XEROX

COBOL-80

. ALL SOFTWARE IS WARRANTED AS SET OUT IN THE XEROX
OFFICE PRODUCTS SOFTWARE LICENSE AND SOFTWARE
MAINTENANCE AGREEMENT

610P70643

Acknowledgment

‘"Any organization interested in reproducing the COBQOL report and specifications in whole
or in part, using ideas taken from this report as the basis for an instruction manual or for
any other purpose is free to do so. However, all such organizations are requested to
reproduce this section as part of the introduction to the document. Those using a short

passage, as in a book review, are requested to mention, 'COBOL' in acknowledgment of
the source, but need not quote this entire section.

"COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

"No warranty, expressed or implied, is made by any contributor or by the COBOL
Committee as to the accuracy and functioning of the programming system and language.
Moreover, no responsibility is assumed by any contributor, or by the committee, in
connection therewith.

"Procedures have been established for the maintenance of COBOL. Inquiries concerning

the procedures for proposing changes should be directed to the Executive Committee of
the Conference on Data Systems Languages.

"The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (Trademark of Sperry Rand Corporation),
Programming for the UNIV AC (R) [and II, Data Automation
Systems copyrighted 1958, 1959, by Sperry Rand Corporation;
IBM Commercial Translator, Form No. F28-8013, copyrighted
1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL
specification in programming manuals or similar publications.”

—from the ANSI COBOL STANDARD
(X3.23-1974)

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is
furnished under a license agreement or non-disclosure agreement. The software may be
used or copied only in accordance with the terms of the agreement.

(C) Microsoft, 1980

CP/M is a registered trade mark of Digital Research

8302-401-02

microsoft
cobol-80
documentation

Microsoft COBOL-80 and associated software are accompanied by the following documents:

1.

COBOL-80 USER’S GUIDE
describes all the procedures associated with running COBOL-80, writing COBOL programs,
and running the programs with your hardware.

COBOL-80 REFERENCE MANUAL
provides extensive descriptions of COBOL-80’s statements, syntax and organization.

MICROSOFT UTILITY SOFTWARE MANUAL
describes the use of the MACRO-80 Assembler, LINK-80 Linking Loader and LIB-80 Library
Manager with the COBOL-80 compiler.

cobol-80
user’s
guide

C0OBOL-80 User's Guide

Table of Contents

Section 1 Overview
1.1 Introduction 1
1.2 Your Distribution Disk 1
1.3 Getting Started 3
1.4 Program Development Steps 3
Section 2 Compiling COBOL Programs
2.1 COBOL-80 Command Line Syntax 5
2.2 Compiler Switches 7
2.3 Qutput Listings and Error Messages 7
2.4 Files Used by COBOL-80 9
Section 3 Loading COBOL Programs
3.1 LINK-80 Command Line Syntax 11
3.2 Subprograms 12
3.3 Function Libraries 13
Section 4 Executing COBOL Programs
4.1 The Runtime System 14
4.2 Printer File Handling 14
4.3 Disk File Handling 15
4.4 CRT Handling 15
4.5 Runtime Errors 16
Appendices
Appendix A Configuring the CRT
A.l General Instructions 20
A.2 Terminal Charts 21
A.3 Writing a CRT Driver 32
Appendix B Interprogram Communication
B.1 Subprogram Calling Mechanism 34
B.2 CHAIN Parameters 35
B.3 CHAIN Error Messages 36
Appendix C Customizations
C.1 Source Program Tab Stops 37
C.2 Compiler Listing Page Length 37

C.3 Runtime DAY, DATE, TIME, LINE NUMBER 37

Appendix D COBOL-80 with non-CP/M Operating Systems

D.1 TRSDOS Model II 40
D.2 ISIS-II 43

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is
furnished under a license agreement or non-disclosure agreement. The software may be
used or copied only in accordance with the terms of the agreement.

(C) Microsoft, 1978

To report software bugs or errors in the documentation, please complete and return the
Problem Report at the back of this manual.

CP/M is a registered trade mark of Digital Research

COBOL-80 User's Guide - Release 4 1

Section 1

OVERVIEW

1.1 Introduction

The purpose of this COBOL-80 User's Guide is to give you practical information about
getting a COBOL-80 program up and running on your computing equipment. All the steps
necessary to use COBOL-80 successfully -- compiling, loading, executing, etc. -- are
carefully described in the following pages.

In this guide, examples and file names are given which are based on a CP/M version of

COBOL-80. If you are using another operating system, the format of commands and
filenames will be slightly different. See Appendix D for a description of how COBOL is
used with your operating system.

1.2 Your Distribution Disk

The disk you receive from Microsoft contains the following files:

The COBOL Compiler
COBOL.COM
COBOL1.0VR
COBOL2.0VR
COBOL3.0VR
COBOL4.0OVR

The Runtime System
COBLIB.REL -- the runtime library
CRT Drivers -- file whose names begin with CD
Source - CD__.MAC
Object - CD__.REL, CRTDRV.REL
Utility Software
L.80.COM -- the Microsoft Linking Loader
LIB.COM -- the Microsoft Library Manager
M80.COM -- the Microsoft Macro Assembler
CREF 80.COM -- the Microsoft Assembly Cross-Reference Program

Miscellaneous Files
SQUARQO.COB
CRTEST.COB
SEQCVT.COM
COoPCO0OB.S5UB

COBOL-80 User's Guide - Release 4 2
OVERVIEW

1.2.1 The COBOL Compiler

The compiler consists of a main program and four overlays. These five parts correspond
to the five "phases" of compilation. The main program is always memory-resident and
controls the transition from each phase to the next. The overlay portion of the main
program compiles the IDENTIFICATION and ENVIRONMENT DIVISIONs. Overlay 1 is
brought in to compile the DATA DIVISION. The PROCEDURE DIVISION is compiled by
overlay 2. These 3 parts constitute the first pass of compilation. Their function is to
create an intermediate version of the program, which is stored on the current disk in a
file named STEXT.INT. Overlay 3 reads the intermediate file and creates the object
code. Finally, overlay 4 allocates the file control blocks and checks certain error
conditions. The intermediate file is then deleted.

1.2.2 The Runtime System

The runtime library consists of a group of subroutines that interpret the object code of
your program produced by the compiler. These subroutines will be included with your
object program when you perform the loading step. (See section 3 of this guide). Not all
programs will require all of the library routines. The loader will search the library and
automatically include the portions you need and exclude the ones you don't. The CRT
drivers are provided to enable you to configure your system for the type of CRT terminal
you have. You will need to select the appropriate driver. (See Appendix A of this guide).
Once you have done so, that driver will be automatically included with each program you
load with the linking loader. The driver provides cursor positioning and other functions to
support interactive ACCEPT and DISPLAY statements.

1.2.3 Utility Software

The Microsoft linking loader is used to link COBOL object programs with the runtime
system. (See section 3 of this guide). The other utilities are provided for your
convenience. Each of these programs is documented in the Microsoft Utility Software
Manual.

1.2.4 Miscellaneous Files

SQUARO.COB is a COBOL source program that computes the square root of the number
you provide. It is used to verify that you have a working version of the compiler and
runtime system.

CRTEST.COB is a COBOL source program that tests the functions of the interactive CRT
driver (see Appendix A).

SEQCVT.COM is a special utility program that converts COBOL files from LINE
SEQUENTIAL format to SEQUENTIAL format. The COBOL-80 SEQUENTIAL file format
was changed when version 3.0 was released. SEQUENTIAL organization files created by
earlier versions are in the format that is now known as LINE SEQUENTIAL.

COPCOB.SUB is a command file that copies the files on your distribution disk to a second
disk. It is provided as a convenience.

COBOL-80 User's Guide - Release 4 3
OVERVIEW

1.3 Getting Started

The first thing you should do when you receive your disk is to make a copy to use and save
the original disk as a backup. This may be done by using the COPCOB command file
supplied or with some other disk copying facility you may have.

Having dore that, you should verify your copy of the compiler and runtime system by
compiling, loading, and executing the test program SQUARO.COB. To do this, refer to
the examples given below in section 1.4.

Finally, if you intend to use the interactive ACCEPT and DISPLAY facility in your
COBOL program, you must select a CRT driver and configure it into your runtime
system. This procedure need be done only once; thereafter your selected driver will
automatically be included with each of your object programs. See Appendix A of this
guide for full instructions.’

1.4 Program Development Steps

Preparation of a COBOL program for execution consists of three basic steps:

1. Creating the source file with a text editor
2. Compiling with the COBOL Compiler
3. Loading with the Linking Loader

The source program is a file which consists of lines of ASCII text terminated by
carriage-return line-feed. You can create it with Microsoft's EDIT-80 or any other editor
that uses 7-bit ASCII character codes. Line numbers may be included in columns 1-6 of
each line and these may be 8-bit ASCII codes. The compiler ignores characters other than
TAB and carriage return until column 7 is reached. TAB stops assumed by the compiler
are at columns 7, 17, 25, 33, 41, 49, 57, 65, and 73. All characters beyond column 73 are
ignored until a CR is encountered. If you use EDIT-80, you automatically begin typing in
column 7 of each inserted line.

Having created the source program file, the next step is to compile it. This is done by
typing a command line that will execute the COBOL compiler and provide the name of
your source file. Under CP/M, you must be logged-in on the disk that contains the
COBOL compiler, since the compiler overlays are always read from the current disk. The
following example shows a command to compile the test program SQUARO which is
included on your distribution disk, assuming drive A contains a copy of that disk.

A> COBOL SQUARO.REL,TTY:=SQUARO.C0OB

This command will compile SQUARQO.COB, placing the relocatable object code in a file
named SQUARO.REL and printing the listing on your terminal. A shorter notation of this
same command line takes advantage of default file-name extensions assumed by the
compiler:

A>COBOL SQUARQO,TTY:=SQUARO

COBOL-80 User's Guide - Release 4 4
OVERVIEW

The shortest notation of all uses a compilation switch to force generation of an object file
that defaults to the filename SQUARQO.REL:

A>COBOL ,TTY:=SQUARO/R

These three example commands all produce exactly the same results. A full description
of the command line syntax is given in section 2.

Once the source program is compiled, the final step before execution is to load the
program with the Linking L.oader L80. This step converts your relocatable object program
into an absolute version and combines it with the COBOL-80 runtime system. This
absolute version is built in memory, where it may then be saved on disk, executed
directly, or both. The following is a command to load SQUARO and execute it without
saving the absolute version.

A>L80 SQUARO/G

L80 assumes the extension .REL for the file SQUARO that is to be loaded. Once
SQUARQ has completed execution, you could not execute it again without performing the
load command, since the absolute version was not saved. To save the absolute version in a
disk file without executing it directly, type:

A>L80 SQUARO/N,SQUARO/E
Then to execute the program, simply type:

A>SQUARO
Since the absolute version is saved, it may be executed at any time without performing
the load step. To combine the 2 examples so that the absolute version is saved and then
executed directly, type:

A>L80 SQUARO/N,SQUARO/G

Refer to section 3 of this guide and to the Microsoft Utility Software Manual for a full
description of L8030 commands.

COBOL-80 User's Guide - Release 4 5

Section 2

COMPILING COBOL PROGRAMS

2.1 COBOL-80 Command Line Syntax

The COBOL-80 compiler reads your COBOL source program file as input and produces a
listing and relocatable object version of your program. The command line invokes the
COBOL Compiler and tells it the names of the 3 files to use. The syntax of the line is to
type COBOL followed by a space, followed by a command string, as described below.
COBOL-80 is read from the disk and then examines the command string. If it is OK,
compilation begins. If not, it types the message "?Command Error" followed by an
asterisk prompt, then waits for another command string. When compilation is complete,
COBOL-80 always exits to the operating system.

The format of a COBOL-80 command string is:
objectfile,listfile=sourcefile

The separator characters are the comma and the equal sign. No spaces are allowed. The
terms used in the format are:

objectfile
the name of the file to which the object program is to be written

listfile
the name of the file to which the program listing is to be written

sourcefile
the name of the COBOL program source file

Each file can be the name of a disk file or the name of a system device. The full
description of a file name depends on your operating system. For CP/M, a file description
has the form:

device:filename.extension

COBOL-80 User's Guide - Release 4 6
COMPILING COBOL PROGRAMS

Here the separators are the colon and period, and the terms mean:

device
the name of the system device, which can be a disk drive, terminal, line
printer, or other device supported by the operating system. If the device is
a disk, the filename must also be given. If not, the device name itself is
the full file description. COBOL-80 recognizes the following symbolic
device names:

TTY: for the console terminal
LST: for the system printer
RDR: for the high-speed reader

filename

the name of the file on disk. If filename is specified without a device, the
current disk is assumed as the device.

.extension
the extension of the filename given. If not specified, the following
defaults are assumed:

.COB far the source program file
PRN for the listing file
REL for the cbject program file

In the command string, the objectfile, listfile, or both may be omitted. If neither a listing
file nor an object file is requested, COBOL-80 will check for errors and print the total on
the console. If nothing is typed to the left of the equals sign, an object file is written on
the same device with the same filename as the source file, but with the default extension
for object files.

Examples:

Command String Effect

,2=PAYROLL Compiles the source from PAYROLL.COB and
produces only an error count, which is displayed
on the consale.

=PAYROLL Compiles PAYROLL.COB and places the object
into PAYROLL.REL. No listing is generated.

, TTY:=PAYROLL Compiles the source from PAYROLL.COB and
places the program listing on the terminal. No
object program is generated.

PAYOBJ,LST:=PAYROLL Compiles the source from PAYROLL.COB, places
the listing on the printer, and places the object
into PAYOBJ.REL.

PAYOBJ=B:PAYROCLL Compiles PAYROLL.COB from disk B and places
the object into PAYOBJ.REL. No listing is
generated.

PAYROLL,PAYROLL=PAYROLL Compiles PAYROLL.COB, places the listing into

PAYROLL.PRN, and places the object into
PAYROLL.REL.

COBOL-80 User's Guide - Release 4 7
COMPILING COBOL PROGRAMS

2.2 Compiler Switches.

The command string may be modified by appending one or more switches, which affect
the compilation procedure as described below. To add a switch, type a slash followed by
the one-character switch name.

Switch
R

Action

Force the compiler to generate an object file. This shorthand
notation causes the compiler to write the object file on the same
disk and with the same filename as the source file, but with the
default extension for object files.

Force the compiler to generate a listing file. As with /R, this
notation causes the compiler to write the listing file on the same
disk and with the same filename as the source file, but with the
default extension for listing files.

Each /P allocates an extra 100 bytes of stack space for the
compiler’s use. Use /P if stack overflow errors occur during
compilation (see section 2.3 below). Otherwise /P is not needed.

Examples of command strings using switches:

Command String

,=PAYROLL/R
,=B:PAYROLL/L
,=B:PAYROLL/R/L
=PAYROLL/L/P

Is Equivalent To

PAYROLL=PAYROLL or =PAYROLL
,B:PAYROLL=B:PAYROLL
B:PAYROLL,B:PAYROLL=B:PAYROLL

PAYROLL,PAYROLL=PAYROLL/P

2.3 Qutput Listings and Error Messages

The listing file output by COBOL-80 is a line-by-line account of the source file with page
headings and error messages. The page heading line is printed 3 lines from the top of the
page and is followed by 2 blank lines. Each source line listed is preceded by a consecutive
4-digit decimal number. This is used by the error messages at the end to refer back to
lines in error, and also by the runtime system to indicate what statement has caused a
runtime error after it occurs.

Two classes of diagnostic error messages may be produced during compilation.

COBOL-80 User's Guide - Release 4
COMPILING COBOL PROGRAMS

Low level flags are displayed directly below source lines on the listing when simple syntax

violations occur.
compilation continues.

Remedial action is assumed in each case, as documented below, and
If a low-level error occurs, a high-level diagnostic will be

generated at the end of the listing that refers to the line number attached to the
low-level error, so the error count given at the end includes both classes of errors.

Flag
"QLIT"?

LENGTH?

CHRCTR?

PUNCT?

BADWORD

SEQ #

NAME?

PIC = X

COoL.7?

AREA A?

Reason for Flag

Faulty quoted literal

1. Zero length

2. Improper continuation
3. Premature end-of-file

(before ending delimiter)

Quoted literal length over 120
characters, or numeric literal

over 18 digits, or 'word'
(identifier or name) over 30
characters.

Illegal character

Improper punctuation
(e.g. comma not fol-
lowed by a space).

Current word is malformed
such as ending in hyphen,
or multiple decimal points
in a numeric literal.

Improper sequence number
(includes case of out-of-
order sequence number).

Name does not begin with
a letter (A - 2).

An improper Picture.

An improper character
appears in source line
character 'column’ 7,
where only * - / D are
permissible.

Area A, columns 8-12, is
not blank in a
continuation line.

Remedial Action by Compiler

Ignore and continue.
Assume acceptable.
Assume program end.

Excessive characters
are ignored.

Ignore and continue.

Assume acceptable.

Ignore and continue.

Accept and continue.

Accept and continue.

PIC X is assumed.

Assume a blank
in column 7.

Ignore contents of
Area A (assume blank).

COBOL-80 User's Guide - Release 4 9
COMPILING COBOL PROGRAMS

High level diagnostic messages consist of two or three parts:
1. The associated source line number — four digits, followed by a colon (3).

2. An English explanation of the error detected by the compiler. If this text
begins with /W/, then it is only a warning; if not, it is an error sufficiently
severe to inhibit linkage and execution of an object program.

3. (Optional) The program element cited at the point of error is listed. Design of
the high level diagnostic message text is such that no list of 'messages and error
codes' is necessary; the messages are self-explanatory.

Regardless of whether there is a list device, or what the list device may be physically, a
message displaying the total number of errors or warnings is always displayed on the
console at the end of compilation. This allows you to make a simple change to a COBOL
program, recompile it without a listing and still know whether the compiler encountered
any questionable statements in the program.

Two error messages that occur infrequently and are also displayed on the console must be
noted. One is "?Memory Full" which occurs when there is insufficient memory faor all the
symbols and other information the compiler obtains from your source program. It
indicates that the program is too large and must be decreased in size or split into
separately compiled modules. The symbol table of data-names and procedure-names is
usually the largest user of space during compilation. All names require as many bytes as
there are characters in the name, and there is an overhead requirement of about 10 bytes
per data-name and 2 bytes per procedure-name. On the average, each line in the DATA
DIVISION requires about 14 bytes of memory during compilation, and each line in the
PROCEDURE DIVISION requires about 3 1/4 bytes.

The other error message, "?Compiler Error", occurs when the compiler becomes
confused. It is usually caused by one of two problems: either the stack has overflowed, in
which case using the /P switch will solve it; or the compiler or one of the overlay files on
the disk has been damaged, in which case you should try your backup copy. If neither of
these solutions works, you can sometimes determine the cause by compiling increasingly
larger chunks of your program, starting with only a few lines, until the error recurs.
These two error conditions cause immediate termination of compilation.

2.4 Files Used by COBOL-80

In addition to the source, listing and object files used by COBOL-80, the following files
should be noted.

First, there is a file called STEXT.INT which the compiler always places on the current
disk. It is used to hold intermediate symbolic text between pass one and pass two of the
compiler. It is created, written, then closed, read, and then deleted before the compiler
exits. Consequently, you should never run into it unless the compilation is aborted.

COBOL-80 User's Guide - Release 4 10
COMPILING COBOL PROGRAMS

Another file of concern is the file to be copied due to a COPY verb in the COBOL
program. (See the discussion of COPY in the COBOL-80 Reference Manual). Remember
that copied files cannot have COPY statements within them and the rest of the line after
a COPY statement is ignored.

Finally COBOL programs that use segmentation cause the loader to create a file for each
independent segment of the program. The filenames are formed as follows. The filename
itself is the PROGRAM-ID defined in the IDENTIFICATION DIVISION. The extension is
.Vnn where nn is a two-digit hexadecimal number that is the segment number minus 49.

COBOL-80 User's Guide - Release 4 11

Section 3

LOADING COBOL PROGRAMS

The Microsoft Linking Loader LLINK-80 is used to convert the compiled relocatable object
version of your program into an absolute version that is executable. It automatically
combines the required portions of the COBOL runtime system with your object program.
The loader is also used to link one or more subprograms together with a main program.
These subprograms may be specified individually or extracted from a library, and may be
written in COBOL, FORTRAN-80 or MACRQO-80 assembly language.

3.1 LINK-80 Command Line Syntax

The complete syntax for LINK-80 commands is given in Chapter 4 of the Microsoft Utility
Software Manual. However, some functions described there are not useful when loading
COBOL programs. This section summarizes use of the loader for COBOL programs.

You may invoke LINK-80 in one of two ways: either type LL80 followed by a carriage
return and enter a command string when the asterisk prompt is typed, or type L80
followed by a space, followed by the command string on the same line.

The command string is a list of filenames separated by commas. Each filename specified
is brought into memory by the loader and placed at the next available memory address.
Switches are used in the command string to specify functions the loader is to perform.
The command string may be broken up into many small strings and entered on different
lines. The loader will prompt with an asterisk and wait for more command strings until
one with a G or E switch has been processed and the loader exits to the operating system.
Filenames are specified in the same manner as for the compiler, except that the default
extension is always .REL for files to be read by the loader. Such files are all expected to
be in relocatable object format, so they must have been previously compiled (or
assembled).

COBOL-80 User's Guide - Release 4 12
LOADING COBOL. PROGRAMS

Switches most useful when loading COBOL programs are:

Switch

filename/N

/E

/G

Effect

Directs the loader to save the executable program on disk with
name <filename> when the loading process is complete.

Directs the loader to complete the loading process and exit to
the operating system. The loader searches COBLIB.REL and
CRTDRV.REL to resolve undefined global symbols. The final
step is to save the executable program on disk, provided that the
/N switch was specified.

Directs the loader to complete the loading process and begin
execution of the program. As with /E, the COBOL runtime
library is searched, and the executable program is saved if /N
was specified.

Switches used occasionally when loading COBOL programs are:

Switch

/R

filename/S

/M

/U

Effect

Immediately resets the loader to its initial state. The effect is
as if the loader was aborted and then reloaded from disk.

Directs the loader to search <filename> to resolve undefined
global symbols. This command is used to selectively load
CALLed subroutines from a user-built library.

Prints a map of all global symbols and their values. Undefined
globals appear with an asterisk after the name.

Prints a list of all undefined global symboals.

COBOL-80 User's Guide - Release 4 13
LOADING COBOL PROGRAMS

Examples:

Command String

MYPROG,SVPROG/N/E

lLoads MYPROG.REL, saves the absolute version in SVPROG.COM and exits to
the operating system.

MYPROG/G

Loads MYPROG.REL and begins execution without saving the absolute version.

MYPROG,SUBPR1,B:SUBPR2,MYPROG/N/E

LLoads MYPROG.REL,SUBPR1.REL, and B:SUBPR2.REL. Saves the absolute
version in MYPROG.COM and exits to the operating system.

MYPROG/N,MYPROG,MYLIB/S/E
Loads MYPROG.REL searches MYLIB.REL for subroutines referenced by
"CALL" statements, saves the absolute version in MYPROG.COM and exits to
the operating system.

3.2 Subprograms

If you have organized your program into a main module and one or more subprogram
modules, the loader can combine them into one executable program. Before loading,
compile (or assemble) all modules so that you have a relocatable object version of each.
Then execute the loader and specify in the command string the name of each module you
want to load. The modules may be specified in any order. For example, if you have a
compiled main program file MAINPG.REL and 2 subprogram files SUBPRI.REL and
SUBPR2.REL, you may load the executable program and save it with any of the following
load commands:

1. L80 MAINPG/N,MAINPG,SUBPR1,SUBPR2/E

2. L80
*MAINPG/N,MAINPG,SUBPR1,SUBPR2
*/E

3. L80 SUBPRI1,SUBPR2
*MAINPG/N
*MAINPG/E

COBQOL-80 User's Guide - Release 4 14
LOADING COBOL PROGRAMS

3.3 Function Libraries

The Microsoft Library Manager LIB-80 (CP/M versions only) allows you to collect any
number of subprograms into a single file (a library) that can be searched by the loader.
For example, if you have six subprograms named SUBPRI1.REL through SUBPR6.REL that
are used by different main programs, you could make them into a library with the
following command.

LIB
*JSRLIB=SUBPR1,SUBPR2,SUBPR3,5UBPR4,SUBPR5,SUBPRé6/E

This will create a library file named USRLIB.REL. (See Section 3 of the Microsoft Utility
Software Manual for a full description of LIB-80). Then if you have a main program
MAINPG that CALLs SUBPR2 and SUBPRS6, the load command:

L80 MAINPG/N,MAINPG,USRLIB/S/E
will load MAINPG and search USRLIB for SUBPR2 and SUBPRE.
When making a library, you need to make sure that all subprogram ID's are unique. Since

all COBOL runtime routines in COBLIB have names that begin with dollar sign, you should
avoid the dollar sign in naming your subprograms.

COBQOL-80 User's Guide - Release 4 15

Section 4

EXECUTING COBOL PROGRAMS

You may execute a COBOL program in any of three ways. The first is to use the G switch
in the loader command string as described in section 3.1. The second is simply to type the
name of an executable program file as saved by using the N switch in the loader command
string. Finally, you may execute a program directly from within another COBOL program
by using the CALL or CHAIN statement. Refer to Chapter 5 of the COBOL-80 Reference
Manual for an explanation of program CALL and CHAIN.

4.1 The Runtime System

The relocatable object version of your program produced by the compiler is not 8080 or
Z80 machine code. Instead, it is in the form of a special object language designed
specifically for COBOL instructions. The COBOL-80 runtime system executes your
program by examining each object language instruction and performing the function
required. This includes all processing needed to handle CRT, printer, and disk file input
and output.

The runtime system consists of a number of machine language subroutines collected into a
library named COBLIB.REL and a CRT driver named CRTDRV.REL. When you load your
COBOL program, COBLIB is automatically searched by the loader to find and load
routines that are required to perform the instructions in your source program. The
number of routines needed depends on the number of COBOL language features you have
used in your main program and subprograms. If DISPLAY or ACCEPT statements are
included in the source program, the loader automatically searches the file CRTDRV.REL
to include the terminal-dependent functions.

The amount of memory required by a COBOL program at runtime equals the amount
required to store the data items defined in the DATA DIVISION, plus about 500 bytes per
file, plus about 12 bytes per line of the PROCEDURE DIVISION, plus up to 24K bytes for
the runtime system.

4.2 Printer File Handling

Printer files should be viewed simply as a stream of characters going to the printer.
Records should be defined simply as the fields to appear on the printer. No extra
characters are needed in the record for carriage control. Carriage return, line feed and
form feed are sent to the printer as needed between lines. Note however, that blank
characters (spaces) on the end of a print line are truncated to make printing faster.

COBOL-80 User's Guide - Release & 16
EXECUTING COBOL PROGRAMS

No "VALUE OF™ clause should be given for a PRINTER file in the FD, but "LABEL

RECORD IS OMITTED" must be specified. The BLOCK clause must nov. be used for
printer files.

4.3 Disk File Handling

Disk files must have "LABEL RECORD IS STANDARD" declared and have a "V ALUE OF"
clause that includes a File ID. File ID formats are described in the Utility Software
Manual. Block clauses are checked for syntax but have no effect on any type file.

The format of regular SEQUENTIAL organization files is that of a two-byte count of the
record length followed by the actual record, for as many records as exist in the file. The
LINE SEQUENTIAL organization has the record followed by a carriage return/line feed
delimiter, for as many records as exist in the file. Both organizations pad any remaining
space of the last physical block with control-Z characters, indicating end-of-file. To
make maximum use of disk space, records are packed together with no unnecessary bytes
in between.

The format of RELATIVE files is always that of fixed length records of the size of the
largest record defined for the file. No delimiter is needed, and therefore none is
provided. Deleted records are filled with hex value '00'. Additionally, six bytes are
reserved at the beginning of the file to contain system bookkeeping information.

The format of INDEXED files is too complicated to include in this document. It is a
complex mixture of keys, data, linear pointers, deletion pointers, and scramble-function
pointers. It is doubtful that the COBOL programmer would require access to such
information.

4.4 CRT Handling

4.4.1 Terminal Output

All output to the terminal is done by the DISPLAY statement. Characters are sent one at
at time by the DISPLAY runtime module or by the CRT driver. If no cursor positioning
was specified for any of the displayed items, a carriage-return and line-feed are sent
following the last displayed item. Otherwise, no assumptions about carriage control are
made by the DISPLAY module.

COBOL-80 User's Guide - Release 4 17
EXECUTING COBOL PROGRAMS

4.4.2 Keyboard Input

All input from the keyboard is done by the ACCEPT statement. One of two methods of
input are used, depending on the type of ACCEPT being performed.

For a format 2 ACCEPT, a full line of input is typed, using the operating system facilities
for character echo and input editing, ending with a carriage return. For this type, the
character codes defined in the CRT driver have no effect.

For a format 3 or 4 ACCEPT, each character typed is read directly by the runtime
ACCEPT module by using a call to the operating system. The ACCEPT module performs
all necessary character echo and input editing functions. The editing control characters,
function keys, and terminator keys are defined in the CRT driver (see Appendix A).

4.5 Runtime Errors

Some programming errors cannot be detected by the compiler but will cause the program
to terminate prematurely when it is being executed. Each of those errors produces a
four-line synopsis, printed on the console.

** RUN-TIME ERR:
reason (see list below)
line number
program-id

The possible reasons for termination, with additional explanation, are listed below.
REDUNDANT OPEN Attempt to open a file that is already open.

DATA UNAVAILABLE Attempt to reference data in a record of a file that is not
open or has reached the "AT END" condition.

SUBSCRIPT FAULT A subscript has an illegal value (usually, less than 1). This
applies to an index reference such as [+ 2, the value of which
must not be less than 1.

INPUT /QUTPUT Unrecoverable 1/O error, with no provision in the user's

COBOL program for acting upon the situation by way of an AT
END clause, INVALID KEY clause, FILE STATUS item,
DECLARATIVE procedure, etc.

NON-NUMERIC DATA Whenever the contents of a numeric item does not conform to
the given PICTURE, this condition may arise. You should
always check input data, if it is subject to error (because
"input editing" has not yet been done) by use of the NUMERIC
test.

COBOL-80 User's Guide - Release 4 18
EXECUTING COBOL PROGRAMS

PERFORM OVERLAP

CALL PARAMETERS

ILLEGAL READ

ILLEGAL WRITE

ILLEGAL REWRITE

REWRITE; NO READ

REDUNDANT CLOSE

0OBJ. CODE ERROR

FEATURE UNIMPL.

GO TO. (NOT SET)

FILE LOCKED
READ BEYOND EOF

DELETE; NO READ

ILLEGAL DELETE
ILLEGAL START

NO CRT DRIVER

SEG nn LOAD ERR

An illegal sequence of PERFORMs as, for example, when
paragraph A is performed, and prior to exiting from it another
PERFORM A is initiated.

There is a disparity between the number of parameters in a
calling program and the called subprogram.

Attempt to READ a file that is not open in the input or [-O
maode.

Attempt to WRITE to a file that is not open in the output mode
for sequential access files, or in the output or I-O mode for
random or dynamic access files.

Attempt to REWRITE a record in a file not open in the I-O
mode.

Attempt to REWRITE a record of a sequential access file when
the last operation was not a successful READ.

Attempt to close file that is not open.

An undefined object program instruction has been
encountered. This should occur only if the absolute version of
the program has been damaged in memory or on the disk file.

An object program instruction that calls for an unimplemented
feature has been encountered. This should occur only because
of a damaged object program.

Attempt to execute an uninitialized alterable paragraph
containing only a null GO statement.

Attempt to OPEN after earlier CLOSE WITH LOCK.
Attempt to read (next) after already encountering end-of-file.

Attempt to DELETE a record of a sequential access file when
the last operation was not a successful READ.

Relative file not opened for I-O.
File not opened for input or I-O.

An ACCEPT or DISPLAY statement using cursor positioning is
being executed, but no CRT driver has been selected. (See
Appendix A of this guide.)

An unrecoverable read error has occurred while trying to load
a segment of a segmented program. The two digits nn are the
hexadecimal notation of the segment number minus 49 and
match the name of the file extension (.Vnn) on the disk.

COBOL-80 User's Guide - Release 4 19
EXECUTING COBOL PROGRAMS

In the case of program CHAINing, error messages may be generated by the CHAIN
processing module. These errors are of the form "**CHAIN: problem" and also cause
termination of the program. See Appendix B for the list of CHAIN error messages.

COBOL-80 User's Guide - Release 4 20

Appendix A

CONFIGURING THE CRT

A.l General Instructions

To enable the interactive ACCEPT and DISPLAY functions, COBOL-80 requires a
terminal driver module that provides primitive terminal-dependent functions. The system
expects to find this module under the name CRTDR V.REL when programs are linked with
L. 80.

A module named CRTDRYV is provided with each Release 4 COBOL disk. This is a default
dummy driver that will enable programs to link successfully and will provide support for
the ANSI standard ACCEPT and DISPLAY statements. Programs that use cursor
positioning in ACCEPT or DISPLAY statements and link with the default driver will not
run successfully; they will abort with the "NO CRT DRIVER" runtime error message.

The CRTDRYV module should be replaced with the driver appropriate to the type of
terminal being used befare linking any COBOL programs compiled with Release 4. To do
this, simply copy the appropriate driver to CRTDR V.REL. Microsoft has provided drivers
for a wide range of popular terminals; these are listed below. If none of these drivers is
suitable, one may be constructed; see section A.3: "Writing a CRT Driver".

The CRT driver modules supplied by Microsoft are relocatable object files whose names
begin with the letters CD (for CRT Driver). The MACRO-80 source code for each driver
is also included. Any driver will support more than one type of terminal if the terminals
have compatible control sequences. If your terminal is not listed below, check section A.2
to compare your terminal's function codes with those of the supplied terminal drivers. If
your terminal matches the code for any supplied driver, use it. The terminals and
associated drivers are:

I. ANSI standard terminal CDANSI
2. Lear-Siegler ADM3-A CDADM3
3. Beehive 100, 150 CDBEE
4. Microbee 2 CDBEE
5. Cromemco 3101, 3102 CDBEE
6. SOROCIQ CDSRQOC
7. Hazeltine 1500 CDHZI15
8. Heath WHI9 CDWH19
9. DEC VT52 CDWH19
10. ADDS Regent Terminals * CDADDS
11. Perkin-Elmer CDPERK
12. Zentec Zephr CDZEPH
13. Intertec Superbrain CDISB
14. IMSAI VIO CDADMS3

* Supports ADDS Regent 40, 60, 100, and 200 terminals. The highlight video
codes are not available on the Regent 20 and 25, but the CDADDS driver can
be used if that code is removed.

COBQOL.-80 User's Guide - Release 4
CONFIGURING THE CRT

A.2 Terminal Charts

The following pages describe the characteristics of the terminals for which
drivers are supplied on your distribution disk. There is one page for each
terminal supported.

Section I of each page defines the keys that are recognized by COBOL-80 to
perform the functions of ACCEPT. The value listed under the heading "Escape
Code" is the integer that is available using a format 1 ACCEPT...FROM
ESCAPE KEY if the key caused termination of a format 3 or format 4
ACCEPT statement. The value listed under the heading "Input Code" is the
hexadecimal code generated by the terminal when that key is typed. The
entry under "Key Label" gives the name of the key as shown on the keyboard.

Section II of each page shows the sequences of codes that are sent to the
terminal from COBOL-80 to perform the functions of DISPLAY and ACCEPT.
Spaces are shown to separate codes in the list, but they are not part of the
sequence sent to the terminal. Each two-digit number represents an absolute
hexadecimal value. All other codes describe standard ASCII character codes,
except for some shorthand abbreviations, which have the following
explanations:

R1 The binary row (line) number plus decimal 31.
R2 The row number converted to 2 ASCII digits, sent high digit first.

Cl The binary column number plus decimal 31.

C2 The column number converted to 2 ASCII digits, sent high digit first.

C3 If the column number is less than 32, a decimal 95 is added to the
number. Otherwise, column number minus one is used.

N/A Function not available on this terminal.

E1l If the cursor is at the home position, a clear screen code (hexadecimal
1A) is used. Otherwise, enough spaces are sent to blank the remainder of
the screen and the cursor is moved back to its ariginal position.

E2 Enough spaces are sent to blank the remainder of the line and the cursor
is moved back to its original position.

N1 Ten null (binary zero) characters.

COBOL-80 User's Guide - Release 4

CDADDS

ADDS Regent Terminals
24 Lines 80 Columns

I. Keyboard Input Input Code Key Label
A. Editing Keys
1. Line delete/Field delete 15 CONTROL-U
2. Character delete 7F DEL
3. Forward Space 06 CONTROL-F
4. Back Space 08 CONTROL-H
5. Plus Sign 2B +
6. Minus Sign 2D -
B. Terminator Keys Escape Code Input Code Key Label
1. Backtab 99 02 CONTROL-B
2. Escape 01 1B ESC
3. Field terminators 00
a. Tab 09 CONTROL-I
b. Carriage Return oD NEW LINE
c. Line Feed A LINE FEED
C. Function Keys Escape Code Input Code Key Label
1. 02 01 CONTROL-A
2. 03 a3 CONTROL-C
3. 04 18 CONTROL-X

II. Qutput Functions
A. Set Cursor Position
B. Backspace Cursor
C. Cursor On
D. Cursor Off
E. Erase to End of Screen
F. Erase to End of Line
G. Sound Bell
H. Set Highlight Mode
I. Reset Highlight Mode

Code Sequence
ESC YRIC1
08

N/A

N/A

ESC k

ESC K

07

ESCOP
ESC0@

22

COBOL-80 User's Guide - Release 4

CDADMS3

I. Keyboard Input
A. Editing Keys

Lear-Siegler ADM-3A
24 Lines 80 Columns

23

1. Line delete/Field delete

2. Character delete
3. Forward Space
4. Back Space

5. Plus Sign

6. Minus Sign

B. Terminator Keys
1. Backtab
2. Escape
3. Field terminators
a. Tab
b. Carriage Return
c. Line Feed

C. Function Keys
1.
2,
3.

II. OQutput Functions
A. Set Cursor Position
B. Backspace Cursor
C. Cursor On
D. Cursor Off
E. Erase to End of Screen
F. Erase to End of Line
G. Sound Bell
H. Set Highlight Mode
I. Reset Highlight Mode

Input Code Key Label
15 CONTROL-U
7F DEL
oC CONTROL-L
0B CONTROL-H
2B +
2D -
Escape Code Input Caode Key Label
99 02 CONTROL-B
01 1B ESC
0o
09 CONTROL-I
oD RETURN
0A LINE FEED
Escape Cade Input Code Key Label
02 01 CONTROL-A
03 03 CONTROL-C
04 18 CONTROL-X

Code Sequence

ESC=RI1C1

08
N/A
N/A
El
E2
07
N/A
N/A

COBQOL-80 User's Guide - Release 4

CDANSI

I. Keyboard Input

A. Editing Keys

1. Line delete/Field delete

2. Character delete
3. Forward Space
4. Back Space

5. Plus Sign

6. Minus Sign

B. Terminator Keys
1. Backtab
2. Escape
3. Field terminators
a. Tab
b. Carriage Return
c. Line Feed

C. Function Keys
1.
2.
3.

II. Qutput Functions
A. Set Cursor Position
B. Backspace Cursor
C. Cursor On
D. Cursor Off
E. Erase to End of Screen
F. Erase to End of Line
G. Sound Bell
H. Set Highlight Mode
I. Reset Highlight Mode

ANSI Standard Terminal
24 lines 80 Columns

24

Input Code Key Label
15 CONTROL-U
7F DEL, RUB
06 CONTROL.-F
08 CONTROL-H
28 +
2D -
Escape Code Input Code Key Label
99 02 CONTROL-B
01 1B ESC
00
09 TAB, CONTROL-I
oD RETURN, ENTER
0A LINE FEED
Escape Code Input Code Key Label
02 01 CONTROL-A
03 03 CONTROL-C
04 18 CONTROL-X

Code Sequence
ESCL[R2;C2f

08
ESC[>51
ESC[>5h
ESC[0J
ESC[OK
07
ESC[7m
ESC[O0Om

COBOL-80 User's Guide - Release 4

CDBEE

1. Keyboard Input
A. Editing Keys

1. Line delete/Field delete

2. Character delete
3. Forward Space
4. Back Space

5. Plus Sign

6. Minus Sign

B. Terminator Keys
1. Backtab
2. Escape
3. Field terminators
a. Tab
b. Carriage Return
c. Line Feed

C. Function Keys
1.
2.
3.

II. Qutput Functions

A. Set Cursor Position

B. Backspace Cursor

C. Cursor On

D. Cursor Off

E. Erase to End of Screen
F. Erase to End of Line
G. Sound Bell

H. Set Highlight Mode

I. Reset Highlight Mode

Beehive Terminals
24 lines 80 Columns

25

Input Code Key Label
15 CONTROL-U
7F DEL
06 CONTROL-F
08 CONTROL-H
28 +
2D -
Escape Code Input Caode Key Label
99 02 CONTROL-B
01 1B ESC
00
09 TAB, CONTROL-I
0D RETURN
0A LINE FEED
Escape Code Input Code Key Label
02 01 CONTROL-A
03 03 CONTROL-C
04 18 CONTROL-X

Code Sequence
ESCF R1Cl
08

N/A

N/A

ESC J N1

ESC K

07

ESC |1

ESC m

COBOL.-80 User's Guide - Release 4

CDHZ15

I. Keyboard Input
A. Editing Keys

1. Line delete/field delete

2. Character delete
3. Forward Space
4. Back Space

5. Plus Sign

6. Minus Sign

B. Terminator Keys
1. Backtab
2. Escape
3. Field terminators
a. Tab
b. Carriage Return
c. Line Feed

C. Function Keys
1.
2.
3.

II. Output Functions
A. Set Cursor Position
B. Backspace Cursor
C. Cursor On
D. Cursor Off
E. Erase to End of Screen
F. Erase to End of Line
G. Sound Bell
H. Set Highlight Mode
I. Reset Highlight Mode

26

Hazeltine 1500 Series Terminals

24 Lines 80 Columns

Input Code Key Label
15 CONTROL-U
7F DEL
5D]
08 BACK SPACE
28 +
2D -
Escape Code Input Code Key Label
99 5C \
01 1B ESC
00
09 TAB
0D RETURN
0A LINE FEED
Escape Caode Input Code Key Label
02 01 CONTROL-A
03 03 CONTROL-C
04 18 CONTROL-X

Code Sequence
“DCl1C3R1
08

N/A

N/A

~ CAN

~SI

07

~Us

“EM

COBOL-80 User's Guide - Release 4

CDISsB

I. Keyboard Input

A. Editing Keys

1. Line delete/Field delete

2. Character delete
3. Forward Space
4. Back Space

5. Plus Sign

6. Minus Sign

B. Terminator Keys
1. Backtab
2. Escape
3. Field terminators
a. Tab
b. Carriage Return
c. Line Feed

C. Function Keys
1.
2.
3.

II. Qutput Functions

A. Set Cursor Position

B. Backspace Cursor

C. Cursor On

D. Cursor Off

E. Erase to End of Screen
F. Erase to End of Line
G. Sound Bell

H. Set Highlight Mode

I. Reset Highlight Mode

Intertec Superbrain
24 Lines 80 Columns

Input Code
18
7F
06
08
2B
2D
Escape Code Input Code
99 02
01 1B
00
09
0D
0A
Escape Caode Input Code
02 01
03 03
04 04

Code Sequence
ESCYRICI1
08

N/A

N/A

ESC "k

ESC " K

07

N/A

N/A

27

Key Label

CONTROL-X
DEL
CONTROL-F
BACK SPACE
+

Key Label
CONTROL-B
ESC

TAB
RETURN
LINE FEED

Key Label

CONTROL-A
CONTROL-C
CONTROL-D

COBOL-80 User's Guide - Release 4

CDPERK

1. Keyboard Input
A. Editing Keys

1. Line delete/Field delete

2. Character delete
3. Forward Space
4. Back Space

5. Plus Sign

6. Minus Sign

B. Terminator Keys
1. Backtab
2. Escape
3. Field terminators
a. Tab
b. Carriage Return
c. Line Feed

C. Function Keys
1.
2.
3.

II. Output Functions

A. Set Cursor Position

B. Backspace Cursor

C. Cursor On

D. Cursor Off

E. Erase to end of screen
F. Erase to end of line
G. Sound Bell

H. Set Highlight mode

I. Reset Highlight Mode

Perkin - Elmer Terminals
24 Lines 80 Columns

Code Sequence

ESC XR1ESCYCl
08

N/A

N/A

ESC J

ESCI

07

N/A

N/A

Input Code Key Label
15 CONTROL.-U
TF DEL
06 CONTROL-F
08 BACK SPACE
28 +
2D -
Escape Code Input Code Key L.abel
99 02 CONTROL-B
01 1B ESC
00
09 TAB
0D RETURN
0A LINE FEED
Escape Code Input Caode Key Label
02 01 CONTROL-A
03 03 CONTROL-C
04 18 CONTROL-X

28

COBOL.-80 User's Guide - Release 4

CDSROC

SOROC IQ Terminals
24 Lines 80 Columns

I. Keyboard Input Input Code Key Label
A. Editing Keys
1. Line delete/Field delete 15 CONTROL-U
2. Character delete 7F DEL
3. Forward Space ac CONTROL-L
4. Back Space 08 CONTROL.-H
5. Plus Sign 2B +
6. Minus Sign 2D -
B. Terminator Keys Escape Code Input Code Key Label
1. Backtab 99 02 CONTROL-B
2. Escape 01 1B ESC
3. Field terminators oo
a. Tab 09 CONTROL-I
b. Carriage Return oD RETURN
c. Line Feed 0A LINE FEED
C. Function Keys Escape Code Input Code Key Label
1. 02 01 CONTROL-A
2. 03 03 CONTROL-C
3. 04 18 CONTROL-X

II. Output Functions

A. Set Cursor Position

B. Backspace Cursor

C. Cursor On

D. Cursor Off

E. Erase to End of Screen
F. Erase to End of Line
G. Sound Bell

H. Set Highlight Mode

1. Reset Highlight Mode

Code Sequence
ESC=R1C1
08

N/A

N/A

ESC Y

ESCT

07

N/A

N/A

29

COBOL-80 User's Guide - Release 4 30
CDWH19 Heath WH19/DEC VT52
24 Lines 80 Columns
I. Keyboard Input Input Code Key Label
A. Editing Keys
1. Line delete/Field delete 15 CONTROL-U
2. Character delete 7F DELETE
3. Forward Space 06 CONTROL-F
4. Back Space 08 BACK SPACE
5. Plus Sign 28 +
6. Minus Sign 2D -
B. Terminator Keys Escape Code Input Code Key Label
1. Backtab 99 02 CONTROL-B
2. Escape 01 1B ESC
3. Field terminators 00
a. Tab 09 TAB, CONTROL.-I
b. Carriage Return oD RETURN
c. LLine Feed 0A LINE FEED
C. Function Keys Escape Code Input Code Key Label
1. 02 01 CONTROL-A
2. 03 03 CONTROL-C
3. 04 18 CONTROL-X

II. Qutput Functions

A. Set Cursor Position

B. Backspace Cursor

C. Cursor On

D. Cursor Off

E. Erase to End of Screen
F. Erase to End of Line
G. Sound Bell

H. Set Highlight Mode

I. Reset Highlight Mode

Code Sequence
ESCYRICI
08

ESCy 5

ESC x 5

ESC J

ESC K

Q7

ESC p

ESC q

COBOQOL-80 User's Guide - Release 4

CDZEPH

I. Keyboard Input
A. Editing Keys

1. Line delete/Field delete

2. Character delete
3. Forward Space
4. Back Space

5. Plus Sign

6. Minus Sign

B. Terminator Keys
1. Backtab
2. Escape
3. Field terminators
a. Tab
b. Carriage Return
c. Line Feed

C. Function Keys
1.
2.
3.

II. Qutput Functions
A. Set Cursor Position
B. Backspace Cursor
C. Cursor On
D. Cursor Off
E. Erase to End of Screen
F. Erase to End of Line
G. Sound Bell
H. Set Highlight Mode
I. Reset Highlight Mode

Zentec Zephr
24 Lines 80 Columns

31

Input Code Key Label
15 CONTROL-U
7F DEL
06 CONTROL-F
08 CONTROL-H
2B + :
2D -
Escape Code Input Code Key Label
99 02 CONTROL-B
0l 1B ESC
00
09 TAB, CONTROL-I
0D RETURN
0A LINE FEED
Escape Code Input Code Key Label
02 01 CONTROL-A
03 03 CONTROL-C
04 18 CONTROL-X

Code Sequence
ESCOR1C1
08

N/A

N/A

ESC Y N1
ESCT

07

ESCG4

ESC GO

COBOL-80 User’s Guide - Release '4 32
CONFIGURING THE CRT

A.3 Writing a CRT Driver

A CRT driver should be writter in assembly language and assembled with the Microsoft
assembler M80. It consists of 14 entry points that must be declared as global labels by
using MB0 ENTRY statements. The source code of all drivers is supplied on your
distribution disk (files named CD__.MAC) to serve as examples and reference for the
following explanation.

