

Operands cannot extend across the segment bounds. If, for example, an instruction
refers to a 16-bit operand at offset 65535, a general protection fault occurs. If the
stack pointer is set to low memory (offset 2) and a 32-bit value is pushed, a stack
fault occurs. In the 8086, addresses wrap around the segment boundary and are
continuous from 65535 to O. Instruction execution behaves like an operand fetch.

You can use the LOCK instruction only with certain instructions; otherwise, an un­
defined opcode fault occurs. (See Chapter 8 for a list of the legal instructions.) The
8086 has no such restrictions.

Sometimes the 8086 hangs while single-stepping. Later processors do not hang be­
cause the interrupt priorities are slightly different. This prevents a single-step trap
from occurring until the handler returns if a hardware interrupt is invoked.-

The 8086 generates a divide fault if the quotient of an IDlV instruction is the largest
possible negative number. The 80386 and 80486 generate the correct result. See the
earlier discussion of the divide fault in this appendix.

When the content of the FLAGS register is pushed onto the stack, bits 12-15 are al­
ways l's on the 8086. These bits represent new flags on later processors.

The NMI interrupt masks all subsequent NMIs until an IRET is executed. NMIs are
not masked on the 8086.

The 80386 uses INT 16 as the coprocessor error vector. On the 8086, the system
hardware must be programmed to generate an interrupt vector, and it can be any
vector. On the 80486, you can select either mode of operation.

When an NDP exception occurs on an 80386 or an 80486, the saved CS:EIP points
to the faulting instruction, including any prefixes that might be part of the instruc­
tion. On the 8086, the saved CS:IP points only to the ESC portion of the faulting
NDP instruction.

Additional interrupts can occur if a program contains undetected bugs, such as the
use of unimplemented opcodes or addressing beyond segment boundaries.

The 8086 is limited to 1 MB of address space by having 20 physical hardware ad­
dress lines. Using selectors such as FFFFH can result in linear addresses beyond 1
MB, but because there are only 20 address lines, the addresses wrap around to O.

464

Appendix F: 8088-Femll, Proce •• or DlUerence.

Because there are 32 address lines on the 80386 and 80486, addresses greater than
1 MB can be generated in real mode (up to lOFFEFH). If system software depends
on the ability to wrap around to 0 after 1 MB, hardware must be added to an 80386
system to force address line 21 to 0 in real mode. The 80486 has this hardware on
the processor chip.

Differences Between Virtual 8086 Mode and
the 8086

All previously listed differences also apply to v86 mode in comparison to real mode
on the 8086. Following are some additional differences.

I/O instructions in v86 mode are allowed only if the I/O permission bitmap for the
v86 mode task is set up. .

All exceptions (hardware and software interrupts) vector to the protected-mode
lOT entries rather than through the real-mode interrupt mechanism. The protected­
mode handlers must simulate the real-mode vector process when appropriate.

Differences Between the 80286 and the
80386/80486

As implemented on the 80286, the LOCK prefix causes all memory to be locked dur­
ing the prefixed instruction. On the 80386 and 80486, only the memory accessed by
the prefixed instruction is locked.

On RESET, any of the registers that contained undefined values on the 80286 can
contain different values on later processors.

Differences Between the 80386 and the 80486
The 80486 will optionally generate an alignment fault on any memory reference in­
struction of more than a single byte.

New bits have been defined in the control registers, page table entries, and flags.

Differences Between the 8087 and the
80387/80486·NDP

Errors are signaled via a dedicated hardware pin on the 80387/80486-NOP instead
of the standard CPU interrupt mechanism. The 80386 responds to coprocessor er­
rors via interrupts 7, 9, and 16 instead of an external hardware interrupt. The 80486
generates interrupts 7 and 16-but not interrupt 9.

The format of the error information in the 80387/80486-NOP environment varies
depending on whether the processor is in real mode or in protected mode. The
8087 supports only real-mode information.

465

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

The instructions FENIiFDISI are no-ops on the 80387/80486-NDP.

The 8087 does not perform automatic normalization of denormalized reals. Instead,
it signals a denormal exception and relies on the application to perform this opera­
tion. The 80387/80486-NDP will normalize these values and might execute faster if
the denormal exception is masked when running 8087 programs.

