MICROSOF L

MOUSE

PROGRAMMER'’S
REFERENCE

INCLUDES TWO 5.25-INCH DISKS
WITH SAMPLE MOUSE MENUS,
MOUSE.LIB AND EGA.LIB, AND

A COLLECTION OF VALUABLE
PROGRAMMING EXAMPLES

PERVE 'S S

MICROSOFT

MOUSE

PROGRAMMER'’S
REFERENCE

MICROSOFT

MOUSE

PROGRAMMER'’S
REFERENCE

PUBLISHED BY

Microsoft Press
A Division of Microsoft Corporation
16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717

Copyright © 1989 by Microsoft Press

Allrights reserved. No part of the contents of this book may

be reproduced or transmitted in any form or by any means without
the written permission of the publisher.

Library of Congress Cataloging in Publication Data

Microsoft Mouse programmer’s reference.

Includes index. :

1. Microcomputers—Programming. 2. Computer interfaces.
I. Microsoft Press.

QA76.6.M516 1989 005.265 88-32395
ISBN 1-55615-191-8

Printed and bound in the United States of America.
123456789 MLML 32109

Distributed to the book trade in the United States
by Harper & Row.

Distributed to the book trade in Canada by General
Publishing Company, Ltd.

Distributed to the book trade outside the United States
and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging in Publication Data available

IBMS PC/AT® and PS/2® are registered trademarks of International Business Machines
Corporation. CodeView®, InPort® Microsoft® MS-DOS® and XENIX® are registered trademarks
of Microsoft Corporation. UNIX™ is a trademark of AT&T Bell Laboratories. Microsoft Mouse
is a trademark of Microsoft Corporation.

Project Manager: David L. Rygmyr Project Editor: O’Vivian Kent-Russell Technical Editor: John Clark Craig

Contents

Acknowledgments vii
Introduction ix

PART I: INTRODUCTION 1

Chapter 1: Evolution of the Mouse 3
Chapter 2: Overview of Mouse Programming 15

PART Il: MOUSE MENUS 23

Chapter 3: Creating Your Own Mouse Menu 25
Chapter 4: Mouse Menu Language Statements 47
Chapter 5: Sample Mouse Menu Programs 73

PART lli: MOUSE PROGRAMMING INTERFACE 81

Chapter 6: Mouse Programming Interface =~ 83
Chapter 7: Mouse Programming Considerations
Chapter 8: Mouse Function Calls 113

Chapter 9: Sample Mouse Programming Interface
Programs 205

Chapter 10: Writing Mouse Programs for
IBM EGA Modes 259

PART IV: APPENDIXES 285

Appendix A: Mouse Command Line Switches 287
Appendix B: Domestic Mouse Driver Messages 293
Appendix C: Mouse Menu Messages =~ 297

Appendix D: Linking Existing Mouse Programs with
MOUSE.LIB 301

Appendix E: Making Calls from Borland Turbo
Pascal Programs 303

Appendix F: Using the Mouse with the Hercules
Graphics Card 305

Appendix G: ASCII Character Set 307
Index 315

Acknowledgments

Several people made outstanding contributions to the Microsoft Mouse
Programmer’s Reference. In particular, we would like to thank the follow-
ing reviewers whose technical skills and timely critiques proved invalu-
able to this project: Eric Fogelin, Tom Hensel, Greg Lee, and Paul
Schuster. Their expertise, hard work, and dedication helped make this
book a superb tool for serious programmers.

In addition, we would like to thank the following reviewers and
writers who also made essential contributions: Rich Abel, Henry
Burgess, Tom Button, Stew Chapin, Barbara Hubbard, Len Oorthuys,
Steve Shaiman, Rick Thompson, Bill Wesse, and Nathan Williams.

vil

Introdudion

The Microsoft Mouse Programmer’s Reference is both an overview and a
technical resource for experienced programmers. The Mouse Reference
includes a history of the Microsoft Mouse, an overview of mouse pro-
gramming, detailed information on writing and using mouse menu
programs, and detailed information on using the mouse programming
interface to add mouse support to an application program you’ve writ-
ten. In addition, the Microsoft Mouse Programmer’s Reference offers a
wealth of sample programs in several languages to demonstrate the
topics and functions discussed in this book.

This package includes disks that contain the MOUSE.LIB and
EGA.LIB libraries and all the sample mouse menu and mouse program-
ming interface programs listed in this book. In addition, the disks in-
clude several lengthy sample programs not listed in the book.

The Microsoft Mouse Programmer’s Reference is divided into four sec-
tions. Part I, “Introduction,” provides a history of the Microsoft Mouse
and an overview of mouse programming. PartII, “Mouse Menus,”
details the mouse menu programming language, gives a complete de-
scription of each mouse menu statement, and offers sample mouse
menu programs. Part III, ““Mouse Programming Interface,” discusses
the topics you’ll need to consider when adding mouse support to a pro-
gram you’re writing. Part III also describes each of the mouse function
calls available through MOUSE.LIB or Interrupt 33H and offers sample
programs in QuickBASIC, Interpreted BASIC, C, Quick C, MASM,
FORTRAN, and Pascal. In addition, Part III includes information on
adding mouse support to programs that will run on an EGA and de-
scribes the EGA Register Interface functions available through the
EGA.LIB library. The appendixes in Part IV cover mouse command line
switches, mouse messages, and the ASCII character set.

The following notational conventions are used in this book:

Ltalics Variable names, replaceable parameters in syntax lines, and
function names in text

Initial Cap Menu names, menu command names, and mouse function
names

ALL CAPS Filenames, directory names, and MS-DOS command names

Boldface User input (what the user types)

PART |

Infroduction

Chapter 1: Evolution of the Mouse

= The Early Mice
= The Microsoft Mouse
= Looking Ahead

Chapter 2: Overview of Mouse Programming

= The Mouse Driver
= Mouse Menus
= The Mouse Programming Interface

Chapter 1

Evolution
of the Mouse

The mouse-—a small, hand-held device that controls the movement
of the cursor on a computer screen—was first developed 25 years ago.
From humble beginnings as an odd-looking, one-button, wooden
prototype, the mouse has evolved into a sleek, sophisticated tool that
is nearly as familiar to today’s computer user as the keyboard.

Spanning fewer than 10 years of the mouse’s 25-year history,
Microsoft’s role in the evolution of the mouse is nevertheless signi-
ficant. The Microsoft Mouse, first introduced in 1983, has set new
standards for how people interact with the computer. Although
Microsoft didn’t invent the mouse, it has done much to fine-tune it.
To understand Microsoft’s involvement, let’s look at how the mouse
originated and developed.

THE EARLY MICE

We were experimenting with lots of types of devices at the time. Once the mouse

proved itself to us, we tested it against several other devices, and it clearly

won. I felt that until something better came along, the mouse would definitely
remain the best pointing device for computer users.

—Doug Engelbart

Inventor of the mouse

PART I: INTRODUCTION

When Doug Engelbart developed his wooden prototype of the
mouse at Stanford Research Institute in 1963, he designed it for use
with his Augment computer. Englebart’s ideas later influenced the
designs of the Xerox Star, Apple Lisa, and Apple Macintosh personal
computers. Not even Engelbart then envisioned what occurred over
the next 25 years.

Engelbart’s mouse was a simple analog device that responded to
each movement of the mouse by sending a signal to the software that
shifted the position of the cursor on the screen. Inside the wooden
mouse body were two metal wheels that were connected to the shafts
of two variable resistors. Figure 1-1 shows Engelbart’s mouse.

Figure 1-1. Doug Engelbart’s original wooden mouse.

The concept of using a mouse became more widely known in the
early seventies when Xerox Corporation’s Palo Alto Research Center
(PARC) commissioned Jack S. Hawley to build the first digital mouse.
Hawley’s mouse was basically a digital version of Engelbart’s mouse.

At the time, Xerox was developing the powerful Alto computer and
wanted to include a mouse as part of the computer package. Although
the Xerox Alto performed poorly in the marketplace—fewer than a
hundred were sold—it paved the way for the future development of
personal computers and the mouse. In 1975, Xerox asked Hawley to de-
velop a new standard for the mouse, a standard that many manufactur-
ers adopted and followed into the eighties. After Hawley completed his
commission for Xerox, he went on to design and manufacture mice
through his own company, the Mouse House, in Berkeley, California.

Chapter 1: Evolution of the Mouse

THE MICROSOFT MOUSE

As the Xerox mouse received more attention, Microsoft began to con-
sider the idea of designing a mouse. A.former Xerox PARC employee,
Charles Simonyi, had recently joined Microsoft and wanted to add
mouse support to a new product, Microsoft Word. At about the same
time, Microsoft’s Bill Gates, Paul Allen, and Raleigh Roark were also
exploring ideas for hardware products.

From a Lump of Clay

In the early eighties, Microsoft was a small company with no in-house
design resources. For most of its design needs, the company relied

on a Seattle graphic designer, David Strong, who had developed the
Microsoft corporate logo and color scheme. It therefore seemed natu-
ral for Microsoft to approach Strong for assistance with the mouse
design. '

After the Microsoft team explained precisely what it wanted—a
small, easy-to-handle mouse unit just big enough to accommodate the
required internal circuitry—Strong went to work. He produced a 2/-
inch by 4-inch by 1¥-inch clay model with thumbtacks on the under-
side that simulated gliders (Figure 1-2).

Figure 1-2. The clay model for the original Microsoft Mouse.

As Raleigh Roark recalls, ‘A bunch of us sat around a conference
table for hours just gliding this lump of clay back and forth, trying to
decide if we liked the feel of it. Nobody could really agree. After a
while, we settled on the design and dimensions we thought would work.

PART |: INTRODUCTION

Then, with the clay model in hand, I got on a plane for Tokyo to meet
with an electronics manufacturer to get them to build the thing.”

Roark flew to Tokyo with Kay Nishi, who was then a Microsoft vice
president and president of ASCII Corporation in Japan. Nishi and
Roark met with manufacturing engineers to discuss what Microsoft
wanted. Discussions came to an abrupt, but temporary, halt when the
engineers said it couldn’t be done. They believed that the mouse en-
coders couldn’t possibly be squeezed into the small, hand-size mouse
that Microsoft wanted. As Roark remembers, ‘“There was a bunch of
grumbling about how this was impossible—it just couldn’t be done.
Then suddenly the room grew quiet, and the chief of engineering said,
‘Our engineers will now leave the room for exactly one hour, and when
they return they will have a solution to this problem.” The engineers
came back with a workable design, and a few months later Microsoft
had its first mouse.”

The First Generation

Doing the serial mouse was the biggest thrill for me. It was a conceptual
breakthrough; no one had been able to do anything like it before.

—Raleigh Roark

Head of the Microsoft Serial Mouse Development Team

In June 1983, Microsoft introduced a new product for the IBM
Personal Computer, the Microsoft Bus Mouse. This was a two-button
mechanical mouse that relied on a steel ball and a pair of rollers to
register movement as the mouse glided across a flat surface. The mouse
was powered by a half-size circuit board that contained an Intel 8255
Programmable Peripheral Interface and some support chips. A distinct
advantage of the Microsoft mouse (shown in Figure 1-3) was that its
mechanical encoders used very little power.

Avyear after the release of the bus mouse, Microsoft developed
a serial version of the mouse. This was a major technological break-
through because the mouse could be connected directly to an RS-232
serial port. It required neither a bus card nor a separate power supply
because a CMOS processor in the mouse drew enough power from the
RS-232 port for operation.

Chapter 1: Evolution of the Mouse

Figure 1-3. Microsoft’s first-generation mouse.

The first-generation mice had separate, hardware-specific operat-
ing software (mouse drivers) for the bus and serial versions and a sepa-
rate linkable library, MOUSE.LIB, for high-level language development.
To help people become comfortable using mice, Microsoft also pro-
vided these programs in the original mouse package:

= Notepad, a mouse-oriented text editor

® Piano, an on-screen piano keyboard that users could “play”
with the mouse

® Life, a graphic game in which users followed the life and death
of simulated microorganisms they designed

Subsequent releases of the mouse software in 1983-1984 brought
updates and enhancements to Notepad, the addition of a drawing pro-
gram named Doodle, and the introduction of mouse menus. With
mouse menus, Microsoft provided a way to make the mouse accessible
to applications that weren’t originally designed for use with a mouse.
Users of VisiCalc, Multiplan, WordStar, and Lotus 1-2-3 could now in-
stall special menus that allowed use of the mouse within those applica-
tions. In addition, Microsoft provided a MENU.COM program for
loading menus and a MAKEMENU.EXE compiler so that people could
design and build their own mouse menus.

PART I: INTRODUCTION

With the release of MS-DOS 2.0 in 1983, the mouse took advantage
of a new MS-DOS feature known as installable device drivers. With in-
stallable device drivers, it became much easier to configure any com-
puter system for use with MS-DOS and the mouse.

In 1985, two major software releases, Microsoft Mouse 3.0 and 4.0,
introduced support for the IBM PC/AT and the growing number of
high-resolution graphics devices. People could now install mouse soft-
ware for use with most display adapters, including the Hercules
Graphics Card, the IBM Color Graphics Adapter (CGA), the IBM
Enhanced Graphics Adapter (EGA), and other newly introduced high-
resolution display adapters and monitors. In addition, the mouse driver
could now autodetect the hardware configuration it was installed on.

With software release 4.0 in May 1985, Microsoft replaced Doodle
with a popular state-of-the-art graphics application, PC Paintbrush.

The Second Generation

The Microsoft gray-button mouse, with its 200 ppi, changed the nature of the

way people used mice. Doubling the sensitivity meant that users didn’t have to
push a mouse all over a desk to move the cursor around the screen.

—Steve Shaiman

Lead Software Designer for Microsoft Mouse 5.0

In October 1985, the mouse achieved a new level of sophistication
with its more streamlined, professional look and reengineered driver.
Many changes were immediately visible: a gray color for the buttons, a
redesigned body, larger wraparound buttons, and a rubber-covered
steel ball in place of the solid steel ball. But the true significance of this
release could be felt rather than seen. By doubling the resolution to
200 ppi (points per inch), Microsoft made the mouse much easier to
use. Figure 1-4 shows Microsoft’s second-generation mouse.

The gray-button mouse required much less surface area for move-
ment (a circle of 4-5 inches), and most operations could be accom-
plished easily with simple wrist and hand movements. By contrast, the
earlier mouse seemed clunky and cumbersome, requiring movement
over a relatively large surface area (a circle of 8-10 inches).

Chapter 1: Evolution of the Mouse

Figure 1-4. Microsoft’s second-generation mouse.

In May 1986, Microsoft released a modified version of the bus
mouse interface that was powered by a custom InPort chip, which fur-
ther enhanced mouse performance because the mouse driver could
take advantage of the chip’s programmable interrupt rate.

Improved performance of mouse hardware set the stage for what
was perhaps the most important mouse software release, Microsoft
Mouse 6.0. Introduced in September 1986, Microsoft Mouse 6.0 brought
a major overhaul of the mouse software:

® PC Paintbrush was updated and renamed Microsoft Paintbrush.

® A mouse setup program was added, and Show Partner, a
graphics presentation program, was added. (Show Partner was
discontinued in version 6.1).

» Expert mouse menus were added for power users of Lotus 1-2-3,
Display Write I11, and Multimate 3.31.

® Computer-based tutorials became part of the package. (These
were discontinued in version 6.1.)

= A mouse Control Panel let people adjust the sensitivity of the
mouse for different applications.

Furthermore, in this release an optional international version of
the mouse driver generated messages in any one of nine foreign lan-
guages, which let software developers readily build in mouse support
for most foreign-language applications. The international driver is
shipped to users outside the United States.

PART I: INTRODUCTION

The Third Generation

The new Microsoft Mouse (the one that looks like a bar of Dove soap), with its

repositioned ball and seemingly improved mechanism, makes all the difference
in the world. ;

—John C. Dvorak

PC Magazine, December 22,1987

The third-generation mouse, introduced in September 1987, had a
smaller, sleeker mouse body with easy-to-use buttons that clicked when

pressed.
Figure 1-5 shows Microsoft’s third-generation mouse.

Figure 1-5. Microsoft’s third-generation mouse.

The internal architecture of this new Microsoft Mouse re-

mained basically the same as that of the gray-button mouse, but some

major changes made the mouse easier to control—changes such as

moving the traction ball to the front of the mouse and making the left

button larger than the right. In July 1988, the Wall Street Journal pub-
lished an article (shown in Figure 1-6) about the ergonomics of the
third-generation mouse.

Software included in the mouse package continued to improve
and offered increasingly more options. Microsoft currently offers the

mouse in a variety of bus-version and serial-version hardware and soft-

ware configurations. The bus version, like earlier Microsoft bus mice,
uses its own card. The serial version can be connected directly to a
serial port or to the mouse port on IBM PS/2 computers and other
PS/2-style mouse port interfaces.

Figure 1-7 on p. 12 illustrates the milestones in Microsoft mouse
history.

10

Chapter 1: Evolution of the Mouse

Tiny Mouse Holds
Many Design Problems

OMPUTER MICE cram a
‘ surprising number of design
issues into a tiny package,
as Microsoft Corp. proved when it
undertook to develop a new model
of the hand-held control.
SHAPE: “Most mice on the
market take their shape from the
form of a computer or keyboard.
They’'re rectilinear, with fairly
hard edges,’ says Paul Bradley,
an industrial designer at Matrix
Product Design Inc., of Palo Alto,
Calif., which was responsible for
the new mouse’s appearance.
“We used a softer form that’s
closer to the contour of a hand.”

Microsoft Mice:
Old (top); New (bottom)

Matrix collaborated with hu-
man-factors specialists at ID Two
in San Francisco and engineers at
David Kelley Design, Palo Alto.

SIZE: ‘“‘At first we thought a
much smaller device, to be held
in the fingertips, might give more
accurate control,” says'Mr. Brad-
ley. Tests proved that wrong.
“Our mouse is lower, but other-
wise not smaller,” he says. ‘“You
can drive it with your fingertips,
but still rest your hand on it.”

BALANCE: A mouse rolls on a
plastic ball set in its underside,
usually at about the middie. The
designers moved the ball forward
to facilitate fingertip operation.

CONTROLS: ID Two did ex-
tensive testing on the type, size
and configuration of the two but-
tons that execute mouse com-
mands. It found that making one
button larger than the other im-
proved performance without trou-
bling left-handed users, but that a
ridge was needed between the
buttons as a tactile landmark.
Test users preferred buttons with
crisply clicking feedback over a
“mushier” button used earlier.

FINISH: Most mice tend to
have a textured finish, often in
universal humdrum computer
beige. Microsoft chose to make
the new mouse glossy white.

Microsoft considers the effort
worfhwhile. Since it introduced
the model last fall, sales have al-
ready exceeded total previous Mi-
crosoft mouse sales since 1984.

Figure 1-6. Article from the Wall Street Journal about the new Microsoft Mouse.

11

PART I: INTRODUCTION

MILESTONES IN MICROSOFT MOUSE HISTORY

HARDWARE RELEASES MAJOR SOFTWARE RELEASES
JUNE 1983

Mouse 1.0
Bus Version
The Microsoft Green-button Mouse

Mouse Driver 1.0

Contained the mouse driver plus software that
Microsoft introduced its first mouse: a two- demonstrated and taught use of the mouse.
button, mechanical mouse designed for the This release supported Microsoft Word and

IBM PC. The mouse supported Microsoft Word. « DECEMBER 1983 :‘Z:tgzoz::d separate drivers for bus and serial

Mouse .0— I FEBRUARY 1984 | Comaod apdare
Vers FEBRUARY 1984 Contained updates to the driver software plus

Serial Version . . .
The Microsoft Green-button Mouse the introduction of a new graphics program,
Doodle.

Designed to plug directly into an RS -232 serial
port instead of a separate bus card.

Mouse Driver 3.0

Provided early support for the IBM Enhanced
S ' Graphics Adapter (EGA) and MS-DOS 3.x. Th
disk also contained updates to Notepad.

MAY 1985 y Mouse Driver 4.0

With Mouse Driver 4.0, Doodle was replaced
with Z-Soft’'s popular color painting program,
PC Paintbrush. The mouse software was
extended to two floppy disks.

Mouse Driver 5.0

Mouse Driver 5.0 was revised to install and
identify the type of mouse in use. Reengineered
mouse hardware enhanced software
performance (resolution now 200 ppi).

Mouse 5.0

The Microsoft Gray-button Mouse e
Reengineered hardware and software doubled
the sensitivity and resolution (200 ppi) of the
earlier mouse.

Mouse 5.03
The Inport Mouse
Introduction of the InPort Mouse. The InPort
chip is a custom LSI (Large Scale Integration)
Microsoft design used in the bus mouse board
and as the peripheral interface on the
Microsoft MACH 10 and MACH 20. Mouse Driver 6.0
Mouse Driver 6.0 was a major update. The disk
contained a new mouse setup program and a
new version of Microsoft Paintbrush. It also
contained computer-based training and
Control Panel.

Mouse 6.10

The Microsoft Mouse for the IBM PS/2
Introduction of the Microsoft Mouse for the
IBM PS/2 mouse port. Microsoft’s PS/2 Mouse
arrived on the market a month after the first
announcement of the PS/2 line.

- MA* - . o
Mouse 1.0 Mouse Driver 6.1

The New Mouse Microsoft added the following support for VGA
Microsoft redesigned the mouse body and graphics: serial-interface and bus-interface
moved the track ball to the front of the mouse. EPTEMBER 1987 versions of EasyCAD, and Microsoft Windows
The mouse became available in three different S ER 198 2.03 with Microsoft Paintbrush.
software configurations and two hardware
configurations.

Figure 1-7. Major hardware and software releases of the Microsoft Mouse.

12

Chapter 1: Evolution of the Mouse

LOOKING AHEAD

As software becomes more complex, more of us will need to adopt pointing
devices to work efficiently with computers. There is probably a mouse in your

Sfuture.
—Cary Lu

Author of The Apple Macintosh Book, 3rd ed., Microsoft Press

Sometime in the not-too-distant future, every microcomputer will be shipped
with a mouse. As the world moves to Windows and OS/2, mice will become as

endemic as keyboards are.
—Steve Shaiman

Director, Microsoft Hardware Group

In the summer of 1988, 25 years after Doug Engelbart crafted his
wooden prototype, Microsoft celebrated the sale of its millionth
mouse.

Today, software applications with graphical user interfaces are
rapidly becoming the norm rather than the exception, and with this
comes wider acceptance and use of the mouse. As OS/2 and Presenta-
tion Manager, Microsoft Windows, and other graphical-user-interface
software come into wider use, using a mouse makes increasingly more
sense and begins to seem a necessity rather than a luxury.

13

Chapter 2

Overview
of Mouse
Programming

The mouse is an electronic device that sends signals to your computer.
To your software, these signals represent cursor movements and button
presses. However, the raw data sent to your computer is difficult to use
in its original form. Also, different signals are generated depending on
whether a bus, InPort, serial, or PS/2 mouse is used. To give program-
mers an easy-to-use, consistent interface, Microsoft and most other
mouse manufacturers provide a mouse driver.

THE MOUSE DRIVER

A mouse driver is software that lets the operating system consistently
interpret the raw data from the mouse. The Microsoft mouse driver
does this by providing application programs with 35 function calls that
let programs perform specific tasks, such as checking the state of a
mouse button. These function calls are consistent regardless of the
mouse hardware you use.

Microsoft provides three methods for interfacing with the mouse
driver: mouse menus, the mouse library, and direct calls to MS-DOS
Interrupt 33H. Each method has distinct advantages and disadvantages,
and each method fulfills a particular need. For example, you can use

15

PART I: INTRODUCTION

mouse menus only with existing applications. However, you can use the
mouse library and Interrupt 33H in programs you write yourself.

Using Mouse Menus

Mouse menus let you integrate the mouse into most preexisting text-
based software packages that wouldn’t otherwise support the mouse.
Thus, you can bring up menus that aren’t necessarily in the appli-
cation, and you can emulate keystrokes. You can also assign mouse
motions and button presses to tasks you would normally perform
with the keyboard.

Using the Mouse Library

The mouse library lets you incorporate the mouse into an application
as you write it. Because the mouse support becomes an integral part of
the program, the functionality of the mouse support within the appli-
cation program far exceeds that which you can obtain with mouse
menus. The library lets the application take advantage of 35 mouse
function calls, which are accessible from high-level languages such as
interpreted BASIC, QuickBASIC, C, QuickC, FORTRAN, and Pascal. The
function calls are also accessible from MASM.

Using MS-DOS Interrupt 33H

You can access the mouse driver directly through MS-DOS software
Interrupt 33H, which provides you the same 35 functions that are avail-
able through the mouse library. Because the overhead of making li-
brary calls is eliminated, a program written using Interrupt 33H is
smaller and faster than the same program written using the mouse li-
brary. Most professionally developed programs that use the mouse in-
teract with it through Interrupt 33H. Any language that can make calls
to the MS-DOS interrupts can use this method of interfacing with the
mouse driver.

MOUSE MENUS

16

A mouse menu displays menus on the screen with options you can
select. The selected option can feed characters into the keyboard
buffer for the current application, or it can execute other menu
commands.

Chapter 2: Overview of Mouse Programming

NOTE: The only way the mouse menu programs interact with an applica-
tion is by detecting mouse motion or button presses and then feeding characters into
the keyboard buffer.

The keyboard buffer is a small portion of memory that holds char-
acters you type on the keyboard. Your application program reads these
characters from the buffer in the order in which they were input and
acts on them accordingly. A mouse menu program can emulate the
keyboard by sending characters directly to the keyboard buffer as you
move the mouse or press one or more mouse buttons.

Menu software loads the keyboard buffer much faster than you
can load it by typing at the keyboard. How fast the buffer is loaded by
the keyboard is limited to a set rate determined by each computer’s
BIOS; however, the menu software doesn’t have this limitation. For this
reason, when the mouse emulates the direction keys, the cursor moves
much faster than if you pressed the actual keys on the keyboard.

NOTE: Because certain applications access the keyboard directly, your mouse
menu program might not work as you expect. In addition, mouse menu programs
can’t generate some keystrokes, such as Ctrl-Alt-Del. These keystrokes are listed
under the TYPE statement entry in Chapter 4, “Mouse Menu Language
Statements.” :

Keyboard Mapping

A mouse menu program recognizes seven mouse actions:
® Left button pressed
® Right button pressed
= Both buttons pressed
= Right motion
® Left motion
= Up motion
® Down motion

You can make each of these actions correspond to one or more
menu commands. For example, some useful and common mappings of
mouse actions to the keyboard buffer include the following:

. ® Right, left, up, and down motions that correspond to the right-
arrow, left-arrow, up-arrow, and down-arrow keys

17

PART I: INTRODUCTION

® A button press that corresponds to pressing Enter or Esc

® A button press that tells the menu software to display a custom
menu, which you usually write to execute application program
commands or MS-DOS commands

The following mouse menu program demonstrates some simple
keyboard mapping:

“BEGIN 1b rb.bb]m rm, um dm 48 48
“1b: - EXECUTE 1~ 1t
“E{EXECUTE'entkey

* EXECUTE escape
- EXECUTE left
CEXECUTE right
EXECUTEUD E
EXECUTE:y

Left movement emulates 1eft ar'row key,: -
Right movement emu]ates right arrow k

.~ fl: TYPE 0,59
B entkey TYPE ente ‘
e: TYPE 27

Creating a Mouse Menu

18

The mouse menu programming language has commands that let you
create custom pop-up menus in a variety of configurations and hier-
archies. You can create simple single-function menus, or you can
create elaborate multilayer menu systems in which choosing an item
from one menu can call up another menu.

You follow the same basic steps to create a mouse menu as you do
when developing any other software:

1. Design and write the source code
2. Compile the source file

3. Run the mouse menu program

4. Debug the program

For instructions on creating a mouse menu program, see Chapter 3,
“Creating Your Own Mouse Menu.”

Chapter 2: Overview of Mouse Programming

THE MOUSE PROGRAMMING INTERFACE

Mouse menus provide mouse support for an existing application pro-
gram that doesn’t already support the mouse. However, the most effi-
cient way to add mouse program support is to write the mouse support
directly into the application program’s code. The mouse can then
become a separate user-input device of its own, not merely a keyboard
emulator. The most important feature the mouse brings to the user in-
terface is the free-floating cursor used in many popular products such as
Microsoft Word, Microsoft Works, AutoCAD, Microsoft Paintbrush,
and Microsoft Windows. This feature makes programs more intuitive,
user-friendly, and easy to learn.

As the link between the mouse hardware and the application soft-
ware, the mouse driver keeps constant track of mouse movement and
button-press information. When an application program needs mouse
information, it makes a request to the driver, which then returns the re-
quested information to the application program.

Working with Functions

The mouse driver understands 35 input and output operations. Each
operation, or function, is a specific instruction to the mouse driver that
enables a program to communicate with the mouse. Some functions
request information about the mouse such as button-press information,
relative cursor position, and relative motion. Other functions control
characteristics of the mouse interface such as regulating the sensitivity
of cursor motion, defining the shape of the cursor, and limiting cursor
movement to a specific area. The application program tells the mouse
driver what it wants through the mouse function calls, and the driver
does the rest.

Communicating with the Mouse Driver

You can use two methods to communicate with the mouse driver from
within a program: You can use the MOUSE.LIB library, which allows
the program to communicate with the mouse driver using the calling
conventions of a particular language, or you can communicate with
the driver using MS-DOS Interrupt 33H. All mouse function calls are
available using library calls or using MS-DOS Interrupt 33H. Each
method has its distinct advantages; however, functionality is the same
in both methods.

19

PART I: INTRODUCTION

20

NOTE: The mouse driver and the corresponding interface control only the
mouse. You must set video modes and program interaction with the mouse within a
program as required for your specific application.

Using the MOUSE.LIB Library

You can use the MOUSE.LIB library supplied with the disks in this book
as a library file for several Microsoft languages. Using the libraries lets
you add mouse support to a program by making procedure calls in Pas-
cal, subprogram calls in QuickBASIC, function calls in C and QuickC,
or subprogram calls in FORTRAN. The library enables all parameter
passing and declarations to be consistent with the language you are
using. Because of this, no special programming techniques are neces-
sary to program the mouse. Calls to the mouse simply become another
subroutine.

To use the mouse library, the language you use must support
Microsoft library conventions. If the language supports the conven-
tions, you can link the library with your program. For information
about linking to various mouse programs, see Chapter 9, “Sample
Mouse Programming Interface Programs.”

You should also consult the documentation of the language you
are using regarding the linking of external libraries. If the language
doesn’t support the Microsoft library conventions, you will be unable to
link with the MOUSE.LIB library. However, it might be possible to pro-
gram the mouse using Interrupt 33H as described in the following
section.

Using Interrupt 33H

A command in the AUTOEXEC.BAT or CONFIG.SYS file usually loads the
mouse driver when MS-DOS starts. The driver installs the starting ad-
dress as the vector for Interrupt 33H and then attaches itself to the
operating system. You can then access the mouse driver through soft-
ware Interrupt 33H. When your software calls this interrupt, the system
finds the address of the mouse driver in the interrupt vector table, goes
to the mouse driver, and executes the requested function.

NOTE: The mouse driver (MOUSE.COM or MOUSE.SYS) must be in memory
when an application or program uses mouse function calls. When the driver is
loaded, programs can access the Interrupt 33H vector if they use the mouse function
calls (in which the driver provides an interface for application programmers).

Chapter 2: Overview of Mouse Programming

You can specify the different functions by loading the AX, BX, CX,
and DX registers with the appropriate values. Some functions also use
the ES, SI, and DI registers. The mouse driver returns values to the call-
ing routine through these same registers. For detailed information on
using registers to pass function variables, see Chapter 8, ““Mouse Func-
tion Calls.”

The primary advantage of using Interrupt 33H instead of the
mouse libraries is improved execution speed. Interrupt 33H circum-
vents the overhead associated with calling subroutines by calling the
interrupt directly. Also, languages that can’t use the supplied mouse li-
brary can use Interrupt 33H if they can load processor registers and
make calls to MS-DOS.

EGA Register Interface
Although the mouse driver supports the EGA and VGA, programmers
sometimes like to program the EGA or VGA hardware directly. Because
the mouse driver keeps track of the EGA and VGA registers, program-
mers must take some special considerations into account when pro-
gramming the D, E, F, 10, 11, 12, and 13 graphics modes of the EGA and
VGA adapters.

For detailed information on using the EGA Shadow Register Inter-
face, see Chapter 10, ‘“Writing Mouse Programs for IBM EGA Modes.”

21

PART Il

Mouse Menus

Chapter 3: Creating Your Own Mouse Menu

= Mouse Menu Language Commands
= Statement Format

= Mouse Menu Program Structures

= Creating a Mouse Menu Program

Chapter 4: Mouse Menu Language Statements

» Statement Syntax Conventions
» Statement Descriptions

Chapter 5: Sample Mouse Menu Progroms

= The SIMPLE Mouse Menu Program
= DOSOVRLY Mouse Menu Program
= Other Sample Mouse Menu Programs

Chapter 3

Creating Your
Own Mouse Menu

The mouse menu programming language is designed to provide
mouse support for applications that don’t currently support the mouse.
The menu communicates to the application through the keyboard
buffer by using a set of commands. This chapter describes how to use
those commands to design and run your own mouse menus.

MOUSE MENU LANGUAGE COMMANDS

The mouse menu programming language consists of 13 commands.
You use these commands in statements that assign different functions
to the mouse, create menus, and simulate the pressing of keys.

Table 3-1 lists the commands in the mouse menu programming
language:

TABLE 3-1: MOUSE MENU COMMANDS
Command Purpose

ASSIGN Assigns new values to mouse events or changes mouse
movement sensitivity.

BEGIN Assigns initial actions taken when a mouse event occurs and sets
initial mouse-movement sensitivity.

EXECUTE Specifies the label of the statement that contains the mouse
menu command or commands to be executed when you move
the mouse, press a mouse button, or choose a menu item.

(continued)

25

PART Il: MOUSE MENUS

TABLE 3-1: MOUSE MENU COMMANDS (continued)

Command Purpose

MATCH Specifies the action taken if a certain character or string of
characters is displayed at a specific location on the screen.

MENU Begins a menu subroutine.

MEND Ends a menu subroutine.

NOTHING Indicates that no action will be taken. NOTHING is used as an
alternative to the EXECUTE, TYPE, and MATCH statements.

OPTION Specifies 2a menu item within a menu subroutine and the action
taken when you select that item.

POPUP Begins a pop-up subroutine.

PEND Ends a pop-up subroutine.

SELECT Defines the action taken when you select an item from a pop-up
: menu.

TEXT Defines the text for a pop-up menu title or menu items.

TYPE Specifies the key or keys ‘““‘typed’” into the keyboard buffer

when you move the mouse, press a mouse button, or choose
a menu item.

STATEMENT FORMAT

Labels

26

In the mouse menu programming language, you can enter statements
in uppercase or lowercase letters. Most statements have the following
format:

[Tabel:1 command [parameters ;comments]

NOTE: The BEGIN statement and statements within menu and pop-up
subroutines don’t use this format because they don’t require labels. The BEGIN
statement doesn’t need a label because it’s always the first statement in a program,
and statements within menu or pop-up subroutines don’t need labels because they
run sequentially.

The components of a statement are described in the following
sections.

A label is the name you give a mouse menu statement. Except for state-
ments in menu or pop-up subroutines, all statements must have labels
for the program to access them. Your program calls a statement when
its label is referenced in another statement. When the labeled state-
ment is completed, control returns to the statement that referenced

Chapter 3: Creating Your Own Mouse Menu

the label. In other words, control doesn’t fall through to the next
statement. In the following statement, matl is the label of the MATCH
statement:

matl: MATCH 23,,inverse,"Format",execl,exec2
When you include a label, be sure to follow these guidelines:

® Begin a label with a letter and follow it immediately with a
colon.

® Leave at least one space between the colon and the command.

® Do not use mouse menu command names or the words backsp,
enter, esc, or tab for labels.

® Use any printable standard ASCII characters excepta colon in a
label.

® Use labels that suggest what the statement does in the program.
For example, you could use menul as the label for the first
menu subroutine.

Parameters

A parameter is a variable that affects the action of a statement. When
you use a statement, you must substitute an appropriate value for each
parameter you want to use. All statements except NOTHING, MEND, and
PEND have parameters. ‘

Parameters follow the command word in a statement. When you
use parameters in a statement, you must type a space between the com-
mand word and the first parameter. Commas must separate any addi-
tional parameters. '

The EXECUTE and TYPE statements let you use from 1 to 15 pa-
rameters. However, other statements require a specific number of pa-
rameters. Suppose you are using one of these other statements, such as
the MATCH statement, and you don’t want to use a particular parame-
ter. However, you do want to use the parameters that follow. To accom-
plish this, you include an additional comma to hold the place of the
unused parameter. The MAKEMENU utility automatically uses the
default value for any parameter that you leave out of a statement that
has a required number of parameters.

For example, in the following statement, 23, inverse, Format,
execl, and exec2 are five of the six required values for MATCH statement
parameters. The fact that the second comma immediately follows the

27

PART Il: MOUSE MENUS

first comma tells the MAKEMENU utility that the second parameter is
not included and that the default value should be used:

matl: MATCH 23,,inverse,"Format"”,execl,exec2

The mouse menu programming language uses three types of parame-
ters: numeric parameters, string parameters, and attribute parameters.

Numeric Parameters
You use numeric parameters for numeric data, such as screen coordi-
nates or movement-sensitivity values for the mouse.

In the preceding example, 23, the row coordinate for the MATCH
statement, is the value for a numeric parameter.

String Parameters

Most string parameters specify text for menus or messages. A string

parameter can contain digits, letters, special characters, or spaces.
You must enclose a string in double-quotation marks (“ ”). You

cannot use a double-quotation mark as part of the string: The double-

quotation marks enclosing the string are the only ones allowed.

Attribute Parameters

The attribute parameter determines the display attribute, which speci-
fies how a menu or message box appears on the screen. This parameter
can have one of four values: normal, bold, inverse, or, if your system uses a
color display adapter and monitor, a number that designates specific
foreground and background colors. Figure 3-1 shows how the normal,
bold, and inverse values affect the text displayed by a pop-up menu.

" BASIC Commands “ BASIC Commands | BASIC Commands
List List
Run Bun
Load Load
Normal Bold Inverse

Figure 3-1. Effects of display attributes applied to pop-up menu text.
If you don’t specify an attribute parameter, the default attribute

is used. Default attributes are included in the description of each state-
ment in Chapter 4, ‘““Mouse Menu Language Statements.”

28

Chapter 3: Creating Your Own Mouse Menu

Color Menus

If your system uses a color display adapter and color monitor, you can
use the attribute parameter in a MATCH, MENU, or POPUP statement
to specify particular colors for the background and foreground of a
menu or message box. Text is displayed in the foreground color; the
remainder of the box is displayed in the background color.

Table 3-2 lists the background and foreground colors available,
and it gives a corresponding value for each color. The value for a par-
ticular color differs depending on whether you use the color for the
foreground or the background. The display attribute that specifies a
particular color combination is the sum of the values for the desired
foreground and background colors. Suppose you want green text on a
blue background. The value for a green foreground is 2, and the value
for a blue background is 16. Therefore, the value of the attribute
parameter is 18.

NOTE: Color shades can vary on different equipment. Also, if you specify
a display-attribute value greater than 127, the foreground color blinks when the
menu or message box is displayed. In addition, a gray background (128) looks
the same as a black background (0).

TABLE 3-2: FOREGROUND AND BACKGROUND COLOR VALUES

Color Foreground Background
Black 0 0
Blue 1 16
Green 2 32
Cyan (blue-green) 3 48
Red 4 64
Magenta 5 80
Brown 6 96
White 7 112
Gray 8 128
Light blue 9 144
Light green 10 160
Light cyan 11 176
Light red 12 192
Light magenta 13 208
Yellow 14 224

—
ot

White (high intensity) 240

29

~ PARTIl: MOUSE MENUS

Specifying a value of 7 is equivalent to specifying the normal at-
tribute parameter. The value 7 is the sum of 0 (the value for a black
background) and 7 (the value for a white foreground). Specifying a
value of 15 is equivalent to specifying the bold attribute parameter. The
value 15 is the sum of 0 (the value for a black background) and 15 (the
value for a high-intensity white foreground). Specifying a value of 112 is
the equivalent of specifying the inverse attribute parameter. The value
112 is the sum of 112 (the value for a white background) and 0 (the value
for a black foreground).

Comments

Comments describe what a statement does. They are used to help you
and anyone else who might read your program to understand the pro-
gram, and they have no effect on how the statement is executed.

You can insert a comment at the end of a statement or on a sepa-
rate line. To specify a comment, simply type a semicolon (;) followed
by the comment. If you include a comment on the same line as a state-
ment, separate the last parameter of the statement and the semicolon
preceding the comment with one or more spaces. The following is an
example of a TYPE statement followed by a comment:

F1: TYPE 0,59 ;Simulates pressing the F1 key

MOUSE MENU PROGRAM STRUCTURES

The following sections describe how each type of command is used in
a mouse menu source program. For detailed information about com-
mands and their parameters, see Chapter 4, ‘““‘Mouse Menu Language
Statements.”’

Mouse Event Commands

30

Mouse event commands, BEGIN and ASSIGN, specify which statements
the program executes when you press a mouse button or move the
mouse.

The BEGIN Command

Use a BEGIN command to specify the initial statements executed when
particular mouse events occur and to set the initial mouse sensitivity.
Always use a BEGIN command as the first statement in your program.

Chapter 3: Creating Your Own Mouse Menu

You can include one or more of the following parameters in the
BEGIN statement:

® Button parameters: [fbtn (left button), rtbtn (right button),
and/or bthtn (both buttons). Button parameters define the ac-
tion taken when you press one or both mouse buttons.

= Movement parameters: [finov (mouse left), rtmov (mouse right),
upmov (mouse up), and/or dnmov (mouse down). Movement
parameters define the action taken when you move the mouse.

= Movement-sensitivity parameters: hsen (horizontal movement
sensitivity) and/or vsen (vertical movement sensitivity). Move-
ment-sensitivity parameters define how much the mouse must
move before the cursor moves. This is helpful in tailoring cur-
sor movement to the different column and row widths found in
spreadsheet programs. You specify the movement of the mouse
in a unit of distance known as a mickey, which is approximately
Y200 inch. For more information on the mickey, see Chapter 6,
“Mouse Programming Interface.”

The ASSIGN Command

Use the ASSIGN command to assign new values to mouse events and
mouse sensitivity. An ASSIGN command is useful if you want your
mouse menu program to execute different statements or subroutines,
depending on one of the following:

® The current mode of an application program
® Other conditions that require the mouse buttons to cause

different actions or the movement sensitivity to change

Menu Subroutine Commands

Menu subroutines create single-column pop-up menus, which are bor-
dered menus with a single column of menu items (Figure 3-2).

BASIC Commands

Figure 3-2. Single-column pop-up menu.

31

PART Il: MOUSE MENUS

32

To choose items in a menu, you move the mouse pointer to the
desired item and then press either mouse button. If you press both
mouse buttons at once, the equivalent of a NOTHING command is exe-
cuted and the menu disappears.

MENU, OPTION, and MEND are menu subroutine commands. To
code menu subroutines, use the following format:

label: MENU [“title"],[rowl,Lcolumn],[attribute]
OPTION ["text"],[label]

MEND

The MENU Command
Begin each menu subroutine with a MENU command. You can include
four parameters:

® The menu’s title, enclosed in double-quotation marks (“)

® The row and column of the screen where the upper-left corner
of the menu will appear

= The menu’s display attribute

The OPTION Commands

Include OPTION commands within a menu subroutine to specify one
or more menu items and the action taken when you choose an item. Al-
ways include at least one OPTION command that lets you exit from the
menu. ,

The text parameter is the text the menu displays for that item. If
you omit the fext parameter, the menu displays a blank line. Case is sig-
nificant; that is, uppercase and lowercase are displayed exactly as you
type them.

The pointer parameter is the label of the statement that is to be
executed when you choose that menu item. If you do not specify a
pointer parameter, the equivalent of a NOTHING statement is executed
when that item is chosen, and the menu disappears.

The MEND Command
Always follow the last OPTION command with a MEND (menu end)
command, which ends the menu subroutine. !

Chapter 3: Creating Your Own Mouse Menu

Sample Menu Subroutine
The following menu subroutine produces the Inverse Attribute menu
shown earlier, in Figure 3-1.

In this example, the upper-left corner of the menu produced by
this subroutine appears at row 5, column 20. Because an attribute is
not specified in the MENU statement, the inverse display attribute (the
default) is used. When the menu appears on the screen, the first menu
item is highlighted (in this case, Cancel Menu).

If you select Cancel Menu, the menu disappears because a pointer
parameter is not specified for that OPTION statement. If you select any
other item, the statement identified by the label specified in the pointer
parameter for that OPTION statement is executed. ‘

~_menul: MENU "BASIC Commands”,5,20
’ OPTION "Cancel Menu"

OPTION "List",F1

" OPTION "Run",F2

~OPTION "Load",F3 ...
S MEND I e
© Fl: TYPE 0,59 ;Simulates pressing the F1 key
F2: TYPE 0,60 ;Simulates pressing the F2 key
F3: TYPE 0,61 :Simulates pressing the F3 key -

Pop-up Subroutine Statements

You can use pop-up subroutines to create multiple-column menus and
message boxes.