Once the CRT driver is written, you can test all the functions and key codes by using the
program CRTEST that is supplied on your distribution disk. Compile it, link it with your
CRT driver using L80, and execute it, following the instructions it provides.

Five of the entry points simply contain data that describe the terminal and keyboard.
$CRLEN is a byte that contains the number of lines on the terminal and $CRWID contains
the number of columns. $CLIST, $TLIST and $FLIST are sequences of bytes that define
keyboard codes that invoke the functions of ACCEPT. Note that these codes are not sent
to the terminal to perform the function; they merely declare the keys that should be
recognized by the ACCEPT module. All of these codes should be unique.

$CLIST defines the editing keys, which must be specified in the following sequence:

1. Line delete (Field delete)

2. Character delete

3. Forward space (Cursor forward)
4. Backspace (Cursor back)

5. Plus sign

6. Minus sign

The list is terminated by a byte containing zero.

$FLIST defines function keys that terminate a format 3 or a format 4 ACCEPT
statement. The order of placement of codes in $FLIST determines the ESCAPE KEY
value available to the ACCEPT ... FROM ESCAPE KEY statement. The first key
generates a value of 02, the second 03, and so on, up to a maximum value of 39. The list
is terminated by a byte containing zero.

$TLIST defines several keys, all of which terminate format 3 type ACCEPT statements.
First in the list must be the backtab key. If used in a format 4 ACCEPT, this key causes
termination of the current field and the cursor to move to the previous input field, if one
exists. If used in a format 3 ACCEPT, the backtab key terminates the ACCEPT and sets
an escape code value of 99. Next in the list is the escape key. This key terminates either
a format 3 or format 4 ACCEPT and sets an escape code value of 0l. In addition, it
causes the program to execute the ON ESCAPE clause of a format 4 ACCEPT. Finally,
there is a list of normal field terminator keys, terminated by a zero byte. Any key in this
list terminates the current input field and sets the escape code value to 00. Termination
of the field ends a format 3 ACCEPT, and moves the curscr to the next field in a format &4
ACCEPT. If the cursor was in the last input field, the entire ACCEPT statement is
terminated. ,

COBOL.-80 User's Guide - Release 4 33
CONFIGURING THE CRT

The remaining 9 entry points are subroutines that perform terminal functions by sending
codes to the terminal. Each code is sent by calling the external routine $OUTCH with the
value in the A register. $OUTCH preserves the values in registers HL and DE.

$SETCR moves the cursor to a specific position on the screen. Upon entry, register H
contains the specified row (line) number and register L contains the column number. Note
that COBOL considers the top line of the screen to be row | and the leftmost column to be
column l.

$CURBK moves the cursor to the left one position without disturbing the displayed
character at that position. Upon entry, register HL contains the current cursor position in
sequential format (i.e., a number between | and n where n is screen width times length).
Most terminals honor the ASCII backspace code to perform this function.

$ALARM sounds the terminal's audible tone or bell. Most terminals honor the ASCII bell
code to perform this function.

$CUROF and $CURON instruct the terminal to inhibit or enable display of the cursor.
Many terminals do not provide this facility, however, and a simple RET instruction is
appropriate for drivers of those terminals.

$ERASE clears that portion of the screen from the current cursor position to the end.
The cursor must be left in its original position. Upon entry, register HL contains the
current cursor position in sequential format. Some terminals, such as the ADM-3A, do not
provide an escape sequence to perform this function. The example driver CDADM3
provides a routine that sends enough blanks to clear the screen and then returns the cursor
to its original position. This routine may be used for any terminal that does not provide
its own erase function.

$EOL clears that portion of the screen from the current cursor position to the end of the
line, without moving the cursor. Upon entry, register H contains the current row number
and L. contains the current column.

$HILIT puts the terminal in reverse video mode (or some other highlight mode if reverse
video is not available).

$LOLIT puts the terminal back in normal mode (cancels the effect of $HILIT).

C0OBOL-80 User’s Guide - Release 4 34

Appendix B

INTERPROGRAM COMMUNICATION

This appendix describes the format of parameters passed between a main program and a
subprogram via a CALL USING statement or between twgo main programs via a CHAIN
USING statement. This parameter linkage is handled entirely by the COBOL-80 runtime
system if both programs are written in COBOL. However, if the CALLed or CHAINed
program is written in assembly language or FORTRAN, sections B.l and B.2 are of
interest.

B.1 Subprogram Calling Mechanism

It is passible for a COBOL program to call COBOL subprograms or to call FORTRAN or
assembler subroutines. However, it is not possible, currently, for a FORTRAN or
assembler program to call a COBOL subroutine. Therefore, this section pertains to
COBOL programs which call FORTRAN or assembler subroutines. The calling sequence
described below is identical to that of Microsoft's FORTRAN-80 as it calls FORTRAN or
assembler subroutines.

The COBOL runtime system transfers execution to a subroutine by means of a machine
language CALL instruction. The subroutine should return via the normal assembler or
FORTRAN return instruction.

Parameters are passed by reference, that is, by passing the address of the parameter. The
method of passing these addresses depends on the number of parameters. If the number of
parameters is less than or equal to 3, they are passed in the registers:

parameter 1 in HL
parameter 2 in DE
parameter 3 in BC

If the number of parameters is greater than 3, then 1 and 2 are still passed in HL and DE,
but BC points to a contiguous data block in memory which holds the list of parameter
addresses.

The subroutine can expect only as many parameters as are passed, and the calling program
is responsible for passing the correct number of parameters. Neither the compiler nor the
runtime system checks for the correct number of parameters. It is also entirely up to you
to determine that the type and length of arguments passed the calling program are
acceptable to the called subroutine. Note that alphanumeric data is the only type that is
stored in the same format in COBOL and FORTRAN. None of the numeric types of data
are interchangeable.

COBOL-80 User's Guide - Release 4 35
INTERPROGRAM COMMUNICATION

The stack space used by a COBOL program is contained within the program boundaries, so
assembler programs that use the stack must not overflow or underflow the stack. The
most certain way to assure safety is to save the COBOL stack pointer upon entering the
routine and to set the stack pointer to another stack area. The assembler routine must
then restore the saved COBOL stack pointer before returning to the main program.

To call a subprogram, use the name of the subprogram in the COBOL CALL statement. If
the subprogram is an assembler or FORTRAN program, the name is defined by an ENTRY,
SUBROUTINE, or FUNCTION statement. The name of a COBOL subprogram is as given
in the PROGRAM-ID paragraph. Then link the subprogram to the main program using
LINK-80, as described in section 3.2 of this guide.

B.2 CHAIN Parameters

The parameters passed between programs with a CHAIN USING statement are stored at
the highest available memory address. The memory layout is as follows, starting at the
highest available address and proceeding towards location zero. First, 32 bytes are
reserved for stack space. Then the first parameter in the USING list follows, preceded by
its length in bytes. The parameter length is stored in two bytes, high-order byte first.
The parameter itself is stored as a string of bytes in the same order as they were stored in
the DATA DIVISION, beginning at the address of the length minus the length itself. Each
parameter in the USING list follows in order, each preceded by its length. The CHAINed
program must expect the same number and format of parameters as were passed, as no
checking can be done by the compiler or runtime system.

<-- highest memory location

stack
jovi space -~
32 bytes
<-- length of parameter 1 (high byte)
<- length of parameter 1 (low byte)
<-— last byte of parameter 1
- -
~~ nr

<— first byte of parameter 1
<— length of parameter 2 (high byte)
<— length of parameter 2 (low byte)
<{- last byte of parameter 2

Figure B-1

COBOL-80 User's Guide - Release 4 36
INTERPROGRAM COMMUNICATION

B.3 CHAIN Error Messages

During CHAIN processing, the normal mechanism for reporting runtime errors may have
been overlayed by the new program. Therefore, the CHAIN processor generates its own
error messages, which are of the form "**CHAIN: problem". The following is a list of
possible "problems" and their causes.

Bad file name
File not found

QOut of Memory

The syntax of the file name that is to be loaded is not valid.
The specified file was not found on the disk.

There was not sufficient memory available to load the new
program. There must be enough memory for the larger of the
CHAINing and CHAINed program, plus all CHAIN
parameters, plus 256 bytes for the program loader.

COBQOL-80 User's Guide - Release 4 37

APPENDIX C
CUSTOMIZATIONS

This appendix is intended for those of you who are handy with a debugger and/or assembly
language and would like to change some of the built-in parameters of COBOL-80.

C.l Source Program Tab Stops

If tab characters (hex 09) are used in the COBOL source program, the compiler converts
them into enough spaces to reach the next tab stop as defined in its internal TAB table.
As delivered, the table defines 9 stops at the following columns (counting from column 1):

7, 17, 25, 33, 41, 49, 57, 65, and 73

These may be changed by patching the table, whose address is 7 bytes from the start of
COBOL.COM. There is one byte in the table for each tab stop. You may supply any
values you like, provided the numbers are in order and that there are still exactly 9 stops
defined.

C.2 Compiler Listing Page Length

There is one byte in the compiler that defines the listing page length to be 55 (hex 37)
lines. Its location is 6 bytes from the start of COBOL.COM and may be patched to any
value between 1 and 255.

C.3 Runtime Day, Date, Time, Line Number

For all operating systems that do not provide date or time system calls, COBOL-80 uses
the compiler release date for format 1 ACCEPT statements. For single-user systems,
COBOL always uses '00' for the line number. If you have a multi-user system or access to
a system clock (or would like to use some other fixed date and time), you may replace the
runtime module that performs this function. To do this, write an assembly language
module according to the instructions given below, assemble it with MACRO-80, and place
it into COBLIB.REL wusing the library manager. Assuming you name the module
ACPDAT.MAC, a LIB-80 command to place it in the library is:

C0OBOL-80 User's Guide - Release 4 38
SPECIAL CUSTOMIZATIONS

LIB
*NEWLIB=COBLIB<L..ACPDAT-1>, ACPDAT
*COBLIB<KACPDAT+1..>/E

This will create NEWLIB.REL. You can then save COBLIB.REL and rename NEWLIB.REL
to COBLIB.REL.

ACPDAT Module

Entry point: $ACPDT
Externals: $EVAL,$GETOP,$FLAGS,$ESKEY,$MOVE

This module handles the runtime support for the COBOL format 1 ACCEPT source
statement:

DAY

DATE
ACCEPT identifier FROM TIME

ESCAPE KEY

LINE NUMBER

It may be changed by modifying the ACLINE routine and by adding ACTIME, ACDAY, and
ACDATE to the skeleton module given below. Each of these routines is entered with the
address of the target storage area in the HL register. Each must exit by executing a JIMP
$GETOP, as indicated in the skeleton. The individual routines have the following
requirements:

1. ACTIME - move an ASCII string representing the time (in form HHMMSSFF) to
the target area.

2. ACDAY - move an ASCII string representing the Julian date (in form YYJJJ) to
the target area.

3. ACDATE- move an ASCII string representing the date (in form YYMMDD) to
the target area.

4, ACLINE - move 2 ASCII digits representing the line (CRT) number to the target
area.

An external move routine is available to move a string of data from one address to
another. [t is used as follows:

EXT $MOVE
HL = address of source string
DE = address of target area
BC = length of the string in bytes
CALL $MOVE
HL = address of lst byte beyond source
DE = address of lst byte beyond target
BC=0

COBOL.-80 User's Guide - Release 4
SPECIAL CUSTOMIZATIONS

Skeleton ACPDAT module:
TITLE ACPDAT - ACCEPT DAY/DATE/TIME/ESC KEY/LINE NUM
ENTRY S$ACPDT
EXT $EVAL,$GETOP,$FLAGS,$ESKEY

$ACPDT: POP H

INX H
MOV AM
INX H
ANI 7
STA $FLAGS ;SAVE ACCEPT OPTION
CALL S$EVAL ;GET TARGET ADDRESS
LDA $FLAGS
CPI 2 sWHICH OPTION?
IM ACDATE sDATE
iz ACDAY DAY
CPI 4
Jc ACTIME ~ STIME
Jz ACLINE ;LINE NUMBER
ACESC: ;ESCAPE KEY CODE FROM ACCEPT
XCHG
LHLD $ESKEY
XCHG
ACESCl: MOV M,D
INX H
MOV M,E
JMP $GETOP
ACLINE: sLINE (CRT) NUMBER - ALWAYS '00'

LXI D,3030H
IMP ACESC1
ACTIME: s TIME: HHMMSSFF

JMP $GETOP
ACDAY: sDAY: YYJJJ

JMP $GETOP
ACDATE: ;DATE: YYMMDD

JMP $GETOP
END

COBOL-80 User's Guide - Release 4 40

Appendix D
COBOL-80 WITH NON-CP/M OPERATING SYSTEMS

Many of the examples and instructions given in the rest of this document refer to
procedures and file names specific to the CP/M operating system. The syntax of
command strings is the same for all operating sytems; however, the file specifications and
switch separator character may differ. The A> shown in some examples is a prompt that
is typed by CP/M and is not part of the command. If you have a different operating
system, the following sections give descriptions of differences you should note.

D.1l TRSDOS Model I

D.l.1 Filename Descriptions

File specifications for COBOL-80 and LINK-80 have the same form as described in the
TRS-80 Owners Manual, namely:

filename/ext.password:d(diskette name)
The separator characters are the slash, period, and colon.

D.1.2 Your Distribution Disk

The names of the files on your distribution disk differ from the CP/M names and follow
the TRSDOS file naming conventions. The disk contains the same files as a CP/M disk
with the following exceptions:

*QOnly the CRT driver for the Model II terminal is included

*Some utility programs that are not available on the Madel II are not included. They
are:

LIB-80

SEQCVT

COBOL-80 User's Guide - Release 4 41
COBOL.-80 WITH NON-CP/M OPERATING SYSTEMS

D.1.3 Command Line Syntax

The command string for COBOL-80 and LINK-80 have the same form under TRSDQOS as
under CP/M. However, the separator character for switches is a hyphen instead of a slash
(since slash is used in TRSDOS file names) and the symbolic names of the console and
printer devices are :TT and :LP respectively. Using the TRSDOS syntax, the following
example shows how to compile, load, and execute the test program SQUARO/COB.

TRSDOS READY

COBOL ,:TT=SQUARO-R

L 80 SQUARO-N,SQUARO-E
SQUARO

The default file extensions assumed by COBOL-80 are
/COB for the source program file

JLST for the listing file
/REL for the object program file

D.1.4 DATE and TIME

COBOL-80 uses the date and time supplied by TRSDOS to time-stamp the compiler listing
page headings and to return the values requested by the ACCEPT TIME and DATE
statements.

D.1.5 CRT Handling

Since the Model II has a built-in keyboard and display monitor, COBOL-80 is delivered
configured for your hardware. You can ignore the description of configuring the CRT
given in Appendix A. Figure D-1 shows how to use the keyboard for entering data for a
format 3 or 4 ACCEPT statement and the supervisor calls used for the functions of
DISPLAY. COBOL-80 uses supervisor call number 8 for all output to the screen except
for the cursor position function, which uses supervisor call number 10.

COBOL.-80 User's Guide - Release 4

42

TRS-80 Madel II Terminal

[. Keyboard Input Input Code Key Label
A. Editing Keys
1. Line delete/Field delete 15 CONTROL-U
2. Character delete 08 BACK SPACE
3. Forward Space 1D -
4. Back Space 1C «—
5. Plus Sign 2B +
6. Minus Sign 2D -
B. Terminator Keys Escape Code Input Code Key Label
1. Backtab 99 1E T
2. Escape 01 1B ESC
3. Field terminators 00
a. Tab 09 TAB
b. Carriage Return ab ENTER
c. Line Feed 1F K7
C. Function Keys Escape Code Input Code Key Label
L 02 01 Fl
2. 03 02 F2

II. Qutput Functions
A. Set Cursor Position
B. Backspace Cursor
C. Cursor On
D. Cursor Off
E. Erase to End of Screen
F. Erase to End of Line
G. Sound Bell
H. Set Highlight Mode
I. Reset Highlight Mode

Supervisor Call

SVC 10 B=row-1 C=col-1 DE=00
SVC 8 B=1C
SVC 8 B=01
SVC 8 B=02

mooo
R =N

Wonounon

Figure D-1

COBOL-80 User's Guide - Release 4 43
COBOL-80 WITH NON-CP/M OPERATING SYSTEMS

D.2 ISIS-II

D.2.1 Filename Descriptions

File specifications far ISIS-II have the form
:device:filename.extension
The default extensions used in COBOL-80 command lines are:
.COB for the source file
.LST for the listing file
.REL for the object file
Executable files on the distribution disk and those created by L.80 have no extension. The

symbolic names for the console and printer are TTY: and LST: respectively.

D.2.2 Your Distribution Disk

The ISIS COBOL-80 distribution disk contains the same files as a CP/M disk, except that
the utility programs LIB and SEQCVT are not included.

cobol-80
reference
manual

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is
furnished under a licénse agreement or non-disclosure agreement. The software may be
used or copied only in accorgance with the terms of the agreement.

(C) Microsoft, 1978, 1979 , 1980

To report software bu§s or errors in the documentation, please complete and return the
Problem Report at the back of this manual.

8301-401-02

Microsoft

COBQOL-80 Reference Manual

CONTENTS

Introduction

CHAPTER 1l: Fundamental Concepts of COBOL

. L]

b e e

R
HHHHRFRREROONO0NUWME N

SFUWN-=O

Lol andl andll on B ol
. . .

CHAPTER 2: Identification and Environment Divisions

2.1
2.2

Character Set
Punctuation

Word Formation
Format Notation

Level Numbers and Data-Names
File-Names
Condition-Names
Mnemonic-Names
Literals

Figurative Constants
Structure of a Program
Coding Rules
Qualification of Names
COPY Statement

Identification Division
Environment Division

2.2.1 Configuration Section
2.2.2 Input-Qutput Section

2.2.2.1 File-Control Entry
2.2.2.2 1-0 Control Paragraph

W

(Yo IRV Ve I« s BUN RV, BN S S R VY]

17

17
17
18
19
19
21

CHAPTER 3: Data Division
3. Data [tems
.1.1 Group [tems
.1.2 Elementary Items
1.3 Numeric Items
Data Description Entry
Formats for Elementary [tems
USAGE Clause
PICTURE Clause
VALUE Clause
REDEFINES Clause
OCCURS Clause
SYNCHRONIZED Clause
BLANK WHEN ZEROQO Clause
JUSTIFIED Clause
SIGN Clause
Level 88 Condition-Names
File Section, FD Entries
(Sequential I-O Only)
3.14.1 LABEL Clause
3.14.2 VALUE QOF Clause
3.14.3 DATA RECORDS Clause
3.14.4 BLOCK Clause
3.14.5 RECORD Clause
3.14.6 CODE-SET Clause
3.14,7 LINAGE Clause
3.15 Working-Storage Section
3.16 Linkage Section
3.17 Screen Section
3.18 Data Division Limitations

- . - . . .
o ol ol RV-¥: Y. IV SRV SO

[V SN]

)

CHAPTER 4: Procedure Division

4.1 Statements, Sentences, Procedures-Names
4.2 Organization of the Procedure Division
4.3 MQOVE Statement

4.4 INSPECT Statement

45 Arithmetic Statements

4.5.1 SIZE ERROR Option

4.5.2 ROUNDED Option

4.5.3 GIVING Option

4.5.4 ADD Statement

4,5.5 SUBTRACT Statement
4.5.6 MULTIPLY Statement
4.5.7 DIVIDE Statement
4.5.8 COMPUTE Statement

4.6 GO TO Statement
4.7 STOP Statement
4.8 ACCEPT Statement
4.8.1 Format 1 ACCEPT Statement
4.8.2 Format 2 ACCEPT Statement
4.8.3 Format 3 ACCEPT Statement
4.8.3.1 Data Input Field
4.8.3.2 Data Input and Data Transfer
4.8.3.3 WITH Phrase Summary
4.8.4 Examples Using the ACCEPT Statement
4.8.5 Format 4 ACCEPT Statement
4,9 DISPLAY Statement
4.9.1 Position-spec
4.9.2 Identifier, Literal, and ERASE
4.9.3 Screen-name
4.10 PERFORM Statement
4.11 EXIT Statement
4.12 ALTER Statement
4.13 IF Statement
4.13.1 Conditions
4.14 OPEN Statement (Sequential [-Q)
4.15 READ Statement (Sequential I-O)
4.16 WRITE Statement (Sequential I-Q)
4,17 CLOSE Statement (Sequential [-O)
4.18 REWRITE Statement (Sequential I-O)
4.19 General Note on I/O Error Handling
4,20 STRING Statement
4.21 UNSTRING Statement
4.22 Dynamic Debugging Statements

47
47

49
51
53
54
55
55
56
56
57
57
58

60
60
61
62
64
64
66

70
72

75
76
77
78
78
79
80
80

81
84
85
86

88
89
89
90
92

CHAPTER 5: Inter-Program Communication

5.1 CALL Statement

5.2 EXIT PROGRAM Statement

5.3 CHAIN statement

5.4 Procedure Division Header with
CALL and CHAIN

CHAPTER 6: Table Handling by the Indexing Method

6.1 Index Names and Index [tems

.2 SET Statement

3 Relative Indexing

4 SEARCH Statement - Format 1
5 SEARCH Statement - Format 2

o\NON ONON

CHAPTER 7: Indexed Files

7.1 Definition of Indexed File Organization

7.2 Syntax Considerations
7.2.1 RECORD KEY Clause
7.2.2 File Status Reporting

7.3 Procedure Division Statements

for Indexed Files

7.4 READ Statement

7.5 WRITE Statement

7.6 REWRITE Statement

7.7 DELETE Statement

7.8 START Statement

CHAPTER 8: Relative Files

8.1 Definition of Relative File
Organization

8.2 Syntax Considerations

8.2.1 RELATIVE KEY Clause

8.3 Procedure Division Statements
for Relative Files

8.4 READ Statement

8.5 WRITE Statement

8.6 REWRITE Statement

8.7 DELETE Statement
8.8 START Statement

CHAPTER 9: Declaratives and the Use Sentence

CHAPTER 10: Segmentation

94

94
95
95

96

97

97
97

98
99
100

103

103
103
104
104

105
106
107
107
108
108

109

109
109
110

110
110
111
111
112
112

114

116

Appendix I:
Appendix II:
Appendix [II:
Appendix IV:
Appendix V:
Appendix VI:

Appendix VI

Advanced Forms of Conditions

Table of Permissible MOVE Operands
Nesting of IF Statements

ASCII Character Set

Reserved Words

PERFORM with VARYING and AFTER Clauses

COBOL-80 With Respect to the ANSI Standard

118
120
121
123
124
125
127

COBQOL-80 Reference Manual - Release 4 1
Introduction

[ntroduction

Microsoft COBOL is based upon American National Standard X3.23-1974.

Elements of the COBOL language are allocated to twelve different functional
processing "modules.”

Each module of the COBOL Standard has two non-null "levels" - Level 1
represents a subset of the full set of capabilities and features contained in Level
2.

In order for a given system to be called COBOL, it must provide at least Level 1
of the Nucleus, Table Handling and Sequential [-O Madules.

The following summary specifies the content of Microsoft COBOL with respect
to the Standard.

Module Features of COBOL-80
Nucleus All of Level 1, plus these features of Level 2:
CONDITIONS:

Level 88 conditions with value series aor range

Use of logical AND/OR/NQT in conditions

Use of algebraic relational symbals (<,>,=)

Implied subject, or both subject and relation, in relational conditions.
Sign Test

Nested IF statements; parentheses in conditions

VERBS:
Extensions to the functions of ACCEPT and DISPLAY for formatted
screen handling
ACCEPTance of data from DATE/DAY/TIME
STRING and UNSTRING statements
COMPUTE with muitiple receiving fields
PERFORM VARYING ... UNTIL

IDENTIFIERS:
Mnemanic-names for ACCEPT or DISPLAY devices
Procedure-names consisting of digits only
Qualification of names (in Procedure Division statements only)

COBOL-80 Reference Manual - Release 4

Introduction

Module

Sequential
Relative, and

Indexed 1/O

Sequential I/O

Relative and
Indexed 1/O

Library

Inter-Program
Communication

Table Handling

Debugging

Segmentation

Features

All of Level 1 plus these features of Level 2:
RESERVE clause

Multiple operands in OPEN & CLQOSE, with individual
options per file

VALUE OF FILE-ID IS data-name

EXTEND made for OPEN
WRITE ADV ANCING data-name lines
LINAGE phrase and AT END-OF -PAGE clause

D YNAMIC access mode (with READ NEXT)
START (with key relationals EQUAL, GREATER, or
NOT LESS)

Level 1

Level 1

All of Level 1
Full Level 2 formats for SEARCH statement

Special extensions to ANSI-74 Standard providing
convenient trace style debugging.

Conditional Compilation: lines with "D in column 7"
are bypassed unlesss "WITH DEBUGGING MODE" is
given in SOURCE-COMPUTER paragraph.

Level 1

~

COBOL-80 Reference Manual - Release 4

CHAPTER 1

Fundamental Concepts of COBOL

1.1 Character Set

The COBOL source language character set consists of the following characters:

Letters A through Z
Blank or space
Digits O through 9
Special characters:
+ Plus sign
- Minus sign
* Asterisk
= Equal sign
> Relational sign (greater than)
< Relational sign (less than)
$ Dollar sign
, Comma
; Semicolon
. Period or decimal point
" Quotation mark
(Left parenthesis
) Right parenthesis
' Apostrophe (alternate quotation mark)
/ Slash

Of the previous set, the following characters are used for words:

0 through 9
A through Z
- (hyphen)

(Left parenthesis
) Right parenthesis
, Comma

. Period

; Semicolon

COBQOL-80 Reference Manual - Release 4 4
Fundamental Concepts of COBOL

The following relation characters are used in simple conditions:

W AV

In the case of non-numeric (quoted) literals, comment entries, and comment
lines, the COBOL character set is expanded to, include the computer's entire
character set.

1.2 Punctuation

The following general rules of punctuation apply in writing source programs:

1.

2.

3.

As punctuation, a period, semicolon, or comma should not be
preceded by a space, but must be followed by a space.

At least one space must appear between two successive words
and/or literals. Two or more successive spaces are treated as a
single space, except in non-numeric literals.

Relation characters and arithmetic operators should always be
preceded by a space and followed by another space.

A comma may be used as a separator between successive operands
of a statement, or between two subscripts.

A semicolon or comma may be used to separate a series of
statements or clauses.

1.3 Word Formation

User-defined and reserved words are composed of a combination of not more
than 30 characters, chosen from the following set of 37 characters:

0 through 9 (digits)
A through Z (letters)
- (hyphen)

COBOL-80 Reference Manual - Release 4 5
Fundamental Concepts of COBOL

All words must contain at least one letter or hyphen, except procedure-names
which may consist entirely of digits. A word may not begin or end with a
hyphen. A word is ended by a space or by proper punctuation. A word may
contain more than one embedded hyphen; consecutive embedded hyphens are also
permitted. AIll words are either reserved words, which have preassigned
meanings, or programmer-supplied names. [f a programmer-supplied name is not
unique, there must be a unique method aof reference to it by use of name
qualifiers, e.g.,, TAX-RATE IN STATE-TABLE. Primarily, a non-reserved word
identifies a data item or field and is called a data-name. Other cases of
non-reserved words are file-names, condition-names, mnemonic-names, and
procedure-names.

1.4 Format Notation

Throughout this publication, "general formats' are prescribed for various clauses
and statements to guide the programmer in writing his own statements. They
are presented in a uniform system of notaticn, explained in the following
paragraphs.

1. All words printed entirely in capital letters are reserved waords.
These are words that have preassigned meanings. In all formats,
words in capital letters represent actual occurrences of thase words.

2. All underlined reserved words are required unless the portion of the
farmat containing them is itself optional. These are key words. If
any key word is missing or is incorrectly spelled, it is considered an
error in the program. Reserved words not underlined may be
included or omitted at the option of the programmer. These words
are optional words; they are used solely for improving readability of
the program.

3. The characters < > = (although not underlined) are required when
present in statement formats.

4. All punctuation and other special characters represent actual
occurrences of those characters. Punctuation is essential where it
is shown. Additional punctuation can be inserted, according to the
rules for punctuation specified in Section 1.2. As separators, all
comrr;as, semicolons and periods must be followed by a space (or
blank).

COBQL-80 Reference Manual - Release 4 6
Fundamental Concepts of COBOL

10.

11.

12.

Wards printed in lower-case letters in formats represent generic
terms (e.g., data-names) for which the user must insert a valid entry
in the source program.

Any part of a statement or data description entry that is enclosed in
square brackets ([]) is optional. Parts between matching braces ({ })
represent a choice of mutually exclusive options.

Certain entries in the formats consist of a capitalized word(s)
followed by the word "Clause" or "Statement." These designate
clauses or statements that are described in other formats, in
appropriate sections of the text.

In order to facilitate reference to lower-case words in the
explanatory text, some of them are followed by a hyphen and a digit
or letter. This modification does not change the syntactical
definition of the word.

Alternate options may be indicated by separating the mutually
exclusive choices by a vertical stroke, e.g.:

AREA | AREAS is equivalent to AREA
AREAS
The ellipsis (...) indicates that the immediately preceding unit may
occur once, or any number of times in succession. A unit means
either a single lower-case word, or a group of lower-case words and
one or more reserved words enclosed in brackets or braces. If a
term is enclosed in brackets or braces, the entire unit of which it is
part must be repeated when repetition is specified.

Optional elements may be indicated by parentheses instead of
brackets, provided the lack of formality represents no substantial
bar to clarity.

Comments, restrictions, and clarification on the use and meaning of
every format are contained in the appropriate sections of this
manual.

COBOL-80 Reference Manual - Release 4 7
Fundamental Concepts of COBOL

1.5 Level Numbers and Data-Names

For purposes of processing, the contents of a file are divided into logical records,
with level number 01 initiating a logical record description. Subordinate data
items that constitute a logical record are grouped in a hierarchy and identified
with level numbers 02 to 49, not necessarily consecutive. Additionally, level
number 77 identifies a "stand alone” item in Working Storage or Linkage Sections;
that is, it does not have subaordinate elementary items as does level 01l. Level 88
is used to define condition-names and associated conditions. A level number less
than 10 may be written as a single digit.

Levels allow specification of subdivisions of a record necessary for referring to
data. Once a subdivision is specified, it may be further subdivided to permit
more detailed data reference. This is illustrated by the following weekly
timecard record, which is divided into four major items: name,
employee-number, date and hours, with more specific information appearing for

name and date.
- LAST-NAME
NAMEZ—<FIR ST-INIT
MIDDLE-INIT

EMPLOYEE-NUM

TIME-CARD
MONTH
WEEKS-END-DATE: AY-NUMBER
YEAR
HOURS-WORKED

Subdivisions of a record that are not themselves further subdivided are called
elementary items. Data items that contain subdivisions are known as group
items. When a Procedure Division statement makes reference to a group item,
the reference applies to the area reserved for the entire group. All elementary
items must be described with a PICTURE or USAGE IS INDEX clause.
Consecutive logical records (0l) subordinate to any given file represent implicit
redefinitions of the same area whereas in the Working-Storage section, each
record (01) is the definition of its own memory area.

Less inclusive groups are assigned numerically higher level numbers. Level
numbers of items within groups need not be consecutive. A group whose level is
k includes all groups and elementary items described under it until a level
number less than or equal to k is encountered.

Separate entries are written in the source program for each level. To illustrate
level numbers and group items, the weekly timecard record in the previous
example may be described by Data Division entries having the following level
numbers, data-names and PICTURE definitions.

COBOL -80 Reference Manual - Release 4 8
Fundamental Concepts of COBOL

01 TIME-CARD.

02 NAME.
03 LAST-NAME PICTURE X(18).
03 FIRST-INIT PICTURE X.
03 MIDDLE-INIT PICTURE X.
02 EMPLOYEE-NUM PICTURE 99999.
02 WEEKS-END-DATE.
05 MONTH PIC 99.
05 DAY-NUMBER PIC 99.
05 YEAR PIC 99.
02 HOURS-WORKED PICTURE 99V9.

A data-name is a word assigned by the user to identify a data item used in a
program. A data-name always refers to a region of data, not to a particular
value. The item referred to often assumes a number of different values during
the course of a program.

A data-name must begin with an alphabetic character. A data-name or the key
word FILLER must be the first word following the level number in each Record
Description entry, as shown in the following general format:
level number data-name
FILLER

This data-name is the defining name of the entry and is used to refer to the
associated data area (containing the value of a data item).

If some of the characters in a record are not used in the processing steps of a
program, then the data description of these characters need not include a
data-name. In this case, FILLER is written in lieu of a data-name after the level
number.

1.6 File Names

A file is a collection of data records, such as a printed listing or a region of
floppy disk, containing individual records of a similar class or application. A
file-name is defined by an FD entry in the Data Division's File Section. FD is a
reserved word which must be followed by a unique programmer-supplied word
called the file-name. Rules for composition of the file-name word are identical
to those for data-names (see Section 1.3). References to a file-name appear in
the Procedure Division statements OPEN, CLOSE and READ, as well as in the
Environment Division. CAUTION: File names are not to be confused with file
ID's as described in Section 3.14.2.

COBOL-80 Reference Manual - Release 4 9
Fundamental Concepts of COBOL

1.7 Condition-Names

A condition-name is defined in level 88 entries within the Data Division. It is a
name assigned to a specific value, set or range of values, within the complete set
of values that a data item may assume. Rules for formation of name words are
specified in Section 1l.3. Explanations of condition-name declarations and
procedural statements employing them are given in the chapters devoted to the
Data and Procedure Divisions.

1.8 Mnemonic-Names

A mnemonic-name is assigned in the Environment Division for reference in
ACCEPT or DISPLAY statements. It assigns a user-defined word to an
implementor-chosen name, such as PRINTER. A mremonic-name is composed
according to the rules in Section 1.3.

1.9 Literals

A literal is a constant that is not identified by a data-name in a program. A
literal is either non-numeric or numeric.

Non-Numeric Literals

A non-numeric literal must be bounded by matching quotation marks (or
apostrophes) and may consist of any combination of characters in the ASCII set,
except quotation marks (or apostrophe). All spaces enclosed by the quotation
marks are included as part of the literal. A non-numeric literal must not exceed
120 characters in length.

The following are examples of non-numeric literals:

"ILLEGAL CONTROL CARD"

'CHARACTER-STRING'

"D0O's & DON'T'S"
Each character of a non-numeric literal (following the introductory delimiter)
may be any character other than the delimiter. That is, if the literal is bounded
by apostrophes, then quotation (") marks may be included within the literal, and

vice versa. Length of a non-numeric literal exciudes the delimiters; minimum
length is one.

COBQOL-80 Reference Manual - Release 4 10
Fundamental Concepts of COBOL

A succession of two "delimiters" within a literal is interpreted as a single
representation of the delimiter within the literal.

Non-numeric literals may be "continued" from one line to the next. When a
non-numeric literal is of a length such that it cannot be contained on one line of
a co)ding sheet, the following rules apply to the next line of coding (continuation
line):

1. A hyphen is placed in column 7 of the continuation line.

2. A delimiter is placed in Area B preceding the continuation of the
literal.

3. All spaces at the end of the previous line and any spaces following

the delimiter in the continuation line and preceding the final
delimiter of the literal are considered to be part of the literal.

4. On any continuation line, Area A should be blank.

Numeric Literals

A numeric literal must contain at least one and not more than 18 digits. A
numeric literal may consist of the characters 0 through 9 (opticnally preceded by
a sign) and the decimal point. It may contain only one sign character and only
one decimal point. The sign, if present, must appear as the leftmost character in
the numeric literal. If a numeric literal is unsigned, it is assumed to be positive.

A decimal point may appear anywhere within the numeric literal, except as the
rightmost character. If a numeric literal does not contain a decimal point, it is
considered to be an integer.

The following are examples of numeric literals:

72 +1011 3.14159 -6 -.333 a.5
By use of the Environment Division specification DECIMAL-POINT IS COMMA,
the functions of the characters period and comma are interchanged, putting the

"European” notation into effect. In this case, the value of "pi" would be 3,1416
when written as a numeric literal.

COBOL-80 Reference Manual - Release 4 11
Fundamental Concepts of COBOL

1.10 Figurative Constants

A figurative constant is a special type of literal. It represents a value to which a
standard name has been assigned. A figurative constant is not bounded by
quotation marks.

ZERO may be used in many places in a program as a numeric literal. Other
figurative constants are available to provide non-numeric data; the reserved
wards representing various characters are as follows:
SPACE the blank character represented by "octal" 40
LOW-V ALUE the character whose "actal" representation is 00
HIGH-V ALUE the character whose "octal" representation is 177
QUOTE the quotation mark, whose "actal" representation is 42
ALL literal ogne or more instances of the literal, which must be a
ane-character non-numeric literal or a figurative
constant, in which case ALL is redundant but serves for
readability.
The plural forms of these figurative constants are acceptable to the compiler but
are equivalent in effect. A figurative constant represents as many instances of
the associated character as are reguired in the context of the statement.
A figurative constant may be used anywhere a literal is called for in a "general

format" except that whenever the literal is restricted to being numeric, the only
figurative constant permitted is ZEROQO.

1.11 Structure of a Program

Every COBOL source program is divided into four divisions. Each division must
be placed in its proper sequence, and each must begin with a division header.

The four divisions, listed in sequence, and their functions are:
IDENTIFICATION DIVISION, which names the program.

ENVIRONMENT DIVISION, which indicates the computer equipment and
features to be used in the program.

DATA DIVISION, which defines the names and characteristics of data to
be processed.

PROCEDURE DIVISION, which consists of statements that direct the
processing of data at execution time.

COBOL-80 Reference Manual - Release 4 12
Fundamental Concepts of COBOL

It is very difficult for COBOL to compile source code if the Division headers are
omitted, misspelled, or are accidentally commented out. In this case,
unpredictable events may occur.

The following skeletal coding defines program component structure and order.

COBOL-80 Reference Manual - Release 4

[IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. comment-entry ...]

[INSTALLATION. comment-entry ...]

[DATE-WRITTEN. comment-entry ...]

(DATE-COMPILED. comment-entry ...]

[SECURITY. comment-entry ...]

ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

[SOURCE-COMPUTER. entry]

(OBJECT-COMPUTER. entry]

[SPECIAL-NAMES. entry]]

(INPUT-QUTPUT SECTION.

FILE-CONTROL. entry ...

[I-O-CONTROL. entry ...]]

DATA DIVISION.

[FILE SECTION.
[file description entry

record description entry ...J..]

WORKING-STORAGE SECTION.

(data item description entry ...]..]

[LINKAGE SECTION.

[data item description entry ...L..]

[SCREEN SECTION.

[screen-description-entry ...] ...]

PROCEDURE DIVISION [USING [identifier-1] ...].

[DECLARATIVES.

[section-name SECTION. USE Sentence.
[paragraph-name. [sentencel...]...]...

END DECLARATIVES.]

([section-name SECTION. [segment number]]

[paragraph-name. [sentencel...]...]...

13

COBOL -80 Reference Manual - Release 4 14
Fundamental Concepts of COBOL

1.12 Coding Rules

Since Microsoft COBOL is a subset of American National Standards Institute
(ANSI) COBOL, programs may be written on standard COBOL coding sheets, and
the following rules are applicable.

l‘

Each line of code should have a six-digit sequence number in
columns 1-6, such that the punched cards are in ascending order.
Blanks are also permitted in columns 1-6.

Reserved words for division, section, and paragraph headers must
begin in Area A (columns 8-11). Procedure-names must also appear
in Area A (at the point where they are defined). Level numbers may
appear in Area A. Level numbers 01, 77 and level indicator "FD"
must begin in Area A.

All other program elements should be confined to columns 12-72,
governed by the other rules of statement punctuation.

Columns 73-80 are ignored by the compiler. Frequently, these
columns are used to contain the deck identification.

Explanatory comments may be inserted on any line within a source
program by placing an asterisk in column 7 of the line. The line will
be produced on the source listing but serves no other purpase. If a
slash (/) appears in column 7, the associated card is treated as
camments and will be printed at the top of a new page when the
compiler lists the program.

Any program element may be "continued" on the following line of a
source program. The rules for continuation of a non-numeric
("quoted") literal are explained in Section 1.9. Any other word or
literal or other program element is continued by placing a hyphen in
the column 7 position of the continuation line. The effect is
concatenation of successive word parts, exclusive of all trailing
spaces of the last predecessor word and ail leading spaces of the
first successor word on the continuation line. On a continuation
line, Area A must be blank.

Any tab characters in a line are expanded as if there were tab stops
at every eighth column past column 1, except that the first tab stop
is in column 7, just past the six segquence-number columns.
Subsequent tab stops are columns 17, 25, 33, etc. as determined by
the general rule.

COBOL-80 Reference Manual - Release 4 15
Fundamental Concepts of COBOL

1.13 Qualification of Names

When a data-name, condition-name or paragraph name is not unique, reference
thereto may be accomplished uniquely by use of qualifier names. For example, if
there were two or more items named YEAR, the qualified reference

YEAR OF HIRE-DATE

might dif ferentiate between YEAR fields in HRE-DATE and
TERMINATION-DATE.

Qualifiers are preceded by the word OF or IN; successive data-name or
condition-name qualifiers must designate lesser-level-numbered groups that
contain all preceding names in the composite reference, i.e., HIRE-DATE must
be a group item (or file-name) containing an item called YEAR.
Paragraph-names may be qualified by a section-name. The maximum number of
qualifiers is five. File-names and mnemonic-names must be unique.

A qualified name may only be written in the Screen Section or Procedure

Division. A reference to a muitiply-defined paragraph-name need not be
qualified when referred to from within the same section.

1.14 COPY Statement

The COPY statement is used to logically embed the text of a disk file (other
than the source file) in the source code input to the COBOL-80 compiler. The
format of the COPY statement is:

COPRY text-name

where text-name is a disk file name in the format required by the operating
system in use. For example, suppose BDEF.COB is a text file containing the
following source code:

05 B.

10 B1 PIC X.
10 B2 PIC X.

COBOL-80 Reference Manual - Release 4 16
Fundamental Concepts of COBOL

Then a source file containing

05 A.
10 A1 PIC 9.

COPY BDEF.COB
05 C.

10 C1 PIC Z.

will compile exactly as if the following had been coded:

05 A.

10 A1 PIC 9.
05 B.

10 B1 PIC X.

10 B2 PIC X.
05 C.

10 C1 PIC Z.

The portion of a source line containing a COPY statement must contain only
spaces from the end of text-name to the end of the line.

COBOL-80 Reference Manual - Release 4 17

CHAPTER 2

Identification and Environment Divisions

2.1 Identification Division

Every COBOL program begins with the header: IDENTIFICATION DIVISION.
This division is divided into paragraphs having preassigned names:

PROGRAM-ID. program-name.
AUTHOR. comments.
INSTALLATION. comments.
DATE-WRITTEN. comments.
DATE-COMPILED. comments.
SECURITY. comments.

Only the PROGRAM-ID paragraph is required, and it must be the first
paragraph. Program-name is any alphanumeric string of characters, the first of
which must be alphabetic. Only the first 6 characters of program-name are
retained by the compiler. The program-name identifies the object program and
is contained in headings on compilation listings.

The contents of any other paragraphs are of no consequence, serving only as
documentary remarks.

2.2 Environment Division

The Environment Division specifies a standard method of expressing those
aspects of a COBOL program that are dependent upon physical characteristics of
a specific computer. It is required in every program.

COBOL-80 Reference Manual - Release 4 18
[dentification and Environment Divisions

The general format of the Environment Division is:

ENVIRCNMENT DIVISION.

CONFIGURATION SECTICON.

SOURCE-COMPUTER. Computer-name [WITH DEBUGGING MODE].

OBJECT-COMPUTER. Computer-name
[MEMQRY SIZE integer WORDS | CHARACTERS | MODULES]
[PROGRAM COLLATING SEQUENCE IS ASCIII

SPECIAL-NAMES. [PRINTER IS mnemonic-name] ASCII IS STANDARD-1
NATIVE
[CURRENCY SIGN IS literal]

[DECIMAL-POINT IS COMMAL

INPUT-OUTPUT SECTION.

FILE-CONTROL. {file-control-entryl}...

[-O-CONTROL.

[RECORD
[SAME SORT AREA FOR file-name...)...
i SORT-MERGE

2.2.1 CONFIGURATION SECTICN

The CONFIGURATION SECTION, which has three possible paragraphs, is
optional. The three paragraphs are SOURCE-COMPUTER,
OBJECT-COMPUTER, and SPECIAL- NAMES. The contents of the first two
paragraphs are treated as commentary, except for the clause WITH DEBUGGING
MODE, if present (see Section 4.22). The third paragraph, SPECIAL-NAMES,
relates implementor names to user-defined names and changes default editing
characters. The PRINTER IS phrase allows definition of a name to be used in the
DISPLAY statement with UPQON.

If the currency symbol is not desired to be the dollar sign, the user may specify a
single character non-numeric literal in the CURRENCY SIGN clause. However,
the designated character may not be a quote mark, nor any of the characters
defined for PICTURE representations, nar digits (0-9).

The "European" convention of separating integer and fraction paositions of
numbers with the comma character is specified by employment of the clause
DECIMAL-POINT IS COMMA.

COBOL-80 Reference Manual - Release 4 19
Identification and Environment Divisions

Note that the reserved word IS is required in entries for currency sign definition
and decimal-point convention specification.

The entry ASCII IS NATIVE/STANDARD-L specifies that data representation
adheres to the American Standard code for Information Interchange. However,
this convention is assumed even if the ASCIl-entry is not specifically present. In
this compiler, NATIVE and STANDARD-1 are identical, and refer to the
character set representation specified in Appendix IV.

2.2.2 INPUT-QUTPUT SECTICON

The second section of the Environment Division is mandatory unless the program
has no data files; it begins with the header:

INPUT-QUTPUT SECTION.

This section has two paragraphs: FILE-CONTROL and [-O-CONTROL. In this
section, the programmer defines the file assignment parameters, including
specification of buffering.

2.2.2.1 FILE-CONTROL ENTRY (SELECT ENTRY)

Far each file having records described in the Data Division's File Section, a
Select Sentence-Entry (beginning with the reserved word SELECT) is required in
the FILE-CONTROL paragraph. The format of a Select Sentence-Entry for a
sequential file is:

SELECT file-name ASSIGN TO DISK | PRINTER

[RESERVE integer AREAS | AREA]

[FILE STATUS IS data-name-1]

[ACCESS MODE IS SEQUENTIAL] [ORGANIZATION IS [LINE] SEQUENTIALL

The SELECT entry must begin to the right of Area A of the source line. All
phrases after "SELECT filename" can be in any order. Both the ACCESS and
ORGANIZATION clauses are optional for regular sequential input-output
processing. For Indexed or Relative files, alternate formats are available for this
section, and are explained in the chapters on Indexed and Relative files.

COBOL-80 Reference Manual - Release 4 20
Identification and Environment Divisions

Two formats are available for sequential disk files. One is the regular form
which is requested by ORGANIZATION IS SEQUENTIAL, and the other is
requested by ORGANIZATION IS LINE SEQUENTIAL. Both forms assume the
records in the file are variable-length. The regular sequential organization is
that of a two-byte count of the record length followed by the actual record, for
as many records as exist in the file. The line sequential organization has the
record followed by a carriage return/line feed delimiter, for as many records as
exist in the file. No COMP or COMP-3 information should be written into a Line
Sequential file because these data items may contain the same binary codes used
for carriage return and line feed which therefore would cause a probiem when
subsequently reading the file. Both crganizations pad any remaining space of the
last physical block with Control-Z characters, indicating end-of-file. All records
are placed in the file with no gaps; they span physical block boundaries.

The RESERVE clause is not functional in COBOL-80, but is scanned for correct
syntax. One physical block buffer is always allocated to the logical record area
assigned to it. This allows logical records to be spanned over physical block
boundaries. For files assigned to PRINTER, the logical record area is used as the
physical buffer as well.

In the FILE STATUS entry, data-name-l1 must refer to a two-character
Working-Storage or Linkage Section item of category alphanumeric into which
the run-time data management facility places status information after an [-O
statement. The left-hand character of data-name-1 assumes the values:

g for successful completion

'l for end-of-file

2! far invalid key (only for indexed and relative files)
131 for a non-recoverable [-0 error

The right-hand character of data-name-l is set to '0' if no further status
information exists for the previous [-O operation. The following combinations of
values are paossible:

File Status Left File Status Right Meaning
el 0 0.K.
Ill lOl EOF‘
13 Q Permanent error
13 4! Disk space full
19 1 File damaged

In an QOPEN INPUT or OPEN I-O statement, a File Status of '30' means 'File Not
Found.’

For values of status-right when status-left has a value of '2', see the chapters on
Indexed or Relative files.

