
ROGRAMMER'S

U I C K

R ERE NeE

5 I E 5

o 0 0 0 0

RA.Y DUNCA.N .

PROGRAMMER'S

Q U / I, C K

REF ERE NeE
. S E R 1 E S

MS-DOS"
fUNCTIONS

o 0 000

RAY DUNCAN

®

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717

Copyright © 1988 by Ray Duncan
All rights reserved. No part of the contents of this book may
be reproduced or transmitted in any form or by any means without
the written permission of the publisher.

Library of Congress Cataloging in Publication Data

Duncan, Ray, 1952-
MS-DOS functions.
1. MS-DOS (Computer operating system) I. Title.
QA76.76.063D859 1988 005.4'46 88-5161
ISBN 1-55615-128-4

Printed and bound in the United States of America.

123456789 WAKWAK 321098

Distributed to the book trade in the United States
by Harper & Row.

Distributed to the book trade in Canada by General
Publishing Company, Ltd.

Distributed to the book trade outside the United States
and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10,
New Zealand

British Cataloging in Publication Data available

Int 21H Function Summary by Category
Hex Dec Function Name Vers FIH

Character liD

01H 1 Character Input with Echo 1.0+

02H 2 Character Output 1.0+

03H 3 Auxiliary Input 1.0+
04H 4 Auxiliary Output 1.0+
05H 5 Printer Output 1.0+

06H 6 Direct Console I/O 1.0+

07H 7 Unfiltered Character Input Without 1.0+
Echo

08H 8 Character Input Without Echo 1.0+
09H 9 Display String 1.0+
OAH 10 Buffered Keyboard Input 1.0+
OBH 11 Check Input Status 1.0+
OCH 12 Flush Input Buffer and Then Input 1.0+

File Operations

OFH 15 Open File 1.0+ F
IOH 16 Close File 1.0+ F

11H 17 Find First File 1.0+ F

12H 18 Find Next File l.0+ F

13H 19 Delete File 1.0+ F
16H 22 Create File 1.0+ F

17H 23 Rename File l.0+ F

23H 35 Get File Size l.0+ F
29H 41 Parse Filename 1.0+ F
3CH 60 Create File 2.0+ H
3DH 61 Open File 2.0+ H
3EH 62 Close File 2.0+ H
4lH 65 Delete File 2.0+ H
43H 67 Get or Set File Attributes 2.0+

45H 69 Duplicate Handle 2.0+
46H 70 Redirect Handle 2.0+
4EH 78 Find First File 2.0+ H
4FH 79 Find Next File 2.0+ H

(continued)

1

Hex Dec Function Name Vers FIH
File Operations (cont.)

56H 86 Rename File 2.0+

57H 87 Get or Set File Date and Time 2.0+ H
5AH 90 Create Temporary File 3.0+ H
5BH 91 Create New File 3.0+ H

67H 103 Set Handle Count 3.3+
68H 104 Commit File 3.3+ H

Record Operations

14H 20 Sequential Read 1.0+ F

15H 21 Sequential Write 1.0+ F

lAH 26 Set DT A Address 1.0+
21H 33 Random Read 1.0+ F

22H 34 Random Write 1.0+ F
24H 36 Set Relative Record Number 1.0+ F
27H 39 Random Block Read 1.0+ F

28H 40 Random Block Write 1.0+ F
2FH 47 Get DT A Address 2.0+

3FH 63 Read File or Device 2.0+ H
40H 64 Write File or Device 2.0+ H

42H 66 Set File Pointer 2.0+ H

5CH 92 Lock or Unlock File Region 3.0+ H

Directory Operations

39H 57 Create Directory 2.0+
3AH 58 Delete Directory 2.0+
3BH 59 Set Current Directory 2.0+
47H 71 Get Current Directory 2.0+

Disk Management

ODH 13 Disk Reset 1.0+

OEH 14 Select Disk 1.0+

19H 25 Get Current Disk 1.0+
IBH 27 Get Default Drive Data 1.0+
lCH 28 Get Drive Data 2.0+
2EH 46 Set Verify Flag 1.0+
36H 54 Get Drive Allocation Information 2.0+
54H 84 Get Verify Flag 2.0+

(continued)

2

Hex Dec Function Name Vers FIH

Process Management

OOH 0 Terminate Process 1.0+
26H 38 Create New PSP 1.0+
31H 49 Terminate and Stay Resident 2.0+
4BH 75 Execute Program (EXEC) 2.0+
4CH 76 Terminate Process with Return Code 2.0+
4DH 77 Get Return Code 2.0+
62H 98 Get PSP Address 3.0+

Memory Management

48H 72 Allocate Memory Block 2.0+
49H 73 Release Memory Block 2.0+
4AH 74 Resize Memory Block 2.0+
58B 88 Get or Set Allocation Strategy 3.0+
5EH 94 Get Machine Name, Get or Set 3.1+

Printer Setup
5FH 95 Device Redirection 3.1+

Time and Date

2AH 42 Get Date 1.0+
2BH 43 Set Date 1.0+
2CH 44 Get Time 1.0+
2DH 45 Set Time 1.0+

Miscellaneous System Functions

25H 37 Set Interrupt Vector 1.0+
30H 48 Get MS-DOS Version Number 2.0+
33H 51 Get or Set Break Flag 2.0+
35H 53 Get Interrupt Vector 2.0+
38H 56 Get or Set Country Information 2.0+
44H 68 IOCTL (I/O Control) 2.0+
59H 89 Get Extended Error Information 3.0+
63H 99 Get Lead Byte Table 2.25

only

65H 101 Get Extended Country Information 3.3+
66H 102 Get or Set Code Page 3.3+

(continued)

3

Hex Dec Function Name Hex Dec Function Name

Reserved Functions Reserved Functions (cont.)

18H
lDH
lEH
IFH
20H
32H
34H
37H
50H

24
29
30
31
32
50
52
55
80

OOH
01H

09H

OCH

OEH

10H

14H

16H

18H

20H

21H

25H

Reserved 51H 81 Reserved
Reserved 52H 82 Reserved
Reserved 53H 83 Reserved
Reserved 55H 85 Reserved
Reserved 5DH 93 Reserved
Reserved 60H 96 Reserved
Reserved 61H 97 Reserved
Reserved 64H 100 Reserved
Reserved

"Normal" File Control Block

Drive Identification

Filename
(8 characters)

Extension
(3 characters)

Current Block Number

Record Size

File Size

Date Created or Updated'

Time Created or Updated'

Reserved

Current Record Number

Relative Record Number

'For format of date and time, see Int 21 H Function 57H

Program Segment Prefix (PSP)
OOH

02H

04H

05H

OAH

OEH

12H

16H

2CH

2EH

5CH 1
OCH 1
80H

1

Int 20H

Segment, end of allocated block

Reserved

Far call to MS-DOS function dispatcher

Previous contents of Int 22H vector

Previous contents of Int 23H vector

Previous contents of Int 24H vector

Reserved

Segment address, environment

Reserved

! Default File Control Block #1

Default File Control Block #2

Command Tail and Default DTA
(128 bytes) 1

5

MS-DOS Extended Error Codes
Value Meaning Value Meaning

OIH function number IAH (26) unknown media
invalid type

02H file not found IBH (27) sector not found
03H path not found lCH (2S) printer out of paper
04H too many open files lDH (29) write fault
05H access denied lEH (30) read fault
06H handle invalid IFH (31) general failure

07H memory control 20H (32) sharing violation
blocks destroyed 21H (33) lock violation

OSH insufficient 22H (34) disk change invalid
memory 23H (35) FCB unavailable

09H memory block 24H (36) sharing buffer
address invalid exceeded

OAH (10) environment 25H-31H reserved
invalid (37-49)

OBH (11) format invalid 32H (50) unsupported net-
OCH (12) access code invalid work request
ODH (13) data invalid 33H (51) remote machine not
OEH (14) unknown unit listening
OFH (15) disk drive invalid 34H (52) duplicate name on
lOH (16) attempted to network

remove current 35H (53) network name not
directory found

I1H (17) not same device 36H (54) network busy
12H (IS) no more files 37H (55) device no longer
13H (19) disk write- exists on network

protected 3SH (56) netBIOS command
I4H (20) unknown unit limit exceeded

I5H (21) drive not ready 39H (57) error in network

16H (22) unknown command adapter hardware

17H (23) data error (CRC) 3AH (5S) incorrect response

ISH (24) bad request struc-
from network

ture length 3BH (59) unexpected net-

19H (25) seek error
work error

(continued)

6

MS-DOS Extended Error Codes (conI.)

Value Meaning

3CH (60) remote adapter
incompatible

3DH (61) print queue full
3EH (62) queue not full
3FH (63) not enough room

for print file
40H (64) network name

deleted
41H (65) access denied
42H (66) incorrect network

device type
43H (67) network name not

found
44H (68) network name limit

exceeded
45H (69) netBIOS session

limit exceeded
46H (70) temporary pause

Int 20H
Terminate Process

Value Meaning

47H (71) network request not
accepted

48H (72) print or disk redi-
rection paused

49H-4FH reserved
(73-79)

50H (80) file already exists
51H (81) reserved
52H (82) cannot make

directory
53H (83) fail on Int 24H

(critical error)
54H (84) out of structures
55H (85) already assigned
56H (86) invalid password
57H (87) invalid parameter
58H (88) net write fault

[1] [2] [3]

Terminates the current process. This is one of several methods that a
program can use to perform a final exit. MS-DOS then takes the fol­
lowing actions:

• All memory belonging to the process is released.

• File buffers are flushed, and any open handles for files or
devices owned by the process are closed.

• The termination handler vector (lnt 22H) is restored from
PSP:OOOAH.

• The Ctrl-C handler vector (Int 23H) is restored from
PSP:OOOEH.

• The critical-error handler vector (lnt 24H) is restored from
PSP:00l2H (MS-DOS versions 2.0 and later).

• Control is transferred to the termination handler.

7

If the program is returning to COMMAND.COM, control transfers to
the resident portion, and the transient portion is reloaded if necessary.
If a batch file is in progress, the next line of the file is fetched and
interpreted; otherwise, a prompt is issued for the next user command.

Call with:

CS = segment address of program segment prefix

Returns:

Nothing

Notes:

• Any files that have been written to using FCBs should be closed
before performing this exit call; otherwise, data may be lost.

• Other methods of performing a final exit are:
- Int 21H Function OOH
- Int 21H Function 31H
- Int 21H Function 4CH
- Int 27H

• [3] If the program is running on a network, it should remove all
locks it has placed on file regions before terminating.

• [2] [3] Int 21H Functions 31H and 4CH are the preferred method
for termination because they allow a return code to be passed to the
parent process.

Int 21H Function OOH
Terminate Process

[1] [2] [3]

Terminates the current process. This is one of several methods that a
program can use to perform a final exit. MS-DOS then takes the fol­
lowing actions:

• All memory belonging to the process is released.

• File buffers are flushed and any open handles for files or
devices owned by the process are closed.

• The termination handler vector (Int 22H) is restored from
PSP:OOOAH.

• The Ctrl-C handler vector (lnt 23H) is restored from
PSP:OOOEH.

• [2] [3] The critical-error handler vector (lnt 24H) is restored
from PSP:00l2H.

• Control is transferred to the termination handler.

8

If the program is returning to COMMAND.COM, control transfers to
the resident portion, and the transient portion is reloaded if necessary.
If a batch file is in progress, the next line of the file is fetched and
interpreted; otherwise, a prompt is issued for the next user command.

Call with:

AH =OOH
CS = segment address of program segment prefix

Returns:

Nothing

Notes:

• Any files that have been written to using FCBs should be closed
before performing this exit call; otherwise, data may be lost.

• Other methods of performing a final exit are:
- Int 20H
- Int 2lH Function 3lH
- Int 2lH Function 4CH
- Int 27H

• [3] If the program is running on a network, it should remove all
locks it has placed on file regions before terminating.

• [2] [3] Int 2lH Functions 31H and 4CH are the preferred method
for termination because they allow a return code to be passed to the
parent process.

-Int 2m Function om
Character Input with Echo

bUll

[1] [2] [3]

[1] Inputs a character from the keyboard, then echoes it to the display.
If no character is ready, waits until one is available.

[2] [3] Reads a character from the standard input device and echoes it
to the standard output device. If no character is ready, waits until one
is available. Input can be redirected (if input has been redirected,
there is no way to detect EOF).

Call with:

AH =OlH

9

Returns:

AL = 8-bit input data

Notes:

• If the standard input is not redirected and the character read is a
Ctrl-C, an Int 23H is executed. If the standard input is redirected, a
Ctrl-C is detected at the console; and if BREAK is ON, an Int 23H
is executed.

• To read extended ASCII codes (such as the special function keys
Fl to FlO) on the IBM PC and compatibles, you must call this func­
tion twice. The first call returns the value OOH to signal the pres­
ence of an extended code.

• See also Int 21H Functions 06H, 07H, and 08H, which provide
character input with various combinations of echo and/or Ctrl-C
sensing.

• [2] [3] You can also read the keyboard by issuing a read (Int 2lH
Function 3FH) using the predefined handle for the standard input
(OOOOH), if input has not been redirected, or a handle obtained by
opening the logical device CON.

Int 2m Function 02H
Character Output

[1] [2] [3]

[1] Outputs a character to the currently active video display.

[2] [3] Outputs a character to the standard output device. Output can
be redirected (if output is redirected, there is no way to detect disk
full).

Call with:

AH =02H
DL = 8-bit data for output

Returns:

Nothing

Notes:

• If a Ctrl-C is detected at the keyboard after the requested character
is output, an Int 23H is executed.

10

• If the standard output has not been redirected, a backspace code
(08H) causes the cursor to move left one position. If output has
been redirected, the backspace code does not receive any special
treatment.

• [2] [3] You can also send strings to the display by performing a
write (Int 21H Function 40H) using the predefined handle for the
standard output (OOOlH), if output has not been redirected, or a
handle obtained by opening the logical device CON.

Int 21H Function 038
Auxiliary Input
[1] Reads a character from the first serial port.

[1] [2] [3]

[2] [3] Reads a character from the standard auxiliary device. The
default is the first serial port (COMl).

Call with:

AH =03H

Returns:

AL = 8-bit input data

Notes:

• In most MS-DOS systems, the serial device is unbuffered and is not
interrupt driven. If the auxiliary device sends data faster than your
program can process it, characters may be lost.

• At startup on the IBM PC, PC-DOS initializes the first serial port
to 2400 baud, no parity, 1 stop bit, and 8 data bits. Other implemen­
tations of MS-DOS may initialize the serial device differently.

• There is no way for a user program to read the status of the auxil­
iary device or to detect I/O errors (such as lost characters) through
this function call. On the IBM PC, more precise control may be ob­
tained by calling ROM BIOS Int l4H or by driving the communi­
cations controller directly.

• If a Ctrl-C is detected at the keyboard, an Int 23H is executed.

• [2] [3] You can also input from the auxiliary device by requesting a
read (Int 2lH Function 3FH) using the predefined handle for the
standard auxiliary device (0003H) or using a handle obtained by
opening the logical device AUX.

11

Int 21H Function 048
Auxiliary Output
[1] Outputs a character to the first serial port.

[1] [2] [3]

[2] [3] Outputs a character to the standard auxiliary device. The
default is the first serial port (COMl).

Call with:

AH =04H
DL = 8-bit data for output

Returns:

Nothing

Notes:

• If the output device is busy, this function waits until the device is
ready to accept a character.

• There is no way to poll the status of the auxiliary device using this
function. On the IBM PC, more precise control can be obtained by
calling ROM BIOS Int l4H or by driving the communications con­
troller directly.

• If a Ctrl-C is detected at the keyboard, an Int 23H is executed.

• [2] [3] You can also send strings to the auxiliary device by per­
forming a write (Int 2lH Function 40H) using the predefined
handle for the standard auxiliary device (0003H) or using a
handle obtained by opening the logical device AUX.

Int 21H Function 058
Printer Output

[1] [2] [3]

[1] Sends a character to the first list device (PRN or LPTl).

[2] [3] Sends a character to the standard list device. The default is the
printer on the first parallel port (LPTl), unless explicitly redirected by
the user with the MODE command.

Call with:

AH =05H
DL = 8-bit data for output

12

Returns:

Nothing

Notes:

• If the printer is busy, this function waits until the printer is ready
to accept the character.

• There is no standardized way to poll the status of the printer under
MS-DOS.

• If a Ctrl-C is detected at the keyboard, an Int 23H is executed.

• [2] [3] You can also send strings to the printer by performing a
write (Int 21H Function 40H) using the predefined handle for the
standard printer device (0004H) or using a handle obtained by
opening the logical device PRN or LPTI.

l1li111 __

Int 21H Function 068
Direct Console I/O

[1] [2] [3]

U sed by programs that need to read and write all possible characters
and control codes without any interference from the operating system.

[1] Reads a character from the keyboard or writes a character to the
display.

[2] [3] Reads a character from the standard input device or writes a
character to the standard output device. I/O may be redirected (if I/O
has been redirected, there is no way to detect EOF or disk full).

Call with:

AH = 06H
DL = function requested

OOH-FEH if output request
OFFH if input request

Returns:

If called with DL=OOH-OFEH
Nothing

If called with DL=FFH and a character is ready
Zero flag = clear
AL = 8-bit input data

If called with DL=FFH and no character is ready
Zero flag = set

13

Notes:

• No special action is taken upon entry of a Ctrl-C when this service
is used.

• To read extended ASCII codes (such as the special function keys
FI to FlO) on the IBM PC and compatibles, you must call this func­
tion twice. The first call returns the value OOH to signal the pres­
ence of an extended code.

• See also Int 2IH Functions OIH, 07H, and 08H, which provide
character input with various combinations of echo and/or Ctrl-C
sensing, and Functions 02H and 09H, which may be used to write
characters to the standard output.

• [2] [3] You can also read the keyboard by issuing a read (Int 2IH
Function 3FH) using the predefined handle for the standard input
(OOOOH), if input has not been redirected, or a handle obtained by
opening the logical device CON.

• [2] [3] You can also send characters to the display by issuing a
write (lnt 2IH Function 40H) using the predefined handle for the
standard output (OOOlH), if output has not been redirected, or a
handle obtained by opening the logical device CON.

Int 21H Function 07H [1] [2] [3]
Unfiltered Character Input Without Echo
[I] Reads a character from the keyboard without echoing it to the dis­
play. If no character is ready, waits until one is available.

[2] [3] Reads a character from the standard input device without echo­
ing it to the standard output device. If no character is ready, waits un­
til one is available. Input may be redirected (if input has been
redirected, there is no way to detect EOF).

