

Microsoft® CodeVieWTM
Window-Oriented Debugger

for the MS-DOS® Operating System

Microsoft Corporation

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software de­
scribed in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. It is against the law to copy this software on magnetic tape, disk,
or any other medium for any purpose other than the purchaser's personal use.

© Copyright Microsoft Corporation, 1986

If you have comments about the software, complete the Software Problem Report at
the back of this manual and return it to Microsoft Corporation.

If you have comments about the software documentation, complete the Documen­
tation Feedback reply card at the back of this manual and return it to Microsoft
Corporation.

Microsoft, the Microsoft logo, MS, MS-DOS, and XENIX are registered trademarks of
Microsoft Corporation. CodeView and The High Performance Software are trademarks
of Microsoft Corporation.

IBM is a registered trademark of International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

UNIX is a trademark of AT&T Bell Laboratories.

Document Number 410840010-400-ROO-0486
Part Number 048-014-036

Contents

1 Introduction to the
Microsoft~, Code ViewTM Debugger 3

1.1 Introduction 5
1. 2 Overview 5
1.3 About This Manual 6
1.4 Notational Conventions 8

2 Getting Started 13

2.1 Introduction 15
2.2 Starting the Sample Session 15
2.3 Preparing C Programs

for the CodeView Debugger 16
2.4 Starting the Code View Debugger 19
2.5 Using Code View Options 23
2.6 Using the CodeView Debugger

with the Macro Assembler 32

3 The Code View Display 33

3.1 Introduction 35
3.2 Using Window Mode 36
3.3 Using Sequential Mode 63

4 Using Dialog Comrrlands 65

4.1 Introduction 67
4.2 Entering Commands and Arguments 67
4.3 Format for CodeView

Commands and Arguments 69
4.4 C Expressions 70

iii

Contents

5 Executing Code 79

5.1 Introduction 81
5.2 Trace Command 82
5.3 Program Step Command 84
5.4 Go Command 87
5.5 Execute Command 90
5.6 Restart Command 91

6 Examining Data and Expressions 93

6.1 Introduction 95
6.2 Display Expression Command 95
6.3 Examine Symbols Command 100
6.4 Dump Commands 103
6.5 Register Command 113
6.6 8087 Command 115

7 Managing Breakpoints 119

7.1
7.2
7.3
7.4
7.5
7.6

Introduction 121
Breakpoint Set Command
Breakpoint Clear Command
Breakpoint Disable Command
Breakpoint Enable Command
Breakpoint List Command

121
124

125
127

128

8 Managing Watch Statements 131

8.1 Introduction 133
8.2 Setting Watch-Expression

and Watch-Memory Statements 134
8.3 Setting Watchpoints 138
8.4 Setting Tracepoints 141
8.5 Deleting Watch Statements 146
8.6 Listing Watchpoints and Tracepoints 148

iv

9 Examining Code 151

9.1 Introduction 153
9.2 Set Mode Command 153
9.3 Unassemble Command 155
9.4 View Command 158
9.5 Current Location Command 161
9.6 Stack Trace Command 162

10 Modifying Code or Data 165

10.1 Introduction 167
10.2 Assemble Command
10.3 Enter Commands
10.4 Register Command

167
170

181

11 Using System-Control Commands 185

11.1 Introduction 187
11.2 Help Command 187
11.3 Quit Command 188
11.4 Radix Command 189
11.5 Redraw Command 191
11.6 Screen Exchange Command 191
11.7 Search Command 192
11.8 Shell Escape Command 195
11. 9 Tab Set Command 198
11.10 Redirection Commands 199

Code View Appendixes 207

A Command and Mode Summary 209

A.l Introduction 211
A.2 Modes 211
A.3 Options 212
A.4 Window Commands 213
A.5 Dialog Commands 215
A.6 Type Specifiers 218

Contents

v

Contents

B Regular Expressions 221

B.l Introduction 223
B.2 Special Characters in Regular Expressions 223
B.3 Searching for Special Characters 224
BA Using the Period 224
B.5 Using Brackets 225
B.6 Using the Asterisk 226
B.7 Matching the Start or End of a Line 227

C Error Messages 229

Glossary 237

Index 247

vi

Figures

Code View Screen in Window Mode 11

CodeView Start-Up Screen in Window Mode

Elements of the Code View Debugging Screen

The File Menu 49

The Search Menu 51

The View Menu

The Run Menu

The Watch Menu

The Options Menu

The Calls Menu

53

54

55

57

60

22

36

Watch-Command Statements in the Watch Window 137

Figure 1.1

Figure 2.1

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 8.1

Figure 8.2

Figure 8.3

Watchpoint-Command Statements in the Watch Window

Tracepoints in the Watch Window 145

vii

140

Tables

Table 2.1

Table 4.1

Table 4.2

Table 4.3

Table 6.1

Table 10.1

Table A.l

Table A.2

Table A.3

Table AA

Table A.5

viii

Default Exchange and Display Modes

Code View Operators 70

Code View Radix Examples 74

Registers 74

Types for printf 96

Flag-Value Mnemonics 182

Code View Modes 211

Window Commands

Men u Selections

Dialog Commands

213

214

216

Type Specifiers 219

28

Chapter 1

Introduction to the
Microsoft® Code ViewTM Debugger

1.1 Introduction 5
1.2 Overview 5
1.3 About This Manual 6
1.4 Notational Conventions 8

3

Introduction to the Microsoft® Code ViewTM Debugger

1.1 Introduction

The Microsoft® Code ViewTM debugger is a debugging program that helps you
test executable files developed with the Microsoft C Compiler. This chapter
introduces you to Code View debugger, and summarizes the manual and the
conventions used in it.

1.2 Overview

The Code View debugger can display and execute program code, control
program flow, and examine or change values in memory. Its window inter­
face makes debugging easy. You can view your source code in one window,
commands and responses in another, registers and flags in a third, and the
values of variables or expressions in a fourth. You can examine the values
of global or local variables, either by themselves or combined with other
variables in expressions.

The window interface is designed for IBM® Personal Computers and IBM.­
compatible computers. However, you can also use the CodeView debugger
with non-IBM-compatible computers using a sequential interface. Any de­
bugging operation that can be performed with the window interface can
also be performed with the sequential interface.

The Code View debugger can access program locations through addresses,
symbols, or line-number references. This makes it easy to locate and debug
specific sections of code. You can debug programs at the source level, or
you can examine code at the machine level in the debugger's assembly­
language mode.

CodeView commands can be entered either from the keyboard or, in Inany
cases, with the Microsoft Mouse (with the window interface only). Once you
learn the commands, you can work most efficiently using both the mouse
and the keyboard. The mouse is not required; all commands can be entered
from the keyboard.

5

Microsoft Code View

Note

The Code View debugger is designed specifically for the Microsoft
Mouse. Many manufacturers advertise their pointing devices as being
compatible with the Microsoft Mouse. The Code View debugger may
work with some of these devices if they are closely compatible.

The Code View debugger is simple to learn and use. Its commands are
logical and easy to understand, especially for programmers who are
familiar with the Microsoft Symbolic Debugging Utility (SYMDEB) or the
DEBUG utility provided with MS-DOS®. The Code View user interface
shares some features with its predecessors, but also incorporates powerful
new features such as popup menus, multiple windows, mouse support, and
single-keystroke commands.

1.3 About This Manual

This manual explains how to use the Code View debugger to examine pro­
grams and locate program errors. It is a companion manual to the Microsoft
C Compiler User's Guide, the Microsoft C Compiler Language Reference, and
the Microsoft C Compiler Run- Time Library Reference. See those manuals
for information about developing C programs.

Although the manual focuses on debugging C programs using source code,
the Code View debugger can also debug assembly-language programs, or it
can debug C programs at the assembly-language level. If you are not fami­
liar with assembly-language programming, some aspects of the debugger
may be unfamiliar (assembly mode and the register window, in particular).

However, all Code View features relating to assembly language are optional.
You can simply ignore the assembly-mode features and debug your pro­
grams in the C source mode. If you wish to learn more about assembly­
language programming, you should consider purchasing the Microsoft
Macro Assembler and reading its manual along with one of the many tu­
torial books on assembly-language programming.

6

Introduction to the Microsoft@ CodeViewlM Debugger

The following list tells where to find information on various aspects of
CodeView:

For This Information:

Compiling and linking C programs
in the special format required by the
CodeView debugger, and invoking
the debugger with various
command-line options

Using elements of the Code View
display, including windows, popup
menus, and the mouse

Specifying arguments for dialog
commands and using the Code View
operators to create expressions

Executing all or part of your
program

Testing the value of expressions, or
examining data of different sizes

Setting, enabling, disabling,
clearing, and listing breakpoints

Creating watch statements and
managing the watch window

Examining code and tracing
function or procedure calls

Modifying data or code in memory

Controlling the operation of the
Code View debugger

See:

Chapter 2, "Getting Started"

Chapter 3, "The Code View
Display"

Chapter 4, "Using Dialog
Commands"

Chapter 5, "Executing Code"

Chapter 6, "Examining Data
and Expressions"

Chapter 7, "Managing
Breakpoints"

Chapter 8, "Managing Watch
Statements"

Chapter 9, "Examining Code"

Chapter 10, "Modifying Code
or Data"

Chapter 11, "Using System­
Control Commands"

In addition to the information above, the following information is included
in the appendixes:

For This Information:

A summary of Code View modes,
commands, and menus

See:

Appendix A, "Command and
Mode Summary"

7

Microsoft Code View

How to use regular expressions to
find variable text strings in a source
file

A list of Code View error messages

Definitions of terms used in the
manual

Appendix B, "Regular
Expressions"

Appendix C, "Error Messages"

Glossary

Important

There may be additional information about the Code View debugger in
the README.DOC file provided on your Microsoft C Compiler distri­
bution disk. This file will describe any additions to the documentation
or changes made to the program after the manual was printed.

1.4 Notational Conventions

The following notational conventions are used throughout this manual:

8

Convention

Bold

BOLD
CAPITALS

Meaning

Bold type indicates text that must be typed as
shown. Text that is shown in bold type includes the
following: operators, keywords, and standard func­
tions. Examples are shown below:

+=
if
main

_setargv
sizeof
int

Bold capital letters are used for registers, environ­
ment variables, and the names of executable files
and files provided with the product. Commands
typed at the MS-DOS level are also capitalized.
These commands include built-in MS-DOS com­
mands such as SET, as well as program names
such as CV. You are not required to use capi-
tal letters when you actually enter these com­
mands.

Italics

Examples

User Input

Ellipsis dots

Introduction to the Microsoftl3: Code ViewTM Debugger

Italics mark placeholders in command lines and
option specifications. A placeholder represents
a variable item that must appear at a specific
point. Consider the command syntax for the Radix
command:

Nnumber

Note that number is italicized to indicate that it
represents a general form for the Radix (N) com­
mand. In an actual command, the user supplies a
particular number for the placeholder number.

Occasionally, italics may be used to emphasize par­
ticular words in the text.

Examples are displayed in a special typeface so that
they will look more like the programs you create
with a text editor or the output of commonly used
computer printers.

If a command produces output, the input that you
type is shown in boldface, while the output
displayed by the Code View debugger is shown in
regular, nonboldface type, as in the following exam­
ple:

>RAX
AX 0041
:43
>

Vertical ellipsis dots are used in program examples
to indicate that a portion of the program has been
omitted. For instance, in the following excerpt,
three statements are shown. The ellipsis dots
between the statements indicate that intervening
program lines occur, but are not shown.

count = 0;

*pc++;

count o·

9

Microsoft Code View

10

ITDouble
brackets]

Vertical bar

"Quotation
marks"

SMALL CAPITALS

Double brackets enclose optional fields in
command-line and option syntax. Consider the fol­
lowing command-line syntax:

R [register] [[=] value]

The double brackets around the placeholders indi­
cate that you may enter a register and you may
enter a value. The equal sign (=) in the second set
of brackets indicates that you may place an equal
sign before the value, but only if you specify a
value.

Single brackets are used to indicate brackets used
by C array declarations and subscript expressions.
For instance, a [10J is an example of brackets in a
C subscript expression.

The vertical bar indicates that you may enter one
of the entries shown on either side of the bar. The
following syntax block illustrates a vertical bar:

DB [address: range]

The bar indicates that following the Dump Bytes
command (DB), you can specify either an address
or a range. Since both are in double brackets, you
can also give the command with no argument.

Quotation marks set off terms defined in the text.
For example, the term "highlight" appears in quo­
tation marks the first time it is defined.

Some C constructs require quotation marks. Quota­
tion marks required by the language have the form
"" rather than" " . For example, a C string used in
an example would be shown in the following form:

"abc"

Small capital letters are used for the names of keys
and key sequences, such as ENTER, CONTROL-C, and
ALT-F.

Introduction to the Microsoft® CodeViewlM Debugger

Sample screens Sample screens are shown in black and white. Your
screens will look like this if you have a monochrome
monitor, or if you use the /B option in the Code­
View command line (see Section 2.5.1, "Starting
with a Black-and-White Display," for more infor­
mation). Figure 1.1 shows an example. Screens
will be slightly different if you use a color monitor
in color mode.

count,exe ~ File Search View Run Watch Options Calls Trace! Go!
=========~I count, c 11================1
0) codejc : C
1) inword : 1

77:
78:
79:
80:
81:
82:
83:
84:
85:

~~i
89:
90:

countwords(inwordjnumread)
char i nword;
i nt numread;
{

I

i nt count;
char code;

b~tes +: numread;
for (count: 0; count (: numread; ++count) {

If (code ::,I\nl)
Hllnes;

if (!inword) {
i f (code ? ,I j) {

?DB buffer L 48
3E94:0B20 20 20 43 4F 55 4E 54 20-69 73 20 61 20 73 69 6D COUNT is a sim
3E94:0B30 70 6C 65 20 70 72 6F 67-72 61 6D 20 66 6F 72 20 pIe program for
3E94:0B40 61 6E 61 6C 79 7A 69 6E-67 20 74 65 78 74 20 66 anal~zing text f
?

Figure 1.1 Code View Screen in Window Mode

11

Chapter 2

Getting Started

2.1
2.2
2.3

2.3.1
2.3.2

2.3.3
2.4
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5
2.5.6

2.6

Introduction 15
Starting the Sample Session
Preparing C Programs
for the CodeView Debugger

Writing C Source Code
Compiling Source Files

15

16
16

for the Code View Debugger 17
Linking Object Files for the Code View Debugger

Starting the Code View Debugger 19
Using Code View Options 23

Starting with a Black-and-White Display
Specifying Start-Up Commands 26
Setting the Screen-Exchange Mode 27
Enabling Window or Sequential Mode
Turning Off the Mouse 30
Using the Enhanced Graphics
Adapter's 43-Line Mode 31

Using the CodeView Debugger
with the Macro Assembler 32

25

29

18

13

Getting Started

2.1 Introduction

Getting started with the Code View debugger requires several simple steps.
You must prepare a special-format executable file for the program you wish
to debug; then you invoke the debugger. You may also wish to specify op­
tions that will affect the operation of the debugger.

This chapter describes a disk-based tutorial session that introduces you to
the Code View debugger. The chapter also describes how to compile and
link a C program to produce an executable file in the Code View format, and
how to load a program into the CodeView debugger. Using the debugger
with assembly-language programs is also discussed briefly.

2.2 Starting the Sample Session

The sample session provided on the demonstration disk illustrates many
reatures of the CodeView debugger. You may wish to try this session before
reading further in the manual.

To start the session, log on to the drive containing the sample disk and
type SAMPLE. This starts the batch file SAMPLE.BAT, which displays
explanatory text describing the purpose of the session.

During the session, the batch file automatically loads a program into the
debugger. Debugging commands are then redirected from a text file into the
debugger. Throughout the session, comments will tell you what is happen­
ing and why. Periodically, you will be asked to press a key to continue; this
allows you to control the pace of the session.

Note

If you wish to quit before the sample session is finished, press CONTROL­
C or CONTROlrBREAK. If you are still in the batch file, a prompt appears
asking if you want to terminate. Enter Y for yes. If the Code View
debugger has been started, the work break appears, followed by the
CodeView prompt (». Enter Q (the Quit command.) This returns you
to the MS-DOS operating system.

15

Microsoft Code View

2.3 Preparing C Programs
for the Code View Debugger

Executable files must be in a special format in order to be used with the
CodeView debugger. The special-format files contain line-number informa­
tion and a symbol table in addition to executable code. You must use the
correct options to put this additional information into the object files dur­
ing compilation, and then into the executable file during linking.

If you try to debug an executable file that does not contain this additional
information, the debugger will not be able to interpret symbols or to corre­
late code addresses and source line numbers. You can still debug your pro­
gram in assembly mode, but many of the most powerful features of the
Code View debugger will be disabled.

You must compile your C programs with one of the two compilation­
control programs provided with the Microsoft C Compiler: MSO or OL.
You must link your program with the Microsoft Overlay Linker, LINK. See
the Microsoft C Compiler User's Guide for complete instructions on compil­
ing and linking. The special steps required for compiling and linking pro­
grams for the CodeView debugger are explained in the sections 2.3.1-2.3.3.

2.3.1 Writing C Source Code

Any source code that is legal in C can be compiled to an executable file and
debugged with the Code View debugger. However, some programming prac­
tices make debugging more difficult. You should be aware of how these
practices affect debugging.

The Code View debugger will be easier to use if you put each source state­
ment on a separate source line. For example, the following code is legal
in C:

code = buffer [count] ; if (code == '\n') ++lines;

This code is actually made up of three separate C statements. When they
are placed together on the same line, the separate statements cannot be
accessed individually during source debugging. You would not be able to
put a breakpoint on the statement + + 1 ines: or execute to the statement
if (code == '\n'). (A breakpoint is an address that stops prograrn
execution each time the address is encountered.) The same code would be
easier to debug if it were written in the following form:

16

code = buffer [count] ;
if (code == '\n')

++lines;

Getting Started

This also makes code easier to read and corresponds with what is generally
considered good programming practice.

Macros cannot be easily debugged with the Code View debugger. This is not
a problem with most simple macros, but if you have complex macros with
potential side effects, you may need to write them first as regular souree
statements. After they are debugged, you can put them in macros.

The C language also permits you to put code in separate include files and
then read the files into your source file using the # include directive. How­
ever, you will not be able to use the Code View debugger to debug source
code in include files. Therefore, it is better to use include files for macros
only. The preferred method of using standard code in C is to write and
compile separate library modules, then link the resulting object files with
your programs. The Code View debugger does support this technique.

2.3.2 Compiling Source Files
for the CodeView Debugger

When you compile a source file for a program you want to debug, you must
specify the /Zi option in response to the MSC prompts, or in an MSC or
CL command line. The / Zi option instructs the compiler to include line­
number and symbol information in the object file.

If you do not need complete symbolic information in some modules, you can
compile those modules with the /Zd option instead of /Zi. The /Zd option
writes less symbolic information to the object file, so using this option will
save disk space and memory. For example, if you are working on a program
made up of five modules, but you only need to debug one module, you can
compile that module with the /Zi option and the other modules with the
/Zd option. The completed executable file will be significantly smaller than
if you had compiled all options with / Zi. You will be able to examine global
variables and see source lines in modules compiled with the / Zd option, but
local variables will be unavailable.

In addition, you will probably want to specify the /Od option. This option
turns off optimization. Optimized code may be rearranged for greater
efficiency and, as a result, the instructions in your program may not
correspond closely to the source lines. After debugging, you can compile a
final version of the program with the optimization level you prefer.

17

Microsoft Code View

Note that you cannot debug a program until you compile it successfully.
The Code View debugger will not help you correct syntax or compiler errors.
You should refer to a source listing and the appropriate reference books to
correct your code until you can compile it successfully; then use the
debugger to locate logical errors in the program. Finally, you can correct
these errors in the source code and recompile .

• Example

MSC COUNT IZi IOd;

This example compiles the source file COUNT.C to produce an object file
called COUNT .OBJ. The object file contains line-number information, a
symbol table, and unoptimized object code.

2.3.3 Linking Object Files for the CodeView Debugger

When you link an object file or files for debugging; you should specify the
/CODEVIEW option (it can be abbreviated to / CO). This instructs the
linker to incorporate addresses for symbols and source lines into the execut­
able file.

No other option is necessary for the debugger, but you may use other
options if your program requires them (see the Microsoft C Compiler User's
Guide). For example, you could use the /MAP or /P AUSE option.

Warning

You should not use the IEXEP ACK option with the Code View
debugger, since this optIOn strips all symbolic information from the exe­
cutable file. The EXEP ACK utility also strips symbolic information. If
the debugger detects a packed file on start-up, you will see a warning
message. You can still attempt to debug the file in assembly mode, but
there will be no symbolic information.

Although executable files prepared with the / CODEVIEW option can be
executed from the MS-DOS command line like any other executable files,
they are larger because of the extra symbolic information in them. When
you finish debugging a program, you will probably want to link your final
version without the /CODEVIEW option to minimize program size.

18

Getting Started

• ExaInples

LINK ICO COUNT;

CL IZi lad COUNT.C

The first example links the object file COUNT .OBJ to form an executable
file, COUNT .EXE, containing the symbolic and line-number information
required by the CodeView debugger.

The second example uses the CL command to compile and link an execut­
able file in one operation. When you use the CL command, you do not need
to specify the /CODEVIEW link option, since the program automatically
supplies this option when you specify the / Zi compile option.

2.4 Starting the CodeView Debugger

Before starting the debugger, make sure all the files it requires are available
in the proper places. The following files are recommended for C source
debugging:

File

CV.EXE

CV.HLP

Location

The Code View program file can be in the current
directory, or in any directory accessible with the
PATH command. For example, if you set up
your C compiler files according to the sugges­
tions in the Microsoft C Compiler User's Guide,
you could put CV.EXE in the \BIN directory.

If you want to have the on-line help available
during your session, you should have this file
either in the current directory, or in any direc­
tory accessible with the PATH command. For
example, if you set up your C compiler files
according to the suggestions in the Microsoft C
Compiler User's Guide, you could put CV.HLP
in the \BIN directory. If the CodeView de­
bugger cannot find the help file, you can still use
the debugger, but you will see an error message
if you try to use one of the help commands.

19

Microsoft Code View

program.EXE

program.C

The executable file for the program you wish to
debug must be in the current directory, or in a
drive and directory you specify as part of the
start-up file specification. The Code View
debugger will display an error message and
refuse to start if the executable file is not found.

Normally source files should be in the current
directory. However, if you give a file specification
for the source file during compilation, that
specification will become part of the symbolic
information stored in the executable file. For
example, if you compiled with the command line
MSC DEMO, the Code View debugger will expect
the source file to be in the current directory.
However, if you compiled with the command line
MSC \C\DEMO, then the debugger will expect
the source file to be in directory \ C. If the
debugger cannot find the source file in the direc­
tory specified by the executable file (usually the
current directory), the program will prompt you
for a new directory. You can either enter a new
directory, or you can press the ENTER key to
indicate that you do not want a source file to be
used for this module. If no source file is specified,
you must debug in assembly mode.

If the appropriate files are in the correct directories, you can enter the
CodeView command line at the MS-DOS command prompt. The command
line has the following form:

CV [options] executablefile [arguments]

The options are one or more of the options described in Section 2.5. The
executablefile is the name of an executable file to be loaded by the debugger.
It must have the extension .EXE or .COM. If you try to load a nonexecut­
able file, the following message appears:

Not an executable file

C programs and assembly-language programs containing Code View sym­
bolic information will always have the extension .EXE. Files with the
extension .COM can be debugged in assembly mode, but they can never
contain symbolic information. Programs that use overlays cannot be
debugged with the Code View debugger.

20

Getting Started

The optional arguments are parameters passed to the executablefile. If the
program you are debugging does not accept command-line arguments, you
do not need to pass any arguments.

If you specify the executablefile as a file name with no extension, the Code­
View debugger searches for a file with the given base name and the exten­
sion .EXE. If the file you specify is not in the Code View format, the
debugger starts in assembly mode and displays the following message:

No symbolic information

You must specify an executable file when you start the Code View debugger.
If you omit the executable file, the debugger displays a message showing the
correct command-line format.

When you give the debugger a valid command line, the executable program
and the source file are loaded, the address data is processed, and the Code­
View display appears. The initial display will be in window mode or sequen­
tial mode, depending on the options you specify and the type of computer
you have.

For example, if you wanted to debug the program SIEVE.EXE, you could
start the debugger with the following command line:

CV SIEVE

If you give this command line on an IBM Personal Computer, window mode
will be selected automatically. The display will look like Figure 2.1, shown
on the following page.

21

Microsoft Code View

sieve,exe ~ File Search View Run Watch Options Calls Trace! Go!
=========~I sieve, c I============~
1: 1* si eve, c
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:

1* Eratosthenes Sieve Prime Number Program in C from Byte Jan 1983
to compare the speed, *1

#define TRUE 1
#define FALSE 0
#define SIZE 8190

char flags[SIZEt1J;

main()
I

{
register int i k;
int prime) count) Iter;

printf("10 iterations\n");

Microsoft (R) CodeView Version 1,00
Copyright (C) Microsoft Corp 1986, All rights reserved,

>.

Figure 2.1 CodeView Start-Up Screen in Window Mode

If you give the same command line on most non-IBM computers, sequential
mode will be selected. The following lines appear:

Microsoft (R) CodeView Version 1.00
Copyright (C) Microsoft Corp 1986. All rights reserved.

>

You can use Code View options, as described in Section 2.5, to override the
default start-up mode.

If your program is written in 0, the Code View debugger is now at the
beginning of the C start-up code that precedes your program. In source
mode, you can enter an execution command (such as Trace or Program
Step) to automatically execute through the start-up code to the beginning
of your program. At this point, you are ready to start debugging your pro­
gram as described in chapters 3 through 11.

22

Getting Started

2.5 Using CodeView Options

You can change the start-up behavior of the debugger by specifying options
in the command line.

An option is a sequence of characters preceded by either a forward slash (/)
or a dash (-). A file containing a dash in its file name must be renamed
before use with Code View so that the debugger will not interpret the dash
as an option designator . You can use more than one option in a command
line, but each option must have its own option designator and spaces must
separate each option from other elements of the command line.

Note

The Code View debugger's defaults are different for IBM Personal Com­
puters than for other computers. However, the debugger may not
always recognize the difference between computers. The debugger deter­
mines if you have an IBM computer by looking at certain locations in
memory, and by checking for PC-DOS, the IBM version of MS-DOS. If
you use PC-DOS on certain IBM-compatible computers, the Code View
debugger may think you have an IBM computer and act accordingly.

The list on the following page suggests some situations in which you might
want to use an option. If more than one condition applies, you can use more
than one option (in any order). If none of the conditions applies, do not use
any options.

23

Microsoft Code View

If:

You have an IBM-compatible computer and
you want to use window mode

You have a two-color monitor, a color
graphics adapter (CGA), and an IBM or
IBM-compatible computer

You are debugging a graphics program and
you want to be able to see the output screen

You are debugging a program that uses
multiple video-display pages and you want
to be able to see the output screen

You are using a non-IBM-compatible
computer and you want to be able to see the
output screen

You are using an IBM-compatible computer
to debug a program that does not use
graphics or multiple video-display pages
and you want to be able to see the output
screen

You have an IBM computer, but you wish to
debug in sequential mode (for example, with
redirection)

You have a mouse installed in your system,
but you do not want to use it during the
debugging session

You want a 43-line display and you have an
IBM or IBM-compatible computer with an
enhanced graphics adapter (EGA)

You want the CodeView debugger to
automatically execute a series of commands
when it starts up

Type:

/W

/B

/S

/S

/S

/F

/T

/M

/43

/Ccommands

For example, assume you are using an IBM-compatible computer with a
CGA and a two-color monitor. The program you are debugging, which you
could name GRAPHIX.EXE, plots points in graphics mode. You want to be
able to see the output screen during the debugging session. Finally, you
want to be able to start the debugger several times without having to
remember all the options, and you want to execute the C start-up code
automatically each time. You could create a batch file called
GRAFBUG.BAT consisting of the following line:

24

Getting Started

cv IW IB IS ICGmain GRAPHIX

The Code View options are described in more detail in sections 2.5.1-2.5.6.

2.5.1 Starting with a Black-and-White Display

• Option

jBI-B

The /B option forces the Code View debugger to display in two colors even
if you have a CGA. The debugger checks upon start-up to see what kind of
display adapter is attached to your computer. If the debugger detects a
monochrome adapter, it displays in two colors. If it detects a CGA, it
displays in multiple colors.

If you use a two-color monitor with a eGA, you may want to disable color.
Monitors that display in only two colors (usually green and black, or
amber and black) often attempt to show colors with different cross­
hatching patterns, or in gray-scale shades of the display color. In either
case, you may find the display easier to read if you use the /B option to
force black-and-white display. Most two-color monitors still have four color
distinctions: background (black), normal text, high-intensity text, and
reverse-video text.

• ExaIIlple

CV IB COUNT COUNT.TXT

The example starts the Code View debugger in black-and-white mode. This
is the only mode available if you have a monochrome adapter. The display
is usually easier to read in this mode if you have a CGA and a two-color
monitor.

25

Microsoft CodeView

2.5.2 Specifying Start-Up Commands

• Option

/Ccommands : -Ccommands

The / C option allows you to specify one or more commands that will be
executed automatically upon start-up. You can use these options to invoke
the debugger from a batch or MAKE file. Each command is separated
from the previous command by a semicolon.

If one or more of your start-up commands has arguments that require
spaces between them, you should enclose the entire option in double quota­
tion marks. Otherwise, the debugger will interpret each argument as a
separate Code View command-line argument rather than as a debugger com­
mand argument.

Warning

Any start-up option that uses the less-than (<) or greater-than (>)
symbol must be enclosed in double quotation marks even if it does not
require spaces. This ensures that the redirection command will be inter­
preted by the Code View debugger rather than by MS-DOS.

• Examples

CV /CGmain COUNT.EXE COUNT. TXT

CV "/CS-;N16;G countwords;D buffer L 100" COUNT.EXE COUNT. TXT

CV "/C<INPUT.FIL" COUNT.EXE COUNT.TXT

The first example loads the Code View debugger with COUNT. EXE as the
executable file and COUNT. TXT as the argument. Upon start-up, the
debugger executes the C start-up code with the command Gmain. Since no
space is required between the CodeView command (G) and its argument
(main), the option is not enclosed in double quotation marks.

26

Getting Started

The second example loads the same file with the same argument, but the
command list is more extensive. The debugger starts in assembly mode (s -)
with a radix of 16 (N 16). It executes to procedure countwords (G
countwords), then dumps 100 bytes, starting at the variable bu f fer (0
bu f fer L 100). Since several of the commands use spaces, the entire
option is enclosed in double quotation marks.

The third example loads the same file and argument, but the start-up com­
mand directs the debugger to accept input from the file INPUT. f I L rather
than from the keyboard. Although the option does not include any spaces,
it must be enclosed in double quotation marks so that the less-than symbol
will be read by the Code View debugger rather than by MS-DOS.

2.5.3 Setting the Screen-Exchange Mode

• Options

/F: -F
/S: -S

The Code View debugger allows you to move quickly back and forth from
the output screen, which contains the output from your program, and the
debugging screen, which contains the debugging display. The debugger can
handle this screen exchange in two ways: screen flipping or screen swap­
ping. The IF option (screen flipping) and the IS option (screen swapping)
allow you to choose the method from the command line.

If neither method is specified (possible only on non-IBM computers), the
Screen Exchange command will not work. No screen exchange is the default
for non-IBM computers. Screen flipping is the default for IBM computers
with graphics adapters, and screen swapping is the default for IBM comput­
ers with monochrome adapters (MAs).

Screen flipping uses the video-display pages of the graphics adapter to store
each screen of text. Video-display pages are a special memory buffer
reserved for multiple screens of video output. This method is faster and
uses less memory than screen swapping. However, screen flipping cannot be
used with an MA, or to debug programs that produce graphics or use the
video-display pages. In addition, the Code View debugger's screen flipping
only works with IBM and IBM-compatible microcomputers.

27

Microsoft Code View

Screen swapping has none of the limitations of screen flipping, but is
significantly slower and requires more memory. In the screen-swapping
method, the Code View debugger creates a buffer in memory and uses it to
store the screen that is not being used. When the user requests the other
screen, the debugger swaps the screen in the display buffer for the one in
the storage buffer.

When you use screen swapping, the buffer size is 4K if you have an MA, or
16K if you have a CGA or EGA. The amount of memory used by the Code­
View debugger is increased by the size of the buffer.

Table 2.1 shows the default exchange mode (swapping or flipping) and the
default display mode (sequential or window) for various configurations.
Display modes are discussed in Section 2.5.4, "Enabling Window or Sequen­
tial Mode."

Table 2.1

Default Exchange and Display Modes

Display Default
Computer Adapter Modes Alternate Modes

IBM CGAor EGA IF IW IS if your program uses video-
display pages or graphics; IT for
sequential mode

IBM compatible CGAor EGA IT IW for window mode; IF for
screen flipping with text
programs, or ~S for screen
swapping wit programs that use
video-display pages or graphics

IBM MA IS/W IT for sequential mode

IBM compatible MA IT IW for window mode; IS for
screen swapping

Noncompatible Any IT IS for screen swapping

If you are not sure if your computer is completely IBM compatible, you can
experiment. If the basic input/output system (BIOS) of your computer is
not compatible enough, the Code View debugger may not work with the IF
option.

28

Getting Started

If you specify the IF option with an MA, the debugger will ignore the
option and use screen swapping. If you try to use screen flipping to debug a
program that produces graphics or uses the video-display pages, you may
get unexpected results and have to start over with the IS option.

• Examples

CV If COUNT COUNT.TXT

CV IS GRAFIX

The first example starts the Code View debugger with screen flipping. You
might use this command line if you have an IBM-compatible computer, and
you want to override the default screen-exchange mode in order to use less
memory and switch screens more quickly. The option would not be neces­
sary on an IBM computer, since screen flipping is the default.

The second example starts the debugger with screen swapping. You might
use this command line if your program uses graphics mode.

2.5.4 Enabling Window or Sequential Mode

• Options

jT:-T
jW:-W

The CodeView debugger can operate in window mode or in sequential
mode. Window mode displays up to four windows, enabling you to see
different aspects of the debugging session program simultaneously. You
can also use a mouse in window mode. Window mode requires an IBM or
IBM-compatible microcomputer.

Sequential mode works with any computer, and is useful with redirection
commands. Debugging information is displayed sequentially on the screen.

The behavior of each mode is discussed in detail in Chapter 3, "The Code­
View Display." Refer back to Table 2.1 for the default and alternate modes
for your computer. If you are not sure if your computer is completely IBM
compatible, you can experiment with the options. If the BIOS of your com­
puter is not compatible enough, you may not be able to use window mode
(the IW option).

29

Microsoft Code View

Note

Although window mode is more convenient, any debugging operation
that can be done in window mode can also be done in sequential mode.

• Examples

CV /W SIEVE

CV /T SIEVE

The first example starts the Code View debugger in window mode. You will
probably want to use the IW option if you have an IBM-compatible com­
puter, since the default sequential mode is less convenient for most debug­
ging tasks.

The second example starts the debugger in sequential mode. You might
want to use this option if you have an IBM computer and you have a
specific reason for using sequential mode. For instance, sequential mode
usually works better if you are redirecting your debugging output to a
remote terminal.

2.5.5 Turning Off the Mouse

• Option

jM:-M

If you have a mouse installed on ;:our system, you can tell the Code View
debugger to ignore it, using the 1M option. You may need to use this
option if you are debugging a program that uses the mouse and your mouse
is not a Microsoft Mouse. This is due to a conflict between the program's
use of the mouse and the debugger's use of it. If you use the 1M option, the
program you are debugging can still use the mouse, but the Code View
debugger cannot.

30

Getting Started

Important

The same conflict between program and debugger applies if you have a
version of the Microsoft Mouse prior to 5.02. The latest version of the
mouse driver program (MOUSE.SYS) is included on the Microsoft C
Compiler distribution disk. You should replace your old mouse driver
program with this updated version. You will then be able to use the
mouse both with the Code View debugger and the program you are
debugging. See your Microsoft Mouse user's guide for information on
installing MOUSE.SYS. This file will not work with pointing devices
from other manufacturers.

2.5.6 Using the Enhanced Graphics
Adapter's 43-Line Mode

• Option

/43 i -43

If you have an EGA, you can use the /43 option to enable a 43-line-by-80-
column text mode. You cannot not use this mode if you have a CGA or an
MA. The Code View debugger will ignore the option if it does not detect an
EGA.

The EGA's 43-line mode performs identically to the normal 25-line-by-80-
column mode used by default on the EGA, CGA, and MA. The advantage
of the 43-line mode is that more text fits on the Code View display; the
disadvantage is that the text is smaller and harder to read. If you have an
EGA, you can experiment to see which size you prefer.

