
MICROSOFT FORTRAN-BO Reference Manual
Version 3. 0

Copyright 1977 (C) by Microsoft

Sectiun

MICROSOFT FORTRAN-SO
Reference Manual

Con·tents

1 Introduction
2 Fortran Program Form

2. 1 Fortran Character Set
~"!. 1. 1 L.etters
2.1..2 Digits
2. 1. 3 Alphanumerics
2.1.4 Special Characters

2.2 FORTRAN Line Format
2.3 St,'3tements

3 Data Representation/Storage Format
~3. 1 Data Names and Types

:3. 1 . .t Names
3. 1. 2 Types

3.2 Constants
::L 3 Variab les
3.4 Arrays and Array Elements
3.5 Sub!!;cripts
3.6 Data Storage Allocation

4 FORTRAN Expressions
4.1 Arithmetic Expressions
4.2 Expression Evaluation
4.3 Logical Expressions

4.3.1 Relational Expressions
4.3.2 Logical Operators

4.4 Hollerithl Literal, and Hexadecimal
Constants in Expressions

5 Replacement Statements
6 Specification Statements

6.1 Speci'ication Statements
6.2 Array Declarators
6.3 Type Statements
6.4 EXTERNAL Statements
6. 5 DIMENSION Statements

6.6 COMMON Statements
6.7 EGUIVALENCE Statements
6.8 DATA Initialization Statement

7 FORTRAN Control Statements
7. 1 GOTO Statements

7.1..1 Unconditional GOTO
7. 1. 2 Computed GOTO
"7. 1. 3 Ass i gned GOTO

7.2 ASSIGN statement
7.3 IF Statement

7.3.1 Arithmetic IF
7.3.2 Logical IF

7.4 DO Statement
7. 5 CONTINUE Statement
7. 6 STOP Statement
7. 7 PAUSE Statement
7.8 CALL Statement
7.9 RETURN Statement
7. 10 END Statement

8 Input/Output
8. 1 FOT·ma·t;ted READIWRITE

8. 1. 1 Formatted READ
8. 1.2 Formatted WRITE

8.2 Unformatted READ/WRITE
8.3 Disk File I/O

8. 4
8. 5
B. 6

B. 7

8.3.1 Random Disk 110
8.3.2 OPEN Subroutin~
Auxiliary 110 Statements
ENCDDE/DECODE
Input/Output List Specifications
8.6.1 List Item Types
8.6.2 Special Notes on List

Specifications
FORMAT Statements
8.7.1 Field Descriptors
8.7.2 Numeric Conversions
8.7.3 Hollerith Conversions
8.7.4 Logical Conversion
8.7.5 X Descriptor
8.7.6 P Descriptor
8.7.7 Special Control Features

of FORMAT Statements
8.7.7. 1 Repeat Specifications
8.7.7.2 Field Separators

8.7.8 FORMAT ContraIl List Specifications)
and Record Demarcation

8.7.9 FORMAT Carriage Control
8.7.10 FORMAT Specifications in Arrays

9 Functions and Subprogram~

9. 1
9.2
9.3
t::;. "1-
CJ. 5
t:1.6
C). 7
9.8
C). 9
9. :LO

PROGRAM Statement
Statement Functions
Library Functions
Function Subprograms
Construction of Function Subprograms
Referencing a Function Subprogram
Subroutine Subprograms
Construction of Subroutine Subprograms
Referencing a Subroutine Subprogram
Return From Function and Subroutine
SubprogT'ams

9.11 Processing Arrays in Subprograms
9. 12 BLOCK DATA Subroutine
APPENDIX A- Language Extensions and Restrictions
APPENDIX B- I/O Interface
APPENDIX C- Subprogram Linkages
APPENDIX D- ASCII Character Codes
APPENDIX E- Referencing FORTRAN-BO Library Subroutines

FORTRAN-BO Reference Manual
SECTION 1

INTRODUCTION
FORTRAN :is ,a univE!l"sal .. pT'oblem oriented programming
language designed to simplify the preparation and check-out
Or compute'r progT'ams. The name OT the language .. - FORTRAN
is an acronym for FORmula TRANslator.
The syntactical rules for using the language are rigorous
and require the programmer to define fully the
characteristics of a problem in a series of precise
statements. These statements.. called the source program ..
are translated by a system program called the FORTRAN
processor into an obJect program in the machine language of

the computer on which the program is to be executed.
This manual defines the FORTRAN source lan~uage for the 8080
and Z-80 microcomputers. This language includes the
American National Standard FORTRAN language as described in
I~NSI document X3.9·-19661 approved on March 7, 1966 .. plus a
number of language extensions and some restrictions. These
language extensions and restrictions are described in the
text of this document and are listed in Appendix A.

NOTE
This FORTRAN differs from the
Standard in that it does not
include the COMPLEX data type.

Examples are included throughout the manual ·to illustrate
the construction and use of the language elements. The
programmer should be familiar with all aspects of the
language to take full advantage of its capabilities.
Section 2 describes the form and components of an 8080
F(jRTI~AN source pT'ogram. Sections 3 and 4 define data types
and their expressional relationships. Sections 5 through 9
describe the proper construction and usage of the various
statement classes.

FORTRAN-SO Reference Manual Page 7
SECTION 2

FORTRAN PROGRAM FORM
8080 FORTRAN source programs consist of one program unit
called the Main program and any number of program units

called subprograms. A discussion of subprogram types and

methods of writing and using them is in Section 9 of this
manual.
Programs and program units are constructed of an ordered set
of statements which precisely describe procedures for
solving problems and which also define information to be
used by the FORTRAN processor during compilation of the
object program. Each statement is written ~sing the FORTRAN
character set and following a prescribed line Format.
2. 1 FORTRAN CHARACTER SET

2. :t. 1.

2 . .1. ~~

To simplify reference and explanation, the FORTRAN
character set is divided into four subsets and a
name is given to each.
LETTERS

A,B~C/D1E,FJG,H, I,~,K/L,M,N,O,P,G,R,S,T,U

V, trJ •• X, Y J Z 1 $

NOTE
No distinction is made between upper and
lower case letters. However, for clarity
and legibility, exclusive use of upper case
letters is recommended.

DIGITS

NOTE
Strings of digits representing numeric
quantities are normally interpreted as
decimal numbers. Howeverl in certain
statemerlts) ttl e i nteT~pT"e·tat i on is in th e

FORTRAN-SO Reference Manual Page 8
Hexadecimal number system in which case the
letters At B, C~ Dt E, F may also be used
as Hexadecimal digits. Hexadecimal usage
is defined in the descriptions of
statements in which such notation is
allowed.

2.1.3 ALPHANUMERICS

2. 1. if·

=
+

~.

I

A sub-set of characters made up of all letters and
all digits.
SPECIAL CHARACTERS

NOTES:

Blank
Equality Sign
Plus Sign
Minus Sign
Asterisk
Slash
Left Parenthe~.i s
Right Parenthesis
Comma
Decimal Point

1. FDHTRAN p'rogram lines consist of 80 character
positions OT' c:olumnsl numbered 1 thT'ough 80.
They are divided into four fields.

2. The following special characters are classified
as Arithmetic Operators and are significant in
the unambiguous statement of arithmetic
expressions.
+ Addition or Positive Value

Subtraction or Negative Value
* Multiplication
I Division
** Exponentiation

3. The other special characters have specific
application in the syntactical expression of
the FORTRAN language and in the construction of
FORTRAN statements.

FORTRAN-BO Reference Manual Page 9
in a 4. Any printable cha','acter may

Hollerith or Literal field.
appea'"

FORTRAN LINE FORMAT

The sample FORTRAN coding fOT'm (Figure 2.1.) shows
the format of FORTRAN program lines. The lines of
the form consist of 80 character positions or
columns, numbered 1 through 80, and are divided
into four fields.
1. Statement Label (or Number) {!ield- Columns 1

, . .,
t::...

3.

4.

through 5 (See definition of statement labels).
Continuation character field-
Column 6
Statement fie 1 d .. -
Columns 7 through 72
Indentification field-
Columns 73 through 80

The identification field is available for any
purpose the FORTRAN programmer may desire and is
ignored by the FORTRAN processor.
The lines of a FORTRAN statement are placed in
Columns 1 through 72 formatted according to line
ttJPes. The fOLq" line types} their definitions} and
column formats are:
1. Comment 1 i ne ._ .. - used for source program

annotation at the convenience of the
programmer.
1.. Column 1 contains the letter C.

2. Columns 2 - 72 are used in any desired
format to express the comment or they may
be left blank.

3. A comment line may be followed only by an
initial line .. an END linel 01" another
comment 1 i ne.

4. Comment lines have no effect on the object
program and are ignored by the FORTRAN
processor except for display purposes in
the listing of the program.

FORTRAN-BO Reference Manual
Examp 1 e:

Page 11

2 END
1.
2.
3.

4.

5.

C COMMENT LINES ARE INDICATED BY THE
C CHARACTER C IN COLUMN 1.
C THESE ARE COMMENT LINES
line -- the last line of a program unit.
Columns 1-5 may contain a statement label.
Column 6 must contain a zero or blank.
Columns 7-72 contain one of the characters
EJ "1 or D, in that ord er-.. .pr-ec ed ed by 1

separated by Dr followed by blank
characters.
Each FORTRAN program unit must have an END
line as its last line to infor~ the
Processor that it is at the physical end of
the program unit.
An END line may follow any other type line.
Example:

END
3. Initial Line -- the first or only line of each

statement.
1. Columns 1-5 may contain a statement label

to identify the statement.
2. Column 6 must contain a zero Dr blank.
3. Columns 7-72 c ontain all or part of the

statement.
4. An initial line may begin anywhere within

the statement field.
Example:

C THE STATEMENT BELOW CONSISTS
C OF AN INITIAL LINE
G

FORTRAN-BO Reference Manual Page 12
4. Continuation Line -- used when additional lines

of coding are required to complete a statement
originating with an initial line.
1. Col umns 1-5 are i gnoT~ed I un less Col \.Imn 1

contains a C.
2. If Column 1 contaj,ns a CI it is a comment

1 i ne.
3. Column 6 must contain a character other

than zero or blank.

4. Columns 7-72 cDntain the continuation of
the sti-3·t;ement.

5. The're may be as many continuation lines as
needed to complete the statement.
Example:

C THE STATEMENTS BELOW ARE AN INITIAL LINE
C AND 2 CONTINUATION LINES

63 B ETA (11 2) ::::
1 A6BAR**7-(BETA(2,2)-A5BAR*50
2 +SGRT (BETA(211»)

A statement label may be placed in columns 1-5 of a
FORTRAN statement initial line and is used for
refer~nce purposes in other statements.
The following considerations govern the use of
statement labels:
1. The label is an intege'r from 1. ·to 99999.
2. The numeric value of the labell leading zeros

and blanks are not significant.
3, A label must be unique within a program unit.
4. A label on a continuation line is ignored by

the FORTRAN Processor.

FORTRAN-80 Reference Manual
Example:

C EXAMPLES OF STATEMENT LABELS
(' . . ,

1
101

99999
763

2.3 STATEMENTS

Page 13

Individual statements deal with specific aspects of
a procedure described in a program unit and are
classified as either executable or non-executable.

Executable statements specify actions and cause the

FORTRAN Processor to generate object program
instructions. There are three types of executable

statements:
1. f~ep lacement statements.
2. Control st;atements.
3. Input/Output t;.tatements.
Non-executable statements describe to the processor

the nature and arrangement of data and provide
information about input/output formats and data
initialization to the object program during program
loading and execution. There aTe five types of
non-executable statements:
1. Specification statements.
;2. DATA In it i ali z at i on statement s.
3. FORMAT statements.
4. FUNCTION d er i n i ng statements.
5. Subprogram st.atements.
The proper osage and construction of the various
types of statements are described in Sections 5
through 9.

FORTRAN-BO Reference Manual Page 14
SECTION 3

DATA REPRESENTATION / STORAGE FORMAT
The FORTRAN Language prescribes a definitive method for
identifying data used in FORTRAN programs by name and type.

3. 1 DATA NAMES AND TYPES

NAMES

1.
'''l r.:...

3.

4.

Constant - An explicitly stated datum.
Variable A symbolically identified datum.
ArratJ -- An oT~dHred set O"r data in 11 2 o'r 3
dimensions.
Array Element - One member of the set of data
f)f an f31"'T'a\J,

TYPES

1. Integer -- Precise representation of integral
numbers (positive, negative Dr zero) having
precision to 5 digits in the range -32768 to +32767
inclusive (-2**15 to 2**15-1),

2. Real -- Approximations of real numbers (positivel
negative or zero) represented in computer storage
in 4·-byte.. floating-point ·Porm. Real data are
precise to 7+ significant digits and their
magnitude may lie between the approximate limits of
10**-38 and 10**38 (2**-127 and 2**127).

3. Double Precision' -- Approximations of real numbers
(positive, negative or zero) represented in
computer storage in 8-byte, floating-point form.
Double Precision data are precise to 16+
signiFicant digits in the same magnitude range as
real data.

4. Logical -- One byte representations of the truth
values "TRVEt! or HFALSE fI with ItFALSE defined to
have an internal representation of zero. The
constant . TRUE. has the value -1, however any
non-zero value will be treated as . TRUE. in a
Logical IF statement. In addition! Logical types
may be used as one byte signed integers in the

FORTRAN-BO Reference Manual Page 1.5

a:;'
.J.

T'ange -128 to +1;;!71 inclusive.
Hollerith -- A string of any number
f! l' 0 In the com put: e'r I s chern' a c: t e T' set: .

of characters
All c ha'f'ae: teT'S

including blanks are significant. Hollerith data
require one byte for storage of each character in
"thest'ring.

3.2 CONSTANTS

FORTRAN constants are identified explicitly by
stating their actual value. The plus (+) character
need not precede positive valued constants.
Formats fDr writing constants are shown in Table
:3,-1.

FORTRAN-SO Reference Manual
Table 3-1. CONSTANT FORMATS

TYPE FORMATS AND RULES OF USE

INTE(~ER 1. 1 to 5 decimal digits
interpreted as a deci­
mal number.
A preceding plus (+) or
min u s (.,-) s i 9 n i sop'-
.t; iona 1.

3. No decimal point C) or
comma (.,) is a 11 owe d.

4.

1.

Value range: -32768
thT'ough +32767 (.:i. e. I

-2**15 through 2**15-1),
A decimal number with
precision to 7 digits
and represented in one
of the following forms:

o. + OT" '-. f + 01' -i. f
b . + eH' - :i., E + O"f' -e

+ OT" -. 'rE+ OT' '-'e
+ or -i. fE+ or -e

where i, f, and e are
e a c h s t r i n 9 s 'r e p 1"' e sen t­
ing integeT'I .pT'action~

and exponent respective-
1 y.

2. Plus (+) and minus (-)
characters are optional.

3. In the ft)T'm shown in 1 b
above, if l' represents any
of the forms preceding
E+ or -e (i. e. I rE+ or -e),
the value of the constant
is interpreted as r times
10**e, where -38<=e<=38.

4. If the constant preceding
E+ or -e contains more
significant digits than

Page 16

EXAMPLES

-76~3

1
+00672
--32768
+~12767

34·5.
-. 345678
+345.678
+.3E:3
-·73E4

FORTRAN-BO Reference Manual

DfJlJBLE
PHECISION

LOGICAL

LITERAL

HEXADEGII'-1AL

the precision for real
dat.a allotJJsl truncation
OCCU1'S~ and only the
most significant digits
in the range will be rep­
resented.

A decimal number with
precision to 16 digits. All
formats and rules are identi­
cal to those for REAL con­
stantsl except D is used in
place of E. Note that a real
constant is assumed single pre­
cision unless it contains a
"DIt exponent .
. TRUE. genel"'ates a non-ze'ro
byte (hexadecimal FF) and
. FALSE. generates a byte in
which all bits are O.

If logical values are
used as one"-byte integeT's~ the
rules for use are the same as
for type INTEGERJ except that
the range allowed is -128 to
+ 1.27 lin c 1 us i. ve .
In the literal form, any
number of characters may be
enclosed by single quotation
marks. The form is as follows:

I X 1 X;;'~X3 ... Xn I

where each Xi is any charac­
ter other than'. Two
quotation marks in succession
may be used to represent the
quotation mark character
luithin the string, i. e. I

if X2 is to be the quotation
mark character, the string
appears as the following:

I Xl' I X3 ... Xn I

1. -rhe letter Z or X
followed by a single quote,
up to 4 hexadecimal

Page 17

+345. 678
+. 3D3
-73DJ~

. TRUE.