You use multiple-column menus in the same way as single-
column menus: Choose an item by moving the mouse pointer to the
item, and then press either mouse button. Pressing both mouse buttons
at once is the equivalent of a NOTHING statement and removes the
menu from the screen. When the menu first appears on the screen, the
first menu item, as defined by the first SELECT statement in the POPUP
subroutine, is highlighted. Figure 3-3 shows a multiple-column menu.

CURSOR MOVEMENT
YT Top of screen
Screen up Bottom of screen
Screen doun Start of file
Previous place End of file

Figure 3-3. Multiple-column menu.

33

PART Il: MOUSE MENUS

Message boxes are simply pop-up menus that display messages in-
stead of menu items (Figure 3-4). You can combine pop-up subroutines
with MATCH commands so that message boxes appear when your appli-
cation program changes the display mode or when other conditions
change the screen display.

OUSE HELP]

Left button - Displays Edit/Block menu
Right button - Displays Cursor Movement menu
Both buttons - Displays Edit/File menu

Moving the mouse up, doun, left, or right
causes the cursor to move in that direction.

Figure 3-4. Message box.

The pop-up subroutine statements are the POPUP, TEXT, SELECT,
and PEND statements.

To code pop-up subroutines for multiple-column menus and mes-
sage boxes, use the following format:

label: POPUP [rowl,[column],[attribute]
[TEXT ["text"]1]

SELECT row,column,length,[pointer]

PEND

The POPUP Command
Begin each pop-up subroutine with a POPUP command. You can in-
clude three parameters:

® The row of the menu’s upper-left corner

® The column of the menu’s upper-left corner

® The menu’s display attribute
The TEXT Command
Include TEXT commands within a pop-up subroutine to specify the
menu title, menu items, and, optionally, menu borders. Type the title

text, item text, and menu borders exactly as they’ll appear on each line
of the menu and enclose them in double-quotation marks (“ ”).

34

Chapter 3: Creating Your Own Mouse Menu

NOTE: Menus created with the MENU command and menus created with
the POPUP command differ. The MENU command, which creates only single-
column menus, creates a border around the displayed menu and draws a line
between the menu title and the menu items. Figure 3-1 shows an example of those
lines. The POPUP command doesn’t draw these lines, so you must include line-
drawing characters within TEXT statements. The easiest way to do this is to use
equal signs (=) or hyphens (-) for the horizontal lines, and vertical-line characters
(1) for the vertical lines. Examples of this technique are shown on the following
pages. To use the same line-drawing characters created by the MENU command,
use the line-drawing characters of the extended ASCII character set. These are
shown in Appendix G, “ASCII Character Set.” To create these characters, hold
down the Alt key, type the number of the character on the numeric keypad, then
release the Alt key. The line-drawing character will appear on your screen.

The text generated by a TEXT command will be located on the
screen relative to the coordinates you specify in the POPUP statement.

The SELECT Commands
Use SELECT commands to define the area in which you can choose
each menu item. Specify the row, column, and length of the screen
area you want to select, relative to the menu’s upper-left corner. The
coordinates of the upper-left corner of a pop-up menu are (1,1). You
can also include a pointer parameter to specify a statement that is exe-
cuted when you choose an item on the screen that is pointed to by that
SELECT statement. As with the OPTION statement for a single-column
menu, you simply specify the label of the statement that will be
executed.

You must include at least one SELECT command in each pop-up
subroutine as an exit point.

The PEND Command
Always follow the last SELECT command with a PEND (pop-up end)
command, which ends the pop-up subroutine.

Sample Pop-up Subroutines
The following pop-up subroutine creates the multiple-column menu
shown earlier, in Figure 3-3.
In this example, the upper-left corner of the menu is at row 2, col-
umn 1. Because an attribute parameter is not specified in the POPUP
statement, the inverse display attribute (the default) is used.

35

PART Il: MOUSE MENUS

36

The TEXT statements specify the menu’s borders, title, and items .
Their location is relative to the coordinates you specified in the POPUP
statement as the upper-left corner of the menu. The first character of
the first menu item starts at relative row 2, column 3 in the menu; how-
ever, its actual screen coordinates are row 3, column 3. When the pop-
up menu appears on the screen, the first item is highlighted.

The SELECT statements define item-selection areas. In the first
item (Cancel menu), 2, 3, and 15 define the row, column, and length of
the selection area. Because the SELECT statement for the Cancel menu
doesn’t include a label for the pointer parameter, the menu disappears
from the screen if you select Cancel menu. The other SELECT statements
execute the statements named in their poinfer parameters.

The following pop-up subroutine creates the message box shown
earlier, in Figure 3-4. Note that the message box in Figure 3-4 uses the
upper-ASCII characters 186, 187, 188, 200, 201, and 205 to create the
border.

In this example, the POPUP statement defines row 2, column 1 as
the upper-left-corner coordinates. Because an atfribute parameter is not
specified in the POPUP statement, the inverse display attribute is used.

The TEXT statements define the message-box border, title, and
message text. Their screen location is relative to the coordinates you
specified in the POPUP statement as the upper-left corner of the menu.
The single SELECT statement highlights the menu box title and defines

Chapter 3: Creating Your Own Mouse Menu

an exit point for the menu. Because the message box has only one
SELECT statement, you cannot move the cursor within the message box.

mousehlp: POPUP 2,1
TEXT " s MOUSE HELP mmmems "

TEXT "4 A
TEXT "1 Left button - Displays Edit/Block menu "
TEXT "t Right button - Displays Cursor Movement menu "
TEXT "t Both buttons - Displays Edit/File menu HA
TEXT "3 A
TEXT "t Moving the mouse up, down, left, or right e
TEXT ": causes the cursor to move in that direction. "
TEXT ™ - ! B }
TEXT * e
SELECT 1,18,10 ‘ AR
PEND

Action Commands

Action commands specify the action taken when you choose a menu
item, press one or both buttons, or move the mouse. The EXECUTE, -
TYPE, and NOTHING commands are action commands.

~ It’simportant to understand the flow of the actions taken by
mouse menu programs. Most programming languages follow sequen-
tially from one statement to the next unless they encounter a branch-
ing statement or a subroutine call. You can think of mouse menu
program statements as subroutines, with an implied refurn at the end
of each statement. The only exception to this rule occurs with the
statements in the menu or pop-up subroutines, but if you think of the
MENU-MEND and POPUP-PEND blocks as single complex statements,
the rule applies to all cases.

A mouse menu program is entered when one of the actions of the
BEGIN or ASSIGN statements occurs, such as pressing a mouse button or
moving the mouse. The program then branches to the labeled state-
ment indicated in the BEGIN or ASSIGN statement. When the program
completes that statement, it returns to the BEGIN or ASSIGN statement
and terminates. Before completing its task, however, that statement
might call out another statement, and so on.

When the program completes the action of a labeled statement, it
returns control to the statement that referenced that label. The pro-
gram terminates when the nested chain of statements completes its

37

PART Il: MOUSE MENUS

tasks and the program flow returns to the originating BEGIN or ASSIGN
statement.

The following example shows the flow of the action when you
press the right mouse button:

Assuming that XXX is currently displayed in the upper-left corner
of the screen, the program takes the following actions when the right

button is pressed:

Statement

Action

1. BEGIN

2. BEGIN:rightb
3. BEGIN:rightb:found

4. BEGIN:rightb:found:txtl
5. BEGIN:rightb:found
6. BEGIN:rightb:found:txt3
7. BEGIN:rightb:found

8. BEGIN:rightb

Program starts here when you press the
right button.

The BEGIN statement calls rightb.

The MATCH statement labeled rightb
calls found.

The EXECUTE statement labeled found
calls txt1.

The TYPE statement labeled ¢xt1 is com-
pleted and control returns to found.
The EXECUTE statement labeled found
calls ixt3.

The TYPE statement labeled £x¢3 is com-
pleted and control returns to found.

The EXECUTE statement labeled found
is completed and control returns to
rightb.

38

(continued)

Chapter 3: Creating Your Own Mouse Menu

continued
Statement Action
9. BEGIN The MATCH statement labeled rightb is
: completed and control returns to the
originating BEGIN statement.
The BEGIN statement is completed, the
mouse menu program terminates, and
control returns to you.
The EXECUTE Command

Use the EXECUTE command to define a series of statements that will be
executed when you do the following:

m Press one or both mouse buttons.

® Choose a menu item.

= Move the mouse.

= Cause a MATCH command to be executed.

To specify statements that the EXECUTE statement calls out, you
use statement labels. You can specify up to 15 labels for each EXECUTE
statement. The following EXECUTE statement uses five labels. This
statement executes the statement labeled dsk, then the statement
labeled s, and so on. After the program executes the statement labeled
exec4, it returns to the statement that referenced execl.

execl: EXECUTE dsk,s,a,s,exec4d

It is possible for an EXECUTE command to call out another EXECUTE
command. Furthermore, up to 15 EXECUTE commands can call out
other EXECUTE commands. For example, the following sequence of
nested EXECUTE commands simulates typing abcdef:

39

PART Il: MOUSE MENUS

40

The TYPE Command
Use the TYPE command to simulate pressing keys on the keyboard. For
example, the following TYPE statement simulates pressing the A key:

keyl: TYPE "A"

The following TYPE statement simulates typing the diskcopy a: b: com-
mand and pressing the Enter key:

keyl5: TYPE "diskcopy a: b:",enter

Note that you can enter a series of separate keystrokes by separating
each group with commas. You can indicate which key is simulated in
one of three ways:

® Use the the key’s name, enclosed in double-quotation marks
(for example, “A”).

® Use the ASCII code for the character on the key (for example,
use 65 for A). You can use extended ASCII codes, ASCII control
characters, and extended keyboard scan codes to simulate spe-
cial keys or key sequences, such as the Alt, Ctrl-Q, Spacebar,
and direction keys. (For a list of ASCII control characters and
extended keyboard scan codes, see Appendix G, “ASCII
Character Set.”)

® Use the key’s symbolic name if it has one. The predefined sym-
bolic keys are enter, tab, backsp, and esc.

In the following TYPE statements, the comments indicate which
key or keys each statement simulates.

Notice that the statements labeled dir and a simulate typing char-
acter strings by enclosing the characters in double-quotation marks.
The statements labeled I, ¢, up, and dn define the direction keys by
using extended keyboard scan codes. The statement labeled s simulates
pressing the Spacebar by using the standard ASCII code for a space. The
statement labeled ent simulates pressing the Enter key by using the sym-
bolic name for the key. The statement labeled ¢ls simulates typing the
MS-DOS CLS command and pressing the Enter key. The statements la-
beled ctrlc and ctrld simulate pressing Ctrl-key combinations. The state-
ments labeled home and end simulate pressing the Home and End keys.

Chapter 3: Creating Your Own Mouse Menu

Statement Comments

dir: TYPE "dir" Types the DIR command

a: TYPE "a:" ; Types a:

1f: TYPE 0,75 ; Simulates the left-arrow key
rt: TYPE 0,77 ; Simulates the right-arrow key
up: TYPE 0,72 ; Simulates the up-arrow key
dn: TYPE 0,80 ; Simulates the down-arrow key
s: TYPE 32 ; Types a space

ent: TYPE enter Simulates the Enter key

cls: TYPE "cl1s",enter ; Types CLS command, simulates Enter key
ctrlc: TYPE 3 Types Ctr1- C

ctrid: TYPE 4 ; Types Ctr1-D
home: TYPE 0,71 ; Types Home
end: TYPE 0,79 ; Types End
The NOTHING Command
Use the NOTHING command to specify that no action is taken.
The MATCH Command

Use a MATCH command to direct a mouse menu program to take dif-
ferent actions, depending on what is displayed on the screen.

A MATCH statement specifies a string of characters, a row and
column on the screen, and a display attribute. If a line on the screen
matches the specified string, begins at the specified row and column,
and appears in the specified display attribute, then the program exe-
cutes a particular statement. This feature enables a mouse menu pro-
gram to respond to different operating modes of the application
program or screen display.

For example, if an application program always displays the word
COMMAND in column 1 of row 22 of the screen when it is in command
mode and if it displays the word ALPHA in the same place when itisin
alphanumeric mode, you can use a MATCH command to take a dif-
ferent action, depending on which mode the application program is in.

A MATCH statement uses the following format:

MATCH row,column,[attributel,string,match,nomatch

The row and column parameters describe where the string parameter
must be located on the screen for a match. To be matched, the row and

41

PART Il: MOUSE MENUS

42

column parameters must point to the first character of a string. If the
row and column parameters are blank, the defaultis (1,1). If the string
parameter is blank, the match succeeds with any text.

The attribute parameter indicates how the string must appear on
the screen for a match. This parameter can have the normal, bold, or
inverse symbolic values or an integer value that denotes specific fore-
ground and background colors. If the attribute parameter is left blank
or if it has the value 0, all display attributes are matched.

The match and nomatch parameters are the labels of the statements
executed if the match is made or not made, respectively. If the match or
nomatch parameters are blank, the equivalent of a NOTHING command
is executed. ‘

Sample Program

The mouse menu source program on page 43 shows how MATCH
statements are used. It also changes the active drive when you press
the right mouse button. The program goes through the following
procedure:

® When you press the right mouse button, the chdriv EXECUTE
statement calls the checka MATCH statement and then clears
the screen.

8 The checka MATCH statement checks row 2, column 1 on the
screen. If it finds a: in normal display, it executes the tob state-
ment. If a: is not found, it executes the checkb statement, which
performs a similar check for the b: characters. The program
calls up to three MATCH statements, looking for the first match
with a:, b, or c:.

® The tob statement clears the screen, changes the active drive to
B, and ends the mouse menu program. Similarly, toc and ta
change the active drive to C or A.

m If the three MATCH statements fail to find a:, b:, or c: at row 2,
column 1, the program clears the screen and terminates
without changing the active drive. With the screen cleared, the
MS-DOS prompt should put the active drive letter in row 2, col-
umn 1, ready for the next press of the right mouse button.

= Pressing the left button creates a directory listing, and pressing
both buttons simulates typing Ctrl-C.

Chapter 3: Creating Your Own Mouse Menu

BEGIN dir,chdriv,ctric ;Labels for left, right, or both

;buttons
chdriv: EXECUTE checka,cls ;Calls “"checka," then clears screen

checka: MATCH 2,1,normal,”a:",tob,checkb ;If a: found, change to drive B
checkb: MATCH 2,1,normal,"b:",toc,checkc ;If b: found, change to drive C

checkc: MATCH 2,1,normal,"c:",toa ;If c: found, change to drive A
toa: EXECUTE cls,a,ent :Clears screen, changes to drive A
tob: EXECUTE cls,b,ent ;Clears screen, changes to drive B
toc: - EXECUTE cls,c,ent ;Clears screen, changes to drive C
TYPE "a:" ~ L ;Types a:
~ o TYPE "b:" BN : . - sTypes-b:
~ - TYPE "c:™ i B ;Types.c:
 TYPE "cls",enter . ;Clears the screen

: ";.TYPE,"diff.enter R .. iGets directory listing

 TYPEenter ;Types the Enter key
: ~TYP,E~3 ot s : . iTypes ctrl- ¢

CREATING A MOUSE MENU PROGRAM

The following procedure lets you create a mouse menu source file. It
then shows you how to create a mouse menu program from the source
file by using the MAKEMENU utility.

To create a mouse menu, do the following:

1. Write the mouse menu source file by using a text editor or
word processing program.

2. Save the source file with the filename extension .DEF. A file
with this extension is used by the MAKEMENU utility to gener-
ate a mouse menu program (a .MNU file). When a source file
is converted to a .MNU file, the resulting file must not exceed
57 KB.

3. Type makemenu and press the Enter key.

4. At the prompt, type the name of the source file (without the
.DEF extension), and then press the Enter key.

43

PART Il: MOUSE MENUS

NOTE: Be sure to save the source file as a standard ASCII text file. Most
simple text editors save files in ASCII by defaull. In word-processing programs, such
as Microsoft Word, however, you usually need to select a special unformatted op-
tion to get ASCII text. You can combine steps 3 and 4 by typing makemenu
Sfollowed by a space and the name of the source file (without the .DEF extension) on
the same line.

If your file contains no errors, MAKEMENU displays the following
message:

Conversion completed

and returns you to MS-DOS. The mouse menu is then ready for you to
test. However, if your file contains errors, MAKEMENU displays the
types of errors and the statements that contain the errors. In this case,
correct the source program and repeat steps 3 and 4. For more infor-
mation on error messages, see Appendix B, ‘“Domestic Mouse Driver
Messages.”’

NOTE: The disks that come with this book include mouse menu source files
Jor some commonly used applications that don’t have built-in mouse support (such
as WordStar). If you want to create a mouse menu from one of the source files in-
cluded on the disks, you can copy the source file and edit the copy to meet your
specific needs. You can then use the preceding procedure to create mouse menus
from these source files.

Testing the Mouse Menu Program

44

When the mouse menu source file has been successfully translated into
an executable menu file, it is ready for you to test.

NOTE: Ifyou did not specify that the mouse driver should be loaded every
time you start MS-DOS when you ran the Mouse Setup program, be sure you type
mouse to install the mouse driver before you start your menu file. The menu will
load before you type mouse; however, it will not work.

To test the mouse menu, do the following:

1. Type menu filename at the MS-DOS prompt and press the Enter
key to start your mouse menu program. In this command, file-
name is the name of the MNU file generated by MAKEMENU
with or without the MNU extension. When the mouse menu
file is loaded, the following message appears:

Menu installed
2. Start your application program and try out the menu to ensure

that it works under all conditions in your program.

L]

Chapter 3: Creating Your Own Mouse Menu

3. If your application program doesn’t work the way you want it to,
quit the application program, then end the mouse menu pro-
gram by typing menu off at the MS-DOS prompt and pressing
the Enter key. The following message is displayed:

Keyboard emulation off
4. Correct the source file, and then run the MAKEMENU utility
again.
Running a Mouse Menu Program
Follow the steps below to run a mouse menu program.
1. Use the MS-DOS COPY command to copy the mouse menu

(.MNU) file and the MENU.COM file onto the disk that contains
the application program with which you want to use the menu.

2. Type menu filename to run the mouse menu program for the
application. In this command, filename is the name of the
mouse menu program. When the mouse menu file is loaded,
the following message appears:

Menu installed

NOTE: To start a mouse menu program that is not in the current direc-
tory, include the pathname of the directory that contains the mouse menu
file as part of filename.

3. Run the application program according to the instructions in
the program’s documentation.

A mouse menu program runs independently of the correspond-
ing application program. You should end the mouse menu program
. you’re running and begin another whenever you end one application
and begin another.

Ending a Mouse.-Menu Program

To end the mouse menu program, you simply type menu off and
press the Enter key. The following message is displayed:

Keyboard emulation off

You can then load and run another mouse menu program.

45

PART Il: MOUSE MENUS

Allocating Memory for Mouse Menus

46

MENU.COM can allocate up to 57 KB of memory for a mouse menu
program. (The size of MENU.COM [7 KB] plus the size of the MNU
file cannot exceed 64 KB.) If the menu file is smaller than 6 KB,
MENU.COM allocates 6 KB of memory. If the menu file is greater than
6 KB, MENU.COM allocates the exact size of the file.

Every time you start MS-DOS, the first menu file you load deter-
mines the amount of memory reserved for a menu file. If you plan to
use more than one mouse menu before restarting your system, first
load the .MNU file that requires the greatest amount of memory so that
MENU.COM will allocate enough memory to hold each menu file.

Note that a mouse menu will work only if the application it is
working with allows memory-resident programs to run with it. In addi-
tion, a mouse menu will not work with an application that intercepts
the keyboard interrupt and bypasses the keyboard buffer.

If you type menu off to disable a mouse menu, note that the
memory allocated by MENU.COM will not be released for use by
other programs.

Chapter 4

Mouse Menu
Language Statements

This chapter describes in detail each statement used by the mouse
menu programming language. Each statement description includes
the statement syntax, a description of each parameter, and one or
more examples of how to use the statement.

STATEMENT SYNTAX CONVENTIONS
The following syntax conventions apply for each statement:
® The command word appears in uppercase.

® Labels appear in lowercase. A colon (:) and a space must sepa-
rate each label from the command word.

= Parameters appear in lowercase italic. A comma (,) must sepa-
rate each parameter from other parameters. If you don’t in-
clude a parameter, you must include an additional comma
where the parameter would have appeared.

® A parameter in brackets ([]) is optional. A parameter that
doesn’t appear in brackets is required.

® Ifa parameter appears in double-quotation marks (“ ”), you
must include the double-quotation marks.

® Ifa parameter appears more than once in a statement, the sec-
ond occurrence of the parameter is enclosed in brackets and
followed by an ellipsis (...).

47

PART Il: MOUSE MENUS

THE ASSIGN STATEMENT

The ASSIGN statement has the following format:

label: ASSIGN [71fbtn],[rtbtnl,(btbtn]),[1fmov],[rtmov],
Lupmov],[dnmov],[hsen],[vsen]

Description

The ASSIGN statement redefines one or more of the mouse parameters
in the BEGIN statement or in the most recent ASSIGN statement. If you
don’t specify a parameter value in an ASSIGN statement, the last
parameter value given (in either the BEGIN statement or another
ASSIGN statement) is used. Statement labels are the values you use for
all parameters except hsen and vsen.

Parameters

The parameters for the ASSIGN statement are as follows:

Parameter

Description

ifbtn
rtbtn
btbtn
lfmov
rtmov
upmov
dnmov

hsen

vsen

Label of the first statement to be executed when you press
the left mouse button

Label of the first statement to be executed when you press
the right mouse button

Label of the first statement to be executed when you press
both mouse buttons at once

Label of the first statement to be executed when you move
the mouse to the left

Label of the first statement to be executed when you move
the mouse to the right

Label of the first statement to be executed when you move
the mouse forward

Label of the first statement to be executed when you move
the mouse backward

Value of the horizontal-movement-sensitivity parameter
Value of the vertical-movement-sensitivity parameter

48

Chapter 4: Mouse Menu Language Statements

Example
In the following example, the BEGIN statement assigns initial values to
all button and movement parameters. Because values are not specified
for the sensitivity parameters (vsen and hsen), the default values of 4
and 8 are used.

The ASSIGN statement changes the values of the left button, right
button, and up-and-down-movement parameters. It also changes the
value of Asen to 16 and the value of vsen to 18. Commas indicate which
values aren’t being changed.

- BEGIN efsc;,ent.mlipl,1f.r“t.up,.dn -

~ reassign: ASSIGN y.nét.;f:..zrylotf.‘not',lﬁ.le S

49

PART Il: MOUSE MENUS

THE BEGIN STATEMENT

The BEGIN statement has the following format:

BEGIN [7fbtn],Lrtbtn],[btbtn],[1fmov],[rtmov]l,
[upmov],[dnmov],[hsen],[vsen]

Description

The BEGIN statement defines the actions taken when the mouse is used.

The parameters for BEGIN define the statements executed when
you move the mouse or press the mouse buttons. They also define the
movement sensitivity for the mouse. All parameters for the BEGIN
statement are optional. If you don’t provide a value for a button or
mouse-movement parameter (all parameters except Asen and vsen),
nothing happens when you press a mouse button or move the mouse. If
you don’t provide a value for hsen or vsen, the default values of 4 and 8
are used. Statement labels are the values you use for all parameters
used with the BEGIN statement except hsen and vsen.

NOTE: When a mouse menu subroutine (see MENU and POPUP) is exe-
cuted, the parameters for the BEGIN statement do not affect the mouse functions
within that subroutine. You can use either mouse button to choose an item in a
menu, and all mouse-movement functions are active.

The movement-sensitivity parameters, hsen and vsen, control the
horizontal-movement and vertical-movement sensitivity of the mouse.
Movement sensitivity is the distance the mouse must move (measured
in mickeys) before the on-screen pointer moves. (For more informa-
tion on the mickey, see Chapter 6, ‘‘Mouse Programming Interface.”’)

Parameters

50

Because the BEGIN statement is always the first statement in a menu

" source file, it doesn’t require a label. The parameters for the BEGIN

statement follow.

Example

Chapter 4: Mouse Menu Language Statements

Parameter Description

Ifbtn Label of the first statement executed when you press the
left mouse button.

rtbtn Label of the first statement executed when you press the
right mouse button.

btbtn Label of the first statement executed when you press both
mouse buttons.

Ifmov Label of the first statement executed when you move the
mouse to the left.

rtmov Label of the first statement executed when you move the
mouse to the right.

upmov Label of the first statement executed when you move the
mouse forward.

dnmov Label of the first statement executed when you move the
mouse backward.

hsen Number between 0 and 32,767 that defines how many
mickeys the mouse must move horizontally before the on-
screen pointer moves. If you specify 0, the mouse is disabled
horizontally. If you do not specify a value, the default value
of 4 mickeys is used.

vsen Number between 0 and 32,767 that defines how many

mickeys the mouse must move vertically before the on-
screen pointer moves. If you specify 0, the mouse is disabled
vertically. If you do not specify a value, the default value of
8 mickeys is used.

The BEGIN statement in this example defines initial values for all
parameters except btbtn, hsen, and vsen. Because btbin isn’t specified,
nothing happens when you press both mouse buttons. Because values
are not given for hsen and vsen, the default values of 4 and 8 mickeys
are used.

51

PART Il: MOUSE MENUS

THE EXECUTE STATEMENT

The Execute statement has the following format:

label: EXECUTE label [,7abel ...]

Description
The EXECUTE statement carries out other statements when you

® Selecta menu and pop-up item
® Move the mouse

® Press one or both mouse buttons
® Execute a MATCH statement

Each EXECUTE statement can specify up to 15 other statements to
execute. An EXECUTE statement can call other EXECUTE statements;
you can link up to 15 EXECUTE statements in this manner. Statements
within an EXECUTE statement are executed sequentially, starting with
the first statement. '

Parameters
The parameters for the EXECUTE statement are as follows:

Parameter Description

label Name of the EXECUTE statement. All EXECUTE state-
ments must be labeled.
label Name(s) of the label(s) to execute. Each EXECUTE state-

ment begins with a label. However, you should not use that
label as a parameter within that EXECUTE statement or in
a nested EXECUTE statement—if you do, you will create
an endless loop.

Examples

In this example, the EXECUTE statement labeled exec executes the
statements labeled dir, s, a, and ent, which simulate typing dir a: and
then pressing Enter.

52

Chapter 4: Mouse Menu Language Statements

dir: TYPE "dir" ;Types the DIR command ~ e o T
S: TYPE 32) ;Simulates pressing the Spacebar o i
: ;TYPE " * can also be used
Ca: TYPE "a:" ;Types- a:
ent: TYPE enter ;Simulates pressing the Enter key

execd: EXECUTE dir,s,a,ent

In the following example, two EXECUTE statements are nested,
and the first EXECUTE statement calls the second. The comments de-
scribe the flow of the program when the execl statement is activated.

| execl: EXECUTE a,ent ;Executes statements labeled a and ent
e . :and then returns to wherever execl was called

 EXECUTE a1.a2 Eo ;Executes al ‘and a2 and then‘retur’h’s to the second
e . : .part of ‘the EXECUTE statement 1abe1ed execl

: a]_: ‘ ', TYPEnau X : 3

S1mu1ates typ1ng ER 1owercase a and then returns
to the midd1e of. the a statem nt

CTYPE "AA" Slmulates typlng uppercase AA and ‘then

1to the end of the-a: statement,
S1mu1ates pressmg the,Enter ke
d of the sta en‘t abe]ed execl

The following examples cause infinite loops, which you should
avoid. EXECUTE statements must not call themselves.

Also, a nested EXECUTE statement must not call any EXECUTE
statement that leads to its own activation.

53

PART Il: MOUSE MENUS

THE MATCH STATEMENT

The MATCH statement has the following format:

label: MATCH [row],[column],[attribute],"string”,match,nomatch

Description

The MATCH statement executes other statements or subroutines, de-
pending on whether it finds a specified string at a given screen loca-
tion. You must provide values for the row and column parameters in
absolute screen coordinates. The starting coordinates for the screen
are at row 1, column 1.

Parameters

The parameters for the MATCH statement are as follows:

Parameter

Description

label

row

column

attribute

string

Name of the MATCH statement. All MATCH statements
must be labeled.

Number that specifies the row of the first character of the:
match string. If you do not specify a value, row 1 is
assigned.

Number that specifies the column of the first character of
the match string. If you do not specify a value, column 1 is
assigned.

Value that specifies how the match string must appear on
the screen for a match to occur. This can be the normal,
bold, or inverse symbolic values, or it can be a decimal
value that denotes specific foreground and background
colors. (This value is the sum of the foreground and back-
ground colors you want to use.) If you leave the attribute
parameter blank or give it the value of 0, the MATCH state-
ment matches any attribute. For more information on the
attribute parameter, see Chapter 3, ‘‘Creating Your Own
Mouse Menu.”

String you want to match. The string can contain up to
255 ASCII characters. You must specify the string parame-
ter, and you must enclose it in double-quotation marks

7).

54

(continued)

Example

Chapter 4: Mouse Menu Language Statements

continued

Parameter Description

match Label of a statement or subroutine executed if the string is

matched. This label must exist in the program. If you do
not specify a label, nothing happens when the match is
made.

nomatch Label of a statement or subroutine executed if the string is

not matched. This label must exist in the program. If you
do not specify a label, nothing happens when the match is
not made.

The following example from the WS.DEF menu source file, included
on the disks in this book, checks whether WordStar is displaying the
Beginning menu or the Main menu.

When you press the left mouse button, the following occurs:

® The MATCH statement labeled leftb looks for an e at row 1, col-

umn 12. This is the first character in the string editing no file,
which appears on the screen in that position if WordStar ver-
sion 3.2 is displaying the Beginning menu. If kfth finds the

e in that position, it executes the statement labeled imen. (In
WS.DEF, the imen statement displays the No-File pop-up menu
for WordStar.) If leftb doesn’t find the ¢ in that position, it exe-
cutes the statement labeled chk33.

The chk33 statement looks for the letter n at row 1, column 192.
This is the first character in the string not editing, which is on
the screen in that position if WordStar version 3.3 is displaying
the Beginning menu. If the chk33 statement finds the 7 in that
position, it executes the statement labeled imen. (In WS.DEF, the
imen statement displays the No-File pop-up menu for Word-
Star.) If chk33 doesn’t find the = in that position, it executes
the chkl statement.

The chkl statement looks for a colon (:) after the disk drive
identifier in the first line of the WordStar Main menu display.
If chkl finds a colon, it executes the statement labeled emen.
(In WS.DEF, the emen statement displays the Edit/Block pop-
up menu.) If chkl doesn’t find a colon, the menu program
does nothing.

55

PART Il: MOUSE MENUS

56

Chapter 4: Mouse Menu Language Statements

THE MENU...MEND STATEMENTS

MENU statements have the following format:

label: MENU ["title"],[rowl,[column],[attribute]

MEND

Description

The MENU statement is the first statement in a menu subroutine that
creates a bordered, single-column pop-up menu. The specific dimen-
sions of a menu are determined by the number of items in a menu. The
dimensions are also determined by the largest number of characters in
the longest menu item or in the menu title.

When the menu is displayed, the first menu item is highlighted.
You can choose any menu item by moving the mouse until that item is
highlighted and then pressing either mouse button. If you press both
mouse buttons, the equivalent of a NOTHING statement is executed and
the menu disappears. Any movement or button actions defined in a
BEGIN or ASSIGN statement are ignored within the MENU subroutine.

Each menu subroutine must have a MEND (menu end) statement,
which indicates the end of a menu subroutine. The MEND statement
has no parameters.

NOTE: The MENU statement automatically generates a border around the
entire menu and draws a line between the menu title and the menu items.

Parameters
The MENU statement has the following parameters:

Parameter Description

label Name of the menu subroutine. All menu subroutines must
be labeled.
title Text of the menu title, enclosed in double-quotation marks

(“”). The menu title is limited to one line. If you don’t
specify a title, MENU generates a blank line.

(continued)

57

PART Il: MOUSE MENUS

Example

58

continued

Parameter

Description

row

column

attribute

Number that specifies the row where the upper-left corner
of the menu border appears. Be sure to specify a value that
displays the entire menu. (For example, if the menu con-
tains 20 items and you choose a row value greater than 3,
some of the screen items will not appear on a 25-row
screen.) If you don’t specify a row, the upper-left corner is
assigned row 1.

Number that specifies the column where the upper-left cor-
ner of the menu appears. If you don’t specify a column, the
upper-left corner is assigned column 1.

Value that specifies how the menu is displayed on the
screen. This can be normal, bold, or inverse, or it can be a
decimal value that specifies particular foreground and
background colors. (For more information on the attribute
parameter, see Chapter 3, “Creating Your Own Mouse
Menu.”) If you don’t specify a value, MENU uses the in-
verse value. The colors of the mouse pointer depend on the
display-attribute value for the menu. For detailed informa-
tion on how the interaction between the mouse pointer
and menu display determines the colors of the pointer, see
Chapter 6, “Mouse Programming Interface.”

In the following example, the MENU statement contains all four
parameters. The menu title is Display Directory. The upper-left corner of
the menu border is at row 5, column 5. The menu is displayed with a
normal screen attribute.

The OPTION statements specify which statements execute when
you choose items from the menu. OPTION statements are described in
greater detail later in this chapter.

NOTE: You should always include a provision for the user to make the menu
disappear without causing an action to occur. This example includes a Cancel
option that, because it doesn’t have a label in the line, executes the equivalent of a
NOTHING statement.

Chapter 4: Mouse Menu Language Statements

.. menul: MENU "Display Directory",5,5,normal
' “OPTION "Cancel” ‘
OPTION ™a:",exl
OPTION "b:",ex2
OPTION "c:",ex3
) MEND
exl: EXECUTE dir,s,a,ent ;DIR a:
ex2: EXECUTE dir,s,b,ent ;DIR b:
ex3: EXECUTE dir,s,c,ent ;DIR ¢:
ent: TYPE enter ;Simulates pressing the Enter key

; dir: TYPE "dir"” ~ ;Types the DIR command
T TYPE "a:" ;Types a:

bsoo CTYPE "b:™ ‘ ; ;Types b:

Ccr o TYPE e: oo ;Types c: y
os: TYPE32 ~ iTypes a space

59

PART IIl: MOUSE MENUS

THE NOTHING STATEMENT

The NOTHING statement has the following format:
Tabel: NOTHING

Description

The NOTHING statement specifies that no action occur when you press
a mouse button, move the mouse, or choose a menu option. You can
also use the NOTHING statement to specify that no action occur when a
MATCH statement is executed.

Parameters

Example

60

The NOTHING statement has no parameters.

This example from the WS.DEF mouse menu program, which is in-
cluded on the disks in this book, determines which pop-up menu is
displayed when you press the right mouse button.

The WS.DEF program does the following:

m If the MATCH statement finds the specified character, it exe-
cutes the statement labeled movemenu, which displays the
CURSOR MOVEMENT pop-up menu.

® If the MATCH statement doesn’t find the specified character, it
executes the NOTHING statement, labeled nul, and the mouse
menu program does nothing.

Chapter 4: Mouse Menu Language Statements

THE OPTION STATEMENT

The OPTION statement has the following format:
[Tabel:10PTION [text],[pointer]

Description

OPTION statements define each menu item in a menu subroutine: the
text of the menu item and the action taken when you choose the item.

You usually don’t label OPTION statements, although you can if
you want to. If you do label them, the MAKEMENU program ignores
the labels when it assembles the source program.

Parameters

The parameters for OPTION statements are as follows:

Parameter Description

text Text for the menu item. You must enclose the text in
double-quotation marks (“). If you don’t specify text fora
menu item, OPTION displays a blank line for that item.

pointer Label of the statement that is executed when you choose
the menu item. If you don’t include a pointer parameter,
the menu clears from the screen when you choose the
menu item. (The equivalent of a NOTHING statement is
executed.) For example, you’d leave out the pointer
parameter for a Cancel Menu item.

Example

The following example shows OPTION statements that define four
menu items. If you choose the first menu item, the menu disappears
from the screen because the OPTION statement doesn’t have a pointer
parameter. If you choose any other menu item, the specified statement
is executed.

61

PART Il: MOUSE MENUS

62

Chapter 4: Mouse Menu Language Statements

THE POPUP...PEND STATEMENTS

POPUP statements have the following format:

label: POPUP [row],[column],[attribute]

PEND

Description

The POPUP statement is the first statement in a pop-up subroutine that
creates a multiple-column menu or a message box.

Each pop-up subroutine must have a PEND (pop-up end) state-
ment, which indicates the end of a pop-up subroutine.

Parameters

The parameters for the POPUP statement are as follows:

Parameter Description

label Name of the pop-up subroutine. All POPUP statements
must be labeled. Do not label the PEND statement.
Tow Number that specifies the row where the upper-left corner

of the first row of the menu or message box appears. Be
sure to specify a value that displays the entire menu or mes-
sage box. (For example, if the menu or message box con-
tains 20 lines and you choose a row value greater than 5,
some of the screen items will not appear on the 25-row
screen.) If you don’t specify a row, the upper-left corner is
assigned row 1. (Note: Subsequent menu items in a pop-up
menu are created with the TEXT statement.)

column Number that specifies the column where the upper-left cor-
ner of the menu or message box appears. If you don’t speci-
fy a column, the upper-left corner is assigned column 1.

(continued)

63

PART Il: MOUSE MENUS

Examples

64

continued

Parameter Description

attribute Value that specifies how the menu is displayed on the
screen. This can be normal, bold, or inverse, or it can be a
decimal value that specifies particular foreground and
background colors. (For more information on the attribute
parameter, see Chapter 3, “‘Creating Your Own Mouse
Menu.”) If you don’t specify a value, POPUP uses the
inverse value. The colors of the mouse pointer depend on
the display-attribute value for the menu. For detailed infor-
mation on how the interaction between the mouse pointer
and menu display determines the colors of the pointer, see
Chapter 6, ‘“Mouse Programming Interface.”

NOTE: Unlike the MENU statement, which generates a border around the
entire menu and draws a line between the menu title and the menu items, a POPUP
statement doesn’t draw any lines. You must, therefore, include line-drawing charac-
ters within the TEXT statements that are part of the pop-up subroutine. The easiest
characters to use are the equal sign (=) or the minus sign () for horizontal lines,
the vertical line character (1) for vertical lines, and the plus sign (+) for the cor-
ners. You can also use the upper-ASCII line-drawing characters, which are listed in
Appendix G, “ASCII Character Set.”

In addition, the POPUP statement provides a greater degree of control when
you define menu choices than does the MENU statement. Your pop-up subroutine
must include SELECT statements to select and act upon the menu choices presented
with TEXT statements.

The following example is a simple pop-up menu. When you press the
left mouse button, the pop-up menu lets you select one of two MS-DOS
commands. The POPUP statement defines the upper-left corner of the
menu as row 5, column 20. The menu border is created using plus signs
(+), pipes (1), and equal signs (=). The second line of the menu dis-
plays the title. In addition, three menu selections are presented in the
fourth and fifth lines, as defined by the SELECT statements. SELECT
statements are discussed in further detail later in this chapter.

Chapter 4: Mouse Menu Language Statements

BEGIN leftb

leftb: POPUP 5,20,inverse

TEXT "+ e
TEXT "t POPUP - DOS helper |
TEXT "esrrommmcmnoomnmooans +"
TEXT "1 cLs DIR P
TEXT "t Exit POPUP menu "
TEXT "4 b

SELECT 5,4,17 ; |
SELECT 4,6,5,cls
SELECT 4,14,5,dir
PEND

, c]éé “TYPE "c]s'"k,enter e ~
~dir: TYPE "dir",enter s : B S ved

The following example from the WS.DEF mouse menu program,
included on the disks in this book, is a pop-up subroutine for a mes~
sage box.

ASCII graphics characters create solid double borders for the
menu. Also, the single SELECT statement clears the message box from
the screen because it does not include a pointer parameter. Therefore,
pressing either mouse button clears the message box from the screen.

65

PART Il: MOUSE MENUS

THE SELECT STATEMENT

The SELECT statement has the following format:

SELECT row,column,lengthl,pointer]

Description

The SELECT statement in pop-up subroutines defines selection areas
for items on the menu. It also specifies which statement executes if the
cursor is in the defined area. The defined area doesn’t have to contain
any text. V

NOTE: The highlight in a menu or message box moves from one defined
selection area to another when you move the mouse. It's a good idea to define each
part of a menu with a SELECT statement so that the movement of the highlight and
the movement of the mouse are visually coordinated; however, be sure you don’t
define the same screen position with more than one SELECT statement.

Parameters

The parameters for the SELECT statement are as follows:

Parameter Description

row Number that defines the horizontal starting point (row)
of the item-selection area relative to the row and column
coordinates you specified in the POPUP statement.

column Number that defines the vertical starting point (column)
of the item-selection area relative to the row and column
coordinates you specified in the POPUP statement.

length Number of characters in the item-selection area. If you
don’t specify a number, the SELECT statement assumes
one character.

pointer Label of the statement executed when you choose the
menu item. If you don’t include a pointer parameter, the
menu disappears from the screen. (You can press either
button to select the item; however, if you press both but-
tons, the item is not selected and the menu merely dis-
appears from the screen.)

66

Example

Chapter 4: Mouse Menu Language Statements

The SELECT statements in the following example let you select CLS to
clear the screen, DIR to get a directory listing, or Exit pop-up menu to
clear the menu from the screen.
Notice that the first SELECT statement in a pop-up subroutine
defines which selection will be highlighted when the menu appears.
BEGIN leftb
~leftb: POPUP 5,20,inverse L : ,
‘ - TEXT "mmms ———t T SRR TR RO
- TEXT "t POPUP - DOS helper t" = i
CUTEXT Meeeesmeceeeemecaseooogto
CLTEXT S CLS O IDIR e e
-~ TEXT "i Exit pop-up menu "
o T SR R
. SELECT 5.4,17

s: TYPE "cls”,enter
~ TYPE "dir",enter

67

PART Il: MOUSE MENUS

THE TEXT STATEMENT

The TEXT statement has the following format:

TEXT "string"

Description
The TEXT statement in pop-up subroutines defines the menu title, the
text for menu items, and the characters used to draw lines and borders.
It is similar to the title and text parameters in the MENU and OPTION
statements, but it lets you place text anywhere on the screen (as long
as the text is below and to the right of the upper-left corner of the
pop-up menu).

Parameter

The parameter for the TEXT statement is as follows:

Parameter Description

string The pop-up menu title or the text of a menu item. Text
can include ASCII graphics characters for lines and bor-
ders, and you must enclose all text in double-quotation
marks (“ 7). The location of text on the screen is relative
to the upper-left corner set by the POPUP statement.
Also, text display attributes are determined by the
attribute parameter in the POPUP statement.

Example

The TEXT statements in the following example define the appearance
of the pop-up menu. The statements completely define the borders,
title, and all menu selections.

68

Chapter 4: Mouse Menu Language Statements

BEGIN leftb

leftb: POPUP 5,20,inverse

TEXT "+ . £

TEXT "t POPUP - DOS helper t" |
TEXT "-mmmmmsmmmmmema e +" : i
TEXT ™ CLS DIR " j
TEXT "t Exit pop-up menu "

TEXT "+ b

SELECT 5,4,17

SELECT 4,6,5,cls
~ SELECT 4,14,5,dir
. PEND ‘

¢ls: - TYPE “cls",enter
dir:- . TYPE "dir",enter -

69

PART ll: MOUSE MENUS

THE TYPE STATEMENT

The TYPE statement has the following format:

label: TYPE key [.key...]

Description

A TYPE statement simulates typing one or more keys.

NOTE: All keys you specify in the TYPE statement are inserted into a key-
board buffer when the menu program is running. They are not output as keystrokes
until the menu. program becomes inactive.

Parameters

70

The parameters for the TYPE statement are as follows:

Parameter Description

label Name of the TYPE statement. Every TYPE statement
must be labeled.

key Name of the key.

The name of the key can be:

® One or more letters or numbers enclosed in double-quotation
marks (such as “X”’ or ““dir”’).

® Astandard ASCII code (characters 0 through 127) or an ex-
tended ASCII code (characters 128 through 255) . The ASCII con-
trol characters (0 through 31) thatyou can use with the TYPE
statement are listed in Appendix G, “ASCII Character Set.”

® An extended-keyboard-scan code. (These are listed in Appen-
dix G, ‘““ASCII Character Set.”’)

® Any of the following predefined symbolic keys: enter, tab,
backsp, esc.

NOTE: Ifyou want to simulate typing a double-quotation mark (), use
ASCII code 34.

Chapter 4: Mouse Menu Language Statements

Examples

The following TYPE statements use character strings to define the keys:

. dir: TYPE "dir" ;Types the DIR command
S TYPE "Ma:" ;Types a: B

The following TYPE statement uses an ASCII code to simulate
typing a space:
Fosr T UTYPE 32 :Typésu_a space

The following TYPE statements use extended-keyboard-scan codes
to simulate the arrow keys:

- 1f: TYPE 0,75 ;Simulates pressing the left-arrow key

~ort: o TYPE 0,77 - ;Simulates pressing the right-arrow key

Coup: ‘ ;Simulates pressing the up-arrow key

~ :Simulates pressing the down-arrow key

Key Sequences That Can’t Be Simulated

Some key sequences can’t be simulated by using the TYPE statement be-
cause they are suppressed in the ROM (Read-Only Memory) BIOS (Basic
Input/Output System) keyboard routine. These include the following
key combinations:

= Alt-Backspace

® AltEsc

® Alt plus one of the direction keys

= Alt plus one of the following characters: [];"'—,./ *

® Alt plus one of the following keys: Enter, Ctrl, Shift, Caps Lock,
Num Lock, Scroll Lock

® Ctrl-Alt-Del

= Ctrl-Break

® Ctrl-Ins

® Ctrl plus one of the direction keys

® Ctrl plus one of the following characters: 1345789 0=;
'~ . /

71

PART Il: MOUSE MENUS

m Ctrl plus one of the following keys: Tab, Shift, Caps Lock,
Num Lock

® Shift-PrtSc

72

Chapter 5

Sample Mouse
Menu Programs

- This chapter discusses the source program listings for two simple
mouse menu programs that simplify some tasks commonly performed
on an IBM personal computer or compatible.

