
: 5.1 Update

Microsoft CodeView~
and Utilities Update

Microsoft Editor

Microsoft.Macro Assembler 5.1

lllliClosoft

Microsoft Macro Asse01bler

For MS@ OS/2 and MS-DOS@
Operating Systems

Version 5.1 Update

Microsoft Code View® and Utilities Update

Microsoft Editor

Microsoft Corporation

lnfomiation in thls document is subject to change without notice and does not represent a commit­
ment on the part of Microsoft Corporation. The software described in thls document is furnished
under a license agreement or nondisclosure agreement. The software may be used or copied only in
accordance with the tem1s of the agreement. The purchaser may make one copy of the software for
backup purposes. No part of this manual may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying and recording, for any purpose other than
the purchaser's personal use without the written permission of Microsoft Corporation.

~)Copyright Microsoft Corporation, 1987. All rights reserved.
Simultaneously published in the U.S. and Canada.

Microsoft®, MS®, MS-DOS@, and Code View® arc registered trademarks of Microsoft Corporation.

BRIEF® is a registered trademark of UndcrWare, Inc.

EpsilonTM is a registered trademark of Lugaru Software, Ltd.

IBM@ is a registered trademark of lnternational Business Machines Corporation.

WordStal® is a registered trademark of MkroPro lnlernational Corporation.

JO 9 8 7

Contents

Microsoft Macro Assembler Version 5.1 Update
1 Overview .. 1

2 OS/2 Systems Support .. 7

3 Macros, Conditional Assembly, and Local Labels 15

4 Directives ... 29

5 High-Level-Language Support 33

6 Other Features .. 45

Microsoft Code View and Utilities Update
1 Introduction .. 1

2 Using the Code View Debugger 5

3 About Linking in OS/2 19

4 Using the OS/2 Linker 25

5 The BIND Utility ... 31

6 The IMPLIB Utility ... 37

7 Using Module-Definition Files 39

8 Using the IX Option with MAKE 59

9 The ILINK Utility ... 61

10 The EXEHDR Utility 71

11 LINK Error Messages 75

Microsoft Editor User's Guide
1 Introduction .. 1

2 Edit Now .. 5

3 Command Syntax ... 15

4 A Survey of the Microsoft Editor's Commands 25

5 Regular Expressions ... 39

6 Function Assignments and Macros45

7 Using the TOOLS.IN! File 55

8 Programming C Extensions 67

A Reference Tables .. 87

B Support Programs for the Microsoft Editor 111

Glossary ... 117

Index .. 121

Microsoft Macro Asse1Dbler

for l\llS@ OS/2 and MS-DOS@
Operating Systems

Version 5.1 Update

Microsoft Corporation

Document No. 614610011-510-R00-0288

Contents

Section
I.I
1.2
1.3
1.4

Section
2.1
2.2
2.3
2.4
2.5

1 Overview ... 1

Using This Update ... 2

Summary of New Features 3
Disk Contents ... 4

Setup 5

2 OS/2 Systems Support 7
A Sample Program .. 7

Linking and Binding OS/2 MASM Programs 9

Using OS/2 System Calls 10

Register and Memory Conventions 11

For Further Reading .. 13

Section 3 Macros, Conditional Assembly,
and Local Labels 1s

3.1 TextMacros .. 15
3.1.l Text-Macro Evaluation 15
3.1.2 Using the Expression Operator with Text Macros 16
3.1.3 Text-Macro String Directives 18
3.1.4 Predefined Text Macros 23

3.2 The ELSEIF Directive 26

3.3 Local Labels ... 28

Directives .. 29 Section 4
4.1 Extensions to . TYPE .. 29

4.2 COMM Extension .. 30

4.3 Changes to the .CODE Directive 30

4.4 Data Declarations and Code View® Information 31

Section 5 High-Level-Language Support 33

5.1 Overview of High-Level-Language Features 33

5.2 Using the .MODEL Directive To Set Naming and Calling
Conventions .. 35

5.3 Declaring Parameters with the PROC Directive 37

Update-iii

5.4 Local Variables ... 41
5.5 Variable Scope .. .43

Section 6 Other Features45
6.1 Line Continuation45
6.2 List All (/LA) ... 46

Update-iv

Tables

Table 2.1
Table4.l

Register Values at Program Start 12

.TYPE Operator and Variable Attributes 29

Update-v

Section 1

Overview

Microsoft® Macro Assembler Version 5.1 provides a complete and powerful set of
tools for developing fast and efficient assembly programs for the MS-DOS® operating
system and Microsoft Operating System/2 (MS® OS/2). With the new high-level­
language support features you can easily add assembly speed and power to BASIC,
Pascal, C, and FORTRAN programs.

This update describes new features of the language, in particular its operation within
OS/2. The pages that follow use the term "OS/2" systems-MS OS/2 and IBM® OS/2.
Similarly, the term "DOS" refers to both MS-DOS and PC-DOS operating systems.
The name of the specific operating system is used when it is necessary to note features
that are unique to that system.

This document describes the new features of the Version 5.1 Macro Assembler. Section
1.2 below describes the new features in greater detail. Briefly, the new features include
the following:

Note

• Faster assembly. Version 5.1 makes better use of far memory to hold as much
of your source code as possible, so your programs assemble faster.

• OS/2 support. Version 5.1 runs under both OS/2 and DOS operating systems,
enabling you to develop powerful applications for OS/2.

• Text-macro and directive extensions. New directives, text-macro directives,
and predefined text macros let you write more sophisticated macros for power­
ful and portable code.

• High-level-language support. With Version 5.1, writing assembly routines for
use with high-level languages becomes almost automatic. Features of the
MIXED.INC macro file shipped with Version 5.0 are now built into the macro
assembler, along with additional supporting directives and extensions.

When you assemble using the /ML switch, you must now follow the conventions
used in Section 3.1.4, "Predefined Text Macros," in order forMASM to recognize
a predefined text macro. That is, each word in the name of the text macro is initial
capped.

Update-1

MASM 5.1 Update

1.1 Using This Update

This first section of the update provides an overview of the update and the new fea­
tures. Section 1.2 summarizes the new features; Section 1.3 describes the distribution
disks; and Section 1.4 describes how to use the setup batch file.

The remaining sections in the update describe the new features and demonstrate how
to use them in your programs:

Note

• Section 2, "OS!l Systems Support," shows you how to prepare a simple OS!l
application.

• Section 3, "Macros, Conditional Assembly, and Local Labels," describes the
new text-macro features, the new predefined text macros, the ELSEIF direc­
tives, and the automatic generation of local labels for jump instructions.

• Section 4, "Directives," tells you how to use the extensions to the .TYPE
operator and to the COMM directive, and describes a change in the .CODE
directive. Section 4 also explains the new way to declare variables as pointers so
that you can use the Code View debugger to examine the variables.

• Section 5, "High-Level-Language Support," describes the new high-level-­
language calling features that replace the macros supplied with Version 5.0 in
the MIXED.INC file.

• Section 6, "Other Features," describes how to use the new line-continuation and
listing features.

Information in the update supersedes that in the Version 5.0 manuals and files. Be
sure to check your Version 5.1 Macro Assembler disks for a README.DOC file.
This file contains information unavailable when this update was printed.

Update-2

Overview

1.2 Summary of New Features

The Microsoft Macro Assembler Version 5.1 surpasses and extends the power and ease­
of-use of Version 5.0 by providing the following new features:

• OS/2 Systems Support

Version 5.1 runs under OS/2, as well as DOS, so you can use it to develop new,
powerful OS/2 software. Version 5.1 includes the necessary supporting libraries
to write full OS/2 programs. A bound version and a real-mode version are in­
cluded in Version 5.1.

• Macros, Conditional Assembly, and Local Labels

Extensions to text macros let you write more flexible and powerful macros for
your programs. Version 5.1 includes new built-in text macros as well as text
macro directives that let you directly manipulate string equates. An extension to
the expression operator(%) allows you to evaluate text macros anywhere in
your source.

The ELSEIF directive simplifies the writing of complex conditional assembly
sections in your macros and programs.

Version 5.1 of the Macro Assembler allows automatic generation of local labels
for jump instructions. Automatic local labels free you from having to write
labels for small code sections.

• Directives

Extensions to the .TYPE directive provide additional information about an
operand. The COMM directive now accepts items of any size, rather than being
limited to 1-, 2-, 4-, 6-, 8-, or 10-byte items.

A new type of data declaration makes it possible to generate Microsoft
Code View® information for pointer variables.

A change in the register assumptions used in the .CODE directive makes it
easier to create multiple code segments.

Update-3

MASM 5.1 Update

• High-Level-Language Support

Version 5.1 contains several features that simplify the writing of assembly
routines to be called from high-level languages. The high-level-language sup­
port features incorporate and extend the features of the mixed-language program­
ming macros distributed with Version 5.0. The new high-level-language features
include the following:

• A new argument on the .MODEL directive sets naming conventions,
parameter order, and return conventions.

• Extensions to the PROC directive automatically save specified registers
and generate text macros for arguments passed on the stack.

• A new LOCAL directive allocates stack space for local variables and
generates text equates for the variables.

• Labels can be made local to a procedure, allowing better isolation of the
procedures.

• Line Continuation

Version 5.1 lets you use a continuation character to continue program lines. By
continuing lines you can combine physical lines into logical lines up to 512
characters long.

• Performance

Version 5.1 is significantly faster than Version 5.0 because it uses dynamically
allocated memory to perform file caching. File caching stores significant parts
of the source and include files to be stored in memory.

In addition, Version 5.1 allows significantly more structure definitions because it
now uses far memory to store these definitions.

1.3 Disk Contents

Be sure to make backup copies of the assembler disks before using any of the pro­
grams in the package. Keep the copies in a safe place so you can use them to restore
the originals if they are damaged or lost.

All files on the disks are listed in the PACKING.LST file on Disk 1.

Update-4

Overview

The files on the disk are not copy protected. You may make one backup copy for your
own use. You may not distribute any executable, object, or library files on the disk.
The sample programs are in the public domain.

No license is required to distribute executable files created with the assembler.

1.4 Setup

Your distribution disks contain two versions of MASM: a version that runs only under
DOS, and a bound version. (A "bound" program is an OS/2 program that runs under
DOS 3.0 or higher as well as under OS/2. See the PACKING.LST file for the location
of the different versions.) The bound version runs slightly slower under DOS than the
DOS version and uses approximately 15K more memory.

To set up MASM on your hard disk, run the SETUP program from your distribution
disks. The SETUP program prints directions for its use on the screen and prompts you
for information.

Note

To set up MASM for OS/2, you must run the SETUP program in real mode. The
SETUP program does not run under protected-mode OS/2.

If you are going to develop OS/2 applications, you may want to set up separate direc­
tories-a \BINB directory for the bound versions of MASM and the utilities, and a
\BINP directory for protected-mode programs. This allows you to keep different ver­
sions of the same program separated. You may also want to place the \BINB and
\BINP directories later in your path so that the faster DOS version of MASM is used
whenever appropriate.

Update-5

Section 2

OS/2 Systems Support

This section gives you a taste of writing MASM applications for OS/2 by showing you
how to prepare a simple OS/2 application to run under the OS/2 or the DOS operating
system. In addition, the section also briefly discusses some differences between OS/2
and DOS system calls.

You will not learn how to write full-fledged OS/2 applications from this section. To
find out more about OS/2 programming, consult the references in Section 2.5.

The first part of this section shows and explains a short OS/2 program. Section 2.2 dis­
cusses linking OS/2 programs and binding applications so that they run under either
the OS/2 or the DOS operating system. The next section, Section 2.3, tells you about
the differences between the OS/2 and DOS system calls. Section 2.4, "Register and
Memory Conventions," tells you what various registers contain when OS/2 starts your
program. The final section contains references to books and articles that will help you
learn about writing OS/2 programs.

2.1 A Sample Program

The following program is an OS/2 version of the sample programs on pages 14-16 of
the Microsoft Macro Assembler Programmer's Guide:

TITLE hellos2

pushc

program

8088/8086

INCLUDELIB doscalls.lib

.286

.MODEL small

Include DOSCALLS.LIB so
you don't need to
specify on linking

; Define a push macro so the bound version can use
; 8088/8086 instructions when necessary
MACRO pushed, pushed2 ;; Define bind from command line
IFDEF bind , , if you want to bind the

mov ax, pushed pushed2 ,, Push constant for

push ax
ELSE

Update-7

MASM 5.1 Update

push pushed pushed2
END IF

;; Push constant for 80186+

message
lmessage
bytesout

ENDM

.STACK

.DATA
DB
EQU
DD

.CODE
EXTRN

start:
automatically set

; Use default lK stack for OS/2 calls

"Hello, world.",13,10
$ - message
?

DosWrite:FAR, DosExit:FAR ; Declare OS/2 calls
; Notice that OS is

DosWrite function used to write to screen

pushc 1
standard output

push ds
pushc OFFSET message
pushc lmessage
push ds
pushc OFFSET bytesout

call DosWrite

contains

Push 1 as handle for

Push far address of
"message"

Push length of "message"
Push far address of

"bytesout"

Make API call
AX contains error code
Variable "bytesout"

number of bytes written

DosExit function used to return to DOS

threads
pushc

pushc
call

1

0
DosExit

END start

Push action 1 to end all

Push return code 0
Exit

If you are assembling and linking under DOS, you may use either version of MASM
from your distribution disks. To assemble under protected-mode OS/2, you must use
the bound version of MASM.

To assemble the program, type the following command:

MASM hellos2;

Linking the program and binding it-making the program able to run under either
DOS or OS/2-is discussed in the next section.

Update-8

OS/2 Systems Support

If you want to assemble the program so you can bind it to run under either OS/2 or
DOS, use this command line:

MASM /Dbind hellos2;

The /D option defines the constant bind. The pushc macro in the sample program
checks for this constant to tell whether or not to use the 80186-80286/80386-specific­
push constant instruction. Macros provide a convenient way to write a single program
for different processors.

2.2 Linking and Binding OS/2 MASM Programs

To link the sample program, use the following command:

LINK hellos2;

If you omit the INCLUDELIB directive from the program, you must include the
DOSCALLS.LIB file in the link command. In this case, the command line would ap­
pear as follows:

LINK hellos2,,DOSCALLS.LIB;

The DOSCALLS.LIB file must be in the current directory or in the path described by
the LIB environment variable. Using the INCLUDELIB directive ensures that the
DOSCALLS.LIB file is always included with the program.

The DOSCALLS.LIB file is necessary because OS/2 applications use dynamic link­
ing which does not resolve procedure calls until the program is loaded into memory.
When the program is loaded, the code required by a call is extracted from a dynamic­
link library and loaded with the program. All OS/2 system calls are contained in
dynamic-link libraries.

The DOSCALLS.LIB file does not contain any code for OS/2 system calls. Instead, it
contains dynamic-link reference records. The linker uses these records to make the con­
nection between the OS/2 system call in the application and the dynamic-link library
containing the system procedure.

The LINK command includes a field for an OS/2 definition file, as described in the
Microsoft Code View and Utilities Update. For the sample program, this field is not
necessary.

You can write OS/2 programs that run under either OS/2 or DOS 3.0 or higher by re­
stricting the OS/2 system calls your program uses. OS/2 function calls are known col­
lectively as the Applications Program Interface (API). If you restrict your program to
a subset of these functions, known as the Family API, you can write programs that run
under both OS/2 and DOS 3.0 or higher. See the Microsoft Operating System/2 Pro­
grammer's Reference for a list of the Family API functions.

Update-9

MASM 5.1 Update

Once you have written, assembled, and linked a program using only Family API func­
tions, you may bind the program by using the BIND utility. Binding your program
produces a version that runs under either operating system. The process of binding re­
solves references to dynamic-link routines so that the application runs without the
dynamic-link libraries.

Because the sample program uses only Family API calls, you can bind it with the fol­
lowing command:

BIND hellos2 pathlDOSCALLS.LIB path2API.LIB

The pathl argument is the path to the DOSCALLS.LIB file; path2 is the path to the
API.LIB file.

2.3 Using OS/2 System Calls

DOS implements system calls by placing values in registers and using a software inter­
rupt. Although most DOS functions have OS/2 equivalents, the OS/2 mechanism is
different.

To call an OS/2 function, you first push all of the arguments onto the stack, and then in­
voke the function with a far call. The fragment below shows a call to the DOSWRITE
function, the equivalent of DOS function 40h:

EXTRN DosWrite:FAR,DosExit:FAR ; DOS functions FAR external

DosWrite function
This code is only

push
standard output

push
push
push
push
push

call

contains

used to write to screen
for the 186, 286, and 386 processors
1 Push 1 as handle for

ds
OFFSET message
lmessage
ds
OFFSET bytesout

DosWrite

Push far address of
"message"

Push length of "message"
Push far address of

"bytesout"

Make AP! call
AX contains error code
Variable "bytesout"

number of bytes written

The EXTRN directive declares DOSWRITE a far label. All OS/2 functions are in­
voked by far calls and must be declared as far labels. Notice that before the program

Update-10

OS/2 Systems Support

calls the function, a series of push instructions place the required arguments on the
stack. These include arguments containing values used by the function as well as loca­
tions for returned values.

Notice also that after the call, there are no corresponding pop instructions. In OS/2, the
called procedure removes all arguments from the stack. All OS/2 functions use the
stack for arguments. Also, as the comments note, the AX register is used to report er­
rors. If the register is nonzero, it contains an error code. If the register is zero, there is
no error.

Note

Because OS/2 uses the stack to pass arguments, you may need to allocate a larger
stack segment than you would for a DOS program.

Although the function name is given in mixed case, the routine names in the OS/2 li­
braries are all uppercase. You may use mixed case because MASM converts all names
to uppercase. If you are writing routines for use with a case-sensitive language such as
C, you should use uppercase letters for the OS/2 function names and use the /MX or
/ML assembler option.

See the Microsoft Operating System/2 Programmer's Reference for a complete list of
OS/2 functions and their arguments.

2.4 Register and Memory Conventions

OS/2 initializes registers and allocates memory differently than DOS. These differ­
ences stem from the fact that OS/2 programs do not have a program segment prefix
(PSP) and they allocate memory only for the data and code required by the program.

On program startup, the AX register points to the segment value of the start of the pro­
gram's environment. Under DOS, the start of the environment was pointed to by the
word at 2Ch in the PSP.

OS/2 also places the program's command-line arguments in the environment. The
starting offset of the arguments is placed in the BX register. These arguments include
the program's name, so that AX:BX points to the program name. The program name is
followed by a null (zero) byte and the command-line arguments exactly as they were
typed. A second null marks the end of the arguments. Under DOS, the PSP contained
the program's arguments: byte 80h contained the length of the arguments, which began
at byte 81h in the PSP.

Update-11

MASM 5.1 Update

Under OS/2, the data segment register, DS, contains the segment of the automatic data
segment so that you do not have to initialize the register yourself. The CX register con­
tains the length of the automatic data segment. The segment is named DGROUP and
contains both data and the stack. If you use simplified segment directives, this is the
.DATA segment. You must place one data segment in a group called DGROUP if you
do not use the simplified directives:

DATA SEGMENT WORD PUBLIC 'DATA'

DATA ENDS

DGROUP GROUP DATA
ASSUME DS:DGROUP

Calling the group anything other than DGROUP, or not having a DGROUP causes an
error. In contrast to OS/2, the DOS operating system places the start of the program
segment prefix in register DS when the program starts up.

Only the memory required by the program is allocated by OS/2. When the program
starts, the DS and SS registers both point to the automatic data segment, which is used
for both data and the stack. The CS register and the instruction pointer point to the
beginning of the code segment. DOS allocates all memory to a program on startup. If a
DOS program needs to allocate dynamic memory, it must first adjust the allocated
memory to the actual memory needed by using a DOS function call.

The following table summarizes register values when an OS/2 program starts:

Table 2.1
Register Values at Program Start

Register

AX

BX
ex
SP
cs
DS
SS

Contents at Program Start

Segment of program's environment

Offset of command-line argwnents within the environment

Length of automatic data segment

Offset of the top of the stack within the automatic data segment

Program's entry point

Segment of the automatic data segment

Segment of the automatic data segment

For assembly-language programs, the values in CX and SP are the same at program
startup. The values may be different in a high-level-language program.

Update-12

OS/2 Systems Support

Do not do arithmetic on segment registers under OS/2. Under OS/2, segment registers
do not contain actual memory addresses-they contain segment selectors managed by
OS/2. Segment arithmetic causes a protection violation which terminates your program.

2.5 For Further Reading

The following books and articles may help you learn to write OS/2 applications in as­
sembly language:

Duncan, Ray. Advanced OS/2. Redmond, Wash.: Microsoft Press, in press.

Duncan, Ray. "A Programmer's Introduction to OS/2," Byte, September 1987.

Duncan, Ray. "Porting MS-DOS Assembly Language Programs to the OS/2
Environment," Microsoft Systems Journal, July 1987, pp. 9-17. (Microsoft Systems
Journal is a continuing source of information about programming in OS(2.)

Microsoft. Microsoft Operating System/2 Programmer's Guide. Redmond, Wash.: 1988.

Microsoft. Microsoft Operating System/2 Programmer's Reference. Redmond, Wash.:
1988.

You may also want to see "Environments," a column in PC World by Charles Petzold.
Beginning the September 29, 1987, issue of PC World, Petzold provides a series of tu­
torials on OS/2 programming.

With the exception of its own publications, Microsoft Corporation does not endorse
these books and articles over others on the same subject.

Update-13

Section 3

Macros, Conditional Assembly,
and Local Labels

This section tells you how to use the MASM Version 5 .1 extensions to text macros and
conditional assembly directives, and how to use local labels to simplify writing code
using jump instructions.

• Section 3.1 tells you how to use the new text-macro features-now you can use
text macros as one-line macros and perform operations on strings.

• Section 3.2 describes how to use the ELSEIF directives to write simpler, more
readable conditional-assembly blocks.

• Section 3.3 shows you how to use local labels to indicate the targets of jump in­
structions without using a specific name.

3.1 Text Macros

This section describes the Version 5.1 extensions to text macros. Sections 3.1.1 and
3.1.2 tell you how Version 5.1 changes the evaluation of text macros to make them
more powerful and flexible. Section 3.1.3 describes the text-macro string directives. Fi­
nally, Section 3.1.4 describes three new predefined text macros-@Cpu, @WordSize,
and @Version-that you can use to control assembly.

3.1.1 Text-Macro Evaluation

In Version 5.1, text macros now follow the same evaluation rules as regular macros.
This change means that text is substituted for the text-macro name when it appears in
the operation field. You can now use text macros as short, one-line macros. For ex­
ample, the following lines define and use a text macro, Not Op:

NotOp EQU <NEG>

NotOp AX

Update-15

MASM S.1 Update

Previous versions of MASM did not evaluate text macros appearing in the operation
field.

When assembling the lines, MASM substitutes NEG for NotOp in the final line.

Note

MASM Version 5.1 displays the values of text macros in the program listing when
you assign the text macro a value. Text-macro values appear in the left column
preceded by an equal sign(=).

3.1.2 Using the Expression Operator with Text Macros

You can use the expression operator (%) to substitute the values of text macros for the
macro names anywhere a text-macro name appears. When the expression operator is
the first thing on a line and is followed by one or more blanks or tabs, the line is
scanned for text macros and the values of the macros are substituted. Using the expres­
sion operator, you can force substitution of text macros wherever they appear in a line.
MASM re-scans the line until there are no more text macros to make substitutions for.

Note

Text macros are always evaluated when they appear in the name or operation
fields. The expression operator is required to evaluate a text macro only when the
macro appears in the operand field.

This use of the expression operator eliminates the need to do a macro call in order to
evaluate a text macro. For example, in the following macro, MASM 5.0 requires a sep­
arate macro, popregs, to evaluate the text macro regpushed:

regpushed

RestRegs

EQU <ax, bx, ex>

MACRO
popregs %regpushed
ENDM

popregs MACRO reglist
IRP reg,<reglist>

pop reg

Update-16

ENDM
ENDM

Macros, Conditional Assembly, and Local Labels

The new use of the expression operator to evaluate text macros in a line makes the
popregs macro unnecessary:

regpushed EQU <ax,bx,cx>

Rest Regs
%

MACRO
IRP reg,<regpushed> ;; % operator makes

separate macro

Note

pop reg
ENDM
ENDM

,, unnecessary

You cannot use the EQU directive to assign a value to a text macro in a line
evaluated with the expression operator, unless the text macro evaluates to a valid
name. For example, the following lines generate an error:

strpos EQU <[si)+12>

% wpstrpos EQU <WORD PTR strpos>

On Pass 1, wpst rpos is defined as a text macro that is expanded on Pass 2.
Thus, on Pass 2 the second EQU directive becomes

WORD PTR [si)+12 EQU <WORD PTR [si)+12>

and generates an error.

Instead, use the CATSTR directive to assign values to text macros (see Section
3.1.3, "Text-Macro String Directives," for more information about CATSTR and
other text-macro string directives). The previous example should be rewritten as
follows:

strpos EQU <[si)+12>

Update-17

MASM 5.1 Update

wpstrpos CATSTR <WORD PTR >, strpos

ff the text macro evaluates to a valid name, there is no error when you use EQU.
The following lines do not generate an error, but define two names, one
(numlabel) with the value 5, the other (tmacro) with the value <numlabel>:

tmacro EQU <numlabel>
% tmacro EQU 5

You can also use the substitution operator(&) with text macros just as you would in­
side a macro:

SegName EQU <MySeg>

% SegName&_text SEGMENT PUBLIC 'CODE'

The final line, after expanding the text macro, becomes:

MySeg_text SEGMENT PUBLIC 'CODE'

The substitution operator separates the text-macro name from the text that immediately
follows it. The name appears to MASM as segName text without the substitution
operator, and MASM fails to recognize the text macro-:-

3.1.3 Text-Macro String Directives

Version 5.1 of the Macro Assembler includes four text-macro string directives that let
you manipulate literal strings or text-macro values. You use the four directives in much
the same way you use the equal sign(=) directive. For example, the following line as­
signs the first three characters (abc) of the literal string to the label three by using
the SUBSTR directive:

three SUBSTR <abcdefghijklmnopqrstuvwxyz>,1,3

Each of the directives assigns its value-depending on the directive-to a numeric
label or a text macro. The following list summarizes the four directives and the type of
label that the directives should be used with:

Directive

SUBSTR

Update-18

Description

Returns a substring of its text macro or literal string argu­
ment. The SUBSTR directive requires a text-macro label.

CATSTR

SIZESTR

INSTR

Macros, Conditional A~mbly, and Local Labels

Concatenates a variable number of strings (text macros or
literal strings) to form a single string. The CATSTR direc­
tive requires a text-macro label.

Returns the length, in characters, of its argument string. The
SIZESTR directive requires a numeric label.

Returns an index indicating the starting position of a substr­
ing within another string. The INSTR directive requires a
numeric label.

Strings used as arguments in the directives must be text enclosed in angle brackets
(< and >), previously defined text macros, or expressions starting with a percent sign
(%).Numeric arguments can be numeric constants or expressions that evaluate to con­
stants during assembly.

The four sections below describe the directives in more detail.

• The SUBSTR Directive

The SUBSTR directive returns a substring from a given string. The directive has the
following syntax:

textlabel SUBSTR string,start[,length]

The SUBSTR directive takes the following arguments:

Argument Description

textlabel

string

start

length

The text label the result is assigned to.

The string the substring is extracted from.

The starting position of the substring. The first character in
the string has a position of one.

The number of characters to extract. If omitted, the directive
SUBSTR returns all characters to the right of position start,
including the character at position start.

In the following lines, the text macro f reg is assigned the first two characters of the
text macro reglist:

reg list EQU <ax,bx,cx,dx>

freg SUBSTR reglist,1,2 freg ax

Update-19

MASM 5.1 Update

• The CATSTR Directive

The CATSTR directive concatenates a series of strings and has the following syntax:

textlabel CATSTR string[,string] ...

The directive ta1ces the following arguments:

Argument Description

textlabel The text label the result is assigned to

string The string or strings concatenated and assigned to textlabel

The following lines concatenate the two literal strings and assign the result to the text
macro lstring:

lstring CATSTR <a b c d e f g>, < h i j k 1 m n o p>
; lstring <a b c d e f g h i j k 1 m n o p>

• The SIZESTR Directive

The SIZESTR directive assigns the length of its argument string to a numeric label
and has the following arguments:

numericlabel SIZESTR string

The SIZESTR directive ta1ces the following arguments:

Argument Description

numericlabel The numeric label MASM assigns the string length to

string The string whose length is returned

The following line sets slength to 8-the length of the text macro tstring:

tstring EQU <ax bx ex>

slength SIZESTR tstring slength 8

A null string has a length of zero.

Update-20

Macros, Conditional Assembly, and Local Labels

• The INSTR Directive

The INSTR directive returns the position of a string within another string. The direc­
tive returns 0 if the string is not found. The first character in a string has a position of
one. The directive has the following syntax:

numericlabel INSTR [start,]stringl ,string2

The following list describes the arguments:

Argument Description

start The starting position for the search. When omitted, the
INSTR directive starts searching at the first character. The
first character in the string has a position of one.

numericlabel The numeric label the substring's position is assigned to.

string]

string2

The string being searched.

The string to look for.

The following lines set colpos to the character position of the first colon in segarg:

segarg EQU <ES:AX>

colpos INSTR segarg,<:> colpos 3

• Examples

The following macro sets up a series of word storage locations with labels consisting
of a name followed by a number:

mstore MACRO slabel,sl,s2
maxct = s2 - sl + 1 ,, Calculate number of locations
count = sl

REPT maxct
lbl CATSTR <&slabel>,%count ;; Create label. % forces

lbl
count
DW
ENDM
ENDM

;; evaluation of count
count +1
0 ;; Create storage location

Update-21

MASM 5.1 Update

Invoking the macro with the following line creates four storage locations with the
names stuff2, stuff3, stuff4, and stuff5:

mstore <stuff>,2,5

The macro first calculates the number of storage locations to allocate, and then loops
to generate the required labels and DW directives. Notice the use of the expression
operator to evaluate count so it can be concatenated with the base label name. The
angle brackets (<>) around 1abe1 in the line creating the label are necessary so the
macro argument becomes a string-the argument type CATSTR requires.

The following example uses the text-macro string directives CATSTR, INSTR,
SIZESTR, and SUBSTR. It defines two macros, SaveRegs and RestRegs, that
save and restore registers on the stack. The macros are written so that Rest Regs re­
stores only the most recently saved group of registers.

The Sa veRegs macro uses a text macro, regpu shed, to keep track of the registers
pushed onto the stack. The RestRegs macro uses this string to the restore the proper
registers. Each time the SaveRegs macro is invoked, it adds a pound sign(#) to the
string to mark the start of a new group of registers. The RestRegs macro restores the
most recently saved group by finding the first pound sign in the string, creating a sub­
string containing the saved register names, and then looping and generating PUSH
instructions.

; Initialize regpushed to the null string
regpushed EQU <>

SaveRegs
Loops and generates a push for each argument register. Saves
each register name in regpushed.

SaveRegs
regpushed

regs

register
regpushed

Update-22

MACRO rl,r2,r3,r4,r5,r6,r7,r8,r9
CATSTR <#>,regpushed ;; Mark a new group of

IRP reg,<rl,r2,r3,r4,r5,r6,r7,r8,r9>
IFNB <reg>

push reg ;; Push and record a

CATSTR
ELSE

EXITM
END IF

ENDM
ENDM

<reg>,<,>,regpushed

;; Quit on blank argument

Macros, Conditional Assembly, and Local Labels

Rest Regs
Generates a pop for each register in the most recently
saved group

Rest Regs
numloc
reg list

registers to
reglen

not last

regpushed
regpushed

%
register

pop

MACRO
INSTR regpushed,"#" ;; Find location of#
SUBSTR regpushed,1,numloc-1 ;; Get list of

SIZESTR regpushed ,, Adjust numloc if# is

IF reglen GT numloc ,, item in the string
numloc = numloc + 1

ENDIF
SUBSTR regpushed,numloc Remove list from

IRP reg,<reglist> ,, Generate pop for each

IFNB <reg>
pop reg

ENDIF
ENDM
ENDM

The following lines from a MASM listing show the sample code the macros would
generate (a "2" marks lines generated by the macros):

SaveRegs ax, bx
2 push ax
2 push bx

Save Regs ex
2 push ex

Save Regs dx
2 push dx

Rest Regs
2 pop dx

RestRegs
2 pop ex

RestRegs
2 pop bx
2 pop ax

3.1.4 Predefined Text Macros

Version 5.1 of the Macro Assembler includes three new predefined text macros:
@WordSize, @Cpu,and @Version. The @WordSize text macro returns the word size
of the segment word size in bytes. It returns 4 when the word size is 32 bits and 2
when the word size is 16 bits. By default, the segment word size is 16 bits with the

Update-23

MASM 5.1 Update

80286 and other 16-bit processors, and 32 bits with the 80386. See Chapter 5, "Defin­
ing Segment Structure," in the Microsoft Macro Assembler Programmer's Guide for in­
formation about using 16- and 32-bit segment word sizes on the 80386.

Note

Version 5.1 of the Macro Assembler requires the use of a special convention when
you assemble using the /ML switch-each word in a name must begin with an
uppercase letter. Thus, while in MASM Version 5.0 you used @filename when
assembling with the /ML switch, in MASM Version 5.1 you must use
@FileName.

This convention does not apply to the predefined equates used with segment
directives, such as the equate @curseg.

The @Cpu text macro returns a 16-bit value containing information about the selected
processor. You select a processor by using one of the processor directives such as the
.286 directive. You can use the@Cpu text macro to control assembly ofprocessor­
specific code. Individual bits in the value returned by @Cpu indicate information
about the selected processor.

Bit If Bit= 1

0 8086 processor

1 80186 processor

2 80286 processor

3 80386 processor

7 Privileged instruction enabled (286 and 386)

8 8087 coprocessor instructions enabled

10 80287 coprocessor instructions enabled

11 80387 coprocessor instructions enabled

Because the processors are upwardly compatible, selecting a higher-numbered proces­
sor automatically sets the bits indicating lower-numbered processors. For example,
selecting an 80286 processor automatically sets the 80186 and 8086 bits.

Bits 4 through 6, 9, and 12 to 15 are reserved for future use and should be masked off
when testing.

Update-24

Macros, Conditional Assembly, and Local Labels

Note

The @Cpu text macro provides only information about the processor selected
during assembly by one of the processor directives. It does not provide
information about the processor actually used when a program is run.

The following example uses the @Cpu text macro to select more efficient instructions
available only on the 80186 processor and above:

; Use the 186/286/386 pusha instruction if possible
P186 EQU (@Cpu AND 0002h) Only test 186 bit--286 and

; 386 set 186 bit as well

IF P186
pus ha

ELSE
push
push
push
push
push
push
push
push

END IF

ax
ex
dx
bx
sp
bp
si
di

Non-zero if 186 processor or above

Do what the single pusha instruction
does

The @Version text macro returns a string containing the version of MASM in use.
With the@Version macro you can write macros for future versions ofMASM that
take appropriate actions when used with inappropriate versions of MASM. Currently,
the @Version macro returns 510 as a string of three characters.

Update-25

MASM 5.1 Update

Because the @Version macro is undefined in earlier versions, you can use @Version
to make sure that files using Version 5.1 features are assembled with MASM 5.1:

IFNDEF @Version
; Error if not Version 5.1 or higher
IF2

.ERR2
%out Requires Version 5.1 or higher

END IF
ELSE

; Uses the MASM 5.1 high-level-language features
.MODEL MEDIUM,C
.CODE

copyst PROC argl:NEAR PTR, arg2:NEAR PTR

copyst ENDP

END IF
END

3.2 The ELSEIF Directive

Version 5.1 of the Macro Assembler includes an ELSEIF conditional assembly direc­
tive corresponding to each of the IF directives. The ELSEIF directives provide a more
compact and better-structured way of writing some sequences of ELSE and IF direc­
tives. MASM Version 5.1 includes the following ELSEIF directives:

EL SEIF
ELSEIFl
ELSEIF2
ELSEIFB
ELSEIFDEF
ELSEIFDIF
ELSEIFDIFI
ELSEIFE
ELSEIFIDN
ELSEIFIDNI
ELSEIFNB
ELSEIFNDEF

The following nested IF and ELSE blocks can be rewritten to use ELSEIF directives:

Macro to load register for high-level-language return
; See section 6.1.6 in the mixed-language guide

Update-26

Macros, Conditional Assembly, and Local Labels

FuncRet MACRO arg,length
LOCAL tmploc
IF length EQ 1

mov al,arg
ELSE

IF length EQ 2
mov ax,arg

ELSE

tmploc

IF length EQ 4
.DATA
DW ?
DW ?
.CODE
mov ax,WORD PTR arg
mov tmploc,ax
mov ax,WORD PTR arg+2
mov tmploc+2,ax
mov dx,SEG tmploc
mov ax,OFFSET tmploc

ELSE
%OUT Error in FuncRet expansion
.ERR

ENDIF
ENDIF

ENDIF
ENDM

This macro can be rewritten as follows, using the ELSEIF directives:

FuncRet MACRO arg,length
LOCAL tmploc
IF length EQ 1

mov al,arg
ELSEIF length EQ 2

mov ax,arg
ELSEIF length EQ 4

.DATA
tmploc DW ?

ELSE

ENDIF
ENDM

DW ?
.CODE
mov ax,WORD PTR arg
mov tmploc,ax
mov ax,WORD PTR arg+2
mov tmploc+2,ax
mov dx,SEG tmploc
mov ax,OFFSET tmploc

%OUT Error in FuncRet expansion
.ERR

Update-27

MASM 5.1 Update

3.3 Local Labels

Version 5.1 of the Macro Assembler provides a way to generate automatic labels for
jump instructions. To define a label, use two at signs(@@) followed by a colon(:). To
jump to the nearest preceding local label, use @B (back) in the jump instruction's oper­
and field; to jump to the nearest following local label, use @F (forward) in the oper­
and field.

Local labels are best used for labeling targets of jump instructions when a label would
not help someone understand what your program is doing. Major divisions of a pro­
gram should be marked by regular labels.

Local labels in some cases also provide a convenient way to avoid relying on the size
of an instruction. For example, the Microsoft Macro Assembler Programmer's Guide
uses the following lines to code a conditional far jump (page 191):

longjump:

cmp ax,bx
jge $+5
jmp longjump

Coding with a local label avoids having to know the exact size of the JMP instruction:

@@:

longjump:

cmp ax,bx
jge @F
jmp longjump

The following lines show the example from page 338 in the Microsoft Macro Assem­
bler Programmer's Guide:

; DX is 20, unless ex is less than -20, then make DX 30
mov dx,20
cmp cx,-20
jge greatequ
mov dx,30

greatequ:

Here are the same lines rewritten to use a local label:

; DX is 20, unless ex is less than -20, then make DX 30
mov dx,20
cmp cx,-20
jge @F
mov dx,30

@@:

Update-28

Section 4

Directives

Version 5.1 of the Macro Assembler extends the information provided by the .TYPE
operator and removes limitations on the use of the COMM directive. Version 5.1 also
changes assumptions made after a .CODE directive. In addition, Version 5.1 includes
explicit pointer declarations so that you can use the Code View debugger to view the
variable as a pointer during debugging.

4.1 Extensions to .TYPE

The .TYPE operator now returns the bit settings shown in Table 4.1.

