
FORTRAN-80 User's Manual

Copyright (C) 1977 by Microsoft

Page 2

FO RE WARD

This manual describes how to use the FORTRAN-S0
compiler and associated software under CP/M or a similar
Disk Operating System. Refer to tne FORTR&~-80 manual for
an extensive description of FORTruu~ syntax and semantics.

Microsoft FORT~-80 Users's Manual Page 3

Table of Contents

section

1 Compiling FORTRAN programs
1.1 .. The FORTRAN-B0 and MACRO-80 Command scanner

1.1.1 Format of Commands
1.1.2 FORTRAN-80 Compilation Switches

1.2 Sample Compilation

1.3 FORTRAN-80 Compiler Error Messages

2 Linking FORTRAN programs
2.1 The LINK-80 Command scanner

2.2 Sample Link

2.1.1 Format of Commands
2.1.2 LINK-80 switches

2.3 Format of LINK-S0 Compatible Object Files
2.4 LINK-80 Error Messages

3 The MACRO~80 Assembler
3.1 Format of MACRO-80 Commands

3.1.1 MACRO-80 Co~uand Strings
3.1.2 MACRO-80 Switches

3.2 Format of the MACRO-Be Source File
3.3 Sample Assembly
3.4 MACRO-Be Errors

4 FORTRAN-S0 Runtime System
4.1 Runtime Error Messages

5 Operating Systems
5.1 CPM
5.2 DTC Microfile
5.3 ALTAIR' DOS

Microsoft FORTRAN-80'Users's Manual Page 4

SECTION 1
Compiling FORTRAl~ Programs

1.1 Tne FORTRAN-S0 and MACRO-SS Command Scanner

1.1.1 'Format of Commands

FORTRM~-80 and ~~CRO-80 general commands
follows:

are as

objprog-dev:filename.ext,list-dev:filename.ext=source-dev:filenameoext

objprog-dev:
The device on which the object program is to be written.

list-deY:
The device on which the program listing is written.

source-dey:
The device from which the source-program input to

FORTRAN-80 or MACRO-S0 is obtained. If a device name
is omitted, it defaults to A:.

filename.ext
The filename and filename extension of the object

progra,m file, tile listing file, and the source file.

If no extension is supplied, it defaults to the following:

object-file: .REL

listing-file: .LST

source-file: .FOR (FORTRAN-S0)
.MAC (MACRO-8a)

Either toe object file or the listing file or both may
be omitted. An object file is always created, unless a
listing file is made. If neither a listing file nor an
object file are desired, place only a comma to the left of
the equal (=) sign. If tne names of the object file or the
listing file are omitted, they will default to the name of
the source file.

Examples:

A>F80

*=TEST (Compile the program TEST.FOR

Microsoft FORTRAN-Se Users's Manual Page 5

*,TTY:=TEST

*TESTOBJ=TEST.FOR

*TEST,TEST=TEST

*,=TEST.FOR

and place the object in TEST.REL)

(Compile program TEST.FOR
and list program on the terminal.
No object is generated.)

(Compile program TEST.FOR
and put object in TESTOSJ.REL)

(Compile TEST.FOR, put object
TEST.REL and listing in TEST.LST)

(Compile TEST.FOR but produce
no object or listing file. useful
for checking for errors.)

.-

Microsoft FORT~-80 'Users's Manual Page 6

2.1.1 FORTRAN-B0 Compilation Switches

A number of different switches may be given in the
command string which affect the format of the listing file,
etc. Each switch should be preceeded by a slash (I):

Switch

o

H

N
R
L
P

Examples:

Action

print all Listing Addresses, etc. in Octal
(Default for ALTAIR DOS)
Print all Listing Addresses, etc. in Hexadecimal
(Default for non-ALTAIR versions)
Don't list Generated code
Force Generation of an Object file
Force Generation of a Listing file
Each IP allocates an extra 1~0 bytes
of stack space for use during compilation.
Use Ip if you get stack overflow errors
during compilation. Otherwise not needed.

*,TTY:=MYPROG/N (Compile file MYPROG.FOR and list

*=TEST/L

*=BIGGONE/P/p

program on terminal but without generated code.)

