
Microsoft® 
GW -BASIC@ Interpreter 
User's Guide 

Microsoft Corporation 



Information in this document is subject to change without notice and does 
not represent a commitment on the part of Microsoft Corporation. The software 
described in this document is furnished under a license agreement or nondisclosure 
agreement. The software may be used or copied only in accordance with the terms 
of the agreement. It is against the law to copy this software on magnetic tape, disk, 
or any other medium for any purpose other than the purchaser's personal use. 

© Copyright Microsoft Corporation, 1986 

Portions copyright COMPAQ Computer Corporation, 1985 

Microsoft®, MS-DOS®, GW-BASIC® and the Microsoft logo are registered 
trademarks of Microsoft Corporation. 

COMP AQ® is a registered trademark of COMPAQ Computer Corporation. 

DEC® is a registered trademark of Digital Equipment Corporation. 

Document Number 410130001-320-R01-0686 
Part Number 031-000-009 



Contents 

1 Welcome to GW-BASIC 1 

1.1 System Requirements 3 
1.2 Preliminaries 3 
1.3 Notational Conventions 3 
1.4 Organization of This Manual 4 
1.5 Bibliography 5 

2 Getting Started With GW-BASIC 7 

2.1 Loading GW-BASIC 9 
2.2 Modes of Operation 9 
2.3 The GW-BASIC Command Line Format 10 
2.4 GW-BASIC Statements, Functions, 

Commands, and Variables 14 
2.5 Line Format 16 
2.6 Returning to MS-DOS 18 

3 Reviewing and Practicing GW-BASIC 19 

3.1 Example for the Direct Mode 21 
3.2 Examples for the Indirect Mode 22 
3.3 Function Keys 24 
3.4 Editing Lines 24 
3.5 Saving Your Program File 25 

4 The GW-BASIC Screen Editor 27 

4.1 Editing Lines in New Files 29 
4.2 Editing Lines in Saved Files 29 
4.3 Special Keys 30 
4.4 Function Keys 33 

iii 



Contents 

5 Creating and Using Files 35 

5.1 Program File Commands 37 
5.2 Data Files 38 
5.3 Random Access Files 41 

6 Constants, Variables, 
Expressions and Operators 47 

6.1 Constants 49 
6.2 Variables 51 
6.3 Type Conversion 54 
6.4 Expressions and Operators 56 

A Error Codes and Messages 65 

B Mathematical Functions 73 

C ASCII Character Codes 75 

D Assembly Language 
(Machine Code) Subroutines 77 

D.1 Memory Allocation 77 
D.2 CALL Statement 78 
D.3 USR Function Calls 82 
D.4 Programs That Call 

Assembly Language Programs 85 

E Converting BASIC Programs to GW-BASIC 89 

E.1 String Dimensions 89 
E.2 Multiple Assignments 90 
E.3 Multiple Statements 90 
E.4 MAT Functions 90 
E.5 FOR-NEXT Loops 91 

iv 



Contents 

F Communications 93 

F.l Opening Communications Files 93 
F.2 Communications 110 93 
F.3 The COM 110 Functions 94 
F.4 Possible Errors: 94 
F.5 The INPUT$ Function 95 
F.6 The TTY Sample Program 97 
F.7 Notes on the TTY Sample Program 98 

G Hexadecimal Equivalents 101 

H Key Scan Codes 105 

I Characters Recognized by GW-BASIC 107 

Glossary 109 

v 



Figures 

Figure D.l Stack Layout When the CALL Statement is Activated 77 

Figure D.2 Stack Layout During Execution of a CALL Statement 78 

Figure D.3 Number Types in the Floating-Point Accumulator 82 

vi 



Tables 

Table 4.1 

Table 6.1 

Table 6.2 

Table G.1 

GW-BASIC Function Key Assignments 

Relational Operators 58 

Results Returned by Logical Operations 

Decimal and Binary Equivalents 
to Hexadecimal Values 99 

34 

59 

Table G.2 Decimal Equivalents to Hexadecimal Values 100 

vii 





Chapter 1 
WelcoDle to GW-BASIC 

1.1 System Requirements 3 

1.2 Preliminaries 3 

1.3 Notational Conventions 3 

1.4 Organization of This Manual 4 

1.5 Bibliography 5 

1 





Notational Conventions 

Microsoft® GW-BASIC® is a simple, easy-to-Iearn, easy-to-use computer 
programming language with English-like statements and mathematical 
notations. With GW-BASIC you will be able to write both simple and complex 
programs to run on your computer. You will also be able to modify existing 
software that is written in GW-BASIC. 

This guide is designed to help you use the GW-BASIC Interpreter with the 
MS-DOS® operating system. Section 1.5 lists resources that will teach you 
how to program. 

1.1 System Requirements 

This version of GW-BASIC requires MS-DOS version 3.2 or later. 

1.2 Preliminaries 

Your GW-BASIC files will be on the MS-DOS diskette located at the back 
of the MS-DOS User's Reference. Be sure to make a working copy of the 
diskette before you proceed. 

Note 

This manual is written for the user familiar with the MS-DOS operating 
system. For more information on MS-DOS, refer to the Microsoft MS-DOS 
3.2 User's Guide and User's Reference. 

3 



Welcome to GW-BASIC 

1.3 Notational Conventions 

Throughout this manual, the following conventions are used to distinguish 
elements of text: 

bold 

italic 

monospace 

SMALL CAPS 

Used for commands, options, switches, and literal 
portions of syntax that must appear exactly as 
shown. 

Used for filenames, variables, and placeholders that 
represent the type of text to be entered by the user. 

U sed for sample command lines, program code and 
examples, and sample sessions. 

U sed for keys, key sequences, and acronyms. 

Brackets surround optional command-line elements. 

1.4 Organization of This Manual 

The GW-BASIC User's Guide is divided into six chapters, nine appendixes, 
and a glossary: 

Chapter 1, "Welcome to GW-BASIC," describes this manual. 

Chapter 2, "Getting Started With GW-BASIC," is an elementary guideline on 
how to begin programming. 

Chapter 3, "Reviewing and Practicing GW-BASIC," lets you use the principles 
of GW-BASIC explained in Chapter 2. 

Chapter 4, "The GW-BASIC Screen Editor," discusses editing commands 
that can be used when inputting or modifying a GW-BASIC program. It also 
explains the unique properties of the ten redefinable function keys and of 
other keys and keystroke combinations. 

Chapter 5, "Creating and Using Files," tells you how to create files and to 
use the diskette input/output (lIO) procedures. 

4 



Bibliography 

Chapter 6, "Constants, Variables, Expressions, and Operators," defines the 
elements of GW-BASIC and describes how you will use them. 

Appendix A, "Error Codes and Messages," is a summary of all the error 
codes and error messages that you might encounter while using GW-BASIC. 

Appendix B, "Mathematical Functions," describes how to calculate certain 
mathematical functions not intrinsic to GW-BASIC. 

Appendix C, "ASCII Character Codes," lists the ASCII character codes recog­
nized by GW-BASIC. 

Appendix D, "Assembly Language (Machine Code) Subroutines," shows how 
to include assembly language subroutines with GW-BASIC. 

Appendix E, "Converting BASIC Programs to GW-BASIC," provides pointers on 
converting programs written in BASIC to GW-BASIC. 

Appendix F, "Communications," describes the GW-BASIC statements required 
to support RS-232 asynchronous communications with other computers and 
peripheral devices. 

Appendix G, "Hexadecimal Equivalents," lists decimal and binary 
equivalents to hexadecimal values. 

Appendix H, "Key Scan Codes," lists and illustrates the key scan code 
values used in GW-BASIC. 

Appendix I, "Characters Recognized by GW-BASIC," describes the GW-BASIC 
character set. 

The Glossary defines words and phrases commonly used in GW-BASIC and 
data processing. 

5 



Welcome to GW-BASIC 

1.5 Bibliography 

This manual is a guide to the use of the GW-BASIC Interpreter: it makes no 
attempt to teach the BASIC programming language. The following texts may 
be useful for those who wish to learn BASIC programming: 

Albrecht, Robert L., LeRoy Finkel, and Jerry Brown. BASIC. 2d ed. New 
York: Wiley Interscience, 1978. 

Coan, James. Basic BASIC. Rochelle Park, N.J.: Hayden Book Company, 
1978. 

Dwyer, Thomas A. and Margot Critchfield. BASIC and the Personal 
Computer. Reading, Mass.: Addison-Wesley Publishing Co., 1978. 

Ettlin, Walter A. and Gregory Solberg. The MBASIC Handbook. Berkeley, 
Calif.: Osborne/McGraw Hill, 1983. 

Knecht, Ken. Microsoft BASIC. Portland, Oreg.: Dilithium Press, 1982. 

6 



Chapter 2 

Getting Started 
With GW-BASIC 

2.1 Loading GW-BASIC 9 

2.2 Modes of Operation 9 

2.2.1 Direct Mode 10 

2.2.2 Indirect Mode 10 

2.3 The GW-BASIC Command Line Format 10 

2.4 GW-BASIC Statements, Functions, 
Commands, and Variables 14 

2.4.1 Keywords 14 

2.4.2 Commands 15 

2.4.3 Statements 15 

2.4.4 Functions 15 

2.4.4.1 

2.4.4.2 

Numeric Functions 15 

String Functions 16 

2.4.4.3 User-Defined Functions 16 

2.4.5 

2.5 

2.6 

Variables 16 

Line Format 16 

Returning to MS-DOS 18 

7 





Getting Started With GW-BASIC 

This chapter describes how to load GW-BASIC into your system. It also 
explains the two different types of operation modes, line formats, and the 
various elements of GW-BASIC. 

2.1 Loading GW-BASIC 

To use the GW-BASIC language, you must load it into the memory of your 
computer from your working copy of the MS-DOS diskette. Use the following 
procedure: 

1. Turn on your computer. 

2. Insert your working copy of the MS-DOS diskette into Drive A of 
your computer, and press RETURN. 

3. Type the following command after the A> prompt, and press 
RETURN: 

gwbasic 

Once you enter GW-BASIC, the GW-BASIC prompt, Ok, will replace the MS-DOS 
prompt, A>. 

On the screen, the line XXXXX Bytes Free indicates how many bytes are 
available for use in memory while using GW-BASIC. 

The function key (FI-FIO) assignments appear on the bottom line of the 
screen. These function keys can be used to eliminate key strokes and save 
you time. Chapter 4, "The GW-BASIC Screen Editor," contains detailed infor­
mation on function keys. 

2.2 Modes of Operation 

Once GW-BASIC is initialized (loaded), it displays the Ok prompt. Ok means 
GW-BASIC is at command level; that is, it is ready to accept commands. At 
this point, GW-BASIC may be used in either of two modes: direct mode or 
indirect mode. 

9 



Getting Started With GW-BASIC 

2.2.1 Direct Mode 

In the direct mode, GW-BASIC statements and commands are executed as 
they are entered. Results of arithmetic and logical operations can be 
displayed immediately and/or stored for later use, but the instructions 
themselves are lost after execution. This mode is useful for debugging and 
for using GW-BASIC as a calculator for quick computations that do not 
require a complete program. 

2.2.2 Indirect Mode 

The indirect mode is used to enter programs. Program lines are always pre­
ceded by line numbers, and are stored in memory. The program stored in 
memory is executed by entering the RUN command. 

2.3 The GW-BASIC Command Line Format 

The GW-BASIC command line lets you change the environment or the condi­
tions that apply while using GW-BASIC. 

Note 

When you specify modifications to the operating environment of GW­
BASIC, be sure to maintain the parameter sequence shown in the syntax 
statement. To skip a parameter, insert a comma. This will let the com­
puter know that you have no changes to that particular parameter. 

GW-BASIC uses a command line of the following form: 

gwbasic[filename] [ <stdin][[> ]>stdout][lf:n] [li][ls:n][lc: n][lm: [n][,n]][ld] 

filename is the name of a GW-BASIC program file. If this parameter is 
present, GW-BASIC proceeds as if a RUN command had been given. If no 
extension is provided for the filename, a default file extension of .BAS is 
assumed. The .BAS extension indicates that the file is a GW-BASIC file. The 
maximum number of characters a filename may contain is eight with a 
decimal and three extension characters. 

10 



The GW-BASIC Command Line Format 

<stdin redirects GW-BASIC's standard input to be read from the specified file. 
When used, it must appear before any switches. 

This might be used when you have multiple files that might be used by 
your program and you wish to specify a particular input file. 

>stdout redirects GW-BASIC's standard output to the specified file or device. 
When used, it must appear before any switches. Using » before stdout 
causes output to be appended. 

GW-BASIC can be redirected to read from standard input (keyboard) and 
write to standard output (screen) by providing the input and output 
filenames on the command line as follows: 

gwbasic program name <input file[> ]>output file 

An explanation of file redirection follows this discussion of the GW-BASIC 
command line. 

Switches appear frequently in command lines; they designate a specified 
course of action for the command, as opposed to using the default for that 
setting. A switch parameter is preceded by a slash (I). 

If:n sets the maximum number of files that may be opened simultaneously 
during the execution of a GW-BASIC program. Each file requires 194 bytes 
for the File Control Block (FCB) plus 128 bytes for the data buffer. The data 
buffer size may be altered with the Is: switch. If the If: switch is omitted, 
the maximum number of open files defaults to 3. This switch is ignored 
unless the Ii switch is also specified on the command line. 

Ii makes GW-BASIC statically allocate space required for file operations, 
based on the Is and If switches. 

Is:n sets the maximum record length allowed for use with files. The record 
length option in the OPEN statement cannot exceed this value. If the Is: 
switch is omitted, the record length defaults to 128 bytes. The maximum 
record size is 32767. 

Ic:n controls RS-232 communications. If RS-232 cards are present, Ic:O dis­
ables RS-232 support, and any subsequent I/O attempts for each RS-232 
card present. If the Ic: switch is omitted, 256 bytes are allocated for the 
receive buffer and 128 bytes for the transmit buffer for each card present. 

11 



Getting Started With GW-BASIC 

The Ic: switch has no affect when RS-232 cards are not present. The /c:n 
switch allocates n bytes for the receive buffer and 128 bytes for the 
transmit buffer for each RS-232 card present. 

Im:nLn] sets the highest memory location (first n) and maximum block size 
(second n) used by GW-BASIC. GW-BASIC attempts to allocate 64K bytes of 
memory for the data and stack segments. If machine language subroutines 
are to be used with GW-BASIC programs, use the 1m: switch to set the 
highest location that GW-BASIC can use. The maximum block size is in mul­
tiples of 16. It is used to reserve space for user programs (assembly lan­
guage subroutines) beyond GW-BASIC's workspace. 

The default for maximum block size is the highest memory location. The 
default for the highest memory location is 64K bytes unless maximum block 
size is specified, in which case the default is the maximum block size (in 
multiples of 16). 

Id allows certain functions to return double-precision results. When the Id 
switch is specified, approximately 3000 bytes of additional code space are 
used. The functions affected are ATN, COS, EXP, LOG, SIN, SQR, and 
TAN. 

Note 

All switch numbers may be specified as decimal, octal (preceded by &0), 
or hexadecimal (preceded by &H). 

Sample GW-BASIC command lines are as follows: 

The following uses 64K bytes of memory and three files; loads and executes 
the program file payroll. bas: 

A>gwbasic PAYROLL 

The following uses 64K bytes of memory and six files; loads and executes 
the program file invent. bas: 

A>gwbasic INVENT IF:6 

12 



The GW·BASIC Command Line Format 

The following disables RS-232 support and uses only the first 32K bytes of 
memory. 32K bytes above that are reserved for user programs: 

A>gwbasic IC:O IM:32768,4096 

The following uses four files and allows a maximum record length of 512 
bytes: 

A>gwbasic IF:4 15:512 

The following uses 64K bytes of memory and three files. Allocates 512 bytes 
to RS-232 receive buffers and 128 bytes to transmit buffers, and loads and 
executes the program file tty. bas: 

A>gwbasic TTY IC:512 

For more information about RS-232 Communications, see Appendix F. 

Redirection of Standard Input and Output 

When redirected, all INPUT, LINE INPUT, INPUT$, and INKEY$ state­
ments are read from the specified input file instead of the keyboard. 

All PRINT statements write to the specified output file instead of the 
screen. 

Error messages go to standard output and to the screen. 

File input from KYBD: is still read from the keyboard. 

File output to SCRN: still outputs to the screen. 

GW·BASIC continues to trap keys when the ON KEY n statement is used. 

Typing CTRL·BREAK when output is redirected causes GW-BASIC to close any 
open files, issue the message "Break in line nnnn" to standard output, exit 
GW-BASIC, and return to MS-DOS. 

When input is redirected, GW-BASIC continues to read from this source until 
a CTRL-Z is detected. This condition can be tested with the end-of-file (EOF) 
function. If the file is not terminated by a CTRL-Z, or if a GW-BASIC file input 
statement tries to read past the end of file, then any open files are closed, 
and GW-BASIC returns to MS-DOS. 

13 



Getting Started With GW-BASIC 

For further information about these statements and other statements, 
functions, commands, and variables mentioned in this text, refer to the 
GW-BASIC User's Reference. 

Some examples of redirection follow. 

GWBASIC MYPROG >DATA.OUT 

Data read by the INPUT and LINE INPUT statements continues to come 
from the keyboard. Data output by the PRINT statement goes into the 
data.out file. 

gwbasic MYPROG <DATA.IN 

Data read by the INPUT and LINE INPUT statements comes from data.in. 
Data output by PRINT continues to go to the screen. 

gwbasic MYPROG <MYINPUT.DAT >MYOUTPUT.DAT 

Data read by the INPUT and LINE INPUT statements now comes from the 
file myinput.dat, and data output by the PRINT statements goes into 
myoutput.dat. 

gwbasic MYPROG <\SALES\JOHN\TRANS.DAT »\SALES\SALES.DAT 

Data read by the INPUT and LINE INPUT statements now comes from the 
file \ sales \john \trans.dat. Data output by the PRINT statement is 
appended to the file \ sales \sales.dat. 

2.4 GW-BASIC Statements, Functions, 
Commands, and Variables 

A GW-BASIC program is made up of several elements: keywords, commands, 
statements, functions, and variables. 

2.4.1 Keywords 

GW-BASIC keywords, such as print, goto, and return have special signifi­
cance for the GW-BASIC Interpreter. GW-BASIC interprets keywords as part of 
statements or commands. 

14 



Statements, Functions, Commands, and Variables 

Keywords are also called reserved words. They cannot be used as variable 
names, or the system will interpret them as commands. However, keywords 
may be embedded within variable names. 

Keywords are stored in the system as tokens (1- or 2-byte characters) for the 
most efficient use of memory space. 