Table 4.1
.TYPE Operator and Variable Attributes

Bit Position IfBit=O IfBit=l

0 Not program related Program related

1 Not data related Data related

2 Not a constant value Constant value

3 Addressing mode is not direct Addressing mode is direct

4 Not a register Expression is a register

5 Not defined Defined

7 Local or public scope External scope

If bits 2 and 3 are both zero, the expression involves a register-indirect expression. Bit
6 is reserved.

The use of bits 2, 3, and 4 is new with this version of the Macro Assembler.

The following macro pushes a value or register onto the stack by using the .TYPE
operator to test whether or not the argument is a constant:

Update-29

MASM 5.1 Update

anypush MACRO pushed
IF ((.TYPE pushed) AND 0004h)

mov ax,pushed
push ax

ELSE
push pushed

directly.
END IF
ENDM

Non-zero for constant
Push constant through ax

Push anything else

If the macro is invoked with anypush 1, it generates the following code:

mov ax,1
push ax

If the argument is not a constant, the register or variable is pushed directly.

4.2 COMM Extension

The COMM directive now accepts structure names for the size argument. This en­
hancement lets you declare communal variables of any size.

In the following example.the COMM directive is used to make the structure variable
today a communal variable:

date STRUC

month DB ?
day DB ?
year DB ?

date ENDS

.DATA
COMM today:date

4.3 Changes to the .CODE Directive

In Version 5.1, the .CODE directive always assumes CS is the current segment. This
change makes it easier to use multiple code segments in a single module. Version 5.0

Update-30

Directives

assumed CS once at the beginning of the program, making it necessary to use an
ASSUME for a second segment.

4.4 Data Declarations and Code View® Information

Version 5.1 of the Macro Assembler extends data definitions to include explicit alloca­
tion of a pointer. Pointer-data definitions may now have the following form:

symbol[DW I DD I DF]type PTR initialvalue

For example, in the following fragment, ndpt r is declared as a near pointer to a
date structure and is initialized to zero:

date STRUC
month DB ?
day DB ?
year DB ?

date ENDS
ndptr DW date PTR 0

Similarly, the following lines declare a string and two pointers to the string. The decla­
ration also initializes the pointers to the address of the string:

string
pstring
fpstring

DB "from swerve of shore to bend of bay"
DW BYTE PTR string ; Declares a near pointer.
DD BYTE PTR string ; Declares a far pointer.

Using an explicit pointer declaration generates Code View information, allowing the
variable to be viewed as a pointer during debugging.

Note

This use of PTR is in addition to the use of PTR to specify the type of a variable
or operator. MASM 5.1 determines the meaning of PTR by context.

Update-31

Section 5

High-Level-Language Support

Version 5.1 of the Macro Assembler includes several features that simplify writing as­
sembly language routines for use in high-level-language programs. These features also
make it easier to use a single routine with more than one high-level language. The
high-level-language features include the following:

• An extension to the .MODEL directive automatically sets up naming, calling,
and return conventions.

• A modification of the PROC directive handles most of the procedure entry
automatically. The PROC directive saves specified registers, defines text
macros for arguments and the types of arguments, and generates stack setup
code on entry and stack tear-down code on exit.

• The new LOCAL directive allocates local variables from the stack and defines
text macros for the variables.

• Version 5.1 provides both local and global labels when you use the high-level-
language support features.

This section describes the Macro Assembler's high-level-language features. It does not
teach you how to write procedures called from other languages. See Chapter 6, "As­
sembly-to-High-Level Interface," in the Microsoft Mixed-Language Programming
Guide for detailed directions on writing assembly-language routines for use in other
languages.

5.1 Overview of High-Level-Language Features

The Version 5.1 high-level-language features allow you to write simpler, cleaner
routines as demonstrated by the following two routines. The first routine uses the old
high-level-language techniques. It is a procedure that can be called from a C program
as a function returning an integer. The procedure adds two integers-passed by
value-and returns the result in the AX register (used by C for returning integer­
function values):

Update-33

MASM S.l Update

Assemble with /MX or /ML to preserve case of procedure name
PUBLIC _myadd
.MODEL MEDIUM
.CODE

_myadd PROC FAR

argl
arg2

_myadd

EQU
EQU

push
mov

mov
add

<WORD PTR [bp+6]>
<WORD PTR [bp+8]>

bp
bp,sp

ax,argl
ax,arg2

pop bp
ret

ENDP
END

Set up stack frame

Load first argument
Add second argument

Here is the same procedure written using the new high-level-language features:

.MODEL MEDIUM,C

my add

my add

.CODE
PROC argl:WORD, arg2:WORD

mov
add

ret

ENDP
END

ax,argl
ax,arg2

Load first argument
Add second argument

In Version 5.0 of MASM, a procedure required a PUBLIC directive to make the name
of the procedure available outside the module. The PUBLIC directive is no longer re­
quired-when you use a second parameter on the .MODEL directive, MASM makes
all procedure names public. Also notice that the procedure name no longer starts with
an underscore: specifying C calling conventions in the .MODEL directive automati­
cally adjusts procedure names and labels to follow C conventions.

In the older version of my add, the type and number of arguments were handled as dis­
placements from the base pointer, BP. The extension to the PROC directive specifies
the type and number of arguments passed to the procedure on the stack and generates
text macros for the arguments. These macros are equivalent to the ones used in the
original version of the procedure.

Update-34

High-Level-Language Support

Notice too that the stack frame has to be set up in the older version. Now, MASM
generates the code for setting up the stack and restoring it based on information in the
high-level-language directives.

Along with simplifying the process of writing procedures to be called from other lan­
guages, the high-level-language calling features also make it easier to use a procedure
with more than one language. For example, to change my add so that it can be called
from Pascal, rather than C, you would change the .MODEL directive (assuming the
Pascal routine was using call by value):

.MODEL MEDIUM,PASCAL

• Overview of Sections 5.2-5.6

The next section, Section 5.2, describes the new syntax of the .MODEL directive and
tells you how to use the directive to set naming and calling conventions in your pro­
grams. Section 5.3 describes how to use the extensions to the PROC directive to de­
clare your procedure's arguments. Using the new LOCAL directive to declare local
variables on the stack is described in Section 5.4. The final section describes the new
type casts that help you debug your procedures with the Code View debugger, and dis­
cusses the new variable and label scoping features.

Note

MASM does not normally display the code generated by the high-level-language
support features. You can see the code produced by these features by using the
.LALL directive or the /LA command line option. See Section 6, "Other
Features," for information about the /LA option.

5.2 Using the .MODEL Directive To Set Naming and
Calling Conventions

The extension to the .MODEL directive controls three things: how public and external
names are handled, the order in which arguments appear on the stack, and what kind of
return is done. The .MODEL directive has the following syntax:

.MODEL memorymodel[,language]

The memorymodel still specifies the memory model to use. However, the language par­
ameter is new and tells MASM to follow the naming, calling, and return conventions
appropriate to the indicated language. In addition, if you use the language argument,

Update-35

MASM S.1 Update

MASM automatically makes all procedure names public. You can use C, PASCAL,
FORTRAN, or BASIC as the language argument. For example, the following
.MODEL directive tells MASM to use the naming, calling, and return conventions for
BASIC:

.MODEL MEDIUM, BASIC

The paragraphs below describe in detail the specific naming, calling, and return con­
ventions indicated by the language argument.

If you use C for the language parameter, all public and external names are prefixed
with an underscore (_) in the .OBJ file. Specifying any other language has no effect on
the names.

Note

The only change MASM makes to a procedure name is to add an underscore for
C. MASM does not truncate names in order to match the conventions of specific
languages such as FORTRAN or Pascal. See the Microsoft Mixed-Language
Programming Guide for specific information about name length limitations in
specific languages.

In addition to changing the naming conventions, the language parameter also affects
how arguments passed on the stack are interpreted. If you specify FORTRAN, PAS­
CAL, or BASIC, then MASM assumes the arguments have been pushed onto the
stack from left to right-the last argument is nearest to the top of the stack. Specifying
C assumes arguments have been pushed on the stack in the opposite order.

MASM makes no assumptions about whether arguments are passed by value or passed
by reference. Your assembly routine must explicitly handle the appropriate convention.
See the Microsoft Mixed-Language Programming Guide for information about passing
arguments by value or by reference.

Pascal, FORTRAN, and BASIC programs require the called procedure to remove argu­
ments from the stack. If you specify PASCAL, FORTRAN, or BASIC as the lan­
guage argument, MASM replaces your return instruction (ret) with a return that
removes the correct number of bytes from the stack. For example, in a procedure
called from BASIC with two integer arguments, MASM would replace the ret instruc­
tion with the following instruction so the two integer arguments (four bytes) are re­
moved from the stack:

ret 4

In C, the calling program removes arguments from the stack, and MASM leaves the re­
turn instruction unchanged.

Update-36

High-Level-Language Support

Note

To write procedures for use with more than one language, you can use text macros
for the memory model and language arguments, and define the values from the
command line. For example, the following .MODEL directive uses text macros
for the memory and language arguments:

% .MODEL memmodel,lang ; Use% to evaluate memmodel, lang

The values of the two text macros can be defined from the command line using the
ID switch:

MASM /Dmemmodel=MEDIUM /Dlang=BASIC

5.3 Declaring Parameters with the PROC Directive

The PROC directive in Version 5.1 of the Macro Assembler includes new arguments
that specify automatically saved registers, define arguments to the procedure, and set
up text macros to use for the arguments. For example, the following PROC directive
could be placed at the beginning of a procedure called from BASIC that takes a single
argument passed by value and that uses (and must save) the DI and SI registers:

myproc PROC FAR USES DI SI, argl:WORD

The PROC directive has the following syntax:

name PROC [NEARIFAR] [USES [reglist],] [argument[,argument] ...]

The NEAR and FAR keywords indicate whether you invoke the procedure with a near
call or a far call, just as they did in the old form of the directive.

The following list describes the other parts of the PROC directive:

Argument

name

reg list

Description

The name of the procedure. MASM automatical­
ly adds an underscore to the beginning of the
name if you specify C as the language in the
.MODEL directive.

A list of registers that the procedure uses and
that should be saved on entry. Registers in the
list must be separated by blanks or tabs.

Update-37

MASM 5.1 Update

argument The arguments passed to the procedure on the
stack. See the discussion below for the syntax of
the argument.

The argument indicates the type of each of the procedure's arguments and is separated
from the reg list argument by a comma if there is a list of registers. The argument has
the following syntax:

argument[:[[NEARIFAR]PTR]type] ...

The argument is the name of the argument. The type is the type of the argument and
may be WORD, DWORD, FWORD, QWORD, TBYTE, or the name of a structure
defined by a STRUC structure declaration (see Chapter 6, "Defining Labels and Vari­
ables," in the Microsoft Macro Assembler Programmer's Guide for more information
about types). If you omit type, the default is the WORD type (the DWORD type when
a .386 directive is used).

MASM creates a text macro for each argument. You can use these text macros to
access the arguments in the procedure. The text macro is similar to the text macros that
appear in the first example procedure in Section 5.1, "Overview," above.

The FAR, NEAR, PTR, and type arguments are all optional. If you omit all of them,
MASM assumes the variable is a WORD type. If you use only the type argument,
MASM assumes the variable has the indicated type.

Note

If you are writing a routine to be called from BASIC, FORTRAN, or Pascal, and
the routine returns a function value, you must declare an additional parameter if
you return anything other than a two- or four-byte integer. See Section 6.1.6,
"Returning a Value," in the Microsoft Mixed Language Programming Guide for
more information.

If you specify that the variable is a pointer, MASM sets up a text macro to access the
variable on the stack, but also generates Code View information so that the variable is
treated as a pointer during debugging. MASM assumes specific sizes for the variable,
depending on the combination of NEAR, FAR, and PTR arguments you specify. The
lines below show some example combinations of NEAR, FAR, PTR, and type. Each
example is discussed below.

Update-38

High-Level-Language Support

myproc PROC varl:PTR, var2:PTR DWORD

myproc ENDP

proc2 PROC var3:FAR PTR, var4:NEAR PTR

proc2 ENDP

If you use the PTR argument alone, as in the declaration for varl, MASM makes the
variable a WORD, DWORD, or FWORD type depending on the memory model and
segment word size (segment word size can only be changed in code for the 386 proces­
sor). The WORD type is used for small and medium memory models; the DWORD
type for all other memory models using a 16-bit segment word size; the FWORD type
for compact, large, and huge memory models when you specify 32-bit segment word
sizes for a 386 processor; and the DWORD type for small and medium memory mod­
els with 32-bit segments.

When you use a combination of PTR and type, as in the declaration for va r2, MASM
assigns the type exactly the same way as when you use PTR alone. Thus, for a given
combination of memory model and segment word size, using either PTR alone or in
combination with a type generates the same text macro. For example, all of the follow­
ing declarations of procvar produce the same text macro for the variable name, al­
though they generate different Code View information:

aproc PROC procvar:PTR

aproc PROC procvar:PTR DWORD

aproc PROC procvar:PTR BYTE

Specifying a particular type changes only the Code View information, not the text
macro produced.

If you specify a NEAR PTR or FAR PTR argument, as in the declarations of var3
and var4, MASM ignores the memory model you've selected and assigns a WORD
type for a NEAR PTR argument and a DWORD type for a FAR PTR argument.
MASM assigns an FWORD type for a FAR PTR argument or a DWORD type for a
NEAR PTR argument when you specify 32-bit segment word size for a 386 processor.

MASM does not generate any code to get the value or values the pointer references:
your program must still explicitly treat the argument as a pointer. For example, the pro­
cedure in Section 5.1 can be rewritten for use with BASIC so that it gets its argument
by near reference (the BASIC default):

Update-39

MASM 5.1 Update

Call from BASIC as a FUNCTION returning an integer

.MODEL MEDIUM,BASIC

.CODE
my add PROC argl:NEAR PTR WORD, arg2:NEAR PTR WORD

mov
mov
mov
add

ret

my add ENDP
END

bx,argl
ax, [bx]
bx,arg2
ax, [bx]

Load first argument

Add second argument

In the example above, even though the arguments are declared as near pointers, you
still must code two move instructions in order to get the values of the arguments-the
first move gets the address of the argument, the second move gets the argument.

You can use conditional assembly directives to make sure that your pointer arguments
are loaded correctly for the memory model. For example, the following version of
my add treats the arguments as far arguments if necessary:

.MODEL MEDIUM, C

my add

my add

Update-40

.CODE
PROC argl:PTR, arg2:PTR

IF @DataSize
les bx,argl
mov ax, WORD
les bx,arg2

ELSE
mov bx,argl
mov ax, [bx]
mov bx, arg2

ENDIF
add ax, [bx]

ret

ENDP
END

PTR [bx]
Far arguments

Near arguments

Add the values

High-Level-Language Support

Note

When you use the high-level-language features and MASM encounters a return
instruction, it automatically generates instructions to pop saved registers, remove
local variables from the stack, and, if necessary, remove arguments.

5.4 Local Variables

With the LOCAL directive, you can allocate local variables from the stack. Usually
this is done by decrementing the stack pointer the required number of bytes after set­
ting up the stack frame. For example, the following sequence allocates two, two-byte
variables from the stack and sets up text macros to access them:

locvarl
locvar2

EQU <WORD PTR [bp-2]>
EQU <WORD PTR [bp-4]>

push bp
mov bp,sp
sub sp,4

mov locvarl,ax

With the LOCAL directive you can do the same thing in a single line:

LOCAL locvarl:WORD, locvar2:WORD

mov locvarl,ax

The LOCAL directive has the following syntax:

LOCAL vardef [,vardej] .••

Each vardefhas the form:

variable[[count]][:[[NEAR I FAR]PTR]type]] ..•

Update-41

MASM 5.1 Update

The LOCAL directive arguments are as follows:

Argument

variable

count

type

Description

The name given to the local variable. MASM
automatically defines a text macro you may use
to access the variable.

The number of elements of this name and type to
allocate on the stack. Using count allows you to
allocate a simple array on the stack. The brack­
ets around count are required.

The type of variable to allocate. The type argu­
ment may be one of the following: WORD,
DWORD, FWORD, QWORD, TBYTE, or the
name of a structure defined by a STRUC struc­
ture declaration.

MASM sets aside space on the stack, following the same rules as for procedure argu­
ments.

MASM does not initialize local variables. Your program must include code to perform
any necessary initializations. For example, the following code fragment sets up a local
array and initializes it to zero:

arraysz EQU 20

aproc PROC
LOCAL varl[arraysz] :WORD, var2:WORD

Initialize local array to zero
mov cx,arraysz
xor
xor

repeat: mov
inc

ax, ax
di, di
varl[di],ax
di

inc di
loop repeat

Use the array ...

Update-42

Use di as array index

High-Level-Language Support

5.5 Variable Scope

When you use the extended form of the .MODEL directive, MASM makes all identifi­
ers inside a procedure local to the procedure. Labels ending with a colon(:), procedure
arguments, and local variables declared in a LOCAL directive are undefined outside
of the procedure. Variables defined outside of any procedure are available inside a pro­
cedure. For example, in the following fragment, varl can be used in pro cl and
proc2, while var2-because it is defined in proc2-is not available to procl:

.MODEL MEDIUM,C
.DATA

varl OW 256

.CODE
procl PROC

exit: ret
procl ENDP

proc2 PROC
LOCAL var2:WORD

exit: ret
proc2 ENDP

Available to procl and proc2

This var2 only available in proc2

Ifprocl contained a LOCAL directive defining var2, that var2 would be a
completely different variable than the var2 in proc2.

Notice that both procedures contain the label exit. Because labels are local when you
use the language option on the .MODEL directive, you may use the same labels in
different procedures. You can make a label in a procedure global (make it available out­
side the procedure) by ending it with two colons:

proc3 PROC

labell::

proc3 ENDP

In the preceding example, labell is available throughout the file containing proc3.

Update-43

Section 6

Other Features

This chapter describes the new line-continuation and listing features of Version 5.1 of
the Macro Assembler.

6.1 Line Continuation

You can create program lines that extend over more than one physical line by using the
line-continuation character (\):

PUBLIC putstr, getstr, compstr, savestr, strcat, \
indexstr, strsub

.MODEL medium

.CODE
putstr PROC

The backslash must be the last character in the line. Using the line-continuation
character, you may have program lines up to 512 characters. Physical lines are still
limited to 128 characters.

Continued lines are marked with a backslash (\) in the listing file.

Note

A backslash in a comment does not continue the line. For example, the backslash
at the end of the following line is part of the comment and does not continue the
line.

xor ax,ax ; A line is not continued if it's a comment\

Update-45

MASM 5.1 Update

6.2 List All (/LA)

Version 5.1 of the Macro Assembler includes a new command-line option that shows
all code generated by MASM. The /LA option displays the results of the simplified
segment directives and the code generated by the high-level-language support features.
For example, the following command line assembles s TRPKG • ASM and includes all
code in the listing file:

MASM /LA STRPKG.ASM

Update-46

Microsoft Code View®
and Utilities

Software Development Tools

for MS@ OS/2 and MS-DOS@
Operating Systems

Update

Microsoft Corporation

Document No. 614010011-000-R00-0288

Contents

Section 1 Introduction ... 1

1.1 System Requirements .. 2

1.2 Installation .. 3

Section 2 Using the Code View Debugger s
2.1 New Debugging Features 5

2.1.1 Placing Structures in the Watch Window 5
2.1.2 Using the Graphic Display Command 6
2.1.3 Selecting Text .. 8

2.2 The Protected-Mode Code View Debugger 8
2.2.1 Using the Debugger's View Output Command 9
2.2.2 Debugging Dynamic-Link Modules 9
2.2.3 Debugging Multiple-Thread Programs 10

2.3 Saving Memory with the CVPACK Utility 17

Section
3.1
3.2
3.3
3.4

Section
4.1
4.2
4.3

Section
5.1
5.2
5.3
5.4
5.5

3 About Linking in OS/2 19
Linking without an Import Library 20

Linking with an Import Library 21

Why Use Import Libraries? 22

Advantages of Dynamic Linking 23

4 Using the OS/2 Linker 2s
Options for Real Mode Only 27

Options for Protected Mode Only 27
New Options for Both Modes 28

5 The BIND Utility 31

Binding Libraries ... 31

Binding Functions as Protected Mode Only 32

The BIND Command Line 32

BIND Operation .. 33

Executable-File Layout 34

Section 6 The IMPLIB Utility 37

iii

Section
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15

7 Using Module-Definition Files 39

The NAME Statement40
The LIBRARY Statement42
The DESCRIPTION Statement43
The CODE Statement43
The DATA Statement45

The SEGMENTS Statement48
The STACKSIZE Statement 51

The EXPORTS Statement 52

The IMPORTS Statement 53

The STUB Statement 55

The HEAPSIZE Statement 55

The PROTMODE Statement 56

The OLD Statement .. 56
The REALMODE Statement 57

The EXETYPE Statement 57

Section 8 Using the /X Option with MAKE 59

The II_,INK Utility 61 Section 9
9.1 Definitions ... 62

iv

9.2
9.3

9.4

9.5
9.6

Guidelines for Using ILINK 63

The Development Process 63
9.3. l The /INCREMENTAL Option 64
9.3.2 The /PADCODE Option 64
9.3.3 The /PADDATA Option 65

Running ILINK ... 65
9.4.1 Files Required for Using ILINK 66
9.4.2 The ILINK Command Line 66

How ILINK Works ... 67
Incremental Violations 67
9.6.1 Changing Libraries 68
9.6.2 Exceeding Code/Data Padding 68
9.6.3 Moving/Deleting Data Symbols 68
9.6.4 Deleting Code Symbols 68
9.6.5 Changing Segment Definitions 69
9.6.6 Adding Code View Debugger Information 69

Section 10 The EXEHDR Utility 11
10.1 The EXEHDR Command Line 71

10.2 EXEHDR Output ... 71
10.3 Output in Verbose Mode 73

Section 11 LINK Error Messages 75

v

Figures

Figure 2.1 Multiple-Thread Program 11

Figure 3.1 Linking without an Import Library 20

Figure 3.2 Linking with an Import Library 21

Figure 5.1 OS/2 Executable-File Header 35

vi

Section 1

Introduction

This update supplements the Microsoft® Code View® and Utilities manual, and de­
scribes utilities that are designed for use with Microsoft Windows and the OS/2 sys­
tems. The update also describes improvements which apply to both real-mode and
protected-mode environments, including new features of the Microsoft Code View de­
bugger. The pages that follow use the term "OS/2" to refer to both Microsoft Operating
System/2 (MS® OS/2) and IBM® OS/2. Similarly, the term "DOS" is used to refer to
both MS-DOS® and IBM Personal Computer DOS.

The development of a protected-mode program under OS/2 differs from the develop­
ment of a real-mode program in the following way: to make calls to OS/2 you must
call a dynamic-link library. (As explained in Section 3, "About Linking in OS/2," a dy­
namic-link library is not linked to the program but is loaded separately at run time.)
The use of a dynamic-link library, in tum, requires that the program know where its dy­
namic-link functions are defined. Module-definition files and import libraries, de­
scribed below, serve this purpose. OS/2 programs can also take advantage of multiple
threads, which are parts of your program that run concurrently. (Threads are like
processes, but they are faster to create, and they share the same code segment.)

The following list describes what you can do with the new utilities and the new ver­
sion of the Code View debugger:

• View structures with the Code View debugger

In addition to the capabilities described in the Microsoft Code View and Utilities
manual, both versions of the debugger (protected mode and real mode) provide
the ability to watch a C or MASM structure, Pascal record, or BASIC user­
defined type. The debugger displays, labels, and dynamically updates each ele­
ment of the structure, and allows you to trace through a linked list with a simple
keystroke or mouse selection.

• Debug multiple-thread programs with CVP

The protected-mode Code View debugger, CVP, expands the capabilities of the
debugger as described in the Microsoft Code View and Utilities manual. The
protected-mode debugger can debug code in dynamic-link libraries, and it helps
you debug multiple-thread programs by providing a new command. This com­
mand lets you view the state of the machine while one thread or another is being
traced. You can also freeze some threads while the others run concurrently.

Update-I

Microsoft Code View and Utllities Update

• Link real- and protected-mode programs

Version 5.0 of the Microsoft Segmented-Executable Linker (LINK) takes an ad­
ditional field for module-definition files (module-definition files are docu­
mented in Section 7). The use of a module-definition file makes it possible for
you to create dynamic-link libraries, specify dynamic-link entry points for func­
tions, and provide other kinds of information for your OS/2 program modules.

• Create import libraries with IMPLIB

Import libraries (described in Section 3, "About Linking in OS/2," and Section
6, "The IMPLIB Utility'') can speed up the development process for OS/2 ap­
plications. When you create a dynamic-link library, you can provide an import
library to the application developer who calls your dynamic-link library. Theim­
port library is easy to link, and saves the developer the trouble of creating a
module-definition file. The Microsoft Import Library Manager utility {IMPLIB)
generates import libraries for you.

• Use BIND to create dual-mode applications

By using the Microsoft Operating System/2 Bind utility (BIND), you can con­
vert an OS/2 program so that it can run in either OS/2 protected mode or in real
mode (DOS 3.x or compatibility box). Section 5 gives instructions for using the
BIND utility.

• Link faster with ILINK

For large OS/2 and Windows programs, the Microsoft Incremental Linker
{ILINK) can speed up linking by as much as 20 times. This utility takes ad­
vantage of the new segmented-executable file format, by relinking only those
modules which have changed. Section 9 explains how the process works.

1.1 System Requirements

To use all of the utilities presented in this manual, you need to have MS OS/2 installed
and running in protected mode.

In addition, if you want to call the operating system or take advantage of OS/2-specific
features such as threads or se111aphores, you will need to have documentation on all the
Application Program Interface (API) calls (see the Microsoft Operating System.12 Pro­
grammer's Reference).

Update-2

Introduction

The following programs will also run in real mode (DOS 3.x or OS/2 compatibility
box):

• LINK

• CV (but not CVP)

• MAKE

• !LINK

1.2 Installation

The MS OS/2 languages include two versions of the Microsoft Code View debugger,
one for each OS/2 operating mode. For debugging programs running in the protected
mode, the Code View debugger's executable file is CVP.EXE, and the help file is
CVP.HLP. Both should be installed in a directory listed in the PATH environment
variable. To debug programs running in real mode, use the CV.EXE executable file
and its help file, CV.HLP. Both of these files should also be installed in a directory
listed in the PATH environment variable.

Finally, you should also install the executable files LINK, EXEC, ILINK, BIND, and
IMPLIB in a directory listed in the PATH environment variable.

Note

This document uses certain notational conventions to convey example and syntax
information for various utilities. See the "Introduction" to the Microsoft
Code View and Utilities manual for an explanation of these conventions.

Within this update, command-line options are preceded by a forward slash(/).
However, in all cases where a slash is used, you can enter either a slash or a dash
(-).

Update-3

Section 2

Using the Code View Debugger

This chapter first presents two new features-structure watching and text selection­
which are included in both the protected-mode Code View debugger (CVP.EXE) and
the real-mode Code View debugger (CV.EXE). The chapter then describes the special
features that are included only in the protected-mode debugger. Finally, the chapter de­
scribes the Microsoft Debug Information Compactor utility (CVPACK), which re­
duces the size of the executable file.

2.1 New Debugging Features

The Code View debugger now provides two direct ways to examine values of members
of structures. First, you can now specify a structure name in a Watch command or Eval­
uate Expression command (see Section 2.1.1, "Placing Structures in the Watch Win­
dow"). Second, the debugger provides a new command for viewing structures in a
dialog box. This new command is described in Section 2.1.2, "Using the Graphic Dis­
play Command."

Note

For ease of discussion, Section 2.1.1, "Placing Structures in the Watch Window,"
uses the general term "structures" to refer to Pascal records and BASIC
user-defined types, as well as C structures. The machine-level implementation of
these records, types, and structures is similar, so the debugger handles them in
similar ways.

The debugger also provides text selection, which permits you to use a mouse (Micro­
soft Mouse or compatible) to select text on screen as input to commands. This capabil­
ity is described in Section 2.1.3, "Selecting Text."

2.1.1 Placing Structures in the Watch Window

Assume that you have declared a structure as follows:

Update-5

Microsoft Code View and Utilities Update

struct stype
int a;
int b;
struct {

c;

int x;
long y;

struct stype *new;
sample = { 11, 12, { 100, 200} } ;

If you give the Watch command W? sample, then the debugger displays the following
line in the watch window:

sample : { a=ll, b=l2, c={x=lOO, y=200}, new=OxOOOO:OxOOOO

Note the following features, as shown in the above example:

• Nested structures are displayed in a nested pair of braces. (fhe debugger dis­
plays structures nested to any level!)

• Fields other than nested structures are displayed in their default format, as
described in the Microsoft Code View and Utilities manual. For example, a
pointer is always displayed in the standard segment:ojfset fonn. (fhe example
above assumes the C hexadecimal notation.)

2.1.2 Using the Graphic Display Command

The new Graphic Display command (??) is even more powerful than the Watch and
Evaluate Expression commands. This command is especially useful for examining
nested structures and linked lists of pointers. The syntax of the command is simple:

?? variable[,c]

In the syntax display above, variable can be any recognized data symbol. The optional
fonnat specifier c can be used to specify that one-byte-length fields be displayed as
ASCII (American Standard Code for Infonnation Interchange) characters.

The debugger responds by displaying a dialog box. If variable is a structure, then the
dialog box contains the name and value of each field. For example, if the structure
sample is defined as described in the previous section, then the command
? ? sample produces the following dialog box:

a
b
c
new

Update-6

x

11
12
{ ... }

OxOOOO:OxOOOO

Using the Code View Debugger

Nested structures, such as c in the example above, are evaluated as { ... } . In addi­
tion, the dialog box displays a null-terminated ASCII string next to any field which
contains a character pointer.

You can use the Graphic Display command with variables other than structures. With
nonstructure variables, the command displays just one field.

The Graphic Display command enables you to expand structures and dereference point­
ers by selecting a field. (These actions are defined below.) To select a field with the
keyboard, press the up and down DIRECTION keys to move the cursor to the field you
wish to select, and then press ENTER. To select a field with the mouse, simply click the
left mouse button on the field you wish to select (or anywhere on the same line).
Selecting a field has the following effect:

1. If the field contains a nested structure, then the structure is "expanded"; the
nested structure becomes the new subject of the dialog box. The dialog box
displays each field of the nested structure.

2. If the field contains a pointer, then the pointer is "dereferenced"; in other words,
the debugger locates the data which the pointer addresses. This data becomes
the new subject of the dialog box.

The pointer's type determines how the debugger displays the dereferenced data.
The debugger uses this type information even if the pointer does not currently
address any meaningful data. If the pointer addresses a structure, then each field
of the new structure is displayed.

3. If the field contains neither a pointer nor a nested structure, then selection has no
effect. The debugger beeps to tell you that the selected field was neither a
pointer nor a structure.

You can return to the previous dialog-box display (before expansion or dereference
took place) by pressing the backspace key or by clicking right (press the righthand
mouse button).

While the dialog box is on screen, you cannot execute other Code View-debugger com­
mands. To remove the dialog box and resume normal debugger operation, press ESC, or
click left while the mouse cursor is outside the box.

Note

You can take advantage of the new Watch-command capability in either window
or sequential mode. To use the Graphic Display command, however, you need to
run the debugger in window mode.

Update-7

Microsoft Code View and Utilities Update

2.1.3 Selecting Text

Text selection is a technique that you can use with the mouse. Select text from either
the display or dialog window by holding down the left mouse button and dragging the
mouse cursor to the left or right. All text up to the mouse cursor is selected when you
release the button. Once selected, you can use the text in one of two ways:

1. The selected text automatically appears in the next dialog prompt box. For
example, when you select Find from the Search menu, a dialog box prompts you
for the search string. Your selected text appears in this box. You can edit the text
or press ENTER immediately.

2. The selected text appears in the dialog window (at the end of the dialog-window
buffer) when you press SHIFT+INS. If you then press ENTER, the text is given to
the debugger as a command.

The selected text can only be used once. To use the same text repeatedly, you need to
reselect the text after each use.

2.2 The Protected-Mode Code View Debugger

The protected-mode Code View debugger (CVP.EXE) differs from the real-mode
Code View debugger (CV.EXE) in three principal ways:

1. The View Output Screen command (\) works differently.

2. CVP takes an additional command-line option for use in debugging
dynamic-link modules.

3. CVP can debug multiple-thread programs. In order to deal with the
multiple-thread capability of OS(2, CVP has a new command that is not present
in CV, and some of the commands for tracing and execution in CV work
differently in CVP.

Each of these differences is described in the sections below. You should also bear in
mind the following general limitations when using CVP in the OS/2 environment:

• Only one copy of the Code View debugger can be run at a time in the protected
mode. Multiple copies cannot be run in concurrent screen groups.

• When you debug a program without using the /2 option, and the program makes
dynamic-link calls to functions outside the API, the debugger will not have ac­
cess to the program's environment or the current drive and directory.

Update-8

Using the Code View Debugger

In all other respects, the Code View debugger's operation as described in the Microsoft
Code View and Utilities manual applies to both versions.

2.2.1 Using the Debugger's View Output Command

When you switch display to the output window with CVP, by using the View Output
command(\), you won't stay there indefinitely as you would with the real-mode
Code View debugger. Instead, you will jump back to the CodeView screen after a 3-
second delay. A different delay period (as measured in seconds) can be specified with a
number following the View Output command, as in the following example:

\60

The example above directs the debugger to display the output window for 60 seconds,
before returning to the debugging screen.

Another way to view the output is to go back to the Session Manager screen and select
the screen group labeled CVPAPP. This is the screen group owned by the application
that is being debugged. When you have finished viewing the output window, switch
back to the CVP.EXE screen group. You can use ALT+ESC to toggle between screen
groups.

2.2.2 Debugging Dynamic-Link Modules

The protected-mode Code View debugger (CVP) can debug dynamic-link modules, but
only if it is told what libraries to search at run time. For more information on dynamic­
link libraries, refer to the Microsoft Operating System/2 Programmer's Guide, and to
the IMPLIB and module-definition sections in this update (Sections 6 and 7,
respectively).

When you place a module in a dynamic-link library, neither code nor symbolic infor­
mation for that module is stored in the executable (.EXE) file; instead, the code and
symbols are stored in the library and are not brought together with the main program
until run time.

Thus, the protected-mode debugger needs to search the dynamic-link library for sym­
bolic information. Because the debugger does not automatically know what libraries to
look for, CVP has an additional command-line option which enables you to specify
dynamic-link libraries:

• Syntax

/L file

Update-9

Microsoft Code View and Utilities Update

The /L option directs the Code View debugger to searchfile for symbolic information.
When you use this option, at least one space must separate IL fromfile.

• Example

CVP /L DLIBl.DLL /L GRAFLIB.DLL PROG

In the example above, CVP is invoked to debug the program PROG.EXE. To find
symbolic information needed for debugging each module, CVP will search the librar­
ies DLIBl .DLL and GRAFLIB .DLL, as well as the executable file PROG.EXE.

2.2.3 Debugging Multiple-Thread Programs

A program running in OS/2 protected mode has one or more threads. As explained in
the programmer's guide, threads are the fundamental units of execution; OS/2 can ex­
ecute a number of different threads concurrently. A thread is similar to a process, yet it
can be created or terminated much faster. Threads begin at a function-definition head­
ing, in the same program in which they are invoked.

The existence of multiple threads within a program presents a dilemma for debugging.
For example, thread 1 may be executing source line 23 while thread 2 is executing
source line 78. Which line of code does the Code View debugger consider to be the cur­
rent line?

Conversely, you cannot always tell which thread is executing just because you know
what the current source line is. In OS/2 protected mode, you can write a program in
which two threads enter the same function.

In Figure 2.1, the function main uses the DOSCREATETHREAD system call to
begin execution of thread 2. The function f 2 is the entry point of the new thread.
Thread 2 begins and terminates inside the function f2. Before it terminates, however,
thread 2 can enter other functions by means of ordinary function calls.

Thread 1 begins execution in the function main, and thread 2 begins execution in the
function f2. Later, both thread 1 and thread 2 enter the function f3. (Note that each
thread returns to the proper place because each thread has its own stack.) When you
use the debugger to examine the behavior of code within the function f3, how can you
tell which thread you are tracking?

The protected-mode Code View debugger solves this dilemma by using a modified
Code View prompt, and by providing the Thread command, which is only available
with CVP.

The command prompt for the protected-mode Code View debugger is preceded by a
three-digit number indicating the current thread.

Update-10

Using the Code View Debugger

THREAD 1 THREAD2

main()

l
allocate f2 stack

l
call f2 with
DOSCREATETHREAD-~~~~~~--~ 0

l j
____ call f3

call f3 f3 ()

j ~~ I -------

l l
Figure 2.1 Multiple-Thread Program

• Example

001>

The example above displays the protected-mode Code View prompt, indicating that
thread 1 is the current thread. Thread 1 is always the current thread when you begin a
program. If the program never calls the DOSCREATETHREAD function, then thread
1 will remain the only thread.

Each thread has its own stack and its own register values. When you change the cur­
rent thread, you will see several changes to the Code View-debugger display:

• The Code View prompt will display a different three-digit number.

• The register contents will all change.

• The current source line and current instruction will both change, to reflect the
new value of CS:IP. If you are running the debugger in window mode, you will
likely see different code in the display window.

Update-11

Microsoft Code View and Utilities Update

• The Calls menu and the Stack Trace command will display a different group of
functions.

The rest of this section discusses the Thread command, and lists other Code View com­
mands that may work differently because of multiple threads.

• Syntax

The syntax of the Thread command is displayed below:

~[specifier[co1r11nand]]

In the syntax display above, the specifier determines to which thread or threads the
command will apply. You can specify all threads, or just a particular thread. The com­
mand determines what activity the debugger will carry out with regard to the specified
thread. For example, you can execute the thread, freeze its execution, or select it as the
current thread. If you omit co1r11nand, the debugger displays the status of the specified
thread. If you omit both the co1r11nand and specifier, then the debugger displays the sta­
tus of all threads.

The status display for threads consists of the two fields

thread-id thread-state

in which thread-id is an integer, and thread-state has the value runnable or
frozen. All threads not frozen by the debugger are displayed as runnable; this in­
cludes threads that may be blocked for reasons that have nothing to do with the debug­
ger, such as a critical section.

The legal values for specifier are listed below, along with their effects.

Symbol

(blank)

*

Update-12

Function

Displays the status of all threads.

If you omit the specifier field you cannot enter a command.
Instead, you simply enter the tilde(~) by itself.

Specifies the last thread that was executed.

This thread is not necessarily the current thread. For ex­
ample, suppose you are tracing execution of thread 1, and
then switch the current thread to thread 2. Until you execute
some code in thread 2, the debugger still considers thread 1
to be the last thread executed.

Specifies all threads.

n

Using the Code View Debugger

Specifies the indicated thread. The value of n must be a num­
ber corresponding to an existing thread. You can determine
corresponding numbers for all threads by entering the com­
mand - *, which gives status of all threads.

Specifies the current thread.

The legal values for command are listed below, along with their meanings.

Command

{blank)

BP

E

F

G

Function

The status of the selected thread (or threads) is displayed.

A breakpoint is set for the specified thread or threads.

As explained earlier, it is possible to write your program so
that the same function is executed by more than one thread.
By using this version of the Thread command, you can
specify a breakpoint that applies only to a particular thread.

The letters BP are followed by the normal syntax for the
Breakpoint Set command, as described in the Microsoft
Code View and Utilities manual. Therefore you can include
the optional passcount and command fields.

The specified thread is executed in slow motion.

