
(!!]It 00 oltW ®@{f~\!'A!7@[(®

OUU@UU(!!]@O

©Microsoft I 1978

SECTION 1

Microsoft
Utility Software Manual

CONTENTS

MACRO-80 Assembler 5

1.1 Format of MACRO-80 Commands. • • 5
1.1.1 MACRO-SO Command Strings. 5
1.1.2 MACRO-SO Switches • • • • • • 6

1.2 Format of MACRO-SO Source Files. • • • • 6
1.2.1 Statements ••••.•••••••••• 7
1.2.2 Symbols • • • • • • • • • 8
1.2.3 Numeric Constants •••••••• S
1.2.4 Strings • • • • • •• 9

1 • 3 Expression Evaluation •••••••• 10
1 .3. 1 Arithmetic and Logical Operators • 10
1.3.2 Modes • • • • • • • ••••••• 10
1.3.3 Externals • • • • • • • • •• 11

1.4 Opcodes as Operands. • ••••••• 12
1.5 Pseudo Operations •••••••• 12

1 • 5. 1 ASEG. • • • • • • • • 1 2
1 • 5 • 2 COMMON 1 3
1 • 5. 3 CSEG. • • • • • • • • • •• • 1 3
1.5.4 Define Byte • • • • ••••••• 13
1.5.5 Define Character. 14
1.5.6 Define Space. • • • • •••• 14
1 • 5. 7 DSEG. • • • • • • • • • • • • • • .. • 1 4
1.5.S Define Word • • • • • • • • • •• 14
1 • 5. 9 END • • • • • • • • • • ••••• 1 5

1.5.10 ENTRY/PUBLIC ••••••••••••• 15
1.5.11 EQU • • • • • •••• 15
1.5.12 EXT/EXTRN • • • • • • • • • • 15
1 • 5 • 1 3 NAME. • • •• 1 6
1.5.14 Define Origin • • • • • • 16
1.5.15 PAGE. ••• • • • • • • • 16
1 • 5 • 1 6 SET • • • • • • . • • • • • • •• 1 6
1.5.17 SUBTTL. • •••••••••••• 16
1.5.1S TITLE • • • • • • • • •• • ••• 17
1 • 5 • 1 9 • COMMENT • • • • • • • • • • • 1 7
1.5.20 .PRINTX ••••••••••••• 17
1 • 5 • 2 1 • RAD I X • • • • • ••••• 1 S
1 • 5 . 22 • REQUEST ••••••••• • • 1 S
1.5.23 .Z80... • • • • • • • • •••• 18
1.5.24 .SOSO • • • . • • • • •••• 1S
1.5.25 Conditional Pseudo Operations •• _ 19
1.5.26 Listing Control Pseudo Operations •• 20
1.5.27 Relocation Pseudo Operations. • • 20
1.5.28 Relocation Before Loading • • •• 22

1.6

1.7
1 • S
1.9

1 • 10
1 • 1 1

1 • 12

SECTION 2

Macros and Block Pseudo Operations • • • • • • 22
1.6.1 Terms ••••••••••••••••• 22
1.6.2 REPT-ENDM ••••••••••••••• 23
1.6.3 IRP-ENDM • • • • • • • • ••••• 24
1.6.4 IRPC-ENDM. • • • • • • • • •••• 24
1 • 6 • 5 MACRO. • • • • • • • • • • • • • • • • 2 4
1 • 6 • 6 ENDM • • • • • • • • • • • • • 26
1.6.7 EXITM. • ••••••••••••• 26
1 • 6 • a LOCAL. • • • • • • • • • • • • • • • • 2 7
1.6.9 Special Macro Operators and Forms. 27
Using ZSO Pseudo-ops • • • • • • • • • • • • • 2S
Sample Assembly • • • • • • • • • 29
MACRO-SO Errors • • • • • • • • • • • • • 30
Compatability with Other Assemblers e •••• 31
Format of Listings • •• • • • • • • • 32
1.11.1 Symbol Table Listing ••••••••• 33
Cross Reference Facility • • • • • • • 34

LINK-SO Linking Loader • • •0. . • • 36

2.1 Format of LINK-aO Commands •••••••• 36
2.1.1 LINK-SO Command Strings •••••• 36
2.1.2 LINK-aD Switches • • • • • • • 37

2.2 Sample Link • • • • • • • • • • • •••• 39
2.3 Format of LINK Compatible Object Files •••• 39
2.4 LINK-SO.Error Messages •••••••••••• 41
2.5 Program Break Information •••••••••• 43

SECTION 3 LIB-ao Library Manager . . · 44

3.1 LIB-aO Commands ••••••••••••••• 44
3.1.1 Modules •••••••••••••••• 44

3.2 LIB-SO Switches ••••• • ••••• 46
3.3 LIB-aO Listings ••• • • • • • • •• 46
3.4 Sample LIB Session •• • ••••••• 47
3.5 Summary of Switches and Syntax. • • • 47

-SECTION 4

4. 1
4.2
4.3
4.4

Operating Systems
CP/M • • • • • • • • •
DTC Microfile • • • • • •
Altair DOS • • • •
ISIS-II ••••• . .

· · · ·

• • 4a

• • 4S
• • 50
• • 52
• • 54

Microsoft Utility Software Page 5

1 • 1

1 • 1 • 1

SECTION 1

MACRO-80 Assembler

Format of MACRO-80 Commands

MACRO-80 Command Strings

To run MACRO-80, type M80 followed by a carriage
return. MACRO-80 will return the prompt n*" (with
the DTC operating system, the prompt is n>n),
indicating it is ready to accept commands. The
format of a MACRO-80 command string is:

oQjprog-dev: filename. ext, list-dev: filename.ext=
source-dev:filename.ext

objprog-dev:
The device on which the object program is to be
written.

list-dev:
The device on which the program listing is written.

source-dev:
The device from which the source-program input to
MACRO-80 is obtained. If a device name is omitted,
it defaults to the currently selected drive.

filename. ext
The filename and filename extension of the object
program file, the listing file, and the source
file. Filename extensions may be omitted. See
Section 4 for the default extension supplied by
your operating system.

Either the object file or the listing file or both
may be omitted. If neither a listing file nor an
object file is desired, place only a comma to the
left of the equal sign. If the names of the object
file and the listing file are omitted, the default
is the name of the source file.

Examples:

*=SOURCE.MAC

*,LST:=TEST

Assemble the program
SOURCE.MAC and place
the object in SOURCE.REL

Assernblethe program
TEST.MAC and list on
device LST

Microsoft Utility Software Page 6

1 • 1 • 2

*SMALL,TTY:=TEST Assemble the program
TEST.MAC, place the
object in SMALL.REL and
list on TTY

MACRO-SO Switches

A number of different switches may be given in the
MACRO-BO command string that will affect the format
of the listing file. Each switch must be preceded
by a slash (/):

Switch

o

H

R

L

C

z

I

Examples:

*=TEST/L

Action

Print all listing addresses, etc. in
octal. (Default for Altair DOS)

Print all listing addresses, etc. in
hexadecimal.
(Default for non-Altair versions)

Force generation of an object file.

Force generation of a listing file.

Force generation of a cross reference
file.

Assemble zao (Zilog format) mnemonics.
(Default for Z8D operating systems)

Assemble 8080 mnemonics. (Default for
80aO operating systems)

Compile TEST.MAC with object
file TEST.REL and listing
file TEST.LST

*LAST,LAST/C=MOD1 Compile MOD1.MAC with object
file LAST.REL and cross
reference file LAST.CRF for
use with CREF-BO
(See Section 1.12)

1.2 Format of MACRO-aD Source Files

In general, MACRO-80 accepts a source file that is
almost identical to source files for INTEL
compatible assemblers. Input source lines of up to
132 characters in length are acceptable.

Microsoft Utility Software Page 7

1 .2. 1

MACRo-ao preserves lower
strings and comments.
pseudo-opcodes typed in
converted to upper case.

case letters in quoted
All symbols, opcodes and

lower case will be

NOTE

If the source file includes line numbers
from an editor, each byte of the line
number must have the high bit on. Line
numbers from Microsoft's EDIT-80 Editor are
acceptable.

Statements

Source files input to
statements of the form':

MACRO-80 consist of

[label: [:]] [operator] [arguments] [; comment]

With -the exception of the ISIS assembler $ controls
(see Section 1.10), it is not necessary that
statements begin in column 1. Multiple blanks or
tabs may be used to improve readab~lity.

If a label is present, it is the first item in the
statement and is immediately followed by a colon.
If it is followed by two colons, it is declared as
PUBLIC (see ENTRY/PUBLIC, Section 1.5.10). For
exmple:

Faa: : RET

is equivalent to

PUBLIC Faa
Faa: RET

The next item after the label (or the first item on
the line if no label is present) is an operator.
An operator may be an opcode (8080 or zao
mnemonic), pseudo-op, macro call or expression.
The evaluation order is'as follows:

1. Macro call

2. Opcode/Pseudo operation

3. Expression

Instead of flagging an expression as an error, the
assembler treats it as if it were a DB-statement

Microsoft Utility'Software Page a

1.2.2

1.2.3

(see Section 1.5.4).

The arguments following the operator will, of
course, vary in form according to the operator.

A comment always begins with a semicolon and ends
with a carriage return. A comment may be a line by
itself or it may be appended to a line that
contains a statement. Extended comments can be
entered using the .COMMENT pseudo operation (see
Section 1.5.19).

Symbols

MACRO-80 symbols may be of any length, however,
only the first six characters are significant. The
following characters are legal in a symbol:

A-Z 0-9 $? @

With the aoao/zao assembler, the underline
character is also legal in a symbol. A symbol may
not start with a digit. When a symbol is read,
lower case is translated into upper case. If a
symbol reference is followed by ## it is declared
external {see also the EXT/EXTRN pseudo-op, Section
1.5.12}.