Call with:

AH =07H

Returns:

AL = 8-bit input data

Notes:

• No special action is taken upon entry of a Ctrl-C when this func­
tion is used. If Ctrl-C checking is required, use Int 21H Function
08H instead.

14

• To read extended ASCII codes (such as the special function keys
Fl to FlO) on the IBM PC and compatibles, you must call this func­
tion twice. The first call returns the value OOH to signal the pres­
ence of an extended code.

• See also Int 21H Functions OlH, 06H, and 08H, which provide
character input with various combinations of echo and/or Ctrl-C
sensing.

• [2] [3] You can also read the keyboard by issuing a read (Int 21H
Function 3FH) using the predefined handle for the standard input
(OOOOH), if input has not been redirected, or a handle obtained by
opening the logical device CON.

Int 21H Function 08H
Character Input Without Echo

[1] [2] [3]

[1] Reads a character from the keyboard without echoing it to the dis­
play. If no character is ready, waits until one is available.

[2] [3] Reads a character from the standard input device without echo­
ing it to the standard output device. If no character is ready, waits un­
til one is available. Input may be redirected (if input has been
redirected, there is no way to detect EOF).

Call with:

AH = 08H

Returns:

AL = 8-bit input data

Notes:

• If the standard input is not redirected, and the character read is a
Ctrl-C, an Int 23H is executed. If the standard input is redirected, a
Ctrl-C is detected at the console, and BREAK is ON, an Int 23H is
executed. To avoid possible interruption by a Ctrl-C, use Int 21H
Function 07H instead.

• To read extended ASCII codes (such as the special function keys
Fl to FlO) on the IBM PC and compatibles, you must call this func­
tion twice. The first call returns the value OOH to signal the pres­
ence of an extended code.

• See also lnt 21H Functions OlH, 06H, and 07H, which provide
character input with various combinations of echo and/or Ctrl-C
sensing.

15

• [2] [3] You can also read the keyboard by issuing a read (Int 2lH
Function 3FH) using the predefined handle for the standard input
(OOOOH), if input has not been redirected, or a handle obtained by
opening the logical device CON.

Int 21H Function 09H
Display String

[1] Sends a string of characters to the display.

[1] [2] [3]

[2] [3] Sends a string of characters to the standard output device. Out­
put may be redirected (if output has been redirected, there is no way
to detect disk full).

Call with:

AH
DS:DX

Returns:

Nothing

Notes:

=09H
= segment:offset of string

• The string must be terminated with the character $ (24H), which is
not transmitted. Any other ASCII codes, including control codes,
can be embedded in the string.

• See Int 21H Functions 02H and 06H for single-character output to
the video display or standard output device.

• If a Ctrl-C is detected at the keyboard, an Int 23H is executed.

• [2] [3] You can also send strings to the display by performing a
write (Int 2lH Function 40H) using the predefined handle for the
standard output (OOOlH), if it has not been redirected, or a handle
obtained by opening the logical device CON.

Int 21H Function OAH (10)
Buffered Keyboard Input

[1] [2] [3]

[I] Reads a line from the keyboard and places it in a user-designated
buffer. The characters are echoed to the display.

16

[2] [3] Reads a string of bytes from the standard input device, up to
and including an ASCII carriage return (ODH), and places them in a
user-designated buffer. The characters are echoed to the standard out­
put device. Input may be redirected (if input has been redirected, there
is no way to detect EOF).

Call with:

AH
DS:DX

Returns:

Nothing

Notes:

=OAH
= segment:offset of buffer

• The buffer used by this function has the following format:
Byte Contents
o maximum number of characters to read, set by program
1 number of characters actually read (excluding carriage

return), set by MS-DOS
2+ string read from keyboard or standard input, terminated

by a carriage return (ODH)

• If the buffer fills to one fewer than the maximum number of char­
acters it can hold, subsequent input is ignored and the bell is
sounded until a carriage return is detected.

• This input function is buffered with type-ahead capability, and all
of the standard keyboard editing commands are active.

• If the standard input is not redirected, and a Ctrl-C is detected at
the console, an Int 23H is executed. If the standard input is redi­
rected, a Ctrl-C is detected at the console, and BREAK is ON, an
Int 23H is executed.

• See Int 21H Functions OlH, 06H, 07H, and 08H for single-character
input from the keyboard or standard input device.

• [2] [3] You can also read strings from the keyboard by performing
a read (lnt 2lH Function 3FH) using the predefined handle for the
standard input (OOOOH), if it has not been redirected, or a handle
obtained by opening the logical device CON.

17

Int 21H Function OBH (11)
Check Input Status

[1] [2] [3]

[1] Checks whether a character is available from the keyboard.

[2] [3] Checks whether a character is available from the standard input
device. Input can be redirected.

Call with:

AH =OBH

Returns:

AL = OOH if no character is available
FFH if at least one character is available

Notes:

• If a Ctrl-C is detected, an Int 23H is executed.

• If the standard input is not redirected, and a Ctrl-C is detected at
the console, an Int 23H is executed. If the standard input is redi­
rected, a Ctrl-C is detected at the console, and BREAK is ON, an
Int 23H is executed.

• If a character is waiting, this function will continue to return a true
flag until the character is consumed with a call to Int 21H Function
OlH, 06H, 07H, 08H, OAH, or 3FH.

• This function is equivalent to IOCTL Int 21H Function 44H Sub­
function 06H.

Int 21H Function OCH (12) [1] [2] [3]
Flush Input Buffer and Then Input
[1] Clears the type-ahead buffer and then invokes one of the keyboard
input functions.

[2] [3] Clears the standard input buffer and then invokes one of the
character input functions. Input can be redirected.

18

Call with:

AH =OCH
AL = number of input function to be invoked after reset-

ting buffer (must be OlB, 06H, 07H, 08H, or OAH)

(if AL = OAH)
DS:DX = segment:offset of input buffer

Returns:

If called with AL = OlH, 06H, 07H, or 08H
AL = 8-bit input data

If called with AL = OAH
Nothing

Notes:

• The function exists to allow a program to defeat MS-DOS's
type-ahead feature. It discards any characters that are waiting in
MS-DOS's internal type-ahead buffer, forcing the specified input
function to wait for a character (usually a keyboard entry) that is
truly entered after the program's request.

• The presence or absence of Ctrl-C checking during execution of
this function depends on the function number in register AL.

• A function number in AL other than OlH, 06H, 07H, 08H, or OAH
simply flushes the input buffer and returns control to the calling
program.

Int 21H Function ODH (13)
Disk Reset

[1] [2] [3]

Flushes all file buffers. All data that has been logically written by user
programs, but has been temporarily buffered within MS-DOS, is
physically written to the disk.

Call with:

AH =ODH

Returns:

Nothing

19

Notes:

• This function does not update the disk directory for any files that
are still open. If your program fails to properly close all files
before the disk is removed, and files have changed size, the data
forced out to the disk by this function may still be inaccessible
because the directory entries will not be correct.

• [3.3] Int 21H Function 68H (Commit File) should be used in prefer­
ence to this function because it also updates the disk directory and
file allocation table.

Int 21H Function OEH (14)
Select Disk

[1] [2] [3]

Selects the specified drive to be the current, or default, disk drive and
returns the total number of logical drives in the system.

Call with:

AH =OEH
DL = drive code (O=A, I=B, etc.)

Returns:

AL = number of logical drives in system

Notes:

• [1] 16 drive designators (0 through OFH) are available.

• [2] 63 drive designators (0 through 3FH) are available.

• [3] 26 drive designators (0 through 19H) are available.

• To preserve upward compatibility, new applications should limit
themselves to the drive letters A-Z (O=A, l=B, etc.).

• Logical drives means the total number of block devices: floppy
disks, simulated disk drives (RAMdisks), and hard-disk drives. A
single physical hard-disk drive is frequentiy partitioned into two or
more logical drives.

• [1] [2] In single-drive IBM PC-compatible systems, the value 2 is
returned in AL, because PC-DOS supports two logical drives (A:
and B:) on the single physical floppy-disk drive. The actual number
of physical drives in the system can be determined with ROM
BIOS Int llH.

20

• [3] The value returned in AL is either 5 or the drive code corre­
sponding to the LASTDRIVE entry (if any) in CONFIG.SYS,
whichever is greater.

Int 21H Function OFH (15)
Open File

[1] [2] [3]

Opens a file and makes it available for subsequent read/write
operations.

Call with:

=OFH AH
DS:DX = segment:offset of file control block

Returns:

Iffunction successful (file found)
AL =00

and FCB filled in by MS-DOS as follows:
drive field (offset OOH) = I for drive A, 2 for drive B, etc.
current block field (offset OCH) = OOH
record size field (offset OEH) = 0080H
[2 J [3 J size field (offset 10H) = file size from directory
[2J [3J date field (offset 14H) = date stamp from directory
[2 J [3 J time field (offset I6H) = time stamp from directory

Iffunction unsuccessful (file not found)
AL =OFFH

Notes:

• If your program is going to use a record size other than 128 bytes, it
should set the record size field at FCB offset OEH after the file is
successfully opened and before any other disk operation.

• If random access is to be performed, the calling program must also
set the FCB relative-record field (offset 21H) after successfully
opening the file.

• [3] If the program is running on a network, the file is opened for
read/write access in compatibility sharing mode.

• For format of directory time and date, see Int 21H Function 57H.

• [2] [3] Int 2lH Function 3DH, which allows full access to the
hierarchical directory structure, should be used in preference to
this function.

21

.................................
Int 21H Function 10H (16)
Close File

[1] [2] [3]

Closes a file, flushes all MS-DOS internal disk buffers associated
with the file to disk, and updates the disk directory if the file has been
modified or extended.

Call with:

AH
DS:DX

Returns:

= IOH
= segment:offset of file control block

If function successful (directory update successful)
AL = OOH

If function unsuccessful (file not found in directory)
AL =FFH

Notes:

• [2] MS-DOS versions 1.x and 2.x do not reliably detect a disk
change, and an error can occur if the user changes disks while a
file is still open on that drive. In the worst case, the directory and
file allocation table of the newly inserted disk may be damaged or
destroyed.

• [2] [3] Int 2lH Function 3EH should be used in preference to this
function.

Int 21H Function 11H (17)
Find First File

[1] [2] [3]

Searches the current directory on the designated drive for a matching
filename.

Call with:

AH
DS:DX

= IlH
= segment:offset of file control block

22

Returns:

Iffunction successful (matching filename found)
AL =OOH

and buffer at current disk transfer area (DTA) address filled in as
an unopened normal FCB or extended FCB, depending on which
type of FCB was input to function

Iffunction unsuccessful (no matching filename found)
AL =FFH

Notes:

• It is important to use Int 2lH Function lAH to set the DTA to point
to a buffer of adequate size before using this function call.

• The wildcard character ? is allowed in the filename in all versions
of MS-DOS. In versions 3.0 and later, the wildcard character * may
also be used in a filename. If ? or * is used, this function returns
the first matching filename.

• An extended FCB must be used to search for files that have the sys­
tem, hidden, read-only, directory, or volume-label attributes.

• If an extended FCB is used, its attribute byte determines the type
of search that will be performed. If the attribute byte (byte 0) con­
tains OOH, only ordinary files are found. If the volume-label at­
tribute bit is set, only volume labels will be returned (if any are
present). If any other attribute or combination of attributes is set
(such as hidden, system, or read-only), those files and all ordinary
files will be matched.

• [2] [3] Int 2lH Function 4EH, which allows full access to the
hierarchical directory structure, should be used in preference to
this function.

Int 2m Function 128 (18)
Find Next File

[1] [2] [3]

Given that a previous call to Int 2lH Function llH has been success­
ful, returns the next matching filename (if any).

Call with:

AH
DS:DX

= 12H
= segment:offset of file control block

23

Returns:

Iff unction successful (matching filename found)
AL =OOH

and buffer at current disk transfer area (DTA) address set up as an
unopened normal FeB or extended FeB, depending on which type
of FeB was originally input to Int 21H Function llH

If function unsuccessful (no more matching filenames found)
AL =FFH

Notes:

• This function assumes that the FeB used as input has been prop­
erly initialized by a previous call to Int 21H Function llH (and
possible subsequent calls to Int 21H Function 12H) and that the
filename or extension being searched for contained at least one
wildcard character.

• As with Int 21H Function llH, it is important to use Int 21H Func­
tion lAH to set the DTA to a buffer of adequate size before using
this function.

• [2] [3] Int 21H Functions 4EH and 4FH, which allow full access to
the hierarchical directory structure, should be used in preference to
this function.

Int 21H Function 138 (19)
Delete File

[1] [2] [3]

Deletes all matching files from the current directory on the default or
specified disk drive.

Call with:

= 13H AH
DS:DX = segment:offset of file control block

Returns:

Iff unction successful (file or files deleted)
AL =OOH

Iffunction unsuccessful (no matching files were found, or at least
one matching file was read-only)
AL =FFH

24

Notes:

• The wildcard character? is allowed in the filename; if ? is present
and there is more than one matching filename, all matching files
will be deleted.

• [3] If the program is running on a network, the user must have
Create rights to the directory containing the file to be deleted.

• [2] [3] Int 2lH Function 41H, which allows full access to the
hierarchical directory structure, should be used in preference to
this function.

Int 21H Function 148 (20)
Sequential Read

[1] [2] [3]

Reads the next sequential block of data from a file and then incre­
ments the file pointer appropriately.

Call with:

AH
DS:DX

Returns:

AL

Notes:

= 14H
= segment:offset of previously opened file control

block

=OOH
OlH
02H
03H

if read successful
if end of file
if segment wrap
if partial record read at end of file

• The record is read into memory at the current disk transfer area
(DTA) address, specified by the most recent call to Int 2lH Func­
tion 1AH. If the size of the record and the location of the buffer are
such that a segment overflow or wraparound would occur, the func­
tion fails with a return code of 02H.

• The number of bytes of data to be read is specified by the record
size field (offset OEH) of the file control block (FCB).

• The file location of the data that will be read is specified by the
combination of the current block field (offset OCH) and current
record field (offset 20H) of the file control block (FCB). These
fields are also automatically incremented by this function.

25

• If a partial record is read at the end of file, it is padded to the re­
quested record length with zeros.

• [3] If the program is running on a network, the user must have
Read access rights to the directory containing the file to be read.

Int 21H Function 158 (21)
Sequential Write

[1] [2] [3]

Writes the next sequential block of data into a file and then increments
the file pointer appropriately.

Call with:

AH
DS:DX

Returns:

AL

Notes:

= I5H
= segment offset of previously opened file control

block

=OOH
OIH
02H

if write successful
if disk is full
if segment wrap

• The record is written (logically, not necessarily physically) to the
disk from memory at the current disk transfer area (DTA) address,
specified by the most recent call to Int 2IH Function IAH. If the
size of the record and the location of the buffer are such that a seg­
ment overflow or wraparound would occur, the function fails with
a return code of 02H.

• The number of bytes of data to be written is specified by the record
size field (offset OEH) of the file control block (FCB).

• The file location of the data that will be written is specified by the
combination of the current block field (offset OCH) and current
record field (offset 20H) of the file control block (FCB). These
fields are also automatically incremented by this function.

• [3] If the program is running on a network, the user must have
Write access rights to the directory containing the file to be
written.

26

Int 2111 Function 16H (22)
Create File

[1] [2] [3]

Creates a new directory entry in the current directory or truncates any
existing file with the same name to zero length. Opens the file for sub­
sequent read/write operations.

Call with:

=16H AH
DS:DX = segment:offset of unopened file control block

Returns:

Iffunction successful (file was created or truncated)
AL = OOH

and FeB filled in by MS-DOS as follows:
drive field (offset OOH) = I for drive A, 2 for drive B,

etc.
current block field (offset OCH) = OOH
record size field (offset OEH) = 0080H
[2] [3] size field (offset /OH) = file size from directory
[2] [3] date field (offset 14H) = date stamp from directory
[2] [3] time field (offset 16H) = time stamp from directory

If function unsuccessful (directory full)
AL =FFH

Notes:

• Since an existing file with the specified name is truncated to zero
length (i.e., all data in that file is irretrievably lost), this function
must be used with caution.

• If this function is called with an extended file control block (FCB),
the new file may be assigned a special attribute such as hidden or
system during its creation by setting the appropriate bit in the ex­
tended FCB's attribute byte.

• Since this function also opens the file, a subsequent call to Int 21H
Function OFH is not required.

• [3] If the program is running on a network, the user must have
Create rights to the directory that will contain the new file.

• For format of directory time and date, see Int 21H Function S7H.

• [2] [3] Int 2lH Functions 3CH, SAH, and SBH, which provide full
access to the hierarchical directory structure, should be used in
preference to this function.

27

Int 21H Function 17H (23)
Rename File

[1] [2] [3]

Alters the name of all matching files in the current directory on the
disk in the specified drive.

Call with:

= 17H AH
DS:DX = segment offset of "special" file control block

Returns:

Iffunction successful (one or more files renamed)
AL = OOH

Iffunction unsuccessful (no matching files, or new filename matched
an existing file)
AL =FFH

Notes:

• The special file control block has a drive code, filename, and ex­
tension in the usual position (bytes 0 through OBH) and a second
filename starting 6 bytes after the first (offset llH).

• The? wildcard character can be used in the first filename. Every
file matching the first file specification will be renamed to match
the second file specification.

• If the second file specification contains any ? wildcard characters,
the corresponding letters in the first filename are left unchanged.

• The function terminates if the new name to be assigned to a file
matches that of an existing file.

• [2] [3] An extended FCB can be used with this function to rename
a directory.

• [2] [3] Int 21H Function 56H, which allows full access to the
hierarchical directory structure, should be used in preference to
this function.

Int 21H Function ISH (24)
Reserved

28

[1] [2] [3]

Int 21H Function 19H (25)
Get Current Disk

[1] [2] [3]

Returns the drive code of the current, or default, disk drive.

Call with:

AH = 19H

Returns:

AL = drive code (O=A, l=B, etc.)

Notes:

• To set the default drive, use Int 21H Function OEH.

• Some other Int 21H functions use drive codes beginning at 1 (that
is, l=A, 2=B, etc.) and reserve drive code zero for the default drive.

Int 21H Function lAH (26)
Set DTA Address

[1] [2] [3]

Specifies the address of the disk transfer area (DT A) to be used for
subsequent FeB-related function calls.

Call with:

AH
DS:DX

Returns:

Nothing

Notes:

=lAH
= segment offset of disk transfer area

• If this function is never called by the program, the DTA defaults to
a l28-byte buffer at offset 0080H in the program segment prefix.

• In general, it is the programmer's responsibility to ensure that the
buffer area specified is large enough for any disk operation that
will use it. The only exception to this is that MS-DOS will detect
and abort disk transfers that would cause a segment wrap.