. FALSE .

Z / 12'

X'AB1F'

FORTRAN-SO Reference Manual
digits (0-9 and A-F) and a
single quote is recognized
as a hexadecimal value.
2. A hexadecimal constant is
right Justified in its storage
value.

Page 18
Z'FFFF'

X'1F'

FORTRAN-80 Re'erence Manual Page 19
3.3 VARIABLES

Variable data are identified in FORTRAN statements
by symbolic names. The names are unique strings of

from 1 to 6 alphanumeric characters of which the
first is a letter.

NOTE
System variable names and runtime
subprogram names are distinguished from
other variable names in that they begin
with the dollar sign character ($). It i5
therefore strongly recommended that in
o'rder to avoid conflicts .. symbolic names in
FORTRAN source programs begin with some
letter other than "$".

Examp les:

15, TBAR~ B23~ ARRAY, XFM791 MAX~ Al$C
Variable data are classified into four types:
INTEGER, REAL, DOUBLE PRECISION and LOGICAL. The
specification of type is accomplished in one 0' the
'Pollowing ways:
1. Implicit typing in which the first letter of

the symbolic name specifies Integer or Real
type. Unless explicitly typed (2. I below)1
symbolic names beginning with I, J, K, L, M or
N represent Integer variabiesl and symbolic
names beginning with letters other than I, J,
K, L, M or N represent Real variables.
Integer Variables

ITEM
Jl
r-10DE
Kl~23

N2

FORTRAN-BO Reference Manual
Real Variables

2

BETA
H2
ZAP
AMAT
XID
Variables
they ma\!

maHJ
be

be typed
given

reference to the first

Page 20

explicitly. That i 5,

a particular' type without;
letters Or their names.

Variables may be explicitly typed as INTEGERI
REALI DOUBLE PRECISION OT' LOGICAL. The
specif-ic statements used in explicitly typing
data are described in Section 6.

Variable data receive their numeric value assignments during
program execution or, initially) in a DATA statement
(Sec t i on 6),
Hollerith or Literal data may be assigned to any type
variable. Sub-paragraph 3.6 contains a discussion of
Hollerith data storage.
3.4 ARRAYS AND ARRAY ELEMENTS

An array is an ordered,set of data characterized by
the property of dimension. An array may have 11 2

or 3 dimensions and is identified and typed by a
symbolic name in the same manner as a variable
except that an array name must be so declared by an
ua'rray declaratoT'. If Complete discussions of the
array declarators appear in Section 6 of this
manual. An arT'ay declarator also indicates the
dimensionality and size of the array. An array

element is one member or the data set that makes up

an array. Reference to an array element in a
FORTRAN statement is made by appending a subscript
to th e array name. Th e term aT'rcHJ element is
synonymous with the term subscripted variable used
in some FORTRAN texts and reference manuals.
An initial value may be assigned to any array
element by a DATA statement or its value may be
derived and defined during program execution.

3. 5 SUBSCRIPTS

A subscript follows an array name to uniquely

FORTRAN-80 Reference Manual Page 21

3.6

identify an array element. In use, a subscript in
a FORTRAN statement takes on the same
representational meaning as a subscript in familiar
algebraic notation.
Rules that govern the use of subscripts are as
Tallows:
1. A subscript contains 1, 2 or 3 subsl:'ript

3.

exp'ressions
parentheses.

(see 4 below) enclosed in

If there are two or three subscript expressions
within the parentheses1 they must be separated
by commas.
The number of subscript expressions must be the
same as the specified dimensionality Or the
Array Declarator except in EGUIVALENCE
statements (Section 6).

4. A subscript expression is written in one of the
following forms:
~~ C*V V-'K
V C*V+K C*\l·'"~'

V"H"
where C and K are integer constants and V is an
integer variable name (see Section 4 for a
discussion of expression evaluation).

5. Subscripts themselves may not be subscripted,

Examplt~s:
X(2*J-3,7) A(I,J,K) I (~!O) C(L-2) Y (I)

DATA STORAGE ALLOCATION

Allocation of storage for FORTRAN data is made in
numbers of stoT'age units. A storage unit is the

memory space required to store one real data value
(4 by·tes).
Table 3-2 defines the word formats of the three
di:d;a ty pes.
Hexadecimal .data may be associated (via a DATA
statement) with any type data. Its storage
allocation is the same as the associated datum.
Hollerith or literal data may be associated with
any data type by use of DATA initializaton

FORTRAN-SO Reference Manual Page 22
statements (Section 6).
Up to eight Hollerith characters may be associated
with Double Precision type storage, up to four with
Real, up to two with Integer and one with Logical
type storage.

FORTRAN-80 Reference Manual Page 23
TABLE 3-2. STORAGE ALLOCATION BY DATA TYPES

TYPE ALLOCATION

INTEGER

LOGICAL

HEl\L

2 bytesl 1/2 storage unit
S Binary Value
Negative numbers are the 2'5 complement of
positive representations.
1 byte/ 1/4 sttirage unit
Zero (false) or non-zero (true)
A non-zero valued byte indicates true (the
logical constant . TRUE. is represented by
the hexadecimal value FF). A zero valued
byte indicates false.
When used as an arithmetic value, a Logical
datum is treated as an Integer in the range
-128 to +127.
4 bytesl 1 storage unit
Characteristic S Mantissa
Mantissa (continued)
The first byte is the characteristic
expressed in excess 200 (octal) notation;
i. e. J a va J. u e () .p 200 (0 c tal) cor'r e S p 0 n d s to a
binary exponent of O. Values less than 200
(octal) correspond to negative exponents1 and
values greater than 200 correspond to
positive exponents. By definition, iT the
characteristic is zero, the entire numbel' is
zero.
The next three bytes constitute the mantissa.
The mantissa is always normalized such that
the high order bit is onel eliminating the
need to actually save that bit. The high bit
is used instead to indicate the sign of the
number. A one indicates a negative number,
and zero indicates a positive number. The
mantissa is assumed to be a binary fraction
whose binary point is to the leTt of the
manti SSi3.

FORTRAN-BO Reference Manual Page 24
DOUBLE 8 bytes! 2 storage units
PRECISION

The internal form of Double Precision data is
identical with that of Real data exc.pt
Double Precision uses 4 extra bytes for the
matissa.

FORTRAN-BO Reference Manual
SECTION 4

FORTRAN EXPRESSIONS

Page 25

A FORTRAN expression is composed of a single operand or a
string of operands connected by operators. Two expression
types --Arithmetic and Logical-- are provided by FORTRAN.
The operandsl operators and rules of use for both types are
described in the following paragraphs.
4. 1 ARITHMETIC EXPRESSIONS

----------- ._----._-
The following rules define all permissible
arithmetic expression forms:
1. A constant, variable name.. aT'ray element

reference or FUNCTION reference (Section 9)
standing alone is an expression.
Examples:

SCI) JOBNO 217 17.26 SGRTCA+B)
2. If E is an expression whose first character is

not an operator, then +E and -E are called
signed expressions.
Examples

-8 +JOBNO -217 +17.26 -SGRT(A+B)
8. If E is an expression, then (E) means the

quantity resulting when E is evaluated.
Examples:

(·-A) -(JOBNO) '-(X+l) (A-SGRT(A+B})
4. If E is an unsigned expression and F is any

expression, then: F+E, F-E, F*EI FIE and F**E
are all expressions.
Examples:

-(B(I,J)+SGRTCA+B(K,L»)
1. 7E-·2** (X+S. 0)
-(B(I+3,3*J+5)+A)

FORTRAN-BO Reference Manual Page 26
5. An eva 1 Llated ex pT'ess i on may be Integ eT', Rea I,

Double Precision, or Logical. The type is
determined by the data types of the elements of
the expression. If the elements of the
expression are not all of the same type~ the
type of the expression is determined by the
element having the highest type. The type
hierarchy (highest to lowest) is as follows:
DOUBLE PRECISION, REAL, INTEGER, LOGICAL.

6. Expressions may contain nested parenthesized
elements as in the following:

A*(Z-«Y+X)/T»**J

wheT'e Y+X is the innermost element} (Y+X)/T is
the next innermost, Z-((Y+X)/T) the next. In
such expressionsl care should be taken to see
that the number of left parentheses and the
number of right parentheses are equal.

4.2 EXPRESSION EVALUATION

Arithmetic expressions are evaluated according to
the following rules:
1. Parenthesized expression elements are evaluated

first. If parenthesized elements are nested,
't;he innermost elements c't'r'e evaluated, then the
next innermost until the entire expression has
been evaluated.

2. Within parentheses and/or wherever parentheses
do not govern the order OT" evaluation~ the
hierarchy of operations in order of precedence
is as follows: .
a. FUNCTION evaluation
b. Exponentiation
c. Multiplication and Division
d. Addition and Subt';T"ac.tion
Example:

The expression
A*CZ-«Y+R)/T»**J+VAL

is evaluated in the following sequence:

FORTRAN-BO Reference Manual
Y+R ::::: el

Page 27

3.

(el)/T .- e:;;~

Z-e2 ::: e:i
e3**,j :::: e4
A*e4 :::: e5
e5+VAL :::: e6

The expression X**V**Z is not allowed.
should be written as follows:

(X**Y>**Z or X**(y**Z)

It

4. Use of an array element reference requires the
evaluation of its subscript~ Subscript
expressions are evaluated under the same rules
as other expressions.

4.3 LOGICAL EXPRESSIONS

.:1-. 3. 1

---,-----
A Logical Expression may be any of the following:
1. ,., single Logical Constant (1. e. I • TRUE. or

. FALSE.)J a Logical vaT'iable, Logical Array
Element or Logical FUNCTION reference (see
FUNCTION~ Section 9).
Two arithmetic expressions separated by a
relational operator (i. e. I a relational

expression).
3. Logical operators acting upon logical

constants, logical variables, logical array
elements, logical FUNCTIONS, relational
expressions or other logical expressions.

The value of a logical expression is always either
. TRUE. 0'1". FALSE.
RELATIONAL EXPRESSIONS

The general form of a relational expression is as
Tollows:

el r e2
where el and e2
a relational

are arithmetic expressions and r is
operator. The six relational

operators are as follows:

FORTRAN-BO Reference Manual Page 28

4.3.2

· L.T.
· LE.
· EG.
· NE.
· GT.

L.ess Than
Less than or equal to
Equal to
Not equal to
Greater than

.GE. Greater .than or equal to
The value of the relational expression is . TRUE.
if the condition defined by the operator is met.
Otherwisel the value is . FALSE.
Examples:

A.EG. B
(A'*'*~L GT. (ZAP*(RHO~'TAU-ALPH»

LOGICAL OPERATORS

Table 4-1 lists the logical operations.
denote logical expressions.

U and V

FORTRAN-BO Reference Manual Page 29
Table 4-·1. Logical Operations

.NOT.U The value of this expression is the
log i cal c omp 1 emen t 0 ~ lJ (i. e. I 1
bits become 0 and 0 bits become 1),

U. AND. V The value of this expression is the
log ieal product of U and V (i. e. I

there is a 1 bit in the result only
where the corresponding bits in both
U and V are 1.

U.OR.V The value of this expression is the
logical sum of U and V (i. e. J there
is a 1 in the result if the
corresponding bit in U or V is 1 or
if the corresponding bits in both U
and V are 1.

U. XOR.V The value of this expression is the
e x c 1 us i ve OR 0 of U an d V (i. e. I the'r e
is a one in the result if the
corresponding bits in U and V are 1
and 0 or 0 and 1 respectively.

Examples:

If U = 01101100 and V = 11001001 I then

.NOT.U = 10010011
U.AND.V = 01001000
U.OR.V = 11101101
U. XOR.V = 10100101

FORTRAN-80 Reference Manual Page 30
The following are additional considerations for
construction of Logical expressions:
1. Any Logical expression may be enclosed in

parentheses. However, a Logical expression to
which the . NOT. operator is applied must be
enclosed in parentheses if it contains two or
more elements.

2. In the hierarchy of operations, parentheses may
be used to specify the ordering of the
expression eval~ation. Within parentheses, and
where parentheses do not dictate evaluation
(JrdeT', the orde-r is understood to be as
follows:

3.

a. FUNCTION Reference
b. Exponentiation <**>
c. Multiplication and Division (* and /)
d. Addition and Subtraction (+ and -)
e. . LT. I • LE., . EG. I • NE., . GT., . GE.
f. . NOT.
g. . AND.
h. . OR. J • XDR.
Examples:

The expression

X . AND. Y .OR. B(3,2) .QT. Z

j.B evaluated as

el = B (31 2>' GT. Z
e r

") e. = X . AND. Y
e3 - e2 . OR. e1

The expression
X . AND. <y . OR. B(3,2)

is evaluated as
e 1 ... B (3, 2) . GT. Z
e2 = Y .OR.el
e3 = X . AND. e2

. GT. Z'>

It is invalid to have two contiguous logical
operators except when the second operator is

. NOT.

FORTRAN-BO Reference Manual
That is,

. AND .. NOT.

and

. OR .. NDT.

are permi tted.
Example:

A.AND .. NOT.B is permitted

A.AND .. OR.B is not permitted

Page 31

4.4 HOLLERITH, LITERAL, AND HEXADECIMAL CONSTANTS IN

EXPRESSIONS
.-

Hollerith, Literal, and Hexadecimal constants are
allowed in exp~essions in place of Integer
constants. These special constants always evaluate
to an Integer value and are therefore limited to a
length of two bytes. The only exceptions to this
are:
1. Long Hollerith or Literal constants may be used

as subprogram parameters.
2. Hollerith, Literal, or Hexadecimal constants

may be up to four bytes long in DATA statements
when associated with Real variables, or up to
eight bytes long when associated with Double
Precision variables.

FORTRAN-BO Reference Manual
SECTION 5

REPLACEMENT STATEMENTS

Page 32

Replacement statements define computations and are used
similarly to equations in normal mathematical notation.
They are of the following form:

v::: e
where v is any variable or array element and e is an
expT'ession.
FORTRAN semantics defines the equality sign (=) as meaning
to be replaced by rather than the normal is equivalent to.

----- -
ThuSI the obJect program instructions generated by a
rep lac ement statement wi II, wh en exec uted J eva 1 uelte the
expression on the right o~ the equality sign and place that
result in the storage space allocated to the variable or
array element on the left of the equality sign.
The following conditions apply to replacement statements:

1. Both v and the equality sign must appear on the
same line. This holds even when the statement is
part of a logical IF statement (section 7).
Example:

C IN A REPLACEMENT STATEMENT THE '='
C MUST BE IN THE INITIAL LINE.

A (51 :3) =~

1 B(7,2) + SINCe)

The line containing v= must be the initial line of
the statement unless the statement is part of a
logical IF statement. In that case the v= must
occur no later than the end of the first line after
the end of the IF.

2. If the data types of the variable, VI and the
expression~ e~ are difFerent, then the value
determined by the expression will be converted, if
possiblel to conform to the typing of the variable.
Table 5-1 shows which type expressions may be
equated to which type of variable. Y indicates a
valid replacement and N indicates an invalid
replacement. Footnotes to Y indicate conversion
c: onsideT"ations.

FORTRAN-BO Reference Manual
Table 5-1. Replacement By Type

Expression Types (e)
Variable
Types Integer Real
Integer V Va
Real Vc Y
LDgical Vd Va
Double Yc Y

Logical
Vb
Yc
y
Yc

Double
Va
Ye
Va
y

Page 33

B. The Real expression value is converted to Integer,
truncated if necessary to conform to the range of
Integer data.
b. The sign is extended through the second byte.
c. The variable is assigned the Real approximation of
the Integer value of the expression.
d. The variable is assigned the truncated value of the
Integer expression (the low-order byte is usedl
regardless of sign).
e. The variable is assigned the rounded value of the
Real expression.

FORTRAN-SO Reference Manual
SECTION 6

SPECIFICATION STATEMENTS

Page 34

Specification statements are non-executablel non-generative
statements which define data types of variables and arraysl
specify array dimensionality and size, allocate data storage
or otherwise supply determinative information to the FORTRAN
processor. DATA intialization statements are
non-executable, but generate object program data and
establish initial values for variable data.
6. 1 SPECIFICATION STATEMENTS

--_ .. _--
There are six kinds of specification statements.
They are as follows:

Type, EXTERNAL~ and DIMENSION statements
COMMON statements
EGUIVALENCE statements
DATA initialization statements

All specification statements are grouped at the
beginning of a program unit and must be ordered as
they appear above. Specification statements may be
preceded only by a FUNCTION1 SUBROUTINE, PROGRAM or
BL.OCK DATA statement. All specification sta'cements
must precede statement functions and the first
executable statement.