Numeric Constants

The default base for numeric constants is decimal.
This may be changed by the .RADIX pseudo-op (see
Section 1.5.21). Any base from 2 (binary) to 16
(hexadecimal) may be selected. When the base is
greater than 10, A-F are the digits following 9.
If the first digit of the number is not numeric
(i.e., A-F), the number must be preceded by a zero.
This eliminates the use of zero as a leading digit
for octal constantS; as in -prevIOus versions of
MACRO-80. --

Numbers are 16-bit unsigned quantities. A number
is always evaluated in the current radix unless one
of the following special notations is used:

nnnnB
nnnnD
nnnnO
nnnnQ
nnnnH

X'nnnn'

Binary
Decimal
Octal
Octal
Hexadecimal
Hexadecimal

Overflow of a number beyond two bytes is ignored

Microsoft Utility Software Page 9

1.2.4

and the result is the low order 16-bits.

A character constant is a string comprised of zero,
one or two ASCII characters, delimited by quotation
marks, and used in a non-simple expression. For
example, in the statement

DB 'A' + 1

'A' is a character constant. But the statement

DB 'A'

uses 'A' as a string because it is in
expression. The rules for character
delimiters are the same as for strings.

a simple
constant

A character constant comprised of one character has
as its value the ASCII value of that character.
That is, the high order byte of the value is zero,
and the low order byte is the ASCII value of the
character. For example, the value of the constant
'A' ts 41H.

A character constant comprised of two characters
has as its value the ASCII value of the first
character in the high order byte and the ASCII
value of the second character in the low order
byte. For example, the value of the character
constant nAB" is 41H*256+42H.

Strings

A string is comprised of zero or more characters
delimited by quotation marks. Either single or
double quotes may be used as string delimiters.
The delimiter quotes may be used as characters if
they appear twice for every character occurrence
desired. For example, the statement

DB "I am ""great"" today"

stores the string

I am "great" today

If there are zero characters between the
delimiters, the string is a null string.

Microsoft Utility Software Page 10

1.3

1 • 3. 1

1.3.2

Expression Evaluation

Arithmetic and Logical Operators

The following operators are allowed in expressions.
The operators are listed in order of precedence.

NUL

LOW, HIGH

*, I, MOD, SHR, SHL

Unary Minus

+, -

EQ, NE, LT, LE, GT, GE

NOT

AND

OR, XOR

Parentheses are used to change the order of
precedence. During evaluation of an expression, as
soon asa new operator is encountered that has
precedence less than or equal to the last operator
encountered, all operations up to the new operator
are performed. That is, subexpressions involving
operators of higher precedence are computed first.

All operators except +, -, *, I must be separated
from their operands by at least one space.

The byte isolation operators (HIGH, LOW) isolate
the high or low order 8 bits of an Absolute 16-bit
value. If a relocatable value is supplied as an
operand, HIGH and LOW will treat it as if it were
relative to location zero.

Modes

All symbols used as operands in expressions are in
one of the following modes: Absolute, Data
Relative, Program (Code) Relative or COMMON. (See
Section 1.5 for the ASEG, CSEG, DSEG and COMMON
pseudo-ops.) Symbols assembled under the ASEG, CSEG
(default), or DSEG pseudo-ops are in Absolute, Code
Relative or Data Relative mode respectively. The
number of COMMON modes in a program is determined
by the number of COMMON blocks that have been named

Microsoft Utility Software Page 11

1.3.3

with the COMMON pseudo-ope Two COMMON symbols are
not in the same mode unless they are in the same
COMMON block.

In any operation
subtraction, the mode
Absolute.

other
of

than addition or
both operands must be

If the operation is addition, the following rules
apply:

1. At least one of the operands must be Absolute.

2. Absolute + <mode> = <mode>

If the operation is subtraction, the following
rules apply:

1. <mode> - Absolute = <mode>

2. <mode> - <mode> = Absolute
where the two <mode>s are the same.

Each intermediate step in the evaluation of an
expression must conform to the above rules for
modes, or an error will be generated. For example,
if FOO, BAZ and ZAZ are three Program Relative
symbols, the expression

FOO + BAZ ZAZ

will generate an R error because the first step
(FOO + BAZ) adds two relocatable values. (One of
the values must be Absolute.) This problem can
always be fixed by inserting parentheses. So that

FOO + (BAZ - ZAZ)

is legal because the first step (BAZ ZAZ)
generates an Absolute value that is then added to
the Program Relative value, FOO.

Externals

Aside from its classification by mode, a symbol is
either External or not External. (See EXT/EXTRN,
Section 1.5.12.) An External value must be
assembled into a two-byte field. (Single-byte
Externals are not supported.) The following rules
apply to the use of Externals in expressions:

1. Externals are legal only in addition and
subtraction.

Microsoft Utility'Software Page 12

2. If an External symbol is used in an expression,
the result of the expression is always
External.

3. When the operation is addition, either operand
(but not both) may be External.

4. When the operation is subtraction, only the
first operand may be External.

1.4 Opcodes as Operands

1.5

1.5.1

8080 opcodes are valid one-byte operands. Note
that only the first byte is a valid operand. For
example:

MVI A, (JMP)
ADI (CPI)
MVI B, (RNZ)
CPI (INX H)
ACI (LXI B)
MVI C,MOV A,B

Errors will be generated if more than one byte is
included in the operand -- such as (CPI 5), LXI
B,LABEL1) or (JMP LABEL2).

Opcodes used as one-byte operands need not be
enclosed in parentheses.

NOTE

Opcodes are not valid operands in Z80 mode.

Pseudo Operations

ASEG

ASEG

ASEG sets the location counter to an absolute
segment of memory. The location of the absolute
counter will be that of the last ASEG (default is
0), unless an ORG is done after the ASEG to change
the location. The effect of ASEG is also achieved
by using the code segment (CSEG) pseudo operation
and the IP switch in LINK-80. See also Section
1.5.27.

Microsoft Utility Software Page 13

1.5.2

1.5.3

1.5.4

COMMON

COMMON /<block name>/

COMMON sets the location counter to the selected
common block in memory. The location is always the
beginning of the area so that compatibility with
the FORTRAN COMMON statement is maintained. If
<block name> is omitted or consists of spaces, it
is considered to be blank common. See also Section
1.5.27.

CSEG

CSEG

CSEG sets the location counter to the code relative
segment of memory. The location will be that of
the last CSEG (default is 0), unless an ORG is done
after the CSEG to change the location. CSEG is the
default condition of the assembler (the INTEL
assembler defaults to ASEG). See also Section
1.5.27.

Define Byte

DB <exp>[,<exp> •.•]

DB <string>[<string> •••]

The arguments to DB are either expressions or
strings. DB stores the values of the expressions
or the characters of the strings in successive
memory locations beginning with the current
location counter.

Expressions must evaluate to one byte. (If the
high byte of the result is a or 255, no error is
given; otherwise, an A error results.)

Strings of three or more characters may not be used
in expressions- (i.e., they must be immediately
followed by a comma or the end of the line). The
characters in a string are stored in the order of
appearance, each as a one-byte value with the high
order bit set to zero.

Example:

0000'
0002'
0003'

4142
42
41 42 43

DB
DB
DB

'AB'
'AB' AND OFFH
'ABC'

Microsoft Utility Software Page 14

1.5.5

1.5.6

1.5.7

1.5.8

Define Character

DC <string>

DC stores the characters in <string> in successive
memory locations beginning with the current
location counter. As with DB, characters are
stored in order of appearance, each as a one-byte
value with the high order bit set to zero.
However, DC stores the last character of the string
with the high order bit set to one. An error will
result if the argument to DC is a null string.

Define Space

DS <exp>

DS reserves an area of memory_ The value of <exp>
gives the number of bytes to be allocated. All
names used in <exp> must be previously defined
(i.e., all names known at that point on pass 1).
Otherwise, a V error is generated during pass 1 and
a U error may be generated during pass 2. If a U
error is not generated during pass 2, a phase error
will probably be generated because the DS generated
no code on pass 1.

DSEG

DSEG

DSEG sets the location counter to the Data Relative
segment of memory. The location of the data
relative counter will be that of the last DSEG
(default is 0), unless an ORG is done after the

DSEG to change the location. See also Section
1.5.27.

Define Word

DW <exp>[,<exp> •••]

DW stores the values of the expressions in
successive memory locations beginning with the
current location counter. Expressions are
evaluated as 2-byte (word) values.

Microsoft Utility Software Page 15

1.5.9 END

END [<exp>]

The END statement specifies the end of the program.
If <exp> is present, it is the start address of the
program. If <exp> is not present, then no start
address is passed to LINK-SO for that program.

1.5.10 ENTRY/PUBLIC

ENTRY <name>[,<name> •••]
or

PUBLIC <name>[,<name> •••]

ENTRY or PUBLIC declares each name in the list as
internal and therefore available for use by this
program and other programs to be loaded
concurrently. All of the names in the list must be
defined in the current program or a U error
results. An M error is generated if the name is an
external name or common-blockname.

1 .5. 11 EQU

<name> EQU <exp>

EQU assigns the value of <exp> to <name>. If <exp>
is external, an error ~s generated. If <name>
already has a value other than <exp>, an M error is
generated.

1.5.12 EXT/EXTRN

EXT <name>[,<name> ••.]
or

EXTRN <name>[,<name> •••]

EXT or EXTRN declares that the name(s) in the list
are external (i.e., defined in a different
program). If any item in the list references a
name that is defined in the current program, an M
error results. A reference to a name where the
name is followed immediately by two pound signs
(e.g., NAME##) also declares the name as external.