• Example

CV /43 COUNT COUNT.TXT

This example starts the CodeView debugger in 43-line mode if you have an
EGA video adapter and monitor. The option will be ignore,d if you do not
have the hardware to support it.

31

Microsoft Code View

2.6 Using the CodeView Debugger
with the Macro Assembler

You can use the Code View debugger with files developed with the Microsoft
(or IBM) Macro Assembler. Since the Microsoft Macro Assembler (versions
1.0 through 4.0) does not write line numbers to object files, some of the
CodeView debugger's features will not be used when you debug programs
developed with the assembler.

The debugger can be used on either .EXE or .COM files, but you can only
view symbolic information in .EXE files. The procedure for assembling and
debugging .EXE files is summarized below:

1. In your source file, declare public any symbols, such as labels and
variables, that you want to reference in the debugger. If the file is
small, you may want to declare all symbols public.

2. Assemble as normal. No special options are required, and all
assembly options are allowed.

3. Link with the linker provided with Version 4.0 of the Microsoft C
Compiler. Do not use the linker provided with versions 4.0 and ear­
lier of the Macro Assembler. Use the / CODEVIEW option when
linking.

4. Debug in assembly mode (this is the start-up default if the debugger
doesn't find line-number information). You cannot use source mode
for debugging, but you can load the source file into the display win­
dow and view it in source mode. You may find this convenient for
referring to macros and comments. Any labels or variables that you
declared public in the source file can be displayed and referenced by
name instead of by address.

You can also use this procedure to debug C library routines or assembly­
language modules called by your C program.

32

Chapter 3

The Code View Display

3.1 Introduction 35
3.2 Using Window Mode 36
3.2.1 Executing Window

Commands with the Keyboard 38
3.2.1.1 Moving the Cursor with Keyboard Commands 38
3.2.1.2 Changing the Screen

with Keyboard Commands 40
3.2.1.3 Controlling Program Execution

with Keyboard Commands 41
3.2.1.4 Selecting from Menus with the Keyboard 42
3.2.2
3.2.2.1
3.2.2.2
3.2.2.3
3.2.3
3.2.3.1
3.2.3.2
3.2.3.3
3.2.3.4
3.2.3.5
3.2.3.6
3.2.3.7
3.2.4

Executing Window Commands with the Mouse
Changing the Screen with the Mouse 44
Controlling Program Execution with the Mouse
Selecting from Menus with the Mouse 47

Using Menu Selections 49
Using the File Menu 49
Using the Search Menu 51
Using the View Menu 53
Using the Run Menu 54
Using the Watch Menu 55
Using the Options Menu 57
Using the Calls Menu 60

Using the Help System 61
3.3 Using Sequential Mode 63

44

45

33

The Code View Display

3.1 Introduction

The Code View screen display can appear in two different modes: window
and sequential. Both modes provide a useful debugging environment, but
the window mode is the more powerful and convenient of the two.

Most users will prefer to use window mode, if they have the hardware to
support it. In window mode, popup menus, function keys, and mouse sup­
port offer fast access to the most common commands. Different aspects of
the program and debugging environment can be seen in different windows
simultaneously. Window mode is described in Section 3.2.

Sequential mode should be familiar to most programmers. It is similar to
the display mode of the Code View debu!?ger's predecessors, the Microsoft
Symbolic Debugging Utility (SYMDEB) and the MS-DOS DEBUG utility.
This mode is required if you do not have an IBM-compatible computer, and
it is sometimes useful when redirecting command input or output. Sequen­
tial mode is described in Section 3.3.

36

Microsoft Code View

3.2 Using Window Mode

Figure 3.1 shows the CodeView window-mode display with all windows
open.

2
9

10 11 12

....
r

"

~ File Seal"ch I,.!! el,l,l Run mull Options Call s I Tl"ace! Go! count,exe

~
0) code)c : I Ac~d 1,~latch, , , / AX : 0154
1) Iines::3 I 0 1,l.latchpoi nt, , , BX : 0152 I

2) inwok"d I 0 CX : 0008 I

De 1 ete I,I.latch, , , Dl~ : 0000
89: i SF : 14D4

\l
qO
' if (code) " I ~I { BP : 14DC

91: anal ~z e(code) i nI.~Ol"'~) ; SI : 0095
DI : 15D7

33: ++I,I,IOl"';/s; DS : 3F65
94: + + chal"actel"s; ES : 3F65
95: } ~ - ~F'~ ,.1 I - ,.1 tl,.

)§f } else {

/
C,') : 3A59

I if (code (: I I) I P : 024A
98: i muol"d : FALSE; no /l" f 101,1,1
99: else { u,

/ 100 : + + chal"act.el"s; e a Ie
If" po i ti 'v'e

)DB buffel" L 64 no , zel"O
3F65:0B20 20 20 43 4F 55 4E 54 20-69 73 20 61 20 73 69 6D COUNT i no auxc~
3F65:0B30 70 6C 65 20 70 72 E,F 67-72 61 6D 20 66 6F 72 20 pIe

~
ven

3F65:0B40 61 6E 61 E,C 79 7A 69 6E-67 20 74 65 78 74 20 66 anal ~z 1 't no cal"l"~
3F65:0B50 69 6C 65 73 2E 20 20 49-74 20 6D 61 6B 65 73 20 ile:: , I..
\
i.

\
'0.

4 5 13 8 1

6

3

Figure 3.1 Elements of the Code View Debugging Screen

36

7

--.
\ ,

:;

The Code View Display

The elements of the CodeView display marked in Figure 3.1 are explained
below:

1. The display window shows the program being debugged. It can con­
tain source code (as in the example), assembly-language instruc­
tions, or any specified text file.

2. The current location line (the next line the program will execute) is
displayed in reverse video or in a different color. This line may not
always be visible, since you can scroll to earlier or later parts of the
program.

3. Lines containing previously set breakpoints are shown in high­
intensity text.

4. The dialog window is where you enter dialog commands. These are
the commands with optional arguments that you can enter at the
Code View prompt (». You can scroll up or down in this window to
view previous dialog commands and command output.

5. The cursor is a thin blinking line that shows the location at
which you can enter commands from the keyboard. You can move
the cursor up and down, and put it in either the dialog or display
window.

6. The display/dialog separator line divides the dialog window from
the display window. You can move this line up or down to change
the relative size of the two windows.

7. The register window shows the current status of the registers and
flags. This is an optional window that can be opened or closed with
one keystroke.

8. The scroll bars are the vertical bars on the right side of the screen.
Each scroll bar has an up arrow and a down arrow that you can use
to scroll through the display with a mouse.

9. The watch window is an optional window that shows the current
status of specified variables or expressions. It appears automati­
cally whenever you create watch statements. See Chapter 8,
"Managing Watch Statements."

10. The menu bar shows titles of menus and commands that you can
activate with the keyboard or the mouse. Titles followed by an ex­
clamation point represent commands; other titles are menus.

11. Menus can be opened by specifying the appropriate title on the
menu bar. On the sample screen, the Watch menu has been opened.

37

Microsoft Code View

12. The menu "highlight" is a reverse-video or colored strip indicating
the current selection in a menu. You can move the highlight up or
down to change the current selection.

13. The mouse pointer indicates the current position of the mouse. It is
shown only if you have a mouse installed on your system.

14. Dialog boxes (not shown) appear in the center of the screen when
you choose a menu selection that requires a response. The box
prompts you for a response and disappears when you enter your
answer.

15. Message boxes (not shown) appear in the center of the screen to
display errors or other messages.

The screen elements are described in more detail in the rest of this chapter.

3.2.1 Executing Window
Commands with the Keyboard

Code View accepts two kinds of commands: window commands and dialog
commands. Dialog commands are entered as command lines following the
Code View prompt (» in sequential mode. They are discussed in Chapter 4,
"Using Dialog Commands."

The most common Code View debugging commands and all the commands
for managing the Code View display are available with window commands.
Window commands are one-keystroke commands that can be entered with
function keys, CONTROL-key combinations, ALT-key combinations, or the
direction keys on the numeric keypad.

Most window commands can also be entered with a mouse, as described in
Section 3.2.2. The window commands available from the keyboard are
described by category in the following sections. For a table of commands
by name, see Appendix A, "Command and Mode Summary."

3.2.1.1 Moving the Cursor with Keyboard Commands

The following keys move the cursor or scroll text up or down in the display
or dialog window:

38

Key

F6

CONTROL-U

CONTROL-D

UPARROW

DOWN ARROW

PGUP

PGDN

HOME

The Code View Display

Function

Moves the cursor between the display and dialog win­
dows. If the cursor is in the dialog window when you
press F6, it will move to its previous position in the
display window. If the cursor is in the display win­
dow, it will move to its previous position in the dialog
window.

Moves the display/dialog separator line up one line.
This decreases the size of the display window and
increases the size of the dialog window. If the cursor
is in the dialog window, you can remove the display
window entirely by moving the separator line to the
top of the window.

Moves the display/dialog separator line down one
line. This increases the size of the display window
and decreases the size of the dialog window. If the
cursor is in the display window, you can remove the
dialog window entirely by moving the separator line
to the bottom of the screen.

Moves the cursor up one line in either the display or
dialog window.

Moves the cursor down one line in either the display
or dialog window.

Scrolls up one page. If the cursor is in the display
window, the source lines or assembly-language
instructions scroll up. If the cursor is in the dialog
window, the buffer of commands entered during the
session scrolls up. The cursor remains at its current
position in the window. The length of a page is the
current number of lines in the window.

Scrolls down one page. If the cursor is in the display
window, the source lines or assembly-language
instructions scroll down. If the cursor is in the dialog
window, the buffer of commands entered during the
session scrolls down. The cursor remains at its
current position in the window. The length of a page
is the current number of lines in the window.

Scrolls to the top of the file or command buffer. If the
cursor is in the display window, the text scrolls to the
start of the source file or program instructions. If the
cursor is in the dialog window, the commands scroll

39

Microsoft Code View

to the top of the command buffer. The top of the
command buffer may be blank if you have not yet
entered enough commands to fill the buffer. The cur­
sor remains at its current position in the window.

END Scrolls to the bottom of the file or command buffer. If
the cursor is in the display window, the text scrolls to
the end of the source file or program instructions. If
the cursor is in the dialog window, the commands
scroll to the bottom of the command buffer and the
cursor moves to the CodeView prompt (» at the end
of the buffer.

3.2.1.2 Changing the Screen with Keyboard Commands

The following keys change the screen, or switch to a different screen:

Key

Fl

F2

F3

F4

40

Function

Displays initial on-line-help screen. The help system
is discussed in Section 3.2.4. You can also get to the
initial help screen by selecting Help from the View
menu, as described in Section 3.2.3.3.

Toggles the register window. The window disappears
if present, or appears if absent. You can also toggle
the register window with the Register selection from
the Options menu, as described in Section 3.2.3.6.

Switches between source and assembly modes. Source
mode shows source code in the display window, while
assembly mode shows assembly-language instructions.
You can also change modes with the Source and
Assembly selections from the View menu, as described
in Section 3.2.3.3.

Switches to the output screen. The output screen
shows the output, if any, from your program. Press
any key to return to the Code View screen. You can
also change to the output screen with the Output
selection from the View menu, as described in Section
3.2.3.3.

The Code View Display

3.2.1.3 Controlling Program Execution
with Keyboard Commands

The following keys set and clear breakpoints, trace through your program,
or execute to a breakpoint:

Key

F5

F7

F8

F9

FlO

Function

Executes to the next breakpoint, or to the end of the
program if no breakpoint is encountered. This key­
board command corresponds to the Go dialog com­
mand when it is given without a destination break­
point argument.

Sets a temporary breakpoint on the line with the cur­
sor, and executes to that line (or to a previously set
breakpoint or the end of the program if either is
encountered before the temporary breakpoint). In
source mode, if the line does not correspond to code
(for example, data declaration or comment lines), the
Code View debugger sounds a warning and ignores the
command. This window command corresponds to the
Go dialog command when it is given with a destina­
tion breakpoint.

Executes a Trace command. The Code View debugger
executes the next source line in source mode, or the
next instruction in assembly mode. If the source line
or instruction contains a function, procedure, or inter­
rupt call, the debugger starts tracing through the call
(enters the call and is ready to execute the first source
line or instruction). This command will not trace into
MS-DOS function calls (interrupt Ox21).

Sets or clears a breakpoint on the line with the cursor.
If the line does not currently have a breakpoint, one is
set on that line. If the line already has a breakpoint,
the breakpoint is cleared. If the cursor is in the dia­
log window, the Code View debugger sounds a warning
and ignores the command. This window command
corresponds to the Breakpoint Set and Breakpoint
Clear dialog commands.

Executes the Program Step command. The Code View
debugger executes the next source line in source
mode, or the next instruction in assembly mode. If
the source line or instruction contains a function, pro­
cedure, or interrupt call, the debugger steps over the

41

Microsoft Code View

entire call (executes it to the return) and is ready to
execute the line or instruction after the call.

Important

You can usually interrupt program execution by pressing CONTROL­
BREAK or CONTROL-C. This can be used to exit endless loops, or it can
interrupt loops that are slowed by the Watchpoint or Tracepoint com­
mands (see Chapter 8, "Managing Watch Statements"). CONTROL­
BREAK or CONTROL-C may not work if your program has a special use for
one or both of these key combinations. If you have an IBM Personal
Computer AT (or a compatible computer), you can use the SYSTEM­
REQUEST key to interrupt execution regardless of your program's use of
CONTROL-BREAK and CONTROL-C.

3.2.1.4 Selecting from Menus with the Keyboard

The Code View debugger has seven popup menus. This section discusses
how to make selections from menus. The effects of the selections are dis­
cussed in Section 3.2.3.

The menu bar at the top of the screen has nine titles: File, Search, View,
Run, Watch, Options, Calls, Trace!, and Go!. The first seven titles are
menus, and the last two are commands. The Trace! and Go! titles are pro­
vided primarily for mouse users, though you can activate them by pressing
ALT-T or ALT-G and then pressing the ENTER key. The exclamation point is
a convention used to indicate that a title represents a command rather than
a menu. The same commands are more easily accessible with the F5, F8,
and FlO keys.

The steps for opening a menu and making a selection are described below:

42

1. To open a menu, press the ALT key and the first letter of the menu
title. For example, press ALT-S to open the Search menu. The menu
title is highlighted and a menu box listing the selections pops up
below the title.

2. There are two ways to make a selection from an open menu:

a. Press the DOWN ARROW key on the numeric keypad to move
down the menu. The highlight will follow your movement.
When the item you want is highlighted, press the ENTER key to

The CodeView Display

execute the command. For example, press the DOWN ARROW
once to select Find from the Search menu.

You can also press the UP ARROW key to move up the menu. If
you move off the top or bottom of the menu, the highlight wraps
around to the other end of the menu.

b. While holding down the ALT key, press the first letter of the
item you want to select. You do not have to press the ENTER
key with this method. For example, press ALT-F to select Find
from the Search menu. This selection method does not work
with the Calls menu.

3. One of three things will happen at this point:

a. For most menu selections, the choice is executed immediately.

b. The items on the Options menu have small double arrows next
to them if the option is on, and no arrows if the option is off.
Choosing the item toggles the option. The status of the arrows
will be reversed the next time you open the menu.

c. Some items require a response. In this case, there is another
step in the menu-selection process.

4. If the item you select requires a response, a dialog box opens when
you select a menu item. Type your response to the prompt in the
box and press the ENTER key. For example, the Find dialog box
asks you to enter a regular expression (see Section 3.2.3.2, "Using
the Search Menu," or Chapter 10, "Modifying Code or Data," for an
explanation of regular expressions).

If your response is valid, the command will be executed. If you
enter an invalid response, a message box will appear, telling you the
problenl and asking you to press a key. Press any key to make the
message box disappear.

At any point during the process of selecting a menu item, you can press the
ESCAPE key to cancel the menu. While a menu is open, you can press the
LEFT ARROW or RIGHT ARROW key to move from one menu to an adjacent
menu, or to one of the command titles on the menu bar.

43

Microsoft Code View

3.2.2 Executing Window Commands with the Mouse

The Code View debugger is designed to work with the Microsoft Mouse (it
also works with some compatible pointing devices). By moving the mouse
on a flat surface, you can move the mouse pointer in a corresponding direc­
tion on the screen. The following terms refer to the way you select items or
execute commands with the mouse:

Term

Point

Click

Drag

Definition

To move the mouse until the mouse pointer rests on the
item you want to select.

To quickly press and release a mouse button while pointing
at an item you want to select.

To press a mouse button while on a selected item, then
hold the buttoIi down while moving the mouse. The item
moves in the direction of the mouse movement. When the
item you are moving is where you want it, release the but­
ton; the item will stay at that point.

The Code View debugger uses two mouse buttons. The terms "click right,"
"click left," "click both," and "click either" are sometimes used to desig­
nate which buttons to use. When dragging, either button can be used.

3.2.2.1 Changing the Screen with the Mouse

You can change various aspects of the screen display by pointing to one of
the following elements and then either clicking or dragging:

44

Item

Double line
separating display
and dialog
windows

Action

Drag the separator line up to increase the size of
the dialog window while decreasing the size of
the display window, or drag the line down to
increase the size of the display window while
decreasing the size of the dialog window . You
can eliminate either window completely by drag­
ging the line all the way up or down (providing
the cursor is not in the window you want to
eliminate).

UP ARROW or DOWN
ARROW on the
scroll bar

The Code View DispJay

Point and click on one of the four arrows on the
scroll bars to scroll up or down. If you are in the
display window, source code will scroll up or
down. If you are in the dialog window, the buffer
containing dialog commands entered during the
session will scroll up or down. The distance
moved is determined by which buttons you click
as follows:

Button

Click left

Click right

Click both

Action

Scroll up or down, one line at a
time

Scroll up or down, one page at a
time; the length of a page is the
current size of the window

Scroll to the top or bottom of the
file or command buffer

Some menu selections also change the screen display. See Section 3.2.3 for
a description of the menu selections.

3.2.2.2 Controlling Program Execution with the Mouse

By clicking on the following mouse items, you can set and clear break­
points, trace through your program, execute to a breakpoint, or change the
flag bits:

Item

Source line or
instruction

Action

Point and click on a source line in source mode
or on an instruction in assembly mode to take
one of the following actions:

Button

Click left

Action

If the line under the mouse cursor
does not have a breakpoint, one
is set there. If the line already
has a breakpoint, the breakpoint
is removed. Lines with break­
points are shown in high-intensity
text.

45

Microsoft Code View

46

Trace! on menu
bar

Click right A temporary breakpoint is set on
the line and the Code View
debugger executes until it reaches
the line (or until it reaches a pre­
viously set breakpoint or the end
of the program if either is
encountered before the temporary
breakpoint).

If you click on a line that does not correspond to
code (for example, a declaration or comment),
the Code View debugger will sound a warning
and ignore the command.

Point and click to trace the next instruction.
The kind of trace is determined as follows by the
button clicked:

Button

Click left

Click right

Action

The Trace command is executed.
The Code View debugger executes
the next source line in source
mode, or the next instruction in
assembly mode. If the source line
or instruction contains a func­
tion, procedure, or interrupt call,
the debugger starts tracing
through the call (it enters the call
and is ready to execute the first
source line or instruction). This
command will not trace into MS­
DOS function calls (interrupt
Ox21).

The Program Step command
is executed. The debugger exe­
cutes the next source line in
source mode, or the next instruc­
tion in assembly mode. If the
source line or instruction contains
a function, procedure, or inter­
rupt call, Code View steps over
the entire call (it executes the call
to the return) and is ready to exe­
cute the line or instruction after
the call.

Go! on menu bar

Flag in register
window

Important

The Code View Display

These two commands are only different if the
current location is the start of a procedure,
interrupt, or function call.

Point and click either button to execute to the
next breakpoint, or to the end of the program if
no breakpoints are encountered.

Point to a flag name and click either button to
reverse the flag. If the flag bit is set, it will be
cleared; if the flag bit is cleared, it will be set.
The flag name is changed on the screen to match
the new status. If you are using color mode, the
color of the flag mnemonic will also change.
This command can only be used when the regis­
ter window is open. Use the command with cau­
tion, since changing flag bits can change pro­
gram execution at the lowest level.

You can usually interrupt program execution by pressing CONTROL­
BREAK or CONTROL-C. See the note in Section 3.2.1.3 for more
information.

3.2.2.3 Selecting from Menus with the Mouse

The Code View debugger has seven popup menus. This section discusses
how to make selections from these menus. The effect of each selection is
discussed in Section 3.2.3.

The menu bar at the top of the screen has nine titles: File, Search, View,
Run, Watch, Options, Calls, Trace!, and Go!. The first seven titles are
menus and the last two are commands that you can execute by clicking
with the mouse. The steps for opening a menu and making a selection are
described below:

1. To open a menu, point to the title of the menu you want to select.
For example, move the pointer onto File on the menu bar if you
want to open the File menu.

47

Microsoft Code View

2. With the mouse pointer on the title, press and hold down either
mouse button. The selected title is highlighted and a menu box
with a list of selections pops up below the title. For example, if you
point to Search and press a button, the Search menu pops up.

3. With the button held down, move the mouse down. The highlight
follows the mouse movement. You can move the highlight up or
down in the menu box. For example, to select Find from the Search
menu, move the highlight down the menu to Find.

If you move off the box, the highlight will disappear. However, as
long as you do not release the button, you can move the pointer
back onto the menu to make the highlight reappear.

4. When the selection you want is highlighted, release the mouse but­
ton. For example, release the button with the highlight on Find.

When you release the button, the menu selection is executed. One of
three things will happen:

a. For most menu selections, the choice is executed immediately.

b. The items on the Options menu have small double arrows next
to them if the option is on, or no arrows if the option is off.
Choosing the item toggles the option. The status of the arrows
will appear reversed the next time you open the menu.

c. Some items require a response. In this case, there is another
step in the menu-selection process.

5. If the item you select requires a response, a dialog box with a
prompt appears. Type your response and press the .ENTER key or a
mouse button. For example, if you selected Find, the prompt will
ask you to enter a regular expression (see Section 3.2.3.2, "Using
the Search Menu," or Appendix B, "Regular Expressions," for an
explanation of regular expressions).

If your response is valid, the command will be executed. If you
enter an invalid response in the dialog box, a message box will
appear telling you the problem and asking you to press a key.
Press any key or click a mouse button to make the message box
disappear.

There are several shortcuts you can take when selecting menu items with
the mouse. If you change your mind and decide not to select an item from
a menu, just move off the menu and release the mouse button; the menu
will disappear. You can move from one menu to another by dragging the
pointer directly from any point on the current menu to the title of the new
menu.

48

The Code View Display

3.2.3 Using Menu Selections

This section describes the selections on each of the Code View menus.
These selections can be made with the keyboard, as described in Section
3.2.1, or with the mouse, as described in Section 3.2.2.

3.2.3.1 Using the File Menu

The File menu includes selections for working on the current source or pro­
gram file. The File menu is shown in Figure 3.2, and the selections are
explained below:

~ Search View Run Watch Options Calls Trace! Go!
count,c

count,exe

Load, "
Shell
Quit

131:
--~~--------------------------

Selection

Load ...

Figure 3.2 The File Menu

Action

Opens a new file. When you make this selection, a
dialog box appears asking for the name of the new file
you want to open. Type the name of a source file, an
include file, or any other text file. The text of the new
file replaces the current contents of the display win­
dow (if you are in assembly mode, the Code View
debugger will switch to source mode). When you
finish viewing the file, you can reopen the original
source file. The current location and breakpoints will
still be marked when you return to the source file.

You do not need to open a new file to see source files
for a different module of your program. The Code­
View debugger automatically switches to the source
file of the other module when program execution
enters the other module. While switching source files
is never necessary, it lnay be desirable if you want to

49

Microsoft Code View

Shell

Quit

60

set breakpoints or execute to a line in another
module.

Note

If the debugger cannot find the source file when it
switches modules, a dialog box appears asking for
a file specification for the source file. You can
either enter a new file specification if the file is in
another directory, or press the ENTER key if no
source file exists. If you press the ENTER key, the
module can only be debugged in assembly mode.

Exits to an MS-DOS shell. This brings up the MS­
DOS screen, where you can execute MS-DOS com­
mands or executable files. To return to the Code View
debugger, type exi t at the MS-DOS command
prompt. The Code View screen reappears with the
same status it had when you left it.

The Shell command works by saving the current
processes in memory and then executing a second
copy of COMMAND.COM. This requires a
significant amount of free memory (more than 200K),
since the debugger, COMMAND.COM, symbol
tables, and the debugged program must all be saved
in memory. If you do not have enough memory to
execute the Shell command, an error message appears.
Even if you have enough memory to execute the shell,
you may not have enough memory left to execute
large programs from the shell.

The Shell command will not work unless you have
executed the C start-up code. You can do this after
starting the debugger, or after restarting your pro­
gram, by executing to any point within the program.
For example, enter the dialog command G main.

Terminates the Code View debugger and returns to
MS-DOS.

The CodeView Display

3.2.3.2 Using the Search Menu

The Search menu includes selections for searching through text files for text
strings and for searching executable code for labels. The Search menu is
show in Figure 3.3 and the selections are explained below:

~ File ~II View Run Watch Options Calls Trace! Go! count,exe
count, c F============::::;

127: Fi nd" ,
I

128: Next
129: Previous
130: Label" ,
131:
132:
-@~--------------------------

Selection

Find ...

Figure 3.3 The Search Menu

Action

Searches the current source file or other text file for a
specified regular expression. When you make this
selection, a dialog box opens, asking you to enter a
regular expression. Type the expression you want to
search for and press the ENTER key. Code View starts
at the current or most recent cursor position in the
display window and searches for the expression.

If your entry is found, the cursor moves to the first
source line containing the expression. If the entry is
not found, a message box opens, telling you the prob­
lem and asking you to press a key (you can also click
a mouse button) to continue. If you are in assembly
mode, the debugger autOlnatically switches to source
mode when the expression is found.

Regular expressions are a method of specifying vari­
able text strings. This method comes from the
XENIX® and UNIXTM operating systems, and is similar
to the MS-DOS method of using wild cards in file
names. Regular expressions are explained in detail in
Appendix B.

You can use the Search selections without under­
standing regular expressions. Since text strings are

51

Microsoft Code View

Next

Previous

Label. ..

62

the simplest form of regular expressions, you can sim­
ply enter a string of characters as the expression you
want to find. For example, you could enter count if
you wanted to search for the word "count."

The following characters have a special meaning in
regular expressions: backslash (\), asterisk (lie), left
bracket (D, period (.), dollar sign (*), and caret (A).
In order to find strings containing these characters,
you must precede the characters with a backslash;
this cancels their special meanings.

For example, you would use \ \n to find \n or use
buffer\ [count] to find buffer [count]. The
period in some member-selection expressions and the
caret in the XOR operator and the XOR assignment
operator must also be preceded by a backslash.

Searches for the next match of the current regular
expression. This selection is only meaningful after you
have used the Search command to specify the current
regular expression. If the Code View debugger
searches to the ·end of the file without finding another
match for the expression, it wraps around and starts
searching at the beginning of the file.

Searches for the previous match of the current regular
expression. This selection is only meaningful after
you have used the Search command to specify the
current regular expression. If the debugger searches
to the beginning of the file without finding another
match for the expression, it wraps around and starts
searching at the end of the file.

Searches the executable code for a label. A label can
be a function name or an assembly-language label. If
the label is found, the cursor moves to the source line
or instruction containing the label. The debugger will
switch to assembly mode, if necessary, to show a label
in a library routine or an assembly-language module.

The CodeView Display

3.2.3.3 Using the View Menu

The View menu includes selections for switching between source and as­
sembly modes, and for switching among the debugging screen, the output
screen, and the help screen. The corresponding function keys for menu
selection are shown on the right side of the menu when appropriate. The
View menu is shown in Figure 3.4, and the selections are explained below:

~ File Search ~ Run Watch Options Calls Trace! Go! count,exe
ount, c F===============l

127: Help F1
128: Source F3
129: Assembly F3
130: Outfut F4
131: Eva uate, , ,
132:
133 :

_~M~ ____________________________ _

Selection

Help

Source

Assembly

Output

Figure 3.4 The View Menu

Action

Opens the initial help menu. Section 3.2.4 tells how
to move through the on-line-help system and return
to the debugging screen.

Changes from assembly mode (showing assembly­
language instructions in the display window) to
source mode (showing source lines). If you select this
mode when you are already in source mode, the selec- .
tion will be ignored.

Changes from source mode (showing source lines in
the display window) to assembly mode (showing
assembly-language instructions). If you select this
mode when you are already in assembly mode, your
selection will be ignored.

Replaces the Code View screen with the output screen.
The output screen shows the current output of your
program. If the program has not taken over the
entire screen, previous MS-DOS commands may still
be visible on the output s~reen. To return to the

53

Microsoft CodeView

Evaluate ...

Code View screen, press any key or click a mouse but­
ton. The output screen is only for viewing; you can­
not change it.

Evaluates a C expression. A dialog box opens and
asks for the expression to be evaluated. Enter a C
expression made up of identifiers and the C operators
recognized by the CodeView debugger (see Chapter 4,
"Using Dialog Commands"). The value of the expres­
sion appears at the Code View prompt in the dialog
window. This selection is similar to the Display
Expression dialog command.

You can specify the format in which the value will be
displayed. Type the expression, followed by a comma
and a printf type specifier. If you do not give a type
specfier, the debugger displays the value in a default
format. See Chapter 6, "Examining Data and Expres­
sions," or Appendix A, "Command and Mode Sum­
mary," for more information about type specifiers and
the default format.

3.2.3.4 Using the Run Menu

The Run menu includes selections for running your program. The Run
menu is shown in Figure 3.5, and the selections are explained below:

~ File Seal'lch

127:
128:
129:
130:
131:
132:

View ~ Watch Options Calls Tl'Iace! Go!

Stal'lt
Restal'lt
Execute
Cleal'l Breakpoints

count,exe

__ 113;"" ___________________________ ' __

Selection

Start

64

Figure 3.5 The Run Menu

Action

Starts the program from the beginning and runs it.
Any previously set breakpoints or watch statements

Restart

Execute

Clear
Breakpoints

The Code View Display

will still be in effect. The Code View debugger will run
your program from the beginning to the first break­
point, or to the end of the program if no breakpoint is
encountered. This has the same effect as selecting
Restart (see the next selection) and then entering the
Go command.

Restarts the current program, but does not begin exe­
cuting it. You can debug the program again from the
beginning. Any previously set breakpoints or watch
statements will still be in effect.

Executes in slow motion from the current instruction.
This is the same as the Execute dialog command (E).
To stop animated execution, press any key or a mouse
button.

Clears all breakpoints. This selection may be con­
venient after selecting Restart if you don't want to
use previously set breakpoints. Note that watch
statements ate not cleared by this command.

3.2.3.5 Using the Watch Menu

The Watch menu includes selections for managing the watch window.
Selections on this menu are also available with dialog commands. The
Watch menu is shown in Figure 3.6, and the selections are explained below:

~ File Search View

127:
128:
129:
13Q:
131:
132:

Run ~ Options

Add Watch, , ,
Watchpoint, , ,
Tracepoi nt, , ,
Del ete Watch, , ,

count,exe

--@~---------------------------

Figure 3.6 The Watch Menu

66

Microsoft Code View

Selection

Add Watch ...

Watchpoint. ..

Tracepoint ...

66

Action

Adds a watch-expression statement to the watch
window. A dialog window opens, asking for the C
expression whose value you want to see displayed in
the watch window. Type the expression and press
the ENTER key or press a mouse button. The state­
ment appears in the watch window in normal text.
You cannot specify a memory range to be displayed
with the Add Watch selection as you can with the
Watch dialog command.

You can specify the format in which the value will
be displayed. Type the expression, followed by a
comma and a printf type specifier. If you do not
give a type specifier, the CodeView debugger
displays the value in a default format. See Chapter
6, "Examining Data and Expressions," or Appendix
A, "Command and Mode Summary," for more
information about type specifiers and the default
format. See Section 8.2, "Setting Watch­
Expression or Watch-Memory Statements," for
more information about the Watch command.

Adds a watchpoint statement to the watch window.
A dialog window opens, asking for the C expression
whose value you want to test. The watchpoint
statement appears in the watch window in high­
intensity text when you enter the expression. A
watchpoint is a conditional breakpoint that causes
execution to stop when the expression becomes
nonzero (true). See Section 8.3, "Setting Watch­
points," for more information.

Adds a tracepoint statement to the watch window.
A dialog window opens, asking for the C expression
or memory range whose value you want to test.
The tracepoint statement appears in the watch
window in high-intensity text when you enter the
expression. A tracepoint is a conditional break­
point that causes execution to stop when the value
of a given expression changes. You cannot specify
a memory range to be tested with the Tracepoint
selection as you can with the Tracepoint dialog
command.

Delete Watch ...

The CodeView Display

When setting a tracepoint expression, you can
specify the format in which the value will be
displayed. Type the expression followed by a
comma and a type specifier. If you do not give a
type specifier, the Code View debugger displays the
value in a default format. See Chapter 6, "Examin­
ing Data and Expressions," for more information
about type specifiers and the default format. See
Section 8.4, "Setting Tracepoints," for more infor­
mation about tracepoints.

Deletes a watch statement from the watch window.
A dialog window opens, showing the current watch
statements. If you are using a mouse, move the
pointer to the statement you want to delete and
click either button. If you are using the keyboard,
press the UP ARROW or DOWN ARROW key to move
the highlight to the statement you want to delete,
then press the ENTER key.

3.2.3.6 Using the Options Menu

The Options menu allows you to set options that affect various aspects of
the behavior of the Code View debugger. The Options menu is shown in
Figure 3.7, and the selections are explained below:

~ File Search View Run Watch ~ Calls
================~I .
127:)) FlIp/Swap
128: » Mix Source

Trace! Go! count,exe

129: » Symbols
130:)) Bytes Coded
131: Regi sters F2
132:)) Case Sense
133 :
134: __ 1~: __________________________ _

Figure 3.7 The Options Menu

Three of the options control the way assembly-language instructions are
displayed in assembly mode. The default setting for assembly mode shows
source lines, if available, with the corresponding assembly-language

57

Microsoft Code View

instructions; the bytes for each instruction are shown as well as the instruc­
tion mnemonics; and symbols are used to show variables and labels. The
default assembly display for one source line is shown below:

27: name = gets(namebuf);
32AF:003E 8D46DE
32AF:0041 50
32AF:0042 E89C03
32AF:0045 83C402
32AF:0048 8946DA

LEA AX,Word Ptr [namebuf]
PUSH AX
CALL _gets (03El)
ADD SP,02
MOV Word Ptr [name],AX

Compare this display with the variations shown in the descriptions for each
assembly option.

Selections on the Options menu have small double arrows to the left of the
selection name when the option is on. The status of the option (and the
presence of the double arrows) is reversed each time you select the option.
By default, all the options except Registers' are on when you start the Code­
View debugger.

The selections from the Options menu are discussed below:

Selection

Flip/Swap

68

Action

When on (the default), screen swapping or screen
flipping (whichever the debugger was started with) is
active; when off, swapping or flipping is disabled.
Turning off swapping or flipping makes the screen
scroll more smoothly . You will not see the program
flip or swap each time you execute part of the pro­
gram. This option has no effect if neither swapping
nor flipping was selected during start-up.

Warning

Make sure that flipping or swapping is on any
time your program writes to the screen. If swap­
ping and flipping are off, your program will write
to the dialog window. The Code View debugger
will detect that the screen has changed and will
redraw the screen, thus destroying the program
output.

Mix Source

Symbols

Bytes Coded

Registers

The Code View Display

When on (the default), source lines are shown with
assembly language instructions; when off, instrudions
are shown without source lines. This option only
affects assembly mode. The sample default display at
the beginning of this section shows the appearance of
the screen when the option is on. The following
display shows the appearance of the same code when
the option is off:

32AF:003E 8D46DE
32AF:0041 50
32AF:0042 E89C03
32AF:004583C402
32AF:0048 8946DA

LEA
PUSH
CALL
ADD
MOV

AX,Word Ptr [namebuf]
AX
_gets (03El)
SP,02
Word Ptr [name],AX

When on (the default), symbols are used to indicate
variables; when off, addresses or offsets from register
values are shown for variables. This option only
affects assembly mode. The sample default display at
the beginning of this section shows the appearance of
the screen when the option is on. The following
display shows the appearance of the same code when
the option is off:

27:
32AF:003E
32AF:0041
32AF:0042
32AF :0045
32AF:0048

8D46DE
50
E89C03
83C402
8946DA

name = gets (namebuf) ;
LEA AX,Word Ptr [BP-22]
PUSH AX
CALL 03El
ADD SP,02
MOV Word Ptr [BP-26],AX

When on (the default), both the instructions and the
bytes for each instruction are shown; when off, only
the instructions are shown. This option only affects
assembly mode. The sample default display at the
beginning of this section shows the appearance of the
screen when the option is on. The following display
shows the appearance of the same code when the
option is off:

27:
32AF:003E LEA
32AF:0041 PUSH
32AF:0042 CALL
3,2AF : 0045 ADD
32AF:0048 MOV

name = gets (namebuf) ;
AX,Word Ptr [namebuf]
AX
_ge'ts (03El)
SP,02
Word Ptr [name] ,AX

When on, the register window is displayed; when off
(the default), the register window is not displayed.
You can also turn on the register window by pressing
F2, as indicated on the right side of the menu.