COBOL-80 Reference Manual - Release 4 ' 21
Identification and Environment Divisions

2.2.2.2 [-O-CONTROL PARAGRAPH

The SAME AREA clause is optional. Only the SAME RECORD AREA form is
functional in COBOL-80. The other forms are checked for correct syntax but da
not cause any sharing of physical buffer space.

The SAME RECCORD AREA form causes all the named files to share the same
logical record area in order to conserve memory space.

The format of the SAME AREA entry is:

RECORD
SAME SORT AREA FOR filename...
SORT-MERGE

All flles named in .a given SAME AREA clause need not have the same

organization or access. However, no file may be listed in more than one SAME
AREA clause.

The SORT and SORT-MERGE options are allowed only in those versions of
COBOL -80 supporting the SORT facility.

COBOL-80 Reference Manual - Release 4 22

CHAPTER 3

Data Division

The Data’ Division, which is one of the required divisions in a program, is
subdivided into four sections: File Section, Working-Storage Section, Linkage
Section, and Screen Section. Each is discussed in Sections 3.13-3.16, but first,
aspects of data specification that apply in all sections will be described.

3.1 Data Items

Several types of data items can be described in COBOL programs. These data
items are described in the following paragraphs.

3.1.1 Group Items

A group item is defined as one having further subdivisions, so that it contains one
ar more elementary items. In addition, a group item may contain other groups.
An item is a group item if, and only if, its level number is. less than the level
number of the immediately succeeding item. If an item is not a group item, then
it is an elementary item. Ordinarily, the maximum size of any data item is 4095
bytes. In order to allow tables to exceed this limit, however, level 0Ol group
items are not checked for length. Such an item longer than 4095 bytes will be
disallowed by the compiler as an operand of a Procedure Division statement such
as MOVE, INSPECT, etc.

3.1.2 Elementary Items

An elementary item is a data item containing no subordinate items.

Alphanumeric Item: An alphanumeric item consists of any combination of
characters, making a "character string” data field. I[f the associated picture
contains "editing" characters, it is an alphanumeric edited item.

Report (Edited) Item: A report item is an edited "numeric" item containing only
digits and/or special editing characters. It must not exceed 30 characters in
length. A report item can be used only as a receiving field for numeric data. It
is designed to receive a numeric item but cannot be used as a numeric item itself.

COBOL-80 Reference Manual - Release 4 23
Data Division

3.1.3 Numeric Items

Numeric items are elementary items intended to contain numeric data only.

External Decimal Item: An external decimal data item is an item in which one
character (byte) is employed to represent one digit. A maximum number of 18
digits is permitted; the exact number of digit positions is defined by writing a
specific number of 9-characters in the PICTURE description. For example,
PICTURE 999 defines a 3-digit item. That is, the maximum decimal value of the
item is nine hundred ninety-nine.

If the PICTURE begins with the letter S, then the item also has the capability of
containing an "operational sign." An ogperational sign does not occupy a separate
character (byte), unless the "SEPARATE" form of SIGN clause is included in the
item's description. Regardless of the form of representation of an operational
sign, its purpose is to provide a sign that functions in the normal algebraic
manner.

The USAGE of an external decimal item is DISPLAY (see USAGE clause, Section
3.4).

Internal Decimal Item: An internal decimal item is stored in packed decimal
farmat. It is attained by inclusion of the COMPUTATIONAL-3 USAGE clause.

A packed decimal item defined by n 9's in its PICTURE occupies 1/2 of (n + 2)
(rounded down) bytes in memory. All bytes except the rightmost contain a pair
of digits, and each digit is represented by the binary equivalent of a valid digit
value from 0 to 9. The item's low order digit and the operational sign are found
in the rightmost byte of a packed item. For this reason, the compiler considers a
packed item to have an arithmetic sign, even if the original PICTURE lacked an
S-character.

Binary Item: A binary item uses the base 2 system to represent an integer in the
range -32768 to 32767. It occupies one 1l6-bit word. The leftmost bit of the
reserved area is the operational sign. A binary item is specified by USAGE IS
COMPUTATIONAL.

Index-Data-Item: An index-data-item has no PICTURE; it is defined by the
USAGE IS INDEX clause. (Refer to Chapter 6, "Table Handling by the Indexing
Method.")

COBOL-80 Reference Manual - Release 4 24
Data Division

3.2 DATA DESCRIPTION ENTRY

A Data Description entry specifies the characteristics of each field (item) in a
data record. Each item must be described in a separate entry in the same order
in which the items appear in the record. Each Data Description entry consists of
a level number, a data-name, and a series of independent clauses followed by a
period. The general farmat of a Data Description entry is:
data-name
level-number FILLER (REDEFINES-clause) (JUSTIFIED-clause)

(PICTURE-clause) (USAGE-clause) (SYNCHRONIZED-clause)
(OCCURS-clause) (BLANK-clause) (VALUE-clause) (SIGN-clause).

When this format is applied to specific items of data, it is limited by the nature
of the data being described. The format allowed for the description of each data
type appears below. Clauses that are not shown in a format are specifically
forbidden in that farmat. Clauses that are mandatory in the description of
certain data items are shown without parentheses. The clauses may appear in
any order except that a REDEFINES-clause, if used, should come first.

Group Item Format

data-name
level-number |FILLER (REDEFINES-clause) (USAGE-clause)

(OCCURS-clause) (VALUE clause) (SIGN-clause).
Example:
01 GROUP-NAME.

02 FIELD-B PICTURE X.
02 FIELD-C PICTURE X.

NOTE

The USAGE clause may be written at
a group level to avoid repetitious
writing of it at the subordinate
element level.

C0OBOL-80 Reference Manual - Release 4 25
Data Division

3.3 FORMATS FOR ELEMENTARY ITEMS

ALPHANUMERIC ITEM (also called a character-string item)

data-name
level-number FILLER

(REDEFINES-clause) (OCCURS-clause)
PICTURE IS an-form (USAGE IS DISPLAY) (JUSTIFIED-clause)
(VALUE IS non-numeric-literal) (SYNCHRONIZED-clause).

Examples:

02 MISC-1 PIC X(53).
02 MISC-2 PICTURE BXXXBXXB.

REPORT ITEM (also called a numeric-edited item)

data-name
level-number FILLER

(REDEFINES-ciause) (OCCURS-clause)
PICTURE IS report-form (BLANK WHEN ZERQO) (USAGE IS DISPLAY)
(VALUE IS non-numeric-literal) (SYNCHRONIZED-clause).
Example:

02 XTOTAL PICTURE $999,999.99-.

DECIMAL ITEM

data-name
(REDEFINES-clause) (OCCURS-clause)

level-number { FILLER

PICTURE IS numeric-form (SIGN-clause)

(USAGE-clause) (VALUE IS numeric-literal) (SYNCHRONIZED-clause).
Examples:

02 HOURS-WORKED PICTURE 99V 9, USAGE IS DISPLAY.
02 HOURS-SCHEDULED PIC S99V 9, SIGN IS TRAILING.

- W W win - ——— " Ww wE win e m= @ e e wa e

11 TAX-RATE PIC S99V 999 VALUE 1.375, COMPUTATIONAL-3.

COBOL-80 Reference Manual - Release 4 26
Data Division

BINARY ITEM

data-name
level-number |FILLER (REDEFINES-clause) (OCCURS-clause)
PICTURE IS numeric-farm

USAGE IS COMPUTATIONAL | COMP | INDEX

(VALUE IS numeric-literal) (SYNCHRONIZED-clause).

NOTE

A PICTURE or VALUE must not be
given for an INDEX Data Item.

Examples:

02 SUBSCRIPT PICTURE 999 COMP, V ALUE ZERO.
02 YEAR-TO-DATE PIC S%(5) COMPUTATIONAL.

3.4 USAGE CLAUSE

The USAGE clause specifies the form in which data is represented.

The USAGE clause may be written at any level. If USAGE is not specified, the
item is assumed to be in "DISPLAY" mode. The general format of the USAGE
clause is:

COMPUTATIONAL
USAGE IS INDEX

DISPLAY

COMPUTATIONAL-3

INDEX is explained in Chapter 6, Table Handling. COMPUTATIONAL, which
may be abbreviated COMP, usage defines an integer binary field.
COMPUTATIONAL-3, which may be abbreviated COMP-3, defines a packed
(internal decimal) field.

If a USAGE clause is given at a group level, it applies to each elementary item in
the group. The USAGE clause for an elementary item must not contradict the
USAGE clause of a group to which the item belongs.

COBOL -80 Reference Manual - Release 4 27
Data Division

3.5 PICTURE CLAUSE

The PICTURE clause specifies a detailed description of an elementary level data
item and may include specification of special report editing. The reserved word
PICTURE may be abbreviated PIC.

The general format of the PICTURE clause is:

an-form
PICTURE IS numeric-form
report-form

There are three possible types of pictures: An-form, Numeric-form and
Report-form.

An-Form Option: This option applies to alphanumeric (character string) items.
The PICTURE of an alphanumeric item is a combination of data description
characters X, A or 9 and editing characters B, 0 and /. An X indicates that the
character position may contain any character from the computer's ASCII
character set. A PICTURE that contains at least one of the combinations:

(a) A and 9, or
(b) X and 9, or
(e) X and A

in any arder is considered as if every 9, A or X character were X. The
characters B, 0 and / may be used to insert blanks or zeros or slashes in the
item. This is then called an alphanumeric-edited item.

If the string has only A's and B's, it is considered alphabetic; if it has only 9's, it
is numeric (see below).

Numeric-Form Option: The PICTURE of a numeric item may contain a valid
combination of the following characters:

9 The character 9 indicates that a digit position which must contain a
numeric character. The maximum number of 9's in a PICTURE is 18.

COBOL-80 Reference Manual - Release 4 28
Data Division

\" The optional character V indicates the position of an assumed
decimal point. Since a numeric item cannot contain an actual
decimal point, an assumed decimal point is used to provide the
compiler with information concerning the scaling alignment of items
involved in computations. Storage is never reserved for the
character V. Only one V is permitted in any single PICTURE.

S The optional character S indicates that the item has an operational
sign. It must be the first character of the PICTURE. See also, SIGN
clause, Section 3.12.

P The character P indicates an assumed decimal scaling position. It is
used to specify the location of an assumed decimal point when the
point is not within the number that appears in the data item. The
scaling position character P is not counted in the size of the data
item; that is, memory is not reserved for these positions. However,
scaling position characters are counted in determining the maximum
number of digit positions (18) in numeric edited items or in items
that appear as operands in arithmetic statements. The scaling
position character P may appear only to the left or right of the
other characters in the string as a continuous string of P's within a
PICTURE description. The sign character S and the assumed decimal
point V are the only characters which may appear to the left of a
leftmost string of P's. Since the scaling position character P implies
an assumed decimal point (to the left of the P's if the P's are
leftmost PICTURE characters and to the right of the P's if the P's
are rightmost PICTURE characters), the assumed decimal point
symbol V is redundant as either the leftmost or rightmost character
within such a PICTURE description.

Repart-Form QOption: This option describes a data item suitable as an "edited"
receiving field for presentation of a numeric value. The editing characters that
may be combined to describe a report item are as follows:

9Vv. ZCRDB,$+*B0-P/

The characters 9, P and V have the same meaning as for a numeric item. The
meanings of the other allowable editing characters are described as follows:

COBOL-80 Reference Manual - Release 4 29
Data Division

CR DB

The decimal point character specifies that an actual decimal point
is to be inserted in the indicated position and the source item is to
be aligned accordingly. Numeric character positions to the right of
an actual decimal point in a PICTURE must consist of characters of
one type. The decimal point character must not be the last
character in the PICTURE character string. PICTURE character 'P'
may not be used if '.' is used.

The characters Z and * are called * replacement characters. Each
one represents a digit position. During execution, leading zeros to be
placed in positions defined by Z or * are suppressed, becoming blank
or *. Zero suppression terminates upon encountering the decimal
point (. or V) or a non-zero digit. All digit positions to be modified
must be the same (either Z or *), and contiguous starting from the
left. Z or * may appear to the right of an actual decimal point anly
if all digit positions are the same.

CR and DB are called credit and debit symbols and may appear only
at the right end of a PICTURE. These symbols occupy two character
positions and indicate that the specified symbol is tc appear in the
indicated positions if the value of a source item is negative. If the
value is positive or zero, spaces will appear instead. The PICTURE,
CR, DB, +, and - symbols are mutually exclusive.

The comma specifies insertion of a comma between digits. Each
insertion character is counted in the size of the data item, but does
not represent a digit position. The comma may also appear in
conjunction with a floating string, as described below. It must not be
the last character in the PICTURE character string.

A floating string is defined as a leading, continuous series of one of either $ or +
or -, optionally interrupted by one or more insertion commas and/or decimal
points. Far example:

$$,555,5535

S s

-y —— -

+(8).++

$5,555.55

COBOL-80 Reference Manual - Release &4 30
Data Division

A floating string containing N + 1 occurrences of $ or + or - defines N digit
positions. When moving a numeric value into a report item, the appropriate
character floats from left to right, so that the developed report item has exactly
one actual $ or + or - immediately to the left of the maost significant nonzero
digit, in one of the positions indicated by $ or + or in the PICTURE. Blanks are
placed in all character positions to the left of the single developed $ or + or -. If
the most significant digit appears in a position to the right of positions defined
by the floating string, then the developed item contains $§ or + or in the
rightmost position of the floating string, and non-significant zeros may follow.
The presence of an actual or implied decimal point in a floating string is treated
as if all digit positions to the right of the point were indicated by the PICTURE
character 9. In the following examples, b represents a blank in the developed
items.

PICTURE Numeric Value Developed Item
$$$999 14 bb$014
$555%% 14 bbb$l4a

—=ye==y 999 -456 bbbbbb-456

A floating string need not constitute the entire PICTURE of a report item, as
shown in the preceding examples. Restrictions on characters that may follow a
floating string are given later in the description.

When a comma appears to the right of a floating string, the string character
floats through the comma in order to be as close to the leading digit as possible.

+ - The character + or - may appear in a PICTURE either singly or in a
floating string. As a fixed sign control character, the + or - must
appear as the last symbol in the PICTURE. The plus sign indicates
that the sign of the item is indicated by either a plus or minus sign
placed in the character pasition, depending on the algebraic sign of
the numeric value placed in the report field. The minus sign
indicates that blank or minus is placed in the character position,
depending on whether the algebraic sign of the numeric value placed
in the report field is positive or negative, respectively.

B Each appearance of B in a PICTURE represents a blank in the final
edited value.

/ Each slash in a PICTURE represents a slash in the final edited value.

0 Each appearance of 0 in a PICTURE represents a position in the

final edited value where the digit zero will appear.

COBOL -80 Reference Manual - Release 4 31
Data Division

Other rules for a report (edited) item PICTURE are:

1.

2.

5.

The appearance of one type of floating string precludes any other
floating string.
)

There must be at least one digit position character.

The appearance of a floating sign string or fixed plus or minus
insertion character precludes the appearance of any other of the
sign control insertion characters, namely +, -, CR, DB.

The characters to the right of a decimal point up to the end of a
PICTURE, excluding the fixed insertion characters +, -, CR, DB (if
present), are subject to the following restrictions:

a. Only ore type of digit position character may appear. That
is, Z, *, 9, and floating-string digit position characters §, +, -,
are all mutually exclusive.

b. [f one of the numeric character paositions to the right of a
decimal point is represented by + or - or $ or Z, then all the
numeric character positions in the PICTURE must be
represented by the same character.

The PICTURE character 9 can never appear to the left of a floating
string, or replacement character.

Additional notes on the PICTURE Clause:

L
2.

4.

A PICTURE clause must only be used at the elementary level.

An integer enclosed in parentheses and following X 9 $ ZP * 8 - or
+ indicates the number of consecutive occurrences of the PICTURE
character.

Characters V and P are not counted in the space allocation of a
data item. CR and DB occupy two character positions each.

A maximum of 30 character positions is allowed in a PICTURE
character string. For example, PICTURE X(89) consists of five
PICTURE characters.

A PICTURE must contain at least one of the characters A, Z, *, X,
or 9, or at least two consecutive appearances of the + or - or $
characters.

COBOL-80 Reference Manual - Release 4 32
Data Division

6. The characters ., S, V, CR, and DB can appear only once in a
PICTURE.

7. When DECIMAL-POINT IS COMMA is specified, the explanations for
period and comma are understood to apply to comma and period,
respectively.

The examples below illustrate the use of PICTURE to edit data. In each
example, a mavement of data is implied, as indicated by the column headings.

(Data value shows contents in storage; scale factor of this source data area is
given by the PICTURE.)

Source Area Receiving Area
PICTURE Data PICTURE Edited Data
Value

9(5) 12345 $$%,$%$9.99 $12,345.00
%(5) 00123 $$%,$$9.99 $123.00
9(5) 000a0 $$%,$$9.99 $0.00
9(4)V9 12345 $$$,$$9.99 $1,234.50
V9(5) 12345 3%,$%$9.99 $0.12
S9(5) 00123 —————ee,99 123.00
S9(5) -00001 = eeemee- .99 -1.00
S9(5) 00123 F++++++.99 +123.00
S9(5) 00001 —————-99 1.00
3(5) 00123 F++++++,99 +123.00
9(5) 00123 eemmmee, 99 123.00
S9(5) 12345 **xxx®® G9CR *%12345.00
S999V 99 02345 Z2ZZVZZ 2345
S999V 99 (00004 2ZZV ZZ 04

3.6 VALUE CLAUSE

The VALUE clause specifies the initial value of working-storage items. The
format of this clause is:

V ALUE IS literal

The VALUE clause must not be written in a Data Description entry that also has
an OCCURS or REDEFINES clause, or in an entry that is subordinate to an entry
containing an OCCURS or REDEFINES clause. Furthermore, it cannot be used in
the File or Linkage Sections, except in level 88 condition descriptions.

COBOL-80 Reference Manual - Release 4 33
-Data Division

The size of a literal given in a VALUE clause must be less than or equal to the
size of the item as given in the PICTURE clause. The paositioning of the literal
within a data area is the same as would result from specifying a MOVE of the
literal to the data area, except that editing characters in the PICTURE have no
effect on the initialization, nor do BLANK WHEN ZERQO or JUSTIFIED clauses.
The type of literal written in a VALUE clause depends on the type of data item,
as specified in the data item formats earlier in this text. For edited items,
values must be specified as non-numeric literals, and must be presented in edited
form. A figurative constant may be given as the literal.

When an initial value is not specified, no assumption should be made regarding
the initial contents of an item in Working-Storage.

The VALUE clause may be specified at the group level, in the form of a
correctly sized non-numeric literal, or a figurative constant. In these cases the
VALUE clause cannot be stated at the subordinate levels with the group.
However, the value clause should not be written for a group containing items
with descriptions including JUSTIFIED, SYNCHRONIZED and USAGE (other than
USAGE IS DISPLAY). (A farm used in level 88 items is explained in Section 3.16)

3.7 REDEFINES CLAUSE

The REDEFINES clause specifies that the same area is to contain different data
items, or provides an alternative grouping or description of the same data. The
format of the REDEFINES clause is:

REDEFINES data-name-2

When written, the REDEFINES clause should be the first clause following the

data-name that defines the entry. The data description entry for data-name-2
should not contain a REDEFINES clause, nor an OCCURS clause.

When an area is redefined, all descriptions of the area remain in effect. Thus, if
B and C are two separate items that share the same storage area due to
redefinition, the procedure statements MOVE X TO B or MOVE Y TO C could be
executed at any point in the program. In the first case, B would assume the
value of X and take the form specified by the description of B. In the second
case, the same physical area would receive Y according to the description of C.

COBQOL-80 Reference Manual - Release 4 34
Data Division

Far purpcses of discussion of redefinition, data-name-1l is termed the subject,
and data-name-2 is called the object. The levels of the subject and object are
denoted by s and t, respectively. The following rules must be obeyed in order to
establish a proper redefinition.

1. s must equal t, but must not equal 88.

2. The object must be contained in the same record (01 group level item),
unless s=t=01.

3. Prior to definition of the subject and subsequent to definition of the
object there can be no level numbers that are numerically less than s.

The length of data-name-1l, multiplied by the number of occurrences of
data-name-l, may not exceed the length of data-name-2, unless the level of
data-name-1 is Ol (permitted only cutside the File Section). Data-name-1 and
entries subordinate to data-name-1 must not contain any value clauses, except in
level 88. In the File Section, multiple level 01 entries subordinate to any given
FD represent implicit redefinitions of the same area.

3.8 OCCURS CLAUSE

The OCCURS clause is used in defining related sets of repeated data, such as
tables, lists and arrays. It specifies the number of times, up to a maximum of
1023, that a data item with the same format is repeated. Data Description
clauses associated with an item whose description includes an QCCURS clause
apply to each repetition of the item being described. When the OCCURS clause is
used, the data name that is the defining name of the entry must be subscripted
or indexed whenever it appears in the Procedure Division. If this data-name is
the name of a group item, then all data-names belonging to the group must be
subscripted or indexed whenever they are used.

The OCCURS clause must not be used in any Data Description entry having a
level number 01 or 77. The OCCURS clause has the following format:

QOCCURS integer TIMES [NDEXED BY index-name...]
Since the OCCURS clause can only be used at subordinate levels within a data

record, the maximum size of a table is limited by the rules for the size of a
group item. See Section 3.1.1 on "Group [tems".

COBQOL-80 Reference Manual - Release 4 35
Data Division

Subscripting: Subscripting provides the facility for referring to data items in a
table or list that have not been assigned individual data-names. Subscripting is
determined by the appearance of an OCCURS clause in a data description. If an
item has an OCCURS clause or belongs to a group having an OCCURS clause, it
must be subscripted or indexed whenever it is used. See the chapter on Table
Handling for explanations on Indexing and Index Usage. (Exception: the
table-name in a SEARCH statement must be referenced without subscripts.)

A subscript is a positive nonzero integer whaose value determines an element to
which a reference is being made within a table or list. The subscript may be
represented either by a literal or a data-name that has an integer value. Whether
the subscript is represented by a literal or a data-name, the subscript is enclosed
in parentheses and appears after the terminal space of the name of the element.
A subscript must be a decimal or binary item. (The latter is strongly
recommended, far the sake of efficiency.)

At most three OCCURS clauses may govern any data item. Conseguently, one,
two or three subscripts may be required. When more than one subscript is
required, they are written in the order of successively less inclusive dimensions
of the data organization. Multiple subscripts are separated by commas, viz.

ITEM({, J).

Example:

01 ARRAY.
03 ELEMENT, OCCURS 3, PICTURE 9(4).

The above example would be allocated storage as shown below.

ELEMENT (1)

ARRAY, consisting of twelve
ELEMENT (2) characters; each item has 4
digits.

ELEMENT (3)

A data-name may not be subscripted if it is being used for:
1. a subscript
2. the defining name of a data description entry
3. data-name-2 in a REDEFINES clause

4. a qualifier

COBOL-80 Reference Manual - Release 4 36
Data Division

3.9 SYNCHRONIZED CLAUSE

The SYNCHRONIZED clause was designed in order to allocate space for data in
an efficient manner, with respect to the computer central "memory." However,
in this compiler, the SYNCHRONIZED specification is treated as commentary

only.

The format of this clause is:

SYNC | SYNCHRONIZED [LEFT | RIGHT]

3.10 BLANK WHEN ZERO CLAUSE

The BLANK WHEN ZERQO clause specifies that a report (edited) field is to
contain nothing except blanks if the numeric value moved to it has a value of
zero. When this clause is used with a numeric picture, the field is considered a
report field.

3.11 JUSTIFIED CLAUSE

The JUSTIFIED RIGHT clause is only applicable to unedited alphanumeric
(character string) items. It signifies that values are stored in a right-to-left
fashion, resulting in space fill on the left when a short field is moved to a longer
JUSTIFIED field, or in truncation on the left when a long field is moved to a
shorter JUSTIFIED field. The JUSTIFIED clause is effective only when the
associated field is employed as the "receiving” field in a MOVE statement.

The word JUST is a permissible abbreviation of JUSTIFIED.

3.12 SIGN CLAUSE

For an external decimal item, there are four possible manners of representing an
operational sign; the choice is controlled by inclusion of a particular form of the
SIGN clause, whose general form is:

{ TRAILING

[SIGN I1S] LEADING } [SEPARATE CHARACTER]

The following chart summarizes the effect of four passible forms of this clause.

SIGN Clause Sign Representation
TRAILING Embedded in rightmaost byte
LEADING Embedded in leftmaost byte

TRAILING SEPARATE | Stored in separate rightmost byte
LEADING SEPARATE Stored in separate leftmost byte

COBOL-80 Reference Manual - Release 4 37
Data Division

When the above forms are written, the PICTURE must begin with S. If no S
appears, the item is not signed (and is capable of storing only absolute values),
and the SIGN clause is prohibited. When S appears at the front of a PICTURE but
no SIGN clause is included in an item’'s description, the "default" case SIGN IS
TRAILING is assumed.

The SIGN clause may be written at a group level; in this case the clause specifies
the sign's format on any signed subordinate external decimal item. The
SEPARATE CHARACTER phrase increases the size of the data item by 1
character. The entries to which the SIGN clause apply must be implicitly or
explicitly described as USAGE IS DISPLAY.

(Note: When the CODE-SET clause is specified for a file, all signed numeric data
for that file must be described with the SIGN IS SEPARATE clause.)

3.13 LEVEL 88 CONDITION-NAMES

The level 88 condition-name entry specifies a value, list of values, or a range of
values that an elementary item may assume, in which case the named condition
is true, otherwise false. The format of a level 88 item's value clause is

VALUE IS literal-1 [literal-2...]
VALUES ARE literal-1 THRU literal-2

A level 88 entry must be preceded either by another level 88 entry (in the case
of several consecutive condition-names pertaining to an elementary item) or by
an elementary item (which may be FILLER). Index data items should not be
followed by level 88 items.

Every condition-name pertains to an elementary item in such a way that the
condition-name may be qualified by the name of the elementary item and the
elementary item’'s qualifiers. A condition-name is used in the Procedure Division
in place of a simple relational condition. A condition-name may pertain to an
elementary item (a conditional variable) requiring subscripts. In this case, the
condition-name, when written in the Procedure Division, must be subscripted
according to the same requirements as the associated elementary item. The
type of literal in a condition-name entry must be consistent with the data type
of the conditional variable. In the following example, PAYROLL-PERIQD is the
conditional variable. The picture associated with it limits the value of the 88
condition-name to one digit.

02 PAYROLL-PERIOD PICTURE IS 9.
88 WEEKLY VALUE IS 1.
88 SEMI-MONTHLY VALUE IS 2.
88 MONTHLY VALUE IS 3.

COBOL-80 Reference Manual - Release 4 38
Data Division

Using the above description, the following procedural condition-name test may
be written:

[F MONTHLY GO TO DO-MONTHLY
An equivalent statement is:
IF PAYROLL-PERIOD = 3 GO TO DO-MONTHLY.

For an edited elementary item, values in a condition-name entry must be
expressed in the form of non-numeric literals.

A V ALUE clause may not contain both a series of literals and a range of literals.

3.14 FILE SECTION, FD ENTRIES (SEQUENTIAL I-O ONLY)

In the FILE SECTION of the Data Division, an FD entry (file description) must
appear for every SELECTed file. This entry precedes the descriptions of the
file's record structure(s).
The general format of an FD entry is:
FD file name LABEL-clause [VALUE-OF -clause]
(DATA-RECORD(S)-clause] [BLOCK-clause] [RECORD-clause]
[CODE-SET-clause] [LINAGE clausel.

After "FD filename," the order of the clauses is immaterial.

3.14.1 LABEL CLAUSE

The format of this required FD entry clause is:
RECORD [:] OMITTED
LABEL RECORDS RE STANDARD

The OMITTED option specifies that no labels exist for the file; this must be
specified for files assigned to PRINTER.

The STANDARD option specifies that labels exist for the file and that the labels
conform to system specifications; this must be specified for files assigned to
DIsSK.

COBOL-80 Reference Manual - Release 4 39
Data Division

3.14.2 VALUE OF CLAUSE

The VALUE OF clause appears in any FD entry for a DISK-assigned file, and
contains a filename expressed as a non-numeric literal of at most 16 characters
or as a data-name. The filename is specified according to the rules for
filenames of the operating system being used. It must not contain any embedded
space characters. If a data-name is specified, the filename it contains may be as
many characters as desired, but it must be terminated by a space character. The
general form is:

data-name
VALUE CF FILE-ID IS
literal

Examples:

V ALUE OF FILE-ID "A:MASTER.ASM" (CP/M)
VALUE OF FILE-ID "EMPLOY/DAT:2" (TRSDOS Mode! II)
VALUE OF FILE-ID "™FLiINVNT.LST" (Is1s-11)

A reminder: if a file is ASSIGNed to PRINTER, it is unlabeled and the VALUE
clause must not be included in the associated FD. If a file is ASSIGNed to DISK,
it is necessary to include both LABEL RECORDS STANDARD and VALUE
clauses in the associated FD. See the COBOL-80 User's Guide for filename
formats for specific operating systems.

3.14.3 DATA RECORD(S) CLAUSE

The optional DATA RECORDS clause identifies the records in the file by name.
This clause is documentary only, in this and all COBOL systems. Its general
format is:

RECORD IS
DATA data-name-1 [data-name-2...]
RECORDS ARE

The presence of more than one data-name indicates that the file contains more
than one type of data record. That is, two or more record descriptions may
apply to the same storage area. The order in which the data-names are listed is
naot significant.

Data-name-1, data-name-2, etc., are the names of data records, and each must
be preceded in its record description entry by the levei number 01, following the
appropriate file description (FD) in the File Section.

COBOL-80 Reference Manual - Release 4 40
Data Division

3.14.4 BLOCK CLAUSE

The BLOCK CONTAINS clause is used to specify characteristics of physical
records in relation to the concept of logical records. The general format is:

CHARACTERS
BLOCK CONTAINS integer-2
RECORDS

Files assigned to PRINTER must not have a BLOCK clause in the associated FD
entry. Furthermore, the BLOCK clause has no effect on disk files in this COBOL
system, but it is examined for correct syntax. It is normally applicable to tape
files, which are not supported by this COBOL.

When used, the size of a physical block is usually stated in RECORDS, except
when the records are variable in size or exceed the size of a physical block; in
these cases the size should be expressed in CHARACTERS.

When the BLOCK CONTAINS clause is omitted, it is assumed that records are
not blocked. When neither the CHARACTERS nor the RECORDS option is
specified, the CHARACTERS option is assumed. When the RECORDS option is
used, the compiler assumes that the block size provides for integer-2 records of
maximum size and then provides additional space for any required control
characters.

3.14.5 RECORD CLAUSE

Since the size of each data record is defined fully by the set of data description
entries constituting the record (level 01) declaration, this clause is always
optional and documentary. The format of this clause is:

RECORD CONTAINS [integer-1 TQ] integer-2 CHARACTERS

Integer-2 should be the size of the biggest record in the file declaration. If the
records are variable in size, integer-1 must be specified and must equal the size
of the smallest record. The sizes are given as character positions required to
store the logical records.

COBQL-80 Reference Manual - Release 4 41
Data Division

3.14.6 CODE-SET CLAUSE

The format of this clause is:

CODE-SET IS ASCII

The CODE-SET clause, which should be specified only for non-mass-storage files,
serves only the purposes of documentation in this compiler, reflecting the fact
that both internal and external data are represented in ASCII code. However,
any signed numeric data description entries in the file's records should include
the SIGN IS SEPARATE clause and all data in the file should have USAGE
DISPLAY.

3.14.7 LINAGE CLAUSE

For a file assigned to PRINTER, the LINAGE clause provides a means of
specifying the size of the printable portion of a page, called the "page body." The
number of lines in the page body is specified along with, optionally, the size of
the top and bottom margins and the line number within the page body at which a
footing area begins. The general format is:

data-name-1

LINAGE IS {

data-name-2
LINES, WITH FOOTING AT]

integer-1 integer-2
data-name-3

[LINES AT TOP {

data-name-4
] [LINES AT BOTTOM]

integer-3 integer-4
All data-names must refer to unsigned numeric integer data items. Integer-l
must be greater than zero, and integer-2 must not be greater than integer-1.

The total page size is the sum of the values in each phrase except for FOOTING.
If TOP or BOTTOM margins are not specified, their size is assumed zero. The
footing area comprises that part of the page body between the line indicated by
the FOOTING value, and the last line of the page bady, inclusive.

The values in each phrase at the time the file is opened (by the execution of an
OPEN QUTPUT statement) specify the number of lines that comprise each of the
sections of the first logical page. Whenever a WRITE statement with the
ADV ANCING PAGE phrase is executed or a "page averflow" condition occurs
(see the WRITE statement), the values in each phrase, at that time, will be used
to specify the number of lines in each section of the next logical page.

C0OBO0OL-80 Reference Manual - Release 4 42
Data Division

A LINAGE-COUNTER is created by the presence of a LINAGE clause. The value
in the LINAGE-COUNTER at any given time represents the line number at which
the printer is positioned within the current page body. LINAGE-COUNTER may
be referenced but may not be modified by Procedure Division statements. It is
automatically modified during execution of a WRITE statement, according to the
following rules:

L. When the "ADV ANCING PAGE" phrase of the WRITE statement is specified
or a "page overflow" condition occurs (see the WRITE statement), the
LINAGE COUNTER is reset to one.

2. When the "ADVANCING identifier or integer" phrase is specified,
LINAGE-COUNTER is incremented by the ADV ANCING value.

3. When the ADVANCING phrase is not specified, LINAGE-COUNTER is
incremented by one.

See the description of the WRITE statement for additional information about the
effects of LINAGE specifications.

3.15 WORKING-STORAGE SECTION

The second section of the DATA DIVISION begins with the following header:

WORKING-STORAGE SECTION.

This section describes records and other data which are not part of external data
files but which are developed and processed internally.

Data description entries in this section may employ level numbers 01-49, as in

the File Section, as well as 77. Value clauses, prohibited in the File Section
(except for level 88), are permitted throughout the Working-Storage Section.

3.16 LINKAGE SECTION

The third section of the Data Division is defined by the header:

LINKAGE SECTION.

In this section, the user describes data by name and attribute, but storage space
is not allocated. Instead, these "dummy'" descriptions are applied (through the
mechanism of the USING list on the Procedure Division header) to data whose
addresses are passed into a subprogram by a call upon it from a separately
compiled program. Consequently, VALUE clauses are prohibited in the Linkage
Section, except in level 88 condition-name entries. Refer to Chapter 5,
Inter-Program Communication, for further information.

C0OBOL-80 Reference Manual - Release 4 43
Data Division

3.17 SCREEN SECTION

The fourth section of the Data Division is used to define CRT screen formats and
is composed of screen data description entries. As in the File and
Working-Storage sections, descriptions may be grouped through the assignment of
appropriate level numbers. Thus there are two types of screen items.
Elementary screen items define the individual display and/or data entry fields
within the screen layout. Group screen items are used to name any group of
elementary screen items so that they may be ACCEPTed or DISPLAYed with a
single Procedure Division statement. The format of a group screen description
entry is:

level-number screen-name [AUTO] [SECURE]L

level number must be an integer in the range 01 through 49. screen-name must
conform to the rules for the formation of names given in section 1.3. The group
screen description entry must be followed by one or more subordinate screen
items as indicated by increasing level-numbers. If AUTO or SECURE is coded for
a group screen item, the effect is as if AUTO or SECURE had been coded for
every elementary screen item subordinate to that group screen item.

The format of an elementary screen item is:

tevel-number [screen-name]

[BLANK SCREEN]

[CINETNUMBER 1s [PLUS] integer-1]
[COLUMN NUMBSER 1S [PLUS] integer-2]
[BCANK CINE]

(BELL]

i g-iIGHLIGHT}
.{ BLINK

" [VALUETIS literal-1

literal-2 . .
PICTURE [FROM { identme,_l}] [TO identifier-2]
Bl { IS picture-string
- [USING identifier-3]

[BLANK WHEN ZERO]

JUSTIFIED
(} 3057 RIGHT]

[AUTO]
[SECURE]

C0OBOL-80 Reference Manual - Release 4 44
Data Division

level-number and screen-name are subject to the same rules as in the group screen data
description. The order of clauses in the elementary screen data description entry is not
significant, except that screen-name, if present, must immediately follow level-number.
If PICTURE is coded, then either USING or at least one of FROM and TO must be
present. A screen item may have both a FROM and TO clause. AUTO, SECURE, BLANK
WHEN ZERO, and JUSTIFIED may be given only if PICTURE is specified. The maximum
length of an elementary screen item is 80 characters.

The clauses specified with each elementary screen data description can affect data input
and data display operations when ACCEPT and DISPLAY statements are executed at
runtime. The effects of each specification are as follows:

l.

2.

3.

BLANK SCREEN causes the entire screen to be erased and the cursor to be
placed at the home position (line 1, column 1).

LINE and COLUMN affect the screen location associated with an elementary
screen item. As the SCREEN SECTION is processed at compile time, a
current cursor position is maintained so that each elementary screen item
can be identified with a particular region of the screen. When a level 01
screen item is encountered, the current screen position is reset to line 1,
column 1. Then, as each elementary screen data description is processed, the
current position is adjusted for the size of each definition. Therefore, by
default, successively defined fields appear end to end in successive areas of
the CRT screen. The position current at the start of any elementary screen
data description may be changed by means of the LINE and COLUMN
specifications. If neither LINE nor COLUMN is coded, the current screen
position is not changed. If COLUMN is coded without LINE, the current
screen line is not adjusted. If LLINE is coded without COLUMN, COLUMN lis
assumed. The LINE integer or COLUMN integer clause without PLUS causes
the specified integer to be taken as the line or column at which the current
screen item should start. The LINE PLUS integer or COLUMN PLUS integer
clause causes the specified integer to be added to the current screen line or
column, and the result to be used as the line or column at which the current
screen item should start. If LINE (COLUMN) is given without integer-1
(integer-2), LINE PLUS 1 (COLUMN PLUS 1) is assumed.

BLANK LINE causes erasure of the screen from the current cursor position to
the end of the current line and leaves the cursor position unchanged.

NOTE

The following functions are always executed in
the order shown below, regardless of the order
in which they are specified.

1. BLANK SCREEN

2. LINE/COLUMN positioning
3. BLANK LINE
4. Display or accept operation

COBOL-80 Reference Manual - Release 4 : 45
Data Division

6‘

7.

8.

10.

llO

12.

BELL will sound the terminal's audio alarm, if the terminal is so
eguipped, when the system is ready to ACCEPT the field. BELL has
no effect on output fields.

HIGHLIGHT and BLINK are synonymous. They cause a DISPLAY
screen item to appear on the CRT highlighted by flashing, high
intensity, inverted video, or some other method provided by the
particular type of terminal hardware in use. HIGHLIGHT has no
effect on input fields.

VALUE IS literal-1 explicitly specifies the character string which
should be displayed on the screen when the screen item being
defined is referenced by a DISPLAY statement. literal-1 must be
bounded by quotes and cannot be a figurative constant. A screen
item for which VALUE is specified is ignored by all ACCEPT
statements.

PICTURE specifies the format in which data is to be presented on
the screen. It is coded according to the rules for Working-Storage
PICTURE clauses described in section 3.2. During a DISPLAY
statement, the contents of a FROM or USING field are MOVEd to
an implicit temporary item with the specified PICTURE before
being displayed on the screen. During an ACCEPT statement, the
displayed contents of the field being entered are punctuated so as to
conform with the given PICTURE format.

FROM, TO, and USING describe relationsips between a screen item
and literals and/or fields in the File, Working-Storage, and/or
Linkage sections. On DISPLAY of a screen item, a MOVE occurs
from any FROM or USING literal or field to a temporary item
defined by the screen item's PICTURE. The resulting contents of
the temporary item are then exhibited on the screen. On an
ACCEPT of the screen item, the runtime system implicitly MOVEs
the ACCEPTed data to any TO or USING field specified for the item.

BLANK WHEN ZERO causes a screen item to be displayed as spaces
if its value is zero.

JUSTIFIED and JUST specify that operator-keyed data or data from
a FROM field, USING field, or literal is aligned with the right
boundary of the screen item when it is displayed on the screen.

AUTO specifies that when a field has been filled by operator input,
the cursor automatically skips to the next input field, rather than
waiting for a terminator character to be typed. If there are no
more input fields remaining, the ACCEPT is terminated.

SECURE suppresses the echoing of input characters. I[nstead, an
asterisk is displayed for each data character ACCEP Ted.

COBOL.-80 Reference Manual - Release 4 46
Data Division

3.18 DATA DIVISION LIMITATIONS

There is a limitation on the number of items in the Working-Storage, Linkage,
and File sections of the Data Division. In those implementations of COBOL-80
which have the Communications Level [facility, the number of CDs is relevant
also. The sum:

W+4095
4096

+F+L+C

must be less than or equal to 14, where W is the size of Working-Storage in bytes,
F is the number of files described in the File Section, L is the number of level 01
or 77 entries in the Linkage Section, and C is the number of CD's in the
Communications Section. Furthermore, the maximum number of files which may
be open in the same run unit (main program linked together with an arbitrary
number of subprograms) is 14.

COBOL-80 Reference Manual 47

CHAPTER 4

Procedure Division

In this chapter, the basic concepts of the Procedure Division are explained.
Advanced topics (such as indexing of tables, indexed file accessing, interprogram
communication and declaratives) are discussed in subsequent chapters.

4.1 STATEMENTS, SENTENCES, PROCEDURE-NAMES

The Procedure portion of a source program specifies those procedures needed to
peform a particular data processing function. These steps (computations, logical
decisions, etc.) are expressed in statements similar to English, which emplay the
concept of verbs to denote actions, and statements and sentences to describe
procedures. The Procedure portion must begin with the following header:

PROCEDURE DIVISION.

A statement consists of a verb followed by appropriate operands (data-names or
literals) and other words that are necessary for the completion of the
statement. The two types of statements are imperative and conditional.

Imperative Statements

An imperative statement specifies an unconditional action to be taken by
the object program. An imperative statement consists of a verb and its
operands, excluding the IF and SEARCH conditional statements and any
statement which contains an INVALID KEY, AT END, SIZE ERROR,
OVERFLQW, or ON ESCAPE clause.

Conditional Statements

A conditional statement stipulates a condition that is tested to determine
whether an alternate path of program flow is to be taken. The IF and
SEARCH statements provide this capability. Any I/O statement having an
INVALID KEY or AT END clause is also considered to be conditional.
When an arithmetic statement posesses a SIZE ERROR suffix, the
statement is considered to be conditional rather than imperative. STRING
or UNSTRING statements having an OVERFLOW clause and ACCEPT with
the ON ESCAPE clause are also conditional.

COBOL-80 Reference Manual 48
Procedure Division

Sentences

A sentence is a single statement or a series of statements terminated by a
period and followed by a space. If desired, a semi-colon or comma may be
used between statements in a sentence.

Paragraphs

A paragraph is a logical entity consisting of zero, one or more sentences.
Each paragraph must begin with a paragraph-name.

Sections

A section is composed of one or more successive paragraphs, and must
begin with a section-header. A section header consists of a section-name
conforming to the rules for procedure-name formation, followed by the
word SECTION, an optional segment number, and a period. A section
header must appear on a line by itself. Each section-name must be unique.

4.2 ORGANIZATION OF THE PROCEDURE DIVISION

The procedure part of a program may be subdivided in three possible ways:
1. The Procedure Division consists only of paragraphs.

2 The Procedure Division consists of zero or more paragraphs followed
by a number of sections (each section subdivided into onme or mare
paragraphs).

3. The Procedure Division consists of a DECLARATIVES portion and a
series of sections (each section subdivided into one or more
paragraphs).

The DECLARATIVES portion of the Procedure Division is optional; it provides a
means of designating a procedure to be invoked in the event of an I/O error. If
Declaratives are utilized, only possibility 3 may be used. Refer to Chapter 9 for
a complete discussion.

COBOL-80 Reference Manual 49
Procedure Division

4.3 MOVE STATEMENT

The MOVE statement is used to move data from one area of main storage to
another and to perform conversions and/or editing on the data that is moved.
The MOVE statement has the following format:
MOVE |data-name-1| TO data-name-2 [data-name-3...]
literal
The data represented by data-name-l or the specified literal is maved to the
area designated by data-name-2. Additional receiving fields may be specified

(data-name-3 etc.). When a group item is a receiving field, characters are moved
without regard to the level structure of the group involved and without editing.

Subscripting or indexing associated with data-name-2 is evaluated immediately
before data is moved to the receiving field. The same is true for other receiving
fields (data-name-3, etc., if any). But for the source field, subscripting or
indexing (associated with data-name-1) is evaluated only once, before any data is
maved.

To illustrate, consider the statement
MOVE A (B) TO B, C(B),
which is equivalent to

MQVE A (B) TO temp
MOVE temp TO B
MOVE temp TO C (B)

where temp is an intermediate result field assigned automatically by the
compiler.

The following considerations pertain to moving items:

1. Numeric (external or internal decimal, binary, numeric literal, or
ZERQO) or alphanumeric to numeric ar report:

a. The items are aligned by decimal points, with generation of
zeros or truncation on either end, as required. If source is
alphanumeric, it is treated as an unsigned integer and should
not be longer than 31 characters.

b. When the types of the source field and receiving field differ,
conversion to the type of the receiving field takes place.
Alphanumeric source items are treated as unsigned integers
with Usage Display.

COBOL-80 Reference Manual S0
Procedure Division

c. The items may have special editing performed on them with
suppression of zeros, insertion of a dollar sign, etc., and
decimal paint alignment, as specified by the receiving area.

d. One should not move an item whose PICTURE declares it to be
alphabetic or alphanumeric edited to a numeric or report item,
nor is it possible to move a numeric item of any sort to an
alphabetic item though numeric integers and numeric report
items can be moved to alphanumeric items with or without
editing, but operational signs are not moved in this case even
if "SIGN IS SEPARATE" has been specified.

2. Non-numeric sourceand destinations:

a. The characters are placed in the receiving area from left to
right, unless JUSTIFIED RIGHT applies.

b. If the receiving field is not completely filled by the data being
moved, the remaining positions are filled with spaces.

c. If the source field is longer than the receiving field, the move
is terminated as soon as the receiving field is filled.

3. When overlapping fields are involved, results are not predictable.

4. Appendix II shows, in tabular form, all permissible combinations of
sgurce and receiving field types.

5. An item having USAGE IS INDEX cannot appear as an operand of a
MOVE statement. See SET in Chapter 6, Table Handling.

Examples of Data Movement (b represents blank):

Source Field Receiving Field
PICTURE | Value PICTURE | Value before MOVE | Value after MOVE
99V 99 1234 S99V 99 9876~ 1234+
99V 99 1234 39Vv9 987 123
S9V9 12- 99V 999 98765 01200+
XXX A2B XXXXX Y9X8W A2Bbb
9V99 123 99.99 87.65 01.23

COBOL-80 Reference Manual 51
Procedure Division

4.4 INSPECT STATEMENT

The INSPECT statement enables the programmer to examine a character-string
item. Options permit various combinations of the following actions:

1. counting appearances of a specified character
2. replacing a specified character with another

3. limiting the above actions by requiring the appearance aof other
specific characters

The format of the INSPECT statement is:

INPECT data-name-1 [TALLYING-clause] [REPL ACING-clause]

where TALLYING-clause has the format

{ CHARACTERS }

TALLYING data-name-2 FOR ALL | LEADING operand-3

[BEFORE | AFTER INITIAL operand-4]

and REPLACING-clause has the format

CHARACTERS
REPLACING ALL | LEADING | FIRST operand-5| BY operand-6

[BEFORE | AFTER INITIAL operand-7]

Because data-name-l is to be treated as a string of characters by INSPECT, it
must not be described by USAGE IS INDEX, COMP, or COMP-3. Data-name-2
must be a numeric data’item.

In the above formats, operand-n may be a quoted literal of length one, a
figurative constant signifying a single character, or a data-name of an item
whose length is one.

TALLYING-clause and REPLACING-clause may not both be omitted; if both are
present, TALL YING-clause must be first.

COBOL-80 Reference Manual 52
Procedure Division

TALLYING-clause causes character-by-character comparison, from left to right,
of data-name-1, incrementing data-name-2 by one each time a match is found.
When an AFTER INITIAL operand-4 subclause is present, the counting process
begins only after detection of a character in data-name-1 matching operand-4.
If BEFORE INITIAL operand-4 is specified, the counting process terminates upon
encountering a character in data-name-1 which matches operand-4. Also going
from left to right, REPLACING-clause causes replacement of characters under
conditions specified by the REPLACING-clause. If BEFORE INITIAL operand-7
is present, replacement does not continue after detection of a character in
data-name-1 matching operand-7. If AFTER INITIAL operand-7 is present,
replacement does not commence until detection of a character in data-name-1
matching operand-7.

With bounds on data-name-1 thus determined, TALLYING and REPLACING is
done on characters as specified by the following:

1. "CHARACTERS" implies that every character in the bounded
data-name-1 is to be TALLYed or REPLACEd.

2. "All operand"” means that all characters in the bounded data-name-l

which match the "operand" character are to participate in
TALLYing/REPLACIng.