• Int 21H Function 2FH can be used to determine the current disk
transfer address.

29

• The only handle-type operations that rely on the current DTA ad­
dress are the directory search functions, Int 2lH Functions 4EH
and 4FH.

Int 21H Function IBH (27)
Get Default Drive Data

[1] [2] [3]

Obtains selected information about the default disk drive and a pointer
to the media identification byte from its file allocation table.

Call with:

AH = lBH

Returns:

If function successful
AL = sectors per cluster
DS:BX = segment:offset of media ID byte
CX = size of physical sector (bytes)
DX = number of clusters for default drive

Iffunction unsuccessful (invalid drive or critical error)
AL =FFH

Notes:

• The media ID byte has the following meanings:
OFOH 3.S-inch double-sided, 18 sectors

or "other"
OF8H
OF9H

OFCH
OFDH
OFEH
OFFH

fixed disk
S.2S-inch double-sided, 15 sectors
or 3.5-inch double-sided, 9 sectors
S.25-inch single-sided, 9 sectors
5.2S-inch double-sided, 9 sectors
S.25-inch single-sided, 8 sectors
S.25-inch double-sided, 8 sectors

• To obtain information about disks other than the one in the default
drive, use Int 2lH Function lCH or 36H.

• [1] The address returned in DS:BX points to a copy of the first sec­
tor of the actual FAT, with the media ID byte in the first byte.

• [2] [3] The address returned in DS:BX points only to a copy of the
media ID byte from the disk's FAT; the memory above that address
cannot be assumed to contain the FAT or any other useful informa­
tion. If direct access to the FAT is required, use Int 2SH to read it
into memory.

30

Int 21H Function lCH (28)
Get Drive Data

[2] [3]

Obtains allocation information about the specified disk drive and a
pointer to the media identification byte from its file allocation table.

Call with:

AH =ICH
DL = drive code (O=default, I=A, etc.)

Returns:

Iffunction successful
AL = sectors per cluster
DS:BX = segment:offset of media ID byte
CX = size of physical sector (bytes)
DX = number of clusters for default or specified drive

Iffunction unsuccessful (invalid drive or critical error)
AL =FFH

Notes:

• The media ID byte has the following meanings:
OFOH 3.5-inch double-sided, 18 sectors

or "other"
OF8H
OF9H

OFCH
OFDH
OFEH
OFFH

fixed disk
5.25-inch double-sided, 15 sectors
or 3.5-inch double-sided, 9 sectors
5.25-inch single-sided, 9 sectors
5.25-inch double-sided, 9 sectors
5.25-inch single-sided, 8 sectors
5.25-inch double-sided, 8 sectors

• In general, this call is identical to Int 21H Function lBH, except for
the ability to designate a specific disk drive. See also Int 21H Func­
tion 36H, which returns similar information.

• [1] The address returned in DS:BX points to a copy of the first sec­
tor of the actual FAT, with the media ID byte in the first byte.

• [2] [3] The address returned in DS:BX points only to a copy of the
media ID byte from the disk's FAT; the memory above that address
cannot be assumed to contain the FAT or any other useful informa­
tion. If direct access to the FAT is required, use Int 25H to read it
into memory.

31

Int 2m Function illH (29)
Reserved

Int 2m Function lEH (30)
Reserved

Int 2m Function 1FH (31)
Reserved

Int 2m Function 20H (32)
Reserved

Int 2m Function 2m (33)
Random Read
Reads a selected record from a file into memory.

Call with:

AH = 21H

[1] [2] [3]

[1] [2] [3]

[1] [2] [3]

[1] [2] [3]

[1] [2] [3]

DS:DX = segment:offset of previously opened file control

Returns:

AL

block

=OOH
OIH
02H
03H

if read successful
if end of file
if segment wrap, read canceled
if partial record read at end of file

32

Notes:

• The record is read into memory at the current disk transfer area ad­
dress, specified by the most recent call to Int 21H Function lAH. It
is the programmer's responsibility to ensure that this area is large
enough for any record that will be transferred. If the size and loca­
tion of the buffer are such that a segment overflow or wraparound
would occur, the function fails with a return code of 02H.

• The file location of the data to be read is determined by the com­
bination of the relative-record field (offset 2lH) and the record size
field (offset OEH) of the FCB. The default record size is 128 bytes.

• The current block field (offset OCH) and current record field (off­
set 20H) are updated to agree with the relative-record field as a
side effect of the function.

• The relative-record field of the FCB is not incremented by this
function; it is the responsibility of the application to update the
FCB appropriately if it wishes to read successive records. Compare
with Int 2lH Function 27H, which can read multiple records with
one function call and automatically increments the relative-record
field.

• If a partial record is read at end of file, it is padded to the requested
record length with zeros.

• [3] If the program is running on a network, the user must have
Read access rights to the directory containing the file to be read.

Int 2lH Function 22H (34)
Random Write

[1] [2] [3]

Writes data from memory into a selected record in a file.

Call with:

AH
DS:DX

Returns:

AL

=22H
= segment:offset of previously opened file control

block

=OOH
OlH
02H

if write successful
if disk full
if segment wrap, write canceled

33

Notes:

• The record is written (logically, not necessarily physically) to the
file from memory at the current disk transfer address, specified by
the most recent call to Int 21H Function lAH. If the size and loca­
tion of the buffer are such that a segment overflow or wraparound
would occur, the function fails with a return code of 02H.

• The file location of the data to be written is determined by the
combination of the relative-record field (offset 21H) and the record
size field (offset OEH) of the FCB. The default record size is 128
bytes.

• The current block field (offset OCH) and current record field (off­
set 20H) are updated to agree with the relative-record field as a
side effect of the function.

• The relative-record field of the FCB is not incremented by this
function; it is the responsibility of the application to update the
FCB appropriately if it wishes to write successive records. Com­
pare with Int 21H Function 28H, which can write multiple records
with one function call and automatically increments the relative­
record field.

• If a record is written beyond the current end of file, the space be­
tween the old end of file and the new record is allocated but not
initialized.

• [3] If the program is running on a network, the user must have
Write access rights to the directory containing the file to be
written.

Int 21H Function 23H (35)
Get File Size

[1] [2] [3]

Searches for a matching file in the current directory; if one is found,
updates the FCB with the file's size in terms of number of records.

Call with:

AH
DS:DX

=23H
= segment:offset of unopened file control block

34

Returns:

If function successful (matching file found)
AL =00

and FCB relative-record field (offset 21H) set to the number of
records in the file, rounded up if necessary to the next complete
record

Iffunction unsuccessful (no matching file found)
AL =FFH

Notes:

• An appropriate value must be placed in the FCB record size field
(offset OEH) before calling this function. There is no default record
size for this function. Compare with the FCB-related open and
create functions (Int 21H Functions OFH and 16H), which initialize
the FCB for a default record size of 128 bytes.

• The record size field can be set to 1 to find the size of the file in
bytes.

• Because record numbers are zero based, this function can be used
to position the FCB' s file pointer to the end of file.

Int 21H Function 24H (36)
Set Relative Record Number

[1] [2] [3]

Sets the relative-record number field of a file control block (FCB) to
correspond to the current file position as recorded in the opened FCB.

Call with:

AH
DS:DX

Returns:

=24H
= segment offset of previously opened file control

block

AL is destroyed (other registers not affected)

FCB relative-record field (offset 21H) updated

Notes:

• This function is used when switching from sequential to random
I/O within a file. The contents of the relative-record field (offset

35

2lH) are derived from the record size (offset OEH), current block
(offset OCH), and current record (offset 20H) fields of the file con­
trol block.

• All four bytes of the FCB relative-record field (offset 2lH) should
be initialized to zero before calling this function. --..... --_ .. ""------

Int 21H Function 25H (37)
Set Interrupt Vector

[1] [2] [3]

Initializes a machine interrupt vector to point to an interrupt handling
routine.

Call with:

= 25H
= interrupt number

AH
AL
DS:DX = segment:offset of interrupt handling routine

Returns:

Nothing

Notes:

• This function should be used in preference to direct editing of the
interrupt vector table by well-behaved applications.

• Before an interrupt vector is modified, its original value should be
obtained with Int 21H Function 35H and saved so that it can be
restored using this function before program termination.

Int 21H Function 26H (38)
Create New PSP

[1] [2] [3]

Copies the program segment prefix (PSP) of the currently executing
program to a specified segment address in free memory and then up­
dates the new PSP to make it usable by another program.

Call with:

AH =26H
DX = segment of new program segment prefix

36

Returns:

Nothing

Notes:

• After the executing program's PSP is copied into the new segment,
. the memory size information in the new PSP is updated appropri­
ately and the current contents of the termination (Int 22H), Ctrl-C
handler (lnt 23H), and critical-error handler (lnt 24H) vectors are
saved starting at offset OAH.

• This function does not load another program or in itself cause one
to be executed.

• [2] [3] Int 21H Function 4BH (EXEC), which can be used to load
and execute programs or overlays in either .COM or .EXE format,
should be used in preference to this function.

m

Int 21H Function 27H (39)
Random Block Read

J

[1] [2] [3]

Reads one or more sequential records from a file into memory, start­
ing at a designated file location.

Call with:

AH
CX
DS:DX

Returns:

=27H
= number of records to read
= segment:offset of previously opened file control

block

AL = OOH if all requested records read
OlH if end of file
02H if segment wrap
03H if partial record read at end of file

CX = actual number of records read

Notes:

• The records are read into memory at the current disk transfer area
address, specified by the most recent call to Int 21H Function lAH.
It is the programmer's responsibility to ensure that this area is large
enough for the group of records that will be transferred. If the size

37

and location of the buffer are such that a segment overflow or
wraparound would occur, the function fails with a return code of
02H.

• The file location of the data to be read is determined by the com­
bination of the relative-record field (offset 21H) and the record size
field (offset OEH) of the FCB. The default record size is 128 bytes.

• After the disk transfer is performed, the current block (offset OCH),
current record (offset 020H), and relative-record (offset 21H) fields
of the FCB are updated to point to the next record in the file.

• If a partial record is read at the end of file, the remainder of the
record is padded with zeros.

• [3] If the program is running on a network, the user must have
Read access rights to the directory containing the file to be read.

• Compare with Int 21H Function 21H, which transfers only one
record per function call and does not update the FCB relative­
record field.

Int 21H Function 28H (40)
Random Block Write

[1] [2] [3]

Writes one or more sequential records from memory to a file, starting
at a designated file location.

Call with:

AH
CX
DS:DX

Returns:

=28H
= number of records to write
= segment:offset of previously opened file control

block

AL = OOH if all requested records written
om if disk full
02H if segment wrap

CX = actual number of records written

Notes:

• The records are written (logically, not necessarily physically) to
disk from memory at the current disk transfer area address, speci­
fied by the most recent call to Int 21H Function lAH. If the size

38

and location of the buffer are such that a segment overflow or
wraparound would occur, the function fails with a return code of
02H.

• The file location of the data to be written is determined by the
combination of the relative-record field (offset 21H) and the record
size field (offset OEH) of the FCB. The default record size is 128
bytes.

• After the disk transfer is performed, the current block (offset OCH),
current record (offset 020H), and relative-record (offset 21H) fields
of the FCB are updated to point to the next record in the file.

• If this function is called with CX = OOH, no data is written to the
disk but the file is extended or truncated to the length specified by
combination of the record size (offset OEH) and the relative-record
(offset 2lH) fields of the FCB.

• [3] If the program is running on a network, the user must have
Write access rights to the directory containing the file to be
written.

• Compare with Int 21H Function 22H, which transfers only one
record per function call and does not update the FCB relative­
record field.

Int 21H Function 29H (41)
Parse Filename

[1] [2] [3]

Parses a text string into the various fields of a file control block
(FCB).

Call with:

AH = 29H
AL = flags to control parsing

Bit 3 = 1 if extension field in FCB will be modi­
fied only if an extension is specified in
the string being parsed.

= 0 if extension field in FCB will be modi­
fied regardless; if no extension is pres­
ent in the parsed string, FCB extension
is set to ASCII blanks.

39

DS:SI
ES:DI

Returns:

AL

DS:SI

ES:DI

Notes:

Bit 2 = 1 if filename field in FCB will be modi­
fied only if a filename is specified in
the string being parsed.

= 0 if filename field in FCB will be modi­
fied regardless; if no filename is pres­
ent in the parsed string, FCB filename
is set to ASCII blanks.

Bit 1 = 1 if drive ID byte in FCB will be modi­
fied only if a drive was specified in the
string being parsed.

= 0 if the drive ID byte in FCB will be
modified regardless; if no drive
specifier is present in the parsed string,
FCB drive-code field is set to 0
(default).

Bit 0 = 1 if leading separators will be scanned
off (ignored).

= 0 if leading separators will not be
scanned off.

= segment:offset of text string
= segment:offset of file control block

=OOH
om

if no wildcard characters encountered
if parsed string contained wildcard
characters

FFH if drive specifier invalid
= segment:offset of first character after parsed

filename
= segment:offset of formatted unopened file control

block

• This function regards the following as separator characters:
[1] :.; ,=+tabspace/" []
[2] [3] : . ; , = + tab space

• This function regards all control characters and the following as
terminator characters:
: .;, = + tab space < > : / n [I

• If no valid filename is present in the string to be parsed, upon
return ES:DI+l points to an ASCII blank.

40

• If the * wildcard character occurs in a filename or extension, it and
all remaining characters in the corresponding field in the FCB are
set to ?

• This function (and file control blocks in general) cannot be used
with file specifications that include a path.

Int 21H Function 2AH (42)
Get Date

[1] [2] [3]

Obtains the system day of the month, day of the week, month, and
year.

Call with:

AH =2AH

Returns:

CX = year (1980 through 2099)
DH = month (1 through 12)
DL = day (1 through 31)

Under MS-DOS versions 1.1 and later
AL = day of the week (O=Sunday, I=Monday, etc.)

Notes:

• This function's register format is the same as that required for Int
21H Function 2BH (Set Date).

• This function can be used together with Int 21H Function 2BH to
find the day of the week for an arbitrary date. The current date is
first obtained with Function 2AH and saved. The date of interest is
then set with Function 2BH, and the day of the week for that date is
obtained with a subsequent call to Function 2AH. Finally, the cur­
rent date is restored with an additional call to Function 2BH, using
the values obtained with the original Function 2AH call.

Int 21H Function 2BH (43)
Set Date

[1] [2] [3]

Initializes the system clock driver to a specific date. The system time
is not affected.

41

Call with:

AH =2BH
CX = year (1980 through 2099)
DH = month (1 through 12)
DL = day (1 through 31)

Returns:

AL

Note:

=OOH
FFH

if date set successfully
if date not valid (ignored)

• This function's register format is the same as that required for Int
21H Function 2AH (Get Date).

Int 21H Function 2CH (44)
Get Time

[1] [2] [3]

Obtains the time of day from the system real-time clock driver, con­
verted to hours, minutes, seconds, and hundredths of seconds.

Call with:

AH = 2CH

Returns:

CH = hours (0 through 23)
CL = minutes (0 through 59)
DH = seconds (0 through 59)
DL = hundredths of seconds (0 through 99)

Notes:

• This function's register format is the same as that required for Int
21H Function 2DH (Set Time).

• On most IBM PC-compatible systems, the real-time clock does not
have a resolution of single hundredths of seconds. On such ma­
chines, the values returned by this function in register DL are
discontinuous.

42

Int 21H Function 2DH (45)
Set Time

[1] [2] [3]

Initializes the system real-time clock to a specified hour, minute, sec­
ond, and hundredth of second. The system date is not affected.

Call with:

AH =2DH
CH = hours (0 through 23)
CL = minutes (0 through 59)
DH = seconds (0 through 59)
DL = hundredths of seconds (0 through 99)

Returns:

AL

Note:

=OOH
FFH

if time set successfully
if time not valid (ignored)

• This function's register format is the same as that required for Int
21H Function 2CH (Get Time).

leW; II JIJ

Int 21H Function 2EH (46)
Set Verify Flag

7

[1] [2] [3]

Turns off or turns on the operating-system flag for automatic read­
after-write verification of data.

Call with:

AH
. AL

[1] [2]

=2EH
=OOH

OIR

DL =OOH

Returns:

Nothing

if turning off verify flag
if turning on verify flag

43

Notes:

• This function provides increased data integrity by allowing the
user to force a read-after-write verify of all data written to the disk,
if that capability is supported by the manufacturer's disk driver.

• Because read-after-write verification slows disk operations, the
default setting of the verify flag is OFF.

• The current state of the verify flag can be determined using Int
21H Function 54H.

• The state of the verify flag is also controlled by the MS-DOS com­
mands VERIFY OFF and VERIFY ON.

Int 2m Function 2FH (47)
Get DTA Address

[2] [3]

Obtains the current address of the disk transfer area (DTA) for FCB
file read/write operations.

Call with:

AH =2FH

Returns:

ES:BX

Note:

= segment:offset of disk transfer area

• The disk transfer area address is set with Int 21H Function lAH.
The default DTA is a 128-byte buffer at offset 80H in the program
segment prefix.

Int 2m Function 30H (48)
Get MS-DOS Version Number

[2] [3]

Returns the version number of the host MS-DOS operating system.
This function is used by application programs to determine the capa­
bilities of their environment.

Call with:

AH =30H
AL =OOH

44

Returns:

[1]
AL

[2] [3]
AL
AH
BH

BL:CX

Notes:

=OOH

= major version number (MS-DOS 3.1 = 3, etc.)
= minor version number (MS-DOS 3.1 = OAH, etc.)
= Original Equipment Manufacturer's (OEM's) serial

number (OEM dependent-usually OOH for IBM's
PC-DOS, OFFH or other values for MS-DOS)

= 24-bit user serial number (optional, OEM dependent)

• Because this function was not defined under MS-DOS 1.x, it should
always be called with AL = 00. In an MS-DOS 1.x environment,
AL will be returned unchanged.

• Care must be taken not to exit in an unacceptable fashion if an
MS-DOS 1.x environment is detected. For example, Int 21H Func­
tion 4CH (Terminate Process with Return Code), Int 21H Function
40H (Write to File or Device), and the standard error handle are
not available in MS-DOS 1.x. In such cases a program should dis­
play an error message using Int 21H Function 09H and then termi­
nate with Int 20H or Int 21H Function OOH.

Int 2m Function 3m (49)
Terminate and Stay Resident

[2] [3]

Terminates execution of the currently executing program, passing a
return code to the parent process, but reserves part or all of the pro­
gram's memory so that it will not be overlaid by the next transient
program to be loaded. MS-DOS then takes the following actions:

• Flushes the file buffers and closes any open handles for files or
devices owned by the process.