(Compile TEST.FOR
with object file TEST.REL and
listing file TEST.LST)

(compile file BIGGONE.FOR
and produce object file BIGGONE.REL.
Compiler is allocated.2ee extra bytes
of stack space.)

2.2 Sample Compilation

A>F80

*EXAMPL,TTY:=EXAMPL

FORTRAN-B0 Ver.
00100
00200
00300
00400

00500
00600

00800

00850

*****.

00900

,*****

01000

0000'
0003'
C

0006'
0009'

000C'
000F'
0012'
0015'
0018'
001B'
001E'
1
0021'
0024'
0027'
002A'
002C'
002F'
10
0032'
0035'
0038'
003S'
003C'
003EI
003F'
0041'
0042'

0045'
0048'
004A'
004C'

1.O Copyright 1977 (C) By Microsoft
PROGRA1~ EXAMPLE
INTEGER X
I = 2**8 + 2**9 + 2**10
D01J=1,5
LXI H,0700
SHLD I
CIRCULAR SHIFT I LEFT 3 BITS -- RESULT IN X
CALL CSL3(I,X)
LXI H,0001
SHLD J
WRITE (3,10) I I X
LXI D,X
LXI H,I
CALL CSL3
LXI B,0007"
LXI D,10L
LX I H, ['" 3 0 0]
CALL $WR
I=X
LXI B,X
'LXI D, I
LXI S,[01 00]
MVI A,03
CALL $I0
CALL $ND
FORI-tAT (2I15)
LHLD X
SHLD I
LHLD J
INX H
MVI A,05
SUB L
MVI A,00
SBa H
JP ,0009'
END
CALL $EX
0100
0000
0300

program Unit Length=004E (78) Bytes
Data Area Length=0011 (17) Bytes

subrou~ines Referenced:

$I0
CSL3

Microsoft FORTRAN-89 ,Users's Manual

$wR
$ND
$EX

Variables:

X 9001"
I 0003"
J 0005"

LABELS:

. 1L
l0L

0032'
000S"

.. Page 8

see section 4.3 for a listing of the MACRO-80 subroutine
CSL3.

A)LINK

*EXAMPL,EXMPL1/G
[26E2 273A 39]
[BEGIN EXECUTION]

A)

1792
14336

-16383
14

112

14336
-16383

14
112
896

Microsoft FORTRAN-80 Users's Manual - Page 9

.
1.3 FORTRAN Compiler Error Messages

The FORTRAN-80 Compiler detects two kinds of errors,
Warnings and Fatal errors.

When a warning is issued, compilation
the next item on the source line. When
found, the compiler will ignore the rest
line, including any continuation lines.
are preceeded by percent (%) signs, and
question marks (1).

continues with
a Fatal error is
of the logical
Warning messages

Fatal errors by

For either type of error, the program should be changed
so that it compiles without errors. No guarantee is made
that a program which compiles with errors will execute in a,
sensible fashion.

The editor line number, if any, or the physical line
number is printed next, followed by tne error code if long
error messages are not present in the compiler, or by the
text of the error message if the compiler supports long
error messages.

Example:

?Line 25: Mismatched Parentheses

%Line 16: Missing Integer Variable

-Fatal Errors:

Error
Number

100
101
102
103
104
105
106
107
108
109
110
III
112
113
114
115
-116
117
118

Message

Illegal Statement Number
Statement Unrecognizable or Misspelled
Illegal Statement Completion
Illegal DO Nesting
Illegal Data Constant
Missing Name
Illegal Procedure Name
Invalid DATA Constant or Repeat Factor
Incorrect Numoer of DATA Constants
Incorrect Integer Constant
Invalid Statement Numoer
Not a Variable Name

-' Illegal Logical Form Operator
Data Pool Overflow
Literal String is too large
Invalid Data List Element in I/O
Unoalanced DO Nest
Identifier Too Long
Illegal Operator