Microsoft Utility 'Software Page 16

1.5.13 NAME

NAME ('modname ')

NAME defines a name for the module. Only the first
six characters are significant in a module name. A
module name may also be defined with the TITLE
pseudo-ope In the absence of both the NAME and
TITLE pseudo-ops, the module name is created from
the source file name.

1.5.14 Define Origin

ORG <exp>

The location counter is set to the value of <exp>
and the assembler assigns generated code starting
with that value. All names used in <exp> must be
known on pass 1, and the value must eith~r be
absolute or in the same area as the location
counter.

1.5.15 PAGE

PAGE [<exp>]

PAGE causes the assembler to start a new output
page. The value of <exp>, if included, becomes the
new page size (measured in lines per page) and must
be in the range 10 to 255. The default page size
is 50 lines per page. The assembler puts a form
feed character in the listing file at the end of a
page.

1.5.16 SET

<name> SET <exp>

SET is the same as EQU, except no error is
generated if <name> is already defined.

1.5.17 SUBTTL

SUBTTL <text>

SUBTTL specifies a subtitle to be listed on the
line after the title (see TITLE, Section 1.5.18) on
each page heading. <text> is truncated after 60
characters. Any number of SUBTTLs may be given in
a program.

Microsoft utility Software Page 17

1.5.18 TITLE

TITLE <text>

TITLE specifies a title to be listed on the first
line of each page. If more than one TITLE 'is
given, a Q error results. The first six characters
of the title are used as the module name unless a
NAME pseudo operation is used. If neither a NAME
or TITLE pseudo-op is used, the module name is
created from the source filename.

1.5.19 • COMMENT

.COMMENT <delim><text><delim>

The first non-blank character encountered after
• COMMENT is the delimiter. The following <text>
comprises a comment block which continues until the
next occurrence of <delimiter> is encountered. For
example, using an asterisk as the delimiter, the
format of the comment block would be:

1.5.20 .PRINTX

• COMMENT *
any amount of text entered
here as the comment block

*
ireturn to normal mode

.PRINTX <delim><text><delim>

The first non-blank character encountered after
.PRINTX is the delimiter. The following text is
listed on the terminal during assembly until
another occurrence of the delimiter is encountered •
• PRINTX is useful for displaying progress through a
long assembly or for displaying the value of
conditional assembly switches. For example:

IF CPM
.PRINTX /CPM version/
ENDIF

NOTE

.PRINTX will output on both passes. If
only one printout is desired, use the IF1
or IF2 pseudo-oPe

Microsoft Utility Software Page 18

1.5.21 • RADIX

.RADIX <exp>

The default base (or radix) for all constants is
decimal. The .RADIX statement allows the default
radix to be changed to any base in the range 2 to
16. For example:

LXI H,OFFH
.RADIX 16
LXI H,OFF

The two LXIs in the example are identical. The
<exp> in a .PADIX statement is always in decimal
radix, regardless of the current radix.

1.5.22 • REQUEST

.REQUEST <filename>[,<filename> •••]

.REQUEST sends a request to the LINK-80 loader to
search the filenames in the list for undefined
globals before searching the FORTRAN library. The
filenames in the list should be in the form of
legal MACRO-80 symbols. They should not include
filename extensions or disk specifications. The
LINK-80 loader will scpply its default extension
and will assume the currently selected disk drive.

1.5.23 .Z80

.Z80 enables the assembler to accept Z80 opcodes.
This is the default condition when the assembler is
running on a Z80 operating system. Z80 mode may
also be set by appending the Z switch to the
MACRO-80 command string -- see Section 1.1.2.

'1.5.24 .8080

.8080 enables the assembler to accept 8080 opcodes.
This is the default condition when the assembler is
running on an 8080 operating system. 8080 mode may
also be set by appending the I switch to the
MACRO-80 command string -- see Section 1.1.2.

Microsoft Utility Software Page 19

1.5.25 Conditional Pseudo Operations

The conditional pseudo operations are:

IF 11FT < e.~ f' '>

IFE/IFF <exp>

IF1

IF2

IFDEF <symbol>

True if <exp> is

True if <exp> is

True if pass 1 •

True if pass 2.

True if <symbol>

not o.

o.

is defined
has been declared External.

or

IFNDEF <symbol> True if <symbol> is undefined
or not declared External.

IFB <arg>

IFNB <arg>

True if <arg> is blank. The
angle brackets around <arg>
are required.

True if <arg> is not blank.
Used for testing when dummy
parameters are supplied. The
angle brackets around <arg>
are required.

All conditionals use the following format:

IFxx [argument]
•
•

[ELSE

ENDIF

Conditionals may be nested to any level. Any
argument to a conditional must be known on pass 1
to avoid V errors and incorrect evaluation. For
IF, 1FT, IFF, and IFE the expression must involve
values which were previously defined and the
expression must be absolute. If the name is
defined after an IFDEF or IFNDEF, pass 1 considers
the name to be undefined, but it will be defined on
pass 2.

ELSE
Each conditional pseudo operation may optionally be
used with the ELSE pseudo operation which allows
alternate code to be generated when the opposite
condition exists. Only one ELSE is permitted for a

Microsoft Utility Software Page 20

given IF, and an ELSE is always bound to the most
recent, open IF. A conditional with more than one
ELSE or an ELSE without a conditional will cause a
C error.

ENDIF
Each IF must have a matching ENDIF to terminate the
conditional. Otherwise, an 'Unterminated
conditional' message is generated at the end of
each pass. An ENDIF without a matching IF causes a
C error.

1.5.26 Listing Control Pseudo Operations

Output to the listing file can be controlled by two
pseudo-ops:

.LIST and .XLIST

If a listing is not being made, these pseudo-ops
have no effect. .LIST is the default condition.
When a .XLIST is encountered, source and object
code will not be listed until a .LIST is
encountered.

The output of cross reference information is
controlled by .CREF and .XCREF. If the cross
reference facility (see Section 1.12) has not been
invoked, .CREF and .XCREF have no effect. The
default condition is .CREF. When a .XCREF is
encountered, no cross reference information is
output until .CREF is encountered.

The output of MACRO/REPT/IRP/IRPC expansions is
controlled by three pseudo-ops: .LALL, .SALL, and
.XALL. .LALL lists the comp,lete macro text for all
expansions. .SALL lists only the object code
produced by a macro and not its text. .XALL is the
default condition; it is similar to .SALL, except
a source line is listed only if it generates object
code.

1.5.27 Relocation Pseudo Operations

The ability to create relocatable modules is one of
the major features of MACRO-80. Relocatable
modules offer the advantages of easier coding and
faster testing, debugging and modifying. In
addition, it is possible to specify segments of
assembled code that will later be loaded into RAM
(the Data Relative segment) and ROM/PROM (the Code
Relative segment). The pseudo operations that

Microsoft Utility Software . Page 21

select relocatable areas are CSEG and DSEG. The
ASEG pseudo-op is used to generate non-relocatable
(absolute) code. The COMMON pseudo-op creates a
common data area for every COMMON block that is
named in the program.

The default mode for the assembler is Code
Relative. That is, assembly begins with a CSEG
automatically executed and the location counter in
the Code Relative mode, pointing to location a in
the Code Relative segment of memory. All
subsequent instructions will be assembled into the
Code Relative segment of memory until an ASEG or
DSEG or COMMON pseudo-op is executed. For example,
the first DSEG encountered sets the location
counter to location zero in the Data Relative
segment of memory. The following code is asernbled
in the Data Relative mode, that is, it is assigned
to the Data Relative segment of memory. If a
subsequent CSEG is encountered, the location
counter will return ~o the next free location in
the Code Relative segment and so on.

The ASEG, DSEG, CSEG pseudo-ops never have
operands. If you wish to alter the current value
of the location counter, use the ORG pseudo-oPe

ORG Pseudo-op
At any time, the value of the location counter may
be changed by use of the the ORG pseudo-oPe The
form of the ORG statement is:

ORG <exp>

where the value of <exp> will be the new value of
the location counter in the current mode. All
names used in <exp> must be known on pass 1 and the
value of <exp> must be either Absolute or in the
current mode of the location counter. For example,
the statements

DSEG
ORG 50

set the Data Relative location counter to 50,
relative to the start of the Data Relative segment
of memory.

LINK-80
The LINK-80 linking loader (see Section 2 of this
manual) combines the segments and creates each
relocatable module in memory when the program is
loaded. The origins of the relocatable segments
are not fixed until the program is loaded and the
origins are assigned by LINK-80. The command to

Microsoft Utility Software Page 22

LINK-80 may contain user-specified or~g~ns through
the use of the Ip (for Code Relative) and 10 (for
Data and COMMON segments) switches.

For example, a program that begins with the
statements

ASEG
ORG 800H

and is assembled entirely in Absolute mode will
always load beginning at 800 unless the ORG
statement is changed in the source file. However,
the same program, assembled in Code Relative mode
with no ORG statement, may be loaded at any
specified address by appending the IP:<address>
switch to the LINK-80 command string.

1.5.28 Relocation Before Loading

Two pseudo-ops, .PHASE and .DEPHASE, allow code to
be located in one area, but executed only at a
different, specified area.

For example:

0000' • PHASE 100H
0100 CD 0106 FOO: CALL BAZ
0103 C3 0007' JMP ZOO
0106 C9 BAZ: RET

.DEPHASE
0007' C3 0005 zoo: JMP 5

All labels within a .PHASE block are defined as the
absolute value from the origin of the phase area.
The code, however, is loaded in the current area
(i.e., from D· in this example). The code within
the block can later be moved to 100H and executed.