3. "LEADING operand" specifies that only characters matching
"operand" from the leftmost portion of the bounded data-name-l
which are contiguous (such as leading zeros) are to participate in
TALLYing or REPLACIing.

4. "FIRST operand” specifies that only the first-encountered character
matching "operand" is to participate in REPLACIing. (This option is
unavailable in TALLYing.)

When both TALLYING and REPLACING clauses are present, the two clauses
behave as if two INSPECT statements were written, the first containing only a
TALLYING-clause and the second containing only a REPLACING-clause.

In developing a TALLYING value, the final result in data-name-2 is equal to the
tallied count plus the initial value of data-name-2. In the first example below,
the item COUNTX is assumed to have been set to zero initially elsewhere in the
program.

COBQOL -80 Reference Manual 53
Procedure Division

INSPECT ITEM TALLYING COUNTX FOR ALL "L" REPLACING LEADING "A"
BY "E" AFTER INITIAL "L"

Original (ITEM): SALAMI ALABAMA
Result (ITEM): SALEMI ALEBAMA
Final (COUNTX): 1 1

INSPECT WORK-AREA REPLACING ALL DELIMITER BY TRANSFORMATION

Original WORK-AREA): NEW YORK N Y (length 16)
Original (DELIMITER): (space)
Original (TRANSFORMATION): . (period)
Result WORK-AREA): NEW.YORK..N.Y...
NOTE

If any -data-name-l or operand-n is
described as signed numeric, it is treated
as if it were unsigned.

4.5 ARITHMETIC STATEMENTS

There are five arithmetic statements: ADD, SUBTRACT, MULTIPLY, DIVIDE
and COMPUTE. Any arithmetic statement may be either imperative or
conditional. When an arithmetic statement includes an ON SIZE ERROR
specification, the entire statement is termed conditional, because the size error
condition is data-dependent.

An example of a conditional arithmetic statement is:

ADD 1 TO RECORD-COUNT
ON SIZE ERROR MOVE ZERQ TO RECORD-COUNT
DISPLAY "LIMIT 99 EXCEEDED".

If a size error occurs (in this case, it is apparent that RECORD-COUNT has
PICTURE 99, and cannot hold a value of 100), both the MOVE and DISPLAY
statements are executed.

The three statement components that may appear in arithmetic statements
(GIVING option, ROUNDED option, and SIZE ERROR option) are discussed in

detail later in this section.

COBOL-80 Reference Manual 54
Procedure Division

Basic Rules for Arithmetic Statements

1. All data-names used in arithmetic statements must be elementary
numeric data items that are defined in the Data Division of the
program, except that operands of the GIVING option may be report
(numeric edited) items. Index-names and index data items are not
permissible in these arithmetic statements (see Chapter 6).

2. Decimal point alignment is supplied automatically throughout the
computations.

3. Intermediate result fields generated for the evaluation of arithmetic

expressions assure the accuracy of the result field, except where
high-order truncation is necessary.

4.5.1 SIZE ERRCOR OPTION

If, after decimal-point alignment and any low-order rounding, the absolute value
of a calculated result exceeds the largest value which the receiving field is
capable of holding, a space size error condition exists.

The optional SIZE ERROR clause is written immediately after any arithmetic
statement, as an extension of the statement. The format of the SIZE ERROR
option is:

ON SIZE ERROR imperative statement ...

[f the SIZE ERROR option is present, and a size error condition arises, the value
of the resultant data-name is unaltered and the series of imperative statements
specified for the condition is executed.

If the SIZE ERROR option has not been specified and a size error condition
arises, no assumption should be made about the final result.

An arithmetic statement, if written with the SIZE ERROR option, is not an
imperative statement. Rather, it is a conditional statement and is prohibited in
contexts where only imperative statements are allowed.

COBOQOL-80 Reference Manual 55
Procedure Division

4.5.2 ROUNDED OPTION

If, after decimal-point alignment, the number of places in the fraction of the
result is greater than the number of places in the fractional part of the data
item that is to be set equal to the calculated result, truncation occurs unless the
ROUNDED option has been specified.

When the ROUNDED option is specified, the least significant digit of the
resultant data-name has its value increased by 1 whenever the most significant
digit of the excess is greater than or equal to 5.

Rounding of a computed negative resuit is performed by rounding the absolute
value of the computed result and then making the final result negative.

The following chart illustrates the relationship between a calculated result and
the value stored in an item that is to receive the calculated result, with and
without rounding.

Item to Receive Calculated Resuit
Calculated PICTURE Value After Value After
Result Rounding Truncating
-12.36 S99V9 -12.4 -12.3
8.432 V9 8.4 8.4
35.6 99V 9 35.6 35.6
65.6 S99V 66 65
.0055 SV 999 .006 .005

[llustration of Rounding
When the low order integer positions in a resultant-identifier are represented by

the character P in its PICTURE, rounding or truncation occurs relative to the
rightmaost integer pasition for which storage is allowed.

4.5.3 GIVING OPTION

If the GIVING option is written, the value of the data-name that follows the
word GIVING is made equal to the calculated result of the arithmetic operation.
The data-name that follows GIVING is not used in the computation and may be a
report (numeric-edited) item.

COBOL-80 Reference Manual - Release 4 56
Procedure Division

4.5.4 ADD STATEMENT

The ADD statement adds two or more numeric values and stores the resulting
sum. The ADD statement general format is:

numeric-literal
ADD data-name-1l cee
TO
GIVING|data-name-n [ROUNDED] [SIZE-ERROR -clause]

When the TO option is used, the values of all the data-names (including
data-name-n) and literals in the statements are added, and the resulting sum
replaces the value of data-name-n. When the GIVING option is used, at least two
data-names and/or numeric literals must be coded between ADD and GIVING.
The sum of the values of these data-names and literals (not including
data-name-n) replaces the value of data-name-n.

The following are examples of proper ADD statements:

ADD INTEREST, DEPOSIT TO BALANCE ROUNDED
ADD REGULAR-TIME OVERTIME GIVING GROSS-PAY.

The first statement would result in the sum of INTEREST, DEPQOSIT, and

BALANCE being piaced at BALANCE, while the second would result in the sum
of REGULAR-TIME and OVERTIME earnings being placed in item GROSS-PAY.

4.5.5 SUBTRACT STATEMENT

The SUBTRACT statement subtracts one or more numeric data items from a
specified item and stores the difference.

The SUBTRACT statement general format is:

data-name-1]
SUBTRACT |numeric-literal-1} ... FROM

ldata-name-m [GIVING data-name-n] }
numeric literal-m GIVING data-name-n

[(ROUNDED] [SIZE-ERROR -clause]
The effect of the SUBTRACT statement is to sum the values of all the operands

that precede FROM and subtract that sum from the value of the item following
FROM.

The result (difference) is stored in data-name-n, if there is a GIVING option.
QOtherwise, the result is stored in data-name-m.

CCBOL-80 Reference Manual - Release 4 57
Procedure Division

4.5.6 MULTIPLY STATEMENT

The MULTIPLY statement multiplies two numeric data items and stores the
product.

The general format of the MULTIPLY statement is:

MULTIPLY {data-name-l }
numeric-literal-1

BY {data-name~2 [GIVING data-name-3])
numeric-literal-2 GIVING data-name-3

[ROUNDED] [SIZE-ERROR -clause]

When the GIVING option is omitted, the second operand must be a data-name;
the product replaces the value of data-name-2. For example, a new BALANCE
value is computed by the statement MULTIPLY 1.03 BY BALANCE. (Since this
order may seem somewhat unnatural, it is recommended that GIVING always be
written, e.g. MULTIPLY 1.03 BY BALANCE GIVING BALANCE.)

4.5.7 DIVIDE STATEMENT

The DIVIDE statement divides two numeric values and stores the quotient. The
general format of the DIVIDE statement is:

DIVIDE {data-name-l } {B_Y } {data—name-z]
numeric-literal-1 INTO numeric-literal-2

[GIVING data-name-3] [ROUNDED] [SIZE-ERROR-clause]

The BY-form signifies that the first operand (data-name-1 or numeric-literal-1)
is the dividend (numerator), and the second operand (data-name-2 or
numeric-literal-2) is the divisor (denominator). If GIVING is not written in this
case, then the first operand must be a data-name, in which the quatient is stored.

The INTO-form signifies that the first operand is the divisor and the second
operand is the dividend. If GIVING is not written in this case, then the second
operand must be a data-name, in which the quotient is stored.

Division by zero always causes a size-error condition.

C0OBOL-80 Reference Manual - Release 4 58
Procedure Division

4.5.8 COMPUTE STATEMENT

The COMPUTE statement evaluates an arithmetic expression and then stores the
result in a designated numeric or report (numeric edited) item.

The general format of the COMPUTE statement is:
COMPUTE data-name-1 [ROUNDED]...=

numeric-literal
arithmetic-expression

data-name-2
[SIZE-ERROR-clause]

An example of such a statement is:
COMPUTE GRQOSS-PAY ROUNDED = BASE-SALARY *
(1+1.5*(HOURS - 40) / 40).

An arithmetic expression is a proper combination of numeric literals,
data-names, arithmetic operators and parentheses. In general, the data-names in
an arithmetic expression must designate numeric data. Consecutive data-names
(or literals) must be separated by an arithmetic operator, and there must be one
or mare blanks on either side of the operator. The operators are:

+ for addition

- for subtraction

* for multiplication
/ far division

¥*

* far exponentiation to an integral power.

When mare than one operation is to be executed using a given variable or term,
the order of precedence is:

1. Unary (involving one variable) plus and minus

2. Exponentiation

3. Multiplication and Division

4. Addition and Subtraction
Parentheses may be used when the normal order of gperations is not .desired.
Expressions within parentheses are evaluated first; parentheses may be nested to

any level. Consider the following expression.

A+B/(C-D*E)

COBOL-80 Reference Manual - Release 4 59
Procedure Division

Evaluation of the above expression is performed in the following ordered
sequence:

1. Compute the product D times E, considered as intermediate resuit R1.
2. Compute intermediate result R2 as the difference C - R1.
3. Divide B by R2, providing intermediate result R3.
4. The final result is computed by addition of A to R3.
Without parentheses, the expression
A+B/C-D*E

is evaluated as:

Rl=B/C
R2=A +R1
R3=D*E

final result = R2 - R3

When parentheses are emplayed, the following punctuation rules should be used:
1. A left parenthesis is preceded by one or more spaces.
2. A right parenthesis is followed by one or more spaces.

The expression A - B - C is evaluated as (A - B) - C. Unary operators are
permitted, e.g.:

COMPUTE A = +C + -4.6
COMPUTE X = -Y
COMPUTE A, 8(I) = -C - D(3)

4.6 GO TQ STATEMENT

The GO TO statement transfers control from one portion of a program to
another. It has the following general format:

GO TO [procedure-name-1 [[procedure-name-2] ...DEPENDING ON data-name]]

The simple form GO TO procedure-name-l changes the path of control to a
designated paragraph or section. If the GO statement is without a
procedure-name, then that GO statement must be the only one in a paragraph,
and must be ALTERed (see 4.12) prior to its execution.

C0OBOL-80 Reference Manual 60
Procedure Division

The more general form designates N procedure-names as a choice of N paths to
transfer tao, if the value of data-name is 1 to N, respectively. Otherwise, there
is no transfer of control and execution proceeds in the normal sequence.
Data-name must be a numeric elementary item and have no positions to the right
of the decimal point.

If a GO (non-DEPENDING) statement appears in a sequence of imperative
statements, it must be the last statement in that sequence.

4,7 STOP STATEMENT

The STOP statement is used to terminate or delay execution of the abject
program.

The format of this statement is:

RUN
STOP literal
STOP RUN terminates execution of a program, closing all files and returning
control to the operating system. If used in a sequence of imperative statements,
it must be the last statement in that sequence.

The form STOP literal displays the specified literal on the console and suspends
execution. Execution of the program is resumed only after operator
intervention., Presumably, the operator performs a function suggested by the
content of the literal, prior to resuming program execution by pressing the
carriage return key.

4.8 ACCEPT STATEMENT

The ACCEPT statement is used by a processing program to obtain low-volume
input at runtime. Four formats are available:

Format 1:

DATE

ACCEPT identifier-1 FROM

O
>
<

|

_.‘
—i
<
m

|

-
Z

INE NUMBER

SCAPE KEY

m
o

Format 2:

ACCEPT identifier-2

C0OBOQOL-80 Reference Manual 61
Procedure Division

Format 3:

(SPACE-FILL)
ZERQ-FILL
LEFT-JUSTIFY
RIGHT-JUSTIFY
ACCEPT position-spec identifier-3 WITH J TRAILING-SIGN el
PROMPT (
UPDATE
LENGTH-CHECK
AUTO-SKIP
\ BEEP J

Format 4:
ACCEPT screen-name [ON ESCAPE imperative-statement]

The function of each form of the ACCEPT statement is to acquire data from a
source external to the program and place it in a specified receiving field or set
of receiving fields. The forms differ primarily in the data source with which
they are designed to interface. The format 1 ACCEPT obtains information from
system-defined data items. The other formats of the ACCEPT statement
receive data keyed in by an operator at the system console device. For farmat
2, this device is assumed to be a teletype, a glass teletype, or a CRT terminal in
scrolling mode. For format 3, it is assumed that the input device is a video
terminal and that scrolling is not desired. The format 4 ACCEPT receives an
entire data entry form (as defined in the SCREEN SECTION) when it has been
completed by the terminal operator. Note that an ordinary CRT terminal is
suitable as an input device for a format 2, 3, or 4 ACCEPT, although the possible
effects on the appearance of the screen will differ as indicated in the discussion
below. The effects of the various WITH phrase options of the format 3 ACCEPT
statement are summarized in Section 4.8.3.3.

4.8.1 FORMAT 1 ACCEPT STATEMENT

Any of several system-defined data items may be obtained at execution time by
use of the format 1 ACCEPT statement.

The formats of the system-defined data items are:

DATE -- a six digit value of the form YYMMDD (year, month, day). Example:
July 4, 1976 is 760704

DAY - a five digit "Julian date" of the form YYNNN where YY is the two low
order digits of year and NNN is the day-in-year number between 1 and 366.

C0BQL-80 Reference Manual 62
Procedure Division

TIME -- an eight digit value of the form HHMMSSFF where HH is from 00 to 23,
MM is from 00 to 59, SS is from 00 to 59, and FF is from 00 to 99; HH is the
hour, MM is the minutes, SS is the seconds, and FF represents hundredths of a
second.

LINE NUMBER - a two digit value that represents the line (terminal) on which
the program is currently running. In the COBOL-80 system, the value of LINE
NUMBER is always 00.

ESCAPE KEY — a two digit code generated by the key that terminated the most
recently executed format 3 or format 4 ACCEPT statement. Identifier-1 can be
interrogated to determine exactly which key was typed. Input may be
terminated by any of the following keys, and cause the ESCAPE KEY value to be
set as shown:

Backtab (terminates only format 3 ACCEPTSs) 99

Escape 01

Field-terminator (of the last 0o
field if format 4 ACCEPT is used)

Function key 02-nn

All key codes are defined in the CRT driver for the terminal being used (refer to
Appendix A of the User's Guide). On most terminals, backtab may be entered as
CONTROL-B or *; escape is the ESCAPE or ALT key; field-terminator may be
entered as CARRIAGE RETURN, LINE FEED, TAB, ENTER, NEW LINE or
CONTROL-I; and the function keys are usually CONTRCL-A, CONTROL-C, and
CONTROL-X, generating ESCAPE KEY values of 02, 03, and 04 respectively. If
input is terminated as a result of using the AUTO-SKIP option (i.e., no
terminator key is struck), the ESCAPE KEY value is set to 00.

identifier-1 should be an unsigned numeric integer whose length agrees with the

content of the system-defined data item. If not, the standard rules for a MOVE
govern storage of the source value in the receiving item (identifier-1).

4.8.2 FORMAT 2 ACCEPT STATEMENT

Format 2 of the ACCEPT statement is used to accept a string of input
characters from a scrolling device such as a teletype or a CRT in scrolling
mode. When the ACCEPT statement is executed, input characters are read from
the console device until a carriage return is encountered, then a carriage
return/line feed pair is sent back to the console. The input data string is
considered to consist of all characters keyed prior to (but not including) the
carriage return.

COBOL-80 Reference Manual 1, 63
Procedure Division

For a Format 2 ACCEPT with an alphanumeric receiving field, the input data
string is transferred to the receiving field exactly as if it were being MOVEd
from an alphanumeric field of length equal to the number of characters in the
string. (That is, left justification, space filling, and right truncation occur by
default, and right justification and left truncation occur if the receiving field is
described as JUSTIFIED RIGHT.) If the receiving field is alphanumeric-edited, it
is treated as an alphanumeric field of equal length (as if each character in its
PICTURE were "X"), so that no insertion editing will occur.

For a Format 2 ACCEPT with a numeric or numeric-edited receiving field, the
input data string is subjected to a validity test which depends on the PICTURE of
the receiving field. (If the receiving field is described as COMP, its PICTURE is
treated as "S9(5)" for purposes of this discussion.) The digits 0 through 9 are
considered valid anywhere in the input data string.

The decimal point character (period or comma, depending on the DECIMAL
POINT IS clause of the CONFIGURATION SECTION) is considered valid if:

1. it occurs only once in the input data string, and

2. if the PICTURE of the receiving field contains a fractional digit
position, that is, a "9", "Z", "*"' or floating inserticn character which
appears to the right of either an assumed decimal point ("V") or an
actual decimal paoint (".").

The operational sign characters "+" and "-" are considered valid only as the first
or last character of the input string and only if the PICTURE of the receiving
field contains one of the sign indicators "S", "+", "-", "CR", or "D8".

All other characters are considered invalid. If the input data string is invalid,
the message "INV ALID NUMERIC INPUT — PLEASE RETYPE" is sent to the
console, and ancother input data string is read.

When a valid input data string has been obtained, data is transferred to the
receiving field exactly as if the instruction being executed were a MOVE to the
receiving field from a hypothetical source field with the following
characteristics:

1. aPICTURE of the form 59...9V9...9

2. USAGE DISPLAY

3. a total length equal to the number of digits in the input data string

C0OBOL-80 Reference Manual - Release 4 64
Procedure Division

4.

5.

as many digit positions to the right of the assumed decimal point as
there are digits to the right of the explicit decimal point in the input
data string (zero if there is no decimal point in the input data string)

current contents equal to the string of digits embedded in the input

. data string

a separate sign with a current negative status if the input data string
contains the character "-", and a current positive status otherwise.

4.8.3 FORMAT 3 ACCEPT STATEMENT

Format 3 of the ACCEPT statement is used to accept data into a field from a
non-scrolling video terminal. The following syntax rules must be observed when
the format 3 ACCEPT is used:

L.

2.

3.

4.

identifier-3 must reference a data item whose length is less than or
equal to 1920 characters

the options SPACE-FILL and ZERO-FILL may not both be specified in
the same ACCEPT statement

the options LEFT-JUSTIFY and RIGHT-JUSTIFY may not both be
specified within the same ACCEPT statement

if identifier-3 is described as a numeric-edited item, the UPDATE
option must not be specified

the TRAILING-SIGN option may be specified only if identifier-3 is
described as an elementary numeric data item. If identifier-3 is
described as unsigred, the TRAILING-SIGN option is ignored

far alphanumeric or alphanumeric-edited identifier-3, the SPACE-FILL
option is assumed if the ZERO-FILL option is not specified, and the
LEFT-JUSTIFY option is assumed if the RIGHT-JUSTIFY option is not
specified

for numeric or numeric-edited identifier-3, the ZERO-FILL option is
assumed if the SPACE-FILL option is not specified.

4.8.3.1 Data Input Field

The position-spec and receiving field (identifier-3) specifications of the format 3
ACCEPT statement are used to define the location and characteristics of a data
input field on the screen of the console video terminal.

COBOL-80 Reference Manual 65
Procedure Division

Location of the Data Input Field

The position-spec is of the form

(LIN [{ } integer-l] CoL [{] integer-B]

integer-2 integer-4

The opening and clasing parentheses and the comma and space separating the
two major bracketed groups are required. The position-spec specifies the
position on the console CRT screen at which the data input field will begin. LIN
and COL are COBOL special registers. Each behaves like a numeric data item
with USAGE COMP, but they may be referenced by every COBOL program
without being declared in the DATA DIVISION.

If LIN is specified, the data input field will begin on the screen row whose
number is equal to the value of the LIN special register, incremented (or
decremented) by integer-l1 if "+ integer-1" (or "- integer-1") is specified. If
integer-2 is specified, the data input field will begin on the row whose number is
integer-2. If neither LIN nor integer-2 is specified, the data input field will
begin on the screen row containing the current cursor position.

If COL is specified, the data input field will begin in the screen column whose
number is equal to the value of the COL special register, incremented (or
decremented) by integer-3 if "+ integer-3 (or "- integer-3") is specified. If
integer-4 is specified, the data input field will begin in the screen column whase
number is integer-4. If neither COL nor integer-4 is specified, the data input
field will begin in the screen column containing the current cursor position.

Characteristics of the Data Input Field

The characteristics (other than position) of the data input field on the CRT
screen are determined by the receiving field's PICTURE specification (which is
treated as S9(5) in the case of an item whose USAGE is COMPUTATIONAL). For
alphanumeric or alphanumeric-edited identifier-3, the data input field is simply a
string of data input character positions starting at the screen location specified
by position-spec. The length of the data input field in character positions is
equal to the length of the receiving field in memary.

C0OBOL-80 Reference Manual 66
Procedure Division

For numeric or numeric-edited identifier-3, the data input field may contain any
or all of the following: integer digit positions, fractional digit positions, sign
position, decimal point position. There will be one digit position for each "9",
"z, "t npYo or non-initial floating insertion symbol (a floating insertion symbol
is a "+", "-"_ or "$" which is not the last symbol in a PICTURE character string)
in the PICTURE of identifier-3. Each digit position in the data input field is a
fractional digit position if the corresponding PICTURE character is to the right
of an assumed decimal point ("V") or actual decimal paoint (".") in the PICTURE
of identifier-3. Otherwise it is an integer digit position. There will be one sign
position if identifier-3 is described as signed, and no sign paosition otherwise.
There will be one decimal point position if there is at least one fractional digit
position, and no decimal point position otherwise.

The data input positions which are defined will occupy successive character
positions on the CRT screen beginning with the position specified by
position-spec. If TRAILING-SIGN is specified in the ACCEPT statement, the
data input positions will be in the following sequence: integer digit positions (if
any), decimal point position (if any), fractional digit positions (if any), sign
position (if any). If TRAILING-SIGN is not specified, the data input positions
will be in the following sequence: sign position (if any), integer digit positions (if
any), decimal point paosition (if any), fractional digit positions (if any).

4.8.3.2 Data Input and Data Transfer

A character entered into the data input field by the terminal operator may be
treated either as an editing character, a terminator key or a data character.
When a terminator key is typed, the ACCEPT is terminated and the ESCAPE
KEY value is set as described in section 4.8.1. This value can be interragated by

using a format 1 ACCEPT statement FROM ESCAPE KEY.

The editing characters are line-delete, forward-space, backspace, and rubout.
On most terminals, these characters may be entered as control-U, control-F,
control-H, and DEL (or RUB) respectively. The action of the editing characters
is described later in this section; for now, only data characters will be considered.

See the COBOL-80 User's Guide for further information on the definition of
editing and terminator characters.

Alphanumeric Receiving Field

Consider first the execution of the farmat 3 ACCEPT statement with an
alphanumeric or alphanumeric-edited receiving field. An alphanumeric-edited
receiving field is treated as an alphanumeric field of the same length (as if every
character in its PICTURE were "X"). Specifically, no insertion editing will occur.

COBOL-80 Reference Manual 67
Procedure Division

The initial appearance of the data input field depends on the specifications in the
WITH phrase of the ACCEPT statement. If UPDATE is specified, the current
contents of identifier-3 are displayed in the input field. In this case all data
input positions will be treated as if they were keyed by the terminal operator. If
UPDATE is not specified, but PROMPT is specified, a period (".") is displayed in
each input data position. If neither UPDATE nor PROMPT is specified, the data
input field is not changed. The cursor is placed in the first data input position,
and characters are accepted as they are keyed by the gperator until a terminator
character (normally carriage return) is encountered. If AUTO-SKIP is specified
in the ACCEPT statement, the ACCEPT will also be terminated if the operator
keys a character into the last (rightmost) data input position.

As each input character is received, it is echoed to the CRT screen, except that
non-displayable characters are echoed as "?". If all positions of the data input
field are filled, additional input is ignored until a terminator character or editing
character (listed above) is encountered. If RIGHT-JUSTIFY was specified in the
ACCEPT statement, the operator-keyed characters are shifted to the rightmaost
positions of the data input field when the ACCEPT is terminated. All unkeyed
character positions are filled on termination; the fill character is either space (if
SPACE- FILL is in effect) or zero (if ZERO-FILL was specified).

The contents of the receiving field will be the same set of characters as appear
in the input field; however, the justification of operator-keyed characters will be
controiled by the JUSTIFIED specification in the receiving field's data
description, not by the RIGHT- or LEFT-JUSTIFY option of the ACCEPT.
Excess positions of the receiving field will be filled with spaces or zeroes based
on the SPACE- or ZERO-FILL specification in the ACCEPT statement.

Numeric Receiving Field

Next, consider the execution of a format 3 ACCEPT statement with a numeric
or numeric-edited receiving field. As described abaove, the data input field on
the console CRT screen may contain integer digit positions, fractional digit
positions, or both. First assume that both are present; the other cases will be
treated as variations.

C0OBOL-80 Reference Manual 68
Procedure Division

As with the alphanumeric ACCEPT, the data input field may be initialized in a
way determined by the WITH options specified in the ACCEPT statement. If
UPDATE is specified (not permitted for a numeric-edited receiving field), the
integer and fractional parts of the data input field will be set to the integer and
fractional parts of the decimal representation of the initial value of the
receiving field, with leading and trailing zerces included, if necessary, to fill all
digit positions. Except for leading zeroes, these initialization characters are
treated as operator-keyed data. If UPDATE is not specified, but PROMPT is
specified, a zero will be displayed in each input digit position. In either of these
cases (UPDATE or PROMPT) a decimal point will be displayed at the decimal
point position.

If neither UPDATE nor PROMPT is specified, the input field on the screen will
not be initialized, except for the sign position. The sign position is always
initialized positive except when UPDATE is specified, in which case it is
initialized according to the sign of the current contents of the receiving field.
On most systems, a pasitive sign position is shown as a space, and a negative sign
position is shown as a minus sign.

The cursor is initially placed in the rightmost integer digit position, and
characters are accepted one at a time as they are keyed by the operator. A
received character may be treated in one of several ways. If the incoming
character is a digit, previously keyed digits are shifted one position to the left in
the input field and the new digit is displayed in the rightmost integer digit
position. If all integer digit positions have not been filled, the cursor remains on
the rightmost digit position and another character is accepted. If the entire
integer part of the input field has been filled and AUTO-SKIP was specified, the
integer part is terminated and the cursor is moved to the leftmost fractional
digit position. If the integer part has been filled and AUTO-SKIP was not
specified, the cursor is moved to the decimal point position, and any further
digits keyed are ignored until the integer part is terminated with a decimal point.

If the character entered is one of the sign characters "+" or "-", the sign position

is changed to a positive or negative status respectively. Cursor position is not
affected.

If the character entered is a decimal point character, the integer part is
terminated and the cursor is maoved to the leftmost fractional digit position.

If the character entered is a field terminator (normally carriage-return), the
ACCEPT is terminated and the cursor is turned off. Any other character is
ignored.

CCBOL -80 Reference Manual 69
Procedure Division

When the integer part is terminated, the cursor is placed in the leftmost
fractional digit position, and operator-keyed characters are again accepted.
Digits are simply echoed to the terminal. The sign characters "+" and "-" are
treated exactly as they were while integer part digits were being entered. The
field terminator character terminates the ACCEPT. (If AUTO-SKIP is in effect,
filling the entire fractional part also terminates the ACCEPT.) Other characters
are ignored. After all digit positions of the fractional part have been filled,
further digits are also ignored.

If no fractional digit positions are present, the decimal point is ignored as an
input character, and entry of integer part digits may be terminated only by
terminating the entire ACCEPT. If no integer digit positions are present, the
cursor is initially placed in the leftmost fractional digit position and entry aof the-
fractional part digits proceeds as described above.

On termination of the format 3 ACCEPT of a numeric or numeric-edited item,
data is transferred to the receiving field. The exact form of the data in the
receiving field after execution of the ACCEPT is as described in the last
paragraph of the discussion of the format 2 ACCEPT, where the role of the
"input data string" mentioned in that paragraph is taken by the string of
characters displayed in the data input field. After termination, if SPACE-FILL
is in effect, leading zeroes in the integer part of the data input field (not in the
receiving field) will be replaced by spaces, and the leading operational sign, if
present, will be moved to the rightmost space thus created.

Editing Characters

The editing characters (line-delete, forward-space, backspace, and rubout) may
be used to change data which has already been keyed (or supplied by the COBOL
runtime system as a result of a WITH UPDATE specification). Entering the
line-delete character will cause the ACCEPT to be restarted and all data keyed
by the operator or initially present in the receiving field to be lost. The data
input field on the console screen will be re-initialized if PROMPT is in effect.
Otherwise, the data input field will be filled with spaces or zeroes according to
the SPACE-FILL or ZERO-FILL specification.

C0OBOL.-80 Reference Manual 70
Procedure Division

Typing the forward-space or backspace characters will move the cursor forward
oar back one data input position in the case of an alphanumeric or
alphanumeric-edited receiving field, or one digit position in the case of a
numeric or numeric-edited receiving field. In no case, however, will the
forward-space or backspace characters move the cursor outside the range of
positions including (1) the positions already keyed by the operator (or filled by
COBOL runtime support when WITH UPDATE is specified), and (2) the rightmost
data input position which the cursor has occupied during the execution of this
ACCEPT. If the cursor is moved to a position of this range other than the
rightmost, and a legal data character is entered, it is displayed at the current
cursor position and the cursor is moved forward one data position (alphanumeric
or alphanumeric-edited) or digit position (numeric or numeric-edited).

Typing the rubout character effectively cancels the last data character entered.
The cursar is moved back ane data position (digit position if the receiving field is
numeric or numeric-edited) and a fill character (space or zero) is displayed under
the cursor (except when the cursor is to the left of the decimal point for a
numeric ACCEPT. Then no fill character is displayed and the cursor is not
moved, but the digit at the cursor position is deleted and all digits to the left of
it are shifted one position to the right.) The rubout character has no effect
unless the cursor is in position to accept a new data character; in other words, it
has no effect if backspace character(s) have been used to move the cursor back
aver already keyed positions,

4.8.3.3 WITH Phrase Summary

The following list summarizes the effects of the WITH phrase specifications for a
format 3 ACCEPT with an alphanumeric or alphanumeric-edited receiving field:

1. SPACE-FILL causes unkeyed character positions of the data input
field and the receiving field to be space-filled when the ACCEPT is
terminated.

2. ZERO-FILL causes unkeyed character positions of the data input
field and the receiving field to be set to ASCII zeroces when the

ACCEPT is terminated.
3. LEFT-JUSTIFY is treated by this compiler as commentary.

4. RIGHT-JUSTIFY causes operator-keyed characters to occupy the
rightmost positions of the data input field (on the screen) after the
ACCEPT is terminated. Note that the justification of transferred
data in the receiving field is controlled by the JUSTIFIED declaration
or default of the receiving field's data description, not by the WITH
RIGHT-JUSTIFY phrase.

COBQOL-80 Reference Manual - Release 4 71
Procedure Division

9.

PROMPT causes the data input field on the screen to be set to all
periods (".") before input characters are accepted.

UPDATE causes the data input field to be initialized with the initial
contents of the receiving field and the initial data to be treated as
operator-keyed data.

LENGTH-CHECK causes a field terminator character to be ignored
unless every data input position has been filled.

AUTO-SKIP forces the ACCEPT to be terminated when all data input
positions have been filled. A terminator character explicitly keyed
has its usual effect.

BEEP causes an audible alarm to sound when the ACCEPT is
initialized and the system is ready to accept operator input.

The following list summarizes the effects of the WITH phrase specifications for
the format 3 ACCEPT with a numeric or numeric-edited receiving field:

1.

2.

FACE-FILL causes unkeyed digit positions of the data input field
(not of the receiving field) to the left of the (possibly implied)
decimal point to be space-filled when the ACCEPT is terminated and
any leading operational sign to be displayed in the rightmost space
thus created.

ZERO-FILL causes all unkeyed digit positions of the data input field
to be set to zero when the ACCEPT is terminated.

LEFT-JUSTIFY and RIGHT-JUSTIFY have no effect for a numeric or
numeric-edited receiving field.

TRAILING-SIGN causes the operational sign to appear as the
rightmost position of the data input field. Ordinarily the sign is the
leftmost position of the field.

PROMPT causes the data input field positions to be initialized as
follows before input characters are accepted: digit positions to zero,
decimal point position (if any) to the decimal point character, and
sign position (if any) to space.

UPDATE causes the data input field to be initialized to the current
contents of the receiving field and this initial data to be treated like
operator-keyed data.

COBOL-80 Reference Manual - Release &
Procedure Division

72

7. LENGTH-CHECK causes a received decimal point character to be
ignored unless all integer digit positions have been keyed and a field
terminator character to be ignored unless all digit positions have

been keyed.

8. AUTO-SKIP causes the integer part of the ACCEPT to be terminated
when all integer digit positions have been keyed and the entire
ACCEPT to be terminated when all digit positions have been keyed.

9. BEEP causes an audible alarm to sound when the ACCEPT is
initialized and the system is ready to accept operator input.

4.8.4 Examples Using the Format 3 ACCEPT Statement

Example 1:

Receiving Field:
0S5 RS-DISCOUNT PIC X (8).

Initial Contents:
ABCDEFGH

ACCEPT Statement:

ACCEPT (L1 L) RS-DISCOUNT WITH PROMPT

Set-up
prior to executing

At Start £ ACCEPT:

Operator Enters N:

Executing
Neeoonoo the ACCEPT
Operator Enters ONE:
NONE....
Operator Enters Carriage Return:
NONEYBBE
Final Contents Result

of Receiving Field:
NONEBEBY

COBOL-80 Reference Manual - Release 4
Procedure Division

Example 2:

73

Receiving Field:
10 VEND-NAME PIC X(1.2) .

Initial Contents:
ACMEBUWIDGETS

ACCEPT Statement:

ACCEPT (1. 1) VEND-NAME
WITH PROMPT UPDATE.

Set-up
prior to executing

At Start of ACCEPT:
ACMEBWIDGETS

(If operator enters carriage
return here, the receiving
field will not be changed.)

Operator Enters Line-delete: Executing
............ the ACCEPT
Operator Enters XYZ:
XYZ lllll s e 0
Operator Enters Carriage Return:
XY ZZBBBBBEEY
Final Contents
Result

of Receiving Field:

XYZBBBBBBBEY

COBOL-80 Reference Manual - Release 4 74
Procedure Division

Example 3:

Receiving Field:
05 CREDIT PIC S9(4)vAaSg.

Initial Contents:

Set-up
+ prior to executing
111111

ACCEPT Statement:

ACCEPT (LIN + 4. COL - 3) CREDIT
WITH PROMPT TRAILING-SIGN.

At Start of ACCEPT:
000g.- 008

Operator Enters 8:
0cos.oop

Operator Enters 7:
0oa? .00y

Operator Enters -: Executing
goa?.00- ' the ACCEPT

Operator Enters bk:
0&é?:t.00-

Operator Enters N:
0&87t.00-

Operator Enters .:
0&876.00-

Operator Enters §:
087&.50-

Operator Enters Carriage Return:
087L.50-

Final Contents
of Receiving Field: Result

U&?EASD

COBOL-80 Reference Manual - Release 4 75
Procedure Division

4.8.5 FORMAT 4 ACCEPT STATEMENT

Format 4 of the ACCEPT statement causes a transfer of information from the
operator’s console to all TO and/or USING fields specified in the SCREEN
SECTION definition of screen-name (or screen items subordinate to
screen-name.) Screen items having only a VALUE literal or a FROM clause have
no effect on the operation of the ACCEPT statement. Each transfer consists of
an implicit format 3 ACCEPT of a field defined by the appropriate screen item's
PICTURE followed by an implicit MOVE to the associated TO or USING field.
When the ACCEPT is terminated, the ESCAPE KEY value is set as described
below and in section 4.8.1. This value can be interrogated by using a format 1
ACCEPT statement FROM ESCAPE KEY. Fields are ACCEPTed in the order in
which they are defined under screen-name in the SCREEN SECTION. This order
can be changed by use of the backtab key, as described below, but the position of
the field on the screen does not affect the order.

If an escape key is typed during data input, the entire ACCEPT is terminated
without moving the current field to the associated TO or USING item, the
ESCAPE KEY value is set to 01, and the ON ESCAPE statement is executed. [f
a function key is typed, the appropriate ESCAPE KEY value is set and the entire
ACCEPT is terminated. If a field-terminator key (carriage return, tab, etc.) is
typed, the ESCAPE KEY value is set to 00 and the cursor maves to the next
input field defined under screen-name, if one exists. If the current field is the
last field, the entire ACCEPT is terminated. If the backtab key is typed, the
current field is terminated and the cursor moves to the previous input field
defined under screen-name. If the current field is the first field, the cursor does
not move from that field. When a field is terminated by a function key,
field-terminator key, or backtab key, the contents of the current field are moved
to the associated TO or USING item, except in the case where no data
characters and no editing characters have been entered in that field. This allows
the operator to tab forward or backward through the input fields without
affecting the contents of the receiving items.

All the editing and validation features described in section 4.8.3.2 for the format
3 ACCEPT apply to the format 4 ACCEPT as well. Several SCREEN SECTION
specifications listed in section 3.17 correspond to the format 3 ACCEPT options:
AUTO corresponds to AUTO-SKIP; BELL corresponds to BEEP; and JUSTIFIED
corresponds to RIGHT-JUSTIFY. Furthermore, if an input field specifies the
WUSING clause or both a FROM and TO clause, the ACCEPT will be executed with
the UPDATE option. Format 4 ACCEPT statements always use the PROMPT
and TRAILING-SIGN options when executing the individual format 3 ACCEPTs.

COBOL-80 Reference Manual - Release 4 76
Procedure Division

If the screen item's PICTURE specifies a numeric-edited or alphanumeric-edited
input field, the ACCEPT is executed as if the field were numeric or
alphanumeric, respectively. When the field is terminated the data is edited
according to the PICTURE and redisplayed in the specified screen position. In
this case, the JUSTIFIED clause has no effect.

Moves from screen fields to receiving items follow the standard COBOL-80 rules
for MOVE statements, except that moves from numeric-edited fields are
allowed. In this case, the data is input as if the field were numeric and the move
uses only the sign, decimal point and digit characters.

The format 4 ACCEPT does not cause the display of any text or prompting label
information. See the discussion of DISPLAY in section 4.9.

4.9 DISPLAY STATEMENT

The DISPLAY statement provides the capability of outputting low-volume data
at runtime without the overhead of file definition. The format of the DISPLAY
statement is:

identifier
DISPLAY){[pasition-spec] literal <. [UPON mnemonic-name]
ERASE
[screen-name]

The DISPLAY statement must be coded in accordance with the following rules:

1. identifier must reference a data item whose length is less than or
equal to 1920 characters.

2 mremonic-name must be defined in the PRINTER [S clause of the
FPECIAL-NAMES paragraph of the CONFIGURATION SECTION

3. screen-name must be defined in the SCREEN SECTION of the DATA
DIVISION.

COBOQOL-80 Reference Manual - Release 4 77
Procedure Division

The DISPLAY statement will cause output to be sent to the system consocle
device unless UPON mnemonic-name is specified, in which case output will be
sent to the printer. Each display-item (that is, each occurrence of identifier,
literal, ERASE, or screen-name) will be processed in tum as described in the
paragraphs below; then, if neither position-spec nor screen-name is coded in the
entire DISPLAY statement, a carriage return/line-feed pair will be sent to the
receiving device. '

4.9.1 Position-spec

For each display-item, if position-spec is specified, the cursor is positioned prior
to the transfer of data for the item. position-spec is of the form:

(LIN [{ } integer-l} coL l:{ } integer-{l)

integer-2 integer-4

The opening and closing parentheses and the comma and space separating the
twa major bracketed groups are required. Position-spec specifies the position on
the console CRT screen at which the cursor will be placed. LIN and COL are
COBOL special registers. Each behaves like a numeric data item with USAGE
COMP, but they may be referenced by every COBOL program without being
declared in the DATA DIVISION.

If LIN is specified, the cursor will be placed on the screen row whose number is
equal to the value of the LIN special register, incremented (or decremented) by
integer-1 if "+ integer-1" (or "- integer-1") is specified. If integer-2 is specified,
the cursor will be placed on the row whaose number is integer-2. If neither LIN
nor integer-2 is specified, the cursor will be placed on the screen row containing
the current cursor position.

[f COL is specified, the cursor will be placed in the screen column whose number
is equal to the value of the COL special register, incremented (or decremented)
by integer-3 if "+ integer-3" (or "- integer-3") is specified. If integer-4 is
specified, the cursor will be placed in the screen column whase number is
integer-4. If neither COL nor integer-4 is specified, the cursor will be placed in
the screen column containing the current cursor position.

C0OBOL-80 Reference Manual - Release 4 78
Procedure Division

4.9.2 Identifier, Literal, and ERASE

If identifier or literal is specified for a given display-item, the contents of
identifier or the value of literal are sent to the receiving device. Since the data
transfer occurs without conversion or reformatting, it is recommended that
numeric data be moved to numeric-edited fields for purposes of DISPLAY.

If ERASE is specified and if position-spec is coded for this or a previous
display-item, the console screen will be cleared from the current cursor position
to the end of the screen. The initial cursor position for the next display-item
will be that specified by the position-spec coded in the ERASE display-item, if
present, or the position in which the cursor was left by the previous
display-item. If ERASE is specified and no position-spec has been encountered
up to this point in the DISPLAY statement, no action will be taken.

4.9.3 Screen-name

The DISPLAY screen-name statement causes a transfer of information from
screen-name (or each elementary screen item subordinate to screen-name) to the
console CRT screen. For each such screen item having a VALUE, FROM, or
USING specification, the specified literal or field is the source of the displayed
data. For a field having only a TO clause, the effect is as if FROM ALL ".
(period) had been specified. The source data is MOV Ed implicitly to a temporary
item defined by the appropriate screen item's PICTURE (or by the length of the
data in the case of a VALUE literal). Then an implied identifier-type DISPLAY
of the constructed temporary is executed as modified by the positioning and
control clauses coded in the definition of the appropriate screen item. See
section 3.17 (SCREEN SECTION).

COBOL-80 Reference Manual - Release 4 79
Procedure Division

4.10 PERFORM STATEMENT

The PERFORM statement permits the execution of a separate body of program
steps. Two formats of the PERFORM statement are availables

Option 1

integer }

PERFORM range [{data-name TIMES]

Option 2

index-name
PERFORM range [VARYING |data-name FROM

amount-1 BY amount-2] UNTIL condition.

(A" more extensive version of aption 2 is available for varying 2 or 3 items
concurrently, as explained in Appendix VI.)

In the above syntactical presentation, the following definitions are assumed:

1. Range is a paragraph-name, a section-name, or the construct
procedure-name-1 THRU procedure-name-2. (THROUGH s
synonymous with THRU.) If only a paragraph-name is specified, the
return is after the paragraph's last statement. If only a section-name
is specified, the return is after the last statement of the last
paragraph of the section. If a range is specified, control is returned
after the appropriate last sentence of a paragraph or section. These
retum points are valid only when a PERFORM has been executed to
set them up; in other cases, control will pass right through.

2. The generic operands amount-l and amount-2 may be a numeric
literal, index-name, or data-name. In practice, these amount
specifications are frequently integers, or data-names that contain
integers, and the specified data-name is used as a subscript within
the range.

In Option 1, the designated range is performed a fixed number of times, as
determined by an integer or by the value of an integer data-item. If no "TIMES"
phrase is given, the range is performed once. When any PERFORM has finished,
execution proceeds to the next statement following the PERFORM statement.

COBOL-80 Reference Manual - Release 4 80
Procedure Division

In Option 2, the range is performed a variable number of times, in a step-wise
progression, varying from an initial value of data-name = amount-1l, with
increments of amount-2, until a specified condition is met, at which time
execution proceeds to the next statement after the PERFORM.

The condition in an Option 2 PERFORM is evaluated prior to each attempted
execution of the range. Consequently, it is possible to not PERFORM the range,
if the condition is not met at the outset. Similarly, in Option 1, if data-name <0,
the range is not performed at all.

At run-time, it is illegal to have concurrently active PERFORM ranges whose
terminus points are the same.

4.11 EXIT STATEMENT .

The EXIT statement is used where it is necessary to provide an endpoint for a
procedure.

The format for the EXIT statement is:

EXIT

EXIT must appear in the source program as a one-word paragraph preceded by a
paragraph-name and followed by a period. An exit paragraph provides an
end-point to which preceding statements may transfer control if it is decided to
bypass some part of a section.

4.12 ALTER STATEMENT

The ALTER statement is used to modify a simple (non-depending) GO TO

statement elsewhere in the Procedure Division, thus changing the sequence of
execution of program statements.

The ALTER statement general format is:
ALTER paragraph TO [PROCEED TO] procedure-name

Paragraph (the first operand) must be a COBOL paragraph that consists of only a
simple GO TO statement; the ALTER statement in effect replaces the former
operand of that GO TO by procedure-name. Consider the ALTER statement in
the context of the following program segment.

GATE. GO TO MF-0OPEN.
MF-OPEN. OPEN INPUT MASTER-FILE.

ALTER GATE TO PROCEED TO NORMAL.
NORMAL. READ MASTER-FILE, AT END GO TO EOF-MASTER.

Examination of the above code reveals the technique of "shutting a gate,"
providing a one-time initializing program step.

COBOL-80 Reference Manual - Release 4 81
Procedure Division

4.13 IF STATEMENT

The IF statement permits the programmer to specify a series of procedural
statements to be executed in the event a stated condition is true. Optionally, an
alternative series of statements may be specified for execution if the condition
is false. The general format of the [F statement is:

NEXT SENTENCE NEXT SENTENCE

IF condition {statement(s)-l } [ELSE {statement(s)-z }]

The [F statement must be followed immediately by a period.
Examples of [F statements:

1. [F BALANCE =0 GO TO NOT-FOUND.

2. F T LESS THAN 5 NEXT SENTENCE ELSE GO TO T-1-4.

3. IF ACCOUNT-FIELD = SPACES OR NAME = SPACES ADD 1 TO
SKIP-COUNT ELSE GO TO BYPASS.

The first series of statements is executed only if the designated condition is
true. The second series of statements (ELSE part) is executed only if the
designated condition is false. Refer to Appendix [II for discussion of nested IF
statements.

Regardless of whether the condition is true or false, the next sentence is
executed after execution of the appropriate series of statements, unless a GO
TO is contained in the imperatives that are executed, or unless the nominal flow
of program steps is superseded because of an active PERFCORM statement.

4.13.1 Conditions
A condition is either a simple condition or a compound condition. The four
simple conditions are the relational, class, condition-name, and sign condition
tests. A simple relational condition has the following structure:

operand-1 relation operand-2
where "operand" is a data-name, literal, or figurative-constant.
A compound condition may be formed by connecting two conditions, of any sort,

by the logical operator AND or OR, e.g., A < B OR C = D. Refer to Appendix I
for further permissible forms involving parenthesization, NOT, or "abbreviation."

COBOL-80 Reference Manual - Release 4 82
Procedure Division

The simplest "simple relations" have three basic forms, expressed by the
relational symbols equal to, less than, or greater than (i.e., = or < or >).

Another form of simple relation that may be used involves the reserved word

NOT, preceding any of the three relational symbols. In summary, the six simple
relations in conditions are:

Relation Meaning

= equal to
< less than
> greater than
NOT = not equal to

NOT < greater than or equal to
NQOT > less than or equal to

It is worthwhile to briefly discuss how relation conditions can be compounded.
The reserved wards AND or OR permit the specification of a series of relational
tests, as follows:

1. Individual relations connected by AND specify a compound condition
that is met (true) only if all the individual relationships are met.

2. Individual relations connected by OR specify a compound condition
that is met (true) if any one of the individual relationships is met.

The following is an example of a compound relation condition containing bath

AND and OR connectors. Refer to Appendix [for formal specification of
evaluation rules.

[F X =Y AND FLAG ='Z'OR SWITCH =0 GO TO PROCESSING.

In the above example, execution will be as follows, depending on various data values.

Data Value Does Execution Go
X Y FLAG SWITCH to PROCESSING?
10 | 10 A 1 Yes
10 | 11 A 1 No
10 | 11 'z g Yes
10 | 10 P 1 No
6 3 P! 0 Yes
6 6 P 1 No

COBOL-80 Reference Manual - Release &4 83
Procedure Division

Usages of reserved word phrasings EQUAL TO, LESS THAN, and GREATER
THAN are accepted equivalents of =.< > respectively. Any form of the relation
may be preceded by the word IS, optionally.

