MICRDSBFT FORTRAN-B0 Reference Manual
Version 3.0
Copyright 1977 {({) by Microsoft

Section

i

P

o

MICROSOFT FORTRAN-80
Reference Manual
Cantents

Introduction
Fortran Program Form
2.1 Fortran Character Set
2 1.1 Letters
. 1.2 Digits
2.1.3 Alphanumerics
2. 1.4 B8Bpecial Characters

i

1

2.2 FORTRAN Line Format
2.3 GStatements
Data Representation/Storage Format
3.1 Date Mames and Types
3.1.1 Names
3.1.2 Types
3.2 Constants
3.3 Variables
9.4 Arrays and Array Elements
3.5 GQubscripts
3.4 Data Storage Allocation
FORTRAN Expressions
4.1 Arithmetic Expressions
4.2 Expression Evaluation
4.3 Logical Expressions

4.3.1 Relational Expressions
4. 3.2 Logical Operators
4.4 Hopllerith, Literal, and Hexadecimal
Constants in Expressions
Replacement Statements
Specification Statements

Specification Statements
Array Declarators

Type Btatements

EXTERMAL Statements
DIMENSION Statements

o
OB LI R e

b b
&7
6.8

COMMON Statements
EQUIVALENCE Statements
DATA Initislization Statement

FORTRAN Control Statements

7.1

7.

Ln

SONU S

RENNNNNNN

i

LI g

w
oUb

G070 Statements
7.1.1 Unconditional 8OTO
7.1.2 Computed QOTO
7.1.3 #Assigned 60OTO
ABSICN Statement

IF Statement

7.3. 1 Arithmetic IF
7.3.2 bLogical IF

DO Statement
CONTINUE Statement
STOP Statement

FPAUSE Statement

CALL Statement
RETURN Statement

.10 END Statement
nput/Output

Formatted READ/WRITE

1.1 Formatted READ

8.1.2 Formatted WRITE

Unformatted READ/WRITE

Disk File 1/0

8.3.1 Random Disk 1/0

8.3.2 OPEN Subroutine

Auxiliary I/0 Statements

ENCODE/DECODE

Inmput/0utput List Specifications

8.6, 1 List Item Types

8.6 2 SOpecial Motes on List

Specifications

ORMAT Statements

7.3 Field Descriptors
Mumeric Conversions
Hollerith Conversions
Logical Conversion
X Descriptor
F Descriptor
Gpecial Control Features
of FORMAT Statements

.7.1 Repeat Dpecifications

.7.2 Field Separators
FORMAT Control, List Specifications.
and Record Demarcation
FORMAT Carriage Control

0 FORMAT Specifications in Arrays

‘2‘.."
g
8.
8.
=4
3
8
8

3
NNONDD NNNNNN

= WMNEN N g IR

© o

7

Fonctions and Subprograms

7.

9.
7.

RRCRCECRURLRCRCE

=GOSO R LR e

0

11

12

PROGRAM Statement

Statement Functions

library Functions

Function Subprograms

Canstruction of Function Subprograms
Referencing a Function Subprogram
Subroutine Subprograms

Construction of Subroutine Subprograms
Referencing a Subroutine Subprogram
Return From Function and Subroutine
Bubprograms

Processing Arrays in Subprograms
BLOCK DATA Bubroutine

APPENDIX A~ Language Extensions and Restrictions
APPENDIX B~ 1/0 Interface

APPENMDIX C— Subprogram Linkages

APPENDIX D- ABCII Cheracter Codes

APPENDIX E—- Referencing FORTRAN-BO Library Subroutines

FORTRAN-B80 Reference Manusl Page &
SECTION 1
INTRODUCTION ,
FORTRAN is a universal, problem oriented programming
language designed to simplify the preparation and check~out
of computer programs. The name of the language -~ FORTRAN -~
is an acronym for FORmula TRANslator.
The syntactical rules for using the language are rigorous

and Tequire the programmer to define fully the
characteristics of a proeblem in & series of precise
statements. These stastements, called the scurce program,

are translated by a system program called <+the FORTRAN
processor into an object program in the machine langusge of

the computer on which the program is to be executed.
This manval defines the FORTRAN socurce language for the 8080
and Z-80 microcomputers. This language includes the
American National Standard FORTRAN language as described in
ANGI document X3, 9-1%46, approved on March 7, 1964, plus a
number of language extensions and some rtestrictions. These
languasge extensions and restrictions are described in the
text of this document and are listed in Appendix A,
NOTE

Thie FORTRAN differs from the

Standard in that it does not

include the COMPLEX data type.
Examples are included throuvghouwt the manual to illusirate
the construction and use of the language elements. The
programmer should be familiar with all aspects of the
language to take full advantage of its capabilities.
Section 2 describes the form and components of an 8080
FORTRAN source proagram. Sections 3 and 4 define data types
and their expressional relationships. Sections 5 through 9
describe the proeoper construction and usage of the various
statement classes.

FORTRAN-80 Reference Manual Page 7
SECTION 2
FORTRAN PROGRAM FORM
8080 FORTRAN scurce programs consist of one program unit
called the Main program and any number of program units

called subprograms. & discussion aof subprogram types and

methods of writing and useing them is in Section 9 of this
manual.

Programs and program units are constructed of an ordered set
of statements which precisely describe procedures for
solving problems and which also define information te be
used by +the FORTRAN processor during compilation of the
object program. Each statement is written using the FORTRAN
rharacter set and following & prescribed line format.

2.1 FORTRAN CHARACTER SET

To simplify reference and explanation, the FORTRAN
character set dis divided into four subsets and a
name is given to each.

#0101 LETTERS
A.‘ B’ CA D.‘ El F:, G! Hl I} \JJ K) L.) M) N) D} F’! Q.‘ R.’ Sl Tl U
Vid: Xo Yo 2,8
NOTE
No distinction is made between upper and
lower case letters. However, for clarity
and legibility, exclusive use of upper case
letters is recommended.
2.1.2 DIGITS

SR——

NOTE
Strings of digits representing numeric
quantities are normally interpreted as
decimal numbers. However., in certain

statements, the interpretation is in the

FORTRAN-80 Reference Manual Page 8

<.01.3

Vo s o b o4

Hexadecimal number system in which case the
letters A, B, €, D, E, F may alsc be used

as Hexadecimal digits. Herxadecimal wusage
is defined in the descriptions of
statements in which such notation is
a2llowed.

ALPHANUMERICS

A sub—set of characters made up of all letters and
all digits.
SPECIAL CHARACTERS

Blank

Equality Sign
Plus Sign

Minus Sign
Asterisk

Slash

Left Parenthesis
Right Parenthesis
{{omma

Pecimal Point

NOTES

1. FORTRAM program lines consist of 80 character
poesitions or coelumns: numbered 1 through 80
They are divided inte four fields.

2. The following special characters are classified
a8 Arithmetic Operators and are significant in
the unambiguous statement af arithmetic
eipressians,

+ Addition or Positive Value
- SBubtraction or HNegative Value
Multiplication
/ Division
Exponentiation
3. The other special characters have specific

application in the syntactical expression of
the FORTRAN language and in the construction of
FORTRAN statements,

FORTRAN-B0O Reference Manuval Page 9

-

4, Any printable character méu appear in a
Hollerith or Literal field.
FORTRAN LIME FORMAT

The sample FORTRAN coding form (Figure 2.1) shows
the format of FORTRAN program lines. The lines of
the form consist of 80 character positions or
columns, numbered 1 through 80, and are divided
into four fields.

1. Statement Label {(or Mumber) field— Columns 1
through 9 {See definition of statement labels).
Continuation character field-—

Golumn &

3. Statement field-

4.

P3

Columne 7 through 72

Indentification field-

Columne 73 through 80
The iddentification +field is available for any
purpose the FORTRAN programmer may desire and is
ignored by the FURTRAM processor. '
The lines of a FORTRAN statement are placed in
Columns 1 through 72 formatted accerding to line

types. The four line types, their definitions, and

column formats are:

i Caomment line —— used for souTCe program
annotation at the convenience of the
programmer.

1. Calumn 1 contains the letter C.
=3 Celumns 2 — 72 are wused in any desired

format to express the comment or they may
be left blank.

3. A comment lineg may be followed only by an
initial line. an END line. or anocther
comment line.

4, Comment lines have no effect on the ohject
program and are ignered by the FORTHRAN
processor except for display purposes in
the listing of the program.

FORTRAN-BO Reference Manual Fage 11

Ry

END

SEIRS

Esample:

€ COMMENT LINES ARE INDICATED BY THE
¢ CHARACTER € IN COLUMN 1.

¢ THESE ARE COMMENT LINES

line —— the last line of & proegram unit.

Columns 1-5 may contain & statement label.
Column & must contain & zerc or blank.
Columns 7-72 contain one of the characters
E,2 N or D, in that order, preceded by,
separated by or followed by blank
characters.

4, Each FORTRAN program unit must have an END
line as its last line to inform the
Processor that it is at the physical end of
the program unit.

5. An END line may follow any other type line.
Example:

END

Initial Line -~ the first or only line of each

statement.

kN Columns 1-5 may contain a8 statement label
to identify the statement.

2. Column & must contain a zero or blank.

3. Columne 7-72 contain all or part of the
statement.

4, An initiael line may begin anywhere within

the statement field.
Example:

¢ THE STATEMENT BELOW CONSISTS
c OF AN INITIAL LINE
C

A= | B%EQRT(3-2. #C)

FORTRAN~-B0 Reference Manual Page 12
4. Continuation Line -—— used when additional lines
of coding are required to complete a statement

priginating with an initial line.

1. <Columns 1-5 are ignored, unless Column 1
coantains a C.

&, I# Column 1 contains & €, it is a comment
line.

3. Column & must contain & character other

than zero or blank.

4. Columns 7-72 contain the continuation of
the statement.

9. There may be as many continuation lines as
needed to complete the statement.
Example: :

i trtmastnn st

¢ THE STATEMENTS BELOW ARE AN INITIAL L INE

¢ AND 2 CONTINUATION LINES
<
63 BETA(L, 2) =
1 AGBAR®RET-(BETA(Z, 2)-AIBAR®5D
s +BQRT (BETA(Z, 1))

A statement label may be placed in columns 1-9 of a

FORTRAN statement initial line and is used for

reference purposes in other statements.

The following considerations govern the use of

statement labels:

i. The label is an integer from 1 to 979999.

. The numeric value of the label. leading zeros
and blanks are not significant.

3. # label must be unigue within a program unit.

4. # label on a continvation line dis dgnored by
the FORTRAN Processaor.

FORTRAN-80 Reference Manual . Page 13

n

Example:

e otirmdnt o oy e 5

¢ EXAMPLES OF STATEMENT LABELS
1
101

PRI

763

STATEMENTS

Individual statements deal with specific aspects of
a procedure described in & program unit and are
classified as either executable or non—-executable

B e

Executable statements specify actions and cause the

RO—

FORTRAN Processor te generate object program
instructions. There are three types of executable

statements:

1. Replacement statements.
2. Control statements

3. Input/Output statements.

NMon—executable statements describe to the processor

the nature and arrangement of data and provide
information about dinputs/output formats and data
initialization to the object program during program
loading and execution. There are five types of
non—executable statements:

1. Specification statements.

2. DATA Initialization statements.
2. FORMAT statements

4. FUNCTION defining statements.
. Subprogram statements.

The proper uvsage and construction of +the wvariocus
types of statements are described in SBections 5
through 9.

FIIRTRAN-80 Reference Manual Page 14

SECTION 3
DATA REPREBENTATION / STORAGE FORMAT

The FORTRAM Language prescribes a definitive wmethod faor
identifying data used in FORTRAN programs by name and type.

a1

i T

3012

DATA NAMES AND TYPES

[I P ermwe——

NAMES

1. Constant — An explicitiy stated datum.

2. Variable - A& symbolically identified datum.

3. Array — An ordered set of data in 1, 2 or 3
dimensions.

4. Array Element -~ One member of the set of data
of an array.

TYPES

Integer —— Precise representation of integral

numbers {(positive, negative By zerel) having

precision te 9 digits in the range 32748 to +32767
inclusive (~2¥#l5 to A¥%15-11.

Real —— Approximations of real numbers (positive.
negative or zero) represented in computer storage
in 4-~byte. floating—-point form. Real data are
precise to 7 significeant digits and their
magnitude may lie between the approximate limits of
10we-38 and 10#%38 (2##-127 and Z2¥#127).

Double Precision —— Approximations of real numbers
{positive. negative or zers) represented in
computer storage in 8-byte, floating—point form.
Double Precision data are precise to 16+
significant digits in the same magnitude range as
real data.

Logical - One byte representations of the +truth
values “TRUE" or "FALSE” with "FALBE defined to
have an internal vrepresentation of zero. The
constant . TRUE. has the wvalue ~1, however any
non—-zero value will be treated as . TRUE. in &
logical IF statement. In addition. Logical types
may be vsed as one byte signed integers in the

FORTRAN-B0 Reference Manual FPage 13

P
=

range —1i28 to +127, inclusive
Hollerith -~ A string of any number of characters
fraom the computer’s character set. All characters

including blanks are significant. Hollerith data
require one byte for storage of each character in
the string.

CONSTANTS

FORTRAN constants are iddentified explicitly by
stating their actual value. The plus (+) character
need not precede positive valued constants.

Formats for writing constants are shown din Table
3-1.

FORTRAN-80 Reference Manual

TYPE

TNTEGER

Page
Table 3-1. CONSTANT FORMATS
FORMATS AND RULES OF USE EXAMPLES
1. 1 to 9 decimal digits ~763
interpreted as a deci- 1
mal number. +0O<R
= A preceding plus (+) ar ~3276H8
minus {-) sign is op- +AXTET
tional.
3. No decimal poeint {.? or
comma (.} is allowed.
4, Value tange: ~32768
through +327&7 {.i. e..,
~2##15 through 2##15-1).
1. A decimal number with 345,
precision to 7 digits -. 34546478
and represented in one +345. 478
of the following forms: +. 3E3
~73E4
&. or - f + or —i. f
b. ar —i.E+ or —e

or -, fE+ o1 ~-@

or —i. fE+ or -e
where 1, £, and e are
each strings represent-—
ing integer, *Fraction,

+ 4+ 4

and exponent respective—

1y.
. Plus {+) and minus {(-)
characters are oaptional.

w

In the form shown in 1 b
above, if v represents any
of the forms preceding

E+ ar ~-e {i.e., TE+ or —el,
the valvue of the constant
is interpreted as v times
10%#e, where -—-38<I=e{=30.

If the constant preceding
E4 or —-e contains more
significant digits than

16

FORTRAN-BO Reference Manual Page

ROUBLE
FRECISION

LOe1CAlL

LITERAL

HEXADECIMAL

the precision for real
data allows, truncation
poeurs, and only the

most significant digits
in the range will be rep-—

resented.
A decimal number with +343. 478
precision to 1& digits. All +. 3D3
formats and rules are identi- ~-7304

tal to those for REAL con-

stants, except D is used in

place of E. Note that a real

constant is assumed single pre-

cision unless it contains a

"D" exponent.

. TRUE. generates a non—zero . TRUE.
bute (hexadecimal FF) and . FALBE.
. FALSE. generates a byte in

which all bits are 0.

If lecgical values are

used as one-byte integers., the

Tules for use are the same as

foar type INTEGER., except that

the range allowed is —12Z8 to

+127, inclusive.

In the literal form. any

number of characters may be

enclosed by single quotation

marks. The form is as follows:
PRIXZX3. . Xn!

where each Xi is any charac-—

ter other than /. Two

guotation marks in succession

may be used to represent the

quotation mark character

within the string, i.e..

if X2 is %o be the gquotation

mark character. the string

appears as the following:
‘KL 7XR L Xnf

1. The letter Z or X FA

followed by & single quote.

up to 4 hexadecimal X aBiF”

17

FORTRAN-80 Reference Manual Page 18

digits (0O-9 and A-F) and a Z 'FFFF~
single gquote is recognized
as a hexadecimal value. X1F7

&, A hexadecimal constant is
right jJustified in its storage
value.