59

Microsoft Code View

Case Sense When on (the default), the Code View debugger
assumes that symbol names are case sensitive (each
lowercase letter is different from the corresponding
uppercase letter); when off, symbol names are not case
sensitive. The C language is normally case sensitive,
so you will probably want to leave this option on.
However, you may want to turn it off when debugging
assembly-language programs.

3.2.3.7 Using the Calls Menu

The Calls menu is different from other menus in that its contents and size
change, depending on the status of your program. The Calls menu is shown
in Figure 3.8.

~ File Search View Run Watch Options ~ Trace! Go! count,exe
===========11 count, c ,F;=======;::=========I
114: analyze(code1inword) anal~ze(67!0)
115: char code; countwords\ 01512)
116: char i nword; mai n(21 5406)
117: {
118: if (isalpha(code)) { __ ID~ ______ ~U~~~ _______________ _

Figure 3.8 The Calls Menu

Like other menus, the Calls menu can be opened by pressing the ALT key
and the first letter of the menu title (ALT-C). However, you cannot make
selections from the Calls menu by pressing the ALT key with the first letter
of your selection. You must use the UP ARROW or DOWN ARROW keys to
move to your selection, then press the ENTER key . You can also use the
mouse to open and select from the Calls menu. Usually the menu is used to
view the current functions rather than to actually make selections.

The Calls menu shows the current function and the trail of functions from
which it was called. The current function is always at the top. The func­
tion from which the current function was called is directly below. Other
active functions are shown in the reverse order in which they were called.
With C programs, the bottom function will always be main.

60

The Code View Display

The current value of each argument, if any, is shown in parentheses follow­
ing the function. The menu expands to accommodate the arguments of the
widest function. Arguments are shown in the current radix (the default is
decimal). If there are more active functions than will fit on the screen, or if
the function arguments are too wide, the display will be truncated. The
Stack Trace dialog command (K) shows all the functions and arguments
regardless of the size of the display.

If you want to view code at the point where one of the functions was called,
select the function below the one you want to view. The cursor will move
to the calling source line (in source mode) or to the calling instruction (in
assembly mode). In other words, the cursor will indicate the calling loca­
tion in the selected function where the next-level function was called. If
you select the current (top-level) function, the cursor moves to the current
location in that function.

For example, if the Calls menu shown in Figure 3.8 appears and you select
countwords, the cursor will move to the line in function countwords
where function analyze is called.

3.2.4 Using the Help System

The Code View on-line-help system uses tree-structured menus to give you
quick access to help screens on a variety of subjects. The system is organ­
ized by subject so that you can reach a help screen on any topic with a
miminum of keystrokes.

The help file is called CV.HLP. It must be present in the current directory
or in one of the directories specified with the MS-DOS PATH command. If
the help file is not found, the Code View debugger will still operate, but you
will not be able to use the help system. An error message will appear if you
try to use a help command.

When you request help, either by pressing the Fl key or by selecting Help
from the View menu, the top-level help menu appears. You select one of
the topics listed by pressing the highlighted first letter of the menu title.
You can also select a topic by pointing to it with the mouse and clicking
either button.

61

Microsoft Code View

Note

For a quick summary of dialog commands, you can use the dialog ver­
sion of the Help command (H). This is the only help available in
sequential mode. It is completely different from the on-line-help system
available with window commands.

When you select a topic, the help screen on that subject may appear
immediately, or in some cases, a second menu screen will appear. Keep
selecting topics until you reach the screen you want.

In addition to menu titles, you can select four special commands from any
help screen. The keys that select these commands are always shown at the
top of the screen. You can also point and click with the mouse to select
these commands. The commands are listed below:

Command

PGUP

PGDN

HOME

END

Action

Returns to the previous help screen or menu.

Proceeds to the next-level screen. This command is
intended for help topics that consist of more than one
screen of text. If you press this key on a menu screen,
the top leftmost selection is chosen as the default. The
Code View debugger sounds a warning if there is no
lower-level screen.

Returns to the top-level menu. The debugger sounds a
warning if you are already at the top level.

Returns to the debugging screen.

When you use a selection letter to select a topic that has more than one
screen of information, you can press the selection letter again to get the
next screen. This has the same effect as pressing the PGDN key. For ex­
ample, if you press W to select Watch from a menu, the first screen of watch
information appears. You can press W or PGDN to get to the second watch
screen.

62

The Code View Display

3.3 Using Sequential Mode

Sequential mode is required if you have neither an IBM Personal Computer
nor a closely compatible computer. In sequential mode, the Code View
debugger works much like its predecessors, the Microsoft Symbolic Debug­
ging Utility (SYMDEB) and the MS-DOS DEBUG utility.

In sequential mode, the Code View debugger's input and output always
move down the screen from the current location. When the screen is full,
the old output scrolls off the top of the screen to make room for new output
appearing at the bottom. You can never return to examine previous com­
mands once they scroll off, but in many cases, you can reenter the command
to put the same information on the screen again.

Most window commands cannot be used in sequential mode. However, the
following function keys, which are used as commands in window mode, are
also available in sequential mode:

Command

Fl

F2

F3

F4

F5

Action

Displays a command-syntax summary. This is
equivalent to the Help (H) dialog command. It is
different from the on-line-help system accessed by the
Fl key in window mode.

Displays the registers. This is equivalent to the Regis­
ter (R) dialbg command.

Toggles between source and assembly modes. If the
current mode is source (displaying source lines as out­
put to the Trace, Program Step, and Go commands),
the system switches to assembly mode (displaying
assembly-language instructions). If the current mode is
assembly, the system switches to source. This is
equivalent to using the Set Assembly (S-) and Set
Source (S+) dialog commands.

Switches to the output screen, which shows the output
of your program. Press any key to return to the Code­
View debugging screen. This is equivalent to the
Screen Exchange (\) dialog command.

Executes from the current instruction until a break­
point or the end of the program is encountered. This is
equivalent to the Go dialog command (G) with no
argument.

63

Microsoft Code View

F8

F9

FlO

Executes the next source line in source mode, or the
next instruction in assembly mode. If the source line or
instruction contains a function, procedure, or interrupt
call, the Code View debugger executes the first source
line or instruction of the call and is ready to execute
the next source line or instruction within the call. This
is equivalent to the Trace (T) dialog command.

Sets or clears a breakpoint at the current program
location. If the current program location has no break­
point, one is set. If current location has a breakpoint, it
is removed. This is equivalent to the Breakpoint Set
(BP) dialog command with no argument.

Executes the next source line in source mode, or the
next instruction in assembly mode. If the source line or
instruction contains a function, procedure, or interrupt
call, the call is executed to the end and the Code View
debugger is ready to execute the line or instruction
after the call. This is equivalent to the Program Step
(P) dialog command.

The CodeView Watch (W), Watchpoint (WP), and Tracepoint (TP)
commands work in sequential mode, but since there is no watch window,
the watch statements are not shown. You must use the Watch List com­
mand (W) to examine watch statements and watch values. See Chapter 8,
"Managing Watch Statements," for information on Watch Statement com­
mands.

All the CodeView commands that affect program operation (such as Trace,
Go, and Breakpoint Set) are available in sequential mode. Any debugging
operation that can be done in window mode can also be done in sequen tial
mode.

64

Chapter 4

Using Dialog Commands

4.1 Introduction 67
4.2 Entering Commands and Arguments 67
4.2.1 Using Special Keys 67
4.2.2 Using the Command Buffer 68
4.3 Format for CodeView

Commands and Arguments 69
4.4 C Expressions 70
4.4.1 Identifiers 72
4.4.2 Constant Numbers 73
4.4.3 Registers 74
4.4.4 Addresses 75
4.4.5 Address Ranges 76
4.4.6 Line Numbers 77
4.4.7 Strings 78

65

Using Dialog Commands

4.1 Introduction

Code View dialog commands can be used in sequential mode or from the
dialog window. In sequential mode, they are the primary method of enter­
ing commands. In window mode, dialog commands are used to enter com­
mands that require arguments or that do not have corresponding window
commands.

Many window commands have duplicate dialog commands. Generally, the
window version of a command is more convenient, while the dialog version
is more powerful. For example, to set a breakpoint on a source line in win­
dow mode, put the cursor on the source line and press F9, or point to the
line and click the left mouse button. The dialog version of the command
(BP) requires more keystrokes, but it allows you to specify an address, a
pass count, and a string of commands to be taken whenever the breakpoint
is encountered.

The rest of this chapter explains how to enter dialog commands and how to
specify command arguments.

4.2 Entering Commands and Arguments

Dialog commands are entered at the Code View prompt (». Type the com­
mand and arguments, then press the ENTER key.

In window mode, you can enter commands regardless of whether or not the
cursor is at the Code View prompt. If the cursor is in the display window,
the text you type will appear after the prompt in the dialog window, even
though the cursor remains in the display window.

4.2.1 Using Special Keys

While entering dialog commands or viewing output from commands, you
can use the following special keys:

Key

CONTROL-C

Action

Stops the current output or cancels the current com­
mand line. For example, if you are watching a long
display from a Dump command, you can press
CONTROL-C to interrupt the output and return to the

67

Microsoft Code View

CONTROL-S

BACKSPACE

Code View prompt. If you make a mistake while enter­
ing a command, you can press CONTROL-C to cancel the
command without executing it. A new prompt appears
and you can reenter the command.

Pauses during output of a command. You can press any
key to continue output. For example, if you are watch­
ing a long display from a Dump command, you can press
CONTROL-S when a part of the display that you want to
examine more closely appears. Then press any key when
you are ready for the output to continue scrolling.

Deletes the previous character on the command line and
moves the cursor back one space. For example, if you
make an error while typing a command, you can use the
BACKSPACE key to delete the characters back to the
error, then retype the rest of the command.

4.2.2 Using the Command Buffer

In window mode, the Code View debugger has a command buffer where the
last 4K (4096 bytes) of commands and command output are stored. This
amounts to approximately three screens of text, depending on the length of
your commands and output. The command buffer is not available in
sequential mode.

When the cursor is in the dialog window, you can scroll up or down to view
the commands you have entered earlier ill the session. The commands for
moving the cursor and scrolling through the buffer are explained in sections
3.2.1.1 and 3.2.2.1.

Scrolling through the buffer is particularly useful for viewing the output
from commands, such as Dump or Examine Symbols, whose output may
scroll off the top of the dialog window.

If you have scrolled through the dialog buffer to look at previous commands
and output, you can still enter new commands. When you type a com­
mand, it will appear to be overwriting the previous line where the cursor is
located, but when you press the ENTER key, the new command will be
entered at the end of the buffer. For example, if you enter a command while
the cursor is at the start of the buffer, and then scroll to the end of the
buffer, you will see the command you just entered. If you scroll back to the
point where you entered the command, you will see the original characters
rather than the characters you typed over the originals.

68

Using Dialog Commands

When you start the debugger, the buffer is empty except for the copyright
message. As you enter commands during the session, the buffer is gradually
filled from the bottom to the top. If you have not filled the entire buffer
and you press the HO:rv.tE key to go to the top of the buffer, you will not see
the first commands of the session. Instead you will see blank lines, since
there is nothing at the top of the buffer.

4.3 Format for Code View
Commands and Arguments

The Code View command format is similar to the format of previous Micro­
soft debuggers, SYMDEB and DEBUG. However, some features, particu­
larly operators and expressions, are different. The general format for Code­
View commands is shown below:

command [arguments] [;command2]

The command is a one-, two-, or three-character command name, and argu­
ments are C expressions that represent values or addresses to be used by
the command. Any combination of uppercase and lowercase letters can be
used in commands. Since arguments consist of C expressions, they are nor­
mally case sensitive. Usually, the first argument can be placed immediately
after command with no space separating the two.

The number of arguments required or allowed with each command varies.
If a command takes two or more arguments, you must separate the argu­
ments with spaces. A semicolon (;) can be used as a command separator if
you want to specify more than one command on a line.

As a convention for clarity, examples in this manual have uppercase letters
for commands and lowercase letters for arguments.

• Examples

>DB 100 200 ;* Example 1

>U label1 ;* Example 2

>U labe12 ;DB ;* Example 3

In Example 1, DB is the first command (for the Dump Bytes command in
this case). The arguments to the command are 100 and 200. The second

69

Microsoft Code View

command on this line is the Comment command (*). A semicolon is used to
separate the two commands. The Comment command is used throughout
the rest of the manual to number examples.

In Example 2, U is the command letter (for the Unassemble command) and
1 abe 11 is a command argument. Again the Comment command labels the
example.

Example 3 consists of three commands, separated by semicolons. The first
is the Unassemble command (U) with 1 abe12 as an argument. The second
is the Dump Bytes command (DB) with no arguments. The third is the
Comment command.

4.4 C Expressions

Code View arguments always consist of C expressions. Expressions can
include identifiers (also called symbols), constant numbers, registers, and
operators. Expressions evaluate to 8-, 16-, or 32-bit values that can be used
as numbers or addresses by CodeView commands.

The Code View debugger uses a subset of operators consisting of the
most commonly used C operators and one additional Code View operator,
the colon (:). The Code View operators are listed in Table 4.1 in order of
precedence.

Table 4.1

Code View Operators

Precedence Operators

(Highest)

1 0 [] ->
2 ! - _a (type) ++ __ *b &C sizeof

3 *b / % :
4 + -a

5 < > <= >=
6 ==!=

70

Using Dialog Commands

Table 4.1 (continued)

Precedence

7

8

9

(Lowest)

Operators

&&
II
II

= += *= /= %=

a The minus sign with precedence 2 is the unary minus indicating the sign of a
number, while the minus sign with precedence 4 is a binary minus indicating
su btracti on.

b The asterisk with precedence 2 is the pointer operator, while the asterisk with
precedence 3 is the multiplication operator.

C The ampersand with precedence 2 is the address-of operator. The ampersand
as a bitwise-AND operator is not supported by the CodeView debugger.

See the Microsoft C Compiler Language Reference for a description of
how C operators can be combined with identifiers and constants to form
expressions.

The colon operator (:) is the only Code View operator that does not come
from C. It acts as a segment: offset separator, as described in Section 4.4.3,
"Registers."

In the CodeView debugger, the period (.) has its normal use as a member
selection operator, but it also has an extended use as a specifier of local
variables in parent functions. The syntax is shown below:

function. variable

The function must be a higher-level function and the variable must be a
local variable within the specified function. The variable cannot be a regis­
ter variable. For example, you can use the expression main. argc to refer
to the local variable argc when you are in a function that has been called
by main.

The type operator (used in type casting) can be any of the predefined C
types. The Code View debugger limits pointer types to one level of indirec­
tion. For example, (char *) sym is accepted, but (char * *) sym is not.

71

Microsoft Code View

When a C expression is used as an argument with a command that takes
multiple arguments, the expression should not have any internal spaces.
For example, count+6 is allowed, but count + 6 may be interpreted as
three separate arguments. Some commands (such as the Display Expression
command) do permit spaces in expressions.

Note

When you try to use a variable in an expression in a case where that
variable is not defined, the Code View debugger displays the message
UNKNOWN SYMBOL. For example, the message appears if you try to
reference a local variable outside the function where the variable is
defined.

Section~ 4.4.1-4.4.5 tell how to specify arguments using CodeView
expreSSIOns.

4.4.1 Identifiers

• Syntax

name

An identifier is a name that represents a register, an absolute value, a seg­
ment address, or an offset address. Identifiers (also called symbols) follow
the naming rules of the C compiler. Note that while Code View command
letters are not case sensitive, symbols given as arguments are case sensitive
(unless you have turned off case sensitivity with the Case Sense selection
from the Options menu).

In assembly-language output or in output from the Examine Symbols com­
mand, the Code View debugger displays some symbol names in the object­
code format produced by the Microsoft C Compiler. This format includes a
leading underscore. For example, the function main will be displayed as
_main. Only global labels (such as procedure names) are shown in this for­
mat. You do not need to include the underscore when specifying such a
symbol in Code View commands. Labels within library routines are some­
times displayed with a double underscore (__ chkstk). You must use lead­
ing underscores when accessing these labels with CodeView commands.

72

4.4.2 Constant Numbers

• Syntax

digits
o digits
Ox digits
On digits

Decimal format
Octal format
Hexadecimal format
Alternate decimal format

Using Dialog Commands

Numbers used in Code View commands represent integer constants. They
are made up of octal, decimal, or hexadecimal digits, and are entered in the
current input radix. The C-Ianguage format for entering numbers of
different radixes can be used to override the input radix.

The default radix for the C-Ianguage version of the Code View debugger is
decimal. However, you can use the Radix command (N) to specify an octal
or hexadecimal radix, as explained in Section 11.4, "Radix Command."

If the current radix is 16 (hexadecimal) or 8 (octal), you can enter decimal
numbers in the special CodeView format Ondigits. For example, enter 21
decimal as On21.

With radix 16, it is possible to enter a value or argument that could be
interpreted either as an identifier or as a hexadecimal number. The Code­
View debugger resolves the ambiguity by searching first for a symbol
(identifier) with that name. If no symbol is found, the debugger interprets
the value as a hexadecimal number. If you want to enter a number that
overrides an existing symbol, use the hexadecimal format (Ox digits).

For example, if you enter abc as an argument when the program contains a
variable or function named abc, the Code View debugger interprets the
argument as the symbol. If you want to enter abc as a number, enter it as
Oxabc.

Table 4.2 shows how a sample number (63 decimal) would be represented in
each radix.

73

Microsoft Code View

Table 4.2

Code View Radix Examples

Input Radix Octal Decimal Hexadecimal

8 77 On63 Ox3F

10 077 63 Ox3F

16 077 On63 3F

4.4.3 Registers

• Syntax

[@)] register

You can specify a register name if you want to use the current value stored
in the register. Registers are rarely needed in C source debugging, but they
are used frequently for assembly-language debugging.

When you specify an identifier, the CodeView debugger first checks the
symbol table for a symbol with that name. If the debugger does not find a
symbol, it checks to see if the identifier is a valid register name. If you
want the identifier to be considered a register, regardless of any name in the
symbol table, use the at sign (@) as a prefix before the register name. For
example, if your program has a symbol called AX, you could specify @AX to
refer to the AX register. You can avoid this problem entirely by making
sure that identifier names in your program do not conflict with register
names.

The register names known to the Code View debugger are shown in
Table 4.3.

Table 4.3

Registers

Type Names

16-bit general purpose AX BX CX DX
8-bit high registers AH BH CH DH
8-bit low registers AL BL CL DL

74

Using Dialog Commands

Table 4.3 (continued)

Type

16-bit segment

16-bit pointer

16-bit index

4.4.4 Addresses

• Syntax

IT segment: II offset

Names

as
SP
SI

DS SS

BP IP
DI

ES

Addresses can be specified in the Code View debugger through use of the
colon operator as a segment: offset connector. Both the segment and the
offset are made up of expressions.

A full address has a segment and an offset, separated by a colon. A partial
address has just an offset; a default segment is assumed. The default seg­
ment varies, depending on the command with which the address is used.
Commands that refer to data (Dump, Enter, Watch, and Tracepoint) use
the contents of the DS register. Commands that refer to code (Assemble,
Breakpoint Set, Go, Unassemble, and View) use the contents of the OS
register.

Full addresses are seldom necessary in C debugging. Occasionally they may
be convenient for referring to addresses outside the program, such as BIOS
(basic input/output system) or MS-DOS addresses. A full address is
equivalent to a C expression cast as a far pointer to a char. For example,
the full address 1234: 5678 means (char far *) 1234: 5678.

• Examples

>DB 100 ; * Example 1

>DB array [count] ; * Example 2

>DB label+10 ; * Example 3

>DB OxB800:0xFF ; * Example 4

76

Microsoft Code View

In Example 1, the Dump Bytes command (DB) is used to dump memory
starting at offset address 100. Since no segment is given, the data segment
(the default for Dump commands) is assumed.

In Example 2, the Dump Bytes command is used to dump memory starting
at the address of the variable arr ay [count] .

In Example 3, the Dump Bytes command is used to dump memory starting
at a point 10 bytes beyond the symbol 1 abe 1.

In Example 4, the Dump Bytes command is used to dump memory at the
absolute address having the segment value OxB800 and the offset address
Oxff.

4.4.5 Address Ranges

• Syntax

startaddress endaddress
startaddress L count

A range is a pair of memory addresses that bound a sequence of contiguous
memory locations.

You can specify a range in two ways. One way is to give the start and end
points. In this case the range covers startaddress to endaddress, inclusive.
If a command takes a range, but you do not supply a second address, the
Code View debugger usually assumes the default range. Each command has
its own default range (the most common default range is 128 bytes).

You can also specify a range by giving its starting point and the number of
objects you want included in the range. This type of range is called an
object range. In specifying an object range, startaddress is the address of
the first object in the list, L indicates that this is an object range rather
than an ordinary range, and count specifies the number of objects in the
range.

The size of the objects is the size taken by the command. For example, the
Dump Bytes command (DB) has byte objects, the Dump Words command
(DW) has words, the Unassemble (U) command has instructions, and so on.

76

Using Dialog Commands

• Examples

>DB buffer ; * Example 1

>DB buffer buffer+20 ; * Example 2

>DB buffer L 20 ; * Example 3

>U label-30 label ; * Example 4

Example 1 dumps a range of memory starting at buffer. Since the end of
the range is not given, the default size (128 bytes for the Dump Bytes com­
mand) is assumed.

Example 2 dumps a range of memory starting at bu f fer and ending at
buffer+20 (the point 20 bytes beyond bUffer).

Example 3 uses an object range to dump the same range as in Example 2.
The L indicates that the range is an object range, and 20 is the number of
objects in the range. Each object has a size of one byte, since that is the
command size.

Example 4 uses the Un assemble command (u) to list the assembly-language
statements starting 30 instructions before 1 abe 1 and continuing to
label.

4.4.6 Line Numbers

• Syntax

• [filename:] linenumber

The address corresponding to a source line number can be specified as
linenumber prefixed with a period (.). The Code View debugger assumes the
source line is in the current source file unless you specify the optional
filename followed by a colon and the line number.

The Code View debugger displays an error message if filename does not
exist, or if no source line exists for the specified number.

77

Microsoft Code View

• Examples

>V .100 ;* Example 1

>V .sample.c:10 ;* Example 2

Example 1 uses the View command (V) to display code starting at the
address that corresponds to source hne 100. Since no file is indicated, the
current source file is assumed.

Example 2 uses the View command to display source code starting at the
address that corresponds to source line 10 of the source file sample. c.

4.4.7 Strings

• Syntax

" null-terminated-string"

Strings can be specified as expressions in the C format. You can use C
escape characters within strings. For example, double quotation marks
within a string must be specified with the escape character \" .

• Example

>EA message "This \"string\" is okay."

The example uses the Enter ASCII command (EA) to enter the given string
into memory starting at the address of the variable message.

78

Chapter 5

Executing Code

5.1 Introduction 81
5.2 Trace Command 82
5.3 Program Step Command
5.4 Go Command 87
5.5 Execute Command 90
5.6 Restart Command 91

84

79

Executing Code

5.1 Introduction

The Trace (T), Program Step (P), Go (G), and Execute (E) commands are
used to execute code within a program. Among the differences between
them is the size of step executed by each command. The commands and
their step sizes are listed below:

Command

Trace (T)

Program Step (P)

Go (G)

Execute (E)

Restart (L)

Action

Executes the current source line in source mode,
or the current instruction in assembly mode;
traces into functions, procedures, or interrupts

Executes the current source line in source mode,
or the current instruction in assembly mode; steps
over functions, procedures, or interrupts

Executes the current program

Executes the current program in slow motion

Restarts the current program

In window mode, the screen is updated to reflect changes that occur when
you execute a Trace, Program Step, or Go command. The highlight mark­
ing the current location is moved to the new current instruction in the
display window. Values are changed, if appropriate, in the register and
watch windows.

In sequential mode, the current source line or instruction is displayed
after each Trace, Program Step, or Go command. The format of the
display depends on the display mode. The three display modes available in
sequential mode (source, assembly, and mixed) are discussed in Chapter 9,
"Examining Code."

If the display mode is source (8+) in sequential mode, the current source
line is shown. If the display mode is assembly (8-), the status of the regis­
ters and flags and the new current instruction are shown in the format of
the Register command (see Chapter 6, "Examining Data and Expressions").
If the display mode is mixed (8&), the registers, the new source line, and
the new instruction are all shown.

The commands that execute code are explained in sections 5.2-5.5.

81

Microsoft CodeView

Note

If you are executing a section of code with the Go or Program Step com­
mand, you can usually interrupt program execution by pressing
CONTROL-BREAK or CONTROL-C. This can terminate endless loops, or it
can interrupt loops that are delayed by the Watchpoint or Tracepoint
commands (see Chapter 8, "Managing Watch Statements"). CONTROL­
BREAK or CONTROL-C may not work if your program has a special use for
either of these key combinations. If you have an IBM Personal Com­
puter AT (or a compatible computer), you can use the SYSTEM-REQUEST
key to interrupt execution regardless of your program's use of
CONTROL-BREAK and CONTROL-C.

5.2 Trace Command

The Trace command executes the current source line in source mode, or the
current instruction in assembly mode. The current source line or instruc­
tion is the one pointed to by the OS and IP registers. In window mode, the
current instruction is shown in reverse video or in a contrasting color.

In source mode, if the current source line contains a function call, the Code­
View debugger executes the first source line of the function. In assembly
mode, if the current instruction contains a procedure or interrupt, the
debugger executes the first instruction of the procedure or interrupt.

Use the Trace command if you want to trace into functions, procedures, or
interrupts. If you want to execute calls without tracing into them, you
should use the Program Step command (P) instead. Both commands exe­
cute MS-DOS function calls (interrupt Ox21) without tracing into them.
There is no direct way to trace into MS-DOS function calls.

In source mode, the Code View debugger will only trace into functions
that have source code. For example, if the current line contains a call to
the C library function printf, the debugger will execute the function if you
are in source mode, since the source code for library functions is not avail­
able. If you are in assembly or mixed mode, the debugger will trace into
the function.

82

Executing Code

Note

The Trace command (T) uses the hardware trace mode of the 8086 fam­
ily of processors. Consequently, you can also trace instructions stored
in ROM (read-only memory). However, since breakpoints cannot be set
in ROM, the Program Step command (P) will not work. Using it in
ROM has the same effect as using the Go command (G).

• Mouse

To execute the Trace command with the mouse, point to Trace on the
menu bar and click the left button.

• Keyboard

To execute the Trace command with a keyboard command, press the F8
key. This works in both window and sequential modes.

• Dialog

To execute the Trace command using a dialog command, enter a command
line with the following syntax:

T [countll

If the optional count is specified, the command executes count times before
stopping.

• Examples

The following examples all show the Trace command in sequential mode.
In window mode, there would be no output from the commands, but the
display would be updated to show changes caused by the command.

>S+
source
> .
73:

;* Example 1

analyze(code,inword) ;

83

Microsoft CodeView

>T 4
90: char code;
92: {
94: ++letters;
95: if (strchr ("AEIOUaeiou", code) II (strchr ("yY", code) && ! inword))
>

Example 1 sets the display mode to source, then uses the Source Line com­
mand to display the current source line. (See Chapter 9, "Examining
Code," for a further explanation of the Set Source and Source Line com­
mands.) Note that the current source line calls the function analyze.
The Trace command is then used to execute the next four source lines.
These lines will be the first four lines of the function ana 1 yze.

>8- ;* Example 2
assembly
>T
AX=OOOl BX=OOOl
DS=3BBl ES=3BBl
36CO:0237 50
>

CX=OOOO OX=OOOO SP=1900 BP=1908 SI=04BA 01=1946
SS=3BB1 CS=36CO IP=0237 NV UP EI PL NZ NA PO NC

PUSH AX

Example 2 sets the display mode to assembly and traces the current
instruction. This example and the next example are the same as the ex­
amples of the Program Step command in Section 5.3. The Trace and Pro­
gram Step commands are only different if, when the command is executed,
the current instruction is a function, procedure, or interrupt call.

>8& ;* Example 3
mixed
>T
AX=0043 BX=0043 CX=025C OX=OOOO SP=1900 BP=1904 8I=04BA 01=1952
DS=5BE4 ES=5BE4 88=5BE4 C8=56F3 IP=026E NV UP EI PL NZ NA PO NC
92: ++letters;
56F3:026E FF067201 INC Word Ptr [_letters (0172)] 08:0172=0000
>

Example 3 sets the display mode to mixed and traces the current
instruction.

5.3 Program Step Command

The Program Step command executes the current source line in source
mode, or the current instruction in assembly mode. The current source line
or instruction is the one pointed to by the OS and IP registers. In window
mode, the current instruction is shown in reverse video or in a contrasting
color.

84

Executing Code

In source mode, if the current source line contains a function call, the Code­
View debugger executes the entire function and is ready to execute the line
after the function call. In assembly mode, if the current instruction con­
tains a procedure or interrupt, the debugger executes the entire procedure
or interrupt and is ready to execute the next instruction after the procedure
or interrupt call.

Use the Program Step command if you want to execute over function, pro­
cedure, and interrupt calls. If you want to trace into calls, you should use
the Trace command (T) instead. Both commands execute MS-DOS function
calls (interrupt Ox21) without tracing into them. There is no direct way to
trace into MS-DOS function calls.

• Mouse

To execute the Program Step command with the mouse, point to Trace on
the menu bar and click the right button.

• Keyboard

To execute the Program Step command with a keyboard command, press
the FlO key. This works in both window and sequential modes.

• Dialog

To execute the Program Step command using a dialog command, enter a
command line with the following syntax:

P [count]

If the optional count is specified, the command executes count times before
stopping.

• Examples

The examples show the Program Step command in sequential mode. In
window mode, there would be no output from the commands, but the
display would be updated to show changes caused by the command.

86

Microsoft Code View

>S+ ;* Example 1
source
>.
73:
>P 4
74:
75:
76:
78: }

analyze(code,inword) ;

inword = TRUE;
++words;
++characters;

Example 1 sets the display mode to source, then uses the Source Line com­
mand to display the current source line. (See Chapter 9, "Examining
Code," for a further explanation of the Set Source and Source Line com­
mands.) Note that the current source line calls the function ana 1 yz e.
The Program Step command is then used to execute the next four source
lines. The first program step executes the entire function ana 1 yze, and
the next three steps execute the lines immediately after the function.

>s- ;* Example 2
assembly
>p
AX=OOOl BX=0001
DS=3BBl ES=3BB1
36CO:0237 50

CX=OOOO DX=OOOO SP=1900 BP=1908 SI=04BA DI=1946
SS=3BB1 CS=36CO IP=0237 NV UP EI PL NZ NA PO NC

PUSH AX
>

Example 2 sets the display mode to assembly and steps through the current
instruction. This example and the next example are the same as the exam­
ples of the Trace command in Section 5.2. The Trace and Program Step
commands are only different if, when the command is executed, the current
instruction is a function, procedure, or interrupt call.

>S&
mixed
>p
AX=0043
DS=5BE4
92:
56F3:026E
>

;* Example 3

BX=0043 CX=025C DX=OOOO SP=1900 BP=1904 SI=04BA DI=1952
ES=5BE4 SS=5BE4 CS=56F3 IP=026E NV UP EI PL NZ NA PO NC

++letters;
FF067201 INC Word Ptr [_letters (0172)] DS:0172=0000

Example 3 sets the display mode to mixed and steps through the current
instruction.

86

Executing Code

5.4 Go Command

The Go command starts execution at the current address. There are
two variations of the Go command. One simply starts execution and con­
tinues to the end of the program or until a breakpoint is encountered. The
other variation is a Goto command, in which a destination is given with the
command.

The Go command will stop execution when a breakpoint set earlier with the
Breakpoint Set (BP), Watchpoint (BP), or Tracepoint (TP) command is
encountered. If the command is given In the Goto form, the execution will
stop before the destination is reached if a previously set breakpoint is
encountered first.

If a destination address is given, but never encountered (for example, if the
destination is on a program branch that is never taken), the Code View
debugger executes to the end of the program.

If you enter the Go command and the debugger does not encounter a break­
point, the entire program is executed and the following message is
displayed:

Program terminated normally (numbe~

The number in parentheses is the value returned by the program (sometimes
called the exit or "error level" code).

• Mouse

To execute the Go command with no destination, point to Go on the menu
bar and press either button.

To execute the Goto variation of the Go command, point to the source line
or instruction to which you wish to go; then press the right button. The
highlight marking the current location will move to the source line or
instruction you pointed to (unless a breakpoint is encountered first). The
Code View debugger will sound a warning and take no action if you try to
go to a comment line or other source line that does not correspond to code.

If the line you wish to go to is in another module, you can use the Load
command from the Files menu to load the source file for the other module.
Then point to the destination line and press the right button.

87

Microsoft Code View

• Keyboard

To execute the Go command with no destination using a keyboard com­
mand, press the F5 key. This works in both window and sequential modes.

To execute the Goto variation of the Go command, move the cursor to the
source line or instruction you wish to go to. If the cursor is in the dialog
window, first press the F6 key to move the cursor to the display window.
When the cursor is at the appropriate line in the display window, press
the F7 key. The highlight marking the current location will move to the
source line or instruction you pointed to (unless a breakpoint is encoun­
tered first). The Code View debugger will sound a warning and take no
action if you try to go to a comment line or other source line that does not
correspond to code.

If the line you wish to go to is in another module, you can use the Load
command from the Files menu to load the source file for the other module.
Then move the cursor to the destination line and press the F7 key.

• Dialog

To execute the Go command using a dialog command, enter a command
line with the following syntax:

G IT breakaddress]

If the command is given with no argument, execution continues until a
breakpoint or the end of the program is encountered.

The Goto form of the command can be given by specifying breakaddress.
The breakaddress can be given as a symbol, a line number, or an address in
the segment: offset format. If the offset address is given without a segment,
the address in the OS register is used as the default segment. If you give
breakaddress as a line number, but the corresponding source line is a com­
ment, declaration, or blank line, the following message appears:

No code at this line number

88

Executing Code

• Examples

The following examples show the Go command in sequential mode. In win­
dow mode, there would be no output from the commands, but the display
would be updated to show changes caused by the command.

>G ;* Example 1

Program terminated normally (0)
>

Example 1 passes control to the instruction pointed to by the current
values of the OS and IP registers. No breakpoint is encountered, so the
Code View debugger executes to the end of the program, where it prints a
termination message and the exit code returned by the program (0 in the
example).

>8+ ;* Example 2
source
>G analyze
22: int argc;
>

In Example 2, the display mode is first set to source (S+). See Chapter 9,
"Examining Code," for information on setting the display mode. When the
Go command is entered, the Code View debugger starts program execution
at the current address and continues until it reaches the start of the func­
tion ana 1 yze.

>S& ;* Example 3
mixed
>G .38
AX=13F3 BX=13EA CX=0019 DX=OOOO SP=130E BP=133A S1=04BA D1=1344
DS=5DA8 ES=5DA8 SS=5DA8 CS=58B4 IP=004B NV UP E1 PL NZ NA PO NC
38: if ((stream = fopen (name, "rb")) == NULL) return (1);
5884:004B B86EOO MOV AX,006E
>

Example 3 passes execution control to the program at the current address
and executes to the address of source line 38. If the address with the
breakpoint is never encountered (for example, if the program has less than
38 lines, or if the breakpoint is on a program branch that is never taken),
the Code View debugger executes to the end of the program.

>S- ;* Example 4
assembly
>G Ox2A8
AX=0049 BX=0049
DS=5DAF ES=5DAF
58BB:02A8 98
>

CX=028F DX=OOOO SP=12F2 BP=12F6 S1=04BA D1=1344
SS=5DAF CS=58BB IP=02A8 NV UP E1 PL NZ NA PE NC

CBW

89

Microsoft Code View

Example 4 executes to address CS:Ox2A8. Since no segment address is
given, the OS register is assumed.

5.5 Execute Command

The Execute command is similar to the Go command with no arguments,
except that it executes in slow motion (several source lines per second).
Execution starts at the current address and continues to the end of the pro­
gram or until a breakpoint, tracepoint, or watchpoint is reached. You
can also stop automatic program execution by pressing any key or a mouse
button.