Use your word processor or text editor to create the source file for
either mouse menu, run the MAKEMENU utility to generate a mouse
menu file, and then start using the mouse menu immediately. You can
also use these listings as a basis for designing similar mouse menus that
include features specific to your needs.

THE SIMPLE MOUSE MENU PROGRAM

The SIMPLE mouse menu program lets you use the mouse instead of
commonly used keys. It is most helpful when used with applications
that require frequent use of the direction keys. For example, in many
spreadsheet applications you must press the direction keys to move the
cursor. If the SIMPLE mouse menu is installed, you can move the cursor
by simply moving the mouse. In addition, pressing the left mouse but-
ton is equivalent to pressing the Enter key, pressing the right mouse
button simulates pressing the Esc key, and pressing both buttons

at once is the same as pressing the Ins key. If your application doesn’t
use one of these keys and you press the corresponding mouse button(s)
by accident, the application responds as if you had typed a key on the
keyboard. You can then correct the mistake as you would correct any
typing error.

73

PART Il: MOUSE MENUS

The source program for the SIMPLE mouse menu is as follows:

THE DOSOVRLY MOUSE MENU PROGRAM

74

The DOSOVRLY (DOS overlay) mouse menu lets you choose several Ms-
DOS commands at the MS-DOS command level by pointing to a menu
option and pressing the mouse. In other words, this mouse menu
“‘overlays’’ MS-DOS.

In addition to a main menu, the DOSOVRLY mouse menu program
has two submenus, Directory and Change Directory, which list addi-
tional MS-DOS commands. The source listing for DOSOVRLY is a good
example of how to create a hierarchy of menus and submenus in one of
your own mouse menu programs.

The DOSOVRLY mouse menu program provides several features
that are useful at the MS-DOS command level:

® Moving the mouse left and right simulates pressing the left-
arrow and right-arrow keys. This lets you edit your MS-DOS
commands by simply moving the mouse.

® Pressing the right mouse button simulates pressing Enter.

® Pressing both mouse buttons at once simulates typing CLS, the
MS-DOS command for clearing the screen.

® Pressing the left mouse button displays the DOSOVRLY main
menu. Options on this menu let you clear the screen, execute
the MS-DOS DATE or TIME command, or choose the Directory
or Change Directory submenu. To select a menu option, move

Chapter 5: Sample Mouse Menu Programs

the highlight to the option and then press either mouse but-
ton. From within a submenu, you can choose an option to move
to the other submenu or to return to the main menu.

NOTE: In the DOSOVRLY source program, thelb, rb, bb, Im, andrm
parameters specified in the BEGIN statement are labels for EXECUTE statements.
These EXECUTE statements branch to the appropriate MENU or TYPE statements.

If you want to simplify the following program, branch directly
from the BEGIN statement to the mnul menu subroutine and to the
TYPE statements by using the following statement:

BEGIN mnul,ent,cls,left,right

The source program for the DOSOVRLY mouse menu is as follows:
j‘BE‘GIN:"lb,.rb‘.bbnm';rm : :
~1b: EXECUTE mnul Se'lect Main Menu 1f Teft button
“rb: EXECUTE ent Type Enter-if right button. =
bb: . EXECUTE cls “Type CLS command if both buttons
Im: . EXECUTE 1 Press left-arrow key if left monon
‘fm:'*sxacurs right right- / |

(continued)

75

PART Il: MOUSE MENUS

continued

& 1"“"””
_OPTION "dir
COPTION "dir =.
PTION "dir
PTION "dir *.. z
_OPTION "Change Directory ",mnu2
“ OPTION "Main menu ~ ",mnul

£
*,
*
*

~ NOTHING

- TYPE enter
~ TYPE "cls“,enter
' 0,75 5 Left-arrow key
0,77 ; Right-arrow key
; k;"'datej';ente:ry e e L

OTHER SAMPLE MOUSE MENU PROGRAMS

The disks that accompany this book contain ten sample mouse menu
programs, which you can recognize by the .DEF filename extension. Of
the ten .DFF files, five are demonstration programs and five are fully
operational mouse menu programs designed for use with early versions
of IBM Multiplan, Microsoft Multiplan, Symphony, VisiCalc, and
WordStar. These files are located in the \MENUS directory on disk 2.

Demonstration Programs

76

The five demonstration programs on the disks are designed to show
various elements of mouse menu programming. The source files

for these programs are the COLOR.DEF, DROP.DEF, EXECUTEL.DEF,
EXECUTE2.DEF, and KBD.DEF files. Each of these files contains com-
ments that explain how the demonstration program works. For an over-
view of each demonstration program, read the following sections.

Chapter 56: Sample Mouse Menu Programs

The COLOR Program
When you run the COLOR program, it displays a menu of all possible
color choices for mouse menus:

QUIT
000 016 032 048 064 080 096 112 128 144 160 176 192 208 224 240
001 01?7 033 049 065 081 09?7 113 129 145 161 177 193 209 225 241
602 018 034 050 066 0BZ 098 114 130 146 162 178 194 210 226 242
003 019 035 051 067 083 099 115 131 147 163 179 195 211 227 243
004 020 036 052 068 084 100 116 132 148 164 180 196 212 228 244
005 021 037 053 069 085 101 117 133 149 165 181 197 213 229 245
006 022 038 054 070 086 102 118 134 150 166 182 198 214 230 246
00?7 023 039 055 071 087 103 119 135 151 167 183 199 215 231 247
008 024 040 056 0?2 088 104 120 136 152 168 184 200 216 232 248
003 025 041 05?7 073 089 105 121 13? 153 169 185 201 21?7 233 249
010 026 042 058 074 090 106 122 138 154 170 186 202 218 234 250
011 02?7 043 059 07?5 091 10?7 123 139 155 171 187 203 219 235 251
012 628 044 060 076 092 108 124 146 156 172 188 204 220 236 252
013 029 045 061 077 093 109 125 141 157 173 189 205 221 237 253
014 030 046 062 078 094 110 126 142 158 1?74 190 206 222 238 254
015 031 04?7 063 079 095 111 127 143 159 175 191 207 223 239 255

The numbers in the menu are the sums of the various foreground and
background color combinations listed in Table 3-2 in Chapter 3. The
COLOR program can help you choose color combinations for MENU or
POPUP statements.

The DROP Program

The DROP program demonstrates how you can create drop-down
menus. When you run the program and press the left mouse button,
the following main menu appears:

" CLR SCRN | LIST DIR I CH DRIVE "

If you choose the leftmost menu item, CLR SCRN, the DROP program
clears the screen and causes the main menu to disappear. If you choose
the middle menu item, LIST DIR, a second pop-up menu appears in
place of the main menu, giving the appearance of a drop-down menu:

" CLR SCRN || LIST DIR || CH DR[JEAH

dir

. bat
*.com
»*.doc
*.exe
*.Sys
CANCEL

77

PART Il: MOUSE MENUS

The selection rectangle is restricted to the items within the newly dis-
played column, letting you list a directory of the current drive in one of
several ways.

If you choose the rightmost main menu item, CH DRIVE, a third
pop-up menu appears in place of the main menu. Like the second
menu, the third menu also gives the appearance of a menu “‘pulled
down” from the main menu.

“ CLR SCRN I LIST DIR || CH DRIVE

A:
B:

C:
CANCEL

The EXECUTE1 Program
The EXECUTE1 demonstration program is designed to show the
EXECUTE mouse menu command.

When you press the left mouse button, a menu with a single op-
tion appears on the screen. The option leads to a second menu, and
then it clears the screen. Although the string cls <enter> is sent to the
keyboard buffer before the second menu is displayed, the screen
doesn’t clear until after the second menu disappears because the con-
tents of the keyboard buffer are not processed until the mouse menu
returns control to MS-DOS.

The EXECUTE2 Program
The EXECUTE2 demonstration program is designed to show how to
create a multi-level menu.

The program relies on mouse event trapping to determine
whether or not a second menu is displayed. When you press the left
mouse button, a menu is displayed in the upper-right corner of your
screen. If you press either mouse button, the program clears the screen
and the menu disappears. If you press both buttons, the menu disap-
pears and the program does not clear the screen. If, however, you move
the mouse horizontally before pressing the left or right mouse button, a
second menu is displayed. The horizontal mouse movement is the event
trapped by the mouse menu program—unless it detects horizontal
mouse movement, the mouse menu program will not display the sec-
ond menu:

Note: The EXECUTEZ2 prrogram is well commented, we recommend that you
read the source file before you compile and run the program.

78

Chapter 5: Sample Mouse Menu Programs

The KBD Program
The KBD program is designed to provide partial keyboard emulation
with the mouse. Most, but not all, the keystrokes that the mouse can
emulate are included in the program.

When you press a mouse button, the following pop-up menu is
displayed:

quit|[Ctrl Symh" Enter “lns IDel
@|a|B|C|D|EJF|G[H|I|J|X|L[M|N|O
PlQ|R|S|T|UfV]w|X|¥|Z]| N~ |2]
“la|blclale|f|g|n|i]d|k[1|m|n
plair(s[t(ufviv|x|ylz{{{1 {3~
spacebar “BS

HR RGN ENLR AR G

0]1]|2|3|4|S]6]?|8]9]:]: |<|=]>]?

htp|fl £f2 f3 f4 fS
4->|f6 f8 f8 f9 f10
eld

e ta

To select a character, move the mouse pointer to that character and
double-click the left mouse button. The KBD program then sends that
character to the keyboard buffer and the menu is reactivated. To make
the menu disappear and cause the KBD program to act upon the *‘key-
strokes’’ you sent to the keyboard buffer, click the Enter box at the top
of the menu.

Alternately, you can click the Ctrl box at the top of the menu,
which causes the following menu to appear:

quit [Kybd [Symb
ol NUL DLE || 10
1|l SOH DC1 || 11
2| STX DCZ || 12
3| ETX pC3 || 13
4|l EOT DC4 || 14
S|t ENQ NAK || 15
6]l ACK SYN | 16
?|l BEL ETB || 17
8| BS CAN | 18
9 HT EM | 19
Al LF SUB || 1A
Bl| VT ESC || 1B
Cl FF FS || 1C
D CR GS || 1D
Eff SO RS || 1E
F|| SI US | 1F

Double-clicking one of the characters in the menu causes the KBD
program to send that character to the keyboard buffer. You can also
click the Quit option to return to the MS-DOS prompt, or you can click

79

PART Il: MOUSE MENUS

the Kybd option to return to the first menu. Note that this second
menu has no Enter option. To select Enter, you must return to the first
menu and choose the Enter option, or click the Symb option and
choose the Enter option.

Clicking the Symb option on either the first or second menu
causes the following menu to appear:

qult“ Keyboard | Control {Enter

iifélajajala]s|elele|x|i]|i[a]A
E|e|f|6jc|o]a|a|y|O|UlC|E]|¥|R]|F
alf|ola|n|i|2]2)|~]%]|%] s |«]>
x{B[C|w|Elo|p|r|a]|o(R]5]|=|#]€|n
== 12{< 3]+)=]"- |- 9|12]=

Double-clicking one of the characters in this menu causes the KBD
program to send that character to the keyboard buffer. You can then
choose the Enter option, which clears this menu and causes the KBD
program to act upon the keystrokes you sent to the keyboard buffer.
You can also choose the Keyboard option to activate the first menu, or
you can choose the Control option to activate the second menu.

Application Mouse Menus

80

The five mouse menu programs on the disks are designed to work with
earlier versions of five applications that didn’t offer mouse support.
The following table lists the names of the source files and the applica-
tion programs for which they are designed:

Source File Application Program
MPIBM.DEF Multiplan (IBM)
MPMS.DEF Multiplan (Microsoft)
SYM.DEF Symphony

VC.DEF VisiCalc

WS.DEF WordStar

To create a mouse menu file, use the MAKEMENU utility. To load
and start the mouse menu file, use the MENU program.

PART lli

Mouse Programming
Interface

Chapter 6: Mouse Programming Interface

= The Mouse Driver Software

m Video Adapters and Displays
= The Virtual Screen

= Graphics and Text Cursors

= The Internal Cursor Flag

® Reading the Mouse

Chapter 7: Mouse Programming Considerations

= Setting Up Your System
m Advanced Topics
= Mouse Functions

Chapter 8: Mouse Function Calls

= |ntroduction to Mouse Functions
= Function Descriptions

Chapter 9: Sample Mouse Programming Interface Programs

= |nterpreted BASIC Programs
= QuickBASIC Programs

= C and QuickC Programs

= MASM Programs

= FORTRAN Programs

u Pascal Programs

Chapter 10: Writing Mouse Programs for IBM EGA Modes

= The EGA Register Interface Library
= Restrictions on Using the EGA Register Interface Library
= EGA Register Interface Functions

Chapter 6

Mouse
Programming
Interface

This chapter describes the interface between the mouse software and
IBM PC or IBM-compatible computers. It discusses how your program
uses mouse function calls to select the type of cursor displayed, how
the cursor interacts with information on the screen, and how your
actions with the mouse influence the cursor.

THE MOUSE DRIVER SOFTWARE

The following sections describe the interface issues you must consider
when programming for the mouse: how your particular display adapter
affects the type of mouse cursor displayed, how your program must ma-
nipulate the cursor, and how your program can acquire information
about mouse activities. It discusses information you will need in order
to provide the appropriate mouse support in your program—such as
information on the difference between text mode and graphics mode
and between graphics cursors and text cursors.

The sections also cover the concept of a virtual screen—an im-
portant concept for ensuring that the mouse driver interacts properly
with the video display.

83

PART lll: MOUSE PROGRAMMING INTERFACE

VIDEO ADAPTERS AND DISPLAYS

Many types of video adapters and video displays are available for the
IBM family of personal computers. Their unique display capabilities
and characteristics affect how the mouse cursor appears and moves on
the screen.

Screen Modes

84

The screen mode defines the number of pixels and the types of objects
that appear on the screen. A pixel is a point of light or a block of light
made up of individual points. The screen modes available to you de-
pend on the video adapter installed in your computer. Some adapters
display both points of light and blocks of light; others display only
blocks of light.

The screen modes and the video adapters that support them are
listed in Figure 6-1.

Screen Virtual Bits
Mode Text/ Screen Cell per
(Hex) Display Adapter Graphics (x,y) Size Pixel
0 CGA, EGA, MCGA,
VGA, 3270 Text 640x200 16x8 -
1 CGA, EGA, MCGA,
VGA, 3270 Text 640x200 16x8 -
2 CGA, EGA, MCGA,
VGA, 3270 Text 640 x 200 8x8 -
3 CGA, EGA, MCGA,
VGA, 3270 Text 640 x 200 8x8 -
4 CGA, EGA, MCGA,
VGA, 3270 Graphics 640 x 200 2x1 2
5 CGA, EGA, MCGA,
VGA, 3270 Graphics 640 x 200 2x1 2
6 CGA, EGA, MCGA,
VGA, 3270 Graphics 640 x 200 1x1 1
7 MDA, EGA, VGA, 3270 Text 640 x 200 8x8 -
D EGA, VGA Graphics 640 x 200 2x1 2
E EGA, VGA Graphics 640 x 200 Ix1 1
F EGA,VGA Graphics 640 x 350 Ix1 1

Figure 6-1. Screen-mode characteristics of the IBM PC family of video-display adapters.

(continued)

Chapter 6: Mouse Programming Interface

Figure 6-1. continued

Screen Virtual Bits
Mode Text/ Screen Cell per
(Hex) Display Adapter Graphics (x,y) Size Pixel
10 EGA, VGA Graphics 640x350 1x1 1

11 MCGA, VGA Graphics 640x480 1x1 1

12 VGA Graphics 640%x480 1x1 1

13 MCGA, VGA Graphics 640x200 2x1 2

MDA = Monochrome Display Adapter
CGA = Color/Graphics Adapter
EGA =Enhanced Graphics Adapter
MCGA = Multi-Color Graphics Array
VGA = Video Graphics Array
3270 = IBM 3270 All-Points-Addressable Graphics Adapter
NOTE: For Hercules Monochrome Graphics Cards, the current convention is
to use screen mode 5 for page 1 and screen mode 6 for page 0. See Appendix F for

more information.

Text Mode vs Graphics Mode

Some adapters display only text mode, and others display both text
mode and graphics mode. Each mode has its own characteristics; how-
ever, the modes share similar programming considerations for the
mouse.

In graphics mode, you can access individual points of light. Some
graphics modes display these points in only one color; others give you a
choice of colors.

In text mode, you can access only character-cell-sized blocks of
light made up of individual points. Common text modes on IBM PCs in-
clude 80 columns by 25 rows or 40 columns by 25 rows. Text mode uses
less memory and is generally faster than graphics mode. The disadvan-
tages are that color combinations apply to entire character cells, not to
individual points within each character cell, and that any graphiés
must consist of ASCII characters.

Testing for Screen Modes

Suppose you want to write programs that can run on a variety of ma-
chines. Because you don’t know what types of video adapters are in-
stalled in the other machines, and because your program might use
graphics or color, your program must test each video adapter to see if
the desired screen modes are available. In addition, your program
should be able to compensate if only text mode is available.

85

PART IIl: MOUSE PROGRAMMING INTERFACE

86

In C programming the _ setvideomode function returns a value that
lets you check availability of specified video modes. The following pro-
gram demonstrates this by attempting to set a medium-resolution
graphics mode with as many colors as possible:

In QuickBASIC, you can use the ON ERROR statement to test for
valid video modes and available video adapters. The SETVID.BAS
program demonstrates one way to do this:

(continued)

Chapter 6: Mouse Programming Interface

continued
' Try EGA medium resolution, 16 colors
IF videoMode = 0 THEN
videoMode = 7

- SCREEN videoMode
END IF

' Try CGA medium resolution, 4 colors
IF videoMode = 0 THEN
videoMode = 1
SCREEN videoMode
END IF

_''Clear the error trapping
- ON ERROR GOTO 0

' Did we find a valid video mode?
IF v1deoMode THEN]
PRINT "V1deo mode number", v1deoMode

yfi‘ELSE

o PRINT "No medium reso]utwn grapmcs mode avaﬂab]e" :
”;END 1F , i

Following is a similar program in interpreted BASIC. Notice that
BASICA may not support all available modes.

(continued)

87

PART ll: MOUSE PROGRAMMING INTERFACE

continued

IDEOHODE THEN PRINT *V

THE VIRTUAL SCREEN

88

To understand how the mouse interacts with the normal display of
your program, you must understand the concept of a virtual screen.

A virtual screen simplifies programming for the screen resolu-
tions that are available with the various video adapters. A virtual screen
can be thought of as a grid that overlays the physical screen. As a pro-
grammer, you need to work only with the grid coordinates on the vir-
tual screen. The mouse software translates the virtual-screen coordi-
nates into the physical-screen coordinates for the current screen mode.

The mouse software operates on the computer screen as if it were
a virtual screen composed of a matrix of horizontal and vertical points.
In Figure 6-1 on pages 84 and 85, the Virtual Screen column shows the
number of horizontal and vertical points in the matrix for each screen
mode.

NOTE: The minimum size of a virtual screen is 640 pixels by 200 pixels.

Notice that most of the text and graphics modes have virtual-
screen dimensions of 640 by 200 pixels. This often simplifies the task of
programming the mouse in several graphics modes.

You can set or change the screen mode by issuing an Interrupt 10H
instruction, which invokes a built-in routine in the computer’s ROM
BIOS. When issuing an Interrupt 10H, you must specify a function num-
ber and (optionally) a subfunction number that specify the work you
want Interrupt 10H to perform.

Whenever your program calls Interrupt 10H to change the screen
mode, the mouse software intercepts the call and determines which
virtual screen to use. The mouse software also reads the screen mode
and chooses the appropriate virtual screen whenever your program
calls Mouse Function 0 (Mouse Reset and Status) to reset default
parameter values in the mouse software.

Chapter 6: Mouse Programming Interface

In the following C program, the mouse driver intercepts Inter-
rupt 10H during the second call to the _ setvideomode function and then
hides the mouse cursor. After you press a key, the mouse cursor
reappears.

fHinclude <stdio.h>
#include <graph.h>
ffinclude <dos.h>

void mouse(int =, int *, int *, int #*);

. main()
o
: int ml,m2,m3,m4;

if (_setvideomode(_MRES256COLOR))
[
Cprintf("320 x 200\n"); S
ml=0; . /* Reset mouse */
,mouse(&ml &m2, &m3 &m4); i
Somlo=1; /% Show cursor x/
mouse(&ml &2, &m3, &m4) e ‘
; }
" getch(). X i -
A setvideomode(VRESlGCOLOR)) _V
'”‘pr1ntf("640 x 480\n")
;,getch() ‘

(continued)

89

PART lIl: MOUSE PROGRAMMING INTERFACE

continued

Regardless of the screen mode, the mouse software uses a pair of
virtual-screen coordinates to locate an object on the screen. Each pair
of coordinates defines a point on the virtual screen. The horizontal
coordinate is given first.

Many mouse functions take virtual-screen coordinates as input
orreturn them as output. Whenever you refer to avirtual-screen coordi-
nate for a pixel or character in a mouse function, be sure the values are
correctfor the current screen mode. When you first program mouse
functions, a common error is confusing physical-screen coordinates and
virtual-screen coordinates. For example, in amedium-resolution mode
(320 by 200 pixels) a horizontal mouse position of 320 pixels is at the
center of the screen rather than at the right edge. In this case, even
though there are 320 physical pixels across the screen, the virtual
screen has 640 pixels. Remember that mouse functions always refer to
virtual-screen coordinates.

The Cell Size column in Figure 6-1 shows the minimum resolution
of mouse motion in terms of the virtual screen for each mode. Consider,
for example, the 8-by-8 cell size shown for mode 3 (the 80-characters-
by-25-lines text mode). In this mode, as the mouse cursor moves from
character to character, the returned position of the mouse changes by 8
virtual-screen units. The character cell at the upper-left corner of the
screen is at mouse coordinates (0,0), but as soon as the mouse cursor
moves to the second character cell on thatline the coordinates are (8,0).
At the bottom-right character cell of the screen, the coordinates are
(632,192).

Graphics Modes

90

In graphics modes 6, E, F, 10, 11, and 12, and in graphics modes 5 and 6
with an HGC, each pixel on the virtual screen has a one-to-one corre-
spondence with each pixel on the physical screen. In these modes, the
full range of coordinates in the Virtual Screen column of Figure 6-1 is
permitted.

Chapter 6: Mouse Programming Interface

In graphics modes 4, 5, D, and 13, the physical screen is 320 by 200
pixels. The virtual screen for these modes is 640 by 200 pixels, which
makes the modes consistent with the other CGA graphics modes. Notice
that the horizontal coordinates for the mouse cursor are evenly num-
bered. Each horizontal pixel position on the screen represents a
change of two virtual-screen units. In this way, the horizontal pixel
positions numbered 0 through 319 on the physical screen map to posi-
tions 0 through 638 on the virtual screen. The vertical coordinates are
unaffected because both the physical-screen and virtual-screen coordi-
nates are numbered from 0 through 199.

Text Modes

Text modes 2, 3, and 7 display only characters on the screen, and each
character is an 8-by-8-pixel group. (See the Cell Size column in Figure
6-1.)

When you are in text mode, you can’t access the individual pixels
in a character, so the mouse software uses the coordinates of the pixel
in the cell’s upper-left corner as the character’s location. Because each
character is an 8-by-8-pixel group, both the horizontal and the vertical
coordinates are multiples of 8.

For example, the character in the upper-left corner of the screen
has the coordinates (0,0), and the character immediately to the right of
that character has the coordinates (8,0).

In text modes 0 and 1, as in text modes 2, 3, and 7, only characters
can appear on the screen; however, in modes 0 and 1, each character is
a 16-by-8-pixel block. (See the Cell Size column in Figure 6-1.)

Asin text modes 2, 3, and 7, the mouse software uses the coordi-
nates of the pixel in the cell’s upper-left corner as the character’s loca-
tion. But because modes 0 and 1 have only half as many pixels as modes
2, 3, and 7, the mouse software uses horizontal coordinates that are mul-
tiples of 16.

For example, the character in the upper-left corner of the screen
has the coordinates (0,0), and the character immediately to the right of
the first character has the coordinates (16,0).

In all these text modes, whether they use 40 or 80 columns, the
character cells are 8 pixels in height. This means that the vertical coor-
dinates change by 8 virtual-screen units for each vertical-character-cell
movement of the mouse cursor. For example, the first character in the.
second row of the screen has the coordinates (0,8).

91

PART lll: MOUSE PROGRAMMING INTERFACE

GRAPHICS AND TEXT CURSORS

The mouse has one of three cursors:

= The graphics cursor, a shape that moves over images on the
screen (for example, an arrow)

B The software text cursor, a character attribute that moves from
character to character on the screen (for example, an under-
score, reversed type, or a blinking square)

® The hardware text cursor, a flashing square, half-square, or
underscore that moves from character to character on the
screen

The mouse software supports only one cursor on the screen ata
time. In the graphics modes, the graphics cursor is the only cursor
available. The mouse software can display either of the two types of text
cursors in the text modes. Your application program might change the
cursor type, shape, or other attributes “on the fly,” so it’s a good idea
to hide the cursor temporarily while changes are made. Hiding the cur-
sor during changes lets the mouse driver detect any changes made by
an Interrupt 10H call. Mouse Functions 1 (Show Cursor) and 2 (Hide
Cursor) can help you with this. For more information on these func-
tions, see Chapter 8, ‘“Mouse Function Calls.”

Mouse Functions 9 (Set Graphics Cursor Block) and 10 (Set Text
Cursor) let you define the characteristics of the cursors in your applica-
tion programs. You can define the characteristics yourself, or you can
use the characteristics of the sample cursors provided in this book. For
more information about the sample cursors, see Chapter 8, “Mouse
Function Calls.” '

The Graphics Cursor

92

The graphics cursor, which is used when the video adapter is in one of
the graphics modes, is a block of individual pixels. In modes 6, D, E, F,
10, 11, and 12, and modes 5 and 6 on an HGC, the cursor is a 16-by-16
square that contains 256 pixels. In modes 4 and 5, the cursor is an 8-by-
16 square that contains 128 pixels.

As you move the mouse, the graphics cursor moves over the
screen and interacts with the pixels directly under it. This interaction
creates the cursor shape and background.

Chapter 6: Mouse Programming Interface

Screen Mask and Cursor Mask

For each graphics mode, the interaction between the screen pixels and
cursor pixels is defined by two 16-by-16-bit arrays: the screen mask and
the cursor mask. The screen mask determines whether the cursor pix-
els are part of the shape or part of the background. The cursor mask
determines how the pixels under the cursor contribute to the color of
the cursor when the video adapter is in text mode.

In your application programs, you can specify the shapes of the
screen mask and cursor mask by defining the shapes as arrays and pass-
ing these arrays as parameters in a call to Mouse Function 9. For more
information on Mouse Function 9, see Chapter 8, ‘““Mouse Function
Calls.”

Mask interaction in modes 4 and 5 The interaction between the screen
mask and the cursor mask differs somewhat between modes 4 and 5
and the rest of the graphics modes. In modes 4 and 5, each pair of bits
in the masks represents one pixel on the screen. The graphics cursor
masks are always defined as 16-by-16-bit squares; however, in modes 4
and 5 the cursor appears as an 8-by-16 rectangle of screen pixels. This
two-to-one mapping causes each 2-bit pair of the masks to represent
one screen pixel. In all other graphics modes, one mask bit represents
one pixel on the screen.

To create the cursor, the mouse software operates on the data in
the computer’s screen memory that defines the color of each pixel on
the screen. First, each bit in the masks expands to match the number of
bits in video memory that are required for each pixel’s color informa-
tion. For example, in mode D each screen pixel requires 4 bits to indi-
cate one of 16 possible colors. In this case, each 1 in the masks expands
to 1111 and each 0 expands to 0000. Other graphics modes result in dif-
ferent amounts of this bit expansion. Mode 4 (2 colors) doesn’t require
expansion; whereas mode 13H (256 colors) requires that each mask bit
expand to 8 bits.

The mouse software then logically ANDs each of these bit groups
with the bit group for the associated screen pixel. This allows the pixel
color to remain unaltered wherever the screen-mask bit is 1. It also
allows a new color setting wherever the screen-mask bit is 0. The pixel
is blocked by a 0 and allowed through by a 1.

93

PART lll: MOUSE PROGRAMMING INTERFACE

94

Finally, the pixel bits are XORed with the expanded bit groups
from the cursor mask. Where the cursor mask is 0, the pixel is un-
altered. Where the mask is 1, the color bits are inverted. This results in
an inversion of the color information for the pixel. Most commonly,
the screen mask is 0 and the cursor mask is 1 wherever the cursor image
is shown, resulting in a solid, bright white image. Careful manipulation
of the screen and cursor masks, and of the color palette information,
lets you create transparent or colorful graphics cursors.

Figure 6-2 shows how these operations affect each individual
screen bit.

If the screen " And the cursor The resulting
mask bit is mask bit is screen bit is

0 0 0

0 1 1

1 0 Unchanged

1 1 Inverted

Figure 6-2. This table shows how the screen-mask bit and the cursor-mask
bit affect the screen bit.

In modes 4 and 5, each pair of mask bits maps to one screen pixel,
resulting in a slightly different cursor creation. Each screen pixel re-
quires 2 bits of color information. These 2 bits logically AND and XOR
with the screen-mask-bit and cursor-mask-bit pairs to create the cursor.
The most important consequence of this is that you should set each
pair of mask bits to the same value to prevent the cursor image from
bleeding around the edges. You can see this bleeding effect as a magenta
or cyan (blue) fringe on the default-cursor arrow when you are in
mode 4 or 5.

The illustration on page 95 depicts the screen and cursor masks
for the default graphics cursor. The 1s in the screen mask let the back-
ground show through; the 0s hide the background pixels. The 1s in the
cursor mask indicate bright white pixels composing the cursor image;
the 0s let the background show through unaltered.

Mask interaction in modes E and 10 In modes E and 10, as in modes 6 and F,
each bitin the screen mask and cursor mask corresponds to a pixel in
the cursor block. ’

Screen Mask

Chapter 6: Mouse Programming Interface

Hot Spot

Cursor Mask
1001111111111111 0000000000000000 X= 0
1000111111111111 0010000000000000 Y = -1
1000011111111111 0011000000000000
1000001111111111 0011100000000000
1000000111111111 0011110000000000
1000000011111111 0011111000000000
1000000001111111 0011111100000000
1000000000111111 0011111110000000
1000000000011111 0011111111000000
1000000000001111 0011111000000000
1000000011111111 0011011000000000
1000100001111111 -°0010001100000000
1001100001111111 ~0000001100000000
1111110000111111 0000000110000000.
1111110000111111 ~.0000000110000000 -
',0000000000000000 e

1111111000111111

The default graphics mode screen and cursor masks.

The cursor mask and screen mask are stored in off-screen memory.
Each plane hasits own identical copy of the cursor mask and screen
mask; therefore, for each plane, the resulting screen bitin Figure 6-2isac-
tually the bit used in the colorlook-up table on the EGA.

In EGA and VGA graphics modes, the color information is kept in
look-up tables. This means that the pixel-color information bits repre-
sent an index to a table of predefined colors. By changing the colors in
this table, you can change the color of the mouse cursor. For more in-
formation about changing colors, see the BASIC PALETTE statement or
the C _remappalette function in your product’s language reference
manual.

The Graphics-Cursor Hot Spot

Whenever a mouse function refers to the graphics-cursor location, it
gives the point on the virtual screen that coincides with the cursor’s
hot spot. You can set the hot spot at any virtual-screen coordinates up to
+127 units from the upper-left corner of the screen-mask and cursor-
mask definitions. This means that you can set the hot spot at a visible
cursor pixel location or at an invisible pixel location where the back-
ground is visible. The cursor image appears on the screen relative to
the hot spot.

95

A

PART lll: MOUSE PROGRAMMING INTERFACE

You define the hot spotin the cursor block by passing the horizon-
tal and vertical coordinates of the point to Mouse Function 9. For all
graphics modes, the coordinates are relative to the upper-left corner of
the cursor block. In most cases, the hot spotis setin the range 0 through
16, the area where the cursor pixel masks are defined; however, you can
define the hotspotanywhere in the range —128 through 127.

Text Cursors

96

Two types of text cursors are used with the mouse. The software text
cursor affects the appearance of the entire character cell, altering the
character’s attributes. The hardware text cursor comes with the com-
puter hardware; it usually contains a block of scan lines in part of the
character cell. Picking one type of text cursor instead of the other is
largely a matter of preference. Both are fast and efficient.

The Software Text Cursor
You use the software text cursor when the video adapter is in one of the
text-screen modes.

The software text cursor affects how characters appear on the
screen. Unlike the graphics cursor, the software text cursor usually
doesn’t have a shape of its own. Instead, it changes the character attri-
butes (such as foreground and background colors, intensity, and under-
scoring) of the character directly under it; however, if the cursor hasa
shape of its own, it is shaped as one of the 256 characters in the ASCII
character set.

The screen and cursor masks control which attributes are altered
and whether the ASCII code for the character itself is modified.

Screen mask and cursor mask Earlier in this chapter, you read about the
relationships of screen and cursor masks to the graphics cursor. Soft-
ware text cursors also use screen and cursor masks. In fact, the effect of
the software text cursor on the character under it is defined by the
screen mask and the cursor mask. The screen mask is a 16-bit value that
determines which of the character’s attributes are preserved, and the
cursor mask is a 16-bit value that determines how these attributes
change to yield the cursor.

- To create the cursor, the mouse software operates on the data
that defines each character on the screen. The mouse software first

Chapter 6: Mouse Programming Interface

logically ANDs the screen mask and the 16 bits of screen data for the
character currently under the cursor. The mouse software then logi-
cally XORs the cursor mask with the result of the AND operation, caus-
ing the cursor’s appearance on the screen.

The format of the screen data for each character is shown in
Figure 6-3. Each of the 16 bits shown in Figure 6-3 has a purpose as
follows:

Bit(s) Purpose

15 Sets blinking or nonblinking character
12-14 Sets the background color

11 Sets high intensity or medium intensity
8-10 Sets the foreground color

0-7 ASCIl value of the character

The range of values for each field depends on the characteristics
of the display adapter in your computer. (See the documentation that
came with your display adapter for details.)

Bit: 15 14 12 11 10 8 7 0

I j I
QOdd address Even address

Figure 6-3. Data format for each screen character in text mode.

The screen mask and cursor mask are identical in structure to the
character structure shown in Figure 6-3. The value contained in each
field of the screen mask and cursor mask defines a character’s new at-
tributes when the cursor is over that character.

For example, to invert the foreground and background colors, be
sure the screen mask and cursor mask have the values shown in Figure
6-4. (The software text cursor defined in this figure is the default cursor
before Mouse Function 10 (Set Text Cursor) is called to redefine it.)

Bit: 15 14 12 11 10 8 7 0

Screenmask: 0|1 1 t1f{ofl1 1 1|1 1t 1 1 1 1 1 1| =&H77FF
= &H7700

Cursor mask:

Figure 6-4. Sample screen-mask and cursor-mask values.

97

PART Hll: MOUSE PROGRAMMING INTERFACE

In your application programs, you can define the values of the
screen mask and cursor mask by passing their values as parameters
to Mouse Function 10. For more information on Function 10, see
Chapter 8, ““Mouse Function Calls.”

Whenever a mouse function refers to the text cursor location, it
gives the virtual-screen coordinates of the character under the cursor.
The text cursor doesn’t have a hot spot.

The Hardware Text Cursor
The hardware text cursor is another cursor that is used when the com-
puter is in one of the text modes. This type of cursor is also set using
Function 10.

The hardware text cursor is the computer’s cursor—the one you
see on the screen after the MS-DOS system-level prompt. The mouse
software lets you adapt this cursor to your needs.

Scan lines The hardware cursor is 8 pixels long and 8 to 14 pixels high.
Each horizontal set of pixels forms a line called a scan line. There are 8
to 14 scan lines.

Your program turns scan lines on or off. If a scan line is on, it ap-
pears as a flashing bar on the screen. If a scan line is off, it has no effect
on the screen. Your program defines which lines are on and which are
off by passing the numbers of the first and last lines in the cursor to
Mouse Function 10. _

The number of lines in the cursor depends on the display adapter
in your computer. For example:

® Ifyour computer has a Color/Graphics Adapter, the cursor has
8 lines, numbered 0 through 7.

® Ifyour computer has a Monochrome Display Adapter, the cur-
sor has 14 lines, numbered 0 through 13. '

® Ifyour computer has an Enhanced Graphics Adapter and a
Color Display, the cursor has 8 lines, numbered 0 through 7.

® Ifyour computer has an Enhanced Graphics Adapter and an
Enhanced Color Display, the cursor has 8 lines, numbered 0
through 7.

98

Chapter 6: Mouse Programming Interface

THE INTERNAL CURSOR FLAG

Regardless of the type of cursor displayed, the mouse software main-
tains an internal flag that determines whether or not the cursor ap-
pears on the screen. The value of this flag is always 0 or less. When the
value of the flag is 0, the mouse software displays the cursor. When the
value of the flag is less than 0, the mouse software hides the cursor.

Application programs cannot access this flag directly. To change
the flag’s value, your program must call Mouse Functions 1 (Show Cur-
sor) and 2 (Hide Cursor). Function 1 increments the flag; Function 2
decrements it. Initially, the flag’s value is —1, so a call to Function 1
displays the cursor.

Your program can call Mouse Function 1 or Function 2 any num-
ber of times, but if it calls Function 2, it must subsequently call Func-
tion 1 to restore the flag’s previous value. For example, if the cursor is
on the screen and your program calls Function 2 five times, it must also
call Function 1 five times to return the cursor to the screen.

If your program calls Function 1 to display the cursor, any addi-
tional calls to Function 1 have no effect on the internal cursor flag;
therefore, one call to Function 2 always hides the cursor. In addition,
your program can call Mouse Function 0 (Mouse Reset and Status), or
it can change screen modes to reset the flag to —1 and hide the cursor.

READING THE MOUSE

To obtain input from the mouse, you can read the status of the mouse
buttons, and you can check to see if (and how far) you have moved the
mouse. In addition, your program can check how many times you
pressed or released a particular button, and it can adjust the mouse-
movement sensitivity.

Mouse Buttons

Mouse Function 5 (Get Button Press Information) and Function 6 (Get
Button Release Information) read the state of the mouse buttons. They
return a count of the number of times the buttons are pressed and
released. The count that Mouse Functions 5 and 6 return is an integer
value in which the first 2 bits are set or cleared. Bit 0 represents the
state of the left button, and bit 1 represents the state of the right but-
ton. If a bit is set (equal to 1), the button is down. If a bit is clear (equal
to 0), the button is up.

99

PART lll: MOUSE PROGRAMMING INTERFACE

The mouse software increments a counter each time the corre-
sponding button is pressed or released. Functions 5 and 6 can read the
contents of these counters. The software sets the counter to 0 after you
reset the mouse (Mouse Function 0) or after you read a counter’s
contents.

Mouse Unit of Distance: The Mickey

The motion of the mouse track ball translates into values that express
the direction and duration of the motion. These values are givenina
unit of distance called a mickey, which is approximately "0 inch.

When you move the mouse across a desktop, the mouse hardware
passes a horizontal and vertical mickey count—that is, the number of
mickeys the mouse ball rolled in the horizontal and vertical direc-
tions—to the mouse software. The mouse software uses the mickey
count to move the cursor a certain number of pixels on the screen.

You can use Mouse Function 11 (Read Mouse Motion Counters) to
read the relative motion counters kept by the mouse software. After the
counters are read, they are reset to 0. You can also obtain the absolute
position of the mouse as maintained by the mouse software by calling
Mouse Function 3 (Get Button Status and Mouse Position).

Mouse Sensitivity

100

The number of pixels that the cursor moves doesn’t need to corre-
spond one-to-one with the number of mickeys the track ball rolls. The
mouse software defines a sensitivity for the mouse, which is the number
of mickeys required to move the cursor 8 pixels on the screen. The sen-
sitivity determines the rate at which the cursor moves on the screen.

In your application programs, you can define the mouse’s sensitiv-
ity by passing a mickey count to Mouse Function 15 (Set Mickey/Pixel
Ratio) or by calling Mouse Function 26 (Set Mouse Sensitivity). The
default mickey count is 8 mickeys to 8 pixels, but the mickey count can
be any value from 1 through 32,767.

For example, if you pass a count of 32, the sensitivity is 32 mickeys
per 8 pixels. In this case, the cursor moves at one-fourth the speed of
the default setting.

Chapter 7

Mouse
Programming
Considerations

The Microsoft mouse driver provides you with 35 functions to add
mouse support to your application program. After you load the mouse
driver—either by loading MOUSE.COM from the MS-DOS command
prompt or from AUTOEXEC.BAT or by loading MOUSE.SYS with a DEVICE
directive in CONFIG.SYS—you can include these functions in your
application program by calling Interrupt 33H with the appropriate
parameters or by using the mouse library, MOUSE.LIB.

Although using these functions is fairly straightforward, you must
consider several aspects of the system on which your application is
running. The most important considerations are the type of video
hardware installed and what modes it is capable of displaying—mouse
functions that draw, display, and move the mouse cursor are heavily
dependent on the current video display mode. Other considerations
include the version of the mouse driver, the country in which the
application program is being used, and whether or not the application
program using the mouse is a terminate-and-stay-resident (TSR)
program.

101

PART Ill: MOUSE PROGRAMMING INTERFACE

SETTING UP YOUR SYSTEM

Although there are no hard-and-fast rules about where you must place
mouse support within your program, you should include certain mouse
functions early in your program to ensure that you properly installed
the mouse driver and that its version number is high enough to sup-
port the mouse functions you plan to use in your application. In addi-
tion, because the mouse driver works closely with the video adapter,
your application program must be well behaved in terms of how it uses
the video adapter. For example, you should be sure your program com-
municates with the video adapter using the BIOS. You should not try to
program the video hardware directly.

You must use four variables to make a mouse function call. The
first variable identifies the function number; the other three indicate
any additional information required by that function. The mouse func-
tions return information in these same variables. You should declare
these variables as you would any other integer-value variables within
your program.

You make mouse function calls either by using Interrupt 33H or
by calling the MOUSE.LIB library. Both offer identical functionality and
differ only in how you call them. See Chapter 2, “Overview of Mouse
Programming,” for more information; however, note that application
programs using MOUSE.LIB must treat the functions as external.

Testing for the Mouse Driver

102

After declaring any necessary variables and functions, you should
check to see that the mouse driver was installed correctly by verifying
that the vector for Interrupt 33H does not point to 0:0 or an IRET
instruction. You should then include Mouse Function 0 (Mouse Reset
and Status) in your program to reset the mouse driver. Optionally, you
can then include a call to Mouse Function 36 (Get Driver Version,
Mouse Type, and IRQ Number) to check the version of the mouse
driver that is installed and to verify that the mouse functions you will
use later in the application program are supported.

Be sure your program issues an error message that sends a warn-
ing if the mouse driver is not installed properly or (assuming you used
Mouse Function 36) if the version of the mouse driver is not high
enough to support the mouse functions you will use later.

In most cases, you can now call Mouse Function 1 in your applica-
tion program to display a cursor. The cursor that appears reflects the

Chapter 7: Mouse Programming Considerations

current mode of the video adapter: The mouse driver displays a square
if the video adapter is in text mode or a solid arrow if the video adapter
is in graphics mode. If your video adapter is in a mode thatis not -
supported by the mouse driver, the results can be unpredictable at this
point. For example, the mouse cursor might not display, but your appli-
cation might continue to run normally; or your system could lock up.
(See the section on unsupported video modes later in this chapter.)

Instead of calling Mouse Function 1 (Show Cursor) to display the
cursor, you can first call other mouse functions to perform such tasks as
modifying the shape of the cursor or defining an area to which cursor
movement will be restricted. Although you can include these calls at
any point later in the program, you may want to take care of these tasks
now so that you do not need to make such changes later.

Controlling the Mouse Cursor

As explained in Chapter 6, you can include in your program Function 9
(Set Graphics Cursor Block) and Function 10 (Set Text Cursor) to
modify the shape of any graphics or text cursor. In addition, you can
use Function 7 (Set Minimum and Maximum Horizontal Cursor Posi-
tion) and Function 8 (Set Minimum and Maximum Vertical Cursor
Position) to define a boundary for cursor movement on the screen. You
can also use Function 16 (Conditional Off) to define an area of the
screen in which the cursor will disappear if the user moves the cursor
into that area.

To turn off the cursor completely, without losing any of the cursor
attributes you've set in your program, you can use Function 2 (Hide
Cursor). Note that after your program hides the cursor, the mouse
driver still keeps track of mouse movements and button presses. If you
include mouse functions in your program that continue to track mouse
movements and button presses when the cursor is turned off, a call to
Function 1 (Show Cursor) causes the mouse cursor to appear in the up-
dated position. You can also use Function 4 (Set Mouse Cursor Posi-
tion) to position the cursor before you display it.

Other functions let you control the relationship between mouse
movements and mouse cursor movements. Function 15 (Set Mickey/
Pixel Ratio) adjusts the ratio of mouse movement to mouse cursor
movement, and Function 19 (Set Double-Speed Threshold) defines the
speed of mouse movement that causes mouse sensitivity to double.