FORTRAN-BO Reference Manual FPage 19

4.3

VAR IABLES

Variable data are identified in FORTRAN statements
by symbolic names. The names are unique strings of

from 1 to & alphanumeric characters of which the
firgt is a letter.
NOTE
System variable names and Truntime
subprogram names are distinguished from
other variable names in that they begin
with the dollar sign character ($). It is
therefore strongly recommended that in
order to avoid conflicts, symbolic names in
FORTRAN source programs begin with some
letter other than "$".

Examples:

15, TBAR, B23, ARRAY. XFM79. MAX, AlsC

Variable data are classified into four types:

INTEGER, REAL., DOUBLE PRECISION and LOGICAL. The

specification of type is accomplished in one of the

following ways:

1. Impliicit typing in which the #first letter of
the symbolic name specifies Integer or Real
type. Unless explicitly typed (2., below).
symbolic names beginning with I, J, K, L. M or
N represent Integer variables, and symbolic
names beginning with letters other than I, J;
K: Lo M ar N represent Real variables.

Integer Variables

ITEM
J1
MODE
Kiz3
N2

FORTRAN-B0O Reference Manual Page 20
Real Variables

BETA
Hz
ZAP
AMAT
Xin
2. Variables may be typed explicitly. That is.
they may be given a particular tupe without
reference to the first letters of their names.
Variables may be explicitly typed as INTEGER.
REAL, DOUBLE PRECISION or LOGICAL . The
specific statements wused in explicitly tuyping
data are described in Section 6.
Variable data receive their numeric value assignments during
program execution or, initially. in a DATA statement
(Bection &)
Hollerith or Literal data may be assigned to any type

variable. Sub-paragraph 3. &4 contains a discussion of
Hollerith data storage.
2.4 ARRAYS AND ARRAY ELEMENTS

An array is an ordered set of data characterized by
the property of dimension. An array may have 1. 2

or 3 dimensions and is identified and typed by a
symbolic name in +the same manner as a variable
except that an array name must be so declared by an
“Yarray declarator.” Complete discussions of the
array declarators appear in Bection 6 of this
manual. #m array declarator also indicates the
dimensionality and size of +the array. An array

element is one member of the data set thalt makes up

an array. Reference to an array element in a
FORTRAN statement is made by appending a subscript
to the array name. The term array element is

synonymous with the term subscripted variable used
in some FORTRAN texts and reference manuals.

é4n initial value may be assigned to any array
element by a DATA sitatement or its value may bhe
derived and defined during program execution.
SUBSCRIPTS

£
i

& subscript follows an arrey name to uniquely

FORTRAN-80 Reference Manual Page 21
identify an array element. In use, a subscript in
a FORTRAN statement takes on the 53me
representational meaning as a subscript in familiar
algebraic notation.
Rules that govern the use of subscripks are as

follows:

1. A subscript contains 1. 2 or 3 subscript
gxpressions {see 4 below) enclosed in
parentheses.)

=, I# there are two or three subscript expressions

within the parentheses, they must be separated
by commas.

3. The number of subscript expressions must be the
same as the specified dimensionality of the
ATTay Declarator grcept in EQUIVALENCE
statements (Section 6).

4., A subscript expression is written in ene of the
following forms:

K Owy VK
Vo ORVEHR CHEV--K
VR

where C and K are integer constants and V is an
integer wvariable name i{see Section 4 for s
discussion of expression evaluation).

Subscripts themselves may noet be subscripted,

o

Examples:
X{2#J-3, 7 ALT,) K {200 C{L-2) Y1)
3.4 DATA STORAGE ALLOCATION

Allocation of storage for FORTRAN data is made in
numbers of storage units. A storage unit is the

memory space required to store one real data value
{4 bytes).

Table 3—2 defines the word formats of the three
data types.

Hexadecimal data may be asscociated {(via a DATA
statement)? with any type data. Its storage
allocation is the same as the associated datum.
Hollerith or literal data may be associated with
any data type by use of DATA initializaton

FORTRAN-80Q Reference Manual Page 22

statements (Section &).

Up to eight Hollerith characters may be associated
with Double Precision tuype storage, up to four with
Real, up %o two with Integer and one with Logical

tupe storage.

FORTRAN-80 Reference Manual Page 23

TYPE

INTEGER

LOGICAL

REAML

d-2. SBTORAGE ALLOCATION BY DATA TYPES

ALLOCATION

2 butes/ 1/2 storage unit

8 Binary Value

Negative numbers are the 2's complement of
positive representations.

1 bytes 1/4 storage unit

Zevo (false) or non—zera (true)

A non—zero valued byte indicates +true (the
logical constant . TRUE. is represented by
the hexadecimal value FF). 4 zero valued
byte indicates false.

When vuvused as an arithmetic value, a Logical
datum is treated as an Integer in the range
-128 to +127.

4 bytes/ 1 storage vnit

Characteristic s Mantissa
Mantissa {continued)
The first byte ig the characteristic

eapressed in excess 200 <(octal) notation;
i.e.s a value of 200 (octal) corresponds to a
binary exponent of 0. Values less than 200
{octal) correspond to negative exponents, and
values greater than 200 correspond ta
positive exponents. By definition, it the
characteristic is zero, the entire number is
IRTD.

The next three bytes constitute the mantissa.
The mantissa is always normalized such that
the high order bit is one. gliminating the
need to actually save that bit. The high bit
is used instead to indicate the sign of the
number. A one indicates a negative number.
and zero indicates a positive number. The
mantissa is assumed to be a binary fraction
whose binary point is to the left of the
mantissa.

FORTRAN-80 Reference Manual Page 24

DOUBL.E
PRECISBION

8 bytes/ 2 storage units

The internal form of Double Precision data is
identical with that of Real data except
Double Precision uses 4 extra bytes for the
matissa.

FORTRAN-B0 Reference Manval Page 25
SECTION 4
FORTRAN EXPRESSIONS
A FORTRAN expression is composed of @ single operand or a
string of operands connected by operators. Two expression
types ——Arithmetic and Logical-- are provided by FORTRAN.
The oaperands, operators and rules of uvse for both types are
described in the following paragraphs.

4.1 ARITHMETIC EXPRESSIONG
The following Tules define all permissible
arithmetic expression forms:
1. A constant, variable name, array element

reference or FUNCTION reference (Section 9)
standing alone is an expression.

Examples:
s(1 T JOBNO 217 17.26 SQRT(A+B)
. If E is an expression whose first character is

not an operator. then +E and ~E are called
signed expressions.
Examples

-8 +JOBNG 217 +17. 25 —BQRT(A+B)
3. I+ E is an expression, then (E) means the
quantity resulting when E is evaluvated
Examples:
{-~) ~{JOBRNG) ={X+1) (A-BORT{A+8))
4. I+ E is an unsigned expression and F is any

expression, then: F+E. F~E, F#E, F/E and F#%E
are all expressions.

Examples:

={B{L, JY+EBARTI{A+B{K, L. 1)

L 7E-2#8 {X+5.)

—{B{I+3, 3xJ+3)+A)

FORTRAN~80Q Reference Manual Page 26

3. An evaluated expression may be Integer. Real,
Double Precision, or Logical. The type is
determined by the data types of the elements of
the expression. If +the elements of the
expression are not all of the same type. the
tupe of the expression is determined by the
element having the highest type. The type
hierarchy <(highest to lowest) is as follows:
DOUBLE PRECISION, REAL, INTEGER, LOGICAL.

6. Expressions may contain nested parenthesized
elements as in the fellowing:

AE(Z—(LY+X) /T Y8

where Y+X iz the innermost element. (Y+X3}/T is

the next innermost, Z—-{{Y+X)/T) the next. In

such expressions: care should be taken to see

that +the number of 1left parentheses and the

number of right parentheses are equal.
EXPRESSION EVALUATION

Arithmetic expressions are evaluated according to

the following ruies:

1. Parenthesized expression elements are evaluated
first. I+ parenthesized elements are necsted:
the innermost elements are evaluated, then the
next innermost until the entire expression has
been evaluated.

2. Within parentheses and/or wherever parentheses
do nat govern the order or evaluation, the
hierarchy of operations in order of precedence
is as follows:

a. FUNCTION evaluation

h. Exponentiation

e Multiplication and Division
d. Addition and Subtraction
Example:

The ;;;:essian
AE{Z- (YR /T) #00VAL
is evaluated in the following sequence:

FORTRAN-BO Reference Manual Page 27

Y+R = @}
{el)/T = e
I-e2 = g3
@3 :’94

A¥ed = b
eS+VaAL = eéb

3. The expression X#¥xY#xrZ is not allowed. It
should be written as foellows:
{XaeuY) ##7 or X#iE{Y##7)
4. Use of an array element reference requires the
evaluation of its subscript: Subscript

expressions are evaluated under the same rtules
as other expressions,
4.3 LOGICAL EXPRESSIONS

A Logical Expression may be any of the following:

1. A single Logical Constant (i.e.. . TRUE. or
.FALSBE.) & Logical wvariable, Logical Array
Element or Logical FUNCTION reference (see
FUNCTION, Section 7).

2. Twe arithmetic expressions separated by &
relational eperator {i.e. . a relational

gxpression).

3. ilogical operators acting upon logical
constants, legical wvariables. logical array
elements, logical FUNCTIONS, relaticnal

expressions or other logical expressions.
The value of a logical expression is always either
. TRUE. ur . FALSE.

4,31 RELATIONAL EXPRESSIONS
The general form of a relational expression is as
folliows:
el r el
where el and e2 are arithmetic expressions and r is
& relational operator. The 5iz Telational

aperators are as follows:

FORTRAN—8Q Reference Manual

LT,
CLE.
. EQ.
. NE,
. BT.
. BE.
The value of th

Less Than

lLless than or
Equal to

Not equal to
Sreater than
Creater than
@ relational

if the condition defined
value is . FALDBE.

Otherwise, the
Examples:

AEQ B

Page 28

equal to

or equal to
expression is . TRUE.
by the operator is met.

{AREY). BT, (ZAP®(RHO%TAU-ALPH))

LOGICAL OPERATORS

Table 4-1 lists the logical operations. U and V

denote logical

expressions.

FORTRAN~-80 Reference Manual Page 29
Table 4-1. l.ogical Operations

L NOT. U

U AND. V

U. OR.

Y

U. XOR. V

Examples:

1f U

The value of this expression is the
logical complement of U (i e., 1
bits become O and O bits become 1).
The value of this expression is the
logical product of U and V {i e. .
there is & 1 bit in the result only
where the corresponding bits in both
U and V are 1.

The value of this expression is the
logical sum of U and V (i.e., there
is a8 1 din +the resvlt if the
corresponding bit in U or V is 1 or
if the corresponding bits in both U
and V are 1.

The value of this expression is the
exclusive OR of U and V (i.e., there
is a one in the reswvlt if the
carresponding hits in U and V are 1
and O or O and 1 respectively.

= 01101100 and V = 11001001 , then

CNOT. U ==

10010011

U. AND. V = 01001000

UOR V =
U XOR. V =

11101101

10100101

FORTRAN-80 Reference Manual Page 30
The feollowing are additional considerations for
construction of Logical expressions:

1.

Any Logical expression may be enclosed in
parentheses. However, a8 Logical expression to
which the . NOT. operator is applied must be
genclosed in parentheses if it contains two or
more elementes, :

In the hierarchy of operations:. parentheses may
be used toe specify the ordering of the
expression evaluation. Within parentheses. and
where parentheses do not dictate evaluation
order, the ovrder is understood to be as
follows:

a. FUNCTION Reference

b Exponentiation {(##)

c Multiplication and Division (# and /)
d Addition and Subtraction (+ and -)

&, LT JLE., JEQ., ONE., LB8T., | BE.

£ . NOT.

a . AND.

h. DOR. . L XOR.

Examples:

The expression
X AND. ¥ .0OR. B(32) .868T. Z

is evaluated as

el = B{(3,2).6T. Z
ez = X _AND. Y
ed = e22 . OR. el

The expression
X .AND. (Y .0OR. B{3,2) .6T. Z}
is evaluated as
el = B{(3,2) .6T. 2
e = Y _0OR. el
ed = X . AND. eZ
It is invalid to heve twe contiguocus logical
operators except when the second operator is

et et T—

. NOT.

FORTRAN-B0 Reference Manual Page 31

That is.
. AND. . NOT.
and
. OR. . NOT.
are permitted.
Example:
““““““ A. AND. . NOT. B is permitted
A. AND. . OR. B is not permitted
4, 4 HOLLERITH, LITERAL, AND HEXADECIMAL CONSTANTS IN
EXPRESSIONS o
Hollerith, Literal, and Hexadecimal constants are
allowed in expressions in place of Integer

constants. These special constants always evaluate

to an Integer value and are therefore limited to &

length of two bytes. The only exceptions +o this

are:

1. l-ong Hollerith or Literal constants may be used
as subprogram parameters.

=, Hollerith., Literal., or Hexadecimal constants
may be up to four bytes long in DATA statements
when associated with Real variables, or up to
eight bytes long when associated with Dauble
Precision variables.

FORTRAN-80 Reference Manual Page 32
SECTION 5
REPLACEMENT STATEMENTS

Replacement statements define computstions and are used
similarly to equations in normal mathematical notation.
They are of the following form:

v o=@
where v is any wvariable or array element and e is an
gapression.
FORTRAN semantics defines the eguality sign (=) as meaning
to be replaced by rvather than the normal is eguivalent to
Thus. the object program instructieons generated by &
replacement statement will, when executed, evaluate the
expression on the right of the equality sign and place that
result in the storage space allocated to the variable or
array element on the left of the equality sign.
The following conditions apply to replacement statements:

1. Both v and the equality sign must appear on the

same line. This holds even when the statement is
part of a logical IF statement {(section 7).
Exzample:

C IN A REPLACEMENT STATEMENT THE ‘=’

G MUST BE IN THE INITIAL LINE.
A(D. 3 =
H B{7,2) + BIN{C)

The 1line containing v= must be the initial line of
the statement unless the statement is part of a
logical IF statement. In that case the v= must
occur no later than the end of the first line after
the end of the IF. ‘

2. I+ the data types of the wvariable., V. and the
expression, e, are different, then the wvalue
determined by the expression will be converted. if
possible. to conform to the typing of the variable.
Table 5-1 shows which type expressions may be

equated to which type of variable. Y indicates a
valid rteplacement and N indicates an invalid
replacement. Footnotes +to Y indicate conversion

considerations.

FORTRAN-80 Reference Manual Page 33
Table 5-1. Replacement By Type
Expression Tuypes {e)

Variahle

Types Integer Real Logical Double
Integer Y Ya Yb Ya
Heal Yo Y Yo Ye
Logical Yd Ya Y Ya
Double Y Y Y¢ Y

a. The Real expression value is converted to Integer.
truncated if necessary to conferm to the range of
Integer data.

b. The sign is extended throuwgh the second byte.

c. The variable is assigned the Real approximation of
the Integer value of the expression.

d. The variable is assigned the truncated value of the
Integer expression {the low—order byte 1is wused.
regardless of sign).

e. The variable is assigned the rounded value of the
Real expression.

FORTRAN-80 Reference Manual Page 34
SECTION &
SPECIFICATION BTATEMENTS
Specification statements are non-executable, non-generative
statements which define data types of variables and arrays,
specify array dimensionality and size, allocate data storage
or otherwise supply determinative information to the FORTRAN

PTrocessor. DATA intialization statements are
non—-executable, but generate object program data and
‘pstablish initial values for variable data.

&1 SPECIFICATION STATEMENTS

There are six kinds of specification statements.
They are as follows:

Type, EXTERNAL., and DIMENSION statements

COMMON statements

EQUIVALENCE statements

DATA initialization statements
All specification statements are grouped at the
beginning of a program unit and must be ordered as
they appear above. Specification statements may bhe
preceded only by a FUNCTION, SUBROUTINE, PROGRAM or
BLOCK DATA statement. All specification statements
must precede statement functions and the first
executable statement.