• Mouse

To execute code in slow motion with the mouse, point to Run on the menu
bar, press a mouse button and drag the highlight down to the Execute
selection, then release the button.

• Keyboard

To execute code in slow motion with a keyboard command, press ALT-R to
open the Run menu, then press ALT-E to select Execute.

• Dialog

To execute code in slow motion using a dialog command, enter a command
line with the following syntax:

E

You cannot set a destination for the Execute command as you can for the
Go command.

In sequential mode, the output from the Execute command depends on the
display mode (source, assembly, or mixed). In assembly or mixed mode, the
command executes one instruction at a time. The command displays the
current status of the registers and the instruction. In mixed mode, it will
also show a source line if there is one at the instruction. In source mode,
the command executes one source line at a time, displaying the lines as it
executes them.

90

Executing Code

Important

The Execute command has the same command letter (E) as the Enter
command. If the command has at least one argument, it is interpreted
as Enter; if not, it is interpreted as Execute.

5.6 Restart Command

The Restart command restarts the current program. The program is ready
to be executed just as if you had restarted the Code View debugger. Any
existing breakpoints or watch statements are retained. The pass count for
all breakpoints is reset to 1. Any program arguments are also retained,
though they can be changed with the dialog version of the command.

The Restart command can only be used to restart the current program. If
you wish to load a new program, you must exit and restart the Code View
debugger with the new program name .

• Mouse

To restart the program with the mouse, point to Run on the menu bar,
press a mouse button and drag the highlight down to the Restart or the
Start selection, then release the button. The program will be restarted. If
the Restart selection is chosen, the program will be ready to start executing
from the beginning. If the Start selection is chosen, the program starts exe­
cuting from the beginning and continues until a breakpoint or the end of
the program is encountered.

• Keyboard

To restart the program with a keyboard command, press ALT-R to open the
Run menu, then press either ALT-R to select Restart or ALT-S to select Start.
The program will be restarted. If the Restart selection is chosen, the pro­
gram will be ready to start executing from the beginning. If the Start selec­
tion is chosen, the program starts executing from the beginning and contin­
ues until a breakpoint or the end of the program is encountered.

91

Microsoft Code View

• Dialog

To restart the program with a dialog command, enter a command line with
the following syntax:

L [arguments]

When you restart using the dialog version of the command, the program
will be ready to start executing from the beginning. If you want to restart
with new program arguments, you can give optional arguments. You can­
not specify new arguments with the mouse or keyboard version of the
command.

Note

The command letter "L" is a mnemonic for Load, but the command
should not be confused with the Load selection from the File menu,
since that selection only loads a source file without restarting the
program.

• Examples

>L ;* Example 1
>

>L 6 ;* Example 2
>

Example 1 restarts the current executable file, retaining any breakpoints,
watchpoints, tracepoints, and arguments. Example 2 restarts the current
executable file, but with 6 as the new program argument.

92

Chapter 6

Examining Data and Expressions

6.1 Introduction 95
6.2 Display Expression Command 95
6.3 Examine Symbols Command 100
6.4 Dump Commands 103
6.4.1 Dump 105
6.4.2 Dump Bytes 106
6.4.3 DumpASClI 106
6.4.4 Dump Integers 107
6.4.5 Dump Unsigned Integers 108
6.4.6 Dump Words 109
6.4.7 Dump Double Words 109
6.4.8 Dump Short Reals 110
6.4.9 Dump Long Reals 111
6.4.10 Dump 10-Byte Reals 112
6.5 Register Command 113
6.6 8087 Command 115

93

Examining Data and }1~xpre88ion8

6.1 Introduction

The Code View debugger provides several commands for examining different
kinds of data, including expressions, variables, memory, and registers. The
data-evaluation commands discussed in this chapter are summarized below:

Com.m.and Action

Display Expression (7) Evaluates and displays the value of symbols
or expressions

Examine Symbol (X?)

Dump (D)

Register (R)

8087 (7)

Displays the addresses of symbols

Displays sections of memory containing
data; there are several variations for
examining different kinds of data

Shows the current values of each register
and each flag

Shows the current values in the 8087 or
80287 register

6.2 Display Expression Command

The Display Expression command displays the value of Code View
expressions.

A Code View expression can be any valid C expression consisting of
numbers, symbols, addresses, type casts, or operators. The Code View de­
bugger supports a subset of the C operators, as explained in Chapter 4,
"Using Dialog Commands." The simplest form of expression is an identifier
representing a variable or label.

In addition to its primary purpose of displaying values, the Display Expres­
sion command can also set values as a side effect. For example, if you give
the expression + + i with the Display Expression command, the value of i
will be incremented and displayed.

You can specify the format in which the values of expressions are displayed.
Type a comma after the expression, followed by a printf type specifier.
The type specifiers used in the Code View debugger are a subset of those
used by the C printf function. They are listed in Table 6.1.

95

Microsoft Code View

Table 6.1

Types for printf

Output Sample Sample
Character Format Expression Output

d Signed decimal integer ?40000,d -25536

Signed decimal integer ?40000,i -25536

u Unsigned decimal integer ?40000,u 40000

0 Unsigned octal integer ?40000,0 116100
I Xl

XI Hexadecimal integer ?40000,x 9c40

f Signed value in fioating- ?(float)3/2,f 1.500000
point decimal format
with six decimal places

I E2 e l Signed value in ?(float)3/2,f 1.500000e+000
scien tific-notation
format with up to six
decimal places (trailing
zeros and decimal point
are truncated)

g: G 2 Signed value with ?(float)3/2,f 1.5
floating-point decimal
format (f or F) or
scientific-notation
format (g or G),
whichever is more
compact

c Single character ?65,c A

s Characters printed up to ?"String" String
the first null character

1 Hexadecimal letters are uppercase if the type is X and lowercase if the type is x.

2 The "E" in scientific-notation numbers is uppercase if the type is E or G, lowercase if the
type is e or g.

If no type specifier is given, real numbers of type float or double are
displayed as if the type specifier had been given as g. If the numbers are
signed, values of all other types are displayed as if the type specifier had
been given as d. If the numbers are unsigned, values of all other types are
displayed as if the type specifier had been given as U. Pointers are
displayed as if the type specifier had been given as u.

96

Examining Data and Expressions

The prefix h can be used with the integer type specifiers (d, 0, u, x, and X)
to specify a short into The prefix I can be used with the same types to
specify a long into For example, the command 7100000 I Id produces the
output 100000. However, the command 7100000 I hd evaluates only the
short int part of the value, producing the output - 31072.

Note

The nand p type specifiers and the F and H prefixes are not supported
by the Code View debugger even though they are supported by the C
printf function. See the printf function in the Microsoft C Compiler
Run- Time Library Reference for more information.

• Mouse

To display the value of an expression with the mouse, point to View on the
menu bar, press a mouse button and drag the highlight down to the Evalu­
ate selection, then release the button. A dialog box appears, asking for the
expression you want to evaluate. Type the expression and press the ENTER
key (or a mouse button). You can add a comma and a type specifier if you
want to specify the output format. The value of the expression will appear
in the dialog window.

• Keyboard

To display the value of an expression using a keyboard command, press
ALT-V to open the View menu, then press AI/f-E to select Evaluate. A dialog
box appears, asking for the expression you want to evaluate. Type the
expression and press the ENTER key. You C<1n add a comma and a type
specifier if you want to specify the output format. The value of the expres­
sion will appear in the dialog window.

• Dialog

To display the value of an expression using a dialog command, enter a com­
mand line with the following syntax:

? expression, [format]

97

Microsoft Code View

The expression is any valid Code View expression, and the optional format is
a printf type specifier.

• Examples

The examples assume that the source file contains the following variable
declarations:

int
char
int

amount
*text
miles

char hours
struct {

char name [20] ;
int id;
long class;

} student, *pstudent;

int square (int);

Assume also that the program has been executed to the point where all
these variables have been assigned values.

>7 amount
500
>7 amount,x
1f4
>7 amount,o
764
>7 &amount,X
1EE2
>

;* Example 1

Example 1 displays the value of the variable amount, first in the default
decimal format, then in hexadecimal and then in octal. Finally, the
address-of operator is used to display the address where the value of
amount is stored. Only the offset portion of the address is shown; the data
segment is assumed.

>? 92,X
SC
>7 109*37,0
7701
>7 'T'
84
>? 118,c
v
>

98

;* Example 2

Examining Data and Expressions

Example 2 illustrates how the Code View debugger can be used as a calcula­
tor . You can convert between radixes, calculate the value of constan t
expressions, or check ASCII equivalents.

>7 text,X ;* Example 3
13F3
>DA Ox13F3
3D83:13FO Here is a string.
>7 text,s
Here is a string.
>

Example 3 shows how to examine strings. One method is to evaluate the
variable that points to the string, then dump the values at that address
(the Dump command is explained in Section 6.4). A more direct method is
to use the s type specifier.

>7 miles
837
>7 hours
14
>7 miles/hours
59

;* Example 4

>7 (float)miles/hours,f
59.785714
>7 (float)miles/hours,e
5.978571e+001
>

Example 4 displays the value of the symbols mi les and hours. The two
variables are then combined to calculate miles per hour. The value is calcu­
lated using integer division, then it is type cast so that real-number division
can be performed. The real number is shown both in floating-point format
using the f type specifier, and in scientific notation using the e type
specifier.

>7 student.id
19643
>7 pstudent->id
19643
>

;* Example 5

Example 5 illustrates how to display the values of members of a structure
(or union).

99

Microsoft Code View

>7 amount
500
>7 ++amount
501
>7 amount=600
600
>

;* Example 6

Example 6 shows how the Display Expression command can be used to
change the values of variables.

> 7 square (9)
81
>

;* Example 7

Example 7 shows how functions can be evaluated in expressions. The Code­
View debugger executes the function square with an argument of 9 and
displays the value returned by the function. You can only display the
values of functions after you have executed into the main function.

6.3 Examine Symbols Command

The Examine Symbols command displays the names and addresses of sym­
bols, and the names of modules, defined within a program. You can specify
the symbol or group of symbols you want to examine by module, procedure,
or symbol name.

• Mouse

This command cannot be executed with the mouse.

• Keyboard

This command cannot be executed with a keyboard command.

100

Examining Data and Expressions

• Dialog

To view the addresses of symbols using a dialog command, enter a com­
mand line in one of the following formats:

X*
X? [module!] [junction.] [symbol] [*]

The syntax combinations are listed in more detail below:

Syntax

X?module!function.symbol

X?module!function ••

X?module!symbol

X?module!.

X?function.symbol

X?function ••

X?symbol

Display

The specified symbol in the specified
function in the specified module

All symbols in the specified function in
the specified module

The specified symbol in the specified
module; symbols within functions
(automatic variables and statics within
functions) are not found

All symbols in the specified module

The specified symbol in the specified
function; looks for function first in the
current module, then in other modules
from first to last

All symbols in the specified function;
looks for function first in the current
module, then in other modules from
first to last

Looks for the specified symbol in this
order:

1. In the current function

2. In the current module

3. In other modules, from first to last

All symbols in the current function

All module names

101

Microsoft Code View

• Examples

In the following examples, assume that the program being examined is
called pi . exe, and that it consists of two modules: pi . c and math. c.
The pi . c module is a skeleton consisting only of the main function, while
the math. c module has several functions. Assume that the current func­
tion is div within the math module.

>X*
PI.OBJ
MATH.OBJ
C:B(chkstk)
C:B(crtO)

C:B(itoa)
C:B(unlink)
>

;*Example 1

Example 1 lists the two modules called by the program. The library file
and each of the modules called by the program are also listed.

>X?* ;*Example 2
DI int b
[BP-0006] int quotient
SI int i
[BP-0002] int remainder
[BP+OOO4] int divisor

>

Example 2 lists the symbols in the current function (div). Local variables
are shown as being stored either in a register (b in register DI), or at a
memory location specified as an offset from a register (divisor at location
[BP+0004]).

>X?pi! *
3037:1982 int
3037:2954 int
3037:2956 int
3A79:0010 int
3037:1982 int
3037:0A10 char
3037:2954 int
3037:1984 char
3037:2956 int
3037:1980 int
>

102

;* Example 3
scr-at.chO
scratch1

_scratch2
_main ()

scratchO
p[]
scratch1
t []
scratch2
q

3037:0A10 char
3037:1984 char
3037:1980 int

3A79:0010 int

-p []
_t []
-q

main ()

Examining Data and Expressions

Example 3 shows all the symbols in the the pi . c module.

>X?math!div.*
3A79:0264 int

;*Example 4

>

D1
[BP-0006]
SI
[BP-0002]
[BP+0004]

int
int
int
int
int

div ()
b
quotient
i
remainder
divisor

Example 4 shows the symbols in the di v function in module rna th. c. You
wouldn't need to specify the module if math. c were the current module,
but you would if the current module were pi . c.

Variables that are local to a function are indented under that function.

>X?math!arctan.s ;* Example 5
3A79:00FA int arctan()

[BP+0004] int s
>

Example 5 shows one specific variable (s) within the arc tan function.

6.4 Dump Commands

The Code View debugger has several commands for dumping data from
memory to the screen (or other output device). The dump commands are
listed below:

Command

D

DB

DA

DI

DU
DW

Command Name

Dump (size is the default type)

Dump Bytes

Dump ASCII

Dump Integers

Dump Unsigned Integers

Dump Words

103

Microsoft Code View

DD

DS

DL

DT

• Mouse

Dump Double Words

Dump Short Reals

Dump Long Reals

Dump 10-Byte Reals

The Dump commands cannot be executed with the mouse.

• Keyboard

The Dump commands cannot be executed with keyboard commands.

• Dialog

To execute any Dump command using a dialog command, enter a command
line with the following syntax:

D[type] [address: range]

The type is a one-letter specifier that indicates the type of the data to be
dumped. The dump commands expect either a starting address or a range
of memory. If the starting address is given, the commands assume a default
range (usually 128 bytes) starting at address. If range is given, the com­
mands dump from the start to the end of range.

If neither address nor range is given, the commands assume the current
dump address as the start of the range and the default size associated with
the size of the object as the length of the range. Most Dump commands
have a default range size of 128 bytes, but the Dump Real commands have
a default range size of one real number.

The current dump address is the byte following the last byte specified in
the previous Dump command. If no Dump command has been used during
the session, the dump address is the start of the data segment (DS). For
example, if you enter the Dump Words command with no argument as the
first command of a session, the Code View debugger displays the first 64
words (128 bytes) of data declared in the data segment. If you repeat the
same command, the debugger displays the next 64 words following the ones
dumped by the first command.

104

Examining Data and Expressions

Note

Occasionally one of the Dump commands that display real numbers
(Dump Short Reals, Dump Long Reals, or Dump 10-Byte Reals) will
display a number containing one of the following character sequences:
#NAN, #INF, or #IND. NAN (not a number) indicates that the data
cannot be evaluated as a real number. INF (infinity) indicates that the
data evaluate to infinity. IND (indefinite) indicates that the data evalu­
ate to an indefinite number.

Sections 6.4.1-6.4.10 discuss the variations of the Dump commands in order
of the size of data they display.

6.4.1 Dump

• Syntax

D [address: range]

The Dump command displays the contents of memory at the specified
address or in the specified range of addresses. The command dumps data in
the format of the default type. The default type is the last type specified
with a Dump, Enter, Watch Memory, or Tracepoint Memory command. If
none of these commands has been entered during the session, the default
type is bytes.

The Dump command displays one or more lines, depending on the address
or range specified. Each line displays the address of the first item
displayed. The Dump command must be separated by at least one space
from any address or range value. For example, to dump memory starting at
symbol a, use the command D a, not Da. The second syntax would be
interpreted as the Dump ASCII command.

105

Microsoft Code View

6.4.2 Dump Bytes

• Syntax

DB [address: range]

The Dump Bytes command displays the hexadecimal and ASCII values of
the bytes at the specified address or in the specified range of addresses. The
command displays one or more lines, depending on the address or range
supplied.

Each line displays the address of the first byte in the line, followed by up to
16 hexadecimal byte values. The byte values are immediately followed by
the corresponding ASCII values. The hexadecimal values are separated by
spaces, except the eighth and ninth values, whieh are separated by a dash
(-). ASCII values are printed without separation. Unprintable ASCII values
(less than 32 or greater than 126) are displayed as dots. No more than 16
hexadecimal values are displayed in a line. The command displays values
and characters until the end of the range or, if no range is given, until the
first 128 bytes have been displayed.

• Example

>DB 0 36
305E:0000 53 6F 60 65 20 6C 65 74-74 65 72 73 20 61 6E 64 Some letters and
305E:0010 20 6E 75 60 62 65 72 73-3A 00 10 EA 89 FC FF EF numbers:
305E:0020 00 FO 00 CA E4
>

The example displays the byte values from DS : 0 to DS : 36 (DS : OX24).
The data segment is assumed if no segment is given. ASCII characters are
shown on the right.

6.4.3 Dump ABell

• Syntax

DA [address: range]

The Dump ASCII command displays the ASCII characters at a specified
address or in a specified range of addresses. The command displays one or
more lines of characters, depending on the address or range specified.

106

Examining Data and Expressions

If no ending address is specified, the command dumps either 128 bytes or all
bytes preceding the first null byte, whichever comes first. Up to 64 charac­
ters per line are displayed. Unprintable characters, such as carriage returns
and line feeds, are displayed as dots. ASCII characters less than 32 and
greater than 126 are unprintable.

• Examples

>DA 0 ;*Example 1
3D7C:OOOO Some letters and numbers:
>

>DA 0 36 ;*Example 2
3D7C:OOOO Some letters and numbers:
>

Example 1 displays the ASCII values of the bytes starting at os : O. Since
no ending address is given, values are displayed up to the first null byte. In
Example 2, an ending address is given, so the characters from os : 0 to
OS: 36 (OS: Ox24) are shown. Unprintable characters are shown as dots.

6.4.4 Dump Integers

• Syntax

DI IT address: range]

The Dump Integers command displays the signed decimal values of the
words (2-byte values) starting at address or in the specified range of
addresses. The command displays one or more lines, depending on the
address or range specified. Each line displays the address of the first
integer in the line, followed by up to eight signed decimal words. The
values are separated by spaces. The command displays values until the end
of the range or until the first 64 integers have been displayed, whichever
comes first.

107

Microsoft Code View

Note

In the C language, the size of an integer is system dependent. In this
manual an integer is a 2-byte value, since that is the size of integers
produced with the Microsoft MS-DOS C Compiler.

• Example

>Dl 0 36
3D5E:OOOO
3D5E:0010
3D5E:0020
>

28499 25965
28192 28021
-4096 -13824

27680
25954

2532

29797
29554

25972
58

29554 24864
-5616 -887

25710
-4097

The example displays the byte values from OS: 0 to OS: 36 (OS: Ox24).
Compare the signed decimal numbers at the end of this dump with the
same values shown as unsigned integers in Section 6.4.5.

6.4.5 Dump Unsigned Integers

• Syntax

DU [address: range]

The Dump Unsigned Integers command displays the unsigned decimal
values of the words (2-byte values) starting at address or in the specified
range of addresses. The command displays one or more lines, depending on
the address or range specified. Each line displays the address of the first
unsigned integer in the line, followed by up to eight decimal words. The
values are separated by spaces. The command displays values until the end
of the range or until the first 64 unsigned integers have been displayed,
whichever comes first.

• Example

>DU 0 36
3D5E:0000
3D5E:0010
3D5E:0020
>

108

28499
28192
61440

25965
28021
51712

27680
25954

2532

29797
29554

25972
58

29554 24864 25710
59920 64649 61439

Examining Data and Expressions

The example displays the byte values from DS : 0 to DS : 36 (DS : Ox24).
Compare the unsigned decimal numbers at the end of this dump with the
same values shown as signed integers in Section 6.4.4.

6.4.6 Dump Words

• Syntax

DW [address: range]

The Dump Words command displays the hexadecimal values of the words
(2-byte values) starting at address or in the specified range of addresses.
The command displays one or more lines, depending on the address or
range specified. Each line displays the address of the first word in the line,
followed by up to eight hexadecimal words. The hexadecimal values are
separated by spaces. The command displays values until the end of the
range or until the first 64 words have been displayed, whichever comes first.

• Example

>DW a 36
3D5E:0000
3D5E:0010
3D5E:0020
>

6F53 656D 6C20 7465 6574 7372 6120 646E
6E20 6D75 6562 7372 003A EA10 FC89 EFFF
FOOO CAOO 09E4

The example displays the word values from DS : 0 to DS : 36 (DS : OX24).
No more than eight values per line are displayed.

6.4.7 Dump Double Words

• Syntax

DD [address: range]

The Dump Double Words command displays the hexadecimal values of the
double words (4-byte values) starting at address or in the specified range of
addresses.

109

Microsoft Code View

The command displays one or more lines, depending on the address or
range specified. Each line displays the address of the first double word in
the line, followed by up to four hexadecimal double-word values. The words
of each double word are separated by a colon. The values are separated by
spaces. The command displays values until the end of the range or until the
first 32 double words have been displayed, whichever comes first.

• Example

>DD 0 36
3D5E:OOOO
3D5E:0010
3D5E:0020
>

656D:6f53 7465:6C20 7372:6574 646E:6120
6D75:6E20 7372:6562 EA10:003A Efff:fC89
CAOO:fOOO 6f73:09E4

The example displays the double-word values from DS : 0 to DS : 36
(DS: OX24). No more than four double-word values per line are displayed.

6.4.8 Dump Short Reals

• Syntax

DS [address: rangeD

The Dump Short Reals command displays the hexadecimal and decimal
values of the short (4-byte) floating-point numbers at address or in the
specified range of addresses.

The command displays one or more lines, depending on the address or
range specified. Each line displays the address of the floating-point number
in the first column. Next, the hexadecimal values of the bytes in the
number are shown, followed by the decimal value of the number. The hexa­
decimal values are separated by spaces.

The decimal value has the following form:

[-D digit.decimaldigitsE+:-mantissa

If the number is negative, it will have a minus sign; positive numbers have
no sign. The first digit of the number is followed by a decimal point. Six
decimal places are shown following the decimal point. The letter E follows
the decimal digits, and marks the start of a three-digit signed mantissa.

110

Examining Data and Expressions

The command displays at least one value. If a range is specified, all values
in the range are displayed.

• Example

>DS s_pi
5E68:0100 DB OF 49 40 3.141593E+000
>

The example displays the short-real floating-point number at the address of
the variable s_pi. Only one value is displayed per line.

6.4.9 Dump Long Reals

• Syntax

DL [address: range]

The Dump Long Reals command displays the hexadecimal and decimal
values of the long (8-byte) floating-point numbers at the specified address or
in the specified range of addresses.

The command displays one or more lines, depending on the address or
range specified. Each line displays the address of the floating-point number
in the first column. Next, the hexadecimal values of the bytes in the
number are shown, followed by the decimal value of the number. The hexa­
decimal values are separated by spaces.

The decimal value has the following form:

[-ll digit. decimaldigitsE+:-mantissa

If the number is negative, it will have a minus sign; positive numbers have
no sign. The first digit of the number is followed by a decimal point. Six
decimal places are shown following the decimal point. The letter E follows
the decimal digits, and marks the start of a three-digit signed mantissa.

The command displays at least one value. If a range is specified, all values
in the range are displayed.

111

Microsoft Code View

• Example

>DL I_pi
5E68:0200 11 2D 44 54 FB 21 09 40 3.141593E+OOO
>

The example displays the long-real floating-point number at the address of
the variable I_pi. Only one value per line is displayed.

6.4.10 Dump 10-Byte Reals

• Syntax

DT [address i range]

The Dump lO-Byte Reals command displays the hexadecimal and decimal
values of the lO-byte floating-point numbers at the specified address or in
the specified range of addresses.

The command displays one or more lines, depending on the address or
range specified. Each line displays the address of the floating-point number
in the first column. Next, the hexadecimal values of the bytes in the
number are shown, followed by the decimal value of the number. The hexa­
decimal values are separated by spaces.

The decimal value has the following form:

[-] digit. decimaldigitsE+i-mantissa

If the number is negative, it will have a minus sign; positive numbers have
no sign. The first digit of the number is followed by a decimal point. Six
decirnal places are shown following the decimal point. The letter E follows
the decimal digits, and marks the start of a three-digit signed mantissa.

The command displays at least one value. If a range is specified, all values
in the range are displayed.

112

Examining Data and Expressions

• Example

>DT t_pi
SE68:0300 DE 87 68 21 A2 DA OF C9 00 40 3. 141S93E+000
>

The example displays the 10-byte-real floating-point number at the address
of the variable t_pi. Only one number per line is displayed.

6.5 Register Command

The Register command has two functions. It displays the contents of the
central processing unit (CPU) registers. It can also change the values of the
registers. The display features of the Register command are explained here.
The modification features of the command are explained in Chapter 10,
"Modifying Code or Data."

• Mouse

To display the registers with the mouse, point to Options on the menu bar,
press a mouse button and drag the highlight down to the Registers selec­
tion, then release the button. The register window will appear on the right
side of the screen. If the register window is already on the screen, the same
command removes it.

• Keyboard

To display the registers using a keyboard command in window mode, press
the F2 key. The register window will appear on the right side of the screen.
If the register window is already on the screen, the same command will
remove it.

In sequential mode, the F2 key will display the current status of the regis­
ters. (This produces the same effect as entering the Register dialog com­
mand with no argument.)

113

Microsoft Oode View

• Dialog

To display the registers in the dialog window (or sequentially in sequential
mode), enter a command line with the following syntax:

R

The current values of all registers and flags are displayed (in the dialog win­
dow in window mode). The instruction at the address pointed to by the
current OS and IP register values is also shown. (The Register command
can also be given with arguments, but only when used to modify registers,
as explained in Chapter 10, "Modifying Code or Data.")

If the display mode is source (S+) or mixed (S&) (see Chapter 9, "Examin­
ing Code," for more informatIOn), the current source line is also displayed
by the Register command. If an operand of the instruction contains
memory expressions or immediate data, the Code View debugger will evalu­
ate operands and show the value to the right of the instruction. If the OS
and IP registers are currently at a breakpoint location, the register display
will indicate the breakpoint number.

In sequential mode, the Trace (T), Program Step (P), and Go (G) com­
mands show registers in the same format as the RegIster command.

• Examples

>8& ;* Example 1
mixed
>R
AX=0043 BX=0043 CX=025C DX=OOOO SP=18F4 BP=18F8 SI=04BA DI=1946
DS=5BF2 ES=5BF2 SS=5BF2 CS=5701 IP=026E NV UP EI PL NZ NA PO NC
92: ++letters;

5701:026E FF067201
>

INC Word Ptr [_letters (0172)] DS:0172=OOOO

Example 1 displays all register and flag values, as well as the instruction at
the address pointed to by the OS and IP registers. Since the mode has
been set to mixed (S&), the current source line is also shown.

The memory operand [_letters] in the instruction is evaluated on the
right side of the screen as DS : 01 7 2=0000. This means that the variable
letters (at offset Ox0172 of the data segment) currently has a value of O.
The next instruction (INC Word Ptr [_letters]) will increment the
value.

114

Examining Data and Expressions

>s- ;* Example 2
source
>R
AX=024f BX=OOOI CX=OOOO
DS=5Bf2 ES=5Bf2 SS=5Bf2
5701:021f 807EfC20
>

DX=OOOO SP=1900 BP=1908 S1=04BA D1=1946
CS=5701 IP=021f NV UP EI PL NZ NA PO NC

CMP Byte Ptr [code] ,20 ;BR2

In Example 2, the display mode is set to assembly (S-), so no source line is
shown. Note the breakpoint number at the right of the last line, indicating
that the current address is at breakpoint 2.

6.6 8087 Command

The 8087 command dumps the contents of the 8087 registers. This com­
mand is only useful if you have an 8087 or 80287 coprocessor chip on your
system.

Note

This section does not attempt to explain how the registers of the IntelE
8087 and 80287 processors are organized or how they work. In order to
interpret the command output, you must learn about the chip from an
Intel reference manual or other book on the subject .

• Mouse

The 8087 command cannot be executed with the mouse.

• Keyboard

The 8087 command cannot be executed with a keyboard command.

115

Microsoft Code View

• Dialog

To display the status of the 8087 or 80287 chip using a dialog command,
enter a command line with the following syntax:

7

The current status of the chip is output when you enter the command. In
window mode, the output is to the dialog window. If you do not have an
8087 or 80287 chip, all registers in the output will contain o.

• Example

>7
Control 037F

Status 6004
Tag A1FF
Stack
ST(3) special
ST(2) special
ST(l) valid
ST(O) zero
>

(Projective closure, Round nearest, 64-bit precision)
iem=O pm=l um=l om=l zm=l dm=l im=l

cond=1000 top=4 pe=O ue=O oe=O ze=l de=O ie=O
instruction=59380 operand=59360_ opcode=D9EE
Exp Mantissa Value
7FFF 8000000000000000 + Infinity
7FFF 0101010101010101 + Not a Number
4000 C90FDAA22168C235 +3.141592265110390E+000
0000 0000000000000000 +O.OOOOOOOOOOOOOOOE+OOO

In the example above, the first line of the dump shows the current closure
method, rounding method, and precision. The number 037F is the hexa­
decimal value in the control register. The rest of the line interprets the bits
of the number. The closure method can be either projective (as in the
example) or affine. The rounding method can be either rounding to the
nearest even number (as in the example), rounding down, rounding up, or
the chop method of rounding (truncating toward zero). The precision may
be 64 bits (as in the example), 53 bits, or 24 bits.

The second line of the display indicates whether each exception mask bit is
set or cleared. The masks are: interrupt-enable mask (iem), precision mask
(pm), underflow mask (um), overflow mask (om), zero-divide mask (zm),
denormalized-operand mask (dm), and invalid-operation mask (im).

The third line of the display shows the hexadecimal value of the status
register (6004 in the example), then interprets the bits of the register. The
condition code (cond) in the example is the binary number 1000. The top
of the stack (top) is register 4 (shown in decimal). The other bits shown
are: precision exception (pe), underflow exception (ue), overflow exception
(oe), zero-divide exception (ze), denormalized-operand exception (de), and
invalid-operation exception (i e).

116

Examining Data and Expressions

The fourth line of the display first shows the hexadecimal value of the tag
register (AlEE in the example). It then gives the hexadecimal values of the
instruction (59380), the operand (59360), and the operation code, or
opcode, (D9EE).

The fifth line is a heading for the subsequent lines, which contain the con­
tents of each 8087 or 80287 stack register. The registers in the example
contain four types of numbers that may be held in these registers. Starting
from the bottom, register 0 contains zero. Register 1 contains a valid real
number. Its exponent (in hexadecimal) is 4000 and its mantissa is
C90EDAA22l68C235. The number is shown in scientific notation in the
rightmost column. Register 2 contains a value that cannot be interpreted
as a number, and register 3 contains infinity.

117

Chapter 7

Managing Breakpoints

7.1
7.2
7.3
7.4
7.5
7.6

Introduction 121
Breakpoint Set Command
Breakpoint Clear Command
Breakpoint Disable Command
Breakpoint Enable Command
Breakpoint List Command

121
124

125
127

128

119

Managing Breakpoints

7.1 Introduction

The CodeView debugger enables you to control program execution by set­
ting breakpoints. A breakpoint is an address that stops program execution
each time the address is encountered. By setting breakpoints at key ad­
dresses in your program, you can "freeze" program execution and examine
the status of memory or expressions at that point.

The commands listed below control breakpoints:

Command Action

Breakpoint Set (BP) Sets a breakpoint and optionally a pass
count and break commands

Breakpoint Clear (BC)

Breakpoint Disable (BD)

Breakpoint Enable (BE)

Breakpoint List (BL)

Clears one or more breakpoints

Disables one or more breakpoints

Enables one or more breakpoints

Lists all breakpoints

In addition to these commands, the Watchpoint (WP) and Tracepoint
(TP) commands can be used to set conditional breakpoints. These com­
mands are explained in Chapter 8, "Managing Watch Statements." The
Breakpoint commands are discussed in sections 7.2-7.6.

7.2 Breakpoint Set Command

The Breakpoint Set command creates a breakpoint at a specified address.
Any time a breakpoint is encountered during program execution, the pro­
gram halts and waits for a new command.

The CodeView debugger allows up to 20 breakpoints (0 through 19). Each
new breakpoint is assigned the next available number. Breakpoints remain
in memory until you delete them (see Section 6.3 for more information) or
until you quit the debugger. They are not canceled when you restart the
program. This enables you to set up a complicated series of breakpoints,
then execute through the program several times without resetting the
breakpoints.

121

Microsoft Code View

If you try to set a breakpoint at a comment line or other source line that
does not correspond to code, the Code View debugger displays the following
message:

No code at this line number

• Mouse

To set a breakpoint with the mouse, point to the source line or instruction
where you want to set the breakpoint, then click the left button. The line
will be displayed in hi~h-intensity text, and will remain so until you remove
or disable the breakpoint.

• Keyboard

To set a breakpoint with a keyboard command in window mode, move the
cursor to the source line or instruction where you want to set a breakpoint.
You may have to press the F6 key to move the cursor to the display win­
dow. When the cursor is on the appropriate source line, press the F9 key.
The line will be displayed in high-intensity text, and will remain so until
you remove the breakpoint.

In sequential mode, the F9 key can be used to set a breakpoint at the
current location. You must use the dialog version of the command to set a
breakpoint at any other location.

• Dialog

To set a breakpoint using a dialog command, enter a command line with
the following syntax:

BP [address [passcount] IT" commands"]]

If no address is given, a breakpoint is created on the current source line in
source mode, or on the current instruction in assembly mode. You can
specify the address either in the segment: offset format, or as a source line, a
function name, or a label. If you give an offset address, the code segment is
assumed.

The dialog version of the command is more powerful than the mouse or
keyboard version in that it allows you to give a passcount and a string of

122

Managing Breakpoints

commands. The passcount specifies the first time the breakpoint is to be
taken. For example, if the pass count is 5, the breakpoint will be ignored
the first four times it is encountered, and taken the fifth time.

The commands are a list of dialog commands enclosed in quotation marks
(" ") and separated by semicolons (;). For example, if you specify the com­
mands as "? code; T", the Code View debugger will automatically display
the value of the variable code and then execute the Trace command each
time the breakpoint is encountered. The Trace and Display Expression
commands are described in Chapter 6, "Examining Data and Expressions,"
and Chapter 5, "Executing Code," respectively.

In window mode, a breakpoint entered with a dialog command has exactly
the same effect as one created with a window command. The source line or
instruction corresponding to the breakpoint location is shown in high­
intensity text.

In sequential mode, information about the current instruction will be
displayed each time you execute to a breakpoint. The register values, the
current instruction, and the source line may be shown, depending on the
display mode. See Chapter 9, "Examining Code," for more information
about display modes.

When a breakpoint address is shown in the assembly-language format, the
breakpoint number will be shown as a comment to the right of the instruc­
tion. This comment appears even if the breakpoint is disabled (but not if it
is deleted).

• Examples

>BP .19
>

;*Example 1

>BP display 10 "?++counter;G" ;*Example 2
>

>s-
>BP Ox20S
>G
AX=0110 BX=0183
OS=5E61 ES=5E61
5960:0205 E97800
>

;*Example 3

CX=OOOO OX=OOOO SP=12FE BP=1306 S1=04BA 01=1344
SS=5E61 CS=5960 IP=020S NV UP E1 PL NZ NA PO NC

JMP countwords+9a (0280) ;BR1

123

Microsoft Code View

Example 1 creates a breakpoint at line 19 of the current source file (or if
there is no executable statement at line 19, at the first executable state­
ment after line 19).

Example 2 creates a breakpoint at the address of the function displ ay.
The breakpoint is passed over nine times before being taken on the 10th
pass. Each time execution stops for the breakpoint, the quoted commands
are executed. The Display Expression command increments counter, then
the Go command restarts execution. If counter is set to 0 when the
breakpoint is set, this has the effect of counting the number of times the
breakpoint address is passed.

Example 3, shown in sequential mode, first sets the mode to assembly, then
creates a breakpoint at the offset address OxE A2 in the default (OS) seg­
ment. The Go command (G) is then used to execute to the breakpoint.
Note that in the output to the Go command, the breakpoint number is
shown as an assembly-language comment (; BR1) to the right of the current
instruction.

7.3 Breakpoint Clear Command

The Breakpoint Clear command permanently removes one or more previ­
ously set breakpoints .

• Mouse

To clear a single breakpoint with the mouse, point to the breakpoint line or
instruction you want to clear. Breakpoint lines are shown in high-intensity
text. Press the left mouse button. The line will be shown in normal text to
indicate that the breakpoint has been removed.

To remove all breakpoints with the mouse, point to Run on the menu bar,
press a mouse button and drag the highlight down to the Clear Breakpoints
selection, then release the button.