When you specify a single thread with E, then the specified
thread becomes the current thread, and is executed without
any other threads running in the background. The command
-*Eis a special case. It is legal only in source mode, and ex­
ecutes the current thread in slow motion, but lets all other
threads run (except those that are frozen). You will only see
the current thread executing in the debugger display.

The specified thread (or threads) is frozen.

A frozen thread will not run in the background or in response
to the debugger Go command. However, if you use the E, G,
P, or T variation of the Thread command, then the specified
thread will be temporarily unfrozen while the debugger ex­
ecutes the command.

Control is passed to the specified thread, until it terminates
or until a breakpoint is reached.

If you give the command -*G, then all threads will execute
concurrently (except for those that are frozen). If you specify

Update-13

Microsoft Code View and Utilities Update

p

s

T

u

Update-14

a particular thread, then the debugger will temporarily freeze
all other threads and execute the specified thread.

The debugger executes a program step for the specified
thread.

If you specify a particular thread, then the debugger executes
one source line or instruction of the thread. All other threads
are temporarily frozen. This version of the Thread command
does not change the current thread. Therefore if you specify
a thread other than the current thread, you will not see im­
mediate results. However, the subsequent behavior of the cur­
rent thread may be affected.

The command - * P is a special case. It is legal only in
source mode, and causes the debugger to step to the next
source line, while letting all other threads run (except for
those that are frozen). You will only see the current thread
execute in the debugger display.

The specified thread is selected as the current thread.

This version of the Thread command can apply to only one
thread at a time. Thus, the command - * s results in an error
message. Note that the command - . s is legal, but has no
effect.

The specified thread is traced.

This version of the Thread command works in a manner
identical to P, described above, except that T traces through
function calls and interrupts, whereas P does not.

The specified thread or threads are unfrozen. This command
reverses the effect of a freeze.

Using the Code View Debugger

Note

With the Thread command, only the S (select) and the E (execute) variations
cause the debugger to switch the current thread. However, when a thread causes
program execution to stop by hitting a breakpoint, the debugger will select that
thread as the current thread.

You can prevent the debugger from changing the current thread, by including the
breakpoint command " - . s". This command directs the debugger to switch to the
current thread rather than the thread that hit the breakpoint. For example, the
following command sets a breakpoint at line 12 O and prevents the current thread
from changing:

BP .120 "-. S"

• Syntax

The syntax display below summarizes all the possible entries to the Thread command:

"' { #l*lnl.}[BPIEIFIGIPISITIU]

Note that you must include one of the symbols from the first set (which gives possible
values for the specifier), but you do not have to include a symbol from the second set
(which gives possible values for the command).

• Examples

004> ..

The example above displays the status of all threads, including their corresponding
numbers.

004> .. 2

The example above displays the status of thread 2.

004> .. SS

The example above selects thread 5 as the current thread. Since the current thread was
4 (a fact apparent from the Code View prompt), this means that the current thread is
changing and therefore we can expect the registers and the code displayed to all
change.

005> .. 3BP . 64

Update-15

Microsoft Code View and Utilities Update

The example above sets a breakpoint at source line 64, which stops program execution
only when thread 3 executes to this line.

The example above freezes thread 1.

The example above thaws (unfreezes) all threads; any threads that were frozen before
will now be free to execute whenever the Go command is given. If no threads are
frozen, this command has no effect.

The example above selects thread 2 as the current thread, then proceeds to execute
thread 2 in slow motion.

002>N3$
003>N.F
003>Nfs
002>

The example above selects thread 3 as the current thread, freezes the current thread
(thread 3), and then switches back to thread 2. After we switched to thread 3, no code
was executed; therefore the debugger considers the last-thread-executed symbol (#) to
refer to thread 2.

Whether or not you use the Thread Command, the existence of threads affects your
Code View debugging session at all times. Particular debugger commands are strongly
affected. Each of these commands is discussed below.

Command

E

BP

Update-16

Behavior in Multiple-Thread Programs

The Current Line command always uses the current value of
CS:IP to determine what the current instruction is. Thus, the
Current Line command applies to the current thread.

When the debugger is in source mode, the Execute com­
mand is equivalent to the -*E command; the current thread
is executed in slow motion while all other threads are also
running. When the debugger is in mixed or assembly mode,
the Execute command is equivalent to the command - . P,
which does not let other threads run concurrently.

The Set Breakpoint command is equivalent to the -*BP
command; the breakpoint applies to all threads.

G

p

K

T

Using the Code View Debugger

The Go command is equivalent to the - *G command; con­
trol is passed to the operating system, which executes all
threads in the program except for those that are frozen.

When the debugger is in source mode, the Program Step
command is equivalent to the command -*P, which lets
other threads run concurrently. When the debugger is in
mixed or assembly mode, the Program Step command is
equivalent to the command - . P, which lets no other
threads run.

The Stack Trace command displays the stack of the current
thread.

When the debugger is in source mode, the Trace command is
equivalent to the command - *T, which lets other threads
run concurrently. When the debugger is in mixed or assem­
bly mode, the Trace command is equivalent to the command
- • T, which lets no other threads run.

In general, Code View-debugger commands apply to all threads, unless the nature of
the command makes it appropriate to deal with only one thread at a time. (For ex­
ample, since each thread has its own stack, the Stack Trace command does not apply to
all threads.) In the later case, the command applies to the current thread only.

2.3 Saving Memory with the CVPACK Utility

After you compile and link a program with Code View debugging information, you can
use the Microsoft Debug Information Compactor utility (CVPACK) to reduce the size
of the executable file. CVPACK compresses the debugging information in the file, and
allows the Code View debugger to load larger programs without running out of memory.

The CVPACK utility has the following command line:

CVPACK [/p]) exefile

The /p option results in the most effective possible packing, but causes CVPACK to
take longer to execute. When the /p option is specified, unused debugging information
is discarded, and the packed information is sorted within the file. When the /p option is
not specified, packed information is simply appended to the end of the file.

To debug a file that has been altered with CVPACK, you must use Version 2.10 or
later of the Code View debugger.

Update-17

Section 3

About Linking in OS/2

In most respects, linking a program using the Microsoft Segmented-Executable Linker
Version 5.0 (LINK) for the OS/2 environment is similar to linking a program for the
DOS 3.x environment. The principal difference is that most programs created for the
DOS 3.x environment run as stand-alone applications, whereas programs that run
under OS/2 protected mode generally call one or more "dynamic-link libraries."

A dynamic-link library contains executable code for common functions, just as an ordi­
nary library does. Yet code for dynamic-link functions is not linked into the executable
(.EXE) file. Instead, the library itself is loaded into memory at run time, along with the
.EXE file.

Each .DLL file (dynamic-link library) must use "export definitions" to make its func­
tions directly available to other modules. At run time, functions not exported can only
be called from within the same file. Each export definition specifies a function name.

Conversely, the .EXE file must use "import definitions" that tell where each dynamic­
link function can be found. Otherwise, OS/2 would not know what dynamic-link librar­
ies to load when the program is run. Each import definition specifies a function name
and the .DLL file where the function resides.

Assume the simplest case, in which you create one application and one dynamic-link
library. The linker requires export and import definitions for all dynamic-link function
calls. The OS/2 operating system provides two ways to supply these definitions:

1. You create one module-definition file (.DEF extension) with export definitions
for the .DLL file, and another module-definition file with import definitions for
the .EXE file. The module-definition files provide these definitions in an ASCII
format.

2. You create one module-definition file (.DEF extension) for the .DLL file, and
then generate an import library to be linked to the .EXE file.

The next two sections consider each of these methods in tum.

Update-19

Microsoft Code View and Utilities Update

3.1 Linking without an Import Library

Figure 3.1 illustrates the first way to supply definitions for dynamic-link function
calls, in which each of the two files-the .DLL file and the .EXE file-has a corre­
sponding module-definition file. (A module-definition file has a .DEF default
extension.)

.OBJ and

.UB files

(1) LINK

l
.DLL file
(library)

.DEF file
(LIBRARY)
(exports)

.DEF file
(imports)

(2) LINK

l

.OBJ and

.LIB files

.EXE file
(application)

Figure 3.1 Linking without an Import Library

The two major steps may be described as follows:

1. Object files (and possibly standard-library files) are linked together with a
module-definition file to create a dynamic-link library. A module-definition file
for a dynamic-link library has at least two statements. The first is a LIBRARY
statement, which directs the linker to create a .DLL rather than an .EXE file.
The second statement is a list of export definitions.

2. Object files (and possibly standard-library files) are linked together with a
module-definition file to create an application. The module-definition file for
this application contains a list of import definitions. Each definition in this list
contains both a function name and the name of a dynamic-link library.

Update-20

About Linking in OS/2

The DOS 3.x linker has no way to accept a module-definition file as input. However,
the dual-mode (OS/2) linker has an additional field for a module-definition file. This
field is discussed in Section 4, "Using the OS/2 Linker."

3.2 Linking with an Import Library

Figure 3.2 illustrates the second way to supply definitions for dynamic-link function
calls, in which a module-definition file is supplied for the dynamic-link library, and an
import library is supplied for the application .

.OBJ
files

. DEF file
(LIBRARY)
(exports)

(1) LINK

.DLL
(library)

(2) IMPLIB

.LIB file
(imports)

(3) LINK

l

.OBJ and

.LIB files

.EXE file
(application)

Figure 3.2 Linking with an Import Library

The three major steps may be explained as follows:

1. Object files are linked to produce a .DLL file. This step is identical to the first
step in the previous section. Note that the module-definition file contains export
definitions.

2. The IMPLIB utility is used to generate an import library. IMPLIB takes as
input the same module-definition file used in the first step. IMPLIB knows the
name of the library module (which by default has the same base name as the
.DEF file), and it determines the name of each exported function by examining

Update-21

Microsoft Code View and Utilities Update

export definitions. For each export definition in the .DEF file, IMPLIB
generates a corresponding import definition.

3. The .LIB file generated by IMPLIB is used as input to LINK, which creates an
application. This .LIB file does not use the same file format as a .DEF file, but
it fulfills the same purpose: to provide the linker with infonnation about
imported dynamic-link functions.

The .LIB file generated by IMPLIB is called an import library. Import libraries are
similar in most respects to ordinary libraries; you specify import libraries and ordinary
libraries in the same command-line field of LINK, and you can append the two kinds
of libraries together (by using the Library Manager). Furthermore, both kinds of librar­
ies resolve external references at link time. The only difference is that import libraries
do not contain executable code, merely records that describe where the executable
code can be found at run time.

So far, only simple scenarios have been considered. Dynamic linking is flexible, and
supports much more complicated scenarios. An application can make calls to more
than one dynamic-link library. Furthermore, module-definition files for libraries can
import functions as well as export them. It is perfectly possible for a .DLL file to call
another .DLL file, and so on, to any level of complexity; the result may be a situation
in which many files are loaded at run time.

3.3 Why Use Import Libraries?

At first glance, it may seem easier to create programs without import libraries, since
import libraries add an extra step to the linking process. Usually, however, it is easier
to use import libraries. There are two reasons why this is so.

First, the IMPLIB utility automates much of the program-creation process for you. To
run IMPLIB, you specify the .DEF file that you already created for the dynamic-link
library. Operation of IMPLIB is simple. If you do not use an import library generated
by IMPLIB, then you must use an ASCII text editor to create a second .DEF file,
where you explicitly give all needed import definitions.

Second, the first two steps in the linking process described above (creation of the
.DLL file and creation of the import library) may be carried out only by the author of
the dynamic-link library. The libraries may then be given to an applications program­
mer, who focuses on linking the application (third step). The application programmer's
task is simplified if he links with the import library, because then he does not have to
worry about editing his own .DEF file. The import library comes ready to link.

A good example of a useful import library is the file DOSCALLS.LIB. Protected­
mode applications generally need to call one of the dynamic-link system libraries that
are released with OS/2; the DOSCALLS.LIB file contains import definitions for all

Update-22

About Linking in OS/2

calls to these system libraries. It is much easier to link with DOSCALLS.Lm than to
create a .DEF file for every OS/2 program you link.

3.4 Advantages of Dynamic Linking

Why use dynamic-link libraries at all? Dynamic-link libraries serve much the same pur­
pose that standard libraries do, but in addition, dynamic-link libraries give you the fol­
lowing advantages:

1. Link applications faster.

With dynamic linking, the executable code for a dynamic-link function is not
copied into the application's .EXE file. Instead, only an import definition is
copied. Therefore, linking is usually a bit faster.

2. Save significant disk space.

Suppose you create a library function called printit, and that this function is
called by many different programs. If print it is in a standard library, then the
function's executable code must be linked into each .EXE file that calls the func­
tion. In other words, the same code resides on your disk in many different files.
But if print it is stored in a dynamic-link library, then the executable code
resides in just one file-the library itself.

3. Make libraries and applications more independent.

Dynamic-link libraries can be updated any number of times, without relinking
the applications that use them. If you are a user of third-party libraries, this fact
is particularly convenient You receive the updated .DLL file from the third­
party developers, and you need only copy the new library onto your disk. At run
time, your applications will automatically call the updated library functions.

4. Utilize shared code and data segments.

Code and data segments loaded in from a dynamic-link library can be shared.
Without dynamic linking, this sharing is not possible because each file has its
own copy of all the code and data it uses. By sharing segments with dynamic
linking, you can utilize memory much more efficiently.

Update-23

Section 4

Using the OS/2 Linker

This section describes how to link applications and dynamic-link libraries, and as­
sumes that you are familiar with the concepts of dynamic linking, import libraries, and
module-definition files. If you are not familiar with these concepts, then read the pre­
vious section, "About Linking in OS/2."

The linker can produce either an application that runs under DOS 3.x, an application
that runs under OS/2 (or Microsoft Windows), or a dynamic-link library. The following
rules determine what output the linker produces:

1. If no module-definition file or import library resolves any external references,
then the linker produces an application for DOS 3 .x (In other words, the linker
creates a DOS 3.x application unless you specify a module-definition file or
import library, and that file resolves at least one external reference.)

2. If a module-definition file with a LIBRARY statement is given, then the linker
produces a dynamic-link library for OS{l.

3. Otherwise, the linker produces an application for OS{l.

You can therefore produce an OS/2 application by linking with an import library or a
module-definition file, as long as you do not use a LIBRARY statement. (The LI­
BRARY statement is described in Section 7, "Using Module-Definition Files.") The
file DOSCALLS.LIB is an import library. Thus, if you link with DOSCALLS.LIB,
you produce either an OS/2 application or a dynamic-link library.

Note

Throughout this chapter, all references to OS/2 protected mode also apply to
Microsoft Windows.

The linker produces files that run in protected mode only or in real mode only.
However, OS/2 applications that make dynamic-link calls only to the Family API (a
subset of the functions defined in DOSCALLS.LIB) can be made to run under DOS
3.x with the BIND utility. The BIND utility is discussed in the next section.

Update-25

Microsoft Code View and Utilities Update

• Syntax

Use the following command-line syntax to invoke the OS/2 linker:

LINK objects[, [exe] [,[map][, [lib][, def]]]][;]

Each of the command-line fields is explained below. In the list that follows, reference
is made to libraries. Unless qualified by the term "dynamic-link," the word "libraries"
refers to import libraries and standard (object-code) libraries, both of which have the
default extension .LIB. (Note that dynamic-link libraries have the default extension
.DLL, and therefore are usually easy to tell from other libraries.) You can specify im­
port libraries anywhere you can specify standard libraries. You can also combine im­
port libraries and standard libraries by using the Library Manager; these combined
libraries can then be specified in place of standard libraries.

Field

objects

e:xe

map

libraries

Update-26

Description

The name of one or more object-code files, to be linked into
the application or dynamic-link library.

Object files are output by compilers and assemblers. To
specify more than one object file, separate each file name by
a space or by the plus sign (+).

Libraries can also be specified in this field, in which case
they are considered "load libraries" by the linker. All objects
in a load library (functions and data) are automatically
linked into the linker's output.

The name you wish the application or dynamic-link library
to have.

The default for an application name is the base name of the
first object module on the command line, combined with an
.EXE extension. The default for a dynamic-link-library
name is the base name of the module-definition file, com­
bined with a .DLL extension. Different defaults may be
specified in the module-definition file.

The name you wish the map file to have.

The name of one or more library files, which LINK searches
to resolve external references.

You can also enter directories in this field; LINK searches
the specified directories in order to find any libraries that it
cannot find in the current directory. If you have more than
one entry in this field, separate each entry by a space.

Using the OS/2 Linker

def File name of a module-definition file. The use of a module­
definition file is optional for applications, but required for
dynamic-link libraries.

Note

The OS/2 linker supports overlays only when producing a real-mode application.

As with the DOS 3.x linker, you may specify command-line options after any field­
but before the comma that terminates the field. The rest of this section discusses linker
command-line options.

4.1 Options for Real Mode Only

Most of the options listed in Chapter 12 of the Microsoft Code View and Utilities
manual can be used with either protected-mode or real-mode programs. However, the
following options can be used only when linking real-mode programs:

Option

/CPARMAXALLOC

/DSALLOCATE

/IIlGH

/NOGROUPASSOCIA TION

/OVERLAYINTERRUPT

Minimum Abbreviation

/CP

/DS

/Ill

/NOG

10

4.2 Options for Protected Mode Only

The OS/2 linker supports two new options that can be used only when linking pro­
tected-mode programs (or with Microsoft Windows applications). As mentioned
above, most options described in Chapter 12 of the Microsoft Code View and Utilities
manual can be used for both protected-mode and real-mode programs.

Update-27

Microsoft Code View and Utilities Update

• Syntax

I A[LIGNMENT]:size

The I ALIGNMENT option directs LINK to align segment data in the executable file
along the boundaries specified by size. The size argument must be a power of two. For
example,

ALIGNMENT:16

indicates an alignment boundary of 16 bytes. The default alignment for OS/2-
application and dynamic-link segments is 512. The minimum abbreviation for this
option is I A.

• Syntax

/W[ARNFIXUP]

The /WARNFIXUP option directs the linker to issue a warning for each segment­
relative fixup of location-type "offset," such that the segment is contained within a
group but is not at the beginning of the group. The linker will include the displacement
of the segment from the group in determining the final value of the fixup, contrary to
what happens with DOS executable files. The minimum abbreviation for this option
is/W.

4.3 New Options for Both Modes

In addition to the options listed in Chapter 12 of the Microsoft Code View and Utilities
manual, the OS/2 linker also supports the following options for both real-mode and
protected-mode programs. The /NONULLSDOSSEG option is primarily of interest to
Windows programmers, as is the /W option described above.

• Syntax

/NOE[XTENDEDDICTSEARCH]

The /NOEXTENDEDDICTSEARCH option prevents the linker from searching the
extended dictionary, which is an internal list of symbol locations that the linker main­
tains. Normally, the linker consults this list to speed up library searches. The effect of
the /NOE option is to slow down the linker. You often need to use this option when a
library symbol is redefined. The linker issues error L2 o 4 4 if you need to use this op­
tion. The minimum abbreviation for this option is /NOE.

Update-28

Using the OS/2 Linker

• Syntax

/NON[ULLSDOSSEG]

The /NONULLSDOSSEG option directs the linker to arrange segments in the same
order as they are arranged by the /DOSSEG option. The only difference is that the
/DOSSEG option inserts 16 null bytes at the beginning of the_ TEXT segment (if it is
defined), whereas /NONULLSDOSSEG does not insert these extra bytes.

If the linker is given both the /DOSSEG and /NONULLSDOSSEG options, the
/NONULLSDOSSEG option will always take precedence. Therefore you can use
/NONULLSDOSSEG to override the DOSSEG comment record commonly found in
run-time libraries. The minimum abbreviation for this option is /NON.

• Syntax

INC[REMENTAL]

!PADC[ODE]:bytes

IPADD[ATA]:bytes

The last three options are explained in Section 9 below, "The ILINK Utility."

Update-29

Section 5

The BIND Utility

The Microsoft Operating System/2 Bind utility (BIND) converts protected-mode pro­
grams so that they can run in real mode as well as protected mode. Not every protected­
mode program can readily be converted. Programs you wish to convert should make
no system calls other than calls to the functions listed in the Family APL (The Family
API is a subset of the API functions and is summarized in the Microsoft Operating Sys­
tem/2 Programmer's Reference.)

The BIND utility must "bind" dynamic-link functions; that is, the utility brings an ap­
plication program together with libraries, and links everything into a single stand­
alone file which can run in real mode. The BIND utility also alters the executable-file
format of the program, so that it is recognized as a standard executable file by both
DOS 3.x and OS/2.

There are three components to the BIND utility:

Item

BIND

loader

API.LIB

Description

This utility merges the executable file with the appropriate
libraries as described above.

This tool loads the OS/2 executable file when running DOS
2.x or 3.x and simulates the OS(l startup conditions in an en­
vironment. The loader consists of code that is stored in
BIND.EXE, and then copied into files as needed.

This library simulates the OS/2 API in an environment.

5.1 Binding Libraries

The BIND utility replaces Family-AP! calls with simulator routines from the standard
(object-code) library API.LIB. However, your program may also make dynamic-link
calls to functions outside the API (that is, you can make dynamic-link calls that are not
system calls). This section explains how BIND can accommodate these calls.

If your program makes dynamic-link calls to functions outside the API, use the linklibs
field described in Section 5.3, "The BIND Command Line." BIND searches each of
the linklibs for object code corresponding to the imported functions. In addition, if you

Update-31

Microsoft Code View and Utilities Update

are using import definitions with either the ordinal or the internalname option, you
will need to specify import libraries so that the functions you call can be identified cor­
rectly. (For a discussion of various options within import definitions, see Section 7,
"Using Module-Definition Files.")

5.2 Binding Functions as Protected Mode Only

If your program freely makes non-Family-AP! calls without regard to which operating
system is in use, then the program cannot be converted for use in real mode. However,
you may choose to write a program so that it first checks the operating system, and
then restricts system calls (to the Family API) when running in real mode. The BIND
utility supports conversion of these programs.

By using the /n command-line option, described below, you can specify a list of func­
tions supported in protected mode only. If your program ever attempts to call one of
these functions when running in real mode, then the BadDynLink system function is
called and aborts your program. The advantage of this option is that it helps resolve ex­
ternal references. Yet it remains the responsibility of your program to check the operat­
ing-system version, and ensure that not one of these functions is ever called in
real mode.

If your program makes calls (either directly or indirectly) to non-Family-AP! system
calls, but you do not use the /n option, then BIND will fail to convert your program.

5.3 The BIND Command Line

Invoke BIND with the following command line:

BIND infile [implibs] [linklibs] [/o ouifile] [/n @file] [/n names] [/m mapfile]

The meaning of each command-line field and option is explained below:

The infile field contains the name of the OS/2 application. The file name may contain a
complete path name. The file extension is optional; if you provide no extension, then
.EXE is assumed.

The implibs field contains the name of one of more import libraries. As explained
above, use this field if your program uses an import definition with either the ordinal
or internalname fields.

Update-32

The BIND Utility

Note

If you want to specify a 64-kilobyte (K) default data segment when running in real
mode, then specify the file APILMR.OBJ, which guarantees a 64K stack. The
reason this object file may be necessary is that a protected-mode application is not
automatically given a 64K default data segment; a protected-mode application is
only allocated the space it specifically requests. If you do not specify the file
APILMR.OBJ, then you may not have the local heap area you need when you
run in real mode.

The linklibs field contains the name of one or more standard libraries. Use this field to
supply object code needed to resolve dynamic-link calls. If this field is empty, then the
library API.LIB is automatically included. However, if you specify any libraries, then
API.LIB is not assumed, and you need to give a complete path name for each library
you specify.

The outfile is the name of the bound application, and may contain a full path name.
The default value of this field is infile. (Whatever name is used for the infile field also
becomes the default for outfile.)

The /n option provides a way of listing functions that are supported in protected mode
only. As explained above, if any of these functions are ever called in real mode, then
the BadDynLink function will be called to abort the program. The /n option can be
used either with a list of one or more names (separated by spaces), or with afile
preceded by the @ sign. The file should consist of a list of functions, one per line.

The /m option causes a link map to be generated for the DOS 3.x environment of the
.EXE file. The mapfile is the destination of the link map. If no mapfile is specified
with the /m option, then the destination of the link map is standard output.

5.4 BIND Operation

BIND produces a single executable file, which can run on either OS/2 or DOS 3.x. To
complete this task, BIND executes three major steps:

1. Reads in the dynamic-link entry points (for imported functions) from the OS/2
executable file and outputs to a temporary object file the EXTDEF object
records for each imported item. Each EXTDEF record tells the linker of an
external reference that needs to be resolved through ordinary linking.

Update-33

Microsoft Code View and Utilities Update

2. Invokes the linker, giving the executable file, the temporary object file, the
API.LIB file, and any other libraries specified on the BIND command line. The
linker produces an executable file which can run in real mode, by linking in the
loader and the API-simulator routines.

3. Merges the protected-mode and real-mode executable files, to produce a single
file which can run in either mode.

5.5 Executable-File Layout

OS/2 executable files have two headers. The first header has a DOS 3.x format. The
second header has the OS/2 format. When the executable file is run on an OS/2 sys­
tem, it ignores the first header and uses the OS/2 format. When run under DOS 3.x, the
old header is used to load the file. Figure 5.1 shows the arrangement of the merged
headers.

Update-34

ooh
3Ch

40h

2.x, 3.x DOS
/NIT CS:IP

L

xxh

Old .EXE Header

Offset to New .EXE Header

DOS 3.x Family-AP/ Library

OS/2 Fixup Extension Table

Initial Stub-Loader Code

New .EXE Header

Segment Table

Resident-Name Table

Module-Reference Table

Imported-Name Table

Entry Table

Nonresident-Name Table

Segment #1 Data
Segment #1 Info

Segment# n Data
Segment # n Info

1-----i

End of Load Fi/P-b'-----Ol---------------1
End of Allocated ___ R_un_-_Ti_im_e_Co_py_o_f _S_tu_b_L_o_a_d_e_r __,

Memory

Figure 5.1 OS/2 Executable-File Header

The BIND Utility

Update-35

Section 6

The IMPLIB Utility

This section summarizes the use of the Microsoft Import Library Manager utility
(IMPLIB), and assumes you are familiar with the concepts of import libraries, dy­
namic linking, and module-definition files. If you are not familiar with these concepts,
read Section 3, "About Linking in OS/2."

You can create an import library for use by other programmers in resolving external
references to your dynamic-link library. The IMPLIB command creates an import li­
brary, which is a file with a .LIB extension that can be read by the OS/2 linker. The
.LIB file can be specified in the LINK command line with other libraries. Import li­
braries are recommended for all dynamic-link libraries. Without the use of import li­
braries, external references to dynamic-link routines must be declared in an
IMPORTS statement in the module-definition file for the application being linked.
IMPLIB is supported only in protected mode.

• Syntax

IMPLIB implibname mod-def file [mod-def-file ...]

The implibname is the name you wish the new import library to have.

The mod-def-file is the name of a module-definition file for the dynamic-link module.
You may enter more than one.

• Example

The following command creates the import library named MYLIB.LIB from the
module-definition file MYLIB.DEF:

IMPLIB mylib.lib mylib.def

Update-37

Section 7

Using Module-Definition Files

A module-definition file describes the name, attributes, exports, imports, and other
characteristics of an application or library for OS/2 or Microsoft Windows. This file is
required for Windows applications and libraries, and is also required for dynamic-link
libraries that run under OS/2.

A module-definition file contains one or more "module statements." Each module state­
ment defines an attribute of the executable file, such as its module name, the attributes
of program segments, and the number and names of exported and imported functions.
The module statements and the attributes they define are listed as follows:

Statement

NAME

LIBRARY

DESCRIPTION

CODE

DATA

SEGMENTS

STACKSIZE

EXPORTS

IMPORTS

STUB

HEAPSIZE

PROTMODE

OLD

Attribute

Names application (no library created)

Names dynamic-link library (no application created)

Describes the module in one line

Gives default attributes for code segments

Gives default attributes for data segments

Gives attributes for specific segments

Specifies local-stack size, in bytes

Defines exported functions

Defines imported functions

Adds a DOS 3.x executable file to the beginning of the
module, usually to terminate the program when run in real
mode

Specifies local-heap size, in bytes

Specifies that the module runs only in DOS protected mode

Preserves import information from a previous version of the
library

Update-39

Microsoft Code View and Utilities Update

REALM ODE

EXE TYPE

Relaxes some restrictions that the linker imposes for
protected-mode programs

Identifies operating system

The following rules govern the use of these statements in a module-definition file:

1. If you use either a NAME or a LIBRARY statement, it must precede all other
statements in the module-definition file.

2. You can include source-level comments in the module-definition file, by
beginning a line with a semicolon(;). The OS/2 utilities ignore each such
comment line.

3. Module-definition keywords (such as NAME, LIBRARY, and SEGMENTS)
must be entered in uppercase letters.

The following sample module-definition file gives module definitions for a dynamic­
link library. This sample file includes one source-level comment and five statements.

; Sample module-definition file

LIBRARY

DESCRIPTION 'Sample .DEF file for a dynamic-link library'

CODE PRE LOAD

STACKSIZE 1024

EXPORTS
I nit @l
Begin @2
Finish @3
Load @4
Print @5

The meaning of each of these fields is explained in the sections that follow, which de­
scribe module-definition statements, and give syntax and examples.

7.1 The NAME Statement

The NAME statement identifies the executable file as an application and optionally de­
fines the name.

Update-40

• Syntax

NAME[appname] [apptype]

• Remarks

Using Module-Definition Files

If an appname is given, it becomes the name of the application as it is known by
OS/2. This name can be any valid file name. If no appname is given, the name of the
executable file-with the extension removed-becomes the name of the application.

The apptype field is used by a future version of OS/2, and should be declared for com­
patibility with this future version.

If apptype is given, it defines the type of application being linked. This information is
kept in the executable-file header. You do not need to use this field unless you may be
using your application in a Windows environment. The apptype field may have one of
the following values:

Keyword

WINDOWAPI

WINDOWCOMPAT

NOTWINDOWCOMPAT

Meaning

Real-mode Windows application. The applica­
tion uses the API provided by Windows and
must be executed in the Windows environment.

Windows-compatible application. The applica­
tion can run inside Windows, or it can run in a
separate screen group. An application can be of
this type if it uses the proper subset of OS/2
video, keyboard, and mouse functions which are
supported in Windows applications.

Application is not Windows compatible and
must operate in a separate screen group from
Windows.

If the NAME statement is included in the module-definition file, then the LIBRARY
statement cannot appear. If neither a NAME statement nor a LIBRARY statement ap­
pears in a module-definition file, the default is NAME; that is, the linker acts as
though a NAME statement were included, and thus creates an application rather than a
library.

• Example

The following example assigns the name calendar to the application being defined:

NAME calendar WINDOWCOMPAT

Update-41

Microsoft Code View and Utilities Update

7.2 The LIBRARY Statement

The LIBRARY statement identifies the executable file as a dynamic-link library, and
it can specify the name of the library or the type of library-module initialization re­
quired.

• Syntax

LIBRARY [libraryname] [initialization]

• Remarks

If a libraryname is given, it becomes the name of the library as it is known by OS/2.
This name can be any valid file name. If no libraryname is given, the name of the
executable file-with the extension removed-becomes the name of the library.

The initialization field is optional and can have one of the two values listed below. If
neither is given, then the initialization default is INITGLOBAL.

Keyword

INITGLOBAL

INITINSTANCE

Meaning

The library-initialization routine is called only
when the library module is initially loaded into
memory.

The library-initialization routine is called each
time a new process gains access to the library.

If the LIBRARY statement is included in a module-definition file, then the NAME
statement cannot appear. If no LIBRARY statement appears in a module-definition
file, the linker assumes that the module-definition file is defining an application.

• Example

The following example assigns the name calendar to the dynamic-link module
being defined, and specifies that library initialization is performed each time a new
process gains access to calendar.

LIBRARY calendar INITINSTANCE

Update-42

Using Module-Definition Files

7.3 The DESCRIPTION Statement

The DESCRIPTION statement inserts the specified text into the application or library.
This statement is useful for embedding source-control or copyright information into an
application or library.

• Syntax

DESCRIPTION 'text'

• Remarks

The text is a one-line string enclosed in single quotation marks. Use of the
DESCRIPTION statement is different from the inclusion of a comment, because com­
ments-lines that begin with a semicolon (;)-are not placed in the application or
library.

• Example

The following example inserts the text Template Program into the application or li­
brary being defined:

DESCRIPTION 'Template Program'

7.4 The CODE Statement

The CODE statement defines the default attributes for code segments within the appli­
cation or library.

• Syntax

CODE[attribute ...]

• Remarks

Each attribute must correspond to one of the following attribute fields. Each field can
appear at most one time, and order is not significant. The attribute fields are presented
below, along with legal values. In each case, the default value is listed last. The last

Update-43

Microsoft Code View and Utilities Update

three fields have no effect on OS/2 code segments and are included for use with Micro­
soft Windows.

Field Values

load PRELOAD,LOADONCALL

executeonly EXECUTEONLY,EXECUTEREAD

iopl IOPL, NOIOPL

conforming CONFORMING, NONCONFORMING

shared SHARED,NONSHARED

movable MOVABLE, FIXED

discard NONDISCARDABLE, DISCARDABLE

The load field determines when a code segment is to be loaded. This field contains one
of the following keywords:

Keyword

PRELOAD

LOADONCALL

Meaning

The segment is loaded automatically, at the beginning of the
program.

The segment is not loaded until accessed (the default).

The executeonly field determines whether a code segment can be read as well as ex­
ecuted. This field contains one of the following keywords:

Keyword Meaning

EXECUTEONLY The segment can only be executed.

EXECUTEREAD The segment can be both executed and read (the default).

The iopl field determines whether or not a segment has 1/0 privilege (that is, whether
it can access the hardware directly). This field contains one of the following keywords:

Keyword Meaning

IOPL The code segment has 1/0 privilege.

NOIOPL The code segment does not have 1/0 privilege (the default).

The conforming field specifies whether or not a code segment is a 286 "conforming"
segment. The concept of a conforming segment deals with privilege level (the range of

Update-44

Using Module-Definition Files

instructions that the process can execute) and is relevant only to users writing device
drivers and system-level code. A conforming segment can be called from either Ring 2
or Ring 3, and the segment executes at the caller's privilege level. This field contains
one of the following keywords:

Keyword

CONFORMING

NONCONFORMING

Meaning

The segment is conforming.

The segment is nonconforming (the default).

The shared field determines whether all instances of the program can share a given
code segment. This field is ignored by OS/2, but is provided for use with real-mode
Windows. Under OS/2, all code segments are shared. The shared field contains one of
the following keywords: SHARED or NONSHARED (the default).

The movable field determines whether a segment can be moved around in memory.
This field is ignored by OS/2, but is provided for use with real-mode Windows. Under
OS/2, all segments are movable. The movable field contains one of the following
keywords: MOVABLE or FIXED (the default for Windows).

The discard field determines whether a segment can be swapped out to disk by the
operating system when not currently needed. This attribute is ignored by OS/2, but is
provided for use with real-mode Windows. Under OS/2 systems, all segments can be
swapped as needed. The shared attribute contains one of the following keywords: DIS­
CARDABLE or NONDISCARDABLE (the default for Windows).

• Example

The following example sets defaults for the module's code segments, so that they are
not loaded until accessed and so that they have 1/0 hardware privilege:

CODE LOADONCALL IOPL

7.5 The DATA Statement

The DATA statement defines the default attributes for the data segments within the ap­
plication or module.

• Syntax

DATA [attribute ...]

Update45

Microsoft Code View and Utillties Update

• Remarks

Each attribute must correspond to one of the following attribute fields. Each field can
appear at most one time, and order is not significant. The attribute fields are present
below, along with legal values. In each case, the default value is listed last. The last
two fields have no effect on OS/2 data segments, but are included for use with Micro­
soft Windows.

Field Values

load PRELOAD,LOADONCALL

readonly READONLY,READWRITE

instance NONE, SINGLE, MULTIPLE

iopl IOPL, NOIOPL

shared SHARED, NONSHARED

movable MOVABLE, FIXED

discard DISCARDABLE, NONDISCARDABLE

The load field determines when a segment will be loaded. This field contains one of
the following keywords:

Keyword Meaning

PRELOAD The segment is loaded when the program begins execution.

LOADONCALL The segment is not loaded until it is accessed (the default).

The readonly field determines the access rights to a data segment. This field contains
one of the following keywords:

Keyword Meaning

READONLY The segment can only be read

READ WRITE The segment can be both read and written to (the default).

The instance field affects the sharing attributes of the automatic data segment, which
is the physical segment represented by the group name DGROUP. (This segment
group makes up the physical segment which contains the local stack and heap of the
application.) The instance field contains one of the following keywords:

Update-46

Keyword

NONE

SINGLE

MULTIPLE

Using Module-Definition Files

Meaning

No automatic data segment is created.

A single automatic data segment is shared by all instances of
the module. In this case, the module is said to have "solo"
data. This keyword is the default for dynamic-link libraries.

The automatic data segment is copied for each instance of
the module. In this case, the module is said to have "in­
stance" data. This keyword is the default for applications.

The iopl field determines whether or not data segments have I/0 privilege (that is,
whether or not they can access the hardware directly). This field contains one of the
following keywords:

Keyword Meaning

IOPL The data segments have 1/0 privilege.

NOIOPL The data segments do not have 1/0 privilege (the default).

The shared field determines whether all instances of the program can share a READ­
WRITE data segment. Under OS/2, this field is ignored by the linker if the segment
has the attribute READONLY, since READONLY data segments are always shared.
The shared field contains one of the following keywords:

Keyword

SHARED

NON SHARED

Meaning

One copy of the data segment will be loaded and shared
among all processes accessing the module.

The segment cannot be shared, and must be loaded separate­
ly for each process (the default).

The movable field determines whether a segment can be moved around in memory.
This field is ignored by OS/2, but is provided for use with real-mode Windows. Under
OS/2, all segments are movable. The movable field contains one of the following key­
words: MOVABLE or FIXED (the default for Windows).

The optional discard field determines whether a segment can be swapped out to disk
by the operating system, when not currently needed. This attribute is ignored by OS/2,
but is provided for use with real-mode Windows. Under OS/2 systems, all segments
can be swapped as needed. The discard attribute contains one of the following key­
words: DISCARDABLE or NONDISCARDABLE (the default for Windows).

Update-47

Microsoft Code View and Utilities Update

Note

The linker makes the automatic data segment attribute (specified by an instance
value of SINGLE or MULTIPLE) match the sharing attribute of the automatic
data segment (specified by a shared value of SHARED or NONSHARED). Solo
data (specified by SINGLE) force shared data segments by default. Instance data
(specified by MULTIPLE) force nonshared data by default. Similarly, SHARED
forces solo data, and NONSHARED forces instance data.

If you give a contradictory DATA statement (e.g., DATA SINGLE NONSHARED),
all segments in DGROUP are shared, and all other data segments are nonshared
by default. If a segment that is a member of DGROUP is defined with a sharing
attribute that conflicts with the automatic data type, a warning about the bad
segment is issued, and the segment's flags are converted to a consistent sharing
attribute. For example, the following

DATA SINGLE
SEGMENTS

DATA CLASS 'DATA' NONSHARED

is converted to

DATA CLASS 'DATA' SHARED

• Example

The following example defines the application's data segment so that it is loaded only
when it is accessed and so that it cannot be shared by more than one copy of the
program:

DATA LOADONCALL NONSHARED

By default, the data segment can be read and written, the automatic data segment is
copied for each instance of the module, and the data segment has no 1/0 privilege.