6.2 ARRAY DECLARATORS

Three kinds of specification statements may specify
array declarators. These statements are the
following:

Type statements
DIMENSION statements
COMMON statements

Of these, DIMENSION statements have the declaration
of arrays as their sole function. The other two
serve dual purposes. These statements are defined
in subparagraphs 6.3, 6.5 and 6.6.
Array declarators are used to specify the namel
d imens i anal i ty and s i z es of array s. An array may
be declared only once in a program unit.
An array declarator has one of the following forms:

FORTRAN-BO Reference Manual
ui (k)

ui (kl, k2)
uj. (k 1 .. k2~ k3)

Page 35

where ui is the name of the array.. called the
dec laT'ator name .. and the k's are integer constants.
Array storage allocation is established upon
appearance of the array declarator. Such storage
is allocated linearly by the FORTRAN processor
where the order of ascendancy is determined by the
first subscript varying most rapidly and the last
subscript varying least rapidly.
For examp 1 e.. if th e aT'ray dec larator Ar-1AT (3} 2, 2)
appears.. storage is allocated ror the 12 elements
in the following order:
AMAT(1 .. 1..1), AMAT(2,l, 1), AMAT(3/1,1)~ AMAT(1,2,l),
AMAT(212 .. 1), AMAT(3,2, 1) .. AMAT(l, 1 .. 2) .. AMAT(2,1,2) ..
AMAT(3,1,2), AMAT(l,212), AMAT(212,2), AMAT(3,2 .. 2)

6.3 TYPE STATEMENTS

Variable.. array and FUNCTION names are
automatically typed Integer or Real by the
'predefined' convention unless they are changed by
Type statements. For example, the type is Integer
if the first letteT of an item is I .. J .. K .. L .. M or
N. Otherwise .. the type is Real.
Type statements provide for overriding or
confirming the pre-defined convention by specifying
the type of an item. In addition, these statements
may be used to declare arrays.
Type statements have the following general form:

·t v 1, v2, . . . Vl1

where t represents one of the terms INTEGER,
INTEGER*l, INTEGER*2, REAL, REAL*4, REAL*a, DOUBLE
PRECISION, LOGICAL, LOGICAL*1, LOGICAL*2, or BYTE.
Each v is an array declarator or a variable, array
or FUNCTION name. The INTEGER*1, INTEGER*2,
REAL*4, REAL*8, LOGICAL*l,and LOGICAL*2 types are
allowed for readability and compatibility with
other FORTRANs. BYTE, INTEGER*1, LOGICAL*I .. and
LOGICAL are all equivalent; INTEGER*2, LOGICAL*2,
and INTEGER are equivalent; REAL and REAL*4 are
equivalent; DOUBLE PRECISION and REAL*8 are
equivalent.

FORTRAN-SO Reference Manual
Examp 1 e:

REAL AMAT(3,315),BX, IETA,KLPH
NOTE

1. AMAT and ax are red undant I y ty p ed.

Page 36

2. lETA and KLPH are unconditionally
del~ la·red Real.
3. AMA T (3, 3, 5) i sac 0 n stan tar Y' a y
declarator specifying an array of 45
elements.

Example:

INTEGER M1, HT, JMP(15), FL
NOTE

Ml is redundantly typed here. Typing of HT
and FL by the pre-defined convention is
overridden by their appearance in the
INTEGER statement. '\..JMP(15) is a constant
array declarator. It redundantly types the
array elements as Integer and communicates
to the processor the storage requirements
and dimensionality of the array.

Example:

LOGICAL Ll, TEMP
NOTE

All variables, arrays or FUNCTIONs required
to be typed Logical must appear in a

LOGICAL statement,
indicates these
c anvent ion.

since no starting letter
types by the default

FORTRAN-BO Reference Manual Page 37
6.4 EXTERNAL STATEMENTS

EXTERNAL statements have the following form:
EXTERNAL ui,u2, ... ,un

where each ui is a SUBROUTINE, BLOCK DATA or
FUNCTION name. When the name of a subprogram is
used as an argument in a subprogram reference, it
must have appeared in a preceding EXTERNAL
statemen·ti.
When a BLOCK DATA subprogram is to be included in a
pT'ogram load, its name must have appeared in an
EXTERNAL statement within the main program unit.
For example, if SUM and AFUNC are subprogram names
to be used as arguments in the subroutine SUBRI the
following statements would appear in the calling
p'ro gram un it:

EXTERNAL SUM, AFUNC

CALL SUBR(SUM,AFUNC/X,Y)
6. 5 DIMENSION STATEMENTS

A DIMENSION statement has the 'allowing form:
DIMENSION u2,u2,u3, ... I un

where each ui is an array declarator.
Example:

DIMENSION RAT(S,5),BAR(20)
This statement declares two arrays - the 25 element
array RAT and the 20 element array BAR.

6.6 COMMON STATEMENTS

COMMON statements are non-executable, storage
allocating statements which assign variables and
arrays to a storage area called COMMON storage and
provide the facility for various program units to
share the use of the same storage area.

FORTRAN-SO Reference Manual Page 38
COMMON statements are expressed in the following
form:

COMMON /yl/al/y2/a2/ .. . /yn/an
where each yi is a COMMON block storage name and

each ai is a sequence of variable names, array
names or constant array declarators, separated by
commas. The elements in ai make up the COMMON

block storage area specified by the name yi. If

---- ----any yi is omitted leaving two consecutive slash
characters (//), the block of stoT'age so indicated
is called blank COMMON. If the first block name
(yl) is omitted, the two slashes may be omitted.
Example:

COMMON /AREA/A,B,C/BDATA/X,Y,Z,
X FLIZAP(30)

In this example, two blocks of COMMON storage are
allocated - AREA with space for three variables and
BDATA, with space for four variables and the 30
element array, ZAP.
Examp I f~:

COMMON /IA1,BI/CDATA/ZOT(3,3)
X /IT2,Z3

In this example, AI, Bl, T2 and Z3 are assigned to
blank COMMON in that order. The pair of slashes
preceding Al could have been omitted.
CDATA names COMMON block storage for the nine
element array, ZOT and thus ZOT (3/·3) is an array
declarator. ZOT must not have been previously

declal"ed. (See "Array DeclaT'atoT'sl II Paragraph

6.3.)
Additional Considerations:
1. The name of a COMMON block may appear more than

once in the same COMMON statement, or in more
than one COMMON statement.

2. A COMMON block name is made up of from 1 to 6
alphanumeric characters1 the first of which
must be a letter.

3. A COMMON block name must be different from any
subprogram names used throughout the program.

FORTRAN-BO Reference Manual Page 39
4. The size of a COMMON area may be increased by

th e use of EGUIVALENCE statements. See
"EGUIVALENCE Statements, It Paragraph 6.7.

5. The lengths or COMMON blocks Or the same name
need not be identical in all program units
where the name a,ppears. HoweverJ if the
lengths differ, the program unit specifying the
greatest length must be loaded first (see the
discussion of LINK-BO in the User's Guide).
The length of a COMMON area is the number of
storage units required to contain the variables
and arrays declared in the COMMON statement (or
statements) unless expanded by the use of
EGUIVALENCE statements.

6. 7 EGUIVALENCE STATEMENTS

Use of EQUIVALENCE statements permits the sharing
of the same storage unit by two or more entities.
The general form of the statement is as follows:

EQUIVALENCE (ul), (u2) I • •• , (un)
where each ui represents a sequence of two or more
variables or array elements, separated by commas.
Each element' in the sequence is assigned the same
storage unit (or portion of a storage unit) by the
processor. The order in which the elements appear
is not significant.
Example:

EGUIVALENCE (A,B,C)
The variables A, Band C will share the same
storage unit during obJect program execution.
If an array element is used in an EOUIVALENCE
statement, the number of subscripts must be the
same as the number of dimensions established by the
array declarator, or it must be one, where the one
subscript specifies the array element's number
relative to the first element of the array.
Example:

If the dimensionaliity of an array, Z, has been
declared as Z(3,3) then in an EGUIVALENCE statement
Z(6) and Z(312) have the same meaning.

FORTRAN-BO Reference Manual Page 40
Additonal Considerations:
1. The subscripts of array elements must be

integer constants.
2. An element of a multi-dimensional array may be

referred to by a single subscript, if desired.
3. Variables may be assigned to a COMMON block

through EGUIVALENCE statements.
Example:

GOMMON /X/A~B,C
EGUIVALENCE (A~D)

In this case} the variables A and D share the
first storage unit in COMMON block X.

4. EGUIVALENCE statements can increase the size of
a block indicated by a COMMON statement by
adding more elements to the end of the block.
Example:

DIMENSION R(212)
COMMON /Z/W,X~Y
EQUIVALENCE (YJR(3»

The resulting COMMON block will have the
following configuration:
Variable Storage Unit

W .- R(l,l) 0
X .- R (21 1) 1
Y .- R(l,2} 2

R(2J2) 3
The COMMON block established by the COMMON
statement contains 3 storage units. It is
expanded to 4 storage units by the EGUIVALENCE
statement.
COMMON block size may be increased only from
the last element established by the COMMON
statement forward; not from its first element
backward.
Note that EGUIVALENCE (X,R(3» would be invalid
in the example. The COMMON statement
est,abl i shedW as the ·F i rst element in the
COMMON block and an attempt to make X and R(3)
equivalent would be an attempt to make R(l) the
i!i'rst element.

FORTRAN-SO Reference Manual Page 41
5. It is invalid to EGUIVALENCE two elements of

the same array or two elements belonging to the
same or different COMMON blocks.

Example:

DIMENSION XTABLE (20)1 0(5)
COMMON A,B(4)/ZAP/C,X

EQUIVALENCE (XTABLE (6),A(7),
X B(3),XTABLE(15»,
Y (B(3)ID(S»

This EGUIVALENCE statement has
e'l"rOT'S:

the following

1. It attempts to EGUIVAL.ENCE two elements of the
same array, XTABLE(6) and XTABLE(15).

2. It attempts to EGUIVAL.ENCE two elements of the
same COMMON block, A(7) and B(3).

3. Since A is not an ar1'" i:HJ I A(7) is an illegal
l"'eferenc e.

4. i"laking B(3) equivalent to DeS) extends COMMON
backwards from its defined starting point.

6. 8 DATA INITIALIZATION STATEMENT

The DATA initialization statement is a
non-executable statement which provides a means of
compiling dpta values into the obJect pT'ogram and
assigning these data to variables and array
elements referenced by other statements.
The statement is of the following form:
DATA li~)t/Llll u2) ... I Lln/) list ... /ukl uk+ll ... uk-f-n/
where "list U represents a list of variablel array
or array element names, and the ui are constants
corresponding in number to the elements in the
list. An exception to the one-for-one
correspondence of list items to constants is that
an array name (unsubscripted) may appe~r in the

FORTRAN-SO Reference Manual Page 42
list, and as many constants as necessary to fill
the array may appear in the corresponding position
between slashes. Instead of uil it is permissible
to write k*ui in order to declare the same
constantl ui, k times in succession. k must be a
positive integer. Dummy arguments may not appear
in the list.
Example:

DIMENSION C(7)
DATA A, BI C(1),C(3)/14.73,

X -8.1,2*7.51
This implies that
A=14.73, B=-8.1, C(1)=7.5, CC])=7.5
The type of each constant ui must match the type of
the cO'rresponding item in the list, except that a
Hollerith or Literal constant may be paired with an
item of any type.
When a Hollerith or Literal constant is used, the
number of characters in its string should be no
greater than four times the number of storage units
required by the corresponding item, i. e .. ' 1
character for a Logical variable, up to 2
characters for an Integer variable and 4 or fewer
characters for a Real variable.
If fewer Hollerith or Literal characters are
specified, trailing blanks are added to fill the
remainder of storage.
Hexadecimal data are stored in a similar fashion.
If fewer Hexadecimal chaTacters aTe used}
sufficient leading zeros are added to fill the
remainder of the storage unit.
The examples below ,illustrate many of the reatu'res
or the DATA statement.

FORTRAN-BO Reference Manual
DIMENSION HARY (2)
DATA HARY~BI 4HTHIS, 4H OK.

1 17.861

REAL LIT(2)
LOGICAL LT,L.F
DIMENSION H4(212),PI3(3}
DATA A 1} B 1, K 1, L T, LF} H4 (1, 1) , H4 (2, 1) }

1 H4(l,2),H4(2,2),PI3/5. 9,2. 5E-4,
2 64,. FALSE. I.TRUE. I 1. 75E-3,
3 O.85E-l,2*75.0, 1. ,2. ,3. 14159/,
4 LIT(1)/'NOGO'/

Page 43

FORTRAN-BO Reference Manual
SECTION 7

Page 44

FORTRAN CONTROL STATEMENTS
FORTRAN control statements are executable statements
affect and guide the logical flow ofa FORTRAN program.
statements in this category are as follows:

1. GO TO statements:

,.,
t::...

3.

1.. Unconditional GO TO
2. Computed GO TO
3. As~;j.gned GO TO
ASSIGN
IF statements:
1. Arithmetic IF
2. Logical IF

4. DO
5. CONTINUE
6. STOP
7. PA~JSE

8. CALL
9. HETLJRN

which
The

When statement labels of other statements are a part of a
control statement, such statement labels must be associated
with executable statements within the same program unit in
which the control statement appears.
7. 1 GO TO STATEMENTS

7. 1.. 1 UNCONDITIONAL GO TO

Unconditional GO TO statements are used' whenever
control is to be transferred unconditionally to
some other statement within the program unit.

FORTRAN-80 Reference Manual Page 45

"1. 1. 3

The statement is of the following form:
(~O TO k

where k is the statement label of an executable
statement in the same program unit.
Examplf:?:

GO TO 376
310 A(7) = Vi -A(3)

376 A(2) =VECT
GO TO 310

In these statements, statement 376 is ahead of
statement 310 in the logical flow of the program of
which they are a part.
CONPUTED GO TO

Computed GO TO statements are of the form:
GO TO (k 11 k 21 ' n) I J

where the ki are statement labels, and J is an
integer variable) 1 <: J <: n.

This statement causes transfer of control to the
statement labeled kJ. If J < 1 or J :> n .. contT'ol

will be passed to the next statement following the
Computed GOTO.
Example:

GO TO(71 701 700} 70001 70000)1 J
~310 ·J=:5

GO TO 325
When ~ = 3, the computed GO TO transfers control to
statement 700. Changing J to equal 5 changes the
transfer to statement 70000. Making J = 0 or J = 6
would cause control to be transferred to statement
310.
ASSIGNED GO TO

Assigned GO TO statements are of the following

FORTRAN-BO Reference Manual
form:

GO TO J 1 (k 1, k 21' k n)

GOTO \oj

Pi3ge 46

where J is an integer variable name, and the ki are
statement labels of executable statements. This
statement causes transfer of control to the
statement whose label is equal to the current value
of J.
Qua 1 j. f i c at i on s

1. The ASSIGN statement must log ically pl'ecede an
assigned GO TO.

2. The ASSIGN statement must assign a value to J
which is a statement label included in the list
of k"sl if the list is specified.

Example:

GO TO LABELl (80,901 100)
Only the statement labels 80, 90 or 100 may be
assigned to LABEL.

7.2 ASSIGN STATEMENT

This statement is of the following form:
ASSIGN J TO i

where J is a statement label of an
statement and i is an integer variable.

executable

The statement is used in conjunction with each
assigned GO TO statement that contains the integer
va'r i a b 1 e i. When the ass i 9 ned GO TO i sex e cut e d I
control will be transferred to the statement
labeled ,.I.