• Keyboard

To clear a single breakpoint with a keyboard command, move the cursor to
the breakpoint line or instruction you want to clear. Breakpoint lines are
shown in high-intensity text. Press the F9 key. The line will be shown in
normal text to indicate that the breakpoint has been removed.

124

Managing Breakpoints

To remove all breakpoints using a keyboard command, press ALT-R to open
the Run menu, then press ALT-C to select Clear Breakpoints.

• Dialog

To clear breakpoints using a dialog command, enter a command line with
the following syntax:

BC list
BC *

If list is specified, the command removes the breakpoints named in the list.
The list can be any combination of integer values from 0 to 19. You can
use the Breakpoint List command (BL) if you need to see the numbers for
each existing breakpoint. If an asterisk (*) i~ given as the argument, all
breakpoints are removed.

• Examples

>BC 0 4 8
>

>BC *
>

:*Example 1

:*Example 2

Example 1 removes breakpoints 0, 4, and 8. Example 2 removes all
breakpoints.

7.4 Breakpoint Disable Command

The Breakpoint Disable command temporarily disables one or more existing
breakpoints. The breakpoints are not deleted. They can be restored at any
time using the Breakpoint Enable command (BE).

When a breakpoint is disabled in window mode, it is shown in the display
window with normal text. When it is enabled, it is shown in high-intensity
text.

125

Microsoft Code View

Note

All disabled breakpoints are automatically enabled whenever you
restart the program being debugged. The program can be restarted
with the Start or Restart selections from the Run menu, or with the
Restart dialog command (L). See Chapter 11, "Using System-Control
Commands."

• Mouse

The Breakpoint Disable command cannot be executed with the mouse.

• Keyboard

The Breakpoint Disable command cannot be executed with a keyboard
command.

• Dialog

To disable breakpoints using a dialog command, enter a command line with
the following syntax:

BD list
BD *

If list is specified, the command disables the breakpoints named in the list.
The list can be any combination of integer values from 0 to 19. Use the
Breakpoint List command (BL) if you need to see the numbers for each ex­
isting breakpoint. If an asterisk (*) is given as the argument, all break­
points are disabled.

The window commands for setting and clearing breakpoints can also be
used to enable or clear disabled breakpoints.

126

Managing Breakpoints

• Examples

>BD 0 4 8
>

>BD *
>

;*Example 1

;*Example 2

Example 1 disables breakpoints 0, 4, and 8. Example 2 disables all
breakpoints.

7.5 Breakpoint Enable Command

The Breakpoint Enable command enables breakpoints that have been tem­
porarily disabled with the Breakpoint Disable command.

• Mouse

To enable a disabled breakpoint with the mouse, point to the source line or
instruction of the breakpoint, then click the left button. The line will be
displayed in high-intensity text, and will remain so until you remove or dis­
able the breakpoint. This is the same as creating a new breakpoint at that
location.

• Keyboard

To enable a disabled breakpoint using a keyboard command, move the cur­
sor to the source line or instruction of the breakpoint, then press the F9
key. The line will be displayed in high-intensity text, and will remain so
until you remove or disable the breakpoint. This is the same as creating a
new breakpoint at that location.

• Dialog

To enable breakpoints using a dialog command, enter a command line with
the following syntax:

BE list
BE *

127

Microsoft Code View

If list is specified, the command enables the breakpoints named in the list.
The list can be any combination of integer values from ° to 19. Use the
Breakpoint List command (BL) if you need to see the numbers for each ex­
isting breakpoint. If an asterisk (*) is given as the argument, all break­
points are enabled. The Code View debugger ignores all or part of the com­
mand if you try to enable a breakpoint that is not disabled.

• Examples

>BE 0 4 8
>

>BE*
>

;*Example 1

;*Example 2

Example 1 enables breakpoints 0, 4, and 8. Example 2 enables all disabled
breakpoints.

7.6 Breakpoint List Command

The Breakpoint List command lists current information about all
breakpoints.

• Mouse

The Breakpoint List command cannot be executed with the mouse.

• Keyboard

The Breakpoint List command cannot be executed with a keyboard
command.

• Dialog

To list breakpoints using a dialog command, enter a command line with the
following syntax:

BL

128

Managing Breakpoints

The command displays the breakpoint number, the enabled status, the ad­
dress, the function, and the line number. If the breakpoint does not fall on
a line number, an offset is shown from the nearest previous line number.
The pass count and break commands are shown if they have been set. The
status can be e for enabled, d for disabled. If no breakpoints are currently
defined, nothing is displayed.

• Example

>BL
o e 56C4:0105
1 d 56C4:011E
2 e 56C4:00FD
>

arctan:10
arctan:19
arctan:9+6

(pass 10) "T;T"

In the example, breakpoint 0 is enabled at address 56C4: 0105. This ad­
dress is in function arctan and is at line 10 of the current source file. No
pass count or break commands have been set.

Breakpoint 1 is currently disabled, as indicated by the d after the break­
point number. It also has a pass count of 10, meaning that the breakpoint
will not be taken until the 10th time it is encountered. The command
string at the end of the line indicates that each time the breakpoint is
taken, the Trace command will automatically be executed twice.

The line number for breakpoint 2 has an offset. The address is Ox6 bytes
beyond the address for line number 9 in the current source file. This indi­
cates that the breakpoint was probably set in assembly mode, since it
would be difficult to set a breakpoint anywhere except on a source line in
source mode.

129

Chapter 8

Managing Watch Statements

8.1 Introduction 133
8.2 Setting Watch-Expression

and Watch-Memory Statements 134
8.3 Setting Watchpoints 138
8.4 Setting Tracepoints 141
8.5 Deleting Watch Statements 146
8.6 Listing Watchpoints and Tracepoints 148

131

Managing Watch Statements

8.1 Introduction

Watch Statement commands are among the Microsoft CodeView debugger's
most powerful features. They enable you to set, delete, and list watch state­
ments. Watch statements are specifications that describe expressions or
areas of memory to watch. Some watch statements also specify conditional
breakpoints that mayor may not be taken, depending on the value of the
expression or memory area.

The Watch Statement commands are summarized below:

Command

Watch (W)

Watchpoint (WP)

Tracepoint (TP)

Watch Delete (Y)

Watch List (W)

Action

Sets an expression or range of memory to be
watched

Sets a conditional breakpoint that will be taken
when the expression becomes nonzero (true)

Sets a conditional breakpoint that will be taken
when a given expression or range of memory
changes

Deletes one or more watch statements

Lists current watch statements

Watch statements are like breakpoints in that they remain in memory until
you specifically remove them or quit the CodeView debugger. They are not
canceled when you restart the program being debugged. This enables you to
set a complicated series of watch statements, then execute through the pro­
gram several times without resetting the watch statements.

In window mode, Watch Statement commands can be entered either in the
dialog window or with menu selections. Current watch statements are
shown in a watch window that appears between the menu bar and the
source window.

In sequential mode, the Watch, Tracepoint, and Watch point commands can
be used, but since there is no watch window, you cannot see the watch
statements and their values. You must use the Watch List command to ex­
amine the current watch statements.

133

Microsoft Code View

Note

In order to set a watch statement containing a local variable, you must
be in the function where the variable is defined. If the current line is not
in the function, the Code View debugger displays the message UNKNOWN
SYMBOL. When you exit from a function containing a local variable
referenced in a watch statement, the value of the statement is displayed
as UNKNOWN SYMBOL. When you reenter the function, the local vari­
able will again have a value. You can avoid this limitation by using the
period operator to specify both the function and the variable. For ex­
ample, enter main. argc instead of just argc.

8.2 Setting Watch-Expression
and Watch-Memory Statements

The Watch command is used to set a watch statement that describes an ex­
pression or a range of addresses in memory. The value or values described
by this watch statement are shown in the watch window. The watch win­
dow is updated to show new values each time the value of the watch state­
ment changes during program execution. Since the watch window does not
exist in sequential mode, you must use the Watch List command to examine
the values of watch statements.

When setting a watch expression, you can specify the format in which the
value will be displayed. Type the expression followed by a comma and a
type specifier. If you do not give a type specifier, the CodeView debugger
displays the value in a default format. See Chapter 6, "Examining Data and
Expressions," for more information about type specifiers and the default
format.

134

Managing Watch Statements

Note

If your program directly accesses absolute addresses used by IBM or
IBM-compatible computers, you may sometimes get unexpected results
with the Display Expression and Dump commands. However, the Watch
command will usually show the correct values. This problem can arise if
the Code View debugger and your program try to use the same memory
location.

This often occurs when a program reads data directly from the screen
buffer of the display adapter. If you have an array called screen that
is initialized to the starting address of the screen buffer, the command
DB screen L 16 will display data from the CodeView display rather
than from the display of the program you are debugging. The command
WB screen L 16 will display data from the program's display (pro­
vided screen swapping or screen flipping was specified at start-up). This
happens because watch-statement values are updated during program
execution, and any values read from the screen buffer will be taken from
the output screen rather than from the debugging screen .

• Mouse

To set a watch-expression statement using the mouse, point to Watch on
the menu bar, press a mouse button and drag the highlight down to the
Add Watch selection, then release the button. A dialog box appears, asking
for the expression to be watched. Type the expression and press the ENTER
key or a mouse button.

You cannot use the mouse version of the command to specify a range of
memory to be watched, as you can with the dialog version.

• Keyboard

To set a watch-expression statement with a keyboard command, press ALT­
W to open the Watch menu, then press ALT-A to select Add Watch. A dialog
box appears, asking for the expression to be watched. Type the expression
and press the ENTER key.

135

Microsoft Code View

You cannot use the keyboard version of the command to specify a range of
memory to be watched, as you can with the dialog version.

• Dialog

To set a watch-expression statement or watch-memory statement using a
dialog command, enter a command line with the following syntax:

W? expression[,!ormat]
W[type] range

Watch expression
Watch memory

An expression used with the Watch command can be a simple variable, or a
complex expression using several variables and operators. The expression
should be no longer than the width of the watch window. You can specify
format using a printf type specifier. See Chapter 6, "Examining Data and
Expressions," or Appendix A, "Command and Mode Summary," for more
information.

When watching a memory location, type is a one-letter size specifier from
the following list:

Specifier Size

None Default type

B Byte

A ASCII

I Integer (signed decimal word)

U Unsigned (unsigned decimal word)

W Word

D Double word

S Short real

L Long real

T lO-byte real

The default type used if no type size is specified is the last type used by a
Dump, Enter, Watch Memory, or Tracepoint Memory command. If none of
these commands has been used during the session, the default type is byte.

136

Managing Watch Statements

The data will be displayed in a format similar to that used by the Dump
commands (see Chapter 6, "Examining Data and Expressions," for more in­
formation). The range can be any length, but only one line of data will be
displayed in the watch window. If you do not specify an ending address for
the range, the default range is one object.

• Examples

The following dialog commands display three watch statements in the
watch window:

W? code,c
W? (float)letters/words,f
WE buffer L 7

;* Example 1
;* Example 2
;* Example 3

These commands produce the watch window in Figure 8.1.

~ File Search View Run Watch Options Calls Trace! Go!
============ll count, c
0) code} c : I
1) (floatlletters/words}f : 4,777778
2) 3F65:0B20 20 20 43 4F 55 4E 54 COUNT

if (!i nword) { 89:
90:
91:

i f (code >) } l {

§4!
}

} else {

anal!dze(code}inword) ,

Hwords;
H characters;

95:
96:
97:
98:
99:
100:
101:
102:

I if (code (: " })

else {

)W? code)c ;* Example 1
)W? (float)letters/words) f ;* Example 2
)WB buffer L 7 ;* Example 3
).

inword : FALSE;

H characters;
analyze(code) inword);

count,exe

Figure 8.1 Watch-Command Statenl.ents in the Watch Window

137

Microsoft Code View

Example 1 displays the current value of the variable code. The c type
specifier indicates that the value is to be displayed as a character.

Example 2 displays the value of the expression (float) letters/words.
The type cast is necessary to specify real-number division rather than in­
teger division. The expression will be displayed in the default floating-point
format.

Example 3 displays the first seven values at the address of the variable
buffer. The characters to the right of the byte values in the watch win­
dow represent the corresponding ASCII characters (the word COUNT in the
example). Unprintable values (less than 33 or greater than 126) are
represented by dots. ASCII values are only shown if the specified type is B
(byte) or A (ASCII).

8.3 Setting Watchpoints

The Watchpoint command is used to set a conditional breakpoint called a
watchpoint. A watchpoint breaks program execution when the expression
described by its watch statement becomes true. You can think of watch­
points as "break when" points, since the break occurs when the specified
expression becomes true (nonzero).

A watch statement created by the Watchpoint command describes the ex­
pression that will be watched and compared to o. The statement remains in
memory until you delete it or quit the CodeView debugger. Any valid Code­
View expression can be used as the watchpoint expression as long as the ex­
pression is not wider than the watch window.

In window mode, watchpoint statements and their values are displayed
in high-intensity text in the watch window. In sequential mode, there is
no watch window, so the values of watchpoint statements can only be
displayed with the Watch List command (see Section 8.6 for more
information) .

Although a watchpoint expression can be any valid Code View expression,
the command works best with relational expressions that use the operators
==, < =, > =, !=, <, and >. Relational expressions always evaluate to
o (false) or 1 (true). Other expressions usually evaluate to larger numbers,
thus the break is always taken.

138

Managing Watch Statements

Note

An example of the problems involved with using nonrelational expres­
sions occurs if you accidentally type the simple assignment operator (=)
when you mean to use the equality operator (==). Using the simple as­
signment operator is legal, but it has unexpected side effects. For ex­
ample, the expression count=6 resets the value of count to 6 every
time you try to execute code. The effect is that the break is always
taken, so code is always executed one line at a time.

• Mouse

To set a watchpoint statement with the mouse, point to Watch on the
menu bar, press a mouse button and drag the highlight down to the Watch­
point selection, then release the button. A dialog box appears, asking for
the expression to be watched. Type the expression and press the ENTER key
or a mouse button.

• Keyboard

To execute the Watchpoint command with a keyboard command, press
ALT-W to open the Watch menu, then press ALT-W to select Watchpoint. A
dialog box appears, asking for the expression to be watched. Type the
expression and press the ENTER key.

• Dialog

To set a watchpoint using a dialog command, enter a command line with
the following syntax:

WP? expression[,!ormat]

The expression can be any valid Code View expression (usually a relational
expression). You can enter format as a printf type specifier, but there is lit­
tle reason to do so, since the expression value is normally either 1 or O.

139

Microsoft Code View

• Examples

The following dialog commands display two watch statements in the watch
window:

WP? lines==ll
WP? buffer [count] <65

;* Example 1
;* Example 2

These commands produce the watch window in Figure 8.2.

~ File Sea~ch View Run Watch Ovtions Calls T~ace! Go! count exe
=========~I count c 1F===============l
0) lines::11 : 0
1) buffe~[count](65 : 1

84:
85:
86:
87:
88:

§~l
92:
93:
94:
95:
96:
97:
98:
99:

>WP? lines::11

bytes +: num~ead;
fo~ (count: 0; count (: num~ead; ++count) {

code : buffe~[count];
if (code :: ! \n!)

} else {

++ lines;

1 f (code >) {
analyze(code~inwo~d);
i nwo~d : TRUl!.;
++wo~ds;

} I ++cha~acte~s;

i f (code <: ! !)
inwo~d : FALSE;

else {

>WP? buffe~[countJ(65
>.

Figure 8.2 Watchpoint-Command Statements in the Watch Window

Example 1 instructs the Code View debugger to break when the variable
1 ines is equal to 11. After setting this watchpoint, you could use the Go
command to execute until the condition becomes true.

140

Managing Watch Statements

Example 2 instructs the Code View debu~ger to break when the expression
buffer [count] becomes less than 65 (ASCII A). If buffer is an array of
ASCII characters and count is a loop counter that points to the current
position in the array, then the watchpoint has the effect of breaking for
digits, most punctuation marks, and other characters less than 65.

Note

Setting watchpoints significantly slows execution of the program being
debugged. The Code View debugger has to check to see if the expression
is true each time a source line is executed in source mode, or each time
an instruction is executed in assembly mode. Be careful when setting
watchpoints near large or nested loops. A loop that executes almost
instantly when run from MS-DOS can take many minutes if executed
from within the debugger with several watchpoints set.

Tracepoints do not slow Code View execution as much as watchpoints,
so you should use tracepoints when possible. For example, although you
can set a watchpoint on a Boolean variable (WP? mOVing), a trace­
point on the same variable (TP? mOVing) has essentially the same
effect and does not slow execution as much.

If you enter a seemingly endless loop, press CONTROL-BREAK or
CONTROL-C to exit. You will soon learn the size of loop you can safely
execute when watchpoints are set.

8.4 Setting Tracepoints

The Tracepoint command is used to set a conditional breakpoint called a
tracepoint. A tracepoint breaks program execution when there is a change
in the value of a specified expression or range of memory.

The watch statement created by the Tracepoint command describes the
expression or memory range to be watched and tested for change. The
statement remains in memory until you delete it or quit the Code View
debugger.

141

Microsoft Code View

In window mode, tracepoint statements and their values are shown in
high-intensity text in the watch window. In sequential mode, there is no
watch window, so the values of tracepoint statements can only be displayed
with the Watch List command (see Section 8.6, "Listing Watchpoints and
Tracepoints," for more information).

An expression used with the Tracepoint command must evaluate to an
"lvalue". In other words, the expression must refer to a memory location of
not more than 128 bytes. For example, i==lO would be invalid because it
is either 1 (true) or 0 (false) rather than a value stored in memory. The
expression syml + sym2 is invalid because it is the calculated sum of the
value of two memory locations. The expression bu f fer would be invalid if
bu f fer is an array of 130 bytes, but valid if the array is 120 bytes. Note
that if buffer is declared as char buffer [63J, the Tracepoint command
given with the expression bu f fer checks all 64 bytes of the array. The
same command given with the expression bu f fer [32 J means that only
one byte (the 33rd) will be checked.

Note

Register variables are not considered lvalues. Therefore, if i is declared
as register int i, the command TP? i is invalid. However, you
can still check for changes in the value of i. Use the Examine Symbols
command to learn which register contains the value of i. Then learn
the value of i. Finally, set up a watchpoint to test the value. For
example, use the following sequence of commands:

>X? i
3A79:0264 int

SI
>?i
10
>WP? @SI!=10
>

div ()
int i

When setting a tracepoint expression, you can specify the format in which
the value will be displayed. Type the expression followed by a comma and a
type specifier. If you do not give a type specifier, the Code View de bugger
displays the value in a default format. See Chapter 6, "Examining Data and
Expressions," for more information about type specifiers and the default
format.

142

Managing Watch Statements

• Mouse

To set a tracepoint-expression statement with the mouse, point to Watch
on the menu bar, press a mouse button and drag the highlight down to the
Tracepoint selection, then release the button. A dialog box appears, asking
for the expression to be watched. Type the expression and press the ENTER
key or a mouse button.

You cannot specify a range of memory to be watched with the mouse ver­
sion of the command as you can with the dialog version.

• Keyboard

To set a tracepoint-expression statement with a keyboard command, press
ALT-W to open the Watch menu, then press ALT-T to select Tracepoint. A
dialog box appears, asking for the expression to be watched. Type the
expression and press the ENTER key.

You cannot use the keyboard version of the command to specify a range of
memory to be watched, as you can with the dialog version.

• Dialog

To set a tracepoint using a dialog command, enter a command line with the
following syntax:

TP? expression, [format]
TP[type] range

Expression tracepoint
Memory tracepoint

An expression used with the Tracepoint command can be a simple variable
or a complex expression using several variables and operators. The expres­
sion should not be longer than the width of the watch window. You can
specify format using a printf type specifier if you do not want the value to
be displayed in the default format (decimal for integers or floating point for
real numbers). See Section 6.2, "Display Expression Command," for more
information.

In the memory-tracepoint form, range must be a valid address range and
type must be a one-letter memory-size specifier. If you specify only the start
of the range, the Codeview debugger displays one object as the default.

143

Microsoft Code View

Although no more than one line of data will be displayed in the watch win­
dow, the range to be checked for change can be any size up to 128 bytes.
The data will be displayed in the format used by the Dump commands (see
Chapter 6, "Examining Data and Expressions," for more information). The
valid memory-size specifiers are listed below:

Specifier Size

None Default type

B Byte

A ASCII

I Integer (signed decimal word)

U Unsigned (unsigned decimal word)

W Word

D Double word

S Short real

L Long real

T lO-byte real

The default type if no type size is specified is the last type used by a Dump,
Enter, Watch Memory, or Tracepoint Memory command. If none of these
commands has been used during the session, the default type is byte.

• Examples

The following dialog commands display three watch statements in the
watch window:

TP? prime ;* Example 1
TPB flags[OJ L 16 ;* Example 2

These commands produce the watch window in Figure 8.3 on the following
page.

144

Managing Watch Statements

~ File Searoh View Run Watoh Options Calls Traoe' Go' sieve,exe
=========~I sieve,o 1F=============i
9) pl'iMe : 3
1) 3AF5:9839 91 91 91 9991 91 9991 91 91 91 91 91 91 91 91 "" "'" ""'"

19 :
20:
21:
22:
23:
24:
25:
26:

~~!
30:
31:
32:
33:
34:

for (iter: 1~ iter (: 10; iterH) { 1* do ~rogram 10 times *1
oount : ~' 1* initialize prlme oounter *1
for (i : 0~ i (: SIZE; iH) 1* set all flags hue *1

f I agsL i] : TRUE'
for (i : 0' i (: SIZE; iH) {

I
}

if (f!a~s[i]) { 1* found a prime *1
prlme : i + i + 3; 1* twioe index + 3 *1
for (k : i + l.rime; k (: SIZE' k +: prime)

oountH;
}

1* prlmes found *1

printf(IIXd primes,\n ll oount);
}ri ntf(IIsi eve, 0 fi ni shed\n");

I*primes found in 10th pass *1

>TP? prime ;* Example 1
>TPB flags[0] L 16 ;* Example 2
>.

Figure 8.3 Tracepoints in the Watch Window

Example 1 instructs the Code View debugger to stop whenever the value of
the variable pr ime changes.

Example 2 instructs the debugger to stop whenever there is a change in the
value of any of the 16 bytes starting at the address of the variable flags.

145

Microsoft Code View

Note

Setting tracepoints significantly slows execution of the program being
debugged. The Code View debugger has to check to see if the expression
or memory range has changed each time a source line is executed in
source mode or each time an instruction is executed in assembly mode.
However, tracepoints do not slow execution as much as watchpoints. Be
careful when setting tracepoints near large or nested loops. A loop that
executes almost instantly when run from MS-DOS can take many
minutes if executed from within the debugger with several tracepoints
set.

If you enter a seemingly endless loop, press CONTROL-BREAK or
CONTROL-C to exit. Often you can tell how far you went in the loop by
the value of the tracepoint when you exited.

8.5 Deleting Watch Statements

The Watch Delete command enables you to delete watch statements that
were set previously with the Watch, Watchpoint, or Tracepoint command.

When you delete a watch statement in window mode, the statement disap­
pears and the watch window closes around it. For example, if there are
three watch statements in the window and you delete statement 1, the win­
dow is redrawn with one less line. Statement 0 remains unchanged, but
statement 2 becomes statement 1. If there is only one statement, the win­
dow disappears .

• Mouse

To delete a watch statement with the mouse, point to Watch on the menu
bar, press a mouse button and drag the highlight down to the Delete Watch
selection, then release the button. A dialog box appears, containing all the
watch statements. Point to the statement you want to delete and press the
ENTER key or a mouse button. The dialog box disappears and the watch
window is redrawn without the deleted watch statement.

146

Managing Watch Statements

• Keyboard

To execute the Execute command with a keyboard command, press ALT-W
to open the Watch menu, then press ALT-D to select Delete Watch. A dialog
box appears, containing all the watch statements. Use the UP and DOWN
ARROW keys to move the cursor to the statement you want to delete, then
press the ENTER key. The dialog box disappears and the watch window is
redrawn without the deleted watch statement.

• Dialog

To delete watch statements using a dialog command, enter a command line
with the following syntax:

Y number

When you set a watch statement, it is automatically assigned a number
(starting with 0). In window mode, the number appears to the left of the
watch statement in the watch window. In sequential mode, you can use
the Watch List (W) command to view the numbers of current watch state­
ments.

You can delete existing watch statements by specifying the number of the
statement you want to delete with the Delete Watch command. (The Y is a
mnemonic for Yank.)

You can use the asterisk (lie) to represent all watch statements.

• Examples

>Y 2 ;* Example 1
>

>Y * ;* Example 2
>

Example 1 deletes watch statement 2. Example 2 deletes all watch state­
ments and closes the watch window.

147

Microsoft CodeVlew

8.6 Listing Watchpoints and Tracepoints

The Watch List command lists all previously set watchpoints and trace­
points with their assigned numbers and their current values.

This command is the only way to examine current watch statements in
sequential mode. The command has little use in window mode, since watch
statements are already visible in the watch window.

• Mouse

The Watch List command cannot be executed with the mouse.

• Keyboard

The Watch List command cannot be executed with a keyboard command.

• Dialog

To list watch statements using a dialog command, enter a command line
with the following syntax:

w

The display is the same as the display that appears in the watch window in
window mode.

Note

148

The command letter for the Watch List command is the same as the
command letter for the memory version of the Watch command when
no memory size is given. The difference between the commands is that
the Watch List command never takes an argument. The Watch com­
mand always requires at least one argument.

• Example

>w
0) code,c I
1) (float) letters/words, f 4.777778
2) 3F65:0B20 20 20 43 4F 55 4E 54 COUNT
3) lines==11: 0
>

Managing Watch Statements

149

Chapter 9

Examining Code

9.1 Introduction 153
9.2 Set Mode Command 153
9.3 Unassemble Command 155
9.4 View Command 158
9.5 Current Location Command 161
9.6 Stack Trace Command 162

161

Examining Code

9.1 Introduction

Several Code View commands allow you to examine program code, or data
related to code. The following commands are discussed in this chapter:

Command

Set Mode (S)

Un assemble (U)

View (V)
Curren t Location (.)

Stack Trace (K)

Action

Sets format for code displays

Displays assembly instructions

Displays source lines

Displays the current location line

Displays functions or procedures

9.2 Set Mode Command

The Set Mode command sets the mode in which code is displayed. The two
basic display modes are source mode, in which the program is displayed as
source lines, and assembly mode, in which the program is displayed as
assembly-language instructions. These two modes can be combined in
mixed mode, in which the program is displayed with both source lines and
assembly-language instructions.

In sequential mode, there are three display modes: source, assembly, and
mixed. These modes affect the output of commands that display code (Re­
gister, Trace, Program Step, and Unassemble).

In window mode, there are two display modes: source and assembly, but
there are additional options for mixing source and assembly modes and con­
trolling the display of assembly-language instructions. The display mode
affects the way the program is shown in the display window.

Source and mixed modes are only available if the executable file contains
symbols in the Code View format. Programs that do not contain symbolic
information (including all .COM files) are displayed in assembly mode.

153

Microsoft Code View

• Mouse

To set the display mode with the mouse, point to View on the menu bar,
press a mouse button and drag the highlight to either the Source selection
for source mode, or the Assembly selection for assembly mode. Then release
the button.

You can further control the display of assembly-language instructions by
making selections from the Options menu. See Section 3.2.3.6, "Using the
Options Menu," for more information.

• Keyboard

To change the display mode with a keyboard command, press the F3 key. If
the current mode is source, the new mode will be assembly. If the current
mode is assembly, the new mode will be source. This command works in ei­
ther window or sequential mode. In sequential mode, the word source or
assembly is displayed to indicate the new mode.

In window mode you can further control the display of assembly-language
instructions by making selections from the Options menu. See Section
3.2.3.6, "Using the Options Menu," for more information.

• Dialog

To set the display mode from the dialog window, enter a command line
with the following syntax:

S[+: -: &]

If the plus sign is specified (8+), source mode is selected, and the word
source is displayed.

If the minus sign is specified (8-), assembly mode is selected, and the word
assemb 1 y is displayed. In window mode, the display will include any as­
sembly options, except the Mixed Source Option, previously toggled on
from the Options menu. The Mixed Source option is always turned off by
the S- command.

If the ampersand is specified (S&), mixed mode is selected, and the word
mixed is displayed. In window mode, the display will include any assembly
options previously toggled on from the Options menu. In addition, the
Mixed Source option will be turned on by the S& command.

154

Examining Code

If no argument is specified (8), the current mode (source, assembly, or
mixed) is displayed.

The Unassemble command in sequential mode is an exception in that it
displays mixed source and assembly with both the source (8+) and mixed
(8&) modes. When you enter the dialog version of the Set Mode command,
the Code View debugger outputs the name of the new display mode: source,
assembly, or mixed.

Note

80286 protected-mode mnemonics cannot be displayed in assembly or
mixed mode. They will not be shown in the display window in window
mode.

• Examples

>S+
source
>S­
assembly
>S&
mixed
>

The examples show the source mode being changed to source, assembly,
and mixed. In window mode, the commands change the format of the
display window. In sequential mode, the commands change the output from
the commands that display code (Register, Trace, Program Step, Go, Exe­
cute, and Un assemble). See the sections on individual commands for exam­
ples of how they are affected by the display mode.

9.3 Unassemble Command

The Un assemble command displays the assembly-language instructions of
the program being debugged. It is most useful in sequential mode, where it
is the only method of examining a sequence of assembly-language instruc­
tions. In window mode it can be used to display a specific portion of
assembly-language code in the display window.

155

Microsoft Code View

• Mouse

The Unassemble command has no direct mouse equivalent, but you can
view unassembled code at any time by changing the mode to assembly or
mixed (see Section 9.2, "Set Mode Command," for more information).

• Keyboard

The Unassemble command has no direct keyboard equivalent, but you can
view unassembled code at any time by changing the mode to assembly or
mixed (see Section 9.2, "Set Mode Command," for more information).

• Dialog

To display un assembled code using a dialog command, enter a command
line with the following syntax:

U [address: range]

The effect of the command varies depending on whether you are in sequen­
tial or window mode.

In sequential mode, if you do not specify address or range, the disassembled
code begins at the current unassemble address and shows the next eight
lines of instructions. The unassemble address is the address of the instruc­
tion after the last instruction displayed by the previous Unassemble com­
mand. If the Unassemble command has not been used during the session,
the un assemble address is the current instruction.

If you specify an address, the disassembly starts at that address and shows
the next eight lines of instructions. If you specify a range, the instructions
within the range will be displayed.

The format of the display depends on the current display mode (see Section
9.2, "Set Mode Command," for more information). If the mode is source
(S+) or mixed (S&), the Code View debugger displays source lines mixed
with unassembled instructions. One source line is shown for each
corresponding group of assembly-language instructions. If the display mode
is assembly, only assembly-language instructions are shown.

In window mode, the Unassemble command changes the mode of the
display window to assembly. The display format will reflect any options
previously set from the Options menu. There is no output to the dialog win­
dow. If address is given, the instructions in the display window will begin at

156

Examining Code

the specified address. If range is given, only the starting address will be
used. If no argument is given, the debugger scrolls down and displays the
next screen of assembly-language instructions.

Note

80286 protected-mode mnemonics cannot be displayed with the Unas­
semble command.

• Examples

>8& ;* Example 1
mixed
>U Oxll
4E21:0011 8BEC
4E21:0013 B82800
4E21:0016 E8060C
4E21:0019 57
4E21:001A 56

MOV
MOV
CALL
PUSH
PUSH

char inward = FALSE;

BP,SP
AX,0028

chkstk (OCIF)
01
SI

29:
4E21:001B
31:
4E21:001F
4E21:0023

C6460COO MOV Byte Ptr [inwordJ,OO
if (argc> 1) name argv[lJ;

837E0401 CMP Word Ptr [argcJ,Ol
7F03 JG _main+18 (0028)

>8- ;* Example 2
assembly
>U Oxll
4E21:0011 8BEC
4E21:0013 B82800
4E21:0016 E8060C
4E21:0019 57
4E21:001A 56
4E21:001B C646DCOO
4E21:001F 837E0401
4E21:0023 7F03
>

MOV
MOV
CALL
PUSH
PUSH
MOV
CMP
JG

BP,SP
AX,0028

chkstk (OCIF)
01
SI
Byte Ptr [inwordJ,OO
Word Ptr [argcJ,Ol
_main+18 (0028)

Example 1 sets the mode to mixed and unassembles eight lines of disas­
sembled code, plus whatever source lines are encountered within those lines.
The display would be the same if the mode were source. Example 2 sets the
mode to assembly and repeats the same command.

167

Microsoft Code View

9.4 View Command

The View command displays the lines of a text file (usually a source module
or include file). It is most useful in sequential mode, where it is the only
method of examining a sequence of source lines. In window mode, the View
command can be used to page through the source file or to load a new
source file .

• Mouse

To load a new source file with the mouse, point to File on the menu bar,
press a mouse button and drag the highlight to the Load selection, then
release the mouse. A dialog box appears, asking for the name of the file you
wish to load. Type the name of the file, and press the ENTER key or a mouse
button. The new file appears in the display window.

The paging capabilities of the View command have no direct mouse
equivalent, but you can move about in the source file by pointing to the up
or down arrows on the scroll bars and then pressing different mouse but­
tons. See Chapter 3, "The CodeView Display," for more information about
paging with the mouse.

• Keyboard

To load a new source file with a keyboard command, press ALT-F to open
the File menu, then press ALT-L to select Load. A dialog box appears, asking
for the name of the file you wish to load. Type the name of the file, and
press the ENTER key. The new file appears in the display window.

The paging capabilities of the View command have no direct mouse
equivalent, but you can move about in the source file by first putting the
cursor in the display window with the F6 key, then pressing the PGUP, PGDN,
HO:ME, END, and UP ARROW and DOWN ARROW keys. See Chapter 3, "The
CodeView Display," for more information about paging with keyboard com­
mands.

168

Examining Code

• Dialog

To display source lines using a dialog command, enter a command line with
the following syntax:

v [expression]

Since an address for the View command is often specified as a line number
(with an optional source file), a more specific syntax for the command
would be as follows:

v [. [filename:] linenumber]

The effect of the command varies depending on whether you are in sequen­
tial or window mode.

In sequential mode, the View command displays eight source lines. The
starting source line is one of the following:

• The current source line if no argument is given.

• The specified linenumber. If filename is given, the specified file is
loaded, and the linenumber refers to lines in it.

• The address that expression evaluates to. For example, expression
could be a procedure name or an address in the segment: offset for­
mat. The code segment is assumed if no segment is given.

In sequential mode, the View command is not affected by the current
display mode (source, assembly, or mixed); source lines are displayed
regardless of the mode.

In window mode, if you enter the View command while the display mode is
assembly, the Code View debugger will automatically switch back to source
mode. If you give linenumber or expression, the display window will be
redrawn so that the source line corresponding to the given address will
appear at the top of the source window. If you specify a filename with a
linenumber, the specified file will be loaded.

If you enter the View command with no arguments, the display will scroll
down one line short of a page; that is, the source line that was at the bot­
tom of the window will be at the top.

159

Microsoft Code View

Note

The View command with no argument is similar to pressing the PGDN
key, or clicking right on the DOWN ARROW key with the mouse. The
difference is that pressing the PGDN key enables you to scroll down one
more line.

• Examples

>V countwords
58: char
59: int
60:
61:
62:
63:
64:
65:
>

;* Example 1
inword;
numread;
{
int count;

bytes += numread;
for (count = 0; count <= numread; ++count) {

char code;

Example 1 (shown in sequential mode) displays eight source lines, beginning
at the function countwords.

> V . rna th . c : 30
30:
31:
32:
33:
34:
35:
36:
37:
>

;* Example 2
register int j;

for (j = q; j >= 0; j--)
if (t[j] + p[j] > 9) {

p[j] += t[j] - 10;
p [j -lJ += 1;

} else
p[jJ += t[j];

Example 2 loads the source file math. c and displays eight source lines
starting at line 30.

160

Examining Code

9.5 Current Location Command

The Current Location command displays the source line or assembly­
language instruction corresponding to the current program location.

• Mouse

The Current Location command cannot be executed with the mouse.

• Keyboard

The Current Location command cannot be executed with a keyboard
command.

• Dialog

To display the current location line using a dialog command, enter a COIIl­

mand line with the following syntax:

In sequential mode, the command displays the current source line. The line
is displayed regardless of whether the current debugging mode is source or
assembly. If the program being debugged has no symbolic information, the
command will be ignored.

In window mode, the command puts the current program location (marked
with reverse video or a contrasting color) in the center of the display win­
dow. The display mode (source or assembly) will not be affected. This com­
mand is useful if you have scrolled through the source code or assembly­
language instructions so that the current location line is no longer visible.

For example, if you are in window mode and have executed the program
being debugged to somewhere near the start of the program, but you have
scrolled the display to a point near the end, the Current Location command
returns the display to the current program location.