7.6 The SEGMENTS Statement

The SEGMENTS statement defines the attributes of one or more segments in the ap­
plication or library on a segment-by-segment basis. The attributes specified by this
statement override defaults set in CODE and DATA statements.

Update-48

• Syntax

SEGMENTS
segmentdefinitions

• Remarks

Using Module-Definition Files

The SEGMENTS keyword marks the beginning of the segment definitions. This key­
word can be followed by one or more segment definitions, each on a separate line
(limited by the number set by the linker's /SEGMENTS option, or 128 if the option is
not used). The syntax for each segment definition is as follows:

segmentname [CLASS 'classname'][attribute ...]

Each segment definition begins with a segmentname, which can be placed in optional
single quotation marks ('). The quotation marks are required if segmentname conflicts
with a module-definition keyword, such as CODE or DATA.

The CLASS keyword specifies the class of the segment. The single quotation marks
(')are required around classname. If you do not use the CLASS argument, the linker
assumes that the class is CODE.

Each attribute must correspond to one of the following attribute fields. Each field can
appear at most one time, and order is not significant. The attribute fields are presented
below, along with legal values. In each case, the default value is listed last.

Field Values

load PRELOAD,LOADONCALL

readonly READONLY, READWRITE

executeonly EXECUTEONLY,EXECUTEREAD

iopl IOPL,NOIPL

conforming CONFORMING, NONCONFORMING

shared SHARED,NONSHARED

movable MOVABLE, FIXED

discard DISCARDABLE, NONDISCARDABLE

The load field determines when a segment is to be loaded. This field contains one of
the following keywords:

Update-49

Microsoft Code View and Utillties Update

Keyword

PRELOAD

LO ADON CALL

Meaning

The segment is loaded automatically, at the beginning of the
program.

The segment is not loaded until accessed (the default).

The readonly field determines the access rights to a data segment. This field contains
one of the following keywords:

Keyword Meaning

READONLY The segment can be read only.

READ WRITE The segment can be both read and written to (the default).

The executeonly field determines whether a code segment can be read as well as ex­
ecuted. (The attribute has no effect on data segments.) This field contains one of the
following keywords:

Keyword Meaning

EXECUTEONLY The segment can only be executed.

EXECUTEREAD The segment can be both executed and read (the default).

The iopl field determines whether or not a segment has I/O privilege (that is, whether
it can access the hardware directly). This field contains one of the following keywords:

Keyword Meaning

IOPL The segments have I/O privilege.

NOIOPL The segments do not have I/O privilege (the default).

The conforming field specifies whether or not a code segment is a 286 "conforming"
segment. The concept of a conforming segment deals with privilege level (the range of
instructions that the process can execute) and is relevant only to users writing device
drivers and system-level code. A conforming segment can be called from either Ring 2
or Ring 3, and the segment executes at the caller's privilege level. (The attribute has
no effect on data segments.) This field contains one of the following keywords:

Keyword Meaning

CONFORMING The segment is conforming.

NONCONFORMING The segment is nonconforming (the default).

Update-SO

Using Module-Definition Files

The shared field determines whether all instances of the program can share a READ­
WRITE segment. For code segments and READONLY data segments, this field is ig­
nored by OS/2, but is provided for use with real-mode Windows. Under OS/2, all code
segments and all READONLY data segments are shared. The shared field contains
one of the following keywords: SHARED or NONSHARED (the default).

The movable field determines whether a segment can be moved around in memory.
This field is ignored by OS/2, but is provided for use with real-mode Windows. Under
OS/2, all segments are movable. The movable field contains one of the following key­
words: MOVABLE or FIXED (the default for Windows).

The optional discard field determines whether a segment can be swapped out to disk
by the operating system, when not currently needed. This attribute is ignored by OS/2,
but is provided for use with real-mode Windows. Under OS/2 systems, all segments
can be swapped as needed. The shared attribute contains one of the following key­
words: DISCARD ABLE or NONDISCARDABLE (the default for Windows).

• Example

The following example specifies segments named csegl, cseg2, and dseg. The
first segment is assigned class mycode and the second is assigned CODE. Each seg­
ment is given different attributes.

SEGMENTS
csegl CLASS 'mycode' IOPL
cseg2 EXECUTEONLY PRELOAD CONFORMING
dseg CLASS 'data' LOADONCALL READONLY

7. 7 The STACKSIZE Statement

The STACKSIZE statement performs the same function as the /STACKSIZE linker
option. It overrides the size of any stack segment defined in an application. (The
STACKSIZE statement overrides the /STACKSIZE option).

• Syntax

STACKSIZE number

• Remarks

The number must be an integer. The number is considered to be in decimal format by
default, but you can use C notation to specify hexadecimal or octal.

Update-51

Microsoft Code View and Utilities Update

• Example

The following example allocates 4096 bytes of local-stack space:

STACKSIZE 4096

7.8 The EXPORTS Statement

The EXPORTS statement defines the names and attributes of the functions exported
to other modules, and of the functions that run with I/O privilege. The term "export" re­
fers to the process of making a function available to other run-time modules. By de­
fault, functions are hidden from other modules at run time.

• Syntax

EXPORTS
exportdefinitions

• Remarks

The EXPORTS keyword marks the beginning of the export definitions. It may be fol­
lowed by up to 3072 export definitions, each on a separate line. You need to give an ex­
port definition for each dynamic-link routine that you want to make available to other
modules. The syntax for an export definition is as follows:

entryname[=internalname] [@ord[RESIDENTNAME]] [pwords] [NODATA]

The entryname specification defines the function name as it is known to other mod­
ules. The optional internal name defines the actual name of the export function as it ap­
pears within the module itself; by default, this name is the same as entryname.

The optional ord field defines the function's ordinal position within the module­
definition table. If this field is used, then the function's entry point can be invoked by
name or by ordinal. Use of ordinal positions is faster and may save space.

The optional keyword RESIDENTNAME specifies that the function's name be kept
resident in memory at all times. This keyword is applicable only if the ord option is
used, because if the ord option is not used, OS/2 automatically keeps the names of all
exported functions resident in memory anyway.

The pwords field specifies the total size of the function's parameters, as measured in
words (the total number of bytes divided by two). This field is required only ifthe
function executes with 1/0 privilege. When a function with I/0 privilege is called,

Update-52

Using Module-Definition Files

OS/2 consults the pwords field to determine how many words to copy from the caller's
stack to the 1/0-privileged function's stack.

The optional keyword NODATA is ignored by OS/2, but is provided for use by real­
mode Windows.

Normally, the EXPORTS statement is only meaningful for functions within dynamic­
link libraries, and for functions which execute with 1/0 privilege.

• Example

The following EXPORTS statement defines three export functions: SampleRead,
Stringin, and CharTest. The first two functions can be accessed either by their
exported names or by an ordinal number. Note that in the module's own source code,
these functions are actually defined as read2bin and strl, respectively. The last
function runs with 1/0 privilege, and therefore is given with the total size of the para­
meters: six words.

EXPORTS
SampleRead = read2bin @8
Stringin strl @4 RESIDENTNAME
Char Test 6

7.9 The IMPORTS Statement

The IMPORTS statement defines the names of the functions that will be imported for
the application or library. The term "import" refers to the process of declaring that a
symbol is defined in another run-time module (a dynamic-link library). Typically,
LINK uses an import library (created by the IMPLIB utility) to resolve external refer­
ences to dynamic-link symbols. However, the IMPORTS statement provides an alter­
native for resolving these references within a module.

• Syntax

IMPORTS
importdefinitions

• Remarks

The IMPORTS keyword marks the beginning of the import definitions. This keyword
is followed by one or more import definitions, each on a separate line. The only limit
on the number of import definitions is that the total amount of space required for their

Update-53

Microsoft Code View and Utilities Update

names must be less than 64K. Each import definition corresponds to a particular func­
tion. The syntax for an import definition is as follows:

[internalname=]module name.entry

The internalname specifies the name that the importing module actually uses to call
the function. Thus, internalname will appear in the source code of the importing mod­
ule, though the function may have a different name in the module where it is defined.
By default, internalname is the same as the name given in entry.

The modulename is the name of the application or library that contains the function.

The entry field determines the function to be imported, and can be a name or an ordi­
nal value. (Ordinal values are set in an EXPORTS statement.) If an ordinal value is
given, then the internalname field is required.

Note

A given function has a name for each of three different contexts. The function has
a name used by the exporting module (where it is defined), a name used as an
entry point between modules, and a name as it is used by the importing module
(where it is called). If neither module uses the optional internalname field, then
the function will have the same name in all three contexts. If either of the modules
use the internalname field, then the function may have more than one distinct
name.

• Example

The following IMPORTS statement defines three functions to be imported:
SampleRead, SampleWrite, and a function that has been assigned an ordinal
value of 1. The functions are found in the modules Sample, SampleA, and Read, re­
spectively. The function from the Read module is referred to as ReadChar in the im­
porting module; the original name of the function, as it is defined in the Read module,
may or may not be known.

IMPORTS
Sample.SampleRead
SampleA.SampleWrite
ReadChar = Read.1

Update-54

Using Module-Definition Files

7.10 The STUB Statement

The STUB statement adds.filename, a DOS 3.x executable file, to the beginning of the
application or library being created. The stub will be invoked whenever the module is
executed under DOS 2.x or DOS 3.x. Typically, the stub displays a message and termi­
nates execution. (By default, the linker adds its own standard stub for this purpose.)

• Syntax

STUB 'filename'

• Remarks

If the linker does not find this file in the current directory, it searches in the list of
directories specified in the PATH environment variable.

• Example

The following example appends the DOS executable file STOPIT.EXE to the begin­
ning of the module:

STUB 'STOPIT.EXE'

The file STOPIT.EXE is executed when you attempt to run the module under DOS.

7.11 The HEAPSIZE Statement

The HEAPSIZE statement defines the size of the application's local heap, in bytes.
This value affects the size of the automatic data segment.

• Syntax

HEAPSIZE bytes

• Remarks

The bytes field is an integer number, which is considered decimal by default. However,
hexadecimal and octal numbers can be entered by using C notation.

Update-SS

Microsoft Code View and Utilities Update

• Example

HEAPSIZE 4000

7.12 The PROTMODE Statement

The PROTMODE statement specifies that the module will run only in protected mode
and not in Windows or dual mode. This statement is always optional, and permits a
protected-mode-only application to omit some information from the executable-file
header.

• Syntax

PROTMODE

• Remarks

If this statement is not included in the module-definition file, the linker assumes that
the application can be run in either real or protected mode.

7.13 The OLD Statement

The OLD statement directs the linker to search another dynamic-link module for ex­
port ordinals. For more information on ordinals, consult the sections above on the
EXPORTS and IMPORTS statements. Exported names in the current module that
match exported names in the OLD module are assigned ordinal values from that mod­
ule unless one of the following conditions is in effect: the name in the OLD module
has no ordinal value assigned, or an ordinal value is explicitly assigned in the current
module.

• Syntax

OLD' filename'

• Remarks

This statement is useful for preserving export ordinal values, throughout successive
versions of a dynamic-link module. The OLD has no effect on application modules.

Update-56

Using Module-Definition Files

7.14 The REALMODE Statement

The REALM ODE statement is analogous to the PROTMODE statement, and is pro­
vided for use with real-mode Windows applications.

• Syntax

REALM ODE

• Remarks

REALMODE specifies that the application runs only in real mode. With this state­
ment, the linker relaxes some of the restrictions that it imposes on programs running in
protected mode.

7.15 The EXETYPE Statement

The EXETYPE statement specifies in which operating system the application (or
dynamic-link library) is to run. This statement is optional and provides an additional
degree of protection against the program being run in an incorrect operating system.

• Syntax

EXETYPE [OS2 I WINDOWS I DOS4]

• Remarks

The EXETYPE keyword must be followed by a descriptor of the operating system,
either OS2 (for OS/2 applications and dynamic-link libraries), WINDOWS, or DOS4.
If no EXETYPE statement is given, then EXETYPE OS2 is assumed by an operating
system that is loading the program.

The effect of EXETYPE is simply to set bits in the header which identify operating
system type. Operating system loaders may check these bits.

Updatc-57

Section 8

Using the IX Option with MAKE

In addition to the options listed in Section 14.5 of the Microsoft Code View and Utili­
ties manual, "Specifying MAKE Options," the version of the Microsoft Program Main­
tenance Utility (MAKE) that accompanies Microsoft OS/2 has an additional option,
which redirects error output. This option is particularly valuable if you run MAKE
from a batch file, and you want to collect any error messages that occur.

• Syntax

IX file

When you specify the IX option on the MAKE command line, then the MAKE utility
will send all error output to file, which can be either a file or device. If MAKE cannot
redirect output to file, then it will issue the following fatal error message:

Ul015: file : error redirection failed

For example, MAKE issues the message shown above when you try to redirect error
output to a read-only file on a DOS 3.x network.

In the discussion above, "error output" is defined as output which is written to stand­
ard error output. The file handle for standard error output is usually abbreviated as
stderr in C programs.

By default, MAKE error messages are always sent to stderr.

Update-59

Section 9

The ILINK Utility

The Microsoft Incremental Linker (ILINK) is a utility that can enable you to link your
OS/2 or Windows application much faster. (It cannot work with DOS applications
other than Windows.) You can benefit from its use when you change a small subset of
the modules used to link a program. The program can use any memory model, but
ILINK is most effective with large- and medium-memory-model programs. Further­
more, to benefit from ILINK you need to follow certain restrictions that are described
in this chapter. Should ILINK fail to link your changes into the executable file, it will
automatically invoke the full linker, LINK. You must first run the full linker with cer­
tain new options, described below, before you can use ILINK.

Note

You can use ILINK to develop dynamic-link libraries as well as applications.
Everything said in this chapter about applications and executable files applies to
dynamic-link libraries as well. This chapter uses the term "library" to refer
specifically to an object-code library (a .LIB file).

This chapter covers the following topics:

• Definitions

• Guidelines for using ILINK

• The development process

• Running ILINK

• How ILINK works

• Incremental violations

Update-61

Microsoft Code View and Utilities Update

9.1 Definitions

Incremental linking involves certain specialized concepts. You may need to review the
following list of terms in order to understand the rest of this chapter:

Term

segment

module

memory model

physical segment

logical segment

code symbol

data symbol

Update-62

Meaning

A contiguous area of memory up to 64K in size. See the
definitions of "physical segment" and "logical segment"
below.

A unit of code or data defined by one source file. In BASIC,
Pascal, and large-memory-model C and FORTRAN
programs, each module corresponds to a different segment.
In small-memory-model programs, all code modules con­
tribute to one code segment, and all data modules contribute
to one data segment.

The memory model determines the number of code and data
segments in a program. BASIC programs are always large
memory model.

A segment listed in the executable file's segment table. Each
physical segment has a distinct segment address, whereas
logical segments may share a segment address. A physical
segment usually contains one logical segment, but it can con­
tain more than one.

A segment defined in an object module. Each physical seg­
ment other than DGROUP contains exactly one logical seg­
ment, except when you use the GROUP directive in a
MASM module. (Linking with the /PACK CODE option
can also create more than one logical segment per physical
segment.)

The address of a function, subroutine, or procedure.

The address of a global or static data object. The concept of
data symbol includes all data objects except local (stack­
allocated) or dynamically allocated data.

The ILINK Utility

9.2 Guidelines for Using ILINK

The incremental linker, ILINK, works much faster than the full linker because ILINK
replaces only those modules which have changed since the last linking. It avoids much
of the work done by LINK.

To enable incremental linking, you need to follow four major guidelines. If your
changes exceed the scope allowed by these guidelines, then a full link is necessary.

1. Do not alter any .LIB files that you are using to create the executable file.

2. Put padding at the end of data and small-memory-model code modules, by using
the /PADCODE and /PADDATA options presented in Section 9.3, "The
Development Process."

By putting padding at the end of a module, you enable the module to grow
without forcing a full relinking. However, if the module is the only module con­
tributing to its physical segment, then padding is not necessary.

In practice this means that you can avoid padding if you have a BASIC, Pascal,
FORTRAN, or C program (other than a small-memory-model C program), you
do not call a MASM module that uses the GROUP directive, and you do not
add to the size of the default data segment; consult your language documenta­
tion for information about what is placed in this area.

3. Do not delete code symbols (functions and procedures) that are referenced by
another module. You can, however, move or add to these symbols.

4. Do not move or delete data symbols (global data). You can add data symbols at
the end of your data definitions, but you cannot add new communal data
symbols (for example, C uninitialized variables or BASIC COMMON
statements).

9.3 The Development Process

To develop a software project with ILINK, follow the steps listed below:

1. Use the full linker during early stages of developing your application or
dynamic-link library. You will not be ready to take advantage of ILINK until
you have a number of different code and data segments present.

2. Prepare for incremental linking by using the special linker options described
below.

Update-63

Microsoft Code View and Utilities Update

3. Incrementally link with ILINK after any small changes are made.

4. Relink with LINK after any major changes are made (for example, if you want
to add an entirely new module, you want to greatly expand one of the segments
or modules, or you want to redefine symbols that are shared between segments).

5. Repeat steps 3 and 4 as necessary.

Three options, /INCREMENTAL, /PADCODE, and /PADDATA, have been added to
LINK to allow the use of ILINK. Here is an example of how they might appear on the
command line:

LINK /INCREMENTAL /PADDATA:16 /PADCODE:256 @PROJNAME.LNK

Sections 9.3.1-9.3.3 present the new options.

9.3.1 The /INCREMENTAL Option

• Syntax

/INC[REMENTAL]

The /INCREMENTAL option must be used with the full linker (LINK) in order to
prepare for subsequent linking with ILINK. The use of this option produces a .SYM
file and a .ILK file, which contain extra information needed by ILINK. Note that this
option is not compatible with /EXEPACK.

9.3.2 The /PADCODE Option

• Syntax

/PADC[ODE]:padsize

The /PADCODE option causes LINK to add filler bytes to the end of each code mod­
ule. The option is followed by a colon and the number of bytes to add. (Decimal radix
is assumed, but you can specify special octal or hexadecimal numbers by using a C­
language prefix.) Thus

/PADCODE:256

adds an additional 256 bytes to each module. The default size for code-module pad­
ding is 0 bytes.

Update-64

The ILINK Utility

Note

Code padding is usually not necessary for large- and medium-memory-model
programs, but is recommended for small-, compact-, and mixed-memory-model
programs, and for MASM programs in which code segments are grouped.

To be recognized as a code segment, a segment must be declared with class name
'CODE'. (Microsoft high-level languages automatically use this declaration for
code segments.)

9.3.3 The /PADDATA Option

• Syntax

IPADD[ATA]:padsize

The /PADDATA option performs a function similar to /PADCODE, except that it
specifies padding for data segments (or data modules, if the program uses small or me­
dium memory model). Thus

/PADDATA:32

adds an additional 32 bytes to each module. The default size for data-segment padding
is 16 bytes.

Note

If you specify too large a value for padsize, you may exceed the 64K limitation on
the size of the default data segment.

9.4 Running ILINK

You can attempt to link the project with ILINK at any time after the project has been
linked with the /INCREMENTAL option. The following two sections discuss the files
needed for linking with ILINK and the command required to invoke ILINK.

Update-65

Microsoft Code View and Utilities Update

9.4.1 Files Required for Using ILINK

The files that are required for linking using ILINK are !LINK.EXE, EXEC.EXE, and
your project files, which include:

1. projname.EXE (the file to incrementally link)

2. projname.SYM (the symbol file)

3. projnameJLK (the ILINK support file)

4. *.OBJ (the changed .OBJ files)

It is strongly suggested that you place EXEC.EXE in a directory listed in the PATH
environment variable.

9.4.2 The ILINK Command Line

The syntax for the ILINK command line is shown below. ILINK options are not case
sensitive.

ILINK [/a] [/c] [/v] [/i] [/e "commands"] projname[modulelist]

The /a option specifies that all object files are to be checked to see if they have
changed since the last linking process. This is done by comparing the dates and times
of all .OBJ files with those of the executable file. An attempt is made to incrementally
link all of the files that have changed.

The /c option specifies case sensitivity for all public symbol names.

The /v option specifies verbose mode, and directs ILINK to display more information.
Specifically, when in verbose mode, ILINK lists the modules that have changed.

The /i option specifies that only an incremental link is to be attempted; if the incremen­
tal link fails, a full link is not performed.

The /e option specifies a list of commands to be executed if the incremental link fails.
The commands are enclosed in double quotes, and if more than one command is given,
they must be separated by spaces and a semicolon. The characters % s are replaced by
projname when the command is carried out. In the following example, if the incremen­
tal link fails, then ILINK carries out the commands link myproj. obj and
re myproj .exe:

!LINK /e "link @%s.obj ; re %s.exe" myproj

The projname field contains the name of the executable file that is to be incrementally
linked.

Update-66

The ILINK Utility

You can use the optional modulelist field to list all the modules that have changed. (No
extensions are required.) This field is an alternative to using the /a flag.

• Examples

Two examples using ILINK are shown below. In the first example, the altered mod­
ules (input, sort, and output) are explicitly listed on the command line. In the
second example, the -a option directs ILINK to scan all files in the project, in order to
discover which modules have changed. The second example also lists commands to be
executed in the case that incremental linking fails.

ILINK /i wizard input sort output

ILINK /a le "link @%s.lnk ; re %s.exe" wizard

9.5 How ILINK Works

Instead of searching for records and resolving external references for the entire pro­
gram, ILINK carries out the following operations:

I. ILINK replaces the portion of each module that has changed since the last
linking (incremental or full linking).

2. ILINK alters relocation-table entries for any far (segmented) code symbols that
have moved within a segment (For each reference to a far code symbol, such as
a far function call, there is an entry in the relocation table in the executable file's
header. Unlike the relocation table of a DOS application, the relocation table of
an OS{l application contains full addresses, not just segment addresses. Thus,
by fixing relocation table entries for a code symbol, ILINK ensures that all
references to the symbol will be correct)

ILINK makes no modification to modules that have not been changed since the last
linking.

9.6 Incremental Violations

There are two kinds of ILINK failures: real errors and incremental violations. Real er­
rors are errors that will not be resolved by a full link, such as undefined symbols or
invalid .OBJ files. If ILINK detects a real error, it will display ERROR with an
explanation, and return a nonzero error code to the operating system. On the other

Update-67

Microsoft Code View and Utilities Update

hand, incremental violations consist of changes that are beyond the scope of incremen­
tal linking, but can generally be resolved by full linking.

The Microsoft Code View and Utilities manual explains real errors in detail. The rest of
this section describes incremental violations.

9.6.1 Changing Libraries

An incremental violation occurs when a library changes. Furthermore, if an altered
module shares a code segment with a library, then ILINK will need access to the li­
brary as well as to the new module.

Note

If you add a function, procedure, or subroutine call to a library that has never been
called before, then ILINK will fail with an undefined-symbol error. Performing a
full link should resolve this problem.

9.6.2 Exceeding Code/Data Padding

An incremental violation will occur if two or more modules contribute to the same
physical segment, and either module exceeds its padding. As discussed in Section 9.3,
"The Development Process," padding is the process of adding filler bytes to the end of
a module. The filler bytes serve as a buffer zone whenever the module grows in size
(that is, whenever the new version of the module is larger than the old).

9.6.3 Moving/Deleting Data Symbols

An incremental violation occurs if a data symbol is moved or deleted. To add new data
symbols without requiring a full link, add the new symbols at the end of all other data
symbols in the module.

9.6.4 Deleting Code Symbols

You can move or add code symbols, but an incremental violation occurs if you delete
any code symbols from a module. Code symbols can be moved within a module but
cannot be moved between modules.

Update-68

The ILINK Utility

9.6.5 Changing Segment Definitions

An incremental violation will result if you add, delete, or change the order of segment
definitions. If you are programming in MASM, an incremental violation will also re­
sult if you alter any GROUP directives.

If you are programming with a high-level language, then you need only remember not
to add or delete modules between incremental links.

9.6.6 Adding Code View Debugger Information

If you included Code View-debugger information for a module the last time you ran a
full link (by compiling and linking with Code View-debugger support), then ILINK
fully supports Code View-debugger information for the module. ILINK will maintain
symbolic information for current symbols, and it will add information for any new
symbols. However, if you include Code View-debugger information for a module
which previously did not have Code View-debugger support, an incremental violation
will result.

Update-69

Section 10

The EXEHDR Utility

The Microsoft Segmented EXE File Header Utility (EXEHDR) displays the contents
of an executable-file header. You can use EXEHDR with OS/2 or Windows, and you
can use it with an application or dynamic-link library. So there are really four possibili­
ties total. (With a Windows file, some of the meanings of the executable-file-header
fields change; consult your Windows documentation for more information.) The princi­
pal uses of EXEHDR include the following:

• Determining whether a file is an application or a dynamic-link library

• Viewing the attributes set by the module-definition file

• Viewing the number and size of code and data segments

Except where noted otherwise, the specialized terms and keywords mentioned in this
section are explained in Section 7, "Using Module-Definition Files."

10.1 The EXEHDR Command Line

To invoke the EXEHDR utility, use the following syntax:

EXEHDR [/v].fi/e

in which file is an application or dynamic-link library, for either the OS/2 or Windows
environment. The /v option specifies verbose mode, which is discussed in Section 10.3.

Section 10.2 presents sample output and then explains the meaning of each field of the
output. Section 10.3 describes additional output that EXEHDR produces when it is
run in verbose mode.

10.2 EXEHDR Output

This section discusses the meaning of each field in the output below-output produced
when EXEHDR LINK. EXE is specified on the OS/2 command line. The first six fields
list the contents of the segmented-executable-file header. The rest of the output lists

Update-71

Code View and Utilities Update

each physical segment in the file. (The term "physical segment" is defined in Section
9, "The Il..INK Utility.")

Module:
Description:
Data:
Initial CS:IP:
Initial SS:SP:
DGROUP:

LINK
Microsoft Segmented-Executable Linker
NON SHARED
seg 2 off set 3d9c
seg 4 off set 8e40
seg 4

no. type address file mem flags
1 CODE 00003400 Of208 Of208
2 CODE 00012e00 05b04 05b04
3 DATA 00018c00 Olclf Olclf
4 DATA OOOlaaOO OlblO 08e40

The Module field is the name of the application as specified in the NAME statement
of the module-definition file. If no module definition was used to create the executable
file, then this field displays the name assumed by default. If a module definition was
used to create the file, but the LIBRARY statement appeared instead of the NAME
statement (thus specifying a dynamic-link library), then the name of the library is
given and EXEHDR uses the word Library instead of Module.

The Description field gives the contents, if any, of the DESCRIPTION statement
of the module-definition file used to create the file being examined.

The Data field indicates the type of the program's automatic data segment:
SHARED, NONSHARED, or NONE. This type can be specified in a module­
definition file, but by default is NONSHARED for applications and SHARED for
dynamic-link libraries. In this context, SHARED and NONSHARED are equivalent
to the SINGLE and MULTIPLE attributes listed in Section 7.5. (The "automatic data
segment" is the physical segment corresponding to the group named DGROUP.)

The Initial cs: IP field is the program starting address (if an application is being
examined) or address of the initialization routine (if a dynamic-link library is being ex -
amined).

The Initial SS: SP field gives the value of the initial stack pointer.

The DGROUP field is the segment number of the automatic data segment. This segment
corresponds to the group named DGROUP in the program's object modules. Note that
segment numbers start with the number 1.

After the contents of the OS/2 executable header is displayed, the contents of the seg­
ment table is listed. The following list describes the meaning of each heading in the
table. Note that all values are given in hexadecimal radix except for the segment index
number.

Update-72

Heading

no.

type

address

file

mem

flags

The EXEHDR Utility

Meaning

Segment index number, starting with 1, in decimal radix.

Identification of the segment as a code or data segment A
code segment is any segment with class name ending in
'CODE' . All other segments are data segments.

Location within the file, of the contents of the segment.

Size in bytes of the segment, as contained in the file.

Size in bytes of the segment as it will be stored in memory.
If the value of this field is greater than the value of the file
field, then at load time OS/2 pads the additional space with
zero values.

Segment attributes, as defined in Section 7, "Using Module­
Definition Files." If the /v option is not used, then only non­
default attributes are listed. Attributes are given in the form
specified in Section 7: READWRITE, PRELOAD, and so
forth. Attributes that are meaningful to Windows but not to
OS/2 are displayed as lowercase and in parentheses, (e.g.,
(movable)).

10.3 Output in Verbose Mode

When you specify the /v mode, the EXEHDR utility gives all the information dis­
cussed in Section 10.2, as well as some additional information. Specifically, when run­
ning in verbose mode EXEHDR displays the following information in this order:

1. DOS 3.x header information. All OS/2 executable files have a DOS 3.x header,
whether bound or not. If the program is not bound, then the DOS 3.x portion
consists of a stub that simply terminates the program. For a description of DOS
executable-header fields, see the Microsoft MS-DOS Programmer's Reference,
Chapter 5, or see the chapter on the Microsoft EXE File Header Utility
(EXEMOD) in the Microsoft Code View and Utilities manual.

2. OS/2-specific header fields. This output includes the fields described in Section
10.2, except for the segment table. (The segment-table display for verbose mode
is described below.)

3. File addresses and lengths of the various tables in the executable file, as in the
following example:

Update-73

Code View and Utilities Update

Resource Table: 00003273 length 0000 (0)
Resident Names Table: 00003273 length 0008 (8)
Module Reference Table: 0000327b length 0006 (6)
Imported Names Table: 00003281 length 0033 (51)
Entry Table: 000032b4 length 0002 (2)
Non-resident Names Table: 000032b6 length 0029 (41)
Movable entry points: 0
Segment sector size: 512

The first field in each row gives the name of the table, the second field gives the
address of the table within the file, the third field gives the length of the table in
hexadecimal radix, and the last field gives the length of the table in decimal
radix. See the Microsoft Operating System/2 Programmer's Reference for an ex­
planation of each table.

4. Segment table with complete attributes, not just the nondefault attributes. In
addition to the attributes described in Section 7, verbose mode also displays two
additional attributes:

The relocs attribute is displayed for each segment that has address reloca­
tions. Relocations occur in each segment that references objects in other seg­
ments or makes dynamic-link references. The iterated attribute is displayed
for each segment that has iterated data. Iterated data consist of a special code
that packs repeated bytes; for example, OS/2 executables produced with the
/EXEPACK option of LINK, have iterated data.

5. Run-time relocations and fixups. See the object-module information in the
Microsoft Operating System/2 Programmer's Reference for more information.

6. Finally, EXEHDR lists all exported entry points. Exports are discussed in
Section 3, "About Linking in OS(2," and in Section 7 .8, 'The EXPORTS
Statement."

Update-74

Section 11

LINK Error Messages

This appendix lists error messages that apply only to the protected-mode version of
LINK, when used to create protected-mode or Windows files. When you create appli­
cation under DOS 3.x, you will not receive any of the messages listed below.

Number

L1005

L1030

L1031

L1032

L1040

L1041

Linker Error Message

/PACKCODE : packing limit exceeds 65536 bytes

The value supplied with the /PACKCODE option exceeds the limit of
65,536.

missing internal name

An IMPORT statement specified an ordinal in the definitions file
without including the internal name of the routine. The name must be
given if the import is by ordinal.

module description redefined

A DESCRIPTION in the definitions file was specified more than
once, which is not allowed.

module name redefined

The module name was specified more than once (via a NAME or
LIBRARY statement), which is not allowed.

too many exported entries

The definitions file exceeded the limit of 3072 exported names.

resident-name table overflow

The size of the resident-name table exceeds 65,534 bytes. (An entry in
the resident-names table is made for each exported routine designated
RESIDENTNAME, and consists of the name plus three bytes of infor­
mation. The first entry is the module name.) Reduce the number of ex­
ported routines or change some to nonresident.

Update-75

Microsoft Code View and Utilities Update

L1042

L1044

L1061

L1062

L1073

L1074

L1075

Update-76

nonresident-name table overflow

The size of the nonresident-name table exceeds 65,534 bytes. (An entry
in the nonresident-names table is made for each exported routine not
designated RESIDENTNAME, and consists of the name plus three
bytes of information. The first entry is the DESCRIPTION.) Reduce
the number of exported routines or change some to resident

imported-name table overflow

The size of the imported-names table exceeds 65,534 bytes. (An entry
in the imported-names table is made for each new name given in the
IMPORTS section, including the module names, and consists of the
name plus one byte.) Reduce the number of imports.

out of memory for /INCREMENTAL

The linker ran out of memory when trying to process the additional in­
formation required for ILINK support. If you were linking from within
an editor or MAKE, try linking directly.

too many symbols for /INCREMENTAL

The program had more symbols than can be stored in the .SYM file.
Reduce the number of symbols.

file-segment limit exceeded

The number of physical or file segments exceeds the limit of 254 im­
posed by OS/2 protected mode and by Windows for each application or
dynamic-link library. (A file segment is created for each group defini­
tion, nonpacked logical segment, and set of packed segments.) Reduce
the number of segments or group more of them and make sure that
/PACKCODE is enabled.

name : group larger than 64K bytes

The given group exceeds the limit of 65,536 bytes. Reduce the size of
the group, or remove any unneeded segments from the group (look at
the map file).

entry table larger than 65535 bytes

The entry table exceeds the limit of 65,535 bytes. (There is a row in
this table for each exported routine, and also for each address which is
the target of a far relocation and for which one of the following condi­
tions is true: the target segment is designated IOPL, or PROTMODE
is not enabled and the target segment is designated MOVABLE.)
Declare PROTMODE if applicable, or reduce the number of exported
routines, or make some segments FIXED or NOIOPL if possible.

L1082

L1092

L1094

L1095

LllOO

L1126

L2000

L2010

L2022

LINK Error Messages

stub .EXE file not found

The linker could not open the file given in the STUB statement in the
definitions file.

cannot open module definitions file

The linker could not open the definitions file specified on the command
line or in the response file.

file : cannot open file for writing

The linker was unable to open the file with write permission. Check
file permissions.

file : out of space on file

The linker ran out of disk space for the specified output file. Create free
disk space or delete root directories.

stub .EXE file invalid

The file specified in the STUB statement is not a valid real-mode ex­
ecutable file.

conflicting iopl-parameter-words value

An exported name was specified in the definitions file with an IOPL­
parameter-words value, and the same name was specified as an export
by the Microsoft C export pragma with a different parameter-words
value.

imported starting address

The program starting address as specified in the END statement in a
MASM file is an imported routine. This is not supported in OS/2 or
Windows.

too many f ixups in LIDATA record

The number offar relocations (pointer- or base-type) in an LIDATA
record, which is typically produced by the DUP statement in an .ASM
file, exceeds the limit imposed by the linker. The limit is dynamic: a
1024-byte buffer is shared by relocations and by the contents of the
LIDATA record, and there are eight bytes per relocation. Reduce the
number of far relocations in the DUP statement

name (alias internalname) : export undefined

The internal name of the given exported routine is undefined.

Update-77

Microsoft Code View and Utilities Update

L2023

L2026

L2027

L2028

L2030

L4000

L4001

Update-78

name (alias internalname) : export imported

The internal name of the given exported routine conflicts with the inter­
nal name of a previously imported routine. The set of imported and ex­
ported names can not overlap.

entry ordinal number, name name : multiple defini­
tions for same ordinal

The given exported name with the given ordinal number conflicted
with a different exported name previously assigned to the same ordinal.
Only one name can be associated with a particular ordinal.

name : ordinal too large for export

The given exported name was assigned an ordinal which exceeded the
limit of 3072.

automatic data segment plus heap exceed 64K

The total size of data declared in DGROUP, plus the value given in
HEAPSIZE in the definitions file, plus the stack size given by the
/STACKSIZE option or STACKSIZE definitions file statement, ex­
ceeds 64K. Reduce near data allocation, HEAPSIZE, or stack.

starting address not code (use class 'CODE')

The program starting address, as specified in the END statement of an
.ASM file, should be in a code segment (code segments are recognized
if their class name ends in ' CODE'). This is an error in OS!l protected
mode; the error message may be disabled by including the statement
REALMODE in the definitions file.

seg disp. included near offset in segment name

This is the warning generated by the IWARNFIXUP option. Refer to
documentation on that option.

frame-relative fixup, frame ignored near offset in
segment name

A reference is made relative to a segment which is different from the
target segment of the reference. For example, if_ foo is defined in seg­
ment TEXT, the instruction call DGROUP: foo will result in this
warning. The frame DGROUP is ignored, so die linker will treat the
call as if it were call TEXT: foo.

L4002

L4010

L4011

L4013

L4014

L4022

L4023

L4024

L4025

LINK Error Messages

frame-relative absolute fixup near offset in segment
name

A reference is made similar to the type described in L 4 0 O 1, but both
segments are absolute (defined with AT). It is unclear what this means
in OS(l protected mode or Windows; the linker treats the executable
file as if the file were to run in real mode only.

invalid alignment specification

The number specified in the I ALIGNMENT option must be a power
of2 in therange 2-32,768 (inclusive).

PACKCODE value exceeding 65500 unreliable

The packing limit specified with the /PACKCODE option was be­
tween 65,500 and 65,536. Code segments with a size in this range are
unreliable on some steppings of the 80286 processor.

invalid option for new-format executable file ignored

The use of overlays and the options /CPARMAXALLOC, /DSAL­
LOCA TION, /NOGROUPASSOCIA TION, are not allowed with
either OS(l protected-mode or Windows executables.

invalid option for old-format executable file ignored

The /ALIGNMENT option is invalid for real-mode executables.

groupl, group2 : groups overlap

The named groups overlap. (Since a group is assigned to a physical seg­
ment, groups cannot overlap with either OS/2 protected-mode or Win­
dows executables.) You should reorganize segments and group defini­
tions so the groups do not overlap. Refer to the map file.

name (internal name) : export internal name conflict

The internal name of the given exported routine conflicted with the in­
ternal name of a previous import definition or export definition.

dynlib.import (name) : multiple definitions for ex­
port name

The given name was exported more than once, which is not allowed.

dynlib.import (name) : import internal name conflict

The internal name of the given imported routine (import is either a
name or a number) conflicted with the internal name of a previous ex­
port or import

Update-79

Microsoft Code View and Utilities Update

L4026

L4027

L4028

L4029

L4030

L4032

L4036

L4042

Update-80

name : self-imported

The given imported routine was imported from the module being
linked. This is not supported on some systems.

name : multiple definitions for import internal-name

The given internal name was imported more than once. Previous im­
port definitions are ignored.

name : segment already defined

The given segment was defined more than once in the SEGMENTS
statement of the definitions file.

name : DGROUP segment converted to type data

The given logical segment in the group DGROUP was defined as a
code segment. (DGROUP cannot contain code segments, because the
linker always considers DGROUP to be a data segment. The name
DGROUP is predefined as the automatic data segment.) The linker
converts the named segment to type "data."

name : segment attributes changed to conform with
automatic data segment

The given logical segment in the group DGROUP was given sharing
attributes (SHARED/NONSHARED) which differed from the
automatic data attributes as declared by the DATA instance
(SINGLE/MULTIPLE). The attributes are converted to conform to
those ofDGROUP. Refer to Error L402 9 for more information on
DGROUP.

name : code-group size exceeds 65500 bytes

The given code group has a size between 65,500 and 65,536 bytes,
which is unreliable on some steppings of the 80286 processor.

no automatic data segment

The application did not define a group named DGROUP. DGROUP
has special meaning to the linker, which uses it to identify the
automatic or default data segment used by the operating system. Most
OS/2 protected-mode and Windows applications require DGROUP.
This warning will not be issued if DATA NONE is declared or if the ex­
ecutable is a dynamic-link library.

cannot open old version

The file specified in the OLD statement in the definitions file could not
be opened.