Before discussing class-test, sign-test, and condition-name conditions, methods
of performing comparisons will be discussed.

Numeric Comparisons: The data operands are compared after alignment of their
decimal positions. The results are as defined mathematically, with any negative
values being less than zero, which in turn is less than any positive value. An
index-name or index data item (see Chapter 6) may appear in a comparison.
Caomparison of any two numeric operands is permitted regardless of the formats
specified in their respective USAGE clauses, and regardless of length.

Character Comparisons: Nogn-equal-length comparisons are permitted, with
spaces being assumed to extend the length of the shorter item, if necessary.
Relationships are defined in the ASCII code; in particular, the letters A-Z are in
an ascending sequence, and digits are less than letters. Group items are treated
simply as character strings when compared. Refer to Appendix [V for all ASCII
character representations.

Returming to our discussion of simple conditions, there are three additional forms
of a simple condition, in addition to the relational form, namely: class test,
condition-name test, and sign test.

A class test conditicn has the following syntactical format:

NUMERIC
data-name IS [NQOT] ALPHABETIC

This condition specifies an examination of the data item content to determine
whether all characters are proper digit representations regardless of any
operational sign (when the test is for NUMERIC), or only alphabetic or blank
space characters (when the test is for ALPHABETIC). The NUMERIC test is
valid only for a group, decimal, or character item (not having an alphabetic
PICTURE). The ALPHABETIC test is valid only for a group or character item
(PICTURE an-farm).

A sign test has the following syntactical format:

data-name IS [NOT]INEGATIVE | ZERO | POSITIVE

This test is equivalent to comparing data-name to zero in order to determine the
truth of the stated condition.

In a condition-name test, a conditional variable is tested to determine whether
its value is equal to one of the values associated with the condition-name. A
condition-name test is expressed by the following syntactical format:

condition-name

where condition-name is defined by a level 88 Data Division entry.

C0OBOL-80 Reference Manual - Release 4 84
Procedure Division

4.14 OPEN STATEMENT (Sequential 1-0)

The OPEN statement must be executed prior to commencing file processing.
The general format of an OPEN statement is:

INPUT

QPEN }) 10 file-name... | ...
QUTPUT
EXTEND

For a sequential INPUT file, opening initiates reading the file's first records into
memaory, so that subsequent READ statements may be executed without waiting.

For an QUTPUT file, opening makes available a record area for development of
one record, which will be transmitted to the assigned output device upon the
execution of a WRITE statement. An existing file which has the same name will
be superceded by the file created with OPEN QUTPUT.

An OPEN [-O statement is valid only for a DISK file; it permits use of the
REWRITE statement to modify records which have been accessed by a READ
statement. The WRITE statement may not be used in [-O mode for files with
sequential organization. The file must exist on disk at OPEN time; it cannot be
created by OPEN I-O.

When the EXTEND phrase is specified, the OPEN statement positions the file
immediately following the last logical record of that file. Subsequent WRITE
statements referencing the file will add records to the end of the file. Thus,
processing proceeds as though the file had been opened with the QUTPUT phrase
and positioned at its end. EXTEND can be used only for sequential or line
sequential files.

Failure to precede (in terms of time sequence) file reading or writing by the
execution of an OPEN statement is an execution-time error which will cause
abnormal termination of a program run. See the COBOL-80 User's Guide.
Furthermore, a file cannot be opened if it has been CLOSEd "WITH LOCK."

Sequential files opened for INPUT or [-O access must have been written in the
appropriate format described in the User's Guide for such files.

COBOL-80 Reference Manual - Release 4 85
Procedure Division

4.15 READ STATEMENT (Sequential [-O)

The READ statement makes available the next logical data record of the
designated file from the assigned device, and updates the value of the FILE
STATUS data item, if one was specified. The general format of a READ
statement is:

READ file-name RECORD [INTO data-name]
AT END imperative statement].

Since at some time the end-of-file will be encountered, the user should include
the AT END clause. The reserved word END is followed by any number of
imperative statements, all of which are executed only if the end-of-file situation
arises. The last statement in the AT END series must be followed by a period to
indicate the end of the sentence. If end-of-file occurs but there is no AT END
clause on the READ statement, an applicable Declarative procedure is
performed. If neither AT END nor Declarative exists and no FILE STATUS item
is specified for the file, the program is aborted with a run-time error.

When a data record to be read exists, successful execution of the READ
statement is immediately followed by execution of the next sentence.

When more than one level-01 item is subordinate to a file description, these
records share the same storage area. Therefore, the user must be able to
distinguish between the types of records that are possible, in order to determine
exactly which type is currently available. This is accomplished with a data
comparison, using an IF statement to test a field which has a unique value for
each type of record.

The INTO option permits the user to specify that a copy of the data record is to
be placed into a designated data field in addition to the file's record area. The
data-name must not be defined in the File Section.

Also, the INTO phrase should not be used when the file has records of various
sizes as indicated by their record descriptions. Any subscripting or indexing of
data-name is evaluated after the data has been read but before it is maoved to
data-name. Afterward, the data is available in both the file record and
data-name.

In the case of a blocked input file (such as disk files), not every READ statement
perfaorms a physical transmission of data from an external storage device;
instead, READ may simply obtain the next logical record from an input buffer.

If the actual record is shorter than the file record area, the file record area is
padded on the right with spaces.

C0OBOL-80 Reference Manual - Release 4 86
Procedure Division

4.16 WRITE STATEMENT (Sequential 1-0)

The general format of a WRITE statement is:
WRITE record-name [FROM data-name-1]

AFTER ADVANCING {operand LINE(S)}
BEFORE PAGE

(AT [END-OF P AGE } imperative-statement]
ECP

Ignoring the ADV ANCING option for the moment, we proceed to explain the
main functions of the WRITE statement.

In COBOL, file output is achieved by execution of the WRITE statement.
Depending on the device assigned, "written" output may take the form of printed
matter or magnetic recording on a floppy disk storage medium. The associated
file must be open in the QUTPUT or [-O mode at time of execution of a WRITE
statement.

Record-name must be one of the level 01 records defined for an output file, and
may be qualified by the filename. The execution of the WRITE statement

releases the logical record to the file and updates its FILE STATUS item, if one
is defined.

If the data to be output has been developed in Working-Storage or in another area
(for example, in an input file's record area), the FROM suffix permits the user to
stipulate that the designated data (data-name-l) is to be copied into the
record-name area and then output from there. Record-name and data-name-l
must refer to separate storage areas.

When an attempt is made to write beyond the externally defined boundaries of a
sequential file, a Declarative procedure will be executed (if available) and the
FILE STATUS (if available) will indicate a boundary violation. If neither is
available, a fatal runtime error occurs.

The ADV ANCING option is restricted to line printer output files, and permits
the programmer to control the line spacing on the paper in the printer. Operand
is either an unsigned integer literal or data-name; values from O to 120 are
permitted:

COBOL-80 Reference Manual - Release 4 87
Procedure Division

Integer Carriage Control Action
0 No spacing
1 Normal single spacing
2 Double spacing
3 Triple spacing

Single spacing (i.e., "after advancing 1 line") is assumed if there is no BEFORE or
AFTER option in the WRITE statement.

Use of the key word AFTER implies that the carriage control action precedes
printing a line, whereas use of BEFORE implies that writing precedes the
carriage control action. If PAGE is specified, the data is printed BEFORE oar
AFTER the printer is repositioned to the next physical page. However, if a
LINAGE clause is associated with the file, the repositioning is to the first line
that can be written on the next logical page as specified in the LINAGE clause.

If the END-QOF-PAGE phrase is specified, the LINAGE clause must be specified

in the file description entry for the associated file. EOP is equivalent to
END-OF -PAGE.

An end-of-page condition is reached whenever a WRITE statement with the
END-OF -PAGE phrase causes printing or spacing within the footing area of a
page body. This occurs when such a WRITE statement causes the
LINAGE-COUNTER to equal or exceed the value specified by the FOOTING
value, if specified. In this case, after the WRITE statement is executed, the
imperative statement in the END-OF -P AGE phrase is executed.

A "page overflow" condition is reached whenever a WRITE statement cannot be
fully accommodated within the current page body. This occurs when a WRITE
statement would cause the LINAGE-COUNTER to exceed the value specified as
the size of the page body in the LINAGE clause. In this case, the record is
printed before or after (depending on the phrase used) the printer is repositioned
to the first line of the next logical page. The imperative statement in the
END-QOF -P AGE clause, if specified, is executed after the record is written and
the printer has been repaositioned.

Clearly, if no FOOTING value is specified in the LINAGE clause, or if the
end-of-page and overflow conditions occur simultaneously, then oanly the
overflow condition is effective.

COBOL-80 Reference Manual - Release 4 88
Procedure Division

4,17 CLOSE STATEMENT (Sequential I-O)

Upon completion of the processing of a file, a CLOSE statement must be
executed, causing the system to make the proper disposition of the file.
Whenever a file is closed, or has never been opened, READ, REWRITE, or WRITE
statements cannot be executed properly; a runtime error would occur, aborting
the run.

The general format of the CLOSE statement is:

CLOSE {file-name [WITH LOCK]1} ...
If the LOCK phrase is used, the runtime system will cause subseugent OPENs of
the file to fail during the current job. If LOCK is not specified immediately
after a file-name, then that file may be re-OPENed later in the program, if the
program logic dictates the necessity.

An attempt to execute a CLLOSE statement for a file that is not currently open is
a runtime error, and causes execution to be discontinued.

Examples of CLOSE statements:

CLOSE MASTER-FILE-IN WITH LOCK, WORK-FILE;
CLOSE PRINT-FILE, TAX-RATE-FILE, JOB-PARAMETERSWITH LOCK

4.18 REWRITE STATEMENT (Sequential [-Q)

The REWRITE statement replaces a logical record on a sequential disk file. The
general format is:

REWRITE record-name [FROM data-name]

Record-name is the name of a logical record in the File Section of the Data
Division and may be qualified. Record-name and data-name must refer to
separate storage areas.

At the time of execution of this statement, the file to which record-name
belongs must be open in the [-O mode (see OPEN, Section 4.14).

If a FROM phrase is included in this statement, the effect is as if MOVE
data-name TO record-name were executed just prior to the REWRITE.

Execution of REWRITE replaces the record that was accessed by the most recent
READ statement; said prior READ must have been completed successfully. If
the record which is rewriting the record in the file is longer than the file's
record, only as many bytes as will fit are actually rewritten. On the other hand,
if the record which is rewriting the record in the file is shorter than the file's
record, unpredictable information will be written after the record, until the
beginning of the next record in the file.

COBQOL-80 Reference Manual - Release 4 89
Procedure Division

4.19 GENERAL NOTE ON /O ERROR HANDLING

If an I/O error occurs, the file's FILE STATUS item, if one exists, is set to the
appropriate two-character code, otherwise it assumes the value "00".

If an I/O error occurs and is of the type that is pertinent to an AT END or
INVALID KEY clause, then the imperative statements in such a clause, if
present on the statement that gave rise to the error, are executed. But, if there
is not an appropriate clause (such clauses may not appear on Open or Close, for
example, and are optional for other I/O statements), then the logic of program
flow is as follows:

1. If there is an associated Declaratives ERROR procedure (see Section
9), it is performed automatically; user-written logic must determine
what action is taken because of the existence of the error. Upon
return from the ERROR procedure, normal program flow to the next
sentence (following the [/O statement) is allowed.

2. If no Declaratives ERROR procedure is applicable but there is an
associated FILE STATUS item, it is presumed that the user may base

actions upon testing the STATUS item, so normal flow to the next
sentence isallowed.

Only if none of the abave (INVALID KEY/AT END clause, Declaratives ERROR
procedure, or testable FILE STATUS item) exists, then the run-time error
handler receives control; the location of the error (source program line number)
is displayed on the console, and the run is terminated "abnormally."

These remarks apply to processing of any file, whether organization is
sequential, line sequential, indexed or relative.

4.20 STRING STATEMENT

The STRING statement allows concatenation of multiple sending data item
values into a single receiving item. The general format of this statement is:

operand-2
STRING {agperand-l... DELIMITED BY
SIZE
INTO identifier-1 [WITH POINTER identifier-2]

[ON OVERFLOW imperative-statement]

COBOL.-80 Reference Manual - Release 4 90
Procedure Division

In this farmat, the term operand means a non-numeric literal, one-character
figurative constant, or data-name. Identifier-1l is the receiving data-item name,
which must be alphanumeric without editing symbols or the JUSTIFIED clause.
Identifier-2 is a counter and must be an elementary numeric integer data item of
sufficient size (plus 1) to point to character positions within identifier-1.

If no POINTER phrase exists, the default value of the logical pointer is one. The
logical pointer value designates the beginning position of the receiving field into
which data placement begins. During movement to the receiving field, the
criteria for termination of an individual source are controlled by the
"OELIMITED BY" phrase:

DELIMITED BY SIZE: the entire source field is moved (unless the
receiving field becomes full)

DELIMITED BY operand-2: the character string specified by operand-2 is a
search pattern which, if found to match a contiguous sequence of sending
characters, terminates the function for the current sending operand (and
causes automatic switching to the next sending operand, if any). The
matching characters in the sending fields are not moved to identifier-1.

If at any point the logical pointer (which is automatically incremented by one for
each character stored into identifier-1) is less than one or greater than the size
of identifier-1, no further data movement occurs, and the imperative statement
given in the OVERFLOW phrase (if any) is executed. If there is no OVERFLOW
phrase, control is transferred to the next executable statement.

There is no automatic space fill into any position of identifier-1. That is,
unaccessed positions are unchanged upon completion of the STRING statement.

Upon completion of the STRING statement, if there was a POINTER phrase, the

resultant value of identifier-2 equals its original value plus the number of
characters moved during execution of the STRING statement.

4.21 UNSTRING STATEMENT

The UNSTRING statement causes data in a single sending field to be separated
into subfields that are placed into multiple receiving fields. The general format
of the statement is:

UNSTRING identifier-1

[DELIMITED 8Y [ALL] operand-1 [OR [ALL] operand-2] ...]

INTO {identifier-2 [DELIMITER IN identifier-3]
COUNT IN identifier-4]} ...

(WITH POINTER identifier-5]
[TALLYING IN identifier-6]
[ON OVERFLOW imperative-statement]

COBOL-80 Reference Manual - Release 4 91
Procedure Division

Criteria for separation of subfields may be given in the "DELIMITED BY"
phrase. Each time a succession of characters matches cne of the non-numeric
literals, one-character figurative constants, or data-item values named by
operand-i, the current collection of sending characters is terminated and moved
to the next receiving field specified by the INTO-clause. When the ALL phrase is
specified, more than ore contiguous occurrence of operand-i in identifier-1l is
treated as one occurrence. The delimiting string is not moved into the current
receiving field.

When two or more delimiters exist, an 'OR' condition exists. Each delimiter is
compared to the sending field in the order specified in the UNSTRING statement.

Identifier-1 must be a group or character string (alphanumeric) item. When a
data-item is employed as any operand-i, that operand must also be a group or
character string item.

Receiving fields (identifier-2) may be any of the following types of items:
1. an unedited alphabetic item
2. a character-string (alphanumeric) item
3. a group item

4. an external decimal item (numeric, usage DISPLAY) whose PICTURE
does not contain any P character.

When any examination encounters two contiguous delimiters, the current
receiving area is either space or zero filled depending on its type. If there is a
"DELIMITED BY" phrase in the UNSTRING statement, then there may be
"DELIMITER IN" phrases following any receiving item (identifier-2) mentioned in
the INTO clause. In this case, the character(s) that delimit the data moved into
identifier-2 are themselves stored in identifier-3, which should be an
alphanumeric item. Furthermore, if a "COUNT IN" phrase is present, the
number of characters that were moved into identifier-2 is moved to identifier-4,
which must be an elementary numeric integer item.

If there is a "POINTER" phrase, then identifier-5 must be an integer numeric
item, and its initial value becomes the initial logical pointer value (otherwise, a
logical pointer value of one is assumed). The examination of source characters
begins at the position in identifier-1 specified by the logical pointer; upon
completion of the UNSTRING statement, the final logical pointer value will be
copied back into identifier-5.

If at any time the value of the logical pointer is less than one or exceeds the size

of identifier-1l, then overflow is said to occur and control passes over to the
imperative statements given in the "ON OV ERFLOW" clause, if any.

COBOL-80 Reference Manual - Release 4 92
Procedure Division

Overflow also occurs when all receiving fields have been filled prior to
exhausting the source field.

During the course of source field scanning (looking for matching delimiter
sequences), a variable length character string is developed which, when
completed by recognition of a delimiter or by acquiring as many characters as
the size of the current receiving field can hold, is then moved to the current
receiving field in the standard MOV E fashion.

If there is a "TALLYING IN" phrase, identifier-6 must be an integer numeric
item. The number of receiving fields acted upon, plus the initial value of
identifier-6, will be produced in identifier-é6 upon compietion of the UNSTRING
statement.

Any subscripting or indexing associated with identifer-1, 5, or 6 is evaluated only
once at the beginning of the UNSTRING statement. Any subscripting associated
wth operands-i or identifier-2, 3, 4 is evaluated immediately before access to the
data item.

4.22 DYNAMIC DEBUGGING STATEMENTS

The execution TRACE mode may be set or reset dynamically. When set,
procedure-names are printed on the user's console in the order in which they are
executed.

Execution of the READY TRACE statements sets the trace mode to cause
printing of every section and paragraph name each time it is entered. The RESET
TRACE statement inhibits such printing. A printed list of procedure-names in
the order of their execution is invaluable in detection of a program malifunction;
. it aids in determination of the point at which actual program flow departed from
the expected program flow.

Another debugging feature may be required in order to reveal critical data
values at specifically designated points in the procedure. The EXHIBIT
statement provides this facility.

The statement form

identifer
EXHIBIT NAMED ({[position-spec] literal «+«{UPON mnemonic-name]
ERASE

produces a printout of values of the indicated literal, or data items in the format

data-name = value. position-spec and the UPON phrase have the same effect as
in the DISPLAY statement.

COB}DL-SO Reference Manual - Release 4 93
Procedure Division

Statements EXHIBIT, READY TRACE and RESET TRACE are extensions to
ANS-74 standard COBOL designed to provide a convenient aid to program
debugginag.

Programming Note: It is often desirable to include such statements on source
lines that contain D in column 7, so that they are ignored by the compiler unless
WITH DEBUGGING MODE is included in the SOURCE-COMPUTER paragraph.

COBOL-80 Reference Manual - Release 4 94

CHAPTER 5

Inter-Program Communication

Separately compiled COBOL program modules may be combined into a single
executable program. Inter-program communication is made possible through the
use of the Linkage Section of the Data Division (which follows the
Working-Storage Section) and by the CALL statement and the USING list
appendage to the Procedure Division header of a subprogram module. The
Linkage Section describes data made available in memory from another program
module. Record description entries in the LINKAGE section provide data-names
by which data areas reserved in memory by other programs may be referenced.
Entries in the LINKAGE section do not reserve memory areas because the data is
assumed to be present elsewhere in memaory, in a CALLing program.

Any record description clause may be used to describe items in the Linkage

Section as long as the VALUE clause is not specified for other than level 88
items.

The program CHAINing facility allows a COBOL program to transfer control to

any other executable program and, optionally, to pass data items as parameters
to the CHAINed program.

5.1 CALL STATEMENT

The CALL statement format is
CALL literal [USING data-name ...]

Literal is a subprogram name defined as the PROGRAM-ID of a separately
compiled program, and is non-numeric. Data names in the USING list are made
available to the called subprogram by passing addresses to the subprogram; these
addresses are assigned to the Linkage Section items declared in the USING list of
that subprogram. Therefore the number of data-names specified in matching
CALL and Procedure Division USING lists must be identical. Information passing
conventions at the machine language level are described in the COBOL-80 User's
Guide.

NOTE

Correspondence between caller and
callee lists is by position, not by
identical spelling of names.

COBOL-80 Reference Manual - Release 4 95
Inter-Program Communication

5.2 EXIT PROGRAM STATEMENT

The EXIT PROGRAM statement, appearing in a called subprogram, causes
control to be returned to the next executable statement after CALL in the
calling program. This statement must be a paragraph by itself.

5.3 CHAIN STATEMENT

The CHAIN statement is coded according to the following format:

literal _
CHAIN [USING identifier-2...]
identifier-1

Literal and identifier-l must be alphanumeric, and identifier-1 must contain a
terminating space. Each occurrence of identifier-2 must be defined in the
WORKING-STORAGE or LINKAGE SECTION or in the record area of a file open
at the time the CHAIN statement is executed.

When the CHAIN statement is executed, the value of literal or identifier-1, up to
but not including the first space encountered (or the end of the literal), is
interpreted as the name of an executable program file in the format of the
appropriate operating system. The named program is loaded into memory and
executed. All program and data structures of the CHAINing program are
permanently destroyed except that the USING clause may be used to transfer

parameters to the CHAINed program. See section 5.4 (PRODECURE DIVISION
Header with CALL and CHAIN).

The CHAINed program need not be a COBOL program. If it is, it must be a main
program.

COBOL-80 Reference Manual - Release 4 96
Inter-Program Communication

5.4 PROCEDURE DIVISION HEADER WITH CALL AND CHAIN

The PROCEDURE DIVISION header of a main program is written as:

PROCEDURE DIVISION [CHAINING data-name-1l...1.

The PROCEDURE DIVISION header of a subprogram is written as:

PROCEDURE DIVISION USING [data-name-2...1.

The various forms of the PROCEDURE DIVISION header describe the linkage
and parameter initialization requirements of a program. A main program must
be linked by itself or with any number of subprograms. It may then be run
independently or invoked by the execution of a CHAIN statement in another
program. A subprogram must be linked with exactly one main program and,
optionally, any number of other subprograms. [t may only be executed by the
action of a CALL statement. For a description of the linking process, see the
COBOL-80 User's Guide.

A CHAINed or CALLed program should have a CHAINing list or non-empty
USING list if and only if the invoking CHAIN or CALL statement has a USING
list. Furthermore, the numbers of entries in the lists should be equal, and
pasitionally corresponding entries in the two lists should reference data items of
the same size and USAGE. Failure to conform to these rules will not be
diagnosed and will cause unpredictable results at runtime.

The values of the data items named in the PROCEDURE DIVISION header are
established at program initialization time by using the contents of pasitionally
corresponding data items named in the invoking CALL or CHAIN statement. In
the case of CALL, the identification is made by passing pointers. Therefore, if
the value of a data item named in a PROCEDURE DIVISION USING clause is
changed during subprogram execution, the corresponding data item in the
CALLiIng program will reflect the change after control is returned from the
subprogram.

For a description of the formats in which parameters are passed by the CALL
and CHAIN statements, see the COBOL-80 User's Guide.

CQBOL-BO Reference Manual - Release 4 97

CHAPTER 6

Table Handling by the Indexing Methaod

In addition to the capabilities of subscripting described in Chapter 3, COBOL
provides the indexing method of table handling.

6.1 INDEX NAMES AND INDEX [TEMS

An index name is declared not by the usual method of level number, name, and
data description clauses, but implicitly by appearance in the "INDEXED BY
index-name'" appendage to an OCCURS clause. An index-name must be unique.

An index data item is an item defined by the USAGE IS INDEX phrase. An index
data item must not have a PICTURE. An index name or index data item may
only be referred to by a SET or SEARCH statement, a CALL statement's USING
list or a Procedure header USING list; or used in a relation condition or as the
variation item in a PERFORM VARYING statement, or in place of a subscript.
In all cases the process is equivalent to dealing with a binary word integer
subscript. Index-name must be initialized to some value before use via SET,
SEARCH or PERFORM.

6.2 SET STATEMENT

The SET statement permits the manipulation of index-names, index items, or
binary subscripts for table-handling purposes. There are two formats.

Format 1:
index-name-1 index-name-2
SET index-item-1 we 1O index-item-2
data-name-1l data-name-2
integer-2
Format 2:
SET index-name-3 WP 8Y data-name-4
DOWN BY integer-4

Format 1 is equivalent to moving the "TQO" value (e.g., integer-2) to muitiple
receiving fields written immediately after the verb SET.

COBOL.-80 Reference Manual - Release 4 98
Table Handling by the Indexing Methad

Format 2 is equivalent to reduction (DOWN) or increase (UP) applied to each of
the quantities written immediately after the verb SET: the amount of the
reduction or increase is specified by a name or value immediately following the
word BY.

In any SET statement, data-names are restricted to integer items.

6.3 RELATIVE NDEXING

A user reference to an item in a table controlled by an OCCURS clause is
expressed with a proper number of subscripts (or indices), separated by commas.
The whale is enclosed in matching parentheses, for example:

TAX-RATE (BRACKET, DEPENDENTS)
XCODE (1, 2)

where subscripts are ordinary integer decimal data-names, or integer constants,
or binary integer (COMPUTATIONAL or INDEX) items, or index-names.
Subscripts may be qualified, but not, themselves, subscripted. A subscript may
be signed, but if sg, it must be positive. The lowest acceptable value is 1,
pointing to the first element of a table. The highest permissible value is the
maximum number of occurrences of the item as specified in its OCCURS clause.

A further capability exists, called relative indexing. In this case, a "subscript" is
expressed as

name + integer constant

where a space must be on either side of the plus or minus, and "name"™ may be
any proper index-name.

Example:

XCODE (1 +3, J-1).

COBOL-80 Reference Manual - Release 4 99
Table Handling by the Indexing Method

6.4 SEARCH STATEMENT -- Format 1

A linear search of a table may be done using the SEARCH statement. The
general format is:

SEARCH table [V ARYING identifier | index-name]

[AT END imperative-statement-1]

WHEN Condition-1 [NEXT SENTENCE
limperative-statement-Z

Table is the name of a data-item having an QCCURS clause that includes an
INDEXED BY list; table must be written without subscripts or indexes because
the nature of the SEARCH statement causes automatic variation of an
index-name associated with a particular table.

There are four possible VARYING cases:

1.

2.

3.

a.

NO VARYING phrase -- the first-listed index-name for the table is
varied.

VARYING index-name-in-a-different-table -~ the first-listed
index-name in the table's definition is varied, implicitly, and the
index-name listed in the VARYING phrase is varied in like manner,
simultaneously.

VARYING index-name-defined-for-table -- this specific index-name is
the only one varied.

VARYING integer-data-item-name -- both this data-item and the
first-listed index-name for table are varied, simultaneously.

The term variation has the following interpretation:

1.

2.

The initial value is assumed to have been established by an earlier
statement such as SET.

If the initial value exceeds the maximum declared in the applicable
OCCURS clause, the SEARCH operation terminates at once; and if an
AT END phrase exists, the associated imperative statement-l is
executed.

If the value of the index is within the range of valid indexes (1,2,...
up to and inciuding the maximum number of occurrences), then each
WHEN-condition is evaluated until one is true or all are found to be
false. If one is true, its associated imperative statement is executed
and the SEARCH operation terminates. If none is true, the index is
incremented by one and step (3) is repeated. Note that incrementation
of index applies to whatever item and/or index is selected according to
rules 1-4.

COBOL.-80 Reference Manual - Release 4 100
Table Handling by the Indexing Method

If the table is subordinate to another table, an index-name must be associated
with each dimension of the entire table via INDEXED .BY phrases in all the
OCCURS clauses. Only the index-name of the SEARCH table is varied (along
with another VARYING index-name or data-item). To search an entire two- or
three-dimensional table, a SEARCH must be executed several times with the
other index-names set appropriately each time, probably with a PERFORM,
V ARYING statement.

The logic of a Format 1 SEARCH is depicted on page 84.

6.5 SEARCH STATEMENT -- Format 2

Format 2 SEARCH statements deal with tables of ordered data. The general
format of such a SEARCH ALL statement is:

SEARCH ALL table [AT END imperative-statement-1...]

WHEN condition imperative-statement-2...
NEXT SENTENCE

Only ore WHEN clause is permitted, and the following rules apply to the
condition:

1. Only simple relational conditions or condition-names may be
employed, and the subject must be properly indexed by the first
index-name associated with table (along with sufficient other indexes
if multiple OCCURS clauses apply). Furthermore, each subject
data-name (or the data-name associated with condition-name) in the
condition must be mentioned in the KEY clause of the table. The KEY
clause is an appendage to the QCCURS clause having the following
format:

ASCENDING | DESCENDING KEY IS data-name ...

where data-name i the name defined in this Data Description entry
(following level number) or one of the subordinate data-names. If
more than one data-name is given, then all of them must be the names
of entries subordinate to this group item. The KEY phrase indicates
that the repeated data is arranged in ascending or descending order
according to the data-names which are listed (in any given KEY
phrase) in decreasing order of significance. More than one KEY phrase
may be specified.

2. In a simple relational condition, only the equality test (using relation =
or IS EQUAL TO) is permitted.

COBOL.-80 Reference Manual - Release 4 101
Table Handling by the Indexing Method

3. Any condition-name variable (Level 88 items) must be defined as
having only a single value.

4. The condition may be compounded by use of the lL.ogical connector
AND, but not OR.

5. In a simple relational condition, the object (to the right of the equal
sign) may be a literal or an identifier; the identifier must NOT be
referenced in the KEY clause of the table or be indexed by the first
index-name associated with the table. (The term identifier means
data-name, including any qualifiers and/or subscripts or indexes.)

Failure to conform to.these -restrictions may vyield unpredictable resuits.
Unpredictable results also occur if the table data is not ordered in conformance
to the declared KEY clauses, or if the keys referenced in the WHEN-condition
are not sufficient to identify a unique table element.

In a Format 2 SEARCH, a nonserial type of search operation may take place,
relying upon the declared ordering of data. The initial setting of the index-name
for table is ignored and its setting is varied automatically during the searching,
always within the bounds of the maximum number of occurrences. If the
condition WHEN) cannot be satisfied for any valid index value, control is passed
to imperative-statement-1l, if the AT END clause is present, or to the next
executable sentence in the case aof no AT END clause.

If all the simple conditions in the single WHEN-condition are satisfied, the
resultant index value indicates an occurrence that allows those conditions to be
satisfied, and control passes to imperative-statement-2. QOtherwise the final
setting is not predictable.

COBOL-80 Reference Manual - Release 4
Table Handling by the Indexing Method

Logic Diagram for Format 1 SEARCH

execute
imperative
state-
ment (s) =2

e wo - — —

Increment
index (es)

execute
imperative
state-
ment (s) -3

R

102

State-

COBQOL-80 Reference Manual - Release & 103

CHAPTER 7

Indexed Files

7.1 DEFINITION OF NDEXED FILE ORGANIZATION

An indexed-file arganization provides for recording and accessing records of a
data file by keeping a directory (called the control index) of pointers that enable
direct location of records having particular unique key values. An indexed file
- must be assigned to DISK in its defining SELECT sentence.

A file whose organization is indexed can be accessed either sequentially,
dynamically or randomly.

Sequential access provides access to data records in ascending order of RECORD
KEY values.

In the random access mode, the order of access to records is controlled by the
programmer. Each record desired is accessed by placing the value of its key in a
key data item prior to an access statement.

In the dynamic access mode, the programmer'’s logic may change from sequential
access to random access, and vice versa, at will.

7.2 SYNTAX CONSIDERATIONS

In the Environment Division, the SELECT entry must specify ORGANIZATION IS
INDEXED, and the ACCESS clause format is

ACCESS MODE IS SEQUENTIAL | RANDCM | DYNAMIC.

Assign, Reserve, and File Status clause formats are identical to those specified
in Section 2.2.1 of this manual.

In the FD entry for an INDEXED file, both LABEL RECORDS STANDARD and a
VALUE OF FILE-ID clause must appear. The formats of Section 3.13 apply,
except that only the DISK-related forms are applicable.

COBOL-80 Reference Manual - Release 4 104
Indexed Files

7.2.1 RECORD KEY CLAUSE

The general format of this clause, which is required, is:
RECORD KEY IS data-name-1

where data-name-1 is an item defined within the record descriptions of the
associated file description, and is a group item or an elementary alphanumeric
item. The maximum key length is 60 bytes and the key should never be made to
contain all nulls.

If random access mode is specified, the value of data-name-l designates the

record to be accessed by the next DELETE, READ, REWRITE or WRITE
statement. Each record must have a unique record key value.

7.2.2 FILE STATUS REPORTING

If a FILE STATUS clause appears in the Environment Division for an Indexed
organization file, the designated two-character data item is set after every [-O
statement. The following table summarizes the possible settings.

Status Data [tem RIGHT Character

Status Data :
Item LEFT No Further Structure Duplicate No Record | Disk Space
Character Description Error Key Found Full

@ () (2) 3) 4)
Successful
Completion (0) X
At End (1) X
Invalid
Key (2) X X X X
Permanent
Error(3) X X
Special
Cases (9) X

File Status '21' arises if ACCESS MODE is SEQUENTIAL when WRITEs do not
occur in ascending sequence for an indexed file, or the key is altered prior to
REWRITE. In an OPEN INPUT or OPEN [-O statement, a File Status of '30'
means 'File Not Found.' File Status '91' occurs on an OPEN INPUT or OPEN -0
statement for a relative or indexed file whose structure has been destroyed (for
example, by a system crash during output to the file). When this status is
returned on an OPEN INPUT, the file is considered to be open, and READs may
be executed. On an OPEN I[-0, however, the file is not considered to be open,
and all I/O operations fail. The other settings are self-explanatory.

Note that "Disk Space Full" occurs with Invalid Key (2) for indexed and relative
file handling, whereas it occurred with "Permanent Error" (3) for sequential files.

COBOL-80 Reference Manual - Release 4 105
Indexed Files

If an error occurs at execution time and no AT END or INVALID KEY
statements are given and no appropriate Declarative ERROR section is supplied
and no FILE STATUS is specified, the error will be displayed on the console and
the program will terminate. See Section 4.19.

7.3 PROCEDURE DIVISION STATEMENTS FOR INDEXED FILES

The syntax of the sequential file OPEN statement (Section 4.14) also applies to
indexed organization files, except that EXTEND is not applicable.

The following table summarizes the available statement types and their
permissibility in terms of ACCESS mode and OQPEN option in effect. Where X
appears, the statement is permissible, otherwise it is not valid under the
associated ACCESS mode and OPEN option.

ACCESS Procedure OPEN Option in Effect
MQODE IS Statement Input Qutput -0

READ X
WRITE X
SEQUENTIAL REWRITE :
START X

DELETE

READ X

WRITE X
RANDOM REWRITE
START
DELETE

READ X

WRITE X
DYNAMIC REWRITE
START X
DELETE

XX XXX X XXX XXX X

In addition to the above statements, CLOSE is permissible under all conditions;
the same format shown in Section 4.17 is used.

COBOL-80 Reference Manual - Release & 106
Indexed Files

7.4 READ STATEMENT

Format 1 (Sequential Access):
READ file-name [NEXT]RECORD [INTO data-name-1]
[AT END imperative-statement ...]
Format 2 (Random or Dynamic Access):
READ file-name RECORD [INTO data-name-1] [KEY IS data-name-2]
[INVALID KEY imperative-statement...]

Format 1 without NEXT must be used for all files having SEQUENTIAL ACCESS
mode. Format 1 with the NEXT option is used for sequential READs of a
DYNAMIC access mode file. The AT END clause is executed when the logical
end-of-file condition arises. If this clause is not written in the source statement,
an appropriately assigned Declaratives ERROR section is given control at
end-of-file time, if available.

Format 2 is used for files in random-access mode or for files in dynamic-access
mode when records are to be retrieved randomly.

In format 2, the INV ALID KEY clause specifies action to be taken if the access
key value does not refer to an existing key in the file. If the clause is not given,
the appropriate Declaratives ERROR section, if supplied, is given control.

The optional KEY IS clause must designate the record key item declared in the
file's SELECT entry. This clause serves as documentation only. The user must
ensure that a valid key value is in the designated key field prior to execution of a
random-access READ.

The rules for sequential files regarding the INTO phrase apply here as well.

COBOL-80 Reference Manual - Release 4 107
Indexed Files

7.5WRITE STATEMENT

The WRITE statement releases a logical record for an output or input-output files
its general format is:
WRITE record-name [FROM data-name-1]
(INVALID KEY imperative-statement...]

Just prior to executing the WRITE statement, a valid (unique) value must be in
that portion of the record-name (or data-name-1 if FROM appears in the
statement) which serves as RECORD KEY.

In the event of an improper key value, the imperative statements are executed if
the INVALID KEY clause appears in the statement; otherwise an appropriate
Declaratives ERROR section is invoked, if applicable. The INVALID KEY

condition arises if:

1. far sequential access, key values are not ascending from one WRITE to
the next WRITE;

2. the key value is not unique;

3. the allocated disk space is exceeded.

7.6 REWRITE STATEMENT

The REWRITE statement logically replaces an existing record; the format of the
statement is:

REWRITE record-name fFROM data-name]
[INVALID KEY imperative-statement...]

For a file in sequentiai-access mode, the last READ statement must have been
successful in order far a REWRITE statement to be valid. If the value of the
record key in record-name (or corresponding part of data-name, if FROM
appears in the statement) does not equal the key value of the immediately
previous READ, then the invalid key condition exists and the imperative
statements are executed, if present; otherwise an applicable Declaratives
ERROR section is executed, if available.

For a file in a random or dynamic access mode, the record to be replaced is
specified by the record key; no previous READ is necessary. The INVALID KEY
condition exists when the record key's value does not equal that of any record
stored in the file.

COBOL-80 Reference Manual - Release 4 108
Indexed Files

7.7 DELETE STATEMENT

The DELETE statement logically removes a record from an indexed file. The
general format of the statement is:

DELETE file-name RECORD [INV ALID KEY imperative-statement...]

For a file in the sequential access mode, the last input-output statement
executed for file-name must have been a successful READ statement. The
record that was read is deleted. Consequently, no INV ALID KEY phrase should
be specified for sequential-access made files.

For a file having random or dynamic access mode, the record deleted is the one
associated with the record key; if there is no such matching record, the invalid
key condition exists, and control passes to the imperative statements in the
INVALID KEY clause, or to an applicable Declarative ERROR section if no
INVALID KEY clause exists.

7.8 START STATEMENT

The START statement enables an indexed organization file to be positioned for
reading at a specified key value. This is permitted for files aopen in either
sequential or dynamic access modes. The format of this statement is:

GREATER THAN
START file-name KEY IS {NOT LESS THAN data-name
EQUALC TO

[INV ALID KEY imperative statement...]

Data-name must be the declared record key and the value to be matched by a
record in the file must be pre-stored in the data-name. When executing this
statement, the file must be open in the input or [-O mode.

If the KEY phrase is not present, equality between a record in the file and the
record key value is sought. If key relation GREATER or NOT LESS is specified,
the file is positioned for next access at the first record greater than, or greater
than or equal to, the indicated key value.

If no matching record is found, the imperative statements in the INVALID KEY
clause are executed, or an appropriate Declaratives ERROR section is executed.

COBOL-80 Reference Manual - Release 4 109

CHAPTER 8

Relative Files

8.1 DEFINITION QF RELATIVE FILE ORGANIZATION

Relative organization is restricted to disk files. Records are differentiated on
the basis of a relative record number which ranges from 1 to 32,767, or to a
lesser maximum for a smaller file. Unlike the case of an indexed file, where the
identifying key field occupies a part of the data record, relative record numbers
are conceptual and are not embedded in the data records.

A relative organization file may be accessed either sequentially, dynamically or
randomly. In sequential access mode, records are accessed in the order of
ascending record numbers.

In random access mode, the sequence of record access is controlled by the

program, by placing a number in a relative key item. In dynamic access mode,
the program may inter-mix random and sequential access at will.

8.2 SYNTAX CONSIDERATIONS

In the Environment Division, the SELECT entry must specify ORGANIZATION IS
RELATIVE, and the ACCESS clause format is

ACCESS MODE 1S SEQUENTIAL | RANDOM | DYNAMIC.

Assign, Reserve, and File Status clause formats are identical to those used for
sequential or indexed organization files. The values of STATUS Key 2 when
STATUS Key 1 equals '2' are:

'2' faor attempt to WRITE a duplicate key
13 for nonexistent record
4" for disk space full

In the associated FD entry, STANDARD labels must be declared and a VALUE
QOF FILE-ID clause must be included.

Thie first byte of the record area associated with a relative file should not be
described as part of a COMP or COMP-3 item by any record description for the
file.

COBOL-80 Reference Manual - Release 4 110
Relative Files

8.2.1 RELATIVE KEY CLAUSE

In addition to the usual clauses in the SELECT entry, a clause of the form
RELATIVE KEY IS data-name-1

is required for random or dynamic access mode. [t is also required for
sequential-access mode, if a START statement exists for such a file.

Data-name-1 must be described as an unsigned binary integer item not contained

within any record description of the file itself. Its value must be positive and
nonzero.

8.3 PROCEDURE DIVISION STATEMENTS FOR RELATIVE FILES

Within the Procedure Division, the verbs OPEN, CLQOSE, READ, WRITE,
REWRITE, DELETE and START are available, just as for files whose organization
is indexed. (Therefore the charts in Sections 7.2.2 and 7.3 also apply to
RELATIVE files.) The statement formats for sequential file OPEN and CLOSE
(see Sections 4.14 and 4.17) are applicable to relative files, except for the
"EXTEND" phrase.

8.4 READ STATEMENT

Format 1:
READ file-name [NEXT] RECORD [INTQO data-name]

[AT END imperative statement...]

Format 2:
READ file-name RECORD [INTO data-name]

[INVALID KEY imperative statement...]

Format 1 must be used for all files in sequential access mode. The NEXT phrase
must be present to achieve sequential access if the file's declared mode of
access is Dynamic. The AT END clause, if given, is executed when the logical
end-of-file condition exists, or, if not given, the appropriate Declaratives
ERROR section is given control, if available.

Format 2 is used to achieve random access with declared mode of access either
Random cor Dynamic.

‘COBOL-80 Reference Manual - Release 4 111
Relative Files

If a Relative Key is defined (in the file's SELECT entry), successful execution of
a format 1 READ statement updates the contents of the RELATIVE KEY item
("data-name-1") so as to contain the record number of the record retrieved.

For a format 2 READ, the record that is retrieved is the one whose relative

record number is pre-stored in the RELATIVE KEY item. I no such record
exists, however, the INVALID KEY condition arises, and is handled by (a) the
imperative statements given in the INVALID KEY portion of the READ, or (b) an
associated Declaratives section.

The rules for sequential files regarding the INTO phrase apply here as well.

8.5 WRITE STATEMENT

The farmat of the WRITE statement is the same for a relative file as for an
indexed file:

WRITE record-name [FROM data-name]
[INVALID imperative statement...]
If access mode is sequential, then completion of a WRITE statement causes the
relative record number of the record just output to be placed in the RELATIVE
KEY item.

If access mode is random or dynamic, then the user must pre-set the value of the
RELATIVE KEY item in order to assign the record an ordinal (relative) number.
The INVALID KEY condition arises if there already exists a record having the
specified ordinal number, or if the disk space is exceeded.

8.6 REWRITE STATEMENT

The format of the REWRITE statement is the same for a relative file as for an
indexed file:

REWRITE record-name [FROM data-name]
[INVALID KEY imperative statement ...]

For a file in sequential access mode, the immediately previous action must have
been a successful READ; the record thus previously made available is replaced in
the file by executing REWRITE. If the previous READ was unsuccessful, a
run-time error will terminate execution. Therefore, no INV ALID KEY clause is
allowed for sequential access.

COBOL-80 Reference Manual - Release 4 112
Relative Files

For a file with dynamic or random access mode declared, the record that is
replaced by executing REWRITE is the one whase ordinal number is pre-set in the
RELATIVE KEY item. If no such item exists, the INVALID KEY condition
arises.

8.7 DELETE STATEMENT

The format of the DELETE statement is the same for a relative file as for an
indexed file:

DELETE file-name RECORD
[INVALID KEY imperative statement...]

For a file in a sequential access mode, the immediately previous action must
have been a successful READ statement; the record thus previocusly made
available is logically removed from the file. If the previous READ was
unsucecessful, a run-time error will terminate execution. Therefore, an INV ALID
KEY phrase may not be specified for sequential-access mode files.

For a file with dynamic or random access mode declared, the removal action

pertains to whatever record is designated by the value in the RELATIVE KEY
item. If no such numbered record exists, the INVALID KEY condition arises.

8.8 START STATEMENT

The format of the START statement is the same for a relative file as for an
indexed file:

GREATER THAN

START file-name KEY IS { NOT LESS THAN data-name-1
EQUALTO

[INVALID KEY imperative statement...]

Execution of this statement specifies the beginning position for reading
operations; it is permissible only for a file whose access mode is defined as
sequential or dynamic.

Data-name may only be that of the previously declared RELATIVE KEY item,
and the number of the relative record must be stored in it before START is
executed. When executing this statement, the associated file must be currently
open in INPUT or [-O mode.

COBOL-80 Reference Manual - Release 4 113
Relative Files

If the KEY phrase is not present, equality between a record in the file and the
record key value is sought. If key relation GREATER or NOT LESS is specified,
the file is positioned for next access at the first record greater than, or greater
than or equal to, the indicated key value.

If no such relative record is found, the imperative statements in the INV ALID
KEY clause are executed, or an appropriate Declaratives ERROR section is
executed.

C0OBOL-80 Reference Manual - Release 4 114

CHAPTER 9

Declaratives and the Use Sentence

The Declaratives region provides a method of including procedures that are
executed not as part of the sequential coding written by the programmer, but
rather when a condition that cannot normally be tested by the programmer
occurs.

Although the system automatically handles checking and creation of standard
labels and executes error recovery routines in the case of input/output errors,
additional procedures may be specified by the COBOL programmer.

Since these procedures are executed only at the time an error in reading or

writing occurs, they cannot appear in the regular sequence of procedural
statements. They must be written at the beginning of the Procedure Division in
a subdivision called DECLARATIVES. Related procedures are preceded by a
USE sentence that specifies their function. A declarative section ends with the
occurrence of another section-name with a USE sentence or with the key words
END DECLARATIVES.

The key words DECLARATIVES and END DECLARATIVES must each begin in
Area A and be followed by a period.

PROCEDURE DIVISION.

DECLARATIVES.

{section-name SECTION. USE sentence.

{paragraph-name. {sentence}...} ...} ...

END DECLARATIVES.

The USE sentence defines the applicability of the associated section of coding.

C0OBOL-80 Reference Manual - Release 4 115
Declaritives and the Use Sentence

A USE sentence, when present, must immediately follow a section header in the
Declarative portion of the Procedure Division and must be followed by a period
followed by a space. The remainder of the section must consist of zero, one or
more procedural paragraphs that define the procedures to be used. The USE
sentence itself is never executed; rather, it defines the conditions for the
execution of the USE procedure. The general format of the USE sentence is

USE AFTER STANDARD EXCEPTION | ERROR PROCEDURE

ON {file-name... | INPUT | QUTPUT | I-Q | EXTEND}.

The words EXCEPTION and ERROR may be used interchangeably. The
associated declarative section is executed (by the PERFORM mechanism) after
the standard [-O recovery procedures for the files designated, or after the
INVALID KEY or AT END condition arises on a statement lacking the INVALID
KEY o AT END clause. A given file-name may not be associated with more
than one declarative section.

Within a declarative section there must be no reference to any nondeclarative
procedure. Conversely, in the nondeclarative portion there must be no reference
to procedure-names that appear in the declaratives section, except that
PERFORM statements may refer to a USE statement and its procedures; but in a
range specification (see PERFORM, Section 4.10) if one procedure-name is in a
Declarative Section, then the other must be in the same Declarative Section.

An exit from a Declarative Section is inserted by the compiler following the last

statement in the section. All logical program paths within the section must lead
to the exit point.

COBOL-80 Reference Manual - Release 4 116

CHAPTER 10

Segmentation

The program segmentation facility is provided to enable the execution of
COBOL-80 programs which are larger than physical memory. When segmentation
is used (that is, when any section header in the program contains a segment
number) the entire PROCEDURE DIVISION must be written in sections. Each
section is assigned a segment number by a section header of the form:

section-name SECTION [segment-number].

segment-number must be an integer with a value in the range from 0 through 99.
If segment-number is omitted, it is assumed to be 0. Declaratives sections must
have segment-numbers less than 50. All sections which have the same segment
number constitute a single program segment and must occur together in the

source program. Furthermore, all segments with numbers less than 50 must
occur together at the beginning of the PROCEDURE DIVISION.

Segments with numbers O through 49 are called fixed segments and are aways
resident in memory during execution. Segments with numbers greater than 49
are called independent segments. Each independent segment is treated as a
program overlay. An independent segment is in its initial state when control is
passed to it for the first time during the execution of a program, and alsoc when
control is passed to that section (implicitly or explicitly) from another segment
with a different segment number. Specifically, an independent segment is in its
initial state when it is reached by "falling through" the end of a fixed or
different independent segment.