1.6 Macros and Block Pseudo Operations

1 .6. 1

The macro facilities provided by MACRO-BO include
three repeat pseudo operations: repeat (REPT),
indefinite repeat (IRP) , and indefinite repeat
character (IRPC). A macro definition operation
(MACRO) is also provided. Each of these four macro
operations is terminated by the ENDM pseudo
operation.

Terms

For the purposes of discussion of macros and block

Microsoft Utility Software Page 23

1.6.2

operations, the following terms will be used:

1. <dummy> is used to represent a dummy parameter.
All dummy parameters are legal symbols that
appear in the body of a macro expansion.

2. <dummylist> is a list of <dummy>s separated by
commas.

3. <arglist> is a list of arguments separated by
commas. <arglist> must be delimited by angle
brackets. Two angle brackets with no
intervening characters «» or two commas with
no intervening characters enter a null argument
in the list. Otherwise an argument is a
character or series of characters terminated by
a comma or >. With angle brackets that are
nested inside an <arglist>, one level of
brackets is removed each time' the bracketed
argument is used in an <arglist>. (See
example, Section 1.6.5.) A quoted string is an
acceptable argument and is passed as such.
Unless enclosed in brackets or a quoted string,
leading and trailing spaces are deleted from
arguments.

4. <paramlist> is used to represent a list of
actual parameters separated by commas. No
delimiters are required (the list is terminated
by the end of line or a comment), but the rules
for entering null parameters and nesting
brackets are the same as described for
<arglist>. (See example, Section 1.6.5.)

REPT-ENDM

REPT <exp>

•

ENDM

The block of statements between REPT and ENDM is
repeated <exp> times. <exp> is evaluated as a
16-bit unsigned number. If <exp> contains any
external or undefined terms, an error is generated.
Example:

SET
REPT
SET
DB
ENDM

o
10
X+1
X

;generates DB1-DB10

Microsoft Utility Software Page 24

1.6.3

1.6.4

1.6.5

IRP-ENDM

IRP <dummy>,<arglist>

•

ENDM

The <arglist> must be enclosed in angle brackets.
The number of arguments in the <arglist> determines
the number of times the block of statements is
repeated. Each repetition substitutes the next
item in the <arglist> for every occurrence of
<dummy> in the block. If the <arglist> is null
(i.e., <», the block is processed once with each
occurrence of <dummy> removed. For example:

IRP
DB
ENDM

X,<1,2,3,4,5,6,7,8,9,10>
X

generates the same bytes as the REPT example.

IRPC-ENDM

IRPC <dummy>,string (or <string»
•
•
•

ENDM

IRPC is similar to IRP but the arglist is replaced
by a string of text and the angle brackets around
the string are optional. The statements in the
block are repeated once for each character in the
string. Each repetition substitutes the next
character in the string for every occurrence of
<dummy> in the block. For example:

IRPC
DB
ENDM

X,0123456789
X+1

generates the same code as the two
examples.

MACRO

previous

Often it is convenient to be able io generate a
given sequence of statements from various places in
a program, even though different parameters may be
required each time the sequence is used. This
capability is provided by the MACRO statement. The
form is

Microsoft Utility Software Page 25

<name> MACRO <durnmylist>

ENDM

where <name> conforms to the rules for forming
symbols. <name> is the name that will be used to
invoke the macro. The <dummy>s in <dummylist> are
the parameters that will be changed (replaced) each
time the MACRO is invoked. The statements before
the ENDM comprise the body of the macro. During
assembly, the macro is expanded every time it is
invoked but, unlike REPT/IRP/IRPC, the macro is not
expanded when it is encountered.

The form of a macro call is

<name> <paramlist>

where <name> is thp name supplied in the MACRO
definition, and the parameters in <paramlist> will
replace the <durnmy>s in the MACRO <dummylist> on a
one-to-one basis. The number of items in
<dummylist> and <paramlist> is limited only by the
length of a line. The number of parameters used
when the macro is called need not be the same as
the number of <dummy>s in <dummylist>. If there
are more parameters than <dummmy>s, the extras are
ignored. If there are fewer, the extra <dummy>s
will be made null. The assembled code will contain
the macro expansion code after each ~acro call.

NOTE

A dummy parameter in a MACRO/REPT/IRP/IRPC
is always recognized exclusively as a
dummmy parameter. Register names such as A
and B will be changed in the expansion if
they were used as dummy parameters.

Microsoft Utility Software Page 26

1.6.6

1.6.7

Here is an example of a MACRO definition that
defines a macro called FOO:

Foe MACRO X
Y SET 0

REPT X
Y SET Y+1

DB Y
ENDM
ENDM

This macro generates the same code as the previous
three examples when the call

FOO 10

is executed.

Another example, which generates the same code,
illustrates the removal of one level of brackets
when art argument is used as an arglist:

. FOO

When the call

MACRO X
IRP Y,<X>
DB Y
ENDM
ENDM

FOO <1,2,3,4,5,6,7,8,9,10>

is made, the macro expansion looks like this:

ENDM

IRP
DB
ENDM

Y,<1,2,3,4,S,6,7,8,9,10>
y

Every REPT, IRP, IRPC and MACRO pseudo-op must be
terminated with the ENDM pseudo-oPe Otherwise, the
'Unterminated REPT/IRP/IRPC/MACRO' message is
generated at the end of each pass. An unmatched
ENDM causes an 0 error.

EXITM

The EXITM pseudo-op is used to terminate a
REPT/IRP/IRPC or MACRO call. When an EXITM is
executed, the expansion is exited immediately and
any remaining expansion or repetition is not
generated. If the block containing the EXITM is
nested within another block, the outer level

Microsoft Utility Software Page 27

continues to be expanded.

1.6.8 LOCAL

1.6.9

LOCAL <dummylist>

The LOCAL pseudo-op is allowed only inside a MACRO
definition. When LOCAL is executed, the assembler
creates a unique symbol for each <dummy> i~
<dummylist> and substitutes that symbol for each
occurrence of the <dummy> in the expansion. These
unique symbols are usually used to define a label
within a macro, thus eliminating multiply-defined
labels on successive expansions of the macro. The
symbols created by the assembler range from •• 0001
to •• FFFF. Users will therefore want to avoid the
form •• nnnn for their own symbols. If LOCAL
statements are used, they must be the first
statements in the macro definition.

Special Macro Operators and Forms

& The ampersand is used in a macro expansion to
concatenate text or symbols. A dummy
parameter that is in a quoted string will not
be substituted in the expansion unless it is
immediately preceded by &. To form a symbol
from text and a dummy, put & between them.
For example:

ERRGEN MACRO
ERROR&X:PUSH

MVI
JMP
ENDM

X
B
B, ' &X'
ERROR

In this example, the call ERRGEN A will
generate:

ERRORA: PUSH
MVI
JMP

B
B, 'A'
ERROR

;; In a block operation, a comment preceded by
two semicolons is not saved as part of the
expansion (i.e., it will not appear on the
listing even under .LALL). A comment preceded
by one semicolon, however, will be pr~served
and appear in the expansion.

When an
argument,
literally

exclamation point is used in an
the next character is entered

(i.e.,!: and <:> are equivalent).

Microsoft Utility Software Page 2a

NUL NUL is an operator that returns true if its
argument (a parameter) is null. The remainder
of a line after NUL is considered to be the
argument to NUL. The conditional

IF NUL argument

is false if, during the expansion, the first
character of the argument is anything other
than a semicolon or carriage return. It is
recommended that testing for null parameters
be done using the IFB and IFNB conditionals.

1.7 Using zao Pseudo-ops

When using the aoao/zao assembler, the following
zao pseudo-ops are valid. The function of each
pseudo-op is equivalent to that of its aoao
counterpart.

zao pseudo-op

COND
ENDC
*EJECT
DEFB
DEFS
DEFW
DEFM
DEFL
GLOBAL
EXTERNAL

Equivalent aoao pseudo-op

1FT
ENDIF
PAGE
DB
DS
DW
DB
SET
PUBLIC
EXTRN

The formats, where different, conform to the a080
format. That is, DEFB and DEFW are permitted a
list of arguments (as are DB and DW), and DEFM is
permitted a string or numeric argument (as is DB).

Microsoft utility Software

1.8 Sample Assembly

A>M80

*EXMPL1,TTY:=EXMPL1

0000'
0001'
0002'
0003'

0004'
0006'

0007'

0008'
0009'
OOOA'

OOOB'

OOOC'
OOOF'

0010'
00 11 '
0012'
0013'

CSL3

MAC80 3.2

7E
23
66
6F

06 03
AF

29

17
85
6F

as

C2 0006'
EB

73
23
72
C9

MAC80 3.2

OOOOI' LOOP

No Fatal error{s)

PAGE

PAGE

0006'

1

00100
00200
00300
00400
00450
00500
00600
00700
00800
00900
01000
01100
01200
01300
01400
01500
01600
01700
01800
01900
02000
02100
02200
02300
02400
02500
02600
02700
02800
02900

S

Page 29

iCSL3{P1,P2)
iSHIFT P1 LEFT
iRETURN RESULT

ENTRY
iGET VALUE OF
CSL3:

CIRCULARLY 3 BITS
IN P2

CSL3
FIRST PARAMETER

MOV A,M
INX H
MOV H,M
MOV L,A

iSHIFT COUNT
MVI B,3

LOOP: XRA A
iSHIFT LEFT

DAD H
iROTATE IN CY BIT

RAL
ADD L
MOV L,A

i DECREMENT COUNT
DCR B

iONE MORE TIME
JNZ LOOP
XCHG

iSAVE RESULT IN SECOND PARAMETER
MOV M,E
INX H
MOV M,D
RET
END

Microsoft Utility Software Page 30

1.9 MACRO-aO Errors

MACRo-aD errors are indicated by a one-character
flag in column one of the listing file. If a
listing file is not being printed on the terminal,
each erroneous line is also printed or displayed on
the terminal. Below is a list of the MACRO-aO
Error Codes:

A Argument error
Argument to pseudo-op is not in correct format
or is out of range (.PAGE 1; .RADIX 1;
PUBLIC 1; STAX Hi MOV M,M; INX C).