& @ ARRAY DECILLARATORS

Three kinds of specification statements may specify
array declarators. These statements are the
following:

Type statements

DIMENSION statements

COMMOMN statements
0Of these, DIMENSION statements have the declaration
of arrauys as their sole function. The other two
serve dual purposes. These statements are defined
in subparagraphs 6.3, 6.5 and &. 6.
Array declarators are used to specify the name.
dimensionality and sizes of arrays. An array may
be declared only once in a program unit.
An array declarator has one of the following forms:

FORTRAN-80 Reference Manual Page 35

& 1

ui (k)

ui (ki k)

wi (ks k2, k3
where vi is the name of the array. called the
declarator name. and the k‘s are integer constants.
Array storage allocation is established upon
appearance of the array declarator. Such storage
is allocated linearly by the FORTRAN processor
where the order of ascendancy is determined by the
first subscript varying most rapidly and the 1last
subscript varying least rapidly. ‘
For example, if the array declarator aMAT(3.2,2)
appears., storage is allocated for the 12 elements
in the folliowing order:
AMATIL, 1. 1), AMAT(Z, 1, 1), AMAT(3,1,1). AMAT(1,2,1),
AMAT(2. 2, 1), AMAT(3,2: 1), AMAT(1.1.2), AMAT(Z, 1,23,
AMAT(3, 1,22, AMATI(1, 2,2, AMAT(E, 2, 2), AMAT(3 2, 2)
TYPE STATEMENTS

Variable, array and FUNCTION names are
antomatically typed Integer vor Real by the
‘predefined’ convention unless they are changed by
Tupe statements. For example. the type is Integer
if the first letter of an item is I, J, K, L, M or
N, Dtherwise, the type is Real.

Type statements provide for overriding or
confirming the pre—defined convention by specifying
the type of an item. In addition. these statements

may be used to declare arrays
Type statements have the following general form:
tovisvE, ... vn
where %t represents one of the terms INTEGER,
INTEGER®1, INTEGER®#2, REAL., REAL#4, REAL%#8, DJOUBLE
PRECISION, LOGICAL., LOGICAL%®I, LOGICAL®%Z2, or BYTE.
Each v is an array declarator or a variable, array
pr FUNCTION name. The INTEGER®1, INTEGER®2,
REAMM. %4, REAL®3, LOGICAL®L,and LOGICAL%*Z types are
allowed for readability and compatibility with
other FORTRANSs. BYTE., INTEGER®Y, LOGICAL¥1, and
LOGICAL are all equivalent; INTEGER®2, LOGICAL#2,
and INTEBER are equivalent:; REAL and REAL#4 are
equivalent; DOUBLE PRECISION and REAL #3 are
equivalent.

FORTRAN-80 Reference Manual Page 3&
Ezample:

REAL AMATI(3, 3. 5). BX, IETA, KL.PH

NOTE

1. AMAT and BX are redundantly typed.
2. IETA and KLPH are unconditionally
declared Real.
3. AMAT (3, 3, 3) is & constant array
declarator specifying an arvay of 435
elements.

Example:

INTEGER M1, HT., JMP(13), FL
NOTE
Ml is redundantly tuped here. Typing of HT
and FL by the pre-defined convention is

pverridden by their appearance in the
INTEGER statement. JMP(15) is a8 constant
array declarator. It redundantly types the

array elements as Integer and communicates
to the processor the storasge requirements
and dimensionality of the array.
Example:
LOGICAL L1, TEMP
NOTE
All variables. arrays or FUNCTIONs required
to be typed Logical must appear in a

LOGICAL statement, since no starting letter
indicates these types by the default
convention.

FORTRAN-B0O Reference Manual Page 37

6. 4

=
O~

4

EXTERNAL STATEMENTS

EXTERNAL statements have the following form:
EXTERNAL uvil,u2,....un
where each wi is a SUBROUTINE, BLOCK DATA or
FUNCTION name. When the name of & subprogram is
used as an argument in a subproegram reference. it
must have appeared in a preceding EXTERNAL
statement. ,
When a BLOCK DATA subprogram is to be included in a
program load, its name must have appeared in an
EXTERNAL statement within the main program unit.
For example, if BUM and AFUNC are subprogram names
to be used as arguments in the subroutine SUBR. the
following statements wopuld appear in the calling
program unit:

EXTERNAL 8UM, AFUNC

Call SUBR{5UM, AFUNC, X, Y)
DIMENSION STATEMENTS

A DIMENSION statement has the following form:

DIMENSION w2, u2,uld.. .., un
where each ui is an array declarator.
Ezample:

T—

DIMENSION RAT(S, 5), BAR(ZO)
This statement declares two arrays — the 25 element
array RAT and the 20 element array BAR.
COMMON STATEMENTS

COMMON statements are non—-executable, storage
allocating statements which assign variables and
arrays to a storage ares called COMMON storage and
provide the facility for various program units o
share the use of the same storage area.

FORTRAN-80 Reference Manual Page 38
COMMON statements are expressed in the following
form:

COMMON /yl/al/y2/a2/7.. . /yn/an
where each yi is a COMMON block storage name and

each ai 1is a sequence of variable names. array
names or constant array declarators, separated by
commas. The elements in 21 make up the COMMON

block storage area specified by the name yi. I¢

any yi is omitted 1leaving twe consecutive slash
characters (//), the block of storage so indicated
is called blank COMMON. I+ the first block name
{yl) is omitted, the two slashes may be omitted.
Example:

RN NEENSHO—

COMMON /AREA/A, B, C/BDATA/X, Y. Z,

X Fl., ZaP(30)
In this exemple, two blocks of COMMON storage are
Aallocated — AREA with space for three variables and

BDATA, with space for four varisbles and the 30
element array. ZAP.
Example:

COMMON //AL1, B1/CDATA/ZOT(3, 3)

X F/TR2, 23
In this example, Al, Bil, T2 and I3 are assigned to
blank COMMON in that order. The pair of slashes
preceding Al could have been omitted.
CDATA names COMMON block storage for the nine
element array. ZOT and thus ZOT (3,3) is an array

declarator. 07 must not have been previously
declared. {See "Array Declaratoers.” Paragraph
531

Additional Considerations:

1. The name of a COMMON block may appear more than

once in the same COMMOM statement, or in more

than one COMMON statement.

A COMMON block name is made up of froem I to &

alphanumeric characters. the first of which

must bhe a letter.

3. A COMMON block name must be different from any
subprogram names used throughout the program.

mJ

FORTRAN-B0 Reference Manual Page 39
4. The size of a COMMON area may be increased by
the use of EQUIVALENCE statements. See

"EQUIVALENCE Statements. " Paragraph 6. 7.

5. The lengths of COMMON blocks of the same name
need naot be didentical in all program units
where the name appears. However, if the
lengths differ, the program unit specifying the
greatest length must be loaded first (see the
discussion of LINK-80 in the User’s Guide).
The length of s COMMOM area is the number of
storage units required to contain the variables
and arrays declaved in the COMMON statement (or
statements) unless expanded by the use of
EQUIVALENCE statements.

b 7 EQUIVALENCE STATEMENTS

Use of EQUIVALENCE statements permits the sharing
of the same storage unit by two or more entities.
The general form of the statement is as follows:
EQUIVALENCE {(ul), (u2), ..., {un)
where each wi represents a sequence of twoe or more
variables or array elements, separated by commas.
Each element in the sequence is assigned the szame
storage wnit {or portion of a storage unit) by the
processor. The order in which the elements appear
is not significant.
Example:

[RN N

EQUIVALENCE (A, B,)
The variasbles A, B and € will share the same
storage unit during obyect program execution.
I an array element is wused in an EQUIVALENCE
statement, the number of subscripts must be the
same as the number of dimensions established by the
array declarator., or it must be one, where the one
subscript specifies the array element’s number
relative to the first element of the array.
Example:
I# the dimensionaliity of an array. Z, has been
declared as Z(3,3) then in an EQUIVALENCE statement
Z{6) and Z{3,2) have the same mesaning.

FORTRAN~-B0Q Reference Manual Page 40
Additonal Considerations:

1.

2,

3.

The subscripts of array elements must be
integer constants.
An element of a multi~dimensional array may be
referred to by @ single subscript, if desired.
Variables may be assigned to & COMMON block
through EQUIVALENCE statements.
Example:
COMMON /X/A:8,C
EQUIVALENCE (A, D)

in this case, the variables A and D share the
first storage unit in COMMON block X.
EQUIVALENCE statements tan increase the size of
a block indicated by & COMMON statement by
adding more elements to the end of the block.
Example:

DIMENSION R{2,2)

COMMON /Z/7W, X, Y

EQUIVALENCE (Y,R(3))
The resulting COMMON block will have the
following configuration:
Variable Storage Unit

W = R{l, 1) Q
X = R(2, 1) 1
¥ o= R{1,2) 2
R{Z: 22 3
The COMMON block established by the COMMON
statement contains 3 storage units. It is

expanded to 4 storage units by the EQUIVALENCE
statement.

COMMOM block size may be increased only from
the last element established by the COMMON
statement forward; not from its first element
backward,

NMote that EQUIVALENCE (X,R{(3})) would bhe invalid
in the example. The COMMON statement
gstablished W as the first element in the
COMMONM block and an attempt to make X and RO
equivalent would ke an attempt to make R{1l) the
first element.

FORTRAN-B0O Reference Manual Page 41
3. It is invalid to EQUIVALENCE two elements of
the same array or two elements belonging to the
same or different COMMON blocks.
Example:
DIMENSION XTABLE (20), D{(3)
COMMON A, B{4Y S ZAP/C, X

EQU&VALENCE {(XTABLE (&), A7),
X B{3), XTABLE(135)),
Y (B(3), D5

This EQUIVALENCE statement has the following

errors:

1. It attempts to EQUIVALENCE two elements of the
same array., XTABLE{(&) and XTABLE(13).

2. It attempts to EQUIVALENCE two elements of the
same COMMON block. A(7) and B(3).

3. Since A is not an array, A{7) is an illegel
reference.

4. Making B{(3) equivalent to D{(5) extends COMMON
backwards from its defined starting point.

a8 DATA INITIALIZATION STATEMENT

The DATA initialization statement is a
non—executable statement which provides a means of
compiling date values into the object program and
assigning these data to variables and array
elements referenced by other statements.

The statement is of the following form:

DATA ldist/ul,ud, . .,un/, list. .. fuk,uk+i,. .. uk+n/
where "list" represents a list of variable. array
or arrvay element names, and the ui are constants
corresponding in number to the elements in the
list. AT gxception to the one-for-—ona
correspondence of list items to constants is that
an array name {(unsubscripted) may appear in the

FORTRAN-80 Reference Manual ' Page 42
list, and as many constants as necessary to fill
the array may appear in the corresponding position

between slashes. Instead of wi, it is permissible
to write k#*ui in order te declare the same
constant, vi, k times in succession. k must be a
positive integer. Dummy arguments may not appear
in the list.

Example:

ittastpss st bttt s

DIMENSION C{7)

DATA A, B, C(1),C(3)/14. 73,

X -8. 1, 2%7. 5/
This implies that
A=14.73, B=-8 1, C{11)=7.9, C{(3)=7.5
The type of each constant vi must match the type of
the corresponding item in the list, except that a
Hollerith or Literal constant may be paired with an
item of any type.
When a Hollerith or Literal constant is wused. the
number of characters in dits string should be no
greater than four times the number of storage units
required by the corresponding ditem, i. e 1
character for a Logical wvariable, up to 2
characters for an Integer variable and 4 or fewer
characters for & Real variable.
I# fewer Hollerith or Literal characters are
specified, trailing blanks are added to £ill the
remainder of storage.
Hexadecimal data are stored in & similar fashion.
If fewer Hexadecimal ctharacters are vsed,
sufficient leading zeros are added to £ill the
remainder of the storage unit.
The examples below illustrate many of the features
of the DATA statement.

FORTRAN--B0 Refer

1

P

ence Manual Page
DIMENSION HARY (2)
DATA HARY.B/ A4HTHIS, 4H OK.

» 7. 84/

REAL LIT(2)

LOGICAL LT, LF

DIMENSION H4{2,2),PI3(3)

DATA AL, BL, K1, LT.LF,H4{1, 1), HA4{(Z, 1),

HA4(1, 2, H4 (2, 2), PI3/5. 9, 2. 5E~4,

b4, FALBE. . . TRUE. , 1. 75E-3,
0. 85E~1,24#73.0,1.,2.,3. 14159/,
LITCL)Y /7 /NOGQ/

43

FORTRAN-80 Reference Manual Page 44
SECTION 7
FORTRAN COMTROL STATEMENTS
FORTRAN control statements are executable statements which
affect and guide the logical flow of a FORTRAN program. The
statements in this category are as follows:
1. &0 TO staetements:

1. Unconditional 60 TO

. Computed GO TO

3. Assigned 6O TO

2. ASSIGN

3. IF statements:
1. Arithmetic IF
. Logical IF

4, no

5. CONTINUE

6. STopP

7. PAUSE

a. CALL

Q RETURN

When statement labels of octher statements are a part of a
control statement. such statement labels must be associated
with executable statements within the same program unit in
which the control stastement appears.

7.1 G0 TO STATEMENTS

7.1.1 UNCONDITIONAL GO TO

P .

Unconditional 60 TO statements are used whenever
controel is to be transferred unconditionally to
some other statement within the program unit.

FORTRAN-B0 Reference Manual Page 49

7.1.2
7.1.3

The statement is of the following Form:
G0 TO k
where k is the statement label of an executable
statement in the same program unit.
Example:

G0 TA 374
310 A7) = V1 —-A(3)

376 A(2) =VECT
0 TO 310

In these statements. statement 374 is ahead of
statement 310 in the logical flow of the program of
which they are a part.

COMPUTED GO TO
Computed GO TO statements are af the form:

G0 TO (ki k2,1n)

where the ki are statement 1labels, and 3 is an
integer variable, 1 < 3 < n

This statement causeg trgﬁsFer of control to the
statement labeled k3. If 3 <1 or 3 > n, control

will be passed to the next statement following the
Computed GOTO.
Ezample:

SR —

W3

@0 TO(7, 70, 700, 7000, 70000)., J
310 J=0

G0 TO 325
When J = 3, the computed 60 T0 transfers control to
statement 70O0. Changing < to squal 5 changes the
transfer to statement 70000. Making J = O or J = 6
would cause contrel te be transferred to statement
310.
ASHIGNED 60 TO

Aﬁsfbned @0 TO statements are of the following

FORTRAN-BO Reference Manual Page 4&

farm:
GO TO RE {kl, k2, ... kn)

or

070 J
where J is an integer variable name. and the ki are
statement labels of executable statements. This
statement causes transfer of control to the
statement whose label is equal to the current wvalue
of J
Qualifications

1. The ABSIGN statement must logically precede an
assigned €0 TO.

2. The ASSIGN statement must assign a value to J
which is a statement label included in the list
of ks, if the list is specified.

Example:

@0 TO LABEL, (80,90, 100)

Only the statement labels 8O, 90 or 100 may be

assigned to LABEL.

AGSIGN STATEMENT

This statement is of the following form:

ABHICM § TO i
where J is a statement label of an executable
statement and i is an integer variable.
The statement is used din conjunction with each
assigned 68 TO statement that contains the integer
variahble 1. When the assigned 60 TO is executed,
control will be transferred to the statement
labeled 3.