2.4.2 Commands 

Commands and statements are both executable instructions. The difference 
between commands and statements is that commands are generally exe­
cuted in the direct mode, or command level of the interpreter. They usually 
perform some type of program maintenance such as editing, loading, or sav­
ing programs. When GW-BASIC is invoked and the GW-BASIC prompt, Ok, 
appears, the system assumes command level. 

2.4.3 Statements 

A statement, such as ON ERROR ... GOTO, is a group of GW-BASIC keywords 
generally used in GW-BASIC program lines as part of a program. When the 
program is run, statements are executed when, and as, they appear. 

2.4.4 Functions 

The GW-BASIC Interpreter performs both numeric and string functions. 

2.4.4.1 Numeric Functions 

The GW-BASIC Interpreter can perform certain mathematical (arithmetical 
or algebraic) calculations. For example, it calculates the sine (sin), cosine 
(cos), or tangent (tan) of angle x. 

Unless otherwise indicated, only integer and single-precision results are 
returned by numeric functions. 

15 



Getting Started With GW-BASIC 

2.4.4.2 String Functions 

String functions operate on strings. For example, TIME$ and DATE$ return 
the time and date known by the system. If the current time and date are 
entered during system start-up, the correct time and date are given (the 
internal clock in the computer keeps track). 

2.4.4.3 User-Defined Functions 

Functions can be user-defined by means of the DEF FN statement. These 
functions can be either string or numeric. 

2.4.5 Variables 

Certain groups of alphanumeric characters are assigned values and are 
called variables. When variables are built into the GW-BASIC program they 
provide information as they are executed. 

For example, ERR defines the latest error which occurred in the program; 
ERL gives the location of that error. Variables can also be defined and/or 
redefined by the user or by program content. 

All GW-BASIC commands, statements, functions, and variables are individu­
ally described in the GW-BASIC User's Reference. 

2.5 Line Format 

Each of the elements of GW-BASIC can make up sections of a program that 
are called statements. These statements are very similar to sentences in 
English. Statements are then put together in a logical manner to create 
programs. The GW-BASIC User's Reference describes all of the statements 
available for use in GW-BASIC. 

In a GW-BASIC program, lines have the following format: 

nnnnn statement[statements] 

nnnnn is a line number. 

statement is a GW-BASIC statement. 

16 



Statements, Functions, Commands, and Variables 

A GW-BASIC program line always begins with a line number and must con­
tain at least one character, but no more than 255 characters. Line numbers 
indicate the order in which the program lines are stored in memory, and 
are also used as references when branching and editing. The program line 
ends when you press the RETURN key. 

Depending on the logic of your program, there may be more than one state­
ment on a line. If so, each must be separated by a colon (:). Each of the 
lines in a program should be preceded by a line number. This number may 
be any whole integer from 0 to 65529. It is customary to use line numbers 
such as 10, 20, 30, and 40, in order to leave room for any additional lines 
that you may wish to include later. Since the computer will run the state­
ments in numerical order, additional lines needn't appear in consecutive 
order on the screen: for example, if you entered line 35 after line 60, the 
computer would still run line 35 after line 30 and before line 40. This tech­
nique may save your reentering an entire program in order to include one 
line that you have forgotten. 

The width of your screen is 80 characters. If your statement exceeds this 
width, the cursor will wrap to the next screen line automatically. Only 
when you press the RETURN key will the computer acknowledge the end of 
the line. Resist the temptation to press RETURN as you approach the edge of 
the screen (or beyond). The computer will automatically wrap the line for 
you. You can also press CTRL-RETURN, which causes the cursor to move to 
the beginning of the next screen line without actually entering the line. 
When you press RETURN, the entire logical line is passed to GW-BASIC for 
storage in the program. 

In GW-BASIC, any line of text that begins with a numeric character is con­
sidered a program line and is processed in one of three ways after the 
RETURN key is pressed: 

• A new line is added to the program. This occurs if the line number 
is legal (within the range of 0 through 65529), and if at least one 
alpha or special character follows the line number in the line. 

• An existing line is modified. This occurs if the line number matches 
the line number of an existing line in the program. The existing 
line is replaced with the text of the newly-entered line. This process 
is called editing. 

17 



Getting Started With GW-BASIC 

Note 

Reuse of an existing line number causes all of the information 
contained in the original line to be lost. Be careful when enter­
ing numbers in the indirect mode. You may erase some program 
lines by accident. 

• An existing line is deleted. This occurs if the line number matches 
the line number of an existing line, and the entered line contains 
only a line number. If an attempt is made to delete a nonexistent 
line, an "Undefined line number" error message is displayed. 

2.6 Returning to MS-DOS 

Before you return to MS-DOS, you must save the work you have entered 
under GW-BASIC, or the work will be lost. 

To return to MS·DOS, type the following after the Ok prompt, and press 
RETURN: 

system 

The system returns to MS·DOS, and the A> prompt appears on your screen. 

18 



Chapter 3 
Reviewing and Practicing 
GW-BASIC 

3.1 

3.2 

3.3 

3.4 

3.5 

Example for the Direct Mode 

Examples for the Indirect Mode 

Function Keys 24 

Editing Lines 24 

Saving Your Program File 25 

21 
22 

19 





Example for the Direct Mode 

The practice sessions in this chapter will help you review what you have 
learned. If you have not done so, this is a good time to turn on your com­
puter and load the GW-BASIC Interpreter. 

3.1 Example for the Direct Mode 

You can use your computer in the direct mode to perform fundamental 
arithmetic operations. GW-BASIC recognizes the following symbols as arith­
metic operators: 

Operation 

Addition 

Subtraction 

Multiplication 

Division 

GW-BASIC Operator 

+ 

* 

To enter a problem, respond to the Ok prompt with a question mark (?), 
followed by the statement of the problem you want to solve, and press the 
RETURN key. In GW-BASIC, the question mark can be used interchangeably 
with the keyword PRINT. The answer is then displayed. 

Type the following and press the RETURN key: 

?2+2 

GW-BASIC will display the answer on your screen: 

?2+2 
4 
Ok 

To practice other arithmetic operations, replace the + sign with the desired 
operator. 

The GW-BASIC language is not restricted to arithmetic functions. You can 
also enter complex algebraic and trigonometric functions. The formats for 
these functions are provided in Chapter 6, "Constants, Variables, Expres­
sions and Operators." 

21 



Reviewing and Practicing GW-BASIC 

3.2 Examples for the Indirect Mode 

The GW-BASIC language can be used for functions other than simple alge­
braic calculations. You can create a program that performs a series of oper­
ations and then displays the answer. To begin programming, you create 
lines of instructions called statements. Remember that there can be more 
than one statement on a line, and that each line is preceded by a number. 

For example, to create the command PRINT 2 + 3 as a statement, type the 
following: 

10 print 2+3 

When you press the RETURN key, the cursor shifts to the next line, but noth­
ing else happens. To make the computer perform the calculation, type the 
following and press the RETURN key: 

run 

Your screen should look like this: 

Ok 
10 print 2+3 
run 

5 
Ok 

You have just written a program in GW-BASIC. 

The computer reserves its calculation until specifically commanded to con­
tinue (with the RUN command). This allows you to enter more lines of 
instruction. When you type the RUN command, the computer does the 
addition and displays the answer. 

The following program has two lines of instructions. Type it in: 

10 x=3 
20 print 2+x 

Now use the RUN command to have the computer calculate the answer. 

22 



Examples for the Indirect Mode 

Your screen should look like this: 

Ok 
10 x=3 
20 print 2+x 
run 

5 
Ok 

The two features that distinguish a program from a calculation are 

1. the numbered lines 

2. the use of the RUN command 

These features let the computer know that all the statements have been 
typed and the computation can be carried out from beginning to end. It is 
the numbering of the lines that first signals the computer that this is a pro­
gram, not a calculation, and that it must not do the actual computation 
until the RUN command is entered. 

In other words, calculations are done under the direct mode. Programs are 
written under the indirect mode. 

To display the entire program again, type the LIST command and press the 
RETURN key: 

1 i 5 t 

Your screen should look like this: 

Ok 
10 x=3 
20 print 2+x 
run 
Ok 

5 
Ok 
1 i 5 t 
10 X=3 
20 PRINT 2+X 
Ok 

You'll notice a slight change in the program. The lowercase letters you 
entered have been converted into uppercase letters. The LIST command 
makes this change automatically. 

23 



Reviewing and Practicing GW-BASIC 

3.3 Function Keys 

Function keys are keys that have been assigned to frequently-used com­
mands. The ten function keys are located on the left side of your keyboard. 
A guide to these keys and their assigned commands appears on the bottom 
of the GW-BASIC screen. To save time and keystrokes, you can press a func­
tion key instead of typing a command name. 

For example, to list your program again, you needn't type the LIST com­
mand; you can use the function key assigned to it, instead: 

1. Press the Fl key. 

2. Press RETURN. 

Your program should appear on the screen. 

To run the program, simply press the F2 key, which is assigned to the RUN 
command. 

As you learn more commands, you'll learn how to use keys F3 through FlO. 
Chapter 4, "The GW-BASIC Screen Editor," contains more information about 
keys used in GW-BASIC. 

3.4 Editing Lines 

There are two basic ways to change lines. You can 

• delete and replace them 

• alter them with the EDIT command 

To delete a line, simply type the line number and press the RETURN key. 
For example, if you type 12 and press the RETURN key, line number 12 is 
deleted from your program. 

To use the EDIT command, type the command EDIT, followed by the 
number of the line you want to change. For example, type the following 
and press the RETURN key: 

edit 10 

24 



Saving Your Program File 

You can then use the following keys to perform editing: 

Key 

CURSOR UP 
CURSOR DOWN 
CURSOR LEFT 
CURSOR RIGHT 

BACKSPACE 

DELETE (DEL) 

INSERT (INS) 

Function 

Moves the cursor within the statement 

Deletes the character to the left of the cursor 

Deletes the current character 

Lets you insert characters to the left of the cursor 

For example, to modify statement (line) 10 to read x = 4, use the cursor­
right control key to move the cursor under the 3, and then type a 4. The 
number 4 replaces the number 3 in the statement. 

N ow press the RETURN key, and then the F2 key. 

Your screen displays the following: 

Ok 
10 X=4 
RUN 

6 
Ok 

3.5 Saving Your Program File 

Creating a program is like creating a data file. The program is a file that 
contains specific instructions, or statements, for the computer. In order to 
use the program again, you must save it, just as you would a data file. 

To save a file in GW-BASIC, use the following procedure: 

1. Press the F4 key. 

The command word SAVE" appears on your screen. 

2. Type a name for the program, and press the RETURN key. The file is 
saved under the name you specified. 

25 



Reviewing and Practicing GW-BASIC 

To recall a saved file, use the following procedure: 

1. Press the F3 key. 

The command load LOAD" appears on your screen. 

2. Type the name of the file. 

3. Press RETURN. 

The file is loaded into memory, and ready for you to list, edit, or run. 

26 



Chapter 4 

The GW -BASIC Screen Editor 

4.1 Editing Lines in New Files 29 

4.2 Editing Lines in Saved Files 29 

4.2.1 Editing the Information in a Program Line 29 

4.3 Special Keys 30 

4.4 Function Keys 33 

27 





Editing Lines in Saved Files 

You can edit GW-BASIC program lines as you enter them, or after they have 
been saved in a program file. 

4.1 Editing Lines in New Files 

If an incorrect character is entered as a line is being typed, it can be deleted 
with the BACKSPACE or DEL keys, or with CTRL-H. After the character is 
deleted, you can continue to type on the line. 

The ESC key lets you delete a line that is in the process of being typed. In 
other words, if you have not pressed the RETURN key, and you wish to delete 
the current line of entry, press the ESC key. 

To delete the entire program currently residing in memory, enter the NEW 
command. NEW is usually used to clear memory prior to entering a new 
program. 

4.2 Editing Lines in Saved Files 

After you have entered your GW-BASIC program and saved it, you may dis­
cover that you need to make some changes. To make these modifications, 
use the LIST statement to display the program lines that are affected: 

1. Reload the program. 

2. Type the LIST command, or press the Fl key. 

3. Type the line number, or range of numbers, to be edited. 

The lines will appear on your screen. 

4.2.1 Editing the Information in a Program Line 

You can make changes to the information in a line by positioning the 
cursor where the change is to be made, and by doing one of the following: 

• Typing over the characters that are already there. 

29 



The GW-BASIC Screen Editor 

• Deleting characters to the left of the cursor, using the BACKSPACE 
key. 

• Deleting characters at the cursor position using the DEL key on the 
number pad. 

• Inserting characters at the cursor position by pressing the INS key 
on the number pad. This moves the characters following the cursor 
to the right making room for the new information. 

• Adding to or truncating characters at the end of the program line. 

If you have changed more than one line, be sure to press RETURN on each 
modified line. The modified lines will be stored in the proper numerical 
sequence, even if the lines are not updated in numerical order. 

Note 

A program line will not actually have changes recorded within the 
GW-BASIC program until the RETURN key is pressed with the cursor posi­
tioned somewhere on the edited line. 

You do not have to move the cursor to the end of the line before pressing 
the RETURN key. The GW-BASIC Interpreter remembers where each line ends, 
and transfers the whole line, even if RETURN is pressed while the cursor is 
located in the middle or at the beginning of the line. 

To truncate, or cut off, a line at the current cursor position, type CTRL-END 
or CTRL-E, followed by pressing the RETURN key. 

If you have originally saved your program to a program file, make sure that 
you save the edited version of your program. If you do not do this, your 
modifications will not be recorded. 

4.3 Special Keys 

The GW-BASIC Interpreter recognizes nine of the numeric keys on the right 
side of your keyboard. It also recognizes the BACKSPACE key, ESC key, and 
the CTRL key. The following keys and key sequences have special functions 
in GW-BASIC: 

30 



Key 

BACKSPACE or CTRL-H 

CTRL-BREAK or CTRL-C 

CTRL-CURSOR-LEFT or 
CTRL-B 

CTRL-CURSOR-RIGHT 
or CTRL-F 

CURSOR-DOWN or 
CTRL--

CURSOR-LEFT or 
CTRL-] 

CURSOR-RIGHT or 
CTRL-\ 

CURSOR-UP or CTRL-6 

CTRL-BACKSPACE or 
DEL 

Special Keys 

Function 

Deletes the last character typed, or deletes the 
character to the left of the cursor. All charac­
ters to the right of the cursor are moved left 
one position. Subsequent characters and lines 
within the current logical line are moved up 
as with the DEL key. 

Returns to the direct mode, without saving 
changes made to the current line. It will also 
exit auto line-numbering mode. 

Moves the cursor to the beginning of the pre­
vious word. The previous word is defined as 
the next character to the left of the cursor in 
the set A to Z or in the set 0 to 9. 

Moves the cursor to the beginning of the next 
word. The next word is defined as the next 
character to the right of the cursor in the set 
A to Z or in the set 0 to 9. In other words, the 
cursor moves to the next number or letter 
after a blank or other special character. 

Moves the cursor down one line on the screen. 

Moves the cursor one position left. When the 
cursor is advanced beyond the left edge of the 
screen, it will wrap to the right side of the 
screen on the preceding line. 

Moves the cursor one position right. When the 
cursor is advanced beyond the right edge of 
the screen, it will wrap to the left side of the 
screen on the following line. 

Moves the cursor up one line on the screen. 

Deletes the character positioned over the cur­
sor. All characters to the right of the one 
deleted are then moved one position left to fill 
in where the deletion was made. 

If a logical line extends beyond one physical 
line, characters on subsequent lines are moved 
left one position to fill in the previous space, 
and the character in the first column of each 
subsequent line is moved up to the end of the 
preceding line. 

31 



The GW-BASIC Screen Editor 

32 

CTRL-END or CTRL-E 

CTRL-N or END 

CTRL-RETURN or 
CTRL-J 

CTRL-M or RETURN 

CTRL-[ or ESC 

CTRL-G 

CTRL-K or HOME 

CTRL-HOME or CTRL-L 

CTRL-R or INS 

DEL (delete) is the opposite of INS (insert). 
Deleting text reduces logical line length. 

Erases from the cursor position to the end of 
the logical line. All physical screen lines are 
erased until the terminating RETURN is found. 

Moves the cursor to the end of the logical line. 
Characters typed from this position are added 
to the line. 

Moves the cursor to the beginning of the next 
screen line. This lets you create logical pro­
gram lines which are longer than the physical 
screen width. Logical lines may be up to 255 
characters long. This function may also be 
used as a line feed. 

Enters a line into the GW -BASIC program. It 
also moves the cursor to the next logical line. 

Erases the entire logical line on which the 
cursor is located. 

Causes a beep to emit from your computer's 
speaker. 

Moves the cursor to the upper left corner of 
the screen. The screen contents are 
unchanged. 

Clears the screen and positions the cursor in 
the upper left corner of the screen. 

Turns the Insert Mode on and off. 

Insert Mode is indicated by the cursor blotting 
the lower half of the character position. In 
Graphics Mode, the normal cursor covers the 
whole character position. When Insert Mode is 
active, only the lower half of the character 
position is blanked by the cursor. 

When Insert Mode is off, characters typed 
replace existing characters on the line. The 
SPACEBAR erases the character at the current 
cursor position and moves the cursor one char­
acter to the right. The CURSOR-RIGHT key 
moves the cursor one character to the right, 
but does not delete the character. 



CTRL-NUM LOCK or 
CTRL-S 

CTRL-PRTSC 

SHIFT -PRTSC 

CTRL-I or TAB 

4.4 Function Keys 

Function Keys 

When Insert Mode is off, pressing the TAB key 
moves the cursor over characters until the 
next tab stop is reached. Tab stops occur every 
eight character positions. 

When Insert Mode is on, characters following 
the cursor are moved to the right as typed 
characters are inserted before them at the 
current cursor position. After each keystroke, 
the cursor moves one position to the right. 
Line wrapping is observed. That is, as charac­
ters move off the right side of the screen, they 
are inserted from the left on subsequent lines. 
Insertions increase logical line length. 

When Insert Mode is on, pressing the TAB key 
causes blanks to be inserted from current cur­
sor position to the next tab stop. Line wrap­
ping is observed as above. 

Places the computer in a pause state. To 
resume operation, press any other key. 

Causes characters printed on the screen to 
echo to the lineprinter (lptl:). In other words, 
you will be printing what you type on the 
screen. Pressing CTRL-PRTSC a second time 
turns off the echoing of characters to lptl:. 

Sends the current screen contents to the 
printer, effectively creating a snapshot of the 
screen. 

Moves the cursor to the next tab stop. Tab 
stops occur every eight columns. 

Certain keys or combinations of keys let you perform frequently-used com­
mands or functions with a minimum number of keystrokes. These keys are 
called function keys. 