C Conditional nesting error

D

ELSE without IF, ENDIF without IF, two ELSEs
on one IF.

Double Defined symbol
Reference to a symbol which is
defined.

multiply

E .External error
Use of an external illegal in context (e.g.,
FOO SET NAME##; MVI A,2-NAME##).

M Multiply Defined symbol
Definition of a symbol which is multiply
defined.

N Number error
Error in a number, usually a bad digit (e.g.,
aQ).

o Bad opcode or objectionable syntax
ENDM, LOCAL outside a block; SET, EQU or
MACRO without a name; bad syntax in an opcode
(MOV A:); or bad syntax in an expression
(mismatched parenthesis, quotes, consecutive
operators, etc.).

P Phase error
Value of a label or EQU name is different on
pass 2.

Q Questionable
Usually means a line is not terminated
properly. This is a warning error (e.g. MOV
A,B,).

R Relocation
Illegal use of relocation in expression, such
as abs-rel. Data, code and COMMON areas are
relocatable.

Microsoft Utility Software Paqe 31

U Undefined symbol
A symbol referenced in an expression is not
defined. (For certain pseudo-ops, a V error
is printed on pass 1 and a U on pass 2.)

V Value error
On pass 1 a pseudo-op which must have its
value known on pass 1 (e.g., • RADIX, .PAGE,
OS, IF, IFE, etc.), has a value which is
undefined. If the symbol is defined later in
the program, a U error will not appear on the
pass 2 listing.

Error Messages:

'No end statement encountered on input file'
No END statement: either it is missing
is not parsed due to being in a
conditional, unterminated IRP/IRPC/REPT
or terminated macro.

'Unterminated conditional'

or it
false
block

"At least one conditional is unterminated at
the end of the file.

'Unterminated REPT/IRP/IRPC/MACRO'
At.least one block is unterminated.

[xx] [No] .Fatal error(s) [,xx warnings]
The number of fatal errors and warnings. The
message is listed on the CRT and 'in the list
file.

1.10 Compatibility with Other Assemblers

The $EJECT and $TITLE controls are provided for
compatability with INTEL's ISIS assembler. The
dollar sign must appear in column 1 only if spaces
or tabs separate the dollar sign from the control
word. The control

$EJECT

is the same as the MACRO-80 PAGE pseudo-oPe
The control

$TITLE('text')

is the same as the MACRO-80 SUBTTL <text>
pseudo-oPe

The INTEL operands PAGE and INPAGE generate Q
errors when used with the MACRO-80 CSEG or DSEG

Microsoft Utility Software Page 32

pseudo-ops. These errors are
assembler ignores the operands.

warnings; the

When MACRO-aD is entered, the default for the
or1g1n is Code Relative O. With the INTEL ISIS
assembler, the default is Absolute O.

With MACRO-aD, the dollar sign ($) is a defined
constant that indicates the value of the location
counter at the start of the statement. 'Other
assemblers may use a 'decimal point or a~ asterisk.
Other constants are defined by MACRO-aD to have the
following values:

A=7
H=4

B=O
L=5

1.11 Format of Listings

C=1
M=6

D=2
SP=6

E=3
PSW=6

On each page of a MACRO-aD listing, the first two
lines have the form:

[TITLE text]
[SUBTTL text]

MAcao 3.2 PAGE x[-y]

where:

1. TITLE text is the text supplied with the TITLE
pseudo-op, if one was given in the source
program.

2. x is the major page number, which is
incremented only when a form feed is
encountered in the source file. (When using
Microsoft's EDIT-SO text editor, a form feed is
inserted whenever a page mark is done.) When
the symbol table is being printed, x = 'st.

3. y is the minor page number, which is
incremented whenever the .PAGE pseudo-op is
encountered in the source file, or whenever the
current page size has been filled.

4. SUBTTL text is the text supplied with the
SUBTTL pseudo-op, if one was given in the
source program.

Next, a blank line is printed, followed by the
first line of output.

A line of output on a MACRO-aD listing has the
following form:

[crf#l [error] loc#m xx xxxx . . . source

Microsoft utility Software Page 33

If cross reference information is being output, the
first item on the line is the cross reference
number, followed by a tab.

A one-letter error code followed by a space appears
next on the line, if the line contains an error.
If there is no error, a space is printed. If there
is no cross reference number, the error code column
is the first column on the listing.

The value of the location counter appears next on
the line. It is a 4-digit hexadecimal number or
6-digit octal number, depending on whether the /0
or /H switch was given in the MACRO-80 command
string.

The character at the end of
value is the mode indicator.
following symbols:

"
!

<space>
*

Code Relative
Data Relative
COMMON Relative
Absolute
External

the location counter
It will be one of the

Next, three spaces are prihted followed by the
assembled code. One-byte values are ,followed by a
space. Two-byte values are followed by a mode
indicator. Two-byte values are printed in the
opposite order they are stored in, i.e., the high
order byte is printed first. Externals are either
the offset or the value of the pointer to the next
External in the chain.

The remainder of the line contains the line of
source code, as it was input.

1.11.1 Symbol Table Listing

In the symbol table listing, all the macro names in
the program are listed alphabetically, followed by
all the symbols in the program, listed
alphabetically. After each symbol, a tab is
printed, followed by the value of the symbol. If
the symbol is Public, an I is printed immediately
after the value. The next character printed will
be one of the following:

Microsoft Utility Software Page 34

U

C

*

Undefined symbol.

COMMON block name. (The "value" of the
COMMON block is its length (number of
bytes) in hexadecimal or octal.)

External .symbol.

<space> Absolute value.

Program Relative value.

" Data Relative value.

COMMON Relative value.

1.12 Cross Reference Facility

The Cross Reference Facility is invoked by typing
CREF80. In order to generate a cross reference
listing, the assembler must output a special
listing file with embedded control characters. The
MACRO-80 command string tells the assembler to
output this special listing file. (See Section
1.5.26 for the .CREF and .XCREF pseudo-ops.) IC is
the cross reference switch. When the /C switch is
encountered in a MACRo-aD command string, the
assembler opens a .CRF file instead of a .LST file.

Examples:

*=TEST/C

*T,U=TEST/C

Assemble file TEST.MAC and
create object file TEST.REL
and cross reference file
TEST.CRF.

Assemble file TEST.MAC and
create object file T.REL
and cross reference file
U.CRF.

When the assembler is finished, it. is necessary to
call the cross reference facility by typing CREF80.
The command string is:

*listing file=source file

Possible command strings are: The default
extension for the source file is .CRF. The /L
switch is ignored, and any other switch will cause
an error message to be sent to the terminal.
Possible command strings are:

Microsoft Utility Software

*=TEST

*T=TEST

Page 35

Examine file TEST.CRF and
generate a cross reference
listing file TEST.LST.

Examine file TEST.CRF and
generate a cross reference
listing file T.LST.

Cross reference listing files differ from ordinary
listing files in that:

1. Each source statement is numbered with a cross
reference number.

2. At the end of the listing, variable names
appear in alphabetic order along with the
numbers of the lines on which they are
referenced or defined. Line numbers on which
the symbol is defined are flagged with '#'.'

Microsoft Utility Software Page 36

2.1

2.1.1

SECTION 2

LINK-SO Linking Loader

Format of LINK-SO Commands

LINK-SO Command Strings

To run LI~fK-SO, type LSO followed by a carriage
return. LINK-SO will return the prompt n*,. (with
the DTC operating system, the -prompt is ">"),
indicating it is ready to accept commands. Each
command to LINK-SO consists of a string of
filenames and switches separated by commas:

objdev1:filename.ext/switch1,objdev2:filename.ext, •••

If the input device for a file is omitted, the
default is the currently logged disk. If the
extension of a file is omitted, the default is
.REL. After each line is typed, LINK will load or
search (see /S below) the specified files. After
LINK finishes this process, it will list all
symbols that remained undefined followed by an
asterisk.

Example:

*MAIN

DATA

SUBR1*

DATA

*SUBR1
*/G

0100 0200

(SUBR1 is undefined)

0100 0300

(Starts Execution - see below)

Typically, to execute a FORTRAN and/or COBOL
program and subroutines, the user types the list of
filenames followed by /G (begin execution). Before
execution begins, LINK-SO will always search the
system library (FORLIB.REL or COBLIB.REL) to
satisfy any unresolved external references. If the
user wishes to first search libraries of his own,
he should append the filenames that are followed by
/S to the end of the loader command string.

Microsoft Utility Software Page 37

2.1.2 LINK-SO Switches

A number of switches may be given in the LINK-SO
command string to specify actions affecting the
loading process. Each switch must be preceded by a
slash (/). These switches are:

Switch

R

E or E:Name

G or G:Name

N

Action

Reset. Put loader back in its
initial state. Use /R if you
loaded the wrong file by mistake
and want to restart. /R takes
effect as soon as it is encountered
in a command string.

Exit LINK-SO and return to the
Operating System. The system
library will be searched on the
current disk to satisfy any
existing undefined globals. The
optional form E:Name (where Name is
a global symbol previously defined
in one of the modules) uses Name
for the start address of the
program. Use /E to load a program
and exit back to the monitor.

Start execution of the program as
soon as the current command line
has been interpreted. The system
library will be searched on the
current disk to satisfy any
existing undefined globals if they
exist. Before execution actually
begins, LINK-SO prints three
numbers and a BEGIN EXECUTION
message. The three numbers are the
start address, the address of the
next available byte, and the number
of 256-byte pages used. The
optional form G:Name (where Name is
a global symbol previously defined
in one of the modules) uses Name
for the start address of the
program.