• Restores the termination handler vector (lnt 22H) from
PSP:OOOAH.

• Restores the Ctrl-C handler vector (Int 23H) from PSP:OOOEH.

• [2] [3] Restores the critical-error handler vector (lnt 24H) from
PSP:0012H.

• Transfers control to the termination handler.

45

If the program is returning to COMMAND.COM, control transfers to
the resident portion, and the transient portion is reloaded if necessary.
If a batch file is in progress, the next line of the file is fetched and in­
terpreted; otherwise, a prompt is issued for the next user command.

Call with:

AH =31H
AL = return code
DX = amount of memory to reserve (in paragraphs)

Returns:

Nothing

Notes:

• This function call is typically used to allow user-written utilities,
drivers, or interrupt handlers to be loaded as ordinary .COM or
.EXE programs and then remain resident. Subsequent entrance to
the code is via a hardware or software interrupt.

• This function attempts to set the initial memory allocation block to
the length in paragraphs specified in register DX. If other memory
blocks have been requested by the application using Int 21H Func­
tion 48H, they will not be released by this function.

• Other methods of performing a final exit are:
- Int 20H
- Int 21H Function OOH
- Int 21H Function 4CH
- Int 27H

• The return code may be retrieved by a parent process through Int
21H Function 4DH (Get Return Code). It can also be tested in a
batch file with an IF ERRORLEVEL statement. By convention, a
return code of zero indicates successful execution, and a non-zero
return code indicates an error.

• This function should not be called by .EXE programs that are
loaded at the high end of the transient program area (i.e., linked
with the tHIGH switch) because doing so reserves the memory that
is normally used by the transient part of COMMAND.COM. If
COMMAND.COM cannot be reloaded, the system will fail.

• [3] If the program is running on a network, it should remove all
locks it has placed on file regions before terminating.

• [2] [3] This function should be used in preference to Int 27H
because it supports return codes, allows larger amounts of memory
to be reserved, and does not require CS to contain the segment of
the program segment prefix.

46

Int 21H Function 32H (50)
Reserved

Int 21H Function 33H (51)
Get or Set Break Flag

[2] [3]

[2] [3]

Obtains or changes the status of the operating system's Break flag,
which influences Ctrl-C checking during function calls.

Call with:

If getting Breakflag
AH = 33H
AL =OOH

If setting Break flag
AH = 33H
AL =OlH
DL = OOH

Returns:

DL

Notes:

OlH

=OOH
OlH

if turning Break flag OFF
if turning Break flag ON

Break flag is OFF
Break flag is ON

• When the system Break flag is on, the keyboard is examined for a
Ctrl-C entry whenever any operating system input or output is re­
quested; if one is detected, control is transferred to the Ctrl-C han­
dler (Int 23H). When the Break flag is off, MS-DOS only checks
for a Ctrl-C entry when executing the traditional character I/O
functions (lnt 21H Functions om through OCH).

• The Break flag is not part of the local environment of the currently
executing program; it affects all programs. An application that
alters the flag should first save the flag's original status and then
restore the flag before terminating.

Int 21H Function 34H (52)
Reserved

47

[2] [3]

Int 21H Function 35H (53)
Get Interrupt Vector

. [2] [3]

Obtains the address of the current interrupt handler routine for the
specified machine interrupt.

Call with:

AH = 35H
AL = interrupt number

Returns:

ES:BX

Note:

= segment:offset of interrupt handler

• Together with Int 21H Function 25H (Set Interrupt Vector), this
function is used by well-behaved application programs to modify
or inspect the machine interrupt vector table.

Int 21H Function 36H (54) [2] [3]
Get Drive Allocation Information

Obtains selected information about a disk drive, from which the
drive's capacity and remaining free space can be calculated.

Call with:

AH = 36H
DL = drive code (O=default, l=A, etc.)

Returns:

If function successful
AX = sectors per cluster
BX = number of available clusters
CX = bytes per sector
DX = clusters per drive

Iffunction unsuccessful (drive invalid)
AX =FFFFH

48

Notes:

• This function regards "lost" clusters as being in use and does not
report them as part of the number of available clusters, even though
they are not assigned to a file.

• Similar information is returned by Int 2lH Functions IBH and
ICH.

Int 21H Function 37H (55)
Reserved

Int 21H Function 38H (56)
Get or Set Country Information

[2] [3]

[2] [3]

[2] Obtains internationalization information for the current country.

[3] Obtains internationalization information for the current or speci­
fied country, or sets the current country code.

Call with:

If getting internationalization information
[2]
AH
AL
DS:DX

[3]
AH
AL

=38H
= 0 to get "current" country information
= segment:offset><of buffer for returned information

=38H
=0

I-FEH
to get "current" country information
to get information for countries with code
< 255

FFH to get information for countries with code
>=255

BX = country code, if AL = FFH
DS:DX = segment:offset of buffer for returned information

If setting current country code (MS-DOS versions 3.0 and later)
AH = 38H
AL = l-OFEH country code for countries with code < 255

OFFH for countries with code >= 255
BX = country code, if AL = OFFH
DX =FFFFH

49

Returns:

If function successful
Carry flag = clear

and, if getting internationalization information
BX = country code
DS:DX = segment:offset of buffer holding internationalization

information

and buffer filled in as follows:
(for PC-DOS 2.0 and 2.1)

Byte(s)
OOH-OIH

02H-03H
04H-OSH
06H-07H
OSH-IFH

Contents
date format
0= USA mdy
1 = Europe d m y
2 = Japan y m d
ASCIIZ currency symbol
ASCIIZ thousands separator
ASCIIZ decimal separator
reserved

(for MS-DOS versions 2.0 and later, PC-DOS versions 3.0 and later)

Byte(s) Contents
OOH-OlH date format

02H-06H
07H-OSH
09H-OAH
OBH-OCH
ODH-OEH
OFH

lOH
I1H

0= USA mdy
1 = Europe d m y
2 = Japan y m d
ASCIIZ currency symbol string
ASCIIZ thousands separator character
ASCIIZ decimal separator character
ASCIIZ date separator character
ASCIIZ time separator character
currency format
bit 0 = 0 if currency symbol precedes value

bit 1
= 1 if currency symbol follows value
= 0 if no space between value and cur­

rency symbol
= 1 if one space between value and cur-

rency symbol
number of digits after decimal in currency
time format
bit 0 = 0 if 12-hour clock

= 1 if 24-hour clock

50

12H-15H
16H-17H
18H-21H

case-map call address
ASCIIZ data-list separator
reserved

Iffunction unsuccessful
Carry flag ::: set
AX ::: error code

Notes:

• The default country code is determined by the KEYBxx keyboard
driver file if one is loaded. Otherwise, the default country code is
OEM dependent.

• The previous contents of register CX may be destroyed· by the Get
Country Information subfunction.

• The case-map call address is the segment:offset of a FAR pro­
cedure that performs country-specific mapping on character values
from 80H through OFFH. The procedure must be called with the
character to be mapped in register AL. If an alternate value exists
for that character, it is returned in AL; otherwise, AL is unchanged.

• [3] The value in register DX is used by MS-DOS to select between
the Set Country and Get Country Information subfunctions.

• [3.3] Int 21H Function 65H (Get Extended Country Information)
returns a superset of the internationalization information supplied.
by this function.

::1.

Int 21H Function 39H (57)
Create Directory

r.

Creates a directory using the specified drive and path.

Call with:

:::39H AH
DS:DX ::: segment offset of ASCIIZ pathname

Returns:

If function successful
Carry flag ::: clear

If function unsuccessful
Carry flag ::: set
AX ::: error code

51

[2] [3]

Note:

• The function fails if:
- any element of the pathname does not exist.
- a directory with the same name at the end of the same path

already exists.
- the parent directory for the new directory is the root directory

and is full.
- the program is running on a network and the user running the

program has insufficient access rights.

Int 21H Function 3AH (58)
Delete Directory
Removes a directory using the specified drive and path.

Call with:

AH
DS:DX

Returns:

=3AH
= segment offset of ASCIIZ path name

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

Note:

• The function fails if:
- any element of the path name does not exist.
- the specified directory is also the current directory.
- the specified directory contains any files.

[2] [3]

- [3] the program is running on a network and the user running the
program has insufficient access rights.

Int 21H Function 3BH (59)
Set Current Directory

[2] [3]

Sets the current, or default, directory using the specified drive and
path.

52

Call with:

AH
DS:DX

Returns:

=3BH
= segment offset of ASCIIZ pathname

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

Notes:

• The function fails if any element of the pathname does not exist.

• Int 21H Function 47H can be used to obtain the name of the current
directory before using Int 21H Function 3BH to select another so
that the original directory can be restored later.

Int 21H Function 3CH (60)
Create File

[2] [3]

Given an ASCIIZ pathname, creates a new file in the designated or
default directory on the designated or default disk drive. If the speci­
fied file already exists, it is truncated to zero length. In either case, the
file is opened and a handle is returned that can be used by the pro­
gram for subsequent access to the file.

Call with:

AH
CX

=3CH
= file attribute

OOH if normal
OlH if read-only
02H if hidden
04H if system

DS:DX = segmentoffset of ASCIIZ pathname

Returns:

If function successful
Carry flag = clear
AX = handle

If function failed
Carry flag = set
AX = error code

53

Notes:

• The function fails if:
- any element of the pathname does not exist.
- the file is being created in the root directory and the root direc-

tory is full.
- a file with the same name and the read-only attribute already ex­

ists in the specified directory.
- [3] the program is running on a network and the user running the

program has insufficient access rights.

• If the volume label or directory bits are set in the file attribute
passed in register CX, they are ignored by MS-DOS.

• A file is usually given a normal (OOH) attribute when it is created.
The file's attribute can subsequently be modified with Int 21H
Function 43H.

• [3] See also Int 21H Function 5BH, which protects against the in­
advertent destruction of existing file data, and Int 21H Function
5AH, which aids in the creation of temporary working files.

Int 21H Function 3DH (61)
Open File

[2] [3]

Given an ASCIIZ pathname, opens the specified file in the designated
or default directory on the designated or default disk drive. A handle
is returned that can be used by the program for subsequent access to
the file.

Call with:

AH
AL

=3DH
= access mode
[2] bits 3-7 =

bits 0-2 =

[3] bit 7 =

54

00000 (reserved)
000 if read access
001 ifwrite access
010 if read/write access

inheritance flag
o if handle inherited

by child processes
1 if handle not

inherited

bits 4-6 =

bit 3 =
bits 0-2 =

sharing mode
000 if compatibility

mode
001 if deny all
010 if deny write
011 if deny read
100 if deny none
o (reserved)
000 if read access
001 ifwrite access
010 ifreadlwrite access

DS:DX = segment:offset of ASCIIZ pathname

Returns:

1f function successful
Carry flag = clear
AX = handle

if function unsuccessful
Carry flag = set
AX = error code

Notes:

• Any normal, system, or hidden file with a matching name will be
opened by this function. If the file is read-only, the success of the
operation also depends on the access code in bits 0-2 of register
AL. After opening the file, the file read/write pointer is set to off­
set zero (the first byte of the file).

• [2] Only bits 0-2 of register AL are significant; the remaining bits
should be zero for upward compatibility.
[3] Bit 3 should always be zero; bits 4-7 control access to the file
by other programs. Bits 4-6 have no effect unless SHARE.EXE is
loaded.

• The function fails if:
- any element of the path name does not exist.
- the file is opened with an access mode of read/write and the file

has the read-only attribute.
- [3] SHARE.EXE is loaded and the file has already been opened

by one or more other processes in a sharing mode that is incom­
patible with the current program's request.

• . The file's date and time stamp can be accessed after a successful
open call with Int 21H Function 57H.

• The file's attributes (hidden, system, read-only, or archive) can be
obtained with Int 21H Function 43H.

55

• When a file handle is inherited by a child process or is duplicated
with lnt 2lH Functions 45H or 46H, all sharing and access restric­
tions are also inherited.

• [3] A file-sharing error causes a critical-error exception (lnt 24H)
with an error code of 02H. Int 2lH Function 59H can be used to
obtain information about the sharing violation.

Int 21H Function 3EH (62)
Close File

[2] [3]

Given a handle that was obtained by a previous successful open (lnt
21H Function 3DH) or create (lnt 2lH Function 3CH, 5AH, or 5BH)
operation, flushes all internal buffers associated with the file to disk,
closes the file, and releases the handle for reuse. If the file was modi­
fied, the time and date stamp and file size are updated in the file's
directory entry.

Call with:

AH =3EH
BX = handle

Returns:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

Note:

• If you accidentally call this function with a zero handle, the stan­
dard input device is closed, and the keyboard appears to go dead.
Be sure you always call the close function with a valid, non-zero
handle.

Int 21H Function 3FH (63)
Read File or Device

[2] [3]

Given a valid file handle from a previous open (lnt 21H Function
3DH) or create (lnt 2lH Function 3CH, 5AH, or 5BH) operation, a

56

buffer address, and a length in bytes, transfers data at the current file
pointer position from the file into the buffer and then updates the file
pointer position.

Call with:

AH
BX
CX
DS:DX

Returns:

=3FH
= handle
= number of bytes to read
= segment:offset of buffer area

If function successful
Carry flag = clear
AX = bytes transferred

If function unsuccessful
Carry flag = set
AX = error code

Notes:

• If reading from a character device (such as the standard input) in
cooked mode, at most one line of input will be read (i.e., up to a
carriage return character or the specified length, whichever comes
first).

• If the carry flag is returned clear but AX = 0, then the file pointer
was already at end of file when the program requested the read.

• If the carry flag is returned clear but AX < CX, then a partial
record was read at end of file or there is an error.

• [3] If the program is running on a network, the user must have
Read access rights to the directory and file.

Int 21H Function 408 (64)
Write File or Device

[2] [3]

Given a valid file handle from a previous open (Int 21H Function
3DH) or create (Int 21H Function 3CH, 5AH, or 5BH) operation, a
buffer address, and a length in bytes, transfers data from the buffer
into the file and then updates the file pointer position.

57

Call with:

AH
BX
CX
DS:DX

Returns:

=40H
= handle
= number of bytes to write
= segment:offset of buffer area

If function successful
Carry flag = clear
AX = bytes transferred

If function unsuccessful
Carry flag = set
AX = error code

Notes:

• If the carry flag is returned clear but AX < CX, then a partial
record was written or there is an error. This can be caused by a
Ctrl-Z (lAH) embedded in the data if the destination is a character
device in cooked mode or by a disk-full condition if the destination
is a file.

• If the function is called with CX = 0, the file is truncated or ex­
tended to the current file pointer position.

• [3] If the program is running on a network, the user must have
Write access rights to the directory and file.

Int 21H Function 4tH (65)
Delete File

[2] [3]

Deletes a file from the specified or default disk and directory.

Call with:

=41H AH
DS:DX = segment offset of ASCIIZ pathname

Returns:

Iffunction successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

58

Notes:

• This function deletes a file by replacing the first character of its
filename in the directory with the character e (E5H) and marking
the file's clusters as "free" in the disk's file allocation table. The
actual data stored in those clusters is not overwritten.

• Only one file at a time may be deleted with this function. Unlike
the FCB-related Delete File function (Int 2lH Function 13H), the *
and ? wildcard characters are not allowed in the file specification.

• The function fails if:
- any element of the path name does not exist.
- the designated file exists but has the read-only attribute (lnt 2lH

Function 43H can be used to examine and modify a file's at­
tribute before attempting to delete it).

- [3] the program is running on a network, and the user running
the program has insufficient access rights.

Int 21H Function 42H (66)
Set File Pointer

[2] [3]

Sets the file location pointer relative to the start of file, end of file, or
current file position.

Call with:

AH =42H
AL = method code

OOH absolute offset from start of file
OIH signed offset from current file pointer
02H signed offset from end of file

BX = handle
CX = most significant half of offset
DX = least significant half of offset

Returns:

If function successful
Carry flag = clear
DX = most significant half of resulting file pointer
AX = least significant half of resulting file pointer

If function unsuccessful
Carry flag = set
AX = error code

59

Notes:

• This function uses a method code and a double-precision (32-bit)
value to set the file pointer. The next record read or written in the
file will begin at the new file pointer location.

• Method 02H may be used to find the size of the file by calling Int
21H Function 42H with an offset of 0 and examining the pointer
location that is returned.

• Using methods OlH or 02H, it is possible to set the file pointer to a
location that is before the start of file. If this is done, no error is
returned by this function, but an error will be encountered upon a
subsequent attempt to read or write the file.

• No matter what method is used in the call to this function, the file
pointer returned in DX:AX is always the resulting absolute byte
offset from the start of file.

Int 2m Function 438 (67)
Get or Set File Attributes

[2] [3]

Obtains or alters the attributes of a file (read-only, hidden, system, or
archive).

Call with:

AH
AL

CX

DS:DX

Returns:

=43H
= OOH if getting file attribute

OIH if setting file attribute
= new file attribute, if AL = 01

bit 5 = archive
bit 2 = system
bit 1 = hidden
bit 0 = read-only

= segment:offset of ASCIIZ pathname

If function successful
Carry flag = clear
CX = file attribute (see above)

Iffunction unsuccessful
Carry flag = set
AX = error code

60

Notes:

• Bit a of the attribute is the rightmost, or least significant, bit. At­
tribute bits may be combined; for example, an attribute value of 3
indicates a hidden, read-only file.

• This function cannot be used to set the volume label bit (bit 3) or
directory bit (bit 4) on an existing file.

• [3] If the program is running on a network, the user must have
Create access rights to the directory containing the file whose at­
tribute is to be modified.

Int 21H Function 448 (68)
IOCTL (110 Control)

[2] [3]

Provides a direct path of communication between an application pro­
gram and a device driver. Allows a program to obtain hardware­
dependent information and to request operations that are not supported
by other MS-DOS function calls.

The IOCTL subfunctions and the MS-DOS versions in which they
first became available are:

MS-DOS
Sub/unction Name version

OOH Get Device Information 2.0
OlH Set Device Information 2.0

02H Receive Control Data from Character 2.0
Device Driver

03H Send Control Data to Character Device 2.0
Driver

04H Receive Control Data from Block 2.0
Device Driver

aSH Send Control Data to Block Device 2.0
Driver

06H Check Input Status 2.0
07H Check Output Status 2.0
08H Check If Block Device Is Removable 3.0
09H Check If Block Device Is Remote 3.1
OAH Check If Handle Is Remote 3.1
OBH Change Sharing Retry Count 3.1

(continued)

61

Sub/unction

OCH

ODH

OEH
OFH

Name

Generic I/O Control for Character
Devices

MS-DOS
version

CL = 45H: Set Iteration Count 3.2
CL = 4AH: Select Code Page 3.3
CL = 4CH: Start Code Page Preparation 3.3
CL = 4DH: End Code Page Preparation 3.3

CL = 65H: Get Iteration Count 3.2
CL = 6AH: Query Selected Code Page 3.3
CL = 6BH: Query Prepare List 3.3

Generic I/O Control for Block Devices
CL = 40H: Set Device Parameters 3.2
CL = 41H: Write Track 3.2
CL = 42H: Format and Verify Track 3.2
CL = 60H: Get Device Parameters 3.2

CL = 6IH: Read Track 3.2
CL = 62H: Verify Track 3.2
Get Logical Drive Map
Set Logical Drive Map

32
3.2

Only 10CTL Subfunctions OOH, 06H, and 07H may be used for
handles associated with files. Subfunctions OOH-08H are not sup­
ported on network devices.