33 



The GW-BASIC Screen Editor 

The special function keys that appear on the left side of your keyboard 
can be temporarily redefined to meet the programming requirements and 
specific functions that your program may require. 

Function keys allow rapid entry of as many as 15 characters into a program 
with one keystroke. These keys are located on the left side of your keyboard 
and are labelled Fl through FlO. GW-BASIC has already assigned special func­
tions to each of these keys. You will notice that after you load GW-BASIC, 
these special key functions appear on the bottom line of your screen. These 
key assignments have been selected for you as some of the most frequently 
used commands. 

Initially, the function keys are assigned the following special functions: 

Table 4.1 

GW -BASIC Function Key Assignments 

Key 

Fl 
F2 
F3 
F4 
F5 

Function 

LIST 
RUN<­
LOAD" 
SAVE" 
CONT<-

Key 

F6 
F7 
F8 
F9 
FlO 

Function 

,"LPT1:"<­
TRON<­
TROFF<­
KEY 
SCREEN 0,0,0<-

Note 

The <- following a function indicates that you needn't press the RETURN 
key after the function key. The selected command will be immediately 
executed. 

If you choose, you may change the assignments of these keys. Anyone or 
all of the 10 function keys may be redefined. For more information, see the 
KEY and ON KEY statements in the OW-BASIC User's Reference. 

34 



Chapter 5 
Creating and Using Files 

5.1 Program File Commands 37 
5.2 Data Files 38 
5.2.1 Creating a Sequential File 38 
5.2.2 Accessing a Sequential File 40 
5.2.3 Adding Data to a Sequential File 41 
5.3 Random Access Files 41 
5.3.1 Creating a Random Access File 42 
5.3.2 Accessing a Random Access File 43 

35 





Program File Commands 

There are two types of files in MS-DOS systems: 

• Program files, which contain the program or instructions for the 
computer 

• Data files, which contain information used or created by program 
files 

5.1 Program File Commands 

The following are the commands and statements most frequently used with 
program files. The GW-BASIC User's Reference contains more information 
on each of them. 

SAVE filename[,a][,p] 

Writes to diskette the program currently residing in memory. 

LOAD filename[,r] 

Loads the program from a diskette into memory. LOAD deletes the current 
contents of memory and closes all files before loading the program. 

RUN filename[,r] 

Loads the program from a diskette into memory and runs it immediately. 
RUN deletes the current contents of memory and closes all files before load­
ing the program. 

MERGE filename 

Loads the program from a diskette into memory, but does not delete the 
current program already in memory. 

KILL filename 

Deletes the file from a diskette. This command can also be used with data 
files. 

NAME old filename AS new filename 

Changes the name of a diskette file. Only the name of the file is changed. 
The file is not modified, and it remains in the same space and position on 
the disk. This command can also be used with data files. 

37 



Creating and Using Files 

5.2 Data Files 

GW-BASIC programs can work with two types of data files: 

• Sequential files 

• Random access files 

Sequential files are easier to create than random access files, but are lim­
ited in flexibility and speed when accessing data. Data written to a sequen­
tial file is a series of ASCII characters. Data is stored, one item after another 
(sequentially), in the order sent. Data is read back in the same way. 

Creating and accessing random access files requires more program steps 
than sequential files, but random files require less room on the disk, 
because GW-BASIC stores them in a compressed format in the form of a 
string. 

The following sections discuss how to create and use these two types of 
data files. 

5.2.1 Creating a Sequential File 

The following statements and functions are used with sequential files: 

CLOSE 
EOF 
INPUT# 
LINE INPUT# 
LOC 
LOCK 

LOF 
OPEN 
PRINT# 
PRINT# USING 
UNLOCK 
WRITE # 

The following program steps are required to create a sequential file and 
access the data in the file: 

38 

1. Open the file in output (0) mode. The current program will use this 
file first for output: 

OPEN "O",#l,"filename" 

2. Write data to the file using the PRINT# or WRITE# statement: 

PRINT#l,A$ 
PRINT#l,B$ 
PRINT#l,C$ 



Data Files 

3. To access the data in the file, you must close the file and reopen it 
in input (I) mode: 

CLOSE #1 
OPEN "I",#1,"filename" 

4. Use the INPUT# or LINE INPUT# statement to read data from the 
sequential file into the program: 

INPUT#1,X$,Y$,Z$ 

Example 1 is a short program that creates a sequential file, data, from 
information input at the terminal. 

Example 1 

10 OPEN "0 11
, #1 ,"DATA" 

20 INPUT "NAME II ;N$ 
30 IF N$=IIDoNE" THEN END 
40 INPUT "DEPARTMENT";D$ 
50 INPUT IIDATE HIREDII;H$ 
60 PRINT#1,N$;I,ID$I,";H$ 
70 PRINT:GoTo 20 
RUN 
NAME? MICKEY MOUSE 
DEPARTMENT? AUDIO/VISUAL AIDS 
DATE HIRED? 01/12/72 

NAME? SHERLOCK HOLMES 
DEPARTMENT? RESEARCH 
DATE HIRED? 12/03/65 

NAME? EBENEEZER SCROOGE 
DEPARTMENT? ACCOUNTING 
DATE HIRED? 04/27/78 

NAME? SUPER MANN 
DEPARTMENT? MAINTENANCE 
DATE HIRED? 08/16/78 

NAME? DONE 
OK 

39 



Creating and Using Files 

5.2.2 Accessing a Sequential File 

The program in Example 2 accesses the file data, created in the program in 
Example 1, and displays the name of everyone hired in 1978. 

Example 2 

1 0 OPEN II I II, #1 ,'IDATAII 
20 INPUT#1,N$,D$,H$ 
30 IF RIGHT$(H$,2)=1I7S 11 THEN PRINT N$ 
40 GOTO 20 
50 CLOSE #1 
RUN 
EBENEEZER SCROOGE 
SUPER MANN 
Input past end in 20 
Ok 

The program in Example 2 reads, sequentially, every item in the file. When 
all the data has been read, line 20 causes an "Input past end" error. To 
avoid this error, insert line 15, which uses the EOF function to test for end 
of file: 

15 IF EOF(1) THEN END 

and change line 40 to GOTO 15. 

A program that creates a sequential file can also write formatted data to 
the diskette with the PRINT# USING statement. For example, the follow­
ing statement could be used to write numeric data to diskette without expli­
cit delimiters: 

PRINT#1,USINGII####.##,II;A,B,C,D 

The comma at the end of the format string serves to separate the items in 
the disk file. 

The LOC function, when used with a sequential file, returns the number of 
128-byte records that have been written to or read from the file since it was 
opened. 

40 



Random Access Files 

5.2.3 Adding Data to a Sequential File 

When a sequential file is opened in 0 mode, the current contents are de­
stroyed. To add data to an existing file without destroying its contents, open 
the file in append (A) mode. 

The program in Example 3 can be used to create, or to add onto a file called 
names. This program illustrates the use of LINE INPUT. LINE INPUT will 
read in characters until it sees a carriage return indicator, or until it has 
read 255 characters. It does not stop at quotation marks or commas. 

Example 3 

10 ON ERROR GoTo 2000 
20 OPEN IA",#1 ,"NAMES" 
110 REM ADD NEW ENTRIES TO FILE 
120 INPUT "NAME";N$ 
130 IF N$="II THEN 200 'CARRIAGE RETURN EXITS INPUT LOOP 
140 LINE INPUT "ADDRESS? ";A$ 
150 LINE INPUT "BIRTHDAY? II;B$ 
160 PRINT#1,N$ 
170 PRINT#1,A$ 
180 PRINT#1,B$ 
190 PRINT:GoTo 120 
200 CLOSE #1 
2000 ON ERROR GoTo 0 

In lines 10 and 2000 the ON ERROR GOTO statement is being used. This 
statement enables error trapping and specifies the first line (2000) of the 
error handling subroutine. Line 10 enables the error handling routine. Line 
2000 disables the error handling routine and is the point where GW-BASIC 
branches to print the error messages. 

5.3 Random Access Files 

Information in random access files is stored and accessed in distinct, num­
bered units called records. Since the information is called by number, the 
data can be called from any disk location; the program needn't read the 
entire disk, as when seeking sequential files, to locate data. GW-BASIC sup­
ports large random files. The maximum logical record number is 232 

- 1. 

41 



Creating and Using Files 

The following statements and functions are used with random files: 

CLOSE 
CVD 
CVI 
CVS 
EOF 
ET 

FIELD 
LOC 
LOCK 
LOF 
LSET/RSET 
MKD$ 

MKI$ 
MKS$ 
OPEN 
PUT 
UNLOCK 

5.3.1 Creating a Random Access File 

The following program steps are required to create a random data file: 

1. Open the file for random access (R) mode. The following example 
specifies a record length of 32 bytes. If the record length is omitted, 
the default is 128 bytes. 

OPEN "R",#1,"filename",32 

2. Use the FIELD statement to allocate space in the random buffer for 
the variables that will be written to the random file: 

FIELD#1,20 AS N$,4 AS A$,8 AS P$ 

In this example, the first 20 positions (bytes) in the random file 
buffer are allocated to the string variable N$. The next 4 positions 
are allocated to A$; the next 8 to P$. 

3. Use LSET or RSET to move the data into the random buffer fields 
in left- or right-justified format (L = left SET; R = right SET). 
Numeric values must be made into strings when placed in the 
buffer. MKI$ converts an integer value into a string, MKS$ con­
verts a single-precision value, and MKD$ converts a double­
precision value. 

LSET N$=X$ 
LSET A$ = MKS$(AMT) 
LSET P$ = TEL$ 

4. Write the data from the buffer to the diskette using the PUT 
statement: 

PUT #1,CODE% 

The program in Example 4 takes information keyed as input at the termi­
nal and writes it to a random access data file. Each time the PUT state­
ment is executed, a record is written to the file. In the example, the 2-digit 
CODE% input in line 30 becomes the record number. 

42 



Random Access Files 

Note 

Do not use a fielded string variable in an INPUT or LET statement. 
This causes the pointer for that variable to point into string space 
instead of the random file buffer. 

Example 4 

10 OPEN IIR II ,#1 ,IIINFOFILEII,32 
20 FIELD#1,20 AS N$, 4 AS A$, 8 AS P$ 
30 INPUT 112-DIGIT CODEII;CODE% 
40 INPUT IINAME";X$ 
50 INPUT IIAMOUNT";AMT 
60 INPUT "PHONE II ;TEL$:PRINT 
70 LSET N$=X$ 
80 LSET A$=MKS${AMT) 
90 LSET P$=TEL$ 
100 PUT #1,CODE% 
110 GOTO 30 

5.3.2 Accessing a Random Access File 

The following program steps are required to access a random file: 

1. Open the file in R mode: 

OPEN "R",#1,"filename",32 

2. Use the FIELD statement to allocate space in the random buffer for 
the variables that will be read from the file: 

FIELD, #1, 20 AS N$, 4 AS A$, 8 AS P$ 

In this example, the first 20 positions (bytes) in the random file 
buffer are allocated to the string variable N$. The next 4 positions 
are allocated to A$; the next 8 to P$. 

Note 

In a program that performs both INPUT and OUTPUT on the 
same random file, you can often use just one OPEN statement 
and one FIELD statement. 

43 



Creating and Using Files 

3. Use the GET statement to move the desired record into the random 
buffer: 

GET #l,CODE% 

The data in the buffer can now be accessed by the program. 

4. Convert numeric values back to numbers using the convert func­
tions: CVI for integers, CVS for single-precision values, and CVD 
for double-precision values. 

PRINT N$ 
PRINT CVS{A$) 

The program in Example 5 accesses the random file, i nfofi Ie , that was 
created in Example 4. By inputting the 3-digit code, the information associ­
ated with that code is read from the file and displayed. 

Example 5 

10 OPEN IR",#1 ,"INFoFILP',32 
20 FIELD #1, 20 AS N$, 4 AS A$, 8 AS P$ 
30 INPUT "2-DIGIT CoDE";CoDE% 
40 GET #1, CoDE% 
50 PRINT N$ 
60 PRINT USING "$$###.##";CVS{A$) 
70 PRINT P$:PRINT 
80 GO TO 30 

With random files, the LOC function returns the current record number. 
The current record number is the last record number used in a GET or PUT 
statement. For example, the following line ends program execution if the 
current record number in file# 1 is higher than 99: 

IF LoC(1)#99 THEN END 

Example 6 is an inventory program that illustrates random file access. 
In this program, the record number is used as the part number, and it is 
assumed that the inventory will contain no more than 100 different part 
numbers. 

Lines 900-960 initialize the data file by writing CHR$(255) as the first 
character of each record. This is used later (line 270 and line 500) to deter­
mine whether an entry already exists for that part number. 

44 



Random Access Files 

Lines 130-220 display the different inventory functions that the program 
performs. When you type in the desired function number, line 230 branches 
to the appropriate subroutine. 

Example 6 

120 OPENIIR II ,#1,IIINVEN.DAT II ,39 
125 FIELD#1,1 AS F$,30 AS D$, 2 AS Q$,2 AS R$,4 AS P$ 
130 PRINT:PRINT IIFUNCTIONS:II:PRINT 
135 PRINT 1 ,IIINITIALIZE FILEII 
140 PRINT 2,IICREATE A NEW ENTRY II 
150 PRINT 3,IIDISPLAY INVENTORY FOR ONE PART" 
160 PRINT 4,IIADD TO STOCKII 
170 PRINT 5,IISUBTRACT FROM STOCKII 
180 PRINT 6,IIDISPLAY ALL ITEMS BELOW REORDER LEVEL II 
220 PRINT:PRINT:INPUTIIFUNCTIONII;FUNCTION 
225 IF (FUNCT ION < 1 ) OR (FUNCT I ON#6) THEN PR I NT IIBAD FUNCT ION 
NUMBERII:GOTO 130 
230 ON FUNCTION GOSUB 900,250,390,480,560,680 
240 GOTO 220 
250 REM BUILD NEW ENTRY 
260 GOSUB 840 
270 IF ASC(F$) < # 255 THEN INPUTIIOVERWRITEII;A$: 

IF A$ < # IIylI THEN RETURN 
280 LSET F$=CHR$(O) 
290 INPUT IIDESCRIPTIONII;DESC$ 
300 LSET D$=DESC$ 
31 0 INPUT IIQUANT I TY IN STOCKII; Q% 
320 LSET Q$=MKI$(Q%) 
330 INPUT IIREORDER LEVELII;R% 
340 LSET R$=MKI$(R%) 
350 INPUT IIUNIT PRICEII;P 
360 LSET P$=MKS$(P) 
370 PUT#1,PART% 
380 RETURN 
390 REM DISPLAY ENTRY 
400 GOSUB 840 
410 IF ASC(F$)=255 THEN PRINT IINULL ENTRYII:RETURN 
420 PRINT USING IIPART NUMBER ###II;PART% 
430 PRINT D$ 
440 PRINT USING IIQUANTITY ON HAND #####II;CVI(Q$) 
450 PRINT USING IIREORDER LEVEL #####II;CVI(R$) 
460 PRINT USING IIUNIT PRICE $$##.##II;CVS(P$) 
470 RETURN 
480 REM ADD TO STOCK 
490 GOSUB 840 
500 IF ASC(F$)=255 THEN PRINT IINULL ENTRYII:RETURN 
510 PRINT D$:INPUT IIQUANTITY TO ADDII;A% 

45 



Creating and Using Files 

520 Q%=CVI(Q$)+A% 
530 LSET Q$=MKI$(Q%) 
540 PUT#1,PART% 
550 RETURN 
560 REM REMOVE FROM STOCK 
570 GOSUB 840 
580 IF ASC(F$)=255 THEN PRINT IINULL ENTRYII:RETURN 
590 PRINT D$ 
600 INPUT IIQUANTITY TO SUBTRACTII;S% 
610 Q%=CVI(Q$) 
620 IF (Q%-S%)<O THEN PRINT 1I0NLylI;Q%;1I IN STOCK II :GOTO 600 
630 Q%=Q%-S% 
640 IF Q%= < CVI(R$) THEN PRINT IIQUANTITY NOWII;Q%; 
IIREORDER LEVELII;CVI(R$) 
650 LSET Q$=MKI$(Q%) 
660 PUT#1,PART% 
670 RETURN 
680 REM DISPLAY ITEMS BELOW REORDER LEVEL4 
690 FOR 1=1 TO 100 
71 0 GET # 1 , I 
720 IF CVI(Q$)<CVI(R$) THEN PRINT D$;II QUANTITYII; 
CVI(Q$) TAB(50) IIREORDER LEVELII;CVI(R$) 
730 NEXT I 
740 RETURN 
840 INPUT IIPART NUMBERII;PART% 
850 IF(PART% < 1 )OR(PART% # 100) THEN PRINT IIBAD PART NUMBER II : 
GOTO 840 ELSE GET#1,PART%:RETURN 
890 END 
900 REM INITIALIZE FILE 
91 0 INPUT IIARE YOU SURE"; B$ : IF B$ .< # "Y II THEN RETURN 
920 LSET F$=CHR$(255) 
930 FOR 1=1 TO 100 
940 PUT#1, I 
950 NEXT I 
960 RETURN 

46 



Expressions and Operators 

Chapter 6 
Constants, Variables, 
Expressions and Operators 

6.1 Constants 49 

6.1.1 Single- and Double-Precision Form 
for Numeric Constants 50 

6.2 Variables 51 

6.2.1 Variable Names and Declarations 51 

6.2.2 Type Declaration Characters 51 

6.2.3 Array Variables 52 

6.2.4 Memory Space Requirements 
for Variable Storage 53 

6.3 Type Conversion 54 

6.4 Expressions and Operators 56 

6.4.1 Arithmetic Operators 56 

6.4.1.1 Integer Division and Modulus Arithmetic 57 

6.4.1.2 Overflow and Division by Zero 58 

6.4.2 Relational Operators 58 

6.4.3 Logical Operators 59 

6.4.4 Functional Operators 61 

6.4.5 String Operators 62 

47 





Constants 

After you have learned the fundamentals of programming in GW-BASIC, you 
will find that you will want to write more complex programs. The informa­
tion in this chapter will help you learn more about the use of constants, 
variables, expressions, and operators in GW-BASIC, and how they can be used 
to develop more sophisticated programs. 

6.1 Constants 

Constants are static values the GW-BASIC Interpreter uses during execution 
of your program. There are two types of constants: string and numeric. 

A string constant is a sequence of 0 to 255 alphanumeric characters 
enclosed in double quotation marks. The following are sample string 
constants: 

"HELLO" 
"$25,000.00" 
"Number of Employees" 

Numeric constants can be positive or negative. When entering a numeric 
constant in GW-BASIC, you should not type the commas. For instance, if 
the number 10,000 were to be entered as a constant, it would be typed as 
10000. There are five types of numeric constants: integer, fixed-point, 
floating -point, hexadecimal, and octal. 