If a <filename>/N is specified, the
program will be saved on disk under
the selected name (with a default
extension of .COM for CP/M) when a
/E or /G is done. A jump to the
start of the program is inserted if
needed so the program can run
properly (at 100H for CP/M).

Microsoft UtilitY'Software Page 38

P and D

u

M

/p and /D allow the origines) to be
set for the next program loaded.
/P and /0 take effect when seen
(not deferred), and they have no
effect on programs already loaded7
The form is /P:<address> or
/D:<address>, where <address> is
the desired origin in the current
typeout radix. (Default radix for
non-MITS versions is hex. /0 sets
radix to octal; /H to hex.)
LINK-80 does a default /P:<link
origin>+3 (i.e., 103H for CP/M and
4003H for ISIS) to leave room for
the jump to the start address.

NOTE: Do not use /P or /0 to load
programs or data into the locations
of the loader's jump to the start
address (100H to 102H for CPM and
2800H to 2802H for DTC) , unless it
is to load the start of the program
there. If programs or data are
loaded into these locations, the
jump will not be generated.

If no /0 is given, data areas are
loaded before program areas for
each module. If a /0 is given, all
Data and Common areas are loaded
starting at the data origin and the
program area at the program origin.
Example:

*/P:200,FOO
Data 200 300
*/R
*/P:200 /D:400,FOO
Data 400 480
Program 200 280

List the origin and end of the pro­
gram and data area and all
undefined globals as soon as the
current command line has been
interpreted. The program informa­
tion is only printed if a /D has
been done. Otherwise, the program
is stored in the data area.

List the origin and end of the pro­
gram and data area, all defined
globals and their values, and all
undefined globals followed by an
asterisk. The program information

Microsoft Utility Software Page 39

S

is only printed if a /D has been
done. Otherwise, the program is
stored in the data area.

Search the filename immediately
preceding the /S in the command
string to satisfy any undefined
globals.

Examples:

*/M List all globals

*MYPROG,SUBROT,MYLIB/S

*/G

Load MYPROG.REL and SUBROT.REL and
then search MYLIB.REL to satisfy
any remaining undefined globals.

Begin execution of main program

2.2 Sample Link

A>L8.D
*EXAMPL,EXMPL1/G
DATA 3000 30AC
[304F 30AC 49]
[BEGIN EXECUTION]

A>

1792
14336

-16383
14

112

14336
-16383

14
112
896

2.3 Format of LINK Compatible Object Files

NOTE

Section 2.3 is reference material for users
who wish to know the load format of LINK-80
relocatable object files. Most users will
want to skip this section, as it does not
contain material necessary to the operation
of the package.

LINK-compatible object files consist of a bit
stream. Individual fields within the bit stream
are not aligned on byte boundaries, except as noted
below. Use of a bit stream for relocatable object
files keeps the size of object files to a minimum,
thereby decreasing the number of disk reads/writes.

Microsoft Utility Software Page 40

There are two basic types of load items: Absolute
and Relocatable. The first bit of an item
indicates one of these two types. If the first bit
is a 0, the following 8 bits are loaded as an
absolute byte. If the first bit is a 1, the next 2
bits are used to indicate one of four types of
relocatable items:

00 Special LINK item (see below).

01 Program Relative. Load the following 16
bits after adding the current Program
base.

10 Data Relative. Load the following 16
bits after adding the current Data base.

11 Common Relative. Load the following 16
bits after adding the current Common
base.

Special LINK items consist of the bit stream 100
followed by:

a four-bit control field

an optional A field consisting
of a two-bit address type that
is the same as the two-bit field
above except 00 specifies
absolute address

an optional B field consisting
of 3 bits that give a symbol
length and up to 8 bits for
each character of the symbol

A general representation of a special LINK item is:

1 00 xxxx yy 00 zzz + characters of symbol name

xxxx
yy
00
zzz

The
o
1
2
3

A field B field

Four-bit control field (0-15 below)
Two-bit address type field
Sixteen-bit value
Three-bit symbol length field

following special types have a B-field only:
Entry symbol (name for search)
Select COMMON block
Program name
Request library search

Microsoft Utility Software Page 41

4 Reserved for future expansion

The following special LINK items have both an A
field and a B field:

5 Define COMMON size
6 Chain external (A is head of address chain,

B is name of external symbol)
7 Define entry point (A is address, B is name)
a Reserved for future expansion

The following special LINK items have an A field
only:

9 External + offset. The A value will
be added to the two bytes starting
at the current location counter
immediately before execution.

10 Define size of Data area (A is size)
11 Set loading location counter to A
12 Chain address." A is head of chain,

replace all entries in chain with current
location counter.
The last entry in the chain has an
address field of absolute zero.

13 Define program size (A is size)
14 End program (forces to byte boundary)

The following special Link item has neither an A nor
a B field:

15 End file

2.4 LINK-aD Error Messages

LINK-ao has the following error messages:

?No Start Address

?Loading Error

?Out of Memory

?Command Error

?<file> Not Found

A /G switch was issued,
but no main program
had been loaded.

The last file given for input
was not a properly formatted
LINK-aD object file.

Not enough memory to load
program.

Unrecognizable LINK-aD
command.

<file>, as given in the command
string, did not exist.

Microsoft Utility Software Page 42

%2nd COMMON Larger /XXXXXX/
The first definition of
COMMON block /XXXXXX/ was not
the largest definition. Re­
order module loading sequence
or change CO~1MON block
definitions.

%Mult. Def. Global YYYYYY
More than one definition for
the global (internal) symbol
YYYYYY was encountered during
the loading process.

%Overlaying [program] Area [,start = xxxx]
Data ,Public = <symbol name>(xxxx)

,External = <symbol name>(xxxx)
A /D or /P will cause already
loaded data to be destroyed.

?Intersecting
[
program1 Area
Data J

The program and data area
intersect and an address or
external chain entry is in
this intersection. The
final value cannot be con­
verted to a current value
since it is in the area
intersection.

?Start Symbol - <name> - Undefined
After a /E: or /G: is given,
the symbol specified was not
defined.

Origin [Above] Loader Memory, Move Anyway (Y or N)?
Below

?Canlt Save Object File

After a /E or /G was given,
either the data or program
area has an origin or top
which lies outside loader
memory (i.e., loader origin
to top of memory). If a
Y <cr> is given, LINK-SO
will move the area and con­
tinue. If anything else is
given, LINK-80 will exit.
In either case, if a /N was
given, the image will already
have been saved.

A disk error occurred when
the file was being saved.

Microsoft Utility Software Page 43

2.5 Program Break Information

LINK-80 stores the address of the first free
location in a global symbol called $MEMRY if that
symbol has been defined by a program loaded.
$MEMRY is set to the top of the data area +1.

NOTE

If /D is given and the data origin is less
than the program area, the user must be
sure there is enough room to keep the
program from being destroyed. This is
particularly true with the disk driver for
FORTRAN-80 which uses $MEMRY to allocate
disk buffers and FeB's.

Microsoft Utility Software Page 44

SECTION 3

LIB-SO Library Manager
(CP/M Versions Only)

LIB-SO is the object time library manager for CP/M versions
of FORTRAN-SO and COBOL-SO. LIB-SO will be interfaced to
other operating systems in future releases of FORTRAN-BO and
COBOL-80.

3.1 LIB-SO Commands

3. 1 • 1

To run LIB-SO, type LIB followed by a carriage
return. LIB-SO will return the prompt "*.11 (with
the DTC operating system, the prompt is ">"),
indicating it is ready to accept commands. Each
command in LIB-SO either lists information about a
library or adds new modules to the library under
constructiorr.--..

Commands to LIB-SO consists of an optional
destination filename which sets the name of the
library being created, followed by an equal sign,
followed by module names separated by commas. The
default destination filename is FORLIB.LIB.
Examples:

*NEWLIB=FILE1 <MOD2>, FILE3,TEST

*SIN,COS,TAN,ATAN

Any command specifying a set of modules
concatenates the modules selected onto the end of
the last destination filename given. Therefore,

*FILE1,FILE2 <BIGSUB>, TEST

is equivalent to

Modules

*FILE1
*FILE2 <BIGSUB>
*TEST

A module is typically a
subprogram, main program or
that contains ENTRY statements.

FORTRAN or COBOL
a MACRO-SO assembly

The primary function of LIB-SO is to concatenate
modules in .REL files to form a new library. In

Microsoft Utility Software Page 45

order to extract modules from previous libraries or
.REL files, a powerful syntax has been devised to
specify ranges of modules within a .REL file.

The simplest way to specify a module within a file
is simply to use the name of the module. For
example:

SIN

But a relative quantity plus or minus 255 may also
be used. For example:

SIN+1

specifies the module after SIN and

SIN-1

specifies the one before it.

Ranges of modules may also be specified by using
two .dots:

•• SIN means all modules up to and including
SIN.

SIN •• means all modules from SIN to the end
of the file.

SIN •• COS means SIN and COS and all the
modules in between.

Ranges of modules and relative offsets may also be
used in combination:

SIN+1 •• COS-1

To select a given module from a file, use the name
of the file followed by the module(s) specified
enclosed in angle brackets and separated by commas:

FORLIB <SIN •• COS>

or

MYLIB.REL <TEST>

or

BIGLIB.REL <FIRST,MIDDLE,LAST>

etc.

If no modules are selected from a file, then all

Microsoft utility' Software Page 46

the modules in the file are selected:

TESTLIB.REL

3.2 LIB-BO Switches

A number of switches are used to control LIB-BO
operation. These switches are always preceded by a
slash:

/0 Octal - set Octal typeout mode for /L
command.