Int 21H Function 448 (68)
Subfunction 008

[2]

IOCTL: Get Device Information
Returns a device information word for the file or device associated
with the specified handle.

Call with:

AH =44H
AL =OOH
BX = handle

62

Returns:

If function successful
Carry flag = clear
DX = device information word

For afile:
bits 8-15 = 0 (reserved)
bit 7 = 0 indicating a file
bit 6 = 0 file has been written

1 file has not been written
bits 0-5 = drive number (O=A, 1=8, etc.)
For a device:
bit 15 = reserved
bit 14 = 1 if device supports IOCTL Read and

Write Control Data sub functions
a if Control Data sub functions not
supported

bits 8 -13 = reserved
bit 7 = 1 indicating a device
bit 6 = 0 if end offile on input
bit 5 = 0 if handle in cooked mode

1 if handle in raw mode
bit 4 = reserved
bit 3 = 1 if clock device
bit 2 = 1 if NUL device
bit 1 = 1 if standard output
bit a = 1 if standard input

Iffunction unsuccessful
Carry flag = set
AX = error code

Notes:

• Bits 8 -15 of DX correspond to the upper 8 bits of the device driver
attribute word.

• Bit 5 of the device information word for a handle associated with a
character device signifies whether MS-DOS considers that handle
to be in "raw mode" or "cooked mode." In cooked mode,
MS-DOS filters the character stream and may take special action
when the characters Ctrl-C, Ctrl-S, Ctrl-P, Ctrl-Z, and carriage
return are detected. In raw mode, all characters are treated as data,
and the exact number of characters requested is always read or
written.

63

..................................
Int 2lH Function 440 (68)
Subfunction OlH
IOCTL: Set Device Information

[2]

Sets certain flags for a handle associated with a character device. This
subfunction may not be used for a handle that is associated with a file.

Call with:

AH =44H
AL = OIH
BX = handle
DX = device information word

bits 8-15 = 0 (reserved)
bit 7 = 1 indicating a device
bit 6 = 0 (reserved)
bit 5 = 0 to select cooked mode

1 to select raw mode
bit 4 = 0 (reserved)
bit 3 = 1 if clock device
bit 2 = 1 if NUL device
bit 1 = 1 if standard output
bit 0 = 1 if standard input

Returns:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

Notes:

• If register DH does not contain DOH, control returns to the program
with the carry flag set and error code OOOlH (invalid function) in
register AX.

• Bit 5 of the information word for a handle associated with a charac­
ter device signifies whether MS-DOS considers that handle to be in
"raw mode" or "cooked mode." See Notes for IOCTL Subfunc­
tion DOH.

64

Int 2lH Function 44H (68) [2]
Subfunction 02H
IOCTL: Read Control Data from Character
Device Driver
Reads control data from a character device driver. The length and con­
tents of the data are specific to each device driver and do not follow
any standard format. This function does not necessarily result in any
input from the physical device.

Call with:

AH
AL
BX

=44H
=02H
= handle

CX
DS:DX

= number of bytes to read
= segment offset of buffer to receive data

Returns:

Iffunction successful
Carry flag = clear
AX = bytes read

and buffer contains control data from driver

Iffunction unsuccessful
Carry flag = set
AX = error code

Notes:

• If supported by the driver, this subfunction can be used to obtain
hardware-dependent status and availability information that is not
supported by other MS-DOS function calls.

• Character device drivers are not required to support IOCTL Sub­
function 02H. A program can test bit 14 of the device information
word returned by IOCTL Subfunction OOH to determine whether
the driver supports this subfunction. If Subfunction 02H is re­
quested and the driver does not have the ability to process control
data, control returns to the program with the carry flag set and
error code OOOlH (invalid function) in register AX.

65

Int 21H Function 44H (68) [2]
Subfunction 03H
IOCTL: Write Control Data to Character
Device Driver
Transfers control data from an application to a character device driver.
The length and contents of the data are specific to each device driver
and do not follow any standard format. This function does not neces­
sarily result in any output to the physical device.

Call with:

=44H
=03H
= handle

AH
AL
BX
CX
DS:DX

= number of bytes to write
= segment offset of data

Returns:

If function successful
Carry flag = clear
AX = bytes transferred

Iffunction unsuccessful
Carry flag = set
AX = error code

Notes:

• If supported by the driver, thissubfunction can be used to request
hardware-dependent operations (such as setting baud rate for a
serial port) that are not supported by other MS-DOS function calls.

• Character device drivers are not required to support IOCTL Sub­
function 03H. A program can test bit 14 of the device information
word returned by IOCTL Subfunction OOH to determine whether
the driver supports this subfunction. If Subfunction 03H is re­
quested and the driver does not have the ability to process control
data, control returns to the program with the carry flag set and er­
ror code OOOlH (invalid function) in register AX.

66

Int 21H Function 44H (68) [2]
Subfunction 04H
IOCTL: Read Control Data from Block
Device Driver
Transfers control data from a block device driver directly into an ap­
plication program's buffer. The length and contents of the data are
specific to each device driver and do not follow any standard format.
This function does not necessarily result in any input from the physi­
cal device.

Call with:

AH
AL

=44H
=04H

BL
CX
DS:DX

= drive code (O=default, l=A, 2=B, etc.)
= number of bytes to read
= segment:offset of buffer

Returns:

If function successful
Carry flag = clear
AX = bytes transferred

and buffer contains control data from device driver
If function unsuccessful
Carry flag = set
AX = error code

Notes:

• When supported by the driver, this subfunction can be used to
obtain hardware-dependent status and availability information that
is not provided by other MS-DOS function calls.

• Block device drivers are not required to support IOCTL Subfunc­
tion 04H. If this subfunction is requested and the driver does not
have the ability to process control data, control returns to the pro­
gram with the carry flag set and error code OOOlH (invalid func­
tion) in register AX.

67

Int 21H Function 44H (68) [2]
Subfunction OSH
IOCTL: Write Control Data to Block Device
Driver
Transfers control data from an application program directly to a block
device driver. The length and contents of the control data are specific
to each device driver and do not follow any standard format. This
function does not necessarily result in any output to the physical
device.

Call with:

AH
AL

=44H
=05H

BL
CX
DS:DX

= drive code (O=default, I=A, 2=B, etc.)
= number of bytes to write
= segment:offset of data

Returns:

Iffunction successful
Carry flag = clear
AX = bytes transferred

If function unsuccessful
Carry flag = set
AX = error code

Notes:

• When supported by the driver, this subfunction can be used to
request hardware-dependent operations (such as tape rewind or disk
eject) that are not provided by other MS-DOS function calls.

• Block device drivers are not required to support IOCTL Subfunc­
tion 05H. If this subfunction is requested and the driver does not
have the ability to process control data, control returns to the pro­
gram with the carry flag set and error code OOOlH (invalid func­
tion) in register AX.

68

Int 21H Function 448 (68)
Subfunction 068
IOCTL: Check Input Status

[2]

Returns a code indicating whether the device or file associated with a
handle is ready for input.

Call with:

AH =44H
AL =06H
BX = handle

Returns:

If function successful
Carry flag = clear

and,for a device:
AL =OOH

FFH

or,for afile:
AL =OOH

FFH

If function unsuccessful
Carry flag = set
AX = error code

Note:

if device not ready
if device ready

if file pointer at EOF
if file pointer not at EOF

• This function can be used to check the status of character devices,
such as the serial port or printer, that do not have their own "tradi­
tional" MS-DOS status calls.

Int 21H Function 448 (68)
Subfunction 078
IOCTL: Check Output Status

[2]

Returns a code indicating whether the device associated with a handle
is ready for output.

69

Call with:

AH =44H
AL =07H
BX = handle

Returns:

If function successful
Carry flag = clear

and,for a device:
AL =OOH

FFH

or,for afile:
AL =FFH

Iffunction unsuccessful
Carry flag = set
AX = error code

Note:

if device not ready
if device ready

• When used with a handle for a file, this function always returns a
ready status, even if the disk is full or no disk is in the drive.

Int 21H Function 44H (68) [3]
Subfunction 08H
IOCTL: Check If Block Device Is Removable
Checks whether the specified block device contains a removable
storage medium, such as a floppy disk.

Call with:

AH =44H
AL =08H
BL = drive number (O=default, I=A, 2=B, etc.)

Returns:

If function successful
Carry flag = clear
AL = OOH if medium is removable

OIH if medium is not removable

Iffunction unsuccessful
Carry flag = set
AX = error code

70

Notes:

• If a file is not found as expected on a particular drive, a program
can use this subfunction to determine whether the user should be
prompted to insert another disk.

• This subfunction may not be used for a network drive.

• Block drivers are not required to support Subfunction 08H. If this
subfunction is requested and the block device cannot supply the in­
formation, control returns to the program with the carry flag set
and error code OOOlH (invalid function) in register AX.

Int 21H Function 44H (68) [3.1]
Subfunction 09H
IOCTL: Check If Block Device Is Remote
Checks whether the specified block device is local (attached to the
computer running the program) or remote (redirected to a network
server).

Call with:

AH =44H
AL =09H
BL = drive number (O=default, l=A, 2=B, etc.)

Returns:

If function successful
Carry flag = clear
DX = device attribute word

bit 12 = 0 if drive is local
1 if drive is remote

1f function unsuccessful
Carry flag = set
AX = error code

Note:

• Use of this subfunction should be avoided. Application programs
should not distinguish between files on local and remote devices.

71

Int 21H Function 44H (68) [3.1]
Subfunction OAH
IOCTL: Check If Handle Is Remote
Checks whether the specified handle refers to a file or device that is
local (located on the PC that is running the program) or remote (lo­
cated on a network server).

Call with:

AH =44H
AL =OAH
BX = handle

Returns:

Iffunction successful
Carry flag = clear
DX = attribute word for file or device

bit 15 = 0 if local
1 ifremote

If function unsuccessful
Carry flag = set
AX = error code

Notes:

• Application programs should not ordinarily attempt to distinguish
between files on local and remote devices.

• If the network has not been started, control returns to the calling
program with the carry flag set and error code OOOlH (invalid
function) in register AX.

Int 21H Function 44H (68) [3.1]
Subfunction OBH
IOCTL: Change Sharing Retry Count
Sets the number of times MS-DOS retries a disk operation after a
failure caused by a file-sharing violation before it returns an error to
the requesting process. This subfunction is not available unless the
file-sharing module (SHARE.EXE) is loaded.

72

Call with:

AH =44H
AL = OBH
CX = delays per retry (default= 1)
DX = number of retries (default=3)

Returns:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

Notes:

• The length of a delay is a machine-dependent value determined by
the CPU type and clock speed. Each delay consists of the following
instruction sequence:

xor eX,ex
loop $

which executes 65,536 times before falling out of the loop.

• The sharing retry count affects the behavior of the system as a
whole and is not a local parameter for the process. If a program
changes the sharing retry count, it should restore the default values
before terminating.

Int 21H Function 44H (68) [3.2]
Subfunction OCH
IOCTL: Generic I/O Control for Character
Devices
Provides a general-purpose mechanism for communication between
application programs and character device drivers.

Call with:

AH =44H
AL =OCH

73

BX
CH

CL

DS:DX

Returns:

= handle
= category (major) code:

00 = unknown
01 = COM1, COM2, COM3, or COM4 (3.3)
03 = CON (keyboard and display) (3.3)
05 = LPTl, LPT2, or LPTJ (3.2)

= function (minor) code:
45H = Set 1teration Count (3.2)
4AH = Select Code Page (3.3)
4CH = Start Code Page Preparation (3.3)
4DH = End Code Page Preparation (3.3)
65H = Get Iteration Count (3.2)
6AH = Query Selected Code Page (3.3)
6BH = Query Prepare List (3.3)

= segment offset of parameter block

If function successful
Carry flag = clear

and, if called with CL = 65H, 6AH, or 6BH
DS:DX = segmentoffset of parameter block

1f function unsuccessful
Carry flag = set
AX = error code

Notes:

• If the minor code is 45H (Set Iteration Count) or 65H (Get Iteration
Count), the parameter block is simply a 2-byte buffer containing or
receiving the iteration count for the printer. This call is valid only
for printer drivers that support Output Until Busy, and determines
the number of times the device driver will wait for the device to
signal ready before returning from the output call.

• The parameter block for minor codes 4AH (Select Code Page),
4DH (End Code Page Preparation), or 6AH (Query Code Page) has
the following format

dw
dw

2
?

length of following data
code page ID

74

• The parameter block for minor code 4CH (Start Code Page Prep­
aration) has the following format:

dw 0 flags
dw (n+1) *2 length of remainder of

parameter block
dw n number of code pages in

the following list
dw ? code page 1
dw ? code page 2

dw ? ; code page n

• The parameter block for minor code 6BH (Query Prepare List) has
the following format, assuming n hardware code pages and m pre­
pared code pages (n <= 12, m <= 12):

dw
dw
dw
dw

dw
dw
dw
dw

dw

(n+m+2)*2
n

?
?

?

m

?

?

?

length of following data
no. of hardware code pages
hardware code page 1
hardware code page 2

hardware code page n
no. of prepared code pages
prepared code page 1
prepared code page 2

; prepared code page m

• After a minor code 4CH (Start Code Page Preparation) call, the
data defining the code page font is written to the driver using one
or more calls to the IOCTL Write Control Data subfunction (Inter­
rupt 21H, Function 44H, Subfunction 03H). The format of the data
is device- and driver-specific. After the font data has been written
to the driver, a minor code 4DH (End Code Page Preparation) call
must be issued. If no data is written to the driver between the
minor code 4CH and 4DH calls, the driver interprets the newly
prepared code pages as hardware code pages.

• A special variation of the minor code 4CH (Start Code Page
Preparation) call, called "Refresh," is required to actually load the
peripheral device with the prepared code pages. The refresh

75

operation is obtained by requesting minor code 4CH with each
code page position in the parameter block set to -1, followed by an
immediate call for minor code 4DH (End Code Page Preparation).

Int 21H Function 44H
Subfunction ODH
IOCTL: Generic I/O Control for Block
Devices

[3.2]

Provides a general-purpose mechanism for communication between
application programs and block device drivers. Allows a program to
inspect or change device parameters for a logical drive and to read,
write, format, and verify disk tracks in a hardware-independent
manner.

Call with:

AH
AL
BL
CH

CL

DS:DX

Returns:

=44H
=ODH
= drive code (O=default, I=A, 2=B, etc.)
= category (major) code:

OSH = disk drive
= function (minor) code:

40H = Set Device Parameters
41H = Write Track
42H = Format and Verify Track
60H = Get Device Parameters
61 H = Read Track
62H = Verify Track

= segment:offset of parameter block

Iffunction successful
Carry flag = clear

and, if called with CL = 60H or 61H
DS:DX = segment:offset of parameter block

lffunction unsuccessful
Carry flag = set
AX = error code

76

Notes:

• The minor code 40H (Set Device Parameters) function must be
used before an attempt to write, read, format, or verify a track on a
logical drive. In general, the following sequence applies to any of
these operations:
- Get the current parameters (minor code 60H). Examine and save

them.
- Set the new parameters (minor code 40H).
- Perform the task.
- Retrieve the original parameters and restore them with minor

code 40H .

• For minor codes 40H (Set Device Parameters) and 60H (Get
Device Parameters), the parameter block is formatted as follows:

Special-functions field: offset 008, length = 1 byte

Bit(s) Value Meaning

0 0 Device BPB field contains a new default
BPB

1 Use current BPB
0 Use all fields in parameter block
I Use track layout field only

2 0 Sectors in track may be different sizes
(should always be avoided)

Sectors in track are all same size; sector
numbers range from 1 to the total num-
ber of sectors in the track (should
always be used)

3-7 0 Reserved

Device type field: offset 01H, length 1 byte

Value Meaning

0 320/360 KB, S.2S-inch disk
1 1.2 MB, S.2S-inch disk

2 720 KB, 3.5-inch disk

3 Single-density, 8-inch disk
4 Double-density, 8-inch disk

S Fixed disk

6 Tape drive

7 Other type of block device

77

Device attributes field: offset 02H, length 1 word

Bit(s) Value Meaning

o

2-15

o
1

o

o

Removable storage medium

Nonremovable storage medium
Door lock not supported
Door lock supported
Reserved

Number of cylinders field: offset 04H, length 1 word

Maximum number of cylinders supported on the block device

Media type field: offset 06H, length 1 byte

Value Meaning

o 1.2 MB, 5.25-inch disk
320/360 KB, 5.25-inch disk

Device BPB field: offset 07H, length 31 bytes

For format of the device BPB, see separate Note below.

If bit 0 = 0 in special-functions field, this field contains the new
default BPB for the device.

If bit 0 = 1 in special-functions field, the BPB in this field is
returned by the device driver in response to subsequent Build
BPB requests.

Track layout field: offset 26H, variable-length table

Length Meaning

Word
Word
Word

Word

Number of sectors in track
Number of first sector in track
Size of first sector in track

Number of last sector in track
Word Size of last sector in track

• The device BPB field is a 3I-byte data structure that describes the
current disk and its control areas. The field is formatted as follows:

Byte(s)

OOH-OIH

02H

Meaning

Bytes per sector
Sectors per cluster (allocation unit)

78

Meaning Byte(s)

03H-04H
05H
06H-07H
08H-09H
OAH
OBH-OCH
ODH-OEH
OFH-lOH
llH-14H
15H-IFH

Reserved sectors, beginning at sector 0
Number of file allocation tables (FATs)
Maximum number of root-directory entries
Number of sectors
Media descriptor
Sectors per FAT
Sectors per track
Number of heads
Number of hidden sectors
Reserved

• When minor code 40H (Set Device Parameters) is used, the number
of cylinders should not be altered, or some or all of the volume
may become inaccessible.