Segmentation causes the following restrictions on the use of the ALTER and
PERFORM statements:

1. A GO TO statement in an independent segment must not be referred
to by an ALTER statement in any other segment.

2. A PERFORM statement in a fixed segment may have within its range
only

a. sections and/or paragraphs wholly contained within fixed
segments, ar

b. sections and/or paragraphs wholly contained in a single
independent segment.

COBOL-80 Reference Manual - Release 4 117

Segmentation

3. A PERFORM statement in an independent segment may have within
its range only

a.

b.

sections and/or paragraphs wholly contained within fixed
segments, or

sections and/or paragraphs wholly contained within the same
independent segment as the PERFORM statement.

COBOL-80 Reference Manual - Release 4 118

APPENDIX I

Advanced Forms of Conditions

Evaluation Rules for Compound Conditions

1. Evaluation of individual simple conditions (relation, class,
condition-name, and sign test) is done first.

2. AND-connected simple conditions are evaluated next as a single result.

3. OR and its adjacent conditions (or previously evaluated results) are
then evaluated.

EXAMPLES:

l. AK<BORC=DORENOT>F
The evaluation is equivalent to (A<B) OR (C=D) OR (EXF) and is true if
any of the three individual parenthesized simple conditions is true.

2. WEEKLY AND HOURS NOT =0
The evaluation is equivalent, after expanding level 88 condition-name
WEEKLY, to
(PAY-CODE = W) AND (HOURS £0)
and is true only if both the simple conditions are true.

3. A=z1ANDB=ZANDG>-3

OR P NOT EQUAL TO "SPAIN"

is evaluated as

[(A = 1) AND (B = 2) AND (G >-3)]
OR (P E"SPAIN")

If P = "SPAIN", the compound condition can only be true if all three of
the following are true:

(C.l) A=1
(C.Z) B=2
(e3) G>-3

However, if P is not equal to "SPAIN", the compound condition is true
regardless of the values of A, B and G.

COBOL-80 Reference Manual - Release 4 119
APPENDIX I

Parenthesized Conditions

Parentheses may be written within a compound condition or parts thereof in
order to specify precedence in the evaluation order.

Example:

IFA=BAND(A=50R A=1)
PERFORM PROCEDURE-44.

In this case, PROCEDURE-44 is executed if A = 5 OR A = 1 while at the same

time A = B. In this manner, compound conditions may be formed containing
other compound conditions, not just simple conditions, via the use of parentheses.

Abbreviated Conditions

For the sake of brevity, the user may omit the "subject" when it is commaon to
several successive relational tests. For example, the condition A = 50R A =1
may be written A = 5 OR = 1. This may also be written A = 5 OR 1, where both
subject and relation being implied are the same.
Another example:

FA=BOR<KCORY
is a shortened form of

FA=BORASCORAKY

The interpretation applied to the use of the word 'NOT' in an abbreviated
condition is:

1. If the item immediately following 'NQT' is a relational operator, then
the NOT' participates as part of the relational operator;

2. otherwise, the beginning of a new, completely separate condition must
follow NOT', not to be considered part of the abbreviated condition.

Caution: Abbreviations in which the subject and relation are implied are
permissible only in relation tests; the subject of a sign test or class test cannot
be omitted.

NQT, the Logical Negaticn Operator

In addition to its use as a part of a relation {e.g., IF A IS NOT = B), "NOT" may
precede a condition. For example, the condition NOT (A = B OR C) is true when
(A =B OR A =C) is false. The word NOT may precede a level 88 condition
name, also.

COBOL-80 Reference Manual - Release 4

APPENDIX II

Table of Permissible MO VE Operands

120

Receiving Operand in MOV E Statement

Saurce Numeric {Numeric Numeric | Alphanumeric | Alphanumeric| Gro

Operand Integer |Non-integer | Edited Edited
Numeric Integer oK oK oK OK (A) OK (A) oK
Numeric Non-integer oK oK oK oK
Numeric Edited oK oK oK
Alphanumeric Edited oK oK oK
Alphanumeric oK (C)] oK (C) oK (C) oK oK oK
Group OK (B)| OK(B) oK (B) oK(B) oK (B) oK

KEY: (A) Source sign, if any, is ignored

(B) If the source operand or the receiving operand is a Group Item,
the move is considered to be a Group Move. See Section 4.3 for a
discussion of the effect of a Group Maove.

(C) Source is treated as an unsigned integer; source length may not
exceed 31.

NOTE: No distinction is made in the compiler between alphabetic and
alphanumeric; one should not move numeric items to alphabetic items and

vice versa.

COBOL-80 Reference Manual - Release 4 121

APPENDIX I

Nesting of [F Statements

A '"nested IF" exists when the verb IF appears more than once in a single
sentence.

Example:

IFX=Y
[FA=B
MOVE "*' TO SWITCH
ELSE
MQOVE "A" TO SWITCH
ELSE
MOVE PACE TO SWITCH

The flow of the above sentence may be represented by a tree structure:

F T
Space--->Switch A=B?
ZF \Tx
A--->Switch *..->Switch

Next
Sentence

Another useful way of viewing nested IF structures is based on numbering IF and
FLSE verbs to show their priority.

Fl X =Y
| 1F2 A-=8
true | true-action : MOVE "*" TO SWITCH
actionl: | ElLLSE2 false-action2 : MOVE "A" TO SWITCH
ELSE1

false-actionl : MOVE SPACE TO SWITCH.

COBOL-80 Reference Manual - Release 4 122
APPENDIX III

The above illustration shows clearly the fact that IF2 is wholly nested within the
true-action side of [F1l.

The number of ELSEs in a sentence need not be the same as the number of [Fs;
there may be fewer EL SE branches.

Examples:
FM=1
IFK=0
GO TO M1-K0O
ELSE

GO TO M1-KNQTO.
F AMOUNT IS NUMERIC
[F AMOUNT IS ZERO
GO TO CLOSE-QUT.

In the latter case, IF2 could equally well have been written as AND.

C0OB0OL-80 Reference Manual - Release 4 123

APPENDIX IV

ASCI Character Set
For ANS-74 COBOL

Character Octal Value Character Octal Value
A 101 0 60
B 102 1 61
C 103 2 62
D 104 3 63
= 105 4 64
F 106 S 65
G 107 6 66
[110 7 67
I 111 8 70
J 112 9 71
K 113 SPACE) 40
L 114 " 42
M 115 $ 44
N 116 ' (non-ANSI) 47
0 117 (50
P 120) 51
Q 121 * 52
R 122 + 53
S 123 y 54
T 124 - 55
U 125 . 56
\Y 126 / 57
w 127 ; 73
X 130 < 74
Y 131 = 75
Z 132 > 76

Plus-zero (zero with embedded positive sign); 173
Minus-zero (zero with embedded negative sign); 175

COBOL-80 Reference Manual - Release 4 124

APPENDIX V

Reserved Words

+ indicates additional words required by COBQOL-80 for interactive screens,
Debug extensions, and packed decimal format

ACCEPT ACCESS ADD
ADVANCING AFTER ALL
ALPHABETIC ALSO ALTER
ALTERNATE AND ARE

AREA(S) ASCENDING ASCII+

ASSIGN AT AUTHOR

AUTO AUTO-SKIP+ BEEP+

BEFORE BELL BLANK

BLANK BLINK BLOCK

BOTTOM BY CALL

CANCEL CD CF

CH CHAIN CHAINING
CHARACTER(S) CLOCK-UNITS CLOSE

CcoBOL CODE CODE-SET

COL+ COLLATING COLUMN
COLUMN COMMA COMMUNICATION
COMP COMP-3+ COMPUTATIONAL
COMPUTATIONAL-3+ COMPUTE CONFIGURATION
CONTAINS CONTROL(S) COPY
CORR(ESPONDING) COUNT CURRENCY
DATA DATE DATE-COMPILED
DATE-WRITTEN DAY DE(TAIL)
DEBUG-CONTENTS DEBUG-ITEM DEBUG-LINE
DEBUG-NAME DEBUG-SUB-1 DEBUG-SUB-2
DEBUG-5UB-3 DEBUGGING DECIMAL-POINT
DECLARATIVES DELETE DELIMITED
DELIMITER DEPENDING DESCENDING
DESTINATION DISABLE DISK+

DISPLAY DIVIDE DIVISION

ODOWN DUPLICATES DYNAMIC

EGI ELSE EMI

ENABLE END END-OF-PAGE
ENTER ENVIRONMENT EOP

EQUAL ERASE+ ERROR

ESCAPE ESI EVERY
EXCEPTION EXHIBIT+ EXIT

EXTEND FD FILE

FILE CONTROL FILE-ID+ FILLER

FINAL FIRST FOOTING

FOR FROM FRCOM
GENERATE GIVING GO

GREATER GROUP HEADING
HIGH-V ALUE(S) HIGHLIGHT I-O
[-O-CONTROL IDENTIFICATION IF

IN INDEX INDEXED
INITIAL INITIATE INPUT
INPUT-OUTPUT INSPECT INSTALLATION
INTO INVALID IS

JUST(FIED)
LAST
LEFT-JUSTIFY+
LESS

LINAGE

LINE(S)

LOCK

MERGE
MODULES
MULTIPLY
NEGATIVE
NUMBER
OBJECT-COMPUTER
OFF

ON
ORGANIZATION
PAGE
PERFORM
PIC(TURE)
POINTER
PRINTER+
PROCEED
PROMPT+
RANDOM
READY+
REDEFINES
RELATIVE
REMOV AL
REPORT(S)
RESERVE
REVERSED

RF
RIGHT-JUSTIFY +
SAME

SEARCH
SECURITY
SELECT
SEPARATE

SET

SORT
SOURCE-COMPUTER
SPECIAL-NAMES
START

STRING

SUM
SYNC(HRONIZED)
TAPE

TEXT

THRU

TO

TRAILING

UNIT

UP

USAGE

V ALUE(S)

WITH

WRITE

*

COBOL-80 Reference Manual - Release 4

KEY

LEADING
LENGTH
LIMIT(S)
LINAGE-COUNTER
LINE-COUNTER
LOW-V ALUE(S)
MESSAGE
MOVE
NAMES+

NEXT
NUMBER
OCCURS
OMITTED
OPTIONAL
QUTPUT
PAGE-COUNTER
PF

PLUS
POSITION
PRINTING
PROGRAM
QUEUE

RD

RECEIVE
REEL
RELEASE
RENAMES
REPORTING
RESET

REWIND

RH

ROUND
SCREEN
SECTION
SEGMENT
SEND
SEQUENCE
SIGN
SORT-MERGE
P ACE(S)
STANDARD
STATUS
SUB-QUEUE-1,2,3
SUPPRESS
TABLE
TERMINAL
THAN

TIME

TOP
TRAILING-SIGN+
UNSTRING
UPDATE+

USE

VARYING
WORDS
ZERO((E)S)

%

/
>

125
LABEL
LEFT
LENGTH-CHECK +
LIN+
LINE
LINKAGE
MEMORY
MQODE
MULTIPPLE
NATIVE
NOT
NUMERIC
OF
ON
OR
OV ERFLOW
PEN
PH
PLUS
POSITIVE
PROCEDURE(S)
PROGRAM-ID
QUOTE(S)
READ
RECORD(S)
REFERENCES
REMAINDER
REPLACING
RERUN
RETURN
REWRITE
RIGHT
RUN
sD
SECURE
SEGMENT-LIMIT
SENTENCE
SEQUENTIAL
SIZE
SOURCE
FACE-FILL+
STANDARD-1
STOP
SUBTRACT
SYMBOLIC
TALLYING
TERMINATE
THROUGH
TIMES
TRACE+
TYPE
UNTIL
UPON
USING
WHEN
WORKING-STORAGE
ZERO-FILL+

+

<

COBOL-80 Reference Manual - Release 4 126

APPENDIX VI
PERFORM with VARYING and AFTER Clauses

PERFORM range

V ARYING identifier-1 FROM amount-1 BY amount-2
UNTIL condition-1

AFTER identifier-2 FROM amount-3 BY amount-4
UNTIL condition-2

AFTER identifier-3 FROM amount-5 BY amount-é}
UNTIL condition-3

Identifier here means a data-name or index-name. Amount-1l, -3, and -5 may be
a data-name, index-name, or literal. Amount-2, -4, and -6 may be a data-name
or literal only.

The operation of this complex PERFORM statement is equivalent to the
following COBOL statements (example varying three items):

START-PERFORM.
MOVE amount-1 TO identifier-1
MOVE amount-3 TO identifier-2
MOVE amount-5 TO identifier-3.

TEST-CONDITION-1.
IF condition-1 GO TO END-PERFORM.

TEST-CONDITION-2.
IF condition-2
MQOVE amount-3 TO identifier-2
ADD amount-2 TO identifier-1
GO TO TEST-CONDITION-1.

TEST-CONDITION-3.
IF condition-3
MOV E amount-5 TO identifier-3
ADD amount-4 TO identifier-2
GO TO TEST-CONDITION-2.

PERFORM range
ADD amount-6 TO identifier-3
GO TO TEST-CONDITION-3.

END-PERFORM. Next statement.
NOTE
If any identifier above were an index-name, the

associated MOV E would instead be a SET (TO form),
and the associated ADD would be a SET (UP form).

COBOL-80 Reference Manual - Release 4 127

APPENDIX VII

Microsoft COBOL-80
With Respect to the ANSI Standard

To understand how COBOL-80 is a 1974 ANSI COBOL, one must know the
structure of that standard. The COBOL ANSI standard is divided inta 12
"modules™:

1. Nucleus

2. Table handling

3. Sequential I/O

4. Relative I/0

5. Indexed I/O

6. Interprogram communication

7. Library

8. Communication

9. Debug

10. Report-Writer

11. Segmentation

12. Sort/Merge
Each module has two defined levels of implementation, namely Level [and Level
II (which is a superset of Level I). According to the standard, the first three

modules in the list above should be implemented at least to Level [, but the other
nine modules may or may not be implemented.

COBOL-80 Reference Manual - Release 4 128
APPENDIX VII

Referring to the Nucleus and Table Handling modules, Microsoft COBOL-80
includes all Level [I features except:

[. GENERAL

L
2.
3.

4-

Figurative constant ALL "lit" for literals greater than one character
Qualification of names is not allowed in the Environment Division.
Switch testing facility (actually a Level I feature)

Alphabet-name must be "ASCI" and cannct be defined with a literal
phrase

II. DATA DIVISION

1.

2.

3.

5.

Occurs depending on ...

Level 88 having list of items intermixed with range (either list or
range may be used but not both at one time)

COMP data items always require 2 bytes:

-- PICTURE %5) only allows a range of -32768 to 32767

-- PICTURES 9,99,999,9999 are equivalent to PIC 9(5) for COMP items
— Diagnostic is given when more than 5 digits are specified

Unsigned COMP data items

--PIC 9 is equivalent to PIC S9

Renames phrase

[TII. PROCEDURE DIV ISION

60

MOVE, ADD, SUBTRACT CORRESPONDING

Multiple destinations for results of arithmetic statements
Division remainders

Inspect Level I

Arithmetic expressions in conditions

ALTER series of procedure names

COBOL-80 Reference Manual - Release 4 129
APPENDIX VII

Regarding the file handling modules, COBOL-80 includes all Level II facilities
except Multiple Index Keys and special language for TAPE handling, that is:

1. optional tape file existence by specifying "SELECT OPTIONAL
filename"

2, buffering of input/output by allowing a fully functional "RESERVE
Integer AREA(S)" clause

3. muiti-file tapes by specifying the "MULTIPLE FILE TAPE
CONTAINS" clause

4. control over blocking of fixed and variable-length records by
allowing fully functional "BLOCK CONTAINS" and "RECORD
CONTAINS" clauses in the FD of tape files

5. multi-reel files, tape reversal, and tape positioning by means of
fully implemented CLOSE and OPEN statements

However, the file handling modules do not include the Level I Rerun facility,
because most microcomputer operating systems have no support for it.

The Interprogram Communication and Library modules are implemented to Level
I.

The Debug and Report-Writer modules are not implemented at all, and Microsoft
has no plans for them because they are not very widely used. However,
COBOL-80 does include the IBM COBOL Debug facility extensions to the ANSI
standard.

Another extension Microsoft has incorporated in COBOL-80 is in interactive
screen control by allowing special options to the ACCEPT and DISPLAY
statements. Still another extension is the COMP-3 data format which allows
numeric data to be packed two digits to the byte so that mass storage
requirements are reduced.

COBOL-80 Reference Manual - Release 4 130

INDEX

Accept
9, 43, 44, &0, 61, 75
ACCEPT statement
9, 60
ACCESS clause
19, 103, 109
ADD statement
56
ADV ANCING oaption
86
ALL phrase
91
Alphanumeric item
- 22, 27
Alphanumeric-edited item
27
Alter
80, 116
ALTER statement
80
ANSI level 1
1, 128
ANGSI level 2
1, 128
Arithmetic expression
58
Arithmetic statements
53
ASCII-entry
19
AT END clause
47, 85, 105, 106, 110
AUTHOR
13, 17
Auto
43-45,71, 72, 75
Auto secure
43

Bell
43, 45, 75
Binary item
23, 26
Blank line
43, 44 -
Blank screen
43, 44

COBOL-80 Reference Manual - Release 4 131
INDEX

Blank when zero
25, 36, 43-45
BLANK WHEN ZERO clause
36
Blink
43, 45
BLOCK clause
38, 40

Call
94, 96
CALL statement
94
Chain
95, 96
Character comparisons
83 ‘
Ch ar}acter set
Class test condition
83
Close
2, 8, 88, 105, 110
CLQOSE statement
88
CODE-SET clause
38, 41
Column
43, 44
Comments
6, 14, 17
Compound condition
8l
COMPUTATIONAL
23, 25, 26, 98
COMPUTATIONAL-3
23, 25, 26
COM;UTE statement
8
Condition
3, 5, 9, 15, 37, 41, 42, 81, 83, 87,
91
Condition-name
5,9, 15, 37, 81, 83
Condition-name test
83
Conditional statements
47, 53
Conditions
1
CONFIGURATION SECTION
13, 18
Continuation line
10, 14

COBQOL-80 Reference Manual - Release 4 132
INDEX

Control index
103

COUNT IN phrase
91

Crt screen formats
43

CURRENCY SIGN
18

Data description entry
24, 42
Data Division
8, 11, 13, 22-46
Data item
7, 13, 22, 26
DATA RECORDS clause
39
Data-name
5, 7, 8, 20, 24-26, 34, 35, 39, 41,
49, 51, 56-58, 60, 83, 86, 96, 97,
108, 110-112
DATE-COMPILED
17
DATE-WRITTEN
17
Debugging
2, 18
Decimal item
25, 36
Decimal point ;
10, 18, 29, 54, 66, 71, 7
DECIMAL-PQINT IS COMMA
10, 18
DECLARATIVES
13, 89, 114-116
Declaratives
13, 89, 114-116
DELETE statement
108, 112
DELIMITED BY phrase
90
Display
9, 26, 43-45, 53, 76
DISPLAY statement
76
DIVIDE statement
57

Editing
22,69, 75
Elementary item
7, 22, 25, 26

COBOL-80 Reference Manual - Release 4 133
INDEX

Elementary screen items
43
Ellipsis
6
Environment Division
g, 11, 13, 18
Escape
60-62, 75
Escape key
60-62
EXHIB}IT statement
9
EXIT PROGRAM statement
95
EXIT statement
80
EXTEND phrase
84
External decimal item
23

FD entry
8, 14, 38
Figurative constants
11
File
5, 7, 8, 13, 15, 19, 20, 22, 38,
84-86, 104
File name
5,8
File Section
8, 13, 22, 38
FILE STATUS clause
20, 104
FILE STATUS data item
a5
FILE-CONTROL
19
File-name
5,8
FILLER
8, 24
Fixed segments
116
Floating string
29

Format notation
5

From
10, 43, 45, 52, 56, 78, 86, 88, 107,
111, 116

COBQL-80 Reference Manual - Release 4
INDEX

General Formats

5
GIVING option

53, 55
GO TO statement

59, 80
Group

7, 22, 24, 26, 34, 43, 49, 83
Group item

- 7,22, 24, 34, 49

HIGH-V ALUE
11
Highlight
43, 45

I-0
19, 84, 89

[-O CONTROL paragraph
19, 21

1-0 error handling
89

Identification Division
11, 13,17

IF statement
81

Imperative statements
47

Independent segments

Index data-item
23, 97
Index-name
79, 97
Indexed -0
2
Indexed-file organization
103
INPUT file
84
INPUT-OUTPUT SECTION
19
INSPECT statement
51
INSTALLATION
13, 17
Inter-Program Communication
2, 42, 94-96
Internal decimal item
23
INTO option
85
INVALID KEY clause
47, 105-108, 111, 112

134

COBQOL-80 Reference Manual - Release 4 135
INDEX

Just

14, 43, 45, 107, 110
Justified

24, 25, 36, 43, 45
Justified

24, 25, 36, 43, 45
JUSTIFIED RIGHT clause

36

KEY clause
100

KEY IS clause
106

LABEL clause
38
Level 88
1, 7,37, 101
Level number
7,8, 14, 22, 24.26, 43, 44
Level-number
7, 8, 14, 22, 24-26, 43, 44
Library
2
LINAGE clause
38, 41
Line
19, 43, 44, 60-62, 69, 89
Line number
43, 60-62
Linkage section
13, 22, 42, 96
Literals
4,9
LOCK suffix
88
LOW-VALUE
11

Main program
96
Memory
18, 28, 36, 116
Memory requirements
116
Mnemonic-name
5,9, 76
Modules
1
MOVE statement
49
MULTIPLY statement
57

COBOL.-80 Reference Manual - Release 4 136
INDEX

Nested [F
1

Non-numeric literals
9

Nucleus
1

Numeric comparisons
83

Numeric item
23

Numeric literals
10

OBJECT-COMPUTER
18
OCCURS clause
24-26, 34
OMITTED
38
ON OVERFLOW clause
51
Open
80, 84, 105
OPEN statement
84
ORGCGANIZATION clause
19
QUTPUT file
84
OVERFLOW
47, 91, 92
Overlays
116

Packed decimal
23
Paragraph-name
13, 48
Paragraphs
48
Parentheses
1, 6, 58
Perform
1, 79, 80, 116
PERFORM statement
79
Pic
8, 43
PICTURE
23-27, 29-32, 35, 43, 45, 50, 83
Picture
23-27, 29-32, 35, 43, 45, 50, 83
PICTURE clause
24
Plus
1, 3, 43, 58, 90, 92

COBOL-80 Reference Manual - Release 4 137
INDEX

POINTER phrase
90
PRINTER
9, 18, 38, 40
Procedure Division
11, 13, 47-93, 96, 114
Procedure division header
96
Procedure-name
14, 48, 59, 80
PROGRAM-ID
17
Punctuation
3-5

Qualification
1, 15
QUOTE
11

Range (PERFORM)
80
READ statement
85, 106, 110
READY TRACE statement
93
RECORD CONTAINS clause
4Q
RECORD KEY clause
104
Records
7, 39, 40, 109
REDEFINES clause
24-26, 33
Relative [-O
2
Relative indexing
98
RELATIVE KEY clause
110
RELATIVE KEY item
110
Relative organization
109
REPLACING clause
51, 52
Report item
22, 25, 28
RESERVE clause
20
Reserved words
4, 5, 14
RESET TRACE statement
92, 93
REWRITE statement
88, 107, 111
ROUNDED option
53, 55

C0OBQOL-80 Reference Manual - Release 4 138
INDEX

Same
18, 21
Screen data description entries
43
Screen section
13, 61, 75, 78
Screen-name
43, 61, 75, 76
SEARCH ALL statement
100
SEARCH statement
99
Section
13, 14, 23, 28, 48, 88, 105, 115, 116
Section header
116
Section-name
13, 48, 116
Sections
48, 116, 117
Secure
43-45
SECURITY
13, 17
Segment
13, 116
Segment number
13, 116
Segmentation
2, 116, 117
SELECT entry
19, 103, 109, 110
Sentences
47, 48
Separator
4
Sequence number
14
Sequential [-O
1
SET statement
97
SIGN clause
23-.25, 28, 36
Sign test
1, 83
Simple condition
81
size of data items
22
SIZE ERROR option
47, 54
SOURCE-COMPUTER
18

COBOL-80 Reference Manual - Release 4 139
INDEX

SPACE
11, 53, 63, 70, 71
SPECIAL-NAMES
18
STANDARD
38, 109
START statement
112
Statements
47, 54
STOP statement
60
STRING statement
89
Subprogram

Subscripts
35, 37, 98
SUBTRACT statement
56
SYNCHRONIZED clause
24-26, 36

Table Handling
1, 2, 23, 26, 50, 97-102
TALLYING clause
51, 52
To
7, 28, 42, 43, 45, 49, 56, €8, 71,
75, 78, 9Q, 94, 97, 100, 101
TRACE mode
92

UNSTRING statement
90
USAGE clause
24-26
USE sentence
13, 114, 115
Using
13, 38, 42, 43, 45, 75, 85, 94, 100
USING list
42, 94

V alidation
75
Value
2, 24-26, 32, 37-39, 42, 43, 45, 50,
92, 97, 107
VALUE IS clause
32, 42

COBOL-80 Reference Manual - Release 4
INDEX

VALUE OF clause

38, 39
VARYING

79, 80, 99, 100
Verbs

1, 47

WHEN clause
100
Word
3.5
Working-storage section
22, 42
WRITE statement
86, 107, 111

140

INDEX

$ INCLUDE . - - . - - . 2-14
SMEMRY . . - L) - - . 4-11

.COMMENT . . . ¢« « o« « & o« o« « 2=16
«CREF . ¢ ¢ o ¢ o ¢ o o« o o o« 2=23
.DEPHASE . + &« « ¢ o« o o« o o« o« 2=25
cLALL . ¢ ¢ ¢« ¢« + o o « o o o 2=23
SLFCOND .« &+ ¢ o« o o« o o« o o« & 2=20
JLIST & ¢ ¢ ¢« ¢ o o o o o o « 2=20
PAGE . . ¢ ¢ ¢ o o o o o o o 2=37
PHASE . ¢ « ¢ ¢ o o o o « o o 2=25
SPRINTX . ¢ ¢ ¢ ¢ o o o o o o« 2=17
JRADIX . o ¢ & ¢ ¢ ¢ o o o o o 2=6, 2-17
.REQUEST . . « ¢ « « « « « « o 2-18
eSALL . ¢ « ¢ ¢ o o o o o+ o o 2=23
.SFCOND . &+« « « &« « o « « o« o 2=20
.TFCOND .« ¢ & ¢ o« ¢ o o o« o« o 2=20
«XALL & ¢ ¢ ¢ ¢ o o o o o o o 2=23
cXCREF « o ¢ ¢ ¢ o o o o o o o 2=23
XLIST ¢ o« & ¢ o o o o « o « o 2=20

Absolute memory 2-8, 2-11, 2-38
Arithmetic operators 2-8
ASEG . . - . . - . . 3 2_8' 2_111 2—24

N
|
[\S]
(9]

Block pseudo Oops . .« « .« « o .

Character constants 2=7

Code Relative . ¢« + ¢ ¢« ¢« o« o 2-11, 2-24 to 2-25, 2-38

Command format « « « ¢« ¢« « o« o 2=-1, 3-1, 4-1, 5-1

Comments « « « « o o « o « o« o« 2=6, 2-16

COMMON . . ¢ ¢ o « « o« o o o« « 2-8, 2-11, 2-24 to 2-25,
2-38 to 2-39

Conditionals . ¢« &« « « « o« « o 2=19

Constants . ¢ ¢« « ¢« ¢« o « o o 2=6

CP/M . v ¢« ¢« o o o o o o o o o« 2=2 to 2-3, 4-4 to 4-6,
5-1 4 5“4

Cross reference facility . . . 2-4, 2-23, 2-37, 3-1

CSEG v + « o o o o o o o o o o« 2=-8, 2-11, 2-24, 2-36

Data Relative . « ¢« « o« « o« o 2-8, 2-12, 2-24 to 2-25,
2-38

DB ¢ « « o o o o o o o o o o« o« 2=-6, 2=-11

DC & 4 & ¢ o o o o o o o o o « 2=12

Define Byte . +« « « o o« o « o« 2=6, 2-11

Define Character 2=12

Define Origin 2=15

Define Space . . . « ¢« +« « o o 2=12

Define Word . . « ¢ « « ¢ o « 2=13

DS & 4 ¢ o« o o o o o o o o o o 2=12

DSEG ¢ ©« « o s s+ o o o« o o o« o 2=-8, 2-12, 2-24, 2-36

DW & & ¢« « o o o o o o o o o o« 2=13

EDIT-80 2-5, 2-37

ELSE ¢« ¢ ¢ ¢ ¢ o o ¢ o o« o« « o 2=20

END ¢ ¢ « ¢ ¢ ¢ ¢ o o o o o o« 2=13

ENDIF .« ¢ ¢ ¢ o o o o o o« o o 2=20

ENDM . ¢ « o ¢ o ¢ o o« o o o « 2=25, 2=29

ENTRY . ¢ ¢ ¢ ¢ ¢« o o« o & o« o 2=-13, 5=2

EQU ¢ ¢ o« ¢ o ¢ o o o o o o o 2=14 to 2-15
Error codes - . . « « « « « o . 2=-35, 2-37

Error messages . . . « « « « o« 2=36, 4-10

EXITM e ® e e e s e e o o e o 2-29

EXT e ® @ e e e e & e e o e 2"'14

Externals . .« ¢« ¢« ¢ « « « s« o 2=-9, 2-14, 2-35, 2-38
EXTRN e @ o e e o o s o s o o 2-14

IF e e o @ & e © ° e e ¢ e e o 2-19

IFl ® o e e e e ¢ o e & o e = 2-19

IF2 & ¢ ¢ ¢« ¢ o ¢« o o o o o o« 2=19

IFB . e ® e o e e e e °o o e o 2-19

IFDEF . ¢ ¢ ¢« ¢« ¢ o« o o o o o+ 2=19

IFDIF . o ¢ ¢ o o o o o o o« » 2=19

IFE « ¢ o ¢ o o o o o s o « o 2=19

IFF . e @ e e ® e e o o o e o 2-19

IFIDN . ¢ ¢ ¢ o « o o o o« o » 2=19

IFNB « ¢ o ¢ o o o s o o o o o 2=19

IFT . e o e . e e e e o o e oo 2-19

INCLUDE . e e e o o e o e o o 2-14

INTEL e ® e e s e & e ¢ e e 2“36

IRP e e ® e & ® e & e s ° e o 2-23’ 2-25' 2-27
IRPC . e ©® e e e o e e o e e o 2-23'- 2""25' 2"27
ISIS=II . ¢ « ¢ o« o o o o o o« 2=2 to 2-3, 2-5, 4-5
LIB"'SO @ e e e e & e e & e e o 5—1

Library manager . . « « + « o« 5=1

LINK-80 . « ¢ ¢ ¢ o o o o » o+ 2=-11, 2-13, 2-18, 2-25,
4-1, 5-4

Listings . ¢ o e e 8 e o e e o 2‘-14' 2"20, 2-37 tO 2"'38'
3-2, 5-4

LOCAL . « o o o o o« o« o o« o » 2=30

Logical operators 2=-8

MACLIB - . - . . 2-14

MACRO . ¢ ¢ 2 o o o o o o o o 2=23, 2-25 to 2-26, 2-28 to 2-29
Macro operators 2=30

MOdeS 0 2“8

Modules . . « ¢ &« o« o« o« o« & o« 5=2

NAME . . . O - . 2-15

Operators . . ¢« « ¢« « o o « o« 2=8
ORG e ® e o 8 & o & e e s e o 2_11' 2-13, 2"‘15' 2_24

PAGE . . .) - o« o . . - . . . 2-15 7 2-36

Program Relative . . « « . . . 2=8

PUBLIC e o e e ® e e e e e o+ e 2-5 r 2—13 r 2-39
REPT . . . ¢ e * o o e e « . 2-23 r 2-25 to 2-26

SET 0 2-1 5

Strings
SUBTTL - L] L] L] *
. 3-1 7 4_2 ? 5—3 r 5"5

Switches . . ’
7, 2-39

Symbol table

s o * o
o o e o
e e o o
. L] L]]

7
-16, 2-36 to 2-37
3
3

3
. . . .
e o e o
. . . L]

4-1' A-l

TEKDOS) . . - . .) - . . - - 2-1' 3 ’
2-15 to 2-16, 2-37

TITLE . . - - . - -

Did you find errors in the documentaticn supplied with the
software? If so, please include page numbers and describe:

Fill in the follewing information before returning this £form:

Name Phone

Organization

Address City State Zip
Return form to: Microsoft

10800 NE Eighth, Suite 819
Bellewvue, WA 98004

Microsoft
Software Problem Report

Use this form to report errors or problems in:]:] FORTRAN-80
(] coBoL-80
MACRO-80
(] LINK-80
Release (or version) number:
Date

Report only one problem per form.

Describe your hardware and operating system:

Please supply a concise description of the problem and the
circumstances surrounding its occurrence. If possible, reduce
the problem to a simple test case. Otherwise, include all
programs and data in machine readable fcrm (preferably on a
diskette). 1If a patch or interim solution is being used,
please describe it.

This form may also be used to describe suggested enhancements
to Microscft software.

Problem Description:

-over-

MACRO - 80

Assembler
Reference Manual

(c) Microsoft - 1981

All Rights Reserved Worldwide

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is
furnished under a license agreement or non-disclosure agreement. The software may be
used or copied only in accordance with the terms of the agreement.

(C) Microsoft, 1979

CP/M is a registered trade mark of Digital Research

8401-340-03

Microsoft

CONTENTS

CHAPTER 1 Introduction

CHAPTER 2 MACRO-80 Assembler

Running MACRO-80
Command Format
Devices
Switches
Format of MACRO-80 Source Files
Statements
Symbols
Numeric Constants
Strings
Expression Evaluation
Arithmetic and Logical Operators
Modes
Externals
Opcodes as Operands
Pseudo Operations
ASEG
COMMON
CSEG
DB - Define Byte
DC - Define Character
DS - Define Space
DSEG
DW - Define Word
END
ENTRY/PUBLIC
EQU
EXT/EXTRN
INCLUDE
NAME
ORG - Define Origin
PAGE
SET
SUBTTL
TITLE
.COMMENT
. PRINTX
.RADIX
.280
.8080
.REQUEST
Conditional Pseudo Operations
.1 ELSE
.2 ENDIF
Listing Control Pseudo Operations

* s o o P
> W - [\)

e o e & & & 6 & & s o+

.« .
w N

L] L[] . L] . L] . L] [L] . .

DSBS SIS B RS SR SRS NS SRR SR VRSN VENESESESESESRENESESRESESESNESESENENENYSESEFNTSESENYNH SN NN

o o ¢ o & 2 & & o o 4 0 o e .]

BDAARRNANANANNANNANADNTNANNANNNANARARUIANNANANANANNRANRARNAULE B RWWWWWNNDN -

NONDDODNDMNMNNOOOONMNHHHHEHEHREHEMMEHEEHEODONNOAOLE W

NN OB WNHOWLVWOYNAAWME WO

8 Relocation Pseudo Operations
8.1 ORG Pseudo-op

8.2 LINK-80

9 Relocation Before Loading

2
2
2
2
Macros and Block Pseudo Operations
1 Terms
2 REPT-ENDM
3 IRP-ENDM
4 IRPC-ENDM
5 MACRO
6 ENDM
7 EXITM
8 LOCAL
9 Special Macro Operators and Forms
Using 280 Pseudo-ops
Sample Assembly
MACRO-80 Errors
Compatability with Other Assemblers
Format of Listings
.1 Symbol Table Listing

e o & & o o o s ¢ o . 3 o o * o
. L3 L[] . . L] . L] L]

FHHEEOONNNNNYNdIda0 o

NN
NN O

. L] L]

CHAPTER CREF-80 Cross Reference Facility

CHAPTER LINK-80 Linking Loader
Running LINK-80
Command Format
.1 LINK-80 Switches
.2 Sample Link
Format of LINK Compatible Object Files
LINK-80 Error Messages
Program Break Information

[S T g g g > w
e o o s & o

nbdwpNH+-

CHAPTER LIB-80 Library Manager
LIB-80 Commands
.1 Modules
LIB-80 Switches
LIB-80 Listings
Sample LIB Session
Summary of Switches and Syntax

i v w
. . L] L] . .

(O NN VS N Sl

APPENDIX TEKDOS Operating System
TEKDOS Command Files
MACRO-80
CREF-80
LINK-80

»:P?’V He
S W

.

Microsoft MACRO-30 Assembler, Release 3.4 November 1980

ADDENDA TO: Utility Software Manual
MACRO-80 Assembler Reference Manual
XMACRO-86 Assembler Reference Manual

The following features were added or modified 1in release
3‘4.

Add to Section 2.2.2 Switches

Switch Action
/M Initialize Block Data Areas.

If the programmer wants the area that 1is defined
by the DS (Define Space) pseudo-op initialized to
zeros, then the programmer should use the /M
switch 1in the command line. Otherwise, the space
is not guaranteed to contain zeros. That 1is, DS
does not automatically initialize the space to
zeros.

/X The presence or absence of /X in the command line
sets the initial current mode and the initial
value of the default for 1listing or suppressing
lines in false conditional blocks. /X sets the
current mode and initial wvalue of default ¢to
not-to-list. No /X sets current mode and initial
value of default to list. Current mode determines
whether false conditionals will be 1listed or
suppressed. The initial value of the default Iis
used with the .TFCOND pseudo-op so that .TFCOND is
independent of .SFCOND and .LFCOND. If the
program contains .SFCOND or .LFCOND, /X has no
effect after .SFCOND or .LFCOND 1is -encountered
until a .TFCOND is encountered in the file. So /X
has an effect only when used with a file that
contains no conditional listing pseudo-ops or when
used with .TFCOND.

MACRO-80,

Release 3.4, addenda

The following chart illustrates the effects

three
under no /¥X.
below for

PSEUDQ-QP

(none)

. SFCOND

.

. LFCOND

-

. TFCOND

. TFCOND

.SFCOND

.TFCOND
. TFCOND

.TFCOND

oseudo-ops
See the addition to

when

encountered

under
Section

full description o©f the
conditional listing pseudo-ops.

NO /%

|

ON

CFF

/X

OFF

Add to Section 2.6.26 Conditional Pseudo Overations

IFIDN <argl>,<argl>

IFDIF <argl>,<argl>

True

IDeNtical

the string
to

The angle brackets arcund
and <argl> are required.

True

the string

Page 2

of the
/% and

2.6.27
three

<argl> is
the string <arg>.

<argl>

<argl> is

DIFferent from the string <arg2>.

‘'The angle brackets around

and <arg2> are regquired.

<argl>

MACRO-80, Release 3.4, Addenda Page 3

Add to Section 2.6.27 Listing Control Pseudo Overations

There are now five listing control pseudo-ops. Output to
the listing file can be controlled by the following
pseudo-ops:

.LIST, .XLIST, .SFCOND, .LFCOND, .TFCOND

The three new pseudo-ops control the listing of conditional
pseudo-op blocks which evaluate as fzlse. These pseudo-ors
give the programmer control over four cases.

1. Normally list false conditionals
For this case, the programmer simply allows the
default mode to control the listing. The default
mode is list false conditionals. If the programmer
decides to suppress false conditionals, the /X
switch can be issued in the command line instead of
editing the source file.

2. Normally suppress false conditionals

For this case, the programmer issues the .TFCOND
pseudo-op in the program file. .TFCOND reverses
(toggles) the default, causing false conditionals
to be suppressed. If the programmer decides to
list false <conditionals, the /X switch <c¢an be
issued in the command line instead of editing the
scurce file.

3. Always suppress/list false conditionals
For these cases, the programmer issues either the
.SFCOND pseudo-op tO suppress false conditionals,
or the .LFCOND pseudo-op to 1list all false
conditionals.

4, Suppress/list some false conditionals

For this case, the programmer has decided for most
false conditionals whether to list or supvress, but
for some false conditionals the programmer has not
vet decided. For the false conditionals decided
about, use .SFCOND or .LFCOND. For those not vet
decided, use .TFCOND. .TFCOND sets the current and
default settings to the opposite of the default.
Initially, the default is set by giving /X or no /X
in the command line. Two subcases exist:

1. The programmer wants scme false conditionals
not to list unless /X is given. The programmer
uses the .SFCOND and .LFCOND pseudo-ops to
control which areas always suppress or list
false conditionals. To selectively suppress
some false conditionals, the programmer issues
.TFCOND at the beginning of the conditional
block and again at the end of the conditional
block. (NOTE: The second .TFCOND is should be
so that the default setting will be the same as
the initial setting. Leaving the default equal

MACRO-80,

The three
below.

Release 3.4, Addenda Page 4

PSEUDO-QP

. SFCOND

. LFCOND

. TFCOND

to the initial setting makes it easier to keep
track of the default mode 1if there are many
such areas.) If the conditional block evaluates
as false, the lines will be suppressed. In
this subcase, 1issuing the /X switch in the
command 1line <causes the conditional block
affected by .TFCOND to 1list even if it
evaluates as false.

The programmer wants some false conditionals to
list wunless /X 1is given. of the file. Two
consecutive .TFCONDs places the conditional
listing setting in 1initial state which |is
determined by the presence or absence of the /X
switch (the first .TFCOND sets the default to
not initial; the second to initial). The
selected conditional block then responds to the
/X switch: if a /X switch 1is issued 1in the
command line, the conditional block 1is
suppressed if false; 1if no /X switch is issued
in the command line, the conditional block is
listed even if false.

The programmer then must reissue the .SFCOND or
. LFCOND conditional listing pseudo-op to
restore the suppress or list mode. Simply

- issuing another .TFCOND will not restore the

prior mode, but will toggle the default
setting. Since in this subcase, the next area
of code is supposed to list or suppress false
conditionals always, the programmer must issue
.SFCOND or .LFCOND.

conditional 1listing pseudo-ops are summarized

DEFINITION

Suppresses the listing of conditional blocks
that evaluate as false.

Restores the listing of conditional blocks that
evaluate as false.

Toggles the current setting which controls the
listing false conditionals. .TFCOND sets the
current and default setting to not default. If
a /X switch is given in the MACRO-80 run
command line for a file which contains .TFCOND,
/X reverses the effect of .TFCOND.

MACRO-80, Release 3.4, Addenda Page 5

Add to Section 2.7.9 Special Macro Operators and Forms

The percent sign is used only in a macro argument.
% converts the expression that follows it (usually a

symbol) to a number in the current radix. During
macro expansion, the number derived from converting
the expression is substituted for the dummy. Using

the % special operator allows a macro call by value.
(Usually, a macro call is a call by reference with
the text of the macro argument substituting exactly
for the dummy.)

The expression following the % must conform to the
same rules as the DS (Define Space) pseudo-op. A
valid expression returning a non-relocatable
constant is required.

EXAMPLE:

Normally, LB, the argument to MAKLAB, would be
substituted for Y, the argument to MACRO, as a
string. The % causes LB to be <converted to a
non-relocatable constant which is then substituted
for ¥. Without the % special operator, the result
of assembly would be “Error LB” rather than “Error

17, etc.

MAKLAB MACRO Y

ERR&Y: DB “Error &¥°,0
ENDM

MAKERR MACRO X

LB SET 0]
REPT X

LB SET LB+1
MAKLAB $LB
ENDM
ENDM

When called by MAKERR 3, the assembler will
generate:

ERR1: DB “Error 17,0
ERR2: DB “Error 2
ERR3: DB “Error 37,0

CHAPTER 1

INTRODUCTION

MACRO-80 is a relocatable macro assembler for 8080 and 280
microcomputer systems. It assembles 8080 or Z80 code on any
8080 or 280 development system running the CP/M, ISIS-II,
TRSDOS or TEKDOS operating system. The MACRO-80 package
includes the MACRO-80 assembler, the LINK-80 linking loader,
and the CREF-80 <cross reference facility. CP/M versions
also include the LIB-80 Library Manager. MACRO-80 resides
in approximately 14K of memory and has an assembly rate of
over 1000 lines per minute.

MACRO-80 incorporates almost all "big computer" -assembler
features without sacrificing speed or memory space. The
assembler supports a complete, Intel - standard macro
facility, 1including IRP, IRPC, REPEAT, local variables and
EXITM. ©Nesting of macros is limited only by memory. Code
is assembled in relocatable modules that are manipulated
with the flexible 1linking loader. Conditional assembly
capability is enhanced by an expanded set of conditional
pseudo operations that include testing of assembly pass,
symbol definition, and parameters to macros. Conditionals
may be nested up to 255 levels.

MACRO-80's linking loader provides a versatile array of
loader <capabilities, which are executed by means of easy
command lines and switches. Any number of programs may be
loaded with one command, relocatable modules may be loaded
in user-specified locations, and external references between
modules are resolved automatically by the 1loader. The
loader also performs library searches for system subroutines
and dJenerates a load map of memory showing the locations of
the main program and subroutines. The cross reference
facility that 1is included 1in this package supplies a
convenient alphabetic list of all program variable names,
along with the 1line numbers where they are referenced and
defined.

INTRODUCTION Page 1-2

This manual is designed to serve as a reference guide to the
MACRO-80 package. It defines, explains and gives examples
of all the features in MACRO-80 in terms that should be
understandable to anyone familiar with assembly language
programming. It is not intended, however, to serve as
instructional material and presumes the user has substantial
knowledge of assembly language programming. The user should
refer to instructional material available from a variety of
sources for additional tutorial information.

CHAPTER 2

MACRO-80 ASSEMBLER

2.1 RUNNING MACRO-80
The command to run MACRO-80 is
M80

MACRO-80 returns the prompt "*", indicating it is ready to
accept commands.

NOTE
If you are using the TEKDOS

operating system, see Appendix
A for proper command formats.

2.2 COMMAND FORMAT

A command to MACRO-80 consists of a string of filenames with
optional switches. All filenames should follow the
operating system's conventions for filenames and extensions.
The default extensions supplied by Microsoft software are as

follows:

File CP/M ISIS-I1
Relocatable object file REL REL
Listing file PRN LST
MACRO-80 source file MAC MAC
FORTRAN source file FOR FOR
COBOL source COB COB

Absolute file COM

MACRO-80 ASSEMBLER PAGE 2-2

A command to MACRO-80 conveys the name of the source file to
be assembled, the names of the file(s) to be created, and
which assembly options are desired. The format of a
MACRO-80 command is:

objfile,lstfile=source file

Only the equal sign and the source file field are required
to create a relocatable object file with the default
(source) filename and the default extension REL.

Otherwise, an object file is created only if the objfile
field 1is filled, and a listing file is created only if the
lstfile field is filled.

To assemble the source file without producing an object file
or listing file, place only a comma to the left of the egqual
sign. This is a handy procedure that lets you check for
syntax errors before assembling to an object file.

Examples:

*=TEST Assemble the source file TEST.MAC
and place the object file in TEST.REL.

*,=TEST Assemble the source file TEST.MAC
without creating an object or listing
file. Useful for error checking.

TEST, TEST=TEST Assemble the source file TEST.MAC,
placing the object file in TEST.REL
and the listing file in TEST.PRN.
(With ISIS-II, the listing file is
TEST.LST.)

*OBJECT=TEST Assemble the source file TEST.MAC
and place the object file in
OBJECT.REL.

OBJECT,LIST=TEST Assemble the source file TEST.MAC,
pPlacing the object file in OBJECT.REL
and the listing file in LIST.PRN.
(With ISIS-II, the listing file is
LIST.LST.)

MACRO-80 also supports command lines; that is, the
invocation and command may be typed on the same line. For
example:

M80 ,=TEST

MACRO-80 ASSEMBLER PAGE 2-3

2.2.1 Devices

Any field in the MACRO-80 command string can also specify a
device name. The default device name with the CP/M
operating system is the currently logged disk. The default
device name with the ISIS-II operating system is disk drive
0. The command format is:

dev:objfile,dev:lstfile=dev:source file

The device names are as follows:

Device CP/M ISIS-II

Disk drives s, B, t S :FQ0:, :Fl:, :F2:, ...
Line printer LST: LST:

Teletype or CRT TTY: TTY:

High speed reader HSR
Examples:

*, TTY:=TEST Assemble the source file TEST.MAC
and list the program on the
console. No object code is
generated. Useful for error check.

*SMALL,TTY:=B:TEST Assemble TEST.MAC (found
on disk drive B), place
the object file in SMALL.REL,
and list the program on the console.

2.2.2 Switches

A switch is a letter that is appended to the command string,
preceded by a slash. It specifies an optional task to be
performed during assembly. More than one switch can be
used, but each must be preceded by a slash. (With the
TEKDOS operating system, switches are preceded by commas or
spaces. See Appendix A.) All switches are optional. The
available switches are:

Switch Action
0 Octal listing
H Hexadecimal listing (default)
R Force generation of an object file
L Force generation of a listing file
C Force generation of a cross reference file

MACRO-80 ASSEMBLER PAGE 2-4

A Assemble Z80 opcodes (default for 280 operating
systems)

I Assemble 8080 opcodes (default for 8080 operating
systems)

P Each /P allocates an extra 256 bytes of stack

space for use during assembly. Use /P if stack
overflow errors occur during assembly. Otherwise,
not needed.