FORTRAN-80 Reference Manual Page 47
Example:

[EPERRIUR—

ASSIGN 90 TO LABEL
G0 TO LABEL, (80,90, 100)
7.3 IF STATEMENT

I statements transfer control to one of & series
of statements depending wupon & condition. Two
types of IF statements are provided:
Arithmetic IF
l.ogical IF

7.3.1 ARITHMETIC IF

The arithmetic IF statement is of the form:

IF{e) mi.md, m3
where e is an arithmetic expression and ml, m2 and
m3 are statement labels,
Evaluation of expression e determines one of three
transfer possibilities:

If e is: Transfer to:
< 0 ml
= ma
> 0 fisd
Examples
Statement Expression Value Transfer to
IF (A3, 4,53 15 5
IF (N-1150,73,9 0 73
IF (AMTX(2,1,2)37,2, % -254 7

7.A2 LOGICAL IF
The logical IF statement is of the form:
IF t(uls
where v iz & Logical expression and s is any
executable statement except & DO statement {(see
7.4) or another Logical IF statement. The Logical

FORTRAN-80 Reference Manual Fage 48
expression wu is evaluated as .TRUE. or . FALSE.
Section 4 contains a discussion af Logical
expressions.
Control Conditions:
I# u is FALSE, the statement s 1is ignored and
control goes to the next statement following the

l.ogical IF statement. 1f, however, the expression
is TRUE, then control goes to the statement s, and
subsequent program control follows normal

conditions. ‘

I+ 8 is a replacement statement (v = e, Section 5,
the wvariable and equality sign (=) must be on the
same line, either immediately following IF(u) or on
a separate continuvation line with -the line spaces
following IF(u) left blank. See example 4 below.

Examples:
1. IF(I.6T. 20 60 TO 115
2. IF(Q. AND. R) ASSIGN 10 TO J
3. IF{Z) CaLL DECL (A, B. 8D
4, IF{(A OR. B . LE. PI/2)I=J
3. IF(A.OR.B.LE PI/2)
X I =J
7.4 DO STATEMENT

oermaistne osakesmersman ossamseituers

The DO statement, as implemented in FORTRAN.
provides a method for repetitively executing a
series of statements. The statement takes of one
of the two following forms:

j] DOk i1 = ml, m2: m3
or
=) DOk i o= mi,m2

where k is & statement label, 1 i3 an integer oy
logical wvariable, and mi, m2 and m3 are integer
constants or integer or logical wvariables.

If m3 i 1. it may be omitted as in Z) above.

The following conditions and restrictions govern
the use of DO statements:

FORTRAN-B0 Reference Manual Page 49

1.

2,

3.

The DO and the first comma must appear on the
initial line.

The statement labeled k. called the terminal
statement, must be an executable statement.

The terminal statement must physically follow
its asspciated pa. and the executable
statements {following the DO, up to and
including the terminal statement, constitute
the range of the DO statement.

The terminal statement may not be an Arithmetic
IF, G0 TO. RETURN, 8TOP. PAUSE or another DL
If the terminal statement is a logical IF and
its exipression is .FALSE., then the statements
in the DO range are reiterated.

If the expression is . TRUE., the statement of
the logical IF is executed and then the
statements in the DO range are reiterated. The
statement of the logical IF may not be a GO T,
Arithmetic IF, RETURM. S5TOP or PAUSE.

The controlling integer variable, i, is called
the index of the DO range. The index must be
pesitive and may not be modified by any
statement in the range.

If mi, m2. and m3 are Integer®l wvariables or
constants, the DO leoop will execute faster and
be shoarter, but the range is limited to 127
iterations. For example, the loop overhead for
a DO loop with & constant limit and an
increment of 1 depends wupon the type of the
index variable as follows:

Index Variable Overhead
Type Microseconds Bytes
INTEGER %2 35. 9 , 19
INTEGER®1 24 14
During the first execwution of the statements in
the DO range. i is equal to mi; the second
execution. i = ml+md; the third. i=mi+2¥Em3,

etc. until i is equal to the highest value in
this sequence less than or equal to mz, and
then +the DO is said to be satisfied. The
statements in the DO range will always be
executed at least once, even if mi < m2.

When the DO has heen satisfied, control passes
to the statement following the terminal

FORTRAN-80 Reference Manual Page 350
statement, otherwise control transfers back to
the first executable statement following the DO
statement.

Example:

st ram s amsgatros s

100
Gigma Al where & is a one—-dimensional array

i=]

100 DIMENSION A(100)

SUM = A(L)
DO 31 I = 2,100
31 8UM =5UM + A(I)

END

9. The range of a DO statement may be extended to
include all statements which may logically be
executed between the DO and dits terminal
statement. Thus, parits of the DO range may be
situasted such +that they are not physicaelly
between the DO statement and its terminal
statement but are executed logically in the DO
Tange. This is called the extended range.
Example:

[P —

DIMENSION A(500), B{500)

Do 50 1 = 10, 327, 3

IF (VW7 ~CwC)Y 20,15, 31
30

B0 ACI) = B(I) + C

20 ¢ = ¢ - (05
&0 70 30

31 C=C+ | Q1S
&0 TO 30

FORTRAN~-B80 Reference Manual

10, It is invalid to

transfer

Page 51

control inte the

range of a DO statement not itself in the range
or extended range of the same DO statement.

11, Within the range of a
be other DO statements,
must be nested. That is,
DO contains another DO,
inner DO must be entirely
of the cuter DO
The terminal statement of
be the terminal statement

na statement,

there may

in which case the DO’s

if the range of one
then the range of the
included in the range

the inner DI may also
of the outer DO

For example, given a two dimensional array & of

1% rows and 195 columns, and a 15 element
one—~dimensional array B, the following
statements compute the 195 elements of array C

to the formula:

i5
Ch :Sigma ARJBm.‘ b= 1,2,...,15
J=1
DIMENSION ACLS, 15, RO1T3), CU15)

DO 8O K =1,15
CIKY = 0.0
DO BO J=1,105
8O CUA) = CURY +4{K, 0 # BN

7.0 CONTINUE S%ATEMENT

CQNTINUE‘is classified as an executable
However, its execution does nothing.
the CONTINUE statement is as follows:

statement.
The form of

CONTINUE
CONTINUDE is frequently wvsed as the terminal
statement in a DO statement rTange when the
statement which would normally be the terminasl

statement is one of those which are not allowed or

is only executed conditionally

FORTRAN~B0 Reference Manual Fage G2

Lo

FExample:

[T CR—,

PR % K= 1.10

IF (C2) 5, én
6 CONTINUE

CE o= C2 +, 005
o CONTINUE
STOP STATEMENT

A BTOP statement has one of the following forms:
sTOP

o

arop
ghere ¢ is any shtring of one to six characters.
When B8TOP is encountered during execution of the
chaisct program. the characters ¢ (if present) are
displayed on the operator control consecle and
pxecution of the program terminates.
The 8GTOP statement, therefore, constitutes the
lopgical end of the program:
PAUSE STATEMENT

A PAUBE statement has one of the following forms:
PaAUSE

Gy

PAUSE ¢

where ¢ is any string of up to six characters.

When PAUSE is encountered during execution of the
object program, the characters ¢ {(if present) are
displayed on +the operator contrel console and
gzecution of the program ceases.

The decision %o continue execubtion of the program
is not under control of the pregram. I# pxecution

FORTRAM-80 Reference Manual Page 53

7,10

is resumed through intervention of an operator
without otherwise changing the state of the
processor, the normal execution sequence, following
PAUSBE, is continued.

Ezecution may be terminated by typing & "T" at the
operator cansole. Typing any other character will
cause execution to resume.

Call. STATEMENT

CAlLlL statements control transfers intoe SUBROUTINE
subprograms and provide parameters for use by the
suhprograms. The general forms and detailed
discussion of CALL statements appear in Section 9,
FUNCTIONS AND SUBPROGRAMS.

RETURN STATEMENT

The form, use and interpretation of the RETURN
statement is described in Section 9.
END STATEMENT

The END statement must physically be the last
statement of any FORTRAN program. It has the
following form:
END

The END statement is an executable statement and
may have a statement label. It causes a transfer
of control to be made to the system exit Toutine
$EX, which returns control to the operating system.

FORTRAN~B(0 Reference Manual Page 54
SECTION 8
» INPUT / OUTPUT
FORTRAN provides a series of statements which define the
control and conditions of dats transmission between computer
memory and external datae handling or mass storage devices
sych as maagnetic tape, disk. line printer, punched cavrd
processors, keyboard printers, etc.
These statements are grouped as follows:
1. Formatted READ and WRITE statements which cause

formatted information tc be transmitted between the
computer and I/0 devices.
. Unformatted READ and WRITE statements which

transmit unformatted binary data in a form similar
to internal storage.
3. Auxiliary I/0 statements for positioning and

gdemarcation of files.
4. ENCODE and DECODE statements for transferring data

between memory locations.

. FORMAT statements veed in conjgunction with
formatted record transmission to provide data
ctonversion and editing information between internal
data representation and external character string
forms.

8.1 FORMATTED READ/WRITE STATEMENTS
8. 1.1 FORMATTED READ STATEMENTS

A formatted READ statement is used +to +transfer
information frem an input device to the computer.
Twir forms o0of the statement are available, as
follows:

READ {(u, £, ERR=L.1, END==L2) k

ar

READ {(u, £, ERR=1.1, END=L2)

where:

4 — specifies a Physical and Logical Unit MNMumber
and may be either an unsigned integer or an

FORTRAN-B0 Reference Manual Page 95
integer wvariable in the range 1 through 255
If an Integer wvariable is wsed, an Integer
value must be assigned to it prior to execution
of the READ statement.
Units 1. 3. 4, and 5 are preassigned +to the
console Teletypewriter. Unit 2 is preassigned

to the Line Printer (if one exists). Units
6H-10 are preassigned to Disk Files (see User‘s
Manual, Section 3). These units, as well as

units 11-255%, may be re—assigned by the user
{see Appendix R).

f — is the statement label of the FORMAT statement
describing the type of data conversion to be
used within the input transmission or it may be
an array name, in which case the formatting
information may be input to the program at the
execution time. {Bee Section 8. .7.10)

l.i— is the FORTRAM label on the statement to which
the 1/0 processor will transfer contrel if an
1/0 error is encountered.

2= is the FORTRAN label on the statement to which
the 1/0 processor will transfer contrel 1if an
End-of~-File is encountered. :

k = is a list of variable names. separated by com—
mas, specifying the input data.

READ {u, £)k is used %to input a number of items,

corresponding to the names in the list k. from the

file on lopgical wunit w, and wusing the FORMAT
statement Ff to specity the external representation
of these items (see FORMAT statements, 8. 7). The

ERR= and END= c¢lauses are optional. I+ not

specified, I/70 errors and End-of-Files cause fatal

runtime errors.

The following notes further define the function of

the READ (u, #)k statement:

1. Each time execution of the READ statement

begins, a8 new record #from the input file is

read.

The number of records to be input by a single

READ statement is determined by the list, k.

and format specifications. «

3. The list k specifies the number of items to be
Tead from the input file and the locations into
which they are to be stored.

n

FORTRAN-80 Reference Manual Page 56

4,

]

b.

Any number of items may appear in a single list
and the items may be of different data types

If there are more quantities in an input record
than there are items in the list. only the
number of guantities equal to the number of
items din the list are transmitted. Remaining
guantities are ignored.

Exact specifications for the 1list k are
described in 8. 4.

Examples;

et et oA L1t o

1.

3

Assume that four data entries are punched in a
card, with three blank columns separating each.
and that the data have Ffield widths of 3, 4, P
and % characters respectively starting in
caolumn 1 of the card. The statements
READ(S, 20K, L, M, N

20 FORMAT(IZ, 3X, I4, 3X, 12, 3%, 15)
will read the card {(assuming the Logical Unit
Number 9 has been assigned to the card reader?
and assign the input data to the wvariables K,
L: M and N The FORMAT statement could also be

20 FORMAT(I3, 17,135, 18)
See 8.7 for complete description of FORMAT
statements.
Input the guantities of an array (ARRY):

READ (&, 21)ARRY

Only the name of the array needs to appear in
the list (see 8. 6). All elements of the array
ARRY will be read and stored using the
appropriate formatbting specified by the FORMAT
statement labeled 21.

READ{(u, k) may be used in conjgunction with a FORMAT
statement to read H-type alphanumeric data intoc an
existing H-type field {see Hollerith Conversions.

a. 7.

3).

For example, the statements

READ(I, 25)

25 FORMAT(10HABCDEFGHIJ)

FORTRAN-B0O Reference Manual Page 97

cause the next 10 characters of the file on input
device I to be read and replace the characters
ARCDEFGHIY in the FORMAT statement.

FORMATTED WRITE STATEMENTS

A formatted WRITE statement is wused to transfer
information from the computer to an output device.
Twe forms of the statement are available, as
follows:

WRITE(u, £, ERR=L1, END=L2) k

o

WRITE {u, f, ERR=L.1, END=L2)

where:

u — specifies a Logical Unit Number.

£f - is the statement label of the FORMAT statement
describing the type of data conversion teo be
used with the output transmission.

i~ specifies an I/0 error branch.

Le—- specifies an EOF branch.

k= is & list of variable names separated by com—
mas., specifying the output data.

WRITE (u., f)k is used to ocutput the deta specified

in the list k to a file on logical unit u using the

FORMAT statement £ to specify the external

representation of the data {(see FUORMAT statements,

a.7). The following notes further define the
function of the WRITE statement:
1. Several records may be output with a single

WRITE statement, with the number determined by
the list and FORMAT specifications. .
SBuccessive data are output until the dats
specified in the list are exhausted.

3. I+ output is to a device which specifies fired
length recordes and the data specitfied in the
list do not +#ill the record, the remainder of
the record is filled with blanks.

[

FORTRAN-80 Reference Manusl Page 958
Example:
WRITE(Z, 100A, B, C. D
The dats assigned to the variables A, R, C and D
are owvtput to Lagicel Unit DNumber 2, formatted
according to the FORMAT statement labeled 10.
WRITE(u, $) may be wused to write alphanumeric
information when the characters to be written are
specified within the FORMAT statement. In this
case a variable list is not required.
For example, to write the characters ‘H CONVERSIGNS
an unit 1,
WRITE(1, 24&)

26 #DHMAT {12HH CONVERSION)
8.2 UNFORMATTED READ/MWRITE

Unformatted 170 {i.e. without data conversion) is
accomplished using the statements:

READ{u, ERR=L1, END=L2) ¥k

WRITE(u, ERR=L1, END=L2) k

where:

u - specifies a Logical Unit Number.
Li— specifies an I/70 error branch.
i.d— specifies an EOF branch.

k = is a list of variable names, separated by
commas., specifying the I/70 data.

The following notes define the functions of
unformatted I/0 statements.

1. Unformatted READ/WRITE statements perform
memory—image transmission of data with no data
conversion or editing.

The amount of data trensmitted corresponds to
the number of variables din the list k.

n

FORTRAN-80 Reference Manual Page 59

8. 3

231

3. The total length of the list of variable names
in an unformatted READ must not be longer than

the rTecord length. I the 1lpgical record
length and the length of the list are the same,
the entire record is vread. I¥f +the length of

the 1list is shorter than the legical record
length the unread items in the record are

skipped. :

4, The WRITE(a)k statement writes one logical
Tecord.

3. A logical record may extend across more than

vne physical record.

DISK FILE 1/0

A READ or WHWRITE to a disk €file (LUN &—-10)
avtomatically OPENs the file for I/0 The file
remains open until closed by an ENDFILE command
{(see Section 8. 4) ar until normal program
termination.
NOTE

Exercise caution when doing sequential

output to disk files. If output is done tao

an existing file, the existing file will be

deleted and replaced with a new file of the

SBMe nName. ‘

RANDOM DISK 1/0

SEE ALS0 SECTION 3 OF YOUR MICROSOFT FORTRAN USER ‘G
MAaNUAL.
Some versions of FORTRAN-B80 also provide random
disk 170, For random disk access, the record
number is specified by using the REC=n option in
the READ or WRITE statement. For example:

I = 10

WRITE (&, 20, REC=I, ERR=30) X, Y, 2

This program segment writes record 10 on LUN &, ¢
a previous record 10 exists., it is written over.
If no record 10 exists, the file is extended to

FORTRAN~B80 Reference Manual Page &0
create one. Any attempt to read a non-existent
record results in an 1/0 error.