Microsoft FORTRAN-S0 'Users's Manual

119 Mismatched Parentnesis
120 Consecutive Operators
121 Improper Subscript Syntax
122 Illegal Integer Quantity
123 Illegal Hollerith Constuction
124 BacKwards DO reference
125 Illegal Statement Function Name
126 Illegal Character for Syntax
127 Statement is out of Sequence
128 Missing Integer Quantity
129 Invalid Logical Operator
130 Illegal Item following INTEGER or REAL or LOGICAL
131 Premature End Of File on input device
132 Illegal Mixed Mode Operation
133 Function Call with No Parameters
134 Stack Overflow
135 Illegal Statement Following Logical IF

warnings:

o Duplicate Statement Label
1 Illegal DO Termination
2 Block Name = procedure Name
3 Array Name Misuse
4 COMMON Name Usage
5 Wrong Number of Subscripts
6 Array Multiply EQUIVALENCEd within a Group
7 Multiple EQUIVALENCE of COMMON
8 COMMON Base Lowered
9 Non-COMMON Var iabl e in BLOCK DA'rA
10 Empty List for Unformatted WRITE
11 ~on-Integer Expression
12 Operand Mode Not Compatible with Operator
13 Mixing of Operand Modes Not Allowed
14 Missing Integer Variable
15 Missing statement Number on FORMAT
16 Zero Repeat Factor
17 Zero Format Value
18 Format Nest Too Deep
19 Statement Number not FORMAT Associated
20 Invalid Statement Numoer Usage
21. No Path to this Statement
22 Missing Do Termination
23 Code Output in BLOCK DATA
24 Undefined Labels Have Occurred
25 RETURN in a Main Program
26 STATUS Error on READ
27 Invalid Operand Usage
28 -Function with no Parameter
29 Hex Constant Overflow
30 Division by Zero
31 Missing RETURN in Subprogram

Microsoft FORTRAL~-S0 User SiS f.lanual Page 11

SECTION 2

Linking FORTRAN Programs

2.1 The LINK-S0 Command Scanner

2.1.1 Format of Commands

Each command to LINK-S0 consists of a number of
filenames and switches separated by commas:

objdevl:filename.ext/switchl,objdev2:filename.ext, •••••

If the input device for a file is omitted, it defaults
to the current logged 'disk. If the extension of a file is
omitted, it defaults to .REL.

After each line is typed, LINK will load or search (see
/S below) the named files. After LINK finishes this
process, it will list all symbols that remained' undefined
followed by an asterisk.

Example:

A>LINK
*MAIN

SUBRI*
*SUBRI
*/G

(SUBRl is undefined)

(Starts Execution - see below)

Typically, to execute a FORTRAN program and subroutines, The
user snould type the list of filenames followed by /G (begin
execution). If the FORTRAN programs require any FORTRAN
Libra~y routines, They will be satisfied automatically by
searChing FORLIB.REL before execution oegins.

If the user wishes to first search libraries of his
own, he should append the filenames followed by /S to the
end of the loader command string.

2.1.2 LINK-B0 Switches

LINK-~0 has a number of switches that specify actions
whicn affect the loading process. These switches are:

switch Action

R Reset. Put loader back in its initial state.

Microsoft FORTRAN-S0-Users's Manual Page 12

E

G

U

s

Examples:

*/M

Use /R if you loaded the wrong file
by mistake and want to restart.
/R takes effect as soon as it is
encountered in a command string.

Exit from LINK-80 back to the Operating
System. Use /E if you want to load a program,
then save the memory image.

Start execution of the program
as soon as the current command
line has been interpreted.
FORLIB.REL will be searched on the
current disk to satisfy any undefined
glocals if they exist. Before execution actually
begins, LINK-S0 prints 3 numbers and a
BEGIN EXECUTION message. The 3 numbers
are the start address, the address of
the next available byte, and the number
of sectors used.

List all undefined globals
as soon as the current command
line has been interpreted.

Map. List all defined globals
and their values, and all undefined
globals followed by an asterisk.

Search the filename immediately
preceeding tne /5 in the command
string to satisfy any undefined globals.

_(List all globals)

*MYPROG,SUBROT,MYLIB/S

*/G

(Load MYPROG.REL and SUBROT.REL and
then search MYLIB.REL
to satisfy any remaining
undefined globals.)