The 8087 requires explicit WAIT instructions before each floating-point instruction
to synchronize with the 8086. The 80386 and the 80387 perform automatic synchro­
nization, as does the 80486 and its NDP. The WAIT instructions are unnecessary,
but they will not cause the program to operate incorrectly.

Differences Between the 80287 and the
80387/80486·NDP

The FSETPM instruction is a no-op on the 80387.

The 80287 supports both affine and projective closure. Only affine closure is sup­
ported on the 80387/80486-NDP. Programs that rely on projective closure may gen­
erate different results on the 80387/80486-NDP than on the 80287.

Differences Between the 80387 and the 80486
Interrupt 9 will not be generated on the 80486. Interrupt 13 will be generated
instead.

The 80486 supports redirected error reporting of floating-point errors via the NE bit
in eRO and the FERR\ and IGNNE\ hardware pins.

466

Index

A
AAA (ASCII Adjust After Addition)

163
AAD (ASCII Adjust Before Division)

164
AAM (ASCII Adjust After

Multiplication) 165
AAS (ASCII Adjust After Subtraction)

166
abort (exception class)

coprocessor segment overrun
(INT 9) 124

defined 119-20
double fault (INT 8) 123-24

accessed (A) bit 56
access rights 56, 93, 152
accumulator 2, 71, 79, 89
ADC (Add with Carry) 167
ADD (Integer Addition) 168
addresses

effective 75, 89
linear 18, 29, 48-50, 129, 138-40
physical 18, 49, 135-37, 139-40, 143,

151
segment/offset 51
virtual 49-52, 110, 135-37

addressing modes. See instruction
operands

address translation
virtual to linear 51-52
virtual to physical 135-36

affine closure 42
AH register 24
alias segments 111, 130
alignment check (AC) bit 25-26,127
alignment check fault (INT 17) 119,

127
alignment fault (INT 17H) 25
alignment mask (AM) bit 30, 127
AL register 24
AND (Boolean AND) 169

architecture
80486 microarchitecture 19-20
CPU microarchitecture 16-19
evolution of 80x86 family 1-12
instruction set 20-23

arithmetic instructions
floating-point 96-97
integer 78-80

arithmetic shifts 82-83
ARPL (Adjust RPL) 170-71
array indexing. See scaling
ASCII

character set 403
instructions 80
numeric format 22-23

assembler notation conventions xiii
associative memories 147
auxiliary carry flag (AF) 28
available (AVL) bit 56
AX register 24

B
back link. See link field
base address

of the GDT 29
of the IDT 28
of a segment 51-53,57,106,150

based addressing
alone 73
plus displacement 73
plus displacement plus index

75-76
base pointer (EBP) register 4, 73
base registers 73-76
BCD instructions

floating-point 95
integer 80

BCD numeric format 22-23,33,
37-38

BH register 24
bias, floating-point exponent 34-36

467

MICROSOFT'S 80388/80486 PROGRAMMING GUIDE

big (B) bit 56
binary fractions 33-36, 41
BIST (built-in self test) (80486) 151
bit instructions 80-82
bit strings 20, 81-82
bit test. See BT (Bit Test); BTC/80486

(Bit Test and Complement);
BTR (Bit Test and Reset); BTS
(Bit Test and Set)

BL register 24
Boolean instructions 81-82
BOUND (Check Array Boundaries)

172-73
bounds check fault (INT 5) 119, 122
BP register 4, 24
branch instructions 86-88
breakpoint registers 129-33
breakpoint trap 122
BSF (Bit Scan Forward) 174-75
BSR (Bit Scan Reverse) 176-77
BSWAP (Byte Swap) 84, 178
BT (Bit Test) 179-80
BTC/80486 (Bit Test and

Complement) 181-82
BTR (Bit Test and Reset) 183-84
BTS (Bit Test and Set) 185-86
built-in self test. See BIST (built-in

self test) (80486)
Bus Interface Unit (BID) 16
bus lock (LOCK\) 84,92,140
busy (B) bit 40,114
busy TSS 112, 116
bytes 21
BX register 24

c
cache

descriptor 18, 28, 39
internal (80486) 19-20, 145-48
page table 18, 140-41

cache disable (CD) bit 30
CALL (Procedure Calls) 187-89
call gate 104-5, 112, 129
carry flag (CF) 28
CBW (Convert Byte to Word) 190