In random access files, the record length varies
with different versions of FORTRAN. See Section 3
of your Microsoft FORTRAN User’s Manual. It is
recammended that any file you wish te read randomly
be created via FORTRAN {(or Microsoft BASIC) random
access statements. Files created this way (using
either binary or formatted WRITE statements) will
zero—fill each record to the proper length if the

- data does not fill the record.
Any disk file that is OPENed by a READ or WRITE
statement is assigned & default filename that is
specific to the operating system. See also Section
3 of the FORTRAN User’s Manual.

2. 3.2 0OPEN SUBROUTINE

Alternatively, a file may be OPENed using the OPEN
subroutine. LUNg 1-5 may also be assigned to disk
files with OPEN. The OPEN subroutine allows the
program %o specify a filename and device to be
associated with a LUN.

An OPEN of a non—existent file creates a null file
of the appropriate name. An OPEN of an existing
file followed by sequential output deletes the
existing file. An OPEN of an existing file
followed by an input allows access ko the current
contents of the file.

The form of an OPEN c¢all varies wunder different
operating systems. Bee your Microsoft FORTRAN
User’s Manual, Section 3.

8.4 AUXILIARY I/0 STATEMENTS

Three auxiliary I/0 statements are provided:

BACKSPACE u

REWIND u

ENDFILE u
The actions of all three statements depend on the
LUN with which they are used (see Appendix B).
When the LUN is for a terminal or line printer, the
three statements are defined as no—ops.
When the LUN is for a disk drive, the ENDFILE and
REWIND commandes allow further program control of
disk files. ENDFILE u closes the file associated
with LUN . REWIND u clozes the file associated

FORTRAN-80 Reference Manual Page &1
with LUN u, then opens it again. BACKSPACE is not
implemented at this time. and therefore causes an
error if used

8 5 ENCODE/DECODE

ENCODE and DECODE statements transfer data,
according to format specifications. from one
section of memory to another. DECODE changes data
from ASCII format to the specified format. ENCODE
cthanges data of the specified format dinto ABCII
format. The two statements are of the form:

ENCODE(a, £2 k

DECODE (a, £ k
where;

a is an array name

£ is FORMAT statement number

k is an 1/0 List
DECODE is analogous to a READ statement, since it
causes conversion from ASCII to internal format.
ENCODE is analogous to a WRITE statement, causing
conversion fraom internal formats to ASCII.

FORTRAN-80 Reference Manual Page 62

P

. &

1

NOTE
Care should be taken that the arvray A is
always large encugh to contain all of the
data being processed. There is no check

for overflow. An ENEEDE‘Dp;;ét;Eh which

overflows the array will probably wipe out
important data following the array. A
DECODE operation which overflows will
attempt to process the data following the
arrvay.

INPUT/0UTPUT LIST SPECIFICATIONS

Most forms of READ/WRITE statements may contasin an
ordered list of data names which identify the data
to be transmitted. The order in which the list
items appear must be the same as that in which the
corresponding data exists {Input), or will exist
{(OQutput) in the external 170 medium.

irists have the following form:

mi,m2, ... ,@n

where the mi are list items separated by commas, as
shown.

LISBT ITEM TYPES

A list item may be a single datum identifier or a
multiple data identifier.
1. A single datum identifier item is the name of a
variable or array element,
Examples:
&
Ci248: 1), R K, D
B, I¢10, 107, 8, F{1,2%
NOTE
Sublists are not implemented.

FORTRAM-80 Reference Manual Page &3

2.

Multiple data identifier items are in two
forms:
a. An array name appearing in a list without
subscript{s) is considered equivalent to the
listing of each successive element of the
array.
Example:
I+ B is a two dimensional array, the list item
B is equivalent to: B(1,1),B(2,1),8B(3,1). ...,
B{1,2),B(2,2). .. :B(‘}; k.
where j and k are the subscript limits of B.
b. DO-implied items are lists of one or more
single datum identifiers or other DO-implied
items followed by & comma character and an
expression of the form:

i = ml,m2,m3 or i = ml,m2
and enclosed in parentheses.
The elements i.mil,m2.m3 have the same meaning
as defined for the DO statement. The DO
implication applies to all list items enclosed
in parentheses with the implication.

Examples:

DD«?&pl?gd Lists EFquivalent Lists
(X(1), I=1,4) X410, X{2), X(3), X{4)
(AN LR =1, 2) (1), R{1), Q(2), R(2)
(LK) K=1,7,3) G{1),64(48),G(7)

((ACT, D), I=3, 8), J=1,9, 4) AL, 13, A4, 10,405, 13
AL3, 5, AU4, 5), ALS, B
A(3: 23, A4, 9), A5, F)

(R{M), M=1,2), 1, ZAP(3) R{1),R{2), 1, ZAP(3}
(R{3), T{I), I=1,3) REB), TLLIL, R, TLED
R{3), T(3)

Thus. the elements of a matrix, for example.
may be transmitted in an order different from
the order in which they appear in storage. The
array Al(3,3) occupies storage in the order
AlL, 1), AC2, 1), A(3, 13,801,244, 2), A3, 2),
AL, 3), A2, 30, 803, 3. By specifying the
transmission of the array with the DO-~implied
Tist ditem ({A{I1,J),Jd=1,3),I=1:3), the order of
transmission is:

FORTRAN-BO Reference Manual Page &4

ALl 1), AL 2), A1, 3), AME, 1), ACE, 2D,
A, 3),A(3, 1), A3, 2), A3, 3)

8 6.2 SPECIAL NOTES ON LIST SPECIFICATIONS

preee—

1. The ordering of a list is from 1left to right
with repetition of items enclosed in
parentheses {other than as subscripts) when
accompanied by controlling DO-implied index
parameters. :

. Arrays are transmitted by the appearance of the
array name {(unsubscripted) in an input/ocutput
list,

3. Constants may appear in an input/output list
only as subscripts or as indexing parameters.

4, For input lists, the DO-implying elements i,
ml, m2 and m3 may not appear within the
parentheses as list items.

Examples:

1. READ (1,20) (I,J A1), I=1,J,2) is not allowed

=3 READ{(1. 2001, J, (A1), I=1,.J, 22 is allowed

3. WRITE(L, 203{1,J, A1), I=1,.02) is allowed

Consider the following examples:

DIMENSION A(23)

A1) = 2.1
A3 = 2.2
Hd) = 2.3
W= 5

WRITE (1.20) J (1. A(1), I=1,U.2)

the output of this WRITE statement is

1.

5, 1.2. 1,3, 2. 2,5, 2. 3
Any number of items may appear in a single
list.

FORTRAN-80 Reference Manual Page &9

7.1

2. In a formatted transmission {READ(u, £) k.
WRITE(u, #)k) each item must have the correct
type as specified by a FORMAT statement.

FORMAT STATEMENTS

FORMAT statements are non—executable: generative
statements wused in conjunction with formatted READ
and WRITE statements. They specify conversion
methods and data editing information as the data is
transmitted between computer storage and external
media representation.

FORMAT statements rtequire statement labels for
reference {(£) in the READ{u,+f)k or WRITE{(u, f)k
statements. o

The general form of & FORMAT statement is as
follows:

m FORMAT (sl.,s&,....8n/81’.82:....8n"/...)
where m is the statement label and each 81 is a
field descriptor. The word FORMAT and the
parentheses must be present as shown. The slash
(/) and comma (,) characters are field separators
and are described in a separate subparagraph. The
field is defined as that part of an external record
ocoupied by one transmitted item.

FIELD DESCRIFTORS

Field descripteors describe bthe sizes of data fields
and specify the type of conversion to be exercised

upon each transmitted datum. The FORMAT +ield
descriptors may have any of the following forms:
Descriptor Classification

rFuw. d

THw, d

rEw. d Numeric Conversion

rhw. d

riw

T Lagical Conversion

AW

nHhih2. .. hn Hollerith Conversion

‘11120, 0 1n’

nX Spacing Specification
mP Secaling Factor

FORTRAN-80 Reference Manual Page 66

8 7.2

where:

1. w and n are positive integer constants defining

the field width ({including digits., decimal

points, algebraic signs) in the external data
representation.

d is an integer specifying the number of

fractional digits appearing in the external

data representation.

3. The characters F, & E., D I, & and L indicate
the type of conversion to be applied to the
items in an input/output list.

4, T is an optional, nen—zerc integer dindicating
that the descriptor will be repeated v times.

3. The hi and 1i are characters from the FORTRAN
character set.

&. m is an integer constant (positive, negative,
or zero) indicating scaling.

NMUMERIC CONVERSIONS

n

Input operations with any of the riumeric
conversions will allow the data to be represented
in a "Free Format"; i.e., commas may be used to
separate the fields in the external representation.
F-type conversian

Form: Fu. d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered fractional.

F-output

Values are converted and ocutput as minus sign (if
negative), followed by the integer portion aof the
number, a decimal point and d digits of the
fractional portion of the number. If & value does
not £ill the field, it is right Justified in the
field and enocugh preceding blanks to fill the field
are inserted. If a8 wvalue regquires more field
positions than allowed by w. the first w-1 digits
of the value are output, preceded by an asterisk.

FORTRAN-80 Reference Manual Page &7
F-Output Examples:

FORMAT Internal Output

Descriptor Value {b=blank)

F10. 4 3468. 42 bb368. 4200

F7.1 -4786. 361 ~4784. 4

F8. 4 8 7TE-2 bbO. 0870

Fé6. 4 4739. 76 #, 7600

F7.3 -5. 6 b-5. 600

Note the loss of Jeading digits in the 4th line
above,

F—-Input

(See the description under E-Input below.)
E-type Conversion

Form: Ew, d
Real or Double Precision type data are processed

using this conversion. w characters are processed
of which d are considered fractional.

E~Qutput

Values are converted, rounded to d digits, and

putput as:

1. a minus sign (if negativel.

2. a zero and a decimal point.

3. d decimal digits.

4. the letter E.

5. the sign of the expeonent {minus or blank).

&. two exponent digits,

in that order. The values as described ave right
Justified in the field w with preceding blanks to
111 the field if necessary. The field width w

should satisfy the relationship:

w > d + 7
Otherwise significant characters may be lost. Some
E-Output examples {follow:

FORTRAN-BO Reference Manual Page 68
FORMAT Internal Output
Descriptor Value {(b=blank)
E12.5 ThH, D73 bb. 76573EbO2
E14.7 ~-3A2672. 354 ~b. 3267233Eb05
E13. 4 -Q, 0012321 bb~b. 1232E-02
ES. 2 76321, 73 b. 76EbOS
E-Input

Data values which are to be processed under E, F.

or G conversion can be a relatively loose format in

the external input medium. The format is identical

for either conversion and is as follows:

1 lLeading spaces {ignored)

2. A+ or — sign (an unsigned input is aszsumed to

be positive)

A string of digits

A decimal point

A second string of digits

The character E

A+ or ~ sign

A decimal exponent

Each item in the list above is aptional; but the

following conditions must be cbserved:

1. If FORMAT items 3 and 3 (above) are present,
then 4 is required. .

2. If FORMAT item 8 is present, then é& or 7 or
both are requived.

3. All non-leading spaces are considered zeros.

Input data ven be any number of digits in length,

and correct magnitudes will be developed, but

precision will be maintained only ta the extent

specified in Section 3 for Real datas.

NS

FORTRAN-BQ Reference Manual

Page &9

E- and F- and 66— Input Examples:

FORMAT Input
Descriptor {b=blank)
E10. 3 +Q. @B3756+4
£10. 3 bbbbb17631
¢8. 3 b14&289211
Fi2. 4 bbhb—-&321132

Internal
Value

+2375. &0
+17. 631
+16H28. 911
~&632. 1132

NMote in the above examples that if no decimal point
is given among the input characters. the d in the

FORMAT specification establishes the decimal point
in conyjunction with san exponent, if given. I &
decimal point is included in the input characters.

the d specification is ignored.
The letters E, F, and @ are interchangeable in the
input format specifications. The end result is the

same.
D-Type Conversions

D~Input and D-Dutput are identical to

E-Qutput
a "D" instead of an "E. "
G-Type Conversions

Form: Cw. d

Real or Double Precision type

using this conversion.

E~Input and

except the exponent may be specified with

data are processed

w characters are processed

of which d are considered significant.

G-Input:

{(See the description under E-Input)

&-Output:

The method of output conversion is a
the magnitude of the number being output.
the magnitude of the number.

The +following

function of
lL.et n be
table

shows how the number will be cutput:

FORTRAN-80 Reference Manual Page 70

Magnitude Equivalent Conversion
1 <=1 <1 Flw—-8). d, 84X
1 <= n < 10 F{w-4), {d—17, 4%
g2 a1
10 <= n 4 10 Flw-4). 1, 4X
d-1 d
10 = n 410 Fiw-4). 0, 4X
Otherwise Ew. d

I-Conversions

Form: Tw

nly Integer data may be converted by this form of
conversion. w specifies field width.

I-Output:

Values arve converted to Integer constants.
Negative wvalues are preceded by & minus sign. Iif

the value does not £ill +the field, it is right
justified in the field and enough preceding blanks
to f£ill the field are inserted. If the wvalue
exceeds the field width, only the least significant
w1 characters are ocutput preceded by an asterisk.

Examples:

FORMAT Internal Output
Descriptor Value {tb=blank)
i6 +281 bbb281
Ié -23261 ~23261
13 126 126
14 —~226 ~22&

i-Input:

A field of w characters is input and converted *fo
internal integer format. A minus sign may precede
the integer digits. If a sign is not present, the
value is considered positive.

Integer values in the range ~32768 to 32747 are
accepted. Non-leading spaces are treated as 1eros.

FORTRAN-B80 Reference Manual Page 71

Examples:
Format Input Internal
Descriptor {(b=blank) Value

14 k124 124

14 —-124 -124

17 bb&a732b &7320

14 1b2b 1020

HOLLERITH CONVERSIONS

A-Type Conversion

The #orm of the A conversion is as follows:

Aw
This descriptor cauvses vnmodified Haollerith
characters to be read into or written from a
specified list item.
The maximum number of actual characters which may
be transmitted between internal and external
representations using Aw is four times +the number
of storage units in the corresponding list item
{i.e., 1 character for logical items. 2 characters
for Integer items. 4 characters for Real items and
8 characters for Double Precision items).
A-Qutput:
If w is greater than 4n (where n is the number of
storage wunits required by the 1list ditem), the
external ovtput field will consist of w-4n blanks
followed by the 4n characters from the internal
representation. I# w is less than 4n, the external
cutput field will consist of the leftmost w
characters from the internal representation.
Examples:

e ity

Format Internal Type Output
Descriptor {(b=blanks)

Al : Al Integer &

AR AR Integer 4B

A3 ABCD Real ABC

A4 ABCD Real ABCD

AT ABCD Real bhbABCD
A-Input:

If w is greater than 4n (where n is the number of

FORTRAN-80 Reference Manual Page 72
storage units required by the corresponding list
item), the rightmost 4n characters are taken from
the external input field. If w is less than 4n,
the w characters appear left Justified with w—4n
trailing blanks in the internal representation.

Examples:
Furgggmww Input Type Internal
Descriptor Characters {hbh=blank)
Al A Integer Ab
A3 ABC Integer AB
A4 ABCD Integer AB
Al A Real Abbb
A7 ABCDEFG Real DEFG

H-Conversion

The forms of H conversion are as follows:
nHhih2. .. hn

‘hih2. .. hn'
These descriptors process Hollerith character
strings between the descriptor and the external
field, where each hi represents any character from
the ABCII character set.
NOTE

Special consideration iz required if an

apostrophe (‘) is to be used within the

literal string in the second form. An

apostrophe character within the string is

represented by two successive apostrophes.

BHee the examples below.

H-Output:

The n characters hi, are placed in the external
field. In +the nHhih2 ..hn form the number of
characters in +the string must be exactly as

specified by n. Otherwise, characters from other
descripters will be taken as part of the string.
In both forms., blanks are counted as characters.