161

Microsoft Code View

• Example

>.
for (i = 0; i <= SIZE; i++);
>

The example illustrates how to display the current source line in sequential
mode. The same command in window mode would not produce any output,
but it could change the text shown in the display window.

9.6 Stack Trace Command

The Stack Trace command allows you to display functions that have been
called during program execution. The first line of the display shows the
name of the current function. The succeeding lines (if any) list any other
functions that were called to reach the current address.

For each function, the values of any arguments are shown in parentheses
after the function name. Values are shown in the current radix (the default
is decimal).

The term "stack trace" is used because, as each function is called, its
address and arguments are stored (pushed) on the program stack. There­
fore, tracing through the stack shows the currently active functions. For C
programs, the main function will always be at the bottom of the stack.

The Stack Trace command also enables you to find and view the source
lines where individual functions were called.

Note

162

This discussion refers to functions, since that is the terminology for C
programs. In assembly mode, the term "procedure" may be more accu­
rate. If you are using the Code View debugger to debug assembly­
language programs, the Stack Trace command will only work if pro­
cedures were called with the calling convention used by Microsoft
languages. This calling convention is explained in Chapter 10, "Inter­
faces with Other Languages," of the Microsoft C Compiler User's Guide.

Examining Code

• Mouse

To view a stack trace with the mouse, point to Calls on the menu bar and
press a mouse button. The Calls menu will appear, showing the current
function at the top and other functions below it in the reverse order in
which they were called; for example, the first function called will be at the
bottom. The values of any function arguments will be shown in parentheses
following the functions.

If you want to view code at the point where one of the functions was called,
hold the mouse button down and drag the highlight to the function below
the one you want to view, then release the button. The cursor will move to
the calling source line (in source mode) or the calling instruction (in assem­
bly or mixed mode). In other words, the cursor will indicate the calling loca­
tion in the selected function where the next-level function was called. If you
select the current (top-level) function, the cursor moves to the current loca­
tion in that function.

• Keyboard

To view a stack trace with a keyboard command, press ALT-C to open the
Calls menu. The menu will ~how the current function at the top, and other
functions below it in the reverse order in which they were called; for exam­
ple, the first function called will be at the bottom. The values of any func­
tion arguments will be shown in parentheses following the functions.

If you want to view code at the point where one of the functions was called,
press the DOWN ARROW key to move the highlight to the function below the
one you want to view, then press the ENTER key. The cursor will move to
the calling source line (in assembly mode) or the calling instruction (in
assembly or mixed mode). In other words, the cursor will indicate the call­
ing location in the selected function where the next-level function was
called. If you select the current (top-level) function, the cursor moves to the
current location in that function.

• Dialog

To display a stack trace with a dialog command, enter a command line
with the following syntax:

K

The output from the Stack Trace dialog command lists the functions in the
reverse order in which they were called. The arguments to each function

163

Microsoft Code View

are shown in parentheses. Finally, the line number from which the function
was called is shown.

You can enter the line number as an argument to the View or Unassemble
command if you want to view code at the point where the function was
called.

In window mode, the output from the Stack Trace dialog command appears
in the dialog window . You may need the dialog version rather than the
menu version, since the Calls menu can be truncated if there are too many
functions or function arguments. The dialog display wraps around if neces­
sary, so that you can see all functions and all arguments .

• Example

>K
analyze(67,O) , line 94
countwords(O,512) , line 73
main(2,5098) , line 42
>

In the example, the first line of output indicates that the current function is
ana 1 yze. Its first argument currently has a decimal value of 67 and its
second argument has a value of O. The current location in this function is
line 94.

The second line indicates that ana 1 yze was called by countwords, and
that its arguments have the values 0 and 512. Function analyze was
called from 1 i"ne 73 of function countwords.

Likewise, countwords was called from 1 ine 42 of main and its argu­
ments have the values 2 and 5098.

If the radix had been set to 16 or 8 using the Radix (N) command, the
arguments would be shown in that radix. For example, the last line would
be shown as main (Ox2, Ox13ea) in hexadecimal or main (02,011752)
in octal.

164

Chapter 10

Modifying Code or Data

10.1 Introduction 167
10.2 Assemble Command 167
10.3 Enter Commands 170
10.3.1 Enter Command 174
10.3.2 Enter Bytes Command 175
10.3.3 Enter ASCII Command 175
10.3.4 Enter Integers Command 176
10.3.5 Enter Unsigned Integers Comrnand 177
10.3.6 Enter Words Command 177
10.3.7 Enter Double Words Command 178
10.3.8 Enter Short Reals Command 179
10.3.9 Enter Long Reals Command 180
10.3.10 Enter 10-Byte Reals Command 180
10.4 Register Command 181

165

Modifying Code or Data

10.1 Introduction

The Code View debugger provides the following commands for modifying
code or data in memory:

Command

Assemble (A)

Enter (E)

Register (R)

Action

Modifies code

Modifies memory, usually data

Modifies registers and flags

Changes to code are temporary. You can use them for testing in the Code­
View debugger, but you cannot save them or permanently change the pro­
gram. To make permanent changes, you must modify the source code and
recompile.

10.2 Assemble Command

The Assemble command assembles 8086-family (8086, 8087, 8088, 80186,
80287, and 80286 unprotected) instruction mnemonics and places the
resulting instruction code into memory at a specified address. The only
8086-family mnemonics that cannot be assembled are 80286 protected­
mode mnemonics .

• Mouse

The Assemble command cannot be executed with the mouse.

• Keyboard

The Assemble command cannot be executed with a keyboard command.

167

Microsoft Code View

• Dialog

To assemble code using a dialog command, enter a command line with the
following syntax:

A[address]

If address is specified, the assembly starts at that address; otherwise the
current assembly address is assumed.

The assembly address is normally the current address (the address pointed
to by the OS and IP registers). However, when you use the Assemble com­
mand, the assembly address is set to the address immediately following the
last instruction where you assembled an instruction. When you enter any
command that executes code (Trace, Program Step, Go, or Execute), the as­
sembly address is reset to the current address.

When you type the Assemble command, the assembly address is displayed.
The Code View debugger then waits for you to enter a new instruction in
the standard 8086-family instruction-mnemonic form. You can enter in­
structions in uppercase, lowercase, or both.

To assemble a new instruction, type the desired mnemonic and press the
ENTER key. The CodeView debugger assembles the instruction into memory
and displays the next available address. Continue entering new instructions
until you have assembled all the instructions you want. To conclude assem­
bly and return to the Code View prompt, press the ENTER key only.

If an instruction you enter contains a syntax error, the debugger displays
the message ~ Syntax err' or, redisplays the current assembly address,
and waits for you to enter a correct instruction. The caret symbol in the
message will point to the first character the Code View debugger could not
interpret.

The following nine rules govern entry of instruction mnemonics:

168

1. The far-return mnemonic is RETF.

2. String mnemonics must explicitly state the string size. For example,
use MOVSW to move word strings and MOVSB to move byte
strings.

3. The CodeView debugger automatically assembles short, near, or far
jumps and calls, depending on byte displacement to the destination
address. These may be overridden with the NEAR or FAR prefix,
as shown in the following examples:

Modifying Code or Data

JMP OxS02
JMP NEAR OxSOS
JMP FAR OxSOA

The NEAR prefix can be abbreviated to NE, but the FAR prefix
cannot be abbreviated.

4. The Code View debugger cannot determine whether some operands
refer to a word memory location or to a byte memory location. In
these cases, the data type must be explicitly stated with the prefix
WORD PTR or BYTE PTR. Acceptable abbreviations are WO
and BY. Examples are shown below:

MOV WORD PTR [BP],l
MOV BYTE PTR [SI-I] ,symbol
MOV WO PTR [BP],l
MOV BY PTR [SI-l],symbol

5. The Code View debugger cannot determine whether an operand
refers to a memory location or to an immediate operand. The
debugger uses the convention that operands enclosed in square
brackets refer to memory. Two examples are shown below:

MOV AX,Ox21
MOV AX, [Ox2I]

The first statement moves Ox21 into AX.. The second statement
moves the data at offset Ox21 into AX..

6. The DB instruction assembles byte values directly into memory.
The DW instruction assembles word values directly into memory,
as shown in the following examples:

DB 1,2,3,4,"This is an example."
DW 1000,2000,3000, "Bach"

7. The Code View debugger supports all forms of indirect register
instructions, as shown in the following examples:

ADD BX, [BP+2] . [SI-l]
POP [BP+DI]
PUSH [SI]

8. All instruction-name synonyms are supported, as shown in the fol­
lowing examples:

LOOPZ OxlOO
LOOPE OxlOO
JA Ox200
JNBE Ox200

169

Mic.rosoft Code View

If you assemble instructions and then examine them with the
Unassemble command (U), the CodeView debugger may show
synonymous instructions, rather than the ones you assembled.

9. Do not assemble and execute 8087 or 80287 instructions if your sys­
tem is not equipped with one of these math coprocessor chips. The
WAIT instruction, for example, will cause your system to hang up
if you try to execute it without the appropriate chip.

• Example

>U Ox40 L 1
39BO:0040 89C3 MOV BX/AX
>A Ox40
39BO:0040 MOV ex, AX
39BO:0042
>U Ox40 L 1
39BO:0040 89Cl MOV CX/AX
>

The example modifies the instruction at address Ox40 so that it moves
data into the ex register instead of the BX register. The Unassemble com­
mand (U) is used to show the instruction before and after the assembly.

You can modify a portion of code for testing, as in the example, but you
cannot save the modified program. You must modify your source code and
recompile.

10.3 Enter Commands

The Code View debugger has several commands for entering data to
memory. You can use these commands to modify either code or data,
though code can usually be modified more easily with the Assemble com­
mand (A). The Enter commands are listed below:

Command Command Name

E Enter (size is the default type)

EB En ter Bytes

EA Enter ASCII

170

Modifying Code or Data

EI Enter Integers

EU Enter Unsigned Integers

EW Enter Words

ED Enter Double Words

ES Enter Short Reals

EL Enter Long Reals

ET En ter 10-Byte Reals

• Mouse

The Enter commands cannot be executed with the mouse.

• Keyboard

The Enter commands cannot be executed with keyboard commands.

• Dialog

To enter data to memory with a dialog command, enter a command line
with the following syntax:

E[type] address [list]

The type is a one-letter specifier that indicates the type of the data to be
entered. The address indicates where the data will be entered. If no segment
is given in the address, the data segment (DS) is assumed.

The list can consist of one or more expressions that evaluate to data the
size of the Enter command. This data will be entered to memory at address.
If one of the values in the list is invalid, an error message will be displayed.
The values preceding the error are entered; values at and following the
error are not entered.

The expressions in the list are evaluated in the current radix, regardless of
the size and type of data being entered. For example, if the radix is 10 and
you give the value 10 in a list with the Enter Words command, the decimal
value 10 will be entered even though word values are normally entered in
hexadecimal. This means that the Enter Words, Enter Integers, and Enter
Unsigned Integers commands are identical when used with the list method,
since 2-byte data is being entered for each command.

171

Microsoft Code View

If list is not given, the Code View debugger will prompt for values to be
entered to memory. Values entered in response to prompts are accepted in
hexadecimal for the Enter Bytes, Enter ASCII, Enter Words, and Enter
Double Words commands. The Enter Integers command accepts signed
decimal integers, while the Enter Unsigned Integers command accepts
unsigned decimal integers. The Enter Short Reals, Enter Long Reals, and
Enter 10-Byte Reals commands accept decimal floating-point values.

With the prompting method of data entry, the Code View debugger prompts
for a new value at address by displaying the address and its current value.
You can then replace the value, skip to the next value, return to a previous
value, or exit the command, as explained below:

• To replace the value, type the new value after the current value.

• To skip to the next value, press the SPACEBAR. Once you have
skipped to the next value, you can change its value or skip to the
next value. If you pass the end of the display, the CodeView
debugger displays a new address to start a new display line.

• To return to the preceding value, type a backslash (\). When you
return to the preceding value, the debugger starts a new display line
with the address and value.

• To stop entering values and return to the Code View prompt, press
the ENTER key. You can exit the command at any time.

Sections 10.3.1-10.3.10 discuss the Enter commands in order of the size of
data they accept.

• Examples

>EW place 16 32 ;* Example 1

Example 1 shows how to enter two word-sized values at the address place.
If the default radix (decimal) is in effect, this command enters the hexadeci­
mal values Ox10 and Ox20.

>EW place ;* Example 2

3DA5:0B20 OOF3.

Example 2 illustrates the prompting method of entering data. When you
supply the address where you want to enter data but supply no data to be
entered there, the Code View debugger displays the current value of the
address and waits for you to enter a new value. The underscore in these
examples represents the Code View cursor. You could change the value f 3

172

Modifying Code or Data

to the new value 16 (Ox10) by typing 10 (but don't press the ENTER key
yet). The value must be typed in hexadecimal for the Enter Words com­
mand, as shown below:

>EW place ;* Example 2

3DA5:OB20 00F3.10_

You could then skip to the next value by pressing the SPACEBAR. The
Code View debugger responds by displaying the value of the next value, as
shown below:

>EW place ;* Example 2

3DA5:OB20 00F3.10 4F20.

You could then type another hexadecimal value, such as 30:

>EW place ;* Example 2

3DA5:OB20 00F3.10 4F20.30_

Press the SPACEBAR to move to the next value:

>EW place ;* Example 2

3DA5:OB20 00F3.10 4F20.30 3DCl.

Assume you realize that the last value entered, 30, is incorrect. You really
wanted to enter 20. You could return to the previous value by typing a
backslash. The Code View debugger starts a new line, starting with the pre­
vious value. Note that the backslash is not echoed:

>EW place ;* Example 2

3DA5:OB20 00F3.10 4F20.30 3DCl.
3DA5:OB22 0030.

Type the correct value, 20:

>EW place ;* Example 2

3DA5:OB20 00F3.10 4F20.30 3DCl.
3DA5:OB22 0030.20_

173

Microsoft Code View

If this is the last value you want to enter, press the ENTER key to stop. The
Code View prompt reappears, as shown below:

>EW place ;* Example 2

30A5:0B20 00F3.10 4F20.30 30el.
30A5:0B22 0030.20
>

10.3.1 Enter Command

• Syntax

E address [list]

The Enter command enters one or more values into memory at the specified
address. The data is entered in the format of the default type, which is the
last type specified with a Dump, Enter, Watch Memory, or Tracepoint
Memory command. If none of these commands has been entered during the
session, the default type is bytes.

Use this command with caution when entering values in the list format;
values will be truncated if you enter a word-sized value when the default
type is actually byte. If you are not sure of the current default type, specify
the size in the command.

Important

174

The Execute command and the Enter command have the same com­
mand letter (E). The difference is that the Execute command never
takes an argument; the Enter command always requires at least one
argument.

Modifying Code or Data

10.3.2 Enter Bytes Command

• Syntax

EB address [list]

The Enter Bytes command enters one or more byte values into memory at
address. The optional list can be entered as a list of expressions separated
by spaces. The expressions are evaluated and entered in the current radix.
If list is not given, the Code View debugger prompts for new values, which
must be entered in hexadecimal.

The Enter Bytes command can also be used to enter strings, as described in
Section 10.3.3, "Enter ASCII Command."

• Examples

>EB Ox100 10 20 30
>

;* Example 1

If the current radix is 10, Example 1 replaces the three bytes at DS:OxlOO,
DS:Ox101, and DS:Oxl02 with the decimal values 10, 20, and 30.

>EB OxlOO ;* Example 2

3DA5:0100 130F.A
>

Example 2 replaces the byte at DS:Ox100 with 10 (OxA).

10.3.3 Enter ASCll Conunand

• Syntax

EA address [list]

The Enter ASCII command works in the same way as the Enter Bytes com­
mand (EB) described in Section 10.3.2, "Enter Bytes Command." The list"
version of this command can be used to enter a string expression. You can
include escape sequences in strings.

176

Microsoft Code View

• Example

>EA message "Can\'t open file"
>

In the example above, the string Can \ 't open f i 1 e is entered starting
at the symbolic address message.

You can also use the Enter Bytes command to enter a string expression, or
you can enter nonstring values using the Enter ASCII command, as
described in Section 10.3.2, "Enter Bytes Command."

10.3.4 Enter Integers Command

• Syntax

EI address [list]

The Enter Integers command enters one or more word values into memory
at address using the signed-integers format. With the CodeView debugger,
a signed integer can be any decimal integer between -32768 and 32767.

The optional list can be entered as a list of expressions separated by spaces.
The expressions are entered and evaluated in the current radix. If list is not
given, the Code View debugger prompts for new values, which must be
entered in decimal.

• Examples

>EI Ox100 -10 10 - 20
>

;* Example 1

If the current radix is 10, Example 1 replaces the three integers at
DS:Ox100, DS:Ox102, and DS:Ox104 with the decimal values -10, 10, and
-20.

>EI Ox100 ;* Example 2

3DA5 : 0100 130F. - 10
>

Example 2 replaces the integer at DS:Ox100 with -10.

176

Modifying Code or Data

10.3.5 Enter Unsigned Integers Command

• Syntax

EU address [list]

The Enter Unsigned Integers command enters one or more word values into
memory at address using the unsigned-integers format. With the Code View
debugger, a signed integer can be any decimal integer between 0 and 65535.

The optional list can be entered as a list of expressions separated by spaces.
The expressions are entered and evaluated in the current radix. If list is not
given, the Code View debugger prompts for new values, which must be
entered in decimal.

• Examples

>EU Ox100 10 20 30
>

;* Example 1

If the current radix is 10, Example 1 replaces the three unsigned integers at
DS:Ox100, DS:Ox102, and DS:Ox104 with the decimal values 10, 20, and 30.

>EU OxlOO ;* Example 2

3DA5:0100 130F.10
>

Example 2 replaces the integer at DS:Ox100 with 10.

10.3.6 Enter Words Command

• Syntax

EW address [list]

The Enter Words command enters one or more word values into memory at
address.

177

Microsoft Code View

The optional list can be entered as a list of expressions separated by spaces.
The expressions are entered and evaluated in the current radix. If list is not
given, the Code View debugger prompts for new values, which must be
entered in hexadecimal.

• Examples

>EW Ox100 10 20 30
>

;* Example 1

If the current radix is 10, Example 1 replaces the three words at DS:Ox100,
DS:Ox102, and DS:Ox104 with the hexadecimal values A, 14, and IE.

>EW OxlOO ;* Example 2

3DA5:0100 130F.A
>

Example 2 replaces the integer at DS:Ox100 with 10 (OxA).

10.3.7 Enter Double Words Command

• Syntax

ED address [list]

The Enter Double Words command enters one or more double-word values
into memory at address. Double words are displayed and entered in the
segment: offset address format; that is, two words separated by a colon (:). If
the colon is omitted and only one word entered, only the offset portion of
the address will be changed.

The optional list can be entered as a list of expressions separated by spaces.
The expressions are entered and evaluated in the current radix. If list is not
given, the Code View debugger prompts for new values, which must be
entered in hexadecimal.

178

Modifying Code or Data

• Examples

>ED Ox100 8700:12008 ;* Example 1
>

If the current radix is 10, Example 1 replaces the double words at DS:Ox100
with the hexadecimal address 21FC: 2EE8 (8700: 12008).

>ED Ox100 ;* Example 2

3DA5:00C8 21fC:2EE8.2EE9
>

Example 2 replaces the offset portion of the double word at DS:Ox100 with
Ox2EE 9. Since the segment portion of the address is not provided, the
existing segment (Ox21FC) is unchanged.

10.3.8 Enter Short Reals Cormnand

• Syntax

ES address [listll

The Enter Short Reals command enters one or more short-real values into
memory at address.

The optional list can be entered as a list of real numbers separated by
spaces. The numbers must be entered in decimal, regardless of the current
radix. If list is not given, the Code View debugger prompts for new values,
which must be entered in decimal. Short-real numbers can be entered either
in floating-point format 01 in scientific-notation format.

• Examples

>ES Ox100 23.479 1/4 -1.65E+4 235
>

;* Example 1

Example 1 replaces the four numbers at DS:Ox100, DS:Ox104, DS:Ox108,
and DS:Ox10C with the real numbers 23.479, O. 25, -1650.0, and
235. O.

>ES pi
3DA5:0064 42 79 74 65
>

;* Example 2
7.215589E+022 3.141593

179

Microsoft Code View

Example 2 replaces the number at the symbolic address pi with
3.141593.

10.3.9 Enter Long Reals Command

EL address [list]

The Enter Long Reals command enters one or more long-real values into
memory at address.

The optional list can be entered as a list of real numbers separated by
spaces. The numbers must be entered in decimal, regardless of the current
radix. If list is not given, the Code View debugger prompts for new values,
which must be entered in decimal. Long-real numbers can be entered either
in floating-point format or in scientific-notation format.

• Examples

>EL Ox100 23.479 1/4 -1.65E+4 235
>

;* Example 1

Example 1 replaces the four numbers at DS:OxlOO, DS:Oxl08, DS:OxllO,
and DS:Oxl18 with the real numbers 23.479, 0.25, -1650.0, and
235. O.

>EL pi ;* Example 2
3DA5:0064 42 79 74 65 DC OF 49 40 5.012391E+00l 3.141593
>

Example 2 replaces the number at the symbolic address pi with
3.141593.

10.3.10 Enter 10-Byte Reals Command

• Syntax

EL address [list]

The Enter IO-Byte Reals command enters one or more IO-byte-real values
into memory at address.

180

Modifying Code or Data

The optional list can be entered as a list of real numbers separated by
spaces. The numbers must be entered in decimal, regardless of the current
radix. If list is not given, the Code View debugger prompts for new values,
which must be entered in decimal. The numbers can be entered either in
floating-point format or in scientific-notation format.

• Examples

>ET OxlOO 23.479 1/4 -1.65E+4 235
>

;* Example 1

Example 1 replaces the four numbers at DS:Ox100, DS:Ox10A, DS:Oxl14,
and DS:Oxl18 with the real numbers 23.479, 0.25, -1650.0, and
235.0.

>ET pi ;* Example 2
3DA5:0064 42 79 74 65 DC OF 49 40 7F BD -3.292601E-193 3.141593
>

Example 2 replaces the number at the symbolic address pi with
3.141593.

10.4 Register Command

The Register command has two functions. It displays the contents of the
central processing unit (CPU) registers, and it can also change the values of
those registers. The modification features of the command are explained in
this section. The display features of the Register command are explained in
Chapter 6, "Examining Data and Expressions."

• Mouse

The only register that can be changed with the mouse is the flags register.
The register's individual bits (called flags) can be set or cleared. To change
a flag, first make sure the register window is open. The window can be
opened by selecting Registers from the Options menu, or by pressing the
F2 key.

The flag values are shown as mnemonics in the bottom of the window.
Point to the flag you want to change and click either button. The mne­
monic word representing the flag value will change. The mnemonics for
each flag are shown in the third and fifth columns of Table 10.1. The color

181

Microsoft Code View

or highlighting of the flag will also be reversed when you change a flag. Set
flags are shown in red on color monitors and in high-intensity text on two­
color monitors. Cleared flags are shown in light blue or normal text.

• Keyboard

The registers cannot be changed with keyboard commands.

• Dialog

To change the value of a register with a dialog command, enter a command
line with the following syntax:

R [registername[[=llexpressionllll

To modify the value in a register, type the command letter R followed by
registername. The Code View debugger displays the current value of the
register and prompts for a new value. Press the ENTER key if you only want
to examine the value. If you want to change it, type an expression for the
new value and press the ENTER key.

As an alternative, you can type both registername and expression in the
same command. You can use the equal sign (=) between registername and
expression, but a space has the same effect.

The register name can be any of the following names: AX, BX, OX, DX,
OS, DS, SS, ES, SP, BP, SI, DI, IP, or F (for flags).

To change a flag value, supply the register name F when you enter the Reg­
ister command. The command displays the current value of each flag as a
two-letter name. The flag values are shown in Table 10.1.

Table 10.1

Flag-Value Mnemonics

Set Set Clear Clear
Flag Name Dialog Window Dialog Window

Overflow OV overflow NY novrflow

Direction DN down UP up

Interrupt EI enable DI disable

Sign NG negative PL positive

182

Modifying Code or Data

Table 10.1 (continued)

Set Set Clear Clear
Flag Name Dialog Window Dialog Window

Zero ZR zero NZ not zero

Auxiliary carry AC auxcarry NA no auxcy

Parity PE even PO odd

Carry CY carry NC no carry

At the end of the list of values, the command displays a dash (-). Enter new
values after the dash for the flags you wish to change, then press the ENTER
key. You can enter flag values in any order. Flags for which new values are
not entered remain unchanged. If you do not want to change any flags, sim­
ply press the ENTER key.

If you enter an illegal flag name, an error message will be displayed. The
flags preceding the error are changed; flags at and following the error are
not changed.

• Examples

>R IP OxlOO ;* Example 1
>

Example 1 changes the IP register to the value 256 (Oxl 00).

>R AX
AX OEOO

;* Example 2

Example 2 displays the current value of the AY... register and prompts for a
new value (the underscore represents the Code View cursor). You can now
type any 16-bit value after the colon. For example, if the current radix is
10, you can enter 256 to change the AY... value to 256 (OxlOO):

>R AX
AX OEOO
:256
>

183

Microsoft Code View

Examples 3 and 4 below show the command line and prompting methods of
changing flag values:

>R F UP EI PL ;* Example 3
>R F ;* Example 4
NV(OV) UP (DN) EI(DI) PL(NG) NZ(ZR) AC (NA) PE (PO) NC (CY) -OV DI ZR
>R F
OV(NV) UP (DN) DI(EI) PL(NG) ZR (NZ) AC (NA) PE (PO) NC (CY) -
>

With the prompting method (Example 4), the first mnemonic for each flag
is the current value, and the second mnemonic (in parentheses) is the alter­
nate value. You can enter one or more mnemOnICS at the dash prompt. In
the example, the command is given a second time to show the results of the
first command.

184

Chapter 11

Using System­
Control Commands

11.1 Introduction 187
11.2 Help Command 187
11.3 Quit Command 188
11.4 Radix Command 189
11.5 Redraw Command 191
11.6 Screen Exchange Command 191
11.7 Search Command 192
11.8 Shell Escape Command 195
11.9 Tab Set Command 198
11.10 Redirection Commands 199
11.10.1 Redirecting CodeView Input 199
11.10.2 Redirecting CodeView Output 200
11.10.3 Redirecting CodeView Input and Output 201
11.10.4 Commands Used with Redirection 202
11.10.4.1 Comment Command 202
11.10.4.2 Delay Command 204
11.10.4.3 Pause Command 204

185

Using System-Control Commands

11.1 Introduction

This chapter discusses commands that control the operation of the Code­
View debugger. The commands in this category are listed below:

Command

Help (H)

Quit (Q)

Radix (N)

Redraw (@)

Screen Exchange (\)

Search (/)

Shell Escape (!)

Tab Set (#)
Redirection and related
commands

Action

Displays help

Returns to MS-DOS

Changes radix

Redraws screen

Switches to output screen

Searches for regular expression

Starts new MS-DOS shell

Sets tab size

Control redirection of Code View output or
input

The system-control commands are discussed in the following sections.

11.2 Help Command

The Code View debugger has two help commands: one command accesses a
complete on-line-help system. This command can only be used in window
mode. The other command provides a syntax summary of dialog cornmands
only. It can be used in either window or sequential mode .

• Mouse

To enter the complete on-line-help system with the mouse, point to View on
the menu bar, press a mouse button and drag the highlight down to the
Help selection, then release the button. The initial help screen appears. See
Chapter 3, "The CodeView Display," for details on using the on-line-help
system. The syntax-summary screen cannot be reached with the mouse.

187

Microsoft Code View

• Keyboard

To enter the complete on-line-help system with a keyboard command, press
the Fl key. If you are in window mode, the initial help screen appears. See
Chapter 3, "The Code View Display," for details on using the on-line-help
system. If you are in sequential mode, the syntax-summary screen appears.

• Dialog

The on-line-help system cannot be reached with a dialog command. To view
the syntax summary, enter a command line with the following syntax:

H

The screen displays all Code View dialog commands with the syntax for
each. This screen is the only help available in sequential mode. It may also
be useful as a quick summary in window mode.

11.3 Quit Command

The Quit command terminates the Code View debugger and returns control
to MS-DOS.

• Mouse

To quit the Code View debugger with the mouse, point to File on the menu,
press a mouse button and drag the highlight down to the Quit selection,
then release the button. The Code View screen will be replaced by the MS­
DOS screen, with the cursor at thp MS-DOS prompt.

• Keyboard

To quit the Code View debugger with a keyboard command, press ALT-F to
open the File menu, then press ALT-Q to select Quit. The Code View screen
will be replaced by the MS-DOS screen, with the cursor at the MS-DOS
prompt.

188

Using System-Control Commands

• Dialog

To quit the Code View debugger using a dialog command, enter a command
line with the following syntax:

Q

When the command is entered, the Code View screen will be replaced by the
MS-DOS screen, with the cursor at the MS-DOS prompt.

11.4 Radix Command

The Radix command changes the current radix for entering arguments and
displaying the value of expressions. The default radix when you start the
Code View debugger is 10 (decimal). Radixes 8 (octal) and 16 (hexadecimal)
can also be set. Binary and other radixes are not allowed.

The following seven conditions are exceptions; they are not affected by the
Radix command:

1. The radix for entering a new radix is always decimal.

2. Type specifiers given with the Display Expression command or any
of the Watch Statement commands override the current radix.

3. Addresses output by the Assemble, Dump, Enter, Examine Symbol,
and Unassemble commands are always shown in hexadecimal.

4. In assembly mode, all values are shown in hexadecimal.

5. The display radix for Dump, Watch Memory, and Tracepoint
Memory commands is always hexadecimal if the size is bytes, words,
or double words, and always decimal if the size is integers, unsigned
integers, short reals, long reals, or 10-byte reals.

6. The input radix for the Enter commands with the prompting
method is always hexadecimal if the size is bytes, words, or double
words, and always decimal if the size is integers, unsigned integers,
short reals, long reals, or IO-byte reals. The current radix is used
for all values given as part of a list, except real numbers, which
must be entered in decimal.

7. The register display is always in hexadecimal.

189

Microsoft Code View

• Mouse

You cannot change the input radix with the mouse.

• Keyboard

You cannot change the input radix using a keyboard command.

• Dialog

To change the input radix using a dialog command, enter a command line
with the following syntax:

N[radixnumber~

The radixnumber can be 8 (octal), 10 (decimal), or 16 (hexadecimal). The
default radix when you start the Code View debugger is 10 (decimal). If you
give the Radix command with no argument, the debugger displays the
current radix.

• .BxaInples

>N8 ;* Example 1
>7 prime
0153
>N10
>7 prime
107
>N16
>7 prime
Ox6b
>

>N8
>7 34,i
28
>N10
>7 28,i
28
>N16
>7 1C,i
28
>

190

;* Example 2

Using System-Control Commands

In Example 1, the value of a variable is displayed in each radix. In Example
2, the same number is entered in different radixes, but the i type specifier is
used to display the result as a decimal integer in all three cases. See
Chapter 6, "Examining Data and Expressions," for more information on
type specifiers.

11.5 Redraw Command

The Redraw command can only be used in window mode. It redraws the
Code View screen. This command is seldom necessary, but you might need it
if the output of the program being debugged temporarily disturbs the
Code View display.

• Mouse

You cannot redraw the screen using the mouse.

• Keyboard

You cannot redraw the screen using a keyboard command.

• Dialog

To redraw the screen using a dialog command, enter a command line with
the following syntax:

11.6 Screen Exchange Command

The Screen Exchange command allows you to temporarily switch from the
debugging screen to the output screen.

The Code View debugger will use either screen flipping or screen swapping
to store the output and debugging screens. See Chapter 2, "Getting
Started," for an explanation of flipping and swapping.

191

Microsoft Code View

• Mouse

To switch to the output screen with the mouse, point to View on the menu
bar, press a mouse button and drag the highlight down to the Output selec­
tion, then release the button. The output screen appears. Press any key or a
mouse button when you are ready to return to the debugging screen.

• Keyboard

To switch to the output screen with a keyboard cOInmand, press the F4 key.
The output screen appears. Press any key when you are ready to return to
the debugging screen. This command works in either window or sequential
mode.

• Dialog

To execute the Execute command from the dialog window, enter a com­
mand line with the following syntax:

\

The output screen appears. Press any key when you are ready to return to
the debugging screen.

11.7 Search Command

The Search command allows you to search for a regular expression in a
source file. The expression to be found is specified either as an argument to
a dialog command or in a dialog box. Once you have found an expression,
you can also search for the next or previous occurrence of the expression.

Regular expressions are a method of specifying variable text patterns. A
pattern can be used to search for text strings that match the pattern. This
method comes from the XENIX and UNIX operating systems, and is similar
to the MS-DOS method of using wild-card characters in file names. Regular
expressions are explained in detail in Appendix B.

You can use the Search command without understanding regular expres­
sions. Since text strings are the simplest form of regular expressions, you

192

Using System-Control Commands

can simply enter a string of characters as the expression you want to find.
For example, you could enter count if you wanted to search for the word
"count" in the source file.

The following characters have special meanings in regular expressions:
backslashf\)' asterisk (*), left bracket (D, period (.), dollar sign ($), and
caret (A). 0 find strings containing these characters, you must precede the
characters with a backslash; this cancels their special meanings.

For example, you would use \ \n to find \n or use buffer\ [count] to
find bu f fer [count]. The period in some member-selection expressions
and the caret in the XOR operator and the XOR assignment operator must
also be preceded by a backslash.

Important

When you search for the next occurrence of a regular expression, the
Code View debugger searches to the end of the file, then wraps around
and begins again at the start of the file. This can have unexpected
results if the expression occurs only once. When you give the command
repeatedly, nothing seems to happen. Actually, the debugger is repeat­
edly wrapping around and finding the same expression each time .

• Mouse

To find a regular expression with the mouse, point to Search on the menu
bar, press a mouse button and drag the highlight down to the Find selec­
tion, then release the button. A dialog box appears, asking for the regular
expression to be found. Type the expression, and press either the ENTER key
or a mouse button. The Code View debugger starts searching at the current
cursor position and puts the cursor at the next line containing the regular
expression. An error message appears if the expression is not found. If you
are in assembly mode, the debugger automatically switches to source mode
when the expression is found.

After you have found a regular expression, you can search for the next or
previous occurrence of the expression. Point to Search on the menu bar,
press a mouse button and drag the highlight down to the Next or Previous
selection, then release the button. The cursor will move to the next or pre­
vious match of the expression.

193

Microsoft CodeView

You can also search the executable code for a label (such as a function
name or an assembly-language label). Point to Search on the menu bar,
press a mouse button and drag the highlight down to the Label selection,
then release the button. A dialog box appears, asking for the label to be
found. Type the label name and press either the ENTER key or a mouse but­
ton. The cursor will move to the line containing the label. This selection
differs from other search selections because it searches executable code
rather than source code. The Code View debugger will switch to assembly
mode, if necessary, to display a label in a library routine or assembly­
language module.

• Keyboard

To find a regular expression with a keyboard command, press ALT-S to open
the Search menu, then press ALT-F to select Find. A dialog box appears,
asking for the regular expression to be found. Type the expression, and
press the ENTER key. The Code View debugger starts searching at the
current cursor position and puts the cursor at the next line containing the
regular expression. An error message appears if the expression is not found.
If you are in assembly mode, the debugger automatically switches to source
mode when the expression is found.

After you have found a regular expreSSIOn, you can search for the next or
previous occurrence of the expression. Press ALT-S to open the Search menu,
then press ALT-N to select Next or ALT-P to select Previous. The cursor will
move to the next or previous match of the expression.

You can also search the executable code for a label (such as a function
name or an assembly-language label). Press ALT-S to open the Search menu,
then press ALT-L to select Label. A dialog box appears, asking for the label
to be found. Type the label name and press the ENTER key. The cursor will
move to the line containing the label. This selection differs from other
search selections because it searches executable code rather than source
code. The CodeView debugger will switch to assembly mode, if necessary,
to display a label in a library routine or assembly-language module.

• Dialog

To find a regular expression using a dialog command, enter a command line
with the following syntax:

/ IT regularexpression]

194

Using System-Control Commands

If regularexpression is given, the Code View debugger searches the source file
for the first line containing the expression. If no argument is given, the
debugger searches for the next occurrence of the last regular expression
specified.

In window mode, the Code View debugger starts searching at the current
cursor position and puts the cursor at the next line containing the regular
expression. In sequential mode, the debugger starts searching at the last
source line displayed. It puts the source line where the expression is found
on the screen. An error message appears if the expression is not found. If
you are in assembly mode, the CodeView debugger automatically switches
to source mode when the expression is found.

You cannot search for a label with the dialog version of the Search com­
mand, but using the View command with the label as an argument has the
same effect.