L4043

L4046

LINK Error Messages

old version not segmented-executable format

The file specified in the OLD statement in the definitions file was not a
valid OS/2 protected-mode or Windows executable.

module name different from output file name

The name of the executable as specified in the NAME or LIBRARY
statement is different from the output file name. This may cause
problems; you should consult the documentation for your operating sys­
tem.

Update-81

Microsoft Editor

for MS@ OS/2 and MS-DOS@
Operating Systems

User's Guide

Microsoft Corporation

Document No. 614510001-100-R00-0288

Contents

Chapter 1 Introduction 1

1.1 SystemRequirements .. 2

1.2 Using This Manual .. 2

1.3 Typographic Conventions 3

Chapter 2 Edit Now s
2.1 Starting the Editor ... 6
2.2 The Microsoft® Editor's Screen 6

2.3 Sample Session .. 7
2.3. I Inserting Text with the lnsertmode Function 8
2.3.2 Removing a Word with the Delete Function 8
2.3.3 Introducing the Arg Function . 8
2.3.4 Canceling and Undoing Commands 9
2.3.5 Using Ldelete to Move Text iO
2.3.6 Searching with Psearch 11
2.3.7 Exiting the Editor 12

2.4 Getting Help ... 12

2.3 The Microsoft Editor's Command Line 12

Chapter 3 Command Syntax 1 s
3.1 Commands and Functions 15
3.2 Entering a Command l 6

3.3 Argument Types .. 18
3.3.1 Text Arguments (numarg, markarg, textarg) 18

3.3.1.1 The numarg Type J 9
3.3.1.2 The markarg Type 20
3.3.1.3 The textarg Type 21

3.3.2 Cursor-Movement Arguments (streamarg, linearg, boxarg) 21
3.3.2.1 The streamarg Type 22
3.3.2.2 The linearg Type 23
3.3.2.3 The boxarg Type 24

iii

Chapter 4 A Survey of the
Microsoft Editor's Commands 25

4.1 Moving through a File 25
4.1.1 Scrolling atthe Screen's Edge 26
4.1.2 Scrolling a Page at a Time 26
4.1.3 Other File-Navigation Functions 27

4.2 Inserting, Copying, and Deleting Text 27
4.2.1 Inserting and Deleting Text 28
4.2.2 Copying Text .. 29
4.2.3 Other Insert Commands 30
4.2.4 Reading a File into the Current File 30

4.3 Using File Markers .. .31
4.3.1 Functions That Use Markers 32
4.3.2 Related Functions: Savecur and Restcur 32

4.4 Searching and Replacing 32
4.4.1 Searching for a Pattern of Text 33
4.4.2 Search-and-Replace Functions34

4.5 Compiling .. 35
4.5. l Invoking Compilers and Other Utilities 35
4.5.2 Viewing Error Output 36

4.6 Using Windows .. 37
4.7 Working with Multiple Files38

Chapter 5 Regular Expressions 39
5.1 Regular Expressions as Simple Strings 39
5.2 Special Characters40
5.3 Matching Method .. .42
5.4 Tagged Expressions ... 43
5.5 Predefined Regular Expressions 44

Chapter 6 Function Assignments and Macros45
6.1 Using the MESETUP Program45

6.2 Assigning Functions within the Editor46
6.2.1 Making Function Assignments46
6.2.2 Viewing Function Assignments47
6.2.3 Removing Function Assignments47
6.2.4 Making Graphic Assignments 48

iv

6.3 Creating Macros within the Editor 48
6.3.l Entering a Macro 49
6.3.2 Assigning a Macro to a Keystroke 50
6.3.3 Using Macro Conditionals 50

Chapter 7 Using the TOOLS.INI File 55
7.1 Using Comments ... 55
7 .2 Assigning Functions to Keystrokes 56
7.3 Defining Macros .. 56
7.4 Setting Switches .. 57

7.4.l Numeric Swit.ches 57
7.4.2 Boolean Switches 60
7.4.3 Text Switches ... 62

7.5 Creating Sections with Tags 63

Chapter 8 Programming C Extensions 67
8.1 Requirements ... 68
8.2 How C Extensions Work 68
8.3 Writing a C Extension 70

8.3.1 Required Objects 70
8.3.2 The Switch Table 71
8.3.3 The Command Table 72
8.3.4 The WhenLoaded Function•............... 74
8.3.5 Writing the Editing Function 74
8.3.6 Putting It All Together 76

8.4 Calling Low-Level Editing Functions 77
8.4.1 Reading from a File 78

8.4.1.1 The FileNameToHandle Function 78
8.4.1.2 The GetLine Function 79
8.4.1.3 The FileLength Function 79

8.4.2 Writing to a File 79
8.4.2.1 The Replace Function 80
8.4.2.2 The PutLine Function 80
8.4.2.3 The CopyLine Function 81
8.4.2.4 The DelStream Function 81

8.4.3 Initialization Functions 81
8.4.3.1 The SetKey Function 82
8.4.3.2 The DoMessage Function 82
8.4.3.3 The BadArg Function 82

v

npibng and Linking 83
X.5. I Compiling in Real Mode 83
8 5.2 Compiling in Protected Mode•..... 84

A C-Extcnsion Sample Program 84

\ dix A Reference Tables 87
Categories of Editing Functions 87
Key Assignments for Editing Functions 90
Comprehensive Listing of Editing Functions 93

Appendix B Support Programs

fl .. l
B.2

for the l\Ucrosoft Editor 111
MEG REP.EXE .. 111
CALLTREE.EXE ... 112
UNl)EL.EXE .. 114

EXP.EXE ... 115
Rl\1.EXE .. 115

· io~sary .. 111

index ... 121

Figures and Tables

Figures
Figure 2.1
Figure 3.1
Figure 3.2
Figure 3.3

Tables
Table 5.1
Table 6.1
Table 6.2
Table 7.1
Table 7.2
Table 7.3
Table 7.4
Table A.1
TableA.2
Table A.3
Table B.1

Microsoft Editor's Screen 6
Sample streamarg 22

Sample linearg .. 23

Sample boxarg .. 24

Predefined Expressions44

Editor Functions and Return Values 50

Macro Conditionals 52
Colors and Numeric Values 58

Numeric Switches 59

Boolean Switches 61

Text Switches ... 62
Summary of Editing Functions by Category 87

Function Assignments 90
Comprehensive List of Functions 93

CALL TREE.EXE Options 113

vii

Chapter 1

Introduction

Welcome to the Microsoft® Editor. The Microsoft Editor is a powerful software
development tool that runs in OS/2 systems and in DOS 2.1 and above. It lets you
create source files, customize editing functions, and invoke compilers (or other utilities
such as assemblers). The pages that follow use the term "OS/2" to refer to both the
Microsoft Operating System/2 (MS® OS/2) and IBM® OS/2. Similarly, the term
"DOS" is used to refer to both MS-DOS® and PC-DOS where appropriate.

You can use the Microsoft Editor as a simple text editor, but it is particularly useful for
writing programs. The following list describes some of the flexible ways you can use
the editor:

• Compile and Link Programs from within the Editor

The Microsoft Editor is more than a text editor; it is a development environ­
ment. Develop programs more quickly by compiling from within the editor. If
the compile fails, then view the errors, rewrite the program, and recompile-all
without leaving the editor.

• Customize the Editor

The Microsoft Editor lets you reassign editing functions to different keys. You
can specify function assignments in the initialization file; the editor automati­
cally recognizes these assignments each time you run it. You can change these
function assignments at any time during an editing session.

• Write New Editing Functions in C

If you use Microsoft C, then you can write new editing functions for the Micro­
soft Editor. Write a C-language module using the standard C data and control­
flow structures, and call the editor's low-level editing functions to read and
write to a file. The editor loads the module into memory and calls it on
command.

• Save Typing Effort with Macros

A macro is a command which performs a series of predefined actions; for ex­
ample, a macro can insert a given phrase or word or perform an entire series of
editing commands. Define a macro, then invoke it with one keystroke.

1

Microsoft Editor User's Guide

• Edit Complex Files with Windows

When you edit a large file, you may want to view different parts of the file
simultaneously. With the Microsoft Editor, you can split up your screen into as
many as eight windows, each displaying a different part of the file.

• Handle Multiple Source Files

With a simple command, you can transfer back and forth between the different
files that you are working on-there is no need to leave the editor and then start
it up again. Furthermore, as the editor moves between files, it saves cursor posi­
tion and other relevant information. You can view portions of different files
simultaneously by using windows.

1.1 System Requirements

To use the Microsoft Editor, you need to have MS OS/2 running in protected mode, or
DOS 2.1 or above with at least 128 kilobytes (K) of available memory. A minimum of
150K of available memory is required to use the C extensions described in Chapter 8.

1.2 Using This Manual

Different parts of the manual address different learning needs, as explained below:

2

• If you have not used the Microsoft Editor before, you should read Chapter 2,
"Edit Now," and Chapter 3, "Command Syntax," before proceeding.

• To start using the Microsoft Editor right away, read Chapter 2, "Edit Now." This
chapter uses a specific example to describe the basic editing functions.

• To get a more general understanding of the many editing functions, read Chapter
3, "Command Syntax." This chapter explains how you can specify different
kinds of arguments for editing functions. Then read Chapter 4, "A Survey of the
Microsoft Editor's Commands," which explores major topics such as searching
and replacing text, compiling, and creating windows.

• For definitions of terms and concepts, turn to the glossary at the back of the
manual. Although all terms are defined in the text, you may find it helpful to
refer to the glossary as you learn about the editor.

Introduction

• After you have used the editor to perform simple editing tasks, and understand
how to enter arguments, you may want to refer directly to Appendix A, "Refer­
ence Tables." These tables provide complete descriptions of all functions and
commands.

• To use the utility programs (CALLTREE, EXP, MEGREP, RM, and
UNDEL) that come with the editor, see Appendix B, "Support Programs for
the Microsoft Editor."

The Microsoft Editor comes with a setup program (MESETUP.EXE) that configures
the editor so that it uses keystroke assignments similar to Microsoft Quick languages
and WordStar®, the BRIEF® editor, or the EpsilonrM editor. It is recommended that you
work through Chapter 2, "Edit Now," with the standard defaults for keystrokes, before
you run the setup program. See the README.DOC file for information on how to use
the setup program.

1.3 Typographic Conventions

The following typographic conventions are used throughout this manual and app!~' in
particular to syntax displays for commands and switches:

Example of
Convention

KEY TERMS

Example : input

placeholders

Description

Bold letters indicate a specific term or punctua­
tion mark that you must type in as shown. The
use of uppercase or lowercase letters is not sig­
nificant. For example, in a function assignment,
the word Unassigned must be typed in as
shown, but the first letter need not be capitalized.

The typeface shown in the left column is used in
examples to simulate the appearance of informa­
tion printed on your screen. The bold version of
this typeface indicates input entered in response
to a prompt.

Words in italics indicate a field or a general kind
of information; you must supply the particular
value. For example, numarg represents a numeri­
cal argument that you type in from the keyboard.
You could type in a number, such as 15, but you
would not type in the word "numarg" itself.

3

Microsoft Editor User's Guide

[optional items]

{choice] I choice2}

Repeating elements ...

Program

Fragment

KEY NAMES

"Defined term"

4

Items inside double square brackets are optional.

Braces and a vertical bar indicate a choice
among two or more items. You must choose one
of the items unless all of the items are also en­
closed in double square brackets.

Three dots following an item indicate that more
items having the same form may appear.

A column of three dots tells you that part of a
program has been intentionally omitted.

Small capital letters are used for the names of
keys and key sequences, such as ENTER and
CIRL+R. Notice that a plus (+) indicates a combi­
nation of keys. For example, CIRL+E tells you to
hold down the CIRL key while pressing the E key.

The names of the keys referred to in this manual
correspond to the names printed on the IBM Per­
sonal Computer key tops. If you are using a
different machine, these keys may have slightly
different names.

The cursor movement keys (sometimes called
"arrow" keys) that are located on the numeric
keypad to the right of the main keypad are called
the DIRECTION keys. Individual DIRECTION keys
are referred to either by the direction of the
arrow on the key top (LEFI', RIGIIT, UP, DOWN) or
the name on the key top (PGUP, PGDN).

Some of the Microsoft Editor's functions use the
+,-,or number keys on the numeric keypad,
rather than the ones on the top row of the main
keyboard. At each instance, the text notes the
use of keys from the numeric keypad.

The carriage-return key is referred to as ENTER.

Quotation marks usually indicate a term defined
in the text.

Chapter 2

Edit Now

This chapter helps you use the Microsoft Editor right away by focusing on the func­
tions you need to create a simple text file. Functions are built-in capabilities that you
invoke to give directions to the editor. Most of the chapter consists of a tutorial that
uses a specific example and features the following functions:

Function Default Keystroke

Cursor movement DIRECITON keys, HOME

Insertmode INS

Sdelete (stream delete) DEL

Ldelete (line delete) CIRL+Y

Arg (introduce argument) ALT+A

Cancel ESC

Undo ALT+BKSP

Paste SHIFT+INS

Psearch (forward search) F3

Exit F8

Help Fl

Setfile (move to previous file) F2

You can use this tutorial either by starting the editor and typing in each command as
shown, or you can simply read along. Because the results are explained at each stage,
you can get a good understanding of the editor just by reading.

The chapter ends by presenting the complete command line for the editor, with all the
possible options you may use.

s

Microsoft Editor User's Guide

2.1 Starting the Editor

Copy the file M.EXE into your current directory or a directory listed in the PATH en­
vironment variable. To run the editor in protected mode, copy the file MEP.EXE. (You
may want to rename the file as M.EXE.) Then start the editor with this command:

M NEW.TXT

The Microsoft Editor responds by asking if you want to create a new file by this name.
Press Y to indicate yes. The editor creates the file, and you are ready to enter text.

2.2 The Microsoft® Editor's Screen

When you start the editor with a new file, you see a screen that is mostly blank (see
Figure 2.1):

Cursor

Copyright <C> Microsoft Corp 1987. All rights reserved
~c:\os2\zdos\neu,txt <text> Len9th=0 Uindou=<l.1~

_ ~
Dialog line Status line T

Figure 2.1 Microsoft Editor's Screen

6

Edit Now

The cursor first appears at the upper-left corner of the screen. Even though the file is
empty, you can use the DIRECTION keys-denoted as UP, DOWN, LEFT, and RIGHT-to
move the cursor anywhere on the screen. (The DIRECTION keys are the arrow keys on
the numeric keypad.) Try experimenting with cursor movement.

The next-to-bottom line is called the "dialog line," which is reserved for displaying
messages from the editor and letting you enter text arguments. The bottom line is
called the "status line," and it always displays the following fields:

Field

c:new.txt

(text)

Length=l

Window= (1, 1)

Description

File name, with complete path

Type of file

Length of file, in number of lines (minimum
value is 1)

Window or cursor position

The field Window= (1, 1) indicates that the upper-left corner of the screen corre­
sponds to the first row and column of the file. As you scroll through files that are
larger then one screen, the numbers in this field change. See Section 7.4.2, "Boolean
Switches," to learn how to alter this field so that it displays cursor position instead of
window position.

2.3 Sample Session

Once the Microsoft Editor is started, you can enter text immediately. Simply start typ­
ing, and press ENTER when you want to begin a new line. By default, the editor starts
in "overtype" mode, which means that anything you type replaces the text at the cursor
position.

To begin, type in the following text. There are some deliberately planted errors that
you'll correct in a few moments.

It's mind over matter.
What is mind?
No mat matter.
Wh is matter?
Mever mind.

The third, fourth, and fifth lines have errors near the beginning of each line. To get to
the beginning of the fifth line, you could press the LEFT key until you got to the begin­
ning of the line. However, you can get there faster by pressing the HOME key. This key
moves the cursor to the first nonblank character in the line.

7

Microsoft Editor User's Gulde

Now move the cursor to the beginning of the fifth line and correct the error by typing
the letter N:

N~ver mind.

2.3.1 Inserting Text with the Insertmode Function

To insert text in this example, move the cursor to the third position in the fourth line:

Wh_is matter?

The letters at need to be inserted at the end of the first word. Press the INS key to in­
voke the Insertmode function, which toggles between overtype and insert mode. You'll
see the word insert appear at the end of the status line. Type the letters at to pro­
duce the following line:

What_is matter?

2.3.2 Removing a Word with the Delete Function

So far, you've used editing functions to replace old text and insert new text. The third
line requires text deletion, so move the cursor to the beginning of the second word in
the third line:

No mat matter.

One of the text-deletion functions is Sdelete, which stands for "stream delete." Invoke
the Sdelete function by pressing the DEL key. You can use the Sdelete function in differ­
ent ways. For example, you can delete the character at the current cursor position by
just pressing the DEL key. You can also delete a group of characters with the following
sequence:

ALT+A move-cursor DEL

Section 2.3.3, "Introducing the Arg Function," examines this command sequence in
detail.

2.3.3 Introducing the Arg Function

To invoke the Arg function, press ALT +A by holding down the ALT key and then
pressing A.

The Arg function does nothing by itself; you use it to introduce an argument to another
function. (An arguments is information, such as text or highlighted characters, that the
function works with.) In this case you'll use theArg function to highlight the group of

8

Edit Now

characters you wish to delete. After pressing ALT +A, move the cursor to the beginning
of the third word. Your screen should appear as follows:

Jit's Mind over Matter.
UhE1t is Mind?
No im'19:!atter.
UhElt is Matter?
Never Mind.

Copyright (C) Microso!t Corp 1987. All rights reserved
c:'z'new.txt (text> Length=S Window=<l,l>

Now press DEL, and the highlighted characters are removed.

2.3.4 Canceling and Undoing Commands

If you pressed ALT+A at the wrong time but did not complete the command you were
typing, you can cancel the argument by pressing the ESC key. This keystroke invokes
the Cancel function. The Cancel function lets you start a command sequence over
again.

If you complete a command that was incorrect, reverse the command by pressing
ALT+BKSP (hold down the ALT key and then press the backspace key). This keystroke
invokes the Undo function. If you invoke Undo again, it reverses the next-to-last
editing command. Invoke Undo a third time, and it reverses the second-to-last editing
command, and so on. The number of commands that the editor remembers is control­
led by the undocount switch, discussed in Chapter 7, "Using the TOOLS.IN! File."
The default number of commands remembered is 10.

9

Microsoft Editor User's Guide

2.3.5 Using Ldelete to Move Text

As is the case with other editors, delete functions in the Microsoft Editor serve a dual
purpose: deleting text and moving text. The last text deleted is placed into the "Clip­
board." (The Clipboard is a special section of memory that holds text placed there by
the Copy, Ldelete, or Sdelete functions.) When you press SHIFT+INS, which invokes the
Paste function, the contents of the Clipboard are inserted into the file.

The stream-delete function (Sdelete, presented above) is useful for deleting a series of
characters on the same line. The line-delete function, Ldelete, provides the most effi­
cient way of deleting entire lines. In this section, Ldelete will be used to move two
complete lines of text. Consider the current text:

It's mind over matter.
What is mind?
No Matter.
What is matter?
Never mind.

Move the cursor to any place in the fourth line. Then select the bottom two lines by
pressing ALT+A and then pressing the DOWN key once. You should see the bottom two
lines highlighted, as follows:

I s Mln over Ma er.
What is Mi nd7
Ho Matter.
Whut is Mutter?
Never Mind.

Copyright <C> Microsoft Corp 1987. All rights reserved
c:,os2'.zdos,neu.txt <text Modified> Length=S Uindou=<1.1>

Now invoke theLdelete function by pressing CTRL+Y. The two lines disappear. In
general, the Ldelete function deletes whatever characters you highlight.

10

Edit Now

Having deleted a block of characters, you are now ready to use the Paste function
(SHIFI'+INS) to put the deleted text into a new location in your document. Move the cur­
sor to the beginning of the top line and press SHIFI'+INS. You should now see the fol­
lowing text:

What is matter?
Never mind.
It's mind over matter.
What is mind?
No matter.

You can also invoke Paste with an argument. Try this sequence of keystrokes:

1. Press ALT+A.

2. Type the following text:

The Philosopher said,

3. Press SHIFI'+INS.

The result is that the words The Philosopher said, are inserted at the current
cursor position. The Philosopher said, is an example of a "text argument."
Text arguments automatically appear on the dialog line, so you can see what you're
typing. Use DEL to correct errors as you're typing a text argument.

2.3.6 Searching with Psearch

The Psearch function takes different kinds of arguments and applies them in a con­
sistent way. The term Psearch stands for "plus search," and means the same thing as
"forward search." This function, which is assigned to the F3 key, takes both text argu­
ments and cursor-movement arguments. You can ask the editor to locate the next occur­
rence of the word mind by typing the word in as a text argument. Move the cursor to
the beginning of the file, then try the following sequence of keystrokes:

1. Press ALT+A.

2. Type the following text:

mind

3. Press F3.

You can achieve the same result by moving the cursor to the beginning of the word
mind on the screen, then highlighting the word with the following sequence of
keystrokes:

ALT+A RIGHT RIGHT RIGHT RIGHT F3

11

Microsoft Editor User's Guide

An even easier way of selecting the word is to give the keystroke sequence ALT+A F3,
which selects the word at the current cursor location. This word (all characters up to
the first blank or new-line character) becomes the search string.

Often when you use the Psearch function, you want to look repeatedly for some text
string. To search for a text string previously specified, press F3 by itself.

2.3.7 Exiting the Editor

Press FS to leave the editor. The FS key sequence invokes the Exit function, which auto­
matically saves any changes you have made to the file and exits.

2.4 Getting Help

As you work with the Microsoft Editor, you may occasionally forget which function
is assigned to which key. Press Fl to get a complete list of all key assignments. You
examine this list the way you edit a file; use the DIRECTION keys, PGUP, and PGDN
to navigate through the list. You may see that some functions are unassigned. In later
chapters, you'll learn how to assign these functions to keystrokes.

Press F2 to get back to your file. The F2 key invokes the Setfile function, which always
takes you back to the file you were editing.

2.5 The Microsoft Editor's Command Line

Use the following command line to start up the editor:

M[/D] [/e command] [/t] [files]

If you are using the protected-mode version, then the name of the editor's executable
file is MEP.EXE. You can rename this file to M.EXE.

The ID option prevents the editor from examining TOOLS.INI for initialization set­
tings (see Chapter 7, "Using the TOOLS.IN! File," for more information).

The /e option enables you to specify a command upon startup. The command argument
is a string that follows the same syntax rules as those given for macros in Chapter 6,
"Function Assignments and Macros." If command contains a space, then the entire
string should be enclosed by double quotes.

The /t option specifies that any files edited in this session are temporary. The editor
will not list these files in the information file after this session is terminated.

12

Edit Now

If a single file is specified, then the editor attempts to load the file. If the file does
not yet exist, the editor asks you if you want to create the file. If multiple files are
specified, the first file is loaded; then, when you invoke the Exit function, the editor
saves the current file and loads the next file in the list. If no files are specified, then the
editor attempts to load the file you were editing when you last exited the editor.

Upon startup, the status line displays at least four fields. The status line can display up
to eight fields, as follows:

1. Name of the file being edited

2. Type of file (based on extension)

3. The word modified if the file has been changed

4. The letters NL if no carriage returns were found when the file was loaded (that
is, if the file did not contain carriage returns to denote the end of each line, but
used only line feeds)

5. The length of the file, in lines

6. Cursor position or window position of upper-left corner

7. The word insert if you are in insert mode

8. The word meta if you have invoked the Meta function

13

Chapter 3

Command Syntax

If you've worked through Chapter 2, "Edit Now," you already have an understanding
of the flexibility of commands in the Microsoft Editor. Many of the editing functions
accept a variety of arguments-text arguments, cursor-movement arguments (which
you select by highlighting), or no argument at all. In this chapter, you'll learn about
each kind of argument. The chapter also presents the syntax conventions used
throughout the manual.

Topics are covered in the following order:

• Commands and functions

• Entering a command

• Argument types

• Text arguments (numarg, markarg, textarg)

• Cursor-movement arguments (streamarg, linearg, boxarg)

3.1 Commands and Functions

This manual often refers to "commands" and "functions." While these two concepts
are closely related, they are not necessarily the same.

A command is a complete instruction, providing the editor with all the information that
it needs to carry out a specific activity. A command may consist of a single function, or
it may consist of several functions and an argument.

A function is a built-in editing capability. You invoke a function with a specific key­
stroke. Chapter 6 explains how to assign keys to functions, but most functions have de­
fault keys already assigned to them.

15

Microsoft Editor User's Guide

Each command can include at most one argument. An argument can consist of text that
you type in, or characters on screen that you highlight with cursor movement. The ar­
gument is passed to the function that follows it.

Note

Throughout this manual, function names are given in italics and are capitalized
(for example: Paste). Argument types are given in italics and are lowercase (for
example: textarg). Although functions correspond to specific keystrokes, argument
types are fairly broad categories. For example, textarg corresponds to any line of
text that you explicitly type as an argument. See Sections 3.3-3.5 for more
information.

3.2 Entering a Command

This section explains how to enter a command. A command can be as simple as a
single function, or it may be more complex.

The following three rules describe the general syntax of a command. You do not need
to memorize these rules; they are provided here for the sake of understanding.

1. You must use theArg prefix (press ALT+A) when introducing an argument.

2. You can useArg Arg (press ALT+A twice) in place of Arg. Some functions attach
a special meaning to Arg Arg.

3. Some functions recognize the Meta (F9) prefix.

The first rule is that you use the Arg function (ALT +A) when you want to introduce an
argument. The general syntax of a command that uses the Arg function is:

Arg argument Function

This syntax applies regardless of the type of argument you enter. As soon as you in­
voke Arg (by pressing ALT +A), the editor highlights the current cursor position. This
position stays fixed, even if you enter new text or continue to move the cursor.

16

Command Syntax

The following list gives examples of the Arg argument Function syntax:

Command Default Keystrokes

Arg textarg Psearch ALT+A type-characters F3

Arg linearg Ldelete ALT +A move-cursor CTRL+ Y

Arg streamarg Sdelete ALT +A move-cursor DEL

You can also use the Arg prefix without specifying an argument, for example, ALT +A
F3. When you do not explicitly give an argument, the function following Arg assumes
some argument based on the cursor position. For example, ALT+A F3 takes the word at
the cursor position as the argument.

The second rule of syntax is that some functions recognize the prefix Arg Arg (press
ALT+A twice) as well as the prefixArg. You useArg Arg to introduce an argument just
as you do with Arg; however, the use of Arg Arg modifies the function's effect in some
predefined way. For example, consider the following commands:

Command Default Keystrokes

Arg textarg Psearch ALT+A type-characters F3

Arg Arg textarg Psearch ALT+A ALT+A type-characters F3

The first command searches for an ordinary text string, whereas the second command
recognizes a special string called a "regular expression." See Chapter 5 for more infor­
mation on regular expressions.

The third rule of syntax is that some functions accept the optional prefix Meta (F9).
The Meta prefix alters the effect of the function in some predefined way. For example,
whereas Up moves the cursor up one line, Meta Up (F9 UP) moves the cursor up to the
top of the screen.

When you invoke Meta, the phrase (meta) is displayed on the status line. The Meta
prefix, if used, should occur just before the function that it modifies. Thus the follow­
ing are examples of valid commands:

Command Default Keystrokes

Meta Right F9RIGHT

Arg Meta Compile ALT+A F9 F5

Arg textarg Meta Setfile ALT +A type-characters F9 F2

17

Microsoft Editor User's Guide

3.3 Argument Types

The Microsoft Editor provides two basic ways to enter arguments: you can enter text
directly, as part of the command (text argument), or you can use cursor movement to
highlight characters on the screen (cursor-movement argument). Each of these two
methods has several variations, as shown in the following list:

1. Text argument After you invokeArg (ALT+A), continue to type characters. These
characters appear on the dialog line (the line next to the bottom of the screen).
You can give three different kinds of text arguments:

a. A numarg, which consists of a string of digits.

b. A markarg, which is a string containing the name of a previously defined
file marker.

c. A textarg. A text argument not recognized as a numarg or markarg; it is
considered simply a textarg.

2. Cursor-movement argument. After you invoke Arg, the current cursor position is
highlighted. Highlight more characters by moving the cursor to a new position.
You can give three different kinds of cursor-movement arguments:

a. A streamarg, in which the old and new cursor positions are in the same line

b. A linearg, in which the old and new cursor positions are in a different line
but in the same column

c. A boxarg, in which the old and new cursor positions are in a different line
and column

Sections 3.3.1 and 3.3.2 give more detailed information on each type of argument,
along with examples.

3.3.1 Text Arguments (numarg, markarg, textarg)

After you invoke Arg (ALT+A), you can enter a text argument by typing any printable
characters, including blank spaces. As soon as you begin entering text, the dialog line

18

Command Syntax

on the screen (next to the bottom line of the screen) shows the word Arg : followed by
your text. For example, if you press ALT+A and then type the letter T, you see the fol­
lowing items on the dialog line:

Arg: T

When you enter a text argument, you can use the following six editing capabilities:

1. Erase the character at the current cursor position with the Sdelete function (DEL).

2. Backspace to the left, while erasing a character, with the Cdelete function
(C1RL+G).

3. Move back and forth nondestructively with LEFT and RIGHT. If you use RIGHT to
move past the end of current input, the editor inserts a character from the
previous text argument.

4. Insert a space at the cursor position with the Sinsert function (C'IRL+J).

5. Move to beginning of the text with Begline (HOME) and to the end of the text
with Endline (END).

6. Clear characters to the end of the line with the Arg function (ALT +A).

Sections 3.3.1.1-3.3.1.3 present the possible variations of text arguments.

3.3.1.1 The numarg Type

A numarg is string of digits that you enter as a text argument. Each of the three follow­
ing examples is a numarg:

3
11
45

The number must be a valid decimal integer. A numarg is evaluated as a number and
not as literal text. Typically, it is used to indicate a range of lines starting with the

19

Microsoft Editor User's Guide

cursor position. For example, the following command sequence deletes 10 lines
starting with the cursor position:

1. InvokeArg (press ALT+A).

2. Type the following text:

10

3. InvokeLdelete (press CTRL+Y).

Some functions accept text arguments but do not recognize a numarg. In these cases, a
numarg is treated as an ordinary textarg (see Section 3.3.1.3).

3.3.1.2 The markarg Type

A markarg is a file-marker name that you have previously defined with the Mark func­
tion (CTRL+M). See Section 4.3, "Using File Markers," for information about Mark.

Once defined, you can enter the marker name as a markarg. The name is not treated as
literal text, but is interpreted as an actual file position. For example, the following com­
mand sequence copies all text between the cursor position and the file position pre­
viously marked as P 1:

1. InvokeArg (press ALT+A).

2. Enter the following text:

Pl

3. Invoke Copy (press the+ key on the numeric keypad).

Many functions accept text arguments but do not recognize a markarg. In these cases,
the markarg is treated as an ordinary textarg.

20

Command Syntax

3.3.1.3 The textarg Type

A textarg is similar to a numarg or markarg. The only difference is that the textarg has
no special meaning; it is interpreted by the function as literal text. For example, the fol­
lowing sequence inserts the string Happy New Year into the file, exactly as typed:

1. InvokeArg (press ALT+A).

2. Type the following:

Happy New Year

3. Invoke Paste (press SHIFT+INS).

3.3.2 Cursor-Movement Arguments (streamarg, linearg, boxarg)

You enter a cursor-movement argument by invoking Arg (ALT+A) and then moving the
cursor. When you invokeArg, the current cursor position is marked with a reverse­
video highlight. This position is called the "initial cursor position." You then can move
the cursor; as you do, characters between the initial cursor position and the new cursor
position are highlighted, as described in Sections 3.3.2.1-3.3.2.3.

Each function determines how to interpret a cursor-movement argument. Some func­
tions work with a "stream of text" between the initial cursor position and the new posi­
tion. A stream of text consists of a continuous series of characters as they are actually
stored in the file. With a stream of text, the area highlighted is irrelevant; only the two
positions matter.

Other functions work with the area highlighted on the screen. As explained in Sections
3.3.2.2 and 3.3.2.3, this area may be a rectangular box, or it may consist of complete
lines.

Chapter 4, "A Survey of the Microsoft Editor's Commands," and Appendix A, "Refer­
ence Tables," describe how each function interprets cursor-movement arguments. For
example, Sdelete always deletes a stream of text, whereas Ldelete deletes the area of
text that is highlighted.

21

Microsoft Editor User's Guide

3.3.2.1 The streamarg Type

A streamarg consists of characters on a single line. The term streamarg refers to the
fact that characters on a single line are always treated as a stream of text, regardless of
the function involved.

After invoking Arg, you can move the cursor left or right. A streamarg consists of
characters beginning with the leftmost of the two positions (initial cursor position or
new cursor position), up to but not including the rightmost position, as shown in
Figure 3.1:

22

Initial cursor position New cursor position

char far ><naMe;
flagType Cpascal EXTERNAL ><func>C>;
unsigned arg:
unsigned argType;
};

typedef

typedef flagType <pascal EXTERNAL ><PIF><char far w);

union swiAct {
flagType <pascal EXTERNAL ><pFunc>Cchar far ><):
int Far Mi val;
flagType far ><fval:
};

struct swiDesc {
char far *nat18:
union swiAct act:
int type;
};

typedef struct swiDesc far ><PSUI:
alt•p is not assigned to any editor function
c:,osZ,zdos,ext.h CC> Length=Z48 Uindow=<Z4.1>

Figure 3.1 Sample streamarg

Command Syntax

3.3.2.2 The linearg Type

A linearg is defined when the new cursor position is in the same column but on a
different line from the initial cursor position. The editor responds by highlighting all
lines between the two cursor positions, including the lines that the cursor positions are
on. For example, the display in Figure 3.2 is produced by invoking Arg and then
pressing DOWN three times:

Initial cursor position

char far *naMe:
fla9Type (pascal EXTERNAL Mfunc>C>:
unsigned arg:
unsigned ar9Type:
}:

swiDesc {
char far MnaMB:
union swiAct act:
int type:
}:

typedef struct swiDesc far MPSWI:
Ar9u11Bnt cancelled
c•,os2,zdos,ext.h CCl Len th=24B Window=<24,1>

New cursor position

Figure 3.2 Sample linearg

23

Microsoft Editor User's Guide

3.3.2.3 The boxarg Type

A boxarg consists of a rectangular area on the screen. The two corners of the area are
determined by the initial and new cursor positions. A boxarg is defined when the two
positions are in both a different line and a different column from each other.

After invoking Arg, you can move the cursor left or right. The left edge of the box in­
cludes the leftmost of the two cursor positions. The right edge of the box includes the
column just to the left of the rightmost of the two cursor positions. The box includes
parts of all lines between the two positions.

For example, the display shown in Figure 3.3 is produced by invoking Arg and then
moving the cursor 3 lines down and 10 columns over:

Initial cursor position

char far MnaHe;
flagType <pascal EXTERNAL wfunc>C>:
unsigned arg:
unsigned argType;
};

MpFunc><char far w>:

typedef struct swiDesc far MPSIJI:
Arg:
c:,osZ,zdos'.ext.h CC> Len th=24B Ulndow=<Z4,1>

New cursor position

Figure 3.3 Sample boxarg

24

Chapter 4

A Survey of the
Microsoft Editor's Commands

The Microsoft Editor features all the standard capabilities of a text editor: fast naviga­
tion through a file, and the ability to move blocks of text, search for strings, and handle
multiple files. In addition, the Microsoft Editor supports a flexible windowing capabil­
ity for viewing more than one file or more than one part of the same file. The Micro­
soft Editor can also invoke compilers and assemblers and let you easily view compile
errors.

This chapter presents specific editing topics in more detail than they were covered in
Chapter 2, "Edit Now." Topics are presented in this order:

• Moving through a file

• Inserting, copying, and deleting text

• Using file markers

• Searching and replacing text

• Compiling

• Using windows

• Working with multiple files

Each section presents the most common functions within the given topic and gives ex­
amples of how the functions can be used. If appropriate, the section ends with a brief
description of other related functions. See Appendix A, "Reference Tables," for an ex­
haustive listing of the command syntax for each function.

4.1 Moving through a File

Chapter 2, "Edit Now," described how to the use DIRECTION keys to move through a
file one space at a time. The DIRECTION keys correspond to the functions Up, Down,
Right, and Left, to which you can assign different keys if you wish. Chapter 2 also

25

Microsoft Editor User's Guide

presented the Begline function (HOME), which moves the cursor to the first printable
character in the current line. Similar to the Begline function is the Endline function
(END), which moves the cursor just to the right of the last printable character in the cur­
rent line.

Each of the four DIRECTION functions has a variation that uses the Meta function as a
prefix, as shown in the following list. Each of these functions, when used in a com­
mand with the Meta prefix, moves the cursor as far as possible within the displayed
screen (or window) without changing column position or causing the screen to scroll
in any way.

Command
(and Default Keystrokes)

Meta Up (F9 UP)

Meta Down (F9 DOWN)

Meta Left (F9 LEFT)

Meta Right (F9 RIGHT)

Description

Moves the cursor to the top of the screen

Moves the cursor to the bottom of the screen

Moves the cursor to the leftmost position on the
current line

Moves the cursor to the rightmost position on
the current line

4.1.1 Scrolling at the Screen's Edge

You can use the four DJRECTION functions (Up, Down, Right, Left) to cause scrolling.
The screen (or current window) can scroll in all four directions. Although the editor
does not wrap lines that are wider than the screen, you can have lines of text that are
up to 250 characters wide. Use DIRECTION keys to scroll right and left when your text
lines are wider than the screen or current window.

Unlike some editors, the Microsoft Editor does not automatically scroll by only one
column or one line. Instead, the internal switches hscroll and vscroll control how fast
the editor scrolls. For example, if vscroll (vertical-scroll switch) is set to 7, then the
editor advances the screen position seven lines when you attempt to move the cursor
off the bottom of the screen. See Chapter 7, "Using the TOOLS.IN! File," for more in­
formation on these switches.

4.1.2 Scrolling a Page at a Time

The editor provides the Ppage (PGDN) and Mpage (PGUP) functions to move through a
file more quickly than you can by using the DIRECTION keys to move one line or one
column at a time.

26

A Survey of the Microsoft Editor's Commands

The term "page" is defined as the amount of text that can be displayed in the current
window or screen. To advance one page forward through a file, invoke the function
Ppage (PGDN), which stands for "plus page."

The Ppage function can appear in a variety of commands that enable you to move even
faster than a page at a time:

Command
(and Default Keystrokes)

Arg Ppage (ALT+A PGDN)

Arg numarg Ppage
(ALT+A numarg PGDN)

Arg streamarg Ppage
(ALT+A streamarg PGDN)

Description

Moves the cursor forward to the end of the file

Moves the cursor forward by the number of
pages that you specify (numarg)

Moves the cursor forward by the number
of pages that you highlight on the screen
(streamarg)

The function Mpage (PGUP), which stands for "minus page," is the direct inverse
of Ppage, and it accepts the same syntax. For example, the command Arg Mpage

(ALT+A PGUP) moves you backward to the beginning of the file.

4.1.3 Other File-Navigation Functions

The following functions also are useful for moving through a file:

Function
(and Default Keystrokes) Description

Pword (CIRL+RIGHT) Moves the cursor forward (plus) one word

Mword (CTRL+LEFT) Moves the cursor backward (minus) one word

Mark (C1RL+M) Defines or moves to a marker

With the Mark function, you can define a marker or move to a marker. Markers consti­
tute a special topic, which is discussed in Section 4.3, "Using File Markers."