Constant 

Integer 

Fixed-Point 

Floating-Point 
Constants 

Description 

Whole numbers between - 32768 and + 32767. 
They do not contain decimal points. 

Positive or negative real numbers that contain 
decimal points. 

Positive or negative numbers represented in 
exponential form (similar to scientific nota­
tion). A floating-point constant consists of an 
optionally-signed integer or fixed-point 
number (the mantissa), followed by the letter 
E and an optionally-signed integer (the 
exponent). 

49 



Constants, Variables, Expressions and Operators 

Hexadecimal 

Octal 

The allowable ran~e for floating-point con­
stants is 3.0Xl0- 3 to 1.7XI038

• For example: 

235.988E-7 = .0000235988 
2359E6 = 2359000000 

Hexadecimal numbers with prefix &H. 
For example: 

&H76 
&H32F 

Octal numbers with the prefix &0 or &. 
For example: 

&0347 
&1234 

6.1.1 Single- and Double-Precision Form 
for Numeric Constants 

Numeric constants can be integers, single-precision or double-precision 
numbers. Integer constants are stored as whole numbers only. Single­
precision numeric constants are stored with 7 digits (although only 6 may 
be accurate). Double-precision numeric constants are stored with 17 digits 
of precision, and printed with as many as 16 digits. 

A single-precision constant is any numeric constant with either 

• seven or fewer digits 

• exponential form using E 

• a trailing exclamation point (!) 

A double-precision constant is any numeric constant with either 

• eight or more digits 

• exponential form using D 

• a trailing number sign (#) 

50 



Variables 

The following are examples of single- and double-precision numeric 
constants: 

Single-Precision Constants 

46.8 

-1.09E-06 

3489.0 

22.5! 

6.2 Variables 

Double-Precision Constants 

345692811 

-1.09432D-06 

3490.0# 

7654321.1234 

Variables are the names that you have chosen to represent values used in a 
GW-BASIC program. The value of a variable may be assigned specifically, or 
may be the result of calculations in your program. If a variable is assigned 
no value, GW-BASIC assumes the variable's value to be zero. 

6.2.1 Variable Names and Declarations 

GW-BASIC variable names may be any length; up to 40 characters are signifi­
cant. The characters allowed in a variable name are letters, numbers, and 
the decimal point. The first character in the variable name must be a letter. 
Special type declaration characters are also allowed. 

Reserved words (all the words used as GW-BASIC commands, statements, 
functions, and operators) can't be used as variable names. However, if the 
reserved word is embedded within the variable name, it will be allowed. 

Variables may represent either numeric values or strings. 

6.2.2 Type Declaration Characters 

Type declaration characters indicate what a variable represents. The follow­
ing type declaration characters are recognized: 

51 



Constants, Variables, Expressions and Operators 

Character 

$ 

% 

# 

Type of Variable 

String variable 

Integer variable 

Single-precision variable 

Double-precision variable 

The following are sample variable names for each type: 

Variable Type 

String variable 

Integer variable 

Single-precision variable 

Double-precision variable 

Sample Name 

N$ 

LIMIT% 

MINIMUM! 

PI# 

The default type for a numeric variable name is single-precision. Double­
precision, while very accurate, uses more memory space and more calcula­
tion time. Single-precision is sufficiently accurate for most applications. 
However, the seventh significant digit (if printed) will not always be accu­
rate. You should be very careful when making conversions between integer, 
single-precision, and double-precision variables. 

The following variable is a single-precision value by default: 

ABC 

Variables beginning with FN are assumed to be calls to a user-defined 
function. 

The GW-BASIC statements DEFINT, DEFSTR, DEFSNG, and DEFDBL may 
be included in a program to declare the types of values for certain variable 
names. 

6.2.3 Array Variables 

An array is a group or table of values referenced by the same variable 
name. Each element in an array is referenced by an array variable that 
is a subscripted integer or an integer expression. The subscript is enclosed 
within parentheses. An array variable name has as many subscripts as 
there are dimensions in the array. 

52 



Variables 

For example, 

v ( 1 0 ) 

references a value in a one-dimensional array, while 

T (1 ,4) 

references a value in a two-dimensional array. 

The maximum number of dimensions for an array in GW-BASIC is 255. The 
maximum number of elements per dimension is 32767. 

Note 

If you are using an array with a subscript value greater than 10, you 
should use the DIM statement. Refer to the GW-BASIC User's Reference 
for more information. If a subscript greater than the maximum specified 
is used, you will receive the error message "Subscript out of range." 

Multidimensional arrays (more than one subscript separated by commas) 
are useful for storing tabular data. For example, A(l,4) could be used to 
represent a two-row, five-column array such as the following: 

Column 

Row 
Row 

o 
1 

o 

1 0 
60 

20 
70 

2 

30 
80 

In this example, element A(1,2) = 80 and ACO,3) = 40. 

3 

40 
90 

4 

50 
100 

Rows and columns begin with 0, not 1, unless otherwise declared. For more 
information, see the OPTION BASE statement in the GW-BASIC User's 
Reference. 

6.2.4 Memory Space Requirements 
for Variable Storage 

The different types of variables require different amounts of storage. 
Depending on the storage and memory capacity of your computer and 
the size of the program that you are developing, these can be important 
considerations. 

53 



Constants, Variables, Expressions and Operators 

Variable 

Integer 

Single-precision 

Double-precision 

Arrays 

Integer 

Single-precision 

Double-precision 

Required Bytes of Storage 

2 

4 

8 

Required Bytes of Storage 

2 per element 

4 per element 

8 per element 

Strings: 

Three bytes overhead, plus the present contents of the string as one byte for 
each character in the string. Quotation marks marking the beginning and 
end of each string are not counted. 

6.3 Type Conversion 

When necessary, GW-BASIC converts a numeric constant from one type of 
variable to another, according to the following rules: 

54 

• If a numeric constant of one type is set equal to a numeric variable 
of a different type, the number is stored as the type declared in the 
variable name. For example: 

10 A% = 23.42 
20 PRINT A% 
RUN 

23 

If a string variable is set equal to a numeric value or vice versa, 
a "Type Mismatch" error occurs. 

• During an expression evaluation, all of the operands in an arith­
metic or relational operation are converted to the same degree of 
precision; that is, that of the most precise operand. Also, the result 
of an arithmetic operation is returned to this degree of precision. 
For example: 



Variables 

10 D# = 6#/7 
20 PRINT D# 
RUN 

.8571428571428571 

The arithmetic is performed in double-precision, and the result is 
returned in D# as a double-precision value. 

10 D = 6#/7 
20 PRINT D 
RUN 

The arithmetic is performed in double-precision, and the result is 
returned to D (single-precision variable) rounded and printed as a 
single-precision value. 

• Logical operators convert their operands to integers and return an 
integer result. Operands must be within the range of - 32768 to 
32767 or an "Overflow" error occurs. 

• When a floating-point value is converted to an integer, the frac­
tional portion is rounded. For example: 

10 C% = 55.88 
20 PRINT C% 
RUN 

56 

• If a double-precision variable is assigned a single-precision value, 
only the first seven digits (rounded) of the converted number are 
valid. This is because only seven digits of accuracy were supplied 
with the single-precision value. The absolute value of the difference 
between the printed double-precision number, and the original 
single-precision value, is less than 6.3E-8 times the original single­
precision value. For example: 

10 A = 2.04 
20 B# = A 
30 PRINT A;B# 
RUN 

2.04 2.039999961853027 

55 



Constants, Variables, Expressions and Operators 

6.4 Expressions and Operators 

An expression may be simply a string or numeric constant, a variable, or 
it may combine constants and variables with operators to produce a single 
value. 

Operators perform mathematical or logical operations on values. The opera­
tors provided by GW-BASIC are divided into four categories: 

• Arithmetic 

• Relational 

• Logical 

• Functional 

6.4.1 Arithmetic Operators 

The following are the arithmetic operators recognized by GW-BASIC. They 
appear in order of precedence. 

Operator 

* 

+ 

Operation 

Exponentiation 

Negation 

Multiplication 

Floating-point Division 

Addition 

Subtraction 

Operations within parentheses are performed first. Inside the parentheses, 
the usual order of precedence is maintained. 

The following are sample algebraic expressions and their GW-BASIC 
counterparts: 

56 



Expressions and Operators 

Algebraic BASIC 
Expression Expression 

X-Z (X-Y)/Z -y 
XY X*Y/Z 
Z 
X+Y (X+ Y)/Z 
-Z-
(X2 )Y (X"2rY 

xyz X"(Y"Z) 

X(-Y) X*(-Y) 

Two consecutive operators must be separated by parentheses. 

6.4.1.1 Integer Division and Modulus Arithmetic 

Two additional arithmetic operators are available: integer division and 
modulus arithmetic. 

Integer division is denoted by the backslash (\). The operands are rounded 
to integers (must be within the range of - 32768 to 32767) before the divi­
sion is performed, and the quotient is truncated to an integer. 

The following are examples of integer division: 

10\4 = 2 

25.68\6.99 = 3 

In the order of occurrence within GW-BASIC, the integer division will be per­
formed just after floating-point division. 

Modulus arithmetic is denoted by the operator MOD. It gives the integer 
value that is the remainder of an integer division. 

The following are examples of modulus arithmetic: 

10.4 MOD 4 = 2 
(10/4=2 with a remainder 2) 

25.68 MOD 6.99 = 5 
(26/7=3 with a remainder 5) 

57 



Constants, Variables, Expressions and Operators 

In the order of occurrence within GW-BASIC, modulus arithmetic follows 
integer division. The INT and FIX functions, described in the GW -BASIC 
User's Reference, are also useful in modulus arithmetic. 

6.4.1.2 Overflow and Division by Zero 

If, during the evaluation of an expression, a division by zero is encountered, 
the "Division by zero" error message appears, machine infinity with the 
sign of the numerator is supplied as the result of the division, and execu­
tion continues. 

If the evaluation of an exponentiation results in zero being raised to a 
negative power, the "Division by Zero" error message appears, positive ma­
chine infinity is supplied as the result of the exponentiation, and execution 
continues. 

If overflow occurs, the "Overflow" error message appears, machine infinity 
with the algebraically correct sign is supplied as the result, and execution 
continues. The errors that occur in overflow and division by zero will not be 
trapped by the error trapping function. 

6.4.2 Relational Operators 

Relational operators let you compare two values. The result of the com­
parison is either true (-1) or false (0). This result can then be used to make 
a decision regarding program flow. 

Table 6.1 displays the relational operators. 

58 

Table 6.1 

Relational Operators 

Operator 

<> 
< 
> 
<= 
>= 

Relation Tested 

Equality 
Inequality 
Less than 
Greater than 
Less than or equal to 
Greater than or equal to 

Expression 

x=y 
x<>y 
x<y 
x>y 
x<=y 
x>=y 



Expressions and Operators 

The equal sign is also used to assign a value to a variable. See the LET 
statement in the GW-BASIC User's Reference. 

When arithmetic and relational operators are combined in one expression, 
the arithmetic is always performed first: 

X+Y < (T-1) /Z 

This expression is true if the value of X plus Y is less than the value of 
T-l divided by Z. 

6.4.3 Logical Operators 

Logical operators perform tests on multiple relations, bit manipulation, or 
boolean operations. The logical operator returns a bit-wise result which is 
either true (not zero) or false (zero). In an expression, logical operations are 
performed after arithmetic and relational operations. The outcome of a logi­
cal operation is determined as shown in the following table. The operators 
are listed in order of precedence. 

Table 6.2 

Results Returned by Logical Operations 

Operation Value Value Result 

NOT X NOT X 

T F 
F T 

AND X Y X AND Y 

T T T 
T F F 
F T F 
F F F 

59 



Constants, Variables, Expressions and Operators 

Table 6.2 (continued) 

Operation Value Value Result 

OR X Y X OR y 

T T T 
T F T 
F T T 
F F F 

XOR X Y X XOR Y 

T T F 
T F T 
F T T 
F F F 

EQV X Y X EQV Y 

T T T 
T F F 
F T F 
F F T 

IMP X Y X IMP Y 

T T T 
T F F 
F T T 
F F T 

Just as the relational operators can be used to make decisions regarding 
program flow, logical operators can connect two or more relations and 
return a true or false value to be used in a decision. For example: 

IF D<200 AND F<4 THEN 80 
IF 1#10 OR K<O THEN 50 
IF NOT P THEN 100 

Logical operators convert their operands to 16-bit, signed, two's complement 
integers within the range of - 32768 to + 32767. If the operands are not 
within this range, an error results. If both operands are supplied as 0 or 

60 



Expressions and Operators 

-1, logical operators return 0 or -1. The given operation is performed on 
these integers in bits; that is, each bit of the result is determined by the 
corresponding bits in the two operands. 

Thus, it is possible to use logical operators to test bytes for a particular bit 
pattern. For instance, the AND operator may be used to mask all but one of 
the bits of a status byte at a machine 110 port. The OR operator may be 
used to merge two bytes to create a particular binary value. The following 
examples demonstrate how the logical operators work: 

Example 

63 AND 16= 16 

15 AND 14= 14 

-1 AND 8=8 

4 OR 2=6 

10 OR 10= 10 

-10R-2=-1 

NOT X=-(X+1) 

Explanation 

63 = binary 111111 and 16 = binary 10000, so 
63 AND 16= 16 

15 = binary 1111 and 14 = binary 1110, so 15 
AND 14= 14 (binary 1110) 

-1 = binary 1111111111111111 and 8 = binary 
1000, so -1 AND 8 = 8 

4 = binary 100 and 2 = binary 10, so 4 OR 2 = 6 
(binary 110) 

10 = binary 1010, so 1010 OR 1010 = 1010 (10) 

-1 = binary 1111111111111111 and -2 = binary 
1111111111111110,so -lOR -2 = -1. The bit 
complement of 16 zeros is 16 ones, which is 
the two's complement representation of -1. 

The two's complement of any integer is the bit 
complement plus one. 

6.4.4 Functional Operators 

A function is used in an expression to call a predetermined operation that is 
to be performed on an operand. GW-BASIC has intrinsic functions that reside 
in the system, such as SQR (square root) or SIN (sine). 

GW-BASIC also allows user-defined functions written by the programmer. See 
the DEF FN statement in the OW-BASIC User's Reference. 

61 



Constants, Variables, Expressions and Operators 

6.4.5 String Operators 

To compare strings, use the same relational operators used with numbers: 

Operator Meaning 

Equal to 

<> Unequal 

< Less than 

> Greater than 

<= Less than or equal to 

>= Greater than or equal to 

The GW-BASIC Interpreter compares strings by taking one character at a 
time from each string and comparing their ASCII codes. If the ASCII codes in 
each string are the same, the strings are equal. If the ASCII codes differ, the 
lower code number will precede the higher code. If the interpreter reaches 
the end of one string during string comparison, the shorter string is said to 
be smaller, providing that both strings are the same up to that point. Lead­
ing and trailing blanks are significant. 

For example: 

IIAA" < IIABII 
IIFILENAMEII = "FILENAMEII 
IIX&" # IIX#II 
IICL II # IICLII 
IIkg" # IIKG II 
IISMYTH II < IISMYTHE II 
B$ < 119/12/78 11 where B$ = "8/12/78 11 

String comparisons can also be used to test string values or to alphabetize 
strings. All string constants used in comparison expressions must be 
enclosed in quotation marks. 

Strings can be concatenated by using the plus ( + ) sign. For example: 

10 A$=IIFILEII:B$=IINAME II 
20 PRINT A$+B$ 
30 PRINT IINEW II + A$+B$ 
RUN 
FILENAME 
NEW FILENAME 

62 



Appendix A 
Error Codes and Messages 

Code: 

2 

3 

4 

5 

Message: 

NEXT wi thou t FOR 

NEXT statement does not have a corresponding FOR state­
ment. Check variable at FOR statement for a match with 
the NEXT statement variable. 

Syntax error 

A line is encountered that contains an incorrect sequence of 
characters (such as unmatched parentheses, a misspelled 
command or statement, incorrect punctuation). This error 
causes GW-BASIC to display the incorrect line in edit mode. 

RETURN wi thou t GOSUB 

A RETURN statement is encountered for which there is no 
previous GOSUB statement. 

Ou t of DATA 

A READ statement is executed when there are no DATA 
statements with unread data remaining in the program. 

I llegal function call 

An out-of-range parameter is passed to a math or string 
function. An illegal function call error may also occur as the 
result of 

• a negative or unreasonably large subscript 

• a negative or zero argument with LOG 

• a negative argument to SQR 

• a negative mantissa with a noninteger power 

63 



Appendix A 

6 

7 

8 

9 

1 0 

1 1 

64 

• a call to a USR function for which the starting 
address has not yet been given 

• an improper argument to MID$, LEFT$, RIGHT$, 
INP, OUT, WAIT, PEEK, POKE, TAB, SPC, 
STRING$, SPACE$, INSTR, or ON ... GOTO 

Overflow 

The result of a calculation is too large to be represented in 
GW-BASIC's number format. If underflow occurs, the result is 
zero, and execution continues without an error. 

Ou t of memory 

A program is too large, has too many FOR loops, GOSUBs, 
variables, or expressions that are too complicated. Use the 
CLEAR statement to set aside more stack space or memory 
area. 

Undef i ned line number 

A line reference in a GOTO, GOSUB, IF-THEN ... ELSE, or 
DELETE is a nonexistent line. 

Subscript out of range 

An array element is referenced either with a subscript that 
is outside the dimensions of the array, or with the wrong 
number of subscripts. 

Duplicate Definition 

Two DIM statements are given for the same array, or a DIM 
statement is given for an array after the default dimension 
of 10 has been established for that array. 

Division by zero 

A division by zero is encountered in an expression, or the 
operation of involution results in zero being raised to a 
negative power. Machine infinity with the sign of the 
numerator is supplied as the result of the division, or posi­
tive machine infinity is supplied as the result of the involu­
tion, and execution continues. 



1 2 

1 3 

1 4 

1 5 

16 

1 7 

18 

19 

Error Codes and Messages 

Illegal direct 

A statement that is illegal in direct mode is entered as a 
direct mode command. 

Type mismatch 

A string variable name is assigned a numeric value or vice 
versa; a function that expects a numeric argument is given 
a string argument or vice versa. 

Out of string space 

String variables have caused GW-BASIC to exceed the amount 
of free memory remaining. GW-BASIC allocates string space 
dynamically until it runs out of memory. 

String too long 

An attempt is made to create a string more than 255 charac­
ters long. 

String formula too complex 

A string expression is too long or too complex. Break the 
expression into smaller expressions. 