468

CDQ (Convert Doubleword to
Quadword) 191

CH register 24
CLC (Clear Carry Flag) 192
CLD (Clear Direction Flag) 193
CLI (Clear Interrupt Flag) 194
clock signal 15
CL register 24
CLTS (Clear Task Switched Bit) 195
CMC (Complement Carry Flag) 196
CMP (Compare Integers) 197-98
CMPS (Compare String) 199-200
CMPXCHG (Compare and Exchange)

201-2
code segments 56
concurrency. See multitasking

support
condition codes. See also NDP,

register set
EFLAGS register 25-28, 84, 86
Jee (Jump if Condition) 87-88
SETee (Set Byte on Condition)

84-85
conforming segments 56
control instructions 97-98
control registers (CRO-CR3) 30-32,

84,115,126-27,139,150
control tr;msfer instructions 86-88
control word (CW) register 42-43
coprocessor

emulation of 31
environment 97
instructions 94-99
introduction of 6-7
monitor 31
numeric formats 33-38
registers 38

coprocessor error fault (INT 16) 127
coprocessor not available fault

(INT 7) 123
coprocessor segment overrun (INT 9)

124
CPU microarchitecture 16-19
CS segment register 28, 49, 56, 102,

150-51

current privilege level (CPL) 26, 55,
102-3,141

CWD (Convert Word to Doubleword)
203

CWDE (Convert Word to Doubleword
Extended) 204

CX register 4, 24

D
DAA (Decimal Adjust AL After

Addition) 205
DAS (Decimal Adjust AL After

Subtraction) 206
data segments 56
data transfer instructions 84-85
data types

ASCII 22-23
BCD 22-23, 37-38
bit strings 20
bytes 21
conventions xii-xiii
doublewords (dwords) 22
integers 21
long reals (double-precision)

33-37
quadwords (qwords) 22
short reals (single-precision) 33-37
temp reals (extended-precision)

33,34,35
words 21

debug breakpoints 122, 128-33
debug exception (INT 1) 117, 122
debug registers 32, 130-33
DEC (Decrement) 207
decimal instructions 80
default (D) bit 56, 152
denormal exception (DE) bit 42
denormal floating-point numbers 37
denormal operand mask (DM) bit 43
descriptor cache 18, 28, 39. See also

shadow registers
descriptor formats 51-59, 111-13
descriptor privilege level (DPL) 102-3
descriptor tables 51, 58, 109-11
descriptor type (TYPE) field 56, 112

Index

DH register 24
differences, 8086-family processor

463-66
direct addressing 71-72
direction flag (DF) 69, 88
directory, page table 126, 138-41
DI register 24
dirty (D) bit 138
disable interrupts (CLI) 27, 157-58
displacement 68, 72, 73, 75-76
DIV (Unsigned Division) 208-9
divide fault

80386-family (INT 0) 122
80387 CZE exception) 42

DL register 24
double fault (INT 8) 119,123-24
double-precision format (long real)

33-37
double shift 83
doublewords Cdwords) 22
DS segment register 5,49,88-89
dword count field 105
dwords 22
DX register 24

E
EAX register 23, 24, 151
EBP register 23, 24, 73, 75
EBX register 23, 24
ECX register 23, 24, 88, 89, 91
EDI register 23, 24, 88
EDX register 23, 24
EFLAGS register 25-28,79,84,86
ElP register 77
emulate math coprocessor (EM) bit

31, 123
enable interrupts (STI) 27, 157-58
ENTER (Enter New Stack Frame)

210-11
equal (branch condition) 86
error codes 121-27
ERROR\ pin 127
error pointer registers 44-45,97
error summary (ES) bit 41
ESl register 24, 88

469

MICROSOFT'S 80388/80488 PROGRAMMING GUIDE

ESP register 24, 73, 77
ES register 5, 49, 88
exception masks 41, 43
exceptions. See also floating-point

exceptions
80386/80486

aborts 119-20
protected-mode handling 118-28
real-mode handling 152-53
traps 118-19
virtual 8086-mode (V86-mode)

handling 159-60
NDP

conditions 41-43
mask bits 41, 43

execute-only segments 56
execution unit 18
expand-down segments 56-57
exponent, floating-point 33-36
extended-precision floating point

(temp real) 33, 36, 41, 43
extension type (ET) bit 31

F
FABS (Absolute Value) 330
FADD (Addition) 331-32
FAR CALLs andJMPs 115, 125, 129,