FORTRAN-80 Reference Manual
Examplt=?:

Page 4·7

ASSIGN 100 TO LABEL

ASSIGN 90 TO LABEL
GO TO LABEL, (80,90,100)

7.3 IF STATEMENT

7.3.1

7.3.2

IF statements transfer control to one of a series
of statements depending upon a condition. Two
types of IF statements are provided:
Arithmetic IF
Logical IF
AF~ ITHMETIC IF

The arithmetic IF statement is of the form:
IF(e) ml~ m2, m:::-l

where e' is an arithmetic expression and ml,
m3 are statement labels.

m) .c:;. and

Evaluation of expression e determines one of three
transfer possibilities:
If e is: Transfer to:

< 0 ml
= 0 m2
> 0 m3

Examples:

Statement

IF (A)3,4,5
IF (N'-1)50173,9
IF (AMTX(2, l,2)}7,2, 1
LOGICAL IF

Expression Value

15
o

-256

The Logical IF statement is Or the form:
IF (u)s

Trans·fer to

73
7

where u is a Logical expression and s is any
executable statement except a DO statement (see
7.4) or another Logical IF statement. The Logical

FORTRAN-SO Reference Manual
expression u is evaluated as. TRUE.
Section 4 contains a discussion
exp·r-essions.
Control Conditions:

OT'

of

Page 48
. FALSE.
Logical

If u is FALSEI the statement s is ignored and
control goes to the next statement following the
Logical IF statement. If, howeverl the expression
is TRUE, then control goes to the statement 5, and
subsequent program control follows normal
conditions.
If s is a replacement statemen·t (v ::: el Section 5)1

the variable and equality sign (=) must be on the
same line, either immediately following IF(u) or on
a sepaT'at;e continuation line withrthe line spaces
following IF(u) left blank. See example 4 below.
Examples:

1. IF (1. GT. 20) GO TO 11 5
2. IF(G. AND. R) ASSIGN 10 TO J
3. IF(Z) CALL DECL(A,BIC)
·4. IF(/~. OR. B. LE. PI/2)I=,)
5. IF (A. OR. B. LE. P I 12)

X I =.J
7.4 DO STATEMENT

The DO statement, as implemented in FORTRANI
provides a method for repetitively executing a
series of statements. The statement takes of one
of the two following forms:

1) DO k i = ml,m2lm3

or

2) DO k i = mllm2
where k is a statement label, i is an integer or
logical variable, and ml, m2 and m3 are integer
constants or integer or logical variables.
If m3 is 1 .. it may be omitted as in 2) above.
The following conditions and restrictions govern
the use of DO statements:

FORTRAN-BO Reference Manual Page 49
on the 1. The DO and the first comma must appeal'

initial line.
2. The statement labeled k1 called the terminal

statement, must be an executable statement.
3. The terminal statement must physically follow

its associated 001 and the executable
statements following the DO, up to and
including the terminal statementl constitute
the range of the DO statem~nt.

4. The terminal statement may not be an Arithmetic
IF, GO TO, RETURN, STOPI PAUSE or another DO.

B. If the terminal statement is a logical IF and
its expression is . FALSE. I then the statements
in the DO range are reiterated.
If the expression is . TRUE. I the statement of
the logical IF is executed and then the
statements in the DO range are reiterated. The
statement of the logical IF may not be a GO TOI
Arithmetic IF, RETURNI STOP or PAUSE.

6. The controlling integer va'riable, i, is called
the index of the DO range. The index must be
positive and may not be modified by any
statement in the range.

7. If ml, m2, and m3 are Integer*1 variables or
constants, the DO loop will execute faster and
be shorter, but the range is limited to 127
iterations. For examplel the loop overhead ror
a DO loop with a constant limit and an
increment of 1 depends upon the type of the
index variable as follows:

Index Variable Overhead
Type Microseconds Bytes

INTEGER*2 35. 5 19
INTEGER*l 24 14

8. During the first execution or the statements in
the DO range, i is equal to ml; the second
e:<ecutionl i = ml+m3i the third, i=ml+2*m31
etc., until i is equal to the highest value in
this sequence less than or equal to m2, and
then the DO is said to be satisfied. The
statements in the DO range will always be
executed at least once, even if ml < m2.

When the DO has been satisfied, control passes
to the statement following the terminal

FORTRAN-BO Reference Manual Page 50
statement, otherwise control transfers back to
the first executable statement following the DO
statement.
Examp Ie:

The following example computes
100
Sigma Ai where a is a one-dimensional array
i=1.

100 DIMENSION A(lOO)

SUM:::: A(l)
DO 31 I;;· 2, 100

31 SUM =SUM + ACI)

END
9. The range of a DO statement may be extended to

include all statements which may logically be
executed between the DO and its terminal
statement. Thus, parts of the DO range may be
situated such that they are not physically
between the DO statement and its terminal
statement but are executed logically in the DO
range. This is called the extended range.
E)(ampl~~:

DIMENSION A(500), B(500)

DO 50 I - 10, 327, 3

30

50 A(I) - BCI) + C

~..;~o C::: C .,~. . 05
GO TO 50

31 C=C+ .0125
GO TO 30

FORTRAN-BO Reference Manual Page 51
10. It is invalid to transfer control into the

range of a DO statement not itself in the range
or extended range of the same DO statement.

11. Wi't;hin the 'range Or a DO statement, t:here may
be o·ther DO statements) in which case the no's'
must be nested. That iSI if the range of one
DO contains another DOl then the range Or the
inner DO must be entirely included in the range
o'r- 't;he cute',.. DO.
The terminal statement of the inner DO may also
be the terminal statement of the outer DO.
For example, given a tluO dimensional
15 T'OWS and 15 columns, and a
one-dimensional array BI the
statements compute the 15 elements
to the formula:

15
C k ::::8i gma

J=l

array A of
15 element
following

of arT~ay C

D 1 MENS I ON A (1 51 1 5) I B (1 5) 1 C (1 :;)

DO 80 Jh\ :!:-; 1.1 1 5
C 0,\) ::: 0,0
DO 80 ,.1= 1, 1 5

80 C(K) = C(K) +A(~,J) * B(J)

7. 5 CONTINUE STATEMENT

CONTINUE is classified as an executable statement.
J-!oweve'l" 1 its execl.d;ion does nothing. The rOT~m of
the CONTINUE statement is as follows:

CONTINUE
CONTINUE is frequently used as the terminal
statement in a DO statement range when the
statement which would nOTmally be the terminal
statement is one of those which are not allowed ar
is only executed conditionally.

FORTRAN-BO Reference Manual
Examplt?:

DO 5 K - 1110

IF (C2) 5,6,6
6 CONTINUE

C;;Z = C2 ·-t".005
5 CONTINUE

7.6 STOP STATEMENT

Page 52

A STOP statement has one of the following forms:
STOP

STOP c
where c is any string of one to six characters.
When STOP is encountered during execution of the
object programl the characters c (if present) are
displayed on the operator control console and
execution of the prDgram terminates.
The STDP st;a·tement.. thC:H'efcl"J"e.. constitutes the
logical end of the program.

7. 7 PAUSE STATEMENT

A PAUSE statement has one of the following forms:
PAUSE

01"

Pl~tJSE' c
where c is any string of up to six characters.
When PAUSE is encDuntered during execution of the
object programl the characters c (if present) are
displayed on the operator control console and
execution of the program ceases.
The decision to continue execution of the program
is not under control of the program. If execution

FORTRAN-BO Reference Manual Page 53
is resumed through intervention of an operator
without otherwise changing the state of the
p'r'ocessor, the normal execution sequence, following
PAUSE, is C Dnt i nued.
Execution may be terminated by tljping a "T" at the
operator console. Typing any other character will
cause execution to resume.

7.8 CALL STATEMENT

7. ("1

7. 10

CALL statements control transfers into
subprograms and provide parameters for
sL'bpT'ograms. The gene-r'al ~·~o"'·nHJ. and
discussion of CALL statements appear in
FUNCTIONS AND SUBPROGRAMS.
HETURN STATEMENT

SUBROUTINE
use bt.J the

detailed
Section 9,

The form, use and interpretation of the RETURN
statement is described in Section 9.
END STATEMENT

The END statement
statement of any
TO 11 owi n9 form:

END

must physically
FORTRAN program.

be the last
It has the

The END statement is an executable statement and
may have a statement label. It causes a transfer
of control to be made to the system exit routine
SEXI which returns control to the operating system.

Frn~TRAN-80 Reference Manual
SECTION 8

Page 54

INPUT I OUTPUT
FORTRAN provides a series of statements which define the
control and conditions of data transmission between computer
memory and external data handling or mass storage devices
such as magnetic tape, dj.sk, line printer, punched card
p,-'ocesso,""s> keyboard printers, etc.
These statements are grouped as follows:

1.. Formatted READ an d WR ITE sta'tements wh i c h cause

formatted information tD be transmitted between the
computer and 110 devices.

Z~~. Unformatted READ and WRITE statements which

transmit unformatted binary data in a form similar
to internal storage.

3. Auxiliary I/O statements for positioning and

demarcation of files.
4. ENCODE and DECODE statements for transferring data

5.
between memory locations.
FORMAT statements used in conjunction w:i.th

formatted record transmission to provide data
conversion and editing information between internal
data representation and external character string
f:orms.

8. 1 FORMATTED READ/WRITE STATEMENTS

8. 1.. l. FORMATTED READ STATEMENTS

A formatted READ statement is used to transfer
information from an input device to the computer.
Two forms of the statement are availablel as
-follows:

READ CUI f,ERR=LI1END=L2) k

01'"

READ (u,fIERR=Ll,END=L2)
where:
u - specifies a Physical and Logical Unit Number

and may be either an unsigned integer Dr an

FORTRAN-BO Reference Manual Page 55
integer variable in the range 1 through 255.
If an Integer variable is used} an Integer
value must be assigned to it prior to execution
of the READ statement.
Units 1~ 3, 4, and 5 are preassigned to the
console Teletypewriter. Unit 2 is preassigned
to the Line Printer (if one exists). Units
6-10 are preassigned to Disk Files (see User's
Manual, Section 3). These units, as well as
units 11-255, may be re-assigned by the user
(see Appendix B).

f - is the statement label of the FORMAT statement
describing the type of data conversion to be
used within the input transmission or it may be
an array name, in which case the rOl'matting
information may be input to the program at the
execution time. (See Section 8.7.10)

Ll- is the FORTRAN label on the statement to which
the 110 processor will transfer control if an
110 error is encountered.

L2- is the FORTRAN label on the statement to which
the 110 processor will transfer control if an
End-of-File is encountered.

k _. is ali st of variab 1 e names, separated by c am-
rna SIS P e c i f yin 9 the in put d a t a.

READ (u,f)k is used to input a number of itemsl
corresponding to the names in the list kl from the
file on logical unit u. and using the FORMAT
statement f to specifv the external representation
of! these items (see FORMAT sti:1tements) 8. 7>' The
ERR:::: and END= clauses are optional. If- not
specified, I/O erro'rs and End-or-Files cause ratal
runtime er·rors.
The following notes further define the function of
the READ (U, f)k statement:
:t. Each time execution of the READ statement

2.

3.

begins ..
read.

a new record from the input file is

The number of records to be input by a single
READ statement is de·t;ermined by the list .. k,
and format specifications.
The list k specifies the number of items to be
read from the input file and the locations into
which they are to be stored.

FORTRAN-BO Reference Manual Page 56
4. Any number of items may appear in a single list

and the items may be of different data types.
5. If there are more quantities in an input record

than there are items in the listl only the
number of quantities equal to the number of
items in the list are transmitted. Remaining
quantities are ignored.

6. Exact specifications for the list k are
described in 8.6.

Examples:

1. Assume thc1t four data entrie'$ are punched in a
card, with three blank columns separating each,
and that the data have field widths of 3, 4, 2
and 5 characters respectively starting in
column 1 of the card. The statements

READCS,20)K,L,M,N
20 FORMATCI3,3X, I4,3X, 12,3X, IS)

will read the card (assuming the Logical Unit
Number 5 has been assigned to the card reader)
and assign the input data to the variables K,
L.. I'-l and N. Th e FORMAT statement c au 1 d a 1 so be

20 FORMAT(I3, I7, 15, IS)
See 8.7 for complete description of FORMAT
statements.

2. Input the quantities of an array CARRY):
READ(6,,21)ARRY

Only the name of the array needs to appear in
the 1 ist (see 8.6>' All elements or the iii'J'f"ray
ARRY will be read and stored using the
appropriate formatting specified by the FORMAT
statement labeled 21.

READ(u, k) may be used in conjunction with a FORMAT
statement to read H-type alphanumeric data into an
existing H-type field (see Hollerith Conversions,
8.7.~3>'
FDr example, the statements

READCII25)

25 FORMATC10HABCDEFGHr~)

FORTRAN-80 Reference Manual Page 57
cause the next 10 characters of the file on input
device I to be read and replace the characters
ABCDEFGHIJ in the FORMAT statement.

8.1.2 FORMATTED WRITE STATEMENTS

A formatted WRITE statement is used to transfer
inPormation from the computer to an output device.
Two forms of the statement are available, as
follows:

WRITE(u,f,ERR=Ll,END=L2)k

() '"
WRITE (u, f,ERR=Ll,END=L2)

where:
u specifies a Logical Unit Number.
f - is the statement label of the FORMAT statement

describing the type of data conversion to be
used with the output transmission.

Ll- specifies an 110 error branch.
L2- specifies an EOF branch.
k - is a list of variable names separated by com-

mas.· specifying the output data.
WRITE (u,f}k is used to output the data specified
in the list k to a file on logical unit u using the
FORMAT statement f to specify the external
representation of the data (see FORMAT statements,
8.7). The following notes further define the
function of the WRITE statement:
1. Several records may be output with a single

"") 1::_ •

3.

WRITE statement, with the number determined by
the list and FORMAT specifications.
Successive data are output until the data
specified in the list are exhausted.
If output is to a device which specifies fixed
length records and the data specified in the
list; do not rill the record, the remainder of
the record is filled with blanks.

FORTRAN-BO Reference Manual
Example:

Page 58

The data assigned to the variables A, B, C and D
are output to Logical Unit Number 2~ formatted
according to the FORMAT statement labeled 10.
WRITE(u,f) may be used to write alphanum.ric
information when the characters to be written are
specified within the FORMAT statement. In this
case a variable list is not required.
For example, to write the characters 'H CONVERSION 1

on un it 1,
WHITE(l,26)

26 FORMAT (12HH CONVERSION)
8.2 UNFORMATTED READ/WRITE

--_ ... __ .- ._----_._ ..
Unformatted 110 (i. e. without data conversion) is
accomplished using the statements:

READ(u,ERR=Ll,END=L2) k

WRITE(u,ERR=Ll,END=L2) k

where:

u - specifies a Logical Unit Number.

Ll- specifies an 110 error branch.

L2- specifies an EOF branch.

k - is a list of variable names, separated by
commas, specifying the 110 data.

The following notes define the functions of
unformatted 110 statements.
1. Unformatted READ/WRITE statements perform

memory-image transmission of data with no data
conversion or editing.

2. The amount Or data transmitted corresponds to
the number of variables in the list k.

FORTRAN-SO Reference Manual Page 59
3. The total length of the list of variable names

in an unformatted READ must not be longer than
the record length. If the logical record
length and the length of the list are the samel
the entire record is read. If the length of
the list is shorter than the logical record
length the unread items in the record are
skipped.

4. The WRITECa)k statement writes one logical
record.

S. A logical record may extend across more than
one physical record.

8.3 DISK FILE 110

A READ or WRITE to a
automatically OPENs the
remains open until closed
(see Section 8.4) Dr
termi nat ion.

NOTE

dis k of i I e (LUN
-Pi Ie -Por I/O.
by an ENDFILE

until normal

6-10)
The file

command
program

Exercise caution when doing sequential
output to disk files. If output is done to
an existing file, the existing file will be
deleted and replaced with a new Tile Or the
same name.

8.3.1 RANDOM DISK 110
SEE ALSO SECTION 3 OF YOUR MICROSOFT FORTRAN USER'S
MANUAL.
Some versions of FORTRAN-SO also provide randDm
disk 110. For random disk access, the record
number is specified by using the REC=n option in
the READ or WRITE statement. For example:

I == 10
WRITE (6,20/REC=I,ERR=50) XI V, Z

This program segment writes recDrd 10 on LUN 6. If
fa previous record 10 exists1 it is written over.
If no record 10 exists, the file is extended to

FORTRAN-SO Reference Manual Page 60
create one. Any attempt to read a non-existent
record results in an I/O error.
In random access files, the record length varies
with different versions of FORTRAN. See Section 3
of your Microsoft FORTRAN User's Manual. It is
recommended that any file you wish to read randomly
be created via FORTRAN (or Microsoft BASIC) random
access statements. Files created this way (using
either binary or formatted WRITE statements) will
zero-fill each record to the proper length if the
data does not fill the record.
Any disk file that is OPENed by a READ or WRITE
statement is assigned a default filename that is
specific to the operating system. See also Section
3 of the FORTRAN User's Manual.