4.2 Inserting, Copying, and Deleting Text

Often, you need to move, copy, or delete blocks of text. The Microsoft Editor is partic­
ularly powerful because it provides a variety of ways to define a block of characters.

27

Microsoft Editor User's Guide

For example, you can delete a highlighted box, a range of lines, or a stream of text be­
tween any two file positions. Sections 4.2.1-4.2.4 discuss how to work with blocks
of text.

4.2.1 Inserting and Deleting Text

Chapter 2, "Edit Now," described how to use the Sdelete, lnsertmode, and Paste func­
tions to insert, delete, and move text. The Sdelete function is useful for working with
single characters and with streams of text (streamarg). (A stream of text consists of a
continuous sequence of characters between two positions in the file.) The following
list presents some of the most common commands that use the Sdelete function:

Command
(and Default Keystrokes)

Sdelete (DEL)

Arg Sdelete (ALT+A DEL)

Arg streamarg Sdelete
(ALT+A streamarg DEL)

Description

Deletes the character at the cursor position. (This
command does not join two lines of text, even if
the cursor is at the end of the line.)

Deletes all text from the cursor position to the
end of the line, and then joins the current line of
text with the next line.

Removes all text between the two cursor posi­
tions. This command works with any cursor­
movement argument.

To deal effectively with whole lines of text and with rectangular areas on the screen
(boxarg), the Microsoft Editor provides the following functions:

Function
(and Default Keystrokes) Description

Ldelete (CTRL+Y) Deletes a line of text or a boxarg

Linsert (CTRL+N) Inserts a line of text or a boxarg

You can use these functions in commands that do not include an argument or prefix:
Ldelete deletes the current line and Linsert inserts a blank line. These commands only
insert or delete one line at a time, but you can use these commands repeatedly. You can
also use these functions with arguments, as follows:

28

Command
(and Default Keystrokes)

Arg Ldelete (ALT +A CIRL+ Y)

Arg boxarg Ldelete
(ALT+A boxarg C1RL+Y)

Arg boxarg Linsert
(ALT+A boxarg C1RL+N)

A Survey of the Microsoft Editor's Commands

Description

Deletes characters from the cursor position to
the end of the line. Unlike Arg Sdelete, this com­
mand does not join lines.

Deletes the highlighted rectangle (boxarg) on the
screen, rather than a stream of text.

Inserts a box of blank spaces into the indicated
area. Text to the right of the cursor moves over
as the box of blank spaces is inserted.

If you instead specify a linearg, the indicated number of blank lines is inserted.

4.2.2 Copying Text

To copy text without first deleting it, use the Copy function, which copies some range
of text into an area of memory called the "Clipboard." Text in the Clipboard is inserted
into the file when you invoke the Paste function. You invoke Copy with the+ key. You
can also invoke Copy with C1RL+INS. The following list presents different commands
that use the Copy function:

Command
(and Default Keystrokes)

Arg boxarg Copy*
(ALT+A boxarg +)

Arg numarg Copy*
(ALT+A numarg +)

Arg markarg Copy*
(ALT+A markarg +)

Description

Copies the highlighted area into the Clipboard

Copies the specified number of lines into the
Clipboard, beginning with the line that the cur -
soris on

Copies the stream of text between the specified
marker and the cursor into the Clipboard

* The + key used is the one on the numeric keypad.

The Paste function (SHIFT+INS) is useful both for moving and for copying text. To
move text, first delete it and then invoke Paste after moving the cursor to the
destination.

See Section 4.3 for more information on markers.

29

Microsoft Editor User's Guide

4.2.3 Other Insert Commands

The following functions insert specific items at the current cursor position (each func­
tion is a complete command). These functions do not have preassigned keys; consult
Chapter 6, "Function Assignments and Macros," for information on how to assign keys
to functions.

Function Description

Cur date Inserts current date

Cur day Inserts current day of the week

Curfile Inserts current file name

Curfileext Inserts current file extension

Curfilenam Inserts base name of current file

Curtime Inserts current time

Curuser Inserts name specified in USER environment variable

4.2.4 Reading a File into the Current File

The Paste function can be used in commands that read a file into the current file, as
shown below:

Command
(and Default Keystrokes)

Arg Arg textarg Paste
(ALT+A ALT+A textarg SHIFr+INS)

Arg Arg !textarg Paste
(ALT+A ALT+A !textarg SHIFf+INS)

30

Description

Reads the contents of the file specified by
the textarg, and inserts these contents into
the current file. The insertion occurs at the
current cursor position.

Reads the output of the system-level com­
mand line given as the textarg into the
current file. This command works similarly
to the command given above.

A Survey of the Microsoft Editor's Commands

4.3 Using File Markers

File markers help you move back and forth through large files. Once you have defined
a file marker, you can move quickly to the location marked. You can also use a file
marker as input to certain commands. For example, instead of moving the cursor to a
marked location, you simply give the name of the marker.

The Microsoft Editor allows you to create any number of file markers. You identify
each with a name consisting of alphanumeric characters.

Use the Mark function (cTRL+M) to create or go to a marker. The command Mark
(CTRL+M with no argument) takes you back to the beginning of the file, just as Arg
Mpage does. The command Arg Mark (ALT+A CTRL+M) moves you back to the pre­
vious cursor position. This last use of Mark is useful for switching back and forth
quickly between two locations.

Some of the most powerful uses of the Mark function involve commands with argu­
ments, as shown below:

Command
(and Default Keystrokes)

Arg numarg Mark
(ALT+A numarg CTRL+M)

Arg Arg textarg Mark
(ALT+A ALT+A textarg CTRL+M)

Arg textarg Mark
(ALT+A textarg CTRL+M)

Description

Moves the cursor to the line that you specify.
The Microsoft Editor numbers lines beginning
with the number 0, so the first line of the file is
line 0, the second is line 1, and so forth.

Defines a marker at the current location. This
command sets a marker which in turn can be
used as input to other functions.

Moves the cursor directly to a marker that you
have already defined as a textarg.

31

Microsoft Editor User's Guide

4.3.1 Functions That Use Markers

The following functions also make use of markers by accepting a previously defined
marker name (a markarg) as an argument:

Function
(and Default Keystrokes)

Copy(+) *

Replace (C1RL+L)

Qreplace (C1RL+\)

Description

Copies the argument into the Clipboard

Executes search and replace

Executes search and replace, with query for
confirmation

* The + key used is the one on the numeric keypad.

If you specify a marker that the editor cannot find, the editor automatically checks the
file listed in the markfile switch. See Chapter 7, "Using the TOOLS.IN! File," for
more information on the markfile switch.

4.3.2 Related Functions: Savecur and Restcur

The Savecur and Restcur functions have a purpose that is similar to Mark. The differ­
ence is that Savecur and Restcur do not take arguments. Use Savecur to save the
current cursor position, and Restcur to return to that position later. With these two func­
tions, you can save only one position at a time.

No keys are preassigned to Savecur or Restcur. See Chapter 6, "Function Assignments
and Macros," for information on how to assign keys.

4.4 Searching and Replacing

The Psearch function (F3) directs the editor to conduct a forward search (also called a
"plus search") for the next occurrence of the specified string. All searches take place
from the current cursor position to the end of the file.

32

A Survey of the Microsoft Editor's Commands

The most common uses of P search consist of the following commands:

Command
(and Default Keystrokes)

Arg textarg Psearch
(ALT+A textarg F3)

Psearch (F3)

Arg Psearch
(ALT+A F3)

Arg streamarg Psearch
(ALT+A streamarg F3)

Description

Directs the editor to look for the string given as
textarg. The editor scrolls the screen, if neces­
sary, and moves the cursor to the next occur­
rence of textarg in the file.

Directs the editor to look for the previous search
string.

Directs the editor to take the word at the current
cursor position as the search string. (In other
words, the search string consists of all characters
from the cursor to the first blank or new line.)

Directs the editor to take text highlighted on the
screen as the search string.

You can search backward with Msearch (which stands for "minus search"). The
Msearch function (F4) uses syntax identical to Psearch. Backward searches take place
from the current cursor position to the beginning of the file.

4.4.1 Searching for a Pattern of Text

The commands described above search for an exact match of the string you specify.
However, sometimes, you may want to search for a set of different strings: for ex­
ample, any word that begins with "B" and ends with "ing."

You can search for a pattern of text by specifying a "regular expression." A regular ex­
pression is a string that specifies a pattern of text by using certain special characters.
Chapter 5 describes the regular-expression character set and syntax in detail, with ex­
amples of use.

The command Arg Arg textarg P search (ALT +A ALT +A textarg F3) searches forward for
a string that matches the regular expression specified as the textarg. The command
Arg Arg textarg Msearch (ALT+A ALT+A textarg F4) searches backward for a string that
matches the regular expression specified as the textarg.

33

Microsoft Editor User's Guide

4.4.2 Search-and-Replace Functions

To replace repeated occurrences of one text string by another, use the search-and­
replace function Replace (CTRL+L). By default, the replacement happens from the cur­
sor position to the end of the file. However, as described below, you can restrict the
range over which the replacement happens.

No matter what command syntax you use with Replace, the editor reacts by prompting
you for a search string and a replacement string, and then executing the search and re­
place. If you have used Replace or Qreplace before, the previous value of the search or
replace string appears on the message line. To use the string displayed, press ENTER.
To edit the string or enter a completely new string, use the text-editing commands
given in Section 3.3.1, "Text Arguments." Note that the Arg function clears characters
to the end of the line.

The commands Replace and Arg Replace are identical to each other, and execute re­
placement from the current cursor position the end of the file. You can also specify a
range for the replacement by using one of the following commands:

Command Default Keystrokes

Arg linearg Replace ALT +A linearg CTRL+L

Arg numarg Replace ALT+A numarg CTRL+L

Arg boxarg Replace ALT+A boxarg CTRL+L

Arg markarg Replace ALT +A markarg CTRL+L

If you specify a numarg, the replacement happens over the specified number of lines
beginning with the current line. The argument boxarg defines a rectangular area within
which the replacement takes place. And if you specify a markarg, then the replacement
occurs in the box of text between the cursor position and the marker.

The Replace function is most efficient when you are sure that you want the replace­
ment to be executed in every case. If you want to regulate how often the replacement
occurs, use Qreplace (CTRL+\). This function is identical in every way to Replace and
takes exactly the same syntax. The only difference is that Qreplace (short for "query
replace") prompts you for confirmation before each replacement. Qreplace asks you to
press Y for yes, N for no, or P, which causes replacement to proceed without
further confirmation. The Cancel function (ESc) terminates the replacement.

The Replace and Qreplace functions both take regular expressions as search strings
when you introduce the argument with Arg Arg instead of Arg. (See Chapter 5 for infor­
mation on regular expressions.) Otherwise, syntax is identical, and the functions accept
the same arguments.

34

A Survey of the Microsoft Editor's Commands

4.5 Compiling

One of the strengths of the Microsoft Editor is that you can use it as a development en­
vironment. You can write a program and compile (or assemble) from within the editor.
If the compile fails, you can make corrections to the source file at the same time that
you view the errors and then compile again.

Ordinarily a compiler reports error output directly to the screen while you are outside
of any editor. But when you compile from within the Microsoft Editor, it displays your
errors by moving the cursor to the position where the error was found, and by re­
porting the corresponding message on the dialog line. This way, you can view the con -
text of the error more easily and make corrections as soon as you see the errors.

The Compile function (SHIFT+F3) can be used to view errors as well as to compile. This
Compile function appears in a variety of different commands, as shown in Sections
4.5.1-4.5.2.

4.5.1 Invoking Compilers and Other Utilities

When you run the editor in OS/2 protected mode, compiles run in the background and
the editor beeps when the compile is completed. When you run the editor in real mode,
you have to wait until the compile is completed before you can perform further editing
commands.

With the Microsoft Editor's compile capability, you can invoke any program or utility
you want, and specify any command-line options you want. To invoke a program
directly, use one of the following commands:

Command Default Keystrokes

Arg Arg textarg Compile ALT+A ALT+A textarg SHIFT+F3

Arg Arg streamarg Compile ALT+A ALT+A streamarg SHIFT+F3

Arg Compile ALT+A SHIFT+F3

In the commands above, textarg is a system-level command line that you type in, and
streamarg is a system-level command line that you highlight on the screen. Usually, it
is most convenient to set your compile command once by setting the extmake switch
and giving the command Arg Compile each time you want to compile.

The extmake text switch can be set to invoke a particular command line. A "text
switch" is an internal string variable that affects the editor's behavior. See Chapter 7,
"Using the TOOLS.IN! File," for more information on text switches and how to
set them.

35

Microsoft Editor User's Guide

Furthermore, the information on extmake in Chapter 7 describes how to make the edi­
tor sensitive to the file extension of your current file. For example, Arg Compile in­
vokes one command line if the file has a .C extension, and another if it has an .ASM
extension.

4.5.2 Viewing Error Output

To view error output from within the editor, you must use a compiler or assembler that
outputs errors in one of the following formats:

filename row column: message
filename (row, column): message
filename (row): message
filename: row: message
"filename", row column: message

The Microsoft Editor, in turn, reads the error output directly, and responds by moving
the cursor to each location where an error was reported while displaying the message
on the dialog line. (The method for moving between error locations is described
below.) The following programs output error messages in a format readable by the
Microsoft Editor:

• Microsoft C Optimizing Compiler

• Microsoft Macro Assembler

• Microsoft Pascal Compiler 4.0

• Microsoft BASIC Compiler 6.0

Note

With the Pascal and BASIC compilers, you must use the /Z command-line option
with either the PL or BC driver to generate error output that the Microsoft Editor
can read. (The extmake switch, discussed in Chapter 7, "Using the TOOLS.IN!
File," uses the /Z option by default.)

When a compile fails and the compiler reports errors, the editor moves the cursor to
the first error location reported. To view the next error, give the command Compile
(SHIFT+F3). You can make any changes needed before advancing to the next error. If
you are running in protected mode, you can move backward to the previous error by
giving the commandArg Meta Compile (ALT+A F9 SHIFT+F3).

36

A Survey of the Microsoft Editor's Commands

In protected mode, the editor processes all error messages through a pipe. In real
mode, the editor redirects compile-error output to the file M.MSG. If the errors are not
in readable format, then you can view errors by loading this file.

4.6 Using Windows

A "window" is a division of the screen that functions independently from other por­
tions of the screen. When you have two or more windows present, each functions as a
miniature screen; one window can view lines 5-15 while another window views lines
90-97. You can even use windows to view two or more files simultaneously. The cur­
sor is never in more than one window. You can scroll each window independently.

Although windows are tiled, they can view overlapping areas of text. With multiple
windows onto the same file, any change you make while in one window can affect
what is displayed in another. Changes are reflected simultaneously in all windows that
view the same area of altered text.

You can have up to eight windows on the screen, and you can create either horizontal
or vertical divisions between windows. You move between windows by giving the
command Window (F6 with no arguments). To create or merge a window, move the cur­
sor to the row or column at which you want to create a new division, then give one of
the following commands:

Command
(and Default Keystrokes)

ArgWindow
(ALT+A F6)

Arg Arg Window
(ALT+A ALT+A F6)

Meta Window
(F9 F6)

Description

Creates a horizontal window (split at the cursor
column)

Creates a vertical window (split at the cursor
row)

Closes the current window by merging it with an
adjacent window

Each window must have a minimum of 5 lines and IO columns. If you try to create a
window of a smaller size, then the command fails.

37

Microsoft Editor User's Guide

4.7 Working with Multiple Files

You can load a new file into the current screen or window with the Setfile function.
Consider the following commands that use the Setfile function:

Command
(and Default Keystrokes)

Arg textarg Setfile
(ALT+A textarg F2)

Setfile (F2)

Description

Loads the file specified in the textarg.

Loads the previous file. You can use Setfile to
move back and forth between two files.

An easier way to use to use Setfile, however, is to follow these steps:

1. Bring up the information file with the Information function (press SHIFT+Fl).

2. Use the UP and DOWN keys to move to the name of a file.

3. Select the file that the cursor is on by giving the command Arg Setfile (press
ALT+A F2).

The information file contains the names of all files that you have edited before, up to
the limit specified by the tmpsav switch. (See Chapter 7, "Using the TOOLS.INI
File," for more information about switches.) Active files-files that have been edited
during this session-are listed with their current lengths.

When an old file is reloaded, the editor remembers cursor and window information
from the last time you edited the file. The editor stores this information in the file
M.TMP.

The Arg textarg Setfile command accepts wild-card characters (? matches any
character and* matches any string) in the textarg. The command responds by display­
ing a list of files that match the textarg. You can then select a file by using the steps
outlined above. For example, the following sequence causes the editor to list all files
with a . c extension:

1. Invoke theArg function (press ALT+A).

2. Type the following:

*.c

3. Invoke the Setfile function (press F2).

38

Chapter 5

Regular Expressions

A regular expression is a special kind of string that you can use in a Microsoft Editor
search command. Instead of matching only one string, a regular expression can match
a number of different strings. For example, the regular expression a [12 3 J matches
any of the following strings:

al
a2
a3

Regular expressions have their own particular syntax. This chapter explains that syntax
and gives examples. Topics are covered in this order:

• Regular expressions as simple strings

• Special characters

• Matching method

• Tagged expressions

• Predefined regular expressions

You can use regular expressions with the MEGREP utility (see Appendix B, "Support
Programs for the Microsoft Editor," for more information on this utility). You can also
use regular expressions with the search functions (Psearch, Msearch, Replace, and
Qreplace). Each of these functions recognizes a regular expression (rather than an ordi­
nary text string) when you use Arg Arg to introduce the string.

5.1 Regular Expressions as Simple Strings

The power of regular expressions comes from the use of the special characters listed
below. If you do not use these special characters, then a regular expression works as an
ordinary text string.

\{}()[]!"':?"$+*@#

39

Microsoft Editor User's Guide

For example, the regular expression match me precisely matches only a literal oc­
currence of itself, because it contains no special characters.

5.2 Special Characters

The Microsoft Editor offers a rich set of pattern-matching capabilities. Most of the
special characters described below have analogues in other editors and utilities that use
regular expressions.

The list below describes some of the simpler special characters. The term class has a
special meaning defined below. All other characters should be interpreted literally.

Expression

\

?

$

[class]

[~class]

Description

Escape. Causes the editor to ignore the special meaning of
the next character. For example, the expression \? matches
? in the text file; the expression \ " matches "; and the ex­
pression \ \ matches \.

Wildcard. Matches any single character. For example, the ex -
pression a ?a matches aaa, aBa, and ala, but not aBBBa.

Beginning of line. For example, "The matches the word
The only when it occurs at the beginning of a line.

End of line. For example, end$ matches the word end only
when it occurs at the end of a line.

Character class. Matches any one character in the class. Use
a dash (-) to specify ranges. For example, [a - zA-Z O - 9]
matches any character or digit, and [abc] matches a, b, or
c.

Noncharacter class. Matches any character not specified in
the class.

The rest of the special characters are described in the following list, in which X is a
placeholder that represents a regular expression that is either a single character or a
group of characters enclosed in parentheses(()) or braces({}). The placeholders XI,
X2, and so on, represent any regular expression.

40

Expression

x•

X+

X@

X#

(XJ!X2! ... !Xn)

"'X

X"n

{ ... }

:letter

Regular Expressions

Description

Minimal matching. Matches zero or more occurrences of X.
For example: the regular expression ba *b matches baa ab,
bab,andbb.

Minimal matching plus (shorthand for XX*). Matches one or
more occurrences of X. The regular expression ba +b
matches baab and bab but not bb.

Maximal matching. Identical to x•, except for differences in
matching method explained in Section 5.3.

Maximal matching plus. Identical to X +, except for differ­
ences in matching method explained in Section 5.3.

Alternation. Matches either XI, X2, and so forth. It tries to
match them in that order, and switches from Xi to Xi+ 1 only
if the rest of the expression fails to match. For example, the
regular expression (ww ! xx ! xxyy) z z matches xxz z on
the second alternative and xxyyz z on the third.

Not function. Matches nothing, but checks to see if the string
matches X at this point, and fails if it does. For example,
"'- (if ! while) ? * $ matches all lines that do not begin
with if or while.

Power function. Matches exactly n copies of X. For example,
w"4 matches wwww and (a?) "3 matches a#aba5.

Tagged expression. The exact use of tags is explained in Sec­
tion 5.4. Characters within braces are treated as a group.

Predefined string. The list of predefined strings is given in
Section 5 .5.

41

Microsoft Editor User's Guide

The example below uses some of the special characters presented in this section. To
find the next occurrence of a number (that is, a string of digits) beginning with a digit
1 or 2, perform the following sequence of keystrokes:

I. InvokeArg twice (press ALT+ A twice).

2. Type the following characters:

[12][0-9]*

3. Invoke Psearch (press F3).

5.3 Matching Method

The "matching method" you use is significant only when you use a search-and-replace
function. The term matching method refers to the technique used to match repeated ex­
pressions. For example does a* match as few or as many characters it can? The an­
swer depends on the matching method. Two matching methods are available:

Method

Minimal

Maximal

Description

The minimal method matches as few characters as possible
in order to find a match. For example, a+ matches only the
first character in aaaaaa. However, ba +b matches the en­
tire string baaaaaab, as it is necessary to match every oc­
currence of a in order to match both occurrences of b.

The maximal method always matches as many characters as
it can. For example, at matches the entire string aaaaaa.

The significance of these two methods may not be apparent until you use search and
replace. For example, if a+ (minimal matching plus) is the search string and EE is the
replacement string, then

aaaaa

is replaced with

EEEEEEEEEE

because each occurrence of a is immediately replaced by EE. However, if at (maxi­
mal matching plus) is the search string, then the same string is replaced with

EE

because the entire string aaaaa is matched at once and replaced with EE.

42

Regular Expressions

5.4 Tagged Expressions

Like matching method, tagged expressions have no effect except when you use search­
and-replace functions. Tagged expressions are useful because you may want to manipu­
late text rather than simply replace it with a fixed string. For example, suppose you
wanted to find all occurrences of hexdigitsH and replace them with strings of the form
16#hexdigits. Tagged expressions enable you to do just these kinds of operations.

The Microsoft Editor first looks for a character string that matches the entire regular
expression given. Then, each substring of characters that corresponds to an expression
within braces({}) is tagged. You can tag up to nine such substrings. A tagged expres­
sion can then be generated in the replacement string by the use of the expression

$n

in which n is a digit from 0 to 9. The first tagged expression (going from left to right)
is referred to as $1, the second as $2, and so forth up to $9. The expression $0 always
refers to the entire matched string.

To return to the original example, you can search for strings of the form hexdigitsH by
specifying the following regular expression:

{[0-9a-fA-F]+}H

and then specifying this replacement string:

16#$1

Note that t is not a special character when it appears in the replacement string. The
result is that the Microsoft Editor searches for any occurrence of one or more hexadeci­
mal digits (digits 0-9 and the letters a-f) followed by the letter H. The editor then re­
places each such string by preserving the actual digits, but adding the prefix 16#. For
example, the string 1 a 0 o 0 H is replaced with the string 16t1a0 0 0.

43

Microsoft Editor User's Guide

5.5 Predefined Regular Expressions

The following expressions are defined in Table 5.1 for your convenience. You can use
them by entering : letter in a regular expression.

Table 5.1
Predefined Expressions

Letter Meaning Description

:a [a-zA-Z0-9] Alphanwneric

:b (['1]#) Whitespace

:c [a-zA-Z] Alphabetic

:d [0-9] Digit

:f ([-"\{\]\:<!>+=;,.]#) Portion of a file name

:h ([0-9a-fA-F]#) Hexadecimal number

:i ([a-zA-Z_$][a-zA-Z0-9_$]@} C-language identifier

:n ([0-9]#[0-9]@1 [0-9]@.[0-9]#! [0-9]#) Number

:p (([a-z]\: !)(\\!)(:f(:f!)\\)@:f(.:f!)) Path

:q ("[-"]@"! '[-']@') Quoted string

:w ([a-zA-Z]#) Word

:z ([0-9]#) Integer

44

Chapter 6

Function Assignments and Macros

Function assignments and macros give the Microsoft Editor flexibility and power.
Function assignments allow you to assign any editing function to a new keystroke. The
new keystroke can be identical to one you have used with other editors, or you can as­
sign a keystroke that makes sense only to you.

Using macros saves time by reducing the amount of typing you do. A macro consists of
a list of arguments and functions; once defined, the entire list of arguments and func­
tions can be assigned to a single keystroke. The Microsoft Editor's macros also support
conditional execution, so that you can use the results of a function (its return value) to
determine what other functions to invoke.

This chapter covers the following topics:

• Using the MESETUP program

• Assigning functions within the editor

• Creating macros within the editor

6.1 Using the MESETUP Program

The MESETUP program installs the editor files in a directory that you specify and as­
signs the editing functions to a predefined set of keystrokes. The editor provides con­
figurations that use keys similarly to the way they are used in several popular editors:

• Microsoft Quick languages/WordStar

• BRIEF

• Epsilon

• Default (which is used if none of the others are selected)

See the README.DOC file for instructions on using the MESETUP program.

45

Microsoft Editor User's Guide

6.2 Assigning Functions within the Editor

Assigning an editing function to a new keystroke from within the editor is easy. And
once a new assignment has been made, you can use that keystroke to invoke the func­
tion at any time during the editing session.

Take into account the following important points when assigning functions to
keystrokes:

1. The function assignments you make during the editing session are lost when you
exit from the editor. See Chapter 7, ''Using the TOOLS.INI File," for
information on more permanent function assignments.

2. Assigning a function to a new keystroke does not change any other keystrokes
to which the function was previously assigned. See Section 6.2.3 for information
on removing assignments.

3. Only one function may be assigned to a given keystroke at a time; therefore, you
are not able to use the keystroke to invoke any function which was previously
assigned to it.

6.2.1 Making Function ~ignments

To assign a function to a keystroke, issue the Arg textarg Assign command, where
textarg uses the following syntax:

functionname:keystroke

Here, keystroke may be any of the following:

46

1. Numeric keys: 0 through 9

2. Letter keys: A through Z

3. Function keys: Fl through F12

4. Punctuation keys: ' - , . < > f? ; • " [] { } \I _ = _ +

5. Named keys: HOME, END, LEFI', RIGHT, UP, DOWN, PGUP, PGDN, INS, DEL, BKSP,
TAB,ESC

Function Assignments and Macros

6. Numeric-keypad keys:+,-, and 0 through 9. To assign a function to the 4 key
on the numeric keypad, enter the following as the keystroke:

NUM4

7. Combinations:

a. ALT combined with items 1-5

b. CTRL combined with items 2-6

c. SHIFI' combined with items 3-6

For example, the function Savecur is assigned to the keystroke CTRL+B in the follow­
ing way:

1. Invoke theArg function (press ALT+A).

2. Enter the function and keystroke as the textarg by typing the following:

Savecur:CTRL+B

3. Invoke the Assign function (press ALT+= by holding down the ALT key and
pressing the= key).

From this point on, pressing CTRL+B invokes the Savecur function and saves the cur­
rent cursor position.

6.2.2 Viewing Function Assignments

The Help function shows you what function assignments are in effect at any time
during the editing session. Invoking the Help function (by pressing Fl) causes all of the
editing functions to be listed in alphabetical order on the screen along with the keys to
which they are assigned. You can scroll through this information as you would through
any file. Use the Setfile function (F2) to return to your original file.

6.2.3 Removing Function Assignments

If you choose to remove a function assignment, assign the keystroke to the function
Unassigned using theArg textarg Assign command. The argument textarg uses the fol­
lowing syntax:

Unassigned:key

Here, key is the keystroke you want to remove.

47

Microsoft Editor User's Gulde

For example, to remove the keystroke CTRL+A from any function, perform the follow­
ing steps:

1. Invoke the Arg function (press ALT+A).

2. Enter the function name as Unassigned and the keystroke by typing the
following:

Unassigned:CTRL+A

3. Invoke the Assign function (press ALT+=).

After these steps are carried out, pressing CTRL+A does not invoke any functions.

6.2.4 Making Graphic Assignments

Assigning the Graphic function to a keystroke lets you press the keystroke to insert it
literally into the file. For example, to insert a form-feed character in the file whenever
C1RL+L is pressed, follow these steps:

1. Invoke theArg function (press ALT+A).

2. Enter the function Graphic and the keystroke as the textarg by typing the
following:

Graphic:CTRL+L

3. Invoke the Assign function (press ALT+=).

Like the Graphic function, the Quote function lets you insert a literal character.
However, the Quote function must be used every time that the keystroke is pressed.
The Graphic function needs to be assigned only once during an editing session.

6.3 Creating Macros within the Editor

A macro is a series of functions and text arguments that you can execute with a simple
keystroke. The functions may be any valid editor functions. The text arguments may
serve as input to functions or as text that is to be entered into the file. Macros allow
you to use the results of a function (its return value) to determine what other functions
to invoke.

48

Function Assignments and Macros

Take into account the following important points when creating macros:

• Macros that you create during the editing session are lost when you exit from
the editor. See Chapter 7, "Using the TOOLS.INI File," for information on a
more permanent way of creating macros.

• The maximum number of macros that may be defined at any one time is 1024.

6.3.1 Entering a Macro

Enter a macro by using the Arg textarg Assign command, where textarg uses the syntax
described below:

macro name:= {function I "text"} ...

Each function must be previously defined and macroname must be a unique name.
Spaces separate the individual functions and arguments within commands. Double
quotes surround text arguments.

For example, the following macro scrolls the window down by 11 lines and places the
cursor in column 1:

Halfscreen:=Meta Up Arg "11" Plines Begline

Since a macro definition must be contained on one line, it may be necessary to break
up a macro function into several smaller functions as shown in the example below.
The smaller functions can then be grouped together and given a name and assigned to
a keystroke. Each of the following lines would be entered one at a time using the
Arg textarg Assign command.

Headl:=Arg "3" Linsert "/***********************"
Head2:=Newline "** Routine:"
Head3:=Newline "***********************/" Up Endline Right
Header:=Headl Head2 Head3

Macros may contain text only and not use functions at all, as in the following example:

Proc:="procedure();"

When invoked, this macro inserts the text procedure () ; into the file at the current
cursor position. However, before you can directly invoke the macro, you need to as­
sign it to a keystroke.

49

Microsoft Editor User's Guide

6.3.2 Assigning a Macro to a Keystroke

To invoke a macro, it is necessary to assign it to a keystroke. The procedure is similar
to that described in Section 6.2.1 for assigning a function to a keystroke, except that
you enter the name of your macro instead of an editing-function name. For example,
the following steps assign ALT+H to the macro named Header:

1. Invoke the Arg function (press ALT +A).

2. Enter the macro name and keystroke as the textarg by typing the following:

Header:ALT+H

3. Invoke the Assign function (press ALT+=).

6.3.3 Using Macro Conditionals

Macro conditionals let you alter the order that functions are invoked within the macro.
An editing function returns a TRUE value if the function is successful, or a FALSE
value if it fails. For example, a cursor-movement function fails if the cursor does not
move or if an invalid argument is used. Table 6.1 provides a complete list of functions
and return values.

Table 6.1
Editor Functions and Return Values

Function Returns TRUE Returns FALSE

Arg Always Never

Argcompile Compile successful Bad argument/compiler not
found

Assign Assignment successful Invalid assignment

Back.tab Cursor moved Cursor at left margin

Beg line Cursor moved Cursor not moved

Cancel Always Never

Cdelete Cursor moved Cursor not moved

Compile Compile successful Bad argument/compiler not
found

Copy Copy successful Bad argument

Down Cursor moved Cursor not moved

50

Function Assignments and Macros

Table 6.1 (continued)

Function Returns TRUE Returns FALSE

Emacscdel Cursor moved Cursor not moved

Emacsnewl Always Never

Endline Cursor moved Cursor not moved

Execute Last command successful Last command failed

Exit No return condition No return condition

Help Always Never

Home Cursor moved Cursor not moved

Information Always Never

Initialize Initialization successful Bad argument

Insertmode Insert mode now on Insert mode now off

Last text Function successful Bad argument

Ldelete Line-delete successful Bad argument

Left Cursor moved Cursor not moved

Linsert Line insert successful Bad argument

Mark Definition/move successful Bad argument/not found

Meta Meta now on Meta now off

Mlines Movement occurred Bad argument

Mpage Movement occurred Bad argument

Mpara Movement occurred Bad argument

Msearch String found Bad argument/string not found

Mword Cursor moved Cursor not moved

Newline Always Never

Paste Always Never

Pbal Balance successful Bad argument/not balanced

Plines Movement occurred Bad argument

Ppage Movement occurred Bad argument

Ppara Movement occurred Bad argument

Psearch String found Bad argument/string not found

Pword Cursor moved Cursor not moved

Qreplace At least one replacement String not found/invalid pattern

Quote Always Never

51

Microsoft Editor User's Guide

Table 6.1 (continued)

Function Returns TRUE Returns FALSE

Refresh File read in/deleted Canceled, bad argument

Replace At least one replacement String not found/invalid pattern

Restcur Position previously saved with Position not saved with
Savecur Savecur

Right Cursor over text of line Cursor beyond end of line

Savecur Always Never

Sdelete Delete successful Bad argument

Setfile File-switch successful Bad argument

Setwindow Window-change successful Bad argument

Shell Shell successful Bad argument/program not
found

Sinsert Insert successful Bad argument

Tab Cursor moved Cursor not moved

Undo Always Never

Up Cursor moved Cursor not moved

Window Successful split, join. or move Any error

The return values listed above can be used with the conditionals shown in Table 6.2 to
invoke functions conditionally.

Table 6.2
Macro Conditionals

Conditional

:>label

=>label

->label

+>label

52

Description

Defines a label that can be referenced by any of the other macro
conditionals.

Causes a direct transfer to label. If label is omitted, then the current
macro is exited.

Causes a direct transfer to label if the previous function returned the
FALSE condition. If label is omitted, then the current macro is
exited.

Causes a direct transfer to label if the previous function returned the
TRUE condition. If label is omitted, then the current macro is exited.

Function Assignments and Macros

For example, the following macro erases all characters from the current line:

Blankline:=Endline :>back Sdelete Left +>back

The macro executes the commands in the following order:

l. Endline causes the cursor to move to the end of the line.

2. : >back defines a label in the macro command

3. Sdelete erases the character under the cursor.

4. Left moves the cursor one character to the left If the cursor moves (it is not in
column l), then the return condition is true, otherwise it is false.

5. If the return condition in step 4 is true, +>back transfers control back to the
command following the label back.

Steps 3-5 continue until all characters have been deleted and the cursor is in column 1.

53

Chapter 7

Using the TOOLS.INI File

You can place statements in the TOOLS.INI file to modify function assignments, set
switches, and define macros for the Microsoft Editor. Each time the editor is started, it
loads all of the statements from the appropriate sections of the TOOLS.INI file (un­
less the ID option is used). This saves you the trouble of entering the same function as­
signments, switch settings, and macro definitions in every editing session.

This chapter explains the TOOLS.INI file, as follows:

Note

• Contents of the TOOLS.INI file (comments, function assignments, macros,
switch settings)

• Location of statements within the TOOLS.INI file (using tags)

The editor checks the directories listed in the INIT operating-system environment
variable for the location of the TOOLS.INI file. For example, if the TOOLS.INI
file is in the directory c: \ INIT, then place the following statement in your
AUTOEXEC.BAT file:

SET INIT=C: \!NIT

7.1 Using Comments

Comments in the TOOLS.INI file serve the same purpose as comment lines found in
most program source files; they provide documentation for how and why things are
done. The Microsoft Editor assumes everything on the line following a semicolon is a
comment and ignores it.

55

Microsoft Editor User's Guide

The comment in this example explains the macro's function and the keystroke assign­
ment that follows it:

; Assign Ctrl+S to a macro for saving the current file.
Save:=Arg Arg Setfile
Save:Ctrl+S

7.2 Assigning Functions to Keystrokes

Function assignments allow you to assign a function to a particular keystroke, so that
you can invoke the function by pressing the keystroke. You can change the default set
of assignments by placing function-assignment statements in the TOOLS.INI file. The
syntax follows:

functionname:keystroke

Here,functionname is the function you want assigned to the keystroke key. Section
6.2.1, "Making Function Assignments," lists the keys that you can assign to editing
functions and macros.

In the following example, the statement assigns the Window function to the key
ALT+W:

Window:Alt+W

7.3 Defining Macros

As discussed in Chapter 6, "Function Assignments and Macros," a macro is made up
of arguments and predefined functions and can be executed with a single keystroke. To
enter a macro in the TOOLS.INI file, use the following syntax:

macro name:= {function I "text"} ...

The argument macroname must be a unique name within each tagged section of the
TOOLS.INI file. Each function used in the definition must be previously defined. A
space separates individual functions and arguments in the definition; double quotes sur­
round the arguments.

56

Using the TOOLSJNI File

The example below shows how a multiline macro definition might appear in the
TOOLS.INI file.

; This macro indents the first line of each
; paragraph in the file by five spaces.
Indent:=Meta Begline Arg Right Right Right Right Right Sinsert
Inpara:=Mark :>Repeat Indent Ppara Endline Left +>Repeat
Inpara:Alt+P

7.4 Setting Switches

Three types of switches control the action of the Microsoft Editor: numeric switches,
Boolean switches, and text switches. You can set these switches in one of two ways:

1. Set them from within the editor using the Arg textarg Assign command, where
textarg uses the syntax described in the following sections.

2. Enter them in the TOOLS.INI file, one per line, using the syntax described in
the following sections.

7.4.1 Numeric Switches

Numeric switches allow you to give values to features such as screen colors, tabs, and
other controls. The syntax for setting a numeric switch is as follows:

switchname:numericvalue

In the first example below, the hscroll switch is set to the value of 20, that is, the win­
dow is shifted left or right by 20 columns when the cursor moves out of the window.
The second example sets the color of error messages to light yellow text on a black
background.

hscroll:20
errcolor:OE

57

Microsoft Editor User's Guide

The numeric switches errcolor, fgcolor, hgcolor, inf color, and stacolor all specify
colors for various types of text. The first digit of the value specifies the background
color, while the second digit specifies the text color. Table 7 .1 lists the colors and their
associated hexadecimal values. It should be noted that when specifying the back­
ground color, the values 8-F specify the same colors as 0-7 respectively, except that
the text flashes.

Table7.1
Colors and Numeric Values

Color Value

Black 0

Blue 1

Green 2

Cyan 3

Red 4

Magenta 5

Brown 6

Light Gray 7

Dark Gray 8

Light Blue 9

Light Green A

Light Cyan B

Light Red c
Light Magenta D

Light Yellow E

White F

58

Using the TOOLS.INI File

Table 7 .2 lists each of the numeric switches, along with its purpose and default value.