A single call to Function 26 (Set Mouse Sensitivity) is equivalent to
separate calls to Functions 15 and 19. In most cases, you’ll find it’s easier

103

PART Ill: MOUSE PROGRAMMING INTERFACE

to use Function 26 than to use the two separate functions. Calling
Function 27 (Get Mouse Sensitivity) lets your program check the cur-
rent values of the mickey-per-pixel ratio and double-speed threshold,
allowing your program to use Function 26 to set them to new values if
necessary.

Obtaining Button and Position Feedback

To use the mouse as more than a pointing device, you need to request
feedback from the mouse driver about mouse position and button
presses. Your program can then use this information to control pro-
gram flow by augmenting the user interface.

You can use Function 3 (Get Button Status and Mouse Position)
to determine whether the user pressed a mouse button and, if so, what
the position of the cursor was when the button was pressed. This infor-
mation lets your program perform such tasks as highlighting text,
selecting on-screen menu items, and creating shapes.

Function 5 (Get Button Press Information) and Function 6 (Get
Button Release Information) obtain mouse movement and button
press status. Functions 5 and 6 are similar to Function 3 except that
they maintain a buffer to keep a cumulative count of button presses or
releases since those functions were last called. Function 3 checks the
mouse buttons only when the function is called. Functions 5 and 6 let
you build a “‘click-ahead’’ buffer into your program, much as the key-
board buffer lets you use a type-ahead buffer.

Use of Function 11 (Read Mouse Motion Counters) lets your
program keep track of relative mouse motion, as opposed to absolute
screen position. In other words, Function 11 can indicate how far the
user moved the mouse since the last call to Function 11.

ADVANCED TOPICS

104

Several mouse functions address specific programming issues not
normally encountered in the average program.

Due to the close interaction between the mouse driver and the
video adapter, you need to take special steps if your program is per-
forming advanced video techniques. (For EGA programming con-
siderations, see Chapter 10, “Writing Mouse Programs for IBM EGA
Modes.”")

Chapter 7: Mouse Programming Considerations

Video Modes

When your program changes video modes, the way the system uses
video memory can change substantially. To ensure that the mouse cur-
sor does not interfere with other portions of memory, you first include
Function 2 (Hide Cursor) in your program to hide the cursor. You can
then change the video mode within the program and use Function 1
(Show Cursor) to display the cursor again. Following these steps re-
duces the possibility that problems will occur in video memory.

NOTE: We also recommend hiding the cursor if you want to draw an object
in graphics mode under the cursor. This technique prevents garbage from appear-
ing on the screen.

Video Paging
Many video adapters have several pages available for programs to use.
To accommodate this feature, your program can include Function 29
(Set CRT Page Number) and Function 30 (Get CRT Page Number),
which can let the mouse driver know which video page is the active
video page so that it can display the mouse cursor there.

User-Installed Mouse Interrupt Subroutines

Any mouse action that occurs as the application is running, such as
moving the mouse or pressing a button, generates a hardware inter-
rupt. The operating system senses the interrupt, suspends processing
of the currently running program, and looks in the interrupt vector
table for the address of the interrupt routine, which in this case is an
address installed by the mouse driver when it was loaded. The oper-
ating system then transfers control to the interrupt routine, which
executes and returns control to the operating system. Finally, the
operating system ‘“‘cleans up’’ the interrupt and returns control to
the program that was running.

When it executes, the interrupt routine installed by the mouse
driver first checks the call mask, a built-in table of bits that corresponds
to each type of mouse action, such as movement, a button press, a but-
ton release, and so on. If the bit corresponding to the mouse action
that caused the interrupt is set to zero, the interrupt handler simply
executes as it normally would. If the corresponding bit is set to one, the
interrupt handler also executes the user-written interrupt handler for
that event.

105

PART lll: MOUSE PROGRAMMING INTERFACE

106

Specifying Interrupt Handlers

You specify the location of an interrupt handler that you wrote, as well
as changes to the call mask, by using any of three mouse functions
provided for that purpose: Function 12 (Set Interrupt Subroutine Call
Mask and Address), Function 20 (Swap Interrupt Subroutines), and
Function 24 (Set Alternate Subroutine Call Mask and Address). You
can use an additional function, Function 25 (Get User Alternate Inter-
rupt Address), before calling Function 20 or Function 24 to determine
what subroutine mask and address were set by a previous call to Func-
tion 20 or Function 24.

Writing and Installing Interrupt Handlers
You write and install custom interrupt handlers for one or more mouse
actions if you want an alternate set of events to occur as the result of an

-action. Doing this supplements the steps the mouse driver would nor-

mally take for a mouse event.

Your first step is to write the interrupt subroutine. The interrupt
subroutine needs to be a FAR assembly language program because the
subroutine must be able to do an intersegment return to the mouse
driver. Next, you must determine which mouse event(s) will cause your
subroutine to be used in addition to the mouse driver’s subroutine,
and then set the appropriate call mask bit(s). A table corresponding to
all mouse actions is kept by the mouse driver. For each mouse event,
such as a right button press, the driver checks the portion of the table
that represents that event to see if that event will cause the interrupt
subroutine you have written to be executed. If so, the system will also
execute your interrupt routine. Interrupt routines cannot call any MS-
DOS or BIOS interrupts because MS-DOS and the BIOS are not reentrant;
that is, they can’t be suspended to call other instances of themselves.

To install your custom interrupt subroutine, you can use one of
three functions: Function 12 (Set Interrupt Subroutine Call Mask and
Address), Function 20 (Swap Interrupt Subroutines), or Function 24
(Set Alternate Subroutine Call Mask and Address). Avoid using Func-
tion 12 because Functions 20 and 24 have superseded the older call and
provide more flexibility and functionality.

Mouse Function 12 Function 12 (Set Interrupt Subroutine Call Mask
and Address) replaces an existing interrupt subroutine address-and
call mask with a new address and call mask. When the mask condition

Chapter 7: Mouse Programming Considerations

specified by Function 12 is matched, the specified subroutine is exe-
cuted. The disadvantage of using Function 12 is that it doesn’t offer a
method for the calling program to get the existing subroutine address
and call mask so that they can be restored after the subroutine spe-
cified by Function 12 is finished. For example, suppose you are writing a
terminate-and-stay-resident program for the mouse and you need to in-
stall your own interrupt subroutine. Function 12 replaces the existing
interrupt address in the mouse driver with its own interrupt address;
consequently, the program you are running is unable to call its inter-
rupt subroutine. We therefore strongly recommend that you use Func-
tion 20 or Function 24 instead of Function 12.

Mouse Function 20 Like Function 12, Function 20 (Swap Interrupt Sub-
routines) replaces an existing subroutine address and call mask with a
new address and call mask. Function 20 also returns the previous ad-
dress and call mask to the program so that your program can restore
them after it is finished with the new subroutine and call mask.

Mouse Function 24 Function 24 (Set Alternate Subroutine Call Mask
and Address) sets up to three unique interrupt addresses and call
masks. This allows you to create up to three separate interrupt subrou-
tines, each of which has its own call mask, so that your program can
take a different action depending on which event specified by the call
mask occurs. You do not need to create all three subroutines. For ex-
ample, you can create only one interrupt subroutine and have the ad-
dresses associated with all three call masks point to it; then any of three
unique events will cause that interrupt subroutine to be executed.

Alternate subroutines set by Function 24 are always activated by a
combination of a Shift, Alt, or Ctrl key press combined with mouse mo-
tion or button presses. The call mask for each call to Function 24 must
include one or more of the bits for the shift keys as well as one or more
of the bits for mouse activity.

Light Pen Emulation

When you use Function 13 (Light Pen Emulation Mode On), the mouse
emulates a light pen. You use this function primarily to include mouse
support for programs that have been developed for a light pen. With
light pen emulation on, the mouse loads its cursor-position values into
the area of the system where a light pen would load its position values.

107

PART ll: MOUSE PROGRAMMING INTERFACE

NOTE: You cannot use a light pen and a mouse at the same time. If your sys-
tem has a light pen as well as a mouse installed, you must use Function 14 (Light
Pen Emulation Mode Off) to prevent the mouse’s position values from conflicting
with those of the light pen. By default, light pen emulation is on.

Supported and Unsupported Video Modes

108

The mouse supports the following video modes:

Video Display Screen
Mode Adapter Mode Resolution
0 CGA, EGA, MCGA, VGA, 3270 text 640 x 200
1 CGA, EGA, MCGA, VGA, 3270 text 640 x 200
2 CGA, EGA, MCGA, VGA, 3270 text 640 x 200
3 CGA,EGA, MCGA, VGA, 3270 text 640 x 200
4 CGA, EGA, MCGA, VGA, 3270 graphics 640 x 200
5 CGA, EGA, MCGA, VGA, 3270 graphics 640 x 200
6 CGA, EGA, MCGA, VGA, 3270 graphics 640 x 200
7 MDA, EGA, VGA, 3270 text 640 x 200
D EGA, VGA graphics 640 x 200
E EGA, VGA graphics 640 x 200
F EGA, VGA graphics 640 x 350
10 EGA, VGA graphics 640 x 350
11 MCGA, VGA graphics 640 x 480
12 VGA ‘ graphics 640 x 480
13 MCGA, VGA graphics 640 x 200

MDA =Monochrome Display Adapter

CGA = Color/Graphics Adapter

EGA =Enhanced Graphics Adapter

MCGA = Multi-Color Graphics Array

VGA = Video Graphics Array

3270 = IBM 3270 All-Points-Addressable Graphics Adapter

NOTE: For Hercules Monochrome Graphics cards, the current convention is
to use screen mode 5 for page 1 and screen mode 6 for page 0. See Appendix F, “Using
the Mouse with the Hercules Graphics Card.”

The mouse driver might not draw the cursor correctly or return
correct screen coordinates in unsupported screen modes. If you want
to use the mouse with an unsupported screen mode, contact Microsoft
Product Support or the manufacturer of your video adapter. (Instruc-
tions for contacting Microsoft Product Support can be found in the
documentation that came with your Microsoft Mouse.)

Chapter 7: Mouse Programming Considerations

Language Support

The following table shows the languages supported by the inter-
national version of the mouse driver, the language numbers, and the
language switch designators.

Language Language Number Switch Designator
English 0 None (default)
French 1 F

Dutch 2 NL

German 3 D

Swedish 4 S

Finnish 5 SF

Spanish 6 E

Portuguese 7 P

Italian 8 I

The /L command line switch sets the language when the mouse
driver is loaded. Load-time messages are displayed in the selected lan-
guage, and there are no run-time messages in the mouse driver. Mes-
sages used by the nonselected languages are not loaded into memory.

Function 34 (Set Language for Messages) is a special-case func-
tion that lets the mouse reset the language being used. This function
can be used only by the mouse driver, not by your program. Using
Function 34 on the domestic (English only) version of the mouse has
no effect; the domestic version ignores the /L command line switch.

There may be times when you want to know the installed lan-
guage. Function 35 (Get Language Number) returns the number of
the currently installed language.

MOUSE FUNCTIONS

The following list shows the mouse functions by functional category:

Driver Control and Feedback

Function 0: Mouse Reset and Status

Function 21: Get Mouse Driver State Storage Requirements
Function 22: Save Mouse Driver State

Function 23: Restore Mouse Driver State

Function 28: Set Mouse Interrupt Rate

Function 31: Disable Mouse Driver

109

PART lll: MOUSE PROGRAMMING INTERFACE

110

Function 32:
Function 33:
Function 36:

Enable Mouse Driver
Software Reset
Get Driver Version, Mouse Type, and IRQ Number

Cursor Control

Function 1:
: Hide Cursor
: Set Mouse Cursor Position

Function
Function

Function

Function 9:
Function 10:
Function 15:
Function 16:
Function 19:
Function 26:
Function 27:

2
4
Function 7:
8: Set Minimum and Maximum Vertical Cursor Positions

Show Cursor

Set Minimum and Maximum Horizontal Cursor Positions

Set Graphics Cursor Block
Set Text Cursor

Set Mickey/Pixel Ratio
Conditional Off

Set Double-Speed Threshold
Set Mouse Sensitivity

Get Mouse Sensitivity

Button and Position Feedback

Function 3:
Function b5:
Function 6:
Function 11:

Get Button Status and Mouse Position
Get Button Press Information

Get Button Release Information
Read Mouse Motion Counters

Video Control and Feedback

Function 29:
Function 30:

Set CRT Page Number
Get CRT Page Number

Connecting to Additional Subroutines

Function 12:
Function 20:

Set Interrupt Subroutine Call Mask and Address
Swap Interrupt Subroutines

Connecting to Alternate Subroutine

Function 24:
Function 25:

Set Alternate Subroutine Call Mask and Address
Get User Alternate Interrupt Address

Light Pen Emulation

Function 13:
Function 14:

Light Pen Emulation Mode On
Light Pen Emulation Mode Off

Chapter 7: Mouse Programming Considerations

Language Support (International Version Only)
Function 34: Set Language for Messages
Function 35: Get Language Number

For more information on programming with mouse functions and for
specific programming examples, see Chapter 8, *““Mouse Function
Calls,” and Chapter 9, ““Sample Mouse Programming Interface
Programs.”

111

Chapter 8

Mouse Function Calls

This chapter describes the input, output, and operation of each mouse
function call. The actual statements required to make the function
calls depend on the programming language you use; therefore, this
chapter also provides examples showing how you can call each
function in interpreted BASIC, QuickBASIC, C and QuickC, and MASM
(Microsoft Macro Assembler). For further instructions on making
function calls from these languages, see Chapter 9, “‘Sample Mouse
Programming Interface Programs.”’

NOTE: If you design a mouse-supported application program that uses a
graphics mode on the IBM EGA (or on a graphics adapter emulating an EGA) that
is not supported by the mouse driver or you program the EGA hardware directly,
your program must interact with the adapter through the Microsoft EGA Register
Interface. For instructions on using the EGA Register Interface, see Chapter 10,
“Writing Mouse Programs for IBM EGA Mode.”

INTRODUCTION TO MOUSE FUNCTIONS

The table on the following page shows the number and name of each
mouse function described in this chapter.

113

PART lll: MOUSE PROGRAMMING INTERFACE

114

Function Function
Number Name
0 Mouse Reset and Status
1 Show Cursor
2 Hide Cursor
3 Get Button Status and Mouse Position
4 Set Mouse Cursor Position
5 Get Button Press Information
6 Get Button Release Information
7 Set Minimum and Maximum Horizontal Cursor Position
8 Set Minimum and Maximum Vertical Cursor Position
9 Set Graphics Cursor Block
10 Set Text Cursor
11 Read Mouse Motion Counters
12 Set Interrupt Subroutine Call Mask and Address
13 Light Pen Emulation Mode On
14 Light Pen Emulation Mode Off
15 Set Mickey/Pixel Ratio
16 Conditional Off
19 Set Double-Speed Threshold
20 Swap Interrupt Subroutines
21 Get Mouse Driver State Storage Requirements
22 Save Mouse Driver State
23 Restore Mouse Driver State
24 Set Alternate Subroutine Call Mask and Address
25 Get User Alternate Interrupt Address
26 Set Mouse Sensitivity
27 Get Mouse Sensitivity
28 Set Mouse Interrupt Rate
29 Set CRT Page Number
30 Get CRT Page Number
31 Disable Mouse Driver
32 Enable Mouse Driver
33 Software Reset
34 Set Language for Messages
35 Get Language Number
36 Get Driver Version, Mouse Type, and IRQ Number

Chapter 8: Mouse Function Calls

Each function contains the following:

® The parameters required to make the function call (input)
and the expected return values (output)

= Any special considerations regarding the function

s Sample program fragments that illustrate how to use the func-
tion call

The mouse function parameter names MI1%, M2%, M3%, and
M4% are placeholders. When you make a function call, use the actual
values that you want to pass. Be sure the values are appropriate for the
language you are using.

Use the percent sign (%) to emphasize that the passed parame-
ters are all 16-bit integers. This is standard notation for interpreted
BASIC and QuickBASIC. When you use C or QuickC, pass the addresses
of short integer variables. When you use MASM, the AX, BX, CX, and DX
registers correspond to the Mi1%, M2%, M3%, and M4%. Note thatin a
few special cases, ES is used for M2%.

If the function description doesn’t specify an input value for a
parameter, you don’t need to supply a value for that parameter before
making the function call. If the function description doesn’t specify an
output value for a parameter, the parameter’s value is the same before
and after the function call.

NOTE: All mouse function calls require four parameters. The mouse soft-
ware doesn’t check input values, so be sure the values you assign to the parameters
are correct for the given function and screen mode. If you pass the wrong number
of parameters or assign incorrect values, you will get unpredictable resulls.

115

PART Ill: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 0: MOUSE RESET AND STATUS

Call with

Returns

Description

116

Ml1% =0

M1% = mouse status (if mouse found and reset = —1, otherwise = 0)
M2% = number of buttons (if mouse found and reset = 2)

Mouse Function 0 returns the current status of the mouse hardware
and software. If you installed the mouse hardware and software cor-
rectly, the mouse status is = —1. (With mouse version 6.25 or later, if the
driver is installed correctly but you later disconnect a serial or PS/2
mouse, subsequent calls to Function 0 will return M1%= 0.)
Ifyou didn’tinstall the hardware and software, the mouse statusis = 0.
Also, if the mouse pointer is currently visible, Function 0 hides it as part
of the reset process. In addition, Function 0 disables any interrupt han-
dlers previously installed by the user for mouse events except those in-
stalled using Function 24.

Function 0 resets the mouse driver to the following default values:

Parameter Value

Cursor position Center of screen

Internal cursor flag —1 (cursor hidden)

Graphics cursor Arrow

Text cursor Reverse video block

Interrupt call mask All 0 (no interrupt subroutine specified)”
Light pen emulation mode Enabled

Horizontal mickey-per-pixel ratio 8 to 8
Vertical mickey-per-pixel ratio 16to0 8

Double-speed threshold _ 64 mickeys per second

Minimum horizontal 0

cursor position

Maximum horizontal Current display-mode virtual screen
cursor position x-value minus 1

Minimum vertical cursor position 0

Maximum vertical cursor position Current display-mode virtual screen
y-value minus 1

CRT page number 0

*This is true only for interrupt subroutines that weren’t installed using Function 24.

Chapter 8: Mouse Function Calls

Examples Each of the following program fragments verifies mouse installation. If
the mouse is installed correctly, the programs reset it. The programs
also display a message stating whether the mouse was found.

NOTE: The QuickBASIC and C/QuickC examples show how to use structure
variables that represent the AX, BX, CX, and DX registers. They also demonstrate
how to directly call the mouse interrupt. A simpler way to call the mouse functions
is to use calls to routines provided in the MOUSE.LIB library. For more information
on this alternate method, see Chapter 7, “Mouse Programming Considerations.”
The method presented here also works well and shows the correlation between the
M1%, M2%, M3%, and M4% parameters and the AX, BX, CX, and DX registers.

Interpreted BASIC

'100 ! Mouse Reset and Status
110t ,
';,120 ' Determ1nemouse1nterruptaddress
) MOUSEG = 256 * PEEK(207) + PEEK(206) - ,~;,f;, = s LA e
0 MOUSE = 256 * PEEK(205) + PEEK(204) +2 : . S
50 DEF SEG = MOUSEG
‘M1% =0
' Check’ 1f interr‘upt code]oaded

00 IF (MOUSEGH OR (MOUSE% - 2)) AND (PEEK(MOUSE - 2) o 207) THEN GOTO 260
“PRINT "Mouse' dmver not found" B

117

PART Ill: MOUSE PROGRAMMING INTERFACE

118

Chapter 8: Mouse Function Calls

C/QuickC
/* Mouse Reset and Status */

#include <stdio.h>
f#include <stdlib.h>
f#Hinclude <dos.h>

main()
N
“union REGS iReg,oReg;
void (interrupt far =int_handler)():
_Yong vector; '
~.unsigned char first_byte:‘

e Get Interrupt vector and first instruction of 1nterrupt */
dint_ handler = _dos_getvect(0x33);. o
first_ byte = * (uns1gned char far *) 1nt hand]er
~fvector - (long) int hand]er,‘)

S f/* Vector shou]dn 't be D and f1rst 1nstruct10n shou]dn t be 1ret */
4f ((vector == 0) it (first_ byte == 0xcf)) ~ S
printf(“Mouse dr1ver NOT 1nsta11ed")
exit(l);

/x Was. the mouse found,
if? (oReg X. ax.; =='-1),,”

119

PART lll: MOUSE PROGRAMMING INTERFACE

(continued)

120

continued

found:'

; Was mouse found?

or ax, ax
jne found

; Mouse not found
print mesgl

; Exit with a code of 1
mov al, 1
Jmp short exit ..

: Mouse was found .
print meng f

L Exit with a code of 0”:“
i xor a]. a] ' P

Ex1t to MS DOS

Chapter 8: Mouse Function Caills

121

PART lll: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 1: SHOW CURSOR

Callwith M1% =1
Returns Nothing

Description Mouse Function 1 increments the internal cursor flag and, if the value
of the flag is 0, displays the cursor on the screen. The mouse driver
then tracks the motion of the mouse, changing the cursor’s position as
the mouse changes position.

NOTE: If your program used Function 7 or Function 8 to establish a display
area, Function 1 displays the cursor within that area. Also, Function 1 will disable
a conditional-off region established using Function 16 (Conditional Off).

The current value of the internal cursor flag depends on the num-
ber of calls your program makes to Functions 1 and 2. The default flag
value is —1. Therefore, when you start up your computer or reset the
mouse driver using Mouse Function 0 or Function 33, your program
must call Function 1 to redisplay the cursor. For more information on
the internal cursor flag, see Chapter 6, ““Mouse Programming
Interface.”

If the internal cursor flag is already 0, Function 1 does nothing.

Examples Each of the following program fragments shows how you can make the
mouse cursor visible after you reset the mouse driver with Function 0:

Interpreted BASIC

QuickBASIC

122

Chapter 8: Mouse Function Calls

C/QuickC

/* Show Cursor =/
iReg.x.ax = 1;
int86(0x33, &iReg, &oReg);

MASM

}ksﬁawycﬁrébrk
mov ax,1
~int 33h

123

PART Ill: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 2: HIDE CURSOR

Call with
Returns

Description

Examples

124

M1% = 2
Nothing

Mouse Function 2 removes the cursor from the screen and decrements
the internal cursor flag. After Function 2 hides the cursor, the mouse
driver continues to track the motion of the mouse, changing the cur-
sor’s position as the mouse changes position.

Use this function before you change any area of the screen that
contains the cursor. This ensures that the cursor won'’t affect the data
you write to the screen.

NOTE: Ifyour program changes the screen mode, it should call Function 2
prior to changing the screen mode and then call Function 1 so that the cursor will
be drawn correctly the next time it appears on the screen.

Each time your program calls Function 2, it must subsequently
call Function 1 to restore the internal cursor flag to its previous value.
Alternately, your program can call Function 0 or Function 33 to force
the value of the internal cursor flag to —1 and then call Function 1 to
display the cursor again. For more information on the internal cursor
flag, see Chapter 6, ‘‘Mouse Programming Interface.”

At the end of your program, call Function 2, Function 0, or Func-
tion 33 to hide the mouse cursor; otherwise, if the internal cursor flag
is 0 when the program ends, the mouse cursor remains on the screen.

Each of the following program fragments shows how you can make the
mouse cursor invisible:

Interpreted BASIC

Chapter 8: Mouse Function Calls

C/QuickC

/% Hide Cursor */
. iReg.x.ax = 2; ;
< int86(0x33, &iReg, &oReg); -

MASM

" Hide Cursor
mov ax,?2 :
. int 33

125

PART lll: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 3:
GET BUTTON STATUS AND MOUSE POSITION

Call with

Returns

Description

Examples

126

M1% =3

M2% = button status
M3% = horizontal cursor coordinates
M4% = vertical cursor coordinates

Mouse Function 3 returns the state of the left and right mouse buttons.
It also returns the state of the cursor’s horizontal and vertical virtual-
screen coordinates.

The button status is a single-integer value. Bit 0 represents the left
button; bit 1 represents the right button. The value of a bitis 1 if the
corresponding button is down and 0 if it is up.

The cursor coordinates that Function 3 returns are always within
the range of minimum and maximum values for the virtual screen
or within the range set with Function 7 and Function 8. For more infor-
mation on the virtual screen, see Chapter 6, ‘““‘Mouse Programming
Interface.”

Each of the following program fragments returns the mouse button
status and the current mouse coordinates (in virtual-screen
coordinates).

Chapter 8: Mouse Function Calls

Interpreted BASIC

300 ' Get Button Status and Mouse Position

310

320 M1% = 3

330 CALL MOUSE(M1%, M2%, M3%, M4%)

340 °

350 PRINT "Mouse virtual-screen coordinates: "; M3%, M4%

360 1F M2% = 0 THEN PRINT "Neither button pressed”

370 IF M2% = 1 THEN PRINT "Left button pressed "

1380 IF M2% = 2 THEN PRINT "Right button pressed "

-390 'IF M2% = 3 THEN PRINT "Both buttons pressed " L
400 IF M2% > 3 THEN PRINT "Unexpected number of buttons~préssed"‘, f

QukaASIC

Get Button Status and Mouse Posit1on ‘,k,
Reg ax - 3 . .
‘Interrupt,&H33,4iReg,‘oReg -

PRINT "Mouse v1rtua1 “screen coord1nates "§ oRé§.§X;‘§Régidx'4

SELECT‘CASE oReg bx

127

PART lll: MOUSE PROGRAMMING INTERFACE

C/QuickC

MASM

128

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 4: SET MOUSE CURSOR POSITION

Call with

Returns

Description

M1% = 4
M3% = new horizontal cursor coordinate
M4% = new vertical cursor coordinate

Nothing

Mouse Function 4 sets the cursor to the specified horizontal and verti-
cal virtual-screen coordinates. The parameter values must be within
the range of minimum and maximum values for the virtual screen or
within the range set with Function 7 and Function 8.

The cursor appears at the new location unless one of the follow-
ing conditions is true:

= Function 1 hasn’t yet displayed the cursor.
® Function 2 hid the cursor.
® Function 0 or 33 hid the cursor during the reset process.

® The cursor was set to appear in a conditional-off region
previously established using Function 16.

If your program set a minimum and maximum vertical and hori-
zontal cursor position using Functions 7 and 8, Function 4 adjusts the
values you specified in the function call, placing the cursor within the
maximum boundaries. For example, assume you used Function 7 to
set the minimum horizontal cursor position to 50 and the maximum
horizontal cursor position to 90, and you used Function 8 to set the
minimum vertical cursor position to 100 and the maximum horizontal
cursor position to 150. If you then use Function 4 with a value of (0,0),
the cursor appears at (50,100). If you use Function 4 with a value of (150,
200), the cursor would appear at (90,150). Therefore, if the horizontal
cursor position or vertical cursor position you specify in Function 4 is
less than the minimum or greater than the maximum values estab-
lished using Functions 7 and 8, Function 4 places the cursor at the
nearest corresponding edge inside the boundaries established by Func-
tions 7 and 8. ‘

If the virtual screen is not in a graphics mode with a cell size of
1 by 1, Function 4 rounds the parameter values to the nearest horizon-
tal-coordinate or vertical-coordinate values permitted for the current
screen mode. For more information, see Chapter 6, “Mouse Program-
ming Interface.”

129

PART ill: MOUSE PROGRAMMING INTERFACE

Examples Each of the following program fragments sets the mouse cursor to the
middle of the screen. Assume that the HMAX% and VMAX% variables
are the maximum virtual-screen coordinates.

Interpreted BASIC

40 M4% = VMAXE \ |
CALL MOUSE(M1%

130

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 5: GET BUTTON PRESS INFORMATION

Call with M1% =5
M2% = button

Returns M1% = button status
M2% = number of button presses
M3% = horizontal cursor coordinate at last press
M4% = vertical cursor coordinate at last press

Description Mouse Function 5 returns the following:
® The current status of both buttons

® The number of times you pressed the specified button since the
last call to this function

® The cursor’s horizontal and vertical coordinates the last time
you pressed the specified button

The M2% parameter specifies which button Function 5 checks. If this
parameter is 0, Function 5 checks the left button. If this parameter is 1,
Function 5 checks the right button.

The button status is a single-integer value. Bit 0 represents the left
button, and bit 1 represents the right button. The value of a bitis 1 if
the corresponding button is down and 0 if it is up.

The number of button presses always ranges from 0 through 65535.
Function 5 doesn’t detect overflow, and it sets the count to 0 after the
call.

The values for the horizontal and vertical coordinates are in the
ranges defined by the virtual screen. These values represent the cursor
position when you last pressed the button, not the cursor’s current
position.

Examples Each of the following program fragments returns button press infor-
mation for the left mouse button accumulated since your program last
called this function.

131

PART Ill: MOUSE PROGRAMMING INTERFACE

132

Interpreted BASIC

MASM

; Get Button Press Information

mov
xor
int

mov
mov
mov

ax,5
bx,bx
33h

left_presses,bx
mouse_x,Cx
mouse_y,dx

; Check left button

Chapter 8: Mouse Function Calls

Number of left button presses = M2%

; Mouse x-coordinate at last press = M3% .
; Mouse y-coordinate at last press = M4% .

133

PART lll: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 6: GET BUTTON RELEASE INFORMATION

Call with

Returns

Description

Examples

134

M1% =6
M2% = button

M1% = button status

M2% = number of button releases

M3% = horizontal cursor coordinate at last release
M4% = vertical cursor coordinate at last release’

Mouse Function 6 returns the following:
® The current status of both buttons

® The number of times you released the specified button since
the last call to this function

®m The cursor’s horizontal and vertical coordinates the last time
you released the specified button

The M2% parameter specifies which button Function 6 checks. If
this parameter is 0, Function 6 checks the left button. If this parameter
is 1, Function 6 checks the right button.

The button status is a single-integer value. Bit 0 represents the left
button, and bit 1 represents the right button. The value of a bit is 1 if
the corresponding button is down and 0 if it is up.

The number of button releases always ranges from 0 through
65535. Function 6 doesn’t detect overflow, and it sets the count to 0 after
the call.

The values for the horizontal and vertical coordinates are in the
ranges defined by the virtual screen. These values represent the cursor
position when you last released the button, not the cursor’s current
position.

Each of the following program fragments returns button release infor-
mation for the left mouse button accumulated since your program last
called this function.

Chapter 8: Mouse Function Calls

Interpreted BASIC

410 ' Get Button Re]ease Information
420 *

430 M1% - 6 , ~ !
440 M2% = 0 ‘Check left button é
450 CALL MOUSE(M1%, M2%, M3%, M4%)
460 ;
470 PRINT “Left button releases: "; M2%
480 PRINT "Horizontal position at last release: "; M3% e
§ 490 PRINT "Vertical position at last release: "; M4% SR

QuickBASIC
; ! Get Button Re]ease Information

1Regax-6f A :

iReg.bx = 0 © ‘Check left button
ig‘Interrupt &H33 1Reg. oReg FRN AR R Rl IR D

| PRINT "left button releases e oReg bx -
. PRINT "Horizontal position at last release:
~ PRINT "Vertical posxtion at last release:

135

PART lll: MOUSE PROGRAMMING INTERFACE

MASM

136

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 7: SET MINIMUM
AND MAXIMUM HORIZONTAL CURSOR POSITION

Callwith M1% =7
M3% = minimum position
M4% = maximum position

Returns Nothing

Description Mouse Function 7 sets the minimum and maximum horizontal cursor
coordinates on the screen. Thus, a call to Function 7 restricts all cursor
movement to the specified area. The resolution of the current virtual
screen defines the minimum and maximum values. For more informa-
tion on the virtual screen, see Chapter 6, ‘“Mouse Programming
Interface.” ‘

NOTE: If the minimum value is greater than the maximum value,
Function 7 interchanges the two values.

Examples Each of the following program fragments limits cursor movement to
the middle half of the screen (see Figure 81). Assume that the HMAX%
variable is the maximum virtual-screen horizontal coordinate.

1/4 1/4

-
|

Cursor movement
limited to this area

]

Figure 8-1. Cursor movement limited to middle half of the screen.

137

PART Ill: MOUSE PROGRAMMING INTERFACE

Interpreted BASIC

138

MOUSE FUNCTION 8: SET MINIMUM
AND MAXIMUM VERTICAL CURSOR POSITION

Call with

Returns

Description

Examples

Chapter 8: Mouse Function Calls

M1% = 8
M3% = minimum position
M4% = maximum position

Nothing

Mouse Function 8 sets the minimum and maximum vertical cursor
coordinates on the screen. Thus, a call to Function 8 restricts cursor
movement to the specified area. The resolution of the current virtual
screen defines the minimum and maximum values. For more informa-
tion on the virtual screen, see Chapter 6, ‘‘Mouse Programming
Interface.”

NOTE: If the minimum value is greater than the maximum value,
Function 8 interchanges the two values.

Each of the following program fragments limits cursor movement to
the middle half of the screen (see Figure 8-2). Assume that the VMAX%
variable is the maximum virtual-screen vertical coordinate.

1/4

Cursor movement
limited to this area

C1/4

Figure 8-2. Cursor movement limited to middle half of the screen.

139

PART Ill: MOUSE PROGRAMMING INTERFACE

Interpreted BASIC

140

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 9: SET GRAPHICS CURSOR BLOCK

Callwith M1%=9
M2% = horizontal cursor hot spot
M3% = vertical cursor hot spot
M4% = pointer to screen and cursor masks

Returns Nothing

Description Mouse Function 9 defines the shape, color, and center of the graphics
cursor (the cursor used when your computer is in graphics mode).
Function 9 doesn’t automatically display the cursor. To make the cur-
sor visible, your program must call Function 1 (Show Cursor).

The cursor hot-spot values define one pixel relative to the
upper-left corner of the cursor block. Although the values within the
cursor block can range from —128 through 127, they usually range from
0 through 15.

Function 9 uses the values found in the screen mask and the
cursor mask to build the cursor shape and color. To pass the screen
and cursor masks, you assign their values to an integer array (packed
2 bytes per integer). You then use the first element of the array as the
M4% parameter in the function call.

For more information about the screen mask, the cursor mask,
and the graphics cursor hot spot, see Chapter 6, ‘‘Mouse Programming
Interface.”

Examples Each of the following program fragments creates a graphics-mode
mouse cursor shaped like a hand. The hot spotis at the tip of the
extended index finger.

141

PART lll: MOUSE PROGRAMMING INTERFACE

Interpreted BASIC

110000111111111

~ 1F 1110000111111111

CURSOR(5, 0) = &HEOOC *1110000000000000
CURSOR(6, 0) = &HEC *1110000000000000
) HEC *1110000000000000

CURSOR(8, 0)
CURSOR(9, 0)

142

Chapter 8: Mouse Function Calls

QuichBASIC
K Set Graphics‘Cursor Biock

' Build the masks
FOR i = 1 70 32

READ wrd%

mask$ = mask$ + MKIS(wrd%)
,NEXT i

o Set Graphics Cursor Block

iReg.ax = 9 ; ; ,
’ iReg.bx =5 . 'Horizontal hot spot
iiReg. cx =0 ‘ “ooitVertical hot spot o

- iReg.dx = SADD(masks) ‘Pointer to screen: and cursor masks
37,Interrupt &H33, 1Reg. oReg ' e L ~

: &HEIFF,;‘REM, 1110000111111111f il
\ &HELFF : REM '1110000111111111
&HEIFF : REM 1110000111111111
&HELFF : REM 1110000111111111
- &HEIFF : REM 1110000111111111
~ &HEO00 : REM 1110000000000000
~ &HE000 : REM 1110000000000000
© &HE000 : REM ~ 1110000000000000
“:'REM 0000000000000000
d -0000000000000000
0000000000000000
000000000000000
000000000000000

A~ &H0000
- &H0000

: 000000000000000
’0000000000000000

(continued)

143

PART Ill: MOUSE PROGRAMMING INTERFACE

continued

(continued)

144

Chapter 8: Mouse Function Calls

contmued

0xF249 /% 1111001001001001 */

i 0x9001, /* 1001000000000001 */
0x9001, /+ 1001000000000001 */
0x9001, /% 1001000000000001 */
0x8001, /% 1000000000000001 */
0x8001, /* 1000000000000001 */
0x8001, /% 1000000000000001 */
 OxFFFF /x 1111111111111111 */

/% set Graphics Cursor B]ock */

§,¢"1Regxax-9 s

_ iReg.x.bx = 5;
'['IReg X.CX = 0

;{Horizonta] hot spot */
~/* Vertical hot spot ;
: ,"Table offset 1nto DX /

111000011111111

(continued)

145

PART lll: MOUSE PROGRAMMING INTERFACE

continued

0100000000000
01000000000001
1001000000000001
1000000000000001
00000000000000

Graphics:Cursor:Block

146

MOUSE FUNCTION 10: SET TEXT CURSOR

Call with

Returns

Description

Examples

Chapter 8: Mouse Function Calls

M1% =10

M2% = cursor select

M3% = screen mask value or scan line start
M4% = cursor mask value or scan line stop

Nothing

Mouse Function 10 selects the software text cursor or the hardware
text cursor. Before your program can call Function 10, it must call
Function 1 (Show Cursor) to display the cursor.

The value of the M2% parameter specifies which cursor you want
to select. If M2% is 0, Function 10 selects the software text cursor. If
M2% is 1, Function 10 selects the hardware text cursor.

If Function 10 selects the software text cursor, the M3% and M4%
parameters must specify the screen mask and the cursor mask. These
masks define the attributes of a character when the cursor is over it.
The mask values depend on the display adapter in the computer.

If Function 10 selects the hardware text cursor, the M3% and M4%
parameters must specify the line numbers of the first and last scan lines
in the cursor. These line numbers depend on the display adapter in the
computer.

NOTE: For more information on the software text cursor and the hardware
text cursor, see Chapter 6, “Mouse Progmmmmg Interface.”

Each of the following program fragments sets the software text cursor,
which inverts the foreground and background colors:

Interpreted BASIC

147

PART lIl: MOUSE PROGRAMMING INTERFACE

QuickBASIC

148

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 11: READ MOUSE MOTION COUNTERS

Call with

Returns

Description

Examples

'

M1% =11

M3% = horizontal mickey count
M4% = vertical mickey count

Mouse Function 11 returns the horizontal and vertical mickey count
since your program last called this function. The mickey count is the
distance that the mouse has moved, in /200-inch increments. For more
information on the mickey, see Chapter 6, ‘“‘Mouse Programming
Interface.”

The mickey count always ranges from —32768 through 32767. A
positive horizontal count indicates motion to the right, whereas a nega-
tive horizontal count indicates motion to the left. A positive vertical
count indicates motion to'the bottom of the screen, whereas a negative
vertical count indicates motion to the top of the screen.

Function 11 ignores overflow, and it sets the mickey count to 0
after the call is completed.

Each of the following program fragments returns the horizontal and
vertical mickey counts since your program last called this function:

Interpreted BASIC

149

PART lll: MOUSE PROGRAMMING INTERFACE

150

C/QuickC

MASM

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 12:
SET INTERRUPT SUBROUTINE CALL MASK AND ADDRESS

Call with

Returns

Description

M1% =12
M3% = call mask
M4% = subroutine address

Nothing

Mouse Function 12 sets the call mask and the subroutine address for
mouse hardware interrupts.

A mouse hardware interrupt stops your program’s execution and
calls the specified subroutine whenever one or more of the conditions
defined by the call mask occurs. When the subroutine ends, your pro-
gram continues execution at the point of interruption.

The call mask is a single-integer value that defines which condi-
tions cause an interrupt. Each bit in the call mask corresponds to a
specific condition, as shown in the following table:

Mask Bit Condition

Cursor position changed

Left button pressed

Left button released

Right button pressed

Right button released
-15 Not used

Ol OO N = O

To enable the subroutine for a given condition, set the corre-
sponding call mask bit to 1 and pass the mask as the M3% parameter.

To disable the subroutine for a given condition, set the corre-
sponding bit to 0 and pass the mask as the M3% parameter.

Your program can set any combination of one or more bits in the
call mask. When any one of the indicated conditions is detected, the
mouse hardware interrupt calls the subroutine. The subroutine deter-
mines which condition occurred by inspecting the bits passed in the
CX register. The indicated conditions are ignored when you set the
value of the call mask bits to 0.

161

PART lll: MOUSE PROGRAMMING INTERFACE

A call to Function 0 sets the call mask to 0.

Before your program ends, be sure it sets the interrupt call mask
to 0. (This is handled automatically if your program calls Mouse Func-
tion 0.) If the call mask and subroutine remain defined when the pro-
gram is no longer running, the subroutine will still execute if one of
the conditions defined by the call mask occurs.

When the mouse software makes a call to the subroutine, it loads
the following information into the microprocessor’s registers:

Register Information

AX Condition mask (similar to the call mask except that a bit
is set only if the condition occurs)

BX Button state

CcX Horizontal cursor coordinate

DX Vertical cursor coordinate

SI Horizontal mouse counts (mickeys)

DI Vertical mouse counts (mickeys)

NOTE: The DS register, which contains the mouse driver data segmént, is
missing from this list. The interrupt subroutine is responsible for setting the DS
register as needed. Because the mouse driver loads the hardware registers directly,
we recommend that you use assembly language to create your Function 12 routine
so that registers can be manipulated easily.

Using Function 12 from Within Programs
To Use Function 12 with interpreted BASIC programs,
1. Load an assembly-language subroutine into the BASIC

interpreter’s data segment. All exits from the subroutine must
use a FAR return instruction.

2. Pass the subroutine’s entry address to Function 12 as the fourth
parameter (M4%).

To use Function 12 with QuickBASIC programs,

1. Load an assembly-language subroutine into QuickBASIC’s data
segment. You can load the subroutine into a string or into a
COMMON array.

2. Pass the subroutine’s address to Function 12 as the fourth
parameter (M4%). The VARPTR function returns the address of
an array.

162

Chapter 8: Mouse Function Calls

To use Function 12 with C or QuickC programs,

1. Use the appropriate mouse call for the memory model of your
program. Use cmouses for small-model programs, use cmousec
for compact-model programs, use cmousem for medium-model
programs, and use cmousel for large-model and huge-model
programs.

2. Pass the offset part of the subroutine’s address in the fourth
parameter (M4%). If you want to directly call the mouse inter-
rupt, place the segment part of the address in the ES register.

To use Function 12 with MASM programs,

1. Move the segment of the subroutine into the ES register, the
offset into the DX register, the call mask into the CX register,
and the mouse function number (12) into the AX register.

Examples Each of the following short programs calls Function 12 to activate an
interrupt-driven subroutine for the mouse. When you press the right
mouse button, the mouse cursor moves to the upper-left corner of the
screen.

Interpreted BASIC

* Set Interrupt Subroutine Call Mask and Address

(continued)

163

PART Il MOUSE PROGRAMMING INTERFACE

continued

0 HSUBH(4).
< MSUB%(5)

(continued)

154

Chapter 8: Mouse Function Calls

continued

' Build interrupt-driven subroutine to actinate Function 12
DIM msub%(5)
COMMON msub%()

msub%(0) = &H4B8 ' Subroutine is from this code...

msub%(1) = &HBI90O ! MOV AX,4 ; Function 4, Set Mouse Cursor
msub%(2) = &HO ' MOV CX,0 ; Left edge of screen

msub%(3) = &HBA ' MOV DX,0 ; Top edge of screen

msub%(4) = &HCDOO ! INT 33h ; Mouse interrupt

msub%(5) = &HCB33 ! RETF ; Return to QuickBASIC

*'Mouse Reset and Status
. iReg.ax = 0 !
';elnterrupt &H33, iReg, oReg

* Show Cursor
: ~1Reg ax =1 L
~Interrupt &H33. 1Reg. oRegk”

L% Set Interrupt Subroutlne Ca11 Mask and Address
~ iReg. ax = 12 e :
~ jReg.cx =8 ot Interrupt when r1ght button pressed

. iReg.dx = VARPTR(msub%(0)) , T
- Interrupt &H33, iReg, ‘oR,eg S N L M e

"iWaitfunti1;anykkey {S,présséﬁ'”f o

LOOP WHILE INKEYS.
ctivate the interrupt

Interrupt &H33. 1Reg

C/QuickC

(continued)

165

PART lll: MOUSE PROGRAMMING INTERFACE

continued

be activated with

MASM

(continued)

1586

Chapter 8: Mouse Function Cdlls

contmued

; This is the subrout1ne activated by the r1ght mouse button

msub PROC
mov ax,4 ; Function 4, Set Mouse Cursor
X0r. cx,cx ; Left edge of screen
mov dx,cx) ; po edge of screen
int 33h ; Move the cursor
ret .
msub ENDP

. ; Set up DS ‘for the data segment
‘'start: mov ax,@DATA i
~mov.ds,ax

’3"Mouse Reset and Status
Xor ax,ax
int 33h

s ; Show Cursor
moviax,l
it 33

Set Interrupt Subroutine Ca]l Mask and Address
‘mov: ax, SEG msub e T
S mov es,ax m;*V"‘”‘ ,f; Offset of sub into- ES e
“mov ax P ~: Mouse Function 1z

157

PART lll: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 13: LIGHT PEN EMULATI.ON MODE ON

Call with
Returns

Description

Examples

168

M1% =13
Nothing

Mouse Function 13 lets the mouse emulate a light pen. After your pro-
gram calls Function 13, calls to the PEN function return the cursor posi-
tion at the last pen down.