8.3.2 OPEN SUBROUTINE
-_ .. _- --,---

Alternatively, a file may be OPENed using the OPEN
subroutine. LUNs 1-5 may also be assigned to disk
files with OPEN. The OPEN subroutine allows the
program to specify a filename and device to be
associated with a LUN.
An OPEN of a non-existent file creates a null file
of the appropriate name. An OPEN of an existing
file followed by sequential output deletes the
existing file. An OPEN of an existing file
followed by an input allows access to the current
contents of the file.
The form of an OPEN call varies under different
operating systems. See your Microsoft FORTRAN
User's Manuall Section 3.

8.4 AUXILIARY 110 STATEMENTS

Three auxiliary 110 statements are provided:
BACKSPACE u
REWIND u
ENDFILE u

The actiDns of all three statements depend on the
LUN with which they are used (see Appendix B).
When the LUN is for a terminal or line printerl the
three statements are defined as no-ops.
When the LUN is for a disk drive, the ENDFILE and
REWIND commands allow further program control of
disk files. ENDFILE u closes the file associated
with LUN u. REWIND u closes the file associated

FORTRAN-BO Reference Manual Page 61
with LUN u, then opens it again. BACKSPACE is not
implemented at this timel and therefore causes an
e'{'ror if used.

8. 5 ENCODE/DECODE
--,.-~----,

ENCODE and DECODE statements transfer datal
according to format specifications, from one
section or memory to another. I>ECODE changes data
f'r-om ASCII format to the specified Tormat. ENCODE
changes data of the specified format into ASCII
format. The two statements are of the form:

ENCODE(s,r) k
DECODE(a,f) k

a is an array name
f is FORMAT statement number
k is an I/O List

DECODE is analogous to a READ statement, since it
causes conversion from ASCII to internal format.
ENCODE is analogous to a WRITE statement, causing
conversion from internal formats to ASCII.

FORTRAN-BO Reference Manual Page 62
NDTE

Care should be taken that the array A is
always large enough to contain all of the
data being processed. There is no check

for overflow. An ENCODE operation which

overflows the array will probably wipe out
important data following the array. A
DECODE operation which overflows will
attempt to process the data following the
i~rray .

8.6 INPUTIOUTPUT LIST SPECIFICATIONS

8. b. 1

Most forms of READ/WRITE statements may contain an
ordered list of data names which identify the data
to be transmitted. The order in which the list
items appear must be the same as that in which the
corresponding data exists (Input)1 or will exist
(Output) in the external 110 medium.
Lists have the following form:

m1, m21 ... , mn
where the mi are 1 ist items separated .by commasl as
shown.

LIST I TEJ'1 TYP ES

A list item may be a single datum identifier or a
multiple data identifier.
1. A Single datum identifier item is the name of a

variable or array element.
Examples:

A
C(26.· 1), R, K, D
13 I I (1 0 ~ 1. 0) , 81 F (1, 25)

NOTE
Sublists are not implemented.

FORTRAN-BO Reference Manual
2. Multiple data

Page 63
identifier items are in two

rOl~ms :
a. An array name appearing in a list without
subscript(s) is considered equivalent to the
listing of each successive element of the
arrfly.
Example:

If- B is a two dimensional array, the list item
B is equivalent to: B(1,,1),B(2,l),B(3,l>. ... ,
B (1, 2) , B (;;!, 2) ... I B (J' k) .
where J and k are the subscript limits of B.
b. DO-implied items are lists of one or more
single datum identifiers or other DO-implied
items followed by a comma character and an
expression of the form:

i = ml,m2,m3 or i = ml/m2
and enclosed in parentheses.
The elements i,ml,m2,m3 have the same meaning
as defined for the DO statement. The DO
implication applies to all list items enclosed
in parentheses with the implication.
Examples:

DO- Imp 1 i e d LiS'l:; 5

(X(I),1=1 .. 4)
(G(J),R(J),J=1 .. 2)
(G 0<') , K= 1, 7 .. 3)
((A (I, J) I 1::::31 5) I \..1= 11 91- 4)

(R (1"0 I M= 1, 2).. I I ZAP (3)
(R(3), T(1),1=1,3)

Equivalent Lists

X(l), X(2), X(3), X(4)
O(1),RC1),Q(2),R(2)
G(1), G(4), G(7)
A (3, 1) I A (4, 1) J A (5, 1.)
A (3, 5), A (4 .. 5), A (5, 5)
A(3,9),A(4,9),A(5,9)
R (1), R (2) I I, ZAP (3)
R(3), T(l), RC3), T(2),
RC3}, T(3)

Thus, the elements of a matrix, for example,
may be transmitted in an order different from
the order in which they appear in storage. The
array A(3,3) occupies storage in the order
A (1, 1) I A (2, 1) I A (3, 1) I- A (1, 2) I A (2 .. 2) I A (3, 2) I
A(1 .. 3),A(2,3),A(:::1,:3L By specif-ying the
transmission of the array with the DO-implied
1 i s tit em « A (I, J) I J= 11 3) I I = 1 -' 3) I- the or d e r of
transmission is:

FORTRAN-80 Reference Manual Page 64

8.6.2

A (1, 1) I A (I, 2),. A (I, 3) I A (2, 1) I A (2, 2) I
A(2, 3) .. A(3, 1 h A(3, 2), A(3, 3)

SPECIAL NOTES ON LIST SPECIFICATIONS

1. The ordering of a list is from left to right
with repetition of items enclosed in
parentheses (other than as subscripts) when
accompanied by controlling DO-implied index
parameters.

2. Arrays are transmitted· by the appearance of the
array name (unsubscripted) in an input/output
1 i st.

3. Constants may appear in an input/output list
only as subscripts or as indexing p.arameteT's.

4. For input lists, the DO-implying elements i,
m1, m2 and m3 may not appear within the
parentheses as list items.

Examples:

1. READ (1 .. 20) (I, J, A(1)/1=1, ,), ;;~) is not allowed
2. READ(1,20)I,J .. (A(I), I==l,J,2) is allowed
3. WRITE(l,20)(I,J,A(I),1=1,...} .. 2) is allowed
Consider the following examples:

DIMENSION A(25)

A(1) ::::: 2. 1
A(3) == 2.2
A(S) == 2.3
,J - 5

the output of this WRITE statement is

5,1,2.1 .. 312.2,5,2.3
1. Any number of items may appear in a single

1 i st.

FORTRAN-SO Reference Manual Page 65
2. In a formatted transmission (READ(ulf)k,

WRITE(ul f)k) each item must have the correct
type as specified by a FORMAT statement.

8. 7 FORMAT STATEMENTS

8.7.1.

FORMAT statements are non-executablel generative
statements used in conJunction with formatted READ
and WRITE statements. They speci¥y conversion
methods and data editing information as the data is
transmitted between computer storage and external
media representation.
FORMAT statements require statement labels for
reference (f) in the READ(u,f)k or WRITE(ulf)k
statements.
The general form of a FORMAT statement is as
follows:

m FORMAT (slls~!/ ... lsn/sl./ .• s2', ... lsn.fI ...)
where m is the statement label and each si is a
field descriptor. The word FORMAT and the
parentheses must be present as shown. The slash
(/) and comma. (I) c h a r act e r s are of i e 1 d s epa rat 0 r 5

and are described in a separate subparagraph. The
field is defined as that part of an external record
occupied by one transmitted item.
FIELD DESCRIPTORS

Field descriptors describe the sizes of data fields
and specify the type of conversion to be exercised
upon each transmitted datum. The FORMAT field
descriptors may have any of the following forms:
Descriptor Classification

T'Fw. d
r(.}w. d
·I"'Ew. d
rDw. d
rIw

rLw

rAw
nHhlh2 ... hn
, 1112 ... In'

nX
mP

Numeric Conversion

Logical Conversion

Hollerith Conversion

Spacing Specification
Scaling Factor

FORTRAN-BO Reference Manual Page 66

8. 7. ~!

\.LIhere:
1. wand n are positive integer constants defining

the field width (including digitsl decimal
points, algebraic: signs) in the external data
representat ion.

2. d is an integer specifying the number of
fractional digits appearing in the external
data representation.

3. The characters F, G .. E, D, I .. A and l.. indicate
the type of conversion to be applied to the
items in an input/output list.

4. r is an optional, non-zero integer indicating
that the descriptor will be repeated r times.

5. The hi and Ii are characters from the FORTRAN
c:haracter set.

6. m is an integer constant (positive,
or zero) indicating scaling.

NUMERIC CONVERSIONS

negat i ve,

Input operations with any of the numeric
conversions will allow the data to be represented
ina "Free Format u; i. e. I commas may be used to
separate the fields in the external representation.
F-type conversion

Form: Fw. d
Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered fractional.
F'-~outp u·t;
Values are converted and output as minus sign (if
negative), followed by the integer portion of the
number, a decimal point and d digits of the
fractional portion of the number. If a value does
not fill the field, it is right Justified in the
field and enough preceding blanks to fill the field
are inserted. If a value requires more field
positions than allowed by w, the first w-l digits
of the value are outputl preceded by an asterisk.

FORTRAN-80 Reference Manual
F-Output Examples:

Page 67

FORMAT Internal
Descriptor Value

FIO.4
F7.1
F8. 4
F6. 4
F7. 3

368.42
-4'786.361
8.7E·-"2
4739.76
-5. 6

Output
(b=blank)

bb368.42.00
-'4786.4
bbO.0870

*. 7600
b-5.600

* Note the loss of leading digits in the 4th line
above.
F-'Input
(See the description under E-Input below.)
E-type Conversion

Form: EtJ.l. d
Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered fractional.
E-Output
Values aroe conveT'ted, 'rounded to d digitsl and
output as:
1. a minus sign (i. negative),
2. a zero and a decimal point ..
3. d decimal digitsl
4. the lette'r E,
5. the sign of the exponent (minus or blank),
6. two exponent digitsl
in that order. The values as described are right
Justified in the field w with preceding blanks to
fill the field if necessary. The field width w
should satisfy the relationship:

w)-d.+7
Otherwise significant characters may be lost.
E-Output examples follow:

Some

FORTRAN-BO Reference Manual Page 68
FORMAT Internal
Descriptor

E12. 5
E14.7
El:3.4
EB. 2
E-Input

Value

76. 57:3
-32672. 354
--0. 0012321
76321. 73

Output
(b=blank)

bb.76573Eb02
-b. 3267235Eb05
b b '--b. 1232E-02
b. 76Eb05

Data val ues wh i c h are to be p'r'Dc esse d und er EI FI
or G conversion can be a relatively loose format in
the external input medium. The format is identical
for either conversion and is as follows:
1. Leading spaces (ignored)
2. A + or - sign (an unsigned input is assumed to

be positive)
3. A string of digits
-4. A dec i rna 1 poi. n t
5. A second string of digits
6. Th e c harac ter E
"1. A + or .- sign
8. A dec i rna 1 e x p 0 n e n t
Each item in the list above is optional;
following conditions must be observed:

but; the

1. If FORl'-lAT items 3 and 5 (above) are pre!:.'ent,

2.
then 4 is required.
If FORMAT item 8 is presentl then 6 or 7 Dr
both are required.

3. All non-leading spaces are considered zeros.
Input data can be any number of digits in lengthl
and correct magnitudes will be developed, but
precision ~il1 be maintained only to the extent
specified in Section 3 for Real data.

FORTRAN-BO Reference Manual
E- and F- and G- Input Examples:
FORMAT Input Internal
Descriptor (b=blank) Value

EI0.3
E10. 3
G8. 3

+0. ~!3756+4
bbbbb17631
b 1628911

+2375.60
+17.631
+1628.911

F12.4 bbbb-6321132 -632.1132

Page 69

Note in the above examples that if no decimal point
is given among the input characters .. the d in the
FORMAT specification establishes the decimal point
in conjunction with an exponent" iT given. I-P a
decimal point is included in the input charactersl
the d specification is ignored.
The letters EJ FJ and G are interchangeable in the
input format specifications. The end result is the
same.
D-Type Conversions

---- ---~---

D-Input and D-Output are identical to E-Input and
E-Output except the exponent may be specified with
a "0" instead of an "E. II

G-Type Conversions

Form: Gw. d
Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered significant.
GM··I np ut:
(See the description under E-Input)
G··NOutp ut:
The method of output conversion is a function of
the magni tude of the number bej.ng output. Let n be
the magnitude of the number. The following table
shows how the number will be output:

FORTRAN-BO Reference Manual
Magnitude

, 1 <= n <: 1
1. .(= n < 10

d-'2
1.0

d-l
10

eJ'-l
-(= n -(10

d
<:= n -='. 10

Otherwise
I-Conversions

Form: lw

Equivalent Conversion

F(t.tI-4), ti, 4X
F (w-4). (d -1) 1 4 X

F (w-4). 11 4 X

F(w-4).0,4X
Ew. d

Page 70

Only Integer data may be converted by this form of
conversion. w specifies field width.
I --0 u .t; put:
Values are converted to Integer constants.
Negative values are preceded by a minus sign. If
the value does not fill the 9ieldl it is right
Justified in the field and enough preceding blanks
to fill the field are inserted. If the value
exceeds the field width, only the least significant
w-l characters are output preceded by an asterisk.
Examples:

FORMAT Internal Output
Descrip·tor Value (b=blank)

16 +281 bbb281
16 '-23261 "-23261
I3 126 126
14 -226 --226

I-~Inpu·t;:

A field of w characters is input and converted to
internal in·t:eger ·Pormat. A minus sign may precede
the integer digits. If a sign is not presentl the
value is considered positive.
Integer values in the range -32768 to 32767 are
accepted, Non-leading spaces are treated as ze'ros.

FORTRAN-BO Reference Manual Page 71

8. 7. 3

Examp 1 es:

Format Input Internal
Descriptor (b=blank) Value

14 b124 124
14 -124 -124
17 bb6732b 67320
14 1b2b 10~!O

HOLLERITH CONVERSIONS

A-Type Conversion

The form of the A conversion is as follows:
Aw

This descriptor causes unmodified Hollerith
characters to be read into or written from a
specified list item.
The maximum number of actual characters which may
be transmitted between internal and external
representations using Aw is four times the number
of storage units in the corresponding list item
(i. e. I 1 character for logical items, 2 chaT'acteT's
for Integer itemsi 4 characters For Real items and
8 characters for Double Precision items).
A-Output:
If w is greater than 40 (where n is the number of
storage units required by the list item), the
external output field will consist of w-4n blanks
followed by the 4n characters from the internal
representation. I' w is less than 4n, the external
output field will consist of the leftmost w
characters from the internal representation.
Examples:
--_. __ ... _ .. _-_.-
Format Internal Type Output
Descriptor (b=blanks)

1\1 Al Integer A
A2 AB Integer AB
A3 ABCD Real ABC
A4 ABeD Real ABCD
A7 ABeD Real bbbABCD

A--Inp ut:
If w is greater than 4n (where n is the number of

FORTRAN-SO Reference Manual Page 72
storage units required by the corresponding list
item), the rightmost 4n characters are taken from
the external input field. If w is less than 4n,
the w characters appear left Justified with w-4n
trailing blanks in the internal representation.
Examples:

Format
Descriptor

Al
A::'~

A4
Al
A7

H-Conversion

Input
Characters

A
ABC
ABCD
A
ABCDEFG

Type

Integer
Integer
Integer
Real
Real

The forms of H conversion are as follows:
nHhlh2 ... hn

'hlh2 ... hn'

Internal
(b=blank)

Ab
AB
AB
Abbb
DEFG

These descriptors process Hollerith character
strings between the descriptor and the external
field, where each hi represents any character from
the ASCII character set.

NOTE
Special consideration is required if an
apostrophe (') is to be used within the
literal string in the second form. An
apostrophe character within the string is
represented by two successive apostrophes.
See the examples below.

H-Out;put:
The n characters hi, are placed in the external
field. In the nHhlh2 ... hn form the number of
characters in the string must be exactly as
specified by n. Otherwisel characters from other
descriptors will be taken as part of the string.
In both forms, blanks are counted as characters.