11.8 Shell Escape Command

The Shell Escape command allows you to exit the Code View debugger to an
MS-DOS shell. You can execute MS-DOS commands or programs from
within the debugger, or you can exit from the debugger to MS-DOS while
retaining your current debugging context.

The Shell Excape command works by saving the current processes in
memory and then executing a second copy of COMMAND.COM. The
COMSPEC environment variable is used to locate a copy of
COMMAND.COM.

Opening a shell requires a significant amount of free memory (usually more
than 200K). This is because the CodeView debugger, the symbol table,
COMMAND.COM, and the program being debugged must all be saved in
memory. If you do not have enough memory, an error message will appear.
Even if you have enough memory to start a new shell, you may not have
enough memory left to execute large programs from the shell.

If you change directories while working in the shell, make sure you return
to the original directory before returning to the Code View debugger. If you
don't, the debugger may not be able to find and load source files when it
needs them.

196

Microsoft CodeView

Note

In order to use the Shell Escape command, the executable file being
debugged must release the memory it does not need. Programs compiled
with the Microsoft C Compiler do this automatically if the C start-up
code has been executed. You must execute into the program before
using the Shell Escape command; for example, enter G rna in after
starting the Code View debugger.

You cannot use the Shell Escape command with assembler programs
unless the program specifically releases memory using the MS-DOS
function call Ox4A (Set Block). The same thing can be accomplished by
linking the assembler program with the / CP ARMAXALLOC link
option. If the program has not released memory, the Code View
debugger will print this message: Not enough memory .

• Mouse

To open an MS-DOS shell with the mouse, point to File on the menu bar,
l I I l.. " ,. l ,. 1, 1 I J 1 rn 11 1 J. press a mouse Dutton ana arag lJue IUgUUgUlJ UUWIl lJU lJue QUell :::;eleCvlUll,

then release the button. If there is enough memory to open the shell, the
MS-DOS screen will appear. You can execute any MS-DOS internal com­
mand or any program. When you are ready to return to the debugging ses­
sion, type the command exi t (in any combination of uppercase and lower­
case letters). The debugging screen will appear with the same status it had
when you left it.

• Keyboard

To open an MS-DOS shell using a keyboard command, press ALT-F to open
the File menu, then press ALT-S to select Shell. If there is enough merIlory to
open the shell, the MS-DOS screen will appear. You can execute any MS­
DOS internal command or any program. When you are ready to return to
the debugging session, type the command exi t (in any combination of
uppercase and lowercase letters). The debugging screen will appear with the
same status it had when you left it.

196

Using System-Control Commands

• Dialog

To open an MS-DOS shell using a dialog command, enter a command line
with the following syntax:

! [command]

If you want to exit to MS-DOS and execute several programs or commands,
enter the command with no arguments. The Code View debugger executes a
new copy of COMMAND.COM and the MS-DOS screen appears. You can
run programs or MS-DOS internal commands. When you are ready to
return to the debugger, type the command exi t (in any combination of
uppercase and lowercase letters). The debugging screen will appear with the
same status it had when you left it.

If you want to execute a program or MS-DOS internal command from
within the Code View debugger, enter the Shell Escape comrrland (!) fol­
lowed by the name of the command or program you want to execute. The
output screen appears and the debugger executes the command or program.
When the output from the command or program is finished, the message
Press any key to continue. .. appears at the bottom of the screen.
Press a key to make the debugging screen reappear with the same status it
had when you left it.

• Examples

>! ; * Example 1

>!DIR a:*.c ; * Example 2

>!CHKDSK a: ; * Example 3

In Example 1, the CodeView debugger saves the current debugging context
and executes a copy of COMMAND.COM. The MS-DOS screen appears
and you can enter any number of commands. To return to the debugger,
enter exi t.

In Example 2, the MS-DOS internal command DIR is executed with the
argument a: * . c. The directory listing will be followed by a prompt telling
you to press any key to return to the Code View debugging screen.

In Example 3, the MS-DOS external command CHKDSK is executed, and the
status of the disk in Drive A is displayed in the dialog window. The pro­
gram name specified could be for any executable file, not just for an MS­
DOS external program.

197

Microsoft Code View

11.9 Tab Set Command

The Tab Set command sets the width in spaces that the Code View
debugger fills for each tab character. The default tab is eight spaces. You
might want to set a smaller tab size if your source code has so many levels
of indentation that source lines extend beyond the edge of the screen. This
command has no effect if your source code was written with an editor that
indents with spaces rather than with tab characters.

• Mouse

You cannot set the tab size using the mouse.

• Keyboard

You cannot set the tab size using a keyboard command.

• Dialog

To set the tab size using a dialog command, enter a command line with the
following syntax:

number

The number is the new number of characters for each tab character. In win­
dow mode, the screen will be redrawn with the new tab width when you
enter the command. In sequential mode, any output of source lines will
reflect the new tab size.

• Example

> .
32: for (j = q; j >= 0; j - -)
>#4
> .
32: for (j q; j >= 0; j - -)
>

198

Using System-Control Commands

In this example, the Source Line (.) command is used to show the source
line with the default tab width of eight spaces. Next the Tab Set command
is used to set the tab width to four spaces. The Source Line command then
shows the same line.

11.10 Redirection Commands

The Code View debugger provides several options for redirecting commands
from or to devices or files. In addition to the redirection commands, several
other commands are only relevant when used with redirected files. The
redirection commands and related commands are discussed in sections
11.10.1-11.10.4.3.

• Mouse

None of the redirection or related commands can be executed with the
mouse.

• Keyboard

None of the redirection or related commands can be executed with key­
board commands.

• Dialog

The redirection commands are entered with dialog commands, as shown in
sections 11.10.1-11.10.4.3.

11.10.1 Redirecting CodeView Input

• Syntax

< devicename

The Redirected Input command causes the Code View debugger to read all
subsequent command input from a device, such as another terminal or a
file. The sample session provided with the debugger is an example of com­
mands being redirected from a file.

199

Microsoft Code View

• Examples

><COMl ;* Example 1

><INFILE.TXT ;* Example 2

Example 1 redirects commands from the device (probably a remote termi­
nal) designated as COMl to the Code View terminal.

Example 2 redirects command input from file I NF I LE . TXT to the Code­
View debugger. You might use this command to prepare a CodeView ses­
sion for someone else to run. You create a text file containing a series of
Code View commands separated by carriage-return-line-feed combinations
or semicolons. When you redirect the file, the debugger will execute the
commands to the end of the file. If you want the user to be able to continue
editing after the session, the last command in the file should be < CON so
that command input will be returned to the Code View console or terminal.
One way to create such a file is to redirect commands from the Code View
debugger to a file (see Section 11.10.3) and then edit the file to eliminate
the output and to add comments.

11.10.2 Redirecting CodeView Output

• Syntax

[T] > [>] devicename

The Redirected Output command causes the Code View debugger to write
all subsequent command output to a device, such as another terminal, a
printer, or a file. The term "output" includes not only the output from
commands, but the command characters that are echoed as you type them.

The optional T indicates that the output should be echoed to the Code­
View screen. If you do not use the T, you will not be able to see your com­
mands as you type them. Normally, you will want to use the T if you are
redirecting output to a file, so that you can see what you are typing. How­
ever, if you are redirecting output to another terminal, you may not want
to see the output on the Code View terminal.

The optional second greater-than symbol appends the output to an existing
file. If you redirect output to an existing file without this symbol, the exist­
ing file will be replaced.

200

Using System-Oontrol Oommands

• Examples

»COMl ;* Example 1

>T>OUTFILE.TXT ;* Example 2

»CON

>T»OUTFILE.TXT ;* Example 3

Example 1 output is redirected to the device designated as COMI (probably
a remote terminal). One situation in which you might want to do this is
when you are debugging a graphics program and want Code View com­
mands to be displayed on a remote terminal at the same time that the pro­
gram display appears on the originating terminal.

In Example 2, output is redirected to the file OUTf I LE . TXT. You might
want to do this in order to keep a permanent record of a Code View session.
Note that the optional T is used so that the session will be echoed to the
Code View screen as well as to the file. After redirecting some commands to
a file, output is returned to the console (terminal) with the command >CON.
If, later in the session, you want to redirect more commands to the same
file, use the double greater-than symbol, as in Example 3, to append the
output to the existing file.

11.10.3 Redirecting CodeView Input and Output

• Syntax

= devicename

The Redirected Input and Output command causes the Code View debugger
to write all subsequent command output to a device and to simultaneously
receive input from the same device. This is only practical if the device is a
remote terminal.

Redirecting input and output works best if you start in sequential mode
(using the IT option), since this eliminates unnecessary screen exchanges.
The Code View debugger's window interface has little purpose in this situa­
tion, since the remote terminal can only act as a sequential (nonwindow)
device.

201

Microsoft Code View

• ExaUlple

>=COMl

In this example, output and input are redirected to the device designated as
COM1. This would be useful if you wanted to enter debugging commands
and see the debugger output on a remote terminal, while entering program
commands and viewing program output on the terminal where the
debugger is running.

11.10.4 Commands Used with Redirection

The following commands are intended for use when redirecting commands
to or from a file. Although they are always available, these commands have
little practical use during a normal debugging session.

Comment (*)
Delay (:)

Pause (;;)

Action

Displays comment

Delays execution of commands from a redirected
file

Interrupts execution of commands from a
redirected file until a key is pressed

11.10.4.1 COUlrnent CornUland

• Syntax

*comment

The Comment command is an asterisk (*) followed by text. The Code View
debugger echoes the text of the comment to the screen (or other output
device). This command is useful in combination with the redirection com­
mands when saving a commented session, or when writing a commented
session that will be redirected to the debugger.

202

Using System-Control Commands

• Exalllpies

>T>OUTPUT.TXT ;* Example 1
> * Dump first 20 bytes 0 f screen bu f fer
>0 OxB800:0 L 20
6800:0000 54 17 6F 17 20 17 7217 65 17 74 17 7517 7217 T.o .. r.e.t.u.r.
6800:0010 6E 17 20 17 n ..
>

In Example 1, the user is sending a copy of a Code View session to file
OUTPUT. TXT. Comments are added to explain the purpose of the com­
mand. The text file will contain commands, comments, and command
output.

Example 2 below illustrates another way to use the Comment command.
You can put comments into a text file of commands that will be executed
automatically when you redirect the file into the Code View debugger. For
example, you might use an editing program to create the following text file
called INPUT. TXT:

* Dump first 20 bytes of screen buffer
D OxB800:0 L 20

< CON

When you read the file into the debugger, using the Redirected Input com­
mand, you will see the comment, then the output from the command. The
output is shown in Example 2 below:

><INPUT.TXT ;* Example 2
>* Dump first 20 bytes of screen buffer
>D Ox6800:0 L 20
6800:0000 54 17 6F 17 20 17 72 17 65 17 74 17 75 17 72 17 T.o .. r.e.t.u.r.
6800:0010 6E 17 20 17 n ..

>< CON
>

203

Microsoft Code View

11.10.4.2 Delay Command

• Syntax

The Delay command interrupts execution of commands from a redirected
file and waits about half a second before continuing. You can put mul-
tiple Delay commands on a single line to increase the length of the delay.
The delay is the same length, regardless of the processing speed of the com­
puter.

• Example

;* That was a short delay ...
::::: ;* That was a longer delay ...

In this example from a text file that might be redirected into the Code View
debugger, the Delay command is used to slow execution of the redirected
file.

11.10.4.3 Pause Command

• Syntax

II

The Pause command interrupts execution of commands from a redirected
file and waits for the user to press a key. Execution of the redirected com­
mands begins as soon as a key is pressed.

• Example

* Press any key to continue
"

In this example from a text file that might be redirected into the Code View
debugger, a comment command is used to prompt the user to press a key.
Then the Pause command is used to halt execution until the user responds.

204

Using System-Control Commands

The output will look like the following when the text is redirected into the
debugger:

>* Press any key to continue
>"

The next CodeView prompt will not appear until the user presses a key.

206

Appendix A

Command and Mode Summary

A.1 Introduction 211
A.2 Modes 211
A.3 Options 212
A.4 Window Commands 213
A.5 Dialog Commands 215
A.6 Type Specifiers 218

209

Command and Mode Summary

A.1 Introduction

This appendix summarizes the CodeView debugger's modes, options, and
commands.

A.2 Modes

Many Code View commands and options deal with switching between
modes. The debugger has four types of modes: screen modes, debugging
modes, display modes, and exchange modes. The modes for each of these
types are shown in Table A.1.

Table A.I

Code View Modes

Type Mode Purpose Command or Option

Screen Debugging Debugs program Default

Output Views program F4
output Screen Exchange (\)

Output from View
menu

Help Views command Fl
and option Help from View menu
summary

Debugging Window Views program Default for IBM
in windows IWoption

Sequential Views program Default for non-IBM
sequentially IT option

Display Source Displays source Default start-up for C
lines programs

F3
S+
Source from View
menu

211

Microsoft Code View

Table A.I (continued)

Type Mode

Assembly

Mixed

Exchange Flipping

Swapping

A.3 Options

,----------------------,--

Purpose

Displays
assembly
instructions

Displays source
and assembly

Flips between
video pages

Swaps between
buffers

Command or Option

Default start-up for
programs with no
symbolic information
F3
s-
Assembly from View
menu

s&
Mixed from Options
menu

Default for IBM
/F option

/S option

The following start-up options are available with the Code View debugger:

212

Option

IB
ICcommands

IF

1M
IT
IS

IW
143

Effect

Starts in black and white with CGA

Executes commands on start-up

Starts with screen flipping (exchanges screens by
flipping video pages)

Disables the mouse

Starts in sequential mode

Starts with screen swapping (exchanges screens
by changing buffers)

Starts in window mode

Starts in EGA 43-row mode

Command and Mode Summary

A.4 Window Commands

Table A.2 shows the keyboard and mouse versions of each window
command.

Table A.2

Window Commands

Action Keyboard Mouse

Go to help screen Fl Help from View menu

Open register window F2 Registers from Options menu

Toggle source/assembly F3 Source / Assembly from View
menu

Switch to output screen F4 Output from View menu

Go F5 Click either on Go!

Switch to display/dialog F6 None

Execute to here F7 at location Click right at location

Trace through procedure F8 Click left on Trace!

Set breakpoint here F9 at location Click left at location

Step over procedure FlO Click right on Trace!

Change flag None Click either on flag

Move separator line up CONTROL-U Drag line up

Move separator line down CONTROL-D Drag line down

Scroll up line in window None Click left on uparrow

Scroll up page in window PGUP Click right on up arrow

Scroll to top of window HOME Click both on up arrow

Scroll down line in window None Click left on down arrow

Scroll down page in window PGDN Click right on down arrow

Scroll to bottom of window END Click both on down arrow

Move cursor UP ARROW/ None
DOWN ARROW

Table A.3 lists and explains the selections on the Code View menus.

213

Microsoft Code View

Table A.3

Menu Selections

Menu

File

Search

View

Run

Watch

Options

Calls

214

Selection

Load ...

Shell

Quit

Find ...

Next

Previous

Label...

Help

Source

Assembly

Output

Evaluate ...

Start

Restart

Execute

Clear Breakpoints

Add Watch .. .

Watchpoint .. .

Tracepoin t .. .

Delete Watch ...

Flip/Swap

Mix Source

Symbols

Bytes Coded

Registers

Case Sense

function

Action

Loads new text or source file

Starts new DOS shell

Quits the Code View debugger

Finds first regular expression

Finds next regular expression

Finds previous regular expression

Finds function or code label

Opens on-line-help screen

Displays source lines

Displays assembly

Switches to output screen

Evaluates expression

Restarts current program and runs

Restarts current program

Executes in slow motion

Clears all breakpoints

Sets watch expression

Sets watchpoint

Sets tracepoint

Deletes watch statement

Toggles screen exchange

Toggles mixed source and instructions

Toggles symbolic reference to variables

Toggles byte display for instructions

Toggles register window

Toggles case sensitivity of symbols

Goes to function call1ille

Command and Mode Summary

A.5 Dialog Commands

The CodeView dialog commands and the syntax for each are listed alpha­
betically in this section. Many of the commands require a type to indicate
the size of the data accepted by the command. The types used by the
Dump, Enter, Watch Memory, and Tracepoint commands are listed below
in order of their data size:

Type

No type

A (ASCII)

B (Byte)

I (Integer)

U (Unsigned)

W (Word)

D (Double Word)

S (Short Real)

L (Long Real)

T (lO-Byte Real)

Description

The default type (the last one used with a Dump,
Enter, Watch Memory, or Tracepoint Memory
command\ or byte if none of these commands has
been used)

ASCII (8-bit) characters

Byte (8-bit) hexadecimal values

Integer (16-bit) decimal values; equivalent to C
int (signed) on MS-DOS systems

Unsigned (8-bit) decimal values; equivalent to C
unsigned

Word (16-bit) hexadecimal values

Double-word (32-bit) hexadecimal values

Short-real (32-bit) values; equivalent to C float

Long-real (64-bit) values; equivalent to C double

lO-byte-real (80-bit) values

The Code View dialog commands and the syntax for each are shown in
Table AA.

215

Microsoft Code View

Table A.4

Dialog Commands

Name

Assemble

Breakpoint Clear

Breakpoint Disable

Breakpoint Enable

Breakpoint List

Breakpoint Set

Comment

Delay

Display Expression

Dump

Enter

Examine Symbols

Execute

Go

Help

Pause

216

Syntax

A [address]

Be [list]
BD [list]

BE [list]

BL

BP [address [count] [" cmds"]]

*

? expression[,format]

D[type] [range]

E[type] address [list]

X?[mod!] [func.] [sym] [*]

E

G [address]

H

II

Description

Assembles mnemonics
starting at address

Clears breakpoints in list

Disables breakpoints in
list

Enables breakpoints in
list

Lists breakpoints with
status of each

Sets breakpoint at
address; count is pass
count; cmds are
commands to be
execu ted at each break

Displays explanatory text

Delays execution of
redirected commands
(may be repeated for
longer delays)

Displays expression in
format

Dumps memory range in
type format

Enters memory value in
type format

Displays specified
symbols

Executes in slow motion

Executes to address or to
end

Displays dialog
commands and syntax

Interrupts execution of
redirected commands
and waits for keystroke

Table A.4 (continued)

Name

Program Step

Quit

Radix

Redirection

Redraw

Register

Load

Screen Exchange

Search

Set Mode

Shell Escape

Current Location

Stack Trace

Tab Set

Trace

Syntax

P [count]

Q

N[radix]

[T] > [>] device
< device
=device
(a)

R[register [[=] expression]]

L [arguments]

\

I[regularexpression]

S[+:-:&]

![command]

K

number

T [count]

Command and Mode Summary

Description

Executes source lines or
instructions, stepping
over function, procedure,
and interrupt calls;
repeats count times

Exits and returns to
MS-DOS

Sets input radix

Redirects input or
output to or from device

Redraws the screen

Displays registers and
flags, or sets new
registers and flags

Restarts program

Exchanges the Code View
and output screens

Searches for a regular
expression

Sets display mode to
source, assembly, or
mixed

Escapes to a new MS­
DOS shell

Displays the current
source line

Displays active functions
on the stack

Sets number of spaces for
each tab character

Executes source lines or
instructions, tracing in to
function, procedure, or
interrupt calls; repeats
count times

217

Microsoft Code View

Table A.4 (continued)

Name Syntax Description
---------------- ----------------------------------

Tracepoint

Unassemble

View

Watch

Watch Delete

Watch List

Watchpoint

8087

TP? exprcssion[Jormat]
TP[type] [rangen

U [range]

V [address]

W? expression[iormat]
W[type] [range

Y number

W

WP? expression[,!ormat]

7

A.6 Type Specifiers

Breaks when expression
or range changes;
displays in watch
window

Displays unassembled
instructions

Displays source lines

Displays expression or
range in watch window

Deletes (yanks) watch
statements

Lists tracepoints and
watchpoints

Breaks when expression
is true; displays in watch
window

Displays 8087 registers

Several commands allow you to specify the format in which expression
values are displayed. The following is the syntax for commands that can
have formatted output:

? expression[,!ormat]
W? expression[,!ormat]
WP? expression[,!ormat]
TP? expression[,!ormat]

Expression command
Watch command
Watchpoint command
Tracepoint command

The format in these commands can be a printf type specifier from among
those listed in Table A.5.

218

Command and Mode Summary

Table A.5

Type Specifiers

Character Argument Type Output Format

d Integer Signed decimal integer

Integer Signed decimal integer

u Integer Unsigned decimal integer

0 Integer Unsigned octal integer

xiX Integer Hexadecimal integer

f Floating point Signed value in floating-
poin t decimal format
with six decimal places

e: E Floating point Signed value in
scientific-notation
format with up to six
decimal places (trailing
zeros or decimal point
truncated)

g: G Floating point Signed value with
floating-point decimal or
scientific notation,
whichever is more
compact

c Character Single character

s String Characters printed up to
the first null character

The prefix h can be used with the integer type specifiers (d, 0, u, x, and X)
to specify a short into The prefix I can be used with the same types to
specify a long into

219

Appendix B

Regular Expressions

B.1 Introduction 223
B.2 Special Characters in Regular Expressions 223
B.3 Searching for Special Characters 224
B.4 Using the Period 224
B.5 Using Brackets 225
B.5.1 Using the Dash within Brackets 225
B.5.2 Using the Caret within Brackets 226
B.5.3 Matching Brackets within Brackets 226
B.6 Using the Asterisk 226
B.7 Matching the Start or End of a Line 227

221

Regular Expressions

B.I Introduction

Regular expressions are used to search for variable text strings. Special
characters can be used within regular expressions to specify groups of char­
acters to be searched for.

Regular expressions come from the XENIX and UNIX operating systems,
where they can be used in search-and-replace commands. Since the Code­
View debugger never needs to replace text, its use of regular expressions is
a subset of the XENIX and UNIX regular-expression syntax.

This appendix explains all the special characters you can use to form regu­
lar expressions, but you do not need to learn the whole systern to use Code­
View Search commands. The simplest form of regular expression is simply a
text string. For example, if you wanted to search for all instances of the
symbol count, you could specify count as the string to be found.

If you only want to search for simple strings, you do not need to read this
entire appendix, but you should know how to search for strings containing
the special characters used in regular expressions. See Section B.3 for more
information.

B.2 Special Characters in Regular Expressions

The following characters have special meanings in regular expressions:

Character

Backslash (\)

Period (.)

Caret (A)

Dollar sign (*)
Asterisk (lie)

Brackets ([])

Purpose

Removes the special characteristics of the following
characters: backslash (\), period (.), caret (A), dollar
sign (*), asterisk (lie), and left bracket (D
Matches any character

Matches beginning of line

Matches end of line

Matches any number of repetitions of the previous
character

Match characters specified within the brackets;
the following special characters may be used inside
brackets:

223

Microsoft Code View

Caret (A)

Dash (-)

Reverses the function of the brack­
ets; that is, matches any character
except those specified within the
brackets

Matches characters in ASCII order
between (inclusive) the characters
on either side of the minus sign

B.3 Searching for Special Characters

If you need to match one of the special characters used in regular expres­
sions, you must precede it with a backslash when you specify a search
string. The special characters are the asterisk (lie), backslash (\), left brack­
et ([), caret (A), dollar sign (*), and period (.).

For example, the regular expression \ *name matches *name. The back­
slash is necessary because the indirection operator (lie) is a special character
in regular expressions. Similarly, you could use \ \n to search for the new-

~if1~ c~lar~~~er {\r:)!_?_r_~s~~ ~~Ef~~_~_[_~~_~~:) ~~~ ~~~ f~::t.::~ f~~~~{l'
l'lOl;e [,11(,11; I;ue uaCK.:::Ha::;u 1::; UUIY Ut:~t:::::;::::;dly IVI lillt: It::lli IJIc;", .. n..t::v, vu<:c ~~ouv

bracket is not considered a special character.

Backslashes may also be required to search for the XOR operator (....), XOR
assignment operator (.... =), periods in member-selection expressions, or the
dollar sign ($) in variable names.

B.4 Using the Period

A period in a regular expression matches any single character. This
corresponds to the question mark (7) used in specifying MS-DOS file names.

For example, you could use the regular expression ato. to search for any
of the functions atof, atoi, or atol. You could use the expression x.y
to search for strings such as x+y, x-y, or x<y. If your programming style
is to put a space between variables and operators, you could use the regular
expression x . y for the same purpose.

224

Regular Expressions

Note that when you use the period as a wild card, you will find the strings
you are looking for, but you may also find other strings that you aren't in­
terested in. You can use brackets to be more exact about the strings you
want to find.

B.5 Using Brackets

You can use brackets to specify a character or characters you want to
match. Any of the characters listed within the brackets is an acceptable
match. This method is more exact than using a period to match any charac­
ter.

For example, the regular expression x [-+/*Jy matches x+y, x-y, x/y, or
x*y, but not x=y or xzy. The regular expression count [12J matches
count1 and count2, but not count3. Similarly, \ \ [ntvbr fa I "\Ox]
matches any escape sequence.

Most regular-expression special characters have no special meaning when
used within brackets. The only special characters within brackets are the
dash (-), caret (A), and right bracket (]). Even these characters only have
special meanings in certain contexts, as explained in sections B.5.1-B.5.3.

B.5.1 Using the Dash within Brackets

The dash can be used within brackets to specify a group of sequential
ASCII characters. For example, the regular expression [0- 9J matches any
digit; it is equivalent to [0123456789J. Similarly, [a-zJ matches any
lowercase letter, and [A-ZJ matches any uppercase letter.

You can combine ASCII ranges of characters with other listed characters.
For example, [A - Za - z J matches any uppercase or lowercase letter or a
space.

The dash only has this special meaning if you use it to separate two ASCII
characters. It has no special meaning if used directly after the starting
bracket or directly before the ending bracket. This means that you must be
careful where you place the dash (minus sign) within brackets.

For example, you might use the regular expression [+ - / *] to match the
characters +, -, /, and *. However, this does not give the intended result.

226

Microsoft Code View

Instead it matches the characters between + and / and also the character
*. To specify the intended characters, put the dash first or last in the list:
[- + / *] or [+ / * -] .

B.5.2 Using the Caret within Brackets

If used as the first character within brackets, the caret ("') reverses the
meaning of the brackets. That is, any character except the ones in brackets
will be matched. For example, the regular expression [~O-9J matches any
character that is not a digit. Specifying the characters to be excluded is
often more concise than specifying the characters you want to match.

If the caret is not in the first position within the brackets, it is treated as
an ordinary character. For example, the expression [O-9~J matches any
digit or a caret.

B.5.3 Matching Brackets within Brackets

Sometimes you may want to specify the bracket characters as characters to
be matched. This is no problem with the left bracket; it is treated as a nor­
mal character. However, the right bracket is interpreted as the end of the
character list rather than as a character to be matched.

If you want the right bracket to be matched, you must make it the first
character after the initial left bracket. For example, the regular expression
[J #! [@%J matches either bracket character or any of the other characters
listed within the brackets. However, if you changed the order of just one of
the characters (to [#J ! [@%J), the meaning would be changed so that you
would be specifying two groups of characters in brackets: [# J and [@%J.

B.6 Using the Asterisk

The asterisk (lie) is used following a character, to match a repeated se­
quence of that character. The character in the text being matched may be
repeated once, zero times, or numerous times.

For example, the regular expression for * (test will match any of the fol­
lowing strings:

226

Regular Expressions

for (test
for (test
for (test

This is convenient if the text you are searching might contain some spaces,
but you don't know the exact number. (Be careful in this situation: you
can't be sure if the text contains a series of spaces or a tab.) Note that the
last example contains zero repetitions of the space character.

You might also use the asterisk to search for a symbol when you aren't sure
of the spelling. For example, you could use first* ime if you aren't sure if
the identifier you are searching for is spelled firsttime or firstime.

One particularly powerful use of the asterisk is to combine it with the
period (.*). This combination searches for any group of characters, and is
similar to the asterisk used in specifying MS-DOS file names. For example,
the expression (. *) matches (test), (response==' Y') ,
(x=O; x<=20; x+ +) , or any other string that starts with a left parenthesis
and ends with a right parenthesis.

You can use brackets with the asterisk to search for a sequence of repeated
characters of a given tYJ>e. For example, \ [[0- 9J * J matches integer con­
stants within brackets l [1353J or [3J), but does not match symbols
within brackets ([count J). Empty brackets ([J) are also matched, since
the characters in the brackets are repeated zero times.

B. 7 Matching the Start or End of a Line

In regular expressions, the caret (") matches the start of a line, while the
dollar sign ($) matches the end of a line.

For example, the regular expression ~ int * matches int declarations
that start lines, but not indented int declarations. (Note that there are two
spaces, so that at least one space is required for a match.) Similarly,) $
matches a right parenthesis at the end of a line, but not a right parenthesis
within a line.

You can combine both symbols to search for entire lines. For example, ~ {$
matches any line consisting of only a left curly bracket in the left margin,
and ~ $ matches blank lines.

227

Appendix C

Error Messages

The Code View debugger displays an error message whenever it detects a
command it cannot execute. Most errors (start-up errors are the exception)
terminate the Code View command under which the error occurred, but do
not terminate the debugger. You may see any of the following error mes­
sages:

Bad address

You specified the address in an invalid form. For example, you may
have entered an address containing hexadecimal characters when the
radix is decimal.

Bad breakpoint command

You typed an invalid breakpoint number with the Breakpoint Clear,
Breakpoint Disable, or Breakpoint Enable command. The number must
be in the range 0-19.

Bad flag

You specified an invalid flag mnemonic with the Register dialog com­
mand (R). Use one of the mnemonics displayed when you enter the com­
mand RF.

Bad format string

You specified an invalid type specifier following an expression. Ex­
pressions used with the Display Expression, Watch, Watchpoint, and
Tracepoint commands can have printf type specifiers set off from the
expression by a comma. The valid type specifiers are d, i, u, 0, x, X, f,
e, E, g, G, c, and s. Some type specifiers can be preceded by the prefix
h or l. See Chapter 6, "Examining Data and Expressions," for more
information about type specifiers.

Bad radix (use 8, 10, or 16)

The Code View debugger uses only octal, decimal, and hexadecimal
radixes.

229

:Microsoft CodeView

Bad register

You typed the Register command (R) with an invalid register name.
Use AX, BX, CX, DX, SP, BP, SI, DI, DS, ES, SS, CS, IP, or F.

Bad type cast

The valid types for type casting are the C types void, char, int, short,
long, signed, unsigned, float, and double. The types unsigned,
signed, long, and short can be combined with other types (unsigned
char, for example) as listed in the Microsoft C Compiler Language
Reference.

Bad type (use one of 'ABDILSTUW')

The valid dump types are ASCII (A), Byte (B), Integer (I), Unsigned
(U), Word (W), Double Word (D), Short Real (S), Long Real (L), and
lO-Byte Real (T).

Badly formed type

The type information in the symbol table of the file you are debugging
is incorrect. If this message occurs, please note the circumstances of the
error and inform Microsoft Corporation, using the Software Problem
"Rt>nAT't. ~t. t.ht:> h~f'1- Af t.hi<;: rn~nll~l
.L~'Vt'~~ v ~v vu'V ~~~£L ~£ V££.~ £££~££~~ ••

Breakpoint # or '*' expected

You entered the Breakpoint Clear (BC), Breakpoint Disable (BD), or
Breakpoint Enable (BE) command with no argument. These commands
require that you specify the number of the breakpoint to be acted on, or
that you specify the asterisk (lie), indicating that all breakpoints are to
be acted on.

Cannot use struct or union as scalar

A struct or union variable cannot be used as a scalar value in a C
expression. Such variables must be followed by a file specifier or pre­
ceded with the address-of operator.

Can't find filename

230

The Code View debugger could not find the executable file you specified
when you started. You probably misspelled the file name, or the file is
in a different directory.

Error Messages

Constant too big

The Code View debugger cannot accept a constant number larger than
4,294,967,295 (OxFFFFFFFF).

Divide by zero

An expression in an argument of a dialog command attempts to divide
by zero.

Expression too complex

An expression given as a dialog command argument is too complex.
Simplify the expression.

Extra input ignored

You specified too many arguments to a command. The Code View
debugger evaluates the valid arguments and ignores the rest. Often, in
this situation, the debugger will not evaluate the arguments the way
you intended.

Floating point error

If this message occurs, please note the circumstances of the error and
inform Microsoft Corporation, using the Software Problem Report at
the back of this manual.

Internal debugger error

If this message occurs, please note the circumstances of the error and
inform Microsoft Corporation, using the Software Problem Report at
the back of this manual.

Invalid argument

One of the arguments you specified is not a valid CodeView expression.

Missing '"'

You specified a string as an argument to a dialog command, but you did
not supply a closing double quotation mark.

Missing '('

An argument to a dialog command was specified as an expression con­
taining a right parenthesis, but no left parenthesis.

231

Microsoft Code View

Missing I)'

An argument to a dialog command was specified as an expression con­
taining a left parenthesis, but no right parenthesis.

Missing 'J'
An argument to a dialog command was specified as an expression con­
taining a left bracket, but no right bracket. This error can also occur if
a regular expression is specified with a right bracket but no left bracket.

No closing single quote

You specified a character in an expression used as a dialog command
argument, but the closing single quotation mark is missing.

No code at this line number

You tried to set a breakpoint on a source line that does not correspond
to code. For example, the line may be a data declaration or a comment.

No match of regular expression

No match was found for the regular expression you specified with the
Search command or with the Find selection from the Search menu.

No previous regular expression

You selected Previous from the Search menu, but there was no previous
match for the last regular expression specified.

No program to debug

You have executed to the end of the program you are debugging. You
must restart the program (using the Restart command) before using
any command that executes code.

No source lines at this address

The address you specified as an argument for the View command (V)
does not have any source lines. For example, it could be an address in a
library routine or an assembly-language module.

No such file/directory

232

A file you specified in a command argument or in response to a prompt
does not exist. For example, the message appears when you select Load
from the File menu, and then enter the name of a nonexistent file.

Error Messages

No symbolic information

The program file you specified is not in the Code View format. You can­
not debug in source mode, but you can use assembly mode.

Not a text file

You attempted to load a file using the Load selection from the File
menu or using the View command, but the file is not a text file. The
Code View debugger determines if a file is a text file by checking the first
128 bytes for characters that are not in the ASCII ranges 9-13 and
20-126.

Not an executable file

The file you specified to be debugged when you started the CodeView
debugger is not an executable file having the extension .EXE or
.COM.

Not enough space

You typed the Shell Escape command (!) or selected Shell from the File
menu, but there is not enough free memory to execute
COMMAND.COM. Since memory is released by code in the C start­
up routines, this error always occurs if you try to use the Shell Escape
command before you have executed any code. Use any of the code­
execution commands (Trace, Program Step, or Go) to execute the C
start-up code, then try the Shell Escape command again. The message
also occurs with assembly-language programs that do not specifically
release memory.

Object too big

You entered a Tracepoint command with a data object (such as an
array) that is larger than 128 bytes. You can watch data objects larger
than 128 bytes using the Tracepoint Memory command.

Operand types incorrect for this operation

An operand in a C expression had a type incompatible with the opera­
tion applied to it. For example, if p is declared as char *, then? p * p
would produce this error, since a pointer cannot be multiplied by a
pointer.

Operator must have a struct/union type

You used the one of the member-selection operators (- > or .) in an
expression that does not reference an element of a structure or a union.

233

Microsoft Code View

Operator needs Ivalue

You specified an expression that does not evaluate to an lvalue in an
operation that requires an lvalue. For example,? 3=100 is invalid. See
the Microsoft C Compiler Language Reference for more information on
lvalues.

Progr am terminated norma 11 y (number)

You executed your program to the end. The number displayed in
parentheses is the exit code returned to MS-DOS by your program. You
must use the Restart command (or the Start menu selection) to start
the program before executing more code.

Register variable out of scope

You tried to specify a register variable using the period (.) operator and
a function name. For example, if you are in a third-level function, you
can display the value of a local variable called 1 oca 1 in a second-level
function called parent with the following command:

? parent. local

However, this command will not work if local is declared as a register
\rariable.

Regular expression too complex

The regular expression specified is too complex for the Code View
debugger to evaluate.

Regular expression too long

The regular expression specified is too long for the Code View debugger
to evaluate.

Syntax error

You specified an invalid command line for a dialog command. Check for
an invalid command letter. This message also appears if you enter an
invalid assembly-language instruction using the Assemble command.
The error will be preceded by a caret that points to the first character
the Code View debugger could not interpret.

Too many breakpoints

234

You tried to specify a 21st breakpoint. The Code View debugger permits
only 20.

Error Messages

Too many open files

You do not have enough file handles for the Code View debugger to
operate correctly. You must specify more files in your CONFIG.SYS
file. See your MS-DOS user's guide for information on using the
CONFIG.SYS file.