Can't continue 

An attempt is made to continue a program that 

• has halted because of an error 

• has been modified during a break in execution 

• does not exist 

Undefined user function 

A USR function is called before the function definition 
(DEF statement) is given. 

No RESUME 

An error-trapping routine is entered but contains no 
RESUME statement. 

65 



Appendix A 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

66 

RESUME wi thout error 

A RESUME statement is encountered before an error­
trapping routine is entered. 

Unprintable error 

No error message is available for the existing error condi­
tion. This is usually caused by an error with an undefined 
error code. 

Mi ss i ng operand 

An expression contains an operator with no operand follow­
ing it. 

Line buffer overflow 

An attempt is made to input a line that has too many 
characters. 

Device Timeout 

GW-BASIC did not receive information from an I/O device 
within a predetermined amount of time. 

Device Faul t 

Indicates a hardware error in the printer or interface card. 

FOR Wi thou t NEXT 

A FOR was encountered without a matching NEXT. 

Ou t of Paper 

The printer is out of paper; or, a printer fault. 

Unprintable error 

No error message is available for the existing error condi­
tion. This is usually caused by an error with an undefined 
error code. 

WHILE wi thout WEND 

A WHILE statement does not have a matching WEND. 



30 

31-49 

50 

51 

52 

53 

54 

55 

56 

Error Codes and Messages 

WEND wi thou t WH I LE 

A WEND was encountered without a matching WHILE. 

Unprintable error 

No error message is available for the existing error condi­
tion. This is usually caused by an error with an undefined 
error code. 

FIELD overflow 

A FIELD statement is attempting to allocate more bytes 
than were specified for the record length of a random file. 

Internal error 

An internal malfunction has occurred in GW-BASIC. Report 
to your dealer the conditions under which the message 
appeared. 

Bad f i 1 e number 

A statement or command references a file with a file 
number that is not open or is out of range of file numbers 
specified at initialization. 

File not found 

A LOAD, KILL, NAME, FILES, or OPEN statement refer­
ences a file that does not exist on the current diskette. 

Bad f i 1 e mode 

An attempt is made to use PUT, GET, or LOF with a 
sequential file, to LOAD a random file, or to execute an 
OPEN with a file mode other than 1,0, A, or R. 

File already open 

A sequential output mode OPEN is issued for a file that is 
already open, or a KILL is given for a file that is open. 

Unprintable error 

An error message is not available for the error condition 
which exists. This is usually caused by an error with an 
undefined error code. 

67 



Appendix A 

57 

58 

59-60 

61 

62 

63 

64 

65 

66 

68 

Device liD Error 

Usually a disk I/O error, but generalized to include all I/O 
devices. It is a fatal error; that is, the operating system can­
not recover from the error. 

Fi Ie already exists 

The filename specified in a NAME statement is identical to 
a filename already in use on the diskette. 

Unprintable error 

No error message is available for the existing error condi­
tion. This is usually caused by an error with an undefined 
error code. 

Disk full 

All disk storage space is in use. 

Input past end 

An INPUT statement is executed after all the data in the 
file has been input, or for a null (empty) file. To avoid this 
error, use the EOF function to detect the end of file. 

Bad record number 

In a PUT or GET statement, the record number is either 
greater than the maximum allowed (16,777,215) or equal 
to zero. 

Bad filename 

An illegal form is used for the filename with LOAD, SAVE, 
KILL, or OPEN; for example, a filename with too many 
characters. 

Unprintable error 

No error message is available for the existing error condi­
tion. This is usually caused by an error with an undefined 
error code. 

Direct statement in file 

A direct statement is encountered while loading a ASCII­
format file. The LOAD is terminated. 



67 

68 

69 

70 

Error Codes and Messages 

Too many files 

An attempt is made to create a new file (using SAVE or 
OPEN) when all directory entries are full or the file specifi­
cations are invalid. 

Device Unavailable 

An attempt is made to open a file to a nonexistent device. 
It may be that hardware does not exist to support the device, 
such as Ipt2: or Ipt3:, or is disabled by the user. This occurs 
if an OPEN "COM1: statement is executed but the user dis­
ables RS-232 support with the /c: switch directive on the 
command line. 

Communication buffer overflow 

Occurs when a communications input statement is executed, 
but the input queue is already full. Use an ON ERROR 
GOTO statement to retry the input when this condition 
occurs. Subsequent inputs attempt to clear this fault unless 
characters continue to be received faster than the program 
can process them. In this case several options are available: 

• Increase the size of the COM receive buffer with the 
/c: switch. 

• Implement a hand-shaking protocol with the 
host/satellite (such as: XON/XOFF, as demonstrated 
in the TTY programming example) to turn transmit 
off long enough to catch up. 

• Use a lower baud rate for transmit and receive. 

Permission Denied 

This is one of three hard disk errors returned from the 
diskette controller. 

• An attempt has been made to write onto a diskette 
that is write protected. 

• Another process has attempted to access a file 
already in use. 

• The UNLOCK range specified does not match the 
preceding LOCK statement. 

69 



Appendix A 

71 

72 

73 

74 

75 

76 

70 

Di s k not Ready 

Occurs when the diskette drive door is open or a diskette is 
not in the drive. Use an ON ERROR GOTO statement to 
recover. 

Disk media error 

Occurs when the diskette controller detects a hardware or 
media fault. This usually indicates damaged media. Copy 
any existing files to a new diskette and reformat the dam­
aged diskette. FORMAT maps the bad tracks in the file allo­
cation table. The remainder of the diskette is now usable. 

Advanced Feature 

An attempt was made to use a reserved word that is not 
available in this version of GW-BASIC. 

Rename across disks 

Occurs when an attempt is made to rename a file to a new 
name declared to be on a disk other than the disk specified 
for the old name. The naming operation is not performed. 

Path/File Access Error 

During an OPEN, MKDIR, CHDIR, or RMDIR operation, 
MS-DOS is unable to make a correct path-to-filename connec­
tion. The operation is not completed. 

Path not found 

During an OPEN, MKDIR, CHDIR, or RMDIR operation, 
MS-DOS is unable to find the path specified. The operation 
is not completed. 



Appendix B 
MathelDatical Functions 

Mathematical functions not intrinsic to GW-BASIC can be calculated as 
follows: 

Function 

Secant 

Cosecant 

Cotangent 

Inverse Sine 

Inverse 
Cosine 

Inverse 
Secant 

Inverse 
Cosecant 

Inverse 
Cotangent 

Hyperbolic 
Sine 

Hyperbolic 
Cosine 

Hyperbolic 
Tangent 

Hyperbolic 
Secant 

Hyperbolic 
Cosecant 

Hyperbolic 
Cotangent 

GW-BASIC Equivalent 

SEC (X) = lICOS(X) 

CSC(X) = lISIN(X) 

COT(X) = lITAN(X) 

ARCSIN(X) = ATN(X/SQR(-X*X + 1» 

ARCCOS(X)=ATN (X/SQR(-X*X+1»+ -rr/2 

ARCSEC(X) = ATN(X/SQR(X*X-1» + SGN(SGN(X)-1)* -rr/2 

ARCCSC(X) =ATN(X/SQR(X*X-1» + SGN(X)-1)* -rr/2 

ARCCOT(X)=ATN(X)+ -rr/2 

SINH(X) = (EXP(X)-EXP(-X»/2 

COSH(X) = (EXP(X) + EXP( -X»/2 

TANH(X) = (EXP(X)-EXP(-X»/(EXP(X) + EXP(-X» 

SECH(X) = 2/(EXP(X) + EXP(-X» 

CSCH(X) = 2/(EXP(X)-EXP(-X» 

COTH(X) = EXP( -X)/(EXP(X)-EXP( -X) )*2 + 1 

71 



Appendix B 

72 

Inverse 
Hyperbolic 
Sine 

Inverse 
Hyperbolic 
Cosine 

Inverse 
Hyperbolic 
Tangent 

Inverse 
Hyperbolic 
Cosecant 

Inverse 
Hyperbolic 
Secant 

Inverse 
Hyperbolic 
Cotangent 

ARCSINH(X) = LOG(X/SQR(X*X + 1)) 

ARCCOSH(X) = LOG(X + SQR(X*X-1)) 

ARCTANH(X) = LOG((1 + X)/(1-X))/2 

ARCCSCH(X) = LOG(SGN(X)*SQR(X*X + 1) + 1)/X 

ARCSECH(X) = LOG(SQR( -X*X + 1) + 1)/X 

ARCCOTH(X) = LOG((X + 1)/(X-1))/2 



Appendix C 
ASCII Character Codes 

Dec Oct Hex Chr Dec Oct Hex 
000 000 OOH NUL 032 040 20H 
001 001 01H SOH 033 041 21H 
002 002 02H STX 034 042 22H 
003 003 03H ETX 035 043 23H 
004 004 04H EOT 036 044 24H 
005 005 05H ENQ 037 045 25H 
006 006 06H ACK 038 046 26H 
007 007 07H BEL 039 047 27H 
008 010 08H BS 040 050 28H 
009 011 09H HT 041 051 29H 
010 012 OAH LF 042 052 2AH 
011 013 OBH VT 043 053 2BH 
012 014 OCH FF 044 054 2CH 
013 015 ODH CR 045 055 2DH 
014 016 OEH SO 046 056 2EH 
015 017 OFH SI 047 057 2FH 
016 020 10H DLE 048 060 30H 
017 021 11H DC1 049 061 31H 
018 022 12H DC2 050 062 32H 
019 023 13H DC3 051 063 33H 
020 024 14H DC4 052 064 34H 
021 025 15H NAK 053 065 35H 
022 026 16H SYN 054 066 36H 
023 027 17H ETB 055 067 37H 
024 030 18H CAN 056 070 38H 
025 031 19H EM 057 071 39H 
026 032 1AH SUB 058 072 3AH 
027 033 1BH ESC 059 073 3BH 
028 034 1CH FS 060 074 3CH 
029 035 1DH GS 061 075 3DH 
030 036 1EH RS 062 076 3EH 
031 037 1FH US 063 077 3FH 

Dec=Decimal, Oct = Octal, Hex = Hexadecimal(H) , Chr=Character, LF=Line feed 
FF = Form feed, CR = Carriage return, DEL = Rubout 

Chr 
SP 

.. 
# 
$ 
% 
& 

( 
) 

* 
+ 

/ 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

, 
< 

> 
? 

73 



Appendix C 

Appendix C (continued) 

Dec Oct Hex Chr Dec Oct Hex 
064 100 40H @ 096 140 60H 
065 101 41H A 097 141 61H 
066 102 42H B 098 142 62H 
067 103 43H C 099 143 63H 
068 104 44H D 100 144 64H 
069 105 45H E 101 145 65H 
070 106 46H F 102 146 66H 
071 107 47H G 103 147 67H 
072 110 48H H 104 150 68H 
073 111 49H I 105 151 69H 
074 112 4AH J 106 152 6AH 
075 113 4BH K 107 153 6BH 
076 114 4CH L 108 154 6CH 
077 115 4DH M 109 155 6DH 
078 116 4EH N 110 156 6EH 
079 117 4FH 0 111 157 6FH 
080 120 50H P 112 160 70H 
081 121 51H Q 113 161 71H 
082 122 52H R 114 162 72H 
083 123 53H S 115 163 73H 
084 124 54H T 116 164 74H 
085 125 55H U 117 165 75H 
086 126 56H V 118 166 76H 
087 127 57H W 119 167 77H 
088 130 58H X 120 170 78H 
089 131 59H Y 121 171 79H 
090 132 5AH Z 122 172 7AH 
091 133 5BH [ 123 173 7BH 
092 134 5CH \ 124 174 7CH 
093 135 5DH ] 125 175 7DH 
094 136 5EH 126 176 7EH 
095 137 5FH 127 177 7FH 

Dec = Decimal, Oct = Octal, Hex = Hexadecimal(H) , Chr=Character, LF = Line feed 
FF = Form feed, CR = Carriage return, DEL = Rubout 

74 

Chr 

a 
b 
c 
d 
e 
f 
g 
h 

j 
k 
1 
m 
n 
0 

p 
q 
r 
s 
t 
u 
v 
w 
x 
y 
z 
{ 
I 
} 

DEL 



Appendix D 
AsseInbly Language 
(Machine Code) Subroutines 

This appendix is written primarily for users experienced in assembly 
language programming. 

GW-BASIC lets you interface with assembly language subroutines by using 
the USR function and the CALL statement. 

The USR function allows assembly language subroutines to be called in the 
same way GW-BASIC intrinsic functions are called. However, the CALL state­
ment is recommended for interfacing machine language programs with GW­
BASIC. The CALL statement is compatible with more languages than the 
USR function call, produces more readable source code, and can pass multi­
ple arguments. 

D.I Memory Allocation 

Memory space must be set aside for an assembly language (or machine 
code) subroutine before it can be loaded. There are three recommended ways 
to set aside space for assembly language routines: 

• Specify an array and use V ARPTR to locate the start of the array 
before every access. 

• Use the 1m switch in the command line. Get GW-BASIC's Data seg­
ment (DS), and add the size of DS to reference the reserved space 
above the data segment. 

• Execute a .COM file that stays resident, and store a pointer to it in 
an unused interrupt vector location. 

There are three recommended ways to load assembly language routines: 

75 



Appendix D 

• BLOAD the file. Use DEBUG to load in an .EXE file that is in high 
memory, run GW-BASIC, and BSA VE the .EXE file. 

• Execute a .COM file that contains the routines. Save the pointer to 
these routines in unused interrupt-vector locations, so that your 
application in GW-BASIC can get the pointer and use the routine(s). 

• Place the routine into the specified area. 

If, when an assembly language subroutine is called, more stack space is 
needed, GW-BASIC stack space can be saved, and a new stack set up for use 
by the assembly language subroutine. The GW-BASIC stack space must be 
restored, however, before returning from the subroutine. 

D.2 CALL Statement 

CALL variablename[ (arguments)] 

variable name contains the offset in the current segment of the subroutine 
being called. 

arguments are the variables or constants, separated by commas, that are to 
be passed to the routine. 

For each parameter in arguments, the 2-byte offset of the parameter's loca­
tion within the data segment (DS) is pushed onto the stack. 

The GW-BASIC return address code segment (CS), and offset (IP) are pushed 
onto the stack. 

A long call to the segment address given in the last DEF SEG statement 
and the offset given in variablename transfers control to the user's routine. 

The stack segment (SS), data segment (DS), extra segment (ES), and the 
stack pointer (SP) must be preserved. 

76 



Assembly Language (Machine Code) Subroutines 

Figure D.l shows the state of the stack at the time of the CALL statement: 

High Addresses Parameter 0 
Parameter 1 

· · · Parameter n 

Return Segment Address 

Return Offset 

Low Addresses 

Each parameter is a 2-byte 
pointer into memory 

...-- Stack Pointer 

Figure D.I Stack Layout When the CALL Statement is Activated 

The user's routine now has control. Parameters may be referenced by mov­
ing the stack pointer (SP) to the base pointer (BP) and adding a positive 
offset to BP. 

Upon entry, the segment registers DS, ES, and SS all point to the address 
of the segment that contains the GW-BASIC interpreter code. The code seg­
ment register CS contains the latest value supplied by DEF SEG. If no DEF 
SEG has been specified, it then points to the same address as DS, ES, and 
SS (the default DEF SEG). 

77 



Appendix D 

Figure D.2 shows the condition of the stack during execution of the called 
subroutine: 

High Addresses Parameter 0 ...-- Absent if any parameter is 
referenced within a nested 
procedure 

Parameter 1 

· · · Parameter n 

Return Segment Address 

Return Offset 

Old Stack ~arker 

Local Variables 

· · · 
This space may be used 

during procedure execution 

· · 

....-- Absent in Local Procedure 

- Stack Pointer 

...-- New Stack ~arker 

-Only in re-entrant 
procedure 

---Stack pointer may change 
during procedure execution 

Low Addresses · 
Figure D.2 Stack Layout During Execution of a CALL Statement 

The following seven rules must be observed when coding a subroutine: 

78 

1. The called routine may destroy the contents of the AX, BX, ex, DX, 
SI, DI, and BP registers. They do not require restoration upon 
return to GW-BASIC. However, all segment registers and the stack 
pointer must be restored. Good programming practice dictates that 
interrupts enabled or disabled be restored to the state observed upon 
entry. 



Assembly Language (Machine Code) Subroutines 

2. The called program must know the number and length of the 
parameters passed. References to parameters are positive offsets 
added to BP, assuming the called routine moved the current stack 
pointer into BP; that is, MOV BP,SP. When 3 parameters are 
passed, the location of PO is at BP + 10, PI is at BP + 8, and P2 
is at BP+6. 

3. The called routine must do a RETURN n (n is two times the 
number of parameters in the argument list) to adjust the stack to 
the start of the calling sequence. Also, programs must be defined by 
a PROC FAR statement. 

4. Values are returned to GW-BASIC by including in the argument list 
the variable name that receives the result. 

5. If the argument is a string, the parameter offset points to three 
bytes called the string descriptor. Byte ° of the string descriptor con­
tains the length of the string (0 to 255). Bytes 1 and 2, respectively, 
are the lower and upper eight bits of the string starting address in 
string space. 

Note 

The called routine must not change the contents of any of the 
three bytes of the string descriptor. 

6. Strings may be altered by user routines, but their length must not 
be changed. GW-BASIC cannot correctly manipulate strings if their 
lengths are modified by external routines. 

7. If the argument is a string literal in the program, the string 
descriptor points to program text. Be careful not to alter or destroy 
your program this way. To avoid unpredictable results, add + "" to 
the string literal in the program. For example, the following line 
forces the string literal to be copied into string space allocated out­
side of program memory space: 

20 A$="BASIC"+"" 

The string can then be modified wi thou t affecting the program. 

Examples: 

100 DEF SEG=&H2000 
110 ACC=&H7FA 

79 



Appendix D 

120 CALL ACC(A,B$,C) 

Line 100 sets the segment to 2000 hex. The value of variable ACC is added 
into the address as the low word after the DEF SEG value is left-shifted 
four bits (this is a function of the microprocessor, not of GW-BASIC). Here, 
ACC is set to &H7F A, so that the call to ACC executes the subroutine at 
location 2000:7F A hex. 

Upon entry, only 16 bytes (eight words) remain available within the allo­
cated stack space. If the called program requires additional stack space, 
then the user program must reset the stack pointer to a new allocated 
space. Be sure to restore the stack pointer adjusted to the start of the call­
ing sequence on return to GW-BASIC. 

The following assembly language sequence demonstrates access of the 
parameters passed and storage of a return result in the variable C. 

Note 

The called program must know the variable type for numeric parame­
ters passed. In these examples, the following instruction copies only two 
bytes: 

MOVSW 

This is adequate if variables A and C are integer. It would be necessary 
to copy four bytes if they were single precision, or copy eight bytes if 
they were double precision. 