FORTRAN-80 Reference Manual
Examples:

Page 73

8.7.4·

FOT"ma'l;
DescT"iptoT'

IHA
8HbSTRINGb

or "A"
or 'bSTRINGb'

Output
(b=blank)

A

l1HX(2,3)=12.0 or 'X(213)=12.0'
I1HlbSHOULDN'T or 'IbSHOULDN"T'

bSTRINGb
X(2,3)=12.0
Ib8HOULDN'T

H--Input
The n chsT"acters of the string hi aT"e replaced by
the next n characters from the input record. This
results in a new string of characters in the field
descriptor.

FORMAT
Descriptor

Input Resultant
(b=blank) Descriptor

4H1234 or '1234' ABeD
7HbbFALSE or 'bbFALSE' bFALSEb
6Hbbbbbb or 'bbbbbb' MATRIX

LOGICAL CONVERSIONS

4HABCD OT' .' ABCD '
7HbFALSEb OT" 'bFALSEb'
6HMATRIX or 'MATRIX I

The form of the logical conversion is as follows:
Lw

L.--Outp ut:
If the value of an item in an output list
corresponding to this descriptor is 01 an F will be
output; otherwise, a T will be output. If w is
greater than 11 w-l leading blanks precede the
1 et·cers.
Examples:

FORMAT
Descriptor

L1
L1.
L5
L7

L-Input

Intel"nal
Value

::=0

=0

Output
(b=blank)

F
T
bbbbT
bbbbbbF

The external representation occupies w
It consists of optional blanks followed
ifF", followed by optional characters.

posi tions.
by a nTH or

FORTRAN-BO Reference Manual
8.7.5 X DESCRIPTOR

Page 74

8.7.6

The form of X conversion is as follows:
nX

This descriptor causes no conversion to OCCUT"I nor
does it correspond to an item in an input/output
I i st. When used for output.. it causes n blank s to
be inserted in the output record. Under input
circumstancesl this descriptor causes the next n
characters of the input record to be skipped.
Output Examples:

FORMAT Statement Output
(b=blanks)

3 FORMAT
7 FORMAT

(1HA .. 4X .. 2HBC)
(3X,4HABCD~ IX)

Input Examples:

AbbbbBC
bbbABCDb

FORMAT Statement Input String Resultant Input

10 FORlvtAT (F4. 1, 3X .. F3. 0) 12. 5ABC 120
5 FORMAT (7X .. I3) 1234567012

P DESCRIPTOR

12. 5, 120
012

The P descriptor is used to specify a scaling
factor for real conversions (F .. E .. D, G>' The form
is nP where n is an integer constant (positive~

negative, or zero).
The scaling factor is automatically set to zero at
the beginning of each formatted I/O call (each READ
or WRITE statement). If a P descriptor is
encountered while scanning a FORMAT, the scale
factor is changed to n. The scale factor remains
changed until another P descriptor is encountered
or the 110 terminates.
Effects of Scale Factor on Input:

------- -- ._---- ------ -
During E, F, or G input the scale factor takes
effect only if no exponent is present in the
external representation. In that case, the
internal value will be a factor of 10**n less than
the external value (the number will be divided by
10**0 before being stored).

FORTRAN-BO Reference Manual Page 75

8.7.7

Effect of Scale Factor on Output:

E-Output, D-Output:
The coefficient is shifted left n places relative
.t; 0 .t; h e dec i ma 1 poi n t I and the e x p 0 n e n tis T' e due e d
by n (the value remains the same).
F-'Output:
The external value will be 10**n times the internal
va 1 ue.
G~-Output:

The scale factor is ignored if the internal value
is small enough to be output using F conversion.
Otherwise, the effect is the same as for E output.
SPECIAL CONTROL FEATURES OF FORMAT STATEMENTS

8.7.7.1 Repeat Specifications
-_. __ . ---_._---
1. The E, F, D, G, I, L and A -field descriptors

may be indicated as repetitive descriptors by
using a repeat count r in the form rEw. d,
T'Fw. d, rGw. d, rlwl rLw, rAw. The following
pairs of FORMAT statements are equivalent:

66 FORMAT (3F8. 3,F9. 2)
C IS EGUIVALENT TO:

66 FORMAT (FB.3,F8.3,F8.3,F9.2)

14 FORMAT (2I3,2A5,2EI0. 5)
C IS EQUIVALENT TO:

14 FORMAT (13, 13,A5,A5,EIO. 5,EI0. 5)
2. Repetition of a group of field descriptors is

accomplished by enclosing the group in
parentheses preceded by a repeat count.
Absence of a repeat count indicates a count of
one. Up to two levels of pa'rentheses,
including the parentheses required by the
FORMAT statement, are permitted.
Note the following equivalent statements:

FORTRAN-BO Reference Manual
22 FORl"lAT (I3, 4(F6. 1, 2X»

C IS EQUIVALENT TO:

Page 76

22 FORMAT (I3, F6. 1, 2X, F6. 1, 2X, F6. 1, 2X,
1. F6. 1, 2X)

3. Repetition of FORMAT descriptors is also
initiated when all descriptors in the FORMAT
statement have been used but there are still
items in the input/output list that have not
been processed. When this occurs the FORMAT
descriptors are re-used starting at the first
opening parenthesis in the FORMAT statement. A
repeat count preceding the parenthesized
descriptorCs) to be re-used is also active in
the re-use. This type of repetitive use of
FORMAT descriptors terminates processing of the
current record and initiates the processing of
a new record each time the re-use begins.
Record demarcation under these circumstances is
the same as in the paragraph 8.7.7.2 below.

Input Example:
DIMENSION A(lOO)
READ (3, 13) A

13 FORMAT (5F7.3)
In this example, the first 5 quantities from each
or 20 records are input and assigned to the array
elements of the array A.
Output Example:

WRITE (6,12)E,FIK,L,M,KK,LL,MM,K3,LE,
:l 1'-13

12 FORMAT (2F9. 4, (317))
In this example, three records are written. Record
1. contains E, F) K, Land M. Because the
descriptor 317 is reused twice, Record 2 contains
KK, LL and MM and Record 3 contains K3, L3 and M3.

FORTRAN-BO Reference Manual
8.7.7.2 Field Separators

Page '77

Two adJacent descriptors must be separated in the
FORMAT statement by either a comma or one or more
slashes.
Example:

2HOK/F6.3 or 2HOK,F6.3
The slash not only separates field descriptorsl but
it also specifies the demarcation of formatted
rec ord s.
Each slash terminates a record and sets up the next
record for processing. The remainder of an input
record is ignoredJ the remainder of an output
record is filled with blanks. Successive slashes
(III ... /) cause successive records to be ignored on
input and successive blank records to be written on
c.\utput.
Ou·tput e xamp 1 e:

DIMENSION A(100)IJ(20)

WRITE (718) J,A
8 FORMAT (1017/10I7/S0F7.3/50F7.3)

In this example, the data specified by the list of
the WRITE statement are output to unit 7 according
to the specifications of FORMAT statement 8. Four
records are written as follows:
Record 1 Record 2 Record 3 Record 4

J(1)
J(2)

J(10)

J(ll)
J(12)

J(20)
Input Example:

DIMENSION B(lO)

READ (4,17) B

A(1)
A(2)

A(50)

17 FORMAT(Fl0.2/F10.2/1/8Fl0.2)
In this examplel the two array elements
B(2) receive their values from the

A(51.)
A(52)

A (100)

B(l) and
first data

FORTRAN-SO Reference Manual Page 78
fields of successive records (the remainders of the
two records are ignored). The third and fourth
records are ignored and the remaining elements of
the array are filled from the fifth record.

8.7.8 FORMAT CONTROL, LIST SPECIFICATIONS AND RECORD

DEf'i'ARCATION

The following relationships and interactions
between FORMAT cantrall input/output lists and
record demarcation should be noted:
1. Execution of a fO'rmat:ted READ or WRITE

'''' t"_.

statement initiates FORMAT control.
The conversion performed on data depends on
information Jointly provided by the elements in
the input/output list and field descriptors in
the FORMAT statement.

3. If theTe is an input/output listl at least one
descriptor of types E, F, D, G, I, L or A must
be present in the FORMAT statement.

4. Each execution of a formatted READ statement
causes a new record to be input.

5. Each item in an input list corresponds to a
string of characters in the record and to a
descriptor of the types E, F, G, I, L or A in
the FORMAT statement.

6. H and X descriptoT's communicate information
directly between the external record and the
field descriptors without reference to list
i terns.

7. On inputl whenever a slash is encountered in
the FORMAT statement or the FORMAT descriptors
have been exhausted and re-use of descriptors
is initiate~1 processing of the current record
is terminated and the following occurs:
a. Any unprocessed characters in the record

are ignored.

b. If more input is necessary to satisfy
list requi'rementsl the next record is
read.

FORTRAN-80 Reference Manual Page 79

8.7.10

8. A READ statement is tel'minated when all i terns
in the input list have been satisfied if:
a. The next FORMAT descriptor is E, F, G, I,

L or A.

b. The FORMAT contT'ol has reached the last
outer right parenthesis of the FORMAT
statement.

If the input list has been satisfied, but the
next FORMAT descriptor is H or X, more data are
processed (with the possibility of new records
being input) until one of the above conditiDns
exists.

9. If FORMAT control reaches the last right
parenthesis of the FORMAT statement but there
are more list items to be processed, all or
part of the descriptors are reused. (See item
3 in the description of Repeat Specifications1
5ub-pa'ragraph 8. 7. ~7. 1)

10. When a Formatted WRITE statement is executed,
records are written each time a slash is
encountered in the FORMAT statement or FORMAT
control has reached the rightmost right
parenthesis. The FORMAT control terminates in
one of the two methods described for READ
termination in 8 above. Incomplete records are
filled with blanks to maintain record lengths.

FORMAT CARRIAGE CONTROL

The first character of every formatted output
record is used to convey carriage control
information to the output device, and is therefore
never printed. The carriage control character
determines what action will be taken before the
line is printed. The options are as follows:
Control Character Action Taken Before Printing

o Skip 2 lines
1 Insert Form Feed
+ No advance
Other Skip 1 line

FORMAT SPECIFICATIONS IN ARRAYS
.... ~,.

The FORMAT reference, f, of
WR ITE statement (See 8. 1)
instead of a statement label.

a formatted READ or
may be an array name

If such reference is

FORTRAN-BO Reference Manual Page 80
made} at the time of execution of the READ/WRITE
statement the first part of the information
contained in the array} taken in natural order,
must constitute a valid FORMAT specification. The
array may contain non-FORMAT information following
the right parenthesis that ends the FORMAT
specif:ication.
The FORMAT specification which is to be inserted in
the array has the same form as defined for a FORMAT
statement (1. e. I it begins with a left parenthesis
and ends with a right parenthesis).
The FORMAT specificatiDn may be inserted in the
array by use of a DATA initialization statement, or
by use of a READ statement together with an Aw
FORMAT. Example:

Assume the FORMAT specification
(3Fl0. 3, 4·I6)

or a similar 12 character specification is
stored into an array. The arT'ay must
minimum of 3 storage units.
The FORTRAN coding below shows the various
of establishing the FORMAT specification
referencing the array for a formatted
WRITE.

to be
alloUJ a

methods
and then
READ or

FORTRAN-BO Reference Manual

c

o

C DECLARE A REAL ARRAY
DIMENSION A(3)J B(3)J M(4)

C INITIALIZE FORMAT WITH DATA STATEMENT
DA T A A / I (3F 1. I I I O. 3 J I J I 4 I 6) I /

C READ DATA USING FORMAT SPECIFICATIONS
C IN ARRAY A

READ(6,A) B~ M
C DECLARE AN INTEGER ARRAY

DIMENSION IA(4») B(3)J M(4)

C READ FORMAT SPECIFICATIONS
READ (7) 15) IA

C FORMAT FOR INPUT OF FORMAT SPECIFICATIONS
1 !5 FORI'1AT (4A2)

C READ DATA USING PREVIOUSLY INPUT
C FORMAT SPECIFICATION

READ (7J IA) B,M

Page 81

FORTRAN-BO Reference Manual
SECTION 9

Page 82

FUNCTIONS AND SUBPROGRAMS
The FORTRAN language provides a means for defining and using
often needed programming procedures such that the statement
or statements of the procedures need appear in a program
only once but may be referenced and brought into the logical
execution sequence of the program whenever and as often as
needed.
These procedures are as follows:

1. Statement functions.
~~. L1 brary rune t ions.
3. FUNCTION subprograms.
4. SUBROUTINE subprograms.

Each of these procedures has its own unique requirements for
reference and defining purposes. These requirements are
discussed in subsequent paragraphs or this section.
However, certain features are common to the who"le group or
to two aT' more of th e proc ed ures. These common features are
a!r:. ~o11ows:

1. Each of these procedures is referenced by its name
which, in all cases, is one to six alphanumeric
characters of which the first is a letter.

"., c ...

3.

The fi'rst three are designated as Itfunetions ll and
are alike in that:
1. They are always single valued (1. e. J they

'"')
r.:...

~3,

return one value to the program unit from which
they are referenced).
They are referred to by an eo x pT'ess i on
containing a function name.
They must be typed by type specification
statements if the data type of the
single-valued result is to be different from
that indicated by the pre-defined convention.

FUNCTION subprograms and SUBROUTINE subprograms are
considered program units.

FORTRAN-80 Refe~ence Manual Page 83
In the following desc~iptions of these p~ocedures, the te~m

calling p~ogram means the program unit or procedure in which
a ~eference to a procedure is made.. and the term ucalled
progT'am" means the procedure to which a reference is made.
9. 1 THE PROGRAM STATEMENT

The PROGRAM statement provides a means
specifying a name for a main program unit.
form of the statement is:

of
The

PRDGRAM name
Iof p.resent, the PROGRAM statement must appear
before any other statement in the program unit.
The name consists of 1-6 alphanumeric characters,
the first of which is a letter. If no PROGRAM
statement is present in a main program.. the
compiler assigns a name of SMAIN to that program.

9.2 STATEMENT FUNCTIONS

Statement functions are defined by a single
arithmetic or logical assignment statement and are
relevant only to the program unit in which they
appear. The general form of a statement function
is as follows:
~'~\al, a2 an) :::: e
where f is the function
arguments and e is
exp·ression.

name, the ai
an aT'i thmet i c

are dummy
or logical

Rules 901' ordering, structure and use of statement
functions are as follows:
1. Statement function definitions, if they exist

in a program unit, must precede all executable
statements in the unit and Pollow all
specification statements.

2. The ai are distinct variable names or array
elementsJ but, being dummy variables} they may
have the same names as variables of the same
type appearing elsewhere in the program unit.

3. The expression e is constructed according to
the rules in SECTION 4 and may contain only
references to the dummy arguments and
non-Literal c:onstants, variable and arT'ay
element references} utility and mathematical
f-unction references and references to

FORTRAN-BO Reference Manual Page 84
previously defined statement functions.

4. The type of any statement function name or
argument that differs from its pre-defined
convention type must be defined by a type
specification statement.

5. The relationship between f and e must conform
to the replacement Tules in Section 5.

6. A statement function is called by its name
followed by a parenthesized list of arguments.
The expression is evaluated using the arguments
specified in the call, and the reference is
replaced by the result.

7. The ith parameter in every argument list must
agree in type with the ith ",dummy in the
statement function.

The example below shows a statement function and a
statement function call.
C STATEMENT FUNCTION DEFINITION
C

C STATEMENT FUNCTION CALL
C

A12=AI-FUNC1(XIY' Z7,C7)
9.3 LIBRARY FUNCTIONS

Library functions are a group of utility and
ffif!lt:hematical t~unctions which aT'.? "built--in u to the
FORTRAN system. Their names are pre-defined to the
Processor and automatically typed. The functions
are listed in Tables 9-1 and 9-2. In the tablesl
arguments aT'e denoted as ai, a21 ... I ani i f~ more than
one argument is required; or as a if only one is
requi red.
A library function is called when its name is used
in an arithmetic expression. Such a reference
takes the following form:
f-(al1a2/ ... an)
where f is the name of the function and the ai are
actual arguments. The arguments must agree in
type, number and order with the specifications
indicated in Tables 9-1 and 9-2.