/H Hex - set Hex typeout mode for /L
command (default).

/U List the symbols which would remain
undefined on a search through the
file specified.

/L List the modules in the files specified
and symbol definitions they contain.

/C (Create) Throwaway the library under
construction and start over.

/E Exit to CP/M. The library under
construction (.LIB) is revised to .REL
and any previous copy is deleted.

/R Rename - same as /E but does not exit
to CP/M on completion.

3.3 LIB-80 Listings

To list the contents of a file in cross reference
format, use /L:

*FORLIB/L

When building libraries, it is important to order
the modules such that any intermodule references
are "forward." That is, the module containing the
global reference should physically appear ahead of
the module containing the entry point. Otherwise,
LINK-80 may not satisfy all global references on a
single pass through the library.

Use /u to list the symbols which could be undefined
in a single pass through a library. If a module in
the library makes a backward reference to a symbol
in another module, /U will list that symbol.
Example:

Microsoft Utility Software Page 47

*SYSLIB/U

NOTE: Since certain modules in the standard
FORTRAN and COBOL systems are always force-loaded,
they will be listed as undefined by /U but will not
cause a problem when loading FORTRAN or COBOL

- programs.

Listings are currently always sent to the terminal;
use control-P to send the listing to the printer.

3.4 Sample LIB Session

A>LIB

*TRANLIB=SIN,COS,TAN,ATAN,ALOG
*EXP
*TRANLIB.LIB/U
*TRANLIB.LIB/L

•
•
•

(List of symbols in TRANLIB.LIB)
•

*/E
A>

3.5 . Summary of Switches and Syntax

/0 Octal - set listing radix
/H Hex - set listing radix
/U List undefineds
IL List cross reference
IC Create - start LIB over
IE Exit - Rename .LIB to .REL and exit
IR Rename - Rename .LIB to .REL

module::=module name {+ or - nUmber}

module sequence ::=

module I •• module I module •• I module1 •• module2

file specification::=filename {<module sequence> {,<module sequence>}'

command::= {library filename=} {list of file specifications}
{list of switches}

Microsoft Utility Software Page 48

SECTION 4

Operating Systems

This section describes the use of MACRO-80 and LINK-80 under
the different disk operating systems. The examples shown in
this section assume that the FORTRAN-80 compiler is in use.
If you are using the COBOL-80 compiler, substitute "COBOL"
wherever "FSO" appears, and substitute the extension ".COB"
wherever ".FOR" appears.

4. 1 CPM

Create a Source File
Create a source--file using the CPM editor.
Filenames are up to eight characters long, with
3-character extensions. FORTRAN-SO source
filenames should have the extension FOR, COBOL-SO
source filenames should have the extension COB, and
MACRO-SO source filenames should have the extension
MAC.

Compile the Source File
Before attempting -ro- compile the program and
produce object code for the first time, it is
advisable to do a simple syntax check. Removing
syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
a source file called MAX1.FOR, type

A>FSO ,=MAX1

This command compiles the source file MAX1.FOR
without producing an object or listing file. If
necessary, return to the editor and correct any
syntax errors.

To compile the source file and produce an object
and listing file, type

A>FSO MAX1,MAX1=MAX1
or

A>FSO =MAX1/L

The compiler will create a REL (relocatable) file
called MAX1.REL and a listing file 'called MAX1.PRN.

Loading, Executing and Saving the Program (Using
LINK-SO) -
To load the program into memory and execute it,­
type

Microsoft Utility Software Page 49

A>L80 MAX1/G

To exit LINK-80 and save the memory image (object
code), type

A>L80 MAX1/E,MAX1/N

When LINK-80 exits, three numbers will be printed:
the starting address for execution of the program,
the end address of the program and the number of
256-byte pages used. For example

[210C 401A 48]

If you wish to use the CPM SAVE command to save a
memory image, the number of pages used is the
argument for SAVE. For example

A>SAVE 48 MAX1.COM

NOTE

CP/M always saves memory starting at 100H
and jumps to 100H to begin execution. Do
not use /P or /D to set the origin of the
program or data ar~a to 100H, unless
program execution will actually ,begin at
100H.

An obj.ect code file has now been saved on the disk
under the name specified with /N or SAVE (in this
case MAX1). To execute the program simply type the
program name

A>MAX1

CPM - Available Devices

A:, B:,
HSR:
LST:
TTY:

C:, D: disk drives
high speed reader
line printer
Teletype or CRT

CPM Disk Filename Standard Extensions

FOR FORTRAN-80 source file
COB COBOL-BO source file
MAC MACRO-BO object file
REL relocatable object file
PRN listing file
COM absolute file

Microsoft utility' Software Page 50

CPM Command Lines
CPM command lines and files are supported; i.e., a
COBOL-SO, FORTRAN-SO, MACRO-SO or LINK-SO command
line may be placed in the same line with the CPM
run command. For example, the command

A>FSO =TEST

causes CPM to load and run the FORTRAN-SO compiler,
which then compiles the program TEST. FOR and
creates the file TEST.REL. This is equivalent to
the following series of commands:

A>FSO
*=TEST
*AC
A>

4.2 DTC Microfile

Create a Source File
Create -a source--file using the DTC editor.
Filenames are up to five characters long, with
1-character extensions. COBOL-SO, FORTRAN-SO and
MACRO-SO source filenames should have the extension
T.

Compile the Source File
Before attempting ~ compile the program and
produce object code for the first time, it is
advisable to do a simple syntax check. Removing
syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
the source file called MAX1, type

*FSO ,=MAX1

This command compiles the source file MAX1 without
producing an object or listing file. If necessary,
return to the editor and correct any syntax errors.

To compile the source file MAX 1 and produce an
object and listing file, type

or
*FSO MAX1,MAX1=MAX1

*F80 =MAX1/L/R

The compiler will create a relocatable file called
MAX1.0 and a listing file called MAX1.L.

Loading, Executing and Saving the Program (Using
LINK-SO) ---
To load the program into memory and execute it,

Microsoft Utility Software Page 51

type

*L80 MAX1/G

To save the memory image (object code), type

*L80 MAX1/E

which will exit from LINK-80, return to the DOS
monitor and print three numbers: the starting
addressfor execution of the program, the end
address of the program, and the number of 256-byte
pages used. For example

[210C 401A 48]

Use the DTC SAVE command to save a memory image.
For example

*SA MAX1 2800 401A 2800

2800H (24000Q) is the load address used by the DTC
Operating System.

NOTE

If a /P:<address> or /D:<address> has been
included in the loader command to specify
an origin other than the default (2800H),
make sure the low address in the SAVE
command is the same as the start address of
the program.

An object code file has now been saved on the disk
under the name specified in the SAVE command (in
this case MAX1). To execute the program, simply
type

*RUN MAX1

DTC Microfile - Available Devices

DO:, D1:, D2:, D3:
TTY:
LIN:

disk drives
Teletype or CRT
communications port

DTC Disk Filename Standard Extensions

T COBOL-80, FORTRAN-80 or
MACRO-80 source file

o relocatable object file
L listing file

Microsoft Utility 'Software Page 52

DTC Command Lines
DTC command lines are supported as described in
Section 4.1, CPM Command Lines.

4.3 Altair DOS

Create a Source File
Create a source file using the Altair DOS editor.
The name of the file should have four characters,
and the first character must be a letter. For
example, to create a file called MAX 1 , initialize
DOS and type

.EDIT MAX1

The editor will respond

CREATING FILE
00100

Enter the program. When you are finished entering
and editing the program, exit the editor.

Compile the Source File
Load the compiler by typing

.Fao

The compiler will return the prompt character "*" •

Before attempting to compile the program and
produce object code for the first time, it is
advisable to do a simple syntax check. Removing
syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
the source file called MAX 1 , type

* ,=&MAX1.

(The editor stored the program as &MAX1) Typing
,=&MAX1. compiles the source file MAX1 without
producing an object or listing file. If necessary,
return to the editor and correct any syntax errors.

To compile the source file MAX 1 and produce an
object and listing file, type

*MAX1R,&MAX1=&MAX1.

The compiler will create a REL (relocatable) file
called MAX1RREL and a listing file called &MAX1LST.
The REL filename must be entered as five characters
instead of four, so it is convenient to use the
source filename plus R.

Microsoft Utility Software Page 53

After the source file has been compiled and a
prompt has been printed, exit the compiler. If the
computer uses interrupts with the terminal, type
Control C. If not, actuate the RESET switch on the
computer front panel. Either action will return
control· to the monitor.

Using LINK-SO
Load LINK-SO by typing

.• LSO

LINK-SO will respond with a "*" prompt. Load the
program into memory by entering the name of the
program REL file

*MAX1R

Executing and Saving the Program
Now you are ready to either execute ·the program
that is in memory or save-a memory-image (object
code) of the. program on disk. To execute the
program, type

*/G

To save the memory image (object code)., type

*/E

which-will exit from LINK-SO, return to the DOS
monitor and print three numbers: the starting
address for execution of the program, the end

. address of the program, and the number of 256-byte
pages used. For example

[26301 44054 35]

Use the DOS SAVE command to save a memory image.
Type

.SAV MAX1 0 17100 44054 26301

17100 is the load address used by Altair
the floppy disk. (With the hard disk, use

DOS for
44000.)

An object code file h[s now been saved on the disk
under the name specified in the SAVE command (in
this case MAX1). To execute the program, simply
type the program name

.MAX1

Microsoft Utility' Software Page 54·

Altair DOS - Available Devices

FO:, F1:, F2:, •••
TTY:

disk drives
Teletype or CRT

Altair DOS Disk Filename Standard Extensions

FOR FORTRAN-SO source file
COB COBOL-SO source file
MAC MACRO-SO source file
REL relocatable object file
LST listing file

Command Lines
Command lines are not supported by Altair DOS.