(Begin execution of
main program)

Microsoft FORTRAN-S0 Users's Manual Page 13

2.3 Format of LINK Compatible Object files

LINK compatible object files consist of a bit stream.
Individual fields within the oit stream are not aligned on
byte boundaries, except as noted below. Use of a bit stream
for relocataole object files keeps the size of object files
to a mlnlmum, thereby decreasing the number of disk
reads/writes.

There are two basic types of load items: Absolute and
Relocatable.

The first bit of an item indicates one of the above
types. If the first bit is a 0, tne following 8 bits are
loaded as an absolute byte. If the first bit is a 1, then
the next 2 bits are used to indicate the type of item. The
relocatable items are broken down into 4 types:

00 Special LINK item (see below).

01 Program Relative. Load the following 16 bits
after adding the current Program base.

10 Data Relative. Load the following 16 bits
after adding the current Data base.

11 Common Relative. Load the following 16 bits
after adding the current Common base.

Special LINK items consist of the bit stream 100
followed by a four bit control field, an optional A field
wich consists of a two bit address type which is the same as
tne two bit field above except that 00 specifies absolute
addressing, and a B field which consists of 3 oits giving a
symbol length followed by 8 bits for each character of the
symbol:

A B
1 "00 xxxx [yy two byte value] [zzz characters of symbol name]

xxxx
yy
zzz

Four bit field a-17 oelow
Two bit address type field
Tnree oit symool length field

The following special types nave a B-field only:
I

o Entry symbol (name for search)
1 Select COMMON Block
2 program name
3 Reserved for Future Expansion
4 Reserved for Future Expansion

Microsoft FORTRAN-80·Users·s Manual

The following special types have both an
A-field and a B-field:

5 Define COMMON size
6 Chain External (A is head of address chain,

B is name of external symbol)
7 Define Entry pOint (A is address, B is name)
8 Reserved for Future expansion
9 Reserved for Future expansion

The following special types have an A-field only:

10 Define size of Oata area (A is size)
11 Set loading location counter to A
12 Chain address. A is head of chain,

replace all entries in chain with current
location counter.
The last entry in the chain has an
address field of absolute zero.

13 Define Program size (A is size)
14 End program (forces to byte boundary)

Page 14

The following data types have neither an A nor a B field.

17 End File

2.1.2 LINK-S0 Error Messages

LINK-S0 has the following error messages:

?No Start Address A /G switcn was issued,
but no main program
had been loaded.

?Loading Error The last file given for input
was not a'properly formatted
LINK-80 object file.

?Fatal Table Collision Not enough memory to load program.

?Commana Error Unrecognizable LINK-S0 Command.

?File Not Found A file in the command string
did not exist.

%2nd COMMON Larger /xxxxxx/
The first definition of COMMON
block /XXXXXX/ was not the largest
definition. Re-order module
loading sequence or change COMMON
block definitions.

Microsoft FORTRAN-SS Users's Manual

%Mult. Def. Global YYYYYY
More than one definition for
the global (internal) symbol
YYYYYY was encountered during
the loading process.

Pag~ 15

Microsoft FORTaAN-Sa.Users·s Manual Page 16

SECTION 3

The MACRO-S0 Assembler

3.1 Format of MACRO-Sa Commands

3.1.1 MACRO-80 Co~~and Strings

The format of MACRO-80 Command strings is identical to
the format of FORTR&~-Sa command strings. See section
1.1.1.

The default extension for MACRO-Sa source files is
.MAC.

3.1.2 ~~CRO-S0 Switches

MACRO-S0 Switches are the same as FORTRAN-80 switches
e¥cept that Ip, IN, and 10 have no effect. See section
1.1.2.

3.2 Fomat of MACRO-B0 Source Files

MACRO-80 is a two pass assembler that outputs a
relocatable object module and produces a listing during the
second pass.

In general, MACRO-S0 accepts a
almost identical to source files
assemblers.

source file that is
for INTEL compatible

"A short descrition of the features of the assembler is
given oelow.