154-55
faults. See exceptions
FBLD (BCD Load) 333
FBSTP (BCD Store and Pop) 334
FCHS (Change Sign) 335
FCLEX (Clear Exceptions) 336
FCOM (Compare) 337-38
FCOS (Cosine) 339
FDECSTP (Decrement Stack Pointer)

340
FDIV (Division) 341-42
FDIVR (Division Reversed) 343-44
FFREE (Free NDP Register) 345
FIADD (Integer Addition) 346
FICOM (Integer Compare) 347
FIDIV (Integer Division) 348
FIDIVR (Integer Division Reversed)

349

470

FILD (Integer Load) 350
FIMUL (Integer Multiplication) 351
FINCSTP (Increment Stack Pointer)

352
FINIT (Initialize NDP) 353
FIST (Integer Store) 354
FISUB (Integer Subtraction) 355
FISUBR (Integer Subtraction

Reversed) 356
flag register (EFLAGS) 25-28, 86
FLD (Load Real) 357
FLDconst (Load Constant) 358
FLDCW (Load Control Word) 359
FLDENV (Load Environment) 360
floating-point condition codes 41-43
floating-point environment 97
floating-point exceptions 41-43,123,

127
floating-point formats 33-36
floating-point instruction set 329
floating-point support 32-33
FLUSH\ 147-48
FMUL (Multiplication) 361
FNOP (No Operation) 363
FPATAN (Partial Arctangent) 364
FPREM (Partial Remainder) 365-66
FPREMI (IEEE Partial Remainder)

367-68
FPTAN (Partial Tangent) 369
fraction, binary 33-36, 41
fragmentation 63,137
frame pointer. See stack frame
FRNDINT (Round to Integer) 370
FRSTOR (Restore NDP State) 371-72
FSAVE (Save NDP State) 373-74
FSCALE (Scale by 2n) 375
FSETPM (Set Protected Mode) 376
FSIN (Sine) 377
FSINCOS (Sine and Cosine) 378
FSQRT (Square Root) 379
FS segment register 28, 49, 91
FST (Store Floating Point) 380
FSTCW (Store Control Word) 381
FSTENV (Store Environment) 382
FSTSW (Store Status Word) 383

FSUB (Subtraction) 384-85
FSUBR (Subtraction Reversed)

386-87
FTST (Test for Zero) 388
FUCOM (Unordered Compare)

390-91
FWAIT (Wait Until Not Busy) 33, 392
FXAM (Examine Top of Stack)

393-94
FXCH (Exchange Stack Elements) 395
FXTRACT (Extract Floating-Point

Components) 396
FYL2X (Compute Yx logzX) 397
FYL2XPI (Compute Yx log2 (X + 1))

398
F2XMl (Compute 2X -1) 399

G
gates 102,104-6,112-13,120-21,125
GDTR register 29,58,107,155
general protection fault (INT 13) 52,

90, 119, 126, 157
Global Descriptor Table (GDT) 29,

58,93,106-11,121
global enable (GO-G3) bits 132
granularity (G) bit 54, 142, 155
greater than (branch condition) 87
GS segment register 28, 49, 91

H
HLT (Halt) 93, 212

I
IDIV (Integer (Signed) Division)

213-14
IDTR register 29, 58, 106, 150, 152, 154
IEEE-754 floating-point format 7,31
immediate operands 70
implicit operands 69
IMUL (Integer (Signed)

Multiplication) 215
IN (Input from I/O Port) 216-17
INC (Increment) 218
index addressing

with base plus displacement 75-76

index addressing, continued
plus displacement 73-75

index field 107, 109
infinity 36, 42
infinity control bit 42
initial processor state 149-50
input

instruction 70-71, 90-91
protection checks 117, 157

Index

INS (Input String from I/O Port) 85,
219-20

instruction categories
arithmetic 78-80
control transfer 86-88
data transfer 84-85
decimal arithmetic 80
I/O 90-91
logical 80-83
miscellaneous 94
pointer manipulation 89-90
prefix 91-93
stack 85-86
string 88-89
system 93

instruction decode unit 18
instruction disassembly table 455-61
instruction formats and timings 15,

68,417-53
instruction operands

immediate 70
implicit 69
I/O 70-71
memory reference (see memory

reference operands)
register 69

instruction prefetch queue 17
instruction prefetch unit 17
INT (Software Interrupt) 221-22
integer data format