The mouse buttons control the pen down and pen off the screen
states. The pen is down when you press both mouse buttons. The pen is
off the screen when you release either mouse button.

The mouse software enables the light pen emulation mode after
each reset (Function 0).

Each of the following program fragments enables the light pen emula-
tion mode:

Interpreted BASIC

C/QuickC

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 14: LIGHT PEN EMULATION MODE OFF

Call with M1% =14

Returns Nothing

Description Mouse Function 14 disables light pen emulation. After your program
calls Function 14, calls to the PEN function return information about
the light pen only.

If a program uses both a light pen and a mouse, the program
must disable the mouse light pen emulation mode to work correctly.

Examples Each of the following program fragments disables the light pen emula-
tion mode:

Interpreted BASIC

110 * Light Pen Emulation Mode Off |
| 130 CALL MOUSE(M1%, M2%, M3%, Ma%)

QuickBASIC

169

PART IIl: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 15: SET MICKEY/PIXEL RATIO

Call with

Returns

Description

Examples

160

M1% =15
M3% = horizontal mickey/pixel ratio
M4% = vertical mickey/pixel ratio

Nothing

Mouse Function 15 sets the mickey-to-pixel ratio for horizontal and ver-
tical mouse motion. The ratios specify the number of mickeys for every
8 virtual-screen pixels. The values must range from 1 through 32767. For
more information on the mickey, see Chapter 6, ““Mouse Programming
Interface.”

The default value for the horizontal ratio is 8 mickeys to 8 virtual-
screen pixels. The default value for the vertical ratio is 16 mickeys to 8
virtual-screen pixels.

Later in this chapter, you’ll see that Mouse Function 26 (Set
Mouse Sensitivity) combines Function 15 and Function 19 (Set Double-
Speed Threshold) so that you can set the mouse-sensitivity parameters
in one function call instead of two.

Each of the following program fragments sets the mickey-to-pixel hori-
zontal ratio to 16 to 8 and the vertical ratio to 32 to 8. This sets the cur-
sor at half speed.

Interpreted BASIC

Chapter 8: Mouse Function Calls

C/QuickC

/* Set Mickey/Pixel Ratio x/

iReg.x.ax = 15; '

iReg.x.cx = 16; /* Horizontal ratio =/
iReg.x.dx = 32; /* Vertical ratio */
int86(0x33, &iReg, &oReg);

MASM

; Set Mickey/Pixel Ratio
mov ax,15 -
. omov cx,16 ;Horizontal ratio
~mov dx,32 s ~;Vertical ratio
. int 33h . ' o -

161

PART lll: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 16: CONDITIONAL OFF

Call with

Returns

Description

Examples

162

M1% =16
M4% = address of the region array

Nothing

Mouse Function 16 defines a region on the screen that you want to
update. If the mouse cursor is in the defined region or moves into it,
Function 16 hides the cursor during the updating process. When Func-
tion 16 ends, your program must call Function 1 (Show Cursor) to
redisplay the cursor.

Function 16 defines a region by placing the screen-coordinate
values in a four-element array. The following table defines the elements
of the array:

Array

Offset Value

1 Left x-screen coordinate

2 Top y-screen coordinate

3 Right x-screen coordinate

4 Bottom y-screen coordinate

Function 16 is similar to Function 2 (Hide Cursor), but you can
use Function 16 for advanced applications that require faster screen
updates.

Each of the following program fragments hides the cursor if it moves
into the upper-left corner of the screen.

In the QuickBASIC, C/QuickC, and MASM examples, notice that
the register parameters are set directly when you use Interrupt 33H.
Compare this with the interpreted BASIC example, which passes the
address of an integer array that defines the region.

Chapter 8: Mouse Function Calls

Interpreted BASIC

200 ' Conditional Off

210 *

220 DIM REGION%(4)

230 REGION%(0) = 0

240 REGION%(1) = 0

250 REGION%(2) = 64

260 REGION%(3) = 20

270 M1% = 16 - , .

280 M4% = VARPOINTER (REGION%(0)) 'Versions6.25andlater :
290 CALL MOUSE(M1%, M2%, M3%, M4%) 3

QuickBASIC

' Conditional Off

" iReg.ax = 16 , : St

. iReg.cx =0 .t Leftx
Reg.'dxq- 0 i . R o0 Up’pe’rﬁf_y i
iReg.si =64 ~ . . 'Rightx

C ciRegudi =20 . o v Lowery . o

163

PART Ill: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 19:
SET DOUBLE-SPEED THRESHOLD

Call with

Returns

Description

V

Examples

164

M1% =19
M4% = threshold speed in mickeys per second

Nothing

Mouse Function 19 sets the threshold speed for doubling the cursor’s
motion on the screen. This function makes it easier for you to point the
cursor atimages that are far apart on the screen.

The M4% parameter defines the mouse’s threshold speed. If you
specify a value of 0 or if your program calls Function 0 (Mouse Reset
and Status) or Function 33 (Software Reset) to reset the mouse, Func-
tion 19 assigns a default value of 64 mickeys per second. If you move the
mouse faster than the value of the M4% parameter, cursor motion
doubles in speed. The threshold speed remains set until your program
calls Function 19 again or until Function 0 resets the mouse.

Once your program turns on the speed-doubling feature, this fea-
ture is always on, but your program can effectively turn off this feature
by calling Function 19 again and setting the M4% parameter to a speed
faster than the mouse can physically move (for example, 10000 mickeys
per second).

Later in this chapter, you’ll see that Mouse Function 26 (Set
Mouse Sensitivity) combines Function 15 (Set Mickey/Pixel Ratio) and
Function 19 so that you can set the mouse-sensitivity parameters in one
function call instead of two.

Each of the following program fragments sets the double-speed
threshold to 32 mickeys per second. Later, it sets the threshold to a
value that effectively turns off speed doubling.

Chapter 8: Mouse Function Calls

Interpreted BASIC

110
120
130
140

220
230

240

CALL MOUSE(M1%, M2%, M3%, M4%)

' Set Double-Speed Threshold
M1% = 19

M4% = 32

CALL MOUSE(M1%, M2%, M3%, M4%)

M1% = 19 .
M4% = 10000 i ’

QuickBASIC

"+ Set Double-Speed Threshold
. iReg.ax = 19 :

iReg.dx = 32

- Interrupt &H33, iReg, oReg ,

{ ;iReg.gxf= 19 o
S {Reg.dx-= 10000 .
“Interrupt &H33, 1

Reg, OReg

C/QuickC

165

PART [ll: MOUSE PROGRAMMING INTERFACE

166

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 20: SWAP INTERRUPT SUBROUTINES

Callwith M1% =20
M2% = segment of new subroutine
M3% = new call mask
M4% = offset of new subroutine

Returns M2% = segment of old subroutine
M3% = old call mask
M4% = offset of old subroutine

Description Mouse Function 20 sets new values for the call mask and the subroutine
address for mouse hardware interrupts. It also returns the values that
you previously specified.

A mouse hardware interrupt stops your program’s execution and
calls the specified subroutine whenever one or more of the conditions
defined by the call mask occurs. When the subroutine ends, your pro-
gram continues execution at the point of interruption.

The call mask is an integer value that defines which conditions
cause an interrupt. Each bit in the call mask corresponds to a specific
condition, as shown in the following table:

Mask Bit Condition

Cursor position changed

Left button pressed

Left button released

Right button pressed

Right button released
-15 Not used

CU s OO N = O

To enable the subroutine for a given condition, set the corre-
sponding call mask bit to 1 and pass the mask as the M3% parameter.

To disable the subroutine for a given condition, set the corre-
sponding bit to 0 and pass the mask as the M3% parameter.

Your program can set any combination of one or more bits in the
call mask. When any one of the indicated conditions is detected, the
mouse hardware interrupt calls the subroutine. The subroutine deter-
mines which condition occurred by inspecting the bits passed in the
CX register. The indicated conditions are ignored when you set the
value of the call mask bits to 0.

167

PART lll: MOUSE PROGRAMMING INTERFACE

Before your program ends, be sure to restore the initial values of
the call mask and the subroutine address by calling Function 0.

When the mouse software makes a call to the subroutine, it loads
the following information into the central processing unit’s registers:

Register Information

AX Condition mask (similar to the call mask except thata
bit is set only if the condition occurs)

BX Button state

CX Horizontal cursor coordinate

bX Vertical cursor coordinate

SI Horizontal mouse counts (mickeys)

DI Vertical mouse counts (mickeys)

NOTE: The DS register, which contains the mouse driver data segments, is
missing from this list. The interrupt subroutine is responsible for setting the DS
register as needed. Because the mouse driver loads the hardware directly, we recom-
mend that you use assembly language to create your Function 20 routine so that
registers can be manipulated easily.

Using Function 20 from Within Programs

168

To use Function 20 with interpreted BASIC programs,

1. Load an assembly-language subroutine into the BASIC
interpreter’s data segment. All exits from the subroutine must
use a FAR return instruction.

2. Pass the subroutine’s entry address to Function 20 as the fourth
parameter (M4%).

3. Pass 0 in the second parameter (M2%). This is a signal to the
mouse driver that the subroutine is in BASIC’s data segment.

To use Function 20 with QuickBASIC programs,

1. Load an assembly-language subroutine into QuickBASIC’s data
segment. You can load the subroutine into a string or into a
COMMON array.

2. Pass the subroutine’s address to Function 20 as the fourth
parameter (M4%). The VARPTR function returns the address of
an array.

Chapter 8: Mouse Function Calls

3. Pass the segment of the subroutine in the second parameter
(M2%). The VARSEG function returns the segment of any Quick-
BASIC variable.

To use Function 20 with C or QuickC programs,

1. Use the appropriate mouse call for the memory model of your
program. Use c¢mouses for small-model programs, use cmousec
for compact-model programs, use cmousem for medium-model
programs, or use cmousel for large-model and huge-model
programs.

2. Pass the offset part of the subroutine’s address in the fourth
parameter (M4%).

3. Pass the segment part of the subroutine’s address in the second
parameter (M2%).

To use Function 20 with MASM programs,

1. Move the segment of the subroutine into the BX register, the
offset into the DX register, the call mask into the CX register,
and the mouse function number (20) into the AX register.

Examples Each of the following program fragments swaps a new interrupt sub-
routine with the current subroutine. The mouse hardware interrupt
calls the new subroutine when you release the left mouse button. The
subroutine moves the mouse cursor to the middle of the screen.

Interpreted BASIC

(continued)

169

PART lll: MOUSE PROGRAMMING INTERFACE

continued

170

C/QuickC

e

Swap Interrupt Subroutines =/

Chapter 8: Mouse Function Calls

/* This is the replacement subroutine for Function 20 #/
void msub2()
{

iReg.x.ax = 4;
iReg.x.cx = 320;
iReg.x.dx = 100;

.int86(0x33, &iReg, &oReg):

”,nterr pt Subroutines

 hé<fe§1aééméht sdbn6n

/*
/*
/*
/*

Function 4: Set Mouse Cursor */
M1dd1e of screen =/

Middle of screen x/

Moves cursor: to upper-left corner */

e Swap Interrupt Subrout1ne */ o
““iReg. X.ax =203

f‘1Reg X.CX = 4 S
““iReg}x: dx = (int) msub2;
v:segregs es = ((1ong) msub2) >>16; /* Segment of msubZ() 1nto ES */
‘1nt86x(0x33 &1Reg. &oReg. &segregs) i

/* ‘Mouse Funct1on 20 */

/% When left button ‘s released ®/

/+ 0ffset of msub2() into DX ®f

(continued)

171

PART Ill: MOUSE PROGRAMMING INTERFACE

continued

172

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 21:
GET MOUSE DRIVER STATE STORAGE REQUIREMENTS

Callwith M1% =21

Returns M2% = buffer size required to save the mouse driver state

Description Mouse Function 21 returns the size of the buffer required to store the
current state of the mouse driver. You can use this function with Func-
tions 22 and 23 when you want to temporarily interrupt a program that
uses the mouse in order to execute another program that also uses the
mouse, such as the Control Panel.

Example Each of the following program fragments returns the buffer size re-
quired to save the mouse driver state:

Interpreted BASIC

110 . Get Mouse Dmver State Storage Reqm rements
120 M1% = 21" ‘

: 130 CALL MUUSE(MI% MZ% M3% M4%)
7140 BUFSIZEX = M2%

QuichBASIC

Get ‘Md'use%Dr‘igv'e' ate Storage Requirements

173

PART IIl: MOUSE PROGRAMMING INTERFACE

174

MOUSE FUNCTION 22: SAVE MOUSE DRIVER STATE

Call with

Returns

Description

Examples

100 DIM BUF%(1000

Chapter 8: Mouse Function Calls

Mi1% = 22
M4% = pointer to the buffer

Nothing

Mouse Function 22 saves the current mouse driver state in a buffer allo-
cated by your program. You can use this function with Functions 21
and 23 when you want to temporarily interrupt a program that uses the
mouse in order to execute another program that also uses the mouse.

Before your program calls Function 22, it should call Function 21
to determine the buffer size required for saving the mouse driver state.
It should then allocate the appropriate amount of memory.

Each of the following program fragments saves the mouse driver state
in a buffer:

Interpreted BASIC

175

PART lIl: MOUSE PROGRAMMING INTERFACE

C/QuickC

176

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 23: RESTORE MOUSE DRIVER STATE

Callwith M1% =23
M4% = pointer to the buffer

Returns Nothing

Description Mouse Function 23 restores the last mouse driver state saved by Func-
tion 22. You use this function with Functions 21 and 22 when you want
to temporarily interrupt a program that uses the mouse in order to
execute another program that also uses the mouse. To restore the
mouse driver state saved by Function 22, call Function 23 at the end of
the interrupt program.

Examples Each of the following program fragments restores the state of the
mouse driver. The buffer variable contains the state previously saved by
Function 22.

Interpreted BASIC

177

PART IIl: MOUSE PROGRAMMING INTERFACE

MASM

ix,0FFSET buf

178

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 24:
SET ALTERNATE SUBROUTINE CALL MASK AND ADDRESS

Callwith M1% =24
M3% = user interrupt call mask
M4% = user subroutine address

Returns M1% = error status (—1 if error occurred)

Description Mouse Function 24 sets the call mask and address for up to three alter-
_nate user subroutines. Function 24 differs from Function 12 in two ways.
Subroutine calls using Function 24 let the called subroutine make its
own interrupt calls, and Function 24 uses more call mask bits to provide
a wider range of detectable conditions. The new bits allow detection of
Alt, Ctrl, and Shift key presses when you move the mouse or press a
button.

A mouse hardware interrupt stops your program and calls the
specified subroutine whenever one or more of the conditions defined
by the call mask occurs. When the subroutine ends, your program con-
tinues execution at the point of interruption.

NOTE: When bits 5 through 7 are set, they require the corresponding shift
state to be true in order for other mouse events to call the user subroutine. Unless
you set bit 5, 6, or 7, or any combination of those bits, the subroutine won’t be
called.

The call mask is a single-integer value that defines which condi-
tions cause an interrupt to the subroutine. Each of the first 8 bits in the
call mask corresponds to a specific mouse or keyboard condition, as
shown in the following table:

Mask Bit Condition

Cursor position changed

Left button pressed

Left button released

Right button pressed

Right button released

Shift key pressed during button press or release

Ctrl key pressed during button press or release

Alt key pressed during button press or release
-15 Not used

0 JO U LON = O

179

PART Ill: MOUSE PROGRAMMING INTERFACE

To call the subroutine for any of the listed conditions, set the cor-
responding bit(s) in the call mask to 1 and pass the mask as the M3%
parameter. One or more of the shift-key bits (bits 5, 6, and 7) must be
set in combination with one or more of the mouse activity bits (bits 0
through 4) to allow activation of the user subroutine.

To disable the subroutine for any of the listed conditions, set the
corresponding bit(s) in the call mask to 0 and pass the mask as the M3%
parameter. Failure to reset the mask results in the subroutine’s execu-
tion whenever the last specified mouse or keyboard condition occurs.

NOTE: None of the mouse driver versions clears the call mask when Func-
tion 0 or Function 33 is called. (The only way to reset a mask created by using
Function 24 is to use another Function 24 call with the mouse activity bits portion
of the mask set to all zeros.) To work around this problem, use Function 20 instead
of Function 24 to swap your interrupt subroutine into place. Before your program
exits, swap the original call address back into place.

Register Information

AX Condition mask. (Similar to the call mask except that a
bit is set only if the condition has occurred. Also, only
mouse action bits 0 through 4 are affected, and shift-key
bits 5 through 15 are always set to 0.)

BX Button state

CX Horizontal cursor coordinate

DX Vertical cursor coordinate

SI Horizontal mouse counts (mickeys)
DI Vertical mouse counts (mickeys)

NOTE: The DS register, which contains the mouse driver data segment, is
missing from this list. The interrupt subroutine is responsible for setting the DS
register as needed. Because the mouse driver works directly with the hardware, we
recommend that you use assembly language to create your Function 24 routine so
that registers can be manipulated easily.

Using Function 24 from Within Programs
To use Function 24 with interpreted BASIC programs,

1. Load an assembly-language subroutine into the BASIC inter-
preter’s data segment. All exits from the subroutine must use a
FAR return instruction.

2. Pass the subroutine’s entry address to Function 24 as the fourth
parameter (M4%).

180

Chapter 8: Mouse Function Calls

To use Function 24 with QuickBASIC programs,

1. Load an assembly-language subroutine into QuickBASIC’s data
segment. You can load the subroutine into a string or into a
COMMON array.

2. Pass the subroutine’s address to Function 24 as the fourth
parameter (M4%). The VARPTR function returns the address of
an array.

To use Function 24 with C or QuickC programs,

1. Use the appropriate mouse call for the memory model of your
program. Use cmouses for small-model programs, use cmousec
for compact-model programs, use cmousem for medium-model
programs, or use c¢mousel for large-model and huge-model
programs.

2. Pass the offset part of the subroutine’s address in the fourth
parameter (M4%). If you want to directly call the mouse inter-
rupt, place the segment part of the address in the ES register.

To use Function 24 with MASM programs,

1. Pass the segment of the subroutine in the ES register, the offset
in the DX register, the call mask in the CX register, and the
mouse function number (24) in the AX register.

Examples Each of the following programs calls Function 24 to activate an
interrupt-driven subroutine for the mouse. When you press a Shift key
and the left mouse button simultaneously, the mouse cursor moves to
the upper-left corner of the screen.

Interpreted BASIC

(continued)

181

PART lll: MOUSE PROGRAMMING INTERFACE

continued

MSUB%(2) =

02°M

402 VARPTR(MSUB%(0))
410

CALL MOUSE(M1%, M2%, M3%, M4%

QuickBASIC

182

Chapter 8: Mouse Function Calls

(b@lyzck(?

/% Set A1ternate Subroutine Call Mask and Address */

/* This is the subroutine activated by Function 24 =*/
void msub()

{
iReg.x.ax = 4; /* Function 4: Set Mouse Cursor =/
- iReg.x.cx = 0; /* Left edge of screen */
iReg.x.dx = 03 - /* Top edge of screen */
int86(0x33, &iReg, &oReg); /* Moves cursor to upper-left corner */

: /* Set Alternate Subrout1ne Ca]l Mask and Address */ S
iReg.x.ax = 24; . . . /* Mouse Function 24 is. called */ .

!@k1Reg X.Cx = 345 /* when Sh1ft key and left button. are. pressed */W i
- iReg.x. dx = (int) msub ‘ L [+ Offset of msub() into DX */

" segregs.es =-((long) msub) > 16 /* Segment of msub() into ES */ o
1“1nt86x(0x33 “&1Reg,'&0Reg. &segregs) A e

MASM

rnate Subroutine Call Mask and Address

(continued)

183

PART lll: MOUSE PROGRAMMING INTERFACE

continued

184

MOUSE FUNCTION 25:
GET USER ALTERNATE INTERRUPT ADDRESS

Call with

Returns

Description

Examples

Chapter 8: Mouse Function Calls

M1% = 25
M3% = user interrupt call mask

M1% = error status (—1 if no vector/mask, in which case M2%, M3%, and
M4% return 0)

M2% = user subroutine segment

M3% = user interrupt call mask

M4% = user subroutine address

Mouse Function 25 returns the interrupt address of the alternate
mouse user subroutine identified by the specified call mask. You can
call this function to retrieve the last alternate interrupt subroutine
address prior to calling Function 24 so that you can restore the subrou-
tine address later.

The call mask is a single-integer value that defines which condi-
tions cause an interrupt to the subroutine. Each of the first 8 bits in the
call mask corresponds to a specific mouse or keyboard condition, as
shown in the following list:

Mask: Bit Condition

Cursor position changed

Left button pressed

Left button released

Right button pressed

Right button released

Shift key pressed during button press or release
Ctrl key pressed during button press or release
Alt key pressed during button press or release
Not used

WP TJTOHOUHR ON—=O

=
o

For assembly-language programs, the subroutine address is
returned as BX:DX.

Assume that Function 24 was used to set the alternate interrupt subrou-
tine. Each of the following program fragments returns the interrupt
address of an alternate mouse-user subroutine.

185

PART lIl: MOUSE PROGRAMMING INTERFACE

Interpreted BASIC

UBSEG
0 UBO FFST%

186

MOUSE FUNCTION 26: SET MOUSE SENSITIVITY

Call with

Returns

Description

Examples

Chapter 8: Mouse Function Calls

M1% = 26

M2% = horizontal mickey sensitivity number
M3% = vertical mickey sensitivity number
M4% = threshold for double speed

Nothing

Mouse Function 26 sets mouse-to-cursor movement sensitivity by defin-
ing a scaling factor for the mouse mickeys and the double-speed
threshold. For more information on the mickey, see Chapter 6, ‘“Mouse
Programming Interface.”

The sensitivity numbers range from 1 through 100, where 50
specifies the default mickey factor of 1. These mickey multiplication
factors range from about Vs: for a parameter of 5, to /1 for a parameter
of100. The mickeys are multiplied by these factors before the mickey-
to-pixel ratios (set by Function 15) are applied.

The double-speed ratio is also set to its default value by setting
M4% to 50.

This function provides a simplified approach to setting the mouse
sensitivity and double-speed ratios. The 0 through 100 range provides
an intuitive scale for speeding up or slowing down the mouse motion.

Each of the following program fragments sets the mouse sensitivity to
10 and the double-speed threshold to 32:

Interpreted BASIC

187

PART lll: MOUSE PROGRAMMING INTERFACE

188

MOUSE FUNCTION 27: GET MOUSE SENSITIVITY

Call with

Returns

Description

Examples

Chapter 8: Mouse Function Calls

M1% = 27

M2% = horizontal mickey sensitivity number
M3% = vertical mickey sensitivity number
M4% = threshold for double speed

Mouse Function 27 returns mouse-to-cursor movement sensitivity
scaling factors previously set by Function 26.

These factors range from 1 through 100, with default values of 50.
To slow the mouse-cursor speed, use Function 26 to decrease the set-
ting. To increase the speed (i.e., increase the mouse sensitivity), use
Function 26 to increase the setting within the range 1 through 100.

Each of the following program fragments returns the current horizon-
tal and vertical mouse sensitivity settings and the double-speed
threshold sensitivity setting.

Interpreted BASIC

189

PART ill: MOUSE PROGRAMMING INTERFACE

190

C/QuickC

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 28: SET MOUSE INTERRUPT RATE

Callwith M1% =28
M2% = interrupt rate (in interrupts per second)

Returns Nothing

Description Mouse Function 28 operates only with the InPort mouse. This function
sets the rate at which the mouse driver polls the status of the mouse.
Faster interrupt rates provide better resolution in graphics applica-
tions, but slower interrupt rates might let the applications run faster.
The interrupt rate is a single-integer value that defines the rate
(in interrupts per second). Integer values from 0 through 4 correspond .
to specific maximum interrupt rates, as shown in the following table:

Rate Number Maximum Interrupt Rate

0 No interrupts allowed

1 30 interrupts per second

2 50 interrupts per second

3 100 interrupts per secqnd

4 200 interrupts per second

>4 Not defined \
N

NOTE: If a value greater than 4 is used, the InPort mouse driver might
behave unpredictably.

Examples Each of the following program fragments sets the mouse driver inter-
rupt rate to 100 interrupts per second.

Interpreted BASIC

191

PART lll: MOUSE PROGRAMMING INTERFACE

QuickBASIC

192

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 29: SET CRT PAGE NUMBER

Callwith M1% =29
M2% = CRT page for mouse cursor display

Returns Nothing

Description Mouse Function 29 specifies the number of the CRT page on which the
mouse cursor will be displayed.
For information on the number of CRT pages available in each dis-
play mode your adapter supports, see the documentation that came
with your graphics adapter.

Examples The following program fragments set the CRT page number to 3.

Interpreted BASIC

130 M2% =3
140 CALL MOUSE(M1%, M2%, M3%.

QuickBASIC

"MASM

193

PART lll: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 30: GET CRT PAGE NUMBER
Callwith Mi1% =30
Returns M2% = CRT page of current mouse cursor display

Description Mouse Function 30 returns the number of the CRT page on which the
mouse cursor is currently displayed.

Examples The following program fragments return the number of the CRT page
on which the mouse cursor is currently displayed.

Interpreted BASIC

194

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 31: DISABLE MOUSE DRIVER
Callwith M1% =31

Returns M1% = error status (-1 if error occurred)
M2% = offset of old Interrupt 33H vector
M3% = segment of old Interrupt 33H vector

Description You use Mouse Function 31 in the MOUSE OFF portion of your program
to disable the mouse driver, which subsequently disables the mouse.
When your program calls Function 31, you can restore the Interrupt
33H vector to its value before the mouse driver was enabled by using the
M2% and M3% parameters. Function 31 removes all other vectors used
by the mouse driver.

If this function can’t remove all mouse-driver vectors, excluding

the Interrupt 33H vector, it returns an error of —1 for the M1%
parameter.

Examples Each of the following program fragments disables the mouse driver
and returns the segment and offset of the old Interrupt 33H.
When your program calls Function 31 from an assembly-language
program, use ES:BX for the address of the old Interrupt 33H vector.

Interpreted BASIC

QuickBASIC

(continued)

195

PART [ll: MOUSE PROGRAMMING INTERFACE

continued

196

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 32: ENABLE MOUSE DRIVER
Callwith M1% =32

Returns Nothing

Description You use Mouse Function 32 in the MOUSE ON portion of your program
to enable the mouse driver, which subsequently enables the mouse.
When your program calls Function 32, the function sets the Interrupt
33H vector to the mouse-interrupt vector and installs all other mouse-
driver vectors.

Examples Each of the following program fragments enables the mouse driver:

Interpreted BASIC

: 110 '; Enable:Mouse vé
120 M1% =32 ;
130 CALL MOU E(Ml% MZ%‘.: M3,6 g

QuickBASIC

197

PART lll: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 33: SOFTWARE RESET

Call with

Returns

Description

198

M1% = 33

M1% = -1 (if mouse driver installed; otherwise, 33)

M2% = 2 (provided M1% =-1)

Mouse Function 33 is similar to Function 0 (Mouse Reset and Status)
except that Function 33 neither initializes the mouse hardware nor
resets other variables that are dependent on display hardware. Resets

are confined to software only.

Function 33 indicates a valid software reset by returning both
values. The MI% parameter must be —1, and the M2% parameter must

be 2 for a valid reset.

Function 33 resets the mouse driver to the following default

values:

Parameter

Value

Cursor position

Internal cursor flag
Graphics cursor

Text cursor

Interrupt call mask
Horizontal mickey-per-
pixel ratio

Vertical mickey-per-pixel
ratio

Double-speed threshold
Minimum horizontal
cursor position
Maximum horizontal
cursor position
Minimum vertical cursor
position

Maximum vertical cursor
position

Center of screen

-1 (cursor hidden)

Arrow

Reverse video block

All 0 (no interrupt subroutine specified)*
8to8

16to 8

64 mickeys per second
0

Current display-mode virtual screen
x-value minus 1

0

Current display-mode virtual screen
y-value minus 1

*This is true only for interrupt subroutines that weren’t installed using Function 24.

Chapter 8: Mouse Function Calls

Examples Each of the following program fragments resets the mouse driver:
Interpreted BASIC

300 ' Software Reset

310 *

320 M1% = 33

330 CALL MOUSE(M1%, M2%, M3%, M4%)
340 STAT1% = M1%

350 STAT2% = M2%

QuickBASIC

‘ Software Reset

iReg.ax = 33 =

Interrupt &H33, iReg, oReg
 Statxeoregax
. stat2% = oReg.bx

C/QuickC

i,;:/*;,Software,”Reset */
iReg.x.ax = 33 Niss Rt
int86(0x33, &iReg, &oReg);

softuare.
“mov :ax,33

199

PART lll: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 34: SET LANGUAGE FOR MESSAGES

Call with: M1% =34
M2% = language number

Returns: Nothing

Description Mouse Function 34 operates only with the international version of
the mouse driver—it has no effect with the domestic version of the
driver. This function lets you specify the language in which messages
and prompts from the mouse driver are displayed. You can specify
the language with a single integer from the Number column of the
following table:

Number Language

English
French
Dutch
German
Swedish
Finnish
Spanish
Portuguese
Italian

OO WN —=O

Examples Each of the following program fragments sets the language to Dutch:

Interpreted BASIC

200

Chapter 8: Mouse Function Calls

C/QuickC

/* Set Language for Messages */
iReg.x.ax = 34;
iReg.x.bx = 2;
int86(0x33, &iReg, &oReg);

MASM

; Set Language for Messages

mov ax,34 :
o.omov bx,2: : :
- int 33h T

201

PART Ill: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 35: GET LANGUAGE NUMBER

Call with:
Returns:

Description

Examples

202

M1% = 35
M2% = the current language

Mouse Function 35 operates only with the international version of the
mouse driver. This function returns the number of the language cur-
rently set in the mouse driver.

NOTE: The number returned in M2% represents a language (see the lan-
guage table in the discussion of Function 34). If you don’t have an international
mouse driver, English (0) will always be returned.

Each of the following program fragments returns the current language
number from the mouse driver: ‘

Interpreted BASIC

C/QuickC

MASM

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 36:
GET DRIVER VERSION, MOUSE TYPE, AND IRQ NUMBER

Callwith: M1% =36

Returns: M2% = mouse driver version number
M3% = mouse type and IRQ number

Description Mouse Function 36 returns the version number of the mouse driver,
the type of mouse the driver requires, and the number of the interrupt
request type (IRQ). In the returned value M2%, the high-order 8 bits
contain the major version number and the low-order 8 bits contain the
minor version number. For example, if you were using mouse driver
version 6.10, Function 36 would return an M2% value of 1552 (decimal),
which is equal to 0610 (hexadecimal).

The high-order 8 bits of the returned value M3% contain the
mouse type as follows:

® Avalue of 1 indicates a bus mouse.

A value of 2 indicates a serial mouse.

A value of 3 indicates an InPort mouse.

A value of 4 indicates a PS/2 mouse.
® A value of 5 indicates a Hewlett-Packard mouse.

The low-order 8 bits of the returned value M3% contain the value
for the interrupt request type as follows:

® Avalue of 0 indicates PS/2.
® Avalue ranging from 2 through 5 or the value 7 indicates a

mouse interrupt.

Examples Each of the following program fragments returns the mouse driver
version number, the mouse type, and the IRQ number:

203

PART lll: MOUSE PROGRAMMING INTERFACE

Interpreted BASIC

204

Chapter 9

Sample Mouse
Programming
Interface Programs

This chapter presents mouse programming examples using inter-
preted BASIC, QuickBASIC, C and QuickC, MASM, FORTRAN, and
Pascal. You will see some overlap of functionality among the programs;
however, there are significant differences in style and programming
techniques that can provide you with insight into the many ways you
can program for the mouse.

You can use two basic methods to call the mouse functions. The
MOUSE.LIB library provides subroutines for each of the major Microsoft
language products. Using this library is straightforward and self-
documenting, as shown in many of these programs. A second method is
to call the mouse interrupt (Interrupt 33H) directly. Most of the
languages mentioned above provide a mechanism for calling system
interrupts. Generally, a method is also provided for passing and
retrieving register values. Calling mouse functions in this way is slightly
faster and more efficient; however, you might sacrifice some program
readability and simplicity.

Several of the programs are presented in more than one lan-
guage. These programs provide a good opportunity to learn more
about how to program in unfamiliar languages. For example, if you're
learning C and you already know QuickBASIC, examine the QBTEST.BAS

205

PART lll: MOUSE PROGRAMMING INTERFACE

and CTEST.C programs to compare how the programs use the mouse
function calls.

NOTE: For information on writing programs in Turbo Pascal, see
Appendix E, “Making Calls from Borland Turbo Pascal Programs.”

If you look at the companion disks that come with this book, you
will find subdirectories for each language. Programming examples for
each language are contained in the subdirectories.

NOTE: This chapter contains descriptions of each of the programs listed
below; however, the actual code for some of the lengthy programs appears only on
disk. You can use your favorite text editor to view the source code for these programs
on your screen, or you can print the source code files on your printer.

(continued)

206

Chapter 9: Sample Mouse Programming Interface Programs

continued

§

\ASM , Sl R SRR AR N
~tstl.asm : ' i o
atest.asm
asmexamp.asm
tst12&20.asm
tst24.asm

\FOR =

~..forl.for
 ftest.for
~ fdemo. for

moushgcp. pays;

initpas.asm

INTERPRETED BASIC PROGRAMS

The programs in this section demonstrate the use of the mouse from
interpreted BASIC. The TSTLBAS program shows the minimum steps
required for displaying the default graphics mode cursor. The
BATEST.BAS program is the interpreted BASIC version of a program that
is presented in several languages in this chapter. The most sophisti-
cated program is PIANO.BAS. This program lets you use the mouse to
play music on a simulated piano keyboard. This program also demon-
strates the steps necessary to change the graphics mode cursor.

To call the mouse functions from interpreted BASIC, you must
first determine the vector address of the mouse driver. The first few
lines in each of these programs show how this address is determined.
The segment of this address is saved in the MOUSEG variable, and the
offset is saved in the MOUSE variable. After the program uses the DEF
SEG statement to set the current segment to MOUSEG, it can call the
mouse functions with the CALL statement.

The CALL statement should have the following form:

CALL MOUSE(MI%Z, M2Z, M3%Z, M4%)

207

PART lll: MOUSE PROGRAMMING INTERFACE

where MOUSE is the variable that contains the offset of the BASIC entry
point into the mouse driver, and M1%, M2%, M3%, and M4% are the
names of the integer variables you chose for parameters in this call.
(Constants and noninteger variables are not allowed.) All parameters
must appear in the CALL statement even if no value is assigned to one
or more of them. To ensure that the variables are integer variables, use
the percent sign (%) as part of all variable names.

See the TSTLBAS program for a straightforward example of the
steps required to use the mouse with interpreted BASIC.

The TST1.BAS Program

The TSTLBAS program demonstrates the steps required to activate and
display the default graphics mode cursor. To end the program, press
any key.

(continued)

208

r

i

continued

380 mz-2
390 CALL MOUSE(M1%, M2%, M3%, M4%)
400 T ;

410 ' Reset mouse
420 miz=-0 Y :
430 CALL MOUSE(M1%, M2%, M3%, M4%)

440 *

450 END

Chapter 9: Sample Mouse Programming Interface Programs

The BATEST.BAS Program

The BATEST.BAS program uses Mouse Function 11 (Read Mouse Motion
Counters) to detect vertical mouse motion. The program displays a
three-line menu with one option highlighted. When Function 11 de-
tects vertical mouse motion, the program moves the highlight up or
down the list.

In addition, this program uses Mouse Function 5 (Get Button
Press Information) to detect a button press. To select a highlighted op-
tion, you simply press either mouse button. Before the program termi-
nates, it displays a message stating which option you selected and which
button you pressed.

This program is presented in several languages in this chapter so
that you can compare the mouse function calls in different languages.
If you want to compare the programs, see the QBTEST.BAS, CTEST.C, '
ATEST.ASM, and FTEST.FOR programs.

(continued)

209

PART lll: MOUSE PROGRAMMING INTERFACE

continued

' splay instructions fo
~ PRINT "BATEST W

0 "’fk,‘Ré"se‘ “mouse and .verify its
20 Mlx=-0 o
0 CALL MOUSE(M1%, M2%, M3%, M4%)

(continued)

210

Chapter 9: Sample Mouse Programming Interface Programs

contmued
670 PRINT " 3. Third option "
680 ' S '
690 ‘- Be.sure highlighting is turned off

COLOR 7,0
" End of updating the menu
WEND
! Accumu1ate vertica] mouse motion count5~ L
: Ml% =11
- CALL MOUSE(M1%, Mz% ‘M3%, M4%)
MOTION% - MOTION% +.M4% ,»~f

g Move up the menu 1f enough mouse mot1on

IF MOTION% > 17 THEN GOTO 880 ‘s

 MOTION% = 0

IF MENUPTR% <— 1 THEN GOTO 880
/ MENUPTR% = MEN PTRY -

211

PART Illl: MOUSE PROGRAMMING INTERFACE

The PIANO.BAS Program

The PIANO.BAS program creates a graphics mode piano keyboard and
lets you play the keys by mouse-cursor selection. If you want to play
notes in a lower octave, select the keys using the left mouse button. If
you want to play notes in a higher octave, select the keys using the right
mouse button.

This program demonstrates several mouse function calls. Func-
tion 9 (Set Graphics Cursor Block) sets the cursor shape. Function 4
(Set Mouse Cursor Position) sets the cursor position. Function 1 (Show
Cursor) makes the cursor visible. Function 3 (Get Button Status and
Mouse Position) gets the mouse location and button status informa-
tion. The program uses the block of DATA statements at the end of the
listing to create the Microsoft logo.

NOTE: Because of the length of this program, it is not listed here. The pro-
gram is included on the disks that come with this book. You can use your favorite
text editor to view the sowrce code for the program on your screen, or you can print
the source code on your printer.

QUICKBASIC PROGRAMS

212

You can call mouse functions from QuickBASIC in several ways.

The programs that follow call mouse functions using the MOUSE sub-
program in MOUSE.LIB and the INTERRUPT and ABSOLUTE sub-
programs supplied with QuickBASIC.

The simplest programs are QBMOU.BAS, QBINT.BAS, and
QBINC.BAS. Each of these programs displays the text mode cursor and
then waits for you to press a key before terminating. In these programs,
the mouse functions are called using the MOUSE and INTERRUPT
subprograms, providing a direct comparison between the two calling
methods. The QBINT.BAS and QBINC.BAS programs differ only in the
way you make declarations to prepare for using the INTERRUPT
subprogram. _

ABSOLUTE.BAS, INTRRUPT.BAS, and MOUSE.BAS are larger pro-
grams that demonstrate how you can make the same mouse function
calls using CALL ABSOLUTE, CALL INTERRUPT, or CALL MOUSE. Two of

. these programs create a new graphics mode cursor.

The MOUSEDEM.BAS program presents some useful QuickBASIC
subprograms in addition to demonstrating several mouse functions.

Chapter 9: Sample Mouse Programming Interface Programs

MOUSEDEM.BAS changes the text mode cursor and dlsplays pop-up win-
dows as it demonstrates each function.

The QB12&20.BAS and QB24.BAS programs present examples of set-
ting and swapping user-interrupt subroutines by using Mouse Func-
tions 12, 20, and 24. These interrupt subroutines are activated quickly
while a program is running when they detect mouse motion, mouse
button presses, or combinations of Shift key presses and mouse activity.

The QBTEST.BAS program is the three-line menu program that
detects vertical mouse motion. It is presented in several other lan-
guages in this chapter for comparison purposes.

All these programs require that you load a Quick Library with the
QuickBASIC environment. Programs that use INTERRUPT or ABSOLUTE
subprograms can use the QB.QLB Quick Library supplied with Quick-
BASIC. To load this file with QuickBASIC, type the following command
at the MS-DOS prompt:

Q8 /L 0B.QLB

Programs that call the MOUSE subprogram require that the Quick
Library loaded in memory include the code found in the MOUSE.LIB
library. You can create a new Quick Library named QBMOUSE.QLB that
contains the MOUSE.LIB routines in addition to the QB.QLB routines by
typing the following command:

LINK /QU /NOE MOUSE.LIB + QB.LIB,QBMOUSE.QLB,NUL,BQLB45.LIB;

NOTE: To be sure LINK finds each file, copy MOUSE.LIB, QB.LIB, and
BQLB45.LIB into your current directory.

The following command also creates a combined library that lets
your programs compile and link into stand-alone .EXE programs:

LIB QBMOUSE.LIB + MOUSE.LIB + QB.LIB;

After you create the QBMOUSE.QLB and QBMOUSE.LIB libraries, start
QuickBASIC with the following command:

QB8 /L QBMOUSE.QLB

When you load QBMOUSE.QLB into your QuickBASIC environment,
all QuickBASIC programs in this section will run, whether they call
the mouse functions using CALL ABSOLUTE, CALL INTERRUPT, or
CALL MOUSE.

The first three programs in this section, QBMOU.BAS, QBINT.BAS,
and QBINC.BAS, demonstrate three variations on calling the mouse

213

PART Ill: MOUSE PROGRAMMING INTERFACE

functions. Each program clears the screen, displays the text mode
mouse cursor, and waits for you to press a key before terminating.

The QBMOU.BAS Program

The QBMOU.BAS program calls the MOUSE subprogram provided in
the MOUSE.LIB library. To call this subprogram from the QuickBASIC
environment, you must build and load the QBMOUSE.QLB library as
described earlier in this section.

214

Chapter 9: Sample Mouse Programming Interface Programs

The QBINT.BAS Program

The QBINT.BAS program calls the mouse functions using the
INTERRUPT subprogram. The INTERRUPT subprogram is part of the
QB.QLB Quick Library that comes with QuickBASIC. Before you load
and run QBINT.BAS, be sure you load the QB.QLB library into the
QuickBASIC environment.

¥ ok ok ok s sk ok ke sk sk ok oK ok sk ke sk kol ok ok oK o ok ok ok sk ok oK ok ok o ok ok ok ok ok ok ok ok ok ok of of ok ok ok oK K ok o ok sk ok ok ok sk Kok ok

'* QBINT.BAS

o

'* Calls mouse functions using the INTERRUPT subprogram

ok

'+ To Toad QB.QLB into memory with 0u1ckBASIC type:
'+ QB /L QB.QLB

'***

DEFINT ‘A-Z

TYPE RegType

Lax

“bx oo

-CX

dx
bp-

s
di

'DECLARE SUB Interrupt:(intnum% 1ReQWAS;RegTybé;%dRegwAséRégTyp

DIM 1Reg AS RegType o

AS
AS
AS
AS

- AS

“AS

s
f1ags AS.

DIM oReg AS

* K %K ¥ % 0%

INTEGER
INTEGER
INTEGER

INTEGER

INTEGER ~. S e G e S e D T
INTEGER ’;,;” - i . L . . SR kg o i v . + : i i
INTEGER
INTEGER' G

(continued)

216

PART lll: MOUSE PROGRAMMING INTERFACE

continued

The QBINC.BAS Program

The QBINC.BAS program is almost identical to the QBINT.BAS program
except that you make the declarations necessary to use the INTERRUPT
subprogram by including the QB.BI file. To insert the contents of the
QB.BI file at the appropriate place in the listing, simply use the
$INCLUDE metacommand. Like QBINT.BAS, the QBINC.BAS program
requires that you load the QB.QLB library into the QuickBASIC
environment.

(continued)

216

Chapter 9: Sample Mouse Programming Interface Programs

continued

*$INCLUDE: '0B.BI'

DIM iReg AS RegType
DIM oReg AS RegType

* Initialization
CLS
PRINT "Press any key to quit”

' Mouse Reset and Status
iReg.ax = 0
INTERRUPT &H33, iReg‘. oReg

"' Show Cursor
~ iReg.ax = 1.)
- INTERRUPT &H33, iReg, oReg

' Wait kunti]fan‘y;key is pressed
~LOOP WHILE INKEY$ = ""

' Hide Cursor
- iReg.ax =2 - Sl
INTERRUPT &H33, iReg, oReg '

Reset mouse -
e e g

INTERRUPT &H33, iReg,

CEND

The ABSOLUTE.BAS Program

The ABSOLUTE.BAS program demonstrates working with the mouse
from QuickBASIC 4.5 by using the CALL ABSOLUTE command. This
program employs several mouse functions. Function 0 (Mouse Reset
and Status) resets the mouse, and Function 1 (Show Cursor) makes the
cursor visible. Functions 7 (Set Minimum and Maximum Horizontal
Cursor Position) and 8 (Set Minimum and Maximum Vertical Cursor
Position) limit the cursor motion to the center of the screen. To get the
mouse status, the program ‘calls Function 3 (Get Button Status and
Mouse Position). Before the program terminates, it calls Function 0
(Reset Mouse and Status) to hide the mouse cursor.

217

PART Ill: MOUSE PROGRAMMING INTERFACE

Before you can run the ABSOLUTE.BAS program, you must load
QB.QLB into memory by typing the following command:

0B /L 0B.QLB

The CALL ABSOLUTE function won’t work if you don’t load QB.QLB
with QuickBASIC.

You can now load and run the program. Note that the default
graphics cursor appears inside a square that marks cursor-movement
limits set by Functions 7 and 8. To end the program, press the left
mouse button.

The ABSOLUTE.BAS program was written for EGA graphics mode
(SCREEN 9). For CGA operation, change the SCREEN and LINE state-
ments. You should also change the horizontal and vertical motion limits
setin the calls to Functions 7 and 8 as required for the CGA mode you set.