A. Names

All names are 1-6 characters long with the first
character being A-Z or $, and the remaining characters being
A-Z, 0-9 or $.

B. Constants

Microsoft FORTRAN-Sa Users's Manual Page 17

1. Decimal: Numbers formed from decimal digits
and not having a leading zero. The allowable range
is 65535 to -65535.

2. Octal: Numbers formed from octal digits and

3.

having a leading zero. The allowable range is
0177777 to -0177777.

Hex: Numbers formed from 1-4
and having the form x'hnhh'.
are treated as though zero was
X'A' and x'~A' are the same).
is X'FFFF' to -X'FFFF'.

hexadecimal digits
1 or 3 digit values

to the left (i.e.
The allowable range

4. Cnaracter: One or two ASCII characters

C. Labels

preceeded and followed by". (i.e. "a" or ·'SC ..).
The character " is not allowed.

A Label is a name that does not contain an imbedded
space and is terminated by a colon (:).

D. Operators

An Operator consists of an 8080 mnemonic or one of the
pseudo-operations described below (i.e. MVI, RRC or EQU).

E. Address Expressions

An address expression consists of a Names or a Constant
or an address expression + or - an address expression. An
Address expression uses the current assigned address of a
Name or tne 16 bit value of a Constant to form a 16 bit
value which, after the expression is totally calculated, is
truncated to the field size required by t~e operator. An
expression is evaluated from left to right and may not
contain any imbedded blanKS (except those appearing inside
Character Constants). An expression is terminated by a Ii'
or a tab whiCh inaicates the end of tne operand portion of a
statment. The operator MOD (i MOD j) is available for use
in address expressions.

F. Remarks

A Remark is indicated by a statement whose first
character is a ; (in which case the whole statement is a
remark) or by any characters following the end of an operand
field. A remark is always terminated by a Carriage Return.

Microsoft FORTruu~-80 Users's Manual Page 18

G. Form

A statement consists of an optional label (if it is
absent, at least one space or tab must be used in lieu of a
label), followed by an operator, followed by as many address
expressions as the operator requires, followed by an
optional remarK, and terminated by a Carriage Return
character. Multiple blanks or tabs may be used to improve
readability (except inside Character Constants or Character
Strings).

II. Pseudo Operations

A. Define Byte

DB El,E2, ••• ,En or DB dCharacter-String"

Each of the address expressions El, E2, ••• En is
evaluated and stored in n successive bytes. The character
string form allows the storing of multiple ASCII characters
and may oe mixed with the address expression form.
Two-character Character Constants are treated as
Cbaracter-Strings unless they are combined with another
address expression.

B. Define Character

DC dCnaracter-String"

Bach character in the character-String is stored as one
byte with its hign-order bit set to zero except for the last
byte which nas its nigh-order bit set.

C. Define Space

DS E

The address expression E is evaluated and that many
bytes of space are allocated. All names used in E must be
defined prior to the DS statement.

D. Define word

DW El, E2, •••• , En

Each address expression is evaluated and stored as n
successive words.

Microsoft FORTRAN-S0 Users's Manual Page 19

E. Program Termination

END E

This statement is the last
The optional adaress expression
address. If E is absent no
statement. If E evaluates to
to no execution address.

statement of each program.
E gives the program exection
remark may appear on the
absolute 0, it is equivalent

F. Terminated Conditional Assembly

ENDIF

Terminates Conditional assembly initiated by a previous
IFF or IFT.

G. Define Entry Points

ENTRY NI, N2, ••• ,Nn

The names NI, N2, ••• Nn are entry points from
external programs and act as names for the program being
assembled. The names must appear in an ENTRY statement
prior to their appearance as a Label.

-H. Define Equivalence

Label EQU E

The Label of the EQU statement is assigned the address
given by address expression E. The Label is required and
must not have previously appeared as a Label. All names
used in E must be defined prior to the EQU statement.

I. Define External

EXT Nl,-N2, ••• , Nn

The names NI, N2, •• Nn are defined to be external
references and may not have been used as a Label •

J. False Conditional Assembly

IFF E

The address expression E is evaluated and if it is
False (=0) all staements down to eh next ENDIF are assembled
and if it is True (not =0) they are not. No nesting of

Microsoft FORTRAN-80-Users's Manual Page 20

conditional assemblies is permitted.