8038621
NDP 33

Interrupt Descriptor Table (IDT)
118-20, 142, 154-55, 159

interrupt enable flag (IF) 27
interrupt gates 104, 112-13, 120-21

471

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

interrupts
disabling/enabling 27, 126, 157-58
exceptions, faults, and traps 118-30
gates for 104,112-13,120-21
hardware 27, 118, 119
masking 128
in real mode 152-53
software 27, 86, 119, 129, 159
in virtual 8086 mode 159-60

INTO (Interrupt on Overflow) 223
invalid opcode fault (INT 6) 122-23
invalid operation exception (IE) bit

42
invalid TSS fault (INT 10) 124-25
INVD (Invalidate Cache) 93, 224
INVLPG (Invalidate TLB Entry) 93,

225
I/O

instructions 70-71, 90-91
operands 70-71
permission bitmap 117-18, 157
permission checks 117, 157
in protected mode 117
in virtual 8086 mode 157

I/O privilege level (IOPL) 26, 90, 117,
157-59

IRET (Interrupt Return) 226

J
Jee (Jump if Condition) 227-28
JMP (Near, Far Jump) 229-30

K
KEN\ 148

L
LAHF (Load AH with Flags) 231
LAR (Load Access Rights) 232-33
LDS (Load DS) 246
LDTR register 29, 115, 116, 125
LEA (Load Effective Address) 234
LEAVE (Leave Current Stack Frame)

235
LES (Load ES) 246
less than (branch condition) 87 .

472

LFS (Load FS) 246
LGDT (Load GDT Register) 236
LGS (Load GS) 246
LlDT (Load IDT Register) 237
limit 54-55, 150-51
linear addresses 18, 29, 48-50, 129,

138-40
linear memory, vs. segmented

memory 47-49
link field 115, 116
LLDT (Load LDT Register) 238
LMSW (Load Machine Status Word)

239
local descriptor table (LDT) 106-7,

109-12
local enable (1O-L3) bits 132
LOCK (Assert Hardware LOCK\

Signal Prefix) 240-41
LODS (Load String) 242-43
logical shifts 82-83
long real format (double-precision)

33-37
LOOPee (Loop Decrement ECX and

Branch) 244-45
Lseg (Load Segment Register) 246
LSL (Load Segment Limit) 247-48
LSS (Load SS) 246
LTR (Load Task Register) 249

M
machine status word (MSW) 30, 155
mask bits 41
memory read/write breakpoints

128-33
memory reference operands

based 73
based plus displacement 73
based plus index plus displacement

75-76
direct 71-72
index plus displacement 73-75
stack 76-78

memory segments 4-6,47-57
microarchitecture 16-20
microcycle 67-68

modes
protected 7-8,10,31,101-33,

154-55
real 7, 149-53, 156
transitions between 31, 156
virtual 8086 10, 142-43, 156-60

monitor coprocessor (MP) bit 31, 123
MOV (Move Data/Selector/Special)

250-52
MOVS (Move String) 253-54
MOVSX (Move with Sign Extension)

255
MOVZX (Move with Zero Extension)

256
MUL (Unsigned Multiplication)

257-58
multiprocessing 113
multitasking support 31, 48, 59, 106,

113-17,142-45

N
NaN (Not a Number) 37
native mode 92, 149, 152
NDP

data formats supported 33-38
defined 32
register set 38-45

NEG (Negate Integer) 259
negative number formats

floating-point 34
integer 21

nested task (NT) flag 26, 116
Non-Maskable Interrupt (NMI) 27,

118, 128, 158
NOP (No Operation) 260
NOT (Boolean Complement) 261
not present fault (INT 11) 125
no write-through (NW) bit 30
null selector 109, 159
numeric data processor. See NDP
numeric formats

BCD 22-23, 33, 37-38
floating-point 33-36
integer 21

numerics exception (NE) bit 30, 127

o
offset 51
opcodes, tables of 405-15
OR (Boolean OR) 262
OUT (Output to Port) 263-64
output

instruction 70-71, 90-91
privilege checking 117,157

Index

OUTS (Output String) 265-66
overflow exception (OE) bit 42
overflow flag (OF) 26-27, 85, 88, 118,