Table7.2
Numeric Switches

Numeric Switch

en tab

errcolor

fgcolor

height

hgcolor

hike

hscroll

inf color

maxmsg

noise

Description (and Default Value)

Controls the degree to which the Microsoft Editor converts multiple
spaces to tabs when editing a file. A value of 0 means that tabs are
not used to represent white space, 1 means that all multiple spaces
outside of quoted strings are converted, 2 means that all multiple
spaces are converted to tabs. (Default value: 1)

Controls the color used for error messages. The default is red text on
a black background. (Default value: 04)

Controls the color used for the editing window. The default is light
gray text on a black background. (Default value: 07)

Controls the number of lines that the Microsoft Editor uses in the
editing window, not including the dialog and status lines. This is
useful with a nonstandard display device; Enhanced Graphics
Adapter (EGA) in 43-line mode on the IBM PC uses a value of 41,
and Video Graphics Array (VGA) in 50-line mode uses a value of
48. (Default value: 23)

Controls the color for highlighted text The default is black text on a
light gray background. (Default value: 70)

Specifies the ending line position of the cursor when the cursor is
moved directly by editing functions. (Default value: 4)

Controls the number of columns shifted left or right when the cursor
is scrolled out of the editing window. (Default value: 10)

Controls the color used for informative text. The default is brown
text on a black background. (Default value: 06)

Controls the maximum number of messages retained in the Compile
function's message buffer. This switch works in OS/2 protected
mode only. To set this switch, place it in TOOLS.INI in a section
tagged [M-10.0]. (Default value: 10)

Controls the number of lines counted at a time when searching or
loading a file. This value is displayed in the lower-right comer of
the screen and may be turned off by setting noise to 0. (Default
value: 50)

59

Microsoft Editor User's Guide

Table 7.2 (continued)

Numeric Switch

rmargin

stacolor

tabdisp

tabstops

tmpsav

traildisp

undocount

vmbuf

vscroll

width

Description (and Default Value)

Controls the right column margin used in wordwrap mode. Any
character typed to the right of this margin causes a line break. Word­
wrap mode is turned on and off with the wordwrap switch. (Default
value: 72)

Controls the color used for the status-line information. The default is
cyan text on a black background. (Default value: 03)

Specifies the ASCH value of the character used to expand tabs. Nor­
mally, a space is used, but a graphic character can be used to show
exactly where tabs are located. (Default value: 32)

Controls the number of spaces between each logical tab stop for the
editor. (Default value: 4)

Controls the maximum number of files about which information is
kept between editing sessions. These are the most recently edited
files, and each file will be listed only once. When you exit from the
editor, the position of the cursor and window are saved, along with
the layout of multiple windows if any. When you begin editing
one of these files again, the screen starts up as you left iL (Default
value: 20)

Specifies the ASCH value of the character to be displayed as !railing
spaces. Note that this switch has no effect unless the trallspace
switch is tmned on. (Default value: 0)

Controls the number of edit functions that you may undo. (Default
value: 10)

Controls the number of 2K pages allocated in real memory to buffer
the virtual-memory file, M.u.r.VM. This switch works in OS!l pro­
tected mode only. (Default value: 128)

Controls the number of lines shifted up or down when the cursor is
scrolled out of the editing window. The Mlina and Plines functions
also use this value. (Default value: 7)

Controls the width of the display mode for displays that are capable
of showing more than 80 columns. (Default value: 80)

7 .4.2 Boolean Switches

Boolean switches tum certain editor activities on or off. Tum on a switch by entering
the switch name followed by a colon; tum it off by typing no followed by the name
and a colon. The syntax is summarized below:

[no]switchname:

60

Using the TOOLS.INI File

In the first example below, the case switch is set or turned on, which results in case
being significant in a search operation. In the second example the askrtn switch is
reset or turned off, which results in the editor returning from a Shell command without
prompting you.

case:
noaskrtn:

Table 7 .3 provides a complete list of Boolean switches, including the purpose and de­
fault value for each.

Table 7.3
Boolean Switches

Boolean Switch

askexit

askrtn

autosave

case

displaycursor

enterinsmode

savescreen

shortnames

softer

trailspace

word wrap

Description (and Default Value)

Prompts for confmnation when you exit from the editor. (Default
value: Oft)

Prompts you to press ENTER when returning from a Shell command.
(Default value: On)

Saves the current file whenever you switch away from it. H this
switch is off, you must specify when you want the file to be saved.
(Default value: On)

Considers case to be significant for search-and-replace operations.
For example if case is on, the string Procedure is not found as a
match for the string procedure. (Default value: Oft)

Shows a position on the status line in the (row,column) format.
When off, the position listed is that of the upper-left corner. When
on, the current cursor position is given. (Default value: Oft)

Starts the editor up in insert mode as opposed to overtype mode.
(Default value: Oft)

Saves and restores the DOS screen (for use with the Push and Exit
functions). (Default value: On)

Allows you to specify an alternate file by giving only the base
name. (Default value: On)

Attempts to indent based upon the format of the surrounding text
when you invoke the Newline or Emacsnewl fim.ctions. (Default
value: On)

Remembers trailing spaces in text. (Default value: Oft)

Breaks lines of text when you edit them beyond the margin
specified by rmargin. (Default value: Oft)

61

Microsoft Editor User's Guide

7 .4.3 Text Switches

Text switches specify a string that modifies the action of the editor in some way. The
syntax is shown below:

switchname:textvalue

In the example below, the backup switch is set so that no backup is performed.

backup:none

Table 7.4 lists the text switches, the function of each, and a default value, if any.

Table 7.4
Text Switches
Text Switch

backup

extmake

load

62

Description (and Default Value)

Detennines what happens to the old copy of a file when it is edited.
A value of none specifies that no backup operation is to be per­
formed and the old file is overwritten. A value of undel specifies
that the old file is to be moved so that UNDEL.EXE can retrieve it.
A value of bak specifies that the file name of the old version of the
file will be changed to .BAK. (Default value: undel)

Associates a command line with a particular file extension for use
by the Compile function. The text after the switch has this form:

extmake:extension commandlin£

Here, extenrion is the extension of the file to match, and
commandlin£ is a command line to be executed. If there is a %s in
the command line, it is replaced with the name of the current file or
with the textarg in the Arg textarg Compile command. This is the
only switch that may appear more than once in the TOOLS.INI file;
there is a separate line for each extension.

For example, you have the following lines in TOOLS.INI:

extmake:bc /Z %s
extmake: for fl /c %s
extmake: pas pl I c /h %s
extmake: asm masm -Mx % s;
extmake:c cl /c /Zep ID LINT_ARGS %s
extmake: text make %s

You also have a file named foo. ThecommandArg foo Compile
invokes

make foo

This in turn invokes a compiler and linker. See the documentation
for the Microsoft Program Maintenance Utility (MAKE) for more
information.

Specifies the name of a C-extension executable file to be loaded.

Table 7.4 (continued)

Text Switch

markflle

readonly

Using the TOOLS.INI File

Description (and Default Value)

Specifies the name of the file the Microsoft Editor searches when
looking for a marker that is not in the in-memory set. This file can
be created using the CALL TREE program discussed in Appendix
B, "Support Programs for the Microsoft Editor," or by entering lines
of the following form:

markername filename line column

Here, line and column specify the position in the file filename where
the marker markername appears.

Specifies the DOS command that is invoked when the Microsoft
Editor attempts to overwrite a read-only file. The current file name
is appended to the command, as shown in the following example:

readonly:attrib -r

This command removes the read-only attribute from the current file
so the file can be overwritten. If no command is specified, you are
prompted to enter a new name under which to save the file.

7 .5 Creating Sections with Tags

Tags divide the TOOLS.INI file into sections. All statements are associated only with
the tag that they immediately follow. This allows programs other than the Microsoft
Editor, MAKE, to use this file for configuration information. It also allows you to load
only a certain section of statements by using the Arg textarg Initialize command. The
tag must use the following syntax:

[M-text]

The value of text is the textarg that you use to initialize the editor with the statements
following this tag. A blank line precedes the tag.

In the example below, there are two tagged sections, one for use with C programs and
one for Pascal programs.

[M-Pascal)
; Insert a Pascal Header
Header:=Arg "1" Linsert Newline "{ Pascal Program:"
Header:Alt+h

[M-C)
; Insert a C Header
Header:=Arg "1" Linsert Newline "/* C Program:"
Header:Alt+h

63

Microsoft Editor User's Guide

With this text in the TOOLSJNI file, you can use ALT+H to insert one of the two head­
ers into your file, depending on which tag you use to initialize the editor. For example,
to insert the C header, follow these steps:

1. Invoke the Arg function (press ALT+A).

2. Enter the name of the tagged section to load (type c).

3. Invoke the Initialize function (press FlO).

The editor reads the tagged section from the TOOLS.INI file.

4. Insert the C header (press ALT+H).

When the Microsoft Editor is started, the tagged sections are loaded in the following
order:

64

1. Information specific to the operating system.

Depending upon the operating system you are working under, one of the follow­
ing tagged sections is loaded (if present):

• [M-3.20] (MS-DOS)

• [M-10.0] (OS/2 protected mode)

• [M-10.0R] (OS/2 real mode)

This provides a way of automatically setting the vmbuf and maxmsg switches
when running in protected mode. With the DOS version tag, you should insert
the version number you are using. You can specify more than one version by
using a tag like [M-3.20 M-3.30], which works with either version 3.20 or 3.30.

2. Information used for all editing sessions.

All of the statements in the [M] section are loaded.

Using the TOOLSJNI File

3. Information specific to the display.

Depending on the video display you are using, one of the following tagged sec­
tions is loaded (if present):

• [M-mono]

• [M-cga]

• [M-ega]

• [M-vga]

• [M-viking]

You can also put statements for setting the screen dimensions and colors in these
tagged sections.

65

Chapter 8

Programming C Extensions

C extensions offer the most powerful technique for customizing the Microsoft Editor.
The term "C extension" refers to a C-language module containing new editing func­
tions that you program. The module can also define new switches. Your functions can
be attached to a key, given arguments, and used in macros just as intrinsic editing func­
tions are. Any switches that you define can be set just as intrinsic editing switches are,
and your switches can be used by the functions you define.

If you already understand the C programming language, you do not need to learn a
new, specialized language to build your functions. C extensions let you use the full
power of the C language: data structures, control-flow structures, and C operators.
Furthermore, the C-generated code is compiled, not interpreted. Therefore your func­
tions are fast.

Note

This chapter assumes that you already know how to program in C. Before you
read the chapter, make sure that you understand the following C-language
programming concepts: functions, pointers, structures, and unions. You also need
to know how compile and link a C source file.

You can also write extensions with MASM if you simulate the C memory model
specified in Section 8.5.1, "Compiling in Real Mode." However, this chapter is
primarily addressed to C programmers.

This chapter develops C-extension concepts gradually. The first time you read the
chapter, you should read the sections in sequential order:

• Requirements

• How C extensions work

• Writing the C extension

• How to use the low-level editing functions

67

Microsoft Editor User's Guide

• Compiling and linking

• AC-extension sample program

8.1 Requirements

To create C extensions, you need to have the following files and software present in
your current directory (or directories listed in the PATH or INCLUDE environment
variables, as appropriate):

• The Microsoft C Optimizing Compiler, Version 4.0 or later

• The Microsoft Overlay Linker, Version 3.60 or later, or the OS/2 version of the
linker, or the Microsoft Segmented-Executable Linker Version 5.01

• EXTHDR.OBJ (supplied with the editor)

• EXT.ff (supplied with the editor)

• SKEL.C (a template that you can replace with your own code)

You need a minimum of 150K of available memory for the editor to load a C extension
at run time.

8.2 How C Extensions Work

AC-extension module is similar in the following respects to an OS/2 or Windows
dynamic-link library:

68

• There is no function called main in your module. Instead, you use certain names
and structures that the editor recognizes.

• You compile and link to create an executable file, but this executable file is sepa­
rate from the main program, M.EXE.

• The editor loads your executable file into memory at run time. The editor uses a
table-driven method for enabling your module to call functions within M.EXE.

Programming C Extensions

Once your executable file is loaded, it resides in memory along with M.EXE. The edi­
tor can call your functions, and your functions can call the Microsoft Editor's low­
level functions that perform input and output.

The following list summarizes the overall process of developing and using a C
extension:

1. Compile a C module with a special memory-model option, then link the
resulting object file to create an executable file.

You also link in the object file EXTHDR.OBJ to the beginning of your execu­
table file. This object file contains a special table that enables your functions to
call functions within the editor effectively.

2. Start up the Microsoft Editor. Set the internal load switch to look for the
executable file you created. (As discussed in Chapter 7, the load switch can be
set in the TOOLS.INI file or manually with the Assign function).

The editor loads your executable file into memory.

3. As soon as the executable file is loaded, the editor calls the function
WhenLoaded, which is a special function that your module must define.

At the same time, the editor examines the table cmdTable, which is an array of
structures that your module must declare. The editor examines this table in order
to recognize the editing functions that you have created. The table contains func­
tion names and pointers to functions.

4. You can assign keys to call your functions. Assign a key manually or in the
WhenLoaded function, then press the assigned key. You can also call an editing
function indirectly by placing it in a macro and calling the macro.

5. When you invoke a C-extension function, the editor responds by calling your
module.

6. Your editing function is executed. It calls the Microsoft Editor's low-level
functions in order to read from the text file, output to the text file, and print
messages.

69

Microsoft Editor User's Guide

8.3 Writing a C Extension

To create a successful C extension, you need to follow these guidelines:

1. Check the README.DOC file to see what functions you can call from the
standard C run-time library.

A technical problem prevents library compatibility: to work with the Microsoft
Editor, you must compile with SS not equal to DS. (fhe C compiler gives your
module its own default data area, but your module shares the editor's stack.
Therefore your stack-segment and data-segment registers are not equal.) Since
standard Microsoft C libraries assume SS equal to DS, you cannot use some li­
brary functions.

2. Include the file EXT.ff.

This file declares all the structures and types that are required to establish an in­
terface to the editor.

3. Include the standard items that are described in Section 8.3.1, "Required
Objects." Then compile and link as directed in Section 8.5, "Compiling and
Linking."

8.3.1 Required Objects

AC-extension module must have at minimum three items with the names given below:

Object Name

swiTable

cmdTable

WhenLoaded

Description

An array of structures that declares internal switches that
you wish to create

An array of structures that declares editing functions that
you have coded

A function that the editor calls as soon as the C-extension
module is loaded

Each of these items can be as short or as long as you wish. Each table can be as short
as a single row of entries. The WhenLoaded function can return immediately, or it
can perform useful initialization tasks such as assigning keys to functions or printing a
message.

70

Programming C Extensions

8.3.2 The Switch Table

The switch table, swiTable, consists of a series of structures, in which each structure
describes a switch you wish to create. The table ends with a structure that has all null
(all zero) values. Though you may choose not to create any switches, the table must
still be present. The simplest table allowed is therefore

struct swiDesc swiTable[)

NULL, NULL, NULL }
} ;

The structure type swiDesc is defined in EXT.ff. This structure contains the following
three fields that define a switch for the editor to recognize:

1. A pointer to the name of the switch.

2. A pointer to the switch itself or to a function. If the switch is Boolean, then this
field must point to the switch (an integer which assumes the value -1 or 0). If
the switch is text, then this field must point to a function, as explained below.
If the switch is numeric, then this field points to either an integer or to a
function, depending on the value of the third field.

3. A flag that indicates the type of switch: either SWI BOOLEAN,
SWI _NUMERIC, or SW!_ SPECIAL. -

If the third field has value SW!_ SPECIAL, then the second field must be a pointer to
a function of type int pascal. You define this function in your code. Each time the
value of the switch changes, the editor calls your function and passes the updated
value in a character string. Your function should declare exactly one parameter: a far
pointer to a character.

The table may have any number ofrows (each row being a structure), and must at least
include the final row of all null values. Here is an example of a table that creates a
numeric switch with a default value of 27:

int n = 27;

struct swiDesc swiTable [] =

"newswitch", &n, SWI NUMERIC } ,
NULL, NULL, NULL }

71

Microsoft Editor User's Guide

8.3.3 The Command Table

The command table, cmdTable, is similar to the table swiTable in its construction.
Each "row" of the table consists of a structure that describes an editing function
that you want the editor to recognize. The last row must contain all null values. The
simplest table allowed is the following:

struct cmdDesc cmdTable[) =

NULL, NULL, NULL, NULL

Usually you will want to declare at least one new editing function. The structure type
cmdDesc is defined in EXT.ff. This structure contains the following four fields that
make an editing function recognizable to the editor:

1. A pointer to the name of the function as it will be used within the editor. This
name could appear in assignments and macros.

2. The address of the function itself. Give the function name, but do not follow it
with parentheses.

3. A field used internally by the editor. Always declare this field as null.

4. The type of the function. Function types are described below and define what
type of argument the function will accept.

Here is an example of a command table that declares a function that takes no
arguments:

struct cmdDesc cmdTable[J =
{

"newfun", newfun, NULL, NOARG } ,
NULL, NULL, NULL, NULL }

In the fourth field of the command table, use one or more of the values described
below:

Value

KEEPMETA

CURSORFUNC

72

Description

Does not take the Meta prefix. The function re­
serves Meta for next function.

Executes cursor movement only. Highlighting
and the Arg function are not affected. The func­
tion does not take arguments.

WINDOWFUNC

NOARG

TEXTARG

BOXSTR

NULLARG

NULLEOL

NULLEOW

LINEARG

STREAMARG

BOXARG

NUMARG

MARKARG

Programming C Extensions

Window-movement function. Highlighting is not
affected.

Accepts absence of Arg prefix.

Accepts a text argument.

Accepts a one-line box argument (in other
words, a streamarg). The string of text
highlighted is passed as a text argument.

Accepts Arg without requiring an argument.

Accepts Arg without requiring an argument. The
function is passed pointer to textarg consisting
of an ASCIIZ string from the cursor to the end of
the line.

Accepts Arg without requiring an argument. The
function is passed pointer to textarg consisting
of an ASCIIZ string from the cursor to the end of
the word (next white space).

Accepts a linearg. If the editor detects a linearg,
function is passed the beginning line of the range
and the ending line of the range.

Accepts any kind of cursor movement. The func­
tion is passed the beginning point of the range
and the ending point of the range.

Accepts a boxarg. If the editor detects a boxarg,
the function is passed the line and column bound­
aries of the region.

Accepts a numarg. Information is passed as a
/inearg; in other words, the function is passed a
range of lines.

Accepts a markarg. Information is passed as a
streamarg; in other words, the function is passed
beginning and ending point of range defined by
the cursor position and the marker.

73

Microsoft Editor User's Guide

In the descriptions above, the term "ASCIIZ string" refers to a string of characters ter­
minated by a zero (or null) byte. The descriptions also refer to the passing of informa­
tion to the function; you'll see how the function receives information in Section 8.3.5,
"Writing the Editing Function."

You can combine the function types with binary or (I). For example, you can specify
a function that accepts a boxarg, linearg, or numarg as:

BOXARG I LINEARG I NUMARG

8.3.4 The WhenLoaded Function

The function WhenLoaded takes no arguments and can return immediately if you
want. However, you must include the function because the editor expects it to be pre­
sent. The simplest version of WhenLoaded is:

WhenLoaded ()
{

return;

In Section 8.4, "Calling Low-Level Editing Functions," you'll learn how to call func­
tions that assign keys to functions and print a message on the message line. These
functions are often useful to call from within WhenLoaded.

8.3.5 Writing the Editing Function

This section describes how to declare an editing function and how to use information
that is passed to the function from the editor. The editing function must return type
flagType, which is an integer that takes values true (-1) or false (0) and is defined in
the file EXT.ff. Editing functions are declared with Pascal calling conventions and
must be of type EXTERNAL. The sample function Skel is declared as follows:

#define TRUE -1
#define FALSE 0

flagType pascal EXTERNAL Skel (argData, pArg, £Meta)
unsigned int argData;
ARG far *pArg;
flagType fMeta;
{

return TRUE;
}

74

Programming C Extensions

The parameter list is described below:

Parameter Description

argData The value of the keystroke used to invoke the function. This
parameter is generally not used.

pArg A pointer to a structure that contains almost all the informa­
tion passed by the editor. This structure is discused in detail
below.

fMeta An integer that describes whether or not a Meta prefix is pre­
sent. This integer has value true (-1) if Meta is present, and
value false (0) if not.

The parameter pArg points to a structure whose first element is always argType. The
argument type returned in this structure uses the same values listed in Section 8.3.3,
"The Command Table." Thus, you could test for the presence of a numarg with the fol­
lowing code:

if (pArg->argType NUMARG) {

/* take appropriate action for numarg */

The rest of the structure consists of a union of structures. The C data-type union is nec­
essary here; it enables the editor to pass data in a variety of different formats. The
exact format depends on which member of the union is used. In any case, the data is
passed to the same area of memory.

The declaration of the ARG structure in the file EXT.ff is as follows:

struct argType {
int argType;
union {

struct noargType
struct textargType
struct nullargType
struct lineargType
struct streamargType
struct boxargType

arg;

typedef struct argType ARG;

noarg;
textarg;
nullarg;
linearg;
streamarg;
boxarg;

75

Microsoft Editor User's Guide

The editor uses one of the structures in the union to return information about argu­
ments. The choice of structures depends on the type of argument. For example, if the
argType element is equal to LINEARG, the editor returns information in the structure
pArg->arg.linearg.

Consult the file EXT.ff to see how each structure is declared. For example, the textarg
structure type is declared as follows:

struct textargType
int cArg;
LINE y;
COL x;
char far *pText;

In the structure above, cArg contains an integer equal to the number of times Arg was
invoked. The variables y and x are integers that give the cursor position, and pText
points to the actual string text. The following code initializes variables row and col,
and copies the textarg into a buffer:

LINE row;
COL col;
int i;
char far *p, buffer[Bl];

row = pArg->arg.textarg.y;
col = pArg->arg.textarg.x;
p = pArg->arg.textarg.pText;
for (i = O; (c = *p) != NULL; i++)

buffer[i] = c;

In another example, if pArg->argType is equal to type NULLARG, then you can
initialize row and col as follows:

LINE row;
COL col;

row pArg->arg.nullarg.y;
col pArg->arg.nullarg.x;

8.3.6 Putting It All Together

Here is a listing of the source module SKEL.C, which provides you with the basic tem­
plate of a C extension. This code does nothing, but it is recognized by the Microsoft
Editor as logically correct. You can makes use of this template by using your own func­
tion names and inserting your own statements. Before you can write useful code,
however, you first need to read Section 8.4, "Calling Low-Level Editing Functions."

76

Programming C Extensions

#include "ext.h"

#define TRUE -1
#define FALSE 0
#define NULL ((char*) 0)

flagType pascal EXTERNAL Skel (argData, pArg, fMeta)
unsigned int argData;
ARG far *pArg;
flagType fMeta;
{

return TRUE;

struct swiDesc swiTable[]
{ NULL, NULL, NULL }

} ;

struct cmdDesc cmdTable[] = {

} ;

{ "skel", Skel, O, NOARG } ,
{ NULL, NULL, NULL, NULL }

WhenLoaded ()
{

return TRUE;

8.4 Calling Low-Level Editing Functions

The functions presented in this section cannot be called directly by the user. However,
they can be called by higher-level editing functions to carry out specific tasks such as
reading a line from a file, replacing or inserting a character, printing messages, and
deleting or inserting text. These functions are used within the Microsoft Editor itself
and are made available to be called by functions in a C extension.

Note

All pointers that you pass (such as character pointers) need to refer to data that are
declared externally; in other words, do not pass pointers to strings that you declare
locally. Because SS does not equal DS, the low-level function will not properly
find stack data, such as a local (or "automatic") variable.

77

Microsoft Editor User's Guide

This section serves as a guide to the most commonly used low-level functions. You can
begin writing C extensions by using the functions presented here. Later you can con­
sult the file EXT.DOC for a complete listing of all low-level functions.

Sections 8.4.1-8.4.3 present groups of functions by covering the following topics:

• Reading from a file

• Writing to a file

• Initialization functions

8.4.1 Reading from a File

This section presents functions that you can call to scan a file (either the current file or
any other that you specify).

8.4.1.1 The FileNameToHandle Function

To read or write to a file (including the current file), you must first call the
FileNameToHandle function, which returns a handle to the named file. The function
is declared as follows:

PFILE pascal FileNameToHandle (pname, pShortName)
char *pname, *pShortName;

The pname parameter points the file name. If pname points to a zero-length string,
then the function returns a handle to the current file. Unless pShortName is a null
pointer, the editor searches its list of current files (files that have been edited in this
session) for a path name that includes the name pointed to by pShortName. If there is a
match, the function uses the full path name found.

For example, the following code returns a handle to the current file:

PFILE curfile;

curfile = FileNameToHandle("", NULL);

78

Programming C Extensions

8.4.1.2 The GetLine Function

The GetLine function provides the principal means for reading text from a file.

int pascal GetLine (line, buf,pfile)
LINE line;
char far *buf
PFILE pfile;

The function reads a specified line of text, and copies the line into a character-string
buffer pointed to by buf. The line parameter is an integer that contains a line number.
The pfile parameter is a pointer returned by FileNameToHandle.

The following example reads the line of text which includes the initial cursor position:

PFILE cfile;
char buffer[256];

cfile = FileNameToHandle("", NULL);
GetLine(pArg->arg.nullarg.y, buffer, cfile)

8.4.1.3 The FileLength Function

The FileLength function is useful for doing global file operations, in which you need
to know when you are at the last line. The function takes a pointer to a file handle as
input, returns an integer, and is declared as follows:

LINE pascal FileLength (pFile)
PFILE pfile;

The following example stores the length of the current file in the variable n:

n = FileLength (cfile);

8.4.2 Writing to a File

This section presents functions that are useful for altering a file by replacing, inserting,
or deleting text.

79

Microsoft Editor User's Guide

8.4.2.1 The Replace Function

The Replace function inserts or replaces characters one at a time; it is declared as
follows:

flagType pascal Replace (c, x, y, pFile,flnsert)
char c;
COL x;
LINE y;
PFILE pFile;
flagType fl nsert;

The c parameter contains the new character. The x and y parameters indicate the file
position, by column and line, where the edit is to take place. The pFile parameter is a
file handle returned by the FileNameToHandle function. To specify insertion, set
flnsert to true (-1). To specify replacement, setflnsert to false (0). The function returns
true (-1) if the edit is successful.

For example, the following code inserts the word "Hello" at line y and column x of
the current file:

*define TRUE -1
char *p;
PFILE cfile; /* handle to current file */

cfile = FileNarneToHandle("", NULL); /* initialize cfile */
for (p = "Hello"; *p; p++, y++)

Replace(*p, x, y, cfile, TRUE);

8.4.2.2 The PutLine Function

The PutLine function replaces a line of text; it is declared as follows:

void pascal PutLine (line, buf, pfile)
LINE line;
char far * buf;
PFILE pfile;

The parameter bu/points to the string that contains the new line of text. This string
should terminate with a null value, but it should not contain a new-line character. The
editor takes care of inserting a new-line character at the proper position in the file. The
parameter line contains the line number at which the replacement it to take place. Line
numbers start at O; if line has the value 0 then the new line of text is inserted at the
beginning of the file.

80

Programming C Extensions

The following code replaces the first line of the current file with the string pointed to
by buffer:

[PutLine (0, buffer, cfile);

8.4.2.3 The CopyLine Function

The CopyLine line function can be used either to copy a group of lines from one area
to another or to insert a blank line. The function is declared as follows:

void pascal Copy Line (pFi/eSrc, pFileDst, yStart, yEnd, yDst)
PFILE pFileSrc, pFileDst;
LINE yStart, yEnd, yDst;

The pFileSrc and pFileDst parameters are file handles. If pFileSrc is null (0), then the
function inserts a blank line. Otherwise, the function inserts lines from yStart to yEnd.
Lines are inserted directly before yDst. For example, the following code inserts a blank
line at the beginning of the file:

CopyLines(NULL, cfile, NULL, NULL, 0);

8.4.2.4 The DelStream Function

The DelStream function deletes a stream of text beginning with a starting coordinate
and going up to but not including the ending coordinate. The function is declared as
follows:

void pascal DelStream (pfile, xStart, yStart, xEnd, yEnd)
PFILE pfile;
COL xStart, xEnd
LINE yStart, yEnd;

The xStart and yStart parameters are the beginning coordinates; the xEnd and yEnd par­
ameters are the ending coordinates. The coordinates are all integers.

The following example deletes the stream of text beginning with line 2 column 3, up to
but not including line 5 column 4.

DelStream (cfile, 3,2,4,5);

8.4.3 Initialization Functions

The low-level functions in this section are typically called by the WhenLoaded func­
tion, but they can be called by editing functions as well.

81

Microsoft Editor User's Guide

8.4.3.1 The SetKey Function

The SetKey function assigns an editing function to a key, and is declared as follows:

flagType pascal SetKey (name,p)
char far *name, far *p;

The name parameter points to a string containing the name of the function, and the p
parameter points to a string that names the key. The rules for naming the key are the
same as those given in Chapter 6, "Function Assignments and Macros." The function
returns true (-1) if the assignment is successful.

The following code assigns the C1RL+X key to the newly defined function NewFunc:

SetKey("NewFunc", "ctrl+x");

8.4.3.2 The DoMessage Function

The DoMessage function outputs a message on the dialog line and returns the number
of characters written.

int pascal DoMessage (pStr)
char far *pStr;

The pStr parameter points to the message you want to write.

The following example outputs a message on the dialog line:

DoMessage("Hello, world.");

8.4.3.3 The BadArg Function

The BadArg function reports an error message stating that the user's argument was
not accepted. Note that usually you do not need to call this function because the
editor looks at the type of your function as declared in cmdDesc (TEXTARG,
STREAMARG, and so forth) and rejects commands with the wrong type of argument.
The function is declared as follows:

flagType pascal BadArg (void)

82

Programming C Extensions

8.5 Compiling and Linking

After you've written your C module following the guidelines in the last few sections,
you're ready to compile and link. The procedures for compiling and linking in pro­
tected mode are slightly different from compiling and linking in real mode. Sections
8.5.1-8.5.2 consider both environments.

8.5.1 Compiling in Real Mode

To create a C extension for real mode, follow these two steps:

1. Compile with command line options /Gs and I Asfu. These options establish the
proper memory model and calling convention, and are mandatory. (If you are
programming in MASM, use near code and far data segments, in which SS is
not assumed equal to DS.) For example:

CL /c /Gs /Asfu myext.c

2. Link with the command-line options /NOD and /NOi. Linking with /NOD is
important because it prevents the linker from linking in standard libraries.
Always link the file EXTHDR.OBJ first. For example:

LINK /NOI /NOD exthdr.obj myext.obj, myext;

When you use the CL driver, you can accomplish both steps in one command line:

CL /Gs /Asfu /Femyext exthdr myext.c /link /NOD /NOI

When you correctly compile and link your C-extension module, you produce an execu­
table file. You cannot execute this file directly from DOS. However, the Microsoft Edi­
tor can load the file into memory and use the functions that your module defines.

83

Microsoft Editor User's Guide

To use the C extension, make sure that your executable file is in the current directory
or in a directory listed in the PATH environment variable. After you start up the Micro­
soft Editor, set the load switch to make the editor load your C extension. For example,
after you have created the file MYEXT.EXE, you could place the following statement
in the TOOLS.INI file:

load:myext.exe

The editor responds by automatically loading your C-extension module into memory
whenever the editor checks the TOOLS.IM file for initialization.

8.5.2 Compiling in Protected Mode

To compile and link a protected-mode C extension, follow the instructions above for
real mode, except in two respects:

1. Use the /G2 and /Lp options when you compile. (fhe /Lp option is not required
unless you compile a protected-mode application from within real mode.) The
example in the previous section would therefore change to

CL /c /Gs /Asfu /G2 /Lp myext.c

2. Instead of linking to produce an executable file, you link to produce a .D LL file
(a dynamic-link application). Specify SKEL.DEF as the module-definition file,
and place the resulting .DLL file in one of the directories listed in the
LIBPATH directive in your CONFIG.SYS file. You may want to edit the
SKEL.DEF file, to change the library name specified.

8.6 AC-Extension Sample Program

The following C-extension sample program features one simple function named
Upper, which accepts a simple streamarg or textarg. (As explained earlier in the chap­
ter, the BOXSTR function type accepts a one-line stream of text highlighted on the
screen.) The function responds by replacing characters in the file, beginning at the cur­
sor position, with characters from the textarg that have been converted to uppercase
letters.

84

Programming C Extensions

#include "ext.h"
#define TRUE -1
#define FALSE 0
#define NULL ((char*) 0)

flagType pascal EXTERNAL
unsigned int argData;
ARG far *pArg;

Upper (argData, pArg, fMeta)

flagType fMeta;
{

LINE row;
COL col;
int c;

/* coordinates in file */

char far *p;
PFILE cfile;

/* replacement character */
/* pointer to textarg */
/* pointer to file handle */

cfile = FileNameToHandle("",
row pArg->arg.textarg.y;
col pArg->arg.textarg.x;
p = pArg->arg.textarg.pText;
for (; *p; p++, col++) {

c = *p;

NULL) /* get current file */
/* load coordinates */

/* for each char in textarg */
/* get character */

if (C >= f a f & & C <= f Z I) /* convert to upper */
c += ' A' - ' a ' ;

Replace (c, col, row, cfile, FALSE); /* put in file */

return TRUE;

struct swiDesc swiTable []
{ NULL, NULL, NULL }

} ;

struct cmdDesc cmdTable [] = {

} ;

{ "Upper", Upper, O, BOXSTR I TEXTARG },
{ NULL, NULL, NULL, NULL }

WhenLoaded ()
{

SetKey("Upper", "alt+u");
DoMessage("Upper function now loaded.");

85

Appendix A

Reference Tables

A.l Categories of Editing Functions

Table A.I lists the editing functions by category and gives a brief description of each
function.

Table A.I
Summary of Editing Functions by Category

Cursor Movement

Backtab

Begline

Down

Emiline

Home

Left

Mark

Mlines

Mpage

Mpara

Mword

Newline

Plines

Ppage

Ppara

Pword

Rest cur

Right

Savecur

Tab

Up

Description

Moves cursor left to previous tab stop

Moves cursor left to beginning of line

Moves cursor down one line

Moves cursor to right of last character of line

Moves cursor to upper-left comer of window

Moves cursor left one character

Moves cursor to specified position in file

Moves cursor back by lines

Moves cursor back by pages

Moves cmsor back by paragraphs

Moves cursor back by words

Moves cursor down to next line

Moves cursor forward by lines

Moves cursor forward by pages

Moves cursor forward by paragraphs

Moves cursor forward by words

Restores cursor position saved with Savecur

Moves cursor right one character

Saves cursor position for use with Restcur

Moves cursor right to next tab stop

Moves cursor up one line

87

Microsoft Editor User's Guide

Table A.1 (continued)

Windows

Setwindow

Window

Searching/Replacing

Ms ear ch

Psearch

Qreplace

Replace

Moving/Copying Text

Copy

Ldelete

Paste

Sdelete

Inserting/Deleting Text

Cdelete

Curdate

Curday

Curftle

Curftleext

Curfilenam

Curtime

Curuser

Emacscdel

Emacsnewl

Ldelete

Linsert

Pbal

Sdelete

Sinsert

88

Description

Redisplays window

Creates, removes, and moves between windows

Description

Searches backward

Searches forward

Replaces with confmnation

Replaces without confirmation

Description

Copies lines into the Clipboard

Deletes lines into the Clipboard

Inserts text from the Clipboard

Deletes stream of text, including line breaks

Description

Deletes character to left, excluding line breaks

Inserts current date (e.g. 27-Jun-1987)

Inserts current day (Sun ... Sat)

Inserts name of current file

fuserts extension of current file

Inserts base name of current file

Inserts current time (e.g. 13:45:55)

Inserts current user name

Deletes character to left, including line breaks

Starts new line, breaking current line

Deletes lines into the Clipboard

Inserts blank lines

Balances parentheses and brackets

Deletes stream of text, including line breaks

Inserts blanks, breaking lines if necessary

Table A.l (continued)

File Operations

Argcompile

Compile

Refresh

Setfile

Miscellaneous

Arg

Assign

Cancel

Execute

Exit

Help

Information

Initialize

Jnsertmode

Last text

Quote

Shell

Undo

Description

Performs theArg Compile command

Performs compilation and reviews error messages

Rereads file, discarding edits

Switches to alternate file

Description

Introduces an argument or function

Assigns value to a configuration variable

Cancels current operation

Executes an editor function

Exits the editor

Displays current key assignments

Displays information about an editing session

Rereads initialization file

Toggles insert mode on and off

Recalls the last textarg entered

Treats next character literally

Runs the command shell

Reverses the effect of the last editing change

Reference Tables

89

Microsoft Editor User's Guide

A.2 Key Assignments for Editing Functions

Table A.2 lists the editing functions and the assigned keys for each of the configura-
tions provided with the setup program.

Table A.2
Function Assignments

Quick/
Function Default WordStar BRIEF EPSILON

Arg ALT+A ALT+A ALT+A CIRL+Uor
CIRL+X

Argcompile FS FS ALT+FlO FS
Assign ALT+= ALT+= F7 Fl

Backtab SHIFr+TAB SHIFr+TAB SHIFr+TAB SHIFr+TAB

Beg line HOME HOME or HOME CIRL+A
CIRL+QS

Cancel ESC ESC ESC CIRL+C

Cdelete CI'RL+G CIRL+G BKSP

Compile SHIFr+F3 SHIFr+F3 CI'RL+N SHIFr+F3

Copy CI'RL+INS CIRL+INS +(keypad) ALT+W
or press+
(keypad)

Curdate

Curday

Curjile

Curjileext

Curjilenam

Curtime

Curuser

Down OOWNor OOWNor OOWN OOWNor
CIRL+X CIRL+X CIRL+N

Emacscdel BKSP BKSP BKSPor
CIRL+H

Emacsnewl ENTER ENTER ENTER

Endline END END or END CIRL+E
CIRL+QD

90

Reference Tables

Table A.2 (continued)

Quick/

Function Default WordStar BRIEF EPSILON

Execute Fl FlO FlO ALT+X

Exit F8 ALT+X ALT+X F8

Help Fl Fl ALT+H FlO

Home CTRL+HOME CTRL+HOME CTRL+HOME HOME

Information SHIFT+Fl SHIFT+Fl ALT+B SHIFT+Fl

Initialize SHIFT+F8 ALT+FlO SHIFT+FlO ALT+FlO

Insertmode INS or CTRL+ V INS or CTRL+ V ALT+I CTRL+V

Lasttext CTRL+O ALT+L ALT+L ALT+L

Ldelete CTRL+Y CTRL+Y ALT+D CTRL+K

Left LEFT or CTRL+S LEFT LEFT LEFT or C1RL+B

Linsert CTRL+N CTRL+N CTRL+ENTER CTRL+O

Mark CTRL+M ALT+M ALT+M CTRL+@

Meta F9 F9 F9 F9

Mlines CTRL+W CTRL+W ALT+U CTRL+W

Mpage PGUP or CTRL+R PGUP or CTRL+R PGUP PGUP or ALT+V

Mpara CTRL+PGUP CTRL+PGUP CTRL+PGUP ALT+UP

Msearch F4 F4 ALT+FS CTRL+R

Mword CTRL+LEFT or CTRL+LEFT CTRL+LEFT CTRL+LEFT or
CTRL+A ALT+B

Newline ENTER

Paste SHIFT+INS SHIFT+INS INS C1RL+ Y or INS

Pbal CTRL+[CTRL+[CTRL+[CTRL+[

Plines CTRL+Z CTRL+Z CTRL+Z CTRL+Z

Ppage PGDNor PGDNor PDGN PDGN
CTRL+C CTRL+C

Ppara CTRL+PGDN CTRL+PGDN CTRL+PDGN ALT+DOWN

Psearch F3 F3 FS F4orCTRL+S

Pword CTRL+RIGHT CTRL+RIGHT CTRL+RIGHT CTRL+RIGHT
orCTRL+F orCTRL+F or ALT+F

Qreplace CTRL+\ ALT+F3 F6 ALT+F3 or
ALT +5 or ALT +8

Quote CTRL+P ALT+Q ALT+Q CTRL+Q

91

Microsoft Editor User's Guide

Table A.2 (continued)

Quick/
Function Default WordStar BRIEF EPSILON

Refresh SHIFT+F7 ALT+R CTRL+] ALT+R

Replace CTRL+L CTRL+L SHIFT+F6

Restcur

Right RIGHT or RIGHT or RIGHT RIGHT or
CTRL+D CTRL+D CTRL+F

Savecur

Sdelete DEL DEL DEL or press - DEL or
(keypad) CTRL+D

Setfile F2 F2 ALT+N F2

Setwindow CTRL+] CTRL+] F2 CTRL+]

Shell SHIFT+F9 SHIFT+F9 ALT+Z ALT+Z

Sinsert CTRL+J ALT+INS CTRL+INS ALT+INS

Tab TAB TAB TAB TAB or CTRL+I

Undo ALT+BKSP ALT+BKSP *(keypad) CTRL+BKSP

Up UPorCTRL+E UPorCTRL+E UP UPorCTRL+P

Window F6 F6 Fl ALT+PGDN

92

Reference Tables

A.3 Comprehensive Listing of Editing Functions

Table A.3 gives a comprehensive listing of the editing functions and syntax for each
command. Default keystrokes, if available, are given in parentheses.