(continued)

218

continued

- COLOR 7

’NHILEk(MZ - 0)

Chapter 9: Sample Mouse Programming Interface Programs

Function 7 Limit Horizontal Motion
Ml = 7: M3 = 100: M4 = 540
CALL ABSOLUTE(M1, M2, M3, M4, MOUSE)

Function 8 Limit Vertical Motion
M1 = 8: M3 = 50: M4 = 300
CALL ABSOLUTE(M1, M2, M3, M4, MOUSE)

Draw box to show mouse motion range
COLOR 1
LINE (100, 50) - (540, 50)

“LINE (540, -50) - (540, 300)

LINE (540,-300) - (100, 300)

LINE (100, 300) - (100, 50)

Function 1 Show Cursor

ML =1
CALL ABSOLUTE(M1, M2 M3 M4 MOUSE)

“Loop until button pressed

M2 =0

! Funct1on 3 Get Mouse Status and Mouse P051t10n '
M1 .= 3 S : s
CALL ABSOLUTE(MI M2.{M3.7M4;WMOUSE{3

i Pr1nt cursor 1ocat1on
CLOCATE 2, 2 :
PRINT M3 M4

”;0 ‘Reséthoyse and Status

219

PART Ill: MOUSE PROGRAMMING INTERFACE

The INTRRUPT.BAS Program

The INTRRUPT.BAS program demonstrates working with the mouse
from QuickBASIC 4.5 by using the CALL INTERRUPT subprogram. This
program is similar in design and operation to the ABSOLUTE.BAS
program. Many of the same functions are called by INTRRUPT.BAS. In
addition, INTRRUPT.BAS calls Function 9 (Set Graphics Cursor Block)
to set a new graphics mode cursor shape.

Before you can run the INTRRUPT.BAS program, you must load
QB.QLB into memory by typing the following command:

QB /L QB.QLB

The CALL INTERRUPT subprogram won’t work if you don’t load QB.QLB
with QuickBASIC.

You can now load and run the program. Note that the new
graphics cursor appears inside a square that marks cursor-movement
limits set by Functions 7 (Set Minimum and Maximum Horizontal Cur-
sor Position) and 8 (Set Minimum and Maximum Vertical Cursor Posi-
tion). To end the program, press the left mouse button.

The INTRRUPT.BAS program was written for EGA graphics mode
(SCREEN 9). For CGA operation, change the SCREEN and LINE statements.
You should also change the horizontal and vertical motion limits set in
the calls to Functions 7 and 8 as required for the CGA mode you set.

NOTE: Because of the length of this program, it is not listed here. The pro-
gram is included on the disks that come with this book. You can use your favorite
text editor to view the source code for the program on your screen, or you can print
the source code file on your printer.

The MOUSE.BAS Program

220

The MOUSE.BAS program demonstrates working with the mouse from
QuickBASIC 4.5 by using the CALL MOUSE function. This program is
similar in design and operation to the ABSOLUTE.BAS and
INTRRUPT.BAS programs.

The MOUSE subprogram is found in the MOUSE.LIB library. To
call this subprogram from the QuickBASIC environment, you must
build and load the QBMOUSE.QLB library as described earlier in this
section.

You can now load and run the program. Note that the new
graphics cursor appears inside a square that marks the cursor-
movement limits set by Functions 7 (Set Minimum and Maximum

Chapter 9: Sample Mouse Programming Interface Programs

Horizontal Cursor Position) and 8 (Set Minimum and Maximum Verti-
cal Cursor Position). To end the program, press the left mouse button.
The MOUSE.BAS program was written for EGA graphics mode

(SCREEN 9). For CGA operation, change the SCREEN and LINE state-
ments. You should also change the horizontal and vertical motion
limits set in the calls to Functions 7 and 8 as required for the CGA mode
you set.

¥ e 3k o sk ke ke sk 3K 3k 3K K ok ke sk ok ok sk ok sk Sk K ok R oK o ok ok sk 3k ok 3K 5K 3K ok oK 3K % o 3k 3K K 3 3K ok ok ok 3 o o ok oK 3R oK ok ke ok Sk ok ok

'+ - MOUSE.BAS

'* 6/24/88 by Dave Tryon, Microsoft Product Support

'* . Pt

i 'f,Demonstrates caHing mouse functions using ‘CALL MOUSE

. Yk
~'x To Toad QBMOUSE. QLB into memory w1th QuickBASIC, type
'+ QB /L QBMOUSE QLB

Bt

s Assumes EGA - For CGA change SCREEN and LINE statements

] "**

®O% % K % %X % ¥

! Imtiaﬁzatwn ERE
DIM CURSOR(lS 1) AS INTEGER.
- COMMON CURSOR() “AS- INTEGER
: "DECLARE SUB MOUSE (Ml% MZ% M3% M4%)
fCLS

Defme Cursor Array
CURSOR(0, 0 f&Halrs

CURSOR(1, 0) = &HELFF
'CURSOR(Z;”O)R GHELFF
CURSOR(3, 0) = &HEIFF
- CURSOR(4, 0) = 8HELF
- CURSOR(5, 0) = &HE000
‘CURSOR(6,
CURSOR(7,
'CURSOR(8,

(continued)

221

PART lll: MOUSE PROGRAMMING INTERFACE

222

continued

CURSOR(11

CURSOR(12,

CURSOR(13
 CURSOR(14

(continued)

Chapter 9: Sample Mouse Programming Interface Programs

continued

' Function 9 Set Graphics Cursor B]'ock (custom cursor)
M1% ='9: M2% = 5: M3% = 0
CALL MOUSE(M1%, M2%, M3%, VARPTR(CURSOR(O, 0)))

' Function 1 Show Cursor
M1% = 1
CALL MOUSE(M1%, M2%, M3%, M4%)

' Loop until button pressed

COLOR 7
M2% = 0
WHILE (M2% = 0).

' Funct1on ;3 Get Button Status and Mouse Pos1t10n
CM1% =3 i :
CALL MOUSE(MI% MZ% M3%, M4%)

‘ Pmnt cursor 1ocat1on
. wCMEZ 2 -
; PRINT M3% M4%

WEND

Functmn 0 Reset Mouse and Status S e

The MOUSEDEM.BAS Program

The MOUSEDEM.BAS program uses modular QuickBASIC programming
techniques to demonstrate several mouse functions. The program
makes calls to the mouse driver by calling the MouseDriver subpro-
gram. The MouseDriver subprogram uses one CALL INTERRUPT to ac-
cess the mouse driver. -

This program demonstrates setting the hardware and software
text cursors using Mouse Function 10 (Set Text Cursor). The program
makes the cursor blink by setting an appropriate hardware cursor and
then sets the cursor back to the default software cursor by means of a

223

PART lll: MOUSE PROGRAMMING INTERFACE

second call to Function 10. The comments in the program listing ex-
plain this process in detail.

In addition to showing the use of several mouse functions,
the MOUSEDEM.BAS program presents several creative subprograms
that you may find useful. For example, the MoveFromScreen and
MoveToScreen subprograms show one way to save and restore a rectan-
gular area of the text mode display.

Before you can run this program, you must load QB.QLB into
memory by typing the following command:

0B /L 0B.QLB

The CALL ABSOLUTE command won'’t work if you don’t load QB.QLB
with QuickBASIC.

NOTE: Because of the length of this program, it is not listed here. The pro-
gram is included on the disks that come with this book. You can use your favorite
text editor to view the source code for the program on your screen, or you can print
the source code on your printer.

The QB12&20.BAS Program

The QBI12&20.BAS program demonstrates Mouse Functions 12 (Set Inter-

rupt Subroutine Call Mask and Address) and 20 (Swap Interrupt Sub-

routines). Function 12 sets a user-interrupt subroutine, and Function 20
" swaps this interrupt subroutine with a second subroutine. _

The program displays the text mode mouse cursor and waits until
you press a key. It lets you move the cursor around the screen, and the
cursor moves to the upper-left corner of the screen whenever you press
the right mouse button.

When you press a key, Function 20 replaces the first interrupt sub-
routine with the second interrupt subroutine. Now when you release
the left mouse button, the cursor moves to the center of the screen.

To end the program, again press any key.

(continued)

224

Chapter 9: Sample Mouse Programming Interface Programs

contmued

DEFINT A1 Y

TYPE RegType
ax AS 'INTEGER
bx AS INTEGER
cX AS INTEGER
dx AS INTEGER
bp AS INTEGER
si AS INTEGER
-di AS. INTEGER
flags AS INTEGER

END TYPE

DECLARE;SUBMInterrupt (intnum%, iReg AS RegType, oReg AS RegType)

~ DIM iReg AS RegType
;‘DIM oReg AS RegType

iDIM msub%(S). msub2%(5)
_ 00MMON msub%() msubz%()

”F]rst 1nstruct1ons

s : i , .

WPRINT "Test by pre551ng right mouse button":, :
"Then press enter"rr”” o

(continued)

225

PART lll: MOUSE PROGRAMMING INTERFACE

continued

Set Interrupt Subroutine Call Mask and Address
=12 4 ' Mouse Functmn 12
iReg. cx =8 (e Interrupt when right button pressed
“iReg.dx = VARPTR(msub%(O)) Offset of msubl
g 'I,nterrupt: 8H33," 1Reg, oReg

226 -

Chapter 9: Sample Mouse Programming Interface Programs

The QB24.BAS Program

The QB24.BAS program uses Function 24 (Set Alternate Subroutine Call
Mask and Address) to set a user-interrupt subroutine. The bytes that
compose the short subroutine are placed in the msub%() array, and the
address of the first member of that array is passed to Function 24 as the
address of the subroutine.

The program builds the subroutine, displays the mouse cursor,
and calls Function 24 to activate the subroutine. The call mask is set so
that you must press a Shift key and the left mouse button simulta-
neously to cause the mouse driver to call the subroutine.

The program then enters a loop, waiting for you to press any key
before terminating. During this time, you can move the mouse cursor
around the screen. If you press a Shift key and the left mouse button,
the cursor moves to the upper-left corner of the screen.

WARNING: Shortly before the program terminates, it calls Mouse Function 0
(Mouse Reset and Status) to reset the mouse. Note that Function 0 will not deacti-
vate the user-interrupt subroutine. The subroutine’s address remains with the
mouse driver even though the subroutine itself is gone. Activation of the subroutine
will then most likely cause your system to crash.

ot o o oK R R o R R KRB KR K K o R R o R KR R KRR R

e 0B24.BAS

¢ Denkl'c:):ns‘t'r“':at:é's ‘.'Mqu‘g:e",':Fkun’c:ti‘(qn 24 L
* Set Alternate Subroutine Call Mask and Address

QB /L 0B.QLB

ER R KE

(continued)

227

PART Ill: MOUSE PROGRAMMING INTERFACE

continued

}s; DIN 1Reg AS RegTyp
oI OReg AS RegType

DIM | msub.é(S)

COMMON ms ub%()

i Buﬂd interrupt drwen subrnutine to- activate Function 2
; fmsub%(O) - &H488 ‘ ,

228

(continued)

Chapter 9: Sample Mouse Programming Interface Programs

continued
' Deactivate Function 24
iReg.ax = 24
iReg.cx = 32
Interrupt &H33, iReg, oReg

Reset mouse
iReg.ax = 0
Interrupt &H33, iReg, oReg

END

The QBTEST.BAS Program

The QBTEST.BAS program uses Mouse Function 11 (Read Mouse Mo-
tion Counters) to detect vertical mouse motion. The program displays
a three-line menu with one option highlighted. When Function 11
detects vertical mouse motion, the program moves the highlight up or
down the list.

In addition, this program uses Mouse Function 5 (Get Button
Press Information) to detect a button press. To select a highlighted op-
tion, you simply press either mouse button. Before the program termi-
nates, it displays a message stating which option you selected and which
button you pressed.

This program is presented in several languages in this chapter so
that you can compare the mouse function calls in different languages.
If you want to compare the programs, see the BATEST.BAS, CTEST.C,
ATEST.ASM, and FTEST.FOR programs in this chapter.

NOTE: Because of the length of this program, it is not listed here. The pro-
gram is included on the disks that come with this book. You can use your favorite
text editor to view the source code for the program on your screen, or you can print
the source code on your printer.

The PENCIL.BAS Program

The PENCIL.BAS program is an enjoyable sketching program that you
can expand into a complete graphics editing package. Several mouse
functions are well demonstrated in this program, and more than one
graphics mode cursor is defined and used. Depending on the state of
the program, the cursor appears as an image of the Microsoft Mouse or
as a pencil.

This chapter also offers the PENCIL program in C and QuickC.
(See the PENCIL.C program later in this chapter.)

229

PART Ill: MOUSE PROGRAMMING INTERFACE

NOTE: Because of the length of this program, it is not listed here. The pro-
gram is included on the disks that come with this book. You can use your favorite
text editor to view the source code for the program on your screen, or you can print
the source code on your printer.

C AND QUICKC PROGRAMS

This section presents a variety of mouse programming examples using
the C and QuickC languages. Most of the following programs were set
up for the medium-memory model, which is the default memory model
for QuickC. In the header of each program listing, you will find in-
structions for compiling and linking under C version 5.1 and instruc-
tions for the program list requirements under QuickC.

To change these programs for other memory models under C,
change all occurrences of cmousem to the function call appropriate for
the desired model. These calls are listed in several program headers.
Notice that the programs that call the mouse functions using nt86x()
rather than the functions supplied in MOUSE.LIB require no change to
the function names when compiling for other memory models.

The CMOUSE.C Program

230

The CMOUSE.C program demonstrates and tests several important
mouse functions. It also shows some useful programming techniques
to help keep your mouse programs well organized. As the program
exercises these mouse functions, it displays a sequence of instructions.

The program also defines constants for the mouse functions,
making the program listing easier to follow. In addition, the #define
statements near the beginning of the program redefine these function
numbers with text labels. :

As listed in the program header, the C versions of the mouse calls
in the MOUSE.LIB library are provided for all the memory models. To
change memory models, you must change all occurrences of the mouse
function call to the function name for the desired model. In this pro-
gram, a #define statement creates a generic mouse function call, re-
quiring changes to be made only in the #define statement to affect all
mouse calls. Notice that there is only one occurrence of cmousem() in
the entire listing.

NOTE: Because of the length of this program, it is not listed here. The pro-
gram is included on the disks that come with this book. You can use your favorite
text editor to view the source code for the program on your screen, or you can print
the source code on your printer.

Chapter 9: Sample Mouse Programming Interface Progfcms

The CTEST.C Program

The CTEST.C program uses Mouse Function 11 (Read Mouse Motion
Counters) to detect vertical mouse motion. The program displays a
three-line menu with one option highlighted. When Function 11
detects vertical mouse motion, the program moves the highlight up
or down the list.

In addition, this program uses Mouse Function 5 (Get Button
Press Information) to detect a button press. To select a highlighted op-
tion, you simply press either mouse button. Before the program termi-
nates, it displays a message stating which option you selected and which
button you pressed.

This program is presented in several languages in this chapter so
that you can compare the mouse function calls in different languages.
If you want to compare the programs, see the BATEST.BAS, QBTEST.BAS,
ATEST.ASM, and FTEST.FOR programs in this chapter.

NOTE: Because of the length of this program, it is not listed here. The pro-
gram is included on the disks that come with this book. You can use your favorite
text editor to view the source code for the program on your screen, or you can print
the source code on your printer.

The LPEN.C Program

The LPEN.C program uses Mouse Function 14 (Light Pen Emulation
Mode Off) to turn off light pen emulation.

When the mouse is initialized by calling Mouse Function 0
(Mouse Reset and Status), light pen emulation is turned on. This pro-
gram resets the mouse and enters a loop, displaying the light pen status
returned by Function 4 (Set Mouse Cursor Position) of the BIOS video
interrupt. The AX, BX, CX, and DX registers are displayed constantly so
that you can watch the effects of emulating the light pen by pressing
both mouse buttons.

If you press any key, the program exits the first loop. The light
pen emulation is then turned off and a second loop is entered. Again,
the registers are displayed as the program continuously gets the light
pen position information from the BIOS. To end the program, again
press any key. \

NOTE: The BIOS function that returns the light pen information isn’t set
up for VGA, but only for CGA and EGA. With VGA, you'll see a difference in the
returned value of the AX register when the light pen emulation is on or off;
however, the returned position information remains constant.

231

PART lll: MOUSE PROGRAMMING INTERFACE

: and mouse. inst,

232

(continued)

- Chapter 9: Sample Mouse Programming Interface Programs

continued

while (!kbhit())
(.
iReg.h.ah = 4; /* Get Light Pen Position */
int86(0x10, &iReg, &oReg);
printf("\rAX: %.4X BX: %.4X CX: %.4X DX: %.4X",
iReg.x.ax,iReg.x.bx,iReg.x.cx,iReg.x.dx);
}
getch();

/* Light Pen Emulation Mode Off =/
iReg.x.ax = 14;
int86(0x33, &iReg, &oReg):

[+ Display message */ :
printf("\n\nL1ght Pen Emu]atlon Mode Off, Status. An");

whi1e (!kbhit())
iReg.h. ah -4; T :, /* Get L1ght Pen Pos1tion */
1nt86(0x10 &1Reg. &oReg); :

) pr1ntf("\rAX %.4% BX: %.4X CX: %: 4X DX % 4X"‘

iReg.x.ax,iReg.x.bx,iReg.x.cx, iReg.x.dx);

Yo
- geteh();

Ix Mbu‘sé“Reset“éndi'Staﬁtu;s' B
. iReg.x.ax =03 .o :
“k;1nt86(0x33 &1Reg. &oReg .

The MOUS_INT.C, MOUS_LIB.C,
MOUH_INT.C, and MOUH_LIB.C Programs

The MOUS_INT. C, MOUS_LIB.C, MOUH_INT.C, and MOUH_LIB.C
programs demonstrate the differences between calling mouse func-
tions using the int86x() function and using the mouse calls provided in
the MOUSE.LIB library. MOUH_INT.C and MOUH_LIB.C also show the
differences required for using the Hercules Graphics Card. All of these
programs produce almost identical results.

Functions 7 (Set Minimum and Maximum Horizontal Cursor
Position) and 8 (Set Minimum and Maximum Vertical Cursor Position)

233

PART Ill: MOUSE PROGRAMMING INTERFACE

limit the cursor motion to the middle of the screen. Function 9 (Set
Graphics Cursor Block) sets a new graphics mode cursor, shaped like
a pointing hand. As you move the cursor around the middle of the
screen, Function 3 (Get Button Status and Mouse Position) continu-
ously gets the mouse position, which is displayed in the upper-left cor-
ner of the screen. To end the program, press either mouse button.

NOTE: Because of the length of these programs, they are not listed here. The
programs are included on the disks that come with this book. You can use your
Javorite text editor to view the source code for the programs on your screen, or you
can print the source code on your printer.

The MSCEXAMP.C Program

The MSCEXAMP.C program demonstrates several common mouse
functions and a subroutine that checks whether the mouse driver is in-
stalled. The default graphics mode cursor is displayed, and its motion is
limited by calls to Mouse Functions 7 (Set Minimum and Maximum
Horizontal Cursor Position) and 8 (Set Minimum and Maximum Verti-
cal Cursor Position). To end the program, press the left mouse button.

This program is set up for a medium-memory model, which is the
default for QuickC. To change it to any other model for C version 5.1,
globally change all occurrences of cmousem to the appropriate call for
the desired model. You’ll also need to change the /AM option on the
CL command line for the new model.

(continued)

234

Chapter 9: Sample Mouse Programming Interface Programs

continued

cl /AM mscexamp.c -link mouse

* % ¥ %

*
*
* - QuickC:
* Program List MSCEXAMP.C, MOUSE.LIB

e e sk ok ok o ok ok ok o ke o ok sk sk ok sk ok sk sk ke skok sk sk ke ok ok sk sk sk ok ok o sk sk ok ok ke e ok sk ok ok sk ke ok ok sk Ok ok ok sk ok KoKk ok

#include <stdio.h>
f#finclude <dos.h>
ffinclude <graph.h>

void chkdrv();

L omain().

(SR S :

... sint ml, m2, m3, m4;

chkdrvO); /% Check for mous‘e driver */
; "7“'tn1:-:0 L l* Imt1alize mouse o ‘*’/:”

”cmousem(gml, &m2, &m3, &m4)

1f (ml==0) ‘
e i
prmtf("M]crosoft Mouse- NOT found")'
: Exit. 1f mouse not found

Functwn ca]] 4
Set mouse pos1tion at
center of the screen

:cmbusem(&ml &m2 &m3

/* Function call 7
~/x minimum horizont

(continued)

235

'PART Ill: MOUSE PROGRAMMING INTERFACE

continued

nf‘%("ﬁ"(iraphws‘curf:soyr‘*w limited to cent
rintf("Press the left button to EXIT.

. cmousem(&ml, &m2, &m3,

The PENCIL.C Program

The PENCIL.C program is an enjoyable sketching program that you
can expand into a complete graphics editing package. Several mouse
functions are well demonstrated in this program, and more than one

236

Chapter 9: Sample Mouse Programming Interface Programs

graphics mode cursor is defined and used. Depending on the state of
the program, the cursor appears as an image of the Microsoft Mouse
or as a pencil.

This chapter also offers the PENCIL program in QuickBASIC
(See the PENCIL.BAS program earlier in this chapter.)

This program uses Mouse Function 20 (Swap Interrupt Subrou-
tines) to set an interrupt-driven user subroutine. Function 20 swaps
subroutines, which is acceptable even if the subroutine is the only one
being used. Function 24 (Get Alternate Subroutine Call Mask Address)
could have been used also.

In the header of the program listing, you will find a list of the
mouse functions used in the program, as well as the commands used
to build the program under C version 5.1 or QuickC.

NOTE: Because of the length of this program, it is not listed here. The pro-
gram is included on the disks that come with this book. You can use your favorite
text editor to view the source code for the program on your screen, or you can print
the source code on your printer.

The M20SUB.ASM Program

The M20SUB.ASM program provides the interrupt-driven subroutine
named NewMouseHardwareSub for the PENCIL.C program. This sub-
routine returns the current status of the mouse in four C variables,
each of which is declared EXTRN in this listing.

PENCIL uses Mouse Function 20 (Swap Interrupt Subroutines) to
set this subroutine. The call mask passed causes this subroutine to acti-
vate when you release the right mouse button.

AR RKOR KRR KR R R K ****;"************************5" 5ok ok ok ok K

M20SUB.ASM

: ASM kksqbkr,ou,t'i e f

(continued)

237

PART ll: MOUSE PROGRAMMING INTERFACE

continued

& e

Save current data segment
Save condition mask

MASM PROGRAMS

The programs in this section demonstrate calls to several mouse func-
tions from MASM. The TST1.ASM program is a simple program that
shows the basics of activating and displaying the standard default
graphics cursor. Other programs show the use of mouse functions that
provide flexible, creative programming from the MASM environment.
For example, the TSTI2&20.ASM program demonstrates how you can
use more than one interrupt subroutine in your programs to respond
quickly to mouse activity. ‘

Making mouse function calls from MASM is similar to making
mouse function calls from high-level languages. The most important dif-
ference is the use of the AX, BX, CX, and DX registers (instead of the M1,
M2, M3, and M4 integer variables) followed by a call to Interrupt 33H.
Parameters passed to and received from the mouse functions use these
registers. They correspond directly with the four integer variables.

238

Chapter 9: Sample Mouse Programming Interface Programs

In addition to the AX, BX, CX, and DX registers, some mouse func-
tion calls use the ES, DI, and SI registers. For example, Function 12 (Set
Interrupt Subroutine Call Mask and Address) requires all four regis-
ters. (For more information on Function 12, see Chapter 8, ‘“Mouse
Function Calls.”)

The TST1.ASM Program

The TST1.ASM program resets the mouse, sets the graphics adapter to
640-by-200 black-and-white mode, and displays the standard graphics
mode cursor at the center of the screen.

To end this program, press any key. The cursor disappears and
the video mode returns to 80-by-25 text mode.

:; Program: TSTL.ASM

’

~; Description: Demonstrates the mouse in graphics mode

i ToRun: o MASMTSTL:;
DIt ©OLINKTSTL;
LT L TSTLL

(continued)

239

PART lll: MOUSE PROGRAMMING INTERFACE

continued

The ATEST.ASM Program

The ATEST.ASM program uses Mouse Function 11 (Read Mouse Motion
Counters) to detect vertical mouse motion. The program displays a
three-line menu with one option highlighted. When Function 11
detects vertical mouse motion, the program moves the highlight up
or down the list.

In addition, this program uses Mouse Function 5 (Get Button
Press Information) to detect a button press. To select a highlighted op-
tion, you simply press either mouse button. Before the program termi-
nates, it displays a message stating which option you selected and which
button you pressed.

This program is presented in several languages in this chapter so
that you can compare the mouse function calls in different languages.
If you want to compare the programs, see the BATEST.BAS, QBTEST.BAS,
CTEST.C, and FTEST.FOR programs in this chapter.

NOTE: Because of the length of the ATEST.ASM program, it is not listed here.
The program is included on the disks that come with this book. You can use your
Sfaworite text editor to view the source code for the program on your screen, or you
can prrint the source code on your printer.

240

Chapter 9: Sample Mouse Programming Interface Programs

The ASMEXAMP.ASM Program

The ASMEXAMP.ASM program demonstrates several mouse functions
and checks carefully for the mouse driver. Functions 7 (Set Minimum
and Maximum Horizontal Cursor Position) and 8 (Set Minimum and
Maximum Vertical Cursor Position) limit the mouse cursor position to
the middle section of the screen. In addition, Function 3 (Get Button
Status and Mouse Position) detects when you press the left button, at
which time the program terminates.

..

;- Program: ASMEXAMP.ASM
. Description: Demonstrates Mouse Functions 0, 1, 2, 3, 4, 7,
gl and 8. Displays graphics mode cursor and
i ~ checks for installation of the mouse driver.

 MASM ASMEXAMP;
LINK ASMEXAMP;
- ASMEXAMP

...

pubHc 'data :

~db "Mouse driver not 1n5ta1led" RE S

~db s “Mouse not found”, "$" i . . e
“iedbo 'Grapmcs cursor Hm1t at. center of the screen" Odh Oah
~db 'Press. the~ eft mouse button to EXIT"’“$":P st ~

(continued)

241

PART lll: MOUSE PROGRAMMING INTERFACE

continued

:'Im ti aﬁ z

Is mouse 1nsta]1ed7 ~
Then continue

i;Mé‘/sshgé; 1

Set up for 6
graphics mod

(continued)

242

Chapter 9: Sample Mouse Programming Interface Programs

continued

mov dx, offset msg2 :Get exit message ;
mov ah, 09h ;Output message to screen :
int 21h :

around: é
mov ax, 3 sFunction 3 Pt i !
int 33h ;Get Button Status and Mouse Pos1t1on E
test bx, 0001h ;Left button pressed ?
jz around ;Branch 1f left button NOT pressed
xor ax, ax L ;Function 0 P
int 33h h g ~ ;Mouse Reset and Status
mov ax, 0003h © :Set up 80 x 25 character text mode
int 10n RTINS :) pElu b

~mov. ax,04C00h . :Normal exit =

dint o 21h S Rt a bt iy

code ends

end start

The TST12&20.ASM Program

The TST12&20.ASM program demonstrates Mouse Functions 12 (Set
Interrupt Subroutine Call Mask and Address) and 20 (Swap Interrupt
Subroutines).

Function 12 sets the first user-interrupt subroutine. This subrou-
tine, which is activated when you press the right mouse button, uses
Function 4 to set the cursor position at the upper-left corner of the
screen. You can test this action by moving the cursor around the screen
and occasionally pressing the right mouse button. To begin testing
Function 20, press any key.

Function 20 swaps user-interrupt subroutines. In this program,
the second subroutine replaces the first, causing the mouse cursor to
act differently. Now when you press the left mouse button, the cursor
moves to the middle of the screen. To test this action, move the cursor
around the screen and press the left mouse button. To terminate the
program, press any key.

243

PART lll: MOUSE PROGRAMMING INTERFACE

TST12820.ASM

ASM TST12820
INK TST12820

unction 4 Set Mouse Cu
eft edge of screen G
Top edge of screen i
Move the cursor‘

for ;Functioﬁ 20

et Mouse Cursor

(continued)

244

Chapter 9: Sample Mouse Programming Interface Programs

continued

; Set Interrupt Subroutine Call Mask and Address
mov ax,SEG msub

mov es,ax . ; Segment of sub into ES

mov ax,12 ; Mouse Function 12 .

mov ¢x,8 ; Interrupt when right button pressed
mov dx,0FFSET msub i ; Offset of sub into DX

int 33h

; Wait for a key press, allowing testing of mouse
mov ah,8
int 21h

; Swap Interrupt Subroutines

mov ax,20 : : Mouse Function 20

mov- bx,SEG msub2 3 Offset of sub into BX :
mov cx,4 ‘) ; Interrupt when left button released
~mov -dx,0FFSET msub2’ 3 Segment of sub into DX

int:33h P S

: Wait for a key press. a110w1ng testing: of mouse -
“mov . ah,8 ‘
: ,1nt 21h

, Reset the mouse. to deactwate the 1nterrupt
~'kxor' ax,ax e

{ Exit to MS-DOS |

The TST24.ASM Program

The TST24.ASM program demonstrates Mouse Function 24 (Set Alter-
nate Subroutine Call Mask and Address). Function 24 is similar to
Function 12 (Set Interrupt Subroutine Call Mask and Address) in the
way it sets a user-interrupt subroutine. However, unlike Function 12,
this function allows activation of the subroutine based on Shift key
status at the time of the detected mouse activity. In this case, the mouse
cursor moves to the upper-left corner of the screen only when you press
a Shift key and the left mouse button simultaneously.

245

PART Hll: MOUSE PROGRAMMING INTERFACE

LINK TST24
£ TST24

Program ssumes mouse and mouse dr1ver\ re installed.

~ .MODEL LARGE
.STACK 100h

s is the sub outi‘ne act nction 24
'Q,PROC :

S IXOTCX,CX Left ‘edge. of screen
"]“‘OV dx,cx Top edge of screen

‘ ;mov ax,4 Funct‘ion 4 Set Mouse Cursor

246

(continued)

continued

- END

Chapter 9: Sample Mouse Programming Interface Programs

; Wait for a key press, allowing testing of mouse
mov ah,8
int 21h

.
.

Deactivate Function 24

mov ax,24
mov ¢x,32
int 33h

Reset the mouse

Xor ax,ax
int 33h

;. Exit to MS-DOS
“mov- ax,4C00h

int 21h

‘stért ,
END

FORTRAN PROGRAMS

The following programs demonstrate calling mouse functions from
FORTRAN 4.1. The shortest program is FORL.FOR, which simply displays
the default text mode cursor and waits for you to press either mouse
button before the program terminates. The FDEMO.FOR program sets a
high-resolution graphics mode and displays a new cursor shaped like a
mouse. The FTEST.FOR program is the FORTRAN version of the three-
line menu that appears in several languages in this chapter.

The best way to program the mouse from FORTRAN is by calling
the MOUSEL subroutine in the MOUSE.LIB library. When you are link-
ing the programs, be sure to link with the MOUSE.LIB file. Each pro-
gram uses the MOUSEL call. .

In the header of each program listing, you will find the compile-
and-link command line used to create each executable module.

The FOR1.FOR Program

The FORL.FOR program resets the mouse, displays the cursor, and waits
until you press either mouse button. When the program detects a but-
ton press, it hides the cursor and terminates.

247

PART lll: MOUSE PROGRAMMING INTERFACE

This program shows the basic method of programming the
mouse from FORTRAN. Each mouse function is called using the
MOUSEL subroutine provided in the MOUSE.LIB library. You must link
this library file with FORLFOR for the program to run.

248

Chapter 9: Sample Mouse Programming Interface Programs

The FTEST.FOR Program

The FTEST.FOR program uses Mouse Function 11. (Read Mouse Motion
Counters) to detect vertical mouse motion. The program displays a
three-line menu with one option highlighted. When Function 11
detects vertical mouse motion, the program moves the highlight up
or down the list.

In addition, this program uses Mouse Function 5 (Get Button
Press Information) to detect a button press. To select a highlighted op-
tion, you simply press either mouse button. Before the program termi-
nates, it displays a message stating which option you selected and which
button you pressed.

This program is presented in several languages in this chapter so
that you can compare the mouse function calls in different languages.
If you want to compare the programs, see the BATEST.BAS, QBTEST.BAS,
CTEST.C, and ATEST.ASM programs in this chapter.

NOTE: This program uses the ANSLSYS escape-code sequences to clear the
screen, locate the cursor, and set the character attributes. You must load the
ANSILSYS file into memory, or these escape-code sequences will display strange-
looking characters and the menu won't function correctly. ANSLSYS is loaded at
system boot-up from a command in the CONFIG.SYS file. For more information,
see your MS-DOS documentation.

NOTE: Because of the length of the FTEST.FOR program, it is not listed here.
The program is included on the disks that come with this book. You can use your
Javorite text editor to view the source code for the program on your screen, or you
can print the source code on your printer.

The FDEMO.FOR Program

The FDEMO.FOR program shows one method of programming graphics
mode mouse functions using FORTRAN. The MASM program SUBS.ASM
supplies some important subroutines for this program. You must link
SUBS.ASM and the MOUSE.LIB library with FDEMO.FOR for proper
operation.

The INTEGER#2 array named MCURSOR holds the mask data for
redefining the graphics mode mouse cursor. Mouse Function 9 (Set
Graphics Cursor Block) sets the new cursor shape, and the mask re-
defines the cursor to look like a mouse—whiskers, tail, and all.

This program also demonstrates the operation of Mouse Function 16
(Conditional Off), which defines a rectangular region of the display that
hides the mouse cursor. The cursor remains visible unless you move it

249

PART lll: MOUSE PROGRAMMING INTERFACE

into the defined part of the screen. To see how this works, move the
cursor to the upper-left corner of the screen.

NOTE: Because of the length of FDEMO.FOR, it is not listed here. The pro-
gram is included on the disks that come with this book. You can use your favorite
text editor to view the source code for the program on your screen, or you can print
the source code on your printer.

PASCAL PROGRAMS

The programs in this section demonstrate how you can program the
mouse from Microsoft Pascal. A procedure named mousel is provided in
the MOUSE.LIB library for making calls from Pascal. Notice that this is
the same routine called from FORTRAN. The languages share the same
parameter-passing and procedure-calling mechanisms.

All these program examples use assembly-language procedures.
In addition, the following routines set the graphics modes and check
for mouse driver installation.

The MOUSHGCP.PAS Program

The MOUSHGCP.PAS program demonstrates programming the mouse
for the Hercules Graphics Card. You must link this program with the
INITPAS.OB]J object module and the MOUSE.LIB library for proper
operation.

This program first calls the GRAF assembly routine to set the Her-
cules graphics mode (720 by 348 pixels). The program calls mouse func-
tions to reset the mouse, show the cursor, and check for button press
information. When you press a button, the program resets the mouse
driver and sets the Hercules Graphics Card back to text mode.

(continued)

250

Chapter 9: Sample Mouse Programming interface Programs

continued

® Limits: ?
* Must link with MOUSE.LIB and INITPAS.0BJ to resolve mouse function
* calls and HGC display routine references.

S

* Make file:

*

* moushgcp.obj: moushgcp.pas

* pasl moushgcp;

* pas2;

*

* initpas.obj: initpas.asm

* masm initpas.asm;

* .

* moushgcp.exe: moushgcp.obj initpas.obj

. 1ink moushgcp + initpas,.,mouse.lib;

*

~%... History:

ok '6/1/87- - Created

)

L program mouse_hgc;

(+ External references to mouse library and HGC screen routines =)
. procedure mousel (vars ml, m2, m3 m4 word);extern;
~ procedure GMODE ; extern,d
procedure TMODE extern,

GanEe S : Gagr iy e ‘
‘adsbyte: ads of char; (% 32-bit pointer, segment and offset *)
gml;;mZ; m3, m4: word; - (* ‘Standard -mouse.parameters *) 3
" videomode: char;-: . . (e Used to save/restore video mode *)

~~(* Point to byte wh1ch ho]ds V1deo BIOS mode *)
:adsbyte s =m16#0000 :
dsbyte r

e Save current ‘scree mode va]ue *)
: deomode = adsb ter ‘

odified Hercules INIT.ASM routi

(continued)'

251

PART Ill: MOUSE PROGRAMMING INTERFACE

continued

The INITPAS.ASM Program

The INITPAS.ASM module provides support code for the MOUSHGCP.PAS
program. The gmode procedure sets the 6845 CRT controller for the 720-
by-348 graphics mode of the Hercules Graphics Card. The ¢mode pro-
cedure sets Hercules text mode.

NOTE: Because of the length of this program, it is not listed here. The pro-
gram is included on the disks that come with this book. You can use your favorite

text editor to view the source code for the program on your screen, or you can print
the source code on your printer.

The PASEXAMP.PAS Program

The PASEXAMP.PAS program demonstrates several mouse functions. It
also checks that you installed the mouse driver before it tries to reset
the driver. Mouse Functions 0 (Mouse Reset and Status) and 1 (Show

252

Chapter 9: Sample Mouse Programming Interface Programs

Cursor) reset the mouse and show the cursor. Function 4 (Set Mouse
Cursor Position) is used to set the cursor position. In addition, Func-
tions 7 (Set Minimum and Maximum Horizontal Cursor Position) and
8 (Set Minimum and Maximum Vertical Cursor Position) limit cursor
motion to the middle part of the screen.

The program enters a loop, using Mouse Function 3 (Get Button
Status and Mouse Position) to check continuously for a press of the left
mouse button. To end the program, press the left mouse button.

NOTE: You must assemble and link the SUBS.ASM assembly-language
module with this program for proper operation. You must also link the MOUSE.LIB
library to satisfy the mouse function calls.