K. True Conditional Assembly

1FT E

The address expression E is evaluated and if it is True
(not =0) all statements down to the next ENDIF are assembled
and if it is False (=0) they are not. No nesting of
conditional assemblies is permitted.

L. Define Origin

ORG E

The address expression E is evaluated and the assembler
assigns generated code starting with that value. All names
used in E must be defined prior to the ORG statement and the
Mode of E must not be External.

M. Page Break

PAGE

A page break will occur on the listing. The Page
statement will not list and no code is generated.

Any Pseudo-Operation may have a Label but except for
EQU, the Label will be defined to be the value of the
assembler location counter at the start of the Pseudo
Operation.

III. Notes

1. * indicates the value of the location counter at
the start of the statement.

2. A Character-String may not contain the character U

3. When the assembler is. entered, the origin is
assumed to be Relative-0.

Microsoft FORT~-80 Users's Manual Page 21

4. Address expressions used in the conditional
assembly pseudo-operations IFF and IFT must have
all names defined prlor to the use in the
expression a~d the expression must be Absolute.

5. Address expressions whose final mode is other than
Absolute must generate assembly data that is stored
as two bytes.

6. The following Names are defined by the assembler to
have the indicated Absolute values.

A=7 8=0 C=l 0=2 E=3
8=4 L=5 M=6 SP=6 PSW=6

Microsoft FORTRAN-80 'Users's Manual

3.3 Sample Assembly

A>M80

*EXMPLl,TTY:=EXMPLl

000000
000000
00liJ000
00liJ000
00liJ000
000000 176
000001 043
000002 146
000003 157
000004
000004 006 003
000006 257
000007
000007 051
000010
000010 027
000011 205
000012 157
000013

-000013 005
000014
000014 302 000006 •
000017 353
000020
000020 163
000021 043
000022 162
000023 311
000024

CSL3 000000' LOOP
*

3.4 MACRO-S0 Errors

00100
00200
00300
00400
00450
00500
00600
00700
00800
00850
00900
01000
01050
01100
01150
01200
01300
01400
01450
01500
01550
01600
01700
01750
01800
01900
02000
02050
02100

000006'

; .
I .
I

CSL3(P1,P2)
SHIFT PI LEFT CIRCULARLY 3 BITS
RETURN RESULT IN P2
ENTRY CSL3

: GET VALUE OF FIRST PARAMETER
CSL3: MOV A,M

INX H
MOV H,M
MOV L,A

: SHIFT COONT
MVI

LOOP: XRA
; SHIFT LEFT

B,3
A

DAD H
; ROTATE IN CY BIT

RAL ..
ADD L
:'10 V L,A

; DECREMENT COUNT
OCR B

ONE MORE TIME
JNZ LOOP
XCHG

; SAVE RESULT IN SECOND PARAMETER
MOV toi, E
INX H
MOV
RET
END

M,D

MACRO-S0 errors are indicated by a one character flag
in column one of the listing file. If a listing file is not
oeing printed on the terminal, each line in error is also
printed or displayed on tne terminal. Below is a list of
the MACRO-80 Error Codes:

code Meaning

B Block name in DATA

Microsoft FORTRAN-80 Users's Manual Page 23

C Too l-lany COM.l\10Ns
D Bad Octal or Hex Digit
E Expression Error
L No Label in EQU
M Laoel or Symbol defined more than once
N Name too ~ong
o Bad Operator (Opcode)
T Illegal Field Termination
U Undefined Symbol
V Value Error to MOD
2 Missing second Field for Opcode

Microsoft FORTRAN-80.Users·s Manual Page 24

warning Errors

Two Character
Code

IS
TL
OS
DE

IS
BE
IN
OV
CN

SN
A2
10
BI
RC

Fatal Errors:

1D
F0
MP
FW
IT
ML
DZ
LG

SQ
DT
EF

SECTION 4
Runtime Error Messages

Meaning

Input Buffer Limit Exceeded
Too Many Left Parentheses in FORMAT
Output Buffer Limit Exceeded
Decimal Exponent Overflow
(Number in input stream had
an exponent larger than 99)
Integer Size Too Large
Binary Exponent Overflow
Input Record Too Long
Arithmetic Overflow
Conversion Overflow
on REAL to INTEGER Conversion
~rgument to SIN Too Large
Both Arguments of ATAN2 are 0
Illegal I/O Operation
Buf£er Size Exceeded During Binary I/O
Negative Repeat Count in FORMAT

Illegal FORMAT Descriptor
FORMAT Fiela Width is Zero
Missing Period in FORMAT
FORMAT Field widtn is Too Small
I/O Transmission Error
Missing Left Parenthesis in FORMAT
Division by Zero, REAL or INTEGER
Illegal Argument to LOG Function
(Negative or Zero)
Illegal Argument to SQRT Function (Negative)
Data Type Doesn't Agree With FORMAT Specification
EOF Encountered on READ

Runtime errors are surrounded by asterisks as follows:

FW

fatal errors cause execution to cease (control is
returned to the operating system). Execution continues
after a warning error. However, after 20 warnings,
execution ceases as in a fatal error.

Microsoft FORTRAN-80 Users's Manual

SECTION 5
Operating Systems

page 2S

This section describes the use of FORTRAN-80 under the
different disk operating systems.

5.1 CPM

Available devices are:
A:, B: (Disk Drives)
HSR:" (High Speed Reader)"
LST: (Line Printer)
TTY: (Teletype or CRT)

Disk file names are up to 8 characters long, with 3
character extensions. The standard extensions are:

FOR ---FORTRAN-80 source file
MAC MACRO-80 source file
REL Relocatable object file
LST Listing file
COM Absolute file

CPM command lines and files are supported; i.e., a
FORTRAN-80, MACRO-SO, or LINK-80 command line may be placed
in the same line with the CPM run command. For example, the
command:

A)F80 =TEST

will cause CPM to load and run the FORTRAN-80 compiler,
which will then compile the program TEST.FOR and create the
file TEST.REL. This is equivalent to the following series
of commands:

A)F80
*=TEST
·'"C
A)

5.2 DTC Microfile

Microsoft FORTRAN-80·Users's Manual

.
Available devices are:

D0:,01:,D2:,03: (Disk Drives)
TTY: (Teletype or CRT)

Page 26

Disk file names are up to 5 characters long with 1
character extensions. The standard extensions are:

F FORTRAN-S0 source file
M MACRO-S0 source file
o Relocatable object file
L Listing file

Command lines are supported in a manner similar to CPM
(Section 5.1).

5.3 ALTAIR DOS

Available devices are:
F0:, Fl;, F2:, •••
TTY:

(Disk Drives)
(Teletype or CRT)

Disk file names are up to 5 characters long with 3
cnaracter extensions. The standard extensions are:

FOR FORTRAN-80 source file
MAC MACRO-S0 source file
REL Relocatable object file
LST Listing file

Co~~and lines are not supported.

FORTRAN-SO now provides the capability of disk file access via FORTRAN pro-

grams. Logical Unit Numbers 6-1~ are preassigned to disk files. A READ or WRITE

to one of these LUN's automatically OPEN's the file for input or output respectively,

if it is not already open. The file remains open until closed by an ENDFILE command,

or until normal program termination. A file which is OPENed by a READ or WRITE

statement has a default name which depends upon the operating system:

CPH, ISIS II

FORT~6.DAT, FORT~7.DAT, ••. , FORTl~.DAT

ALTAIR

FOR~6DAT, FOR~7DAT, ••• , FOR1~DAT

OTe

FOR~6D FOR~7DJ ••• ' FORleD

In each case the LUN is incorporated into the default file name,

Alternatively, a file may be OPENed using the OPEN subroutine. LUN's 1-5

may also be assigned to disk files with OPEN. Note that if LUN 3 is assigned

to disk, that is where any system messages will go. The form of an OPEN call is:

CALL OPEN (LUN, Filename, Drive)

where:

LUN = a Logical Unit Number to be associated with the file (must be an

integer between 1 and Ie).