FORTRAN-B0 Reference Manual Page 73

Examples:
Format Autput
Descriptor , {b=blank)
1HA or ‘A’ A
BHBSTRINGD er ‘BSTRINGL bBTRINGD
TIHX(2, 3)=12. 0 or X{Z, 3)=12. 0’ X{2,3)=12. 0
TIHTIBSHOULDN'T or ‘IbSHOULDNY ‘T’ IbSHOULDN'T
H-Input
The n characters of the string hi are replaced by
the nexat n characters from the input record. This

results in a new string of characters in the fieid
descriptor.

FORMAT Input Resultant
Pescriptor {b=blank) Descriptor
441234 or ‘1234~ ABCD 4HABCD or ‘ABCD”
7HbbBFALSE or ‘bbFALSE’ bFALSED 7HbBFALSED or ‘bBFALSEDL
GHbbbbbb or ‘bbbbbb‘ MATRIX HHMATRIX or ‘MATRIX’
8.7.4 LOGICAL CONVERSIONG
The form of the logical conversion is as follows:
L
L-Cutput:
I# the wvalue of an item in an output list
corresponding to this descriptor is 0, an F will be
osutput; vtherwise, a T will be output. If w is
greater than 1, w-1 leading blanks precede the
letters.
Examples:
EBRMAf“MM Internal Qutput
Descriptor Value {b=blank)
L1 =) F
L3 420 T
L5 L0 bbbbT
L7 =0 bbbbbbF
L~Input

The external representation occcupies w positions.
It consists of optional blanks followed by & "T" or
"F*, followed by optional characters.

FORTRAN-80 Reference Manual Page 74
B8.7.5 X DESCRIPTOR

The form of X conversion is as follows:

nXx
This descriptor causes no conversion to ococcur, nor
does it correspand to an item in an input/output
list. When wused for cutput, it cauvses n blanks to
be inserted in the output record. Under input
circumstances, this descriptor causes the next n
characters of the input record to be skipped.
Qutput Examples:

FORMAT Statement Qutput
{b=blanks)

3 FORMAT (1HA. 4X, 2HBC) AbbbbBC

7 FORMAT {3X. 4HABCD, 1X) bbbABCDb

Input Examples:

FORMAT Statement Input String Resuvltant Input

10 FORMAT (F4.1,3X,F3.0) 12 5ABC120 12,5, 120
9 FORMAT (7X., I3) 1234567012 012
8.7.6 P DEGSCRIPTOR

The P descriptor is wused to specify a scaling

factor for real conversions (F, E, D, &). The form
is nP where n is an integer constant (positive,

negative, or zera). .

The scaling factor is auvtomatically set to zero at
the beginning of each formatted 170 call {(each READ
or WRITE statement). It a P descriptor is
encountered while scanning a FORMAT, the scale
factor is changed to n. The scale Ffactor remains
cthanged until another P descriptor is encountered

or the 170 terminates.

Etfects of Scale Factor on Input:

During E., F. or ¢ input +the scale factor takes
effect only if no exponent is present in the
external representation. In that case, the
internal value will be a factor of 10%#n less than
the external value {the number will be divided by
10##n before being stored).

FORTRAN-B80 Reference Manual Page 795

Effect of Scale Factor on Output:

E-Output, D-Gutput:

The coefficient is shifted left n places relative
to the decimal point, and the exponent is reduced
by n (the value remains the same).

F-Qutput: A

The external value will be 10##n times the internal
value.

G—-Output:

The scale factor is ignored if the internal value
is s=small enough to be output vsing F conversion.
Otherwise, the effect is the same as for E output
SPECIAL CONTROL FEATURES OF FORMAT STATEMENTS

eosromire

Repeat Specifications

1. The E, F, D) & I, L and A field descriptors
may be indicated as repetitive descriptors by
using & repeat count 1 in the form rEw. d.
rFw. d, 7rGw.d,» vIlw rvhw TAW The following
pairs of FORMAT statements are equivalent:

trés FORMAT (3F8. 3, F9. &)
C IS8 EQUIVALENT TO:
bbb FORMAT (F8. 3, F8. 3, F8. 3, F9. 2)

14 FORMAT (213, 245, 2E10. 3)
c IS EQUIVALENT TO:
14 FORMAT (13, 1I3,45,A5 E10 5 E10.9)

. Repetition of a group of field descripbtors is
accomplished by enclosing the group in
parentheses preceded by a repeat count,
Absence of a repeat count indicates a count of
one. Up to tuwo levels of parentheses,
including the parentheses required by the
FORMAT statement. are permitted.

Note the following equivalent statements:

FORTRAN-BO Reference Manual Page 7&
22 FORMAT (I3:4(Fé&. 1,2X))
¢ 18 EQUIVALENT TO:
22 FDORMAT (I3.F&6. 1,28X.Fé. 1, 2X, Fb. 1, 2%,
i Fé. 1, 2X)

3. Repetition of FORMAT descriptors is also
initiated when all descriptors in the FORMAT
statement have been used but there are still
items in the idnput/output list that have not
been processed. When this occurs the FORMAT
descriptors are re—used starting at the first
agpening parenthesis in the FORMAT statement. A

repeat count preceding the parenthesized
descriptor{s) to be re-used is also active .in
the re-use. This type of repetitive use of

FORMAT descriptors terminates processing of the
current record and initiates the processing of
a new record each time the re-use begins.
Record demarcation under these circumstences is
the same as in the paragraph 8.7.7.2 below.
Input Example:
DIMENSION AC100)
READ (3,13) A

13 FORMAT (3F7.3)
In this example. the first 5 guantities from each
of 20 records are input and assigned to the array
elements of the array A
Qutput Example:

WRITE (& 12)E, F' K, Ly Mo KK LLo MM, K3, LE,
1 M3

12 FORMAT (2F2.4, (317))
In this example, three rTecords are written. Hecord
1 contains E, F, K, L and M Because the
descriptor 317 is reused twice, Record 2 contains
Wik, LL and MM and Record 3 contains K3, L3 and M3.

FORTRAN-80 Reference Manual Page 77
8.7.7.2 Field Separators

Two adjacent descriptors must be separated in the
FORMAT statement by either a comma or one or more
slashes. ‘

Example:

ZHOK/FH. 3 or 2HOWK, F&. 3

The slash not only separates field descriptors, but
it also specifies the demarcation of formatted

Trecords.

Each slash terminates a record and sets up the next
record for processing. The remainder of an input
record is ignored; the remainder of an output
record dis filled with blanks. Successive slashes
&//7/7...7) cause successive records to be ignored on
input and successive blank records to be written on
nutput.

Qutput example:
DIMENSION A(100), J{20)

WRITE (7.8) 4 A
8 FORMAT (10I7/71017/50F7. 3/50F7. 3)
In this example. the data specified by the list of
the WRITE statement are output to unit 7 according
to the specifications of FORMAT statement 8. Four
records are written as follows:

RBecord 1 Record & Record 3 Record 4
JO3) J(11) A1) H{51)
J{2) J12) HAl2) A{D2)
JU10) J(20) A(50) AL100)

Input Example:
DIMENSION B(1O)

READ (4,17) B
17 FORMAT(F10. 2/F10. 2/7//78F10. 2)
In this example, the two array elements DB{l) and
B(2) receive their wvalues from the first data

FORTRAN-80 Reference Manual Page 78

fields of successive records {(the remainders of the
two records are ignored?. The third and fourth
records are ignored and the remaining elements of
the array are filled from the fifth record.

FORMAT CONTROL., LIST SPECIFICATIONS AND RECORD

DEMARCATION

The following relationships and interactions
between FORMAT conitroel, input/output lists and
record demarcation should be noted:

1. Execution of a formatted READ or WRITE
statement initiates FORMAT control.

2. The conversion performed on data depends on

information jointly provided by the elements in

the input/output list and field descriptors in
the FORMAT statement.

I# there is an input/output list, at least one

descriptor of types E, F, D, & I, L or A must

be present in the FORMAT statement.

4. Each execution of a formatted READ statement
causes a new record to be input.

5. Each item in an input 1list corresponds to a
string of characters in the record and to a
descriptor of the types E. F, 6, I, L or A in
the FORMAT statement.

&, H and X descriptors communicate information
directly between the external record and the
field descriptors without reference to list
items.

7. On input, whenever a slash is encountered in
the FORMAT statement or the FORMAT descriptors
have been exhausted and re-use of descriptors
is dinitiated, processing of the current record
is terminated and the following occcurs:

a. #Any unprocessed characters in the record
are ignored.

£3

b. If more input is necessary to satisfy
list requirements, the next record is
Tead.

FORTRAN~BO Reference Manual Page 79

710

a. A READ statement is terminated when all items
in the input list have been satisfied if:
a. The next FORMAT descriptor is E, F: &G, I,
L or A

b. The FORMAT control has reached the last
puter Tight parenthesis of the FORMAT
statement.

I+ +the input list has been satisfied, but the
next FORMAT descriptor is H or X, more data are
processed (with the possibility of new records
being input) until one of the above conditions
exists.

9. I+ FORMAT contrel reaches the last right
parenthesis of the FORMAT statement but there
are more list items to be processed: all or
part of the descriptors are reused. (Gee item
2 in the description of Repeat Specifications,
sub-paragraph 8. 7.7. 1}

10. When a Formatted WRITE statement is executed,
records are written each time & slash is
encountered in the FORMAT statement or FORMAT
control has reached the rightmoest right
parenthesis. The FORMAT control terminates in
vne of the tuwn methods described for READ
termination in 8 above. Incomplete records are
filled with blanks to maintain record lengths.

FORMAT CARRIAGE CONTROL

The first character of every formatted ouvtput

record is used to convey carriage conkrol
information to the ocutput device, and is therefore
never printed. The carrisge control character
determines what action will be taken before the
line is printed. The wvptions are as follows:
Contrel Character Action Taken Before Printing

O Skip 2 lines

i Insert Form Feed

+ Mo advance

Other Skip 1 line

FORMAT SPECIFICATIONS IN ARRAYS

The FORMAT reference. ?T of a formatted READ or
WRITE statement (See 8. 1) may be an array name
instead of a statement label. If such reference is

FORTRAN-80 Reference Manual Page 80
made, at the time of execution of the READ/WRITE
statement the first part of the information
contained in the array. taken in natural order,
must constitute & valid FORMAT specification. The
array may contain non-FORMAT information following
the right parenthesis +that ends the FORMAT
specification,

The FORMAT specification which is to be inserted in
the array has the same form as defined for a FORMAT
statement (i.e., it begins with a left parenthesis
and ends with a right parenthesis).
The FORMAT specification may be inserted in the
array by use of a DATA initiaslization statement, or
by use of a READ statement together with an Aw
FORMAT. Example:
Assume the FORMAT specification

{3F10. 3, 41&)
or a similar 12 character specification is +to be
stored inte an array. The arrvay must allow a
minimum of 3 storage units.
The FORTRAM coding below shows the various methods
of establishing the FORMAT specification and then
referencing the array for a formatted READ ov
WRITE.

FORTRAN-80 Reference Manual

(¥

C

¢

DECLARE A REAL ARRAY
DIMENSION A(3)., BC(3)., M(4)
INITIALIZE FORMAT WITH DATA STATEMENT
DATA A/(3F1’, 0.3, 7, ‘416277

READ DATA USING FORMAT SPECIFICATIONS
IN ARRAY &
READ(&: A) By M
DECLARE AN INTEGER ARRAY
DIMENSION IA(4)., B(3)., M{4)

READ FORMAT SPECIFICATIONG

READ (7.15) 1A
FORMAT FOR INPUT OF FORMAT SPECIFICATIONS
15 FORMAT (4A2)

READ DATA USING PREVICQUSLY INPUT
FORMAT SPECIFICATION
READ (7,1IA) B, M

Page 81

FORTRAN~B0O Reference Manual Page 82
SECTION 9
FUNCTIONS AND SUBPROGRAMS

The FORTRAN language provides a means for defining and using
aften needed programming procedures such that the statement
or statements of the procedures need appear in a program
only once but may be referenced and brought into the logical
execution sequence of the program whenever and as often as
needed,
These procedures are as follows:

1. Statement functions.

&, l.ibrary functions.

3. FUNCTION subprograms.

4. SUBROUTINE subprograms.
Each of these procedures has its own unique requirements for

reference and defining purposes. These reguirements are
discussed in subsequent paragraphs of this section.
However, certain features are common to the whole group or
to two or more of the procedures. These common features are
ats follows: :

1. Each of these procedures is referenced by its name
which, in all cases, is one to six alphanumeric
characters of which the first is a letter.

. The first three are designated as "functions" and
are alike in that:

1. They are always single valued (i.e.. they

return one value to the program unit from which
they are referenced).

2. They are referred to by an expression
containing & function name.

3. They must be typed by type specification
statements if the data type of the
single-valued resvlt is to be different Ffrom
that indicated by the pre-defined convention.

3. FUNCTION subprograms and SUBROUTIME subprograms are
considered program units.

FORTRAN-80 Reference Manual Page 83
In the following descriptions of these procedures. the term
calling program means the program unit or procedure in which
a reference to a procedure is made, and the term "called
program” means the procedure to which & reference is made.

2.1

9. &

THE PROGRAM STATEMENT

The PROGRAM statement provides a means of
specifying a name Ffor & main program unit. The
form of the statement is:

PROGRAM name
If present, the PROGRAM statement must appear
before any other statement in the progrem unit.
The name consists of 1-& alphanumeric characters,
the first of which is a letter. If no PROGRAM
statement is present in a main program the
compiler assigns a name of $MAIN to that program.
STATEMENT FUNCTIONS

Statement functions are defined by a single
arithmetic or logical assignment statement and are
relevant only to the program unit in which they

appear. The general form of a statement function
is as follows:

fi{al,azl:,...an) = g

where £ is the function name. the ai are dummy
arguments and e 1is an arithmetic or 1logical

expression.
Rules for ordering., structure and use of statement
functions are as follows:

1. Statement function definitions, if they exist
in a program unit, must precede 31l executable
statements in the unit and follow all

specification statements.

2. The ai are distinct wvariable names or array
elements, but. being dummy variables, they may
have the same names as variables of the same
type appearing elsewhere in the program unit.

3. The exapression e is constructed according to
the rules in BECTION 4 and may contain only
references to the dummy arguments and
non-Literal ctonstants. variable and array
glement references, utility and mathematical
function references and references Lo

FORTRAN~80 Reference Manual Page 84

7.3

previously defined statement functions.

4. The type of any statement function name or
argument that differs from its pre—~defined
convention type must be defined by a type
specification statement.

3. The relationship between £ and e must conform
to the replacement rules in Section 5.

&, A statement Ffunction is called by its name
followed by a parenthesized list of arguments.
The expression is evaluated using the arguments
specified in the call, and the reference is
replaced by the result.

7. The ith parameter in every argument list must
agree in type with the ith -dummy in the
statement function.

The example below shows a statement function and a

statement function call.

C STATEMENT FUNCTION DEFINITION

G

FUMCL (A B, G, DY = ({A+R)¥%C)/D

{ STATEMENT FUNCTION Call
C

ALZ=A1~FUNC1(X. Y. Z7,C7)
LIBRARY FUNCTIONS

Library functions are a group of wutility and
mathematical functions which are "built-in® to the
FORTRAN system. Their names are pre—defined to the

Processor and auvtomatically typed. The functions
are listed in Tables 9-1 and 9-2. In the tables,
arguments are denoted asz ail,az,....an if more than
one argument is required; or as a if only one is
reguired.