,”PASEXAMP PAS B Mouse functions and Microsoft Pasca]

~~~”Program enters grapmcs mode d1sp1ays default
;_,cursor, Hm'its its range of motion, -and qu1ts when
ythe left mouse button is pressed -

e
{

Malge,Fi];g: ‘

pasexamp obj . pasexamp pas’
pasl pasexamp 5
pasz

(continued)

253



PART lll: MOUSE PROGRAMMING INTERFACE

continued

The SUBS.ASM Program

The SUBS.ASM program module provides the grafand chkdrv subrou-
tines for the PASEXAMP.PAS program. The graf subroutine sets a high-
resolution graphics mode (640-by-200 pixels, 2-color), and chkdrv checks
that you installed the mouse driver.

254



Chapter 9: Sample Mouse Programming Interface Programs

The code in this module is identical to that in the SUBS.ASM
module for the FORTRAN examples. Also, the parameter-passing con-
ventions for Microsoft Pascal and Microsoft FORTRAN are the same.
This explains why both languages call the same procedure (mousel)
from the MOUSE.LIB library.

o ok sk ok o o obe ok ok sk ke ke ke ok ok sk skl ke ke ke o o ok sk sk sl ke ok o ok ok sk sk sk s ol sl ok sk ok e ok ok ok ok ok ok ok ok ok ok ok ok Sk ok ok ok sk skookok koK ok

SUBS.ASM

MASM subroutines for PASCAL program PASEXAMP.PAS

chkdrv - Check that mouse driver 15 1nsta11ed

See PASEXAMP PAS program for 1nformation on anmg

B R T S I

*
*
*
‘graf - Set 640 x 200, 2-color graphics mode ST
*
*
*
*
*

:***************************************************************** , 

'wmdata R segment byte pubhc 'data

‘msg ~db *"Mouse Driver NOT 1nsta11ed" "$" s

(continued)

255



PART lll: MOUSE PROGRAMMING INTERFACE

continued

The PDEMO.PAS Program

The PDEMO.PAS program demonstrates several mouse functions.
Mouse Function 0 (Mouse Reset and Status) initializes the mouse.
Function 9 (Set Graphics Cursor Block) sets a new graphics mode cur-
sor shape. In addition, Function 16 (Conditional Off) defines an area
of the screen that hides the mouse. If you move the cursor to the upper-
left part of the screen, Function 16 causes the mouse cursor to disap-
pear. Mouse Function 3 (Get Button Status and Mouse Position) waits
for you to press the left mouse button. When the left button is pressed,
the program terminates.

256



Chapter 9: Sample Mouse Programming Interface Programs

{ PDEMO.PAS - Mouse functions and Microsoft Pascal 1

{ : }

{ Program checks that mouse driver was installed, }

~{ displays a graphics cursor, and hides the cursor }

{ _if it moves into the upper-left part of the screen. }

{ Program ends when left mouse button is pressed. }

{ 1

{ Make File: }

{ : i }

{ pdemo.obj:  pdemo.pas 1

- pasl pdemo; }

o pas2 }

Lol e SIS }
{  pdemo.exe:  pdemo.obj subs.obj }
SR ~link pdemo subs,.,..\mouse; }
P 1 |

e i b b e At SRR AR R Al Rt el }

;Pr"okkgyram "mtésf(btitﬁ‘dt) b

procedure mouse1(vars mi,m2, m3 md: word) extern.
procedure chkdrv extern. e E
cedure graf extern,

1,m2,m3,mé4 :word

(continued)

257



PART lll: MOUSE PROGRAMMING INTERFACE

conltinued

mouse](ml m2 m3 m4)y.
Sif( m1 = 0 ) then

(Yes, ‘demo Funct1on’ 9} :
- { and Function 16 ~ }
{Set to grapmgs mo’de} :

{Functwn can 9y
{ set grapmcs cursor}‘

3.ptradd[1] := (ads Cursor) re{c
ptradd[Z] 1= (ads Cursor) .
'ousel(ml me, m3 ptradd[l])

258



Chapter 10

Writing Mouse
Programs for
IBM EGA Modes

If your application program includes mouse support for IBM enhanced
graphics modes D, E, F, and 10, your program must interact with the IBM
Enhanced Graphics Adapter (EGA) through the new video interrupt
functions provided in the mouse driver. You can simplify this program-
ming by using a special library, the Microsoft EGA Register Interface li-
brary (EGA.LIB), which is included on the disks that come with this
book. Or, if you are programming in a language that can call inter-
rupts, the language can call the video interrupt functions directly.

To prevent unnecessary problems when using EGA graphics,
follow this rule: If your program will modify the EGA registers and if
it uses the mouse, then use the EGA Register Interface library. If your
program will not modify the EGA hardware directly, you won’t need to
use the EGA.LIB library.

The EGA hardware uses several write-only registers to control the
many EGA display attributes. However, without the new video interrupt
functions, the mouse driver would be unable to keep track of the con-
tents of these special registers, and it would be impossible to correctly
update the mouse cursor position and shape when these registers were
altered. '

The EGA Register Interface lets your program write to and read
from write-only registers on the EGA by keeping shadow maps, or

259



PART Ill: MOUSE PROGRAMMING INTERFACE

working copies, of the registers. This capability is required for
interrupt-driven graphics such as the cursor update code in the
mouse driver.

THE EGA REGISTER INTERFACE LIBRARY

The Microsoft EGA Register Interface library consists of nine functions
that you can call from MASM programs or from programs written in
high-level languages such as Microsoft QuickBASIC, C, QuickC,
FORTRAN, and Pascal. These functions do the following:

® Read from or write to one or more of the EGA write-only
registers.

® Define default values for EGA write-only registers or reset the
registers to these default values.

® Check whether the EGA Register Interface is present and if so,
return its version number.

How the Interface Library Works

Current versions of the mouse driver install the EGA Register Interface
library if the driver detects an EGA installed in the system. The inter-
face maintains shadow maps of the EGA write-only registers, which lets
application programs read these registers. The shadow maps are up-
dated whenever your program calls one of the interface functions to set
aregister; therefore, the shadow maps always contain the last values
written to the registers. When your program calls one of the interface
functions to read a register, the function call returns the value stored
in the shadow map.

The code in the interface intercepts mode-change calls to the
ROM BIOS (Interrupt 10H with AH = 0) and updates the shadow maps
and default register tables accordingly.

Cadlling the Library from MASM Programs.

To call EGA Register Interface functions from a MASM program, do the
following:

1. Load the AX, BX, CX, DX, and ES registers (as required) with the
parameter values.

2. Execute software Interrupt 10H.

260



Chapter 10: Writing Mouse Programs for IBM EGA Modes

Values returned by the EGA Register Interface functions are
placed in the registers.

NOTE: When called from MASM programs, Functions F2, F3, F4, F5, and F7
expect ES:BX to be a table pointer. These functions are discussed in detail later in
this chapter.

MASM Example
Use the following instructions to set the palette registers to the values
in the mytable array:

mytable db 00h,01h,02h,03h,04h,05h,14h,07h
db 38h,39h,3ah,3bh,3ch,3dh,3eh,3fh

mov ax, ds S
kmov es._ayxy‘ o DU Set ES to the data segment
~mov bx, offset mytable ;Now ES:BX --> mytable
. mov cx, 0010h Startmg at reg 0 for 16
mov dx, 18h ©  :18H = attribute chip
mov ah, 0f3h ~ ;F3H = write register range

int 10h Execute the interrupt

Calling the Library from High-Level Language Programs

You can call EGA Register Interface functions from QuickBASIC, C,
QuickC, FORTRAN, and Pascal programs by linking the programs with
the EGA.LIB library. This library provides several calls that match the
parameter passing and memory-model requirements of each language.

For all these languages, the EGA Register Interface call requires
four integer parameters: EI, E2, E3, and E4. The following table shows
how these parameters correspond to the registers hsted in the function
descriptions later in this chapter:

Parameter Register
El AH
E2 BX
E3 (0.4
E4 DX

261



PART lIl: MOUSE PROGRAMMING INTERFACE

When your program calls the EGA Register Interface, the register
copies the parameters into the corresponding registers, calls the video
interrupt, and copies the returned register values back into the
parameters.

For Function FA, the value returned in the ES register is placed
in the E4 parameter. The way the parameters are passed to the EGA
Register Interface determines how the ES register is loaded. Those calls
that use short parameter addresses (EGAS, cegas, and cegam) copy the DS
register into ES. Those calls that use long parameter addresses (EGAL,
cegac, and cegal) copy the segment part of the address pointed to by E2
into the ES register.

Cadlling from QuickBASIC

To call the EGA Register Interface library from QuickBASIC programs,
use the EGAS subprogram. For functions requiring a table, pass the first
element of an integer array or pass the address of a string using the
SADD function.

To access EGA.LIB from within the QuickBASIC environment,
create a Quick Library that contains EGA.LIB. For example, the follow-
ing command combines the QB.QLB, MOUSE.LIB, and EGA.LIB libraries
into a composite Quick Library named QBNEW.QLB:

LINK /QU /NOE MOUSE.LIB+EGA.LIB+QB.LIB,QBNEW.QLB,NUL,BQLB45.LIB;

To load this new Quick Library with QuickBASIC, enter the following
command:

QB /L QBNEW.QLB

Alternately, you can create the equivalent library file QBNEW.LIB by
entering,

LIB QBNEW.LIB+MOUSE.LIB+EGA.LIB+QB.LIB;

This lets your programs compile and link into .EXE programs, which
you can run from the MS-DOS prompt.

QuickBASIC example The following example prints the version number
of the EGA Register Interface:

(continued)

262



Chapter 10: Writing Mouse Programs for IBM EGA Modes

continued

el = &HFA ’Inter‘rogate dﬁ'ver
e2 =0

CALL egas(el, e2, e3, e4)

IF e2 <> 0 THEN
PRINT "EGA Register Interface found, version";
DEF SEG = e4
“majorVersion = PEEK(e2)
minorVersion = PEEK(e2 + 1)
DEF SEG o
o PRINT.USING "#Hf_.#HF": majorVersion; minorVersion
ELSE . - N P N .
' PRINT "EGA Register Interface not found"

Calling from C and QuickC

To call the EGA Register Interface library from C programs, use the
cegas function for small-model programs, the cegam function for
medium-model programs, the cegac function for compact-model pro-
grams, or the cegal function for large-model programs. For functions
requiring a table, pass a pointer to the name of a character array or a
pointer to the array pointer.

To call the EGA Register Interface library from the QuickC pro-
gramming environment, use the cegam function (the C function for
medium-model programs) and add EGA.LIB to the program list. For
functions requiring a table, pass a pointer to the name of a character
array or a pointer to the array pointer.

C example In a small-model C program (versions 3.0 and later), the fol-
lowing example restores the default settings for the EGA registers:

Calling from FORTRAN

To call the EGA Register Interface library from FORTRAN programs,
use the EGAL subprogram. For functions requiring a table, pass the first
element of an integer array (packed 2 bytes per integer).

263




PART lll: MOUSE PROGRAMMING INTERFACE

FORTRAN example The EGA.FOR program calls EGAL to access the EGA
Register Interface and uses Function FA to interrogate the driver. If the
EGA Register Interface is present, its version number is displayed.

You must link this program with EGA.LIB so that you can use the
EGAL call, and you must link this program with IPEEK.OB]J so that you
can use the IPEEK function.

(continued)

264



Chapter 10: Writing Mouse Programs for IBM EGA Modes

contmued

"+ We're done : RS
GOTO 900 o )

100 CONTINUE

* EGA Register Interface wasn't found
WRITE(*,*) "EGA Register Interface not found.'

900 CONTINUE
END

You must assemble and link the IPEEK.ASM file with the EGA.FOR
program. The IPEEK function lets a FORTRAN program get a byte from
any location in memory.

©; Function: IPEEK

S Destfihfibn: *Called from EGA.FOR to detal byte from %
s any 1ocat1on in memory T

| ; Example: 'ﬁBYTVAL IPEEK(SEG OFS)

4V‘MASMQIPE

(continued)

265




PART lll: MOUSE PROGRAMMING INTERFACE

266

continued

Calling from Pascal
To call the EGA Register Interface library from Pascal programs, use
the EGAS procedure if the argument addresses are in the program’s

_data segment (short addresses). If the arguments are in another seg-

ment (long addresses), use the EGAL procedure. For functions requir-
ing a table, pass a pointer to the first element of an integer array
(packed 2 bytes per integer).

Pascal example In a Pascal program with long argument addresses,
include the following statement to declare EGAL as an external
procedure:




Chapter 10: Writing Mouse Programs for IBM EGA Modes

Once the procedure is declared, include the following statements
to restore the default settings for the EGA registers:

El := 246 (*Function number is 246 = F6 (hexadecimal)*)
.. EGAL (El1, E2, E3, E4)

Considerations When Calling ROM BIOS Video Routines

You need to be aware of certain considerations when your program
uses the EGA Register Interface library. The EGA Register Interface li-
brary intercepts only those calls to the ROM BIOS video routines that
change the screen mode (Interrupt 10H, AH = 0, AL =13h or less). It
does not intercept any other ROM BIOS video routine calls. However,
any other ROM BIOS video routine calls should restore all registers, so
using them is no problem.

A call to Interrupt 10H to set the color palette (AH = 0Bh) is an ex-
ception to this rule. You should use EGA Register Interface Function F5
(Write Register Set) to set the color palette. For more information
about Function F5, see “EGA Register Interface Functions” later in this
chapter.

Attribute Controller Registers

Before your application program uses the Attribute Controller regis-
ters (input/output address 3C0h) in one of the new Interrupt 10H calls,
the program must set the Address or Data register flip-flop to the Ad-
dress register. It does this by performing an input from input/output
port 3BAh or C3DAh. The flip-flop is always reset to this state when the
program returns from the Interrupt 10H call. (Note: The version of
EGA.LIB included with this book sets the Address or Data register flip-
flop to the Address register automatically.)

An interrupt routine that accesses the attribute chip always leaves
the flip-flop set to the Address register when the program returns from
the interrupt call. Therefore, if your application program sets the flip-
flop to the Data register and expects the flip-flop to remain in this
state, the program must disable interrupts between the time it sets the
flip-flop to the Data register state and the last time the flip-flop is
assumed to be in this state.

Sequencer Memory Mode Register
When the Sequencer Memory Mode register (input/output address
3C5h, Data register 4) is accessed, the sequencer produces a glitch on

267



PART lll: MOUSE PROGRAMMING INTERFACE

268

the CAS lines that can cause problems with video random-access
memory (VRAM). As a result, your application program cannot use the
EGA Register Interface to read from or write to this register. Instead,
use the following procedure to alter this register:

1. Disable the interrupts.

2. Set Synchronous Reset (bit 1) in the Sequencer Reset
register to 0.

3. Read from, write to, or modify the Sequencer Memory
Mode register.

4. Set Synchronous Reset (bit 1) in the Sequencer Reset
register to 1.

5. Enable the interrupts.

Input Status Registers

Your application program cannot use the EGA Register Interface to
read Input Status registers 0 (input/output address 3C2h) and 1 (input/
output address 3BAh or 3DAh). If the program must read these registers,
it should do so directly.

Graphics Controller Miscellaneous Register
When the Graphics Controller Miscellaneous register (input/output
address 3CFh, Data register 6) is accessed, a glitch on the CAS lines
occurs that can cause problems with video random-access memory
(VRAM). As a result, your application program should not use the EGA
Register Interface to read from or write to this register.

EGA Register Interface Function F6 (Revert to Default Registers)
doesn’t alter the state of the Graphics Controller Miscellaneous regis-
ter. Use the following procedure to alter this register:

1. Disable the interrupts.

2. Set Synchronous Reset (bit 1) in the Sequencer Reset
register to 0.

3. Read from, write to, or modify the Graphics Controller
Miscellaneous register.

4. Set Synchronous Reset (bit1) in the Sequencer Reset
register to 1.

5. Enable the interrupts.



Chapter 10: Writing Mouse Programs for IBM EGA Modes

EGA Register Interface Functions

The following table shows the number and the name of each function
described in detail in this chapter:

Function

Number (Hex)  Function Name

FO Read One Register

Fl Write One Register

F2 Read Register Range

F3 Write Register Range

F4 Read Register Set

F5 Write Register Set

F6 Revert to Default Registers
F7 Define Default Register Table
FA Interrogate Driver

NOTE: Function calls FSH, F9H, and FBH through FFH are reserved.
Each function description includes the following:

= The parameters required to make the call (input) and the
expected return values (output)

® Any special considerations regarding the function

If the function description doesn’t specify an input value for a
parameter, you don’t need to supply a value for that parameter before
making the call. If the function description doesn’t specify an output
value for a parameter, the parameter’s value is the same before and
after the call.

NOTE: The EGA Register Interface doesn’t check input values, so be sure that
the values you load into the registers are correct before making a call.

269



PART lll: MOUSE PROGRAMMING INTERFACE

FUNCTION FO: READ ONE REGISTER

Function FO reads data from a specified register on the EGA.

Call with

Returns

Examples

270

AH
BX

DX

AX:
BH:

BL:

DX:

Foh
Pointer for pointer/data chips:
BH =0 ’
BL = pointer
Ignored for single registers
Port number:
Pointer/data chips
00h: CRT Controller (3B4h for monochrome modes;
3D4h for color modes)
08h: Sequencer (3C4h)
10h: Graphics Controller (3CEh)
18h: Attribute Controller (3C0h)
Single registers
20h: Miscellaneous Output register (3C2h)
28h: Feature Control register (3B4h for monochrome
modes; 3D4h for color modes)
30h: Graphics 1 Position register (3CCh)
38h: Graphics 2 Position register (3CAh)

Restored
Restored
Data

Restored

All other registers restored

The following example saves the contents of the Sequencer Map Mask
register in myvalue:




Chapter 10: Writing Mouse Programs for IBM EGA Modes

The following example saves the contents of the Miscellaneous
Output register in myvalue:

myvalue db 7 ‘ o DA !

mov ah, 0fOh ;F0 = read one register

mov dx, 0020h ;DX =~ miscellaneous output register
int 10h ;Call the interrupt '

mov myvalue, bl ;Save the value

27N



PART lll: MOUSE PROGRAMMING INTERFACE

FUNCTION F1: WRITE ONE REGISTER

Function F1 writes data to a specified register on the EGA.

When your application program returns from a call to Function
F1, the contents of the BH and DX registers are not restored. If you want
to save and restore these registers, you must instruct your application
program to do so.

Callwith AH = Flh
BL = Pointer for pointer/data chips
or
Data for single registers
BH = Data for pointer/data chips (ignored for single registers)
DX = Portnumber:
Pointer/data chips
00h: CRT Controller (3B4h for monochrome modes; 3D4h
for color modes)
08h: Sequencer (3C4h)
10h: Graphics Controller (3CEh)
18h: Attribute Controller (3Coh)
Single registers
20h: Miscellaneous Output register (3C2h)
28h: Feature Control register (3B4h for monochrome
modes; 3D4h for color modes)
30h: Graphics 1 Position register (3CCh)
38h: Graphics 2 Position register (3CAh)

Returns AX: Restored
BL: Restored
BH: Not restored
DX: Not restored
All other registers restored

272



Chapter 10: Writing Mouse Programs for IBM EGA Modes

Examples The following example writes the contents of myvalue into the CRT
Controller Cursor Start register:

" myvalue db 3h

Byl & mbv ah, Ofith = ; ‘Fl - write one register
Lo movebh, myvalue ; BH = data from myvalue
' © mov bl, 000ah ; BL = cursor start index

L xordx, dx ;DX = crt controller
, - dnt10h - ; Call the interrupt

The following example writes the contents of myvalue into the
Feature Control register:

3 F1.= write one register
'“L,?-“data;fi"omkmyyame Gl b
DX = feature control register

273



PART lll: MOUSE PROGRAMMING INTERFACE

FUNCTION F2: READ REGISTER RANGE

Function F2 reads data from a specified range of registers on the EGA.
(Arange of registers is several registers on a single chip that have con-
secutive indexes.) This call makes sense only for the pointer/data chips.

Callwith AH =
= Starting pointer value
CL =
DX =

CH

ES:BX

Returns AX:
BX:
CX:
DX:
ES:

F2h

Number of registers (must be > 1)

Port number:

00h: CRT Controller (3B4h for monochrome modes; 3D4h for

color modes)

08h: Sequencer (3C4h)

10h: Graphics Controller (3CEh)

18h: Attribute Controller (3C0h)

= Points to a table of one-byte entries (length = value in CL).
On return, each entry is set to the contents of the corre-
sponding register.

Restored
Restored
Not restored
Restored
Restored

All other registers restored

Example  The following example saves the contents of the Attribute Controller
Palette registers in paltable:

274



Chapter io: Writing Mouse Programs for IBM EGA Modes

FUNCTION F3: WRITE REGISTER RANGE

Function F3 writes data to a specified range of registers on the EGA. (A
range of registers is several registers on a single chip that have consecu-
tive indexes.) This call makes sense only for the pointer/data chips.

Call with

Returns

Example

AH =

CH
CL

ES:BX

AX:
BX:
CX:
DX:
ES:

F3h

= Starting pointer value
= Number of registers (must be > 1)
DX =

Port number
00h: CRT Controller (3B4h for monochrome modes; 3D4h for
color modes)

08h: Sequencer (3C4h)

10h: Graphics Controller (3CEh)

18h: Attribute Controller (3C0h)

= Points to a table of one-byte entries (length = value in CL).
Each entry contains the value to be written to the corre-
sponding register.

Restored
Not restored
Not restored
Not restored
Restored

All other registers restored

The following example writes the contents of cursloc into the CRT
Controller Cursor Location High and Cursor Location Low registers.

275



PART Ill: MOUSE PROGRAMMING INTERFACE

FUNCTION F4: READ REGISTER SET

Call with

Returns

276

Function F4 reads data from a set of registers on the EGA. (A set of regis-
ters is several registers that might or might not have consecutive in-
dexes and that might or might not be on the same chip.)

AH = F4h
CX = Number of registers (must be > 1)
ES:BX = Points to table of records with each entry in the following
format:
Byte 0: Port number
Pointer/data chips
00h: CRT Controller (3B4h for monochrome modes;
3D4h for color modes)
08h: Sequencer (3C4h)
10h: Graphics Controller (3CEh)
18h: Attribute Controller (3C0h)
Single registers
20h: Miscellaneous Output register (3C2h)
28h: Feature Control register (3B4h for monochrome
modes; 3D4h for color modes)
30h: Graphics 1 Position register (3CCh)
38h: Graphics 2 Position register (3CAh)
Byte 1: Must be zero
Byte 2: Pointer value (0 for single registers)
Byte 3: EGA Register Interface fills in data read from
register specified in bytes 0 through 2

AX: Restored

BX: Restored

CX: Not restored

ES: Restored

All other registers restored



Chapter 10: Writing Mouse Programs for IBM EGA Modes

Example The following example saves the contents of the Miscellaneous Output
register, Sequencer Memory Mode register, and CRT Controller Mode
Control register in results:

: outva]s dw~,0020h ; Miscellaneous Qutput register
db 0 ;-0 for single registers
db 7 s Returned value

dw 0008h ; Sequencer }
- db 04h  ; Memory Mode register index
~db 7 ;'_Returned value

: dw:'0000h ;'CRT Contro]]er ,
~.db -17h " ; Mode Control reg1ster' 1ndex
soedb e Returned va]ue ;

~results db 3 dup (D)

,,Assume outva'ls in
data segment s
es, ES = data’ seqment G
:bx offset outva1s ; ES: BX - outvals addr‘ess:» SEtts

: F4 - read reglster set i

277



PART lIl: MOUSE PROGRAMMING INTERFACE

FUNCTION F5: WRITE REGISTER SET

Function F5 writes data to a set of registers on the EGA. (A set of regis-
ters is several registers that might or might not have consecutive in-
dexes and that might or might not be on the same chip.)

Callwith AH = F5h

CX = Number of registers (must be > 1)

ESBX = Points to table of values with each entry in the following.
format:
Byte 0: Port number
Pointer/data chips

00h: CRT Controller (3B4h for monochrome modes;
3D4h for color modes)
08h: Sequencer (3C4h)
10h: Graphics Controller (3CEh)
18h: Attribute Controller (3C0h)
Single registers '
20h: Miscellaneous Output register (3G2h)
28h: Feature Control register (3B4h for monochrome
modes; 3D4h for color modes)
30h: Graphics 1 Position register (3CCh)
38h: Graphics 2 Position register (3CAh)
. Byte 1: Must be zero
Byte 2: Pointer value (0 for single registers)
Byte 3: Data to be written to register specified in bytes 0
through 2

Returns AX: Restored
BX: Restored
CX: Not restored
ES: Restored
All other registers restored

278



Example

Chapter 10: Writing Mouse Programs for IBM EGA Modes

The following example writes the contents of outvals to the Miscella-
neous Output register, Sequencer Memory Mode register, and CRT
Controller Mode Control register:

outvals dk k0020h‘; Miscellaneous Output register
db 0 ; 0 for single registers
db - 0a7h ; Output value

dw 0008h ; Sequencer . '
db - 04h : Memory Mode reg1ster 1ndex
~db 03h Output value

dw  0000h ; CRT Controller <
©db-.17h . ; Mode Control- reglster 1ndex
| ,‘0a3h9;;0utput va]ue :

- Asédme outva1s in
;.data segment
ES = data segment R
ES BX -routvals address
5;= write reg1ster set
~ Number of: entr1es 1n

279




PART lll: MOUSE PROGRAMMING INTERFACE

FUNCTION Fé: REVERT TO DEFAULT REGISTERS

Call with

Returns

Example

280

Function F6 restores the default settings of any registers your applica-
tion program changed through the EGA Register Interface. The default
settings are defined in a call to Function F7.

AH = F6h

All registers restored

NOTE: If your program makes a call to Interrupt 10H, Function 0, to set the
display mode, the default register values change to the BIOS values for the selected
maode.

The following example restores the default settings of the EGA
registers:




FUNCTION F7: DEFINE DEFAULT REGISTER TABLE

Function F7 defines a table that contains default values for any pointer/
data chip or single register. If you define default values for a pointer/
data chip, you must define them for all registers within that chip.

WARNING: Function F7 sets the default values for all registers within a
chip. You must know what to set in all affected registers to prevent unwanted

Call with

Returns

Chapter 10: Writing Mouse Programs for IBM EGA Modes

results. Some combinations of register settings might cause physical damage to the
EGA adapter or the monitor.

AH =
cX =

DX =

ES:BX

AX:
BX:
DX:
ES:

F7h
VGA Color Select Flag:
5448h: Allows the EGA Register Interface to recognize byte off-
set 14h of the table pointed to by ES:BX as the value for the
VGA color select register.
Port number:
Pointer/data chips
00h: CRT Controller (3B4h for monochrome modes; 3D4h
for color modes)
08h: Sequencer (3C4h)
10h: Graphics Controller (3CEh)
18h: Attribute Controller (3Coh)
Single registers
20h: Miscellaneous Output register (3C2h)
28h: Feature Control register (3B4h for monochrome
modes; 3D4h for color modes)
30h: Graphics 1 Position register (3CCh)
38h: Graphics 2 Position register (3CAh)
= Points to a table of one-byte entries. Each entry contains the
default value for the corresponding register. The table
must contain entries for all registers.

Restored

Not restored

Not restored

Restored '

All other registers restored

281



PART lil: MOUSE PROGRAMMING INTERFACE

Examples

282

The following example defines default values for the Attribute
Controller:

The following example defines a default value for the Feature
Control register:




Chapter 10: Writing Mouse Programs for IBM EGA Modes

FUNCTION FA: INTERROGATE DRIVER

Function FA interrogates the mouse driver and returns a value that
specifies whether the mouse driver is present.

Callwith AH = FAh

BX =10
Returns AX = Restored ,
BX = 0if mouse driver is not present
ES:BX = Points to EGA Register Interface version number, if present:

Byte 0: Major release number
Byte 1: Minor release number (in '/ioths)

Example  The following example interrogates the mouse driver and displays the
result:

‘gotmsg db  "EGA Register Interface found", 0dh, Oah,
“nopmsh db "EGA Register Interface not found”, Odh,
b e e o
- crif db 0dh, Oah,

(continued)

283



PART lll: MOUSE PROGRAMMING INTERFACE

continued

284



PART IV

Appendixes

Appendix A: Mouse Command Line Switches
Appendix B: Domestic Mouse Driver Messages
Appendix C: Mouse Menu Messages

Appendix D: Linking Existing Mouse Programs
with MOUSE.LIB

Appendix E: Making Calls from Borland Turbo
Pascal Programs

Appendix F: Using the Mouse with the Hercules
Graphics Card

Appendix G: ASCII Character Set






Appendix A

Mouse Command
Line Swiiches

This appendix describes the mouse command line switches you can use
to customize the operation of the Control Panel and the mouse driver.

CONTROL PANEL SWITCHES

The Control Panel (CPANEL.EXE), which is included with the Microsoft
Mouse, is a memory-resident program that lets you adjust the mouse
sensitivity level—the ratio of cursor movement to actual mouse move-
ment. (For information on using the Control Panel, see Chapter 4,
“Moving the Mouse,” in your Microsoft Mouse User’s Guide.)

Whenever you invoke the Control Panel, the CPANEL program
reserves memory for the area of the screen the Control Panel overlays.
The amount of memory required depends on the type of display
adapter you use and the complexity of the image the Control Panel
overlays. You can change the Control Panel’s default size for the overlay
buffer by using a command line switch to change the amount of
memory reserved by the Control Panel. If your system beeps when you
activate the Control Panel, however, the screen buffer is too small and
you must increase the size of the buffer.

Use one of the following command line switches to change the
size of the buffer, depending on the type of display adapter installed in
your system:

287



PART IV: APPENDIXES

Use This Switch  For This Display Adapter

/Cn : IBM Color/Graphics Adapter
/En IBM Enhanced Graphics Adapter
/Hn Hercules Graphics Card

/Mn IBM Monochrome Adapter

/An AT&T 6300 Display Adapter

The 7 placeholder is a number ranging from 0 through 9. The
larger the number, the larger the screen overlay buffer. If you do not
specify a switch and a number, the default switch and number (/E7)
are used.

The size of the buffer required depends on the screen mode that
the Control Panel overlays. For example, screens displayed in the en-
hanced graphics modes require a larger Control Panel overlay buffer
than screens displayed in the text modes do. '

In general, you should specify a value ranging from 0 through 4
if the Control Panel will overlay only text screens. If the Control Panel
will overlay graphics screens, you should specify a value ranging from
5 through 9.

The following table shows how many bytes of memory are oc-
cupied by the Control Panel and buffer for each switch setting:

Switch

Setting /M /H /A /C /E

0 9712 14240 14992 9360 9360
1 9760 14288 15040 9456 9456
2 9808 14336 15088 9552 9552
3 9856 14384 15136 9744 9744
4 9904 14432 15184 10128 10128
5 9952 14480 15232 11872 19088
6 10000 14528 15280 12128 19344
7 10048 14576 15328 14768 29168
8 10096 14624 15376 15024 29424
9 10144 14672 15424 15280 29680

Using a Control Panel Switch

You use a Control Panel switch to specify thesize of the overlay buffer
when you load the Control Panel into memory. If the Control Panel is
already in memory, you must first remove it from memory.

288



Appendix A: Mouse Command Line Switches

To remove the Control Panel from memory, type cpanel off.

To specify the size of a screen buffer when you load the Control
Panel, type cpanel followed by the appropriate switch.

For example, to specify the largest possible screen buffer for the
area the Control Panel overlays on a CGA system, you would type
cpanel/C9.

MOUSE DRIVER SWITCHES

You use mouse driver command line switches to do the following:
= Specify the mouse sensitivity.
® Set the interrupt rate (for the InPort mouse only).

® Tell the mouse driver the type and location of the Microsoft
Mouse installed in your system so that the driver can bypass its
usual procedure for determining mouse hardware
configuration. ‘

® Disable the mouse driver or remove it from memory.

Using a Mouse Driver Switch

You can add mouse driver command line switches to the mouse com-
mand lines in the AUTOEXEC.BAT or CONFIG.SYS file, or you can type
mouse and the command line switches at the MS-DOS prompt. If you
type one or more switches at the MS-DOS prompt, you must leave a space
between mouse and each switch.

The following sections describe how to use the mouse driver com-
mand line switches.

Specifying Mouse Sensitivity
Use the following command line switches to set mouse sensitivity levels:

Use This Switch  To Set

/Snnn Horizontal and vertical sensitivity
/Hnnn Horizontal sensitivity only

/Vnnn Vertical sensitivity only

/Dnnn Double-speed threshold

The nnn placeholder is a number ranging from 0 through 100.

289



PART IV: APPENDIXES

The switches for horizontal and vertical sensitivity are interpreted
in the same manner as a Control Panel setting is interpreted. The
double-speed-threshold switch determines the threshold speed for
doubling the cursor’s motion on the screen. Setting a double-speed
threshold makes it easier to move the cursor to widely separated images
on the screen. For example, the following command sets the vertical
sensitivity to 20 and the double-speed threshold to 32:

MOUSE /V20 /D32

You can also use Mouse Function 19 to build this feature into an appli-
cation program. For more information on Function 19, see Chapter 8,
‘‘Mouse Function Calls.”

Setting the Interrupt Rate for the InPort Mouse
If you use an InPort mouse, you can use one of the following command
line switch settings to specify the interrupt rate for the mouse:

Switch Setting  Interrupt Rate

/RO Disabled

/R1 30 Hz (default)
/R2 50 Hz

/R3 100 Hz

/R4 200 Hz

Specifying the Type and Location of the Mouse .
The command line switches described in this section do the following:

® They direct the mouse driver to bypass its usual search to deter-
mine the mouse hardware configuration.

= They look for a specific type of Microsoft mouse at a specific
input/output port.

You will find this feature useful if:

® The mouse driver has trouble determining which port the
mouse is connected to, given your system’s configuration.

® More than one InPort device is connected to your computer.

® You want to decrease the time required to load the mouse
driver.

290



Appendix A: Mouse Command Line Switches

The following table lists each switch you can use to tell the mouse
driver to look for a specific mouse hardware configuration:

Use This Switch  To Look For

/B Bus or InPort mouse at primary InPort address
/11 InPort mouse at primary InPort address

/12 InPort mouse at secondary InPort address

/C1 Serial mouse on COM1

/C2 Serial mouse on COM2

NOTE: At this time, the PS/2 mouse port doesn’t have a switch.

Disabling or Removing the Mouse Driver

If necessary, you can disable the mouse driver or remove it from
memory. However, before you disable or remove the mouse driver, you
must remove the Control Panel from memory and you must also end
any mouse menu program you are using in addition to any other TSR
program you loaded after you loaded the mouse menu.

To remove the Control Panel from memory, type cpanel off.

To end a Microsoft Expert mouse menu program, type filename
off. (Filename is the name of the Expert mouse menu program.)

To end a mouse menu program that you wrote yourself, type
menu off.

To disable or remove the mouse driver from memory, type
mouse off. i

When you type mouse off, one of the following actions occurs:

® If your mouse driver is MOUSE.SYS, it is disabled.

® If your mouse driver is MOUSE.COM, it is removed from
memory.

29






AppendixB

Domestic Mouse
Driver Messages

This appendix lists the messages that the domestic mouse driver might
display. It also describes possible causes of the messages and the actions
you can take in response to them.

Invalid parameter

You typed an invalid parameter in a command line switch. For more
information on command line switches, see Appendix A, ‘“Mouse Com-
mand Line Switches.”

Driver not installed—Internal Error 1
Insufficient space was found to load the interrupt service routine. If
you receive this message, please call Microsoft Product Support.

Driver not installed— Microsoft Mouse not found

The mouse hardware was not found on the system in which the mouse
driver attempted to install itself. A hardware component in your com-
puter might be defective.

~ Driver not installed—interrupt jumper missing

A jumper on the bus card of a bus or InPort mouse is missing. You need
to verify that the jumper has been installed. You might also need to
select another interrupt position.

293



PART IV: APPENDIXES

294

Driver not installed—multiple interrupt jumpers found

The mouse driver detected multiple interrupt jumpers on an InPort
mouse. You need to verify that only one jumper block is present on the
interrupt select jumper.

MSX Mouse driver installed
The driver for an MSX mouse on an MSX system was installed. No action
is required.

Mouse driver installed
The installation of the mouse driver was successful. No action is
required.

Switch values passed to existing mouse driver ,
Command-line switch values were passed to the existing driver when
you reran MOUSE.COM from the MS-DOS prompt. No action is required.

Existing mouse driver enabled
The previously loaded mouse driver was enabled when you reran
MOUSE.COM from the command line while a mouse driver was present.
No action is required.

Existing mouse driver removed from memory
An existing mouse driver was removed from memory. No action is
required.

Existing mouse driver disabled
An existing mouse driver was disabled, but the driver was not unloaded
from memory. No action is required.

Mouse driver not installed
You used the mouse off command line, but no mouse driver was
installed.

Mouse driver installed, cannot change port (/i, /c, and /b invalid)

The mouse driver was successfully installed to use either an InPort
port, a serial port, or a bus port. Once the driver has been successfully
installed, you can’t use the command-line switch to change the port.



Appendix B: Domestic Mouse Driver Messages

Mouse driver already installed

You are trying to install another copy of MOUSE.SYS on top of an exist-
ing one. Check your CONFIG.SYS file and modify it to load only one
copy of the driver.

Unable to disable Mouse driver— Control Panel is active

You can’t disable the mouse driver when Control Panel is active. Dis-
able Control Panel by entering cpanel off with the appropriate path-
name at the MS-DOS prompt. You can now unload the mouse driver.

Unable to disable Mouse driver—Mouse Menu is active

You can’t unload the mouse driver while a mouse menu is active in the
system. Type menu off to disable the mouse menu.

295






Appendix C:

Mouse Menu
Messages

This appendix lists the messages that the MENU program and the
MAKEMENU utility might display, along with descriptions of possible
causes and the actions you can take in response to them.

nnnn error(s) detected

This message informs you how many errors MAKEMENU detected while
attempting to process the .DEF file.

nnnn symbol(s) used

After successfully converting the .DEF file, MAKEMENU presents this
message telling you how many symbols were used in the .DEF file.

xxxxxx before BEGIN

The first statement in your .DEF file must be a BEGIN statement. Correct
the .DEF file and run MAKEMENU again.

Cannot use system reserved label: xxxxxx

One of the labels in the .DEF file is reserved for use by MAKEMENU.
Change each occurrence of the specified label in the .DEF file and run
MAKEMENU again.

Cannot use system reserved parameter: xxxxxx

One of the parameters in the .DEF file is reserved for use by
MAKEMENU. Change each occurrence of the specified parameter
in the .DEF file and run MAKEMENU again.

297



PART IV: APPENDIXES

298

Close quote missing

A statement in the DEF file contained an item missing a closing quota-
tion mark. Correct the .DEF file and run MAKEMENU again.

Conversion completed

The MAKEMENU utility has finished creating a loadable menu file. No
action is required. The MS-DOS system prompt appears after
MAKEMENU displays this message.

Error—Invalid statement: xxxxxx

The statement didn’t have a label, the statement’s label didn’t end with
a colon (:), the statement had an invalid parameter, or a syntax error
occurred. Be sure that all statements (except the BEGIN statement and
statements within menu and pop-up subroutines) are labeled. Also, be
sure that each label is followed by a colon. Check the statement syntax
for correct use of commas and spaces.

Error— Label already used: xxxxxx

The same label was used to name more than one statement. Be sure
that the labels are unique for each statement.

Error—Label not found: xxxxxx

A label specified for a parameter did not exist. Be sure that the state-
ments have labels and that the labels are correct.

Extra colon after label: xxxxxx

MAKEMENU detected an extra colon after one of the labels. You can
use only one colon after a label. Correct the .DEF file and run
MAKEMENU again.

Illegal function call at address nnnn

ATYPE or an EXECUTE statement had too many parameters, a SELECT
statement defined the item-selection area outside the menu, or a
SELECT or an OPTION statement had quotation marks placed in-
correctly. Use the correct number of parameters, redefine the item-
selection area, or ensure that double-quotation marks are used correctly
to designate textstrings.

Invalid statement

MAKEMENU detected an invalid statement in the .DEF file. Correct the
.DEF file and run MAKEMENU again.



Appendix C: Mouse Menu Messages

Keyboard emulation off

The mouse menu program is no longer running. No action is required.
Keyboard emulation on

The mouse menu program is running. No action is required.
xxxxxx— Label pointer not found

One of the statement parameters refers to a label that does not exist in
the file. Correct the .DEF file and run MAKEMENU again.

Label previously used

You used the same label twice in the same program. Correct the .DEF
file and run MAKEMENU again.

Menu installed

You started up a mouse menu program, and it is running. No action is
required. Use the mouse menu as usual.

Must run under DOS 2.00 or later
You cannot use MAKEMENU with a version of MS-DOS earlier than 2.00.
Name of file to convert:

You typed makemenu to create a loadable mouse menu file. Type in a
mouse menu filename without the .DEF extension.

OPTION statement before MENU statement

You can use OPTION statements only within a MENU/MEND subroutine.
Correct the .DEF file and run MAKEMENU again.

Program too large

The size of the mouse menu .DEF file will cause the resulting .MNU file
to be larger than the maximum size of 57 KB. Reduce the size of the
.DEF file.

Too many symbols (user-defined labels)

Your .DEF file used more than 967 symbols. (MAKEMENU allows 1,000
symbols. However, MAKEMENU uses 33, so only 967 are available to the
user.) Correct the .DEF file and run MAKEMENU again.

299






Appendix D

Linking Existing
Mouse Programs
with MOUSE.LIB

If you have a high-level language program that links with an earlier
version of the Microsoft Mouse library, you might need to modify the
program to link it with the new MOUSE.LIB library on the disks that
come with this book. :

The new MOUSE.LIB library works in the same way as did previ-
ous mouse libraries except that the new library has the following new
features:

® New Mouse Functions 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, and 36.

® You must pass the fourth parameter (M4%) of Mouse
Function 9 by reference instead of by value.

® Mouse Function 16 requires four parameters instead of five.

If your program doesn’t call Functions 9 or 16, you can link it with
the new MOUSE.LIB library without modification.

If your program calls Functions 9 or 16, you must modify the pro-
gram so that it conforms with the new interface definitions before you
can link it with the new MOUSE.LIB.

301






Appendix E

Making Calls from
Borland Turbo
Pascal Programs

To call mouse functions from a program in Borland Turbo Pascal, use
the following procedure, which passes the correct parameters to the
mouse driver. Include this procedure in your code, and then call the
mouse functions by passing values into this procedure.

(continued)

303



PART IV: APPENDIXES

continued

2;-{Left - x coordinate
- CpuReg.DX := m3; {Upper y coordinate}
~ CpuReg.SI := m4; {Right x coordinate
pruReQ'.DVI' ; {Lower y coordinate
nd;

304



Appendix F

Using the Mouse
with the Hercules
Graphics Card

Before you use the Hercules Monochrome Graphics Card with a
program that has built-in mouse support, you must do the following:

1. Put the Hercules card into graphics mode. (If necessary, see
the documentation that came with your Hercules card).

2. If the Hercules card is using CRT page 0, store a 6 in memory
location 40H:49H. If the Hercules card is using CRT page 1, store
a 5 in memory location 40H:49H.

3. Call Mouse Function 0 to set the mouse cursor boundaries and
CRT page number to the appropriate values.

If you are using Microsoft G and MSHERC.COM or Microsoft
QuickBASIC and QBHERC.COM, you should follow the steps in this
order:

1. If the Hercules card is using CRT page 0, store a 6 in memory
location 40H:49H. If the Hercules card is using CRT page 1, store
a 5 in memory location 40H:49H.

2. Call Mouse Function 0 to set the mouse cursor boundaries and
CRT page number to the appropriate values.

3. Put the Hercules card into graphics mode. (If necessary, see
the documentation that came with your Hercules card).

305






Appendix G

ASCII Character Set

This appendix provides tables for the ASCII standard character set,

the IBM extended character set, and the line-drawing characters in the
extended character set. In addition, the section at the end of this
appendix discusses how you can use ASCII characters and extended-
keyboard-scan codes with the TYPE statement.

ASCII TABLES

Figures G-1 and G-2 show all 256 characters of the IBM extended charac-