122
overflow trap (INT 4) 119, 122
override prefixes

p

address 91, 152
operand size 92, 152-53
segment 49, 71,91-92, 125-26

page cache disable (PCD) bit 138
Page Directory Entry (PDE) 138-40
page enable (PG) bit 30,137,156
page fault (INT 14) 126-27, 138, 141
page frames 125
page granularity (G) bit 54
Page Table Entry (PTE) 138-42
page write-through (PWT) bit 138
paging 135-42, 157
paging unit 18
parallelism 16, 33
parity flag (PF) 28, 85, 88
permission checks

I/O 117, 157
between privilege rings 104-9
segment access 101-4

physical addresses 18, 49, 135-37,
139-40, 143, 151

pipelining 14,16
pointer registers 3, 57, 71-78
pointers 65, 89-90
POP (Pop Segment RegisterNalue Off

Stack) 267-68
POPA (Pop All General Registers

16-bit) 269

473

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

POPAD (Pop All General Registers
32-bit) 270

POPF (Pop Stack into FLAGS) 271
POPFD (Pop Stack into EFLAGS) 272
powers of two 401
precision, floating-point 33
precision control (PC) field 43
precision exception (PE) bit 41, 155
prefix instructions

ADRSIZ 92, 152
LOCK 92, 140, 155
OPSIZ 92, 152
repeat 89, 91
segment override 49, 71, 91-92,

125-26
present (P) bit

in descriptor 55,125
in page table 126-27,138

privilege levels
current (CPL) 26, 55, 102-3, 141
descriptor (DPL) 102
paging and privilege 141-42
rings 102-4
transitions between 104-11

processor differences. See
differences,8086-family
processor

projective closure 42
protected mode

introduction to 7-8
mechanism (80386/80486) 10,

101-33
switching into/away from 154-56

protect enable (PE) bit 31, 156
protection

of pages 126-27,141-42
of segments 101-4

PUSH (Push Value onto Stack) 273-74
PUSHA (Push 16-Bit General '

Registers) 275
PUSHAD (Push 32-Bit General

Registers) 276
PUSHF (Push 16-Bit EFLAGS Register)

277
PUSHFD (Push EFLAGS Register) 278

474

Q
quadwords 22
quiet NaN 37

R
RAM, intelligent 146-47
RCL (Rotate Through Carry Left)

279-80
RCR (Rotate Through Carry Right)

281-82
readable code segments 56
read-only data segments 56, 62
read/write (R!W) bit

for debugging 131
for paging 141

READY\ 94
real mode 7, 149-53
real-mode differences, 8086-family

processor. See differences
8086-family processor '

real number formats 33-36
register operands 69
registers

breakpoint 129-33
control 30-32, 84, 115, 126-27, 139,

150
debug and test 32, 130-33
general 23-25
NDP 38-45
protection 29
segmentation (see segment

registers)
REP (Repeat String Prefix) 283
requested privilege level (RPL) 58, 59,

107 -9, 116, 125
RESET 149-51
resume flag (RF) 26, 128
RET (Near Return from Subroutine)

284
RETF (Far Return from Subroutine)

285
return

from interrupt 120, 160
from subroutine 77
from task switch 116, 120

rings, protection 8, 102-4
ROL (Rotate Left) 286-87
ROR (Rotate Right) 288-89
rotate instructions 83
rounding control (RC) field 42-43

S
SAHF (Store AH in EFLAGS) 290
SAL (Shift Left Arithmetic) 291-92
SAR (Shift Right Arithmetic) 293-94
SBB (Subtraction with Borrow) 295
scaling 74, 93
SCAS (Scan String) 296-97
seg (Segment Override Prefix) 298.

See also segment override prefix
segmentation

address translation in 47-52
combining paging and 142
introduction of 4-6
protection in 52-57

segmentation unit 18
segment override prefix 49,71,91-92,

125-26
segment registers

description of 28-29
initialization of 149-50
introduction of 4-5
loading and storing 84, 109, 115, 125,

160
in virtual addressing 50,64

selector 51,58-59,101-2,107-10,115
self test. See BIST (built -in self test)

(80486)
SET cc (Set Byte on Condition)

299-300
SGDT (Store GDT Register) 301
shadow registers 116,150-51. See also

descriptor cache
shared segments 62-63,142
SHL (Shift Left Logical) 302-3
SHLD (Shift Left Double) 304
short real (single-precision) format

33-36
SHR (Shift Right Logical) 305-6
SHRD (Shift Right Double) 307

Index

shutdown 123-24,158
SIDT (Store IDT Register) 308
signaling NaN 37
sign flag (SF) 27, 85, 87, 88
significand 33-35
single-precision (short real) format