Filename = an ASCI I name which the operating system will associate with

the file. The Filename should be a Hollerith or Literal constant, or a vari-

able or array name, where the varia~le or array contains the ASCII name. The

Filename should be blank filled to exactly the number of characters allowed by

the operating system:

CPM

11 characters

ALTAIR

8 characters

-2-

DTe
6 characters

ISIS II

6 characters followed by a II II . followed by a 3 character ·extension

Drive = the disk drive number on which the file exists or will exist

(must be an integer within the range allowed by the operating system --

us ua 1 1 y iJ 0 r 1).

The OPEN subroutine allows the program to specify a filename and device

to be associated with a tUN, 'whereas the default specifies a default name and

uses the currently selected disk drive.

An OPEN of a non-existent file creates a null file of the appropriate

name. An OPEN of an existing file (followed by an output) deletes the

existing file. An OPEN of an existing file followed by an input allows

access to the current contents of the file.

The ENDFILE and REWIND commands allow further program control of disk

files. The form of the commands is:

ENDFIL£(L) or REWIND(L)

where l is a LUN. ENDFILE(l) closes the file associated with LUN L. REWIND(L)

closes the file associated with LUN L, then opens it ~gain.

NOTE

The programmer should exercise caution when outputting to disk files. If

output is done to an existing file, the existing file will be deleted and

replaced with a new file of the same name.

The FORTRAN-SO library contains a number of potentially useful subroutines

which may be referenced by the user from FORTRAN or Assembly programs. In the

following descriptions, $AC refers to the floating accumulator; $AC is the

address of the low byte of the mantissa; $AC +3 is the address of the exponent.

Brackets are used in the descriptions to indicate direct or indirect addressing.

For example:

(H,L) means the contents of the Hand L registers.

(H,Q means the contents of the memory location(s) pointed to by the

~ and L registers.

The following routines are avai lable to "the programmer:

$AA $AC :- $AC + FLOAT (H,L)

$AB $AC := $AC + (}i,L]

$AT Argument transfer; see Appendix C of the FORTRAN manual

$BA Backspace; (H,L) = LUN

$CA $AC = FLOAT (H,L)

$CG Computed GOTD processor; (H,L) = index value, other parameters

are passed inline: no. of labels --- 1 byte

$CH

$09
$OA

$OB

$E9
$EA
$EB

$EN

$EXPB
$Ii)

$11

$12

address of label 2.bytes

address of label 2 2 bytes

address of label n --- 2 bytes

(H,L) := IFIX ($AC)

(H,L) := (O,E) / (H,L)

$AC := $AC / FLOAT (H,L)

$AC := $AC / CH,L]

(H,L) := (H,L) ** (O,E)

$AC := $AC ** (H,L)

$AC := $AC ** [H, LJ
ENOFILE; (H,L) = LUN

$AC := 2.e ** $AC
Integer 1/0 transfer

Real I/O transfer

Logical I/O transfer

(A) = no. of parameters

(O,E) := remainder

parameter I = no. of elements in array

parameters 2 - n = address of variables to transfer

$IOERR
$L.

'$M9:':,.
.. ',:

$MA.

.$MB'

$NB

$ND

SPA/SST
SRE
$SA

$SB
$rl

P'rints "lllegaJ I/O Operationll error

$AC := (H,L]

(H,L) :- (H,L) * (D,E)
'$AC'. :'. $AC:' * FLOAT (H,L)

$AC := $AC * [H,l]
~.t\f· :.-(:';"$AC

.Terminate I/O transfer

PAUSE/~f6p ; 6 ASCII characters are passed inline

REW'INO' ;"(H,L) = LUN

. $A~:-~$'AC' - FLOAT (H, L)

$AC':- $AC -[HtLj
[H, L}":= $~C:'-

$RD/$WR READ/WRITE initia1ize;

parameter 1 -; ,L.UN

parameter 2 - address of FORMAT or 0 for binary I/O

parameter 3= ERR' address or 0

parameter 4 = EOF address or 0