ter set supported by most computers that run MS-DOS. The figures show
the characters in four columns; each character is followed by its corre-
sponding code in decimal and hexadecimal. Many compatible printers
print the full character set; if you're not sure about your printer, check
its manual.

307



PART IV: APPENDIXES

The ASCII Standard Character Set

Figure G-1 shows the first 128 characters (codes 0 through 127) of the
ASCII standard character set.

308

ASCII Dec

ASCII Dec Hex ASCII Dec Hex Hex ASCII Dec Hex
0 00 <space> 32 20 @ 64 40 9% 60
© 10 ! 33 21 A 65 41 a 97 61
-] 202 « 34 22 B 66 42 b 98 62
v 303 # 35 23 C 67 43 c 99 63
'y 4 04 $ 36 24 D 68 44 d 100 64
& 5 05 % 37 25 E 69 45 ¢ 101 65
Py 6 06 & 38 26 F 70 46 f 102 66
. 7 07 39 27 G 71 47 g 103 67
(o] 8 08 ( 40 28 H 72 48 h 104 68
'e) 9 0y ) 41 29 1 73 49 i 105 69
O] 10 0A * 42 2A J 74 4A j 106 6A
g 11 0B + 43 2B K 75 4B k 107 6B
Q 12 0C , 44 2C L 76 4C 1 108  6C
) 13 0D - 45 2D M 77 4D m 109 6D
D) 14 OE . 46 2E N 78 4E n 110 6E
3% 15 OF / 47 2F O 79  4F ) 111 6F
> 16 10 0 48 30 p 80 50 p 112 70
« 17 1 1 49 31 Q 81 51 q 113 71
3 18 12 2 50 32 R 82 52 r 114 72
i 19 13 3 51 33 S 83 53 s 115 73
q 20 14 4 52 34 T 84 54 t 116 74
§ 21 15 5 53 35 U 85 55 u 117 75
- 2 16 6 54 36 \Y% 86 56 v 118 76
$ 23 17 7 55 37 W 87 57 w 119 77
t 24 18 8 56 38 X 88 58 X 120 78
1 25 19 9 57 39 Y 89 59 y 121 79
- 26 1A : 58 3A 4 90 5A z 122 7A
« 27 1B ; 59 3B [ 91 5B { 123 7B
- 28 1C < 60 3C \ 92 5C | 124 7C
@ 29 1D = 61 3D ] 93 5D } 125 7D
A 30 1E > 62 3E A 94 SE ~ 126 7E
v 31 1F ? 63 3F _ 95 SF A 127 7F

Figure G-1. The ASCII standard character set.



The IBM Extended Character Set

Appendix G: ASCIl Character Set

Figure G-2 shows the IBM extended character set (codes 128 through

955).

ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex
c 128 80 a 160 A0 L 192 Co a 224 E0
a 129 8 i 161 Al L 193 Cl B 225 El
é 130 82 6 162 A2 T 194 2 r 226 E2
a 131 83 u 163 A3 Fo19s 3 T 227 E3
a 132 84 i 164 A4 - 196 C4 s 228 E4
a 133 8§ N 165 A5 + 197 Cs g 229 E5
& 134 86 a 166 A6 E 198 C6 B 230 E6
¢ 135 87 ° 167 A7 199 cC7 T 231 E7
& 136 88 3 168 A8 Lt 200 C8 $ 232 E8
& 137 8 - 169 AY F 201 C9 e 233 EY
& 138 S8A - 170 AA L 22 CA Q 234 EA
i 139 8B 3 171 AB ¥ 203 CB 3 235 EB
i 140 8C } 172 AC k204 cC © 236 EC
i 141 8D i 173 AD = 205 CD @ 237 ED
A 142 S8E « 174 AE # 206 CE € 238 EE
A 143 SF » 175 AF L 207 CF n 239 EF
E 144 90 176 BO L 208 DO = 240 FO
& 145 Y] 177 BI T o209 DI + 241 Fl
E 146 92 3 178 B2 T 210 D2 > 242 F2
& 147 93 I 179 B3 L 211 D3 < 243 F3
& 148 94 8! 180 B4 E 212 D4 [ 244 F4
6 149 95 3 181 BS F 213 D5 J 245 F5
a 150 96 1 182 B6 T 214 D6 + 246 F6
a 151 97 n 183 B7 + 215 D7 ~ 247 F7
y 152 98 1 184 B + 216 DS . 248 F8
& 153 99 3 185  BY 217 DY . 249 FY
O 154 YA l 186 BA r 218 DA : 250 FA
¢ 155 9B 7 187 BB B 29 B J 251 FB
£ 156 9C 3 188 BC m 220 DC n 252 FC
¥ 157 9D 1 189 BD | 21 DD 2 253 FD
R 158 YE d 190 BE I 222 DE . 254 FE
f 159 OF 1 191 BF ®m 223 DF ‘ 255 FF

Figure G-2. The IBM extended character set.

309



PART IV: APPENDIXES

Line-drawing Characters

Figure G-3 shows the four sets of line-drawing characters in the IBM
extended character set.

205 186 ' 96 186
203 210

201 187 214 183

204 —_— 185 199 — —Jl182
206 215

200 188 211 189
202 208
196 179 205 T
194 209

218 191 213 l 184

195 180 198 ‘ =181
197 216

192 217 212 l | 190
193 207

Figure G-3. Line-drawing characters in the extended character set.

310



USING THE TYPE STATEMENT

The remaining sections list the following:

Appendix G: ASCIl Character Set

® The functions of the ASCII control characters and the
extended-keyboard-scan codes when you use them with the

TYPE statement

= The key sequences that can’t be simulated by using the TYPE

statement

NOTE: The output characteristics listed for particular key functions are for
mouse menus running at the MS-DOS level. Therefore, standard applications might
not interpret all keyboard operations in the same way. Applications that reprogram
or directly access the keyboard or applications that bypass the MS-DOS system facili-
ties for keyboard input might not function correctly with mouse menus.

Using ASCII Control Characters with the TYPE Statement

The following table lists the function of each ASCII control character
when you use it with the TYPE statement:

ASCII Code  Key Equivalent

ASCII Code  Key Equivalent

none
Ctrl-A
Ctrl-B
Cul-C
Ctrl-D
Ctrl-E
Ctrl-F
Ctrl-G
Backspace
Tab

10 Line Feed
11 Ctrl-K

12 Ctrl-L

13 Enter/Return
14 Ctrl-N

15 Ctrl-O

©C IOk WON=O

16
17
18
19

.20

21
22
23
24
25
26
27
28
29
30
31

Ctrl-P
Ctrl-Q
Ctrl-R
Ctrl-S
Ctrl-T
Ctrl-U
Ctrl-v
Ctrl-W
Ctrl-X
Ctrl-Y
Ctrl-Z
Esc
Ctrl\
Ctrl-]
Ctrl-»
Ctrl-_

311



PART IV: APPENDIXES

Using Extended-Keyboard-Scan Codes with the TYPE Statement

Extended-keyboard-scan codes have two components: a character code
(which is always 0) and a scan code (for example, 0,75). The following
tables list the scan codes you can use with the TYPE statement and the
character code 0 to simulate specific keys. (You can’t use standard or
extended ASCII characters as extended-keyboard-scan codes.)

Simulating Direction and Editing Keys
The following table lists the scan codes you can use with the TYPE
statement to simulate direction and editing keys:

Keys Scan Code
Ctrl-End 117
Ctrl-Home 119
Ctrl-left-arrow key 115
Ctrl-PgDn 118
Ctrl-PgUp 132
Ctrl-PrtSc 114
Ctrl-right-arrow key 116
Delete 83
End ' 79
Down-arrow key 80
Home 71
Insert 82
Left-arrow key 75
PgDn 81
PgUp 73
Right-arrow key 77
Shift-Tab 15
Up-arrow key 72

NOTE: Your computer might offer additional codes. Refer to the technical
documentation for your particular computer.

312



Appendix G: ASCIl Character Set

Simulating Function Keys and Set Key Combinations
The following table lists the scan codes you can use with the TYPE
statement to simulate the function keys and set key combinations:

Keys Scan Code Keys Scan Code
F1 59 Alt-0 129
F2 60 Alt-1 120
F3 61 Alt-2 121
F4 62 Alt-3 : 122
F5 63 Alt-4 123
F6 64 Altb 124
F7 65 Alt-6 125
F8 66 Ale-7 126
F9 67 Alt-8 127
F10 68 Alt9 128
Shift-F1 (F11) 84 Alt-— 130
Shift-F2 (F12) 85 Alt-= 131
Shift-F3 (F13) 86 Alt-A 30
Shift-F4 (F14) 87 Ale-B 48
Shift-F5 (F15) 88 AleC 46
Shift-F6 (F16) 89 Ale-D 32
Shift-F7 (F17) 90 Al:-E 18
Shift-F8 (F18) 91 AltF 33
Shift-F9 (F19) 92 Al-G 34
Shift-F10 (F20) 93 Al-H 35
Ctrl-F1 (F21) 94 Altl 23
Ctrl-F2 (F22) 95 Al 36
Ctrl-F3 (F23) 96 AltK 37
Ctrl-F4 (F24) 97 AltL 38
Ctrl-F5 (F25) 98 AleM 50
Ctrl-F6 (F26) 99 Alt-N 49
Ctrl-F7 (F27) 100 Alt-O 24
Ctrl-F8 (F28) 101 AleP 25
Ctrl-F9 (F29) 102 Alt-Q 16
Ctrl-F10 (F30) 103 AleR 19
Alt-F1 (F31) 104 AltS 31
Alt-F2 (F32) 105 Alt-T 20
Alt-F3 (F33) 106 AleU 22
Alt-F4 (F34) 107 AleV 47
Alt-F5 (F35) 108 AltW 17
Alt-F6 (F36) 109 Ale=X 45
AltF7 (F37) 110 AltY 21
Alt-F8 (F38) 111 AltZ 44

Alt-F9 (F39) 112
Alt-F10 (F40) 113

313






Special Characters

“

(double quotation marks)
simulating 70
specifying keys with 70
use in MENU statement 32
use in OPTION statement 61
use in statements 28, 47
use in TEXT statement 34

% (percent sign), use in

parameter names 115
+ (plus sign), for drawing corners

, (comma)
use in statements 27, 47
use in TYPE statement 40
— (minus sign/hyphen), for
drawing horizontal lines 35,
64
... (ellipsis), use in statements 47
: (colon), use in statement labels
27,47
; (semicolon), to specify
comments 30
= (equal sign), for drawing
horizontal lines 35, 64
[1 (brackets), use with parameters

i (vertical-line character), for
drawing lines 35, 64

3270 (IBM 3270 All-Points-
Addressable Graphics
Adapter) 84-85,108

A

ABSOLUTE.BAS program 217-19
action commands
EXECUTE 25, 39, 78
flow of actions, Mouse Menu
programs 37-39
NOTHING 26, 32, 41
TYPE 26, 40-41
active disk, changing with
MATCH 42
adapters. See specific adapter names;
see also video display adapters
addresses
alternate subroutine
getting 185-86
setting 179-84

Index

addresses (continued)
interrupt subroutine
replacing existing 106—7
setting 107, 151-57
setting new values for 167-72
Address register flip-flop,
setting 267
Allen, Paul 5
Alt key combinations 71, 107
'/AM option, changing 234
ANSLSYS escape-code
sequences 249
Apple Lisa personal computer 4
Apple Macintosh personal
computer 4
arrow cursor 92, 103
arrow keys, simulating with mouse
17,71,73-74, 312
ASCII code .
control characters, using with
TYPE (table) 311
extended-keyboard-scan codes,
using with TYPE (tables)
312, 313
graphics characters 65, 68
IBM extended character set
35, 309
line-drawing characters 64, 310
MATCH statement, character
limitin 54
standard character set
(table) 308
text file 43
use in labels 27
use to specify keys 40, 70
value of character 97
ASCII Corporation 6
ASMEXAMP.ASM program
241-43
assembly language. See MASM
ASSIGN command 25, 31
ASSIGN statement 48-49
AT&T 6300 Display Adapter, use
with CPANEL.EXE 288
ATEST.ASM program 240
Attribute Controller registers 267
attribute parameter
introduction 28-30
MATCH statement 41-42, 54
MENU statement 58
POPUP statement 64

Index

Augment computer 4
AutoCAD 19
AUTOEXEC.BAT file 20, 101, 289

background color
attribute parameter value
29-30, 54, 77
gray, black equivalence 29
inverting 94, 97, 147-48
menus 77
setting 93
backspace
with Alt, unable to simulate 73
ASCII code equivalent 311
BATEST.BAS program 209-11
BEGIN command 25, 26, 30-31
BEGIN statement
described 50-51
DOSOVRLY 75
BIOS. See ROM BIOS
bold attribute parameter 28
bold symbolic value 54, 58
borders
automatically generating 57
drawing 35, 64, 68-69
Borland Turbo Pascal, making
calls from 303-4
brackets [ ], use with parameters
47
buffer
click-ahead 104
for Control Panel 287-89
getting size required, driver state
storage 173-74
keyboard 17, 46, 70, 79-80
saving mouse driver state in
175-76
type-ahead 104
bus mouse, type value for 203-4
buttons
call mask bits, for conditions 185
changing values of 49
choosing items in menu with 32
controlling light pen states with
158
double-clicking 79
feedback function 104, 110
left button 55-56, 6465, 77, 78,
© 131-36

315



v’

Microsoft Mouse Programmer’s Reference

buttons (continued)

number of times pressed 99, 104,
131-33

number of times released 99,
104,134-36

overview 99-100

press information 131-33,
209-11, 229

release information 134-36

right button 38-39, 42, 60, 131,
134,153

state 99 )

status 104, 126-28, 131-36

C

CALL ABSOLUTE command,
QuickBASIC 217-19
CALL INTERRUPT subprogram,
QuickBASIC 220, 223
call mask
bits, setting 106
clearing 180
default value 116
defined 105
getting alternate interrupt
subroutine address 185-86
replacing existing value 106-7,
167-72
restoring previous values 107,
167-72
setting alternate subroutine 107,
179-84, 227-29, 245-47
setting interrupt subroutine
151-57, 224-26, 243-45
swapping interrupt subroutine
167-72, 180, 22426, 24345
CALL MOUSE function,
QuickBASIC 220
CALL statement format,
interpreted BASIC 207-8
case sensitivity, in statements 47
cegac, cegal, cegam, cegas
functions, C 262, 263
CGA. See IBM Color/Graphics
Adapter
Change Directory submenu,
DOSOVRLY 74
character cells, virtual screen
84-85, 90, 91, 96
characters
ASCII (see ASCII code)
attributes
changing with cursor mask
96-97, 147
changing with text cursor 96
preserving with screen mask
96, 147
data format for, text mode 97

316

characters (continued)
emulating with KBD program
79-80
line-drawing 64, 310
strings of
simulating with TYPE 40-41
specifying with MATCH 41-42,
54-55
click-ahead buffer 104
CLS, simulating with mouse 74
CMOS processor 6
CMOUSE.C program 230
cmousec, cmousel, cmouses calls 153,
169, 181
cmousem call 153, 169, 181, 230, 234
colon (:), use in statement labels
27,47
color
attribute parameter value
29-30, 54, 77
inverting 94, 97
look-up tables 95
menus 29-30, 77
mouse pointer 58
palette, setting with EGA.LIB
267, 278-79
setting 93, 141
COLOR program 77
COLOR.DEFF file 76
comma (,)
use in statements 27, 47
use in TYPE statement 40
command line switches
control panel
for display adapters (table) 288
overview 287-88
using 288-89
mouse driver
disabling 291
overview 289
removing 291
setting interrupt rate, InPort
mouse 290
specifying mouse sensitivity
89-90
specifying mouse type,
location 290-91
commands. See also individual
command names
action 37-41
event 30-31
menu subroutine 31-33
MS-DOS
executing with DOSOVRLY
mouse menu 74—76
pop-up subroutine 33-35
prohibited words in 27
syntax conventions 26—28, 47
(table) 25-26

comments in mouse menu
statements, defined 30
Conditional Off function 103, 122,
162-63
condition mask 180
CONFIG.SYS file 20, 101, 249, 289
control characters. See ASCII code
Control key combinations 40, 71,
107
Control Panel
interrupting mouse program to
use 173
overlay buffer
changing default size 28788
specifying size 289
removing from memory 289, 291
switches
for display adapters 288
overview 287-88
using 288-89
when introduced 9
coordinates. Se¢ cursor,
coordinates; screen
coordinates
CPANEL.EXE. See Control Panel
C program
calling EGA.LIB from 263
changing cursor color in 95
checking availability of video
modes in 86
compiling and linking under 5.1
230
hiding mouse cursor in 89-90
sample programs
CMOUSE.C 230
CTEST.C 231
LPEN.C 231-33
M20SUB.ASM 237-38
MOUH_INT.C,
MOUH_LIB.C 233-34
MOUS_INT.C, MOUS_LIB.C
233-34
MSEXAMP.C 234-36
PENCIL.C 236-37
using with Hercules Graphics
Card 305
CRT page numbers
default value 116
getting 194
and Hercules Graphics Card 305
overview 105
setting 193
CTEST.C program 231
Ctrl-C, simulating 42
cursor
arrow 92
bleeding 94
blinking 223
color 94, 141, 147-48



cursor (continued)
controlling 103—4, 110
coordinates
getting 13638, 131-36
overview 90, 91
setting 129-30
setting minimum, maximum
137-40
creating 93
CRT page number (see CRT
page numbers)
default values 116, 198
in defined menu area 66
displaying 102-3, 122—23
graphics (see graphics cursor)
half-square 92
hand-shaped 141-46, 234
hardware text
defined 92
overview 98
selecting 147
setting 223
hiding 89, 92, 105, 12425,
162-63, 249
hotspot
defined 95
defining 96
values 141
internal flag
changing value 99
current value 122
decrementing 124
default value 116
described 99
incrementing 122
restoring value 124
mask (see cursor mask)
mask bit 94
Microsoft Mouse 229, 237, 249
minimum,/maximum horizontal
coordinates 137, 233-34,
235-36, 241-43, 253-54
minimum/maximum vertical
coordinates 139, 233-34,
235-36, 241-43, 253-54
movement '
double-speed threshold
164-66, 187-90, 289-90
limiting to middle half of
screen 137, 139, 217, 241
mickey count 51, 149-50
sensitivity numbers 187-90
pixels 92-95
position
default value 116
conditions interfering with
new 129
at last button press 131
at last button release 134
setting at middle of screen 130

cursor (continued)
remaining on screen when
program ends 124
scan lines
number of, and display adapter
98
specifying line numbers 147
shape 92,103, 141
software text
defined 92
displaying 224
overview 96-98
selecting 147
setting 223
speed
doubling 164-66
halving 160-61
increasing 189
setting 160
slowing 189
square 92
turning off 103
underscore 92
cursor mask
bit 94
defined 93
graphics, and screen mask
interaction
effect on screen bit 94
in modes 4, 5 93-94
in modes E, D 94-95
used to build cursor 141
passing 141
text, and screen mask
interaction 96-98, 147

D

Data register flip-flop, setting 267
decimal value, screen colors 54, 58
default
language number 202
setting restored, 116, 198—99
.DEF extension 43
.DEF source files 76—-80
Define Default Register Table
function 281-82
demonstration programs, mouse
menu 76-80
Disable Mouse Driver function
195-96
disabling mouse driver 291
display adapters. See video-display
adapters
display attributes
defined 28
foreground, background colors
29-30
inverse value 33, 58, 75
MENU statement value 58

Index

Display Write 1119
Doodle 7
DOS. See MS-DOS
DOSOVRLY Mouse Menu
program 74-76
double quotation marks (“ )
simulating 70
specifying keys with 70
use in MENU statement 32
use in OPTION statement 61
use in statements 28, 47
use in TEXT statement 34
double-speed threshold
getting 189-90
setting 164—66, 187-88
switch 289-90
DROP.DEF file 76
drop-down menus, creating 77-78
DROP program 77-78
Dutch language support 109,
200-201
Dvorak, John C. 10

E

EGA. See IBM Enhanced Graphics
Adapter
EGA.FOR program 264-66
EGA.LIB. See Microsoft EGA
Register Interface library
EGAL procedure
FORTRAN 263-64
Pascal 266
EGA Register Interface library. See
Microsoft EGA Register
Interface library
EGAS procedure
FORTRAN 262
Pascal 266
ellipsis (...), use in statements 47
Enable Mouse Driver function 197
ending Mouse Menu program 45
End key, simulating 40
Engelbart, Doug 3-4
English language support 109, 200,
202
Enter key, simulating 73, 74
equal sign (=), for drawing
horizontal lines 35, 64
€rror messages
issuing 102
MAKEMENU error 44
mouse driver, domestic 293-95
mouse driver, international
200-201
mouse menu 297-99
Esc key, simulating 73
event commands
ASSIGN 25, 31
BEGIN 25, 30-31

317



Microsoft Mouse Programmer’s Reference

EXECUTE command 25, 39, 78
EXECUTE statement 52-53, 75
EXECUTE], EXECUTE2
programs 78
EXECUTELDEF,
EXECUTE2.DEF files 76
.EXE programs, compiling and
linking into 262
extended-keyboard-scan codes,
using with TYPE 312-13

F

F1 through F10 keys, extended-
keyboard-scan codes 313
FDEMO.FOR program 249-50
Finnish language support 109, 200
FORI.FOR program 247-48
foreground colors
attribute parameter value
29-30, 54, 77
blinking 29
inverting 94, 97, 147-48
menus 77
setting 93
foreign-language mouse support
first 9
functions 111, 200-202
overview 109
switch designators 109
FORTRAN
calling EGA.LIB from 263-66
calling functions from 4.1
247-50
sample programs
FDEMO.FOR 249-50
FORL.FOR 247-48
FTEST.FOR 249
using MOUSE.LIB 20
free-floating cursor 19
French language support 109, 200
FTEST.FOR program 249
functions, mouse. See mouse

G

Gates, Bill 5

German language support 109,
200

Get Button Press Information
function 99-100, 104, 131-33

Get Button Release Information
function 99-100, 104, 134-36

Get Button Status and Mouse
Position function 100, 104,
126-28

Get CRT Page Number function
105,194

Get Driver Version, Mouse Type,
and IRQ Number function
102, 203-4

318

Get Language Number function
109, 202
Get Mouse Driver State Storage
Requirements function
173-74,175
Get Mouse Sensitivity function
103, 189-90
Get User Alternate Interrupt
Address function 185-86
graphics characters. See ASCII
code
Graphics Controller
Miscellaneous register 268
graphics cursor
changing, sample program 212
default 208-9
default value 116
defined 92
defining 141, 229
displaying default 208-9,
234-36
hand-shaped 141-46, 234
hotspot, defined 95
mouse shape 249
screen, cursor masks interaction
in modes 4, 5 93-94
in modes E, 10 94-95
setting new shape 220
size with different modes 92
graphics modes
default graphics cursor 208-9
demonstrating mouse in 239-40
described 90-91
with Hercules Graphics Card
305
mode 4 91, 93-94
mode 5 90, 91, 92, 93-94
mode 6 90, 92, 94
mode 10 90, 92, 94-95, 259
mode 11 90, 92
mode 12 90, 92
mode 13 91, 193
mode D 93, 259
mode E 90, 92, 94-95, 259
mode F 90, 92, 94, 259
programming for EGA 259-84
sample program for 217-19
vs text mode 85

H

hand-shaped cursor 141-46, 234
hardware text cursor
defined 92
overview 98
selecting 147
Hawley, Jack S. 4
Hercules Graphics Card (HGC)
command line switch, use with
CPANEL.EXE 288

Hercules Graphics Card (HGC)
(continued)
first mouse software support 8
sample programs using 23334,
250-52
using mouse with 305
virtual screen coordinates
permitted 90
Hewlett-Packard mouse, type value
for 203-4
HGC. See Hercules Graphics Card
Hide Cursor function
changing internal cursor flag 99
drawing in graphics mode 105
during region updating 162—63
Function 2 call description
124-25
using during mode changes 92,
105
high-level language programs,
calling EGA.LIB from
261-67
highlight, menu/message box 66
Home key, simulating 40
horizontal lines, drawing 35, 64
horizontal movement sensitivity
ASSIGN statement parameter .
48-49
BEGIN statement parameter 31,
50-51
getting factor 189-90
setting 187-88
switches 289-90
hotspot, cursor
defined 95
defining 96
values 141
hyphen (-), for drawing horizontal
lines 35

IBM Color/Graphics Adapter
(CGA)
command line switch, use with
CPANEL.EXE 288
first mouse software support 8
number of lines in cursor 98
sample graphics mode program,
changing for 218, 220
screen-mode characteristics
84-85, 91,108
IBM Enhanced Graphics Adapter
(EGA)
color look-up tables 95
command line switch, use with
CPANEL.EXE 288
first mouse software support 8
graphics mode sample programs
217-19, 220



IBM Enhanced Graphics
Adapter (EGA) (continued)
light pen information 231
number of lines in cursor 98
screen-mode characteristics
84-85,108
writing programs for EGA
modes (see Microsoft EGA
Register Interface library)
IBM enhanced graphics modes,
mouse support for 259
IBM extended character set
(table) 309
IBM Monochrome Display
Adapter (MDA)
command line switch, use with
CPANEL.EXE 288
number of lines in cursor 98
screen-mode characteristics
84-85,108
IBM Multi-Color Graphics Array
(MCGA), screen mode
characteristics 84-85, 108
IBM Multiplan 80
IBM PC/AT 8
IBM personal computer 6
IBM PS/2 computer 10, 291
IBM Video Graphics Array (VGA)
color look-up tables 95
light pen information 231
not supported by BASICA 87-88
screen-mode characteristics
84-85, 108
infinite loops 53
INITPAS.ASM program 252
INITPAS.OBJ object module 250
InPort mouse
first9
setting interrupt rate 191-92
switch settings (table) 290
type value for 203-4
input/output operations,
introduction 19, 90
Input Status register 268
input value 115
Ins key, simulating 73
int86x() function 233-34
Intel 8255 Programmable
Peripheral Interface 6
internal cursor flag
changing value 99
current value 122
decrementing 124
default value 116
described 99
incrementing 122
restoring value 124
international mouse driver
first 9
functions 111, 200-202

international mouse driver
(continued)
overview 109
switch designators 109
interpreted BASIC
CALL statement format 207-8
sample programs
BATEST.BAS 209-11
PIANO.BAS 212
TSTLBAS 208-9
testing for video modes in 87-88
Interrogate Driver function
283-84
Interrupt 10H
BIOS values, changing default
to 280
calling EGA.LIB from MASM
programs 260
changing screen mode 267
hiding cursor 89-90
using, overview 88
Interrupt 33H
calling from MASM 238
using, overview 16, 20-21
vector
restoring to previous value
195-96
setting to mouse-interrupt
vector 197
verifying where pointing 102
interrupt handlers
installing 106-7
overview 105
setting alternate call mask,
address 179-84
setting call mask, address 151-57
specifying 106
swapping into place 167-72, 180
writing 106-7
interrupt rate, InPort mouse
setting with Function 28 191-92
switch settings 290
interrupt request type. See IRQ
number
INTERRUPT subprogram
calling from QuickBASIC
215-16
QB.Bl file 216-17 :
INTRRUPT.BAS program 220
Inverse attribute parameter 28, 33
inverse symbolic value 54, 58
IRQ (interrupt request type)
number 203-4
Italian language support 109, 200

K

KBD program 79-80
KBD.DEF file 76
keyboard

buffer 17, 46, 70, 79-80

Index

keyboard (continued)
emulation with mouse 73, 74,
79-80
mapping 17-18
keys
ASCII code and equivalents 311
combinations that can’t be
simulated 71
simulation
sample program for 73-74
with TYPE 40, 70, 312, 313
symbolic 70

L

labels
guidelines 27
introduction 26-27
prohibited words 27
syntax conventions 27, 47
language support, international
mouse driver
first 9
functions 111, 200-202
overview 109
switch designators 109
/L command line switch 109
Life program 7
light pen emulation mode
conflict with mouse 108 .
off function 108, 159, 231-33
on function 107-8, 158
Lotus1-2-39
LPEN.C program 231-33
Lu, Cary13

M

M1% through M4%, placeholder
variables 115, 117
M20SUB.ASM program 237-38
MAKEMENU utility 27, 43-44, 73
MAKEMENU.EXE compiler 7
MASM
calling EGA.LIB from 26061
ES:BX as table pointer 261
making function calls with,
overview 238-39
sample programs
ASMEXAMP.ASM 241-43
ATEST.ASM 240
TSTLASM 239-40
TST12&20.ASM 243-45
TST24.ASM 245-47
SUBS.ASM program 249
MATCH command 26, 41-43
MATCH statement 5456, 60
MCGA. See IBM Multi-Color *
Graphics Array
MDA. See IBM Monochrome
Display Adapter

319



memory
allocating for mouse menu
programs 46
Control Panel 288
MEND command 26, 32
MEND statement 57
MENU command 26, 32, 35
MENU.COM program 7, 46
menus, creating
with MENU and POPUP,
differences 35
multiple-column 33-37, 63-65
single-column 31-33
\MENUS directory 76
MENU statement 57-59
menu subroutine commands
31-33
message boxes
creating 34, 36-37, 63-65
color values 29-30
example 65
highlight 66
messages
issuing error 102
MAKEMENU error 44, 297
mouse driver, domestic 293-95
mouse driver, international
200-201
mouse menu 297-99
mickey
count 51, 149-50
default value 116
defined 100
double-speed threshold
getting 189-90
setting 164-66, 18788
ratio to pixel
default value 116, 160
setting 160-61
Microsoft Bus Mouse 6, 291
Microsoft EGA Register Interface
library (EGA.LIB)
calling from high-level language
programs
C programs 263
FORTRAN 263-66
parameters required 261-62
Pascal 26667
QuickBASIC 262-63
calling from MASM programs
260-61
calling ROM BIOS video
routines 267-68
damaging register settings 281
functions
FO: Read One Register 270-71
F1: Write One Register 272-73
F2: Read Register Range 274
F3: Write Register Range 274
F4: Read Register Set 27677

320

Microsoft EGA Register Interface
library (EGA.LIB) functions
(continued)

F5: Write Register Set 267,
278-79

F6: Revert to Default Registers
268, 280

F7: Define Default Register
Table 281-82

FA: Interrogate Driver 28384

reserved 269

(table) 268

how it works 260

register range, defined 274

register set, defined 276

restoring default settings, EGA
registers 263, 280

shadow maps 259-60

when to use 250

Microsoft Expert mouse menu
program

ending 291
when introduced 9

Microsoft Macro Assembler. See
MASM

Microsoft Mouse User’s Guide 287

Microsoft Multiplan 80

Microsoft Paintbrush 9, 19

Microsoft Product Support 108,
293

Microsoft Windows 19

Microsoft Word 5, 19, 43

Microsoft Works 19

minus sign (-), for drawing
horizontal lines 64

.MNU files 43

MOUH_INT.C, MOUH_LIB.C
programs 233-34

MOUS_INT.C, MOUS_LIB.C
programs 23334

mouse

actions
defining 50-51
described 17-18
buttons (see buttons)
cursor, overview 92-98 (see also
cursor) -
disabling 195-96
driver (see mouse driver)
enabling 197
functions
088,102, 116-21, 124, 198, 227,
305
192,99, 102-3,122-23, 141
292, 99,103, 105, 124-25, 162
3100, 104, 126-28
4103, 129-30
599-100, 104, 131-33, 209
699-100,.104, 134-36
7103,122,129,137-38

mouse, functions (continued)
8108, 122,129, 139-40
992, 93, 96, 103, 141-46, 301
1092, 97,103, 147-48
11 100, 104, 149-50, 209-11
12106-7,151-57,179
13107, 158
14108, 159
15 100, 103, 16061, 164
16103, 122, 162-63, 301
19103, 160, 16466
20106, 107, 16772
21173-74
22175-76
23175,177-78
24106, 107, 179-84, 301
25 185-86, 301
26100, 103, 160, 164, 18788,
301
27103, 189-90, 301
28191-92, 301
29105, 193, 301
30105, 194, 301
31195-96, 301
32197, 301
33122, 124, 198-99, 301
34109, 200-201, 301
35109, 202, 301
36102, 203-4, 301
calling from Borland Turbo
Pascal 303-4
categorized 109-11
introduction 19, 113-15, 205
listed 114
parameter names 115
hardware interrupts 151, 167
hardware, software status 88, 102,
116-21
Hercules Graphics Card, using
with 305
initializing 116-17, 256
interrupt rate 191-92
light pen, conflict with 108
motion, minimum resolution
84-85, 90
pointer 64, 116
position feedback 104, 110, 126
programming interface
programs, sample
C, QuickC 230-38
FORTRAN 247-50
interpreted BASIC 207-12
MASM 238-47
PASCAL 250-58
QuickBASIC 212-30
programming overview 15-21
reading status of 99-100
reset and status function 88, 102,
116-21, 237
resetting and activating
subroutine 227



mouse, functions (continued)
sensitivity
getting 189-90
overview 100
setting 187-88
switches 289-90
specifying type, location (table)
290-91
threshold speed 164-66
type, checking for 2034
unit of distance (see mickey)
MOUSE.BAS program 220-23
MOUSE.COM device driver 7, 20,
101, 291
MOUSEDEM.BAS program
223-24
mouse driver
buffer size, driver state storage
173-74
checking cursor position 122
checking installation 102-3,
252-54
command line switches 289-91
communicating with, from
within program 19-21
default values 116, 198
disabling 195-96, 291
driver control, feedback
functions (list) 109-10
driver state
getting storage requirements
173-74
restoring 177-78
saving 175-76
enabling 197
international version 9, 109,
200-202
interrogating 283-84
loading 101
messages
domestic 293-95
international 200-202
mouse position feedback 104
overview 15-16
programming interface,
overview 19-21
removing 291
resetting software, hardware
116-21
resetting software only 198-99
switches
overview 289
setting interrupt rate for
InPort mouse 290
specifying mouse sensitivity
289-90
specifying type, location of
mouse 290-91
testing for 102-3

mouse driver (continued)
vectors
determining address 207
installing 197
removing 195-96
version number, checking for
102, 203
MouseDriver subprogram,
QuickBASIC 223
mouse event trapping 78
mouse evolution
early 3—4
Microsoft
first generation 6-8
major releases (table) 12
second generation 8-9
third generation 10-11
Mouse House 4
MOUSE.LIB library

calling MOUSE subprogram 213,

214
features, new version 301
linking with existing mouse
programs 301
mousel procedure 247, 250, 255
in original mouse package 7
using, overview 16, 20
mousel procedure
FORTRAN 247, 255
Pascal 250, 255
mouse menus
application 80
borders for 35, 57, 64, 68-69
color 29-30, 77
commands
action 37-41
event 30-31
MATCH 41-43
menu subroutine 31-33, 57
pop-up subroutines 33-37, 64
(table) 25-26
creating 18, 43-44
differing results from MENU,
POPUP commands 35
dimensions, determining 57
drop-down 77-78
ending 45, 46
highlight 66
introduction 16-18
itemsin
choosing 32, 57
defining 61-62, 68—69
defining selection areas for
66-67
keyboard mapping 17-18,
73-74, 79-80
memory allocation 46
messages 297-99
MS-DOS commands, choosing
with 74-76

Index

mouse menus (continued)
multi-level 78
multiple-column 33-37, 63—65
pop-up (see pop-up menus)
program flow 37-39
removing 32, 58
running 45
sample programs
COLOR 77
demonstration 76-80
DOSOVRLY 74-76
DROP 77-78
EXECUTEIL EXECUTE2 78
KBD 79
single-column 31-33
source files 43-44
starting program not in current
directory 45
statements (see statements)
subroutines
BEGIN statement effect on 50
commands 31-35
defining menu items in 61-62
executing with MATCH 54-55
first statement in 57-59
pop-up (see pop-up
subroutines)
testing 44-45
title, defining 68—-69
Mouse Reset and Status function
88,102, 116-21, 124, 198
MOUSE subprogram, calling from
QuickBASIC 213, 214
MOUSE.SYS device driver 7, 20,
101, 291
MOUSHGCP.PAS program
250-52
movement parameters 31, 5051
movement-sensitivity parameters
31, 50-51
MPIBM.DEF file 80
MPMS.DEF file 80
MSCEXAMP.C program 234-36
MS-DOS2.08
MS-DOS commands
executing with DOSOVRLY
74-76
MS-DOS prompt 289
MSHERC.COM 305
Multimate 3.319
Multiplan (IBM) 80
Multiplan (Microsoft) 80
multiple-column pop-up menus
33-37,63-65

N, O

Nishi, Kay 6

normal attribute parameter 28
normal symbolic value 54, 58

321



Microsoft Mouse Programmer’s Reference

Notepad program 7
NOTHING command 26, 32, 41
NOTHING statement 60
numeric parameters 28
OPTION commands 26, 32
OPTION statement 61-62
output value 115

P

palette registers, setting in
MASM 261
Palo Alto Research Center
(PARC) 4
parameters
ASSIGN statement 48
attribute
MATCH statement 54
MENU statement 58
overview 28-30
POPUP statement 64
BEGIN statement 48, 50-51
bold 30
btbtn
ASSIGN statement 48
BEGIN statement 51
button 31, 49, 50
column
MATCH statement 54
MENU statement 58
POPUP statement 63
SELECT statement 66
comma, used with 27-28
default values 116
dnmov
ASSIGN statement 48
BEGIN statement 51
EGA.LIB register
correspondence 261-62
EXECUTE statement 52
foreground, background colors
29-30
hsen
ASSIGN statement 48
BEGIN statement 51
input value not specified 115
introduction 27-29
inverse 30
italic, use in 47
key, TYPE statement 70
label
EXECUTE statement 52
MATCH statement 54
MENU statement 57
POPUP statement 63
TYPE statement 70
length, SELECT statement 66
Ifbtn, 1fmov
ASSIGN statement 48
BEGIN statement 51

322

parameters (continued)
M1%-M4% 115,117
MATCH statement 54—-55
MENU statement 57-58
movement 31, 49, 50
movement sensitivity 31, 50
nomatch 55
normal 30
numeric 28
OPTION statement 61
output value not specified 115
placeholder 115, 117
pointer
OPTION statement 61
SELECT statement 66
POPUP statement 6364
redefining 48—49
rounding values of 129
row
MATCH statement 54
MENU statement 58
POPUP statement 63
SELECT statement 66
rtbtn, rtmov
ASSIGN statement 48
BEGIN statement 51
SELECT statement 66
statements without 27
string
MATCH statement 54
TEXT staterment 68
text, OPTION statement 61
TEXT statement 68
title, MENU statement 57
TYPE statement 70
upmoyv, vsen
ASSIGN statement 48
BEGIN statement 51
Pascal
calling EGA.LIB from 266-67
sample programs
INITPAS.ASM 252
MOUSHGCP.PAS 250-52
PASEXAMP.PAS 25254
PDEMO.PAS 256-58
SUBS.ASM 254-56
using MOUSE.LIB 20, 250

PASEXAMP.PAS program 252-54

PC Paintbrush 8

PDEMO.PAS program 256-58

PENCIL.BAS program 229-30

PENCIL.C program 236-37

pencil cursor 229

PEND command 26, 35

PEND statement 63—65

PEN function 158, 159

percent sign (%), use in
parameter names 115

physical-screen coordinates 9

PIANO.BAS program 212

piano keyboard, simulating 212

Piano program 7
pipe (1), for drawing lines 35, 64

-pixel

color 93-94
defined 84
even-number correspondence
91,93
groups
8-by-891
8-by-16 92, 93
16-by-8 91
16-by-16 92, 93
invisible location 95
movement 90, 91, 100
number
in graphics cursor 92
in hardware cursor 98
on screen 84-85
in text character cell 91
one-to-one correspondence 90,
93
setting ratio to mickey 100, 116,
160
plussign (+), for drawing corners
64

pointer parameter
OPTION statement 32, 61
SELECT statement 35, 66
POPUP command 26, 34, 35
pop-up menus
borders 68-69
defining item selection areas in
66-67
defining title and text 68
displaying, WS.DEF prograam 60
example 64-65
highlight in 66
multiple-column 33-37, 63-65
single-column 31-33, 57-59,
63-65
POPUP statement 63-65
pop-up subroutines
defining item selection areas
66-67
defining pop-up menu
appearance 68-69
first statement in 6364
for message boxes 34, 36-37,
63-65
for multiple-column menus
33-34, 63-65
PEND command 63-65
POPUP command 34, 63-65
sample 35-37, 64-65
SELECT command 35, 66—-67
TEXT command 34-35, 64
Portuguese language support 109,
200
product support. See Microsoft
Product Support
PS/2 mouse, type value for 203-4



Q

QB.Bl file 216-17
QB.QLB Quick Library
INTERRUPT subprogram 215,
216
loading with QuickBASIC 213
QBI2&20.BAS program 224-26
QB24.BAS program 227-29
QBHERC.COM 305
QBINC.BAS program 21617
QBINT.BAS program 215-16
QBMOU.BAS program 214
QBMOUSE.LIB library 213
QBMOUSE.QLB library 213, 214
QBNEW.LIB library 262
QBNEW.QLB 262
QBTEST.BAS program 229
QuickBASIC
calling EGA.LIB from 262-63
calling INTERRUPT 215-16
calling MOUSE 213, 214
crash warning 227
loading QB.QLB 213
modular programming
techniques 223
sample programs
ABSOLUTE.BAS 217-19
INTRRUPT.BAS 220
MOUSE.BAS 220-23
MOUSEDEM.BAS 22324
PENCIL.BAS 229-30
QBI12&20.BAS 224-26
QB24.BAS 227-29
QBINC.BAS 216-17
QBINT.BAS 215-16
QBMOU.BAS 214
QBTEST.BAS 229
starting 213
testing for video modes in 86

use with Hercules Graphics Card

305
use with MOUSE.LIB, overview
213
version 4.5, CALL MOUSE
function 220
QuickC
calling EGA.LIB from 263
default memory model 230, 234
sample programs
CMOUSE.C 230
CTEST.C 231
LPEN.C 231-33
M20SUB.ASM 237-38
MOUH_INT.C,
MOUH _LIB.C 233-34
MOUS_INT.C, MOUS_LIB.C
233-34
MSCEXAMP.C 23436
PENCIL.C 236-37

QuickC (continued)
use with MOUSE.LIB, overview
20
quotation marks. See double
quotation marks

R

reading the mouse 99-100

Read Mouse Motion Counters
function 100, 104, 149-50

Read One Register function
270-171

Read Register Range function 274
Read Register Set function 27677

region array, defining on screen
162-63
register range, defined 274
registers
Attribute Controller 267, 282
Auribute Controller Palette 274
CRT Controller Cursor Location
High 275
CRT Controllér Cursor Location
Low 275
CRT Controller Cursor Start 273
CRT Controller Mode Control
271,279
damaging adapter with settings
281
defining default table 281-82
Feature Control 273, 282
Graphics Controller
Miscellaneous 268
Input Status 268
Miscellaneous Output 271, 277,
279
range of, defined 274
reading, on EGA 270-71
reading range of, on EGA 274
reading set of, on EGA 276-77
Read One 270-71
restoring default settings, EGA
280
Revert to Default 280
Sequence Map Mask 270
Sequence Memory Mode
267-68, 277, 279
Sequence Reset 268
set of, defined 276
Write One 272-73
writing to, on EGA 272-73
writing to range, on EGA 275
writing to set, on EGA 278-79
register set, defined 276
relative mouse motion, tracking
104
removing mouse driver from
memory 291
Restore Mouse Driver State
function 175,177-78

Index

Revert to Default Registers

function 280

Roark, Raleigh 5-6
ROM BIOS

communicating with video
adapter using 102
EGA.LIB considerations
Attribute Controller registers
267
Graphics Controller
Miscellaneous register 268
Input Status register 268
Sequencer Memory Mode
register 267-68
and Interrupt 10H 88
interrupt routines unable to call
106
key sequences suppressed in 71
light pen information 231

RS-232 serial port 6
running mouse menu program 45

S

SADD function 262
sample programs
menu
application mouse menus 80
COLOR 77
DOSOVRLY 74~76
DROP 77-78
EXECUTEL EXECUTE2 78
KBD 79-80
SIMPLE 73-74
mouse programming interface
ABSOLUTE.BAS 217-19
ASMEXAMP.ASM 241-43
ATEST ASM 240
BATEST.BAS 209-11
CMOUSE.C 230
CTEST.C 231
FDEMO.FOR 249-50
FORLFOR 247-48
FTEST.FOR 249
INITPAS.ASM 252
INTRRUPT.BAS 220
LPEN.C 231-33
M20SUB.ASM 237-38
MOUHL_INT.C,
MOUH_LIB.C 233-34
MOUS_INT.C, MOUS_LIB.C
233-34

MOUSE.BAS 220-23
MOUSEDEM.BAS 223-24

MOUSHGCP.BAS 250-52
MSCEXAMP.C 234-36
PASEXAMP.PAS 252-54
PDEMO.PAS 256-58
PENCIL.BAS 229-30
PENCIL.C 236-37

323



Microsoft Mouse Pro

sample programs, mouse
programming interface
(continued)
PIANO.BAS 212
QBI12&20.BAS 224-26
QB24.BAS 227-29
QBINC.BAS 216-17
QBINT.BAS 215-16
QBMOU.BAS 214
QBTEST.BAS 229
SUBS.ASM 254-56
TST1.ASM 239-40
TST1.BAS 208-9
TST12820.ASM 24345
TST24.ASM 245-47
Save Mouse Driver State function
175-76
scan codes. See extended-
keyboard-scan codes
scan lines 98
screen
buffer, switches to change size
287-89
characters, data format 97
mask (see screen mask)
mask bit 94
modes
changing 105, 124
and Hercules Graphics Card
305
supported by mouse (tables)
84-85, 108
testing for 8588
text vs graphics 85
unsupported, using 108
virtual (see virtual screen)
screen coordinates
array 162
display adapters (table) 84-85
getting
cursor’s current 126—-28
cursor’s previous 131-36
MATCH statement, starting 54
setting
cursor’s 129-30
cursor’s minimum,/maximum
horizontal 13738
cursor’s minimum/maximum
vertical 139-40
virtual screen, overview 88-91
screen mask
bit 94
defined 93
and graphics cursor mask
interaction
effect on screen bit 94
in modes 4, 5 93-94
in modes E, D 94-95
used to build cursor 141
passing 141
and text cursor mask interaction
96-98, 147

324

SCREEN statements, changing for
CGA 218
SELECT command 26, 35
SELECT statement 66—67
semicolon (;), to specify
comments 30
Sequencer Memory Mode register
' 267-68
Sequencer Reset register 268
serial mouse, type value for 203-4
Set Alternate Subroutine Call
Mask and Address function
106, 107,179-84
Set CRT Page Number function
105, 193
Set Double-Speed Threshold
function 103, 160, 164—-66
Set Graphics Cursor Block
function 92, 93, 103, 141-46
Set Interrupt Subroutine Call
Mask and Address function
106-7,151-57,179
set key combinations, simulating
with TYPE 313
Set Language for Messages
function 109, 200-201
Set Mickey/Pixel Ratio function
100, 103, 160-61, 164
Set Minimum and Maximum
Horizontal Cursor Position
function 103, 122, 129,
137-38
Set Minimum and Maximum
Vertical Cursor Position
function 103, 122, 129,
139-40
Set Mouse Cursor Position
function 103, 129-30
Set Mouse Interrupt Rate function
191-92
Set Mouse Sensitivity function 100,
103, 160, 164, 187-88
Set Text Cursor function 92, 97,
103, 147-48
SETVID.BAS program 86-87
shadow maps, EGA.LIB 259-60
Shaiman, Steve 8, 13
Shift key combinations
extended-keyboard-scan codes
313
and Function 24 107, 179-84
not able to be simulated 71
Show Cursor function 92, 99,
102-3,122-23, 141
Show Partner program 9
Simonyi, Charles 5
SIMPLE mouse menu program
73-74
simulating keystrokes
arrow keys 17, 41, 71, 73-74, 312
CLS 41, 74

simulating keystrokes (continued)
Ctrl-C 41, 42
Ctrl-D 41
direction keys 312
editing keys 312
End 41
Enter key 41, 73, 74
Esc key 73
function keys 313
Home 41 .
Ins 73
set key combinations 313
Spacebar 40, 71
single-column pop-up menus
31-33, 57-59, 63-65
sketching programs
PENCIL.BAS 229-30
PENCIL.C 236-37
Software Reset function 122, 124,
198-99
software text cursor
default value 116
defined 92
overview 96-98
selecting 147
source files
creating Mouse Menu 43-44
.DEF 43
error messages 44, 293-99
for mouse menu programs on
disks 80
for sample programs on disks 76
WS.DEF 55-56, 60, 65, 80

Spacebar, simulating 40, 71

Spanish language support 109, 200
speed-doubling, cursor 164-66
square cursor 92,103
stand-alone .EXE programs 213
Stanford Research Institute 4
statements

ASSIGN 48-49

BEGIN

described 50-51
DOSOVRLY 75

comments 30

EXECUTE 52-53

first, in program 30

format 2630

labels 26-27, 47

MATCH 54-56

MEND 57-59

MENU 57-59

NOTHING 60

OPTION 61-62

parameters (see parameters)

PEND 63-65

POPUP 63-65

SELECT 66-67

syntax conventions 47



statements (continued)
TEXT
described 68-69
line-drawing characters in 64
TYPE (see TYPE statement)
string matching 54
string parameter
introduction 28
MATCH statement 54
TEXT statement 68
Strong, David 5
submenus, creating hierarchy of
74-76
subroutines, mouse functions for
connecting to (list) 110
SUBS.ASM program
described 254-56 :
linking to MOUSE.LIB 249
providing subroutines for
PASEXAMP.PAS 253
support, product. See Microsoft
Product Support
supported video modes (table) 108
Swap Interrupt Subroutines
function 106, 107, 167-72,
180
Swedish language support 109, 200
switch designators, language 109
switches. See Control Panel; mouse
driver
symbolic keys 40
SYM.DEF file 80
Symphony program 80
syntax conventions, statements 47

T

terminate-and-stay-resident (TSR)
program 101, 107
testing
for mouse driver 102-3
mouse menu program 44-45
TEXT command 26, 34-35
text cursors
default value 116
defined 92
overview 96-98
selecting 147
text mode
data format for screen characters
97
described 91
display, saving rectangular
area 224
vs graphics mode 85
text parameter, OPTION
statement 32, 61
TEXT statement
described 68-69
including line-drawing
characters in 64

title parameter, MENU statement
57
TST1.ASM program 239-40
TST1.BAS program 208-9
TST12&20.ASM program 243-45
TST24.ASM program 245-47
type-ahead buffer 104
TYPE command 26, 40-41
TYPE statement
described 70-71
key sequences not simulated
with 71
sample 59
using ASCII control characters
with (table) 311
using extended-keyboard-scan
codes with (tables) 312, 313

U

upper-ASCII line-drawing
characters 64
user-installed interrupt

subroutines

crashing system with 227

disabling 116

getting alternate subroutine
address 185~86

installing 106-7

overview 105

QuickBASIC sample programs
224-26, 227-29

setting alternate call mask,
address 179-84, 227-29,
245-47

setting call mask, address
151-57, 22426, 24345

specifying 106

swapping into place 167-72, 180,
22426, 243-45

writing 1067

\

VARPTR function 152, 168
VARSEG function 168
VC.DEF file 80
vertical-line character (1), for
drawing lines 35, 64
vertical movement sensitivity
ASSIGN statement parameter
48-49
BEGIN statement parameter 31,
50-51
getting factor 189-90
setting 18788
switches 289-90
VGA. See IBM Video Graphics
Array
video control functions (list) 110

Index

video-display adapters. See also
specific adapters
attribute parameters 28, 54, 58,

command line switches (table)
288
first mouse software for 8
foreground, background color
values (table) 29
screen modes
changing 105
for Hercules Graphics Card
305
(tables) 84-85, 108
testing for 85-88, 103
text vs graphics 85
types, and number of cursor
lines 98
video modes
changing 105
and Hercules Graphics Card 305
supported by mouse (table) 108
testing for 85-88
text vs graphics 85
unsupported, using 108
video-display adapters (table)
84-85
video paging 105
video random-access memory
(VRAM), problems with 268
virtual screen
in graphics modes 90-91
minimum size 88
overview 88-90
resolution 137, 139
in text modes 91
VisiCalc 80
VMAX% variable 139

W, X

Wall Street Journal 11

WordStar 44, 55, 80

Write One Register function
272-73

Write Register Range function 275

Write Register Set function
278-79

WS.DEF file 55-56, 60, 65, 80

Xerox Alto computer 4

Xerox Star personal computer 4

325



The manuscript for this book was prepared and submitted to Microsoft
Press in electronic form. Text files were processed and formatted using
Microsoft Word.

Cover design by Greg Hickman
Cover photography by Ed Lowe
Interior text design by Darcie S. Furlan
Principal typography by Lisa G. Iversen

Text composition by Microsoft Press in New Baskerville with display
in Avant Garde Demi, using the Magna composition system and the
Linotronic 300 laser imagesetter.



U.S.A. $29.95
U.K. £25.95
Austral. $44 .95

recommended)

MICROSOFT

MOUSE

PROGRAMMER'S
REFERENCE

The Microsoft Mouse, in use on nearly 2 million personal com-
puters, is one of the world’'s most popular PC peripherals and
is an industry standard. No software program-—commercial or
custom — is complete without support for the Microsoft Mouse.

The MICROSOFT MOUSE PROGRAMMER'S REFERENCE —
created by a team of experts from the Hardware Division of
Microsoft —is a complete guide to providing Mouse support in all
your MS-DOS" programs. Both an essential reference to the
Mouse programming interface and a handbook for writing func-
tional Mouse Menus, this one-of-a-kind guide includes

m An overview of mouse programming using Mouse
Menus and the Mouse programming interface
m Details of the Mouse Menu programming lan-
guage, including statement formats, program struc-
ture, and a guide to creating and running Mouse
Menus m Ready-to-run Mouse Menu programs m A
thorough discussion of the Mouse programming in-
terface m A complete reference to the Mouse func-
tion calls m Specifics of writing Mouse programs for
IBM EGA modes

Companion Disks Included!

The 5.25-inch companion disks contain sample Mouse Menus,
MOUSE.LIB and EGA.LIB, and a collection of valuable program-
ming examples in Microsoft QuickBASIC, interpreted BASIC,
Microsoft QuickC ', Microsoft C, Pascal, Microsoft Macro Assem-
bler, and FORTRAN

ISBN 1-55615-191-8

952995
(VAT included) || ll |’|,
9 "781556"151910

Programming/MS-DOS & PC-DOS