4.4 ISIS-II

Create a Source File
Create a source file using the ISIS-II editor.
Filenames are up to six characters long, with
3-character extensions. FORTRAN-SO source
filenames should have the extension FOR and
COBOL-SO source filenames should have the extension
COB. MACRO-SO source filenames should have the
extension MAC.

Compile the Source File
Before attempting ~ compile the program and
produce object code for the first time, it is

. advisable to do a simple syntax check. Remo~ing
syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
the source file called MAX1.FOR, type

-FSO , = MAX 1

This command compiles the source file MAX1.FOR
without producing an object or listing file. If
necessary, return to the editor and correct any
syntax errors.

To compile the source file MAX1.FOR and produce an
object and listing file, type

-FSO MAX1,MAX1=MAX1
or

-FSO =MAX1/L/R

The compiler will create a REL (relocatable) file
called MAX1.REL and a listing file called MAX1.LST.

Microsoft Utility Software Page 55

Loading, Saving and Executing the Program (Using
LINK-SO) -
To load the program into memory and execute it,
type

-LSO MAX1/G

To save the memory image (object code), type

-LSD MAX1/E,MAX1/N

which will exit from LINK-SO, return to the ISIS-II
monitor and print three numbers: the starting
address for execution of the program, the end
address of the program, and the number of 256-byte
pages used. For example

[210C401A 4S]

An object 'code file has now .beensaved .,on the disk
under the: name specified with /N (in this case
MAX 1) •

ISIS-II - Available Devices

:FO:, :F1:, :F2:, •••
TTY:
LST:

disk drives
Teletype or CRT
line printer

ISIS-II Disk Filename ,.Standard Extensions

FOR FORTRAN-SO source file
COB COBOL-SO source file
MAC MACRO-SO source file
REL relocatable object file
LST listing file

ISIS-II Command Lines
ISIS-II command lines are supported as described in
Section 4.1, CPM Command Lines.

Microsoft Utility 'Software

Index

.8080 ••
• COMMENT
.CREF • •
• DEPHASE
.LALL ••
• LIST • •
.PAGE • •
• PHASE •
• PRINTX •
• RADIX •
• REQUEST
.SALL •
.XALL •
.XCREF
.XLIST
.Z80 •

•
•
•
•
•

• •
•

•
• •
• •
• •
• •

•
• •
• •

• •
• •
• •
• •
• •

• • •
• • •
• •
• •
• • •

• •
• •
• • •
• • •
• • •
• •
• • •
• • •
• •
• • •
• • •

Absolute memory • •
Al tair ••• • • •
Arithmetic operators
ASEG ••••••

Block pseudo ops •

• • 1a
• • • 17
• • • 20
• • 22

• • 20
• • • 20
• • • 32
• • • 22
• • 17
• • • 8, 18
• 18
• • • 20
• • • 20
• • • 20
• • • 20
• • • 18

• • • 10, 12,
• • • 6, 52

• • 10
• • • 11-12,

• · . 22

Character constants • • • 9

33

21

Code Relative •••••• 13, 21-22, 33
Command format •••• 5, 36, 44
Comments •••••••• 8

Page 56

COMMON • • • • • • • • • 11, 13, 21-22, 33-34
Conditionals •••••• 19
Constants • • • • • • • • 8
CP/M •••••••••• 37, 48
Cross reference facility 20, 33-34
CSEG ••••••••• 11, 13, 21, 32

Data Relative •
Define Byte • •
Define Character
Define Origin •
Define Space •
Define Word • •
DSEG • • • • •
DTC •• • • • •

EDIT-ao •
ELSE • •
END •••
ENDIF • •
ENDM ••
ENTRY ••
EQU •••

•
•

•
•

•

•
•
•

•
•
•

Error codes •
Error messages

•
•
•
•
•

•

•
•

•
•
•
•
•

•
•
•
•
•
•
•
•
•

• • • • 10, 14, 20-22, 33
• • • • 8, 13
• • • • 14
• • • • 16
• • • • 14
• • • • 14
• • • • 11, 14, 21, 32
• • • • 5, 36, 44, 50

• • • • 7, 32
• • • • 19

• • • 15
• • • • 19-20
• • • • 22, 26
• • 15, 44
• • • • 15-16
• • • • 30, 33
• • • • 31, 41

EXITM • • • • • • • 26
EXT • • • • • • • • • 15
Externals • • • • • • • 11 , 15, 30, 33
EXTRN • • • • • • • 15

IF • • • • 19
IF1 • 19
IF2 • • • 19
IFB · • • • 19
IFDEF · • • • • • 19
IFE • • • • • • 19
IFF • • • • 19
IFNB • • • • • 19
1FT · • • • • • 19
INTEL • • 6, 31-32
IRP · • • • • 20, 22, 24
IRPC • 20, 22, 24
ISIS-II • • • • • • • 38, 54

Librarymanager . • 44
Listings • • 20, 32-33, 35, 46
LOCAL · • • • 27
Logical operators • 10

MACRO · • 20, 22-26
Macro operators 27
Modes • • • 10
Modules • • • • 44

NAME • • • 16

Operating system • 48
Operators • • 10
ORG • • ~ • • • • • • 12-14, 16, 21

PAGE • • • • • • • 16, 31
Program Relative 10
PUBLIC • • • • • • • 7, 15, 33

REPT • • 20, 22-23

SET • • • • 16
Strings • • • • 9
SUBTTL 16, 31-32
Switches • • • 6, 37, 46-47
Symbol table • • 32-33

TITLE • • • 16-17, 32

Microsoft Utility Software
ADDENDUM TO: Section 4, Operating Systems
10/7S

FORTRAN-SO under TEKDOS

FORTRAN-SO and MACRO-SO

The FORTRAN-SO compiler and MACRO-SO assembler accept
commands of the same format as TEKDOS assembler commands;
i.e., three filename or device name parameters plus
optional switches.

FSO [object-output] [list-output] {source-input} [sw1] [sw2] •••

The object and listing file parameters are optional.
These files will not be created if the parameters are
omitted, however any error messages will still be displayeq
on the console. The available switches are as described
in the FORTRAN-SO User's Manual and Microsoft Utility
Software Manual, except that the switches are delimited
by commas or blanks instead of slashes.

LINK-SO

The LINK-SO loader accepts interactive commands only.
When LINK-SO is invoked, and whenever it is waiting for
input, it will prompt with an asterisk. Commands are
lists of filenames and/or devices separated by commas and
optionally interspersed with switches. The input to
LINK-SO must be Microsoft relocatable object code (not
the same as TEKDOS loader format). ---

Switches to LINK-SO are delimited by hyphens under TEKDOS,
instead of slashes. All LINK-SO switches. (as documented
in the Microsoft Utility Software Manual) are supported,
except "G" and "N", which are not implemented at this time.

Examples:

1. Compile a Fortran program named FTEST, creating
an object file called FREL and a listing file
called FLST:

>FSO FREL FLST FTEST

ADDENDUM
FORTRAN-BO under TEKDOS

2. Load FTEST, link in the required library routines,
and save the loaded module:

>LBO
*FREL-E
[04AD 22BB]
*DOS*ERROR 46
LBO TERMINATED
>M FMOD 400 22BB 04AD

Note that "-E" exits via an error message due to execution
of a Halt instruction. The memory image is intact, however,
and the "Module" command may be used to save it. Once a
program is saved in module format, it may then be executed
directly without going through LINK-BO again. "-E" searches
the system library (FORLBREL), if necessary, before exiting.

The bracketed numbers printed by LINK-BO before exiting
are the entry point address and the highest address loaded,
respectively. The loader default is to begin loading at
400H. However, the loader also places a jump to the start
address in location 0, thereby allowing execution to begin
at O. "

The memory locations between 0003 and 0400H are reserved
for SRB's and I/O buffers at runtime. If you wish to
load a program below 400:8, then the I/O drivers should be
altered. The modules that must potentially be modified
for custom I/O are:

DSKDRV, TERIO, INIT, LUNTB, IOINIT, EXIT

These source modules are provided on the standard distribu­
tion disks and may be modified and assembled using MACRO-BO.
If the modified I/O routines are then force-loaded before
the library search, the standard library routines will
not be loaded.

Disk I/O and LUN Assignments

(See FORTRAN-BO Reference Manual, Section B.3.)

Logical units 1-4 are assigned to the console and may be
used "for either input or output.

Logical units 5-10 go through DSKDRV. They default to
sequential disk files with the names

FOR05DAT, ••• ,FOR10DAT.

ADDENDUM
FORTRAN-SO under TEKDOS

These units may be re-assigned to any filename or device
using an OPEN call. The form of an OPEN call is:

CALL OPEN(LUN, filename)

where LUN is a logical unit number (Integer variable
or constant between 5 and 10), and filename is a Hollerith
or Literal constant or variable containing the ASCII
filename and/or device. The filename cannot have more than
11 characters, and it must be terminated by a blank or
null character.

Examples:

CALL OPEN(S,'TSTFIL/1 ')

opens TSTFIL on drive 1 and associates it with LUNS.

CALL OPEN(S,'REMO ')

opens LUNS for device REMO.

ADDENDUM
FORTRAN-80 under TEKDOS

CREF80

The form of commands to CREF80 is:

C80 {list-output} {cref-input} [sw1] [sw2] •••

Both filename parameters are required; switches are optional.

Example:

Create a CREF file using MACRO-80:

M80 II TSTCRF TSTMAC C

Create a cross reference listing from the CREF file:

C80 TSTLST TSTCRF