M Initialize Block Data Areas. If the programmer
wants the area that is defined by the DS (Define
Space) speudo-op initialized to zeros, then the
programmer should use the /M switch in the command
line. Otherwise, the space is not guaranteed to
contain zeros. That is, DS does not automatically
initialize the space to zeros.

X Usually used to suppress the 1listing of £false
conditionals. The following paragraph describes
the /X switch more completely but in very
technical terms.

The presence or absence of /X in the command 1line
sets the initial current mode and the initial
value of the default for 1listing or suppressing
lines 1in false conditional blocks. /X sets the
current mode and initial wvalue of default to
not-to-list. No /X sets current mode and initial
value of default to list. Current mode determines
whether false conditionals will be listed or
suppressed. The initial value of the default |is
used with the .TFCOND pseudo-op so that .TFCOND is
independent of .SFCOND and .LFCOND. If the
program contains .SFCOND or .LFCOND, /X has no
effect after .SFCOND or .LFCOND 1is encountered
until a .TFCOND is encountered in the file. So /X
has an effect only when used with a £file that
contains no conditional listing pseudo-ops or when
used with .TFCOND.

MACRO-80 ASSEMBLER PAGE 2-5

Examples:

*=TEST/L Assemble TEST.MAC, place the object file 1in
TEST.REL and a 1listing file in TEST.PRN.
(With ISIS-II, the listing file is
TEST.LST.)

*=TEST/L/O Same as above, but 1listing file addresses
will be in octal.

*LAST=TEST/C Assemble TEST.MAC, place the object file 1in

LAST.REL and cross reference file 1in
TEST.CRF. (See Chapter 3.)

2.3 FORMAT OF MACRO-80 SOURCE FILES

Input source lines of up to 132 characters 1in 1length are
acceptable.

MACRO-80 preserves lower case letters in quoted strings and
comments. All symbols, opcodes and pseudo-opcodes typed in
lower case will be converted to upper case.

If the source file includes line numbers from an editor,

each byte of the 1line number must have the high bit on.
Line numbers from Microsoft's EDIT-80 Editor are acceptable.

2.3.1 Statements

Source files input to MACRO-80 consist of statements of the
form:

[label:[:]] [operator] [arguments] [;comment]

With the exception of the ISIS assembler § controls (see
Section 2.11), it is not necessary that statements begin in
column 1. Multiple blanks or tabs may be used to improve
readability.

If a label is present, it is the first item in the statement
and 1is immediately followed by a colon. If it is followed
by two colons, it is declared as PUBLIC (see ENTRY/PUBLIC,
Section 2.6.10). For exmple:

FOO:: RET
is equivalent to

PUBLIC FOO
FOO: RET

MACRO-80 ASSEMBLER PAGE 2-6

The next item after the label, or the first item on the line
if no label is present, is an operator. An operator may be
an 8086 mnemonic, pseudo-op, macro call or expression. The
evaluation order is as follows:

1. Macro call
2. Mnemonic/Pseudo operation
3. Expression

Instead of flagging an expression as an error, the assembler
treats it as if it were a DB statement (see Section 2.6.4).

The arguments following the operator will, of «c¢ourse, vary
in form according to the operator.

A comment always begins with a semicolon and ends with a
carriage return. A comment may be a line by itself or it
may be appended to a 1line that «contains a statement.
Extended comments can be entered using the .COMMENT pseudo
operation (see Section 2.6.20). ‘

2.3.2 Symbols

MACRO-80 symbols may be of any 1length, however, only the
first six characters are significant. The following
characters are legal in a symbol:

With Microsoft's 8080/280/8086 assemblers, the underline
character is also legal in a symbol. A symbol may not start
with a digit. When a symbol 1is read, lower case |is
translated 1into upper «case. If a symbol reference is
followed by ## it 1is declared external (see also the
EXT/EXTRN pseudo-op, Section 2.6.12).

2.3.3 Numeric Constants

The default base for numeric constants is decimal. This may
be changed by the .RADIX pseudo-op (see Section 2.6.22).
Any base from 2 (binary) to 16 (hexadecimal) may be
selected. When the base 1is greater than 10, A-F are the
digits following 9. 1If the first digit of the number is not
numeric the number must be preceded by a zero.

MACRO-80 ASSEMBLER PAGE 2-7

Numbers are 1l6-bit unsigned quantities. A number is always
evaluated in the current radix unless one of the following
special notations is used:

nnnnB Binary

nnnnD Decimal

nnnno Octal

nnnnQ Octal

nnnnH Hexadecimal
X'nnnn' Hexadecimal

Overflow of a number beyond two bytes 1is ignored and the
result is the low order 1l6-bits.

A character constant is a string comprised of zero, one or
two ASCII characters, delimited by quotation marks, and used
in a non-simple expression. For example, in the statement

DB "A' + 1
'A' is a character constant. But the statement
DB Al

uses 'A' as a string because it is in a simple expression.
The rules for character constant delimiters are the same as
for strings.

A character constant comprised of one character has as its
value the ASCII value of that character. That is, the high
order byte of the value is zero, and the low order byte is
the ASCII value of the character. For example, the value of
the constant 'A' is 41H.

A character constant comprised of two characters has as 1its
value the ASCII value of the first character in the high
order byte and the ASCII value of the second character in
the low order byte. For example, the value of the character
constant "AB" is 41H*256+42H.

2.3.4 Strings

A string is comprised of zero or more characters delimited
by quotation marks. Either single or double quotes may be
used as string delimiters. The delimiter quotes may be used
as characters 1if they appear twice for every character
occurrence desired. For example, the statement

DB "I am ""great"" today"”
stores the string

I am "great" today

MACRO-80 ASSEMBLER PAGE 2-8

If there are zero characters between the delimiters, the
string is a null string.

2.4 EXPRESSION EVALUATION

2.4.1 Arithmetic And Logical Operators

The following operators are allowed 1in expressions. The
operators are listed in order of precedence.

NUL

LOW, HIGH

*, /, MOD, SHR, SHL

Unary Minus

+, -

EQ, NE, LT, LE, GT, GE

NOT

AND

OR, XOR
Parentheses are used to change the order of precedence.
During evaluation of an expression, as soon as a new
operator is encountered that has precedence 1less than or
equal to the last operator encountered, all operations up to
the new operator are performed. That 1is, subexpressions

involving operators of higher precedence are computed first.

All operators except +, -, *, / must be separated from their
operands by at least one space.

The byte isolation operators (HIGH, LOW) isolate the high or
low order 8 bits of an Absolute 16-bit value. If a
relocatable value is supplied as an operand, HIGH and LOW
will treat it as if it were relative to location zero.

2.4.2 Modes

All symbols used as operands in expressions are in one of
the following modes: Absolute, Data Relative, Program
(Code) Relative or COMMON. (See Section 2.6 for the ASEG,
CSEG, DSEG and COMMON pseudo-ops.) Symbols assembled under
the ASEG, CSEG (default), or DSEG pseudo-ops are in
Absolute, Code Relative or Data Relative mode respectively.

MACRO-80 ASSEMBLER PAGE 2-9

The number of COMMON modes in a program is determined by the
number of COMMON blocks that have been named with the COMMON
pseudo-op. Two COMMON symbols are not in the same mode
unless they are in the same COMMON block. 1In any operation
other than addition or subtraction, the mode of both
operands must be Absolute.

If the operation is addition, the following rules apply:
l; At least one of the operands must be Absolute.
2. Absolute + <mode> = <mode>

If the operation is subtraction, the following rules apply:
1. <mode> - Absolute = <mode>

2. <mode> - <mode> = Absolute
where the two <mode>s are the same.

Each intermediate step in the evaluation of an expression
must conform to the above rules for modes, or an error will
be generated. For example, if FOO, BAZ and ZAZ are three
Program Relative symbols, the expression

FOO + BAZ - 2ZAZ

will generate an R error because the first step (FOO + BAZ)
adds two relocatable values. (One of the values must be
Absolute.) This problem can always be fixed by 1inserting
parentheses. So that

FOO + (BAZ - 2ZAZ)

is legal because the first step (BAZ - 2ZAZ) denerates an
Absolute value that 1is then added to the Program Relative
value, FOO.

2.4.3 Externals

Aside from its classification by mode, a symbol 1is either
External or not External. (See EXT/EXTRN, Section 2.6.12.)
An External value must be assembled into a two-byte field.
(Single-byte Externals are not supported.) The following
rules apply to the use of Externals in expressions:

1. Externals are legal only in addition and
subtraction.

2. If an External symbol is used in an expression, the
result of the expression is always External.

3. When the operation is addition, either operand (but
not both) may be External.

MACRO-80 ASSEMBLER PAGE 2-10

4., When the operation is subtraction, only the first
operand may be External.

2.5 OPCODES AS OPERANDS

8080 opcodes are valid one-byte operands. Note that only
the first byte is a valid operand. For example:

MVI A, (JMP)

ADI (CPI)
MVI B, (RNZ)
CPI (INX H)
ACI (LXI B)

MVI C,MOV A,B

Errors will be generated if more than one byte 1is included
in the operand -- such as (CPI 5), LXI B,LABELl) or (JMP

LABEL2) .

Opcodes used as one-byte operands need not be enclosed in
parentheses.

NOTE

Opcodes are not valid operands
in 280 mode.

MACRO-80 ASSEMBLER PAGE 2-11

2.6 PSEUDO OPERATIONS

2.6.1 ASEG
ASEG

ASEG sets the location counter to an absolute segment of
memory. The location of the absolute counter will be that
of the last ASEG (default is 0), unless an ORG is done after
the ASEG to change the location. The effect of ASEG is also
achieved by using the code segment (CSEG) pseudo operation
and the /P switch in LINK-80. See also Section 2.6.28

2.6.2 COMMON
COMMON /<block name>/

COMMON sets the location counter to the selected common
block in memory. The location is always the beginning of
the area so that compatibility with the FORTRAN COMMON
statement is maintained. If <block name> is omitted or
consists of spaces, it is considered to be blank common.
See also Section 2.6.28.

2.6.3 CSEG
CSEG

CSEG sets the location counter to the code relative segment
of memory. The location will be that of the last CSEG
(default is 0), unless an ORG is done after the CSEG to
change the 1location. CSEG is the default condition of the
assembler (the INTEL assembler defaults to ASEG). See also
Section 2.6.28.

2.6.4 DB - Define Bvte

DB <exp>[,<exp>...]
DB <string>[<string>...]

The arguments to DB are either expressions or strings. DB
stores the values of the expressions or the characters of
the strings in successive memory locations beginning with
the current location counter.

MACRO-80 ASSEMBLER PAGE 2-12

Expressions must evaluate to one byte. (If the high byte of
the result is 0 or 255, no error is given; otherwise, an A
error results.)

Strings of three or more characters may not be wused in
expressions (i.e., they must be immediately followed by a
comma or the end of the line). The characters in a string
are stored 1in the order of appearance, each as a one-~byte
value with the high order bit set to zero.

Example:
ofofelo Ry 41 42 DB 'AB'
0002° 42 DB 'AB' AND OFFH
0003 41 42 43 DB 'ABC'

2.6.5 DC - Define Character

DC <string>

DC stores the characters in <string> 1in successive memory
locations beginning with the current location counter. As
with DB, characters are stored in order of appearance, each
as a one-byte value with the high order bit set to zero.
However, DC stores the last character of the string with the
high order bit set to one. An error will result if the
argument to DC is a null string.

2.6.6 DS - Define Space

DS <exp>

DS reserves an area of memory. The value of <exp> gives the
number of bytes to be allocated. All names used in <exp>
must be previously defined (i.e., all names known at that
point on pass 1). Otherwise, a V error is generated during
pass 1 and a U error may be generated during pass 2. If a U
error is not generated during pass 2, a phase error will
probably be generated because the DS generated no <code on
pass 1.

2.6.7 DSEG
DSEG
DSEG sets the location counter to the Data Relative segment

of memory. The location of the data relative counter will
be that of the last DSEG (default is 0), unless an ORG is

MACRO-80 ASSEMBLER PAGE 2-13

done after the DSEG to change the location. See also
Section 2.6.28.

2.6.8 DW - Define Word

DW <exp>[,<exp>...]

DW stores the values of the expressions in successive memory
locations beginning with the current location counter.
Expressions are evaluated as 2-byte (word) values.

2.6.9 END
END [<exp>]

The END statement specifies the end of the program. If
<exp> 1is present, it is the start address of the program.
If <exp> is not present, then no start address is passed to
LINK-80 for that program.

NOTE

If an assembly language
program is the main program, a
start address (label) must be
specified. If not, LINK-80
will issue a "no start
address" error. If the
program is a subroutine to a
FORTRAN program (for example),
the start address is not
required because FORTRAN has
supplied one.

2.6.10 ENTRY/PUBLIC

ENTRY <name>[,<name>...]
or
PUBLIC <name>[,<name>...]

ENTRY or PUBLIC declares each name in the list as internal
and therefore available for use by this program and other
programs to be loaded concurrently. All of the names in the
list must be defined 1in the current program or a U error
results. An M error is generated if the name is an external
name or common-blockname.

MACRO-80 ASSEMBLER PAGE 2-14

2.6.11 EQU
<name> EQU <exp>

EQU assigns the value of <exp> to <name>. If <exp- 1is
external, an error 1is generated. If <name> already has a
value other than <exp>, an M error is generated.

2.6.12 EXT/EXTRN

EXT <name>[,<name>...]
or
EXTRN <name>[,<name>...]

EXT or EXTRN declares that the name(s) in the 1list are
external (i.e., defined 1in a different program). If any
item in the list references a name that is defined in the
current program, an M error results. A reference to a name
where the name is followed immediately by two pound signs
(e.g., NAME##) also declares the name as external.

2.6.13 INCLUDE
INCLUDE <filename>

The INCLUDE pseudo-op applies only to CP/M versions of
MACRO-80. The pseudo-ops INCLUDE, $INCLUDE and MACLIB are
synonymous.

The INCLUDE pseudo-op assembles source statements frcocm an
alternate source file into the current source file. Use of
INCLUDE eliminates the need to repeat an often-used sequence
of statements in the current source file.

<filename> is any valid specification, as determined by the
operating system. Defaults for filename extensions and
device names are the same as those in a MACRO-80 command
line.

The INCLUDE file is opened and assembled into the current
source file immediately following the INCLUDE statement.
When end-of-file 1is reached, assembly resumes with the
statement following INCLUDE.

On a MACRO-80 listing, a plus sign is printed between the
assembled c¢ode and the source line on each line assembled
from an INCLUDE file. (See Section 2.12.)

Nested INCLUDEs are not allowed. 1If encountered, they will
result in an objectionable syntax error 'O'.

MACRO-80 ASSEMBLER PAGE 2-15

The file specified in the operand field must exist. If the
file is not found, the error 'V' (value error) is given, and
the INCLUDE is ignored.

2.6.14 NAME
NAME ('modname ')

NAME defines a name for the module. Only the first six
characters are significant in a module name. A module name
may also be defined with the TITLE pseudo-op. In the
absence of both the NAME and TITLE pseudo-ops, the module
name is created from the source file name.

2.6.15 ORG - Define Origin

ORG <exp>

The location counter is set to the value of <exp> and the
assembler assigns generated code starting with that value.
All names used in <exp> must be known on pass 1, and the
value must either be absolute or in the same area as the
location counter.

2.6.16 PAGE
PAGE [<exp>]

PAGE causes the assembler to start a new output page. The
value of <exp>, 1f included, becomes the new page size
(measured in lines per page) and must be in the range 10 to
255. The default page size 1is 50 lines per page. The
assembler puts a form feed character in the listing file at
the end of a page.

2.6.17 SET
<name> SET <exp>

SET is the same as EQU, except no error 1is generated if
<name> is already defined.

MACRO-80 ASSEMBLER PAGE 2-16

2.6.18 SUBTTL
SUBTTL <text>

SUBTTL specifies a subtitle to be listed on the 1line after
the title (see TITLE, Section 2.6.19) on each page heading.
<text> is truncated after 60 characters. Any number of
SUBTTLs may be given in a program.

2.6.19 TITLE
TITLE <text>

TITLE specifies a title to be listed on the first 1line of
each page. If more than one TITLE is given, a Q error
results. The first six characters of the title are used as
the module name unless a NAME pseudo operation is used. 1If
neither a NAME or TITLE pseudo-op is used, the module name
is created from the source filename. -

2.6.20 .COMMENT
.COMMENT <delim><text><delim>

The first non-blank character encountered after .COMMENT 1is
the delimiter. The following <text> comprises a comment
block which continues until the next occurrence of
<delimiter> 1is encountered. For example, using an asterisk
as the delimiter, the format of the comment block would be:

.COMMENT *
any amount of text entered
here as the comment block

*
sreturn to normal mode

MACRO-80 ASSEMBLER PAGE 2-17

2.6.21 . PRINTX
.PRINTX <delim><text><delim>

The first non-blank character encountered after .PRINTX is
the delimiter. The following text is listed on the terminal
during assembly until another occurrence of the delimiter is
encountered. .PRINTX 1is useful for displaying progress
through a long assembly or for displaying the value of
conditional assembly switches. For example:

IF CPM
.PRINTX /CPM version/
ENDIF

NOTE

.PRINTX will output on both
passes. If only one printout
is desired, use the IF1l or IF2
pseudo-op. For example:

IF2

IF CPM

.PRINTX /CPM version/
ENDIF

ENDIF

will only print if CPM is true
and M80 is in pass 2.

2.6.22 L.RADIX
«RADIX <exp>

The default base (or radix) for all constants is decimal.
The .RADIX statement allows the default radix to be changed
to any base in the range 2 to 1l6. For example:

MOVI BX,0FFH
.RADIX 16
MOVI BX,0FF

The two MOVIs in the example are identical. The <exp> in a
.RADIX statement 1is always in decimal radix, regardless of
the current radix.

MACRO-80 ASSEMBLER PAGE 2-18

2.6.23 .2Z80

.280 enables the assembler to accept 280 opcodes. This 1is
the default condition when the assembler is running on a 280
operating system. 280 mode may also be set by appending the
Z switch to the MACRO-80 command string -- see Section
2.2.2.

2.6.24 .8080

.8080 enables the assembler to accept 8080 opcodes. This is
the default condition when the assembler is running on an
8080 operating system. 8080 mode may also be set by
appending the I switch to the MACRO-80 command string -- see
Section 2.2.2.

2.6.25 « REQUEST
.REQUEST <filename>[,<filename>...]

.REQUEST sends a request to the LINK-80 loader to search the
filenames 1in the list for undefined globals. The filenames
in the list should be in the form of 1legal symbols. They
should not include filename extensions or disk
specifications. LINK-80 supplies a default extension and
assumes the default disk drive.

MACRO-80 ASSEMBLER PAGE 2-19

2.6.26 Conditional Pseudo Operations

The conditional pseudo operations are:

IF/IFT <exp> True if <exp> is not 0.
IFE/IFF <exp> True if <exp> is 0.

IFl True if pass 1.

IF2 True if pass 2.

IFDEF <symbol> True if <symbol> is defined or

has been declared External.

IFNDEF <symbol> True if <symbol> is undefined
or not declared External.

IFB <arg> True if <arg> is blank. The
angle brackets around <arg>
are required.

IFNB <arg> True if <arg> is not blank.
Used for testing when dummy
parameters are supplied. The
angle brackets around <arg>
are required.

IFIDN <argl»>,<arg2> True if the string <argl> is
IDeNtical to the string
<arg2>.

The angle brackets around
<argl> and <arg2> are
required.

IFDIF <argl>,<arg2> True if the string <argl> is
DIFferent from the string
<arg2>.

The angle brackets around
<argl> and <arg2> are
required.

All conditionals use the following format:

IFxX [argument]

[ELSE

ENDIF

MACRO-80 ASSEMBLER PAGE 2-20

Conditionals may be nested to any level. Any argument to a
conditional must be known on pass 1 to avoid V errors and
incorrect evaluation. For 1IF, IFT, IFF, and IFE the
expression must involve values which were previously defined
and the expression must be absolute. If the name is defined
after an IFDEF or IFNDEF, pass 1 considers the name to be
undefined, but it will be defined on pass 2.

2.6.26.1 ELSE - Each conditional pseudo operation may
optionally be wused with the ELSE pseudo operation which
allows alternate code to be generated when the opposite
condition exists. Only one ELSE is permitted for a given
IF, and an ELSE is always bound to the most recent, open IF.
A conditional with more than one ELSE or an ELSE without a
conditional will cause a C error.

2.6.26.2 ENDIF - Each IF must have a matching ENDIF to
terminate the conditional. Otherwise, an 'Unterminated
conditional' message is generated at the end of each pass.
An ENDIF without a matching IF causes a C error.

2.6.27 Listing Control Pseudo Operations

Output to the 1listing file can be controlled by two
pseudo-ops:

.LIST and -XLIST

If a listing is not being made, these pseudo-ops have no
effect. .LIST 1is the default condition. When a .XLIST is
encountered, source and object code will not be listed until
a .LIST is encountered.

The output of false conditional blocks 1is controlled by
three pseudo-ops: .SFCOND, .LFCOND, and .TFCOND.

These pseudo-ops give the programmer control over four
cases.

1. Normally list false conditionals
For this case, the programmer simply allows the
default mode to control the listing. The default
mode is list false conditionals. If the programmer
decides to suppress false conditionals, the /X
switch can be issued in the command line instead of
editing the source file.

MACRO-80 ASSEMBLER PAGE 2-21

2.

Normally suppress false conditionals

For this case, the programmer issues the .TFCOND
pseudo-op in the program file. .TFCOND reverses
(toggles) the default, causing false conditionals
to be suppressed. If the programmer decides to
list false conditionals, the /X switch can be
issued 1in the command line instead of editing the
source file.

Always suppress/list false conditionals

For these cases, the programmer issues either the
. SFCOND pseudo-op to always suppress false
conditionals, or the .LFCOND pseudo-op to always
list all false conditionals.

Suppress/list some false conditionals ,

For this case, the programmer has decided for most
false conditionals whether to list or suppress, but
for some false conditionals the programmer has not
yet decided. For the false conditionals decided
about, use .SFCOND or .LFCOND. For those not yet
decided, use .TFCOND. .TFCOND sets the current and
default settings to the opposite of the default.
Initially, the default is set by giving /X or no /X
in the command line. Two subcases exist:

1. The programmer wants some false conditionals
not to list unless /X is given. The programmer
uses the .SFCOND and .LFCOND pseudo-ops to
control which areas always suppress or list
false conditionals. To selectively suppress
some false conditionals, the programmer issues
.TFCOND at the beginning of the conditional
block and again at the end of the conditional
block. (NOTE: The second .TFCOND should be
issued so that the default setting will be the
same as the initial setting. Leaving the
default equal to the initial setting makes it
easier to keep track of the default mode 1if
there are many such areas.) If the conditional
block evaluates as false, the 1lines will be
suppressed. In this subcase, issuing the /X
switch in the command line causes the
conditional block affected by .TFCOND to list
even if it evaluates as false.

MACRO-80 ASSEMBLER PAGE 2-22

The three
below.

PSEUDO-OP

2.

The programmer wants some false conditionals to
list wunless /X 1is given. Two consecutive
.TFCONDs places the conditional listing setting
in initial state which 1is determined by the
presence or absence of the /X switch 1in the
command line (the first .TFCOND sets the
default to not initial; the second to
initial). The selected conditional block then
responds to the /X switch: if a /X switch |is
issued in the command 1line, the conditional
block is suppressed if false; if no /X switch
is issued in the command line, the conditional
block is listed even if false.

The programmer then must reissue the .SFCOND or
. LFCOND conditional listing pseudo-op to
restore the suppress or 1list mode. Simply
issuing another .TFCOND will not restore the
prior mode, but will toggle the default
setting. Since in this subcase, the next area
of code is supposed to list or suppress false
conditionals always, the programmer must issue
.SFCOND or .LFCOND.

conditional 1listing pseudo-ops are summarized

DEFINITION

. SFCOND

.LFCOND

. TFCOND

Suppresses the listing of conditional blocks
that evaluate as false.

Restores the listing of conditional blocks that
evaluate as false.

Toggles the current setting which controls the
listing false conditionals. .TFCOND sets the
current and default setting to not default. 1If
a /X switch 1is given 1in the MACRO-80 run
command line for a file which contains .TFCOND,
/X reverses the effect of .TFCOND.

MACRO-80 ASSEMBLER PAGE 2-23

The following chart illustrates the effects of the three
pseudo-ops when encountered under /X and under no /X.

PSEUDO-OP NO /X /X
(none) ON OFF
.SF%OND O%F O%F
.LFéOND Oé Oé
.TFéOND OéF Oé
.TF%OND Oé OéF
.SF%OND O%F O%F
.TFéOND OéF Oé
. TFCOND ON O?F
.TFéOND OéF Oé

The output of cross reference information is controlled by
.CREF and .XCREF. If the cross reference facility (see
Chapter 3) has not been invoked, .CREF and .XCREF have no
effect. The default condition is .CREF. When a .XCREF is
encountered, no cross reference information is output until
.CREF is encountered.

The output of MACRO/REPT/IRP/IRPC expansions 1is controlled
by three pseudo-ops: .LALL, .SALL, and .XALL. .LALLlists
the complete macro text for all expansions. .SALL
suppresses 1lsiting of all text and object code produced by
macros. .XALL is the default condition; a source 1line 1is
listed only if it generates object code.

MACRO-80 ASSEMBLER PAGE 2-24

2.6.28 Relocation Pseudo Operations

The ability to create relocatable modules is one of the
major features of Microsoft assemblers. Relocatable modules
offer the advantages of easier coding and faster testing,
debugging and modifying. In addition, it is possible to
specify segments of assembled code that will later be loaded
into RAM (the Data Relative segment) and ROM/PROM (the Code
Relative segment). The pseudo operations that select
relocatable areas are CSEG and DSEG. The ASEG pseudo-op is
used to generate non-relocatable (absolute) code. The
COMMON pseudo-op creates a common data area for every COMMON
block that is named in the program.

The default mode for the assembler is Code Relative. That
is, assembly begins with a CSEG automatically executed and
the location counter in the Code Relative mode, pointing to
location 0 in the Code Relative segment of memory. All
subsequent instructions will be assembled into the Code
Relative segment of memory until an ASEG or DSEG or COMMON
pseudo-op 1is executed. For example, the first DSEG
encountered sets the location counter to location zero in
the Data Relative segment of memory. The following code is
assembled in the Data Relative mode, that is, it is assigned
to the Data Relative segment of memory. If a subsequent
CSEG is encountered, the location counter will return to the
next free location in the Code Relative segment and so on.

The ASEG, DSEG, CSEG pseudo-ops never have operands. If you
wish to alter the current value of the location counter, use
the ORG pseudo-op.

2.6.28.1 ORG Pseudo-op - At any time, the value
of the location counter may be changed by use of the the ORG
pseudo-op. The form of the ORG statement is:

ORG <exp>

where the value of <exp> will be the new value of the
location counter in the <current mode. All names used in
<exp> must be known on pass 1 and the wvalue of <exp> must be
either Absolute or in the current mode of the location
counter. For example, the statements

DSEG
ORG 50

set the Data Relative location counter to 50, relative to
the start of the Data Relative segment of memory.

MACRO-80 ASSEMBLER PAGE 2-25

2.6.28.2 LINK-80 - The LINK-80 1linking loader (see-
Chapter 4 of this manual) combines the segments and creates
each relocatable module in memory when the program is
loaded. The origins of the relocatable segments are not
fixed until the program 1is loaded and the origins are
assigned by LINK-80. The command to LINK-80 may contain
user-specified origins through the use of the /P (for Code
Relative) and /D (for Data and COMMON segments) switches.

For example, a program that begins with the statements

ASEG
ORG 800H

and is assembled entirely in Absolute mode will always load
beginning at 800 unless the ORG statement is changed in the
source file. However, the same program, assembled in Code
Relative mode with no ORG statement, may be loaded at any
specified address by appending the /P:<address> switch to
the LINK-80 command string.

2.6.29 Relocation Before Loading

Two pseudo-ops, .PHASE and .DEPHASE, allow code to be
located in one area, but executed only at a different,
specified area.

For example:

0000 .PHASE 100H
0100 E8 0003 FOO: CALL BAZ
0103 E9 FFO1 JMP Z00
0106 C3 BAZ: RET

.DEPHASE
0007 E9 FFFB 200: JMP 5

All labels within a .PHASE block are defined as the absolute
value from the origin of the phase area. The code, however,
is loaded in the current area (i.e., from O0' in this
example) . The code within the block can later be moved to
100H and executed.

2.7 MACROS AND BLOCK PSEUDO OPERATIONS

The macro facilities provided by MACRO-80 include three
repeat pseudo operations: repeat (REPT), indefinite repeat
(IRP), and indefinite repeat character (IRPC). A macro
definition operation (MACRO) 1is also provided. Each of
these four macro operations is terminated by the ENDM pseudo
operation.

MACRO-80 ASSEMBLER PAGE 2-26

2.7.1 Terms

For the purposes of discussion of macros and block
operations, the following terms will be used:

1. <dummy> is used to represent a dummy parameter.
All dummy parameters are legal symbols that appear
in the body of a macro expansion.

2. <dummylist> is a 1list of <dummy>s separated by
commas.

3. <arglist> is a 1list of arguments separated by
commas. <arglist> must be delimited by angle
brackets. Two angle brackets with no intervening
characters (<>) or two commas with no intervening
characters enter a null argument in the 1list.
Otherwise an argument is a character or series of
characters terminated by a comma or >. With angle
brackets that are nested inside an <arglist>, one .
level of brackets 1is removed each time the
bracketed argument is used in an <arglist>. See
example, Section 2.7.5.) A gquoted string 1is an
acceptable argument and is passed as such. Unless
enclosed in brackets or a quoted string, 1leading
and trailing spaces are deleted from arguments.

4, <paramlist> is used to represent a list of actual
parameters separated by commas. No delimiters are
required (the list is terminated by the end of line
or a comment), but the rules for entering null
parameters and nesting brackets are the same as
described for <arglist>. (See example, Section
2.7.5)

2.7.2 REPT-ENDM

REPT <exp>

ENDM

The block of statements between REPT and ENDM is repeated
<exp> times. <exp> 1is evaluated as a 1l6-bit unsigned
number. If <exp> contains any external or undefined terms,
an error is generated. Example:

SET O

REPT 10 ;generates DB 1 - DB 10
SET X+1

DB X

ENDM

MACRO-80 ASSEMBLER PAGE 2-27

2.7.3 IRP-ENDM

IRP <dummy>,<arglist>

ENDM
The <arglist> must be enclosed in angle brackets. The
number of arguments in the <arglist> determines the number
of times the block of statements 1is repeated. Each

repetition substitutes the next item in the <arglist> for
every occurrence of <dummy> in the block. If the <arglist>
is null (i.e., <>), the block is processed once with each
occurrence of <dummy> removed. For example:

IRP X,<1,2,3,4,5,6,7,8,9,10>
DB X
ENDM

generates the same bytes as the REPT example.

2.7.4 IRPC-ENDM

IRPC <dummy>,string (or <string>)

ENDM

IRPC is similar to IRP but the arglist 1is replaced by a
string of text and the angle brackets around the string are
optional. The statements in the block are repeated once for
each <character in the string. Each repetition substitutes
the next character in the string for every occurrence of
<dummy> in the block. For example:

IRPC X,0123456789
DB X+1
ENDM

generates the same code as the two previous examples.

MACRO-80 ASSEMBLER PAGE 2-28

2.7.5 MACRO

Often it is convenient to be able to generate a given
sequence of statements from various places in a program,
even though different parameters may be required each time
the sequence 1is wused. This capability is provided by the
MACRO statement.

The form is

<name> MACRO <dummylist>

ENDM

where <name> conforms to the rules for forming symbols.
<name> 1is the name that will be used to invoke the macro.
The <dummy>s in <dummylist> are the parameters that will be
changed (replaced) each time the MACRO is invoked. The
statements before the ENDM comprise the body of the macro.
During assembly, the macro 1is expanded every time it is
invoked but, unlike REPT/IRP/IRPC, the macro is not expanded
when it is encountered.

The form of a macro call is
<name> <paramlist>

where <name> is the name supplied in the MACRO definition,
and the parameters in <paramlist> will replace the <dummy>s
in the MACRO <dummylist> on a one-to-one basis. The number
of items in <dummylist> and <paramlist> is limited only by
the length of a line. The number of parameters used when
the macro 1is called need not be the same as the number of
<dummy>s in <dummylist>. If there are more parameters than
<dummmy>s, the extras are ignored. 1If there are fewer, the
extra <dummy>s will be made null. The assembled code will
contain the macro expansion code after each macro call.

NOTE

A dummy parameter in a
MACRO/REPT/IRP/IRPC 1is always
recognized exclusively as a
dummmy parameter, Register
names such as A and B will be
changed in the expansion if
they were used as dummy
parameters.

MACRO-80 ASSEMBLER PAGE 2-29

Here is an example of a MACRO definition that defines a
macro called FOO:

FOO MACRO

Y SET
REPT

Y SET

: DB
ENDM
ENDM

KKK OX

This macro generates the same code as the previous three
examples when the call

FOO 10
is executed.
Another example, which generates the same code, illustrates

the removal of one 1level of brackets when an argument is
used as an arglist:

FOO MACRO X
IRP Y, <X>
DB Y
ENDM
ENDM

When the call
FOO <1,2,3,4,5,6,7,8,9,10>

is made, the macro expansion looks like this:

IRP ¥,<1,2,3,4,5,6,7,8,9,10>
DB Y
ENDM

2.7.6 ENDM

Every REPT, IRP, IRPC and MACRO pseudo-op must be terminated
with the ENDM pseudo-op. Otherwise, the 'Unterminated
REPT/IRP/IRPC/MACRO' message is generated at the end of each
pass. An unmatched ENDM causes an O error.

2.7.7 EXITM

The EXITM pseudo-op is used to terminate a REPT/IRP/IRPC or
MACRO call. When an EXITM is executed, the expansion is
exited immediately and any remaining expansion or repetition
is not generated. If the block containing the EXITM is
nested within another block, the outer level continues to be
expanded.

MACRO-80 ASSEMBLER PAGE 2-30

2.7.8 LOCAL
LOCAL <dummylist>

The LOCAL pseudo-op 1is allowed only inside a MACRO
definition. When LOCAL is executed, the assembler creates a
unique symbol for each <dummy > in <dummylist> and
substitutes that symbol for each occurrence of the <dummy>
in the expansion. These unique symbols are usually used to
define a label within a macro, thus eliminating
multiply-defined labels on successive expansions of the
macro. The symbols created by the assembler range from
..0001 to ..FFFF. Users will therefore want to avoid the
form ..nnnn for their own symbols. If LOCAL statements are
used, they must be the first statements in the macro
definition.

2.7.9 Special Macro Operators And Forms

& The ampersand 1is wused in a macro expansion to
concatenate text or symbols. A dummy parameter that
is in a quoted string will not be substituted in the
expansion unless it is immediately preceded by &.
To form a symbol from text .and a dummy, put &
between them. For example:

ERRGEN MACRO X

ERROR&X : PUSH BX
MOVI BX, '&X!
JMP ERROR
ENDM

In this example, the call ERRGEN A will generate:

ERRORA: PUSH B
MOVI BX,'a’
JMP ERROR

In a block operation, a comment preceded by two
semicolons 1is not saved as part of the expansion
(i.e., it will not appear on the listing even under

~e
~e

.LALL) . A comment preceded by one semicolon,
however, will be preserved and appear in the
expansion.

G

When an exclamation point is used in an argument,
the next character 1is entered literally (i.e., !;
and <;> are equivalent).

MACRO-80 ASSEMBLER PAGE 2-31

NUL

NUL is an operator that returns true if its argument
(a parameter) is null. The remainder of a line
after NUL is considered to be the argument to NUL.
The conditional

IF NUL argument

is false 1if, during the expansion, the first
character of the argument is anything other than a
semicolon or carriage return. It is recommended
that testing for null parameters be done using the
IFB and IFNB conditionals.

The percent sign is used only in a macro argument.
% converts the expression that follows it (usually a
symbol) to a number in the current radix. During
macro expansion, the number derived from converting
the expression is substituted for the dummy. Using
the % special operator allows a macro call by value.
(Usually, a macro call is a call by reference with
the text of the macro argument substituting exactly
for the dummy.)

The expression following the % must conform to the
same rules as the DS (Define Space) pseudo-op. A
valid expression returning a non-relocatable
constant is required.

EXAMPLE: Normally, LB, the argument to MAKLAB,
would be substituted for ¥, the argument to MACRO,
as a string. The % causes LB to be converted to a
non-relocatable constant which is then substituted
for Y. Without the % special operator, the result
of assembly would be 'Error LB' rather than 'Error
1l', etc.

MAKLAB MACRO Y
ERR&Y: DB 'Error &Y',0
ENDM
MAKERR MACRO X
LB SET 0
REPT X
LB SET LB+1
MAKLAB $LB
ENDM
ENDM

When <called by MARERR 3, the assembler will
generate:

ERR1: DB 'Error 1',0
ERR2: DB 'Brror 2',0
ERR3: DB 'Error 3',0

MACRO-80 ASSEMBLER PAGE 2-32

TYPE

The TYPE operator returns a byte that describes two
characteristics of its argument: 1) the mode, and
2) whether it is External or not. The argument to
TYPE may be any expression (string, numeric,
logical). If the expression 1is invalid, TYPE
returns zero.

The byte that is returned is configured as follows:

The lower two bits are the mode. If the lower two
bits are:

the mode is Absolute

the mode is Program Relative
the mode is Data Relative
the mode is Common Relative

WO

The high bit (80H) is the External bit. If the high
bit 1is on, the expression contains an External. If
the high bit is off, the expression 1is 1local (not
External).

The Defined bit is 20H. This bit is on 1if the
expression 1is locally defined, and it is off if the
expression is undefined or external. If neither bit
is on, the expression is invalid.

TYPE is usually used 1inside macros, where an
argument type may need to be tested to make a
decision regarding program flow. For example:

FOO MACRO X
LOCAL Z
pA SET TYPE X

IF Zeso

MACRO-80 ASSEMBLER PAGE 2-33

2.8 USING Z280 PSEUDO-OPS

When wusing the MACRO-80 assembler, the following 280
pseudo-ops are valid. The function of each pseudo-op is
equivalent to that of its counterpart.

Z80 pseudo-op Equivalent pseudo-op
COND IFT
ENDC ENDIF
*EJECT PAGE
DEFB DB
DEFS DS
DEFW DW
DEFM DB
DEFL SET
GLOBAL PUBLIC
EXTERNAL : EXTRN

The formats, where different, conform to the previous
format. That 1is, DEFB and DEFW are permitted a list of
arguments (as are DB and DW), and DEFM is permitted a string
or numeric argument (as is DB).

MACRO-80 ASSEMBLER

2.9 SAMPLE ASSEMBLY

A>M80

*EXMPL1, TTY : =EXMPL1

0000
oool’
0002"
0003"

0004"
0006

0007"

0008"
0009"
oooa!

000B'

goocC'
000F'

0010"
o011’
0012
0013"

CSL3

MAC80 3.2

7E
23
66
6F

06 03

29
17
85
6F

05

C2 0006

73
23
72
c9

MAC80 3.2

00001"

LOOP

No Fatal error(s)

PAGE 2-34

PAGE 1
00100 ;CSL3 (P1,P2)
00200 ;SHIFT Pl LEFT CIRCULARLY 3 BITS
00300 ;RETURN RESULT IN P2
00400 ENTRY CSL3
00450 ;GET VALUE OF FIRST PARAMETER
00500 CSL3:
00600 MOV AM
00700 INX H
00800 MoV H/M
00900 MoV L,A
01000 ;SHIFT COUNT
01100 MVI B,3
01200 LOOP: XRA A
01300 sSHIFT LEFT
01400 DAD H
01500 ;ROTATE IN CY BIT
01600 RAL
01700 ADD L
01800 MOV L,A
01900 ; DECREMENT COUNT
02000 DCR B
02100 ;ONE MORE TIME
02200 JNZ LooP
02300 XCHG
02400 ;SAVE RESULT IN SECOND PARAMETER
02500 MOV M,E
02600 INX H
02700 MOV M,D
02800 RET
02900 END

PAGE S

0006’

MACRO-80 ASSEMBLER PAGE 2-35

2.10 MACRO-80 ERRORS

MACRO-80 errors are indicated by a one-character flag in
column one of the listing file. If a listing file is not
being printed on the terminal, each erroneous line 1is also
printed or displayed on the terminal. Below is a list of
the MACRO-80 Error Codes:

A Argument error
Argument to pseudo-op is not in correct format or
is out of range (.PAGE 1l; .RADIX 1l; PUBLIC 1;
JMPS TOOFAR) .

C Conditional nesting error
ELSE without IF, ENDIF without IF, two ELSEs on
one IF.

D Double Defined symbol
Reference to a symbol which is multiply defined.

E External error
Use of an external illegal in context (e.g., FOO
SET NAME##; MOVI AX,2-NAME##).

M Multiply Defined symbol
Definition of a symbol which is multiply defined.

N Number error
Error in a number, usually a bad digit (e.g., 8Q).

(o] Bad opcode or objectionable syntax
ENDM, LOCAL outside a block; SET, EQU or MACRO
without a name; bad syntax in an opcode; or bad
syntax in an expression (mismatched parenthesis,
quotes, consecutive operators, etc.).

P Phase error
Value of a label or EQU name is different on pass
2.

Q Questionable

Usually means a line is not terminated properly.
This is a warning error (e.g. MOV AX,BX,).

R Relocation
Illegal use of relocation in expression, such as
abs-rel. Data, code and COMMON areas are
relocatable.

9] Undefined symbol
A symbol referenced 1in an expression is not
defined. (For certain pseudo-ops, a V error is
printed on pass 1 and a U on pass 2.)

MACRO-80 ASSEMBLER PAGE 2-36

v Value error
On pass 1 a pseudo-op which must have 1its wvalue
known on pass 1 (e.g., .RADIX, .PAGE, DS, IF, IFE,
etc.), has a value which 1is undefined. If the
symbol 1is defined later in the program, a U error
will not appear on the pass 2 listing.

Error Messages:

'No end statement encountered on input file'
No END statement: either it is missing or it is
not parsed due to being in a false conditional,
unterminated IRP/IRPC/REPT block or terminated
macro.

'Unterminated conditional'
At least one conditional is unterminated at the
end of the file.

'Unterminated REPT/IRP/IRPC/MACRO'
At least one block is unterminated.

[xx] [No] Fatal error(s) [,xx warnings]

The number of fatal errors and warnings. The
message is listed on the CRT and in the list file.

2.11 COMPATIBILITY WITH OTHER ASSEMBLERS

The $EJECT and $TITLE controls are provided for
compatability with INTEL's ISIS assembler. The dollar sign
must appear in column 1 only if spaces or tabs separate the
dollar sign from the control word. The control

SEJECT

is the same as the MACRO-80 PAGE pseudo-op.
The control

STITLE('text')
is the same as the MACRO-80 SUBTTL <text> pseudo-op.

The INTEL operands PAGE and INPAGE generate Q errors when
used with the MACRO-80 CSEG or DSEG pseudo-ops. These
errors are warnings; the assembler ignores the operands.

When MACRO-80 is entered, the default for the origin is Code
Relative 0.

With the INTEL ISIS assembler, the default is Absolute 0.

MACRO-80 ASSEMBLER PAGE 2-37

With MACRO-80, the dollar sign ($) 1is a defined constant
that 1indicates the value of the location counter at the
start of the statement. Other assemblers may use a decimal
point or an asterisk. Other constants are defined by
MACRO-80 to have the following values:

A=7 B=0 Cc=1 D=2 E=3
H=4 L=5 M=6 SP=6 PSW=6

2.12 FORMAT OF LISTINGS

On each page of a MACRO-80 listing, the first two lines have
the form:

[TITLE text] M80 3.3 PAGE x[-y]
[SUBTTL text]

where:

l. TITLE text is the text supplied with the TITLE
pseudo-op, if one was given in the source program.

2. x is the major page number, which 1is incremented
only when a form feed is encountered in the source
file. (When using Microsoft's EDIT-80 text editor,
a form feed 1is inserted whenever a page mark is
done.) When the symbol table is being printed, x =
S.

3. y is the minor page number, which 1is incremented
whenever the .PAGE pseudo-op is encountered in the
source file, or whenever the current page size has
been filled.

4. SUBTTL text is the text supplied with the SUBTTL
pseudo-op, if one was given in the source program.

Next, a blank line is printed, followed by the first line of
output.

A line of output on a MACRO-80 1listing has the following
form:

[crf#] [error] loc#m |xx | xxxx|... source

If cross reference information is being output, the first
item on the line is the cross reference number, followed by
a tab.

A one-letter error code followed by a space appears next on
the 1line, if the 1line contains an error. If there is no
error, a space is printed. 1If there is no cross reference
number, the error code column is the first column on the
listing.

MACRO-80 ASSEMBLER PAGE 2-38

The value of the location counter appears next on the line.
It 1s a 4-digit hexadecimal number or 6-digit octal number,
depending on whether the /O or /H switch was given in the
MACRO-80 command string.

The character at the end of the location counter value 1is
the mode indicator. It will be one of the following
symbols:

! Code Relative

" Data Relative

! COMMON Relative
<space> Absolute

* External

Next, three spaces are printed followed by the assembled
code. One-byte values are followed by a space. Two-byte
values are followed by a mode indicator. Two-byte values
are printed in the opposite order they are stored in, i.e.,
the high order byte is printed first. Externals are either
the offset or the value of the pointer to the next External
in the chain.

If a line of output on a MACRO-80 listing is from an INCLUDE
file, the character 'C' is printed after the assembled code
on that line. If a 1line of output 1is part of a text
expansion (MACRO, REPT, IRP, IRPC) a plus sign '+' is
printed after the assembled code on that line.

The remainder of the line contains the line of source code,
as it was input.

Example:
0C49 3A AS1Z' C+ LDA LCOUNT

'C+' indicates this line is from an INCLUDE file and part of
a macro expansion.

MACRO-80 ASSEMBLER PAGE 2-39

2.12.1 Symbol Table Listing

In the symbol table listing, all the macro names in the
program are listed alphabetically, followed by all the
symbols in the program, listed alphabetically. After each
symbol, a tab 1is printed, followed by the value of the
symbol. If the symbol 1is Public, an I is printed
immediately after the wvalue. The next character printed
will be one of the following:

U Undefined symbol.

C COMMON block name. (The "value" of the
COMMON block is its length (number of
bytes) in hexadecimal or octal.)

* External symbol.
<space> Absolute value.
! Program Relative value.

" Data Relative wvalue.

COMMON Relative value.

CHAPTER 3

CREF-80 CROSS REFERENCE FACILITY

NOTE

If you are using the TEKDOS
operating system, see Appendix
A for proper command formats.

In order to generate a cross reference 1listing, the
assembler must output a special listing file with embedded
control characters. The MACRO-80 command string tells the
assembler to output this special listing file. /C is the
cross reference switch. When the /C switch 1is encountered
in a MACRO-80 command string, the assembler opens a .CRF
file instead of a .LST file. (See Section 2.6.27 for the
.CREF and .XCREF pseudo-ops.)

Examples:

*=TEST/C Assemble file TEST.MAC and
create object file TEST.REL
and cross reference file
TEST.CRF.

*T,U=TEST/C Assemble file TEST.MAC and

create object file T.REL
and cross reference file
U.CRF.

When the assembler is finished, run the cross reference
facility by typing CREF80. CREF80 prompts the user with an
asterisk. CREF80 generates a cross reference 1listing £from
the .CRF file that was created during assembly. The CREF80
command format is:

*1isting file=source file

The default extension for the source file is .CRF. There
are no switches in CREF80 commands.

CREF-80 CROSS REFERENCE FACILITY PAGE 3-2

Examples of CREF-80 command strings:

*=TEST Examine file TEST.CRF and

generate a cross reference
listing file TEST.LST.

*P=TEST Examine file TEST.CRF and

generate a cross reference
listing file T.LST.

Cross reference listing files differ from ordinary 1listing
files in that:

l'

2.

Each source statement 1s numbered with a cross
reference number.

At the end of the listing, variable names appear in
alphabetic order along with the numbers-of the
lines on which they are referenced or defined.
Line numbers on which the symbol is defined are
flagged with '#°'.

CHAPTER 4

LINK-80 LINKING LOADER

NOTE
If you are using the TEKRDOS

operating system, see Appendix
A for proper command formats.

4.1 RUNNING LINK-80

The command to run LINK-80 is
L80

LINK-80 returns the prompt "*", indicating it 1is ready to
accept commands.

4.2 COMMAND FORMAT

Each command to LINK-80 consists of a string of object
filenames separated by commas. These are the files to be
loaded by LINK-80. The command format is:

objfilel,objfile2,...objfilen
The default extension for all filenames 1is REL. Command
lines are supported, that is, the invocation and command may
be typed on the same line.