FORTRAN-80 Reference Manual Page 85
In addition to the functions listed in 9-1 and 9-2~

four additional library subprograms are provided to
enable direct access to the 8080 (or ZBO) hardware.
rhf~se Brti1:

PEEK, POKE, INP, OUT
PEE~ and INP are Logical functionsJ PO~E and OUT
are subroutines. PEEK and PO~E allow direct access
to any memory location. PEEK(a) returns the
contents of the memory location specified by a.
CALL POKECal,s2) causes the contents of the memory
location specified by al to be replaced by the
contents of a2. INP and OUT allow direct access to
the I/O ports. INPCa) does an input from port a
and returns the 8-bit value input. CALL OUT(al,a2)
outputs the value of a2 to the port speciFied by
aL
Examples:

Ai = B+FLOAT (17)

MAGNI = ABS(KBAR)

PDIF ::;;; DIM(C~ D)

ROOT - (-B+SGRTCB**2-4. *A*C»!
1 (2.*A)

FORTRAN-BO Reference Manual
TABLE r.,-1.

Intrinsic Functions
Types

Definition Argument Function

l\BS
Ii\BS
DABS
l\INT
TNT
1D1NT
ANOD
1"10D
Ai"ll\XO
A 1'1 A X 1
t-1AXO
I"U,X 1
DI'1AX 1
Ai"'l I NO
At'1II\I1
MINO
MINl
DI"IINl
r:;'LOAT

SIGN
lSI ('}N
DSIGN
DIM
IDIM
SNf.~L

DBLE

:a:

Sign of a times lar­
gest integer <=lal

l'1a x {a 1, a20< 0 0 0

Conversion .prom
Integer to Real
Conversion {!rom
r"h~al to Integer
Sign of a2 times Is11

--.., .. _._----
R+.~al

Integer
Double
Heal
Real
Double
Real
Integer
Integer
.<ea 1 ,
Integer
Real
Double
Integer
Real
Inte~}eT"

f~ea 1
Dc)uble
Integer

Heal

Real
IntegE-~r

Double
Real
Integer
Double
Real.

.. _-------
Real
Integer
Double
Real
Integer
Integer
f<eal
Integer
Real
Real
Integer
Integ Poor
Double
Real
Real
IntegeT'
Integ eor
Double
Real

Integ el'

Real
Integer
Double
Real
Integ el'
Real
Double

Page 86

FORTRAN-SO Reference Manual Page 87
TABLE 9,-2

Basic External Functions
Number

of Type
NamE) Arguments Derinition Argument Function

------. ---_ .. _ - ._ ... _-1 ____ -· .. · ..
EXP 1 f~'*'*a Real Real
DEXP .1 Double Double
ALOG 1 In (a) Real Real
Dl..()(~ 1 Double Double
P-ILOG10 1 log10(a) Real Real
DL.JJG10 1 Double Double
BIN 1. !.; in (a) Real Heal
DBIN 1 Double Double
COS 1 C (.)s (a) Real Real
DCDS 1 Double Double
'T,~NH 1 tanh (a) Real Real
SGHT 1 (a) *-tt. 1/2 Real Real
DS(~f~T 1 Double Double
AlAN 1 f.B"etan (a) Real Real
Df~TAN 1 Double Double
ATAN2 r·,)

1:. ar'c tan (a1/a2) Real Real
D,~Tf'N;;~ 2 Double Double
DMOn 2 al(mod a2) Double Double

FORTRAN-80 Reference Manual Page 88
9. 4 FUNCTION SUBPROGRAMS

A program unit which begins with a FUNCTION
statement is called a FUNCTIDN subprogram.
A FUNCTION statement has one of the following
forms:

. t FUNCTION f(al~a2, ... an)

or

FUNCTION f(al,a2, ... an)
where:
1. t is ei·the·r INTEGER, REAL, DOUBLE PRECISION or

LOGICAL or is empty as shown in the second

, .. ,
r..:.,

~3,

fo·rm.
T is the name of the FUNCTION subprogram.
The ai are dummy arguments of which there must
be at least one and which represent variable
names, array names or dummy names of SUBROUTINE
or other FUNCTION subprograms.

CONSTRUCTION OF FUNCTION SUBPROGRAMS

Construction of FUNCTION subprograms must comply
with the following restrictions:
1. The FUNCTION statement must be the first

statement of the program unit.
2. Within the FUNCTION subprogram, the FUNCTION

name must appear at least once on the left side
of the equality sign of an assignment statement
or as an item in the input list of an input
statement. This defines the value 09 the
FUNCTION so that it may be returned to the
calling p'f'f.)gram.
Additional values may be returned to the
calling program through assignment of values tD
dummy arguments.

FORTRAN-BO Reference Manual
Example:

FUNCTION Z7(A,B,C)

Z7 - 5. *CA-B) + SGRTee)

C REDEFINE ARGUMENT
B=B+Z7

RETURN

END
3. The names in the dummy argument list may not appear

in EQUIVALENCE, COMMON or DATA statements in the
FUNCTION subprogram.

4. Iof a dummy arg ument is an arT'By name, th en an arT"iEHJ
declarator must appear in the subprogram with
dimensioning information consistant with that in
the calling program.

S. A FUNCTION subprogram may contain any defined
FORTRAN statements other than BLOCK DATA
statements, SUBROUTINE statements, another FUNCTION
statement or any statement which references either
the FUNCTION being defined or another subprogram
that references the FUNCTION being defined.

6. The logical termination of a FUNCTION subprogram is
a RETURN statement and there must be at least one
of! th em.

7. A FUNC T I ON sub pro 9 T' a m mll s t p h Y sic all y t e r min ate
with an END statement.

FORTRAN-SO Reference Manual
Example:

FUNCTION SUM (BARY,I,J)
DIMENSION BARY(10,20)
SLIM :::: O. 0
DO 8 ~\=1, r
DOB N :::: 1. J ,)

8 SUM:::: SUM + BARY(K,M)
F~ETlJRN

END
9.6 REFERENCING A FUNCTION SUBPROGRAM

. . --_ .. ""'- -_ .. _._---

Page 90

FUNCTION subprogramsa'r-e called wheneve'r' the
FUNCTION name, accompanied by an argument list, is
used as an operand in an expression. Such
references take the following form:
of! (a 1 J a2 ... , . J an)
where f is a FUNCTION name and the ai are actual
arguments. Parentheses must be present in the form
shown.
The arguments ai must agree in type, order and
number with the dummy arguments in the FUNCTION
statement of the called FUNCTION subprogram. They
may be any of the following:
l. A variable name.
2. An array element name.
3. An array name.
4. An exp'ression.
5. A SUBROUTINE or FUNCTION subprogram name,
6. A Hollerith or Literal constant.
If an ai is a. subprogram name, that name must have
previously been distinguished from ordinary
variables by appearing in an EXTERNAL statement and
the corresponding dummy arguments in the called
FUNCTION subprograms must be used in subprogram
references.
If ai is a Hollerith or Literal constant, the
corresponding dummy variable should encompass
enough storage units to correspond exactly to the
amount of storage needed by the constant.
When a FUNCTION subprogram is calledl program

FORTRAN-BO Reference Manual Page 91
control goes to the first executable statement
following the FUNCTION statement.
The following examples show references to FUNCTION
sub programs.

Z10 = FT1+Z7(D,T3~RHO)

DIMENSION DAT(5,5)

81 = TOTI + SUM(DAT,5,5)
9.7 SUBROUTINE SUBPROGRAMS

A program
statement
SUBROUTINE
forms:

unit which begins with a SUBROUTINE
is call ed a SUBROUTINE subprogram. The
statement has one of the following

SUBROUTINE s (al,a2, ... ,an)

eH'

SUBROUTINE s
where s is the name of the SUBROUTINE subprogram
and each ai is a dummy argument which represents a
variable or array name or another SUBROUTINE Dr
FUNCTION name.

9.8 CONSTRUCTION OF SUBROUTINE SUBPROGRAMS

L The SUBROUTINE statement must be the first statement
of the subprogram.

2. The SUBROUTINE subprogram name must not appear in
any statement other than the initial SUBROUTINE
statement.

3. The dummy argument names must not appear in
EQUIVALENCE~ COMMON or DATA statements in the
subprogram.

4. If a dummy argument is an array name then an array
declarator must appear in the subprogram with
dimensioning information consistant with that in the
call in9 program.

5. If any of the dummy arguments represent values that
are to be determined by the SUBROUTINE subprogram
and returned to the calling program, these dummy

FORTRAN-SO Reference Manual Page 92
arguments must appear within the subprogram on the
left side of the equality sign in a replacement
statement~ in the input list of an input statement
or as a parameter within a subprogram reference.

6. A SUBROUTINE may contain any FORTRAN statements
other than BLOCK DATA statement5~ FUNCTION
statements, another SUBROUTINE statement, a PROGRAM
statement or any statement which references the
SUBROUTINE subprogram being defined or another
subprogram which references the SUBROUTINE
subprogram being defined.

7. A SUBROUTINE subprogram may contain any number of
RETUf~N statements. It must have at least one.

8. The RETURN statementCs) is the logical termination
point of the subprogram.

9. The physical termination of a SUBROUTINE subprogram
is an END statement.

10. If an actual argument transmitted to a SUBROUTINE
subprogram by the calling program is the name of a
SUBROUTINE or FUNCTION subprogram, the corresponding
dummy argument must be used in the called SUBROUTINE
subprogram as a subprogram reference.

Example:

C SUBROUTINE TO COUNT POSITIVE ELEMENTS
C IN AN ARRAY

SUBROUTINE COUNT P(ARRY, I,CNT)
DIMENSION ARRY(7)
CNT = 0
DO 9 '\.)=11 I
I F (AR R Y (.J)) 9, 5 ~ 5

c; CONTINUE
RETURN

5 CNT = CNT+l.0
GO TO 9
END

9.9 REFERENCING A SUBROUTINE SUBPROGRAM

A SUBROUTINE subprogram may be called by using a
CALL s·t;atement. 1-' CALL statement has one of the
f~ollowing forms:
CALL s (a 1.. a2) ... , an)

OT'

FORTRAN-BO Reference Manual Page 93

9. :1.0

CALL s
where s is a SUBROUTINE subprogram name and the ai
are the actual arguments to be used by the
subp1"'ogram. The ai must agree in type, order and
number with the corresponding dummy arguments in
the subprogram-defining SUBROUTINE statement.
The arguments in a CALL statement must comply with
the following rules:
1. FUNCTION and SUBROUTINE names appearing in the

argument list must have previously appeared in
an EXTERNAL statement.

2. If the called SUBROUTINE subprogram contains a
variable array declaratorl then the CALL
statement must contain the actual name of the
array and the actual dimension specifications
as arguments.

3. If an item in the SUBROUTINE subprogram dummy
argument list is an arrat), the corresponding
item in the CALL statement argument list must
be an array.

When a SUBROUTINE subprogram is called, program
control goes to the first executable statement
following the SUBROUTINE statement.
Example:

DIMENSION DATA(10)

C THE STATEMENT BELOW CALLS THE
C SUBROUTINE IN THE PREVIOUS PARAGRAPH
C

CALL COUNTP(DATA} 10,CPOS)
RETURN FROM FUNCTION AND SUBROUTINE SUBPROGRAMS

The lo~ical termination of a FUNCTION or SUBROUTINE
subprogram is a RETURN statement which transfers
control back to the calling program. The general
form of the RETURN statement is simply the word
HETURN
The following rules govern the use of the RETURN
statement:

FORTRAN-BO Reference Manual Page 94

9. 11

1. There must be at least one RETURN statement in
each SUBROUTINE or FUNCTION subprogram.

2. RETURN from a FUNCTION subprogram is to the
instruction sequence of the calling program
following the FUNCTION reference.

3. RETURN rrl,)ITJ a SUBROUTINE subprogram is to the
next executable statement in the calling
program which would logically follow the CALL
statement.

4. Upon return from a FUNCTION subprogram the
single-valued result of the subprogram is
available to the evaluation of the expression
from which the FUNCTION call was made.

S. Upon return from a SUBROUTINE subprogram the
values assigned to the arguments in the
SUBROUTINE are available for use by the calling
program.

Example:

Calling Program Unit

CALL 8UBR(Z9,B7,Rl)

Called Program Unit

SUBROUTINE 8UBR(A,B,C)
READ(3,7) B
A = B**C
RETtJRN

"7 FORMAT(F9.2)
END

In this example, Z9 and B7 are made available to
the calling program when the RETURN occurs.
PROCESSING ARRAYS IN SUBPROGRAMS

If a calling program passes an aTTay name to a
subprograml the subprogram must contain the
dimension information pertinent to the array. A
subprogram must contain array declarators if any of
its dummy arguments represent arrays or array

FORTRAN-BO Re'erence Manual Page 95
elements.
For example~ a FUNCTION subprogram designed to
compute the average or the elements or anyone
dimension array might be the folowing:

Calling Program Unit

I~ 1 - AVG (Z 1, 50)

A2 = Al-AVG(Z2,25)

Called Program Unit

FUNCTION AVG(ARG~ I)
DIMENSION ARG(50)
SUM = 0.0
DO 20 J:::::l .. I

20 SUM = SUM + ARG(J)
AVG = SUM/FLOATCI)
RETURN
END

Note that actual arrays to be processed by the
FUNCTION subprogram are dimensioned in the calling
program and the array names and their actual
dimensions are transmitted to the FUNCTION
subprogram by the FUNCTION subprogram reference.
The FUNCTION subprogram itself contains a dummy
array and specifies an array declarator.
Dimensioning information may also be passed to the
subprogram in the pa'ramater list. For example:

FORTRAN-SO Reference Manual
Calling Program Unit

DIMENSION A(3,4,5)

END

Called Program Unit

SUBROUTINE SUBR(XI I,J,K)
DIMENSION X(I,J,K)

RETURN
END

Page 96

It is valid to use variable dimensions only when

the array name and all of the variable dimensions
are dummy arg uments. Th e vaT' iab 1 e d imensi ons must
be type Integer. It is invalid to change the
values of any of the variable dimensions within the
c a 11 ed p·r·ogram.
BLOCK DATA SUBPROGRAMS

A BLOCK DATA subprogram has as its only purpose the
initialization of data in a COMMON block during
loading of a FORTRAN object program. BLOCK DATA
subprograms begin with a BLOCK DATA statement of
the following form:
BLOCK DATA (subprogram-name]
and end with an END statement. Such subprograms
may contain only Type, EGUIVALENCEI DATA, COMMON
and DIMENSION statements and are subject to the
following considerations:
1. If any element in a COMMON block is to be

initialized, all elements of the block must be
listed in the COMMON statement even though they
might not all be initialized.

2. Initialization of data in more than one COMMON
block may be accomplished in one BLOCK DATA
sub program.

FORTRAN-SO Reference Manual Page 97
3. There may be more than one BLOCK DATA

subprogram loaded at any given time.
4. Any particular COMMON block item should only be

initialized by one program unit.
Example:

BLOCK DATA
LOGICAL Ai
COMMON/BETA/B(3,3)/GAM/C(4)
COMMON/ALPHA/A1,FJE/D
DATA B/1. 1,2.5,3.8,3*4.96,

12*0.52,1. 1/,C/1. 2EO,3*4. 01
DATA All. TRUE. I,E/-5.61

FORTRAN-BO Reference Manual
APPENDIX A

Page 98

Language Extensions and Restrictions
The FORTRAN-BO language includes the following extensions to
ANSI Standard FORTRAN (X3.9-1966).

1. If- c is used in a 'STOP c' or 'PAUSE c' statements

.. ,
t:~ •

3.

4.
5.

6.

7.

8.

9.

c may be any six ASCII characters .
Error and End-aT-File b~anches may be specified in
READ and WRITE statements using the ERR= and END=
options.
The standard subprograms PEEK, POKE, INP,
have been added to the FORTRAN library.

and OUT

Statement functions may use subscripted variables.
Hexadecimal constants may be used wherever Integer
constants are normally allowed.
The literal form oT Hollerith data (character
string between apostrophe characters) is permitted
in place of the standard nH form.
Holleriths and Literals are allowed in expressions
in place of Integer constants.
There is no restriction to
continuation lines.

the numbeT' of

Mixed mode expressions and assignments are allowed,
and conversions are done automatically.

FORTRAN-SO places the following restrictions upon Standard
FORTRAN.

1.

2.

The COMPLEX data type is not implemented.
be included in a future release.

It

The specification statements must appear in
following order:
1. PROGRAMI SUBROUTINEI FUNCTION, BLOCK DATA
2. Type, EXTERNAL, DIMENSION
3. COMMON
4. EGUIVALENCE

may

the

FORTRAN-SO Reference Manual Page 99

3.

4.

1:" .J.