A library function is called when its name 18 used
in an avithmetic expression. Such a reference
takes the following form:

f{al:ac ... an)

where £ is the name of the function and the ai are
actual arguments. The arguments must agree in

type, number and order with the specifications
indicated in Tablies 9~1 and 9-2,

FORTRAN-80 Reference Manual Page 85
in addition to the functions listed in 9-1 and 9-
four additional library subprograms are provided to
snable direct access to the BOBO (or ZBO) harduare
These are:

PEEK, POKE, INP, OUT

PEEK and INP are Logical functions: POKE and 0QUT
are subroutines, PEEK and POKE allow direct access
to any memory location. PEEKR{(a) returns the
contents of the memory location specified by a.
CALL POKE(al, a2) causes the contents of the memory
location specified by al to be replaced by the
contents of agd. INP and OUT sllow direct access to
the I/ ports. INP{a) does an input from port a
and returns the 8-bit value inputb. Call OUT{(al, a2)
putputs the wvalue of a2 to the port specified by
al.

Examples:

A1 = BAFLOAT (I7)

MAGNI = ABS(KBAR)
PRIF = DIMIC. D)
83 = SIN(TII)

ROOT = (~B+HEQRT(Bxx2~4 wARC)Y)/
1 (&, ¥A)

FORTRAN-BO Reference Manual Page 86
TABLE 9-1
Intrinsic Functions
Function Types
Name Definition Argument Function
ARG tai Real Real
ARG Integer Integer
DARS Double Double
ATNT Siagn of a times lar-— Real Real
INT gest integer <=ila! Real Integer
ITDINY Double Integer
AMOD alimod a2) Real Real
MO Integer Integer
AMAXO Max{al,ad....) Integer Real
AMAX 1 Real Real
MAXO Integer Integer
Max1 Real Integer
DMAXL Double Double
AMING Mintal, a2,...) Integer Real
AMINI Real Real
MIND Integer Integer
MInNi Real Integer
DMING Double Double
FLOAT GConversion from Integer Real
Integer to Resal
IFIX Conversion from Real Integer
Real to Integer
HI6N Sign of a2 btimes l1all Real Real
ITHIEN Integer Integer
DEIGN Double Double
DIM al -~ Minfal,a2) Real Real
IDIM Integer Integer
SNGL. Double Real
OBLE Real Double

FORTRAN-80 Reference Manuael Page 87
TABLE 9-2
Basic External Functions

Number
of Type
Mame Arguments Definition Argument Function
= XP 1 E#Ea Real Real
DEXP 1 Double Double
AL.OG 1 In (&) Real Real
DL.OG 1 Double Double
&LOG1I0 1 logliO(a) Real Real
M.oe1o 1 Double Double
GIN i sin {a) Real Real
DEIN i Double Double
COs 1 cas (a) Real Real
neos i Double Double
“TANM 1 tanh (a) Real Real
SART 1 {a) ## (/2 Real Real
DSART 1 Double Double
ATAN 1 arctan {(a) Feal Real
DATAN 1 Double Double
aTANZ = arctan {(al/az) Real Real
DATANZ 2 Double Double
DpMon pat} alimod az2) Double Double

FORTRAN-B0 Reference Manual Page 898
9.4 FUNCTION SUBPROGRAMS

& program unit which begins with a FUNCTION
statement is called a FUNCTION subprogram.

A FUNCTION statement has one of the following
forms:

t FUNCTION f(al,a2 ...an)

ar

FUNCTION f(al,az....an)

where:

1. t is either INTEGER, REAL, DOUBLE PRECISBION or
LOGICAL or is empty as shown in the second

form.
) £ is the name of the FUNCTION subprogram.
3. The ai are dummy arguments of which there must

be at least one and which represent variable
names, array names or dummy names of SUBROUTINE
or other FUNCTION subprograms.

9.5 CONSTRUCTION OF FUNCTION SUBPROGRAMS

Construction of FUNCTION subprograms must comply

with the following restrictions:

1. The FUNCTION statement must be the first
statement of the program unit.

2. Within the FUNCTION subprogram, the FUNCTION
riame must appear at least once on the left side
of the equality sign of an assignment statement
or as an item in the input list of an input
statement. This defines the valve of +the
FUNCTION so that it may be vreturned to the
calling program.

Additional wvalues may be returned to the
calling program through assignment of values o
dummy arguments.

FORTRAN-80 Reference Manual Page B9

Example:

[N

FUNCTION Z7(A, B,)

27 = 5. ®¥{A-B) + SERTI(C)

C REDEFINE ARGUMENT
B=B+27

RETURN

END
The names in the dummy argument list may not appear
in EQUIVALENCE, COMMON or DATA statements in the
FUNCTION subprogram.
If a dummy argument is an array name. then an array
declarator must appesar in the subprogram with
dimensioning information consistant with that in
the calling program.
A FUNCTION subprogram may contain any defined
FORTRAN statements other than BLOCK DATA
statements, BUBROUTINE statements, another FUNCTION
statement or any statement which references either
the FUNCTION being defined or another suvhprogram
that references the FUNCTION being defined.
The logical terminabion of a FUNCTIOM subprogram is
a RETURN statement and there must be at least one
of them.
A FUNMCTION subprogram must physically terminate
with an END statement.

FORTRAN-80 Reference Manual Page 90
Example:
FUNCTION SUM (BARY. I..J)
DIMENSION BARY (10, 20)
GUM = 0.0
DO 8 K=1.,1
pog M = 1,
a SUM = SUM + BARY K, M)
RETURN
END
.6 REFERENCING A FUNCTION SUBPROGRAM

FUNCTION sugprograms are called whenever the
FUNCTION name. accompanied by an argument list, is

used as an operand in an grpression. Such
references take the following form:

f{al,a82.,....,an}

where £ is a FUNCTION name and the ai are actual
arguments. Parentheses must be present in the form
shown. '

The arguments ai must agree in type. ocrder and
number with the dummy arguments in the FUNCTION
statement of the called FUNCTION subprogram. They
may be any of the following:

1. A variashle name.

=, An array element name.

a. An array name.

4, An expression.

e A SUBROUTINMNE or FUNCTION subprogram name.

&. A Hollerith or Literal constant.

I# an ai is a. suvbhprogram name., that name must have
previously been distinguished from ordinary
variables by appearing in an EXTERNAL statement and
the corresponding dummy arguments din the called
FUNCTION subprograms must be used in subprogram

references.
I¢ ai is & Hollerith or Literal constant, the
corresponding dummy variable should encompass

encugh storage units to correspond exactly to the
amount of storage needed by the constant.
When a FUNCTION subprogram is called, program

FORTRAN-BO Reference Manual Page %1

9.

n

w

f‘j{

control goes +to the first executable statement
following the FUNCTION statement.
The feollowing examples show references te FUNCTION
subprograms.

710 = FT14Z7(D, T3, RHO)

DIMENSION DAT(S, 5)

81 = TOTI + SUM(DAT, 5. 5)
SUBROUTINE SUBPROGRAMS

A program unit which begins with a SUBROUTINE
statement is called a SUBROUTINE subprogram. The
SUBROUTINE statement hae one of the +following
forms:

SUBROUTINE s {(al,az2,...,an}

ar

SUBROUTINE =

where s is the name of the GSUBROUTINE subprogram
and each ai is a dummy argument which represents a
variable or array name or another BUBROUTINE or
FUNCTION name.

CONSTRUCTION OF SUBROUTINE SUBPROGRAMS

The SUBROUTINE statement must be the first statement
of the subprogram.

The SUBROUTINE subprogram name must not appear in
any statement other than the initial SUBROUTINE
statement.

The dummy argument names must not appear in
EQUIVALENCE, COMMON or DATA statements in the
subprogram.

I a dummy argument is an array name then an array
declarator must sSppear in the subhprogram with

dimensioning information consistant with that in the
calling program.

I+ any of the dummy arguments represent values that
are to be determined by the SUBROUTIMNE subprogram
and returned to the calling program. these dummy

FORTRAN-80 Reference Manual Page 92

b,

9.

10,

arguments must appear within the subprogram on the
left side of the equality sign in & replacement
statement. in the input list of an input statement
or as a parameter within a suvhprogram reference.
A SUBROUTINE may contain any FORTRAN @ statements
other than BLOCK DATA statements, FUNCTION
statements, another SUBROUTINE statement, a PROGRAM
statement or any statement which references the
SUBROUTINE subprogram being defined or ancther
subprogram which references the SUBROUTINE
subprogram being defined.
A SUBROUTINE subprogram may contain any number of
RETURN statements. 1t must have at least one.
The RETURN statement(s) is the logical termination
point of the subprogram.
The physical termination of a SUBROUTINE subprogram
is an END statement. .
If an actual argument transmitted to & BUBROUTINE
subprogram by the calling program is the name of a
SUBROUTINE or FUNCTION subprogram. the corresponding
dummy argument must be used in the called SUBROUTINE
subprogram as a subprogram reference.
Example:
£ SUBROUTINE TO COUNT POSITIVE ELEMENTS
¢ IN AN ARRAY
SUBROUTINE COUNT P(ARRY. I, CNT)
DIMENSION ARRY(7)
CNT = ©
DO 2 J=1,1
IFCARRY (D) 19, 5, 5
4 CONTINUE
RETURN
5 CNT = CNT+1.0
¢0 TO 9
END
REFERENCING A SUBROUTINE SUBPROGRAM

& SUBRDUTlmﬁwaubprogram may be called by using a

CALl. statement. A CALL statement has one of the
following forms:
CALL s{al.a2,....:8n)

or

FORTRAN—-B80 Reference Manuval Page 93

~

.10

Call. s

where 5 is a SUBROUTINE subprogram name and the ai
are the actual arguments +to be used by the
subprogram. The ai must agree in type. order and

number with +the corresponding dummy arguments in

the subpregram—defining SUBROUTINE statement.

The arguments in a CALL statement must comply with

the following rules:

1. FUNCTION and SUBROUTINE names appearing in the

argument list must have previously appeared in

an EXTERNAL statement.

If the called SUBROUTINE subprogram contains &

variable array declarator, then the CALL

statement must contain the actual name of the
array and the actual dimension specifications
as arguments,

3. If an item in the SUBROUTINE subprogram dummy
argument list is an array, the corresponding
item in the CAlLL statement argument list must
be an array.

When a SUBROUTINE subprogram is called, program

control goes to the first executasble statement

following the SUBROUTINE statement.

Example:

B3

T DIMENSION DATA(10)

¢ THE QTATEMENT BELOW CALLS THE
C SUBROUTINE IN THE PREVIOUS PARAGRAFPH
G
Call. COUNTP(DATA.: 10, CPOSB)
RETURN FROM FUNCTION AND SUBROUTINE SUBPROGRAMS

The logical termination of a FUNCTION or SUBROUTINE
subprogram 1is a RETURN statement which transfers
control back to the calling program. The general
form of the RETURN statement is simply the word
RETURN '

The following rules govern the uwse of the RETURN
statement:

FORTRAN-80 Reference Manual Page 94

.11

1. There must be at least one RETURM statement in
each SUBROUTINE or FUNCTION subprogram.

. RETURN from a FUNCTION subprogram is o the
instruction sequence of the calling program
following the FUNCTION reference.

3. RETURN from a SUBROUTINE subprogram is to the
next executable statement din the calling
program which would logically follow the CALL
statement. '

4. Upon return from a FUNCTION subprogram the
single-valued result of +the subprogram is
available to the evaluation of the expression
from which the FUNCTION call was made.

9. Upon return from a SUBRODUTINE subprogram the

values assigned to the arguments in the
SUBROUTINME are available for use by the calling
program.

Example:

6alling Program Unit

éALL SUBR{Z9,B7.R1)

Called Program Unit

SUBROUTINE BUBR(A, B, C)

READ{3.7) B

A = B#x(

RETURN

7 FORMATL(FR. 20

END
In this example, Z9 and B7 are made available to
the calling program when the RETURN occurs.
PROCESESING ARRAYS IN SUBPROGRAMS

pu—

I#+ a calling program passes an array name to a
subprogram, the subprogram must contain the
dimension information pertinent to the array. A
subprogram must contain array declarators if any of
its dummy arguments represent arrays or array

FORTRAN-BO Reference Manual ‘ Page 99
elements.
For example, & FUNCTION subprogram designed to
compute the average of the elements of any one
dimension array might be the folowing:
Calling Program Unit

DIMENSION Z1(50), 22(23)

Al

= AVG(Z1l, 50)
AL = Al-AVE{Z2, 25)

Called Program Unit

FUNCTION AVG{ARG, 1)

DIMENSIONM ARG{(30)

Bum = 0.0

DO 20 J=1, 1

20 SUM = QUM + ARGL(J)

AVE = SUM/FLOAT(I)

RETURM

END
NMote that actual arrays te be processed by the
FUNCTION subprogram are dimensioned in the calling
program and the array names and their actual
dimensions are transmitted to the FUNCTION
subpraogram by the FUNCTION =subprogram reference.
The FUNCTION subprogram itself contains 3 dummy
array and specifies an array declarator.
Dimensioning information may also be passed to the
subprogram in the paramater list. For example:

FORTRAN-80 Reference Manual Page 9&
Calling Program Unit

DIMENSION A(3, 4, 5)

CAaLL. SUBR{A, 3, 4. 3)

END
Called Program Unit

SUBROUTINE SUBR(X, I.J:K)
DIMENSION X<{(I,J,K)

RETURN
END

It ig valid to vuse variable dimensions only when

the array name and all of the variable dimensions
are dummy arguments. The variable dimensions must
be type Integer. It is invalid to change the
values of any of the variable dimensions within the
ctalled program.

Q.12 BLOCK DATA SUBPROGRAMS

A RLLOCK DATA subprogram has as its only purpose the
initialization of data in a COMMON block during
loading of a FORTRAN object program. BLOCK DATA
subprograms begin with a BLOCK DATA statement aof
the following form:

BLOCK DATA [subprogram-namel

and end with an END statement. Such subprograms

may contain only Type, EQUIVALENCE, DATA, COMMON

and DIMENSION statements and are subject to the
following considerations:

1. I#+ any element in a COMMON block is to be
initialized, &all elements of the block must be
listed in the COMMON statement even though they
might not all be initialized.

2. Initialization of data in movre than one COMMON
block may be accomplished in one BLOCK DATA
subprogram.

FORTRAN-820 Reference Manual Page 97
3. There may be more than one BLOCK DATA
subprogram loaded at any given time.
4. Any particuliar COMMON block item should only be
initialized by one program unit,
Example:
BLOCK DATA
LOGICAL Al
COMMON/BETA/B(3, 3)/8AM/C(4)
COMMON/ALPHA/AL, F,E, D
DATA B/1.1,2. 5,3, 8, 3%4, 94,
12%0,. 52,1, 1/.C/1. 2EC, 3#4. 0/
DATA AL/. TRUE. /. E/~5. &/

' FORTRAN-80 Reference Manual | Fage 99

APPENDIX A
Language Extensions and Restrictions

The FORTRAN-BO language includes the following extensions to
ANST Standard FORTRAN (X3. 9-194662.

1.

-
£,

N

i

2

8.

?.

If ¢ is used in a ‘8TOP ¢’ or ‘PAUSE ¢’ statement.
¢ may be any six ASCII characters.

Error and End-of-File branches may be specified in
READ and WRITE statements using the ERR= and END=
gptions,

The standard subprograms PEEK, POKE, INP, and 0QUT
have been added to the FORTRAN library.

Statement functions may use subscripted variables.
Hexadecimal constante may be used wherever Integer
constants are normally allowed. ,

The literal form of Hollerith date {(character
string between apostrophe characters) is permitted
in place of the standard nH form.

Holleriths and Literals are allowed in expressions
in place of Integer constants.

There is no Trestriction to the number of
cantinuation lines.

Mixed mode expressions and assignments are allowed.
and conversions are done automatically.

FORTRAN-80 places the following restrictions upon Standard

FORTRAM.
1.

.

The COMPLEX data type is not implemented. It may
be included in a future release.

The specification statements must appear in the
following order:

1. PROGRAM, SUBROUTINE, FUNCTION, BLOCK DATA

2. Tupe, EXTERNAL. DIMENSION

3. COMMON

4. EQUIVALENCE

e

FORTRAN-80 Reference Manual Page 99
5. DATA
6. Statement Functions

3. A different amount of computer memory is allocated
for each of the data types: Integer, Real:. Double
Precision, Logical. .