Example:

L80 MYPROG, YRPROG

LINK-80 LINKING LOADER PAGE 4-2

Any filename in the LINK-80 command string can also specify
a device name. The default device name with the CP/M
operating system is the currently logged disk. The default
device with the ISIS-II operating system is disk drive 0.
The format is:

devl:objfilel,dev2:objfile2,...devn:objfilen
The device names are as listed in Section 2.2.1.
Example:

L80 MYPROG,A:YRPROG
After each line is typed, LINK-80 will 1load the specified

files. After LINK finishes this process, it will list all
symbols that remained undefined followed by an asterisk.

Example:
*MAIN
DATA 0100 0200
SUBR1 * (SUBRL is undefined)
*SUBR1
DATA 0100 0300

*

Typically, to execute a MACRO-80 program and subroutines,
the user types the list of filenames followed by /G (begin
execution). To resolve any external, undefined symbols, you
can first search your 1library routines (See Chapter 5,
LIB-80) by appending the filenames, followed by /S, to the
loader command string.

*MYLIB/S Searches MYLIB.REL for unresolved
global symbols

*/G Starts execution

4,2.1 LINK-80 Switches

A number of switches may be given in the LINK-80 command
string to specify actions affecting the loading or execution
of the program(s). Each switch must be preceded by a slash
(/). (With the TEKDOS operating system, switches are
preceded by hyphens . See Appendix A.)

LINK-80 LINKING LOADER PAGE 4-3

Switches may be placed wherever applicable in the command

string:

1.

At command level. It is possible for a switch to
be the entire LINK-80 command, or to appear first
in the command string. For example:

*/G Tells LINK-80 to begin execution
of program(s) already loaded

* /M List all global references
from program(s) already loaded

*/P:200,FOO0 Load FOO, with program area

beginning at address 200

Immediately after a filename. An S or N switch may
refer to only one filename in the command string.
Therefore, when the S or N switch is required, it
is placed immediately after that filename,
regardless of where the filename appears in the
command string. For example:

*MYLIB/S,MYPROG
Search MYLIB.REL and load necessary
library modules, then load MYPROG.REL.

*MYPROG/N,MYPROG/E
Load MYPROG.REL, save MYPROG.COM
on disk and exit LINK-80.

At the end of the command string. Any required
switches that affect the entire load process may be
appended at the end of the command string. For
example:

*MYPROG/N,MYPROG/M/E
Open a CP/M COM file called
MYPROG.COM, load MYPROG. REL
and list all global refer-
ences. Exit LINK-80 and save
the COM file.

MYLIB/S,MYSUB,MYPROG/N,MYPROG/M/G
Search MYLIB.REL, load and link
MYSUB.REL and MYPROG.REL,
open a CP/M COM file
called MYPROG.COM, list
all global references, save the
COM file, and execute MYPROG.

LINK-80 LINKING LOADER PAGE 4-4

The available switches are:

Switch

R

E or E:Name

G or G:Name

Action

Reset. Put loader back in its initial state.
Use /R 1if you loaded the wrong file by
mistake and want to restart. /R takes effect
as - soon as it 1is encountered in a command
string.

Exit LINK-80 and return to the operating
system. The system library will be searched
on the current disk to satisfy any existing
undefined globals. Before exiting, LINK-80
prints three numbers: the start address, the
address of the next available byte, and the
number of 256-byte pages used. The optional
form E:Name (where Name is a global symbol
previously defined in one of the modules)
uses Name for the start address of the
program. Use /E to load a program and exit
back to the monitor.

Start execution of the program as soon as the
current command 1line has been interpreted.
The system library will be searched on the
current disk to satisfy any existing
undefined globals if they exist. Before
execution actually begins, LINK-80 prints
three numbers and a BEGIN EXECUTION messagde.
The three numbers are the start address, the
address of the next available byte, and the
number of 256-byte pages used. The optional
form G:Name (where Name is a global symbol
previously defined in one of the modules)
uses Name for the start address of the
program.

If a <filename>/N is specified, the program
will be saved on disk under the selected name
(with a default extension of .COM for CP/M)
when a /E or /G is done. A jump to the start
of the program is inserted if needed so the
program can run properly (at 100H for CP/M).

LINK-80 LINKING LOADER PAGE 4-5

P and D

/P and /D allow the origin{(s) to be set for
the next program loaded. /P and /D take
effect when seen (not deferred), and they
have no effect on programs already loaded.
The form 1is /P:<address> or /D:<address>,
where <address> is the desired origin in the
current typeout radix. (Default radix 1is
hex. /0O sets radix to octal; /H to hex.)
LINK-80 does a default /P:<link origin>+3
(i.e., 103H for CP/M and 4003H for ISIS) to
leave room for the jump to the start address.
NOTE: Do not use /P or /D to load programs
or data into the locations of the 1loader's
jump to the start address (l100H to 102H for
CP/M) unless it is to load the start of the
program there. If programs or data are
loaded into these locations, the Jjump will
not be generated.

If no /D is given, data areas are loaded
before program areas for each module. If a
/D is given, all Data and Common areas are
loaded starting at the data origin and the
program area at the program origin. Example:

*/P:200,F00
Data 200 300
* /R

*/P:200 /D:400,F0O0
Data 400 480
Program 200 280

List the origin and end of the program and
data area and all undefined globals as soon
as the current command line has been
interpreted. The program information is only
printed if a /D has been done. Otherwise,
the program is stored in the data area.

List the origin and end of the program and
data area, all defined globals and their
values, and all undefined globals followed by
an asterisk. The program information is only
printed if a /D has been done. Otherwise,
the program is stored in the data area.

Search the filename immediately preceding the
/S 1in the command string to satisfy any
undefined globals.

LINK-

80 LINKING LOADER

4.2.2 CP/M LINK-80 Switches

The following switches apply to CP/M versions only.

X

4.2.3

LINK

If a filename/N was specified, /X will
the file to be saved in 1Intel ASCII HEX

format with an extension of HEX.

Example: FOO/N/X/E will <create

ASCII HEX formatted load module

FOO. HEX.

If a filename/N was specified, /Y will create
a filename.SYM file when /E is entered.

file contains the names and addresses of
Globals for use with Digital Research's

Symbolic Debugger, SID and ZSID.

Example: FOO/N/Y/E creates FOO.COM
FOO.SYM. MYPROG/N/X/Y¥/E creates MYPROG.HEX

and MYPROG.SYM.

Sample Links

AND GO

A>L80

*EXAMPL, EXMPL1 /G
DATA 3000 30AC
[304F 30AC 49]

[BEGIN EXECUTION]

1792 14336
14336 -16383
-16383 14
14 112
112 896
A>
LINK AND SAVE
A>L80

*EXAMPL, EXAMPL1 , EXAM/N/E
DATA 3000 30AC
[304F 30AC 49]

A>

Loads and links EXAMPL.REL, EXMPL1.REL and creates

EXAM.COM.

PAGE 4-6

LINK-80 LINKING LOADER PAGE 4-7

4.3 FORMAT OF LINK COMPATIBLE OBJECT FILES

NOTE

Section 4.3 is reference
material for users who wish to
know the load format of
LINK-80 relocatable object
files. Most users will want
to skip this section, as it
does not contain material
necessary to the operation of
the package.

LINK-compatible object files <consist of a bit stream.
Individual fields within the bit stream are not aligned on
byte boundaries, except as noted below. Use of a bit stream
for relocatable object files keeps the size of object files
to a minimum, thereby decreasing the number of disk
reads/writes.

There are two basic types of 1load items: Absolute and
Relocatable. The first bit of an item indicates one of
these two types. If the first bit is a 0, the following 8
bits are loaded as an absolute byte. If the first bit is a
1, the next 2 bits are used to indicate one of four types of
relocatable items:

00 Special LINK item (see below).

01 Program Relative. Load the following 16 bits
after adding the current Program base.

10 Data Relative. Load the following 16 bits after
adding the current Data base.

11 Common Relative. Load the following 16 bits
after adding the current Common base.

Special LINK items consist of the bit stream 100 followed
by:

a four-bit control field

an optional A field consisting of a two-bit
address type that 1is the same as the two-bit
field above except 00 specifies absolute address

an optional B field consisting of 3 bits that
give a symbol length and up to 8 bits for each
character of the symbol

LINK-80 LINKING LOADER PAGE 4-8

A general representation of a special LINK item is:

1 00 xxxx yYy nn zzz + characters of symbol name
A field B field

XXXX Four-bit control field (0-15 below)

vy Two-bit address type field

nn Sixteen-bit value

z22 Three-bit symbol length field

The following special types have a B-field only:

&= WNHO

Entry symbol (name for search)
Select COMMON block

Program name

Request library search
Extension LINK items (see below)

The following special LINK items have both an A field and a

B field:

5
6

=

Define COMMON size

Chain external (A is head of address chain, B is
name of external symbol)

Define entry point (A is address, B is name)

The following special LINK items have an A field only:

8
9

10
12

13
14

External - offset. Used for JMP and CALL to
externals
External + offset. The A value will be added to
the two bytes starting at the current location
counter immediately before execution.

Define size of Data area (A is size)

Set loading location counter to A
Chain address. A is head of chain, replace all
entries in chain with current location counter.
The last entry in the chain has an address field
of absolute zero.
Define program size (A is size)
End program (forces to byte boundary)

LINK-80 LINKING LOADER PAGE 4-9

The following special Link item has neither an A nor a B
field:

15 End file

An Extension LINK item follows the general format of a
B-field-only special LINK item, but contents of the B-field
are not a symbol name. Instead, the symbol area contains
one character to identify the type of Extension LINK item,
followed by from 1 to 7 characters of additional
information.

Thus, every Extension LINK item has the format:

1 00 0100 zzz i jjjiii3

where
Z22 may be any three bit integer (with 000
representing 8),
i is an eight bit Extension LINK item type
identifier, and
3333333 are zzz-1 eight bit characters of

information whose significance depends on i
At present, there is only one Extension LINK item:

i = X'35' COBOL overlay segment sentinel

v4-44 010 (binary)

COBOL segment number -49 (decimal)

]
When the overlay segment sentinel is encountered by the
linker, the current overlay segment number is set to the
value of j+49. If the previously existing segment
number was non-zero and a /N switch is in effect, the
data area is written to disk in a file whose name is the
current program name and whose extension is Vnn, where

nn are the two hexadecimal digits representing the
number j+49 (decimal).

LINK-80 LINKING LOADER PAGE 4-10

4.4 LINK-80 ERROR MESSAGES

LINK-80 has the following error messages:

?No Start Address A /G switch was issued, but no main
program had been loaded.

?Loading Error The last file given for input was not a

properly formatted LINK-80 object file.
?0ut of Memory Not enough memory to load program.
?Command Error Unrecognizable LINK-80 command.

?<file> Not Found <file>, as given in the command string,
did not exist.

$2nd COMMON Larger /XXXXXX/
The first definition of COMMON block
/XXXXXX/ was not the largest definition.
Reorder module loading sequence or
change COMMON block definitions.

More than one definition for the global

(internal) symbol YYYYYY was encountered
during the loading process.

$Overlaying | Program| Area ,Start = xxXxx
Data (Public = <symbol name> (XXxXX)
External = <symbol name> (xxxx)
A /D or /P will <cause already loaded
data to be destroyed.

?Intersecting | Program | Area
Data

The program and data area intersect and
an address or external chain entry is in
this intersection. The final value

cannot be converted to a current value
since it is in the area intersection.

?Start Symbol - <name> - Undefined
After a /E: or /G: is given, the
symbol specified was not defined.

LINK-80 LINKING LOADER PAGE 4-11

Origin | Above| Loader Memory, Move Anyway (Y or N)?
Below

After a /E or /G was given, either the
data or program area has an origin or
top which . lies outside loader memory
(i.e., loader origin to top of memory).
If a Y <¢cr> is given, LINK-80 will move
the area and continue. If anything else
is given, LINK-80 will exit. 1In either
case, 1f a /N was given, the image will
already have been saved.

?Can't Save Object File

A disk error occurred when the file was
being saved.

4.5 PROGRAM BREAK INFORMATION

LINK-80 stores the address of the first free location in a
global symbol called $MEMRY if that symbol has been defined
by a program loaded. S$MEMRY is set to the top of the data

area +1.

NOTE

If /D is given and the data
origin is less than the
program area, the user must be
sure there is enough room to
keep the program from being
destroyed. This is
particularly true with the
disk driver for FORTRAN-80
which uses $MEMRY to allocate
disk buffers and FCB's.

CHAPTER 5

LIB-80 LIBRARY MANAGER

(CP/M Versions Only)

LIB-80 is the object time library manager for CP/M versions
of FORTRAN-80 and COBOL-80. LIB-80 will be interfaced to

other operating systems in future releases of FORTRAN-80 and
COBOL-80.

WARNING

Read this chapter carefully
and make a back-up copy of
your libraries before using
LIB. It 1is not difficult to
destroy a library with LIB-80.

5.1 LIB-80 COMMANDS

To run LIB-80, type LIB followed by a <carriage return.
LIB-80 will return the prompt "*" indicating it is ready to
accept commands. Each command in LIB-80 either 1lists
information about a 1library or adds new modules to the
library under construction.

Commands to LIB-80 consist of an optional destination
filename which sets the name of the library being created,
followed by an equal sign, followed by module names
separated by commas. The default destination filename is
FORLIB.LIB. Examples:

*NEWLIB=FILEl <MOD2>, FILE3,TEST

*SIN,COS, TAN,ATAN

LIB-80 LIBRARY MANAGER PAGE 5-2

Any command specifying a set of modules concatenates the
modules selected onto the end of the last destination
filename given. Therefore,

*FILEl,FILE2 <BIGSUB>, TEST
is equivalent to
*FILEl

*FILE2 <BIGSUB>
*TEST

5.1.1 Modules

A module is typically a FORTRAN or COBOL subprogram, main
program or a MACRO-80 assembly that contains ENTRY
statements.

The primary function of LIB-80 is to concatenate modules 1in
.REL files to form a new library. 1In order to extract
modules from previous libraries or .REL files, a powerful

syntax has been devised to specify ranges of modules within
a .REL file.

The simplest way to specify a module within a file is simply
to use the name of the module. For example:

SIN

But a relative quantity plus or minus 255 may also be used.
For example:

SIN+1
specifies the module after SIN and
SIN-1
specifies the one before it.
Ranges of modules may also be specified by using two dots:

..SIN means all modules up to and including
SIN.

SIN.. means all modules from SIN to the end
of the file.

SIN..COS means SIN and COS and all the
modules in between.

LIB-80 LIBRARY MANAGER PAGE 5-3
Ranges of modules and relative offsets may also be used in
combination:
SIN+1l..COS-1
To select a given module from a file, use the name of the
file followed by the module(s) specified enclosed in angle
brackets and separated by commas:
FORLIB <SIN..COS>
or
MYLIB.REL <TEST>
or
BIGLIB.REL <FIRST,MIDDLE,LAST>

etc.

If no medules are selected from a file, then all the modules
in the file are selected:

TESTLIB.REL

5.2 LIB-80 SWITCHES

NOTE

/E will destroy your current
library if there 1is no new
library under construction.
Exit LIB=-80 using Control-C if
you are not revising the
library.

A number of switches are used to control LIB-80 operation.
These switches are always preceded by a slash:

/0 Octal - set Octal typeout mode for /L
command.

/H Hex - set Hex typeout mode for /L
command (default).

/U List the symbols which would remain
undefined on a search through the
file specified.

LIB-80 LIBRARY MANAGER PAGE 5-4

/L List the modules in the files specified
and symbol definitions they contain.

/C (Create) Throw away the library under
construction and start over.

/E Exit to CP/M. The library under
construction (.LIB) is revised to .REL
and any previous copy 1s deleted.

NOTE

/E will destroy your current
library if there 1is no new
library under construction.
Exit LIB-80 using Control-C if
you are not revising the
library.

/R Rename - same as /E but does not exit
to CP/M on completion.

5.3 LIB-80 LISTINGS

To list the contents of a file in cross reference format,
use /L:

*FORLIB/L

When building 1libraries, it 1s important to order the
modules such that any intermodule references are "forward."
That is, the module containing the global reference should
physically appear ahead of the module containing the entry
point. Otherwise, LINK-80 may not satisfy all global
references on a single pass through the library.

Use /U to list the symbols which could be undefined 1in a
single pass through a library. If a module in the library
makes a backward reference to a symbol in another module, /U
will list that symbol. Example:

*SYSLIB/U

NOTE: Since certain modules in the standard FORTRAN and
COBOL systems are always force-loaded, they will be listed
as undefined by /U but will not cause a problem when loading
FORTRAN or COBOL programs.

Listings are currently always sent to the terminal; use
control-P to send the listing to the printer.

LIB-80 LIBRARY MANAGER PAGE 5-5

5.4 SAMPLE LIB SESSION

BUILDING A LIBRARY:

A>LIB

*TRANLIB=SIN,COS, TAN,ATAN,ACOG
*EXP

* /B

A>

LISTING A LIBRARY:

A>LIB *TRANLIB.LIB/U
*TRANLIB.LIB/L

.
.

(List of symbols in TRANLIB.LIB)

*Control-C
A>

5.5 SUMMARY OF SWITCHES AND SYNTAX

/O Octal - set listing radix

/H Hex - set listing radix

/U List undefineds

/L List cross reference

/C Create - start LIB over

/E Exit - Rename .LIB to .REL and exit
/R Rename - Rename .LIB to .REL

module: :=module name {+ or - number}

module sequence ::=

module | ..module | module.. | modulel..module2

file specification::=filename {<module sequence>{,<module sequence>}}

command::= {library filename=} {list of file specifications}
{1ist of switches}

APPENDIX A

TEKDOS Operating System

The command formats for MACRO-80, LINK-80 and CREF-80 differ
slightly under the TERDOS operating system.

A.1 TEKDOS COMMAND FILES

The files F80, M80, and C80 are actually TEKDOS command
files for the compiler, assembler, 1loader, and <cross
reference programs, respectively. These command files set
the emulation mode to 0 and select the Z-80 assembler
processor (see TEKDOS documentation), then execute the
appropriate program file. You will note that all of these
command files are set up to execute the Microsoft programs
from drive 1. LINK-80 will also 1look for the library
(FORLIB) on drive 1. 1If you wish to execute any of this
software from drive 0, the command file must be edited and
LINK-80 should be given an explicit library search directive
"FORLIB-S". (See Section 4.2.1 of this manual.)

A.2 MACRO-80

The M80 assembler accepts command lines only. A prompt is
not displayed and interactive commands are not accepted.
Commands have the same format as TEKDOS assembler commands;
i.e., three filename or device name parameters plus optional
switches.

M80 [objfile] [lstfile] sourcefile [swl] [sw2...]

The object and listing file parameters are optional. These
files will not be <created if the parameters are omitted,
however any error messages will still be displayed on the
console. The available switches are as described in Chapter
2 of this manual. except that the switches are delimited by
commas or spaces instead of slashes.

PAGE A-2

A.3 CREF-80
The form of commands to CREF80 is:
C80 lstfile sourcefile

Both filename parameters are required. The sourcefile
parameter is always the name of a CREF80 file created during
assembly, by use of the C switch.

Example:
Create a CREF80 file using MACRO-80:
M80 ,, TSTCRF TSTMAC C
Create a cross reference listing from the CREF80 file:

C80 TSTLST TSTCRF

A.4 LINK-80

Wwith TEKDOS, the LINK-80 loader accepts interactive commands
only. Command lines are not supported.

When LINK-80 is invoked, and whenever it 1is waiting for
input, it will prompt with an asterisk. Commands -are lists
of filenames and/or devices separated by commas or spaces
and optionally interspersed with switches. The input to
LINK-80 must be Microsoft relocatable object code (not the
same as TEKDOS loader format).

Switches to LINK-80 are delimited by hyphens under TEKDOS,
instead of slashes. All LINK-80 switches (as documented in
Chapter 3) are supported, except "G" and "N", which are not
implemented at this time.

Examples:

1. Assemble a MACRO-80 program named XTEST, creating
an object file called XREL and a listing file
called XLST:

>M80 XREL XLST XTEST

2. Load XTEST and save the loaded module:

>L80

*XREL-E

[04AD 22B8]
*DOS*ERROR 46

L80 TERMINATED

>M XMOD 400 22B8 04AD

PAGE A-3

Note that "-E" exits via an error message due to execution
of a Halt instruction. The memory image is intact, however,
and the "Module" command may be used to save it. Once a
program is saved in module format, it may then be executed
directly without going through LINK-80 again.

The bracketed numbers printed by LINK-80 before exiting are
the entry point address and the highest address loaded,
respectively. The loader default is to begin 1loading at
400H. However, the loader also places a jump to the start
address in location 0, thereby allowing execution to begin
at 0. The memory locations between 0003 and 0400H are
reserved for SRB's and I/0O buffers at runtime.

m/sort
reference
manual

language-hosted version

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is
furnished under a license agreement or non-disclosure agreement. The software may be
used or copied only in accordance with the terms of the agreement.

{c) 1980 Microsoft

CONTENTS

CHAPTER INTRODUCTION

Description of this Manual

Description of M/SORT
The M/SORT Distribution Package
The M/SORT Facility
Major Uses for M/SORT

¢ s
w -

Necessary Computer Resources
1 Memory
2 Disk Space

> www NS S SIS (and

Installation of M/SORT

CHAPTER 2 COBOL STATEMENT FORMATS
2.1 The FILE-CONTROL Paragraph
2.2 The I-0O-CONTROL Paragraph
2.3 DATA DIVISION
2.4 The SORT Statement
2.5 The RELEASE Statement
2.6 The RETURN Statement

2.7 The MERGE Statement

CHAPTER 3 SAMPLE PROGRAMS
3.1 PROGRAM SAMPL1l: USING/GIVING Filenames

3.2 PROGRAM SAMPL2: I/0O Procedures

CHAPTER ¢4 ERROR HANDLING

CHAPTER 1

INTRODUCTION

1.1 DESCRIPTION OF THIS MANUAL

This manual is designed as an introduction to the
COBOL-language-hosted M/SORT facility and as a reference for

users.
The manual is divided into four chapters:

the first is an introduction to M/SORT--what it is and
what it does;

the second is a description of the technical aspects of
M/SORT--its capabilities and their wuse in COBOL
programs;

the third is two sample programs with discussion of
program statements unique to M/SORT;

and the fourth is error status codes--how to invoke
error code reporting and what the codes mean.

1.2 DESCRIPTION OF M/SORT

The following paragraphs introduce M/SORT--what is in the
package, what is in the facility, and what are the major
uses of M/SORT.

INTRODUCTION Page 1-2
1.2.1 The M/SORT Distribution Package

The M/SORT distribution package includes:

1. A diskette 1labeled "M/SORT", compatible with a
user-specified operating system, and containing the
relocatable file SRTLIB and the sample programs and
data referenced in this documentation.

2. Documentation; i.e., this manual

NOTE

At the time of purchase, you should have
completed a Non-Disclosure Agreement. If you
do not remember filling out a Non-Disclosure
Agreement when you bought this package, look
in this package for a copy of the Agreement.
If the Agreement 1is still in this package,
remove it, £fill it out, and mail it
immediately. You will be unable to order
updates to your M/SORT diskette until a copy
of the Non-Disclosure Agreement is on file
with Microsoft.

1.2.2 The M/SORT Facility

M/SORT is a record sorting facility available to the COBOL
programmer through 1974 ANSI COBOL SORT/MERGE statements.

M/SORT accepts input records in an arbitrary order, then
returns them sequenced according to user specifications.
The source of the input records may be one or a set of disk
files; or, records may be constructed in memory by a
user-written COBOL procedure and RELEASEd to M/SORT one at a
time.

Similarly, the sorted output records may be automatically
written to a disk file; or, records may be left in memory
for processing by a user-written OUTPUT PROCEDURE within the
COBOL program.

M/SORT arranges records 1in a sequence defined by the
selection of sort KEYs. The user selects one or more data
fields of a sort record as the KEYs; the field values are
compared for record sequencing.

INTRODUCTION Page 1-3

Some features of M/SORT require special note:

l.

KEYs - The user specifies on which (ASCENDING
and/or DESCENDING) KEYs M/SORT sequences records.
When M/SORT encounters records which are egual in
terms of all specified KEYs, the records are
sequenced in the order M/SORT finds them in the
source files.

M/SORT supports all data types as KEY¥s.

The user may specify up to 12 KE¥s, each up to 255
characters long.

I/O PROCEDURES - If the user elects to use an INPUT
and/or an OUTPUT PROCEDURE with M/SORT, the user
must remember that these procedures are performed
only once for each execution of the SORT statement.
Looping to read more than one record must be
included within the INPUT and/or OUTPUT
PROCEDURE (s) .

SORT STATUS - M/SORT 1is designed to provide
comprehensive error reporting in a special SORT
STATUS register.

We recommend that every M/SORT program define and
test a SORT STATUS register. This will facilitate
error detection and error handling because you will
know what the error is and approximately where to
check your program.

FILE COMPATIBILITY - M/SORT is compatible with all
COBOL~-80 file formats and record lengths.

STANDARD - COBOL-80 with M/SORT conforms fully to
SORT/MERGE, Level II of the 1974 ANSI COBOL
standard (except COLLATING SEQUENCE IS
alphabet-name).

INTRODUCTION Page 1-4
1.2.3 Major Uses For M/SORT
Most users will have their own sorting requirements which

will define their uses for M/SORT.

M/SORT is especially useful for the following jobs:

1. Providing a pre-sort of records to be loaded into
an indexed sequential file

2. Sorting and arranging records to fit ‘a report
format

3. Sequencing transactions to be merged into a master
file

4. Grouping and arranging items to be displayed in a
formatted CRT screen layout

1.3 NECESSARY COMPUTER RESOURCES

M/SORT is inherently capable of handling files up to 2
billion bytes in size. Consequently, the speed and power of
M/SORT in an application is limited only by memory and disk
space.

1.3.1 Memory

M/SORT resides in approximately 6K of memory. To perform a
very simple and small sorting job, M/SORT requires a minimum
of 2K of working memory and buffers. Most medium size
sorting jobs c¢an be handled in 6K-8K of working memory and
buffers.

Note that the more working memory M/SORT has available, the
faster it will run.

INTRODUCTION Page 1-5

1.3.2 Disk Space

Disk requirements for the sort work file wvary with record
length, file size, and the amount of working memory
available to M/SOkr. With at least 16K bytes of working
memory available and records no more than 250 bytes long,
any file up to 100,000 records will require a maximum work
file of 1.33 times the size of the sorted data. Very small
sorts with adequate working memory will not wuse anv disk
space.

1.4 INSTALLATION OF M/SORT

Installation of M/SORT is very simple:

1. Make a back up copy of the M/SORT master and store
the original in a safe place.

2. Copy the file SRTLIB onto the disk which will be
online when you link your COBOL programs. (See the
COBOL User”“s Guide for a discussion of linking.)

3. The linker will then automatically search SRTLIB
when needed, just as it will search COBLIB.

4. Thus, SRTLIB and COBLIB should be on the same disk.

CHAPTER 2

COBOL STATEMENT FORMATS

The SORT-MERGE facility provides the capability to order one
or more files of records or to combine two or more
identically ordered files of records, according to a set of
user-specified keys contained within each record.

Optionally, a user may apply some special processing to each
of the individual records by input or output procedures.
This special processing may be applied before and/or after
the records are ordered by the SORT or after the records
have been combined by the MERGE.

The following pages illustrate SORT/MERGE syntax, and the
rules for each statement are specified.

COBOL STATEMENT FORMATS Page 2-2

2.1 The FILE-CONTROL Paragraph

The File Control Entry.

The file control entry names a sort or merge file.

2.1.1 Pormat

SELECT filename ASSIGN TO DISK
[SORT STATUS IS identifier]

2.1.2 Syntax Rules

l.

Each sort or merge file described in the DATA
DIVISION must be named once and only once as
filename in the FILE-CONTROL paragraph. Each sort
or merge file specified in the control entry must
have a sort-merge file description -entry in the
FILE SECTION of the DATA DIVISION,

For a SELECT sort-filename sentence, only the
ASSIGN and STATUS clauses are permitted to follow
filename in the FILE-CONTROL paragraph.

Identifier must be defined in the WORKING-STORAGE
SECTION.

2.1.3 General Rules

1.

After the execution of any SORT or MERGE statement
for filename, the value of identifier will be set
to a two digit status code. (See Chapter 4 for a
list of possible values.) Therefore, identifier
should be described in the DATA DIVISION as a two
character field with USAGE DISPLAY. It may be
defined as numeric.

COBOL STATEMENT FORMATS Page 2-3

2.2 The I-O-CONTROL Paragraph

The I-O-CONTROL paragraph specifies the memory area which is
to be shared by different files. (See also COBOL-80
Reference Manual, Section 2.2.2.2, for the use of
I-O-CONTROL entries with non-sort-merge files.)

2.2.1 Format

RECORD
SAME { SORT AREA FOR filename-1l, filename-2 [, filename-=3]...
SORT-MERGE

2.2.2 Syntax Rules
1. The I-O-CONTROL paragraph is optional.

2. The SAME SORT AREA and SAME SORT-MERGE AREA clauses
are equivalent. This compiler will accept the SAME
SORT AREA and SAME SORT-MERGE AREA clauses without
giving an error message, but they have no effect.

3. The formats of the SAME clause are considered
separately in the following:

a. A filename must not appear in more than one
SAME RECORD AREA clause.

b. A filename that represents a sort or merge
file must not appear in more than one SAME
SORT AREA or SAME SORT-MERGE AREA clause.

c. If a filename that does not represent a
sort or merge file appears in a SAME AREA
clause and in one or more SAME SORT AREA or
SAME SORT-MERGE AREA clauses, all files
named in that SAME AREA clause must be
named in that SAME SORT AREA or SAME
SORT-MERGE AREA clause(s).

4., The files referenced in the SAME RECORD AREA, SAME
SORT AREA, or SAME SORT-MERGE AREA clause need not
all have the same organization or access.

STATEMENT FORMATS Page 2-4

2.2.3

1.

General Rules

The SAME RECORD AREA clause specifies that two or
more files are to use the same memory area for
processing of the current logical record. All of
the files may be open at the same time. A logical
record in the SAME RECORD AREA is considered as a
logical record of each opened file whose filename
appears in this SAME RECORD AREA clause. This is
equivalent to implicit redefinition of the area;
i.e., records are aligned on the leftmost character
position.

If the SAME SORT AREA or SAME SORT-MERGE AREA
clause is used, at least one of the files must
represent a sort or merge file. Files that do not
represent sort or merge files may be named in the
clause, and files named in a SAME SORT AREA or SAME
SORT-MERGE AREA clause may also be named in SAME
RECORD AREA clause(s).

COBOL STATEMENT FORMATS Page 2-5

2.3 DATA DIVISION

FILE SECTION
The SORT-MERGE File Description

An SD file description gives information about the size and
the names of the data records associated with the file to be
sorted or merged.

2.3.1 Format

SD filename
[RECORD-clause]
[DATA-RECORD (s) -clause]

[VALUE-OF-clause]

2.3.2 Syntax Rules

1. The level indicator SD identifies the beginning of
the sort-merge file description and must precede
the filename.

2. The clauses which follow the name of the file are
optional and their order of appearance is
immaterial.

3. The RECORD-clause, DATA-RECORD(s) -clause, and
VALUE-OF-clause are as described in the COBOL-80
Reference Manual, Section 3.14, "File Section, FD
Entries”.

4. One or more record description entries must follow
the sort-merge file description entry. However, no
input-output statements may be executed for this
file.

COBOL STATEMENT FORMATS Page 2-6
2.4 THE SORT STATEMENT

The SORT Statement

creates a sort file by executing input procedures or by
transferring records from one or more USING files;

sorts the records in the sort file on a set of specified
keys;

and, in the final phase of the sort operation, makes
available each record from the sort file, in sorted
order, to an output procedure or to an output file.

.

2.4.1 Format

SORT filename-l1 ON | ASCENDING KEY data-name-1 [, data-name-2]...
DESCENDING

ON | ASCENDING RKEY data-name-3 [, data-name-4...
DESCENDING

INPUT PROCEDURE IS section—name-ll:{THROUGH} section—name-2]
THRU

USING filename-2 [, filename-3]... -

OUTPUT PROCEDURE IS section-name-3':{THROUGH} section—name-{}
THRU

GIVING filename-4

2.4.2 Syntax Rules

1. Filename-l must be described in a sort-merge file
description entry in the DATA DIVISION.

2. Section-name-l represents the name of an input
procedure. Section-name-3 represents the name of
an output procedure.

COBOL STATEMENT FORMATS Page 2-7

3.

6'

Filename-2, filename-3, and filename-4 must be
described in a file description entry, not in a
sort-merge file description entry, 1in the DATA
DIVISION. Filename-2, filename-3, and filename-4
may have any type of organization, but ACCESS MODE
must be sequential. If filename-4 has INDEXED
organization, the SORT must order records according
to increasing values of the RECORD KEY, or an error
will occur during record output.

Data-name-l, data-name-2, data-name-3, and
data—-name-4 are KEY data-names and are subject to
the following rules:

a. The data items identified by KEY data-names
must be described 1in records associated
with f£ilename-l.

b. KEY data-names may be qualified.

c. If filename-l1l has more than one record
description, then the data items identified
by KEY data-names need be described in only
one of the record descriptions.

d. None of the data items identified by KEY
data-names can be described by an entry
which either contains an OCCURS clause or
is subordinate to an entry which contains
an OCCURS clause.

e. A maximum of 12 KEY data-names may be
specified. Each KEY data item must be from
1 to 255 characters in length.

The words THRU and THROUGH are equivalent.

Sort statements may appear anywhere except 1in the
declaratives portion of the PROCEDURE DIVISION or
in an input or output procedure associated with a
SORT or MERGE statement.

STATEMENT FORMATS Page 2-8

2.4.3 General Rules

1.

The data-names following the word REY are listed
from 1left to right in the SORT statement in order
of decreasing significance without regard to how
they are divided into KEY phrases. 1In the format,
data-name-1l is the major key, data-name-2 1is the
next most significant key, etc.

a. When the ASCENDING phrase is specified, the
sorted sequence will be from the lowest
value of the contents of the data items
identified by the KEY data-names to the
highest value, according to the rules for
comparison of operands in a relation
condition. .

b. When the DESCENDING phrase 1is specified,
the sorted sequence will be from the
highest value of the contents of the data
items identified by the KEY data-names to
the lowest value, according to the rules
for comparison of operands in a relation
condition.

c. If the values of the contents of the KEY
data-names are all the same for two or more
records, the sorted sequence will be the
sequence in which the records were RELEASEd
to the sort by an input procedure, or the
sequence in which the records existed on a
USING file.

The input procedure must consist of one or more
sections that appear contiguously in a source
program and do not form a part of any output
procedure. In order to transfer records to the
file referenced by filename-1, the input procedure
must 1include the execution of at least one RELEASE
statement. Control must not be passed to the input
procedure, except when a related SORT statement is
being executed. The input procedure can include
any procedures needed to select, create, or modify
records. The restrictions on the procedural
statements within the input procedure are as
follows:

a. The input procedure must not contain any
SORT or MERGE statements

STATEMENT FORMATS Page 2-9

b. The input procedure must not c¢ontain any
explicit transfers of control to points
outside the input procedure; ALTER, GO TO,
and PERFORM statements in the input
procedure are not permitted to refer to
procedure-names outside the input
procedure. COBOL statements are allowed
that will cause an implied transfer of
control to declaratives.

c. The remainder of the PROCEDURE DIVISION
must not contain any transfers of control
to points inside the input procedure;
ALTER, GO TO, and PERFORM statements in the
remainder of the PROCEDURE DIVISION must
not refer to procedure-names within the
input procedure.

If an input procedure 1is specified, control is
passed to the input procedure before filename-l is
sequenced by the SORT statement. The compiler
inserts a return mechanism at the end of the last
section in the input procedure and when control
passes the last statement in the input procedure,
the records that have been released to filename-l
are sorted.

The output procedure must consist of one or more
sections that appear continguously in a source
program and do not form part of any input
procedure. In order to make sorted records
available for processing, the output procedure must
include at 1least one RETURN statement. Control
must not be passed to the output procedure, except
when a related SORT statement is being executed. -
The output procedure may consist of any procedures
needed to select, modify, or copy the records that
are being returned, one at a time in sorted order,
from the sort file. The restrictions on the
procedural statements within the output procedure
are as follows:

a. The output procedure must not contain any
SORT or MERGE statements.

b. The output procedure must not contain any
explicit transfers of control to points
outside the output procedure; ALTER, GO
TO, and PERFORM statements in the output
procedure are not permitted to refer to
procedure-names outside the output
procedure. COBOL statements are allowed
that will cause an implied transfer of
control to declaratives.,

STATEMENT FORMATS Page 2-10

c. The remainder of the PROCEDURE DIVISION
must not contain any transfers of control
to points 1inside the output procedure;
ALTER, GO TO, and PERFORM statements in the
remainder of the PROCEDURE DIVISION are not
permitted to refer to procedure-names
within the output procedure.

If an output procedure is specified, control passes
to it after filename-l has been sequenced by the
SORT statement. The compiler inserts a return
mechanism at the end of the last section in the
output procedure and when control passes the last
statement in the output procedure, the return
mechanism provides for termination of the sort and
then passes control to the next executable
statement after the SORT statement. Before
entering the output procedure, the sort procedure
reaches a point at which it can select the next
record in sorted order when requested. The RETURN
statements in the output procedure are the requests
for the next record.

Segmentation can be applied to programs containing
the SORT statement. However, the following
restrictions apply:

a. If a SORT statement appears in a section
that is not in an independent segment, then
any input procedures or output procedures
referenced by that SORT statement must
appear:

i. Totally within non-independent
segments, or

ii. Wholly contained in a single
independent segment.

b. If a SORT statement appears in an
independent segment, then any input
procedures or output procedures referenced
by that SORT statement must be contained:

i. Totally within non-independent
segments, or

ii. Wholly within the same independent
segment as the SORT statement.

STATEMENT FORMATS Page 2-11

7.

If the USING phrase is specified, all the records
in filename=-2 and filename-3 are transferred
automatically to filename-l. At the time of
execution of the SORT statement, filename-2 and
filename-3 must not be open. The SORT statement
automatically initiates the processing of, makes
available the logical records for, and terminates
the processing of filename-2 and filename-3. These
implicit functions are performed such that any
associated USE procedures are executed. The
terminating function for all files is performed as
if a CLOSE statement, without optional phrases, had
been executed for each file. ' The SORT statement
also automatically performs the implicit functions
of moving records from the area of filename-2 and
filename-3 to the area for filename-1 and the
release of records to the initial phase of the sort
operation.

If the GIVING phrase is specified, all the sorted
records in filename-l are automatically written on
filename-4 as the implied output procedure for this
SORT statement. At the time of execution of the
SORT statement filename-4 must not be open. The
SORT statement automatically initiates the
processing of, releases the logical records to, and
terminates the processing of filename-4. These
implicit functions are performed such that any
associated USE procedures are executed. The
terminating function is performed as if a CLOSE
statement, without optional phrases, had been
executed for the file. The SORT statement also
automatically performs the implicit functions of
the return of the sorted records from the final
phases of the sort operation and the moving of the
records from the area for filename-l to the area
for filename-4.

STATEMENT FORMATS Page 2-12

2.5 THE RELEASE STATEMENT

The RELEASE statement transfers records to the initial phase
of a SORT operation.

2.5.1 Format

RELEASE record-name [FROM identifier]

2.5.2 Syntax Rules

1.

A RELEASE statement may only be used within the
range of an input procedure associated with a SORT
statement.

Record-name must be the name of a logical record in
the associated sort-merge file description entry
and may be qualified.

2.5.3 General Rules

1.

The execution of a RELEASE statement causes the
record named by record-name to be released to the
initial phase of a sort operation.

If the FROM phrase is used, the contents of the
indentifier data area are moved to record-name,
then the contents of record-name are RELEASEd to
the sort file. Moving takes place according to the
rules specified for the MOVE statement. After the
RELEASE statement is executed, the information in
the record area is no 1longer available, but the
information in the data area associated with
identifier is available.

STATEMENT FORMATS Page 2-13

2.6 THE RETURN STATEMENT

The RETURN statement obtains either sorted records from the
final phase of a SORT operation or merged records during a
MERGE operation.

2.6.1 Format

RETURN filename RECORD [INTO identifier] AT END imperative-statement

2.6.2 Syntax Rules

1. PFilename must be described by a sort-merge file
description entry in the DATA DIVISION.

2. A RETURN statement may only be used within the
range of an output procedure associated with a SORT
or MERGE statement for filename.

2.6.3 General Rules

1. When the logical records of a file are described
with more than one record description, these
records automatically share the same storage area;
this 1is equivalent to an implicit redefinition of
the area. The contents of any data items which lie
beyond the range of the current data record are
undefined at the completion of the execution of the
RETURN statement.

2. The execution of the RETURN statement causes the
next record, in the order specified by the keys
listed in the SORT or MERGE statement, to be made
available for processing in the record areas
associated with the sort or merge file.

STATEMENT FORMATS Page 2-14

3.

If the INTO phrase is specified, the current record
is moved from the input area to the area specified
by indentifier according to the rules for the MOVE
statement. The implied MOVE does not occur if
there is an AT END condition. Any subscripting or
indexing associated with identifier is evaluated
after the record has been returned and immediately
before it is moved to the data item.

When the INTO phrase is used, the data is available
in both the input record area and the data area
associated with identifier.

If no next logical record exists for the file at
the time of the execution of a RETURN statement,
the AT END condition occurs. The contents of the
record areas associated with the file when the AT
END condition occurs are undefined. After the
execution of the imperative-statement in the AT END
phrase, no RETURN statement may be executed as part
of the current output procedure.

COBOL STATEMENT FORMATS Page 2-15
2.7 THE MERGE STATEMENT

The MERGE statement combines two or more identically
sequenced files on a set of specified keys, and during the
process makes records available, in a . single merged
sequence, to an output procedure or to an output file.

2.7.1 Format

MERGE filename-l1 ON | ASCENDING KEY data-name-l [, data-name-2]...
DESCENDING

ON | ASCENDING KEY data-name-3 [, data-name-4]...!...
DESCENDING

USING filename-2, filename-3 [,filename-4]...

!OUTPUT PROCEDURE IS section-name-1 [{THROUGH} section—name-z]
THRU

|GIVING filename-5

2.7.2 Syntax Rules

1. Filename-l must be described in a sort-merge file
description entry in the DATA DIVISION.

2. Section-name-l represents the name of an output
procedure.

3. PFilename-2, filename-3, filename-4, and filename-=5
must be described in a file description entry, not
in a sort-merge file description entry, in the DATA
DIVISION. Filename-2, filename-3, filename-4, and
filename-5 may have any type of organization, but
ACCESS MODE must be sequential. If filename-5 has
INDEXED organization, the SORT must order records
according to increasing values of the RECORD KEY,
or an error will occur during record output.

4, The words THRU and THROUGH are equivalent.

CHAPTER 3

SAMPLE PROGRAMS

This chapter contains two sample programs and some
description of details unique to the SORT facility. The
descriptive passages are intended to help walk you through
two applications of the facility.

Before beginning a walk-through of the sample programs, two
points which should be kept in mind throughout coding are:

1. Your reason for using the SORT facility.
Also remember: SORT/MERGE is especially useful 1in
preparing data for report formats and for loading
an indexed sequential file;

2. Input and output procedures are performed only
once, rather than repeated for each record.
Therefore, input and output procedures must include
a loop to process each record.

SAMPLE PROGRAMS Page 3-10

B>TYPE SAMPLE.OUT

T20180[101|00011P00800998-001523141
120480{103{00011P00801007-000002774
112880/103({00224r00800988-000049999
120580|201|00077R00801363-000089160
120380{201|00145R00801359+000522200
112580({202{00077R00801337+000210000
120180/203|00077R00801348+000020176

B>

----- ASCENDING MAJOR KEY (SORT-TRANSACTION-CODE)

----- DESCENDING MINOR KEYS (SORT-DATE)

CHAPTER 4

ERROR HANDLING

Microsoft COBOL-80 includes a special extension to 1974 ANSI
COBOL, the SORT STATUS register.

The SORT STATUS register makes detection of errors possible,
At the end of a program run, the SORT STATUS register
contains a code for any error encountered, or "00" if no
errors occurred. Error codes specify exactly the type of
error to help the programmer find the source of the error.
Consequently, error handling and debugging are simplified.

We recommend that every M/SORT program define a SORT STATUS
item and test it after each SORT or MERGE statement.

The SORT STATUS IS phrase specifies a data-item in which
M/SORT should place a status code.

The SORT STATUS IS phrase is specified in the SELECT
filename sentence (just as FILE STATUS is specified for a
non-sort file).

The WORKING-STORAGE description of the status data-item
should specify a two character field with USAGE DISPLAY.
This item may be numeric.

	0_001
	0_002
	0_003
	0_004
	1_001
	1_002
	1_003
	1_01
	1_02
	1_03
	1_04
	1_05
	1_06
	1_07
	1_08
	1_09
	1_10
	1_11
	1_12
	1_13
	1_14
	1_15
	1_16
	1_17
	1_18
	1_19
	1_20
	1_21
	1_22
	1_23
	1_24
	1_25
	1_26
	1_27
	1_28
	1_29
	1_30
	1_31
	1_32
	1_33
	1_34
	1_35
	1_36
	1_37
	1_38
	1_39
	1_40
	1_41
	1_42
	1_43
	1_44
	2_0001
	2_0002
	2_0003
	2_0004
	2_0005
	2_0006
	2_0007
	2_0008
	2_001
	2_002
	2_003
	2_004
	2_005
	2_006
	2_007
	2_008
	2_009
	2_010
	2_011
	2_012
	2_013
	2_014
	2_015
	2_016
	2_017
	2_018
	2_019
	2_020
	2_021
	2_022
	2_023
	2_024
	2_025
	2_026
	2_027
	2_028
	2_029
	2_030
	2_031
	2_032
	2_033
	2_034
	2_035
	2_036
	2_037
	2_038
	2_039
	2_040
	2_041
	2_042
	2_043
	2_044
	2_045
	2_046
	2_047
	2_048
	2_049
	2_050
	2_051
	2_052
	2_053
	2_054
	2_055
	2_056
	2_057
	2_058
	2_059
	2_060
	2_061
	2_062
	2_063
	2_064
	2_065
	2_066
	2_067
	2_068
	2_069
	2_070
	2_071
	2_072
	2_073
	2_074
	2_075
	2_076
	2_077
	2_078
	2_079
	2_080
	2_081
	2_082
	2_083
	2_084
	2_085
	2_086
	2_087
	2_088
	2_089
	2_090
	2_091
	2_092
	2_093
	2_094
	2_095
	2_096
	2_097
	2_098
	2_099
	2_100
	2_101
	2_102
	2_103
	2_104
	2_105
	2_106
	2_107
	2_108
	2_109
	2_110
	2_111
	2_112
	2_113
	2_114
	2_115
	2_116
	2_117
	2_118
	2_119
	2_120
	2_121
	2_122
	2_123
	2_124
	2_125
	2_126
	2_127
	2_128
	2_129
	2_130
	2_131
	2_132
	2_133
	2_134
	2_135
	2_136
	2_137
	2_138
	2_139
	2_140
	2_141
	2_142
	2_143
	2_144
	2_145
	2_146
	3_001
	3_002
	3_003
	3_004
	3_005
	3_006
	3_007
	3_008
	3_009
	3_1-01
	3_1-02
	3_2-01
	3_2-02
	3_2-03
	3_2-04
	3_2-05
	3_2-06
	3_2-07
	3_2-08
	3_2-09
	3_2-10
	3_2-11
	3_2-12
	3_2-13
	3_2-14
	3_2-15
	3_2-16
	3_2-17
	3_2-18
	3_2-19
	3_2-20
	3_2-21
	3_2-22
	3_2-23
	3_2-24
	3_2-25
	3_2-26
	3_2-27
	3_2-28
	3_2-29
	3_2-30
	3_2-31
	3_2-32
	3_2-33
	3_2-34
	3_2-35
	3_2-36
	3_2-37
	3_2-38
	3_2-39
	3_3-01
	3_3-02
	3_4-01
	3_4-02
	3_4-03
	3_4-04
	3_4-05
	3_4-06
	3_4-07
	3_4-08
	3_4-09
	3_4-10
	3_4-11
	3_5-01
	3_5-02
	3_5-03
	3_5-04
	3_5-05
	3_A-01
	3_A-02
	3_A-03
	4_001
	4_002
	4_003
	4_1-01
	4_1-02
	4_1-03
	4_1-04
	4_1-05
	4_2-01
	4_2-02
	4_2-03
	4_2-04
	4_2-05
	4_2-06
	4_2-07
	4_2-08
	4_2-09
	4_2-10
	4_2-11
	4_2-12
	4_2-13
	4_2-14
	4_2-15
	4_3-01
	4_3-10
	4_4-01