Table A.3
Comprehensive List of Functions

Function (and
Default Keystrokes)

Arg
(ALT+A)

Argcompile
(F5)

Assign
(ALT+=)

Backtab
(SHIFf+TAB)

Beg line
(HOME)

Cancel
(ESC)

Syntax

Arg

Argcompi/e

ArgAssign

Arg boxarg Assign

Arg linearg Assign

Arg streamarg Assign

Arg textarg Assign

Arg? Assign

Backtab

Begline

MetaBegline

Cancel

Description

Introduces a function or an ar­
gument for a function.

Performs theArg Compile
command.

Treats the text from the initial
cursor position to the end of the
line (not including the line
break) as a function assignment
or macro definition.

Treats each line of the boxarg
as an individual function as­
signment or macro definition.

Treats each line as a separate
function assignment or macro
definition, ignoring blank lines.

Treats the highlighted text as a
function assignment or macro
definition.

Treats textarg as a function as­
signment or macro definition.

Displays the current function
assignments for all functions
and macros.

Moves the cursor to the pre­
vious tab stop. Tab stops are de­
fined to be every nth character,
where n is defined by the
tabstops switch.

Places the cursor on the first
nonblank: character on the line.

Places the cursor in the first
character position of the line.

Cancels the current operation
in progress.

93

Microsoft Editor User's Guide

Table A.3 (continued)

Function (and
Default Keystrokes)

Cdelete
(C1RL+G)

Compile
(SHIFI'+F3)

94

Syntax

Cdelete

Compile

Meta Compile

ArgCompile

Arg streamarg Compile
Arg textarg Compile

Description

Deletes the previous character,
excluding line breaks. If the
cursor is in column 1, Cdelete
moves the cursor to the end of
the previous line. If issued in in­
sert mode, Cdelete deletes the
previous character, reducing
the length of the line by 1;
otherwise it deletes the pre­
vious character and replaces it
with a blank. If the cursor is
beyond the end of the line
when the function is invoked,
the cursor is moved to the im­
mediate right of the last
character on the line.

Reads the next error message
and tries to parse it into file,
row, column, and message. If it
is successful, the editor reads in
the file, places the cursor on the
appropriate row and column,
and displays the message on
the dialog line. The utility
MEG REP.EXE, Microsoft C,
and the Microsoft Macro As­
sembler generate output com­
patible with this format.

Reads error messages and ad­
vances to the first message
that does not refer to the cur­
rent file.

Compiles and links the current
file. The command and argu­
ments used to compile the file
are specified by the extmake
switch according to the exten­
sion of the file.

Compile and link the file
specified by streamarg or
textarg. The command and
arguments used to compile
the file are specified by the
extmake switch according to
the extension of the file.

Table A.3 (continued)

Function (and
Default Keystrokes)

Copy
(CTRL+INS, or press+
on keypad)

Curdate

Syntax

Arg Arg streamarg Compile
Arg Arg lextarg Compile

Arg Meta Compile

Copy

ArgCopy

Arg boxarg Copy
Arg linearg Copy
Arg streamarg Copy
Arg textarg Copy

Arg numarg Copy

Arg markarg Copy

Curdate

Reference Tables

Description

Invoke the specified text as a
program. The program is as­
sumed to display its errors in
the following format:

file row colurrm message

This is often used to find a par­
ticular text pattern in a series of
files by using MEG REP.EXE.

See Appendix B, "Support Pro­
grams for the Microsoft Edi­
tor," for more information.

Backs up to display the pre­
vious message, up to a maxi­
mum number of messages
specified by the maxmsg
switch.

Copies the current line into the
Clipboard.

Copies text from the initial cur­
sor position to the end of the
line and places it into the
Clipboard. Note that the line
break is not picked up.

Copy the specified text into the
Clipboard.

Copies the specified number
of lines into the Clipboard,
starting with the current line.

Copies the range of text be­
tween the cursor and the loca­
tion of the file marker into the
Clipboard. The copied text is
treated as astreamarg, boxarg,
or linearg depending on the
relative positions of the initial
cursor position and the file­
marker location.

Inserts the current date at the
cursor in the format of Jun-27-
1987.

95

Microsoft Editor User's Guide

Table A.3 (continued)

Function (and
Default Keystrokes) Syntax Description

Curday Curday Inserts the current day at the
cursor in the format of
Sun ... Sat

Curfile Curfile Inserts the fully-qualified
pathname of the current file at
the cursor.

Curfileext Curfileext Inserts the extension of the cur-
rent file at the cursor.

Curfilenam Curfilenam Inserts the base name of the cur-
rent file at the cursor.

Curtime Curtime Inserts the current time at the
cursor in the format of
13:45:55.

Curuser Curuser Inserts the name of the current
user, using the MAILNAME
environment variable, at the
cursor.

Down Down Moves the cursor down one
(DOWN or CTRL+X) line. If this would result in the

cursor moving out of the win-
dow, the window is adjusted
downward by the number of
lines specified by the vscroll
switch or less if in a small
window.

Meta Down Moves the cursor to the bottom
of the window without chang-
ing the column position.

Emacscdel Emacscdel Performs similarly to Cdelete,
(BKSP) except that at the beginning of

a line while in insert mode,
Emacscdel deletes the line
break between the current line
and the previous line, joining
the two lines together.

Emacsnewl Emacsnewl Performs similarly to Newline,
(ENTER) except that when in insert

mode, it breaks the current line
at the cursor position.

Endline Endline Moves the cursor to the imme-
(END) diate right of the last nonblank

character on the line.

96

Table A.3 (continued)

Function (and
Default Keystrokes)

Execute
(F7)

Exit
(F8)

Help
(Fl)

Home
(CTRL+HOME)

Information
(SHIFr+Fl)

Syntax

Meta Endline

ArgExecute

Arg linearg Execute
Arg streamarg Execute
Arg textarg Execute

Exit

Meta Exit

Arg Exit

Arg Meta Exit

Help

Home

Information

Reference Tables

Description

Moves the cursor one character
beyond the column correspond­
ing to the rightmost edge of the
window.

Treats the line from the initial
cursor position to the end as a
series of Microsoft-Editor com­
mands and executes them.

Treat the specified text as
Microsoft-Editor commands
and execute them, similar to
the way macros operate.

Saves the current file. If multi­
ple files were specified on the
command line, the editor ad­
vances to the next file. Other­
wise the editor quits and re­
turns control to the operating
system.

Performs similarly to Exit, ex­
cept that the current file is not
saved.

Performs similarly to Exit, ex­
cept that if multiple files are
specified on the command line,
the editor exits without advanc­
ing to the next file.

Performs similarly to Arg Exit,
except that the editor does not
save the current file.

Lists the editing functions and
current key assignments.

Places the cursor in the upper­
left corner of the current
window.

Saves the current file and
Setfiles to an information file
that contains a list of all files in
memory along with the current
set of files that you have
edited. The size of this list is
controlled by the tmpsav
switch, which has a default
valueof20.

97

Microsoft Editor User's Guide

Table A.3 (continued)

Function (and
Default Keystrokes)

Initialize
(SHIFf+FS)

Insertmode
(INS or CTRL+ V)

Lasttext
(CTRL+O)

Ldelete
(CTRL+Y)

98

Syntax

Initialize

Arg Initialize

Arg streamarg Initialize
Arg textarg Initialize

Insertmode

Lasttext

Ldelete

ArgLdelete

Arg boxarg Ldelete
Arg linearg Ldelete
Arg streamarg Ldelete

Description

Reads all the editor statements
from the [M] section of
TOOLS.INI.

Reads the editor statements
from the TOOLS.INI file,
using the continuous string of
nonblank characters, starting
with the initial cursor position,
as the tag name.

Read all the editor statements
from the [M] section and the
[M-streamarg] or [M-textarg]
section of TOOLS.INI.

Toggles the insert-mode
switch. The status of the insert­
mode switch can be seen on the
status line; if insert mode is on,
insert appears on the status
line. While in insert mode,
each character that is entered is
inserted at the cursor position,
shifting the remainder of the
line one position to the right.
Overtype mode replaces the
character under the cursor with
the one that is entered.

Recalls the last textarg. This
function is the same as invok­
ing the Arg function and then
retyping the previous textarg.

Deletes the current line and
places it into the Clipboard.

Deletes text, starting with the
initial cursor position through
the end of the line, and places it
into the Clipboard. Note that it
does not join the current line
with the next line.

Delete the specified text from
the file and place it into the
Clipboard.

Table A.3 (continued)

Function (and
Default Keystrokes)

Left
(LEFT or CI'RL+S)

Linsert
(CI'RL+N)

Mark
(C1RL+M)

Syntax

Left

Meta Left

Linsert

ArgLinsert

Arg boxarg Linsert
Arg linearg Linsert
Arg streamarg Linsert

Mark

ArgMark

Arg numarg Mark

Arg Arg textarg Mark

Reference Tables

Description

Moves the cursor one character
to the left. If this would result
in the cursor moving out of the
window, the window is ad­
justed to the left by the number
of columns specified by the
bscroll switch or less if in a
small window.

Moves the cursor to the left­
most position in the window on
the same line.

Inserts one blank line above the
current line.

Inserts or deletes blanks at the
beginning of a line to make the
first nonblank character appear
under the cursor.

Fill the specified area with
blanks.

Moves the window to the
beginning of the file.

Restores the window to its pre­
vious location. The editor re­
members only the location
prior to the last scrolling
operation.

Moves the cursor to the begin­
ning of the line, where nwnarg
specifies the position of the
line in the file.

Defines a file marker at the ini­
tial cursor position. This does
not record the file marker in the
file specified by the markfile
switch, but allows you to refer
to this position as textarg.

99

Microsoft Editor User's Guide

Table A.3 (continued)

Function (and
Default Keystrokes)

Meta
(F9)

Mlin£s
(CTRL+W)

Mpage
(PGUP or CTRL+R)

Mpara
(CTRL+PGUP)

100

Syntax

Arg streamarg Mark
Arg textarg Mark

Meta

Mlines

Arg Mlin£s

Arg numarg Mlines

Mpage

ArgMpage

Arg numarg Mpage

Mpara

MetaMpara

Description

Move the cursor to the
specified file marker. If the file
marker was not previously de­
fined, the editor uses the mark­
file switch to find the file that
contains file marker defini­
tions. For more information,
see Section 7.4.3, "Text
Switches."

Modifies the action of the func­
tion it is used with. Refer to the
individual functions for
specific information.

Moves the window back by the
number of lines specified by
the vscroll switch or less if in a
small window.

Moves the window until the
line that the cursor is on is at
the bottom of the window.

Moves the window back by the
specified number of lines.

Moves the window backward
in the file by one window's
worth of lines.

Moves the window to the
beginning of the file.

Moves the window the
specified number of windows
backward in the file.

Moves the cursor to the first
blank line preceding the current
paragraph, or if currently on a
blank line the cursor is posi­
tioned before the previous
paragraph.

Moves cursor to the first pre­
vious line that has text.

Table A.3 (continued)

Function (and
Default Keystrokes)

Msearch
(F4)

Mword
(CTRL+LEFf
orCTRL+A)

Syntax

Msearch

ArgMsearch

Arg streamarg Msearch
Arg textarg Msearch

Arg Arg Msearch

Arg Arg streamarg Msearch
Arg Arg textarg Msearch

Mword

MetaMword

Reference Tables

Description

Searches backward for the pre­
viously defined string or pat­
tern. If the string or pattern is
found, the window is moved to
display it and the matched
string or pattern is highlighted.
If no match is found, no cursor
movement takes place and a
message is displayed.

Searches backward in the file
for the string defmed as the
characters from the initial cur­
sor position to the first blank
character.

Search backward for the
specified text.

Searches backward in the file
for the regular expression de­
fined as the characters from the
initial cursor position to the
first blank character.

Search backward for a regular
expression as defined by
streamarg or textarg.

Moves the cursor to the begin­
ning of a word. If not in a word
or at the frrst character, use the
previous word, otherwise use
the current word.

Moves the cursor to the imme­
diate right of the previous
word.

101

Microsoft Editor User's Guide

Table A.3 (continued)

Function (and
Default Keystrokes)

Newline

Paste
(SHIFT+INS)

102

Syntax

Newline

Meta Newline

Paste

Arg Paste

Arg streamn.rg Paste
Arg textarg Paste

Arg Arg streamarg Paste
Arg Arg textarg Paste

Arg Arg !streamarg Paste
Arg Arg !textarg Paste

Description

Moves the cursor to a new line.
ff the softer switch is set, the
editor tries to place the cursor
in an appropriate position
based on the type of file. If the
file is a C program, the editor
tries to tab in based on con­
tinuation of lines and on open
blocks. If the next line is blank,
the editor places the cursor
in the column corresponding to
the first nonblank character of
the previous line. If neither of
the above is true, the editor
places the cursor on the first
nonblank character of the line.

Moves the cursor to column 1
of the next line.

Inserts the contents of the Clip­
board prior to the current line if
the contents were placed there
in a line-oriented way, such as
with linearg or numa.rg. Other­
wise the contents of the Clip­
board are inserted at the current
cursor position.

Inserts the text from the initial
cursor position to the end of the
line at the initial cursor position.

Place the specified text into the
Clipboard and insert that text at
the initial cursor position.

Interpret textarg or streamarg
as a file name and insert the
contents of that file into the cur­
rent file above the current line.

Treat the text as a DOS com­
mand and insert its output to
stdout into the current file at
the initial cursor position. The
exclamation mark must be
entered as shown.

Table A.3 (continued)

Function(and
Default Keystrokes)

Pbal
(CTRL+[)

Plines
(CTRL+Z)

Ppage
(PGDNor
CTRL+C)

Syntax

Pbal

Arg Pbal

MetaPbal

Arg Meta Pbal

Plines

ArgPlines

Arg numarg Plines

Ppage

ArgPpage

Arg numarg Ppage

Reference Tables

Description

Scans backward through the
file, balancing parentheses and
brackets. The first unbalanced
one is highlighted when found.
If it is found and is not visible,
the editor displays the match­
ing line on the dialog line, with
the highlighted matching
character. The corresponding
character is placed into the file
at the current cursor position.
Note that the search does not in­
clude the current cursor posi­
tion and that the scan only
looks for more left brackets or
parentheses than right, not just
an unequal amount.

Performs similarly to Pbal, ex­
cept that it scans forward in the
file and looks for more right
brackets or parentheses than
left.

Performs similarly to Pbal, ex­
cept that the file is not updated.

Performs similarly to Arg Pbal,
except that the file is not
updated.

Adjusts the window forward by
the number of lines specified
by the vscroll switch or less if
in a small window.

Moves the window downward
so the line that the cursor is on
is at the top of the window.

Moves the window forward the
specified number of lines.

Moves the window forward in
the file by one window's worth
of lines.

Moves the window to the end
of the file.

Moves the window the
specified number of windows
forward in the file.

103

Microsoft Editor User's Guide

Table A.3 (continued)

Function (and
Default Keystrokes)

Ppara
(CTRL+PGDN)

Psearch
(F3)

Pword
(CTRL+RIGHT
orCTRL+F)

104

Syntax

Ppara

MetaPpara

Psearch

Arg Psearch

Arg streamarg Psearch
Arg textarg Psearch

Arg Arg Psearch

Arg Arg streamarg Psearch
Arg Arg textarg Psearch

Pword

MetaPword

Description

Moves the cursor forward one
paragraph and places the cursor
on the first line of the new
paragraph.

Moves the cursor to the first
blank line following the current
paragraph.

Searches forward for the pre­
viously defined string or pat­
tern. If the string or pattern is
found, the window is moved to
display it and the matched
string or pattern is highlighted.
If it is not found, no cursor
movement takes place and a
message is displayed.

Searches forward in the file for
the string defined as the
characters from the initial cur­
sor position to the first blank
character.

Search forward for the
specified text.

Searches forward in the file for
the regular expression defined
as the characters from the ini­
tial cursor position to the first
blank character.

Search forward for a regular
expression as defined by
streamarg or textarg.

Moves the cursor forward one
word and places the cursor on
the beginning of the new word.

Moves cursor to immediate
right of current word, or if not
in a word to the right of the
next word.

Table A.3 (continued)

Function (and
Default Keystrokes)

Qreplace
(CIRL+\)

Quote
(CIRL+P)

Syntax

Qreplace

Arg boxarg Qreplace
Arg linearg Qreplace
Arg streamarg Qreplace

Arg markarg Qreplace

Arg numarg Qreplace

Arg Arg Qreplace
Arg Arg boxarg Qreplace
Arg Arg linearg Qreplace
Arg Arg markarg Qreplace
Arg Arg numarg Qreplace
Arg Arg streamarg Qreplace

Quote

Reference Tables

Description

Performs a simple search-and­
replace operation, prompting
you for the search and replace­
ment strings, and prompting at
each occurrence for confirma­
tion. The search begins at the
cursor position and continues
through the end of the file.

Perform the search-and-replace
operation over the specified
text, prompting at each occur­
rence for confirmation.

Performs the search-and­
replace operation between
the initial cursor position and
the specified file marker,
prompting at each occurrence
for confirmation.

Performs the search-and­
replace operation over the
specified number of lines,
starting with the current line,
prompting at each occurrence
for confirmation.

Perform the same as their re­
spective counterparts above, ex­
cept that the search pattern is a
regular expression and the re­
placement pattern can select
special tagged sections of the
search for selective replace­
ment. See Chapter 5, "Regular
Expressions," for more
information.

Reads one keystroke from the
keyboard and treats it literally.
This is useful for inserting text
into a file that happens to be as­
signed to an editor function.

105

Microsoft Editor User's Guide

Table A.3 (continued)

Function (and
Default Keystrokes)

Refresh
(SHIFf+F7)

Replace
(CTRL+L)

Rest cur

106

Syntax

Refresh

ArgRefresh

Replace

Arg boxarg Replace
Arg linearg Replace
Arg streamarg Replace

Arg markatg Replace

Arg numarg Replace

Arg Arg Replace
Arg Arg boxarg Replace
Arg Arg linearg Replace
Arg Arg markatg Replace
Arg Arg numarg Replace
Arg Arg streamarg Replace

Restcur

Description

Asks for confirmation and then
rereads the file from disk, dis­
carding all edits since the file
was last saved.

Asks for confirmation and then
discards the file from memory,
loading the last file edited in its
place.

Performs a simple search-and­
replace operation without con­
firmation, prompting you for
the search string and replace­
ment string. The search begins
at the cursor position and con­
tinues through the end of the
file.

Perform the search-and-replace
operation over the specified
text.

Performs the search-and­
replace operation between the
cursor and the specified file
marker.

Performs the search-and­
replace operation over the
specified number of lines,
starting with the current line.

Perform the same as their re­
spective counterparts above, ex­
cept that the search pattern is a
regular expression and the re­
placement pattern can select
special tagged sections of the
search for selective replace­
ment. See Chapter 5, "Regular
Expressions," for more
information.

Restores the cursor position
saved with Savecur.

Table A.3 (continued)

Function (and
Default Keystrokes)

Right
(RIGHT or
C1RL+D)

Savecur

Sdelete
(DEL)

Setfile
(F2)

Syntax

Right

Meta Right

Savecur

Sdelete

ArgSdelete

Arg boxarg Sdelete
Arg linearg Sdelete
Arg streamarg Sdelete

Setfile

ArgSetfile

Arg streamarg Setfile
Arg textarg Setfile

Reference Tables

Description

Moves the cursor one character
to the right. If this would result
in the cursor moving out of the
window, then the window is ad­
justed to the right the number
of columns specified by the
hscroll switch or less if in a
small window.

Moves the cursor to the right­
most position in the window.

Saves the current cursor
position to be restored with
Restcur.

Deletes the single character
under the cursor, excluding
line breaks. It does not place
the deleted character into the
Clipboard.

Deletes from the cursor
through the end of line, join­
ing the following line with the
current line at the point of the
cursor position. The text de­
leted (including the line break)
is placed into the Clipboard.

Delete the stream of text from
the initial cursor position up to
the current cursor position and
place it into the Clipboard.

Switches to the most recently
edited file, saving any changes
made to the current file to disk.

Switches to the file name that
begins at the initial cursor posi­
tion and ends with the first
blank.

Switch to the file specified by
streamarg or textarg.

107

Microsoft Editor User's Guide

Table A.3 (continued)

Function (and
Default Keystrokes)

Setwindow
(CTRL+l)

Shell
(SHIFf+F9)

Sinsert
(CTRL+J)

108

Syntax

Meta Setfile
Arg Meta Setfile
Arg streamarg Meta Setjile
Arg textarg Meta Setfile

Arg Arg streamarg Setfile
Arg Arg textarg Setfile

Arg Arg Setfile

Setwindow

Meta Setwindow

Arg Setwindow

Shell

Meta Shell

Arg Shell

Arg boxarg Shell
Arg linearg Shell

Arg streamarg Shell
Arg textarg Shell

Sinsert

ArgSinsert

Arg boxarg Sinsert
Arg linearg Sinsert
Arg streamarg Sinsert

Description

Perform similarly to their coun­
terparts above, but disable the
saving of changes for the cur­
rent file.

Save the current file under the
name specified by streamarg or
textarg.

Saves the current file.

Redisplays the entire screen.

Redisplays the current line.

Adjusts the window so that the
initial cursor position becomes
the home position (upper-left
corner).

Saves the current file and runs
the command shell.

Runs the command shell
without saving the current file.

Uses the text on the screen
from the cursor up to the end of
line as a command to the shell.

Treat each line of either argu­
ment as a separate command to
the shell

Use streamarg or textarg as a
command to the shell.

Inserts a single blank space at
the current cursor position.

Inserts a carriage return at the
initial cursor position, splitting
the line.

Insert a stream of blanks be­
tween the initial cursor position
and the current cursor position.

Reference Tables

Table A.3 (continued)

Function (and
Default Keystrokes) Syntax Description

Tab Tab Moves the cursor to the next
(TAB) tab stop. Tab stops are defined

to be every nth character,
where n is defined by the
tabstops switch.

Undo Undo Reverses the last editing
(ALT+BKSP) change. The maximum number

of times this can be performed
is set by the undocount switch.

Up Up Moves the cursor up one line.
(UP or If this would result in the cur-
CIRL+E) sor moving out of the window,

the window is adjusted upward
by the number of lines
specified by the vscroll switch
or fewer if in a small window.

Meta Up Moves the cursor to the top of
the window without changing
the column position.

Window Window Moves the cursor to the next
(F6) window to the right of or below

the current window.

ArgWindow Splits the current window hori-
zontally at the initial cursor
position. Note that all windows
must be at least five lines high.

Arg Arg Window Splits the current window verti-
cally at the initial cursor posi-
tion. Note that all windows
must be at least 10 columns
wide.

Meta Window Closes the window.

109

Appendix B

Support Programs
for the Microsoft Editor

This appendix discusses the following programs, which work in conjunction with the
Microsoft Editor:

• ECH.EXE

• MEGREP.EXE

• CALL TREE.EXE

• UNDEL.EXE, EXP.EXE, and RM.EXE

The editor uses ECH.EXE in a way that is invisible to you; it is mentioned here only
because it appears as a separate file on the disk. MEGREP.EXE searches through files
for a string or regular expression. CALL TREE.EXE searches through program source
files, locating function calls. The other three programs work with backup files. When a
file is updated and the backup switch is set to undel, the old version of the file is
copied to a hidden subdirectory called deleted. UNDEL.EXE, EXP.EXE, and
RM.EXE manipulate the files in the deleted subdirectory.

B.1 MEGREP.EXE

Use this program to search through files for a simple string or regular expression. (See
Chapter 5, "Regular Expressions," for more information on regular expressions.) The
following is the command-line syntax for MEGREP:

megrep [/C] [/c] {If patternfile I pattern} files

MEGREP.EXE searches throughfiles for pattern, where pattern may be a string or
regular expression. The /C option makes case insignificant in the search. The /c option
lists the number of matches that are made. The /f option specifies that pattern to search
for is located in patternfile rather than on the command line.

111

Microsoft Editor User's Guide

Note

MEGREP.EXE can be used separately or from within the Microsoft Editor using
the Arg Arg textarg Compile command, where textarg uses the syntax described
above.

B.2 CALL TREE.EXE

Use this program to create any of the following output files using C or assembly­
language source files:

• Calltree listing file

• Called-by listing file

• Warning listing file

• Marker file for the Microsoft Editor

The following is the command-line syntax for CALLTREE:

calltree [options] source1ilename ...

112

Support Programs for the Microsoft Editor

Table B.1 gives the options you can use with CALL TREE.EXE.

Table B.1
CALL TREE.EXE Options

Option

-a

-v

-i

-q

-ssymbol

-mfilename

-cfilename

-bfilename

-wfilename

-zfilename

source-filename ...

Meaning

Causes the argument lists to be shown with procedure definitions
and references in the calltree listing file. It also causes an entry in
the warning listing file if there is a discrepancy in an argument list.

Causes a complete (verbose) listing in the calltree listing file. A pre­
viously viewed path is listed again, instead of being displayed as an
ellipsis (...).

Causes case insensitivity during name comparisons.

Prevents output from going to the screen (quiet mode).

Specifies to search only for symbol in the source files.

Uses the symbols listed infilename for calltree information.

Specifies the name of the calltree listing file.

Specifies the name of the called-by listing file.

Specifies the name of the warning listing file.

Specifies the name of the marker file that is created for use with the
Microsoft Editor.

Specifies the names of the source files to use. The use of wildcards
is permitted.

113

Microsoft Editor User's Guide

The calltree listing file produces an indented listing showing the procedure names at
the left margin. Calls are shown indented four spaces per level. If a path has already
been viewed, it is shown as an ellipsis(...). A recursive call is shown as an asterisk(*).
If a call for an undefined procedure is made, a question mark (?) appears.

The called-by listing file produces a tabled listing of defined procedures and all refer­
ences to them. The procedure names are sorted alphabetically.

The warning listing file lists duplicate procedure names and argument-list discrepan­
cies if the -a and -b options are used.

The Microsoft Editor marker file lists the name, the file it was found in, and the line
and column numbers for each function. This allows you to move quickly to any func­
tion, using the Arg markarg Mark command, by entering the function name as
markarg. Use the markfile switch to provide the Microsoft Editor with the name of
this file.

B.3 UNDEL.EXE

Use this program to move a file from the DELETED subdirectory to the parent
directory. Its command-line syntax is as follows:

undel [filename]

If filename is not given, the contents of the DELETED subdirectory are listed. If there
is more than one version of the file, you are given a list to choose from. If the file al­
ready exists in the parent directory, the two files are swapped.

114

Support Programs for the Microsoft Editor

B.4 EXP.EXE

Use this program to remove all of the files in the specified directory's hidden
DELETED subdirectory. Use the following command-line syntax:

exp [/r] [/qD] [directory]

If no directory is specified, then the current directory's DELETED subdirectory is
used. If the /r option is given, EXP.EXE recursively operates on all subdirectories.
The /q option specifies quiet mode; the deleted file names are not displayed on the
screen.

B.5 RM.EXE

Use this program to move one or more files from its current directory into the
DELETED subdirectory. The following is the command-line syntax for RM:

rm [/i] [/r] [/f]filename ...

The /i option prompts you for confirmation for each file it is about to delete. The /r op­
tion causes RM.EXE to recursively operate on all subdirectories. The /f option forces
read-only files to be deleted without prompting.

115

Glossary

This glossary defines terms that this manual uses in a technical or unique way.

Arg

A function modifier that introduces an argument or an editing function. The argu­
ment may be of any type and is passed to the next function as input. For example,
the command Arg textarg Copy passes the argument textarg to the function Copy.

argument

An input to a function. The Microsoft Editor uses two classes of arguments: cursor­
movement arguments and text arguments. Cursor-movement arguments (boxarg,
linearg, and streamarg) specify a range of characters on the screen. Text argu­
ments (markarg, numarg, and textarg) allow you to enter information to be used
by a function. Arguments are introduced by using the Arg function.

assignment

See "function assignment."

boxarg

A rectangular area on the screen, defined by the two opposite comers: the initial
cursor position and the current cursor position. The two cursor positions must be
on separate rows and separate columns. A boxarg is generated by invoking the Arg
function and then moving the cursor to a new location.

buffer

An area in memory in which a copy of the file is kept and changed as you edit.
This buffer is copied to disk when you do a save operation.

C extension

AC-language module that defines new editing functions and switches.

See Chapter 8, "Programming C Extensions."

Clipboard

A section of memory that holds text that has been deleted with the Copy, Ldelete,
or Sdelete functions. You can use the Paste function to insert text from the Clip­
board into a file.

117

Microsoft Editor User's Guide

configuration

A description of the specific assignments of functions to keys. For example, a
BRIEF configuration implies that the Microsoft Editor uses keys similar to those
that the BRIEF editor uses to invoke similar functions.

default

A setting that is assumed by the editor until you specify otherwise. The Microsoft
Editor uses two categories of default settings: function assignments and switches.

emacs

A popular type of editor, from which the functions Emacscdel and Emacsnewl
were taken.

function assignment

A method of assigning an editor function to a specific keystroke so that pressing
the keystroke invokes the function. Use theArg textarg Assign command to make
an assignment for a single editing session, or you can enter the assignment in the
TOOLS.INI file so that it may be used during any editing session.

See Chapter 6, "Function Assignments and Macros."

initial cursor position

The position the cursor is in when the Arg function is invoked.

insert mode

An input mode that inserts rather than replaces characters in the file as they are
entered.

linearg

A range of complete lines, including all the lines from the initial cursor position to
the current cursor position. You define a linearg by invoking the Arg function
(pressing ALT+A), then moving the cursor to a different line but same column as
the initial cursor position.

macro

118

A function that is made up of arguments and previously defined functions. For ex­
ample, you can create a macro that contains a set of functions that you perform re­
peatedly and assign the macro to a keystroke. Those functions can now be carried
out much more quickly and simply by invoking the macro.

See Chapter 6, "Function Assignments and Macros."

Glossary

markarg

A special type of textarg that has been previously defined to be a marker, that is, it
is associated with a particular position in the file.

marker

A name assigned to a cursor position in a file so that this position can be referred
to within a command by using this name. For example, you could perform the
command Arg markarg Mark to move to the marker specified by markarg. A
marker is assigned using the Arg Arg textarg Mark command.

Meta

A function that modifies other functions so they perform differently, similar to the
way CTRL or ALT modifies a key so that it performs differently.

numarg

A numerical value you enter on the dialog line, which is passed to a function. A nu­
marg is introduced by the Arg function.

regular expression

A pattern for specifying a set of strings of characters to search for. It may be a
simple string or a more complex arrangement of characters and special symbols
that specify a variety of strings to be matched.

See Chapter 5, "Regular Expressions."

return value

A value returned by an editing function. The value may be true or false, depending
on whether the function was successful. This value can be used to create complex
macros that perform differently depending upon the results of individual functions
within the macro.

See Chapter 6, "Function Assignments and Macros."

streamarg

A highlighted continuous string of characters on a single line. A streamarg is
specified by invoking the Arg function and moving the cursor to any other posi­
tion on the same line.

switch

A variable that modifies the way the editor performs. The Microsoft Editor uses
three kinds of switches: Boolean switches, which tum a certain editor feature on
or off; numeric switches, which specify numeric constants; and text switches,
which specify a string of characters.

See Chapter 7, "Using the TOOLS.IN! File."

119

Microsoft Editor User's Guide

textarg

A string of text that you enter on the dialog line, after invoking the Arg function
(by pressing ALT+A). The text that you enter is passed as input to the next function.

TOOLS.INI

A file that contains initialization information for the Microsoft Editor and other
programs. The file is divided into sections with the use of tags, and these sections
can be loaded automatically when the editor is started or by command from within
the editor.

See Chapter 7, "Using the TOOLS.IN! File."

window

120

An area on the screen used to display part of a file. Unless a file is extremely
small, it is impossible to see all of it on the screen at once. Therefore you see a por­
tion of the file through the main editing window at any one time, and it is possible
to see any part of the file by moving or scrolling this window. The Microsoft Edi­
tor allows you to open multiple windows on the screen, using the Window func­
tion, for viewing different parts of the same file or different files.

Index

Argument types, 18
Argument, defined, 117
Arrow keys, 4
Assignment, defined, 117

Boolean switches, 60
boxarg, argument type, 24, 117
Buffer, defined, 117

C extensions
compiling and linking, 83
defined, 1, 117
functions, declaring, 70, 72
functions, low level, 77
loading, 69, 84
programming, 67
switches, declaring, 70 - 71
types, function, 72

CALLTREE.EXE file, 112
Clipboard, defined, 117
Colors, setting, 58
Command line, 12
Commands

defined, 15
entering, 16

Comments, 55
Compiling, 35
Configuration, defined, 118
Copying text, 29
Cursor, initial position, 21, 118
Cursor-movement arguments, 21

Default, defined, 118
Deleting text, 8, 28
Direction keys, 4

ECH.EXE file, 111
Editing

copying text, 29
deleting text, 8, 28
exiting, 12
insert mode, 118
inserting text, 8, 28
moving text, 10, 29
moving, through a file, 25
overtype mode, 7

replacing text, 7, 32
scrolling, 26
search and replace, 32
starting editor, 6

Emacs, defined, 118
Error output, viewing, 36
Exiting, from the editor, 12
EXP.EXE file, 115
Expressions

predefined regular, 44
regular, 39, 119
tagged, 43

File markers, in commands, 31
Files

CALLTREE.EXE, 112
ECH.EXE, 111
EXP.EXE, 115
loading, 13
M.EXE,6
MEGREP.EXE, 111
MESETUP.BAT, 45
multiple, 38
RM.EXE, 115
TOOLS.INT, 55
UNDEL.EXE, 114

Function assignments
defined, 118
graphic, 48
keys, numeric keypad, 4, 4 7
making, 46, 56
removing, 47
viewing, 47

Functions
Arg, 8, 93, 117
Argcompile, 93
Assign, 93
Backtab, 93
Begline, 93
Cancel, 9, 93
Cdelete, 94
Compile, 35, 94
Copy,29,95
Curdate, 30, 95
Curday, 30, 96
Curfile, 30, 96
Curfileext, 30, 96
Curfilenam, 30, 96
Curtime, 30, 96

121

Microsoft Editor User's Guide

Curuser, 30, 96
Down, 26, 96
Emacscdel, 96
Emacsnew 1, 96
Endline, 96
Execute, 97
Exit, 12, 97
Graphic, 48
Help, 12, 97
Home, 97
Information, 38, 97
Initialize, 98
Insertmode, 8, 98
Lasttext, 98
Ldelete, 10, 28, 98
Left, 26, 99
Linsert, 28, 99
Mark, 31, 99
Meta, 17, 100, 119
Mlines, 100
Mpage, 26, 100
Mpara, 100
Msearch, 33, 101
Mword, 27, 101
Newline, 102
Paste, 11, 29, 102
Pbal, 103
Plines, 103
Ppage, 26, 103
Ppara, 104
Psearch, 11, 32, 104
Pword, 27, 104
Qreplace, 34, 105
Quote, 105
Refresh, 106
Replace, 34, 106
Restcur, 32, 106
Right, 26
Savecur, 32, 107
Sdelete, 8, 28, 107
Setfile, 12, 38, 107
Setwindow, 108
Shell, 108
S insert, 108
Tab, 109
Unassigned, 47
Undo, 9, 109
Up, 26, 109
Window, 37, 109

Highlighting, 21

122

Initial cursor position, 21, 118
Insert mode, defined, 118
Inserting text, 8, 28

Keys, numeric keypad, 4, 47
Keystrokes, default, 90

linearg, argument type, 23, 118
Loading a file, 13

M.EXE file, 6
Macros

assigning, to keys, 50
defined, 118
entering, 49, 56
using conditionals with, 50

markarg, argument type, 20, 119
Markers, defined, 119
Matching

maximal, 42
minimal,42

Matching method, 42
MEGREP.EXE file, 111
MEP .EXE file, 6
MESETUP.BAT file, 45
Moving text, 10, 29
Moving, through a file, 25
Multiple files, 38

numarg, argument type, 19, 119
Numeric switches, 57
Numeric-keypad keys, 4, 47

Overtype mode, 7

Predefined regular expressions, 44

Reading, from a file, 30
Regular expressions, 39, 119
Replacing text

overtype mode, 7
search and replace, 32

Return value, defined, 119
RM.EXE file, 115

Scrolling
horizontal, 26
vertical, 26

Search and replace, 32
Setup program, 45
Starting the editor, 6
streamarg, argument type, 22, 119
Switches

askexit, 61
askrtn, 61
autosave, 61
backup,62
Boolean, 60
case, 61
defined, 119
displaycursor, 61
entab, 59
enterinsmode, 61
errcolor, 59
extmake, 62
fgcolor, 59
height, 59
hgcolor, 59
hike,59
hscroll, 59
infcolor, 59
load, 62
markfile, 63
maxmsg,59
noise, 59
numeric, 57
readonly, 63
rmargin, 60
savescreen, 61
setting, 57
shortnames, 61
softer, 61
stacolor, 60
tabdisp, 60
tabstops, 60
text, 62
tmpsav, 60
traildisp, 60
trailspace, 61
undocount, 60
vmbuf, 60
vscroll, 60
width, 60
wordwrap, 61

Syntax, command, 16
System requirements, 2

Tagged expressions, 43
Tags,63
Text arguments, 18
Text switches, 62
textarg, argument type, 21, 120
TOOLS.INI file, 55, 120
Typographical conventions, 3

UNDEL.EXE file, 114

Window, defined, 120

Index

123

MiClosoft®
Making it all make sense··

Microsoft Corporation
16011 NE 36th Way
Box 97017
Redmond , WA 98073-9717

0388 Part No . 02949

	000
	001
	002
	003
	004
	1-001
	1-002
	1-003
	1-004
	1-005
	1-006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-46
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	2-67
	2-68
	2-69
	2-70
	2-71
	2-72
	2-73
	2-74
	2-75
	2-76
	2-77
	2-78
	2-79
	2-80
	2-81
	2-82
	3-0001
	3-0002
	3-0003
	3-0004
	3-0005
	3-0006
	3-0007
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116
	3-117
	3-118
	3-119
	3-120
	3-121
	3-122
	3-123
	xBack