MOV BP,SP Gets the current stack position in BP 
MOV BX,8[BP] Gets the address of B$ description 
MOV CL,[BX] Gets the length of B$ in CL 
MOV DX,1 [BX] Gets the address of B$ string descriptor 
MOV S I , 1 0 [BP ] Gets the address of A in S I 
MOV DI,6[BP] Gets the pointer to C in DI 
MOVSW Stores variable A in I C I 
RET 6 Restores stack; returns 

80 

in D: 



Assembly Language (Machine Code) Subroutines 

D.3 USR Function Calls 

Although the CALL statement is the recommended way of calling assembly 
language subroutines, the USR function call is still available for compatibil­
ity with previously-written programs. 

Syntax: 

USR[n ](argument) 

n is a number from 0 to 9 which specifies the USR routine being called (see 
DEF USR statement). If n is omitted, USRO is assumed. 

argument is any numeric or string expression. 

In GW-BASIC a DEF SEG statement should be executed prior to a USR func­
tion call to ensure that the code segment points to the subroutine being 
called. The segment address given in the DEF SEG statement determines 
the starting segment of the subroutine. 

For each USR function call, a corresponding DEF USR statement must 
have been executed to define the USR function call offset. This offset and 
the currently active DEF SEG address determine the starting address of the 
subroutine. 

When the USR function call is made, register AL contains the number type 
flag (NTF), which specifies the type of argument given. The NTF value may 
be one of the following: 

NTF Value 

2 

3 

4 

8 

Specifies 

a two-byte integer (two's complement format) 

a string 

a single-precision floating-point number 

a double-precision floating-point number 

If the argument of a USR function call is a number (AL<>73), the value of 
the argument is placed in the floating -point accumulator (F AC). The F AC is 
8 bytes long and is in the GW-BASIC data segment. Register BX will point at 
the fifth byte of the F AC. Figure D.3 shows the representation of all the 
GW-BASIC number types in the FAC: 

81 



Appendix D 

least most 
significant significant 

byte byte 

least 
significant 

byte 

least 

most 
significant 

byte 

sign 
byte 

most 

exponent 
minus 

128 

exponent 

Integer 

Single 
Precision 

significant significant minus Double 
Precision byte byte 

sign 
byte 

128 

Figure D.3 Number Types in the Floating-Point Accumulator 

If the argument is a single-precision floating-point number: 

• BX + 3 is the exponent, minus 128. The binary point is to the left of 
the most significant bit of the mantissa. 

• BX + 2 contains the highest seven bits of mantissa with leading 1 
suppressed (implied). Bit 7 is the sign of the number (0 = positive, 
1 = negative). 

• BX + 1 contains the middle 8 bits of the mantissa. 

• BX + 0 contains the lowest 8 bits of the mantissa. 

If the argument is an integer: 

• BX + 1 contains the upper eight bits of the argument. 

• BX + 0 contains the lower eight bits of the argument. 

If the argument is a double-precision floating-point number: 

82 

• BX + 0 through BX + 3 are the same as for single-precision floating 
point. 

• BX-1 to BX-4 contain four more bytes of mantissa. BX-4 contains 
the lowest eight bits of the mantissa. 



Assembly Language (Machine Code) Subroutines 

If the argument is a string (indicated by the value 3 stored in the AL 
register) the (DX) register pair points to three bytes called the string 
descriptor. Byte 0 of the string descriptor contains the length of the string 
(0 to 255). Bytes 1 and 2, respectively, are the lower- and upper-eight bits of 
the string starting address in the GW-BASIC data segment. 

If the argument is a string literal in the program, the string descriptor 
points to program text. Be careful not to alter or destroy programs this way 
(see the preceding CALL statement). 

Usually, the value returned by a USR function call is the same type 
(integer, string, single precision, or double precision) as the argument that 
was passed to it. The registers that must be preserved are the same as in 
the CALL statement. 

A far return is required to exit the USR subroutine. The returned value 
must be stored in the FAC. 

D.4 Programs That Call 
Assembly Language Programs 

This section contains two sample GW-BASIC programs that 

• load an assembly language routine to add two numbers together 

• return the sum into memory 

• remain resident in memory 

The code segment and offset to the first routine is stored in interrupt vector 
at 0:100H. 

Example 1 calls an assembly language subroutine: 

Example 1 

10 DEF SEG=O 
100 CS=PEEK(&H102)+PEEK(&H103)*256 
200 OFFSET=PEEK(&H100)+PEEK(&H101 )*256 
250 DEF SEG 

83 



Appendix D 

300 C1%=2:C2%=3:C3%=0 
400 TWDSUM=DFFSET 
500 OEF SEG=CS 
600 CALL TWDSUM(C1%,C2%,C3%) 
700 PRINT C3% 
800 END 

The assembly language subroutine called in the above program must be 
assembled, linked, and converted to a .COM file. The program, when exe­
cuted prior to the running of the GW-BASIC program, will remain in memory 
until the system power is turned off, or the system is rebooted. 

0100 org 100H 
0100 double segment 

assume cs:double 
0100 E8 1 7 90 start: jmp start1 
0103 usrprg proc far 
0103 55 push bp 
0104 88 EC mov bp,sp 
0106 88 76 08 mov si,[bpJ+8 ;get address of 

;parameter b 
0109 88 04 mov ax,[siJ ;get value of b 
0108 88 76 OA mov si, [bpJ+1 0 ;get address of 

;parameter a 
01 0 E 03 04 add ax,[siJ ;add value of 

;a to value of 
; b 

011 0 88 7E 06 mov di,[bpJ+6 ;get address of 
;parameter c 

011 3 89 05 mov d i , ax ;store sum in 
;parameter c 

011 5 50 pop bp 
0116 ca 0006 ret 6 
0119 usrprg endp 

; 
;Program to put 
;procedurein memory 
;and remain resident. 
;The offset and 
;segment are stored 
; in location 100-103H 

0119 start 1 : 
0119 88 0000 mov ax,O 
011 C 8E 08 mov ds,ax ;data segment to 0000 
011 E 88 01 00 mov bx,0100H ;pointer to int vecto 

; 1 00 H 
01 21 83 7F 02 0 cmp word ptr [bxJ,O 
0125 75 16 jne quit ;program 

;already run, exit 

84 



Assembly Language (Machine Code) Subroutines 

0127 83 3F 00 emp word ptr2 [bxJ,O 
012A 75 1 1 jne quit ;program 

;already run, 
;exit 

012C 88 0103 R mov ax,offset usrprg 
012F 89 07 mov [bxJ ,ax ;program offset 
01 31 8C e8 mov ax,es 
0133 89 47 02 mov [bx+2J ,ax ;data segment 
0136 OE push cs 
0137 1 F pop ds 
0138 8A 01 41 R mov dx,offset veryend 
0138 CD 27 int 27h 
013D quit: 
013D CD 20 int 20h 
013F veryend: 
013F double ends 

end start 

Example 2 places the assembly language subroutine in the specified area: 

Example 2 

10 I=O:JC=O 
100 DIM A%(23) 
150 MEM%=VARPTR (A% ( 1 ) ) 
200 FOR 1=1 TO 23 
300 READ JC 
400 POKE MEM%,JC 
450 MEM%=MEM%+1 
500 NEXT 
600 C1%=2:C2%=3:C3%=0 
700 TWOSUM=VARPTR(A%(1)) 
800 CALL TWOSUM(C1%,C2%,C3%) 
900 PRINT C3% 
950 END 
1000 DATA &H55,&H8b,&Hee &H8b,&H76,&H08,&H8b,&H04,&H8b,&H76 
1100 DATA &HOa,&H03,&H04,&H8b,&H7e,&H06,&H89,&H05,&H5d 
1200 DATA &Hea,&H06,&HOO 

85 





Appendix E 
Converting BASIC 
PrograDls to GW-BASIC 

Programs written in a BASIC language other than GW-BASIC may require 
some minor adjustments before they can be run. The following sections 
describe these adjustments. 

E.I String Dimensions 

Delete all statements used to declare the length of strings. A statement 
such as the following: 

DIM A$(I,J) 

which dimensions a string array for J elements of length I, should be 
converted to the following statement: 

DIM A$(J) 

Some GW-BASIC languages use a comma or ampersand (&) for string concate­
nation. Each of these must be changed to a plus sign ( + ), which is the 
operator for GW-BASIC string concatenation. 

In GW-BASIC, the MID$, RIGHT$, and LEFT$ functions are used to take 
substrings of strings. Forms such as A$(I) to access the Ith character in A$, 
or A$(I,J) to take a substring of A$ from position I to position J, must be 
changed as follows: 

Other BASIC: 

X$=A$(I) 

X$=A$(I,J) 

GW-BASIC: 

X$ = MID$(A$,I,1) 

X$ = MID$(A$,I,J-I + 1) 

87 



Appendix E 

If the substring reference is on the left side of an assignment, and X$ is 
used to replace characters in A$, convert as follows: 

Other BASIC: 

A$(I)=X$ 

A$(I,J)=X$ 

GW-BASIC: 

MID$(A$,I,1) = X$ 

MID$(A$,I,J-I + 1) = X$ 

E.2 Multiple Assignments 

Some GW-BASIC languages allow statements of the following form to set B 
and C equal to zero: 

10 LET B=C=O 

GW-BASIC would interpret the second equal sign as a logical operator and set 
B equal to - 1 if C equaled O. Convert this statement to two assignment 
statements: 

10 C=O:B=O 

E.3 Multiple Statements 

Some GW-BASIC languages use a backs lash (\) to separate multiple state­
ments on a line. With GW-BASIC, be sure all elements on a line are 
separated by a colon (:). 

E.4 MAT Functions 

Programs using the MAT functions available in some GW-BASIC languages 
must be rewritten using FOR-NEXT loops to execute properly. 

88 



Converting BASIC Programs to GW-BASIC 

E.5 FOR-NEXT Loops 

Some GW-BASIC languages will always execute a FOR-NEXT loop once, 
regardless of the limits. GW-BASIC checks the limits first and does not exe­
cute the loop if past limits. 

89 





Appendix F 
CODlDlunications 

This appendix describes the GW-BASIC statements necessary to support RS-
232 asynchronous communications with other computers and peripheral 
devices. 

F.1 Opening Communications Files 

The OPEN COM statement allocates a buffer for input and output in the 
same manner as the OPEN statement opens disk files. 

F.2 Communications 1/0 

Since the communications port is opened as a file, all I/O statements valid 
for disk files are valid for COM. 

COM sequential input statements are the same as those for disk files: 

INPUT# 
LINE INPUT# 
INPUT$ 

COM sequential output statements are the same as those for diskette: 

PRINT# 
PRINT# USING 

See the GW-BASIC User's Reference for more information on these 
statements. 

91 



Appendix F 

F.3 The COM 1/0 Functions 

The most difficult aspect of asynchronous communications is processing 
characters as quickly as they are received. At rates above 2400 baud (bps), 
it is necessary to suspend character transmission from the host long enough 
for the receiver to catch up. This can be done by sending XOFF (CTRL-S) to 
the host to temporarily suspend transmission, and XON (CTRL-Q) to resume, 
if the application supports it. 

GW-BASIC provides three functions which help to determine when an over­
run condition is imminent: 

LOC(x) 

LOF(x) 

EOF(x) 

Returns the number of characters in the input 
queue waiting to be read. The input queue can hold 
more than 255 characters (determined by the Ic: 
switch). If there are more than 255 characters in 
the queue, LOC(x) returns 255. Since a string is 
limited to 255 characters, this practical limit allevi­
ates the need for the programmer to test for string 
size before reading data into it. 

Returns the amount of free space in the input 
queue; that is 

Ic:(size)-number of characters in the input queue 

LOF may be used to detect when the input queue is 
reaching storage capacity. 

True (-1), indicates that the input queue is empty. 
False (0) is returned if any characters are waiting 
to be read. 

F.4 Possible Errors: 

A "Communications buffer overflow" error occurs if a read is attempted 
after the input queue is full (that is, LOC(x) returns 0). 

A "Device I/O" error occurs if any of the following line conditions are 
detected on receive: overrun error (OE), framing error (FE), or break inter­
rupt (BI). The error is reset by subsequent inputs, but the character causing 
the error is lost. 

92 



Communications 

A "Device fault" error occurs if data set ready (DSR) is lost during I/O. 

A "Parity error" occurs if the PE (parity enable) option was used in the 
OPEN COM statement and incorrect parity was received. 

F.5 The INPUT$ Function 

The INPUT$ function is preferred over the INPUT and LINE INPUT state­
ments for reading COM files, because all ASCII characters may be significant 
in communications. INPUT is least desirable because input stops when a 
comma or an enter is seen. LINE INPUT terminates when an enter is seen. 

INPUT$ allows all characters read to be assigned to a string. 

INPUT$ returns x characters from the y file. The following statements then 
are most efficient for reading a COM file: 

10 WHILE NOT EOF(1) 
20 A$=INPUT$(LOC(1),#1) 
30 
40 ... Process data returned in A$ ... 
50 
60 WEND 

This sequence of statements translates: As long as something is in the 
input queue, return the number of characters in the queue and store them 
in A$. If there are more than 255 characters, only 255 are returned at a 
time to prevent string overflow. If this is the case, EOF(l) is false, and 
input continues until the input queue is empty. 

93 



Appendix F 

GET and PUT Statements for COM Files 

Purpose: 

To allow fixed-length 110 for COM. 

Syntax: 

GET filenumber, nbytes PUT filenumber, nbytes 

Comments: 

filenumber is an integer expression returning a valid file number. 

nbytes is an integer expression returning the number of bytes to be trans­
ferred into or out of the file buffer. nbytes cannot exceed the value set by 
the Is: switch when GW-BASIC was invoked. 

Because of the low performance associated with telephone line commu­
nications, it is recommended that GET and PUT not be used in such 
applications. 

Example: 

The following TTY sample program is an exercise in communications 110. 
It is designed to enable your computer to be used as a conventional termi­
nal. Besides full-duplex communications with a host, the TTY program 
allows data to be downloaded to a file. Conversely, a file may be uploaded 
(transmitted) to another machine. 

In addition to demonstrating the elements of asynchronous communications, 
this program is useful for transferring GW-BASIC programs and data to and 
from a computer. 

Note 

94 

This program is set up to communicate with a DEC® SYSTEM-20 espe­
cially in the use of XON and XOFF. It may require modification to com­
municate with other types of hardware. 



Communications 

F.6 The TTY Sample Program 

10 SCREEN O,O:WIDTH 80 
15 KEY OFF:CLS:CLOSE 
20 DEFINT A-Z 
25 LOCATE 25,1 
30 PRINT STRING$(60," ") 
40 FALSE=O:TRUE=NOT FALSE 
50 MENU=5 'Value of MENU Key (AE) 
60 XOFF$=CHR$(19) :XON$=CHR$(17) 
100 LOCATE 25,1:PRINT "Async TTY Program"; 
11 0 LOCATE 1,1: LINE INPUT IISpeed?"; IISPEED$ 
120 COMF I L$="COM1 : , +SPEED$+", E, 7" 
130 OPEN COMFIL$ AS #1 
140 OPEN "SCRN:"FOR OUTPUT AS #3 
200 PAUSE=FALSE 
210 A$=INKEY$:IF A$=""THEN 230 
220 IF ASC(A$)=MENU THEN 300 ELSE PRINT #1,A$; 
230 IF EOF(1) THEN 210 
240 IF LOC(1 »128 THEN PAUSE=TRUE:PRINT #1,XOFF$; 
250 A$=INPUT$(LOC(1) ,#1) 
260 PRINT #3,A$;:IF LOC(1»0 THEN 240 
270 I F PAUSE THEN PAUSE=FALSE: PR I NT # 1 , XON$; 
280 GO TO 210 
300 LOCATE 1,1 :PRINT STRING$(30,32) :LOCATE 1,1 
310 LINE INPUT "FILE?";DSKFIL$ 
400 LOCATE 1,1 :PRINT STRING$(30,32) :LOCATE 1,1 
410 LINE INPUT"(T)ransmit or (R)eceive?II;TXRX$ 
420 IF TXRX$="T" THEN OPEN DSKFIL$ FOR INPUT AS #2:GOTO 1000 
430 OPEN DSKFIL$ FOR OUTPUT AS #2 
440 PRINT #1,CHR$(13); 
500 IF EOF(1) THEN GOSUB 600 
510 IF LOC(1»128 THEN PAUSE=TRUE:PRINT #1,XOFF$; 
520 A$=INPUT$(LOC(1),#1) 
530 PRINT #2,A$;:IF LOC(1»0 THEN 510 
540 I F PAUSE THEN PAUSE=FALSE: PR I NT #1, XON$; 
550 GOTO 500 
600 FOR 1=1 TO 5000 
610 IF NOT EOF(1) THEN 1=9999 
620 NEXT I 
630 IF 1>9999 THEN RETURN 
640 CLOSE #2;CLS:LOCATE 25,10:PRINT "* Download complete *11; 
650 RETURN 200 
1000 WHILE NOT EOF(2) 
1010 A$=INPUT$(1,#2) 
1 020 PR I NT # 1 , A $ ; 
1030 WEND 
1040 PRINT #1,CHR$(28) ;AZ to make close file. 

95 



Appendix F 

1050 CLOSE #2:CLS:LoCAlE 25,10:PRINl 11** Upload complete 
1060 GOlD 200 
9999 CLoSE:KEY ON 

F.7 Notes on the TTY Sample Program 

Note 

96 

Asynchronous implies character I/O as opposed to line or block I/O. 
Therefore, all prints (either to the COM file or screen) are terminated 
with a semicolon (;). This retards the return line feed normally issued 
at the end of the PRINT statement. 

Line Number 

10 

15 

20 

40 

50 

60 

100-130 

200-280 

Comments 

Sets the SCREEN to black and white alpha 
mode and sets the width to 80. 

Turns off the soft key display, clears the 
screen, and makes sure that all files are 
closed. 

Defines all numeric variables as integer, 
primarily for the benefit of the subroutine at 
600-620. Any program looking for speed optim­
ization should use integer counters in loops 
where possible. 

Defines boolean true and false. 

Defines the ASCII (ASC) value of the MENU 
key. 

Defines the ASCII XON and XOFF characters. 

Prints program ID and asks for baud rate 
(speed). Opens communications to file number 
1, even parity, 7 data bits. 

This section performs full-duplex I/O between 
the video screen and the device connected to 
the RS-232 connector as follows: 



300-320 

400-420 

430 

Communications 

1. Read a character from the keyboard into 
A$. INKEY$ returns a null string if no 
character is waiting. 

2. If a keyboard character is available, wait­
ing, then: 

If the character is the MENU key, the 
operator is ready to down-load a file. Get 
filename. 