5. DATA
6. Statement Functions
A different amount of computer memory is allocated
for each of the data types: Integerl Real, Double
Precision, Logical.
The equal sign of a replacement statement and the
first comma of a DO statement must appear on the
initial statement line.
In Input/Output list specific.tions,
enclosed in parentheses are not allowed.

sublists

Descriptions of these language extensions and restl'ictions
are included at the appropriate points in the text of this
document.

FORTRAN-BO Reference Manual
APPENDIX B

I/O Intel'face

Page 100

Input/Output operations are table-dispatched to the driver
routine for the proper Logical Unit Number. SLUNTB is the
dispatch table. It contains one 2-byte dr1v~r address for
each possible LUN. It also has a one-byte entry at the
beginning, which contains the maximum LUN plus one. The
i nit i. all' un - tim epa c k age pro vi des of CI r 1 OL UN I s (1 - 1 0) I a 11
of which correspond to the TTY. Any of these may be
rede-Fined by the user, or more added, simply by changing the
appropriate entries in SLUNTB and adding more drivers. The
'1"' un tim e s y s t emu s e s L UN 3 r 0 r e.,." T~:'b l' san dot h e T" use r
communication. Therefore, LUN 3 should correspond to the
ope 1" at 0 r con sol e. The i nit i a 1 s t r u c t u reo f $L LINT B iss h 0 wn
in the listings following this appendix.
The device drivers also contain local dispatch tables. Note
that $LUNTB contains one address for each device, yet there
are really seven possible operations per device:

1) Formatted Read
2) Formatted Write
3) Binary Read
4) Binary Write
5) Rewind
6) Backspace
7) Endrile

Each device driver contains up to seven routines. The
starting addresses of each of these seven routines are
placed at the beginning of the driver, in the exact order
listed above. The entry in $LUNTB then points to this local
table, and the runtime system indexes into it to get the
address of the appropriate routine to handle the requ@sted
I/O operation.
The following conventions apply to the individual lID
routines:

1. Loca't;ion $BF contains the data buffer address for
READs and WRITEs.

2. For a WRITE, the number of bytes to write is in
location $BL.

3. FOT' a READ, the number of bytes read should be
returned in $BL.

FORTRAN-SO Reference Manual Page 101

J

4. All I/O operations set the condition codes before
exit to indicate an error condition, end-of-file
condition, or normal return:

5.

a) CV=ll Z=don't care - 110 error
b) CV=O, Z=O - end-or-file encountered
c) CY=O, Z=1 - normal return

The runtime system checks the condition codes after
calling the driver. If they indicate a non-normal
conditionl control is passed to the label specified
by IIERR=n or !lEND=" 01"1 if no lab el is spec if i ed I a
fatal error results.
$IOERR is a global routine which prints an "ILLEGAL
I 10 OPERATION" messag e (non-ratal). Th i s rout i ne
may be used if there are some operations not
allowed on a particular device (i.e. Binary 110 on
a TTY>'

NOTE
The 110 buffer has a fixed maximum length
of 132 bytes unless it is changed at
installation time. If a driver allows an
input operation to write past the end of
the buffer, essential runtime variables may
be affected. The consequences are
unpredictable.

The listings following this appendix contain
driver for a TTY. REWIND, BACKSPACEI and
implemented as No-Ops and Binary 1/0 as an error.
the TTY driver provided with the runtime package.

an example
ENDFILE are

This is

FORTRAN-BO Reference Manual
APPENDIX C

Subprogram Linkages

Page 102

This appendix defines a normal subprogram call as generated
by the FORTRAN compiler. It is included to facilitate
linkages between FORTRAN programs and those written in other
languages~ such as 8080 Assembly.
A subprogram reference with no parameters generates a simple
"CALL It instruction. The corresponding subprogram should
.,'eturn via a simple "RET." (CALL and RET are 8080 opc:odes
see the assembly manual or 8080 reference manual for
explanations.)
A subprogram reference with parameters results in a somewhat
more complex calling sequence. Parameters are always passed
by reference (1. e. 1 the thing passed is actually the address
of the low byte of the actual argument). Therefore,
parameters always occupy two bytes each, regardless of type.
The method of passing the parameters depends upon the number 0' parameters to pass:

1. If the number of parameters is less than or equal
to 31 they are passed in the registers. Parameter
1 will b e i n HL, 2 i. n DE (i of pre sen t) I and 3 i n Be
(if present).
If the number of parameters is greater than 31 they
are passed as follows:
1. Pal"'ameter 1 j. Tl HL.
2. Parameter 2 in DE.
3. Parameters 3 through n in a contiguous data

block. Be will point to the low byte or this
data block (i. e., to the low byte Or paramete."
:3 >.

Note that, with this scheme, the subprogram must know how
many parameters to expect in order to find them.
Conversely, the calling program is responsible for passing
the correct number of parameters. Neither the compiler nor

the runtime system checks for the correct number of

paramete"rs.

If the subprogram expects more than 3 parameters} and needs
to transfer them to a local data area, there is a system

FORTRAN-BO Reference Manual Page 103
subroutine which will perform this transfer. This argument
transfer routine is named $AT, and is called with HL
pointing to the local data area, Be pointing to the third
parameter, and A containing the number of arguments to
transfer (1. e. ~ the total number of arguments minus 2). The
subprogram is responsible for saving the first two
parameters before call in9 $AT. For example, if a subp'rogT'am
expects:; parameters .. it should look like:
SUBR: SHLD P1 ; SAVE PARAMETER 1

XCHG
; SAVE PARAMETER 2
;NO. OF PARAMETERS LEFT
iPOINTER TO LOCAL AREA

SHLD
MVI
LXI
CALL

P2
A,3
I-ilP3
$AT iTRANSFER THE OTHER 3 PARAMETERS

Pl:
P'")' t~ •.•

P:3:
When
they

[Body of subprogram]

RET i I~ETURN TO CALLER
DS 2 ; SPACE FOR PARAMETER 1
DS 2 i SPACE FOR PARAMETER 2
DS 6 ; SPACE FOR PARAI"1ETERS 3-5

accessing parame'cers in a subprogram, don't
aT'e pointers to the actual argument;s passed,

NOTE
It is entirely up to the
programmer to see to it that
the arguments in the calling
program match in number, type,

and length with the parameters

expected by the subprogram.
This applies to FORTRAN
subprogramsl as well as those
written in assembly language.

-Porget that

FORTRAN Functions (Section 9) return their values in
registers or memory depending upon the type. Logical
'results are retuT'ned in (A), Integers in (HL), Reals in
memory at SAC, Double Precision in memory at SDAC. SAC and
$DAC are the addresses of the low bytes of the mantissas.

FOt~TRAN·-80 Reference Manual Page 104
APPENDIX D

ASCII CHARACTER CODES
QEC1MAL CHAR. DECIMAL CHAR. DECIMAL CHAR.

.00 NUL 043 of- 086 V
OOl SO 1-1 044 087 W
OO;.;~ STX 045 088 X
00:1 ETX 046 089 Y
004 EDT 047 / 090 Z
oOt) ENG 048 0 091 [

006 ACr~ 049 1 092 \
007 BEL 050 2 093]

008 BS 05J. 3 094
(Ol")

009 HT 052 4 095 (or) -
010 LF 053 5 096 I

011 VT 054 6 097 a
01. ;;~ FF 055 7 0(.78 b
013 CR 056 8 099 c
014· 80 057 9 100 d
015 81 058 101 e
016 DLE 059 102 f
01.7 DCI 060 < 103 9
018 DC2 061 = 104 h
01 ("", DC3 062 .;- 105 i
020 DC4 063 ? 106 J
021 NI~K 064 @ 107 k
o~~;,:! SYN 065 A 108 1
023 ETB 066 B 109 m
024· CAN 067 C 110 n
02~) EM 068 D 111 0

026 SUB 069 E 112 P
O~!7 ESCAPE 070 F 113 q
028 FS 071 G 114 r
02('7 GS 072 H 115 s
O~jO RS 073 I 116 t
O~31 US 074 .J 1.17 u
032 SPACE 075 K 118 v
033 076 L 119 w
O:-~4· 11 077 M 120 x
035 # 078 N 121 Y
O~36 $ 079 0 122 z
O:rl % 080 P 123 {

O~l8 ~(081 G 124
039

, 082 R 125
04·0 (083 5 126
041) 084 T 127 DEL
04·:;:2 * 085 U
LF=Line Feed FF=Form Feed CR=Carriage Return DEL=Rubout

FORTRAN-BO Reference Manual Page 105
APPENDIX E

Referencing FORTRAN-BO Library Subroutines
The FORTRAN-SO library contains a number of subroutines that
may be referenced by the user from FORTRAN or assembly
pr·ograms.

1. Referencing Arithmetic Routines
._------ - . -----.-.
In the following descriptionsl SAC refers to the
floating accumulator; $AC is the address of the
low byte of the mantissa. $AC+3 is the address of
the exponent. $DAC refers to the DOUBLE PRECISION
accumulator; $DAC is the address or the low byte
of the mantissa. $DAC+7 is the address of the
DOUBLE PRECISION exponent.
All arithmetic routines (additionl subtraction,
multiplication .. divisionl exponentiation) adhere to
the following calling conventions.
1. Argument 1 is passed in the registers:

Integer in [HLJ
Real in SAC
Double in SDAC

2. Argument 2 is passed eitheT" in registers, OT' in
memory depending upon the type:

a. Integers are passed in [HLJ, 0'(' [DEJ i'P
[HLJ contains Argument 1.

b. Real and Double Precision values d're
passed in memory pointed to by [HLJ.
([HLJ points to the low byte of the
mantissa.)

FORTRAN-BO Reference Manual Page 106
The following a',.. i thmet i c routines are contained in
the Library:

Function Name Argument 1 Type Ar-Qument 2 Type

Addition $AA Real Integer
$AB Real Real
$AG Double Integer
$AR Double Real
$AU Doubl.e Double

Division $D9 Integer Integer
$DA Real Integer
$DB Real Real
$DG Double Integer
$DR Double Real
$DU Double Double

Exponentiation $E9 Integer Integer
$EA Real Integer
$EB Real Real
$EG Double Integer
$ER Double Real
$EU Double Double

Multiplication $M9 Integer Integer
$MA Real Integer
$MB Real Real
$MG Double Integer
$MR Double Real
$MLJ Double Double

Sub trBc t i, on $SA Real Integer
$SB Real Real
$80 Double IntegeT'
$SR Double Real
$SU Double Double

FORTRAN-SO Reference Manual Page 107
Additional Library routines are provided for converting
between value types. Arguments are always passed to and
returned by these conversion routines in the appropriate
reg i sters:
Logical in [AJ
Integer in [HLJ
Real in $AC
Double in $DAC

Name Function
SeA Integer to Real
sec Integer to Double
5CH Real to Integer
$CJ Real to Logical
SCK Real to Double
sex Double to Integer
$CY Double to Real
SCZ Double to Logical

2. Referencing Intrinsic Functions

Intrinsic Functions are passed their parameters in H,L and
D,E. If there are three arguments, B,C contains the third
parameter. If there are more than three argumentsl B,C
contains a pointer to a block in memory that holds the
remaining parameters. Each of these parameters is a pointer
to an s·rgument. (See Appendix B.)
For a MIN or MAX function, the number of arguments is passed
in A.

NOTE
None of the functions (except
INP and OUT) may take a byte
variable as an argument. Byte
'variables must first be
converted to the type expected
by the ·Punction. Otherwisel
results will be unpredictable.

3. Formatted READ and WRITE Routines

A READ or WRITE statement calls one of the following
routines:

FORTRAN-BO Reference Manual Page 108
SW2 (2 parameters) Initialize for an 110 transfer
$W5 (5 parameters) to a device (WRITE)
SR2 (2 parameters) Initialize for an lID transfer
SR5 (5 parameters) from a device (READ)
These routines adhere to the following calling conventions:

1. HI L poi n t s tot h e l. UN
2. D,E points to the beginning of the FORMAT statement
3. IT the routine has five parameteT's, then B, C points

to a block of three parameters:
B. th e address for an ERR::: branch
b. the address fo·r an EOF= b·ranch
c. the address fOT' a REC= value

The routines that transfer values into the lID bufTer are:
$10 transfers integers
$11 transfers real numbers
$12 transfers logicals
$13 transfers double precision numbers
Transfer routines adhere to the following calling
convent ions:

1. H,L points to a location that contains the number
of dimensions for the variables in the list

2. D,E points to the first value to be transferred
3. B,C points to the second value to be transferred if

there are exactly two values to be transferred by
th i s call. I f there are more than two val ues.. B, C
points to a block that contains pointers to the
second through nth values.

4·. Register A contains the number of parameters
(including H,L) generated by this call.

The routine $ND terminates the lID process.

FORTRAN-SO Reference Manual
INDEX

Page 109

Arithmetic Expression
Arithmetic IF
Arithmetic Operators
Array

Array Declarator
A'f'l"ay Elemen·t;
ASCII Character Codes
ASSIGN.
Assigned GOTO
BACKSPACE
BLOCK DATA.
CAL.L .
Charac teT' Set
Characteristic
Comment Line .
GOMMON _
Computed GOTO
ConstC:lnt _
Continua-t;ion .
CONTINUE.
Control statements .
DATA
Data Representation
Data StoT'ag e
DECODE _
DINENSION
Disk Files
DO .
DO Implied List
Double precision
Dummy
ENCODE
END
END Line
ENDFILE
EGUIVALENCE
Execu't:able .
Expres!;ion _
Extended Range
EXTEF~NAL. . .
External Functions
Field Descriptors
FORMAT.
Formatted READ _

25--26, 47
44, 47" 49

· 8
14, 20, 34-35, 37-38, 40-41,
56, 791 89-90, 94-95
20
14, 20, 271 32, 39
104
44, 46
.cl4-45

· 60
34, 37, 92, 96
44, 53, 92
7
23
9
34, 37, 39-41, 89, 91, 96

· 44'''-45
14-"15
9, 12

· 44, 51
44
34, 41, 89, 91, 96
14

.. 21
61
20, 34, 37, 96
59
Jl4, 47-49
63
14
91,,-93, 95
61
53, 89, 92, 96
11
60

· 34, 39-41, 89, 91, 96
13, 34, 44
25-26, 31-32
50

· 34 I 37 , 90, 93
87

· 65
55-57, 65, 69, 71-75, 77-80
54,

Formatted ~JR ITE
FUNCTION.
GDTO .
Hexadecimal
Hol.lf.tT~ith

110
lID List
IF .
Index
Initial Line
INP
Integer
Intrinsic Functions
Label
Library Function .
Library Subroutines
Line Forma'c
List Item
Liter,;:)l
Logic:.al
Logical Expression
L.ogjc:al IF .
Logical Operator.
Logical Unit Number
LUN
i"fantissa .
Nested ,
l\Ion-e x ec: utab 1 e
Numeric Conversions
Operand
Operato'r
DUT
PAUSE
PEEK.
PDKE .
PHDGHAI"1
r<ang e
HEAD.
Hf:~al .
Relational Expression
Relational Operator
Replacement Statement
HETURN .
HEWIND .
Scale Factor
Specification Statement
statement Function .

5·7
34, 37, 82, 88-95

· 44, 49
8, 21. .. 31, 4;!
9, 15 .. 20-21 .. 31 .. 42 .. 56 ..
71--72.. 90
54, 100
62
44, 47
49
1.1
B5
14, 19, 23
86, 107
9, 12 .. 44~-45, 48
82, 84
105
9
6;!
9 .. 20-21 .. 31 .. 421
14, 19, 23, 73

· 27, 30.. 48
44.. 47 .. 49
28
54, 58, 100
54, 58.. 100
23
51
13,34
66
25

· 25
85
44.. 49.. 52

· 85
85
341 83.. 92

· 49
56, 581 65, 74, 78-801 107
14.. 191 23
27

· 27
32, 48

· 44, 49, 53, 89, 92-94
· 60
· 74-75
· 34

34, 82~-83

STOP.
S-t;ol'age
Storage Format
Stol'ag e Un it
Sub p,""og-ram
SUBROUTINE .
Subscri.pt
Subscript Expression
Type.
Type statement .
Unconditional GOTO
Unformatted I/O
Variable
WHITE

44 ..
35
14
21 J

37 ..
34"
20"
21"
96
35
44
58

49"

23 ..
5:i ..
37,
27
27

52

39
82" 88-96" 102
53, 82, 89-94

14" 19, 32, 38, 90
57-58.. 65, 74, 78-80, 107