33-36
Single stepping 129, 153
SI register 24
SLDT (Store LDT Register) 309
SMSW (Store Machine Status Word)

310
software breakpoints 122
software interrupts 27, 86, 119, 129,

159
SP register 4, 24
SS segment register 28-29, 49, 76,

106, 159
stack -based addressing 76-78
stack fault (INT 12) 57, 77, 125-26
stack fault (SF) bit 41
stack frame 9, 73, 77
stack overflow 76
stack pointer (ESP) register 23-24, 73
status word (SW) register 38, 40-43
STC (Set Carry Flag) 311
STD (Set Direction Flag) 312
STI (Set Interrupt Flag) 313
STOS (Store String) 314-15
STR (Store Task Register) 316
string instructions 27, 88-89, 91
SUB (Subtraction) 317
subroutine call 4, 77, 86
supervisor pages 141-42
swapping

pagesI36-39,144-45
segments 56, 60-62, 125

syntax conventions xiv

T
table indicator (TO bit 58, 107, 109,

121
tag word (TW) register 38, 44
task gate 104, 113, 120, 125
task (TR) register 29, 106, 115

475

MICROSOFT'S 80386/80486 PROGRAMMING GUIDE

Task State Segment (TSS) 29, 106-7,
111-18, 124, 125, 129

task switched (TS) bit 31, 123
task switching 115-17
task switch trap (T) bit 129, 132
temp real (extended-precision)

format 33, 36, 41, 43
TEST (Test Bits) 318
test registers 32, 107
thrashing 62
top-of-stack (TOP) field 40-41
translation lookaside buffer (TLB) 18,

116,140-41,156
trap flag (TF) 27, 129, 153
trap gates 104, 112, 120, 125
traps 118-19, 122, 129
two-phase clock 15
type (TYPE) field 56, 112-13, 114

U
undefined opcode fault (INT 6)

122-23 '
underflow exception (UE) bit 40, 41
unmasked exceptions 41
unsigned comparisons 85,87
user level pages 141-42
user/supervisorCU/S) bit 127,141

V
v86 mode. See virtual 8086 mode
vector table 119, 152-53
VERR (Verify Read Access) 319-20
VERW (Verify Write Access) 321-22
virtual 8086 mode 10, 26, 156-60
virtual addresses 49-52, 110, 135-37
virtual memory 49-52, 55, 59-64,

135-37
virtual mode (VM) bit 26, 157, 159, 160

476

W
WAIT (Wait Until Not Busy) 323
WBINVD (Write Back and Invalidate

Cache) 93, 324
whetstone 32
word count field. See dword count

field
words 21
writable data segments 56
write protect (WP) bit 30,141

X
XADD (Exchange and Add) 325
XCHG (Exchange) 326
XLATB (Translate Byte) 327
XOR (Boolean Exclusive OR) 328

Z
zero divide exception (ZE) bit 42
zero divide fault (INT 0) 122
zero flag (ZF) 27, 85, 87, 88

ROSS P. NELSON

Ross Nelson has several years of programming experience, all with Intel micropro­
cessors. After earning his B.S. in computer science from Montana State University,
he joined Intel Corporation in 1979. He worked there during the development of the
80286 and in the early stages of the 80386 chip's development. He is currently the
manager of software engineering at Answer Software, which produces software de­
velopment tools for the PC and a database line for the Macintosh.

Nelson has written for Byte and Dr. Dobb's journal. His article on programming the
80386 was chosen as the lead feature for Dr. Dobb'sjournalin 1986.

The manuscript for this book was prepared and submitted to Microsoft Press in
electronic form. Text files were processed and formatted using Microsoft Word.

Principal word processors: Debbie Kern, Judith Bloch
Principal proofreader: Shawn Peck
Principal typographer: Lisa Iversen
Interior text designer: Darcie S. Furlan
Illustrators: Becky Geisler, Kim Eggleston, Connie Little
Cover designer: Thomas A. Draper
Cover color separator: Rainier Color Corporation

Text composition by Microsoft Press in Garamond Light, with display in Helvetica
Black, using the Magna composition system and the Linotronic 300 laser
imagesetter.

Printed on recycled paper stock.