If the character (A$) is not the MENU key, 
send it by writing to the communications 
file (PRINT #1. .. ). 

3. If no character is waiting, check to see if 
any characters are being received. 

4. At 230, see if any characters are waiting 
in COM buffer. If not, go back and check 
the keyboard. 

5. At 240, if more than 128 characters are 
waiting, set PAUSE flag to indicate that 
input is being suspended. Send XOFF to 
host, stopping further transmission. 

6. At 250-260, read and display contents of 
COM buffer on screen until empty. Con­
tinue to monitor size of COM buffer (in 
240). Suspend transmission if reception 
falls behind. 

7. Resume host transmission by sending 
XON only if suspended by previous XOFF. 

8. Repeat process until the MENU key is 
pressed. 

Get disk filename to be down-loaded to. Open 
the file as number 2. 

Asks if file named is to be transmitted (up­
loaded) or received (down-loaded). 

Receive routine. Sends a RETURN to the host to 
begin the down-load. This program assumes 
that the last command sent to the host was to 
begin such a transfer and was missing only 
the terminating return. If a DEC system is the 
host, such a command might be 

97 



Appendix F 

500 

510 

520-530 

540-550 

600-650 

1000-1060 

9999 

98 

COpy TTY:=MANUAL.MEM (MENU Key) 

if the MENU key was struck instead of RETURN. 

When no more characters are being received, 
(LOC(x) returns 0), the program performs a 
timeout routine. 

If more than 128 characters are waiting, sig­
nal a pause and send XOFF to the host. 

Read all characters in COM queue (LOC(x)) 
and write them to diskette (PRINT #2 ... ) until 
reception is caught up to transmission. 

If a pause is issued, restart host by sending 
XON and clearing the pause flag. Continue 
the process until no characters are received for 
a predetermined time. 

Time-out subroutine. The FOR loop count was 
determined by experimentation. If no charac­
ter is received from the host for 17-20 seconds, 
transmission is assumed complete. If any char­
acter is received during this time (line 610), 
then set n well above the FOR loop range to 
exit loop and return to caller. If host transmis­
sion is complete, close the disk file and resume 
regular activities. 

Transmit routine. Until end of disk file, read 
one character into A$ with INPUT$ state­
ment. Send character to COM device in 1020. 
Send a "z at end of file in 1040 in case receiv­
ing device needs one to close its file. Lines 
1050 and 1060 close disk file, print completion 
message, and go back to conversation mode in 
line 200. 

Presently not executed. As an exercise, add 
some lines to the routine 400-420 to exit the 
program via line 9999. This line closes the 
COM file left open and restores the function 
key display. 



Appendix G 

HexadecilDal Equivalents 

Table G.l lists decimal and binary equivalents to hexadecimal values. 

Table G.l 

Decimal and Binary Equivalents 
to Hexadecimal Values 

Hexadecimal 
Value 

a 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

Equals 
Decimal: 

a 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Equals 
Binary: 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

99 



Appendix F 

Table G.2 lists decimal equivalents to hexadecimal values. 

Table G.2 

Decimal Equivalents to Hexadecimal Values 

Hexadecimal Equals Hexadecimal Equals 
Value Decimal: Value: Decimal: 

0 0 80 128 
1 1 
2 2 
3 3 
4 4 90 144 
5 5 
6 6 
7 7 
8 8 AO 160 
9 9 
A 10 
B 11 
C 12 BO 176 
D 13 
E 14 
F 15 
10 16 CO 192 
11 17 
12 18 
13 19 
14 20 DO 208 
15 21 
16 22 
17 23 
18 24 EO 224 
19 25 
1A 26 
1B 27 
1C 28 FO 240 
1D 29 100 256 
IE 30 200 512 
IF 31 300 768 
20 32 400 1024 

500 1280 
600 1536 
700 1792 

100 



Hexadecimal Equivalents 

Table G.2 (continued) 

Hexadecimal Equals Hexadecimal Equals 
Value Decimal: Value: Decimal: 

30 48 800 2048 
900 2304 
AOO 2560 
BOO 2816 

40 64 COO 3072 
DOO 3328 
EOO 3584 
FOO 3840 

50 80 1000 4096 
2000 8192 
3000 12288 
4000 16384 

60 96 5000 20480 
6000 24576 
7000 28672 
8000 32768 

70 112 9000 36864 
AOOO 40960 
BOOO 45056 
COOO 49152 
DOOO 53248 
EOOO 57344 
FOOO 61440 

101 





Appendix H 
Key Scan Codes 

Key top Legend Scancode 

ESC 01 
11! 02 
2/@ 03 
3/# 04 

05 
5/% 06 
61" 07 
7/& 08 
8/* 09 
9/( OA 
0/) OB 
-/ OC 
=/+ OD 
BACKSPACE OE 
TAB OF 
Q 10 
W 11 
E 12 
R 13 
T 14 
Y 15 
U 16 
I 17 
0 18 
P 19 
[!{ lA 
J/} IB 
ENTER lC 
CTRL ID 
A IE 
S IF 
D 20 
F 21 
G 22 
H 23 
J 24 

103 



Appendix H 

Key top Legend Scancode 

K 25 
L 26 
;/: 27 
'III 28 
'r 29 
Left SHIFT 2A 
II 2B 
Z 2C 
X 2D 
C 2E 
V 2F 
B 30 
N 31 
M 32 
,1< 33 
II? 35 
Right SHIFT 36 
*/PRTSC 37 
ALT 38 
SPACEBAR 39 
CAPS LOCK 3A 
F1 3B 
F2 3C 
F3 3D 
F4 3E 
F5 3F 
F6 40 
F7 41 
F8 42 
F9 43 
FlO 44 
NUMLOCK 45 
SCROLL LOCK 46 
7/HOME 47 
8/cURSOR UP 48 
9/PGUP 49 

104 



Key Scan Codes 

Key top Legend Scancode 

4A 
4/CURSOR LEFT 4B 
5 4C 
6/CURSOR RIGHT 4D 
+ 4E 
VEND 4F 
2/CURSOR DOWN 50 
3/PGDN 51 
OhNS 52 
./DEL 53 

105 





Appendix I 
Characters Recognized 
by GW-BASIC 

The GW-BASIC character set includes all characters that are legal in 
GW-BASIC commands, statements, functions, and variables. The set 
comprises alphabetic, numeric, and special characters. 

The alphabetic characters in GW-BASIC are the uppercase and lowercase 
letters of the alphabet. 

The numeric characters in GW-BASIC are the digits 0 through 9. 

The following special characters and terminal keys are recognized by 
GW-BASIC: 

Character 

+ 

* 

% 

# 

$ 

Description 

Blank. 

Equal sign or assignment symbol. 

Plus sign or string concatenation. 

Minus sign. 

Asterisk or multiplication symbol. 

Slash or division symbol. 

Caret, exponentiation symbol, or CTRL key. 

Left parenthesis. 

Right parenthesis. 

Percent or integer declaration. 

Number sign or double-precision declaration. 

Dollar sign or string declaration. 

Exclamation point or single-precision declaration. 

107 



Appendix H 

108 

'''' 

& 

? 

< 

> 

\ 

@ 

BACKSPACE 

ESC 

TAB 

CURSOR 

RETURN 

Left bracket. 

Right bracket. 

Comma. 

Double quotation marks or string delimiter. 

Period, dot, or decimal point. 

Single quotation mark, apostrophe, or remark 
indicator. 

Semicolon or carriage return suppressor. 

Colon or line statement delimiter. 

Ampersand or descriptor for hexadecimal and octal 
number conversion. 

Question mark. 

Less than symbol. 

Greater than symbol. 

Backslash or integer division symbol. 

"At" sign. 

Underscore. 

Deletes last character typed. 

Erases the current logical line from the screen. 

Moves print position to next tab stop. Tab stops are 
every eight columns. 

Moves cursor to next physical line. 

Terminates input to a line and moves cursor to 
beginning of the next line, or executes statement 
in direct mode. 



Glossary 

abend 

An acronym for abnormal end of task. An abend is the termination of 
computer processing on a job or task prior to its completion because of 
an error condition that cannot be resolved by programmed recovery 
procedures. 

access 

The process of seeking, reading, or writing data on a storage unit. 

access methods 

Techniques and programs used to move data between main memory and 
input/output devices. 

accuracy 

The degree of freedom from error. Accuracy is often confused with 
precision, which refers to the degree of preciseness of a measurement. 

acronym 

A word formed by the initial letters of words or by initial letters plus 
parts of several words. Acronyms are widely used in computer tech­
nology. For example, COBOL is an acronym for COmmon Business 
Oriented Language. 

active partition 

A section of the computer's memory that houses the operating system 
being used. 

address 

A name, label, or number identifying a register, location or unit where 
information is stored. 

algebraic language 

A language whose statements are structured to resemble the structure 
of algebraic expression. Fortran is a good example of an algebraic 
language. 

109 



Glossary 

algorithm 

A set of well-defined rules or procedures to be followed in order to 
obtain the solution of a problem in a finite number of steps. An algo­
rithm can involve arithmetic, algebraic, logical and other types of pro­
cedures and instructions. An algorithm can be simple or complex. How­
ever, all algorithms must produce a solution within a finite number of 
steps. Algorithms are fundamental when using a computer to solve 
problems, because the computer must be supplied with a specific set of 
instructions that yields a solution in a reasonable length of time. 

alphabetic 

Data representation by alphabetical characters in contrast to numerical; 
the letters of the alphabet. 

alphanumeric 

A contraction of the words alphabetic and numeric; a set of characters 
including letters, numerals, and special symbols. 

application 

The system or problem to which a computer is applied. Reference is 
often made to an application as being either of the computational type, 
in which arithmetic computations predominate, or of the data processing 
type, in which data handling operations predominate. 

application program 

A computer program designed to meet specific user needs. 

argument 

110 

1. A type of variable whose value is not a direct function of 
another variable. It can represent the location of a number in a 
mathematical operation, or the number with which a function 
works to produce its results. 

2. A known reference factor that is required to find a desired item 
(function) in a table. For example, in the square root function 
SQRT(X), X is the argument. The value of X determines the 
square root value returned by this function. 



array 

ASCII 

Algorithm - Asynchronous Communication 

1. An organized collection of data in which the argument is posi­
tioned before the function. 

2. A group of items or elements in which the position of each item 
or element is significant. A multiplication table is a good exam­
ple of an array. 

Acronym for American Standard Code for Information Interchange. 
ASCII is a standardized 8-bit code used by most computers for 
interfacing. 

ASCII was developed by the American National Standards Institute 
(ANSI). It uses 7 binary bits for information and the 8th bit for parity 
purposes. 

assembler 

A computer program that produces a machine-language program which 
may then be directly executed by the computer. 

assembly language 

A symbolic language that is machine-oriented rather than problem­
oriented. A program in an assembly language is converted by an assem­
bler to a machine-language program. Symbols representing storage loca­
tions are converted to numerical storage locations; symbolic operation 
codes are converted to numeric operation codes. 

asynchronous 

1. Not having a regular time or clocked relationship. See 
synchronous. 

2. A type of computer operation in which a new instruction is ini­
tiated when the former instruction is completed. Thus, there is 
no regular time schedule, or clock, with respect to instruction 
sequence. The current instruction must be complete before the 
next is begun, regardless of the length of time the current 
instruction takes. 

asynchronous communication 

A way of transmitting data serially from one device to another, in 
which each transmitted character is preceded by a start bit and followed 
by a stop bit. This is also called start/stop transmission. 

111 



Glossary 

back up 

1. A second copy of data on a diskette or other medium, ensuring 
recovery from loss or destruction of the original media. 

2. On-site or remote equipment available to complete an operation 
in the event of primary equipment failure. 

BASIC 

Acronym for Beginner's All-purpose Symbolic Instruction Code. BASIC is 
a computer programming language developed at Dartmouth College as 
an instructional tool in teaching fundamental programming concepts. 
This language has since gained wide acceptance as a time-sharing 
language and is considered one of the easiest programming languages 
to learn. 

batch processing 

A method of operating a computer so that a single program or set of 
related programs must be completed before the next type of program 
is begun. 

baud 

A unit of measurement of data processing speed. The speed in bauds is 
the number of signal elements per second. Since a signal element can 
represent more than one bit, baud is not synonymous with bits-per­
second. Typical baud rates are 110, 300, 1200, 2400, 4800, and 9600. 

binary 

112 

1. A characteristic or property involving a choice or condition in 
which there are two possibilities. 

2. A numbering system which uses 2 as its base instead of 10 as in 
the decimal system. The binary system uses only two digits, ° 
and 1, in its written form. 

3. A device whose design uses only two possible states or levels to 
perform its functions. A computer executes programs in binary 
form. 

A quantity which is expressed in the binary digits of ° and 1. 



bit 

Back up - Byte 

A contraction of "binary digit". A bit can either be 0 or 1, and is the 
smallest unit of information recognizable by a computer. 

block 

An amount of storage space or data, of arbitrary length, usually con­
tiguous, and often composed of several similar records, all of which are 
handled as a unit. 

boolean logic 

A field of mathematical analysis in which comparisons are made. A pro­
grammed instruction can cause a comparison of two fields of data, and 
modify one of those fields or another field as a result of comparison. 
This system was formulated by British mathematician George Boole 
(1815-1864). Some boolean operators are OR, AND, NOT, XOR, EQV, 
and IMP. 

boot 

A machine procedure that allows a system to begin operations at the 
desired level by means of its own initiation. The first few instructions 
are loaded into a computer from an input device. These instructions 
allow the rest of the system to be loaded. The word boot is abbreviated 
from the word bootstrap. 

bps 

Bits per second. 

buffer 

A temporary storage area from which data is transferred to or from 
various devices. 

built-in clock 

A real-time clock that lets your programs use the time of day and date. 
Built into MS-DOS, it lets you set the timing of a program. It can be used 
to keep a personal calendar, and it automatically measures elapsed 
time. 

byte 

An element of data which is composed of eight data bits plus a parity 
hit, and represents either one alphabetic or special character, two 
decimal digits, or eight binary bits. Byte is also used to refer to a 

113 



Glossary 

sequence of eight binary digits handled as a unit. It is usually encoded 
in the ASCII format. 

calculation 

A series of numbers and mathematical signs that, when entered into a 
computer, is executed according to a series of instructions. 

central processor (CPU) 

The heart of the computer system, where data is manipulated and 
calculations are performed. The CPU contains a control unit to interpret 
and execute the program and an arithmetic-logic unit to perform 
computations and logical processes. It also routes information, controls 
input and output, and temporarily stores data. 

chaining 

The use of a pointer in a record to indicate the address of another record 
logically related to the first. 

character 

Any single letter of the alphabet, numeral, punctuation mark, or other 
symbol that a computer can read, write, and store. Character is 
synonymous with the term byte. 

COBOL 

Acronym for COmmon Business-Oriented Language, a computer 
language suitable for writing complicated business applications pro­
grams. It was developed by CODASYL, a committee representing the 
U. S. Department of Defense, certain computer manufacturers, and 
major users of data processing equipment. COBOL is designed to express 
data manipulations and processing problems in English narrative form, 
in a precise and standard manner. 

code 

1. To write instructions for a computer system 

2. To classify data according to arbitrary tables 

3. To use a machine language 

4. To program 

114 



Calculation - Coprocessor 

command 

A pulse, signal, word, or series of letters that tells a computer to start, 
stop, or continue an operation in an instruction. Command is often used 
incorrectly as a synonym for instruction. 

compatible 

A description of data, programs or equipment that can be used between 
different kinds of computers or equipment. 

compiler 

A computer program that translates a program written in a problem­
oriented language into a program of instructions similar to, or in, the 
language of the computer. 

computer network 

A geographically dispersed configuration of computer equipment con­
nected by communication lines and capable of load sharing, distributive 
processing, and automatic communication between the computers 
within the network. 

concatenate 

To join together data sets, such as files, in a series to form one data set, 
such as one new file. The term concatenate literally means "to link 
together." A concatenated data set is a collection of logically connected 
data sets. 

configuration 

In hardware, a group of interrelated devices that constitute a system. In 
software, the total of the software modules and their interrelationships. 

constant 

A never-changing value or data item. 

coprocessor 

A microprocessor device connected to a central microprocessor that per­
forms specialized computations (such as floating-point arithmetic) much 
more efficiently than the CPU alone. 

115 



Glossary 

cursor 

A blinking line or box on a computer screen that indicates the next 
location for data entry. 

data 

A general term used to signify all the basic information elements that 
can be produced or processed by a computer. See information. 

data element 

The smallest named physical data unit. 

data file 

A collection of related data records organized in a specific manner. Data 
files contain computer records which contain information, as opposed to 
containing data handling information or a program. 

debug 

The process of checking the logic of a computer program to isolate and 
remove mistakes from the program or other software. 

default 

An action or value that the computer automatically assumes, unless 
a different instruction or value is given. 

delimit 

To establish parameters; to set a minimum and a maximum. 

delimiter 

A character that marks the beginning or end of a unit of data on a 
storage mediy.m. Commas, semi-colons, periods, and spaces are used 
as delimiters to separate and organize items of data. 

detail file 

A data file composed of records having similar characteristics, but con­
taining data which is relatively changeable by nature, such as employee 
weekly payroll data. Compare to master file. 

device 

116 

A piece of hardware that can perform a specific function. A printer is an 
example of a device. 



Cursor - End-of-File Mark (EOF) 

diagnostic programs 

Special programs used to align equipment or isolate equipment 
malfunctions. 

directory 

A table that gives the name, location, size, and the creation or last revi­
sion date for each file on the storage media. 

diskette 

A flat, flexible platter coated with magnetic material, enclosed in a pro­
tective envelope, and used for storage of software and data. 

Disk Operating System 

A collection of procedures and techniques that enable the computer 
to operate using a disk drive system for data entry and storage. Disk 
Operating System is usually abbreviated to DOS. 

DOS 

The acronym for Disk Operating System. DOS rhymes with "boss." 

double-density 

A type of diskette that has twice the storage capacity of standard 
single-density diskettes. 

double-precision 

The use of two computer words to represent each number. This tech­
nique allows the use of twice as many digits as are normally available 
and is used when extra precision is needed in calculations. 

double-sided 

A term that refers to a diskette that can contain data on both surfaces 
of the diskette. 

drive 

A device that holds and manipulates magnetic media so that the CPU 
can read data from or write data to them. 

end-of-file mark (EOF) 

A symbol or machine equivalent that indicates that the last record of a 
file has been read. 