4, The equal sign of a replacement statement and the
first comma of & DO statement must appear on the
initial statement line.

9. In Input/0utput 1list specifications, sublists
enclaosed in parentheses are not allowed.

Descriptions of these language extencsions and vrestrictions

are included at the appropriate points in the text of this
document.

FORTRAN-80 Reference Manual Page 100
APPENDIX B
1/0 Interface
Input/Output operations are table-dispatched to the driver
routine for the proper lLogical Unit Number. FLUNTB is the

digspatch table. It contains one 2-byte driver address for
each possible LUN it also has & one-—-byte entry at the
beginning, which coentains the maximum LUN plus one. The
initial run—time package provides for 10 LUN’s (1 - 10), all
of which correspond +to the TTY. Any of these may be
redefined by the user, or more added, simply by changing the
appropriate entries in $LUNTB and adding more drivers. The

runtime system wuses LUN 3 for errbrs and other vuser
communication. Therefore, LUN 3 should correspond to the
operator console. The initial structure of SLUNTB is shown
in the listings following this appendix.
The device drivers also contain local dispatch tables. Naote
that S$LUNTB contains one address for each device, yet there
are really seven possible operations per device:
1) Formatted Read
2) Formatted Write
3) Binary Read
4) Binary Write
%) Rewind
&) DBackspace
7)Y Endfile
Each device driver contains up %c seven rtoutines. The
starting addresses of each of these seven routines are
placed at the beginning of the driver, in the exact order
listed above. The entry in $LUNTB then points te this local
table, and the runtime system indexes into it to get the
address of the appropriate routine to handle the reguested
1/0 operation. '
The feollowing conventions apply to the individual I1/0
routines:
1. Location $BF contains the data buffer address for
READs and WRITEs.
2. For a WRITE, the number of buytes to write is in
location $BL.
3. For a READ, the number of buytes read should be
returned in %BL.

FORTRAN-80 Reference Manual Page 101

4.

en

All I/0 operations set the condition codes before
exit to indicate an error condition, end—of-file
condition, or normal return:

a) Q¥=1i, I=don’t care - 1/0 error

b)Y QC¥Y=0, I=0 — end—-of-file encountered

c) CY=0, ZI=1 - normal return
The runtime sustem checks the condition codes after
calling the driver. If they indicate a non-normal

condition., control is passed to the label specified
by "ERR=" or "END=" or, if no label is specified, a
fatal error results.
$I0ERR is a global routine which prints an "ILLEGAL
170 OPERATIONM" message (non—fatal). This routine
may bhe used if there are some operations not
allowed on a particular device (i.e. Binary 1/0 on
a TTY).
NOTE

The I/0 buffer has a fixed maximum length

of 132 bytes wunless it dis changed at

installation time. I¢# & driver allows an

input operation to write past the end of

the buffer, essential runtime variables may

be affected. The CoONsSequences are

unpredictable. "

The listings following this appendix contain an example

driver

for a TTY. REWIND, BACKSFPACE. and ENDFILE are

implemented as No-Ops and Binary I1/0 as an ervor. This is
the TTY driver provided with the runtime package.

FORTRAN~-80 Reference Manual Page 102
APPENDIX C
Subprogram Linkages
This appendix defines a normal subprogram call as generated
by the FORTRAM compiler. It is idincluded to facilitate
linkages between FORTRAM programs and those written in other
languages, such as 8080 Assembly.
& subproagram reference with no parameters generates a simple
"CaLL” instruction. The correspanding subprogram should
return via a simple "RET. " (CALL and RET are 8080 opcodes -
see the assembly manual or B80BO reference manual for
explanations.)
& subprogram reference with parameters results in a somewhat
more complex calling sequence. Parameters are always passed
by reference (i.e., the thing passed is actually the address
of +the low byte of the actual argument). Therefore.
parameters always occupy two bytes each:. regardless of type.
The method of passing the parameters depends upon the number
of parameters to pass:
1. I# the number of parameters is less than or equal
to 3, they are passed in the registers. Parameter
1 will be in HL, 2 in DE (if present), and 3 in BC
(if present).
. I# the number of parameters is greater than 3, they
are passed as follows:

1. Pavameter 1 in HL.

2. Parameter 2 in DE.

3. Parameters 3 through n in a contiguous data
block. BC will point to the low byte of this
data block {(i.e., to the low byte of parameter
3).

Mote that, with this scheme, the subprogram must know how
many parameters to expect in order to find them.

Conversely, the calling program is responsible for passing
the correct number of parameters. Meither the compiler nor

the runtime system checks for +the correct number of

parameters.

I1¥ the subprogram expects more than 3 parameters. and needs
to transfer them to a local data area, there is a system

FORTRAN-80 Reference Manual Page 103
subroutine which will perform this transfer. This argument

transfer routine is named $AT, and is called with HL
pointing to the local data area, BC peinting to the third
parameter, and A containing the number of arguments to
transfer (i.e.., the total number of arguments minus 2). The
subprogram is responsible for saving the first two
parameters before calling $AT. For example, if a subprogram
expects D parameters, it should look like:
SUBR: SHL.D Pi ; BAVE PARAMETER 1

XCHG

SHLD pa i BAVE PARAMETER 2

MV A, 3 i NG, OF PARAMETERS LEFT

LX1I H.P3 s POINTER TO LOCAL AREA

Call EAT ; TRANSFER THE OTHER 3 PARAMETERS

[Boady of subprograml

RET s RETURN TO CALLER
Pi: De &2 i BPACE FOR PARAMETER 1
P DS 2 i BPACE FOR PARAMETER 2
B3 DS é ; BPACE FOR PARAMETERES 3-5

When accessing parameters in a subprogram. doen’t forget that
they are pointers to the actual arguments passed.
NOTE
It is entirely wup to the
programmer to see to it that
the arguments in the calling
program match in number. tupe.

and length with the parameters
expegg;gmmbg the subprogram.
This applies ta FORTRAN
subprograms, a8s well as those
written in assembhly language.

FORTRAM Functions {(Section 9) return their values in
registers or memory depending upon the tupe. Logical
results are returned in {(A), integers in {(HL), Reals in

memory at $AC, Double Precision in memory at $DAC. $AC and
$DAC are the addresses of the low bytes of the mantissas.

FORTRAN-80 Reference Manual Page 104

APPENDIX D
ASCII CHARACTER CODES :

ECIMAL CHAR. DECIMAL CHAR. DECIMAL - GHAR.
200 NUL. 043 + 086 v
001 S0H 044 » 087 W
002 5TX 045 - 088 X
003 ETX 044 . 089 Y
004 EQT 047 / 0920 Z
005 ENQ 048 0O 071 L
006 ACK 049 1 o092 \
007 BEIL. 050 2 093 1
008 B3 051 3 094 ~ for)
009 HT 05 4 025 e toT)
010 LF 053 o 076 !
011 VT 054 b 097 a
012 FF 055 7 098 b
013 CR 056 a 099 C
014 850 057 7 100 d
015 81 058 : 101 e
Olé4 DLE 059 H 102 £
017 DC1 0&0 < 103 a
ol D2 D& = 104 h
019 DC3 Q&2 e 105 i
020 DC4 0463 ? 106 J
021 NAK &4 e 107 k
022 SYN 065 A 108 1
023 ETB Qb6 B 109 m
024 CAN &7 c 110 n
025 EM D68 D 111 o
026 s5UR 069 E 112 p
27 ESCAPE 070 F 113 q
028 Fg 071 & 114 T
029 62 072 H 115 =}
030 R& 073 I 116 t
031 ug 074 J 117 u
032 SPACE 075 K 118 v
033 ! 076 L 119 w
(34 " Q77 M 120 X
005 # 078 N 121 u
036 % o779 0 122 z
037 % 080 P 123 {
038 % 081 Q 124 H
029 ! 082 R 125
Q40 { 083 8 126

041 } 084 T 127 DEL.
042 # 085 U

LF=Line Feed FF=Form Feed CR=Carriage Return DEL=Rubout

FORTRAN-80 Reference Manual Page 105
APPENDIX E
Referencing FORTRAN-B80 Library Subroutines
The FORTRAN-80 library contains a number of subroutines that
may be referenced by the wuser Ffrom FORTRAN or assembly
programs.
1. Referencing Arithmetic Routines

In the feolliowing descripticns, $AC refers to the
floating accumulator; BAL is the address of the
low byte of the mantissa. $AC+3 is the address of
the exponent. $DAC refers to the DOUBLE PRECISION
accumulator: $DAC is the address of the low byte
of the mantissa. $DAC+7 is the address of the
DOUBLE PRECISION exponent.

All arithmetic routines (addition, subtraction,
multiplication:, division, exponentiation) adhere to
the following calling conventions.

1. Argument 1 is passed in the registers:

Integer in [HL3J

Real in $AC

Double in $DAC

drgument 2 is passed either in registers, or in
memory depending upon the type: ’

s

a. Integers are passed in [HL1, or [DE]l if
[HL.] contains Argument 1.
b. Real and Double Precision values are

passed in memory pointed to by [HLI.
(LHLY points to the low byte of the
mantissa.)

FORTRAN-80Q Reference Manual

Page 106

The following arithmetic rouvtines are contained
the Library:

Function

Addition

Division

Exponentiation

Multiplication

SGubtraction

Name

$AA
HAB
$AQ
AR
HAU
$D9
DA
$DB
D@
DR
HDU
BET
FEA
+$EBR
$EQ
$ER
$EU
$MP
HMA
EHMRB
HMQ
HMR
HMU
+54A
$5B
$+50
$5R
H5U

Argument 1 Type

Real
Real
Double
Double
Double
Integer
Real
Real
Daouble
Double
Double
Integer
Real
Real
Double
Double
Double
Integer
Real
Real
Double
Daouble
Double
Real
Real
Double
Double
Double

Argument 2

Integer
Real
Integer
Real
Double
Integer
Integer
Real
Integer
Real
Daoubie
Integer
Integer
Real
Integer
Real
Double
Integer
Integer
Real
Integer
Real
Double
Integer
Real
Integer
Real
Double

FORTRAN-80 Reference Manual Page 107
Additional Library routines are provided +for converting
between wvalue types. Arguments are always passed to and
returned by these conversion routines in the appropriate
registers:

L.ogical in LAl

Integer in [HL1

Real in $aAC

Double in $DAC

Name Function

BCA Integer to Real
sCC Integer to Double
HCH Real to Integer
B Real to Logical
BCK Real %o Double
BCX Double to Integer
BCY Double to Real
BCZ Double to Logicel

=. Referencing Intrinsic Functions

Intrinsic Functions are passed their parameters in H.L and
D, E. If there are three arguments, R, C contains the third
parameter. I# there are more than three arguments, B.,C
contains & pointer to a block din memory that holds the
remaining parameters. Each of these parameters is a pointer
to an argument. {See Appendix B.)
For a MIN or MAX function. the number of arguments is passed
in A
NOTE

NMone of the functions f{(except

INP and OUT) may take a byte

variable as an argument. Byte

‘variables must first he

converted to the type expected

by the function. Otherwise.

results will be unpredictable.
3. Formatted READ and WRITE Routines

& READ or WRITE statement <calls one of the following
routines:

FORTRAN-B0Q Reference Manual Page 108

BWE (2 parameters) Initialize for an 1/0 transfer
$WO (D5 parameters) to a device (WRITE)

BR2 (2 parameters) Initialize for an I/0 transfer
RS (5 parameters) from a device {(READ)

These rToutines adhere to the following calling conventions:
1. HsL points to the LUN
& D:)E points to the beginning of the FORMAT statement

3. I+ the routine has five parameters, then B,C points
to & block of three parameters:
a. the address for an ERR= branch
b. the address for an EOF= branch
C. the address for a REC= value
The routines that transfer values into the I/0 buffer are:
$10 transfers integers
11 transfers real numbers
12 transfers logicals
13 transfers double precision numbers
Transfer rToutines adhere to the following calling
conventions:
1. H: L points to a location that contains the number

of dimensions for the variables in the list

2. D.E points to the first value to be transferred

3. B.C points to the second value to be transferred if
there are exactly two values teo be transferved by
this call. If there are more than two valves, B, C
points %o a blaock +that contains pointers to the
second bthrough nth values.

4. Register A contains the number of parameters
{including H, L) generated by this call.

The routine $ND terminates the 1/0 process.

FORTRAN-80 Reterence Manual
INDEX

Arithmetic Expression
Arithmetic IF

Arithmetic Operators

ArTay

Array Declarator
Array Element .
ASCIT Character Codes
ASSIGN | .
Assigned GDTD
BACKSPACE .

BLOCK DATA .

caL.l. . ..
Character Set
Characteristic
Comment Line

comMMoN . . L .
Computed GUOTO
Constant . .
Continuation .
CONTINUE . -
Control Statements .
DATA . .
Data Representatlan
Data Storage

bECODE | .

DIMENSION

Disk Files .

pog . . .

Do Implled Llst
Double precision
Dummy .

ENCODE |

END . . .

END Line .

ENDFILE . .
EQUIVALENCE
Executable .
Expression . . .
Extended Range .
EXTERMAL .
External Functlanq .
Field Descriptors
FORMAT
Formatted READ .

Page 109
20-~24h, 47
44, 47, 49
8

14: 20: 34"“35: 37""38: 40""41;
946, 79, 89-90, 94-95

20

14, 20, 27. 32, 39
164

44, 446

44~4%5

60 A

34, 37, 92, 96

44, 53, 92

7

23

7

34: 37, 39""41) 89, 91, 96
44-5

14--15

7. 12

44, 51

44

34, 41, 89, 91, F&
14

21

61

20, 34, 37, 96

bk

44, 47-49

&3

14

?1-93, 95

&1

W3, 89, 92, 96

11

60

:341 :3‘?"‘41 * 89: 91: C?é)
13, 34, 44

259~26, 31-32

eid)

34, 37, R0, 93

a7z

b3

D9-97., 65, 69, 7173, T77-80
o4

Formastted WRITE
FUNCTION .

cara | .
Hexadecimal
Hollerith

P

170 List .

IF

Index .
Initial LLnP .

INP

Integer

Intrinsic ?unctlons
l.abel .
Library FunLtmmn .
Library Subroutines
l.ine Faormat

l.ist Item

Literal

legical
L.ogical Expression .
l.ogical IF . . .
Logical Operator
l.ogical Unit Number
LUN A
Mantissa .

Nested .
Mon-~ eﬁecutabie .
Numeric Conversions
Operand

Uperator .

QuT

PAUSE

PEEK .

POKE |

FROGRAM

Range

READ |

Real

Relational Expres%10n
Relational Operator
Replacement Statement
RETURN .

REWIND .

Scale Factor .

Specification Statement

Statement Function .

oy

34, 37, 84, 88-95
44, 4%

8 <1, 31, 42

G 15, 2021, 31, 42,
71-72, 90

94, 100

el

44, 47

49

11

85

14, 1%, 23

84, 107

9, 12, 44435, 48

a2, 84

105

G

bid

9, QQ"‘E:{J 31.! 429 72,
14, 19, 23, 73

27, 30, 48
44, 47, 49
=8

54, 58, 100
w4, 58, 100
23

o1

13, 34

b

29

25

85

44, 49, 52

85

e b

34, 83, 92

49

54, 58, &5, 74, 78-80,

14, 19, &3

27

=27

32, 48

44, 4%, 353, 89, F2-94
&0

7475

a4

34, 82-83

9

90

107

sToPr 44, 49, 52

Storage . . O 15

Storage Format O

Storage Undit 21, 23, 39

Suvbprogram 37, 33, 82, 88-%94, 102
SUBRODUTINE 34, 37, 53, 82, 89-94
Subscript20, 27

Subscript prrBSSLnn oL &1, 27

Type . . . R 4 o

Type atatement B 14

Unconditional GOTG 44

Unformatted I/0 88

Variable 14, 19, 32, 38, 90

WRITE o . o o o o .. B7-38. &3, 74, 78-80, 107