• For minor codes 4lH (Write Track) and 6lH (Read Track), the
parameter block is formatted as follows:

Byte(s)

OOH
OlH-02H
03H-04H

Meaning

Special-functions field (must be 0)
Head
Cylinder

05H -06H Starting sector
07H -08H Sectors to transfer
09H -OCH Transfer buffer address

• For minor codes 42H (Format and Verify Track) and 62H (Verify
Track), the parameter block is formatted as follows:

Byte(s)

OOH
OlH-02H
03H-04H

Meaning

Special-functions field (must be 0)
Head
Cylinder

Int 21H Function 44H (68)
Subfunction OEH
IOCTL: Get Logical Drive Map

[3.2]

Returns the logical drive code that was most recently used to access
the specified block device.

79

Call with:

AH =44H
AL =OEH
BL = drive code (O=default, I=A, 2=B, etc.)

Returns:

Iffunction successful
Carry flag = clear
AL = mapping code

OOH if only one logical drive code assigned
to the block device

OIH-IAH logical drive code (i=A, 2=B, etc.)
mapped to the block device

If function unsuccessful
Carry flag = set
AX = error code

Note:

• If a drive has not been assigned a logical mapping with Function
44H Subfunction OFH, the logical and physical drive codes are the
same.

Int 21H Function 44H (68)
Subfunction OFH
IOCTL: Set Logical Drive Map

[3.2]

Sets the next logical drive code that will be used to reference a block
device.

Call with:

AH =44H
AL =OFH
BL = drive code (O=default, I=A, 2=B, etc.)

Returns:

If function successful
Carry flag = clear

80

AL = mapping code
OOH

OIH'-IAH

If function unsuccessful
Carry flag = set
AX = error code

Note:

if only one logical drive code
assigned to the block device
logical drive code (1 =A, 2=B, etc.)
mapped to the block device

• When a physical block device is aliased to more than one logical
drive code, this function can be used to inform the driver which
drive code will next be used to access the device.

Int 21H Function 45H (69)
Duplicate Handle

[2] [3]

Given a handle for a currently open device or file, returns a new
handle that refers to the same device or file at the same position.

Call with:

AH =45H
BX = handle to be duplicated

Returns:

If function successful
Carry flag = clear
AX = new handle

If function unsuccessful
Carry flag = set
AX = error code

Notes:

• A seek, read, or write operation that moves the file pointer for one
of the two handles also moves the file pointer associated with the
other.

• This function can be used to efficiently update the directory for a
file that has changed in length, without incurring the overhead of
closing and then reopening the file. The handle for the file is sim­
ply duplicated with this function and the duplicate is closed, leav­
ing the original handle open for further read/write operations.

81

• [3.3] See also Int 21H Function 68H (Commit File).

Int 2lH Function 46H (70)
Redirect Handle

[2] [3]

Given two handles, makes the second handle refer to the same device
or file at the same location as the first handle. The second handle is
then said to be redirected.

Call with:

AH =46H
BX = handle for file or device
CX = handle to be redirected

Returns:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

Notes:

• If the handle passed in CX already refers to an open file, that file is
closed first.

• A seek, read, or write operation that moves the file pointer for one
of the two handles also moves the file pointer associated with the
other.

• This function is commonly used to redirect the standard input and
output handles to another file or device before a child process is ex­
ecuted with Int 21H Function 4BH.

Int 2lH Function 47H (71)
Get Current Directory

[2] [3]

Obtains an ASCIIZ string that describes the path from the root to the
current directory, and the name of that directory.

82

Call with:

AH
DL
DS:SI

Returns:

=47H
= drive code (O=default,l=A, etc.)
= segment:offset of 64-byte buffer

Iffunction successful
Carry flag = clear

and buffer is filled in with full pathname from root of current
directory

If function unsuccessful
Carry flag = set
AX = error code

Notes:

• The returned path name does not include the drive identifier or a
leading backs lash (\). It is terminated with a null (OOH) byte. Con­
sequently, if the current directory is the root directory, the first
byte in the buffer will contain OOH.

• The function fails if the drive code is invalid.

• The current directory may be set with Int 21H Function 3BH.

Int 21H Function 48H (72)
Allocate Memory Block

[2] [3]

Allocates a block of memory and returns a pointer to the beginning of
the allocated area.

Call with:

AH =48H
BX = number of paragraphs of memory needed

Returns:

Iffunction successful
Carry flag = clear
AX = initial segment of allocated block

If function unsuccessful
Carry flag = set
AX = error code
BX = size of largest available block (paragraphs)

83

Notes:

• If the function succeeds, the base address of the newly allocated
block is AX:OOOO.

• The default allocation strategy used by MS-DOS is "first fit"; that
is, the memory block at the lowest address that is large enough to
satisfy the request is allocated. The allocation strategy can be
altered with Int 2lH Function 58H.

• When a .COM program is loaded, it ordinarily already "owns" all
of the memory in the transient program area, leaving none for
dynamic allocation. The amount of memory initially allocated to a
.EXE program at load time depends on the MINALLOC and
MAXALLOC fields in the .EXE file header. See Int 2lH Function
4AH.

Int 2lH Function 49H (73)
Release Memory Block

[2] [3]

Releases a memory block and makes it available for use by other
programs.

Call with:

AH =49H
ES = segment of block to be released

Returns:

If function successful
Carry flag = clear

Iff unction unsuccessful
Carry flag = set
AX = error code

Notes:

• This function assumes that the memory block being released was
previously obtained by a successful call to Int 21H Function 48H.

• The function will fail or can cause unpredictable system errors if:
- the program releases a memory block that does not belong to it.
- the segment address passed in register ES is not a valid base ad-

dress for an existing memory block.

84

Int 2m Function 4AH (74)
Resize Memory Block

[2] [3]

Dynamically shrinks or extends a memory block, according to the
needs of an application program.

Call with:

AH =4AH
BX = desired new block size in paragraphs
ES = segment of block to be modified

Returns:

If function successful
Carry flag = clear

Iffunction unsuccessful
Carry flag = set
AX = error code
BX = maximum block size available (paragraphs)

Notes:

• This function modifies the size of a memory block that was pre­
viously allocated with a call to Int 21H Function 48H.

• If the program is requesting an increase in the size of an allocated
block, and this function fails, the maximum possible size for the
specified block is returned in register BX. The program can use
this value to determine whether it should terminate, or continue in
a degraded fashion with less memory.

• A program that uses EXEC (lnt 21H Function 4BH) to load and
execute a child program must call this function first, passing the
address of its own PSP in register ES and the amount of memory
needed for its own code, data, and stacks in register BX.

R R

Int 2m Function 4BH (75)
Execute Program (EXEC)

[2] [3]

Allows an application program to run another program, regaining
control when it is finished. Can also be used to load overlays although
this use is uncommon.

85

Call with:

AH
AL

ES:BX
DS:DX

Returns:

=4BH
= subfunction

OOH = Load and Execute Program
03H = Load Overlay

= segmentoffset of parameter block
= segment offset of program specification

If function successful
Carry flag = clear

[2] all registers except for CS:IP may be destroyed
[3] registers are preserved in the usual fashion

If function unsuccessful
Carry flag = set
AX = error code

Notes:

• The parameter block format for Subfunction OOH (Load and Exe­
cute Program) is as follows:

Bytes Contents

OOH-OIH Segment pointer to environment block
02H-03H Offset of command line tail
04H-05H
06H-07H

08H-09H
OAH-OBH

OCH-ODH

Segment of command line tail
Offset of first FCB to be copied into new

PSP+ 5CH
Segment of first FCB
Offset of second FCB to be copied into new

PSP+ 6CH
Segment of second FCB

• The parameter block format for Subfunction 03H (Load Overlay) is
as follows:

Bytes

OOH-OiH
02H-03H

Contents

Segment address where overlay is to be loaded
Relocation factor to apply to loaded image

• The environment block must be paragraph aligned. It consists of a
sequence of ASCIIZ strings in the form:

db • COMSPEC=A: \COMMAND . COM' , 0

The entire set of strings is terminated by an extra null (OOH) byte.

86

• The command tail format consists of a count byte, followed by an
ASCII string, terminated by a carriage return (which is not in­
cluded in the count). The first character in the string should be an
ASCII space (20H) for compatibility with the command tail passed
to programs by COMMAND.COM. For example:

db 6,' *.DAT',Odh

• Before a program uses Int 2lH Function 4BH to run another pro­
gram, it must release all memory it is not actually using with a call
to Int 2lH Function 4AH, passing the segment address of its own
PSP and the number of paragraphs to retain.

• All active handles (open files and standard devices) of the parent
program are inherited by the child program. If the parent redirects
standard input and/or output to other devices or files, the child will
inherit the same environment and will read its input from the redi­
rected source.

• The environment block can be used to pass information to the child
process. If the environment block pointer in the parameter block is
zero, the child program inherits an exact copy of the parent's envi­
ronment. In any case, the segment address of the child's environ­
ment is found at offset 002CH in the child's PSP.

• After return from the EXEC function call, the termination type
and return code of the child program may be obtained with Int 2lH
Function 4DH.

Int 21H Function 4CH (76)
Terminate Process with Return Code

[2] [3]

Terminates the current process, passing a return code to the parent
process. This is one of several methods that a program can use to per­
form a final exit. MS-DOS then takes the following actions:

• All memory belonging to the process is released.

• File buffers are flushed and any open handles for files or
devices owned by the process are closed.

• The termination handler vector (Int 22H) is restored from
PSP:OOOAH.

• The Ctrl-C handler vector (Int 23H) is restored from
PSP:OOOEH.

87

• [2] [3] The critical-error handler vector (lnt 24H) is restored
from PSP:0012H.

• Control is transferred to the termination handler.

If the 'program is returning to COMMAND.COM, control transfers to
the resident portion and the transient portion is reloaded if necessary.
If a batch file is in progress, the next line of the file is fetched and in­
terpreted; otherwise, a prompt is issued for the next user command.

Call with:

AH =4CH
AL = return code

Returns:

Nothing

Notes:

• [2] [3] This is the preferred method of termination for application
programs, since it allows a return code to be passed to the parent
program and does not rely on the contents of any segment register.
Other methods of performing a final exit are:
- Int 20H
- Int 21H Function OOH
- Int 21H Function 31H
- Int 27H

• Any files that have been opened using FCBs and modified by the
program should be closed before program termination; otherwise,
data may be lost.

• The return code can be retrieved by the parent process with Int 21H
Function 4DH (Get Return Code). It can also be tested in a batch
file with an IF ERRORLEVEL statement. By convention, a return
code of zero indicates successful execution, and a non-zero return
code indicates an error.

• [3] If the program is running on a network, it should remove all
locks it has placed on file regions before terminating.

Int 21H Function 4DH (77)
Get Return Code

[2] [3]

Used by a parent process, after the successful execution of an EXEC
call (Int 21H Function 4BH), to obtain the return code and termina­
tion type of a child process.,

88

Call with:

AH =4DH

Returns:

AH = exit type
OOH if normal termination by Int 20H, Int 2lH

Function 0, or Int 2lH Function 4CH
OlH if termination by user's entry of CtrlDC
02H if termination by critical-error handler
03H if termination by Int 2lH Function 3lH or

Int 27H
AL = return code passed by child process (0 if child termi-

nated by Int 20H, Int 2lH Function 0, or Int 27H)

Notes:

• This function will yield the return code of a child process only
once. A subsequent call without an intervening EXEC (Int 2lH
Function 4BH) will not necessarily return any valid information.

• This function does not set the carry flag to indicate an error. If no
previous child process has been executed, the values returned in
AL and AH are undefined.

Int 2lH Function 4EH (78)
Find First File

[2] [3]

Given a file specification in the form of an ASCIIZ string, searches
the default or specified directory on the default or specified drive for
the first matching file.

Call with:

AH
CX
DS:DX

Returns:

=4EH
= attribute to use in search
= segment:offset of ASCIIZ pathname

If function successful (matching file found)
Carry flag = clear

89

and current disk transfer area filled in as follows:
bytes 0-20 = reserved
byte 21 = attribute of matched file
bytes 22-23= file time

bits OBH -OFH = hours (0-23)
bits 05H-OAH = minutes (0-59)
bits 00H-04H = 2-second increments (0-29)

bytes 24-25 = file date
bits 09H-OFH = year (relative to 19S0)
bits 05H-OSH = month (J -12)
bitsOOH-04H = day (J-31)

bytes 26-29= file size
bytes 30-42 = ASClIZ filename and extension

Iffunction unsuccessful (no matching files)
Carry flag = set
AX = error code

Notes:

• This function assumes that the DTA has been previously set by the
program with Int 2lH Function lAH to point to a buffer of ade­
quate size.

• The * and? wildcard characters are allowed in the filename. If
wildcard characters are present, this function returns only the first
matching filename.

• If the attribute is OOH, only ordinary files are found. If the volume
label attribute bit is set, only volume labels will be returned (if any
are present). Any other attribute or combination of attributes (hid­
den, system, and directory) results in those files and all normal
files being matched.

Int 21H Function 4FH (79)
Find Next File

[2] [3]

Assuming a previous successful call to Int 2lH Function 4EH, finds
the next file in the default or specified directory on the default or
specified drive that matches the original file specification.

Call with:

AH =4FH

Assumes DTA points to working buffer used by previous successful
Int 21H Function 4EH or 4FH.

90

Returns:

If function successful (matching file found)
Carry flag = clear

and current disk transfer area filled in as follows:
bytes 0-20 = reserved
byte 21 = attribute of matched file
bytes 22 - 23 = file time

bits OBH-OFH = hours (0-23)
bits 05H-OAH = minutes (0-59)
bits 00H-04H = 2-second increments (0-29)

bytes 24 - 25 = file date
bits 09H-OFH = year (relative to 1980)
bits OSH -08H = month (1-12)
bits 00H-04H = day (1-31)

bytes 26-29= file size
bytes 30-42= ASClIZfilename and extension

If function unsuccessful (no more matching files)
Carry flag = set
AX = error code

Notes:

• Use of this call assumes that the original file specification passed
to lnt 2lH Function 4EH contained one or more * or ? wildcard
characters .

• When this function is called, the current disk transfer area (DTA)
must contain information from a previous successful call to lnt 2lH
Function 4EH or 4FH.

Int 21H Function SOH (SO)
Reserved

Int 21H Function 51H (SI)
Reserved

Int 21H Function 52H (S2)
Reserved

91

[2] [3]

[2] [3]

[2] [3]

Int 21H Function 538 (83)
Reserved

Int 21H Function 548 (84)
Get Verify Flag

[2] [3]

[2] [3]

Obtains the current value of the system verify (read-after-write) flag.

Call with:

AH = 54H

Returns:

AL = current verify flag value
OOH if verify off
OlH if verify on

Notes:

• Because read-after-write verification slows disk operations, the
default state of the system verify flag is OFF.

• The state of the system verify flag can be changed through a call to
Int 2lH Function 2EH or by the MS-DOS commands VERIFY ON
and VERIFY OFF.

Int 21H Function 558 (85)
Reserved

Int 21H Function 568 (86)
Rename File

[2] [3]

[2] [3]

Renames a file and/or moves its directory entry to a different direc­
tory on the same disk.

92

Call with:

= 56H . AH
DS:DX
ES:DI

= segment offset of current ASCIIZ pathname
= segment offset of new ASCIIZ pathname

Returns:

If function successful
Carry flag = clear

Iffunction unsuccessful
Carry flag = set
AX = error code

Notes:

• The function fails if:
- any element of the pathname does not exist.
- a file with the new pathname already exists.
- the current pathname specification contains a different disk drive

than does the new pathname.
- the file is being moved to the root directory and the root direc­

tory is full.
- the program is running on a network and the user has insufficient

access rights to either the existing file or the new directory.

• The * and? wildcard characters are not allowed in either the cur­
rent or new pathname specifications.

Int 21H Function 57H (87) [2] [3]
Get or Set File Date and Time
Obtains or modifies the date and time stamp in a file's directory
entry.

Call with:

If getting date and time
AH = 57H
AL =OOH
BX = handle

93

If setting date and time
AH = S7H
AL =OlH
BX
CX

DX

Returns:

= handle
= time

bits OBH -OFH
bits 05H -OAH
bits OOH -04H

= date
bits 09H-OFH
bits 05H -OSH
bits OOH -04H

Iffunction successful
Carry flag = clear

and, if called with AL = OOH
CX = time
DX = date

If function unsuccessful
Carry flag = set
AX = error code

Notes:

= hours (0-23)
= minutes (0-59)
= 2-second increments (0-29)

= year (relative to I 9S0)
= month (/ -12)
= day (/-31)

• The file must have been previously opened or created via a suc­
cessful call to Int 2lH Function 3CH, 3DH, SAH, or SBH.

• The date and time are in the format used in the directory, with bit
o the rightmost, or least significant, bit.

• If the l6-bit date for a file is set to zero, that file's date and time
are not displayed on directory listings.

• A date and time set with this function will prevail, even if the file
is modified afterwards before the handle is closed.

Int 21H Function 588 (88)
Get or Set Allocation Strategy

[3]

Obtains or changes the code indicating the current MS-DOS strategy
for allocating memory blocks.

94

Call with:

If getting strategy code
AH = 58H
AL =OOH

If setting strategy code
AH = 58H
AL = OIH
BX = desired strategy code

OOH = first fit
OJ H = best fit
02H = last fit

Returns:

If function successful
Carry flag = clear

and, if called with AL = OOH
AX = current strategy code

If function unsuccessful
Carry flag = set
AX = error code

Notes:

• The memory allocation strategies are:
First Fit: MS-DOS searches the available memory blocks from low
addresses to high addresses, assigning the first one large enough to
satisfy the block allocation request.
Best Fit: MS-DOS searches all available memory blocks and
assigns the smallest available block that will satisfy the request,
regardless of its position.
Last Fit: MS-DOS searches the available memory blocks from high
addresses to low addresses, assigning the highest one large enough
to satisfy the block allocation request.

• The default MS-DOS memory allocation strategy is First Fit
(code 0).

Int 21H Function 59H (89)
Get Extended Error Information

[3]

Obtains detailed error information after a previous unsuccessful Int
21H function call, including the recommended remedial action.

95

Call with:

AH =59H
BX =00

Returns:

AX = extended error code
See table "MS-DOS Extended Error Codes," page 6

BH = error class
OlH if out of resource (such as storage or

handles)
02H if not error, but temporary situation

(such as locked region infi/e) that can
be expected to end

03H if authorization problem
04H if internal error in system software
05H if hardware failure
06H if system software failure not the fault of

the active process (such as missing con­
figuration files)

07H if application program error
08H if file or item not found
09H if file or item of invalid type or format
OAH (10) if file or item interlocked
OBH (11) ifwrong disk in drive, bad spot on disk,

or storage medium problem
OCH (12) if other error

BL = recommended action
OlH retry reasonable number of times, then

prompt user to select abort or ignore
02H retry reasonable number of times with

delay between retries, then prompt user
to select abort or ignore

03H get corrected information from user (typ­
ically caused by incorrect filename or
drive specification)

04H abort application with cleanup (i.e., ter­
minate the program in as orderly a man­
ner as possible, releasing locks, closing
files, etc.)