117 



Glossary 

erase 

To remove or replace magnetized spots from a storage medium. 

error message 

An audible or visual indication of hardware or software malfunction or 
of an illegal data-entry attempt. 

execute 

To carry out an instruction or perform a routine. 

exponent 

A symbol written above a factor and on the right, telling how many 
times the factor is repeated. In the example of A 2, A is the factor and 2 
is the exponent. A2 means A times A (A x A). 

extension 

A one-to-three-character set that follows a filename. The extension 
further defines or clarifies the filename. It is separated from the 
filename by a period(.). 

field 

file 

An area of a record that is allocated for a specific category of data. 

A collection of related data or programs that is treated as a unit by the 
computer. 

file protection 

The devices or procedures that prevent unintentional erasure of data on 
a storage device, such as a diskette. 

file structure 

A conceptual representation of how data values, records, and files are 
related to each other. The structure usually implies how the data is 
stored and how the data must be processed. 

filename 

118 

The unique name, usually assigned by a user, that identifies one file for 
all subsequent operations that use that file. 



Erase - Global Search 

fixed disk 

A hard disk enclosed in a permanently-sealed housing that protects 
it from environmental interference. Used for storage of data. 

floating-point arithmetic 

A method of calculation in which the computer or program automat­
ically records, and accounts for, the location of the radix point. The 
programmer need not consider the radix location. 

floating-point routine 

A set of program instructions that permits a floating-point mathemat­
ics operation in a computer which lacks the feature of automatically 
accounting for the radix point. 

format 

A predetermined arrangement of data that structures the storage of 
information on an external storage device. 

function 

A computer action, as defined by a specific instruction. Some GW-BASIC 
functions are COS, EOF, INSTR, LEFT$, and TAN. 

function keys 

Specific keys on the keyboard that, when pressed, instruct the computer 
to perform a particular operation. The function of the keys is deter­
mined by the applications program being used. 

GIGO 

An informal term that indicates sloppy data processing; an acronym for 
Garbage In Garbage Out. The term GIGO is normally used to make the 
point that if the input data is bad (garbage in) then the output data will 
also be bad (garbage out). 

global search 

Used in reference to a variable (character or command), a global search 
causes the computer to locate all occurrences of that variable. 

119 



Glossary 

graphics 

A hardware/software capability to display objects in pictures, rather 
than words, usually on a graphic (CRT) display terminal with line­
drawing capability and permitting interaction, such as the use of a light 
pen. 

hard copy 

A printed copy of computer output in a readable form, such as reports, 
checks, or plotted graphs. 

hardware 

The physical equipment that comprises a system. 

hexadecimal 

A number system with a base, or radix, of 16. The symbols used in this 
system are the decimal digits 0 through 9 and six additional digits 
which are generally represented as A, B, C, D, E, and F. 

hidden files 

Files that cannot be seen during normal directory searches. 

hierarchical directories 

See tree-structured directories. 

housekeeping functions 

Routine operations that must be performed before the actual processing 
begins or after it is complete. 

information 

Facts and knowledge derived from data. The computer operates on and 
generates data. The meaning derived from the data is information; that 
is, information results from data. The two words are not synonymous, 
although they are often used interchangeably. 

interpreter 

120 

A program that reads, translates and executes a user's program, such as 
one written in the BASIC language, one line at a time. A compiler, on 
the other hand, reads and translates the entire user's program before 
executing it. 



Graphics - Logarithm 

input 

1. The process or device concerning the entry of data into a 
computer. 

2. Actual data being entered into a computer. 

input/output 

A general term for devices that communicate with a computer. 
Input/output is usually abbreviated as I/O. 

instruction 

A program step that tells the computer what to do next. Instruction is 
often used incorrectly as a synonym for command. 

integer 

A complete entity, having no fractional part. The whole or natural 
number. For example, 65 is an integer; 65.1 is not. 

integrated circuit 

A complete electronic circuit contained in a small semiconductor 
component. 

interface 

I/O 

job 

K 

An information interchange path that allows parts of a computer, com­
puters, and external equipment (such as printers, monitors, or modems), 
or two or more computers to communicate or interact. 

The acronym for input/output. 

A collection of tasks viewed by the computer as a unit. 

The symbol signifying the quantity 210
, which is equal to 1024. K is 

sometimes confused with the symbol k (kilo), which is equal to 1000. 

logarithm 

A logarithm of a given number is the value of the exponent indicating 
the power required to raise a specified constant, known as the base, to 

121 



Glossary 

produce that given number. That is, if B is the base, N is the given 
number and L is the logarithm, then BL = N. Since 103 = 1000, the 
logarithm to the base 10 of 1000 is 3. 

loop 

M 

A series of computer instructions that are executed repeatedly until 
a desired result is obtained or a predetermined condition is met. The 
ability to loop and reuse instructions eliminates countless repetitious 
instructions and is one of the most important attributes of stored 
programs. 

The symbol signifying the quantity 1,000,000 (106
). When used to 

denote storage, it more precisely refers to 1,048,576 (220). 

mantissa 

The fractional or decimal part of a logarithm of a number. For example, 
the logarithm of 163 is 2.212. The mantissa is 0.212, and the charac­
teristic is 2.0. 

In floating-point numbers, the mantissa is the number part. For exam­
ple, the number 24 can be written as 24,2 where 24 is the mantissa and 
2 is the exponent. The floating-point number is read as .24 x 102, or 24. 

master file 

A data file composed of records having similar characteristics that 
rarely change. A good example of a master file would be an employee 
name and address file that also contains social security numbers and 
hiring dates. 

media 

The plural of medium. 

medium 

The physical material on which data is recorded and stored. Magnetic 
tape, punched cards, and diskettes are examples of media. 

memory 

122 

The high-speed work area in the computer where data can be held, 
copied, and retrieved. 



Loop - Operand 

menu 

A list of choices from which an operator can select a task or operation to 
be performed by the computer. 

microprocessor 

A semiconductor central processing unit (CPU) in a computer. 

modem 

Acronym for modulator demodulator. A modem converts data from a 
computer to analog signals that can be transmitted through telephone 
lines, or converts the signals from telephone lines into a form the com­
puter can use. 

MS-DOS 

Acronym for Microsoft Disk Operating System. 

nested programs or subroutines 

A program or subroutine that is incorporated into a larger routine to 
permit ready execution or access of each level of the routine. For exam­
ple, nesting loops involves incorporating one loop of instructions into 
another loop. 

null 

Empty or having no members. This is in contrast to a blank or zero, 
which indicates the presence of no information. For example, in the 
number 540, zero contains needed information. 

numeric 

A reference to numerals as opposed to letters or other symbols. 

octal number system 

A representation of values or quantities with octal numbers. The octal 
number system uses eight digits: 0, 1, 2, 3, 4, 5, 6, and 7, with each 
position in an octal numeral representing a power of 8. The octal system 
is used in computing as a simple means of expressing binary quantities. 

operand 

A quantity or data item involved in an operation. An operand is usually 
designated by the address portion of an instruction, but it may also be a 
result, a parameter, or an indication of the name or location of the next 
instruction to be executed. 

123 



Glossary 

operating system 

An organized group of computer instructions that manage the overall 
operation of the computer. 

operator 

A symbol indicating an operation and itself the subject of the operation. 
It indicates the process that is being performed. For example, + is addi­
tion, - is subtraction, X is multiplication, and / is division. 

option 

An add-on device that expands a system's capabilities. 

output 

Computer results, or data that has been processed. 

parallel output 

The method by which all bits of a binary word are transmitted 
simultaneously. 

parameter 

A variable that is given a value for a specific program or run. A defin­
able characteristic of an item, device, or system. 

parity 

An extra-bit of code that is used to detect data errors in memory by 
making the sum of the active bit in a data word either an odd or an 
even number. 

partition 

An area on a fixed disk set aside for a specific purpose, such as a loca­
tion for an operating system. 

peripheral 

An external input/output, or storage device. 

pixel 

124 

The acronym for picture element. A pixel is a single dot on a monitor 
that can be addressed by a single bit. 



Operating System - Random-Access Memory 

port 

The entry channel to and from the central computer for connection of a 
communications line or other peripheral device. 

power 

The functional area of a system that transforms an external power 
source into internal DC supply voltage. 

program 

A series of instructions or statements in a form acceptable to a com­
puter, designed to cause the computer to execute a series of operations. 
Computer programs include software such as operating systems, assem­
blers, compilers, interpreters, data management systems, utility pro­
grams, sort-merge programs, and maintenance/diagnostic programs, as 
well as application programs such as payroll, inventory control, and 
engineering analysis programs. 

prompt 

A character or series of characters that appear on the screen to request 
input from the user. 

RAM 

Acronym for random-access memory. 

radian 

The natural unit of measure of the angle between two intersecting 
half-lines on the angles from one half-line to another intersecting half­
line. It is the angle subtended by an arc of a circle equal in length to 
the radius of the circle. As the circumference of a circle is equal to 21T 
times its radius, the number of radians in an angle of 3600 or in a com­
plete turn is 21T. 

radix 

A number that is arbitrarily made the fundamental number of a system 
of numbers; a base. Thus, 10 is the radix, or base, of the common sys­
tem of logarithms, and also of the decimal system of enumeration. 

random-access memory 

The system's high-speed work area that provides access to memory 
storage locations by using a system of vertical and horizontal coordi­
nates. The computer can write information into or read information 

125 



Glossary 

from the random-access memory. Random-access memory is often 
called RAM. 

raster unit 

On a graphic display screen, a raster unit is the horizontal or vertical 
distance between two adjacent addressable points on the screen. 

read-only memory 

A type of memory that contains permanent data or instructions. The 
computer can read from but not write to the read-only memory. Read­
only memory is often called R OM. 

real number 

An ordinary number, either rational or irrational; a number in which 
there is no imaginary part, a number generated from the single unit, 1; 
any point in a continuum of natural numbers filled in with all rationals 
and all irrationals and extended indefinitely, both positive and 
negative. 

real time 

1. The actual time required to solve a problem. 

2. The process of solving a problem during the actual time that a 
related physical process takes place so that results can be used 
to guide the physical process. 

remote 

A term used to refer to devices that are located at sites away from the 
central computer. 

reverse video 

A display of characters on a background, opposite of the usual display. 

ROM 

Acronym for read-only memory. 

RS-232 

126 

A standard communications interface between a modem and terminal 
devices that complies with EIA Standard RS-232. 



Raster Unit - Statement 

serial output 

Sending only one bit at a time to and from interconnected devices. 

single-density 

The standard recording density of a diskette. Single-density diskettes 
can store approximately 3400 bits per inch (bpi). 

single-precision value 

The number of words or storage positions used to denote a number in 
a computer. Single-precision arithmetic is the use of one word per 
number, double-precision arithmetic is the use of two words per num­
ber, and so on. For variable word-length computers, precision is the 
number of digits used to denote a number. The higher the precision, 
the greater the number of decimal places that can be carried. 

single-sided 

A term used to describe a diskette that contains data on one side only. 

software 

A string of instructions that, when executed, direct the computer to per­
form certain functions. 

stack architecture 

An architecture wherein any portion of the external memory can be 
used as a last-in, first-out stack to store/retrieve the contents of the 
accumulator, the flags, or any of the data registers. Many units contain 
a 16-bit stack pointer to control the addressing of this external stack. 
One of the major advantages of the stack is that multiple-level inter­
rupts can be handled easily, since complete system status can be saved 
when an interrupt occurs and then be restored after the interrupt. 
Another major advantage is that almost unlimited subroutine nesting is 
possible. 

statement 

A high-level language instruction to the computer to perform some 
sequence of operations. 

127 



Glossary 

synchronous 

A type of computer operation in which the execution of each instruction 
or each event is controlled by a clock signal: evenly spaced pulses that 
enable the logic gates for the execution of each logic step. A synchro­
nous operation can cause time delays by causing waiting for clock sig­
nals although all other signals at a particular logic gate were available. 
See asynchronous. 

switch 

An instruction, added to a command, that designates a course of action, 
other than default, for the command process to follow. 

syntax 

Rules of statement structure in a programming language. 

system 

A collection of hardware, software, and firmware that is interconnected 
to operate as a unit. 

task 

A machine run; a program in execution. 

toggle 

Alternation of function between two stable states. 

track 

A specific area on a moving-storage medium, such as a diskette, disk, or 
tape cartridge, that can be accessed by the drive heads. 

tree-structured directory 

A file-organization structure, consisting of directories and subdirectories 
that, when diagrammed, resembles a tree. 

truncation 

128 

To end a computation according to a specified rule; for example, to drop 
numbers at the end of a line instead of rounding them off, or to drop 
characters at the end of a line when a file is copied. 



Synchronous - Upgrade 

upgrade 

To expand a system by installing options or using revised software. 

utility function 

Computer programs, dedicated to one particular task, that are helpful 
in using the computer. For example, FDISK, for setting up partitions on 
the fixed disk. 

variable 

A quantity that can assume any of a set of values as a result of process­
ing data. 

volume label 

The name for the contents of a diskette or a partition on a fixed disk. 

word 

The set of bits comprising the largest unit that the computer can handle 
in a single operation. 

write-protect notch 

A cut-out opening in the sealed envelope of a diskette that, when 
covered, prevents writing or adding text to the diskette, but allows 
information to be read from the diskette. 

129 





Index 

Array 
defined, 52 
size limits, 53 

ASCII character codes, 73 
Asynchronous, 111 

Bad file mode, 67 
Bad file number, 67 
Bad filename, 68 
Bad record number, 68 

Ic switch, 11 
CALL statement 

assembly language interface, 75 
syntax, 76 

Can't continue, 65 
Command 

defined, 15 
kill, 37 
load, 37 
merge, 37 
name, 37 
run,37 
save, 37 

Communication 
asynchronous 

defined, 111 
support, 91 

GET statement, 94 
I/O functions, 92 
I/O statements, 91 
INPUT$ function, 93 
opening files, 91 
possible errors, 92 
PUT statement, 94 

Communication buffer overflow, 69 
Constants, numeric 

defined, 49 
double-precision defined, 50 
examples of double-precision, 51 
examples of single-precision, 51 
single-precision defined, 50 

Constants, numeric (continued) 
types of, 49 

CTRL-6, 31 
CTRL-B, 31 
CTRL-BACKSPACE, 31 
CTRL-BREAK, 13, 31 
CTRL-C, 31 
CTRL-E, 32 
CTRL-END, 32 
CTRL-F,31 
CTRL-G,32 
CTRL-H,31 
CTRL-HOME, 32 
CTRL-I,33 
CTRL-J, 32 
CTRL-K,32 
CTRL-L,32 
CTRL-I,31 
CTRL-M,32 
CTRL-N, 32 
CTRL-NUM LOCK, 33 
CTRL-PRTSC, 33 
CTRL-R,32 
CTRL-S,33 
CTRL-Z,13 
CTRL-[,32 
CTRL-],31 
CTRL-\, 31 
CURSOR-UP, 31 

Id switch, 12 
Delete a line, 24 
Device Fault, 66 
Device I/O Error, 68 
Device Timeout, 66 
Device Unavailable, 69 
Direct statement in file, 68 
Disk full, 68 
Disk media error, 70 
Disk not Ready, 70 
Division by zero, 64 
Duplicate Definition, 64 

131 



Index 

EDIT command 
keys used with, 25 

EDLIN command 
example, 24 

ESC key, 32 
Expression, 56 

If switch, 11 
Fl key, 24 
F2 key, 24 
F3 key, 26 
F4 key, 25 
FIELD overflow, 67 
File already exists, 68 
File already open, 67 
File not found, 67 
FOR Without NEXT, 66 
Function 

used with random access file, 42 
used with sequential files, 38 

Function keys 
assignments, 34 
defined, 34 
reassigned, 34 
shown on screen, 9 

Function, numeric, 15 
Function, string, 16 

GW-BASIC 
assembly language interface, 75 
loading, 9 
memory available, 9 
special characters recognized, 107 

GW-BASIC command 
examples, 12 
parameters described, 10 
redirected, 11, 14 
syntax, 10 

GW-BASIC, converting to 
FOR-NEXT loops, 89 
MAT functions, 88 
multiple assignments, 88 
multiple statements, 88 
string dimensions, 87 

Illegal function call, 63 
Input past end, 68 

132 

Insert mode, 32 
Internal error, 67 

Keyword, 14 
KILL command, 37 

Line, 24 
Line buffer overflow, 66 
LIST command, 23 
LOAD command, 37 

1m switch, 12 
Memory 

allocation for assembly language, 75 
needed for storage, 54 

MERGE command, 37 
Missing operand, 66 
Modes 

direct 
examples, 21 
uses of, 10 

indirect 
examples, 22 
uses of, 10 

insert, 32 

NAME command, 37 
No RESUME, 65 

OPEN COM statement, 91 
Operator 

defined, 124 
Operators 

arithmetic, 56 
defined, 56 
four categories, 56 
functional, 62 
logical, 59 
relational, 59 
string, 63 

Out of DATA, 63 
Out of memory, 64 
Out of paper, 66 
Out of string space, 65 
Overflow, 64 



Path not found, 70 
PathlFile Access Error, 70 
Permission Denied, 69 
Program 

distinguished from calculation, 23 
Program line 

format, 16 
format requirements, 17 

Quitting GW-BASIC, 18 

Random access file 
accessing, 43 
defined, 38 
example, 43, 44, 45 
functions used with, 42 
program steps required, 42 
statements used with, 42 

Recall a program file, 26 
Redirection, 14 
Rename across disks, 70 
Reserved word. See Keyword 
RESUME without error, 66 
RETURN without GOSUB, 63 
RUN command, 37 

used in indirect mode, 10 

Is switch, 11 
Save a program file, 25 
SAVE command, 37 
Sequential file 

accessing, 40 
adding data, 41 
defined, 38 
example, 39, 40, 41 
functions used with, 38 
program steps required, 38 
statements used with, 38 

SHIFT -PRTSC 
prints screen, 33 

Statement, 127 
CALL, 76 
defined, 15, 16 
OPEN COM, 91 
used with random access file, 42 
used with sequential files, 38 

String constant 

Index 

String constant (continued) 
defined, 49 

String formula too complex, 65 
String too long, 65 
Subscript out of range, 64 
Switch 

Ic,11 
Id,12 
If, 11 
1m, 12 
Is, 11 
specifying numbers for, 12 

Syntax error, 63 

TAB key, 33 
Too many files, 69 
TTY sample program, 95 

notes on, 96 
Type mismatch, 65 

Undefined line number, 64 
Undefined user function, 65 
Unprintable error, 66, 67, 68 
USR function call, 75 

syntax, 81 

Variable 
array defined, 52 
conversion done by GW-BASIC, 54 
declaration symbols, 52 
four types of, 52 
memory storage requirements, 54 
samples, 52 

Variable, fielded string 
not used in INPUT or LET 

statements, 43 
Variables 

defined, 16 

WEND without WHILE, 67 
WHILE without WEND, 66 

133 