Type conversion too complex

You tried to type cast an element of an expression in a type other than
the simple types or with more than one level of indirection. An example
of a complex type would be type casting to a struct or union type. An
example of two levels of indirection would be char * *.

Unable to open file

A file you specified in a command argument or in response to a prompt
cannot be opened. For example, the message appears when you select
Load from the File menu, and then enter the name of a file that is cor­
rupted or has its file attributes set so that it cannot be opened.

Unknown symbol

You specified an identifier that is not in the Code View debugger's sym­
bol table. Check for a misspelling. A symbol name spelled with letters
of the wrong case will not be recognized unless the Case Sense selection
on the Options menu has been turned off. This message may also occur
if you try to use a local variable in an argument when you are not in the
function where the variable is defined.

Unrecognized option option
Valid options: IB IC<command> If IS IT IW

You entered an invalid option when starting the Code View debugger.
Retype the command line.

Usage: cv [options] file [arguments]

You failed to specify an executable file when you started the Code View
debugger. Try again with the syntax shown in the message.

Video mode changed without IS option

The program changed video modes (from or to one of the graphics
modes) when screen swapping was not specified. You must use the / S
option to specify screen swapping when debugging graphics programs.
You can continue debugging when you get this message, but the output
screen of the debugged program may be damaged.

235

Microsoft Code View

Warning: packed file

236

You started the Code View debugger with a packed file as the executable
file. You can attempt to debug the program in assembly mode, but the
packing routines at the start of the program may make this difficult.
You cannot debug in source mode because all symbolic information is
stripped from a file when it is packed with the /EXEP ACK linker
option or the EXEP ACK utility.

Glossary

Address

A C expression that evaluates to an address in memory. Addresses can
be given in the segment: offset format. If the segment is not given, the
default segment is assumed. The default segment is CS for commands
related to code and DS for commands related to data.

Address range

A range of memory bounded by two addresses. The range can be
specified in the normal format by giving the starting and ending ad­
dresses (inclusive), or it can be specified in the object-range format by
specifying the starting address followed first by the letter "L" (upper­
case or lowercase) and then by the number of objects in the range
(Ox100 L 10, for example, specifies the range from Ox100 to Ox109, in­
clusive).

Assembly mode

The mode in which the Code View debugger displays assembly­
language-instruction mnemonics to represent the code being executed.

Basic input/output system (BIOS)

The code built into system memory that provides the lowest level of
functionality in a computer system. You can trace into the BIOS with
the Code View debugger, using assembly mode.

Breakpoint

A specified address where program execution will be halted. The Code­
View debugger stops whenever it reaches an address where a breakpoint
has been set. See "Watchpoint" and "Tracepoint" for a description of
conditional breakpoints.

Click

To press and quickly release one of the buttons on the mouse while
pointing the mouse at an object on the screen.

Color graphics adapter (eGA)

A video adapter capable of displaying text characters or graphics pixels.
Color can also be displayed with the appropriate display monitor.

237

Microsoft Code VIew

Cursor

The thin blinking line that represents the current location where the
Code View debugger is ready to accept commands. The cursor need not
be in the dialog window to enter dialog commands.

Dialog commands

Commands entered in the dialog window in window mode, or any com­
mand in sequential mode. Dialog commands consist of one- or two­
character commands that can usually be followed by arguments.

Dialog window

The window at the bottom of the Code View screen where dialog com­
mands can be entered and previously entered dialog commands can be
reviewed.

Dialog box

A box that appears when you select a menu item that requires a re­
sponse. The box asks you to enter some text. After you type your re­
sponse and press the ENTER key (or a mouse button), the box disap­
pears.

Display window

The window above the dialog window where source code is displayed in
source mode or assembly-language instructions are displayed in assem­
bly mode.

Drag

To point the mouse at an object on the screen and press a mouse but­
ton, then while holding the button down, move the mouse. The object
will move in the direction of the mouse movement. When the item is
where you want it, release the button. The object will stay at that
point.

Dump

238

To display the contents of memory at a specified memory location. In
the Code View debugger, the size of the object to be displayed is
specified with a type character from the following list: A (ASCII), B
(Byte), I (Integer), U (Unsigned Integer), W (Word), D (Double Word),
S (Short Real), L (Long Real), or T (lO-Byte Real).

Glossary

Enhanced graphics adapter (EGA)

A video adapter capable of displaying in all the modes of the color
graphics adapter (CGA) plus many additional modes. The Code View
/43 option displays in the EGA's 43-line text mode.

Flags

A register that controls the operation of many machine-level instruc­
tions. In other registers, the contents of the register are considered as a
whole, while in the flags register only the individual bits have meaning.
In the Code View debugger, the current values of the most commonly
used bits of the flags register are shown at the bottom of the register
window. See also "Registers."

Flipping

A screen-exchange method that uses the video pages of the CGA or
EGA to store both the debugging and output screens. Video pages are
areas of memory reserved for screen storage. When you request the
other screen, the two video pages are exchanged. This method is faster
than swapping, the other screen-exchange method, but it does not work
with the MA or with programs that do graphics or use the video pages.
See also "Screen exchange" and "Swapping."

Function call

A call to a a subroutine that performs a specific action. In C {source
modej' subroutines are called functions. In assembly language (assembly
mode, subroutines are called procedures.

Global symbol

A symbol that is available throughout the entire program. In the Code­
View debugger, function names are always global symbols. See also
"Local symbol."

Highlight

The reverse-video line that marks the current selection on a menu. The
highlight moves as you move the mouse or press the UP ARROW or DOWN
ARROW key.

Identifier

A name that identifies a register or a location in memory. The terms
"identifier" and "symbol" are used synonymously in Code View
documentation.

239

Microsoft Code View

Interrupt call

A machine-level procedure that can be called to execute a BIOS, MS­
DOS, or other function. You can trace into BIOS interrupts with the
CodeView debugger, but not into the MS-DOS interrupt (Ox21).

Label

A symbol (identifier) representing an address in the code segment (OS)
register. Labels in d programs can be either function names or labels
for goto statements.

Local symbol

A symbol that only has value within a particular function. A function
argument or a variable declared as auto or static within a function can
be a local symbol. See also "Global symbol."

Lvalue

An expression that refers to a memory location. For example, sym or
bu f fer [count] could be lvalues since they represent symbols in
memory. However, i==lO is not an Ivalue because it evaluates to either
1 (true) or 0 (false) rather than a value stored in memory. Similarly,
syml +sym2 could not be an lvalue because it refers to the sum of two
variables rather than a single memory location. See the Microsoft C
C:ompiler Language Reference for more information on lvalue expres­
SIOns.

Menu bar

The bar at the top of the Code View display containing menu titles and
the titles Trace! and Go!.

Message box

A box that pops up and displays a message. In window mode, message
boxes are used to display error messages. You can press any key or a
mouse button to make the box disappear.

Monochrome adapter (MA)

240

A video adapter capable of displaying only in black and white. Most
monochrome adapters display text only; individual graphics pixels can­
not be displayed. The Code View debugger recognizes monochrome
adapters and automatically selects swapping as the screen-exchange
mode.

Glossary

Mouse

A small pointing device designed to fit comfortably under your hand.
By moving it about on a flat surface, you can move the mouse pointer in
the corresponding direction on the screen.

Object range

See "Address range."

Output screen

The screen where program output is shown. The Screen Exchange com­
mand (\), Output from the View menu, and the F4 key can be used to
switch to this screen. The output screen is the same as it would be if
you ran the debugged program outside of the Code View debugger.

Pointer

The reverse-video square that moves to indicate the current position of
the mouse. The mouse pointer only appears if a mouse is installed. To
select an item with the mouse, move the mouse until the pointer rests
on the item.

Popup menu

A menu that pops up when you point the mouse cursor to the menu
title and press a mouse button. In the CodeView debugger, popup
menus also pop up when you press the ALT key and the first letter of the
menu title at the same time. You can make a selection from the menu
by dragging the highlight up or down with the mouse, by pressing the
UP ARROW or DOWN ARROW key to move the highlight, or by pressing the
ALT key and the first letter of the selection title at the same time.

printf

A function in the C standard library that prints formatted output
according to instructions supplied with a type-specifier argument. The
Code View debugger uses a subset of the printf type specifiers to forrnat
expression values.

Procedure call

A call to a subroutine that performs a specific action. In assembly
language (assembly mode), subroutines are called procedures. In C
(source mode), subroutines are called functions.

241

Microsoft Code View

Program Step

To trace the next source line in source mode, or the next instruction in
assembly mode. If the source line or instruction contains a function,
procedure, or interrupt call, the call is executed to the end and the
Code View debugger is ready to execute the instruction after the call.
See also "Trace."

Radix

The number system in which numbers are specified. In the Code View
debugger, numbers can be entered in three radixes: 8 (octal), 10
(decimal), or 16 (hexadecimal). The default radix is 10.

Redirection

To specify the device from which a program will receive input or to
which it will send output. Normally program input comes from the key­
board, and program output goes to the screen. Redirection involves
specifying a device (or file) other than the default device. In the MS­
DOS operating system, input is redirected with the less-than symbol
(<) and output is redirected with the greater-than symbol (>). The
same symbols are used in the Code View debugger to redirect input or
output of the debugging session. In addition, the equal sign (=) can be
u:;eu to redirect both input and output.

Registers

The places in memory where byte- or word-sized data can be stored
during machine-level processing. The registers used with the 8086
family of processors are: AX, BX, OX, DX, SP, BP, SI, DI, DS, ES,
SS, OS, IP, and the flags register. See also "Flags."

Register window

The optional window in which the central processing unit (CPU) regis­
ters and the bits of the flag register are displayed.

Regular expressions

A system of specifying text patterns that match variable text strings.
The Code View debugger supports a subset of the regular-expression
characters used in the XENIX and UNIX operating systems. Regular
expressions can be used to find strings in source files.

Screen exchange

242

The method by which both the output screen and the debugging screen
are kept in memory so that both can be updated simultaneously and

Glossary

either viewed at the user's convenience. The two screen-exchange
modes are flipping and swapping. See also "Flipping" and "Swapping."

Sequential mode

The mode in which all Code View output is sequential and no windows
are available. Input and output scroll down the screen and the old out­
put scrolls off the top of the screen when the screen is full. You cannot
examine previous commands after they scroll off the top. This mode is
required with computers that are not IBM compatible. The mouse and
most window commands are not supported in sequential mode. Any
debugging operation that can be done in window mode can also be done
in sequential mode.

Shell escape

A method of leaving the Code View debugger without losing the current
debugging context. You can "escape to a shell," do various MS-DOS
tasks, and then return to the debugger. The debugging screen will be
the same as when you left it. The Code View debugger creates the shell
by saving all current operations to memory and invoking a second copy
of COMMAND.COM.

Source mode

The mode in which the Code View debugger displays C source code to
represent the code being executed.

Stack trace

A symbolic representation of the functions that have been executed to
reach the current instruction address. As a function is executed, the
function address and any function arguments are pushed on the stack
(the area of memory starting at the address of the SS register). There­
fore, a trace of the stack always shows the currently active functions
and the values of their arguments.

Start-up code

The code that the C compiler places at the beginning of every program
to control execution of the program code. When the Code View debugger
is loaded, the first source line executed runs the entire start-up code. If
you switch to assembly mode before executing any code, you can trace
through the start-up code.

243

Microsoft Code View

Swapping

A screen-exchange method that uses buffers to store the debugging and
output screens. When you request the other screen, the two buffers are
exchanged. This method is slower than flipping, the other screen­
exchange method, but it works with any adapter and any type of
program. See also "Flipping" and "Screen Exchange."

Symbol

A name that identifies a location in memory. The terms "symbol" and
"identifier" are used synonymously in Code View documentation.

Toggle

A function key or menu selection that turns a feature off if it is on, or
on if it is off. When used as a verb, toggle means to reverse the status of
a feature. For example, the F3 key is a toggle that switches between
source and assembly modes. You can press the F3 key to toggle between
the two modes.

Trace

To trace the next source line in source mode, or the next instruction in
3A'3s€mbly mode, If the source line or instruction contains a function~
procedure, or interrupt call, the first source line or instruction of the
call is executed. The Code View debugger is ready to execute the next
instruction inside the call. See also "Program Step."

Tracepoint

A variable breakpoint that is taken when a specified value changes. The
value to be tested can be either the value of a Code View expression, or
any of the values in a range of memory. Tracepoints can slow program
execution significantly, since the Code View debugger has to check after
executing each source line in source mode or after each instruction in
assembly mode to see if the value has changed. See also "Breakpoint."

Type casting

244

To specify a type specifier in parentheses preceding an expression to
indicate the type of the expression's value. For example, if x and yare
integer values with the values 5 and 2 respectively, the expression x/y
indicates integer division and the expression has the value 2. The
expression (float) x/y indicates real-number division and has the
value 2.5.

Glossary

Watch window

The window where watch statements and their values are displayed.
The three kinds of watch statements are watch expressions, watch­
points, and tracepoints.

Watchpoint

A variable breakpoint that is taken when a specified expression becomes
nonzero (true). Watchpoints can slow program execution significantly,
since the Code View debugger has to check after executing each source
line in source mode or after each instruction in assembly mode to see if
the value is true. See also "Breakpoint."

Window commands

Commands that work only in the Code View debugger's window mode.
Window commands consist of function keys, mouse selection, CONTROL
and ALT key combinations, and selections from popup menus.

Window mode

The mode in which the Code View debugger displays separate windows,
which can change independently. The debugger has mouse support and
a wide variety of window commands in window mode.

246

Code View Index

! (exclamation point)
command indicator, 37
Shell Escape command, 197,217,233

" (quotation mark), Pause command,
204, 216

(number sign), Tab Set command,
198, 217

$ (dollar sign), in regular exp ressions,
227

* (asterisk)
Comment command, 202, 216
regular expressions, used in, 226

- (dash)
option designator, 23
regular expressions, used in, 225

. (period)
Current Location command, 161, 217
operator, 71, 234
regular expressions, used in, 224

/ (slash)
option designator, 23
Search command, 194,217,234

: (colon)
Delay command, 204, 216
operator, 71, 75

< (less-than sign), Redirected Input
command, 199, 217

= (equal sign), Redirected Input and
Output command, 201, 217

> (Code View prompt), 37, 38, 67
> (greater-than sign), Redirected

Output command, 200, 217
? (question mark), Display Expression

command, 216
(~D (at sign)

Redraw command, 191, 217
register prefix, 74

[1 (brackets)
notationaf conventions, 10
regular expressions, used in, 225

\ (backslash), Screen Exchange
command, 192, 211, 217,241

A (caret), in regular expressions, 226,
227

_ (underscore), in symbol names, 72

: (vertical bar), notational conventions,
10

10-byte reals
dumping, 112
entering, 180

/43 CodeView option, 31, 212, 239
7, 8087 command, 116, 218
8087

command, 115,216
coprocessor, 115, 170

A (Assemble command), 168, 216
Absolute addresses, 75
Address ranges, arguments as, 76, 237
Addresses

absolute, 135
arguments, used as, 75, 229, 232, 237
full, 75, 134

Arguments
dialog commands, 67,69,231,234
function, 61, 162, 243
program, 21, 92

ASCII characters, 106, 107
Assemble command, 167, 216, 234
Assembly

address, 168
language, 6
mode, 32, 57,153,211-212,233,237
rules, 168

Asterisk (:~)
Comment command, 202, 216
regular expressions, used in, 226

At sign (@))
Redraw command, 191, 217
register prefix, 74

/B Code View option, 11, 25, 212
Backslash (\), Screen Exchange

command, 192, 211, 217, 241
BACKSPACE key, 68
Basic input/output system (BIOS), 237

247

Code View Index

BC (Breakpoint Clear command), 125,
216, 229, 230

BD (Breakpoint Disable command),
126, 216, 229, 230

BE (Breakpoint Enable command), 127,
216, 229, 230

BIOS (basic input/output system), 237
BL (Breakpoint List command), 128,

216
Black-and-white display, 11, 25, 212
Bold type, notational conventions, 8
BP (Breakpoint Set command), 122,

216
Brackets ([])

notational conventions, 10
regular expressions, 225

Breakpoint Clear command, 55, 124,
214, 216, 229, 230

Breakpoint Disable command, 125, 216,
229, 230

Breakpoint Enable command, 127, 216,
229, 230

Breakpoint List command, 128, 216
Breakpoint Set command, 41, 45, 64,

121, 213, 216, 232, 234
"R .. ",<> 1rT\r\~n t
~£ ~~ALt'~~ .. v

address, 88
defined, 121, 237
deletion, 124, 216
display of, 37, 122
Go command, used with, 87
listing, 128, 216

Buffer, command, 39, 68

/C Code View option, 26, 212
C expressions, 70, 231
C operators, 70
Calling conventions, 162
Calls menu, 60, 163, 214
Capital letters, notational conventions,

8, 10
Caret (A), in regular expressions, 226,

227
Case sensitivity, 60, 69, 72, 214, 235
CGA (color graphics adapter), 237
CL compiler control program, 16, 17,

19
Click, defined, 44,237
/CODEVIEW link option, 18, 19, 32

248

Colon (:)
Delay command, 204, 216
operator, 71, 75

Color graphics adapter (CGA), 28, 31,
237

.COM extension, for debugged files, 20,
32, 233

Command buffer, 39, 68
COMMAND.COM, with Shell

command, 50, 195
Commands

8087, 115, 218
Assemble, 167, 216, 234
Breakpoint Clear, 55, 124, 214, 216,

229, 230
Breakpoint Disable, 125, 216, 229,

230
Breakpoint Enable, 127, 216, 229,

230
Breakpoint List, 128, 216
Breakpoint Set, 41, 45, 64, 121, 213,

216, 232, 234
Comment, 202, 216
Current Location, 161, 217
Delay, 204, 216
n:~ l~~ ,}'7 '}Q ~'7 ()'}Q
.LJ'HUV5, til, tlU, til, LJtlU

Display Expression, 54, 95, 214, 216
Dump

10-Byte Reals, 112
ASCII, 106
Bytes, 106
default size, 104, 105
Double Words, 109
Integers, 107
Long Reals, 111
Short Reals, 110
summary, 216
Unsigned Integers, 108
Words, 109

Enter, 174
10-Byte Reals, 180
ASCII, 175
Bytes, 175
Double Words, 178
Integers, 176
Long Reals, 180
Short Reals, 179
summary, 216
Unsigned Integers, 177
Words, 177

Examine Symbols, 100, 216

Commands (continued)
Execute, 55, 90, 214, 216
Expression, 54, 95, 214, 216
Go, 41, 47, 63,87, 213,216
Goto, 41, 46, 87, 213, 216
Help, 40, 53, 61, 63, 187, 211, 213,

214, 216
move cursor down, 39, 213
move cursor up, 39, 213
move separator line down, 39, 44,

213
move separator line up, 39, 44, 213
Pause, 204, 216
Program Step, 41, 46, 64, 84, 213,

217,242
Quit, 50, 188, 214, 217
Radix, 73, 189, 217, 229, 242
Redirected Input, 199, 217
Redirected Input and Output, 201,

217
Redirected Output, 200, 217
Redirection, 199,217,242
Redraw, 191, 217
Register, 40, 47, 59, 63,113,181,213,

217,229,230,242
Restart, 55, 91, 214, 217, 232, 234
Screen Exchange, 40, 53, 63, 191,

211, 213, 214, 217, 241, 242
scroll line down, 45
scroll line up, 45
scroll page down, 39, 45, 213
scroll page up, 39, 45, 213
scroll to bottom, 40, 45, 213
scroll to top, 39, 45, 213
Search, 51, 192, 214, 217, 223, 232
Set Mode, 40, 53, 63, 153, 211, 213,

214, 217
Shell Escape, 50, 195, 214, 217, 233,

243
Stack Trace, 61, 162, 214, 217, 243
Tab Set, 198, 217
Trace, 41, 46, 64, 82, 213, 217, 244
Tracepoint ... , 56, 64, 141, 214, 218,

229, 233, 244
Unassemble, 155, 217
View, 158, 217, 232, 233
VVatch, 56, 64, 134, 214, 218, 229
VV atch Delete, 57, 146, 214, 218
VV atch List, 64, 148, 218
VV atchpoint ... , 56, 64, 138, 214, 218,

229, 245

Code View Index

Comment
command, 202, 216
line, 87, 88, 122, 123

Compiler errors, 18
COMSPEC environment variable, 195
Conditional breakpoints, 56, 121, 1 ;{;{
CONFIG.SYS file, 235
Constant numbers, as arguments, 73,

231
CONTROL-BREAK, 42, 82, 141
CONTROL-C, 42, 67, 82, 141
CONTROL-D, 39, 213
CONTROL-S, 68
CONTROL-U, 39, 213
/CPARMAXALLOC link option, 196
Current Location command, 161, 217
Current location line, 37
Cursor, 37, 67, 238
CV.EXE, location of, 19
CV.HLP, location of, 19, 61

D (Dump command), 105
DA (Dump ASCII command), 106
Dash (-)

option designator, 23
regular expressions, 225

DB (Dump Bytes command), 106
DD (Dump Double Words command),

109
DEBUG, 6, 35, 63
Debugging modes, 211
Default

address-range size, 104
assembly-mode format, 57
expression format, 136
IBM Personal Computer, used with,

23
radix, 162, 189, 190, 242
segment, 75
start-up behavior, 21
type, 105, 136, 144, 174, 215

Delay command, 204, 216
Destination address, with Go

command, 87
DI (Dump Integers command), 107
Dialog box, 38, 43, 48, 238
Dialog window, 37, 238
Display

mode, 81, 156, 159, 211
window, 37, 238

249

Code View Index

Display Expression command, 54, 95,
214, 216

Divide by zero, 231
DL (Dump Long Reals command), 111
Dollar sign ($), in regular expressions,

227
DOWN ARROW key (cursor down), 39,

213
Drag, defined, 44, 238
DS (Dump Short Reals command), 110
DT (Dump 10-Byte Reals command),

112
DU (Dump Unsigned Integers

command),108
Dump address, 104
Dump commands, 104

10-Byte Reals, 112
ASCII, 106
Bytes, 106
default size, 105
Double Words, 109
Integers, 107
Long Reals, 111
Short Reals, 110
summary, 216

T> .. __ ~ _____ .J
L'U.lUp V.lUU.lc:t.llU

Unsigned Integers, 108
Words, 109

Dump, defined, 238
DW (Dump Words command), 109

E (Enter command), 174
E (Execute command), 90, 216
EA (Enter ASCII command), 175
EA (Enter Bytes command), 175
Echo, with redirection, 200
ED (Enter Double Words command),

178
EGA (enhanced graphics adapter), 239
EI (Enter Integers command), 176
EL (Enter Long Reals command), 180
Ellipses, notational conventions, 9
END key (exit help), 62
END key (scroll to bottom), 40, 213
Enhanced graphics adapter (EGA), 28,

31,239
Enter commands

10-Byte Reals, 180
ASCII, 175
Bytes, 175

250

Enter commands (continued)
default size, 174
described, 170, 216
Double Words, 178
Integers, 176
Long Reals, 180
Short Reals, 179
Unsigned Integers, 177
Words, 177

Equal sign (=), Redirected Input and
Output command, 201, 217

Error
internal debugger, 230, 231
messages, 227

Errorlevel code, 87
Errors, logical, 18
ES (Enter Short Reals command), 179
ESCAPE key, 43
ET (Enter 10-Byte Reals command),

180
EU (Enter Unsigned Integers

command), 177
Evaluate, menu selection, 97
EW (Enter Words command), 177
Examine Symbols command, 100, 216
Examples, ilUtatiollal COll velltioll~, 9
Exchange modes, 211-212
Exclamation point (!)

command indicator, 37
Shell Escape command, 197, 217, 233

.EXE extension, for debugged files, 20,
21, 32, 233

Executable file
Code View format, 16, 18
command line, used in, 20, 230, 233
location of, 20
required for start-up, 21

Execute command, 55, 90, 214, 216
/EXEPACK linker option, 18, 236
EXEPACK utility, 18
Exit code, 87, 89
Exit, MS-DOS command, 50, 196
Expression evaluation, 54, 70, 95, 214,

216, 231
Expressions, regular, 51, 192, 223, 232,

234, 242

/F Code View option, 27, 212
Fl key (Help), 40, 61, 63, 188, 211, 213
FlO key (Program Step), 41, 64, 85, 213

F2 key (Register), 40, 63, 113, 181, 213
F3 key (Set source/assembly), 40, 63,

154, 211, 213
F4 key (Screen Exchange), 40, 63, 192,

211, 213, 241
F5 key Go), 41, 63, 88, 213
F6 key switch cursor), 39, 88, 213
F7 key Goto), 41, 88, 213
F8 key Trace), 41, 64, 83, 213
F9 key Breakpoint Clear), 124
F9 key Breakpoint Set), 41, 64, 127,

213
Far-return mnemonic (RETF), 168
File handles, 235
File menu

Load""", 49, 158, 214, 232, 233, 235
Quit, 50, 188, 214
Shell, 50, 196,214, 233, 243

Flag bits, 47,114,181,227,239
Flag mnemonics, 182, 229
Flipping, screen, 27, 212, 239
Function

calls, 61, 82, 85, 163, 239, 243
keys

CONTROL-D (separator line down),
39, 213

CONTROL-U (separator line up), 39,
213

DOWN ARROW (cursor down), 39,
213

END (exit help), 62
END (scroll to bottom), 40, 213
FI (fIelp),40, 61, 63,188,209,213
FlO (Program Step), 41, 64, 85, 213
F2 (Register), 40, 63, 113, 181, 213
F3 (Set source/assembly), 40, 63,

154, 211, 213
F4 (Screen Exchange), 40, 63, 192,

211, 213, 241
F5 Go), 41, 63, 88, 213
F6 switch cursor), 39, 88, 213
F7 Goto), 41, 88, 213
F8 Trace), 41, 64, 83, 213
F9 Breakpoint Clear), 124
F9 Breakpoint Set), 41, 64,127,

213
HOrvIE /scroll to top), 39, 213
HOrvIE top of help), 62
PGDN next help), 62
PGDN scroll page down), 39, 160,

213

Code View Index

keys (continued)
PGUP (previous help), 62
PGUP (scroll page up), 39, 213
UP ARROW (cursor up), 39, 213

Functions, 60, 100, 162

G (Go command), 88, 216
Global symbol, 239
Go command, 41, 47, 63, 87, 213, 216
Goto command, 41, 46, 87, 213, 216
Graphics programs, debugging, 201
Greater-than sign (>), Redirected

Output command, 200, 217

H (Help command), 188, 211, 216
Help command, 40, 53, 61, 63, 187, 211,

213, 214, 216
Highlight, 38, 239
HOrvIE key (scroll to top), 39, 213
HOrvIE key (top of help), 62

IBM PC, Code View compatibility with,
5, 28, 29

IBM PC, recognition, 23
Iden tifiers

arguments, used as, 239, 244
arguments, used in, 72, 235

Immediate operand, 169
Include files, 17
IND (indefinite), 105
Indentation, 198
Indirect register instructions, 169
Indirection levels, 71
INF (infinity), 105
Infinity, 105
Instruction, current, 82, 84
Instruction-name synonyms, 169
Integers, dumping, 107
Interrupt

21 (MS-DOS functions), 82
calls, 240

Italic type, notational conventions, 9

K (Stack Trace command), 163, 217
Key names, notational conventions, 10

261

Code View Index

L (Restart command), 92, 217
Labels

defined, 240
finding, 52, 194, 214

Less-than sign «), Redirected Input
command, 199, 217

Line numbers, as arguments, 77
LINK (object linker), 16, 19
Load, menu selection, 92
Long reals

dumping, 111
entering, 180

Loops
tracepoints, used with, 146
watchpoints, used with, 141

Lvalue, 142, 240

1M Code View option, 30, 212
MA (monochrome adapter), 240
Macro Assembler, 6, 32
Macros, 17
Member-selection operators, 233
Memory release, 196, 233
Menu

Calls, 60, 163, 214
defined, 37
File

Load""", 49, 158, 214, 232, 233, 234
Quit, 50, 188, 214
Shel~ 50, 196, 214, 233, 243

keyboard selection from, 42
mouse selection from, 47
Options

Bytes Coded, 59, 214
Case Sense, 60, 214, 235
Flip ISwap, 58, 214
~ed Source, 59, 154, 214
Reg~ters, 59, 113, 181, 214
Symbols, 59, 154, 214

Run
Clear Breakpoints, 55, 124, 214
Execute, 55, 90, 214
Restart, 55, 91, 214, 234
Start, 54, 91, 214, 234

Search

252

Find""", 51, 193, 214
LabeL"", 52, 194, 214
Next, 52, 193, 214
Previous, 52, 193, 214

Menu (continued)
View

Assembly, 53, 154, 211-212, 214
Evaluate""", 54, 97, 214
Help, 53, 61, 187, 211, 214
Output, 53, 192, 211, 214, 241
Source, 53, 154, 211, 214

Watch
Add Watch""", 56,135,214
Delete Watch""", 57, 146, 214
Tracepoint""", 56, 143, 214
Watchpoint""", 56, 139,214

Menu bar, 37, 240
Menu selection, Start, 91
Message box, 38, 43, 48, 240
Mixed mode, 153, 211-212
Modules, examination, 100
Monochrome adapter (MA), 28, 31, 240
Mouse

compatibility, 6
defined,241
driver, 31
ignore option, 30, 212
pointer, 38, 44
selection with, 44

IvISC compiler control program, 16, 1'1,
18

N (Radix command), 190, 217, 227
NAN (not a number), 105
Notational conventions, 9

bold type, 8
brackets, 10
capital letters, 8
ellipses, 9
examples, 9
italic type, 9
quotation marks, 10
sample screens, 11
vertical bar, 10

Number sign (#), Tab Set command,
198, 217

Numbers
argulnents, used as, 73, 231
floating point, 110, 111, 112

Object ranges, as arguments, 76, 241
IOd compiler option, 17
Operands, 114

Operators, 70
Optimization, 17
Optional fields, conventions for, 10
Options menu

Bytes Coded, 59, 214
Case Sense, 60, 214, 235
Flip/Swap, 58, 214
Mix Source, 59, 214
Mixed Source, 154
Registers, 59, 113, 181, 214
Symbols, 59, 214

Options
CodeView

143, 31, 212, 239
jB, 25, 212
/C, 26,212
command line, used in, 20
IF, 27, 212
/M, 30, 212
IS, 27, 212, 235
summary, 23
IT, 29, 211, 212
/W, 29, 211, 212

compiler
IOd, 17
jZd, 17
/Zi, 17

linker
ICODEVIEW, 18, 19, 32
jCPARMAXALLOC, 196
/EXEPACK, 18,236

Output screen, 27, 191, 241, 242
Overlays, 20

P (Program Step command), 85, 217
Parameters, program, 21
Pass count, 122, 129
PATH command, 19
Pause command, 204, 216
PC-DOS, 23
Period (.)

Current Location command, used as,
161, 217

operator, 71, 234
regular expressions, used in, 224

PGDN (next help), 62
PGDN (scroll page down), 39, 160, 213
PGUP (previous help), 62
PGUP (scroll page up), 39, 213
Point, defined, 44

Code View Index

Pointer, mouse, 38, 44, 241
Popup menu, defined, 241
Precedence of operators, 70
Prefixes, with type specifiers, 97, 219,

229
printf type

prefixes, 97, 217, 229, 241
specifiers, 54, 95, 136, 139, 143, 218

Procedure calls, 82, 85, 241
Procedures, 100, 162
Program Step command, 41, 46, 64, 84,

213,217,242
Prompt (», CodeView, 37, 38, 67
Protected-mode (80286) mnemonics,

155, 157, 167
Public symbols, 32

Q (Quit command), 189, 217
Question mark (?), as Display

Expression command, 216
Quit command, 50, 188, 214, 217
Quotation marks ("), as Pause

command, 204, 216
Quotation marks ("), notational

conventions, 10

R (Register command), 114, 182, 217,
229, 230

Radix, 189
command, 73, 189, 217, 229, 242
current, 61, 73, 162

Ranges, as arguments, 76
README.DOC file, 8
Redirected Input and Output

command, 201, 217
Redirected Input command, 199, 217
Redirected Output command, 200, 217
Redirection

commands, 199, 217, 242
start-up commands, used in, 26

Redraw command, 191, 217
Register command, 40, 47, 59, 63, 113,

213, 217, 229, 230, 242
variables, 71, 142, 234
window, 37, 242

Registers, argument, used as, 74
Regular expressions, 51, 52, 192, 193,

223, 232, 234, 242
Relational expressions, 138

253

Code View Index

Restart command, 55, 91, 214, 217,
232, 234

ROM (read-only memory), 83
Run menu

Clear Breakpoints, 55, 124, 214
Execute, 55, 90, 214
Restart, 55, 91, 214, 234
Start, 54, 91, 214, 234

/S CodeView option, 27, 212, 235
S (Set Mode command), 154, 211, 217
Screen

buffer, 135
modes, 211

Screen Exchange command, 40, 53, 63,
191,211,213,214,217,241,242

Screen exchange method, 27
Screen movement commands, 39, 213
Screens notational conventions, 11
Scroll bar, defined, 37
Search

command, 51, 192, 214, 217, 223, 232
menu

Find ... , 51, 193, 214
LabeL .. , 52, 193, 214
Next, 52, 193, 214
Previous, 52, 193, 214

Separator line, 37
Sequential mode, 29, 35, 63, 201, 211,

212, 243
Set Block, MS-DOS function call

(Ox4A),196
Set Mode command, 40, 53, 63, 153,

211, 213, 214, 217
Shell Escape command, 50, 195, 214,

217,233,243
Short reals

dumping, 110
en tering, 179

Slash U) as
option designator, 23
Search Command, 194, 217, 234

Small capitals, notational conventions,
10

Source code
writing, 16
file, with line number arguments, 77
mode, 153, 211, 233, 243

Source-module files, location of, 20, 50
Stack, 8087, 117

254

Stack Trace command, 61, 162, 214,
217, 243

Start-up
code, 22, 50, 196, 243
command line, 20, 230, 233
commands, 26, 212
file configuration, 19

String mnemonics, 168
Strings, as arguments, 78, 231
Style, of programming, 16
Swapping, screen, 27, 212, 244
Symbol names, spelling, 72
Symbols

arguments, used in, 72, 235, 239
definition of, 244
examination, 100

SYMDEB, 6, 35, 63
Syntax

errors, 18
summary, 187,216

Syntax conventions. See Notational
conventions

SYSTEM-REQUEST key, 42, 82

IT Code View option, 29, 2ii, 2i2
T (Trace command), 83, 217
Tab Set command, 198, 217
Text files, identification, 233
Text strings, finding, 51, 192, 214, 217,

223
Toggle, defined, 244
TP (Tracepoint command), 143, 218,

227
Trace command, 41, 46, 64, 82, 213,

217,244
Tracepoint command, 56, 64, 141, 214,

218, 229, 233, 244
Tracepoint, defined, 141, 244
Two-color graphics display, 25, 210
Type casting, 99, 138, 230, 244
Type specifiers, 54, 95, 136, 139, 143,

218, 229

U (Unassemble command), 156, 218
Unassemble command, 155, 218
Underscore (_), in symbol names, 72
Unsigned integers, dumping, 108
UP ARROW key (cursor up), 39, 212

Uppercase letters, notational
conventions, 8

V (View command), 159, 218 233
Variables, local, 17, 72, 134, 235, 240
Vertical bar, notational conventions, 10
Video-display pages, 27
Video modes, 235
View command, 158, 218, 232, 233
View menu

Assembly, 53, 154, 211-212, 214
Evaluate""", 54, 97, 214
Help, 53, 61, 187, 211, 214
Output, 53,192,211,214,241
Source, 53, 154, 211, 214

jW CodeView option, 29, 211, 212
W (Watch command), 136, 218, 227
W (Watch List command), 148, 218
WAlT instruction, 170
Watch command, 56, 64, 134,214,218,

229
Watch Delete command, 57, 146, 214,

218
Watch-expression statement, 135
Watch List command, 64, 148, 218
Watch-memory statement, 136

Code View Index

Watch menu
Add Watch""", 56, 135, 214
Delete Watch" ""' 57, 146, 214
Tracepoint""", 56, 143, 214
Watchpoint""", 56, 139, 214, 245

Watch Statement commands, 37, 133
Watch statements

deletion, 146, 218
listing, 148, 218

Watch window, 37, 133
Watchpoint command, 56, 64, 138, 214,

218, 229, 245
Watchpoint, defined, 138, 218, 227, 245
Window commands, 38, 67, 245
Window mode, 29, 35, 211, 212, 245
WP (Watchpoint command), 139, 218,

227

X (Examine Symbols command), 101,
216

Y (Watch Delete command), 147,218

jZd compiler option, 17
Zero, division by, 231
jZi compiler option, 17

255