05H perform immediate exit without cleanup
06H ignore error
07H retry after user intervention to remove

cause of error

96

CH

[3]
ES:DI

Notes:

= error locus
OlH
02H
03H
04H
05H

unknown
block device (disk or disk emulator)
network
serial device
memory

= ASCIIZ volume label of disk to insert, if AX =
0022H (invalid disk change)

• This function may be called after any other Int 2lH function call
that returned an error status, in order to obtain more detailed infor­
mation about the error type and the recommended action. If the
previous Int 2lH function call had no error, OOOOH is returned in
register AX. This function may also be called during the execution
of a critical-error (lnt 24H) handler.

• The contents of registers CL, DX, SI, DI, BP, DS, and ES are
destroyed by this function.

• Note that extended error codes 13H-IFH (19-31) and 22H (34)
correspond exactly to the error codes O-OCH (0-12) and OFH (15)
returned by Int 24H.

• Microsoft documentation explicitly warns that new error codes will
be added in future versions of MS-DOS, and you should not code
your programs to recognize only specific error numbers if you
want to ensure upward compatibility.

Int 21H Function 5AH (90)
Create Temporary File

[3]

Creates a file with a unique name, in the current or specified directory
on the default or specified disk drive, and returns a handle that can be
used by the program for subsequent access to the file. The name gener­
ated for the file is also returned in a buffer specified by the program.

Call with:

AH =5AH

97

CX

DS:DX

Returns:

= attribute
DOH if normal
OIH if read-only
02H if hidden
04H if system

= segment:offset of ASCIIZ path

If function successful
Carry flag = clear
AX = handle
DS:DX = segment:offset of complete ASCIIZ pathname

If function unsuccessful
Carry flag = set
AX = error code

Notes:

• The ASCIIZ path supplied to this function should be followed by
at least 13 additional bytes of buffer space. MS-DOS adds a
backslash (\) to the supplied path, if necessary, then appends a
null-terminated filename that is a function of the current time.

• Files created with this function are not automatically deleted when
the calling program terminates.

• The function fails if
- any element of the pathname does not exist.
- the file is being created in the root directory and the root direc-

tory is full.

• [3] If the program is running on a network, the file is created and
opened for read/write access in compatibility sharing mode.

• See also Int 2lH Functions 3CH and 5BH, which provide addi­
tional facilities for creating files.

Int 21H Function 5BH (91)
Create New File

[3]

Given an ASCIIZ pathname, creates a file in the designated or default
directory on the designated or default drive and returns a handle that
can be used by the program for subsequent access to the file. If a file
with the same name already exists, the function fails.

98

Call with:

AH
CX

=5BH
= attribute

OOH if normal
01H if read-only
02H if hidden
04H if system

DS:DX = segment:offset of ASCIIZ path name

Returns:

1f function successful
Carry flag = clear
AX = handle

1f function unsuccessful
Carry flag = set
AX = error code

Notes:

• The function fails if:
- any element of the specified path does not exist.
- a file with the identical pathname (i.e., the same filename and ex-

tension in the same location in the directory structure) already
exists.

- the file is being created in the root directory and the root direc­
tory is full.

- [3] the program is running on a network and the user has insuffi­
cient access rights to the directory that will contain the file.

• The file is usually given the normal attribute when it is created,
and is opened for both read and write operations. The attribute can
subsequently be modified with Int 21H Function 43H.

• See also Int 21H Function 3CH. The two calls are identical, except
that Function 5BH fails if a file with the same name already exists,
rather than truncating the file to zero length. Int 21H Function 5AH
provides an alternative means of creating temporary working files.

• This function may be used to implement semaphores in a network
or multitasking environment. If the function succeeds, the program
has acquired the semaphore. To release the semaphore, the program
simply deletes the file.

99

Int 21H Function 5CH (92)
Lock or Unlock File Region

[3]

Locks or unlocks a specified region of a file that was previously
opened or created with Int 21H Functions 3CH, 3DH, SAH, or SBH.
This function is not available unless the file-sharing module
(SHARE.EXE) is loaded.

Call with:

AH
AL

=SCH
=OOH

OlH
BX = handle

if locking region
if unlocking region

CX = high part of region offset
DX = low part of region offset
SI = high part of region length
DI = low part of region length

Returns:

Iffunction successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

Notes:

• This function is useful for file and record synchronization in a
multitasking environment or network. Access to the file as a whole
is controlled by the attribute and file-sharing parameters passed in
open or create calls, and by the file's attributes, which are stored in
its directory entry.

• The beginning location in the file to be locked or unlocked is sup­
plied as a positive double precision integer, which is a byte offset
into the file. The length of the region to be locked or unlocked is
similarly supplied as a positive double precision integer.

• For every call to lock a region of a file, there must be a subsequent
unlock call with exactly the same file offset and length.

• Locking beyond the current end of file is not an error.

• If a process terminates without rele"sing active locks on a file, the
result is undefined.

100

• Programs that are loaded with the EXEC call (lnt 21H Function
4BH) inherit the handles of their parent but not any active locks.

• Duplicate handles created with Int 21H Function 45H, or handles
redirected to the file with Int 21H Function 46H, are allowed ac­
cess to locked regions within the same process.

Int 21H Function 5DH (93)
Reserved

Int 21H Function 5EH (94)
Subfunction OOH
Get Machine Name

[3]

[31]

Returns the address of an ASCIIZ (null-terminated) string identifying
the local computer. This function call is only available when
Microsoft Networks is running.

Call with:

=5EH
=OOH

AH
AL
DS:DX = segment:offset of buffer to receive string

Returns:

Iffunction successful
Carry flag = clear
CH = OOH if name not defined

<> OOH if name defined
CL
DX:DX

= netBIOS name number (if CH<>O)
= segment:offset of identifier (if CH<>O)

If function unsuccessful
Carry flag = set
AX = error code

Notes:

• The computer identifier is a 15-byte string, padded with spaces and
terminated with a null (OOH) byte.

• The effect of this call is unpredictable if the file-sharing support
module is not loaded.

101

Int 21H Function SEH (94)
Subfunction 02H
Set Printer Setup String

[3.1]

Specifies a string to be sent in front of all files directed to a particular
network printer, allowing users at different network nodes to specify .
individualized operating modes on the same printer. This function call
is only available when Microsoft Networks is running.

Call with:

AH
AL
BX
CX
DS:SI

Returns:

=5EH
=02H
= redirection list index
= length of setup string
= segment:offset of setup string

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

Notes:

• The redirection list index passed in register BX is obtained with
Function 5FH Subfunction 02H (Get Redirection List Entry).

• See also Function 5EH Subfunction 03H, which may be used to ob­
tain the existing setup string for a particular network printer.

Int 21H Function SEH (94)
Subfunction 03H
Get Printer Setup String

[3.1]

Obtains the printer setup string for a particular network printer. This
function call is only available when Microsoft Networks is running.

102

Call with:

AH
AL
BX
ES:DI

Returns:

=5EH
=03H
= redirection list index
= segment:offset of buffer to receive setup string

If function successful
Carry flag = clear
CX = length of printer setup string
ES:DI = address of buffer holding setup string

If function unsuccessful
Carry flag = set
AX = error code

Notes:

• The redirection list index passed in register BX is obtained with
Function 5FH Subfunction 02H (Get Redirection List Entry).

• See also Int 21H Function 5EH Subfunction 02H, which is used to
specify a setup string for a network printer.

Int 21H Function 5FH (95)
Subfunction 028

[31]

Get Redirection List Entry
Allows inspection of the system redirection list, which associates local
logical names with network files, directories, or printers. This func­
tion call is only available when Microsoft Networks is running and
the file-sharing module (SHARE.EXE) has been loaded.

Call with:

AH
AL
BX
DS:SI

ES:DI

=5FH
=02H
= redirection list index
= segment offset of 16-byte buffer to hold local device

name
= segment:offset of 128-byte buffer to hold network

name

103

Returns:

If function successful
Carry flag = clear
BH = device status flag

BL

CX
DX
BP
DS:SI
ES:DI

bit a = a if device valid
= I if not valid

= device type
03H if printer
04H if drive

= stored parameter value
= destroyed
= destroyed
= segment:offset of ASCIIZ local device name
= segment:offset of ASCIIZ network name

If function unsuccessful
Carry flag = set
AX = error code

Note:

• The parameter returned in CX is a value that was previously passed
to MS-DOS in register CX with Int 21H Function 5FH Subfunction
03H (Redirect Device). It represents data that is private to the
applications which store and retrieve it, and has no meaning to
MS-DOS.

Int 2lH Function 5FH (95)
Subfunction 03H
Redirect Device

[3.1]

Establishes redirection across the network by associating a local
device name with a network name. This function call is only available
when Microsoft Networks is running and the file-sharing module
(SHARE.EXE) has been loaded.

Call with:

AH =5FH
AL =03H
BL = device type

03H if printer
04H if drive

104

= parameter to save for caller
= segment:offset of ASCIIZ local device name

CX
DS:SI
ES:DI = segment:offset of ASCIIZ network I1ame, followed

by ASCIIZ password

Returns:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

Notes:

• The local name can be a drive designator (a letter followed by a
colon, such as "D:"), a printer name, or a null string. Printer
names must be one of the following: PRN, LPTl, LPT2, or LPT3.
If a null string followed by a password is used, MS-DOS attempts
to grant access to the network directory with the specified
password.

• The parameter passed in CX can be retrieved by later calls to Int
2lH Function 5FH Subfunction 02H. It represents data that is pri­
vate to the applications which store and retrieve it, and has no
meaning to MS-DOS.

Int 21H Function SFH (95)
Subfunction 04H
Cancel Device Redirection

[3.1]

Cancels a previous redirection request by removing the association of
a local device name with a network name. This function call is only
available when Microsoft Networks is running and the file-sharing
module (SHARE.EXE) has been loaded.

Call with:

AH
AL
DS:SI

=5FH
=04H
= segment:offset of ASCIIZ local device name

105

Returns:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

Note:

• The supplied name can be a drive designator (a letter followed by a
colon, such as "D:"), a printer name, or a string starting with two
backslashes (\\). Printer names must be one of the following: PRN,
LPTI, LPT2, or LPT3. If the string with two backslashes is used,
the connection between the local machine and the network direc­
tory is terminated.

Int 21H Function 608 (96)
Reserved

Int 21H Function 61H (97)
Reserved

Int 21H Function 628 (98)
Get PSP Address

Obtains the segment (paragraph) address of the program segment
prefix (PSP) for the currently executing program.

Call with:

AH =62H

Returns:

BX = segment address of program segment prefix

106

[3]

[3]

[3]

Notes:

• Before a program receives control from MS-DOS, its program seg­
ment prefix is set up to contain certain vital information, such as:
- the segment address of the program's environment block;
- the command line originally entered by the user;
- the original contents of the terminate, Ctrl-C, and critical-error

handler vectors;
- and the top address of available RAM.

• The segment address of the PSP is normally passed to the program
in registers DS and ES when it initially receives control from MS­
DOS. This function allows a program to conveniently recover the
PSP address at any point during its execution, without having to
save it at program entry.

Int 21H Function 63H (99)
Get Lead Byte Table

[2.25 only]

Obtains the address of the system table of legal lead byte ranges for
extended character sets, or sets or obtains the interim console flag. Int
21H Function 63H is available only in MS-DOS version 2.25; it is not
supported in MS-DOS version 3.

Call with:

AH = 63H
AL = subfunction

OOH if getting address of system lead byte table
OJ H if setting or clearing interim console flag
02H if obtaining value of interim console flag

IfAL = OlH
DL = OOH

OlB
if clearing interim console flag
if setting interim console flag

Returns:

If function successful
Carry flag = clear

and, if called with AL=OOH
DS:SI = segment:offset of lead byte table

or, if called with AL=02H
DL = value of interim console flag

If function unsuccessful
Carry flag = set
AX = error code

107

Notes:

• The lead byte table consists of a variable number of 2-byte entries,
terminated by 2 null (OOH) bytes. Each pair defines the beginning
and ending value for a range of lead bytes. The value of a legal
lead byte is always in the range 80-0FFH.

• Entries in the lead byte table must be in ascending order. If no
legal lead bytes are defined in a given system, the table consists
only of the two null bytes.

• If the interim console flag is set, Int 2lH Functions 07H (Un­
filtered Character Input), 08H (Character Input without Echo), and
OBH (Keyboard Status) will support interim characters.

• Unlike most other MS-DOS services, this function call does not
necessarily preserve any registers except SS:SP .

.................................
Int 21H Function 640 (100)
Reserved

[3]

Int 21H Function 650 (101) [3.3]
Get Extended Country Information
Obtains information about the specified country and/or code page.

Call with:

AH
AL

BX
CX
DX
ES:DI

=65H
= subfunction

OIH = Get General Internationalization Information
02H = Get Pointer to Uppercase Table
04H = Get Pointer to Filename Uppercase Table
06H = Get Pointer to Collating Table

= code page of interest (-1 = active CON device)
= length of buffer to receive information
= country ID (-1 = default)
= address of buffer to receive information

108

Returns:

If function successful
Carry flag = clear

and requested data placed in calling program's buffer

If function unsuccessful
Carry flag = set
AX = error code

Notes:

• The information returned by this function is a superset of the infor­
mation returned by Int 2lH Function 3SH.

• This function may fail if either the country code or the code page
number is invalid or if the code page does not match the country
code.

• The function fails if the specified buffer length is less than five
bytes. If the buffer to receive the information is at least five bytes
long but is too short for the requested information, the data is trun­
cated and no error is returned.

• The format of the data returned by Subfunction OlH is:

Byte(s) Contents

OOH Information ID code (1)

OIH-02H
03H-04H
05H-06H
07H-OSH

09H-ODH
OEH-OFH
lOH-llH
12H-13H
14H-15H
16H

Length of following buffer
Country ID
Code page number
Date format
0= USA mdy
I = Europe d m y
2 = Japan ymd
ASCIIZ currency symbol
ASCIIZ thousands separator
ASCIIZ decimal separator
ASCIIZ date separator
ASCIIZ time separator
Currency format flags
bit 0 = 0 if currency symbol precedes value

= 1 if currency symbol follows value

bit 1 = 0 if no space between value and currency
symbol

= 1 if one space between value and
currency symbol

109

17H Number of digits after decimal in currency
18H Time format

bit 0 = 0 if 12-hour clock
= 1 if 24-hour clock

19H -1 CH Case-map routine call address
lDH-lEH ASCIIZ data list separator
IFH-28H Reserved

• The format of the data returned by Subfunctions 02H, 04H, and
06H is:

Byte(s) Contents

OOH Information ID code (2, 4, or 6)
OlH-04H Double-word pointer to table

• The uppercase and filename uppercase tables are a maximum of
130 bytes long. The first two bytes contain the size of the table; the
following bytes contain the uppercase equivalents, if any, for char­
acter codes 80H - FFH. The main use of these tables is to map ac­
cented or otherwise modified vowels to their plain vowel
equivalents. Text translated with the help of this table can be sent
to devices that do not support the IBM graphics character set, or
used to create filenames that do not require a special keyboard con­
figuration for entry.

• The collating table is a maximum of 258 bytes long. The first two
bytes contain the table length, and the subsequent bytes contain the
values to be used for the corresponding character codes (O-FFH)
during a sort operation. This table maps uppercase and lowercase
ASCII characters to the same collating codes so that sorts will be
case-insensitive, and it maps accented vowels to their plain vowel
equivalents.

• In some cases a truncated translation table may be presented to the
program by MS-DOS. Applications should always check the length
at the beginning of the table to ensure that it contains a translation
code for the particular character of interest.

Int 21H Function 66H (102)
Get or Set Code Page
Obtains or selects the current code page.

110

[3.3]

Called with:

AH = 66H
AL = subfunction

OlH = Get Code Page
02H = Select Code Page

BX = code page to select, if AL = 02H

Returns:

iffunction successful
Carry flag = clear

and, if called with AL = 01H
BX = active code page
DX = default code page

if function unsuccessful
Carry flag = set
AX = error code

Note:

• When the Select Code Page subfunction is used, MS-DOS gets the
new code page from the COUNTRY.SYS file. The device must be
previously prepared for code page switching with the appropriate
DEVICE= directive in the CONFIG.SYS file and NLSFUNC and
MODE CP PREPARE commands (usually placed in the
AUTOEXEC.BAT file).

Int 21H Function 67H (103)
Set Handle Count

[3.3]

Sets the maximum number of files and devices that may be opened
simultaneously using handles by the current process.

Call with:

AH = 67H
BX = number of desired handles

Returns:

1f function successful
Carry flag = clear

if function unsuccessful
Carry flag = set
AX = error code

111

Notes:

• This function call controls the size of the table that relates handle
numbers for the current process to MS-DOS's internal, global table
for all of the open files and devices in the system. The default table
is located in the reserved area of the process's PSP and is large
enough for 20 handles.

• The function fails if the requested number of handles is greater
than 20 and there is not sufficient free memory in the system to
allocate a new block to hold the enlarged table.

• If the number of handles requested is larger than the available en­
tries in the system's global table for file and device handIes (con­
trolled by the FILES entry in CONFIG.SYS), no error is returned.
However, a subsequent attempt to open a file or device, or create a
new file, will fail if all of the entries in the system's global file
table are in use, even if the requesting process has not used up all
of its own handles.

Int 21H Function 68H (104)
Commit File

[3.3]

Forces all data in MS-DOS's internal buffers associated with a speci­
fied handle to be physically written to the device. If the handle refers
to a file, and the file has been modified, the time and date stamp and
file size in the file's directory entry are updated.

Call with:

AH =68H
BX = handle

Returns:

Iffunction successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

Notes:

• The effect of this function is equivalent to closing and reopening a
file, or to duplicating a handle for the file with Int 21H Function
45H and then closing the duplicate. However, this function has the

112

advantage that it will not fail due to lack of handles, and the appli­
cation does not risk losing control of the file in multitasking or net­
work environments.

• If this function is requested for a handle associated with a character
device, a success flag is returned but there is no other effect.

Int 22H [1] [2] [3]
Terminate Handler Address

The machine interrupt vector for Int 22H (memory locations
OOOO:0088H through OOOO:008BH) contains the address of the routine
that receives control when the currently executing program terminates
via Int 20H, Int 27H, or Int 2lH Functions OOH, 3lH, or 4CH. The ad­
dress in this vector is also copied into offsets OAH through ODH of the
program segment prefix (PSP) when a program is loaded but before it
begins executing, and is restored from the PSP (in case it was modi­
fied by the application) as part of MS-DOS's termination handling.