Other Titles From Microsoft Press

MICROSOFT® MOUSE PROGRAMMER'S REFERENCE, 2nd ed.
Microsoft Press and the Hardware Division of Microsoft Corporation

This is the official documentation for programming the Microsoft Mouse. It provides all the software
and how-to information you need to incorporate a sophisticated mouse interface for MS-DOS operating
system-based programs. Fully updated to cover Microsoft BallPoint mouse and the mouse driver version 8.
The two 5 '/4-inch companion disks include sample mouse menus, MOUSE.LIB and EGA.LIB, and a
collection of valuable programming examples in interpreted Basic, Microsoft QuickBasic, Microsoft C,
Microsoft QuickC, Microsoft Macro Assembler, FORTRAN, and Pascal. The MICROSOFf MOUSE
PROGRAMMER'S REFERENCE is your complete technical resource for mouse support.
352 pages, softcover with two 5 1/4-inch disks $34.95 Order Code MOPRR2

THE PROGRAMMER'S PC SOURCEBOOK, 2nd ed.
Reference Tables for IBM® PCs, PS/2~ and Compatibles;
MS-DOS® and Windows'M
Thorn Hogan

This reference book saves you the frustration of searching high and low for key pieces of technical
data. Here is all the information culled from hundreds of sources and integrated into convenient, accessible
charts, tables, and listings. The first place to tum for immediate, accurate information about your computer
and its operating system, THE PROGRAMMER'S PC SOURCEBOOK covers MS-DOS through version 5,
IBM personal computers (and compatibles), including the PS/2 series, and Windows 3. Among the subjects
covered are DOS commands and utilities, interrupts, mouse information, EMS support, BIOS calls and
support services, memory layout, RAM parameters, keyboards, the IBM extended character set, and more.
750 pages, softcover 8 1/2 x 11 $39.95 Order Code PRPCS2

POWER PROGRAMMING WITH MICROSOFT® MACRO ASSEMBLER
Ray Duncan

A valuable and detailed programmer-to-programmer discussion of assembly language programming
and a guide to the new version 6 of the Microsoft Macro Assembler. Duncan thoroughly treats the central
topics of assembly language programming, including converting numbers, sorting numbers and strings,
handling multiple-precision math, using floating-point coprocessors, and optimizing code. The bound-
in disk offers the routines presented in the book plus an exciting collection of additional programs
that demonstrate assembly language functions in action.
400 pages, softcover with one 5 1/4-inch disk $39.95 Order Code POPRMA
Available October 1991

Microsoft Press books are available wherever quality computer books are sold.
Or call1-800-MSPRESS for ordering information or placing credit card orders.'

Please refeno BBK when placing your order.

, In Canada, contact Macmillan of Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt,
Ontario, Canada MIS 3C7, or call (416) 293-8141.
In the U.K., contact Microsoft Press, 27 Wrights Lane, London W8 STZ.

SECOND EDITION

Microsol,'s

U.S.A.

U.K.

Canada

. • .J r J-'"J.. • .J V · ·.J r) ~ I . -.J '
~\..J0~'" ~~-JvV

Programming Guide
Here is a clear, comprehensive, and authoritative introduction to the
premier line of Intel~ chips - including the 80386SX, the 80386DX, and the
80486. These microprocessors are the foundation of today ' s popular, high­
powered microcomputers. Written for every serious programmer, this
guide includes scores of superb assembly language examples along with
detailed analyses of the chips themselves. Ross Nelson, an early adviser to
the 80386 development team at Intel, covers:

• CPU organization: structure, registers, and the 80287 and 80387
math coprocessors

• memory architecture: linear vs. segmented addressing, virtual
address space, segment descriptors, selectors, and virtual
memory

• the basic instruction set and the floating-point instruction set
• protection schemes: global descriptor and interrupt descriptor

tables; selectors; segment and system descriptors; interrupts,
traps, and faults; and debug support

• implementation of a virtual memory system through paging and
cache management with the 80486

• differences and compatibility among the various generations of
Intel microprocessors

Of special importance is the comprehensive and clearly organized in­
struction set reference-a valuable resource for all 80386 and 80486

programmers.

Every assembly language programmer, microprocessor design engineer,
and student of computer architecture will discover that MICROSOFT'S

80386/80486 PROGRAMMING GUIDE is an excellent reference.

$24.95

£21.95

$34.95

ISBN 1-55615-343-0

[Recommended]

®

The Authorized
Editions 9 78 33

90000