This interrupt should never be issued directly.

Int 23H [1] [2] [3]
Ctrl-C Handler Address
The machine interrupt vector for Int 23H (memory locations
OOOO:008CH though OOOO:008FH) contains the address of the routine
which receives control when a CtrI-C is detected during any character
I/O function and, if the Break flag is ON, during most other MS-DOS
function calls. The address in this vector is also copied into locations
OEH through llH of the program segment prefix (PSP) when a
program is loaded but before it begins executing, and is restored
from the PSP (in case it was modified by the application) as part of
MS-DOS's termination handling.

This interrupt should never be issued directly.

Notes:

• The initialization code for an application can use Int 21H Function
25H to reset the Interrupt 23H vector to point to its own routine for
Ctrl-C handling. In this way, the program can avoid being termi­
nated unexpectedly as the result of the user's entry of a CtrI-C or
CtrI-Break.

113

• When a Ctrl-C is detected and the program's Int 23H handler
receives control, all registers are set to their values at the point of
the original function call. The handler can then do any of the
following:
- Set a local flag for later inspection by the application, or take

any other appropriate action, and perform an IRET. All registers
must be preserved. The MS-DOS function in progress will be
restarted from scratch and will proceed to completion, control
finally returning to the application in the normal manner.

- Take appropriate action and then perform a RET FAR to give
control back to MS-DOS. The state of the carry flag is used by
MS-DOS to determine what action to take. If the carry flag is
set, the application will be terminated; if the carry flag is clear,
the application will continue in the normal manner.

- Retain control by transferring to an error-handling routine within
the application and then resume execution or take other appropri­
ate action, never performing a RET FAR or IRET to end the in­
terrupt-handling sequence. This option will cause no harm to the
system.

• Any MS-DOS function call may be used within the body of an Int
23H handler.

Int 24H [1] [2] [3]
Critical-Error Handler Address
The machine interrupt vector for Int 24H (memory locations
0000:0090H through 0000:0093H) contains the address of the routine
that receives control when a critical error (usually a hardware error)
is detected. This address is also copied into locations 12H through ISH
of the program segment prefix (PSP) when a program is loaded but
before it begins executing, and is restored from the PSP (in case it was
modified by the application) ils part of MS-DOS's termination
handling.

This interrupt should never be issued directly.

Notes:

• On entry to the critical-error interrupt handler, bit 7 of register AH
is clear (0) if the error was a disk I/O error; otherwise, it is set (1).
BP:SI contains the address of a device-driver header from which
additional information can be obtained. Interrupts are disabled.
The registers will be set up for a retry operation, and an error code
will be in the lower half of the DI register, with the upper half
undefined.

114

The lower byte of DI contains:

OOH write-protect error
OIH unknown unit
02H drive not ready
03H unknown command
04H data error (CRC)
OSH bad request structure length
06H seek error
07H unknown media type
08H sector not found
09H printer out of paper
OAH write fault
OBH read fault
OCH general failure
ODH reserved
OEH reserved
OFH invalid disk change (MS-DOS 3.x only)

Note that these are the same error codes returned by the device
driver in the request header. Also, upon entry, the stack is set up as
follows:

Flags

es

IP

ES

OS

BP

01

SI

OX
. ex

BX

AX

Flags

es

IP

1)-

f-

It

Flags and eS:IP pushed on stack
by original Int 21 H call

Registers at point of
originallnt 21 H call

Return address for Int 24H handler

SS:SP on entry to Int 24H handler

• When a disk I/O error occurs, MS-DOS automatically retries the
operation before issuing a critical-error Int 24H. The number of re­
tries varies in different versions of MS-DOS but is typically in the
range three to five.

115

• Int 24H handlers must preserve the SS, SP, DS, ES, BX, CX, and
DX registers. Only Int 21H Functions Ol-OCH and 59H can be
used by an Int 24H handler; other function calls will destroy the
MS-DOS stack and its ability to retry or ignore an error.

• When the Int 24H handler issues an IRET, it should return an ac­
tion code in AL that will be interpreted by DOS as follows:

o ignore the error
I retry the operation
2 terminate the program
3 [3] fail the function call in progress

• If the Int 24H handler returns control directly to the application
program rather than to MS-DOS, it must restore the program's
registers, removing all but the last three words from the stack, and
issue an IRET. Control returns to the instruction immediately fol­
lowing the function call that caused the error. This option leaves
MS-DOS in an unstable state until a call to an Int 21H function
higher than Function OCH is made.

Int 25H [1] [2] [3]
Absolute Disk Read
Provides a direct linkage to the MS-DOS BIOS module to read data
from a logical disk sector into memory.

Call with:

AL
CX
DX
DS:BX

Returns:

= drive number (O=A, l=B, etc)
= number of sectors to read
= starting sector number
= segment offset of buffer

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code (see Notes)

Notes:

• All registers except the segment registers may be destroyed.

116

• When this function returns, the CPU flags originally pushed on the
stack by the INT 25H instruction are still on the stack. The stack
must be cleared by a POPF or ADD SP,2 to prevent uncontrolled
stack growth, and to make accessible any other values that were
pushed on the stack before the call to INT 25H.

• Logical sector numbers are obtained by numbering each disk sec­
tor sequentially from track 0, head 0, sector 1, and continuing until
the last sector on the disk is counted. The head number is incre­
mented before the track number. Logically adjacent sectors may
not be physically adjacent, due to interleaving that occurs at the
device-driver level for some disk types.

• The error code is interpreted as follows: The lower byte (AL) is the
same error code that is returned in the lower byte of DI when an Int
24H is issued. The upper byte (AH) contains:

80H if attachment failed to respond
40H if seek operation failed
20H if controller failed
lOH if data error (bad CRC)
08H if direct memory access (DMA) failure
04H if requested sector not found
02H if bad address mark
01 H if bad command

Int 26H [1] [2] [3]
Absolute Disk Write

Provides a direct linkage to the MS-DOS BIOS module to write data
from memory to a logical disk sector.

Call with:

AL
CX
DX
DS:BX

Returns:

= drive number (O=A, l=B, etc)
= number of sectors to write
= starting sector number
= segment offset of buffer

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code (see Notes)

117

Notes:

• All registers except the segment registers may be destroyed.

• When this function returns, the CPU flags originally pushed onto
the stack by the INT 26H instruction are still on the stack. The
stack must be cleared by a POPF or ADD SP,2 to prevent un­
controlled stack growth, and to make accessible any other values
that were pushed on the stack before the call to INT 26H.

• Logical sector numbers are obtained by numbering each disk sec­
tor sequentially from track 0, head 0, sector 1, and continuing until
the last sector on the disk is counted. The head number is incre­
mented before the track number. Logically adjacent sectors may
not be physically adjacent, due to interleaving that occurs at the
device-driver level for some disk types.

• The error code is interpreted as follows: The lower byte (AL) is the
same error code that is returned in the lower byte of DI when an Int
24H is issued. The upper byte (AH) contains:

80H if attachment failed to respond
40H if seek operation failed
20H if controller failed
10H if data error (bad CRC)
08H if direct memory access (DMA) failure
04H if requested sector not found
03H if write-protect fault
02H if bad address mark
OlH if bad command

Int 278 [1] [2] [3]
Terminate and Stay Resident
Terminates execution of the currently executing program, but reserves
part or all of its memory so that it will not be overlaid by the next
transient program to be loaded. MS-DOS then takes the following
actions:

• File buffers are flushed and any open handles for files or
devices owned by the process are closed.

• The termination handler vector (Int 22H) is restored from
PSP:OOOAH.

118

• The Ctrl-C handler vector (Int 23H) is restored from
PSP:OOOEH.

• [2] [3] The critical-error handler vector (Int 24H) is restored
from PSP:0012H.

• Control is transferred to the termination handler.

If the program is returning to COMMAND.COM, control transfers to
the resident portion and the transient portion is reloaded if necessary.
If a batch file is in progress, the next line of the file is fetched and in­
terpreted; otherwise a prompt is issued for the next user command.

Call with:

DX = offset of the last byte plus one (relative to the pro-
gram segment prefix) of program to be protected

CS = segment of program segment prefix

Returns:

Nothing

Notes:

• This function call is typically used to allow user-written utilities,
drivers, or interrupt handlers to be loaded as ordinary .COM or
.EXE programs, and then remain resident. Subsequent entrance to
the code is via a hardware or software interrupt.

• This function attempts to set the initial memory allocation block to
the length in bytes specified in register DX. If other memory blocks
have been requested by the application via Int 2lH Function 48H,
they will not be released by this function.

• Other methods of performing a final exit are:
- Int 20H
- Int 21H Function OOH
- Int 21H Function 3lH
- Int 21H Function 4CH

• This function should not be called by .EXE programs that are
loaded at the high end of the transient program area (i.e., linked
with the /HIGH switch), because doing so reserves the memory that
is normally used by the transient part of COMMAND.COM. If
COMMAND.COM cannot be reloaded, the system will fail.

• This function does not work correctly when DX contains values in
the range OFFFlH-OFFFFH. In this case, MS-DOS discards the
high bit of the value in DX, resulting in the reservation of 32 KB
less memory than was requested by the program.

119

• [3] If the program is running on a network, it should remove all
locks it has placed on file regions before terminating.

• [2] [3] Int 2lH Function 3lH should be used in preference to this
function because it supports return codes, allows larger amounts of
memory to be reserved, and does not require CS to contain the seg­
ment of the program segment prefix.

Int 28H
Reserved

Int 29H
Reserved

Int 2AH
Reserved

Int 2BH
Reserved

Int 2eH
Reserved

Int 2DH
Reserved

Int 2EH
Reserved

120

[1] [2] [3]

[1] [2] [3]

[1] [2] [3]

[1] [2] [3]

[1] [2] [3]

[1] [2] [3]

[1] [2] [3]

Int 2FH [3]
Multiplex Interrupt
Provides a general-purpose avenue of communication with various
MS-DOS extensions, such as the print spooler and APPEND. These
extensions are typically loaded as terminate-and-stay-resident (TSR)
programs.

Int 2FH Function om
Print Spooler

[3]

Submits a file to the print spooler, removes a file from the print
spooler's queue of pending files, or obtains the status of the printer.
The print spooler, which is contained in the file PRINT.COM, was
first added to MS-DOS in version 2.0, but the application program in­
terface to the spooler was not documented until MS-DOS version 3.

Call with:

AH =OlH
AL = subfunction

DS:DX

Returns:

OOH = Get Installed State
OlH = Submit File to be Printed
02H = Remove File from Print Queue
03H = Cancel All Files in Queue
04H = Hold Print Jobs for Status Read
05H = Release Hold

= segmentoffset of packet (Subfunction OlH)
segment:offset of ASCIIZ pathname (Subfunction
02H)

Iffunction successful
Carry flag = clear

and, if called with AL = OOH
AL = print spooler state

OOH if not installed, ok to install
OlH if not installed, not ok to install
FFH if installed

121

or, if called with AL = 04H
DX = error count
DS:SI = segment offset of print queue file list

If function unsuccessful
Carry flag = set
AX = error code

Notes:

• The packet passed to Subfunction OlH consists of five bytes. The
first byte contains the level, which should be OOH for MS-DOS ver­
sions 2 and 3. The following four bytes contain the segmentoffset
of an ASCIIZ pathname, which may not include wildcard charac­
ters. If the specified file exists, it is added to the print queue.

• The. and ? wildcard characters may be included in a pathname
passed to Subfunction 02H, making it possible to delete multiple
files from the print queue with one call.

• The address returned by Subfunction 04H points to a list of 64-byte
entries, each containing an ASCIIZ pathname. The first path name
in the list is the file currently being printed. The last entry in the
list is a null string (a single OOH byte).

122

The manuscript for this book was prepared and submitted to
Microsoft Press in electronic form. Text files were processed and
formatted using Microsoft Word.

Cover design by Ted Mader & Associates
Interior text design by Greg Hickman
Principal typography by Carol Luke

Text composition by Microsoft Press in Times Roman with display
in Times Roman Bold, using the Magna composition system and the
Linotronic 300 laser imagesetter.

OTHER TITLES FROM MICROSOFT PRESS

RUNNING MS-DOS®, 3rd edition
The Classic, Definitive Work on DOS - Now Completely Revised
and Expanded to Include All Versions of PC/MS-DOS® - Including
Hard-Disk Management Tips and Techniques
Van Wolverton

"This book is simply the definitive handbook of PClMS-DOS ... written
for both novices and experienced users." BYTE

Van Wolverton will guide you through hands-on examples of PC-DOS
and MS-DOS commands and capabilities. He will also show you how
to work with files and directories on a floppy- or hard-disk system;
how to effectively manage printers, monitors, and modems; how to
automate frequently performed tasks with batch files; and much more.
An expanded MS-DOS command reference is included. Covers
MS-DOS through version 3.3. RUNNING MS-DOS-accept no
substitutes.
512 pages, 73/8 x 91/4, softcover $22.95 Order #86-96262

hardcover $35.00 Order #86-96270

SUPERCHARGING MS-DOS®
The Microsoft® Guide to High Performance Computing for the
Experienced PC User
Van Wolverton

"SUPERCHARGING MS-DOS is a valuable addition to any PC user's
reference library. For advanced MS-DOS users and software program­
mers it's a must." Microtimes

When you're ready for more power, this sequel to RUNNING
MS-DOS provides intermediate- to advanced-level tips on maximiz­
ing the power of MS-DOS. Control your screen and keyboard with
ANSI.SYS; create, examine, or change any file; and personalize your
CONFIG.SYS file. Includes programs and dozens of valuable batch
files.
320 pages, 7% x 91/4, softcover $18.95 Order #86-95595

SUPERCHARGING MS-DOS is also available with a handy 5.25-
inch companion disk that contains scores of batch files, script files,
and programs from the book. Used in conjunction with the book, the
companion disk is a timesaving tool.

SUPERCHARGING MS-DOS Book/Disk Package
Van Wolverton

320 pages, softcover with one 5.25-inch disk $34.95
Order #86-96304

MICROSOFT® QUiCKe" PROGRAMMING
The Microsoft® Guide to Using the QuickC Compiler
The Waite Group: Mitchell Waite, Stephen Prata, Bryan Costales, and
Harry Henderson

The most authoritative introduction to every significant element
of Microsoft QuickC available today! The scores of programming
examples and tips show you how to manipulate QuickC's variable
types; how to program using the Graphics Library; how to port Pascal
to QuickC; how to use the powerful source-level debugger; and more.
If you're new to C, familiar with Microsoft QuickBASIC or Pascal, or
a seasoned programmer, you'll find solid, advanced information that's
available nowhere else.
608 pages, 73/s x 91/4, softcover $19.95 Order #86·96114

POWER WINDOWS
Maximizing the Speed and Performance of Windows 2.0 and
Windows/386
lim Heid

POWER WINDOWS is the only book with detailed information on
Windows 2.0 and Windows/386. Reid shows you how to streamline
your start-up procedures; create optimal configurations; customize the
WIN.lNI file; allocate memory for running applications; and much
more. A special section describes the differences between Windows'
versions.
304 pages, 73/s x 91/4, softcover $19.95 Order #86·96064

INSIDE OS/2
Gordon Letwin, Chief Architect, Systems Software, Microsoft
Foreword by Bill Gates

"Run, do not walk, to your nearest bookseller and buy a copy of the
new Microsoft Press book INSIDE OS/2 by Gordon Letwin He knows
OS/2. He can also write. It's not easy to produce a readable book about
anything intrinsically dull as an operating system, but Letwin has done
a surprisingly good job." Infoworld

INSIDE OS/2 is an unprecedented, candid, and exciting technical
examination of OS/2. Letwin takes you inside the philosophy, key
development issues, programming implications, and future of OS/2. A
valuable and revealing programmer-to-programmer discussion. You
can't get a more inside view. This is a book no OS/2 programmer can
afford to be without!
304 pages, 73/s x 91/4, softcover $19.95 Order #86·96288

The Quick Reference Series

QUICK REFERENCE GUIDE TO MS-DOS® COMMANDS
Van Wolverton

This easy-to-use alphabetic reference covers the most often used
PC-DOS and MS-DOS commands through version 3.2 and is perfect
for quick lookups. This guide is for every person operating a PC­
and MS-DOS computer, and is a good supplement to RUNNING
MS-DOS.
48 pages, 41/4 x 11, softcover $4.95 Order #86-95876

QUICK REFERENCE GUIDE TO HARD-DISK MANAGEMENT
Van Wolverton

Here is all the core information you need to organize, maintain, and
troubleshoot your hard-disk problems along with tips on installing sec­
ondary hard disks, the necessary PC-DOS and MS-DOS commands
for formatting, configuring, and organizing a hard disk, and more.
96 pages, 43/4 x 8, softcover $5.95 Order #86-96353

Programmer's Quick Reference Series

IBM® ROM BIOS
Ray Duncan

A handy and compact guide to the ROM BIOS services of IBM PC,
PC/AT, and PS/2 machines. Duncan provides you with an overview of
each ROM BIOS service along with its required parameters or argu­
ments, its returned results, and version dependencies.

128 pages, 43/4 x 8, softcover $5.95 Order #86-96478

Microsoft Press books are available wherever fine books
are sold, or credit card orders can be placed by calling

1-800-638-3030 (in Maryland call collect 824-7300).

MS-DOS· fUNCTIONS

U.S.A.
U.K.

Austral.

Covers DOS through version 3.3

At last! Now you can have instant access to information on
MS-DOS service calls. Whether you're a casual program­
mer or a professional assembly-language or C programmer,
this handy book will be a frequent reference. Included is
an overview of each system service accessed via Interrupts

20H through 2FH along with:

• A list of the parameters or arguments the
service requires

• the results it returns

• version dependencies and
• valuable programming notes, warnings, and

special uses of the function .

All at your fingertips! And conveniently organized so you
don't have to waste your valuable programming time
looking for a key piece of information.

Ray Duncan is the author of the bestselling book Advanced
MS-DOS and general editor of The MS-DOS Encyclopedia.
He has also been a frequent and popular contributor to
many leading microcomputer magazines, including BYTE,
Dr. Dobb S Journal, and PC magazine.

Look for these other Quick Reference guides ava~lable

from Microsoft Press:
Programmers Quick Reference Series: IBM" ROM-BIOS
Quick Reference Guide to Hard-Disk Management

$5.95

£5.95

$8.95

ISBN 1-55615-128-4

50595

(recommended) 9 781556 151286

